Arsenic Removal from Drinking Water by Coagulation/Filtration U.S. EPA Demonstration Project at Town of Felton, DE Final Performance Evaluation Report

by

Abraham S.C. Chen[‡] Gary M. Lewis[§] Lili Wang[‡] Anbo Wang[§]

[§]Battelle, Columbus, OH 43201-2693 [‡]ALSA Tech, LLC, Columbus, OH 43219-0693

> Contract No. 68-C-00-185 Task Order No. 0029

> > for

Thomas J. Sorg Task Order Manager

Water Supply and Water Resources Division National Risk Management Research Laboratory Cincinnati, Ohio 45268

National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, Ohio 45268

DISCLAIMER

The work reported in this document was funded by the United States Environmental Protection Agency (EPA) under Task Order 0029 of Contract 68-C-00-185 to Battelle. It has been subjected to the Agency's peer and administrative reviews and has been approved for publication as an EPA document. Any opinions expressed in this paper are those of the author(s) and do not, necessarily, reflect the official positions and policies of the EPA. Any mention of products or trade names does not constitute recommendation for use by the EPA.

FOREWORD

The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the Nation's land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet this mandate, EPA's research program is providing data and technical support for solving environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future.

The National Risk Management Research Laboratory (NRMRL) is the Agency's center for investigation of technological and management approaches for preventing and reducing risks from pollution that threaten human health and the environment. The focus of the Laboratory's research program is on methods and their cost-effectiveness for prevention and control of pollution to air, land, water, and subsurface resources; protection of water quality in public water systems; remediation of contaminated sites, sediments and ground water; prevention and control of indoor air pollution; and restoration of ecosystems. NRMRL collaborates with both public and private sector partners to foster technologies that reduce the cost of compliance and to anticipate emerging problems. NRMRL's research provides solutions to environmental problems by: developing and promoting technologies that protect and improve the environment; advancing scientific and engineering information to support regulatory and policy decisions; and providing the technical support and information transfer to ensure implementation of environmental regulations and strategies at the national, state, and community levels.

This publication has been produced as part of the Laboratory's strategic long-term research plan. It is published and made available by EPA's Office of Research and Development to assist the user community and to link researchers with their clients.

Sally Gutierrez, Director National Risk Management Research Laboratory

ABSTRACT

This report documents the activities performed during and the results obtained from the arsenic removal treatment technology demonstration project at the Town of Felton, DE. The objectives of the project were to evaluate: (1) the effectiveness of Kinetico's FM-348-AS coagulation/filtration (C/F) system using Macrolite[®] media in removing arsenic to meet the maximum contaminant level (MCL) of 10 μ g/L, (2) the reliability of the C/F system for use at small water facilities, (3) the required system operation and maintenance (O&M) and operator skill levels, and (4) the capital and O&M cost of the technology. The project also characterized water in the distribution system and residuals generated by the treatment process. The types of data collected included system operation, water quality, process residuals, and capital and O&M cost.

After review and approval of the engineering plan by the state, the C/F system was installed and became operational on September 14, 2006. The system consisted of two 48-in \times 72-in fiber reinforced plastic (FRP) contact tanks and three 48-in \times 72-in FRP filtration vessels configured in parallel. Each filtration vessel was loaded with 25 ft³ of M2 Macrolite[®] media for a design filtration rate of 10 gpm/ft². The system also used two chemical addition assemblies, one each for prechlorination and iron addition. An existing prechlorination system was used to oxidize As(III) and soluble iron (Fe[II]); an iron addition system was installed to inject ferric chloride (FeCl₃) to form arsenic-laden particles prior to Macrolite[®] pressure filtration. A recycle system was incorporated into the treatment system to reclaim backwash wastewater and eliminate the need to discharge wastewater into a sanitary sewer. The recycle system consisted of a pump controller, two booster pumps, and a 16-ft \times 6-ft \times 10-ft concrete recycle tank equipped with four float switches.

From September 14, 2006, through November 3, 2007, the treatment system operated at 263 gal/min (gpm) for 6.5 hr/day, on average, producing 43,446,110 gal of water. This average flowrate corresponded to a contact time of 4.3 min through the two contact tanks and a filtration rate of 7.0 gpm/ft². The recycle system operated for 29.4% of the time when the treatment system was in operation during the demonstration study.

Source water had an average pH value of 8.3 and contained 27.2 to $43.3 \mu g/L$ of total arsenic. The predominant arsenic species was As(III) with an average concentration of 29.1 $\mu g/L$. Total iron concentrations ranged from <25 to 62.5 $\mu g/L$ and averaged 26.1 $\mu g/L$, existing mostly in the soluble form. This amount of soluble iron was not adequate for arsenic removal; therefore, ferric chloride was added to achieve an iron concentration of 1.2 to 2.0 mg/L to effectively remove arsenic to below the MCL.

Following prechlorination, arsenic existed mostly as particulate arsenic, which was removed by the pressure filters to levels below 7.4 μ g/L (on average). Throughout the performance evaluation study, total arsenic concentrations in system effluent exceeded the arsenic MCL on 14 sampling occasions, which were due to either insufficient iron addition or particulate breakthrough from the filters. Shortening run lengths from 17.0 to 9.1 hr (by lowering the differential pressure [Δ p] trigger from 25 to 18 lb/in² [psi]) appeared to be useful for decreasing particulate breakthrough from the pressure filters.

Each filter was backwashed automatically approximately 5 time/week with the backwashing process triggered by either high Δp , standby time, or run time. High Δp triggered approximately 94% of backwashes. Backwash durations averaged 6.7 min, generating approximately 724 gal of wastewater per vessel during each backwash. A total of 673,450 gal of wastewater was produced during the performance evaluation study, equivalent to 1.6% of the total amount of water treated. The backwash wastewater contained, on average, 336 mg/L of total suspended solids (TSS), 1,229 µg/L of arsenic, 107 mg/L of iron, and 551 µg/L of manganese, with the majority existing as particulates. As such, approximately 920

g of solids were discharged from each filtration vessel during each backwash event, including 3.4 g of arsenic, 293 g of iron, and 1.5 g of manganese.

Comparison of the distribution system water sampling results before and after system startup demonstrated a considerable decrease in arsenic concentration (i.e., 34.4 to 8.5 μ g/L, on average). Arsenic levels in the distribution system were slightly higher than those in treatment system effluent, indicating resuspension and/or redissolution of arsenic in the distribution system. Copper concentrations decreased from an average baseline concentration of 85.6 to 44.0 μ g/L after system startup. Manganese and lead concentrations decreased slightly from 1.7 to 0.5 μ g/L and 2.4 to 1.6 μ g/L, respectively. Iron concentrations increased slightly from 26.9 to 38.1 μ g/L. pH and alkalinity levels did not appear to be affected.

The capital investment for the system was \$334,297, including \$201,292 for equipment, \$44,520 for site engineering, and \$88,485 for installation, shakedown, and startup. Using the system's rated capacity of 375 gpm (or 540,000 gal/day [gpd]), the capital cost was \$891/gpm (or \$0.62/gpd). This unit cost does not include the cost of the building to house the treatment system or the cost of the recycle system used for reclaiming the backwash wastewater. O&M cost, estimated at \$0.30/1,000 gal, included the cost for chemical usage, electricity consumption, and labor.

DISCLAIME	ER			ii
FOREWORD)			.iii
ABSTRACT				.iv
APPENDICE	ES			vii
FIGURES				vii
ABBREVIA	FIONS A	AND ACR	RONYMS	.ix
		NT		1
1.1				
1.2			ologies for Arsenic Removal	
1.3	Project	Objective	28	2
2.0 SUMMA	ARY AN	D CONCI	LUSIONS	5
30 MATER	IALS A	ND METH	HODS	6
3.0 MITTER			Approach	
3.2		v	d Cost Data Collection	
3.3			on Procedures and Schedules	
5.5	3.3.1		Vater	
	3.3.2		nt Plant Water	
	3.3.3		sh Wastewater	
	3.3.4		ion System Water	
	3.3.5		Solids	
3.4			ics	
	3.4.1		ion of Arsenic Speciation Kits	
	3.4.2	•	ion of Sample Coolers	
	3.4.3		Shipping and Handling	
3.5	Analyt		dures	
		DIGGLIG		10
			SION	
4.1				
	4.1.1		ing Facility	
	4.1.2		ion System	
	4.1.3		Vater Quality	
4.2	4.1.4		Water Quality	
4.2			ss Description	
4.3		•	m Installation	
	4.3.1	•	Permitting	
	4.3.2		Construction	
4 4	4.3.3	•	nstallation, Startup, and Shakedown	
4.4			n	
	4.4.1 4.4.2		Operation	
			and Iron Additions.	
	4.4.3	Backwas 4.4.3.1	sh Operation	
		4.4.3.1	PLC Settings Increase in Backwash Frequency	
		4.4.3.2	Recycle System Operation.	
		+.+.).)		54

CONTENTS

	4.4.4	Residual	Management	34
	4.4.5	System/C	Deration Reliability and Simplicity	34
		4.4.5.1	Pre- and Post-Treatment Requirements	34
		4.4.5.2	System Automation	34
		4.4.5.3	Operator Skill Requirements	34
		4.4.5.4	Preventative Maintenance Activities	
		4.4.5.5	Chemical Handling and Inventory Requirements	35
4.5	System	Performa	nce	
	4.5.1	Treatmen	t Plant Sampling	35
		4.5.1.1	Arsenic	
		4.5.1.2	Iron	41
		4.5.1.3	Manganese	42
		4.5.1.4	pH, DO, and ORP	43
		4.5.1.5	Chlorine	43
		4.5.1.6	Other Water Quality Parameters	44
	4.5.2	Backwas	h Water and Solids Sampling	44
	4.5.3	Distributi	on System Water Sampling	46
4.6	System	Cost		49
	4.6.1		'ost	
	4.6.2	O&M Co	st	50
REFERE	NCES			51

APPENDICES

APPENDIX A: OPERATIONAL DATA APPENDIX B: ANALYTICAL DATA TABLES APPENDIX C: BACKWASH LOG SHEETS

5.0

FIGURES

Figure 3-1. Process Flow Diagram and Sampling Schedule and Locations	0
Figure 4-1. Pre-existing Facility	
Figure 4-2. Schematic of Kinetico's Macrolite® Arsenic Removal System for Felton, DE, Site	16
Figure 4-3. Treatment System Components	17
Figure 4-4. Control and Instrumentation	17
Figure 4-5. Recycle System Components, Control, and Instrumentation	20
Figure 4-6. Schematic of Building and Recycle Tank	22
Figure 4-7. Schematic of Recycle Tank	23
Figure 4-8. New Building and Recycle Tank	24
Figure 4-9. Treatment System Daily Operating Time	27
Figure 4-10. Treatment System Flowrates	27
Figure 4-11. Differential Pressure Across Filtration Vessels	28
Figure 4-12. Differential Pressure vs. Filter Run Time	29
Figure 4-13. Filter Run Time Since Last Backwash	29
Figure 4-14. Chlorine Dosages over Demonstration Study Period	
Figure 4-15. Calculated Iron Doses vs. Measured Iron Concentrations	31
Figure 4-16a. Initial Float Switch Levels in Recycle Tank	
Figure 4-16b. Revised Float Switch Levels in Recycle Tank	

Figure 4-17.	Total Arsenic Concentrations Across Treatment Train	39
Figure 4-18.	Arsenic Speciation Results	40
	Total Iron Concentrations Across Treatment Train	
Figure 4-20.	Total Manganese Concentrations Across Treatment Train	43
Figure 4-21.	Chlorine Residuals Measured Throughout Treatment Train	44
Figure 4-22.	Effects of Treatment System on Arsenic, Manganese, and Iron in Distribution System	48

TABLES

Table 1-1. S	Summary of Arsenic Removal Demonstration Sites	3
Table 3-1. D	Demonstration Activities and Completion Dates	6
Table 3-2. E	Evaluation Objectives and Supporting Data Collection Activities	7
Table 3-3. S	Sampling Schedule and Analyses	8
Table 4-1. F	Felton, DE, Water Quality Data	14
Table 4-2. P	Physical Properties of M2 Macrolite [®] Media	15
Table 4-3. D	Design Features of the Macrolite [®] System	18
Table 4-4. S	System Inspection Punch-List Items	24
Table 4-5. T	reatment System Operational Parameters	26
	Summary of PLC Settings for Backwash Operations	
Table 4-7. S	Summary of Arsenic, Iron, and Manganese Analytical Results	36
Table 4-8. S	Summary of Other Water Quality Parameter Results	37
Table 4-9. In	neffective Arsenic Removal Due to Inadequate Iron Addition	41
Table 4-10.	Ineffective Arsenic Removal Due to Arsenic/Iron Leakage	41
Table 4-11.	Backwash Wastewater Sampling Results	45
Table 4-12.	Backwash Solids Sampling Results	46
Table 4-13.	Distribution System Sampling Results	47
	Capital Investment for Kinetico's C/F System	
	O&M Cost for Kinetico's C/F System	

ABBREVIATIONS AND ACRONYMS

Δp	differential pressure
AAL	American Analytical Laboratories
Al	aluminum
AM	adsorptive media
As	arsenic
C/F	coagulation/filtration
Ca	calcium
Cl	chlorine
CRF	capital recovery factor
Cu	copper
DO	dissolved oxygen
DHSS	Delaware Health and Social Services
EPA	U.S. Environmental Protection Agency
F	fluoride
Fe	iron
FeCl ₃	ferric chloride
FRP	fiber reinforced plastic
FTW	filter-to-waste
gpd	gallons per day
gph	gallons per hour
gpm	gallons per minute
HDPE	high-density polyethylene
HIX	hybrid ion exchanger
hp	horsepower
ICP-MS	inductively coupled plasma-mass spectrometry
ID	identification
IX	ion exchange
LCR	(EPA) Lead and Copper Rule
MCL	maximum contaminant level
MDL	method detection limit
Mg	magnesium
μm	micrometer
Mn	manganese
mV	millivolts
Na	sodium
NA	not analyzed
NaOCl	sodium hypochlorite

NA	not available
NTU	nephelometric turbidity unit
O&M	operation and maintenance
OIP	operator interface panel
ORD	Office of Research and Development
ORP	oxidation-reduction potential
P	phosphorus
P&ID	piping and instrumentation diagram
Pb	lead
pCi/L	picocuries per liter
psi	pounds per square inch
psig	pounds per square inch gauge
PLC	programmable logic controller
PO ₄	phosphate
POU	point-of-use
PVC	polyvinyl chloride
QA	quality assurance
QA/QC	quality assurance/quality control
QAPP	Quality Assurance Project Plan
RPD	relative percent difference
RO	reverse osmosis
Sb	antimony
SDWA	Safe Drinking Water Act
SiO ₂	silica
SO ₄	sulfate
TDH	total dynamic head
TDS	total dissolved solids
THM	trihalomethanes
TOC	total organic carbon
TSS	total suspended solids
UPS	uninterruptible power supply
V	vanadium
VOC	volatile organic compound(s)

ACKNOWLEDGMENTS

The authors wish to extend their sincere appreciation to Mr. Ralph Hughes of the Town of Felton. Mr. Hughes monitored the treatment system and collected samples from the treatment and distribution systems on a regular schedule throughout the study. This performance evaluation would not have been possible without his support and dedication.

1.0 INTRODUCTION

1.1 Background

The Safe Drinking Water Act (SDWA) mandates that the U.S. Environmental Protection Agency (EPA) identify and regulate drinking-water contaminants that may have adverse human health effects and that are known or anticipated to occur in public water supply systems. In 1975 under the SDWA, EPA established a maximum contaminant level (MCL) for arsenic (As) at 0.05 mg/L. Amended in 1996, the SDWA required that EPA develop an arsenic research strategy and publish a proposal to revise the arsenic MCL by January 2000. On January 18, 2001, EPA finalized the arsenic MCL at 0.01 mg/L (EPA, 2001). To clarify the implementation of the original rule, EPA revised the rule text on March 25, 2003, to express the MCL as 0.010 mg/L (10 μ g/L) (EPA, 2003). The final rule required all community and non-transient, non-community water systems to comply with the new standard by January 23, 2006.

In October 2001, EPA announced an initiative for additional research and development of cost-effective technologies to help small-community water systems (<10,000 customers) meet the new arsenic standard and to provide technical assistance to operators of small systems for reducing compliance cost. As part of this Arsenic Rule Implementation Research Program, EPA's Office of Research and Development (ORD) proposed a project to conduct a series of full-scale, onsite demonstrations of arsenic removal technologies, process modifications, and engineering approaches applicable to small systems. Shortly thereafter, an announcement published in the *Federal Register* requested water utilities interested in participating in the first Round of this EPA-sponsored demonstration program to provide information on their water systems. In June 2002, EPA selected 17 out of 115 sites to host the demonstration studies.

In September 2002, EPA solicited proposals from engineering firms and vendors for cost-effective arsenic removal treatment technologies for the 17 host sites. EPA received 70 technical proposals for the 17 host sites, with each site receiving one to six proposals. In April 2003, an independent technical panel reviewed the proposals and recommended to EPA the technologies they determined to be acceptable for the demonstration at each site. Because of funding limitations and other technical reasons, only 12 of the 17 sites were selected for the demonstration project. Using the information provided by the review panel, EPA, in cooperation with the host sites and the drinking-water programs of the respective states, selected one technical proposal for each site.

In 2003, EPA initiated Round 2 arsenic technology demonstration projects that were partially funded with Congressional add-on funding to the EPA budget. In June 2003, EPA selected 32 potential demonstration sites, and the community water system in the Town of Felton, DE was one of those selected.

In September 2003, EPA again solicited proposals from engineering firms and vendors for arsenic removal technologies. EPA received 148 technical proposals for the 32 host sites, with each site receiving from two to eight proposals. In April 2004, EPA convened another technical panel to review the proposals and provide recommendations to EPA; the number of proposals per site ranged from none (for two sites) to four. At the sites receiving at least one proposal, the final selection of the treatment technology was made through a joint effort by EPA, the state regulators, and the host site. Since then, four sites have withdrawn from the demonstration program, reducing the number of sites to 28. Kinetico's Macrolite[®] Arsenic Removal Technology was selected for demonstration at the Felton facility.

As of April 2010, 39 of the 40 systems were operational and the performance evaluation of 36 systems was completed.

1.2 Treatment Technologies for Arsenic Removal

The technologies selected for the Rounds 1 and 2 demonstration host sites include 25 adsorptive media (AM) systems (the Oregon Institute of Technology [OIT] site has three AM systems), 13 coagulation/ filtration (C/F) systems, two ion exchange (IX) systems, and 17 point-of-use (POU) units (including nine under-the-sink reverse osmosis [RO] units at the Sunset Ranch Development site and eight AM units at the OIT site), and one system modification. Table 1-1 summarizes the locations, technologies, vendors, system flowrates, and key source water quality parameters (including As, iron [Fe], and pH) at the 40 demonstration sites. An overview of the technology selection and system design for the 12 Round 1 demonstration sites and the associated capital cost is provided in two EPA reports (Wang et al., 2004; Chen et al., 2004), which are posted on the EPA Web site at http://wswrd/dw/arsenic/index.html.

1.3 Project Objectives

The overall objective of the arsenic demonstration program is to conduct full-scale arsenic treatment technology demonstration studies on the removal of arsenic from drinking-water supplies. The specific objectives are to:

- Evaluate the performance of the arsenic removal technologies for use on small systems
- Determine the required system operation and maintenance (O&M) and operator skill levels
- Characterize process residuals produced by the technologies
- Determine the capital and O&M cost of the technologies.

This report summarizes the performance of the Kinetico C/F system at the Town of Felton in Delaware from September 14, 2006, through November 3, 2007. The types of data collected included system operation, water quality (both across the treatment train and in the distribution system), residuals, and capital and O&M cost.

				Design	Source Water Quality		
Demonstration Location	Site Name	Technology (Media)	Vendor	Flowrate (gpm)	As (µg/L)	Fe (µg/L)	рН (S.U.)
		Northeast/Ohio					
Wales, ME	Springbrook Mobile Home Park	AM (A/I Complex)	ATS	14	38 ^(a)	<25	8.6
Bow, NH	White Rock Water Company	AM (G2)	ADI	70 ^(b)	39	<25	7.7
Goffstown, NH	Orchard Highlands Subdivision	AM (E33)	AdEdge	10	33	<25	6.9
Rollinsford, NH	Rollinsford Water and Sewer District	AM (E33)	AdEdge	100	36 ^(a)	46	8.2
Dummerston, VT	Charette Mobile Home Park	AM (A/I Complex)	ATS	22	30	<25	7.9
Felton, DE	Town of Felton	C/F (Macrolite)	Kinetico	375	30 ^(a)	48	8.2
Stevensville, MD	Queen Anne's County	AM (E33)	STS	300	19 ^(a)	270 ^(c)	7.3
Houghton, NY ^(d)	Town of Caneadea	C/F (Macrolite)	Kinetico	550	27 ^(a)	1,806 ^(c)	7.6
Newark, OH	Buckeye Lake Head Start Building	AM (ARM 200)	Kinetico	10	15 ^(a)	1,312 ^(c)	7.6
Springfield, OH	Chateau Estates Mobile Home Park	AM (E33)	AdEdge	250 ^(e)	25 ^(a)	1,615 ^(c)	7.3
		Great Lakes/Interior Plains					-
Brown City, MI	City of Brown City	AM (E33)	STS	640	14 ^(a)	127 ^(c)	7.3
Pentwater, MI	Village of Pentwater	C/F (Macrolite)	Kinetico	400	13 ^(a)	466 ^(c)	6.9
Sandusky, MI	City of Sandusky	C/F (Aeralater)	Siemens	340 ^(e)	$16^{(a)}$	1,387 ^(c)	6.9
Delavan, WI	Vintage on the Ponds	C/F (Macrolite)	Kinetico	40	20 ^(a)	1,499 ^(c)	7.5
Greenville, WI	Town of Greenville	C/F (Macrolite)	Kinetico	375	17	7827 ^(c)	7.3
Climax, MN	City of Climax	C/F (Macrolite)	Kinetico	140	39 ^(a)	546 ^(c)	7.4
Sabin, MN	City of Sabin	C/F (Macrolite)	Kinetico	250	34	1,470 ^(c)	7.3
Sauk Centre, MN	Big Sauk Lake Mobile Home Park	C/F (Macrolite)	Kinetico	20	25 ^(a)	3,078 ^(c)	7.1
Stewart, MN	City of Stewart	C/F&AM (E33)	AdEdge	250	42 ^(a)	1,344 ^(c)	7.7
Lidgerwood, ND	City of Lidgerwood	Process Modification	Kinetico	250	146 ^(a)	1,325 ^(c)	7.2
		Midwest/Southwest					
Arnaudville, LA	United Water Systems	C/F (Macrolite)	Kinetico	770 ^(e)	35 ^(a)	2,068 ^(c)	7.0
Alvin, TX	Oak Manor Municipal Utility District	AM (E33)	STS	150	19 ^(a)	95	7.8
	Webb Consolidated Independent School						
Bruni, TX	District	AM (E33)	AdEdge	40	56 ^(a)	<25	8.0
Wellman, TX	City of Wellman	AM (E33)	AdEdge	100	45	<25	7.7
	Desert Sands Mutual Domestic Water						
Anthony, NM	Consumers Association	AM (E33)	STS	320	23 ^(a)	39	7.7
Nambe Pueblo, NM	Nambe Pueblo Tribe	AM (E33)	AdEdge	145	33	<25	8.5
Taos, NM	Town of Taos	AM (E33)	STS	450	14	59	9.5
Rimrock, AZ	Arizona Water Company	AM (E33)	AdEdge	90 ^(b)	50	170	7.2
Tohono O'odham							
Nation, AZ	Tohono O'odham Utility Authority	AM (E33)	AdEdge	50	32	<25	8.2
Valley Vista, AZ	Arizona Water Company	AM (AAFS50/ARM 200)	Kinetico	37	41	<25	7.8

Table 1-1. Summary of Arsenic Removal Demonstration Sites

			Design	Source Water Quality			
Demonstration Location	Site Name	Technology (Media)	Vendor	Flowrate (gpm)	As (µg/L)	Fe (µg/L)	рН (S.U.)
		Far West					
Three Forks, MT	City of Three Forks	C/F (Macrolite)	Kinetico	250	64	<25	7.5
Fruitland, ID	City of Fruitland	IX (A300E)	Kinetico	250	44	<25	7.4
Homedale, ID	Sunset Ranch Development	POU RO ^(f)	Kinetico	75 gpd	52	134	7.5
Okanogan, WA	City of Okanogan	C/F (Electromedia-I)	Filtronics	750	18	69 ^(c)	8.0
Klamath Falls, OR	Oregon Institute of Technology	POE AM (Adsorbsia/ARM 200/ArsenX ^{np}) and POU AM (ARM 200) ^(g)	Kinetico	60/60/30	33	<25	7.9
Vale, OR	City of Vale	IX (Arsenex II)	Kinetico	525	17	<25	7.5
Reno, NV	South Truckee Meadows General Improvement District	AM (GFH/Kemiron)	Siemens	350	39	<25	7.4
Susanville, CA	Richmond School District	AM (A/I Complex)	ATS	12	37 ^(a)	125	7.5
Lake Isabella, CA	Upper Bodfish Well CH2-A	AM (HIX)	VEETech	50	35	125	7.5
Tehachapi, CA	Golden Hills Community Service District	AM (Isolux)	MEI	150	15	<25	6.9

Table 1-1. Summary of Arsenic Removal Demonstration Sites (Continued)

AM = adsorptive media process; C/F = coagulation/filtration; HIX = hybrid ion exchanger; IX = ion exchange process; RO = reverse osmosis

ATS = Aquatic Treatment Systems; MEI = Magnesium Elektron, Inc.; STS = Severn Trent Services

(a) Arsenic existing mostly as As(III).

(b) Design flowrate reduced by 50% due to system reconfiguration from parallel to series operation.

(c) Iron existing mostly as Fe(II).

4

(d) Withdrew from program in 2007. Selected originally to replace Village of Lyman, NE site, which withdrew from program in June 2006.

(e) Facilities upgraded systems in Springfield, OH from 150 to 250 gpm, Sandusky, MI from 210 to 340 gpm, and Arnaudville, LA from 385 to 770 gpm.

(f) Including nine residential units.

(g) Including eight under-the-sink units.

2.0 SUMMARY AND CONCLUSIONS

Kinetico's C/F system using Macrolite[®] filtration media operated at the Town of Felton, DE, from September 14, 2006, through November 2, 2007. Based on the overall objectives of the performance evaluation study, the information collected is summarized and conclusions are drawn as follows.

Performance of the arsenic removal technology for use on small systems:

- Chlorination was effective in oxidizing As(III) to As(V), reducing As(III) concentrations from 29.1 µg/L (on average) in source water to 0.7 µg/L (on average) after the contact tanks.
- The use of supplemental iron was effective in forming arsenic-laden iron particles, in creasing particulate arsenic concentrations from 3.4 μ g/L (on average) in source water to 26.1 μ g/L (on average) after the contact tanks.
- With proper pre-chlorination and supplemental iron addition, Macrolite[®] pressure filtration effectively removed arsenic to 7.4 μ g/L (on average).
- Higher-than-the-MCL levels of arsenic were measured in system effluent during 14 sampling events. The elevated arsenic concentrations observed were due to either insufficient iron addition or particulate breakthrough from the pressure filters.
- Shortening filter run lengths (e.g., from 17.0 to 9.1 hr by lowering the differential pressure (Δp) backwash trigger from 25 to 18 lb/in² [psi]) could help reduce particulate breakthrough from the pressure filters.
- Backwashing at 6.0 gal/min/ft² (gpm/ft²) (or 40% lower than the design value of 10 gpm/ft²) for 6.7 min (on average) could restore the pressure filters for subsequent service runs. However, 20% of the Δp readings collected within 1 hr of backwashing were higher than the clean-bed-level of 10 psi.
- The treatment system improved water quality in the distribution system by decreasing arsenic concentrations from 34.4 to 8.5 µg/L (on average). Little or no effect was observed for lead, copper, or manganese. pH and alkalinity concentrations remained unchanged.

Required system O&M and operator skill levels:

- Minimal time was required to operate and maintain the system. The daily demand on the operator to perform routine O&M was 45 min.
- The level of accumulated wastewater solids should be periodically checked and removed when necessary to prevent solid levels above the recycle system intake line.

Characteristics of residuals produced by the technology:

• Backwash solids were the only residual produced by the treatment system, which accumulated at the bottom of the recycle tank. Approximately 850 kg of backwash solids were generated during the performance evaluation study, which included 0.34% (by weight) of arsenic, 32% (by weight) of iron, and 0.2% (by weight) of manganese.

Capital and O&M cost of the technology:

- The capital investment for the system was \$334,297, including \$201,292 for equipment, \$44,520 for site engineering, and \$88,485 for installation, shakedown, and startup.
- The unit capital cost was \$891/gpm (or \$0.62 gal/day [gpd]) based on a 375-gpm design capacity. This calculation does not reflect the cost for the building and recycle system as it was funded by the Town of Felton.
- The O&M cost was 0.30/1,000 gal, including incremental cost for chemicals, electricity, and labor.

3.0 MATERIALS AND METHODS

3.1 General Project Approach

Following the predemonstration activities summarized in Table 3-1, the performance evaluation study of the Kinetico treatment system began on September 14, 2006, and ended on November 3, 2007. Table 3-2 summarizes the types of data collected and considered as part of the technology evaluation process. The overall system performance was based on its ability to consistently remove arsenic to below the MCL of 10 μ g/L through the collection of water samples across the treatment train. The reliability of the system was evaluated by tracking unscheduled system downtime and frequency and the extent of repairs. Unscheduled downtime and repair information were recorded by the plant operator on a Repair and Maintenance Log Sheet.

O&M and operator skill requirements were assessed through quantitative data and qualitative considerations, including needs for pre- and/or post-treatment, level of system automation, extent of preventative maintenance activities, frequency of chemical and/or media handling and inventory, and general knowledge needed for relevant chemical processes and related health and safety practices. Staffing requirements for the system operation were recorded on an Operator Labor Hour Log Sheet.

The quantity of aqueous and solid residuals generated was estimated by tracking the volume of backwash wastewater produced during each backwash cycle. Backwash wastewater was sampled and analyzed for chemical characteristics.

The cost of the system was evaluated based on the capital cost per gpm (or gpd) of design capacity and the O&M cost per 1,000 gal of water treated. This task required tracking the capital cost for equipment, engineering, and installation, as well as the O&M cost for media replacement and disposal, chemical supplies, electricity usage, and labor.

Activity	Date
Introductory meeting held	October 7, 2004
Project planning meeting held	December 14, 2004
Draft letter of understanding issued	December 24, 2004
Final letter of understanding issued	January 19, 2005
Request for quotation issued to vendor	January 28, 2005
Vendor quotation received	February 15, 2005
Purchase order established	February 23, 2005
Engineering package submitted to DHSS	April 26, 2005
Building construction permit granted by Kent County	April 28, 2005
System permit granted by DHSS	May 31, 2005
Building construction began	August 8, 2005
Letter report issued	October 4, 2005
FM-348-AS system delivered	March 20, 2006
Study plan issued	May 4, 2006
System installation completed	May 30, 2006
System shakedown completed	June 6, 2006
Building completed	July 7, 2006
Performance evaluation began	September 14, 2006
Performance evaluation completed	November 3, 2007

 Table 3-1. Demonstration Activities and Completion Dates

DHSS = Delaware Health and Social Services

Evaluation Objective	Data Collection		
Performance	Ability to consistently meet 10 µg/L of arsenic in treated water		
Reliability	Unscheduled system downtime		
	Frequency and extent of repairs, including a description of problems,		
	materials and supplies needed, and associated labor and cost		
System O&M and operator	Pre- and post-treatment requirements		
skill requirements	Level of automation for system operation and data collection		
	Staffing requirements, including number of operators and laborers		
	Task analysis of preventative maintenance, including number, frequency, and complexity of tasks		
	Chemical handling and inventory requirements		
	General knowledge needed for relevant chemical processes and health and safety practices		
Residual management	Quantity and characteristics of aqueous and solid residuals generated by system operation		
System cost	Capital cost for equipment, engineering, and installation		
	O&M cost for chemical use, electricity consumption, and labor		

Table 3-2. Evaluation Objectives and Supporting Data Collection Activities

3.2 System O&M and Cost Data Collection

The plant operator performed daily, weekly, and monthly system O&M and data collection according to instructions provided by the vendor and Battelle. On a daily basis, the plant operator recorded system operational data such as pressure, flowrate, totalizer, and hour meter readings (see Appendix A) on a Daily System Operation Log Sheet; checked sodium hypochlorite (NaOCl) and ferric chloride (FeCl₃) levels; and conducted visual inspections to ensure normal system operations. If any problem occurred, the plant operator contacted the Battelle Study Lead, who determined if the vendor should be contacted for troubleshooting. The plant operator recorded all relevant information, including the problem encountered, course of actions taken, materials and supplies used, and associated cost and labor incurred, on a Repair and Maintenance Log Sheet. On a weekly basis, the plant operator measured several water quality parameters onsite, including temperature, pH, dissolved oxygen (DO), oxidation-reduction potential (ORP), and residual chlorine, and recorded the data on a Weekly Onsite Water Quality Parameters Log Sheet. Monthly backwash data also were recorded on a Backwash Log Sheet.

The capital cost for the arsenic removal system consisted of the cost for equipment, site engineering, and system installation. The O&M cost consisted of the cost for chemical use, electricity consumption, and labor. Consumption of NaOCl and FeCl₃ was tracked on the Daily System Operation Log Sheet. Electricity consumption was determined from utility bills. Labor for various activities such as routine system O&M, troubleshooting and repairs, and demonstration-related work, was tracked using an Operator Labor Hour Log Sheet. The routine system O&M included activities such as completing field logs, replenishing chemical solutions, ordering supplies, performing system inspections, and others as recommended by the vendor. The labor for demonstration-related work, including activities such as performing field measurements, collecting and shipping samples, and communicating with the Battelle Study Lead and the vendor, was recorded, but not used for the cost analysis.

3.3 Sample Collection Procedures and Schedules

To evaluate system performance, samples were collected at the wellhead, across the treatment plant, during Macrolite[®] filter backwash, and from the distribution system. Table 3-3 shows sampling schedule and analytes measured during each sampling event. Figure 3-1 presents a flow diagram of the treatment system, along with the analytes and schedule for each sampling location.

Sample	Sample	No. of			
Туре	Locations ^(a)	Samples	Frequency	Analytes	Collection Date(s)
Source water	IN	1	Once (during	Onsite: pH, temperature, DO, and ORP	10/07/04
			initial site visit)	Offsite: As(III), As(V), As (total and soluble), Fe (total and soluble), Mn (total and soluble), U (total and soluble), V (total and soluble), V (total and soluble), Na, Ca, Mg, Cl, F, NH ₃ , NO ₂ , NO ₃ , SO ₄ , SiO ₂ , PO ₄ , TOC, TDS, turbidity, and alkalinity	
Treatment Plant Water	IN, AC, TA, TB, TC	5	Weekly	Onsite ^(b) : pH, temperature, DO, ORP, and Cl_2 (free and total)	See Appendix B
				Offsite: As (total), Fe (total), Mn (total), P (total), SiO ₂ , turbidity, and alkalinity	
	IN, AC, TT	3	Monthly	Same as weekly analytes shown above plus following:	See Appendix B
				Offsite: As (soluble), As(III), As(V), Fe (soluble), Mn (soluble), Ca, Mg, F, NO ₃ , and SO ₄	
Backwash Wastewater	BW	3	Monthly	As (total and soluble), Fe (total and soluble), Mn (total and soluble), pH, TDS, and TSS	See Table 4-11
Distribution Water	Three LCR Locations	3	Monthly	Total As, Fe, Mn, Cu, and Pb, pH, and alkalinity	See Table 4-13
Backwash Solids	BW	2	Twice	Total As, Ba, Ca, Fe, Mg, Mn, P, and Si	See Table 4-12

Table 3-3.	Sampling	Schedule	and Analyses
------------	----------	----------	--------------

(a) Abbreviations corresponding to sample locations shown in Figure 3-1: IN = at wellhead; AC = after contact tank; TA = after Vessel A; TB = after Vessel B; TC = after Vessel C; TT = after filter effluent combined; and BW = at backwash discharge line.

(b) Onsite chlorine measurements not performed at IN.

Specific sampling requirements for analytical methods, sample volumes, containers, preservation, and holding times are presented in Table 4-1 of the EPA-endorsed Quality Assurance Project Plan (QAPP) (Battelle, 2004). The procedure for arsenic speciation is described in Appendix A of the QAPP.

3.3.1 Source Water. During the initial site visit on October 7, 2004, one set of source water samples was collected and speciated using an arsenic speciation kit (Section 3.4.1). The sample tap was flushed for several minutes before sampling; special care was taken to avoid agitation, which might cause unwanted oxidation. Table 3-3 lists analytes for the source water samples.

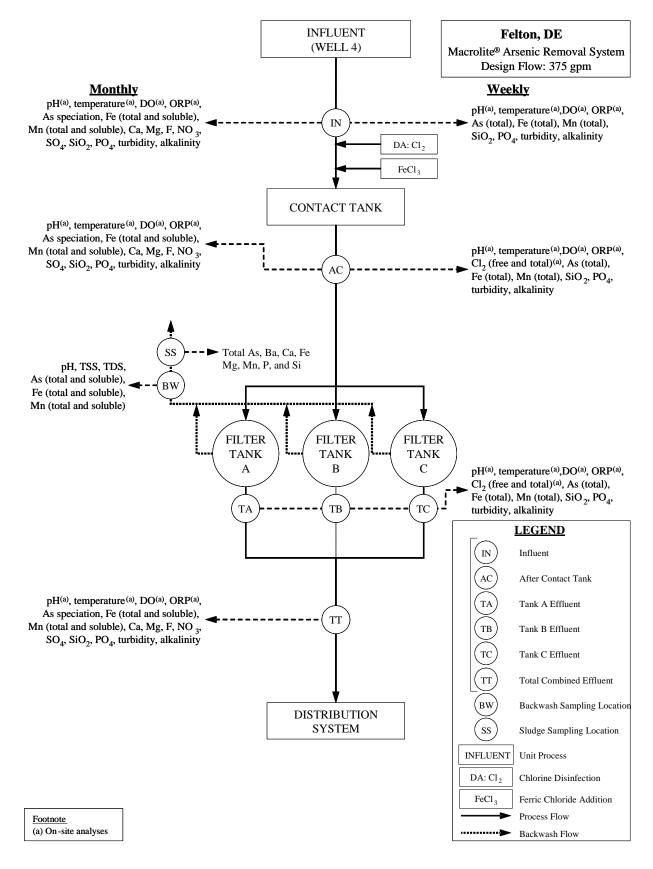


Figure 3-1. Process Flow Diagram and Sampling Schedule and Locations

3.3.2 Treatment Plant Water. The plant operator collected treatment plant water samples weekly, on a four-week cycle, for on and offsite analyses. For the first week of each four-week cycle, samples were collected at the wellhead (IN), after the contact tank (AC), and after filter effluent combined (TT), and speciated onsite and analyzed for the analytes listed in Table 3-3. For the next three weeks, samples were collected at IN, AC, after Vessel A (TA), after Vessel B (TB), and after Vessel C (TC) and analyzed for the analytes listed in Table 3-3.

3.3.3 Backwash Wastewater. Monthly backwash wastewater sampling was performed by directing a portion of backwash wastewater at approximately 1 gpm via a plastic tube connected to the tap on the backwash wastewater discharge line into a clean, 32-gal container over the duration of the backwash for each vessel. After the content in the container was thoroughly mixed, composite samples were collected and/or filtered onsite with 0.45-µm disc filters. Analytes for the backwash wastewater samples are listed in Table 3-3.

