

Critical Review and Summary of Leachate and Gas Production from Landfills

CRITICAL REVIEW AND SUMMARY OF LEACHATE AND GAS PRODUCTION FROM LANDFILLS

by

Frederick G. Pohland and Stephen R. Harper School of Civil Engineering Georgia Institute of Technology Atlanta, Georgia 30332

U.S. EPA Cooperative Agreement CR809997 Georgia Tech Project No. E-20-G01

Project Officer
Stephen C. James
Land Pollution Control Division
Hazardous Waste Environmental Research Laboratory

OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY CINCINNATI, OHIO 45268

U.S. Environmental Protection Agency Region 5, Library (PL-12J) 77 West Jackson Boulevard, 12th Floor Chicago, IL 60604-3590

DISCLAIMER

The information in this document has been funded wholly or in part by the United States Environmental Protection Agency under Cooperative Agreement CR-809997 to Georgia Institute of Technology. It has been subject to the Agency's peer and administrative review and has been approved for publication. The contents reflect the views and policies of the Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

FOREWORD

The Environmental Protection Agency was created because of increasing public and governmental concern about the nation's environment and its effect on the health and welfare of the American people. The complexity of the environment and the interplay among its components require a concentrated and integrated attack upon environmental problems.

The first step in seeking environmental solution is research and development to define the problem, measure its impact and project possible remedies. Research and development is carried out continually by both industry and governmental agencies concerned with improving the environment. Much key research and development is conducted by EPA's Hazardous Waste Engineering Research Laboratory. The laboratory develops new and improved technologies and systems to treat, store and dispose hazardous waste; to remove hazardous waste and restore contaminated sites to usefulness; and, to promote waste reduction and recycling. This publication is one of the products of that research -- a vital communications link between the research and the user community.

This document presents a critical review and summary of available information and literature on leachate and gas production and management during the disposal of solid wastes.

Thomas Hauser, Director Hazardous Waste Engineering Research Laboratory

ABSTRACT

The purpose of this project was to provide a review and critique of literature and the status of technology pertaining to the formation, characterization and treatment of municipal solid waste (MSW) landfill gas and leachate. This objective was accommodated by an initial recognition of the various factors influencing the applicability and efficacy of various landfill disposal options and/or leachate and gas management strategies. Therefore, the review is organized to reflect bench-, pilot- and full-scale evaluations; leachates have been categorized according to low, medium and high strengths; and product gases have been differentiated on the basis of constituents and medium or high energy content.

Commencing with a brief historical perspective focusing on the problems associated with migration of MSW leachate and gas from landfill disposal sites, the review proceeds with a characterization of MSW gas and leachate quality produced throughout the phases of landfill stabilization and the various leachate and gas treatment methods. Accordingly, leachate treatment by external aerobic and anaerobic biological methods and by in situ anaerobic degradation with leachate management are compared to physical-chemical leachate treatment by chemical oxidation, precipitation, coagulation, disinfection, absorption, ion exchange and reverse osmosis. In addition, methods of landfill gas collection and treatment by sorption, refrigeration, and membrane separation are presented together with the implications of ultimate disposal of treated leachates, including an understanding of leachate/soil interactions.

Biological treatment is shown to be superior to physical-chemical methods for raw leachate; aerobic and anaerobic treatment methods were generally capable of removing 85 to 99 percent of leachate BOD5 and COD as well as most heavy metals. The physical-chemical processes are shown to be better suited for polishing of biological treatment effluents and for the removal of refractory organics. Leachate management through recycle is also demonstrated to possess a high potential for process stability, although further effort is needed to determine application criteria on a large scale. Process loadings, operational constraints, and degree of variance and uncertainty in reported data and their interpretation are presented to indicate that past efforts have not resolved all the technical challenges associated with gas and leachate management at landfill disposal sites, and that additional investigations are required.

CONTENTS

		<u>Page</u>
Forewor	rd	iii
Abstrac	et	iv
Figures	S	viii
Tables.		хi
	ledgment	χV
1.	Introduction	1
2.	Conclusions	2
	General	2
	Leachate treatment process performance	2
	Gas treatment performance	6
3.	Recommendations	7
	General	7
	In situ treatment of leachates	8
	External treatment of leachates and gas	8
	Directions for future research	9
4.		11
	Early reports on leachate migration and effects	
	Early reports on gas migration and effects	12
5.		14
	General perspective	14
	Climatic and hydrogeologic factors	14
	Input waste characteristics	15
	Landfill age (degree of stabilization)	17
	Landfill stabilization phases	17
	Phase I: Initial adjustment	18
	Phase II: Transition	18
	Phase III: Acid formation	19
	Phase IV: Methane fermentation	19
	Phase V: Final maturation	19
	Indicator parameters descriptive of	
	stabilization phases	20
6.		26
	General perspective	26
	Aerobic biological treatment of landfill leachate	26
	Bench-scale aerobic treatment studies	27
	Activated sludge	27
	Aerated lagoon	43
	Fixed-film processes	47
	Kinetic parameters for bench-scale aerobic	• •
	processes	48
	Pilot- and full-scale aerobic treatment	48
	Activated sludge	48
	Aerated lagoon	52

	Stabilization pond	53
	Treatment and disposal of aerobic process sludges	53
	Anaerobic biological processes	59
	Bench-scale anaerobic processes	59
	Effect of mean cell residence time (θ)	59
	Organic loading effects	63
	Temperature effects	68
	Metals removals	68
	Anaerobic treatment kinetic parameters	70
	Anaerobic process sludge characteristics	70
	In situ anaerobic leachate recycle treatment	72
	Pilot-scale leachate recycle	72
	Full-scale leachate recycle	76
	Physical/chemical treatment of leachates	78
	Bench-scale physical/chemical leachate treatment	, 0
	processes	78
	Coagulation and precipitation	78
		83
	Chemical oxidation	84
	Chemical disinfection	
	Chemical process sludge characteristics	84
	Ionizing radiation	87
	Ion exchange	87
	Adsorption	88
	Metals removal	90
	Reverse osmosis	91
	Full-Scale Physical/Chemical Leachate Treatment	93
	Precipitation/coagulation	93
	Ammonia stripping	96
	Activated carbon adsorption	96
	Final leachate disposal	97
	Land disposal	97
	Discharge to POTW	98
	Surface water discharge	98
7.	Gas Management	99
·	General perspective	99
	Gas production	99
	Factors affecting landfill gas production	
	Nature of refuse placed	100
	Moisture content	
	Particle size and degree of refuse compaction	101
	Buffer capacity	101
	Nutrients	101
	Temperature	101
	Gas Extraction	102
	Gas Yield Projections	102
	Theoretical Models	102
	Empirical gas yield projections	104
		104
	Gas production rate predictions	104
	Gas composition	
	Collection and treatment of landfill gases	111
	Landfill gas collection	111
	Landfill gas treatment	113
	Economics	115
8.		117
	General perspective	117

Heavy metal attenuation Pesticide migration Organics	119
Other toxic compounds	
• • • • • • • • • • • • • • • • • • • •	_

FIGURES

Number		Page
1	Treatment Options Available for Leachate and Gas Management and Ultimate Disposal	3
2	Solutions to the Management of Leachate and Gas from Landfill Disposal of Solid Wastes	. 10
3	Changes in Selected Indicator Parameters During the Phases of Landfill Stabilization	. 25
14	Relationship Between $\theta_{ C}$ and BOD5 Removal for Bench-Scale Activated Sludge Studies	. 30
5	Relationship Between θ_{C} and COD for Bench-Scale Activated Sludge Studies	. 32
6	Comparison of θ_{C} vs. COD Removal Data Segregated According to Biodegradability Ratios BOD/COD and COD/TOC	• 33
7	Relationship Between Organic Loading Rate and BOD ₅ Removal for Bench-Scale Activated Sludge Studies	. 34
8	Relationship Between Organic Loading Rate and COD Removal for Bench-Scale Activated Sludge Studies	• 35
9	Relationship of Organic Loading Rate vs. COD Removal for Data Segregated by Biodegradability Ratios	. 36
10	Relationship Between Food to Microorganism Ratio (F/M) and BOD ₅ Removal for Bench-Scale Activated Sludge Studies	. 38
11	Relationship Between F/M Ratio and COD Removal for Bench-Scale Activated Sludge Studies	. 39
12	Relationship Between Temperature and COD Removal for Bench-Scale Activated Sludge Studies	. 40
13	Relationship Between θ_{C} and Nitrification for Bench-Scale Activated Sludge Studies	. 42

14	Relationship Between Leachate/Domestic Wastewater Volume Ratio and Organics (BOD ₅ , COD) Removal for Bench- and Pilot-Scale Combined Wastewater Activated Sludge; Studies	44
15	Relationship Between Hydraulic Retention Time (τ) and Organics Removal for Bench-Scale Aerated Lagoon Studies	45
16	Relationship Between Organic Loading Rate and Organics Removal for Bench-Scale Aerated Lagoon Studies	46
17	Relationship Between Sludge Volume Index and Mean Cell Residence Times for Aerobic Biological Treatment Sludges	58
18	Relationship Between Mean Cell Residence Time and BOD ₅ Removal for Bench-Scale Anaerobic Treatment Studies	61
19	Relationship Between Mean Cell Residence Time and COD Removal for Bench-Scale Anaerobic Treatment Studies	62
20	Illustration of COD Removal vs. $\theta_{\rm C}$ for Anaerobic Treatment Data Segregated According to Biodegradability Ratios	64
21	Relationship Between Organic Loading Rate and BOD ₅ Removal for Bench-Scale Anaerobic Treatment Studies	65
22	Relationship Between Organic Loading Rate and COD Removal for Bench-Scale Anaerobic Treatment Processes	66
23	Relationship Between Gas Production and BOD ₅ and COD Loading Rates for Bench-Scale Anaerobic Treatment Studies	67
24	Relationship Between Temperature and Organics Removal for Bench-Scale Anaerobic Treatment of Leachate	69
25	Relationship Between Temperature and Gas Production by Bench-Scale Anaerobic Treatment of Leachate	69
26	Relationships Between pH and Dosages of Various Chemical Coagulants and Corresponding COD Removals	82
27	Relationships Between pH and Dosages of Various Chemical Precipitants and Corresponding COD Removals	82
28	Relationship Between Chemical Oxidant Dosage and COD Removal for Bench-Scale Chemical Oxidation	83

29	Comparison of the Organic Removal Efficiencies and Sludge Volumes Produced by the Application of Various Chemical Dosages to the Treatment of Leachates on Bench-Scale86					
30	Freundlich Isotherm Curves for Bench-Scale Batch Activated Carbon Treatment of Raw, Biologically or Chemically Treated Leachates	80				
	Chemically treated Leachates	റ				

TABLES

Number		Page
1	Summary of Leachate Treatment Process Capabilities	4
2	Waste Source Categories and Corresponding Waste Types	15
3	Range of Composition of Municipal Solid Waste	16
4	Landfill Leachate and Gas Constituent Concentration Ranges Encountered in the Literature and Their Relative Significance to the Degree of Landfill Stabilization	. 21
5	Bench-Scale Research on Aerobic Leachate Treatment Processes	. 28
6	Leachate Organic Strength Categories	27
7	Summary of Heavy Metal and Alkali and Alkaline Earth Metal Removal Data for the Bench-Scale Activated Sludge Process	. 41
8	Bench-Scale Research Performed on Combined Treatment of Leachate and Domestic Wastewater Using the Activated Sludge Process	. 42
9	Experimental Conditions and Performance During Trickling Filter and Rotating Biological Contractor Treatment of Leachate	. 47
10	Summary of Monod Kinetic Parameters for Activated Sludge Treatment of Leachate	. 49
11	Landfills with Pilot- or Full-Scale Aerobic Leachate Treatment Facilities	. 50
12	Summary of Leachate Treatment Performance and Design Parameters for Pilot-Scale and Full-Scale Activated Sludge Treatment Facilities	. 51
13	Summary of Leachate Treatment Performance and Design Parameters for Full-Scale Aerated Lagoon Facilities	. 54

14	Summary of Leachate Treatment Performance and Design Parameters for Full-Scale Stabilization Pond Facilities	55
15	Summary of Sludge Characteristics for Aerobic Leachate Treatment Processes	57
16	Bench-Scale Anaerobic Biological Treatment of Leachate	60
17	Summary of Heavy Metal and Alkali and Alkaline Earth Metal Removal Data for Bench-Scale Anaerobic Treatment Processes	68
18	Summary of Monod Kinetic Parameters for the Anaerobic Leachate Treatment Process	70
19	Summary of Sludge Characteristics for the Anaerobic Leachate Treatment Process	71
20	Pilot-Scale Research Performed on Leachate Treatment by Leachate Recycle	73
21	Summary of Test Variables, Leachate Character, and Gas Results for the Pilot-Scale Leachate Recycle Studies	75
22	Summary of Available Information Concerning the Application of Leachate Recycle at Full-Scale Landfills in Germany	77
23	Organic Characteristics of Leachates Removed from a Full-Scale Two Stage Recirculation Process in Germany	78
24	Bench-Scale Research Performed on Leachate Treatment by Physical/Chemical Processes	79
25	Summary of Heavy Metal and Alkali and Alkaline Earth Metal Removal Data for Bench-Scale Chemical Addition Processes	81
26	Bench-Scale Research Performed with Chemical Disinfection of Leachate	85
27	Summary of Ion Exchange Performance Using Effluents from Aerated Lagoon and Activated Sludge Leachate Treatment Systems	87
28	Summary of Glauconitic Greensand (GG) Performance for	88

29	Summary of Freundlich Isotherm Parameters for Bench-Scale Activated Carbon Adsorption of Raw Leachate and Treated Leachate	88
30	Summary of the Performance of Peat for Adsorption of Organics and Metals from Leachate	90
31	Summary of Heavy Metal and Alkali and Alkaline Earth Metal Removal Data with Activated Carbon Adsorption and Resin Ion Exchange Treatment of Leachate	91
32	Summary of Reverse Osmosis Performance for the Removal of COD from Raw and Biologically Treated Landfill Leachates	92
33	Full-Scale Leachate Treatment Facilities Using a Physical/Chemical Process	93
34	Summary of Performance and Design Parameters for Full-Scale Physical/Chemical Leachate Treatment Facilities	94
35	Effluent Disposal Practices Employed by Full-Scale Leachate Treatment Facilities	97
36	Examples of Municipal Solid Waste Chemical Formulas Applied to Theoretical Methane Yield Models	103
37	Summary of Theoretical Gas Yields from Municipal Solid Waste Reported in the Literature	103
38	Summary of Experimental Observations of Gas Production from Municipal Solid Waste	105
39	Summary of Experimental Observations of Gas Production Rates in Small-Scale Landfill Simulators	106
40	On-Line Landfill Gas Recovery Facilities in U.S	107
41	Summary of Landfill Gas Composition at Full-Scale Landfills	108
42	Trace Constituents Detected in Landfill Gases	108
43	Representative List of Organic Compounds Identified in Landfill Gas	109
44	Summary of Average VOC Concentrations and Threshold Limit Values	110
45	Advantages and Disadvantages of Gas Collection Piping	112

46	Summary of Gas Treatment Methods Available for the Removal of Water, Hydrocarbons, CO ₂ , and H ₂ S	J 1 ²
47	Relative Economics of Several Gas Treatment Alternatives	116

ACKNOWLEDGMENT

The authors acknowledge the collaborative efforts of Mr. Joseph Dertien (leachate treatment), and the able assistance of Mr. Bijoy Ghosh (gas management) and Dr. Robert C. Bachus (soil interactions) in the acquisition and evaluation of the materials for this report. The typing efforts of Ms. Henrietta Bowman and Ms. Elaine Sharpe are also acknowledged together with the complementary support provided by the School of Civil Engineering at the Georgia Institute of Technology.

INTRODUCTION

Sanitary landfills continue to be the most frequently employed method of solid waste disposal practiced in the United States. Unfortunately, sanitary landfills remain poorly understood and loosely managed; deficiencies magnified and manifested by usual inadequacies in waste definition and understanding of associated environmental variables. During the last decade, the potential for production of leachate and gas has received major attention particularly in terms of environmental consequences associated with the migration of leachate and gas during conversion of waste constituents. These concerns have led to a variety of developments for control, including the concepts of leachate containment and total landfill isolation. In accordance with these strategies, various techniques have been proposed and implemented for the treatment and disposal of landfill gases and leachates.

The purpose of this report is to provide a review and summary of the nature of leachate and gas production at landfills, and to couple this with a concomitant inventory of available techniques for containment, control and treatment. The review begins with a brief historical perspective of hazards associated with the migration of leachate and gas from landfill disposal sites. Factors affecting the quantity and quality of landfill leachate and gas are then addressed, followed by processes used or advocated for leachate and gas treatment. Hence, investigations into activated sludge, aerated lagoons, trickling filters, biodisks, anaerobic contact processes and in situ leachate recycle technologies as well as coagulation, precipitation, chemical oxidation, disinfection, adsorption, ion exchange, and reverse osmosis processes in either separate or combined configurations are detailed. Finally, methods for the ultimate disposal of leachate and gas are addressed, including discharge to municipal wastewater treatment plants, land application, and energy recovery.

CONCLUSIONS

GENERAL

The development of rational and economically sound solutions to landfill leachate and gas migration hazards encompasses the analysis of several major factors. As shown in Figure 1, a given landfill in its natural setting will affect and be affected by numerous hydrologic and geologic circumstances that must be properly recognized and managed to minimize human and environmental risks. In particular, leachate and gases formed as a consequence of external moisture inputs and waste degradation may migrate into the surrounding environment, contaminate drinking water supplies and create other environmental hazards.

The first step towards effective management of gas and leachates at susceptible landfill sites logically begins with containment by installation of "impermeable" barriers augmented by drainage, venting, and collection systems sufficient to handle the inevitable production of leachate and gas. Following their generation and capture, leachate and gas must be treated and disposed of in an environmentally acceptable and economically sound manner.

As also shown in Figure 1, there are a number of options available for leachate and gas management prior to ultimate disposal. Before being discharged onto land or into a publicly owned treatment works (POTW), landfill leachate and gas will require treatment by biological and/or physical-chemical methods. Some of these methods have been proven successful, while others have been shown to have limited applicability. Moreover, it is widely recognized that the quantity and quality of landfill leachate and gas are influenced by numerous variables which have resulted in a diversity of relative treatment efficiences when similar processes have been applied. However, some generalizations on the advantages and disadvantages of these processes have become evident, as are outlined in the remainder of this section.

LEACHATE TREATMENT PROCESS PERFORMANCE

When considering separate treatment of raw leachate for removal of biodegradable fractions, biological treatment systems were significantly superior to physical-chemical techniques. As indicated in the performance summary presented in Table 1, if given sufficient residence time, biological processes typically achieved 90 to 99% organics (BOD5 and COD) removal and yielded effluents having COD concentrations less than 500 mg/l. The aerobic treatment processes were generally capable of 90% NH3-N conversion and typically yielded effluents containing less than 10 mg/l NH3-N for $\theta_{\rm C}$ >10 days.

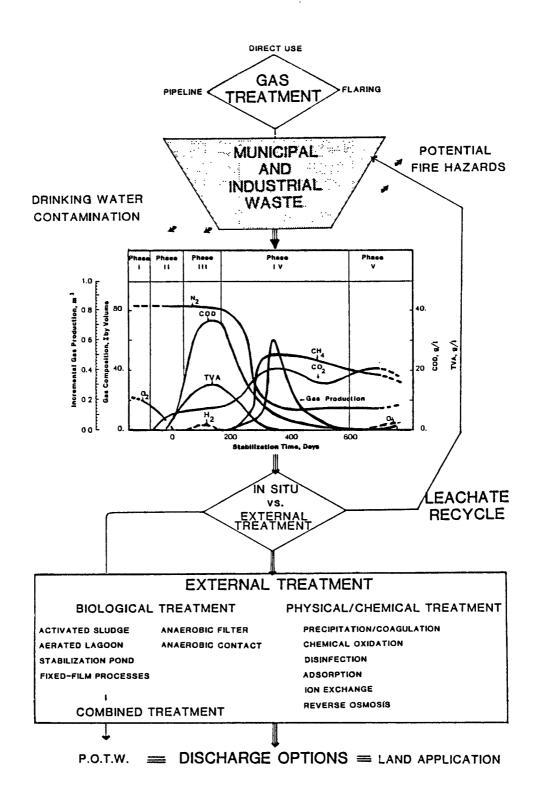


Figure 1. Treatment Options Available for Leachate and Gas Management and Ultimate Disposal

TABLE 1. SUMMARY OF LEACHATE TREATMENT PROCESS CAPABILITIES

	BOD ₅			COD TKN		Fe		2	Zn		Vi		
		Effl., mg/l		Effl., mg/l	Rem.,	_	Rem.,						Comments
AEROBIC BIOLOGICAL PROCESSES													
Activated Sludge Combined Leachate	95	100	95	500	70-95	10-100	96-99	10-40	96-99	3-10	60	0.25	$\theta_{\rm C}$ = 6-10 days
and Sewage Aerated Lagoon Stabilization Pond Aerobic Fixed Film*	94-99 99 93-99	3-15 5-60 10-100	92-98 92-98 99	25-60 300-800 100-400	 40-70* 70-99	 40-80 4-100	 99 80-99	0.2 1-100	 		 		ratio <5 % θ _C >10 days τ >40 days
ANAEROBIC BIOLOGICAL PROCESSES													
Attached Growth Suspended Growth Leachate Recycle	85-98 85-98 NA	100-900 100-900 <100	75-95 75-95 Na	200-1000 200-1000 <5	 NA	 20-1000	80-99 80-99 NA	5-25 5-25 5-50	80-99 80-99 NA	0.5-10 0.5-10 0.2-1	10-80 10-80 NA	0.1-1 0.1-1 	θ _C >10 days θ _C >5 days θ _C >500 days
PHYSICAL/CHEMICAL PROCESSES													
Coagulation			12	100-10,000			95-99	2-17	75-98	<1			Lime, alum,
Oxidation			10-50				99	<1	90	<1			ferric chloride Ozone, chloride
Reverse Osmosis			60-90 * 86-94	* <u>1000-8000</u> <10	!								permanganate Raw Leachate Pretreated Leachate
Ion Exchange			40-70	100-300			40-80	1-10	20-96	<1	14-96	<1	Commercial IX
Adsorption			75-99	<10			65-95	2-15					Resins and GG GAC and PAC

Rem. = Removal; Effl. = Effluent
*Insufficient data to make an adequate judgment; **TOC Basis

For $\theta_{\rm C}$ of 6 to 10 days, the limiting range for aerobic carbonaceous material conversion, 60 to 80% nitrification was generally also achieved.

Like the aerobic biological processes, anaerobic biological processes have been successfully applied for treatment of raw leachates. COD and BOD_5 removals of 90% were typically achieved at residence times longer than 10 days. With these conditions, gas production from anaerobic processes ranged from 0.4 to 0.6 m 3 /kg COD destroyed or 0.8 to 0.9 m 3 /kg BOD $_5$ destroyed.

Aerobic biological processes were fairly efficiently applied for removal of heavy metals. Zinc, iron, cadmium and manganese were removed best, followed by lower removals of chromium, lead and nickel. Zinc, chromium, and iron were removed at efficiencies greater than 90% during anaerobic treatment; copper, lead, cadmium, and nickel removals were on the order of 50 to 90%. Removals of alkaline earth metals were relatively unaffected in both aerobic and anaerobic processes, although the activated sludge process has been reported to remove 64 to 99% calcium.

With the exception of activated carbon, the physical-chemical processes were generally unsuccessfully applied for removal of organic materials from raw leachates. However, reverse osmosis, activated carbon (GAC and PAC) and ion exhange (IX) were successfully applied to treated effluents from biological treatment processes. Reverse osmosis treatment removed a high percentage of organics from both raw and treated leachates, although fouling problems limited its applicability to raw leachates. Ion exchange treatment was generally ineffective for organics removal, although cation exchange resins such as glauconitic greensand (GC) were successful in removing copper, lead and nickel (these were poorly removed in biological processes). Iron and zinc were also relatively well removed, as were chromium, manganese, calcium and magnesium.

Activated carbon adsorption was shown to be capable of removing the majority of residual organics from chemical and biological leachate treatment process effluents, yielding BOD_5 concentrations after adsorption of less than 50 mg/l. Raw leachates have also been treated using activated carbon, achieving >95% TOC removal (<100 mg/l effluent) with a maximum adsorptive capacity of 200 mg TOC/g AC.

In situ treatment of leachate using leachate containment and recycle back through the landfill mass has been demonstrated to be successful on pilot- and full-scale. Effluents from leachate recycle studies were typically 30 to 350 mg/1 BOD₅, 70 to 500 mg/1 COD, 4 to 40 mg/1 iron and <1 mg/1 zinc. The implementation of leachate recycle also generally reduced the time required for biological stabilization of the readily biologically degradable leachate constituents by as much as an order of magnitude. Whereas, wastes in landfills without leachate recirculation may require 15 to 20 years to stabilize, leachate recycle may shorten this period to 2 to 3 years. Moreover, if removal and ultimate disposal of accumulated leachate are followed by appropriate capping and maintenance of closed landfill sections, the potential for long-term adverse environmental impacts will be greatly diminished by concomitant removal of refractory substances remaining in the stabilized leachate and also depriving the system of that liquid (leachate) transport medium. Therefore, although the ultimate reactivity or fate of refractory compounds within landfills have not been well established, leachate recycle appears to offer a management option that can help reduce this degree of uncertainty and provide a better basis for predicting ultimate behavior.

GAS TREATMENT PROCESS PERFORMANCE

Effective recovery of energy (methane) from landfills requires appropriate provisions for gas collection and treatment, preferably conceived prior to the initiation of landfill operations. These systems need to be sized according to expected gas rates and yields. Based upon experiences recorded in the literature, from 0.005 to 0.10 m³ of total gas have been produced per kilogram of dry refuse placed. Most of the total gas is produced over a relatively short period during the "life" of a landfill; the majority of methane will be produced within a few years after the onset of rapid stabilization and methanogenesis. Accordingly, typical gas production rates reported in the literature have ranged from 0.001 to 0.008 m³/kg of dry refuse/year. With recycle augmented stabilization, these rates may be increased due to the shortened period (months versus years) for accelerated conversion of the readily available biodegradable materials present in the refuse and leachate. The associated gas composition has ranged from 45 to 60% methane with the balance being primarily carbon dioxide with smaller amounts of hydrogen, oxygen, nitrogen and traces of other gases.

The choice of treatment technologies utilized for purifying recovered landfill gas has depended on the intended use of the product. For high BTU pipeline quality gas, treatment has traditionally included the removal of water, carbon dioxide, hydrogen sulfide, hydrocarbons and, on occasion, nitrogen. For on-site use applications, lesser degrees of treatment have commonly been required, including the removal of water and hydrogen sulfide, but not necessarily carbon dioxide, hydrocarbons and nitrogen.

Water removal may be best effected by adsorption or absorption; absorption with ethylene glycol at $<20\,^{\circ}F$ ($<6.7\,^{\circ}C$) appears to be the method of choice. Non-methane hydrocarbons may be removed using carbon adsorption. Carbon dioxide may be removed by organic solvents, alkaline salt solutions, or alkanolamines which seem to be the most popular. Hydrogen sulfide may be removed along with CO_2 by the above methods, or selectively removed by particular absorbents or adsorbents. Many of the solvent processes exhibit a higher affinity for H_2S than for CO_2 , therefore, these gases may be removed concurrently in most cases. Dry oxidation processes (such as iron sponges) are more specific for hydrogen sulfide, although the non-regenerative nature of the support materials (such as wood shavings) often poses a requirement for additional recharging procedures. Nitrogen may be removed by liquefying the methane fraction of landfill gas, although this is energy intensive which underscores the need to avoid introducing air during extraction from the landfill.

RECOMMENDATIONS

GENERAL

The generation and treatment of landfill and leachate gas are influenced by many factors, many of which are poorly understood and ineffectively controlled or managed. Moreover, it is likely that the current practice of codisposal of small quantities of toxic and hazardous industrial wastes with municipal refuse will present increasing management challenges as leachates and gases are generated. Collectively, these issues have been emphasized by the results of studies reviewed herein with respect to the variations in quantity and quality of leachates and gases produced in time and space within a given landfill setting. Associated uncertainties tend to stymic management efforts and, as a result, the design, construction and operation of external leachate treatment facilities have not been standardized. Likewise, efforts directed toward energy (methane) recovery have been limited because of the difficulties in predicting variations in gas quality and production, as well as securing justification for such an initiative within the user community.

To help alleviate such problems during design and operation of leachate and gas management systems, it is desirable to have as much control over the generation of leachate and gas as possible and to thereby transfer the process from the realm of uncertainty to that of predictability. This can only be accomplished if control over leachate constituents is exercised either through the pre-selection of waste source ingredients or by management of their rate of generation and transfer to the transport medium (leachate or gas). The latter approach appears to be a more logical choice in the case of municipal landfills; the former, perhaps coupled with the latter, would seem more attractive for industrial landfills.

Based upon an understanding of the processes effecting leachate characteristics, management of generation and transfer rates can be implemented by management of the moisture regime within the landfill. Without moisture, the transport medium will not exist and the conversions and interactions determining leachate (and gas) quality will be suppressed. Once under control, the availability of moisture can be used to advantage to accelerate processes producing leachable constituents, to carry the constituents from the waste mass, to dilute out inhibitory ingredients and/or refractory compounds, to add seed, nutrients or buffer capacity to augment biological activity, and to transport residuals for ultimate treatment or disposal.

Implicit in this management concept are requirements for containment and ultimate disposal. Current technology provides a sufficiency of techniques for containment with natural or fabricated liners which have become generally

accepted. Ultimate disposal relates to the sensitivity of the eventual environmental receptor, whether it be the land or the water. However, under prevailing regulatory constraints and state-of-the-art technology, both require some degree of leachate pretreatment before ultimate disposal is acceptable. It is the premise here that such pretreatment can be best provided in engineered systems that have the resiliency to cope with changing leachate characteristics.

In situ Treatment of Leachates

For on-site applications, it is recommended that leachate recycle be recognized as affording the flexibility needed to successfully manage landfill leachates, both with respect to leachate quality and quantity and energy recovery. Associated design of leachate and gas collection and distribution systems should be standardized and coupled with management plans allowing sequenced operation of the landfill and reuse of appurtenances to minimize overall costs and maximize the benefits of such treatment. Current evidence suggesting lower costs of leachate recycle in contained sites as compared to either separate aerobic or anaerobic treatment systems should be confirmed. In addition, since with leachate recycle the landfill itself provides the treatment system, operational contingencies should be established in relation to the accelerated production of leachate constituents and their eventual conversion to gas.

Whether leachate values are attractive for recovery and/or reuse also relates to the type of treatment provided. At many conventional municipal landfills, gross uncertainties persist throughout operation and after closure of the site. Accordingly, gas and leachate production events are generally unpredictable and neither gas nor leachate may be efficiently recovered for controlled discharge. With leachate recycle and its inherent ability to accelerate waste and leachate conversion with concomitant methane production, gas collection and possible utilization becomes more viable and such an option should be investigated further, particularly on full-scale. Moreover, the degree of stabilization of the waste mass as compared to conventional landfill practice needs to be established with regard to residual leachate character and decisions on ultimate leachate disposal including foreclosure and postclosure requirements.

External Treatment of Leachates and Gas

In the case of external treatment of leachates, the most logical first step appears to be biological treatment. Stabilization ponds or aerated lagoons can be most cost effective if land area is readily available; if not, anaerobic treatment or aerobic activated sludge processes may be used. The choice between anaerobic and aerobic processes for leachate treatment is a difficult one, although the retention times needed in either case are similar. Therefore, the energy surplus associated with methane production and aerator elimination may favor anaerobic processes. Both processes require further site specific testing on pilot- and full-scale to determine these issues. In particular, these systems will require attention to the flexibility in design and operation necessary to meet the challenges imposed by the stochastic nature of leachates (and gas) in both quality and quantity.

Following external biological treatment (or in situ treatment, as above), the effluents will still contain significant organic and inorganic residual concentrations. Therefore, polishing treatment prior to disposal on land or into a POTW such as by activated carbon adsorption, ion exchange or reverse osmosis needs to be included in the overall study approach. Precipitation and coagulation processes should also be considered where justified. In all cases, gas management or recovery need to be an integral part of any investigative initiative.

Directions for Future Research

Based upon the observations gained from this review, the present state-of-the-art in landfill leachate and gas management appears to be comprised of the elements represented in Figure 2. From this figure, it is suggested that 90 to 95% of the organics and metals leached from landfill waste may be removed by biological processes such as leachate recycle or external aerobic and anaerobic treatment systems. However, the capabilities of these processes are not fully established; further study is needed in each area to develop meaningful economic and realistic process control comparisons of these alternatives. Evaluations of leachate treatment and the gas production possible from the use of leachate recycle on full-scale are particularly needed, as well as parallel evaluations of both aerobic and anaerobic fixed-film processes on pilot- and full-scale, respectively. sequence approach to leachate recycle on full-scale needs development to establish the economic incentives associated with minimizing leachate distribution and gas collection appurtenances and maximizing gas/recovery utilization. In all biological treatment cases, the stochastic nature of leachate and gas production in both quantity and quality needs to be merged with design and operational procedures.

Activated carbon, ion exchange or reverse osmosis polishing of effluents from biological treatment processes need further confirmation on full-scale. Included in these analyses should be a characterization of organics and inorganics escaping treatment, and the potential for improving final polishing by chemical pretreatment or post-treatment. Coupled with this initiative should be more detailed analyses of the character and fate of the priority pollutants appearing throughout the various phases of landfill stabilization and/or in situ or separate treatment.

Finally, the present knowledge of chemical and physical processes involved in management of gas and leachate from landfills is not sufficiently detailed to support development of a unified approach to leachate and gas treatment and possible resource recovery. Although much is known about factors that influence composition and volume of leachate and gas from landfills, this information is quantitative only for well controlled systems that are operated at laboratory or pilot scale. Many of the processes are not fully understood and information from field-scale systems remains qualitative and highly variable. Consequently, it is recommended that research and/or demonstration studies should be directed toward improving quantitative knowledge of the fundamental processes operative in field-scale systems and integrating this information into a strategy for standardized management and control of all types of landfills.

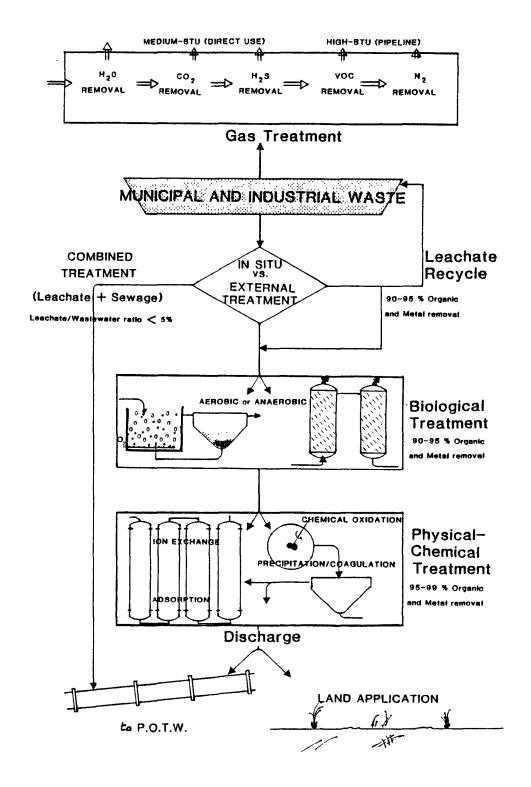


Figure 2. Solutions to the Management of Leachate and Gas from Landfill Disposal of Solid Wastes

LANDFILL HAZARDS - HISTORICAL PERSPECTIVE

The technical literature has frequently documented problems associated with leachate and gas production from landfills, generally in terms of migration into the adjacent environment. Although often difficult to quantify, much of the earlier recorded information is instructive to the extent that it established a relatively early recognition and emphasis on these environmental problems. Therefore, a brief discussion of this early work is provided as an introduction to the more current investigations.

EARLY REPORTS ON LEACHATE MIGRATION AND EFFECTS

Potential problems associated with the burial of solid and liquid wastes have been documented as early as 1932 by Calvert (1932) who reported increased levels of hardness, calcium, magnesium, total solids, and carbon dioxide in a well more than 150 m from an impounding pit. Similarly, Carpenter and Setter (1940) sampled the water from the bottom of a refuse fill and reported contaminant concentrations of 1987 mg/l BOD5, 3867 mg/l alkalinity as CaCO3, and 3506 mg/l chloride. Lang (1941) reported the pollution of a well which was more than 600 m from a fill site. In a study on leaching of land-disposed wastes, Merz (1964) determined that if fill materials are allowed to contact groundwater either intermittently or continuously, the water becomes so grossly polluted to preclude its domestic or irrigation use.

Based on a study of an existing landfill located in an abandoned gravel pit, Anderson and Dornbush (1967) reported that groundwater in the immediate vicinity of the landfill, as well as that in direct contact with the landfill, exhibited an increase in ionic strength. Water quality impairment by excess ions decreased with distance from the landfill area. In studies on the characteristics of refuse tips in England, it was concluded that leaching could promote the growth of bacterial slimes and/or fungus in groundwater systems and lead to taste and odor problems (Davison, 1969). In California, groundwater below the Riverside Landfill contained markedly increased concentrations of BOD, chloride, sodium, and sulfate; increases of these contaminants over background were 26, 10, 9, and 8 times, respectively (Coe, 1970). Pollution of a surface water supply in Kansas City, MO was attributed to leaching of organic compounds from an industrial waste landfill into the Missouri River one mile (1.6 km) above the city's water intake (Hopkins and Poplisky, 1970). In 1975, the U.S. Environmental Protection Agency (EPA) assessed leachate damages from five municipal waste disposal sites reported by Fungaroli (1971) where contamination of groundwater and pollution of residential, industrial or public water supply wells occurred. The necessity to abandon all wells resulted in a costly replacement of the water supply.

Shuster (1976a) reported on the improper management of a landfill which resulted in serious contamination of public water supplies. Initially operated as an open dump, the City of Aurora, IL contracted in 1965 to have a private company operate the landfill at a site located over a creviced bedrock Within two months of filling an excavated trench (dug to bedrock) with commercial, industrial, and septic tank wastes, seven residential wells were contaminated with leachate and declared totally unusable. BOD levels in three of the wells greatly exceeded levels reported for raw sewage. (1976b) similarly reported on a landfill site in Rockford, IL which was formerly a sand and gravel pit. Prior to placing the wastes into the site, sand was removed from a $161,880-m^2$ (40-acre) area to a depth of 9.1 to 12.2 m (30-40 ft) below grade; the location of the water table was at 10.4 m (34 feet) below grade. As a result, four residential wells, four industrial wells and one public water supply well were contaminated. All wells were subsequently abandoned and alternative water supplies were established.

A 1977 Report to Congress presented data which documented contamination from various municipal and industrial land disposal sites (EPA, 1977). A total of 42 municipal and 18 industrial disposal sites were surveyed, and five of the municipal and 14 of the industrial sites were shown to contribute toxic pollutants to the local water supply. In all cases, groundwater contamination was the most common type of environmental damage.

EARLY REPORTS ON GAS MIGRATION AND EFFECTS

Landfill gases may also migrate from a landfill site and pose problems ranging from malodors and corrosion to fire or explosions. Methane migration and accumulation into subsurface structures, including sewerage system manholes and catch basins and into commercial and residential basements may explode if the methane is diluted with air to 5 to 15%. Zabetakis (1962) reported on the presence of methane at 2.1% in malodorous gases collected near water pipes at a number of homes built over a previous dump site. MacFarland (1970) summarized a report of a recreation center explosion in Atlanta, GA where two workmen were killed and two others seriously injured. As in the case of the homes, the recreation center had been rebuilt virtually on top of decomposing refuse. The explosion, which completely destroyed the recreation building, was attributed to methane orginating from the buried wastes. Flammable gas concentrations were found in nearly all probes placed within a 44.4-m (200-ft) radius of the demolished structure.

More recently, a British group (County Surveyors Society, Committee No. 4; 1982) surveyed 51 governmental agencies to determine the extent knowledge concerning landfill gas hazards. Of the agencies queried, 27 reported problems associated with fires and explosions. No deaths were reported associated with landfill explosion hazards, although two children were asphyxiated in a culvert extending from under a landfill in 1977. Injuries to children playing with matches or fireworks near manholes or drainage culverts were reported in several counties, and hazards to electrical, phone, and maintenance workers, including several large explosions, were also recorded. Numerous other incidents involving explosions and fires (62 total incidents) in which no personal injury was involved were also reported. Fires were apparently common both above and below ground, particularly in manholes.

In response to these problems, the control of landfill gas and leachate has received considerable attention and is often mandated by permit requirements. The current technology for gas control and treatment ranges from controlled ventilation to capture and processing for energy recovery. The planning and technological requirements associated with these approaches are addressed in more detail under the GAS MANAGEMENT section of this report. Similarly, the current technology for leachate management encompasses a variety of treatment or disposal options which are detailed in the LEACHATE TREATMENT section of this report.

LEACHATE AND GAS PRODUCTION AT SANITARY LANDFILLS

GENERAL PERSPECTIVE

The chemical characterization of leachates and gases emanating from landfill operations is a first and necessary step toward a meaningful analysis of potential environmental impacts and the consideration of containment, control and treatment strategies. Unfortunately, the nature of landfill leachates (and gases to a lesser extent) varies widely in response to differences in climatic and hydrogeologic influences, the nature of the wastes contained at each site, and the age of the landfill (or its degree of stabilization). It is the purpose of this section to introduce and review the implications of these variables and to formulate an overall perspective and general characterization of landfill leachates and product gases.

CLIMATIC AND HYDROGEOLOGIC FACTORS

Rainfall provides the transport phase for leaching and migration of contaminants from a landfill and the moisture needed for biological activity leading to methane production. Although some moisture may be derived from the input wastes, the major precursor to leachate formation is infiltration from rainfall. The contact opportunity of this infiltration can be affected by certain landfill management options, including the cover configuration, liners, and the landfilling technique employed. In addition, the natural and imposed hydrogeologic conditions play a major role in determining the nature and fate of leachates and gases at sanitary landfills. Unfortunately, much uncertainty remains in this regard and analytical techniques often fail to reveal discontinuties in geologic and hydrologic dimensions.

Under similar infiltration constraints, the impact of climate on leachate quantity and quality is fairly well understood. In hot and humid climates, leachate production could be maximum compared to that generated in hot and arid climates. High levels of rainfall and porous soils create large quantities of leachates, although the concentrations of contaminants leached will be lower than in low rainfall areas. Evapotranspiration may also play a significant role in the overall water balance, particularly in hot and arid regions.

Although the hydrogeologic environments of any two landfills will have certain conceptual similarities, each landfill will exhibit factors unique to its setting which will greatly influence the nature and fate of leachates formed. Therefore, a three dimensional understanding of infiltration and groundwater movement is necessary for evaluating the suitability of candidate landfill sites or for planning control strategies at existing landfills.

Important factors include particle sizes and types of soils in the underlying strata, soil or other material used as a daily cover, and sizes and degree of compaction of wastes placed (Hughes, et al., 1971). Obviously, finely textured materials will allow for relatively low rates of leachate or gas movement, whereas, coarse materials or fractured bedrock will allow relatively easy passage of both liquids and gases.

These site specific uncertainties have been the primary contributors to deviations in leachate and gas characteristics from seemingly similar wastes. Moreover, they have often promoted an insistence on the application of restrictive management concepts, ranging from leachate removal and treatment to total landfill containment or waste encapsulation. Reliable and convincing hydrogeologic mapping will be increasingly required to offset growing concerns about short- and long-term impacts of landfills intended for the receipt of wastes from the industrial or municipal sectors. (This subject will be further addressed under the LEACHATE AND SOIL INTERACTIONS section of this report.)

INPUT WASTE CHARACTERISTICS

The majority of wastes disposed of in sanitary landfills are solid in nature, although the presence of municipal and industrial sludges is also common. Wastes originating from different source categories will contain different constituents which will also impart certain associated characteristics to the leachate produced.

As shown in Table 2, five major source categories can be identified; residential, agricultural, commercial, municipal, and industrial.

Accordingly, residential and commercial wastes are comprised primarily of paper products (rubbish) ash, and food wastes. Agricultural wastes will include these products plus larger proportions of organic materials from crops and animals (agricultural wastes may also contain some potentially toxic material in the form of insecticides or pesticides). Industrial wastes will contain materials characteristic of the industry from which they originate.

TABLE 2. WASTE SOURCE CATEGORIES AND CORRESPONDING WASTE TYPES

Source Category	Major Waste Constituents
Residential	Rubbish, food and garden wastes, plastics, glass, ash
Agricultural	Crop and animal wastes, food wastes, rubbish, chemicals
Commercial	Rubbish, food wastes, construction/demolition debris, ash
Municipal	Rubbish, ash, food wastes, sewage sludge
Industrial	Biological and chemical sludges, rubbish, ash, construction/demolition debris

Several investigators have determined the relative composition of municipal solid wastes. As summarized in Table 3, the diversity of the results presented is indicative of the high potential for variance in the composition and relative proportions of wastes contributed from each source category. Nevertheless, from these analyses it can be expected that rubbish, food and garden wastes, and crop and animal residues will contribute organic compounds. Organic compounds will also be available from sewage sludges and certain industrial wastes. These wastes will also contribute to the moisture needed for leachate formation and biological activity leading to gas production. Ash wastes will contribute inorganic constituents, as will construction and demolition debris and the many types of industrial sludges and residues which constitute common sources of heavy metals.

Reference Source Component	(149) Average	(116) Average	(175) Average	(36)		(78)		(259)	
				Range	Average	Range	Average	Range	Typical
Food Wastes	12	>25.1	25.0	8.8-12.8	10.7	4-9	7	6-26	15
Garden Wastes			0	5.8-17.0	10.4	1-10	5	0-20	12
Paper	39	44.5	50.0	>35.2-45.3	>40.6	45-57	50	25-45	40
Cardboard	7							3-15	4
Plastics		>22	>3.0	>4.2-5.2	>4.6			2-8	3
Rubber	2					4-9	6	0-2	1
Leather								0-2	1
Textiles	3	1.1	5.0	1.1-2.5	1.7	2-5	3	0-4	2
Plastic Film	2								
Wood	7		1.0	0.4-1.3	1.0	1-2	1	1-4	2
Glass	10	11.3	7.0	9.1-12.4	10.9	9-17	12	4-16	8
Metallics	8	8.7	4.0	8.0-8.6	9.0	6-15	10		
Tin Cans								2-8	6
Non-Ferrous Metals								0-1	1
Ferrous Metals								1-4	2
Dirt, Ashes, Brick, etc.	10	7.1	5.0	1.0-3.6	2.8	3-15	7	0-10	4
Moisture						21-35	27	15-40	20

^{*}Percent by weight, wet weight basis

The codisposal of industrial sludges and residues with municipal, commercial, agricultural and/or residential wastes provides a potential source of toxic constituents. These constituents are usually inorganic (alkali and alkaline earth metals, heavy metals, nitrogen and sulfur compounds) but may also be organic in nature. Therefore, their migration into groundwater may pose health hazards and may actually inhibit or impede landfill stabilization or the performance of external leachate treatment processes. Nevertheless,

due to the small generator exclusion in the Resource Conservation and Recovery Act (RCRA), small quantities of hazardous materials have been and are currently being codisposed in sanitary landfills and need to be considered as a recognized input. In these cases, in situ stabilization may occur at reduced rates as the leachate becomes more concentrated, and the extended stabilization period increases the opportunity for leachate migration from the landfill.

The degree of inhibition of the biologically mediated processes of stabilization within a landfill will depend upon the nature and quantities of potential inhibitors present. Recent research has demonstrated that appropriate combinations of industrial wastes with municipal refuse can reduce and/or eliminate the otherwise adverse effects of industrial wastes on stabilization (Bromley and Wilson, 1981; Jones and Malone, 1982; Chang, 1982). In some cases, codisposal of industrial wastes may contribute moisture or buffer capacity which encourages the onset of biological stabilization within the landfill (Kinman, et al., 1980; Kinman, 1982). Swartzbaugh, et al., (1978) reported that codisposal of several industrial wastes generally increased overall moisture content and caused a more rapid attainment of field capacity. However, experiments with petroleum wastes revealed a potential for the inhibition of leachate formation, and codisposal of battery wastes resulted in higher concentrations of leachate metals and other inorganic contaminants.

The differences in impact attributed to the industrial waste component during codisposal may also be a function of pH. Using small-scale leaching tests, Houle (1977) noted increased mobilization of metallic ions when leachate was used instead of distilled water. Similarly, Streng (1976) noted increased metal mobility during tests of codisposal of six selected industrial wastes. In contrast, Barber, et al., (1981) indicated that larger-scale studies revealed little evidence of increased metal leaching except at below pH 5. The authors speculated that this was due to attenuation by bicarbonate and sulfide precipitates and complexes. Similar observations have been recorded by Pohland, et al., (1981) and Walsh, et al., (1983), i.e., leaching of metals was initially attenuated by sulfide precipitation, followed by an increased mobility in the latter phases of biological stabilization due to possible complexation.

LANDFILL AGE (DEGREE OF STABILIZATION)

Landfill Stabilization Phases

The coupling of landfill age with leachate and gas production (quantity and quality) has been one of the seemingly most elusive challenges confronting designers, operators, and regulators of landfill disposal sites. The designer may conceive of operational features not responsive to requirements for leachate management as leachate is produced and changes in quality with time. Similarly, the treatment plant operator may be frustrated by the inability to adjust to these emerging circumstances, and the regulator may impose highly conservative and/or restrictive conditions in anticipation of these events, thereby stifling development and implementation of new and innovative technology.

In reality, most landfills receiving municipal solid waste proceed through a series of rather predictable events whose significance and longevity are largely determined by the previously mentioned climatological conditions, operational variables, management options, and control factors operative or being applied either external or internal to the landfill environment. Fortunately these events can be followed by certain leachate (and gas) analyses, selecting those parameters as major environmental factors that best describe certain conditions or "phases" of stabilization.

To direct the choice of analyses to be used to describe a particular phase of stabilization, it is necessary to recognize that a landfill exists throughout much of its active life as an anaerobic microbial process, analogous in concept to a batch digester, with limited inputs or outputs except for the refuse and moisture or eventual gas production and possible leachate migration, respectively. Using this analogy and recognizing that the functional retention time extends over a period of years rather than days, certain performance related and time dependent concepts emerge.

As with many anaerobic digestion systems, landfills experience an initial lag or adjustment phase which lasts until sufficient moisture has accumulated to encourage the development of a viable microbial community, the evidence of which is first observed in leachate quality when "field capacity" has been reached. Thereafter, further manifestations of waste conversion and stabilization may be reflected by changes in leachate and gas quality as stabilization proceeds through several more or less discrete and sequential phases, each varying in intensity and longevity according to prevailing operational circumstances. To illustrate this premise, the following five stabilization phases have been identified in terms of the principal events occurring during each (Pohland, et al., 1983).

Phase I: Initial Adjustment--

- · Initial waste placement and preliminary moisture accumulates.
- · Initial subsidence and closure of each landfill area.
- Changes in environmental parameters are first detected to reflect the onset of stabilization processes which are trending in a logical fashion.

Phase II: Transition--

- · Field capacity is exceeded and leachate is formed.
- A transition from initial aerobic to anaerobic microbial stabilization occurs.
- The primary electron acceptor shifts from oxygen to nitrates and sulfates with the displacement of oxygen by carbon dioxide in the gas.
- · A trend toward reducing conditions is established.
- Measurable intermediates such as the volatile organic fatty acids first appear in the leachate.

Phase III: Acid Formation--

- Intermediary volatile organic fatty acids become predominant with the continuing hydrolysis and fermentation of waste and leachate constituents.
- A precipitous decrease in pH occurs with a concomitant mobilization and possible complexation of metal species.
- Nutrients such as nitrogen and phosphorus are released and utilized in support of the growth of biomass commensurate with the prevailing substrate conversion rates.
- Hydrogen may be detected and affect the nature and type of intermediary products being formed.

Phase IV: Methane Fermentation--

- Intermediary products appearing during the acid formation phase are converted to methane and excess carbon dioxide.
- The pH returns from a buffer level controlled by the volatile organic fatty acids to one characteristic of the bicarbonate buffering system.
- Oxidation-reduction potentials are at their lowest values.
- · Nutrients continue to be consumed.
- · Complexation and precipitation of metal species proceed.
- Leachate organic strength is dramatically decreased in correspondence with increases in gas production.

Phase V: Final Maturation--

- Relative dormancy following active biological stabilization of the readily available organic constituents in the waste and leachate.
- · Nutrients may become limiting.
- · Measurable gas production all but ceases.
- · Natural environmental conditions become reinstated.
- Oxygen and oxidized species may slowly reappear with a corresponding increase in oxidation-reduction potential.
- More microbially resistant organic materials may be slowly converted with the possible production of humic-like substances capable of complexing with and re-mobilizing heavy metals.

All of the major events selected to describe and separate these landfill stabilization phases are encountered at one time or another in landfills containing municipal refuse, provided that the associated microbially mediated processes have been augmented by a sufficiency of moisture and nutrients and are not being exposed to the inhibitory influences of toxic materials. Because the manifestations of these phases often overlap within the usual landfill setting, it has become customary to view them in a collective fashion. Unfortunately, this tends to obscure reality and limit understanding of the progression of events so requisite of design and operational attention. No landfill has a single "age", but rather a family of different ages associated with the various sections or cells within the landfill complex and their respective progress toward stabilization. Moreover, the rate of progress through these phases may vary depending on the physical, chemical and microbiological conditions developed within each section with time. For

example, acid conditions established during acid formation may preclude the onset of active methane fermentation, microbial inhibition may be induced by the presence of toxic substances, or high compaction may restrict the movement of moisture and nutrients throughout the waste mass.

Indicator Parameters Descriptive of Stabilization Phases

There are certain indicator parameters or indices capable of being used to detect and describe the presence, intensity and longevity of each phase of landfill stabilization. Many of these apply to the analysis of leachate, so that their facility is most evident when leachate production has commenced. In addition, whether these analyses are physical, chemical or biological helps to determine their applications and interrelationships within an overall landfill perspective. For example, pH and ORP are physical-chemical parameters indicative of respective acid-base and oxidation-reduction conditions and critical to the proper evaluation of the acid formation and methane fermentation phases; COD and BOD5 are chemical and biological parameters, respectively, but are both indicative of relative biodegradability; and, nitrogen and phosphorus are chemical parameters important to the determination of nutrient sufficiency and condition (aerobic/anaerobic) of a particular phase. Similar importance can be ascribed to other parameters which may reflect such factors as buffer capacity (alkalinity), potential inhibition (heavy metals), ionic strength/activity (conductivity), migration potential (chlorides), health hazards (bacteria and viruses) and oxidizing potential (nitrates and sulfates).

