
EPA/600/R-07/106
July 2007 

Transit Bus Load-Based 
Modal Emission Rate Model 
Development 



EPA/600/R-07/106 
July 2007 

TRANSIT BUS LOAD-BASED MODAL

EMISSION RATE MODEL DEVELOPMENT


by


Chunxia Feng

Randall Guensler

Michael Rodgers


School of Civil and Environmental Engineering

Georgia Institute of Technology


Atlanta, GA


Contract No: EP-05C-000033


EPA Project Officer: Sue Kimbrough 
U.S. Environmental Protection Agency


National Risk Management Research Laboratory

Air Pollution Prevention and Control Laboratory


Research Triangle Park, NC  27711


U.S. Environmental Protection Agency

Office of Research and Development


Washington, DC  20460



ABSTRACT 

Heavy-duty diesel vehicle (HDDVs) operations are a major source of oxides of nitrogen 
(NOx) and particulate matter (PM) emissions in metropolitan areas nationwide. Although HD-
DVs constitute a small portion of the onroad fleet, they typically contribute more than 45% of 
NOx and 75% of PM onroad mobile source emissions (U.S. EPA 2003).  HDDV emissions are a 
large source of global greenhouse gas and toxic air containment emissions.  Over the last several 
decades, both government and private industry have made extensive efforts to regulate and con
trol mobile source emissions. The relative importance of emissions from HDDVs has increased 
significantly because today’s gasoline powered vehicles are more than 95% cleaner than vehicles 
in 1968. 

In current regional and microscale modeling conducted in every state except California, 
HDDV emissions rates are taken from the U.S. Environmental Protection Agency’s (EPA’s) 
MOBILE 6.2 model (U.S. EPA 2001a).  The U.S. Environmental Protection Agency (U.S. EPA) 
is currently developing a new set of modeling tools for the estimation of emissions produced by 
onroad and off-road mobile sources.  The new Multi-scale mOtor Vehicle & equipment Emission 
System, known as MOVES (U.S. EPA 2001a), is a modeling system designed to better predict 
emissions from onroad operations. 

The major effort of this research is to develop a new heavy-duty vehicle load-based mod
al emission rate model that overcomes some of the limitations of existing models and emission 
rates prediction methods. This model is part of the proposed Heavy-Duty Diesel Vehicle Modal 
Emission Modeling (HDDV-MEM) which was developed by Georgia Institute of Technology 
(Guensler, et al. 2006).  HDDV-MEM differs from other proposed HDDV modal models (Barth, 
et al. 2004; Frey, et al. 2002; Nam 2003) in that the modeling framework first predicts second-
by-second engine power demand as a function of vehicle operating conditions and then applies 
brake-specific emission rates to these activity predictions. 
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FOREWORD 

The U.S. Environmental Protection Agency (EPA) is charged by Congress with protect­
ing the Nation’s land, air, and water resources. Under a mandate of national environmental laws, 
the agency strives to formulate and implement actions leading to a compatible balance between 
human activities and the ability of natural systems to support and nurture life. To meet this man­
date, EPA’s research program is providing data and technical support for solving environmental 
problems today and building a science knowledge base necessary to manage our ecological re­
sources wisely, understand how pollutants affect our health, and prevent or reduce environmental 
risks in the future. 

The National Risk Management Research Laboratory (NRMRL) is the agency’s center 
for investigation of technological and management approaches for preventing and reducing risks 
from pollution that threaten human health and the environment. The focus of the laboratory’s 
research program is on methods and their cost-effectiveness for prevention and control of pol­
lution to air, land, water, and subsurface resources; protection of water quality in public water 
systems; remediation of contaminated sites, sediments, and ground water; prevention and control 
of indoor air pollution; and restoration of ecosystems. NRMRL collaborates with both public and 
private sector partners to foster technologies that reduce the cost of compliance and to antici­
pate emerging problems. NRMRL’s research provides solutions to environmental problems by: 
developing and promoting technologies that protect and improve the environment; advancing 
scientific and engineering information to support regulatory and policy decisions; and providing 
the technical support and information transfer to ensure implementation of environmental regula­
tions and strategies at the national, state, and community levels. 

This publication has been produced as part of the laboratory’s strategic long-term re­
search plan. It is published and made available by EPA’s Office of Research and Development to 
assist the user community and to link researchers with their clients.

      Sally Gutierrez, Director
      National Risk Management Research Laboratory 
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EPA REVIEW NOTICE 

This report has been peer and administratively reviewed by the U.S. Environmental Pro­
tection Agency and approved for publication. Mention of trade names or commercial products 
does not constitute endorsement or recommendation for use. This document is available to the 
public through the National Technical Information Service, Springfi eld, Virginia 22161. 
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SUMMARY 

Heavy-duty diesel vehicle (HDDV) operations are a major source of pollutant emissions 
in major metropolitan areas. Accurate estimation of heavy-duty diesel vehicle emissions is es­
sential in air quality planning efforts because highway and non-road heavy-duty diesel emissions 
account for a significant fraction of the oxides of nitrogen (NOx) and particulate matter (PM) 
emissions inventories. MOBILE6 (U.S. EPA 2002a), EPA’s mobile source emission rate model, 
uses an “average trip-based” approach to modeling as opposed to a more fundamental and robust 
modal modeling approach. 

The major effort of this research is to develop a new heavy-duty vehicle load-based mod­
al emission rate model that overcomes some of the limitations of existing models and emission 
rates prediction methods. This model is part of the proposed Heavy-Duty Diesel Vehicle Modal 
Emission Modeling (HDDV-MEM) which was developed by Georgia Institute of Technology.  
HDDV-MEM first predicts second-by-second engine power demand as a function of vehicle op­
erating conditions and then applies brake-specific emission rates to these activity predictions. 

To provide better estimates of microscale level emissions, this modeling approach is 
designed to predict second-by-second emissions from on-road vehicle operations. This research 
statistically analyzes the database provided by EPA and yields a model for prediction of emis­
sions at a microscale level based on engine power demand and driving mode. Research results 
demonstrate the importance of including the influence of engine power demand vis-à-vis emis­
sions and simulating engine power in real world applications. The modeling approach provides 
a significant improvement in HDDV emissions modeling compared to the current average speed 
cycle-based emissions models. 
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CHAPTER 1 

1. INTRODUCTION 

1.1 Emissions from Heavy-Duty Diesel Vehicles 

Heavy-duty diesel vehicles (HDDVs) operations are a major source of oxides of 
nitrogen (NOx) and particulate matter (PM) emissions in metropolitan areas nationwide. Al­
though HDDVs constitute a small portion of the on-road fleet, they typically contribute more 
than 45% of NOx and 75% of PM on-road mobile source emissions (U.S. EPA 2003).  HDDV 
emissions are a large source of global greenhouse gas and toxic air contaminant emissions.  Ac­
cording to Environmental Defense Report in 2002, NOx causes many environmental problems 
including acid rain, haze, global warming and nutrient overloading leading to water quality deg­
radation (CEDF 2002). HDDV emissions are also harmful to human health and the environment 
(SCAQMD 2000). Groundbreaking long-term studies of children’s health conducted in Califor­
nia have demonstrated that particle pollution may significantly reduce lung function growth in 
children (Avol 2001, Gauderman 2002, Peters 1999).  Previous studies have stressed the signifi­
cance of emissions from HDVs, in urban non-attainment areas especially for ozone (for which 
nitrogen oxides are a precursor) and PM2.5 (Gautam and Clark 2003, Lloyd and Cackette 2001). 

Over the last several decades, both government and private industry have made extensive 
efforts to regulate and control mobile source emissions.  In 1961, the first automotive emissions 
control technology in the nation, Positive Crankcase Ventilation (PCV), was mandated by the 
California Motor Vehicle State Bureau of Air Sanitation to control hydrocarbon crankcase emis­
sions, and PCV Requirement went into effect on domestic passenger vehicles for sale in Califor­
nia in 1963 (CARB 2004). At the same time, first Federal Clean Air Act was enacted.  Although 
this act only dealt with reducing air pollution by setting emissions standards for stationary 
sources such as power plants and steel mills at the beginning, amendments of 1965, 1966 and 
1967 focused on establishing standards for automobile emissions (AMS 2005). Emission control 
was first required on light-duty gasoline vehicles (LDVs) by U.S. EPA in the 1968 model year.  
Developed and refined over a period of more than 30 years, these controls have become more ef­
fective at reducing LDV emissions (FCAP 2004).  
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The relative importance of emissions from HDDVs has increased signifi cantly because 
today’s gasoline powered vehicles are more than 95% cleaner than vehicles in 1968. Consider­
ing that HDDVs typically have a life cycle of over one million miles, may be on the road as long 
as 30 years, and will continue to play a major emission inventory role with increases in goods 
movement with their high durability and reliability, modeling of HDDV emissions is going to 
become increasingly important in air quality planning. 

1.2 Current Heavy-Duty Vehicle Emissions Modeling Practices 

In current regional and microscale modeling conducted in every state except California, 
HDDV emissions rates are taken from the U.S. Environmental Protection Agency’s (EPA’s) 
MOBILE 6.2 model (U.S. EPA 2001b).  MOBILE 6.21 emission rates were derived from base­
line emission rates (gram/brakehorsepower-hour) developed in the laboratory using engine 
dynamometer test cycles. While different driving cycles have been developed over the years, 
dynamometer testing is conceptually designed to obtain a “representative sample” of vehicle 
operations. These work-based emission rates are then modified through a series of conversion 
and correction factors to obtain approximate emission rates in units of grams/mile that can be 
applied to on-road vehicle activity (vehicle miles traveled), as a function of temperature, humid­
ity, altitude, average vehicle speed, etc. (Guensler 1993).  The conversion process used to trans­
late laboratory emission rates to on-road emission rates employs fuel density, brake specifi c fuel 
consumption, and fuel economy for each HDDV technology class.  However, the emission rate 
conversion process does not appropriately account for the impacts of roadway operating condi­
tions on brake specific fuel consumption and fuel economy (Guensler, et al. 1991). 

The U.S. Environmental Protection Agency (U.S. EPA) is currently developing a new 
set of modeling tools for the estimation of emissions produced by on-road and off-road mobile 
sources. The new Motor Vehicle Emissions Simulator, known as MOVES2 (Koupal, et al. 
2004), is a modeling system designed to better predict emissions from on-road operations. The 
philosophy behind MOVES is to develop a model that is as directly data-driven as possible, 
meaning that emission rates are developed from second-by-second or binned emission rate data. 

1.3 Research Approaches and Objectives 

The major effort of this research is to develop a new heavy-duty vehicle load-based mod­
al emission rate model that overcomes some of the limitations of existing models and emission 
1MOBILE = Current mobile source emissions model used for State Implementation Plan emission inventories. 
2MOVES = Mobile Vehicle Emissions Estimator, next generation mobile source emissions model. The model will 
be used for State Implementation Plan emission inventories and will replace the current MOBILE model. 
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rates prediction methods. This model is part of the proposed Heavy-Duty Diesel Vehicle Modal 
Emission Modeling (HDDV-MEM) which was developed by Georgia Institute of Technology 
(Guensler, et al. 2006).  HDDV-MEM differs from other proposed HDDV modal models (Barth, 
et al. 2004, Frey, et al. 2002, Nam 2003) in that the modeling framework first predicts second-
by-second engine power demand as a function of vehicle operating conditions and then applies 
brake-specific emission rates to these activity predictions. This means that HDDV emission rates 
are predicted as a function of engine horsepower loads for different driving modes.  Hence, the 
basic algorithm and matrix calculation in the HDDV-MEM should be transferable to MOVES.  
The new model implementation is similar in general structure to previous model emission rate 
model known as Mobile Emissions Assessment System for Urban and Regional Evaluation 
(MEASURE1) model developed by Georgia Institute of Technology several years ago (Bachman 
1998, Guensler, et al. 1998, Bachman, et al. 2000). 

The major effort of this research consists of a number of specific objectives outlined 
below: 

• 	 Develop a new load-based modal emission rate model to improve spatial/temporal 
emissions modeling; 

• 	 Develop a HDDV modal emission rate model to more accurately estimate on-road 
HDDV emissions; 

• 	 Develop a modal model that can be verified at multiple levels; 

• 	 Develop a HDDV modal emission rate model that can be integrated into the MOVES. 

1.4 Summary of Research Contributions 

There are four major contributions developed by this research. First, a framework for 
emission rate modeling suitable for predicting emissions at different scales (microscale, me­
soscale, and macroscale) is established. Since this model is developed using on-board emissions 
data which are collected under real-world conditions, this model will provide capabilities for 
integrating necessary vehicle activity data and emission rate algorithms to support second-by­
second and link-based emissions prediction. Combined with GIS framework, this model will 
improve spatial/temporal emissions modeling. 

1MEASURE = Mobile Emissions Assessment System for Urban and Regional Evaluation Model. This model is a 
prototype GIS-based modal emissions model. 
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Second, the relationship between engine power and emissions is explored and integrated 
into the modeling framework. Research results indicate that engine power is more powerful 
than surrogate variables to present load data in the proposed model. Based on the important role 
of engine power in explaining the variability of emissions, it is better to include the load data 
measurement during emission data collection procedure. Meanwhile, development of methods 
to simulate real world engine power is equally important. 

Third, this research verifies that vehicle emission rates are highly correlated with modal 
vehicle activity.  To get better understanding of driving modes, it is important to examine not 
only emission distributions, but also engine power distributions. 

Finally, a dynamic framework is created for further improvement.  As more databases 
become available, this approach could be re-run to obtain a more reliable load-based modal emis­
sion model based on the same philosophy. 

1.5 Report Organization 

Chapter 2 examines the diesel fuel combustion process and its relationship to diesel en­
gine emissions formation. Chapter 3 overviews the existing heavy-duty vehicle emission models 
and presents the proposed heavy-duty diesel vehicle modal emission model (HDDV-MEM).  
Chapter 4 provides an overview of the emission rate testing databases provided by U.S. EPA, the 
quality assurance and quality control (QA/QC) procedures to review the validity of the data, and 
the methods used to post-process these databases to correct data deficiencies. In Chapter 5, the 
various statistical models considered for data analysis are discussed. Chapter 6 selects the data­
base used to develop the conceptual model and discusses the influence of explanatory variables 
on emissions. Chapter 7 covers sensitivity tests of driving mode definitions and outlines the 
potential impacts on derived models. Chapters 8 to 11 elaborate the different emission models 
developed for idle, deceleration, acceleration and cruise driving modes. In Chapter 12, research 
results are verified. Finally, Chapter 13 presents a discussion and conclusion on research results. 

1-4




CHAPTER 2 

2. HEAVY-DUTY DIESEL VEHICLE EMISSIONS 

Diesel engines differ from gasoline engines in terms of the combustion processes 
and engine size, giving rise to their different emission properties and therefore different emis­
sions standards. This chapter examines the diesel fuel combustion process and its relationship to 
diesel engine emissions formation followed by a summary of the emission regulations for diesel 
engines. 

2.1 How Diesel Engine Works 

By far the predominant engine design for transportation vehicles is the reciprocat­
ing internal combustion (IC) engine which operates either on a four-stroke or a two-stroke cycle. 
The two-stroke engine is commonly found in lower-power applications such as snowmobiles, 
lawnmowers, mopeds, outboard motors and motorcycles, while both gasoline and diesel automo­
tive engines are classified as four-stroke engines.  To understand the formation and control of 
emissions, it is necessary to first develop an understanding of the operation of the internal com­
bustion engine. 

2.1.1 The Internal Combustion Engine 

Internal combustion engines generate power by converting the chemical energy stored in 
fuels into mechanical energy.  The engine is termed “internal combustion” because combustion 
occurs in a confined space called a combustion chamber.  Combustion of the fuel charge inside 
a chamber causes a rapid rise in temperature and pressure of the gases in the chamber, which are 
permitted to expand. The expanding gases are used to move a piston, turbine blades, rotor, or the 
engine itself. 

The four-stroke gasoline engine cycle is also called Otto cycle, in honor of Nikolaus Otto, 
who is credited with inventing the process in 1867. The four piston strokes are illustrated in Fig­
ure 2-1. The following processes take place during one cycle of operation: 
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1. Intake stroke: the piston starts at the top, the intake valve opens, and the piston 
moves down to let the engine take in a fresh charge composed of a mixture of fuel and air (for 
spark-ignition or gasoline engine) or air only (for auto-ignition or diesel engine). (Part 1 of the 
figure.) 

2. Compression stroke: then the piston moves back up to compress this fuel/air mixture 
(gasoline engines) or the air only (diesel engines). In gasoline engines combustion is started by 
ignition from a spark plug, in diesel engines auto-ignition occurs when fuel is injected into the 
compressed air which has achieved a high temperature through compression such that the tem­
perature is high enough to cause self-ignition. (Part 2 of the figure.) 

3. Expansion stroke: when the piston reaches the top of its stroke, the combustion process 
results in a substantial 
increase in the gas tem­
perature and pressure and 
drives the piston down. 
(Part 3 of the figure.) 

4. E x h a u s t  
stroke: once the piston 
hits the bottom of its 
stroke, the exhaust valve 
opens and the exhaust 
leaves the cylinder into 
the exhaust manifold and 
then into the tail pipe. 
Discharge of the burnt 
gases (exhaust) from the 
cylinder occurs to make 
room for the next cycle. 
(Part 4 of the figure.) 

Figure 2.1 Actions of a four-stroke gasoline internal combustion engine -- Adapted from (HowStuff-
Works 2005) 

Figure 2-1 is a diagrammatic representation of the four strokes of an internal combustion 
engine. The upper end of the cylinder consists of a clearance space in which ignition and com­
bustion occur.  The expanding medium pushes against the piston head inside the cylinder, caus­
ing the piston to move; this straight line motion of the piston is converted into the desired rotary 
motion of the wheels by means of a drivetrain consisting of a connecting rod and crankshaft. 
Figure 2-1 illustrates that the only stroke that delivers useful work is the expansion stroke; the 
other three strokes are thus termed idle strokes. The reader interested in a detailed description 
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of the internal combustion engine is referred to specialized texts, such as Heywood (Heywood 
1998) and Newton et al. (Newton, et al. 1996). 

2.1.2 Comparison with the Gasoline Engine 

The diesel engine employs the compression ignition cycle. German engineer Rudolf Die­
sel developed the idea for the diesel engine and received the patent on February 23, 1893. His 
goal was to create an engine with high efficiency.  Figure 2-2 is a diagrammatic representation 
of the four strokes of a diesel engine. The main differences between the gasoline engine and the 
diesel engine are: 

• 	 A gasoline engine compresses at a ratio of 8:1 to 12:1, while a diesel engine compresses 
at a ratio of 14:1 to as high as 25:1. The higher compression ratio of the diesel engine 
leads to higher peak combustion temperatures and better fuel effi ciency. 

• 	 Unlike a gasoline engine, which takes in a mixture of gas and air, compresses it and 
ignites the mixture with a spark, a diesel engine takes in just air, compresses it and then 
injects fuel into the compressed air.  The heat of the compressed air spontaneously ig­
nites the fuel. 

• 	 Gasoline en­

gines generally 

use either carbu­

retion, in which 

the air and 

fuel is mixed 

long before the 

air enters the 

cylinder, or port 

fuel injection, in 

which the fuel is 

injected just pri­

or to the intake 

stroke (outside 

the cylinder), 

while diesel 

engines use 

direct fuel injec­

tion – the diesel 

fuel is injected 

directly into the 

cylinder.


Figure 2.2 Actions of a four-stroke diesel engine (HowStuffWorks 2005) 
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2.2 Diesel Engine Emissions 

Like any other internal combustion engine, diesel engines convert the chemical energy 
contained in diesel fuel into mechanical power.  Diesel fuel is injected under pressure into the 
engine cylinder, where it mixes with air and combustion occurs.  Diesel fuel is heavier and oilier 
than gasoline. Diesel fuel evaporates much more slowly than gasoline, with a boiling point that 
is actually higher than that of water.  The lean nature of the diesel-air mixture results in a com­
bustion environment that produces lower emission rates of carbon monoxide (CO) and hydrocar­
bons (HC) compared to gasoline-powered engines. However, diesel engines do produce rela­
tively high level emissions of oxides of nitrogen (NOx) and particulate matter (PM), especially 
fine particulate matter.  This section will discuss oxides of nitrogen and particulate emissions in 
detail. 

2.2.1 Oxides of Nitrogen and Ozone Formation

 Oxides of nitrogen, a mixture of nitric oxide (NO) and nitrogen dioxide (NO2), are 
produced from the destruction of atmospheric nitrogen (N2) during the combustion process. 
Atmospheric air generally consists of 80% N2 and 20% O2, and these elements are stable because 
of the moderate temperatures and pressures. However, during high temperature and pressure 
conditions of combustion, excess oxygen in the combustion chamber reacts with N2 to create NO 
which is quickly transformed into NO2. The role of nitrogen contained in the air in NO forma­
tion was initially postulated by Zeldovich (Zeldovich, et al. 1947). In near-stoichiometric or lean 
systems the mechanisms associated with NO formation (as many as 30 or so independent chemi­
cal reactions that also involve participation of hydrocarbon species) can generally be simplified 
to the following: 

Reaction 1: O2   O + O 

Reaction 2: O + N2   NO + N 

Reaction 3: N + O2  NO + O 

In near-stoichiometric and fuel-rich mixtures, where the concentration of OH radicals can 
be high, the following reaction also takes place: 

Reaction 4: N + OH  NO + H 

Reaction 4, together with reactions 1, 2 and 3, are known as the extended Zeldovich 
mechanism. It is also important to note that emitted nitric oxide (NO) will oxidize to nitrogen 
dioxide (NO2) in the atmosphere over a period of a few hours. 
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 Oxides of nitrogen (NOX) are reactive gases that cause a host of environmental concerns 
impacting adversely on human health and welfare. Nitrogen dioxide (NO2), in particular, is a 
brownish gas that has been linked with higher susceptibility to respiratory infection, increased 
airway resistance in asthmatics, and decreased pulmonary function. Most importantly, NOX 
emitted from heavy-duty vehicles plays a major role in the formation of ground level ozone 
pollution, which causes wide-ranging damage to human health and the environment (U.S. EPA 
1995). Ozone is a colorless, highly reactive gas with a distinctive odor.  Naturally, ozone is 
formed by electrical discharge (lightning) and in the upper atmosphere at altitudes between 15 
and 35 km. Stratospheric ozone protects the Earth from harmful ultraviolet radiation from the 
sun. However, ground level ozone is formed by chemical reactions involving NOX and volatile 
organic compounds (VOCs) combining in the presence of heat and sunlight.  These two cat­
egories of pollutants are also referred to as ozone precursors. The production of photochemical 
oxidants usually occurs over several hours which means that the highest concentrations of ozone 
normally occur on summer afternoons, in areas downwind of major sources of ozone precursors. 
The simplified reaction processes are illustrated as: 

NO2 + VOC + sunlight (UV)  ⇒ NO2 + O2 + sunlight (UV) ⇒  NO + O3 

At ground level, elevated ozone concentrations can cause health and environmental 
problems. Ozone can affect the human cardiac and respiratory systems, irritating the eyes, nose, 
throat, and lungs. Symptoms of ozone exposure include itchy and watery eyes, sore throats, 
swelling within the nasal passages and nasal congestion. Effects from ozone are experienced 
only for the period of exposure to elevated levels. EPA promulgated 8-hour ozone standards in 
1997 and designated an area as nonattainment if it has violated, or has contributed to violations 
of, the national 8-hour ozone standard over a three-year period. 

2.2.2 Fine Particulate Matter (PM2.5) 

Particulate matter (PM) is a complex mixture of solid and liquid particles (excluding wa­
ter) that are suspended in air.  These particles typically consist of a mixture of inorganic and or­
ganic chemicals, including carbon, sulfates, nitrates, metals, acids, and semivolatile compounds. 
The size of PM in air ranges from approximately 0.005 to 100 micrometers (μm) in aerodynamic 
diameter -- the size of just a few atoms to about the thickness of a human hair.  U.S. EPA defined 
three general categories for PM as coarse (10 to 2.5 μm), fi ne (2.5 μm or smaller), and ultrafine 
(0.1 μm or smaller). 

Heavy-duty diesel vehicles are known to emit large quantities of small particles (Kittel­
son, et al. 1978). A majority of the PM found in diesel exhaust is in the nanometer size range.  
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Lloyd found that more than 90% of fine particles from heavy-duty vehicles are smaller than 1μm 
in diameter (Lloyd and Cackette 2001). 

Fine PM can cause not only human health problems and property damage, but also ad­
versely impact the environment through visibility reduction and retard plant growth (Davis, et 
al. 1998). Health studies have shown a significant association between exposure to fi ne particles 
and premature death from heart or lung diseases. Other important effects include aggravation of 
respiratory and cardiovascular disease, lung disease, decreased lung function, or asthma attacks. 
Individuals particularly sensitive to fine particle exposure include older adults, people with heart 
and lung disease, and children (U.S. EPA 2005).  EPA promulgated the PM2.5 standard in 1997 
and included a 24-hour standard for PM2.5 set at 65 micrograms per cubic meter (μg/m3), and an 
annual standard of 15 μg/m3. 

2.3 Heavy-Duty Diesel Vehicle Emission Regulations 

2.3.1 National Ambient Air Quality Standards 

The Clean Air Act, which was last amended in 1990, requires the U.S. EPA to set Na­
tional Ambient Air Quality Standards (NAAQS) to safeguard public health against six common 
air pollutants: ozone (O3), particulate matter (PM), sulfur dioxide (SO2), carbon monoxide (CO), 
nitrogen dioxide (NO2) and lead (Pb). The Clean Air Act established two types of national air 
quality standards. Primary standards set limits to protect public health, including the health of 
“sensitive” populations such as asthmatics, children, and the elderly.  Secondary standards set 
limits to protect public welfare, including protection against decreased visibility, damage to 
animals, crops, vegetation, and buildings (CFR 2004a). Table 2-1 illustrates the current NAAQS 
for ambient concentrations of various pollutants. Units of measure for the standards are parts per 
million by volume (ppmv), milligrams per cubic meter of air (mg/m3), and micrograms per cubic 
meter of air (μg/m3). 

Table 2-1. National Ambient Air Quality Standards (U.S. EPA 2006) 

Pollutant Average Times Standard Value Standard Type 

Carbon Monoxide (CO) 
8-hour Average 9 ppmv (10 mg/m3) Primary 
1-hour Average 35 ppmv (40 mg/m3) Primary 

Nitrogen Dioxide (NO2) 
Annual Arithmetic 
Mean 

0.053 ppmv (100 μg/m3) Primary & Secondary 

Ozone (O3) 
1-hour Average 0.12 ppmv (235 μg/m3) Primary & Secondary 
8-hour Average 0.08 ppmv (157 μg/m3) Primary & Secondary 
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Pollutant Average Times Standard Value Standard Type 

Lead (Pb) Quarterly Average 1.5 μg/m3 Primary & Secondary 

Particulate (PM10) 
Annual Arithmetic 
Mean 

50 μg/m3 Primary & Secondary 

24-hour Average 150 μg/m3 Primary & Secondary 

Particulate (PM2.5) 
Annual Arithmetic 
Mean 

15 μg/m3 Primary & Secondary 

24-hour Average 65 μg/m3 Primary & Secondary 
Annual Arithmetic 
Mean 

0.030 ppmv (80 μg/m3) Primary 

Sulfur Dioxide (SO2) 24-hour Average 0.14 ppmv (365 μg/m3) Primary 
3-hour Average 0.50 ppmv (1300 μg/m3) Secondary 

2.3.2 Heavy-Duty Engine Certifi cation Standards 

Heavy-duty vehicles are defined as vehicles of GVWR (gross vehicle weight rating) 
above 8,500 lbs in the federal jurisdiction and above 14,000 lbs in California (model year 1995 
and later). Diesel engines used in heavy-duty vehicles are further divided into service classes by 
GVWR, as follows: 

• 	 Light heavy-duty diesel engines: 8,500<LHDDE<19,500 (14,000<LHDDE<19,500 in 
California, 1995+) 

• 	 Medium heavy-duty diesel engines: 19,500≤MHDDE≤33,000 

• 	 Heavy heavy-duty diesel engines (including urban bus): HHDDE>33,000 

Under the federal light-duty Tier 2 regulation (phased in beginning 2004), vehicles of 
GVWR up to 10,000 lbs used for personal transportation have been re-classified as “medium­
duty passenger vehicles” (MDPV – primarily larger SUVs and passenger vans) and are subject to 
the light-duty vehicle legislation. Thus, the same diesel engine model used for the 8,500-10,000 
lbs vehicle category may be classified as either light- or heavy-duty and certified to different 
standards, depending on the manufacturer-defined application (CFR 2004b). Except for the 
heavy-duty vehicles classified as LDVs, all heavy-duty vehicle emissions standards are estab­
lished using the engine dynamometer certifi cation process. 
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2.3.3 Heavy-Duty Engine Emission Regulations 

EPA regulates heavy-duty vehicle emissions for compliance with emissions standards 
over the useful life of the engine. Useful life is defined as follows (U.S. EPA and California) 
(CFR 2004c): 

LHDDE – 8 years/110,000 miles (whichever occurs first)

MHDDE – 8 years/185,000 miles


HHDDE – 8 years/290,000 miles


Federal useful life requirements were later increased to 10 years, with no change to 
the above mileage numbers, for the urban bus PM standard (1994+) and for the NOx standard 
(1998+). The emission warranty period is 5 years/100,000 miles (5 years/100,000 miles/3,000 
hours in California), but no less than the basic mechanical warranty for the engine family.  Table 
2-2 shows the heavy-duty engine emissions standards by model year group. 

Table 2-2. Heavy-Duty Engine Emissions Standards (U.S. EPA 1997) 
Year HC (g/bhp-hr) CO (g/bhp-hr) NO x (g/bhp-hr) PM (g/bhp-hr) 

Heavy-Duty Diesel Truck Engines 
1988 1.3 15.5 10.7 0.60 
1990 1.3 15.5 6.0 0.60 
1991 1.3 15.5 5.0 0.25 
1994 1.3 15.5 5.0 0.10 
1998 1.3 15.5 4.0 0.10 
Urban Bus Engines 
1991 1.3 15.5 5.0 0.25 
1993 1.3 15.5 5.0 0.10 
1994 1.3 15.5 5.0 0.07 
1996 1.3 15.5 5.0 0.05* 
1998 1.3 15.5 4.0 0.05* 
* in-use PM standard 0.07 

2.4 Heavy-Duty Diesel Vehicle Emission Modeling 

There are several models currently used to estimate emissions from heavy-duty vehicles. 
The most common emission rate models are VMT-based or cycle-based models, developed from 
laboratory test facility driving cycle data. Due to lack of available data representing real world 
conditions, all previous models were developed based upon engine dynamometer data. The fol­
lowing chapter will address this issue in detail. 
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CHAPTER 3 

3. HEAVY-DUTY DIESEL VEHICLE EMISSIONS MODELING 

Several models are currently used to estimate emissions from heavy-duty vehicles.  A 
comprehensive review of the existing heavy-duty vehicle emission models will help modelers 
understand the different approaches and how they can contribute to the development of enhanced 
emission rate modeling techniques. 

The most common emission rate models are VMT-based or cycle-based developed from 
laboratory test facility driving cycle data. Fuel-based models model emissions as a function of 
fuel usage rate as well as other parameters. In the 1990s, even the proposed enhanced modal 
models, designed to predict emissions as a function of speed and acceleration profiles of ve­
hicles, were still based upon statistical analysis of cycle-based data (Bachman 2000; Fomunung 
2000). More recent emission rate modeling frameworks are proposing to model modal emission 
rates on a second-by-second basis directly from the vehicle operating mode. 

3.1 VMT-Based Vehicle Emission Models 

The current emission rate models used by state and federal agencies include the Mobile 
Source Emission Model (MOBILE) series of models developed by the U.S. Environmental Pro­
tection Agency (U.S. EPA) and the Emission Factor Emission Inventory Model (EMFAC) series 
developed by California Air Resources Board (CARB). 

3.1.1 MOBILE 

MOBILE (U.S. EPA 1993), developed by the US EPA in the late 1970s to estimate 
vehicle emission, has since become the nation’s standard in assessing the emission impacts of 
various transportation inputs. MOBILE uses the method of base emission rates and correction 
factors. This model has undergone significant expansion and improvements over the years. The 
latest version is MOBILE6 released in February 2002 (U.S. EPA 2002a). 
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MOBILE is based on engine dynamometer test data from selected driving cycles. The 
Federal Test Procedure (FTP) transient cycle is composed of a unique profile of stops, starts, 
constant speed cruises, accelerations and decelerations. Different driving cycles are developed 
to simulate both urban and freeway driving. A concern with driving cycles is that they may not 
be sufficiently representative of real-world emissions (Kelly and Groblicki 1993; Denis et al. 
1994). For HDV emission rates, MOBILE uses the method of base emission rates and conver­
sion factors which convert the g/bhp-hr emissions estimates observed in the laboratory to g/mile 
emission rates, to be consistent with available travel information. Conversion factors are used to 
convert the g/bhp-hr emissions estimates to grams per mile traveled. These conversion factors 
contribute a large source of uncertainty to the MOBILE model since the BSFC (brake specific 
fuel consumption) data are aggregated for the fleet and may not represent in-use vehicle charac­
teristics (Guensler et al. 1991). Conversion factors have improved accuracy in MOBILE6 due to 
improved data, but fundamental flaws remain (Guensler et al. 2006). 

3.1.1.1 Diesel Engine Test Cycles 

EPA currently uses the transient Federal Test Procedure (FTP) engine dynamometer 
cycle, which includes both engine cold and warm start operations, for heavy-duty vehicles (CFR 
Title 40, Part 86.1333).  Unlike the chassis dynamometer test for light-duty vehicle, the engine is 
removed from the vehicle’s chassis, mounted on the engine dynamometer test stands, and oper­
ated in the transient FTP test cycle.  The transient cycle (Figure 3-1) consists of four phases: the 
first is a NYNF (New York Non Freeway) phase typical of light urban traffic with frequent stops 
and starts, the second is LANF (Los Angeles Non Freeway) phase typical of crowded urban 
traffic with few stops, the third is a LAFY (Los Angeles Freeway) phase simulating crowded 
expressway traffic in Los Angeles, and the fourth phase repeats the first NYNF phase. This cycle 
consists of a cold start after parking overnight, followed by idling, acceleration and deceleration 
phases, and a wide variety of different speeds and loads sequenced to simulate the running of the 
vehicle that corresponds to the engine being tested. There are few stabilized running conditions, 
and the average load factor is about 20 to 25% of the maximum horsepower available at a given 
speed. 

Emission and operation parameters are measured while the engine operates during the 
test cycle. The engine torque is determined by applying performance percentages with an engine 
lug curve (maximum torque curve). Engine torque is then converted to engine brake horsepower 
using engine revolution per minute (RPM). Brake specific emissions rates are reported in g/ 
bhp-hr and then converted to g/mile using pre-defined conversion factors (CFR Title 40, Part 
86.1342-90). 
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Figure 3-1 FTP Transient Cycle (DieselNet 2006) 

Because the engine dynamometer test procedure does not directly account for the impacts 
from load and grade changes, a chassis dynamometer test procedure and the cycle known as the 
HDV urban dynamometer driving schedule (HDV-UDDS) was developed [CFR Title 40, Part 
86, App. I], sometimes referred to as “cycle D”.  This cycle is different from the UDDS cycle for 
light-duty vehicles (FTP-72). This HDV cycle lasts 1060 seconds and covers 5.55 miles.  The 
average speed for HDV UDDS is 18.86 mph while the maximum speed is 58 mph.  Figure 3-2 
shows the speed profile for the chassis UDDS test. 

Figure 3-2 Urban Dynamometer Driving Schedule Cycle for Heavy-Duty Vehicle (DieselNet 2006) 
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Zero Mile Level (g/bhp-hr) Deterioration (g/bhp-hr/10,000 miles) 
Model 

Gasoline Diesel Engine Gasoline Diesel Engine Year Class 
Engine Heavy Med. Light Engine Heavy Med. Light 

1988-1989 13.84 1.34 1.70 1.21 0.246 0.008 0.018 0.022 
1990 6.89 1.81 1.81 1.81 0.213 0.005 0.007 0.012 
1991-1993 7.10 1.82 1.26 0.40 0.255 0.003 0.010 0.004 
1994-1997 7.10 1.07 0.85 1.19 0.255 0.004 0.009 0.003 
1998-2003 7.10 1.07 0.85 1.19 0.255 0.004 0.009 0.003 
2004+ 7.10 1.07 0.85 1.19 0.255 0.004 0.009 0.003 

Zero Mile Level (g/bhp-hr) Deterioration (g/bhp-hr/10,000 miles) 
Model 

Gasoline Diesel Engine Gasoline Diesel Engine Year Class 
Engine Heavy Med. Light Engine Heavy Med. Light 

1988-1989 0.62 0.47 0.66 0.64 0.023 0.001 0.002 0.002 
1990 0.35 0.52 0.52 0.52 0.023 0.000 0.001 0.001 
1991-1993 0.33 0.30 0.40 0.47 0.021 0.000 0.001 0.001 
1994-1997 0.33 0.22 0.31 0.26 0.021 0.001 0.001 0.001 
1998-2003 0.33 0.22 0.31 0.26 0.021 0.001 0.001 0.001 
2004+ 0.33 0.22 0.31 0.26 0.021 0.001 0.001 0.001 

3.1.1.2 Baseline Emission Rates 

Baseline emission rates (g/bhp-hr) for heavy-duty vehicles are obtained from the engine 
dynamometer test results collected during U.S. EPA’s cooperative test program with engine 
manufacturers. The zero mile levels and deterioration rates for NOx, CO, and HC are presented 
in the following tables for heavy-duty gasoline and diesel engines. All the emission rates are 
available from “Update of Heavy-Duty Emission Levels (Model Years 1998-2004+) for Use in 
MOBILE6” (Lindhjem and Jackson 1999). 

Table 3-1. Heavy-Duty Vehicle NOx
Zero Mile Level (g/bhp-hr) Deterioration (g/bhp-hr/10,000 miles) 

Model Year 
Gasoline Diesel Engine Gasoline Diesel Engine Class 
Engine Heavy Med. Light Engine Heavy Med. Light 

1988-1989 4.96 6.28 6.43 4.34 0.044 0.01 0.009 0.002 
1990 3.61 4.85 4.85 4.85 0.026 0.004 0.006 0.011 
1991-1993 3.24 4.56 4.53 1.38 0.038 0.004 0.007 0.003 
1994-1997 3.24 4.61 4.61 1.08 0.038 0.003 0.001 0.001 
1998-2003 2.59 3.68 3.69 3.26 0.038 0.003 0.001 0.001 
2004+ 2.59 1.84 1.84 1.63 0.038 0.003 0.001 0.001 

Emission Rates in MOBILE6 

Table 3-2 Heavy-Duty Vehicle CO Emission Rates in MOBILE6 

Table 3-3 Heavy-Duty Vehicle HC Emission Rates in MOBILE6 
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3.1.1.3 Conversion Factors 

Because emission standards for both gasoline and diesel heavy-duty vehicles are ex­
pressed in terms of grams per brake-horsepower hour (g/bhp-hr), the MOBILE6.2 model em­
ploys conversion factors of brake horsepower-hour per mile (bhp-hr/mile) to convert the emis­
sion certification data from engine testing to grams per mile. Conversion factors are a function 
of fuel density, brake-specific fuel consumption (BSFC), and fuel economy for each HDV class 
(U.S. EPA 2002b).  The conversion factors were calculated using Equation 3-1: 

Conversion Factor (bhp-hr/mi) = FuelDensity(lb/gal) (Equation 3-1)
BSFC(lb/bhp-hr)×Fuel Economy(mi/gal)

To calculate BSFC, U.S. EPA first obtained data from model year 1987 through 1996 sup­
plied by six engine manufacturers (U.S. EPA 2002d).  U.S. EPA then performed regression analy­
sis for BSFCs by model year for each weight class and used a logarithmic curve to extrapolate 
values prior to 1988 and after 1995, since sales data were only available for model years 1988 
through 1995 (U.S. EPA 2002d). 

Fuel economy was calculated using a regression curve derived from the 1992 Truck 
Inventory and Use Survey (TIUS) conducted by the U.S. Census Bureau. Fuel densities were 
determined from National Institute for Petroleum and Energy Research (NIPER) publications 
for both gasoline and diesel (Browning 1998). Using the equation defining the conversion factor 
together with the data described above, weight class specific conversion factors were calculated 
for gasoline and diesel vehicles for model years 1987 through 1996 (U.S. EPA 2002c). 

3.1.2 EMFAC 

EMFAC (CARB 2007) was developed by CARB separately from MOBILE based upon 
the presence of vehicle technologies in the on-road fleet that would be subject to more stringent 
standards and fuels used in California. The latest version, EMFAC 2002, was released in Sep­
tember 2002. EMFAC can estimate emissions for calendar years 1970 to 2040. 

EMFAC abandoned the use of conversion factors from EMFAC 2000 and used chassis 
dynamometer data collected for 70 trucks tested over the Urban Dynamometer Driving Schedule 
(UDDS). Although the use of UDDS test data marked a significant improvement, it is hard to 
say that UDDS adequately represented the full range of heavy duty diesel operation. Although 
the cycle was constructed from actual truck activity data, it lacks extended cruises known to 
cause many trucks to default to a high NOx emitting, fuel saving mode referred to as “Off-Cycle” 
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NOx. The cycle also lacks hard accelerations known to result in high emissions of particulate 
matter (CARB 2002). 

CARB continues to develop more mode test cycles designed to better depict the emis­
sions of HDDVs under real world conditions, including emissions from engine programming 
to go “off-cycle” at certain speeds.  Activity data from instrumented truck studies conducted by 
Battelle and Jack Faucett Associates for CARB (CARB 2002) have been used to develop a four 
mode heavy-heavy-duty diesel cycle. Figure 3-3 shows these four mode cycles developed by 
CARB. The creep mode produced the greatest gram per mile results followed by the transient 
and the cruise mode. The transient and cruise modes produced higher and lower emissions, re­
spectively, than the UDDS (CARB 2002). 

Figure 3-3 CARB’s Four Mode Cycles (CARB 2002) 

3.1.3 Summary 

EPA’s MOBILE series models have significantly improved through the series of model 
revisions from 1970s. However, the MOBILE series of models still has major modeling de­
fects for the heavy-duty components. These defects have been widely recognized for more than 
10 years (Guensler et al. 1991). One of the most frequently stated defects is that fl eet average 
speed, which aggregates other vehicle activity factors that may yield significant bias in emissions 
characterization, is used to characterize vehicle emission rates. 

In developing emissions inventories using the MOBILE and EMFAC (CARB 2007) 
emission rate models, vehicle activity is estimated using travel demand models. The estima­
tion of VMT was based on EPA’s fleet characterization study (U.S. EPA 1998).  It is common to 
estimate heavy-duty travel as a fixed percentage of predicted traffic volumes (TRB 1995). This 
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estimate is not correct since heavy-duty truck travel does not follow the same spatial and tempo­
ral patterns as light-duty vehicle travel (Schlappi et al. 1993). 

3.2 Fuel-Based Vehicle Emission Models 

The fuel-based emission inventory models for heavy-duty diesel trucks combine vehicle 
activity data (i.e., volume of diesel fuel consumed) with emission rates normalized to fuel con­
sumption (i.e., mass of pollutant emitted per unit volume of fuel burned) to estimate emissions 
within a region of interest (Dreher and R. Harley 1998). This approach was proposed to increase 
accuracy of truck VMT estimation by combining state level truck VMT with statewide fuel sales 
to estimate total heavy-duty truck activity, using the amount of fuel consumed as a measure of 
activity. 

In California, fuel consumption data are available through tax records at the statewide 
level and this statewide fuel consumption can be apportioned to provide emission estimates for 
an individual air basin by month, day of week, and time of day.  At the same time, emission rates 
are normalized to fuel consumption using Equation 3-2: 

S
EI = p 

p BSFC   (Equation 3-2) 

where EIp: emission index for pollutant P, in units of mass of pollutant emitted  
per unit mass of fuel burned; 

Sp : brake specific pollutant emission rate obtained from the dynamometer 
test, expressed in g/bhp-hr units; 

BSFC : brake specific fuel consumption of the engine being tested, also in 
g/bhp. 

Exhaust emissions are estimated by multiplying vehicle activity, as measured by the vol­
ume of fuel used, by emission rates which are normalized to fuel consumption and expressed as 
grams of pollutant emitted per gallon of diesel fuel burned instead of grams of pollutant per mile 
(Dreher and R. Harley 1998). Average emission rates for subgroups of vehicles are weighted by 
the fraction of total fuel used by each vehicle subgroup to obtain an overall fl eet-average emis­
sion rate. The fleet-average emission rate is multiplied by regional fuel sales to compute pollut­
ant emissions (Singer and Harley 1996). 

The advantages of the fuel-based approach include the fact that fuel-use data are avail­
able from tax records in California. Furthermore, emission rates normalized to fuel consumption 
vary considerably less over the full range of driving conditions than travel-normalized emission 
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factors (Singer and Harley 1996). The disadvantage is obvious, too. Tax records are not avail­
able for other states. It is difficult to get input data outside of California, limiting the scope of 
the modeling approach. Furthermore, the users first have to run two models to predict fuel used 
and then predict emission rates, which is not statistically efficient. 

3.3 Modal Emission Rate Models 

Modal emission rate models work on the premise that emissions are better modeled as a 
function of specific modes of vehicle operation (idle, steady-state cruise, various levels of ac­
celeration/deceleration, etc.), than as a function of average vehicle speed (Bachman 1998; Rama­
murthy et al. 1998; U.S. EPA 2001b).  Emissions of heavy-duty vehicles powered by diesel cycle 
engines are more likely to be a function of brake work output of engine than normal gasoline 
vehicles, because instantaneous emissions levels of diesel engine are highly correlated with the 
instantaneous work output of the engine (U.S. EPA 2001b). 

With the consideration of vehicle modal activity, EPA and various research communities 
have been developing modal activity-based emission models. The report published by National 
Research Council (NRC 2000) comprehensively reviewed the modeling of mobile source emis­
sions and provided recommendations for the improvement of future mobile source emission 
models. The following sections will introduce the most representative modal emission models 
one by one. 

3.3.1 CMEM 

The Comprehensive Modal Emissions Model (CMEM) (Barth et al. 2000) was developed 
by the Center for Environmental Research and Technology at University of California Riverside 
(UCR-CERT). Development of CMEM was first funded by National Cooperative Highway Re­
search Program Project (1995-2000) and then is being enhanced and improved with EPA funding 
(2000-present). From 2001, CE-CERT created a modal-based inventory at the micro- (intersec­
tion), meso- (highway link), and macro- (region) scale levels for light-duty vehicles (LDV) and 
heavy-duty diesel (HDD) vehicles. The CMEM model derives a fuel rate from road-load and a 
simple powertrain model. Emissions rates are then derived empirically from the fuel rate. Fuel 
rate, or fuel consumption per unit time, forms the basis for CMEM. 

The CMEM HDD emissions model (Barth et al. 2004) accepted the same approach as the 
light-duty vehicle model. In that model, second-by-second tailpipe emissions are modeled as the 
product of three components: fuel rate (FR), engine-out emission indices (grams of emissions/ 
gram of fuel), and an emission after-treatment pass fraction.  The model is composed of six mod­
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ules: 1) engine power demand; 2) engine speed; 3) fuel-rate; 4) engine control unit; 5) engine-out 
emissions; and 6) after-treatment pass fraction.  The vehicle power demand is determined based 
on operating variables [second-by-second vehicle speed (from which acceleration can be derived; 
note that acceleration can be input as a separate input variable), grade, and accessory use (such 
as air conditioning)] and specific vehicle parameters (vehicle mass, engine displacement, cross-
sectional area, aerodynamics, vehicle accessory load, transmission efficiency, and drive-train 
efficiency, and so on).   The core of the model is the fuel rate calculation which is a function of 
power demand and engine speed. Engine speed is determined based on vehicle velocity, gear 
shift schedule and power demand (Barth et al. 2004). The model uses a total of 35 parameters to 
estimate vehicle tailpipe emissions. 

3.3.2 MEASURE 

The Mobile Emissions Assessment System for Urban and Regional Evaluation (MEA­
SURE) (Bachman et al. 2000) model was developed by Georgia Institute of Technology in the 
late 1990s. The MEASURE model is developed within a geographic information system (GIS) 
and employs modal emission rates, varying emissions according to vehicle technologies and 
modal operation (cruise, acceleration, deceleration, idle). The model emission rate database 
consists of more than 13,000 laboratory tests conducted by the EPA and CARB using standard­
ized test cycle conditions and alternative cycles (Bachman 1998). The aggregate modal model 
within MEASURE employs emission rates based on theoretical engine-emissions relationships. 
The relationships are dependent on both modal and vehicle technology variables, and they are 
“aggregate” in the sense that they rely on bag data to derive their modal activities (Washington 
et al. 1997a). Emission rates were statistically derived from the emission rate data as a function 
of operating mode power demand surrogates. The model uses statistical techniques to predict 
emission rates using a process that utilizes the best aspects of hierarchical tree-based regression 
(HTBR) and ordinary least squares regression (OLS) (Breiman et al. 1984). HTBR is used to 
reduce the number of predictor variables to a manageable number, and to identify useful interac­
tions among the variables; then OLS regression techniques are applied until a satisfactory model 
is obtained (Fomunung et al. 2000). Vehicle activity variables include average speed, accel­
eration rates, deceleration rates, idle time, and surrogates for power demand. The MEASURE 
model for light-duty vehicles was completed in 2000. 

MEASURE provides the following benefits since it has been developed under the GIS 
platform (Bachman et al. 2000): 1) manages topographical parameters that affect emissions; 
2) calculates emissions from vehicle modal activities; 3) allows a ‘layered’ approach to indi­
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vidual vehicle activity estimation; and 4) aggregates emission estimates into grid cells for use in 
photochemical air quality models. 

3.3.3 MOVES 

To keep pace with new analysis needs, modeling approaches, and data, the U.S. EPA’s 
Office of Transportation and Air Quality (OTAQ) is developing a modeling system termed 
MOVES (Koupal et al. 2004, U.S. EPA 2001a).  This new system will estimate emissions for on-
road and non-road sources, cover a broad range of pollutants, and allow multiple scale analysis, 
from fine-scale analysis to national inventory estimation. In the future, MOVES will serve as 
the replacement for MOBILE6 and NONROAD (U.S. EPA 2001a).  This project was previously 
known as the New Generation Mobile Source Emissions Model (NGM) (U.S. EPA 2001a). 

