Air

Emissions Trends Report, 1998

1998 Annual Average PM_{2.5} Concentrations (in µg/m³) in Rural Areas of the United States

į.

National Air Quality and Emissions Trends Report, 1998

U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Emissions Monitoring and Analysis Division Air Quality Trends Analysis Group Research Triangle Park, North Carolina 27711

March 2000

About the Cover

The map on the cover displays the 1998 annual average $PM_{2.5}$ concentrations at monitoring sites in the Interagency Monitoring of PROtected Environments (IMPROVE) network. The IMPROVE network was established in 1987 to track visibility impairment in the nation's most pristine areas, like national parks and wilderness areas. (See Chapter 6 for more information on the IMPROVE network.) The size of the pie charts is proportional to the annual average concentration of measured $PM_{2.5}$. The slices of the pie charts show the percentages of the known chemical constituents of $PM_{2.5}$. The map reveals that rural $PM_{2.5}$ concentrations vary regionally, with sites in the East typically having higher annual average concentrations. Levels at most sites in the West are roughly less than half of those in the East.

Data Source: The IMPROVE network.

Disclaimer

This report has been reviewed and approved for publication by the U.S. Environmental Protection Agency's Office of Air Quality Planning and Standards. Mention of trade names or commercial products are not intended to constitute endorsement or recommendation for use.

Acknowledgments

The Trends Team would like to acknowledge the members of EPA's Office of Research and Development, Office of Atmospheric Programs, and Office of Transportation and Air Quality for peer reviewing this report prior to publication; Support for the statistical analyses of air toxics trends provided under EPA contract 68D70066; Colorado State University for providing summary data from the IMPROVE monitoring network; Support for desktop publishing and Web site development provided under EPA contract 68W99004; and the Trends Workgroup in EPA's Office of Air Quality Planning and Standards for providing comments throughout report development.

Preface

This is the twenty-sixth annual report on air pollution trends in the United States issued by the U.S. Environmental Protection Agency. The report is prepared by the Air Quality Trends Analysis Group (AQTAG) in Research Triangle Park, North Carolina and is directed toward both the technical air pollution audience and other interested parties and individuals.

The report can be accessed via the Internet at http://www.epa.gov/airtrends/. AQTAG solicits comments on this report and welcomes suggestions regarding techniques, interpretations, conclusions, or methods of presentation. Comments can be submitted via the website or mailed to:

Attn: Trends Team AQTAG (MD-14) U.S. EPA Research Triangle Park, NC 27711

Readers can access data from the Aerometric Information Retrieval System (AIRS) at http://www.epa.gov/airsdata/ and real time air pollution data at http://www.epa.gov/airnow/.

Contents

Chapter 1	
Executive Summary	
Chapter 2	
Chapter 3	
Chapter 4	
Chapter 5	
Chapter 6	
Chapter 7	5
References and Notes	<i>6</i>
Chapter 2	
Criteria Pollutants — National Trends	9
Carbon Monoxide	
Lead	
Nitrogen Dioxide	22
Ozone	
Air Quality Impact of Major Wildfires	
Particulate Matter	
Fine Particulate Matter (PM _{2.5})	
Sulfur Dioxide	50
Chapter 3	
Criteria Pollutants — Metropolitan Area Trends	59
Status: 1998	59
Trends Analysis	60
The Air Quality Index	61
Summary of AQI Analyses	
References	63
Chapter 4	
Criteria Pollutants — Nonattainment Areas	65
References	67
Chapter 5	•
Air Toxics	69
Background	
National Air Toxics Assessment Activities	
Atmospheric Deposition	87
References	88

Chapter 6	
Visibility Trends	91
Introduction	91
Nature and Sources of the Problem	
Long-Term Trends (1970–1990)	
Recent Trends (1989–1998)	
Current Visibility Conditions	
Programs to Improve Visibility	
References	
Chapter 7	
Atmospheric Deposition of Sulfur and Nitrogen Compounds	s 105
Primary Atmospheric Deposition Monitoring Networks	
National Atmospheric Deposition Network	
Trends Analyses for Sulfate and Nitrate Concentrations in Wet Deposition	107
Clean Air Status and Trends Network	108
Dry Deposition	
Concentration Trends Analysis at CASTNet Sites	
References	114
Appendix A	
Data Tables	117
Appendix B	
AIRS Methodology	189
AIRS Methodology	
IMPROVE Methodology	
Air Toxics Methodology	
Emissions Estimates Methodology	
References	

Figures

Figure 2-1.	Average daily maximum 1-hour CO concentrations by month, 1998	.11
Figure 2-2.	Trend in 2nd maximum non-overlapping 8-hour average CO concentrations, 1989–1998.	12
Figure 2-3.	Trend in 2nd maximum non-overlapping 8-hour average CO concentrations by type of location, 1989–1998.	
Figure 2-4.	Trend in national total CO emissions, 1989–1998.	
Figure 2-5.	CO emissions by source category, 1998.	
	Long-term trend in 2nd maximum non-overlapping 8-hour average CO concentrations, 1979–1998	
Figure 2-7.	Trend in CO 2nd maximum non-overlapping 8-hour concentrations by EPA Region, 1989–1998	
	Highest 2nd maximum non-overlapping 8-hour average CO concentration county, 1998	
	Trend in maximum quarterly average Pb concentrations (excluding source-oriented sites), 1989–1998.	
	Pb maximum quarterly mean concentration trends by location (excluding point-source-oriented sites), 1989–1998.	
Figure 2-11.	National total Pb emissions trend, 1989–1998.	
	Pb emissions by source category, 1998.	
Figure 2-13.	Long-term ambient Pb trend, 1979–1998.	20
Figure 2-14.	Trend in Pb maximum quarterly mean concentration by EPA Region, 1989–1998.	20
Figure 2-15.	Pb maximum quarterly concentration in the vicinity of Pb point sources, 1998	21
Figure 2-16.	Highest Pb maximum quarterly mean by county, 1998.	21
Figure 2-17.	Trend in annual NO ₂ mean concentrations, 1989–1998.	23
Figure 2-18.	Trend in annual mean NO ₂ concentrations by type of location, 1989–1998.	23
Figure 2-19.	Trend in national total NO _x emissions, 1989–1998.	24
Figure 2-20.	NO _x emissions by source category, 1998.	24
Figure 2-21.	Long-term trend in annual mean NO ₂ concentrations, 1979–1998.	25
Figure 2-22.	Trend in NO ₂ maximum quarterly mean concentration by EPA Region, 1989–1998	26
Figure 2-23.	Highest NO ₂ annual mean concentration by county, 1998.	26
Figure 2-24.	Trend in annual 2nd-highest daily maximum 1-hour, and 4th-highest daily 8-hour O_3 concentrations, 1989–1998.	. 28
Figure 2-25.	Trend in O ₃ 2nd maximum 1-hour concentration by EPA Region, 1989–1998.	. 29
Figure 2-26.	Trend in O ₃ 4th maximum 8-hour concentration by EPA Region, 1989–1998.	. 29
Figure 2-27.	Summer 1998 statewide ranks for temperature and precipitation.	30
Figure 2-28.	Trend in annual 2nd-highest daily maximum 1-hour O3 concentrations by location, 1989–1998	. 30
	Trend in 4th-highest 8-hour O3 based on 34 CASTNet sites in the rural eastern United States, 1989–1998.	
Ü	Trend in annual 4th-highest daily maximum 8-hour O3 concentrations in National Parks, 1989–1998.	. 31
Figure 2-31.	Trend in annual 2nd-highest daily maximum 1-hour O3 concentrations, 1979–1998.	. 32
Figure 2-32.	Comparison of actual and meteorologically adjusted 1-hr ozone trends, 1989–1998	. 33
Figure 2-33.	Areas with PAMS networks.	. 33
Figure 2-34.	The median changes in summer morning concentrations of the most abundant VOC species measured at PAMS sites.	. 34
Figure 2-35.	Trend in national total anthropogenic VOC emissions, 1989–1998.	. 35

	Anthropogenic VOC emissions by source category.	
•	Highest second daily maximum 1-hour O ₃ concentration by county, 1998	
-	Highest fourth daily maximum 8-hour O ₃ concentration by county, 1998.	
	Smoke/dust over North America for May 15, 1998.	
	Smoke/dust over North America for May 16, 1998.	
	Smoke/dust over North America for May 28, 1998.	
	Smoke/dust over North America for June 22, 1998.	
	Smoke/dust over North American for June 26, 1998.	
	Trend in annual mean PM ₁₀ concentrations, 1989–1998.	
	PM ₁₀ annual mean concentration trends by location, 1989–1998.	
Figure 2-46.	National PM ₁₀ emissions trend, 1989–1998 (traditionally inventoried sources only)	42
Figure 2-47.	PM ₁₀ emissions from traditionally inventoried source categories, 1998.	43
Figure 2-48.	Total PM ₁₀ emissions by source category, 1998	43
Figure 2-49.	Trend in PM ₁₀ annual mean concentration by EPA Region, 1989–1998.	44
Figure 2-50.	Highest 2nd maximum 24-hour PM ₁₀ concentration by county, 1998	44
Figure 2-51.	Status of new PM ₂₅ Monitor Deployment, based on AIRS February, 2000.	45
Figure 2-52.	Class I Areas in the Improve Network meeting the data completeness criteria in Appendix B	46
Figure 2-53.	Annual average 1998 PM _{2.5} concentrations (in µg/m³) at IMPROVE sites and contribution by	
	individual constituents. Pie chart sizes are scaled by annual average PM _{2.5} concentrations.	46
Figure 2-54.	PM ₂₅ Concentrations, 1989–1998 at eastern IMPROVE sites meeting trends criteria	47
Figure 2-55.	PM ₂₅ Concentrations, 1989–1998 at western IMPROVE sites meeting trends criteria	47
Figure 2-56.	PM ₂₅ Concentrations, 1989-1998, at the Washington, D.C. IMPROVE site	48
Figure 2-57.	Seasonal patterns in rural PM _{2.5} , 1998.	49
	Trend in annual mean SO ₂ concentrations, 1989–1998.	
Figure 2-59.	Annual mean SO ₂ concentration by trend location, 1989–1998.	51
	Trend in 2nd max 24-hour average SO ₂ concentrations, 1989–1998.	
	National total SO ₂ emissions trend, 1989–1998.	
	SO ₂ emissions by source category, 1998	
•	Long-term ambient SO ₂ trend, 1979–1998.	
	Trend in SO ₂ annual arithmetic mean concentration by EPA Region, 1989–1998.	
-	Plants affected by Phase I of the Acid Rain Program.	
	Highest 2nd maximum 24-hour SO ₂ concentration by county, 1998.	
_	Air Quality Index logo.	
	Number of days with AQI values > 100, as a percentage of 1989 value	
-	Location of nonattainment areas for criteria pollutants, September 1999.	
_	Classified ozone nonattainment areas where 1-hour standard still applies.	
	Relative variability in VOC and aldehyde annual average concentrations among urban sites, based	
8	on 1996 ambient measurements.	74
Figure 5-1b.	Relative variability in trace metal concentrations among urban sites, based on 1996 ambient	
F: F.	measurements.	75
Figure 5-1c.	Relative variability in trace metal concentrations among rural sites, based on 1996 ambient measurements.	75
Figure 5-2	Locations for urban and rural air toxics monitors with long-term data.	
_	National trend in annual/average benzene concentrations in metropolitan areas, 1993–1998.	
_	National trend in annual/average benzene concentrations in metropolitan areas, 1993–1998	
_	National trend in annual/average total suspended lead concentrations in metropolitan areas,	17
rigute 5-50.	1993–1998.	79
Figure 5-3d	National trend in annual/average styrene concentrations in metropolitan areas, 1993–1998	
-	National trend in annual/average tetrachloroethylene concentrations in metropolitan areas,	
	1993–1998.	80

Figure 5-3f.	National trend in annual/average toluene concentrations in metropolitan areas, 1993–1998	. 81
	Trend in annual average benzene concentrations for metropolitan sites in California, 1989–1998	. 82
Figure 5-4b.	Trend in annual average 1,3-butadiene concentrations for metropolitan sites in California, 1989–1998	. 82
Figure 5-4c.	Trend in annual average lead concentrations for metropolitan sites in California, 1989–1998	
	Trend in annual average styrene concentrations for metropolitan sites in California, 1989–1998	
	Trend in annual average tetrachloroethylene concentrations for metropolitan sites in California, 1989–1998.	
Figure 5-4f.	Trend in annual average toluene concentrations for metropolitan sites in California, 1989–1998	
	Trends in Annual Average Fine Particle Chromium Concentrations in Rural Areas, 1993–1998.	
	Images of Glacier National Park and Dolly Sods Wilderness Area.	
•	IMPROVE sites meeting data completeness requirements.	
Figure 6-3.	Shenandoah National Park on clear and hazy days and the effect of adding 10 µg/m3 of fine particles to each.	
Figure 6-4.	Long-term trend for 75th percentile light coefficient from airport visual data (July-September)	
	Total light extinction trends for eastern Class I areas for clearest, middle, and haziest 20 percent of the days in the distribution, 1989–1998.	
Figure 6-5b.	Total light extinction trends for western Class I areas for clearest, middle, and haziest 20 percent of	. 96
Figure 6-6a.	Aerosol light extinction in eastern Class I areas for the clearest 20 percent of the days in the distribution, 1989–1998.	. 97
Figure 6-6b	Aerosol light extinction in eastern Class I areas for the middle 20 percent of the days in the distribution, 1989–1998.	. 97
Figure 6-6c.	Aerosol light extinction in eastern Class I areas for the haziest 20 percent of the days in the distribution, 1989–1998.	. 97
Figure 6-6d	Aerosol light extinction in western Class I areas for the clearest 20 percent of the days in the distribution, 1989–1998.	. 98
Figure 6-6e.	Aerosol light extinction in western Class I areas for the middle 20 percent of the days in the distribution, 1989–1998.	
Figure 6-6f.	Aerosol light extinction in western Class I areas for the haziest 20 percent of the days in the distribution, 1989–1998.	
Figure 6-7a.	Aerosol light extinction (in Mm ⁻¹) for the clearest 20 percent days and contribution by individual particulate matter constituents, based on 1995–1997 IMPROVE data.	100
Figure 6-7b.	Aerosol light extinction (in Mm ⁻¹) for the middle 20 percent days and contribution by individual particulate matter constituents, based on 1995–1997 IMPROVE data.	
Figure 6-7c.	Aerosol light extinction (in Mm ⁻¹) for the haziest 20 percent days and contribution by individual particulate matter constituents, based on 1995–1997 IMPROVE data.	
Figure 6-8a.	Current visibility impairment expressed in deciviews for the clearest 20 percent days based on 1995–1997 IMPROVE data.	
Figure 6-8b.	Current visibility impairment expressed in deciviews for the middle 20 percent days based on 1995–1997 IMPROVE data.	102
Figure 6-8c.	Current visibility impairment expressed in deciviews for the haziest 20 percent days based on 1995–1997 IMPROVE data.	102
Figure 7-1.	The NADP/NTN Network	
Figure 7-2.	Percent differences in mean annual measured sulfate concentrations as compared to projected concentrations for 1995–1996 for the eastern United States (from NADP/NTN).	107
Figure 7-3a.	Trends in wet sulfate deposition (kg/ha); 1995–1997.	
	Trends in wet sulfate deposition (kg/ha); 1989–1991.	
	CASTNet Network and subset of 34 sites used for 1989–1998 trends analysis.	
	Comparison of ambient sulfur dioxide concentrations in the rural eastern United States from CASTNet monitoring data, 1990–1991 vs. 1997–1998	
Figure 7-5b.	Comparison of ambient sulfate concentrations in the rural eastern United States from	

	CASTNet monitoring data, 1990–1991 vs. 1997–1998	111
·	Comparison of ambient total nitrate concentrations in the rural eastern United States from CASTNet data, 1990–1991 vs. 1997–1998.	
_	Comparison of ambient ammonium concentrations in the rural eastern United States from CASTNet data, 1990–1991 vs. 1997–1998.	112
J	Trend in ambient sulfates in the rural eastern United States, based on CASTNet monitoring data, 1989–1998.	112
Ŭ	Trend in ambient sulfur dioxide in the rural United States, based on CASTNet monitoring data, 1989–1998.	
Ū	Trend in annual average ambient sulfur dioxide and sulfate concentrations, based on CASTNet monit data, and regional SO ₂ emissions from electric utilities in rural eastern United States, 1989–1998	oring 113
•	Trend in annual average ambient sulfur dioxide and sulfate concentrations, based on CASTNet monitoring data, and regional SO ₂ emissions from electric utilities in rural eastern United States by calendar quarter, 1989–1998; quarter 1.	. 114
•	Trend in annual average ambient sulfur dioxide and sulfate concentrations, based on CASTNet monitoring data, and regional SO ₂ emissions from electric utilities in rural eastern United States by calendar quarter, 1989–1998; quarter 2.	. 114
Figure 7-9c.	Trend in annual average ambient sulfur dioxide and sulfate concentrations, based on CASTNet monitoring data, and regional SO ₂ emissions from electric utilities in rural eastern United States by calendar quarter, 1989–1998; quarter 3.	.115
Figure 7-9d.	Trend in annual average ambient sulfur dioxide and sulfate concentrations, based on CASTNet monitoring data, and regional SO ₂ emissions from electric utilities in rural eastern United States by calendar quarter, 1989–1998; quarter 4.	
•	(Multiple NA areas within a larger NA area) Two SO ₂ areas inside the Pittsburgh–Beaver Valley ozone NA. Counted as one NA area	187
_	(Overlapping NA areas) Searles Valley PM ₁₀ NA partially overlaps the San Joaquin Valley ozone NA. Counted as two NA areas.	187
Figure B-1.	Carbon monoxide monitoring program, 1998.	190
Figure B-2.	Lead monitoring program, 1998.	190
Figure B-3.	Nitrogen dioxide monitoring program, 1998.	191
Figure B-4.	Ozone program, 1998.	191
Figure B-5.	PM ₁₀ monitoring program, 1998.	192
Figure B-6.	Sulfur dioxide monitoring program, 1998.	192
Figure B-7.	Class I Areas in the Improve Network meeting data completeness criteria.	193

Tables

Table 2-1.	NAAQS in effect as of December 1999.	9
Table 2-2.	Milestones in Auto Emissions Control	
Table 2-3.	Summary of 1997–1998 Changes in Summer 6–9 a.m. Mean Concentrations of NOx and TNMOC at PAMS Sites	34
Table 2-4.	Biogenic sources of VOC emissions by region.	35
Table 2-5.	Percent Contribution to PM _{2.5} by Component, 1998	47
Table 2-6.	Total SO2 Emissions from Table I units and Non-Table I units, 1994–1998 (thousand short tons)	
Table 3-1.	Summary of MSA Trend Analyses, by Pollutant	
Table 3-2.	AQI Categories, Colors, and Ranges	
Table 4-1.	Areas Redesignated Between September 1998 and September 1999	
Table 4-2.	Revocations of Nonattainment Areas Only Between September 1998 and September 1999	
Table 4-3.	Nonattainment Status	67
Table 5-1.	List of 33 Urban Air Toxics Strategy HAPs	71
Table 5-2.	Comparison of Typical Urban and Rural Concentrations for VOCs and Aldehydes, Based on 1996 Ambient Measurements	
Table 5-3.	Comparison of Typical Urban and Rural Concentrations for Trace Metals, Based on 1996 Ambient Measurements	
Table 5-4.	National Summary of Ambient HAP Concentration Trends in Metropolitan Areas, 1993–1998	
Table 5-5.	National Summary of Ambient HAP Concentration Trends in Rural Areas, 1993–1998	
Table 7-1.	Mean Annual Sulfate Wet Deposition, 1989–1998 in three sensitive regions in the eastern United States.	
Table A-1.	National Air Quality Trends Statistics for Criteria Pollutants, 1989–1998	
Table A-2.	National Carbon Monoxide Emissions Estimates, 1989–1998 (thousand short tons)	
Table A-3.	National Lead Emissions Estimates, 1989–1998 (short tons)	
Table A-4.	National Nitrogen Oxides Emissions Estimates, 1989–1998 (thousand short tons)	
Table A-5.	National Volatile Organic Compounds Emissions Estimates, 1989–1998 (thousand short tons)	123
Table A-6.	National PM ₁₀ Emissions Estimates, 1989–1998 (thousand short tons)	
Table A-7.	Miscellaneous and Natural Particulate Matter Emissions Estimates, 1989–1998 (thousand short tons).	124
Table A-8.	National Sulfur Dioxide Emissions Estimates, 1989–1998 (thousand short tons)	125
Table A-9.	National Long-Term Air Quality Trends, 1979–1998	
	National Air Quality Trends by Monitoring Location, 1989–1998	
Table A-11.	National Air Quality Trends Statistics by EPA Region, 1989–1998	128
Table A-12.	Maximum Air Quality Concentrations by County, 1998	130
Table A-13.	Maximum Air Quality Concentrations by Metropolitan Statistical Area, 1998	148
Table A-14.	Metropolitan Statistical Area Air Quality Trends, 1989–1998	155
	Number of Days with AQI Values Greater Than 100 at Trend Sites, 1989–1998, and All Sites in 1998	180
	(Ozone only) Number of Days with AQI Values Greater Than 100 at Trend Sites, 1989–1998, and All Sites in 1998	182
Table A-17.	Condensed Nonattainment Areas List(a)	184
Table A-18.	Trend in 8-hr ozone concentrations at National Park and National Monument sites, 1989–98	188
Table B-1.	Number of Ambient Monitors Reporting Data to AIRS	189

Acronyms

AIRS	Aerometric Information Retrieval System	NARSTO	North American Research Strategy for Tropospheric Ozone
AQRV	Air-Quality Related Values	NESCAUM	Northeast States for Coordinated Air Use Management
AIRMoN	Atmospheric Integrated Assessment Monitoring Network	NMOC	Non-Methane Organic Compound
CAA	Clean Air Act	NO ₂	Nitrogen Dioxide
CAAA	Clean Air Act Amendments	NO_x	Nitrogen Oxides
CARB	California Air Resources Board	NPS	National Park Service
CASAC	Clean Air Scientific Advisory	NTI	National Toxics Inventory
	Committee	O_3	Ozone
CASTNet	Clean Air Status and Trends Network	OTAG	The Ozone Transport Assessment
CEMs	Continuous Emissions Monitors		Group
CFR	Code of Federal Regulations	PAHs	Polyaromatic Hydrocarbons
CO CMSA	Carbon Monoxide Consolidated Metropolitan Statistical	PAMS	Photochemical Assessment Monitoring Stations
Q1/10/1	Area	PAN	Peroxyacetyl Nitrate
DST	Daylight Savings Time	Pb	Lead
EPA	Environmental Protection Agency	PCBs	Polychlorinated Biphenyls
FRM	Federal Reference Method	PM_{10}	Particulate Matter of 10 micrometers
GDP	Gross Domestic Product	777.6	in diameter or less
GLM	General Linear Model	$PM_{2.5}$	Particulate Matter of 2.5 micrometers in diameter or less
HAPs	Hazardous Air Pollutants	POM	Polycyclic Organic Matter
IADN	Integrated Atmospheric Deposition	ppm	Parts Per Million
7/3/	Network	PSI	Pollutant Standards Index
I/M	Inspection and Maintenance Programs	RFG	Reformulated Gasoline
IMPROVE	Interagency Monitoring of PROtected	RVP	Reid Vapor Pressure
1111111012	Environments	SLAMS	State and Local Air Monitoring
MACT	Maximum Achievable Control		Stations
MARAMA	Technology Mid-Atlantic Regional Air	SNMOC	Speciated Non-Methane Organic Compound
MAKAMA	Management Association	SO ₂	Sulfur Dioxide
MDN	Mercury Deposition Network	SO _x	Sulfur Oxides
MSA	Metropolitan Statistical Area	TNMOC	Total Non-Methane Organic
MDL	Minimum Detectable Level	11414100	Compound
NAAQS	National Ambient Air Quality	TRI	Toxic Release Inventory
_	Standards	TSP	Total Suspended Particulate
NADP	National Atmospheric Deposition	UATMP	Urban Air Toxics Monitoring Program
NAMS	Program National Air Monitoring Stations	VMT	Vehicle Miles Traveled
NAPAP	•	VOCs	Volatile Organic Compounds
INALAL	National Acid Precipitation Assessment Program	μg/m³	Micrograms Per Cubic Meter

Executive Summary

http://www.epa.gov/oar/aqtrnd98/chapter1.pdf

Criteria pollutants are those pollutants for which the United States Environmental Protection Agency (EPA) has established National Ambient Air Quality Standards (NAAQS). They include carbon monoxide (CO), lead (Pb), nitrogen dioxide (NO₂), ozone (O₃), particulate matter (PM), and sulfur dioxide (SO₂).

This is the twenty-sixth annual report documenting air pollution trends in the United States. ¹⁻²⁵ This document highlights the Environmental Protection Agency's most recent assessment of the nation's air quality, focusing on the 10-year period from 1989 to 1998. It features comprehensive information for the criteria pollutants and hazardous air pollutants, as well as relevant ambient air pollution information for visibility impairment and acid rain.

Discussions throughout this report are based on the principle that many of the programs designed to reduce ambient concentrations of the criteria pollutants also aid in reducing pollution that contributes to air toxics pollution, visibility impairment, and acid rain. Likewise, requirements under the various air toxics, visibility, and acid rain programs can also help reduce emissions that contribute to ambient concentrations of the criteria pollutants.

CHAPTER 2

CRITERIA POLLUTANTS — NATIONAL TRENDS

Percent Decrease in National Air Quality Concentrations 1989–1998

Carbon Monoxide	39
Lead	56
Nitrogen Dioxide	14
Ozone*	4
Particulate Matter (PM ₁₀)	25
Sulfur Dioxide	39

^{*} based on 1-hour level.

Air quality concentrations are based on actual measurements of pollutant concentrations in the air at selected monitoring sites across the country.

Fine particulate matter, or PM_{2,5}, are those particles whose aerodynamic size is less than or equal to 2.5 micrometers.

EPA tracks trends associated with the criteria pollutant standards. The national and regional air quality trends, along with supporting emissions data, are presented in this chapter. National average air quality has improved from 1989 to 1998 for all the criteria pollutants.

While the national trends have improved over this 10-year period, trends in some areas, including rural locations, have worsened. Ozone concentrations, for example, have increased at 17 of the 24 National Park Service sites with trend data. Increases at nine of those sites are statistically significant. The 1998 levels were particularly high at two parks in the eastern United States, Shenandoah and the Great Smoky Mountains. Ozone levels at these sites were the highest in a decade and 30–40 percent higher than the national ozone standard. Fine particle concentrations have also increased in some areas in the rural East. PM_{2.5} concentrations increased at 7 of the 10 rural eastern sites with trend data from 1992 to 1998. During that same period, average PM_{2.5} levels in the western United States decreased 5 percent.

On July 18, 1997, EPA revised the ozone and particulate matter standards following a thorough scientific review process. In May 1999, however, the U.S. Court of Appeals for the D.C. Circuit issued an opinion affecting these revised standards. In particular, the court remanded the ozone standard back to EPA for further consideration. The court also vacated the revised PM $_{10}$ standard and remanded the PM $_{2.5}$ standards back to EPA for further consideration. Following the denial of a petition for a rehearing by the D.C. Circuit, the Justice Department has filed a petition for review before the Supreme Court. See

Special Report Chapter 2 features a special report on the impact of major wildfires on U.S. air quality.

Chapter 2 for trends relating to the revised ozone and PM NAAQS and refer to http://www.epa.gov/airlinks/ for up-to-date information concerning actions surrounding the revised standards.

CHAPTER 3

CRITERIA POLLUTANTS— METROPOLITAN AREA TRENDS

Summary of MSA Trend Analyses, by Pollutant

		Total # MSAs	# MSAs Up	# MSAs Down	# MSAs with No
	Trend Statistics			Change	Significant
СО	Second Max 8-hour	139	0	104	35
Lead	Max Quarterly Mean	90	1	61	28
NO ₂	Arithmetic Mean	97	4	44	49
Ozone	Fourth Max 8-hour	198	13	25	160
Ozone	Second Daily Max 1-hour	198	11	23	164
PM ₁₀	Weighted Annual Mean	211	1	152	58
PM ₁₀	90th Percentile	211	0	132	79
SO2	Arithmetic Mean	148	0	103	45
SO ₂	Second Max 24-hour	148	0	91	57

Chapter 3 characterizes air quality on a more local level, using three different indicators. First, this chapter lists the 1998 peak air quality concentrations for metropolitan areas. Second, ten-year trends are assessed for each area using a statistical method to measure whether the trend is up or down. The results show that 21 areas had a statistically significant upward trend in ambient concentrations for at least one criteria pollutant, while 221 areas had a statistically significant downward trend for at least one criteria pollutant. The third way in which local air quality is evaluated is by looking at the Air Quality Index (AQI) in the nation's 94 largest metropolitan areas. The AQI analysis

shows that between 1989 and 1998 the total number of "unhealthy" days decreased an average of 57 percent in southern California (which, for the purposes of this analysis, includes the Los Angeles, Riverside, Bakersfield, and San Diego), but actually rose 10 percent in the remaining major cities across the United States.

CHAPTER 4

CRITERIA POLLUTANTS— NONATTAINMENT AREAS

Nonattainment Status

	Original # areas	1999 # areas	1999 Pop. (in 1000s)
СО	43	20	33,230
Pb	12	8	1,116
NO ₂	1	0	0
O_3	101	32	92,505
PM ₁₀	85	77	29,880
SO ₂	51	31	4,371

Chapter 4 summarizes the current status of nonattainment areas, which are those areas not meeting the NAAQS for at least one of the six criteria pollutants. Under the Clean Air Act Amendments (CAAA) of 1990, there were 274 areas designated nonattainment for at least one ambient air quality standard. As of September 1999, 121 areas are designated nonattainment. These areas are displayed on a map in this chapter. A second map depicts the current ozone nonattainment areas, color-coded to indicate the severity of the ozone problem in each area. The condensed list of nonattainment areas as of September 1999 is presented in Table A-17. This table is also on the Internet at http://www.epa.gov/airs/nonattn.html and is updated as areas are redesignated.

CHAPTER 5

AIR TOXICS

Chapter 5 presents information on another set of air pollutants regulated under the CAA. Hazardous Air Pollutants (HAPs), commonly called air toxics, are pollutants known to cause or suspected of causing cancer or other serious human health effects or ecosystem damage. The CAA lists 188 such pollutants and targets the sources emitting them for regulation. Examples of air toxics include mercury, chromium, benzene, and perchloroethylene ("perc"). Air toxics are emitted from literally thousands of sources, including familiar sources like electric utilities, automobiles, and dry cleaners.

In 1990, Congress amended Section 112 of the CAA by adding a new approach to the regulation of HAPs. This new approach is divided into two phases. The first requires the development of technology-based emis-

sions standards for sources of the 188 HAPs. The second phase is to evaluate remaining problems or risks and develop additional regulations to address sources of those problems as needed.

The success of the Air Toxics Program depends on our ability to quantify the impacts of air toxics emissions on public health and the environment. To that end, EPA has initiated numerous National Air Toxics Assessment (NATA) activities to help identify areas of concern, characterize risks, and track progress. These activities include expanded air toxics monitoring, improving and periodically updating emissions inventories, national- and local-scale air quality and exposure modeling, and continued research on effects and assessment tools.

Currently, there are approximately 300 monitoring sites producing ambient data on HAPs. EPA is working together with state and local air monitoring agencies to build upon these monitoring sites to develop a monitoring network which is representative of air toxics problems on a national scale. EPA's Photochemical Assessment Monitoring Stations (PAMS) also measure HAPs among the many pollutants that are precursors of ozone. Although these existing data sources are limited in their geographic scope, they still provide useful information on the trends in ambient air toxics. The results generally reveal downward trends for most of the monitored HAPs. The most consistent improvement is apparent for benzene, which is predominantly emitted by mobile sources. Benzene decreased 37 percent from 1993 to 1998, with much of the reduction occurring between 1994 and 1996. This reduction is due, in large part, to the use of reformulated gasoline.

CHAPTER 6

VISIBILITY TRENDS

The CAA authorizes EPA to protect visibility, or visual air quality, through a number of programs. In 1987, the Interagency Monitoring of PROtected Visual Environments (IMPROVE) visibility monitoring network was established as a cooperative effort between EPA, National Park Service, U.S. Forest Service, Bureau of Land Management, U.S. Fish & Wildlife Service, and state governments. The objectives of the network are to establish current conditions, to track progress toward the national visibility goal by documenting long-term trends, and to provide information for determining the types of pollutants and sources primarily responsible for visibility impairment.

The trends analyses presented in this chapter are based on data from the IMPROVE network. There were 34 sites having data adequate for assessing trends between 1989 and 1998. Because of the significant regional variations in visibility conditions, the trends are grouped into eastern and western regions, rather than a national aggregate. The trends are presented in terms of

> the annual average values for the "clearest," "typical," and "haziest" days monitored each year.

The results show that, in general, visibility is worse in the east than in the west. In fact, the worst visibility days in the west are only slightly more impaired than the best days in the east. The 10-year trends show that visibility in the west has improved slightly for all three ranges (clearest, typical, and haziest days), while visibility in the east does not seem to be improving for any of the ranges. In fact, eastern visibility impairment on the haziest days has worsened from 1997 to 1998, and the Great Smoky

Mountains National Park experienced its worst visibility in more than a decade.

In April of 1999, EPA issued the final regional haze regulation. This regulation addresses visibility impairment in national parks and wilderness areas that is caused by numerous sources located over broad regions. The program lays out a framework within which states can work together to develop implementation plans that are designed to achieve "reasonable progress" toward the national visibility goal of no human-caused impairment in the 156 mandatory Class I federal areas across the country. Implementation of the PM and Ozone NAAQS in conjunction with a future regional haze program is expected to improve visibility in urban as well as rural areas across the country.

CHAPTER 7

ATMOSPHERIC DEPOSITION OF SULFUR AND NITROGEN COMPOUNDS

Comparison of ambient sulfate concentrations in the rural eastern United States from CASTNet monitoring data, 1990–1991 vs. 1997–1998.

1997-1998

Decrease in ambient sulfate concentrations in the rural eastern United States, 1990–1991 vs. 1997–1998.

Acidic deposition or "acid rain" occurs when emissions of sulfur dioxide (SO₂) and oxides of nitrogen (NOx) in the atmosphere react with water, oxygen, and oxidants to form acidic compounds. These compounds fall to the Earth in either dry form (gas and particles) or wet form (rain, snow, and fog). Some are carried by the wind, sometimes hundreds of miles, across state and national borders. In the United States, about 64 percent of annual SO₂ emissions and 26 percent of NO_x emissions are produced by electric utility plants that burn fossil fuels.

The National Atmospheric Deposition Program/National Trends Net-

work (NADP/NTN) and the Clean Air Status and Trends Network (CASTNet), two monitoring networks described in detail in the chapter, monitor wet and dry acid deposition, respectively. NADP/NTN consists of nearly 200 sites nationwide, while CASTNet contains 79 sites. These sites monitor a number of compounds, including sulfates and nitrates, which are formed from SO_2 and NO_x reacting in the atmosphere.

Wet deposition data from the NADP/NTN show that sulfate concentrations in precipitation have decreased over the past two decades. In 1995 and 1996, concentrations of sulfates in precipitation over a large area of the eastern United States exhibited a dramatic and unprecedented reduction. Sulfates have been estimated to be 10–25 percent lower than levels expected with at continuation of the 1983–1994 trend. This important reduction in acid precipitation is directly related to the large regional decreases in SO_2 emissions resulting from phase I of the Acid Rain program (see the SO_2 section in Chapter 2 for more details). Nitrate concentrations in recent years at the NADP/NTN sites are not appreciably different from historical levels.

Dry deposition data from the CASTNet sites in the eastern rural United States show that average sulfate concentrations decreased 22 percent between 1989 and 1998. However, a 10-percent increase in average sulfate concentrations occurred between 1997 and 1998. Most of the increase occurred during the second and third calendar quarters. Between these warmer months of 1997 and 1998, regional sulfur dioxide emissions increased 12 percent and average sulfate concentrations increased 21 percent. The higher summertime emissions in 1998 are attributed, in part, to the extra demand on electric utilities due to extremely warm temperatures throughout the Southeast.

The trend in nitrate concentrations is essentially flat, corresponding to the small change in NO_x emissions during this period. The highest nitrate concentrations are found in Ohio, Indiana, and Illinois, while the highest sulfate concentrations are adjacent to the Ohio Valley and in northern Alabama, which correspond to the locations of large electric utilities.

REFERENCES AND NOTES

- 1. The National Air Monitoring Program: Air Quality and Emissions Trends-Annual Report, EPA-450/1-73-001a and b, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, July 1973.
- 2. Monitoring and Air Quality Trends Report, 1972, EPA-450/1-73-004, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, December 1973.
- 3. Monitoring and Air Quality Trends Report, 1973, EPA-450/1-74-007, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, October 1974.
- 4. Monitoring and Air Quality Trends Report, 1974, EPA-450/1-76-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, February 1976.
- 5. National Air Quality and Emissions Trends Report, 1975, EPA-450/1-76-002, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, November 1976.
- National Air Quality and Emissions Trends Report, 1976, EPA-450/1-77-002,
 U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, December 1977.
- 7. National Air Quality and Emissions Trends Report, 1977, EPA-450/2-78-052, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, December 1978.
- 8. 1980 Ambient Assessment-Air Portion, EPA-450/4-81-014, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, February 1981.
- National Air Quality and Emissions Trends Report, 1981, EPA-450/4-83-011,
 U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, April 1983.
- National Air Quality and Emissions Trends Report, 1982, EPA-450/4-84-002,
 U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, March 1984.
- 11. National Air Quality and Emissions Trends Report, 1983, EPA-450/4-84-029, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, April 1985.
- 12. National Air Quality and Emissions Trends Report, 1984, EPA-450/4-86-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, April 1986.
- 13. National Air Quality and Emissions Trends Report, 1985, EPA-450/4-87-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, February 1987.
- National Air Quality and Emissions Trends Report, 1986, EPA-450/4-88-001,
 U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, February 1988.
- 15. National Air Quality and Emissions Trends Report, 1987, EPA-450/4-89-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, March 1989.
- 16. National Air Quality and Emissions Trends Report, 1988, EPA-450/4-90-002, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, March 1990.

- 17. National Air Quality and Emissions Trends Report, 1989, EPA-450/4-91-003, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, February 1991.
- 18. National Air Quality and Emissions Trends Report, 1990, EPA-450/4-91-023, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, November 1991.
- 19. National Air Quality and Emissions Trends Report, 1991, EPA-450/R-92-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, October 1992.
- National Air Quality and Emissions Trends Report, 1992, EPA-454/R-93-031,
 U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, October 1993.
- National Air Quality and Emissions Trends Report, 1993, EPA-454/R-94-026,
 U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, October 1994.
- 22. National Air Quality and Emissions Trends Report, 1994, EPA-454/R-95-014, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, October 1995.
- 23. National Air Quality and Emissions Trends Report, 1995, EPA-454/R-96-005, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, October 1996.
- National Air Quality and Emissions Trends Report, 1996, EPA-454/R-97-013,
 U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, January 1998.
- 25. National Air Quality and Emissions Trends Report, 1996, EPA-454/R-97-013, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, January 1998.
- 26. Based on the level of the 8-hour ozone standard (0.08 ppm).

Criteria Pollutants — National Trends

http://www.epa.gov/oar/aqtrnd98/chapter2.pdf

This chapter presents national and regional trends for each of the pollutants for which the United states Environmental Protection Agency (EPA) has established National Ambient Air Quality Standards (NAAQS). NAAQS are in place for the following six criteria pollutants: carbon monoxide (CO), lead (Pb), nitrogen dioxide (NO₂), ozone (O₃), particulate matter (PM), and sulfur dioxide (SO₂). Table 2-1 lists the NAAQS for each pollutant in terms of the level and averaging time of the standard used to evaluate compliance.