Ranges in intensity or concentration of these parameters will vary throughout the phases of stabilization, again depending upon the principal function of each phase as described and the physical influence of dilution with continuing ingress of moisture. This latter effect will tend to diminish concentrations during leachate analysis, but will not influence the total mass of leached constituents in time and space. Unfortunately, dilution effects are often poorly recorded, leading to analytical variances in magnitude and interpretation when analyses are based upon concentration alone. Nevertheless, there are data available in the literature which may be employed to provide general ranges of intensity and concentration of these indicator parameters throughout those landfill stabilization phases when leachate is available for analysis. Table 4 provides such a compilation for the four previously defined landfill phases during which leachate and gas analyses are critical for characterization and interpretation. These data have been derived and arranged from literature accounts of a diverse group of primarily laboratory or pilot-scale landfill simulations reviewed herein and presented to indicate the magnitude of ranges encountered. Scrutiny of these data indicates some obvious overlap between phases and also some contradictions of the relatively discrete descriptions presented previously for each landfill stabilization phase.

To better demonstrate this ability to match changes in leachate (and gas) analyses with stabilization phases, and to use the results of such a procedure to provide both didactic and operational interpretations of landfill behavior, data from previously reported pilot-scale investigations of accelerated landfill/leachate stabilization with leachate recycle (Pohland, 1980) have

TABLE 4. LANDFILL LEACHATE AND GAS CONSTITUENT CONCENTRATION RANGES ENCOUNTERED IN THE LITERATURE*
AND THEIR RELATIVE SIGNIFICANCE TO THE DEGREE OF LANDFILL STABILIZATION

		Phase of Biological St			Overall
Leachate or Gas Constituent	Transition Phase	Acid Formation Phase	Methane Fermentation Phase	Final Maturation Phase	Range (All Phases)
Biochemical Oxygen Demand (BOD ₅)	100-10,900 Influence of dilution and aerobic solubilization of waste organics	1,000-57,700 Accumulation of bio- degradable organic acids due to methano- genic lag	600-3,400 Conversion of biode- gradable organics to gaseous end products (CH _H and CO ₂)	4-120 Influence of high- molecular weight organic residuals (humics, fulvics)	4-57,700
Chemical Oxygen Demand (COD)	480-18,000 Trending in a simi- lar fashion to BOD ₅	1,500-71,100 Trending in a similar fashion to BOD ₅	580-9,760 Trending in a similar fashion to BOD ₅	31-900 Higher influence of residual organics than in BOD ₅ assay.	31-71,700
Total Organic Carbon (TOC), mg/l	100-3,000 Beginning to appear as a result of aerobic solubiliza- tion	500-27,700 Increasing rapidly; accumulation due to methanogenic lag	300-2,230 Conversion of volatile acids to methane; decrease in aqueous carbon	70-260 Influence of higher molecular weight organics (humics, fulvics)	70-27,700
Total Volatile Acids (TVA), mg/l as Acetic Acid	100-3,000 Or just beginning to appear as a result of solubilization	3,000-18,800 Solubilization of orga- nic polymers to monomers; beta-oxidation to vola- tile acids	250-4,000 Conversion of fatty acids to fatty acid; fermentation of acetic acid to methane	Essentially absent - methanogenic system undersaturated	0-18,800
BOD ₅ /COD Ratio	0.23-0.87 Increasing biode- gradability of organics due to solubilization	0.4-0.8 High biodegradability	0.17-0.64 Decreasing biodegradabi- lity due to methanation	0.02-0.13 Low degree of biode- gradability	0.02-0.87
COD/TOC Ratio	4.3-4.8 Low oxidation state or organics	2.1-3.4 Low to moderate oxida- tion state of organics	2.0-3.0 Moderate to high oxida- tion of organics	0.4-2.0	0.4-4.8
Total Kjeldahl Nitrogen (TKN) mg/l	180~860	14-1,970 May be low due to microbial assimilation of nitrogenous compounds	25-82 Low due to microbial assimilation of nitrogenous compounds	7-490	7-1,970
Nitrate Nitrogen NO3 ⁻ -N). mg/l	0.1-5.1 Increasing due to oxidation of ammonia	0.05-19 Decreasing due to reduction to ammonia or N ₂ gas	Absent Complete conversion to ammonia or N ₂ gas	0.5-0.6	0-51
Ammonia Nitrogen NH3-N) ng/l	120-125	2-1,030 Increasing due to nitrate reduction and protein breakdown	6-430 Decreasing due to biolo- gical assimilation	6-430	2-1,030
H ₃ /TKN Ratio	0.1-0.9	0-0.98 Protein breakdown; bio- logical assimilation	0.1-0.84	0.5-0.97	0.1
Cotal Phosphate (POu -P), ag/1	0.6-1.7	0.2-120 Biological assimila- tion and metal complexation	0.7-14 Low due to biological assimilation	0.2-14	0.2-120

TABLE 4 (Continued)

Total Alkalinity, mg/l as CaCO3	200-2,500	140-9,650 Increasing due to volatile acid forma- tion and bicarbonate dissolution	760-5,050 Decreasing due to vola- tile acid removal	200-3.520	140-9,650
Solids (TS). 2,450-2,050 mg/l		4,120-55,300 Increasing due to solu- bilization or organics and mobilization of metals	2,090-6,410	1,460-4,640	1,460-55,300
pH	6.7	4.7-7.7 Low due to volatile acid accumulation	6.3-8.8 Increasing due to volatile acid removal and bicarbonate dissolution	7.1-8.8	4.7-8.8
Oxidation-Reduction Potential (ORP), mV	+40 to +80	+80 to -240 Decreasing due to the depletion of oxygen	-70 to -240	+97 to +163	-240 to +16
Copper, mg/l	0.085-0.39	0.005-2.2	0.03-0.18 Decreasing (complexation)	0.02-0.56	0.005-2.2
Iron, mg/l	68-312	90-2,200	115-336 Decreasing (complexation)	4-20	4-2,200
Lead, mg/l	0.001-0.004	0.01-1.44	0.01-0.1 Decreasing (complexation)	0.01-0.1	0.001-1.44
Magnesium, mg/l	66-96	3-1,140	81-505 Decreasing (complexation)	81-190	3-1,140
Manganese mg/l	0.6	0.6-41	0.6 Decreasing (complexation)	0.6	0.6-41
Nickel, mg/l	0.02-1.55	0.03-79	0.01-1.0 Decreasing (complexation)	0.07	0.02-79
Potassium, mg/l	35-2,300	35-2,300	35-2,300	35,2,300	35-2,300
Sodium, mg/l	20,7,600				20-7,600
Zinc, mg/l	0.06-21	0.65-220	0.4-6.0	0.4	0.06-220
Total Coliform, CFU/100 ml	10 ⁰ to 10 ⁵	10 ⁰ to 10 ⁵	Essentially absent	Absent	0-10 ⁵
Fecal Coliform, CFU/100 ml	10 ⁰ to 10 ⁵	10 ⁰ to 10 ⁵	Essentially absent	Absent	0-10 ⁵
Fecal Streptococci, CFU/100 ml	10 ⁰ to 10 ⁶	10 ⁰ to 10 ⁶	Essentially absent	Absent	0-10 ⁶

TABLE 4 (Continued)

Viruses. PFU/100 ml		Essentially absent	Essentially absent	Essentially absent	Absent
Conductivity, umhos/cm	2,450-3,310	1,600-17,100 Increasing due to mobi- lization of metals	2,900-7,700 Decreasing due to metals complexation with sulfides	1,400-4,500	1,400-17,100
Chloride (C1 ⁻), mg/l	30-5,000 Biologically stable: good indicator of washout	30-5,000 Stable: good hydraulic tracer	30-5,000 Stable; good hydraulic tracer	30-5,000 Stable: good hydraulic tracer	30-5,000
Sulfate (SOu ⁻), mg/l	10-458 Increasing due to aerobic oxidation	10-3,240 Increasing initially due to aerobic solubilization then decreasing as anaerobic conditions are estabilished	Absent Complete conversion to sulfides	5-40 Reappearing due to aerobic oxidation	
Sulfide (S=), mg/1	Essentially absent	0-618 Beginning to appear and increasing due to sulfate reduction under anaerobic conditions	0.9 Low due to heavy metal precipitation	Absent	
Cadmium, mg/l	190-490	70-3,900	76-490 Decreasing due to com- plexation and precipi- tation	76-254	70-3,900
Chromium, mg/1	0.023-0.28	0.06-18	0.05 Decreasing due to complexation, precipitation with sulfides	0.05	0.02-18
Methane,	Essentially absent (aerobic metabolism)	Very low (<15); Transition to anaero- bic metabolism	30-60 Suitable for energy recovery	0-<10 Decreasing due to substrate limitation and reversion to aerobic metabolism	0-60
Carbon Dioxide,	0-10 Product of aerobic decomposition of organics	10-30 Increasing due to waste decomposition	30-60 Decreasing to <5% as methanogenesis increases	<40 Aerobic metabolism	0-60
Nitrogen Gas, \$	70-80 Influence of trapped air	60-80 Decreasing due to dilu- tion with CO ₂	<pre><20 Artefact of trapped air; denitrification</pre>	>20 Increasing due to introduction of air	<20-80
Oxygen,	20 Influence of trapped air	0-5 Decreasing due to aerobic utilization; shift towards anaero- bic metabolism	0-5 Disappearing as methano- genesis increases	>5 Increasing due to introduction of air	0-20
Hydrogen,	Essentially absent in the presence of oxygen	0-2 Beginning to appear as oxygen is depleted; accumulates until methanogenesis occurs	<pre><0.1 Maintained at low levels by methanogenesis; difficult to measure</pre>	0-2 Essentially absent	

Ranges of constituent concentrations were collected from the references and data presented in the Appendices.

been reproduced and presented in Figure 3 for COD, total volatile acids (TVA), pH, gas production and composition, and ORP; parameters considered as major environmental factors within the landfill environment. Since these data were obtained during municipal refuse stabilization after leachate had been produced for recycle, they cover a time period extending from transition (Phase II) to final maturation (Phase V), with the manifestations of acid formation (Phase III) and methane fermentation (Phase IV) being most pronounced.

In reality, most detectable landfill stabilization is accountable to the processes occurring during Phases III and IV. With leachate recycle, the consequences are magnified and reflected in the indicator parameters over a more contracted time interval than normally encountered at conventionally managed landfills. Accordingly, high concentrations of organic contaminants, represented by COD (shaded area) and TVA analyses, appeared inthe leachate soon after leachate recycle was commenced (Time 0) as indicated in Figure 3. Thereafter, the magnitude of these same parameters decreased as gas production increased during methane fermentation, changing the initial ambient gas composition to one dominated by methane and carbon dioxide. Similarly, the formation and subsequent microbial conversion of volatile acids caused an initial increase and decrease in COD. All of these changes are similar to those occurring in many anaerobic biological treatment systems as they progress sequentially through acid and methane fermentation phases. addition, since the experimental landfill used in these studies was constructed similar to a discrete cell at a conventional landfill site, the progress of stabilization (although accelerated by refuse shredding and leachate recycle) reflected the landfill aging process for an analogous section of a landfill where the two most active phases (Phases III and IV) were essentially completed in about one year.

In actual landfills, the time periods associated with each phase and the quality and quantity of leachate and gas will vary according to landfilling procedures, the nature of the wastes, the amount of moisture allowed as input to the landfill and closure and post-closure methods eventually applied. Therefore, the time scale and concentration intensity for each of the five phases indicated will vary from site to site. Nevertheless, Figure 3 serves to illustrate the trends to be expected in the quality of both leachates and gases produced with time. A careful analysis of associated project data from a particular site can give a good indication of the existing "phase". Moreover, a historical data base may allow prediction of lengths of phases and facilitate a better planning and management of both leachate and gas handling technologies as well as long-term maintenance.

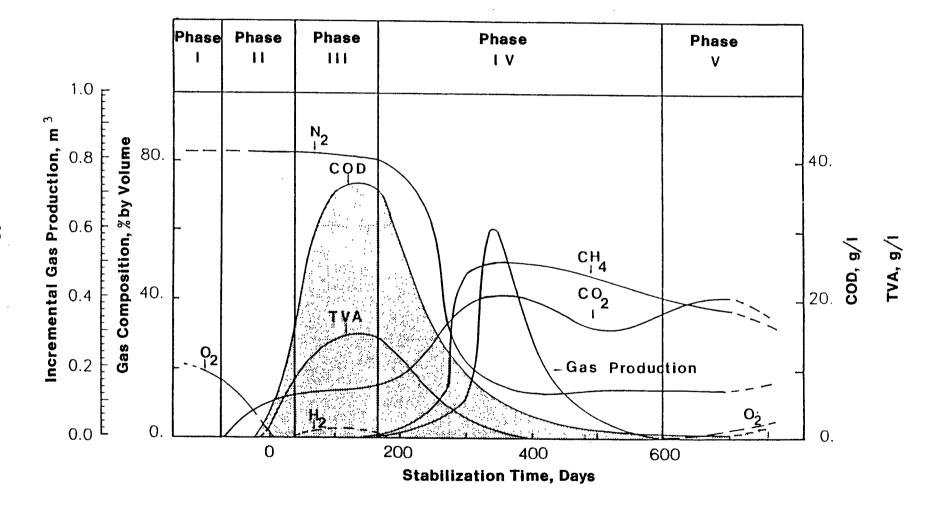


Figure 3. Changes in Selected Indicator Parameters During the Phases of Landfill Stabilization (after Pohland, 1980 and Pohland, et al., 1983b).

SECTION 6

TREATMENT OF LEACHATES FROM SANITARY LANDFILLS

GENERAL PERSPECTIVE

Most processes commonly employed for treatment of industrial wastewaters have been tested for treatment of landfill leachates. These include the traditional aerobic and anaerobic biological processes as well as a variety of physical-chemical processes. Some of these processes are intended primarily for the removal of organic contaminants, while others are best suited for inorganics removals. Moreover, process performance in each case is related to the chemical nature of the leachate utilized as influenced by the age of the landfill as previously described and the miscellaneous factors previously described. Accordingly, certain of the processes may be also used in pre- or post-treatment applications.

The purpose of this section is to present a coordinated review of biological and physical-chemical treatment process capabilities, following an approach which segregates processes into bench-, pilot- and full-scale categories and leachates into low-, medium-, and high-strength categories. The review was organized to present the biological processes first (aerobic, then anaerobic), followed by physical-chemical processes including applications of coagulation, oxidation, ionizing radiation, ion-exchange, adsorption, and reverse osmosis.

AEROBIC BIOLOGICAL TREATMENT OF LANDFILL LEACHATE

The operation and evaluation of biological treatment processes are dependent upon the ability to monitor and control certain process variables. Considering carbon as the limiting nutrient in biological treatment systems, the design and operational variables of primary interest are those which reflect the rates of carbon utilization exhibited by a given cellular mass or reactor volume. The corresponding rates of biomass generation are also of interest with respect to the maintenance of a stable biological population and sludge disposal considerations.

Four kinetic parameters are generally used to describe the growth of microorganisms in response to the availability of a limiting substrate. These include the maximum specific cell growth rate (μ_{max}) , the cell decay coefficient (b), the saturation coefficient (K_S), and the cell yield (Y). Operation in continuous culture requires a dynamic balance of substrate and cellular variations. In addition, substitution of classical Monod kinetic expressions containing the four variables mentioned above into a mass balance expression gives rise to several operational parameters. These include the mean cell residence time $(\theta_{\rm C})$, the volumetric organic loading rate (OLR), and

the food to microorganism ratio (F/M) which is a cellular organic loading rate.

Process performance in response to manipulation of these operating variables is evaluated by comparing effluent organic concentrations to influent concentrations and to existing effluent limitations. Therefore, the treatment evaluations presented reflect COD and BOD5 removals as well as effluent COD and BOD5 concentrations. In addition, nitrification/denitrification, metals removal, and sludge characteristics, also important considerations in the treatment and disposal of leachates, are discussed in each treatment section depending upon information available.

Bench-Scale Aerobic Treatment Studies

A list of references pertaining to aerobic biological treatment of landfill or lysimeter leachates is presented in Table 5. The reactor configurations, research objectives and operating protocols associated with each study are also presented in the table.

Activated .Sludge--

Activated sludge and its process variations have become well established for the treatment of municipal and many industrial wastewaters. Its wide ranging success in treating these wastewaters has encouraged a number of preliminary evaluations of its effectiveness in treating leachate. However, due to the wide variation in quality of leachates and in activated sludge operational protocols, results from these studies tended to be somewhat diverse. Therefore, comparisons of process performance in terms of effluent organic concentrations and percentage removals were arranged to reflect results from three different influent organic strength categories. Accordingly, the effects of $\theta_{\rm C}$, organic loading rates, and other process variables were determined for low-, medium-, and high-strength leachate categories and concomitant concentration ranges indicated in Table 6.

TABLE 6. LEACHATE ORGANIC STRENGTH CATEGORIES

	Concentration	on Ranges, mg/l
Leachate Strength Category	COD Basis	BOD ₅ Basis
Low-Strength	<1,000	220-750
Medium-Strength	1,000-10,000	750-1,500
High-Strength	10,000	1,500-36,000

Effect of Mean Cell Residence Time $(\theta_{\rm C})$ --Following the segregation of bench-scale activated sludge treatment data into the categories listed in Table 6, the influence of mean cell residence time on process performance was investigated by plotting $\theta_{\rm C}$ versus effluent BOD5 and COD concentrations and versus percentage removals. The resulting performance of bench-scale activated sludge units at 22-25°C is illustrated in terms of BOD5 in Figure 4. The data presented in Figure 4 (summarized in Appendix Table A-1) suggest that the limiting $\theta_{\rm C}$, defined as that incurring an organic removal efficiency of

REFERENCE	PROCESS*	PROCESS DESCRIPTION	RESEARCH OBJECTIVE(S)	LEACHATE SOURCE**
19,20, 195	AS	Complete-mix, continuous flow, extended aeration reactor system, daily fill and draw reactor operation.	Effect of Θ_{C} and BOD_{5} and COD loading on BOD and COD removal efficiencies.	Landfill
28	AS	Complete-mix, continuous flow reactor operation.	Effect of phosphorus addition, influent dilution and Θ_c on BOD5 and COD removal efficiencies; determine kinetic parameters.	Landfill and lysimeter
35,143	AS AL RBC TF	AS: Complete-mix, batch and continuous flow reactor; AL: Complete-mix, continuous flow reactor operation; RBC: Plug flow, continuous flow reactor operation; TF: Complete-mix, continuous flow reactor operation using plastic contact media.	Effect of COD loading and influent COD concentration on COD removal efficiency; influence of chemically pretreated influent.	Landfill
26	AS AL	Not given.	Effect of Θ on BOD $_5$ efficiencies and metal <code>removal</code> .	Landfill
40,42,44, 45,70	AL	Complete-mix, daily fill and draw extended aeration reactor system.	Effect of τ on COD and TOC removal; nutrient addition effect; metals removal; sludge characteristics.	Landfill and lysimeter
53,54,97	AS	Complete-mix, continuous feed, reactor operation	Effect of Θ on BOD ₅ , COD, and TOC removal efficiency, kinetic parameter determination.	Landfill
118,119	AS	Complete-mix, daily fill and draw reactor operation.	Effect of temperature and $\boldsymbol{\theta}$ on organic removal efficiency.	Lysimeter
151	AS	Complete-mix, continuous flow reactor operation.	Effect of Θ on COD and TOC removal efficiencies; metal removal efficiency; determine kinetic parameters.	Landfilland lysimeter
193,194	AS	Complete-mix, continuous flow reactor operation.	Determine kinetic parameters.	Lysimeter
205,206,207	AS	Complete-mix, continuous flow reactor operation.	Effect of Θ on BOD5, COD, TOC and metal removal efficiencies; determine kinetic parameters.	Landfill and lysimeter

TABLE 5 (Continued)

230	AS	Not given.	Effect of $\Theta_{\rm C}$ and ${\rm BOD}_{\rm S}$ and ${\rm COD}$ loading on ${\rm BOD}_{\rm S}$ and ${\rm COD}$ removal efficiencies; effect of nutrient adjustment.	Landfill
28,232	AS	Complete-mix, continuous flow reactor operation.	Iron removal using ferrous iron metabolizing bacteria.	Lysimeter
230	AS	Complete-mix, continuous flow reactor operation.	Effect of chemical pretreatment on COD removal efficiency.	Lysimeter
244	AS AL	Complete-mix, continuous flow reactor operation.	Effect of temperature, $\Theta_{\rm C}$, ${\rm BOD}_{\rm 5}$ loading, and BOD/COD on ${\rm BOD}_{\rm 5}$ and COD removal efficiency; compare results of full-scale and bench-scale studies.	Landfill
260,261	AS	Complete-mix, daily fill and draw reactor operation.	Determine nutrient requirements for BOD_{ς} and metal removal efficiencies.	Lysimeter
269,270,271, 176	AS	Complete-mix, daily fill and draw, extended aeration reactor system.	Effect of Θ_{C} and F/M on BOD ₅ , COD and metal removal efficiencies; determine kinetic parameters.	Lysimeter
272	AL	Complete-mix, continuous flow reactor operation.	Effect of $\boldsymbol{\theta}_{\boldsymbol{C}}$ on BOD and TOC remvoal efficiencies.	Landfill
288,289, 290	AS	Complete-mix, daily fill and draw reactor operation.	Effect of temperature and $\Theta_{\rm C}$ on BOD, and COD removal efficiencies; effect of $\Theta_{\rm C}$ on effluent polishing.	Lysimeter
291	AS	Complete-mix, fill and draw reactor operation.	Effect of fill and draw cycle on BOD5 and COD removal efficiencies and sludge characteristics.	Lysimeter
168	AL	Complete-mix, fill and draw reactor operations.	Effects of Θ_{C} on organics, metals and nitrogen conversion.	Landfill

TF = Trickling Filter RBC = Rotating Biological Contactor

^{*}AS = Activated Sludge
AL = Aerated Lagoon
**All leachate sources involve the use of municipal solid waste

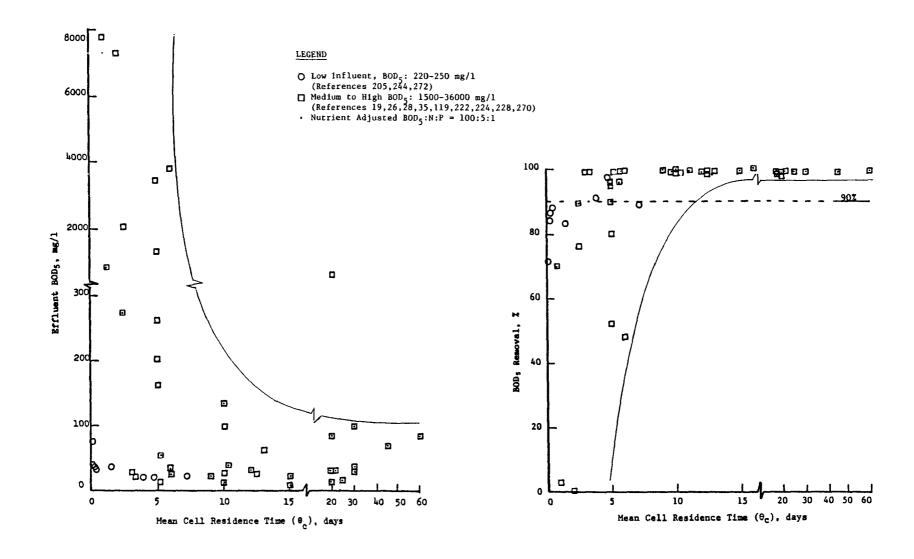


Figure 4. Relationship Between $\boldsymbol{\theta}_{\text{C}}$ and BOD_ Removal for Bench-Scale Activated Sludge Studies

90% or greater and/or an effluent BOD5 of 200 mg/l or less, ranged between 6 to 10 days. (It should be noted that many researchers did not include the BOD5 assay in their monitoring programs. The COD and/or TOC analyses were generally preferred and, in spite of the advantages in simplicity and accuracy offered by these analyses, they did not necessarily reflect differences in leachate biodegradability.)

The effects of $\theta_{\rm C}$ on process performance is illustrated on a COD basis in Figure 5. The data presented, also summarized in Appendix Table A-1, similarly suggest a limiting $\theta_{\rm C}$ of 6 to 10 days. Compared with BOD5-based analysis, the COD data suggest that significant process improvement may be available using extended retention times (10-12 days). However, even at retention times exceeding 10 days, effluent COD concentrations typically remained above 300 mg/l and effluent BOD5 concentrations ranged from 10 to 100 mg/l. Residual COD may be attributed to refractory organics such as humicand fulvic-like substances (Chian and DeWalle, 1977a, 1977b; Chang, 1982).

In addition to segregating the data based on influent concentration, the data were also divided into three biodegradability ranges with BOD $_5$ /COD ratios of <0.50, 0.50-0.75, and >0.75 being characteristic of low-, medium-, and high-strength leachates, respectively. The data were similarly divided with COD/TOC <2.0 for low-strength, 2.0 < COD/TOC < 3.0 for medium-strength, and COD/TOC >3.0 for high-strength leachate. Percent COD removal was used to evaluate the effects of biodegradability on treatment performance, since it was the most commonly analyzed indicator of organic content in the leachates.

As anticipated, examination of the effects of $\theta_{\rm C}$ and biodegradability on process performance using these ratios (Figure 6) indicates that the higher-strength leachates were more amenable to treatment at lower retention times than lower-strength leachates. As before, a limiting $\theta_{\rm C}$ in the range of 5 to 10 days was suggested by the COD removal data.

Organic Loading Effects--The organic loading applied to bench-scale activated sludge processes was the second operational variable evaluated with respect to its effects upon effluent organic content (BOD5, COD) and removals. As in the $\theta_{\rm C}$ evaluation, the performance data were segregated into low-, medium-, and high-strength leachate categories using both influent BOD5 and COD concentrations and BOD5/COD and COD/TOC ratios.

The influences of two kinds of organic loading rate on activated sludge process performance were evaluated. The first was the volumetric organic loading rate, which is based upon the hydraulic retention time and is commonly referred to as the organic loading rate (OLR). The second loading rate is based upon the mass of microorganisms in the reactor as well as the hydraulic retention time. This latter loading rate is commonly referred to as the food-to-mass (microorganism) ratio, F/M.

Illustrations of the influence of OLR on BOD5 and COD are presented in Figures 7 and 8, respectively. Data presented in these figures (Appendix Table A-2) do not exhibit very clear trends, although it may be suggested that the limiting OLR was on the order of 1 to 2 kg BOD5/m³·day. The COD data are particularly diverse, making an analysis of process trends on this basis difficult. Even when further segregated into biodegradability categories using BOD5/COD and COD/TOC ratios (Figure 9), no clear trend is discernible

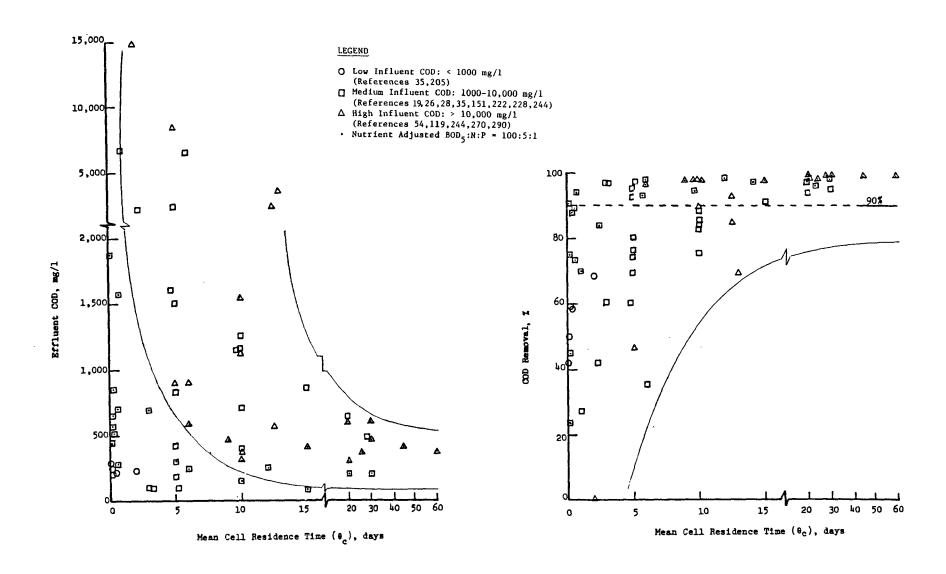


Figure 5. Relationship Between $\theta_{\text{c}} and \ \text{COD} \ for \ \text{Bench--Scale}$ Activated Sludge Studies

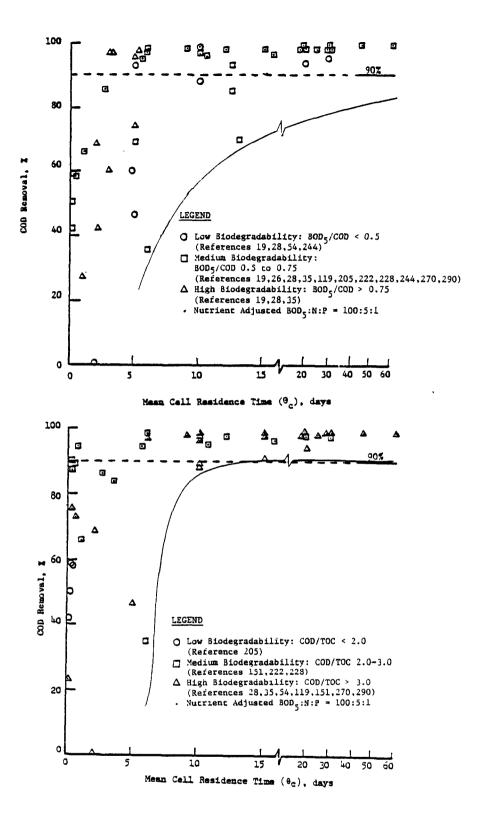


Figure 6. Comparison of θ_{C} vs. COD Removal Data Segregated According to Biodegradability Ratios BOD/COD and COD/TOC

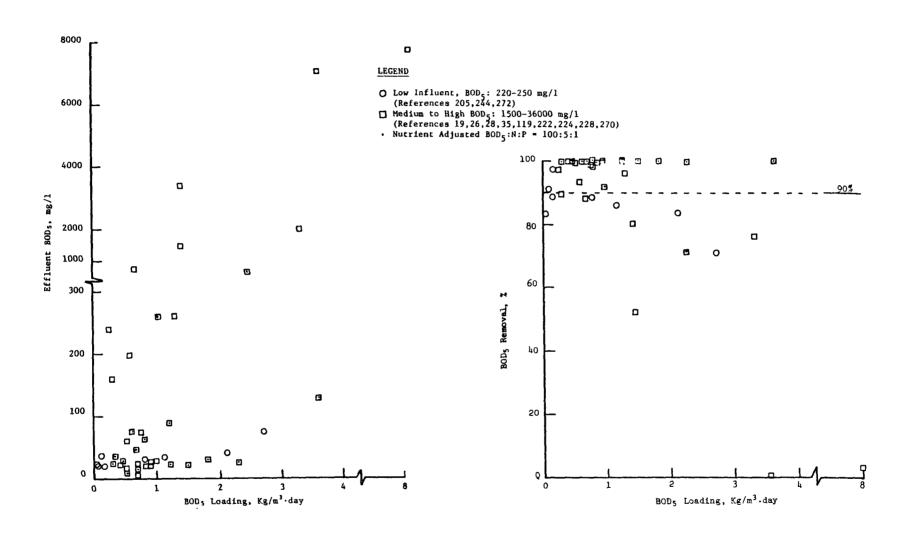


Figure 7. Relationship Between Organic Loading Rate and BOD5 Removal for Bench-Scale Activated Sludge Studies

Figure 8. Relationship Between Organic Loading Rate and COD Removal for Bench-Scale Activated Sludge Studies

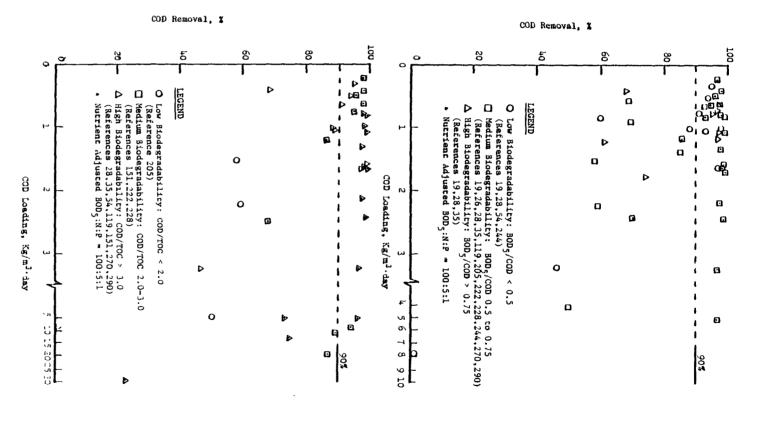


Figure 9. Relationship of Organic Loading
Rate vs. COD Removal for Data
Segregated by Biodegradability
Ratios

with the COD loading data. However, successful operation has been demonstrated for both medium- and high-strength nutrient-amended leachates at loading rates up to 15 kg COD/m^3 ·day. For raw leachates, successful operation was only evident for loading rates approaching 2 kg COD/m^3 ·day.

The effects of varying F/M are represented in Figures 10 and 11 for BOD5 and COD loadings, respectively. Limited F/M data (Appendix Table A-3) were available since not all researchers included mixed liquor volatile suspended solids (MLVSS) analyses in their monitoring programs. The BOD5 data which are available (Figure 9) suggest that the limiting F/M may be on the order of 0.2 to 0.4 kg BOD5/kg MLVSS·day. However, successful operation using nutrient-adjusted leachate has been demonstrated at loading rates beyond 0.5 kg BOD5/kg MLVSS·day. Examination of the COD data (Figure 11) suggests similar trends; effluent COD values increased to above 700 mg/l at loading rates in excess of 0.4 kg COD/kg MLVSS·day. COD removals for medium- and high-strength leachates remained above 90% at this loading rate. As demonstrated using the OLR, nutrient amendments allowed for successful operation up to 1 kg COD/kg MLVSS·day.

Effects of Temperature—The effects of temperature on the performance of bench-scale activated sludge units were evaluated by comparing effluent COD concentrations and percentage removals at temperatures ranging from 5° to 25°C. However, since these performance parameters are also dependent on $\theta_{\rm C}$ and the influent concentration, the data shown in Figure 12 are also compared with regard to these variables. Accordingly, the data are grouped into the three influent strength categories previously used and into three $\theta_{\rm C}$ categories as well. As indicated in Figure 12, these include: $\theta_{\rm C}$ <4 days; $\theta_{\rm C}$ = 6 to 10 days, and, $\theta_{\rm C}$ >12 days.

Due to these and other operational variables, the effects of temperature are not clearly discernible, although the trend appears to be an expected increase in organic removal with increasing temperature. Successful operation has been demonstrated for $\theta_{\rm C}$ >6 days at temperatures as low as 5°C. However, lower effluent COD concentrations resulted at the higher temperatures.

Heavy Metal and Alkaline Earth Metal Removal—Some researchers have included metals analyses in their monitoring protocol to evaluate the effectiveness of activated sludge in removing these constituents from leachates. As shown in Table 7 and Appendix Table A-4, the activated sludge process was effective in removing the majority of the heavy metals monitored. In particular, zinc, iron, manganese and cadmium were removed by 95% or greater. Chromium and lead were also fairly well removed (80-90%). However, nickel removals were generally low and on the order of 60%. Metal removal during aerobic treatment may be enhanced by the oxidation of metals, e.g., Fe^{+2} to Fe^{+3} , to forms which precipitate more easily at the pH of ranges of 8 to 9 commonly encountered during activated sludge leachate treatment.

The alkaline earth metals were removed, but to a lesser degree than observed for the heavy metals during normal activated sludge operation. As again shown in Table 7 and Appendix Table A-4, calcium and magnesium removals ranged from 3 to 99%, but were typically in the range of 40 to 70%. Potassium and sodium removals were typically on the order of 20 to 40%.

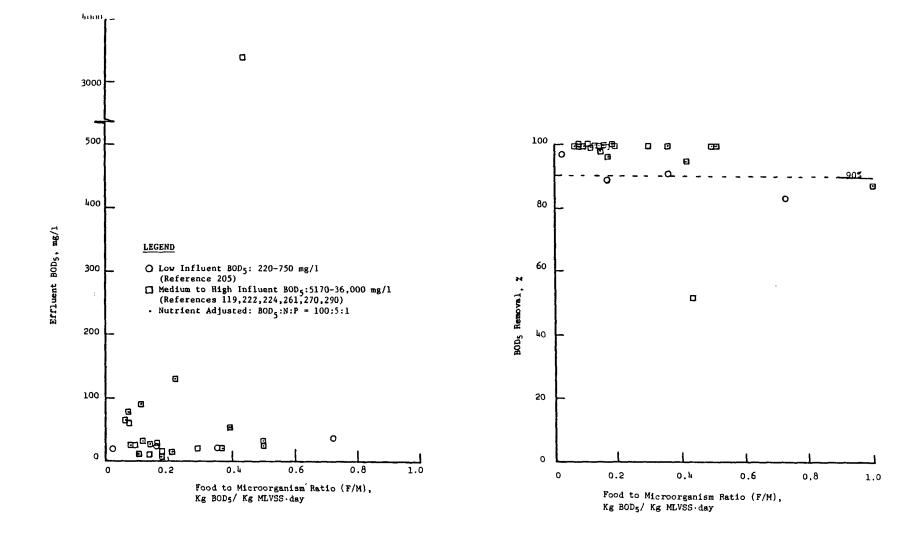


Figure 10. Relationship Between Food to Microorganism Ratios (F/M) and BOD₅ Removal for Bench-Scale Activated Sludge Studies

Kg COD/ Kg MLVSS day

3500

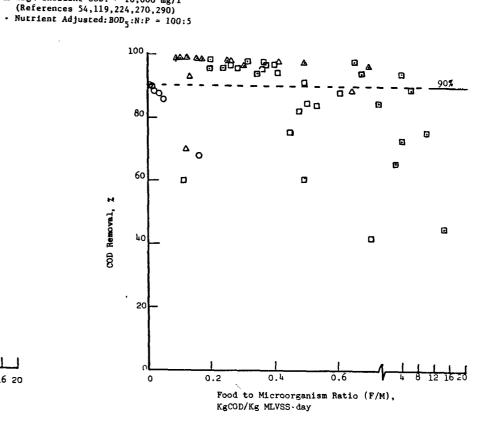


Figure 11. Relationship Between F/M Ratio and COD Removal for Bench-Scale Activated Sludge Studies

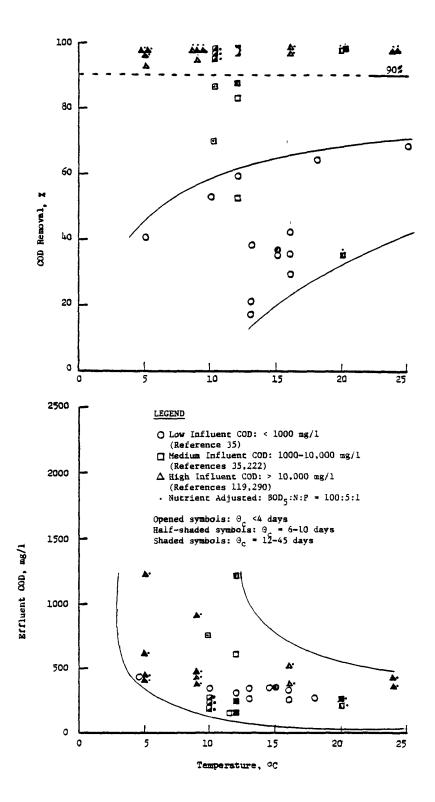


Figure 12. Relationship Between Temperature and COD Removal for Bench-Scale Activated Sludge Studies

TABLE 7. SUMMARY OF HEAVY METAL AND ALKALI AND ALKALINE EARTH METAL REMOVAL DATA FOR THE RENCH-SCALE ACTIVATED SLUDGE PROCESS

	Cd	Cr	Fe	Pb	Mn	N1	Zn
Influent							
Concentration Range, mg/l	0.04-0.4	0.1-1.9	240-2130	0.17-1.44	13-41	0.18-0.65	31-220
Removal Range, \$	85-9 9	75-98	96-99	82-98	90-99	39-75	96-99
Average Removal, \$	96	92	98	89	97	60	99
Alkali and Alkaline Ear							
	rth Metals						
Alkali and Alkaline Ea		Mg	K	Na			
Alkali and Alkaline Eau	rth Metals Ca	Mg	K	Na			
Alkali and Alkaline Ea	rth Metals						
Alkali and Alkaline Ear	rth Metals Ca	Mg	K	Na	,,		

Nitrification--Nitrification of leachates in the activated sludge process has been studied in depth by only one researcher (Johansen, 1975), although other investigators have provided TKN, ammonia, and nitrate data as shown in Appendix Table A-6. The effluent ammonia content of these leachates was typically 200 to 300 mg/l unless amended with nutrients. The general performance of bench-scale activated sludge systems with emphasis on nitrification is illustrated in Figure 13. Since nitrifying bacteria will typically have lower growth rates than carbonaceous bacteria, longer $\Theta_{\rm C}$ are needed for complete nitrification. As shown in Figure 13, $\Theta_{\rm C}$ of 10 days or longer were necessary to achieve better than 90% nitrification at temperatures above 12°C. At lower $\Theta_{\rm C}$, viz., in the range of the limiting $\Theta_{\rm C}$ (6-10 days) for BOD5, 60 to 80% nitrification was typically encountered.

Air stripping of NH $_3$ was believed to have occurred during one activated sludge study (Uloth and Mavinic, 1976). In this study, 96 to 99% of NH $_3$ was removed through aeration of the activated sludge units. The study was performed at 23°C and a pH of 8.5 to 8.8 and, although this pH was not as high as advocated for conventional stripping, the long detention times of 10 to 60 days and high NH $_3$ levels (1400-1800 mg/1) may have enhanced the effectiveness of ammonia removal by this mechanism.

Combined Treatment with Municipal Wastewater—The combination of industrial wastewaters with larger volumes of municipal wastewater has proven to be a successful treatment strategy on both bench—and pilot-scale (Table 8). Combined treatment may provide a better effluent as a result of the maintenance of a more heterogeneous population, the increased availability of nutrients, and the dilution of potential inhibitors.

TABLE 8. BENCH-SCALE RESEARCH PERFORMED ON COMBINED TREATMENT OF LEACHATE AND DOMESTIC WASTEWATER USING THE ACTIVATED SLUDGE PROCESS.

REFERENCE	PROCESS DESCRIPTION	PROCESS OBJECTIVE(S)	LEACHATE SOURCE
19,20	Semi-continuous, complete-mix, extended air reactor.	Determine optimum leachate to domestic wastewater ratio for organic removal; evaluate sludge production.	Landfill
42	Plug flow reactor for control and test unit operated at equivalent F/M.	Evaluate effect of adding 0.5% leachate to domestic wastewater for same F/M as domestic wastewater only case; characterize sludge settling characteristics.	Lysimeter and landfill
43	Plug flow reactor.	Study sequential uptake of diffe- rent organic components.	Lysimeter
44.45.69, 70,286	Three complete-mix, continuous flow reactors in series to simulate a plug flow reactor.	Determine optimum leachate to domestic wastewater ratio for constant F/M, optimum F/M for constant ratio based on organic removal; characterize sludge settling properties.	Lysimeter and landfill
59	Complete-mix, continuous flow reactor.	Effect of shockloading of leachate to activated sludge process; evaluate sludge settling characteristics.	Synthetic leachate made of sodium acetate, acetic acid, glycine and pyrogallol
176,260, 261	Complete-mix, daily fill and draw reactor.	Determine optimum BOD5:N:P ratio for various leachate to domestic wastewater ratios; characterize metal content in sludge.	Lysimeter

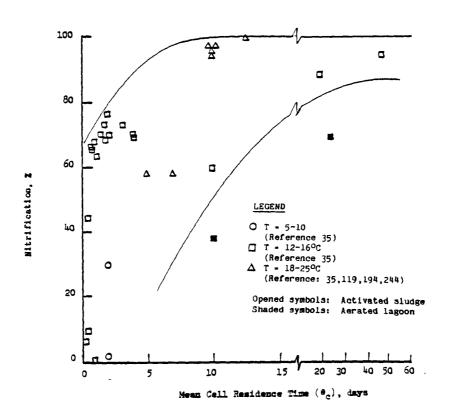


Figure 13. Relationship Between θ_{C} and Nitrification for Bench-Scale Activated Sludge Studies

Since only one pilot-scale study has been reviewed, pilot- and bench-scale studies were considered together. As indicated in Appendix Table A-7, a number of leachate to domestic wastewater volume ratios (L/D, expressed as % leachate) have been studied, resulting in a fairly broad range of organic influent strengths (150-3640 mg/l BOD5).

Combined treatment of leachates was successful in removing 98 to 99% BOD5 and 95% COD, although greater air requirements were generally reported. Increases as high as 400% and 800% in oxygen availability have been found necessary for successful treatment at 10% and 20% leachate to domestic wastewater (L/D) fractions, respectively, over the oxygen used in the domestic wastewater control (Boyle and Ham, 1972, 1974). Solids production was also higher, resulting in 300% and 800% more solids at 10% and 20% leachate to wastewater ratios, respectively. Moreover, sludge settleability was negatively affected by leachate introduction. Settling velocities for 1 to 3% L/D were determined to be about one-half of the control settling velocities by Chian and Dewalle (1976, 1977) and DeWalle and Chian (1977). Furthermore, excessive sludge bulking has been noted for L/D of 5,10, and 20% with a sludge volume index (SVI) of 100, 200 and 1000% higher than the control (Boyle and Ham, 1972, 1974).

Figure 14 provides an illustration of the relative success of combined leachate/wastewater treatment in terms of effluent organics (BOD $_5$, COD) and removal percentages. However, these data plots fail to reveal sludge handling difficulties and a consideration of them would lead to more conservative conclusions regarding the feasibility of this approach. Therefore, when sludge handling is considered, it appears that an L/D of less than 5% is required to apply this treatment strategy.

Aerated Lagoon--

Aerated lagoons are similar in many respects to activated sludge systems. Both processes utilize mechanical or diffused aeration to provide oxygen and mixing. Although not as widely practiced, aerated lagoons may also employ biomass recycle to increase cell retention time $(\theta_{\rm C})$ in a fashion similar to the activated sludge process. However, aerated lagoons are more typically operated as single-pass reactors with long hydraulic retention times.

Organic substrate (BOD5, COD) removal was again utilized as the primary indicator of aerated lagoon process performance. The data presented in Figures 15 and 16 were segregated according to temperature. Most of the studies involved medium— to high-strength leachates, characterized by influent COD concentrations of 6400 to 9840 mg/l and BOD5/COD ratios of 0.4 to 0.7 as indicated in Appendix Table A-8. Long retention times ranging from 7 to 100 days were used in the studies, and most were greater than 10 days. Therefore, the relationships between BOD5 and COD removals and retention times (τ) for the aerated lagoon studies shown in Figure 15 were not particularly instructive. Temperature effects were also nondiscernible due to the long retention times.

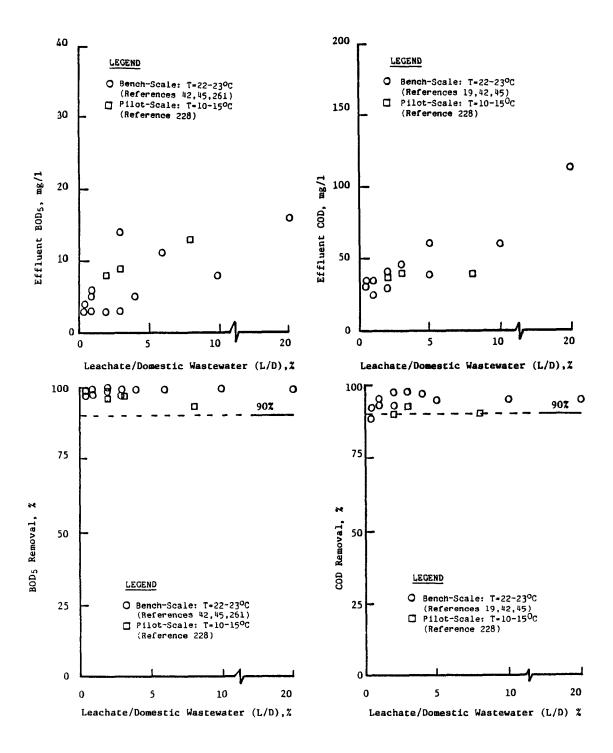


Figure 14. Relationship Between Leachate/Domestic Wastewater Volume Ratio and Organics (BOD₅, COD) Removal for Bench- and Pilot-Scale Combined Wastewater Activated Sludge Studies

Figure 15. Relationship Between Hydraulic Retention Time (τ) and Organics Removal for Bench-Scale Aerated Lagoon Studies

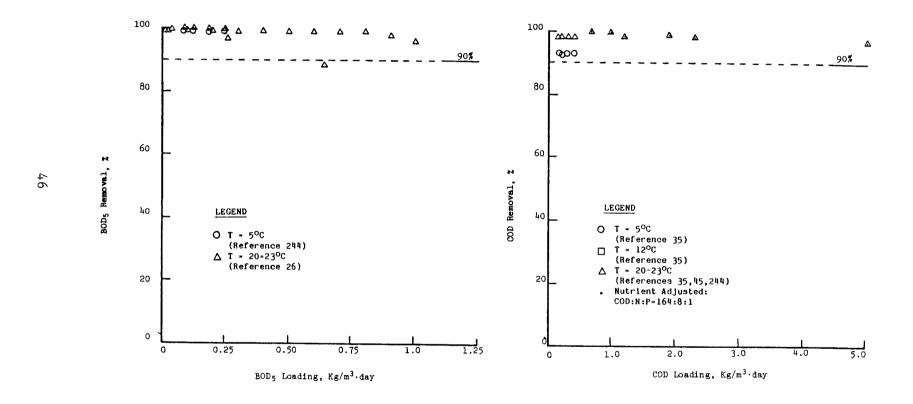


Figure 16. Relationship Between Organic Loading Rate and Organics Removal for Bench-Scale Aerated Lagoon Studies

Figure 16 provides an illustration of a similar lack of trend between organic loading and the performance of aerated lagoon processes. Loadin rates as high as 1 kg BOD_5/m^3 ·day or 5 kg COD/m^3 ·day provided 90% or bet er BOD_5 and COD removal at 20 to 23°C.

Fixed-Film Processes--

The trickling filter and rotating biological contactor (RBC or biodisk) have been evaluated by only one investigator (Johansen, 1975). Unfavorable results were obtained in either case. However, a chemically precipitated leachate was used in the trickling filter study and also in one of two biodisk studies as indicated in Table 9. The raw leachate used in the other biodisk study was also a low-strength leachate characterized by a COD of 730 mg/l and COD/TOC ratio of 3.7. Retention times utilized were also very low. Therefore, this isolated study should probably not be construed as conclusive evidence that these processes are inapplicable. Given additional investigative evidence, these process options may also represent viable leachate treatment alternatives.

TABLE 9. EXPERIMENTAL CONDITIONS AND PERFORMANCE DURING TRICKLING FILTER AND ROTATING BIOLOGICAL CONTACTOR TREATMENT OF LEACHATE

	Trickling Filter	Rotating B	-
Leachate*	CP*	CP	R
Influent BOD5, mg/l Influent COD, mg/l Influent TOC, mg/l BOD5/COD COD/TOC BOD5 Loading COD Loading	50 380 114 0.13 3.3 0.1 kg/m ³ ·day 0.9 kg/m ³ ·day	50 400 114 0.13 3.5 0.78 g/m ² ·day 6.2 g/m ² ·day	- 730 200 - 3.7 1.8 g/m ² ·day
BOD ₅ Removal, % COD Removal, % TOC Removal, % BOD ₅ :N:P pH	7.4 7.5 100:200:0.2 7.2-9.1	16 24 100:200:0.2 7.0-8.9	- 47 44 - 8.0-8.7
Temperature, °C	17	17	11
Reactor Type**	CSTR	PFR	PFR
Recycle Ratio τ , hours	100 9	0 7	0 45

⁼ Data not given

^{*}CP = Chemically pretreated

R = Raw leachate

^{**}CSTR = Continuously-stirred tank reactor

PFR = Plug flow reactor

Kinetic Parameters for Bench-Scale Aerobic Processes--

Kinetic parameters associated with Monod-type expressions have been used to describe and understand microbial growth and substrate removal patterns associated with waste treatment processes. These kinetic parameters have been determined by a number of researchers from their experimental data as summarized in Table 10. The kinetic parameters of interest were cell yield (Y), decay coefficient (b), maximum specific growth rate ($\mu_{\mbox{max}}$), and the saturation constant ($K_{\mbox{S}}$).

Similarities and dissimilarities existed when comparisons were made between parameter values for leachate and domestic wastewater, and for various influent substrate concentrations. The yield, Y, was fairly consistent, ranging from 0.29 to 0.59 mg VSS/mg BOD5 or COD. However, the decay coefficient, b, was found to be variable, 0.002 to 0.336 day $^{-1}$, which might be attributed to inhibition by high NH $_4$ $^+$, heavy metals or organic concentrations. Phosphorus limitation would also cause a higher decay rate. Maximum growth rates (μ_{max}) were also determined to be variable and to be both less than and greater than the typical values for domestic wastewater. Reported μ_{max} values for leachate treatment ranged from 0.02 to 16 day $^{-1}$ based on BOD5 or 0.3 to 24 day $^{-1}$ based on COD, as compared to 1 to 8 day $^{-1}$ and 4 to 11 day $^{-1}$ for wastewater on BOD5 and COD bases, respectively. The saturation constant, $K_{\rm S}$, was the most variable parameter and was usually higher for leachates than typical values for domestic wastewater. This was partly attributed to the organic complexity and, therefore, more refractory nature of the leachate as a substrate.

