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The Technology Support Projects,
Technology Support Center (TSC) for
Monitoring and Site Characterization was
established in 1987 as a result of an
agreement between the Office of Research
and Development (ORD), the Office of
Solid Waste and Emergency Response
(OSWER) and all ten Regional Offices.
The objectives of the Technology Support
Project and the TSC were to make avail-
able and provide ORD's state-of-the-
science contaminant characterization
technologies and expertise to Regional
staff, facilitate the evaluation and
application of site characterization
technologies at Superfund and RCRA sites,
and to improve communications between
Regions and ORD Laboratories.  The TSC
identified a need to provide federal, state,
and private environmental scientists
working on hazardous waste sites with a
technical issue paper that identifies data
assessment applications that can be
implemented to better define and identify
the distribution of hazardous waste site
contaminants.  The examples given in this
Issue paper and the recommendations
provided were the result of numerous data
assessment approaches performed by the
TSC at hazardous waste sites.  Mr. John
Nocerino provided guidance and
suggestions that greatly enhanced the
quality of this Issue Paper.

This paper was prepared by A. K. Singh,
A. Singh, and M. Engelhardt.  Support for
this project was provided by the EPA
National Exposure Research Laboratory's
Environmental Sciences Division with the
assistance of the Superfund Technical
Support Projects Technology Support
Center for Monitoring and Site
Characterization, OSWER’s Technology
Innovation Office, the U.S. DOE Idaho
National Engineering and Environmental
Laboratory, and the Associated Western
Universities Faculty Fellowship Program.
For further information, contact Ken
Brown, Technology Support Center
Director, at (702) 798-2270, A. K. Singh at
(702) 895-0364, A. Singh at (702) 897-
3234, or M. Engelhardt at (208) 526-2100.

PURPOSE AND SCOPE

The purpose of this issue paper is to
provide guidance to environmental
scientists regarding the interpretation and
statistical assessment of data collected
from sites contaminated with inorganic and
organic contaminants.  Contaminant
concentration data from sites quite often
appear to follow a skewed probability
distribution.  The lognormal distribution is
frequently used to model positively skewed
contaminant concentration distributions.
The H-statistic based Upper Confidence
Limit (UCL) for the mean of a lognormal
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Figure 1 A site with several sources of
contamination.

population is recommended by U.S. EPA
guidance documents (see, for example, EPA
(1992)) and is widely used to make remediation
decisions at Superfund sites.  However, recent
work in environmental statistics has cast some
doubts on the performance of the formula based
on the H-statistic for computing an upper
confidence limit of the mean of a lognormal
population.  This issue paper is mainly concerned
with the problem of computing an upper
confidence limit when the contaminant
concentration distribution appears to be highly
skewed. 

Several approaches to computing upper
confidence limits for the mean of a lognormal
population are considered.  The approaches
discussed include those based on the H-statistic,
the jackknife method, the bootstrap method, and
a method based on the Chebychev inequality.
Simulated examples show that for values of the
coefficient of variation larger than 1, the upper
confidence limits for the mean contaminant
concentration based on the H-statistic are much
higher than the upper confidence limits obtained
by the other estimation methods.  This may result
in an unnecessary cleanup.  In other words, the
use of the jackknife method, the bootstrap method,
or the Chebychev inequality method provides
better input to the risk assessors and may result in
a significant reduction in remediation costs.  This
is especially true when the number of samples is
thirty or less.  When the value of the coefficient of
variation exceeds 1, upper confidence limits based
on any of the other estimation procedures appear
to be more stable and reliable than those based on
the H-statistic.  Values of the coefficient of
variation computed from observed contaminant
concentrations are typically used by environ-
mental scientists to assess the normality of the
population distribution.  In this issue paper, the
issue of using the coefficient of variation in
environmental data  analysis  is addressed and the
problem of estimating the coefficient of variation,
when sampling from lognormal populations, is
also discussed.

This issue paper is divided into the following
major sections: (1) Introduction, (2) the

Lognormal Distribution, (3) Methods of
Computing a UCL of the Mean, (4) Examples,
and (5) Summary and Recommendations.

1.  INTRODUCTION

Most of the procedures available in the
literature of environmental statistics for
computing UCL of the mean of a population
assume that contaminant concentration data is
approximately normally distributed.  However, the
distributions of contaminant concentration data
from Superfund sites typically are positively
skewed and are usually modeled by the lognormal
distribution.  This apparent skewness, however,
may be due to biased sampling, multiple
populations, or outliers, and not necessarily due to
lognormally distributed data.

Biased sampling is often used in sampling for
site characterization (Power, 1992).  Another
common situation often present with
environmental data is a mixed distribution of
several subpopulations (see Figure 1).  Also, the
presence of one or more outliers, spurious
observations, or anomalies can result in a data set
which appears to come from a highly skewed
distribution.  When dealing with a skewed
distribution, statisticians sometimes recommend
using the population median (instead of the
population mean) as a measure of central
tendency.  However, remediation decisions at a
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polluted site typically are made on the basis of the
population mean, and therefore UCL of the mean
of the concentration distribution is needed.  For
positively skewed distributions, the median is
smaller than the mean: therefore a UCL for the
median provides an inappropriate basis for a
decision about the mean.  

U.S. EPA guidance documents recommend the
use of H-statistics to compute the UCL of the
mean of a lognormal distribution (EPA, 1992).  A
detailed discussion of H-statistics is given in
Gilbert (1987).  For data sets with nondetects,
estimation methods developed for censored data
from a lognormal distribution are discussed by
Lecher (1991).  The use of the lognormal
distribution has been controversial because it can
lead to incorrect decisions.  For example, recent
work of Gilbert (1993) indicates that statistical
tests of hypotheses based on H-statistics can yield
unusually high false positives, which would result
in an unnecessary cleanup.  The situation may be
reversed when dealing with estimation of the
mean background level.  If the H-statistic based
method is used to compute a UCL of the mean for
the observed background concentrations, then the
mean of the background level may be over-
estimated, which may result in not remediating a
contaminated area of the site.  Stewart (1994) also
showed that the incorrect usage of a lognormal
distribution may lead to erroneous results.

Most of the "classical" statistical methods based
on the normal distribution were developed
between 1920 and 1950 and have been well
investigated in the statistical literature.  On the
other hand, lognormal-based methods have not
received the same level of scrutiny.  Furthermore,
the classical methods became popular due to their
computational convenience.  The 1980s have
produced a new breed of statistical methods based
on the power and availability of computers (see,
for example, Efron and Gong, 1983).  Both the
jackknife and bootstrap methods require a great
deal of computer power, and, therefore, have not
been widely adopted by environmental
statisticians. However, with the recent advances in
computer  equ ipment  and so f tware ,
computationally intensive statistical procedures
have become more practical and accessible. 

The authors of this article have critically
reviewed several estimation procedures which can
be used to compute UCL values via monte carlo
simulation.  These include the simple arithmetic
mean, the Minimum Variance Unbiased Estimate
(MVUE), and  nonparametric procedures such as
the jackknife and the bootstrap procedures.
Computer simulation experiments (not included in
this paper) have been performed for various
values of the population standard deviation, or
equivalently the Coefficient of Variation (CV),
and sample sizes ranging from 10 to 101.  It has
been demonstrated that for samples of size 30 or
less, the H-statistic based UCL results in
unacceptably high estimates of the threshold
levels such as the background level contamina-
tion.  This is especially true for data sets from
populations with CV values exceeding 1.  For
samples of larger sizes, the use of H-statistics can
be replaced by UCLs based on nonparametric
methods such as the jackknife or the bootstrap.
Other well-known results such as the central limit
(CLT) and Chebychev theorems may also be used
to obtain UCLs.  To illustrate problems associated
with methods based on lognormal theory, results
for some simulated examples and some from
Superfund work done by the authors have been
included in this paper.