3.3.4 Distribution System Water. Water samples were collected from the distribution system to determine the impact of the arsenic treatment system on the water chemistry in the distribution system, specifically, the arsenic, lead, and copper levels. Prior to system startup from April to July 2005, four monthly baseline distribution water samples were collected from three locations within the distribution system. Following system startup, distribution system sampling continued on a monthly basis at the same locations. The three sampling locations, including the community center on Walnut Street, the Town Hall on Sewell Street, and the Mobil Service Station on Main Street (Rte. 13), were part of the historic Lead and Copper Rule (LCR) sampling network.

Designated individuals collected samples following an instruction sheet developed in accordance with the *Lead and Copper Monitoring and Reporting Guidance for Public Water Systems* (EPA, 2002). The dates and times of last water usage before sampling and of actual sample collection were recorded for calculation of the stagnation time. All samples were collected from a cold-water faucet that had not been used for at least 6 hr to ensure that stagnant water was sampled.

3.3.5 Residual Solids. Residual solids produced by the treatment process consisted of only backwash wastewater solids. After solids in the backwash wastewater containers (Section 3.3.3) had settled and supernatant carefully decanted, residual solids samples were collected on two separate occasions. A portion of each of the solids/water mixtures was air-dried for metals analyses.

3.4 Sampling Logistics

3.4.1 Preparation of Arsenic Speciation Kits. The arsenic field speciation method uses an anion exchange resin column to separate soluble arsenic species, i.e., As(V) and As(III) (Edwards et al., 1998). Resin columns were prepared in batches at Battelle laboratories in accordance with the procedures detailed in Appendix A of the QAPP (Battelle, 2004).

3.4.2 Preparation of Sample Coolers. For each sampling event, a sample cooler was prepared with the appropriate number and type of sample bottles, disc filters, and/or speciation kits. All sample bottles were new and contained appropriate preservatives. Each sample bottle was affixed with a preprinted, color-coded label consisting of sample identification (ID), date and time of sample collection, collector's name, site location, sample destination, analysis required, and preservative. The sample ID consisted of a two-letter code for the demonstration site, the sampling date, a two-letter code for a specific sampling location, and a one-letter code designating the arsenic speciation bottle (if necessary). The sampling locations at the treatment plant were color-coded for easy identification. The labeled bottles were separated by sampling location, placed in zip-lock bags, and packed into the cooler. In addition, all sampling- and shipping-related materials, such as disposable gloves, sampling instructions, chain-of-custody forms, prepaid/addressed FedEx air bills, and bubble wrap, were included. The chain-of-custody forms and air bills were complete except for the operator's signature and the sample dates and times. After preparation, the sample cooler was sent to the site via FedEx for the following week's sampling event.

3.4.3 Sample Shipping and Handling. After sample collection, samples for offsite analyses were packed carefully in the original coolers with wet ice and shipped back to Battelle. Upon receipt, the sample custodian verified that all samples indicated on the chain-of-custody forms were included and intact. Sample IDs were checked against the chain-of-custody forms, and the samples were logged into the laboratory sample receipt log. Discrepancies noted by the sample custodian were addressed with the plant operator by the Battelle Study Lead.

Samples for metal analyses were stored at Battelle's Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) Laboratory. Samples for other water quality analyses were packed in separate coolers and picked up by couriers from American Analytical Laboratories (AAL) in Columbus, OH; TCCI Laboratories in New Lexington, OH; and/or Belmont Labs in Englewood, OH, which were under contract with Battelle for this demonstration study. The chain-of-custody forms remained with the samples from the time of preparation through analysis and final disposition. All samples were archived by the appropriate laboratories for the respective duration of the required hold time and disposed of properly thereafter.

3.5 Analytical Procedures

The analytical procedures described in Section 4.0 of the QAPP (Battelle, 2004) were followed by Battelle ICP-MS, AAL, TCCI Laboratories, and Belmont Labs. Laboratory quality assurance/quality control (QA/QC) of all methods followed the prescribed guidelines. Data quality in terms of precision, accuracy, method detection limits (MDLs), and completeness met the criteria established in the QAPP (i.e., relative percent difference [RPD] of 20%, percent recovery of 80 to 120%, and completeness of 80%). The quality assurance (QA) data associated with each analyte will be presented and evaluated in a QA/QC Summary Report to be prepared under separate cover upon completion of the Arsenic Demonstration Project.

Field measurements of pH, temperature, DO, and ORP were conducted by the plant operator using a handheld field meter, which was calibrated for pH and DO prior to use following the procedures provided in the user's manual. The ORP probe also was checked for accuracy by measuring the ORP of a standard solution and comparing it to the expected value. The plant operator collected a water sample in a clean, plastic beaker and placed the probe in the beaker until a stable value was obtained. The plant operator also performed free and total chlorine measurements using Hach chlorine test kits following the user's manual.

4.0 RESULTS AND DISCUSSION

4.1 Site Description

4.1.1 Pre-existing Facility. Located near the stone depot at 401 Lumbard Street, the water system in the Town of Felton, DE, supplied water to 428 residences and businesses. Among the four production wells, Well No. 1 was abandoned and Well No. 2 was used only for emergency purposes. Wells No. 3 and No. 4 were used for water production at a flowrate of 250 and 320 gpm, respectively. Well No. 4, a primary production well, was designated for the performance evaluation study. Well No. 3 was not used because it had low arsenic concentrations (but with high iron levels at as much as 4 mg/L).

Well No. 4 was 6-in in diameter and approximately 600 ft deep. Originally installed in the 1950s, the well was refurbished in 1999 with a new screen and a new well pump. This well contained elevated arsenic concentrations, but lower iron levels than those of Well No. 3. The well was equipped with a 40-horsepower (hp) submersible pump rated for 320 gpm and a maximum system pressure of 55 psi. The system typically operated 4 to 5 hr/day with an average daily demand of 100,000 gpd and an estimated peak daily demand of 353,600 gpd.

Prior to installation of the arsenic removal system, treatment consisted of chlorine addition in the Well No. 4 pump house (Figure 4-1). A 12.5% NaOCl solution stored in a 55-gal drum was injected at 2 to 3 mg/L using a metering pump (LMI Milton Roy Model B121-392SI rated for 2.5 gph) to attain a free chlorine residual of 0.3 to 0.7 mg/L (as Cl₂). Following chlorination, treated water was stored in a 200,000-gal elevated storage tank located near the center of town.

Figure 4-1. Pre-existing Facility (From let to right: Chlorine Addition Equipment, Well No. 4 Pump House, and Water Tower)

4.1.2 Distribution System. Based on the existing utilities plan provided by the Town, the distribution system consisted of a looped distribution line with 6- and 10-in Schedule 40 polyvinyl

chloride (PVC), 6-in transite, and 12-in C900 piping. The distribution system was supplied directly from the 200,000-gal elevated storage tank.

The plant operator sampled monthly for total coliform and quarterly or as directed by the Delaware Health and Social Services (DHSS) for volatile organic compounds (VOCs), trihalomethane compounds (THMs), inorganics, nitrate, and radionuclides. LCR samples were collected every three years from 20 locations in the town's historic LCR sampling network.

4.1.3 Source Water Quality. Source water samples were collected by Battelle from Well No. 4 on October 7, 2004. Table 4-1 presents the results and compares them to those provided by the facility to EPA for site selection and by the selected technology vendor (Kinetico).

Total arsenic concentrations in source water ranged from 28 to 30 μ g/L. The October 7, 2004, test results showed a total arsenic concentration of 30 μ g/L, which existed entirely in a soluble form. The soluble fraction consisted of 25.2 μ g/L (or 84%) of As(III) and 5.2 μ g/L (or 17%) of As(V). As such, As(III) was the predominant species. The Kinetico treatment process used prechlorination (pre-existing) to oxidize As(III) to As(V) and subsequent adsorption and co-precipitation to form As(V)-laden iron solids prior to pressure filtration.

Total iron concentrations in source water ranged from 48 to $110 \mu g/L$, which existed primarily as particulate based on Battelle's October 7, 2004, speciation results. Therefore, an iron coagulant was added to raw water to remove arsenic.

Although the pH of raw water was at the upper end of a commonly agreed range of 5.5 to 8.5 for iron coagulation, no provisions were made for pH adjustment.

The October 7, 2004, test results also showed 0.32 mg/L (as N) of ammonia in source water. The presence of ammonia will increase chlorine demand. Chlorine added to source water will oxidize As(III) and any other reducing species such as Fe(II) and Mn(II) and react with ammonia and organic nitrogen compounds, if any, to form combined chlorine (i.e., mono- and dichloramines within a pH range of 4.5 to 8.5). To attain the target free chlorine residual of 0.5 mg/L (as Cl₂), "breakpoint" chlorination must be achieved with a dosage of approximately 3.0 mg/L (as Cl₂), which consisted of

- (1) the amount needed to oxidize As(III), Fe(II), Mn(II), and any other reducing species, estimated to be 0.034 mg/L (as Cl₂) (Ghurye and Clifford, 2001)
- (2) the amount needed to oxidize ammonia and combined chlorine formed during chlorination, estimated to be 2.45 mg/L (as Cl₂) (Clark et al., 1977)
- (3) the amount needed to provide the target free chlorine residual of 0.5 mg/L (as Cl_2).

Other source water quality parameters obtained by Battelle on October 7, 2004, were not anticipated to adversely impact the treatment process.

4.1.4 Treated Water Quality. The pre-existing treatment consisted of only chlorination. Historic treated water quality data collected by DHSS from February 2002 through March 2004 were similar to the source water data provided by the facility and collected by Battelle. Total arsenic concentrations of treated water ranged from 26 to $35.4 \mu g/L$. Arsenic speciation data were not available for water following chlorination. Total iron concentrations in treated water ranged from 50 to $1,280 \mu g/L$, which is significantly higher than the Well No. 4 raw water data. It was likely these samples included water from Well No. 3, which had high iron levels. pH values ranged from 8.2 to 8.4.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Facility Source	Kinetico Source	Battelle Source	DHSS Treated
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameter	Unit				
pH S.U. 8.2 8.3 8.2 8.2-8.4 Temperature °C NA NA 18.8 NA DO mg/L NA NA 18.8 NA DQ mg/L NA NA 2.8 NA ORP mV NA NA 7.7 NA Total Alkalinity (as CaCO ₃) mg/L 27 45 44 11-24 Turbidity NTU NA NA <0.1 NA TOS mg/L NA NA <0.1 NA TDS mg/L NA NA <0.01 <0.3 Nitrite (as N) mg/L NA NA <0.04 <0.3 Nitrite (as N) mg/L NA NA <0.01 <0.1 Ammonia (as N) mg/L NA 1.5 2.2 1.31-1.48 Sulfate mg/L NA 10 9 10.1 Silica (as SiO ₂) mg/L NA<	Date	_				2/11/02-10/8/04
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		S.U.				
ORP mV NA NA 7.7 NA Total Alkalinity (as CaCO ₃) mg/L 285 304 288 275-295 Hardness (as CaCO ₃) mg/L 27 45 44 11-24 Turbidity NTU NA NA <0.1		°C	NA	NA	18.8	NA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DO	mg/L	NA	NA	2.8	NA
Hardness (as CaCO ₃) mg/L 27 45 44 11-24 Turbidity NTU NA NA <0.1	ORP	mV	NA	NA	7.7	NA
Turbidity NTU NA NA <0.1 NA TDS mg/L NA NA NA 326 363-430 TOC mg/L NA NA NA 0.8 NA Nitrate (as N) mg/L NA NA 0.4 <0.3	Total Alkalinity (as CaCO ₃)	mg/L	285	304	288	275–295
TDS mg/L NA NA 326 363-430 TOC mg/L NA NA NA 0.8 NA Nitrate (as N) mg/L NA NA NA 0.3 Nitrite (as N) mg/L NA NA <0.04	Hardness (as CaCO ₃)				44	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turbidity	NTU		NA	< 0.1	NA
Nitrate (as N) mg/L NA NA < 0.04 < 0.3 Nitrite (as N) mg/L NA NA NA < 0.01 < 0.1 Ammonia (as N) mg/L NA NA NA < 0.01 < 0.1 Ammonia (as N) mg/L NA NA 0.32 NA Chloride mg/L 4 7.9 6.4 $9.9-11.5$ Fluoride mg/L NA 1.5 2.2 $1.31-1.48$ Sulfate mg/L NA 10 9 10.1 Silica (as SiO ₂) mg/L 9.8 8.6 9.6 NA Orthophosphate (as PO ₄) mg/L NA < 0.5 < 0.06 NA As(total) $\mu g/L$ 28 30 30 $26-35.4$ As (total soluble) $\mu g/L$ NA NA < 0.1 NA As (total soluble) $\mu g/L$ NA NA 25.2 NA As(V) $\mu $		mg/L		NA		
Nitrite (as N) mg/L NA NA < 0.01 < 0.1 Ammonia (as N) mg/L NA NA NA 0.32 NA Chloride mg/L 4 7.9 6.4 9.9–11.5 Fluoride mg/L NA 1.5 2.2 1.31–1.48 Sulfate mg/L NA 10 9 10.1 Silica (as SiO ₂) mg/L 9.8 8.6 9.6 NA Orthophosphate (as PO ₄) mg/L NA <0.5		mg/L				
Ammonia (as N)mg/LNANA0.32NAChloridemg/L47.96.49.9–11.5Fluoridemg/LNA1.52.21.31–1.48Sulfatemg/LNA10910.1Silica (as SiO2)mg/L9.88.69.6NAOrthophosphate (as PO4)mg/LNA<0.5	Nitrate (as N)	mg/L				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nitrite (as N)	mg/L				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ammonia (as N)	mg/L				NA
Sulfate mg/L NA 10 9 10.1 Silica (as SiO ₂) mg/L 9.8 8.6 9.6 NA Orthophosphate (as PO ₄) mg/L NA <0.5		mg/L				
Silica (as SiO ₂) mg/L 9.8 8.6 9.6 NA Orthophosphate (as PO ₄) mg/L NA <0.5	Fluoride	mg/L	NA			1.31-1.48
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		mg/L			-	
As(total) $\mu g/L$ 28 30 30 26–35.4 As (total soluble) $\mu g/L$ NA NA NA NA As (particulate) $\mu g/L$ NA NA ANA S0.4 NA As (particulate) $\mu g/L$ NA NA ANA <0.1	Silica (as SiO ₂)	mg/L	9.8	8.6	9.6	NA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		mg/L	NA	< 0.5	< 0.06	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	As(total)	μg/L	28	30	30	26-35.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	As (total soluble)	μg/L	NA	NA	30.4	NA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	As (particulate)	μg/L	NA	NA	< 0.1	NA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	As(III)	μg/L	NA	NA	25.2	NA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	As(V)	µg/L	NA	NA	5.2	NA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fe (total)	µg/L	80	110	48	50-1,280
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fe (soluble)	µg/L	NA	NA	<25	NA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mn (total)	µg/L	<20	<10	3.4	NA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mn (soluble)	μg/L	NA	NA	1.5	NA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	U (total)	μg/L	NA	NA	< 0.1	NA
			NA	NA	< 0.1	NA
V (soluble) μg/L NA NA 0.16 NA Pb μg/L NA NA NA 6.3–7.0 Cu μg/L NA NA NA 50–142						
Pb μg/L NA NA NA 6.3–7.0 Cu μg/L NA NA NA 50–142						
Cu µg/L NA NA NA 50–142						
Na mg/L 108 128 138 133–138	Na	mg/L	108	128	138	133–138
mg/L 700 120 130 <		0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

Table 4-1. Felton, DE, Water Quality Data

DHSS = Delaware Health and Social Services; DO = dissolved oxygen; NA = not available; NTU = nephelometric turbidity unit; ORP = oxidation-reduction potential; TDS = total dissolved solids; TOC = total organic carbon.

4.2 Treatment Process Description

The treatment train consisted of prechlorination, iron addition, and Macrolite[®] pressure filtration. Macrolite[®], a spherical, low density, chemically inert, ceramic media designed for filtration rates up to 10

gpm/ft², is approved for use in drinking water applications under NSF International (NSF) Standard 61. Table 4-2 presents physical properties of the M2 Macrolite[®] media.

Property	Value	
Color	Taupe, Brown, Grey	
Thermal Stability (°F)	2,000	
Uniformity Coefficient	1.1	
Sphere Size Range (mm)	0.21-0.42	
Nominal Size (mm)	0.30	
Bulk Density (g/cm ³ or lb/ft ³)	0.86 or 54	
Specific Gravity (g/cm ³)	2.05	

Table 4-2. Physical Properties of M2 Macrolite[®] Media

The C/F system was composed of two contact tanks, three pressure filtration vessels, and associated gauges and probes to monitor pressure, flowrate, and backwash water turbidity. The system also was equipped with a central control panel that housed a touch-screen operator interface panel (OIP), a programmable logic controller (PLC), a modem, and an uninterruptible power supply (UPS). The Allen Bradley PLC automatically controlled the system by actuating PVC pneumatic valves using a 7.5-hp, 80-gal compressor (Speedaire Model 1WD61) depending on various inputs and outputs of the system and corresponding PLC setpoints (Section 4.4.3.1). The system also featured schedule 80 PVC solvent-bonded plumbing and all necessary isolation and check valves and sampling ports. Figure 4-2 is a simplified system piping and instrumentation diagram (P&ID). Figures 4-3 and 4-4 contain photographs of the key system components and control and instrumentation, respectively. The system's design specifications are summarized in Table 4-3. The major processes included the following:

- Intake. Source water was pumped from Well No. 4 at approximately 320 gpm. The well pump was activated and deactivated based on pressure in the water tower. Pressure in the water tower was monitored through a pressure tank located inside the treatment building. Once the pressure dropped to 52 psi, a mercury switch was triggered and the well pump was energized. As treated water was supplied to the water tower, the pressure in the tower gradually increased. Once the pressure in the well pump was shut down. The mercury switch was equipped with a 30 sec delay to account for any brief fluctuations in pressure. The inlet piping from the well into the building and the secondary piping to bypass the treatment system, if needed, are shown in Figure 4-3.
- Chlorination. The existing chlorine addition system was used to oxidize soluble As(III) and Fe(II). The chlorine addition system consisted of a 55-gal day tank containing a 12.5% NaOCl solution and a 2.5-gph LMI chemical feed pump with stroke and speed settings for dosage adjustment. The target free chlorine residual was 0.5 mg/L. The feed pump was energized only when the well pump was on. NaOCl consumption was tracked by measuring solution levels in the day tank.
- **Iron Addition**. Ferric chloride (FeCl₃) was added to achieve a target iron dosage of 1.2 to 2.0 mg/L to effectively remove soluble arsenic through adsorption and/or coprecipitation with iron solids. The iron addition system included a 66-gal high-density polyethylene (HDPE) tank with containment, an overhead mixer (Pulsafeeder Model FMTEH/Vinyl), and a Pulsatron Model LPH5 chemical metering pump rated at 3.1 gal/hr (gph). The working

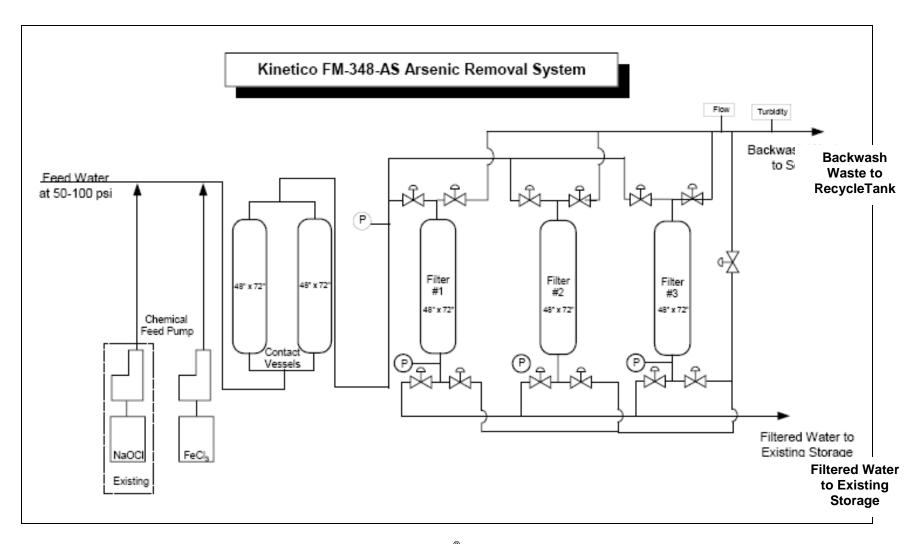


Figure 4-2. Schematic of Kinetico's Macrolite[®] Arsenic Removal System for Felton, DE, Site

Figure 4-3. Treatment System Components (Clockwise from Top: Well No. 4 Bypass Valve; Well No. 4 Inlet with Iron Addition Point; Two Contact Tanks and Three Filtration Vessels; and Backwash Discharge Piping to Recycle Tank)

Figure 4-4. Control and Instrumentation (Clockwise from Left: Control Panel Housing PLC; Turbidimeter Display; Compressor; Sample Tap and Pressure Gauge; Pressure Tank; and Mercury Switch)

Parameter	Value	Remarks	
Influent Specifications			
Peak Flowrate (gpm)	375	_	
Arsenic Concentration (µg/L)	≤ 35	_	
Iron Concentration (µg/L)	<u>< 110</u>	_	
	Pretreatme	nt	
Prechlorination (mg/L [as Cl ₂])	2–3	NaOCl	
Iron (mg/L [as Fe])	1.2-2.0	FeCl ₃	
	Contact		
No. of Vessels	2	_	
Configuration	Parallel	_	
Vessel Size (in)	$48 \text{ D} \times 72 \text{ H}$	-	
Tank Volume (gal)	564		
Contact time (min)	3	_	
	Filtration		
No. of Vessels	3	_	
Configuration	Parallel	_	
Vessel Size (in)	$48 \text{ D} \times 72 \text{ H}$	_	
Vessel Cross Section (ft ²)	12.6	_	
Media Volume (ft ³ /vessel)	25	24-in bed depth of Macrolite [®]	
Peak Flowrate (gpm)	375	125 gpm/vessel	
Hydraulic Loading Rate (gpm/ft ²)	10	Based on 125 gpm/vessel flowrate	
	Backwash		
Frequency	Variable	Based on PLC setpoints for Δp across	
	10.10	tank, run time, and standby time	
Differential Pressure (psi)	10-12	Across a clean bed	
Hydraulic Loading (gpm/ft ²)	8–10	100–125 gpm	
Wastewater Production (gpd) Variable		Based on PLC setpoints for minimum and	
maximum backwash time and turbidity			
Effluent Specifications			
Peak Daily Demand (gpd)	353,600	Deced on peets flow and 24 hr/de-	
Maximum Daily Production (gpd)	540,000	Based on peak flow and 24 hr/day	
Peak Hydraulic Utilization (%)	65	Estimate based on peak daily demand	

Table 4-3. Design Features of Macrolite[®] System

D = diameter; H = height

solution was prepared by adding 9 gal of a 37% $FeCl_3$ stock solution into 57 gal of water (6:1 ratio). The consumption of the $FeCl_3$ solution was measured based on readings of day tank levels.

- **Coprecipitation/Adsorption.** Two 48-in-diameter by 72-in-tall fiberglass reinforced plastic (FRP) contact tanks (Pentair Model 31285) were used to improve the formation of iron flocs prior to pressure filtration. The contact tanks arranged in parallel were designed for 3 min of contact time. The 463-gal tanks had 6-in top and bottom flanges connecting to the exit and inlet piping, respectively, for an upflow configuration (Figure 4-3).
- **Pressure Filtration**. Removal of arsenic-laden iron particles was achieved via downflow filtration through three 48-in-diameter by 72-in-tall FRP pressure vessels (Pentair Model 31283) configured in parallel (Figure 4-2). Each pressure vessel contained 25 ft³ (or 24 in) of M2 Macrolite[®] media loaded on top of fine garnet underbedding filled to 1 in above the 0.006-in slotted, stainless steel, wedge-wire underdrain (Leem/LSS Filtration model L-3230-

60). The FRP vessels featured windows for media and backwash observation and were rated for a working pressure of 150 psi (Figure 4-3). The vessels were floor mounted and piped to a valve rack mounted on a welded, stainless steel frame. The flow through each vessel was regulated to 125 gpm using a flow-limiting device (Flo-Et model PE-300-14-125) to prevent filter overrun. System operation with all vessels in service could produce a total flowrate of 375 gpm. Effluent flowrates and throughput through each vessel were monitored using an insertion paddle wheel flow meter/totalizer (Data Industrial model 220PVCS).

• Filter Backwash. At a 10 gpm/ft² filtration rate, anticipated pressure drop across a clean filter bed was 10 to 12 psi. The filters were automatically backwashed in an upflow mode based on three potential triggers: 1) differential pressure, 2) standby time, and 3) run time (Section 4.4.3.1). The filters also could be backwashed manually. Backwash was performed one vessel at a time. Water was drained from a filter before an air compressor (Speedaire Model 1WD61 [Figure 4-4]) delivered a 2-min air sparge at 10 psi gauge (psig). After a 4-min settling period, the filter was backwashed at 100 to 125 gpm with treated water produced from the other two filters remaining in service.

The backwash duration was controlled by a minimum and a maximum backwash time per vessel and turbidity of backwash wastewater measured using a turbidimeter (HachTM Model Surface Scatter 6 [Figure 4-4]). Under the factory settings, if the target turbidity threshold was reached before the backwash time setpoint, backwash would end at the set minimum backwash time. Otherwise, backwash continued until the target turbidity threshold was reached. If the turbidity threshold was not reached at the end of the set maximum backwash time, then a backwash failure would be indicated and the operator had to acknowledge the alarm. A backwash failure resulted in a repeat backwash before the pressure filter could resume normal operation.

Backwash wastewater was sent to a 7,180-gal recycle tank. After the backwash step, the filter underwent a 2-min filter-to-waste (FTW) step to remove any particulate from the filter before returning to service.

• **Backwash Recycle System.** A recycle system was incorporated into the C/F system to temporarily store wastewater generated during filter backwash. After settling, supernatant was recycled back to the head of the treatment system; sludge was pumped periodically to the local sanitary sewer.

The recycle system consisted of a pump controller, two booster pumps, and a 16-ft-long by 6-ft-wide by 10-ft-high, 7,180-gal concrete recycle tank equipped with four float switches, an 8-in overflow pipe, and a 2-in Sch 40 PVC suction line (Figure 4-5). The recycle system controller was linked to four float switches (i.e., low-low, low, high, and high-high) that were placed at various heights inside the recycle tank. During filter backwash, wastewater was discharged into the recycle tank through an 8-in PVC pipe. Once the wastewater level reached the high-level float switch, the recycle system controller activated a single booster pump capable of 14 gpm of flow. The booster pump continued to operate until the wastewater level reached the low-level float switch. Once the low-level float switch was activated, the booster pump operation was stopped until the high-level switch was activated again. The two booster pumps alternated pumping cycles to reduce pump wear and increase pump life span.

If a single booster pump could not keep up with the backwash flowrate during a recycling sequence, wastewater would rise and reach the high-high level alarm located below the overflow pipe. When the high-high level was reached, the recycle system controller would activate both booster pumps and the flowrate would increase to 28 gpm. This alarm is in

Figure 4-5. Recycle System Components, Control, and Instrumentation (Clockwise from Left: Concrete Recycle Tank and Overflow Piping; Float Switches; Recycle System Controller; Booster Pumps; and Recycle Water Injection Point)

place to minimize the amount of wastewater overflowing into the sanitary sewer. (Due to a faulty pump, only one booster pump was used during the performance evaluation study.) The low-low level alarm is in place as a fail safe to protect the booster pumps from operating when the tank is dry. If the low-level alarm fails to shut down the booster pumps, the low-low level alarm would be activated and the recycle system controller would shut down the booster pumps.

To ensure that sludge in the recycle tank would not be recycled back to the pressure filters, adjustments had to be made to the recycle tank (Section 4.4.3.3) and periodic checks on sludge levels were included as part of routine O&M.

4.3 Treatment System Installation

This section provides a summary of the system installation, startup, and shakedown activities and the associated prerequisites including permitting and building construction.

4.3.1 System Permitting. The system engineering package, prepared by Kinetico and its subcontractor, Davis, Bowen and Friedel, Inc. of Milford, DE, included:

- A system design report
- A general arrangement and P&ID
- Electrical and mechanical drawings and component specifications

• Building construction drawings detailing connections from the system to the inlet piping and the town's water and sanitary sewer systems.

The engineering package was certified by a Professional Engineer registered in the State of Delaware and submitted to DHSS for review and approval on April 26, 2005. After DHSS's review comments were addressed, the package was resubmitted, along with a permit application, on April 28, 2005. A system construction permit was issued by DHSS on May 31, 2005, and system fabrication began thereafter.

4.3.2 Building Construction. A permit for building construction was applied for by the Town of Felton on March 23, 2005, and issued by Kent County on April 28, 2005. An Advertisement for Bids was sent to two Delaware newspapers on May 26, 2005, to be posted on June 1 and June 8, 2005. Bidding for building and concrete recycle tank construction and related plumbing work was closed on July 18, 2005, and the bid submitted by Arimore Construction Inc. was approved by the Town Council. A preconstruction meeting was held on August 2, 2005, and water and sewer infrastructure construction began on August 8, 2005. Due to delays with the town's subcontractor, the building was not completed until July 7, 2006. Due to leaks in the recycle tank, system startup was further delayed until September 6, 2006. Figures 4-6 and 4-7 present schematics of the building to house the treatment system and the recycle tank. Figure 4-8 presents a photograph of the treatment system building and recycle tank.

4.3.3 System Installation, Startup, and Shakedown. The C/F system was delivered to the site on March 20, 2006. The vendor, through its subcontractor, performed off-loading and began installation of the system, including connections to the entry and distribution piping and electrical interlocking. Due to construction delays, system installation, hydraulic testing, and media loading were not completed until May 30, 2006. A water sample collected on May 31, 2006, passed bacteriological tests and startup and shakedown activities were completed on June 6, 2006. Startup and shakedown activities included PLC testing, instrument calibration, prolonged backwashing to remove Macrolite[®] media fines, chlorine disinfection and residual testing, and operator training on system O&M. Due to inadequate recycle pumps and a leak in the recycle tank, the treatment system had remained offline until new pumps arrived and the leaky recycle tank was repaired. Upon installation of the new recycle pumps and repair of the recycle tank, the treatment system was placed into service on September 6, 2006.

Battelle performed system inspections and operator training on sample and data collection on October 12 and 13, 2006. As a result of the system inspections, several punch-list items were identified. Table 4-4 summarizes the items identified and corrective actions taken.

4.4 System Operation

4.4.1 Service Operation. Operational parameters of the C/F system are tabulated and attached as Appendix A with key parameters summarized in Table 4-5. The performance evaluation study began on September 14, 2006, and ended on November 3, 2007. The system operated for a total of 2,716 hr based on cumulative service hours of each of the three pressure filters recorded by the PLC. An hour meter also was installed at the wellhead on March 9, 2007, to track the well pump/system operating time. In general, the wellhead hour meter readings were in close agreement with PLC pressure filter hour meter readings, with the wellhead hour meter registering about 0.3 hr/day (on average) more than the PLC. As shown in Figure 4-9, daily operating times fluctuated significantly from 0 to 23.1 hr and averaged 6.5 hr. Seasonal variations were observed with a relatively longer operating time starting from late spring through early fall. Daily operating times through this duration averaged 8.4 hr/day (versus 6.0 hr/day for the rest of the year) with an average daily demand of 125,100 gpd (versus 94,100 gpd). Total system throughput was approximately 43,446,100 gal based on flow totalizer readings measured at the system outlet. The average daily demand was approximately 107,300 gal, equivalent to 30% of the system peak daily demand specified in Table 4-3.

Figure 4-6. Schematic of Building and Recycle Tank (provided by DB&F)

22

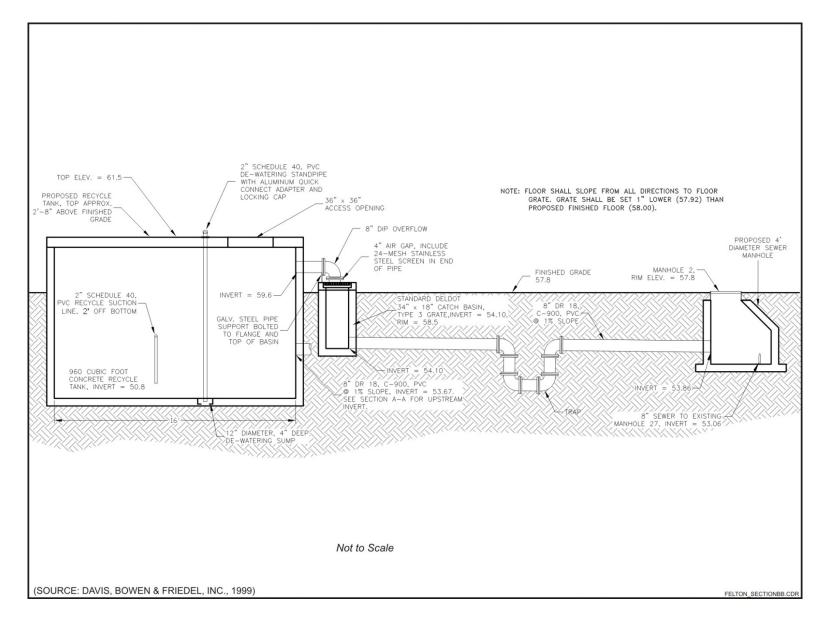


Figure 4-7. Schematic of Recycle Tank (provided by DB&F)

Figure 4-8. New Building and Recycle Tank

Téores			Deschutten
Item	Dunch I ist Itam Description	Composition Astion(a) Tal	Resolution
No.	Punch-List Item Description	Corrective Action(s) Taken	Date
1	Small amount of water continuously flowing from air release lines on Vessels A, B, and C while system was in service.	 Disassemble and cleaned air release lines Updated O&M manual to include this procedure 	04/04/07
2	A check valve and an isolation valve not installed between pipe entering building and FeCl_3 injection point. As such, water could drain from contact tanks through an existing spigot on inlet piping located within well house if the spigot was left opened inadvertently.	• Installed a check valve, a 6-in butterfly valve, and associated hardware kit	04/03/07
3	During Vessel C fast rinse, inlet pressure to system dropped to 59 psi and flow to two vessels in service dropped to 85 gpm, which was significantly lower than 320 gpm flow based on pump curve. This would equate to a fast-rinse flowrate of approximately 235 gpm, which was well above 125 gpm design flowrate for each vessel.	• Installed an orifice plate on fast rinse line to limit fast rinse flowrate to 125 gpm	04/03/07
4	Filters backwashed at 62 gpm, significantly below 100 to 125 gpm (or 8 to 10 gpm/ft ²) specifications.	 Confirmed flowrate using an ultrasonic flow meter; no further actions taken during trip. System operated at reduced backwash flowrates during performance evaluation study. 	04/03/07

 Table 4-4. System Inspection Punch-List Items

Item No.	Punch-List Item Description	Corrective Action(s) Taken	Resolution Date
5	Recycle tank overflowed to sanitary sewer during a backwash event. Maximum backwash time incorrectly set at 40 min, which was outside range of typical PLC setting and could result in overflow of recycle tank should Hach turbidimeter malfunction.	 Modified setpoints via dial-in modem by Kinetico: Decreased minimum backwash time from 10 to 5 min Decreased maximum backwash time from 40 to 10 min Increased turbidity threshold from 10 to 20 NTU 	01/04/07
6	Leaking chemical feed line (over suction side).	• Installed by operator a new union shipped from offsite	12/13/06
7	Unclear instructions on how to change FeCl ₃ pump speed (rate %) on PLC.	 Provided clear instruction and demonstrated to facility operator how to correctly adjust speed of chemical feed pump on PLC. 	04/04/07
8	Short standby setpoint could trigger backwash while system was in standby mode, thus increasing chance to overflow recycle tank because recycle pumps were not energized.	 Increased standby setpoint from 48 to 96 hr 	10/12/06

 Table 4-4. System Inspection Punch-List Items (Continued)

System flowrates were tracked by both instantaneous readings of the flow meter at the system outlet and calculated flowrates based on hour-meter and flow-totalizer readings at the system outlet. As shown in Figure 4-10, instantaneous flowrate readings ranged from 249 to 312 gpm and averaged 290 gpm, about 10% higher than calculated flowrates (which ranged from 163 to 368 gpm and averaged 263 gpm). The average calculated flowrate corresponded to a contact time of 4.3 min through the contact tanks (compared to the design value of 3.0 min) and a filtration rate of 7.0 gpm/ft² over the pressure filters (compared to the design value of 10 gpm/ft²) (Table 4-3). Flows into the treatment system also were measured by a totalizer located at the wellhead. The cumulative throughput recorded by the wellhead totalizer was approximately 44,377,600 gal, which was within 2% of that recorded by the totalizer at the system outlet.

Differential pressure (Δp) readings ranged from 20 to 33 psi and averaged 25 psi across the system, and from 4 to 27 psi and averaged 12 psi across each pressure filter (Figure 4-11). As discussed in Section 4.4.3, 94% of backwash was triggered by high Δp . The setpoint of Δp trigger was reduced from 25 to 18 psi on January 17, 2007, resulting in visible reduction in Δp values as shown in Figure 4-11. As expected, Δp across pressure filters increased progressively with filter run time as shown in Figure 4-12. Δp readings recorded within 1 hr after backwash ranged from 5 to 17 psi and averaged 8.5 psi, with 20% of the readings higher than the clean-bed level of 10 psi. Lower-than-expected backwash flowrates (i.e., 61 to 87 gpm vs. design values of 100 to 125 gpm) might be responsible for the elevated Δp readings observed.

Filter run times between backwash cycles ranged from 7.9 to 24 hr and averaged 17 hr before January 17, 2007, and ranged from 2.0 to 24 hr and averaged 9.1 hr after January 17, 2007. On January 17, 2007, the Δp backwash trigger was reduced from 25 to 18 psi in an attempt to reduce run times between backwash cycles. In addition, iron dosage was increased on January 17, 2007 (Section 4.4.2), which also might have contributed to shortened filter run times. The reduction in filter run time after January 17, 2007 can be seen in Figure 4-13. The average throughput between backwash cycles was 89,580 gal/vessel before

Parameter	Value
Operating Period	09/14/06-11/03/07
Pretreatment Operation	n
NaOCl Dosage (mg/L [as Cl ₂])	4.3 [2.0–9.1]
FeCl ₃ Dosage (mg/L [as Fe])	2.2 [1.0-4.8]
Service Operation	
Total Operating Time (hr)	2,716
Average Daily Operating Time (hr)	6.5
Throughput ^(a) (gal)	43,446,110
Average Daily Demand ^(a) (gal)	107,300
Instantaneous Flowrate (gpm)	290 [249–312]
Calculated Flowrate ^(b) (gpm)	263 [163–368]
Contact Time in Contact Tanks ^(c) (min)	4.3 [3.1–6.9]
Hydraulic Loading over Pressure Filter ^(c) (gpm/ft ²)	7.0 [4.3–9.7]
Δp across Each Vessel (psi)	12[4–27]
Δp across System ^(d) (psi)	25[20-33]
Filter Run Time between Backwash	17[7.9–24] before 01/17/07
Cycles (hr) ^(e)	9.1[2.0–24] after 01/17/07
Estimated Averaged Throughput between	89,580 before 01/17/07
Backwash Cycles (gal/vessel)	48,080 after 01/17/07
Backwash Operation	
Average Frequency ^(f) (backwash/vessel/week)	5
Number of Backwash Cycles (Tanks A/B/C)	259/354/314
Flowrate ^(g) (gpm)	76 [61–87]
Hydraulic Loading Rate ^(g) (gpm/ft ²)	6.0 [4.8–6.9]
Duration (min/tank)	6.7 [4.3–14.6]
Backwash Volume (gal/vessel/cycle)	474 [346–907]
Filter-to-Waste Volume (gal/vessel/cycle)	250
Wastewater Produced (gal/vessel/cycle)	724 [596–1,157]

Table 4-5. Treatment System Operational Parameters

Note: Data presented included average and [range].