There are two types of standards: primary and secondary. Primary standards protect against adverse human health effects, whereas secondary standards protect against welfare effects such as damage to crops, ecosystems, vegetation, buildings, and decreased visibility. There are primary standards for all of the criteria pollutants, and some pollutants (PM and SO₂) have primary standards for both long-term (annual average) and short-term (24 hours or less) averaging times. Short-term standards most directly protect people from adverse health effects associated with peak short-term exposures to air pollution, while long-term standards can protect people from adverse health effects associated with short- and long-term exposures to air pollution. SecondTable 2-1. NAAQS in effect as of December 1999.

Pollutant	Primary Standard (Health Related)		Secondary Standard (Welfare Related)		
	Type of Average	Standard Level Concentration ^c	Type of Average Standard Level Concentration		
co	8-hour ^b	9 ppm (10 mg/m³)	No Secondary Standard		
	1-hour ^b	35 ppm (40 mg/m³)	No Secondary Standard		
Pb	Maximum Quarterly Average	1.5 μg/m³	Same as Primary Standard		
NO ₂	Annual Arithmetic Mean	0.053 ppm (100 μg/m³)	Same as Primary Standard		
O ₃	Maximum Daily 1-hour Average ^c	0.12 ppm (235 μg/m³)	Same as Primary Standard		
y 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	4th Maximum Daily ^d 8-hour Average	0.08 ppm (157 μg/m³)	Same as Primary	Standard	
PM ₁₀	Annual Arithmetic Mean	50 μg/m³	Same as Primary	Standard	
	24-hour ^b	150 μg/m³	Same as Primary	Standard	
PM _{2.5}	Annual Arithmetic Mean ^e	15 μg/m³	Same as Primary Standard		
	24-hour ^f	65 μg/m³	Same as Primary Standard		
SO ₂	Annual Arithmetic Mean	0.03 ppm (80 µg/m³)	3-hour ^b 0.50 ppm (1,300 µg/m³)		
	24-hour ^b	0.14 ppm (365 μg/m³)			

- Parenthetical value is an approximately equivalent concentration. (See 40 CFR Part 50).
- b Not to be exceeded more than once per year.
- The standard is attained when the expected number of days per calendar year with maximum hourly average concentrations above 0.12 ppm is equal to or less than one, as determined according to Appendix H of the Ozone NAAQS.
- d Three-year average of the annual 4th highest daily maximum 8-hour average concentration.
- Spatially averaged over designated monitors.
- The form is the 98th percentile.

ary standards have been established for each criteria pollutant except CO. Secondary standards are identical to the primary standards, with the exception of SO₂. Approximately 134 million people in the United states reside in counties that did not meet the primary standard for at least one of the criteria pollutants for the single year 1998.

Number of people living in counties with air quality concentrations above the level of NAAQS in 1998.

On July 18, 1997, EPA revised the ozone and PM NAAQS. The averaging time of the ozone standard changed from a 1-hour average to an 8-hour average to protect against longer exposure periods that are of concern for both human health and welfare. The primary PM standards were revised to change the form of the PM₁₀ standards and to add two new PM_{2.5} standards to protect against fine particles.

In May 1999, however, the U.S. Court of Appeals for the D.C. Circuit issued an opinion affecting these revised standards. In particular, the court remanded the ozone standard back to EPA for further consideration. The court also vacated the revised PM₁₀ standard and remanded the PM₂₅ standards back to EPA for further consideration. Following the

denial of a petition for a rehearing by the D.C. Circuit, the Justice Department has filed a petition for review before the Supreme Court. Refer to http://www.epa.gov/airlinks for upto-date information concerning actions surrounding the revised standards.

The trends information presented in this chapter is based on two types of data: ambient concentrations and emissions estimates. Ambient concentrations are measurements of pollutant concentrations in the ambient air from monitoring sites across the country. This year's report contains trends data accumulated from 1989 to 1998 on the criteria pollutants at thousands of monitoring stations located throughout the United states. The trends presented here are derived from the composite average of these direct measurements. The averaging times and air quality statistics used in the trends calculations relate directly to the NAAQS.

The second type of data presented in this chapter are national emissions estimates. These are based largely on engineering calculations of the amounts and kinds of pollutants emitted by automobiles, factories, and other sources over a given period. In addition, some emissions estimates are based on measurements from continuous emissions monitors (CEMs) that have recently been installed at major electric utilities to measure actual emissions. This report incorporates data from CEMs collected between 1994 and 1998 for NO_x and SO₂ emissions at major electric utilities. The emissions data summarized in this chapter and in Appendix A were obtained from the National Air Pollutant Emission Trends Report, 1900-1998, which can be

found at http://www.epa.gov/ttn/chief/trends98/emtrnd.html.

Changes in ambient concentrations do not always track changes in emissions estimates. There are four known reasons for this. First, because most monitors are positioned in urban, population-oriented locales, air quality trends are more likely to track changes in urban emissions rather than changes in total national emissions. Urban emissions are generally dominated by mobile sources, while total emissions in rural areas may be dominated by large stationary sources such as power plants and smelters.

Second, emissions for some pollutants are calculated or measured in a different form than the primary air pollutant. For example, concentrations of ozone are caused by VOC emissions as well as NO_x emissions.

Third, the amount of some pollutants measured at monitoring locations depends on what chemical reactions, if any, occur in the atmosphere during the time it takes the pollutant to travel from its source to the monitoring station.

Finally, meteorological conditions often control the formation and buildup of pollutants in the ambient air. For example, peak ozone concentrations typically occur during hot, dry, stagnant summertime conditions; CO is predominately a cold weather problem; also, the amount of rainfall can affect particulate matter levels and the frequency of forest fires.

For a more detailed discussion of the methodology used to compute the trend statistics in this chapter, please refer to Appendix B.

Carbon Monoxide

i	Air Quality	Concent	rations
	1989–98	39%	decrease
	1997–98	3%	decrease

Emissions		
1989–98	16%	decrease
1997–98	5%	decrease

Nature and Sources

CO is a colorless, odorless, (and at much higher levels) poisonous gas, formed when carbon in fuels is not burned completely. It is a product of motor vehicle exhaust, which contributes about 60 percent of all CO emissions nationwide. High concentrations of CO generally occur in areas with heavy traffic congestion. In cities, as much as 95 percent of all CO emissions may emanate from automobile exhaust. Other sources of CO emissions include industrial processes, non-transportation fuel combustion, and natural sources such as wildfires. Woodstoves, cooking, cigarette smoke, and space heating are sources of CO in indoor environments. Peak CO concentrations typically occur during the colder months of the year when CO automotive emissions are greater and nighttime inversion conditions are more frequent. Figure 2-1 shows this seasonal pattern in average daily maximum 1-hour CO concentrations at 414 sites reporting complete data in 1998.

Health Effects

Carbon monoxide enters the bloodstream through the lungs and reduces oxygen delivery to the body's organs and tissues. The health threat from lower levels of CO is most serious for those who suffer from cardiovascular disease, such as angina

Figure 2-1. Average daily maximum 1-hour CO concentrations by month, 1998.

pectoris. At much higher levels of exposure, CO can be poisonous, and healthy individuals may also be affected. Visual impairment, reduced work capacity, reduced manual dexterity, poor learning ability, and difficulty in performing complex tasks are all associated with exposure to elevated CO levels.

Primary Standards

There are two primary NAAQS for ambient CO—a 1-hour average of 35 ppm, and an 8-hour average of 9 ppm. These concentrations are not to be exceeded more than once per year. There currently are no secondary standards for CO.

National 10-Year Trends

The 10-year trend in ambient CO concentrations is shown in Figure 2-2. Nationally, CO concentrations decreased 39 percent during the past 10 years as measured by the composite average of the annual second highest 8-hour concentration (referred to as

the second maximum non-overlapping 8-hour concentration). Year-to-year reductions in peak 8-hour CO concentrations have continued since the upturn in 1994. Between 1997 and 1998, CO concentrations decreased 3 percent on average and are the lowest level recorded during the past 10 years. Exceedances of the 8-hour CO NAAQS (which are simply a count of the number of times the level of the standard is exceeded) have declined 98 percent since 1989.

Long-term reductions in ambient CO concentrations have been measured across all monitoring environments—rural, suburban, and urban sites. Figure 2-3 shows that on average, urban monitoring sites record higher CO concentrations than suburban sites, with the lowest levels found at 12 rural CO sites. During the past 10 years, the composite mean CO 8-hour concentration decreased 36 percent at 12 rural monitoring sites, 37 percent at 148 suburban sites, and 41 percent at 200 urban sites.

Emissions Trends

Figure 2-4 shows that national total CO emissions have decreased 16 percent since 1989. Emissions from all transportation sources have decreased 16 percent during the past 10 years. Despite a 23-percent increase in vehicle miles traveled (VMT), emissions from on-road vehicles decreased 24 percent during the past 10 years as a result of automotive emissions control programs. Total CO emissions decreased 5 percent since 1997, while CO emissions from on-road vehicles recorded a 2-percent decline. Figure 2-5 shows that the transportation category, composed of on-road and off-road sources, accounts for 79 percent of the nation's total CO emissions in 1998.

Table 2-2 lists some of the major milestones in the control of emissions from automobiles starting with the Clean Air Act (CAA) of 1970. At the national level, these measures, which have led to reductions in emissions of CO as well as other pollutants, include establishing national standards for tailpipe emissions, new vehicle technologies, and clean fuels programs. State and local emissions reduction measures include inspection and maintenance (I/M) programs and transportation management programs.

Figure 2-2. Trend in 2nd maximum non-overlapping 8-hour average CO concentrations, 1989–1998.

Figure 2-3. Trend in 2nd maximum non-overlapping 8-hour average CO concentrations by type of location, 1989–1998.

Concentration, ppm

1

0

90

Rural (12 sites) Suburban (148 sites) Urban (200 sites)

95

96

97

93

Figure 2-4. Trend in national total CO emissions, 1989-1998.

Figure 2-5. CO emissions by source category, 1998.

Table 2-2. Milestones in Motor Vehicle Emissions Control

Emissions Control		
	1970	New Clean Air Act sets auto emissions standards.
	1971	Charcoal canisters appear to meet evaporative standards.
	1972	EGR valves appear to meet NO_x standards.
	1974	Fuel economy standards are set.
	1975	The first catalytic converters appear for hydrocarbon, CO.
		Unleaded gas appears for use in catalyst equipped cars.
	1981	3-way catalysts with on-board computers and O ₂ sensors appear.
	1983	I/M programs are established in 64 cities.
	1989	Fuel volatility limits are set for RVP.
	1990	CAAA set new tailpipe standards.
	1992	Oxy-fuel introduced in cities with high CO levels.
	1993	Limits set on sulfur content of diesel fuel.
	1994	Phase-in begins of new vehicle standards and technologies.
	1995	On-board diagnostic systems in 1996 model year cars.
	1998	Sales of 1999 model year California emissions equipped vehicles begin in the Northeast.
		he area of clean fuels, the 1990
	C1	A * A -1 A (C A A A)

Clean Air Act Amendments (CAAA) require oxygenated gasoline programs in several regions of the country during the winter months. Under the program regulations, a minimum oxygen content (2.7 percent by weight) is required in gasoline to ensure more complete fuel combustion.^{1,2} Of the 36 CO nonattainment areas that initially implemented the program in 1992, 25 areas participated in the program during January and February 1998, while 17 areas continued to use oxygenated fuels during November and December 1998. An analysis of the oxygenated

fuels program in several cities with winter oxygenated gasoline programs showed reductions in ambient CO concentrations of about 10 percent.³ Other studies estimated that the oxy-fuel effect was an average total reduction in ambient CO concentrations of 7 to 14 percent overall for the eight winter seasons from 1986 through 1994.^{4,5}

Blue Ribbon Panel on Oxygenates in Gasoline

In November 1998, in response to the public concern regarding the detection of MTBE (methyl tertiary butyl ether-one of two fuel oxygenates used in reformulated gasoline to help improve air quality) in water, EPA Administrator Carol M. Browner announced the creation of a blue ribbon panel of leading experts from the public health and scientific communities, automotive fuels industry, water utilities, and local and state governments to review the important issues posed by the use of MTBE and other oxygenates in gasoline. The Panel's final report stated that "the Wintertime Oxyfuel Program continues to provide a means for some areas of the country to come into, or maintain, compliance with the carbon monoxide standard. Only a few metropolitan areas continue to use MTBE in this program. In most areas today, ethanol can, and is, meeting these wintertime needs for oxygen without raising fuel volatility concerns given the season of the year. The Panel recommends that the Wintertime Oxyfuel program be continued (a) for as long as it provides a useful compliance and/or maintenance tool for the affected states and metropolitan areas, and (b) assuming that the clarification of state and federal authority described above is enacted to enable

Figure 2-6. Long-term trend in 2nd maximum non-overlapping 8-hour average CO concentrations, 1979–1998.

Concentration, ppm

states, where necessary, to regulate and/or eliminate the use of gasoline additives that threaten drinking water supplies." The Panel's Executive Summary and final report entitled Achieving Clean Air and Clean Water: The Report of the Blue Ribbon Panel on Oxygenates in Gasoline can be found on the Panel's homepage at: http://www.epa.gov/oms/consumer/fuels/oxypanel/blueribb.htm.

National 20-Year Trends

Because of the annual loss and replacement of ambient monitoring sites (e.g., redevelopment, new leases, etc.), too few sites are able to meet a 20-year trends data completeness criteria. Thus, long-term trends are assessed by piecing together two separate 10-year trends databases. Although there are differences in the mix of trend sites for the two periods (251 vs. 363 sites), Figure 2-6 shows a

consistent decline in CO concentrations during the past 20 years. Nationally, the 1998 composite average ambient concentration is 58 percent lower than 1979, and is the lowest level recorded during the past 20 years of monitoring.

Regional Trends

The map in Figure 2-7 shows the regional trends in ambient CO concentrations during the past 10 years, 1989–1998. All 10 EPA Regions recorded 10-year declines in CO levels as measured by the regional composite mean concentrations. The largest 10-year concentration reductions are in the Northcentral, Rocky Mountain and Northwest states. Smaller reductions can be seen in the New England, West, South and Midwest regions. Two regions (Region 5 and Region 7) saw increases in the composite mean CO concentration be-

Figure 2-7. Trend in CO 2nd maximum non-overlapping 8-hour concentrations by EPA Region, 1989–1998.

Alaska is in EPA Region 10; Hawaii, EPA Region 9; and Puerto Rico, EPA Region 2. Concentrations are ppm.

tween 1997 and 1998 (increases of 3 percent and 14 percent, respectively).

1998 Air Quality Status

The map in Figure 2-8 shows the variations in CO concentrations across the country in 1998. The air quality indicator is the largest annual second maximum 8-hour CO concentration measured at any site in each county. The bar chart to the left of the map displays the number of people living in counties within each concentration range. The colors on the map and bar chart correspond to the colors of the concentration ranges displayed in the map legend. Only seven of the 526 monitoring sites reporting ambient CO data to the Aerometric Information Retrieval

System (AIRS) failed to meet the CO NAAQS in 1998. These seven sites were located in six counties-Los Angeles County, CA; Fairbanks Burough, AK; Clarke County, NV (Las Vegas, NV); Polk County, IA (Des Moines, IA); Hancock County, WV (Weirton, WV); and Imperial County, CA (Calexico, CA). The two sites in this latter area are located just north of the border crossing with Mexicali, Mexico. There are 10 million people living in these six counties, compared to the 1997 count of three counties with a total population of 9 million people.

Data Sources

The CO ambient trends plotting points and emissions totals, by

source category, are listed in Tables A-1 and A-2. The plotting points for the 20-year trend charts are listed in Table A-9. The 1998 county maximum second-highest non-overlapping 8-hour CO concentrations are listed in Table A-11.

180 -1990 Population InMillions

12.5 - 15.4

9.5 - 12.4

3 4.5 - 9.4

Figure 2-8. Highest 2nd maximum non-overlapping 8-hour average CO concentration by county, 1998.

Concentration (ppm)

Lead

	Air Quality	Concen	trations	4
4.62888	1989–98	56%	decrease	
1256 - FEBRUARY	1997–98		no change	* 出来

Emissions		
1989–98	27%	decrease
1997–98	1%	increase

Nature and Sources

Twenty years ago, automotive sources were the major contributor of lead emissions to the atmosphere. As a result of EPA's regulatory efforts to reduce the content of lead in gasoline, the contribution from the transportation sector has declined. Today, metals processing is the major source of lead emissions to the atmosphere. The highest ambient air concentrations of lead are found in the vicinity of ferrous and nonferrous smelters, battery manufacturers, and other stationary sources of lead emissions.

Health and Environmental Effects

Exposure to lead occurs mainly through inhalation and through ingestion of lead in food, water, soil, or dust. It accumulates in the blood, bones, and soft tissues. Lead can also adversely affect the kidneys, liver, nervous system, and other organs. Excessive exposure to lead may cause neurological impairments such as seizures, mental retardation, and/or behavioral disorders. Even at low doses, lead exposure is associated with changes in fundamental enzymatic, energy transfer, and homeostatic mechanisms in the body. At low doses, fetuses and children may suffer from central nervous system damage. Recent studies show that lead may be a factor in high blood

pressure and subsequent heart disease. Recent studies also indicate that neurobehavioral changes may result from lead exposure during the child's first years of life.

Airborne lead can also have adverse impacts on the environment. Wild and domestic grazing animals may ingest lead that has deposited on plant or soil surfaces or that has been absorbed by plants through leaves or roots. Animals, however, do not appear to be more susceptible or more sensitive to adverse effects from lead than humans. For this reason, the secondary standard for lead is identical to the primary standard.

At relatively low concentrations (2-10 µg/m³), lead can inhibit plant growth and result in a shift to more tolerant plant species growing near roadsides and stationary source emissions. In spite of the fact that the majority of soil lead becomes bound so that it is insoluble, immobile, and biologically unavailable, elevated soil lead concentrations have been observed to cause shifts in the microbial community (fungi and bacteria), reduced numbers of invertebrates, reduced decomposition and nitrification rates, and altered other soil parameters. Because lead remains in the soil, soil concentrations continue to build over time, even when deposition rates are low. Thus, another concern is that acid precipitation may be increasing the mobility and bioavailability of soil lead in some places.

Lead enters water systems mainly through urban runoff and sewage and industrial effluents. Most of this lead is readily complexed and bound in the sediment. However, water lead concentrations can reach levels that are associated with increased mortality and impaired reproduction in aquatic invertebrates and blood and neurological changes in fish. Given the above effects, there continue to be implications for the long-term impact of lead on ecosystem function and stability. (See also the Toxics chapter and the *December 1990 OAQPS Staff Paper* (EPA-450/2-89-022)).

Primary and Secondary Standards

The primary and secondary NAAQS for lead is a quarterly average concentration not to exceed 1.5 μ g/m³.

National 10-Year Trends

The statistic used to track ambient lead air quality is the maximum quarterly mean concentration of each year. A total of 189 ambient lead monitors met the trends data completeness criteria for the 10-year period 1989-1998. Point-source oriented monitoring data were excluded from all ambient trends analyses presented in this section to avoid masking the underlying urban trends. Figure 2-9 indicates that between 1989 and 1998, maximum quarterly average lead concentrations decreased 56 percent at population-oriented monitors. Between 1997 and 1998, national average lead concentrations (approaching the minimum detectable level) remained unchanged. Figure 2-10 looks at urban, rural, and suburban 10-year trends separately. The figure shows that background levels of lead are similar in the three demographic regions.

Emissions Trends

Figure 2-11 shows that total lead emissions decreased 27 percent between 1989 and 1998. The large ambient and emissions reductions are a waning result of the phase-out of

leaded gasoline. Table A-3, which lists lead emissions by major source category, shows that on-road vehicles accounted for 64 percent of the 10-year emissions decline. Between 1997 and 1998, lead emissions estimates did not change substantially. Figure 2-12 shows that industrial processes were the major source of lead emissions in 1998, accounting for 74 percent of the total. The transportation sector (on-road and non-road sources) now accounts for only 13 percent of total 1998 lead emissions, with most of that coming from aircraft.

National 20-Year Trends

The effect of the conversion to unleaded gasoline usage on ambient lead concentrations is most impressive when viewed over a longer period, such as illustrated in Figure 2-13. Between 1979 and 1998, ambient concentrations of lead declined 96 percent. This large decline tracks well with overall lead emissions, which declined 98 percent between 1979 and 1998.

Regional Trends

Figure 2-14 segregates the ambient trend analysis by EPA Region. Although most regions showed large concentration reductions between 1989 and 1998, there were some intermittent upturns. Many of the "bumps" in the graphs can be attributed to the inherent variability associated with data reported near the minimum detectable level.

1998 Air Quality Status

The large reductions in long-term lead emissions from transportation sources have changed the nature of the ambient lead problem in the United States. Because industrial pro-

Figure 2-9. Trend in maximum quarterly average Pb concentrations (excluding source-oriented sites), 1989–1998.

Figure 2-10. Pb maximum quarterly mean concentration trends by location (excluding point-source-oriented sites), 1989–1998.

Concentration, ug/m3

Figure 2-11. National total Pb emissions trend, 1989-1998.

Figure 2-12. Pb emissions by source category, 1998.

cesses are now responsible for all violations of the lead standard, the lead monitoring strategy now focuses on emissions from these point sources. The map in Figure 2-15 shows the lead monitors located in the vicinity of major sources of lead emissions. In 1998, five lead point sources had one or more source-oriented monitors that violated the NAAQS. These five sources are ranked in Figure 2-15 according to the site with the greatest maximum quarterly mean. Various enforcement and regulatory actions are being actively pursued by EPA and the states for these sources.

The map in Figure 2-16 shows the highest quarterly mean lead concentration by county in 1998. Five counties, with a total population of 4.3 million and containing the point sources identified in Figure 2-15, did not meet the lead NAAQS in 1998.

Monitoring Status

Because of the shift in ambient air monitoring focus from mobile-source emissions to stationary point sources of lead air pollution, EPA revised the lead air monitoring regulations by publishing a new rule on January 20, 1999. This action was taken at the direct request of numerous state and local agencies whose on-road mobile-source oriented lead monitors have been reporting peak lead air pollution values that are many times less than the quarterly lead NAAQS of 1.5 µg/m³ for a number of consecutive years.

The previous regulation required that each urbanized area with a population of 500,000 or more operate at least two lead National Air Monitoring Stations (NAMS). The new rule allows state and local agencies more flexibility. The rule substantially reduces the requirements

for measuring lead air pollutant concentrations near major highways, thus shifting the focus to point sources and their impact on neighboring populations. The regulation allows states to reduce the number of NAMS from approximately 85 to approximately 15. This reduction will still allow EPA to confirm that lead air pollution in populated areas remains well below the NAAQS, but it refocuses available monitoring resources into areas with industrial sources.

Figure 2-13. Long-term ambient Pb trend, 1979-1998.

Concentration, ug/m3

Figure 2-14. Trend in Pb maximum quarterly mean concentration by EPA Region, 1989–1998.

Alaska is in EPA Region 10; Hawaii, EPA Region 9; and Puerto Rico, EPA Region 2. Concentrations are $\mu g/m^3$.

Figure 2-15. Pb maximum quarterly concentration in the vicinity of Pb point sources, 1998.

Nitrogen Dioxide

,	Air Quality	Concent	trations					
	1989-98	14%	decrease					
4	1997–98		no change					
les.								

E missions		
1989–98	2%	increase
1997–98	1%	decrease

Nature and Sources

Nitrogen dioxide (NO₂) is a reddish brown, highly reactive gas that is formed in the ambient air through the oxidation of nitric oxide (NO). Nitrogen oxides (NO_x), the term used to describe the sum of NO, NO2 and other oxides of nitrogen, play a major role in the formation of ozone in the atmosphere through a complex series of reactions with volatile organic compounds (VOCs). A variety of NO, compounds and their transformation products occur both naturally and as a result of human activities. Anthropogenic (i.e., man-made) emissions of NO_x account for a large majority of all nitrogen inputs to the environment. The major sources of anthropogenic NO_x emissions are high-temperature combustion processes, such as those occurring in automobiles and power plants. Most of NO, from combustion sources (about 95 percent) is emitted as NO; the remainder is largely NO2. Because NO is readily converted to NO₂ in the environment, the emissions estimates reported here assume nitrogen oxides are in the NO2 form. Natural sources of NOx are lightning, biological and abiological processes in soil, and stratospheric intrusion. Ammonia and other nitrogen compounds produced naturally are important in the cycling of nitrogen through the ecosystem. Home heaters and gas stoves also produce substantial amounts of NO_2 in indoor settings.

Health and Environmental Effects

Nitrogen dioxide is the most widespread and commonly found nitrogen oxide and is a matter of public health concern. The health effects of most concern associated with short-term exposures (i.e., less than three hours) to NO₂ at or near the ambient NO₂ concentrations seen in the United States, include changes in airway responsiveness and pulmonary function in individuals with preexisting respiratory illnesses, as well as increases in respiratory illnesses in children 5–12 years old.^{7,8}

Evidence suggests that long-term exposures to NO_2 may lead to increased susceptibility to respiratory infection and may cause alterations in the lungs. Atmospheric transformation of NO_x can lead to the formation of ozone and nitrogen-bearing particles (e.g., nitrates and nitric acid). As discussed in the ozone and PM sections of this report, exposure to both PM and ozone is associated with adverse health effects.

Nitrogen oxides contribute to a wide range of effects on public welfare and the environment, including global warming and stratospheric ozone depletion. Deposition of nitrogen can lead to fertilization, eutrophication, or acidification of terrestrial, wetland and aquatic (e.g., fresh water bodies, estuaries, and coastal water) systems. These effects can alter competition between existing species, leading to changes in the number and type of species (composition) within a community. For example, eutrophic conditions in aquatic systems can produce explosive algae

growth leading to a depletion of oxygen in the water and/or an increase in levels of toxins harmful to fish and other aquatic life. Nitrogen oxides are also important precursors or components of ozone, particulate matter and visibility impairment. (See sections on ozone, particulate mater, and sulfur dioxide, as well as chapters on visibility and atmospheric deposition).

Primary and Secondary Standards

The level for both the primary and secondary national ambient air quality standards (NAAQS) for NO₂ is 0.053 ppm annual arithmetic average, not to be exceeded.

National 10-Year Trends

The annual mean NO2 concentration is the statistic used to track ambient NO₂ air quality trends. A total of 225 ambient NO2 monitoring sites met the trends data completeness criteria for the 10-year period 1989–1998. Figure 2-17 shows that the national composite annual mean NO₂ concentration in 1998 is 14 percent lower than the composite mean recorded in 1989, and is unchanged from the 1997 level. Except for 1994, annual mean NO₂ concentrations have decreased, or remained unchanged, each year since 1989. Figure 2-18 shows how the trends in annual mean NO2 concentrations vary among rural, suburban and urban monitoring locations. The highest annual mean NO₂ concentrations are typically found in urban areas, with significantly lower annual mean concentrations recorded at rural sites. The 1998 composite mean at 80 urban sites is 12 percent lower than the 1989 level, compared to an 18-percent reduction at 104 suburban sites. At 39 rural sites, the

Figure 2-17. Trend in annual NO₂ mean concentrations, 1989-1998.

Figure 2-18. Trend in annual mean NO₂ concentrations by type of location, 1989–1998.

composite mean NO_2 concentration decreased 22 percent from the 1989 concentration level. (See Figure B-3 in Appendix B for a map of the NO_2 monitoring site locations.)

Atmospheric concentrations of NO₂ are determined by indirect photomultiplier measurement of the luminescence produced by a critical reaction of NO with ozone. The measurement of NO2 is based first on the conversion of NO2 to NO, and then subsequent detection of NO using this well characterized chemiluminescence technique. This conversion is not specific for NO2, hence chemiluminescence analyzers are subject to interferences produced by response to other nitrogen containing compounds (e.g., peroxyacetyl nitrate [PAN]) that can be converted to NO. The chemiluminescence technique has been reported to overestimate NO₂ due to these interferences. This is not an issue for compliance since there are no violations of the NO₂ NAAQS. In addition, the interferences are believed to be relatively small in urban areas.9 The national and regional air quality trends depicted are based primarily on data from monitoring sites in urban locations, and are expected to be reasonable representations of urban NO2 trends. That is not the case in rural and remote areas, however, where air mass aging could foster greater relative levels of PAN and nitric acid and interfere significantly with the interpretation of NO₂ monitoring data.

Emissions Trends

Figure 2-19 shows the 10-year trend in NO_x emissions. National total NO_x emissions in 1998 are 2 percent higher than the 1989 total, although changes in data availability and methodology between 1989 and 1990

(in the other combustion category) introduce uncertainty in this comparison. Emissions from electric utility fuel combustion sources in 1998 are 7 percent lower than the 1989 level, while emissions from on-road sources have increased 1 percent during the past 10 years. Figure 2-20 shows that the two primary sources of NO_x emissions are fuel combustion and transportation. Together, these two sources comprise 95 percent of 1998 total NO_x emissions. Title IV (Acid Deposition Control) of the CAA required EPA to establish NO, annual average emission limits for coal-fired electric utility units in two phases. NO_x reductions are approximately 400,000 tons per year during Phase I (1996-1999) and two million tons per year in Phase II (year 2000 and subsequent years).10 In 1998, 265 Phase I coal-fired utility units were subject to the Title IV emission limitations. For these 265 affected utility units, total NO_x emissions in 1998 were 29 percent lower than in 1990, but 3 percent higher than in 1997.10 While this is the second year that NOx emissions from these sources have increased, the ascent can be attributed in part to greater electrical production compared to 1996.10

National 20-Year Trends

As discussed in previous sections of this report, long-term national ambient air quality trends are difficult to assess because few monitoring sites have operated continuously in the same location for 20 years. Figure 2-21 presents 20-year trends in ambient NO₂ concentrations by combining two separate 10-year trends databases, 1979–1988 (127 sites) and 1989–1998 (225 sites). Nationally, annual mean NO₂ concentrations have decreased approximately 25 percent

Figure 2-19. Trend in national total NO_x emissions, 1989–1998.

Figure 2-20. NO_x emissions by source category, 1998.

Figure 2-21. Long-term trend in annual mean NO₂ concentrations, 1979–1998.

mean NO₂ concentration measured in each county. In July 1998, EPA announced the redesignation of the South Coast Air Basin (the last remaining nonattainment area for NO₂) to attainment for the NO₂ NAAQS.¹¹

Data Sources

The NO_2 ambient trends plotting points and emissions totals by source category are listed in Tables A-1 and A-4, respectively. The plotting points for the 20-year trend charts are listed in Table A-9. Table A-11 contains the highest annual mean NO_2 concentration by county in 1998.

since 1979. Annual mean NO_2 concentrations declined in the early 1980s, were relatively unchanged during the mid-to-late 1980s, and resumed their decline in the 1990s. Because most NO_2 monitoring sites are mobile-source oriented sites in urban areas, the 20-year decline in NO_2 concentrations more closely tracks the 19-percent reduction in NO_x emissions from on-road vehicles since 1980.

Regional Trends

The map in Figure 2-22 shows regional trends in NO_2 concentrations during the past 10 years, 1989–1998 (except Region 10 which does not have any NO_2 trend sites). The trends statistic is the regional composite mean of the NO_2 annual mean concentrations across all sites with at

least 8 years of ambient measurements. Figure 2-22 shows that the largest reductions in composite annual mean NO_2 concentrations occurred in the South Coast of California, followed by the New England states, and the northeastern states, New York and New Jersey. Smaller reductions in mean NO_2 concentrations were recorded in mid-Atlantic, southeast, southwest and Rocky Mountain states. The 1989 and 1998 composite mean NO_2 concentrations were the same level in both the North Central and Midwest states.

1998 Air Quality Status

All monitoring locations across the nation, including Los Angeles, met the NO₂ NAAQS in 1998. This is reflected on the map in Figure 2-23 that displays the highest annual

Insufficient .015 Trend Data .020 0% Note: These trends are influenced by the .015 distribution of monitoring locations in a given region ₽ 6% and, therefore, can be driven largely by urban concentrations. For this reason, they are not .021 indicative of background ■ 14% regional concentrations.

Figure 2-22. Trend in NO₂ maximum quarterly mean concentration by EPA Region, 1989-1998.

Alaska is in EPA Region 10; Hawaii, EPA Region 9; and Puerto Rico, EPA Region 2. Concentrations are ppm.

Figure 2-23. Highest NO₂ annual mean concentration by county, 1998.

Ozone

Emissions (Anthropogenic VOCs) 1989–98 20% decrease 1997–98 5% decrease

Nature and Sources

Ground level ozone remains a pervasive pollution problem in the United States. Ozone is readily formed in the atmosphere by the reaction of VOCs and NO_x in the presence of heat and sunlight, which are most abundant in the summer. VOCs are emitted from a variety of sources including: motor vehicles, chemical plants, refineries, factories, consumer and commercial products, other industries, and natural (biogenic) sources. Nitrogen oxides are emitted from motor vehicles, power plants, and other sources of combustion, and natural sources including lightning and biological processes in soil. Changing weather patterns contribute to yearly differences in ozone concentrations. Ozone and the precursor pollutants that cause ozone also can be transported into an area from pollution sources located hundreds of miles upwind.

Health and Environmental Effects

Ozone occurs naturally in the stratosphere and provides a protective layer high above the Earth. However, at ground level, it is the prime ingredient of smog. Short-term (1–3 hours) and prolonged (6–8 hours) exposures to ambient ozone concentrations have been linked to a number of health effects of concern. For

example, increased hospital admissions and emergency room visits for respiratory causes have been associated with ambient ozone exposures.

Exposures to ozone may make people more susceptible to respiratory infection, result in lung inflammation, and aggravate preexisting respiratory diseases such as asthma. Other health effects attributed to short-term and prolonged exposures to ozone, generally while individuals are engaged in moderate or heavy exertion, include significant decreases in lung function and increased respiratory symptoms such as chest pain and cough. Children active outdoors during the summer when ozone levels are at their highest are most at risk of experiencing such effects. Other at-risk groups include adults who are active outdoors, such as outdoor workers, and individuals with preexisting respiratory disorders such as asthma and chronic obstructive lung disease. Within each of these groups are individuals who are unusually sensitive to ozone. In addition, repeated long-term exposure to ozone presents the possibility of irreversible changes in the lungs which could lead to premature aging of the lungs and/or chronic respiratory illnesses.

Ozone also affects sensitive vegetation and ecosystems. Specifically, ozone can lead to reductions in agricultural and commercial forest yields, reduced survivability of sensitive tree seedlings, and increased plant susceptibility to disease, pests, and other environmental stresses such as harsh weather. In long-lived species, these effects may become evident only after several years or even decades. As these species are out-competed by others, long-term effects on forest ecosystems and habitat quality for wildlife and endangered species

occurs. Furthermore, ozone injury to the foliage of trees and other plants can decrease the aesthetic value of ornamental species as well as the natural beauty of our national parks and recreation areas.

Primary and Secondary 1-hour Ozone Standards

In 1979, EPA established 1-hour primary and secondary standards for ozone. The level of the 1-hour primary and secondary ozone NAAQS is 0.12 ppm daily maximum 1-hour concentration that is not to be exceeded more than once per year on average. To encourage an orderly transition to the revised ozone standards (promulgated in 1997; see following section for more information), EPA initiated a policy in which the 1-hour standards would no longer apply once an area experienced air quality data meeting the 1-hour standards. In 1998 and early 1999, EPA revoked the 1-hour ozone NAAQS in 2,942 counties in the United States, leaving 201 counties where the 1-hour standard still applies. 12,13,14 However, due to unresolved legal challenges, the Agency is unable to enforce and effectively implement the 8-hour standard. As a result, many areas are without applicable air quality standards adequate to ensure public health and welfare. Therefore, at the time of publication of this report, EPA has proposed to reinstate the 1-hour standard nationwide to alleviate this unanticipated policy outcome and provide protection of public health and welfare. 15

Primary and Secondary 8-hour Ozone Standards

On July 18, 1997, EPA established an 8-hour primary ozone standard to protect against longer exposure peri-

ods that are of concern for both human health and environmental welfare.16 The level of the national 8-hour primary and secondary ambient air quality standards for ozone is 0.08 ppm, daily maximum 8-hour average over 3 years. The standards are met when the 3-year average of the annual fourth-highest daily maximum 8-hour ozone concentration is less than or equal to 0.08 ppm.16 In May 1999, however, the U.S. Court of Appeals for the D.C. Circuit issued an opinion concerning the revised ozone standard. The court remanded the case back to EPA for further consideration. Following the denial of a petition for rehearing by the D.C. Circuit, the Justice Department has filed a petition for review before the Supreme Court.

Air Quality Trends

Because the 1-hour and 8-hour NAAQS have different averaging times and forms, two different statistics are used in this report to track ambient ozone air quality trends. For the 1-hour O₃ NAAQS, this report uses the composite mean of the annual second-highest daily maximum 1-hour O₃ concentration as the statistic to evaluate trends. For the 8-hour ozone NAAQS, the report relies on the annual fourth-highest 8-hour daily maximum O₃ concentration as the statistic of interest to assess trends.

National 10-Year Trends

As shown in Figure 2-24, peak 1-hour O₃ concentrations at 661 monitoring sites across the country have declined 4 percent over the past 10 years. The variability among monitoring locations across the country for this measure is represented by the 90th percentile, median, composite mean, and 10th percentile values. During

Figure 2-24. Trend in annual 2nd-highest daily maximum 1-hour, and 4th-highest daily 8-hour O_3 concentrations, 1989–1998.

the past 10 years, values at the sites with the highest concentrations of the second daily maximum ozone level values have continued to decline more substantially than those at the sites with average levels of this measure. While the concentrations at the more typical sites (composite mean) are only 4 percent lower in 1998 than in 1989, the 1-hour ozone levels at higher concentration sites (the 90th percentile) declined by 11 percent during the same period. Although not shown in a figure, the national exceedance rate (i.e., the average number of days when the daily maximum 1-hour average concentration exceeds the level of the 1-hour NAAQS) has declined 62 percent compared to the rate in 1989. As noted in previous reports, this statistic, which is simply a count of the number of times the level of the NAAQS has been exceeded, can vary significantly from year to year. Fig-

ure 2-24 also shows the national trend in 8-hour ozone concentrations across the same 661 sites. The 8-hour concentration at typical sites is the same level in 1998 as observed in 1989. However, the 8-hour ozone values at the higher concentration sites (as shown by the 90th percentile) have decreased by 3 percent since 1989. The trend in the 8-hour ozone statistic is similar to the trend in the 1-hour values, although the concentration range is smaller.

The maps in Figures 2-25 and 2-26 examine the trend in 1-hour and 8-hour ozone concentrations during the past 10 years, by geographic region of the country. For both the 1-hour and 8-hour ozone measurements, trends in the Mid-Atlantic, Southeast, Central, and Northwest increased from 1989 to 1998. In addition, the Southwest region also experienced an increase over the same 10-year period for the 8-hour ozone

Figure 2-25. Trend in 2nd highest daily 1-hour O₃ concentration by EPA Region, 1989–1998.

Alaska is in EPA Region 10; Hawaii, EPA Region 9; and Puerto Rico, EPA Region 2. Concentrations are ppm.

Figure 2-26. Trend in 4th highest daily 8-hour O₃ concentration by EPA Region, 1989–1998.

measurement only. The ozone levels in all other areas followed declining trends similar to that of the national observations. These patterns are generally consistent with, and partially explained by, the meteorological conditions experienced during the 1998 summer in these areas. The summer of 1998 was among the 10 hottest seasons (of the last 100) for many states within the Southeast, Southwest and Northwest regions of the country, and was among the 20 driest summers in the Southeast. Statewide temperature and precipitation ranks for the summer of 1998 are shown in Figure 2-27 based on preliminary meteorological data available from National Oceanic and Atmospheric Administration (NOAA).18

In Figure 2-28, the national 1-hour ozone trend is deconstructed to show the 10-year change in ambient ozone concentrations among rural, suburban, and urban monitoring sites. The highest ambient ozone concentrations are typically found at suburban sites, consistent with the downwind transport of emissions from the urban center. During the past 10 years, ozone concentrations decreased by 3 percent at 304 suburban sites, and 9 percent at 117 urban sites. However, at 222 rural sites, 1-hour ozone levels for 1998 are only 1 percent lower than the 1989 level and, for the first time, are greater than the level observed for urban sites.

Figure 2-29 presents the trend in 8-hour ozone concentrations for 34 Clean Air Status and Trends Network (CASTNet) sites from 1989–1998.^{18a} The 8-hour ozone concentrations at these eastern CASTNet sites, which were the highest during the hot and dry summers of 1991 and 1998, have increased 6 percent over the last 10-

Figure 2-27. Summer 1998 statewide ranks for temperature and precipitation.