2. THE LOGNORMAL DISTRIBUTION  
 

The authors briefly describe the lognormal
distribution.  By definition, contaminant concen-
tration is lognormally distributed if the
log-transformed concentrations are normally
distributed.  This can be mathematically described
as follows:

If Y = ln(X) is normally distributed with mean,
µ, and variance, 12, then X is said to be
lognormally distributed with parameters µ and 12.
It should be noted that µ and 12 are not the mean
and variance of the lognormal random variable, X,
but they are the mean and variance of the log-
transformed random variable, Y.  However, it is
common practice to use the same parameters to
specify either, and it is convenient to refer to the
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Figure 1 Graphs of normal N(µ = 0, 12 = 0.5) and
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functions.
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Figure 2 Graphs of A: LN(µ = 0, 12 = 0.25), B:
LN(µ = 0, 12 = 1.0) and C: LN(µ = 0, 12

= 25.0) density functions.

normal distribution with the abbreviated notation Y
� N(µ, 12) and the log-normal distribution with the
abbreviation X � LN(µ, 12).  Figure 2, which shows
plots of a normal and a lognormal density function
with µ = 0 and 12 = 0.5, illustrates the difference
between normal and lognormal distributions.

Figure 3, which shows plots of several lognormal
distributions, each with µ = 0, illustrates how
varying the parameter 12 can change the amount of
skewness.

The parameters of interest of a lognormal
distribution, LN(µ, 12), are given as follows:

Mean 
 µ1 
 expµ � 0.512 (1)

Median 
 exp(µ ) (2)

Variance
 1
2
1 
 exp2µ�1 2 exp(1 2)	 1 (3)

Coefficient

of Variation 
 CV 
 11/µ1 
 exp(1 2)	1 (4)

Skewness
 (CV )3
� 3(CV ). (5)

Throughout this paper, irrespective of the
underlying distribution, µ1, and 11

2 represent the
mean and variance of the random variable X (in
original units), whereas µ and 12 are the mean and
variance of its logarithm given by Y=ln(X). The
pth quantile (or 100pth percentile), xp, of the
distribution of a random variable, X, is defined by
the probability statement P(X � xp) = p.  If zp is
the pth quantile of the distribution of the standard
normal random variable, Z, with  P(Z � zp) = p,
then the pth quantile of a lognormal distribution is
given by xp = exp(µ + zp1).  For example, on the
average, 95% of the observations from a
lognormal LN(µ, 12) distribution would lie below
exp(µ + 1.651).  Because the 0.5th quantile of the
standard normal distribution is z0.5 = 0, the 0.5th
quantile (or median) of a lognormal distribution is
exp(µ), which is obviously smaller than the mean,
µ1, which is given by Equation (1).  In this paper,
several procedures to estimate the UCL of the
mean have been considered.  Ordinarily, one
would expect the spread of an estimate of the
mean to be smaller than the spread of the popu-
lation itself (see Figure 4).  Thus, intuitively, the
95% UCL of the mean should be smaller than the
95th percentile of the corresponding lognormal
distribution.  In many instances with lognormal-
based methods, this statement is violated even on
lognormal data, especially for smaller sample
sizes. The quantiles discussed above are used later
to shed some light on the behavior of the UCL of
the mean which are based on the H-statistic.

One of the inherent assumptions required to
compute the UCL of the mean is that the data set
under consideration comes from a single statistical
population (e.g., background only).  Violation
ofthis assumption can lead to invalid applications
of a statistical technique.  The consequences of
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this assumption being violated are discussed as
follows.  A data set can be put into a statistical
procedure (e.g., the Shapiro-Wilks test of
normality) or a computer program whether or not
the required assumptions are met.  It is the user's
responsibility to ensure the underlying assumptions
required to conduct the statistical procedure are
met.  The decisions and conclusions derived from
incorrectly used statistics can be expensive.  For
example, incorrect use of a statistic may lead to
wrong conclusions such as:  1) remediation of a
clean part of the site, or 2) no  remediation at a
contaminated part of the site.  The first wrong
conclusion will result in an unnecessary cleanup
whereas the second incorrect conclusion may cause
a threat to human health and the environment.  It is
likely that the availability of new and improved
statistical software has also increased the misuse of
statistical techniques.  This is illustrated in the
following discussion of the application to some
simulated and real data sets.  It should be reiterated
that it is the analyst's (user's) responsibility to
verify that none of the required assumptions are
violated before using a statistical test and deriving
inferences based upon the resulting analysis.  In
many cases, this may warrant expert advice from a
statistician.

Often, the central portion of a data set will
behave as if it came from a normal distribution.
However, in practice, a normally distributed data
set with a few extreme (high) observations can be

incorrectly modeled by the lognormal distribution
with the lognormal assumption hiding the outliers.
Also, the mixture of two or more normally
distributed data sets with significantly different
mean concentrations such as one coming from the
clean background part and the other taken from a
contaminated part of the site can also be modeled
(incorrectly) by a lognormal distribution.  The
following example illustrates this point.

Example 2.1. Simulated data set from two pop-
ulations

,
A simulated data set of size fifteen (15) has been
obtained from a mixture of two normal populations.  Ten
observations (representing background) were
generated from a normal distribution with mean, 100,
and standard deviation, 50, and five observations
(representing contamination) were generated from a
normal distribution with mean, 1000, and standard
deviation, 100.  The mean of this mixture distribution is
400.  The generated data are as follows: 180.5071,
2.3345, 48.6651, 187.0732, 120.2125, 87.9587,
136.7528, 24.4667, 82.2324, 128.3839, 850.9105,
1041.7277, 901.9182, 1027.1841, and 1229.9384.

Discussion of Example 2.1

The data set in Example 2.1 failed the
normality test based on several goodness-of-fit
tests such as the Shapiro-Wilks, W-test
(W=0.7572), and Kolmogorov-Smirnov (K-S =
0.35) tests (see Figures 5 and 6).  However, when
these tests were carried out on the log-transformed
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Figure 4 Histogram of the 15 observations from the
mixture population of Example 2.1.
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Figure 5 K-S test of normality for the data of
Example 2.1.

data, the test statistics are insignificant at the . =
0.05 level of significance with W=0.8957, and K-S
= 0.168, suggesting that a lognormal distribution
(see Figures 7 and 8) provides a reasonable fit to
the data.  Based upon this test, one might
incorrectly conclude that the observed
concentrations come from a single background
lognormal population.  This incorrect conclusion is
made quite frequently.  This data set is used later to
illustrate how modeling the mixture data set by a
lognormal distribution will result in incorrect
estimates of mean contamination levels at various
parts of the site.
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Example 2.1.