- (a) Based on totalizer readings at system outlet.
- (b) Calculated flowrates based on daily throughput and daily operating hours.
- (c) Based on instantaneous flowrate readings.
- (d) Five outliers (i.e., 5, 8, 10, 7, and 13 psi on 09/19/06, 09/20/06, 09/21/06, 09/27/06, and 10/01/06, respectively) omitted.
- (e) Excluding values triggered by standby time, run time, and manual initiation.
- (f) Based on number of backwash cycles and number of weeks in service.
- (g) Based on monthly data from Backwash Log Sheets.

January 17, 2007 and 48,080 gal/vessel after, based on a flowrate of 87.7 gpm through each vessel (i.e., one-third of the 263-gpm service flow).

4.4.2 Chlorine and Iron Additions. Chemical pretreatment consisted of chlorine and iron additions. Chlorine doses, as calculated based on daily NaOCl consumption (as measured through solution level changes in the chemical day tank) and daily throughput (according to the system effluent totalizer), ranged from 2.0 to 9.1 mg/L (as Cl_2) and averaged 4.3 mg/L (as Cl_2) (Figure 4-14). This average dosage was higher than the design dosage of 3.0 mg/L (as Cl_2) required to achieve a free chlorine residual of 0.5 mg/L (as Cl_2) as discussed in Section 4.1.3.

Daily Operating Time

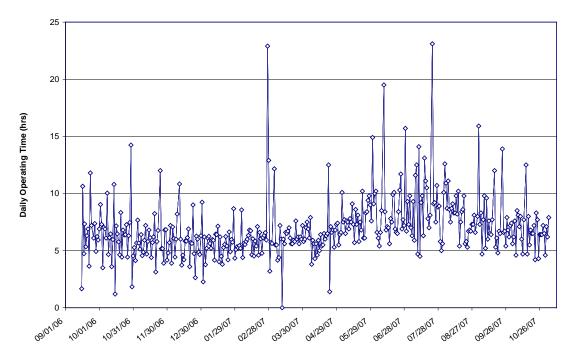
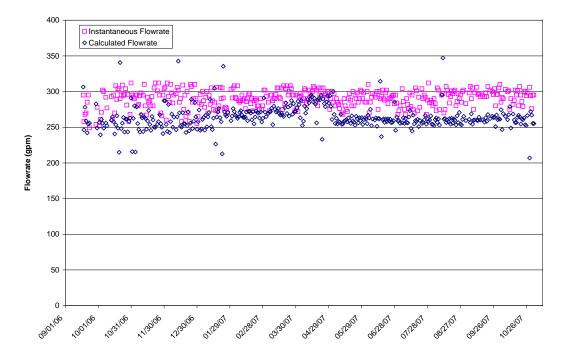



Figure 4-9. Treatment System Daily Operating Time

Figure 4-10. Treatment System Flowrates

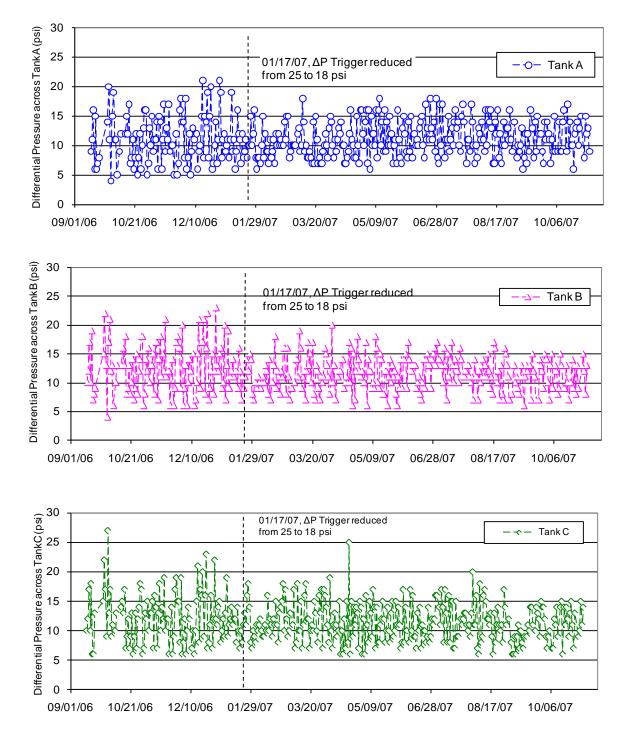


Figure 4-11. Differential Pressure Across Filtration Vessels

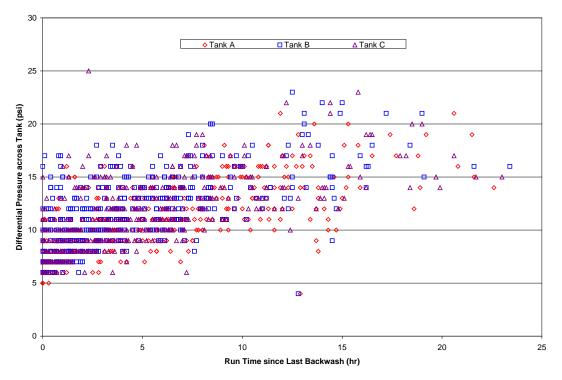


Figure 4-12. Differential Pressure vs. Filter Run Time

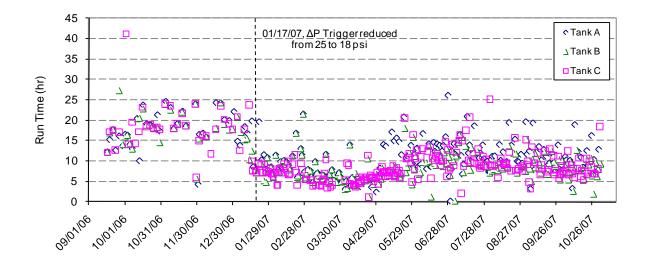


Figure 4-13. Filter Run Time Since Last Backwash

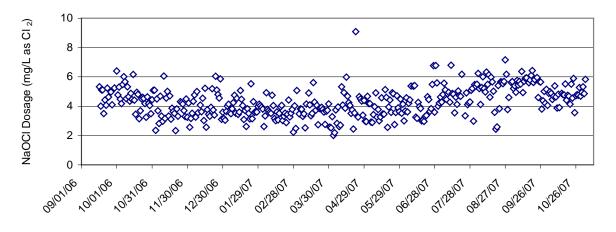


Figure 4-14. Chlorine Dosages over Demonstration Study Period

Iron was added to source water as a coagulant to remove soluble arsenic through adsorption and/or coprecipitation with iron solids. Figure 4-15 presents calculated $FeCl_3$ doses (mg/L as Fe) and measured iron concentrations (mg/L as Fe) over the entire study period. Similar to chlorine doses, iron doses were calculated based on daily $FeCl_3$ consumption (by changes of solution levels in the chemical day tank) and daily throughput (according to the system effluent totalizer). Iron concentrations were measured following the contact tanks.

To target an initial iron dose of 1.2 mg/L (as Fe), the 37% FeCl₃ stock solution was diluted six times and the pump stroke length was set at 18% (note that the pump speed is flow paced and non-adjustable). The iron target dosage was increased to 1.5 mg/L (as Fe) on November 3, 2006, by increasing the stroke length setting from 18 to 25%. The stroke length setting was increased, once again, to 32% on January 17, 2007, for a target iron dosage of 2.0 mg/L (as Fe). In response, average calculated iron doses increased correspondingly to 2.2 mg/L (as Fe). Measured iron concentrations, however, scattered extensively from 0.3 to 13.6 mg/L (as Fe) and averaged 2.6 mg/L (as Fe) as discussed in Section 4.5.1.2.

Initially, addition of FeCl₃ was flow-paced through the PLC, which automatically adjusted the amount of FeCl₃ injection based on system flowrate. This flow-paced injection approach was suspected to have caused scattered iron concentrations in contact-tank effluent. Therefore, on September 17, 2007, automatic control of the chemical feed pump was discontinued. The amount of FeCl₃ injection would remain constant as it was no longer determined based on system flowrate. Speed and stroke length on the chemical feed pump were set at 50 and 75%, respectively, for a target iron dosage of 2.0 mg/L. Calculated iron doses increased correspondingly to an average of 3.0 mg/L (as Fe) and iron concentrations following the contact tanks converged into a much narrower range from 1.2 to 2.6 mg/L (as Fe) and averaged 2.1 mg/L (as Fe).

4.4.3 Backwash Operation. The system PLC was set to initiate a backwash based on one of four potential triggers: (1) Δp across pressure filters, (2) system standby time, (3) system run time, or (4) manual initiation. Backwash duration was controlled by a set minimum and maximum backwash time (per vessel) and a set backwash wastewater turbidity threshold as measured by an inline HachTM turbidimeter. If the turbidity threshold was reached before the set minimum backwash time, backwash would end at the set minimum backwash time. Otherwise, it would continue until the target turbidity threshold was reached. If the turbidity threshold was not reached at the end of the set maximum

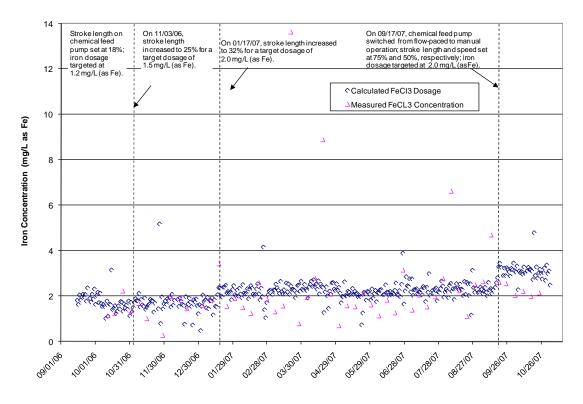


Figure 4-15. Calculated Iron Doses vs. Measured Iron Concentrations

backwash time, then a backwash failure would be indicated and the operator would have to acknowledge the alarm. This would result in a repeat backwash before the pressure filter could resume service. The use of turbidity as one of the backwash setpoints was designed as a potential water-saving measure. Backwash was followed by a 2-min FTW step to remove any particulates from the filter.

Filter Vessels A, B, and C were backwashed 259, 354, and 314 times, respectively, from September 14, 2006, to November 3, 2007. Beginning from October 10, 2006, the operator tracked the trigger that activated each backwash. Among the 883 backwashes since then, Δp triggered 833 backwashes (or 94%); system standby time triggered six; system run time triggered eight; and manual operation triggered 36 (for backwash wastewater/solids sampling only).

Backwash durations ranged from 4.3 to 14.6 min and averaged 6.7 min based on monthly Backwash Log Sheets (Appendix C). Amounts of wastewater generated during each backwash ranged from 600 to 1,160 gal/vessel and averaged 720 gal/vessel (including 250 gal/vessel produced during the 2-min FTW step).

4.4.3.1 PLC Settings. Table 4-6 summarizes the initial backwash PLC settings at system startup and three subsequent modifications on October 12, 2006, and January 4 and 15, 2007. Initially, the PLC was set in the field on June 6, 2006, to backwash with a standby time of 48 hr, which could result in filter backwash while the system was not in operation. If this occurred, the recycle pumps would not be charged and there would be an increased possibility that the recycle tank would overflow. To ensure that a backwash would be triggered by Δp or run time while the system was in operation and to reduce the chance of overflowing the recycle tank, the standby time was increased from 48 to 96 hr on October 12, 2006.

		Adjustme	ent Date	
Parameter (for Each Vessel)	06/06/06 ^(a)	10/12/06	01/04/07	01/17/07
Δp Trigger (psi)	25	25	25	18
Standby Time Trigger (hr)	48	96	96	96
Run Time Trigger (hr)	24	24	24	24
Drain Time (min)	3	3	3	3
Air Sparge Time (min)	2	2	2	2
Settling Time (min)	4	4	4	4
Minimum Backwash Time (min)	10	10	5	5
Maximum Backwash Time (min)	40	40	15	15
Turbidity Threshold (NTU)	10	10	20	20
Low Flowrate Threshold (gpm)	20	20	20	20
Filter-to-Waste Time (min)	2	2	2	2

Table 4-6. Summary of PLC Settings for Backwash Operations

(a) Initial field settings.

On January 4, 2007, several changes were made to the PLC settings, including decreasing the setpoints for minimum backwash time (from 10 to 5 min) and maximum backwash time (from 40 to 15 min), and increasing the setpoints for turbidity threshold (from 10 to 20 NTU). These changes were made in an attempt to alleviate the possibility of overflowing the recycle tank during sequential backwash events by minimizing the duration, and, therefore, volume of water required to reach the turbidity threshold. With these changes, average backwash durations decreased from approximately 10.4 to 5.6 min based on the monthly Backwash Log Sheet. On January 17, 2007, Δp backwash trigger was decreased from 25 to 18 psi in an attempt to reduce run times between backwash events and, therefore, the likelihood of particulate breakthrough from the filters. With this change, filter run times decreased from 17.0 to 9.1 hr (on average) (Table 4-5 and Figure 4-13).

4.4.3.2 Increase in Backwash Frequency. From April 2 to May 4, 2007, a dramatic increase in backwash frequency was observed. During this period, 174 backwashes were triggered resulting in a backwash frequency of approximately 12 cycles/vessel/week, which is an increase of 132% from the average of 5 cycle/vessel/week. The average filter run time during this period dropped from the average of 9.1 min (Table 4-5) to 5.7 min. Upon inspection of the recycle tank, it became apparent that sludge in the recycle tank had accumulated to a level above the intake line, thus introducing particles back into the pressure filters and decreasing filter run times. On May 4, 2007, the recycle tank was temporarily shut off and the backwash frequency returned to normal. On May 11, 2007, sludge in the recycle tank was pumped and discharged into a sanitary sewer. (Note that sludge was discharged only once during the study.) To prevent the introduction of sludge back into the pressure filters, adjustments were made to the recycle tank (Section 4.4.3.3) and periodic sludge level checks were included as part of routine O&M.

4.4.3.3 Recycle System Operation. Figure 4-16a presents a schematic of the recycle tank and the initial settings of the float switches. The low-low-, low-, high-, and high-high-level float switches were placed at 30, 36, 48, and 96 in from the bottom of the tank, respectively. Based on these levels, the working range of the recycle tank (i.e., from the low-low level to overflow) was 4,190 gal with a 718-gal capacity between the low and high levels and 2,873 gal between the high level and overflow. In the event that each filter would backwash in succession, there would be adequate storage to hold the 2,172 gal of wastewater produced (based on average wastewater production of 724 gal/vessel).

Due to the concerns over recycling sludge back into the filters, adjustments were made to the recycle tank by raising (1) the intake pipe from 24 to 47.5 in above the bottom of the recycle tank and (2) the low-low, low-, high-, and high-high-level float switches to 60.5, 67, 82.5, and 95 in, respectively (Figure 4-16b).

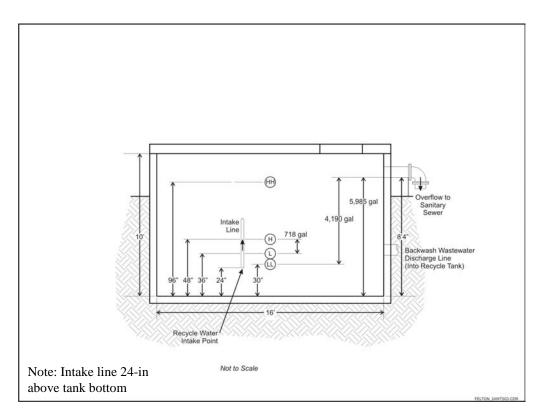


Figure 4-16a. Initial Float Switch Levels in Recycle Tank

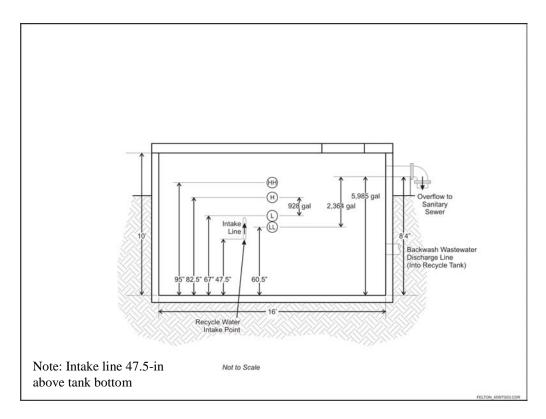


Figure 4-16b. Revised Float Switch Levels in Recycle Tank

Based on the adjusted levels, the working range of the recycle system was reduced from 4,190 to 2,364 gal. These adjustments reduced the likelihood of reintroducing solids into the pressure filters, however, increased the possibility of overflowing wastewater into the sanitary sewer in the event of sequential backwashes.

Total operation hours of the recycle booster pump were estimated based on the total amount of wastewater generated and the booster pump flowrate of 14 gpm, assuming the amount of wastewater overflowing into the sanitary sewer was negligible. The total amount of wastewater generated during the performance evaluation study was 671,148 gal, which was calculated based on the average wastewater production rate of 724 gal/vessel/cycle and a total of 927 backwash cycles. Therefore, the recycle system operated for 799 hr, or 29.4% of the time the treatment system was in operation.

4.4.4 Residual Management. Residual requiring disposal consisted of only backwash solids, which accumulated at the bottom of the recycle tank. Approximately 850 kg of backwash solids were produced during the performance evaluation study based on 927 backwash events (Table 4-5) and 920 g of backwash solids produced per backwash event (Section 4.5.2). Sludge accumulating in the recycle tank was pumped to the sanitary sewer.

4.4.5 System/Operation Reliability and Simplicity. There was no downtime for the treatment system during the performance study. After all items on the system inspection punch list (Section 4.3.3, Table 4-4) were fixed, no major operational problems were encountered. The simplicity of system operation and operator skill requirements are discussed according to pre- and post-treatment requirements, levels of system automation, operator skill requirements, preventative maintenance activities, and frequency of chemical/media handling and inventory requirements.

4.4.5.1 Pre- and Post-Treatment Requirements. Pre-treatment consisted of chemical additions to improve arsenic removal. A 12.5% NaOCl solution was added using the pre-existing equipment to oxidize As(III) and Fe(II), and provide chlorine residuals to the distribution system. In addition to tracking levels of the NaOCl solution in the day tank, the operator measured chlorine concentrations to ensure that residuals existed throughout the treatment train. A 37% FeCl₃ solution diluted six times was added upstream of the contact tanks. Solution levels in the day tank were tracked daily. No post-treatment was required.

4.4.5.2 System Automation. The C/F system was automatically controlled by the PLC in the central control panel. The control panel contained a modem and a touch screen OIP that facilitated monitoring of system parameters, changing of system setpoints, and checking the alarm status. System run time, standby time, and Δp settings (Table 4-6) automatically determined when the pressure filters needed to be backwashed. The touch screen OIP also enabled the operator to manually initiate a backwash sequence.

4.4.5.3 Operator Skill Requirements. Under normal operating conditions, the daily demand on the operator was about 45 min for visual inspection of the system and recording of operational parameters such as pressure, volume, flowrate, and chemical usage on field log sheets. After receiving proper training during system startup, the operator understood the PLC, knew how to use the touch screen OIP, and was able to work with the vendor to troubleshoot problems and perform minor onsite repairs.

The State of Delaware requires all operators of public water treatment and distribution systems to have a valid base-level license, which requires the operator to have:

- High school diploma or equivalent and one year of acceptable operating experience, or;
- Three years of acceptable operating experience, and;
- Successful completion of base-level written examination.

4.4.5.4 Preventative Maintenance Activities. The vendor recommended several routine maintenance activities to prolong the integrity of the treatment system (Kinetico, 2005). Daily preventative maintenance tasks included recording pressure and flowrate readings and chemical drum levels and visually checking for leaks, overheating components, proper manual valve positioning and pumps' lubricant levels, and any unusual conditions. The vendor recommended weekly checking for trends in the recorded data that might indicate a decline in system performance, and semi-annually servicing and inspecting ancillary equipment and replacing worn components. Cleaning and replacement of sensors and replacement of o-ring seals and gaskets of valves were performed as needed.

4.4.5.5 Chemical Handling and Inventory Requirements. Chlorine and iron additions were required for effective arsenic removal. The operator tracked usage of the chemical solutions daily (by solution levels), coordinated supplies, and refilled the day tanks as needed. A 12.5% NaOCl solution, supplied in 55-gal drums by Wilbur-Ellis, was transferred to the day tank and injected without dilution. A 37% FeCl₃ solution, supplied in 180-lb drums by Hawkins Chemical, was diluted by a factor of six in the 66-gal day tank prior to injection into the chlorinated water. Speed and stroke settings of the chemical pumps were adjusted, as needed, to acquire the target chlorine residuals as measured regularly with a Hach pocket colorimeter and iron concentrations after the contact tanks.

4.5 System Performance

The performance of the Macrolite[®] Arsenic Removal System was evaluated based on analyses of water samples collected from the treatment plant, system backwash, and distribution system.

4.5.1 Treatment Plant Sampling. Treatment plant water was sampled on 57 occasions (including four duplicate events) during the 13.5 months of system operation. Field speciation also was performed for 14 of the 57 occasions. Table 4-7 summarizes the analytical results for arsenic, iron, and manganese. Five outliers with either significantly low (on November 29, 2006) or significantly high arsenic, iron, and/or manganese concentrations (on March 21, April 18, and August 8, 2007) at the AC sampling location were not included in statistical calculations shown in Table 4-7. These significantly elevated arsenic, iron, and manganese concentrations probably were due to introduction of backwash solids from the recycle tank. The August 8 event took place even after the level float switches in the recycle tank and the intake line from the recycle tank had been moved up from the bottom of the tank in May 2007 (Section 4.4.3.3). It was not clear, however, what had caused the low concentrations to be measured on November 29, 2006. Table 4-8 summarizes the results of the other water quality parameters. Appendix B contains a complete set of analytical results. The results of the water samples collected across the treatment train are discussed below.

4.5.1.1 Arsenic. Figure 4-17 shows total arsenic concentrations measured across the treatment train and Figure 4-18 presents the results of the 14 speciation events. Total arsenic concentrations in source water ranged from 27.2 to 43.3 μ g/L and averaged 34.4 μ g/L with soluble As(III) existing as the predominant species at 29.1 μ g/L (on average) (Table 4-7 and Figure 4-18). Low concentrations of particulate arsenic and soluble As(V) also were present in source water, with concentrations averaging 3.4 and 2.1 μ g/L, respectively. The arsenic concentrations measured during the 13.5-month performance evaluation study were consistent with those of source water collected during the initial site visit on October 7, 2004.

Following prechlorination and the contact tanks, total arsenic concentrations remained essentially unchanged at 35.1 μ g/L (on average). Arsenic, however, existed mostly as particulate arsenic (26.1 μ g/L [on average]) with only a small fraction remaining in the soluble form (8.9 μ g/L). Of the soluble fraction,

	Sampling		Number of	Minimum	Maximum	Average	Standard
Parameter	Location	Unit	Samples	Concentration	Concentration	Concentration	Deviation
	IN	μg/L	57	27.2	43.3	34.4	3.6
	AC	μg/L	52 ^(a)	27.0	53.7	35.1	4.9
As	TA	μg/L	43	3.1	15.9	7.5	2.9
(total)	TB	μg/L	43	3.4	17.2	7.4	2.7
	TC	μg/L	43	3.4	17.6	7.2	2.8
	TT	μg/L	14	1.8	13.4	8.3	3.6
A a	IN	μg/L	14	26.1	38.1	31.2	3.1
As (soluble)	AC	μg/L	14	3.6	18.1	8.9	4.3
(soluble)	TT	μg/L	14	2.5	13.0	7.2	3.1
A a	IN	μg/L	14	< 0.1	5.8	3.4	1.9
As (particulate)	AC	μg/L	14	19.5	33.6	26.1	4.2
(particulate)	TT	μg/L	14	< 0.1	2.5	1.2	0.9
	IN	μg/L	14	19.9	38.3	29.1	3.9
As(III)	AC	μg/L	13 ^(b)	< 0.1	2.2	0.7	0.6
	TT	μg/L	13 ^(c)	< 0.1	1.8	0.6	0.5
	IN	μg/L	14	< 0.1	8.8	2.1	2.1
As(V)	AC	μg/L	13 ^(d)	3.1	15.9	8.1	4.2
	TT	μg/L	14	2.2	10.6	6.0	2.7
	IN	μg/L	57	<25	62.5	26.1	13.6
	AC	μg/L	52 ^(e)	704	4,699	1,905	709
Fe	TA	μg/L	43	<25	290	45.6	61.6
(total)	TB	μg/L	43	<25	327	48.4	57.2
	TC	μg/L	43	<25	217	37.1	44.8
	TT	μg/L	14	<25	148	37.9	41.9
Fe	IN	μg/L	14	<25	50.0	21.6	13.4
re (soluble)	AC	μg/L	13 ^(f)	<25	<25	<25	-
(soluble)	TT	μg/L	14	<25	<25	<25	-
	IN	μg/L	57	< 0.1	2.9	1.4	0.4
	AC	μg/L	52 ^(g)	5.1	23.7	10.1	3.6
Mn	TA	μg/L	43	< 0.1	1.7	0.2	0.3
(total)	TB	μg/L	43	< 0.1	1.9	0.3	0.4
	TC	μg/L	43	< 0.1	1.5	0.2	0.3
	TT	μg/L	14	< 0.1	1.6	0.3	0.4
	IN	μg/L	14	1.3	3.0	1.7	0.5
Mn (soluble)	AC	μg/L	14	<0.1	1.0	0.3	0.4
	TT	μg/L	14	< 0.1	1.6	0.3	0.5

Table 4-7. Summary of Arsenic, Iron, and Manganese Analytical Results

(a) Five outliers (i.e., 12.2 μg/L on 11/29/06, 210 and 174 μg/L on 03/21/07, 142 μg/L on 04/18/07, and 104 μg/L on 08/08/07) omitted.

(b) One outlier (i.e., $8.6 \,\mu g/L$ on 01/31/07) omitted.

(c) One outlier (i.e., $10.1 \mu g/L$ on 01/31/07) omitted.

(d) One outlier (i.e., $0.9 \,\mu g/L$ on 01/31/07) omitted.

(e) Five outliers (i.e., 279 μ g/L on 11/29/06, 13,646 and 10,937 μ g/L on 03/21/07, 8,962 μ g/L on 04/18/07, and 6,632 μ g/L on 08/08/07) omitted.

(f) One outlier (i.e., $177 \mu g/L$ on 12/6/06) omitted.

(g) Five outliers (i.e., 1.6 μg/L on 11/29/06, 59.2 and 48.8 μg/L on 03/21/07, 37.7 μg/L on 04/18/07, and 35.2 μg/L on 08/08/07) omitted.

Parameter	Sampling Location	Unit	Number of Samples	Minimum Concentration	Maximum Concentration	Average Concentration	Standard Deviation
	IN	mg/L	57	276	349	321	11.8
	AC	mg/L mg/L	57	283	339	315	11.8
Alkalinity	TA	mg/L mg/L	43	283	341	313	10.8
(as CaCO ₃)	TB	mg/L mg/L	43	230	339	313	10.8
$(as CaCO_3)$	TC	mg/L mg/L	43	274	331	311	11.7
	TT	mg/L mg/L	14	300	327	316	8.2
	IN	mg/L mg/L	14	1.0	2.0	1.4	0.2
Fluoride	AC	mg/L mg/L	14	1.0	1.8	1.4	0.2
Thomas	TT	mg/L mg/L	14	1.0	2.8	1.6	0.5
	IN	mg/L	14	9.0	21.0	10.8	3.0
Sulfate	AC	mg/L	14	8.8	18.0	10.4	2.3
Sunne	TT	mg/L	14	8.8	18.0	10.3	2.3
	IN	mg/L	14	< 0.05	<0.05	< 0.05	-
Nitrate	AC	mg/L	14	< 0.05	< 0.05	< 0.05	_
(as N)	TT	mg/L	14	< 0.05	< 0.05	< 0.05	_
	IN	mg/L	57	8.5	11.6	9.5	0.6
	AC	mg/L	57	8.6	13.7	9.7	0.9
Silica	TA	mg/L	43	8.4	11.1	9.2	0.6
(as SiO ₂)	TB	mg/L	43	8.3	11.3	9.1	0.6
× 2/	TC	mg/L	43	8.3	11.2	9.1	0.6
	TT	mg/L	14	8.5	10.3	9.2	0.5
	IN	μg/L	57	23.3	110	44.7	13.4
	AC	µg/L	57	21.7	298	57.3	48.2
Phosphorous	ТА	μg/L	43	<10	47.9	11.5	9.7
(as P)	TB	μg/L	43	<10	48.1	11.2	9.5
	TC	μg/L	43	<10	49.3	10.8	8.9
	TT	μg/L	14	<10	79.0	16.6	19.7
	IN	NTU	57	0.2	4.8	1.2	1.1
	AC	NTU	57	0.9	20.0	3.1	3.5
Turbidity	TA	NTU	43	0.2	5.1	1.3	1.2
Turbidity	TB	NTU	43	0.2	4.5	1.1	1.0
	TC	NTU	43	0.3	3.6	1.1	0.9
	TT	NTU	14	0.3	3.3	1.0	0.8
	IN	S.U.	39 ^(a)	7.8	8.9	8.3	0.2
	AC	S.U.	39 ^(b)	7.7	8.9	8.3	0.2
pН	TA	S.U.	29 ^(c)	7.7	8.9	8.3	0.3
pm	TB	S.U.	29 ^(d)	7.7	9.0	8.3	0.3
	TC	S.U.	29 ^(e)	7.7	9.0	8.3	0.3
	TT	S.U.	10 ^(f)	7.9	8.5	8.3	0.2
	IN	°C	41	14.7	20.8	19.2	1.1
	AC	°C	41	14.7	20.2	18.8	0.8
Temperature	TA	°C	30	14.7	21.0	18.9	1.0
remperature	TB	°C	30	14.8	20.3	18.8	0.9
	TC	°C	30	14.8	19.9	18.7	1.2
	TT	°C	11	18.1	19.3	18.8	0.4

 Table 4-8.
 Summary of Other Water Quality Parameter Results

			Number				
	Sampling		of	Minimum	Maximum	Average	Standard
Parameter	Location	Unit	Samples	Concentration	Concentration	Concentration	Deviation
	IN	Mg/L	41	0.5	1.4	1.0	0.2
	AC	Mg/L	41	0.4	1.7	1.1	0.3
DO	TA	Mg/L	30	0.6	2.6	1.2	0.4
DO	TB	Mg/L	30	0.6	1.9	1.0	0.3
	TC	Mg/L	30	0.5	1.7	1.0	0.3
	TT	Mg/L	11	0.6	1.1	0.9	0.2
	IN	mV	41	216	444	320	72.7
	AC	mV	41	251	630	456	97.3
ORP	TA	mV	30	277	651	500	101
UKF	TB	mV	30	287	652	536	96.1
	TC	mV	30	486	673	580	47.1
	TT	mV	11	335	572	490	71.5
	AC	Mg/L	41	0.2	1.7	0.8	0.3
Free	TA	Mg/L	30	0.2	1.3	0.7	0.3
Chlorine	TB	Mg/L	30	0.2	1.4	0.74	0.2
(as Cl ₂)	TC	Mg/L	30	0.2	1.4	0.77	0.3
	TT	Mg/L	11	0.4	1.2	0.83	0.2
	AC	Mg/L	41	0.3	1.8	0.83	0.3
Total	TA	Mg/L	30	0.3	1.4	0.76	0.3
Chlorine	TB	Mg/L	30	0.3	1.4	0.76	0.2
(as Cl ₂)	TC	Mg/L	30	0.3	1.4	0.81	0.2
	TT	Mg/L	11	0.5	1.3	0.86	0.2
Total	IN	Mg/L	14	35.4	41.3	39.3	1.8
Hardness	AC	Mg/L	14	34.6	42.6	39.1	1.9
(as CaCO ₃)	TT	Mg/L	14	36.1	40.6	38.6	1.3
Ca Handraa	IN	Mg/L	14	13.9	19.4	16.8	1.7
Ca Hardness	AC	Mg/L	14	14.1	20.2	17.0	1.5
(as CaCO ₃)	TT	Mg/L	14	14.1	19.8	16.8	1.4
	IN	Mg/L	14	20.0	25.2	22.4	1.3
Mg Hardness	AC	Mg/L	14	18.6	24.9	22.1	1.7
(as CaCO ₃)	TT	Mg/L	14	19.7	23.9	21.8	1.3

 Table 4-8.
 Summary of Other Water Quality Parameter Results

(a) Two outliers (i.e., 9.3 on 06/13/07 and 9.8 on 06/20/07) omitted.

(b) Two outliers (i.e., 9.3 on 06/13/07 and 10.0 on 06/20/07) omitted.

(c) One outlier (i.e., 9.3 on 06/13/07) omitted.

(d) One outlier (i.e., 9.4 on 06/13/07) omitted.

(e) One outlier (i.e., 9.3 on 06/13/07) omitted.

(f) One outlier (i.e., 10.0 on 06/20/07) omitted.

only 0.7 μ g/L (on average) existed as As(III) (except for one data point at 8.6 μ g/L on January 31, 2007), indicating effective oxidation of As(III) by chlorine. The reason for the exceptionally high As(III) concentration on January 31, 2007, was unclear. Free and total chlorine concentrations measured in the system effluent on that day were 0.8 and 0.8 mg/L, respectively, which were consistent with the respective average values shown in Table 4-8. As much as 8.1 μ g/L of As(V) was measured following the contact tanks, suggesting the need for further increasing iron doses.

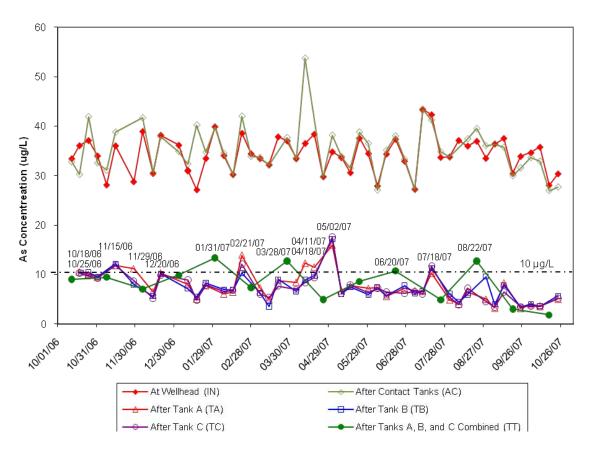


Figure 4-17. Total Arsenic Concentrations Across Treatment Train

Total arsenic concentrations ranged from 3.1 to $17.6 \,\mu$ g/L and averaged 7.4 μ g/L after Vessels A, B, and C. Based on the speciation results, arsenic in system effluent existed primarily as As(V) with concentrations ranging from 2.2 to 10.6 μ g/L and averaging 6.0 μ g/L. Some soluble As(III) (0.6 μ g/L [on average]) and particulate arsenic (1.2 μ g/L [on average]) also existed in system effluent.

As shown in Figure 4-17, total arsenic concentrations in system effluent exceeded the arsenic MCL for 14 sampling occasions on October 18, October 25, November 15, November 29, and December 20, 2006, and January 31, February 21, March 28, April 11, April 18, May 2, May 9, June 20, July 18, and August 22, 2007. As discussed above, the January 31, 2007, sampling event resulted in an uncharacteristically high As(III) concentration at the AC location, which led to high total arsenic and As(III) concentrations in system effluent. It is known that As(III) cannot be effectively removed via the iron coagulation/filtration process.

Careful examination of arsenic and iron data revealed that elevated arsenic concentrations observed during the remaining 13 sampling events were caused either by insufficient iron addition or by particulate iron/arsenic breakthrough from the pressure filters. Among the 13 events, seven were thought to have been caused by insufficient iron addition. As shown in Table 4-9, while total arsenic concentrations in filter effluent (as measured at TA, TB, TC, and/or TT) were higher than 10 μ g/L, corresponding total iron concentrations were below the MDL of 25 μ g/L (for all but one sample on October 18, 2006). These results suggest that the high effluent arsenic concentrations were not caused by filter leakage. Speciation results for the three samples collected at TT showed As(V) as the predominant

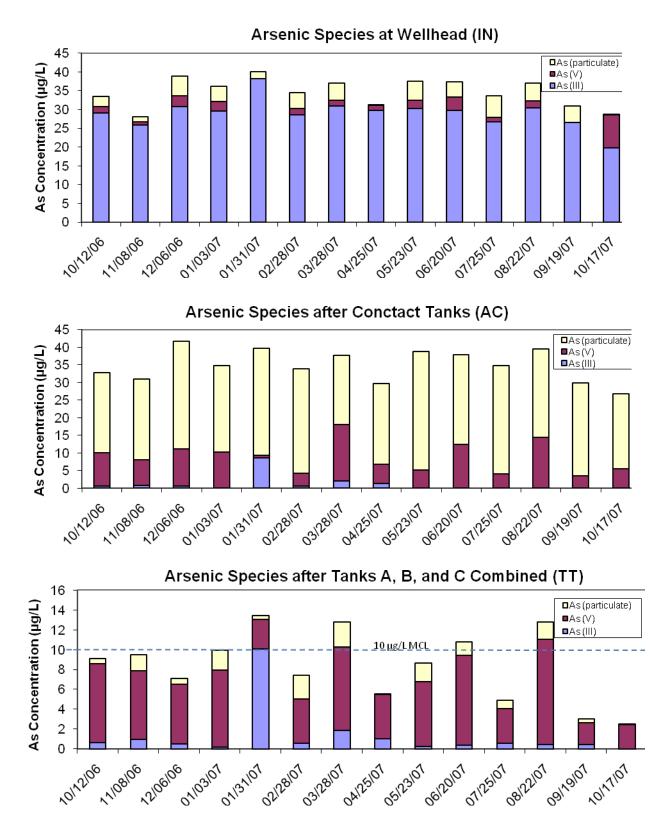


Figure 4-18. Arsenic Speciation Results

	T.	A	Т	В	Т	С		ТТ	AC		
	Total		Total	Total	Soluble						
	As	Fe	As	Fe	As	Fe	As	As(V)	Fe	Fe	Fe
Date	(µg/L)										
10/18/06	10.6	50.3	10.4	<25	10.3	<25	NM	NM	NM	1,252	NM
11/15/06	11.8	<25	12.2	<25	11.9	<25	NM	NM	NM	1,017	NM
03/28/07	NM	NM	NM	NM	NM	NM	12.8	8.5	<25	788	<25
05/02/07	17.9	<25	19.5	<25	19.3	<25	NM	NM	NM	704	NM
06/20/07	NM	NM	NM	NM	NM	NM	10.8	9.0	<25	1,268	<25
07/18/07	10.3	<25	11.3	<25	11.7	<25	NM	NM	NM	1,528	NM
08/22/07	NM	NM	NM	NM	NM	NM	12.8	10.6	<25	1,111	<25

 Table 4-9. Ineffective Arsenic Removal Due to Inadequate Iron Addition

NM = not measured

species (66 to 83% of the total As), implying that more iron would need to be added for more complete arsenic removal. Total iron concentrations measured following the contact tanks (AC) were all significantly lower than the average concentration at AC (i.e. 1,905 μ g/L, Table 4-9), which further supports the need for more iron addition.