The current plan for MOVES is to use vehicle specific power (VSP) as a variable on 
which emission rates can be based (Koupal et al. 2002). The VSP approach to emissions char­
acterization was developed by Jimenez-Palacios (Jimenez-Palacios 1999). VSP is a function of 
speed, acceleration, road grade, etc., as shown in Equation 3-3:

= ×  × + )v (a (1 ε + ×  g grade + ×  g CR ) + 0.5ρ ×CD × ×  v3 / m          (Equation 3-3) VSP A 

where: v: vehicle speed (assuming no headwind) (m/s) 
a: vehicle acceleration (m/s2)

: mass factor accounting for the rotational masses (~0.1) - constant 

g: acceleration due to gravity (m/s2) 
grade: road grade (ratio of rise to run)
 CR: rolling resistance (~0.0135) 
: air density (1.2)
 CD: aerodynamic drag coeffi cient (dimensionless) 
A: the frontal area (m2) 
m: vehicle mass (metric tons) 

The basic concept of MOVES starts with the characterization of vehicle activity and the 
development of relationships between characterized vehicle activity and energy consumption, 
and between energy consumption and vehicle emission (Nam 2003).  The U.S. EPA established a 
modal binning approach, developed using VSP, to characterize the relationship between vehicle 
activity and energy consumption.  Originally, a total of 14 modal bins were developed based on 
different VSP ranges (U.S. EPA 2001a).  This approach was revised in two different ways.  U.S. 
EPA refined the VSP binning approach by the association of second-by-second speed, engine 
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rpm, and acceleration rates, and the original 14 VSP binning approaches are revised with the 
combination of five different speed operating modes and redirected to a total of 37 VSP bins 
(Koupal et al. 2004). Researchers at North Carolina State University (NCSU) divided each bin 
into four strata representing two engine sizes and two odometer reading categories, and this ap­
proach was referred to as the “56-bin” approach. (U.S. EPA 2002b). 

Another important conceptual model for MOVES was developed by NCSU in 2002 (Frey 
et al. 2002). Dr. Frey summarized the conceptual analytical methodology in the report “Recom­
mended Strategy for On-Board Emission Data Analysis and Collection for the New Generation 
Model” (Frey et al. 2002). This method uses power demand estimate (P) as a variable on which 
emission rates can be based (Frey et al. 2002) as shown in Equation 3-4. 

P v a  (Equation 3-4)= ×  

where: P : power demand (mph2/sec)
 v : vehicle speed (mph) 
a : vehicle acceleration in (mph/s) 

This method uses on-board emissions data where data are collected under real-world 
conditions to develop a modal emission model which can estimate emissions at different scales 
such as microscale, mesoscale, and macroscale. The philosophy is similar to MEASURE (Fomu­
nung 2000), which first segregated the data into four modes based on suitable modal definitions, 
then developed an OLS regression model for each mode using explanatory variables selected by 
HTBR techniques. These explanatory variables include model year, humidity, temperature, alti­
tude, grade, pressure, and power.  Second and third powers of speed and acceleration were also 
included in the regression analysis. 

3.3.4 HDDV-MEM 

The researchers in Georgia Institute of Technology have developed a beta version of 
HDDV-MEM, which is based on vehicle technology groups, engine emission characteristics, and 
vehicle modal activity (Guensler et al. 2005). The HDDV-MEM first predicts second-by-second 
engine power demand as a function of on-road vehicle operating conditions and then applies 
brake-specific emission rates to these activity predictions. The HDDV-MEM consists of three 
modules: a vehicle activity module (with vehicle activity tracked by vehicle technology group), 
an engine power module, and an emission rate module. The model framework is illustrated in 
Figure 3-4. 
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Figure 3-4 A Framework of Heavy-Duty Diesel Vehicle Modal Emission Model (Guensler et al. 2005) 

3.3.4.1 Model Development Approaches 

The HDDV-MEM modeling framework is designed for transportation infrastructure im­
plementation on link-by-link basis. While the modeling routines are actually amenable to imple­
mentation on a vehicle-by-vehicle basis, the large number of vehicles operating on infrastructure 
links precludes practical application of the model in this manner.  As such, the model framework 
capitalizes upon previous experience gained in development of the MEASURE modeling frame­
work, in which vehicle technology groups were employed. A new heavy-duty vehicle visual 
classification scheme, which is an EPA and Federal Highway Administration (FHWA) hybrid 
vehicle classification scheme developed by Yoon et al. (Yoon et al. 2004b), classifi ed vehicle 
technology groups by engine horsepower ratings, vehicles GVWR, vehicle confi gurations, and 
vehicle travel characteristics (Yoon 2005c).  On the other hand, the MEASURE model employs 
load surrogates for the implementation of a light-duty modal modeling regime. This new model­
ing framework directly implements heavy-duty vehicle operating loads and uses these load pre­
dictions in the emission prediction process. An engine power module is designed for this task. 
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Emission rates are first established for various heavy-duty technology groups (engine 
and vehicle family, displacement, certification group, drivetrain, fuel delivery system, emission 
control system, etc.) based upon statistical analysis of standard engine dynamometer certifica­
tion data, or on-road emission rate data when available (Wolf et al. 1998; Fomunung et al. 2000). 
The following subsets will discuss three main modules in the HDDV-MEM. 

3.3.4.2 Vehicle Activity Module 

The vehicle activity module provides hourly vehicle volumes for each vehicle technol­
ogy group on each transportation link in the modeled transportation system. The annual average 
daily traffic (AADT) estimate for each road link is processed to yield vehicle-hours of operation 
per hour for each technology group (using truck percentages, VMT fraction by vehicle technol­
ogy group, diesel fraction, hourly volume apportionment of daily travel, link length, and average 
vehicle speed) (Guensler et al. 2005; Yoon 2005c), as shown in Equation 3-5. 

VA , ,  f = (AADT s × (NL s /TNL ) × HVF , ×VF v × DF v ) × (SL s / AS ) (Equation 3-5)v h  vv h s  

where: VA: the estimated vehicle activity (veh-hr/hr): 
v: the vehicle technology group 
h: the hour of day 
s: the transportation link 
f: the facility type for the link

 AADTs: the annual average daily traffic for the link (number of vehicles)
 NLs: the number of lanes in the specific link direction 

TNL: the total number of lanes on the link
 HVFv,h: the hourly vehicle fraction
 VFv: the VMT fraction for each vehicle technology group
 DFv: the diesel vehicle fraction for each technology group
 SLs: the link length (miles)
 ASv: the link average speed of the technology group (mph) 

To estimate on-road running emissions from each link, two sets of calculations are 
performed. On-road vehicle activity (vehicle-hr) for each hour is multiplied by engine power 
demand for observed link operations (positive tractive power demand plus auxiliary power de­
mand), and then by baseline emission rates (g/bhp-hr). These calculations are processed sepa­
rately for each speed/acceleration matrix cell (Yoon et al. 2005b).  Emissions from motoring/ 
idling activity are calculated by the determination of the vehicle-hours of motoring/idling activity 
on each link for each hour and the multiplication of the baseline idle emission rate (g/hr). 
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3.3.4.3 Engine Power Module 

Internal combustion engines translate linear piston work (force through a distance) to a 
crankshaft, rotating the crankshaft and creating engine output torque (work performed in angular 
rotation). The crankshaft rotation speed (engine speed in revolutions per minute) is a function 
of engine combustion and physical design parameters (mean effective cylinder pressure, stroke 
length, connecting rod angle, etc.). The torque available at the crankshaft (engine output shaft) 
is less than the torque generated by the pistons, in that there are torque losses inside the engine 
associated with operating a variety of internal engine components. Torque is transferred from the 
engine output shaft to the driveshaft via the transmission (sometimes through a torque-converter, 
i.e., fluid coupling) and through a series of gears that allows the drive shaft to rotate at differ­
ent speeds relative to engine crankshaft speed. The drive shaft rotation is then transferred to the 
drive axle via the rear differential.  The ring and pinion gears in the rear differential translate the 
rotation of the drive shaft by 90 degrees from the drive shaft running along the vehicle to the 
drive axle that runs across the vehicle. Torque available at the drive axle is now delivered direct­
ly to the drive wheels. This process generates the tractive force used to overcome road friction, 
wind resistance, road grade (gravity), and other resistive forces, allowing the vehicle to acceler­
ate on the roadway.  Figure 3-5 illustrates the primary components of concern. 

Figure 3-5 Primary Elements in the Drivetrain (Gillespie 1992) 

The vehicle drivetrain (engine, torque converter, transmission, drive shaft, rear differen­
tial, axles, and wheels) is designed as a system to convert engine torque into useful tractive force 
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at the wheel-to-pavement interface. When the tractive force is greater than the sum of forces 
acting against the vehicle, the vehicle accelerates in the direction of travel. Given that on-road 
speed/acceleration patterns for HDDVs can be observed (or empirically modeled), the modal 
modeling approach works backwards from observed speed and acceleration to estimate the trac­
tive force (and power) that was available at the wheels to meet the observed conditions. Then, 
working backwards from tractive force, the model accounts for additional power losses that 
occurred between the engine and the wheels to predict the total brake-horsepower output of the 
engine. Force components that reduce available wheel torque and tractive force include: 

• 	 Aerodynamic drag, which depends on the frontal area, the drag coefficient, and the 
square of the vehicle speed; 

• 	 Tire rolling resistance, which is determined by the coefficient of rolling resistance, 
vehicle mass, and road grade (where the coefficient of rolling resistance is a function 
of tire construction and size; tire pressure; axle geometry, i.e., caster and camber; and 
whether the wheels are driven or towed); 

• 	 Grade load, which is determined by the roadway grade and vehicle mass; and 

• 	 Inertial load, which is determined by the vehicle’s mass and acceleration. 

The tractive force required at the interface between the tires and the road to overcome these re­
sistive forces and provide vehicle acceleration can be described by (Gillespie 1992), as shown in 
Equation 3-6: 

FT = FD + FR + FW + FI + ma  (Equation 3-6) 

where: FT: the tractive force available at the wheels (lbf) 
FD: the force necessary to overcome aerodynamic drag (lbf) 
FR: the force required to overcome tire rolling res:tance (lbf) 
FW: the force required to overcome gravitational force (lbf) 
FI: the force required to overcome inertial loss (lbf) 
m: the vehicle mass (lbm) 
a: the vehicle acceleration (ft/sec2) 

Load prediction models could employ a wide variety of aerodynamic drag (Wolf-Hein­
rich 1998) and rolling resistance functional forms, some of which may be more appropriate for 
certain vehicle designs and at certain vehicle speeds. Note that vehicle mass is a critical param­
eter that must be included in the load-based modeling approach. Therefore, estimates of gross 
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vehicle weight must be included in any transit (vehicle weight plus passenger loading) or heavy-
duty truck (vehicle weight plus cargo payload) application.  The following subsections describe 
each force in Equation 3-6, taken from Yoon et al. (Yoon et al. 2005a). 

Aerodynamic Drag Force (FD) 

As a vehicle moves forward through the atmosphere, drag forces are created at the in­
terface of the front of the vehicle and by the vacuum generated at the tail of the vehicle. The 
flow of the air around the vehicle creates a very complex set of forces providing both resistance 
to forward motion and vehicle lift. The net aerodynamic drag force is a function of air density, 
aerodynamic drag coefficient, vehicle frontal area, and effective vehicle velocity, as shown in 
Equation 3-7 (Yoon et al. 2005a).

= ( ρ ) ×C × Af ×Ve 
2         (Equation 3-7) 

D d2g 
where: FD: aerodynamic drag force


ρ : the air density (lb/ft3)

 g : the acceleration of gravity (32.2 ft/sec2) 
Cd : the aerodynamic drag coefficient 
Af : the vehicle frontal area (ft2) 
Ve : the effective vehicle velocity (ft/sec) 

Rolling Resistance Force (FR) 

Rolling resistance force is the sum of the forces required to overcome the combined fric­
tion resistance at the tires. Tires deform at their contact point with the ground as they roll along 
the roadway surface. Rolling resistance is caused by contact friction, the tires’ resistance to 
deformation, aerodynamic drag at the tire, etc. The force required to overcome rolling resistance 
can be expressed with rolling resistance coefficient, vehicle weight, and road grade, as shown in 
Equation 3-8 (Yoon et al. 2005a).

FR = Cr × m × g × cos( )  (Equation 3-8) θ 

where: FR: force required to overcome rolling resistance 
Cr: the rolling resistance coefficient 
θ : the road grade (degrees) 
m: vehicle mass in metric tons 
g: acceleration due to gravity 
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Gravitational Weight Force (FW) 

The gravitational force components account for the effect of gravity on vehicle weight 
when the vehicle is operating on a grade. The grade angle is positive on uphill grades (generat­
ing a positive resistance) and negative on downgrades (creating a negative resistance),as shown 
in Equation 3-9 (Yoon et al. 2005a).

FW m g sin( )  (Equation 3-9)= × ×  θ


where: Fw: gravitational weight force 
m: vehicle mass in metric tons 
g: acceleration due to gravity 
θ : the road grade (degrees) 

Drivetrain Inertial Loss (FI) 

The engine, transmission, drive shaft, axles and wheels are all in rotation. The rotational 
speed of each component depends upon the transmission gear ratio, the final drive ratio, and the 
location of the component in the drive train (i.e., the total gear ratio between each component 
and the wheels). The rotational moment of inertia of the various drivetrain components consti­
tutes a resistance to change in motion. The torque delivered by each rotating component to the 
next component in the power chain (engine to clutch/torque converter, clutch/torque converter 
to transmission, transmission to drive shaft, drive shaft to axle, axle to wheel) is reduced by the 
amount necessary to increase angular rotation of the spinning mass during vehicle acceleration. 
Given the torque loss at each component, the reduction in motive force available at the wheels 
due to inertial losses along the drivetrain can be modeled (Wolf-Heinrich 1998).  This model 
term is most significant under low speed acceleration conditions, such as vehicle operation in 
truck and rail yards where vehicles are lugging heavy loads over short distances. However, as 
will be discussed later, significant new data will be required to incorporate the inertial loss effects 
into modal models, as shown in Equation 3-10 (Yoon et al. 2005a).

× 2 2 2 × +  I I )] a I  a ×[(I + (G × +  I ) (G ×G ) (
F = EFF = W d D t d E t 

I r2 r2  (Equation 3-10) 

where: a : the acceleration in the direction of vehicle motion (ft/sec2)
 IEFF : the effective moment of inertia (ft- lbf -sec2) 
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 IW : the rotational moment of inertia of the wheels and axles (ft-lbf -sec2)
 ID : the rotational moment of inertia of the drive shaft (ft-lbf -sec2)
 IT : the rotational moment of inertia of the transmission (ft-lbf -sec2)
 IE : the rotational moment of inertia of the engine (ft-lbf -sec2)
 Gt : the gear ratio at the engine transmission
 Gd : the gear ratio in the differential 
r : wheel radius (ft) 

Power Demand 

Using the equations outlined above, the total engine power demand, which is the combi­
nation of tractive power and auxiliary power demands, can be expressed in Equation 3-11 (Yoon 
et al. 2005a): 

V 
× R I  (Equation 3-11) P = [( ) ( FD + F + FW + F + ma  )] + AP  

550 

where P: total engine power demand 
V : the vehicle speed (ft/s)

 FD: the force necessary to overcome aerodynamic drag (lbf)

 FR: the force required to overcome tire rolling res:tance (lbf)

FW: the force required to overcome gravitational force (lbf)

FI: the force required to overcome inertial loss (lbf)

m: the vehicle mass (lbm)

a: the vehicle acceleration (ft/sec2)

AP : the auxiliary power demand (bhp)

550 : the conversion factor to bhp 

3.3.4.4 Emission Rate Module 

The emission rate module provides work-related emission rates (g/bhp-hr) and idle emis­
sion rates (g/hr) for each technology group. The basic application of the HDDV-MEM incorpo­
rates a simple emission rate modeling approach. The predicted engine power demand (bhp) for 
each second of vehicle operation is multiplied by emission rates in gram/bhp-sec for a given bhp 
load. Technology groups (i.e., vehicles that perform similarly on the certification tests) are estab­
lished based upon the engine and control system characteristics and each technology group is as­
signed a constant g/bhp-sec emission rate based upon regression tree and other statistical analysis 
of certification data. Under the assumption that testing cycles represent the typical modal activi­
ties undertaken by on-road activities, such emission rates are applied to on-road activity data. 
Given the large repository of certification data, detailed statistical analysis of the certification 
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test results can be used to obtain applicable emission rates for these statistically derived vehicle 
technology groups. The data required for analysis must come from chassis dynamometer (the 
engine remains in the vehicle and the vehicle is tested on a heavy-duty treadmill) and on-road 
test programs in which second-by-second grams/second emission rate data have been collected 
concurrently with axle-hp loads. 

At this moment, HDDV-MEM accepts EPA’s baseline running emission rate data as 
work-related emission rates and EMFAC2002 idling emission rate test data as idle emission 
rates. Diesel vehicle registration fractions and annual mileage accumulation rates are employed 
to develop calendar year emission rates for each technology group. In the future, a constant 
emission rate need not be used as more refined testing data become available. Linear, polyno­
mial, or generalized relationships can be established between gram/second emission rate and 
tractive horsepower (axle horsepower) and other variables. Sufficient testing data are required to 
establish statistically significant samples for each technology group. 

3.3.4.5 Emission Outputs 

HDDV-MEM outputs link-specific emissions in grams per hour (g/hr) for VOCs, CO, 
NOX, and PM for each vehicle type. Toxic air contaminant emission rates (benzene, 1, 3-butadi­
ene, formaldehyde, acetaldehyde, and acrolein) are also estimated in grams/hour for each vehicle 
type using the MOBILE6.2-modeled ratios of air toxics to VOC for each calendar year. HDDV­
MEM provides not only hourly emissions, but also aggregated total daily emissions (in accor­
dance with input command options). The structure of output files, which provide link-specific 
hourly emissions, can be directly incorporated with roadway network features in a GIS environ­
ment for use in interactive air quality analysis in various spatial scales, i.e., national, regional, 
and local scales (Guensler et al. 2005; Yoon 2005c). 
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CHAPTER 4 

4. EMISSION DATASET DESCRIPTION AND POST-PROCESSING PROCEDURE 

Using second-by-second data collected from on-road vehicles (Brown et al. 2001, Ens-
field 2002), the research effort reported here developed models to predict emission rates as a 
function of on-road operating conditions that affect vehicle emissions.  Such models should be 
robust and ensure that assumptions about the underlying distribution of the data are verified 
and that assumptions associated with applicable statistical methods are not violated. Due to 
the general lack of data available for development of heavy-duty vehicle modal emission rate 
models, this study focuses on development of an analytical methodology that is repeatable with 
different datasets collected across space and time.  There are two second-by-second data sets in 
which emission rate and applicable load and vehicle activity data have been collected in paral­
lel (Brown et al. 2001, Ensfield 2002). One database was a transit bus dataset, collected on 
diesel transit buses operated by Ann Arbor Transit Authority (AATA) in 2001 (Ensfi eld 2002), 
and another dataset was heavy HDV (HDV8B) dataset prepared by National Risk Management 
Research Laboratory (NRMRL) in 2001 (Brown et al. 2001). Each is summarized in the follow­
ing sections. 

4.1 Transit Bus Dataset 

Transit bus emissions dataset was prepared by Sensors, Inc. (Ensfield 2002). Sensors, 
Inc. has supplied gas analyzers and portable emissions testing systems worldwide for over three 
decades. Their products, SEMTECH-G for gasoline powered vehicles, and SEMTECH-D for 
diesel powered vehicles, are commercially available for on-vehicle emission test applications. In 
October 2001, Sensors, Inc. conducted real-world, on-road emissions measurements of 15 heavy-
duty transit buses for U.S. EPA (Ensfield 2002). Transit buses were provided by the AATA and 
all of them were New Flyer models with Detroit Diesel Series 50 engines. Table 4-1 summarizes 
the buses tested for U.S. EPA. 
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Bus # Bus ID Model 
Year Odometer Engine series 

Displace 
ment 

(liters) 

Peak 
Torque 
(lb-ft) 

Test Date 

1 BUS360 1995 270476 SERIES 50 8047 GK40 8.5 890 10/25/2001 
2 BUS361 1995 280484 SERIES 50 8047 GK38 8.5 890 10/25/2001 
3 BUS363 1995 283708 SERIES 50 8047 GK37 8.5 890 10/24/2001 
4 BUS364 1995 247379 SERIES 50 8047 GK42 8.5 890 10/24/2001 
5 BUS372 1995 216278 SERIES 50 8047 GK41 8.5 890 10/26/2001 
6 BUS375 1996 211438 SERIES 50 8047 GK39 8.5 890 10/25/2001 
7 BUS377 1996 252253 SERIES 50 8047 GK36 8.5 890 10/24/2001 
8 BUS379 1996 260594 SERIES 50 8047 GK35 8.5 890 10/23/2001 
9 BUS380 1996 223471 SERIES 50 8047 GK28 8.5 890 10/23/2001 
10 BUS381 1996 200459 SERIES 50 8047 GK29 8.5 890 10/22/2001 
11 BUS382 1996 216502 SERIES 50 8047 GK30 8.5 890 10/17/2001 
12 BUS383 1996 199188 SERIES 50 8047 GK31 8.5 890 10/19/2001 
13 BUS384 1996 222245 SERIES 50 8047 GK32 8.5 890 10/17/2001 
14 BUS385 1996 209470 SERIES 50 8047 GK33 8.5 890 10/18/2001 
15 BUS386 1996 228770 SERIES 50 8047 GK34 8.5 890 10/19/2001 

Table 4-1 Buses Tested for U.S. EPA (Ensfi eld 2002) 

4.1.1 Data Collection Method 

A total of 15 files were provided for the purpose of model development (Ensfield 2002). 
Each file represents data collected from different transit buses.  Five of these buses were 1995 
model year and the rest were 1996 model year.  All of the bus test periods lasted approximately 
two hours. The buses operated along standard Ann Arbor bus routes and stopped at all regular 
stops although the buses did not board or discharge any passengers.  The routes were mostly 
different for each test, and were selected for a wide variety of driving conditions.  All of the bus 
routes for the test are shown in Figure 4-1. 
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Figure 4-1 Bus Routes Tested for U. S. EPA (Ensfi eld 2002). 

Sensors, Inc. engineers performed the instrument setup and data collection for all the 
buses. Test equipment, SEMTECH-D analyzer, is shown in Figure 4-2.  Because engine comput­
er vehicle interface (SAE J1708) data were collected at 10 Hz, Sensors, Inc. engineers manually 
started and stopped data collections at approximately 30 minute intervals to keep file size man­
ageable. A total of four trip files were generated per bus. Zero drift was checked between data 
collections. Then four files for each bus were combined into one file after post-processing. The 
time for each bus is thus sometimes not continuous. To derive other variables easily, like accel­
eration, and keep data manageable or other purposes, data for each bus were separated into trips 
based on continuous time. After this processing, there were 62 “trips” in the transit bus database. 
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Figure 4-2 SEMTECH-D in Back of Bus (Ensfi eld 2002) 

4.1.2 Transit Bus Data Parameters 

Each of the 15 data files share the same format. The data fields included in each fi le are 
summarized in Table 4-2. 

Table 4-2 Transit Bus Parameters Given by the U.S. EPA (Ensfi eld 2002) 

Category Parameters 
Test 
Information Date; Time 

Vehicle 
Characteristics License number; Engine size; Instrument confi guration number 

Roadway 
Characteristics GPS Latitude (degree); GPS Longitude (degree); GPS Altitude (feet); Grade (%) 

Onroad Load 
Parameters 

Engine 
Operating 
Parameters 

Vehicle speed (mph); Engine speed (rpm); Torque (lb-ft); Engine power (bhp) 

Engine load (%); Throttle position (0 – 100%); Fuel volumetric fl ow rate 
(gal/s); Fuel specific gravity; Fuel mass flow rate (g/s); Calculated instanta­
neous fuel economy (mpg); Engine Oil temperature(deg F); Engine oil pres­
sure (kPa); Engine warning lamp (Binary); Engine coolant temperature (deg 
F); Barometric pressure reported from ECM (kPa); Calculated exhaust flow 
rate (SCFM) 

Environment 
Conditions 

Ambient temperature (deg C); Ambient pressure (mbar); Ambient relative 
humidity (%); Ambient absolute humidity (grains/lb air) 

Vehicle 
Emission HC, CO, NOx, CO2 emission (in ppm, g/sec, g/ke-fuel, g/bhp-hr units) 
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4.1.3 Sensors, Inc. Data Processing Procedure 

It is helpful to understand how Sensors, Inc. processed the dataset after data collection 
This information is very important for data quality assurance and quality control. This section is 
adapted primarily from the Sensor’s field data collection report (Ensfi eld 2002). 

Data Synchronization: According to Sensor’s report, the analytical instruments, vehicle 
interface, and global positioning system (GPS) equipment reported data individually to the 
SEMTECH data logger asynchronously and at differing rates, but with a timestamp at millisec­
ond precision. The first step of the post-processing procedure is to eliminate the extra data by 
interpolating and synchronizing all the data to 1 Hz. With all the raw data synchronized to the 
same data rate, it is then time-aligned so that engine data corresponds to emissions data in real 
time. 

Mass Emissions Calculations: Mass emissions (gram/second) are calculated by fuel flow 
method. With access to real-time, second-by-second fuel flow rates, a value for transient mass 
emissions is computed as shown by the equation below.  Using NO as an example, NO mass 
emissions are calculated on a second-by-second basis (Ensfi eld 2002).

NOg / sec  = NOfs  × Fuelflow           Equation 4-1 

where NO(g/sec) : NO emissions (grams/second) 
NOfs : NO emission rate (grams of NO per gram of fuel) 
Fuefl ow : flow of fuel per unit time (grams per second). 

Fuel specific emissions are the ratios of the mass of each pollutant to the fuel in the 
combusted air/fuel mixture. The mass fuel flow rate is converted from fuel volumetric fl ow rate 
using fuel specifi c gravity. 

Brake Specific Emissions Calculations: Engine torque is first computed by applying the 
engine load parameter, which represents the ratio between current engine torque and maximum 
engine torque, to the engine lug curve (maximum torque curve). Engine horsepower is then con­
verted from engine torque using engine speed data. Work (bhp-hr) is computed for each second 
of the test, and brake specific emissions are reported as the sum of the grams of pollutant emitted 
over the desired interval (one second) divided by the total work. 

Vehicle Speed Validation: Vehicle speed is a critical parameter that influences the de­
rived parameters, acceleration and emission rates. It is important for researchers to understand 
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the method of measurement and data accuracy.  Sensors, Inc. measured vehicle speed using two 
methods: vehicle Electronic Control Module (ECM) and Global Positioning System (GPS). 
Figure 4-3 shows the GPS vs. ECM comparison for Bus 380. The regression analysis shows 
that the ECM data are around 10% higher than the GPS data, according to Sensors report (Ens­
field 2002). Sensors, Inc. researchers believe that this comparison suggests that GPS data may 
be more reliable for on-road testing. Buses of model year 1995 were equipped with an earlier 
version ECM that did not provide vehicle speed and GPS velocity data were used in place of the 
ECM data. Buses of model year 1996 were equipped with the current version ECM that can pro­
vide vehicle speed and vehicle speed was reported after validation with the GPS data. GPS data 
were within 1% accuracy based upon analysis of 10 miles of data (Ensfi eld 2002). 

Figure 4-3 Bus 380 GPS vs. ECM Vehicle Speed (Ensfi eld 2002) 

4.1.4 Data Quality Assurance/Quality Check 

After understanding the manner in which Sensors, Inc. processed the reported data set, 
the data set for each bus was screened to check for errors or possible problems. Possible sources 
of errors associated with data collection should be considered before undertaking data analysis 
for the development of a model. The types of errors checked are listed below. 

Loss of Data: Emission data are missing for some buses. For example, bus 382 had miss­
ing HC data for 343 seconds. Buses 361, 377 and 384 have similar problems. There might be 
several reasons for loss of data. Communication between instruments might be lost or a particu­
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lar vehicle may have failed to report a particular variable. These records are removed from the 
test database and not employed in development of HC models because the instantaneous emis­
sion values will be recorded as zero, introducing significant bias to the result. Similarly, calcu­
lated fuel economy data are missing for some buses. 

Erroneous ECM Data: There were some cases where certain engine parameters were well 
outside physical limits, and these erroneous ECM data were filtered out with pre-defined filter 
limits. The following filter limits (Ensfield 2002) were imposed on the rate of change of RPM, 
fuel flow, and vehicle speed data: 

• Rate of change limit for RPM = 10,000 (RPM)/sec 

• Rate of change limit for Fuel flow = 0.003 (gal/sec)/sec 

• Rate of change limit for Vehicle speed = 21 (mph)/sec 

According to Sensors, Inc. report, these filters remove the data outside the defi ned limits. 
The SEMTECH post-processor automatically interpolates between the remaining data, and pro­
duces results at 1Hz as before (Ensfield 2002). Because this procedure was finished by manually 
plotting the ECM parameters and computed mass results, all the buses’ data were screened again 
to check any remaining data spikes for data quality assurance purposes. No such errors were 
identified for this kind of problem. But the modeler should keep in mind that data could be erro­
neous because “unreasonable” engine acceleration or deceleration was removed that could have 
been within reasonable absolute limits. 

GPS Dropouts: There were a few instances when the GPS lost communication with the 
satellite for unknown reasons, and these erroneous GPS data were removed manually (Ensfield 
2002). To guarantee data quality, the modeler screened all GPS data again to check any remain­
ing erroneous cases. The principles for screening erroneous GPS data are based on the consis­
tency between GPS data and engine parameters. The secondary screening identified that bus 
360 data still contained some erroneous GPS data. The questionable area covers the beginning 
434 seconds of the whole trip (see Figure 4-4). Their GPS data are shown as red in the left fig­
ure. The right figure illustrates the time series plot for checked area. Although GPS signals are 
reported as some fixed positions in the left figure while vehicle speed data are reported as zero in 
the right figure, engine speed and engine power in the right figure shows that bus 360 did move 
during that period. This error might due to GPS dropouts. 

4-7




  

Figure 4-4 Example Check for Erroneous GPS Data for Bus 360 (Ensfi eld 2002) 

Due to GPS dropouts, the GPS signals were reported as some fixed positions. At the 
same time, the vehicle speed might be reported as zero while other ECM data, such as engine 
speed and engine power, would show that the bus did move during that period.  If the modeler 
fails to screen and remove such data, these data will be classified as idle mode. Further, these 
data will cause erroneous analysis result for idle mode. The modeler screened all buses manually 
and found that six buses had such problems (buses 360,361, 363, 364, 375 and 377). Usually, 
this type of error was prevalent during the beginning of the bus trip. All erroneous data were 
removed manually.  The correction of the database to remove these erroneous data is critical to 
model development (initial models associated with development of idle and load-based emission 
rates were problematic until this database error was identified and corrected by the author). 

Synchronization Errors: Data were checked for synchronization errors. An example 
plot of such a check is presented in Figure 4-5 where part of the trip for Bus 360 is used. The 
selected area covers about 200 seconds. Their GPS data are shown as the green/red part in the 
left fi gure. The figure on the right illustrates the time series plot for the area checked. The speed 
for red points in both figures is 0 mph. Although NOx correlates well to engine load and engine 
speed, vehicle speed doesn’t correlate well to engine data and NOx emissions data.  Bus 360 
was equipped with an earlier version ECM that did not provide vehicle speed. GPS velocity 
data were used in place of the ECM data. According to Sensor’s report, data synchronization 
was only done between emissions data and engine data, not for vehicle speed for emissions data 
(Ensfi eld 2002). 
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Figure 4-5 Example Check for Synchronization Errors for Bus 360 

All bus data were checked for this type of error and such errors were identified in all of 
the test data for six buses (buses 360, 361, 363, 364, 375, 377). Coincidentally, these six buses 
had GPS dropout problems, too. From Frey’s work (Frey and Zheng 2001), small errors in 
synchronization do not substantially impact estimate of total trip emissions. Such deviations will 
influence the estimate for micro-scale analysis. To choose the right delay time to remove the 
GPS data and vehicle speed data, the author compared the impacts of using a 2-second, 3-sec­
ond, and 4-second delay.  Figure 4-6 illustrates histograms of engine power for zero speed data 
based on three different proposed time delay options.  A 3-second delay is chosen because engine 
power distribution for zero speed data based on a 3-second delay is more reasonable. Compar­
ing to the 2-second delay results, zero speed data contain fewer data points with higher engine 
power (>150 brake horsepower) for 3-second delay.  Meanwhile, zero speed data contain more 
data points with lower engine power (<20 brake horsepower) for a 3-second delay than 4-second 
delay time. 

4-9




Figure 4-6 Histograms of Engine Power for Zero Speed Data Based on Three Different Time Delays 

Road Grade Validation: According to Sensor’s report, the GPS data were used for grade 
calculation. Combing the velocity at time t with the difference in altitude between time t and t-1 
second, the instantaneous grade is computed as shown in Equation 4-2 (Ensfi eld 2002). 

Gradet = 
velocity t  Equation 4-2 

altitude -altitude t  t-1  

where gradet : Road grade at time t 
t : time, t or t-1 second 
velocityt : vehicle speed in feet per second at time t 
altitude : altitude in feet at time t or t-1 

The calculation formula can generate significant errors given the uncertainty in the GPS 
position, particularly at low speeds where there is less of a differential in distance over the one-
second interval (Ensfield 2002). In the real world, the maximum recommended grade for use 
in road design depends upon the type of facility, the terrain on which it is built, and the design 
speed. Figure 4-7 is directly cited from Traffic Engineering (Roess et al. 2004) to present a 
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general overview of usual practice. Roess et al. (2004) indicated that these criteria represent a 
balance between the operating comfort of motorists and passengers and the practical constrains 
of design and construction in more severe terrains. 

Figure 4-7 General Criteria for Maximum Grades (Roess et al. 2004) 

The modeler screened the grade data in the database and found that 0.42% of the data 
have higher grade (> 10%). Meanwhile, 2% of the road grade data have higher rate of change 
(> 5%). This means some road grade data are dubious or erroneous. Considering Sensors, Inc. 
recommendations, road grade data would only be used as reference, and would not be used di­
rectly in model development. 

4.1.5 Database Formation 

The data dictionaries of the source files were reviewed for parameter content. Not all 
variables reported will be included in explanatory analysis. A standard file structure was de­
signed to accommodate the available format. Emissions rate data with units of grams/second 
were selected to develop the proposed emission rate model. Because volumetric fuel rate, fuel 
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Category Parameters 

Test Information Date; Time 

Vehicle Characteristics License number; Model year; Odometer reading; Engine size; Instru­
ment confi guration number 

Roadway Characteristics Dummy variable for road grade range 

Onroad Load Parameters Engine power (bhp); Vehicle speed (mph); Acceleration (mph/s) 

Engine Operating Parameters 
Throttle position (0 – 100%); Engine oil temperature (deg F); Engine 
oil pressure (kPa); Engine warning lamp (Binary); Engine coolant tem­
perature (deg F); Barometric pressure reported from ECM (kPa) 

Environmental Conditions Ambient temperature (deg C); Ambient pressure (mbar); Ambient rela­
tive humidity (%); Ambient absolute humidity (grains/lb air) 

Vehicle Emissions HC, CO, NOx emission (in g/sec) 

specific gravity, and fuel mass flow rate are used to calculate mass emissions (g/s), these vari­
ables will be excluded in further analysis. Similarly, because percent engine load, engine torque, 
and engine speed are used to calculate engine power (brake horsepower), only engine power 
(bhp) is selected to represent power related variables. Exhaust flow rate is excluded because it is 
back-computed from the mass emissions generated with the fuel flow method. Fuel economy is 
excluded because it is 30 second moving average data and computed for a test period by sum­
ming the fuel consumed and dividing by the distance traveled. Because GPS data were used for 
grade calculation and road grade data would only be used as reference, a dummy variable was 
created to represent different road grade ranges. 

At the same time, variables that might be helpful in explaining variability in vehicle emis­
sions were included in the proposed file structure although they were not provided in the original 
dataset. These variables include model year, odometer reading, and acceleration.  Acceleration 
data were derived from speed data using central difference method.  Table 4-3 summarizes the 
parameter list for explanatory analysis. 

Table 4-3 List of Parameters Used in Explanatory Analysis for Transit Bus 

4.1.6 Data Summary 

After the post-processing procedure was completed, the summary of the emissions and 
activity data as well as environmental and roadway characteristics is given in Table 4-4. 
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Table 4-4  Summary of Transit Bus Database 
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 4.2 Heavy-duty Vehicle Dataset 

The heavy-duty vehicle emission dataset is prepared by the U.S. EPA N ational Risk 
Management Research Laboratory (NRMRL) (U.S. EPA 2001b).  EPA’s Onroad Diesel Emis­
sions Characterization (ODEC) facility has been collecting real-world gaseous emissions data for 
many years (U.S. EPA 2001c).  The on-road facility incorporated a 1990 Kenworth T800 tractor-
trailer as its test vehicle to collect this database. When this truck was purchased, it had already 
logged over 900,000 miles and was due for an overhaul of its Detroit Diesel Series 60 engine. 
The vehicle was tested prior to having this work done and after the overhaul. NRMRL collected 
the test data for U.S. EPA from 1999 to 2000 and included all the results and findings in a report 
titled: “Heavy Duty Diesel Fine Particulate Matter Emissions: Development and Application of 
On-Road Measurement Capabilities” (U.S. EPA 2001c). 

4.2.1 Data Collection Method 

The general capabilities of the ODEC facility are shown in Figure 4-8. The facility is designed 
to collect data while traveling along the public roadways using a 1990 Kenworth T800 tractor-trailer. 
This truck was tested using two types of tests. During ‘parametric’ testing, the truck systematically fol­
lows a test matrix representing the full range of load, grade, speed and acceleration conditions. During 
‘highway’ testing, the truck travels along an interstate highway with no specific agenda other than cover­
ing the distance safely and efficiently; speed and acceleration vary randomly with grade, speed limit, and 
traffic effects.  Tables 4-5 and 4-6 summarize the tests finished by NRMRL for U.S. EPA. 

Figure 4-8 Onroad Diesel Emissions Characterization Facility (U.S. EPA 2001c) 
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Test 
ID 

Load 
lb GCW 

Grade(s) 
% Comments 

3F00V 79280 Zero Constant Speed Testing 
3F00C 79280 Zero Cost Down & Acceleration 
3F00A 79280 Zero Governed Acceleration & Short-shift Acceleration 
3H00V 61060 Zero Constant Speed Testing 
3H00C 61060 Zero Cost Down & Acceleration 
3H00A 61060 Zero Governed Acceleration & Short-shift Acceleration 
3E00V 42840 Zero Constant Speed Testing 
3E00C 42840 Zero Cost Down & Acceleration 
3E00A 42840 Zero Governed Acceleration & Short-shift Acceleration 
3F0GA 79280 Zero Governed Acceleration 
3F0SA 79280 Zero Short-shift Acceleration 
3F0V 79280 Zero Constant Speed Testing 
3H0GA 61060 Zero Governed Acceleration 
3H0SA 61060 Zero Short-shift Acceleration 
3H0V 61060 Zero Constant Speed Testing 
3E0GA 42840 Zero Governed Acceleration 
3E0SA 42840 Zero Short-shift Acceleration 
3E0V 42840 Zero Constant Speed Testing 
3F3&6 79280 3.1, 6.0 Uphill Grade Tests 
3H3&6 61060 3.1, 6.0 Uphill Grade Tests 
3E3&6 42840 3.1, 6.0 Uphill Grade Tests 
3F-SEQ 79280 Zero Dyno Sequence Simulations 
3DRI 79280 Various Open Highway Tests – Tunnel 
3FIL 61060 Various Open Highway Tests – Filters 
3DIOX* 61060 Various Open Highway Tests – Dioxin 

*Note: These tests are not available. 

Table 4-5 Onroad Tests Conducted with Pre-Rebuild Engine 
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Test ID Load lb 
GCW Grade(s) % Comments 

5F0V 74000 Zero Constant Speed Testing 
5F0C* 74000 Zero Cost Down & Acceleration 
5F0A* 74000 Zero Governed Acceleration & Short-shift Acceleration 
5H0V 61440 Zero Constant Speed Testing 
5H0C* 61440 Zero Cost Down & Acceleration 
5H0A* 61440 Zero Governed Acceleration & Short-shift Acceleration 
5E0V 42600 Zero Constant Speed Testing 
5E0C* 42600 Zero Cost Down & Acceleration 
5E0A* 42600 Zero Governed Acceleration & Short-shift Acceleration 
5F3&6 74000 3.1, 6.0 Uphill Grade Tests 
5H3&6 61440 3.1, 6.0 Uphill Grade Tests 
5E3&6 42600 3.1, 6.0 Uphill Grade Tests 

5F-SEQ* 74000 Zero Dyno Sequence Simulations 
5Plume 61440 Various Open Highway Tests – Plume 

5NOxB* 61440 Various Open Highway Tests – Burst 
5DIOX* 

*Note: These 
61440 

test results a
Various 

re not available. 
Open Highway Tests – Dioxin 

Table 4-6 Onroad Tests Conducted with Post-Rebuild Engine 

4.2.2 Heavy-duty Vehicle Data Parameters 

A total of 42 files were collected for the pre-rebuild engine and a total of 38 fi le collected 
for the post-rebuild engine. Each file represents data collected for a different engine and test.  
Preliminary analysis of individual files indicated that the format of files was same for all avail­
able files. The data fields included in each file are summarized in Table 4-7 below. 
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Category Parameters 

Test Information Date; Time 
Vehicle 
Characteristics 

Vehicle make/model; Model year; Engine type; Engine Rating; Vehicle mainte­
nance history 

Onroad Load 
Parameters Truck load weight (lb); Vehicle speed (mph); Measured engine power (bhp) 

Engine Operating 
Parameters 

Engine speed (RPM); Shaft volts; Torque volts; Fuel H/C ratio; Fuel factor; 
Engine intake air temperature (deg F); Engine exhaust air temperature (deg °F); 
Engine coolant temperature (deg °F); Engine oil temperature (deg °F) 

Environment 
Conditions Barometric pressure (inches Hg); Ambient humidity (%) 

Vehicle Emissions CO, NO , and HC emission (in ppm, g/hr, g/kg fuel and g/hp-hr units) x

Table 4-7 List of Parameters Given in Heavy-duty Vehicle Dataset Provided by U.S. EPA 

4.2.3 Data Quality Assurance/Quality Control Check 

Although a total of 80 tests were finished for that project, preliminary screening found 
that there were some test files missing from the data DVD provided by U.S. EPA to the research­
ers. The missing test files include: 3DIOX, 5E0C, 5H0C, 5F0C, 5F-SEQ, 5NOxB, and 5DIOX. 
For quality assurance purposes, the available data files were screened to check for errors or pos­
sible problems. Possible sources of errors for data collection should be considered before devel­
oping the model. The types of errors checked are listed below. 

Loss of Data: Measured horsepower (engine power) and emission data were missing 
for some tests. Tests 3F-SEQ, 3FIL1, 3FIL2, and 3FIL3 had no measured horsepower data for 
the entire test. These test files couldn’t be included in emission model development.  In addi­
tion, tests 3E00A, 3E00C, 3E00V, 3F0GA, 3F0SA, 3F0V, 3H0SA, 3FIL4, 3FIL5, 3FIL7, 3FIL8, 
3FIL9, 3FIL10, and 5H0V had no HC emission data.  This problem will be fixed by removing 
these tests for HC emission model development. Test 3H0SA also had no CO emission data and 
this problem will be treated by removing this test for CO emission model development. 

Duplicated Records: A notable issue was  duplicate records with different emission values 
for same time in some test files. After communicating with Mr. Brown who prepared this dataset 
for EPA, the reason was identified: the data were recorded at rates as high as 10 Hz to improve 
the resolution of the data. To keep consistent with other test files, these data were post-processed 
as one data point for each second. 

Erroneous Load Data: The “measured horsepower” field is engine power data calculated 
from measurement of the drive shaft torque and rotational speed. Results from the literature 
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review show that engine power is a major explanatory variable of possible erroneous load data. 
This variable was screened to check for errors or possible problems. An example of a check 
of measured horsepower is given in Figure 4-9. The observed relationship between measured 
horsepower and engine speed is to some extent a relationship between vehicle speed and en­
gine speed which can be found in “Fundamentals of Vehicle Dynamics” (Gillespie 1992).  At a 
given gear ratio, the relationship between engine speed and road speed is to some extent a linear 
relationship. The geometric progression in the left fi gure reflects the choices made in selection 
of transmission gear ratios. The right figure shows a problematic linear relationship between 
measured horsepower and vehicle speed. Essentially, the right figure appears to show no gear 
changes as vehicle speed increases, indicating that measured horsepower has been calculated 
incorrectly for this test. Such problems exist in the series of tests 3DRI and test 5Plume. These 
test files were removed from emission model development. 

Figure 4-9 Example Check for Erroneous Measured Horsepower for Test 3DRI2-2 

Vehicle Speed Validation: The author reviewed NRMRL’s report (U.S. EPA 2001c) 
related to vehicle speed validation. Vehicle speed data were measured with a Datron LS1 opti­
cal speed sensor.  The product literature specifies an accuracy of +/- 0.2% and a reproducibility 
of +/- 0.1% over the measurement range of 0.5 to 400 kph. Figure 4-10 from NRMRL’s report 
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correlates the speed measurement to a drive shaft speed sensor that was scaled using a National 
Institute of Standards and Technology (NIST)-traceable frequency source.  The outliers at the 
low-speed indicated when the truck was turning (the tractor and the trailer-mounted speed sensor 
traveled less distance than the tractor does during turns). Notwithstanding these points, the cor­
relation is a good indication of speed measurement precision. 

Figure 4-10 Vehicle Speed Correlation (U.S. EPA 2001c) 

At the same time, NRMRL provided Figure 4-11 (U.S. EPA 2001c) to show the precision 
for four ranges of vehicle speed, along with similar estimates of accuracy.  This figure will help 
researchers deal with speed measurement noise in the future. 

Figure 4-11 Vehicle Speed Error for Different Speed Ranges (U.S. EPA 2001c) 
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Category Parameters 

Test Information Date; Time 

Vehicle Characteristics Vehicle make/model; Model year; Engine type; Engine rating; Vehicle 
maintenance history 

Onroad Load Parameters Truck load weight (lb); Vehicle speed (mph); Acceleration (mph/s); 
Measured engine power (bhp) 

Engine Operating 
Parameters 

Engine intake air temperature (deg F); Engine exhaust air tem­
perature (deg F); Engine coolant temperature (deg F); Engine oil 
temperature (deg F) 

Environment Conditions Barometric pressure (Hg), Ambient moisture (%) 

Vehicle Emissions CO, NO , and HC emission (in g/s units) x

4.2.4 Database Formation 

The data dictionaries of the source files were reviewed for parameter content (Table 4-8). 
Not all variables reported are included in explanatory analysis. A standard file structure was 
designed to accommodate the available format. Emissions data with units of gram/second were 
selected to develop the proposed emission model. All variables used to calculate mass emissions 
were excluded in further analysis. Similarly, because the “measured horsepower” field is calcu­
lated from measurements of drive shaft torque and rotational speed, only “measured horsepower” 
is used to represent power related variables. At the same time, variables like acceleration that 
might be helpful in explaining variability in vehicle emissions were included in the proposed file 
structure although they were not provided in the original dataset. Acceleration data were derived 
from speed data using the central difference method. 

Table 4-8 List of Parameters Used in Explanatory Analysis for HDDV 

4.2.5 Data Summary 

After the post-processing procedure was completed, a summary of the emissions and 
activity data as well as environmental and roadway characteristics is given in Table 4-9. 
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Test ID 

Number 
of 

Seconds 
of Data 

Vehicle Operation Emission Data Environment 
Characteristics 

Average 
Speed 
(mph) 

Average 
Engine 
Power 
(bhp) 

Average 
CO (g/s) 

Average 
NO  (g/s) x

Average 
HC (g/s) 

Barometric 
Pressure 

(Hg) 

Ambient 
Moisture 

(%) 

3F00V 4430 43.55 163.10 0.11633 0.27983 0.001442 28.273 1.6874 
3F00C 7991 36.49 323.79 0.08200 0.19566 0.001166 28.272 1.6874 
3F00A 1904 43.55 475.12 0.17476 0.34262 0.001471 28.272 1.6874 
3H00V 3718 43.66 130.99 0.08386 0.22701 0.001429 28.273 1.6874 
3H00C 7593 39.43 112.50 0.07456 0.17866 0.001414 28.272 1.6874 
3H00A 1959 48.04 218.50 0.20521 0.32078 0.001751 30.423 1.3573 
3E00V 3863 41.41 123.42 0.10896 0.21157 NA 28.273 1.6874 
3E00C 7962 39.31 104.95 0.07489 0.14908 NA 28.272 1.6874 
3E00A 1810 50.15 197.07 0.22324 0.26108 NA 30.137 1.9020 
3F0GA 577 35.93 302.14 0.23114 0.41269 NA 29.995 0.4685 
3F0SA 792 36.26 287.45 0.25140 0.37947 NA 29.995 0.4685 
3F0V 3635 41.65 152.23 0.14879 0.28413 NA 29.995 0.4685 

3H0GA 594 33.81 253.63 0.30036 0.48494 0.002159 29.690 1.6059 
3H0SA 707 34.27 223.73 NA 0.32498 NA 29.690 1.6059 
3H0V 3331 41.53 143.38 0.08892 0.27712 0.002436 28.020 0.4742 

3E0GA 421 32.91 233.93 0.37978 0.30728 0.000589 29.976 0.5812 
3E0SA 571 31.99 180.73 0.23652 0.33325 0.003042 29.976 0.5812 
3E0V 3395 42.64 103.63 0.08879 0.25745 0.002805 29.976 0.5812 

3F3&6 8629 36.59 131.00 0.14409 0.31374 0.001426 28.282 1.2520 
3H3&6 10573 43.13 107.06 0.16769 0.27507 0.001753 28.273 1.6874 
3E3&6 9825 44.74 121.69 0.16617 0.23913 0.001839  28.250 1.5716 
3FIL4 12456 66.54 152.91 0.06994 0.29925 NA 29.238 0.3886 
3FIL5 13738 58.76 129.99 0.06354 0.22315 NA 29.238 0.3886 
3FIL6 6415 66.94 130.11 0.06273 0.20833 0.001409 29.238 0.3886 
3FIL7 10678 62.76 164.82 0.07042 0.28353 NA 29.854 0.1480 
3FIL8 12248 64.70 147.26 0.06688 0.26035 NA 29.773 0.1484 
3FIL9 11956 65.62 153.44 0.06551 0.20905 NA 29.418 0.1502 

3FIL10 12367 63.71 167.73 0.07481 0.35788 NA 30.132 0.1466 
5F0V 4895 32.87 96.09 0.10716 0.23558 0.002828 30.101 0.5761 
5H0V 4091 42.36 126.14 0.12564 0.30933 NA 30.179 0.6091 
5E0V 4407 42.60 105.84 0.10681 0.29045 0.002894 30.278 0.8601 

5F3&6a 6971 36.24 147.99 0.13716 0.31607 0.003111 28.004 0.9070 
5F3&6b 5058 38.69 133.54 0.14044 0.30661 0.001924 28.009 0.8862 
5H3&6a 6919 39.74 133.01 0.12723 0.28763 0.002397 28.024 0.8138 
5H3&6b 6951 39.44 148.26 0.15400 0.32910 0.002807 28.014 1.2149 
5E3&6 10807 46.01 124.07 0.13981 0.27674 0.002827 28.024 1.0131 

Table 4-9 Summary of Heavy-Duty Vehicle Data U.S. EPA 2001c). 
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CHAPTER 5 

5. METHODOLOGICAL APPROACH 

The following chapter lays the theoretical foundation of the conceptual framework of 
model development. This chapter outlines the statistical methods, addresses issues that arise in 
statistical modeling, and presents the solutions that are employed to address these issues. This 
chapter will serve as a guide or “road map” for the underlying methodology of the model devel­
opment process. 