METHODS OF COMPUTING A UCL OF
THE MEAN

The main objective of this study is to assess the
performances of the various methods of
estimating the UCL for the mean, µ1, of positively
skewed populations.  The assumption of a
lognormal distribution to model such populations
has become quite popular among environmental
scientists (Ott, 1990).  As noted in Section 2, for
positively skewed data sets, there are potential
problems in using standard methods based on the
lognormal theory.  Therefore, we will compare the
lognormal-based methods often used with cleanup
standards with some other available methods.  The
alternate methods considered here have the
advantage that they do not require assumptions
about the specific form of the population
distribution.  In other words, they do not assume
normality or lognormality of the data set under
consideration.  In Section 4, the UCL of the mean
has been computed for several examples using the
following methods:

& The H-statistic
& The Jackknife procedure
& The Bootstrap procedure
& The Central Limit Theorem
& The Chebychev Theorem
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A brief description of the computation of the
various estimates and the associated confidence
limits obtained using the above-mentioned
procedures follows:

Parametric Lognormal Procedures

Let x1, x2, ... , xn be a random sample from a log-
normal distribution with mean, µ1, and variance,
11

2, and denote by µ and 1 the population mean and
population standard deviation (sd), and  y

_
,  and sy

the sample mean and sample sd, respectively, of
the log-transformed data yi = ln(xi); i = 1, 2, ... , n.
.  Specifically,

ȳ 


1
nM

n

i
1
yi (6)

and

s2
y 


1
n	1M

n

i
1
yi	 ȳ 2. (7)

In a more general setting, consider a population
with an unknown parameter, �.  The minimum
variance unbiased estimate (MVUE) of �  is the
one that is not only an unbiased estimate of �  (i.e.,
the expected value of the estimate is equal to the
true value of the parameter), but it also has a
smaller variance than any other unbiased estimate
of �.  When the parameter of interest is the mean,
µ1, of a lognormally distributed population, Bradu
and Mundlak (1970) derive its MVUE, which is
given by

µ̂1 
 exp ȳ gn s2
y /2 (8)

where gn(u) is a function whose form is rather
complicated, but an infinite series solution is given
by Aitchison and Brown (1976).  Tabulations of
this function are provided by Gilbert (1987, Table
A9).  Note that Gilbert uses %n in place of gn.  This
function is also used in computing the MVUE of
the variance, 11

2, of a lognormal population, as
given by Finney (1941), 

1̂
2
1 
 exp 2ȳ gn 2s2

y 	 gn (n	2)s2
y / (n	1) . (9)

Bradu and Mundlak (1970) give the MVUE of the
variance of the estimate µ̂1,

1̂
2( µ̂1) 


exp 2ȳ gn s2
y /2

2
	 gn (n	2)s2

y / (n	1) .
(10)

Another estimate which is also sometimes used
is known as the Maximum Likelihood Estimate
(MLE).  When the data set is a random sample
from a lognormal distribution, the MLE of the
parameter, µ, is simply the sample mean of the
log-transformed data, µ ̂= y

_
, and the MLE of 12 is

a multiple of the sample variance of the log-
transformed data, namely, 1̂

2 = [(n�1)/n]sy
2.  The

MLE of any function of the parameters µ and 12 is
obtained by simply substituting these MLEs in
place of the parameters.  For example, the MLE of
the mean of a lognormal population is exp(µ̂  +
0.51̂2), and the MLE of the 95th percentile is
exp(µ̂  + 1.651̂ ).  One disadvantage of the MLEs
for the lognormal mean and percentiles is that
they are biased estimates.  Another slight
modification uses sy in place of the MLE, 1̂ .
Although the result is not identical to the MLE,
there is only a small difference numerically, and
for convenience the use of the term MLE will also
include this modified version.

Finally, the one-sided (1�.)100% UCL for the
mean, µ1, of the lognormal distribution derived by
Land (1971, 1975) is given as follows:

UCL 
 exp ȳ � 0.5s2
y �syH1	. / n	1 . (11)

Tables of H-statistic values can be found in Land
(1975) and also in Gilbert (1987, Table A10). 

Use of the UCL for a population mean based
on the H-statistic is widely recommended in
envi ronmenta l  gu idance documents.
Theoretically, the UCL based on the H-statistic
has optimal properties when the population is
truly lognormal.  However, in practice the results
can be quite disappointing and misleading if the
data set includes outliers, or is a mixture of data
from two or more distributions.  Monte carlo
investigations performed by the authors confirm
that, for small sample sizes, the use of the H-
statistic approach can result in unacceptably high
values of UCL when the CV is larger than 1.0.
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Consequently, other methods for computing a UCL
of the mean, µ1, of a distribution of unspecified
form will be considered and the results compared
with UCLs obtained by the H-statistic approach.

The methods considered in this paper can be
viewed as variations of a basic approach to
constructing confidence intervals known as the
pivotal quantity method.  In general, a pivotal
quantity is a function of both the parameter � and
an estimate �̂  such that probability distribution of
the pivotal quantity does not depend on �.  Perhaps
the best-known example of a pivotal quantity is the
well-known t statistic,

t 

x̄ 	 µ1

sx/ n
(12)

where  and sx are, respectively, the sample meanx̄
and sample standard deviation.  If the data is a
random sample from a normal population with
mean, µ1, and standard deviation, 11, then the
distribution of this pivotal quantity is the familiar
Student's t distribution with n�1 degrees of
freedom.  Because the Student's t distribution does
not depend on either unknown parameter, quantiles
are available.  Denote by t

., n�1 the upper .th
quantile of the Student's t distribution with n�1
degrees of freedom.  Based on equation (12), it is
possible to derive a (1�2.)100% confidence
interval of the form

x̄ 	 t
.,n	1sx/ n , x̄ � t

.,n	1sx/ n . (13)

The confidence interval is given in the familiar
form of a two-sided confidence interval for the
mean.  If the lower limit of this interval is
disregarded, the upper limit provides a (1�.)100%
UCL for the mean, µ1.

For a population which is normally distributed,
equation (13) provides the best way of constructing
confidence intervals for the population mean.
However, as noted previously, the distribution of
contaminant concentration data is typically
positively skewed and frequently involves outliers.
It is well known that the sample mean and sample
standard deviation get severely distorted in the

presence of outliers, (Singh and Nocerino 1995),
and consequently any function, such as the
Student's t, given by equation (12) above of these
statistics also gets severely influenced by the
presence of outliers.  Robust methods for
estimating the population mean and sd are
available in the software package, SCOUT, as
identified in Singh and Nocerino (1995).  In
practice, statistical procedures based on the
pivotal quantity (equation 12) are usually thought
to be "robust" relative to violation of the
normality assumption. As noted by Staudte and
Sheather (1990), tests based on the Student's t are
nonrobust in the presence of outliers.
Consequently, other procedures which do not rely
on a specific parametric assumption for the
population distribution are also considered in the
following discussion.

The approach of constructing confidence
intervals from pivotal quantities (or approximate
pivotal quantities) permits a unified treatment of
these alternate procedures.  In particular, each
procedure involves an approximate pivotal
quantity with the difference between the unknown
population mean, µ1, and a point estimate of the
mean in the numerator, and an estimate of the
standard error of the point estimate in the
denominator.  Thus, each procedure involves two
parts: 1) finding some reasonably robust estimate
of the mean, (Singh and Nocerino 1995), and 2)
providing a convenient way to obtain quantiles of
the pivotal quantity.  A general discussion of the
pivotal quantity approach to constructing
confidence intervals is given by Bain and
Engelhardt (1992).