Conversely, the six events shown in Table 4-10 seem to suggest particulate arsenic/iron breakthrough being the main reason for the elevated arsenic concentrations observed. These samples were all collected close to the end of a filter run before a backwash was triggered. As shown in Table 4-10, elevated iron concentrations were measured in filter effluent for all samples except one on April 18, 2007, implying particulate arsenic/iron leakage. Arsenic/iron leakage occurred occasionally even after the Δp trigger had been decreased from 25 to 18 psi on January 17, 2007 (in an attempt to reduce run times and, therefore, the likelihood of arsenic/iron particle breakthrough from the filters [Section 4.4.3.1]). Note that increases in arsenic concentrations at the AC location on March 21, April 18, August 8, 2007, due to introduction of backwash solids from the recycle tank did not cause excessive arsenic breakthrough from the pressure filters.

	Т	А	Т	Ъ	TC				
	Total	Total	Total	Total	Total	Total			
	As	Fe	As	Fe	As	Fe			
Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$			
10/25/06	10.1	83.0	10.5	85.1	_ ^(a)	57.4			
11/29/06	11.2	164.0	_ ^(a)	<25	_ ^(a)	<25			
12/20/06	10.4	124	10.2	92.7	_ ^(a)	97.9			
02/21/07	13.9	289	10.3	101	12.1	217			
04/11/07	12.3	216	_ ^(a)	35.9	_ ^(a)	36.1			
04/18/07	11.5 <25		_ ^(a)	<25	_ ^(a)	<25			

 Table 4-10. Ineffective Arsenic Removal Due to Arsenic/Iron Leakage

(a) Data not presented since total arsenic concentration did not exceed 10 μ g/L MCL.

4.5.1.2 Iron. Figure 4-19 presents total iron concentration measured across the treatment train. Total iron concentrations in source water ranged from <25 to 62.5 μ g/L and averaged 26.1 μ g/L, which existed primarily in the soluble form.

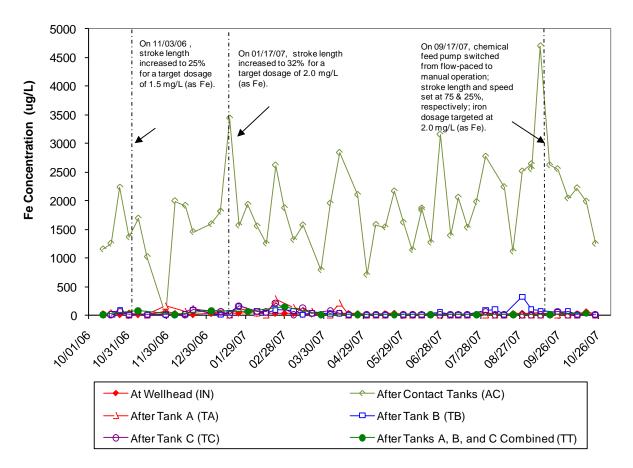


Figure 4-19. Total Iron Concentrations Across Treatment Train

Total iron concentrations after the contact tanks varied significantly, ranging from 704 to 4,699 μ g/L and averaging 1,905 μ g/L (not including the five outliers noted in footnote e). Variations in iron concentrations were caused primarily by the difficulties encountered operating the flow-paced iron injection pump (Section 4.4.2). As expected, iron after the contact tanks existed solely as particulate iron (except for one data point at 177 μ g/L on December 6, 2006).

Total iron concentrations in system effluent ranged from <25 to 327 μ g/L, and averaged 43.1 μ g/L. Approximately 60% of the samples collected at the system outlet had total iron concentrations below the method reporting limit of 25 μ g/L. The remaining 40% of samples had iron concentrations higher than 25 μ g/L, with one sample collected on August 29, 2007, containing 327 μ g/L. Iron in system effluent existed only in the particulate form, indicating leakage through the pressure filters. The frequency of particulate iron leakage did decrease after January 17, 2007, i.e. from 3 times during the initial 4 months before January 17, 2007 to 3 times during the remaining 10 months afterwards. As described in Section 4.4.3.1, on January 17, 2007, the Δ p backwash trigger was reduced to help shorten run times and reduce iron breakthrough from the filters. As described in Section 4.5.1.1, particulate iron leakage often occurred together with particulate arsenic leakage.

4.5.1.3 Manganese. Figure 4-20 presents total manganese concentrations measured during the demonstration study. In source water, manganese concentrations ranged from <0.1 to 2.9 μ g/L and averaged 1.4 μ g/L, existing primarily in the soluble form. After chlorination, iron addition, and contact tanks, total manganese concentrations increased significantly to an average of 10.1 μ g/L, existing

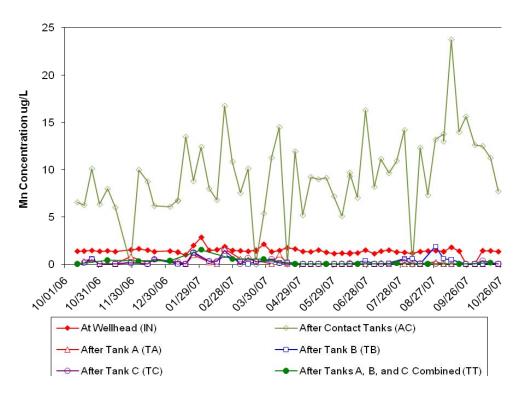
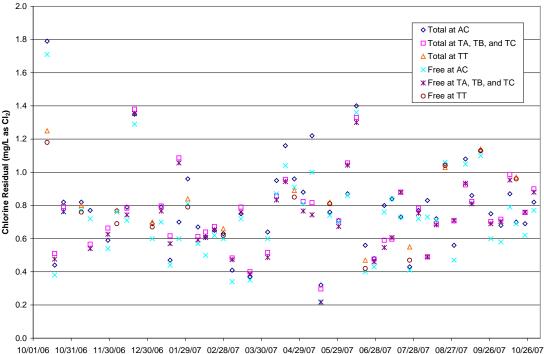



Figure 4-20. Total Manganese Concentrations Across Treatment Train

primarily (over 97%) as particulate manganese. The increase in manganese concentration probably was caused by trace amounts of manganese in the pretreatment chemicals. Particulate manganese apparently was removed by the pressure filters, leaving only trace amounts ($0.3 \mu g/L$) in filter effluent.

4.5.1.4 *pH*, *DO*, *and ORP*. pH values in source water ranged from 7.8 to 8.9 and averaged 8.3. This range was consistent with the pH measurements taken by Battelle during source water sampling on October 7, 2004 (i.e., 8.2 in Table 4-1). DO levels of source water were low, ranging from 0.5 to 1.4 mg/L and averaging 1.0 mg/L. DO levels remained low across the treatment train, with average values ranging from 0.9 to 1.2 mg/L. ORP readings of source water were uncharacteristically high, ranging from 216 to 444 mV and averaging 320 mV. These high values most likely were caused by the handheld meter, which tends to drift during measurements. After prechlorination, average ORP readings increased significantly to 456 mV after the contact tanks and to 527 mV after the pressure filters.

4.5.1.5 Chlorine. Figure 4-21 presents total and free chlorine residuals measured throughout the treatment train. As shown in the figure, data were scattered extensively, with total chlorine residuals ranging from 0.3 to 1.8 mg/L (as Cl_2) and free chlorine residuals ranging from 0.2 to 1.7 mg/L (as Cl_2). Assuming that 4.3 mg/L of NaOCl (as Cl_2) had been applied to source water, 0.044 mg/L (as Cl_2) would have reacted with As(III), Fe(II), and Mn(II) based on the respective average concentrations (i.e., 29.1, 21.6, and 1.7 µg/L) in source water (Table 4-7), and 2.45 mg/L would have reacted with 0.32 mg/L of ammonia (as N) to reach breakpoint chlorination. As such, 1.8 mg/L (as Cl_2) would have been present as free chlorine in treated water. These theoretical amounts appear to fall just inside (and outside) the measured ranges for total and free residuals.

Date

Figure 4-21. Chlorine Residuals Measured Throughout Treatment Train

4.5.1.6 Other Water Quality Parameters. Alkalinity, fluoride, sulfate, nitrate, silica, pH, temperature, and hardness levels remained relatively constant across the treatment train and were not affected by the treatment process (Table 4-8). Phosphorus levels after the contact tanks were slightly higher than those in source water (i.e., 57.3 vs. 44.7 μ g/L [on average]), probably due to the presence of trace quantities in the pretreatment chemicals. Phosphorus levels decreased significantly to <17.0 μ g/L (on average) after the pressure filters, indicating removal via coagulation/filtration. Turbidity also decreased slightly with treatment (i.e., from 3.1 to <1.3 NTU on average).

4.5.2 Backwash Water and Solids Sampling. Treated water was used for backwash. Table 4-11 presents analytical results from 11 backwash wastewater sampling events starting from November 30, 2006, through October 10, 2007. Results for the November 30, 2006, sampling event are not included in the table because these samples were collected from an incorrect sampling tap.

pH, TDS, and total suspended solids (TSS) values ranged from 7.9 to 8.1 (averaged 8.0), from 324 to 1,040 mg/L (averaged 370 mg/L), and from 125 to 685 mg/L (averaged 336 mg/L), respectively. The average pH value of backwash wastewater (i.e., 8.0) was somewhat lower than that across the treatment train (i.e., 8.3). Concentrations of total arsenic, iron, and manganese ranged from 371 to 2,203 μ g/L (averaged 1,229 μ g/L), 27.5 to 188 mg/L (averaged 107 mg/L), and 151 to 955 μ g/L (averaged 551 μ g/L), respectively. Over 99% of these metals were present in the partculate form.

Assuming that 724 gal (Table 4-5) of backwash wastewater would be generated from each vessel during each backwash event and that 336 mg/L of TSS would be produced, approximately 920 g of solids were generated from each filtration vessel during each backwash and were discharged into and accumulated in the recycle tank. Based on the average particulate metal data in Table 4-11, approximately 3.4 g of

				BW1								BW2									BW3										
						Backw	/ash Tar	nk A							Bacl	kwash	Vessel	Tank B							Ba	ackwa	sh Tan	kС			
Sampl	ling Event	Hd	TDS	TSS	As (total)	As (soluble)	As (particulate)	Fe (total)	Fe (soluble)	Mn (total)	Mn (soluble)	рН	TDS	TSS	As (total)	As (soluble)	As (particulate)	Fe (total)	Fe (soluble)	Mn (total)	Mn (soluble)	рН	TDS	TSS	As (total)	As (soluble)	As (particulate)	Fe (total)	Fe (soluble)	Mn (total)	Mn (soluble)
No.	Date	S.U.	mg/L	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	S.U.	mg/L	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	S.U.	mg/L	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
1 11	/30/2006 ^(a)							Samples					wrong	samp	le taps (during	the first	t sample co	ollectio	on on 1	1/30/0)6; dat	a was i	not rep	orted.						
2 (01/03/07	8.0	328	190	800	9.6	790	73,404	<25	364	0.2	8.0	324	430	1,462	15.2	1,447	130,280	78.1	621	0.4	8.0	326	285	1,247	15.6	1,231	124,876	76.8	584	0.3
3 (02/07/07	8.1	332	266	1,108	6.7	1,101	90,169	85.3	398	0.5	8.0	338	450	1,518	5.9	1,512	117,655	37.2	545	0.3	8.0	334	515	2,061	6.8	2,054	151,885	69.0	745	0.5
4 (03/07/07	8.1	344	410	1,656	7.6	1,648	135,760	<25	592	<0.1	8.1	348	635	2,049	7.7	2,041	165,859	<25	800	< 0.1	8.0	354	590	2,203	8.1	2,195	171,373	<25	829	<0.1
5 (04/05/07	8.0	344	265	765	5.7	759	62,605	29.0	320	1.4	8.0	336	685	1,679	5.7	1,674	135,388	<25	708	0.3	8.0	346	565	1,848	6.2	1,842	148,509	30.6	735	1.1
6 (05/09/07	7.9	352	155	769	6.9	762	54,835	<25	316	0.2	7.9	354	215	750	6.4	744	62,365	<25	375	<0.1	7.9	362	240	1,021	6.3	1,015	84,375	<25	500	<0.1
7 (06/14/07	7.9	358	335	1,559	6.3	1,553	121,064	<25	616	<0.1	7.9	342	195	627	5.7	621	51,888	<25	274	<0.1	8.0	1,040	255	1,347	6.2	1,341	83,132	<25	439	0.1
8 (07/11/07	8.0	356	420	1,997	6.3	1,990	187,504	<25	955	0.2	8.0	352	330	1,309	6.6	1,302	113,355	<25	611	<0.1	8.1	362	320	1,495	6.8	1,488	131,067	<25	706	0.1
9 (08/08/07	8.1	354	195	876	7.0	869	64,893	<25	364	<0.1	8.1	324	125	371	7.1	364	27,492	<25	151	<0.1	8.1	334	250	1,434	7.0	1,427	108,815	<25	601	<0.1
10 (09/05/07	8.0	360	390	1,039	3.4	1,036	131,939	<25	686	<0.1	8.0	370	420	761	3.9	757	114,914	<25	595	0.1	8.0	360	220	601	5.5	596	64,245	<25	327	<0.1
11 1	10/10/07	8.0	356	205	716	3.0	713	76,129	<25	392	0.2	8.0	358	190	618	3.3	615	83,641	<25	449	<0.1	8.0	358	345	1,191	2.9	1,188	140,627	<25	929	0.1

Table 4-11. Backwash Wastewater Sampling Results

(a) November 2006 results omitted since samples collected from an incorrect tap.

arsenic (i.e. 0.4% by weight), 293 g of iron (i.e. 31.8% by weight), and 1.5 g of manganese (i.e. 0.2% by weight) were generated from each vessel during each backwash event.

Solids loadings to the recycle tank also were monitored through collection of backwash solids (Section 3.3.5). Table 4-12 presents analytical results of the solid samples collected in May and October 2007. Arsenic, iron, and manganese levels in the solids averaged 3.4 mg/g (or 0.34% by weight), 324 mg/g (or 32.4% by weight), and 2.0 mg/g (or 0.2 % by weight), respectively. These amounts matched very well with those derived from the backwash wastewater metal analysis (i.e. 0.4%, 31.8%, and 0.2%, respectively).

	Mg	Si	Р	Ca	Fe	Mn	As	Ba
Date: Location	mg/g	µg/g	mg/g	mg/g	mg/g	mg/g	mg/g	µg/g
05/09/07: Vessel A	4.8	681	5.1	19.8	245	1.7	3.2	45.9
05/09/07: Vessel B	5.4	558	4.5	24.1	311	2.0	3.6	43.5
05/09/07: Vessel C	4.5	372	6.4	23.3	344	2.1	4.5	37.7
10/10/07: Vessel A	4.5	126	6.2	17.4	343	2.0	3.2	24.6
10/10/07: Vessel B	4.2	244	5.3	14.1	303	1.9	2.8	31.6
10/10/07: Vessel C	3.9	393	6.0	15.2	400	2.3	3.3	20.6

Table 4-12. Backwash Solids Sampling Results

4.5.3 Distribution System Water Sampling. Table 4-13 summarizes results of the distribution system sampling. The stagnation times for the samples ranged from 6.0 to 18.0 hr and averaged 9.5 hr, which is 58% longer than the 6-hr minimum stagnation time required by LCR.

There was no change in pH values before and after system startup. pH values before startup ranged from 7.6 to 8.3 and averaged 8.0; pH values after system startup ranged from 7.7 to 8.1 and averaged 8.0. Alkalinity levels stayed essentially unchanged, with concentrations ranging from 304 to 326 mg/L (as CaCO₃) before startup and from 301 to 332 mg/L (as CaCO₃) after startup.

Arsenic concentrations in the baseline samples were similar among the three LCR locations, ranging from 24.8 to 47.0 μ g/L and averaging 34.4 μ g/L. These concentrations were consistent with those in source water (i.e., 27.2 to 43.3 μ g/L and averaged 34.4 μ g/L) as shown in Table 4-7. After system startup, arsenic concentrations decreased significantly to an average of 8.5 μ g/L. Arsenic levels in the distribution system were slightly higher than those in treatment system effluent (i.e., 8.3 μ g/L [on average] in Table 4-7), indicating some resuspension and redissolution of arsenic in the distribution system. Figure 4-22 illustrates the effect of the treatment system on As, Fe, and Mn concentrations in the distribution system.

Iron concentrations in the baseline samples were low, ranging from <25 to 47.0 μ g/L and averaging 26.9 μ g/L. These concentrations were consistent with those in source water (i.e., ranging from <25 to 62.5 μ g/L and averaging 26.1 μ g/L in Table 4-7). After system startup, the average iron concentration increased slightly to 38.1 μ g/L, which was consistent with the average iron concentration of 43.7 μ g/L in system effluent (Table 4-7). The slight increase in iron levels was likely due to instances of iron breakthrough from the pressure filters. For the most part, iron concentrations in the distribution system mirrored those in treatment system effluent (Figure 4-22).

Total manganese concentrations in the distribution system averaged 1.7 and 0.5 μ g/L before and after system startup. Total manganese levels in the distribution system were consistent with those measured in system effluent (i.e., 0.3 μ g/L [on average] at TT location).

					DS	61							D	S2							D	S3			
				24	4 E. Se	ewell S	St.				Co	mmun	ity Ce	enter, \	Nalnu	t St					Mobil	, Rt 3			
					LC	R				LCR										LC	R				
	_		-		1st o	draw							1st	draw			-		-		1st	draw			
	Sampling Event	Stagnation Time	Hd	Alkalinity	As	Fe	Mn	Pb	Cu	Stagnation Time	Hd	Alkalinity	As	Fe	лМ	Рb	Cu	Stagnation Time	Hd	Alkalinity	As	Fe	Mn	Pb	Cu
No.	Date	hrs	S.U.	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	hrs	S.U.	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	hrs	S.U.	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L
BL1	04/13/05	7.5	8.3	326	33.0	28.3	1.4	1.5	55.1	10.0	8.3	321	39.7	<25	2.2	3.4	35.3	8.0	8.3	326	47.0	47.0	2.2	1.4	152
BL2	05/11/05	6.0	7.8	317	31.4	<25	1.0	1.3	61.7	6.0	7.8	317	29.6	<25	2.0	2.3	37.7	6.0	7.9	317	32.0	<25	1.3	1.8	138
BL3	06/15/05	18.0	8.2	312	33.3	29.4	1.2	1.5	77.9	18.0	8.1	312	45.9	33.0	3.2	7.7	44.7	8.0	8.2	312	33.3	<25	1.1	1.2	162
BL4	07/13/05	7.5	7.9	304	31.5	38.1	1.4	1.8	78.4	8.3	7.6	308	24.8	<25	2.6	3.6	33.9	8.0	8.0	304	31.1	26.1	1.2	1.5	151
1	11/08/06	9.0	7.8	330	11.7	<25	0.3	1.7	66.9	10.8	7.8	326	9.6	<25	0.8	2.0	28.3	8.0	7.8	332	10.2	<25	0.2	<1	77.7
2	12/20/07	8.0	7.7	316	9.5	26.3	0.3	1.1	30.6	11.3	7.8	320	7.2	<25	0.8	2.1	23.4	8.8	7.8	320	6.6	<25	0.3	0.5	49.9
3	01/17/07	10.0	7.9	310	7.5	68.8	<0.1	2.3	73.4	13.0	8.0	317	6.5	51.6	0.3	3.9	26.1	8.0	8.0	301	7.1	82.1	0.1	0.9	77.9
4	02/14/07	7.4	8.0	325	7.9	75.5	2.1	2.1	75.0	10.3	8.0	320	7.3	55.6	2.5	1.2	14.8	7.9	8.0	318	8.0	100	2.5	0.6	73.2
5	03/14/07	7.6	8.0	323	8.7	131	0.7	3.0	74.0	11.5	8.0	323	8.2	110	1.3	2.4	29.3	8.0	8.0	323	7.2	<25	0.2	0.3	41.3
6	04/11/07	9.0	8.0	324	10.1	76.5	0.4	2.3	60.3	12.0	8.0	324	8.8	<25	0.6	0.9	21.2	8.0	8.1	320	8.3	45.4	0.4	0.3	37.6
7	05/09/07	8.0	8.0	305	11.0	160	1.5	2.5	46.2	12.0	8.0	307	7.5	<25	0.5	0.9	16.3	8.0	7.9	305	6.1	<25	<0.1	0.3	84.0
8	06/14/07	7.9	8.0	301	9.9	<25	<0.1	1.5	28.3	10.5	8.1	310	8.6	<25	0.3	1.6	10.0	8.0	8.0	318	8.0	<25	<0.1	0.5	47.0
9	07/19/07	8.0	8.1	305	12.1	<25	0.1	0.8	12.3	10.8	8.1	312	9.4	<25	0.3	0.8	4.5	8.0	8.1	312	11.5	<25	<0.1	0.3	38.1
10	08/15/07	8.0	8.0	332	8.0	<25	0.3	2.8	34.7	17.8	8.0	330	6.9	<25	0.3	3.4	13.2	11.3	8.0	320	6.2	<25	<0.1	1.2	87.4
11	09/12/07	6.3	8.1	322	10.4	<25	<0.1	2.4	56.3	11.5	8.1	312	7.5	<25	<0.1	2.2	15.6	8.3	8.1	314	7.2	<25	<0.1	1.1	76.3

Table 4-13. Distribution System Sampling Results

 $\begin{array}{l} BL = baseline \ sampling; \ NA = data \ not \ available \\ Lead \ action \ level = 15 \ \mu g/L; \ copper \ action \ level = 1.3 \ mg/L \\ Alkalinity \ measured \ in \ mg/L \ as \ CaCO_3. \end{array}$

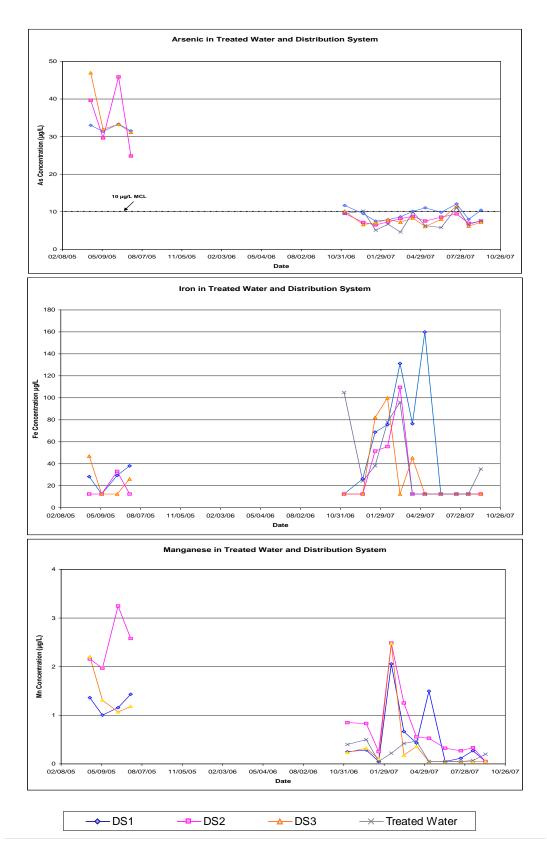


Figure 4-22. Effects of Treatment System on Arsenic, Iron, and Manganese in Distribution System

Lead and copper concentrations within the distribution system decreased slightly from baseline levels. Baseline lead concentrations ranged from 1.2 to 7.7 μ g/L and averaged 2.4 μ g/L; baseline copper concentrations ranged from 33.9 to 162 μ g/L and averaged 85.6 μ g/L. After system startup, lead levels decreased slightly to 1.6 μ g/L (on average) with no samples exceeding the action level of 15 μ g/L. Copper concentrations decreased to 44.0 μ g/L with no samples exceeding the 1,300 μ g/L action level.

4.6 System Cost

The system cost was evaluated based on the capital cost per gpm (or gpd) of design capacity and the O&M cost per 1,000 gal of water treated. Capital cost of the C/F system included cost for equipment, site engineering, and system installation, shakedown, and startup. O&M cost included cost for chemicals, electricity, and labor. Cost associated with the building, including the recycle system, sanitary sewer connections, and water system telemetry, was not included in the capital cost because it was not included in the scope of this demonstration project and was funded separately by the Town of Felton.

4.6.1 Capital Cost. The capital investment for the Macrolite[®] Arsenic Removal System was \$334,297 (Table 4-14). The equipment cost was \$201,292 (or 60% of the total capital investment), which included cost for an iron addition system, two contact tanks, three pressure vessels, 75 ft³ of Macrolite[®], instrumentation and controls, miscellaneous materials and supplies, labor, and system warranty. The system warranty cost covered the cost for repair and replacement of defective system components and installation workmanship for 12 months after system startup.

Description	Quantity	Cost	% of Capital Investment Cost
	uipment	Cost	Investment Cost
Welded stainless steel frame	1	\$12,500	_
Fiberglass pressure vessel	3	\$24,426	_
Fiberglass contact tank	2	\$16,284	_
Wedge wire distributors	3	\$9,909	_
Macrolite [®] media (75 ft ³)	1	\$18,750	_
Process valves and piping	1	\$26,278	_
Air scour system	1	\$6,300	_
Chemical feed equipment	1	\$6,402	_
Instrumentation and controls	1	\$18,723	_
Turbidimeter	1	\$6,612	_
Additional sample taps/totalizer/meters	_	\$1,700	_
Shipping	1	\$2,600	_
Labor	1	\$50,808	-
Equipment Total	_	\$201,292	60%
Eng	ineering		
Labor	1	\$44,520	_
Engineering Total	-	\$44,520	13%
Installation, She	akedown, an	d Startup	
Labor	1	\$15,400	—
Subcontractor	1	\$68,300	—
Travel	1	\$4,785	—
Installation, Shakedown, and Startup	_	\$88,485	27%
Total Capital Investment	_	334,297	100%

Table 4-14. Capital Investment for Kinetico's C/F System

The site engineering cost covered the cost for preparing the required permit application submittal (including a process design report, a general arrangement drawing, P&IDs, electrical diagrams, interconnecting piping layouts, tank fill details, and a schematic of the PLC panel) and obtaining the required permit approval from DHSS. The engineering cost of \$44,520 was 13% of the total capital investment. The installation, shakedown, and startup cost covered the labor and materials required to unload, install, and test the system for proper operation. All installation activities were performed by the vendor's subcontractor, and startup and shakedown activities were performed by the vendor with the operator's assistance. The installation, startup, and shakedown cost of \$88,485 was 27% of the total capital investment.

The total capital cost of \$334,297 was normalized to \$891/gpm (\$0.62/gpd) of design capacity using the system's rated capacity of 375 gpm (or 540,000 gpd). The total capital cost also was converted to an annualized cost of \$31,554 gal/yr using a capital recovery factor (CRF) of 0.09439 based on a 7% interest rate and a 20-yr return period. Assuming that the system operated 24 hr/day, 7 day/week at the design flowrate of 375 gpm to produce 197,100,000 gal/yr, the unit capital cost would be \$0.16/1,000 gal. During the 13-month demonstration study, the system produced 43,446,110 gal of water (Table 4-5), corresponding to 38,211,600 gal/year, so the unit capital cost increased to \$0.83/1,000 gal.

A 38 ft \times 18 ft building with a ceiling height of 14 ft was constructed by the Town of Felton to house the treatment system (Section 4.3.2). In addition to the building, a recycle system was installed and included a 16 ft \times 6 ft \times 10 ft concrete recycle tank, recycle system controller, booster pumps, and associated piping (Section 4.2). Not included in the capital cost, the total cost of the building, recycle system, and supporting utilities was approximately \$240,000.

4.6.2 O&M Cost. O&M costs included chemical use, electricity consumption, and labor for a combined unit cost of \$0.30/1,000 gal (Table 4-15). No cost was incurred for repairs because the system was under warranty. Since chlorination already existed prior to the demonstration study, incremental chemical cost for iron addition was \$0.05/1,000 gal. Electrical power consumption was calculated based on the difference between the average monthly cost from electric bills before and after building construction and system startup. The difference in cost was approximately \$150/month or \$0.045/1,000 gal of water treated. The routine, non-demonstration related labor activities consumed approximately 45 min/day (Section 4.4.5.3). Based on this time commitment and a labor rate of \$30/hr, the labor cost was \$0.21/1,000 gal of water treated.

Category	Value	Remarks						
Volume processed (1,000 gal)	43,446	From 09/14/06 through 11/03/07						
	Chemical U	Jsage						
37–42% FeCl ₃ unit cost (\$/lb)	\$0.99	Supplied in 12 180-lb drums, including						
		cost for drum deposit and freight						
FeCl ₃ consumption (1b/1,000 gal)	0.049	_						
Chemical cost (\$/1,000 gal)	\$0.05	_						
Ele	ectricity Con	sumption						
Electricity cost (\$/month)	\$150.00	Average incremental consumption						
		including building heating and lighting						
Electricity cost (\$/1,000 gal)	\$0.045	_						
	Labor							
Labor (hr/week)	5.25	45 min/day, 7 day/week						
Labor cost (\$/1,000 gal)	\$0.21	Labor rate = $30/hr$						
Total O&M cost (\$/1,000 gal)	\$0.30	Including FeCl ₃ usage						

Table 4-15. O&M Cost for Kinetico's C/F System

5.0 REFERENCES

- Battelle. 2004. *Quality Assurance Project Plan for Evaluation of Arsenic Removal Technology*. Prepared under Contract No. 68-C-00-185, Task Order No. 0029, for U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH.
- Chen, A.S.C., L. Wang, J.L. Oxenham, and W.E. Condit. 2004. Capital Costs of Arsenic Removal Technologies: U.S. EPA Arsenic Removal Technology Demonstration Program Round 1. EPA/600/R-04/201. U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH.
- Clark, J.W., W. Viessman, and M.J. Hammer. 1977. *Water Supply and Pollution Control*. IEP, a Dun-Donnelley Publisher, New York, NY.
- Edwards, M., S. Patel, L. McNeill, H. Chen, M. Frey, A.D. Eaton, R.C. Antweiler, and H.E. Taylor. 1998. "Considerations in As Analysis and Speciation." *J. AWWA*, *90*(*3*): 103-113.
- EPA. 2003. Minor Clarification of the National Primary Drinking Water Regulation for Arsenic. *Federal Register*, 40 CFR Part 141.
- EPA. 2002. Lead and Copper Monitoring and Reporting Guidance for Public Water Systems. EPA/816/R-02/009. U.S. Environmental Protection Agency, Office of Water, Washington, D.C.
- EPA. 2001. National Primary Drinking Water Regulations: Arsenic and Clarifications to Compliance and New Source Contaminants Monitoring. *Federal Register*, 40 CFR Parts 9, 141, and 142.
- Ghurye, G.L. and D.A. Clifford. 2001. Laboratory Study on the Oxidation of Arsenic III to Arsenic V. EPA/600/R-01/021. U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH.
- Kinetico. 2005. The Village of Pentwater, MI: Installation Manual; Suppliers Literature; and Operation and Maintenance Manual, Macrolite FM-260-AS Arsenic Removal System. Newbury, OH.
- Wang, L., W.E. Condit, and A.S.C. Chen. 2004. Technology Selection and System Design: U.S. EPA Arsenic Removal Technology Demonstration Program Round 1. EPA/600/R-05/001. U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH.

APPENDIX A

OPERATIONAL DATA

Start-up	Date: Oct	tober 12, 2006																															
			Cumu	lative Hrs	in Servic	e			Chlor	ine	Totali	izer to		Press	ure Filtrati	ion		Flo	w/Totaliz	er to	Ferric Chlorid	le					Back	wash					
						Avg Rur	n Hour	Run	Chlorine	CI								Flow			FeCl ₃ Fe						Since	Last BW			Actual F	Run Tim	ne
						Time	Meter	Time	Tank	-	Totalizer	Avg Flow Rate						Rate	Totalizer	Avg Flow Rate	Tank Dosag	Tank	k Tank	Tank		Run T	me	Sta	ndby Tim	е	Betwe	een BW	
Week	Day of		TA	TB	TC				Level	dosage		Nate	Influent	Outlet TA C	Dutlet TB (Outlet TC	Effluent	Nate		Nate	Level	Ā	В	С	Total [•]	Fank A Tank	B Tank C	Tank A	ank B T	ank C Ta	nk A Ta	ink B Ta	ank C
No.	Week	Date Tin	ne hr	hr	hr	hr	hr	hr	gal	mg/L	kgal	gpm	psig	psig	psig	psig	psig	gpm	kgal	gpm	gal mg/L	No.	No.	No.	kgal	hr hr	hr	hr	hr	hr	hr	hr	hr
	R	09/14/06 8:0	0 72	2.1 79	.3 77	.7 N/	A N/	A NA	36	-	24,022.8	NA	81	72	71	71	56	293	921.8	NA	40 N	A S	5 5	5	10.1	0.0	0.1 0.0	NA	NA	NA	-	-	-
1	F	09/15/06 8:0							32	-	24,105.1	NA	82	71	70	70	62		1,002.6	NA			5 5	5	10.1		i.1 5.1		37.0	38.8	-	-	
•	Sa	09/16/06 5:3		4.8 91	.4 89	.8 10.6	6 N/	A 10.6	27	5.3	24,215.2	173	85	69	68	68	60		1,106.6	163		.6	5 5	5	10.1	12.2 1			40.1	46.9	12.2	12.1	12.1
	Su	09/17/06 10:	10 87	7.6 97	1 95	.5 4.7	7 N/	A 4.7	24	4.0	24,302.9	309	80	74	70	70	60	295	1,193.6	306	23 2	0 6	66	6	12.8	2.8	5.7 5.7	12.2	21.8	21.5	-	-	-
	M	09/18/06 8:2		5.0 104					19	5.1	24,417.5	260	86	71	67	68	60		1,302.0	246		8 6	66	6	12.8	10.2 1			36.1	35.8	15.2	16.9	17.2
	Т	09/19/06 7:4							15	5.1	24,509.2	287	63	57	56	57			1,391.0	278		0	77	7	16.6		.3 1.0		6.2	6.2	-	-	-
	W	09/20/06 7:4	45 106						12	3.5	24,609.8	266	66	59	58	60	58		1,488.9	259	3 2	1	77	7	16.6		.6 7.2		23.9	23.9	-	-	-
2	Thur	09/21/06 8:2							23	4.4	24,715.8	256		60	59	55			1,589.2	242		0	77	7	16.6	13.8 1			41.5		17.7	17.7	17.6
	F	09/22/06 9:0							21	4.1	24,773.5	265		NA	NA	NA	NA		1,644.7	255		-	88	8	18.7		0.3 0.0		17.4	17.4	-	-	-
	Sa	09/23/06 16:					•		12	5.2	24,975.0	285	NA	NA	NA	NA	NA		1,825.8	256		~	88	8	18.7	11.8 1		0.10	37.8	37.8	12.6	-	12.7
	Su	09/24/06 20:	-						25	4.6	25,076.3	234		NA	NA	NA	NA		1.5.5.5	259			99	9	21.2		6.4 6.4		9.9	9.6	<u> </u>	<u> </u>	-
	М	09/25/06 7:1			-				25	NA	25,076.3	NA		NA	NA	NA	NA		1,937.5	NA		A S	9 9	9	21.2		6.4 6.4		19.7	19.4		-	-
	Т	09/26/06 8:0		-	-			-	21	5.0	25,170.7	258		NA	NA	NA	NA		2,027.4	246		.9 9	99	9	21.2	11.7 1			38.3	38.0	16.1	24.3	17.0
	W	09/27/06 8:0							18	4.1	25,256.5	194		NA	56	NA	55		2,108.9	184			0 10	10	23.0	-	0.5 0.8		14.3	14.3	<u> </u>	<u> </u>	-
3	R	09/28/06 7:5						-	14	4.7	25,357.3	341		72	71	71	62			NA	-		0 10	10	23.0		5.8 7.1		32.0	32.0	-	-	-
	F	09/29/06 7:						-	9	5.2	25,469.0	299	90	70	68	68	61		2,312.9	283		9 10	0 10	10	23.0	13.6 1		-	47.8	-	13.7	14.0	-
	Sa	09/30/06 6:3							25	NA	25,559.5	254	82	71	69	65			2,401.5	249	5 2		1 11	10	24.1		5.9 20.6		17.1	65.3	-	-	<u> </u>
	Su	10/01/06 7:0	-		-				19	6.4	25,669.4	265	69	65	65	60	56		2,500.0	238		6 1	1 11	10	_	-	2.8 27.6		34.1	82.3	16.5	15.9	
	M	10/02/06 7:5		-					13	4.8	25,817.0	272		73	71	61	60		2,639.2	257		0 12	2 12	10	25.4		5.9 37.1		15.0	97.4	-	-	-
		10/03/06 8:							8	5.3	25,927.5	252	86	67	65	73	59		2,744.0	239	16 2	2 12	2 12	11	26.0	12.8 1			31.9	16.9	16.3	16.3	-
	W R	10/04/06 5: 10/05/06 7:4							6 35	4.5	20,010.010	249	82 81	71 70	70 68	65 72			2,798.8	261	13 1 5 2	7 13	3 13	11	27.2		0.3 7.1		17.2	34.2 4.8	-	-	14.1
4	F					_			30	4.2	26,092.1	266 258		70	72	67	55		1	256 249	-	_	3 13	12			7.3 0.0 0.0 6.9		36.2	22.1	14.0	14.2	<u> </u>
		10/06/06 8:0			-		-		25	5.5 6.0	26,199.1		78 NA	NA	NA	NA	55 NA			249		7 14 5 14	4 14	12			0.0 6.9 6.1 13.0		4.8 27.3		- 13.0	- 12.9	- 19.5
	Sa Su	10/07/06 12: 10/08/06 20:							20	5.7		266 275		NA 72	NA 71	NA 71	60			257		6 15	4 14	12			3.2 3.5		0.0	44.5	13.0	12.9	19.5
	M	10/08/06 20.			-				1/	4.5	.,	275		69	68	68				250		5 15	5 15	13	30.6	-	7.8 8.1		15.7	32.5	<u> </u>	<u> </u>	<u> </u>
	ім т	10/10/06 ^(a) 7:4	-						14	4.0	.,	279	67	NA	NA	NA	NA		3,326.5	232	14 1	0 10	5 15	10	30.6	14.0 1				32.5 41.6	<u> </u>	÷	- 14.3
	W	10/10/06 7:4							10	5.3 4.6	26,628.1	239	67	NA	NA	NA	NA NA			240		8 15	5 15	13		20.4 2			24.8 42.7		- 20.4	- 20.4	14.3
5					-				0												-	-	0 10	14		-					20.4	20.4	<u> </u>
5	R	10/12/06 ^(b) 8:0							36	4.3	26,810.0	375	86	NA	NA	NA 69	NA			265	32 1		6 16	14	32.3		10.1		14.4	31.2	-	-	-
	F	10/13/06 8:4 10/14/06 16:							33 26	4.9	26,882.1 27.066.0	201 284		71	70 69	69 70	57 59		3,664.3	260 264		7 16 6 17	5 15	14	32.3 34.1		0.7 16.2 0.0 9.6		33.1 19.9	49.8 19.9	10.0	20.5	17.2
	Sa Su	10/14/06 10:							20	4.5	27,085.0	264		70 70	69	69	57	-	3,854.2	258		2 17	7 17	15		11.6 1			39.5	39.5		<u> </u>	<u> </u>
				-	-					4.4	,	-				68			3,854.2				7 17			-					- 23.7	-	-
	M	10/16/06 15: 10/17/06 13:							21	4.4		247 263	85 78	68 71	67 70	68 71	55 57		4.056.0	241 253		4 17	/ 1/ 8 40	15	34.1 36.0	18.8 1	17.9 2.0 1.3		57.8 16.5	57.8	23.1	22.8	23.2
	W	10/17/06 13:							10	3.4	27,293.5	203		71	70	71	57		4,056.0	253		6 18	0 10	16	36.0	-			30.7	30.7		<u> </u>	<u> </u>
6	R	10/18/06 10:		-	_				14	4.9	27,388.3	274	79	71	70	70	57		4,148.0	266		2 18	0 18	10	36.0	7.3			30.7 50.1	30.7 50.1	- 19.1	- 18.8	- 18.4
0	F	10/19/06 10:							9	4.0	27,461.5	203	78	71	69 70	70	55		4,217.1	249		3 19	0 10	10	38.2	1.9 1.	.9 1.5		17.2	17.2	19.1	10.0	10.4
	Sa	10/21/06 11:							37	3.7	27,668.5	358	78	72	68	69	54		4,324.0	341	-	6 19	0 10	17	38.2	5.7	.4 6.0		35.4	35.5		<u>+</u> +	
	Su	10/21/06 11:							37	4.5		255	83	70	69	70	57		4,415.2	248		4 19	9 19	17	38.2	12.5 1			53.4		- 18.9	- 18.8	- 18.9
	M	10/22/06 11:							29	4.5	27.874.6	200	77	72	70	70	56		4,510.4	240		8 20	0 20		40.7		0.7 0.3		17.3	17.2	10.3	10.0	10.9
1	Т	10/23/06 11:							29	4.0	27,978.0	267	78	72	69	69	57		4,614.0	256		7 20	0 20	10	40.7		1 6.7		34.9	34.8		÷+	÷
	w	10/24/06 12.						-	23	4.3	28.090.2	209	84	70	69	71	55		4,715.3	204		3 20	0 20	10	40.7	13.7 1			49.2	49.1	- 18.2	- 18.1	- 18.0
7	R	10/25/06 9:4				_		-	21	4.2		257	84 78	72	70	71	57		4,821.4	243		7 2	0 <u>20</u> 1 21	10	40.7	-	0.7 0.3		49.2	49.1	10.2	10.1	10.0
'	F	10/26/06 8:0							19	3.2		2/1	80	72	68	68	56		4,890.9	261		5 2	1 21	19	43.0		0.7 0.3		35.4	35.4		÷+	÷
	Sa	10/28/06 12:							28	4.0		250	83	70	69	69	55		5.098.7	201		6 2	1 21		43.0		.5 14.0		55.8		21.3	18.2	18.2
	Su	10/29/06 19:					-	-	20	4.1	28,607.4	230	87	70	69	69	59		5.319.2	258		4 22	2 22		45.0	9.8 1	-		17.5	17.5	-	-	
L	Ju	10/23/00 19.	10 300	5.1 307	409		- <u>1</u> IV/	N 14.2	20	4.1	20,007.4	2/1	07	11	09	09	79	2,00	J,J13.Z	200	10	- 24	<u> </u>	20	40.0	3.0		17.0	17.5	17.5			<u> </u>