Pilot- and Full-Scale Aerobic Treatment

Activated Sludge (AS), aerated lagoons (AL), and stabilization ponds (SP) have been investigated for the treatment of landfill leachates on pilot- and full-scale. A listing of pertinent literature citations for four activated sludge, four aerated lagoon, and four stabilization pond studies is provided in Table 11.

Activated Sludge--

As indicated in Table 11, the activated sludge process has been used on pilot- and full-scale for the treatment of leachate at four landfill sites. A summary of the leachates produced at each site and details of each AS configuration studied are presented in Table 12. The data in Table 12 have been separated into influent and effluent quality, pretreatment, treatment, post-treatment, and sludge characteristics sub-categories. Within the influent and effluent quality category, BOD5 and COD data have been included to represent organic constituents, and iron has been included to reflect heavy metals behavior. Ammonia and TKN data were also included to evaluate the possible occurrence of nitrification.

The activated sludge processes summarized in Tables 11 and 12 have been fairly successful for the removal of organics and somewhat less successful for the removal of metals such as iron. In West Germany, 94 to 98% BOD5 removal was consistently achieved at a $\theta_{\rm C}$ of 12 days, even at temperatures as low as 6 to 7°C (Scherb, 1981). The facilities at Bucks County, PA (Steiner, et al., 1977 a,b, 1979, 1980; Stoll, 1979) have tested a number of operating strategies including NH3 stripping as a pretreatment measure, the use of two tanks in series or parallel operation, and nutrient additions. The results of

TABLE 10. SUMMARY OF MONOD KINETIC PARAMETERS FOR ACTIVATED SLUDGE TREATMENT OF LEACHATE

CONCENTRATIO		NFLUENT y mgVSS RATION, mg/1 y mg BOD5 or COD		or COD	h day-1	b, day-1 umax,		30D ₅ or CO /SS·day	D - K _s , mg	/1		
REFERENCE	BOD ₅	CÓD	BOD ₅	COD	BOD ₅	COD	BOD ₅	COD	BOD ₅	COD	T, °C	
28	-	9760	-	0.35	-	0.084	-	0.28	-	673	22-24	
45*	-	35,000- 58,000	-	0.42	-	0.025	-	•	-	-	22-24	
53,54,97	7100	15,800	-	0.4	•	0.05	-	0.6	-	175	22-24	
118*	12,900	19,400	0.49	0.34	0.015	0.016	0.15	0.5	12.3	1800	5	
151*	-	2400-4500	-	0.29**	_	2.4		24	-	1460	22-24	
193,194	230	360	-	0.59	-	0.115	-	1.06	-	182	22-24	
205,207	260	500	0.50	-	0.336	-	16	-	41.3	-	22-24	
269,270*	36,000	48,000	0.332	-	0.0025	-	0.25	-	21,380	-	22-24	
28 4*	8090 8090 8090 8090	13,000 13,000 13,000 13,000	0.49 0.51 0.51 0.55	- - -	0.009 0.018 0.006 0.002	- - -	0.57 0.57 0.26 0.19	- - -	82 64 35 17	- - -	22-24 15 10 5	
2 88 *	13,600	19,300	0.374	-	0.015	-	0.28	-	19.6		22-24	
168	1000	1700	0.59	0.42	0.40	0.56	4.5	-	99	-	21-24	
Domestic Wa Metcalf and			0.4-0.8	0.35-0.45	0.04-0.075	0.05-0.10	1-8	4-11	25-100	15-70	22-24	

^{*}Nutrient adjusted, B0D $_5$:N:P = 100:5:1 **Based on dehydrogenase activity rather than VSS measurement as viable organism concentration.

TABLE 11. LANDFILLS WITH PILOT- OR FULL-SCALE AEROBIC LEACHATE TREATMENT FACILITIES

REFERENCE	SCALE	PROCESS*	PROCESS DESCRIPTION	LANDFILL LOCATION
15	Ful1	AL	Lime neutralization as pretreatment prior to biological treatment with effluent discharge to surface water.	Allegheny County, Pennsylvania (2 landfills)
26	Full	AL	Lime addition for metal removal, neutralization prior to biological treatment with effluent discharge to POTW.	North Hempstead, New York
113,114,115	Full	AL	Facultative aerated lagoon with land disposal of treated effluent.	Jefferson County, Missouri
157	Full	AL,SP	Series of four ponds, flow equali- zation, aeration, and two stabiliza- tion ponds with discharge to surface water for effluent disposal.	West Germany
166	Full	SP	Four ponds operated at very long detention time followed by effluent discharge to surface waters. Use of aquatic plants to enhance treatment performance.	Barre, Massachusetts
187	Full	AS,SP	Aeration tank with clarifier operated without solids recycle followed by spray irrigation of effluent. Leachate storage in stablization pond for winter.	England
228	Pilot	AS	Complete-mix aeration tank with clarifier operated with solids recycle.	West Germany
231	Full	AS,SP	Chemical addition as pretreatment prior to activated sludge or stabilization pond treatment with effluent discharge to surface water.	Pennsylvania (2 landfills)
244	Full	AL	Series of five diffused aeration lagoons and one settling lagoon followed by spray irrigation of effluent flow equalization.	West Germany
245,246,247 248,256	Full	AS	Lime addition and ammonia stripping and neutralization followed by biological treatment operated on no solids recycle basis for organic substrate removal and nitrification. Effluent disposal by spray irrigation or surface water discharge.	Bucks County, Pennsylvania

^{*}AS = Activated Sludge

series and parallel operations were fairly similar, with both systems achieving 92 to 97% BOD5 removal at loading rates of 1.5 to 1.8 kg BOD5/m³·day and $\theta_{\rm C}$ of 2 to 4 days. On a yearly basis, the series mode provided superior nitrification; nitrification efficiencies for the parallel reactors decreased from 95% at 15 to 29°C to 40% at 0 to 12°C.

In other studies (Klingl, 1981), a higher-strength leachate was used to provide a BOD $_5$ loading of 6.3 kg/m 3 ·day. Organic removal efficiency with this loading was somewhat lower at 83 to 94% BOD $_5$ removal and 78 to 89% COD removal. It was reported that process inhibition was attributable to NH $_3$, although the low retention time and high loading rate were probable contributors as well.

AL = Aerated Lagoon

SP = Stabilization Pond

TABLE 12. SUMMARY OF LEACHATE TREATMENT PERFORMANCE AND DESIGN PARAMETERS FOR PILOT-SCALE AND FULL-SCALE ACTIVATED SLUDGE TREATMENT FACILITIES

REFERENCE TEM	(187)	(228)	(231)	•	(245,246,247	,248,256)	· · · · · · · · · · · · · · · · · · ·
reatment Scale	Full	Pilot	Pilot	Full	Full S1-P*	Full S1-P*	Full \$3*	Full S4*
nfluent Quality					2552	5070	10 600	12 600
BOD ₅ , mg/1	1340	3580	3580	-	3560	5970 9870	12,600	12,600 21,200
COD; mg/1	2460	4540	4540 1710	2500	6480	30/0	21,200	-
TOC, mg/1		1710	0.79	-	0.55	0.60	0.59	0.59
BOD ₅ /COD	0.54	0.79 2.7	2.7	-		-	-	-
CODYTOC	-			90	- 290	-	708	708
TKN, mg/1	- 168	-	-	50	290	740	649	649
NH ₃ -N, mg/l	100:8:-	100:5:0.5	100:5:0.5	30	100:5:1	100:5:1	100:5:0.02	100:5:0.02
BOD ₅ :N:P	100.0	-	100.5.0.5	- 750	3.6	1.9	350	350
Fe, ⁵ mg/l pH	-	-	-	6.0	7.6	7.6	7.6	7.6
Temperature, °C	12-18	6-7	10-15	0-25	0-24	20-24	20-29	20-29
Q, m ³ /day	150	1.17	1.17	662	79.5	37.9	75.7	75.7
	No	No				·	No	No
etreatment Chemical addition	NO	NO	No	-	Lime,H ₃ PO ₄ ,	Lime,H ₃ PO ₄ ,	NO	110
Flow equalization		No	No	No	H ₂ SO ₄ 3 4	H ₂ SO ₄ 3 4 Yes		
Nutrient addition		Yes	Yes	No	Yes	Yes		
NH3 stripping		No	No	No	Yes	Yes		
Primary clarification		No	No	No	No	No		
reatment Aeration BOD5 loading, kg/m³·day COD5 loading, kg/m³·day MLVSS, g/l F/M, BOD5/MLVSS·day F/M, COD7MLVSS·day	1.3 2.5 -	0.30 0.39 4-5 0.16 0.20	9.30 0.39 4-5 0.16 0.20	- - - -	1.8 3.2 6-12 0.30-0.15 0.56-0.27	1.5 2.5 6-12 0.25-0.12 0.42-0.20	6.3 11 6-12 0.53-0.26 0.90-0.44	6.3 11 6-12 0.53-0.26 0.90-0.44
τ, hours	24	144	144	-	48	96	48	48
Θ _C , days	1	12	12	-	2	4	2	2
Air, m³/min	-	-	-	-	14.2	14.2	14.2	14.2

TABLE 12 (Continued)

Secondary Clarification Overflow rate, m³/m²· τ, hours		0.7-1 24-40	0.7-1 24-40	-	1.5 14	1 1.4 15	1.4 15	1.4 15	
Posttreatment Chemical addition Sand filtration Chlorination	No	No	No -	No Yes No	No No Yes	No No Yes	No No Yes	No No Yes	
Effluent Quality									
BOD _s , mg/1	1215	220	40	-	120	460	760	2150	
COD, mg/1	2280	380	200	-	940	1090	2260	4680	
BOO ₅ removal, %	9.3	94.0	97.8	-	96.7	92.2	94.0	83.0	
COD removal, %	7.3	91.6	95.6	•	85.5	89.0	89.3	77.9	
TKN, mg/l	364	-	-	-	102 80	6.3	153 76.4	312	
NH ₃ -N, mg/l	164 2	-	-	<u>-</u>	72.0	99.1	76.4 76.4	51.9 51.9	
NH3-N removal, % Fe, mg/l	2	-	70	_	3.0	0.7	70.4	200	
Fe removal, %	_	-	-	-	17	62	99.7	44	
pH	-	-	-	-	7.6	7.6	10.2	8.6	
Sludge Characteristics									
Solids, %	_	_	1.3	-	-	-	-	-	
Volatile, %	-	-	50	-	-	-	-	-	
SVI, ml/g	-	<300	50	-	80	80	-	-	
-	Spray irrigation, 9.4 1/m ² ·day, 60% BOD ₅ removal, 35% COD ⁵ removal, 60% NH ₃ -N removal	Surface water	Surface water	Surface water	Surface water or spray irrigation				

⁻Data not given

*SI-P: System I with aeration tanks in parallel

\$1-S: System I with aeration tanks in series

\$3-P: System 3 with aeration tanks in parallel

\$4-P: System 4 with aeration tanks in parallel

The English facility (Newton, 1979) did not perform well with regard to either carbon or ammonia removal. The very low cell retention time (1 day) probably did not allow sufficient time for effective substrate removal.

Aerated Lagoon--

The aerated lagoon has been the most commonly used process for leachate treatment on full-scale. Treatment performance and design parameters for the full-scale aerated lagoon treatment facilities reviewed in this study are presented in Table 13. Although five facilities were reported, only three could be evaluated since sufficient information was not available for two of the facilities (Brownell, et al., 1982; Goeppner, 1975 a,b) Overall, the aerated lagoon proved to be an effective means for leachate treatment in terms of BOD_5 , COD, and Fe removal. Detention times ranging from 7 to 135 days provided 70 to 99% BOD_5 removal and 70 to 95% COD removal. Typically, 90% BOD_5 removal was achieved along with 92 to 99% Fe removal.

Data on the treatment of various leachates which were characterized by influent BOD_5 concentration and the BOD_5/COD ratio were also provided by Stegmann (1981). It appears evident from these data (Table 13) that leachates with a low BOD_5/COD ratio (0.05-0.2) required very long detention times to achieve substantial BOD_5 removal. This might be attributed to the resistance of humic and fulvic acid substances that result during organic substrate assimilation which are less biodegradable than the original organic substrate (Chian and DeWalle, 1977a,b).

Stabilization.Pond--

The stabilization pond has been used at four existing landfills reported in the literature. A summary of the treatment performance and design parameters for the full-scale stabilization ponds is given in Table 14. In spite of its simplicity, the stabilization pond generally achieved satisfactory treatment performance with 93 to 99% BOD5 removal and 90 to 99% COD removal at τ = 60 to 90 days. However, low BOD5 and COD removals were reported by Klingl (1981) for low-strength leachates as characterized by low influent BOD5 and COD concentrations and low BOD5/COD ratios (0.06 - 0.08). High Fe removal (91-99%) was achieved for τ = 60 to 90 days. NH3-N removal varied from 22 to 99% removal for τ = 43 to 90 days. BOD5, COD, NH3-N and Fe removals improved as τ was decreased.

Treatment and Disposal of Aerobic Process Solids

Solids treatment and disposal are essential aspects of all aerobic biological treatment processes. Therefore, sludge solids characterization is helpful in designing and evaluating the operation of sludge treatment units and determining acceptable methods for final disposal. Seven parameters have been used to characterize such solids as listed below along with their intended uses.

TABLE 13. SUMMARY OF LEACHATE TREATMENT PERFORMANCE AND DESIGN PARAMETERS FOR FULL-SCALE AERATED LAGOON FACILITIES.

REFERENCE ITEM	(15)		(26)	(113-115)	(157)	(244)			
Influent Quality									
BOD _s , mg/l	120	3000	10,00		5310	4500	3000	650	100
COD; mg/l	-	-	14,00		7800	-	-	-	-
TOC, mg/1	-	-	-	455	2740	-	-	-	-
BOD ₅ /COD	-	-	0.71	0.53	0.68	≻ 0.4	0.4	0.2	0.05
COD/TOC	-	-	-	3.3	2.8	-	-	-	-
TKN, mg/l	-	-	700	-	270	-	-	-	-
NH ₃ -N, mg/1	10	30	600		240	-	-	-	-
BOD ₅ :N:P	100:8:-	100:1:-	100:5	:1 -	100:5:0.4	-	-	-	-
Fe, mg/l	60	120	700	-	60	-	-	-	-
рН	6.8	5.6	-	6.0	6.8	-		-	
Temperature, °C	10-25	10-25	2-25	0-25	0-25	5-20	5-20	5-20	5-20
$Q, m^3/day$	355	45.4	303	37.9	216	-	-	-	-
Pretreatment				No		No	No	No	No
Flow equalization	No	No	No		τ=2 d				
Lime addition	Yes	Yes	Yes		No				
Settling	τ=2d	τ=2d	Yes		No				
Neutralization	No	No	Yes		No				
Nutrient addition	No	No	Yes		Yes				
Preaeration	No	No	Yes		No				
Treatment									
800 ₅ loading,kg/m ³ ·day	0.01	-	0.33	0.01	0.76	0.03	0.03	0.005	0.001
COD loading,kg/m3-day	-	-	0.47	0.02	1.1	_	-	-	
τ,days	20	-	30	90	7	135	120	120	90
Post-treatment				No		No	No	No	No
Settling	τ=2d	τ=2d	No	110	τ=5.3 hrs				
Chlorination	Yes	No	No		No				
Chemical addition	Na	No	H ₂ O ₂		No				
			2-2		,,,				
Effluent Quality	10	920	_	-	50	25	25	25	25
BOD ₅ , mg/1	-	920	-	-	415	-	-	-	-
COD, mg/l	92	70	-		99	> 99	>99	96	75
BOO ₅ removal, % COD ⁵ removal, %	70	70	-	-	95	-	-	_	-
TKN, mg/1	70	-	_	- -	100	_	-	-	_
NH ₃ -N, mg/1	-	-	-	_	80	-	-	-	_
NH =N removal 4	-		_	-	66	-	_	-	-
NH3-N removal, % Fe, mg/l	1	10	_	-	0.2	-	-	_	-
Fe removal, %	98	92	-	-	> 99	-	-	-	-
pH	7.5	7.4	-	-	8.1	-	-	-	-
Effluent Disposal	Surface of	water	POTW -	Ridge and furrow land disposal, rate: 4 71/m²·day	Stabili- zation pond	Spray four c	irrigat ases	ion for	all

TABLE 14. SUMMARY CF LEACHATE TREATMENT PERFORMANCE AND DESIGN PARAMETERS FOR FULL-SCALE STABILIZATION POND FACILITIES

REFERENCE					
ITEM	(157)		(166)	(187)	(230)
Influent Quality					
BOD ₅ , mg/1	28	21	21,100	1340	-
COD; mg/1	370	330	35,700	2460	2500
TOC, mg/1	92	74	-	-	_
BOD _s /COD	0.08	0.06	0.59	0.54	-
CODYTOC	4.0	4.5	-	-	-
TKN, mg/l	92	76	-	-	90
NH ₂ -N, mg/l	81	63	440	168	50
BOD _c :N:P	100:290:5	100:300:10	100:2:-	100:8:-	_
BOD ₅ :N:P Fe, mg/1	-	-	1400	-	750
pH	8.4	8.5	5.2	-	6.0
Temperature, °C	18-23	18-23	0-25	0-18	0-25
Q, m ³ /day	77.8	77.8	4	150	549
Pretreatment			No	No	
Chemical Addition	No	No			Yes
Biological Treat-					
ment	Yes	Yes			No
Settling	Yes	Yes			Yes
Nutrient Addition	No	No			No
Torres America					
Treatment	2 21				
BOD ₅ loading,	<0.01	<0.01	0.70;0.35;	0.01	-
kg/m³•day			0.23		
COD loading,	<0.01	<0.01	1.2;0.60;	0.03	-
kg/m³•day	4.0		0.40		
τ, days	63	44 ,	30;60;90	90	-
Post-treaument	No	No	No	No	No
Effluent Quality					
BOD _s , mg/l	21	13	4650;220;	100	_
5. 3.			10		
COD, mg/l	330	160	9500;400;	-	•
			120		
BOD _s removal, %	25	38	77;99;>99	93	_
COD ⁵ removal, %	11	52	73;99;>99		•
TKN, mg/l	76	20	-	-	-
NH ₃ -N, mg/1	63	12	130;70;3.5	-	-
NH3-N removal, %	22	81	70;84;99	•	-
Fe, mg/1	-	-	320;120;1.0	-	_
Fe removal, %	-	-	77;91;>99	-	-
рH	8.5	8.3	6.5;6.8;7.3	-	-
Effluent Disposal	Stab.	Surface	Surface Wate	r Surface	Surface
	Pond Pond	Water	-31 1 4 6 MA 66	Water	Water

⁻ Data not given

Test

· % Solids

· % MLVSS/MLSS

· Specific resistance

· Filter yield

Settling velocity

· Metal content

 Sludge Volume Index (SVI)

Use

Design of sedimentation units; operational parameter for sludge settleability. Design of sludge digestion units.

Design of sludge dewatering units.

Design of sludge dewatering units:

quantity for disposal.

Design of sedimentation units.

Determine acceptance for ultimate disposal.

Operational parameter to determine activated sludge settleability in sedimentation units.

Results of solids characterization tests are presented and compared to typical values reported for domestic wastewater activated sludge in Table 15. Percent solids for leachate-derived sludges (1.1-5.0%) was determined to be slightly greater than the typical value for domestic wastewater (0.5-1.5%). This was possibly attributable to higher inorganic content in the leachate sludges, especially in terms of iron and calcium. Moreover, the percent volatility expressed as % MLVSS/MLSS for the leachate sludge was slightly lower than for domestic wastewater sludge.

A significant difference was also noted between specific resistance values of typical domestic wastewater sludges and those reported for leachate-derived sludges. The specific resistance of leachate sludge without chemical conditioning (10^{12} m/kg) was reported as one to two orders of magnitude less than the wastewater sludge values ($10^{13}-10^{14}$ m/kg) without chemical conditioning. However, when the sludge was preconditioned with a chemical or polymer, specific resistance for the leachate sludge was superior to the typical wastewater range; a difference of two to four orders of magnitude in specific resistance existed between the two sludges. The leachate activated sludge exhibited very good dewatering properties as indicated by the reported specific resistance values.

Filter yields, expressed as $kg/m^2 \cdot hr$, were similar between the two cases; the leachate sludge filter yield varied from 2.2 to 28 and the domestic wastewater activated sludge varied from 2.4 to 20 with chemical conditioning. The higher values indicated for the leachate sludge were induced by high chemical additions for conditioning. Settling velocities for the two types of sludges were also fairly similar, although the leachate involved a somewhat thicker suspension.

Iron (Fe) and zinc (Zn) were found to be present in high concentrations (75,000 mg Fe/kg SS and 4000 mg Zn/kg SS) in leachate sludges. Cadmium (Cd), chromium (Cr), lead (Pb), and manganese (Mn) levels in the leachate sludge were reported to be similar to those found in sewage sludges.

TARLE 15	STIMMA BY	ΩF	SLUDGE	CHARACTERISTICS	FOR	AFRORIC	LEACHATE	TREATMENT	PROCESSES
INDLE IS	ו ארשיוויוטנ	vi	JEUDUL	CHAUNCIENTALICA	1 01	VELOPIC	LLACIDATE	TIVEN TURES	LVOCEDDED

			MI VSS	SPECIFIC	FII TER	SETTLING	MET	AL CONTE	NT IN WET SI	LUDGE, <u>mg</u>	metal kg SS	
REFERENCE	PROCESS*	SOLIDS,%	** MLYSS ** MLSS ,%	RESISTANCE, m/kg	FILTER ₂ YIELD,kg/m ² ·hr	VELOCITY, cm/sec	Cd	Cr	Fe	Pb	Mn	Zn
45	AL	-	-	1.4 x 10 ¹² @ P =	2.2 @ -47 cm Hg	-	-	-	-	-	-	-
	AL	-	-	37 cm Hg 0.07-1.3 x 10 ¹²	3.4-28 @ -47 cm Hg	-	-	-	-	-	-	-
	AL	-	-	w/FeCl ₃ 0.05-1.4 x 10 ¹² w/Lime	2.2-15 @ -47 cm Hg	-	-	-	-	-	-	-
	AL	-	-	0.06-0.5 x 10'2	5.4-12 @ -47 cm Hg	-	-	-	-	-	•	-
	AL	-	-	w/Polymer 0.2-0.4 x 10 ¹² w/Polymer	4.9-6.8 @ -47 cm Hg	-	-	-	-	-	-	-
	AL	2-4	-	-	-	0.001-0.02 @ 20-40 g/l	-	-	-	-	-	-
53,54,97	AS	-	66-73	-	-	-	-	-	-	-	-	-
118,119	AS	-	47-64	-	-	-	-	-	-	-	-	-
151	AS	-	41-51	-	-	-	-	-	-	-	-	-
143	AS	1.1-5.0 (2.1)	22-64	0.85-9.6 x 10 ¹²	-	-	-	-	-	-	-	-
260,261	AS	-	59-63	-	-	-	5.3-7.6	47-168	77,000- 89,000	17-127	2800	4400- 5200
288-291	AS	-	53-67	-	-	-	-	-	-	-	-	-
Typical for Domestic Wastewater**		0.5-1.5	50-80	4.8 x 10 ¹³ -2.8 x 10 ¹⁴ -	2.4-20 with chemical conditioning	0.005-0.13 @ 1-14 g/l	nd-1100 (87)	22- 30,000 (1800)	<1000- 40,000 (10,000)	80- 26,000 (1900)	100- 8800 (1200)	51- 28,360 (3500)

The Sludge Volume Index (SVI) is commonly determined to evaluate sludge settleability, although its transferability between studies has definite recognized limitations. The test was originally designed for use in evaluating operational problems during settling of activated sludge. Despite its limitations, the SVI was examined for its potential as a relative indicator of sludge settleability among the data that were presented in the literature. Since SVI is a function of the suspended solids concentration, the data were segregated on the basis of MLSS concentrations. The SVI was then plotted versus $\theta_{\rm C}$ to provide a relative indication of sludge settleability as shown in Figure 17. Overall, the SVI was frequently <75, possibly indicative of good sludge settleability.

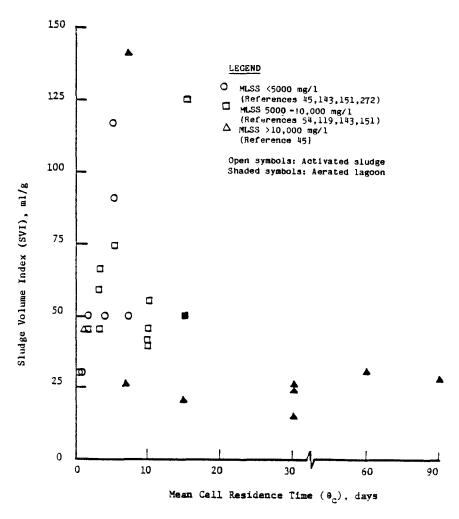


Figure 17. Relationship Between Sludge Volume Index and Mean Cell Residence Times for Aerobic Biological Treatment Studies

Although variations in sludge characteristics hamper the use of SVI as a universally accepted criterion, it is generally accepted that a SVI >100 reflects relatively poor settleability, whereas SVI <100 reflects relatively good settleability. On this basis, poor, good and very good sludge settleabilities were reported in the literature which indicated correspondingly variable sludge settling characteristics. In addition, deflocculation was reported to have occurred regardless of the degree of settleability. In fact, deflocculation sometimes occurred in sludges that were described as portraying very good settleability after the sludge had settled (Johansen, 1975). Pinpoint floc and sludge bulking were also identified for activated sludge processes treating leachate (Boyle and Ham, 1972, 1974; Graham and Mavinic, 1979; Graham, 1981).

ANAEROBIC BIOLOGICAL PROCESSES

Anaerobic biological treatment methods can provide a number of advantages over the traditional aerobic processes reviewed. In particular, an energy surplus may be available from the production of methane. Moreover, anaerobic cell yields are lower, resulting in lower sludge production and associated handling costs. Accordingly, the variables of interest in evaluating the feasibility of anaerobic treatment of leachate include methane production rates as well as the variety of indices used in describing aerobic treatment process performance.

Three general types of anaerobic treatment processes have been evaluated for the treatment of landfill leachates. These include external treatment in suspended-growth (SG) or attached-growth (AG) reactors, and in situ treatment using leachate collection and recycle back through the landfill. Little information was available beyond bench-scale for the external treatment systems. Therefore, these are discussed first, followed by a review of leachate recycle studies on all scales.

Bench-Scale Anaerobic Processes

The external anaerobic treatment strategies (SG, AG) studied on bench-scale (and one pilot-scale study) include applications of both completely-mixed and plug-flow reactors as summarized in Table 16. The experimental data associated with these studies are summarized in Appendix Table A-9 and utilized in the ensuing discussions of process variables.

Effect of Mean Cell Residence Time (θ_C) --

The data for bench-scale anaerobic treatment of leachates (Appendix Table A-9) were segregated as before on the basis of influent strength and biodegradability ratios. Limited BOD5 data were available, therefore, only two influent categories (medium- and high-strength) were used in describing the effects of $\theta_{\rm C}$. Medium- and high-strength influents are described as having 1,000 to 5,000 mg/l BOD5 or 1,000 to 10,000 mg/l COD and >5,000 mg/l BOD5 or >10,000 mg/l COD, respectively. Leachates which received nutrient amendments are also distinguished.

The relationship between $\theta_{\rm C}$ and organic removals is illustrated in Figures 18 and 19 for BOD5 and COD, respectively. The data presented in these figures are from mesophilic (33-37°C) studies; studies at lower temperatures

TABLE 16. BENCH-SCALE ANAEROBIC BIOLOGICAL TREATMENT OF LEACHATE

REFERENCE	PROCESS	PROCESS DESCRIPTION	RESEARCH OBJECTIVE(S)	LEACHATE SOURCE*
14	Suspended growth	Plug flow, continuous upflow reactor. **	Effect of temperature on COD and metal removal efficiencies and gas production.	Landfill
19,20,147	Suspended growth	Plug flow, daily fill and draw reactor operation.	Effect of $\Theta_{\rm C}$ and BOD5 and COD loading on BOD5 and COD removal and gas production.	Landfill
33,176,217	Suspended growth	Complete-mix, continuous flow reactor.	Effect of BODs and COD loading on BODs and COD removal and gas production; determine kinetic parameters; extent of heavy metal removal.	Lysimeter
44,45,46	Attached growth	Complete-mix, continuous upflow filter containing plastic media.	Effect of pH adjustment, sludge seeding, shockloading and $\Theta_{\mathcal{C}}$ on COD and metal removal efficiencies and gas production.	Lysimeter
68,70,73	Attached growth	Complete-mix, continuous upflow filter containing plastic media.	Determine operating variable that controls heavy metal removal efficiency.	Landfill
98,220	Attached growth; Suspended growth	Plug flow, continuous upflow filter containing crushed limestone as contact media; complete-mix, hourly fill and draw reactor operation.	Effect of temperature, pH adjustment, nutrient addition, and COD loading on COD and TOC removal efficiencies; determine kinetic parameters.	Landfill
135,136	Suspended growth	Complete-mix continuous flow reactor.	Effect of Θ_{C} on BOD5 and COD removal efficiencies and gas production; effect of sodium inhibition.	Landfill
143	Suspended growth	Plug flow, upflow filter containing crushed lime- stone as surface contact media, operated fill and draw and continuous flow mode.	Effect of BOD5 and COD loading, temperature, and effluent recirculation on BOD5, COD and metal removal efficiencies and gas production.	Landfill
151,205, 206,207	Suspended growth	Complete-mix, continuous flow reactor.	Effect of O _C on BOD _S and COD removal efficiencies; determine kinetic parameters.	Landfill and lysimeter
223	Attached growth	Plug Flow, upflow filter containing rock media.	Effect of $\Theta_{\mbox{\scriptsize c}}$ on organics removals and gas production.	Landfill
30	Suspended growth	Complete-mix, semi-continuous flow reactor.	Effect of feed concentration on organics removal.	Landfill
237	Attached growth	Plug flow, upflow filter containing plastic media.	Effect of HRT on organics, metal removals and gas production.	Landfill

^{*}All leachate sources are characteristic of municipal solid waste landfills. **Pilot-scale study.

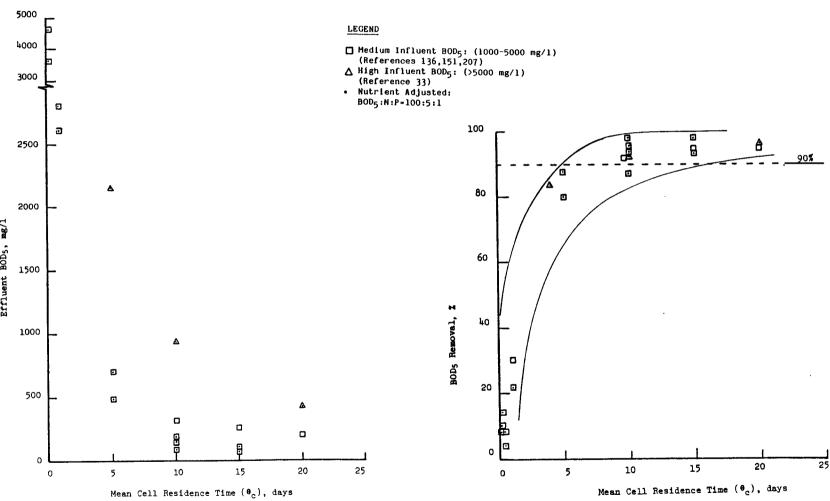


Figure 18. Relationship Between Mean Cell Residence Time and BOD₅ Removal for Bench-Scale Anaerobic Treatment Studies

Figure 19. Relationship Between Mean Cell Residence Time and COD Removal for Bench-Scale Anaerobic Treatment Studies

also yielded similarly favorable results as summarized in Appendix Table A-9. In general, $\theta_{\rm C}$ in excess of 10 days provided effluent BOD5 and COD concentrations below 500 mg/l and 750 mg/l, respectively. These effluent levels were representative of 85 to 98% removal efficiencies.

The data were additionally segregated according to the previously used biodegradability ratios (BOD₅/COD and COD/TOC) as illustrated in Figure 20. Scrutiny of this figure confirmed the information already provided in Figure 19 in that greater than a 10 day $\theta_{\rm C}$ allowed for better than 90% removal of influent COD.

Organic Loading Effects--

The relationships of effluent organics (BOD5, COD) and organic removals to organic loading rate are illustrated for the data of Appendix Table A-10 in Figures 21 and 22. Process performance deteriorated rapidly beyond BOD5 loadings of 1 kg/m 3 ·day or COD loadings of 2 kg/m 3 ·day. Treatment of high-strength leachates resulted in stronger effluents at high loading rates (1 kg BOD5/m 3 ·day) than did medium-strength influents. However, higher percentage removals were recorded for the high-strength leachates at high loading rates than for the medium-strength leachates.

Gas production data are commonly used as an indication of process performance and are also of economic interest. Organic loadings were used as a basis for reviewing the quantitative significance of gas production data (Appendix Table A-11) during anaerobic treatment. The relationships of interest are illustrated in Figure 23 in terms of the volume of gas produced per kg of BOD5 or COD destroyed at different organic loading rates. Considering the following redox stoichiometry at 35°C, the theoretical methane yield on a COD basis is 380 1/kg COD:

$$CH_{4} + 2O_{2} \longrightarrow CO_{2} + 2H_{2}O$$

$$6^{4} \text{ g } O_{2}/\text{mole } CH_{4}, \text{ or}$$

$$2.6 \text{ g } O_{2}/\text{liter } CH_{4}$$

Taking into consideration that gases produced will typically be on the order of 60 to 70% methane, the theoretical total gas yield for COD utilized is 550 to 650 1/kg COD. Furthermore, considering that the BOD5/COD ratio for the anaerobic studies was typically 0.45 to 0.78, the theoretical gas yield on a BOD5 basis would be on the order of 900 to 1000 1/kg BOD5. These values are indicated by the dashed lines on Figure 23, which serve to illustrate the effects of increasing the loading rates beyond 5 kg COD/m 3 ·day or 2 kg BOD5/m 3 ·day.

In comparison with the earlier plots of organic removal versus organic loading rate, the data of these figures seem to suggest that in the range of 2 to 5 kg COD/m^3 ·day, the gas production remains high, yet organics cannot be assimilated rapidly enough to avoid escaping into the effluent. Loading increases beyond 5 kg COD/m^3 ·day are apparently detrimental to the anaerobic methane-producing bacteria, as a result of substrate and/or chemical intermediate (volatile acids) induced inhibitions illustrated by decreasing gas production rates.

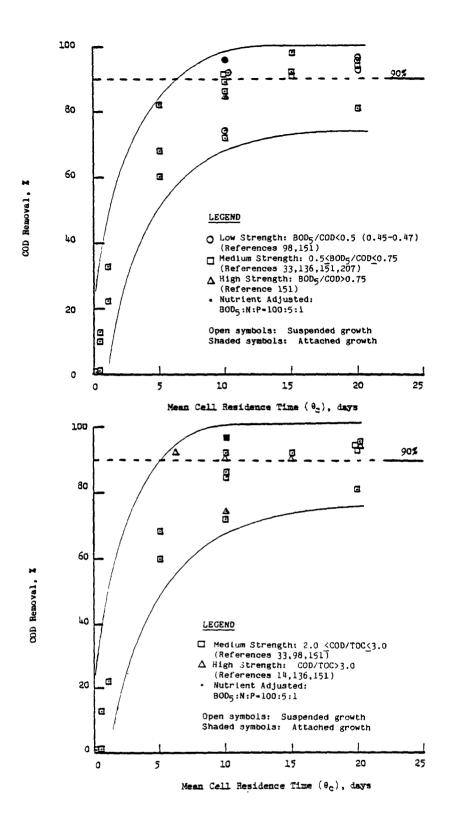


Figure 20. Illustration of COD Removal vs. θ_{C} for Anaerobic Treatment Data Segregated According to Biodegradability Ratios

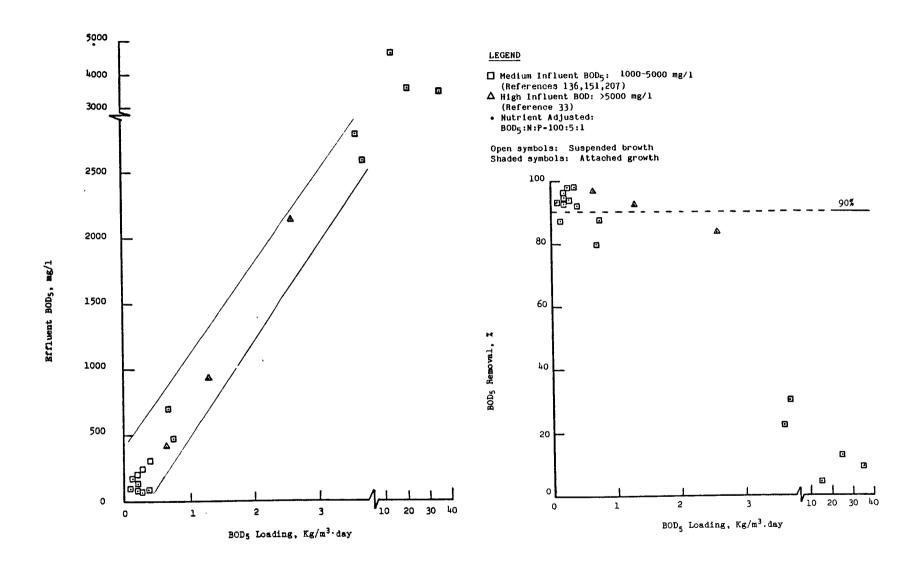


Figure 21. Relationship Between Organic Loading Rate and BOD₅ Removal for Bench-Scale Anaerobic Treatment Studies

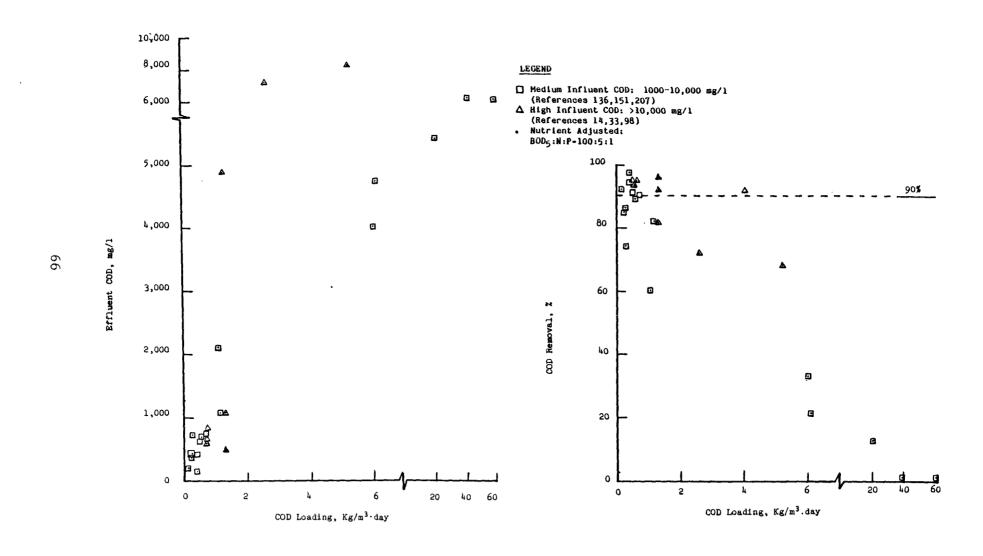


Figure 22. Relationship Between Organic Loading Rate and COD Removal for Bench-Scale Anaerobic Treatment Processes

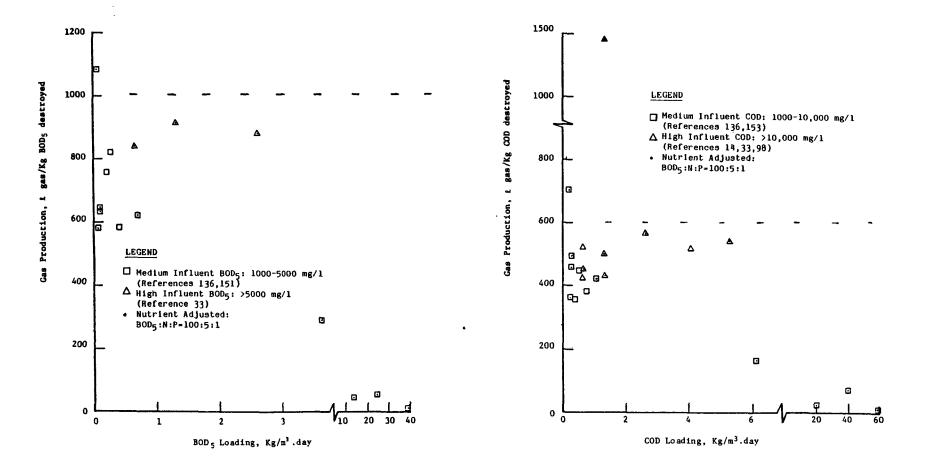


Figure 23. Relationship Between Gas Production and BOD5 and COD Loading Rates for Bench-Scale Anaerobic Treatment Studies

Temperature Effects--

From inspection of the data presented in Appendix Table A-9, successful anaerobic treatment was indicated at temperatures lower than the mesophilic range. Although studies on anaerobic treatment of leachate have been performed at temperatures ranging from 11° to 27°C, the most successful of these have been in the 23° to 27°C range as illustrated in Figure 24 for BOD_5 and COD removals.

The effects of temperature are further illustrated in Figure 25 using gas production. The figure clearly shows an increase in gas production at 33° to 37°C over that at 22° to 27°C. If sufficient retention time is provided (10-12 days), however, greater than 90% BOD5 and COD removals can be realized with the lower temperature range. Moreover, the figures do not show a distinct difference between attached- or suspended-growth systems. (The numbers indicated next to the data points are their respective organic loading rates in kg BOD5/m 3 ·day.)

Metals Removals--

A summary of metal removal data available from the literature for anaerobic treatment processes is presented in Table 17 and Appendix Tables A-12 and A-13. Except for iron and zinc, effluent heavy metal concentrations were generally on the order of 1 mg/l or less. As with the aerobic processes, zinc, iron, and chromium removals were above 90%. Copper, lead, cadmium, and nickel removals were on the order of 50 to 90%, although one study (Johansen, 1975) indicated no removal of cadmium and lead.

The alkali and alkaline earth metals were largely unaffected by anaerobic treatment processes with calcium being removed most efficiently, i.e., at 31%. Magnesium, potassium, and sodium removals were typically below 10% as indicated in Table 17 and Appendix Table A-13.

TABLE 17. SUMMARY OF HEAVY METAL AND ALKALI AND ALKALINE EARTH METAL REMOVAL DATA FOR BENCH-SCALE ANAEROBIC TREATMENT PROCESSES

Heavy Metals								
	Cd	Cr	Cu	Fe	Pb	Mn	Ni	Zn
Influent Concentration Range, mg/l	0.03-0.1	0.22-1.7	0.03-5.6	245-810	0.12-1.4	6-18	0.19-1.2	5-15
Removal Range, %	0-99	0-90	38-88	80-99	0-84	69-92	10-86	80-99
Average Removal, %	14	73	60	95	13	81	68	96

Alkali and Alkaline Earth Metals

	Ca	Mg	К	Na
Influent Concentration Range, mg/l	315-1330	70~120	347-530	313-530
Removal Range, %	30-31	7-10	0-6	0-4
Average Removal, %	31	9	3	2

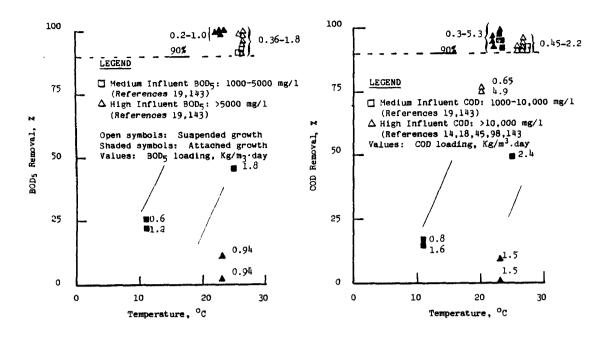


Figure 24. Relationship Between Temperature and Organics Removal for Bench-Scale Anaerobic Treatment of Leachate

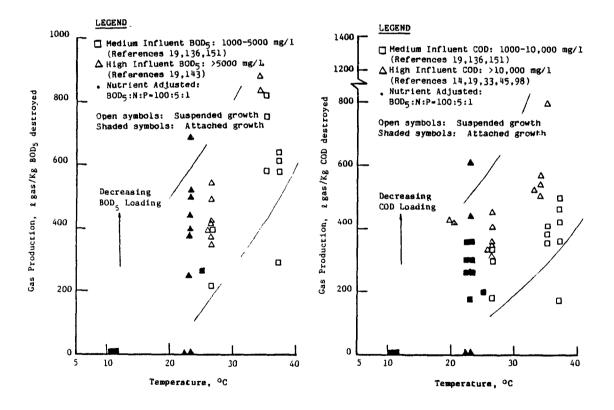


Figure 25. Relationship Between Temperature and Gas Production by Bench-Scale Anaerobic Treatment of Leachate

Anaerobic Treatment Kinetic Parameters--

The microbial dynamics of mixed reactor anaerobic processes can be described using a combination of Monod kinetics, cell yield, and mass balance concepts in the same fashion as for aerobic processes. Although limited data were available for the treatment of leachates, a summary of the parameters reported is presented in Table 18. These data compare fairly well with the kinetic data also presented in Table 18 for the conversion of acetic acid (a common leachate constituent). However, cell yields were somewhat higher for leachate treatment.

TABLE 18. SUMMARY OF MONOD KINETIC PARAMETERS FOR THE ANAEROBIC LEACHATE TREATMENT PROCESS

	INFLUEI CONCENTRA			SS or COD	b , d	ay-1	μmax, mg	BOD ₅ or COD VSS day	3	mg/l
REFERENCE	(BOD ₅)	(COD)	(BOD ₅)	(COD)	(BOD ₅)	(COD)	(BOD ₅)	(cob)	(BOD ₅)	(COD)
33	13,000	26,000	0.1	-	0.006	-	5.9	-	4020	-
98	-	12,900	-	0.33	-	0.17	-	1.4	-	633
151, 205, 206	3,700	6,000	0.25**	0.14**	0.175	0.127	1.0	0.5	232	300
117*	-	1,600- 2,100	-	0.04- 0.07 (T=20°0	-	0.03- 0.05 (T=20°C)	-	0.31-	-	13-165

Nutrient adjusted fatty acid wastewater; 80D_c:N:P=100:5:1

-Data not given
T = 34-37°C unless otherwise indicated

Anaerobic Process Sludge Characteristics--

Lower cell yields are generally exhibited by anaerobic processes when compared to aerobic processes, although this distinction is not exceedingly clear from a comparison of the yields reported in Tables 10 and 18. Limited sludge characterization performed on sludges resulting from the anaerobic treatment of leachate was available. However, some information on sludge solids volatility, percent solids, and metal content is summarized in Table 19. Scrutiny of this information indicates an average solids volatility on the order of 40% for solids contents of 2 to 7% (typically 4-5%). Iron and zinc were the most prevalent metals, existing in g/kg solids concentrations; calcium, chromium, copper, and lead were also occasionally found in high concentrations. No data on specific resistance, settling velocities, or sludge volume index (SVI) were located in the literature.

Based on dehydrogenase activity rather than $\P SS$ measurement as viable organism concentration

TABLE 19. SUMMARY OF SLUDGE CHARACTERISTICS FOR THE ANAEROBIC LEACHATE TREATMENT PROCESS

					-		METAL	CONTENT I	N WET SI	LUDGE.	g meta ka SS	1_				
REFERENCE	REACTOR*	VOLATILE, %	SOLIDS, %	Cd	Ca	Cr	Cu	Fe	РЬ	Mg	Mn	NI	K	Na	Zn	COMMENTS
14	PFR-SG PFR-SG PFR-SG PFR-SG PFR-SG	39 - - - -	- - - -	5.1 - 6 16 6	- - - - -	76 - 24 64 109	75 - 192 192 216	92x103 43x103 61x103 77x10	70 - 264 264 312	-	-	81 140 64 112 114	-	-	4300 2900 2700 3500 3150	T=20°C T=33°C T=30°C,Pilot Scal T=30°C,Pilot Scal T=30°C,Pilot Scal
33,217**	CSTR-SG CSTR-SG	=	-	0.66 <0.7	7600 4100	4.6 1.1	4.0 1.8	70 5230	19 3.6	390 317	321 114	7.2 4.1	625 1290	750 588	2330 1100	T=34°C T=34°C
143	PFR-AG PFR-AG PFR-AG PFR-AG	36 37 36 51	6.9 5.4 7.2 0.95	40 40 40 700	- - -	300 300 300 5800	900 600 1100 4100	300 300 300 5000	100 100 100 2100	:	-	-	-	-	2500 5000 4100 16x10 ³	T=23°C T=23°C T=23°C T=23°C
45,46,73	CSTR-AG	38	3.9	•	-	-	-	-	-	-	-	-	-	-	-	T=23°C ρ=1.026 g/cm ³
Average	-	40	5.0	100	-	900	900	35x10 ³	400	-	-	100	-	-	4900	

⁻ Data not given

* PFR-SG = Plug flow reactor suspended growth
CSTR-SG = Continuously-stirred tank reactor suspended growth
PFR-AG = Plug flow reactor-attached growth
** Ory sludge (centrifuged)

In situ Anaerobic Leachate Recycle Treatment

The collection and recycle of leachate back onto or into a landfill represents an <u>in situ</u> method of leachate treatment as opposed to the other biological processes previously reviewed. The treatment mode involved in this approach is primarily anaerobic, although aerobic conditions at the beginning and formation of humic substances during the final phases of a landfill's "life" may be important with regard to organic conversion and the possible re-mobilization of heavy metals, respectively. Moreover, the practice of recycling leachate serves to improve the homogeneity of the biochemical environment needed for anaerobic waste degradation, and may, thereby, effectively shorten the time normally required for waste "stabilization" by as much as 80 to 90% (Pohland, 1975, 1980). Current evidence also suggests that the costs of leachate recycle treatment may be as much as 25% of the costs of corresponding separate treatment (Pohland, 1979).

Pilot-Scale Leachate Recycle--

A number of pilot-scale investigations on the application of leachate recycle have been performed. The test cells utilized and research objectives associated with these studies are presented in Table 20. Operating variables such as moisture content, pH adjustment, nutrients, microbial seed, and the use of recycle have been reported as indicated in Table 21. Of these variables, the use of recycle and buffers have emerged as most important in accelerating the onset of anaerobic waste degradation and in maximizing the rate, consistency and quality of gases produced.

While recycle and buffer addition served to significantly shorten the stabilization period, the effluent concentrations ultimately obtained by comparative cells utilizing nutrients and/or microbial seedings, but without recycle, were very similar. The effluents ultimately obtained were also very similar in character to those obtained from anaerobic treatment processes, e.g., BOD, ~100 mg/1; COD, ~300 to 500 mg/1; TKN, ~100 to 300 mg/1; and, Fe, ~540 mg/1.

In general, recycling of leachate promoted the development of <u>in situ</u> biological, physical and chemical mechanisms responsible for waste stabilization and/or leachate treatment. Biological assimilation of the organic substrate by anaerobic microbial processes resulted in residual BOD5 and COD concentrations of 30 to 500 mg/l and 70 to 800 mg/l, respectively (Table 21). Moreover, as microbial degradation progressed, the nature of organic substrates in leachates became more refractory, as indicated by the low BOD5/COD and COD/TOC ratios of 0.15 to 0.4 and 0.9 to 1.9, respectively. TKN removal by leachate recycle effective with residual concentration of ~50 to 100 mg/l being typically achieved in long-term leachate recycle studies. The pH of recycled leachate eventually increased to a range of 6.5 to 7.0 as a result of the volatile fatty acids assimilation during the biodegradation process.

The removal of heavy metals, represented by Fe and Zn in Table 21, was also effective. Residual concentrations of 40 mg/l Fe and 4.0 mg/l Zn were commonly reported for the recycled leachate. The efficient removal of heavy metals was attributed to chemical complexation by inorganic and organic ligands which were found to be abundant in leachate and were able to form metal-ligand precipitates. Sulfides were also determined to be a significant

TABLE 20. PILOT-SCALE RESEARCH PERFORMED ON LEACHATE TREATMENT BY LEACHATE RECYCLE REFERENCE TEST UNIT PROCESS DESCRIPTION RESEARCH OBJECTIVE(S) LEACHATE SOURCE 16 3m high Six columns with different Determine treatability of Pulp and paper mill column waste mixtures, organic leachate from pulp and paper waste. lysimeter and inorganic wastes. mill wastes through recycle: evaluate organic and metal removal and gas production. 82-84,167 15m square Five test cells; control Determine feasibility of Municipal solid waste. by 3m high (no recycle), high initial leachate recycle for refuse test cell moisture content, continustabilization; effect of once ous flow through of water. through moisture: effect of leachate recycle, and biological sludge seeding. biological sludge seeding with high initial moisture. 8,22,174,177, 3m high Four columns: control (no Effect of pH control and Municipal solid waste. 204-207 column recycle), recycle, recycle biological sludge seeding on lysimeter with pH control at neutral organic stabilization of waste. pH, and recycle with pH control at neutral pH with biological sludge seeding. 208,211 5m square Two cells: one sealed to Effect of evaporation on Municipal solid waste. by 3m high prevent evaporation, other refuse stabilization by test cell open to atmosphere to recycle. Evaluate organic allow for evaporation. removal and gas production. Both received equivalent amount of water from rainfall. 210,212 3m high Four columns: control Determine removal mecha-Municipal solid waste column (municipal solid waste nisms of metal ions by with metal plating lysimeter only) and three with studying chemical activity wastes. different quantities of and chemical complexation.

plating wastes mixed with municipal solid waste.