As noted above, in order to apply the pivotal
quantity method, it is necessary to have quantiles
of the distribution of the pivotal quantity.  For
example, in order to compute equation (13), it is
necessary to have quantiles of the Student's t
distribution.  These quantiles can be found in
tables or computed with the appropriate software.
However, for nonnormal populations the required
quantiles are not, in general, readily available.  In
some cases, even though the exact distribution of
a pivotal quantity is not known, an approximate
distribution can be used.  Thus, except for the H-
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statistic approach, which is exact if the population
is truly lognormal, all of the other methods
discussed below give only approximate UCL
values for the population mean.  The true
confidence level of UCLs will vary from one
method to the next, and without some additional
study, it will not be clear whether the comparisons
are fair.  In other words, it is possible to have a
smaller UCL at the expense of a true confidence
level which is below the nominal level, and below
the true confidence level of another competing
method.

In environmental applications, the objectives
typically are: 1) the identification of hot spots,
which are typically represented by the high
extreme concentrations, or 2) the separation of
clean part(s) of a site from the dirty contaminated
part(s) of the site.  However, from the examples
discussed in the following, it can be seen that the
practical use of the lognormal distribution in those
environmental applications is questionable as a
lognormal distribution often accommodates
extreme outlying observations and mixture
populations as part of one lognormal distribution.

Jackknife and Bootstrap Procedures

General methods for deriving estimates, such as
the method of maximum likelihood, often result in
estimates which are biased.  Bootstrap and
jackknife procedures as discussed by Efron (1982)
and Miller (1974) are nonparametric statistical
techniques which can be used to reduce the bias of
point estimates and construct approximate
confidence intervals for parameters such as the
population mean.  These two procedures require no
assumptions regarding the statistical distribution
(e.g., normal or lognormal) for the underlying
population, and can be applied to a variety of
situations no matter how complicated.  However, it
should be pointed out that a use of a parametric
statistical method (depending upon distributional
assumptions), when appropriate, is more efficient
than its nonparametric counterpart.  In practice,
parametric assumptions are often difficult to
justify, especially in environmental applications.
In these cases, nonparametric methods are valuable
tools for obtaining reliable estimates of the

parameters of interest.  Although bootstrap and
jackknife procedures are conceptually simple,
they are based on resampling techniques requiring
considerable computing power and time.

Let x1, x2, ... , xn be a random sample of size n
from a population with an unknown parameter �

, and let �̂  be an estimate of � which(e.g.,�
µ1)
is a function of all n observations.  For example,
the parameter � could be the mean, and a
reasonable choice for the estimate �̂  might be the
sample mean, �.   Another choice is the MVUE of
a lognormal mean.  Of course, if the population is
not lognormal then this estimate may not perform
well: but, because it is frequently used with
skewed data sets, it is of interest to see how it
performs relative to the other methods.

Jackknife Estimation

In the jackknife approach, n estimates of � are
computed by deleting one observation at a time.
Specifically, for each index, i, denote by �̂ (i) the
estimate of � (computed similarly as �̂  given
above) when the ith observation is omitted from
the original sample of size n, and denote the
arithmetic mean of these estimates by

�̃ 


1
nM

n

i
1
�̂(i) . (14)

A quantity known as the ith "pseudo-value" is
defined by

Ji 
 n�̂ 	 (n	1)�̂(i) . (15)

The jackknife estimator of � is given by

J �̂ 


1
nM

n

i
1
Ji 
 n�̂ 	 (n	1)�̃ . (16)

If the original estimate �̂  is biased, then, under
certain conditions, part of the bias is removed by
the jackknife procedure, and an estimate of the
standard error of the jackknife estimate, J(�̂ ), is
given by

1̂J(�̂ ) 

1

n(n	1)M
n

i
1
Ji 	 J �̂

2. (17)
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Another application of the pseudo-values,
suggested by J. Tukey (see Miller, 1974), is to use
the pseudo-values to obtain confidence intervals
for the parameter, �, based on the following pivotal
quantity:

t 

J �̂ 	�

1̂J(�̂ )

. (18)

The statistic, t, given by equation (18) has an
approximate Student's t distribution with n�1
degrees of freedom, which can be used to derive
the following approximately two-sided
(1�2.)100% confidence interval for � :

J �̂ 	 t
.,n	11̂J(�̂ ) , J �̂ � t

.,n	11̂J(�̂ ) . (19)

The upper limit of equation (19) is an approximate
(1�.)100% UCL for �.  If the sample size, n, is
large, then the upper .th t-quantile can be replaced
with the corresponding upper .th standard normal
quantile, z

.
.  Observe also that when �̂  is the

sample mean, then the jackknife estimate is the
sample mean, that is J(�) = �; the estimate of the
standard error in equation (17) simplifies to sx/n

1/2,
and the confidence interval in equation (19)
reduces to the familiar t-statistic based confidence
interval given by equation (13). 

Bootstrap Estimation

In the bootstrap procedure, repeated samples of
size n are drawn with replacement from the given
set of observations.  The process is repeated a large
number of times, and each time an estimate of � is
computed.  The estimates thus obtained are used to
compute an estimate of the standard error of �̂ .
There exists in the literature of statistics an
extensive array of different bootstrap methods for
constructing confidence intervals.  In this article
two of these methods are considered: 1) the
standard bootstrap, and 2) the pivotal (or
Studentized) bootstrap method as discussed by Hall
(1988).  A general description of bootstrap
methods, illustrated by application to the sample
mean, follows:  

Step 1. Let (xi1, xi2, ... , xin) represent the ith

sample of size n with replacement from

the original data set (x1, x2, ..., Xn).  Then
compute the sample mean and denote it
by � I.

Step 2. Perform Step 1 independently N times
(e.g., 500-1000), each time calculating
a new estimate.  Denote those estimates
by x

_
1, x

_
2, x

_
3, ... , x

_
N.  The bootstrap

estimate of the population mean is the
arithmetic mean, x

_
B, of the N estimates

x
_

I. The bootstrap estimate of the
standard error is given by

1̂B 


1
N	1M

N

i
1
x̄i	 x̄B

2. (20)

If some parameter, � (say, a population median),
other than the mean is of concern, with an
associated estimate (e.g., the sample median), then
the same steps previously described could be
applied with the parameter and its estimate used in
place of µ1 and x

_
.  Specifically, the estimate, �̂ I,

would be computed, instead of x
_

I, for each of the
N bootstrap samples.  The general bootstrap
estimate, denoted by �

 _
 B, is the arithmetic mean of

the N estimates.  The difference, �

 _
 B � �̂ , provides

an estimate of the bias of the estimate, �̂ , and the
bootstrap estimate of the standard error of �̂  is
given by

1̂B 


1
N	1M

N

i
1
�̂i	 �̄B

2. (21)

The standard bootstrap confidence interval is
derived from the following pivotal quantity:

z 


�̂ 	 �

1̂B

. (22)

Finally, the (1�2.)100% standard bootstrap
confidence interval for �, which assumes that
equation (22) is approximately normal, is

�̂ 	 z
.
1̂B , �̂ � z

.
1̂B . (23)

In this case, the bootstrap approach gives a
convenient way to estimate the standard error of
�̂ .  Depending on the type of estimate �̂ , the 
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standard error may be quite difficult to derive, and
consequently difficult to estimate.  However, the
bootstrap approach always yields an estimate of the
standard error directly from the data, even when
the mathematical form of the standard error is not
known.  