5.1 Modeling Goal and Objectives 

The goal of this research is to provide emission rate models that fill the gap between the 
existing models and ideal models for predicting emissions of NOx, CO, and HC from heavy-duty 
diesel vehicles. Problems in existing models, like EPA’s MOBILE series and CARB’s EMFAC 
series of models, have been highlighted in previous chapters. U.S. EPA is currently developing a 
new set of modeling tools for the estimation of emissions produced by on-road and off-road mo­
bile sources. MOVES, a new model under development by EPA’s OTAQ, is a modeling system 
designed to better predict emissions from on-road operations. The philosophy behind MOVES 
is the development of a model that is as directly data-driven as possible, meaning that emission 
rates are developed from second-by-second or binned data. 

Using second-by-second data collected from on-road vehicles, this research effort will 
develop models that predict emissions as a function of on-road variables known to affect vehicle 
emissions. The model should be robust and ensure that assumptions about the underlying distri­
bution of the data are verified and the properties of parameter estimates are not violated. With 
limited available data, this study focuses on development of an analytical methodology that is 
repeatable with a different data set from across space and across time.  As more data become 
available, the proposed model will need to be re-estimated to ensure that the model is transfer­
able across additional HDV engine types, operating conditions, environmental conditions, and 
even perhaps geographical regions. 
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5.2 Statistical Method 

The purpose of statistical modeling was to determine which explanatory variables sig­
nifi cantly influence vehicle emissions so that the data can be stratified by those variables and a 
corresponding regression relationship can be developed. For many statistical problems there are 
several possible solutions. In comparing the means of two small groups, for instance, we could 
use a t test, a t test with a transformation, a Mann-Whitney U test, or one of several others. The 
choice of method depends on the plausibility of normal assumptions, the importance of obtaining 
a confidence interval, the ease of calculation, etc. 

Parametric or non-parametric approaches to evaluation can be applied. Parametric meth­
ods are used when the distribution is either known with certainty or can be guessed with a certain 
degree of certainty.  These methods are meaningful only for continuous data which are sampled 
from a population with an underlying normal distribution or whose distribution can be rendered 
normal by mathematical transformation. Analysts must be careful to ensure that signifi cant er­
rors are not introduced when assumptions are not met. In contrast, nonparametric methods make 
no assumptions about the distribution of the data or about the functional form of the regression 
equation. Nonparametric methods are especially useful in situations where the assumptions 
required by parametric are in question. Brief overviews and underlying theories of statistical 
methods that might used in this research are addressed in the following sections. 

5.2.1 Parametric Methods 

5.2.1.1 The t-Test 

Student’s t-test is one of the most commonly used techniques for testing whether the 
means of two groups are statistically different from each other.  This test tries to determine 
whether the measured difference between two groups is large enough to reject the null hypothesis 
or whether such differences are just due to “chance”.  The formula for the t-test (Equation 5-1) is 
a ratio. The numerator of the ratio is just the difference between the two means or averages.  The 
denominator is a measure of the variability or dispersion of the data.

    (Equation 5-1) 
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             where x1 and x2 are the sample means, s1
2 and s2

2 are the sample variances, n1 and n2 are 
the sample sizes and t is a Student t quantile with n1 + n2 - 2 degrees of freedom. 

Usually a significance level of 0.05 (or equivalently, 5%) is employed in statistical analy­
ses. The significance level of a statistical hypothesis test is a fixed probability of wrongly reject­
ing the null hypothesis H0, if it is in fact true. Another index is p-value which is the probability 
of getting a value of the test statistic as extreme as or more extreme than that observed by chance 
alone, if the null hypothesis H0 is true. The p-value is compared with the actual significance 
level of the test and, if it is smaller, the result is significant. That is, if the null hypothesis were to 
be rejected at the 5% significance level, this would be reported as “p < 0.05”. 

The assumptions for t-test include: 1) the populations are normally distributed; 2) vari­
ances in the two populations are equal; and 3) the populations are independent. The results of 
the analysis may be incorrect or misleading when assumptions are violated. For example, if 
the assumption of independence for the sample values is violated, then the two-sample t test is 
simply not appropriate. If the assumption of normality is violated or outliers are present, the 
two-sample t test may not be the most powerful available test. This could mean the difference 
between detecting a true difference or not.  A nonparametric test or employing a transformation 
may result in a more powerful test. 

5.2.1.2 Ordinary Least Squares Regression 

Regression analysis is a statistical methodology that utilizes the relation between two 
or more quantitative variables so that one variable can be predicted from the other, or others 
(Neter et al. 1996). There are many different kinds of regression models, like the linear regres­
sion model, exponential regression model, logistic regression model, and so on. Among them, 
linear regression is a commonly used and easily understood statistical method. Linear regression 
explores relationships that can be described by straight lines or their generalization to many di­
mensions. Regression allows a single response variable to be described by one or more predictor 
variables. 

Ordinary least squares (OLS) regression is a common statistical technique for quantifying 
the relationship between a continuous dependent variable and one or more independent variables 
(Neter et al. 1996). The dependent variables may be either continuous or discrete. Neter et al. 
(1996) provides the basic OLS regression equation for a single variable regression model as 
shown in Equation 5-2: 
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Ŷ β̂ + β̂ X + ε (Equation 5-2) = i 0 i i i 

where:

Ŷ = value of the response variable in the ith trial

^ ^ β0, βi = estimators of regression parameters 
Xi = value of the predictor variable in the ith trial 
εi = random error term with mean E{εi} = 0 and variance σ2 {εi}= σ2; 

εi and εj are uncorrelated so that their covariance is zero. 

The parameters of the OLS regression equation, β0  and βi , are found by the least squares 
method, which requires that the sum of squares of errors be minimized. Gauss-Markov theorem 
(Neter et al. 1996) states that, among all unbiased estimators that are linear combinations of ys, 
the OLS estimators of regression coefficients have the smallest variance; i.e., they are the best 
linear unbiased estimators. The Gauss-Markov Theorem does not tell one to use least squares all 
the time, but it strongly suggests use of least squares (Neter et al. 1996). 

In linear regression, there are key assumptions that must be met, including: 

• Yi are independent normal random variables; 

• The expected value of the error terms εi  is zero; 

• The error terms εi are assumed to have constant variance σ2; 

• The error terms εi are assumed normally distributed; 

• The error terms εi are assumed to be uncorrelated so that their covariance is zero; and 

• The error terms εi are independent of the explanatory variable 

If the above assumptions are violated the regression equation may yield biased results 
(Neter et al. 1996). For example, if the explanatory variable is not independent of the error term, 
larger sample sizes do not lead to lower standard errors for the parameters, and the parameter 
estimates (slope, etc.) are biased. If the error is not distributed normally, for example, there may 
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be fat tails. Consequently, use of the normal distribution may underestimate true 95% confidence 
intervals. 

5.2.1.3 Robust Regression 

OLS models generally rely on the normality assumption and are often fitted by means of 
the least squares estimators. However, the sensitivity of these estimation techniques is related to 
this underlying assumption which has been identified as a weakness that can lead to erroneous 
interpretations (Copt and Heritier 2006). Robust regression procedures dampen the infl uence of 
outlying cases, as compared to OLS estimation, in an effort to provide a better fit for the major­
ity of cases. Robust regression procedures are useful when a known, smooth regression function 
is to be fitted to data that are “noisy”, with a number of outlying cases, so that the assumption of 
a normal distribution for the error terms is not appropriate (Neter et al. 1996). The method of 
moments (MM) estimators are designed to be both highly robust against outliers and highly ef­
ficient. 

5.2.2 Nonparametric Methods 

Nonparametric methods have several advantages compared with parametric methods. 
Nonparametric methods require no or very limited assumptions to be made about the format 
of the data, and they may therefore be preferable when the assumptions required for paramet­
ric methods are not valid (Whitley and Ball 2002). Nonparametric methods can be useful for 
dealing with unexpected, outlying observations that might be problematic with a parametric 
approach. Nonparametric methods are intuitive and are simple to carry out by hand, for small 
samples at least. 

However, nonparametric methods may lack power as compared with more traditional 
approaches (Siegel 1988). This lack of power is a particular concern if the sample size is small 
or if the assumptions for the corresponding parametric method hold true (e.g., normality of the 
data). Nonparametric methods are geared toward hypothesis testing rather than estimation of ef­
fects. It is often possible to obtain nonparametric estimates and associated confi dence intervals, 
but this process is not generally straightforward. In addition, appropriate computer software for 
nonparametric methods can be limited, although the situation is improving. 

5.2.2.1 Chi-Square Test 

The Chi-square (Koehler and Larnz 1980), best known goodness-of-fit test, assumes that 
the observations are independent and that the sample size is reasonably large.  This method can 

5-5




be used to test whether a sample fits a known distribution, or whether two unknown distribu­
tions from different samples are the same.  The test can detect major departures from a logistic 
response function, but is not sensitive to small departures from a logistic response function. The 
test assumptions are that the sample is random and that the measurement scale is at least ordinal 
(Conover 1980; Neter et al. 1996). 

Pearson’s chi-square goodness of fit test statistic is shown in Equation 5-3 (StatsDirect 
2005): 2 

i − )(O E   (Equation 5-3) 
T =∑ j j 

j=1 E j 

where Oj are observed counts, Ej are corresponding expected count and c is the number of 
classes for which counts/frequencies are being analyzed. 

The test statistic is distributed approximately as a chi-square random variable with c-1 
degrees of freedom. The test has relatively low power (chance of detecting a real effect) with 
all but large numbers or big deviations from the null hypothesis (all classes contain observations 
that could have been in those classes by chance). 

The handling of small expected frequencies is controversial. Koehler and Larnz asserted 
that the chi-square approximation is adequate provided all of the following are true: total of ob­
served counts (N) ≥ 10; number of classes (c) ≥ 3; all expected values ≥ 0.25 (Koehler and Larnz 
1980). 

5.2.2.2 Kolmogorv-Smirnov Two-Sample Test 

The Kolmogorov-Smirnov (K/S) two-sample test (Chakravart and Roy 1967) compares 
the empirical distribution functions of two samples, E1 and E2. The Kolmogorov-Smirnov test is 
a nonparametric test, which can be used to test whether two or more samples are governed by the 
same distribution by comparing their empirical distribution functions. 

The Kolmogorov-Smirnov two sample test statistic can be defined as shown in Equation 
5-4 (Chakravart and Roy 1967): 

D E i  E i( )− ( )  (Equation 5-4) = 1 2

where E1 and E2 are the empirical distribution functions for the two samples. 
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The Kolmogorov-Smirnov (K/S) two-sample test provides an improved methodology 
over the chi-squared test since data do not have to be assigned arbitrarily to bins. Further, it is a 
non-parametric test so a distribution does not have to be assumed. However, the main disadvan­
tage to the K/S is similar to the chi-square in that the orders of magnitude of separate tests that 
would have to be conducted to test all the possible combinations of variables in the datasets is 
logistically infeasible (Hallmark 1999). 

5.2.2.3 Wilcoxon Mann-Whitney Test 

The Wilcoxon Mann-Whitney Test (Easton and McColl 2005) is one of the most power­
ful of the nonparametric tests for comparing two populations. This test is used to test the null hy­
pothesis that two populations have identical distribution functions against the alternative hypoth­
esis that the two distribution functions differ only with respect to location (median), if at all. 

The Wilcoxon Mann-Whitney test does not require the assumption that the differences 
between the two samples are normally distributed. In many applications, the Wilcoxon Mann-
Whitney Test is used in place of the two sample t-test when the normality assumption is ques­
tionable. This test can also be applied when the observations in a sample of data are ranks, that 
is, ordinal data rather than direct measurements. 

The Mann Whitney U statistic is defined as shown in Equation 5-5 (StatsDirect 2005): 

+1 n 

1 2  

n n(  )  ∑
2 

i 
(Equation 5-5) 

U n= n + 2 2 − R
2 i n1− +1 

where samples of size n1 and n2 are pooled and Ri are the ranks. 

U can be resolved as the number of times observations in one sample precede observa­
tions in the other sample in the ranking. Wilcoxon rank sum, Kendall’s S and the Mann-Whitney 
U test are exactly equivalent tests. In the presence of ties the Mann-Whitney test is also equiva­
lent to a chi-square test for trend. 

5.2.2.4 Analysis of Variance (ANOVA) 

ANOVA (Analysis of Variance) (Neter et al. 1996), sometimes called an F test, is closely 
related to the t test. The major difference is that, where the t test measures the difference be­
tween the means of two groups, an ANOVA tests the difference between the means of two 
or more groups. ANOVA modeling does not require any assumptions about the nature of the 
statistical relation between the response and explanatory variables, nor do they require that the 
explanatory variables be quantitative. 
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Source of 
Variation 

Sum of 
Squares (SS) 

Degrees of 
Freedom 

(df) 
Mean Square (MS) Expected Mean Square 

E(MS) 

Between 
treatments SSTR = ∑ n i ( Y i −Y.. )

2 
r - 1 MSTR = 

SSTR
r − 1 

σ 2 + ∑ n i ( μ i
r − 

− 

1 
μ.

2 ) 

Error 
(within 

treatments) 
SSE = ∑∑(  Y ij −Yi )

2 
nT - r MSE = 

SSE
N − T r σ2 

Total SSTO = ∑∑(  Y ij −Y.. )
2 

nT - 1 

­

The ANOVA, or single factor ANOVA, compares several groups of observations, all of 
which are independent, but each group of observations may have a different mean.  A test of 
great importance is whether or not all the means are equal. The advantage of using ANOVA rath­
er than multiple t-tests is that it reduces the probability of a type-I error (making multiple com­
parisons increases the likelihood of finding something by chance). One potential drawback to 
an ANOVA is that it can only tell that there is a significant difference between groups, not which 
groups are significantly different from each other.  The breakdowns of the total sum of squares 
and degrees of freedom, together with the resulting mean squares, are presented in an ANOVA 
table such as Table 5-1. 

Table 5-1 ANOVA Table for Single-Factor Study (Neter et al. 1996) 

A factorial ANOVA can examine data that are classified on multiple independent vari
ables. A factorial ANOVA can show whether there are significant main effects of the indepen­
dent variables and whether there are significant interaction effects between independent variables 
in a set of data. Interaction effects occur when the impact of one independent variable depends 
on the level of the second independent variable (Neter et al. 1996). Computation can be per­
formed with standard statistical software such as SAS®. 

5.2.2.5 HTBR 

HTBR (Breiman et al. 1984) is a forward step-wise variable selection method, similar 
to forward stepwise regression. This method is also known as Classification and Regression 
Tree (CART) analysis.  This technique generates a “tree” structure by dividing the sample data 

5-8




recursively into a number of groups. The groups are selected to maximize some measure of 
difference in the response variable in the resulting groups.  As Washington et al. summarized in 
1997 (Washington et al. 1997a), this method is based upon iteratively asking and answering the 
following questions: (1) which variable of all of the variables ‘offered’ in the model should be 
selected to produce the maximum reduction in variability of the response? and (2) which value 
of the selected variable (discrete or continuous) results in the maximum reduction in variability 
of the response? The HTBR terminology is similar to that of a tree; there are branches, branch 
splits or internal nodes, and leaves or terminal nodes (Washington et al. 1997a). 

To explain the method in mathematical terms, the definitions are presented by Washing­
ton et al. (Washington et al. 1997a).  The first step is to define the deviance at a node. A node 
represents a data set containing L observations.  The deviance, D a , can be estimated as shown in 
equation 5-6:

L 

Da =∑(y , − x )2   (Equation 5-6) l a  a  
l =1 

where 
D a = total deviance at node a, or the sum of squared error (SSE) at the 

node 

yl,a = lth observation of dependent variable y at node a 

xa = estimated mean of L observations in node a 

Next, the algorithm seeks to split the observation at node a on a value of an independent 
variable, Xi , into two branches and corresponding nodes b and c, each containing M and N of the 
original L observations (M+N=L) of the variable Xi. The deviance reduction function evaluated 
over all possible Xs then can be defined as shown in Equations 5-7 thru 5-9: 

Δ(allX ) = Da − Db − Dc (Equation 5-7) 

M 

Db =∑( ym  b  , − xb )
2 

(Equation 5-8) 
m=1 

N 

Dc =∑( yn  c  , − xc )
2         (Equation 5-9) 

n=1 
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L M N 

∑ y , − x ) y − x ) ∑ − x )Δ(allX ) = ( l a a 
2 −∑( m b , b 

2 − ( yn c , c 
2 =        

l=1 m=1 n=1 

where 
∆(allX) = the total deviance reduction function evaluated over the domain of 

all Xs


 Db = total deviance at node b


 D = total deviance at node c
c 
ym,b = mth observation on dependent variable y in node b
 yn,c = nth observation on dependent variable y in node c 

xb = estimated mean of M observations in node b 
x = estimated mean of N observations in node cc

The variable Xk  and its optimum split Xk(i) is sought so that the reduction in deviance is 
maximized, or more formally when (as shown in equation 5-10): 

max   (Equation 5-10) 

where 

∆(allX) = the total deviance reduction function evaluated over the domain of 
all Xs

 yl,a = lth observation of dependent variable y at node a 
xa = estimated mean of L observations in node a

 ym,b = mth observation on dependent variable y in node b
 yn,c = nth observation on dependent variable y in node c 

xb = estimated mean of M observations in node b 
x = estimated mean of N observations in node cc

The maximum reduction occurs at a specifi c value Xk(i), of the independent variable Xk. 
When the data are split at this point, the remaining samples have a much smaller variance than 
the original data set. Thus, the reduction in node a deviance is greatest when the deviances at 
nodes b and c are smallest. Numerical search procedures are employed to maximize Equation 
5-10 by varying the selection of variables used as a basis for a split and the value to use for each 
variable at a split. 

In growing a regression tree, the binary partitioning algorithm recursively splits the data 
in each node until the node is homogenous or the node contains too few observations. If left 
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unconstrained, a regression tree model can “grow” until it results in a complex model with a 
single observation at each terminal node that explains all the deviance. However, for application 
purposes, it is desirable to create criteria to balance the model’s ability to explain the maximum 
amount of deviation with a simpler model that is easy to interpret and apply.  Some software, 
such as S-Plus™, allows the user to select such criteria. The software allows the user to interact 
with the data in the following manner to select variables and help simplify the fi nal model: 

• 	 Response variable: the response variable is selected by the user from a list of fields 
from the data set; 

• 	 Predictor variables: one or more independent variables can be selected by the user 
from a list of fields associated with the dataset; 

• 	 Minimum number of observations allowed at a single split: sets the minimum number 
of observations that must be present before a split is allowed (default is 5); 

• 	 Minimum node size: sets the allowed sample size at each node (default is 10); and 

• 	 Minimum node deviance: the deviance allowed at each node (default is 0.01). 

However, unlike OLS regression models, a shortcoming of HTBR is the absence of 
formal measures of model fit, such as t-statistics, F-ratio, and r-square, to name a few.  Thus, 
the HTBR model is used to guide the development of an OLS regression model, rather than as 
a model in its own right. Similar uses of HTBR techniques have been developed and applied in 
previous research papers (Washington et al. 1997a; Washington et al. 1997b; Fomunung et al. 
1999; Frey et al. 2002). 

5.3 Modeling Approach 

The model development process will start by using HTBR both as a data reduction tool 
and for identifying potential interactions among the variables. Then OLS Regression or Robust 
Regression is used with the identified variables to estimate a preliminary “final” model. After 
that, we need to check the model for compliance with normality assumptions and goodness of fit. 

Several diagnostic tools are available to perform these checks. Once a preliminary 
“final” model is obtained, regression coefficients are examined using their t-statistics and cor­
relation coefficients to determine which variables should be removed or retained in the model for 
further analysis. However this procedure can lead to the removal of potentially important inter-
correlated explanatory variables. In fact, variable agreement with underlying scientifi c principles 
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of combustion, pollutant formation and emission controls (cause-effect relationships) should be 
the basis for the ultimate decisions regarding variable selection. Thus, a t-statistic may indicate 
that a parameter is insignificant (at level of significance = 0.05), while theory indicates that such 
a parameter should be retained in the model for further analysis. This type of error is usually 
referred to as a type II error (Fomunung 2000). 

F-statistics and adjusted coefficient of multiple determination, R2 are used to determine 
the effect-size of the parameters.  Usually, adding more explanatory variables to the regression 
model can only increase R2 and never reduce it, because SSE can never become larger with more 
X variables and total sum of squares (SSTO) is always the same for a given set of responses.  
The adjusted coefficient of multiple determination can adjust R2 by dividing each sum of squares 
by its associated degrees of freedom. The F-test is used to test whether the parameter can be 
dropped even if the t-statistic is appropriate. 

In multiple regression analysis, the predictor or explanatory variables tend to be corre­
lated among themselves and with other variables related to the response variable but not included 
in the model. The effects of multicollinearity are many and can be severe.  Neter et al. (Neter 
et al. 1996) have documented a few of these: when multicollinearity exists the interpretation of 
partial slope coefficients becomes meaningless; multicollinearity can lead to estimated regression 
coefficients that vary widely from one sample to another; and there may be several regression 
functions that provide equally good fits to the data, making the effects of individual predictor 
variables difficult to assess. 

There are some informal diagnostic tools suggested to detect this problem. A frequently 
used technique is to calculate a simple correlation coefficient between the predictor variables to 
detect the presence of inter-correlation among independent variables.  Large values of correlation 
is an indication that multicollinearity may exist. Large changes in the estimated regression coef­
ficients when a predictor variable is added or deleted are also an indication. Finally, multicol­
linearity may be a problem if estimated regression coefficients are calculated with an algebraic 
sign that is the opposite of that expected from theoretical considerations or prior experience (i.e., 
the beta coefficient is compensating for the beta coefficient of a correlated explanatory variable). 

A formal method of detecting this problem is the variance inflation factor (VIF), which is 
a measure of how much the variances of the estimated regression coefficients are inflated as com­
pared to when the predictor variables are not linearly related (Neter et al. 1996). This method is 
widely used because it can provide quantitative measurements of the impact of multicollinear­
ity.  The largest VIF value among all Xs is used to assess the severity of multicollinearity.  As a 
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rule of thumb, a VIF in excess of 10 is frequently used as an indication that multicollinearity is 
severe. 

Diagnostic plots are examined to verify normality and homoscedasticity (i.e., homogene­
ity of variance) assumptions as well as the goodness of fit. Because of the difficulty in assessing 
normality, it is usually recommended that non-constancy of error variance should be investigated 
first (Neter et al. 1996). The plots used to identify any patterns in the residuals are considered 
as informal diagnostic tools and include plots of the residuals versus the fitted values and plot of 
square root of absolute residuals versus the fitted values. The normality of the residuals can be 
studied from histograms, box plots, and normal probability plots of the residuals. In addition, 
comparisons can be made of observed frequencies with expected frequencies if normality ex­
ists. Usually, heteroscedasticity and/or inappropriate regression functions may induce a depar­
ture from normality.  When OLS is applied to heteroskedastic models the estimated variance is a 
biased estimator of the true variance. OLS either overestimates or underestimates the true vari­
ance, and, in general it is not possible to determine the nature of the bias. The variances, and the 
standard errors, may therefore be either understated or overstated. 

5.4 Model Validation 

Model validity refers to the stability and reasonableness of the regression coefficients, 
the plausibility and usability of the regression function, and the ability to generalize inferences 
drawn from the regression function. Validation is a useful and necessary part of the model-build­
ing process (Neter et al. 1996). 

Two basic ways of validating a regression model are internal and external.  Internal 
validation consists of model checking for plausibility of signs and magnitudes of estimated coef­
ficients, agreement with earlier empirical results and theory, and model diagnostic checks such as 
distribution of error terms, normality of error terms, etc. Internal validation will be performed as 
part of the model estimation procedure. 

External validation is the process to check the model and its predictive ability with the 
collection of new data, such as data from another location or time, or using a holdout sample. 
Considering there are only 15 buses/engines in the data set, it is not practical to split the data 
set and hold a sample for validation purposes. Splitting the data set will defi nitely influence 
the regression estimators. However suggestions and procedures for external validation will be 
provided. 
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CHAPTER 6 

6. DATA SET SELECTION AND ANALYSIS OF EXPLANATORY VARIABLES 

6.1 Data Set Used for Model Development 

Development of a modal model designed to predict emissions on a second-by-second ba­
sis as a function of engine load requires the availability of appropriate emission test data. Modal 
modeling required the availability of second-by-second vehicle emissions data, collected in par­
allel with corresponding revealed engine load data. In 2004, only two data sets could be identi­
fied for use in this modeling effort.  U.S. EPA provided two major HDV activity and emission 
databases to develop the emission rate model (Ensfield 2002) (U.S. EPA 2001b).  One database 
is a transit bus database, which included emissions data collected on diesel transit buses oper­
ated by the AATA in 2001, and another database is heavy HDV (HDV8B) database prepared by 
NRMRL in 2001.  The transit database consisted of data collected from 15 buses with the same 
type of engines while the HDV8B database consisted of only one truck engine tested extensively 
on-road under pre-rebuild and post rebuild engine conditions. To decide whether it is suitable to 
combine these two data sets or treat them individually, two dummy variables were added to the 
databases to describe vehicle types. For the first dummy variable named “bus”, 1 was assigned 
for transit bus, and 0 for others. For the second dummy variable, 1 was assigned for HDDV with 
pre-rebuild engine, and 0 for others. HTBR was applied to all data sets to examine whether tran­
sit buses behave differently from HDDVs or not.   The regression trees and results for NOx, CO, 
and HC emission rates are given in Figures 6-1 to Figure 6-3. 

6-1




Figure 6-1 HTBR Regression Tree Result for NOx Emission Rate for All Data Sets 

Figure 6-2 HTBR Regression Tree Result for CO Emission Rate for All Data Sets 

6-2




Figure 6-3 HTBR Regression Tree Result for HC Emission Rate for All Data Sets 

Dummy variable for bus is selected as the first split for all three trees above. Therefore 
transit bus and HDDV should be treated separately.  Since there are 15 engines in the transit bus 
data set and one engine (pre-rebuild and post-rebuild for the same engine) in the HDDV data set, 
the transit bus data set should be used for the final version of the conceptual model development. 

6.2 Representative Ability of the Transit Bus Data Set 

The transit bus data set was collected by Sensors, Inc. in Oct. 2001 (Ensfield 2002). The 
buses tested came from the AATA and included 15 New Flyer models with Detroit Diesel Series 
50 engines. All of the buses were of model years 1995 and 1996. All of the bus tested periods 
lasted approximately 2 hours. The buses operated during standard AATA bus routes and stopped 
at all regular stops although the buses did not board or discharge any passengers (Ensfi eld 2002) 
The routes were mostly different for each test, and were selected for a wide variety of driving 
conditions (see Figure 4-1). 

Figure 6-4 shows the speed-acceleration matrix developed with second-by-second data. 
There are two high speed/acceleration frequency peaks here. One is the bin of speed ≤ 2.5 mph 
and acceleration (-0.25 mph/s, 0.25 mph/s) and contains 26.11% of the observations, while the 
other is the combination of several adjacent bins which covers speed (22.5 mph, 47.5 mph) and 
acceleration (-0.75 mph/s, 0.75 mph/s). 
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Figure 6-4 Transit Bus Speed-Acceleration Matrix 

Georgia Institute of Technology researchers collected more than 6.5 million seconds of 
transit bus speed and position data using Georgia Tech Trip Data Collectors ( an onboard com­
puter with GPS receiver, data storage, and wireless communication device) installed on two 
Metropolitan Atlanta Rapid Transit Authority (MARTA) buses in 2004 (Yoon et al. 2005b).  With 
second-by-second data, the research team developed transit bus speed/acceleration matrices for 
the combinations between roadway facility type (arterial or local road) and time range (morning, 
midday, afternoon, night).  For each matrix, two high acceleration/deceleration frequency peaks 
were also found. This finding is consistent with the AATA data set, indicating at least that the on-
road operations of the buses in Ann Arbor are similar to operations in the Atlanta region.  

This data set was collected under a wide variety of environmental conditions, too. The 
temperature ranged from 10 °C to 30 °C, the relative humidity ranged from 15% to 65%, while 
the barometric pressure ranged from 960 mbar to 1000 mbar (Figure 6-5). So we can use this 
data set to examine the impact of environmental conditions on emissions. 
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Figure 6-5 Test Environmental Conditions 

Transit buses tested were provided by the AATA and all of them are New Flyer models 
with Detroit Diesel Series 50 engines. Since these buses utilized consistent engine technologies 
(i.e., fuel injection type, catalytic converter type, transmission type, and so on), the ability of esti­
mated emission models to incorporate the effect of other types of vehicle technologies is limited. 
Another limitation is the consideration of the effects of emission control technology deterioration 
on emission levels since these buses were only 5 or 6 years old during the test. 

6.3 Variability in Emissions Data 

6.3.1 Inter-bus Variability 

Data are presented to illustrate the variability in observed data. Inter-bus variabilities are 
illustrated using median and mean of NOx, CO, and HC emission rates for each bus from Figures 
6-6 to 6-8. The difference between median and mean is an indicator of skewness for the distribu­
tion of emission rates. 
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Figure 6-6 Median and Mean of NOx Emission Rates by Bus 
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Figure 6-7 Median and Mean of CO Emission Rates by Bus 

Figure 6-8 Median and Mean of HC Emission Rates by Bus 
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The purpose of inter-bus variability analysis was to characterize the range of variability in 
vehicle average emissions among all of the buses, to determine whether the data set is relatively 
homogeneous. Although there are some clusters among the buses as suggested from Figures 6-6 
to 6-8 and some skewness in the distribution as suggested by upper tails in Figure 6-9, it is not 
obvious that this data set lacks homogeneity and should be separated into different groups.  Thus, 
this data set is treated as a single group for purposes of analysis and model development. 

Figure 6-9 Empirical Cumulative Distribution Function Based on Bus Based Median Emission 
Rates for Transit Buses 

6.3.2 Descriptive Statistics for Emissions Data 

Applicable numerical summary statistics, such as variable means and standard deviations, 
are presented in Table 6-1.  Relatively simple graphics such as histograms and boxplots describ­
ing variable distributions are presented in Figures 6-10 to 6-12. It may also be necessary to as­
sess whether the individual variables are normally distributed prior to any further analysis using 
parametric methods that are based upon this assumption. 
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Table 6-1 Basic Summary Statistics for Emissions Rate Data for Transit Bus 

*** Summary Statistics for data in: transitbus.data *** 
NO x HC CO

 Min: 0.000000e+000 0.000000e+000 0.000000e+000
 1st Qu.: 3.030000e-003 2.195000e-002 4.200000e-004

 Mean: 3.183675e-002 1.052101e-001 1.438709e-003
 Median: 7.540000e-003 5.058000e-002 9.300000e-004
 3rd Qu.: 2.197000e-002 1.731100e-001 1.840000e-003

 Max: 3.057700e+000 2.427900e+000 6.679000e-002 
Total N:  1.075350e+005 1.075350e+005 1.075350e+005
   NA’s : 0.000000e+000 0.000000e+000 0.000000e+000 

Std Dev.:  8.479305e-002 1.162344e-001 1.956353e-003 

Figure 6-10 Histogram, Boxplot, and Probability Plot of NOx Emission Rate 
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Figure 6-11 Histogram, Boxplot, and Probability Plot of CO Emission Rate 

Figure 6-12 Histogram, Boxplot, and Probability Plot of HC Emission Rate 
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Further analysis indicated that there are some zero values in the emission data. There 
might be several reasons for zero values. Missing data caused by loss of communication be­
tween instruments or failure of a particular vehicle were recorded as zero in the data set. Those 
zero values were already identified in the data post-processing procedure in Chapter 4. Zero 
values might also have occurred when the reference air contained significant amounts of a pollut­
ant so the instrument systematically reported negative emission values. Sensors, Inc. suggested 
that negative data should be set to zero. Thus these negative values were artificially recorded as 
zero, not observed by test equipment as zero. These zero values would create truncation issues 
in the model, since the Sensors, Inc. transit bus data set contained only valid positive emission 
data. Usually, truncation is found when a random variable is not observable over its entire range. 
Truncation could not be treated as a missing data problem as the missing observations are ran­
dom. In statistics consideration or analysis can be limited to data that meet certain criteria or to 
a data distribution where values above or below a certain point have been eliminated (or cannot 
occur). A program was written in MATLAB® to check for the presence of zero emissions esti­
mates in the data set. There were 1.45% zero values for NOx emissions, 1.65% zero values for 
CO emissions and 3.84% zero values for HC emissions. Since negative emission values were 
not observable for the transit bus data set, further analysis will focus on truncated data sets with 
valid positive emission data only. 

The numerical summary statistics such as variable means and standard deviations for 
truncated emission data are presented in Table 6-2, and relatively simple graphics such as his­
tograms and boxplots describing variable distributions are presented from Figures 6-13 to 6-15. 
The mean of truncated NOx emission data increases 1.26%, while the mean of truncated CO 
emission data increases 1.23% and the mean of truncated HC emission data increases 0.99%, 
compared with the means of the original data set. 
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Table 6-2 Basic Summary Statistics for Truncated Emissions Rate Data 

NO x CO HC 

Min: 1.000000e-005 1.000000e-005 1.000000e-005
 1st Qu.: 2.256000e-002 3.190000e-003 4.700000e-004

 Mean: 1.067578e-001 3.236955e-002 1.496171e-003
 Median: 5.243500e-002 7.770000e-003 9.900000e-004
 3rd Qu.: 1.749625e-001 2.246000e-002 1.880000e-003

 Max: 2.427900e+000 3.057700e+000 6.679000e-002
 Total N: 1.059760e+005 1.057650e+005 1.034050e+005
   NA’s : 0.000000e+000 0.000000e+000 0.000000e+000 

Std Dev.: 1.163785e-001 8.539871e-002 1.973375e-003 

Figure 6-13 Histogram, Boxplot, and Probability Plot of Truncated NOx Emission Rate 
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Figure 6-14 Histogram, Boxplot, and Probability Plot of Truncated CO Emission Rate 

Figure 6-15 Histogram, Boxplot, and Probability Plot of Truncated HC Emission Rate 

These boxplots for truncated emission data show that there are some obvious outliers in 
the measured emissions of all three pollutants, and the histograms suggest a high degree of non-
normality, also indicated in the probability plots.  There is thus a need to transform the response 
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variable to correct for this condition. Transformations are used to present data on a different 
scale. In modeling and statistical applications, transformations are often used to improve the 
compatibility of the data with assumptions underlying a modeling process, to linearize the rela­
tion between two variables whose relationship is non-linear, or to modify the range of values of a 
variable (Washington et al. 2003). 

6.3.3 Transformation for Emissions Data 

Although evidence in the literature suggests that a logarithmic transformation is most 
suitable for modeling motor vehicle emissions (Washington 1994; Ramamurthy et al. 1998; 
Fomunung 2000; Frey et al. 2002), this transformation needs to be verified through the Box-Cox 
procedure. The Box-Cox function in MATLAB® can automatically identify a transformation 
from the family of power transformations on emission data, ranging from -1.0 to 1.0. The lamb­
das chosen by the Box-Cox procedure are 0.22875 for truncated NOx, -0.0648 for truncated CO, 
0.14631 for truncated HC. 

The Box-Cox procedure is only used to provide a guide for selecting a transformation, 
so overly precise results are not needed (Neter et al. 1996). It is often reasonable to use a nearby 
lambda value with the power transformation. The lambda values used for transformations are 
1/4 for truncated NOx, 0 for truncated CO, 0 for truncated HC. Histograms, boxplots and nor­
mal-normal plots describing transformed variable distributions are presented in Figures 6-16 to 
6-18, where a great improvement is noted. 
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Figure 6-16 Histogram, Boxplot, and Probability Plot of Truncated Transformed NOx Emission Rate 

Figure 6-17 Histogram, Boxplot, and Probability Plot of Truncated Transformed CO Emission Rate 
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Figure 6-18 Histogram, Boxplot, and Probability Plot of Truncated Transformed HC Emission Rate 

Although transformations can result in improvement of a specific modeling assumption 
such as linearity or normality, they can often result in the violation of others.  Thus, transforma­
tions must be used in an iterative fashion, with continued checking of other modeling assump­
tions as transformations are made. Dr. Washington suggested the comparisons should always 
be made on the original untransformed scale of Y when comparing statistical models and these 
comparisons extend to goodness of fit statistics and model validation exercises (Washington et al. 
2003). 

6.3.4 Identification of High Emitter 

From a modeling viewpoint, it is important to accurately predict the number of ‘high 
emitter’ vehicles in the fleet (older technology, poorly maintained, or tampered vehicles that emit 
significantly elevated emissions relative to the fleet average under all operating conditions) and 
the fraction of activities that yield high emissions for normal emitting vehicles. Historic practic­
es to identify ‘high emitters’ in a data set have relied on judgment to set cut points that are often 
indefensible from a statistical, and sometimes even practical, perspective. U.S. EPA uses five 
times the prevailing emission standards as the cut point across all pollutants (U.S. EPA 1993), 
while CARB has defined different emission regimes ranging from normal to super emitters and 
used different criteria for each regime (CARB 1991; Carlock 1994) (see Table 6-3) . 
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Emitter Status NO x 
CO HC 

Normal ≤ 1 standard < 1 standard < 1 standard 
Moderate 1 to 2 standard 1 to 2 standard 1 to 2 standard 
High 2 to 3 standard 2 to 6 standard 2 to 4 standard 
Very High 3 to 4 standard 6 to 10 standard 5 to 9 standard 
Super > 4 standard > 10 standard > 9 standard 

Table 6-3 CARB Emission Regime Definition (Carlock 1994) 

In contrast, the methodology employed in MEASURE database development at Georgia 
Tech is statistically based.  Wolf et al. used regression tree techniques to classify vehicles into 
classes that behave similarly, exhibit similar technology characteristics, and exhibit similar mean 
emission rates under standardized testing conditions (Wolf et al. 1998).  The cut points within 
each technology class are then defined on the basis of pre-selected percentiles of a normal distri­
bution of the emission rates for each pollutant. The analysis by Wolf et al. specified a cut point 
of 97.73 percent (that is, mean + 2 standard deviations), which implies that approximately 2.27 
percent of the vehicles in each technology class are high emitters. 

For this research, although inter-bus variability exists in the data set, these 15 buses 
should be treated as one technology class because they shared the same fuel injection type, cata­
lytic converter type, transmission type, and their model year and odometer reading were similar.  
Just as in Wolf’s approach, the emissions value located at two standard deviations above the 
mean of the normalized emissions distribution is used as a cutpoint to distinguish between nor­
mal and high emission points. Theoretically, this method will consistently identify approximate­
ly 2.27 percent of the data as high emission points. That means 97.73 percent of the population 
should fall into the normal status. Analysis results showed that 0.33 percent of NOx emission, 
3.76 percent of CO emission, and 1.37 percent of HC emissions were identified as high emission 
points. After assigning those high emissions points to different buses, the distribution is shown 
in Table 6-4. 
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NO x 
CO HC 

5.06% 
0.25% 
0.00% 
7.38% 
1.96% 
0.27% 
0.00% 
1.17% 
0.69% 
0.14% 
0.36% 
1.82% 
1.33% 
0.60% 
0.57% 
1.38% 

bus 360 0.02% 2.80% 
bus 361 0.32% 1.08% 
bus 363 0.06% 3.10% 
bus 364 0.04% 0.87% 
bus 372 0.00% 0.13% 
bus 375 0.69% 3.16% 
bus 377 0.00% 4.44% 
bus 379 0.67% 2.85% 
bus 380 0.52% 7.67% 
bus 381 0.10% 4.76% 
bus 382 1.14% 8.12% 
bus 383 0.88% 3.44% 
bus 384 0.50% 5.10% 
bus 385 0.55% 2.10% 
bus 386 0.20% 6.63% 
Total 0.36% 3.81% 

­

Table 6-4 Percent of High Emission Points by Bus 

For each individual bus, the highest proportion is 1.14 percent for bus 382 for NOx emis
sions, 8.12 percent for bus 380 for CO emissions, and 7.38 percent for bus 364 for HC emissions. 
No evidence from Table 6-4 suggests that there are some “high emitters” (older technology, 
poorly maintained, or tampered vehicles) in the data set. This conclusion makes sense since 
all buses were only 5 or 6 years old during the test. Another finding indicated that a small frac­
tion of a bus’s observed activity exhibited disproportionately high emissions.  Activities found 
in the literature include hard accelerations at low speeds, moderate acceleration at high speeds, 
or equivalent accelerations against gravity (Fomunung 2000). Given that high emissions points 
make up only 0.33 percent of the data set for NOx, 3.76 percent for CO, and 1.37 percent for HC, 
it is not necessary to develop two different models for normal emissions and high emissions.  
Based on this analysis, these 15 buses should be treated as one technology class since no high 
emitters were identified. 

6.4 Potential Explanatory Variables 

There are four main groups of parameters that affect vehicle emissions as indicated in 
the literature (Guensler 1993; Clark et al. 2002). These groups are: 1) vehicle characteristics, 
including vehicle type, make, model year, engine type, transmission type, frontal area, drag coef­
ficient, rolling resistance, vehicle maintenance history, etc.; 2) roadway characteristics, includ­
ing road grade and possibly pavement surface roughness, etc.; 3) on-road load parameters, like 
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on-road driving trace (sec-cy-sec) or speed/acceleration profile, vehicle payload, on-road operat­
ing modes, driver behavior, etc.; and 4) environmental conditions, including humidity, ambient 
temperature, and ambient pressure (Feng et al. 2005; Guensler et al. 2005). 

In general, emissions from HDDVs are more likely to be a function of brake-horsepower 
load on the engine (especially for NOx) than emissions from light-duty gasoline vehicles, because 
instantaneous emissions levels of diesel engines are highly correlated with the instantaneous 
work output of the engine (Ramamurthy et al. 1999; Feng et al. 2005). That is, in particular, the 
higher the engine load, the higher emissions for NOx. The emissions modeling framework (from 
which most of the items below are derived) is outlined in the Regional Applied Research Effort 
(RARE) report (Guensler et al. 2006). The goal of that modeling regime was to predict on-road 
load and then apply appropriate emission rates to the load. Most of the items outlined below are 
related to the amount of engine load that a vehicle will experience. Although each of the vari­
ables below is important, the values are not always available in on-road testing data (although in 
the future we need to make sure that these data are all collected). But, engine load in the AATA 
database could be used in emission rate model development for this research. Also, there are 
some factors, such as temperature and humidity, that may affect emission rates independent of 
load, or perhaps interacting with load. The model should incorporate such variables. 

6.4.1 Vehicle Characteristics 

Factors related to vehicle characteristics influencing heavy-duty diesel vehicle emissions 
which are summarized in the literature include vehicle class (i.e., weight, engine size, horsepow­
er rating), model year, vehicle mileage, emission control system (i.e., engine exhaust aftertreat­
ment system), transmission type, inspection and maintenance history, etc. (Guensler 1993; Clark 
et al. 2002). 

The effect of vehicle class on emissions is significant. Five main factors that cause a 
vehicle to demand engine power are vehicle speed, vehicle acceleration, drive train inertial ac­
celeration, vehicle weight, and road grade. As the required power and work performed by the 
vehicle increase, the amount of fuel burned to produce that power also increases, and the appli­
cable emission rates also generally increase. Thus, emissions vary as a function of vehicle class 
and vehicle configuration. The higher truck classes with larger engines are heavier and, thus, 
typically produce more emissions. Vehicle configurations with large frontal areas and high drag 
coefficients will yield higher emissions when operated at higher speeds and/or accelerated at 
higher rates. 
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The concept of vehicle technology groups is to identify and track subsets of vehicles that 
have similar on-road load responses and similar laboratory emission rate performance. The basic 
premise is that vehicles in the same heavy-duty vehicle class, employing similar drive train sys­
tems, and of the same size and shape have similar load relationships. There is also an important 
practical consideration in establishing vehicle technology groups. Researchers need to be able to 
identify these vehicles in the field during traffic counting exercises. 

The starting point for technology group criteria is a visual classification scheme. Yoon et 
al. (Yoon et al. 2004a) developed a new HDV visual classification scheme called the X-scheme 
based on the number of axles and gross vehicle weight ratings (GVWR) as a hybrid scheme 
between the FHWA truck and U.S. EPA HDV classification schemes. With fi eld-observed HDV 
volumes, emissions rates estimated using the X-scheme were 34.4% and 32.5% higher for NOx 

and PM, compared to using the standard U.S. EPA guidance (U.S. EPA 2004c).  The X-scheme 
reflects vehicle composition in the field more realistically than does the standard U.S. EPA guid­
ance (U.S. EPA 2004c), which shifted heavy-HDV volumes into light- or medium-HDV volumes 
21% more frequently than the X-scheme. Figure 6-19 shows X-scheme classes and their typical 
figures (Yoon et al. 2004a). 

Figure 6-19 The X Classes and Typical Vehicle Configurations 

Vehicle age and model year effects are accounted for because some vehicle models have 
much lower average emissions. Researchers from West Virginia University reported that most 
regulated emissions from engines produced by Detroit Diesel Corporation have declined over 
the years and the expected trend of decreasing emission levels with the model year of the engine 
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is clear and consistent for PM, HC, CO and NOx, starting with the 1990 models (Prucz et al. 
2001). Information on vehicle age can be obtained from a registration database using vehicle 
identification numbers and truck manufacturer records. The registration database can be sorted 
by calendar year and show vehicles registered in the given year by model year.  However, given 
the differences noted between field-observation fleet composition and registration data in the 
light-duty fleet (Granell et al. 2002), significant additional research efforts designed to model the 
on-road subfleet composition (classifications and model year distributions) are even more war­
ranted for HDVs. It is also important to keep in mind that heavy-duty engines accumulate miles 
of travel very rapidly and that engine rebuilding is a common practice. Hence, the age of the 
vehicle does not necessarily equal the age of the engine. Previous field work in Atlanta indicates 
that on-road surveys provide better information on fleet composition (Ahanotu 1999). To refine 
the model, appropriate data sets that include detailed information on engine type, transmission 
type, etc. will be needed to appropriately subdivide the observed on-road groups and continue to 
develop respective emission rates. The data collection challenge in this area is daunting, but it is 
worthwhile to perform once to provide a library of information that can be used in a large num­
ber of modeling applications. 

Vehicle weight is critical to the demand engine power that must be supplied to produce 
the tractive force needed to overcome inertial and drag forces and then influence vehicle emis­
sions. NOx emissions increase as the vehicle weight increases and this relationship does not vary 
much from vehicle to vehicle (Gajendran and Clark 2003). The effects of vehicle age, engine 
horsepower ratings, transmission type, and engine exhaust aftertreatment were also investigated 
in other literature (Clark et al. 2002; Feng et al. 2005). 

The vast majority of heavy-duty vehicles are normal emitters, but a small percentage of 
vehicles are high-emitters under every operating condition, typically because they have been 
tampered with or they are malfunctioning (i.e., defective or mal-maintained engine sensors or 
actuators). As the vehicle ages, general engine wear and tear will increase emission rates mod­
erately due to normal degradation of emission controls of properly functioning vehicles. On the 
other hand, as vehicles age, the probability increases that some of the vehicles will malfunction 
and produce significantly higher emissions (i.e., become high-emitters). Probability functions 
that classify vehicles within specific model years (and later, within specifi c statistically-derived 
vehicle technology groups) are currently being developed through the assessment of certification 
testing and various roadside emissions tests. Obtaining additional detailed sources of data for 
developing failure models appears to be warranted. 

After engine horsepower at the output shaft has been reduced by power losses associ­
ated with fluid pressures, operation of air conditioning, and other accessory loads, there is still an 
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additional and significant drop in available power from the engine before reaching the wheels. 
Power is required to overcome mechanical friction within the transmission and differential, inter­
nal working resistance in hydraulic couplings and friction of the vehicle weight on axle bearings. 
The combined effect of these components is parameterized as drive train efficiency.  However, 
the more difficult and more significant component of power loss in the drive train is associated 
with the inertial resistance of drive train components rotational acceleration (Gillespie 1992). 

A heavy-duty truck drive train is significantly more massive than its light-duty counter­
part. The net effect of drive train inertial losses when operating in higher gears on the freeway 
may not be significant enough to be included in the model (relative to the other load-related com­
ponents in the model for these heavy vehicles). However, recent studies appear to indicate very 
high truck emission rates (gram/second) in “creep mode” stop and start driving activities noted 
in ports and rail yards. Thus, high inertial loads for low gear, low speed, and acceleration opera­
tions may contribute significantly to emissions from mobile sources in freight transfer yards and 
therefore should not be ignored (Guensler et al. 2006). 

The inertial losses are a function of a wide variety of physical drive train characteristics 
(transmission and differential types, component mass, etc.) and on-road operating conditions.  To 
refine the use of inertial losses in the modal model, new drive train testing data will be designed 
to evaluate the inertial losses for various engine, drive shaft, differential, axle, and wheel com­
binations and to establish generalized drive train technology classes. Then, gear selection prob­
ability matrices for each drive train technology class and gear and final drive ratio data can be 
provided in lookup tables for model implementation, in place of the inertial assumptions current­
ly employed. However, data are currently significantly lacking for development of such lookup 
tables. 

6.4.2 Roadway Characteristics 

The three basic geometric elements of a roadway are the horizontal alignment, the cross-
slope or amount of super-elevation and the longitudinal profile or grade. Among them, road 
grade has been shown to have significant impact on engine load and vehicle emissions (Guensler 
1993). Other roadway characteristics, such as lane width, are also noted to have a significant 
impact on the speed-acceleration profiles of heavy-duty vehicles and can therefore affect engine 
load (Grant et al. 1996). 
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6.4.3 Onroad Load Parameters 

Onroad load parameters include on-road driving trace (second-by-second) or speed/ac­
celeration profile, engine load, on-road operating modes (i.e., idling, motoring, acceleration, 
deceleration, and cruise), driver behavior, and so on.  Vehicle speed and acceleration are integral 
components for the estimation of vehicle road load, and therefore engine load. Previous studies 
indicated that increased engine power requirements could result in the increase in NOx emissions 
(Ramamurthy and Clark 1999; Feng et al. 2005). Clark et al. reported that the vehicle applica­
tions and duty cycles can have an effect on the emission produced (Clark et al. 2002).  This study 
found that over a typical day of use for any vehicle, one that stops and then accelerates more 
often might produce higher distance-specific emissions, providing all else is held constant. 

Passenger and freight payloads together with the vehicle tare weight contribute to the 
demand for power that must be supplied to produce the tractive force needed to overcome inertial 
and drag forces. Passenger loading functions for transit operations can be obtained through anal­
ysis of fare data or on-board passenger count programs. On the heavy-duty truck side, on-road 
freight weight distributions by vehicle class can be derived from roadside weigh station studies. 
Ahanotu conducted detailed weigh-in-motion studies in Atlanta and found that reasonable load 
distributions by truck class and time of day could be applied in such a modal modeling approach 
(Ahanotu 1999). Although additional field studies are warranted to examine the validity of the 
Atlanta results over time and the transferability of findings in Atlanta to other metropolitan areas 
(especially considering the potential variability in commodity transport, such as agricultural 
goods, that may occur in other areas), the modeling methodology seems appropriate. 