TABLE 20 (Continued)

280	1.8m high, 0.9m dia. test cells	Sixteen cells; combination of recycle, buffers, nutrient additions to leachates.	Determine the effects of moisture, recycle, pH, and nutrients on gas production and leachate quality.	Municipal solid waste.
57	1.5m by 1.5m square test cells	Four cells; recycle of leachate plus annual rainfall, no recycle, recycle of half the annual rainfall, and, presaturation followed by recycle of half the annual rainfall.	Determine the effects of moisture content and leachate recycle on gas production and leachate quality.	Municipal solid waste.
57	600m ³ test fields 15mx10mx4m	Three fields filled with compacted wastes; one sealed against evaporation and recycled, one with recycle and no seal, one without recycle.	Determine the effects of moisture content and leachate recycle on gas production and leachate quality.	Municipal solid waste.
221	1.6m deep by 5m ² area test cells	Three test cells; simu- lated annual rainfall applied to each; one with leachate recycle, one with recycle of aerated leachate, one without recycle.	Determine effects of leachate recycle on gas production and leachate quality; effects of leachate aeration and phosphorous addition on in situbiodegradation.	Municipal solid waste.

TABLE 21. SUMMARY OF TEST VARIABLES, LEACHATE CHARACTER, AND GAS RESULTS FOR THE PILOT-SCALE LEACHATE RECYCLE STUDIES

REFERENCE	C		ST V				S	Sh	RECYCLE FREQUENCY	PERIOD, days	BODs	COD	HATE CHARAC' BOD ₅ /COD	TER AT END COD/TOC	OF REC	YCLE PE Fe	RIOD** Zn	рН	3GAS YIELD, m³/1000 kg dry	CH, ,%
32-84,	Х									1440	40,000	50,000	0.8		500	1200	50	5.5		1
67	^		X							1440	30,000	50,000	0.6	-	1000	300	70	5.5	-	20
. • .		X	•••							1440	3000	5000	0.6	_	100	200	1.0	6.2	-	65
						X			Daily	1440	400	1500	0.3	-	200	50	1.0	6.5	-	65 65
			X				X		•		30,000	50,000	0.6	-	1000	800	80	5.5	-	20
3,22,174,										1063	2000	3500	0.6	2.0	11	450	15	5.8	•	-
77,204-20	07					X			-	1063	30	70	0.4	1.8	2.0	4	-	6.8	-	-
				4	(X			•	747	35	240	0.15	1.0	8.5	3	0.2	7.0	-	65
					(X	X		-	747	40	170	0.2	1.3	1.4	9	0.4	7.0	-	65
208,211	(0)	en	cel1	}		χ			Weekly	492	90	350	0.3	1.0	20	39	0.5	6.7	_	-
			d ce			X			then	492	70	300	0,2	0.9	20	29	0.2	6.6	7.1	55
	·			•					daily											
66,268	X									514	8000	10,000	0.8	2.5	-	-	_	-	-	~
						X			Daily	368	120	150	0.8	1.7	50	7	1.0	4.3	-	-
				2		X	1	X	Daily	514	350	500	0.7	1.9	20	3.5	0.2	7.0	-	~
				. ?		X			Daily	514	200	350	0.6	3.0	36	7	0.2	7.0	-	-
Λ.				X)		X			Daily	514	200	350	0.6	3.0	330	6	0.7	7.0	-	-
7	v					X			Daily	400	36,000	61,290	0.6	-	- . ´	_	_	6.3	_	66
	X									400	38,300	62,690	0.6	-	-	-	-	6.5	•	55 45
						X X			Daily	400	39,700	66,310	0.5	-	· <u>-</u>	-	_	6.3	-	45
		X				X			Daily	400	35,000	58,330	0.6	-	-	-	-	6.3	-	50
80		X								720	-	12,000	-	2.5	250	_	-	6.2	14	50
		X			X					720	_	16,00	_	2.4	170					
	Х								Daily	720	-	36,000	•	2.1	825	-	-	5.9	14	65
	X				X				Daily	720	-	26,000	-	2.2	875	-	-	6.3 6.8	15 17	65
21		v													3.3	-	-	0.0	17	70
~ 1		X			,	γ			Daily	900	-	-	-	-	-	-	_	_	-	_
					(* ⁾	^ X			Daily Daily	900 900	33 20	600		3.0	136	42	0.14	7.1	-	-
						•			Daily	300	٤U	618		3.0	50	50	0.19	7.0	-	-

^{*}C = Control. No recycle and no water addition.
F = Flow through of water without recycle.
M = Moisture added initially.

N = Nutrient addition.

pH = Adjustment to neutral pH.

R = Recycle of leachate.

S = Sludge seed added.

Sh = Shredded solid waste.

** All expressed in mg/l except BOD₅/COD, COD/TOC, and pH.

- Data not given

factor in precipitation of heavy metals, with the possible exception of cadmium which was not as readily precipitated (Pohland, et al., 1981). Leachate recycle resulted in a gas yield of 7.1 m $^3/1000~{\rm kg}$ dry waste (Pohland, 1980) with a gas composition of 55 to 65% CH $_4$ and 35 to 45% CO $_2$ as also reported in two other studies included in Table 21.

Full-Scale Leachate Recycle--

As yet, no full-scale testing of leachate recycle as an <u>in situ</u> treatment option in the United States has been reported in the available literature. One full-scale study has been performed in England, and several full-scale landfills have been provided with leachate recycle in Germany.

A demonstration project has been conducted which may be considered near full-scale at Mountain View, CA (Pacey, 1983). This study was conceived to verify pilot-scale observations regarding the benefits of adequate moisture content, pH buffering and nutrient availability through controlled moisture applications and/or leachate recycle. Six field cells were constructed to evaluate these effects, each having an average volume of 10,500 m³ and refuse mass of 4825 metric tons. Each of these cells was operated using different combinations of water content, seed sludge, nutrients, and buffer. Only one of the six cells was operated using leachate recirculation. Unfortunately, the initial moisture application to this latter cell was somewhat drastic and was followed by an infrequent and sporadic leachate recycle schedule which tended to obscure the benefits of leachate recycle (Van Heuit, 1983; Pacey, 1983). Although still somewhat preliminary, the results of this study have illustrated the benefits of pH and moisture control, i.e., cells to which moisture and buffer were applied have produced significantly higher quantities of gas than the control cells. Despite sporadic recirculation, the recycle cell has produced the highest quantities of gas to date. Routine leachate quality was not monitored, therefore, definitive conclusions regarding stabilization patterns from this study were difficult.

A 2.5-ha landfill in England has been lined with a heavy polyethylene membrane and filled to a depth of 3 to 4 m with refuse having a density of 800 to 1000 kg/m 3 (Robinson, et al., 1982). Leachate has been sprayed on the top of the refuse using a sprinkler system. Preliminary results have indicated that the COD of recirculated leachate is diminishing at a significantly higher rate (40% reduction in the first 20 months of operation) than in a non-recirculated control area. Unfortunately, gas production data were not available since the landfill was not covered.

Some information is available for several full-scale landfills in Germany where leachate recycle is being used as summarized in Table 22 (Cord-Landwher, et al., 1982). A two-stage approach was initiated at one of these landfills wherein leachate was removed from a newer landfill section to be recirculated in an older stablilized section. The 'acid-stage' (new field) had a surface area of 0.6 ha and a refuse depth of 4 m; the 'methane-stage' (old field) had an area of 0.57 ha and a similar depth. Eight months of operating data for this system have been presented and are summarized in terms of leachate BOD5 and COD in Table 23. Results indicated that the two-stage approach may be used to obtain consistent quantities of methane from a full-scale landfill at a minimum cost, since the gas collection and leachate recirculation systems would not require as frequent or extensive modifications as in the case where the total landfill would be filled to capacity. In the staged approach,

TABLE 22. SUMMARY OF AVAILABLE INFORMATION CONCERNING THE APPLICATION OF LEACHATE RECYCLE AT FULL-SCALE LANDFILLS IN GERMANY

	Dimen Ib	LS IN GERMA	71/1						
Landfill	Stapelfeld	Flechum	Dorpen	Venneberg	Hattorf	Blankenhagen	Nauroth	Reinstetten	Kupferzell Betterspot
Surface Area, ha	8	2.46	5.5	6.0	9.4	18.0	7	5.4	3
Area serve km ²	d, 6	8	9	3 9	12	12	30	15	12
Population served	70,000	18,000	80,000	82,100	115,340	160,000	122	112,620	85,000
Refuse Received kiloton/y m3/yr	r - -	- 17,000	70,000	- 65,000	_ 100,000	- 180,000	~ 120,00	62,000 0 -	51,000 -
Leachate produced m3/yr m3/ha-yr	-	1,000	570 ~	- 1,400 1,590	1,800	7,630	- -	- 1,57	 4 -
Recircu- lation method									
sprinkler troughs others Leachate	s x 	- x -	x -	x - -	x -	~ x	x - -	x - -	-
quality BOD5,mg/L COD,mg/L pH	820 1,680 7.4	-	-	100 20,000 1,200 35,000 7.8 6.1	390 930 6.95	1,400 2,900 7.65	-	.4 -	48,00
Start of landfill	1973	1975	1979	1976	1977	1962	197	'3 197	5 1980
Start of recycle	1981	-		-	-	-	197	75 198	2 1980
Annual precipi- tation,mm	750	810	700	790	-	650	110	90 80	0 650

After Cord-Landwher, (1982)

leachates collected from sections of the landfill which have not been equipped with recirculation or gas collection appurtenances can be stabilized by the methanogenic bacteria operative in the older sections. Moreover, this method may significantly improve the overall yield of available methane from a landfill while affording a lower capital investment.

TABLE 23. ORGANIC CHARACTERISTICS OF LEACHATES REMOVED FROM A FULL-SCALE TWO-STAGE RECIRCULATION PROCESS IN GERMANY

Date of	Old H	'ield	New I	field	
Sample	(Methane	-Stage)	(Acid-	-Stage)	
(1982)	BOD ₅ ,	COD,	BOD5,	COD,	
	mg/ĺ	mg/l	mg/ĺ	mg/l	
2/17	60	1473			
3/3	64	1278	1,310	5,303	
4/15	59	1370	5,320	10,390	
5/12			2,660	5,559	
6/3	63	1561	6,000	16,725	
7/7	67	1409			
7/22			6,340	11,200	
8/3	60	1273	11,970	19,300	

After Cord-Landwher, et al., 1982

PHYSICAL/CHEMICAL TREATMENT OF LEACHATES

A number of physical/chemical processes have been investigated for their respective leachate treatment capabilities. Much of the emphasis has been on bench-scale, although several processes have also been evaluated on full-scale. Bench-scale investigations have included the application of chemical oxidation, precipitation, coagulation, ionizing radiation, ion exchange, adsorption and reverse osmosis. Full-scale investigations have been performed on chemical precipitation/coagulation, ammonia stripping, and activated carbon adsorption.

Bench-Scale Physical/Chemical Leachate Treatment Processes

A listing of bench-scale research activities on the reported physical/chemical leachate processes is provided in Table 24 together with descriptions of the processes used and the objectives of each study.

Coagulation and Precipitation--

Organics Removal—Coagulation and precipitation have been the most extensively studied physical/chemical treatment methods for the removal of organics and metals. Alum, ferric chloride, lime, and polymers have been used as coagulants as summarized in Appendix Table B-1. As shown in Figure 26, none of the coagulants tested have been successful in removing more than 30% of the influent COD from either raw or biologically treated leachates.

Reference	Process	RCH PERFORMED ON LEACHATE TREATMEN Process Description	Research Objective(s)	Leachate Source*
17,18,176	Oxidation Disinfection Precipitation	Oxidation and disinfection by diffusing ozone in batch test; precipitation by standard batch jar test apparatus simulating coagulation, flocculation, and settling.	Effect of ozone on oxidation of organics and disinfection; effect of lime addition on organic and metal removal	Lysimeter
19,20	Coagulation Oxidation Precipitation	Standard batch jar test apparatus to simulate coagulation, precipitation and settling.	Determine optimum dosage for organic, iron, and color removal using FeCl $_3$ and alum as coagulants, Cl $_2$ and KMnO $_{\parallel}$ as oxidants, lime and Na $_2$ S $_2$ as precipitants.	Landfill
32,56,170	Adsorption Coagulation Precipitation	Continuous flow adsorption column; standard batch jar tests to simulate coagulation, precipitation and settling.	Effect of peat adsorption for removal of organic matter and metals; determine optimum dosage or heavy metal removal using FeCl ₃ as coagulant and lime and NaOH as precipitants.	Landfill
44-46,70,73	Adsorption Ion Exchange Oxidation Precipitation Reverse Osmosis	Continuous flow column test and batch tests for AC adsorption; complete-mix, batch reactor for O ₃ oxidation; standard batch jar test for lime precipitation	Determine optimum process for removal of organic matter using AC, anion exchange resin, ozone, lime, and reverse osmosis for raw leachate and biologically treated effluents.	
54,97	Adsorption Coagulation Oxidation Precipitation	Continuous flow column test for AC adsorption; standard batch jar test apparatus for coagulation, oxidation precipitation.	Evaluate effect of color removal for effluent polishing using AC adsorption and NaOCl oxidation; determining optimum dosage for organic removal using FeCl ₃ , FeSC alum, and polymer as coagulants and lime and NaOH as precipitants for raw leachate.)ų ,
118,119,176	Precipitation	Standard batch jar test.	Determine optimum lime dosage for organic removal from biologically treated effluent.	Lysimeter
133	Adsorption Coagulation	Continuous flow column test for AC adsorption; standard batch jar test for alum coagulation.	Determine alum dosage and AC effectiveness for organic and heavy metal removal for conceptual design of full scale treatment plant.	Landfill
134	Adsorption Coagulation Oxidation Precipitation	Batch test and continuous- flow column test for AC adsorption; all other tests performed on a batch basis.	Effect on organic, iron, and removal by AC adsorption, alum and FeCl $_3$ as coagulants; Ca(OCl) $_2$. Cl $_2$, KMnO $_4$ and O $_3$ as oxidants; and lime and Na $_2$ S as precipitants.	Landfill and wast pile
229	Adsorption Oxidation	Batch AC adsorption test; Batch ozone oxidation test.	Effect of AC adsorption and and ozonation on removal of organics, phenol, NH ₃ , and toxic organics.	Lysimete
242,243	Adsorption Ion Exchange	Continuous upflow filters for both AC and glauconitic greensand.	Effect of AC adsorption and greensand for metal removal. Evaluate effect of process sequence between adsorption and greensand ion exchange.	Landfill
265	Coagulation Precipitation	Standard batch jar test apparatus.	Determine optimum dosage of alum coagulant and lime precipitant for organic, color, and metal removal.	

TABLE 24 (Continued)

Reference	Process	Process Description	Research Objective(s)	Leachate Source*
				Bour cc
183,205-207	Adsorption Ion Exchange	Batch study for AC adsorption tion; Batch study for ion exchange using cation resin.	Determine treatability of aerobically treated leachate effluent using cation resin, mixed resin and PAC.	Landfill and Lysimeter
151	Adsorption Coagulation Oxidation Precipitation	Batch test for AC adsorption; Standard batch jar test for alum and lime, FeSO ₄ and lime, and NaOCl dosages.	Determine adsorption capacity for AC on raw leachate; Determine optimum dosage for alum, lime, FeSO $_{ij}$, and NaOCl for organic and metal removal.	Landfill
143	Adsorption Coagulation Precipitation	Batch test for AC adsorp- tion using jar test appara- tus.	Determine adsorption capacity of AC for chemically treated leachate and biologically and chemically treated leacahte; Determine optimum dose of alum, FeCl ₃ , and lime and optimum pH for organic, Fe and Zn removal for raw and biologically treated leachate.	Landfill
28	Adsorption Coagulation Precipitation	Continuous flow column test and batch tests for AC adsorption; standard jar test to simulate coagulation, precipitation, and settling.	Compare effectiveness of three activated carbons for polishing chemically and biologically treated leachate; determine optimum dosage of alum, lime, and ferric chloride for organic and iron removal.	Lysimeter
158	Adsorption Coagulation	Continuous flow column test for AC adsorption; standard jar test for ferric chloride coagulation.	Determine AC effectiveness and and optimum dosage of FeCl ₃ for organic removal.	Landfill
285	Ionizing Radiation	Radioactive isotope of cobalt used as gamma ray source for ionizing organic substrate.	Effect of pH, aeration rate, and dose rate on organic removal; determine molecular weight distribution of ionized organics.	Landfill
238	Coagulation Precipitation	Standard batch jar test to to simulate coagulation, precipitation, and settling.	Determine optimum dosage of alum and FeCl ₃ as coagulants and lime and NaOH as precipitants for organic and heavy metal removal.	Landfill
215,216	Disinfection	Batch reactor using NaOCl as as disinfectant.	Effect of NaOCl dosage and contact time on bacterial and viral inactivation.	Landfill
96	Coagulation	Standard Batch jar test to simulate coagulation and settling.	Determine optimum dosage for organic and iron removal using alum as coagulant.	Lysimeter
239	Coagulation	Standard Batch jar test to simulate coagulation and settling.	Determine effects of lime dosage on color, turbidity, and organics removal.	Industri Landfill

The effects of coagulant dosage and pH are illustrated in Figure 26. Alum has been demonstrated as the most successful coagulant in dosages of 50 to 100 mg/l and at a pH near 8.2, achieving up to 25% COD removal. Ferric chloride and polymer were determined to be somewhat less effective at similar and greater dosages. For these coagulants, COD removals were typically on the order of 10% in the pH range of 6 to 9 and at coagulant dosages up to 1000 mg/l.

Results of chemical precipitation using lime, sodium hydroxide, and sodium sulfide are summarized in Appendix Table B-2 and illustrated in Figure 25. The data presented in Figure 27 indicate that chemical precipitation processes were equally unsuccessful in removing COD. Lime dosages of 1000 mg/l resulted in only 25% COD removals from raw leachate at pH 7. Similar dosages for biologically treated leachates yielded 35% COD removals. Although the use of sodium sulfide and sodium hydroxide received only limited study, results indicated that less than 10% COD removal was possible at chemical dosages upwards of 2000 mg/l.

Metals Removal—Alum, ferric chloride, and lime have been investigated for their respective metal removal potentials as indicated in Appendix Table B-3 for the heavy metals and in Appendix Table B-4 for the alkaline earth metals. As summarized in Table 25, iron and zinc were removed best with 90% or greater removals being generally achieved. Alum and ferric chloride at dosages of less than 100 mg/l have provided successful removals, whereas much higher dosages of lime (500 mg/l) were required to achieve similar results. Data for only one analysis with sodium sulfide indicated 99% iron removal at a 1000 mg/l dosage.

TABLE 25. SUMMARY OF HEAVY METAL AND ALKALI AND ALKALINE EARTH METAL REMOVAL DATA FOR BENCH-SCALE CHEMICAL ADDITION PROCESSES

	Cd	Cr	Cu	Fe	Mn	Pb	Ni	Zn
Concentration Range, mg/l	-	0.08-0.064	0.035-0.56	317-1000	0.7-25	0.10	73	0.4-30
Removal Range, 🕻	-	30-53	21-96	0-99	28-99	20	4	0-99
Average Removal, \$	-	40	40	84	66	20	H	86
Alkali and Alk					v	N-		
			Ca	MØ				
Concentration Range	, mg/l		Ca 178	Mg 100-160	K 156~380	Na 188	·	
Concentration Range	, mg/l		178 0-6	100-160 0-60	156-380 8-27	188 43		

⁻ Data not given

Lime has been shown capable of removing manganese, potassium, and sodium, although the dosages of lime required generally greatly exceeded the quantities of metals removed as shown in Appendix Table B-4. Alum, ferric chloride and ferrous sulfate have received only limited study for the removal

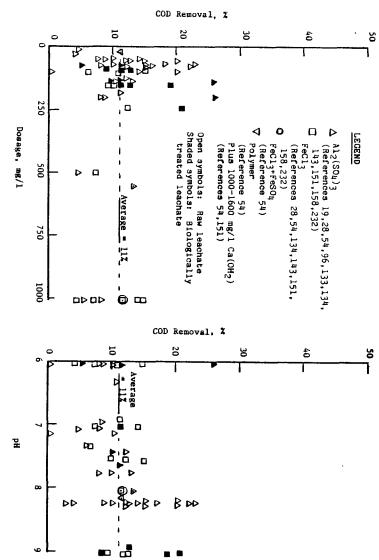


Figure 26. Relationships Between pH and Dosages of Various Chemical Coagulants and Corresponding COD Removals

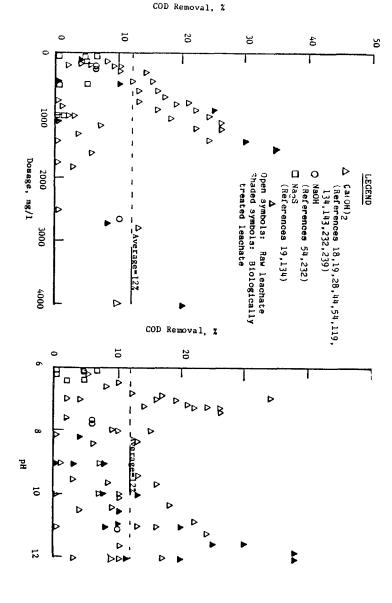


Figure 27. Relationships Between pH and Dosages of Various Chemical Precipitants and Corresponding COD Removals

of alkaline earth metals. From the limited data given in Appendix Table B-4, large doses of these chemicals were relatively unsuccessful in removing the alkaline earth metals indicated.

Chemical Oxidation --

Chemical oxidation of leachate organics has been investigated using chlorine, calcium hypochlorite, sodium hypochlorite, potassium permanganate, and ozone. In general, chemical oxidation processes have been slightly more successful than the chemical coagulation and precipitation processes for COD removal, but removal efficiencies have been too low to be considered practical. As shown in Figure 28, 10 to 30% COD removal was typically achieved with dosages of 2000 mg/l of NaOCl, Ca(OCl), and Cl_2 . Effects of ozone were similar at lower dosages, but retention times of 3 to 4 hours were required as summarized in Appendix Table B-5. Hypochlorites were somewhat superior to the other oxidants studied with regard to COD removal. However, the hypochlorite dosages required were exceedingly high.

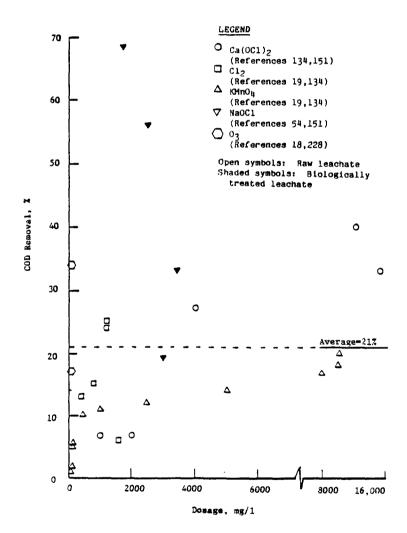


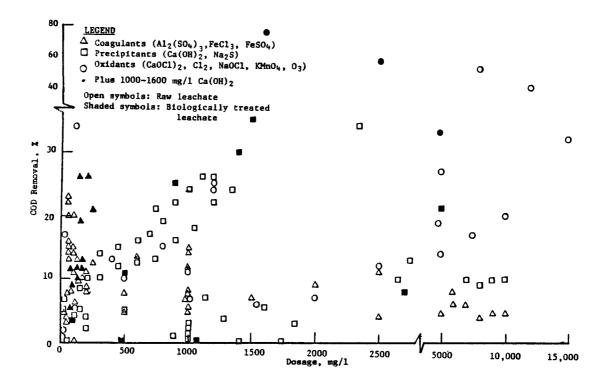
Figure 28. Relationship Between Chemical Oxidant Dosage and COD Removal for Bench-Scale Chemical Oxidation Studies

Only one chemical oxidant, NaOCl, has been tested for the treatment of biologically treated leachates. The application of this oxidant was successful in removing 20 to 70% of the residual organics (as COD) from a biological process effluent. Although limited data were available, the best removal (69%) was achieved at the lowest dosage (1600 mg/l) and better results were also observed at pH 8.9 than pH 9.5 or above. Presumably, chemical oxidation would be more logically used for this application (treatment of biological process effluent), since the stronger oxidants would tend to convert the refractory organics remaining after biological treatment.

Metal removal by chemical oxidation processes was studied by only a few researchers. As shown in Appendix Table B-3, ozone treatment was successful in removing 82 to 99% of iron, copper, and zinc. However, nickel was not removed. The application of chlorine compounds and chlorine were also very successful in removing iron, achieving 99% or better removal with dosages of 800 to 1000 mg/l.

Chemical Disinfection--

Ozone and sodium hypochlorite have been applied to raw and biologically treated leachates to evaluate their capabilities for disinfection. As shown in Table 26, ozone at 100 mg/l decreased the bacterial density of raw leachate to 30 CFU/ml, as determined by the Standard Plate Count Technique. This dosage is two orders of magnitude higher than typically reported for domestic wastewater disinfection (Venosa, 1972), since the high level of organics in the high-strength raw leachate imposed a high ozone demand.


Disinfection of a biologically treated and diluted leachate using NaOCl has also been investigated (Polprasert, 1977; Polprasert and Carlson, 1977). The effects of NaOCl dosage and hardness concentration were studied for bacterial and viral inactivation of a leachate seeded with E. coli and T-4 coliphage to increase bacterial and viral densities, respectively. A batch reactor was used to perform the bench-scale study, and dosages of 5 to 55 mg/l NaOCl for τ = 2 to 60 minutes were used. Greater than 99% bacterial inactivation was achieved for NaOCl dosages of 1 to 20 mg/l at a contact time of 30 minutes. The 5 mg/l NaOCl dosage was relatively ineffective, since only 90% bacterial inactivation occurred for a contact time of 60 minutes. Higher dosages were necessary for equivalent viral inactivation; 99% inactivation occurred with 48 mg/l NaOCl at a contact time of 60 minutes, and 99.99% inactivation occurred with 55 mg/l NaOCl at 60 minutes contact. Overall, a higher NaOCl dosage and a longer contact time were necessary for viral inactivation than for bacterial inactivation. Results at hardness concentrations of 250 to 1000 mg/l as $CaCO_3$ indicated that both bacterial and viral inactivation decreased as the hardness concentration increased.

Chemical Process Sludge Characteristics--

Chemical treatment with coagulants, precipitants, and oxidants generally did not achieve effective COD removal and chemical dosages were exceedingly high and not very practical. Moreover, large sludge volumes resulted as indicated in Figure 29. Sludge volumes greater than 5% of the original leachate volume were typical and were occasionally as high as 30 to 40%. Lime treatment produced the greatest sludge volume of all chemicals investigated, while the oxidants produced the smallest sludge volumes, typically 1%.

TABLE 26. BENCH-SCALE RESEARCH PERFORMED WITH CHEMICAL DISINFECTION OF LEACHATE

REFERENCE ITEM	(5,6,64)	(80,81)
Description of Study	Investigate use of 03 for raw leachate to inactivate bacteria in a batch reactor.	Study bacterial and viral inactivation using NaOCl for biologically treated leachate using a batch reactor; effect of hardness; develop inactivation kinetic models.
Leachate Quality		
Bacterial Density, CFU/ml Viral Density, PFU/ml	300	$0.05-33 \times 10^7$ (seeded) $0.7-1.0 \times 10^7$ (seeded)
COD, mg/1 TOC, mg/1 NH3-N, mg/1 Cr, mg/1 Cu, mg/1 Fe, mg/1	14,000 5,200 - 1.14 0.39	150 - 1.8 -
Pb, mg/l Ni, mg/l Zm, mg/l Hardness, mg/l as CaCO3	0.025 - 12.5 -	280-1000
pH Disinfectant	5.3 0 ₃	7.6 NaOC1
Dosage, mg/l Contact Time, minutes	10-163	5-55 2-60
Enumeration Technique		
Bacteria Virus	Standard Plate Count. Not determined.	Membrane filter (Refer to Sobsey, et al., 1974)
Conclusions	O ₃ dosage of 110 mg/1 at unknown contact time yielded leachate containing <30 CFU/ml.	Viral resistance to dis- infection > bacterial resistance; hardness inhi- bited both bacterial and viral inactivation of NaOC1.

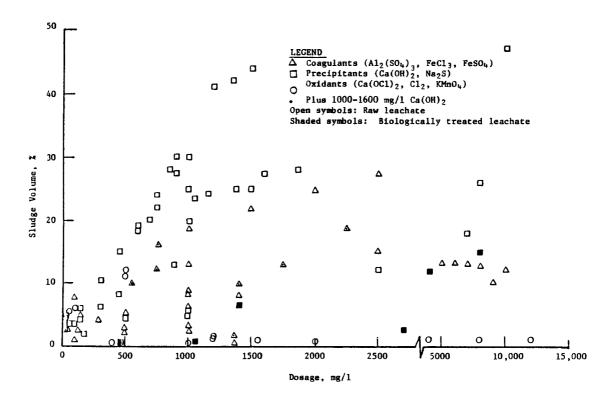


Figure 29. Comparison of the Organic Removal Efficiencies and Sludge Volumes Produced by the Application of Various Chemical Dosages to the Treatment of Leachates on Bench-Scale

Ionizing Radiation--

The application of ionizing radiation for the treatment of landfill leachates has been tested by one investigator (Yamazaki and Sawai, 1981). medium-strength leachate (2000 mg/l TOC) was radiated with a 5-Kilocurie (KCi) 60 Co source which emitted an average dose of 0.6 mrad/hr. The effects of pH, aeration rate, and radiation dose on TOC removal were evaluated at room temperature. Maximum TOC removal (75%) was achieved at pH 4 and a radiation dose of 20 mrad/hr. At low radiation doses, aeration increases yielded increased TOC removals; these effects were much less noticeable at higher As a result of the applied radiation, the organic compounds present in the leachate were converted from high molecular weight compounds to low molecular weight compounds. Humic and fulvic acid fractions were converted to low molecular weight carboxylic and phenolic compounds, alcohols, and other substances. Leachate biodegradability was believed to have improved as a result of the radiation, since it produced low molecular weight compounds. such, this process may hold promise as a pre-treatment prior to more complete biological removal of organic constituents.

Ion Exchange --

Anionic and mixed ion exchange resins have been evaluated for polishing of biologically treated leachates as indicated in Appendix Table B-6 and summarized in Table 27. COD and TOC removals by ion exchange from these low-strength wastewaters ranged from 10 to 70% in both batch and continuous processes.

TABLE 27. SUMMARY OF ION EXCHANGE PERFORMANCE USING EFFLUENTS FROM AERATED LAGOON AND ACTIVATED SLUDGE LEACHATE TREATMENT SYSTEMS

		Leachat	, e	Infl: Concen	tration	Remov	al, \$	
Reference	Process	Type	рН	COD	TOC	COD	TOC	Comments
44,45,70	Anion Exchange	AL	8.8	500	200	6-59	26-43	Continuous
44,45,70	Anion Exchange	AL	6.2	500	200	48	43	Continuous
205,207	Anion Exchange	AS	5.0-7.7	180	-	68-36	-	Batch;2-10 g/l
205,20 7	Anion and Cation Exchange	AS	7.3	185	•	10	-	Batch; 2-10 g'l

Cationic ion exchange has also been studied for the removal of metals from leachates using glauconitic greensand (GG) a common geological stratum indigenous to the Delaware and New Jersey regions of the United States and reported as having significant cation exchange capacity (Spoljaric and Crawford, 1979 a,b). The research focused on the effects of flow rate on metals removal in a continuous flow processes with flow rates of 0.1 and 1.0 l/min. As shown in Table 28, the lower flow rate provided better removal copper, lead and nickel (96% or greater) over iron (86%) and zinc (67%). This is in contrast to the other treatment processes (biological and chemical addition studies) where iron and zinc were typically most affected and lead and nickel were least affected. Chromium, manganese, calcium and magnesium were fairly well removed at the lower flow rate, whereas, potassium and sodium were poorly removed. Although the cation exchange capacity of GG is low (2.1-3.6 meq/100 g), this process could be economical depending on handling costs for the exchange media.

TABLE 28. SUMMARY OF GLAUCONITIC GREENSAND (GG) PERFORMANCE FOR THE REMOVAL OF METALS FROM LEACHATE

		Concent	uent ration, /1	Remov	al,	
Reference	Parameter	0.1 1/min	1.0 1/min	0.1 1/min	1.0 1/min	Comments
29,170	Cd	0.006	0.08	83	96	Continuous flow,
-,,.,.	Ca	129	181	63	22	upflow sand filter
	Cr	0.03	0.13	66	-	bed. Lower flow
	Cu	0.38	0.28	99	14	rate provided
	Fe	8.1	14.0	86	3	better removal;
	Pb	0.13	0.18	99	13	exchange capacity
	Mg	62	164	67	26	on the order of
	Mn	4.1	6.1	88	48	2.1-3.6 meq/100g.
	N1	0.07	0.21	96	14	
	K	122	364	39	62	
	Na	275	585	36	0	
	Zn	0.49	0.78	67	20	
	pH	7.7-6.3	7.5-6.6			

Adsorption--

The adsorption of organics and metals from leachates has been studied using activated carbon and peat. Activated carbon has received the vast majority of study, having been evaluated in batch and continuous processes with granular and powdered carbons. The evaluations have generally involved the use of biologically or chemically treated leachates. The biological treatment effluents were typified by COD concentrations ranging from 200 to 800 mg/l, whereas, the chemical treatment effluents generally contained 2000 to 3000 mg/l COD.

As indicated in Appendix Table B-7, activated carbon was generally capable of removing 30 to 70% of the residual COD and TOC at retention times of 1 to 15 minutes in continuous flow processes. Removal efficiencies were lower for chemically treated leachates than for biologically treated leachates. Further comparison of these wastewaters is provided in Figure 30 by Freundlich isotherms for the batch adsorption studies listed in Appendix Table B-7. The COD and TOC based isotherms shown in the figure have steep slopes, suggesting that continuous operation would be more efficient than batch adsorption. Although limited data were available, the biologically and chemically treated leachate isotherms were fairly similar, having similar relationships between the equilibrium organic concentration and the adsorptive capacity of the carbon. The raw leachate isotherms deviated from the other two, due mainly to the higher concentrations of organics imposed, but also to some degree to differences in organic composition. A summary of the Freundlich isotherm parameters derived from each case is provided in Table 29.

TABLE 29. SUMMARY OF FREUNDLICH ISOTHERM PARAMETERS FOR BENCH-SCALE ACTIVATED CARBON ADSORPTION OF RAW LEACHATE AND TREATED LEACHATE

References	Leachate Type	COD TOC	COD	ng/l TOC	X/M mg COD o mg A COD	r TOC	mg COD or mg AC·n	TOC
45,134,151	Raw	-	5000	395-13,000	2.5	0.046-0.30	9.5	0.6-1.2
45,205	Biologically Treated	2.4-3.8	184-830	210-320	0.261-0.54	0.102-0.74	0.7-2.3	
28,143	Chemically Treated	3.3-3.7	508-2990	153-150	0.20-0.80	0.14-0.165	1.4-3.2	0.97-1.
143	Biologically Plus Chemically Treated	3.0-3.7	192-344	130-230	0.15-0.66	0.13-0.23	0.98-5.9	2.4-2.9

 $X/M = KC_0^{1/n}$

⁻Data not given.

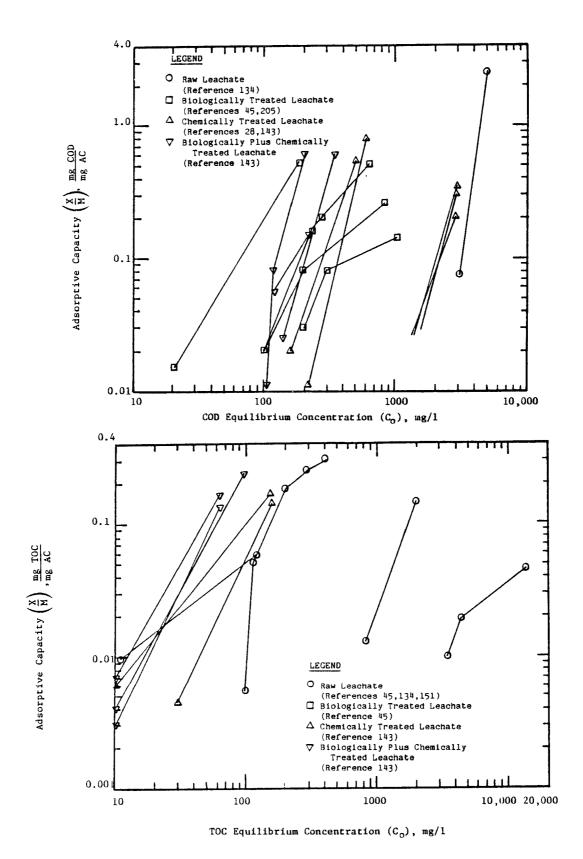


Figure 30. Freundlich Isotherm Curves for Bench-Scale
Batch Activated Carbon Treatment of Raw,
Biologically or Chemically Treated Leachates

Peat adsorption studies (Lidkea, 1974; Corbett, 1975; Cameron, 1978) on organic and metals removals from leachate are summarized in Table 30. Continuous flow columns filled with dried peat were used to evaluate the effects of pH on process performance. Alkaline conditions were more effective than were acidic conditions. At pH 7.1 to 7.8, the peat columns removed 86% COD, 95% NH3-N and greater than 90% of all metals studied except lead. Metals removal was attributed to a combined precipitation/filtration mechanism at the alkaline pH values.

TABLE 30. SUMMARY OF THE PERFORMANCE OF PEAT FOR ADSORPTION OF ORGANICS AND METALS FROM LEACHATE

		Concentr mg/			oval,	Comments
32, 56,	рН	4.8	7.1	4.8	7.1	Continous upflow
170	COD	830	830	66	66	column
	TKN	~	465	-	95	using dried peat as an
	Ca	254	174	66	92	adsorption media
	Fe	27	22	82	99	
	Pb	0.03	0.06	98	73	
	Mg	106	126	55	96	
	Mn	0.52	0.61	67	92	
	K	580	126	71	96	
	Na	1400	780	70	95	
	Zn	0.43	0.60	47	90	

Metals Removal--

A summary of heavy metal and alkali and alkaline earth metals removals achieved by the ion exchange and adsorption processes is provided in Table 31. Due to the limited data available, definitive statements are not possible, although the ion exchange appeared to be superior to adsorption for the removal of both heavy and alkaline earth metals.

As indicated in Appendix Table B-8, activated carbon was successful in removing 96% of the iron from raw and ozonated leachates; the performance achieved seemed dependent on carbon dosage. Using batch adsorption tests, an 8 g/l dose of powdered activated carbon (PAC) improved iron removal from 73%

at a 2 g/l dose to 96% (Ho, et al., 1974). Further increases in carbon dosage yielded little improvement (97%) iron removal at 16 g/l PAC dose). Data provided in the literature for other metals were insufficient for comparison.

TABLE 31. SUMMARY OF HEAVY METAL AND ALKALI AND ALKALINE EARTH METAL REMOVAL DATA WITH

	Cd	Cr	Cu	Fe	Pb	Mn	N1	Zn
Concentration Range, mg/l	0.03-0.08	0.07-0.13	0.24-0.28	14-66	0.18-0.23	6.1-25	0.13-60	0.7-60
Removal Range, %	27-96	0	0-14	10-97	22-33	21-87	0-37	0-99
Alkali and	1 Alkaline Ea	erth Metals				 		
Alkali and		arth Metals	Mg	к	Na			
Alkali and Concentration F			Mg 15-164	K 63-380	Na 200-585			

Not applicable. Not sufficient data for true statistical average.

**Activated Carbon (AC); Ion Exchange (IX)

-Data not given.

The removal of alkaline earth metals from raw leachates was also somewhat varied and, although limited data were available, it appeared that ion exchange offered better removal than adsorption. A batch activated carbon study of metals removal (Karr, 1972) indicated that manganese was best removed, but it was also present in lowest concentration as indicated in Appendix Table B-9. Calcium, magnesium, and potassium, present in higher concentrations, were removed by 40% or less. The ion exchange processes were more successful in removing these constituents, typically exhibiting 75 to 95% calcium, >95% magnesium, 50 to 95% potassium, and up to 99% sodium removals for biologically treated leachates, depending on the resin type and dosage applied.

A comparison of ion exchange (IX) and activated carbon (AC) treatment of raw leachate is also presented in Appendix Table B-9. The limited data presented seem to suggest that glauconitic greensand is superior to AC at similar flow rates and bed volumes. At lower flow rates, the superiority of IX becomes increasingly evident.

Reverse Osmosis--

Reverse osmosis has received consideration as both an initial (raw leachate) treatment step and a final polishing step (using biological, AC or IX treatment process effluents). Raw leachates were initially studied (Chian and DeWalle, 1977b) and, as summarized in Table 32, reverse osmosis (RO) was fairly efficient in removing the majority of the residual TOC. Two types of RO membranes were used, each having different polar characteristics: The more

polar membrane (NS-100) achieved slightly superior TOC removal than the cellulose acetate (KP-98) membrane at both pH 5.5 and 8.0, although the difference in performance was much more marked at pH 5.5.

The major problem associated with RO treatment of raw leachates was membrane fouling due to solids, colloidal material, and iron hydroxides. Therefore, emphasis was also placed on the removal of TOC from aerated lagoon, activated carbon, and ion exchange process effluents using RO as summarized in Table 32.

TABLE 32. SUMMARY OF REVERSE OSMOSIS PERFORMANCE FOR THE REMOVAL OF COD FROM RAW AND BIOLOGICALLY TREATED LANDFILL LEACHATES

	000 11	OH NAW AND BI	0000101		D BANDI 188 B	
				Influent		
		Leachate		COD,	COD	Operating
References	Process	Type	рН	mg/l	Removal, %	Conditions*
44,45,70	Reverse Osmosis	Raw	5.5	13,000- 18,500	85-98	P=600,1500 psi, (KP-98)
		Raw	5.5	13,000- 18,500	98-99	P=600,1500 psi, (NS-100)
		AL	8.8	214	95	P=600 psi
		AC	8.8	48	86	P=600 psi
		IX	5.5	119-143	94-97	P=600 psi

^{*1} psi = 6.895 kN/m^2

AS = Activated sludge effluent

AL = Aerated lagoon effluent

AC = Activated carbon effluent

IX = Anion exchange effluent

Only the NS-100 membrane was utilized for the treated leachate tests, since it was found to be superior with raw leachate. Application of RO to the activated carbon treatment effluent was the least successful, achieving only 86% TOC removal as compared to 94 to 96% removals for aerated lagoon and ion exchange treatment effluents. Although successful as an effluent polishing measure by itself, the problem of membrane fouling was considered serious enough to warrant filtration or coagulation of the treatment effluents prior to RO polishing (Chian and DeWalle, 1977b).

Full-Scale Physical/Chemical Leachate Treatment

Chemical treatment using coagulants and precipitants, NH₃ stripping, and activated carbon adsorption have been tested at several full-scale leachate treatment facilities. These studies are summarized in Table 33 along with a process description and location of the landfill and treatment facility. All of the landfills were classified as municipal solid waste landfills except for the Love Canal landfill (McDougall and Fusco, 1980; McDougall, et al., 1980).

TABLE 33. FULL-SCALE LEACHATE TREATMENT FACILITIES USING A PHYSICAL/CHEMICAL PROCESS

Reference	Process	Process Description	Location
26	Precipitation	Lime addition for heavy metal removal.	North Hempstead, New York
133	Coagulation and Adsorption	Alum and polymer addition for pretreatment prior to AC adsorption for organic and heavy metal removal.	Franklin County, Pennsylvania
178, 179	Adsorption	NaOH addition for pretreat- ment prior to AC adsorption for removal of toxic organics, most classified as priority pollutants.	Love Canal, New York
231	Chemical Addition	Chemical addition prior to treatment by aerated lagoon and activated sludge.	Pennsylvania (2 landfills)
245- 248	Precipitation; NH ₃ Stripping; Nuetralization	Lime addition for heavy metal removal and to raise pH; Air stripping of NH ₃ at alkaline pH using a lagoon; Sulfuric and phosphoric acid addition for neutralization.	Bucks County, Pennsylvania

Precipitation/Coagulation--

Chemical addition has been the most common full-scale physical/chemical process used for landfill leachate treatment. A summary of the treatment performance and design parameters for the full-scale treatment facilities using this approach is included in Table 34. The available information has been separated into influent and effluent quality, pretreatment, treatment, and sludge characteristics.

TABLE 34. SUMMARY OF PERFORMANCE AND DESIGN PARAMETERS FOR FULL-SCALE PHYSICAL/CHEMICAL LEACHATE TREATMENT FACILITIES

REFERENCE	(26)	(133)	(173,179)	(231)		(245-248)	
Process	Precipitation	Coagulation Adsorption	Adsorption	Chemical Addition	Precipitation NH ₃ Stripping Sl*	Precipitation \$2*	Precipitation NH ₃ Stripping S2*
Influent Quality							
BOD ₅ , mg/1	10,000	100	-	-	11,900	10,400	11,700
COD, mg/l	14,000	-	11,500	2500	18,500	16,600	18,600
TOC, mg/1	-	-	4300	-	750	1170	705
TKN, mg/l	700	-	-	90 50	760 760	1170 1170	785 785
NH ₃ -N, mg/l	600	10	-	50	13,500	12,700	10,500
TDS, mg/1	0.05	-	-	-	0.08	0.07	0.09
Cd, mg/1	0.05	-	-	•	0.26	0.07	0.25
Cr, mg/l	-	0.56	-	_	0.40	0.46	0.43
Cu, mg/1	1000	20	330	750	333	350	300
Fe, mg/l	-	0.10	0.4	-	0.74	0.75	0.68
Pb, mg∠l Ni, mg/l	_	-	-	<u>-</u>	1.76	1.58	1.60
Zn, mg/1	8	_	_	20	20	19	16
CH.	6.0	7.6	5.6	6.0	6.7	6.9	6.9
Q, m ³ /day	136;245	71	65	549	79.5	86.3	86.3
retreatment	Preaeration	No	Caustic Addition, multi-media filtration	No	No	No	No
reatment							
Coagulation-			-	-			
Flocculation	3000 11	• • • • • • • • • • • • • • • • • • • •			2000 1 :	0000 1.1	4200
Dosage, mg/l	1650,Lime	-,Alum			3000,Lime	3600,Lime	2300,Lime
τ,minutes	15-30	-			-	9.0-11.7	9.0-11.7
pH Cathalian	-	-			-	7.0-11.7	3.0-11.7
Settling T. bours	3;1.7	4	-	-	11	10	10
τ,hours Overflow rate,	3,1,1	7			**	10	10
m3/m2. day	20,37	15			7.6	8.2	8.2
NH ₂ Stripping	No	No	No	No	7.0	No No	0.6
t,days	110	****		•••	12	•••	11
ρH					10		10

TABLE 34 (Continued)

AC Adsorption	No		2-9070 Kg GAC units in series	No	No	No	No
τ,min		3	-				
X/M, mg TOC/g AC		-	200				
Effluent Quality							
BOD _s , mg/l	_	28(72)	-	•	3930(67)	5270(49)	3600(69)
COD, mg/l (%R)	-	-	-	200(92)	6890(63)	7200(57)	8800(53)
TOC, mg/l (%R)	-	-	100(98)	-	-	•	-
TKN, mg/l (%R)	-	-	-	20(78)	350(54)	890(24)	410(48)
NH ₃ -N, mg/1 (%R)	-	1.7(83)	-	15(70)	350(54)	890(24)	410(48)
TDS, mg/1 (%R)	-	-	-	-	6000(56)	7970(37)	4650(56)
Cd, mg/1 (%R)	-	-	-	-	0.03(60)	0.03(60)	0.04(60)
Cr, mg/1 (%R)	-	-	-	-	0.07(70)	0.09(60)	0.08(70)
Cu, mg/l (%R)	- ,	-	-	.	0.31(23)	0.10(80)	0,27(37)
Fe, mg/I (%R)	2.3(>99); 12(99)	-	-	5(99)	3.2(99)	4(99)	6(98)
Pb, mg/l (%R)	•	0(>90)	•	-	0.17(77)	0.24(68)	0.23(66)
Ni, mg/l (%R)	-	-	-	-	0.61(65)	0.57(64)	0.73(54)
Zn, mg/l (%R)	0.03(>99); 0.03(>99)	-	-	2(90)	0.6(97)	0.6(97)	0.9(94)
рH	-	7.4	-	7.5	8.6	8.5	8.7
Sludge Character- istics	1230 kg/day generated	-	-	-	-	-	-
Effluent Disposal	-	Surface water	POTW	Surface water	Surface water o	r spray irrigation	

^{*}S1 = System 1; S2 = System 2

Lime was the only precipitant used for organic and metals removal. Very high lime doses of 2300 to 3600 mg/l were necessary to achieve about 50 to 70% BOD5 and COD removal. As with the bench-scale processes, the removal of heavy metals was significant, especially in the case of Fe and Zn where 98 to >99% removal was achieved at influent concentrations of 300 to 1000 mg/l Fe and 8 to 20 mg/l Zn. The other heavy metals, Cd, Cr, Cu, Pb and Ni, were also removed, but influent concentrations were typically less than 1 mg/l and a correspondingly high removal efficiency would not be anticipated. Although the effectiveness of lime in decreasing heavy metal concentrations at the full-scale treatment operations was similar to that for the bench-scale studies, less than 40% COD removal was generally achieved in the bench-scale studies. Greater COD removal was achieved on full-scale, most likely as a result of prior NH3 stripping which also promoted the removal of volatile organics. As indicated in Table 34, the NH3 stripping step was performed at pH 10 in a lagoon having a detention time of 11 to 12 days.

Alum was also used in one full-scale treatment facility to treat a low-strength leachate characterized by a BOD_5 concentration of 100 mg/l (Hemsley and Koster, 1980). This facility was able to achieve about 70% BOD_5 removal, but the alum dosage was not reported. Additional BOD_5 removal was achieved with AC adsorption following alum coagulation of the leachate. However, these two processes were not separately monitored and their individual removal contributions were not noted.

Ammonia Stripping--

Ammonia stripping has been attempted at one landfill under two different treatment conditions as indicated in Table 34. The leachate was pretreated with lime to raise the pH to about 10 and air stripping was then applied for NH₃ removal. The stripping process occurred in a large lagoon having a detention time of 11 to 12 days. Ammonia nitrogen removal for the two conditions ranged from 48 to 54% with influent NH₃-N concentrations of 760 to 785 mg/l. Given the long detention time used, NH₃-N removal by stripping was not as promising as would be expected. Operational problems with pH control might have been the cause of the relatively poor stripping efficiency.

Activated Carbon Adsorption--

Activated carbon adsorption was applied at two landfills for polishing following alum coagulation (Hemsley and Koster, 1980). Approximately $70\%~BOD_5$ removal was achieved by this treatment process when the influent concentration was $100~mg/l~BOD_5$.

The use of AC adsorption of leachate produced from a landfill used primarily for the disposal of organic chemicals has also been reported (McDougall and Fusco, 1980; McDougall, et al., 1980). Following caustic addition and multi-media filtration, two granular activated carbon adsorption units were used to polish the effluent prior to discharge to a publically owned treatment work (POTW). The adsorption process was found to be 98% efficient in TOC removal for an influent TOC concentration of 4300 mg/l. The maximum adsorptive capacity was 200 mg TOC/g AC and the treated effluent contained about 100 mg/l TOC and priority pollutant concentrations that were typically below detectable limits.

FINAL LEACHATE DISPOSAL

Following treatment of leachates by any of the previously discussed processes, ultimate disposal in an environmentally sound manner will be required. Options available for ultimate disposal include land application, discharge to surface waters, and discharge to a publicly owned treatment works.

Land Disposal

Land application of treated leachates has been tested on full- and bench-scale. Full-scale land applications by spray irrigation and ridge-and-furrow methods have been reported as indicated in Table 35. Unfortunately, the capabilities of these applications for final pollutant attenuation could not be ascertained, since groundwater quality was not monitored and soil characteristics at each land application site were not revealed. From a hydrologic perspective, the application rates used were apparently acceptable, since problems associated with over-application (such as flooding) were not reported.

TABLE 35. EFFLUENT DISPOSAL PRACTICES EMPLOYED BY FULL-SCALE LEACHATE TREATMENT FACILITIES

		Land Applicatio	on		Leachate Q	uality	
Reference	Disposal Method*	Flow, m ³ /day	Rate, 1/m ² ·day	BOD ₅ , mg	Prior To D: /1 COD, mg/:		_
15	SW	355	NA	10	_	7.5	
15	SW	45.4	NA	920	· -	7.4	
26	POTW	303	NA	_	-	-	
113- 115	Ridge and furrow	39	4.7	<800	<1500	_	
166	SW	77.8	NA	10	120	7.3	
187	SI	150	9.4	1200	2280	-	
231	SW	549	NA	100	-	-	
244	SI	13	10	25	-	-	
245- 248	SI SW	39-78 39-78	0.37 NA	120-2150 120-2150	940-4650 940-4650	7.6-8.6 7.6-8.6	

^{*}POTW = Discharge to publicly owned treatment works

SI = Spray irrigation

SW = Surface water discharge

^{- =} Data not given

NA = Not Applicable

Discharge to POTW

One alternative for the ultimate disposal of treated leachates is the discharge to publicly owned treatment works (POTW). This practice must also be evaluated on a site-specific basis, since leachate quantity and quality may affect the performance of the POTW. Data from one landfill utilizing this discharge method are indicated in Table 35, although no data on leachate quality were given. The leachate apparently posed no detrimental effects on the quality of the effluent from the POTW.

More data were available from a bench-scale study designed to simulate the spray irrigation process (Chan, et al., 1978). A test column was constructed and filled with native soil from the landfill site. Lime treated leachate was then applied at $37 \, l/m^2 \cdot day$ or at a loading rate chosen to stimulate conditions planned for full-scale operation. The lime treated leachate was characterized by 5400 mg/l COD, 690 mg/l Na, 540 mg/l K, 600 mg/l Ca, 104 mg/l Mg, and a pH value of 10. Divalent cations were better attenuated in the soil (comprised of 12% clay) than the monovalent cations, and complete COD breakthrough occurred in less than three bed volumes. Consequently, land application would be better practiced for lower-strength leachates. More research is needed on the fate of pollutants in actual leachate land spreading settings.

Surface Water Discharge

Discharge of landfill leachates to surface waters is subject to the same restrictions as applied to any point source wastewater. Accordingly, the quality of leachate required prior to surface water discharge is dictated by a number of site-specific technical and regulatory factors, including the assimilative capacity of the receiving water. If leachate quality exceeds recommended limitations, alternative disposal options must be sought. No data were available in the literature on the use of direct discharge of untreated leachates for ultimate disposal.