Table A-1. US EPA	Demonstration P	Project at Felton	, DE - Daily O	perational Log	g Sheet (Continued)

		tober 12, 200	ĩ	Cumu	ative Hr	s in Se	ervice				Chlo	rine	Totali	zer to		Pressure F	iltration		Flow/T	otalizer	to	erric	Chloride		_				Back	wash				
				Sumu		3 11 36	o vice	Ava Run	Hour	Run	Chlorine		Totali		1		mauon					FeCl ₃								.ast BW			Actual Ru	un Tin
							ſ	Time	Meter	Time	Tank	CI	Totalizer	Avg Flow					Flow Tota		vg Flow	Tank	Fe	Tank Tar	k Tan	k	R	un Time	onice L		andby Tin		Betwee	
leek	Day of			ТА	TB		тс				Level	dosage		Rate	Influent Outlet	TA Outlet	TB Outlet TC	Effluent	Rate		Rate	Level	Dosage	A B		Total	Tank A	Tank B	Tank C			Tank C Tan	k A Tan'	k B T:
No.	Week	Date	Time	hr	hr		hr	hr	hr	hr	gal	mg/L	kgal	gpm	psig psi	g psig	g psig	psig	gpm k	gal	gpm	gal	mg/L	No. No	. No.	kgal	hr	hr	hr	hr	hr	hr h	ır hr	r
	М	10/30/06	16:20	360			291.3	1.8	NA		19	3.5	28,641.0	305	85	69	67 68	56		348.1	263	8	1.8	22	22 2	0 45.0	11.6	12.3	12.0	26.1	36.1		17.3 1	14.5
	Т	10/31/06		366			297.0	4.5	NA				28,720.2	291	77	72	71 71	57		427.1	291	5	1.1	23 2	20 2		0.0	0.0	0.0	16.2		16.5		
	W	11/01/06	9:25	370			301.3	5.3	NA		30		28,789.4	219	77	70	69 70	57		495.4	216	36	1.7		23 2		4.2	4.2	4.2	30.4		30.7		
8	R	11/02/06	8:40	374		3.2	305.4	4.1	NA		27	5.1	28,858.5	279	83	70	69 70	57		560.4	262	33	1.3	23 2	23 2	1 47.1	8.4	8.4	8.4	49.5	50.1	49.8		
	F Sa	11/3/06 ^(c) 11/04/06	10:10	380			311.8	5.7	NA NA		25		28,958.2	293 227	80 85	70 70	68 68 69 70	55 57		655.6	280 215	28 22	1.5	23 2	23 2		14.7 21.6	14.7 21.6	14.8 21.7	68.3	68.4 87.8	68.6 87.5		23.9
	Sa	11/04/06	12:00	387			318.7	5.7	NA NA		21		29,062.7	227	85	70	70 70	57		849.4	215	16	1.7	23 24 2	23 2	1 47.1 2 49.1	21.6	21.6	21.7		87.8	18.3	.4.6 2	3.9
	M	11/06/06	13:30	398		7.2	329.7	5.1	NA		16		29,138.0	200	81	70	68 68	57		928.0	255	11	1.9	24 2	24 2	2 49.1	2.0	3.1	8.7	37.3	37.3	37.4	<u> </u>	+
	T	11/07/06	16:00	405		3.6	336.1	6.4	NA		12		29.341.4	261	81	70	68 68	57		022.8	247	5	1.8	24 2	24 2	2 49.1	14.3	14.6	15.1	58.0	58.0	58.1		-
	Ŵ	11/08/06	10:00	409			340.7	4.6	NA		10		29,412.0	258	84	70	69 69	÷.		089.4	243	35	2.1		24 2		18.9	19.1	19.7	72.4			23.1 2	22.5
9	R	11/09/06	7:30	414	.6 42	2.9	345.6	4.9	NA	4.9	8	3.0	29,491.0	271	76	70	68 69	55	298 6	167.6	268	31	1.5	25	25 2	3 51.5	0.7	1.4	1.0			14.8		
	F	11/10/06	12:00	420	.5 42	8.8	351.5	5.9	NA		38		29,587.9	274	84	69	67 68	57	266 6	260.8	263	25	1.9	25	25 2	3 51.5	6.6	7.3	6.9	34.8		34.8		
	Sa	11/11/06	10:30				358.7	7.2	NA				29,699.2	258	85	71	68 71			366.2	244		1.6			3 51.5	13.8	14.5	14.1		52.7		18.0 1	18.0
	Su	11/12/06	10:30	432			363.4	4.7	NA		32		29,776.4	274	78	72	71 71	56		440.7	264	15	1.6		26 2		0.5	1.2	0.8		18.7	18.7 ·	-	
	M	11/13/06	10:30	438			369.2	5.8	NA		28		29,870.0	269	81	70	67 68			532.0	262	9	1.9	-		4 53.5	6.3	7.0	6.6			36.9		
	T	11/14/06	13:00	445			376.0	6.8	NA		25		29,975.7	259	85	68	67 67	55		632.8	247	4	1.4		26 2		13.1	13.8	13.4		55.7		19.2 1	19.0
10	W	11/15/06	13:00	451			382.0	6.1 4.4	NA NA		21		30,075.4 30,150.6	271	81 84	72	70 71 69 70	58 57		728.0	259	34	1.5		27 2		0.2	0.9 5.3	0.2		14.9 33.6	15.3 34.0	<u> </u>	
10	F	11/16/06 11/17/06	9:15	455 461		3.8 9.5	386.4 392.1	4.4	NA NA		19		30,150.6	285 266	84	69	69 70 68 68	57		800.3	274 254	30 25	1.6 1.6		27 2		4.6	5.3	4.9		33.6 51.1	51.5	<u> </u>	
	Sa	11/18/06	11:35	467		5.7	398.3	6.2	NA		13	3.5	30,241.7	260	88	71	67 69	57		978.5	234	19	1.0		27 2		16.5	17.2	16.5	70.1	70.2	01.0	22.2 2	22.0
	Su	11/19/06	13:30	407			406.6	8.2	NA		0	3.0	30,338.3	200	81	72	70 71	58		109.5	240	11	1.9		28 2		2.6	3.3	3.1	18.7	18.7	18.7		.2.0
	M	11/20/06	11:00	479		7.0	409.7	3.1	NA		8	2.3	30.522.3	268	80	70	68 68	57		158.4	260	8	1.8	28 2	28 2	6 58.3	5.8	6.5	6.2		36.0	36.0	_	. +
	T	11/21/06	11:15				415.5	5.8	NA		5	3.8	30,614.5	265	81	71	69 69	57		245.4	250	4	1.3	28	28 2	6 58.3	11.6	12.3	12.0		54.9		18.6 1	18.6
	Ŵ	11/22/06	15:30	491			422.2	6.8	NA		34	3.3	30,720.6	261	77	72	71 71	56		346.9	250	39	1.7	29	29 2		0.0	0.3	0.0		21.2	21.2	-	
11	R	11/23/06	NM	N		NM	NM	NA	NA	NA	NM	I NA	NM	NA	NM	NM	NM NM	NM	NM	NM	NA	NM	NA	NM N	M N	/ NM	NM	NM	NM	NM	NM	NM ·		
	F	11/24/06	17:00	503			434.2	12.0	NA		27		30,911.1	265	84	72	70 70	56		530.0	254	28	1.7		29 2	7 60.2	12.0	12.5	12.0		58.3		17.2 1	17.0
	Sa	11/25/06	17:00	509			439.4	5.2	NA		24		30,994.0	267	77	72	71 71	56		609.9	258	24	1.4	30 3	30 2	8 62.2	0.0	0.6	0.3	18.3	18.3	18.3		
	Su	11/26/06	12:00	514			444.6	5.2	NA		21		31,078.7	273	79	72	70 70	57		692.8	268	18	2.1	30 3	30 2	8 62.2	5.1	5.8	5.5	32.1	32.0	32.0		_
	M	11/27/06	12:50				448.5	3.9	NA		19		31,142.0	271	85	69	68 68			752.5	255	15	1.4		30 2		9.0	9.7	9.4			49.6		_
	Т	11/28/06	14:10	524			455.3	6.8	NA		16		31,248.7	262	86	68	68 67 69 70	56		854.4	250	8	2.0		30 2		15.8	16.5	16.2	69.5		69.3		
12	W	11/29/06 11/30/06	13:45	531 535			462.1 466.3	<u>6.8</u> 4.2	NA NA				31,353.0 31,425.3	254	85	71	69 70 70 71	56 57		953.2	241 287	3 34	1.4		30 2 31 2		22.6	23.4	23.0 3.2	87.9	87.7 16.1			24.0
12	R	11/30/06	8:10	535			406.3	4.2				4.2	31,425.3	289	79	72	70 71	Ģ	001 0	.107.7	287	34 29	1.7		31 2 32 3	01.1	2.8	3.5	3.2		16.1	16.1	4.2	5.5
	Sa	12/01/06	13:50	546			476.8	4.0	NA		20	4.2	31,600.2	290	87	69	67 68	57		194.5	254	29	1.6		32 3		9.1	2.0	7.7		39.4		 16.5 1	15.4
	Su	12/02/06	12:00	553			484.1	7.2	NA		35		31,711.2	257	78	72	72 72	57		.300.0	244	17	1.9	33 3	33 3		0.0	0.0	0.0		17.2	16.9		
	M	12/04/06	10:40				488.1	3.9	NA		33		31.777.8	285	77	69	68 69	56		366.0	282	13	1.8		33 3	1 68.2	4.1	4.1	4.0		35.9	35.5	-	_
	Т	12/05/06	14:15	564			495.0	7.1	NA	7.1	29		31,886.0	255	81	69	68 69	56		468.8	243	6	1.9		33 3	1 68.2	11.0	11.0	10.9		56.6	56.2	16.8 1	15.9
	W	12/06/06	11:25	570	.8 57	7.7	501.2	6.1	NA	6.1	25	4.8	31,984.4	270	78	73	72 72	57	310 8	562.7	258	37	1.5	34 :	34 3	2 71.0	0.3	1.0	0.7	14.6	14.6	14.6		
13	R	12/07/06	8:00	575	.2 58		505.7	4.4	NA		23	0.0	32,056.4	271	79	70	69 69	55		.634.1	268	32	2.1		34 3	- 11.0	4.7	5.4	5.2	30.6	30.6	30.6		
	F	12/08/06	10:30	581			511.7	6.0	NA		19		32,150.2	261	81	68	67 67	56		724.1		27	1.6	54 .	34 3	- 11.0	10.7	11.4	11.2	51	51		15.8 1	15.9
	Sa	12/09/06	13:30	589			519.8	8.2	NA			0.0	32,282.0	268	82	71	70 70	58		854.1	264	19	1.8	35 3	35 3	10.1	3.3	3.6	3.2			18.4		_
	Su	12/10/06	NM	N		NM	NM	NA	NA		NM		NM	NA	NM	NM	NM NM	1 40 41		M	NA		NA	NM N	M		NM	NM	NM		1 4071	NM		_
	M	12/11/06	15:15			7.1	530.6	10.8	NA		9	4.1	32,454.4	265	82	70	67 75	57		014.3	246	10	NA	35 3	35 3	5 74.3	14.1	14.5	0.1	56.7			20.6 1	19.5
	W	12/12/06 12/13/06	14:45				537.1 542.3	6.0 3.7	NA NA			3.6 3.6	32,551.6 32,629.0	270 346	79 79	73 70	73 69 72 73	÷.		109.5	265 343	4	1.8 1.5		36 3 36 3	5 75.5 6 76.1	0.0 5.6	0.0	6.5 0.0			15.9 18.5	<u> </u>	
4	R	12/13/06	14:15	617			546.5	4.6	NA		34		32,029.0	282	79	69	69 69	56		260.9	270	9	1.5		36 3	6 76.1	10.4	5.2	4.2		42.1	36.8		_
	F	12/14/06	10:20	621			550.7	4.0	NA		31		32,700.7	262	84	69	69 69	56		324.2	252	5	1.9	36 3	36 3	6 76.1	14.6	9.4	8.4		57.3	52.2	. .	_
	Sa	12/16/06	11:45	627			556.7	5.8	NA		29		32.865.4	261	88	67	67 67	56		411.8	250	35	1.6		36 3	6 76.1	20.6	14.9	14.4		75.9		24.3 1	18.0
	Su	12/17/06	11:35				562.3	5.8	NA		26	3.8	32,959.0	267	79	71	70 71	56		506.4	270	30	1.6		37 3		2.2	2.9	2.3			19.0		
	M	12/18/06	14:40	639	.5 63	9.1	568.5	6.1	NA	6.1	23	3.4	33,061.0	277	84	69	67 67	56	275 9	600.3	255	25	1.5	37 3	37 3	7 78.0	8.3	9.0	8.4	32.9	32.9	33.3		
	Т	12/19/06	15:15	646			575.4	6.9	NA		20		33,167.2	257	85	71	68 69	56		705.8	255	18	2.0	57	37 3		15.2	15.9	15.3	56.9	56.9	57.3 ·	-	
	W	12/20/06	8:55	650			579.1	3.6	NA				33,226.9	276	87	68	66 67	56		758.2	243	15	1.5		37 3	/ /0.0	19.2	19.0	19.0		69.6		24.2 2	24.3
15	R	12/21/06	8:15	656			584.8	5.7	NA				33,317.2	264	79	71	71 70	57		844.5	252	10	1.7		38 3		0.7	0.4	1.1	17.0	17.0	17.0		
	F	12/22/06	11:30				590.6	5.6	NA				33,411.1	278	84	69	68 68			936.3	272	4	1.9			8 80.0	6.5	6.2	6.9		37.4	37.3		-
	Sa Su	12/23/06 12/24/06	15:00	670 675			599.5 604.2	9.0	NA NA		40		33,549.0 33.626.6	255	89 79	69 73	67 66 72 72			.068.5	245 256	31 27	1.7		38 3 39 3		15.3	15.0	15.8 0.3		58.1 12.5	58.0 12.5	20.1 1	19.0
-	M																							39 .	39 3			0.7				-	<u> </u>	-
	 Т	12/25/06 12/26/06	8:00	678 684			607.0 613.1	2.6	NA NA		34	4.8	33,672.6 33,770.4	291 260	79 80	72	70 71 68 69	56 56		186.8	289 248	24 18	2.0 1.8	39 39	39 3	9 82.4 9 82.4	2.8 8.9	3.5 9.6	3.1 9.2	30.8 50.8	30.8 50.7	30.9 50.8		-
	ŵ	12/20/06	13:10	691			619.3	6.0	NA		26		33.873.5	286	85	71	70 69	56		373.2	248	12	1.0		39 3		15.9	14.4	15.4		70.6		19.9 1	17.6
6	R	12/28/06	10:00	696			624.2	4.9	NA		22		33,953.5	200	79	72	71 72	57		456.2	284	7	1.9		40 4	0 02.1	0.9	1.6	1.2		15.3	15.3	5.5	1.0
	F	12/29/06	10:30	701			628.9	4.7	NA		20		34,029.1	270	80	69	68 68	56		530.2	264	3	1.5	40 4	40 4		5.6	6.2	5.9	35.6	35.6	35.6		
	Sa	12/30/06	17:30	707	.3 70	3.5	635.2	6.3	NA	6.3	17	3.6	34,127.0	259	90	69	67 68	57		623.7	247	34	1.2		40 4		11.9	12.5	12.2		56.0	56.0	. 1	17.7
	Su	12/31/06	18:45				644.3	9.2	NA			3.2	34,275.0	267	84	65	71 72	58		766.6	258	26	1.6		41 4	1 86.2	21.5	3.9	3.5		19.2		22.1 -	. 1
	М	01/01/07	17:35				646.7	2.3	NA		12	3.0	34,313.5	283	79	71	67 68	55		803.9	274	23	2.3	41	41 4	1 86.9	1.4	6.3	5.9		39.6	39.6	-	
	Т	01/02/07	16:00	725			652.9	6.2	NA		9	3.6	34,410.1	260	84	73	69 70	57		895.3	246	18	1.5	41	41 4	1 86.9	7.6	12.5	12.1	36.5	55.6	55.7		
	W	01/03/07	8:50	728			656.7	3.8	NA		7	4.0	34,468.6	259	83	71	67 68	55		951.2	248	14	2.0	41 4	41 4		11.3	16.3	15.9	49.4			14.8 2	20.7
17	R	01/04/07 ^(d)	8:15	733	.9 73	0.2	661.9	5.2	NA	5.2	4	4.1	34,553.6	272	79	70	70 71	56	300 11	032.7	261	9	1.8	42	42 4	2 89.0	1.7	0.8	0.2	17.0	17.0	17.0	. –	
	F	01/05/07	9:15	740			668.0	6.1	NA		34	3.6	34,652.5	270	79	69	69 69	55		129.2	264	3	1.8			2 89.0	7.8	6.9	6.3	36.6	36.6	36.6 7	53.8 -	
	Sa	01/06/07 ^(e)	16:20	746	.0 74		674.3	6.3	NA	6.3	31	3.5	34,753.3	269	84	73	64 72	56	278 11	221.4	246	33	1.5		42 4	3 89.8	0.0	13.1	0.0	20.8	57.3	20.5	. 1	17.0
	Su	01/07/07	11:00				680.1	5.6			28		34,845.3	274	78	70	71 69	56		311.6	269		2.0			3 90.4	5.7	1.5	5.8			37.2		. 1

Table A-1. US EPA	A Demonstration Proje	ect at Felton, DE	E - Daily Or	perational Log	Sheet (Continued)

Start-up	Date: Oct	ober 12, 200	6																																
				Cumulat	ive Hrs ir	Service				Chlo	rine	Total	zer to		Pre	ssure Filtra	tion	о 	Flo	w/Totaliz	er to	Ferric	Chloride	9					Backy	/ash					
							Avg Run	Hour	Run	Chlorine	CI		Avg Flow						Flow		Avg Flow	FeCl ₃	Fe						Since L					ıl Run Ti	
							Time	Meter	Time	Tank	dosage	Totalizer	Pata						Rate	Totalizer	Rate	Tank	Dosage		Tank Ta			Run Time			dby Tin			ween B\	
Week	Day of			TA	TB	TC				Level	-					Outlet TB						Level	-	A	в				Tank C					Tank B	
No.	Week	Date	Time	hr	hr	hr	hr	hr	hr	gal	mg/L	kgal	gpm	psig	psig	psig	psig	psig		kgal	gpm	gal	_	No.		o. kgal		hr	hr	hr	hr	hr	hr	hr	hr
	M	01/08/07	11:10	756.9	753.1	685.3	5.2	NA		25	4.2	34,928.3	264	82	71	69	69		300	11,389.8	249	23	1.4		43	43 90.4		6.7	11.0	56.2	35.4	55.9	-	-	-
	w	01/09/07 01/10/07	15:00 11:20		759.1 764.9	690.7 696.6	6.0 5.9	NA NA		21	4.7		276 282	86 79	67 70	67 70	67 70			11,484.5	265 271		1.8		43 44	43 90.4 44 91.7	4 17.4 7 5.0	13.3 3.9		70.5	55.7 14.6	76.2	18.4	15.2	17.7
18	P	01/10/07	10:00		764.9		4.2	NA		10		35,120.0	310	79	70	70	70			11,560.3	271 289		1.0		44	44 91.7	7 10.1	9.0	4.0	32.1	32.0	31.7	- 16.8	- 15.4	
10	F	01/12/07	13:15		776.4		6.4	NA		12		35,306.7	265	79	73	67	67			11,749.4	209		1.2		44	44 92.7	7 0.0	0.0		15.5	15.7	47.4	10.0	10.4	<u> </u>
	Sa	01/13/07	16:30		782.6		6.4	NA		25		35,404.5	255	80	71	66	66			11,844.1	247		1.2			44 92.7		6.2		41.3	41.6	73.1	-	10.3	23.8
	Su	01/14/07	18:10		789.6		7.1	NA		20		35.520.0	270	81	65	70	70			11.956.7	263		1.6			45 93.6		2.9	3.2	59.9	18.6	18.6	-	-	-
	М	01/15/07	16:50	799.8	791.6	724.0	4.0	NA	4.0	17	4.5	35,598.6	325	81	69	69	69	55		12,030.4	305		1.5	i 45	46	45 93.6	6 18.6	6 7.9	8.2	77	35.7	35.7	19.8	12.4	10.0
	Т	01/16/07	15:00	805.0	799.8	729.2	6.2	NA	6.2	14	4.0	35,685.6	234	81	70	69	69	57	273	12,114.6	226	14	2.1	46	47	46 95.0	0 4.0	3.7	3.4	15.5	15.6	15.6	8.5	7.6	7.6
	W	01/17/07 ^(f)	9:45	809.5	804.3	733.7	4.5	NA	4.5	12	3.1	35,761.3	280	79	72	70	71	57	306	12,186.0	264	8	2.4	47	48	47 96.3	3 0.0	0.6	0.3	14.8	14.8	14.8	-	-	-
19	R	01/18/07	9:00		808.1		3.8	NA		10		35,824.7	278	82	70	66	68			12,247.8	271		2.4			47 96.3		3 4.4		33.2	33.2	33.2	7.7	7.6	7.7
	F	01/19/07	9:30		813.3	742.8	5.3	NA		8	2.6	35,914.4	284	79	71	67	69			12,335.1	276		2.0			48 97.6		2.0	1.7	18.6	18.6	18.6	-	7.1	7.1
	Sa	01/20/07	9:40		818.7	748.2	5.5	NA		38		36,006.3	277	79	70	72	72			12,422.5	263		2.0		50	49 98.5		2 0.3		37.9	19.4	19.3	-	-	-
	Su	01/21/07	10:00		824.9			NA		35			268	80	69	69	70			12,518.9	258		2.4		50	49 98.5		6.5		56.2	37.7	37.6	19.6	9.4	9.5
	M	01/22/07 01/23/07	9:30		829.1 834.5		5.4	NA		33	3.1	36,181.5	231	79	71	70 68	71				213 336		2.4		51 51	50 99.8 50 99.8	3 1.6 3 7.0	6 1.3 0 6.7	1.0	17.4	17.5	17.4	- 10.2	- 9.3	- 9.3
	w	01/23/07 01/24/07	9:30 9:40	840.2 846.8	834.5 841.1	764.1	4.2	NA NA		29	5.5	36,266.3	337 281	79 81	69 71	68	68			12,672.3 12,780.4	336		2.5		51 52	50 99.8 51 101.1	1 34	6.7	6.4 3.8	36.6 16.6	36.8 16.6	36.7 16.6	10.2	9.3	9.3
20	R	01/25/07	9:40		845.9			NA		20		36,459.8	201	81	66		70				267		2.2			52 102.0	. 0	4.0		35.1	18.5	18.5	11.5	5.1	
20	F	01/26/07	9:40		851.8		6.0	NA		20		36,558.4	275	81	71	69	65			12,954.0	265		2.1		54	52 102.9		2.5		19.0	19.0	37.6	7.9	7.2	9.1
	Sa	01/27/07	14:15		857.5		5.7	NA				36.655.2	281	84	72	69	66			13.047.1	271		2.2			53 104.2		7 1.0	4.2	18.8	18.8	18.8	-	4.7	7.6
	Su	01/28/07	14:00		866.1	796.0	8.7	NA	8.7	31	3.6	36,752.8	188	83	67	69	69	56	276	13,095.4	NA	26	1.8	52	56	54 105.1	1 9.6	6 4.9		39.2	20.4	20.4	10.8	6.4	7.0
	М	01/29/07	12:10	876.7	870.4	800.4	4.3	NA	4.3	27	4.0	36,870.5	453	78	70	70	70	56	290	13,256.2	NA	17	2.3	53	57	55 106.5	5 3.1	2.8	2.5	15	15	15	8.3	7.5	7.4
	Т	01/30/07	11:35	882.0	875.4		5.1	NA	5.1	24	4.1	36,955.6	278	78	72	71	71			13,335.5	259		2.5		58	56 107.8	3 0.1	0.3	0.1	17.6	17.9	17.9	-	-	-
	W	01/31/07	10:40		880.8	810.6	5.3	NA		21	4.0	37,042.7	272	78	70	68	68			13,420.5	266		2.1			56 107.8	3 5.4	5.7	5.3	35.3	35.6	35.6	8.5	8.2	8.1
21	R	02/01/07	9:40		886.0	815.8	5.2	NA		18		37,132.4	286	79	71	69	70			13,507.2	276		2.0		59	57 109.0	2.2	2 2.7	2.4	17.2	17.2	17.1	6.8	6.7	6.8
	F	02/02/07	9:45		891.4	821.3	5.4	NA		15	0.0	37,224.9	284	79	72	70	71			13,595.9	272		2.3		60	58 110.3	3 0.8	3 1.4		18.3	18.3	18.3	5.9	6.2	6.2
	Sa Su	02/03/07 02/04/07	11:00 14:30		896.6 905.0		5.2	NA NA		13	2.6	37,314.6	287 273	81 82	71	70	70			13,679.2 13,815.6	267 265		2.0		61 62	59 111.5 60 112.3	5 0.1	0.4		18.3 38.0	18.3 19.7	18.3	- 11.4	7.2	7.1
	M	02/04/07	14:50		909.3		4.4	NA		6	40	37,435.0	273	80	72	71	69			13,815.0	203		2.0		63	60 113 2	2 17	1.4		16.4	16.4	35.9	11.4	3.9	- 8.1
	T	02/06/07	11:15		914.8		5.6	NA		36	1.5	37,619.5	275	80	68	70	68		000	13,974.3	265		1.9		64	61 114.0) 7.5	3.3	3.6	NA	NA	NA	7.8	4.2	4.0
	Ŵ	02/07/07	12:10		920.4		5.5	NA		33		37,715.1	288	79	70	68	69			14,064.2	271		2.5		65	62 115.3	3 5.3	5.0	5.0	18.9	18.9	18.7	7.3	7.6	8.2
22	R	02/08/07	13:00		926.2		5.8	NA		30		37,813.3	282	78	69	68	69	56		14,159.3	273		2.1	60	66	63 116.6	3.8	3 3.2	2.6	18.5	18.5	18.5	9.8	7.6	7.8
	F	02/09/07	11:10	939.5	932.2	862.5	6.0	NA	6.0	27	3.5	37,913.6	279	80	73	67	71	56	295	14,255.3	267	12	2.1	61	67	64 118.0	0.0	1.6	0.8	15.6	15.6	15.6	-	5.8	7.1
	Sa	02/10/07	12:00	946.1	938.3	868.8	6.3	NA		23			260	80	69	68	69			14,355.7	264		2.1		68	65 118.9		5 2.1	0.0	33.7	18.1	18.1	9.9	7.5	-
	Su	02/11/07	12:30		945.0		6.8	NA		19		38,128.4	284	78	70	70	68			14,463.1	263		2.3		69	65 119.8	3 3.4	1.6	7.0	17.6	17.6	35.7	10.1	6.4	9.2
	M	02/12/07	13:30		951.7	882.5	6.7	NA			0.1	38,239.7	275	82	73	68	66 68			14,569.9	264		1.9		70 71	66 121.2	2 0.0	1.9		16.8	16.8	16.8	- 9.7	6.4	7.2
		02/13/07	10:50		956.2			NA		14	3.0	38,317.6	280	/8	6/	71 69				14,645.3	271		2.3		71	67 122.0 67 122.5	0 4.9	0.0		34.1	17.3		9.7	- 9.3	-
23	W R	02/14/07 02/15/07	10:00 9:45		962.3 966.7	893.2 897.6	6.0 4.5	NA NA		11	3.0	38,415.1 38,491.6	269 281	79	69	69 71	67 70			14,739.1	259 272	10 4	2.5		72	67 122.5 68 123.3	3 6.1	8 6.1 1.2	8.0 2.5	17.3 35.3	34.6 18.0	34.6 18.0	- 8.8	9.3	9.9
23	F	02/15/07	8:30		972.7	903.2	5.8	NA		22		38,491.0	287	81	71	68	70			14,908.5	272		2.1		73	69 123.		3 2.2		16.6	16.6	16.6	7.8	4.0	6.8
	Sa	02/17/07	11:00		978.0		5.4	NA		19		38,681.0	275	84	72	66	72			14,995.9	272		2.0		74	70 126.0	0.0	3 3.5		18.4	18.4	18.4	-	6.6	
	Su	02/18/07	9:00		984.9		7.1	NA		15		38,796.5	273	80	70	71	69			15,106.8	260		2.1		75	70 126.4		3.8		35.9	17.1	35.5	11.2	8.2	9.3
	М	02/19/07	12:20	998.2	989.5	920.5	4.6	NA	4.6	13	3.0	38,874.0	281	82	71	70	67	57	273	15,181.8	272	19	2.3	67	76	71 127.7	7 1.4	0.2	2.6	18.9	18.8	18.8	-	-	-
	Т	02/20/07	8:00	1,004.8	996.1	927.1	6.6	NA	6.6	10	3.3	38,980.1	268	80	70	69	69			15,282.7	255	10	2.5	67	76	71 127.7	7 8.0	6.8	9.2	35.2	35.1	35.1	-	10.1	11.5
	W	02/21/07	9:15	1,011.1	1,002.0		6.0	NA		7	3.5	39,079.7	275	78	68	70	70			15,378.4	264		2.1		77	72 128.6		3 2.6	3.6	53.9	18.7	18.7	16.8	6.9	7.3
24	R	02/22/07	8:00		1,006.7		4.8	NA		37	2.1	39,161.1	285	83	69	71	70			15,456.5	273		1.8		78	73 129.9	9 2.3	3 0.4		17.0	17.0	17.1	5.9	4.5	4.0
	F	02/23/07	8:00		1,012.9		6.1	NA		34		39,263.0	277	80	69	69	66			15,556.1	271		2.4		79	74 131.2	2 2.5	2.0		17.6	17.6	17.6	6.3	6.3	-
	Sa	02/24/07	14:00		1,019.4		6.3	NA		30			279	84	69	68	69			15,658.6	270		2.0		80	76 133.0		3.7	0.0	20.3	20.3	20.3	-	6.1	-
	Su M	02/25/07 02/26/07	15:00 9:30	1,035.1	1,025.7	956.7 962.6	6.6	NA		27		39,476.6 39,576.4	273 280	85	70	69 69	67 67			15,762.2	263 271		2.2		81 82	76 133.5	9.3	3.9	6.7	40.7 12.9	20.4 12.9	40.7 12.9	13.0 11.4	8.6 8.0	9.5
	T	02/26/07	9:30 8:30		1,031.7	962.6	22.9	NA		24		39,576.4	280	78	69	69	67			15,858.8	271 257		2.1		82	77 134.7	2.2	1.3		12.9	12.9	12.9		0.0	- 1.8
	w	02/28/07	11:15		1,067.4	998.3	12.9	NA		38	2.2	40,158.2	270	81	71	70	69			16,415.6	263		1.7		85	80 138.2		3 4.1	4.7	13.1	13.1	13.1	-	-	-
25	R	03/01/07	8:30		1,070.5		3.2	NA		36		40,216.4	303	79	69	72	70			16,471.4	200		2.1		87	82 140.4		0.0		17.2	17.2	17.2	5.8	5.7	5.5
	F	03/02/07	9:40		1,076.2	1,007.1	5.7	NA		34		40,310.7	276	80	70	71	70			16,564.2	271		2.2		88	83 141.7	7 1.3	3 0.0		18.5	18.5	18.5	6.7	-	5.4
	Sa	03/03/07	10:40	1,091.6	1,082.1	1,012.6	5.6	NA			5.1	40,403.2	274	81	71	72	68	56	293	16,653.7	265		2.3		88	84 142.6	6 0.1	5.9	0.9	17.2	17.2	17.2	7.9	-	-
	М	03/05/07	12:40		1,093.9		12.2	NA		24			277	80	68	70	69			16,850.4	269		2.1		91	86 145.1	1 4.7	2.0	3.0	18.8	18.8	18.8	7.8	5.3	5.3
	Т	03/06/07	13:00	1,109.9	1,099.4		5.6	NA		21	3.8	40,697.8	275	83	70	69	66			16,940.0	267		2.3		92	87 146.5	5 2.7	2.2	3.2	18.3	18.2	18.2	5.8	4.6	
	W	03/07/07	10:50		1,105.0		5.4	NA			0.0	40,790.5	286	81	72	67	74			17,029.7	277		2.3		93	89 148.2	2 2.2	3.2	0.0	15.8	15.6	15.4	4.7	6.5	3.9
26	R	03/08/07	10:00		1,109.2		4.2	NA	-	16		40,861.5	284	80	70	69	72			17,098.9	277		2.5		94	90 149.5		0.9		17.2	17.3	17.3	-	-	-
	F	03/09/07 ^(g)	9:30		1,115.6		6.4	4.4		13	0.0	40,962.7	383	85	67	66	67		287	17,195.8	254		2.4		94	90 149.5	5 8.1	7.3	6.5	35.4	35.5	35.5	9.8	-	-
	Sa	03/10/07	10:15		1,121.1	1,051.2	5.4	11.6			2.10		215	83	69	67	73				279		2.3		96	92 151.7	3.9	2.9		18.4	18.3	18.4	6.8	-	4.0
	Su	03/11/07	10:40	1,138.2	1,127.6	1,058.0	6.7	17.6	6.0	7	4.2	41,168.7	314	79	70	70	69	56	290	17,397.5	275	23	2.1	82	98	93 153.5	3.9	2.2	3.1	16.7	16.7	16.8	7.0	5.7	5.5