Note: For each individual state, the last 104 summers were ranked warmest to coldest and wettest to driest. A rank of 104 corresponds to the warmest or wettest, while a rank of 1 corresponds to the coldest or driest. Light gray states are in the warmest or wettest 20 percent of the last 104 years and dark gray states are in the driest 20 percent. There were no states having ranks in the coldest 20 percent in 1998.

Figure 2-28. Trend in annual 2nd-highest daily maximum 1-hour O_3 concentrations by location, 1989–1998.

Figure 2-29. Trend in 4th-highest daily 8-hour O_3 based on 34 CASTNet sites in the rural eastern United States, 1989–1998.

year period and 8 percent from 1997–1998. The CASTNet data complement the larger ozone data sets gathered by the State and Local Monitoring (SLAMS) and National Air Monitoring (NAMS) networks with additional rural coverage.

Figure 2-30 further examines patterns in ozone levels by presenting the 10-year trend in the 8-hour ozone concentrations across 24 National Park Service (NPS) sites as well as specific trends in ambient ozone levels for each individual site. ¹⁹ These sites are located in Class I areas, a special subset of rural environments (all national parks and wilderness areas exceeding 5,000 acres) accorded a higher degree of protection under the CAA provisions for the prevention of significant dete-

Figure 2-30. Trend in annual 4th-highest daily maximum 8-hour O₃ concentrations in National Parks, 1989–1998.

[↑] Indicates a statistically significant upward trend. Otherwise the trend was not statistically significant.

rioration. There are more than 24 NPS sites nationally; however, this analysis focuses on the specific sites with sufficient data to evaluate 10-year trends. Although the composite mean ozone concentration for 1998 across all 24 sites was unchanged from the level in 1989, nine of the NPS sites experienced statistically significant upward trends in 8-hour ozone levels. Figure 2-30 highlights five such sites: two in the Great Smoky Mountains National Park, one in Big Bend National Park, one in the Rocky Mountain National Park, and one in Cape Romain National Wildlife Refuge. Although not statistically significant, the 8-hour ozone levels at eight of the remaining 15 sites increased between 1989 and 1998, while only three showed downward slopes, and four sites showed no change. The 1998 levels were particularly high at the Shenandoah National Park and the Great Smoky Mountains National Park. Ozone levels at these sites were the highest in a decade and 30-40 percent higher than the 8-hour ozone standard. Table A-18 provides data on 10-year trends in air quality at all 24 NPS sites.

National 20-Year Trends

Since 1979, 1-hour O₃ concentrations have declined 17 percent nationally. Figure 2-31 clearly shows the peak ozone years of 1980, 1983, 1988 and 1995. Because only a few sites have monitored continuously for two decades, the 20-year trends line in Figure 2-31 is composed of two segments—401 sites with complete data during the first 10 years (1979–1987) and 661 sites meeting the data completeness criteria in the most recent 10 years (1989–1998). It is important to interpret such long-

Figure 2-31. Trend in annual 2nd-highest daily maximum 1-hour O_3 concentrations, 1979–1998.

term, quantitative ambient ozone trends carefully given changes in network design, siting criteria, spatial coverage and monitoring instrument calibration procedures during the past two decades.

Change Since Last Year

A comparison of the change in 1-hour ozone concentrations for the two most recent years of data reveals a 5-percent increase between 1997 and 1998. Similarly, the national 8-hour ozone concentrations increased 4 percent between 1997 and 1998 (Figure 2-24). Ambient ozone trends are influenced by year-to-year changes in meteorological conditions, population growth, changes in emissions levels from ongoing control measures as well as the relative levels of ozone precursors VOC and NO_x.

As discussed in previous *Trends* Reports, EPA uses a statistical model to adjust data on the annual rate of change in ozone from individual metropolitan areas to account for meteorological impacts, including surface temperature and wind speed.²⁰ Figure 2-32 presents the composite meteorologically-adjusted trend in 1-hour average daily maximum ozone concentrations for 40 metropolitan areas between 1986 and 1998. As seen in this figure, even after adjusting for meteorological conditions, 1-hour ozone levels in these selected areas increased slightly more than 1 percent between 1997 and 1998. This modest one year increase is within the range of uncertainty of this analysis and its significance should not be over interpreted. However, this increase combined with a similar rise in adjusted ozone levels

Figure 2-32. Comparison of actual and meteorologically adjusted 1-hour O_3 trends, 1989–1998.

Figure 2-33. Areas with PAMS networks.

between 1996 and 1997 (slightly greater than 1 percent) for these same areas suggests the beginnings of a possible upward trend in the adjusted statistic which will continue to be monitored and evaluated in future analyses and *Trends Reports*.

The 1-hour ozone concentrations in urban areas with the most severe and persistent ozone problems (i.e., those classified as extreme, severe, and serious ozone nonattainment areas) also increased between 1997 and 1998. This 2-percent increase, based on data from sites in the areas required to operate the Photochemical Assessment Monitoring Stations (PAMS) network, is consistent with, but less pronounced than, the 5-percent increase seen nationwide (at the 661 10-year trend sites). Currently, 22 of the nation's remaining 32 nonattainment areas for the 1-hour ozone NAAQS are required to operate PAMS sites.²¹ In addition, although recently reclassified to attainment for the 1-hour standard, Boston and Providence still maintain PAMS sites. Areas with PAMS networks are shown in Figure 2-33. Each PAMS network consists of as many as five monitoring stations, depending on the area's population. These stations are carefully located according to meteorology, topography, and relative proximity to emissions sources of VOC and NO_x. As of October 1999, there were 83 active designated PAMS sites.

In addition to measuring ozone levels, PAMS sites include measurements of NO_x, total non-methane organic compounds (TNMOC), a target list of VOC species including several carbonyls, plus surface and upper air meteorology during summer months when weather conditions are most conducive to ozone

formation. Table 2-3 shows changes in summer 6:00-9:00 a.m. VOC and NO. concentrations for selected PAMS sites.²² Morning periods for NOx and VOCs are used because those time frames are generally thought to be an appropriate indicator of anthropogenic emissions. Morning NO_x concentrations showed a median decline of 3 percent between 1997 and 1998 across 60 PAMS sites. Summer morning VOC concen- 2,2,4-Trimethylpentane trations registered a median decline of 7 percent across 45 PAMS sites. Figure 2-34 presents the median changes in summer morning concentrations of the most abundant VOC species measured at PAMS sites. These 23 VOC species are the focus of this analysis because they account for more than 75 percent (by volume) of the VOCs concentrated on in the PAMS program. Twenty-one of the 23 compounds included showed declines in median values between 1997 and 1998,23

Emissions Trends

Figure 2-35 shows that national total VOC emissions (which contribute to ozone formation) from anthropogenic (man-made) sources decreased 20 percent between 1989 and 1998. National total NO, emissions (the other major precursor to ozone formation) increased 2 percent over the same 10-year period, although changes in data availability and methodology between 1989 and 1990 (in the other combustion category) introduce uncertainty in this comparison. Nationally, the two major sources of VOC emissions are industrial processes (47 percent) and transportation sources (44 percent) as shown in Figure 2-36. Solvent use comprises 62 percent of the industrial process emissions category and 29 percent of total VOC

Figure 2-34. The median changes in summer morning concentrations of the most abundant VOC species² measured at PAMS sites.

Notes: 1. The numbers shown in the "Up" and "Down" columns refer to the number of sites in which the change in summer 6–9 a.m. mean concentrations between 1997 and 1998 is statistically significant (as determined by a t-test with a significance level of .05). The total number of sites ("Total") may not equal the sum of the corresponding "Up" and "Down" categories.

2. Results for Formaldehyde and Acetaldehyde (both carbonyl compounds) were not included in this analysis. EPA is continuing to assess carbonyl sampling issues to compare these measurements.

Table 2-3. Summary of 1997–1998 Changes in Summer 6–9 a.m. Mean Concentrations of NO_x and TNMOC at PAMS Sites

### ### ### ### ### ##################	Nı	umber of Site	es	Median
Enter a property of the control of t	Total	Uр	Down	Change
NO.	60	6	13	-3%
##TNIMOC	45	6	11	-7%

Note: The numbers shown in the "Up" and "Down" columns refer to the number of sites in which the change in summer 6–9 a.m. mean concentrations between 1997 and 1998 is statistically significant. The total number of sites ("Total") may not equal the sum of the corresponding "Up" and "Down" categories.

emissions. The emissions totals by source category and year can be found in Table A-5. Recent control measures to reduce emissions include regulations to lower fuel volatility and to reduce NO_x and VOC emissions from tailpipes.²⁴ The effectiveness of these control measures is

reflected in the 20-percent decrease in VOC emissions from transportation sources. VOC emissions from highway vehicles have declined 26 percent since 1989, while highway vehicle $\mathrm{NO_x}$ emissions have increased 1 percent over the same period.

Figure 2-35. Trend in national total anthropogenic VOC emissions, 1989–1998.

Figure 2-36. Anthropogenic VOC emissions by source category.

Table 2-4. Biogenic sources of VOC emissions by region.

Region	voc	Source
Southwestern United States	Isoprene	Oak (mostly), citrus, eucalyptus
	Monoterpenes	Pine, citrus, eucalyptus
Northeastern United States	Isoprene	Oak (mostly), spruce
	Monoterpenes	Maple, hickory, pine, spruce, fir, cottonwood

As required by the CAA, the Federal Reformulated Gasoline Program (RFG) implemented in 1995 has resulted in emissions reductions that exceed those required by law.25, 26 However, the discovery of MTBE (one of two fuel oxygenates used in reformulated gasoline to help improve air quality) in the water supplies around the country has required examination of the approach used in this program. As previously described in the carbon monoxide section of this report, in November 1998, EPA Administrator Carol M. Browner announced the creation of a blue ribbon panel of leading experts from the public health and scientific communities, automotive fuels industry, water utilities, and local and state government to review the important issues posed by the use of MTBE and other oxygenates in gasoline. The Panel concluded that RFG provides considerable air quality improvements and benefits for millions of U.S. citizens. However, due to MTBE's persistence and mobility in water, and its likelihood to contaminate ground and surface water, the Panel recommended that its use in gasoline be substantially reduced.27

In addition to anthropogenic sources of VOCs and NOx, there are natural or biogenic sources of these compounds as well. Table 2-4 shows the different predominant plant species responsible for VOC emissions in different parts of the country for two major biogenic species of concern, isoprene and monoterpenes. Though it is not possible to control the level of these natural emissions, when developing ozone control strategies, their presence is an important factor to consider. Biogenic NO_x emissions are associated with lightning and biological processes in soil.

Figure 2-37. Highest second daily maximum 1-hour O₃ concentration by county, 1998.

On a regional basis, biogenic VOC emissions can be greater than anthropogenic VOC emissions. Biogenic NO_x emissions, on the other hand, are less than 10 percent of total NO_x emissions.²⁸

1998 Air Quality Status

The map in Figure 2-37 presents second highest daily maximum 1-hour ozone concentrations by county in 1998. The accompanying bar chart to the left of the map reveals that in 1998 approximately 51 million people lived in 92 counties where ozone concentrations were above the level of the 1-hour ozone NAAQS. These numbers represent an slight increase

from the totals reported last year (49 million people living in 77 counties) with ozone concentrations above the level of the ozone NAAQS in 1997. As noted previously, meteorological conditions in some regions of the country were more conducive to peak ozone formation in 1998, than in 1997. The map in Figure 2-37 shows large spatial differences, with higher ozone concentrations typically found in Southern California, the Gulf Coast, and the Northeast and North Central states. Historically, the highest 1-hour concentrations have been found in Los Angeles and this is again the case in 1998.

Figure 2-38 presents a map of fourth highest daily maximum 8-hour ozone values by county in 1998 and an accompanying bar chart of the number of people in counties corresponding to various air quality ranges. The map reveals widespread areas with high 8-hour ozone concentrations (i.e., greater than 0.084 ppm) in much of the eastern half of the country and in California as well as isolated counties in the West. The corresponding bar chart indicates that roughly 130 million people live in counties where fourth highest daily maximum 8-hour ozone concentrations were greater than 0.084 ppm.

Figure 2-38. Highest fourth daily maximum 8-hour O_3 concentration by county, 1998.

Air Quality Impact of Major Wildfires

Biomass burning has been recognized as having the potential for significantly impacting visibility as well as contributing to elevated ambient concentrations of ozone and particulate matter.1,2 Two severe wildfire incidents occurred during 1998 that affected ambient concentrations of ozone and particulate matter in specific areas of the United States. The first incident occurred late April to early June in Mexico and Central America, when thousands of fires of unusual intensity resulted in elevated air pollution levels. Figures 2-39 and 2-40 show NASA's images of the widespread area affected by smoke plumes that caused elevated pollution levels mainly for the central section of the United States. These images show levels of absorbing aerosol particles (airborne microscopic dust/smoke) from NASA's Total Ozone Mapping Spectrometer (TOMS) instrument. The TOMS data images have been used increasingly to understand the behavior of this material within the atmosphere. The TOMS is the first instrument to allow observation of aerosols as the particles cross the land/sea boundary. Using these data, it is possible to observe a wide range of phenomena such as desert dust storms, forest fires and biomass burning. In Figure 2-41, the smoke plumes almost two weeks later have diminished significantly from their earlier impacts on the United States. Guidance was issued by the Agency to assure that monitoring data was properly flagged and effects on air quality are adequately documented.3

Figure 2-39. Smoke/dust over North America for May 15, 1998.

Figure 2-40. Smoke/dust over North America for May 16, 1998.

Figure 2-41. Smoke/dust over North America for May 28, 1998.

Figure 2-42. Smoke/dust over North America for June 22, 1998.

Figure 2-43. Smoke/dust over North American for June 26, 1998.

In late June, a second significant wildfire incident occurred in Central Florida and also caused elevated air pollution levels. Figure 2-42 shows the areas of Florida affected by the smoke plumes. These plumes a week later, as shown in Figure 2-43, were over the Atlantic Ocean. The State of Florida worked closely with EPA regional offices, and the public was alerted to potential health concerns. The ambient monitoring data affected by these fires were also properly flagged and effects on air quality are adequately documented.

Ambient concentration data resulting from exceptional events, such as these, are excluded from the trends analyses and tables in this report because they are not indicative of typical air quality levels.

^{1.} Mauzerall, D.L., et al, "Photochemistry in biomass burning plumes and implications for tropospheric ozone over the tropical South Atlantic," *Journal of Geophysical Research*, Vol. 103, Number. D7, 1998.

^{2.} Andreae, M.O., et al, "Biomass-Burning Emissions and Associated Haze Layers Over Amazonia," *Journal of Geophysical Research*, Vol. 93, Number. D2, 1988.

^{3.} Memorandum on "Guidance on Assessing the Impacts of May 1998 Mexican Fires on Ozone Levels in the United States" from John S. Seitz to all Regional Office Directors, 1998.

Particulate Matter

Air Quality C	oncentra	tions (PM,
1989–98	25%	decrease
1997–98		no change

Emissions 1989–98	decrease
1997–98	no change

Nature and Sources

Particulate matter (PM) is the general term used for a mixture of solid particles and liquid droplets found in the air. These particles, which come in a wide range of sizes and shapes, originate from many different stationary and mobile sources, as well as from natural sources. They may be emitted directly by a source (direct emissions) or formed in the atmosphere by the transformation of gaseous precursor emissions such as SO₂ and NO₄ (secondary particles). Their chemical and physical compositions vary depending on location, time of year, and meteorology.

Health and Environmental Effects

Scientific studies show a link between inhalable PM (alone, or combined with other pollutants in the air) and a series of significant health effects. Inhalable PM includes both fine and coarse particles. Fine particles are those that are less than 2.5 micrometers in diameter. Those between 2.5 and 10 micrometers are known as coarse particles. Both coarse and fine particles can accumulate in the respiratory system and are associated with numerous adverse health effects. Exposure to coarse particles is primarily associated with the aggravation of respiratory conditions such as asthma. Fine particles

are most closely associated with adverse health effects including decreased lung function, increased hospital admissions and emergency room visits, increased respiratory symptoms and disease, and premature death. Sensitive groups that appear to be at greatest risk to such PM effects include the elderly, individuals with cardiopulmonary disease such as asthma, and children.

Particulate matter also can also cause adverse impacts to the environment. Fine PM is the major cause of reduced visibility in parts of the United States, including many of our national parks. Other environmental impacts occur when particles deposit onto soils, plants, water, or materials. For example, particles containing nitrogen and sulfur that deposit onto land or water bodies may change the nutrient balance and acidity of those environments so that species composition and buffering capacity change. An ecosystem condition known as "nitrogen saturation," where additions of nitrogen to soil over time exceed the capacity of the plants and microorganisms to utilize and retain the nitrogen, has already occurred in some areas of the United States.

Particles that are deposited directly onto the leaves of plants can, depending on their chemical composition, corrode leaf surfaces or interfere with plant metabolism. When deposited in sufficient quantities, such as near unpaved roads, tilled fields, or quarries, particles block sunlight from reaching the leaves, stressing or killing the plant. Finally, PM causes soiling and erosion damage to materials, including culturally important objects such as carved monuments and statues.

Primary and Secondary PM Standards

The original standards for PM, established in 1971, were for total suspended particulate matter (TSP). In 1987, EPA replaced the TSP standards with PM₁₀ standards to focus on smaller particles of aerodynamic diameter less than or equal to 10 micrometers. These smaller particles cause greater health concern than TSP because of their ability to penetrate into sensitive regions of the respiratory tract. The standards for PM₁₀ include both short- and long-term NAAQS. The short-term (24-hour) standard of 150 μ g/m³ is not to be exceeded more than once per year on average over three years. The long-term standard specifies an expected annual arithmetic mean not to exceed 50 µg/m³ averaged over three years. These are the primary, or health-based, PM₁₀ standards. The secondary, or welfare-based, standards for PM₁₀ are identical to the primary standards.

The most recent review of the PM standards concluded that still more protection from adverse health effects was needed. In July 1997, the primary (health-based) PM standards were revised to add two new PM25 standards, for protection from fine particles, and to change the form of the PM_{10} standards. The new $PM_{2.5}$ standards were set at 15 µg/m³ and 65 µg/m³, respectively, for the annual and 24-hour standards.29 The secondary (welfare-based) PM_{2.5} standards were made identical to the primary standards, and will be implemented in conjunction with a revised visibility protection program to address regional haze in mandatory federal Class I areas (certain large national parks and wilderness areas).

Figure 2-44. Trend in annual mean PM₁₀ concentrations, 1989–1998.

In May 1999, however, the U.S. Court of Appeals for the D.C. Circuit issued an opinion concerning the revised particulate matter standards. The court vacated the revised PM₁₀ standard and remanded the PM_{2.5} standards back to EPA for further consideration. Following the denial of a petition for rehearing by the D.C. Circuit, the Justice Department has filed a petition for review before the Supreme Court.

National 10-Year Trends

The first complete year of PM_{10} trends data for most monitors is 1988. Therefore, this is only the second time that the *Trends Report* has been able to present a full 10-year air quality trend for PM_{10} . Figure 2-44 shows a 25-percent decrease in the average of annual mean PM_{10} concentrations measured at 929 monitoring sites across the country between 1989 and

1998. The downward trend in PM_{10} annual means is apparent, with a leveling off of the trend occurring in the later years. The final year (1997–1998) shows no change. This same general trend can be seen if the sites are grouped as rural, suburban, and urban, as in Figure 2-45. The highest values are generally found at the urban sites, followed closely by the suburban sites. The PM_{10} composite annual mean is significantly lower at the rural sites, which are generally located away from local sources of PM_{10} .

Several factors have played a role in reducing PM_{10} concentrations. Where appropriate, states required emissions from industrial sources and construction activities to be reduced to meet the PM_{10} standards. Measures were also adopted to reduce street dust emissions, including the use of clean anti-skid materials

like washed sand, better control of the amount of material used, and removal of the material from the street as soon as the ice and snow melt. Cleaner burning fuels like natural gas and fuel oil have replaced wood and coal as fuels for residential heating, industrial furnaces, and electric utility and industrial boilers.

Emissions Trends

Nationally, PM₁₀ direct emissions decreased 19 percent between 1989 and 1998 (see Figure 2-45). Direct PM₁₀ emissions are generally examined in two separate groups. First there are the more traditionally inventoried sources, shown in Figures 2-46 and 2-47. These include fuel combustion, industrial processes, and transportation. Of these, the fuel combustion category saw the largest decrease over the 10-year period (21 percent), with most of the decline attributable to a decrease in emissions from residential wood burning. Local control programs to curtail the use of residential wood heaters during times when the air was stagnant and to replace old woodstoves with new, cleaner-burning models are responsible for the decrease in residential wood burning, along with lower natural gas and fuel oil prices. Emissions from the industrial processes category decreased 20 percent, and emissions from the transportation category decreased 15 percent.

The second group of direct PM_{10} emissions is a combination of miscellaneous and natural sources including agriculture and forestry, wildfires and managed burning, fugitive dust from paved and unpaved roads, and wind erosion. As Figure 2-48 shows, these miscellaneous and natural sources actually account for a large percentage of the total direct PM_{10}

emissions nationwide, although they can be difficult to quantify compared to the traditionally inventoried sources. The trend of emissions in the miscellaneous/natural group may be more uncertain from one year to the next or over several years because these emissions tend to fluctuate a great deal from year to year.

Table A-6 lists PM_{10} emissions estimates for the traditionally inventoried sources for 1989–1998. Miscellaneous and natural source PM_{10} emissions estimates are provided in Table A-7.

Regional Trends

Figure 2-49 is a map of regional trends for the PM₁₀ annual mean from 1989-1998. All 10 EPA regions show decreasing trends over the 10-year period, ranging from 18-38 percent declines. The largest decreases are generally seen in the western part of the United States. This is significant since the two westernmost regions, 9 and 10, started at the highest annual mean concentrations back in 1989. In the western states, programs such as those with residential wood heaters and agricultural practices have helped reduce emissions of PM₁₀. Soil moisture levels have also been higher (from more rainfall) in many western states in recent years. In the eastern United States, the Title IV Acid Rain Program has certainly contributed to the decrease in PM₁₀ emissions. The program has reduced SO₂ and NO_x emissions, both precursors of particulate matter in the atmosphere (see Chapter 7 on Atmospheric Deposition and the SO₂ section in this chapter for more information on the Acid Rain Program).

Figure 2-45. PM_{10} annual mean concentration trends by location, 1989–1998.

Figure 2-46. National PM_{10} emissions trend, 1989–1998 (traditionally inventoried sources only).

Thousand Short Tons Per Year

Figure 2-47. PM₁₀ emissions from traditionally inventoried source categories, 1998.

Figure 2-48. Total PM₁₀ emissions by source category, 1998.

1998 Air Quality Status

The map in Figure 2-50 displays the highest second maximum 24-hour PM₁₀ concentration in each county for 1998. The largest of these was recorded in Inyo County, California, caused by wind blown dust from a dry lake bed. The bar chart which accompanies the national map shows the number of people living in counties within each concentration range. The Transportation 25.4% colors on the map and bar chart correspond to the colors of the concentration ranges displayed in the map legend. In 1998, approximately 4 million people lived in 9 counties where the highest second maximum 24-hour PM₁₀ concentration was above the level of the 24-hour PM₁₀ NAAQS. When both the annual and 24-hour PM₁₀ standards are considered, there were 10 million people living in 13 counties with PM₁₀ concentrations above the NAAQS in 1998.

34.3

21.1

27.2

18.8

33.3

26.2

24.4

19.8

28.8

22.1

19%

41.8

26.8

26.8

27.2

28.8

29.1

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

29.7

2

Figure 2-49. Trend in PM₁₀ annual mean concentration by EPA Region, 1989–1998.

EPA Region 2. Concentrations are µg/m3.

Fine Particulate Matter (PM_{2.5})

Characterizing PM_{2.5} Trends

A new monitoring network designed to assess fine PM data with respect to the new PM_{2.5} standards began deployment in early 1999. The status of this network is shown in Figure 2-51. As of February 2000, approximately 94 percent of the Federal Reference Method (FRM) monitoring sites were operating and 815 of them had already reported data to EPA's Aerometric Information Retrieval System (AIRS). Once deployment is completed in December 2000, the network will consist of approximately 1,700 monitors at over 1,100 sites. These monitors include the mass monitors (the FRMs), speciation sites, continuous monitoring sites, and additional Interagency Monitoring of Protected Visual Environments (IMPROVE) sites.

Since this monitoring network started in 1999, data from another network, the IMPROVE network of predominately rural sites, were used to assess ambient PM_{2.5} concentrations in this report. Since the monitors in the IMPROVE network are non-FRM, the data cannot be used for compliance purposes (i.e., to tell whether or not an area meets the PM_{2.5} standard). They do, however, provide a good indication of PM_{2.5} concentrations and compositions over broad regions of the country.

The IMPROVE network was established in 1987 to track visibility impairment in the nation's most pristine areas, like national parks and wilderness areas. (The IMPROVE network is discussed in further detail in Chapter 6: Visibility Trends.) For this reason, the data primarily represent rural areas. There is, however, one

Figure 2-51. Status of new PM_{2.5} Monitor Deployment, based on AIRS February, 2000.

urban site (Washington, D.C.) in the network with adequate trend data. Data from this site and other sites meeting data completeness criteria described in Appendix B, are presented in this section. Figure 2-52 shows the location of these sites by region.

1998 Rural PM_{2.5} Concentrations and Composition

Rural PM_{2.5} concentrations vary regionally. Sites in the east typically have higher annual mean concentrations. Figure 2-53 shows annual mean concentrations for 1998 and reveals the natural break that forms between the eastern and western halves of the country. Some comparisons can be made between the two regions. Of the 12 eastern sites, 10 have higher annual averages of measured PM_{2.5} than any sites in the west are roughly less than half of those in the east. This difference is mainly

due to higher sulfate concentrations in the east. Sulfate concentrations in the eastern sites are 4-5 times greater than those in the western sites. Electric utilities account for 71 percent of the SO₂ emissions in the eastern United States. The trend in ambient sulfates and sulfur dioxides both appear to generally correspond to the change in annual sulfur dioxide emissions from electric utilities in the eastern United States. In the most recent year (1997-1998), sulfate concentrations increased 10 percent in the East (as shown later in Figure 2-54). (Atmospheric deposition of sulfur and nitrogen compounds is discussed in further detail in Chapter 7).

The chemical composition of PM_{2.5} also varies regionally. Sulfate and organic carbon account for most of the PM_{2.5} concentrations in the east and the west. Sites in the east on average have a higher percentage of sulfate concentrations (56 percent)

Figure 2-52. Class I Areas in the IMPROVE Network meeting the data completeness criteria in Appendix B.

Figure 2-54. PM_{2.5} Concentrations, 1989–1998 at eastern IMPROVE sites meeting trends criteria.

Concentration, ug/m3

Figure 2-55. PM_{2.5} Concentrations, 1989–1998 at western IMPROVE sites meeting trends criteria.

Concentration, ug/m3

relative to those in the west (33 percent). Table 2-5 shows the difference in percent contribution of each species for the eastern versus western regions of the United States.

Table 2-5. Percent Contribution to PM_{2.5} by Component, 1998

<u>2</u>	East	West		
Sulfate	56	33		
Elemental Carbon	5	6		
Organic Carbon	27	36		
Nitrate	5	8		
Crustal Material	7	17		
and and account to the Australian specific for a const				

10-Year Trends Rural

Because of the significant regional variations in rural PM_{2.5} concentrations, trends are aggregated by eastern and western regions as shown in Figures 2-54 and 2-55. Based on the 10 sites with trend data in the East, measured PM_{2.5} concentrations decreased 9 percent between 1992 and 1995, then increased 12 percent from 1995 to 1998. The net change between 1992 and 1998 is a 2 percent increase. Trends in the West, though, decreased 5 percent during the 1992 to 1998 period and decreased 11 percent over the longer, 10-year period from 1989 to 1998.

Measured mass represents the direct mass measurement from the filter. The individual concentrations do not equal this value because they do not account for all measured mass. For more information on the IMPROVE network, visit http://alta_vista.cira.colostate.edu/.

Urban

The Washington, D.C. site is not grouped with the other eastern sites because it has much higher concentrations. Figure 2-56 shows that

PM_{2.5} concentrations decreased 5 percent between 1989 and 1997. Data for this site was incomplete for 1998. The available, incomplete data indicate that the trend might have increased slightly 1997–1998 consistent with the eastern rural sites. The elevated levels from 1991 to 1994 are primarily due to changes in sulfate concentrations.

Seasonal Trends

Figure 2-57 shows the 1998 seasonal patterns for PM25 at eastern and western IMPROVE sites. These sites were selected to represent typical patterns across the two regions. Each square, or tile, represents one day of the year. The color of each tile corresponds to the daily PM25 concentration level. Higher levels are yellow and orange. The chronological arrangement of daily concentrations over the course of the year reveals that summer months typically experience higher PM_{2.5} concentrations. Daily concentrations at some sites are more variable throughout the year and do not necessarily follow this pattern as closely. Most western sites experience few, if any, days with concentrations above 15 µg/m³, while most eastern sites regularly exceed this value in the summertime. In fact, daily levels at the highest annual mean site in the west (Big Bend) are comparable to the second lowest annual mean site in the east (Acadia). Both sites had six days with concentrations above 15 µg/m3 in 1998.

Figure 2-56. PM_{2.5} Concentrations, 1989-1998, at the Washington, D.C. IMPROVE site.

Concentration, ug/m3

Figure 2-57. Seasonal patterns in rural PM_{2.5}, 1998.

EAST

ACADIA NATIONAL PARK (ME)

SHENANDOAH NATIONAL PARK (VA)

WEST

BIG BEND NATIONAL PARK (TX)

YOSEMITE NATIONAL PARK (CA)

Sulfur Dioxide

-			
ř	Air Quality (trations decrease
	1997–98	2%	decrease
	Emissions 1989–98	16%	decrease
	1997–98		no change

Nature and Sources

Sulfur dioxide (SO₂) belongs to the family of sulfur oxide (SO_x) gases. These gases are formed when fuel containing sulfur (mainly coal and oil) is burned, and during metal smelting and other industrial processes. The highest monitored concentrations of SO₂ have been recorded in the vicinity of large industrial facilities.

Health and Environmental Effects

High concentrations of SO₂ can result in temporary breathing impairment for asthmatic children and adults who are active outdoors. Short-term exposures of asthmatic individuals to elevated SO2 levels while at moderate exertion may result in reduced lung function that may be accompanied by symptoms such as wheezing, chest tightness, or shortness of breath. Other effects that have been associated with longer-term exposures to high concentrations of SO₂, in conjunction with high levels of PM, include respiratory illness, alterations in the lungs' defenses, and aggravation of existing cardiovascular disease. The subgroups of the population that may be affected under these conditions include individuals with cardiovascular disease or chronic lung disease, as well as children and the elderly.

Additionally, there are a variety of environmental concerns associated

Figure 2-58. Trend in annual mean SO₂ concentrations, 1989-1998.

with high concentrations of SO_2 . Because SO₂, along with NO_x, is a major precursor to acidic deposition (acid rain), it contributes to the acidification of soils, lakes and streams and the associated adverse impacts on ecosystems (see Chapter 7, Atmospheric Deposition of Sulfur and Nitrogen Compounds). Sulfur dioxide exposure to vegetation can increase foliar injury, decrease plant growth and yield, and decrease the number and variety of plant species in a given community. Sulfur dioxide also is a major precursor to PM_{2.5}, which is of significant concern to human health (as discussed in the particulate matter section of this chapter), as well as a main pollutant that impairs visibility (see Chapter 6, Visibility Trends). Finally, SO₂ can accelerate the corrosion of natural and man-made materials (e.g., concrete and limestone) which are used in buildings and monuments, as well as paper, iron-containing metals, zinc and other protective coatings.

Primary and Secondary Standards

There are both short- and long-term primary NAAQS for SO₂. The short-term (24-hour) standard of 0.14 ppm (365 μ g/m³) is not to be exceeded more than once per year. The long-term standard specifies an annual arithmetic mean not to exceed 0.030 ppm (80 μ g/m³). The secondary NAAQS (3-hour) of 0.50 ppm (1,300 μ g/m³) is not to be exceeded more than once per year.

National 10-Year Trends

The national composite average of SO₂ annual mean concentrations decreased 39 percent between 1989 and 1998 as shown in Figure 2-58, with the largest single-year reduction (16 percent) occurring between 1994 and 1995.³⁰ The trend has since leveled off, declining only 2 percent from 1997–1998. This same general trend is seen in Figure 2-59, which plots the ambient concentrations grouped by rural, suburban, and urban

Figure 2-59. Annual mean SO₂ concentration by trend location, 1989-1998.

Figure 2-60. Trend in 2nd max 24-hour average SO₂ concentrations, 1989-1998.

sites. It shows that the mean concentrations at the urban and suburban sites are consistently higher than those at the rural sites. However, the 1994-1995 reduction in the concentrations at non-rural sites does narrow the gap between the trends. The greater reduction seen in the non-rural sites reflects the fact that the proportion of non-rural sites is greater in the eastern United States, which is where most of the 1994-1995 emissions reductions at electric utilities occurred.31 The national composite second maximum 24-hour SO₂ annual mean concentrations decreased 42 percent between 1989 and 1998, as shown in Figure 2-60, with the largest single-year reduction (25 percent) occurring between 1994 and 1995. See also Chapter 7, Atmospheric Deposition of Sulfur and Nitrogen Compounds.

Emissions Trends

National SO₂ emissions decreased 16 percent between 1989 and 1998, with a sharp decline between 1994 and 1995, similar to the decline in the ambient concentrations. Unlike the air quality trend, however, the emissions trend begins to climb again from 1995-1998, as shown in Figure 2-61. This dramatic reduction and subsequent increase is driven by the yearly changes in emissions from the electric utility industry. Much of the increase was caused by units not yet affected by the acid rain program. These units will be in the program and subject to a national emissions cap beginning in 2000. The electric utility industry accounts for most of the fuel combustion category in Figure 2-62. In particular, the coal-burning power plants have consistently been the largest contributor to SO₂ emissions, as documented in Table A-8 in Appendix A. See also Chapter

7, Atmospheric Deposition of Sulfur and Nitrogen Compounds.

The Acid Rain Program

The national reductions from 1994-1995 in emissions and ambient concentrations of SO₂ are due mainly to Phase I implementation of the Acid Rain Program. Established by EPA under Title IV of the CAA, the Acid Rain Program's principal goal is to achieve significant reductions in SO₂ and NO, emissions. Phase I compliance for SO₂ began in 1995 and significantly reduced emissions from the participating utilities.³² Table 2-6 shows this reduction in terms of Table 1 units (units required to participate in Phase I) and Non-Table I and other units. The 1994-1995 decrease in total SO₂ emissions from electric utilities is due largely to the Phase I emissions reduction.

Since 1995, however, total SO₂ emissions from electric utilities have increased. Again, Table 2-6 explains this increase in terms of Table I units and Non-Table I units. Most Phase I plants over-complied in 1995, banking their emission allowances for use in Phase II, which begins in 2000. As a result, SO2 emissions have increased slightly at some Phase I sources since the initial 1995 reduction. However, Table I units account for only 18 percent of the total 1995 to 1998 increase. The majority of the increase is attributed to those units not yet participating in the Acid Rain Program. Most of these units will be included in Phase II of the Program. When fully implemented, total SO₂ emissions from electric utilities will be capped at 8.95 million tons per year. For more information on the Acid Rain Program, visit http:// www.epa.gov/airmarkets. See also

Table 2-6. Total SO_2 Emissions from Table I units and Non-Table I units, 1994–1998 (thousand short tons).

Parkets and the same of the sa						Percent Change	
	1994	1995	1996	1997	1998	1994–95	1995–98
Phase I units ³³	7,379	4,455	4,760	4,766	4,660	-40	+5
Non-Phase I units	7,510	7,625	7,871	8,324	8,557	+2	+12
All Electric Utility units	14,889	12,080	12,631	13,090	13,217	-19	+9

Figure 2-61. National total SO₂ emissions trend, 1989–1998.

Figure 2-62. SO₂ emissions by source category, 1998.

Figure 2-63. Long-term ambient SO₂ trend, 1979-1998.

Chapter 7, Atmospheric Deposition of Sulfur and Nitrogen Compounds.

National 20-Year Trends

The progress in reducing ambient SO₂ concentrations during the past 20 years is shown in Figure 2-63. While there is a slight disconnect in the trend line between 1988 and 1989 due to the mix of trend sites in each 10-year period, an overall downward trend is evident. The national 1998 composite average SO₂ annual mean concentration is 53 percent lower than 1979. In addition to the previously mentioned effects of the Acid Rain Program, these steady reductions over time were accomplished by installing flue-gas control equipment at coal-fired generating plants, reducing emissions from industrial

Figure 2-64. Trend in SO₂ annual arithmetic mean concentration by EPA Region, 1989–1998.

Alaska is in EPA Region 10; Hawaii, EPA Region 9; and Puerto Rico, EPA Region 2. Concentrations are ppm.

Figure 2-65. Plants affected by Phase I of the Acid Rain Program.

processing facilities such as smelters and sulfuric acid manufacturing plants, reducing the average sulfur content of fuels burned, and using cleaner fuels in residential and commercial burners.

Regional Trends

The map of regional trends in Figure 2-64 shows that ambient SO₂ concentrations are generally higher in the northeastern United States. The effects of Phase I of the Acid Rain Program are seen most vividly in the

northeast. In particular, concentrations fell 20–25 percent between 1994 and 1995 in EPA Regions 1, 2, 3, and 5. These broad regional trends are not surprising since most of the units affected by Phase I of the Acid Rain Program also are located in the east as shown in Figure 2-65. This figure also shows that ambient concentrations have increased slightly between 1995 and 1997 in Regions 3 and 4 where many of the electric utility units not yet affected by the Acid Rain Program are located.

1998 Air Quality Status

The most recent year of ambient data shows that all counties did meet the primary SO₂ short-term standard, according to Figure 2-66.