Another variation of the bootstrap method,
called the "bootstrap t" by Efron (1982), is a
nonparametric procedure which uses the bootstrap
methodology to estimate quantiles of the pivotal
quantity in equation (12).  As previously noted, for
nonnormal populations the required quantiles may
not be easily obtained, or it may be impossible to
compute exactly.  However, with a variation of the
bootstrap procedure, as proposed by Hall (1988),
the required quantiles can be estimated directly
from the data.  Specifically, in Steps 1 and 2
described above, if x

_
 is the sample mean computed

from the original data, and x
_

i and sx, i are the sample
mean and sample standard deviation computed
from the ith resampling of the original data, the N
quantities, ti = (�i��)/sx, i, are computed and sorted,
yielding ordered quantities t(1) � t(2) � ### � t(N).  The
estimate of the upper .th quantile of the pivotal
quantity in equation (12) is t

., B = t((1�.)N).  For
example, if N = 1000 bootstrap samples are
generated, then the 950th ordered value, t(950),
would be the bootstrap estimate of the upper .05th
quantile of the pivotal quantity in  equation (12).
This estimated quantile can be used in place of the
upper .th Student's t quantile in an interval of the
form given in equation (13).  In the next section,
this method of construction will be called the
"pivotal bootstrap".  This approach has the
advantage that it does not rely on the assumption of
a special parametric form for the distribution of the
population, and it does not require an assumption
of approximate normality for the pivotal quantity
as does the standard bootstrap interval of equation
(23).

In the examples to follow, the jackknife,
the standard bootstrap method, and the pivotal
bootstrap methods are applied using the sample
mean, x

_
, and also the estimate given by equation

(8), which is the MVUE of the mean when the
population is lognormal.

The Central Limit Theorem

Given a random sample, x1, x2, ... , xn, of
size n from a population with a finite variance,
11

2, where � = µ1 is the unknown population
mean, the Central Limit Theorem (CLT) states
that the asymptotic distribution, as n approaches
infinity, of the sample mean, is normallyx̄n,
distributed with mean, µ1, and variance, 11

2/n.
More precisely, the sequence of random variables

zn 

x̄n 	 µ1

11/ n
(24)

has a standard normal limiting distribution.  In
practice, this means that for large sample sizes n,
the sample mean, x

_
, has an approximate normal

distribution irrespective of the underlying
distribution function.  Consequently, equation
(24) is an approximate pivotal quantity for large n.
This powerful result can be used to obtain
approximate (1�2.)100%  confidence intervals
for the mean for any distribution with a finite
variance, although, strictly speaking, it requires
one to know the population standard deviation, 11.
However, as noted by Hogg and Craig (1978), if
11 is replaced by the sample standard deviation, sx,
the normal approximation for large n is still valid.
This leads to the following confidence interval:

x̄ 	 z
.
sx/ n , x̄ � z

.
sx/ n . (25)

Note that the confidence interval in
equation (25) has the same general form as
equation (13), but with the t quantiles replaced
with approximate standard normal quantiles.  As
noted previously, if the lower limit is disregarded,
the upper limit of the interval provides a one-sided
UCL for the population mean.

An often cited rule of thumb for a sample
size with the CLT is n � 30.  However, this may
not be adequate if the population is highly
skewed.  A refinement of the CLT approach,
which makes an adjustment for skewness, is
discussed by Chen (1995).  Specifically, the
"adjusted CLT" UCL is obtained if the standard
normal quantile, z

.
, in the upper limit of equation

(25) is replaced by
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z
. , adj 
 z

.
�

�̂3

6 n
1� 2z2

. (26)

where �̂ 3 is the sample coefficient of skewness,

�̂3 

1

ns3
x

M
n

i
1
xi 	 x̄ 3. (27)

Notice that this adjustment results in a UCL which
is larger than that of equation (25) when the sample
skewness is positive.

The Chebychev Theorem

This theorem is given here to obtain a
reasonably conservative estimate of the UCL of the
mean.  The two-sided Chebychev theorem states
that given a random variable, X, with finite mean
and standard deviation, µ1 and 11, one has

P	k11 �X 	 µ1 �k11 �1	1/k2. (28)

This result can be applied with the sample
mean, x

_
, to obtain a conservative UCL for the

population mean.  Specifically, if the right side of
equation (28) is equated to 0.95, then k = 4.47, and
UCL = x

_
 + 4.4711/n

1/2 is a conservative 95% upper
confidence limit for the population mean.  Of
course, this would require the user to know the
value of 11.  The obvious modification would be to
replace 11 with the sample standard deviation, sx,
but, since this is estimated from the data, the result
is no longer guaranteed to be conservative.  In
general, if µ1 is an unknown mean, µ̂1 is an estimate
and 1̂ (µ̂1) is an estimate of the standard error of µ̂1,
then the quantity UCL = µ̂1 + 4.471̂ (µ̂1) will give
95% UCLs for µ1, which should tend to be
conservative, but this is not assured.  This could be
used, for example, with the mean of a lognormal
population, using equation (8), as the estimate of
the population mean and the square root of
equation (10) as the estimate of the standard error.
This has been used in the following examples.

4.  EXAMPLES

Monte carlo simulation experiments were
performed to compare various methods of
computing the UCL of the lognormal mean.  Based
on these experiments, the methods of jackknife,

bootstrap, or even the conservative method based
on the Chebychev inequality appear to be superior
to the H-statistic-based UCL for small sample
sizes.  When the number of samples is large (n �
100), all of these methods give similar results.  In
this section, a few simulated examples are
provided to compare the various methods of
computing values of the UCL.  A few examples
from Superfund sites have also been included.

Example 4.1 . Simulated sample from a mixture of
two normal populations, N(100, 50) and N(1000,
100).

This example uses the sample of size n = 15 which was
discussed previously in Example 2.1.  Recall, that this
is a simulated sample from a mixture of two normal
populations.  The mean of the mixed normal population
is µ1 = 400.  The values of the mean, standard
deviation, and coefficient of variation computed for the
log-transformed data are:

y
_

 = 5.090, sy = 1.705, and  CVy = 0.34.

The values of the mean, standard deviation, and CV
computed for the raw data are:

x
_

 = 403.35, sx = 453.94, and CVx = 1.125.

If it is assumed (incorrectly) that the population is
lognormal, point estimates based on MVUE theory of
the mean, µ1, standard deviation, 1 1, and standard
error of the mean are 572.98, 1334.56 and 290.14,
respectively.  Estimates of the 80th, 90th, and 95th
percentiles of a lognormal distribution are 686.33,
1453.48, and 2685.56, respectively.

Discussion of Example 4.1 

The 95% UCL values obtained from the
methods discussed above, without using
lognormal theory, are:

Jackknife 609.75
Standard Bootstrap 584.32
Pivotal Bootstrap 651.52
CLT  596.16
Adjusted CLT 618.51
Chebychev 927.27

The values of the 95% UCL obtained from the
methods discussed above, calculated using the
lognormal theory, are:
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Jackknife 1085.17
Standard Bootstrap  994.40
Chebychev 1869.90
H-UCL 4150.96

Notice that the 95% UCL computed from
the H-statistic (4150.96) exceeds the estimated
95th percentile (2685.56) of an assumed lognormal
distribution.  The H-UCL is also an order of
magnitude larger than the true mean, 400, of the
mixture of two normal populations. 

It is also of interest to see how the methods
compare when applied to simulated lognormal data
with different sample sizes and various
combinations of parameter values.

Example 4.2 . Simulated sample of size n = 15
from a lognormal distribution, LN(5, 1).