6.4.4 Environmental Conditions 

Environmental conditions under which the vehicle is operated include humidity, ambient 
temperature, and ambient pressure. U.S. EPA is currently conducting studies to find the effect of 
ambient conditions on HDDV emissions (NRC 2000).  The current MOBILE6.2 model includes 
correction factors to account for the impact of environmental conditions on vehicle emission 
rates. Given the lack of compelling additional data available for analysis, it may be necessary 
to ignore the effects of these environmental parameters (altitude, temperature, and humidity) or 
simply incorporate the existing MOBILE6.2 correction factors. Preliminary analyses of the data 
and methods used to derive the MOBILE6.2 environmental correction factors indicate that the 
embedded equations in MOBIL6.2 probably need to be revisited. 
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6.4.5 Summary 

It is impossible for modeler to include all explanatory variables identified in the literature 
review for model development because the explanatory variables available for model develop­
ment and model validation are only a subset of potential explanatory variables identified above. 
Therefore, the conceptual model will only include available variables and derived variables in 
the data set provided. 

6.5 Selection of Explanatory Variables 

As mentioned earlier, available explanatory variables for transit buses are only a subset of 
potential explanatory variables identified. In brief, available explanatory variables can be sum­
marized as: 

• 	 Test information : date, time; 

• 	 Vehicle characteristics : license number; model year, odometer reading, engine size, 
instrument confi guration number; 

• 	 Roadway characteristics: road grade (%); 

• 	 Onroad load parameters : engine power (bhp), vehicle speed (mph), acceleration 
(mph/s); 

• 	 Engine operating parameters: throttle position (0 – 100%), engine oil temperature 
(deg F), engine oil pressure (kPa), engine warning lamp (Binary), engine coolant tem­
perature (deg F), barometric pressure reported from ECM (kPa); 

• 	 Environmental conditions : ambient temperature (deg C), ambient pressure (mbar), 
ambient relative humidity (%), ambient absolute humidity (grains/lb air). 

The most important question related to engine power is how to simulate engine power in 
the real world for application purposes. Georgia Institute of Technology researchers developed 
a transit bus engine power demand simulator (TB-EPDS), which estimates transit bus power 
demand for given speed, acceleration, and road grade conditions (Yoon et al. 2005a; Yoon et al. 
2005b). Speed-acceleration-road grade matrices were developed from speed and location data 
obtained using a Georgia Tech Trip Data Collector.  The researchers conclude that speed-accel­
eration-road grade matrices at the link level or the route level are both acceptable for regional 
inventory development. However, for micro-scale air quality impact analysis, link-based ma­
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trices should be employed (Yoon et al. 2005a).  Although significant uncertainties still exist for 
inertial loss which is significant at low speeds and motoring mode with negative engine power, 
this research showed that using engine power as load data is possible for application purposes. 
Thus we concluded that engine power could be used as load data in estimated emission models. 

The relationships between explanatory variables were investigated using S-Plus®. Three 
variables were excluded because they have only a single value for all records, and they are en­
gine size, instrument configuration number and engine warning lamp. There are 14 explanatory 
variables included in correlation analysis. The correlation matrix is shown in Table 6-5. 

Table 6-5 Correlation Matrix for Transit Bus Data Set 
*** Correlations for data in: transitbus.data *** 

model.year odometer temperature baro 
model.year 1.0000000000 -0.655273106 0.047048515 0.394378106 
odometer -0.655273106 1.0000000000 0.186771499 -0.704310642 
temperature 0.047048515 0.186771499 1.0000000000 -0.326938545 
baro 0.394378106 -0.704310642 -0.326938545 1.0000000000 
SCB.RH 0.068411842 0.343814465 0.488214011 -0.632480147 
humid 0.030997734 0.39026148 0.751260451 -0.649522446 
grade -0.004241021 0.00052737 -0.005590441 0.002384338 
vehicle.speed -0.014916204 -0.062908098 -0.225478003 0.054918347 
throttle.position -0.00186824 0.009346571 -0.09113266 -0.014470281 
oil.temperature 0.051759069 -0.011881827 0.042676227 -0.026744091 
oil.pressure 0.050521339 -0.098442472 -0.073256993 0.034212231 
coolant.temperature 0.206727241 -0.117710067 0.077114798 0.045844706 
eng.bar.press 0.137781076 -0.248876183 -0.260525088 0.371021489 
engine.power -0.006066455 0.021283229 -0.059512654 -0.035718725 

SCB.RH humid grade vehicle.speed

model.year 0.0684118427  0.030997734 -0.004241021 -0.014916204


odometer 0.3438144652  0.390261480 0.00052737 -0.062908098


temperature 0.4882140119  0.751260451 -0.005590441 -0.225478003


baro -0.6324801472  -0.649522446 0.002384338 0.054918347


SCB.RH 1.0000000000  0.931879078 -0.006075112 -0.034502697


humid 0.9318790788  1.000000000 -0.006411009 -0.117870984


grade -0.0060751123  -0.006411009 1.0000000000 0.000896568


vehicle.speed -0.0345026977  -0.117870984 0.000896568 1.0000000000


throttle.position 0.0134235743  -0.024720165 0.020186507 0.387705398


oil.temperature 0.096018579  0.087317807 -0.007116669 0.018641433


oil.pressure -0.0498528376  -0.077649741 0.009836954 0.567493814
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coolant.temperature 0.2005559889  0.171558840 -0.014531524 0.072998199


eng.bar.press -0.3663829274  -0.373540032 0.002132063 0.143270319


engine.power 0.0257436423 -0.003279122 0.021662091 0.303209657


acc 0.0000403711 0.003340728 0.012930076 0.000224126


throttle.position oil.temperature oil.pressure

model.year -0.001868240 0.051759069 0.050521339


odometer 0.009346571 -0.011881827 -0.098442472


temperature -0.091132660 0.042676227 -0.073256993


baro -0.014470281 -0.026744091 0.034212231


SCB.RH 0.013423574 0.096018570 -0.049852837


humid -0.024720165 0.087317807 -0.077649741


grade 0.020186507 -0.007116669 0.009836954


vehicle.speed 0.387705398 0.018641433 0.567493814


throttle.position 1.000000000 0.012077329 0.681336402


oil.temperature 0.012077329 1.000000000 -0.117896787


oil.pressure 0.681336402 -0.117896787 1.000000000


coolant.temperature 0.059605193 0.335667341 -0.298083257


eng.bar.press 0.102861968 0.059886972 0.022549030


engine.power 0.959310116 0.007171781 0.656609695


acc 0.660747116 -0.004185245 0.465493435


coolant.temperature eng.bar.press engine.power

model.year 0.206727200 41  0.137781076 -0.006066455


odometer -0.117710000 67 -0.248876183 0.021283229


temperature 0.077114700 98 -0.260525088 -0.059512654


baro 0.045844700 06  0.371021489 -0.035718725


SCB.RH 0.200555900 88 -0.366382927 0.025743642


humid 0.171558800 40 -0.373540032 -0.003279122


grade -0.014531500 24  0.002132063 0.021662091


vehicle.speed 0.072998100 99  0.143270319 0.303209657


throttle.position 0.059605100 93  0.102861968 0.959310116


oil.temperature 0.335667300 41  0.059886972 0.007171781


oil.pressure -0.298083200 57  0.022549030 0.656609695


coolant.temperature 1.000000000 00  0.284506753 0.050584845


eng.bar.press 0.284506700 53  1.000000000 0.089702976


engine.power 0.050584800 45  0.089702976 1.000000000


All variable pairs with correlation coefficients greater than 0.5 were scrutinized and 
subjected to further analysis, which invariably helped in paring down the number of variables. 
The values in the correlation matrix show that throttle position and engine power, ambient rela­
tive humidity and ambient absolute humidity are highly correlated (higher than 0.90). Model 
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year and odometer, odometer and barometric pressure, barometric pressure and ambient relative 
humidity, barometric pressure and ambient absolute humidity, ambient absolute humidity and 
temperature, oil pressure and throttle position, oil pressure and vehicle speed, oil pressure and 
engine power, throttle position and acceleration, engine power and acceleration are moderately 
correlated (higher than 0.50). Other pairs of variables, however, have only slight correlations. 

The relationship between throttle position and engine power is shown in Figure 6-20. 
Since engine power is derived from percent engine load, engine torque, and engine speed, and 
previous studies indicated that increased engine power requirements could result in the increase 
in NOx emissions (Ramamurthy and Clark 1999; Feng et al. 2005), the author retained engine 
power in the database. 

Figure 6-20 Throttle Position vs. Engine Power for Transit Bus Data Set 

Ambient relative humidity and ambient absolute humidity provide the same informa­
tion in two different ways, and either is enough to consider the influence of ambient humidity on 
emissions. The author retained ambient relative humidity in the database. 
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Three other findings related to the correlation matrix are: 

1. 	 All environmental characteristics, like temperature, humidity, and barometric pres­
sure, are moderately correlated with each other (Figure 6-21), which indicates mod­
elers should consider such relationships when developing environmental factors. 

2. 	 Engine power is correlated with not only on-road load parameters such as vehicle 
speed, acceleration, and road grade, but also engine operating parameters such as 
throttle position and engine oil pressure. Engine power in this data set is derived 
from measured engine speed, engine torque and percent engine load. On the other 
hand, engine power could be derived theoretically from vehicle speed, accelera­
tion and road grade using an engine power demand equation. So, engine power 
can connect on-road modal activity with engine operating conditions at this level. 
This fact strengthens the importance of introducing engine power into a conceptual 
emissions model and to improve the ability to simulate engine power for regional 
inventory development. 

3. 	 Engine operating parameters, like throttle position (0 – 100%), engine oil pres­
sure (kPa), engine oil temperature (deg F), engine coolant temperature (deg F), and 
barometric pressure reported from ECM (kPa), are highly or moderately related 
to on-road operating parameters. For example, engine power and throttle position 
are highly correlated, while oil pressure and vehicle speed, oil pressure and en­
gine power, throttle position and acceleration are moderately correlated.  Although 
engine operating parameters may have power to explain the variability of emis­
sion data, it is difficult to obtain such data in the real world for modeling purposes. 
These four variables are retained for further analysis of their relationships with 
emissions. Although these four variables will be excluded from the emission model 
at this time, analysis of these potential relationships may indicate a need for further 
research in this area. 
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Figure 6-21 Scatter plots for environmental parameters 
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CHAPTER 7 

7. MODAL ACTIVITY DEFINITIONS DEVELOPMENT 

7.1 Overview of Current Modal Activity Definitions 

Current research suggests that vehicle emission rates are highly correlated with modal 
vehicle activity.  Modal activity is a vehicle activity characterized by cruise, idle, acceleration 
or deceleration operation. Consequently, a modal approach to transportation-related air quality 
modeling is becoming widely accepted as more accurate in making realistic estimates of mobile 
source contribution to local and regional air quality.  Research at Georgia Tech has clearly identi­
fied that modal operation is a better indicator of emission rates than average speed (Bachman 
1998). The analysis of emissions with respect to driving modes, also referred to as modal emis­
sions, has been done in several recent researches (Barth et al. 1996; Bachman 1998; Fomunung 
et al. 1999; Frey et al. 2002; Nam 2003; Barth et al. 2004). These studies indicated that driv­
ing modes might have the ability to explain a significant portion of variability of emission data. 
Usually, driving can be divided into four modes: acceleration, deceleration, cruise, and idle.  But 
driving mode definitions in literature were somewhat arbitrary.  To define the driving modes or 
choose more reasonable definitions for the proposed modal emissions model, current driving 
mode definitions used in different modal emission models need to be investigated first. 

MEASURE’s Definitions 

Researchers at Georgia Tech developed the MEASURE model in 1998 (Guensler et al. 
1998). This model was developed from more than 13,000 laboratory tests conducted by the 
EPA and CARB using standardized test cycle conditions and alternative cycles (Bachman 1998). 
Modal activities variables were introduced into the MEASURE model as follows: acceleration 
(mph/sec), deceleration (mph/sec), cruise (mph) and percent in idle time. In addition, two surro­
gate variables were also developed, inertial power surrogate (IPS) (mph2/s), which was defined 
as acceleration times velocity and drag power surrogate (DPS) (mph3/s), which was defi ned as 
acceleration times velocity squared. Within each mode, several ‘cut points’, or threshold values, 
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were specified and used to create several categories. In total, six threshold values were defined 
for acceleration, three for deceleration, five for cruise modes, seven for IPS, and seven for DPS. 
Modal activity surrogate variables were added as percent of cycle time spend in specifi ed operat­
ing conditions (Fomunung et al. 1999). 

NCSU’s Definitions 

Dr. Frey at NCSU defined four modes of operation (idle, acceleration, deceleration, and 
cruise), for U.S. EPA’s MOVES’ model in 2001 (Frey and Zheng 2001; Frey et al. 2002).  The 
following description is directly cited from his report (Frey et al. 2002).

 Idle is defined as based upon zero speed and zero acceleration. The 
acceleration mode includes several considerations. First, the vehicle must be 
moving and increasing in speed. Therefore, speed must be greater than zero and 
the acceleration must be greater than zero. However, vehicle speed can vary 
slightly during events that would typically be judged as cruising. Therefore, 
in most instances, the acceleration mode is based upon a minimum accelera­
tion of 2 mph/sec. However, in some cases, a vehicle may accelerate slowly.  
Therefore, if the vehicle has had a sustained acceleration rate averaging at least 
1 mph/sec for at least three seconds or more, that is also considered accelera­
tion. Deceleration is defined in a similar manner as acceleration, except that the 
criteria for deceleration are based upon negative acceleration rates. All other 
events not classified as idle, acceleration, or deceleration, are classified as cruis­
ing. Thus, cruising is approximately steady speed driving but some drifting of 
speed is allowed. 

Physical Emission Rate Estimator’s (PERE’s) Definitions 

Dr. Nam developed his definitions when he introduced his Physical Emission Rate Esti­
mator (PERE) model in 2003 (Nam 2003). Idle is defined as speed less than 2 mph. Accelera­
tion mode is based on acceleration rate greater than 1 mph/sec. However, deceleration is based 
on deceleration rate less than -0.2 mph/sec. Other events are classified as cruise mode and the 
acceleration range is between -0.2 mph/sec and 1 mph/sec. Nam also mentioned in his report 
that the definition of cruise (based only on acceleration) will change depending on the speed in 
future studies. 
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Summary 

Current driving mode definitions related to modal emission models are all significantly 
different from each other.  NCSU used one absolute critical value, 2 mph/sec, for acceleration 
and deceleration mode. However, PERE chose two different critical values, 1 mph/sec and -0.2 
mph/sec, for acceleration and deceleration mode individually.  The critical values, 2 mph/sec, 1 
mph/sec, or 0.2 mph/sec, were chosen somewhat arbitrarily.  MEASURE used several thresh­
old values to add modal activity surrogate variables. Table 7-1 summarizes these modal activity 
definitions. 

Table 7-1 Comparison of Modal Activity Definition 

MEASURE NCSU PERE 

Idle Speed=0, Acc=0 Speed=0, Acc=0 Speed<2 

Acceleration Acc>6,Acc>5,Acc>4, 
Acc>3,Acc>2,Acc>1 

Acc>2 or Acc>1 for 
three seconds Acc>1 

Deceleration Acc<-3,Acc<-2, Acc<-1 Acc<-2 or Acc<-1 for 
three seconds Acc<-0.2 

Speed>70, Speed>60, 
Cruise Speed>50, Speed>40, Other events -0.2<Acc<1 

Speed>30 
Note: Unit for speed is mph, unit for acceleration is mph/sec. 

7.2 Proposed Modal Activity Defi nitions and Validation 

Although the current mode definitions could all explain some variability in different 
emission data sets (Barth et al. 1996; Bachman 1998; Fomunung et al. 1999; Frey et al. 2002; 
Nam 2003; Barth et al. 2004), they differ significantly from each other.  Determining whether to 
accept current definitions or develop new definitions is therefore a challenge. 

MEASURE’s definitions were developed based on cycle test data and modal activity 
surrogate variables were added as percent of cycle time spent in specified operating conditions. 
Obviously, this definition is not suitable for second-by-second data. PERE’s definition could not 
assign all data into appropriate modes. Idle mode was defined as zero speed and zero accelera­
tion in NCSU’s definitions. Although idle mode is defined theoretically as zero speed and zero 
acceleration, idle mode could not be defined in this manner without considering unavoidable 
measurement error and measurement noise. Based on this analysis, it seems more reasonable to 
develop new definitions for this proposed modal emission model, where such definitions can be 
derived through empirical analysis of the data. In fact, the definition of modal activity is depen­
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dant on the available speed/acceleration data and data quality.  For example, a lack of zero speed 
records does not mean that there is no idle activity in the data set. 

The initial proposed modal activity definitions were defined as follows: 

• 	 Idle is defined as based on speeds less than 2.5 mph and absolute acceleration less 
than 0.5 mph/sec. 

• 	 Acceleration mode is based upon a minimum acceleration of 0.5 mph/sec. 

• 	 Deceleration is defined in a manner similar to acceleration, except that the criteria for 
deceleration are based upon negative acceleration rates. 

• 	 All other events not classified as idle, acceleration, or deceleration, are classifi ed as 
cruise. 

At the same time, several different critical values were chosen to examine the reasonable­
ness of the proposed criteria. Four different mode definitions using different critical values are 
shown in Table 7-2. 

Table 7-2 Four Different Mode Definitions and Modal Variables 
Idle Acceleration Deceleration Cruise 

Defi nition 1 Speed ≤ 2.5 & abs(acc) ≤ 0.5 Acc > 0.5 Acc < -0.5 Other 
Defi nition 2 Speed ≤ 2.5 & abs(acc) ≤ 1 Acc > 1 Acc < -1 Other 
Defi nition 3 Speed ≤ 2.5 & abs(acc) ≤ 1.5 Acc > 1.5 Acc < -1.5 Other 
Defi nition 4 Speed ≤ 2.5 & abs(acc) ≤ 2 Acc > 2 Acc < -2 Other 

Note: Unit for speed is mph, unit for acceleration is mph/sec. 

­A program was written in MATLAB™ to determine the driving mode for second-by
second data and estimate the average value of emissions for each of the driving modes. At the 
same time, average modal emission rates were estimated for each mode based on different modal 
activity definitions in Table 7-2.  Figures 7-1 to 7-3 present a comparison of average modal emis­
sion rates for different pollutants (NOx, CO, and HC). 
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Figure 7-1 Average NOx Modal Emission Rates for Different Activity Definitions 

Figure 7-2 Average CO Modal Emission Rates for Different Activity Definitions 
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Figure 7-3 Average HC Modal Emission Rates for Different Activity Definitions 

These four different modal activity definitions show a kind of consistent pattern. The 
average emissions during the acceleration mode are significantly higher than any other driving 
mode for all of the pollutants. The average emission rate during deceleration mode is the lowest 
of the four modes for NOx and CO emissions while the average emission rate during idle mode is 
the lowest of the four modes for HC emissions. The average cruising emission rate is typically 
higher than the average idling and decelerating emission rate, except for CO emission in defini­
tions 3 and 4. 

To assess whether the average modal emission rates are statistically signifi cantly different 
from each other, two-sample tests were estimated for each pair.  Lilliefors tests for goodness of 
fit to a normal distribution were first used for each mode based on different modal activity defini­
tions. The results show that all of them reject the null hypothesis of normal distribution at 5% 
level. A Kolmogorov-Simirnov two-sample test was chosen to take place of the t-test because 
the assumption of normal distribution was questionable. The Kolmogorov-Smirnov two-sample 
test is a test of the null hypothesis that two independent samples have been drawn from the same 
population (or from populations with the same distribution). The test uses the maximal differ­
ence between cumulative frequency distributions of two samples as the test statistic. Results of 
the Kolmogorov-Smirnov two-sample tests are presented in Table 7-3 in terms of p-values where 
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Idle-Acc Idle-Dec Idle-Cruise Acc-Dec Acc-Cruise Dec-Cruise 

D
efi

 n
ito

n1 NO x 
0 0 0 0 0 0 

CO 0 0 0 0 0 0 

HC 0 0 0 0 0 0 

D
efi

 n
ito

n2

NO x 
0 0 0 0 0 0 

CO 0 0 0 0 0 0 

HC 0 0 0 0 0 0 

D
efi

 n
ito

n3 NO x 
0 0 0 0 0 0 

CO 0 0 0 0 0 0 

HC 0 0 0 0 0 0 

D
efi

 n
ito

n4 NO x 
0 0 0 0 0 0 

CO 0 0 0 0 0 0 
HC 0 0 0 0 0 0 

“Acc” represents acceleration mode while “Dec” represents deceleration mode. The cases where 
the p-value is less than 0.05 indicate that the distributions are different at the 5% level.  All p-
values for 72 possible pairwise comparisons are lower than 0.05, indicating that the distributions 
for these pairs are statistically different from each other. 

Table 7-3 Results for Pairwise Comparison for Modal Average Estimates In Terms of P-value  

The modal emission analysis results suggest that all four mode definitions proposed in 
Table 7-2 appear reasonable.  These modal definitions allow some explanation of differences in 
emissions based upon driving mode, as revealed by the fact that the modal emission distributions 
differ from each other.  A further step is taken here to see which mode definition would be identi­
fied as the most appropriate definition by utilizing HTBR technique. For each defi nition, three 
dummy variables are added to represent idle, acceleration, and deceleration mode. The regres­
sion trees are developed between emission data and these three dummy variables for each defini­
tion are shown in Figures 7-4 to 7-6. The sensitivity test results based on these regression trees 
for NOx, CO, and HC are summarized in Table 7-4. 
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Figure 7-4 HTBR Regression Tree Result for NOx Emission Rate 

Figure 7-5 HTBR Regression Tree Result for CO Emission Rate 
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Figure 7-6 HTBR Regression Tree Result for HC Emission Rate 

Table 7-4 Sensitivity Test Results for Four Mode Definition 
NO x 

Mode Number Deviance Mean ER Residual Mean Deviance 
105976 1435.00 0.10680 

Definition 1 0.006967 = 738.3 / 106000 
Idle 29541 11.04 0.03235

 Acceleration 25931 320.90 0.22480
 Deceleration 22242 41.32 0.02671
 Cruise 28262 365.10 0.13930 
Definition 2 0.007658 = 811.5/106000
 Idle 31064 16.05 0.03342
 Acceleration 18894 206.50 0.23110
 Deceleration 16644 21.14 0.02214
 Cruise 39374 567.80 0.14070 
Definition 3 0.00856 = 907.1 / 106000 

Idle 32010 23.07 0.03470
 Acceleration 13417 130.50 0.2297
 Deceleration 12768 14.27 0.02065
 Cruise 47781 739.30 0.14350 
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NO x 
Mode Number Deviance Mean ER Residual Mean Deviance 

Definition 4 0.009397 = 995.8 / 106000 
Idle 32717 30.240 0.03583

 Acceleration 8719 77.150 0.22600
 Deceleration 9452 9.191 0.02015
 Cruise 55088 879.200 0.14490 
CO 

105765 771.300 0.032370 
Definition 1 0.005795 = 612.9 / 105800 

Idle 29287 2.166 0.005590
 Acceleration 25866 559.400 0.099740
 Deceleration 22456 3.903 0.006564
 Cruise 28156 47.380 0.018910 
Definition 2 0.005486283 = 580.2 / 105800
 Idle 30764 4.185 0.005944
 Acceleration 18864 484.900 0.122400
 Deceleration 16919 2.410 0.005803
 Cruise 39218 88.710 0.021250 
Definition 3 0.005293 = 559.8 / 105800 

Idle 31691 9.131 0.006610
 Acceleration 13402 410.100 0.147600
 Deceleration 13035 1.861 0.005454
 Cruise 47637 138.700 0.024440 
Definition 4 0.005239 = 554 / 105800 

Idle 32375 15.5200 0.007365
 Acceleration 8712 339.1000 0.179700
 Deceleration 9681 0.7047 0.005049
 Cruise 54997 198.7000 0.028560 
HC 

103405 0.40270 0.0014960 
Definition 1 3.648e-006 = 0.3772 / 103400
 Idle 28780 0.09337 0.0009217
 Acceleration 25122 0.09143 0.0022310
 Deceleration 22287 0.07644 0.0012180
 Cruise 27216 0.11600 0.0016530 
Definition 2 3.629e-006 = 0.3752 / 103400
 Idle 30250 0.09492 0.0009176
 Acceleration 18330 0.06668 0.0023860
 Deceleration 16805 0.05355 0.0011790
 Cruise 38020 0.16010 0.0016680 
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NO x 
Mode Number Deviance Mean ER Residual Mean Deviance 

Definition 3 3.636e-006 = 0.376 / 103400
 Idle 31157 0.09651 0.0009258
 Acceleration 12999 0.04355 0.0025110
 Deceleration 12970 0.04256 0.0011600
 Cruise 46279 0.19330 0.0016890 
Definition 4 3.656e-006 = 0.378 / 103400 

Idle 31849 0.09835 0.0009364
 Acceleration 8443 0.02944 0.0026390
 Deceleration 9613 0.03257 0.0011470
 Cruise 53500 0.21760 0.0017120 

7.3 Conclusions 

Comparison of modal average estimates shows that the average modal emission rates are 
statistically different from each other for three different pollutants.  HTBR regression tree results 
demonstrate that all four definitions can work well to divide the database. Comparisons of re­
sidual mean deviance indicate that definition 1 has the smallest residual mean deviance for NO x 
(definition 4 for CO and definition 2 for HC). However, differences were small.  At this time, it 
is difficult to choose one definition for three pollutants based just on sensitivity analysis results 
in this chapter.  The analysis results in this section indicate that driving mode defi nition could 
not be transferred directly from one research study to another research study.  A better approach 
would be to test several different critical values and obtain the most suitable definition instead of 
testing only one definition developed from other research. For this research, more analysis will 
be performed in the chapters that follow to develop the most suitable driving mode definitions. 
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CHAPTER 8 

8. IDLE MODE DEVELOPMENT 

In Chapter 7, the concept of driving modes was introduced and several sensitivity tests 
(comparison of modal average estimates, comparison of HTBR regression tree results, and com­
parison of residual mean deviance) were performed for four different mode definitions. Based 
on sensitivity analysis results, it is difficult to choose one definition for three pollutants at this 
moment. More analysis will be performed next to develop the most suitable driving mode defini­
tion. This chapter will focus on developing the suitable definition for idle mode. 

Theoretically, idle mode is usually defined as zero speed and zero acceleration. In real 
world data collection efforts, this definition must be refined due to the presence of speed mea­
surement error.  In this research, idle mode will be defined by speed and acceleration. The criti­
cal value could not be deduced directly from previous research. It is better to test several critical 
values statistically and identify the most suitable idle definition. 

8.1 Critical Value for Speed in Idle Mode 

Three critical values were tested to get the appropriate critical value for speed in defin­
ing idle activity.  Figures 8-1 to 8-3 illustrate engine power vs. emission rates for three pollutants 
for three critical speed values: 1 mph, 2.5 mph, and 5 mph. Figure 8-4 compares engine power 
distributions for these three critical values. Because engine power distributions for three pollut­
ants exhibit similar patterns, only NOx emissions are shown in Figure 8-4. Tables 8-1 and 8-2 
provide the engine power distribution for these three critical values in two ways: by number and 
percentage. 
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Figure 8-1 Engine Power vs. NOx Emission Rate for Three Critical Values 

Figure 8-2 Engine Power vs. CO Emission Rate for Three Critical Values 
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Figure 8-3 Engine Power vs. HC Emission Rate for Three Critical Values 

Figure 8-4 Engine Power Distribution for Three Critical Values based on NOx Emissions 
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Speed Pollutant 
Engine Power (brake horsepower (bhp) 

[0 20) [20 30) [30 40) [40 50) ≥ 50 Total 
≤ 5 mph NO x 

31631 2272 1323 152 2348 37726 
CO 31258 2269 1316 149 2342 37334 
HC 30737 2264 1321 147 2284 36753 

≤ 2.5mph NO x 
29222 2098 1196 83 1143 33742 

CO 28880 2096 1189 81 1139 33385 
HC 28373 2093 1194 80 1106 32846 

≤ 1 mph NO x 
27516 2011 1100 51 700 31378 

CO 27217 2010 1093 51 699 31070 
HC 26713 2007 1099 48 680 30547 

Speed Pollutant 
Engine Power (brake horsepower (bhp) 

[0 20) [20 30) [30 40) [40 50) ≥ 50 Total 
≤ 5 mph NO x 

83.84% 6.02% 3.51% 0.40% 6.22% 100% 
CO 83.73% 6.08% 3.52% 0.40% 6.27% 100% 
HC 83.63% 6.16% 3.59% 0.40% 6.21% 100% 

≤ 2.5mph NO x 
86.60% 6.22% 3.54% 0.25% 3.39% 100% 

CO 86.51% 6.28% 3.56% 0.24% 3.41% 100% 
HC 86.38% 6.37% 3.64% 0.24% 3.37% 100% 

≤ 1 mph NO x 
87.69% 6.41% 3.51% 0.16% 2.23% 100% 

CO 87.60% 6.47% 3.52% 0.16% 2.25% 100% 
HC 87.45% 6.57% 3.60% 0.16% 2.23% 100% 

Table 8-1 Engine Power Distribution for Three Critical Values for Three Pollutants 

Table 8-2 Percentage of Engine Power Distribution for Three Critical Values for Three Pollutants 

Based on the analysis above, a critical value of 5 mph includes more data points with 
higher engine power (>50 bhp) than 2.5 mph and 1 mph. However, there is no large difference 
for engine power distributions between 2.5 mph and 1 mph. These two critical values for speed 
will be tested further with different acceleration values in the next section.  The results will be 
used to make a final decision with regards to deceleration mode. 

8.2 Critical Value for Acceleration in Idle Mode 

After setting the critical value for speed, the next step is to determine a critical value for 
acceleration. In total, four options were tested. 

• Option 1: speed ≤ 2.5 mph and absolute acceleration ≤ 2 mph/s 
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• Option 2: speed ≤ 2.5 mph and absolute acceleration ≤ 1 mph/s 

• Option 3: speed ≤ 1 mph and absolute acceleration ≤ 2 mph/s 

• Option 4: speed ≤ 1 mph and absolute acceleration ≤ 1 mph/s 

Using the same method as outlined in the previous section, Figures 8-5 to 8-7 illustrate 
engine power vs. emission rates for three pollutants for four options above. Figure 8-8 compares 
engine power distribution for data falling into these four options. Because engine power distri­
butions for three pollutants exhibit a similar pattern, only NOx emissions are shown in Figure 
8-8. Tables 8-3 and 8-4 provide the engine power distribution for four options in two ways: by 
number and percentage. 

Figure 8-5 Engine Power vs. NOx Emission Rate for Four Options 
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Figure 8-6 Engine Power vs. CO Emission Rate for Four Options 

Figure 8-7 Engine Power vs. HC Emission Rate for Four Options 
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Figure 8-8 Engine Power Distribution for Four Options based on NOx Emission Rates 

Table 8-3 Engine Power Distribution for Four Options for Three Pollutants 

Pollutants 
Engine Power (brake horsepower (bhp)) 

[0 20) [20 30) [30 40) [40 50) ≥ 50 Total 
Option 1 NO x 

28694 2075 1177 78 693 32717 
CO 28366 2073 1170 76 690 32375 
HC 27855 2070 1175 75 674 31849 

Option 2 NO x 
27571 2030 1120 53 290 31064 

CO 27284 2028 1114 51 287 30764 
HC 26771 2026 1119 51 283 30250 

Option 3 NO x 
27367 1999 1091 50 527 31034 

CO 27071 1998 1084 50 526 30729 
HC 26569 1995 1090 47 512 30213 

Option 4 NO x 
26719 1969 1057 34 205 29984 

CO 26446 1968 1051 34 204 29703 
HC 25944 1966 1056 32 198 29196 
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Pollutants 
Engine Power (brake horsepower (bhp) 

[0 20) [20 30) [30 40) [40 50) ≥ 50 Total 
Option 1 NO x 

87.70% 6.34% 3.60% 0.24% 2.12% 100.00% 
CO 87.62% 6.40% 3.61% 0.23% 2.13% 100.00% 
HC 87.46% 6.50% 3.69% 0.24% 2.12% 100.00% 

Option 2 NO x 
88.76% 6.53% 3.61% 0.17% 0.93% 100.00% 

CO 88.69% 6.59% 3.62% 0.17% 0.93% 100.00% 
HC 88.50% 6.70% 3.70% 0.17% 0.94% 100.00% 

Option 3 NO x 
88.18% 6.44% 3.52% 0.16% 1.70% 100.00% 

CO 88.10% 6.50% 3.53% 0.16% 1.71% 100.00% 
HC 87.94% 6.60% 3.61% 0.16% 1.69% 100.00% 

Option 4 NO x 
89.11% 6.57% 3.53% 0.11% 0.68% 100.00% 

CO 89.03% 6.63% 3.54% 0.11% 0.69% 100.00% 
HC 88.86% 6.73% 3.62% 0.11% 0.68% 100.00% 

Table 8-4 Percentage of Engine Power Distribution for Three Critical Values for Three Pollutants 

Based on the above analysis, data falling into option 2 and option 4 contain fewer data 
points with higher engine power (>50 bhp) than data falling into option 1 and option 3. But a 
large difference is not observerd in the engine power distribution for data falling into option 2 
and option 4. Based upon these results, the idle mode is defined as speed ≤ 2.5 mph and absolute 
acceleration ≤ 1 mph/s. 

8.3 Emission Rate Distribution by Bus in Idle Mode 

After defi ning “speed ≤ 2.5 mph and absolute acceleration ≤ 1 mph/s” as idle mode, emis­
sion rate histograms for each of the three pollutants for idle operations are presented in Figure 
8-9. Figure 8-9 shows significant skewness for all three pollutants for idle mode. Inter-bus 
response variability for idle mode operations is illustrated in Figures 8-10 to 8-12 using median 
and mean of NOx, CO, and HC emission rates. Table 8-5 presents the same information in tabu­
lar form. The difference between median and mean is also an indicator of skewness. 
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Figure 8-9 Histograms of Three Pollutants for Idle Mode 

Figure 8-10 Median and Mean of NOx Emission Rates in Idle Mode by Bus 
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Figure 8-11 Median and Mean of CO Emission Rates in Idle Mode by Bus 

Figure 8-12 Median and Mean of HC Emission Rates in Idle Mode by Bus 
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NO x 
CO HC 

Bus ID Median Mean Median Mean Median Mean 
Bus 360 0.071020 0.059444 0.004830 0.009145 0.00072 0.002441 
Bus 361 0.020455 0.020216 0.005740 0.008895 0.00063 0.000865 
Bus 363 0.022555 0.032140 0.000670 0.005408 0.00007 0.000385 
Bus 364 0.025050 0.026480 0.003110 0.003601 0.00071 0.000927 
Bus 372 0.055210 0.054766 0.013150 0.011739 0.00220 0.002272 
Bus 375 0.028880 0.035050 0.005390 0.013385 0.00076 0.001311 
Bus 377 0.023370 0.025393 0.000960 0.001572 0.00019 0.000219 
Bus 379 0.033210 0.038500 0.006730 0.011425 0.00085 0.001531 
Bus 380 0.026200 0.027371 0.000930 0.001218 0.00024 0.000298 
Bus 381 0.027115 0.028768 0.001915 0.004044 0.00020 0.000228 
Bus 382 0.027605 0.036734 0.002980 0.009836 0.00034 0.000624 
Bus 383 0.027790 0.027520 0.002290 0.002736 0.00065 0.000950 
Bus 384 0.024210 0.026982 0.001205 0.003428 0.00043 0.000498 
Bus 385 0.023750 0.024339 0.002590 0.005782 0.00043 0.000453 
Bus 386 0.032140 0.030031 0.004860 0.006155 0.00055 0.000579 

Table 8-5 Median, and Mean of Three Pollutants in Idle Mode by Bus 

Figures 8-10 to 8-12 and Table 8-5 illustrate that bus 372 has the largest median and 
the second largest mean for CO and HC emissions, and the second largest median and the sec­
ond largest mean for NOx emissions. The activity of bus 372 in terms of distribution of engine 
power by bus was compared to that of other buses in an effort to identify why the emission rates 
were significantly higher than for other buses. Table 8-6 and Figure 8-13 show that bus 372 has 
higher min (2nd), 1st quartile (2nd), median (1st), and 3rd quartile (2nd) engine power compared 
to the other 14 buses. Engine power in idle mode may include cooling fan, air compressor, air 
conditioner, and alternator loads (Clark et al. 2005).  Considering test buses and engines are simi­
lar in many ways, this difference might be caused by variability across the engines, or may be 
associated with unrecorded air conditioner use. In analyzing the database, the modeler could not 
identify a contribution of air conditioner to engine power in idle mode. So, model development 
will include these data but readers should be cautioned that the noted variability is an indication 
that significant numbers of vehicles may need to be tested in the future if such inter-engine dif­
ferences are significant in the fleet. In addition, the role of air conditioning usage on engine load 
in transit buses warrants additional future research. 
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Figure 8-13 Histograms of Engine Power in Idle Mode by Bus 
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Bus ID Min 1st Quartile Median 3rd Quartile Max 

Bus 360 3.92 15.36 18.7 19.83 135.43 
Bus 361 0 5.35 12.52 13.83 89.47 
Bus 363 0 13.1 13.34 15.16 152.94 
Bus 364 0 13.18 13.85 14.99 154.51 
Bus 372 0 26.44 31.84 33.10 79.08 
Bus 375 0 12.52 13.81 18.08 167.72 
Bus 377 0 8.5 9.17 9.85 166.86 
Bus 379 0 15.86 17.15 19.42 126.64 
Bus 380 2.67 7.85 8.49 9.17 100.99 
Bus 381 0 8.7 10.49 11.17 148.28 
Bus 382 0 7.35 8.52 13.89 99.04 
Bus 383 0 7.16 10.03 12.5 91.86 
Bus 384 0 6.01 7.34 8.51 117.39 
Bus 385 0 4.53 7.19 8.51 139.05 
Bus 386 4.68 9.18 13.33 14.46 105.44 

Table 8-6 Engine Power Distribution in Idle Mode by Bus 

8.4 Discussions 

8.4.1 High HC Emissions 

Figure 8-7 shows that there are some high HC emissions in idle mode. Based on defini­
tions of “speed ≤ 2.5 mph and absolute acceleration ≤ 1 mph/s”, 388/30250=1.28% of data points 
in idle mode for HC are high emissions. These high emissions were noted in the HC emissions 
data, not in NOx and CO. All high HC emissions have been coded as high-idle to determine if 
they are related to any other parameters. Tree analysis could be used for this screening analysis.  
After screening engine speed, engine power, engine oil temperature, engine oil pressure, engine 
coolant temperature, ECM pressure, and other parameters, no specific operating parameters re­
lated to these high-idle emissions were identified. 

On the other hand, regression tree analysis results by bus and trip are presented in Figure 
8-14. The left figure shows that these high HC emissions occurred in bus 360 and 372 while the 
right figure shows that these high HC emissions happened in bus 360 trip 4 and bus 372 trip 1. 
Even for HC emissions, Figure 8-14 shows that these high emissions are not a common situa­
tion in idle mode. There are 1529 idle segments in total for 15 buses, but most of these high HC 
emissions came just from three idle segments. These three idle segments are: bus 360 trip 4 idle 
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segment 1 (130 seconds), bus 360 trip 4 idle segment 38 (516 seconds) and bus 372 trip 1 idle 
segment 1 (500 seconds). More specifically, bus 360 trip 4 idle segment 1 contains 102 high HC 
emissions, bus 360 trip 4 idle segment 38 contains 264 high HC emissions, while bus 372 trip 1 
idle slots contain 13 high HC emissions. Figures 8-15 to 8-17 illustrate time series plots for HC 
for these three idle segments while vehicle speed, engine speed, engine power, engine oil tem­
perature, engine oil pressure, engine coolant temperature and ECM pressure are presented, too. 
These figures do not include NOx and CO because NOx and CO do not show such patterns as 
these three idle segments for HC. These three idle segments contain 379 high HC emissions in 
total. Thus about 98% of high emissions came from three idle segments only.  Exclusion of these 
three idle segments based on all current information is difficult. The modeler prefers to keep 
these data since these outliers might reflect variability in the real world. However, future data 
collection efforts should seek to identify the causes of such events. 

Figure 8-14 Tree Analysis Results for High HC Emission Rates by Bus and Trip 

Figure 8-15 Time Series Plot for Bus 360 Trip 4 Idle Segment 1 (130 Seconds) 
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Figure 8-16 Time Series Plot for Bus 360 Trip 4 Idle Segment 38 (516 Seconds) 

Figure 8-17 Time Series Plot for Bus 372 Trip 1 Idle Segment 1 (500 Seconds) 

8.4.2 High Engine Operating Parameters 

Figure 8-15 shows that engine speed once jumped to about 2000 rpm during bus 360 trip 
4 idle segment 1, while corresponding engine power and engine oil pressure jumped, too. This 
jump lasted only 9 seconds. There are several reasons which might be responsible for this jump. 
Possibly bus 360 moved slowly from one location to another location while the GPS failed to 
detect the movement. Other explanations might be that the engine experienced a computer or 
sensor problem. This kind of jump, higher engine speeds (about 2000 rpm) accompanied by 
higher engine power and engine oil pressure in idle mode, did occur in the real world. The jump 
shown in Figure 8-16 was not such an occurrence since engine speed was only about 1000 rpm 
during that jump. After screening the whole dataset, another example of a jump is shown in Fig­
ure 8-18. The jump in bus 383 trip 1 idle segment 12 lasts 28 seconds. Since there are only two 
observations of such jumps in the whole database, there are not enough data to assess whether 
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they co nstitute a new mode. These observations might indicate that one should pay attention 
to slow movement during an idle segment. Since these two idle segments show some unusual 
activities, the modeler will retain them to avoid any bias in the results. 

Figure 8-18 Time Series Plot for Bus 383 Trip 1 Idle Segment 12 (1258 Seconds) 

8.5 Idle Emission Rates Estimation 

Based on definition of “speed ≤ 2.5 mph and absolute acceleration ≤ 1 mph/s”, about 30% 
of available data are classified as idle mode. Usually, modelers estimate the idle emission rate 
by averaging all emission rates in idle mode. Although there are some data points with higher 
engine power (> 50 bhp) in idle mode, about 90% of data in idle mode exhibit engine power be­
tween 0 and 20 bhp. After detailed analysis of all idle segments using time series plots, although 
some data may be incorrectly classified as the idle mode, no anomalies were noted. To avoid in­
troducing any significant bias, a single idle emission rate is developed for each pollutant. When 
we treat all data as a whole and put them in the pool, the mean and confidence interval can reflect 
the distribution of emission rates in real world. Table 8-7 provides idle mode statistical analysis 
results for NOx, CO, and HC. 
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Table 8-7 Idle Mode Statistical Analysis Results for NOx, CO, and HC 

NO x 
CO HC 

minimum 0.00121 0.00002 0.00001 
1st Quartile 0.02201 0.00120 0.00026 
mean 0.03342 0.00594 0.00092 
median 0.02670 0.00293 0.00051 
3rd Quartile 0.03549 0.00554 0.00079 
maximum 0.40259 0.48118 0.05232 
skewness 4.45050 13.1840 11.6100 
Total Number 31064 30764 30250 

Due to the non-normality of emission rates, the median value (the value that divides 
observations into an upper and lower half) and the inter-quartile range (the range of values that 
includes the middle 50% of the observations) are the most appropriate for describing the distribu­
tion. The mean and skewness for the original data are presented in Table 8-8 as well.  Although 
transformation for three pollutants already discussed based on the whole data set in Chapter 
6, lambdas chosen by Box-Cox procedure for the whole data set and idle mode are different.  
Lambdas chosen by Box-Cox procedure for the whole data set are 0.22875 for NOx, -0.0648 
for CO, 0.14631 for HC, while lambdas for idle mode are -0.19619 for NOx, -0.0625 for CO, 
0.002875 for HC. At the same time, using transformation to estimate the mean and construct 
confidence intervals will create other problems. Therefore the modeler considers bootstrap, an­
other class of general method, to obtain the estimation and construct confi dence intervals. 

The bootstrap is a procedure that involves choosing random samples with replacement 
from a data set and analyzing each sample the same way (Li 2004). To obtain the 95% confi­
dence interval, the simple method is to take 2.5% and 97.5% percentile of the β replications T1, 
T2, .., Tβ as the lower and upper bounds, respectively.  The bootstrap function in this study will 
resample the emission data 1000 times and compute the mean, 2.5% and 97.5% percentile on 
each sample. Results are presented in Figure 8-20 and Table 8-8. 

Figure 8-19 Graphical Illustration of Bootstrap (Adopted from Li 2004)) 
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Figure 8-20 Bootstrap Results for Idle Emission Rate Estimation 

Table 8-8 Idle Emission Rates Estimation and 95% Confidence Intervals Based on Bootstrap 

Average 2.5% Percentile 97.5% Percentile

 NO x 
Estimation 0.033415 0.010754 0.083266 

Confi dence Interval 
0.033162 0.010509 0.082279 
0.033669 0.010998 0.084252 

Estimation 0.0059439 0.00036116 0.028429 
CO 0.0058184 0.00034446 0.028083 

Confi dence Interval 
0.0060693 0.00037775 0.028775

Estimation 0.00091777 0.000059167 0.0037260 

HC 
Confi dence Interval 

0.00089742 0.000047572 0.0036412 

0.00093811 0.000070763 0.0038108 

Based on table 8-9, the modeler recommends idle emission rates for NOx as 0.033415 
g/s with 95% confidence interval (0.010754, 0.083266), CO as 0.0059439 g/s with 95% confi­
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dence interval (0.00036116, 0.028429), HC as  0.00091777 g/s with 95% confi dence interval 
(0.000059167, 0.0037260). 

8.6 Conclusions and Further Considerations 

In this research, idle mode is defined as “speed ≤ 2.5 mph and absolute acceleration ≤1 
mph/s”. However the critical value could not be introduced from other research to this research 
directly.  It is more appropriate to test several critical values and obtain the most suitable one 
instead of testing only one developed from other research. 

Inter-bus variability analysis results indicate that bus 372 has the largest mean for NOx, 
CO, and HC emissions. Meanwhile, bus 372 has higher minimum (2nd), 1st Quartile (2nd), me­
dian (1st), and 3rd Quartile (2nd) engine power by comparison to the other 14 buses. Since test 
buses and engines are similar in most ways, this difference might be caused by variability of 
the engines or air conditioner usage. However, the contribution of the air conditioner to engine 
power in idle mode could not be identified in the database. Future research regarding the role of 
the air conditioner on engine power and emission rates in idle mode may be able to detect a dif­
ference. 

Although some trips or some buses have higher mean and standard deviation than others, 
this kind of variability will decrease when all data in idle mode are treated as a whole. On the 
other hand, some elevated emissions events may simply reflect real world variability.  Without 
additional evidence, modelers should treat all data as a whole instead of removing outliers and 
potentially biasing results. 

There are two observations of an emissions jump that appears to be unrelated to engine 
speed, engine power, and engine oil temperature, in a single idle segment.  The modeler fi rst as­
sumed that the bus moved too slowly from one location to another location for the GPS/ECM to 
detect the movement. Other explanations might be an engine computer problem or sensor prob­
lem. These two jumps might be evidence to support further research on slow movements during 
idle segments. 

In summary, the modeler recommends idle emission rates for NOx as 0.033415 g/s with 
95% confidence interval (0.010754, 0.083266), CO as 0.0059439 g/s with 95% confi dence inter­
val (0.00036116, 0.028429), HC as  0.00091777 g/s with 95% confidence interval (0.000059167, 
0.0037260). 

8-19




CHAPTER 9 

9. DECELERATION MODE DEVELOPMENT 

Chapter 7 introduced the concept of driving mode into the study and several sensitivity 
tests were performed for four different definitions, including comparison of modal average emis­
sion rate estimates, HTBR regression tree results, and residual mean deviance. After developing 
the idle mode definition and emission rate in Chapter 8, the next task is dividing the rest of the 
vehicle activity data into driving mode (deceleration, acceleration and cruise) for further analy­
sis. The deceleration mode is examined first. 

9.1 Critical Value for Deceleration Rates in Deceleration Mode 

The first task related to analysis of emission rates in the deceleration mode is identify­
ing critical values for deceleration. The literature indicates that critical values of -1 mph/s and -2 
mph/s should be examined. Because the critical value of “acceleration < -1 mph/s” also includes 
all data that conform with a critical value of “acceleration < -2 mph/s”, comparison of data that 
fall between these two potential cut points is first performed. In summary, these three decelera­
tion bins for analysis include: 

• Option 1: acceleration < -2 mph/s 

• Option 2: acceleration ≥  -2 mph/s & acceleration < -1 mph/s 

• Option 3: acceleration ≥ -1 mph/s & acceleration < 0 mph/s 

If the critical value is set as -1 mph/s for deceleration mode, data falling into option 1 and 
option 2 will be classified as deceleration mode while data falling into option 3 will be classified 
as cruise mode. If the critical value is set as -2 mph/s for deceleration mode, data falling into op­
tion 1 will be classified as deceleration mode while data falling into option 2 and option 3 will be 
classified as cruise mode. 
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Deceleration Pollutants 
Engine Power (brake horsepower (bhp)) 

(0 20) (20 30) (30 40) (40 50) ≥ 50 Total 

Option 1 
NO x 

9322 94 16 5 15 9452 
CO 9558 89 15 4 15 9681 
HC 9483 94 16 5 15 9613 

Option 2 
NO x 

6748 127 101 42 174 7192 
CO 6800 126 99 42 171 7238 
HC 6754 125 99 42 172 7192 

Option 3 
NO x 

6806 950 1062 562 4353 13733 
CO 6782 949 1061 558 4326 13676 
HC 6705 921 1044 541 4212 13423 

Deceleration Pollutants 
Engine Power (brake horsepower (bhp)) 

(0 20) (20 30) (30 40) (40 50) ≥ 50 Total 

Option 1 
NO x 

98.6% 1.0% 0.2% 0.1% 0.2% 100.0% 
CO 98.7% 0.9% 0.2% 0.0% 0.2% 100.0% 
HC 98.6% 1.0% 0.2% 0.1% 0.2% 100.0% 

Option 2 
NO x 

93.8% 1.8% 1.4% 0.6% 2.4% 100.0% 
CO 93.9% 1.7% 1.4% 0.6% 2.4% 100.0% 
HC 93.9% 1.7% 1.4% 0.6% 2.4% 100.0% 

Option 3 
NO x 

49.6% 6.9% 7.7% 4.1% 31.7% 100.0% 
CO 49.6% 6.9% 7.8% 4.1% 31.6% 100.0% 
HC 50.0% 6.9% 7.8% 4.0% 31.4% 100.0% 

Figure 9-1 illustrates engine power distribution for these three options. Figures 9-2 to 9-4 

compare engine power vs. emission rate for three pollutants for three options. Tables 9-1 and 9-2 

provide the distribution for these three options in two ways: by number and percentage.