References

- 1. Oxygenated Gasoline Implementation Guidelines, EPA, Office of Mobile Sources, Washington, D.C., July 27, 1992.
- 2. Guidelines for Oxygenated Gasoline Credit Programs and Guidelines on Establishment of Control Periods Under Section 211(m) of the Clean Air Act as Amended, 57 FR 47853 (October 20, 1992).
- Interagency Assessment of Oxygenated Fuels, National Science and Technology Council, Executive Office of the President, Washington, D.C., June 1997.
- 4. G. Whitten, J. Cohen, and A. Kuklin, Regression Modeling of Oxyfuel Effects on Ambient CO Concentrations: Final Report, SYSAPP-96/78, prepared for the Renewable Fuels Association and Oxygenated Fuels Association by System Applications International, Inc., San Rafael, CA, January 1997.
- 5. Cook, J. R., P. Enns, and M. S. Sklar, Regression Analysis of Ambient CO Data from Oxyfuel and Nonoxyfuel Areas, Paper No. 97-RP139.02, Air and Waste Management Association 90th Annual Meeting, Toronto, Ontario, June 1997.
- 6. Achieving Clean Air and Water: The Report of the Blue Ribbon Panel on Oxygenates in Gasoline, EPA-420-R-99-021, U.S. Environmental Protection Agency, Office of Mobile Sources, Washington, D.C., September 15, 1999 Proposed Rule," Federal Register, 62 FR 60317, Washington, D.C., November 7, 1997.
- 7. "National Ambient Air Quality Standards for Nitrogen Dioxide: Final Decision," *Federal Register*, 61 FR 196, Washington, D.C., October 8, 1996.
- 8. "Review of the National Ambient Air Quality Standards for Nitrogen Oxides: Assessment of Scientific and Technical Information," EPA-452/R-95-005, U.S. Environmental Protection Agency, Research Triangle Park, NC, September 1995.
- 9. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From

- Air Pollution to Climate Change, John Wiley & Sons, Inc., New York, NY, 1998.
- 10. "1998 Compliance Report," U.S. Environmental Protection Agency, Acid Rain Program, Washington, D.C., August 1999.
- 11. "Approval and Promulgation of State Implementation Plans and Redesignation of the South Coast Air Basin in California to Attainment for Nitrogen Dioxide; Direct Final Rule," Federal Register, 63 FR 39747, Washington, D.C., July 24, 1998.
- 12. "Identification of Ozone Areas Attaining the 1-hour Standard and to Which the 1-hour Standard is No Longer Applicable; Final Rule," Federal Register, 63 FR 2804, Washington, D.C., June 5, 1998.
- 13. "Identification of Additional Ozone Areas Attaining the 1-hour Standard and to Which the 1-hour Standard is No Longer Applicable; Final Rule," Federal Register, 63 FR 39431, Washington, D.C., July 22, 1998.
- 14. "Identification of Additional Ozone Areas Attaining the 1-hour Standard and to Which the 1-hour Standard is No Longer Applicable; Final Rule," Federal Register, 64 FR 30911, Washington, D.C., June 9, 1999.
- 15. "Rescinding Findings that the 1-hour Ozone Standard No Longer Applies in Certain Areas," Federal Register, 64 FR 57424, Washington, D.C., November 5, 1999.
- 16. "National Ambient Air Quality Standards for Ozone; Final Rule," Federal Register, 62 FR 38856, Washington, D.C., July 18, 1997.
- 17. "Re-Issue of Early Planning Guidance for the Revised Ozone and Particulate Matter (PM) National Ambient Air Quality Standards (NAAQS)," memorandum from S. Shaver, U.S. Environmental Protection Agency, Research Triangle Park, NC, June 17, 1998.
- 18. "Climate Variations Bulletin: August 1997," Historical Climatology Series

- 4–7, Volume 9, Number 8, National Climatic Data Center, NOAA, Asheville, NC, September 1997.
- 18a. CASTNet is considered the nation's primary source for atmospheric data to estimate dry acidic deposition and to provide data on rural ozone levels. Established in 1987, CASTNet now comprises 79 monitoring stations across the United States. The longest data records are primarily at eastern sites. The majority of the monitoring stations are operated by EPA's Office of Air and Radiation; however, 27 stations are operated by the National Park Service (NPS) in cooperation with EPA. A more detailed treatment of CAST-Net's atmospheric deposition role and data are provided in Chapter 7: Atmospheric Deposition of Sulfur and Nitrogen Compounds.
- 19. This analysis utilizes a non-parametric procedure to assess statistical significance. A description of this non-parametric regression procedure is provided in Chapter 3: Criteria Pollutants—Metropolitan Area Trends.
- 20. W. M. Cox and S. H. Chu, "Meteorologically Adjusted Ozone Trends in Urban Areas: A Probabilistic Approach," *Atmospheric Environment*, Vol. 27B, No. 4, Pergamon Press, Great Britain, 1993.
- 21. "Ambient Air Quality Surveillance: Final Rule," Federal Register, 58 FR 8452, Washington, D.C., February 12, 1993.
- 22. "Selected PAMS sites" refers to the inclusion of only those sites with measurements of NO_x or VOC in both years were used *Median changes* (in summer site 6–9 a.m. means) are highlighted for NO_x and VOC since that indicator minimizes the greater variability seen in concentrations of those parameters in this smaller data set.
- 23. Although among the top 25 VOC species (by volume) of the PAMS program formaldehyde and acetaldehyde (both carbonyl compounds) were not included in this analysis due to lack of definitive analytic results. Further,

- EPA has evaluating carbonyl sampling over the past several years and improved measurement protocols will be issued soon.
- 24. "Volatility Regulations for Gasoline and Alcohol Blends Sold in Calendar Years 1989 and Beyond," Federal Register, 54 FR 11868, Washington, D.C., March 22, 1989.
- 25. "Reformulated Gasoline: A Major Step Toward Cleaner Air," EPA-420-B-94-004, U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, D.C., September 1994.
- 26. The Clean Air Act requires that RFG contain 2 percent oxygen by weight. "Requirements for Reformulated Gasoline," *Federal Register*, 59 FR 7716, Washington, D.C., February 16, 1994.

- 27. The Panel's Executive Summary and final report entitled "Achieving Clean Air and Clean Water: The Report of the Blue Ribbon Panel on Oxygenates in Gasoline" can be found on the Panel's homepage at: http://www.epa.gov/oms/consumer/fuels/oxypanel/blueribb.htm
- 28. National Air Pollutant Emission Trends, 1900–1996, EPA-454/R-97-011, U.S. Environmental Protection Agency, Research Triangle Park, NC, 1997.
- 29. National Ambient Air Quality Standards for Particulate Matter: Final Rule, July 18, 1997. (62 FR 38652), http://www.epa.gov/ttn/oarpg/rules.html.
- 30. The annual mean is used to show trends in national SO_2 air quality because it is a more stable statistic than the 24-hour statistic.

- 31. National Air Pollutant Emissions Trends Report, EPA-454/R-97-011, US EPA, Research Triangle Park, NC 27711, December 1997.
- 32. 1997 Compliance Report: Acid Rain Program, EPA-430-R-98-012, U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, D.C., August 1998.
- 33. These data were obtained from the 1998 Emission Scorecard found at http://www.epa.gov/acidrain/score98/es1998.htm.

Criteria Pollutants — Metropolitan Area Trends

http://www.epa.gov/oar/aqtrnd98/chapter3.pdf

This chapter presents status and trends in criteria pollutants for Metropolitan Statistical Areas (MSAs) in the United States. The MSA trends and status give a local picture of air pollution and can reveal regional patterns of trends. Such information can allow one to gauge the air pollution situation where they live, although not all areas in the country are in MSAs, and not all MSAs are included here. A complete list of MSAs and their boundaries can be found in the Statistical Abstract of the United States.1 The status and trends of metropolitan areas are based on four tables found in Appendix A (A-13 through A-16). Table A-13 gives the 1998 peak statistics for all MSAs, providing the status of the most recent year. Ten-year trends are shown for the 258 MSAs having data that meet the trends requirements explained in Appendix B. Table A-14 lists these MSAs and reports criteria pollutant trends as "upward" or "downward," or "not significant." These categories are based on a statistical test, known as the Theil test, which is described later in this chapter.

Another way to assess trends in MSAs is to examine Air Quality Index (AQI) values.^{2,3} The AQI is used to present daily information on one or more criteria pollutants to the public, in an easily understood format and in a timely manner. Tables

A-15 and A-16 list the number of days with AQI values greater than 100 (unhealthy for sensitive groups) for the nation's 94 largest metropolitan areas (population greater than 500,000). Table A-15 lists AQI values based on all pollutants, while Table A-16 lists AQI values based on ozone alone. The tables listing Pollutant Standard Index (PSI) data from previous reports may not agree with the tables in this report because the new AQI is completely different. These changes are presented in more detail later in this chapter.

For several reasons, these tables are incomplete with respect to MSAs and data. For example, not every MSA appears in the tables and data for all pollutants does not appear for each MSA. This is because the MSA population is so small, or the air quality is so good, that AQI reporting is not required. Some data entries in Table A-13 are listed as "ND," or no data. Not all criteria pollutants are measured in all MSAs. Ambient monitoring for a particular pollutant may not be conducted if there is no problem. This is why data for some MSAs are designated as "ND" (no data) for those pollutants. In addition, there are MSAs with too little monitoring data for trends analysis purposes (see Appendix B). Finally, there are MSAs that do not meet the

population threshold required for inclusion in Tables A-15 and A-16.

Status: 1998

The air quality status for MSAs can be found in Table A-13 (for related information, see Table A-12, peak concentrations for all counties with monitors that reported to the Aerometric Information Retrieval System (AIRS) database). Table A-13 lists peak statistics for all criteria pollutants measured in an MSA. Peak statistics for MSAs are found in Table A-13, which shows that 173 areas had peak concentrations exceeding standard levels for at least one criteria pollutant. The number of these areas increased 34 percent over the count from 1997 data (129 areas). The increase can be attributed to the many areas that have peak 8-hour ozone concentrations just above the level of the 8-hour ozone standard in 1998. These 173 areas represent 64 percent of the U.S. population. Similarly, there were 14 areas representing 14 percent of the population that had peak statistics that exceeded two or more standards. Only one area, (Las Vegas, NV-AZ) representing less than 1 percent of the U.S. population, had peak statistics from three pollutants that exceeded the respective standards. The high value for PM₁₀ is due to area sources (dust) for this MSA.

There were no areas, however, that violated four or more standards.

Trends Analysis

Table A-14 displays air quality trends for MSAs. The data in this table are average statistics of pollutant concentrations from the subset of ambient monitoring sites that meet the trends criteria explained in Appendix B. A total of 258 MSAs have at least one monitoring site that meet these criteria. As stated previously, not all pollutants are measured in every MSA.

From 1989–1998, statistics related to the NAAQS were calculated for each site and pollutant with available data. Spatial averages were obtained for each of the 258 MSAs by averaging these statistics across all sites in an MSA. This process resulted in one value per MSA per year for each pollutant. Although there are seasonal aspects of certain pollutants and, therefore, seasonality in monitoring intensity for different MSAs, the averages for every MSA and year provide consistent values with which to assess trends.

Since air pollution levels are affected by variations in meteorology, emissions, and day-to-day activities of populations in MSAs, trends in air pollution levels are not always well defined. To assess upward or downward trends, a linear regression was applied to these data. An advantage of using the regression analysis is the ability to test whether or not the upward or downward trend is real (significant) or just a chance product of year-to-year variation (not significant). Since the underlying pollutant distributions do not meet the usual assumptions required for common least squares regression, the regression analysis was based upon a non-

Table 3-1. Summary of MSA Trend Analyses, by Pollutant

Total Control of the	Trend Statistic	Total # MSAs	# MSAs Up	# MSAs Down	# MSAs with No Significant Change
СО	Second Max 8-hour	139	0	104	35
Lead	Max Quarterly Mean	90	1	61	28
NO ₂	Arithmetic Mean	97	4	44	49
Ozone	Fourth Max 8-hour	198	13	25	160
Ozone	Second Daily Max 1-hour	198	11	23	164
PM ₁₀	Weighted Annual Mean	211	1	152	58
PM ₁₀	90th Percentile	211	0	132	79
SO ₂	Arithmetic Mean	148	0	103	45
SO ₂	Second Max 24-hour	148	0	91	57

parametric method commonly referred to as the Theil test.^{5,6,7} Because linear regression estimates the trend from changes during the entire 10-year period, it is possible to detect an upward or downward trend even when the concentration level of the first year equals the concentration level of the last year. Also, this method uses a median estimator which is not influenced by a single extreme value.

Table 3-1 summarizes the trend analysis performed on the 258 MSAs by pollutant. It shows that there were no upward trends in carbon monoxide (CO) and sulfur dioxide (SO₂ maximum daily mean) at any of the MSAs over the past decade. Summarized by area, of the 258 MSAs, 221 had downward trends in at least one of the criteria pollutants, and only 21 had upward trends. A closer look at these 21 MSAs reveals that most are well below the standard levels for the respective pollutant, meaning that their upward trends are not immediately in danger of exceeding the standard levels. The areas with a significant upward trend that

were near or exceeding a standard level all involved 8-hour ozone. Overall, these results demonstrate significant improvements in urban air quality over the past decade.

Geographical summaries of the trends analysis show variations from one region to another. Trends for CO show that while most of the nation is experiencing a downward trend, there are isolated areas where the trend is nonsignificant (Southern Pennsylvania, Washington, Oregon, Nebraska, Iowa, and Texas). Trends for lead (Pb) are down for almost all of the country (one upward trend in the Seattle area). Trends for NO₂ are either down or nonsignificant with a small pocket of upward trends in Texas. Based on the 1-hour ozone standard, most MSAs have a nonsignificant trend, with downward trends showing up in the West (California, Nevada, and Colorado) and upward trends showing up in the East. Trends based on the 8-hour ozone standard show more areas with 1998 data above the level of the revised standard. Trends for the annual form of the PM₁₀ standards show the PM₁₀

Table 3-2. AQI Categories, Colors, and Ranges

Category	AQI	O ₃ (ppm) 8-hour	O ₃ (ppm) 1-hour	PM _{2.5} (μg/m³)	PM ₁₀ (μg/m³)	CO (ppm)	SO ₂ (ppm)	NO ₂ (ppm)
Good	0 – 50	0.000 - 0.064	(2)	0.0 - 15.4	0 – 54	0.0 – 4.4	0.000 0.034	(3)
Moderate	51 – 100	0.065 - 0.084	(2)	15.5 – 40.4	55 – 154	4.5 – 9.4	0.035 - 0.144	(3)
Unhealthy for Sensitive Groups	.101 -₹150	0,085 - 0.104	±0.125 = 0.164	40.5 - 65.4		9.5 = 12.4	* 0.145 – 0.224 -	(3)
Unhealthy	151 – 200	0.105 - 0.124	0.165 - 0.204	65.5 – 150.4	255 – 354	12.5 – 15.4	0.225 - 0.304	(3)
Very unhealthy	201 – 300	0.125 - 0.374	0.205 - 0.404	150.5 – 250.4	355 – 424	15.5 – 30.4	0.305 - 0.604	0.65 - 1.24
Hazardous	301 - 400 401 - 500	(¹) (¹)	0.405 — 0.504 0.505 — 0.604	250.5 - 350.4 350.5 - 500.4	425 - 504 505 - 604	30.5 - 40.4 40.5 - 50.4	0.605 - 0.804 0.805 - 1.004	1.25 - 1.64 1.65 - 2.04

- 1. No health effects information for these levels—use 1-hour concentrations.
- 2. One hour concentrations provided for areas where AQI based on one hour values might be more cautionary.
- 3. NO2 has no short term standard but does have a short term "alert" level.

weighted annual mean has mostly downward trends with the exception of one area in Pennsylvania. Trends based on the daily SO₂ form of the standard are mostly down for the nation. The majority of MSAs with downward trends are in the northern half of the nation, while the majority of the MSAs with non significant trends are in the southern half of the nation.

The Air Quality Index

The Air Quality Index (AQI) provides information on pollutant concentrations for ground-level ozone, particulate matter, carbon monoxide, sulfur dioxide, and nitrogen dioxide. The AQI is "normalized" across pollutants so that an AQI value of 100 represents the level of health protection associated with the national health-based standard for each pollutant and an AQI value of 500 represents the level at which the pollutant causes significant harm . This Index has been adopted internationally and is used around the world to provide the public with information on air pollutants.

EPA has revised its Air Quality Index to enhance the public's understanding of air pollution across the nation. Previously known as the Pollutant Standards Index (PSI), this uniform air quality index is used by state and local agencies for reporting on daily air quality to the public. The revised Index can also serve as a basis for programs that encourage the public to take action to reduce air pollution on days when levels are projected to be of concern to local communities. A new national Internet website, AIRNOW (www.epa.gov/ airnow), which includes "real time" air quality data and forecasts of summertime smog levels in many states, uses the AQI categories, colors, and descriptors to communicate information about air quality.

AQI values are derived from pollutant concentrations. They are reported daily in all MSAs of the United States with populations exceeding 350,000. The AQI is reported as a value between zero and 500 and a descriptive name (e.g., "unhealthy for sensitive groups") and is featured on local television or radio news programs and in newspapers.

Based on the short-term NAAQS, Federal Episode Criteria,8 and Significant Harm Levels for each pollutant,9 the AQI is computed for PM₁₀, SO_2 , CO, O_3 , and NO_2 . Lead is the only criteria pollutant not included in the index because it does not have a short-term NAAQS, a Federal Episode Criteria, or a Significant Harm Level. Since the AQI is a tool used to communicate pollution concerns to a wide audience, there are also colors linked to the general descriptors of air quality. The six AQI color categories, their respective health effects descriptors, index ranges, and corresponding concentration ranges are listed in Table 3-2. EPA has also developed an AQI logo (Figure 3-1) to increase the visibility of the AQI in reports and also alert the public that the AQI is based on the uniform index throughout the country.

The AQI integrates information on criteria pollutant concentrations across an entire monitoring network into a single number that represents the worst daily air quality experienced in an urban area. For each of the criteria pollutants, concentrations are converted into an index value between zero and 500. The pollutant

Figure 3-1. Air Quality Index logo.

with the highest index value is reported as the AQI for that day. Therefore, the AQI does not take into account the possible adverse effects associated with combinations of pollutants (i.e., synergism).^{2,3}

An AQI value greater than 100 indicates that at least one criteria pollutant (NO2 has no short-term standard) exceeded the level of the standard, therefore, designating air quality to be in the "unhealthy for sensitive groups" range on that day. Relatively high AQI values activate public health warnings. For example, an AQI above 200 initiates a First Stage Alert at which time sensitive populations (e.g., the elderly and persons with respiratory illnesses) are advised to remain indoors and reduce physical activity. An AQI over 300 initiates a Second Stage Alert at which time the general public is advised to avoid outdoor activity.

EPA has changed the name of the Pollutant Standards Index to the Air Quality Index. The revised index adds an additional air quality category just above the level of the standard. Previously, values from 101–200 were characterized "unhealthful." The revised index establishes a category from 101–150 characterized as "unhealthy for sensitive groups," and a category of 151–200 as "unhealthy."

Figure 3-2. Number of days with AQI values > 100, as a percentage of 1989 value.

When air quality is "unhealthy for sensitive groups," EPA has added a corresponding requirement to report a pollutant-specific statement indicating what specific groups in the population are most at risk. For example, when the AQI is above 100 for ozone the AQI report will contain the statement "Children and people with asthma are the groups most at risk."

To the extent that state and local agencies use colors to communicate AQI values, specific colors are required. For instance, any agency that chooses to use colors to communicate such values must represent the Index values of 151–200 as "red." Examples of the use of color in Index reporting include the color bars that appear in many newspapers, and the color contours of the ozone map found on the AIRNOW website.

The revised Index includes a new sub-index for 8-hour average ozone concentrations and 24-hour concentrations of fine particulate matter. These changes to the Index are based on health effects information from the review of the ozone and particulate matter standards, as well as information and feedback provided by state and local agencies and the public.

The AQI includes changes to the sub-indices for 1-hour average ozone concentrations, particulate matter (PM_{10}), carbon monoxide and sulfur dioxide to reflect the addition of the new air quality category of "unhealthy for sensitive groups."

Summary of AQI Analyses

Since an AQI value greater than 100 indicates that the level for at least one criteria pollutant has reached levels where people in sensitive groups are likely to suffer health effects, the number of days with AQI values greater than 100 provides an indicator of air quality in urban areas. Figure 3-2 shows the trend in the number of days with AQI values greater than 100 summed across the nation's 94

largest metropolitan areas as a percentage of the 1989 value. Because of their magnitude, AQI totals for Los Angeles, Riverside, Bakersfield, and San Diego are shown separately as Southern California. Plotting these values as a percentage of 1989 values allows two trends of different magnitudes to be compared on the same graph. The long-term air quality improvement in southern California urban areas is evident in this figure. Between 1989 and 1998, the total number of days with AQI values greater than 100 decreased 57 percent in southern California but actually rose 10 percent in the remaining major cities across the United States. While five criteria pollutants can contribute to the AQI, the index is driven mostly by ozone. [Note: NO2 is rarely the highest pollutant measured because it is not calculated for AQI values below 201; and NO2 values in this range have not been recorded in the United States for at least five years.]

AQI estimates depend on the number of pollutants monitored as well as the number of monitoring sites where data are collected. The more pollutants measured and sites that are available in an area, the better the estimate of the AQI for a given day. Ozone accounts for the majority of days with AQI values above 100, but is collected at only a small number of sites in each area. Table A-16 shows the number of days with AQI values greater than 100 that are attributed to ozone alone. Comparing Tables A-15 and A-16, the number of days with an AQI above 100 are increasingly due to ozone. In fact, the percentage of days with an AQI above 100 due to ozone have increased from 92 percent in 1989, to 97 percent in 1998. This increase reveals that ozone increasingly accounts for

those days above the 100 level and reflects the success in achieving lower CO and PM_{10} concentrations. However, the typical one-in-six day sampling schedule for most PM_{10} sites limits the number of days that PM_{10} can factor into the AQI determination.

References

- 1. Statistical Abstracts of the United States, 1998, U.S. Department of Commerce, U.S. Bureau of the Census.
- 2. Measuring Air Quality, The Pollutant Standards Index, EPA-451/K-94-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, February 1994.
- 3. Code of Federal Regulations, 40 CFR Part 58, Appendix G.
- 4. Note: Although the results are summarized in the report for comparison purposes, the intent of publishing Tables A-14 through A-16 is to present information on a localized basis, to be used on a localized basis (i.e., one MSA at a time). Therefore, no attempt was made to adjust the Type I error to a table-wide basis. All the tests for trends were conducted at the 5-percent significance level. No inference has been made from the tables as a whole.
- 5. T. Fitz-Simons and D. Mintz, "Assessing Environmental Trends with Nonparametric Regression in the SAS Data Step," American Statistical Association 1995 Winter Conference, Raleigh, NC, January, 1995.
- 6. Freas, W.P. and E.A. Sieurin, "A Nonparametric Calibration Procedure for Multi-Source Urban Air Pollution Dispersion Models," presented at the Fifth Conference on Probability and Statistics in Atmospheric Sciences,

- American Meteorological Society, Las Vegas, NV, November 1977.
- 7. M. Hollander and D.A. Wolfe, Nonparametric Statistical Methods, John Wiley and Sons, Inc., New York, NY, 1973.
- 8. Code of Federal Regulations, 40 CFR Part 51, Appendix L.
- 9. Code of Federal Regulations, 40 CFR Part 51, section 51.151.

Criteria Pollutants — Nonattainment Areas

http://www.epa.gov/oar/aqtrnd98/chapter4.pdf

This chapter provides general information on geographical regions known as nonattainment areas. When an area does not meet the air quality standard for one of the criteria pollutants the area may be subject to the formal rule-making process which designates the area as non-

attainment. The 1990 Clean Air Act Amendments (CAAA) further classify ozone, carbon monoxide, and some particulate matter nonattainment areas based on the magnitude of an area's problem. Nonattainment classifications may be used to specify what air pollution reduction mea-

sures an area must adopt and when the area must reach attainment. The technical details underlying these classifications are discussed in the *Code of Federal Regulations*, Part 81 (40 CFR 81), see http://www.epa.gov/ epacfr40.

Figure 4-1. Location of nonattainment areas for criteria pollutants, September 1999.

^{**} PM_{10} nonattainment areas on map are based on the pre-existing PM_{10} standards. Nonattainment designations based on the revised PM_{10} standards have not been made.

Figure 4-2. Classified ozone nonattainment areas where 1-hour standard still applies.

Note: San Francisco is classified Other / Sec 185A & incomplete data areas not included.

Figure 4-1 shows the location of the nonattainment areas for each criteria pollutant as of September 1999. Figure 4-2 identifies the classified ozone nonattainment areas by degree of severity. A summary of nonattainment areas can be found in Table A-17 in Appendix A. This condensed list is located on the Internet at http://www.epa.gov/airs/ nonattn.html and is updated as areas are redesignated. An area is on the condensed list if the area is designated nonattainment for one or more of the criteria pollutants. Note that Section 185a areas (formerly known as "transitional areas") and incomplete areas are excluded from the counts in Table A-17. Another source of information for areas designated as nonattainment, including Section

185a and incomplete areas, is the Green Book. The current Green Book is located at http://www.epa.gov/oar/oaqps/greenbk.

As of September 1999, there were a total of 121 nonattainment areas on the condensed nonattainment list. The areas on the condensed list are displayed alphabetically by state. There were, as of September 1999, approximately 105 million people living in areas designated as nonattainment for at least one of the criteria pollutants. Areas redesignated between September 1998 and September 1999 are listed in Table 4-1, by pollutant. All redesignations were to attainment except for the Fort Hall Indian Reservation Area which was designated to nonattainment for PM_{10} . Subsequent to the 1997 O_3

National Ambient Air Quality Standards (NAAQS) revision, EPA revoked the 1-hour O₃ NAAQS in U.S. counties with three years of clean air quality.^{1,2} Nonattainment areas that had the 1-hour O₃ standard or the PM₁₀ standard revoked between September 1998 and September 1999 are listed in Table 4-2. Because of pending legal challenges, the EPA is not able to enforce the 8-hour standard resulting in many areas without applicable air quality standards. At the time of report publication, the Agency has proposed to reinstate the 1-hour standard.³ The present status of nonattainment areas compared to the status after nonattainment designations resulting from the CAAA is shown in Table 4-3.

Table 4-1. Areas Redesignated Between September 1998 and September 1999

SO ₂	Muhlenberg Co., Ky; Lake Co., OH and Jefferson Co., OH	
PM ₁₀	Fort Hall Indian Reservation, ID	•
CO	Connecticut portion of New York-N. New Jersey-Long Island, NY-NJ-CT	
Pb	Muscogee Co., Ga and Williamson Co. (Nashville), TN	
O ₃	The number of ${\rm O}_3$ areas remained the same between September 1998 and September 1999.	1

Table 4-2. Revocations of Nonattainment Areas Only Between September 1998 and September 1999

O ₃ Boston-Lawerence-Worcester, MA-NH Muskegon, MI Providence, RI	Portsmouth-Dover-Rochester, NH Portland, ME Door Co., WI
PM ₁₀ Boise, ID	

Table 4-3. Nonattainment Status

Pollutant	Original # areas	1999 # areas	1999 Population (in 1000s)	
СО	43	20	33,230	
Pb	12	8	1,116	
NO ₂	1	0	0	
O ₃	101	32	92,505	
PM ₁₀	85	77	29,880	
SO ₂	51	31	4,371	

References

- 1. "Identification of Ozone Areas Attaining the 1-Hour Standard and to Which the 1-Hour Standard Is No Longer Applicable; Final Rule," Federal Register, 63 FR 2804, Washington, D.C., June 5, 1998.
- 2. "Identification of Additional Ozone Areas Attaining the 1-Hour Standard and to Which the 1-Hour Standard Is No Longer Applicable; Final Rule," Federal Register, 63 FR 39431, Washington, D.C., July 22, 1998.
- 3. "Rescinding Findings that the 1-hour Ozone Standard No Longer Applies in Certain Areas," Federal Register, 64 FR 57424, Washington, D.C., November 5, 1999.

Air Toxics

http://www.epa.gov/oar/aqtrnd98/chapter5.pdf

Background

Hazardous air pollutants (HAPs), commonly referred to as air toxics or toxic air pollutants are pollutants known to cause or suspected of causing cancer or other serious human health effects or ecosystem damage. Section 112 of the CAA now lists 188 pollutants or chemical groups as HAPs and targets sources emitting them for regulation.1 Examples of air toxics include heavy metals like mercury and chromium and organic chemicals like benzene, 1,3-butadiene, perchloroethylene ("perc"), dioxins, and polycyclic organic matter (POM).

Hazardous air pollutants (HAPs) are emitted from literally thousands of sources including large stationary industrial facilities or major point sources (such as electric power plants or utilities), smaller area sources (such as neighborhood dry cleaners), and mobile sources (such as automobiles). Adverse effects to human health and the environment due to HAPs can result from exposure to air toxics from individual facilities, exposure to mixtures of pollutants found in urban settings, or exposure to pollutants emitted from distant sources that are transported through the atmosphere over regional, national or even global airsheds. Exposures of concern to HAPs can be

either short-term or long-term in nature. In addition to breathing air contaminated with air toxics, exposure to some HAPs can occur by other means, such as through the ingestion of contaminated food from waters polluted from the deposition of HAPs. Some HAPs can bioaccumulate in body tissues. When a predator feeds on contaminated prey, concentrations of these bioaccumulative HAPs can build up in the predator's tissues, magnifying the toxic burden. As of December 1998, over 2,506 U.S. water bodies are under fish consumption advisories (for particular species of fish), representing approximately 15.8 percent of the nation's total lake acreage and 6.8 percent of the nation's river miles.2

Health and Environmental Effects

Most of the information on potential health effects of HAPs is derived from experimental animal data and studies of exposed workers. The different health effects which may be caused by HAPs include cancer, neurological, cardiovascular, and respiratory effects, effects on the liver, kidney, immune system, and reproductive system, and effects on fetal and child development. The timing of effect and the severity (e.g., minor or reversible vs. serious, irreversible, and life-threatening) may vary

among HAPs and with the exposure circumstances. In some rare cases, effects can be seen immediately. Rare cases involve the catastrophic release of lethal pollutants, such as the 1984 incident in Bhopal, India, where more than 2,000 people were killed by the release of methyl isocyanate into the atmosphere. In other cases, the resulting effects (e.g., liver damage or cancer) are associated with long-term exposures and may not appear until years after exposure. More than half of the 188 HAPs have been classified by EPA as "known," "probable," or "possible" human carcinogens. Known human carcinogens are those that have been demonstrated to cause cancer in humans. Examples include benzene, which has caused leukemia in workers exposed over several years to certain amounts of it in their workplace air, and arsenic, which has been associated with elevated lung cancer rates in workers at metal smelters. Probable and possible human carcinogens include chemicals that are less certain to cause cancer in people, yet for which laboratory animal testing or limited human data indicates carcinogenic effects.

Some HAPs pose particular hazards to people of a certain age or stage in life (e.g., young children, adolescents, adults, or elderly people). Available data suggest that

about a third of HAPs, may be developmental or reproductive toxicants in humans. This means that exposure during the development of a fetus or young child may prevent normal development into a healthy adult. Other such critical exposures may affect the ability to conceive or give birth to a healthy child. Ethylene oxide, for example, has been associated with increased miscarriages in exposed workers and has affected reproductive ability in both male and female laboratory animals.

Toxic air pollutants can have a variety of environmental impacts in addition to the threats they pose to human health. Animals, like humans, may experience health problems if they breathe sufficient concentrations of HAPs over time, or ingest HAPs through contaminated food (e.g., fish). Apart from the laboratory testing results on animal species that make up a large portion of the human health effects database, and aquatic toxicity criteria for some HAPs, little quantitative information currently exists to describe the nature and scope of the effects of air toxics on non-human species.

One of the more documented ecological concerns associated with toxic air pollutants is the potential for some HAPs to damage aquatic ecosystems. For example, a number of studies suggest that deposited air toxics contribute to deleterious effects such as reproductive failures, developmental disorders, disease, and premature death in fish and wildlife species native to the Great Lakes. Deposited air pollutants can be significant contributors to overall pollutant loadings entering water bodies (especially for persistent chemicals such as mercury which continue to move among air, water, and sediments). For the Great Lakes, international programs have examined the importance of deposition of air toxics, relative to other loadings such as direct discharge. While data are presently insufficient for many quantitative estimates comparing air deposition and other loading pathways, deposition of air toxics to the Great Lakes is considered significant and continues to be investigated with a binational monitoring network, the Integrated Atmospheric Deposition Network (IADN).³

Persistent air toxics are of particular concern in aquatic ecosystems, as toxics levels can magnify in the food web, resulting in exposures greater than those expected based solely on the levels in water or air. Such "bioaccumulation" and "biomagnification" (where the levels of a toxic substance increase at higher trophic levels of the food web) are seen in New England populations of breeding loons, birds that feed on fish in waters contaminated by airborne mercury: Studies are showing that an estimated 12–31 percent of the breeding loons have mercury levels that put them at risk of behavioral, reproductive and other effects.4

National Air Toxics Control Program (The Regulatory Response)

In 1990, Congress amended the CAA by adding a new approach to the regulation of HAPs. This new approach is divided into two phases. The first requires the development of technology-based emissions standards for stationary sources of the 188 HAPs. The second phase is to evaluate remaining problems or risks and develop additional regulations to address sources of those problems, as needed.

Phase One is composed of the technology-based standards, known as MACT (Maximum Achievable Control Technology) and GACT (Generally Achievable Control Technology) regulations, under Sections 112(d). All large, or major, sources of the 188 HAPs must be addressed by MACT or GACT regulations, as well as the smaller, area sources found to carry significant risk or identified as important under the Specific Pollutants Strategy [Section 112(c)(6)] or the urban program [Sections 112(c)(3) and 112(k)]. Some combustion sources, such as municipal waste combustors and medical waste incinerators, are regulated under equivalent requirements in Section 129. The purpose of this technology-based approach is to use available control technologies or changes in work practices to get emission reductions for as many of the listed HAPs as possible. It is intended that effective MACT standards will reduce a majority of the HAP emissions and, therefore, reduce potential risks from regulated sources.

Air toxics emission reductions also result from the particulate matter, ozone and carbon monoxide control programs which are directed at both stationary and mobile sources (see emission reductions described in Chapter 2). While the toxic reductions from EPA's mobile source emission standards have been large, prior to 1990, EPA had no specific directions from Congress for a planned program to control toxic emissions from mobile sources. However in 1990, Congress amended the CAA by adding a formal requirement to consider motor vehicle air toxics controls under Section 202(1). Section 202(1), required the Agency to complete a study of motor vehicle-related air

Table 5-1. List of 33 Urban Air Toxics Strategy HAPs

	VOCs	Metals (Inorganic Compounds)	Aldehydes (Carbonyl Compounds)	SVOCs & Other HAPs
	acrylonitrile	arsenic compounds	acetaldehyde	2,3,7,8-tetrachlorodi benzo-p-dioxin (& congeners & TCDF congeners)
	benzene	beryllium and compounds	formaldehyde	coke oven emissions
	1,3-butadiene	cadmium compounds	acrolein	hexachlorobenzene
	carbon tetrachloride	chromium compounds		hydrazine
	chloroform	lead compounds		polycyclic organic matter (POM)
	1,2 -dibromoethane (ethylene dibromide)	manganese compounds		polychlorinated biphenyls (PCBs)
,	1,3-dichloropropene	mercury compounds		quinoline
	1,2-dichloropropane (propylene dichloride)	nickel compounds		
,	ethylene dichloride, EDC (1,2-dichlorethane)			
	ethylene oxide			
	methylene chloride (dichloromethane)		•	
,	1,1,2,2,-tetrachloroethane	•		
	tetrachloroethylene (perchloroethylene, PCE)			

toxics, and to promulgate requirements for the control of air toxics from motor vehicles. EPA completed the required study in 1993, and is presently conducting analyses to update emissions and exposure analyses done for the study as well as working on rulemaking to address the requirements of the section.

trichloroethylene, TCE

vinyl chloride

After application of the technology-based standards comes Phase Two, which consists of strategies and programs for evaluating remaining risks and ensuring that the overall program has achieved a sufficient reduction in risks to public health

and the environment. This phase will be implemented through such programs as the integrated urban air toxics strategy, and the residual risk program (Section 112(f)). The integrated urban air toxics strategy identifies 33 HAPs which are judged to pose the greatest threat to public health in urban areas.⁵ The strategy requires that EPA ensure a 75-percent reduction in cancer incidence from stationary sources; a "substantial" reduction in non-cancer risks from area sources; and to also ensure that disproportionate risks are addressed first by focusing efforts on sensitive

populations or geographic hot spots. In addition, the strategy must assure that area sources accounting for 90 percent of the total emissions of the urban HAPs are subject to MACT or GACT regulations. The list of the 33 urban HAPs are presented in Table 5-1 and are grouped according to their chemical properties [volatile organic compounds (VOCs), metals, aldehydes, and semi-volatile organic compounds (SVOCs)]. This list includes not only those with emissions from area sources, but also includes those posing public health concerns in urban areas regardless of emission source type.

Phase Two also will use information generated through the special studies required in the CAA—the Great Waters program [Section 112(m)], and the Mercury and Utility Studies [Section 112(n)]. The Great Waters program contains an ongoing examination of atmospheric deposition of air toxics to aquatic ecosystems, and the effects of those toxics when concentrated through the food web. The Mercury Study examined the adverse effects of, and possible controls for, mercury from all sources. The Utility Study examined health hazards of, and possible controls for, the numerous toxics from electric utilities.

The CAA recognizes that not all problems are national problems or have a single solution. Authority for national emission standards are complemented by authorities to examine problems on other scales in order to address specific concerns. The CAA also provides mechanisms for increasing partnerships among EPA, states and local programs to address problems specific to these regional and local environments. As we move toward the 21st century, EPA's National Air Toxics Program is

beginning to progress from the more technologically-based approach for regulating toxics to a more risk-based approach. This shift will require more and better information about all emission sources of HAPs, ambient levels of HAPs, and human and ecosystem exposure to HAPs. The development of an "information infrastructure" to inform the risk-based decisions has been a priority for the EPA over the last few years.

National Air Toxics Assessment Activities

The success of the National Air Toxics Program critically depends on our ability to quantify the impacts of air toxics emissions on public health and the environment. To that end, EPA has initiated numerous National Air Toxics Assessment (NATA) activities to help identify areas of concern, characterize risks and track progress. These activities include expanded air toxics monitoring, improving and periodically updating emissions inventories, national- and local-scale air quality and exposure modeling, and continued research on effects and assessment tools. NATA activities will lead to improved characterizations of air toxics risk and reductions in risk resulting from ongoing and future implementation of air toxics emissions control standards and initiatives. A major assessment is currently underway at EPA which will address the 188 HAPs. It includes state-by-state updates to emission inventories for the year 1996, known as the National Toxics Inventory (NTI), and nationwide estimation of air quality using the ASPEN (Assessment System for Population Exposure Nationwide) air quality dispersion model. Together with the

Hazardous Air Pollutant Exposure Model (HAPEM4), the NATA national-scale screening assessment will also be used to estimate 1996 population exposures across the nation, and characterize potential public health risks due to inhalation of air toxics, including both cancer and noncancer effects. Although the NTI includes all 188 pollutants, the initial modeling activities focus on the "urban HAP list" (Table 5-1).

Ambient Monitoring

Ambient air toxics monitoring is another important component of NATA. Ambient measurements are useful to: characterize ambient concentrations and deposition in representative monitoring areas, provide data to support and evaluate dispersion and deposition models, and establish trends and evaluate the effectiveness of HAP reduction strategies. There are approximately 300 monitoring sites currently producing ambient data on hazardous air pollutants. EPA is working together with state and local air monitoring agencies to build upon these monitoring sites to develop a monitoring network which is representative of air toxics problems on a national scale and which provides a means to obtain data on a more localized basis as appropriate and necessary. The network will represent an integration of information from many monitoring programs, including PAMS, which provide information on VOCs and aldehydes, and the new urban PM_{2.5} chemical speciation and rural IM-PROVE networks which provide information on HAP trace metals. This new national network will be developed over the next several years. Trend data will initially be used to help characterize air quality,

and to support and evaluate models and later to better describe national HAP trends.⁶

Several states have long-standing air toxics monitoring programs which already produce measurements on many HAPs including the important urban HAPs. Some of these state programs are assisted by EPA's contractor-supported Urban Air Toxics Monitoring Program (UATMP), as well as the Non-Methane Organic Compound (NMOC) and Speciated Non-Methane Organic Compound (SNMOC) monitoring programs. The UATMP is dedicated to toxics monitoring which involves measurements of 39 HAP VOCs and 13 carbonyl compounds.7 The Agency's Photochemical Assessment Monitoring Stations (PAMS) also measure HAPs among the many pollutants that are precursors of ozone.

The PAMS program requires routine year-round measurement of VOCs which include nine HAPs: acetaldehyde, benzene, ethylbenzene, formaldehyde, n-hexane, styrene, toluene, xylenes (m/p-xylene, o-xylene) and 2,2,4-trimethlypentane. Three of these are on the list of urban HAPs (acetaldehyde, benzene and formaldehyde). For a more detailed discussion of the PAMS program, see the ozone section in Chapter 2 of this report. Although the state air toxics and PAMS data are limited in their geographic scope, they do not cover many HAPs for most states, and are not necessarily sited to represent the highest area-wide concentrations, they can still be used to provide useful information on the trends in ambient air toxics at this time.