SECTION 7

GAS MANAGEMENT

GENERAL PERSPECTIVE

The release of gases by biological activity or by evaporation (volatilization) of waste constituents may pose certain hazards to landfill operators and/or nearby residents. As previously outlined, the most obvious of these hazards include the potential for fires and explosions. The control of hazards has led to the development of various strategies for landfill gas control and an emphasis on gas collection and energy recovery. Accordingly, the state-of-the-art in landfill gas management includes an integration of the elements of landfill lining (containment) with gas collection, treatment and possible power generation. Although the latter subject was considered beyond the scope of this report, the technology associated with landfill gas-fired electrical generation is essentially identical to that associated with other fuel sources and is generally on-the-shelf and available from a number of manufacturers. Similarly, liner technology has been addressed elsewhere, and has been the subject of several recent review publications (Landreth, 1980; EPA, 1983; National Sanitation Foundation, 1983).

The purpose of this section is to present an overview of literature pertinent to factors affecting gas production and a summary of reported gas yields, composition and production rates associated with various landfill operations. In addition, gas collection and treatment technologies (for both on-site generation and pipeline uses) will be briefly introduced in somewhat less detail than presented in Section 4, since these subjects have been comprehensively addressed by others (EPA, 1979; EMCON, 1980; DOE, 1981; Halvadakis, et al., 1983). Moreover, attempts at providing updates on full-scale operations were hampered by the brevity, lack of data and the presumptive nature of many of the reports constituting the available literature.

GAS PRODUCTION

The sizing and implementation of gas handling equipment requires a prediction of gas production rates, yields, and gas composition from a particular landfill setting. Such a prediction may be based on theory or formulated from comparisons with empirical results from published laboratory and field experiences. In either case, an understanding of the biochemical and physical factors affecting gas production and of site conditions is necessary. In particular, the phasic nature of landfill stabilization (SECTION 3) and the corresponding biophysical variations must be coupled to the refuse placement and leachate control technologies being utilized. Integration of time-dependent gas quantity and quality expectations (Figure 1,

Table 3) with refuse placement schedules may provide for a redundant use of both gas and leachate handling equipment, particularly where leachate recycle is being implemented. Therefore, the following briefly summarizes the factors affecting gas production in landfills, with an emphasis on methanogenesis (Phase IV, Figure 1). Theoretical gas yield models are then reviewed, followed by a summary of gas production rates, compositions and total methane yields reported in the literature.

Factors Affecting Landfill Gas Production

Gas production in landfills is affected by many variables, including the nature of wastes placed, moisture content, particle size and degree of refuse compaction, buffer capacity, nutrient sufficiency, temperature, and the gas extraction method. These factors have been reviewed in detail by Rees (1980) and Halvadakis, et al., (1983). From these and other sources, the following general conclusions may be offered regarding the influence of these variables on gas production.

Nature of Refuse Placed--

As reviewed previously, the sources of solid waste placed in a sanitary landfill are largely a function of location and may vary considerably according to residential, commercial or industrial origin. The nature of these wastes influences the potential for gas production in terms of:

1) the relative availability of a usable substrate, including its organic, moisture and nutrient contents; 2) the presence of potential inhibitors; and, 3) the formation of localized "micro environments" which may be isolated from the overall liquid or gaseous transport phases. As indicated in Table 2, paper products are a major contributor to the overall composition of refuse, although these are generally more resistant to biodegradation than food and most garden wastes. Industrial wastes are important with regard to the buffers and metallic and other constituents they provide and may impart either benefical or detrimental influences depending on their relative magnitudes and propensity for reaction.

Moisture Content--

Water or moisture (leachate) provides the transport phase for organic substrates and nutrients and is also instrumental in establishing the anaerobic environment needed for methane production. Up to a point, increasing the moisture content increases the rate of methane production and the ultimate methane yield. In general, it may be expected that methane production rates will increase with increasing moisture up to approximately 60% (40% solids), with higher moisture imparting neither an increase nor a decrease in the maximum gas production rate.

Eliassen (1975) considered the moisture content requisite for biological decomposition and reported optimum moisture ranges of 50 to 70% and 30 to 80% for new and older landfills, respectively. Chian and DeWalle (1979) reported that 75% moisture content or above was best for biodegradation of municipal solid waste, although the presence of more water was also recognized as resulting in production of larger quantities of leachate requiring treatment. In spite of these observations, the large number of interrelated variables involved in these studies has precluded a clear determination of moisture effects; uniformity of moisture is probably equally important as quantity of moisture, as demonstrated to some degree by leachate recirculation studies.

Particle Size and Degree of Refuse Compaction--

Particle size reduction by refuse shredding may be expected to increase gas production rates by increasing the surface area available for leaching and/or biological activity, and by improving the ability to retain moisture (DeWalle, et al., 1978; Fungaroli 1979), although Buivid (1980) reported contrary results. Therefore, none of the results of these studies are clearly conclusive, primarily due to the wide number of variables involved.

Literature data on refuse density and/or effects of compaction are likewise inconclusive. Compaction will tend to optimize the volume of waste which can be placed in a given landfill volume. However, compaction may be expected to impede moisture and gas flow through the wastes, thereby increasing the potential for microenvironment formation and leading to decreased refuse stabilization or methane release rates. Therefore, more focused and systematic studies are needed on both of these operational variables.

Buffer Capacity--

Buffer addition has been repeatedly demonstrated as beneficial to accelerating biological stabilization and increasing gas production rates (Pohland, 1980; Pacey, 1983). Sufficient buffer is needed to moderate the effects of volatile acids and other acid products which tend to depress the pH below the desired level for methanogenesis (pH 6.6-7.4). As yet, no systematic studies of specific buffer additions to landfills have been performed. The practice of buffer addition is expected to be quantitatively linked to site specific variables. Therefore, the approach to buffer addition could be based on leachate analysis and application during leachate recycle or by injection, or on anticipated need and augmentation of the refuse as it is being placed. Addition of digested sewage sludge to the refuse during landfilling is an example of the latter approach.

Nutrients--

The same considerations mentioned for buffer applications apply for nutrient additions. Nutrient sufficiency may be best assured through initial addition or after leachate analysis by augmentation as needed again through leachate recycle or injection. Municipal solid wastes generally contain the nutrients necessary for effective biological conversion, although Pohland (1975) has shown that phosphorus may become limiting during the latter stages of biostabilization. Nutrient additions to simulated landfill cells have not produced distinguishable effects, again due to other operational differences and, in particular, the fairly common practice of adding microbial seed along with nutrients. If control over stabilization rates and gas production are considered crucial, the issue of nutrient sufficiency should again receive more systematic study.

Temperature--

Temperature affects microbial activity within landfills and vice versa. In the upper aerobic layers (1 to 2 m), temperatures may range from 50 to $70\,^{\circ}\text{C}$, whereas, at lower aerobic levels (2-3 m), temperatures generally range from 25 to $40\,^{\circ}\text{C}$. Following the depletion of oxygen and the change from aerobic to anaerobic metabolism, temperatures within the landfill will decrease and remain moderated by ambient conditions. Rees (1980) reported on a method of landfill temperature moderation by utilizing a refuse placement strategy which takes advantage of aerobic biological heat generation. Fresh

wastes were placed in areas adjacent to regions of active methanogenic stabilization to promote accelerated conversion made possible at the higher temperatures.

Gas Extraction--

The withdrawal of landfill gases at rates higher than their biological production will lead to the introduction of air into the landfill. This may not only inhibit the methanogens, but lead to excessive quantities of nitrogen and oxygen in the product gas. The latter consequence would correspondingly decrease the overall energy value of the gas and require otherwise unnecessary and expensive gas treatment. (There have been undocumented reports of reduced methane generation rates of landfill sites operated with gas extraction facilities.)

Gas Yield Projections

Ultimate gas (methane) yields are important in determining the economic feasibility of gas recovery projects. However, they are not very useful in sizing recovery equipment unless coupled to a prediction of measurement of gas yields. Several methods are available for formulating gas yields, including both theoretical and empirical approaches. These are reviewed in more detail by EMCON (1980) and Halvadakis, et al. (1983) and are briefly summarized here.

Theoretical Models--

Stoichiometric Methods—A number of investigators have derived gas production estimates by making assumptions on the chemical composition of municipal solid wastes (MSW) and applying these assumptions to the Buswell equation for methanogenesis. This analysis may be performed using the entire MSW content or by making assumptions about biodegradabilities of the major waste fractions, e.g., food and garden wastes, papers, textiles, wood, leather, etc. In performing such an analysis, chemical formulas for MSW listed in Table 36 are combined with Equations 2 or 3 below, either using a formula for the overall MSW or a summation of yields from its individual components. The number of moles of each compound can then be calculated based upon the quantity of wastes handled, and the equations can also be used to determine the resultant moles or volumes of gas to be expected upon conversion of the waste.

Buswell equation:

$$C_n H_a O_b + (n - \frac{a}{4} - \frac{b}{2}) H_2 O \rightarrow (\frac{n}{2} - \frac{a}{8} + \frac{b}{4}) CO_2 + (\frac{n}{2} + \frac{a}{8} - \frac{b}{4}) CH_4$$
 ...(2)

Modified Buswell equation (Mao and Pohland, 1973):

$$C_{a}H_{b}O_{c}N_{d}S_{e} + (a - \frac{b}{4} - \frac{c}{2} + \frac{3d}{4} + \frac{e}{2})H_{2}O + (\frac{a}{2} + \frac{b}{8} - \frac{c}{4} - \frac{3d}{8} - \frac{e}{4})CH_{4} + (\frac{a}{2} - \frac{b}{8} + \frac{c}{4} + \frac{3d}{8} + \frac{e}{4})CO_{2} + dNH_{3} + eH_{2}S$$
 ...(3)

TABLE 36. EXAMPLES OF MUNICIPAL SOLID WASTE CHEMICAL FORMULAS APPLIED TO THEORETICAL METHANE YIELD MODELS*

Waste Component	Chemical Formula
Municipal Solid Waste	С99H ₁ 49O ₅₉ N
Paper, Garden Wastes, Wood	C ₂₀₃ H ₃₃ 4O ₁₃₈ N
Food Wastes	C ₁₆ H ₂₇ O ₈ N
Cellulose	C6H ₁₀ O ₅

^{*}Adopted from EMCON, 1980.

Examples of these calculations as well as assumptions of biodegradability and weight fractions are reviewed by EPA (1979) and EMCON (1980). A summary of theoretical gas yields predicted by several authors is given in Table 37.

TABLE 37. SUMMARY OF THEORETICAL GAS YIELDS FROM MUNICIPAL SOLID WASTE REPORTED IN THE LITERATURE

Reference	Method	Total Gas Yield Prediction, m ³ /kg Dry Waste	Methane Yield Prediction, m ³ /kg Dry Waste
5	MSW (Overall)	0.41	0.24
Ħ	MSW (Overall)	0.42	0.21
86	MSW (Overall)	0.46	0.25
21	MSW (Overall)	0.45	0.23
116	Weighted Biodegradability	0.35	0.17
61	Weighted Biodegradability	0.19	0.09
199	Weighted Biodegradability	0.25	0.12
191	Weighted Biodegradability	0.12	0.06
			:

These methods and the yields summarized in Table 37 are, at best, rough estimates of the potential gas production from landfill biodegradation of organic refuse constituents. As demonstrated below, they fail to include the influences of numerous factors such as the extent of aerobic and anaerobic decomposition, nutrient limitations, biological inhibition, and physical-chemical interactions which will generally serve to decrease the predicted methane yields. Moreover, these assumptions project a 100% recovery of gases produced, which on full-scale is impractical due to the high potential for uncontrolled gas migration, escape and entrapment.

Empirical Gas Yield Projections

Field and laboratory observations serve as the best indicator of actual gas yields from sanitary landfills. Gas yields reported in the literature for lysimeter and field studies are summarized in Table 38. As shown in the table, gas yields reported for small lysimeters were generally higher than those reported for larger landfill simulators. Although these results may be expected due to the greater potential on full-scale for localization of activity (microenvironment isolation), gas entrapment and leaks, moisture short-circuiting, etc., the data available to date are insufficient to quantify these factors. Therefore, gas yields reported for lysimeters should be used with caution when extrapolating for full-scale predictions. Data from full-scale operations would be the best indicator, but availability of such data is still limited. Moreover, older landfills which may have reached maturation have not been routinely examined with respect to refuse characteristics and/or gas yields. Newer landfills have yet to reach maturation so that even with routine analysis, total gas yields cannot be formulated and/or substantiated. Such data acquisition is also impeded by the variety and inherent uncertainty of gas collection methods employed at various sites. This problem is further magnified by a lack of understanding of the biochemical interactions occurring within the landfill and the absence of uniform and reliable data collection protocols.

The experimental data presented in Table 38 confirm the impracticality of utilizing theoretical predictions of gas yield. The yields determined experimentally were generally on the order of 10% (or less) of the theoretical predictions presented in Table 37.

Gas Production Rate Predictions

Several authors have developed mathematical models in attempts to describe gas production rates at landfills (see review by EMCON, 1980). However, these models are basically curve fitting techniques for which sufficient data are presently not available. Therefore, current gas production rate predictions are generally obtained by comparing overall gas yields from laboratory studies to the total "stabilization" time, by installing observation wells (EMCON, 1980; DOE, 1981), or by literature comparison. A summary of gas production rate data reported in the literature is presented in Table 39 for small-scale studies, and in Table 40 for full-scale operations.

The variations in lab-scale data are due to differences in waste types, moisture content and application rates, buffer, nutrients, etc.; they also reflect the discontinuities to be expected at full-scale installations. Moreover, gas production rates will vary with time as the organic content leached from the refuse in the landfill decreases due to biodegradation and

TABLE 38. SUMMARY OF EXPERIMENTAL OBSERVATIONS OF GAS PRODUCTION FROM MUNICIPAL SOLID WASTE

	Experimental		Yields, P)/kg (dry)
Reference	Conditions	Total	СН4
225	1.2m dia. x 2.3m deep sealed lysimeters; simulated precipitation applied; 7-20°C; pH 5.6 to 5.9; 190-day study	0.006	0.001
180	municipal refuse wetted with digester supernatant	0.013	0.001
181	2.4m dia. x 8.5m underground steel tank; 19-49°C; 900-day study	0.004	
10	carboys filled with 34.5 kg (wet) of mixture of refuse, moisture, sewage sludge buffer; 37°C; 670-day study	0.25	0.13
71	208-liter sealed steel lysimeters; 15-20°C; 300-day study	0.001- 0.018	0.001
279, 280	1.8m dia. x 3.7m deep steel lysimeters; simulated annual precipitation/infiltration; 2100-day study	0.003-	
211	3m square x 5.2m deep lysimeters; simulated annual rainfall; shredded refuse; 699-day study	0.018	0.004
29	19-liter lysimeters; shredded waste inoculated with sewage sludge; 410-day study	0.001- 0.23	0.001- 0.14

washout. In most cases, gas production will remain low for any active landfill area until the first three phases of landfill stabilization depicted in Figure 1 have been completed. Thereafter, gas production rates will increase rapidly to a maximum or peak value during active methanogenic stabilization (Phase IV). For each landfill section, the majority of the methane generated will be released during a relatively short period, i.e., 10 to 20% of the total time required for stabilization, unless restricted by the

TABLE 39. SUMMARY OF EXPERIMENTAL OBSERVATIONS OF GAS PRODUCTION RATES IN SMALL-SCALE LANDFILL SIMULATORS

Reference	Total Gas Production Rate, Average	m ³ /kg·yr Maximum
225	0.007	0.007
10	0.13	0.44
71	0.0001-0.013	0.055
211	0.002	0.030
29	0.025-0.488	3.16

factors indicated previously. After the available biodegradable substrate is exhausted, gas production rates will rapidly decline and gas collection for recovery from that landfill would correspondingly become unattractive. Recognition of the sequence of events leading to and controlling high gas (methane) production rates is paramount in planning and designing for efficient and cost effective gas management strategies. These strategies should include consideration of reusable and/or mobile gas collection/recovery appurtenances which could be moved sequentially in a scheduled fashion as the landfill is developed. Such preconceived temporal and spatial planning of gas removal/recovery/utilization facilities within a landfill stabilization perspective has not yet been established as general procedure.

In spite of the previously outlined uncertainties associated with the results of landfill studies, the landfill lysimeter and full-scale data presented in Tables 39 and 40, respectively, tend to correlate fairly well. Simulator studies have generally yielded gas production rates on the order of 0.002-0.13 m³/kg·yr, while full-scale studies have exhibited a range of 0.001-0.008 m³/kg·yr. The higher gas production rates were generally reported for studies using buffer and moisture controls. Therefore, gas production rates of 0.005 to 0.008 m³/kg dry waste per year may be anticipated from controlled landfills within a few years of refuse placement. However, it should be recognized that higher gas production rates are probably associated with those portions of a landfill that have aged to the active methanogenic phase of landfill stabilization.

Gas Composition

Landfill gases are typically 40 to 60% methane, with the remaining volume comprised primarily of carbon dioxide and 1 or 2% (total) of other miscellaneous inorganic gases and organic vapors. Bench-scale studies with leachate recirculation have achieved methane contents as high as 70%, although methane contents this high have not been common on full-scale. Table 41 provides a summary of gas composition (% CH_{4} , CO_{2} , N_{2} , O_{2}) for a number of full-scale facilities reviewed by EMCON (1980). Additional data on trace constituents are provided by EMCON (1977) and Lofy (1981) as summarized in Table 42. The data presented indicate that organic and inorganic sulfur

TABLE 40. ON-LINE LANDFILL GAS RECOVERY FACILITIES IN U.S.

	Landfill	Charact	eristics	Gas Recovery Program						
Landfill and Location	Depth,	Area,	MSW in Place,	No. of Gas Wells	Depth of Wells,	LFG Recovered,	Rate of Gas Production	LSF Sold to User,	Heat Content of Delivered,	Type of Gas Treatment
	m	$x_{10}6_{m}^{2}$	x106kg		<u>m</u>	x106m3/day	m3/kg·yr	x10 ⁶ m ³ /day	kJ/m ³	
Acme, CA	24.3	0.50	2,503.8	12	21.3	0.056	0.008	0.056	13.4	Proprietory
Azusa, CA	51.8	0.30	6,350.3	41	30.4-48.7	0.120	0.002	0.014	13.4	Triethylene glycol
Bradley Sanitary Landfill, CA	30.4-36.5	0.26	8,164.6	39	18.2-23.5	0.076	0.003	0.076	12.1	Dehydration Solids Removal
Cinnaminson, CA	18.3	0.26	2,267.9	29	15.2-18.2	0.019	0.003	0.019	14.7-16.1	Minimal; water separators to remove moisture
City of Industry, CA	39.6	1.21	6,350.3	30	39.6	0.141	0.008	0.07	26.8	Selexol and Proprietory
Davis Street, CA	24.4	0.78	5,252.6	20	18.2	0.084	0.005	0.084	13.4	Proprietory
Industry Hills, CA	9.14-33.5	2.4	3,229.5	30	12.9-22.8	0.006	-	-	13.4	None
North Valley,	76.2	0.17	4,535.9	5	30.4	0.031	0.002	0.031	26.8	Triethylene glycol, molecu- lar sieves
Palos Verdes, CA	45.7-76.2	0.17	18,143.7	12	45.7	0.051	0.001	0.021	26.8	Triethylene glycol, molecu- lar sieves
Mountain View, CA	12.2	1.011	3,628	33	13.3	0.085	0.008	0.014	-	Glycol, alumina gel, molecular sieves, acti- vated carbon
Fresh Kills, CA	15.2*	1.61**	68,038.8	123	16.7	0.282	0.001	0.141	26.8	Selexol and
Sheldon-Arleta Sun Valley, CA		0.16	5,450	14	24-33	0.100	0.014	0.10	13.4	Dehydration
Puente Hills,	-	-	-	87	36	0.250	-	0.16	13.4	Not available
Monterey Park, CA	75.7	0.50	20,090	56	-	0.220	0.004	0.22	26.8	Chilling, Selexol, other proprietory
Duarte, CA	-	0.13	1,820	33	18	0.030	0.006	-	-	Not available
Scholl Canyon, Glendale, CA	26.0	0.18	4,500	27	25.7-56.1	0.047	0.006	-	-	Proprietory

Compiled from EPA (1979), USDOE (1981), Campbell (1981), and Tour Fact Sheets from the Sixth International GRCDA Landfill Gas Symposium, March (1983).

*Depth of Landfill in the Project area

**Project Area. Total Area = 6.44 x 10⁶m²

TABLE 41. SUMMARY OF LANDFILL GAS COMPOSITION AT FULL-SCALE LANDFILLS

- 100-30	ALE LANDEI		osition, %	
Landfill Site	СНц	CO ₂	N ₂	02
Azuza Western, Azuza, CA	50	50		
Bradley, Los Angeles, CA	50	50		
Central Disposal Site Sonoma Co., CA	50	50		
G.R.O.W.S., Norristown, PA	46	53	1	
Hewitt, Los Angeles, CA	45	55		
Mountain View, Mountain View, CA	44	34	21	1
Palos Verdes, Rolling Hills, CA	53	43	3	
P.I.I., Denver, CO	45	55		
Scholl Canyon, Glendale, CA	40	51	7	2
Shelton-Arleta Los Angeles, CA	55	45		

After EMCON, 1980.

TABLE 42. TRACE CONSTITUENTS DETECTED IN

	LANDFILL GASES	
Constituent	EMCON, 1977 (Mountain View) (grains/100scf)*	LOFY, 1981 (Scholl Canyon) (grains/100scf)
Hydrogen Sulfide	0.40-0.91	<0.01
Mercaptan Sulfur	0.0 -0.33	0.01**
Sulfides	0.41-0.80	
Disulfides and Residuals	0.93-1.65	
Acetic Acid		0.27
Propionic Acid		0.41
Butyric Acid		0.39
Valeric Acid		0.13
Caproic Acid	*-	0.08
H _{20 Vapor}		123.0

^{*1} grain $\frac{100 \text{ sef}}{100 \text{ sef}}$ = 0.0055 $\frac{\text{kg}}{\text{m}^3}$ **Reported as organic sulfur compounds

TABLE 43. REPRESENTATIVE LIST OF ORGANIC COMPOUNDS IDENTIFIED IN LANDFILL GAS

*Pentane

*Dichloromethane

*Hexane

*Iso-octane

*Methylbenzene

*Tetrachloroethene

*Ethylbenzene

*Nonane

*Propylbenzene

Tetramethylhexane

Methylpentane

Dimethylpentane

Methylhexane

Heptane

Trimethylcyclopentane

Dimethylhexane

Dimethylcyclohexane

Octane

Dimethylhexene

Dimethylcyclohexane

Trimethylcyclohexane

Cyclohexyl-eicosane

Ethylpentene

Ethylmethylbutene

Tetramethylpentane

Diethylcyclohexane

Tetramethylbutane

Methylnonene

Tetramethylcyclopentane

Ethylmethylcyclohexane

Methylpropylpentanol

Dichlorofluoromethane

Heptanol

Decane

 ${\tt Decahydronaphthalene}$

*Dichloroethylene

*Dichloroethane

*Benzene

*Trichloroethylene

*Trichlorethane

*Chlorobenzene

Bimethylbenzene

*Isopropylbenzene

*Napthalene

Methylpentylhydroperoxide

Methylcyclopentane

Hevene

Dimethylcyclopentane

Cycloheptane

Tetrahydrodimethylfuran

Methylheptane

Ethylmethylcyclopentane

Tetramethylcyclopentane

Dimethylheptane

Ethylcyclohexane

Ethylmethylcyclohexane

Methylpropylpentanol

Iso-octanol

Octahydromethylpentalene

Dimethyl(methylpropyl)cyclohexane

Ethylmethylheptane

Methylene-butanediol

Tetramethylhexene

Methylpropylpentanol

Nonyne

Methyl(methylethenyl)-cyclohexene

Hexadiene

Ethylbutanol

Butycyclohexane

After GRI, 1982

^{*}Further quantitative data on these compounds is provided in Table 44.

TABLE 44. SUMMARY OF MAXIMUM AND AVERAGE VOLATILE ORGANIC COMPOUND CONCENTRATIONS (PPM BY VOLUME) FOUND IN FULL-SCALE LANDFILL AND LANDFILL SIMULATOR GASES

	Full-Scale Landfill Gases*				Landfill Simulators**		Regulatory Levels				
	Inlet to	Treatment	Product Gas ^a	Surface			TLVD	STELC	NYSAALÍ		NIOSHE
Compound	Max	Mean	·		Max	Mean				PEL/TWA	IDLH
Pentane	5.0	0.4	0.8	0.3	ND	ND	600	750	NR	1000	5000
1,1-dichloroethylene	1.1	0.1	0.2	<0.01	0.55	0.12	5	20	0.02	5	NR
Dichloromethane	12.0	0.9	0.6	0.2	1.57	0.19	100	500	0.33	500	5000
1,2-dichloroethylene	3.6	0.7	0.8	0.2	3.26	0.21	200	250	NR	200	4000
1,1-dichloroethane	7.5	0.4	0.2	0.3	2.08	0.33	200	250	NR	100	4000
Hexane	28.0	1.8	8.3	0.3	97.00	8.83	50	NRe	NR	500	5000
Benzene	23.0	1.7	0.7	0.3	12.80	1.64	10	25	0.03	1	2000
Iso-octane	4.1	0.4	0.7	1.0	8.46	0.77	300	375	NR	NR	NR
Trichloroethylene	8.1	0.8	0.7	1.0	1.76	0.37	NR	NR	0.17	100	1000
Methylbenzene	210.0	9.6	2.9	0.3	6.35	1.92	100	150	2.00	200	2000
1,1,2-trichloroethane	0.1	<0.01	<0.01	NDq	ND	ND	10	20	0.03	10	500
Tetrachloroethylene	35.0	1.3	0.8	0.3	0.20	0.03	NR	NR	0.17	100	500
Chlorobenzene	11.0	0.4	0.1	ND	0.24	0.04	75	NR	0.33	100	2000
Ethylbenzene	54.0	3.0	1.1	0.2	4.01	0.57	100	125	0.25	75	2400
m,p-xylene	91.0	3.7	1.2	0.8	4.40	0.66	100	150	0.33	100	10000
o-xylene	25.0	1.3	0.4	0.1	2.90	0.50	100	150	0.33	100	10000
Nonane	12.0	0.9	0.7	0.2	6.82	1.28	200	250	NR	200	NR
Isopropylbenzene	28.0	0.7	0.5	<0.01	1.22	0.15	50	75	NR	50	8000
Propylbenzene	3.5	0.1	0.2	<0.01	0.17	0.05	NR	NR	NR.	NR	NR
Napthalene	0.1	<0.01	⁵ 0.01	ND	0.84	0.14	10	15	0.03	10	500

aIncluding products from a high- and a medium-BTU gas treatment system

bThreshhold Limit Value - American Conference of Governmental Industrial Hygenists, Inc., ACGIG, 1982*

CShort Term Exposure Limit - ACGIH, 1982*

dND = not detected

eNR = not reported

f New York State Acceptable Ambient Levels for toxic air contaminants as presented in Air Guide #1, NYSDEC, December 15, 1983.**

8 Occupational Safety and Health Administration and National Institute for Occupational Safety:

PEL = Permissible Exposure Level averaged over an 8-hour work shift:

IDLH = Maximum Level Immediately Dangerous to Life or Health, i.e., from which one could escape within 30 minutes without irreversible health effects.**

^{*}After GRI (1982)

^{**}After Vogt and Walsh (1984)

compounds may be common trace gaseous constituents and that volatile organic acids were also detected.

Investigations of trace organics in landfill gases have been performed by ESCOR, Inc. for the Gas Research Institute (GRI, 1982). Sixty-nine individual organic compounds were identified by two independent laboratories as summarized in Table 43. Twenty compounds were targeted for further quantitative study and a summary of ESCOR's findings for inlet, processed, and surface gases are compared to the American Conference of Governmental Industrial Hygenists' Threshold Limit Values (TLV) and Short-Term Exposure Limits (STEL), New York State Acceptable Ambient Levels and OSHA/NIOSH limits in Table 44.

Similar studies performed for GRI on gases emanating from landfill simulators containing known quantities of co-disposed industrial waste and priority pollutants have been reported (Vogt and Walsh, 1984). The results of these studies are also presented in Table 44.

COLLECTION AND TREATMENT OF LANDFILL GASES

The equipment required and generally used to collect and treat landfill gases will depend upon the intended use of the gas. Product gases may be withdrawn to prevent migration and simply flared or exhausted to the atmosphere, withdrawn and sold to a consumer directly, used on-site with or without prior treatment, or treated and sold to a consumer as pipeline quality gas.

Landfill Gas Collection--

Gas collection systems employed in practice may consist of simple ventilation and/or flaring systems coupled with shallow trench induced exhaust networks intended primarily for migration control, and/or perforated pipe well matrices placed either vertically or horizonally. The latter are generally used for energy recovery and are reviewed in more detail by Esmaili (1975), Moore and Lynch (1977), Stone (1978), EPA (1979), EMCON (1980) and USDOE (1981).

Induced exhaust well systems are the most popular for energy recovery. These systems will generally encompass extraction equipment such as transport and well piping, backfill gravel, blowers and compressors, metering equipment, and monitoring equipment. Well or trench systems generally incorporate perforated PVC pipe, although polyethylene or fiberglass pipes can also be used. The advantages and disadvantages of these are summarized in Table 45. Networks of header pipes are generally connected to vertical wells which are spaced so that their radii of influence overlap; the radius of influence of wells depend on their depth and the pumping rate (Esmaili, 1975; Moore and Lynch, 1977); Constable, et al., 1979), as well as the degree of compaction, i.e., refuse and cover permeability.

Vertical wells are generally placed to a depth approaching the total refuse depth depending on the existing volume of leachate. The lower half or more of the well piping is usually perforated. Gravel backfill is used for the perforated section, while the upper portion of the boreholes are backfilled with soil to help prevent air intrusion.

TABLE 45. ADVANTAGES AND DISADVANTAGES OF GAS COLLECTION PIPING MATERIALS

PIPING MATERIAL	ADVANTAGES	DISADVANTAGES			
Polyvinyl chloride (PVC)	Lightweight, easily installed, corrosion resistant, low cost.	Becomes brittle when exposed to sunlight for extended periods; fails under high differential shear loading.			
Polyethylene (PE)	Corrosion resistant; can withstand high bending loads without shear.	Requires special welding equipment for installation; higher cost than PVC.			
Fiberglass	Lightweight	High cost; special sealing required to prevent leachate intrusion.			
Steel	Can withstand high bending loads without shear.	Subject to corrosion from acids; special welding equipment required; high cost.			

After EMCON 1980; Street, 1983; Petro, 1983.

Perforated pipe may also be placed horizonally in a network of shallow trenches, but these must be well sealed at the top to prevent introduction of air. In some cases, shallow gravel-filled trenches have been used without perforated pipe, with the trench serving as the collection system. The success of these systems is highly dependent upon providing an impermeable layer, perhaps a synthetic liner, to prevent air introduction from the surface. The economics of gas collection and liner systems are addressed in detail by EPA (1979).

Centrifugal blowers are often recommended for low vacuum pressures [up to 16 cm (40 in.) water]. These blowers are easily throttled throughout their operating range, although spark-proof varieties are required and are available from several manufactures. For higher pressures, regenerative blowers may be desired. Rotary lobe compressors are generally recommended for landfill gas applications requiring gas pressures in excess of 1425 to 2138 kg/m² (2-3 psi).

Gas flow measurement in landfills may be accomplished in gas collection piping using pitot tubes, venturi and orifice plate flow meters, and turbine meters. However, such flow measurements may be difficult to perform accurately and a combination of the above methods, coupled with frequent cross-calibrations of these, is highly recommended.

Landfill Gas Treatment--

As noted previously, the intended use of the gas produced at a particular landfill will dictate the extent of treatment required. Raw landfill gases typically have a low heating value due to the dilution of methane with CO_2 , N_2 , and possibly O_2 . They will likely contain troublesome constituents such as water and hydrogen sulfide. Trace levels of hydrocarbons are also of concern, although these may be expected to oxidize rapidly when the gas is combusted.

Treatment technologies available for the production of either medium BTU $(13-15 \text{ kJ/m}^3; 500-600 \text{ BTU/SCF})$ or pipeline $(26 \text{ kJ/m}^3; 1000+ \text{ BTU/SCF})$ gases are aptly reviewed by EPA (1979), Ashare (1981) and Love (1983). An indication of treatment processes used at currently operating full-scale landfills is presented in Table 40.

Medium BTU Gases--Medium BTU gas is generally produced from raw landfill gas by removing the water vapor and possibly hydrogen sulfide. Condensate and particulates are first removed in a gas/liquid separator; if further water vapor removal is desired, the gas is compressed and cooled prior to being dehydrated using glycol or triethylene glycol. As indicated in Table 46, silica gel, alumina, or molecular sieves may also serve to absorb excess water vapor, although these techniques are generally too expensive for large applications. Glycol absorption is generally the method of choice.

Hydrogen sulfide may be removed using a number of organic solvent absorbents, many of which will absorb CO2. H2S can be selectively removed using dry oxidation processes which are also selective for mercaptans, carbon oxysulfide, carbon disulfide and thiophenes. These processes use intermediate oxygen carriers (such as wood shavings) which are nonregenerative and require periodic recharging. This has led to the development of aqueous hydrogen sulfide oxidation methods which utilize solutions or suspensions of sodium carbonates, potassium carbonates, heavy metals (arsenic or iron) or quinones. Continuous operations with recovery of elemental sulfur of high purity are usually possible. However, since these latter processes may be prohibitively expensive for most medium BTU gas applications, solvent methods are generally preferred.

High BTU (Pipeline) Gases--Landfill gas must have a high heat value and a high degree of purity to be sold and mixed with pipeline quality natural gas. Water must be removed to less than 0.0001 kg/m 3 (<7 lbs/MMSCF), hydrogen sulfide to levels ranging from 4 to 80 kg/m 3 or less, and carbon dioxide and nitrogen to sufficiently low levels so that 1000+ BTU/SCF (>26 kJ/m 3) are obtained.

Water can be removed by the previously mentioned silicate absorption processes, or by absorption with glycols or Selexol, a proprietary solvent which also absorbs heavy hydrocarbons. Alternatively, water may be removed by chilling to approximately 35°F (2°C). Heavy hydrocarbons may be removed using absorption with lean oils or ethylene glycol, adsorbed using activated carbon, or by a combination of absorption followed by adsorption.

Carbon dioxide can be removed using aqueous phase organic solvents, alkaline salt solutions or alkanolamines as indicated in Table 46. Solid bed adsorption using activated carbon or molecular sieves (silicates) is also

TABLE 46. SUMMARY OF GAS TREATMENT METHODS AVAILABLE FOR THE REMOVAL OF WATER, HYDROCARBONS, CO2, and H2S

	REMOVAL OF WATER, HYDROCARBONS,				
TARGET	TREATMENT	TREATMENT			
COMPOUND	PROCESS	PROCESS ALTERNATIVES			
	TYPE	AVAILABLE			
Water	Adsorption	 Silica gel, Molecular sieves, and Alumina 			
	Absorption	*1. Ethylene glycol (at low temperature -20°F) 2. Selexol			
	Refrigeration	1. Chilling to 35°C			
Hydrocarbons	Adsorption	1. Activated carbon			
	Absorption	1. Lean oil absorption, 2. Ethylene glycol, and 3. Selexol all at low temperatures (-20°F, -29°C)			
	Combination	*1. Refrigeration with Ethylene glycol plus activated carbon adsorption			
CO ₂ and H ₂ S	Absorption	1. Organic Solvents Selexol Fluor Rectisol 2. Alkaline Salt Solutions Hot Potassium and inhibited hot potassium (Benefield and Catacarb Processes) 3. Alkanolamines mono,-di-triethanol amines; diglycolamines; *UCARSOL-CR (proprietary chemical)			
	Adsorption	 Molecular Sieves Activated Carbon 			
	Membrane				
	Separation	1. Hollow Fiber Membrane			

^{*}Designates method of choice (after Love, 1983).

possible, although extreme caution is needed to prevent sieve contamination by water, butanes and heavier compounds. Carbon dioxide may be selectively removed by reverse osmosis processes. However, membrane processes require extensive pretreatment of product gases to avoid scaling or fouling of the membrane surface.

Adsorption processes (Table 46) are generally preferred for $\rm CO_2$ and $\rm H_2S$ removal. Organic solvents can accommodate high acid gas loadings and require relatively low recirculation rates compared with other methods. Each of these methods have their own advantages and disadvantages, as reviewed by EPA (1979) and Love (1983). Selexol also absorbs heavy organics and water, thereby decreasing its overall affinity for $\rm CO_2$. Moreover, $\rm CO_2$ is absorbed only at high pressure and low temperature, therefore, refrigeration is required. The same is true for Rectisol, which operates best at $-80\,^{\circ}\text{F}$ ($-63\,^{\circ}\text{C}$). Alkaline salt processes generally require high pressures [142,560 kg/m² (200 psig]. In these processes, hot potassium carbonates or sodium carbonates (sometimes coupled with proprietary inhibitors as in the Benefield and Catacarb processes) serve as buffers to react with acid gases.

Alkanolamine absorption methods have a widespread acceptance for $\rm CO_2$ removal from natural gas; monoethanol (MEA) and diethanolamines (DEA) have also been successfully applied. MEA is corrosive at 19% concentrations, whereas, DEA may be used at solution strengths approaching 35% without undue corrosion. Therefore, DEA, which does not absorb heavy hydrocarbons and, therefore, selectively removes $\rm CO_2$, is the generally preferred method of $\rm CO_2$ removal.

Nitrogen may be removed by liquifying the methane fraction of landfill gas by mechanical refrigeration, leaving the other gas fractions to be exhausted. Considerable refrigeration equipment is required for this process and it is usually prohibitively costly. The best practice is to avoid drawing air into the landfill to the greatest extent possible, thereby minimizing the nitrogen content.

Economics--

The economics of implementing the preceding gas collection and treatment alternatives have been reviewed in detail by others (EPA, 1979). In this review, four gas treatment alternatives were considered including dehydration, dehydration plus $\rm CO_2$ removal, dehydration plus $\rm CO_2$ and $\rm N_2$ removal, and dehydration plus $\rm CO_2$ removal and propane blending. Each alternative was also analyzed at several gas production rates as summarized in Table 47. Scrutiny of these data indicates the relative increased costs associated with $\rm N_2$ removal and the importance of minimizing the introduction of air during gas extraction from the landfill. Based upon an energy value equivalent to revenue of \$1.9/mmkJ (1979 dollars), the probable payback periods associated with each alternative ranged from <3 years (Alternative I) to 10 to 30 years (Alternatives II and IV) and >30 years (Alternative III).

TABLE 47. RELATIVE	ECONOMICS OF SEVERAL GAS	TREATMEN	IT ALTER	NATIVES	3
Treatment Alternative	Cost Item	Product	ion Rat	e, std	m ³ /min
Alternative I. Dehydration, compression		INPUT OUTPUT	13.74 13.03		69.38 65.70
	Capital Cost, M\$ Annual Operating Cost, Annual Energy Output, 1 Energy Cost, \$/MM KJ		636 185 116 1.6	273 291	1388 387 581 0.7
Alternative II. Dehydration and CO ₂ removal		INPUT OUTPUT	47.29 13.74		141.60 42.34
removal	Capital Cost, M\$ Annual Operating Cost, Annual Energy Output, 1 Energy Cost, \$/MM KJ		1740 359 231 1.6	2772 537 463 1.2	3792 702 711 1.0
Alternative III. Dehydration plus CO ₂		INPUT OUTPUT	47.29 11.89		141.60 40.36
removal and N ₂ removal	Capital Cost, M\$ Annual Operating Cost, Annual Energy Output, 1 Energy Cost, \$/MM KJ		2612 555 203 2.7		5450 1051 695 1.5
Alternative IV. Dehydration plus CO ₂ removal and propane blending		INPUT OUTPUT			141.60 43.70
	Capital Cost, M\$	v.,	1802	2847	3877

Annual Operating Cost, M\$ 463 Annual Energy Production, 10⁹ KJ 251 Energy Cost, \$/MM KJ 1.8

730

503 1.5 992

773 1.3

SECTION 8

LEACHATE AND SOIL INTERACTIONS

GENERAL PERSPECTIVE

As previously noted, one of the primary concerns associated with landfill disposal of municipal and industrial wastes centers on the formation and migration of leachate into the surrounding environment. Presently, the installation of low permeability clay and/or synthetic liners is mandated to deter this migration and its potential deleterious effects. However, many landfills are in existence which have been constructed without the benefit of such liners. Moreover, clay liners are known to be permeable, and recent evidence has shown the same to be true for synthetic liners (Haxo, 1984; Giroud, 1984). Therefore, the purpose of this section is to introduce literature pertinent to the migration of leachates and their subsequent interactions with surrounding native soils and to use it to evaluate the associated implications in relation to soil types present and the necessity and/or effectiveness of available remedial measures. It is not intended here to provide an exhaustive review, but to expose such environmental impacts should leachate (or gas) migration occur.

Basic research on soil/leachate interactions has been ongoing in the U.S. (Roulier, 1977; Fuller, 1977; Copenhauer and Wilkinson, 1979), Canada (Phillips and Nathawani, 1976) and Europe (Sumner, 1978) since the early 1970's. The scope of this research has been extremely broad in nature due to the wide variability in native soil types and leachate characteristics. To provide for a more focused discussion, the review presented here will be limited to soils comprised of mixtures of sand, silt and clays, with the clays consisting of kaolinitic, illitic, and montmorillonitic minerals. Bentonitic clays were not considered, since these are specifically used in slurry wall systems and the substantial amount of information available on the interaction between a variety of toxic chemicals and slurry walls and slurry trenches is beyond the scope of this review. Nevertheless, since bentonite is in reality a special type of montmorillonite, many of the results and conclusions of this section may be extended to include bentonite slurries.

Soils used for experimentation basically fall into two categories; defined mixtures of different proportions of clay minerals and sands, and natural soils which were considered representative of a particular landfill site. While the former offer valuable insight into specific physico-chemical interactive properties of individual materials and mixtures thereof, the latter are more relevant to actual engineering applications. Recognizing that results from a particular site may not extrapolate well to other landfill sites, the use of defined materials may be preferred to provide boundary expectations of the response of different soil types to applied leachates.

Studies on the interactions of soils with leachates can be broadly classified into four topical areas, each focused on the fate or biological removal processes, as associated with heavy metals, pesticides, organics and selected toxic substances. Accordingly, the following discussion is organized to address each of these areas in turn, followed by a review of attempts at modeling leachate and soil interactions, and a summary and synthesis of recommendations for future research.

Heavy Metal Attenuation

A considerable number of studies have been performed to evaluate interactions between heavy metals in leachate and soils. For the most part, emphasis has been placed on the fates of cadmium (Hem, 1972; Jurinak and Sanitillan-Medrano, 1974; Weber and Posselt, 1975; Stevenson, 1976; Gibb and Cartwright, 1976; Fuller, 1977, 1978; Garcia-Miragaya and Page, 1977; Doner, 1978; Fuller, et al., 1981), nickel (Fuller, 1977; Doner, 1978), lead (Santillan-Medrano and Jurinak, 1976; Stevenson, 1976; Zimdahl and Skogerbee, 1977), zinc (Hem, 1972; Fuller, 1977; Fuller, et al., 1981) and copper (Stevenson, 1976; Doner, 1978).

Results from these studies provide substantive evidence that these metals are mobile in natural soils, even in those soils exhibiting low permeability. The relative mobility of these metals has been found to be a function of several factors including pH, soil types, total organic carbon content of soil organic matter, nature and concentration of metal ions, and the aerobicity (or anaerobicity) of the soil. In general, as pH decreases due to acidic conditions imposed by organic acid formation, metals become more mobile (Gibb and Cartwright, 1976; Harkins, 1977; Theis, 1976, 1977; Griffin and Shimp, 1976; Griffin, et al., 1977; Frost and Griffin, 1977; Zimdahl and Skogerbee, 1977). Korte, et al., (1975) reported that upon application of synthetic acidic leachate to typical natural soils, metals were eluted in the following order: Mn, Co, Ni, Zn, Cu, Cr, Pb, Cd. Using neutral leachates, Farquhar (1977) noted that all trace elements studied were adsorbed to some extent, with Zn and Fe being most strongly attenuated, and Ca and Mn being most mobile. Roulier (1977) reported that Cr, Hg, and Ni were extremely mobile in a wide variety of soils. Niebla, et al., (1976) reported Hg to be more mobile in leachate than in water, while Griffin and Shimp (1976, 1978) indicated that Hg in leachates was significantly attenuated by clay materials. Gibb and Cartwright (1976), Griffin and Shimp (1976), and Griffin, et al., (1977) all reported Cr to be particularly mobile at neutral pH values, since the Cr+6 form is more mobile than Cr^{+3} . Therefore, acidic (or "younger") leachates show less Cr mobility in electronegative clay soils than do the less acidic leachates produced during and after the active methanogenic phases of stabilization. Niebla, et al., (1976) noted similar observations with respect to Hg attenuation.

The composition of the leachate (conductivity, total iron, total metals, organics) and the composition and nature of the soil (% clays, pore size distribution, permeability) also play a major role in determining metal mobility (Korte, et al., 1975; Fuller, 1977; Fuller, et al., 1976, 1981). Griffin and Shimp (1976, 1978) suggest that the clay content is important due to its cation exchange properties, and emphasize that the cation exchange capacity (CEC) is more important than total particle surface area. Fuller, et al., (1981) support this notion, and correlate the high mobility of Cr and Se

to their low potentials for cationic exchange. In this regard, the presence of high levels of salts, iron, and organics (TOC) will enhance the migration of metals due to a more rapid exhaustion of the native CEC. Highly permeable soils will also encourage greater metal migration due to higher mass flows and reduced contact opportunity, resulting in a lower potential for occurrence of clay precipitation reactions.

Microbial activity can influence metal migration by affecting several of the previously mentioned attenuation mechanisms. Many biochemicals synthesized by microorganisms, including amino acids and the simple aliphatic acids, form soluble complexes with metal ions (Stevenson, 1982). Most important is probably the effect of changing pH; first as a result of acidification and subsequent methanogenesis, secondly as a result of competition for adsorption sites and lastly by a restriction of flow due to clogging of soil pores. Further research on relationships between polyvalent cations and the organic components of soil is warranted, since soil organic constituents can form both soluble and insoluble complexes with metal ions.

Pesticide Migration

Pesticide attenuation in landfills arises from two major mechanisms, i.e., microbial degradation and adsorption. Newman and Downing (1958) and Davidson, et al. (1976, 1978, 1980) have studied the problems of pesticide disposal and have concluded that biological degradation represents the major removal mechanism in soils. The degradability of particular pesticides such as atrazine (Cole, 1976; Dao and Lavy, 1978), triazine (Kaiser, et al., 1970) and parathion (Wolfe, et al., 1973; Katan, et al., 1976) as well as combinations of pesticides (Hubbel, et al., 1973) have also been studied. In general, biological degradabilities varied with soil type and pesticide concentration and although a long lag period was typically observed (especially at high concentrations), in almost all cases the pesticide was eventually degraded.

Partial microbial degradation of many pesticides results in the formation of chemically reactive intermediates. These intermediates can potentially combine with the amino- or carbonyl-containing constituents of soil organic matter. The immobilization of chloroanilines (liberated by partial degradation of phenylamide herbicides) by soil organic matter has been reported (Bartha, 1971; Bartha and Pramer, 1970; Hsu and Bartha, 1974). Acid and base hydrolysis resulted in the partial release of chloroanilines bound to soil organic matters. Additionally, the soil-bound chloroanilines were found to be resistant to microbial degradation (Hsu and Bartha, 1974).

The mechanisms for the adsorption of pesticides by soil organic matter include ion exchange, protonation, H-bonding, van der Waal's forces, and coordination through an attached metal ion. An excellent review of these mechanisms has been provided by Stevenson (1982). In addition to these mechanisms, nonpolar molecules are partitioned onto hydrophobic sites on soil organic matter. Adsorption of pesticides onto different soil types (silts, sands and clay) follows Freundlich isotherms. In addition, adsorption sites become saturated at high pesticide concentrations and a uniform wetting front will be absent (Rao, et al., 1979).

In addition to other factors, the mobility of pesticides in the absence of biological activity are related to their solubility. Most pesticides are relatively insoluble in water, although they may be more soluble in acidic and organic-containing leachates than in water. The interrelationships between solubility, biodegradation, and adsorption in soils remain poorly understood and, therefore, are requisite of further study.

Organics

Leachate-derived organics are important not only with regard to their impact as contaminants, but also with respect to their effects on soil structure and its resultant permeability. Early work on this topic, initiated by Grim (1962), indicated that the solubility of clays in acids is dependent upon several parameters including the nature and concentration of the organic acid present, temperature and the duration of the acid/clay contact period. The dissolution of aluminum and other ions was evident even under exposure to relatively weak acids. These results were supported with experiments by Anderson, et al. (1982) where a weak acid (acetic acid), a weak base (aniline), and paint solvent were used. Tests with laboratory columns and field cells (Brown and Anderson, 1980; Anderson, et al., 1982; Brown, et al., 1983) showed an initial decrease in permeability of the soil, followed by a significant increase in permeability accompanied by a change in permeate color. Dissolution of iron and calcium carbonate was suspected in all cases, and "piping", the formation of a noticeable channel in the soil matrix, was observed. Weak acids were shown to be more reactive than weak bases, although weak bases were also responsible for alteration of the soil structure. However, no piping was observed for weak base applications and an aggregated, plate-like structure was noted following contact with weak base. While the results of Anderson, et al. (1982) showed significant changes in permeability following the passing of only two pore volumes, contrasting results have been presented by Lentz, et al. (1984), who observed no change in permeability following passage of six pore volumes of strong acids or bases. Therefore, unanimity of agreement in the published literature is not available and, of more consequence, effects of aqueous mixtures at varying concentrations often are not perceived due to experimental difficulties and/or the lack of true simulation of landfill leachate contact opportunities.

Anderson, et al. (1982) also conducted similar tests with neutral polar organics such as ethylene glycol, acetone, and methanol, and also with neutral nonpolar organics such as xylene and heptane. In all cases, significant changes in soil permeability were noted, often eventually amounting to a two order of magnitude increase in permeability. Ethylene glycol and acetone produced a pronounced initial decrease in permeability, followed by a gradual increase in permeability. At the completion of each test, the soil samples were inspected and structural changes ranging from block-like structures to shrinkage cracks were observed. Re-introduction of water did not result in reversion to the original permeability. Similar results were noted by Foreman and Daniel (1984) and Acar, et al. (1984a,b). However, Acar, et al. (1984b) found that the actual pore size distribution was basically unaltered upon exposure to organics.

The mechanisms at work appear related to the type of clay present, the dielectric constant and dipole moment of the permeant, and the initial degree of soil saturation. Kaolinites showed the greatest resistance to permeability

changes. Foreman and Daniel (1984) showed changes in both plasticity and liquid limits when comparing Atterberg limits tests performed with methanol and water. Kaolinitic samples exhibited decreased Atterberg limits, while illitic and montmorillonitic samples showed increased limits. Although it would be expected that liquid limit alterations may stem from changes in interlayer spacings of clay particles, Anderson, et al. (1982) showed no interlayer spacing changes using X-ray diffraction techniques.

Future investigations into the interactions of organic materials, especially in aqueous solutions of leachate-derived organics, seem warranted in order that the interactive effects and mechanisms of permeability alteration can be established with confidence. Additional studies are also needed to address the long-term stability of altered clay structures and, although soils such as used by Anderson, et al. (1982) would generally be accepted as liner materials based on permeability tests using water or calcium sulfate solutions, they may well be rejected when applied to circumstances where soil contact may occur. Data on these issues are only currently becoming available.

Other Toxic Compounds

The majority of studies performed to evaluate leachate and soil interactions have focused on heavy metals, pesticides, and organic solvents. Several studies on the fate of other known toxic compounds such as arsenic, cyanide, and halogenated organics are also available in the literature. Of these, arsenic is apparently relatively immobile in soils, and its adsorption increases with increasing soil concentrations of iron, iron oxides, and aluminum (Fuller, et al., 1980). Johnson and Lancione (1980) have shown that complete immobilization of arsenic by fixation is feasible. In contrast, cyanide is typically very mobile in soils and is apparently more mobile in water than in "typical" leachates (Alesii and Fuller, 1976), thereby indicating potential reactions between cyanide and other leachate components. Microbial attack on cyanides was noted to be very dependent on cyanide concentration, but was considered a potentially useful means of attenuation. Moreover, cyanide was better attenuated at low pH and in the presence of iron oxides and clays of lower electronegativity such as kaolinite or 1:1 lattice clays.

Halogenated organics such as polychlorinated biphenyls (PCB's), polybrominated biphenyls (PBB's), and hexachlorobenzenes (HCB's) are suspected or known carcinogens which are nonpolar and, therefore, of low solubility in water. In column tests using typical soils and leachates, these compounds were found to be relatively immobile; their mobility was further related to the clay content of the soil (Griffin, 1978; Griffin and Chou, 1980). However, in the presence of organic solvents, PCB's and HCB's were shown to be very mobile (Griffin and Chou, 1980). Unfortunately, these compounds are also biologically refractory and tend to persist in soils, thereby presenting a high potential for eventual migration. Adsorption of these compounds onto clays follows linear Freundlich isotherms and increases as the organic content (TOC) and the surface area of the clay increases (Griffin and Chian, 1980). The more chlorinated biphenyls are less mobile than their less chlorinated counterparts.

Analytical Modeling of Leachate/Soil Interactions

A number of authors have developed mathematical models which attempt to describe the movement of single or combinations of contaminants through soil strata. This work has been concentrated in three main areas, i.e., descriptions of general flow through porous media, predictions of contaminant transport, and predictions of contaminant retention (sorptive or other attenuative characteristics of soils).

Ogata (1961) and Elzy, et al. (1974) have concentrated on the problems of vertical and lateral tansmissivity of liquids in soils, while Perrier and Gibson (1982) focused their efforts on percolation and evapotranspiration. These models face uncertainties associated with descriptions of the geologic features (soil types, thicknesses, porosities, permeabilities) of a site which must be incorporated into a quantification of leachate flow. Using finite elements methods, Pinder (1973) and Segol (1977) have attempted to model the potential for leachate contamination of groundwater supplies, as have Pickens and Lennox (1976) and Straub (1980). Sumner (1978) and Pettyjohn, et al. (1981) have focused on the migration of leachate as a plume traversing from beneath the landfill, whereas, several authors have concentrated on dispersion and diffusion processes (Rubin and James, 1973; Van Genuchten, et al. 1977). Other researchers have focused on reactions occurring between the subsurface soil and occluded water (Van Genuchten, et al., 1974; Selim, 1976; Dragun and Helling, 1981).