Table 9-1 Engine Power Distribution for Three Options for Three Pollutants 

Table 9-2 Percentage of Engine Power Distribution for Three Options for Three Pollutants 
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Figure 9-1 Engine Power Distribution for Three Options 

Figure 9-2 Engine Power vs. NOx Emission Rate for Three Options 
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Figure 9-3 Engine Power vs. CO Emission Rate for Three Options 

Figure 9-4 Engine Power vs. HC Emission Rate for Three Options 
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There is little difference in the engine power distributions noted for data falling into op­
tion 1 and option 2 while the power distribution for option 3 is obviously different from option 
1 and option 2 in the above figures and tables. Tables 9-1 and 9-2 show that the engine power is 
more concentrated in the lower engine power regime (< 20 bhp) for data in deceleration mode. 
Tables 9-1 and 9-2 better reflect the power demand of the vehicle in real world in deceleration 
mode. Hence, the critical value is set to -1 mph/s for deceleration mode. 

9.2 Analysis of Deceleration Mode Data 

9.2.1 Emission Rate Distribution by Bus in Deceleration Mode 

After defining vehicle activity data with “acceleration <-1 mph/s” as deceleration mode, 
emission rate histograms for each of the three pollutants for deceleration operations are presented 
in Figure 9-5. Figure 9-5 shows significant skewness for all three pollutants for deceleration 
mode. Inter-bus emission rate variability is illustrated by plotting median and mean NOx, CO, 
and HC emission rates in deceleration mode for each bus in Figures 9-6 to 9-8 and Table 9-3.  
The difference between median and mean is also an indicator of skewness. 

Figure 9-5 Histograms of Three Pollutants for Deceleration Mode 
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Figure 9-6 Median and Mean of NOx Emission Rates in Deceleration Mode by Bus 

Figure 9-7 Median and Mean of CO Emission Rates in Deceleration Mode by Bus 
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Figure 9-8 Median and Mean of HC Emission Rates in Deceleration Mode by Bus 

Table 9-3 Median, and Mean for NOx, CO, and HC in Deceleration Mode by Bus 
NO x 

CO HC 
Bus ID Median Mean Median Mean Median Mean 

Bus 360 0.00325 0.01998 0.00502 0.00814 0.00040 0.00097 
Bus 361 0.00624 0.02206 0.00384 0.00535 0.00079 0.00095 
Bus 363 0.00483 0.01952 0.00446 0.00486 0.00004 0.00008 
Bus 364 0.00324 0.01255 0.00474 0.00586 0.00551 0.00613 
Bus 372 0.00437 0.01924 0.00578 0.00803 0.00161 0.00229 
Bus 375 0.00499 0.01997 0.00410 0.00567 0.00066 0.00085 
Bus 377 0.00414 0.01940 0.00317 0.00630 0.00034 0.00040 
Bus 379 0.02664 0.03457 0.00397 0.00522 0.00078 0.00103 
Bus 380 0.00525 0.01914 0.00359 0.00716 0.00060 0.00072 
Bus 381 0.01666 0.02420 0.00369 0.00452 0.00034 0.00038 
Bus 382 0.01214 0.03541 0.00450 0.00564 0.00073 0.00083 
Bus 383 0.00741 0.02385 0.00322 0.00452 0.00128 0.00172 
Bus 384 0.00828 0.02869 0.00259 0.00411 0.00113 0.00127 
Bus 385 0.02066 0.02118 0.00377 0.00585 0.00088 0.00086 
Bus 386 0.00341 0.01786 0.00406 0.00583 0.00091 0.00120 
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Figures 9-6 to 9-8 and Table 9-3 illustrate that bus 379 has the largest median and the sec­
ond largest mean for NOx emissions, bus 372 has the largest median and the second largest mean 
for CO emissions, while bus 364 has the largest median and mean for HC emissions.  At the 
same time, bus 382 has the largest mean for NOx emissions, and bus 360 has the largest mean for 
CO emissions. The above figures and table demonstrate that although variability exists among 
buses, it is difficult to determine which, if any, bus is a high emitter (i.e., a bus that exhibits ex­
tremely high emission rates under all operating conditions, which also may exhibit significantly 
different emissions responses to operating activity than normal emitters). 

The modeler notices that there is also a small number of some very high HC emis­
sions events noted in deceleration mode. Based on definitions of “acceleration < -1 mph/s”, 
242/16237=1.49 % of data points in deceleration mode for HC are high emissions. This hap­
pened only for HC. This did not occur for NOx and CO. All high HC emissions have been 
coded to determine if they are related to any other parameters. Tree analysis could be used for 
this screening analysis. After screening engine speed, engine power, engine oil temperature, en­
gine oil pressure, engine coolant temperature, ECM pressure, and other parameters, no operating 
parameters appeared to be correlated to these high emissions events. 

High HC emissions distribution by bus and trip are presented in Table 9-4.  Unlike idle 
mode where high HC emissions occurred mainly in three idle segments (bus 360, trip 4, idle seg­
ment 1; bus 360, trip 4, idle segment 38; and bus 372, trip 1, idle segment 1), high HC emissions 
are dispersed among seven different buses and 18 different trips.  Although there is not enough 
evidence to suggest a specific bus is a “high emitter”, bus 364 is worthy of additional attention. 
There are 5284 data points for bus 364 and, among them, 887 data points classified as decelera­
tion mode. There are 408 high HC emissions data points for bus 364 in deceleration mode. The 
percentage of high HC emission for bus 364 is 7.72% (408/5284), while the percentage of high 
HC emissions for bus 364 in deceleration mode is about 21% (193/887). Given the limited avail­
able data, no conclusion could be drawn about high HC emissions in deceleration mode. These 
potential outliers may simply reflect real-world emissions variability for these engines. 

Emission rate behavior as a function of operating mode and power for high-emitting ve­
hicles may differ significantly from normal-emitting vehicles. Since no high-emitting vehicle is 
identified in the AATA data set, it is impossible for the modeler to examine such a difference.  To 
ensure that models are applicable to normal and high-emitters in the fleet, models have to have 
both normal and high-emitters available in the analytical data set. Thus it is important to identify 
high-emitting vehicles and bring them in for testing. 
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Bus ID Number of High HC Events Trip Number of High HC Events 

Bus 360 11 
Bus 360, trip 3 3 
Bus 360, trip 4 8 

Bus 361 1 Bus 361, trip 5 1 

Bus 364 193 
Bus 364, trip 1 46 
Bus 364, trip 2 61 
Bus 364, trip 3 86 

Bus 372 19 

Bus 372, trip 1 6 
Bus 372, trip 2 4 
Bus 372, trip 3 3 
Bus 372, trip 4 6 

Bus 383 11 

Bus 383, trip 1 3 
Bus 383, trip 2 3 
Bus 383, trip 3 2 
Bus 383, trip 4 3 

Bus 384 1 Bus 384, trip 3 1 

Bus 386 6 
Bus 386, trip 1 1 
Bus 386, trip 2 2 
Bus 386, trip 4 3 

Table 9-4 High HC Emissions Distribution by Bus and Trip for Deceleration Mode 

9.2.2 Engine Power Distribution by Bus in Deceleration Mode 

Engine power distribution by bus is shown in Figure 9-9 and Table 9-5.  When the bus is 
decelerating, the engine typically absorbs energy, yielding low engine power, or even negative 
engine power.  Table 9-5 reflects this characteristic of deceleration mode. According to Sensors, 
Inc. report (Ensfield 2001), negative engine power is recorded as zero power in the data, which 
explains the large number of zero power values in the deceleration mode.  The emission rates 
under negative engine power conditions may be signficiantly different from those under positive 
engine power.  Further analysis will examine this question. Moreover, bus 372 has the greatest 
3rd Quartile engine power in deceleration mode, consistent with the finding in idle mode. 
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Bus No Minimum 1st Quartile Median 3rd Quartile Maximum 

Bus 360 0 0 0 3.88 275.40 
Bus 361 0 0 0 5.16 173.10 
Bus 363 0 0 0 6.70 274.90 
Bus 364 0 0 0 0 254.30 
Bus 372 0 0 0 20.41 112.00 
Bus 375 0 0 0 5.84 274.90 
Bus 377 0 0 0 3.33 275.10 
Bus 379 0 0 0 11.77 164.90 
Bus 380 0 0 0 5.19 29.40 
Bus 381 0 0 0 7.19 121.15 
Bus 382 0 0 0 5.84 20.75 
Bus 383 0 0 0 8.51 94.65 
Bus 384 0 0 0 5.86 162.37 
Bus 385 0 0 0 6.00 102.59 
Bus 386 0 0 0 7.18 42.20 

Table 9-5 Engine Power Distributions in Deceleration Mode by Bus 
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Figure 9-9 Histograms of Engine Power in Deceleration Mode by Bus 
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Based on definitions of “acceleration < -1 mph/s”, about 1% of data points with high 
engine power (≥50 bhp) fall in deceleration mode (Table 9-1).  Figure 9-10 illustrates plots of 
engine power vs. vehicle speed, engine power vs. engine speed, and vehicle speed vs. engine 
speed. Figure 9-10 shows that higher engine power always occurred with higher vehicle speed 
and higher engine speed. These data points with higher engine power likely reflect the variabil­
ity of the real world and are all retained in the data set and mode definition to avoid potentially 
biasing results. 

Figure 9-10 Engine Power vs. Vehicle Speed, Engine Power vs. Engine Speed, and Vehicle 

Speed vs. Engine Speed 


9.3 The Deceleration Motoring Mode 

Bus engines absorb energy during the deceleration mode, resulting in low or negative en­
gine power.  According to the Sensors, Inc. report (Ensfield 2001), such negative power was re­
corded as zero power.  The emissions under these negative engine power conditions may be sig­
nificantly different from those under positive engine power conditions, and therefore may need to 
be included in the modeling regime as a separate mode of operation. To examine this possibility, 
deceleration mode data were split into two mode bins for analysis. The first bin includes all data 
points with zero engine power in deceleration mode, termed ‘deceleration motoring mode.’ The 
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remaining data in the deceleration mode, which exhibit positive engine power, are classifi ed as 
deceleration non-motoring mode. The analysis will begin as a comparison of histograms of three 
pollutants between deceleration motoring mode and deceleration non-motoring mode (Figure 
9-11).  Table 9-6 compares the mean, median, and skewness of emission distributions between 
these two modes for the three pollutants. The statistical results for all deceleration data are also 
presented as a reference. Figure 9-11 and Table 9-6 show that lower emission rates are more 
prevalent in the deceleration motoring mode than in the deceleration non-motoring mode. Skew­
ness of emission distributions for deceleration motoring mode is also smaller. 

Figure 9-11 Histograms for Three Pollutants in Deceleration Motoring Mode (a) and Decelera­
tion Non-Motoring Mode (b) 

To test the differences between deceleration motoring mode and deceleration non-mo­
toring mode, a Kolmogorov-Simirnov two-sample test was chosen rather than a standard t-test, 
because the normal distribution assumption was questionable. The Kolmogorov-Smirnov two-
sample test is a test of the null hypothesis that two independent samples have been drawn from 
the same population (or from populations with the same distribution). The test uses the maximal 
difference between cumulative frequency distributions of two samples as the test statistic.  Re­
sults of the Kolmogorov-Smirnov two-sample tests demonstrate that the differences in emission 
rates under deceleration motoring mode and deceleration non-motoring mode are statistically 
significant. 
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NO CO HC 
x 

Deceleration Mode 

Number 16644 16919 16805 
Minimum 0.00001 0.00001 0.00001 
1st Quartile 0.00182 0.00249 0.00039 
Median 0.00611 0.00398 0.00068 
3rd Quartile 0.03155 0.00605 0.00120 
Maximum 1.30640 0.85208 0.04200 
Mean 0.02215 0.00580 0.00118 
Skewness 6.02890 30.6459 5.76530 
Sub-mode 1:Deceleration Motoring Mode 
Number 10925 11304 11240 
Minimum 0.00001 0.00001 0.00001 
1st Quartile 0.00124 0.00269 0.00041 
Median 0.00272 0.00401 0.00067 
3rd Quartile 0.00816 0.00567 0.00110 
Maximum 0.14930 0.20366 0.01425 
Mean 0.00978 0.00528 0.00111 
Skewness 3.08780 12.27120 3.92760 

Sub-mode 2: Deceleration Non-Motoring Mode 

Number 5719 5615 5565 
Minimum 0.00002 0.00003 0.00001 
1st Quartile 0.01973 0.00204 0.00034 
Median 0.03431 0.00384 0.00069 
3rd Quartile 0.05658 0.00741 0.00150 
Maximum 1.30640 0.85208 0.04200 
Mean 0.04576 0.00685 0.00131 
Skewness 5.7018 26.8539 6.8026 

Table 9-6 Comparison of Emission Distributions between Deceleration Mode and Two Sub-
Modes (Deceleration Motoring Mode and Deceleration Non-Motoring Mode) 
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9.4 Deceleration Emission Rate Estimations 

Using the “acceleration < -1 mph/s” cutpoint, about 16% of total data collected are clas­
sified in the deceleration mode. While deceleration emission rates could simply be estimated 
directly by averaging all deceleration mode emission rates, the emission rate distribution is non-
normal. Because lambdas identified by the Box-Cox procedure for the whole dataset and decel­
eration mode subsets are different, and because using a transformation to estimate the mean and 
construct confidence intervals will create other problems, the bootstrap (another class of general 
methods) was used for estimation of the mean and for construction of confidence intervals. The 
bootstrap function in this study resampled the emission rate data 1000 times and computed the 
mean, 2.5%, and 97.5% percentile of each sample. 

The results of the bootstrap analyses indicate that splitting the deceleration mode into 
deceleration motoring mode and deceleration non-motoring mode using the zero engine power 
criteria is warranted. The bootstrap distributions of mean emission rates for deceleration mode, 
deceleration motoring mode, and deceleration non-motoring mode are presented in Figures 9-12 
to 9-14 and Table 9-7.  To illustrate the difference in emission rate estimation between decelera­
tion motoring mode and deceleration non-motoring mode, Figure 9-15 presents bootstrap means 
and confidence intervals for the emission rates of all three pollutants. For reference purposes, 
deceleration mode emission rate estimations are also presented. Table 9-7 and Figure 9-15 show 
that the average emission rate for the deceleration motoring mode is much lower than that for 
deceleration non-motoring mode for all pollutants especially for NOx. 
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Figure 9-12 Bootstrap Results for NOx Emission Rate Estimation in Deceleration Mode 

Figure 9-13 Bootstrap Results for CO Emission Rate Estimation in Deceleration Mode 
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Figure 9-14 Bootstrap Results for HC Emission Rate Estimation in Deceleration Mode 

Figure 9-15 Emission Rate Estimation Based on Bootstrap for Deceleration Mode 
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2.5% 97.5% Average Percentile Percentile 

Deceleration Mode 

Estimation 0.02215 0.00024 0.10919 
NO 0.02161 0.00022 0.10427 

x Confi dence Interval 
0.02268 0.00027 0.11411 

Estimation 0.00580 0.00055 0.02191 
CO 0.00562 0.00051 0.02067 

Confi dence Interval 
0.00598 0.00059 0.02314 

Estimation 0.00118 0.00004 0.00652 
HC 0.00115 0.00004 0.00626 

Confi dence Interval 
0.00121 0.00004 0.00679 

Deceleration Motoring Mode 
Estimation 0.00978 0.00017 0.06540 

NO 0.00945 0.00015 0.06306 
x Confi dence Interval 

0.01010 0.00019 0.06774 
Estimation 0.00529 0.00072 0.01743 

CO 0.00514 0.00068 0.01635 
Confi dence Interval 

0.00543 0.00075 0.01850 
Estimation 0.00111 0.00004 0.00652 

HC 0.00109 0.00004 0.00621 
Confi dence Interval 

0.00114 0.00004 0.00683 
Deceleration Non-Motoring Mode 

Estimation 0.04578 0.00173 0.17187 
NO 0.04457 0.00152 0.16343 

x Confi dence Interval 
0.04698 0.00195 0.18031 

Estimation 0.00686 0.00037 0.02846 
CO 0.00643 0.00033 0.02587 

Confi dence Interval 
0.00728 0.00040 0.03104 

Estimation 0.00131 0.00004 0.00650 
HC 0.00125 0.00003 0.00594 

Confi dence Interval 
0.00137 0.00005 0.00706 

Table 9-7 Emission Rate Estimation and 95% Confidence Intervals Based on Bootstrap for De­
celeration Mode 
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Based on table 9-7, the deceleration emission rate for NOx is set as 0.02215 g/s with 
95% confidence interval (0.00024 to 0.10919), CO as 0.00580 g/s with 95% confi dence interval 
(0.00055 to 0.02191), HC as 0.00118 g/s with 95% confidence interval (0.00004 to 0.00652). 
The deceleration motoring emission rate for NOx is set as 0.00978 g/s with 95% confidence 
interval (0.00017 to 0.06540), CO as 0.00529 g/s with 95% confidence interval (0.00072 to 
0.01743), HC as 0.00111 g/s with 95% confidence interval (0.00004 to 0.00652). The decelera­
tion non-motoring mode emission rate for NOx is set as 0.04578 g/s with 95% confi dence inter­
val (0.00173 to 0.17187), CO as 0.00686 g/s with 95% confidence interval (0.00037 to 0.02846), 
HC as 0.00131 g/s with 95% confidence interval (0.00004 to 0.00650). 

9.5 Conclusions and Further Considerations 

In this research, deceleration mode is defined as “acceleration < -1 mph/s”. However the 
emissions under negative engine power are different from those under positive engine power.  
Hence, the deceleration mode is split into deceleration motoring mode and deceleration non-
motoring mode based on engine power. 

Inter-bus variability analysis indicates that bus 372 has the largest 3rd Quartile value for 
engine power among 15 buses in deceleration mode, consistent with the finding in idle mode. At 
the same time, inter-bus variability analysis results show that bus 379 has the largest median and 
the second largest mean for NOx emissions, bus 372 has the largest median and the second larg­
est mean for CO emissions, while bus 364 has the largest median and mean for HC emissions.  
But it is difficult to conclude that these buses should be classified as high emitters or that there 
are any special modes that should be modeled separately as high-emitting modes. 

Some high HC emissions events are noted in deceleration mode. After screening engine 
speed, engine power, engine oil temperature, engine oil pressure, engine coolant temperature, 
ECM pressure, and other parameters, these operating parameters could not be linked to these 
high emissions occurrences. Additional causal variables may be in play that are not included in 
the data available for analysis. 

Based on definitions of “acceleration < -1 mph/s”, about 1% of data points exhibit some­
what unusually high engine power (≥ 50 bhp) in deceleration mode. Analysis shows that higher 
engine power always happened with higher vehicle speed and higher engine speed. These high­
er-power data points likely reflect the variability in real world power demand (perhaps associated 
with operations on grade, which could not be identified in the database). All of these data were 
retained in the model to avoid potentially biasing the results. 
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In summary, the deceleration non-motoring mode emission rate for NOx is set as 0.04578 
g/s, CO as 0.00686 g/s, and HC as 0.00131 g/s. The deceleration motoring emission rate for NOx 
is set as 0.00978 g/s, CO as 0.00529 g/s, and HC as 0.00111 g/s.  Emission rate estimation for the 
deceleration motoring mode is significantly lower than the deceleration non-motoring mode for 
all three pollutants, especially for NOx. 
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CHAPTER 10 

10. ACCELERATION MODE DEVELOPMENT 

After developing the idle mode definition and emission rate in Chapter 8 and deceleration 
mode definitions and emission rates in Chapter 9, the next task is to divide the rest of the data 
into acceleration and cruise mode. This chapter examines the definition of acceleration activity 
and emission rates for acceleration activity. 

10.1 Critical Value for Acceleration in Acceleration Mode 

The first task related to analysis of emission rates in the acceleration mode is identifying 
a critical value for acceleration. Two values were tested: 1 mph/s and 2 mph/s.  Since the critical 
value of “acceleration > 1 mph/s” will include all data under the critical value of “acceleration 
> 2 mph/s”, comparison of data falling between these two potential cut points is conducted first. 
Once selected, the chosen critical value will be used to divide the data into acceleration mode 
and cruise mode. Thus “acceleration > 0 mph/s and acceleration ≤ 1 mph/s” will be another op­
tion. Similarly to analysis for deceleration mode, these three options will be: 

• Option 1: acceleration > 2 mph/s 

• Option 2: acceleration > 1 mph/s and acceleration ≤ 2 mph/s 

• Option 3: acceleration > 0 mph/s and acceleration ≤ 1 mph/s 

Figure 10-1 illustrates engine power distribution for these three options. Figures 10-2 to 
10-4 compare engine power vs. emission rate for three pollutants for three options. Tables 10-1 
and 10-2 provide the distribution for these three options in two ways: by number and percentage. 
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Figure 10-1 Engine Power Distribution for Three Options 

Figure 10-2 Engine Power vs. NOx Emission Rate (g/s) for Three Options 
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Figure 10-3 Engine Power vs. CO Emission Rate (g/s) for Three Options 

Figure 10-4 Engine Power vs. HC Emission Rate (g/s) for Three Options 
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Acceleration Pollutants 
Engine Power (brake horsepower (bhp)) 

(0 50) (50 100) (100 150) (150 200) ≥ 200 Total 
Option 1 NO x 

322 446 852 1229 5870 8719 
CO 319 444 851 1228 5870 8712 
HC 318 440 833 1203 5649 8443 

Option 2 NO x 
613 865 1358 1324 6015 10175 

CO 606 858 1355 1321 6012 10152 
HC 605 843 1328 1287 5824 9887 

Option 3 NO x 
3208 4130 4378 2490 3205 17411 

CO 3190 4105 4362 2487 3185 17329 
HC 3104 3972 4195 2408 3131 16810 

Acceleration Pollutants 
Engine Power (brake horsepower (bhp)) 

(0 50) (50 100) (100 150) (150 200) ≥ 200 Total 

Option 1 NO x 
3.7% 5.1% 9.8% 14.1% 67.3% 100.0% 

CO 3.7% 5.1% 9.8% 14.1% 67.4% 100.0% 
HC 3.8% 5.2% 9.9% 14.2% 66.9% 100.0% 

Option 2 NO x 
6.0% 8.5% 13.3% 13.0% 59.1% 100.0% 

CO 6.0% 8.5% 13.3% 13.0% 59.2% 100.0% 
HC 6.1% 8.5% 13.4% 13.0% 58.9% 100.0% 

Option 3 NO x 
18.4% 23.7% 25.1% 14.3% 18.4% 100.0% 

CO 18.4% 23.7% 25.2% 14.4% 18.4% 100.0% 
HC 18.5% 23.6% 25.0% 14.3% 18.6% 100.0% 

Table 10-1 Engine Power Distribution for Three Options for Three Pollutants 

Table 10-2 Percentage of Engine Power Distribution for Three Options for Three Pollutants 

If the critical value is set as 1 mph/s for acceleration mode, data falling into option 1 and 
option 2 will be classified as acceleration mode while data falling into option 3 will be classi­
fied as cruise mode. If the critical value is set as 2 mph/s for acceleration mode, data falling into 
option 1 will be classified as acceleration mode while data falling into option 2 and option 3 will 
be classified as cruise mode. There is little difference in the engine power distributions noted for 
data falling into option 1 and option 2 while the power distribution for option 3 is obviously dif­
ferent from option 1 and option 2 in the above figures and tables. Table 10-1 and 10-2 show that 
the engine power is more concentrated in higher engine power (≥200 bhp) for data in accelera­
tion mode. Tables 10-1 and 10-2 better reflect the power demand of the vehicle in real world in 
acceleration mode. Hence, the critical value is set as 1 mph/s for acceleration mode. 
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After defining “acceleration > 1 mph/s” as acceleration mode, cruise mode data will 
consist of all of the remaining data in the database (i.e., data not previously classified into idle, 
deceleration, and now acceleration). Unlike idle and deceleration mode, there is a general rela­
tionship between engine power and emission rate for acceleration mode and cruise mode. Even 
though the engine power distribution for acceleration mode is different from that of cruise mode 
(Table 10-3), these two modes share a relationship between engine power and emission rate (Fig­
ure 10-5), although there are potentially some significant differences noted in the HC chart. 

Table 10-3  Engine Power Distribution for Acceleration Mode and Cruise Mode  

Engine Power Distribution 
Pollutants 

(0 50) (50 100) (100 150) (150 200) ≥ 200 All 

Acceleration mode 
NO 935 1311 2210 2553 11885 18894 

x 
Number CO 925 1302 2206 2549 11882 18864 

HC 923 1283 2161 2490 11473 18330 
NO 4.95% 6.94% 11.70% 13.51% 62.90% 100.00% 

x 
Percentage CO 4.90% 6.90% 11.69% 13.51% 62.99% 100.00% 

HC 5.04% 7.00% 11.79% 13.58% 62.59% 100.00% 
Cruise mode 

NO 15885 8988 7173 3536 3792 39374 
x 

Number CO 15834 8940 7145 3529 3770 39218 
HC 15481 8600 6830 3394 3715 38020 
NO 40.34% 22.83% 18.22% 8.98% 9.63% 100.00% 

x 
CO 40.37% 22.80% 18.22% 9.00% 9.61% 100.00% Percentage 
HC 40.72% 22.62% 17.96% 8.93% 9.77% 100.00% 
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Figure 10-5 Engine Power vs. Emission Rate for Acceleration Mode and Cruise Mode 

The relationships between emission rate and power for acceleration mode data will be ex­
plored in this chapter, while the relationships between emission rate and power for cruise mode 
data will be explored in the next chapter. 

10.2 Analysis of Acceleration Mode Data 

10.2.1 Emission Rate Distribution by Bus in Acceleration Mode 

After defining vehicle activity data with “acceleration >1 mph/s” as acceleration mode, 
emission rate histograms for each of the three pollutants for acceleration operations are presented 
in Figure 10-6. Figure 10-6 shows significant skewness for all three pollutants for acceleration 
mode. There are also a small number of some very high HC emissions events noted in accelera­
tion mode. After screening engine speed, engine power, engine oil temperature, engine oil pres­
sure, engine coolant temperature, ECM pressure, and other parameters, no operating parameters 
appeared to be correlated with the high emissions events. 
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Figure 10-6 Histograms of Three Pollutants for Acceleration Mode 

Inter-bus response variability for acceleration mode operations is illustrated in Figures 
10-7 to 10-9 using median and mean of NOx, CO, and HC emission rates. Table 10-4 presents 
the same information in tabular form. The difference between median and mean is also an indi­
cator of skewness. 

Table 10-4 Median and Mean of Three Pollutants in Acceleration Mode by Bus 

NO x 
CO HC 

Bus ID Median Mean Median Mean Median Mean 

Bus 360 0.27729 0.25957 0.06527 0.09217 0.00159 0.00182 
Bus 361 0.30170 0.28125 0.05177 0.08001 0.00184 0.00228 
Bus 363 0.14459 0.14058 0.03836 0.09012 0.00022 0.00039 
Bus 364 0.28948 0.26033 0.03501 0.05650 0.00306 0.00363 
Bus 372 0.17834 0.18627 0.02980 0.03475 0.00250 0.00279 
Bus 375 0.31092 0.28991 0.05929 0.08619 0.00143 0.00176 
Bus 377 0.17827 0.17335 0.04755 0.09612 0.00104 0.00112 
Bus 379 0.17788 0.20883 0.08430 0.10346 0.00222 0.00276 
Bus 380 0.26410 0.26620 0.08238 0.19149 0.00210 0.00253 
Bus 381 0.18011 0.19806 0.07856 0.12646 0.00095 0.00106 
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NO x 
CO HC 

Bus ID Median Mean Median Mean Median Mean 

Bus 382 0.28966 0.29152 0.09234 0.18179 0.00263 0.00272 
Bus 383 0.24419 0.26739 0.05355 0.13112 0.00308 0.00368 
Bus 384 0.18775 0.22139 0.07111 0.17389 0.00401 0.00429 
Bus 385 0.17783 0.21706 0.05141 0.07893 0.00361 0.00384 
Bus 386 0.22674 0.24673 0.10412 0.23806 0.00272 0.00282 

Figure 10-7 Median and Mean of NOx Emission Rates in Acceleration Mode by Bus 
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Figure 10-8 Median and Mean of CO Emission Rates in Acceleration Mode by Bus 

Figure 10-9 Median and Mean of HC Emission Rates in Acceleration Mode by Bus 
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Bus ID Number Min 1st Quartile Median 3rd Quartile Max Mean 

Bus 360 1507 0 162.96 255.57 275.05 275.59 212.04 
Bus 361 545 7.16 131.96 199.58 261.51 275.54 184.46 
Bus 363 1287 0 111.52 200.39 267.06 275.59 180.03 
Bus 364 931 0 142.82 228.25 270.01 275.56 197.27 
Bus 372 728 34.42 145.57 213.51 264.70 275.56 199.81 
Bus 375 1599 0 140.92 259.45 275.13 275.57 205.56 
Bus 377 1751 3.35 166.25 256.89 275.08 275.60 212.09 
Bus 379 1427 0 204.15 264.54 275.18 275.58 233.71 
Bus 380 1823 0 202.69 262.11 275.15 275.54 228.55 
Bus 381 1362 0 139.86 220.00 272.21 275.60 199.20 
Bus 382 691 0 173.36 250.90 275.05 275.58 218.82 
Bus 383 1043 0 161.16 250.37 275.08 275.59 213.70 
Bus 384 1292 0 144.10 213.87 269.50 275.60 198.80 
Bus 385 1377 0 143.51 226.37 274.99 275.55 201.67 
Bus 386 1532 13.81 164.27 244.80 275.06 275.60 215.95 

Figures 10-7 to 10-9 and Table 10-4 illustrate that NOx emissions are more consistent than 
CO and HC emissions. Across the 15 buses, Bus 386 has the largest median and mean for CO 
emissions, while Bus 384 has the largest median and mean for HC emissions.  The above figures 
and table demonstrate that although variability exists across buses, it is difficult to conclude that 
there are any true “high emitters.” That is, the emissions from these buses are not consistently more 
than one or two standard deviations from the mean under normal operating conditions. Meanwhile, 
Bus 363 has the smallest mean and median HC emissions compared to the other 14 buses. 

10.2.2 Engine Power Distribution by Bus in Acceleration Mode 

Engine power distribution in acceleration mode by bus is shown in Figure 10-10 and 
Table 10-5.  When the bus is accelerating, the engine will be required to produce more power.  
Figure 10-10 and Table 10-5 reflect this characteristic of acceleration mode. The distribution 
of engine power in acceleration mode is significantly different from deceleration mode and idle 
mode. Bus 372 has the largest minimum engine power in acceleration mode, consistent with the 
finding for idle mode and deceleration mode. The maximum power values for each bus match 
well with the manufacturer’s engine power rating.  Although variability for engine power distri­
bution exists across buses, it is difficult to conclude that such variability is affected by individual 
buses, bus routes, or other factors. The relationship between power and emissions appears con­
sistent across the buses for acceleration mode. 

Table 10-5 Engine Power Distribution in Acceleration Mode by Bus 
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Engine power distribution also shows that about 0.19% (36/18895) of data points show 
zero load in acceleration mode. For the 36 data points exhibiting zero indicated engine load, 
about 92% (33/36) occurred on roads reported to have zero or negative grade. Due to the inac­
curacy of road grade values, it was not possible to simulate the engine power in this research. 
However, in the real world, linear acceleration with zero load can happen on downhill stretches.  
Application of load based emission rates to predicate engine load will be able to take grade into 
account in the overall modeling framework. Because only 36 data points with zero load were 
included in the acceleration data, it was unnecessary to develop a sub-model for them. Mean­
while, such zero loads in acceleration mode do reflect the variability of acceleration data in the 
real world. 

Figure 10-10 Histograms of Engine Power in Acceleration Mode by Bus 

10-11




 10.3 Model Development and Refinement 

10.3.1 HTBR Tree Model Development 

The potential explanatory variables included in the emission rate model development ef­
fort include: 

• 	 Vehicle characteristics: model year, odometer reading, bus ID (14 dummy variables); 

• 	 Roadway characteristics: dummy variable for road grade; 

• 	 Onroad load parameters: engine power (bhp), vehicle speed (mph), acceleration 
(mph/s); 

• 	 Engine operating parameters: engine oil temperature (deg F), engine oil pressure 
(kPa), engine coolant temperature (deg F), barometric pressure reported from ECM 
(kPa); 

• 	 Environmental conditions: ambient temperature (deg C), ambient pressure (mbar), 
ambient relative humidity (%). 

The HTBR technique is used first to identify potentially significant explanatory variables; 
this analysis provides the starting point for conceptual model development. The HTBR model 
is used to guide the development of an OLS regression model, and not a model in its own right. 
HTBR can be used as a data reduction tool and for identifying potential interactions among the 
variables. Then OLS regression is used with the identified variables to estimate a preliminary 
“fi nal” model. 

These 27 variables were first offered to the tree model.  To arrive at the “best” model, 
various regression tree models were created. The initial model was created by allowing the tree 
to grow unconstrained for the first cut. Once an initial model was created, the supervised tech­
nique in S-PLUS was used to simplify the model by removing the lower branches of the tree that 
explained the least deviance. For application purposes, the resulting tree was examined to ensure 
that the model’s predictive ability was not compromised by allowing the overall amount of devi­
ance to increase signifi cantly. 

The 27 variables include continuous, categorical, and dummy variables. Dummy vari­
ables for buses could be used to indicate the variability of buses. Like the analysis in Chapter 
6, these 15 buses could be treated as a single group for purposes of analysis and model develop­
ment. HTBR technique can examine the potential additional influence of road grade (i.e., above 
and beyond the contribution to power demand) using a dummy variable to represent a grade 
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category (the final model does not include this dummy variable due to the inaccuracy of road 
grade values). Analysis results in Chapter 6 indicate that all environmental characteristics, like 
temperature, humidity and barometric pressure, are moderately correlated with each other.  On 
the other hand, engine operating parameters, like engine oil pressure, engine oil temperature, en­
gine coolant temperature, and barometric pressure reported from ECM, are highly or moderately 
related to on-road operating parameters, like engine power, vehicle speed, and acceleration.  The 
modeler should be aware of such correlations among explanatory variables. 

Although evidence in the literature suggests that a logarithmic transformation is most 
suitable for modeling motor vehicle emissions (Washington 1994; Ramamurthy et al. 1998; 
Fomunung 2000; Frey et al. 2002), this transformation needs to be verified through the Box-Cox 
procedure. The Box-Cox function in MATLAB™ can automatically identify a transforma­
tion from the family of power transformations on emission data, ranging from -1.0 to 1.0. The 
lambdas chosen by Box-Cox procedure for acceleration mode are 0.683 for NOx, 0.094438 for 
CO, 0.31919 for HC. The Box-Cox procedure is used only to provide a guide for selecting a 
transformation, so overly precise results are not needed (Neter et al. 1996). It is often reasonable 
to use a nearby lambda value that is easier to understand for the power transformation. Although 
the lambdas chosen by the Box-Cox procedure are different for acceleration and cruise mode, 
the nearby lambda values are same for these two modes. In summary, the lambda values used 
for transformations are ½ for NOx, 0 for CO (indicating a log transformation), and ¼ for HC for 
acceleration mode. Figures 10-11 to 10-13 present histogram, boxplot, and probability plots 
of truncated emission rates in acceleration mode for NOx, CO, and HC, while Figures 10-14 
to 10-16 present the same plots for truncated transformed emission rates for NOx, CO and HC, 
where a great improvement is noted. 

Figure 10-11 Histogram, Boxplot, and Probability Plot of Truncated NOx Emission Rate in Ac­
celeration Mode 
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Figure 10-12 Histogram, Boxplot, and Probability Plot of Truncated CO Emission Rate in Acceleration Mode 

Figure 10-13 Histogram, Boxplot, and Probability Plot of Truncated HC Emission Rate in Acceleration Mode 
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Figure 10-14 Histogram, Boxplot, and Probability Plot of Truncated Transformed NOx Emission 

Rate in Acceleration Mode


Figure 10-15 Histogram, Boxplot, and Probability Plot of Truncated Transformed CO Emission 

Rate in Acceleration Mode
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Figure 10-16 Histogram, Boxplot, and Probability Plot of Truncated Transformed HC Emission 
Rate in Acceleration Mode 

10.3.1.1 NOx HTBR Tree Model Development 

Figure 10-17 illustrates the initial tree model used for truncated transformed NOx emis­
sion rate in acceleration mode. Results for the initial model are given in Table 10-6.  The tree 
grew into a complex model, with a considerable number of branches and 36 terminal nodes. Fig­
ure 10-18 illustrates the amount of deviation explained corresponding to the number of terminal 
nodes. 
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Regression tree:

tree(formula = NO .50 ~ model.year + odometer + temperature + baro + humidity + ve
-x
hicle.speed + oil.temperture + oil.press + cool.temperature + eng.bar.press + engine.
power + acceleration + bus360 + bus361 + bus363 + bus364 + bus372 + bus375 + bus377
+ bus379 + bus380 + bus381 + bus382 + bus383 + bus384 + bus385 + dummy.grade, data =

busdata10242006.1.3,

na.action = na.exclude, mincut = 400, minsize = 800, mindev = 0.01)

Variables actually used in tree construction:

[1] “engine.power”  “vehicle.speed” “temperature”   “baro” 
[5] “bus375”        “humidity”      “oil.press”     “odometer” 
[9] “eng.bar.press” “bus379”        “model.year”    “oil.temperture”
Number of terminal nodes: 36 
Residual mean deviance: 0.005538 = 104.4 / 18860
Distribution of residuals:

 Min.    1st Qu.     Median       Mean    3rd Qu.       Max.

 -3.769e-001 -4.176e-002 -4.298e-003 3.661e-017 3.957e-002 8.965e-001


Figure 10-17 Original Untrimmed Regression Tree Model for Truncated Transformed NO  Emis­x
sion Rate in Acceleration Mode 

Table 10-6 Original Untrimmed Regression Tree Results for Truncated Transformed NO  Emis­x
sion Rate in Acceleration Mode 

For model application purposes, it is desirable to select a final model specifi cation that 
balances the model’s ability to explain the maximum amount of deviation with a simpler model 
that is easy to interpret and apply.  Figure 10-18 indicates that reduction in deviation with ad­
dition of nodes after 4, although potentially statistically significant, is very small. A simplified 
tree model was derived which ends in 4 terminal nodes as compared to the 36 terminal nodes in 
the initial model. The residual mean deviation only increased from 104.4 to 151.2 and yielded a 
much more efficient model. Results are shown in Table 10-7 and Figure 10-19.  Based on above 
analysis, an NOx acceleration emission rate model will be developed based upon these results. 
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Figure 10-18 Reduction in Deviation with the Addition of Nodes of Regression Tree for Trun­
cated Transformed NO  Emission Rate in Acceleration Mode x


Figure 10-19 Trimmed Regression Tree Model for Truncated Transformed NOx Emission Rate in 
Acceleration Mode 
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Table 10-7 Trimmed Regression Tree Results for Truncated Transformed NO  Emission Rate in x
Acceleration Mode 
Regression tree:
snip.tree(tree = tree(formula = NOx.50 ~ model.year + odometer + temperature +

baro + humidity + vehicle.speed + oil.temperture + oil.press +
cool.temperature + eng.bar.press + engine.power + acceleration +
bus360 + bus361 + bus363 + bus364 + bus372 + bus375 + bus377 + bus379 + 
bus380 + bus381 + bus382 + bus383 + bus384 + bus385 + dummy.grade,
data = busdata10242006.1.3, na.action = na.exclude, mincut = 400,
minsize = 800, mindev = 0.01), nodes = c(13., 7., 12., 2.))

Variables actually used in tree construction:
[1] “engine.power” “vehicle.speed” “temperature”

Number of terminal nodes: 4 

Residual mean deviance: 0.008002 = 151.2 / 18890

Distribution of residuals:


 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -4.265e-001 -5.813e-002 -7.517e-004 8.861e-016 5.810e-002 8.710e-001 
node), split, n, deviance, yval

* denotes terminal node

 1) root 18894 247.20 0.4669

2) engine.power<72.3 1397 13.67 0.2581 *


 3) engine.power>72.3 17497 167.70 0.4836

6) vehicle.speed<25.95 13777 121.40 0.4662

12) temperature<20.5 4902 42.44 0.5034 *


 13) temperature>20.5 8875 68.45 0.4456 *

 7) vehicle.speed>25.95 3720 26.60 0.5482 * 

This tree model suggests that engine power is the most important explanatory variable for 
NOx emissions. This result is consistent with previous research results which verified the impor­
tant effect of engine power on NOx emissions (Ramamurthy et al. 1998; Clark et al. 2002; Barth 
et al. 2004). Analysis in the previous chapter also indicates that engine power is correlated with 
not only on-road load parameters such as vehicle speed, acceleration, and grade, but also engine 
operating parameters such as throttle position and engine oil pressure. On the other hand, en­
gine power in this research is derived from engine speed, engine torque and percent engine load. 
Therefore engine power can correlate on-road modal activity with engine operating conditions to 
that extent. This fact strengthens the importance of introducing engine power into the concep­
tual model and the need to improve the ability to simulate engine power for regional inventory 
development. 

HTBR results suggest that temperature may be an important predictive variable for NOx 
emissions under certain conditions. Temperature effects may need to be integrated into new 
models in the form of a temperature correction factor.  But adequate data are not yet available for 
this purpose. For the time being, temperature is removed from consideration in further linear re­
gression model development, but the effect is probably significant and should be examined when 
more comprehensive emission rate data collected under a wider variety of temperature conditions 
are available for analysis. 
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10.3.1.2 CO HTBR Tree Model Development 

Figure 10-20 illustrates the initial tree model used for truncated transformed CO emission 
rate in acceleration mode. Results from the initial model are given in Table 10-8.  The tree grew 
into a complex model with a considerable number of branches and 33 terminal nodes. Figure 10­
21 illustrates the amount of deviation explained corresponding to the number of terminal nodes. 

Figure 10-20 Original Untrimmed Regression Tree Model for Truncated Transformed CO Emis­
sion Rate in Acceleration Mode 

Table 10-8 Original Untrimmed Regression Tree Results for Truncated Transformed CO Emis­
sion Rate in Acceleration Mode 
Regression tree:
tree(formula = log.CO ~ model.year + odometer + temperature + baro + humidity +

vehicle.speed + oil.temperture + oil.press + cool.temperature +
eng.bar.press + engine.power + acceleration + bus360 + bus361 + bus363 +
bus364 + bus372 + bus375 + bus377 + bus379 + bus380 + bus381 + bus382 + 
bus383 + bus384 + bus385 + dummy.grade, data = busdata10242006.1.3,
na.action = na.exclude, mincut = 400, minsize = 800, mindev = 0.01)

Variables actually used in tree construction:
[1] “engine.power” “humidity” “vehicle.speed” “acceleration”

[5] “odometer” “model.year” “baro” “eng.bar.press”

Number of terminal nodes: 33 

Residual mean deviance: 0.1184 = 2229 / 18830

Distribution of residuals:


 Min. 1st Qu. Median Mean 3rd Qu. Max.

 -2.552e+000 -2.001e-001 -1.285e-002 3.025e-017 1.981e-001 1.653e+000


For model application purposes, it is desirable to select a final model specifi cation that 
balances the model’s ability to explain the maximum amount of deviation with a simpler model 
that is easy to interpret and apply.  Figure 10-21 indicated that the reduction in deviation with ad­
dition of nodes after four, although potentially statistically significant, is very small. A simplified 
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tree model was derived which ends in four terminal nodes as compared to the 33 terminal nodes 
in the initial model. The residual mean deviation only increased from 2229 to 3093 and yielded 
a much cleaner model than the initial one. Results are shown in Table 10-9 and Figure 10-22.  
The CO acceleration emission rate model will be developed based upon these results. 

Figure 10-21 Reduction in Deviation with the Addition of Nodes of Regression Tree for Trun­
cated Transformed CO Emission Rate in Acceleration Mode 

Figure 10-22 Trimmed Regression Tree Model for Truncated Transformed CO Emission Rate in 

Acceleration Mode
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Table 10-9 Trimmed Regression Tree Results for Truncated Transformed CO Emission Rate in 
Acceleration Mode 
Regression tree:
snip.tree(tree = tree(formula = log.CO ~ model.year + odometer + temperature +

baro + humidity + vehicle.speed + oil.temperture + oil.press +
cool.temperature + eng.bar.press + engine.power + acceleration +
bus360 + bus361 + bus363 + bus364 + bus372 + bus375 + bus377 + bus379 + 
bus380 + bus381 + bus382 + bus383 + bus384 + bus385 + dummy.grade,
data = busdata10242006.1.3, na.action = na.exclude, mincut = 400,
minsize = 800, mindev = 0.01), nodes = c(12., 7., 2., 13.))

Variables actually used in tree construction:
[1] “engine.power” “vehicle.speed”

Number of terminal nodes: 4 

Residual mean deviance: 0.164 = 3093 / 18860

Distribution of residuals:


 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -3.019e+000 -2.450e-001 -1.062e-002 -9.774e-017 2.430e-001 1.735e+000 
node), split, n, deviance, yval

* denotes terminal node

 1) root 18864 5309.0 -1.1990

2) engine.power<82.625 1624 560.0 -1.9810 *


 3) engine.power>82.625 17240 3662.0 -1.1250

6) vehicle.speed<19.05 9752 1994.0 -0.9339

12) engine.power<152.965 2335 522.6 -1.2510 *


 13) engine.power>152.965 7417 1163.0 -0.8342 *

7) vehicle.speed>19.05 7488 847.2 -1.3740 * 

This tree model suggested that engine power is the most important explanatory variable 
for CO emissions, consistent with NO  emissions. This tree will be used as reference for linear x
regression model development. 

10.3.1.3 HC HTBR Tree Model Development 

Figure 10-23 illustrates the initial tree model used for the truncated transformed HC emis­
sion rate in acceleration mode. Results for the initial model are given in Table 10-10.  The tree 
grew into a complex model with a considerable number of branches and 30 terminal nodes. 
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Figure 10-23 Original Untrimmed Regression Tree Model for Truncated Transformed HC Emis­
sion Rate in Acceleration Mode 

Table 10-10 Original Untrimmed Regression Tree Results for Truncated Transformed HC Emis­
sion Rate in Acceleration Mode 
Regression tree:
tree(formula = HC.25 ~ model.year + odometer + temperature + baro + humidity +

vehicle.speed + oil.temperture + oil.press + cool.temperature +
eng.bar.press + engine.power + acceleration + bus360 + bus361 + bus363 +
bus364 + bus372 + bus375 + bus377 + bus379 + bus380 + bus381 + bus382 + 
bus383 + bus384 + bus385 + dummy.grade, data = busdata10242006.1.3,
na.action = na.exclude, mincut = 400, minsize = 800, mindev = 0.01)

Variables actually used in tree construction:
[1] “odometer” “bus377” “bus381” “baro” 
[5] “engine.power” “humidity” “vehicle.speed” “oil.press”
[9] “bus375” “oil.temperture” “acceleration” “bus384” 

[13] “bus364” “model.year”
Number of terminal nodes: 31 
Residual mean deviance: 0.0005694 = 10.42 / 18300
Distribution of residuals:

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -1.004e-001 -1.347e-002 -2.222e-003 1.386e-016 1.091e-002 2.755e-001 

Figure 10-23 and Table 10-12 suggest that the tree analysis of HC emission rates identi­
fied a number of buses that appear to exhibit significantly different emission rates under all load 
conditions than the other buses (i.e., some of the bus dummy variables appeared signifi cant in 
the initial tree splits). Two bus dummy variables split the data pool at the top levels of the HC 
tree model. The first cut point of “odometer > 282096” in the HC tree model could be directly 
replaced by “bus 363 > 0.5”, because only bus 363 has an odometer reading larger than 282096.  
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There were three bus dummy variables that split the first three levels of the HC tree model. 
Although higher emissions were noted for all three pollutants for some of the 15 buses, the divi­
sion was even more obvious for HC emissions (see Figure 10-9 and Table 10-4), consistent with 
the findings in idle and deceleration mode. Although it is tempting to develop different emis­
sion rates for these buses to reduce emission rate deviation in the sample pool, it is diffi cult to 
justify doing so. Unless there is an obvious reason to classify these three buses as high emitters 
(i.e., significantly higher than normal emitting vehicles, perhaps by as much as a few standard 
deviations from the mean), and unless there are enough data to develop separate emission rate 
models for high emitters, one cannot justify removing the data from the data set. Until data exist 
to justify treating these buses as high emitters, the bus dummy variables for individual buses are 
removed from the analyses and all 15 buses are treated as part of the whole data set. 

Another tree model was generated excluding the bus dummy variables, model year, and 
odometer.  This new tree model is illustrated in Figure 10-25 and Table 10-11.  The tree model is 
then trimmed for application purposes, as was done for the NOx and CO models.

       Figure 10-24 Reduction in Deviation with the Addition of Nodes of Regression Tree 
for Truncated Transformed HC Emission Rate in Acceleration Mode 
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Figure 10-25 Trimmed Regression Tree Model for Truncated Transformed HC in Acceleration 

Mode


Table 10-11 Trimmed Regression Tree Results for Truncated Transformed HC in Acceleration Mode

Regression tree:
snip.tree(tree = tree(formula = HC.25 ~ temperature + baro + humidity +

vehicle.speed + oil.temperture + oil.press + cool.temperature +
eng.bar.press + engine.power + acceleration + dummy.grade, data =
busdata10242006.1.3, na.action = na.exclude, mincut = 400, minsize =
800, mindev = 0.01), nodes = c(2., 6., 15., 14.))

Variables actually used in tree construction:
[1] “baro” “engine.power”

Number of terminal nodes: 4 

Residual mean deviance: 0.001018 = 18.65 / 18330

Distribution of residuals:


 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -9.502e-002 -2.174e-002 -2.213e-003 9.390e-016 1.844e-002 3.100e-001 
node), split, n, deviance, yval

* denotes terminal node

 1) root 18330 30.840 0.2099

2) baro<969.5 1189 1.239 0.1286 *


 3) baro>969.5 17141 21.210 0.2155

6) engine.power<56.24 850 1.069 0.1682 *

 7) engine.power>56.24 16291 18.140 0.2180

14) baro<989.5 13717 13.970 0.2134 *

15) baro>989.5 2574 2.372 0.2423 *


The new tree model suggests that barometric pressure is the most important explana­
tory variable for HC emission rates. However, this finding is challenged by this fact: among 
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those 1189 data points (baro < 969.5) in the first left branch, 1187 data points belong to bus 363. 
Although this dataset was collected under a wide variety of environmental conditions, the scope 
of barometric pressures was limited for individual buses tested. As reported earlier, Bus 363 
exhibited significantly lower HC emissions that the other buses (see Figure 10-9); the reason is 
not clear at this time. To develop a reasonable tree model given the limited data collected, the 
environmental parameters are excluded from the model until a greater distribution of environ­
mental conditions can be represented in a test data set. With data collected from a more com­
prehensive testing program, environmental variables can be integrated into the model directly, or 
perhaps correction factors for the emission rates can be developed. The secondary trimmed tree 
is presented in Figure 10-26 and Table 10-12. 