Start-up	Date: Oct	ober 12, 200	6																															
				Cumula	tive Hrs i	in Service				Chlo	rine	Totali	izer to		Press	sure Filtrat	tion		Flo	w/Totaliz	er to	Ferric (Chloride	Э					Backwas	sh				
							Avg Run	Hour	Run	Chlorine												FeCl ₃	-						Since Last	BW		Act	ual Run	Time
							Time	Meter	Time	Tank	CI	Totalizer	Avg Flow						Flow	Totalizer	Avg Flow		Fe Dosage	Tank	Tank 1	ank		Run Time		Standb	oy Time	E	etween	BW
Week	Dav of			TA	TB	TC				Level	dosage		Rate	Influent	Outlet TA	Outlet TB	Outlet TC	Effluent	Rate		Rate	Level	Dosage	A	в	C Tot	al Tank	A Tank B T	ank C Tar	nk A Tan	k B Ta	nk C Tank	Tank F	Tank
No.	Week	Date	Time	hr	hr	hr	hr	hr	hr	gal	mg/L	kgal	gpm	psig	psig	psig	psig	psig	gpm	kgal	gpm	gal	mg/L	No.	No.	No. kga	l hr	hr	hr h	nr h	hr	hr hr	hr	hr
	М	03/12/07	8:30	1.143.8	1.133.	1 1,063.5	5.5	17.6	0.0	5		41,259.0	NA	82	72	71	67	56	296	17,487.6	271	15	2.7	83	99	94 154	.8 2.	5 2.0	3.1	15.9	15.9	15.9 6.	4 4.7	7 -
	Т	03/13/07	9:30	1,149.4			5.5	23.6	6.0	35	4.9	41,354.7	266	80	72	68	73		305	17,577.8	273	8	2.2	84	100	96 156	.5 1.	7 2.9			19.0	18.9 6.	2 -	4
	W	03/14/07	9:00	1,154.5	1,143.	5 1,074.0	5.0	29.2	5.6	32	4.1	41,440.7	256	79	71	72	68	55	305	17,661.2	276	39	2.1	85	102	97 158	.3 0.	6 0.0	1.2	17.7	17.7	17.7 6.	4 4.9	3 3
27	R	03/15/07	8:20	1,160.8	1,149.	8 1,080.3	6.3	35.8	6.6	29	3.3	41,545.9	266	82	73	70	66	56	292	17,763.0	269	31	2.3	8 86	103	98 159	.6 0.	5 1.4	3.7	16.3	16.2	16.3 6.	5 3.7	7 5
	F	03/16/07	9:15	1,166.8	1,155.	9 1,086.3	6.0	42.3	6.5	26	3.5	41,646.1	257	84	76	67	66	56	290	17,859.7	267	24	2.1	87	104	99 160	.9 0.	0 3.8	4.7	18.1	18.1	18.1 6.	4 5.3	3 5
	Sa	03/17/07	10:00	1,173.2	1,162.	2 1,092.3	6.2	49.0	6.7	21	5.6	41,750.7	260	81	74	68	69	56	305	17,960.7	270	15	2.6	88	105	100 162	.2 0.	0 4.8	5.1	18.8	18.8	19.0 -	5.8	3 6
	Su	03/18/07	13:00	1,180.1	1,168.	7 1,098.8	6.6	56.0	7.0	17	4.3	41,860.3	261	82	68	67	70	56	275	18,066.9	267	7	2.2	2 88	106	101 163	.0 6.	9 5.5	4.7	39.2	20.4	20.4 11.	6 8.9	9 10
	М	03/19/07	11:00	1,185.8	1,174.	4 1,104.5	5.7	62.1	6.1	14	3.7	41,954.7	258	79	72	69	72	56	308	18,157.6	265	9	2.5	5 89	107	102 164	.4 1.	0 2.3	0.0	16.2	16.2	16.2 4.	9 -	3
	Т	03/20/07	12:00	1,191.0	1,179.	3 1,109.7	5.1	67.7	5.6	11	4.1	42,041.4	258	84	69	67	74	56	283	18,242.5	277	38	2.1	90	109	103 166	.2 1.	3 0.9	1.8	17.2	17.2	17.2 4.	5 -	-
	W	03/21/07	9:15	1,196.2	1,184.	2 1,114.5	5.0	73.3	5.6	9	2.7	42,127.1	255	80	69	72	69	56	304	18,327.1	284	31	2.4	l 91	111	105 168	.4 2.	0 0.1	0.6	17.0	17.0	17.0 6.	7 5.4	4 4
28	R	03/22/07	8:20	1,201.6	1,189.	7 1,120.0	5.5	79.2	5.9	6	3.8	42,218.5	258	79	72	72	69	56	308	18,415.4	269	24	2.3	3 92	112	106 169	.7 0.	7 0.2	1.3	17.3	17.3	17.3 5.	3 3.9	3 3
	F	03/23/07	8:20	1,206.9	1,195.	1 1,125.4	5.4	85.0	5.8	18	3.9	42,309.5	261	82	74	69	67	55	295	18,505.0	278	17	2.3	93	113	107 171	.1 0.	7 1.7	3.1	18.0	18.0	18.0 7.	8 3.2	2 4
	Sa	03/24/07	10:10	1,214.1	1,202.	3 1,132.6	5 7.2	92.6	7.6	14	3.9	42,428.9	262	81	74	69	68	56	300	18,619.8	266	8	2.3	94	114	108 172	.4 0.	1 5.7	6.2	18.2	18.3	18.3 5.	2 -	-
	Su	03/25/07	10:10	1,219.7	1,207.	6 1,137.9	5.4	98.6	6.0	11	3.8	42,521.9	258	80	73	71	70	57	308	18,710.6	280	42	1.9	9 95	116	110 174	.7 0.	5 0.9	1.4	18.0	18.0	18.0 5.	2 -	-
	М	03/26/07	8:00	1,225.4	1,213.	0 1,143.3	5.5	104.8	6.2	8	3.6	42,619.5	262	78	69	71	70	56	304	18,805.4	287	35	2.1	96	118	112 176	.9 1.	0 0.3	0.6	15.7	15.7	15.7 -436.	3 -	-
	Т	03/27/07	8:00	789.7	1,218.	2 1,148.5	-141.8	110.4	5.6	6	2.8	42,704.4	253	82	72	71	66	55	295	18,889.6	-10	28	2.5	5 97	119	113 178	.2 1.	6 1.3	2.0	17.9	17.8	17.8 445.	7 -	-
	W	03/28/07	8:00	1,236.5	1,223.	7 1,154.0	152.6	116.6	6.2	3	3.6	42,800.8	259	81	69	71	68	55	295	18,984.7	10		2.5	98	121	115 180	.5 2.	7 1.1	1.9	17.4	17.4	17.5 6.	5 5.3	3 -
29	R	03/29/07	8:00	1,242.1	1,229.	3 1,159.6	5.6	122.6		32		42,895.2	262	81	71	70	64				272		2.2	2 99	122	116 181	.8 1.	8 1.4			17.4	17.5 7.	1 4.8	3 -
	F	03/30/07	8:00	1,248.9	1,236.	1 1,166.1	6.7	129.8	7.2	28	3 4.2	43,008.1	261	81	73	65	74			19,185.5	272	3	2.7	100	123	118 183	.6 1.	5 3.4	0.1	18.2	18.2	18.2 6.	1 -	-
	Sa	03/31/07	10:00	1,254.3	1,241.		5.3	135.6	5.8	26		43,099.0	261	83		68	66			19,273.6	277		2.3		125	119 185	.3 0.	8 0.4			18.0	18.0 4.		-
	Su	04/01/07	11:30	1,259.9	1,246.	2 1,176.8	5.3	141.6	6.0	24	2.5	43,191.7	257	83	68	70	67	56	5 272	19,364.7	286	31	2.3	3 102	127	121 187	.6 1.	6 0.5	1.0	19.0	19.0	19.0 4.	9 -	-
	M	04/02/07	9:30	1,266.4	1,252.		6.3	148.6	7.0	21		43,298.8	255	82	68	71	68			19,470.6	282		2.5		129	123 189	.8 3.	2 1.0			16.9	16.9 -		-
	Т	04/03/07	9:00	1,275.2	1,258.	8 1,189.5	5 7.3	156.1	7.5	19		43,415.6	260	80	70	72	69			19,585.4	263		2.3	105	132	126 193		3 0.4			15.7	15.7 3.	0 5.4	4 5.
	W	04/04/07	10:00	1,279.6	1,266.		6.1	163.0	6.9	17		43,522.4	258	78	70	68	70		201	19,690.1	288		2.2	2 106	133	127 194		7 2.4			15.2	15.2 -	-	-
30	R	04/05/07	11:35	1,284.8		2 1,201.9	5.4	169.1	6.1	14		43,616.4	257	86		66	67			19,771.9	252		1.9		133	127 195						34.5 3.	2 9.3	
	F	04/06/07	12:30	1,292.7	1,279.		3 7.9	177.0	7.9	28		43,740.8	262	80		70	70			19,894.4	259		2.4	109	134	128 196		5 7.0			12.9	12.8 -	-	9
	Sa	04/07/07	12:30	1,296.5	1,282.		3.3	180.8	3.8	26		43,800.2	261	81		68	74		001	19,950.4	280		2.5	5 109	134	129 197		3 10.7			33.4	20.5 13.		4
	Su	04/08/07	11:00	1,301.9	1,287.		5.5	186.7	5.9	24		43,890.3	255	81		74	70			20,039.9	270		2.7		137	130 199		8 0.1			16.1	16.1 4.		3.
	M	04/09/07	10:00	1,307.1	1,292.		5.1	192.3	5.6	22		43,977.0	258	81		70	68			20,125.0	276		2.4		138	131 200		0 3.1			17.3	17.4 5.		-
	Т	04/10/07	11:30	1,311.0			3.7	196.6	4.3	19		44,043.1	256	81	÷.	70	70			20,189.2	289		2.7			133 203		0 0.4				20.2 5.	-	4.
	W	04/11/07	9:45	1,316.1	1,301.		5.0	202.2	5.6	16		44,129.3	257	81		69	72			20,274.9	284		2.4		142	134 204		6 1.3				17.6 3.	-	4.
31	R	04/12/07	10:30		1,304.		3 4.1	206.8	4.6	13		44,200.7	259	81		69	71			20,345.5	289		2.5			135 206		9 1.5			17.4	17.4 -	-	3.
	F	04/13/07	11:00	1,325.4			5.1	212.7	5.9	10		44,291.7	257	82		68	67			20,435.8	295		2.3		147	136 209		1 0.4			18.0	18.0 4.		-
	Sa	04/14/07	11:55				6 4.4	217.7	5.0	6	0.0	44,370.1	261	80		66	74				293		2.7		149	138 211	.5 0.	3 0.7			19.9	19.8 4.	-	4
	Su	04/15/07	11:15		1,319.		5.8	224.1	6.4	18		44,470.2	261	80		71	70			20,611.8	285		2.1		152	139 213	./ 1.	3 1.0			16.9	16.8 4.	1	6
	M	04/16/07	8:30	1,340.8	1,323.		3 4.7	229.5	5.4	15		44,553.0	256	79		69	73			20,693.8	291		2.5		154	141 215		1 0.4			15.7	15.7 3.	-	2.
	T	04/17/07	8:30	1,346.0		7 1,262.4	5.1	235.0	5.5	12	4.1	44,639.6	262	80		69	68				282		2.4		156	142 217						17.5 -	-	8
	W	04/18/07	8:30				6.2	241.5	6.5	9	3.5	44,739.8	257	81		71	74			20,874.8	256		2.4		157	143 218					18.5	18.5 -	-	4
32	R	04/19/07	8:00	1,357.8	1,339.		5.4	247.5	6.0	39		44,833.8	261	83		66	68			20,967.5	288		1.3			144 220		1 0.8			17.0	17.0 4.		
	F	04/20/07	8:15	1,363.6	.,	.,=	5 5.4	253.8		37		44,929.6	253	80		70	72					29	2.2			146 223		5 0.8			18.5	18.5 -	-	4
	Sa	04/21/07	8:10		1,350.		5.7	260.3	6.5	34		45,028.9	255	83		67	58				288		2.4		165	147 225		2 0.9			17.4	17.4 -	-	
	Su	04/22/07	15:00	1,380.8	1,360.		11.1	272.8	12.5	27		45,222.5	258			73	73				295		2.0		1/2	151 232		6 0.1	0.3	0.0	0.0	0.0 -	+	-
	M	04/23/07	8:40	1,382.1	1,361.		1.2	274.2				45,243.1	245			69	69				233		1.5		172	151 232				16.2	16.2	16.1 -	-	
	T	04/24/07	8:30	1,388.5			6.2	281.3	7.1	24		45,351.0	253	79		72	70			21,481.0	290		2.2		176	153 235	.6 0.	6 0.1		16.8	16.8	16.9 -	-	-
	W	04/25/07	7:40	1,394.4	1,373.		5.9	287.9	6.6	20		45,451.8	255	81		69	67			21,581.2	283		2.1			155 238		1 1.4		16.3	16.3	16.3 3.		-
33	R	04/26/07	8:15	1,400.9		6 1,316.5	6.2	294.7	6.8	16		45,556.3	256	82		64	71			21,685.4	279		2.6			157 240		1 2.7				17.1 5.	1 -	3
	F	04/27/07	8:00		1,383.		4.7	300.0	5.3	13		45,637.1	254	83		69 70	69				285		2.6			158 242		9 0.9			18.6	18.6 -		-
	Sa	04/28/07	8:00	1,411.7	1,389.		5.9	306.8	6.8			45,740.9	254	82			69			21,869.3	294		2.3			160 245		0 2.8			17.9			
	Su	04/29/07	8:20	1,417.8	1,396.	2 1,333.4	6.2	314.1	7.3	39	4.4	45,847.8	244	81	/1	70	74	56	300	21,975.4	284	27	2.2	2 139	190	164 250	. 9 1.	3 0.9	0.4	16.9	16.9	16.9 2.	<u>- k</u>	4.

Start-up	Date: C	October 12, 200)6																																
				Cumul	lative	Hrs in	Service				Chlo	rine	Totali	zer to		Pre	ssure Filtra	tion		Flow	/Totalize	r to F	erric	Chloride						Backw					
								Avg Run	Hour	Run	Chlorine	CI	L	Avg Flow						Flow _		Avg Flow	FeCl ₃	Fe						Since La					al Run Time
				ТА		то	тс	Time	Meter	Time	Tank	dosage	Totalizer	Pate		0		Outlet TC Efflue		Rate	otalizer	Rate	Tank	Dosage Ta		ank Ta			Time	ank C 1		andby Tir		50	etween BW
Week No.	Day of Weel		Time	hr		TB hr	hr	hr	hr	hr	Level gal	mg/L	kgal		psig	psig	psig	psig psi		gpm	kgal	gpm	Level	mg/L N			lo. kgal		וג ם ו זר	hr	hr	hr	hr	hr	Tank B Tan hr h
NO.	M	04/30/07	8:10		_	1.402.1	1.340.6	6.7	321.5	7.4	ga1 36	3.0	45.965.6	265	83	paig 69	71 paig	68	56		22.093.6	294	17			_	165 252.6	4.9	2.2	3.4	16.4		16.4	5.5	
	Т	05/01/07	8:00	1,430).2 1	1,406.4	1,344.9	4.7	327.0	5.5	34	3.0	46,045.0	241	83	67	73	69	56		22,171.8	279	11	2.3 1	41	196	169 257.1	3.7	0.1	1.7	16.6	16.6	16.6	6.0	-
	W	05/02/07	8:00			1,412.6		6.4	333.4	6.4	30		46,145.4	261	78	71	68		56		22,272.0	261	3		42		170 259.3	3.9	0.3	3.5	16.4		16.4	-	
34	R	05/03/07	8:00		_	1,418.1	1,357.7	6.2	340.0	6.6	26	4.2	46,257.4	283	84	68	67		57		22,383.0	300	38				174 264.6	1.2	0.1	0.6	14.8		14.7	6.9	
	F Sa	05/04/07 ^(h) 05/05/07	8:45			1,426.3 1,433.5	1,366.2	8.6	350.1 357.6	10.1	21	4.2	46,397.8 46,518.1	232 267	75	69 68	69 69	69 67	55 56		22,521.3	268 255	30 22				177 269.6 177 270.1	2.5	1.8	2.1 9.6	19.2 36.2		19.2	- 14.0	8.9 -
	Su	05/06/07	10:20			1,433.5	1,373.7	7.4	365.3	7.5	10		46,516.1	267	80	70	68	69	56		22,034.0	255	14				178 271.0	3.6	8.0	9.0	17.4		17.3	- 14.0	9.7 1
	M	05/07/07	9:00			1.447.3	1.387.1	6.3	371.8	6.5	12	3.4	46.742.6	263	79	67	67	71	55		22,845.8	255	5				179 271.8	10.0	4.5	1.1	33	15.6	15.7	13.6	
	Т	05/08/07	8:45	1,480		1,454.4		7.2	379.4	7.6	8	4.0	46,861.0	260	79	69	70	64	55	282 2	22,957.3	258	32	2.0 1	47	210	179 272.7	3.5	1.5	8.5	16.2		31.9	-	8.3 1
	W	05/09/07	8:20			1,461.6		7.3	386.9	7.5	3	4.9	46,980.5	266	81	65	71	68	56		23,069.9	257	24				180 273.5	11.0	0.4	4.8	31.5		6.0	-	6.4 1
35	R	05/10/07 05/11/07	8:00			1,468.0 1.475.7		6.3	393.8 401.6	6.9 7.8	32		47,088.6	261 266	77 84	69 68	68	68	55 55		23,171.2	268 254	16 7				181 275.6 181 275.6	0.1	0.4	0.7	16.0 32.6		16.1	-	9.6
	Sa	05/11/07	9:30			1,475.7		7.2	401.6	7.8	28		47,213.0	260	84 84	66	68	70	55		23,288.6	254	34				181 275.6	15.1	5.5	8.4	32.6 50.1		32.7	- 17.1	9.6
	Su	05/13/07	8:30			1,491.6		8.7	418.2	9.1	23	3.3	47,473.5	263	78	68	68	70	56		23,533.6		24				183 277.7	6.6	4.5	0.6	15.6		15.6	-	8.9
	м	05/14/07 ⁽ⁱ⁾	8:00	1,524	1.4 1	1,497.7	1,438.1	6.3	425.5	7.3	17	4.6	47,576.0	234	80	66	71	66	55	280 2	23,632.1	259	16	2.3 1	150	215	183 278.1	13.1	1.7	7.1	32.5	16.9	32.5	14.9	- 1
	Т	05/15/07	8:00	1,530).3 1	1,504.1	1,444.2	6.1	431.2	5.7	14	3.5	47,677.4	296	81	72	66	73	56	275 2	23,728.1	261	9	2.1 1	151	215	184 278.9	4.1	8.0	2.7	16.4		16.3	-	10.0
	W	05/16/07	9:15			1,512.3	1,452.5	8.4	439.8	8.6	10	3.5	47,812.8	262	84	68	70	76	56		23,857.4	258	34				185 279.8	12.7	6.2	1.1	34.2		17.8	15.6	
36	R	05/17/07	9:15			1,519.1	1,459.7	6.9 7.8	447.1 455.2	7.3	21	5.1 4.6	47,927.0 48,054.2	261 262	78 81	69 67	70	67	55 56		23,966.8	263 259	26 17				185 280.6 186 281.5	3.9	2.3	8.3 4.5	16.6 33.3		34.4	- 14.7	10.0 1
	Sa	05/18/07	10:00			1.532.8		5.7	400.2	5.8	10	4.6	48,054.2	262	80	70	68	65	56		24,067.7	259	39				186 281.9	2.6	5.7	4.5	18.5		35.3	14.7	8.8 1
	Su	05/20/07	11:00			1,539.6		7.0	468.5	7.5	10		48,264.6	264	81	66	69	69	56		24,287.3	266	31				187 282.8	9.9	3.7	5.9	35.8		17.2	11.5	
	М	05/21/07	8:45	1,572	2.7 1	1,545.9	1,486.5	6.4	475.3	6.8	6	4.4	48,370.6	260	79	69	73	71	55		24,386.3	259	24	2.0 1	154	220	188 284.0	4.8	0.1	2.3	14.7		14.7	-	
	Т	05/22/07	14:00			1,556.0	1,496.6	10.1	485.5	10.2	17	3.6	48,534.5	268	80	68	69	70	56		24,542.1	257	20				188 284.0		10.2	12.4	30.7		30.7	20.8	
	W	05/23/07	10:00			1,562.0	1,502.6	6.0	491.6	6.1	13	4.9	48,629.8	260	82	75	68	68	56		24,633.1	253	16				188 284.0		16.2	18.4	14.2		45.2	-	18.0 2
37	R	05/24/07 05/25/07	9:15 9:00			1,567.7		5.9	497.7	6.1 8.3	9	4.8	48,726.6 48,854.8	264 257	78 80	68 69	68 67	68 72	55 55		24,726.5	265 262	9 36				189 285.3 190 286.6	6.1 3.2	3.9	3.6 0.9	31.2 15.1		17.1	10.7	
	Sa	05/26/07	8:30			1,583.5		8.1	514.4	8.4	30	3.6	48,986.2	261	81	74	70	68	54		24,849.1	202	28				190 280.0	0.0	4.0	9.3	15.3		30.3		9.5 1
	Su	05/27/07	9:15			1,592.7	1,533.6	9.2	523.8	9.4	28		49,135.5	265	83	67	71	68	55		25,118.8	263	17				191 288.2	9.3	3.9	7.5	30.7		15.4	11.4	
	M	05/28/07	9:45			1,601.9		9.2	533.6	9.8	23	0.0	49,286.5	257	80	69	72	71	55		25,262.4	259	6			220	192 289.5	7.1	1.2	4.9	14.6		14.6	13.8	
	Т	05/29/07	8:00			1,610.4	1,551.5	8.5	542.6	9.0	19		49,415.5	239	78	70	72	68	55		25,396.7	263	32				193 290.7	1.7	0.2	3.9	13.5		13.5	8.9	
38	W R	05/30/07	8:00 8:00			1,618.0	1,558.8	7.5	550.2 565.1	7.6	14	4.5	49,546.4	287 261	82 81		71	67 70	56 55		25,511.0	254 261	24 6		160 160	227 228	194 292.0 195 292.8	0.4	3.7 1.9	6.4 4.3	0.0	0.0	11.3	- 11.7	15.8 1 7.8
30	F	06/01/07	15:00			1.640.7	1,573.2	8.7	574.2	9.1	35	4.1	49,779.3	259	82	67	68	68	56		25,734.1	261	33		161		195 292.6	9.0	2.8	4.3	12.9		12.9	10.0	11.1 1
	Sa	06/02/07	13:30			1,650.2	1,591.5	9.5	584.2	10.0	31	3.0	50,076.9	260	78	66	69	67	55		26,020.4	261	22				197 295.4	6.2	1.2	3.9	14.0		14.0	13.1	
	Su	06/03/07	16:00	1,687	7.5 1	1,660.4	1,601.3	9.9	594.4	10.2	26	3.7	50,236.6	261	80	71	66	73	55		26,172.5	255	10				198 296.2		11.4	0.9	16.6	30.6	16.6	8.6	12.5
	M	06/04/07	15:35			1,666.6		6.2	601.0	6.6	22			259	81	73	67	73	56		26,271.2	267	39				199 297.5	0.4	5.1	1.5	16.8		16.8	-	6.7 -
	T	06/05/07	12:40			1,672.3		5.9	607.1	6.1	19	3.6	50,436.5	266	84	70	69	67 69	56		26,364.9	263	32			LOL	199 298.0	6.4	4.1	7.6	29.2		29.3	9.1	7.1 1
39	W R	06/06/07	8:00 8:00	1,704		1,677.2	1,618.5	4.9	612.5 619.1	5.4	16		50,520.3 50,626.1	259 267	84	68	68	70	56 56		26,445.7	275 252	26 18		65 65		200 299.2 200 299.2	2.2	1.9	1.5 8.1	15.6 33.1	15.6 33.2	15.6	- 16.7	9.6 1
55	F	06/08/07	8:00			1,691.8		8.0	627.6	8.5	6	5.4		257	80	72	66	70	56		26,670.6	262	8				201 300.4	0.0	6.9	3.1	15.5		15.5	-	
	Sa	06/09/07	NM	N	IM	NM	NM	NA	NM	NA	NM		NA			NA	NA		NA	NA	NA	NA	NM				NA NA	NA	NA	NA	NA		NA	NA	NA NA
	Su	06/10/07	8:55			1,710.5		18.7	647.1	19.5	24			261	81	69	69	73	56		26,963.0	260	24				203 302.5	7.9	6.8	1.9	14.5		14.5	8.0	
	M	06/11/07	7:35			1,718.4		8.0	655.5	8.4	18			258	82	72	69	65	56		27,088.7	263	15			-0.	203 303.3	7.7	5.2	10.1	14.3		28.9	-	- 1
	T	06/12/07 06/13/07	16:15			1,725.3		6.7 6.8	662.3 669.4	6.8	15			265 260	81 81	70	68 68	71	55 56	300 2 275 2	27,190.3	251 262	6 34				204 303.7 204 304.6	8.5	12.1 5.0	4.2	32.9		18.7	14.2	13.8 - 9.8 1
40	R	06/14/07	11:00			1.738.6	1,679.9	6.7	676.4	7.0	12	4.3	51,522.1	262	81	68	72	72	56		27,402.0	262	26				205 305.4	7.9	1.8	4.2	35.6		17.1	8.5	1.1
	F	06/15/07	11:45			1,742.0		4.6	682.0	5.6	20	4.0	51,610.6	263	78	64	68	69	56	290 2	27,488.1	314	20	2.0 1	170		206 306.7	4.5	4.1	3.6	19.1	19.2	19.2	-	10.0 1
	Sa	06/16/07	10:30			1,751.3	1,692.5	8.2	689.8	7.8	16	0.0	51,732.7	261	81	66	70	74	56		27,604.2	237	11				207 307.5	12.3	3.4	0.4	33.8		14.7	14.5	
	Su	06/17/07	9:50			1,758.3	1,699.9	7.2	697.3	7.5	13	3.0	51,849.9	260	80	70	72	67	56		27,716.2	261	38				207 308.3	4.9	0.6	7.8	15.9		30.6	12.3	9.4 1
	M	06/18/07 06/19/07	11:20			1,767.8 1.777.5	1,709.3	9.4 9.8	707.2	9.9 10.1	9	3.0	52,004.0 52.162.3	259 261	77	69 66	70	67 69	55 56		27,864.4	262 257	27 16		72		208 309.6 209 310.4	2.0	0.7	7.1	NM NM		NM NM	- 14.1	8.9 1
	w	06/19/07	9:40			1,777.5	1,719.0	9.6	717.3	6.9	17	3.0	52,162.3	257	80	69	66	73	55		28,117.3	257	8				209 310.4	4.2	8.3	0.0	NM		NM		12.5 -
41	R	06/21/07	8:40			1,790.5	1,732.0	6.4	730.8	6.6	14	3.4	52,373.2	264	81	68	72	70	56		28,216.8	258	36				210 311.7	10.7	2.0	6.6	NM		NM	13.8	- 1
	F	06/22/07	9:20	1,824	1.4 1	1,796.9	1,738.2	6.2	737.3	6.5	10		52,474.1	259	79	68	65	69	55		28,314.6	262	29	2.1 1			211 312.5	3.0	8.4	1.9	NM		NM	-	10.9
	Sa	06/23/07	10:15			1,804.9		8.1	745.7	8.4	20			261	83	65	68	73	56		28,439.9	259	20				212 313.3	11.3	5.5	0.9	NM		NM		
	Su	06/24/07	10:35	1,012		1,814.8	/	9.8	756.0	10.3	15	0.0	52,766.5	260	81	68	68	73	56		28,594.2	261	8			2.17	213 314.6	8.7	5.5	0.7	NM		NM	13.8	
	M	06/25/07	13:55	1,853 1,860		1,826.2 1.832.6	1,767.4	11.4 6.6	767.7	11.7	9	3.8 5.5	52,949.9 53.056.8	261 258	81 82	70	68 73	72	56 56		28,769.5	256 257	24 15				214 315.8 214 316.2	6.2 12.9	8.3	2.2	15.4 31.1		15.5	- 15.9	12.0 -
	w	06/26/07	11:15	1,867		1,840.3	1,774.1	7.4	782.3	7.7	30	6.8	53,056.8	150	80	71	66	72	55		28.986.4	257	6				214 316.2		10.4	0.9	15.3		9.1	-	13.0
42	R	06/28/07	10:30	1,874		1,847.1	1,786.2	6.2	789.5	7.2	29	3.6	53,289.2	378	83	65	68	74	55		29,093.1	285	33		177		216 317.9	11.3	4.2	0.0	30.0	14.7	14.7	26.1	9.4 1
	F	06/29/07	10:00			1,862.3	1,803.5	15.8	805.2	15.7	15		53,531.6	257	81	73	65	69	55	295 2	29,325.5	246	15	2.2 1	179	251	217 319.6		10.0	4.6	9.0	9.0	9.0	6.1	10.9
	Sa	06/30/07	8:45			1,868.7	1,809.9	6.4	811.9	6.7	10		00,000.0	261	81	74	68	70	56		29,426.4	264	32				218 320.9	0.2	5.5	3.3	16.1		16.1	-	6.4
	Su	07/01/07	9:30	1,905	o.2 1	1,877.6	1,818.9	9.1	821.2	9.3	5	4.0	53,783.0	263	83	66	66	71	56	268 2	29,567.2	259	20	2.5 1	80	253	218 321.7	9.4	8.0	4.1	31.2	15.1	15.1	12.4	8.5 -

Start-up	Date: Oc	tober 12, 200	6	-																					-					-	_
start-up	2310.00	200	Ť	Cumu	lative Hrs in	n Servic	e			Chlor	ine	Totali	zer to	Pre	ssure Filtra	ation		Flow/Totalize	er to Ferric	Chloride						Backwa	ish				
			1				Avg Rur		Run	Chlorine	CI		Ava Flow				1	Flow -	Avg Flow FeCl ₃							Since Las	t BW			tual Run T	
							Time	Meter	Time	Tank	dosage	Totalizer	Rate					Rate Totalizer	Rate Tank	Dosage		Tank Ta			Run Time			oy Time		Between E	
Week No.	Day of Week	Date	Time	TA	TB	TC	hr	hr	hr	Level gal	ma/L	kgal	apm	Influent Outlet TA psig psig	Outlet TB	Outlet TC Effluen psig psig	π	apm kaal	Level	mg/L	A No.		C Total lo. kgal		Tank B				ank C Tank		Tank C hr
NO.	M	07/02/07	7:45			1,826.		828.5	7.3	ga 1 16	4.2		254	81 71	67	65 5	6	273 29,674.1	260 11	2.4	181		219 322.6	3.7	6.3	11.2	13.8	13.9	29.0 -	12.3	14
	Т	07/03/07	8:00				3 9.4		9.8	10	4.6		259	83 66	6 69	67 5	6	280 29,818.7	256 32	2.8	181		220 323.4		3.3	6.5	29.3	14.2	14.2 14.		8.9
	W	07/04/07	9:10			1,841.	9 6.6		7.0		4.3		261	NA NA		NA N		NA 29,923.9	266 24	2.2			221 324.6	5.7	0.1	4.2	NM	NM	NM 11.		
43	R	07/05/07	8:30			1,848.			6.3	18	4.8		259	80 72	2 67			304 30,017.7	256 15	2.8			221 325.0	0.0	6.2	10.4	25.8	36.8	36.7 - 16.9 14	11.2	12.1
	Sa	07/06/07 07/07/07	10:45 9:30	1,943			0 9.0 8 5.7		9.3 5.9	11	5.6		264 259	79 68	6 65	68 5	5	286 30,159.3 275 30,246.1	263 5 255 33	2.0	183 184		222 325.9 222 326.3	9.2	3.8 9.6	7.2 13.0	42.7	16.9 31.3	16.9 14. 31.3 -	14.5	- 15.1
	Su	07/08/07	7:45			1,874.			11.6	34	4.5		265	82 67	7 69		7	268 30,423.4	262 19	2.3			223 327.1	12.1	6.2	9.1	27.4	13.0	13.1 16.		16.4
	М	07/09/07	12:00			1,000	0 12.0	890.9	12.5		4.8		258	78 69	9 71	10 0		290 30,607.6	257 4	2.3		259	224 328.4	7.5	2.0	4.7	15.6	6.6	6.7 11.		2.0
	Т	07/10/07	8:10				5 4.4		4.7			54,941.6	252		66			282 30,674.7	256 41	2.1			224 328.8	0.3	6.5	7.2	14.7	21.3	21.3 6.		15.0
44	W R	07/11/07	10:00	1,000		.,	8 13.4 8 4.0		14.1 4.5		4.3		260 256					276 30,887.3 298 30,953.4	264 25 273 20	2.2			226 330.9 227 332.1	7.1	4.1	5.5 0.7	12.3 20.3	12.3	12.3 9. 20.1 -	2 7.1	8.8
44	F	07/12/07	13:45				0 9.2		4.5	20	4.9		250		8 65			298 30,953.4	248 9	2.2			227 332.1	11.1	10.3	9.9		37.9	37.7 -	- 13.6	- 17.6
	Sa	07/14/07	11:15			1,926			9.8	30	4.8		248	83 67	7 70) 75 5	7	295 31,229.4	245 35	2.1			228 333.0	20.8	6.0	1.7	49.7	11.8	11.8 20.		-
	Su	07/15/07	9:50	2,018	1,990.7	1,932.	7 6.0		6.3			55,620.0	262	80 67	7 70		i5	275 31,325.5	267 27	2.4		264	228 333.9	5.7	2.5	8.0	16.3	16.3	28.1 11.		10.2
	М	07/16/07	11:15						13.1	19		55,823.3	259	82 68	68			270 31,519.6	255 11	2.4			229 335.1	6.5	5.0	10.5	11.7	11.8	11.7 13.	9 9.4	20.8
	T W	07/17/07 07/18/07	12:30				7 10.5 8 10.1		11.1	13	4.1		256 259	80 70	0 67	73 5		305 31,682.9 301 31,839.3	259 1 258 29	1.8			231 336.7 232 338.0	3.2	6.2 8.6	0.0	14.6 11.9	14.6 11.9	14.6 10. 11.9 -	0 7.7	9.7
45	R	07/18/07	7:20						7.8	34	4.7		259	81 66	5 71			273 31,956.9	256 29	2.4			232 338.0	3.3	2.9	8.0	24.4	12.5	24.4 -		- 11.7
-10	F	07/20/07	8:15						7.0		4.7	56,381.0	239	83 66	6 67		5	292 32,059.2	251 10	3.0			233 338.8	17.7	9.9	2.9	42.3	30.4	17.9 18.	6 12.0	9.5
1	Sa	07/21/07	8:40		2,046.2		9 7.8		8.1		6.2	56,513.8	273	80 66	6 66			278 32,181.3	260 36	2.0	193		234 340.0	6.9	5.7	1.3	15.8	15.9	15.8 -	-	-
<u> </u>	Su	07/22/07	NM		IM NM				NA	NM	_	NA	NA	NA NA	NA NA			NA NA	NA NA	NA			NM NM	NM	NM	NM	NM	NM	NM -	20.7	13.3
1	M	07/23/07 07/24/07	13:20						23.1	6	3.3	56,874.5 57.014.6	260 257		4 70	69 5		304 32,524.3 290 32.659.8	255 9 257 34	2.2			235 342.1 236 342.9	0.0	7.2	10.7 6.5	12.4 29.4	12.5	12.4 - 17.0 10.	12.2 7 8.8	12.9
	w	07/24/07	10:05				3 0.0		9.1	70	4.9	57,014.0	257	79 60 82 71	00	00 3		290 32,659.6	257 34	2.1			230 342.9	9.0	3.7	6.0	29.4 9.4	9.4	9.5 11		9.3
46	R	07/26/07	8:00		0.8 2.092.8		1 6.9		7.5			57,272.3	254	80 71	67			292 32,907.6	266 14	2.4			238 345.4	2.0	0.9	4.7	0.0	0.0	14.5 -	9.6	8.8
	F	07/27/07	8:00	2,131	.3 2,103.1	2,045.			10.7	18	4.2	57,439.1	260	82 65	5 69	69 5	7	268 33,066.3	254 4	1.8			239 346.2	12.5	1.6	6.3	13.4	0.0	13.3 13.	9 9.6	11.2
	Sa	07/28/07	9:30	-,		-,	0 8.5		8.8	13	4.3		259	82 68				288 33,199.3	262 36	2.2			240 347.4	7.0	0.5	3.6	16.5	0.0	0.0 10.		8.7
	Su	07/29/07	22:10				-	.,	8.9	7		57,714.3	259	79 69	9 69	69 5	6	312 33,329.9	258 26				241 348.6	4.9	0.0	3.3		12.7	12.7 9.	5 -	-
	M	07/30/07 07/31/07	16:00			2,068	1 5.0		5.8	19	5.2		259 262	79 72	2 68	68 5	6	284 33,416.9 288 33,492.9	260 19 266 12	2.3	200		241 349.1 242 349.4	0.7	5.7 1.9	9.0 3.1	12.0 27.5	24.7 15.5	24.7 - 15.6 9.	8.5	10.5
	w	08/01/07	9:05		2,130.3			1,000.2	5.6		5.5		202	79 7	65			285 33,574.3	254 5	2.4			242 349.4	0.9	7.4	8.5	14.8	30.3	30.4 7	3 -	
47	R	08/02/07	11:00				1 9.0		10.1	6	5.4		253	84 71	1 73	64 5		280 33,720.9	254 37	2.0			242 351.6	3.2	1.4	18.5	15.0	15.0	15.4 7.	3 7.0	25.1
	F	08/03/07	14:10				2 12.2	1,113.5	12.6	29	5.5	58,313.9	254	79 67	7 68	68 5	i5	290 33,905.6	252 23	2.2	203		243 352.9	8.0	6.8	5.5	15.3	15.3	15.3 10.	3 -	9.1
	Sa	08/04/07	11:00		.7 2,167.9				10.9	20	6.2		259					283 34,068.2	261 10	2.3			244 354.5	8.2	1.4	6.9	9.9	9.9	9.9 11.	1 7.5	8.7
	Su M	08/05/07	11:00	-,	.0 2,176.4	-,	0 8.4 4 10.5	.,	8.7	14	5.2	58,618.2 58,788.9	259 256				5	273 34,200.2 305 34,362.0	263 35 257 24	2.2			245 355.8 247 357.3	5.4	2.4 5.5	6.5 0.9	15.3 15.2	15.3 15.1	15.3 - 15.2 11.	2 70	-
	T	08/07/07	11:40						8.6	33	5.3		258					302 34,490.2	262 13	2.5			247 357.3	3.5	5.8	0.9	13.6	13.6	13.6 -	2 7.5	- 0.9
	Ŵ	08/08/07	9:50			-,			7.5	27	6.0		260	83 67				275 34,601.6	253 3	2.6			248 359.0	10.9	3.8	7.7	27.5	13.8	27.5 -	-	-
48	R	08/09/07	7:45				9 11.1		8.7	21	5.2		259					290 34,732.5	197 23	2.2			250 361.4	3.8	3.3	2.7		14.2	14.2 -	7.6	5.9
	F	08/10/07	12:30			2,167.	9 7.		9.1	10	5.0		260	81 65	5 68	12 0		295 34,868.9	295 12	2.3			251 362.2	13.0	4.6	1.8	33.8	19.6	19.5 14	0.0	
	Sa Su	08/11/07	16:50		.8 2,226.8		1 6.0		8.3		6.3		260 257		3 71		-	297 34,993.9 270 35.115.7	347 39 261 29	1.8			251 363.0 252 364.3	6.9	2.9	10.0	19.9	19.8	39.3 10. 14.8 9	1 8.2	10.6
	M	08/12/07	13:55	2,202		-,	4 9.4	.,	0.3 9.8	10	5.0	59,574.1	257	81 68	3 69	00 0	5	275 35,263.1	261 29	2.5		202	252 364.3	4.5	3.3	7.3	14.6	14.0	14.6 9.	4 8.0 2 8.0	0.4
	Т	08/14/07	12:45				2 7.8	3 1,212.7	8.2	5	4.6	59,854.0	258	80 73	3 71	68 5	i6	307 35,383.6	256 6	2.4			254 366.7	0.0	3.2	6.6	15.0	15.0	15.0 9.	2 8.9	9.3
	W	08/15/07	10:20	2,289	.3 2,261.5	2,204.		7 1,222.9	10.2		6.0	60,011.1	257	81 74	4 70	00 0		302 35,535.0	260 31	2.3	214	295	255 367.9	0.5	4.0	7.0	11.3	11.3	11.3 -	9.0	9.3
49	R	08/16/07	8:15			2,209			5.4		5.7		256		5 72	69 5		296 35,613.9	258 24	2.5			256 368.8	5.5	0.0	2.7	27.4	16.1	16.2 9.		9.5
	F Sa	08/17/07 08/18/07	8:00		.7 2,273.9		9 7.1		7.5		5.0	60,210.6 60,341.6	259 260	82 70	65		5	284 35,726.6 293 35,851.2	262 15 254 5	2.3	215 215		257 369.5 258 370.3	2.8	7.4	0.2	15.7 32.5	31.8 16.9	15.8 -	8.5	8.2
	Su	08/19/07	11:40				0 11.8		8.6	27	2.4		374		68			301 36,037.6	262 34	2.0			260 372.8	3.5	5.0	0.0	14.8	14.8	14.8 -		-
	М	08/20/07	11:00	2,327	.6 2,299.1	2,242	7 5.6		9.8	25	2.6		154		71	68 5	6	297 36,124.0	256 26	2.6			260 373.2	9.3	2.8	5.7	32.1	17.4	32.1 13.	8 -	7.6
1	Т	08/21/07	11:45	2,002		2,247.	9 5.3	3 1,268.2	5.6		5.4	60,711.9	258		2 67	11 0		300 36,207.3	262 20	2.1	218	300	261 374.0	0.7	8.3	3.3	19.1	36.5	19.1 -	11.9	-
	W	08/22/07	10:50	_,	1.5 2,309.9		7 5.6		5.8	17		60,803.6	264		73			302 36,294.7	260 12				261 374.5	6.4	1.7	9.0 14.2	36.3	17.2	36.3 - 55.3 15		-
50	R	08/23/07 08/24/07	11:25	-,		-,	9 5.1 2 6.1		5.3	13	5.7	60,886.4 60.990.1	260 258	81 67	68	67 5	6	280 36,373.7 286 36,473.7	253 5 266 40	2.5	218		261 374.5 262 375.7	11.6 2.6	6.9 1.4	14.2	55.4 17.8	36.3	55.3 15. 17.8 -	3 11.7	15.7
	Sa	08/25/07	11:15	_,					6.8	35	5.5		260	80 67	7 73	70 5	6	297 36,574.3	257 31	2.5			263 376.5	9.3	0.9	3.5	34.5	16.7	16.7 9	9 -	7.7
	Su	08/26/07	11:40		2,334.3	2,277.	8 6.1	1 1,299.5	6.7		5.7	61,199.1	256	82 69	9 66	11		290 36,673.8	271 27	1.2	220	303	264 377.4	5.1	7.4	2.0	17.7	34.5	17.8 9.	0.0	8.1
1	М	08/27/07	10:00			2,284.			7.3	23	7.2		262	81 70	66	i 73 5		295 36,783.8	255 15	3.1			265 378.6	2.9	6.5	0.9	14.5	14.5	14.5 -	8.6	
1	Т	08/28/07	11:50				1 7.1		7.3	17	6.2		260	83 67	7 70			285 36,892.2	253 6	2.4			265 379.0	10.1	4.8	8.2	33.1	18.4	33.0 11.		8.9
51	W	08/29/07 08/30/07	10:20 9:30				.7 7.6 0 6.1		8.1	13	3.8	61,551.8 61,653.9	256 258	82 7	71	68 5	5	300 37,011.7 302 37,110.4	261 39 265 31	2.2			266 380.3 267 381.5	6.0 2.7	3.9 0.8	6.9 5.6	14.7 16.6	14.7 16.6	14.7 9. 16.6 -	4 9.3 7.4	7.6
1	F	09/01/07	9:30						8.0	38	4.6	61,653.9	258	78 65	5 71	67 5	15	283 37,230.7	259 22	2.3	223		267 381.5	2.7	1.0	4.9	33.8	16.6	16.6 -		8.4
	Su	09/02/07	11:00	2,413	.5 2,385.1	2,328	8 15.1	1 1,352.7	15.9	20	5.7		260	NA NA	NA NA	NA 5	i5	NA NA	NA 25	2.2		310	270 384.8	5.9	1.0	4.8	NM	NM	NM 11		9.1
ſ	М	09/03/07	14:55		.2 2,392.3				7.3			62,139.5	257	78 70	0 65		-	285 37,577.3	NA 16	2.4			271 385.6	1.0	8.2	2.5	13.5	32.2	13.5 -	10.1	10.0
1	Т	09/04/07	11:00						8.3		5.4		262	80 70) 70) 74 5	7	298 37,701.0	261 6	2.3			272 386.5	9.3	6.0	0.0	25.1	11.7	11.7 12		4.8
52	W R	09/05/07	9:45	-,		2,347.	9 4.5 3 7.4	.,	4.7		5.0	62,341.1 62.463.3	252 265	79 70	68	8 73 5 68 5	5	307 37,769.7 290 37,888.5	256 36 269 27	2.1			273 387.7	1.2 5.4	2.3	0.0 4.2	18.1 19.2	18.1 19.2	18.1 3. 19.2 -	1 4.9	3.2 13.5
52	F	09/06/07	12:50						9.8		5.8		265		68	00 0		290 37,888.5 305 38,032.5	269 27 254 15	2.2			274 388.9 275 389.7	5.4 15.0	4.8	4.2	19.2 33.6	19.2	19.2 - 14.4 19.		- 13.5
1	Sa	09/08/07			.5 2,426.5	2,001			5.2		0.1	62,696.7	264		3 68			275 38,111.5	260 9	2.4			275 389.7	0.5	9.2	5.2		34.1	34.1 7.		9.6
	Su	09/09/07	12:15						9.6			62,845.8	259		3 68	8 70 5	i6	298 38,254.6	260 34	2.0			276 391.3	1.9	6.6	4.7	15.1	15.1	15.1 -	8.3	9.6
	М	09/10/07	10:20						6.0	9	6.4		256	79 67	7 68			296 38,343.3	NA 26	2.6			277 392.2	7.8	3.8	0.6	31.7	16.7	16.7 12	1 10.5	-
1	T	09/11/07	12:15				9 7.3		7.6	4	4.9		261	78 71	1 72	68 5		306 38,457.1	260 17	2.3			277 393.0	2.9	0.5	8.1	17.6	17.6	17.6 -	-	12.0
53	W R	09/12/07 09/13/07	12:40		0.1 2,454.8 0.1 2,461.0	2,398		1,120.1	6.5 6.4	0.	5.7	00,100.0	264 259		3 69	12 3	5	296 38,555.1 297 38,651.3	259 9 264 39	2.3			278 393.4 279 394.6	9.3	6.9 3.9	2.2	35.4 20.9	35.4 20.9	17.8 13. 20.9 -	5 9.2	8.1 6.7
1	F	09/13/07			6.6 2,461.0				7.7		5.9		259		5 70		6	297 38,051.3	264 39 260 30	2.1			279 394.6 280 395.4	9.2	4.0	0.2	37.4	20.9	16.5 10	2 8.2	9.0
	Su	09/16/07			1 2,479.6				12.0		5.6		262		69 69			295 38,944.9	260 15				281 396.7	10.5	7.3	3.3	37.8	38.0	14.0 12		-
-						-	_		-																						