Some investigators have attempted to describe the fate of specific pollutants such as nickel and cadmium (Fuller, et al., 1981); cadmium (O'Donell, et al., 1977); iron, manganese, and zinc (Farquhar, 1977); salts (Brunotte, et al., 1970); and pesticides (Davidson, et al., 1980b). Intuitively it would seem that a large number of factors would influence the attenuation of these pollutants, e.g., adsorption, liquid throughput, microbial activity and pH, precipitation, and complexation. Moreover, combinations of these factors would make effective modeling very difficult. Nevertheless, these authors also report successful attempts at verifying their models under controlled and defined conditions. While the models developed may serve to evaluate the relative importance of specific parameters or factors regulating leachate transport under these conditions, it is unlikely at this stage that these models can be successfully extended to field applications. Therefore, models need to be developed and verified under field conditions, providing as much quantitative site data on test conditions, geometry of components utilized and detailed results as possible.

Although the state of knowledge concerning the interaction of soils and leachate has been enhanced over the last decade, particularly with respect to attenuation, mobility and alteration of both leachates and the soils they contact, relatively little is known about the actual changes that occur to the soils themselves. Researchers have recently attempted to quantify the effects on soil permeability, but very little is known about specific changes in soil structure or fabric and the long-term stability of these alterations. Future work should be directed toward quantifying the actual test conditions and the changes in the physical properties of the soil as an aid to understanding the role of the numerous parameters that effect interaction. Additionally, these data would be extremely useful to those developing analytical models to simulate such interactive processes.

REFERENCES

- Acar, Y.B., A. Hamidon, S. D. Field, and L. Scott. Organic Leachate Effects of Hydraulic Conductivity of Compacted Kaolinite. In: Proceedings of ASTM Symposium on Impermeable Barriers for Soil and Rock, Denver, Colorado, 1984a.
- 2. Acar, Y. B., I. Olivieri, and S. D. Field. The Effects of Organic Fluids on the Pore Size Distribution of Compacted Kaolinite. In: Proceedings of ASTM Symposium on Impermeable Barriers for Soil and Rock, Denver, Colorado, 1984b.
- 3. Alesii, B.A., and W. H. Fuller. The Mobility of Three Cyanide Forms in Soils. In: Proceedings of Hazardous Wastes Research Symposium on Residual Management by Land Disposal, University of Arizona, Tucson, Arizona, 1976. pp. 213-223.
- 4. Alpern, R. Decomposition Rates of Garbage in Existing Los Angeles Landfills. Master's Thesis, California State University, Long Beach, California, 1973.
- 5. Anderson, D. R., and J. P. Callinan. Gas Generation and Movement in Landfills. Industrial Solid Waste Management. In: Proceedings of National Industrial Solid Wastes Management Conference, University of Houston, Houston, Texas, 1970.
- 6. Anderson, J. R., and J. N. Dornbush. Influence of Sanitary Landfill on Groundwater Quality. J. American Water Works Association, 59(4):457-470, 1967.
- 7. Anderson, D., K. W. Brown, and J. Green. Effect of Organic Fluids on the Permeability of Clay Soil Liners. In: Proceedings of Eighth Annual Research Symposium, EPA, Fort Mitchell, Kentucky, 1982.
- 8. Armentrout, W. F., and L. L. Bortner. Preliminary Investigation on Landfill Stabilization with Leachate Recycle. Special Research Problem, Department of Civil Engineering, Georgia Institute of Technology, Atlanta, Georgia, 1971.
- 9. Ashare, E. Analysis of Systems for Purification of Fuel Gas. In: Fuel Gas Production from Biomass, Vol. II., D. L. Wise, ed. CRC Press, Boca Raton, Florida, 1981.
- 10. Augenstein, D. C., C. L. Cooney, D. L. Wise, and R. L. Wentworth. Fuel Gas Recovery from Controlled Landfilling of Municipal Wastes. Resource Recovery and Conservation, 2:103-107, 1976a.

- 11. Barber, C., P. J. Maris, and R. G. Johnson. Behaviour of Wastes in Landfills: Study of the Leaching of Selected Industrial Wastes in Large-Scale Test Cells. WLR Technical Note 69, Department of the Environment, Edmonton, N. London, 1980. 18 pp.
- 12. Bartha, R., and D. Pramer. Metabolism of Acylanilide Herbicides. Ad. Appl. Microbiol., 13(317), 1970.
- 13. Bartha, R. Fate of Herbicide-Derived Chloranilines in Soil. Agr. Food Chem. J., 19:385, 1971.
- 14. deBekker, P., and H. Kaspers. Anaerobic Treatment of Leachate from Controlled Tips of Municipal Solid Waste. In: Proceedings of the Fifth European Sewage and Refuse Symposium, Munich, Germany, 1981.
- 15. Bern, J. Living with Leachate. In: Proceedings of the Fourth National Congress Waste Management Technology and Resource and Energy Recovery, National Solid Waste Management Association and U.S. Environmental Protection Agency, Atlanta, Georgia, November 1975. p. 302.
- 16. Birkbeck, A. E., R. Vos, and C. C. Walden. Evaluation of Landfill Beds on Anaerobic Treatment Systems for Landfill Leachates. In: Proceedings of the Technical Association of the Pulp and Paper Industry, Environmental Conference, Washington, D.C., September, 1980. p. 157.
- 17. Bjorkman, V. B. Physical-Chemical Treatment and Disinfection of a Landfill Leachate. Master's Thesis, Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, 1979.
- 18. Bjorkman, V. B., and D. S. Mavinic. Physiochemical Treatment of a High Strength Leachate. In: Proceedings of the Thirty-Second Industrial Waste Conference, West Lafayette, Indiana, 1977. p. 189.
- 19. Boyle, W. C., and R. K. Ham. Treatability of Leachate from Landfills. In: Proceedings of the Twenty-Seventh Industrial Waste Conference, West Lafayette, Indiana, 1972. p. 687.
- 20. Boyle, W. C., and R. K. Ham. Biological Treatability of Landfill Leachate. J. Water Pollution Control Federation, 46(5):860, 1974.
- 21. Boyle, W. C. Energy Recovery from Sanitary Landfills -- A Review. In: Microbial Energy Conservation, H. G. Schlegel and J. Barnea, eds. Erich Goltze KG, Gottingen, FDR, 1976.
- 22. Breland, C. G. Landfill Stabilization with Leachate Recirculation, Neutralization, and Sludge Seeding. Special Research Problem, Department of Civil Engineering, Georgia Institute of Technology, Atlanta, Georgia, 1972.
- 23. Bromley, J., and D. C. Wilson. Co-disposal of Toxics. Waste Age, 1981. pp. 52-53.

- 24. Brown, K. W., and David Anderson. Effect of Organic Chemicals on Clay Liner Permeability. In: Proceedings of the Sixth Annual Research Symposium, EPA-600/9-80-010, 1980. pp.123-124.
- 25. Brown, K. W., J. W. Green, and J. C. Thomas. The Influence of Selected Organic Liquids on the Permeability of Clay Liners. In: Proceedings of the Ninth Research Symposium, EPA, Municipal Environmental Research Laboratory, Solid and Hazardous Waste Research Division, Ft. Mitchell, Kentucky, 1983.
- 26. Brownell, R. P., H. D. Stubing, and P. F. Kuniholm. Comprehensive Approach to Landfill Leachate Treatment. In: Proceedings of the National Conference on Environmental Engineering, ASCE, Minneapolis, Minnesota, July, 1982.
- 27. Brunotte, Hugon S. A Study of Groundwater Pollution by Salt. In: Proceedings of the Fifth International Water Pollution Research Conference, Vol. I, July, 1970.
- 28. Buchanan, R. J. The Treatability of Leachates from Sanitary Landfills. Ph.D. Dissertation, Department of Civil Engineering, Drexel University, Philadelphia, Pennsylvania, 1977.
- 29. Buivid, M. G. Laboratory Simulation of Fuel Gas Production Enhancement from Municipal Solid Waste Landfills. Dynatech R & D Company, Cambridge, Massachusetts, 1980.
- 30. Bull, P. S., J. V. Evans, R. M. Wechsler, and K. J. Cleland. Biological Technology of the Treatment of Leachates from Sanitary Landfills. Water Research, 17(11):1473, 1983.
- 31. Calvert, C. Contamination of Groundwater by Impounded Garbage Water. J. American Water Works Association, 24:266, 1932.
- 32. Cameron, R. D. Treatment of Complex Landfill Leachate with Peat. Canadian J. of Civil Engineering, 5(1):83, 1978.
- 33. Cameron, R. D., and F. A. Koch. Trace Metals and Anaerobic Digestion of Leachate. J. Water Pollution Control Federation, 52(2):282, 1980.
- 34. Campbell, D. J. V. Landfill Gas The U.S. Scene. In: Proceedings of the Landfill Gas Symposium, Harwell Great Britain, May, 1981.
- 35. Carlson, D. A., and O. J. Johansen. Aerobic Treatment of Leachates from Sanitary Landfills. In: Proceedings of the Fourth National Congress of Waste Management Technology and Resource and Energy Recovery, National Solid Wastes Management Association and U.S. Environmental Protection Agency, Atlanta, Georgia, November, 1975. p. 359.
- 36. Carpenter, L. V., and L. R. Setter. Some Notes on Sanitary Landfills. American J. of Public Health, 30:385, 1940.
- 37. Chan, K. Y., B. G. Davey, and H. R. Geering. Interaction of Treated Sanitary Landfill Leachate with Soil. J. of Environmental Quality, 7(3):306, 1978.

- 38. Chang, K. C. Co-disposal of Low Level Radioactive Wastes Within Simulated Landfills. Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, Georgia, September, 1982.
- 39. Chian, E. S. K. Stability of Organic Water in Landfill Leachates. Water Research, 11(2)225, 1977.
- 40. Chian, E. S. K., F. B. DeWalle, and J. T. Y. Chu. Treatment of Leachate with Extended Aeration and Physicochemical Processes. In: Proceedings of the Second Annual National Conference on Environmental Engineering Research, Development and Design, ASCE, Gainesville, Florida, July, 1975.
- 41. Chian, E. S. K., and F. B. DeWalle. Criteria of Selection of Methods for Leachate Treatment. In: Proceedings of the Second National Conference on Complete Water Reuse, Chicago, Illinois, May, 1975. p. 776.
- 42. Chian, E. S. K. and F. B. DeWalle. Characterization and Treatment of Leachates Generated from Landfills. AIChE Symposium Series, 71:145-319, 1975.
- 43. Chian, E. S. K., and F. B. DeWalle. Sequential Substrate Removal in Activated Sludge Systems Fed with Naturally Occurring Wastewater. Progress in Water Technology, 7(2):235, 1975.
- 44. Chian, E. S. K., and F. B. DeWalle. Sanitary Landfill Leachates and Their Treatment. J. Env. Eng. Div., ASCE, 102(EE2):411, 1976.
- 45. Chian, E. S. K., and F. B. DeWalle. Evaluation of Leachate Treatment, Characterization of Leachate, Vol. I. EPA-600/2/77-186a, 1977.
- 46. Chian, E. S. K., and F. B. DeWalle. Treatment of High Strength Acidic Wastewater with a Completely Mixed Anaerobic Filter. Water Research, 11(3):295, 1977.
- 47. Chian, E. S. K., and F. B. DeWalle. Removal of Heavy Metals from a Fatty Acid Wastewater with a Completely Mixed Anaerobic Filter. In: Proceedings of the Thirty-Second Industrial Waste Conference, West Lafayette, Indiana, 1977. p. 920.
- 48. Chian, E. S. K., and F. B. Dewalle. Effect of Moisture Regimes and Temperature on MSW Stabilization. Municipal Solid Waste: Land Disposal. In: Proceedings of the Fifth Annual Research Symposium, U.S. Environmental Protection Agency, EPA-600-9-79-023a, 1979.
- 49. Coakley, P. Principles of Vacuum Filtration and Their Application to Sludge-Drying Problems. In: Waste Treatment, P. Issac, ed. Pergamon Press, London, England, 1960.
- 50. Coe, J. J. Effect of Solid Waste Disposal on Groundwater Quality. J. American Water Works Assoc., 62:776, 1970.
- 51. Cole, M. A. Effect of Long-Term Atrazine Application on Soil Microbial Activity. Weed Science, 24:473-476, 1976.

- 52. Constable, T. W., G. J. Farquhar, and B. N. Clement. Gas Migration and Modeling. In: Proceedings of Energy from Biomass and Wastes III, Orlando, Florida, January 1979.
- 53. Cook, E. Aerobic Biological Stabilization of Sanitary Landfill Leachate. Master's Thesis, Department of Civil Engineering, University of Kentucky, Lexington, Kentucky, 1972.
- 54. Cook, E. N., and E. G. Foree. Aerobic Biostabilization of Sanitary Landfill Leachate. J. Water Pollution Control Federation, 46(2):380, 1974.
- 55. Copenhauer, E. D., and B. K. Wilkinson. Movement of Hazardous Substances in Soil: A Bibliography, Vol. 1. Selected Metals, EPA-600/9-79-0249, 1979.
- 56. Corbett, J. R. W. Treatment of a Low-Strength Landfill Leachate with Peat. Master's Thesis, Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, 1975.
- 57. Cord-Landwher, K., H. Doedens, H. Elsen, and H. Kospel. Stabilization of Landfills by Leachate Recycle. In: Proceedings of BMFT Status Seminar, Berlin, Germany, November, (German), 1982.
- 58. County Surveyors Society. Gas Generation from Landfill Sites. Committee No. 4, Special Activity Group No. 7, London, England, August, 1982.
- 59. Cummins, M. D. Effect of Sanitary Landfill Leachate on the Activated Sludge Process. In: Proceedings of the Seventh Annual Research Symposium, Land Disposal: Municipal Solid Waste. EPA-600/9-81-002a, Philadelphia, Pennsylvania, March, 1981. p. 170.
- 60. Dahlstrom, D. A., and C. F. Cornell. Improved Sludge Conditioning and Vacuum Filtration. In: Biol. Treat. Sew. Ind. Wastes, Vol. II, B. J. McCabe and W. W. Eckenfelder, eds. Reinhold Publishing Co., New York, 1958.
- 61. Dair, F. R., and R. E. Schwegler. Energy Recovery from Landfills. Waste Age, 5(2):6-10, 1974.
- 62. Dao, T. H., and T. L. Lavy. Factors Affecting Atrazine Adsorption on Soil at 0.3 and 0.1 Bar Moisture. Weed Science, 1978.
- 63. Davidson, J. M., L. T. Ou, and P. S. C. Rao. Behavior of High Pesticide Concentration in Soil Water Systems. In: Proceedings of Hazardous Waste Research Symposium on Residual Management by Land Disposal, University of Arizona, Tucson, Arizona, 1976. pp.206-212.
- 64. Davidson, J. M., L. T. Ou, and P. S. C. Rao. Adsorption, Movement and Biological Degradation of High Concentrations of Selected Pesticides in Soils. In: Proceedings of the Fourth Annual Research Symposium on Land Disposal of Hazardous Wastes, U.S. Environmental Protection Agency, 1978. pp. 233-244.

- 65. Davidson, J. M., L. T. Ou, and P. S. C. Rao. Movement and Biological Degradation of Large Concentrations of Selected Pesticides in Solids. Disposal of Hazardous Wastes. In: Proceedings of the Sixth Annual Symposium, Chicago, Illionis, U.S. Environmental Protection Agency, Solid and Hazardous Waste Research Division, Washington, D. C., 1980a. pp. 93-107.
- 66. Davidson, J. M., L. T. Ou, P. S. C. Rao, W. B. Wheeler, and D. F. Rothwell. Adsorption, Movement, and Biological Degradation of Large Concentrations of Selected Pesticides in Soils. EPA-600/2-80-124, Municipal Environmental Research Laboratory, Cincinatti, Ohio, August, 1980b.
- 67. Davison, A. S. The Effect of Tipped Domestic Refuse on Groundwater Quality. J. Society of Water Treatment and Examination, 18:35, 1969.
- 68. DeWalle, F. B., and E. S. K. Chian. Kinetics of Substrate Removal in a Completely Mixed Anaerobic Filter. Biotechnol. and Bioeng., 18:1275, 1976.
- 69. DeWalle, F. B., and E. S. K. Chian. Oxygen Removal Efficiencies of Secondary and Tertiary Treatment as Effected by Combined Treatment of a High-Strength Fatty Acid Wastewater. In: Proceedings of the Thirty-First Industrial Waste Conference, West Lafayette, Indiana, 1976. p. 1017.
- 70. DeWalle, F. B., and E. S. K. Chian. Leachate Treatment by Biological and Physical-Chemical Methods Summary of Laboratory Experiments. In: Proceedings of the Third Annual Municipal Solid Waste Research Symposium, Management of Gas and Leachate in Landfills. EPA-600/9-77-026, St. Louis, Missouri, March 1977. p. 177.
- 71. DeWalle, F. B., E. S. K. Chian, and E. Hammerberg. Gas Production from Solid Waste in Landfills. J. Env. Eng. Div, ASCE, 104(EE3):415-432, 1978.
- 72. DeWalle, F. B., and E. S. K. Chian. Energy Recovery from Landfill Solid Waste. In: Proceedings of Eighth Biotechnol. Bioeng. Symposium. John Wiley and Sons, Inc., New York., 1979. pp. 317-328.
- 73. DeWalle, F. B., E. S. K. Chian, and J. Brush. Heavy Metal Removal with Completely Mixed Anaerobic Filter. J. Water Pollution Control Federation, 51(1):22, 1979.
- 74. Dick, R. I., and B. B. Ewing. Evaluation of Activated Sludge Thickening Theories. J. San. Eng. Div, ASCE, 93(SA4):9, 1967.
- 75. Doner, H. E. Chloride as a Factor in Mobilities of Ni, Cu, and Cd in Soil. J. American Soil Science Society, 42:882-885, 1978.

- 76. Dragun, J., and C. S. Helling. Evaluation of Molecular Modelling Techniques to Estimate the Mobility of Organic Chemicals in Soils: II. Water Solubility and the Molecular Fragment Mobility Coefficient. In: Proceedings of the Seventh Annual Research Symposium, Land Disposal: Hazardous Wastes. EPA-600-9/81-002b, 1981.
- 77. Dunlap, W. J., D. C. Shew, J. M. Robertson, and C. R. Tomssaint. Organic Pollutants Contributed to Groundwater by a Landfill. Gas and Leachate from Landfills: Formation, Collection and Treatment. EPA-600/9-76-004, U. S. Environmental Protection Agency, 1976.
- 78. Eiffert, M. C., and J. T. Swartzbaugh. Influence of Municipal Solid Waste Processing on Gas and Leachate Generation. Management of Gas and Leachate in Landfills. EPA-600-9/77-026, U. S. Environmental Protection Agency, 1977.
- 79. Eliassen, R. Decomposition of Landfills. American J. of Public Health, 32:1029, 1942.
- 80. Eliassen, R., et al. Sanitary Landfill Gas Control. American City, 72:115-117, 1957.
- 81. Elzy, E., T. Lindstrom, and L. Boersma. Analysis of the Movement of Hazardous Waste Chemicals in and from a Landfill Site via a Simple Vertical-Horizontal Routing Model. Agriculture Experiment Station Special Report 41, Oregon State University, Corvallis, Oregon, 1974.
- 82. EMCON Associates. Sonoma County Solid Waste Stabilization Study. EPA-530/SW-65d, 1974.
- 83. EMCON Associates. Sonoma County Solid Waste Stabilization Study. EPA-530/SW-65d.1. 1975.
- 84. EMCON Associates. Twelve Month Extension Sonoma County Solid Waste Stabilization Study. EPA-530/SW-120, 1976.
- 85. EMCON Associates. Treatment and Utilization of Landfill Gas Mountain View Project Feasibility Study. EPA-SW-583, 1977.
- 86. EMCON Associates. Methane Generation and Recovery from Landfills. Ann Arbor Science Pub., Inc., Ann Arbor, Michigan, 1980.
- 87. EMCON Associates. Controlled Landfill Project. First Annual Report. Construction and Operation, Project 343-2.1, San Jose, California, 1982.
- 88. Environmental Protection Agency. Municipal Sludge Management. EPA-430/9-76-009, Washington, D. C., 1976.
- 89. Environmental Protection Agency. The Report to Congress: Waste Disposal Practices and Their Effects on Groundwater, Executive Seminar. Office of Water Supply and Office of Solid Waste Management, U.S. Environmental Protection Agency, 1977.

- 90. Environmental Protection Agency. Recovery, Processing and Utilization of Gas from Sanitary Landfills. EPA-600/2-79-001, February, 1979.
- 91. Environmental Protection Agency. Lining of Waste Impoundment and Disposal Facilities. SW-870, Office of Solid Waste and Emergency Response, Washington, D. C., March, 1983.
- 92. Esmaili, H. Control of Gas Flow from Sanitary Landfills. J. Am. Soc. Civil Engineers, Environmental Engr. Div., 101(EE4):555, 1975.
- 93. Farquhar, G. J., and F. A. Rovers. Leachate Attenuation in Undisturbed and Remoulded Soils. Gas and Leachate from Landfills: Formation, Collection and Treatment. EPA-600/8-76-004, U.S. Environmental Protection Agency, 1976.
- 94. Farquhar, G. J. Leachate Treatment by Soil Methods. In: Proceedings of the Third Annual Municipal Solid Waste Research Symposium on Management of Gas and Leachate in Landfills. EPA-600/9-77-026, St. Louis, Missouri, 1977.
- 95. Farquhar, G. J., J. F. Sykes, and S. Soyupak. Modelling Contaminant Attenuation in Soil: Microbial Decomposition of Organic Matter. Land Disposal of Solid Waste. In: Proceedings of the Fourth Annual Research Symposium. EPA-600/9-78-016, U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978. pp. 245-254.
- 96. Fernandez, R. W. The Treatability of Leachate from Shredded Refuse Test Columns. Master's Thesis, Department of Environmental Sciences, University of Florida, Gainesville, Florida, 1972.
- 97. Foree, E. G., and E. N. Cook. Aerobic Biological Stabilization of Sanitary Landfill Leachate. Report No. UKY TR58-72-CE21, Department of Civil Engineering, University of Kentucky, Lexington, Kentucky, 1972.
- 98. Foree, E. G., and V. M. Reid. Anaerobic Biological Stabilization of Sanitary Landfill Leachate. Report No. TR65-73-CE17, Department of Civil Engineering, University of Kentucky, Lexington, Kentucky, 1973.
- 99. Foreman, D. E., and D. E. Daniel. Effects of Hydraulic Gradient and Method of Testing on the Hydraulic Conductivity of Compacted Clay to Water, Methanol, and Heptane. Unpublished report preprinted for presentation at EPA-sponsored Workshop on Permeability Testing of Clay Liners, Atlanta, Georgia, 1984.
- 100. Frost, R. R., and R. A. Griffin. Effect of pH on Adsorption of Arsenic and Selenium Landfill by Clay Minerals. Soil Science Society American J., 41(1):53-57, 1977.
- 101. Fuller, W. H. Movement of Selected Metals, Asbestos, and Cyanide in Soil: Applications to Waste Disposal Problems. EPA-600/2-7-020, April, 1977.
- 102. Fuller, W. H. Investigation of Landfill Leachate Pollutant Attenuation by Soils. EPA-600/2-78-158, U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978. 212 p.

- 103. Fuller, W. H., A. Amoozegar-Ford, E. E. Niebla, and M. Boyle. Behavior of Cadmium, Nickel, and Zinc in Single and Mixed Combinations in Landfill Leachates. In: Proceedings of the Seventh Annual Research Symposium, Land Disposal Hazardous Waste. EPA-600/9-81-002b, U.S. Environmental Protection Agency, Cincinnati, Ohio, 1981.
- 104. Fuller, W. H., A. Amoozegar-Ford, E. E. Niebla, and M. Boyle. Influence of Leachate Quality on Soil Attenuation of Metals. Disposal of Hazardous Wastes. In: Proceedings of the Sixth Annual Symposium, Chicago, Illinois. EPA-600/9-80-010, U.S. Environmental Protection Agency, Solid and Hazardous Waste Research Division, Southwest Research Institute, Washington, D.C., 1980. pp. 108-117.
- 105. Fuller, W. H., and N. Korte. Attenuation Mechanisms of Pollutants Through Soils. In: Proceedings of Symposium on Gas and Leachate from Landfills: Formation, Collection and Treatment. EPA-600/9-76-004, Environmental Protection Agency, Rutgers University, New Brunswick, New Jersey, March 1976. pp. 111-122.
- 106. Fuller, W. H., N. Korte, E. E. Niebla, and B. A. Alesii. Contribution of the Soil to the Migration of Certain Common and Trace Elements. Soil Science, 122(4):223-235, 1976.
- 107. Fungaroli, A. A. Pollution of Subsurface Water by Sanitary Landfills, Vol. 1. SW-12RG, U.S. Environmental Protection Agency, 1971.
- 108. Gale, R. S. Some Aspects of the Mechanical Dewatering of Sewage Sludges. Filtration Separation, 5(2):133, 1968.
- 109. Garcia-Miragaya, J., and A. L. Page. Influence of Exchangeable Cation on the Sorption of Trace Amount of Cadmium by Montmorillonite.

 J. American Soil Science Society, 41:718-721, 1977.
- 110. Gas Research Institute. Landfill Methane Recovery, Part II: Gas Characterization. Final Report to GRI by Escor, Inc. GRI 81/0105, December, 1982.
- 111. Gibb, J. P., and K. Cartwright. Field Variation of Hazardous Waste Migration from Land Disposal Sites. In: Proceedings of the National Conference on Disposial of Residues on Land, St. Louis, Missouri, 1976. pp. 179-184.
- 112. Giroud, J. P. Impermeability: The Myth and a Rational Approach. In: Proceedings of International Conference on Geomembranes, Vol. 1, Denver, Colorado, June 1984.
- 113. Goeppner, J. A Zero Discharge Concept for Treating Landfill Leachate. In: Proceedings of the Third Annual Pollution Control Conference, Water and Wastewater Equipment Manufacturers Association, McLean, Virginia, 1975. p. 727.
- 114. Goeppner, J. Sanitary Landfills: No Place for Leaching. Water and Wastes Engineering, 12(9):47, 1975.

- 115. Goeppner, J. An Alternative Leachate Treatment System Utilizing an Aerated Lagoon and Land Disposal. In: Proceedings of the International Waste Equipment and Technology Exposition, Los Angeles, California, June, 1975. p. 195.
- 116. Golueke, C. G., and P. H. McGauhey. Comprehensive Studies of Solid Waste Management. Public Health Service Publication No. 2039, 1970.
- 117. Grady, C. P. L., and H. C. Lim. Biological Wastewater Treatment.
 Marcel Dekker, Inc., New York, 1980.
- 118. Graham, D. W. Biological-Chemical Treatment of Landfill Leachate.

 Master's Thesis, Department of Civil Engineering, University of British
 Columbia, Vancouver, British Columbia, 1981.
- 119. Graham, D. W., and D. S. Mavinic. Biological Chemical Treatment of Leachate. In: Proceedings of ASCE Specialty Conference on Environmental Engineering, San Francisco, California, July, 1979. p. 291.
- 120. Green, W. S., F. G. Lee., and R. A. Jones. Clay Soils Permeability and Hazardous Waste Storage. J. Water Pollution Control Federation, 53(8):1347, 1981.
- 121. Griffin, R. A., and N. F. Shimp. Leachate Migration Through Selected Clays. Gas and Leachate from Landfills, Formation, Collection and Treatment. EPA-600/9-76-004, U.S. Environmental Protection Agency, Washington, D.C., 1976. pp. 92-95.
- 122. Griffin, R. A., F. B. DeWalle, E. S. K. Chian, J. H. Kim, and A. K. Ku. Attenuation of PCBs by Soil Materials and Char Wastes. In: Proceedings of Management of Gas and Leachate in Landfills. EPA-600/9-77-026, Cincinnati, Ohio, 1977.
- 123. Griffin, R. A., and N. F. Shimp. Attenuation of Pollutants in Municipal Landfill Leachate by Clay Minerals. EPA-600/2-78-157, U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978. 157 p.
- 124. Griffin, R. A. Disposal and Removal of Polychlorinated Biphenyls in Soils. In: Proceedings of the Fourth Annual Research Sumposium. EPA-600/9-78-016, U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978. p. 424.
- 125. Griffin, R. A., A. K. Ku, and R. R. Frost. Effect of pH on Adsorption of Chromium from Landfill Leachate by Clay Minerals. Environmental Science and Engineering, 12(8):431-449, 1977.
- 126. Griffin, R. A., and E. S. K. Chian. Attenuation of Water-Soluble Polychlorinated Biphenyls by Earth Materials. EPA-600/2-80-027, Municipal Environmental Research Laboratory, Cincinnati, Ohio, May, 1980.

- 127. Griffin, R. A., and S. F. J. Chou. Disposal and Removal of Halogenated Hydrocarbons in Soils. In: Proceedings of the Sixth Annual Research Symposium. EPA-600/9-80-010, U.S. Environmental Protection Agency, Cincinnati, Ohio, 1980. p. 290.
- 128. Grim, R. E. Applied Clay Minerology. McGraw-Hill, New York, 1962.
- 129. Halvadakis, C. P., A. P. Robertson, and J. O. Leckie. Landfill Methanogenesis: Literature Review and Critique. Technical Report No. 271. Department of Civil Engineering, Stanford University, Stanford, California, August, 1983.
- 130. Harkins, J. Leachate Interactions Within the Natural Soil Environment. Independent Research Report, Solid Waste Technology, School of Civil Engineering, Georgia Institute of Technology, Atlanta, Georgia, 1977.
- 131. Haxo, H. E., J. A. Miedema, and N. A. Nelson. Permeability of Polymeric Lining Materials. In: Proceedings of International Conference on Geomembranes, Vol. 1, Denver, Colorado, June, 1984.
- 132. Hem, J. D. Chemistry and Occurrence of Cadmium and Zinc in Surface Water and Groundwater. Water Resources Research, 8(3):661-679, 1972.
- 133. Hemsley, W. T., and W. C. Koster. Remedial Technique of Controlling and Treating Low Volume Leachate Discharge. In: Proceedings of National Conference on Management of Uncontrolled Hazardous Wastes, U.S. Environmental Protection Agency, Washington, D.C., October 1980. p. 141.
- 134. Ho, S., W. C. Boyle, and R. K. Ham. Chemical Treatment of Leachates from Sanitary Landfills. J. Water Pollution Control Federation, 46(7):1776, 1974.
- 135. Holmes, P. W. Anaerobic Treatment of Leachate. Master's Thesis, Department of Civil Engineering, Northeastern University, Boston, Massachusetts, 1974.
- 136. Holmes, P. W., and F. C. Blanc. Anaerobic Treatment of Leachate with High Sodium Concentrations. J. Boston Society of Civil Engineers, 62(3):97, 1975.
- 137. Hopkins, G. J., and J. R. Poplisky. Influence of an Industrial Waste Landfill Operation on a Public Water Supply. J. Water Pollution Control Federation, 42:431, 1970.
- 138. Houle, M. J., et al. Effects of Municipal Refuse Leachate on the Release of Toxic Metals from Industrial Wastes. In: Proceedings of the Third Annual Municipal Solid Waste Research Symposium, St. Louis, Missouri, March, 1977.

- 139. Hsu, T. S., and R. Bartha. Biodegradation of Chloraniline-Humus Complexes in Soil and Culture Solutions. Soil Science, 118:213, 1974.
- 140. Hubbell, D. H., D. F. Rothwell, W. B. Wheeler, W. B. Tappan, and F. M. Rhoads. Microbiological Effects and Persistence of Some Pesticide Combinations in Soil. J. of Environmental Quality, 2:96-99, 1973.
- 141. Hughes, G. M., R. A. Landon, and R. N. Farvoeen. Hydrogeology of Solid Waste Disposal Sites in Northeastern Illinois. SW-2D, U.S. Environmental Protection Agency, 1971.
- 142. Javaheri, A. R., and R. I. Dick. Aggregate Size Variations During Thickening of Activated Sludge. J. Water Pollution Control Federation, 41(5):R-197, Part 2, 1969.
- 143. Johansen, O. J. Treatment of Leachate from Sanitary Landfills. 0-26/74 PRA29, Norwegian Institute of Water Research and Department of Civil Engineering, University of Washington, Seattle, Washington, 1975.
- 144. Johnson, J. C., and R. L. Lancione. Assessment of Processes to Stabilize Arsenic-Laden Wastes. In: Proceedings of the Sixth Annual Research Symposium, Disposal of Hazardous Wastes. EPA-600/9-80-010., March 1980.
- 145. Jones, L. W., and P. G. Malone. Disposal of Treated and Untreated Electroplating Wastes in Simulated Municipal Landfill. In: Proceedings of the Eighth Annual Research Symposium, Land Disposal of Hazardous Waste. EPA-600/9-82-002, 1982. pp. 294-313.
- 146. Jones, L. W., P. G. Malone, and T. E. Myers. Field Investigation of Contaminant Loss from Chemically Stabilized Sludges. In: Proceedings of the Sixth Annual Research Symposium, Land Disposal of Hazardous Waste. EPA-600/9-80-010, 1980. pp. 187-200.
- 147. Jorgensen, J. B. The Anaerobic Biological Treatment of Leachate.
 Master's Thesis, Department of Civil and Environmental Engineering,
 University of Wisconsin, Madison, Wisconsin, 1972.
- 148. Jurinak, J. J., and J. Sanitillan-Medrano. The Chemistry and Transport of Lead and Cadmium in Soils. PB-237 497/3SL, National Technical Information Service, Springfield, Virginia, 1974.
- 149. Kaiser, E. R. Chemical Analysis of Refuse Components. In: Proceedings of the 1966 Incinerator Conference, American Soc. of Mech. Engrs., 1966.
- 150. Kaiser, P., J. J. Pochon, and R. Cassini. Influence of Triazine Herbicides on Soil Microorganisms. Residues Review, 32:211-233, 1970.
- 151. Karr, P. R. Treatment of Leachate from Sanitary Landfills. M.S. Special Problem Report, School of Civil Engineering, Georgia Institute of Technology, Atlanta, Georgia, 1972.

- 152. Karr, P. R. Factors Influencing the Dewatering Characteristics of Sludge. Ph.D. Dissertation, Clemson University, Clemson, South Carolina, 1976.
- 153. Katan, J., T. W. Fuhreman, and E. P. Lichtenstein. Binding of ¹⁴C Parathion in Soil: A Reassessment of Pesticide Persistence. Science, 193:891-894, 1976.
- 154. Kinman, R. N. Leachate from Co-disposal of Municipal and Hazardous Waste. In: Proceedings of the Eighth Annual Research Symposium, Land Disposal of Hazardous Waste. EPA-600/9-82-002, 1982. pp. 274-293.
- 155. Kinman, R. N., and J. J. Walsh. Leachate from Municipal and Industrial Waste. In: Proceedings of the Eighth Annual Research Symposium, Land Disposal of Hazardous Waste. EPA-600/9-80-010, 1980. pp. 203-222.
- 156. Kinman, R. N., and D. L. Nutini. Production, Migration, and Hazards Associated with Toxic and Flammable Gases at Uncontrolled Hazardous Waste Sites. In: Proceedings of the Tenth Annual Research Symposium, Land Disposal of Hazardous Waste. EPA-600/9-84-007, April, 1984.
- 157. Klingl, H. Experiences Concerning the Purification of Refuse Groundwater from a Dump Purification Plant in the Bavarian Area. Allgemein anerKannte Regln der Technik-Mindestanforderungen-Gewasserschutz, (German), 1981. 321 p.
- 158. Knoch, J. Practical Options and Suggestions for the Physical-Chemical Treatment of Leachate from Sanitary Landfills. Solid Waste Management, 5:460, Technical University Berlin, (German), 1980.
- 159. Knox, K. Complexation of Heavy Metals by Sanitary Landfill Leachate. M.S. Thesis, University of Toronto, Toronto, Ontario, 1978.
- 160. Knox, K., and P. H. Jones. Complexation Characteristics of Sanitary Landfill Leachates. Water Research, 13:839, 1979.
- 161. Korte, N. E. A Baseline Study on Trace Metal Elution from Diverse Soil Types. Water, Air, Soil Pollution, 5:149-156, 1976.
- 162. Korte, N. E., J. Skopp, W. H. Fuller, E. E. Niebla, and B. A. Alesii. Trace Element Movement in Soils: Influence of Soil Physical and Chemical Properties. Soil Science, 122:350-359, 1975.
- 163. Kosson, D. S. <u>In Situ</u> and On-Site Biodegradation of Industrial Landfill Leachate. Progress Report No. 25. USEPA/MERL Under Coop. Agreement No. CR 807805010, College Of Engineering, Rutgers University, Piscataway, New Jersey, February, 1983.
- 164. Landreth, R. E. The Use of Liners for Waste Impoundment and Disposal Facilities. In: Proceedings of Leachate Management Seminar, University of Toronto, Toronto, Ontario, November, 1980.

- 165. Lang, A., and H. Burns. On the Pollution of Groundwater by Chemicals. J. American Water Works Association, 33:2075, 1941.
- 166. Lavigne, R. L. The Treatment of Landfill Leachate Using a Living Filter. Compost Science/Land Utilization, 20(3):24, 1979.
- 167. Leckie, J. O., J. G. Pacey, and C. Halvadakis. Landfill Management with Moisture Control. J. Env. Eng. Div, ASCE, 105(EE2):337, 1979.
- 168. Lee, C. J. Treatment of a Municipal Landfill Leachate. Master's Thesis, University of British Columbia, Vancouver, British Columbia, January, 1979.
- 169. Lentz, R. W., W. O. Horst, and J. O. Uppot. The Permeability of Clay to Acidic and Caustic Permeants. In: Proceedings of ASTM Symposium on Impermeable Barriers for Soil and Rock, Denver, Colorado, 1984.
- 170. Lidkea, T. R. Treatment of Sanitary Landfill Leachate with Peat.

 Master's Thesis, Department of Civil Engineering, University of British
 Columbia, Vancouver, British Columbia, 1974.
- 171. Lofy, R. J. Feasibility of Direct On-Site Conversion of Landfill Gas to Electrical Energy at Scholl Canyon Landfill. DOE/CE/20237-1, Glendale, California, June, 1981.
- 172. Love, D. L. Overview of Process Options and Relative Economics. In: Proceedings of the GRCDA Sixth International Landfill Gas Symposium, Industry Hills, California, March, 1983.
- 173. MacFarlane, I. C. Gas Explosion Hazards in Sanitary Landfills and Garbage Dumps. Public Works, 99(5):76, 1970.
- 174. Mao, M. C. Continuing Investigations on Landfill Stabilization with Leachate Recirculation, Neutralization, and Sludge Seeding. Special Research Problem, Department of Civil Engineering, Georgia Institute of Technology, Atlanta, Georgia, 1973.
- 175. Mao, M. C., and F. G. Pohland. Continuing Investigations on Landfill Stabilization with Leachate Recirculation, Neutralization and Sludge Seeding. Special Research Report, Georgia Institute of Technology, Atlanta, Georgia, September, 1973.
- 176. Mavinic, D. S. Leachate Treatment Schemes-Research Approach. In:
 Proceedings of the Fifth Annual Research Symposium, Municipal Solid
 Waste, Land Disposal. EPA-600/9-79-023a, Orlando, Florida, March, 1979.
 p. 296.
- 177. Maye, P. R. Landfill Stabilization with Leachate Recirculation. Special Research Problem, Department of Civil Engineering, Georgia Institute of Technology, Atlanta, Georgia, 1972.
- 178. McDougall, W. J., and R. A. Fusco Containment and Treatment of the Lovel Canal Landfill Leachate. J. Water Pollution Control Federation, 52(12):2914, 1980.

- 179. McDougall, W. J., S. D. Cifrulak, R. A. Fusco, and R. P. O'Brien. Treatment of Chemical Leachate at the Love Canal Landfill Site. In: Proceedings of the Twelfth Mid-Atlantic Industrial Waste Conference, Lewisburg, Pennsylvania, July, 1980. p. 69.
- 180. Merz, R. C. Investigation to Determine the Quantity and Quality of Gas Produced During Refuse Decomposition. Final Report to State Water Control Board, Agreement No. 12-13 USCEC Report 89-10, University of Southern California, Los Angeles, California, 1964.
- 181. Merz, R. C., and R. A. Stone. Quantitative Study of Gas Produced by Decomposing Refuse. Public Works, November, 1968.
- 182. Metcalf and Eddy, Inc. Wastewater Engineering: Treatment/Disposal/Reuse. McGraw-Hill Book Co., USA, 1979.
- 183. Mingledorff, F. C. Preliminary Investigations on the Chemical Treatment of Leachate from Sanitary Landfills. Special Research Problem, Department of Civil Engineering, Georgia Institute of Technology, Atlanta, Georgia, 1973.
- 184. Moore, C. A., and J. E. Lynch. Design Criteria for Landfill Gas Migration Control Devices. Draft Report for USEPA, September, 1977.
- 185. National Sanitation Foundation. Standard 54 for Flexible Membrane Liners. The Joint Committee on Flexible Membrane Liners, Ann Arbor, Michigan, November 1983.
- 186. Newman, A. S., and C. R. Downing. What Pesticides Do to Soil. Herbicides and the Soil. J. of Agr. Food Chem., 6:342-353, 1958.
- 187. Newton, J. W. Leachate Treatment on Landfill Sites. Surveyor, 153(33):4532, 1979.
- 188. Niebla, E. E., N. Korte, B. A. Alesii, and W. H. Fuller. Effect of Municipal Landfill Leachate on Mercury Movement Through Soils. Water, Air, and Soil Pollution, 3:399-401, 1976.
- 189. O'Donnell, D. R., B. A. Alesii, J. Ariota-Fortuny, and W. H. Fuller. Predicting Cadmium Movement Through Soil as Influenced by Leachate Properties. EPA-600/9-77-026, U.S. Environmental Protection Agency, Washington, D.C., 1977.
- 190. Ogata, A. Transverse Diffusion in Saturated Isotropic Granular Media. Geological Survey Professional Paper 411-B, U.S. Government Printing Office, Washington, D.C., 1961. 8 p.
- 191. Pacey, J. Methane Gas in Landfills: Liability or Asset? In: Proceedings of Congress on Waste Management Technology and Resource and Energy Recovery, EPA SW-8p, 1976.
- 192. Pacey, J. Stimulation of Gas Production Through Refuse Supplementation. In: Proceedings of the Third Incernational Symposium on Anaerobic Digestion, Boston, Massachusetts, August, 1983.

- 193. Palit, T. Treatment of Landfill Leachate and Determination of Kinetic Coefficients by Using Laboratory-Scale Activated Sludge Process.

 Master's Thesis, Department of Civil Engineering, University of Texas, Arlington, Texas, 1975.
- 194. Palit, T., and S. R. Qasim. Biological Treatment Kinetics of Landfill Leachate. J. Env. Eng. Div, ASCE, 103(EE2):353, 1977.
- 195. Parekh, V. M. The Biological Treatment of Leachate. Master's Thesis, Department of Civil and Environmental Engineering, University of Wisconsin, Madison, Wisconsin, 1972.
- 196. Perrier, E. R., and A. C. Gibson. Hydrologic Simulation of Solid Waste Disposal Sites. Report No. SW-868, U.S. Environmental Protection Agency, September, 1982.
- 197. Petro, P. P. Use of Polyethylene Pipe for Landfill Gas Recovery. In: Proceedings of GRCDA Sixth International Landfill Gas Symposium, Industrial Hills, California, March, 1983.
- 198. Pettyjohn, W. A., T. A. Prickett, D. C. Kent, and H. E. Legrand. Prediction of Leachate Plume Migration. In: Proceedings of the Seventh Annual Research Symposium, Land Disposal: Hazardous Waste. EPA-600/9-81-002b, U.S. Environmental Protection Agency, Cincinnati, Ohio, 1981. pp. 71-84.
- 199. Pfeffer, J. T. Reclamation of Energy from Organic Waste. EPA-670/2-74-016, March, 1974.
- 200. Philips, C. R., and J. Nathawani. Soil-Waste Interations: A State of the Art Review. Environment Canada. Solid Waste Management Report. EPS-3-EC-76-14, 1976.
- 201. Pickens, J. F., and W. C. Lennox. Numerical Simulation of Waste Movement in Steady Groundwater Flow Systems. Water Resources Research, 12(2):171-180, 1976.
- 202. Pinder, G. A. A Galerkin-Finite Element Simulation of Groundwater Contamination of Long Island, New York. Water Resources Research, 9(6):1657, 1973.
- 203. Pohland, F. G., and P. R. Maye. Landfill Stabilization with Leachate Recycle. In: Proceedings of the Third Annual Environmental Engineering and Science Conference, Louisville, Kentucky, March, 1973. p. 389.
- 204. Pohland, F. G. Accelerated Solid Waste Stabilization and Leachate Treatment by Leachate Recycle Through Sanitary Landfill. Progress in Water Technology, 7(3/4):753, 1975.
- 205. Pohland, F. G. Sanitary Landfill Stabilization with Leachate Recycle and Residual Treatment. EPA-600/2-75-043, 1975.

- 206. Pohland, F. G. Landfill Management with Leachate Recycle and Treatment: An Overview. In: Proceedings of Research Sysmposium, Gas and Leachate from Landfills: Formation, Collection and Treatment. EPA-600/9-76-004, New Brunswick, New Jersey, March, 1975. p. 159.
- 207. Pohland, F. G., and S. J. Kang. Sanitary Landfill Stabilization with Leachate Recycle and Residual Treatment. AIChE Symposium Series, 71(145):308, 1975.
- 208. Pohland, F. G., D. E. Shank, R. E. Benson, and H. H. Timmerman. Pilot Scale Investigation of Accelerated Landfill Stabilizatin with Leachate Recycle. In: Proceedings of the Fifth Annual Research Symposium.

 Municipal Solid Waste: Land Disposal. EPA-600/9-79-023a, Orlando, Florida, March, 1979. p. 283.
- 209. Pohland, F. G. Anaerobic Processes for Biological Treatment of Leachates. In: Proceedings of International Seminar on Sanitary Landfills, Berlin Technical University, Berlin, FDR, 1979.
- 210. Pohland, F. G., and J. P. Gould. Stabilization at Municipal Landfills Containing Industrial Wastes. In: Proceedings of the Sixth Annual Research Symposium, Disposal of Hazardous Waste. EPA-600/9-80-010, Chicago, Illinois, March, 1980. p. 242.
- 211. Pohland, F. G. Leachate Recycle as a Management Option. In: Proceedings of Leachate Management Seminar, University of Toronto, Toronto, Ontario, November, 1980.
- 212. Pohland, F. G., J. P. Gould, R. E. Ramsey, B. J. Spiller, and W. R. Esteves. Containment of Heavy Metals in Landfills with Leachate Recycle. In: Proceedings of the Seventh Annual Research Symposium, Land Disposal: Municipal Solid Waste. EPA-600/9-81-002a, Philadelphia, Pennsylvania, March 1981. p. 179.
- 213. Pohland, F. G., J. P. Gould, R. E. Ramsey, and E. S. K. Chian. Identification and Assessment of Effluent Residuals in Treated Leachate from Landfill Disposal Sites. SCEGIT-83-109, Georgia Institute of Technology, Atlanta, Georgia, March, 1983a.
- 214. Pohland, F. G., J. T. Dertien, and S. B. Ghosh. Leachate and Gas Quality Changes During Landfill Stabilization of Municipal Refuse. In: Proceedings of the Third International Symposium on Anaerobic Digestion, Boston, Massachusetts, August, 1983b.
- 215. Polprasert, C. Disinfection of Treated Landfill Leachate Using Sodium Hypochlorite. Ph.D. Dissertation, Department of Civil Engineering, University of Washington, Seattle, Washington, 1977.

- 216. Polprasert, C., and D. A. Carlson. Disinfection of Treated Landfill Leachate Using Sodium Hypochlorite. In: Proceedings of National Conference on Treatment and Disposal of Industrial Wastewaters and Residues, Houston, Texas, 1977. p. 176.
- 217. Poorman, B. L. Treatability of Leachate from a Sanitary Landfill by Anaerobic Digestion. Master's Thesis, Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, 1974.
- 218. Rao, P. S. C., J. M. Davidson, R. E. Jessup, and H. M. Selim. Evaluation of Conceptual Models for Describing Nonequilibrium Adsorption-Desorption of Pesticides During Steady-Flow in Soils. J. American Soil Science Society, 43(1), 1979.
- 219. Rees, J. F. Optimization of Methane Production and Refuse Decomposition in Landfills by Temperature Control. J. Chem. Tech. Biotechnol, 31:306, 1980.
- 220. Reid, V. Anaerobic Biological Stabilization of Sanitary Landfill Leachate. Master's Thesis, Department of Civil Engineering, University of Kentucky, Lexington, Kentucky, 1972.
- 221. Robinson, H. D., C. Barber, and P. J. Maris. Generation and Treatment of Leachate from Domestic Waste in Landfills. Water Pollution Control, :465, 1982.
- 222. Robinson, H. D. and P. J. Maris. The Treatment of Leachates from Domestic Wastes in Landfills. I. Aerobic Biological Treatment of Medium-Strength Leachate. Water Research, 17(11):1537, 1983.
- 223. Rogers, W. P. Treatment of Leachate from a Sanitary Landfill by Lime Precipitation Followed by an Anaerobic Filter. Master's Thesis Clarkson College of Technology, Potsdam, New York, August, 1973.
- 224. Roulier, M. H. Attenuation of Leachate Pollutants by Soils. EPA-600/9-77-026, U.S. Environmental Protection Agency, 1977. pp. 127-138.
- 225. Rovers, F. A., and G. J. Farquhar. Infiltration and Landfill Behavior. J. Env. Eng. Div., ASCE, 99(EE5):671-690, 1973.
- 226. Rubin, J., and R. V. James. Dispersion-Affected Transport of Reacting Solutes in Saturated Porous Media: Galerkin Method Applied to Equilibrium-Controlled Exchange in Unindirectional Steady Water Flow. Water Resources Research, 9(5):1332-1361, 1973.
- 227. Sanitillan-Medrano, J., and J. J. Jurinak. The Chemistry of Lead and Cadmium in Soil: Solid Phase Formation. J. American Soil Science Society, 39:851-856, 1975.

- 228. Scherb, K. Experimental Results of Leachate Treatment. Allgemein Anerkannte Regeln der Technik-Mindestanforderungen-Gewasserschutz, (German), 1981. p. 307.
- 229. Schneider, W., and H. H. Rump. Experiments for Wastewater Treatment with Ozone in Combination with Adsorption Procedures. Ozone Science and Engineering, 3(3):169, 1981.
- 230. Schoenberger, R. J., A. A. Fungaroli, R. L. Steiner, and S. Zison. Treatability of Leachate from Sanitary Landfills. In: Proceedings of the Fourth Mid-Atlantic Industrial Waste Conference, Dover, Delaware, 1970. p. 411.
- 231. Schoenberger, R. J., and A. A. Fungaroli. Treatment and Disposal of Sanitary Landfill Leachate. In: Proceedings of the Fifth Mid-Atlantic Industrial Waste Conference, Philadelphia, Pennsylvania, November, 1971. p. 160.
- 232. Schoenberger, R. J., and R. J. Buchanan. Leachate Treatability. In: Proceedings of the Seventh Mid-Atlantic Industrial Waste Conference, Philadelphia, Pennsylvania, November, 1974. p. 425.
- 233. Segol, G. A Three-Dimensional Galerkin-Finite Element Model for the Analysis of Contaminant Transport in Saturated Unsaturated Porous Media. Finite Elements in Water Resources, W. G. Gray, ed. Pentech Press, London, England, 1977. pp. 2:123-2:144.
- 234. Selim, H. M. Analytical Solution of the Equation for Transport of Reaction Solutes Through Soils. Water Resources Research, 12(3):528-532, 1976.
- 235. Shuster, K. A. Leachate Damage Assessment: Case Study of the Fox Valley Solid Waste Disposal Site in Aurora, Illinois. U.S. Environmental Protection Agency, 1976a.
- 236. Shuster, K. A. Leachate Damage Assessment: Case Study of the Peoples Avenue Solid Waste Disposal Site in Rockford, Illinois. U.S. Environmental Protection Agency, 1976b.
- 237. Sidwha, R. N. Treatment of Leachate by the Anaerobic Filter. Master's Thesis, University of Toronto, Toronto, Ontario, 1982.
- 238. Simensen, A. T., and S. H. Odegaard. Pilot Studies for the Chemical Coagulation of Leachate. 0-167/70, Norwegian Institute of Water Pollution Research, Blindern, Norway, (Norwegian), 1971.
- 239. Slater, C. S., C. G. Uchrin, and R. C. Ahlert. Physciochemical Pretreatment of Landfill Leachates Using Coagulation. J. of Environmental Science and Health, A18(1):125, 1983.
- 240. Sobsey, M. D., C. Wallis, and J. L. Melnick. Development of Methods for Detecting Viruses in Solid Waste Landfill Leachate. Applied Microbiology, 28:232, 1974.

- 241. Sobsey, M. D., C. Wallis, and J. L. Melnick. Studies on the Survival and Fate of Enteroviruses in an Experimental Model of a Municipal Solid Waste Landfill and Leachate. Applied Microbiology, 30:565, 1975.
- 242. Spoljaric, N., and W. A. Crawford. Removal of Contaminants from Landfill Leachates by Filtration Through Glauconitic Greensands. Environmental Geology, 2(6):359, 1978/1979.
- 243. Spoljaric, N., and W. A. Crawford. Removal of Metals from Laboratory Solutions and Landfill Leachate by Greensand Filters. Delaware Geological Survey, Investigation No. 32, 1979.
- 244. Stegmann, R., and H. J. Ehrig. Operation and Design of Biological Leachate Treatment Plants. Water Science and Technology, 13(23):919, 1981.
- 245. Steiner, R. L. GROWS Landfill Experiments with Various Leachate Treatment Methods. Solid Wastes Management Refuse Removal J., 23(9):46, 1980.
- 246. Steiner, R. L., J. D. Keenan, and A. A. Fungaroli. Demonstration of a Leachate Treatment Plant. SW-91D, U.S. Environmental Protection Agency, 1977.
- 247. Steiner, R. L., J. D. Keenan, and A. A. Fungaroli. Demonstrating Leachate Treatment Report on a Full-Scale Operating Plant, SW-758, U.S. Environmental Protection Agency, 1979.
- 248. Steiner, R. L., A. A. Fungaroli, and J. D. Keenan. Ammonia Removal from Sanitary Landfill Leachate by Chemical/Physical Biological Treatment. In: Proceedings of National Conference on Treatment and Disposal of Industrial Wastewaters and Residues, Houston, Texas, 1977. p. 165.
- 249. Stevenson, F. J. Stability Constants for Cu, Pb, and Cd Complexes with Humic Acids. J. American Soil Science Society, 40:665-672, 1976.
- 250. Stevenson, F. J. Humus Chemistry: Genesis, Composition, Reactions. John Wiley and Sons, New York, 1982.
- 251. Straub, W. A. Development and Application of Models of Sanitary Landfill Leaching and Landfill Stabilization. RP. NO. 259, Resource Policy Center, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, 1980. p. 180.
- 252. Street, M. Polyvinyl Chloride Piping Materials. In: Proceedings of the GRCDA Sixth International Landfill Gas Symposium, Industry Hills, California, March, 1983.
- 253. Streng, D. R. The Effects of the Disposal of Industrial Waste Within a Sanitary Landfill. In: Proceedings of Residual Management by Land Disposal. EPA-600/9-76-015, 1976. pp. 51-70.