In this example, n = 15 data were generated from the
lognormal distribution LN(5,1), with following (true)
values of population parameters:  µ1 =  244.69, 11 =
320.75, and CV = 1.31.  The generated data are: 

139.2056, 259.9746, 138.7997, 48.8109, 166.1733,
54.1241, 120.3665, 60.9887, 551.2073, 66.3336,
16.0695, 364.5569, 153.2404, 271.5436, 473.6461.

The values of the sample mean, standard deviation, and
CV of the log-transformed data are:

y
_

 = 4.887, sy = 0.966, CVy = 0.20.

The sample mean, standard deviation, and CV for the
raw data are:

x
_

 = 192.34, sx = 161.56, CVx = 0.84.

For a lognormal distribution, the estimates of µ1, 11, and
the standard error of the mean, based on MVUE theory,
are 202.58, 219.21, and 54.00, respectively.  The MLEs
of µ1, 11, and CV are 211.33, 262.47, and 1.24,
respectively.  Estimates of the 80th, 90th, and 95th
percentiles of the lognormal distribution are 299.79,
458.58, and 649.31, respectively.

Discussion of Example 4.2

The values of the 95% UCL obtained from the
methods discussed above, without using lognormal
theory, are:

Jackknife 265.79
Standard Bootstrap 258.21
Pivotal Bootstrap 292.17
CLT  260.96

Adjusted CLT 271.57
Chebychev 378.80

The values of the 95% UCL obtained from the
methods discussed above, calculated from
lognormal theory, are:

Jackknife 289.30
Standard Bootstrap 281.22
Chebychev 448.41
H-UCL 427.62

The differences in UCLs for the various
methods are not as extreme as they were in the
previous example, but a similar pattern with the
Chebychev (as expected) and H-UCL limits being
the largest is still present.  However, unlike the
previous example, the 95% UCL is below the
estimated 95th percentile of a lognormal
distribution, as one would intuitively expect.  It is
also interesting to note that the CV estimated as
the ratio of the sample standard deviation to the
sample mean from raw data is less than 1 (0.84),
while the CV computed from the MLEs is slightly
greater than 1 (1.24).  According to the CV test,
which says that if CV <1.0, then the population is
normally distributed,  the former CV of 0.84
might lead one to incorrectly assume that the
population is normally distributed.

In the next example, the variance of the
log-transformed variable is increased slightly with
a corresponding increase in CV and skewness.

Example 4.3 . Simulated sample of size n = 15
from a lognormal distribution, LN(5, 1.5).

In this example,  n = 15 observations were generated
from the lognormal distribution, LN(5,1.5), with the
following true values of population parameters: µ1 =
457.14, 11 = 1331.83,  CV = 2.91.  The generated data
are:

440.8517, 1013.4986, 1857.7698, 500.9632, 397.9905,
110.7144, 196.2847, 128.2843, 1529.9753, 5.7978,
940.8903, 597.5925, 1519.5159, 181.6512, 52.8952.

The sample mean, standard deviation, and CV of the
log-transformed data are:

y
_

 = 5.761, sy = 1.536, and CVy = 0.27.

The sample mean, standard deviation, and CV for the
raw data are:

x
_

 = 631.65, sx = 603.13, and CVx = 0.96.
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For a lognormal distribution, the estimates of µ1, 11, and
standard error of the mean, based on MVUE theory, are
894.76, 1784.95, and 405.79, respectively.  The MLEs of
µ1, 11, and CV are 1033.63, 3202.28 and 3.10,
respectively.  Estimates of the 80th, 90th, and 95th
percentiles of the lognormal distribution are 1163.05,
2286.63, and 3975.71, respectively.

Discussion of Example 4.3

The values of the 95% UCL obtained from the
methods discussed above, without using lognormal
theory, are:

Jackknife 905.88
Standard Bootstrap 882.82
Pivotal Bootstrap 977.18
CLT  887.82
Adjusted CLT 919.81
Chebychev 1327.75

The values of the 95% UCL obtained from the
methods discussed above, calculated from
lognormal theory, are:

Jackknife 1534.94
Standard Bootstrap 1363.26
Chebychev 2708.63
H-UCL 4570.27

As in the case of Example 4.1, the 95% H-
UCL (4570.27) again exceeds the estimated 95th
percentile of the lognormal distribution.  The
situation with the CV is similar to that of Example
4.2.  That is, the CV computed from raw data
(0.96) is less than 1, which by application of the
CV-test could lead one to adopt (incorrectly) the
normal distribution.  Notice that the true CV and
the estimate based on the MLEs are both close to
three.  The next example involves the same
population but with a larger sample size.

Example 4.4.  Simulated sample of size n = 31
from a lognormal distribution, LN(5, 1.5).

In this simulated example, n = 31 observations were
generated from a lognormal distribution, LN(5,1.5).  This
is the same distribution use in the previous example, and
thus true mean, standard deviation, and CV are the
same.  The generated data are:

49.0524, 806.8449, 122.2339, 697.7315, 2888.1238,
37.7998, 7.2799, 292.5909, 433.4413, 639.7468,
3876.8206, 1376.8859, 197.8634, 93.0379, 180.9311,
1817.9912, 284.3526, 344.6761, 44.8680, 297.3899,
11.9195, 100.5519, 264.7574, 41.3961, 43.4202,
1053.3770, 2067.0361, 132.2938, 75.9661, 53.2236,
83.5585.

The sample mean, standard deviation, and CV of
log-transformed data are:

y
_

 = 5.326, sy =1.577, and CVv = 0.30

The sample mean, standard deviation, and CV for raw
data are:

x
_

 = 594.10, sx = 919.05, and CVx = 1.55.

For a lognormal distribution, the estimates of µ1, 11, and
the standard error of the mean are 657.45, 1632.25,
and 238.86, respectively. The MLEs of µ1, 11, and CV
are 713.34, 2369.11, and 3.32.  Estimates of the 80th,
90th, and 95th percentiles of a lognormal distribution
are 779.73, 1560.71, and 2753.62, respectively.

Discussion of Example 4.4

The values of the 95% UCL obtained from the
methods discussed above, without using
lognormal theory, are:

Jackknife 874.22
Standard Bootstrap 854.51
Pivotal Bootstrap 1003.00
CLT 865.64
Adjusted CLT 932.36
Chebychev 1331.95

The values of the 95% UCL obtained from the
methods discussed above, calculated from
lognormal theory, are:

Jackknife 1062.35
Standard Bootstrap 1088.94
Chebychev 1725.15
H-UCL 1792.54

As one might expect with a larger sample size
(n = 31), the point estimates tend to be closer to
the true parameter values they are intended to
estimate.  Also, there is not as much variation
among the UCLs computed from the different
methods.  Furthermore, the H-UCL is below the
estimated 95th percentile of the lognormal
distribution.



15

In the next example, a sample of size n = 15 is
considered again, but with the variance of the log-
transformed variable slightly larger than that of
Examples 4.2-4.4.

Example 4.5 . Simulated sample of size n = 15
from a lognormal distribution, LN(5, 1.7).

This last simulated data set of size n = 15 is obtained
from LN(5, 1.7), with the following true values of
population parameters: µ1 = 629.55,  11 = 2595.18, CV
= 4.12.

The generated data are:

16.5197, 235.4977, 1860.4443, 74.5825, 3.9684,
325.2712, 167.7949, 189.0130, 1307.6180, 878.8519,
35.4675, 96.2498, 229.2540, 182.0494, 1498.6146.