Start-up	Date: Oc	tober 12, 200	6																																
				Cumu	lative	Hrs in	Service				Chlo	orine	Totali	zer to		Pres	sure Filtra	tion		Flow/	/Totalize	er to	Ferric	Chloride						Backwas	sh				
								Avg Run	Hour	Run	Chlorine	CI								Flow _			FeCl ₃	Fe						Since Last	BW		A	ctual Run	Time
								Time	Meter	Time	Tank	dosage	Totalizer	Avg Flow Rate						Rate To	otalizer	Avg Flow Rate	Tank	Dosage	Tank	Tank	Tank	R	un Tim	e	Stand	by Time		Between	BW
Week	Day of			TA		тв	TC				Level	•		Nate	Influent	Outlet TA	Outlet TB	Outlet TC E	ffluent	Kate		Nate	Level	-	Α	В	C Total	Tank A	Fank B	Tank C Tar	nk A Tai	nk B Tar	nk C Tanl	A Tank P	3 Tank C
No.	Week	Date	Time	hr		hr	hr	hr	hr	hr	gal	mg/L	kgal	gpm	psig	psig	psig	psig	psig		kgal	gpm	gal	mg/L	No.	No.	No. kgal	hr	hr				hr hi	hr	hr
	M	09/17/07 ^(j)		2,51		,484.4	2,428.1	4.9	1,456.8	5.3	7	5.8	63,647.0	255	80	72	73	69	56		9,022.3	NA		2.6	234		281 397.5	2.5	0.0		14.2		28.2 -	-	12.4
	Т	09/18/07		2,51		,490.5		6.0	1,462.9	6.1	35	6.1	63,743.0	262	83	69	68	73	57		9,114.4	257		2.8			282 397.9	8.5	6.1		29.6	29.6		1.1 6.7	
54	W	09/19/07		2,52		2,494.8	2,438.6	4.4	1,467.7	4.8	31	6.4	63,815.9	253	81	72	69	67	56		9,184.4	263		3.3			282 398.8	1.7	3.7		19.0		34.3 -	6.7	7 7.4
	R	09/20/07		2,52		2,501.1	2,445.0	6.5	1,474.4	6.7	26		63,920.3	260	82	67	71		56		9,284.6	258		3.4			283 399.6	8.4	3.3		38.6			9.1 9.4	1.0
	F	09/21/07		2,53				6.0	1,480.9	6.5	21	5.0	64,021.1	258	80	68 68	73		56		9,381.5	268		3.3	236		284 400.8	5.3	0.0		20.3		20.3	9.5 12.3	
	Su	09/23/07		2,54			2,464.2	13.3	1,494.8	13.9	10	6.0	64,237.7 64.339.7	260 258	80		73 68		56 56		9,590.6	262 NA					286 402.9	9.2	1.0		34.2 17.5			1.9 - 9.4 9.7	-
	M	09/24/07		2,55		2,527.0	2,470.7	6.4	1,501.4	6.6	6	4.6	64,339.7	258	82 81	73	68 68	68 68	51		9,687.9	266		3.2	238	326	286 403.3 287 404.5	3.4	7.5		17.5 14.6		31.3 14.6 -	3.4 9.1	7 11.3 1 6.6
	w	09/25/07		2,56		2.533.3		6.3 5.1	1,508.1	5.4	34	5.7	64,443.0	257	81	67	69		55			266		2.9	239	327	287 404.5	0.2	4.1					7.5 8.7	
55	R	09/27/07		2,50		.545.8	2,489.4	7.5	1.521.4	7.9	26		64,649,2	250	79	68	70		55		9.986.6	263		3.2			289 406.6	5.5	0.8	0.0	34.3 15.7		15.7 -	.5 0.1	1.1
35	F	09/28/07		2,58		2.552.6	2,405.4	6.8	1,528.2	6.8	20		64.756.4	263	82	68	67		56		0.088.9	204		3.2	240		289 406.6	12.3	7.6		32.1			3.9 10.3	3 11.2
	Sa	09/29/07		2,58		2.558.3	2,501.9	5.7	1.534.4	6.2	18		64.850.0	252	82	70	68		56		0.179.8	267		2.9			290 407.9	4.0	3.0		19.2			8.0 5.3	
	Su	09/30/07		2.59		.565.2	2,508.7	6.8	1.541.6	7.2	14	4.2	64.961.7	259	82	71	68		56		0.286.6	261		3.2	242		291 409.1	2.8	4.6		17.6		-	9.7 6.8	
	M	10/01/07		2.60		.572.1	2.515.7	6.9	1.549.0	7.4	g	5.2	65.075.5	256	81	74	71	69	56		0.395.7	262		3.2	243	332	292 410.4	0.0	4.7		15.7		15.7 -	9.9	
	Т	10/02/07	13:55	2,60	6.0 2	,577.3	2,520.8	5.3	1,554.6	5.6	6	6 4.1	65,162.2	258	80	69	73	71	57	310 4	0,478.2	261	4	3.5	243	333	293 411.2	5.5	0.0	2.7	32.6	16.9	16.9	7.8 -	7.5
	W	10/03/07	13:40	2,61	1.0 2	2,583.5	2,526.7	5.7	1,560.8	6.2	28	3 4.9	65,258.3	258	78	69	65	71	55	285 4	0,572.1	275	29	3.1	244	333	294 412.0	2.7	6.2	1.1	17.4	34.3	17.4 -	7.:	3 6.9
56	R	10/04/07	15:35	2,61	9.3 2	2,590.7	2,533.9	7.6	1,568.4	7.6	23	5.0	65,375.8	258	82	67	67	73	55	5 292 4	0,684.1	247	17	3.1	244	334	295 412.8	10.2	6.1	1.4	35.6	18.2	18.2 1	1.0 8.3	3 -
	F	10/05/07		2,62		2,594.9	2,538.5	4.3	1,573.0	4.6	20	4.9	65,447.9	261	77	68	68		55		0,754.1	269	9	3.3	245	335	295 413.6	3.4	2.0	6.0	15.4			0.2 7.2	
	Sa	10/06/07		2,63	1.5 2	2,603.0	2,546.6	8.1	1,581.5	8.5	32		65,579.3	258	NM	NM	NM	NM	NM		0,879.9	260		2.3	246	336	296 414.9	1.2	2.9	5.0	NM	NM		7.3 5.3	
	Su	10/07/07	15:30		_	2,610.7	2,554.0	7.6	1,589.6	8.1	27	1.1	65,704.7	258	80	71	67	73	56		1,000.8	265		3.1	247		298 416.5	1.6	5.3		13.7		13.8 -	7.1	6.7
	M	10/08/07		2,64		2,617.3	2,560.7	6.8	1,596.7	7.1	22	0.1	65,813.6	256	81	67	69	74	55		1,104.8	NA		3.0	247		299 417.3	8.6	4.8		31.7			0.1 9.7	
	Т	10/09/07		2,65		2,624.9	2,568.7	7.8	1,604.7	8.0	17	4.6	65,940.1	264	80	71	72		55		1,226.3	261		3.1	248		299 418.0	6.2	2.7		16.0			9.5 7.3	0.1
57	W	10/10/07	12:10			2,630.4	2,574.2	5.5	1,610.7	6.0	14	.5	66,031.0	252	80	71	71		57		1,314.6	268		3.0	249		300 419.4	2.2	0.9		14.2			3.2 2.5	
	R	10/11/07	14:00			2,634.7	2,578.5	4.3	1,615.4	4.7	11	4.8	66,104.0	259	82	68 67	67		55		1,385.9	279		3.3	250		301 420.7	3.2	2.7		20.2		20.2 -	7.6	6 8.1
	F Su	10/12/07		2,67		2,642.7	2,585.8	7.6	1,623.1	7.7	30	3.9	66,224.0 66,416.4	260 257	83 80	57	70	74 66	57		1.685.8	249 269		3.0	250 252		302 421.5 303 423.7	10.8	3.1		35.9 12.8		15.7 1 35.8 -	8.9 12.6	6 6.0 8.2
	M	10/14/07		2,68		2,658.3	2,597.8	4.5	1,635.6	4.7	27		66,489.8	257	83	66	71		57			269		3.1		-	303 423.7	8.2	6.1		12.0	0.0		2.2 7.7	
	T	10/15/07		2,68		2.665.9	2,602.1	4.5	1,640.3	4.7	27		66.612.9	260	81	71	68		57		1.872.9	260		3.3			305 425.3	3.6	6.0		15.4		15.4 -	2.2 7.1	
	w	10/17/07		2,05				5.3	1.653.8	5.5	18		66.697.9	258	82	68	72		56			250		3.2			305 425.7	9.0	3.0		33.8			0.9 8.4	
58	R	10/18/07		2,70		2.677.5		6.5	1.660.6	6.8	14	0.0	66.804.1	250	79	69	72		56		2.056.9	264		3.2			306 427.0	4.5	1.1		18.6			B.0 5.5	
	F	10/19/07		2,71		2.683.6	2.627.7	6.0	1.667.1	6.5	10	4.7	66.903.0	254	79	69	69	65	56		2,153.4	267		2.7	255		307 428.3	2.4	1.7		17.6			8.4 5.5	
	Sa	10/20/07		2,71		2.689.6	2.633.7	6.0	1.673.6	6.5	38	3 4.7	67.003.1	257	80	74	70	68	55		2.248.7	265		4.8	256		308 429.6	0.0	2.2		18.2		18.2 -	-	7.5
	Su	10/21/07		2,72			2,640.6	7.1	1,680.8	7.2	34	4.1	67,116.5	262	83	71	69	74	58		2,357.1	254		2.9	256	349	309 430.0	7.2	9.4		31.4		13.1 -	10.4	4 -
	М	10/22/07	9:45	2,72	9.9 2	2,700.5	2,644.7	3.9	1,685.0	4.2	31	5.5	67,180.4	254	79	66	70	66	55	286 4	2,418.8	262	10	3.3	256	350	309 430.4	11.2	2.7	8.4	50.2	18.8	31.9 1	2.5 6.6	6 10.6
	Т	10/23/07	14:00	2,73	7.8 2	2,708.5	2,652.6	7.9	1,693.3	8.3	26	6 4.6	67,309.2	259	82	68	69	67	55	279 4	2,542.9	261	33	2.8	257	351	310 431.6	6.6	4.1	5.7	19.4	19.4	19.4	9.0 9.0	0 7.0
	W	10/24/07	10:35	2,74	5.0 2	2,715.8	2,659.8	7.2	1,701.0	7.7	20	5.9	67,428.5	258	81	71	73	70	57	300 4	2,657.0	263	21	3.0	258	352	311 432.9	4.8	2.4	5.9	13.4	13.3	13.3 -	-	9.9
59	R	10/25/07		2,74		2,720.0	2,663.8	4.1	1,705.3	4.3	18	0.0	67,494.3	255	81	68	68		57		2,719.9	253		3.2			312 433.3	9.0	6.6		32.0		18.6 -	10.6	
	F	10/26/07		2,75		2,726.0	2,670.2	6.2	1,711.7	6.4	14	T. T. I	67,593.8	259	82	67	73		57		2,814.3	252		3.0			312 433.7	15.3	2.0		50.3			6.2 6.3	
	Sa	10/27/07		2,76		2,731.9	2,676.2	5.9	1,718.1	6.4	29	4.8	67,691.8	255	81	68	72		56		2,909.1	266		2.7			313 436.0	5.0	1.6	0.0	20.2			6.8 1.8	0.0
	Su	10/28/07	NM	2,76		2,733.0	2,682.2	4.3	1,724.5	6.4	25		67,790.7	258	NM	NM	NM		NM		3,004.9	368		3.0			314 436.2	4.1	0.9	2.9	NM	NM		0.3 -	6.9
	M	10/29/07		2,77		2,745.1	2,689.0	8.6	1,731.7	7.2	20		67,901.8	257	81	73	68		57		3,111.3	207		3.2		355	315 437.1	0.6	8.0		13.9		13.9 -	9.4	
	T	10/30/07		2,78		2,750.8	2,694.9	5.8	1,738.2	6.5	16		68,002.0	257	84	69	69	74	57		3,206.4	272		2.7		356	316 437.9	6.6	4.3		29.5			7.3 6.1	
60	w	10/31/07		2,78		2,755.0	2,699.5	4.3	1,742.8	4.6	13	3 4.9	68,073.2	258	81	69	69		55		3,275.8	267		3.4			316 438.8	3.5	2.4		17.5		33.2 -	7.9	9 8.0
	R	11/01/07		2,79		2,761.8	2,706.2	6.8	1,749.9	7.1	8	5.3	68,183.3	258	81	68	73		56	200 1	3,380.5	255		3.0			317 439.6	10.5	1.3		35.9			2.8 -	
	F	11/02/07		2,79		2,768.0	2,712.3	6.0	1,756.1	6.2	4	4.9	68,279.8	259	81 NM	72 NM	68 NM		55 NM		3,472.4	255		3.1			317 440.0	3.4	7.4	11.2	17.5 NM	36.0 NM		8.5 9.2	2 18.4
	Sa	11/03/07	8:45	2,80	4.4 2	2,775.5	2,719.5	7.4	1,764.0	7.9	31	5.8	68,400.4	254	NM	NM	NM	NM	N№	1 NM 4	3,588.7	262	34	2.5	264	359	319 441.7	2.4	5.7	0.0	INIVI	INIVI	NM -	-	

(a) Operator began tracking the trigger that activated each backwash.

(b) Battelle personnel onsite for system inspection and operator training.

(c) Increased stroke on FeCl₃ chemical feed pump from 18 to 25. Target iron concentration of 1.5 mg/L.

(d) Minimum and maximum backwash time decreased from 10 to 5 min and 40 to 15 min, respectively. Turbidity threshold increased from 10 to 20 NTU.

(e) Cumulative hours in service for Tank A reset on its own.

(f) Differential pressure backwash trigger was reduced from 24 to 18 psi; stroke on chemical feed pump from 25 to 32 (target iron concentration of 2.0 mg/L).

(g) Hour meter installed at wellhead.

(h) Recycle system shut-off due to level of solids in recycle tank.

(i) Recycle system back on-line after solids were removed from the tank on May 11, 2007.

(j) Iron addition was switched to manual operation; FeCl3 pump settings: stroke = 75 and speed = 50.

APPENDIX B

ANALYTICAL DATA TABLES

Sampling Date			10/12/06				10/18/06					10/25/06					11/01/06	6	
Sampling Location		15.1	10		INI		TA	TD	то	151	10	Ŧ۵	TD	то	151	10	TA	TD	то
Parameter	Unit	IN	AC	TT	IN	AC	ТА	ТВ	TC	IN	AC	ТА	TB	TC	IN	AC	ТА	TB	TC
Alkolipitu	mg/L ^(a)	322	320	322	324	318	318	318	322	343	324	326	330	330	335	329	326	329	326
Alkalinity	mg/∟	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoride	mg/L	1.1	1.2	1.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Sulfate	mg/L	11	10	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrate (as N)	mg/L	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P (total)	µg/L ^(b)	46.3	47.8	13.9	40.4	32.9	12.3	12.7	12.2	40.4	45.3	<10	<10	<10	50.7	50.2	18.1	18.7	17.7
	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silica (as SiO ₂)	mg/L	9.7	9.6	9.0	9.9	9.7	9.5	9.5	9.6	9.6	9.5	8.7	9.0	8.5	8.9	9.2	9.7	8.6	8.7
	ing/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Turbidity	NTU	0.5	1.1	0.6	0.7	1.5	3.4	4.2	1.0	1.8	2.2	2.0	1.2	1.1	1.4	1.9	0.9	0.7	1.0
	NIO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
рН	S.U.	8.3	8.3	8.4	8.1	7.9	7.9	7.9	8.0	8.1	7.9	7.9	7.9	7.9	NA	NA	NA	NA	NA
Temperature	C	19.6	19.1	19.1	20.2	20.2	20.3	20.3	14.8	14.7	14.7	14.7	14.8	14.8	NA	NA	NA	NA	NA
DO	mg/L	0.9	0.7	0.7	1.0	1.1	1.3	1.4	1.4	1.0	1.4	1.3	1.2	1.4	NA	NA	NA	NA	NA
ORP	mV	417	539	572	392	530	560	567	556	303	507	560	583	556	NA	NA	NA	NA	NA
Free Chlorine	mg/L	-	1.7	1.2	-	0.4	0.4	0.5	0.5	-	0.8	0.8	0.8	0.7	-	NA	NA	NA	NA
Total Chlorine	mg/L	-	1.8	1.3	-	0.4	0.5	0.5	0.6	-	0.8	0.8	0.8	0.7	-	NA	NA	NA	NA
Total Hardness (as CaCO 3)	mg/L	37.1	37.8	36.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ca Hardness (as CaCO 3)	mg/L	13.9	14.1	14.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mg Hardness (as CaCO 3)	mg/L	23.2	23.8	22.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
As (total)	µg/L	33.5	32.7	9.1	36.1	30.2	10.6	10.4	10.3	37.1	41.9	10.1	10.5	9.7	34.0	32.6	9.5	9.5	9.2
	μ9/⊏	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
As (soluble)	μg/L	30.7	10.2	8.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
As (particulate)	µg/L	2.7	22.5	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
As (III)	µg/L	29.1	0.7	0.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
As (V)	μg/L	1.6	9.5	8.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fe (total)	µg/L	27	1,151	<25	38	1,252	50	<25	<25	<25	2,230	83	85	57	40	1,363	<25	<25	<25
	μ9/⊏	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fe (soluble)	μg/L	<25	<25	<25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mn (total)	µg/L	1.4	6.6	<0.1	1.4	6.3	0.3	0.2	0.2	1.5	10.1	0.6	0.6	0.5	1.4	6.4	<0.1	<0.1	<0.1
	r9'-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mn (soluble)	µg/L	1.3	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(a) As CaCO3. (b) As P.																			

Table B-1. Analytical Results from Long Term Sampling, Felton, DE

Sampling Date			11/8/2006	:)			11/15/06)				11/29/06	1			12/06/06	
Sampling Location Parameter	Unit	IN	AC	TT	IN	AC	ТА	ТВ	тс	IN	AC	ТА	ТВ	тс	IN	AC	TT
Alkalinity	mg/L ^(a)	334 -	330 -	322	323	319 -	315 -	315 -	319 -	312	324	318 -	314	308 -	335	315 -	321
Fluoride	mg/L	2.0	1.7	1.9	-	-	-	-	-	-	-	-	-	-	1.9	1.8	2.8
Sulfate	mg/L	10	10	10	-	-	-	-	-	-	-	-	-	-	11	11	11
Nitrate (as N)	mg/L	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05
P (total)	µg/L ^(b)	28.5	35.1	<10	47.3	50.8	18.9	18.8	16.7	57.8 -	36.8	39.3	38.4	31.3	41.8	44.2	<10
Silica (as SiO ₂)	mg/L	9.1 -	9.5 -	9.5	9.5	9.2	9.0	8.8	8.9	9.1 -	8.6	8.6	9.1	8.9	9.3	9.4	8.8
Turbidity	NTU	0.7	1.2	1.0	0.9	1.2	1.1	0.9	1.1	4.8	1.0	0.8	0.8	0.6	1.0	2.1	1.1
Н	S.U.	8.1	7.9	7.9	8.5	8.5	7.9	8.2	8.3	8.2	8.2	8.2	8.2	8.2	8.1	8.1	8.2
Temperature	°C.	18.8	18.7	18.7	18.8	18.7	18.6	18.6	18.5	18.5	18.5	18.4	18.4	18.5	18.2	18.1	18.1
DO	mg/L	1.2	1.1	1.1	0.5	1.4	1.2	0.9	0.8	0.9	0.9	0.8	0.7	1.2	1.1	1.2	1.1
ORP	mV	248	313	335	237	284	303	500	517	230	486	540	583	610	251	504	540
Free Chlorine	mg/L	-	0.8	0.8	-	0.7	0.6	0.5	0.5	-	0.5	0.6	0.6	0.7	-	0.8	0.7
Total Chlorine	mg/L		0.8	0.8	-	0.8	0.6	0.6	0.6	-	0.6	0.7	0.7	0.7	-	0.8	0.8
Total Hardness (as CaCO 3)	mg/L	38.6	39.3	39.0	-	-	-	-	-	-	-	-	-	-	41.3	40.9	39.7
Ca Hardness (as CaCO 3)	mg/L	16.9	17.3	17.2	-	-	-	-	-	-	-	-	-	-	19.3	20.2	19.8
Mg Hardness (as CaCO 3)	mg/L	21.7	22.0	21.9	-	-	-	-	-	-	-	-	-	-	22.0	20.7	19.9
As (total)	μg/L	28.1	31.1 -	9.5	36.1	38.8	11.8 -	12.2	11.9	28.8	12.2 -	11.2 -	8.0	8.7	39.0	41.7 -	7.1
As (soluble)	µg/L	26.8	8.1	7.9	-	-	-	-	-	-	-	-	-	-	33.7	11.3	6.5
As (particulate)	μg/L	1.3	22.9	1.6	-	-	-	-	-	-	-	-	-	-	5.2	30.4	0.6
As (III)	µg/L	25.9	0.9	0.9	-	-	-	-	-	-	-	-	-	-	30.7	0.6	0.5
As (V)	µg/L	0.9	7.3	7.0	-	-	-	-	-	-	-	-	-	-	3.0	10.6	6.0
Fe (total)	μg/L	<25 -	1,689 -	81	<25 -	1,017	<25 -	<25 -	<25	62 -	279	164 -	<25 -	<25 -	33	1,994 -	<25 -
Fe (soluble)	µg/L	<25	<25	<25	-	-	-	-	-	-	-	-	-	-	33	177	<25
Mn (total)	μg/L	1.4 -	8.0	0.4	1.4	6.0 -	<0.1	<0.1	<0.1	1.5 -	1.6 -	0.8	0.2	0.2	1.7	10.0 -	0.4
Mn (soluble)	µg/L	1.3	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-	2.7	1.0	1.5
(a) As CaCO3. (b) As P.		(c) Stro	ke on ch	emical f	eed pum	p w as in	creased	from 18	to 25 or	n 11/03/0)6. Targe	et iron lev	/el w as	1.5 mg/L			

Sampling Date				12/14/06					12/20/06				01/03/07				01/10/07		
Sampling Location		IN	AC	ТА	ТВ	тс	IN	AC	ТА	ТВ	тс	IN	AC	TT	IN	AC	ТА	ТВ	тс
Parameter	Unit	IIN	AC	IA	ID	TC .	IIN	AC	IA	ID	IC.	IIN	AC	11	IIN	AC	IA	ID	
Alkalinity	mg/L ^(a)	323	323	317	317	325	322	322	316	320	320	341	339	327	345	328	341	339	331
	g/ _	-	-	-	-	-	-	-	-	-	-	-	-	-	349	339	328	328	331
Fluoride	mg/L	-	-	-	-	-	-	-	-	-	-	1.3	1.2	1.4	-	-	-	-	-
Sulfate	mg/L	-	-	-	-	-	-	-	-	-	-	9	10	9	-	-	-	-	-
Nitrate (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	-	-	-	-	-
P (total)	µg/L ^(b)	23.8	21.7	<10	<10	<10	48.3	48.8	15.1	16.4	14.3	40.8	39.7	11.3	45.1	41.0	<10	<10	<10
	F-37 -	-	-	-	-	-	-	-	-	-	-	-	-	-	40.3	41.9	<10	<10	<10
Silica (as SiO ₂)	mg/L	9.0	9.0	8.6	8.7	8.5	8.9	9.3	8.7	8.8	8.5	9.6	9.3	9.3	9.2	9.3	9.1	9.1	9.0
	····g· =	-	-	-	-	-	-	-	-	-	-	-	-	-	9.3	9.1	10.0	8.7	9.2
Turbidity	NTU	0.4	1.5	1.1	0.7	0.3	1.0	1.1	0.7	0.7	0.6	0.5	1.4	0.5	0.8	1.8	1.0	0.9	0.6
		-	-	-	-	-	-	-	-	-	-	-	-	-	0.9	1.7	1.1	0.9	0.7
рН	S.U.	8.1	8.3	8.2	8.3	8.3	8.1	8.2	8.1	8.2	8.3	8.1	8.1	8.2	8.1	8.3	8.3	8.3	8.3
Temperature	C	18.5	18.4	18.4	18.3	18.4	18.1	18.4	18.2	18.4	18.4	17.9	18.1	18.2	17.9	18.3	18.3	18.2	18.1
DO	mg/L	0.8	0.5	0.9	0.7	0.5	0.9	1.1	1.3	1.0	0.6	1.0	1.1	0.8	1.0	0.7	1.1	1.1	0.7
ORP	mV	216	319	382	465	486	234	582	574	606	617	277	305	503	240	293	315	325	514
Free Chlorine	mg/L	-	0.7	0.7	0.8	0.7	-	1.3	1.3	1.4	1.4	-	0.6	0.7	-	0.7	0.8	0.8	0.7
Total Chlorine	mg/L	-	0.8	0.8	0.8	0.8	-	1.4	1.4	1.4	1.4	-	0.7	0.7	-	0.8	0.8	0.8	0.8
Total Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	40.4	39.6	39.1	-	-	-	-	-
Ca Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	18.0	18.0	17.3	-	-	-	-	-
Mg Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	22.4	21.6	21.8	-	-	-	-	-
As (total)	µg/L	30.4	30.6	6.5	5.6	5.2	38.2	37.9	10.4	10.2	9.9	36.2	34.9	9.9	30.9	32.3	8.1	7.2	8.9
	F-57-	-	-	-	-	-	-	-	-	-	-	-	-	-	31.1	31.8	7.4	6.7	7.8
As (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	32.2	10.3	7.9	-	-	-	-	-
As (particulate)	µg/L	-	-	-	-	-	-	-	-	-	-	4.0	24.6	2.0	-	-	-	-	-
As (III)	µg/L	-	-	-	-	-	-	-	-	-	-	29.7	<0.1	0.1	-	-	-	-	-
As (V)	µg/L	-	-	-	-	-	-	-	-	-	-	2.5	10.2	7.8	-	-	-	-	-
Fe (total)	µg/L	<25	1,913	74	27	<25	<25	1,453	124	93	98	32	1,590	82	38	1,810	36	8	65
	15	-	-	-	-	-	-	-	-	-	-	-	-	-	33	1,811	36	7	68
Fe (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	42	<25	<25	-	-	-	-	-
Mn (total)	µg/L	1.5	8.8	0.2	<0.1	<0.1	1.3	6.2	0.6	0.5	0.5	1.4	6.1	0.4	1.3	6.8	0.2	<0.1	0.3
	1.37-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.3	6.7	0.2	<0.1	0.3
Mn (soluble)	μg/L	-	-	-	-	-	-	-	-	-	-	1.8	<0.1	0.4	-	-	-	-	-
(a) As CaCO3. (b) As P.																			

Sampling Date				01/17/0 ^{4c)}					01/24/07				01/31/07			(02/07/07 ^{(d})	
Sampling Location		IN	AC	ТА	ТВ	TC	IN	AC	ТА	ТВ	TC	IN	AC	TT	IN	AC	ТА	ТВ	тс
Parameter	Unit	IIN	AC	IA	ТБ	ic	IIN	AC	IA	ID	ic.	IIN	AC		IIN	AC	IA	IВ	
Alkalinity	mg/L ^(a)	315	292	310	299	302	276	283	280	274	270	325	318	323	335	325	327	327	330
Aixaining	iiig/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoride	mg/L	-	-	-	-	-	-	-	-	-	-	1.0	1.4	1.0	-	-	-	-	-
Sulfate	mg/L	-	-	-	-	-	-	-	-	-	-	10	9	10	-	-	-	-	-
Nitrate (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	-	-	-	-	-
P (total)	µg/L ^(b)	28.2	50.3	<10	<10	<10	43.3	45.3	11.4	12.4	13.0	109.5	120.1	79.0	38.6	40.5	<10	<10	<10
	µg/∟	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silica (as SiO₂)	mg/L	9.4	10.1	9.4	9.1	8.6	9.3	9.5	9.2	9.1	9.3	9.1	9.1	8.5	8.8	9.0	8.5	8.4	8.7
	iiig/E	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Turbidity	NTU	1.6	3.1	0.8	0.5	0.4	1.4	1.9	1.8	1.7	0.7	0.5	1.8	0.4	1.0	3.8	0.6	0.8	1.4
	NIG	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
рН	S.U.	8.4	8.2	8.1	8.2	8.2	8.3	8.3	8.3	8.3	8.3	8.2	8.2	8.2	8.2	7.8	7.8	7.9	7.9
Temperature	C	18.1	18.1	17.8	18.0	18.0	18.1	18.3	18.2	18.2	18.3	17.5	18.2	17.9	15.4	15.4	15.4	15.5	15.5
DO	mg/L	1.4	1.5	2.6	1.4	1.2	1.2	0.7	0.9	0.8	0.6	1.1	0.8	1.1	1.3	1.0	0.9	1.4	1.5
ORP	mV	222	251	277	287	527	257	335	338	582	617	259	458	578	226	295	326	334	352
Free Chlorine	mg/L	-	0.4	0.5	0.5	0.8	-	0.6	0.9	1.3	1.0	-	0.8	0.8	-	0.6	0.6	0.6	0.6
Total Chlorine	mg/L	-	0.5	0.5	0.5	0.9	-	0.7	0.9	1.4	1.0	-	1.0	0.8	-	0.7	0.6	0.6	0.6
Total Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	40.7	40.0	38.0	-	-	-	-	-
Ca Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	15.5	15.5	15.2	-	-	-	-	-
Mg Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	25.2	24.5	22.8	-	-	-	-	-
As (total)	µg/L	27.2	40.2	5.1	5.5	4.8	33.5	34.7	7.8	8.3	7.9	39.9	39.8	13.4	34.1	34.5	6.1	7.0	6.7
	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
As (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	38.1	9.5	13.0	-	-	-	-	-
As (particulate)	µg/L	-	-	-	-	-	-	-	-	-	-	1.8	30.3	0.4	-	-	-	-	-
As (III)	µg/L	-	-	-	-	-	-	-	-	-	-	38.3	8.6	10.1	-	-	-	-	-
As (V)	µg/L	-	-	-	-	-	-	-	-	-	-	<0.1	0.9	3.0	-	-	-	-	-
Fe (total)	µg/L	38	3,438	<25	48	<25	40	1,567	115	159	162	53	1,930	71	34	1,553	48	69	69
	µg/∟	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fe (soluble)	µg/L	-	-	•	-	-	-	-	-	-	-	50	<25	<25	-	-	-	-	-
Mn (total)	μg/L	1.0 -	13.5 -	<0.1 -	<0.1 -	<0.1 -	2.0	8.8	1.0 -	1.2 -	1.3 -	2.9 -	- 12.4	1.6 -	1.5 -	8.0 -	0.2 -	0.4 -	0.3
Mn (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	3.0	1.0	1.6	-	-	-	-	-
(a) As CaCO3. (b) As P.		(c) ∆P ree	duced fron	n 24 to 18	psi; stroke	e increase	d from 25	to 32. Tar	get iron le	vel was 2.	0 mg/L. (c	I) Water qu	uality para	meters tal	ken on 02	/08/07.			

Sampling Date				02/14/07					02/21/07				02/28/07				03/07/07		
Sampling Location		INI		TA	TD	TO			T A	TD	то				151	10	TA	TD	то
Parameter	Unit	IN	AC	TA	ТВ	TC	IN	AC	TA	ТВ	TC	IN	AC	TT	IN	AC	TA	ΤB	TC
Alkalinity	mg/L ^(a)	325	315	318	315	315	332	327	322	322	310	330	325	322	337	320	317	324	317
Fluoride	mg/L	-	-	-	-	-	-	-	-	-	-	- 1.5	- 1.5	1.4	-	-	-	-	-
Sulfate		-	-		-		-	-		-	-	9	9	9	-			-	_
	mg/L				-	-	-	-		-	-	ہ <0.05	<0.05	< 0.05	-	-		-	-
Nitrate (as N)	mg/L	-	-	-	-			-	-		-				-		-	-	-
P (total)	µg/L ^(b)	50.4	53.4	17.1	19.2	16.5	74.3	86.3	47.9	48.1	49.3	52.8	51.5 -	16.1	33.6	36.1	<10	<10	<10
		-	-	-	-			-	-	-	-	-		-	-	-	-		-
Silica (as SiO₂)	mg/L	9.1 -	9.1	9.4 -	9.4	9.0 -	9.6 -	9.2 -	8.8 -	8.8	9.1 -	9.9 -	9.7 -	10.3 -	9.2 -	8.9 -	8.8	9.2 -	8.3 -
		0.7	1.7	1.1	0.6	1.6	0.3	6.0	1.7	0.4	0.6	0.8	2.1	3.3	0.8	2.0	2.7	2.9	3.2
Turbidity	NTU	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
 На	S.U.	8.2	8.2	8.3	8.3	8.3	8.2	7.9	7.9	8.1	8.0	8.2	8.2	8.2	8.1	8.4	8.4	8.4	8.4
Temperature	C	17.4	17.9	18.1	18.2	18.1	18.0	18.1	18.1	18.1	18.1	16.7	18.1	18.1	17.7	17.8	17.9	17.8	17.8
DO	mg/L	1.1	1.3	0.9	0.7	0.8	1.7	1.2	0.9	0.8	1.0	1.9	1.5	1.2	1.1	1.0	0.9	0.8	0.8
ORP	mV	247	284	317	372	418	242	282	298	313	541	479	531	500	327	451	465	497	547
Free Chlorine	mg/L	-	0.5	0.7	0.5	0.6	-	0.6	0.6	0.6	0.8	-	0.6	0.6	-	0.3	0.4	0.5	0.5
Total Chlorine	mg/L	-	0.6	0.7	0.6	0.6	-	0.7	0.6	0.6	0.8	-	0.6	0.7	-	0.4	0.5	0.5	0.5
Total Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	38.2	38.8	39.0	-	-	-	-	-
Ca Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	16.0	16.2	16.2	-	-	-	-	-
Mg Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	22.2	22.6	22.8	-	-	-	-	-
As (total)	µg/L	30.3	30.1	6.5	6.9	6.8	38.6	42.0	13.9	10.3	12.1	34.5	33.9	7.4	33.5	33.7	7.4	6.3	6.1
. ,	15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
As (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	30.4	4.3	5.0	-	-	-	-	-
As (particulate)	µg/L	-	-	-	-	-	-	-	-	-	-	4.1	29.5	2.4	-	-	-	-	-
As (III)	µg/L	-	-	-	-	-	-	-	-	-	-	28.6	0.6	0.6	-	-	-	-	-
As (V)	µg/L	-	-	-	-	-	-	-	-	-	-	1.7	3.7	4.5	-	-	-	-	-
Fe (total)	µg/L	43	1,250	<25 -	42	60 -	36 -	2,617	289	101 -	217	33	1,871 -	148	33	1,314 -	140 -	77	<25
Fe (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	29	<25	<25	-	-	-	-	-
Mn (total)	µg/L	1.6	6.8	<0.1	0.3	0.3	1.9	16.7	1.7	1.0	1.5	1.5	10.9	0.6	1.4	7.5	0.6	0.3	<0.1
Mn (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	- 1.5	<0.1	<0.1	-	-	-	-	-
(a) As CaCO3. (b) As P.	1.5											-							
(a) AS CACOS. (D) AS P.																			