Table 5-2. Comparison of Typical Urban and Rural Concentrations for VOCs and Aldehydes, Based on 1996 Ambient Measurements

	Urb	an Sites	Rur	al Sites	Urban to Rural
НАР	Number of sites µg/m³	Annual Average Concentration, µg/m³	Number of sites	Annual Average Concentration,	Ratio of average concentrations
1,2-Dibromoethane	60	0.70	. 1	0.04	17.5
Ethylene dichloride	88	0.40	7	0.04	9.9
Styrene	74	1.75	11	0.18	9.6
Trichloroethylene	84	0.62	8	0.08	8.0
Vinyl chloride	86	0.31	7	0.05	6.6
1,2-Dichloropropane	52	0.30	7	0.05	6.0
Tetrachloroethylene	90	1.17	8	0.21	5.6
1,3-Butadiene	60	0.84	7	0.15	5.5
1,1,2,2-Tetrachloroethane	32	0.09	2	0.02	5.2
trans-1,3-Dichloropropene	10	0.03	1	0.01	3.8
Methylene chloride	95	1.40	. 8	0.40	3.5
cis-1,3-Dichloropropene	10	0.03	1	0.01	2.9
Chloroform	94	0.47	8	0.21	2.2
Carbon tetrachloride	86	0.89	2 7	0.52	1.7
Acrolein	24	0.20	2	0.12	1.6
Toluene	101	5.68	9	3.82	1.5
Benzene	121	2.08	11	1.60	1.3
Formaldehyde	38	5.17	4	4.10	1.3
Acetaldehyde	38	2.94	. 4	3.37	0.9

Table 5-3. Comparison of Typical Urban and Rural Concentrations for Trace Metals, Based on 1996 Ambient Measurements

	Urb	an Sites	Rur	al Sites	Urban to Rural
НАР	Number of sites ng/m³	Annual Average Concentration, ng/m³	Number of sites	Annual Average Concentration,	Ratio of average concentrations
Nickel (fine)	13	1.14	65	0.22	5.2
Cadmium (pm10)	12	1.65	4	0.52	3.2
Arsenic (fine)	13	1.05	65	0.34	3.1
Lead (fine)	13	4.70	65	1.66	2.8
Manganese (fine)	13	3.34	65	1.26	2.7
Lead (coarse)	13	3.15	2	1.22	2.6
Nickel (pm10)	24	3.65	8	1.46	2.5
Nickel (tsp)	88	10.53	18	4.53	2.3
Manganese (pm10)	20	13.67	8	7.30	1.9
Chromium (coarse)	13	2.25	2	1.23	1.8
Chromium (pm10)	25	6.14	8	3.40	1.8
Beryllium (tsp)	31	0.08	7	0.05	1.6
Chromium (tsp)	90	8.03	18	5.05	1.6
Nickel (coarse)	13 .	1.35	. 2	0.87	1.6
Chromium (fine)	13	0.93	65	0.71	1.3
Lead (pm10)	40	22.40	11	19.12	1.2
Manganese (coarse)	- 13	12.57	2 .	11.35	1.1
Chromium VI	27	0.13	2	0.12	1.0
Arsenic (pm10)	25	3.09	8 %	3.05	1.0
Arsenic (coarse)	13	1.01	2	1.00	1.0
Beryllium (pm10)	7	0.30	4	0.30	1.0
Mercury (coarse)	13	1.02	2	1.02	1.0
Mercury (fine)	13	1.04	2	1.13	0.9
Manganese (tsp)	71	33.34	17	41.65	0.8
Mercury (pm10)	17	0.84	4	1.10	0.8
Mercury (tsp)	35	0.96	2	1.70	0.6
Arsenic (tsp)	. 73	7.04	9	33.86	0.2
Lead (tsp)	296	177.02	39	861.31	0.2
Cadmium (tsp)	80	1.95	17	13.33	0.1

Status of Urban and Rural Ambient Concentrations

Several hundred locations monitor for air toxics year-round and have sufficient data to estimate annual average concentrations for many HAPs. This section focuses on the urban HAP list. Year-round ambient concentrations are available for 25 HAPs on the list. Extensive data for styrene and toluene are also available. Tables 5-2 and 5-3 compare typical urban and rural annual average concentrations for VOCs, aldehydes and trace metals. Some of the HAP data are represented by more than one type of measurement [e.g., chromium (PM₁₀) and chromium (TSP)]. The amount of rural data is limited for VOCs and for some of the trace metal HAPs. Nevertheless, tentative observations about urbanrural differences in ambient levels can be presented. In this chapter, urban air quality is based on monitoring sites located within metropolitan statistical areas. It is noted that this definition is not necessarily the same as the one which will be used in Section 112k rule making.

For many VOCs and aldehydes, the concentrations are relatively similar between urban and rural locations (e.g., carbon tetrachloride, formaldehyde and benzene). In particular, pollutants associated with ubiquitous mobile sources appear to be more similar between urban and rural areas. On the other hand, several HAPs show large differences among sampling locations (e.g., styrene and vinyl chloride). This contrast may be attributed to many factors including geographic distribution of emission sources, the limited number of monitoring sites and the proximity of the

sites to those sources, the lifetime / transport of the pollutant in the atmosphere and uncertainty in the measurements. For some of the metals, average rural concentrations appear higher (e.g., lead and cadmium). The number of monitoring sites are limited, therefore these reported rural concentrations are not necessarily representative of typical rural areas.

To further illustrate the variability in annual average HAP concentrations, site-specific urban data are separately examined for the distribution of annual average concentrations. Figures 5-1a – 5-1c present the 10th, 50th and 90th percentiles of annual average concentrations for urban VOCs and aldehydes as well as urban and rural trace metals. The data are normalized to their respective urban or rural annual averages to show the relative variability for

Figure 5-1a. Relative variability in VOC and aldehyde annual average concentrations among urban sites, based on 1996 ambient measurements.

Note: "National Average" represents the average concentration of all included monitoring locations.

Figure 5-1b. Relative variability in trace metal concentrations among urban sites, based on 1996 ambient measurements.

each HAP. These figures reveal large variations among reporting locations for some VOCs and aldehydes (e.g., chloroform, formaldehyde and trichloroethylene), and also show that others (e.g., benzene and 1,3-butadiene) are relatively similar among monitoring locations. Again, annual average concentrations for HAPs associated with mobile sources tend be more geographically homogeneous. For trace metals, reported urban and non-urban concentrations display large differences in annual averages for some HAPs (e.g., total suspended nickel and total suspended lead among urban locations, and arsenic among rural sites), while they are relatively similar for others. As stated above, the differences in concentration variability among HAPs may be attributed to many factors.

When examining differences in annual means among individual monitoring locations, the quantity and completeness of the monitoring data may be important. Because air toxics are typically sampled 30–100 days per year, the lack of every day assessments can contribute to imprecision in annual average concentrations. This is particularly true for sites with large day-to-day variations in the concentrations of certain HAPs. These conclusions are tentative and warrant further study.

Trends In Ambient Concentrations

The most widely measured HAP is lead, which is also a criteria pollutant. It is monitored in most states, both in metropolitan and non-metropolitan areas. Other urban HAPs have been monitored in the metro-

politan areas of 24 states since the mid 1990s. Several VOCs, aldehydes and metals have good data history in metropolitan areas. Most of these monitors, however, are concentrated in a few states, with 40 percent of them in California alone. Nevertheless, these data can be used to provide a preliminary picture of nationwide trends in urban air toxics. Long-term monitoring in rural areas for VOCs and aldehydes has generally been more limited. A good history of several trace metal concentrations in rural areas is derived from the Interagency Monitoring of Protected Visual Environments (IMPROVE) program. The locations for the urban and rural monitors with long-term data are shown in Figure 5-2.

Trends derived from these data are separately presented for metropolitan

Note: Sites only monitoring for lead (Pb) are not shown.

Table 5-4. National Summary of Ambient HAP Concentration Trends in Metropolitan Areas, 1993-1998

			Number of Urb		l	T
Hazardous Air Pollutant	Total	Significant* UP Trend	Non-Significant UP Trend	No Trend	Non-Significant DOWN Trend	Significant DOWN Tren
Acrylonitrile	4		2	1	1	
Benzene	84	3	6		48	27
1,3-Butadiene	62	6	17	3	16	20
Carbon tetrachloride	65	1 1	25	3	23	13
Chloroform	74	9	28	3	23	11
1,2-Dibromoethane	38	 	5	16	15	2
1,2-Dichloropropane	27					
			5	5	9 .	8
Ethylene dichloride	55		11	17	16	11
Methylene chloride	73	4	13	2	37	17
,1,2,2-Tetrachloroethane	12		6	2	4	
etrachloroethylene	74	2	13		43	16
richloroethylene	59	5	19	3	24	8
/inyl chloride	50		10	22	13	5
rsenic (coarse)	10			0	-	
				9	1	1
Arsenic (fine)	10	1		3	6	_
Arsenic (PM ₁₀)	14	1 .	1	1	7	5
Arsenic (tsp)	70	1	8	37	17	7
Beryllium (PM ₁₀)	7	1	,	7		1
Beryllium (tsp)	28		- 6	20	2	
Cadmium (PM ₁₀)	8		3	2	1	2
Cadmium (tsp)	52	1	9	7	31	4
Chromium (coarse)	10 .		<u> </u>		5	5
Chromium (fine)	10		2.	1	6	1
Chromium (PM ₁₀)	14	1	7	'		
					6	1
Chromium (tsp)	63	4	21	2	30	6
Chromium VI	26		1		19	6
ead (coarse)	10				4	6
ead (fine)	10				7	3
ead (PM ₁₀)	28	1	2	14	10	1
.ead (tsp)	266	9	47	6	147	57
Manganese (coarse)	10				6	4
Manganese (fine)	10		4 .		5	1
Manganese (PM ₁₀)	13		3		8	2
Manganese (tsp)	54	1 4	12	2	· 31	8
Mercury (coarse)	10	<u> </u>	3	5	2	-
Mercury (fine)	10		1		2	
			2	8		
Nercury (PM ₁₀)	6	**	4	_	2	1
flercury (tsp)	26		19	2	4	1
lickel (coarse)	10	1			6	4
lickel (fine)	10		2	1	4	3
lickel (PM ₁₀)	13		3	1	. 6	3
lickel (tsp)	63	1	13	. 2	27	20
cetaldehyde	10	-	6		3	7
ormaldehyde	16	2	. 12		2	
crolein	77	1	4	1	1	
enzo(a)pyrene						
total PM ₁₀ & vapor)	18		1		16	1
	10	<u> </u>			10	
bibenz(a,h)anthracene	40	1			4-	
otal PM ₁₀ & vapor)	18	<u> </u>	5		13	
ndeno(1,2,3-cd)pyrene						l
otal PM ₁₀ & vapor)	18				16	2
enzo(b)fluoranthene		1	,			
total PM ₁₀ & vapor)	18	1	1		15	2
enzo(k)fluoranthene						
otal PM ₁₀ & vapor)	18	1.			17	1
Styrene	60	2	14		35	9
oluene	78	1	9		42	26

^{*}Statistically significant at the 10-percent level (See Appendix B: Methodology, Air Toxics Methodology section).

(urban) and non-metropolitan (rural) sites. Table 5-4 present a national summary of these 6-year trends in ambient air toxics concentrations in metropolitan statistical areas. Among the 33 HAPs on the urban strategy list, 25 pollutants have sufficient historical data for this 6-year trends assessment. These air contaminants include 13 of the 15 urban VOCs, all eight urban HAP trace metals, the three aldehydes and several specific polycyclic aromatic hydrocarbons (PAHs). Also included are styrene and toluene, which are two additional pervasive air toxics whose monitoring sites have good nationwide coverage. The table presents the number of sites with increases and decreases in measured ambient concentrations from 1993-1998. For trace metals, results representing more than one particulate size fraction are included. Similarly, trends are shown separately for several individual PAHs which are constituents of POM. For each of these hazardous air pollutants with sufficient historical data, the number of sites with statistically significant changes are highlighted in **bold**. When many individual locations reveal a significant change, this is more characteristic of a national trend.

Although these ambient air toxics data are only available for a limited number of metropolitan areas, the results generally reveal downward trends for most monitored HAPs on the urban air toxics strategy list. The most consistent improvements are apparent for benzene which is predominantly emitted by mobile

sources; and for total suspended lead. From 1993-1998, annual average concentrations for these two HAPs declined 37 and 41 percent respectively. The majority of ambient concentrations of lead once came from the tail pipe of cars. Since the . mid-90s, however, lead has been largely removed from gasoline and almost all of these trace elements now typically emanate from major point sources. More information about particulate lead can be found in the criteria pollutant section in Chapter 2 of this report. Ambient concentrations of toluene (emitted primarily from mobile sources) also show a consistent decrease over most reporting locations. Similar to benzene, annual average toluene concentrations dropped 44 percent. The reduction in benzene and toluene is

1996

1997

1998

Figure 5-3b. National trend in annual/average 1,3-butadiene concentrations in metropolitan areas, 1993–1998.

Year

1995

0.0

1993

1994

Figure 5-3d. National trend in annual/average styrene concentrations in metropolitan areas, 1993–1998.

Figure 5-3e. National trend in annual/average tetrachloroethylene concentrations in metropolitan areas, 1993–1998.

Figure 5-3f. National trend in annual/average toluene concentrations in metropolitan areas, 1993-1998.

attributed to the use of reformulated gas in many areas of the country. Other HAPs (including styrene) also reveal air quality improvement, but the downward trends are not significant across large numbers of monitoring locations. Some HAPs like 1,3-butadiene and tetrachloroethylene have trends that are more varied across the nation and result in a relatively flat national composite trend.

The composite urban trends for six HAPs are graphically presented. Boxplots of the annual average concentrations are shown for benzene, 1,3-butadiene, lead, styrene, tetrachloroethylene, and toluene in Figures 5-3a–f. The number and location of the monitoring sites are also displayed. For comparison, the maps also show the number of sites that produced any measurement data

during the 6-year period. These figures depict the concentration distributions among annual averages in metropolitan areas from 1993–1998. The average trend line for benzene, lead, and toluene shows a steady 6-year air quality improvement, reflecting the consistent behavior among most monitoring locations. This represents a national pattern. Average concentrations decreased 39, 40 and 44 percent respectively.

For other HAPs, most urban locations do not reveal predominant or consistent trends among all monitoring areas. In addition, most observed trends for these 21 HAPs are not statistically significant. This is attributed in part to few states with long-term HAP monitoring, to the large year-to-year variability in computed annual average concentrations for

some HAPs and the large variety of contributing emission sources for many of the air toxics. For these pollutants, a national composite trend may not be meaningful at this time. Although the general direction of change is down for most HAPs on the urban list, several states reveal significant 6-year increases at a few locations. These HAPs include 1,3-butadiene, carbon tetrachloride, chloroform, ethylene dichloride, methylene chloride, tetrachloroethylene (also known as perchloroethylene or "perc") and trichloroethylene. Except for 1,3-butadiene, all of the above mentioned HAPs are generally associated with major stationary sources or a combination of major and area sources. The majority of emissions of 1,3-butadiene come from mobile sources with the remain-

Figure 5-4a. Trend in annual average benzene concentrations for metropolitan sites in California, 1989–1998.

Figure 5-4b. Trend in annual average 1,3-butadiene concentrations for metropolitan sites in California, 1989–1998.

Figure 5-4c. Trend in annual average lead concentrations for metropolitan sites in California, 1989–1998.

Figure 5-4d. Trend in annual average styrene concentrations for metropolitan sites in California, 1989–1998.

Figure 5-4e. Trend in annual average tetrachloroethylene concentrations for metropolitan sites in California, 1989–1998.

Figure 5-4f. Trend in annual average toluene concentrations for metropolitan sites in California, 1989–1998.

der mostly from area sources. To illustrate a few of the HAPs without consistent trends among reporting stations, boxplots for 1993–1998 are presented for 1,3-butadiene, styrene and tetrachloroethylene. The national trends for these HAPs appear to be flat for the six years, except for average concentration of styrene which shows a drop in 1998. To illustrate the behavior of these compounds in a particular region of the country, trends of monitoring sites in California are presented on the following page.

The State of California has the largest and longest running air toxics monitoring network. They have over 30 sites with a 10-year history for several VOCs and almost as many for several trace metals. These data allow us to take a look at a longer time trend

in air toxics. Among the HAPs discussed in this section, notable improvements are seen for benzene, 1,3-butadiene, tetrachloroethylene and toluene. The impressive air quality improvement for urban benzene in California is shown in Figure 5-4a. This figure illustrates the large decrease in ambient concentrations which occurred during the early 1990s. Annual average concentrations declined 70 percent over the 10-year period. Ambient concentrations of tetrachloroethylene associated with dry cleaners is down 58 percent (Figure 5-4e). Toluene associated with mobile sources also showed consistent declines which averaged 44 percent across the state (Figure 5-4f). Another HAP which predominantly comes from mobile sources is 1,3butadiene. Although site-specific

trends for this pollutant were mixed, the composite trend in Figure 5-4d shows an overall 35-percent decline in ambient concentrations. The reductions in ambient concentrations of tetrachloroethylene are due to better controls on the use of solvents, while the improvements in benzene, 1,3-butadiene and toluene is attributed to the reformulation of gasoline. (For more information about trends in these emissions, see the ozone section in Chapter 2.) For additional detail on the derivation of Figures 5-3a to 5-4f, see Appendix B: Methodology.

Results from California's total suspended particulate lead network are consistent with the national trends. Annual average concentrations declined 63 percent and 27 percent over the 10-year and 6-year periods respectively. California has

Table 5-5. National Summary of Ambient HAP Concentration Trends in Rural Areas, 1993–1998

Hazardous Air Pollutant	Total	Significant* UP Trend	Non-Significant UP Trend	No Trend	Non-Significant DOWN Trend	Significant* DOWN Trend
Benzene	5				4	1
1,3-Butadiene	4				1	3
Carbon tetrachloride	3		2		1	
Chloroform	4				3	1
1,2-Dichloropropane	4			1	3	
Ethylene dichloride	4				3	1
Methylene chloride	4				4	
Tetrachloroethylene	4				2	2
Trichloroethylene	4				3	1
Vinyl chloride	4		3		1	
Arsenic (coarse)	2		1	1		
Arsenic (coarse)	61	3	40	1	17	
Arsenic (IIIIe) Arsenic (PM ₁₀)	6		1	1	3	1
Arsenic (tsp)	5		1	1	1	2
Beryllium (PM ₁₀)	2		1	1		
Beryllium (tsp)	3		1	3		
Cadmium (PM ₁₀)	2			<u> </u>	2	
Cadmium (tsp)	6		ŧ	3	1	2
	2		1	ა	1	
Chromium (coarse) Chromium (fine)		00			•	
• •	61	28	29	1	3	
Chromium (PM ₁₀)	6	1	2		3	
Chromium (tsp)	7	1	2	1	. 2	1
Chromium VI	11					1
Lead (coarse)	2		45	1	1	
Lead (fine)	61	1	45		15	
Lead (PM ₁₀)	8	1	1 -	2	3	1
Lead (tsp)	31		5		15	11
Manganese (coarse)	2		1		1	
Manganese (fine)	61		25		35	1
Manganese (PM ₁₀)	6		3		2	1
Manganese (tsp)	6			1	5	-
Mercury (coarse)	2		1	1		
Mercury (fine)	2			1	1	
Mercury (PM ₁₀)	4		2	1	1	
Mercury (tsp)	1	ļ	1	-		
Nickel (coarse)	2		1		1	
Nickel (fine) Nickel (PM ₁₀)	61 6	1	12 1	1	39 3	8 1
Nickel (tsp)	7		1	1	. 4	1
Acetaldehyde	1				1	
Formaldehyde	1				1	
Acrolein	1				1	
Styrene	5		2		3	,
Toluene	5		3	,	2	·

^{*}Statistically significant at the 10-percent level (See Appendix B: Methodology, Air Toxics Methodology section).

also been measuring fine particle lead (from $PM_{2.5}$) and coarse particle lead (from $PM_{10-2.5}$) in its urban areas. Although concentrations are a small fraction of the total suspended lead, these data also show 6-year declines of 26 and 54 percent, respectively. California's trace metal data also shows declines in total suspended chromium (-29 percent) and the particularly hazardous hexavalent chromium (-52 percent).

Ambient air toxics data in rural areas are much more limited, but the results in Table 5-5 and Table A-20 also indicate widespread air quality improvement for many monitored urban strategy HAPs. Significant downward trends are noted among the few rural sites for benzene and several other VOCs. Lead concentrations in rural areas are also down. In contrast, a notable steady increase in fine particle chromium concentrations is observed in the rural data set. This is illustrated in Figure 5-5. Almost all rural monitoring sites show a 6-year increase in ambient chromium concentrations and most of them are statistically significant. Average concentrations increased 88 percent. The reason for this increase in rural chromium concentrations is not known at this time. The result also needs to be viewed with caution because the reported concentrations are close to the detection limits of the monitoring method (0.57 ng/m³).8 Nevertheless, there is a strong trend in the concentrations above this level. Future trend reports will present more detailed trends in chromium and other HAP trace metals derived from the IMPROVE network and other rural monitoring locations.

Atmospheric Deposition

National Atmospheric Deposition Program/National Trends Network

The National Atmospheric Deposition Program (NADP) began in 1978 as a cooperative program between federal and state agencies, universities, electrical utilities, and other industries to determine geographical patterns and trends in wet deposition of sulfate, nitrate, hydrogen ion, ammonium, chloride, calcium, magnesium, and potassium. The NADP was renamed as NADP/NTN (National Trends Network) in the mid-1980s when the program had grown to almost 200 monitoring sites. The monitoring sites are located in rural areas, and data are collected on a weekly basis. The collected data provide insight into natural background levels of pollutants. The network of NADP/NTN monitoring sites allows for the development of concentration and wet deposition maps to describe the trends and spatial patterns in the constituents of acid precipitation. The Mercury Deposition Network (MDN), which is another component of the NADP, measures mercury levels in wet deposition at over 40 NADP sites located in 16 states and two Canadian provinces.

Mercury's adverse effects on ecological and public health have raised the level of awareness regarding its persistence in the environment. As a result, there has been a concerted effort by local, state, and national environmental agencies to accurately measure the annual progress of regulations and technologies aimed at reducing mercury. The MDN is a key element of these efforts by monitoring the presence of mercury and methyl mercury in precipitation.

This has enabled scientists to compile a national database of weekly precipitation concentrations. As a result, state and federal air regulators can monitor progress in reducing mercury concentrations and amend policy decisions accordingly. There are plans to expand the network in the near future, pending availability of new funds. Additional information about the network is available on the Internet at http://nadp.sws.uiuc.edu/mdn/.

Data from 1996 and 1997 indicate that the volume-weighted mean concentration of total mercury in precipitation from 22 sites ranged from 6.0-18.9 ng/L and annual deposition of mercury ranged from 2.1-25.3 μg/m². In 1997, average mercury concentrations in rain ranged from 6.2-18.3 ng/L at the 21 sites that had a full year of monitoring data and the average concentration for all sites was 10.6 ng/L. In 1996, average mercury concentrations at nine sites with a full year of data ranged from 6.0–14.1 ng/L with an average for all sites of 10.2 ng/L. In 1997, the annual average wet deposition of mercury for 21 sites ranged from 4.3-25.3 $\mu g/m^2$, whereas in 1996, the annual average wet deposition of mercury for nine sites ranged from 6.3-19.7 µg/m². In the eastern United States, average summer mercury concentrations are more than double winter concentrations and average summer deposition values are more than three times winter values. This can be explained by higher concentrations of mercury in the rain and higher rainfall amounts during the summer.9

Integrated Atmospheric Deposition Network

The Integrated Atmospheric Deposition Network (IADN) is a joint United States-Canada program begun in

1990 under a formal 6-year implementation.10 The IADN collects data that can be useful in assessing the relative importance of atmospheric deposition. IADN measures concentrations of target chemicals in rain and snow (wet deposition), airborne particles (dry deposition), and airborne organic vapors.11 Under IADN, trends in pollutant concentrations in air and precipitation are assessed and loading estimates of atmospheric deposition and volatilization of pollutants are made every two years. The IADN network currently consists of one master station per Great Lake and 14 satellite stations. Stations are located in remote areas and do not assess urban sources of pollution.

General conclusions based on IADN data include the following:

- Levels in air and precipitation appear stable for current-use pesticides such as endosulphan, but levels for most other pesticides, PCBs, and lead are decreasing.
- Gas absorption appears to be the dominant deposition process for delivering SVOCs, including PCBs and PAHs, to lake surfaces, while wet and dry deposition dominate for the trace elements and higher molecular weight PAHs.
- For some IADN substances, like dieldrin and PCBs, the surface waters are behaving like a source since the amount that is volatilizing from the water is greater than the amount being deposited to the water.
- The lakes are sensitive to the atmospheric concentration of IADN chemicals, and this highlights the fragility of these resources given that long-range transport from other regions may be a significant source of toxic pollutants.

 Air trajectory analyses indicate that many SVOCs are potentially originating from outside the Great Lakes basin, whereas trace metals and PAHs may be associated with local sources.¹²

In 1998, the Second Implementation Plan for 1998-2004 was developed based on a review of the program from 1990–1996. No major changes are anticipated under the Second Implementation Plan. The IADN will continue surveillance and monitoring activities, related research, and to provide information for intergovernmental commitments and agreements. Additional work to be completed under the Second Implementation Plan is the development of a database for all U.S. and Canadian data. Potential modifications will be discussed in relation to the placement of satellite stations to assess urban inputs and air-water gas exchange, criteria for changes to the IADN chemical list, coordination with other research activities, quality assurance and control of IADN operations, and communication of IADN results.12

References

- 1. This list originally included 189 chemicals. The CAA allows EPA to modify this list if new scientific information becomes available that indicates a change should be made. Using this authority, the Agency modified the list to remove caprolactam in 1996, reducing the list to 188 pollutants (Hazardous Air Pollutant List; Modification, 61 FR 30816, June 18, 1996).
- 2. "Update: National Listing of Fish and Wildlife Advisories," announcing the availability of the 1998 update for the database: National Listing of Fish and Wildlife Advisories (NLFWA); U.S. EPA Fact Sheet, EPA-823-F-99-005, July 1999. Available on the Internet at: http://www.epa.gov/ost/fish.
- 3. Hillery, B.R., Hoff, R.M., and Hites, R.A. 1997. "Atmospheric contaminant deposition to the Great Lakes determined from the Integrated Atmospheric Deposition Network." Chapter 15 in Atmospheric Deposition of Contaminants to the Great Lakes and Coastal Waters. 1997, Joel E. Baker, Editor. SETAC Press. (Society of Environmental Toxicology and Chemistry.)
- 4. Evers, D. 1998. Assessing availability and risk of methylmercury to the common loon in New Hampshire and Vermont. A preliminary report. Submitted to U.S. EPA, Office of Air Quality Planning and Standards, December 3, 1998.

- 5. "National Air Toxics Program: The Integrated Urban Strategy," Federal Register, 64 FR 38705, Washington, D.C., July 19, 1999. Available on the Internet at: http://www.epa.gov/ttnu-atw1/urbanpg.html.
- 6. "Air Toxics Monitoring Concept Paper," U.S Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC. February 29, 2000. Peer Review Draft. Available on the Internet at: http://www.epa.gov/ttn/amtic/ airtxfil.html.
- 7. "1997 Urban Air Toxics Monitoring Program (UTAMP)," EPA-454/R-99-036. January 1999. Available on the Internet at http://www.epa.gov/ttn/amtic/airtxfil.html.
- 8. Visibility Monitoring Guidance 1999, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, June 1999, EPA-454/R-99-003.
- 9. Sweet, C.W., E. Prestbo, B. Brunette. 1999. Atmospheric wet deposition of mercury in North America. Proceedings of the 92nd Annual Meeting of the Air and Waste Management Association. June 21-23, 1999, St. Louis, MO.

- 10. The IADN fulfills legislative mandates in Canada and the United States that address the monitoring of air toxics. An international Great Lakes deposition network is mandated by Annex 15 of the Great Lakes Water Quality Agreement between the United States and Canada. In the United States, the CAA requires a Great Lakes deposition network.
- 11. The target chemicals include PCBs, pesticides, PAHs and metals. The compounds included as "target chemicals" were selected based on the following criteria: presence on List 1 of Annex 1 of the Great Lakes Water Quality Agreement (substances believed to be toxic and present in the Great Lakes); established or perceived water quality problem; presence on the International Joint Commission's Water Quality Board's list of criteria pollutants; evidence of presence in the atmosphere and an important deposition pathway; and feasibility of measurement in a routine monitoring network.
- 12. U.S./Canada IADN Scientific Steering Committee. 1998. Technical summary of progress under the integrated atmospheric depositions program 1990–1996.

Visibility Trends

http://www.epa.gov/oar/aqtrnd98/chapter6.pdf

Introduction

The Clean Air Act (CAA) authorizes the United States Environmental Protection Agency (EPA) to protect visibility, or visual air quality, through a number of programs. These programs include the National Visibility Program under sections 169a and 169b of the Act, the Prevention Of Significant Deterioration Program for the review of potential impacts from new and modified sources, the secondary National Ambient Air Quality Standards (NAAQS) for PM_{10} and $PM_{2.5}$, and section 401 under the provisions for acid deposition control. The National Visibility Program established in 1980 requires the protection of visibility in 156 mandatory federal Class I areas across the country (primarily national parks and wilderness areas). The CAA established as a national visibility goal, "the prevention of any future, and the remedying of any existing, impairment of visibility in mandatory federal Class I areas in which impairment results from manmade air pollution." The Act also calls for state programs to make "reasonable progress" toward the national goal.

In 1987, the Interagency Monitoring of Protected Visual Environments (IMPROVE) visibility network was established as a cooperative effort between EPA, the National Oceanic

and Atmospheric Administration, the National Park Service, the U.S. Forest Service, the Bureau of Land Management, the U.S. Fish & Wildlife Service, and state governments. The objectives of the network are to establish current conditions, to track progress toward the national visibility goal by documenting long-term trends, and to provide information for determining the types of pollutants and sources primarily responsible for visibility impairment. Chemical analysis of aerosol measurements provides ambient concentrations and associated light extinction for PM₁₀, PM_{2.5}, sulfates, nitrates, organic and elemental carbon, crustal material, and a number of other elements. The IMPROVE program has established protocols for aerosol, optical, and photographic monitoring methods, and these methods are employed at more than 70 sites, most of which are Class 1 areas. In the calendar year 2000, an additional 80 monitoring sites using the IMPROVE aerosol monitoring protocol will be established. The analyses presented in this chapter are based on data from the IMPROVE network, which can be found on the Internet at: ftp://alta_vista.cira.colostate.edu/ DATA/IMPROVE 1

This chapter presents aerosol and light extinction data collected between 1989 and 1998 at 34 Class I

areas in the IMPROVE network. Because the CAA calls for the tracking of "reasonable progress" in preventing future impairment and remedying existing impairment, this analysis looks at trends in visibility impairment across the entire range of the visual air quality distribution. To facilitate this approach, visibility data have been sorted into quintiles, or 20 percent segments, of the overall distribution, and average values have been calculated for each quintile. Trends are presented in terms of the haziest ("worst") 20 percent, typical ("middle") 20 percent, and clearest ("best") 20 percent of the annual distribution of data. Figure 6-1 provides a photographic illustration of very clear and very hazy conditions at Glacier National Park in Montana, and Dolly Sods Wilderness Area in West Virginia.² Figure 6-2 is a map of the 34 Class I areas with seven or more years of IMPROVE monitoring data included in this analysis.

Nature and Sources of the Problem

Visibility impairment occurs as a result of the scattering and absorption of light by particles and gases in the atmosphere. It is most simply described as the haze that obscures the clarity, color, texture, and form of what we see. The same particles

Figure 6-1. Images of Glacier National Park and Dolly Sods Wilderness Area.

linked to serious health and environmental effects (sulfates, nitrates, organic carbon, elemental carbon [commonly called soot], and crustal material) can also significantly affect our ability to see.

Both primary emissions and secondary formation of particles contribute to visibility impairment. Primary particles, such as elemental carbon from diesel and wood combustion or dust from certain industrial activities or natural sources, are emitted directly into the atmosphere. Secondary particles that are formed in the atmosphere from primary gaseous emissions include sulfate from sulfur dioxide (SO2) emissions, nitrates from nitrogen oxide (NO_x) emissions, and organic carbon particles formed from condensed hydrocarbon emissions. In the eastern United States, reduced visibility is mainly attributable to secondarily formed particles, particularly those less than a few micrometers in diameter. While secondarily formed particles still account for a significant amount in the West, primary emissions from sources such as woodsmoke generally contribute a larger percentage of the total particulate load than in the East. The only primary gaseous pollutant that directly reduces visibility is nitrogen dioxide (NO₂), which can sometimes be seen in a visible plume from an industrial facility, or in some urban areas with high levels of motor vehicle emissions.

Visibility conditions in Class I and other rural areas vary regionally across the United States. Rural areas in the East generally have higher levels of impairment than most remote sites in the West. Higher eastern levels are generally due to higher

regional concentrations of sulfur dioxide and other anthropogenic emissions, higher estimated regional background levels of fine particles, and higher average relative humidity levels. Humidity can significantly increase the effect of pollution on visibility. Some particles, such as sulfates, accumulate water and grow in size, becoming more efficient at scattering light. Annual average relative humidity levels are 70-80 percent in the East as compared to 50-60 percent in the West. Poor summer visibility in the eastern United States is primarily the result of high sulfate particle concentrations combined with high humidity levels.

Visibility conditions are commonly expressed in terms of three mathematically related metrics: visual range, light extinction, and deciviews. Visual range is the metric best

Figure 6-2. IMPROVE sites meeting data completeness requirements.

Note: The Washington, DC site is not included in the rural visibility trends analysis.

known by the general public. It is the maximum distance at which one can identify a black object against the horizon, and is typically described in miles or kilometers. Light extinction, inversely related to visual range, is the sum of light scattering and light absorption by particles and gases in the atmosphere. It is typically expressed in terms of inverse megameters (Mm-1), with larger values representing poorer visibility. Unlike visual range, the light extinction coefficient allows one to express the relative contribution of one particulate matter (PM) constituent versus another to overall visibility impairment. Using speciated mass measurements collected from the IMPROVE samplers "reconstructed light extinction" can be calculated by multiplying the aerosol mass for each constituent by its appropriate "dry extinction

coefficient," and then summing these values for each constituent. Because sulfates and nitrates become more efficient at scattering light with increasing humidity, these values are also multiplied by a relative humidity adjustment factor.³ Annual and seasonal light extinction values developed by this approach correlate well with optical measurements of light extinction (by transmissometer) and light scattering (by nephelometer).

The deciview metric was developed because changes in visual range and light extinction are not proportional to human perception of visibility impairment. For example, a 5-mile change in visual range can be either very apparent or not perceptible, depending on the base line level of ambient pollution. The deciview metric provides a linear scale for perceived visual changes over the

entire range of conditions, from clear to hazy, analogous to the decibel scale for sound. Under many scenic conditions, a change of one deciview is considered to be perceptible by the average person. A deciview of zero represents pristine conditions.

It is important to understand that the same amount of pollution can have dramatically different effects on visibility depending on existing conditions. Most importantly, visibility in cleaner environments is more sensitive to increases in PM_{2.5} particle concentrations than visibility in more polluted areas. This principle is illustrated in Figure 6-3, which characterizes visibility at Shenandoah National Park under a range of conditions.5 A clear day at Shenandoah can be represented by a visual range of 80 miles, with conditions approximating naturally-occurring visibility (i.e., without pollution created by human activities). An average day at Shenandoah is represented by a visual range of 18 miles, and is the result of an additional 10 mg/m³ of fine particles in the atmosphere. The two bottom scenes, with visual ranges of eight and six miles respectively, illustrate that the perceived change in visibility due to an additional 10 mg/m³ of fine particles to an already degraded atmosphere is much less perceptible than adding this amount to a clean atmosphere. Thus, to achieve a given level of perceived visibility improvement, a large reduction in fine particle concentrations is needed in more polluted areas. Conversely, a small amount of pollution in a clean area can dramatically decrease visibility.

Long-Term Trends (1970–1990)

Visibility impairment is presented here using visual range data collected since 1960 at 280 monitoring stations located at airports across the country. Trends in visibility impairment can be inferred from these long-term records of visual range. Figure 6-4 describes long-term U.S. visibility impairment trends derived from such data.4 The maps show the amount of haze during the summer months of 1970, 1980, and 1990. The dark blue color represents the best visibility, and red represents the worst visibilitv. Overall, these maps show that summer visibility in the eastern United States declined between 1970 and 1980, and improved slightly between 1980 and 1990. These trends follow overall trends in emissions of sulfur oxides during these periods.

Recent Trends (1989–1998)

Aerosol and light extinction data are presented for 34 sites which produced at least seven years of fine particle data from 1989-1998: 10 are located in the east, and 24 are located in the west, as shown in Figure 6-2. Because of the significant regional variations in visibility conditions, this chapter does not present aggregate national trends, but instead groups the data into eastern and western regions. As noted earlier, trends in this chapter are presented in terms of the annual average values for the clearest ("best") 20 percent, middle ("typical") 20 percent, and haziest ("worst") 20 percent of the days monitored each year. To date, two 24-hour aerosol samples have been taken each week from IMPROVE

Figure 6-3. Shenandoah National Park on clear and hazy days and the effect of adding 10 μ g/m³ of fine particles to each.

sites, resulting in a potential for 104 sampling days per year. Beginning in 2000, aerosol samples will be taken every three days, consistent with the approach used for national $PM_{2.5}$ aerosol monitoring.

Regional Visibility Trends for the Eastern and Western United States

Figures 6-5a and 6-5b illustrate eastern and western trends for total light extinction. These figures, presented with equivalent scales, demonstrate the regional difference in overall levels of visibility impairment. For this graph, the light scattering associated with gaseous molecules in clear air is included (known as Rayleigh extinction). One can see that the worst visibility days in the West are only slightly more impaired than the best days in the East. It should also be noted that beginning in 1992, seven additional eastern sites are reflected in Figure 6-5a, bringing the total number of eastern sites reflected in

the values plotted in Figure 6-5a for 1992–1998, to 10. By adding the seven eastern sites to the data set, the magnitude of average impairment levels has increased, although the general slope of the trends for clearest, typical, and haziest days appear similar to the trends based on three sites. Figure 6-5a shows that in the East, the haziest visibility days do not appear to be getting any better. Overall, essentially no change in visibility is noted between 1989 and 1998 (based on 3 sites), and a 4-percent degradation occurred since 1992 (based on 10 sites). It is noted that impairment on the haziest days in the East showed modest improvement in 1993. The best visibility days appear to be improving for the three sites over the 10-year period, but show no change since 1992 based on the 10 locations. The typical days (or middle 20 percent of the distribution) show more than a 10-percent visibility improvement for the three sites,

Figure 6-4. Long-term trend for 75th percentile light coefficient from airport visual data (July-September).

and a more modest 5-percent change since 1992 for the 10 sites.

In the West, there appears to be steady visibility improvement for the clearest, typical, and haziest days as presented in Figure 6-5b for the period 1989-1998. Total light extinction for the aggregation of 24 western sites declined by 10-15 percent for each of the 3 categories. This improvement in total light extinction for the worst days corresponds to a reduction of 0.9 deciviews.

The Components of PM Contributing to Trends in Visibility Impairment

The area plots in Figures 6-6a through 6-6f show the relative contribution to aerosol light extinction by the five principal particulate matter constituents measured by IMPROVE at eastern and western sites for the best, middle, and worst 20 percent days. Note that the scale differs for the eastern and western figures in order to more clearly present the relative contribution of the five components. By understanding the total magnitude of each PM_{2.5} component, the change in aerosol composition over time, and the effect of these components on changing visibility, policymakers can design strategies to address health and environmental concerns.

In the East, (Figures 6-6a, b, and c), sulfate is clearly the largest contributor to visibility impairment, ranging from an average of 75–79 percent of each year's annual aerosol extinction during the haziest days to 62-69 percent on the typical days, and to 53-62 percent on the clearest days. Over the 1992-1998 period, the magnitude of aerosol extinction due to sulfates increased, most notably between 1997 and 1998. This change

corresponds to the reported increase in sulfate aerosols and summer time increase in regional SO2 emissions discussed in Chapter 7 (Atmospheric Deposition of Sulfur and Nitrogen Compounds). The organic carbon is the next largest contributor to visibility impairment in the East, accounting for 11-15 percent of annual aerosol extinction on the best days and 10-11 percent on the most impaired days. The third largest contributor in the East is nitrate, which also accounts for about 10–16 percent of annual aerosol light extinction on the best days and about 2-6 percent on the haziest days.