Figure 10-26 Secondary Trimmed Regression Tree Model for Truncated Transformed HC Emis­
sion Rate in Acceleration Mode 
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Table 10-12 Secondary Trimmed Regression Tree Results for Truncated Transformed HC Emis­
sion Rate in Acceleration Mode 
Regression tree:
snip.tree(tree = tree(formula = HC.25 ~ engine.power + vehicle.speed +

acceleration + oil.temperture + oil.press + cool.temperature +
eng.bar.press, data = busdata10242006.1.3, na.action = na.exclude,
mincut = 400, minsize = 800, mindev = 0.1), nodes = c(7., 13., 12.))

Variables actually used in tree construction:
[1] “engine.power” “oil.press” “eng.bar.press”

Number of terminal nodes: 4 

Residual mean deviance: 0.00136 = 24.92 / 18330

Distribution of residuals:


 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -1.178e-001 -2.378e-002 6.119e-004 -4.275e-017 2.231e-002 3.223e-001 
node), split, n, deviance, yval

* denotes terminal node

 1) root 18330 30.840 0.2099

2) engine.power<54.555 988 1.779 0.1559 *


 3) engine.power>54.555 17342 26.020 0.2130

6) oil.press<427.75 12457 18.610 0.2076

12) eng.bar.press<100.249 4989 9.241 0.1937 *


 13) eng.bar.press>100.249 7468 7.763 0.2169 *

 7) oil.press>427.75 4885 6.136 0.2266 * 

This tree model suggests that engine power is the most important explanatory variable 
for HC emissions, consistent with analysis of NO  and CO emission rates. HTBR results also x
suggest that oil pressure and engine barometric pressure may be important predictive variables 
for HC emissions under certain conditions. After excluding engine barometric pressure and oil 
pressure from the tree model, leaving engine power only, the residual mean deviation increased 
slightly from 24.92 to 27.34. While engine operating parameters such as oil pressure and engine 
barometric pressure may impact emissions, such variables are not easy to include in real-world 
models. The final HTBR tree for HC emissions is shown in Figure 10-27 and Table 10-13.  An 
HC acceleration emission rate model will be developed based upon these results. 
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Figure 10-27 Final Regression Tree Model for Truncated Transformed HC and Engine Power in 
Acceleration Mode 

Table 10-13 Final Regression Tree Results for Truncated Transformed HC and Engine Power in 
Acceleration Mode 
Regression tree:

snip.tree(tree = tree(formula = HC.25 ~ engine.power, data = busdata10242006.1.3,

na.action = na.exclude, mincut = 5, minsize = 10,mindev = 0.01), nodes = c(7., 6.,

4., 5.))

Number of terminal nodes: 4 

Residual mean deviance: 0.001492 = 27.34 / 18330

Distribution of residuals:


 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -1.296e-001 -2.277e-002 8.001e-005 4.271e-016 2.298e-002 3.065e-001 
node), split, n, deviance, yval

* denotes terminal node 

1) root 18330 30.8400 0.2099
2) engine.power<54.555 988 1.7790 0.1559 


4) engine.power<14.825 438 0.6518 0.1360 *

 5) engine.power>14.825 550 0.8171 0.1717 *


 3) engine.power>54.555 17342 26.0200 0.2130

6) engine.power<98.385 1177 1.8580 0.2022 *


 7) engine.power>98.385 16165 24.0100 0.2137 *
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10.3.2 OLS Model Development and Refinement 

Once a manageable number of modal variables have been identified through regression 
tree analysis, the modeling process moves into the phase where ordinary least squares techniques 
are used to obtain a final model. The research objective here is to identify the extent to which 
the identified factors influence emission rates in acceleration mode. Modelers rely on previous 
research, a priori knowledge, educated guesses, and stepwise regression procedures to identify 
acceptable functional forms, to determine important interactions, and to derive statistically and 
theoretically defensible models. The final model will be our best understanding about the func­
tional relationship between independent variables and dependent variables. 

10.3.2.1 NOx Emission Rate Model Development for Acceleration Mode 

Based on previous analysis, truncated transformed NOx will serve as the independent 
variable. However, modelers should keep in mind that the comparisons should always be made 
on the original untransformed scale of Y when comparing the performance of statistical models.  
HTBR tree model results suggest that engine power is the best one to begin with. Linear regres­
sion model with engine power will be developed first, followed by a combined power and ve­
hicle speed model. 

10.3.2.1.1 Linear Regression Model with Engine Power 

Let’s select engine power to begin with, and estimate the model: 

Y = β0 + β1(engine.power) + Error (1.1) 

The regression run yields the results shown in Table 10-14. 
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Table 10-14 Regression Result for NO  Model 1.1 x
Call: lm(formula = NOx.50 ~ engine.power, data = busdata10242006.1.3, na.action =

na.exclude)

Residuals:


 Min 1Q Median 3Q Max 

-0.4093 -0.08133 0.005414 0.07084 0.9344


Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.3054 0.0021 147.9391 0.0000 
engine.power 0.0008 0.0000 83.3557 0.0000 

Residual standard error: 0.09781 on 18892 degrees of freedom
Multiple R-Squared: 0.2689
F-statistic: 6948 on 1 and 18892 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

engine.power -0.9387 

Analysis of Variance Table 

Response: NOx.50 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

engine.power 1 66.4763 66.47630 6948.175 0
 Residuals 18892 180.7482 0.00957 

These results suggest that engine power explains about 27% of the variance in truncated 
transformed NOx. F-statistic shows that β1 ≠ 0, and the linear relationship is statistically signifi­
cant. To evaluate the model, residual normality is checked by examining quantile-quantile (QQ) 
plot and checking constancy of variance by examining residuals vs. fi tted values. 
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Figure 10-28 QQ and Residual vs. Fitted Plot for NOx Model 1.1 

The residual plot in Figure 10-28 shows a slight departure from linear regression assump­
tions indicating a need to explore a curvilinear regression function. Since the variability at the 
different X levels appears to be fairly constant, a transformation on X is considered.  The reason 
to consider transformation first is to avoid multicollinearity brought about by adding the second-
order of X. Based on the prototype plot in Figure 10-28, the square root transformation and loga­
rithmic transformation are tested. Scatter plots and residual plots based on each transformation 
should then be prepared and analyzed to determine which transformation is most effective. 

Y = β0 + β1engine.power(1/2) + Error (1.2) 

Y = β0 + β1log10(engine.power+1) + Error (1.3) 

The result for Model 1.2 will be shown in Table 10-15 and Figure 10-29, while the result 
for Model 1.3 will be shown in Table 10-16 and Figure 10-30. 
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Table 10-15 Regression Result for NO  Model 1.2 x
Call: lm(formula = NOx.50 ~ engine.power^(1/2), data = busdata10242006.1.3,

na.action = na.exclude)

Residuals:


 Min 1Q Median 3Q Max 

-0.4106 -0.07981 0.004093 0.06858 0.9248


Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1912 0.0030 63.2141 0.0000 
I(engine.power^(1/2)) 0.0196 0.0002 93.5953 0.0000 

Residual standard error: 0.09455 on 18892 degrees of freedom
Multiple R-Squared: 0.3168
F-statistic: 8760 on 1 and 18892 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

I(engine.power^(1/2)) -0.9738 

Analysis of Variance Table 

Response: NOx.50 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

I(engine.power^(1/2)) 1 78.3199 78.31986 8760.082 0
 Residuals 18892 168.9047 0.00894 

Figure 10-29 QQ and Residual vs. Fitted Plot for NO  Model 1.2 x
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Table 10-16 Regression Result for NO  Model 1.3 x
*** Linear Model ***


Call: lm(formula = NOx.50 ~ log10(engine.power + 1), data = busdata10242006.1.3,

na.action = na.exclude)

Residuals:


 Min 1Q Median 3Q Max 

-0.4109 -0.07485 0.001841 0.06716 0.9119


Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) -0.0514 0.0052 -9.7873 0.0000 
log10(engine.power + 1) 0.2291 0.0023 99.6000 0.0000 

Residual standard error: 0.09263 on 18892 degrees of freedom
Multiple R-Squared: 0.3443
F-statistic: 9920 on 1 and 18892 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

log10(engine.power + 1) -0.9917 

Analysis of Variance Table 

Response: NOx.50 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(engine.power + 1) 1 85.1206 85.12056 9920.161 0
 Residuals 18892 162.1040 0.00858 

Figure 10-30 QQ and Residual vs. Fitted Plot for NO  Model 1.3 x
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The results suggest that by using square root transformed engine power, the model increases 
the amount of variance explained in truncated transformed NOx from about 27% (Model 1.1) to 
about 32% (Model 1.2), while the increase is about 34% (Model 1.3) by using log transformed 
engine power. 

Model 1.3 improves the R2 more than does Model 1.2. The residuals scatter plot for 
Model 1.3 (Figure 10-30) shows a more reasonably linear relationship than Model 1.2 (Figure 
10-29). Figure 10-30 also shows that Model 1.3 does a better job in improving the pattern of 
variance. QQ plot shows general normality with the exceptions arising in the tails. 

10.3.2.1.2 Linear Regression Model with Engine Power and Vehicle Speed 

HTBR tree model results also suggest that vehicle speed may be an important predictive 
variable for emissions under certain conditions. After developing a linear regression model with 
engine power, adding vehicle speed might improve the model predictive ability.  The new model 
is proposed as: 

Y = β0 + β1log10(engine.power+1) + β2vehicle.speed + Error (1.4) 

The result for Model 1.4 is shown in Table 10-17 and Figure 10-31. 
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Table 10-17 Regression Result for NO  Model 1.4 x
Call: lm(formula = NOx.50 ~ log10(engine.power + 1) + vehicle.speed, data =

busdata10242006.1.3, na.action = na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-0.4133 -0.07416 0.004219 0.06303 0.9019 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) -0.0195 0.0053 -3.6693 0.0002 
log10(engine.power + 1) 0.2007 0.0025 79.3288 0.0000

 vehicle.speed 0.0019 0.0001 25.1554 0.0000 

Residual standard error: 0.09112 on 18891 degrees of freedom
Multiple R-Squared: 0.3656
F-statistic: 5442 on 2 and 18891 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept) log10(engine.power + 1)

log10(engine.power + 1) -0.9681
vehicle.speed 0.2383 -0.4470 

Analysis of Variance Table 

Response: NOx.50 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(engine.power + 1) 1 85.1206 85.12056 10251.92 0
 vehicle.speed 1 5.2540 5.25404 632.80 0

 Residuals 18891 156.8499 0.00830 

10-35




Figure 10-31 QQ and Residual vs. Fitted Plot for NOx Model 1.4 

The results suggest that by using vehicle speed and transformed engine power, the model 
increases the amount of variance explained in truncated transformed NOx from about 34% 
(Model 1.3) to about 37% (Model 1.4). The residuals scatter plot for Model 1.4 (Figure 10-31) 
shows a more reasonably linear relationship. Figure 10-31 also shows that model 1.4 does a bet­
ter job in improving the pattern of variance. QQ plot shows general normality, with deviation at 
the tails. 

10.3.2.1.3 Linear Regression Model with Dummy Variables 

Figure 10-19 suggests that the relationship between NOx and engine power may be 
somewhat different across the engine power ranges identified in the tree analysis. That is, there 
may be higher or lower NOx emissions in different engine power operating ranges.  One dummy 
variable is created to represent different engine power ranges identified in Figure 10-19 for use in 
linear regression analysis as illustrated below: 

Engine power (bhp) dummy1 
< 72.30 1 
≥ 72.30 0 
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This dummy variable and the interaction between dummy variable and engine power are 
then tested to determine whether the use of the variables and interactions can help improve the 
model: 

Y = β0 + β1log10(engine.power+1) + β2vehicle.speed + β3 dummy1 + (1.5)
β4dummy1 log10(engine.power+1) + β5 dummy1vehicle.speed + Error 

The result for Model 1.5 is shown in Table 10-18 and Figure 10-32. 

Table 10-18 Regression Result for NO  Model 1.5 x
Call: lm(formula = NOx.50 ~ log10(engine.power + 1) + vehicle.speed + dummy1 *
log10( engine.power + 1) + dummy1:vehicle.speed, data = busdata10242006.1.3,

na.action = na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-0.4124 -0.07157 0.003012 0.06319 0.8924 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1439 0.0115 12.4979 0.0000
 log10(engine.power + 1) 0.1281 0.0052 24.8261 0.0000

 vehicle.speed 0.0023 0.0001 28.9191 0.0000
 dummy1 -0.1492 0.0148 -10.0783 0.0000 

dummy1:log10(engine.power + 1) 0.0609 0.0081 7.4995 0.0000
 dummy1:vehicle.speed -0.0035 0.0003 -10.4883 0.0000 

Residual standard error: 0.09022 on 18888 degrees of freedom
Multiple R-Squared: 0.3781
F-statistic: 2297 on 5 and 18888 degrees of freedom, the p-value is 0 

Analysis of Variance Table 

Response: NOx.50 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value 

log10(engine.power + 1) 1 85.1206 85.12056 10456.89
 vehicle.speed 1 5.2540 5.25404 645.45

 dummy1 1 1.9017 1.90166 233.62 
dummy1:log10(engine.power + 1) 1 0.3018 0.30180 37.08

 dummy1:vehicle.speed 1 0.8955 0.89546 110.01
 Residuals 18888 153.7510 0.00814 

Pr(F)
log10(engine.power + 1) 0.000000e+000

vehicle.speed 0.000000e+000
dummy1 0.000000e+000

dummy1:log10(engine.power + 1) 1.158203e-009
dummy1:vehicle.speed 0.000000e+000

Residuals 
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Figure 10-32 QQ and Residual vs. Fitted Plot for NOx Model 1.5 

The results suggest that by using dummy variables and interactions with transformed 
engine power and vehicle speed, the model slightly increases the amount of variance explained 
in truncated transformed NOx from about 37% (Model 1.4) to about 38% (Model 1.5). 

Model 1.5 slightly improves the R2 compared to Model 1.4. The residuals scatter plot 
for Model 1.5 (Figure 10-32) shows a slightly more linear relationship. Figure 10-32 also shows 
that Model 1.4 may also do a slightly better job in improving the pattern of variance. The QQ 
plot shows general normality with the exceptions arising in the tails. However, it is important 
to note that the model improvement, in terms of amount of variance explained by the model, is 
marginal at best. 

10.3.2.1.4 Model Discussions 

The performance of alternative models can be evaluated by comparing model predictions 
and actual observations for emission rates. The performance of the model can be evaluated in 
terms of precision and accuracy (Neter et al. 1996). The R2 value is an indication of precision. 
Usually, higher R2 values imply a higher degree of precision and less unexplained variability in 
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MPE = 
1 ∑ 

n 

( yi − y �i ) 
  

n i=1 

model predictions than lower R2 values. The slope of the trend line for the observed versus pre­
dicted values is an indication of accuracy.  A slope of one indicates an accurate prediction, in that 
the prediction of the model corresponds to an observation. Since the R2 and slope are derived by 
comparing model predictions and actual observations for emission rates, these numbers will be 
different from those observed in linear regression models. 

The models’ predictive ability is also evaluated using the root mean square error (RMSE) 
and the mean prediction error (MPE) (Neter et al. 1996). The RMSE is a measure of prediction 
error.  When comparing two models, the model with a smaller RMSE is a better predictor of 
the observed phenomenon. Ideally, mean prediction error is close to zero.  RMSE and MPE are 
calculated as follows: 

2 

1 

1 ( ) 
n 

i i 
i 

RMSE y y
n = 

= −∑ �   Equation (10-1) 

 Equation (10-1)

where:

RMSE: = root mean square error

n: = number of observations

 yi: = observaton y 
ȳ i: = mean of observation y 
MPE: = mean predictive error

 Previous sections provide the model development process from one model to another 
model. To test whether the linear regression with power was a beneficial addition to the regres­
sion tree model, the mean ERs at HTBR end nodes (single value) are compared to the predictions 
from the linear regression function with engine power.  The results of the performance evalua­
tion are shown in Table 10-19.  The improvement in R2 associated with moving toward a linear 
function of engine power is large.  Hence, the use of the linear regression function will provide a 
significant improvement in spatial and temporal model prediction capability.  But this linear re­
gression function might still be improved. Since the R2 and slope in Table 10-19 are derived by 
comparing model predictions and actual observations for emission rates (untransformed y), these 
numbers are different from those obtained from linear regression models. 
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x

Coeffi cient of 
determination 

(R2) 

Slope 
(β1) 

RMSE MPE 

Mean ERs 0.00026 1.000 0.10455 0.00001 
Linear Regression (Power) 0.190 0.838 0.09463 0.00428 
Linear Regression (Power5) 0.215 0.901 0.09321 0.00898 
Linear Regression (log(Power)) 0.236 1.012 0.09178 0.00872 
Linear Regression (log(Power)+Speed) 0.268 1.001 0.08982 0.00837 
Linear Regression (log(Power)+Speed+Dummy) 0.280 1.036 0.08912 0.00834 

Two transforms of engine power were tested: square root transformation and log trans­
formation. The results of the performance evaluation are shown in Table 10-19.  Results suggest 
that linear regression function with log transformation performs slightly better.  

The addition of vehicle speed was also tested. The results of the performance evaluation 
are shown in Table 10-19.  Analysis results suggest that a linear regression function for engine 
power and vehicle speed also performs slightly better. 

Since the regression tree modeling exercise indicated that a number of power cutpoints 
may play a role in the emissions process, an additional modeling run was performed. The results 
of the performance evaluation are also shown in Table 10-19.  Analysis results suggest that a 
linear regression function with dummy variables performs slightly better than the model without 
the power cutpoints. 

Table 10-19 Comparative Performance Evaluation of NO  Emission Rate Models 

Although the linear regression function with dummy variables works slightly better than 
the linear regression function with engine power and vehicle speed, it introduces more explanato­
ry variables (dummy variables and the interaction with engine power) and increases the complex­
ity of the regression model. There is only one regression function for Model 1.4 while there are 
two regression functions for Model 1.5. There is also no obvious reason why the engine may be 
performing slightly differently within these power regimes, yielding different regression slopes 
and intercepts. The fuel injection systems in these engines may operate slightly differently under 
low load (near-idle) and high load conditions.  This fuel injection system may be controlled by 
the engine computer.  There may be a sufficient number of low power cruise operations and high 
power cruise operations that are incorrectly classified, and that may be better classified as idle 
or acceleration events (perhaps due to GPS speed data errors). In any case, because the model 
with dummy variables does not perform appreciably better than the model without the dummy 
variables, the dummy variables are not included in the final model selection at this time. These 
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dummy variables are, however, worth exploring when additional data from other engine technol­
ogy groups become available for analysis. Model 1.4 is selected as the preliminary ‘fi nal’ model. 

The next step in model evaluation is to once again examine the residuals for the improved 
model. A principal objective was to verify that the statistical properties of the regression model 
conform with a set of properties of least squares estimators. In summary, these properties require 
that the error terms be normally distributed, have a mean of zero, and have uniform variance. 

Test for Constancy of Error Variance 

A plot of the residuals versus the fitted values is useful in identifying any patterns in the 
residuals. Figure 10-31(c) shows this plot for NOx model. Without considering variance due to 
high emission points and zero load data, there is no obvious pattern in the residuals across the 
fi tted values. 

Test of Normality of Error terms 

The first informal test normally reserved for the test of normality of error terms is a 
quantile-quantile plot of the residuals. Figure 10-31 plot (c) shows the normal quantile plot of the 
NOx model. The second informal test is to compare actual frequencies of the residuals against 
expected frequencies under normality.  Under normality, we expect 68 percent of the residuals 
to fall between ± √MSE and about 90 percent fall between ±1.645 √MSE . Actually, 72.64% of 
residuals fall within the first limits, while 93.79% of residuals fall within the second limits. Thus, 
the actual frequencies here are reasonably consistent with those expected under normality.  The 
heavy tails at both ends are a cause for concern, but are due to the nature of the data set. For 
example, even after the transformation, the response variable is not a true normal distribution. 

Based on the above analysis, the fi nal NO x emission model for cruise mode is: 

NOx = [-0.0195 + 0.201log10(engine.power+1) + 0.0019vehicle.speed]2 

Analysis results support the observation that the fi nal NO x emission model is significantly 
better at explaining variability without making the model too complex. Since there is only one 
engine type, complexity may not be valid in terms of transferability.  This model is specific to the 
engine classes employed in the transit bus operations. Different models may need to be devel­
oped for other engine classes and duty cycles. 
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10.3.2.2 CO Emission Rate Model Development for Acceleration Mode 

Based on previous analysis, truncated transformed CO will serve as the independent 
variable. However, modelers should keep in mind that the comparisons should always be made 
on the original untransformed scale of Y when comparing statistical models.  HTBR tree model 
results suggest that engine power is best to begin with. 

10.3.2.2.1 Linear Regression Model with Engine Power 

Let’s select engine power to begin with, and estimate the model: 

Y = β0 + β1engine.power + Error (2.1) 

The regression run yields the results shown in Table 10-20. 

Table 10-20 Regression Result for CO Model 2.1 
Call: lm(formula = log.CO ~ engine.power, data = busdata10242006.1.3, na.action =
na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-3.151 -0.3515 -0.05231 0.3448 1.453 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) -1.8549 0.0100 -185.2318 0.0000 
engine.power 0.0031 0.0000 69.7761 0.0000 

Residual standard error: 0.473 on 18862 degrees of freedom
Multiple R-Squared: 0.2052
F-statistic: 4869 on 1 and 18862 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

engine.power -0.939 

Analysis of Variance Table 

Response: log.CO 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

engine.power 1 1089.300 1089.300 4868.698 0
 Residuals 18862 4220.097 0.224 

The results suggest that engine power explains about 21% of the variance in truncated 
transformed CO. F-statistic shows that β1 ≠ 0, and the linear relationship is statistically signifi­
cant. To evaluate the model, the normality is examined in the QQ plot and constancy of variance 
is checked by examining residuals vs. fi tted values. 
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Figure 10-33 QQ and Residual vs. Fitted Plot for CO Model 2.1 

The residual plot in Figure 10-33 shows a slight departure from linear regression assump­
tions indicating a need to explore a curvilinear regression function. Since the variability at the 
different X levels appears to be fairly constant, a transformation on X is considered.  The reason 
to consider transformation first is avoiding multicollinearity brought about by adding the second-
order of X. Based on the prototype plot in Figure 10-33, the square root transformation and loga­
rithmic transformation were tested. Scatter plots and residual plots based on each transformation 
should then be prepared and analyzed to determine which transformation is most effective. 

Y = β0 + β1engine.power^(1/2) + Error (2.2) 

Y = β0 + β1log10(engine.power+1) + Error (2.3) 

The result for Model 2.2 is shown in Table 10-21 and Figure 10-34, while the result for 
Model 2.3 is shown in Table 10-22 and Figure 10-35. 
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Table 10-21 Regression Result for CO Model 2.2 
Call: lm(formula = log.CO ~ engine.power^(1/2), data = busdata10242006.1.3,
na.action = na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-2.798 -0.3492 -0.0529 0.3381 1.52 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) -2.3146 0.0149 -155.8023 0.0000 
I(engine.power^(1/2)) 0.0793 0.0010 77.1161 0.0000 

Residual standard error: 0.4626 on 18862 degrees of freedom
Multiple R-Squared: 0.2397
F-statistic: 5947 on 1 and 18862 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

I(engine.power^(1/2)) -0.974 

Analysis of Variance Table 

Response: log.CO 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

I(engine.power^(1/2)) 1 1272.706 1272.706 5946.896 0
 Residuals 18862 4036.691 0.214 

Figure 10-34 QQ and Residual vs. Fitted Plot for CO Model 2.2 
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Table 10-22 Regression Result for CO Model 2.3 
Call: lm(formula = log.CO ~ log10(engine.power + 1), data = busdata10242006.1.3,

na.action = na.exclude)

Residuals:


 Min 1Q Median 3Q Max 

-2.187 -0.3475 -0.05182 0.3313 2.475


Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) -3.2695 0.0261 -125.3639 0.0000 
log10(engine.power + 1) 0.9152 0.0114 80.0560 0.0000 

Residual standard error: 0.4584 on 18862 degrees of freedom
Multiple R-Squared: 0.2536
F-statistic: 6409 on 1 and 18862 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

log10(engine.power + 1) -0.9918 

Analysis of Variance Table 

Response: log.CO 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(engine.power + 1) 1 1346.515 1346.515 6408.966 0
 Residuals 18862 3962.882 0.210 

Figure 10-35 QQ and Residual vs. Fitted Plot for CO Model 2.3 
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The results suggest that by using transformed engine power, the model increases the 
amount of variance explained in truncated transformed CO from about 21% to about 25%. 

Model 2.3 improves the R2 more than does Model 2.2. The residuals scatter plot for 
Model 2.3 (Figure 10-35) shows a more reasonably linear relationship than Model 2.2 (Figure 
10-34). Figure 10-35 also shows that Model 2.3 does a better job in improving the pattern of 
variance. QQ plot shows general normality with the exceptions arising in the tails. 

10.3.2.2.2 Linear Regression Model with Engine Power and Vehicle Speed 

HTBR tree model results also suggest that vehicle speed may be an important predictive 
variable for emissions under certain conditions. After developing a linear regression model with 
engine power, adding vehicle speed might improve the model predictive ability.  The new model 
is proposed as: 

Y = β0 + β1log10(engine.power+1) + β2vehicle.speed + Error (2.4) 

The result for Model 2.4 will be shown in Table 10-23 and Figure 10-36. 

Table 10-23 Regression Result for CO Model 2.4 
Call: lm(formula = log.CO ~ log10(engine.power + 1) + vehicle.speed, data =

busdata10242006.1.3, na.action = na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-2.299 -0.236 -0.02889 0.2281 3.209 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) -3.7472 0.0225 -166.3169 0.0000 
log10(engine.power + 1) 1.3412 0.0107 125.1282 0.0000

 vehicle.speed -0.0285 0.0003 -89.0585 0.0000 

Residual standard error: 0.3846 on 18861 degrees of freedom
Multiple R-Squared: 0.4746
F-statistic: 8517 on 2 and 18861 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept) log10(engine.power + 1)

log10(engine.power + 1) -0.9683
vehicle.speed 0.2380 -0.4463 

Analysis of Variance Table 

Response: log.CO 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(engine.power + 1) 1 1346.515 1346.515 9103.577 0
 vehicle.speed 1 1173.140 1173.140 7931.415 0

 Residuals 18861 2789.742 0.148 
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Figure 10-36 QQ and Residual vs. Fitted Plot for CO Model 2.4 

The results suggest that by using vehicle speed and transformed engine power, the model 
increases the amount of variance explained in truncated transformed CO from about 25% to 
about 47%. 

Model 2.4 tremendously improves the R2 achieved in Model 2.3. The residuals scat­
ter plot for Model 2.4 (Figure 10-36) shows a reasonably linear relationship. Figure 10-36 also 
shows that Model 2.4 does a slightly better job in improving the pattern of variance. QQ plot 
shows general normality with the exceptions arising in the tails. 

10.3.2.2.3 Linear Regression Model with Dummy Variables 

Figure 10-22 suggests that the relationship between CO and engine power may be some­
what different across the engine power ranges identified in the tree analysis. That is, there may 
be higher or lower CO emissions in different engine power operating ranges.  One dummy vari­
able is created to represent different engine power ranges identified in Figure 10-22 for use in 
linear regression analysis as illustrated below: 

Engine power (bhp) Dummy1 
< 82.625 1 
≥ 82.625 0 
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This dummy variable and the interaction between dummy variable and engine power are 
then tested to determine whether the use of the variable and interactions can help improve the 
model. 

Y = β0 + β1log10(engine.power+1) + β2vehicle.speed + β3 dummy1 + (2.5)

β4dummy1 log10(engine.power+1) + β5 dummy1vehicle.speed + Error


The result for Model 2.5 are shown in Table 10-24 and Figure 10-37. 
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Table 10-24 Regression Result for CO Model 2.5 
Call: lm(formula = log.CO ~ log10(engine.power + 1) + vehicle.speed + dummy1 * log10(

engine.power + 1) + dummy1 * vehicle.speed, data = busdata10242006.1.3,
na.action = na.exclude)

Residuals:
 Min 1Q Median 3Q Max 

-2.383 -0.233 -0.02602 0.2235 2.124 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) -4.4320 0.0498 -89.0217 0.0000
 log10(engine.power + 1) 1.6746 0.0222 75.4956 0.0000

 vehicle.speed -0.0333 0.0003 -102.3796 0.0000
 dummy1 1.4402 0.0614 23.4537 0.0000 

dummy1:log10(engine.power + 1) -1.0349 0.0321 -32.2634 0.0000
 dummy1:vehicle.speed 0.0414 0.0013 32.8802 0.0000 

Residual standard error: 0.3655 on 18858 degrees of freedom
Multiple R-Squared: 0.5255
F-statistic: 4177 on 5 and 18858 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept) log10(engine.power + 1)

log10(engine.power + 1) -0.9926
vehicle.speed 0.3000 -0.4020 

dummy1 -0.8108 0.8047 
dummy1:log10(engine.power + 1) 0.6864 -0.6915 

dummy1:vehicle.speed -0.0774 0.1038 

vehicle.speed dummy1
log10(engine.power + 1)

vehicle.speed
dummy1 -0.2432

dummy1:log10(engine.power + 1) 0.2780 -0.9559
 dummy1:vehicle.speed -0.2581 0.0018

 dummy1:log10(engine.power + 1)
log10(engine.power + 1)


vehicle.speed

dummy1


dummy1:log10(engine.power + 1)

dummy1:vehicle.speed -0.1467 

Analysis of Variance Table 

Response: log.CO 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(engine.power + 1) 1 1346.515 1346.515 10079.07 0
 vehicle.speed 1 1173.140 1173.140 8781.31 0

 dummy1 1 23.180 23.180 173.51 0 
dummy1:log10(engine.power + 1) 1 102.793 102.793 769.44 0

 dummy1:vehicle.speed 1 144.430 144.430 1081.10 0
 Residuals 18858 2519.338 0.134 
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Figure 10-37 QQ and Residual vs. Fitted Plot for CO Model 2.5 

Model 2.5 does improve R2 from around 0.47 to around 0.52 by adding the dummy 
variables. The residuals scatter plot for Model 2.5 (Figure 10-37) shows a slightly more linear 
relation. Figure 10-37 also shows that Model 2.5 perhaps may improve the pattern of variance. 
The QQ plot again shows general normality with the exceptions arising in the tails. However, 
it is important to note that the model improvement, in terms of amount of variance explained by 
the model, is not large. 

Then three more dummy variables will be created to represent different engine power and 
vehicle speed ranges in Figure 10-22 and are shown as follow: 

Thresholds Dummy21 Dummy22 Dummy23 
engine.power < 82.625 1 0 0 
engine.power [82.625, 152.96] & vehicle.speed < 19.05 0 1 0 
engine.power ≥ 152.96 & vehicle.speed < 19.05 0 0 1 
engine.power ≥ 82.625 & vehicle.speed ≥ 19.05 0 0 0 

These three dummy variables and the interaction between dummy variables and engine 
power and vehicle speed are added to improve the model. This model will be: 

Y = β0 + β1log10(engine.power+1) + β2 vehicle.speed + β3dummy21 + 
β4 dummy21 log10(engine.power+1) + β5 dummy21 vehicle.speed + β6 dummy22 + 
β7 dummy22 log10(engine.power+1) + β8 dummy22 vehicle.speed + β9dummy23 + (2.6) 

β10dummy23log10(engine.power+1) +β11dummy23 vehicle.speed + Error 
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The results for Mode. 2.6 are shown in Table 10-25 and Figure 10-35. 
Table 10-25  Regression Result for CO Model 2.6 
*** Linear Model *** 
Call: lm(formula = log.CO ~ log10(engine.power + 1) + vehicle.speed + dummy21 *

log10(engine.power + 1) + dummy21 * vehicle.speed + dummy22 * log10(
engine.power + 1) + dummy22 * vehicle.speed + dummy23 * log10(
engine.power + 1) + dummy23 * vehicle.speed, data =
busdata10242006.1.3, na.action = na.exclude)

Residuals:
 Min 1Q Median 3Q Max 

-2.562 -0.2086 -0.02372 0.2012 2.124 
Coefficients: Value Std. Error t value Pr(>|t|)

(Intercept) -3.5895 0.0945 -37.9720 0.0000
 log10(engine.power + 1) 1.1014 0.0389 28.3316 0.0000

 vehicle.speed -0.0150 0.0007 -21.0912 0.0000 
dummy21 0.5978 0.1007 5.9384 0.0000
 dummy22 -1.4856 0.2216 -6.7035 0.0000
 dummy23 -2.3863 0.1632 -14.6202 0.0000 

dummy21:log10(engine.power + 1) -0.4617 0.0448 -10.3020 0.0000
 dummy21:vehicle.speed 0.0231 0.0014 16.8659 0.0000 

dummy22:log10(engine.power + 1) 0.8643 0.1048 8.2494 0.0000
 dummy22:vehicle.speed -0.0194 0.0016 -12.1421 0.0000 

dummy23:log10(engine.power + 1) 1.3505 0.0701 19.2614 0.0000
 dummy23:vehicle.speed -0.0387 0.0012 -30.9943 0.0000 

Residual standard error: 0.3517 on 18852 degrees of freedom
Multiple R-Squared: 0.5609
F-statistic: 2189 on 11 and 18852 degrees of freedom, the p-value is 0
Analysis of Variance Table
Response: log.CO
Terms added sequentially (first to last)

Df Sum of Sq Mean Sq F Value 
log10(engine.power + 1) 1 1346.515 1346.515 10887.89

 vehicle.speed 1 1173.140 1173.140 9485.98
 dummy21 1 23.180 23.180 187.44
 dummy22 1 67.463 67.463 545.50
 dummy23 1 100.345 100.345 811.39 

dummy21:log10(engine.power + 1) 1 35.491 35.491 286.98
 dummy21:vehicle.speed 1 93.450 93.450 755.63 

dummy22:log10(engine.power + 1) 1 3.681 3.681 29.76
 dummy22:vehicle.speed 1 3.564 3.564 28.82 

dummy23:log10(engine.power + 1) 1 12.318 12.318 99.61
 dummy23:vehicle.speed 1 118.804 118.804 960.65

 Residuals 18852 2331.445 0.124 


Pr(F)

log10(engine.power + 1) 0.000000e+000


vehicle.speed 0.000000e+000
dummy21 0.000000e+000
dummy22 0.000000e+000
dummy23 0.000000e+000

dummy21:log10(engine.power + 1) 0.000000e+000
dummy21:vehicle.speed 0.000000e+000

dummy22:log10(engine.power + 1) 4.942365e-008
dummy22:vehicle.speed 8.032376e-008

dummy23:log10(engine.power + 1) 0.000000e+000

 dummy23:vehicle.speed 0.000000e+000

Residuals 
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Figure 10-38 QQ and Residual vs. Fitted Plot for CO Model 2.6 

Model 2.6 does improve the ability to explain variance by another 4% (R2 increases from 
from 0.47 to 0.52 and then to 0.56 by adding the dummy variables). Model 2.6 slightly improves 
R2 compared to Model 2.5. The residuals scatter plot for Model 2.6 (Figure 10-38) shows a more 
reasonably linear relation. Figure 10-38 also shows that Model 2.6 does a better job in improv­
ing the pattern of variance. The QQ plot again shows general normality with the exceptions aris­
ing in the tails. However, it is important to note that the model improvement, in terms of amount 
of variance explained by the model, is small. 

10.3.2.2.4 Model Discussions 

The previous sections outline the model development process from the regression tree 
model, to a simple OLS model, to more complex OLS models. Since the performance of the 
models is evaluated by comparing model predictions and actual observations for emission rates, 
the R2 and slope are different from those in previous linear regression models.  The results of 
each step in the model improvement process are presented in Table 10-26.  The mean emission 
rates at HTBR end nodes (single value) are compared to the results of various linear regres­
sion functions with engine power.  Since the R2 values and slopes in Table 10-26 are derived by 
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Coeffi cient of 
determination 

(R2) 

Slope 
(β1) 

RMSE MPE 

Mean ERs 0.00003 1.000 0.16032 -0.00002 
Linear Regression (Power) 0.0462 1.180 0.16516 0.05229 
Linear Regression (Power0.5) 0.0502 1.227 0.16420 0.05006 
Linear Regression (log(Power)) 0.0553 1.534 0.16455 0.05120 
Linear Regression (log(Power)+Speed) 0.392 2.161 0.14252 0.04211 
Linear Regression (log(Power)+Speed+Dummy Set 1) 0.406 1.765 0.13632 0.03689 
Linear Regression (log(Power)+Speed+Dummy Set 2) 0.437 1.242 0.12565 0.03003 

comparing model predictions and actual observations for emission rates (untransformed y), these 
numbers will be different from those obtained from linear regression models. 

Table 10-26 Comparative Performance Evaluation of CO Emission Rate Models 

The improvement in R2 associated with moving toward a linear function of engine power 
is significant. Hence, the use of the linear regression function will provide a signifi cant improve­
ment on spatial and temporal model prediction capability.  However this linear regression func­
tion might still be improved. 

Results suggest that a linear regression function with log transformation performs slightly 
better than the others and that the use of dummy variables can further improve model perfor­
mance. Although the linear regression function with dummy variables performs slightly better 
than the linear regression function with log transformation, the introduction of more explanatory 
variables (dummy variables and the interaction with engine power) increases the complexity 
of the regression model. As discussed in Section 10.3.2.1.4, there is no compelling reason to 
include the dummy variables in the model since: 1) the models with dummy variables are more 
complex without significantly improving model performance, and 2) there is no compelling en­
gineering reason at this time to support the difference in model performance within these specific 
power regions. Yet, given the explanatory power of the power cutpoint dummy variables (a 10% 
increase in explained variance), additional investigation into why these values are turning out to 
be significant is definitely warranted. It may be wise to include such cutpoints in on-road mod­
els for various engine technology groups. Such dummy variables are, however, worth exploring 
when additional data from other engine technology groups become available for analysis. 

It can be argued that inclusion of the dummy variables for power is warranted.  However, 
Model 2.4 is chosen as the preliminary ‘final’ model based solely upon ease of implementation.  
The next step in model evaluation is to once again examine the residuals for the improved model. 
A principal objective was to verify that the statistical properties of the regression model conform 
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to a set of properties of least squares estimators. In summary, these properties require that the 
error terms be normally distributed, have a mean of zero, and have uniform variance. 

Test for Constancy of Error Variance 

A plot of the residuals versus the fitted values is useful in identifying patterns in the 
residuals. Figure 10-36 plot (a) shows this plot for CO Model 2.4. Without considering variance 
due to high emission points and zero load data, there is no obvious pattern in the residuals across 
the fi tted values. 

Test of Normality of Error Terms 

The first informal test normally reserved for the test of normality of error terms is a 
quantile-quantile plot of the residuals. Figure 10-36 plot (c) shows the normal quantile plot of 
CO Model 2.4. The second informal test is to compare actual frequencies of the residuals against 
expected frequencies under normality.  Under normality, we expect 68 percent of the residuals 
to fall between ± √MSE  and about 90 percent to fall between ± 1.645 √MSE. Actually, 87.35% 
of residuals fall within the first limits, while 92.19% of residuals fall within the second limits. 
Thus, the actual frequencies here are reasonably consistent with those expected under normality. 
The heavy tails at both ends are a cause for concern, but are due to the nature of the data set. For 
example, even after the transformation, the response variable is not the real normal distribution. 

Based on above analysis, final CO emission model for cruise mode is: 

CO = 10[-3.747+1.341log10(engine.power+1) - 0.0285vehicle.speed] 

Analysis results support the observation that the final CO emission model (2.4) is signifi­
cantly better at explaining variability without making the model too complex. Since there is only 
one engine type, complexity may not be valid in terms of transferability.  This model is specific 
to the engine classes employed in the transit bus operations. Different models may need to be 
developed for other engine classes and duty cycles. 

10.3.2.3 HC Emission Rate Model Development for Acceleration Mode 

Based on previous analysis, truncated transformed HC will serve as the independent 
variable. However, modelers should keep in mind that the comparisons should always be made 
on the original untransformed scale of Y when comparing statistical models.  HTBR tree model 
results suggest that engine power is the best one to begin with. 
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10.3.2.3.1 Linear Regression with Engine Power 

Let’s select engine power to begin with, and estimate the model: 

Y = β0 + β1engine.power + Error (3.1) 

The regression run yields the results shown in Table 10-27 and Figure 10-39. 

Table 10-27  Regression Result for HC Model 3.1 
Call: lm(formula = HC.25 ~ engine.power, data = busdata10242006.1.3, na.action =

na.exclude)

Residuals:


 Min 1Q Median 3Q Max 

-0.1285 -0.02417 -0.00003173 0.02467 0.2904


Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1840 0.0009 216.4203 0.0000 
engine.power 0.0001 0.0000 32.4947 0.0000 

Residual standard error: 0.03989 on 18328 degrees of freedom
Multiple R-Squared: 0.05447
F-statistic: 1056 on 1 and 18328 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

engine.power -0.938 

Analysis of Variance Table 

Response: HC.25 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

engine.power 1 1.67991 1.679912 1055.908 0
 Residuals 18328 29.15918 0.001591 
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Figure 10-39 QQ and Residual vs. Fitted Plot for HC Model 3.1 

The results suggest that engine power explains about 5% of the variance in truncated 
transformed HC. F-statistic shows that β1 ≠ 0, and the linear relationship is statistically signifi­
cant. To evaluate the model, the normality is examined in the QQ plot and constancy of variance 
is checked by examining residuals vs. fi tted values. 

The residual plot in Figure 10-39 shows a slight departure from linear regression assump­
tions indicating a need to explore a curvilinear regression function. Since the variability at the 
different X levels appears to be fairly constant, a transformation on X is considered.  The reason 
to consider transformation first is to avoid multicollinearity brought about by adding the second-
order of X. Based on the prototype plot in Figure 10-39, the square root transformation and loga­
rithmic transformation are tested. Scatter plots and residual plots based on each transformation 
should then be prepared and analyzed to determine which transformation is most effective. 

Y = β0 + β1engine.power(1/2) + Error (3.2) 

Y = β0 + β1log10(engine.power+1) + Error (3.3) 
The result for Model 3.2 is shown in Table 10-28 and Figure 10-40, while the result for 

Model 3.3 is shown in Table 10-29 and Figure 10-41. 
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Table 10-28  Regression Result for HC Model 3.2 
Call: lm(formula = HC.25 ~ engine.power^(1/2), data = busdata10242006.1.3, na.action

= na.exclude)

Residuals:


 Min 1Q Median 3Q Max 

-0.1173 -0.02389 -0.0002473 0.0244 0.2969


Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1625 0.0013 127.4341 0.0000 
I(engine.power^(1/2)) 0.0034 0.0001 38.2005 0.0000 

Residual standard error: 0.03948 on 18328 degrees of freedom
Multiple R-Squared: 0.07375
F-statistic: 1459 on 1 and 18328 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

I(engine.power^(1/2)) -0.9735 

Analysis of Variance Table 

Response: HC.25 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

I(engine.power^(1/2)) 1 2.27433 2.274333 1459.28 0
 Residuals 18328 28.56475 0.001559 

Figure 10-40 QQ and Residual vs. Fitted Plot for HC Model 3.2 
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Table 10-29 Regression Result for HC Model 3.3 
Call: lm(formula = HC.25 ~ log10(engine.power + 1), data = busdata10242006.1.3,

na.action = na.exclude)

Residuals:


 Min 1Q Median 3Q Max 

-0.1186 -0.02345 -0.00007336 0.02386 0.3004


Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1136 0.0022 50.8911 0.0000 
log10(engine.power + 1) 0.0426 0.0010 43.4726 0.0000 

Residual standard error: 0.03906 on 18328 degrees of freedom
Multiple R-Squared: 0.09347
F-statistic: 1890 on 1 and 18328 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

log10(engine.power + 1) -0.9916 

Analysis of Variance Table 

Response: HC.25 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(engine.power + 1) 1 2.88268 2.882681 1889.863 0
 Residuals 18328 27.95641 0.001525 

Figure 10-41 QQ and Residual vs. Fitted Plot for HC Model 3.3 
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The results suggest that by using transformed engine power, the model increases the 
amount of variance explained in truncated transformed HC from about 5% to about 9%. 

Model 3.3 improves R2 relative to Model 3.2. The residuals scatter plot for Model 3.3 
(Figure 10-41) also shows a more reasonably linear relation than Model 2.2 (Figure 10-40). Fig­
ure 10-41 also shows that Model 3.3 does a better job in improving the pattern of variance. QQ 
plot shows general normality with the exceptions arising in the tails. 

10.3.2.3.2 Linear Regression Model with Dummy Variables 

Figure 10-26 suggests that the relationship between HC and engine power may differ 
across the engine power ranges. One dummy variable is created to represent different engine 
power ranges identified in Figure 10-26 for use in linear regression analysis as illustrated below: 

Engine power (bhp) Dummy1 

< 54.555 1 

≥ 54.555 0 

This dummy variable and the interaction between dummy variable and engine power are 
then tested to determine whether the use of the variable and interaction can help improve the 
model. 

Y = β0 + β1log10(engine.power+1) + β2 dummy1 + β3dummy1 log10(engine.power+1) + Error (3.4) 

The results for Model 3.4 are shown in Table 10-30 and Figure 10-42. 
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Table 10-30 Regression Result for HC Model 3.4 
Call: lm(formula = HC.25 ~ log10(engine.power + 1) + dummy1 * log10(engine.power +
1), data = busdata10242006.1.3, na.action = na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-0.1278 -0.02305 0.0002278 0.0231 0.314 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1734 0.0042 41.4191 0.0000
 log10(engine.power + 1) 0.0171 0.0018 9.4715 0.0000

 dummy1 -0.0643 0.0062 -10.3151 0.0000 
dummy1:log10(engine.power + 1) 0.0195 0.0039 4.9731 0.0000 

Residual standard error: 0.03873 on 18326 degrees of freedom
Multiple R-Squared: 0.1084
F-statistic: 742.8 on 3 and 18326 degrees of freedom, the p-value is 0 

Analysis of Variance Table 

Response: HC.25 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value 

log10(engine.power + 1) 1 2.88268 2.882681 1921.331
 dummy1 1 0.42377 0.423774 282.449 

dummy1:log10(engine.power + 1) 1 0.03711 0.037107 24.732
 Residuals 18326 27.49553 0.001500 

Pr(F)
log10(engine.power + 1) 0.000000e+000

dummy1 0.000000e+000
dummy1:log10(engine.power + 1) 6.647205e-007

Residuals 
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Figure 10-42 QQ and Residual vs. Fitted Plot for HC Model 3.4 

The results suggest that by using transformed engine power and speed, the model only in­
creases the amount of variance explained in truncated transformed HC from about 9% to about 10%. 

Model 3.4 slightly improves R2 relative to Model 3.3. The residuals scatter plot for Model 
3.4 (Figure 10-42) is not appreciably better nor does Model 3.4 do a better job in improving the pat­
tern of variance. The QQ plot still shows general normality with the exceptions arising in the tails. 

10.3.2.3.3 Model Discussions 

The previous sections outline the model development process from regression tree 
model, to a simple OLS model, to more complex OLS models. To test whether the linear regres­
sion with power was a beneficial addition to the regression tree model, the mean ERs at HTBR 
end nodes (single value) were compared to the predictions from the linear regression function 
with engine power.  The results of the performance evaluation are shown in Table 10-31.  The 
improvement in R2 associated with moving toward a linear function of engine power is nearly 
imperceptible. Hence, the use of the linear regression function will provide almost no signifi­
cant improvement over spatial and temporal model prediction capability.  This linear regression 
function might still be improved. Since the R2 and slope in Table 10-31 are derived by compar­
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Coeffi cient of 
determination 

(R2) 

Slope 
(β1) 

RMSE MPE 

Mean ERs 0.000090 1.000 0.0019072 0.00000022 
Linear Regression (Power) 0.0166 0.979 0.0019879 0.00061206 
Linear Regression (Power0.5) 0.0214 0.749 0.0019311 0.00040055 
Linear Regression (log(Power)) 0.0281 0.864 0.0019249 0.00040884 
Linear Regression (log(Power) + Dummy) 0.0367 1.060 0.0019151 0.00040366 

ing model predictions and actual observations for emission rates, these numbers will be different 
from those obtained from linear regression models. 

Table 10-31 Comparative Performance Evaluation of HC Emission Rate Models 

Results suggest that the linear regression function with log transformation performs 
slightly better than the others and that the use of dummy variables can further improve model 
performance, but again there is almost no perceptible change in terms of explained variance. 
Although the linear regression function with log transformation and dummy variables performs 
slightly better than linear regression function with log transformation alone, the revised model 
introduces additional explanatory variables (dummy variables and the interaction with engine 
power) and increases the complexity of regression model without significantly improving the 
model. As discussed in Section 10.3.2.1.4, there is no compelling reason to include the dummy 
variables in the model, given that: 1) the second model is more complex without significantly 
improving model performance, and 2) there is no compelling engineering reason at this time to 
support the difference in model performance within these specific power regions. These dummy 
variables are, however, worth exploring when additional data from other engine technology 
groups become available for analysis. 

Model 3.3 is recommended as the preliminary ‘final’ model (although one might argue 
that using the regression tree results directly would also probably be acceptable). The next step 
in model evaluation is to once again examine the residuals for the improved model. A principal 
objective was to verify that the statistical properties of the regression model conform to a set of 
properties of least squares estimators. In summary, these properties require that the error terms 
be normally distributed, have a mean of zero, and have the same variance. 

Test for Constancy of Error Variance 

A plot of the residuals versus the fitted values is useful in identifying any patterns in 
the residuals. Figure 10-41 plot (b) is residuals vs. fit for HC Model 3.3. Without considering 
variance due to high emission points and zero load data, it can be seen that there is no obvious 
pattern in the residuals across the fi tted values. 
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Test of Normality of Error terms 

The first informal test normally reserved for the test of normality of error terms is a 
quantile-quantile plot of the residuals. Figure 10-40 plot (d) shows the normal quantile plot of of 
HC Model 3.2. The second informal test is to compare actual frequencies of the residuals against 
expected frequencies under normality.  Under normality, we expect 68 percent of the residuals to 
fall between ±√MSE and about 90 percent to fall between ± 1.645 √MSE . Actually, 84.83% of 
residuals fall within the first limits, while 93.60% of residuals fall within the second limits. Thus, 
the actual frequencies here are reasonably consistent with those expected under normality.  The 
heavy tails at both ends are a cause for concern, but this is due to the nature of the data set. For 
example, even after the transformation, the response variable is not the real normal distribution. 

Based on above analysis, final HC emission model for cruise mode is: 

HC = [0.114+ 0.0426log10(engine.power+1)]4 

10.4 Conclusions and Further Considerations 

In this research, acceleration mode is defined as “acceleration >1 mph/s”. Data not 
considered to be in idle, deceleration or acceleration mode will be deemed to be in cruise mode. 
Compared to cruise mode activity, the engine power is more concentrated in higher engine power 
ranges (≥ 200 bhp) for acceleration mode activity. 