- 254. Streng, D. R. The Effects of Industrial Sludges on Landfill Leachates and Gas. In: Proceedings of the Third Annual Municipal Solid Waste Research Symposium, Management of Gas and Leachate in Landfills. EPA-600/9-77-026, St. Louis, Missouri, March, 1977.
- 255. Stoll, B. J. Leachate Treatment Demonstration. In: Proceedings of the Fifth Annual Research Symposium, Municipal Solid Waste: Land Disposal. EPA-600/9-79-023a, Orlando, Florida, March, 1979. p. 313.
- 256. Stone, R. Preventing the Underground Movement of Methane from Sanitary Landfills. Civil Engineering, ASCE, 48(1):51-53, 1978.
- 257. Sumner, J. Cooperative Programme of Research on the Behavior of Hazardous Wastes in Landfill Sites. Final Report of the Policy Review Committee, Department of the Environment, London, England, 1978.
- 258. Swartzbaugh, J. T., R. L. Hentrich, and G. V. Sable. Co-disposal of Industrial and Municipal Waste in a Landfill. In: Proceedings of the Fourth Annual Research Symposium, Land Disposal of Hazardous Waste. EPA-600/9-78-016, 1978. pp. 129-151.
- 259. Tchobanoglous, G., H. Theisen, and R. Eliassen. Solid Wastes: Engineering Principles and Management Issues. McGraw-Hill, New York, 1979.
- 260. Temoin, E. P. Nutrient Requirements for Aerobic Biostabilization of Landfill Leachate. Master's Thesis, Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, 1980.
- 261. Temoin, E. P., and D. S. Mavinic. Nutrient Requirements for Aerobic Biostabilization of Landfill Leachate. In: Proceedings of the Thirty-Sixth Industrial Waste Conference, West Lafayette, Indiana, 1981. p. 860.
- 262. Theis, T. L., J. D. Westrick, C. L. Hsu, and J. J. Marley. Field Investigation of Trace Metals in Groundwater from Fly Ash Disposal. J. Water Pollution Control Federation, 50:2457-2469, November 1978.
- 263. Theis, T. L., and J. L. Wirth. Sorptive Behavior of Trace Metals on Fly Ash in Acqueous Systems. Environmental Science and Technology, 11(12), November, 1977.
- 264. Theis, T. L., J. L. Wirth, R. O. Richter, and J. J. Marley. Sorptive Characteristics of Heavy Metals in Fly Ash Soil Environments. In: Proceedings of the Thirty-First Purdue Industrial Waste Conference, West Lafayette, Indiana, 1976.
- 265. Thornton, R. J., and F. C. Blanc. Leachate Treatment by Coagulation and Precipitation. J. Env. Eng. Div., ASCE, 99(EE4):535, 1973.
- 266. Tittlebaum, M. E. Investigation of Leachate Heavy Metal and Organic Stabilization Through Leachate Recirculation. Ph.D. Dissertation, Department of Civil Engineering, University of Louisville, Louisville, Kentucky, 1979.

- 267. Tittlebaum, M. E. Organic Carbon Content Stabilization Through Landfill Leachate Recirculation. J. Water Pollution Control Federation, 54(5):428, 1982.
- 268. Tittlebaum, M. E., J. L. Pavoni, and D. J. Hagerty. Investigation of Leachate Heavy Metal and Organic Content Stabilization. In: Proceedings of the Fifth Annual Environmental Engineering and Science Conference, Louisville, Kentucky, March, 1975. p. 61.
- 269. Uloth, V. C., and D. S. Mavinic. Aerobic Biostabilization of a High Strength Landfill Leachate. Solid Wastes Technical Report No. 7, Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, 1976.
- 270. Uloth, V. C., and D. S. Mavinic. Fate of Heavy Metals in Bio-treatment of Leachate. In: Proceedings of the National Conference on Environmental Engineering, ASCE, Kansas City, Missouri, July, 1978. p. 391.
- 271. U.S. Department of Energy. Landfill Methane Utilization Technology Workbook. U.S. Department of Energy Contract No. 31-109-38-5686, February, 1981.
- 272. Upadhyaya, A. K., and Q. C. LaPrad. Characterization and Treatment of Leachate: A Case Study. In: Proceedings of the Second Annual National Conference on Environmental Engineering Research Development and Design, ASCE, Gainesville, Florida, July, 1975.
- 273. Van Genuchten, M. T., J. M. Davidson, and P. J. Nierenga. An Evaluation of Kinetic and Equilibrium Equations for the Prediction of Pesticide Movement Through Porous Media. In: Proceedings of the Soil Society of America, 1974. pp. 29-35.
- 274. Van Genuchten, M. T., et al. Modeling of Soil and Leachate Interactions in an Aquifier. Management of Gas and Leachates in Landfills. In: Proceedings of the Third Annual Symposium, Solid and Hazardous Waste Division, U.S. Environmental Protection Agency, St. Louis, Missouri, 1977.
- 275. Van Genuchten, M. T., and R. W. Cleary. Movement of Solutes in Soil: Computer-Simulated and Laboratory Results Soil Chemistry. In: Developments in Soil Science, Chapter 10, G. H. Bolt and M. G. M. Bruggewert, eds. Elsevier Publ. Co., Amsterdam, 1978.
- 276. Van Heuit, R. E. Analysis of the First 18 Months of Data from the Controlled Landfill Demonstration Project, Mountain View, California. In: Proceedings of Energy from Biomass and Wastes VII, Paper No. 27, Orlando, Florida, January, 1983.
- 277. Venosa, A. D. Ozone as a Water and Wastewater Disinfectant: A Literature Review. In: Ozone in Water and Wastewater Treatment, Francis L. Evans, ed. Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan, 1972. p. 83.

- 278. Vogt, W. G. and J. J. Walsh. Volatile Organic Compounds in Gases from Landfill Simulators. Final Report. Gas Research Institute Contract No. 5082-253-0694, August, 1984.
- 279. Walsh, J. J., and R. N. Kinman. Leachate and Gas Production Under Controlled Moisture Conditions. Municipal Solid Waste: Land Disposal. In: Proceedings of the Fifth Annual Research Symposium. EPA-600/9-79-023a, Orlando, Flordia, March 1979.
- 280. Walsh, J. J., W. G. Vogt, and W. M. Held. Demonstration of Landfill Gas Enhancement Techniques in Landfill Simulators. In Proceedings of GRCDA Sixth International Landfill Gas Symposium, Industry Hills, California, March, 1983.
- 281. Weber, W. J., and H. S. Posselt. Equilibrium Models and Precipitation Reactions for Cadmium (II). In: Aqueous Environmental Chemistry of Metals, A. J. Rubin, ed. Ann Arbor Science Pub., Inc., Ann Arbor, Michigan, 1975. pp. 255-289.
- 282. Wise, D. L., S. E. Sadek, R. G. Kispert, L. O. Anderson, and D. H. Walker. Fuel Gas Production form Solid Waste. In: Proceedings of Biotechnol. and Bioeng. No. 5. John Wiley and Sons, Inc., 1975. pp. 285-301.
- 283. Wolfe, H. R., D. C. Staff, J. F. Armstrong, and S. W. Comer. Persistence of Parathion in Soil. Bulletin of Environmental Contamination Toxicology, No. 10., 1973. pp. 1-9.
- 284. Wong, P. T. Two-Stage Treatment of a Landfill Leachate: Aerobic Biostabilization with Lime-Magnesium Polishing. Master's Thesis, Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, 1980.
- 285. Yamazaki, M., and T. Sawai. Radiation Treatment of Landfill Leachate. Radiation Physics and Chemistry, 18(3/4):768, 1981.
- 286. Yueh, C. Pilot Studies on the Combined Treatment of Leachate with Sewage by the Activated Sludge Process. Master's Thesis, Department of Civil Engineering, University of Illinois, Urbana, Illinois, 1975.
- 287. Zabetakis, M. G. Biological Formation of Flammable Atmospheres. U.S. Department of the Interior, Bureau of Mines, Report No. 6127, 1962.
- 288. Zapf-Gilje, R. Effects of Temperature on Two-Stage Biostabilization of Landfill Leachate. Master's Thesis, Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, 1979.
- 289. Zapf-Gilje, R., and D. S. Mavinic. Temperature Effects on Two-Stage Biotreatment of Leachate. In: Proceedings of ASCE Specialty Conference on Environmental Engineering, San Francisco, California, July, 1979. p. 744.
- 290. Zapf-Gilje, R., and D. S. Mavinic. Temperatue Effects on Biostabilization of Leachate. J. Env. Eng. Div., ASCE, 107(EE4):653, 1981.

- 291. Zapf-Gilje, R., and D. S. Mavinic. Characteristics of Fill-and-Draw Reactor. J. Env. Eng. Div., ASCE, 108(EE4):808, 1982.
- 292. Zimdahl, R. L., and R. K. Skogerbee. Behavior of Lead in Soil. Environmental Science and Technology, 11(13), 1977.

APPENDIX A

BIOLOGICAL TREATMENT DATA

TABLE A-1. Bench-Scale Experimental Data for the Activated Sludge Process Relating $\Theta_{\rm c}$ to 8005, COD, and TOC Removal

	o _c ,	BOD ₅ , n	ng/1	COD.	mg/1	TOC.	ng/1		Removal.		800 ₅	COD	
Reference	days	[nfluent	Effluent	Influent	Effluent	Influent	Effluent	B00 ₅	COD	TOC	con	TOC	Comments
19,20,195	1 5 5 5	8000 1550 2900 7010	7800 160 200 1400	9200 2700 6200 8800	6700 830 430 2300	:	:	2.5 89.7 93.1 80.0	27 2 59.2 93 1 73.8	:	0.87 0.57 0.47 0.80	:	T = 23-25°C T = 23-25°C T = 23-25°C T = 23-25°C
288-290	6 9 20	13,600 13,600 13,600	26 20 6	19,300 19,300 19,300	580 470 300	6170 6170 6170	-	99.8 99.9 >99.9	97.0 97.6 98.4	:	0.70 0.70 0.70	3.1 3.1 3.1	A: T = 23-25°C A: T = 23-25°C A: T = 23-25°C
118,119	15 25	13,600 13,600	20 12	19,300 19,300	420 360	6170 6170	:	99 8 99 9	97.8 98.1	:	0.70 0.70	3.1	A: T = 24°C A: T = 24°C
272	1.5 3.8 7.1	220 220 220	37 20 25	:	=	230 230 230	151 136 130	83.1 90.9 88.6	:	34.3 40.1 43.5	:	:	7 = 18°C T * 18°C T = 18°C
53,54,97	2 5 10 10	7100 7100 7100 7100	7100 3400 26 12	15,800 15,800 15,800 15,800	15,800 8450 360 310	4600 4600 4600 4600	1810 140 76	0 52.1 99.6 99.9	0 46.5 97.6 98.0	60.7 92.6 98.4	0.45 0.45 0.45 0.45	3.4 3.4 3.4 3.4	T = 22°C T = 22°C T = 22°C A; T = 22°C
176,269,270	10 20 30 30 45 60	36,000 36,000 36,000 36,000 36,000 36,000	130 32 27 90 66 75	48,000 48,000 48,000 48,000 48,000 48,000	1550 590 460 610 430 390	15,400 15,400 15,400 15,400 15,400 15,400	:	99.6 99.9 99.9 99.7 99.8 99.8	96.8 98.8 99.0 98.7 99.1 99.2	:	0.75 0.75 0.75 0.75 0.75 0.75	3.1 3.1 3.1 3.1 3.1 3.1	A; I = 21-25°C A; I = 21-25°C
35,143	5.2 3.3 3 0 5.0 3 0 2.3 10.7 5.0	2700 2700 2900 - - - - - 300 ~300	10 20 25 - -	3500 3500 3500 3800 3800 3800 530	90 100 110 170 1500 2200 340 345	135	- - - - 100	99.6 99.3 99.1	97.4 97.1 96.9 95.5 60.5 42.1 35.8 34.9	- - - - 26 26	0.77 0.77 0.83 ~0.80 ~0.80 ~0.80 ~0.66 ~0.66	3 9 3.9	T = 25°C F = 25°C T = 25°C T = 25°C T = 25°C T = 25°C T = 15°C
159 35,143	10 3.0 1.6 0.9 4.1 1.8 1.0 0.6 4.1 0.22 3.9 2.2 1.5 1.5 1.6 0.35 45	~300 ~300 ~300 ~300 ~300 ~300 ~300 ~300		1990 530 530 530 530 420 420 420 420 420 400 400 450 450 450 9400 9400	1340 340 340 350 350 260 260 270 280 330 230 250 250 260 270 280 320 150 240 120	135 135 135 135 130 130 130 130 130 130 130 140 140 140 140 1700 1700	436 85 100 110 110 74 79 78 90 90 100 67 68 73 100 100 105 40 77 220		32.0 35.8 35.8 34.0 38.1 35.7 33.3 21.4 42.5 37.6 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40	27 26 19 19 19 43 39 40 31 31 23 36 36 36 39 29 29 29 25 87 1	20.66 20.66	3.9 3.9 3.9 3.2 3.2 3.2 3.2 3.8 3.8 3.8 3.5 5.5	T = 15°C T = 15°C T = 15°C T = 15°C T = 13°C T = 16°C T = 12°C T = 12°C
35,143	3.3 1.7 0.88 2.0 1.9 1.9 1.8	~1000 ~1000 ~1000 ~580 ~580 ~580 ~580 ~580 ~580		1260 1260 1260 730 730 730 730 730	220 230 600 430 340 300 260 230	310 310 310 200 200 200 200 200	71 78 190 140 110 94 89 68		82.5 81.7 52.4 41.1 53.4 58.9 64.4 68.5	77.1 74 8 39 30 45 53 56 66	\$0,80 \$0,80 \$0,80 \$0,80 \$0,80 \$0,80 \$0,80	4.1	T = 12°C T = 12°C T = 12°C T = 5°C T = 10°C T = 12°C T = 12°C T = 25°C
151	0 083 0 25 0.42 0.63 0.083 0.21 0.58 0.21			4500 4500 4500 4500 2420 2600 2600 1550	445 565 510 270 1860 650 700 850	1750 1750 1750 1750 1750 620 720 770	400 650 670 300 500 440 330	:	90.1 87 4 88.7 94 0 23 75.0 73.0 45	77 1 62.9 61.7 82.9 19 39		2 6 2.6 2.6 2.6 3.9 3.6 3.4	A; I = 23°C A; I = 23°C
205-207	0.10 0 13 0.23 0.33	260 260 260 260	75 42 36 30	500 500 500 500	290 250 205 210	320 320 320 320	240 200 140 150	71.2 83.8 86.2 88.5	42 50 59 58	25 38 56 53	0.52 0.52 0.52 0.52	1.6 1.6 1.6	1 = 23°C 1 = 23°C 1 = 23°C
26	2.5 5 10 10 30	8300 6400 7600 6400 7900	2000 260 76 770 240	:	-	•	•	76 96 99 88 97	:	:	0.5 0.5 0.5 0.5 0.5	:	T = 23°C T = 23°C T = 23°C T = 23°C T = 23°C
228	6 12 20 30 6	7350 7350 7350 7350 7350 7350	30 30 25 25 3820	9950 9950 9950 9950 9950	240 240 200 200 6470	3550 3550 3550 3550 3550	•	99.6 99.6 99.7 99.7 48	97.6 97.6 98.0 98.0 35	-	0.74 0.74 0.74 0.74 0.74	2.8 2.8 2.8 2.8 2.8	A; T = 18-22°C A; T = 18-22°C A; T = 18-22°C A; T = 18-22°C T = 18-22°C
28	10 15 20 30 10 10	2220 2220 2220 2220 		9760 9760 9760 9760 7760 7760	1150 860 610 470 1250 1160	3200 3200 3200 3200 - - - 3200	-		88.2 91.2 93.7 95.2 83.9 85.0		0.23 0 23 0 23 0.23	3.1 3.1 3.1 3.1 3.1	T = 22-23°C T = 22-23°C T = 22-23°C T = 22-23°C, Raw T = 22-23°C, Raw with P add. T = 22-23°C, Lime treated with P add.
244	10 10	5170	25	3800 1500 8140	710 375 560	:	:	99 5	81.7 74.8 93.1	:	0 64	-	T = 22-23°C; 1 1 dilution T = 22-23°C; 1 5 dilution T = 18-22°C
	12.5 12.5 4.7 13	11,250 750 6500	25 25 20 60	16,700 4000 11,500	2500 1600 3500	:	:	99 8 97 3 99 1	85.0 60 0 69 6	-	0.67 0.19 0.57	-	T = 18-22°C T = 18-22°C T = 18-22°C
222	1.2 2.5 5.0 10 1 15.0 20.0	2845 2845 2845 2845 2845 2845	837 261 52 16 9	4805 4805 4805 4805 4805 4805	1554 697 300 220 160 155	1620 1620 1620 1620 1620 1620	531 270 115 90 56 54	70.6 90.8 98.2 99.4 99.7 99.8	67.6 85.5 93.8 95.4 96.7 96.8	67.2 83.3 92.9 94.4 96.5 96.7	0.59 0.59 0.59 0.59 0.59 0.59	3.0 3.0 3.0 3.0 3.0 3.0	T = 10°C, COD:P = 100.1 T = 10°C, COD:P = 100 } T = 10°C, COD:P = 100 } T = 10°C, COD:P = 100.1 T = 10°C, COD:P = 100:1 T = 10°C, COD:P = 100:1

⁻ Data not given A; Nutrient adjusted; BOD5 N:P=100:5·1 sAuthor cailed these AL

TABLE A-2. Bench-Scale Experimental Data for the Activated Sludge Process Relating 800_\S and COD Loading to 800_\S and COD Removel.

Reference	kg80	Loading. O _S or COD/# ³ O _S COD	day (100 ₅ , mg/l ment Effluent		06, mg/1 . Effluent	800 ₅	% Remove	10C	8005 700	C00 700	Coments
19,20,195	8.0 0.31 0.58 1.40	1.04	8000 1550 2900 7010	160 200	9200 2700 6200 8800	6700 830 430 2300	2.5 89.7 95 1 80.0	27.2 59.2 93.1 73.8	:	0.87 0.57 0.47 0.80	:	T = 23-25°C T = 23-25°C T = 23-25°C T = 23-25°C
286-290	2.27 1.51 0.68	3.21 2,14 0 96	13.64 13.64 13.64	no 20	19,300 19,300 19,300	580 470 300	99.8 99.9 99.9	97 C 97 6 98.4	:	0.70 0.70 0.70	3.1 3.1 3.1	A: T . 23-25°C
118,119	0.91 0.54	1.29 Q.77	13.6	00 20 00 12	19,300 19,300	420 360	99.8 99.9	97.8 98.1	:	0.70 0.70	3.1 3.1	A; T + 24°C
272	0.14 0.06 0.03	:	220 220 220	37 20 25	:	:	83.1 90.9 88.6	:	34.3 40.1 43.5		:	7 - 18°C T - 18°C T - 18°C
53,54,97	3.6 1 4 0.71 0.71	7.9 3 2 1 6 1.6	7100 7100 7100 7100	7100 3400 26 12	15,800 15,800 15,800 15,800	15,800 ° 8450 360 310	0 52.1 99 6 99 9	0 46.5 97.6 98.0	60.7 92.6 98.4	0.45 0.45 0.45 0.45	3,4 3,4 3,4 3,4	T • 22°C
176,269,27	0 3.6 1 8 1 2 1 2 0 8 0.6	4.8 2.4 3.6 1.5 1.1 0.8	36 , 00 36 , 00 36 , 00 36 , 00 36 , 00 36 , 00	00 32 XO 27 XO 90 XO 66	48,000 48,000 48,000 48,000 48,000	1550 590 460 610 430 390	99 6 99 9 99 9 99 7 99 8 99 8	96.8 98.8 99.0 98.7 99.1 99.2	:	0.75 0.75 0.75 0.75 0.75 0.75	1.1 3.1 3.1 3.1 3.1 3.1	A, T • 21-25°C A, T • 21-25°C A; T • 21-25°C A; T • 21-25°C
35,143	0 52 0.82 0.97	0 70 1 07 1 16 0.76 1.23 7.68 0.06 0.11	2700 2700 2900 - - - 300 -300	20 25 -	3500 3500 3500 3800 3800 3800 530 530	90 100 110 176 1500 2200 110 345	99 6 99.3 99.1	97 4 97.1 96.9 95.5 60.5 42.1 35.8 34.9	26 26	0.77 0.83 ~0.80 ~0.80 ~0.80 ~0.66 ~0.66	3.9	
159 35,143	•	0.20 0.18	- ~300	•	1990 530	1340 340		32.0	17		3.3	
		0.32 0.59 0.92 0.92 0.10 0.41 0.70 1.02 0.10 0.18 0.26 0.37 0.27 0.27 0.45 0.95	~300 ~300 ~300 ~300 ~300 ~300 ~300 ~300		\$300 \$300 \$300 \$200 \$200 \$200 \$200 \$200	340 350 250 260 270 270 330 350 250 250 260 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 280 270 270 270 270 270 270 270 270 270 27		35.8 34.0 34.0 38.1 35.7 33.3 216.7 42.5 35.0 40.0 37.8 28.9 98.4 97.4 87.2	37 26 19 19 43 39 40 31 31 23 36 30 29 29 25 97.6 87.1	49.666 49.6666 49.666 49.666 49.666 49.666 49.666 49.666 49.666 49.666 49.6666 49.666	3.9 3.2 3.2 3.2 3.2 3.2 3.8 3.8 3.8 3.2 3.2	
5,143	:	0.38 0.73 1.44 9.37 0.38 0.38 0.40 0.39	~1000 ~1000 ~1000 ~680 ~580 ~580 ~580 ~580	:	1260 1260 1260 230 230 730 730 730	220 230 600 430 340 300 260 230	:	82.5 81.7 52.4 41.1 53.4 58.9 64.4 68.5	77.1 74.8 39 30 45 53 56	9.80 9.80 9.80 9.80 9.80 9.80	4 1 4 1 3 7 3.7	T = 12°C T = 12°C T = 12°C T = 10°C T = 12°C T = 12°C T = 18°C
1		54.0 18.0 11.0 7.2 29.0 13.0 4.5 7.4	:	:	4500 4500 4500 4500 2420 2600 1550	445 565 510 270 1860 65 765 850		90.1 87.4 88.7 94.0 23 75.0 73.0	77.1 62.9 61.7 82.9 19 39	* :	2.6 2.6 2.6 2.6 3.9 3.6 3.4	A. T * 23°C A: T * 23°C
05-207	2.7 2.1 1.13 0.78	5.2 4.0 2.2 1.5	260 260 260 260	75 42 36 30	500 500 500 500	290 250 205 210	71.2 83.8 86.2 68.5	42 50 59 58	25 38 56 53	0.52 0.52	1.6 1.6 1.6	T = 23°C T = 23°C T = 23°C T = 23°C
,	3.3 1.3 0.76 0.64 0 26	:	8300 6400 7600 6400 7900	2000 260 76 770 240	:	:	76 96 99 88 97	:	:	0 5 0.5 0 5 0 55	:	T = 23°C T = 23°C T = 23°C
18	0.31- 0.61 0.25- 0.37	0 41- 0.82 0 33- 0.50	7350 7350	30 25	9950 9950	240 200	99.6 99.7	97.6 98.0			- 2.8 2.8	T = 23°C A, T = 18-22°C A, T = 18-22°C
	:	0.98 0.65 0.49 0.33 0.78 0.78	2220 2220 2220 2220 2220	:	9760 9760 9760 9760 9760 7760 10,400	1150 860 610 470 1250 1160	:	88.2 91.2 93.7 95.2 83.9 85.0		0.23 0.23 0.23	3.1 3.1 3.1 3.1	T = 22-23°C T = 22-23°C T = 22-23°C T = 22-23°C, Raw T = 22-23°C, Raw with P add. T = 22-23°C, Lime
	:	0.39 0.13	:	:	3800 1500	710 375	:	81.7 74.8	:	:	3.3 -	T = 22-23°C, Lime created with P add. T = 22-23°C; 1 1 dilution T = 22-23°C, 1:5 dilution
	0.41 0.92 0.16 0.50	0.65 1.34 0.85 0.88	5170 11,250 750 6500	25 25 20 60	8140 16,700 4000	2500 1600	99.5 99.8 97.3	93.1 85.0 60.0	•	0.64 0.67 0.19	:	T = 18-22°C T = 18-22°C T = 18-22°C
	:	0.79 0.80 0.75 0.86 0.76	:	- - - -	3940 3940 4020 3750 4280 3820	3500 920 770 510 850 850	99 1	76 81 86 78 80	•	0.57	:	1 = 18-22°C T = 23°C; control T = 23°C; lime + T = 23°C, Na ₂ Co ₃ Add T = 23°C, lime Add. T = 23°C, MaQH Add
(0,97 0,97 0,97 0,97 0,97 0,97	:	19,300 19,300 19,300 19,300 19,300 19,300	80 55 36 300 3430 560	30400 30400 30400 30400 30400 30400	- 9 - 9	19.6 19.7 19.8 19.4 12.6 17.1	:		0.63 0.63 0.63 0.63 0.63 0.63	:	900 ₅ :N:P T = 23°C 100:5:1.1 T = 23°C 100:4:1.1 T = 23°C 100:4:1.1 T = 23°C 100:4:0.32 T = 23°C 100:4:0.12 T = 23°C 100:3.2.0,12
ž	:3	3.2 3.2	13,600 13,600	100 100	19300 19300	900 9	9.3 9.3	95.3 95.3		2.70 3	.1	T = 9°C, A
1 0 0	.4 .1 .6 .3 .2	4.0 1.9 0.95 0.48 0.32 0.24	2845 2845 2845 2845 2845 2845 2845	837 261 52 16 9	4805 4805 4805 4805 4805 4805	697 99 300 99 220 99 160 99	0 6 0.8 8.2 9.4 9.7	67.6 85.5 93.8 95.4 96.7 96.8	9	1.59 3. 1.59 3. 1.59 3. 1.59 3. 1.59 3.	0	T = 10°C, C00:P=100:1 T = 10°C; C00:P=100:1

⁻ Data not given A; Nutrient adjusted, BOD5 K-P=100-5.1 SAuthor colled those a

TABLE A-3. Bench-Scale Experimenta Data for the Activated Process Relating Food to Microorganism (F/M) Ratio to 800_5 and 600 Removal.

	F/M, kg M 800 ₅	USS day	'80D ₅ , m		COD, n		Remova BOD	1, % COD	800 ₅	COD TOC	Comments
Reference 289,290	0.18	0.25	Influent 13,600	Effluent 6	Influent 19,300	Effluent 300	-99 9	98.4	0 70	3.1	T = 24°C A
	0.35 0 49	0 49 0 69	13,600 13,600	20 26	19,300 19,300	470 580	99 9 99 8	97.6 97.0	0.70 0.70	3.1	T = 24°C; A T = 24°C; A
118,119	0.18 0.29	0.26 0.41	13,600 13,600	12 21	19,300 19,300	360 420	99.9 99.8	98 1 97 8	0.70 0.70	3.1 3.1	T = 24°C; A T = 24°C, A
272	0 16 0.35 0.72		220 220 220	25 20 37	 	==	88.6 90 9 83.1			==	T = 18°C T = 18°C T = 18°C
53,54,97	0.16 0.43 0.14	0.36 0.97 0.31	7,100 7,100 7,100	26 3400 10	15,800 15,800 15,800	360 8450 310	99.6 52.1 99.9	97 6 46.5 98.0	0 45 0.45 0.45	3.4 3.4 3.4	T = 22°C T = 22°C T = 22°C; A
193,195	 	0.012 0.016 0.025 0.036 0.050	230 230 230 230 230	 	350 370 370 360 350	36 38 44 45 50	 	89.8 89.7 88 1 87.5 85.7	0.66 0.62 0.62 0.64 0.66	 	T = 23°C, 1·25 dilution T = 23°C, 1·25 dilution T = 23°C, 1·25 dilution T = 23°C, 1·25 dilution T = 23°C, 1·25 dilution
269,270	0 074 0 067 0 11 0 089 0.12 0.22	0 099 0 090 0.15 0.12 0.16 0 30	36,000 36,000 36,000 36,000 36,000	75 66 91 27 32	48,000 48,000 48,000 48,000 48,000	390 430 610 460 590 1550	99 8 99.8 99.7 99 9 99.9	99.2 99.1 98.7 99.0 98.8 96.8	0.75 0.75 0.75 0.75 0.75 0.75	3.1 3.1 3.1 3.1 3.1	T = 23°C, A T = 23°C, A
159 35,143		0 27 0.2 6	 2700	10	1,990 3500	1342		32.0		3.3	T = 15°C
35,143		0.37 0.40 0.28 0.79 0.70 0.033 0.062 0.14 0.14 0.28 0.12 0.17 0.26 0.12 0.17 0.26 0.17 0.26 0.17 0.34 1.05 0.09 0.17 0.26 0.17 0.34 0.17 0.34 0.068 0.17 0.34 0.17 0.34 0.068 0.17 0.34 0.17 0.34 0.	2700 2900 3900 3000 3000 3000 3000 3000 30	200 255	1500 1500 1500 1800 1800 1800 530 530 530 530 530 530 420 420 420 420 420 420 420 420 420 42	90 100 110 170 1500 340 345 345 340 350 260 270 280 330 330 350 280 270 280 280 270 280 280 270 280 280 270 280 280 270 280 280 280 280 280 280 280 280 280 28	99.6	97.4 97.4 96.9 95.5 42.1 35.8 34.9 35.8 34.0 38.1 40.0 38.1 42.5 37.5 40.0 89.9 42.5 42.5 40.0 89.9 42.5 42.5 42.5 42.5 42.5 42.7 42.5 42.7 42.7 42.7 42.7 42.7 42.7 42.7 42.7	0 77 0 . 77 0 . 80 0 . 80 0 . 66 0 .	3.99 3.99 3.99 3.99 3.199 3.199 3.199 3.100 3.100 3.00	T - 25°C T - 15°C T - 13°C T - 16°C
		0.25 0.48 0.16 0.19 0.16 0.16	1000 1000 1000 580 580 580 580 580		1260 1260 730 730 730 730 730	230 600 430 340 300 260 230		82 5 81.7 52.4 41.1 53.4 58.9 64.4 68.5	0.80 0.80 0.80 0.80 0.80 0.80	4 1 4 1 4 1 3 7 3 7 3 7 3 7 3 7 3 7	T = 12°C T = 12°C T = 12°C T = 5°C T = 10°C T = 12°C T = 18°C T = 25°C
151	 	3.2 5.7 6 5 2 3 3 1 9.8 2 9	 		4500 4500 4500 4500 2600 2600 2420 1550	270 510 565 445 700 650 1860 850		94 0 88 7 87 4 90 1 73 0 75.0 23 1 45 2		2.6 2.6 2.6 3.4 3.6 3.9	A; T = 23°C A; T = 23°C A; T = 23°C A, T = 23°C A, T = 23°C A; T = 23°C A; T = 23°C A; T = 23°C
228	0 4-0 0.10- 0.18	0.14-0 24	7350 7350	30 25	9950 9950	240 200	99.6 99.7	97 6 98.0	0 74 0.74	2.8 2.8	A, T = 18-22°C A, T = 18-22°C
28	 	0.35 0.41 0.49 0.60 0.53 0.50 0.64	2220 2220 2220 2220 	 	9760 9760 9760 9760 7760 7760 10400	470 610 860 1150 1250 1160 1130		95 2 93 7 91.2 88.2 83 9 85 0 89 1	0 23 0.23 0.23 0 23 0 23 0.23 0.23	3.1 3.1 3.1 3.1 3.1 3.1 3.3	T = 22-23°C T = 22-23°C T = 22-23°C T = 22-23°C T = 22-23°C, raw T = 22-23°C, raw + P add. T = 22-23°C ime treated w/P add T = 22-23°C 1 dilution
244	2.064	0.44			1500	375		74 8			T = 22-23°C, 1 5 dilution
	0 064 0 11 0.02 0.07	0.10- 0.16 0.11 0.12	5170 750 6500	25 20 60	8140 4000 11500	560 1600 3500	99.5 97 99	600	0 64 0 19 0 57	::	T = 18-22 'C T = 18-22 °C T = 18-22 °C
222	2 26 1.03 0 39 0.20 0.15 0 11	3 81 1 75 0 66 0 34 0 25 0 19	2845 2845 2845 2845 2845 2845	837 261 52 16 9	4805 4805 4805 4805 4805 4805	1554 697 300 220 160	70.6 90 8 98.2 99.4 99.3	67 6 85 5 93.8 95.4 96.7	0 59 0 59 0.59 0.59 0.59 0.59	3.0 3.0 3.0 3.0 3.0 3.0	T = 10°C; COD P=100;1 T = 10°C; COD:P=100:1 T = 10°C; COD:P=100:1 T = 10°C; COD:P=100:1 T = 10°C; COD:P=100:1 T = 10°C; COD:P=100:1

A = Nutrient adjusted; BOO₅ N P=100·5 1 -- = Oata not given

TABLE A-4 Bench-Scale Experimental Data for the Activated Sludge Process for Heavy Metal Removal.

			1-61				/1				р.	emoval,	*			
Reference	pН	Cd	Cr	Cu Cu	Fe	ton, mg	/ NT	Zn	ca	Cr	Cu	Fe Fe	РЪ	NT	Zñ	Comments
45	9				2130			72				99			>99	Varied 6 * 7-86 days
•	ģ				2130			72				>9 9			>99	Considered AL.
	9				2130	•-		72	• •			99			>99	
	9				1020	••		55				99		••	>99	
	9				1020			55				99			>99 >99	
	9				1020			55				99			799	
118,119	8		0.10	••	1130	0.028	0.11	31		75		96	82	75	96	
260,261	8.3	0.072	0.37		990	0.17		50	97	86		97	94		97	Varied nutrient addition
	8 6	0 072	0 37		990	0.17		50	99	91		99	96		99	
	8 9	0.072	0 37		990	0.17		50	99	90		>99	98		>99	
	8.5	0 072	0.37		990	0.17		50	99	72		97	86		96	
	8.7	0.072	0.37			0.17		50	97	89		99	97		99	
	8.7	0.072	0.37		990	0.17		50	99	91		99	91		99	
269,270	8.8	0 39	1.9		960	1.44	0.65	220	97	93		99	80		99	Varied $\theta_c = 10-60$ days
	8.7	0.39	19		960	1.44	0.65	220	98	97		>99	84		99	-
	8.5	0.39	1.9		960	1.44	0.65	220	99 97	97	~-	99 99	85 84		>99 >99	
	8.8	0.39	19		960	1 44	0 65	220		97 98		99	88		>99	
	8.7	0 39	1.9		960 960	1 44	0.65	220 220	98 99	98 97		99	90		>99	
	8.6	0.39	1.9		300	1,44			79				50			
288-290	8.3	0.04	0 44		1230		0.18	39	95	98		-99		39	>99	Varied 0c = 6-20 days
	8.3	0 04	0 44		1230		0.18	39	95	98		99		67	99	+ T = 9-25°C
-	8,3	0.04	0.44		1230		0 18	39	98	98		>99		61	-99	
	8.3	0.04	0.44		1230	~~	0 18	39	85	97	~-	99		61	99 98	
	8.3	0.04	0.44		1230		0.18	39	85	94 98		98 99		56 44	- 90 - 90	
	8.3	0.04	0.44		1230		0.18	39	95	98		99		44	.39	
168	8 4	0 0015	0 017	0 030	20 2	0 045	0 002	1.17	>67	47 1		96	94 94			θ _c = 3 days
	8 4	0.0015	0.017	0.030	20.2	0.045			> 67	58.8		94	94			5 days
	8 4	0 0015	0.017	0.030	20 2	0.045			· 67	64.7		97	94			7 days
53,54,97	8.4				240							>96				Varied 8 = 5-10days.
	8.4				240	••						>96				•
	76				240							>96				
	7.6				240							>96				
151	7		••		290							97				
222	8 6	<0.005	0.14	0.08	102	0.11	0 18	17.6		78	> 90	98	73	39	95	e_ = 10 days, T = 10°C

⁻⁻ Data not given

TABLE A-5. Bench-Scale Experimental Data for the Activated Sludge Process for Alkali and Alkaline Earth Metal Removal.

		infli	ient Con	centrat	ion, mg/	1		R	emoval,	¥		•
Reference	pН	Ca	Mg	Mn	K	Na	Ca	Mg	Мn	K	Na	Comments
45	9	3780	660		1240	1350	99	79		22	35	Varied 0 × 7-86 days Considered AL
	ġ	3780	660		1240	1350	99	82		22 23	35 27	c
	9	3780	660		1240	1350	99	81		32	32 20 19	
	9	3010	310		500	810	99	74		11	20	
	9	3010	310		500	810	99	79		8	19	
	9	3010	310		500	810	99	76		17	24	
53,54,97	8.4	1200	170				97	18			**	Varied o _c * 5-10 days Control Lime Addition
30,0.,.	8 4	1200	170				98	29			~-	Lime Addition
	7 6	1200	170				65	26				Lime Addition
	7 6	1200	170				64	18				Control
118,119	8		69	13				36	>96		~-	
151	7	88	100	3.0	900		97	90	90	16		
206-208	8.2	100	35		200	430	66	11		30	0	Varied e _c = 2.3-8 hours,
	8 2	100	35		200	430	71	3		20	0	с
	8 2	100	35		200	430	75	14		20 30	0	
	8.2	100	35		200	430	75	9		20	0	
260,261	8 3			35					98			Varied nutrient addition
	8 6			35					97		~-	
	8.9			35 35		••			99		~ =	
	8.5			35					90			
	8.7			35					97		~•	
	8 7			35					97			
168	8 4	7550	39 2	4 1	44	120	69	5	99	0	0	c * 3 days 5 days
	8.4	550	39 2	4 1	44	120	69	5 5	97	0	0	5 days
	8 4	550	39 2	4 1	44	120	69	5	97	0	0	7 days
269,270	8.8	1400	310	41	1060		99	62	96	35		Varied 0 = 10-60 days
200,200	8 7	1400	310	41	1060		96	62 71	98	33		c 10 00 days
	8.5	1400	310	41	1060		98	73	99	38		
	8 8	1400	310	41	1060		95	73	99	36		
	8 7	1400	310	41	1060		96	64	>99	42		
	8.6	1400	310	41	1060		94	68	>99	46		
288-290	8.3	775	72	14			94	48	99			Varied # = 6-20 days + T * 9-25°C,
	8.3	775	72	14			94	45	99			
	8.3	775	72	14			90	58 50	99			
	8.3	775	72	14			95	50	99			
	8.3	775 775	72	14			95	48	99			
	8.3	_	72	14			93	60	99			0 - 10 days T = 10°C
222	8.6	348	37	23	153	180	88	11	93	22	0	e _c = 10 days, T = 10°C

⁻⁻ Data not given.

TABLE A-6. Bench-Scale Data for Nitrogen Conversion and Removal for the Aerobic Processes.

٠		Loading kg 800 ₅ m ³ day		Inf	luent N,	ma/1	Eff	luent N,	mq/1				
Reference	θ _c ∙ days	B00 ₅	COD	TKN	NH3-N	NO3-N	TKN	ин3-и	NO3-N	Nitrification,	TKM Conversion,	pH	Comments*
35,143	4 1 1 8 1.0 0 6 0 .22 3.9 2 2 2 0 67 0.35 3 3 7 0.88 2 0 1.9 1 9 1.8		0.10 0.23 0.41 0.70 1.02 1.89 0.10 0.18 0.37 0.67 1.29 0.37 1.44 0.37 0.38 0.38	110 110 110 110 110 110 115 115 115 134 134 169 176 232 236 239 228 268	134 134	3. 2 3 2 3 2 3. 2 3. 2 3. 2 0. 7 0. 7 0. 1 0. 1 0. 1 0. 1 0. 1 0. 3 0 3 0 3	34 35 29 33 56 93 34 34 33 36 32 118 47 232 228 170 55 18	0 4 0.4 118	76 75 74 73 48 7 81 80 85 124 129 0.2 72 173 244 265	69 68 67 66 44 6.4 70 70 70 70 63 65 10 73 0 2.1 30 76 93	69 68 74 70 49 15 69 71 73 76 17 73 0 3.4 29 76 99	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	T = 13°C. AS T = 16°C. AS T = 12°C. AS T = 18°C. AS
193,195	6.9	0.033	0 052	12	-		5	-	7	58	58	>6 8	T * 23°C; 1 25 dilution; AS
143	τ=37 τ=10 45 20 9 9	:	0 011 0.041 0 21 0 46 0 95	113 105 250 250 250	:	3 2 3 2 0 1 0.1 0.1	35 65 14 29 102	:	78 40 6.2 1.6 0.2	69 38 94 88 59	69 38 94 88 59	8 5 8 4 8.4 8.4 8 2	T = 12°C, AL T = 12°C; AL T = 12°C; AS T = 12°C; AS T = 12°C; AS
159	10	-	0 20	•	329	9 7	•	5	334	99	-	6 4	T = 15"C; AS
53,54,97	10 10 10 10 5	0.73 0.71 0.71 0.71 0.71 1.42	1 58 1 58 1 58 1 58 1 58 3 16	280 280 780 780 280	10 10 510 510	19 19 19 19	16 13 21 23 118	8 5 6 5 3.4 4.1 72	4 3 4 1 24 35 3.9		94 95 97 97 58	8 4 7 6 7 6 8 0	AS: T = 22°C AS: T = 22°C AS: T = 22°C AS: T = 22°C AS: T = 22°C
269,270	10 20 30 30 45 60	3 6 1.8 1.2 1.2 0 8 0.6	4 8 2 4 1 6 1 6 1 07 0 8	1390 1390 1390 1770 1770 1770			29 24 13 70 39 23	:	:	,	98 98 99 96 98 99	8 8 8.7 8 5 8 8 8.7 8.6	AS; T = 23°C AS; T = 23°C AS; T = 23°C AS: T = 23°C AS: T = 23°C AS: T = 23°C
244	12.5	0.65	-1 0	-	970	•	•	8.2	25	-	-	-	T = 18-22°C. AS w/ recycle to denitrification (anaerobic) tank
222	10 10 10 10 10	0.28 0.28 0.28 0.28 0.28 0.28	0.48 0.48 0.48 0.48 0.48	157 234 338 484 685 1051	80 157 261 407 608 974	-	163 237 297 479 698 986	41 133 247 446 742	:	-	12	8.6 8.6 8.6 8.6 8.6	AS; T = 10°C AS; T = 10°C
	20 20 20 20 20 20 20	0.14 0.14 0.14 0.14 0.14	0.24 0 24 0 24 0.24 0.24 0 24	161 266 385 541 778 1184	81 186 305 461 698 1104	-	232 185 195 452 952	60 60 61 34 252 723	:		99 13 52 64 42 20	8 6 8.6 8.2 6.0 6 0 8 3	AS. T = 10°C AS: T = 10°C AS. T = 10°C AS. T = 10°C AS. T = 10°C AS. T = 10°C

⁻ Data not given

* AS = Activated sludge
AL = Aerated lagoon

TABLE A-7. Experimental Data for the Combined Treatment of Leachate with Domestic Wastewater for Bench-Scale and Pilot-Scale Studies Using the Activated

				Sludge_Pr	OCESS.			Loadi	ng.				
		bon	Combined	Quality COD, m	7/1			kg BOD	g or	F/M.	gBOO ₅ or CO	D -	
	Leachate , %	BOO ₅ , Influent	Effluent	Influent	Effluent	Remova 800 ₅	COD	COD/m ³	·day COD	BODs	gmMLVŠS-day COD		
Reference	Domestic WW	Influent	Ellinent	In luenc	CITTUEIL	5005		BOD ₅		5005		Co	ments*
19,20	1	225	-	350	24	-	93.1	0.23	0.35	_	-	BS:80D, -8970;C00	. ±10,800
13,20	ž	310	-	450	31	-	93.1	0.31	0.45	-	-	85;800 =8970;C00	-=10,800
	5	570	-	770	38	-	95.1	0.57	0.77	•	-	85:800-=8970;COD	!¦=10,800
	10	1000	-	1300	59	-	95.5	1.00	1.30	-	-	BS,800 =8970;C00	=10,800
	20	1870	-	2360	113	-	95.2	1.87	2.36	-	-	BS;8001=8970;C00	L=10,800
44,45,70,73,	. 0.5	270	3	465	35	98.9	92.5	-	-	0.3	0.55	BS;600, =24,700;0	ODL =49.300
286	i	390	3	710	35	99.2	95.1	-	-	0.3	0.55	BD; BOD = 24,700; C	ODi =49.300
	ż	670	3	1200	40	99.6	96.7	-	-	0.3	0.55	BS .BOD = 24 .700 ; C	
	3	900	3	1690	45	99.7	97.3	-	-	0.3	0.55	BS; BOD = 24,700; C	
	4	1100	5	2160	60	99.5	97.2			0.3	0.55	BS .BODL = 24 .700 ; C	
	2	670	3	1200	40	99.6	96.7	-	-	0.3	0.55	BS:BOD = 24.700:C	
	2	610	3	-	-	99.5	•	_	-	0.6	1.1	BS;800, = 24,700;C	
	ž	570	6	-	-	98.9	-	-	-	1.0	1.8	BS; BOD = 24,700; C	ODL=49.300
42,43	0.5	150	4	250	30	97.3	88.0	-		-	-	BS	
59	0.5	-	-	770	135		82.5	-	0.51	-	0.51	BS	
43	1.0	-	-	870	85	-	90.2		0.58	-	0.50	BS	
	2.0	-	-	1070	200	-	81.3	-	0.71	-	0.49	BS	BODs.N:P
176,260,261	1	235	5	_	_	97.9		0.012			_	BS;800, *19,300	100:8:1
170,200,201	ż	590	14	_	_	97.6	-	0.03	-	-		BS:800 -19,300	100:5:0.5
	š	1130	ii	-	_	99.0	-	0.06	-	-	_	85;800 = 19,300	100:4 0.26
	10	1850	8	-	_	99.6	-	0.09	-	-	-	BS:800 *19.300	100.3.6:0.3
	20	3640	16	-	-	99.6	-	0.18	-	-	-	BS;800 = 19,300	100:3.6:0.1
228	2	210	8	325	38	96.3	89.3	0,20	0.25	0.10	0.12	PS; T = 10-15°C	
	3	370	ğ	550	40	97.5	92.0	0.42	0.57	0.22	0.30	PS: T = 10-15°C	
	8	200	13	380	39	93.6	89.8		0.46	0,14	0.18	PS, T = 10-15°C	

TABLE A-8. Bench-Scale Experimental Data for the Aerated Lagoon Process.

		Organic Lo kg/m³.da	ading, IV	F/M, kaML	g VSS - day	8005	mg/1	COD, m	ıg/1	TOC.	mg/1		% Remo	val	800 ₅	COD	
Reference	τ,days	80D ₅	COD	80D ₅	COD	Inf.	Eff.	Inf.	Eff.	Inf.	Eff.	BOD ₅	COD	TOC	CODT	TOC	Comments
26	10 30	0.64 0.26	:	:	:	6400 7900	770 240	:	Ξ.	:	:	88 97	-	:	0.5 0.5	-	T=23°C T=23°C
40-46	7 15 30 30 60 86	:	5.0 2.3 1.2 1.9 0.97 0.67	:	0 37 0.20 0.12 0 19 0.11 0.084	:	-	35,000 35,000 35,000 58,000 58,000	1030 820 540 670 540 415	11,800 11,800 11,800 19,400 19,400 19,400	380 310 210 240 180 160	-	97 1 97.7 98.5 98.8 99.1 99.3	96.8 97.4 98.2 98.8 99.1 99.2	:	3.0 3.0 3.0 3.0 3.0 3.0	A*;T=23°C A*;T=23°C A*;T=23°C A*;T=23°C A*;T=23°C A*,T=23°C
35,143	10 37	:	0.042 0.011	-	-	-	-	420 420	310 290	132 132	94 91	-	26 31	29 31	0.66 0.66	3.2 3.2	T=12°C T=12°C
244	70 70 70 70 70 10 100 82 55 41 100 82 55 41	0 01 0.01 0.02 0.10-0.40 0 50 0.60 0 70 0.80 0.90 1.0 0.09 0.12 0.18 0.24 0.09 0.12 0.12	0.17 0.21 0.31 0.42 0.17 0.21 0.31 0.42			- - - - - - - 9840 9840 9840 9840 9840 9840 9840	10 10 15 10 10 10 20 60 100 200 5 5 5 70 50 40		- - - - - - - - - - - - - - - - - - -			99 99 99 99 99 99 99 98 96 8 99.8 99.9 99.9	- - - - - - - - - - - - - - - - - - -		0.1 0.1-0.4 0.1-0.4 0.4 0.4 0.4 0.4 0.56 0.56 0.56 0.56 0.56		T=20°C T=50°C T=50°C T=50°C T=50°C T=50°C T=50°C T=50°C
168	2 3 5 7 7	0 47 0 35 0.21 0.15 0 13 0.09	G. 79 0.59 0.35 0.25 0.22 0.16		0 93 0.61 0.37 0.31 0.33 0.26	940 1040 1040 1040 940 940	28 9 10 7 8	1,580 1,760 1,760 1,760 1,580	275 215 200 175 170 170		-	97 0 99 1 99 0 99.3 99 1	82.6 87,8 88.6 90.1 89.2 89.2	-	0.6 0.6 0.6 0.6 0.6		T=21-24°C T=21-24°C T=21-24°C T=21-24°C T=21-24°C T=21-24°C

⁻ Data not given
*85 - Bench-Scale
PS = Pilot-Scale
Subscript L refers to raw leachate concentration in mg/l. All tested at T = 23°C unless specified otherwise.

^{*} Nutrient Adjusted COD:N:P=164.8.1

TABLE A-9. Bench-Scale Experimental Data for the Anaerobic Process Relating $\theta_{\rm C}$ to $800_5,~000,~\rm and~TOC~Removal.$

		θ _C ,	800 ₅ ,	mg/1	coo.	ng/1	TOC,	mg/1	Ren	oval,	z.	8005		
Reference	Process	days	Influent	Effluent	Influent	Effluent	Influent	Effluent	BOD ₅	COO	TOC	<u>con</u>	10C	Comments
19,20,195	PFR-SG	5 10 10 10 12.5 12.5 20	9100 1820 18,200 3640 8400 9100 18,200 7300	655 165 1680 220 150 95 195 790 225	11,200 2240 22,400 4480 10,600 11,200 22,400 8960	970 225 1780 380 700 560 450 1540 630	-		92.8 90.9 90.8 93.9 98.2 98.9 97.9 95.7 96.9	91.3 90.0 92.1 91.5 93.4 94.7 96.0 93.1 93.0		0 81 0 81 0 81 0.81 0.79 0.79 0.81 0.81		T = 23-30°C T = 23-30°C
33,217	CSTR-SG	5 10 20	13,000 13,000 13,000	2150 935 435	26,000 26,000 26,000	8250 7300 4900	9100 9100 9100	:	83.3 92.8 96.6	68.3 71.9 81.2	:	0.5 0.5 0.5	2.9 2.9 2.9	A; T = 34°C A; T = 34°C A; T = 34°C
98,220	CSTR-SG	10 20 20 20 20	- - - -	•	12,900 12,900 12,900 12,900 12,900	1060 600 630 2860 840	4600 4600 4600 4600 4600	280 260 180 730 230	:	91.8 95.3 95.0 77.4 93.4	94,3 96.1 84.1	7 -0.45 1 -0.45 -0.45 -0.45 1 -0.45	2.8 2.8 2.8 2.8 2.8	A; T = 35°C A; T = 35°C T = 35°C A; T = 20°C T = 35°C
98,220	PFR-AG	10	-	-	12,900	500	4600	200		96.1	95.7	~0.45	2.8	T = 35°C
143	PFR-AG	1.5 2.25 4 5	2700 2700 2700	1500 2100 2050	3600 3600 3600	1900 3100 3000	:	:	44 4 22.2 24.1	47 2 13.9 16.9	:	0.75 0.75 0.75	:	T = 25°C T = 11°C T = 11°C
143	PFR-AG	26 26 73 5 7 8.3 12 12 15 18 28	24,500 24,500 24,500 5950 5950 5950 5950 5950 5950	24,000 21,800 180 110 50 	38,800 38,800 38,800 9100 9100 9100 9100 9100 9100	38,800 35,900 600 520 270 720 775 420 420 600	:	-	2.0 11 0 99.3 98.2 99 2 98 9 99 3 99 5 99 2	7.5 98.5 94.3 97.0 92.1 91.5 95.4 95.4		0.63 0.63 0.65 0.65 0.65 0.65 0.65	-	T = 23°C; 11 recycl T = 23°C, 11 recycl T = 23°C, 111 recycl T = 23°C, 111 recycl T = 23°C; 111 recycl T = 23°C; 11 recycl T = 23°C; 15 recycle T = 23°C; 15 recycle T = 23°C; 15 recycle T = 23°C; 15 recycle
151	CSTR-SG	0.10 0.17 0.33 1 5 10 10	3880 4200 4800 3600 3400 1300 1900 1940	3500 3620 4600 2800 700 170 80 135	6200 6300 6690 6120 5300 2740 2900 2480 2470	6200 6250 5850 4760 2100 720 400 375 200	2250 2260 2280 - 2230 830 1100 880 810	2100 2050 2025 1760 900 190 160 190 220	10 14 4 22.2 79 4 86.9 95.8 93.0 93.5	0 <1 13 22 2 60.4 73 7 86.2 84.9 91 9	7 9 11 59.6 77.1 85 5 78.4 72 8	0 63 0.67 0.72 0 59 0.64 0.47 0.66 0 78 0.62	2.7 2.8 2.9 -2.6 2.4 3.3 2.6 2.8 3.0	A; T = 37°C Batch A; T = 37°C Continuou A; T = 37°C Continuou A; T = 37°C Continuou A; T = 37°C Continuou
205-207	CSTR-SG	0.1 0 16 0.33 1 5 10	3700 3700 3700 3700 3700 3700 3700 3700	3400 3400 4100 2500 470 80 75	6000 6000 6000 6000 6000 6000 6000	6000 6000 5400 4020 1090 670 140	:	· · ·	8 8 0 30 87 3 97 8 97 8	0 10 33 81 8 88.8 97.7	:	0 62 0.62 0 62 0 62 0.62 0.62 0.62		A; T = 37°C A; T = 37°C
14	PFR-SG	6. 4 6. 6	:	:	25,000 32,000	2000 8000	:	-	:	92 75	:	:	>3.0 >3.0	T = 33°C T = 20°C
44-47	CSTR-AG	7.5 17.5 74	:	:	32,000 32,000 32,000	2000 1400 1000	:	:	-	93 8 95.6 96.9	:	:	3 5 3.5 3 5	T = 23°C; 1 4 4 recyc T = 23°C, 1 8.7 recyc T = 23°C, 1 35 recyclo
135,136	CSTR-SG	10 15 20	3940 3940 3940	320 250 205	7350 7350 7350	700 650 420	1260 1260 1260	:	936	90.5 91 1 94 3	:	0 54 0 54 0 54	5 8 5.8 5.8	r = 35°C r = 35°C r = 35°C
223	PFR-AG	1.8	2600	-	3200	1160	-	-	•	63 8	•	0.81	-	T = 24°C
30	CSTR-SG	30 30 30	1000 4000 10,000	100 250 2000	:	:	:	:	85 95 80	:	:	:	:	T = 24°C T = 24°C T = 24°C
237	PFR-AG	0.25 0.50 1 0 2.0 3 0 2.0 3.0	950 950 950 950 950 950 950	:	1870 1870 1870 1870 1870 1870 1870	950 190 170 180 160 450 220			:	50 88 90 90 91 76 88	:	0.51 0.51 0.51 0.51 0.51 0.51	2.6 2.6 2.6 2.6 2.6 2.6 2.6	T = 25°C T = 25°C T = 25°C T = 25°C T = 25°C T = 10°C T = 10°C

⁻ Data not given A - Nutrient Adjusted, BOD₅ N:P = 100:5-1

TABLE A-10. Bench-Scale Experimental Data for the Anaerobic Process Relating BOD $_{\rm S}$ and COO Loading to BOO $_{\rm S}$ and COO Removal.