In the West, sulfate is also the most significant single contributor to aerosol light extinction on the clearest, typical, and haziest days. Sulfate accounts for 30–40 percent of annual aerosol light extinction on the best days, 36-44 on the typical days, and 34-41 on the haziest days. However, organic carbon (20-33 percent), crustal material (16-25 percent), and nitrates (7-12 percent) play a more significant role (as a percentage of aerosol extinction) in western sites than eastern ones. Based on this aggregation of 24 sites, the decrease in light extinction noted above can be attributed to downward trends in aerosol elemental carbon and organic carbon. However, carbon increased between 1997 and 1998, offsetting some of these improvements in western Class I areas.

Trends in Specific Class I Areas IMPROVE data from 34 Class I area monitoring sites⁷ were analyzed for upward or downward trends using a nonparametric regression methodology described in Appendix B: Methodology.

Figure 6-5a. Total light extinction trends for eastern Class I areas for clearest, middle, and haziest 20 percent of the days in the distribution, 1989–1998.

Figure 6-5b. Total light extinction trends for western Class I areas for clearest, middle, and haziest 20 percent of the days in the distribution, 1989–1998.

Note: In the eastern Class I area plots, the 1989–1991 trend is based on the three sites with available data. Beginning in 1992 and going through 1998, there are seven additional sites with trend data.

Figure 6-6a. Aerosol light extinction in eastern Class I areas for the clearest 20 percent of the days in the distribution, 1989–1998.

Aerosol Light Extinction, Mm-1

Figure 6-6b. Aerosol light extinction in eastern Class I areas for the middle 20 percent of the days in the distribution, 1989–1998.

Aerosol Light Extinction, Mm-1

Figure 6-6c. Aerosol light extinction in eastern Class I areas for the haziest 20 percent of the days in the distribution, 1989–1998.

Table 6-1 summarizes the trends analysis performed on these 34 sites for total light extinction (expressed in deciviews) on an area-by-area basis. Four areas in the West showed a significant downward trend in deciviews on the haziest days. However, the 30 remaining Class I areas did not have significant visibility improvement on the haziest days over the 7- to 10-year period.

Current Visibility Conditions

Current annual average conditions range from about 18–40 miles in the rural East and about 35–90 miles in the rural West. On an annual average basis, natural visibility conditions have been estimated at approximately 80–90 miles in the East and up to 140 miles in the West.⁴ Natural visibility varies by region, primarily because of slightly higher estimated background levels of PM_{2.5} particles in the East, and the more significant effect of relative humidity on particle concentrations in the East than in the West.

Figures 6-7a, 6-7b, and 6-7c illustrate regional visibility impairment in terms of reconstructed aerosol light extinction based on measurements at IMPROVE sites between 1995 and 1997. Maps are presented for the clearest, typical, and haziest 20 percent of the distribution. The pie

Notes:

- 1) To better discern the trend in each component, the vertical scales for the plots of the western Class I areas are smaller than those for the plots of the eastern Class I areas.
- 2) In the eastern Class I area plots, the 1989-1991 trend is based on the 3 sites with available data. Beginning in 1992 and going through 1998, there are 7 additional sites with trend data.

charts show the relative contribution of different particle constituents to visibility impairment. Annual average aerosol light extinction due to these particles is indicated by the value next to each pie and by the size of each pie.6 Figure 6-7 also shows that visibility impairment is generally greater in the rural East compared to most of the West. As noted earlier, the pies show that, for most rural eastern sites, sulfates account for more than 60 percent of annual average light extinction on the best days and for more than 75 percent of annual average light extinction on the haziest days. Sulfate plays a particularly significant role in the humid summer months due to its nature to attract and dissolve in atmospheric water vapor, most notably in the Appalachian, northeast, and mid-south regions. The figure also shows that organic carbon and nitrates each account for 10-15 percent of aerosol extinction on the clearest days while elemental carbon only contributes 5–7 percent. On the other hand, organic carbon contributes around 10 percent to aerosol light extinction on the haziest days while nitrates and elemental carbon each typically contribute 2-6 percent.

In the rural West, sulfates also play a significant role, typically accounting for about 30–40 percent of aerosol light extinction on the best days and 35–45 percent on the haziest days. In several areas of the West, however, sulfates account for over 50 percent of annual average aerosol extinction, including Mt Rainier, WA, Redwood National Park, CA, and the Cascades of Oregon. In contrast, it contributes less than 25 percent in southern California. Organic carbon typically makes up 20–30 percent of aerosol light extinction in the rural

Figure 6-6d. Aerosol light extinction in western Class I areas for the clearest 20 percent of the days in the distribution. 1989–1998.

Figure 6-6e. Aerosol light extinction in western Class I areas for the middle 20 percent of the days in the distribution, 1989–1998.

Table 6-1. Summary of Class I Area Trend* Analysis

 Parameter	Number of Significant (Deterioratin West	Upward	Number of Significant I (Improving West	Downward
Deciviews, worst 20%	1	0	4	0
Deciviews, middle 20%	0	0	3	3
Deciviews, best 20%	1	1	5	0
Light extinction due to sulfate, worst 20%	3	0	3	0
Light extinction due to sulfate, middle 20%	2,	0	1	3
Light extinction due to sulfate, best 20%	. 1	0	9	1
Light extinction due to organic carbon, worst 20%	. 0	0	4	0
Light extinction due to organic carbon, middle 20%	0 .	0	6	0 .
Light extinction due to organic carbon, best 20%	3	0	4	0

^{*} Based on a total of 34 monitored sites with at least seven years of data: 24 in the west, 10 in the east.

West, elemental carbon (absorption) accounts for about 10 percent, and crustal matter (including coarse PM) accounts for about 15-25 percent. Nitrates typically account for less than 10 percent of total light extinction in western locations, except in the southern California region, where it accounts for almost 40 percent.

Figures 6-8a, 6-8b, and 6-8c illustrate current levels of visibility impairment, in terms of deciviews, for the clearest, typical, and haziest 20 percent days based on IMPROVE data from 1995-1997.7 Note that the deciview scale is more compressed than the scale for visual range or light extinction, with larger values representing greater visibility degradation. Most of the sites in the intermountain West and Colorado Plateau have annual average impairment of 12 deciviews or less, with the worst days ranging up to 16 deciviews. Several other western sites in the

northwest and California experience levels on the order of 15-25 deciviews on the haziest 20 percent of days. Many rural locations in the East have annual average values exceeding 23 deciviews, with average visibility levels on the haziest days up to 33 deciviews.

Programs to Improve Visibility

In April of 1999, EPA issued the final regional haze regulation.8 This regulation addresses visibility impairment in national parks and wilderness areas that is caused by numerous sources located over broad regions. The program lays out a framework within which states can work together to develop implementation plans that are designed to achieve "reasonable progress" toward the national visibility goal of no human-caused impairment in the 156 mandatory Class I federal areas across the country.

States are required to establish goals to improve visibility on the 20 percent worst days and to allow no degradation on the 20 percent best days for each Class I area in the state. In establishing any progress goal, the state must analyze the rate of progress for the next 10-15 year implementation period which, if maintained, would achieve natural visibility conditions by 2064. The state will need to show whether this rate of progress or another rate is more reasonable based on certain factors in the Clean Air Act, including costs and the remaining useful life of affected sources. Along with these goals, the state plans must also include emission reduction measures to meet these goals (in combination with other states' measures), requirements for Best Available Retrofit Technology on certain large existing sources (or an alternative emissions trading program), and visibility monitoring representative of all class I areas.

State regional haze plans are due in the 2003-2008 timeframe. Because of the common precursors and the regional nature of the PM and regional haze problems, the haze rule includes specific provisions for states that work together in regional planning groups to assess the nature and sources of these problems and to develop coordinated, regional emission reduction strategies. One provision allows nine Grand Canyon Visibility Transport Commission States (Arizona, California, Colorado, Idaho, Nevada, New Mexico, Oregon, Utah, and Wyoming) to submit initial plans in 2003 to implement their past recommendations within the framework of the national re-

Figure 6-7a. Aerosol light extinction (in Mm-1) for the clearest 20 percent days and contribution by individual particulate matter constituents, based on 1995–1997 IMPROVE data.

Figure 6-7b. Aerosol light extinction (in Mm⁻¹) for the middle 20 percent days and contribution by individual particulate matter constituents, based on 1995–1997 IMPROVE data.

Figure 6-8a. Current visibility impairment expressed in deciviews for the clearest 20 percent days based on 1995–1997 IMPROVE data.

Figure 6-8c. Current visibility impairment expressed in deciviews for the haziest 20 percent days based on 1995–1997 IMPROVE data.

gional haze program. Another provision allows certain states until 2008 to develop coordinated strategies for regional haze and PM contingent upon future participation in regional planning groups.

Implementation of the PM and Ozone NAAQS in conjunction with a future regional haze program is expected to improve visibility in urban as well as rural areas across the country. Other air quality programs are expected to bring about emissions reductions that will improve visibility in certain regions of the country. The acid rain program will achieve significant regional reductions in the emissions of SO₂, which will reduce sulfate haze particularly in the eastern United States. When implemented, the NO_x State Implementation Plan (SIP) call to reduce emissions from sources of NOx to reduce formation of ozone should also improve regional visibility conditions to some degree. In addition, visibility impairment in class I areas should improve as a result of a number of other programs, including mobile source emissions and fuel standards, certain air toxics standards, and implementation of smoke management and woodstove programs to reduce fuel combustion and soot emissions.

References

- 1. Data from IMPROVE Visibility Monitoring Network, 1998.
- 2. PhotoCD images provided by Kristi Savig and John Molenar, Air Resource Specialists, Inc., Fort Collins, Colorado 80525.
- 3. Sisler, J. Spatial and Seasonal Patterns and Long-Term Variability of the Composition of the Haze in the United States: An Analysis of Data from the IMPROVE Network. Colorado State University, Cooperative Institute for Research in the Atmosphere. Fort Collins, CO., 1996.

Also see: Sisler, J., Huffman, D., and Latimer, D. Spatial and Temporal Patterns and the Chemical Composition of the Haze in the United States: An Analysis of Data from the IMPROVE Network, 1988–1991, Colorado State University, Cooperative Institute for Research in the Atmosphere. Fort Collins, CO., 1993.

Also see (Submitted for publication) James F. Sisler, and William C. Malm, "Interpretation of Trends of PM_{2.5} and Reconstructed Visibility from the IM-PROVE Network," Journal of the Air and Waste Management Association, 1998.

- 4. Irving, Patricia M., ed., Acid Deposition: State of Science and Technology, Volume III, Terrestrial, Materials, Health, and Visibility Effects, The U.S. National Acid Precipitation Assessment Program, Chapter 24, page 24–76.
- 5. R. B. Husar, J. B. Elkins, W.E. Wilson, "U.S. Visibility Trends, 1906–1992," Air and Waste Management Association 87th Annual Meeting and Exhibition, Cincinnati, OH, 1994.
- 6. See reference 1.
- See reference 1.
- 8. The final regional haze rule was signed on 4/22/99 and published in the Federal Register on 7/1/99 (64 Federal Register 35713).

Atmospheric Deposition of Sulfur and Nitrogen Compounds

http://www.epa.gov/oar/aqtrnd98/chapter7.pdf

Sulfur and nitrogen oxides are emitted into the atmosphere primarily from the burning of fossil fuels. These emissions react in the atmosphere to form compounds that are transported long distances and are subsequently deposited in the form of pollutants such as particulate matter (sulfates, nitrates) and related gases (nitrogen dioxide, sulfur dioxide and nitric acid). Nitrogen oxides will also interact with volatile organic compounds to form ozone. The effects of atmospheric deposition include acidification of lakes and streams, nutrient enrichment of coastal waters and large river basins, soil nutrient depletion and decline of sensitive forests, agricultural crop damage, and impacts on ecosystem biodiversity. Toxic pollutants and metals can also be transported and deposited through atmospheric processes. (See Chapter 5: Air Toxics.)

Both local and long-range emission sources contribute to atmospheric deposition. Total atmospheric deposition is determined using both wet and dry deposition measurements. Wet deposition is the portion dissolved in cloud droplets and is deposited during rain or other forms of precipitation. Dry deposition is

the portion deposited on dry surfaces during periods of no precipitation as particles or in a gaseous form. Although the term "acid rain" is widely recognized, the dry deposition portion can range from 20–60 percent of total deposition.

EPA is required by several Congressional and other mandates to assess the effectiveness of air pollution control efforts. These mandates include Title IX of the Clean Air Act Amendments (the National Acid Precipitation Assessment Program), the Government Performance and Results Act, and the U.S./Canada Air Quality Agreement. One measure of effectiveness of these efforts is whether sustained reductions in the amount of atmospheric deposition over broad geographic regions are occurring. However, changes in the atmosphere happen very slowly and trends are often obscured by the wide variability of measurements and climate. Numerous years of continuous and consistent data are required to overcome this variability, making long-term monitoring networks especially critical for characterizing deposition levels and identifying relationships among emissions, atmospheric loadings and effects on human health and the environment.

For wet and dry deposition, these studies typically include measurement of concentration levels of key chemical components as well as precipitation amounts. For dry deposition, analyses must also include meteorological measurements that are used to estimate rate of the actual deposition, or "flux." Data representing total deposition loadings (e.g., total sulfate or nitrate) are what many environmental scientists use for integrated ecological assessments.

Primary Atmospheric Deposition Monitoring Networks

The National Atmospheric Deposition Program (NADP) and the Clean Air Status and Trends Network (CASTNet) were developed to monitor wet and dry acid deposition, respectively. Monitoring site locations are predominantly rural by design to assess the relationship between regional pollution and changes in regional patterns in deposition. CASTNet also includes measurements of rural ozone and the

Figure 7-1. The NADP/NTN Network.

chemical constituents of PM_{2.5}. Rural monitoring sites of NADP and CAST-Net provide data where sensitive ecosystems are located and provide insight into natural background levels of pollutants where urban influences are minimal. These data provide needed information to scientists and policy analysts to study and evaluate numerous environmental effects, particularly those caused by regional sources of emissions for which long range transport plays an important role. Measurements from these networks are also important for understanding non-ecological impacts of air pollution such as visibility impairment and damage to materials, particularly those of cultural and historical importance.

National Atmospheric Deposition Network

The National Atmospheric Deposition Program (NADP) was initiated in the late 1970s as a cooperative program between federal and state agencies, universities, and electric utilities and other industries to determine geographical patterns and trends in precipitation chemistry in the United States. Collection of weekly wet deposition samples began in 1978. The size of the NADP Network grew rapidly in the early 1980s when the major research effort by the National Acid Precipitation Assessment Program (NAPAP) called for characterization of acid deposition levels. At that time, the network became known as the NADP/NTN (National Trends Network). By the mid-1980s, the NADP had grown to nearly 200 sites, where it stands today as the longest running national

deposition monitoring network (see Figure 7-1).

The NADP analyzes the constituents important in precipitation chemistry, including those affecting rainfall acidity and those that may have ecological effects. The Network measures sulfate, nitrate, hydrogen ion (measure of acidity), ammonia, chloride, and base cations (calcium, magnesium, potassium). To ensure comparability of results, laboratory analyses for all samples are conducted by NADP's Central Analytical Lab at the Illinois State Water Survey. A new subnetwork of the NADP, the Mercury Deposition Network (MDN) measures mercury in precipitation. For more information on the MDN, see Chapter 5: Air Toxics.

Figure 7-2. Percent differences in mean annual measured sulfate concentrations as compared to projected concentrations for 1995–1996 for the eastern United States (from NADP/NTN).

Small squares on the map show locations of electric utility plants affected under Phase I of the Acid Rain Program. Areas on the map depicting higher sulfate concentrations (e.g., south and east of Lake Michigan and the southwestern portion of map) appear to be due to below average precipitation volumes, which are associated with higher concentrations of sulfate. In addition, these results may have been affected by SO₂ emission increases at some Phase II emissions sources that are controlled by the Acid Rain Program in the year 2000.

Trends Analyses for Sulfate and Nitrate Concentrations in Wet Deposition

Sulfate concentrations in precipitation have decreased over the past two decades.1 The reductions were relatively large in the early 1980s followed by more moderate declines until 1995. These reductions in wet sulfates are similar to changes in SO₂ emissions. In 1995 and 1996, however, concentrations of sulfates in precipitation over a large area of the eastern United States exhibited a dramatic and unprecedented reduction. Sulfates have been estimated to be 10-25 percent lower than levels expected with a continuation of 1983-1994 trends (see Figure 7-2). This important reduction in acid precipitation is directly related to the large regional decreases in SO2 emissions resulting from phase I of the

Table 7-1. Mean Annual Sulfate Wet Deposition, 1989–1998, in Three Sensitive Regions in the Eastern United States

	Sulfa	Annual te Wet on (kg/ha)	Percent Change in Mean Annual Sulfate Wet Deposition
Region	(1989–91	1995–98)	(1989–91 to 1995–98)
Adirondacks	25.6	18.9	-26
Mid-Appalachian	27.3	21.4	-21
Southern Blue Ridge	22.9	19.6	-15

Acid Rain Program (See "Trends in SO₂" in Chapter 2 of this report). The largest reductions in sulfate concentrations occurred along the Ohio River Valley and in states immediately downwind of this region. For example, the average reduction in sulfate concentrations in Ohio was approximately 21 percent, in Maryland 27 percent, and in Pennsylvania 15 percent. The largest decrease (32 percent) occurred in the northern portion of West Virginia. Reductions in hydrogen ion concentrations in the

East, the primary indicator of precipitation acidity, were very similar to those of sulfate concentrations, both in magnitude and location. Nitrate concentrations at NADP/NTN sites were not appreciably different in 1995–1996 from historical levels.²

The effects of decreased SO₂ emissions on sulfates can also be seen by comparing deposition maps for the eastern United States. Figures 7-3a and 7-3b compare wet sulfate deposition between 1989–1991 and 1995–1998.³ The sulfate concentrations in

precipitation are still highest in the Great Lake states and areas extending eastward, but the magnitude of the levels are greatly reduced.

The percent improvement between 1989–1991 and 1995–1998 can also be viewed in terms of three sensitive regions in the eastern United States: Adirondacks, Mid-Appalachians, and Southern Blue Ridge. Table 7-1 shows that the improvements range from 15–26 percent. The largest improvements were in the Adirondacks and Mid-Appalachians.³

Clean Air Status and Trends Network

The Clean Air Status and Trends Network provides atmospheric data on the dry deposition component of total acid deposition, ground-level ozone and other forms of atmospheric pollution. CASTNet is considered the nation's primary source for atmospheric data to estimate dry acidic deposition and to provide data on rural ozone levels. Used in conjunction with other national monitoring networks, CASTNet is used to determine the effectiveness of national emission control programs. Established in 1987, CASTNet now comprises 79 monitoring stations across the United States. The longest data records are primarily at eastern sites. The majority of the monitoring stations are operated by EPA's Office of Air and Radiation; however, 27 stations are operated by the National Park Service (NPS) in cooperation with EPA. Of the total number of sites, 74 measure dry-deposition, 19 measure wet-deposition, 68 measure ozone, and eight measure aerosols for visibility assessment.

Each CASTNet dry deposition station measures:

Figure 7-3a. Trends in wet sulfate deposition (kg/ha); 1995-1997.

Figure 7-3b. Trends in wet sulfate deposition (kg/ha); 1989-1991.

Figure 7-4. CASTNet Network and subset of 34 sites used for 1989–1998 trends analysis.

- Weekly average atmospheric concentrations of sulfate, nitrate, ammonium, sulfur dioxide, and nitric acid (sulfate, nitrate and ammonium generally exist as fine particles).
- Hourly concentrations of ambient ozone levels.
- Meteorological conditions required for calculating dry deposition rates.

Dry Deposition

Dry deposition rates are calculated using atmospheric concentrations, meteorological data and information on land use, vegetation, and surface conditions. CASTNet complements the database compiled by NADP. Because of the interdependence of wet and dry deposition, CASTNet also collected wet deposition data at the 18 sites where there are no NADP/NTN stations within a 50 km

radius. Now, these sites are officially part of the NADP. Together, these two long-term databases provide the necessary data to estimate trends and spatial patterns in total atmospheric deposition. NOAA also operates a smaller dry deposition network called Atmospheric Integrated Assessment Monitoring Network (AIR-MoN) focused on addressing research issues specifically related to dry deposition measurement.

Concentration Trends Analysis at CASTNet Sites

CASTNet ambient concentration data in the eastern United States were analyzed for the period 1989 to 1998 for the change in ambient sulfur dioxide, sulfates, total nitrates and ammonium. First, maps are presented for a comparison of 2-year periods at the beginning and end of the 10-year period based on data from all 50

eastern locations in the CASTNet monitoring program. Then data from a subset of 34 Eastern CASTNet sites with the most complete historical record are examined for year to year changes from 1989 to 1998.⁵

In the early 1990s, ambient SO₂ concentrations in the rural eastern United States were highest in western Pennsylvania, along the Ohio Valley and in the vicinity of Chicago/Gary Indiana. Large improvement in SO₂ air quality can be seen by comparing 1990-1991 with 1997-1998. The largest decreases in concentrations are noted in the vicinity of Chicago and throughout the states bordering the Ohio Valley (IL, IN, OH, PA, KY, WV). The highest SO₂ concentrations in the rural parts of the eastern United States are now concentrated in southwestern PA.

In the early 1990s, sulfate concentrations greater than 5 µg/m^{3*} cover

Figure 7-5a. Comparison of ambient sulfur dioxide concentrations in the rural eastern United States from CASTNet monitoring data, 1990–1991 vs. 1997–1998

1990-1991

1997-1998

Decrease in ambient sulfur dioxide concentrations in the rural eastern United States, 1990–1991 vs. 1997–1998.

most of the eastern United States. Regions of concentrations greater than 6 μ g/m³ are estimated to cover the Ohio Valley States (II, IN, OH, KY, WV), PA and the other mid-Atlantic states from New Jersey to Virginia. The highest sulfate concentrations (> 7 μ g/m³) were adjacent to the Ohio Valley and in northern Alabama. These are the locations of large electric utilities.

In the late 1990s (represented by the period 1997–1998), sulfates were dramatically lower. Although there are differences between 1997 and 1998, as discussed below, both the size of the region with and the magnitude of the highest concentrations has decreased. However, the region with concentrations higher than 5 µg/m³ does not appear to have changed appreciably.

The location of all CASTNet sites and those used for the 10-year trend

analysis are shown in Figure 7-4. During this 10-year period, atmospheric concentrations of SO₂ and sulfate both showed statistically-significant declining trends. The average reduction in the these rural sulfur dioxide and sulfate levels was 38 percent** and 22 percent respectively. The distribution of annual average concentrations is presented as box-plots in Figures 7-6 and 7-7. An average 10-percent increase in sulfates between 1997 and 1998 is also noted.

The trend in total nitrate concentrations (nitrates plus nitric acid) was essentially flat, corresponding to the small change in NO_x emissions during this period. The highest nitrate concentrations are found in the States of Ohio, Indiana and Illinois.

Ammonium concentrations in the ambient air are typically associated with sulfate and nitrate compounds.

The ammonium maps presented in Figure 7-5d show that the highest ammonium concentrations are also highest in the midwest. However, the decrease in ambient ammonium over the 10-year period primarily occurred in the Ohio Valley and appears to be associated with the reduction in sulfate concentrations.

Electric utilities account for 71 percent of the SO_2 emissions in the eastern United States. However, they accounted for most of the nationwide reduction in SO_2 emissions.⁷ The trend in ambient sulfates and sulfur

^{*}Sulfate concentrations represent the sulfate ion, SO_4 -2, and do not represent the compounds (i.e., ammonium sulfate or ammonium bisulfate) typically associated with this analyte.

^{**}The overall 38-percent decline in ambient SO_2 concentrations in rural areas matches the national air quality improvement in urban areas as measured by the state and local air monitoring stations.

Figure 7-5b. Comparison of ambient sulfate concentrations in the rural eastern United States from CASTNet monitoring data, 1990-1991 vs. 1997-1998.

1990-1991

1997-1998

Decrease in ambient sulfate concentrations in the rural eastern United States, 1990-1991 vs. 1997-1998.

Figure 7-5c. Comparison of ambient total nitrate concentrations in the rural eastern United States from CASTNet data, 1990-1991 vs. 1997-1998.

1990-1991

1997-1998

Decrease in ambient total nitrate concentrations in the rural eastern United States, 1990-1991 vs. 1997-1998.

Figure 7-5d. Comparison of ambient ammonium concentrations in the rural eastern United States from CASTNet data, 1990-1991 vs. 1997--1998.

1990-1991

1997-1998

Decrease in ambient ammonium concentrations in the rural eastern United States, 1990-1991 vs. 1997-1998.

dioxide are generally consistent with the change in annual sulfur dioxide emissions from electric utilities in the eastern United States. Figure 7-8 shows that the 22 percent 10-year decline in sulfates matches the overall 21-percent decline in SO₂ emissions. In addition, the 1997-1998 increase in ambient sulfates (10 percent) appears to follow the 5-percent increase in annual emissions.

Figure 7-9 presents the trends in ambient sulfates, ambient sulfur dioxide, and SO₂ emissions by calendar quarter. Most of the increase in emissions and ambient sulfates occurred during the high sulfate "season" (i.e., the 2nd and 3rd calendar quarters). This season with its slow moving air masses and high photochemical activity contributes 65-70 percent to the typical annual average

Figure 7-6. Trend in ambient sulfates in the rural eastern United States, based on CASTNet monitoring data, 1989-1998.

Figure 7-7. Trend in ambient sulfur dioxide in the rural United States, based on CASTNet monitoring data, 1989–1998.

Figure 7-8. Trend in annual average ambient sulfur dioxide and sulfate concentrations, based on CASTNet monitoring data, and regional SO₂ emissions from electric utilities in rural eastern United States, 1989–1998.

concentrations of sulfates. It also has slightly more than half of the annual SO_2 emissions. Between these warmer months of 1997 and 1998, regional sulfur dioxide emissions increased 12 percent between 1997 and 1998 and average sulfates increased 21 percent. The higher summertime emissions in 1998 are attributed in part to the extra demands on electric utilities due to extremely warm temperatures throughout the Southeast (see Figure 2-27 in the ozone section of Chapter 2.)

For annual average ambient sulfur dioxide, the trend appears to better mimic the large drop in regional emissions which occurred between 1993 and 1995. The 10-year improvement in rural ambient SO2 levels in eastern United States was also more substantial than the 10-year decrease in regional emissions. Unlike sulfates, however, ambient SO₂ is highest during the colder months (i.e., 1st and 4th calendar quarters) and most of the 10-year decrease in ambient SO₂ occurred during these quarters. From 1989–1998, the 6-cold-month average SO₂ concentrations (now accounting for 60-65 percent of the annual average) decreased 44 percent. The 10-year decline in emissions, -29 percent, was also greater during the colder months. During the last two years, annual average SO₂ decreased while annual emissions increased. However, air quality and emissions match more closely on a seasonal basis. During the cold months, average SO2 concentrations and total emissions increased slightly in the 1st quarter but decreased during the latter part of the year. For the warmer months (the 2nd and 3rd calendar quarters), the figure reveals a large increase in SO2 emissions, ambient sulfates and ambient sulfur dioxide between 1997 and 1998 during. (See the criteria pollutants section in Chapter 2 for more information about SO₂ emission trends and the acid rain program. Also see www.epa.gov/acidrain/).

References

- 1. Lynch, J.A., J.W. Grim and V.C Bowersox. 1995. Trends in Precipitation Chemistry in the United States: A National Perspective, 1980–1992. Atmospheric Environment Vol 29, No. 11.
- 2. Lynch, J.A., V.C Bowersox and J.W. Grim. 1996. Trends in Precipitation Chemistry in the United States: An Analysis of the Effects in 1995 of Phase I of the Clean Air Act Amendments of 1990, Title IV. U.S. Geological Survey. Open-file Report 96-0346.
- 3. "Changes in Sulfate Deposition in the Eastern USA Following Enactment of Title IV of the Clean Air Act Amendments of 1990." Lynch, J.A., Bowersox, V.C. and Grimm, J.W., 1999. Atmospheric Environment. In Press.
- 4. Holland, D. P. Principe and J. Sickles, II. 1998. In press, *Atmospheric Environment*.
- 5. Clean Air Status and Trends Network (CASTNet), 1998 Annual Report. http://www.epa.gov/acidrain/castnet/annual98/annual98.html
- 6. The overall 38-percent decline in ambient SO₂ concentrations in rural areas matches the national air quality improvement in urban areas as measured by the State and local air monitoring stations.
- Eighty-four percent of the 10-year nationwide reduction in SO₂ emissions is attributed to fuel combustion from electric utilities.

Figure 7-9a. Trend in annual average ambient sulfur dioxide and sulfate concentrations, based on CASTNet monitoring data, and regional SO₂ emissions from electric utilities in rural eastern United States by calendar quarter, 1989–1998; quarter 1.

Figure 7-9b. Trend in annual average ambient sulfur dioxide and sulfate concentrations, based on CASTNet monitoring data, and regional SO₂ emissions from electric utilities in rural eastern United States by calendar quarter, 1989–1998; quarter 2.

Figure 7-9c. Trend in annual average ambient sulfur dioxide and sulfate concentrations, based on CASTNet monitoring data, and regional SO₂ emissions from electric utilities in rural eastern United States by calendar quarter, 1989–1998; quarter 3.

Figure 7-9d. Trend in annual average ambient sulfur dioxide and sulfate concentrations, based on CASTNet monitoring data, and regional SO₂ emissions from electric utilities in rural eastern United States by calendar quarter, 1989–1998; quarter 4.

Data Tables

http://www.epa.gov/oar/aqtrnd98/appenda.pdf

Table A-1. National Air Quality Trends Statistics for Criteria Pollutants, 1989–1998

Statistic	# of Sites	Units	Percentile	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
Carbon Monoxide										graphygggggggggggggggggggggggggggggggggggg			
2nd Max. 8-hr.	363	ppm	95th	10.9	10.5	9.8	8.5	8.0	8.1	7.6	7.4	6.7	6.3
2nd Max. 8-hr.	363	ppm	90th	9.7	8.8	8.7	7.8	7.2	7.6	6.6	6.5	5.9	5.7
2nd Max. 8-hr.	363	ppm	75th	7.7	7.0	7.0	6.4	5.9	6.2	5.5	5.1	4.9	4.6
2nd Max. 8-hr.	363	ppm	50th	5.9	5.4	5.2	4.8	4.7	4.9	4.3	3.9	3.8	3.5
2nd Max. 8-hr.	363	ppm	25th	4.4	4.2	3.9	3.7	3.6	3.8	3.3	3.0	2.9	2.7
2nd Max. 8-hr.	363	ppm	10th	3.4	3.1	3.0	2.8	2.9	2.8	2.5	2.3	2.1	2.1
2nd Max. 8-hr.	363	ppm	5th	2.6	2.5	2.3	2.4	2.2	2.2	2.3	2.0	1.7	1.9
2nd Max. 8-hr.	363	ppm	Arith. Mean	6.2	5.8	5.6	5.2	4.9	5.1	4.5	4.2	3.9	3.8
Lead								-4			aporte de la compania del compania de la compania del compania de la compania del la compania de	and the second particle and the second second	
Max. Qtr. AM	189	ppm	95th	0.27	0.35	0.21	0.18	0.18	0.14	0.14	0.13	0.12	0.13
Max. Qtr. AM	189	ppm	90th	0.17	0.16	0.15	0.13	0.11	0.10	0.09	0.09	0.09	0.08
Max. Qtr. AM	189	ppm	75th	0.11	0.09	0.07	0.06	0.06	0.05	0.05	0.04	0.04	0.04
Max. Qtr. AM	189	ppm	50th	0.06	0.05	0.04	0.04	0.03	0.03	0.03	0.02	0.02	0.02
Max. Qtr. AM	189	ppm	25th	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.01	0.01	0.01
Max. Qtr. AM	189	ppm	10th	0.03	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Max. Qtr. AM	189	ppm	5th	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Max. Qtr. AM	189	ppm	Arith. Mean	0.09	0.09	0.07	0.06	0.05	0.05	0.04	0.04	0.04	0.04
Nitrogen Dioxide							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
Arith. Mean	225	ppm	95th	0.043	0.040	0.043	0.038	0.037	0.040	0.039	0.037	0.034	0.035
Arith. Mean	225	ppm	90th	0.035	0.034	0.033	0.033	0.033	0.034	0.032	0.032	0.031	0.031
Arith. Mean	225	ppm	75th	0.027	0.025	0.025	0.024	0.024	0.024	0.023	0.024	0.022	0.023
Arith. Mean	225	ppm	50th	0.020	0.019	0.019	0.018	0.018	0.019	0.019	0.018	0.018	0.018
Arith. Mean	225	ppm	25th	0.013	0.013	0.012	0.013	0.013	0.013	0.012	0.012	0.012	0.012
Arith. Mean	225	ppm	10th	0.007	0.007	0.007	0.007	0.007	0.008	0.007	0.007	0.007	0.006
Arith. Mean	225	ppm	5th	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.004	0.004	0.004
Arith. Mean	225	ppm	Arith. Mean	0.021	0.020	0.020	0.019	0.019	0.020	0.019	0.019	0.018	0.018
Ozone	naka kalan kalan mana at na kaming dan kaming pang n			*****						magasin ga ya majanyanggan yangaba m			**************************************
2nd Max. 1-hr.	661	ppm	95th	0.171	0.170	0.170	0.160	0.150	0.150	0.150	0.144	0.142	0.154
2nd Max. 1-hr.	661	ppm	90th	0.150	0.146	0.149	0.131	0.138	0.130	0.139	0.127	0.130	0.134
2nd Max. 1-hr.	661	ppm	75th	0.124	0.120	0.124	0.111	0.120	0.117	0.123	0.114	0.116	0.119
2nd Max. 1-hr.	661	ppm	50th	0.107	0.107	0.108	0.100	0.104	0.104	0.110	0.103	0.103	0.109
2nd Max. 1-hr.	661	ppm	25th	0.095	0.095	0.095	0.090	0.091	0.092	0.098	0.093	0.091	0.096
2nd Max. 1-hr.	661	ppm	10th	0.085	0.083	0.081	0.081	0.080	0.083	0.085	0.085	0.081	0.086
2nd Max. 1-hr.	661	ppm	5th	0.080	0.075	0.075	0.074	0.075	0.077	0.078	0.079	0.075	0.076
2nd Max. 1-hr.	661	ppm	Arith. Mean	0.114	0.112	0.113	0.105	0.108	0.107	0.112	0.106	0.105	0.110
4th Max. 8-hr.	661	ppm	95th	0.117	0.116	0.116	0.107	0.110	0.106	0.112	0.103	0.105	0.110
4th Max. 8-hr.	661	ppm	90th	0.105	0.106	0.109	0.097	0.100	0.098	0.106	0.097	0.101	0.102
4th Max. 8-hr.	661	ppm	75th	0.093	0.094	0.097	0.087	0.090	0.090	0.096	0.090	0.091	0.095
4th Max. 8-hr.	661	ppm	50th	0.083	0.083	0.085	0.079	0.081	0.082	0.088	0.083	0.082	0.087
4th Max. 8-hr.	661	ppm	25th	0.075	0.075	0.073	0.073	0.073	0.074	0.077	0.075	0.074	0.077
4th Max. 8-hr.	661	ppm	10th	0.067	0.066	0.065	0.066	0.063	0.067	0.067	0.068	0.065	0.069
4th Max. 8-hr.	661	ppm	5th	0.060	0.059	0.059	0.061	0.058	0.060	0.061	0.063	0.059	0.060
4th Max. 8-hr.	661	ppm	Arith. Mean	0.086	0.085	0.086	0.081	0.082	0.083	0.087	0.083	0.083	0.086

Table A-1. National Air Quality Trends Statistics for Criteria Pollutants, 1989–1998 (continued)

Statistic	# of Sites	Units	Percentile	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
PM ₁₀													
Annual Avg.	934	μg/m3	95th	51.5	46.4	46.4	42.0	41.5	39.4	38.8	37.6	37.5	35.8
Annual Avg.	934	µg/m3	90th	43.3	39.8	39.9	36.4	35.9	36.4	34.8	33.0	32.4	31.8
Annual Avg.	934	µg/m3	75th	36.3	34.5	33.7	31.0	30.2	30.4	29.1	27.7	27.3	27.7
Annual Avg.	934	µg/m3	50th	30.1	28.2	28.2	25.8	25.4	25.6	24.3	23.2	23.2	23.6
Annual Avg.	934	µg/m3	25th	25.3	23.4	23.6	22.0	21.0	21.1	19.8	19.3	19.4	19.3
Annual Avg.	934	μg/m3	10th	20.1	18.9	18.4	17.6	16.7	16.7	15.5	16.0	15.3	15.2
Annual Avg.	934	μg/m3	5th	17.1	15.7	14.5	13.6	12.7	13.1	12.2	12.2	12.1	12.3
Annual Avg.	934	μg/m3	Arith. Mean	31.7	29.4	29.1	26.8	26.0	26.0	24.9	23.9	23.8	23.7
Sulfur Dioxide													
Annual Mean	482	ppm	95th	0.0183	0.0175	0.0162	0.0154	0.0153	0.0143	0.0115	0.0113	0.0107	0.0106
Annual Mean	482	ppm	90th	0.0153	0.0146	0.0138	0.0128	0.0126	0.0122	0.0101	0.0097	0.0090	0.0095
Annual Mean	482	ppm	75th	0.0115	0.0107	0.0099	0.0095	0.0092	0.0090	0.0074	0.0074	0.0071	0.0069
Annual Mean	482	ppm	50th	0.0080	0.0077	0.0076	0.0069	0.0067	0.0065	0.0051	0.0053	0.0051	0.0049
Annual Mean	482	ppm	25th	0.0048	0.0044	0.0046	0.0043	0.0040	0.0037	0.0033	0.0032	0.0031	0.0032
Annual Mean	482	ppm	10th	0.0024	0.0022	0.0022	0.0020	0.0022	0.0021	0.0018	0.0018	0.0018	0.0019
Annual Mean	482	ppm	5th	0.0016	0.0015	0.0016	0.0014	0.0015	0.0015	0.0014	0.0014	0.0014	0.0014
Annual Mean	482	ppm	Arith. Mean	0.0087	0.0082	0.0079	0.0074	0.0072	0.0069	0.0056	0.0056	0.0054	0.0053
2nd Max. 24-hr.	486	ppm	95th	0.0960	0.0870	0.0750	0.0750	0.0720	0.0720	0.0555	0.0600	0.0520	0.0520
2nd Max. 24-hr.	486	ppm	90th	0.0740	0.0660	0.0610	0.0610	0.0580	0.0620	0.0470	0.0470	0.0450	0.0430
2nd Max. 24-hr.	486	ppm	75th	0.0520	0.0480	0.0440	0.0440	0.0420	0.0440	0.0330	0.0330	0.0330	0.0310
2nd Max. 24-hr.	486	ppm	50th	0.0380	0.0330	0.0320	0.0300	0.0280	0.0320	0.0220	0.0230	0.0230	0.0220
2nd Max. 24-hr.	486	ppm	25th	0.0230	0.0210	0.0200	0.0190	0.0180	0.0190	0.0150	0.0150	0.0140	0.0140
2nd Max. 24-hr.	486	ppm	10th	0.0110	0.0100	0.0100	0.0100	0.0100	0.0090	0.0080	0.0090	0.0070	0.0080
2nd Max. 24-hr.	486	ppm	5th	0.0070	0.0060	0.0070	0.0060	0.0055	0.0050	0.0050	0.0050	0.0050	0.0050
2nd Max. 24-hr.	486	ppm	Arith. Mean	0.0414	0.0375	0.0348	0.0339	0.0324	0.0340	0.0257	0.0262	0.0250	0.0240

Table A-2. National Carbon Monoxide Emissions Estimates, 1989–1998 (thousand short tons)