Inter-bus variability analysis indicated that some of the 15 buses are higher emitters than 
others (especially noted for HC emissions). However, none of the buses appears to qualify as a 
traditional high-emitter, which would exhibit emission rates of two to three standard deviations 
above the mean. Hence, it is difficult to classify any of these 15 buses as high emitters for mod­
eling purposes. At this moment, these 15 buses are treated as a whole for model development. 
Modelers should keep in mind that although no true high-emitters are present in the database, 
such vehicles may behave significantly different than the vehicles tested.  Hence, data from high-
emitting vehicles should be collected and examined in future studies. 

Some high HC emissions events are noted in acceleration mode. After screening engine 
speed, engine power, engine oil temperature, engine oil pressure, engine coolant temperature, 
ECM pressure, and other parameters, no variables were identified that could be linked to these 
high emissions events. These events may represent natural variability in on-road emissions, or 
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some other variable (such as grade or an engine variable that is not measured) may be linked to 
these events. 

Engine power is selected as the most important variable for three pollutants based on 
HTBR tree models. This finding is consistent with previous research results which verifi ed the 
important role of engine power (Ramamurthy et al. 1998; Clark et al. 2002; Barth et al. 2004). 
The HC relationship is significant but fairly weak. Analysis in previous chapters also indicates 
that engine power is correlated with not only on-road load parameters such as vehicle speed, 
acceleration, and grade, but also potentially with engine operating parameters such as throttle po­
sition and engine oil pressure. On the other hand, engine power in this research is derived from 
engine speed, engine torque and percent engine load. 

The regression tree models suggest that some other variables, like oil pressure and en­
gine barometric pressure, may also impact the HC emissions. Further analysis demonstrates that 
by using engine power alone one might be able to achieve explanatory ability similar to using 
engine power and other variables. To develop models that are efficient and easy to implement, 
only engine power is used to develop emission models. However, additional investigation into 
these variables is warranted as additional detailed data from engine testing become available for 
analysis. 

Given the relationships noted between engine indicated HP and emission rates, it is 
imperative that data be collected to develop solid relationships in engine power demand models 
(estimating power demand as a function of speed/acceleration, grade, vehicle characteristics, 
surface roughness, inertial losses, etc.) for use in regional inventory development and microscale 
impact assessment. 

In summary, the modeler recommends the following acceleration emission models: 

NOx = [-0.0195 + 0.201log10(engine.power+1) + 0.0019vehicle.speed]2 

CO = 10[-3.747 + 1.341log10(engine.power+1) - 0.0285vehicle.speed] 

HC = [0.114 + 0.0426log10(engine.power+1)]4 
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Pollutants 
Engine Power Distribution 

(0 50) (50 100) (100 150) (150 200) ≥ 200 All 
Number NO x 15885 8988 7173 3536 3792 39374 

CO 15834 8940 7145 3529 3770 39218 
HC 15481 8600 6830 3394 3715 38020 

Percentage NO x 40.34% 22.83% 18.22% 8.98% 9.63% 100.00% 
CO 40.37% 22.80% 18.22% 9.00% 9.61% 100.00% 
HC 40.72% 22.62% 17.96% 8.93% 9.77% 100.00% 

­

CHAPTER 11 

11. CRUISE MODE DEVELOPMENT 

After developing idle mode definition and emission rate in Chapter 8, deceleration mode 
definition and emission rate in Chapter 9, and acceleration emission model in Chapter 10, the 
next task will be to develop cruise mode. 

11.1  Analysis of Cruise Mode Data 

After dividing the database into idle mode, deceleration mode, and acceleration mode, 
cruise mode data will be all of the remaining data in the database (i.e., data not previously clas­
sified into idle, deceleration, and acceleration). Unlike the idle and deceleration modes, there is 
a general relationship between engine power and emission rate for acceleration mode and cruise 
mode. The engine power distribution for data collected in the cruise mode is provided in Table 
11-1. 

Table 11-1 Engine Power Distribution for Cruise Mode  

Emission rate histograms for each of the three pollutants for cruise operations are pre
sented in Figure 11-1.  Figure 11-1 shows significant skewness for all three pollutants for cruise 
mode. Some high HC emissions events are noted in cruise mode. After screening engine speed, 
engine power, engine oil temperature, engine oil pressure, engine coolant temperature, ECM 

11-1 



pressure, and other parameters, no operating parameters appeared to correlate with the high emis­
sions events. 

Figure 11-1  Histograms of Three Pollutants for Cruise Mode 

11.1.1 Engine Rate Distribution by Bus in Cruise Mode 

Inter-bus response variability for cruise mode operations is illustrated in Figures 11-2 to 
11-4 using median and mean of NOx, CO, and HC emission rates. Table 11-2 presents the same 
information in tabular form. The difference between median and mean is also an indicator of 
skewness. 

11-2




Figure 11-2  Median and Mean of NOx Emission Rates in Cruise Mode by Bus 

Figure 11-3 Median and Mean of CO Emission Rates in Cruise Mode by Bus 
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Figure 11-4 Median and Mean of HC Emission Rates in Cruise Mode by Bus 

Table 11-2 Median and Mean of Three Pollutants in Cruise Mode by Bus 
NOx CO HC 

Bus ID Median Mean Median Mean Median Mean 
Bus 360 0.11666 0.14506 0.01618 0.02891 0.00120 0.00146 
Bus 361 0.18479 0.18507 0.01091 0.01389 0.00122 0.00135 
Bus 363 0.05924 0.07384 0.00534 0.01341 0.00012 0.00021 
Bus 364 0.12779 0.14644 0.01259 0.01875 0.00237 0.00343 
Bus 372 0.09092 0.09936 0.01262 0.01704 0.00181 0.00236 
Bus 375 0.13714 0.16103 0.01254 0.02383 0.00121 0.00146 
Bus 377 0.11139 0.11094 0.01454 0.02559 0.00064 0.00075 
Bus 379 0.12570 0.15673 0.01394 0.02298 0.00151 0.00195 
Bus 380 0.16713 0.18183 0.01994 0.04532 0.00110 0.00148 
Bus 381 0.09227 0.11789 0.01074 0.02505 0.00060 0.00080 
Bus 382 0.14987 0.16698 0.01342 0.02544 0.00130 0.00155 
Bus 383 0.16355 0.18468 0.00921 0.01949 0.00126 0.00198 
Bus 384 0.11597 0.13933 0.00934 0.01903 0.00181 0.00221 
Bus 385 0.10244 0.13024 0.01266 0.02066 0.00187 0.00205 
Bus 386 0.12254 0.13632 0.01147 0.02197 0.00129 0.00167 
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Bus ID Number Min 
1st 

Quartile Median 3rd 
Quartile Max Mean 

Bus 360 1653 0 14.68 71.25 169.03 275.46 97.70 
Bus 361 3140 0 70.13 108.12 140.28 296.91 107.16 
Bus 363 3286 0 10.46 47.19 112.37 275.55 71.45 
Bus 364 2575 0 14.47 64.30 130.62 275.51 85.56 
Bus 372 2278 0 30.13 68.23 118.10 275.49 79.77 
Bus 375 2890 0 23.19 72.09 142.47 275.54 94.36 
Bus 377 1647 0 17.93 118.01 210.27 275.50 121.33 
Bus 379 2544 0 43.51 102.68 165.04 275.57 110.84 
Bus 380 1242 0 18.85 91.07 187.71 275.56 109.41 
Bus 381 2537 0 6.72 49.18 113.81 275.46 70.68 
Bus 382 1208 0 32.39 81.02 124.97 275.55 89.42 
Bus 383 3062 0 29.42 77.95 141.19 275.53 90.85 
Bus 384 3638 0 21.82 61.20 115.75 275.46 72.69 
Bus 385 3327 0 11.86 48.80 102.91 275.47 68.20 
Bus 386 4539 0 19.24 53.43 94.38 275.30 61.66 

Figures 11-2 to 11-4 and Table 11-2 illustrate that NOx emissions are more consistent than 
CO and HC emissions. Across the 15 buses, Bus 380 has the largest median and mean for CO 
emissions, while Bus 364 has the largest median and mean for HC emissions.  The above figures 
and table demonstrate that although variability exists across buses, it is difficult to conclude that 
there are any true “high emitters” in the database. This conclusion is consistent with the result 
for the other three modes. As was also noted in the acceleration mode data, Bus 363 has the 
smallest mean and median HC emissions compared to the other 14 buses. 

11.1.2 Engine Power Distribution by Bus in Cruise Mode 

Engine power distribution in cruise mode by bus is shown in Figure 11-5 and Table 11-3. 
Bus 361 has the largest 1st quartile engine power in cruise mode while Bus 377 has the largest 
median and 3rd quartile engine power in cruise mode. The maximum power values for each bus 
match well with the manufacturer’s engine power rating.  Although variability for engine power 
distribution exists across buses, it is difficult to conclude that such variability is affected by indi­
vidual buses, bus routes, or other factors. The relationship between power and emissions appears 
consistent across the buses for acceleration mode. 

Table 11-3 Engine Power Distribution in Cruise Mode by Bus 
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Figure 11-5 Histograms of Engine Power in Cruise Mode by Bus 
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11.2  Model Development and Refinement 

11.2.1 HTBR Tree Model Development 

The potential explanatory variables included in the emission rate model development ef­
fort include: 

Vehicle characteristics: model year, odometer reading, bus ID (14 dummy variables) 

Roadway characteristics: dummy variable for road grade; 

Onroad load parameters: engine power (bhp), vehicle speed (mph), acceleration (mph/s); 

Engine operating parameters: engine oil temperature (deg F), engine oil pressure (kPa), 
engine coolant temperature (deg F), barometric pressure reported from ECM (kPa); 

Environmental conditions: ambient temperature (deg C), ambient pressure (mbar), ambi­
ent relative humidity (%). 

HTBR technique is used first to identify potentially significant explanatory variables and 
this analysis provides the starting point for conceptual model development. The HTBR model 
is used to guide the development of an OLS regression model, rather than as a model in its 
own right. HTBR can be used as a data reduction tool and for identifying potential interactions 
among the variables. Then OLS regression is used with the identified variables to estimate a 
preliminary “fi nal” model. 

Although evidence in the literature suggests that a logarithmic transformation is most 
suitable for modeling motor vehicle emissions (Washington 1994; Ramamurthy et al. 1998; 
Fomunung 2000; Frey et al. 2002), this transformation needs to be verified through the Box-Cox 
procedure. The Box-Cox function in MATLAB™ can automatically identify a transforma­
tion from the family of power transformations on emission data, ranging from -1.0 to 1.0. The 
lambdas chosen by the Box-Cox procedure for cruise mode are 0.40619 for NOx, 0.012969 for 
CO, 0.241 for HC. The Box-Cox procedure is only used to provide a guide for selecting a trans­
formation, so overly precise results are not needed (Neter et al. 1996). It is often reasonable to 
use a nearby lambda value that is easier to understand for the power transformation. Although 
the lambdas chosen by the Box-Cox procedure are different for acceleration and cruise modes, 
the nearby lambda values are same for these two modes. In summary, the lambda values used 
for transformations are ½ for NOx, 0 for CO (indicating a log transformation), and ¼ for HC 
for cruise mode. Figures 11-6 to 11-8 present the histogram, boxplot, and probability plots of 
truncated emission rates in cruise mode for NO , CO, and HC, while Figures 11-9 to 11-11 pres-x
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ent the same plots for truncated transformed emission rates for NOx, CO and HC, where a great 
improvement is noted. 

Figure 11-6 Histogram, Boxplot, and Probability Plot of Truncated NOx Emission Rates in Cruise Mode 
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Figure 11-7 Histogram, Boxplot, and Probability Plot of Truncated CO Emission Rate in Cruise Mode 

Figure 11-8 Histogram, Boxplot, and Probability Plot of Truncated HC Emission Rate in Cruise Mode 
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Figure 11-9 Histogram, Boxplot, and Probability Plot of Truncated Transformed  NOx Emission 

Rate in Cruise Mode


Figure 11-10 Histogram, Boxplot, and Probability Plot of Truncated Transformed CO Emission 

Rate in Cruise Mode
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Figure 11-11 Histogram, Boxplot, and Probability Plot of Truncated Transformed HC Emission 
Rate in Cruise Mode 

11.2.1.1 NO x HTBR Tree Model Development 

Figure 11-12 illustrates the initial tree model used for the truncated transformed NOx 
emission rate in cruise mode. Results for the initial model are given in Table 11-4.  The tree 
grew into a complex model, with a considerable number of branches and 32 terminal nodes. Fig­
ure 11-13 illustrates the amount of deviation explained corresponding to the number of terminal 
nodes. 
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Figure 11-12 Original Untrimmed Regression Tree Model for Truncated Transformed NOx Emission

Rate in Cruise Mode


Figure 11-13 Reduction in Deviation with the Addition of Nodes of Regression Tree for Truncated 
Transformed NO Emission Rate in Cruise Mode x
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Table 11-4 Original Untrimmed Regression Tree Results for Truncated Transformed NO  Emis­x
sion Rate in Cruise Mode 
Regression tree:

tree(formula = NOx.50 ~ model.year + odometer + temperature + baro + humidity +

vehicle.speed + oil.temperture + oil.press + cool.temperature + eng.bar.press + en

gine.power + acceleration + bus360 + bus361 + bus363 + bus364 + bus372 + bus375 +

bus377 + bus379 + bus380 + bus381 + bus382 + bus383 + bus384 + bus385 + dummy.grade,

data = busdata10242006.1.4, na.action = na.exclude, mincut = 400, minsize = 800,

mindev = 0.01)
Variables actually used in tree construction:
[1] “engine.power” “dummy.grade” “baro” “oil.press”
[5] “humidity” “vehicle.speed” “temperature” “bus372” 
[9] “odometer” “model.year”

Number of terminal nodes: 32 
Residual mean deviance: 0.005398 = 212.4 / 39340
Distribution of residuals:

 Min. 1st Qu. Median Mean 3rd Qu. Max. 
-4.634e-001 -4.130e-002 -1.265e-003 -1.315e-016 3.646e-002 1.180e+000 

For model application purposes, it is desirable to select a final model specifi cation that 
balances the model’s ability to explain the maximum amount of deviation with a simpler model 
that is easy to interpret and apply.  Figure 11-7 indicates that reduction in deviation with addition 
of nodes after four, although potentially statistically significant, is very small. A simplifi ed tree 
model was derived which ends in four terminal nodes as compared to the 37 terminal nodes in 
the initial model. The residual mean deviation only increased from 210.2 to 298.9 and yielded 
a much cleaner model than the initial one. Results are shown in Table 11-5 and Figure 11-14.  
Based on above analysis, NOx cruise model will be developed based on this result. 
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Figure 11-14 Trimmed Regression Tree Model for Truncated Transformed NO  Emission Rate in x
Cruise Mode 

Table 11-5 Trimmed Regression Tree Results for Truncated Transformed NO  Emission Rate in x
Cruise Mode 
Regression tree:

snip.tree(tree = tree(formula = NOx.50 ~ model.year + odometer + temperature + baro

+ humidity + vehicle.speed + oil.temperture + oil.press + cool.temperature + eng.

bar.press + engine.power + acceleration + bus360 + bus361 + bus363 + bus364 + bus372

+ bus375 + bus377 + bus379 + bus380 + bus381 + bus382 + bus383 + bus384 + bus385 + 

dummy.grade, data = busdata10242006.1.4, na.action = na.exclude, mincut = 400,minsize

= 800, mindev = 0.01), nodes = c(5., 4., 6., 7.))

Variables actually used in tree construction:

[1] “engine.power”

Number of terminal nodes: 4 

Residual mean deviance: 0.007591 = 298.9 / 39370

Distribution of residuals:


 Min. 1st Qu. Median Mean 3rd Qu. Max. 
-4.643e-001 -5.592e-002 3.280e-004 -4.143e-016 5.370e-002 1.179e+000 

node), split, n, deviance, yval
* denotes terminal node 

1) root 39374 1095.00 0.3360
2) engine.power<52.525 16280 160.50 0.1831 

4) engine.power<19.05 9222 47.70 0.1252 *
 5) engine.power>19.05 7058 41.36 0.2588 *

 3) engine.power>52.525 23094 285.90 0.4438 
6) engine.power<109.555 10186 81.41 0.3791 *

 7) engine.power>109.555 12908 128.40 0.4948 * 
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This tree model suggests that engine power is the most important explanatory variable 
for NOx emissions. This finding is consistent with previous research results which verifi ed the 
important effect of engine power on NOx emissions (Ramamurthy et al. 1998; Clark et al. 2002; 
Barth et al. 2004). Analysis in previous chapter also indicates that engine power is correlated not 
only with onroad load parameters such as vehicle speed, acceleration, and grade, but also with 
engine operating parameters such as throttle position and engine oil pressure. On the other hand, 
engine power in this research is derived from engine speed, engine torque and percent engine 
load. So engine power can connect onroad modal activity with engine operating conditions to 
that extent. This fact strengthens the importance of introducing engine power into the concep­
tual model and the need to improve the ability to simulate engine power for regional inventory 
development. 

11.2.1.2 CO HTBR Tree Model Development 

Figure 11-15 illustrates the initial tree model used for truncated transformed CO emis­
sion rate in cruise mode. Results for initial model are given in Table 11-6.  The tree grew into 
a complex model with a considerable number of branches and 65 terminal nodes. Figure 11-16 
illustrates the amount of deviation explained corresponding to the number of terminal nodes. 
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Figure 11-15 Original Untrimmed Regression Tree Model for Truncated Transformed CO Emis­
sion Rate in Cruise Mode 

Figure 11-16 Reduction in Deviation with the Addition of Nodes of Regression Tree for Trun­
cated Transformed CO Emission Rate in Cruise Mode 
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Table 11-6 Original Untrimmed Regression Tree Results for Truncated Transformed CO Emis­
sion Rate in Cruise Mode 
Regression tree:
tree(formula = log.CO ~ model.year + odometer + temperature + baro + humidity +

vehicle.speed + oil.temperture + oil.press + cool.temperature +
eng.bar.press + engine.power + acceleration + bus360 + bus361 + bus363 +
bus364 + bus372 + bus375 + bus377 + bus379 + bus380 + bus381 + bus382 + 
bus383 + bus384 + bus385 + dummy.grade, data = busdata10242006.1.4,
na.action = na.exclude, mincut = 400, minsize = 800, mindev = 0.01)

Variables actually used in tree construction:
[1] “engine.power” “oil.press” “baro” 
[4] “cool.temperature” “vehicle.speed” “acceleration” 
[7] “humidity” “odometer” “dummy.grade”
[10] “temperature” “eng.bar.press” “model.year”
[13] “oil.temperture”
Number of terminal nodes: 65 
Residual mean deviance: 0.1089 = 4265 / 39150
Distribution of residuals:

 Min. 1st Qu. Median Mean 3rd Qu. Max. 
-2.335e+000 -1.783e-001 -1.233e-002 1.869e-016 1.691e-001 2.013e+000 

For model application purposes, it is desirable to select a final model specifi cation that 
balances the model’s ability to explain the maximum amount of deviation with a simpler model 
that is easy to interpret and apply.  Figure 11-16 indicates that reduction in deviation with addi­
tion of nodes after 4, although potentially statistically significant, is very small. A simplified 
tree model was derived which ends in 4 terminal nodes as compared to the 67 terminal nodes in 
the initial model. The residual mean deviation only increased from 4265 to 5698 and yielded a 
much more efficient model. Results are shown in Table 11-7 and Figure 11-17.  The CO cruise 
emission rate model will be based upon these results. 
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Figure 11-17 Trimmed Regression Tree Model for Truncated Transformed CO Emission Rate in 
Cruise Mode 

Table 11-7 Trimmed Regression Tree Results for Truncated Transformed CO Emission Rate in 
Cruise Mode 
Regression tree:
snip.tree(tree = tree(formula = log.CO ~ model.year + odometer + temperature +

baro + humidity + vehicle.speed + oil.temperture + oil.press +
cool.temperature + eng.bar.press + engine.power + acceleration +
bus360 + bus361 + bus363 + bus364 + bus372 + bus375 + bus377 + bus379 + 
bus380 + bus381 + bus382 + bus383 + bus384 + bus385 + dummy.grade,
data = busdata10242006.1.4, na.action = na.exclude, mincut = 400,
minsize = 800, mindev = 0.01), nodes = c(4., 6., 7., 5.))

Variables actually used in tree construction:
[1] “engine.power”

Number of terminal nodes: 4 

Residual mean deviance: 0.1453 = 5698 / 39210

Distribution of residuals:


 Min. 1st Qu. Median Mean 3rd Qu. Max. 
-2.679e+000 -2.065e-001 -7.150e-003 -4.942e-015 2.041e-001 2.452e+000 

node), split, n, deviance, yval
* denotes terminal node 

1) root 39218 8170.0 -1.944
2) engine.power<114.355 27187 4482.0 -2.076


4) engine.power<15.445 8414 1639.0 -2.321 *

5) engine.power>15.445 18773 2115.0 -1.967 *


3) engine.power>114.355 12031 2147.0 -1.646

6) engine.power<181.235 7220 1146.0 -1.753 *

7) engine.power>181.235 4811 797.8 -1.487 *
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This tree model suggested that engine power is the most important explanatory variable 
for CO emissions. This finding is consistent with NOx emissions. This tree will be used as refer­
ence for linear regression model development. 

11.2.1.3 HC HTBR Tree Model Development 

Figure 11-18 illustrates the initial tree model used for truncated transformed HC emis­
sion rate in cruise mode. Results for initial model are given in Table 11-8.  The tree grew into a 
complex model with a considerable number of branches and 61 terminal nodes. 

Figure 11-18 Original Untrimmed Regression Tree Model for Truncated Transformed HC Emis­
sion Rate in Cruise Mode 
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Table 11-8 Original Untrimmed Regression Tree Results for Truncated Transformed HC Emis­
sion Rate in Cruise Mode 
Regression tree:
tree(formula = HC.25 ~ model.year + odometer + temperature + baro + humidity +

vehicle.speed + oil.temperture + oil.press + cool.temperature +
eng.bar.press + engine.power + acceleration + bus360 + bus361 + bus363 +
bus364 + bus372 + bus375 + bus377 + bus379 + bus380 + bus381 + bus382 + 
bus383 + bus384 + bus385 + dummy.grade, data = busdata10242006.1.4,
na.action = na.exclude, mincut = 400, minsize = 800, mindev = 0.01)

Variables actually used in tree construction:
[1] “bus363” “bus364” “engine.power”
[4] “oil.temperture” “odometer” “oil.press”
[7] “humidity” “cool.temperature” “bus381”
[10] “bus377” “baro” “temperature”
[13] “bus372” “vehicle.speed” “dummy.grade”
[16] “bus385”
Number of terminal nodes: 56 
Residual mean deviance: 0.0008147 = 30.93 / 37960
Distribution of residuals:

 Min. 1st Qu. Median Mean 3rd Qu. Max. 
-1.862e-001 -1.595e-002 -3.021e-003 -1.297e-018 1.230e-002 2.886e-001 

Figure 11-18 and Table 11-8 suggest that the tree analysis of HC emission rates identi­
fied a number of buses that appear to exhibit significantly different emission rates under all load 
conditions than the other buses (i.e., some of the bus dummy variables appeared as signifi cant in 
the initial tree splits). Two bus dummy variables split the data pool at the first two levels of the 
HC tree model. This same result was noted for these buses in the acceleration mode. Although 
variability exists for three pollutants across 15 buses, the division was even more obvious for HC 
emissions (see Figure 11-4 and Table 11-2).  Although it is tempting to develop different emis­
sion rates for these buses to reduce emission rate deviation in the sample pool, it is diffi cult to 
justify doing so. Unless these is an obvious reason to classify these three buses as high emitters 
(i.e., significantly higher than normal emitting vehicles, perhaps by as much as a few standard 
deviations from the mean), and unless there are enough data to develop separate emission rate 
models for high emitters, one cannot justify removing the data from the data set. Until such 
data exist to justify treating these buses as high emitters, the bus dummy variables for individual 
buses are removed from the analyses and all 15 buses are treated as part of the whole data set. 

Another tree model was generated excluding the bus dummy variables. However, odom­
eter reading also had to be excluded because the previous “Bus 363<0.5” tree cutpoint was 
replaced by “odometer>282096” (i.e., was identically correlated to the same bus). This new tree 
model is illustrated in Figure 11-19 and Table 11-9.  The tree model is then trimmed for applica­
tion purposes, as was done for the NO  and CO models. x
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Figure 11-19 Trimmed Regression Tree Model for Truncated Transformed HC Emission Rate in 
Cruise Mode 

Table 11-9 Trimmed Regression Tree Results for Truncated Transformed HC Emission Rate in 
Cruise Mode 
Regression tree:
snip.tree(tree = tree(formula = HC.25 ~ temperature + baro + humidity +

vehicle.speed + oil.temperture + oil.press + cool.temperature +
eng.bar.press + engine.power + acceleration + dummy.grade, data =
busdata10242006.1.4, na.action = na.exclude, mincut = 400, minsize =
800, mindev = 0.01), nodes = c(15., 28., 2., 29., 6.))

Variables actually used in tree construction:
[1] “baro” “engine.power” “oil.temperture”

Number of terminal nodes: 5 

Residual mean deviance: 0.001207 = 45.87 / 38020

Distribution of residuals:


 Min. 1st Qu. Median Mean 3rd Qu. Max. 
-1.328e-001 -2.037e-002 -3.530e-003 1.177e-015 1.609e-002 3.256e-001 

node), split, n, deviance, yval
* denotes terminal node

 1) root 38020 71.970 0.1876

2) baro<968.5 2957 2.349 0.1082 *


 3) baro>968.5 35063 49.420 0.1943

6) engine.power<12.645 6821 13.850 0.1750 *

7) engine.power>12.645 28242 32.420 0.1989

14) oil.temperture<192.1 26727 29.900 0.2005

28) baro<980.5 11265 9.610 0.1918 *


 29) baro>980.5 15462 18.820 0.2068 *

15) oil.temperture>192.1 1515 1.244 0.1706 * 
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The new tree model suggests that barometric pressure is the most important explanatory 
variable for HC emission rates. However, this finding is challenged by the fact that all the 2957 
data points in the first left hand branch of the tree (barometric pressure < 968.5) belong to Bus 
363. Although this dataset was collected under a wide variety of environmental conditions, the 
scope of barometric pressure was limited for individual buses tested. As reported earlier, Bus 
363 exhibited significantly lower HC emissions than the other buses (see Figure 11-4), but the 
reason is not clear at this time. To develop a reasonable tree model given the limited data col­
lected, the environmental parameters are excluded from the model until a greater distribution of 
environmental conditions can be represented in a test data set. With data collected from a more 
comprehensive testing program, environmental variables can be integrated into the model direct­
ly, or perhaps correction factors for the emission rates can be developed.  The secondary trimmed 
tree is presented in Figure 11-20 and Table 11-10. 

Figure 11-20 Secondary Trimmed Regression Tree Model for Truncated Transformed HC in 

Cruise Mode
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Table 11-10 Trimmed Regression Tree Results for Truncated Transformed HC in Cruise Mode 
Regression tree:
snip.tree(tree = tree(formula = HC.25 ~ engine.power + vehicle.speed +

acceleration + oil.temperture + oil.press + cool.temperature +
eng.bar.press, data = busdata10242006.1.4, na.action = na.exclude,
mincut = 400, minsize = 800, mindev = 0.01), nodes = c(6., 5., 7.,
4.))

Variables actually used in tree construction:
[1] “eng.bar.press” “oil.press” “engine.power”

Number of terminal nodes: 4 

Residual mean deviance: 0.00148 = 56.27 / 38020

Distribution of residuals:


 Min. 1st Qu. Median Mean 3rd Qu. Max. 
-1.310e-001 -2.290e-002 -2.164e-003 1.281e-015 1.942e-002 3.220e-001 

node), split, n, deviance, yval
* denotes terminal node 

1) root 38020 71.970 0.1876
2) eng.bar.press<99.9348 10827 24.640 0.1656

4) oil.press<345.25 4965 10.870 0.1400 *
5) oil.press>345.25 5862 7.754 0.1873 *

 3) eng.bar.press>99.9348 27193 40.010 0.1963
6) engine.power<13.975 5879 12.660 0.1786 *
7) engine.power>13.975 21314 24.990 0.2012 * 

The tree model excluding bus dummy variables, odometer readings, and environmental 
conditions is shown in Figure 11-20 and Table 11-11.  This final tree model suggests that engine 
power is the most important explanatory variable for HC emissions. This finding is consistent 
with analysis of NOx and CO emission rates. Although engine operating parameters such as oil 
pressure might impact emissions, such variables are not easy to implement in real-world models. 
After excluding engine barometric pressure and oil pressure from the tree model, leaving en­
gine power only, the residual mean deviation increased slightly from 56.27 to 65.56.    The final 
HTBR tree for HC emissions is shown in Figure 11-21 and Table 11-11.  HC cruise emission rate 
model will be developed based upon these results. 
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Figure 11-21 Final Regression Tree Model for Truncated Transformed HC and Engine Power in 
Cruise Mode 

Table 11-11 Final Regression Tree Results for Truncated Transformed HC and Engine Power in 
Cruise Mode 
Regression tree:
snip.tree(tree = tree(formula = HC.25 ~ engine.power, data =

busdata10242006.1.4, na.action = na.exclude, mincut = 400, minsize =
800, mindev = 0.01), nodes = c(11., 10., 3.))

Number of terminal nodes: 4 
Residual mean deviance: 0.001725 = 65.56 / 38020
Distribution of residuals:

 Min. 1st Qu. Median Mean 3rd Qu. Max. 
-1.372e-001 -2.070e-002 -6.875e-004 1.742e-015 2.090e-002 3.309e-001 

node), split, n, deviance, yval
* denotes terminal node

 1) root 38020 71.970 0.1876
2) engine.power<15.335 8298 21.630 0.1666


4) engine.power<0.265 4617 9.741 0.1757 *

 5) engine.power>0.265 3681 11.020 0.1551

10) engine.power<7.875 1746 3.849 0.1390 *


 11) engine.power>7.875 1935 6.311 0.1697 *

 3) engine.power>15.335 29722 45.660 0.1934 *
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11.2.2 OLS Model Development and Refinement 

Once a manageable number of modal variables have been identified through regression 
tree analysis, the modeling process moves into the phase in which ordinary least squares tech­
niques are used to obtain a final model. The research objective here is to identify the extent to 
which the identified factors influence emission rate in cruise mode. Modelers rely on previous 
research, a priori knowledge, educated guesses, and stepwise regression procedures to identify 
acceptable functional forms, to determine important interactions, and to derive statistically and 
theoretically defensible models. The final model will be our best understanding about the func­
tional relationship between independent variables and dependent variables. 

11.2.2.1 NO x Emission Rate Model Development for Cruise Mode 

Based on previous analysis, truncated transformed NOx will serve as the independent 
variable. However, modelers should keep in mind that the comparisons should always be made 
on the original untransformed scale of Y when comparing the performance of statistical models.  
HTBR tree model results suggest that engine power is the best one to begin with. 

11.2.2.1.1 Linear Regression Model with Engine Power 

Let’s select engine power to begin with, and estimate the model: 

Y = β0 + β1(engine.power) + Error (1.1) 
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The regression run yields the results shown in Table 11-12 and Figure 11-22. 

Table 11-12 Regression Result for NO  Model 1.1 x
Call: lm(formula = NOx.50 ~ engine.power, data = busdata10242006.1.4, na.action =

na.exclude)

Residuals:


 Min 1Q Median 3Q Max 
-0.5717 -0.06302 0.006377 0.06653 1.259 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1815 0.0007 242.8528 0.0000 
engine.power 0.0018 0.0000 274.7573 0.0000 

Residual standard error: 0.09765 on 39372 degrees of freedom
Multiple R-Squared: 0.6572
F-statistic: 75490 on 1 and 39372 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

engine.power -0.7526 

Analysis of Variance Table 

Response: NOx.50 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

engine.power 1 719.8396 719.8396 75491.58 0
 Residuals 39372 375.4263 0.0095 

The results suggest that engine power explains about 66% of the variance in truncated 
transformed NOx. F-statistic shows that β1 ≠ 0, and the linear relationship is statistically signifi­
cant. To evaluate the model, residual normality is examined in the QQ plot and constancy of 
variance is checked by examining residuals vs. fi tted values. 
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Figure 11-22 QQ and Residual vs. Fitted Plot for NOx Model 1.1 

The residual plot in Figure 11-22 shows a departure from linear regression assumptions 
indicating a need to explore a curvilinear regression function. Since the variability at the differ­
ent X levels appears to be fairly constant, a transformation on X is considered. The reason to 
consider transformation first is to avoid multicollinearity brought about by adding the second-or­
der of X. Based on the prototype plot in Figure 11-22, the square root transformation and loga­
rithmic transformation are tested. Scatter plots and residual plots based on each transformation 
should then be prepared and analyzed to determine which transformation is most effective.  

Y = β0 + β1engine.power(1/2) + Error (1.2) 

Y = β0 + β1log10(engine.power+1) + Error (1.3) 

The result for Model 1.2 is shown in Table 11-13 and Figure 11-23, while the result for 
Model 1.3 is shown in Table 11-14 and Figure 11-24. 
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Table 11-13 Regression Result for NO  Model 1.2 x
Call: lm(formula = NOx.50 ~ engine.power^(1/2), data = busdata10242006.1.4,

na.action = na.exclude)

Residuals:


 Min 1Q Median 3Q Max 
-0.5007 -0.04881 -0.0008896 0.05047 1.22 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.0874 0.0008 104.1024 0.0000 
I(engine.power^(1/2)) 0.0311 0.0001 342.3056 0.0000 

Residual standard error: 0.08364 on 39372 degrees of freedom
Multiple R-Squared: 0.7485
F-statistic: 117200 on 1 and 39372 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

I(engine.power^(1/2)) -0.8649 

Analysis of Variance Table 

Response: NOx.50 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

I(engine.power^(1/2)) 1 819.8002 819.8002 117173.2 0
 Residuals 39372 275.4656 0.0070 

Figure 11-23 QQ and Residual vs. Fitted Plot for NO  Model 1.2 x
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Table 11-14 Regression Result for NO  Model 1.3 x
Call: lm(formula = NOx.50 ~ log10(engine.power + 1), data = busdata10242006.1.4,

na.action = na.exclude)

Residuals:


 Min 1Q Median 3Q Max 
-0.4047 -0.06677 -0.002155 0.06107 1.182 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.0306 0.0012 25.5525 0.0000 
log10(engine.power + 1) 0.1895 0.0007 279.4403 0.0000 

Residual standard error: 0.09656 on 39372 degrees of freedom
Multiple R-Squared: 0.6648
F-statistic: 78090 on 1 and 39372 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

log10(engine.power + 1) -0.9135 

Analysis of Variance Table 

Response: NOx.50 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(engine.power + 1) 1 728.1347 728.1347 78086.87 0
 Residuals 39372 367.1311 0.0093 

Figure 11-24 QQ and Residual vs. Fitted Plot for NO  Model 1.3 x
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The results suggest that by using square root transformed engine power, the model in­
creases the amount of variance explained in truncated transformed NOx from about 66% (Model 
1.1) to about 75% (Model 1.2), while remaining about 66% (Model 1.3) by using log trans­
formed engine power. 

Model 1.2 improves the R2 more than does Model 1.3. The residuals scatter plot for 
Model 1.2 (Figure 11-23) shows a more reasonably linear relation than Model 1.3 (Figure 11-24). 
Figure 11-23 also shows that Model 1.2 does a better job in improving the pattern of variance.  
QQ plot shows a kind of normality except two tails. 

11.2.2.1.2 Linear Regression Model with Dummy Variables 

Figure 11-14 suggests that the relationship between NOx and engine power may be 
somewhat different across the engine power ranges identified in the tree analysis. That is, there 
may be higher or lower NOx emissions in different engine power operating ranges.  One dummy 
variable is created to represent different engine power ranges identified in Figure 11-14 for use in 
linear regression analysis as illustrated below: 

Engine power (bhp) Dummy1 
< 52.525 1 
≥ 52.525 0 

This dummy variable and the interaction between dummy variable and engine power are 
then tested to determine whether the use of the variables and interactions can help improve the 
model. 

Y = β0 + β1 engine.power(1/2) + β2 dummy1 + β3 dummy1engine.power(1/2) + Error (1.4) 

The result for Model 1.4 is shown in Table 11-15 and Figure 11-25. 
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Table 11-15 Regression Result for NO  Model 1.4 x
Call: lm(formula = NOx.50 ~ engine.power^(1/2) + dummy1 * engine.power^(1/2), data =

busdata10242006.1.4, na.action = na.exclude)

Residuals:


 Min 1Q Median 3Q Max 
-0.4812 -0.04778 0.0001059 0.04843 1.195 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1581 0.0024 65.9078 0.0000
 I(engine.power^(1/2)) 0.0254 0.0002 122.2468 0.0000

 dummy1 -0.0682 0.0026 -25.9438 0.0000 
I(engine.power^(1/2)):dummy1 0.0020 0.0003 6.1264 0.0000 

Residual standard error: 0.08224 on 39370 degrees of freedom
Multiple R-Squared: 0.7569
F-statistic: 40850 on 3 and 39370 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept) I(engine.power^(1/2)) dummy1

I(engine.power^(1/2)) -0.9742
dummy1 -0.9123 0.8888 

I(engine.power^(1/2)):dummy1 0.6175 -0.6339 -0.8171 

Analysis of Variance Table 

Response: NOx.50 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

I(engine.power^(1/2)) 1 819.8002 819.8002 121203.8 0.000000e+000
 dummy1 1 8.9202 8.9202 1318.8 0.000000e+000 

I(engine.power^(1/2)):dummy1 1 0.2539 0.2539 37.5 9.073785e-010
 Residuals 39370 266.2915 0.0068 
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Figure 11-25 QQ and Residual vs. Fitted Plot for NOx Model 1.4 

The results suggest that by using dummy variables and interactions with transformed en­
gine power, the model increases the amount of variance explained in truncated transformed NOx 
from about 75% (Model 1.2) to about 77% (Model 1.4). 

Model 1.4 slightly improves the R2 more than does Model 1.2. The residuals scatter plot 
for Model 1.4 (Figure 11-25) shows a slightly more reasonably linear relation.  Figure 11-25 
shows that Model 1.4 may also do a slightly better job in improving the pattern of variance. The 
QQ plot shows general normality with the exceptions arising in the tails. However, it is impor­
tant to note that the model improvement, in terms of amount of variance explained by the model, 
is marginal at best. 

11.2.2.1.3 Model Discussion 

Previous sections provide the model development process from one OLS model to an­
other OLS model. To test whether the linear regression with power was a benefi cial addition 
to the regression tree model, the mean ERs at HTBR end nodes (single value) are compared to 
the predictions from the linear regression function with engine power.  The results of the per­
formance evaluation are shown in Table 11-16.  The improvement in R2 associated with moving 
toward a linear function of engine power is tremendous. Hence, the use of the linear regression 
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Coeffi cient of 
determination 

(R2) 

Slope 
(β1) 

RMSE MPE 

Mean ERs 0.00003 1.000 0.12008 -0.000006 
Linear regression (power) 0.529 0.814 0.08542 0.01031 
Linear regression (power^0.5) 0.614 0.975 0.07494 0.00707 
Linear regression (log(power)) 0.587 1.287 0.08043 0.00933 
Linear regression (power^0.5) w/dummy 
variables 0.627 1.011 0.07372 0.00704 

­

function will provide a significant improvement in spatial and temporal model prediction capa­
bility.  However this linear regression function might still be improved. Since the R2 and slope 
in Table 11-16 are derived by comparing model predictions and actual observations for emission 
rates (untransformed y), these numbers are different in linear regression models. 

Two transforms of engine power were tested: square root transformation and log trans­
formation. The results of the performance evaluation are shown in Table 11-16.  These results 
suggest that linear regression function with square root transformation performs slightly better. 

Given that the regression tree modeling exercise indicated that a number of power cut-
points may play a role in the emissions process, an additional modeling run was performed. The 
results of the performance evaluation are shown in Table 11-16.  Analysis results suggest that the 
linear regression function with dummy variable performs slightly better than the model without 
the power cutpoints. 

Table 11-16 Comparative Performance Evaluation of NOx Emission Rate Models 

Although the linear regression function with dummy variables performs slightly bet
ter than linear regression function with square root transformation, more explanatory variables 
(dummy variable and the interaction with engine power) are introduced and the complexity of 
the regression model increases. There is only one regression function for Model 1.2 while there 
are two regression functions for Model 1.4. There is also no obvious reason why the engine 
may be performing slightly differently within these power regimes, yielding different regression 
slopes and intercepts. The fuel injection systems in these engines may operate slightly different­
ly under low load (near-idle) and high load conditions.  The fuel injection system may be con­
trolled by the engine computer, or there may be a sufficient number of low power cruise opera­
tions and high power cruise operations that are incorrectly classified, and may be better classified 
as idle or acceleration events (perhaps due to GPS speed data errors). In any case, because the 
model with dummy variables does not perform appreciably better than the model without the 
dummy variables, the dummy variables are not included in the final model selection at this time. 
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These dummy variables are, however, worth exploring when additional data from other engine 
technology groups become available for analysis. Model 1.2 is selected as the preliminary ‘final’ 
model. 

The next step in model evaluation is to once again examine the residuals for the improved 
model. A principal objective was to verify that the statistical properties of the regression model 
conform to a set of properties of least squares estimators. In summary, these properties require 
that the error terms be normally distributed, have a mean of zero, and have uniform variance. 

Test for Constancy of Error Variance 

A plot of the residuals versus the fitted values is useful in identifying any patterns in the 
residuals. Figure 11-23 plot (b) shows this plot for NOx model 1.2. Without considering vari­
ance due to high emission points and zero load data, there is no obvious pattern in the residuals 
across the fi tted values. 

Test of Normality of Error terms 

The first informal test normally reserved for the test of normality of error terms is a quan­
tile-quantile plot of the residuals. Figure 11-23 plot (d) shows the normal quantile plot of NOx 
model 1.2. The second informal test is to compare actual frequencies of the residuals against 
expected frequencies under normality.  Under normality, we expect 68 percent of the residuals 
to fall between ±√MSE  and about 90 percent to fall between ± 1.645 √MSE. Actually, 81.79% 
of residuals fall within the first limits, while 94.05% of residuals to fall within the second limits. 
Thus the actual frequencies here are reasonably consistent with those expected under normality.  
The heavy tails at both ends are a cause for concern, but are due to the nature of the data set. For 
example, even after the transformation, the response variable is not a true normal distribution. 

Based on the above analysis, the fi nal NO x emission rate model selected for cruise mode is: 

NOx = (0.087 + 0.0311(engine.power)(1/2))2 

Analysis results support the observation that the fi nal NO x emission model is significantly 
better at explaining variability without making the model too complex. Since there is only one 
engine type, complexity may not be valid in terms of transferability.  This model is specific to the 
engine classes employed in the transit bus operations. Different models may need to be devel­
oped for other engine classes and duty cycles. 
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11.2.2.2 CO Emission Rate Model Development for Cruise Mode 

Based on previous analysis, truncated transformed CO will serve as the independent 
variable. However, modelers should keep in mind that the comparisons should always be made 
on the original untransformed scale of Y when comparing statistical models.  HTBR tree model 
results suggest that engine power is the best one to begin with. 

11.2.2.2.1 Linear Regression Model with Engine Power 

Let’s select engine power to begin with, and estimate the model: 

Y = β0 + β1engine.power + Error (2.1) 

The regression run yields the results shown in Table 11-17 and Figure 11-26. 

Table 11-17 Regression Result for CO Model 2.1 
Call: lm(formula = log.CO ~ engine.power, data = busdata10242006.1.4, na.action =
na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-2.779 -0.2088 -0.01417 0.2153 2.376 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) -2.2230 0.0030 -751.4277 0.0000 
engine.power 0.0033 0.0000 125.1304 0.0000 

Residual standard error: 0.3859 on 39216 degrees of freedom
Multiple R-Squared: 0.2853
F-statistic: 15660 on 1 and 39216 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

engine.power -0.7525 

Analysis of Variance Table 

Response: log.CO 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

engine.power 1 2331.251 2331.251 15657.62 0
 Residuals 39216 5838.839 0.149 

These results suggest that engine power explains about 29% of the variance in truncated 
transformed CO. F-statistic shows that β1 ≠ 0, and the linear relationship is statistically signifi­
cant. To evaluate the model, the normality is examined in the QQ plot and constancy of variance 
is checked by examining residuals vs. fi tted values. 
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Figure 11-26 QQ and Residual vs. Fitted Plot for CO Model 2.1 

Although the residual plot in Figure 11-26 shows a linear relationship between engine 
power and truncated transformed CO, square root transformation and logarithmic transformation 
are tested to see whether transformation would be useful to improve the model. Scatter plots 
and residual plots based on each transformation should then be prepared and analyzed to decide 
which transformation is most effective. 

Y  = β0 + β1engine.power(1/2) + Error (2.2) 

Y = β0 + β1log10(engine.power+1) + Error (2.3) 

The results for Model 2.2 are shown in Table 11-18 and Figure 11-27, while the results 
for Model 2.3 are shown in Table 11-19 and Figure 11-28. 
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Table 11-18 Regression Result for CO Model 2.2 
Call: lm(formula = log.CO ~ engine.power^(1/2), data = busdata10242006.1.4,

na.action = na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-2.679 -0.2124 -0.01769 0.2178 2.319 

Coefficients:

 (Intercept)
I(engine.power^(1/2)) 

Value Std. Error 
-2.3645 0.0039 
0.0526 0.0004 

t value 
-610.0636 
125.3638 

Pr(>|t|)
0.0000 
0.0000 

Residual standard error: 0.3857 on 39216 degrees of freedom
Multiple R-Squared: 0.2861
F-statistic: 15720 on 1 and 39216 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

I(engine.power^(1/2)) -0.8646 

Analysis of Variance Table 

Response: log.CO 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

I(engine.power^(1/2)) 1 2337.466 2337.466 15716.09 0
 Residuals 39216 5832.624 0.149 

Figure 11-27 QQ and Residual vs. Fitted Plot for CO Model 2.2 
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Table 11-19 Regression Result for CO Model 2.3 
Call: lm(formula = log.CO ~ log10(engine.power + 1), data = busdata10242006.1.4,

na.action = na.exclude)

Residuals:


 Min 1Q Median 3Q Max 

-2.636 -0.2225 -0.0167 0.2193 2.308


Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) -2.4326 0.0050 -489.4690 0.0000 
log10(engine.power + 1) 0.3031 0.0028 107.5567 0.0000 

Residual standard error: 0.4011 on 39216 degrees of freedom
Multiple R-Squared: 0.2278
F-statistic: 11570 on 1 and 39216 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

log10(engine.power + 1) -0.9132 

Analysis of Variance Table 

Response: log.CO 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(engine.power + 1) 1 1861.106 1861.106 11568.45 0
 Residuals 39216 6308.983 0.161 

Figure 11-28 QQ and Residual vs. Fitted Plot for CO Model 2.3 
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The results suggest that by using transformed engine power, the model retains the amount 
of variance explained in truncated transformed CO at about 29% (Model 2.2), and even decreas­
es to 23% (Model 2.3). 

Considering two kinds of transformation, Model 2.2 improves the R2 more than does Model 
2.3. The residuals scatter plot for Model 2.2 (Figure 11-27) shows a more reasonably linear re­
lationship than Model 2.3 (Figure 11-28).  Figure 11-27 also shows that Model 2.2 does a better 
job of improving the pattern of variance comparing with Model 2.3. The QQ plot shows a kind of 
normality except for the two tails. Model 2.1 and Model 2.2 are both acceptable at this point. 

11.2.2.2.2 Linear Regression Model with Dummy Variables 

Figure 11-17 suggests that the relationship between CO and engine power may be some­
what different across the engine power ranges identified in the tree analysis. That is, there may 
be higher or lower CO emissions in different engine power operating ranges.  One dummy vari­
able is created to represent different engine power ranges identified in Figure 11-17 for use in 
linear regression analysis as illustrated below: 

Engine power (bhp) Dummy1 
<114.355 1 
≥114.355 0 

This dummy variable and the interaction between dummy variable and engine power are 
then tested to determine whether the use of the variable and interactions can help improve the 
model. 

Y = β0 + β1 engine.power(1/2) + β2 dummy1 + β3 dummy1 engine.power(1/2) + Error (2.4) 

The regression yields the results shown in Table 11-20 and Figure 11-29. 
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Table 11-20 Regression Result for CO Model 2.4 
*** Linear Model *** 

Call: lm(formula = log.CO ~ engine.power^(1/2) + dummy1 * engine.power^(1/2), data =
busdata10242006.1.4, na.action = na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-2.714 -0.2081 -0.01473 0.2136 2.37 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) -2.6690 0.0250 -106.5896 0.0000
 I(engine.power^(1/2)) 0.0772 0.0019 41.2399 0.0000

 dummy1 0.3472 0.0254 13.6516 0.0000 
I(engine.power^(1/2)):dummy1 -0.0338 0.0020 -17.0016 0.0000 

Residual standard error: 0.3836 on 39214 degrees of freedom
Multiple R-Squared: 0.2936
F-statistic: 5432 on 3 and 39214 degrees of freedom, the p-value is 0 

Analysis of Variance Table 

Response: log.CO 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

I(engine.power^(1/2)) 1 2337.466 2337.466 15881.03 0
 dummy1 1 18.325 18.325 124.50 0 

I(engine.power^(1/2)):dummy1 1 42.545 42.545 289.05 0
 Residuals 39214 5771.754 0.147 

Figure 11-29 QQ and Residual vs. Fitted Plot for CO Model 2.4 
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Coeffi cient of 
determination 

(R2) 

Slope 
(β1) 

RMSE MPE 

Mean ERs 0.000005 1.000 0.047559 0.0000002 
Linear regression (power) 0.0880 1.422 0.04622 0.00749 
Linear regression (power0.5) 0.0899 1.984 0.04662 0.00804 
Linear regression (log(power)) 0.0659 2.560 0.04736 0.00866 
Linear regression (power0.5) w/dummy variables 0.0915 1.657 0.04634 0.00777 

Model 2.4 improves R2 only marginally and retains the amount of variance explained in 
truncated transformed CO at about 29%, same as Model 2.1 and Model 2.2. Model 2.4 slightly 
improves R2 more than does Model 2.2. The residuals scatter plot for Model 2.4 (Figure 11-29) 
shows a reasonably linear relationship. Figure 11-29 also shows that Model 2.4 does a good job 
of improving the pattern of variance. QQ plot shows general normality with the exceptions aris­
ing in the tails. These three models (Model 2.1, Model 2.2, and Model 2.4) are all acceptable. 

11.2.2.2.3 Model Discussion 

The previous sections outline the model development process from a regression tree 
model, to a simple OLS model, to more complex OLS models. Since the performance of the 
models is evaluated by comparing model predictions and actual observations for emission rates, 
the R2 and slope are different from those in previous linear regression models.  The results of 
each step in the model improvement process are presented in Table 11-21.  The mean emission 
rates at HTBR end nodes (single value) are compared to the results of various linear regression 
functions with engine power.  Since the R2 and slope in Table 11-21 are derived by comparing 
model predictions and actual observations for emission rates (untransformed y), these numbers 
are different from those encountered in linear regression models. 