Sampling Date				03/14/07					03/21/07				03/28/07				04/04/07		
Sampling Location		151	10	TA	TD	то	INI		TA	TD	TO		10		151	10	TA	TD	то
Parameter	Unit	IN	AC	ТА	ТВ	TC	IN	AC	ТА	ТВ	TC	IN	AC	TT	IN	AC	TA	TB	TC
Alkalinity	mg/L ^(a)	328	318	316	316	314	323	318	316	316	318	320	312	310	319	307	310	307	305
Aikaining	iiig/L	-	-	-	-	-	328	323	316	318	316	-	-	-	-	-	-	-	-
Fluoride	mg/L	-	-	-	-	-	-	-	-	-	-	1.5	1.5	1.6	-	-	-	-	-
Sulfate	mg/L	-	-	-	-	-	-	-	-	-	-	10	11	11	-	-	-	-	-
Nitrate (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	-	-	-	-	-
P (total)	μg/L ^(b)	46.6	47.2	11.5	<10	12.3	54.7	298.1	19.9	18.5	17.4	64.2	63.8	32.3	52.8	55.9	22.5	18.9	20.0
	µy/L	-	-	-	-	-	52.0	243.1	17.6	17.3	17.1	-	-	-	-	-	-	-	-
Silica (as SiO ₂)	ma/l	9.9	9.4	8.7	9.0	9.0	9.4	13.7	9.4	9.2	9.1	8.5	9.0	8.8	8.8	8.7	8.4	8.3	8.7
	mg/L	-	-	-	-	-	9.6	12.5	9.3	9.3	9.4	-	-	-	-	-	-	-	-
Turbidity	NTU	3.7	3.9	2.7	1.8	2.6	0.8	20.0	1.1	0.8	0.9	0.5	0.9	0.8	1.1	2.3	0.5	0.6	1.0
Turbiaity	NIU	-	-	-	-	-	1.1	16.0	0.7	0.7	0.3	-	-	-	-	-	-	-	-
pН	S.U.	8.1	8.3	8.3	8.3	8.3	8.2	8.2	8.2	8.6	8.6	NA	NA	NA	8.2	8.1	8.2	8.2	8.2
Temperature	°C	18.3	18.5	18.2	18.2	18.3	17.3	17.8	17.8	18.2	17.5	NA	NA	NA	18.3	18.3	18.4	18.4	18.8
DO	mg/L	1.7	1.1	1.0	0.7	1.0	1.4	1.9	1.4	0.7	0.8	NA	NA	NA	1.1	0.8	0.6	0.7	0.7
ORP	mV	288	338	464	477	533	314	358	492	532	535	NA	NA	NA	302	332	429	440	411
Free Chlorine	mg/L	-	0.7	0.8	0.8	0.8	-	0.4	0.4	0.4	0.4	-	NA	NA	-	0.6	0.5	0.5	0.5
Total Chlorine	mg/L	-	0.8	0.8	0.8	0.8	-	0.4	0.4	0.4	0.4	-	NA	NA	-	0.6	0.6	0.5	0.5
Total Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	40.6	42.6	40.2	-	-	-	-	-
Ca Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	16.8	17.7	16.4	-	-	-	-	-
Mg Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	23.8	24.9	23.9	-	-	-	-	-
A = (4 = 4 = 1)		32.2	32.1	5.0	3.5	5.3	37.9	210 ^(a)	8.8	9.0	7.7	37.1	37.7	12.8	33.5	33.3	8.5	6.6	7.0
As (total)	µg/L	-	-	-	-	-	36.7	174 ^(a)	8.2	8.9	7.7	-	-	-	-	-	-	-	-
As (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	32.5	18.1	10.3	-	-	-	-	-
As (particulate)	µg/L	-	-	-	-	-	-	-	-	-	-	4.5	19.5	2.5	-	-	-	-	-
As (III)	µg/L	-	-	-	-	-	-	-	-	-	-	31.0	2.2	1.8	-	-	-	-	-
As (V)	µg/L	-	-	-	-	-	-	-	-	-	-	1.5	15.9	8.5	-	-	-	-	-
		18	1,571	93	<25	129	27	13,646 ^{c)}	76	39	38	<25	788	<25	<25	1,952	<25	32	85
Fe (total)	µg/L	-	-	-	-	-	25	10,937 ^{c)}	68	34	37	-	-	-	-	-	-	-	-
Fe (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	<25	<25	<25	-	-	-	-	-
Mp (total)		1.4	10.1	0.5	<0.1	0.7	1.5	59.2 ^(c)	0.5	0.3	0.3	2.1	5.4	0.6	1.3	11.3	<0.1	0.4	0.6
Mn (total)	µg/L	-	-	-	-	-	1.4	48.8 ^(c)	0.4	0.3	0.3	-	-	-	-	-	-	-	-
Mn (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	1.8	0.4	0.2	-	-	-	-	-
(a) As CaCO3. (b) As P.		(c) Data	a w as qu	estionat	ole; how	ever, we	ere verifi	ed throu	gh re-an	alysis.									

Sampling Date				04/11/07					04/18/07				04/25/07				05/02/07		
Sampling Location		151	10	TA	TD	то	151		Ŧ۸	TD	то	151		TT	151	10	TA	TD	то
Parameter	Unit	IN	AC	ТА	ТВ	TC	IN	AC	TA	ТВ	TC	IN	AC	TT	IN	AC	TA	TB	TC
Alkalinity	mg/L ^(a)	327	327	324	320	322	326	323	319 -	314 -	309	332	327	322	325	325	320	320	320
Fluoride	mg/L	-	-	-	-	-	-	-	-	-	-	1.1	1.1	1.0	-	-	-	-	-
Sulfate	mg/L	-	-	-	-	-	-	-	-	-	-	10	9	9	-	-	-	-	-
Nitrate (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	-	-	-	-	-
P (total)	µg/L ^(b)	57.7 -	81.8 -	26.7 -	21.0	21.2	51.6 -	206.4 -	21.4	17.8 -	15.3 -	40.9	40.5 -	<10 -	46.1 -	54.1 -	24.1 -	24.8	24.6
Silica (as SiO ₂)	mg/L	8.7	9.9	8.5	8.9	8.7	9.7	11.6	9.4	9.2	9.1	9.6	9.6	9.3	10.2	10.0	9.6	9.8	10.0
Turbidity	NTU	3.8	6.6	4.6	3.4	2.0	1.3 -	11.0	0.9	0.8	0.6	0.3	1.6	0.3	0.6	2.4	0.4	0.7	0.5
рН	S.U.	7.8	8.3	8.4	8.4	8.4	8.4	8.3	8.3	8.3	8.3	8.4	8.2	8.2	8.1	8.3	8.4	8.4	8.4
r Temperature	C	18.0	18.2	18.3	18.3	18.4	17.9	18.1	18.3	18.3	18.4	18.7	18.7	18.6	18.8	18.6	18.6	18.6	18.6
DO	mg/L	1.1	1.6	1.0	1.2	1.0	1.3	0.8	0.9	0.8	0.8	1.2	1.1	1.0	0.9	1.2	0.9	1.1	0.9
ORP	mV	245	379	592	610	616	248	276	277	296	519	325	522	477	414	479	507	521	535
Free Chlorine	mg/L	-	0.9	0.9	0.8	0.8	-	1.0	1.1	0.9	0.9	-	0.9	0.9	-	0.8	0.8	0.7	0.8
Total Chlorine	mg/L	-	1.0	0.9	0.8	0.9	-	1.2	1.1	0.9	0.9	-	1.0	0.9	-	0.9	0.8	0.8	0.8
Total Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	39.4	40.2	39.9	-	-	-	-	-
Ca Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	17.0	17.8	18.0	-	-	-	-	-
Mg Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	22.3	22.4	21.9	-	-	-	-	-
As (total)	µg/L	36.5 -	53.7 -	12.3 -	8.9 -	8.4 -	- 38.4	142 -	11.5 -	9.8 -	9.4 -	29.8 -	29.8 -	5.0	34.8 -	38.2	17.9 -	19.5 -	19.3 -
As (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	31.2	6.8	5.5	-	-	-	-	-
As (particulate)	µg/L	-	-	-	-	-	-	-	-	-	-	<0.1	22.9	<0.1	-	-	-	-	-
As (III)	µg/L	-	-	-	-	-	-	-	-	-	-	29.8	1.5	1.0	-	-	-	-	-
As (V)	µg/L	-	-	-	-	-	-	-	-	-	-	1.4	5.3	4.5	-	-	-	-	-
Fe (total)	µg/L	39 -	2,836	216 -	36 -	36 -	31	8,962	<25 -	<25 -	<25 -	30 -	2,102	<25 -	<25 -	704	<25 -	<25 -	<25 -
Fe (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	<25	<25	<25	-	-	-	-	-
Mn (total)	µg/L	1.5	14.5	1.1	0.2	0.1	1.7	37.7	0.1	0.2	0.1	1.6	11.9	<0.1	1.4	5.2	<0.1	<0.1	<0.1
Mn (soluble)	μg/L	-	-	-	-	-	-	-	-	-	-	- 1.5	0.2	<0.1	-	-	-	-	-
(a) As CaCO3. (b) As P.	15													-					
(a) AS CACOS. (D) AS P.																		1	1

Sampling Date				05/09/07					05/16/07				05/23/07				05/30/07		
Sampling Location		151		TA	TD	то	151		TA	TD	то	151		TT	151	10	TA	TD	то
Parameter	Unit	IN	AC	ТА	ТВ	TC	IN	AC	TA	ТВ	TC	IN	AC	TT	IN	AC	TA	TB	TC
Alkalinity	mg/L ^(a)	312	317	310	303	307	309	309	309	305	307	315	303	310	310	312	306	294	303
Акантту	ilig/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoride	mg/L	-	-	-	-	-	-	-	-	-	-	1.0	1.0	1.0	-	-	-	-	-
Sulfate	mg/L	-	-	-	-	-	-	-	-	-	-	10	10	10	-	-	-	-	-
Nitrate (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	-	-	-	-	-
P (total)	µg/L ^(b)	35.2	34.7	10.9	<10	<10	40.2	42.6	11.8	11.0	11.1	50.1	48.7	13.0	45.3	46.5	11.4	11.9	11.2
r (lotal)	µg/∟	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silica (as SiO ₂)	mg/L	9.5	9.4	9.3	9.3	9.1	9.2	9.3	9.5	9.3	9.2	9.6	9.4	9.3	9.4	9.8	9.5	9.7	9.3
	iiig/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Turbidity	NTU	0.6	1.4	0.5	0.4	0.4	0.3	1.0	0.2	0.4	0.3	0.5	1.5	0.6	1.0	1.5	0.2	0.2	0.6
Turbluity	NIU	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
рН	S.U.	8.1	8.1	8.1	8.2	7.9	8.5	8.4	8.4	8.4	8.3	8.4	8.4	8.4	8.4	8.4	8.5	8.5	8.6
Temperature	°C	19.0	18.6	18.8	18.6	19.6	19.3	18.8	18.8	18.8	18.8	19.3	18.9	18.9	19.3	18.9	18.8	18.7	18.8
DO	mg/L	1.1	1.1	1.1	0.6	1.0	0.9	1.0	1.4	1.0	0.7	1.0	0.9	1.1	0.9	1.0	1.7	0.9	0.7
ORP	mV	416	512	608	572	620	410	423	460	467	520	421	463	524	363	443	464	614	618
Free Chlorine	mg/L	-	1.0	0.8	0.7	0.7	-	0.2	0.2	0.2	0.2	-	0.7	0.8	-	0.7	0.7	0.6	0.7
Total Chlorine	mg/L	-	1.2	0.9	0.8	0.8	-	0.3	0.3	0.3	0.3	-	0.8	0.8	-	0.7	0.7	0.7	0.8
Total Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	35.4	34.6	36.1	-	-	-	-	-
Ca Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	15.4	16.0	16.4	-	-	-	-	-
Mg Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	20.0	18.6	19.7	-	-	-	-	-
Ac (total)		33.7	33.9	25.6	6.1	6.2	30.6	31.5	7.7	7.5	7.9	37.6	38.8	8.6	34.5	36.5	7.3	6.0	6.3
As (total)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
As (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	32.5	5.2	6.8	-	-	-	-	-
As (particulate)	µg/L	-	-	-	-	-	-	-	-	-	-	5.1	33.6	1.9	-	-	-	-	-
As (III)	µg/L	-	-	-	-	-	-	-	-	-	-	30.4	0.3	0.2	-	-	-	-	-
As (V)	µg/L	-	-	-	-	-	-	-	-	-	-	2.1	4.9	6.5	-	-	-	-	-
Fe (total)	ug/I	<25	1,579	<25	<25	<25	27	1,535	<25	<25	<25	35	2,164	<25	<25	1,618	<25	<25	<25
	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fe (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	36	<25	<25	-	-	-	-	-
Mn (total)	ug/I	1.3	9.2	<0.1	<0.1	<0.1	1.5	9.0	0.1	<0.1	<0.1	1.3	9.1	<0.1	1.1	7.2	<0.1	<0.1	<0.1
Mn (total)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mn (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	1.6	0.1	<0.1	-	-	-	-	-
(a) As CaCO3. (b) As P.																			

Sampling Date				06/06/07					06/13/07				06/20/07				06/27/07		
Sampling Location		151		TA	TD	то	151		Ŧ۸	TD	TO	151		TT	151	10	TA	TD	то
Parameter	Unit	IN	AC	ТА	ТВ	TC	IN	AC	TA	ТВ	TC	IN	AC	TT	IN	AC	TA	TB	TC
Alkolipitu	mg/l (a)	325	318	313	316	313	318	309	311	311	311	315	317	315	322	312	300	308	300
Alkalinity	mg/L ^(a)	-	-	-	-	-	313	313	304	311	311	-	-	-	-	-	-	-	-
Fluoride	mg/L	-	-	-	-	-	-	-	-	-	-	1.5	1.6	1.6	-	-	-	-	-
Sulfate	mg/L	-	-	-	-	-	-	-	-	-	-	11	10	10	-	-	-	-	-
Nitrate (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	-	-	-	-	-
P (total)	µg/L ^(b)	36.1	37.3	<10	<10	<10	35.9	40.6	<10	<10	<10	38.4	37.9	<10	35.4	36.4	<10	<10	<10
r (lotal)	µg/L	-	-	-	-	-	38.5	40.9	<10	<10	<10	-	-	-	-	-	-	-	-
Silica (as SiO₂)	mg/L	9.3	9.5	9.1	9.3	9.4	9.6	9.5	9.0	9.6	9.3	9.0	9.3	9.0	11.1	11.7	11.1	11.1	10.9
	iiig/L	-	-	-	-	-	9.4	9.4	9.3	9.7	9.5	-	-	-	-	-	-	-	-
Turbidity	NTU	4.1	4.0	1.8	0.8	1.6	0.4	1.2	0.4	0.5	0.7	4.1	2.3	0.3	0.7	1.9	0.3	1.0	0.9
Turbluity	NIU	-	-	-	-	-	0.3	1.3	0.6	0.7	0.5	-	-	-	-	-	-	-	-
рН	S.U.	8.8	8.9	8.8	8.9	8.9	9.3	9.3	9.3	9.4	9.3	9.8	10.0	10.0	8.9	8.9	8.9	9.0	9.0
Temperature	C	19.2	18.7	18.9	18.9	18.9	19.3	18.9	19.0	19.0	19.0	20.8	19.2	18.9	20.2	19.8	19.3	19.5	19.4
DO	mg/L	0.8	0.6	0.8	0.8	0.7	0.8	0.8	1.8	1.2	1.0	1.2	1.0	1.0	0.8	1.4	1.1	0.8	0.6
ORP	mV	342	532	617	634	633	444	630	651	649	652	362	391	441	247	278	324	552	591
Free Chlorine	mg/L	-	0.9	1.0	1.0	1.2	-	1.4	1.3	1.2	1.4	-	0.4	0.4	-	0.4	0.4	0.5	0.5
Total Chlorine	mg/L	-	0.9	1.0	1.0	1.2	-	1.4	1.3	1.3	1.4	-	0.6	0.5	-	0.5	0.4	0.5	0.5
Total Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	38.8	37.4	38.1	-	-	-	-	-
Ca Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	18.2	17.5	17.9	-	-	-	-	-
Mg Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	20.6	19.9	20.2	-	-	-	-	-
		27.9	27.1	7.4	7.4	7.2	33.9	35.1	5.7	5.6	6.5	37.4	38.0	10.8	32.9	33.3	7.2	7.8	6.2
As (total)	µg/L	-	-	-	-	-	34.4	34.8	5.2	5.8	6.4	-	-	-	-	-	-	-	-
As (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	33.3	12.4	9.4	-	-	-	-	-
As (particulate)	µg/L	-	-	-	-	-	-	-	-	-	-	4.1	25.6	1.3	-	-	-	-	-
As (III)	µg/L	-	-	-	-	-	-	-	-	-	-	29.9	0.4	0.4	-	-	-	-	-
As (V)	µg/L	-	-	-	-	-	-	-	-	-	-	3.4	12.0	9.0	-	-	-	-	-
Fe (total)	ug/I	<25	1,136	<25	<25	<25	<25	1,831	<25	<25	<25	<25	1,268	<25	25	3,155	<25	53	<25
	µg/L	-	-	-	-	-	<25	1,865	<25	<25	<25	-	-	-	-	-	-	-	-
Fe (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	<25	<25	<25	-	-	-	-	-
Mn (total)	ug/I	1.2	5.1	<0.1	<0.1	<0.1	1.1	9.3	<0.1	<0.1	0.1	1.2	7.0	<0.1	1.5	16.3	<0.1	0.4	<0.1
	µg/L	-	-	-	-	-	1.2	9.7	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-
Mn (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	1.3	<0.1	<0.1	-	-	-	-	-
(a) As CaCO3. (b) As P.																			

Sampling Date				07/05/07					07/11/07					07/18/07				07/25/07	
Sampling Location		151		TA	TD	то	151		Ŧ۸	TD	TO	151		TA	TD	то	151	10	
Parameter	Unit	IN	AC	ТА	ТВ	TC	IN	AC	TA	ТВ	TC	IN	AC	TA	TB	TC	IN	AC	TT
Alkalinity	ma/L ^(a)	317	320	308	308	308	318	309	311	311	302	320	310	310	312	308	314	297	302
Акашицу	mg/L ^(a)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.5	1.5	1.5
Sulfate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9.0	8.8	8.8
Nitrate (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05
P (total)	µg/L ^(b)	30.0	29.5	<10	<10	<10	61.0	59.9	15.4	13.5	12.9	52.0	47.6	<10	<10	11.9	33.9	36.1	<10
r (lotal)	µg/∟	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silica (as SiO₂)	mg/L	11.5	11.5	11.1	11.3	11.2	9.2	9.3	9.2	9.1	9.3	9.0	9.4	9.7	9.3	9.1	9.2	9.2	8.5
	iiig/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Turbidity	NTU	0.9	1.4	0.5	0.9	0.7	0.8	1.8	0.5	0.3	0.5	1.0	1.8	3.4	2.6	3.3	1.7	4.0	2.2
Turblany	NIU	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
рН	S.U.	8.4	8.5	8.4	8.5	8.4	8.6	8.6	8.5	8.6	8.6	8.7	8.6	8.6	8.7	8.7	8.5	8.3	8.4
Temperature	°C	19.7	18.9	19.3	19.2	19.3	20.4	19.1	19.2	19.2	19.2	19.8	19.4	19.5	19.5	19.3	19.7	19.3	19.2
DO	mg/L	1.0	1.2	1.5	1.9	1.1	1.0	1.1	0.9	0.9	1.0	0.6	1.2	1.7	1.3	1.7	0.9	1.6	0.8
ORP	mV	422	424	533	573	575	423	466	513	495	570	345	482	475	514	625	375	436	413
Free Chlorine	mg/L	-	0.8	0.4	0.6	0.6	-	0.8	0.6	0.6	0.6	-	0.7	0.6	0.9	1.1	-	0.4	0.5
Total Chlorine	mg/L	-	0.8	0.4	0.6	0.7	-	0.8	0.6	0.6	0.6	-	0.7	0.6	0.9	1.1	-	0.4	0.6
Total Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	40.0	38.3	37.9
Ca Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	16.9	16.5	16.4
Mg Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	23.1	21.8	21.5
		27.3	27.2	6.8	6.2	6.6	43.3	43.4	6.7	6.7	6.1	42.4	41.2	10.3	11.3	11.7	33.7	34.8	4.9
As (total)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
As (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	28.0	4.2	4.0
As (particulate)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.8	30.6	0.9
As (III)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	26.8	0.6	0.5
As (V)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.2	3.6	3.5
Eq. (total)	ug/l	<25	1,389	<25	<25	<25	<25	2,055	<25	<25	<25	<25	1,528	<25	<25	<25	<25	1,978	<25
Fe (total)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fe (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<25	<25	<25
Mp (total)	ug/l	1.1	8.2	<0.1	<0.1	<0.1	1.4	11.1	0.2	<0.1	<0.1	1.5	9.7	<0.1	0.1	<0.1	1.3	10.9	0.1
Mn (total)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mn (soluble)	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2.0	0.6	0.3
(a) As CaCO3. (b) As P.																			

Sampling Date				08/01/07					08/08/07					08/15/07				08/22/07	
Sampling Location		151		TA	TD	то	151		TA	TD	TO	151		TA	TD	то	151	10	
Parameter	Unit	IN	AC	ТА	ТВ	TC	IN	AC	ТА	ТВ	TC	IN	AC	TA	ТВ	TC	IN	AC	TT
Alkalinity	ma/I ^(a)	312	302	300	300	300	319	324	331	336	324	330	320	318	325	315	314	306	312
Акантту	mg/L ^(a)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.6	1.6	1.6
Sulfate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9.1	9.1	9.0
Nitrate (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05
P (total)	μg/L ^(b)	38.5	38.4	<10	<10	<10	42.8	114.8	<10	<10	<10	45.0	45.0	<10	<10	<10	46.6	48.6	14.1
r (lotal)	µу/∟	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silica (as SiO₂)	mg/L	9.2	9.5	8.7	8.8	8.8	9.6	10.6	9.1	8.6	8.8	9.2	9.1	8.7	8.5	8.6	11.6	9.9	10.1
	ing/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Turbidity	NTU	0.8	2.6	0.5	1.0	1.0	3.0	11.0	2.2	1.0	2.8	0.2	1.6	0.3	0.2	0.5	1.2	1.9	1.4
Turbluity	NIO	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-
рН	S.U.	8.7	8.3	8.3	8.3	8.4	8.6	8.3	8.3	8.2	8.3	8.3	8.3	8.3	8.3	8.0	8.2	8.5	8.5
Temperature	C	19.9	19.2	19.1	19.1	19.3	20.2	19.5	21.0	19.8	19.9	20.4	19.1	19.1	19.1	19.5	19.6	18.9	18.9
DO	mg/L	0.8	1.2	1.2	0.9	1.0	0.8	1.7	1.3	1.0	1.0	1.0	1.1	1.0	1.0	1.1	1.0	0.7	1.0
ORP	mV	272	530	476	522	546	336	473	486	593	583	428	482	506	582	545	277	510	484
Free Chlorine	mg/L	-	0.7	0.8	0.8	0.7	-	0.7	0.4	0.6	0.5	-	0.7	0.7	0.7	0.6	-	1.1	1.0
Total Chlorine	mg/L	-	0.8	0.8	0.8	0.8	-	0.8	0.5	0.5	0.5	-	0.7	0.7	0.7	0.6	-	1.1	1.0
Total Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	37.2	38.3	37.8
Ca Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	14.4	15.4	15.5
Mg Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	22.8	22.8	22.4
		33.8	33.8	4.9	6.1	5.5	37.2	104	4.1	4.5	3.9	36.0	37.4	6.5	5.9	7.3	37.0	39.5	12.8
As (total)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
As (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	32.3	14.5	11.0
As (particulate)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4.7	25.0	1.8
As (III)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	30.5	0.5	0.4
As (V)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.8	14.0	10.6
Fe (total)	ug/l	<25	2,770	<25	87	58	<25	6,632	<25	99	<25	<25	2,239	<25	<25	<25	30	1,111	<25
re (lolal)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fe (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<25	<25	<25
Mn (total)	uc/I	1.3	14.2	<0.1	0.6	0.5	1.2	35.2	<0.1	0.6	<0.1	1.4	12.3	<0.1	<0.1	0.1	1.4	7.3	<0.1
Mn (total)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mn (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.4	<0.1	<0.1
(a) As CaCO3. (b) As P.																			

Sampling Date				08/29/07				-	09/05/07 ^{(c})				09/12/07				09/19/07	
Sampling Location		151		T A	TD	то	15.1		Ŧ۵	TD	то	151		TA	TD	то	151		
Parameter	Unit	IN	AC	ТА	ТВ	TC	IN	AC	TA	ТВ	TC	IN	AC	TA	ТВ	TC	IN	AC	TT
Alkalinity	mg/L ^(a)	316	299	303	303	303	315	300	304	306	306	320	301	307	296	305	320	318	314
Аканну	mg/∟	-	-	-	-	-	311	302	304	304	306	-	-	-	-	-	-	-	-
Fluoride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.7	1.6	1.9
Sulfate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	21	18	18
Nitrate (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05
P (total)	µg/L ^(b)	47.7	51.6	<10	17.4	<10	41.9	43.3	<10	<10	<10	40.3	48.0	<10	<10	<10	23.3	27.5	<10
r (lotal)	µg/∟	-	-	-	-	-	42.6	45.9	<10	<10	<10	-	-	-	-	-	-	-	-
Silica (as SiO₂)	mg/L	10.2	9.6	9.2	9.3	9.3	10.0	9.7	9.6	8.9	8.9	9.0	9.2	9.0	8.8	8.6	10.0	9.9	9.0
	ing/L	-	-	-	-	-	9.8	9.7	9.1	9.2	9.5	-	-	-	-	-	-	-	-
Turbidity	NTU	2.4	3.8	2.2	1.9	1.8	0.8	1.6	0.3	0.5	0.6	1.3	3.3	0.6	0.8	1.3	1.3	2.7	1.4
Turblany	NIO	-	-	-	-	-	0.6	1.8	0.7	0.9	0.6	-	-	-	-	-	-	-	-
рН	S.U.	8.0	7.9	7.9	8.1	8.1	8.3	8.3	8.4	8.4	8.4	8.2	8.0	8.0	8.0	8.0	8.3	8.2	8.1
Temperature	C	20.5	19.8	19.8	19.4	19.5	20.1	19.5	19.3	19.5	19.7	20.4	19.0	19.0	19.1	19.1	19.2	19.0	18.4
DO	mg/L	1.2	1.4	1.4	1.4	1.4	1.0	1.2	1.0	1.0	0.7	1.3	1.3	0.9	0.8	1.1	0.6	1.2	0.6
ORP	mV	269	501	464	534	577	289	436	538	534	598	314	625	642	649	641	273	526	550
Free Chlorine	mg/L	-	0.5	0.6	0.7	0.8	-	1.1	1.1	0.7	1.0	-	0.8	0.8	0.8	0.9	-	1.1	1.1
Total Chlorine	mg/L	-	0.6	0.6	0.7	0.8	-	1.1	1.1	0.7	1.0	-	0.9	0.8	0.8	0.9	-	1.1	1.1
Total Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	41.0	39.3	40.6
Ca Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	18.1	17.2	17.5
Mg Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	22.9	22.2	23.0
As (total)	ug/l	33.5	36.0	5.1	9.6	4.5	36.0	36.4	3.3	3.9	3.4	37.6	35.7	8.3	7.9	6.5	30.4	29.9	3.0
AS (IOId)	µg/L	-	-	-	-	-	36.4	35.6	3.1	4.0	3.4	-	-	-	-	-	-	-	-
As (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	26.1	3.6	2.6
As (particulate)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4.4	26.3	0.4
As (III)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	26.6	0.5	0.4
As (V)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	3.1	2.2
Fe (total)	μg/L	35	2,512	<25	327	<25	30	2,640	<25	103	<25	57	4,699	<25	81	<25	<25	2,619	<25
	µg/∟	-	-	-	-	-	28	2,551	<25	103	<25	-	-	-	-	-	-	-	-
Fe (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<25	<25	<25
Mn (total)	μg/L	1.5	13.2	0.3	1.9	<0.1	1.4	13.8	<0.1	0.6	<0.1	1.8	23.7	<0.1	0.5	<0.1	1.4	14.0	<0.25
	µy/∟	-	-	-	-	-	1.4	13.0	<0.1	0.6	<0.1	-	-	-	-	-	-	-	-
Mn (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.5	0.3	<0.25
(a) As CaCO3. (b) As P.		(c) Water	quality pa	rameters	measured	on 09/07	/07.												

Sampling Date				09/25/07 ^{(c})				10/03/07 ^{(d})				10/10/0 ^{*/}	1			10/17/07	
Sampling Location																-			
Parameter	Unit	IN	AC	ТА	ТВ	TC	IN	AC	TA	ТВ	TC	IN	AC	TA	TB	TC	IN	AC	TT
Alkalinity	mg/L ^(a)	320	314	309	314	309	301	299	299	293	295	315	297	297	297	295	304	294	300
Акантту	ilig/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoride	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.5	1.5	2.0
Sulfate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	11	11	10
Nitrate (as N)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	< 0.05	<0.05
P (total)	µg/L ^(b)	30.4	27.6	<10	<10	<10	34.3	32.3	<10	<10	<10	35.9	31.1	<10	<10	<10	65.5	59.9	22.8
	µg,∟	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silica (as SiO₂)	mg/L	9.8	10.2	9.3	9.4	9.0	9.3	9.7	9.1	8.8	9.1	9.2	9.5	8.8	8.8	8.7	9.3	9.2	9.4
	g/ =	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Turbidity	NTU	1.3	2.0	0.6	1.0	0.6	1.4	4.3	2.4	1.4	3.0	0.8	1.7	0.6	0.7	0.8	0.8	1.6	0.5
		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
рН	S.U.	8.3	8.3	8.3	8.3	8.3	8.4	8.3	8.3	8.3	8.3	7.9	7.7	7.7	7.7	7.7	8.2	8.0	8.2
Temperature	C	20.8	19.3	19.6	19.7	19.8	19.5	19.1	19.3	19.3	19.3	18.9	18.8	18.8	18.8	18.8	19.6	19.5	19.3
DO	mg/L	1.2	1.1	1.0	1.3	1.0	0.6	0.4	0.6	0.6	0.7	1.1	1.2	1.1	1.0	0.9	1.4	1.5	1.0
ORP	mV	257	473	509	578	593	420	533	576	604	617	330	536	562	652	673	277	489	556
Free Chlorine	mg/L	-	0.6	0.7	0.7	0.7	-	0.6	0.6	0.7	0.8	-	0.8	1.0	1.0	0.9	-	0.7	1.0
Total Chlorine	mg/L	-	0.8	0.7	0.7	0.7	-	0.7	0.6	0.7	0.8	-	0.9	1.0	1.0	1.0	-	0.7	1.0
Total Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	40.9	39.5	38.2
Ca Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	19.4	18.6	17.8
Mg Hardness (as CaCO 3)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	21.6	20.9	20.4
As (total)	μg/L	33.9	31.6	3.2	3.4	3.5	34.6	33.7 -	4.0	4.0	3.6	35.8	32.9	3.6	3.6	3.6	28.1	27.0	1.8 -
As (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	28.7	5.7	2.5
As (particulate)	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	21.3	<0.1
As (III)	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	19.9	<0.1	<0.1
As (V)	μg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8.8	5.6	2.4
		32	2,552	<25	55	67	30	2,040	<25	73	<25	26	2,219	<25	<25	<25	60	1,985	37
Fe (total)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fe (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<25	<25	<25
Mp (total)	ug/l	<0.1	15.6	<0.1	<0.1	<0.1	<0.1	12.6	<0.1	<0.1	<0.1	1.5	12.5	<0.1	<0.1	0.4	1.4	11.2	0.2
Mn (total)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mn (soluble)	µg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.4	<0.1	0.3
(a) As CaCO3. (b) As P.		(c) Water	quality pa	rameters	measured	on 09/27/	/07. (d) W	ater quality	/ paramete	ers measu	red on 10	/05/07. (e)	Water qua	ality param	neters mea	asured on	10/12/07.		

Sampling Date		10/24/07							
Sampling Location		IN	AC	ТА	ТВ	тс			
Parameter	Unit	IIN	AC	TA	ID	10			
Alkalipity	mg/L ^(a)	306	304	302	296	300			
Alkalinity		-	-	-	-	-			
Fluoride	mg/L	-	-	-	-	-			
Sulfate	mg/L	-	-	-	-	-			
Nitrate (as N)	mg/L	-	-	-	-	-			
P (total)	μg/L ^(b)	34.3	31.5	<10	<10	<10			
r (lotal)	µу/∟	-	-	-	-	-			
Silica (as SiO₂)	mg/L	9.1	9.1	8.8	8.7	9.0			
	mg/∟	-	-	-	-	-			
Turbidity	NTU	3.2	3.7	5.1	4.5	3.6			
Turbluty	NIU	-	-	-	-	-			
рН	S.U.	8.3	8.4	8.3	8.4	8.4			
Temperature	C	19.7	19.1	19.2	19.2	19.2			
DO	mg/L	1.1	1.0	1.1	1.4	1.0			
ORP	mV	291	518	515	453	563			
Free Chlorine	mg/L	-	0.6	0.7	0.7	0.8			
Total Chlorine	mg/L	-	0.7	0.7	0.7	0.8			
Total Hardness (as CaCO 3)	mg/L	-	-	-	-	-			
Ca Hardness (as CaCO 3)	mg/L	-	-	-	-	-			
Mg Hardness (as CaCO 3)	mg/L	-	-	-	-	-			
As (total)	μg/L	30.4	27.7	5.1	5.7	5.2			
As (lotal)		-	-	-	-	-			
As (soluble)	µg/L	-	-	-	-	-			
As (particulate)	µg/L	-	-	-	-	-			
As (III)	µg/L	-	-	-	-	-			
As (V)	µg/L	-	-	-	-	-			
Fo (total)	µg/L	<25	1,248	<25	<25	<25			
Fe (total)		-	-	-	-	-			
Fe (soluble)	µg/L	-	-	-	-	-			
Mn (total)	ug/l	1.4	7.7	<0.1	<0.1	0.1			
	µg/L	-	-	-	-	-			
Mn (soluble)	µg/L	-	-	-	-	-			
(a) As CaCO3. (b) As P.									

APPENDIX C

BACKWASH LOG SHEETS

		After Filtration "TA" Backwash										
Sampling Event								Backwash	Backwash	Wastewater		
		Backwash Start			Backwash End			Flowrate	Duration	Generated		
No.	Date	Time GAL NTU		Time	GAL	NTU	GPM	Min	GAL			
1	10/13/06	9:18	32,311	142.3	9:29	32,944	5	61.2	10.5	633		
2	11/30/06	11:48	64,414	127.4	12:58	65,044	4.2	64.3	10.1	630		
3	01/03/07	12:28	86,882	199.4	12:38	87,520	4.9	64.4	10.1	638		
4	02/07/07	14:11	115,268	197.1	14:18	115,730	17.3	64.5	7.2	462		
5	03/07/07	13:14	148,208	165.2	13:21	148,630	16.7	65.6	6.4	422		
6	04/05/07	11:59	195,528	123.4	12:05	195,874	14.7	66.1	5.3	346		
7	05/09/07	13:57	275,107	82.2	14:02	275,552	10.5	86.4	5.2	445		
8	06/05/07	13:01	297,955	104.7	13:06	298,389	9.3	85.7	5.2	434		
9	06/14/07	11:44	305,409	112.8	11:49	305,847	14.2	85.6	5.2	438		
10	07/11/07	12:12	330,885	119.0	12:17	331,300	15.1	86.1	5.0	415		
11	08/08/07	13:26	360,213	74.3	13:31	360,649	10.8	84.8	5.2	436		
12	09/05/07	11:51	387727	102.6	11:56	388,094	15.1	84.5	4.4	367		
13	10/10/07	13:20	419,409	83.1	13:25	419,849	7.7	84.7	5.2	440		

 Table C-1.
 Backwash Operation (Vessel A)

		After Filtration "TB" Backwash										
Sampling Event								Backwash	Backwash	Wastewater		
		Backwash Start			Backwash End			Flowrate	Duration	Generated		
No.	Date	Time GAL NTU		Time	GAL	NTU	GPM	Min	GAL			
1	10/13/06	9:40	32,944	230.2	9:50	33,508	9.3	60.5	10	564		
2	11/30/06	12:30	65,044	278.2	3:40	65,665	9.2	63.4	10	621		
3	01/03/07	13:18	87,520	394.7	13:33	88,427	8	64.8	14.6	907		
4	02/07/07	14:50	115,730	274.2	14:58	116,199	17.8	64.6	7.5	469		
5	03/07/07	14:02	148,630	356.7	14:09	149,100	14.6	66.4	7.3	470		
6	04/05/07	12:29	195,874	321.2	12:37	196,349	14.1	66.4	7.4	475		
7	05/09/07	13:37	274,683	140.1	13:43	275,107	13.8	85.1	5.3	424		
8	06/05/07	13:20	298,389	114.6	13:25	298,784	14.6	83.7	4.8	395		
9	06/14/07	12:15	305,847	87.1	12:20	306,221	14.4	84.1	4.7	374		
10	07/11/07	12:59	331,300	132.1	13:05	331,720	13.6	84.6	5.1	420		
11	08/08/07	14:00	360,649	70.2	14:05	361,003	15.3	83.8	4.4	354		
12	09/05/07	12:26	388,094	129.7	12:32	388,509	12.9	83.4	5.1	415		
13	10/10/07	13:54	419,849	94.8	13:59	420,235	14.6	83.6	4.8	386		

 Table C-1.
 Backwash Operation (Vessel B)

		After Filtration "TC" Backwash										
Sampling Event								Backwash	Backwash	Wastewater		
		Backwash Start			Backwash End			Flowrate	Duration	Generated		
No.	Date	Time	GAL	NTU	Time	Time GAL NTU		GPM	Min	GAL		
1	10/13/06	10:08	33,508	212.2	10:18	34,079	3.5	61.4	10	571		
2	11/30/06	13:18	65,665	219.8	13:27	66,242	4	64.5	9.4	577		
3	01/03/07	13:55	88,427	286.8	14:04	89,008	5.5	65.4	9.3	581		
4	02/07/07	15:22	116,199	268.3	15:29	116,624	13.1	65.2	6.6	425		
5	03/07/07	14:40	149,100	251.9	14:46	149,505	11.5	66.8	6.2	405		
6	04/05/07	13:01	196,349	230.3	13:08	196,766	11.1	67.1	6.5	417		
7	05/09/07	13:14	273,995	110.5	13:23	274,683	14.9	86.5	8.4	688		
8	06/05/07	13:45	298,784	116.1	13:50	299,177	12.3	85.7	4.8	393		
9	06/14/07	12:44	306,221	95.8	12:50	306,655	7.1	85.8	5.2	444		
10	07/11/07	13:43	331,720	116.3	13:48	332,139	13.8	86.1	4.9	419		
11	08/08/07	14:32	361,003	105.3	14:37	361,404	14.1	84.6	4.8	401		
12	09/05/07	13:01	388,509	72.3	13:05	388,860	12.9	84.5	4.3	351		
13	10/10/07	14:46	420,235	110.1	14:51	420,676	7.8	84.6	5.3	441		

 Table C-1.
 Backwash Operation (Vessel C)