The sample mean, standard deviation, and CV of the
log-transformed data are:

y
_

 = 5.178, sy = 1.710, CVy = 0.33.

The sample mean, standard deviation, and CV for raw
data are:

x
_

 = 473.41, sx = 606.79, CVx = 1.28.

For a lognormal distribution, the estimates of µ1, 11, and
the standard error of the mean, based on MVUE theory,
are 629.82, 1473.12, and 319.0, respectively. The MLEs
of µ1, 11, and CV are 765.52, 3213.52, and 4.20,
respectively.  Estimates of the 80th, 90th, and 95th
percentiles for a lognormal distribution are 752.50,
1596.91, and 2955.58, respectively.

Discussion of Example 4.5

The values of the 95% UCL obtained from the four
methods discussed above, without using lognormal
theory, are:

Jackknife 749.31
Standard Bootstrap  721.07
Pivotal Bootstrap  862.51
CLT 731.14
Chebychev 1173.74

The values of the 95% UCL obtained from the four
methods discussed above, calculated from
lognormal theory, are:

Jackknife 1176.39
Standard Bootstrap 1141.95
Chebychev 2059.47
H-UCL 4613.32

Notice that in this example (as with Examples
4.1 and 4.3), the 95% H-UCL (4613.32) exceeds
the estimated 95th percentile (2955.58) of the
lognormal distribution. 

The sample size and the mean of the log-
transformed variable in examples 4.2, 4.3, and 4.5
are held constant at 15 and 5, respectively,
whereas the standard deviation (sd) of the log-
transformed variable are 1.0, 1.5, and 1.7,
respectively.  From these examples alone, it can
be seen that as soon as the sd of the log-
transformed variable becomes greater than 1.0, the
H-statistic-based UCL becomes orders of magni-
tude higher than the largest concentrations
observed, even when the data were obtained from
a lognormal population.  Thus, even though the H-
UCL is theoretically sound and possesses optimal
properties for truly lognormal populations such as
being MVUE, the practical merit of the use of H-
UCL in environmental applications is
questionable when the sd of the log-transformed
variable starts exceeding 1.0.  This is especially
true for small sample sizes (e.g., n <30).  As seen
in the examples discussed here, the use of the
lognormal distribution and the H-UCL in   some
circumstances tends to hide contamination rather
than find it, which is contrary to one of the main
objectives in many environmental applications.
Actually, under the assumption of lognormal
distribution, one can get away with very little or
no cleanup, (Bowers, Neil, and Murphy 1994), at
a polluted site. 

Example 4.6 . Data from the Naval Construction
Battalion Center (NCBC) Superfund Site in Rhode
Island.

Inorganic analyses were performed on the groundwater
samples from seventeen (17) wells from the NCBC Site.
The main objective was to provide reliable estimates of
the mean background threshold levels for the various
inorganic contaminants at the site.  The UCLs have
been computed using the procedures described above.
The results for two of the contaminants, aluminum and
manganese, are summarized below.
Aluminum : 290, 113, 264, 2660, 586, 71, 527, 163,
107, 71, 5920, 979, 2640, 164, 3560, 13200, 125.

The sample mean, standard deviation, and CV of
log-transformed data are:

y
_

 = 6.226, sy = 1.659, CVy = 0.27.
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The sample mean, standard deviation, and CV for the
raw data are:

x
_

 = 1849.41, sx = 3351.27, CVx = 1.81.

With the lognormal assumption, the estimates of µ1, 11,
and the standard error of the mean, based on MVUE
theory, for aluminum are 1704.84, 3959.87, and 807.64,
respectively.  The  MLEs of µ1, 11, and CV are 2002.71,
7676.37, and 3.83, respectively.  Estimates of the 80th,
90th and 95th percentiles for a lognormal distribution are
2054.44, 4263.44, and 7747.81, respectively.

Manganese : 15.8, 28.2, 90.6, 1490, 85.6, 281, 4300,
199, 838, 777, 824, 1010, 1350, 390, 150, 3250, 259.

The sample mean, standard deviation, and CV of
log-transformed data are:

y
_

 = 5.91, sy = 1.568, CVy = 0.27.

The sample mean, standard deviation, and CV for the
raw data are:

x
_

 = 902.25, sx = 1189.49, CVx = 1.32.

With the lognormal assumption, the estimates of µ1, 11,
and the standard error of the mean, based on MVUE
theory, for manganese are 1100.92, 2340.72, and
490.16, respectively.  The  MLEs of µ1, 11, and CV are
1262.59, 4125.5, and 3.27, respectively.  Estimates of
the 80th, 90th, and 95th percentiles for a lognormal
distribution are 1389.65, 2769.95, and 4870.45,
respectively.

The calculated Shapiro Wilks statistics for the raw data
are 0.594 (aluminum) and 0.725 (manganese), and for
the  log-transformed data, the corresponding values are
0.913 and 0.969.  The tabulated critical value for 0.10
level of significance is 0.91.  Thus, for both aluminum
and manganese, the data failed the normality test and
passed the lognormality test at significance level 0.10
(Note: Shapiro-Wilks is a lower tail test).

Discussion of Example 4.6

The values of the 95% UCL obtained from the
methods discussed above, without using lognormal
theory, are:

Aluminum Manganese
Jackknife 3268.22 1405.83
Standard Bootstrap 3125.56 1354.15
Pivotal Bootstrap 5286.63 1968.03
CLT 3186.47 1376.82
Adjusted CLT 3675.94 1503.84
Chebychev 5482.64 2191.81

Observe that for both of the contaminants, the
95% UCLs calculated from the jackknife, both

bootstrap methods, the CLT, the adjusted CLT,
and the Chebychev limit are well below their
respective estimates of the 95th percentile
(Aluminum: 7747.81 and Manganese: 4870.45) of
assumed (based on Shapiro-Wilks' test) lognormal
distributions. 

The values of the 95% UCL obtained from the
methods discussed above, calculated from
lognormal theory, are:

Aluminum Manganese
Jackknife 3283.34 1889.52
Standard Bootstrap 3663.20 1821.55
Chebychev 5314.99 3291.95
H-UCL 9102.73 5176.16

Observe that the 95% UCLs calculated using
lognormal theory from the jackknife, the
bootstrap, and the Chebychev inequality are
similar to the respective values obtained without
using lognormal theory, and that these are well
below their respective estimated 95th percentiles
for a lognormal distribution. The 95% UCLs
calculated from the H-statistic, however, exceed
their respective estimated 95th percentiles for a
lognormal distribution.

Example 4.7 . Data from the Elrama School
Superfund site in Washington County, PA.

The data were compiled from two waste piles for risk
evaluations of the contaminants found at the Elrama
School Superfund Site, Washington County, PA.
Twenty-six (26) contaminants (10 inorganics, 12 semi-
volatile compounds, and 4 volatile compounds) were
detected in both of the waste piles.  Using the
nonparametric Kolmogorov-Smirnov two-sample test on
the  two waste piles, it was concluded that there is no
statistically significant difference between distributions
of the contaminants from the two waste piles.  Thus, the
data from these two waste piles were combined to
compute all of the relevant statistics such as the mean,
the standard deviation, and the UCLs.  This resulted in
data sets consisting of 23 observations (15 from Waste
Pile 1 and 8 from Waste Pile 2).  The results are
provided for two of the contaminants of concern:
aluminum  and toluene.