Source Category	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
FUEL COMBUSTION	7,443	5,510	5,856	6,155	5,587	5,519	5,934	6,148	5,423	5,374
Electric Utilities	321	363	349	350	363	370	372	391	405	417
Coal	233	234	234	236	246	247	250	248	254	254
Oil	26	20	19	15	16	15	10	11	12	17
Gas	51	51	51	51	49	<i>5</i> 3	55	79	83	89
Internal Combustion	11	57	45	47	51	<i>55</i>	58	54	56	<i>57</i>
Industrial	672	879	920	955	1,043	1,041	1,056	1,154	1,126	1,114
Coal	87	105	101	102	101	100	98	109	108	105
Oil	46	74	60	64	66	66	71	60	<i>58</i>	56
Gas	271	226	284	300	322	337	345	335	334	330
Other	173	279	267	264	286	287	297	349	333	335
Internal Combustion	96	195	208	227	268	251	245	301	295	289
Other	6,450	4,269	4,587	4,849	4,181	4,108	4,506	4,603	3,892	3,843
Residential Wood	6,161	3,781	4,090	4,332	3,679	3,607	3,999	4,200	3,487	3,452
Other	153	262	281	292	274	268	273	260	257	247
INDUSTRIAL PROCESSES	7,013	5,852	5,740	5,683	5,898	5,838	5,790	4,692	4,844	4,860
Chemical & Allied Processing	1,925	1,183	1,127	1,112	1,093	1,171	1,223	1,100	1,119	1,129
Metals Processing	2,132	2,640	2,571	2,496	2,536	2,475	2,380	1,429	1,510	1,495
Petroleum & Related Industries	436	333	345	371	371	338	348	356	369	368.
Other Industrial Processes	716	537	548	544	594	600	624	600	623	632
Solvent Utilization	2	5	5	5	5	5	6	2	2	2
Storage & Transport	55	76	28	17	51	24	. 25	78	80	. 80
Waste Disposal & Recycling	1,747	1,079	1,116	1,138	1,248	1,225	1,185	1,127	1,141	1,154
TRANSPORTATION	83,829	76,039	80,659	78,858	79,593	81,629	74,331	73,494	71,980	70,300
On-Road Vehicles	66,050	57,848	62,074	59,859	60,202	61,833	54,106	53,262	51,666	50,386
Non-Road Sources	17,779	18,191	18,585	18,999	19,391	19,796	20,224	20,232	20,314	19,914
MISCELLANEOUS	8,153	11,122	8,618	6,934	7,082	9,657	7,298	11,144	12,164	8,920
Fires	8,153	11,090	8,589	6,904	7,048	9,628	7,270	11,121	12,141	8,896
Other	0	32	28	30	34	29	29	23	24	24
TOTAL ALL SOURCES	106,439	98,523	100,872	97,630	98,160	102,643	93,353	95,479	94,410	89,454

Table A-3. National Lead Emissions Estimates, 1989–1998 (short tons)

Source Category	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
FUEL COMBUSTION	505	500	495	491	497	496	490	492	493	503
Electric Utilities	67	64	. 61	59	62	62	57	61	64	68
Coal	46	46	46	47	50	50	50	· <i>53</i>	54	54
Oil	21	18	15	12	12	12	7	8	10	14
Industrial	18	18	.18	18	19	19	18	16	16	19
Coal	14	14	15	14	14	14	14	13	14	13
Oil .	4	3	3	. 4	5	5	. 4	3	2	5
Other	420	418	416	414	416	415	415	415	413	416
Commercial/Institutional Coal	4	4	. 3	4	4	3	4	5	· 5	5
Commercial/Institutional Oil	4	4	4	4	4	4	3	3	2	4
Misc. Fuel Comb. (Except Residential)	400	400	400	400	400	400	400	400	400	400
Residential Other	12	10	9	7	8	8	. 8	7	. 6	6
INDUSTRIAL PROCESSES	3,161	3,278	3,081	2,736	2,872	3,007	2,875	2,882	2,937	2,948
Chemical & Allied Processing	136	136	132	93	92	96	163	167	188	175
Metals Processing	2,088	2,170	1,974	1,774	1,900	2,027	2,049	2,055	2,080	2,098
Other Industrial Processes	173	169	167	56	55	54	59	51	54	54
Waste Disposal & Recycling	765	804	808	812	825	830	604	609	615	620
TRANSPORTATION	1,802	1,197	592	584	547	544	564	525	523	522
On-Road Vehicles	982	421	18	18	19	19	19	19	20	19
Non-Road Sources	820	776	574	565	529	525	544	505	503	503
TOTAL ALL SOURCES	5,468	4,975	4,169	3,810	3,916	4,047	3,929	3,899	3,952	3,973

Table A-4. National Nitrogen Oxides Emissions Estimates, 1989–1998 (thousand short tons)

Source Category	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
FUEL COMBUSTION	10,537	10,895	10,779	10,928	11,111	11,015	10,827	10,354	10,403	10,189
Electric Utilities	6,593	6,663	6,519	6,504	6,651	6,565	6,384	6,057	6,191	6,103
Coal	5,676	5,642	5,559	5,579	5,744	5,636	5,579	5,542	5,609	5,395
Oil	285	221	212	170	180	163	96	103	129	208
Gas	582	565	580	579	551	591	562	265	299	344
Internal Combustion	49	235	168	175	176	175	148	147	154	156
Industrial	3,209	3,035	2,979	3,071	3,151	3,147	3,144	3,072	3,019	2,969
Coal	615	585	570	574	589	602	597	642	636	622
Oil	294	265	237	244	245	241	247	231	223	216
Gas	1,625	1,182	1,250	1,301	1,330	1,333	1,324	1,184	1,168	1,154
Other	120	131	129	126	124	124	123	124	119	119
Internal Combustion	556	874	793	825	863	846	854	967	948	932
Other	736	1,196	1,281	1,353	1,308	1,303	1,298	1,224	1,193	1,117
Commercial/Institutional Coal	38	40	36	38	40	40	38	33	34	36
Commercial/Institutional Oil	106	97	88	93	93	95	103	92	94	77
Commercial/Institutional Gas	159	200	210	225	232	237	231	238	243	234
Misc. Fuel Comb. (Except Residential)	11	34	32	28	31	31	30	26	27	28
Residential Wood	<i>75</i>	46	50	53	45	44	49	51	43	42
Residential Other	347	780	865	916	867	857	847	<i>783</i>	752	700
INDUSTRIAL PROCESSES	852	892	816	857	861	878	873	854	884	893
Chemical & Allied Processing	273	168	165	163	155	160	158	146	149	152
Metals Processing	83	97	76	81	83	91	98	83	88	88
Petroleum & Related Industries	97	153	121	148	123	117	110	134	138	138
Other Industrial Processes	311	378	352	361	370	389	399	386	404	408
Solvent Utilization	3	1	2	3	3	3	3	2	2	2
Storage & Transport	2	3	6	5	5	5	6	7	7	7
Waste Disposal & Recycling	84	91	95	96	123	114	99	95	96	97
TRANSPORTATION	12,210	11,893	12,368	12,556	12,748	13,090	12,954	13,016	13,126	13,044
On-Road Vehicles	7,682	7,089	7,469	7,622	7,806	8,075	7,826	7,848	7,875	7,765
Non-Road Sources	4,528	4,804	4,900	4,934	4,942	5,015	5,128	5,167	5,251	5,280
MISCELLANEOUS	293	369	286	255	241	390	267	452	411	328
TOTAL ALL SOURCES	23,893	24,049	24,249	24,596	24,961	25,372	24,921	24,676	24,824	24,454

Table A-5. National Volatile Organic Compounds Emissions Estimates, 1989-1998 (thousand short tons)

Source Category	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
FUEL COMBUSTION	1,372	1,005	1,075	1,114	993	989	1,073	1,036	900	893
Electric Utilities	37	47	44	44	45	45	44	49	51	54
Coal	27	27	27	27	29	29	29	28	29	29
Oil	7	6	5	4	4	4	3	3	3	5
Gas	2	2	2	2	. 2	2	2	8	8	9
Internal Combustion	1	12	10	10	10	10	10	10	11	11
Industrial	134	182	196	187	186	196	206	166	162	161
Coal	7	7	6	7	6	8	6	7	6	6
Oil	16	12	11:	12	12	12	12	8	8	8
Gas	61	58	60	52	51	63	· 73	49	49	49
Other	36	51	51	49	51	50	50	40	38	38
Internal Combustion	15	54	68	66	66	64	65	62	61	60
Other	1,200	776	835	884	762	748	823	821	686	678
Residential Wood	1,169	718	776	822	698	684	<i>759</i>	759	624	620
Other	31	58	59	62	64	63	64	62	61	58
INDUSTRIAL PROCESSES	10,755	10,000	10,178	10,380	10,578	10,738	10,780	8,591	8,812	8,452
Chemical & Allied Processing	980	634	710	715	701	691	660	388	390	396
Metals Processing	74	122	123	124	124	126	125	72	76	75
Petroleum & Related Industries	639	612	640	632	649	647	642	488	499	496
Other Industrial Processes	403	401	391	414	442	438	450	428	444	450
Solvent Utilization	5,964	5,750	5,782	5,901	6,016	6,162	6,183	5,506	5,654	5,278
Storage & Transport	1,753	1,495	1,532	1,583	1,600	1,629	1,652	1,286	1,324	1,324
Waste Disposal & Recycling	941	986	999	1,010	1,046	1,046	1,067	423	427	433
TRANSPORTATION	9,744	8,858	9,080	8,665	8,727	9,074	8,401	8,155	7,902	7,786
On-Road Vehicles	7,192	6,313	6,499	6,072	6,103	6,401	5,701	5,490	5,330	5,325
Non-Road Sources	2,552	2,545	2,581	2,594	2,624	2,672	2,699	2,664	2,572	2,461
MISCELLANEOUS	642	1,073	769	500	569	734	564	954	1,263	785
Other Combustion	641	1,049	743	474	544	707	537	891	1,199	721
Fires	641	1,046	740	471	541	704	<i>533</i>	887	1,196	717
Other	· NA	3	3	3	3	, з	3	3	3	3
Other	1	24	26	26	25	27	28	63	64	65
TOTAL ALL SOURCES	22,513	20,936	21,102	20,659	20,868	21,535	20,817	18,736	18,876	17,917

Table A-6. National PM_{10} Emissions Estimates, 1989–1998 (thousand short tons)

Source Category	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
FUEL COMBUSTION	1,382	1,196	1,147	1,183	1,124	1,113	1,179	1,174	1,089	1,091
Electric Utilities	271	295	257	257	279	273	268	287	293	302
Coal	255	265	232	234	253	246	244	264	268	273
Oil .	12	9	10	7	9	8	5	5	6	9
Gas	1	1	1	. 0	1	1	1	1	1	1
Internal Combustion	3	20	15	16	17	17	18	18	18	19
Industrial	243	270	233	243	257	270	302	255	249	245
Coal	70	84	72	74	71	70	70	<i>77</i> ·	76	74
Oil	48	52	44	45	45	44	49	46	43	42
Gas	44	41	34	40	43	43	. 45	43	42	42
Other	78	87	72	74	86	74	<i>73</i>	77	<i>73</i>	74
Internal Combustion	3	6	10	11	12	. 38	64	16	16	15
Other	869	631	657	683	588	570	610	632	548	544
Residential Wood	817	501	535	558	464	446	484	503	415	411
Other	52	130	122	124	124	125	126	129	133	133
INDUSTRIAL PROCESSES	1,276	1,306	1,264	1,269	1,240	1,219	1,231	985	1,010	1,016
Chemical & Allied Processing	63	77	68	71	. 66	76	67	63	64	65
Metals Processing	211	214	251	250	181	184	212	164	171	171
Petroleum & Related Industries	58	55	43	43	38	38	40	32	32	32
Other Industrial Processes	591	583	520	506	501	495	511	327	337	- 339
Solvent Utilization	2	4	5	5	6	6	6	6	6	6
Storage & Transport	101	102	101	117	114	106	109	90	93	94
Waste Disposal & Recycling	251	271	276	278	334	313	287	304	307	310
TRANSPORTATION	844	825	838	833	804	800	749	739	730	718
On-Road Vehicles	367	336	349	343	321	320	293	282	272	257
Non-Road Sources	477	489	489	490	483	480	456	457	458	461
TOTAL ALL SOURCES	3,502	3,327	3,249	3,286	3,168	3,133	3,159	2,898	2,830	2,825

Table A-7. Miscellaneous and Natural Particulate Matter Emissions Estimates, 1989–1998 (thousand short tons)

Source Category	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
MISCELLANEOUS	37,461	24,542	24,234	23,959	24,329	25,620	22,766	24,836	26,089	26,609
Agriculture & Forestry	7,320	5,292	5,234	5,017	4,575	4,845	4,902	4,905	4,971	4,970
Other Combustion	912	1,181	924	770	801	1,053	850	1,254	1,313	1,018
Fires	853	1,159	902	747	777	1,029	826	1,235	1,292	997
Other	59	22	23	23	23	24	24	19	21	21
Cooling Towers	NA	0	0	0	0	0	1	2	2	2
Fugitive Dust	29,229	18,069	18,076	18,171	18,954	19,722	17,013	18,675	19,804	20,619
Wind Erosion	0	1	1	1	1	1	1	1	1	1
Unpaved Roads	11,798	11,234	11,206	10,918	11,430	11,370	10,362	12,059	12,530	12,668
Paved Roads	5,769	2,248	2,399	2,423	2,462	2,538	2,409	2,390	2,538	2,618
Construction	11,269	4,249	4,092	4,460	4,651	5,245	3,654	3,578	4,022	4,545
Other	392	336	377	369	409	569	586	646	713	788
NAT. SOURCES (wind erosion)	12,101	2,092	2,077	2,227	509	2,160	1,146	5,307	5,307	5,307
TOTAL ALL SOURCES	49,562	26,635	26,311	26,186	24,838	27,780	23,912	30,143	31,396	31,916

Table A-8. National Sulfur Dioxide Emissions Estimates, 1989–1998 (thousand short tons)

Source Category	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
FUEL COMBUSTION	19,924	20,290	19,796	19,493	19,245	18,887	16,230	16,320	16,732	16,722
Electric Utilities	16,215	15,909	15,784	15,416	15,189	14,889	12,080	12,631	13,090	13,217
Coal	15,404	15,220	15,087	14,824	14,527	14,313	11.603	12,137	12,542	12,426
Oil	779	639	652	546	612	522	413	436	488	730
Gas	1	1	1	1	1	1	9	3	1	2
Internal Combustion	30	. 49	45	46	49	53	55	56	59	60
Industrial	3,086	3,550	3,256	3,292	3,284	3,218	3,357	3,022	2,964	2,895
Coal	1,840	1,914	1,805	1,783	1,763	1,740	1,728	1,536	1,521	1,485
Oil	812	927	779	801	809	777	912	844	801	773
Gas	346	543	516	- 552	555	542	548	556	563	558
Other	82	158	142	140	140	141	147	140	134	133
Internal Combustion	6	9	14	16	. 17	19	23	17	.16	16
Other	624	831	755	784	772	780	793	667	677	609
Commercial/Institutional Coal	169	212	184	190	193	192	200	177	183	194
Commercial/Institutional Oil	274	425	376	396	381	391	397	338	345	275
Commercial/Institutional Gas	2	7	7	7	8	8	8	10	10	10
Misc. Fuel Comb. (Except Residential)	1	. 6	6	6	6	6	5	4	4	4
Residential Wood	11	7	7	8	6	6	7	7	6	6
Residential Other	167	175	176	. 177	178	177	176	131	130	121
INDUSTRIAL PROCESSES	2,010	1,900	1,721	1,758	1,723	1,676	1,637	1,452	1,503	1,503
Chemical & Allied Processing	440	297	280	278	269	275	286	291	296	299
Metals Processing	695	726	612	615	603	562	530	429	450	444
Petroleum & Related Industries	429	430	378	416	383	379	369	337	346	345
Other Industrial Processes	405	399	396	396	392	398	403	350	365	370
Solvent Utilization	1	0	0	1	1	1	. 1	1	1	1
Storage & Transport	5	7	10	. 9	5	2	2	. 3	3	3
Waste Disposal & Recycling	36	42	44	44	71	60	47	41	42	42
TRANSPORTATION	1,349	1,458	1,513	1,546	1,489	1,292	1,304	1,332	1,371	1,410
On-Road Vehicles	570	542	570	578	517	301	304	316	322	326
Non-Road Sources	779	916	944	968	972	990	999	1,016	1,050	1,084
MISCELLANEOUS	11	12	11	10	10	15	10	17	16	12
TOTAL ALL SOURCES	23,293	23,660	23,041	22,806	22,466	21,870	19,181	19,121	19,622	19,647

Table A-9. National Long-Term Air Quality Trends, 1979–1998

Year	CO 2nd Max. 8-hr ppm	Pb Max. Qtr. μg/m³	NO₂ Arith. Mean ppm	Ozone 2nd Max. 1-hr ppm	PM ₁₀ Wtd. Arith. Mean μg/m³	SO₂ Arith. Mean ppm
1979–88	(251 sites)	(184 sites)	(127 sites)	(401 sites)		(389 sites)
1979	9.1	0.97	0.024	0.133	The second of the second of the second secon	0.0113
1980	8.5	0.77	0.024	0.135	_	0.0105
1981	8.2	0.61	0.023	0.125	_	0.0102
1982	7.8	0.55	0.022	0.123		0.0093
1983	7.7	0.41	0.022	0.136	. —	0.0090
1984	7.7	0.37	0.023	0.123	_	0.0092
1985	7.0	0.24	0.022	0.122	_	0.0086
1986	7.0	0.15	0.022	0.118		0.0084
1987	6.6	0.12	0.022	0.124	_	0.0082
1988	6.5	0.11	0.022	0.135	_	0.0083
1989-98	(363 sites)	(189 sites)	(225 sites)	(661 sites)	(934 sites)	(483 sites)
1989	6.2	0.09	0.021	0.114	31.7	0.0087
1990	5.8	0.09	0.020	0.112	29.4	0.0082
1991	5.6	0.07	0.020	0.113	29.1	0.0079
1992	5.2	0.06	0.019	0.105	26.8	0.0074
1993	4.9	0.05	0.019	0.108	26.0	0.0072
1994	5.1	0.05	0.020	0.107	26.0	0.0070
1995	4.5	0.04	0.019	0.112	24.9	0.0057
1996	4.2	0.04	0.019	0.106	23.9	0.0056
1997	3.9	0.04	0.018	0.105	23.8	0.0054
1998	3.8	0.04	0.018	0.110	23.7	0.0053

Table A-10. National Air Quality Trends by Monitoring Location, 1989–1998

Statistic	# of Sites	Units	Location		1990	1991	1992	1993	1994	1995	1996	1997	1998
Carbon Monox	ride	· · · · · · · · · · · · · · · · · · ·	The second section is the second section of the second section in the second section is the second section of the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section is the second section in the second section in the second section is the second section in the section is the second section in the section is the second section in the second section in the section is the section	energy and project or transport		-laner					I TANKSTONIA A LA TUA	a de la segli colta de la francia de circal accesa	
2nd Max. 8-hr.	12	ppm	Rural	2.8	2.8	2.8	2.5	2.1	2.3	2.4	1.9	1.8	1.8
2nd Max. 8-hr.	148	ppm	Suburban	6.0	5.6	5.3	5.0	4.9	5.0	4.3	4.1	3.9	3.8
2nd Max. 8-hr.	200	ppm	Urban	6.6	6.1	6.0	5.5	5.0	5.3	4.8	4.5	4.1	3.9
Lead					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
Max. Qtr.	5	μg/m³	Rural	0.06	0.06	0.07	0.07	0.06	0.04	0.04	0.03	0.03	0.03
Max. Qtr.	98	μg/m³	Suburban	0.08	0.07	0.06	0.05	0.05	0.04	0.04	0.03	0.03	0.03
Max. Qtr.	82	μg/m³	Urban	0.09	0.11	0.07	0.07	0.06	0.06	0.05	0.05	0.05	0.04
Nitrogen Dioxi	de									ne mu ekym womo semewowo n			*** *** *** ** **** *** ****
Arith. Mean	39	ppm	Rural	0.009	0.009	0.009	0.008	0.008	0.008	0.008	0.008	0.007	0.007
Arith. Mean	104	. ppm	Suburban	0.022	0.021	0.020	0.020	0.020	0.020	0.020	0.019	0.018	0.018
Arith. Mean	80	ppm	Urban	0.026	0.025	0.024	0.024	0.024	0.025	0.024	0.023	0.023	0.023
Ozone													
2nd Max. 1-hr.	222	ppm	Rural	0.108	0.108	0.106	0.101	0.103	0.102	0.107	0.103	0.101	0.107
2nd Max. 1-hr.	304	ppm	Suburban	0.118	0.116	0.118	0.109	0.111	0.111	0.116	0.108	0.109	0.114
2nd Max. 1-hr.	117	ppm	Urban	0.114	0.110	0.111	0.105	0.105	0.106	0.110	0.106	0.102	0.104
PM ₁₀													
Wtd. Arith. Mea	n 138	μg/m³	Rural	25.6	24.3	23.6	21.8	20.6	20.6	19.3	19.3	18.9	18.9
Wtd. Arith. Mea	n 355	μg/m³	Suburban	32.9	30.6	30.2	27.8	27.1	27.0	26.2	24.9	24.8	24.6
Wtd. Arith. Mea	n 418	μg/m³	Urban	33.0	30.4	30.5	27.9	27.2	27.3	26.0	25.1	24.9	25.0
Sulfur Dioxide		**********											
Arith. Mean	122	ppm	Rurai	0.0071	0.0068	0.0066	0.0063	0.0064	0.0060	0.0053	0.0051	0.0048	0.0048
Arith. Mean	213	ppm	Suburban	0.0091	0.0086	0.0083	0.0077	0.0075	0.0072	0.0057	0.0058	0.0057	0.0056
Arith. Mean	137	ppm	Urban	0.0099	0.0091	0.0087	0.0080	0.0077	0.0076	0.0060	0.0059	0.0057	0.0055

Table A-11. National Air Quality Trends Statistics by EPA Region, 1989–1998

	Statistic	# of Sites	Units	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
Region 1	gar y d yn o a'i arwedd y haddanlegog a tha da'i a ag addarddda anllon								and the second s	an an an about a manage of the contract the con-	and a second control of the second con-		
CO	2nd Max. 8-hr.	17	ppm	5.8	6.1	5.6	5.7	4.8	6.0	5.4	4.8	4.2	3.7
Pb	Max. Qtr.	_	µg/m³	_	_	_	-	. _		_	_	_	_
NO ₂	Arith. Mean	14	ppm	0.023	0.022	0.022	0.021	0.022	0.022	0.020	0.020	0.020	0.020
O ₃	2nd Max. 1-hr.	38	ppm	0.122	0.119	0.130	0.110	0.119	0.115	0.118	0.103	0.117	0.107
0,	4th Max. 8-hr.	38	ppm	0.092	0.091	0.099	0.086	0.089	0.087	0.091	0.081	0.090	0.084
PM _{to}	Wtd. Arith. Mear		µg/m³	24.4	22.8	23.5	20.7	20.2	20.7	18.7	19.3	19.7	19.8
SO ₂	Arith. Mean	50	ppm	0.0088	0.0080	0.0077	0.0073	0.0069	0.0067	0.0053	0.0052	0.0050	0.0050
Region 2												The margin continues and the second	
CO	2nd Max. 8-hr.	27	ppm	6.4	5.7	5.7	5.1	4.6	5.3	4.6	4.1	3.6	3.3
Pb	Max. Qtr.	4	µg/m³	0.09	0.10	0.07	0.06	0.07	0.07	0.06	0.06	0.06	0.06
NO ₂	Arith. Mean	12	ppm	0.031	0.030	0.029	0.028	0.028	0.029	0.027	0.028	0.027	0.027
0,	2nd Max. 1-hr.	34	ppm	0.116	0.122	0.124	0.109	0.111	0.105	0.115	0.104	0.111	0.109
O ₃	4th Max. 8-hr.	34	ppm	0.093	0.096	0.101	0.085	0.088	0.085	0.095	0.083	0.093	0.088
PM ₁₀	Wtd. Arith. Mear		µg/m³	28.8	26.6	27.0	24.2	24.3	24.8	22.1	22.9	23.5	23.2
SO ₂	Arith. Mean	41	ppm	0.0105	0.0094	0.0096	0.0089	0.0081	0.0083	0.0064	0.0064	0.0058	0.0057
Region 3	iana, arapitahanga sa mangahan annangkananggatan, annapatahansan anna sangangkanganan annan sangan tayan sa manganan samar magan sa sa												
CO	2nd Max. 8-hr.	40	ppm	5.5	5.1	4.6	4.3	4.2	4.7	4.0	3.7	3.4	3.
Pb	Max. Qtr.	25	µg/m³	0.09	0.07	0.07	0.06	0.05	0.05	0.04	0.04	0.03	0.03
NO ₂	Arith. Mean	35	ppm	0.022	0.021	0.021	0.021	0.021	0.022	0.020	0.021	0.020	0.020
O ₃	2nd Max. 1-hr.	71	ppm	0.109	0.110	0.118	0.102	0.115	0.111	0.116	0.105	0.116	0.118
0,	4th Max. 8-hr.	71	ppm	0.087	0.088	0.096	0.082	0.092	0.088	0.094	0.085	0.093	0.09
PM ₁₀	Wtd. Arith. Mear		μg/m³	32.2	29.7	30.6	26.5	26.8	27.7	26.6	25.2	25.3	25.1
SO ₂	Arith. Mean	71	ppm	0.0134	0.0126	0.0120	0.0110	0.0111	0.0112	0.0084	0.0085	0.0089	0.0086
Region 4		, ali gas pa delini, alimpia, para para para para para para para pa				and the second s					ode language enterprise experience of the	The second se	
CO	2nd Max. 8-hr.	55	ppm	6.0	5.3	5.0	5.0	. 5.0	4.7	4.3	3.8	4.0	3.7
Pb	Max. Qtr.	26	µg/m³	0.07	0.06	0.05	0.05	0.04	0.04	0.04	0.03	0.03	0.03
NO2	Arith. Mean	25	ppm	0.015	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014
О3	2nd Max. 1-hr.	115	ppm	0.100	0.105	0.097	0.095	0.104	0.099	0.104	0.102	0.103	0.112
О3	4th Max. 8-hr.	115	ppm	0.078	0.083	0.075	0.077	0.081	0.080	0.082	0.081	0.082	0.09
PM10	Wtd. Arith. Mear		µg/m3	30.0	30.0	28.6	26.5	25.8	25.5	25.2	23.9	23.9	24.
SO2	Arith. Mean	67	ppm	0.0062	0.0061	0.0058	0.0056	0.0056	0.0052	0.0044	0.0046	0.0045	0.0047
Region 5											entrale trades makes estimate to		
CO	2nd Max. 8-hr.	43	ppm	5.7	5.1	4.8	4.4	4.4	5.3	4.1	3.3	3.1	3.2
Pb	Max. Qtr.	47	µg/m³	0.11	0.16	0.09	0.09	0.08	0.08	0.06	0.06	0.06	0.05
NO ₂	Arith. Mean	14	ppm	0.023	0.021	0.021	0.022	0.022	0.024	0.023	0.023	0.022	0.023
0,	2nd Max. 1-hr.	126	ppm	0.108	0.102	0.112	0.098	0.097	0.105	0.111	0.103	0.102	0.10
0,	4th Max. 8-hr.	126	ppm	0.086	0.082	0.089	0.079	0.077	0.084	0.090	0.085	0.083	0.08
PM ₁₀	Wtd. Arith. Mear		µg/m³	33.4	30.9	30.2	27.8	26.4	28.1	27.3	24.7	24.8	26.2
SO ₂	Arith. Mean	120	ppm	0.0098	0.0093	0.0091	0.0080	0.0081	0.0076	0.0061	0.0061	0.0059	0.0059

Table A-11. National Air Quality Trends Statistics by EPA Region, 1989–1998 (continued)

	Statistic	# of Sites	Units	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
Region 6										and and the second seco		entertain terretain properties and control of the c	
CO	2nd Max. 8-hr.	31	ppm	6.2	6.2	5.4	5.4	5.3	4.7	4.4	4.9	4.3	4.0
Pb	Max. Qtr.	25	μg/m³	0.12	0.10	0.10	0.08	0.07	0.05	0.06	0.07	0.04	0.04
NO ₂	Arith. Mean	22	ppm	0.016	0.015	0.015	0.016	0.015	0.017	0.016	0.016	0.016	0.015
O₃	2nd Max. 1-hr.	69	ppm	0.119	0.122	0.113	0.109	0.111	0.109	0.122	0.110	0.114	0.116
O₃	4th Max. 8-hr.	69	ppm	0.085	0.087	0.080	0.079	0.080	0.082	0.091	0.082	0.083	0.087
PM ₁₀	Wtd. Arith. Mea	n 94	μg/m³	28.7	25.7	24.3	24.4	23.6	23.8	24.7	23.7	22.3	23.3
SO ₂	Arith. Mean	32	ppm	0.0064	0.0063	0.0060	0.0063	0.0053	0.0046	0.0046	0.0047	0.0043	0.0042
Regio	n 7	. The contract of the contract											
CO	2nd Max. 8-hr.	22	ppm	5.3	4.9	5.1	4.4	4.3	4.2	4.0	4.1	3.7	4.2
Pb	Max. Qtr.	19.	μg/m³	0.05	0.03	0.03	0.02	0.02	0.01	0.01	0.02	0.04	0.04
NO ₂	Arith. Mean	12	ppm	0.016	0.015	0.015	0.016	0.015	0.016	0.016	0.016	0.016	0.016
O ₃	2nd Max. 1-hr.	29	ppm	0.093	0.090	0.092	0.091	0.088	0.098	0.103	0.094	0.094	0.100
O ₃	4th Max. 8-hr.	29	ppm	0.074	0.070	0.075	0.074	0.066	0.078	0.082	0.075	0.076	0.078
PM ₁₀	Wtd. Arith. Mea	n 49	∙ µg/m³	32.1	29.7	28.9	28.2	27.0	27.9	27.1	27.5	25.5	25.4
SO ₂	Arith. Mean	30	ppm	0.0083	0.0076	0.0072	0.0064	0.0063	0.0064	0.0053	0.0050	0.0046	0.0044
Regio	n 8	aan oo oo ah oo hagan dad ahaalkahabaa ahaadad kan — bh											
CO	2nd Max. 8-hr.	17	ppm	7.2	6.6	6.7	6.7	5.8	5.2	5.1	4.8	4.7	3.8
Pb	Max. Qtr.	7	μg/m³	0.06	0.06	0.06	0.05	0.06	0.04	0.04	0.03	0.03	0.03
NO ₂	Arith. Mean	14	ppm	0.015	0.014	0.014	0.014	0.014	0.015	0.014	0.014	0.014	0.014
. O ₃ -	2nd Max. 1-hr.	17	ppm	0.095	0.089	0.086	0.083	0.081	0.085	0.084	0.088	0.083	0.093
O ₃	4th Max. 8-hr.	17	ppm	0.073	0.068	0.069	0.065	0.064	0.067	0.067	0.069	0.066	0.075
PM ₁₀	Wtd. Arith. Mea	n 106	µg/m³	27.2	24.1	25.2	23.8	22.7	22.2	19.3	19.6	18.8	18.8
SO ₂	Arith. Mean	27	ppm	0.0063	0.0061	0.0058	0.0064	0.0062	0.0055	0.0049	0.0041	0.0034	0.0031
Regio	n 9			~ ~ ~ ~	·** *** * * * *** ***							entered to apprehiment to a superior	
CO	2nd Max. 8-hr.	95	ppm	6.7	6.3	6.1	5.3	4.9	5.2	4.6	4.5	4.1	4.1
Pb	Max. Qtr.	31	μg/m³	0.07	0.07	0.06	0.03	0.03	0.03	0.03	0.02	0.02	0.02
NO ₂	Arith. Mean	77 .	ppm	0.023	0.022	0.022	0.021	0.020	0.021	0.020	0.019	0.018	0.018
O ₃	2nd Max. 1-hr.	149	ppm	0.137	0.127	0.126	0.125	0.120	0.117	0.119	0.115	0.102	0.112
O ₃	4th Max. 8-hr.	149	ppm	0.095	0.090	0.090	0.090	0.088	0.086	0.087	0.087	0.078	0.084
PM ₁₀	Wtd. Arith. Mea	n 119	μg/m³	41.8	38.3	37.5	32.7	31.6	30.6	30.5	. 28.7	29.1	26.8
SO ₂	Arith. Mean	35	ppm	0.0030	0.0026	0.0025	0.0025	0.0023	0.0022	0.0025	0.0024	0.0022	0.0021
Region	10												
CO	2nd Max. 8-hr.	16	ppm	8.6	7.7	8.0	7.5	6.4	6.1	5.9	5.9	5.5	5.0
Pb	Max. Qtr.	5	μg/m³	0.06	0.06	0.06	0.04	0.05	0.05	0.05	0.04	0.05	0.06
NO ₂	Arith. Mean	_	ppm			_	_			_	_	. —	
೦₃ ಁ	2nd Max. 1-hr.	13	ppm	0.083	0.099	0.086	0.087	0.081	0.088	0.086	0.097	0.076	0.097
O ₃	4th Max. 8-hr.	13	ppm	0.061	0.072	0.064	0.069	0.058	0.063	0.063	0.076	0.058	0.068
PM ₁₀	Wtd. Arith. Mea		µg/m³	34.3	31.5	32.5	30.7	30.3	26.7	23.2	23.2	23.5	21.1
SO2	Arith. Mean	9	ppm	0.0066	0.0071	0.0070	0.0073	0.0066	0.0066	0.0059	0.0051	0.0047	0.0047

Table A-12. Maximum Air Quality Concentrations by County, 1998

State	County	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)	O ₃ (1-hr) 2nd Max (ppm)	O ₃ (8-hr) 4th Max (ppm)	PM ₁₀ 2nd Max (µg/m³)	SO ₂ 24-hr (ppm)
AL	CLAY CO	13,252				0.117	0.094		
AL	COLBERT CO	51,666	•	•	•	0.117	0.034	45	0.019
AL	DE KALB CO	54,651	•	•	•	•		58	0.010
AL	ELMORE CO	49,210	•	•	•	0.116	0.091	90	•
AL	ESCAMBIA CO	35,518	•	•	•	0.110	0.031	59	•
AL	ETOWAH CO	99,840	•	•	•	•	•	65	•
AL	FRANKLIN CO	27,814	•	•	•	•	•	46	•
AL	GENEVA CO	23,647	•	•	•	0.092	0.077		•
AL	HOUSTON CO	81,331	•	•	•	0.002		63	•
AL	JACKSON CO	47,796	•	•	•	•	•	O,O	0.025
AL	JEFFERSON CO	651,525	4.4	•	•	0.127	0.101	109	0.032
AL	LAWRENCE CO	31,513	4.4	•	•	0.102	0.085		0.011
AL	LIMESTONE CO	54,135	•	•	•		• • •	43	
AL	MADISON CO	238,912	3.3	•	•	0.118	0.092	57	
AL	MARENGO CO	23,084	0.0	•	•	0.110	0.002	46	•
AL	MOBILE CO	378,643	•	•	•	0.114	0.098	153	0.073
AL	MONTGOMERY CO	209,085	•	•	•	0.114	0.090	57	0.010
AL	PIKE CO	27,595	•	0.63	•	0.121		56	0.010
AL	RUSSELL CO		•	0.03	•	•	•	56	•
AL AL	SHELBY CO	46,860 99,358	•	•	0.0090	0.137	0.107	52	•
AL AL	SUMTER CO	16,174	•	•	0.0090	0.137	0.068	92	•
AL	TALLADEGA CO	74,107	•	•	•	0.003		53	•
		150,522	•	•	•	•	•	54	•
AL AL	TUSCALOOSA CO WALKER CO	67,670	•	•	•	•	•	50	•
AK			8.4	•	•	•	•	103	•
	ANCHORAGE BOROUGH	226,338 77,720	10.2	•	•	•	•	47	•
AK AK	FAIRBANKS N. STAR BOR.	26,751	10.2	•	•	•	•	41	•
	JUNEAU BOROUGH	39,683	•	•	•	•	•	87	•
AK	MATANUSKA-SUSITNA BOR.		•	•	•	0.057	0.054	07	•
AK AZ	YUKON-KOYUKUK CA	8,478	•	•	•	0.037	0.054	. 89	•
AZ AZ	COCHISE CO	97,624	•	•	•	0.077	0.007	. 03	•
AZ	COCONINO CO GRAHAM CO	96,591 26,554	•	•	•			68	•
AZ	MARICOPA CO	2,122,101	8.1	•	0.0350	0.113	0.090	208	0.018
AZ	PIMA CO	666,880	4.0	•	0.0330	0.113	0.030	78	0.004
AZ	PINAL CO	116,379	4.0	•	0.0103	0.094	0.077		0.027
AZ	SANTA CRUZ CO	29,676	•	•	•	•	•	171	0.027
AZ	YAVAPAI CO	107,714	•	•	•	•	•	30	•
AZ	YUMA CO	106,895	•	•	•	0.101	0.089	30	•
AR	ARKANSAS CO	21,653	•	•	•	0.101	0.009	73	•
AR	ASHLEY CO	24,319	•	•	•	•	•	73 52	•
	CRAIGHEAD CO	68,956	•	•	•	•	•	54	•
AR	CRITTENDEN CO	49,939	•	•	•	0.101	0.086	,	•
AR			•	•	•	0.101	0.000	57	•
AR	GARLAND CO	73,397	•	•	•	•	•	47	•
AR	JEFFERSON CO	85,487	•	•	•	•	•	35	•
AR	MARION CO MILLER CO	12,001 38,467	•	•	•	•	•	53	0.015
AR	MONTGOMERY CO	38,467 7,841	•	•	•	0.092	0.071		
AR			•	•	•	0.092	0.071	•	•
AR	NEWTON CO	7,666 30,574	•	•	•			55	•
AR	OUACHITA CO	•	•	•	•	•	•		•
AR	PHILLIPS CO	28,838	•	•	•	•	•	43 47	•
AR	POPE CO	45,883		•	0.0105			47	0.006
AR	PULASKI CO	349,660	4.8	•	0.0105	0.098	0.082	98 40	0.006
AR	SEBASTIAN CO	99,590	•	•	•	•	•	49 57	0.000
AR	UNION CO	46,719		•	•	•	•	57 ~	0.028

Table A-12. Maximum Air Quality Concentrations by County, 1998 (continued)