		Loading kg 800 ₅ m ³ -day	or COD/	800 ₅ ,	mg/1	COD,	ma/1	Remov	al, z			
Reference	Process	80D ₅	COD	Influent	Effluent	Influent	Effluent	80D ₅	COD	800 ₅	<u> 000</u>	Comments
19,20,195	PFR-SG	0.36 0.36 0.37 0.67 0.84 0.73 0.91 1.82	0 45 0. 45 0. 45 0. 85 1 06 0. 90 1. 12 2. 24 2. 24	1820 3640 7300 8400 8400 9100 18,200 9100 18,200	165 220 225 95 150 195 790 655	2240 4480 8960 10,600 11,200 22,400 11,200 22,400	225 380 630 560 700 450 1540 970 1780	90.9 93.9 96.9 98.9 98.2 97.9 95.7 92.8 90.8	90.0 91.5 93.0 94.7 93.4 96.0 93.1 91.4 92.1	0.81 0.81 0.81 0.79 0.79 0.81 0.81 0.81	:	T = 23-30°C T = 23-30°C
38,217	CSTR-SG	0.65 1 30 2.60	1 30 2.60 5 20	13,000 13,000 13,900	435 935 2150	26,000 26,000 26,000	4900 7300 8250	96.6 92.8 83.3	81.2 71 9 68.3	0.5 0.5 0.5	2.9 2.9 2.9	A; T = 34°C A; T = 34°C A; T = 34°C
98,220	CSTR-SG	:	0.65 0.65 1 29 0.65 0.65	:	:	12,900 12,900 12,900 12,900 12,900	630 600 1060 2860 840	:	95.1 95.3 91 8 77.4 93.5	~0 45 ~0.45 ~0.45 ~0 45 ~0.45	2.8 2.8 2.8 2.8 2.8	T = 35°C, A T = 35°C, A T = 35°C, A T = 20°C; A T = 35°C, lime treated
98,220	PFR-AG		1.29	-	-	12,900	500	-	96.1	-0.45	2 8	T = 35°C; lime treated
143	PFR-AG	1.8 0 6 1.2	2 4 0.8 1 6	2700 2700 2700	1500 2050 2100	3600 3600 3600	1900 3000 3100	44 4 24.1 22.2	47 2 16 7 13 9	0 75 0.75 0 75	:	T = 25°C T = 11°C T = 11°C
143	PFR-AG	0.34 0.94 0.94 0.21 0.40 0.50 0.72 0.50 0.33	0.53 1 5 1 5 0 33 0.61 0.76 1.1 0.76 0.51	24,500 24,500 24,500 5950 5950 5950 5950 5950 5950 5950	180 24,000 21,800 55 40 65 50 - 30	38,800 38,800 38,800 9100 9100 9100 9100 9100 9100	600 38,800 35,900 600 420 780 270 720 420 520	99 3 2.0 11.0 99.2 99 3 98.9 99.2 99.5 98.2	98.5 0 7.5 93.4 95.4 91.5 97.0 92.1 95.4 94.3	0 63 0 63 0 65 0 65 0 65 0 65 0 65 0 65 0 65		T = 23°C; 1:11 recycle T = 23°C; 1:11 recycle T = 23°C; 1:11 recycle T = 23°C; 1:11 recycle T = 23°C; 1:15 recycle T = 23°C; 1:5 recycle
151	CSTR-SG	0.10 0.19 0.19 0.13 0.68 3.6 14 25 37	0.17 0.25 0.29 0.27 1.06 6.1 20 39 60	1530 1940 1900 1300 3400 3600 4800 4200 3880	100 135 80 170 700 2800 4600 3620	2470 2480 2900 2740 5300 6120 6690 6300 6200	200 375 400 720 2100 4760 5850 6250	93.5 93.0 95.8 86.9 79.4 22.2 4 14	91.9 84 9 86 2 73 7 60 4 22.2 13 <1	0 62 0.78 0.66 0.47 0.64 0.59 0.72 0.67 0.63	3 0 2 8 2.6 3.3 2 4 -2.6 2 9 2.8 2.7	T = 37°C, A, Batch T = 37°C; A; Batch T = 37°C; A, Batch I = 37°C, A; Batch I = 37°C; A; Batch I = 37°C; A; Batch I = 37°C; A; Batch I = 37°C; A; Continuous I = 37°C; A; Continuous I = 37°C; A; Continuous
205-207	CSTR-SG	0.25 0.37 0.74 3.7 11.2 23 37	0.40 0.60 1.2 6 18 38 60	3700 3700 3700 3700 3700 3700 3700 3700	75 80 470 2600 4100 3400 3400	6000 6000 6000 6000 6000 6000	140 670 1090 4020 5400 6000	97 8 97 8 87.3 30 0 8	97.7 88 8 81.8 33 10 0	0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62	-	T = 37°C; A T = 37°C; A
14	PFR-SG	:	4 0 4 9	-	:	25,000 32,000	2000 8000	:	92 75	-	>3.0 >3.0	T = 33°C T = 20°C
14- 47	CSTR-AG	:	0 89 2 6 5.3	:	:	32,000 32,000 32,000	1000 1400 2000	:	96 9 95 6 93 8	-	3.5 3.5 3.5	T = 23°C; 1:35 recycle T = 23°C, 1:8.7 recycle T = 23°C, 1-4 4 recycle
135-136	CSTR-SG	0.20 0.26 0.39	0.37 0.49 0.74	3940 3940 3940	205 250 320	7350 7350 7350	420 650 700	94 8 93 6 91 8	94 3 91 1 90 5	0.54 0.54 0.54	5.8 5.8 5.8	T = 35°C T = 35°C T = 35°C
223	PFR-AG	1.4	1.8	2600	-	3200	1160	-	63.8	0.81	-	T = ∠4°C, lime treated
30	CSTR-SG	0.03 0 13 0.33	:	1000 4000 10000	100 250 2000	:	:	65 95 80	=	:	:	T = 24°C T = 24°C T = 24°C
237	PFR-AG	3.8 1.9 1.0 0.5 0.3 0.5	7 6 3 8 2 0 1 0 0.64 1 0 0.64	950 950 950 950 950 950 950	:	1870 - - - -	950 190 170 180 160 450 220	:	50 88 90 90 91 76 88	-	-	T = 25°C T = 25°C T = 25°C T = 10°C T = 10°C T = 10°C

⁻ Data not given
A = Nutrient Adjusted; BOD₅ N·P = 100 5.1

TABLE A-11. Bench-Scale Experimental Data for the Anaerobic Process for Methane and Gas Production.

		(nt mg/	luent.	Loadir kg 800 m ³ -day	or COD/	θς,	1/kg	roduction or COD oyed	, Gas Pro 1/kg 800 ₅ or destroy	r COD	Gas	sition	1, 3	800 ₅		
Reference	Process	800 ₅	COD	800 ₅	COD	days	8005	COD	800 ₅	COD	CH4	co2	N ₂	<u> </u>	70C	Comments
19,20,195	PFR-SG	8400 8400 18,200 9100 18,200 9100 7300 3640 1820	10,600 10,600 22,400 11,200 22,400 11,200 8960 4480 2240	0.84 0.67 1 82 1 82 0.91 0.73 0.37 0.36	1 06 0.85 2 24 2.24 1 12 0 90 0.45 0.45 0 45	10 12.5 10 5 20 12.5 20 10 5	-	-	545 487 384 412 398 418 346 398 213	454 403 308 340 332 346 294 332 175	:	-		0.79 0.79 0.81 0.81 0.81 0.81 0.81	:	T = 23-30°C T = 23-30°C
33,217	CSTR-SG	13,000 13,000 13,000	26,000 26,000 26,000	0.65 1.30 2.60	1.30 2.60 5.20	20 10 5	600 600 690	360 390 420	840 910 880	500 570 540	69.2 72.8 75.4	24.3 23.4 23.4	3.0	0.5 0.5 0.5	2.9 2.9 2.9	A; T = 34°C A; T = 34°C A; T = 34°C
98,220	PFR-AG	-	12,900	-	1.29	10	-	1020	-	1450	70.0	22.0	8.0	-0.45	2.8	T = 35°C
	CSTR-SG		12,900 12,900 12,900 12,900 12,900	:	0.65 0.65 1.29 0.65 0.65	20 20 10 20 20	:	335 390 310 295 320	:	450 525 430 415 420	74.3 74.3 74.3 71.3 75.7	22.1 22.1 22.1 14.7 20 8	3.6 14.0	-0.45 -0.45 -0.45 -0.45 -0.45	2.8 2.8 2.8 2.8 2.8	A; T = 35°C A; T = 35°C A; T = 35°C A; T = 20°C Lime treated; T = 35°C
44-47	CSTR-AG	:	19,500 39,000	:	0 83 0 98	42 74	:	975 475	:	1250 610	78 78	-	:	:	3.5 3.5	T = 23°C;1:20 recycle T = 23°C;1.35 recycle
143	PFR-AG	2700 2700 2700 24,500 24,500 5950 5950 5950 5950 5950 5950 5950	3600 3600 38,800 38,800 38,800 38,800 9100 9100 9100 9100 9100 9100 9100	1.8 0.6 1.2 0.34 0.94 0.21 0.50 0.72 0.50 0.33 1.04	2.4 0.8 1.6 0.53 1.5 1.5 0.33 0.61 0.76 1.1 0.75 1.1 0.75	1.5 4.5 2.25 73 26 26 28 15 12 8.3 12 18 5.7			265 0 690 0 500 440 370 390 520 250	190 0 440 0 350 300 260 260 295 355				0.75 0.75 0.63 0.63 0.65 0.65 0.65 0.65 0.65		T = 25°C; Batch T = 11°C; Batch T = 11°C; Batch T = 23°C, Continuous T = 23°C, Continuous T = 23°C; Continuous
151	CSTR-SG	1530 1940 1900 1300 3400 3600 4800 4200 3880	2470 2480 2900 2740 5300 6120 6690 6300 6200	0.10 0 19 0 19 0.13 0.68 3 6 14 25	0.17 0.25 0.29 0.27 1.06 6.1 20 39 60	15 10 10 10 5 1 0 33 0.17 0.10	805 - 540 490 510 - 37 45	520 390 300 350 21 60	1080 640 635 580 620 290 44 56	700 490 460 360 425 170 25 75	74.6 85 84 82 83 80	18.3 13 15 4 13 15	1 6 2.7 2 0	0.62 0.78 0.56 0 47 0.64 0.59 0.72 0.67 0.63	3.0 2.8 2.6 3.3 2.4 2.6 2.9 2.8 2.7	T = 37°C; A; Batch T = 37°C; A; Batch T = 37°C; A; Batch T = 27°C; A; Batch T = 37°C; A; Batch T = 37°C; A; Batch T = 37°C; A; Batch T = 37°C; A; Continuo; T = 37°C; A; Continuo;
14	PFR-SG	:	25,000 32,000	-	4 Q 4 9	6.6 6.4		:	-	520 420	:	-	:	-	>3.0 -3.0	T = 33°C T = 20°C
135,136	CSTR-SG	3940 3940 3940	7350 7350 7350	0 20 0.26 0 39	0 37 0.49 0.74	20 15 10	:	-	750 820 580	350 450 380	-10 -10 -10	:	:	0 54 0.54 0 54	5.8 5.8 5.8	T = 35°C T = 35°C T = 35°C
223	PFR-AG	2600	3600	1,4	1.8	18	•	-	٠	887	٠	-	•	0.81	-	T = 24°C, lime treate
30	CSTR-SG	1000 4000 10000	• • •	0.03 0.13 0.33	:	30 30 30	:	440 440 440	:	330 330 330	75 75 75	25 25 25	:	:	:	T = 24°C T = 24°C T = 24°C
237	PFR-AG	950 950 950 950 950 950 950	1870 1870 1870 1870 1870 1870 1870	3 8 1 9 1.0 0.5 0.3 0.5 0 3	6 8 2.7 1 4 0.7 0.5 0.7 0.6	0.25 0.5 1 2 3 2 3	:	305 355 315 340 285 305 320		350 445 385 425 375 370 380	79 77 82 83 84 84 82	10 9 12 9 7 6	:	0.51 0.51 0.51 0.51 0.51 0.51	2.6 2.6 2.6 2.6 2.6 2.6 4.5	T = 25°C T = 25°C T = 25°C T = 25°C T = 25°C T = 25°C T = 25°C

⁻ Data not given A = Nutrient Adjusted, BOO₅,N-P = 100·5:1

TABLE A: 12 Bench-Scale Experimental Data for the Anaerobic Process for Heavy Metal Removal

				Influe	nt Con	centr	ation.	mg/1				Remov	al, %				
Reference	Process	ph	Cd	Cr	Cu	Fe	РЬ	Ni	Zn	Cd	Cr	Cu	Fe	РЬ	Ni	Zn	Comments
14	PFR-SG	7.9	0 03	0.32	0.3	-	0.12	0.43 1.2	26 16	0	40	77	:	0	60 10	98 95	T * 20°C
3,217	CSTR-SG	-	0.1	0.22	0.03	600	0.76	0.19	65	>99	45	40	80	50	86	95	T = 34°C
8,70,73	CSTR-AG	7.4	0.03	1.7	5.6	430	0.38	1.2	16	52	91	88	97	84	84	94	T = 23°C
143	PFR-AG	7 7 5-8.0 7.5-8.0 7.5-8.0 7.5-8.0 7.5-8.0 7.5-8.0 7.5-8.0	0.01 0.03 0.03 0.03 0.03 0.03 0.03	0.45 1.0 1.0 -1.0 1.0 1.0 1.0	0.3 1.30 1.30 1.30 1.30 1.30 1.30	245 810 810 810 810 810 810 810	1.4 1.4 1.4 1.4 1.4 1.4	0.70 1.2 1.2 1.2 1.2 1.2 1.2	5.0 155 155 155 155 155 155	0 0 0 0 0	90 90 90 90 90 90 90	50 50 38 69 69 - 72 46	94 99 98 93 97 96 98	0 0 0 0 0 0	71 67 67 83 67 75 75	80 >99 98 98 99 >99 >99	T = 25°C T = 23°C T = 23°C T = 23°C T = 23°C T = 23°C T = 23°C
17	CSTR-SG	7.1-7.5	-	-	-	336	-	-	6	-	-	-	97	-	-	>90	T = 37°C
	PFR-AG	7.3-8.0	0.01	_	0.05	36	0.05	-	0.19	0	-	0	62	92		0	T = 25°C

⁻ Data not given

TABLE A-13. Bench-Scale Experimental Data for the Anaerobic Process for Alkali and Alkaline Earth Metal Removal

			Influ	ient Co	ncentra	tion, r	<u> 1 1 1 1 1 1 1 1 1 1 </u>		Rem	oval, %			
Reference	Process	рH	Ca	Mg	Mn	K	Na	Ca	Mg	Mn	ĸ	Na	Comments
33,217	CSTR-SG	-	1330	120	18	530	530	31 .	10	69	6	4	T = 34°C. Added lime to raise p
151	CSTR-SG	7.1-7.5	315	70	6.2	347	313	30	7	92	0	0	T = 37°C

⁻ Data not given

APPENDIX B

PHYSICAL/CHEMICAL TREATMENT DATA

TABLE B-1. Bench-Scale Experimental Data for Chemical Coagulant Addition

teference	Coaquiant*	Dose, mg/1	pH Initial	Final	COD, mg/ Influent	Effluent	TOC Influent	Effluent	COD	10C	Sludge, ml/l	Leachate Type**
19,20	A1um FeC1 ₃	10-1000 100-1000	6 0	7.1 5-7	9100	9100	-	-	0	-	50 (l 500 mg/1	R
			6.0	5-7	9100	>7740	-	•	415	•	20 0 500 mg/1	R
3,54,97	Alum+Lime FeCl ₃ +FeSO ₄ +Lime	Alum=600 Lime=1640 FeCl ₃ =1000, Lime=1640	5.4	8 0	17,000	14,800		-	13.3	•	-	R
	Polymer+Lime	FeSO ₄ = 1450 Polymer=15	5.4	8.0	17,000	15,100	-	-	11.5	•	-	R
13	Alum -	Lime=1000 Not given	5.4 7.6	8.0 6 8	17,000 100(BOD ₅)	15,100 25	•	-	11.5	-	4	R
4	Alum	10	7.0	7.1	9100	8700	•	•	4.4		3	R R
	Alum Alum Alum	50 100 500	7.0 7.0 6.4	7.1 7 1 7 1	9100 9100 9100	8400 9100 8700	:	: .	7 7 0 4.4	:	5 85 50	R R R
	Alum	1000 100 500	6.0 6.8	7.1 6	9100 9100	3600 8100	:	-	5.5 11	-	130 10	R R
	FeC13 FeC13 FeC13 FeC13	1000 1000	6.3 5.9 5.9	6 6 5	9100 9100 9100	8400 8700 8400	:	-	7.7 4.4 7.7	:	21 33 67	R R R
	FeC13	1000	5.9	7	9100	7800	-	•	14	-	28	Ř
	FeSO ₄ +Lime FeSO ₄ +Lime FeSO ₄ +Lime FeSO ₄ +Lime	760+600 760+1700 1360+0 1360+660	6.4 6 4 6.4 6.4	7 0 8.5 6.3 7 0	:	:	1750 1750 1750 1750	1500 1490 1520 1570	-	15 15 13	120 160 2 13	R R R
3	Alum	1000	7.3	7.3	10,650	9780	3120	2800	8	10	90	R
	Atum Atum Atum	2500 5000 6000	7.3 7.3 7.3	7.0 7.1 7.0	10.650 10,650 10,650	10,230 10,160 9770	3120 3120 3120	2750 2500 2320	4 5 8	12 20 26	130 130	R R
	Alum Alum	7000 8000	7.3 7.3	7.1 7.1	10,650 10,650	9990 10,200	3120 3120	2540 2570	5 4	19 18	130 125	R R
	Alum Alum FeCl ₃	9000 10,000 1000	7.3 7.3 7.2	7.0 7 1 7.1	10,650 10,650 10,700 10,700	10,100 10,200 9980	3120 3120 3100	2550 2550 2550	5 5 7	18 18 18	100 120 190	R R R
	FeC13 FeC13 FeC13 FeC13	1500 2000 2500	7 2 7.2 7 2	7.0 7.1 6.9	10,700 10,700 10,700	9940 9720 9560	3100 3100 3100	2570 2520 2480	7 9 11	19 19 20	220 250 275	R R R
18		100	6.6	7.3	1240	1160	430	410	6	5 7		R
	FeCl3 FeCl3 FeCl3 Alum	150 200 90	6 6 6.6 6.6	7.3 7.3 6.3	1240 1240 1240	1400 1410 1100	430 430 430	400 410 380	0 0 11	5 12	50 - -	R R R
	Alum Alum Alum	135 180 90	6.6 6.6 6.6	6.2 6.1 7.4	1240 1240 1240	1090 1300 1250	430 430 430	390 390 410	0	9 9 5	30	R R R
	Alum Alum Alum	135 180	6.6 6.6	7 4 7.2	1240 1240 1240	1080 1100	430 430 430	410 410	13 11	5	:	R R
8	FeC13 FeC13 FeC13 FeC13	Old not Specify	-	-	11,600 4380	-	•	-	88 97	:	-	R R
	FeC1	450- 3150 mg/1 ^{pH} opt ^{#5.4}	:	:	1570 320 690	:	:	:	83 64 39	:	:	R R R
	FeC13	opt	:	:	6480 1200	:	:	-	88 79	:	:	R R
	FeC13 FeC13		:	-	350 520	:	:	-	66 52	:	:	R
3	Alum Alum	75 130 200	:	7 7 7 7 7.7	530 530 530	480 460 490	:	:	10 13 8	:	:	R R R
	Alum Alum Alum	75 130	:	6 6	530 530	490 475	-	:	8 10.5	:	-	R R
	Alum FeCl ₃ FeCl ₃	200 90 150	:	6 7 5 7 5	530 530 530	485 450 480	:	:	8.5 15 10	:	:	R R R
	FeC13	240 90 150	-	7.5 9 9	530 530 530	465 470 480	:	-	12 5 12 9.5	:	:	R R R
	FeC13 FeC13 Alum	240 75	:	9 7 6	530 400	465 355	:	-	12.5 11.3	-	:	R B
	Alum Alum Alum	130 200 75	:	7 4 6 6 6	400 400 400	360 355	:	:	10 11.3	:	-	6 B B
	Alum	130 90	-	6 7	400 400	355 355	:	:	11.3	:	-	B B
	FeC13 FeC13 FeC13 FeC13	150 90 150	:	7 9 9	400 400 400	355 350 350	-	:	11 3 12.5 12.5	-	:	8 B B
	Alum Alum Alum	75 130 200	:	6 6	170 170 170	160 125 125	50 50 50	43 38 35	5.3 26 26	14 24 30	:	8 8 8
	FeC13 FeC13 FeC13	90 150 240	:	9	170 170 170	153 137 135	50 50 50	45 43 45	8.9 19 21	10 14 10	:	B 8 8
51	Alum+Lime	1000+530	6 4	7 1		-	1750	1600		8.9	85	R
	Alum+Lime Alum+Lime Alum+Lime	1400+0 1400+660 1400+1850	6 4 6 4 6 4	5 5 7 0 8.5	:	-	1750 1750 1750	1590 1510 1500	:	9 0 14 14	80 100 100	R R R
	Alum+Lime Alum+Lime	1750+930 2250+1060 0+165	6.4 6.4 6.4	7 1 7.1 7 0	-	:	1750 1750 1750	1490 1050 1710	:	15 40 2	130 190 20	R R R
	FeSO ₄ +Lime FeSO ₄ +Lime FeSO ₄ +Lime	270+400 550+530	6.4 6.4	7 0 7 2	:	:	1750 1750	1550 1480	:	12 15	40 100	R
6	Alum Alum	30 45	5.4 5.4	3.2 8.2	35,000 35,000	33,500 30,000	:	:	4 14	-	-	R R
	Alum Alum	55 65	5.4 5.4	8.2 8 2	35,000 35,000	28,000 27,000	-	:	20 23 22	:	:	R R
	Alum Alum Alum	75 90 30	5.4 5.4 5.5	8 2 8.2 8.2	35,000 35,000 34,000	27,500 28,500 32,500	-	-	20 4	:	-	R R R
	Alum Alum Alum	45 55 65	5.5 5.5 5.5	8 2 8.2 8.2	34,000 34,000 34,000	30,500 29,500 28,500	:	-	10 13 16	:	:	R R R
	Alum Alum	75 90	5.5 5.5	8 2 8.2	34,000 34,000	29,000 29,000	:	:	15 15	:	:	R R
	Alum Alum Alum	30 45 55	5 5 5 5 5 5	8.2 8.2 8.2	33,000 33,000 33,000	32,000 30,000 29,000	:	:	3 9 12	:	:	R R
	Alum Alum	65 75	5.5 5.5	8.2 8.2	33,000 33,000	28,000 29,000	:	-	15	:	:	R R
	Alum	90	5.5	8.2	33,000	29,000	-	•	12	•	•	R

⁻ Data not given

A lum as Al₂(50₄)₃
Lime as Ca(0H)₂

** R = Raw leachate
B - Biologically treated effluent

TABLE 8-2. Bench-Scale Experimental Data for Chemical Precipitant Addition

eference	Precipitant	Dose, mg/1	Interal	HFinal	COD, mo	/1 Effluent	TOC Influent	, mg/l Effluent	Remova COD	1.1 10C	Sludge.	Leachate Type**
7,18,176	Lime*	2350	5.3	6.9	14,000	9200	5200	2700	34	48		R
9,20	Lime	750-1750	6.0	8.5-12	10,650	10,650	-	•	0	-	250 @	R
	Na ₂ S	10-1000	6.0	6.0-6.3	10,650	10,650	-	-	0	•	1000mg/1 50 8 750mg/1	R
4,45,70	Lime	1000-8000	7.4	12	-	-	700	520	- :	2608000	150	В
	Lime	1500-4000	9	12	700	560	-	- 20	94000mg/	mg/1 ! -	140	8
3,54,97	L fme NaOH	2760 2660	5.4 5.4	11.0 11.0	17,000 17,000	14,900 15,400	:	;	13 9.8	-	:	R
34	Lime Lime	870 1000	6.0 6.0	9.0 9.5	10,700 10,700	10,600	:	:	1.0	-	130 200	R R
	Lime	1150	6.0	10.0	10,700	9970	-	-	6.8	-	245	R
	Lime Lime	1280 1390	6.0 6.0	10.5 11.0	10,700 10,700	10,300 10,700	:	-	3.7 0	-	250 250	R R
	Lime	1600	6.0	11.5	10.700	10.100	-	-	5.6	-	275	R
	Lime Lime	1640 1060	6.0 7.8	12.0 9.0	10,700 560	10,400 560	:	:	2.8 0	-	280 6	R B
	Lime	2700 470	7.8 9.0	31.0	560 370	515 370	:	:	8.0	-	26 5	R
	Lime Lime	470 1400	9.0	10.0 11.5	370	370 260	:	:	30	:	68	8 8
	Na ₂ S	10	6.0	6.0	10,700	10,200	-	-	4.7	-	30	R
	Na 2S Na 2S	25 50	6.0 6.0	6.0 6.0	10,700 10,700	10,000 10,700	-	-	6.5 0	-	30 30	R R
	Na S	100 500	5.0 6.0	6.1 6.3	10,700 10,700	10,200 10,170	:	:	4 7 4.9	:	35 50	R
	Na2S rla2S	1000	6.0	6.4	10,700	10,170	:	:	1.0	:	65	R R
143	Lime Lime	pH 9 pH 10	-	9 10	530 530	490 480	:	:	7 10	:	:	R R
	Lime Lime	pH 11 pH 12	:	11 12	530 530	445 440	:	•	16 17	-	-	R R
	Lime	рН 9	•	9	400	370	-	-	7.5	-	-	В
	Lime Lime	pH 10 pH 11	-	10 11	400 400	370 360	:	-	7.5 10	-	-	8 8
	Lime	pH 12	-	12	400	355	-	-	11.3			8
	Lime Lime	pH 9 pH 10	-	9 10	170 170	113 147	50 50	53 48	3.0 13	0	-	B
	Lime	pH 11	-	13	170	135	50	45	20	10	-	8
265	Lime Lime	pH 12 150	6.3	12 6.6	170 5030	104 4620	50 -	35	38 8.2	30	42	B R
	Lime Lime	300 450	6.3 6.3	7.2 7.9	5030 5030	4350 4280	:	:	14 15	-	104 154	R
	Lime	600	6.3	8.3	5030	4380		:	13	:	188	R
	Lime Lime	750 900	6.3 6.3	9 4 9.7	5030 5030	4340 4240	:	:	13 16	:	220 276	R R
	Lime	900 1050	6 3	10.3	5030	4140		:	18	-	232	R
	Lime Lime	1200 1350	6.3 6.3	10.9 11.2	5030 5030	3930 3850	:	-	22 24	-	412 420	R
	Lime	1500	6.3	11.5	5030		-	:	•	-	440	R
	Lime Lime	150 300	5 3 5.3	6.2 6.5	12,900 12,900	12,200 11,600	:	:	5.4 10	:	60 60	R R
	L ime	450	5.3	6.8	12,900	11.400	-	-	12	-	80	R
	Lime Lime	600 700	5.3 5.3	7.0 6.9	12,900 12,900	10.800 10,700	:	:	16 17	•	180 200	R R
	Lime	750	5.3	7.1	12,900	10,200	•	-	21	-	240	R
	Lime Lime	800 900	5.3 5.3	7 0 7 2	12,900 12,900	10,500 10,050	:	:	19 22	-	280 300	R R
	i, ime	1000	5.3	7.2	12,900	9730	-	-	24	:	300	R
	Lime Lime	1100 1200	5.3 5.3	7.3 7.4	12,900 12,900	9580 9500	-	1	26 26	-	340 380	R R
118,119,261	Lime Lime	100 500	3.0 8.0	8.2 10.5	400 400	385 360	:	:	4 10	:	:	8
	Lime Lime	900 1500	8.0 8 0	11.5 11 B	400 400	300 260	:		25 35	-	-	8
28	Lime Lime	1000 2500	7 1 7.1	7.6 8.1	10,660 10,660	10,450	3290 3290	3170 31 7 0	2 <1	4	50 120	R R
	Lime	5000	7.1	8.4	10,660	080,01	3290	3200	6	3	150	R
	Lime Lime	6000 7000	7.1	9 7 10.1	10,660 10,660	9800 9580	3290 3290	2010 3150	8 10	9	115 180	R
	Lime	8000	ijί	10.4	10,660	9720	3290	3080	9	6	250	R
	Lime Lime	9000 10,000	7 1 7.1	11.7 12.1	10,660 10,660	9570 9620	3290 3290	2730 3010	10 10	17 9	475 470	R R
238	Lime Lime	190 190	6 6 6.6	7 0 7.0	1240 1240	1210 1190	430 430	430 420	2 4	0 2	:	R R
	L ime	225	6 6	7.9	1240	1030	430	370	9	14	-	R
	Lime NaOH	225 200	6 6 6.6	7.9 7.7	1240 1240	1010 1160	430 430	370 410	10. 6	14 5	:	R
	NaOH	240	6.6	7.8	1240	1160	430	420	6	2	•	R
239	Lime	6,000	5.8	12.2	22,900	20,700	9850	9250	10	6	250	R

^{- &}quot; Data not given
" Lime as Ca(OH)₂
"* R = Raw leachate
8 = Biologically treated effluent

TABLE B-3. Bench-Scale Experimental Data for Heavy Metal Removal for the Chemical Addition Processes.

Reference	Chemical	Dose, mg/l	рН	ca	influ Cr	ent Con Cu	centrat Fe	10n, m	g/l Ni	Zn	ca	Cr	Cu	Ren Fe	Pb	% Ni	Zn	Leachate Type**
J7,18,176	Ca(OH) ₂ O ₃	2350 180~250	6.9 6.9	:	:	0.39 0.39	47 47	:	:	12.5 12.5	:	:	96 96	99 99	:	:	>99 >99	R R
143	A1_(SO4)3 A12(SO4)3 FeC13 FeC13 Ca(OH)2 Ca(OH)2 A1_(SO4)3 A1_2(SO4)3 FeC13 FeC13 Ca(OH)2	75 75 90 90 9H 9 9H 11 75 75 75 90 90 9H 11	7.7 6 7.5 9 9 11 7.5 6.0 7.0 9.0 9.1				85 85 85 85 85 85 21 21 21 21 21	:		0.82 0.82 0.82 0.82 0.82 0.82 0.37 0.37 0.37				99 99 99 99 99 97 97 93 98 83			>90 >90 >90 >90 >90 >90 >75 >75 >75 >75 >75 >75	R R R R R R B B B B B
151	Ca(OH) ₂ Al ₂ (SO ₄) ₃ FeSO ₄	165 1400 1360	7.0 - 6.3	:	:	:	26 26 26	:	:	30 30 30	:	-	:	0 54 0	:	:	98 99 99	R R R
229	03 -	240x=4 hrs	8.8	-	-	-	-	-	73	-	-	-				4		R
133	A12(SO4)3	-	6.8			0.56	20	0.10	-	- '	•	-	89	93	20	-	-	R
26	Ca(OH) ₂	1650	10.5-11.0	0.0	5 -	-	1000	-	-	8	20	-	-	99	•		>99	R;Full Scale
19,20	Ca(OH)2 Na ₂ S C12 KM00 ₄ A12(S0 ₄) ₃ FeC1 ₃	750 1000 400 500 1000 1000	8.5 8.5 7.0 5.8 7 1 7.0	:	:	:	330 330 3.7 85 330 330	:	:	:	:	:	:	>99 >99 95 99 97 98	:	:	:	D(1:1) D(1:1) D(1:25) R D(1:1) D(1:1)
32	Ca(OH)2 Ca(OH)2+FeC13	2000 2500+200	8.8 8.8	:	:	:	21 21	-	-	:	:	:	:	52 93	:	:	:	R R
134	Ca(OH) 2 Ca(OH) 2 Na_S Na_S Na_S Na_S Na_S Na_S Na_S Na_S	870 1020 500 1000 1000 500 500 1000 1000 1	9.0 9.5 6.4 6.4 6.4 6.7 7.0 5.8 5.8 5.8 7.5				330 330 330 85 85 85 85 85 3.7 38 330 330 45	***************************************						99 >99 18 79 60 94 55 62 98 99 99 45 77 99 82				0(1.1) 0(1-1) 0(1-1) 0(1:1) R R R R R R (1.25) 0(1:1) 0(1:1) 0(1:1) R
265	Ca(OH)2 Ca(OH)2 Ca(OH)2 Ca(OH)2 Ca(OH)2	150 300 450 300 900	6.6 7.2 7.9 6.5 7.2	:	:	:	115 115 115 790 790	:	:	:	:	:	:	21 70 99 26 70	:	:	:	R R R R
28	Ca(OH) 2 Ca(OH) 2 Ca(OH) 2 Ca(OH) 2 Ca(OH) 2 Ca(OH) 2 Ca(OH) 2 Ca(OH) 2 FeC1 3 FeC1 3 FeC1 3 FeC1 3 A1 2(504) 3 A1 2(504) 3 A1 2(504) 3	1000 2500 5000 6000 7000 8000 9000 10,000 1000 1500 2000 2500 1000 2500 5000	7.6 8.1 8.4 9.7 10.1 10.4 11.7 12.1 7.1 7.1 6.9 7.3 7.0 7.1				220 220 220 220 220 220 220 220 150 150 150 165 165							87 91 96 >99 >99 >99 77 82 79 86 87				R R R R R R R R R R R R R R R R R R R
28	A12(S04)3 A12(S04)3 A12(S04)3 A12(S04)3 A12(S04)3	6000 7000 8000 9000 10,000	7 0 7 1 7.1 7.0 7.1	:	:	:	165 165 165 165 165	:	:	:	:	:	:	96 97 96 94 97	:	:	:	R R R R
238	FeCI 3 FeCI 3 FeCI 3 A lum A lum A lum A lum A lum Ca (GH) 2 Ca (GH) 2 Ca (GH) 2 Ca (GH) 2 NaGH NaGH NaGH	100 150 200 90 135 180 136 180 190 125 225 225 225 220 240 200 360	7.3 7.3 7.3 6.2 6.1 7.4 7.0 7.9 7.9 7.8 8.0		0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.068 0.068 0.080	0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07	80			3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		53 53 53 53 53 53 53 53 53 53 53 53 53 5	21 36 21 7 0 0 43 21 21 14 7 36 64 64 64 64	98 98 77 98 >99 >99 >99 >99 1 12 97 98 91 99 95 94 97			97 97 97 91 89 93 95 96 97 43 0 95 97 88 94 -	***************************************
96	A1um	65	8.2		_		500			_				98				R

⁻ Data not given

^{*} R = Raw leachate 8 = Biologically treated leachate 0 = Diluted raw leachate

TABLE 8-4. Bench-Scale Experimental Data for ATkali and Alkaline Earth Metal Removal for the Chemical Addition Processes

				In	fluent Co	ncentratio	n, mg/1				Remo	val, %		Leachate
Reference	Chemical	Dose, mg/1	рH	Ca	Mg	Mn	K	Na	Ca	Mg	Mn	K	Na	Туре*
17,18,176	Ca(OH) ₂	2350	6.9	-	-	10	156	188		-	>99	27	43	4
	03	180-250	6.9	-	-	10	156	188	-	-	>99	27	43	R
32	Ca(OH) ₂	2000	8.0	-	-	0.72	-	-		-	96	-	-	R
	$Ca(OH)_2 + FeCl_3$	2500+200	8.8	-	-	0.72	-	•	-	-	96	-	-	R
151	Ca(OH) ₂	165	7.0	178	100	25	380	-	0	0	28	8	-	R
	A12(SO4)3	1400	-	178	100	25	380	-	0	60	28	16	_	R
	FeSO ₄	1360	6.3	178	100	25	380	•	6	0	28	18	<u>-</u> ′	R
265	Ca(OH) ₂	300	6.5	-	160		-		-	0		-	-	R
	Ca(OH)2	900	7.2	-	160	-	-	-	-	16	-	•	-	R

⁻ Data not given

TABLE B-5. Bench-Scale Experimental Data for Chemical Oxidant Addition

Reference	Oxidant	Dose, mg/l.	pH Initial	Final	COD, mg/ Influent	[] Effluent	TO: Influent	C, mg/1 Effluent	COD	/a1, %	Sludge, ml/l	Leachate Type**
17,18,176	03	100 @ τ ±30 m1n	5.3	6.9	14,000	9200	5200	2700	34	48	-	R
19,20	с1 _. кмћо ₄	400-1540 10-10,000	7.0 7.0	7.0 5.8	340 10,650	-260 8500	- ,	:	25 @ 12 20 @ 10,0	-	6 110 @ 500 mg/1	D (1·25)
44,45,73	03	1.2-1.5% 0 ₃ @ 4 1/min, τ= 3 hrs	8.8	-	670	300	250	120		48		В
53,54,97	NaOCI -	3400 as NaOC1	8.4	9.8	330	220	-	-	33	-	-	В
	NaOC1	3000 as NaOC1	8.4	9.5	320	260	-	-	19	-	-	8
	NaQC 1	2500 as NaOC1	7.6	8.9	270	120	-	-	56	-	-	В
	NaOC1	1600 as NaOC1	7.6	8.9	290	90	-	-	69	-	-	В
134	C12 C12 C12 C12 C12 C2 C2 C2(0C1)2 C2(0C1)2 C2(0C1)2 C2(0C1)2 C2(0C1)2 C2(0C1)2 C3(0C1)2 C3(0C1)2	400 800 1200 1540 1000 2000 4000 8000 12,000 15,000 1 hr @ Q=26mgO ₃	2.2 2.0 1.8 1.6 8.0 8.0 9.0 9.9 10.2 7 4	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	340 340 340 340 1500 1500 1500 1500 1500 1500 7160	300 290 260 320 1400 1400 1100 760 900 1000 6800		-	13 15 24 5.9 6.7 6.7 27 49 40 33 5.0	-	4.5 7.0 5.0 7.3 3 3 4 4 5	D (1:25) D (1:25) D (1:25) D (1:25) D (1:25) D (1:1) D (1:1) D (1 1) D (1 1) D (1 1) R
	03	min t=4 hr @ Q=26mgO ₃	7 4	7.5	7160	4500	-		37	-	0	R
134	KMn0 4 KMn0 4	10 25 50 100 500 1000 2500 5000 7500	6.0 6.0 6.0 6.0 6.0 6.0 6.0	5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8	10,900 10,900 10,900 10,900 10,900 10,900 10,900 10,900 10,900	10,800 10,700 10,350 10,300 9800 9700 9600 9350 9100 8900	-		1 1.8 5.1 5.5 10 11 12 14 17		40 45 50 60 120 - - -	R R R R R R R R R R R R R R R R R R R
151	NaOC 1	200 as	-	-	-	-	1750	1590	-	9.1	-	R
	NaOC1	Cl ₂ 500 as Cl ₂	-	•	-	-	1750	1510	-	14	-	R
	NaOC1	1000 as Cl ₂	-	-	-	-	1750	1420	-	19	-	R
229	NaOC 1	2000 as C1 ₂	•	•	-	-	1750	1360	-	22	-	R
	03	24 @ τ=4hrs	8.8	-	7600	6300	-	-	17	-	-	R

^{*}R = Raw leachate

⁻ Data not given
* R = Raw leachate
B = Biologically treated effluent
D = Diluted raw leachate

TABLE 8-6. Bench-Scale Experimental Data for COD and TOC Removal for the Physical Treatment Processes

eference	Process*	Test	Leachate Type	pН	Influent Concentr mg/1 COD		Remova COD	1, % TOC	· Comments
14,45,70	RO		Raw	5.5	٠.	13,000		70	KP-98 Membrane; P=600 psig; Flux=5.5 gpd/ft ²
	RO		Raw	5.5	_	13,000	-	75	KP-98 Membrane: P*1500 psi; Flux=8.9
	RO		Raw	5.5	_	18,500	+	56	KP-98 Membrane: P=600 psi: Flux=3.7
	RO		Raw	5.5	-	18,500	-	59	KP-98 Membrane; P=1500 psi; Flux=6.2
	RO		Raw	5.5	-	13,000	-	85	NS-100 Membrane; P=600 psi; Flux=7
	RO		Raw	5.5	-	13,000	-	88	NS-100 Membrane; P=1500 psi; Flux=11
	RO RO		Raw	8.0	-	13,000	-	92	KP-98 Membrane; P=600 ps1; Flux=6.1
	RO		Raw Raw	8.0 8.0	-	13,000	-	93	KP-98 Membrane; P=1500 psi; Flux=10
	RO		Raw Raw	8.0		18,500 18,500	-	89 60	KP-98 Membrane; P=600 psi; Flux=3.9
	RO		Raw	8.0	-	13,000	-	93	KP-98 Membrane; P=150 psi; Flux=7.1 NS-100 Membrane; P=600 psi; Flux=7.3
	RO		Raw	8.0		13,000	:	94	NS-100 Membrane; P=500 psi; Flux=7.3 NS-100 Membrane; P=1500 psi; Flux=12.5
	RO		AL	8.8	_	214		95	NS-100 Membrane; P=600 ps1; Flux=9.8
	,,,,		Effluent	0.0		214	-	33	13-100 Pelibrane, F-000 ps1; F10x-9.6
	RO		AC Effluent	8.8	-	48	•	86	NS-100 Membrane; P=600 ps1; Flux=12.5
	RO		[X(-) Effluent	5.5	-	133	-	97	NS-100 Membrane; P=600 psi; Flux=12.0
	RO		IX(-) Effluent	5.5	-	119	•	94	NS-100 Membrane; P=600 psi; Flux=12.4
	RO	_	IX(-) Effluent	5.5	-	143	-	94	NS-100 Membrane; P=600 ps1; Flux=11.9
	IX(-)**	Column	AL Effluent	8.8	500	200	6	31	Duolite A-7
		Column	AL Effluent	8.8	500	200	59	43	Amberlite IRA-938
		Column	AL Effluent	8.8	500	200	41	26	Amberlite XE-299 HP
		Column	AL Effluent	6.2	500	200	48	43	Duolite A7
	AC**	Column	AL Effluent	8.8	500	200	74	71	GAC (40x48)
07	IX(Mixed Resin)	Batch(2g/1)	AS Effluent	7.7	180	-	36	-	Dowex 50Wx8 H ⁺ and Dowex 1x8 OH"; τ = 1 hour
	,	Batch(10g/1)	AS Effluent	5.0	180	-	68	-	Dowex 50Wx8 H ⁺ and Dowex 1x8 OH ⁺ ; r = 1 hour
07	AC	Batch(4g/1)	1X Effluent	8.4	115	- '	>99	-	τ = 30 min. Used 2g/1 IX Effluent
	IX(-)	Batch(2g/1)	AS Effluent	7.3	185	•	10	-	Dowex 50Wx8 H ⁺ ; τ = 1 hour
		Batch(10g/1)	AS Effluent	2.9	185	-	19	•	Dowex 50Wx8 H ⁺ ; τ = 1 hour

^{*}RO = Reverse Osmosis
IX = Ion Exchange; (-) = anionic exchange resin
AC = Activated Carbon Adsorption
**Removal after 50 bed volumes
psi = 6,895 kH/m²,
gpd/ft² = 0.041 m³/m².d

TABLE 8-7. Freundlich Isotherm Parameters for Activated Carbon Adsorption

				COD	Freundlich Isoth	erm Parame				
Reference	AC Type & Size	Test	C _o ,mg/1	X mgCOD M• gAC	1/n, mgCOD gAC/mg/1	C _{o r} mg/1	TO€ X mgTOC M* gAC	1/n,mgTOC gAC/mg/T	Leachate Type*	Comments
4,45,70	GAC	Batch	-	-		13,800	46	0.75-1.2	R	
	GAC GAC	Batch	-	-	-	395	300	1.9-12	R	Older leachate
	GAC	Batch Batch	630	- 	0.00.	120	68	0.81	RD	Diluted leachate
	GAC	Batch	830	520 261	0.93-1.7 0.70-2.3	225	174	-	AF(aerated)	
	GAC	Column	-	201	0.70-2.3	320 120	102 38	:	AF	
				=	-		30	-	RD	Breakthrough @ 200 BOD volumes
	GAC;40x48	Column	540	-	-	210	-	-	AL	τ=0.7 min; Max. COD&TOC Rem = 67%; After 50 BV=
	GAC;40x48	Column	540	-	•	210	-	•	AL	56% τ=3.7 min; Max. COD&TOC Rem = 86%; After 50 BV 74%
3,54,97	GAC;6x14	Column	330	-	-	140	-	•	AS	τ=15 min; COD Rem.=70%;
	GAC;6x14	Column	320	-	-	130	-	-	AS	TOC Rem. *78% τ*15 min; COD Rem. *47%;
	GAC;6x14	Column	270	-	-	76	-	-	AS	TOC Rem.=75% t=15 min; COD Rem.=52%;
	GAC;6x14	Column	290	-	-	76	-	-	AS	TOC Rem.=53% τ=15 min; COD Rem.=55%; TOC Rem.=53%
34	PAC;325 mesh	Batch	5000	2500	9.5	-	-	-	R	
43	PAC	Batch	508	550	1.4	153	165	1.1	С	
	PAC	Batch	344	600	2.5	98	230	2.5		
	PAC	Batch	232	150	0.98	63	130	2.4	B+C B+C	
	PAC	Batch	594	800	2.2	160	140	0.97	Č	
	PAC	Batch	192	600	5.9	65	165	2.9	B+C	
51	PAC	Batch	-	•	•	2000	144	2.7	R	
207	PAC	Batch	184	540	1.57	-	-	-	AS	WV-Nuchar C-190-N
29	GAC;0.9 mm	Batch	6000							
	GAC, 0. 9 IIIII	dattn	0000	•	-	•	•	-	c(0 ³)	COD _{eff} =3420 mg/1; 43% removal; 4 g/IAC
78,179			-	-	-	4200	200	0.60	R	Love Canal
8	GAC;12x40	Batch	2990	340	3.2	•	-	-	С	Filtrasorb 400, 1050- 1200 m ² /g
	GAC;12x40	Batch	2950	300	3.0	-	-		С	WV-G Nuchar, 1100_m ² /q
	GAC;10x30	Batch	2930	200	2.6	-	-	-	č	Hydrodarco, 650 m ² /g
	GAC;12x40	Column	3000	-	-	•	-		Č	22% Removal @ 50 BV; τ=4 min (1.55 gpm/ft ²)
	GAC;12x40	Column	3000	-	•	-	-	-	c	τ=4 min (1.55 gpm/ft") 25% Removal @ 50 BV; τ=4 min (1.55 gpm/ft ²)
	GAC;10x30	Column	2960	•	•	-	-	• '	С	14% Removal @ 50 BV; r=4 min (1.55 gpm/ft ²)
	GAC;12x40	Column	1000	-	•	-	-	-	В	35% Removal @ 50 BV;
	GAC;12x40	Column	3000	-	•	-	-	-	c	τ=4 min (1.55 gpm/ft ²) 35% Removal @ 50 BV; τ=10 min (0.65 gpm/ft ²)
	GAC;12x40	Batch	1010	0.14					8	t-romin (0.05 gpm/ft)

⁻ Data not given
* R = Raw
RD = Raw Diluted
AS = AS Effluent
By = Bed Volumes

AL = AL Effluent
AF = AF Effluent
C = Chemically Treated Effluent
B+C = Bfologically + Chemically Treated Effluent
qpm/ft²= 0.68 1/m²·s

TABLE 8-8. Bench-Scale Experimental Data for Heavy Metal Removal for the Physical Treatment Processes

			Leachate			Influe	nt_Conc	entra	tion, m	9/1				F	lemova	1, %	_		
Reference	Process*	Test	Туре	pН	Cđ	Cr	Cu	Fe	PЬ	Ni	Zn	ca	Cr	Cu	Fe	РЪ	Nf	Zn	Comments
51	AC	Batch(8g/1)	Raw	-	-	-	-	26	•	-	30	-	-	-	-	•	-	>99	PAC
229	AC	Batch(4g/1)	Ozonated Raw	8.8	•	-	-	-	•	60	•	•	•	-	96	-	37	-	Size: 0.88 mm
242,243	AC	Continuous (1 1/min)	Raw	7.1	0.026	0.07	0.24	22	0.23	0.13	0.69	27	0	0	10	22	0	0	GAC (6-14 mesh);
	IX	Continuous (1 1/min)	Raw	7.5	0.082	0.13	0.28	14	0.18	0.21	0.78	96	0	14	39	33	14	20	Glauconitic sand
34	AC	Batch(2g/1)	Raw	7.6	-	-	_	66	-	-	-		-	-	73	-	-	_	PAC (325 mesh)
	AC	Batch(8g/1)	Raw	7.6	-	-	-	66	-	-	-	-	-	_	96	-	-	-	PAC (325 mesh)
	AC	Batch(16g/1)	Raw	7.6	-		-	66	-	-	-	-	-	-	97	-	-	-	PAC (325 mesh)
	AC	Column (t= 4 min)	Raw	7.6	-	-	•	40	•	•	•	-	•	-	65	-	-	•	GAC
	ÁC	Column (t=26 min)	Raw	8.3	•	•	-	40	-	-	-	•	-	•	65	•	-	•	GAC

^{*}AC - Activated Carbon Adsorption (GAC - granular activated carbon; PAC - powdered activated carbon) IX - Ion Exchange

TABLE B-9. Bench-Scale Experimental Data for Alkali and Alkaline Earth Metal Removal for the Physical Treatment Processes.

			Leachate			oncent	luent ration	, mg/1			Re	moval,	*		
Reference	Process*	Test	Type	pН	Ca	Mg	Mn	ĸ	Na	Ca	Mg	Mn	K	Na	Comments
151	AC	Batch (8 g/1)	Raw	•	178	100	25	380	-	42	20	87	3	-	*PAC
242,243	AC	Continuous (1 Vmin)	Raw	7.1	152	132	7.2	280	374	0	0	21	0	0	GAC (6-14 mesh)
	1 X	Continuous (1 Vmin)	Raw	7.5	181	164	6.1	364	585	22	26	48	62	0	Glauconitic sand
207	1x(+)	Batch (2 g/1)	Biologically Treated Effluent	7.5	30	18	-	100	250	30	75	•	20	10	Dowex 50W H ⁺ ; τ = 1 hr
	1X(+)	Batch (4 g/ 1)	Biologically Treated Effluent	7.0	30	18	-	100	250	75	99	-	80	70	Dowex 50W H ⁺ ; τ = 1 hr
	1X(+)	Batch (12 g/1)	Biologically Treated Effluent	3	30	18	-	100	250	90 -	99	-	90	90	Dowex 50W H ⁺ ; τ = 1 hr
	[X(Mixed Resin)	Batch (2 g/1)	Biologically Treated	7.5	15	15	•	65	200	80	95	-	10	30	Dowex 50M H ⁺ ; Dowex 10 H ⁻ ; τ ×1 h
	IX(Mixed Resin)	Batch (4 g/ 1)	Effluent Biologically Treated	6	15	15	•	65	200	95	95	•	50	85	Dowex 50W H ⁺ ; Dowex 10 H"; τ =1 hi
	IX(Mixed Resin)	Batch (12 g/1)	Effluent Biologically Treated Effluent	5.5	15	15	-	65	200	-	•	-	95	99	Dowex 50M H ⁺ ; Dowex 10 H ⁻ ; τ =1 hi

^{*} AC = Activated Carbon Adsorption (GAC = granular activated carbon; PAC = powdered activated carbon)
IX = ion Exchange; (+) * cationic exchange resin