Table 11-21 Comparative Performance Evaluation of CO Emission Rate Models 

The improvement in R2 associated with moving toward a linear function of engine power 
is significant. Hence, the use of the linear regression function will provide a signifi cant improve­
ment in spatial and temporal model prediction capability.  However, this linear regression func­
tion might still be improved. 

Results suggest that a linear regression function with square root transformation performs 
slightly better than the others and that the use of dummy variables can further improve model 
performance. However, given the marginal improvement in R2, one could argue that use of the 
engine power may be just as reasonable considering the slope, RMSE, and MPE. Although the 
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linear regression function with dummy variables performs slightly better than other linear re­
gression models, more explanatory variables (dummy variables and the interaction with engine 
power) are introduced and the complexity of regression model increases. As discussed in Section 
11.2.2.1, there is no compelling reason to include the dummy variables in the model, given that:  
1) the second model is more complex without significantly improving model performance, and 2) 
there is no compelling engineering reason at this time to support the difference in model perfor­
mance within these specific power regions. These dummy variables are, however, worth explor­
ing when additional data from other engine technology groups become available for analysis. 

Considering all four parameters together, Model 2.1 is recommended as the preliminary 
‘final’ model.  The next step in model evaluation is to once again examine the residuals for the 
improved model. A principal objective was to verify that the statistical properties of the regres­
sion model conform to a set of properties of least squares estimators. In summary, these proper­
ties require that the error terms be normally distributed, have a mean of zero, and have uniform 
variance. 

Test for Constancy of Error Variance 

A plot of the residuals versus the fitted values is useful in identifying patterns in the 
residuals. Figure 11-26 plot (b) shows this plot for CO Model 2.1.  Without considering variance 
due to high emission points and zero load data, there is no obvious pattern in the residuals across 
the fitted values. 

Test of Normality of Error Terms 

The first informal test normally reserved for the test of normality of error terms is a 
quantile-quantile plot of the residuals. Figure 11-26 plot (c) shows the normal quantile plot of 
CO model 2.1. The second informal test is to compare actual frequencies of the residuals against 
expected frequencies under normality.  Under normality, we expect 68 percent of the residuals 
to fall between ± √MSE and about 90 percent to fall between ± 1.645 √MSE. Actually, 95.20% 
of residuals fall within the first limits, while 96.97% of residuals fall within the second limits. 
Thus the actual frequencies here are reasonably consistent with those expected under normality.  
The heavy tails at both ends are a cause for concern, but these tails are due to the nature of the 
data set. For example, even after the transformation, the response variable is not the real normal 
distribution. 

Based on the above analysis, the final CO emission rate model for the cruise mode is: 

CO = 10(-2.223+0.0033engine.power) 
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11.2.2.3 HC Emission Rate Model Development for Cruise Mode 

Based on previous analysis, truncated transformed HC will serve as the independent 
variable. However, modelers should keep in mind that the comparisons should always be made 
on the original untransformed scale of Y when comparing statistical models.  Previous analysis 
results suggest that engine power is the best one to begin with. 

11.2.2.3.1 Linear Regression Model with Engine Power 

Let’s select engine power to begin with, and estimate the model: 

Y = β0 + β1engine.power + Error (3.1) 

The regression run shows the results in Table 11-22 and Figure 11-30. 

Table 11-22 Regression Result for HC Model 3.1 
Call: lm(formula = HC.25 ~ engine.power, data = busdata10242006.1.4, na.action =

na.exclude)

Residuals:


 Min 1Q Median 3Q Max 

-0.123 -0.0212 0.00002295 0.02228 0.3279


Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1769 0.0003 537.0480 0.0000 
engine.power 0.0001 0.0000 43.0656 0.0000 

Residual standard error: 0.04248 on 38018 degrees of freedom
Multiple R-Squared: 0.04651
F-statistic: 1855 on 1 and 38018 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

engine.power -0.7501 

Analysis of Variance Table 

Response: HC.25 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

engine.power 1 3.34748 3.347484 1854.647 0
 Residuals 38018 68.61934 0.001805 

The results suggest that engine power explains about 5% of the variance in truncated 
transformed HC. F-statistic shows that β1≠0, and the linear relationship is statistically signifi­
cant. To evaluate the model, the normality is examined in the QQ plot and constancy of variance 
is checked by examining residuals vs. fi tted values. 
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Figure 11-30 QQ and Residual vs. Fitted Plot for HC Model 3.1 

The residual plot in Figure 11-30 shows a slight departure from linear regression assump­
tions indicating a need to explore a curvilinear regression function. Since the variability at the 
different X levels appears to be fairly constant, a transformation on X is considered.  The reason 
to consider transformation first is to avoid multicollinearity brought about by adding the second-
order of X. Based on the prototype plot in Figure 11-30, the square root transformation and loga­
rithmic transformation are tested. Scatter plots and residual plots based on each transformation 
should then be prepared and analyzed to determine which transformation is most effective.  

Y = β0 + β1engine.power(1/2) + Error (3.2) 

Y = β0 + β1log10(engine.power+1) + Error (3.3) 

The results for Model 3.2 are shown in Table 11-23 and Figure 11-31, while the results 
for Model 3.3 are shown in Table 11-24 and Figure 11-32. 
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Table 11-23 Regression Result for HC Model 3.2 
Call: lm(formula = HC.25 ~ engine.power^(1/2), data = busdata10242006.1.4, na.action

= na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-0.1233 -0.02113 -0.0002419 0.02195 0.3266 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1700 0.0004 396.7451 0.0000 
I(engine.power^(1/2)) 0.0022 0.0000 47.6385 0.0000 

Residual standard error: 0.04227 on 38018 degrees of freedom
Multiple R-Squared: 0.05633
F-statistic: 2269 on 1 and 38018 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

I(engine.power^(1/2)) -0.8625 

Analysis of Variance Table 

Response: HC.25 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

I(engine.power^(1/2)) 1 4.05395 4.053948 2269.422 0
 Residuals 38018 67.91288 0.001786 

Figure 11-31 QQ and Residual vs. Fitted Plot for HC Model 3.2 
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Table 11-24 Regression Result for HC Model 3.3 
Call: lm(formula = HC.25 ~ log10(engine.power + 1), data = busdata10242006.1.4,

na.action = na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-0.127 -0.02073 -0.0003198 0.02203 0.3226 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1653 0.0005 313.2136 0.0000 
log10(engine.power + 1) 0.0139 0.0003 46.4046 0.0000 

Residual standard error: 0.04233 on 38018 degrees of freedom
Multiple R-Squared: 0.05361
F-statistic: 2153 on 1 and 38018 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

log10(engine.power + 1) -0.9114 

Analysis of Variance Table 

Response: HC.25 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(engine.power + 1) 1 3.85779 3.857786 2153.39 0
 Residuals 38018 68.10904 0.001791 

Figure 11-32 QQ and Residual vs. Fitted Plot for HC Model 3.3 
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The results suggest that by using transformed engine power, the model retains the amount 
of variance explained in truncated transformed HC at about 5% (Model 2.2 and Model 2.3). The 
improvement is very small. 

Model 3.2 improves R2 relative to Model 3.3. The scatter plot for Model 3.2 (Figure 
11-31) also shows a better linear relationship than Model 3.3 (Figure 11-32).  Figure 11-31 also 
shows that Model 3.2 does a good job of improving the pattern of variance. The QQ plot shows 
general normality with the exceptions arising in the tails. 

11.2.2.3.2 Linear Regression Model with Dummy Variables 

Figure 11-21 suggests that the relationship between HC and engine power may differ 
across the engine power ranges. One dummy variable is created to represent different engine 
power ranges identified in Figure 11-21 for use in linear regression analysis as illustrated below: 

Engine power (bhp) Dummy1 

< 15.335 1 

≥ 15.335 0 

This dummy variable and the interaction between dummy variable and engine power 
are then tested to determine whether the use of the variable and interaction can help improve the 
model. 

Y = β0 + β1 log10(engine.power+1) + β2 dummy1 + β3 dummy1 log10(engine.power+1) + Error (3.4) 

The regression run shows the results in Table 11-25 and Figure 11-33. 
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Table 11-25 Regression Result for HC Model 3.4 
Call: lm(formula = HC.25 ~ log10(engine.power + 1) + dummy1 * log10(engine.power +

1), data = busdata10242006.1.4, na.action = na.exclude)

Residuals:


 Min 1Q Median 3Q Max 

-0.1292 -0.0209 -0.0007262 0.02123 0.3423


Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1695 0.0015 109.7632 0.0000
 log10(engine.power + 1) 0.0124 0.0008 15.7058 0.0000

 dummy1 0.0022 0.0017 1.3388 0.1807 
dummy1:log10(engine.power + 1) -0.0249 0.0012 -20.1153 0.0000 

Residual standard error: 0.04184 on 38016 degrees of freedom
Multiple R-Squared: 0.07514
F-statistic: 1030 on 3 and 38016 degrees of freedom, the p-value is 0 

Analysis of Variance Table 

Response: HC.25 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(engine.power + 1) 1 3.85779 3.857786 2203.411 0
 dummy1 1 0.84128 0.841276 480.503 0 

dummy1:log10(engine.power + 1) 1 0.70843 0.708425 404.624 0
 Residuals 38016 66.55934 0.001751 

Figure 11-33 QQ and Residual vs. Fitted Plot for HC Model 3.4 
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Coeffi cient of 
determination 

(R2) 

Slope 
(β1) 

RMSE MPE 

Mean ERs 0.00002 1.000 0.0020519 0.0000003 
Linear regression (power) 0.00766 0.886 0.0020984 0.00047397 
Linear regression (power0.5) 0.00912 0.724 0.0020845 0.00040936 
Linear regression (log(power)) 0.00950 0.820 0.0020831 0.00040857 
Linear regression (log(power)) w/dummy variables 0.00939 -1.142 0.0022933 0.00097449 

The results suggest that by using dummy variables and interactions with transformed en­
gine power, the model only increases the amount of variance explained in truncated transformed 
HC from about 5% to about 8%. 

Model 3.4 slightly improved R2 relative to Model 3.2. The F-statistic shows that all β 

values are not equal to zero, and the linear relationship is statistically significant. The gap in the 
residuals plot may be shifted regarding the intercept and slope by the difference of two regres­
sion functions. 

11.2.2.3.3 Model Discussion 

The previous sections outline the model development process from regression tree model, 
to a simple OLS model, to more complex OLS models. Since the performance of the models 
is evaluated by comparing model predictions and actual observations for emission rates, the 
R2 and slope are different from those in previous linear regression models.  To test whether the 
linear regression with power was a beneficial addition to the regression tree model, the mean 
ERs at HTBR end nodes (single value) are compared to the predictions from the linear regres­
sion function with engine power.  The results of the performance evaluation are shown in Table 
11-26.  The improvement in R2 associated with moving toward a linear function of engine power 
is nearly imperceptible. Hence, the use of the linear regression function will provide almost no 
significant improvement in spatial and temporal model prediction capability.  This linear regres­
sion function might still be improved. Since the R2 and slope in Table 11-26 are derived by 
comparing model predictions and actual observations for emission rates (untransformed y), these 
numbers are different from the results obtained from linear regression models. 

Table 11-26 Comparative Performance Evaluation of HC Emission Rate Models 

Results suggest that the linear regression function with log transformation performs 
slightly better than the others and that the use of dummy variables can further improve model 
performance, but again there is almost no perceptible change in terms of explained variance. 
Although the linear regression function with log transformation and dummy variables performs 
slightly better than the linear regression function with square root transformation alone, the 
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revised model introduces additional explanatory variables (dummy variables and the interaction 
with engine power) and increases the complexity of the regression model without significantly 
improving the model. As discussed in Section 11.2.2.1, there is no compelling reason to include 
the dummy variables in the model, given that: 1) the second model is more complex without sig­
nificantly improving model performance, and 2) there is no compelling engineering reason at this 
time to support the difference in model performance within these specific power regions. These 
dummy variables are, however, worth exploring when additional data from other engine technol­
ogy groups become available for analysis. 

Model 3.2 is recommended as the preliminary “final” model (although one might argue 
that using the regression tree results directly would also probably be acceptable). The next step 
in model evaluation is to once again examine the residuals for the improved model. A principal 
objective was to verify that the statistical properties of the regression model conform ta a set of 
properties of least squares estimators. In summary, these properties require that the error terms 
be normally distributed, have a mean of zero, and have uniform variance. 

Test for Constancy of Error Variance 

A plot of the residuals versus the fitted values is useful in identifying any patterns in the 
residuals. Figure 11-31 plot (c) shows this plot for HC Model 3.2.  Without considering variance 
due to high emission points and zero load data, there is no obvious pattern in the residuals across 
the fitted values. 

Test of Normality of Error terms 

The first informal test normally reserved for the test of normality of error terms is a 
quantile-quantile plot of the residuals. Figure 11-31 plot (d) shows the normal quantile plot of 
the HC model. The second informal test is to compare actual frequencies of the residuals against 
expected frequencies under normality.  Under normality, we expect 68 percent of the residuals 
to fall between ±√MSE and about 90 percent to fall between ± 1.645 √MSE. Actually, 95.20% 
of residuals fall within the first limits, while 96.99% of residuals fall within the second limits. 
Thus, the actual frequencies here are reasonably consistent with those expected under normality. 
The heavy tails at both ends are a cause for concern, but are due to the nature of the data set. For 
example, even after the transformation, the response variable is not the real normal distribution. 

The final HC emission rate model selected for cruise mode is: 

HC = [0.170 + 0.0022(engine.power)(1/2)]4 
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11.3  Conclusions and Further Considerations 

In this research, engine power is used as the main explanatory variable to develop cruise 
emission rate models. The explanatory ability of engine power varies by pollutant. In general, 
the relationship between NOx and engine power is more highly correlated than the other two pol­
lutants. 

Inter-bus variability analysis indicated that some of the 15 buses are higher emitters that 
others (especially noted for HC emissions). However, none of the buses appear to qualify as 
traditional high-emitters, which would exhibit emission rates of two to three standard devia­
tions above the mean. Hence, it is difficult to classify any of these 15 buses as high emitters 
for modeling purposes. At this point, these 15 buses are treated as a whole data set for model 
development. Modelers should keep in mind that although no true high-emitters are present in 
the database, such vehicles may behave significantly differently than the vehicles tested.  Hence, 
data from high-emitting vehicles should be collected and examined in future studies. 

Some high HC emissions events are noted in cruise mode. After screening engine speed, 
engine power, engine oil temperature, engine oil pressure, engine coolant temperature, ECM 
pressure, and other parameters, no variables were identified that could be linked to these high 
emissions events. These events may represent natural variability in onroad emissions, or some 
other variable (such as grade or an engine variable that is not measured) may be linked to these 
events. 

Engine power is selected as the most important variable for three pollutants based on 
HTBR tree models. This finding is consistent with previous research results which verifi ed the 
important role of engine power (Ramamurthy et al. 1998; Clark et al. 2002; Barth et al. 2004). 
The noted HC relationship is significant but fairly weak. Analysis in previous chapters also indi­
cates that engine power is correlated with not only onroad load parameters such as vehicle speed, 
acceleration, and grade, but also potentially correlated with engine operating parameters such 
as throttle position and engine oil pressure. On the other hand, engine power in this research is 
derived from engine speed, engine torque and percent engine load. 

The regression tree models still suggest that some other variables, like oil pressure and 
engine barometric pressure, may also impact the HC emissions. Further analysis demonstrates 
that by using engine power alone one might be able to achieve similar explanatory ability as 
opposed to using engine power and other variables. To develop models that are effi cient and 
easy to implement, only engine power is used to develop emission models. However, additional 
investigation into these variables is warranted as additional detailed data from engine testing 
become available for analysis. 
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Given the relationships noted between engine indicated HP and emission rates, it is 
imperative that data be collected to develop solid relationships in engine power demand models 
(estimating power demand as a function of speed/acceleration, grade, vehicle characteristics, 
surface roughness, inertial losses, etc.) for use in regional inventory development and microscale 
impact assessment. 

In summary, the cruise emission rate models selected for implementation are: 

NOx = [0.0087+0.0311 (engine.power)(1/2)]2 

CO = 10^(-2.223+0.0033engine.power) 

HC = [0.170+0.0022 (engine.power)(1/2)]4 
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CHAPTER 12 

12. MODEL VERIFICATION 

In the previous chapters, three statistically-derived modal emission rate models were de­
veloped for use in predicting emissions of NOx, CO and HC from transit buses. This chapter dis­
cusses the reasons for using engine power instead of surrogate power variables in emission rate 
modeling, the necessity of developing a linear regression model rather than using mean emission 
rates, the need to introduce driving mode with load modeling, the possibility of combining ac­
celeration and cruise modes, and other issues. 

12.1 Engine Power vs. Surrogate Power Variables 

The first step towards verifying the model is to compare the explanatory power of real 
load data and surrogate power variables. Different approaches have been proposed by several re­
searchers. The MOVES model employs vehicle specific power (VSP), defined as instantaneous 
power per unit mass of the vehicle (Jimenez-Palacios 1999). 

VSP is a measure of the road load on a vehicle, defined as the power per unit mass to 
overcome road grade, rolling and aerodynamic resistance, and inertial acceleration (Jimenez-
Palacios 1999; U.S. EPA 2002b; Nam 2003; Younglove et al. 2005): 

v *( *(1 + γ ) + g * grade + g *CR ) + 0.5 ρ *CD * A* v3 / mVSP = a 
where: 

v: vehicle speed (assuming no headwind) in m/s 
a: vehicle acceleration in m/s2

γ: mass factor accounting for the rotational masses (~0.1)

g: acceleration due to gravity

grade: road grade


 CR: rolling resistance (~0.0135)

ρ: air density (1.2)

 CD: aerodynamic drag coefficient 
A: the frontal area 
M: vehicle mass in metric tons 
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Using typical values for coefficients, in SI units the equation becomes (CDA/m ~ 0.0005) 
(Younglove et al. 2005): 

( / metricTon ) V (1.1 a 9.81× (%) + 0.132) + 0.001208 × v3VSP kW = ×  × +  grade 

The VSP approach to emission characterization was developed by several researchers 
(Jimenez-Palacios 1999; U.S. EPA 2002b; Nam 2003; Younglove et al. 2005) and further devel­
oped as part of the MOVES model. The coefficients used to estimate VSP were different in pre­
vious research because of the choice of typical values of coefficients. However, the coefficients 
given in the above equation are specific for light-duty vehicles. For example, a mass factor of 
0.1 is not suitable to describe the transit bus characteristics of inertial loss. This surrogate power 
variable (VSP) is not suitable to compare with engine load data for this study.  First, the imple­
mentation approach that is used in MOVES is based upon VSP bins, and not on instantaneous 
VSP.  Second, the coefficients given in the above equation are specific for light-duty vehicles, not 
for transit buses. 

Other research efforts have used surrogate power variables such as the inertial power sur­
rogate, defined as acceleration times velocity, and drag power surrogate, defined as acceleration 
times velocity squared (Fomunung 2000). Barth and Frey also used acceleration times velocity 
for power demand estimation (Barth and Norbeck 1997; Frey et al. 2002). Both surrogate vari­
ables for power demand can be used to compare NOx in cruise mode. Using surrogate variables 
instead of real load data, the model is: 

Y = β0 + β1 acceleration + β2 vehicle.speed + β3 vehicle.speed*acceleration + 
β4 vehicle.speed2*acceleration + Error 

(1) 

The regression run shows the results in Table 12-1 and Figure 12-1. 
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Table 12-1 Regression Result for NOx Model 1 
Call: lm(formula = NOx.50 ~ vehicle.speed * acceleration + vehicle.speed^2:

acceleration, data = busdata10242006.1.4, na.action = na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-0.4779 -0.08625 0.001824 0.08759 1.338 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.1996 0.0018 113.0559 0.0000
 vehicle.speed 0.0043 0.0001 77.4369 0.0000
 acceleration 0.0738 0.0052 14.2957 0.0000

 vehicle.speed:acceleration 0.0066 0.0004 15.5704 0.0000 
acceleration:I(vehicle.speed^2) -0.0001 0.0000 -13.7590 0.0000 

Residual standard error: 0.1323 on 39369 degrees of freedom
Multiple R-Squared: 0.3708
F-statistic: 5801 on 4 and 39369 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept) vehicle.speed acceleration

vehicle.speed -0.9243
acceleration 0.0796 -0.0590 

vehicle.speed:acceleration -0.0825 0.0569 -0.9114 
acceleration:I(vehicle.speed^2) 0.0782 -0.0593 0.7978 

vehicle.speed:acceleration
vehicle.speed
acceleration 

vehicle.speed:acceleration
acceleration:I(vehicle.speed^2) -0.9678 

Analysis of Variance Table 

Response: NOx.50 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

vehicle.speed 1 122.5215 122.5215 6999.67 0
 acceleration 1 278.9165 278.9165 15934.55 0

 vehicle.speed:acceleration 1 1.4036 1.4036 80.19 0 
acceleration:I(vehicle.speed^2) 1 3.3136 3.3136 189.31 0

 Residuals 39369 689.1106 0.0175 
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Figure 12-1 QQ and Residual vs. Fitted Plot for NOx Model 1 

The results suggest that the surrogate variable model can explain about 37 % of the vari­
ance in truncated transformed NOx, whereas the OLS model developed in Chapter 10 explained 
more than 75% of the cruise mode variance. Considering the theoretical equation of engine 
power presented much earlier in Chapter 3, the surrogate variables can only represent some, and 
not all, of the components of engine power.  Given the importance of engine power in explaining 
the variability of emissions, it is essential that field data collection efforts include the measure­
ment of indicated load data as well as all of the operating conditions necessary to estimate bhp 
load when second-by-second emission rate data are collected. 

12.2 Mean Emission Rates vs. Linear Regression Model 

The modeling approach employed in this research involved the separation of data into 
separate driving modes for analysis and then applying modeling techniques to derive emission 
rates as a function of engine load. Although constant emission rates in grams/second were ad­
equate for idle, motoring, and non-motoring deceleration modes, modeling efforts in Chapters 10 
and 11 demonstrated that a linear regression function should improve spatial and temporal model 
prediction capability significantly for acceleration and cruise modes. However, one verification 
comparison that should be undertaken is on the overall benefit of introducing engine load into the 
modeling regime vs. simply using average emission rate values for each operating mode. This 
comparison will provide insight into the overall effect of introducing engine load (even though it 
is only introduced into acceleration and cruise modes). 

There are a number of model goodness-of-fit criteria that can be used to assess the dif­
ference between the emissions predicted by the load-based modal emission rate model and the 
mode-only emission rate models. Normally, one would compare the alternative model perfor­

12-4




mance for an independent set of data collected from similar vehicles, which is currently not 
available. Alternatively, model developers would set aside a significant subset of the data in the 
model development data set so that the data are not used in model development and instead used 
in model comparisons. However, there were not enough data available to do this.  Hence, at this 
time, the only comparisons that can be made are for alternative model performance using the 
same data that were used to develop the models presented in this research effort. 

The performance of the models is first evaluated by comparing model predictions and ac­
tual observations for emission rates. The performance of the model can be evaluated in terms of 
precision and accuracy (Neter et al. 1996). The R2 value is an indication of precision. Usually, 
higher R2 values imply a higher degree of precision and less unexplained variability in model 
predictions than lower R2 values. The slope of the trend line for the observed versus predicted 
values is an indication of accuracy.  A slope of one indicates an accurate prediction, in that the 
prediction of the model corresponds to an observation. 

The model’s predictive ability is also evaluated using the root mean square error (RMSE) 
and the mean prediction error (MPE) (Neter et al. 1996). The RMSE is a measure of prediction 
error.  When comparing two models, the model with a smaller RMSE is a better predictor of 
the observed phenomenon. Ideally, mean prediction error is close to zero.  RMSE and MPE are 
calculated as follows: 

RMSE = 
1 ∑ 

n 

( yi − y �i )
2   Equation (12-1)

n i=1 

MPE = 
1 ∑ 

n 

( yi − y � i ) 
       Equation (12-2) 

n i=1 

where:

RMSE: = root mean square error

n: = number of observations
 yi: = observaton y 
ȳ i: = mean of observation y 
MPE: = mean predictive error 

To test whether the linear regression with power was a beneficial addition to the regres­
sion tree model, the mean ERs at HTBR end nodes (single value) are compared to the predictions 
from the linear regression function with engine power.  The results of the performance evaluation 
are shown in Table 12-2.  
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Coeffi cient of 
determination 

(R2) 

Slope 
(β1) 

RMSE MPE 

NO x 
Mean ERs 0.438 1.000 0.08725 0.000002 
Linear Regression 0.665 1.102 0.07122 0.021463 
CO 
Mean ERs 0.248 1.000 0.07406 -0.000004 
Linear Regression 0.491 1.749 0.06691 0.010285 
HC 
Mean ERs 0.0686 1.000 0.00190 0.0000005 
Linear Regression 0.0677 1.213 0.00192 0.000223 

Table 12-2 Comparative Performance Evaluation between Mode-Only Models and Linear Re­
gression Models 

For NOx and CO, the R2 values indicate that load based modal emission model performs 
slightly better than mean emission rates and the use of linear regression function can further im­
prove model performance. The results shown in Table 12-2 reinforce the importance of introduc­
ing linear regression functions in acceleration and cruise mode. For HC, there is no discernible 
difference in model performance.  Combining this finding with the performance results for HC 
noted in Chapters 8 through 11, using constant emission rates for each operating mode could be 
justified for this data set. When additional data are collected, researchers should compare mean 
emission rates approaches to power-based approaches to ensure that power demand models for 
HC are necessary. 

12.3 	Mode-specific Load Based Modal Emission Rate Model vs. Emission Rate Models as a 
Function of Engine Load 

Modal modeling approaches are becoming widely accepted as more accurate in making 
realistic estimates of mobile source contributions to local and regional air quality.  Research at 
Georgia Tech has clearly identified that modal operation is a better indicator of emission rates 
than average speed (Bachman 1998). The analysis of emissions with respect to driving modes, 
also referred to as modal emissions, has been performed in recent research studies (Barth et al. 
1996; Bachman 1998; Fomunung et al. 1999; Frey et al. 2002; Nam 2003; Barth et al. 2004). 
These studies indicated that driving modes might have the ability to explain a certain portion of 
the variability in emissions data. In Chapters 10 and 11, emission rates were derived as a func­
tion of driving mode (cruise, idle, acceleration, and deceleration operations) and engine power 
because previous research efforts had separately suggested that vehicle emission rates were 
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highly correlated with modal activity and engine power.  In this research, five driving modes are 
introduced in total: idle mode, deceleration motoring mode, revised deceleration mode, accelera­
tion mode, and cruise mode. 

Chapters 10 and 11 did not compare the combined modal and engine power models to 
models that use power alone to predict emission rates. To test the effect of adding driving modes 
in the emission rate model, the derivation of a load-only model for NOx emissions is illustrated 
in detail. Load-only CO emissions models and HC emissions models are also derived for com­
parison purposes and presented in final form (however, the detailed regression plots and tables 
are omitted for the purposes of brevity). 

As in previous chapters, the first step for a load based only model is to select the most im­
portant variable for NOx emissions. When using the entire database at once (data are not broken 
into mode subsets for this derivation), the appropriate transformation for NOx is ¼ based on Box-
Cox results, rather than the ½ value used in developing models for acceleration and cruise mode 
(see Chapters 10 and 11).  The trimmed HTBR tree models for NOx are illustrated in Figure 12-2 
and Table 12-3. 

Figure 12-2 Trimmed Regression Tree Model for Truncated Transformed NOx 
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Table 12-3 Trimmed Regression Tree Results for Truncated Transformed NOx 
Regression tree:
tree(formula = NOx.25 ~ engine.power + vehicle.speed + acceleration +

oil.temperture + oil.press + cool.temperature + eng.bar.press +
model.year + odometer + bus360 + bus361 + bus363 + bus364 + bus372 +
bus375 + bus377 + bus379 + bus380 + bus381 + bus382 + bus383 + bus384 + 
bus385 + dummy.grade, data = busdata10242006.1, na.action = na.exclude,
mincut = 3000, minsize = 6000, mindev = 0.1)

Variables actually used in tree construction:
[1] “engine.power”
Number of terminal nodes: 4 
Residual mean deviance: 0.005837 = 618.6 / 106000
Distribution of residuals:

 Min. 1st Qu. Median Mean 3rd Qu. Max. 
-5.187e-001 -4.510e-002 -9.204e-003 3.768e-016 5.004e-002 6.557e-001 

node), split, n, deviance, yval
* denotes terminal node 

1) root 105976 3058.00 0.4991
2) engine.power<41.535 62441 666.60 0.3823 

4) engine.power<4.515 17897 195.50 0.2768 *
 5) engine.power>4.515 44544 192.20 0.4246 *

 3) engine.power>41.535 43535 316.60 0.6667 
6) engine.power<96.255 11504 61.56 0.5926 *

 7) engine.power>96.255 32031 169.20 0.6933 * 

After testing different transformations for Y and adding dummy variables according to 
HTBR results, Table 12-4 and Figure 12-3 show that a load based only model for NO  emissions x
is a fairly good model, considering the constancy of error variance and normality of error terms. 
So, the final load based only model for NO  emissions is: x

NOx = [0.230 + 0.195log10(engine.power+1)]4 

The regression run shows the results in Table 12-4 and Figure 12-3. 
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Table 12-4 Regression Result for NO  Load-Based Only Emission Rate Modelx
Call: lm(formula = NOx.25 ~ log10(engine.power + 1), data = busdata10242006.1,

na.action = na.exclude)
Residuals:

 Min 1Q Median 3Q Max 
-0.4683 -0.04297 -0.01329 0.04138 0.663 

Coefficients:
 Value Std. Error t value Pr(>|t|)

(Intercept) 0.2303 0.0005 489.9131 0.0000 
log10(engine.power + 1) 0.1950 0.0003 657.2170 0.0000 

Residual standard error: 0.0754 on 105974 degrees of freedom
Multiple R-Squared: 0.803
F-statistic: 431900 on 1 and 105974 degrees of freedom, the p-value is 0 

Correlation of Coefficients:
 (Intercept)

log10(engine.power + 1) -0.8702 

Analysis of Variance Table 

Response: NOx.25 

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(engine.power + 1) 1 2455.676 2455.676 431934.2 0
 Residuals 105974 602.494 0.006 

Figure 12-3 QQ and Residual vs. Fitted Plot for Load-Based Only NO  Emission Rate Model x
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Coeffi cient of 
determination 

(R2) 

Slope 
(β1) 

RMSE MPE 

NO x 
Load-Only Emission Rate Model 0.715 1.181 0.06494 0.011382 
Mode/Load Emission Rate Models 0.665 1.102 0.07122 0.021463 
CO 
Load-Only Emission Rate Model 0.246 2.071 0.07886 0.015568 
Mode/Load Emission Rate Models 0.490 1.749 0.06691 0.010285 
HC 
Load-Only Emission Rate Model 0.0672 0.982 0.00197 0.000499 
Mode/Load Emission Rate Models 0.0677 1.213 0.00192 0.000223 

­

Following the same derivation techniques, the final load-only model for CO emissions is: 

CO = 10^[-2.659 + 0.0899(engine.power)(1/2)] 

Following the same derivation techniques, the final load-only model for HC emissions is: 

HC = 10^[-3.306 + 0.0382(engine.power)(1/2)] 

The performance of the load-only models relative to the combined mode and load models 
developed in Chapters 8 through 11 is presented in Table 12-5. 

Table 12-5 Comparative Performance Evaluation Between Load-Based Only Emission Rate (ER) 
Model and Load-Based Modal Emission Rate Model 

For NOx, both models perform well in explaining the variance of emission rates, reinforc
ing the importance of including engine power as a variable in explaining the variance of NOx 
emission rates. Results suggest that a mode/load modal emission modeling approach performs 
slightly better than load-only emission rate models for CO. For HC, there is no discernible 
difference in model performance.  Combining this finding with the performance results for HC 
noted in Chapters 8 through 11, using constant emission rates for each operating mode could be 
justified for this data set. When additional data are collected, researchers should compare mode-
only approaches to power-based approaches to ensure that power demand models for HC are 
necessary. 
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12.4 Separation of Acceleration and Cruise Modes 

In this research effort, separate models were developed for acceleration and cruise modes 
(Chapters 10 and 11).  However, it may be possible to combine acceleration and cruise mode 
activity into a new “combined driving” mode. As noted in Chapter 10, although engine power 
distribution for acceleration mode is different from cruise mode, these two modes share a similar 
pattern. A quick analysis of the impact of combining acceleration and cruise mode is presented 
in this section. 

After examining HTBR results, selecting the important explanatory variables, testing dif­
ferent transformations for X and Y, and adding dummy variables according to HTBR results, the 
fi nal NO x emission model for combined driving mode is: 

NOx = [0.113 + 0.0266(engine.power(1/2)]2 

The final CO emission model for combined driving mode is: 

CO = 10^[-2.238 + 0.0043(engine.power)] 

while the final HC emission model for combined driving mode is: 

HC = [0.167 + 0.0028(engine.power(1/2)]4 

To test whether combining acceleration and cruise modes would benefit the load-based 
modal emission model, the predictions from the linear regression function for combined driving 
mode are compared to the predictions from sub-models for acceleration and cruise mode in the 
load-based modal emission model. Since the other elements are the same for two models, they 
will be excluded from test. The results of the performance evaluation are shown in Table 12-6. 
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Coeffi cient of 
determination 

(R2) 
Slope (β1) RMSE MPE 

NO x 
Combined Driving Mode 0.531 0.921 0.08488 0.00840 
Acceleration & Cruise Mode 0.527 0.953 0.09312 0.03904 
CO 
Combined Driving Mode 0.177 1.594 0.10395 0.02305 
Acceleration & Cruise Mode 0.452 1.775 0.08966 0.01873 
HC 
Combined Driving Mode 0.0338 0.907 0.00204 0.00042 
Acceleration & Cruise Mode 0.0410 0.905 0.00203 0.00041 

­

Table 12-6 Comparative Performance Evaluation between Linear Regression with Combined 
Mode and Linear Regression with Acceleration and Cruise Modes 

Results shown in Table 12-6 suggest that separate linear regression functions for accelera
tion and cruise modes perform significantly better than linear regression functions with combined 
driving mode for CO. For NOx and HC, both models perform similarly with respect to explain­
ing the variance of emission rates. In general, these results support introducing acceleration and 
cruise mode into the conceptual model. However, as new data become available for testing, 
researchers should examine whether it is reasonable to simply separate idle and deceleration 
modes from other driving modes and then apply a simple power-based model to the remaining 
combined driving activity for NOx. 

12.5 MOBILE6.2 vs. Load-Based Modal Emission Rate Model 

The final step undertaken in the model verification process was a comparison of predic­
tion results from MOBILE6.2 and the load-based modal emission rate model developed in this 
research. Comparisons are based upon the Ann Arbor transit vehicle test data.  These data were 
used to develop the modal emission rates for this report, but were not used in developing the 
MOBILE6.2 model. Normally, one would compare alternative model performance using an 
independent set of data collected from similar vehicles, which is currently not available. Hence, 
the comparisons that will be presented are far from unbiased. When new data from an indepen­
dent test fleet become available, these comparisons should be performed again. 

To facilitate the emission rate prediction comparison, lookup tables for MOBILE6.2 
transit bus emission rates on arterial roads were first created for average speeds from 2.5 mph to 
65 mph. The MOBILE6.2 calendar year was set to January 2002 since the data set was collected 
during October 2001. The temperature was set as 75 ºF, since the emission rates for transit buses 
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Coeffi cient of 
determination 

(R2) 
Slope (β1) RMSE MPE 

NO x 
MOBILE 6.2 0.172 0.706 0.10825 0.011217 
Load-Based Modal ER Model 0.665 1.102 0.07122 0.021463 
CO 
MOBILE 6.2 0.0195 1.690 0.08516 0.013399 
Load-Based Modal ER Model 0.491 1.749 0.06691 0.010285 
HC 
MOBILE 6.2 0.0408 0.584 0.00194 0.000173 
Load-Based Modal ER Model 0.0677 1.213 0.00192 0.000223 

in MOBILE6.2 do not change with temperature. Emissions predictions from MOBILE6.2 were 
then obtained by combining lookup tables and corresponding speed values in the AATA data set. 
The results of the performance evaluation are shown in Table 12-7. 

Table 12-7 Comparative Performance Evaluation between MOBILE 6.2 and Load-Based Modal ER Model 

Results suggest that load-based modal emission rate model performs signifi cantly better 
than MOBILE6.2 for NOx and CO, and slightly better for HC. The performance of the load-
based modal emission rate model is not surprising because the same data used to develop the 
model are used in the comparison. Results suggest that the load-based modal emission model 
performs well vis-à-vis explaining the variance of NOx and CO emission rates on a microscopic 
level. The slight differences in RMSE and MPE indicate that both models (MOBILE6.2 and the 
load-based modal emission model) perform well at the macroscopic level, and should perform 
similarly when used in regional inventory development. 

12.6 Conclusions 

In general, the results provided here are encouraging for the load based modal emis­
sion model. The comparison between engine power and surrogate power variables confirms 
the important role of engine power in explaining the variability of emissions. The comparison 
between the load-only emission rate model and the load-based modal emission rate model shows 
that the impact of driving mode on emissions is signficiant for NOx and CO emissions while no 
such trend is discernible for HC. The comparison between acceleration and cruise modes and 
combined driving mode indicates that the relationships between engine power and emissions are 
slightly different for acceleration and cruise modes.  Splitting the database into five modes (idle 
mode, decelerating motoring mode, deceleration non-motoring mode, acceleration mode, and 
cruise mode) appears warranted. 
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The data used to develop the load based modal emission model in this research are very 
limited since the data set contained only 15 transit buses. Inter-bus variability is more obvious 
for HC emissions since Bus 363 has the lowest HC emissions compared with the other 14 buses. 
This kind of variability might influence the explanatory variables of the modal emission model 
for HC emissions. When new data become available, these models should be re-derived to ob­
tain further improved performance in applications to the transit bus fleet. 
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CHAPTER 13 

13. CONCLUSIONS 

The goal of this research is to provide emission rate models that fill the gap between 
existing models and ideal models for predicting emissions of NOx, CO, and HC from heavy-duty 
diesel vehicles. The researchers at Georgia Institute of Technology have developed a beta ver­
sion of HDDV-MEM (Guensler et al. 2005), which is based upon vehicle technology groups, 
engine emission characteristics, and vehicles modal activity.  The HDDV-MEM fi rst predicts 
second-by-second engine power demand as a function of onroad vehicle operating conditions 
and then applies brake-specific emission rates to these activity predictions. The HDDV-MEM 
consists of three modules: a vehicle activity module (with vehicle activity tracked by a vehicle 
technology group), an engine power module, and an emission rate module. 

Using second-by-second data collected from onroad vehicles, the research effort reported 
herein developed models to predict emission rates as a function of onroad operating conditions 
that affect vehicle emissions.  Such models should be robust and ensure that assumptions about 
the underlying distribution of the data are verified and that assumptions associated with appli­
cable statistical methods are not violated. Due to the general lack of data available for develop­
ment of heavy-duty vehicle modal emission rate models, this study focuses on development of an 
analytical methodology that is repeatable with different data sets collected across space and time. 
The only acceptable second-by-second data set in which emission rate and applicable load and 
vehicle activity data had been collected in parallel was the AATA bus emissions database col­
lected by Sensors, Inc., for use by the U.S. EPA. 

The models developed in this report are applicable to transit buses only, and are not ap­
plicable to all transit buses (see limitations discussion in Section 13.2). However, a significant 
contribution of the research is in the development of the analytical framework established for 
analysis of second-by-second emission rate data collected in parallel with engine load and other 
onroad operating parameters, and in the development of applicable processes for developing sta­
tistical models using such data. To demonstrate the capability of the modeling framework, three 
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modal emission rate models have been developed for prediction of NOx, CO and HC emissions 
from mid-1990s transit buses. 

The AATA transit bus data set was first post-processed through a quality control/quality 
assurance process. Data problems were identified and corrected during this stage of the research 
effort.  The types of errors checked include: loss of data, erroneous ECM data, GPS dropouts, 
and synchronization errors. Data records for which all data elements were not collected were 
removed to avoid any bias to the results. No erroneous ECM data were identified. Six buses ex­
perienced GPS dropouts and synchronization errors and these problems were treated as described 
in chapter 4. Emission rate variability was also assessed across the sample of buses to identify 
any potential high-emitters that may behave differently than other buses under normal operating 
conditions and therefore warrant separate model development. However, no high-emitters were 
identifi ed. To find the true ‘high-emitters’, modelers need to include a representative sample 
of buses to try to ensure that mean emissions and response rates to operating variables are rep­
resented in the data. Since there are only 15 buses in the data set, modelers could not exclude 
buses that showed higher emission rates than the others. 

Model development then proceeded through a structured series of steps. Transformations 
of emission rates (NOx, CO, and HC) were verified through a Box-Cox procedure to improve 
the specific modeling assumptions, such as linearity or normality.  HTBR regression tree results 
were used to identify the most important explanatory variables for emission rates. OLS regres­
sion models were developed for transformed emission rates using chosen explanatory variables. 
Dummy variables were created to represent the cut points identified in HTBR trees. Interaction 
effects for identified explanatory variables were also tested to see whether they could improve 
the model. The models were comparatively evaluated and the most efficient models for each 
pollutant were selected. By demonstrating statistical “robustness” and sufficiency in previous 
chapters, the main goal of this research, that of “developing new load-based models with signifi­
cant improvement”, was achieved. 

This chapter will review the key accomplishments of this research. The chapter provides 
the final models selected for implementation and begins with a summary of the fi nal models 
developed for the transit buses, followed immediately by a discussion on the limitations of these 
models. The chapter concludes with the lessons learned and recommendations on further re­
search. 
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13.1 Transit Bus Emission Rate Models 

The goal of this research was to develop a methodology for creating load-based emis­
sion rate models designed to predict emission rates of NOx, CO, and HC from transit buses as a 
function of onroad operating conditions. The models should be robust and ensure that statisti­
cal assumptions in model development are not violated. With limited available data, this study 
developed a methodology that is repeatable with a different data set from across space and across 
time. The final estimated models are presented in Table 13-1. 

Table 13-1 Load Based Modal Emission Models 
Driving Mode 
NO x 

Idle Mode 0.033415 g/s 

Decelerating Motoring Mode 0.0097768 g/s 

Deceleration Non-Motoring Mode 0.045777 g/s 

Acceleration Mode 
NOx = (-0.0195 + 0.201log10(engine.power + 1) + 
0.0019vehicle.speed)2 

Cruise Mode NOx = (0.0087 + 0.0311 (engine.power)(1/2))2 

CO 
Idle Mode 0.0059439 g/s 
Decelerating Motoring Mode 0.0052857 g/s 
Deceleration Non-Motoring Mode 0.0068557 g/s 

Acceleration Mode CO = 10^(-3.747 + 1.341log10(engine.power + 1) -
0.0285vehicle.speed) 

Cruise Mode CO = 10(-2.223+0.0033engine.power) 

HC 
Idle Mode 0.00091777 g/s 
Decelerating Motoring Mode 0.001113 g/s 
Revised Deceleration Mode 0.001312 g/s 
Acceleration Mode HC = (0.114 + 0.0426log10(engine.power + 1))4 

Cruise Mode HC = (0.170 + 0.0022 (engine.power)(1/2))4 

The transformations employed for the three pollutants in acceleration and cruise modes 
are different.  The predictive capabilities of each of the models for three pollutants are also dif­
ferent. The R2 value is high for NOx and CO emission rates, but very low for HC emission rates. 
HC models are not much better than simply using HTBR mean ERs. The relatively poor perfor­
mance of the HC models is not an inherent limitation of the modal modeling approach. Instead, 
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it is a result of the lack of availability of a suitable explanatory variable for model development 
purposes. Although the model with dummy variables and interactions works better, the final 
model is not necessarily the best fit, but is one that can be readily implemented. 

The three models include all of those significant variables identified as affecting gram/ 
second emissions rates, with the exception of those variables that are highly correlated with indi­
vidual bus ID. Although a few of the vehicles behaved differently from other vehicles, modelers 
could not reasonably include bus ID as a variable, nor environmental parameters of testing since 
all low barometric pressure tests were conducted on one or two vehicles. Additional explora­
tion of environmental conditions should be conducted by collecting data for a larger fleet under a 
wider variety of environmental conditions over a longer time. 

The new modal emission rate models all indicate that engine power has a signifi cant im­
pact on the acceleration and cruise emission rates. This observation strengthens the importance 
of using load based emission data to develop new emission models and simulate engine power 
in real world applications. All three models were shown to be robust by use of several statistical 
measures. Although some departures from accepted norms were noted, these departures were 
judged not so serious as to compromise the usefulness of the models. Hence, no remedial mea­
sures were taken. 

13.2 Model Limitations 

There are several limitations in the models estimated and presented in this work. Theo­
retically, the models cannot be used to forecast emissions beyond the domain of variables used 
in estimating the models. These models were developed from 15 buses equipped with same fuel 
injection type, catalytic converter type, transmission type, and so on, so the models could not 
consider the effect of variation in vehicle technologies on emissions.  Another limitation is the 
consideration of the effect of emission control technology deterioration on emission levels since 
all buses were only 5 or 6 years old at the time testing was conducted. Although the speed/ac­
celeration profiles between the AATA data set and the Atlanta buses are similar, there is no way 
to estimate the effect of changes in vehicle technologies and deterioration on emissions in the 
current and future fleet in Atlanta.  Such a limitation introduces obvious uncertainties in the use 
of the model to make predictions for other fleets. 

The predictive models are derived from a research effort conducted by other parties.  
Modeling at this time cannot control for those variables for which data were not collected. This 
inability to control the variables may yield several uncertainties in the models. First, important 
or useful variables relevant to the effect of emission rates may not have been observed at all, so it 
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may be difficult to derive a model with sufficient explanatory power, or variables that are select­
ed may simply be correlated to the true causal variables that are affecting instantaneous emission 
rates. Second, the interpretation of the effects of individual variables effects might be limited.  
For example, the ability of negative load to explain the variability on emissions is limited due to 
the negative loads recorded as zero. 

An additional limitation imposed by the data is the uncertainty introduced by the actual 
data collection process. The uncertainty in the GPS position will introduce signifi cant instan­
taneous error in grade computation (grade should be collected by means other than GPS). Al­
though filter limits were imposed on the rate of change of engine speed (RPM), fuel fl ow, and 
vehicle speed data, data could yield unreasonable instantaneous vehicle acceleration or decelera­
tion rates, and still be within reasonable absolute limits. This uncertainty may bias predictions. 

The possible presence of outliers has the potential to cause a misleading fit by dispropor­
tionately pulling the fitted regression line away from the majority of the data points (Neter et al. 
1996). Cook’s distance plots indicated that some points do have influence over the regression 
fit. However, none of these points is indicative of obvious errors in data.  It is difficult to deter­
mine whether those extreme values were actually outliers or not. Since the data passed through 
EPA’s rigorous QA/QC procedures and no “true” outliers exist, and these high-emission events 
are assumed to be representative of events that occur in the real world. Therefore, all of these 
data were retained in model development. When additional data become available, researchers 
should make it a priority to examine these high emissions events to identify the underlying causal 
factors. 

13.3 Lessons Learned 

Because driving mode definitions varied across previous research efforts, fi ndings from 
these efforts are not directly comparable.  This study independently developed driving mode defi­
nitions through comparison across critical values. Suitable modal activity definition can divide 
the data into several homogeneous groups according to emission rates and driving conditions. 
Unlike previous research efforts which only present pairwise comparisons of modal average es­
timates or HTBR regression tree analyses, this study compared distributions of engine operating 
characteristics under proposed vehicle mode definitions by defining applicable vehicle modes. 

A representative data set is the most critical issue for development the final version of 
the proposed model. This issue plays an important role no matter which modeling approach is 
employed. The representative data set should reflect the real world with respect to vehicle emis­
sions and activity patterns. The data set used for the proposed model consists of EPA AATA data 
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and includes 15 buses. At the time this research was conducted, the AATA data were the only ap­
plicable data set that contained all required data (second-by-second emission rates, engine load, 
and applicable operating variables) all collected in parallel. New data sets will improve model 
performance in future. 

A combination of tree and OLS regression methods was used to estimate NOx, CO and 
HC emission models from EPA’s transit bus database tested by Sensors, Inc.  The HTBR tech­
nique was used as a tool to reveal underlying data structure and identify useful explanatory 
variables and was demonstrated as a powerful tool that will allow researchers to deal with large 
multivariate data sets with mixed mode (discrete and continuous) variables. 

13.4 Contributions 

This research verifies that vehicle emission rates are highly correlated with modal ve­
hicle activity.  Furthermore, the relationship between engine power and emissions is also sig­
nificant and is quantified for the available data. Research results indicate that engine power is 
more powerful than surrogate variables in predicting second-by-second grams/second emission 
rates. Hence, to improve our understanding of emission rates, it is important to examine not only 
vehicle operating modes, but also engine power distributions. Based upon the important role 
of engine power in explaining the variability of emissions, it is critical to include the load data 
measurement (and collection of all onroad operating parameters to estimate load, such as grade) 
during the emission data collection procedure. 

Another major contribution of the work is the establishment of a framework for emission 
rate model development suitable for predicting emissions at microscopic level. As more databases 
become available, the model development steps can be re-run to develop a more robust load-based 
modal emission model based on the same philosophy.  This living modeling framework provides 
the ability to integrate necessary vehicle activity data and emission rate algorithms to support 
second-by-second and link-based emissions prediction. Combined with a GIS framework, models 
derived through this methodology will improve spatial/temporal emissions modeling. 

13.5 Recommendation for Further Studies 

The methodology developed and applied in this research can, and should, be used to 
estimate similar models for the on-road fleet consisting of transit buses and heavy-duty vehicles. 
Since emissions of these vehicles are heavily dependent on vehicle dynamics (that is, load and 
power), a successful validation will provide further evidence of the “correctness” of the method 
employed here. When new data become available and these models are re-derived, modelers 
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can expect further improved performance in applications to the transit bus fleet and eventually to 
other heavy-duty vehicle fleets. 

Given the important role of engine power in explaining the variability of emissions, en­
gine load data should be measured during the emission data collection procedure and all param­
eters necessary to estimate onroad load (such as grade and vehicle payload) should be included in 
the data collection efforts.  Similarly, simulation of engine power demand for onroad operations 
becomes important in the implementation of emission inventory modeling for heavy-duty transit 
buses. Refinement of roadway characteristic data (grade, etc.) for urban areas is paramount and 
research efforts that can quantify drive train inertial losses under various operating conditions 
will help enhance modal model development. 

Because all buses tested were of the same model with the same engine, the test data were 
valuable from the perspective of controlling potential explanatory variables related to vehicle 
characteristics. However, these data simultaneously constrain the ability to explain the effect of 
vehicle technology groups and deterioration of emission control technologies on emissions data. 
Expanded data collection efforts should focus on identification of appropriate vehicle technology 
groups and high-emitting vehicle groups. In these test programs, it will also be important to test 
buses under their real-world operating conditions (on a variety of routes, road types and grades, 
onroad operating conditions, environmental conditions, passenger loadings, etc.) to better reflect 
real world conditions. These high-resolution data collection efforts will provide the data needed 
by modelers to develop new and enhanced modal emission rate models for a variety of heavy-
duty vehicle classes. 
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