Aluminum : 31900.0, 8030.0, 12200.0, 11300.0,
4770.0, 5730.0, 5410.0, 8420.0, 8200.0, 9010.0,
8600.0, 9490.0, 9530.0, 7460.0, 7700.0, 13700.0,
30100.0, 7030.0, 2730.0, 5820.0, 8780.0, 360.0,
7050.0.
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The sample mean, standard deviation, and CV of the
log-transform data are:

y
_

 = 8.927, sy = 0.845, CVy = 0.095

The sample mean, standard deviation, and CV for the
raw data are:

x
_

 = 9709.57, sx = 7310.02, CVx = 0.75.

With the lognormal assumption, the estimates of µ1, 11,
and the standard error of the mean, based on MVUE
theory, for aluminum are 10552.68, 10031.60, and
2044.90, respectively.  The MLEs of µ1, 11, and CV are
10768.22, 10993.32,  and 1.02, respectively.  Estimates
of the 80th, 90th, and 95th percentiles for a lognormal
distribution are 15323.48, 22224.45, and 30381.95,
respectively.

Toluene : 7300.0, 6.0, 6.0, 5.5, 29000.0, 46000.0,
12000.0, 2500.0, 1300.0, 3.0, 510.0, 230.0, 63.0, 6.0,
5.5, 6.0, 6.0, 5.5, 280000.0, 8.0, 28.0, 6.0, 7.0.

The sample mean, standard deviation and CV of log-
transform data are:

y
_

 = 4.652, sy = 3.660, CVy = 0.79
The sample mean, standard deviation, and CV for the
raw data are:

x
_

 = 16478.33, sx = 58510.78, CVx = 3.55.

With the lognormal assumption, the estimates of µ1, 11,
and the standard error of the mean, based on MVUE
theory, for toluene are 21328.39, 362471.55, and
18788.05, respectively.  The MLEs of µ1, 11, and CV are
84702.17, 68530556.56, and 809.08, respectively.
Estimates of the 80th, 90th, and 95th percentiles for a
lognormal distribution are 2264.17, 11329.16, and
43876.88, respectively.

The Shapiro-Wilks statistics for the raw data are 0.707
(aluminum) and 0.313 (toluene), and for the log-
transformed data, the corresponding values are 0.781
and 0.818.  The tabulated critical value for a 0.10 level of
significance with n = 23 is 0.928. Thus, neither a normal
nor a lognormal distribution gives a good fit.

Discussion of Example 4.7

The values of the 95% UCL obtained from the
methods discussed above, without using lognormal
theory, are:

Aluminum  Toluene
Jackknife 12327.40  37431.95
Standard Bootstrap 12246.67  33494.25
Pivotal Bootstrap 15161.90 152221.00
CLT 12216.95  36547.89
Adjusted CLT 12895.10  47316.80
Chebychev 16522.94  71013.85

The values of the 95% UCL obtained from the four
methods discussed above, calculated from
lognormal theory, are:

Aluminum  Toluene
Jackknife 13542.11  62263.37
Standard Bootstrap 13579.18  278888.51
Chebychev 19693.40  105757.50
H-UCL 16503.51  18444955.15

Observe that the 95% UCL for toluene,
calculated from the H-statistic, is orders of
magnitude higher than those calculated from the
other methods, and is also orders of magnitude
higher than the maximum observed toluene
concentration at the site.  Also with the toluene
data, the pivotal bootstrap method results in a
UCL which is two to five times larger than the
others computed from the non-lognormal theory
methods.  It is even larger than the Chebychev
limit.  As noted earlier, this is possible when the
standard error of the point estimate is also
estimated from the data.  In most environmental
applications, the true population standard
deviation of the point estimate is unknown, and
therefore, it needs to be estimated from the
available data.  Note, however, it is two orders of
magnitude smaller than the H-UCL.

Note, also, that the CV (0.75) computed from
the raw data for aluminum is less than 1.  The use
of the CV-test for normality could lead one to
assume normality, even though the Shapiro-Wilks
test strongly rejects the normal distribution (p-
value = 0.00002).

5. SUMMARY AND RECOMMENDATIONS

It is seen from the simulated examples that,
even when the underlying distribution is
lognormal, the performance (in terms of a lower
UCL) of the jackknife, bootstrap, and CLT
procedures is more accurate than that of the H-
UCL.  In each of the four simulation experiments,
the 95% UCLs computed from all of the above
methods exceeds the true respective population
means, but the 95% H-UCL is consistently larger,
except in some cases where it is comparable to the
conservatiave Chebychev result, than the 95%
UCLs obtained from other methods.  It is also
seen from the simulation examples that the
estimate of the CV based on the MLEs is closer to
the true CV than the usual (moment) estimate of
CV.  Furthermore, the usual estimate of the CV
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appears to underestimate the true CV.  In some of
the examples, the usual estimate of the CV is less
than 1, while the true population CV is somewhat
greater than 1.  That is, the rule of thumb (CV-test)
which declares the distribution to be normal when
the moment estimate of the CV is less than 1, can
frequently lead to an incorrect assumption about
the underlying distribution of the data.

Moreover, from the examples discussed in this
paper, it is observed that the H-UCL becomes order
of magnitures higher even when the data were
obtained from a lognormal population and can lead
to incorrect conclusions.  This is especially true for
samples of smaller sizes (e.g., <30).  It appears that
the lognormal distribution and the H-UCL tend to
hide contamination rather than revealing it.  Under
the assumption of the lognormal distribution, one
can get away with very little or no cleanup at a
polluted site.  Thus, although the H-UCL is
theoretically sound and possesses optimal
properties, the practical merit of the H-UCL in
environmental applications is questionable, as it
becomes order of magnitude higher than the largest
concentration observed high when the sd of the
log-transformed data starts exceeding 1.0.  It is
therefore, recommended that in environmental
applications, the use of the H-UCL to obtain an
estimate of the upper confidence limit of the mean
should be avoided.

Based on the monte carlo simulation results,
and the authors' experience with Superfund site
work, the following steps for computing a UCL of
the mean of the contaminant(s) of concern are
recommended:

1) Plot histograms of the observed contaminant
concentrations and perform a statistical test of
normal or lognormal distribution (e.g., the
Shapiro-Wilks test). Do not use the rule of
thumb that declares the data distribution to be
normal if CV is less than 1.

2) If a normal distribution provides an adequate
fit to the data, then use the Student's t approach
(equivalent to the jackknife) for calculating the
UCL of the population mean.

3) If a lognormal distribution provides an
adequate fit to the data, then a) use the

lognormal theory based formulas for
computing the MVUE of the population mean
and the standard deviation, b) either use these
MVUEs with the jackknife or bootstrap
methods to calculate a UCL of the mean, or
use the Chebychev approach for calculating a
UCL. Do not use the UCL based on the H-
statistic, especially if the number of samples
is less than 30.

4) If the data distribution turns out to be neither
normal nor lognormal, then use the
nonparametric versions of  the jackknife or
bootstrap to calculate a UCL.  Even if the
lognormal distribution seems to provide a
reasonable fit to the data, and if there is
evidence of a mixture of two or more
subpopulations, or if outliers are suspected,
then using one of the nonparametric methods
discussed above is recommended.

NOTICE

The U.S. Environmental Protection Agency
(EPA), through its Office of Research and
Development (ORD), funded and prepared this
Issue Paper.  It has been peer reviewed by the
EPA and approved for publication.  Mention of
trade names or commercial products does not
constitute endorsement or recommendation by
EPA for use.
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