State	County	1990 Population	CO 8-hr (ppm)	Pb QMax (μg/m³)	NO ₂ AM (ppm)	O ₃ (1-hr) 2nd Max (ppm)		PM ₁₀ 2nd Max (µg/m³)	SO ₂ 24-hr (ppm
AR	WASHINGTON CO	113,409			not are because the decimal				
AR	WHITE CO	54,676	•	•	•	•	•	44	•
CA .	ALAMEDA CO	1,279,182	4.2	0.00	0.0203			51	•
CA	AMADOR CO	30,039	1.3	0.00	0.0203	0.139	0.096	54	•
CA	BUTTE CO	182,120				0.129	0.107		•
CA	CALAVERAS CO	· ·	3.8	0.00	0.0133	0.103	0.078	60	
CA	COLUSA CO	31,998	8.0	•	•	0.124	0.105	35	•
CA		16,275				0.096	0.078	75	
CA	CONTRA COSTA CO	803,732	3.1	0.01	0.0163	0.130	0.088	64	0.014
	DEL NORTE CO	23,460		•	•		•	33	•
CA	EL DORADO CO	125,995	4.2	•	0.0099	0.144	0.115	55	
CA	FRESNO CO	667,490	6.9	0.00	0.0199	0.167	0.122	126	
CA	GLENN CO	24,798				0.095	0.074	73	
CA	HUMBOLDT CO	119,118	•			•		41	
CA	IMPERIAL CO	109,303	13.3	0.02	0.0114	0.137	0.098	231	0.017
CA	INYO CO	18,281				0.087	0.082	814	
CA	KERN CO	543,477	3.4	0.00	0.0238	0.158	0.124	131	
CA	KINGS CO	101,469	•		0.0142	0.136	0.104	126	
CA	LAKE CO	50,631				0.070	0.055	22	
CA .	LOS ANGELES CO	8,863,164	11.5	0.05	0.0434	0.200	0.140	78	0.012
CA	MADERA CO	88,090			0.0112	0.127	0.094		
CA	MARIN CO	230,096	3.2		0.0172	0.073	0.047	46	_
CA	MARIPOSA CO	14,302				0.111	0.097	40	
CA	MENDOCINO CO	80,345	3.2		0.0096	0.072	0.060	41	•
CA	MERCED CO	178,403			0.0114	0.140	0.112	• • •	•
CA	MONO CO	9,956	2.9			0.078	0	46	•
CA	MONTEREY CO	355,660	1.9		0.0095	0.085	0.067	50	•
CA	NAPA CO	110,765	3.5	•	0.0124	0.101	0.069	33	•
CA	NEVADA CO	78,510		•	0.0121	0.112	0.095	112	•
CA	ORANGE CO	2,410,556	6.6	•	0.0339	0.158	0.093	65	0.005
CA	PLACER CO	172,796	2.2	0.00	0.0156	0.145	0.099	57	0.003
CA	PLUMAS CO	19,739		0.00	0.0150	0.081	0.069		•
CA	RIVERSIDE CO	1,170,413	4.6	0.05	0.0221	0.193	0.069	65	0.000
CA	SACRAMENTO CO	1,041,219	6.1	0.03	0.0205	0.153		114	0.009
CA	SAN BENITO CO	36,697		0.01	0.0203		0.113	99	0.015
CA	SAN BERNARDINO CO	1;418,380	4.5			0.113	0.088	36	
CA	SAN DIEGO CO			0.04	0.0356	0.241	0.183	102	0.009
CA	SAN FRANCISCO CO	2,498,016	4.7	0.01	0.0229	0.135	0.114	88	0.016
CA	SAN JOAQUIN CO	723,959	3.5	0.01	0.0197	0.051	0.042	49	0.006
CA		480,628	5.3	0.00	0.0230	0.115	0.089	102	• •
	SAN LUIS OBISPO CO	217,162	2.0	•	0.0113	0.114	0.098	67	0.030
CA	SAN MATEO CO	649,623	3.9		0.0176	0.065	0.047	51	
CA	SANTA BARBARA CO	369,608	3.9	0.00	0.0212	0.116	0.086	55	0.004
CA	SANTA CLARA CO	1,497,577	6.3	0.01	0.0248	0.142	0.094	60	
CA	SANTA CRUZ CO	229,734	8.0	•	0.0044	0.092	0.068	67	0.003
CA	SHASTA CO	147,036	•		•	0.140	0.105	54	
CA	SIERRA CO	3,318						55	
CA	SISKIYOU CO	43,531		•		0.077	0.066	63	
CA	SOLANO CO	340,421	4.9		0.0135	0.129	0.096	49	0.005
CA	SONOMA CO	388,222	3.0		0.0146	0.100	0.086	40	
CA	STANISLAUS CO	370,522	5.4	0.00	0.0181	0.145	0.107	110	
CA	SUTTER CO	64,415	3.9		0.0129	0.104	0.088	55	
CA	TEHAMA CO	49,625				0.120	0.098		
CA	TRINITY CO	13,063	. •					39	
CA	TULARE CO	311,921	3.6		0.0166	0.144	0.109	136	
CA	TUOLUMNE CO	48,456	5.4	-		0.116	0.100	.00	•

Table A-12. Maximum Air Quality Concentrations by County, 1998 (continued)

State	County	1990 Population	CO 8-hr (ppm)	Pb QMax (μg/m³)	NO ₂ AM (ppm)	O ₃ (1-hr) 2nd Max (ppm)	O ₃ (8-hr) 4th Max (ppm)	PM ₁₀ 2nd Max (µg/m³)	SO ₂ 24-hr (ppm)
CA	VENTURA CO	669,016	2.9	0.00	0.0189	0.144	0.113	52	0.011
CA	YOLO CO	141,092	1.1		0.0107	0.111	0.087	79	
CO	ADAMS CO	265,038	3.5	0.11	0.0229	0.104	0.083	107	0.013
CO	ALAMOSA CO	13,617		-				90	
CO	ARAPAHOE CO	391,511	•	•		0.113	0.084		
CO	ARCHULETA CO	5,345						71	
co	BOULDER CO	225,339	4.8			0.111	0.089	47	
CO	DELTA CO	20,980		-		•		68	
CO	DENVER CO	467,610	5.2	0.03	0.0353	0.107	0.085	81	0.023
CO	DOUGLAS CO	60,391				0.112	0.081	48	
CO	EL PASO CO	397,014	3.8	0.01	0.0204	0.074	0.062	72	0.011
co	FREMONT CO	32,273	0.0					41	
	GARFIELD CO	29,974	•					67	
CO	GUNNISON CO	10,273	•	•				149	
CO	JEFFERSON CO	438,430	3.6	•	0.0101	0.118	0.095	50	
CO	LAKE CO	6,007		0.03					
CO		32,284		0.00				77	
CO	LA PLATA CO LARIMER CO	186,136	4.1	•	·	0.092	0.080	33	
CO		93,145	5.3	•	•	0.002		51	
CO	MESA CO	18,672	5.5	•	•	0.074	0.068		
CO	MONTEZUMA CO	24,423	•	•	•	0.07 1	0.000	79	
CO	MONTROSE CO		•	•	•	•	•	72	
CO	PITKIN CO	12,661	•	•	•	•	•	100	-
CO	PROWERS CO	13,347	•	•	•	•	•	52	-
CO	PUEBLO CO	123,051	•	•	•	•	•	87	
CO	ROUTT CO	14,088	•	•	•	•	•	72	-
CO	SAN MIGUEL CO	3,653	•	•	•	•	•	77	•
CO	SUMMIT CO	12,881	•	•	•	•	•.	124	•
CO	TELLER CO	12,468		•	•	0.102	0.075	40	-
CO	WELD CO	131,821	4.4 3.8	•	0.0183	0.134	0.097	50	0.025
CT	FAIRFIELD CO	827,645		•	0.0198	0.110	0.082	66	0.019
CT	HARTFORD CO	851,783	7.1	•	0.0190	0.118	0.097	44	0.0.0
CT	LITCHFIELD CO	174,092	•	•	•	0.118	0.089	77	•
CT	MIDDLESEX CO	143,196			0.0060	0.110	0.003	71	0.03
CT	NEW HAVEN CO	804,219	2.7	0.02	0.0269	0.130	0.083	42	0.018
CT	NEW LONDON CO	254,957	•	•	•	0.110	0.003	42	0.010
CT	TOLLAND CO	128,699	•	•	•	0.132	0.096	36	0.010
CT	WINDHAM CO	102,525	•	•	•		0.102	30	•
DE	KENT CO	110,993		•	0.0400	0.131	0.102	76	0.04
DE	NEW CASTLE CO	441,946	3.1	•	0.0163	0.126		70	0.0-7
DE	SUSSEX CO	113,229				0.123	0.102	57	0.020
DC	WASHINGTON	606,900	4.6	0.02	0.0265	0.116	0.102	40	
FL	ALACHUA CO	181,596	•	•	•	0.105	0.093		• -
FL	BAY CO	126,994	-	•	•	n ngg	0.005	53 44	•
FL	BREVARD CO	398,978				0.098	0.085	53 .	0.01
FL	BROWARD CO	1,255,488	3.5	0.03	0.0095	0.105	0.079		
FL	COLLIER CO	152,099		•			0.007	42 62	0.00
FL	DADE CO	1,937,094	3.4		0.0151	0.112	0.087		
FL	DUVAL CO	672,971	3.1	0.02	0.0150	0.103	0.101	65 51	0.03
FL	ESCAMBIA CO	262,798	•	•	:	0.128	0.102	51 66	0.02
FL	GULF CO	11,504		•	•	•	•	66	
FL	HAMILTON CO	10,930	· .					41	0.02
FL	HILLSBOROUGH CO	834,054	4.1	0.51	0.0111	0.131	0.097	105	0.03
FL	LAKE CO	152,104	•	-	•		0.000	63	•
FL	LEE CO	335,113	•			0.109	0.092	37	•

Table A-12. Maximum Air Quality Concentrations by County, 1998 (continued)

State	County	1990 Population	CO 8-hr (ppm)	Pb QMax (μg/m³)	NO ₂ AM (ppm)	O ₃ (1-hr) 2nd Max (ppm)		PM ₁₀ 2nd Max (µg/m³)	SO ₂ 24-hr (ppm)
FL	LEON CO	192,493			To the office of the same of t	0.090	0.079	63	and an extended to the second sec
FL	MANATEE CO	211,707	•	•	•	0.115	0.079	38	0.019
FL	MARION CO	194,833	•	•	•	0.113	0.083	30	0.013
FL	NASSAU CO	43,941	. •	•	•	0.057		49	0.022
FL	ORANGE CO	677,491	3.5	•	0.0110	0.117	0.096	55	0.022
FL		107,728	5.5	•		0.117	0.090	55	0.007
FL ·	OSCEOLA CO	•	3.0	0.00	0.0120	0.123	0.091	52	0.004
	PALM BEACH CO	863,518		0.00		0.103	0.001		
FL	PASCO CO	281,131							
FL	PINELLAS CO	851,659	3.0	0.01	0.0115	0.108	0.091	47	0.048
FL	POLK CO	405,382	• .	•	•	0.106	0.088	91	0.027
FL.	PUTNAM CO	65,070	•	•	•			41	0.012
FL	ST LUCIE CO	150,171	_•_	•		0.095	0.079	35	•
FL	SARASOTA CO	277,776	5.6	•	•	0.122	0.091	82	0.019
FL .	SEMINOLE CO	287,529	•	•		0.101	0.089	47	•
FL	VOLUSIA CO	370,712			•	0.096	0.082	48	•
GA	BALDWIN CO	39,530	•				•		0.015
GA	BARTOW CO	55,911							0.014
GA	BIBB CO	149,967			•	0.137	0.106	59	0.019
GA	CHATHAM CO	216,935				0.097	0.075	79	0.027
GA	CHATTOOGA CO	22,242				•		62	
GA	DAWSON CO	9,429				0.109	0.096		
GA	DE KALB CO	545,837	4.1	0.01		0.142	0.112	58	
GA	DOUGHERTY CO	96,311						66	0.006
GA	DOUGLAS CO	71,120				0.133	0.110	56	
GA	FANNIN CÔ	15,992				0.100	0.081		0.052
GA	FAYETTE CO	62,415				0.141	0.111		
GA	FLOYD CO	81,251				•		49	0.016
GA	FULTON CO	648,951	3.1		0.0241	0.157	0.126	71	0.019
GA	GLYNN CO	62,496	0.1	•		0.109	0.082	119	
GA	GWINNETT CO	352,910	•	•	· •	0.139	0.111		•
GA	MUSCOGEE CO	179,278	•	0.58	•	0.113	0.091	50	•
GA	PAULDING CO	41,611	•	0.50	0.0060	0.118	0.104	50	•
GA	RICHMOND CO	189,719	• •	•	0.0000	0.119	0.099	60	0.011
GA		54,091	•	•	0.0077	0.113	0.113	00	0.011
	ROCKDALE CO		•	-	0.0077	0.134		54	•
GA	SPALDING CO	54,457	•	•	•		0.001	. 54	•
GA	SUMTER CO	30,228	•	. •	•	0.095	0.081		•
GA	WALKER CO	58,340	•	•	•	•	•	54	• .
GA	WASHINGTON CO	19,112	•	•				83	
.HI	HONOLULU CO	836,231	2.3	•	0.0044	0.056	0.049	39	0.009
HI	KAUAI CO	51,177	•	•	•	•	•	30	•
HI	MAUI CO	100,374	•	•	•	•	•	128	•
ID	ADA CO	205,775	3.9	-	0.0202			62	•
ID	BANNOCK CO	66,026			•	•	•	105	0.034
ID	BLAINE CO	13,552				•	•	66	•
ID	BONNER CO	26,622						67	
ID	BONNEVILLE CO	72,207	• ·		•	•		98	
ID	BUTTE CO	2,918	-			0.070	0.065	• .	
ID	CANYON CO	90,076						69	
ID	CARIBOU CO	6,963						101	0.018
ID	KOOTENAI CO	69,795						85	
ID	LEMHI CO	6,899						102	
ID	LEWIS CO	3,516	-			_		61	
ID	MADISON CO	23,674	•	•				94	
ID	MINIDOKA CO	19,361	•	•	•	•	-	78	-

Table A-12. Maximum Air Quality Concentrations by County, 1998 (continued)

State	County	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)	2nd Max (ppm)	O ₃ (8-hr) 4th Max (ppm)	PM ₁₀ 2nd Max (µg/m³)	SO ₂ 24-hr (ppm)
ID	NEZ PERCE CO	33,754	4.8					76	
ID D	SHOSHONE CO	13,931	4.0	0.15	•	•	•	120	•
ID	TWIN FALLS CO	53,580	•	0.10		•	•	46	•
IL	ADAMS CO	66,090	•	•	•	0.095	0.073	46	0.022
IL	CHAMPAIGN CO	173,025				0.105	0.083	52	0.019
IL.	соок со	5,105,067	5.0	0.10	0.0322	0.109	0.086	102	0.051
IL	DU PAGE CO	781,666		0.03		0.097	0.068	60	0.022
IL	EFFINGHAM CO	31,704				0.093	0.083		
IL	HAMILTON CO	8,499	•			0.089	0.075		
IL	JACKSON CO	61,067	•					46	
IL	JERSEY CO	20,539	•			0.122	0.091	•	
IL	KANE CO	317,471	•		•	0.092	0.074	69	
IL	LAKE CO	516,418		•		0.107	0.088		
IL.	LA SALLE CO	106,913	•				•	134	•
IL	MC HENRY CO	183,241				0.092	0.078		
IL.	MACON CO	117,206	•	0.02	•	0.094	0.078	69	0.020
IL 	MACOUPIN CO	47,679		0.02	•	0.109	0.079	45	0.011
IL 	MADISON CO	249,238	2.9	2.59	•	0.118	0.088	116	0.087
IL 	PEORIA CO	182,827	5.8	0.02	•	0.086	0.076	53	0.045
IL.	RANDOLPH CO	34,583	•	•	•	0.099	0.082		0.048
IL "	ROCK ISLAND CO	148,723	•	0.01		0.086	0.072	58	0.008
IL IL	ST CLAIR CO SANGAMON CO	262,852		0.10	0.0182	0.101	0.078	84	0.069
IL IL		178,386	1.9	•	•	0.093	0.078	65	0.061
IL	TAZEWELL CO WABASH CO	123,692	•	•	•	•.	•	55	0.037
IL IL	WILL CO	13,111 357,313	0.8	0.01	0.0087				0.033
IL	WINNEBAGO CO	252,913	3.6	0.04	0.0007	0.095 0.085	0.081 0.073	49 53	0.024
IN	ALLEN CO	300,836	3.0	0.04	•	0.005	0.073	58	•
IN	CLARK CO	87,777	0.0	•	•	0.140	0.104	54	•
IN	DAVIESS CO	27,533	•	•	•	0.140	0.104		0.041
IN	DEARBORN CO	38,835	-	·	•	•	•	•	0.036
IN	DE KALB CO	35,324	•			-		66	
IN	DELAWARE CO	119,659		0.90		-			•
IN	DUBOIS CO	36,616	•			-		51	
IN	ELKHART CO	156,198	•			0.106	0.082		
IN	FLOYD CO	64,404				0.131	0.100	_	0.033
IN	FOUNTAIN CO	17,808				•		•	0.043
IN	GIBSON CO	31,913	•				•		0.056
IN	HAMILTON CO	108,936				0.125	0.100		
IN	HANCOCK CO	45,527				0.119	0.094		
IN	HENDRICKS CO	75,717	3.8					•	0.014
IN	JASPER CO	24,960	•		•			44	0.015
IN	JEFFERSON CO	29,797	•	•		•	•	•	0.027
IN	JOHNSON CO	88,109	•			0.101	0.090	•	
IN	LAKE CO	475,594	4.5	0.12	0.0189	0.113	0.087	136	0.055
IN	LA PORTE CO	107,066	•	0.02	•	0.121	0.093		0.016
IN	MADISON CO	130,669				0.117	0.097	39	•
IN	MARION CO	797,159	2.8	0.08	0.0189	0.115	0.095	58	0.024
IN	MORGAN CO	55,920	•	•	•	0.102	0.090	•	
IN	PERRY CO	19,107	•	٠.	•	0.114	•	84	0.029
IN	PIKE CO	12,509	•	•	•				0.029
IN IN	PORTER CO	128,932	•	•	÷	0.121	0.090	66	0.026
IN	POSEY CO	25,968	•	•		0.107	0.092		
IN	ST JOSEPH CO	247,052	. •	•	0.0122	0.117	0.095	. 46	

Table A-12. Maximum Air Quality Concentrations by County, 1998 (continued)

State	County	1990 Population	CO 8-hr (ppm)	Pb QMax (μg/m³)	NO ₂ AM (ppm)		O ₃ (8-hr) 4th Max (ppm)	PM ₁₀ 2nd Max (µg/m³)	SO ₂ 24-hr (ppm)
		10.400			,				0.000
IN	SPENCER CO	19,490	•	•		. •		•	0.023
1N	SULLIVAN CO	18,993	•		•	•	•	_ •	0.026
IN	VANDERBURGH CO	165,058	4.0	•		0.117	0.094	53	0.049
IN	VIGO CO	106,107	•	0.02		0.099	0.084	52	0.032
IN	WARRICK CO	44,920	•			0.116	0.096	•	0.071
IN	WAYNE CO	71,951	•			•	•		0.037
IA	BLACK HAWK CO	123,798				•		54	
IA .	CERRO GORDO CO	46,733				-		120	0.087
IA	CLINTON CO	51,040			•	•		72	0.024
IA	DELAWARE CO	18,035				•		52	
IA	HARRISON CO	14,730			•	0.093	0.079		
1A	LEE CO	38,687		•					0.047
iA	LINN CO	168,767	2.5			0.078	0.066	76	0.020
IA	MUSCATINE CO	39,907					•	60	0.091
IA	PALO ALTO CO	10,669				0.081	0.068		
ΙA	POLK CO	327,140	10.4	-	-	0.065	0.056	68	
IA	POTTAWATTAMIE CO	82,628		0.01	•	0.000			•
IA	SCOTT CO	150,979	•	0.01	•	0.097	0.077	121	0.018
IA	STORY CO	74,252	•	•	•	0.083	0.070	121	
IA	VAN BUREN CO	7,676	•	•	•	0.084	0.071	•	0.009
	WARREN CO	36,033	•	•	•	0.083	0.071	•	0.003
IA		· ·		•	•	0.063	. 0.070	67	•
IA	WOODBURY CO	98,276	•	•.	•	7	•		•
KS	FORD CO	27,463		•	•			52	
KS	LINN CO	8,254	1.0		•	0.104	0.080	· 75	0.002
KS	SEDGWICK CO	403,662	5.5	0.01	•	0.100	0.083	75 67	•
KS	SHAWNEE CO	160,976	•	•	•	•	•	67	•
KS	SHERMAN CO	6,926		•	•			66	
KS	WYANDOTTE CO	161,993	4.0	•	•	0.113	0.087	69	0.015
KY	BELL CO	31,506	3.9	•	•	0.102	0.087	51	•
KY	BOONE CO	57,589	•		•	0.110	0.084	<u>.</u> :	
KY	BOYD CO	51,150	7.2	•	. •	0.090		94	0.038
KY	BULLITT CO	47,567	•	•	0.0123	0.108	0.096	46	•
KY	CAMPBELL CO	83,866	•	•	0.0180	0.113	0.089	•	0.040
KY	CARTER CO	24,340		•	•	0.118	0.096	•	•
KY	CHRISTIAN CO	68,941				0.111	0.086	•	
KY	DAVIESS CO	87,189	1.0	•	0.0125	0.110	0.086	57	0.023
KY	EDMONSON CO	10,357			•	0.112	0.097		
KY	FAYETTE CO	225,366	2.9		0.0109	0.106	0.089	64	0.023
KY	FLOYD CO	43,586			•		•	. 39	
KY	GRAVES CO	33,550				0.105	0.086		
KY	GREENUP CO	36,742				0.133	0.099	•	0.030
KY	HANCOCK CO	7,864				0.113	0.095		0.028
KY	HARDIN CO	89,240				0.100	0.083	42	
KY	HARLAN CO	36,574						41	
KY	HENDERSON CO	43,044	2.1		0.0176	0.111	0.084	67	0.031
KY	JEFFERSON CO	664,937	5.5		0.0233	0.121	0.097	59	0.045
KY	JESSAMINE CO	30,508			,	0.105	0.089	,	
KY	KENTON CO	142,031	2.6		0.0179	0.121	0.091	54	
KY	LAWRENCE CO	13,998		•		0.088		49	
		•	•	•	•	0.088	0.093	56	0.017
KY	LIVINGSTON CO	9,062		•	0.0122				
KY	MC CRACKEN CO	62,879	2.4	•	0.0123	0.109	0.090	55	0.019
KY	MC LEAN CO	9,628	•	•		0.110	0.085		•
KY	MADISON CO	57,508	•	•	•	•	•	51	•
KY	MARSHALL CO	27,205						80	

Table A-12. Maximum Air Quality Concentrations by County, 1998 (continued)

State	County	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)	O ₃ (1-hr) 2nd Max (ppm)		PM ₁₀ 2nd Max (µg/m³)	SO ₂ 24-hr (ppm)
KY	OLDHAM CO	33,263		-		0.120	0.101	300 Carlo 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
KY	PERRY CO	30,283	•	•	•	0.120	0.101		•
KY	PIKE CO	72,583	•	•	•			50	•
KY	PULASKI CO		• .	•	•	0.101	0.085	47	•
KY	SCOTT CO	49,489 23,867	•	•	•	0.102	0.084 0.088	37	•
KY	SIMPSON CO		•	•	0.0108	0.106		•	•
KY	TRIGG CO	15,145	-	•	0.0106	0.113	0.092	•	•
KY	WARREN CO	10,361	•	•	•	0.100	0.083	44	•
KY	WHITLEY CO	76,673	•	•	•		•	44	• •
LA		33,326	•	•	•			45	•
	ASCENSION PAR	58,214	•	. •		0.123	0.091	•	•
LA	BEAUREGARD PAR	30,083	•	•	0.0068	0.106	0.082	•	
LA	BOSSIER PAR	86,088	•	•	•	0.111	0.090	:	0.010
LA	CADDO PAR	248,253	•	•		0.107	0.090	57	•
LA	CALCASIEU PAR	168,134			0.0052	0.123	0.090	•	0.012
LA	EAST BATON ROUGE PAR	380,105	3.9	0.04	0.0187	0.131	0.107	64	0.017
LA	GRANT PAR	17,526	•	•	-	0.102	0.084	•	
LA	IBERVILLE PAR	31,049	•	•	0.0103	0.120	0.091	. •	
LA	JEFFERSON PAR	448,306	•	-	0.0112	0.122	0.091	•	
LA	LAFAYETTE PAR	164,762	•			0.100	0.088		•
LA	LAFOURCHE PAR	85,860	•			0.110	0.090	•	
LA	LIVINGSTON PAR	70,526	•	•	0.0055	0.117	0.089		
LA	ORLEANS PAR	496,938	3.3	0.08	0.0204	0.092	0.076	61	
LA	OUACHITA PAR	142,191				0.090	0.078		0.012
LA	POINTE COUPEE PAR	22,540		•	0.0073	0.103	0.075	•	
LA	ST BERNARD PAR	66,631				0.108	0.086		0.026
LA	ST CHARLES PAR	42,437				0.105	0.086	56	
LA	ST JAMES PAR	20,879	•	•	0.0106	0.101	0.081		
LA	ST JOHN THE BAPTIST PAR	39,996	•	0.11		0.118	0.087		
LA	ST MARY PAR	58,086	•			0.105	0.091		
LA	WEST BATON ROUGE PAR	19,419		0.05	0.0152	0.128	0.083	64	0.036
ME	ANDROSCOGGIN CO	105,259						36	0.019
ME	AROOSTOOK CO	86,936						99	0.036
ME	CUMBERLAND CO	243,135		•		0.120	0.089	68	0.025
ME	FRANKLIN CO	29,008				_		31	
ME	HANCOCK CO	46,948		•		0.125	0.094	-	
ME	KENNEBEC CO	115,904			_	0.102	0.077	66	
ME	KNOX CO	36,310				0.107	0.077	46	•
ME	OXFORD CO	52,602	·			0.072	0.060	54	0.017
ME	PENOBSCOT CO	146,601		•	•	0.094	0.077	43	0.017
ME	PISCATAQUIS CO	18,653	•	•	•	0.068	0.061	-10	•
ME	SAGADAHOC CO	33,535	•	•	•	0.124	0.001	•	•
ME	YORK CO	164,587	•	•	0.0102	0.124	0.089	•	•
MD	ALLEGANY CO	74,946	•	•	-	0.120		•	0.012
MD	ANNE ARUNDEL CO	427,239	•	•	•	0.136	0.111	50	0.012
MD	BALTIMORE CO	692,134	•	•	0.0200	0.136	0.111	52 49	
MD	CALVERT CO	51,372	•	•	0.0200			48	•
MD	CARROLL CO	123,372	•	•	•	0.112	0.092	•	•
MD	CECIL CO		•	•	•	0.119	0.095	•	
		71,347	•	•	•	0.124	0.101	33	•
MD	CHARLES CO	101,154	•	-	•	0.123	0.105	•	•
MD	FREDERICK CO	150,208	•	•	•	0.108	0.095		•
MD	GARRETT CO	28,138	•	•	•	•		44	
MD	HARFORD CO	182,132	•	. •		0.132	0.099	•	
MD	KENT CO	17,842	•	•	•	0.117	0.098	•	
MD	MONTGOMERY CO	757,027	•	•	•	0.122	0.097		

Table A-12. Maximum Air Quality Concentrations by County, 1998 (continued)

State	County	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)		O ₃ (8-hr) 4th Max (ppm)	PM ₁₀ 2nd Max (µg/m³)	SO ₂ 24-hr (ppm)
MD	PRINCE GEORGES CO	729,268	4.8			0.128	0.104	53	
MD	WICOMICO CO	74,339	4.0	•	•	0.120	0.104	35	•
MD	BALTIMORE	74,339	5.0	0.01	0.0258	0.116	0.091	65	0.020
	BARNSTABLE CO	186,605	5.0	0.01	0.0230	0.110	0.084	Ų.	
MA	BERKSHIRE CO	139,352	•	•	0.0040	0.103		•	•
MA		·	•	•	0.0077	0.107	0.088	44	0.024
MA	BRISTOL CO	506,325	٠.	•	0.0077	0.107	0.100	41	0.024
MA	ESSEX CO	670,080	4.6		0.0145	0.115	0.100	62	0.031
MA	HAMPDEN CO	456,310	4.0	•		0.115	0.093	35	0.020
MA -	HAMPSHIRE CO	146,568	0.4	•	0.0058		0.093		0.016
MA	MIDDLESEX CO	1,398,468	3.4	•	•	0.114		40	
MA	NORFOLK CO	616,087	•					34	
MA	SUFFOLK CO	663,906	3.2	0.03	0.0307	0.096	0.087	71	0.036
MA	WORCESTER CO	709,705	3.5	•	0.0187	0.124	0.097	50	0.017
MI .	ALLEGAN CO	90,509	•		•	0.124	0.097	•	•
MI	BENZIE CO	12,200				0.107	0.090	•	•
MI	BERRIEN CO	161,378	•	•	•	0.136	0.093	•	
Mi	CALHOUN CO	135,982	•	•	•	•	•	66	•
MI	CASS CO	49,477	•	•	•	0.110	0.091		
MI	CLINTON CO	57,883		•		0.097	0.078		
Mi	DELTA CO	37,780							0.007
MI	GENESEE CO	430,459		0.01		0.114	0.089	39	0.014
MI	HURON CO	34,951	•			0.113	0,087	,	
MI	INGHAM CO	281,912				0.102	0.081		
MI	KALAMAZOO CO	223,411				0.106	0.087		
MI	KENT CO	500,631	2.9	0.01		0.106	0.087	55	0.008
MI	LENAWEE CO	91,476				0.097	0.086	•	
MI	MACOMB CO	717,400	2.2		_	0.126	0.098		0.017
Mi	MASON CO	25,537				0.108	0.087		
MI	. MISSAUKEE CO	12,147		0.00		0.097	0.079		
MI	MUSKEGON CO	158,983	-			0.115	0.092		
MI	OAKLAND CO	1,083,592	2.2			0.102	0.089		
MI	OTTAWA CO	187,768		•	•	0.101	0.085	40	•
MI	ST CLAIR CO	145,607		•	•	0.116	0.091	,	0.073
MI	WASHTENAW CO	282,937	•	•	•	0.099	0.084	•	
		2,111,687	3.5	0.08	0.0230	0.033	0.093	114	0.044
MI	WAYNE CO		2.8	0.00		0.093	0.072	117	0.0
MN	ANOKA CO	243,641	2.0	•	•	0.093		37	•
MN	CARLTON CO	29,259		0.14	0.0129	0.087	0.071		0.013
MN	DAKOTA CO	275,227	1.1	0.14		0.007			0.013
MN	HENNEPIN CO	1,032,431	3.7	0.02	0.0256	•	•	73	
MN	KOOCHICHING CO	16,299	•	•	•			•	0.059
MN	LAKE CO	10,415	•	•	•	0.077	0.068		•
MN	OLMSTED CO	106,470	• .		•	•	•	. 36	
MN	RAMSEY CO	485,765	7.0	0.02	0.0180		· · ·	64	0.009
MN	ST LOUIS CO	198,213	3.7		•	0.075	0.067	81	•
MN	SHERBURNE CO	41,945	•		•.	•	•	•	0.019
MN	STEARNS CO	118,791	3.6						•
MN	WASHINGTON CO	145,896	•	. * •		0.097	0.076	49	0.013
MS	ADAMS CO	35,356	•			0.095	0.084	•	
MS	COAHOMA CO	31,665						41	
MS	DE SOTO CO	67,910			0.0106	0.109	0.089	•	
MS	HANCOCK CO	31,760			0.0039	0.108	0.089		
MS	HARRISON CO	165,365							0.022
MS	HINDS CO	254,441	3.7	•		0.104	0.082	76	0.008
MS	JACKSON CO	115,243	_			0.118	0.097		0.015

Table A-12. Maximum Air Quality Concentrations by County, 1998 (continued)

State	County	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)	O ₃ (1-hr) 2nd Max (ppm)	O ₃ (8-hr) 4th Max (ppm)	PM ₁₀ 2nd Max (µg/m³)	SO ₂ 24-hr (ppm)
MS	JONES CO	62,031				-	_	45	_
MS	LAUDERDALE CO	75,555	•	•	•	0.091	0.078	.0	•
MS	LEE CO	65,581	•	•		0.107	0.088	32	•
MS	MADISON CO	53,794	•	•	•	0.106	0.086	02	
MS	PANOLA CO	29,996	•	•	•	0.119	0.089	:	0.005
MS	WARREN CO	47,880	•	•	•	0.096	0.082	47	
MS	WASHINGTON CO	67,935	•	•	•		0.002	56	
MO	BUCHANAN CO	83,083	•	•	•	•	•	124	0.121
MO	CEDAR CO	12,093	•	•	•	0.096	0.087		
MO	CLAY CO	153,411	4.6	•	0.0130	0.133	0.087	•	0.008
MO			4.0	•	0.0130		0.095		0.042
MO	GREENE CO	207,949				0.094		43	
	HOLT CO	6,034	•	0.62	•	•	•	•	
MO	IRON CO	10,726		1.14	•		0.070		0.084
MO	JACKSON CO	633,232	3.9	0.01	•	0.099	0.073	68	0.010
MO	JEFFERSON CO	171,380	•	11.59		0.111	0.091	48	0.049
МО	MONROE CO	9,104	• '	•		0.091	0.079	36	0.014
МО	PLATTE CO	57,867	•	•	0.0132	0.123	0.090	•	0.005
MO	ST CHARLES CO	212,907	•	•	0.0115	0.135	0.097		0.021
MO	STE GENEVIEVE CO	16,037	•	•	•	0.103	0.090		
MO	ST LOUIS CO	993,529	4.0	0.04	0.0225	0.122	0.092	62	0.027
MO	ST LOUIS	396,685	6.0	•	0.0258	0.103	0.079	71	0.038
MT	BIG HORN CO	11,337		•	•	•		144	
MT	BROADWATER CO	3,318		•				66	
MT	CASCADE CO	77,691	4.5	•	•				0.010
MT	FLATHEAD CO	59,218	5.0			0.062		118	
MT	GALLATIN CO	50,463	•		•	•		73	
MT	GLACIER CO	12,121	•		•	•	•	78	
MT	JEFFERSON CO	7,939						75	0.030
MT	LAKE CO	21,041				-		108	
MT	LEWIS AND CLARK CO	47,495		0.89				99	0.032
MT	LINCOLN CO	17,481				-		107	
MT	MADISON CO	5,989			•			34	
MT	MISSOULA CO	78,687	4.7					73	
MT	PARK CO	14,562						21	
MT	PHILLIPS CO	5,163	-				_	53	
MT	RAVALLI CO	25,010	_			1		76	
MT	ROSEBUD CO	10,505		•				153	0.012
MT	SANDERS CO	8,669	-			-		68	
MT	SILVER BOW CO	33,941	4.9	-		-		97	
MT	YELLOWSTONE CO	113,419	5.4	•	•	•	•	J1	0.032
NE	CASS CO	21,318	J. T	•	•	•	•	106	0.002
NE	DAWSON CO	19,940	•	•	•	•	•	87	•
NE	DOUGLAS CO	416,444	7.7	0.25	•	0.090	0.070	85 .	0.032
NE	LANCASTER CO	213,641	6.0	0.25					0.032
NV	CLARK CO		10.1	•	•	0.068	0.058	100	•
		741,459		•	•	0.108	0.092	188	•
NV	DOUGLAS CO	27,637	1.8	•	•	0.075	0.069		•
NV	ELKO CO	33,530	•	•	•	-	• ,	58	•
NV	LANDER CO	6,266		•	•			59	-
NV	WASHOE CO	254,667	6.6	•	•	0.093	0.075	139	•
NV	WHITE PINE CO	9,264		•		0.083	0.070	•	•
NV	CARSON CITY	40,443	4.5	•	•	0.080	0.067	•	
NH	BELKNAP CO	49,216	•	•		0.072	0.064		•
NH	CARROLL CO	35,410				0.078	0.068	•	
NH	CHESHIRE CO	70,121				0.085	0.073		0.023

Table A-12. Maximum Air Quality Concentrations by County, 1998 (continued)

State	County	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)		O ₃ (8-hr) 4th Max (ppm)	PM ₁₀ 2nd Max (µg/m³)	SO ₂ 24-hr (ppm)
N11 1	COOS CO	34,828							0.046
NH NH	GRAFTON CO	74,929	•	•	•	0.086	0.076	•	. 0.0-10
	HILLSBOROUGH CO	336,073	5.3	•	0.0148	0.100	0.076	•	0.027
NH		120,005	5.5	•		0.088	0.074	•	0.043
NH	MERRIMACK CO	245,845	•	•	0.0124	0.118	0.085	•	0.016
NH	ROCKINGHAM CO		•	•	0.0124	0.092	0.003	. •	
NH	STRAFFORD CO	104,233	•	•	•	0.092	0.073	•	0.018
NH	SULLIVAN CO	38,592	•	•	•	0.031	0.007	•	0.010
NJ	ATLANTIC CO	224,327	3.7	•	•	0.080		•	0.018
NJ	BERGEN CO	825,380		•	•	0.000	•	•	0.018
NJ	BURLINGTON CO	395,066	3.6	0.01	0.0219	0.118	0.097	52	0.023
NJ	CAMDEN CO	502,824	3.0	0.01	0.0219		0.097	52	0.023
NJ	CUMBERLAND CO	138,053		•		0.117		71	0.012
NJ	ESSEX CO	778,206	2.6	-	0.0328	0.112	0.087	71 46	0.025
NJ	GLOUCESTER CO	230,082		•	0.0269	0.120	0.098	46 63	0.015
NJ	HUDSON CO	553,099	5.6	•	0.0269	0.118	0.089	0.3	
NJ	HUNTERDON CO	107,776	•	•		0.118	0.096	•	•
NJ	MERCER CO	325,824			0.0153	0.113	0.095	•	
NJ	MIDDLESEX CO	671,780	3.0	80.0	0.0191	0.117	0.099	•	0.018
NJ	MONMOUTH CO	553,124	2.8	•		0.129	0.093	•	
NJ	MORRIS CO	421,353	3.3	•	0.0112	0.119	0.097	•	0.020
NJ	OCEAN CO	433,203	3.2	•	•	0.135	0.104		•
NJ	PASSAIC CO	453,060		•		0.102	0.089	59	
NJ	UNION CO	493,819	5.1	•	0.0419	•	·	58	0.021
NM	BERNALILLO CO	480,577	5.9	•	0.0157	0.093	0.074	88	
NM	CHAVES CO	57,849	•	•				48	
NM	DONA ANA CO	135,510	4.2	0.04	0.0101	0.124	0.082	158	0.019
NM	EDDY CO	48,605	•	•	0.0058	0.084	0.075		0.005
NM	GRANT CO	27,676	•	•		•	•	37	0.022
NM	HIDALGO CO	5,958	•	•			•	24	0.044
NM	LEA CO	55,765	•	•		•		41	•
NM	LUNA CO	18,110	•	•		•	•	36	
NM	OTERO CO	51,928	•	•				41	
NM	SANDOVAL CO	63,319	1.0	•	0.0093	0.090	0.072	39	
NM	SAN JUAN CO	91,605	3.8	•	0.0099	0.079	0.071	28	0.074
NM	SANTA FE CO	98,928	2.0	, •			•	29	•
NM	TAOS CO	23,118	•	•				75	•
NM	VALENCIA CO	45,235		•	•	0.082	0.069		
NY	ALBANY CO	292,594	1.2	0.03	0.0145	0.100	0.079	58	0.016
NY	BRONX CO	1,203,789	3.2		0.0359	0.095	0.078	51	0.037
NY	BROOME CO	212,160	•			•		51	
NY	CHAUTAUQUA CO	141,895			•	0.111	0.095	62	0.032
NY	CHEMUNG CO	95,195	• 5,	•	•	0.094	0.082	•	0.011
NY	COLUMBIA CO	62,982	•	•	. •	•	•	46	
NY	DUTCHESS CO	259,462	•	•	•	0.108	0.089	•	•
NY	ERIE CO	968,532	3.1	0.04	0.0208	0.110	0.094	50	0.049
NY	ESSEX CO	37,152	•			0.098	0.079	43	0.006
NY	GREENE CO	44,739	•	•	•		•	56	.•
NY	HAMILTON CO	5,279		•		0.089	0.080	•	0.005
NY	HERKIMER CO	65,797	•		٠	0.085	0.070	38	0.005
NY	JEFFERSON CO	110,943	•			0.103	0.088	•	
NY	KINGS CO	2,300,664	4.1	0.14				54	0.029
NY	MADISON CO	69,120	•			0.094	0.082	•	0.011
NY	MONROE CO	713,968	3.1	•		0.088	0.076	50	0.054
NY	NASSAU CO	1,287,348	4.0	•	0.0219	•		46	0.022

Table A-12. Maximum Air Quality Concentrations by County, 1998 (continued)

State	County	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)	O ₃ (1-hr) 2nd Max (ppm)		PM ₁₀ 2nd Max (µg/m³)	SO ₂ 24-h (ppm
NY	NEW YORK CO	1,487,536	5.8	0.13	0.0397	0.109	0.075	114	0.038
NY	NIAGARA CO	220,756	1.4	0.04	0.0007	0.101	0.089	55	0.016
NY	ONEIDA CO	250,836		0.01	•	0.091	0.076	45	0.01
NY	ONONDAGA CO	468,973	3.0	•	•	0.092	0.082	62	0.009
NY	ORANGE CO	307,647		0.14	•	0.104	0.082	02	0.00
NY	PUTNAM CO	83,941	•	0.14	•	0.112	0.000	39	0.014
NY	QUEENS CO	1,951,598	2.2	•	•	0.112	0.089	00	0.033
NY	RENSSELAER CO	154,429		•	•	0.113	0.005	48	0.009
NY	RICHMOND CO	378,977	•	0.02	•	0.129	0.090	47	0.00
NY	ROCKLAND CO	265,475	•	0.02	•		0.050	45	
NY	SARATOGA CO	181,276	•	•	•	0.099	0.076	- 44	•
NY	SCHENECTADY CO	149,285	4.4	•	•	0.099	0.076	48	0.013
NY	SUFFOLK CO	1,321,864	4.4	•	•	0.090	0.069	40	0.03
NY	ULSTER CO		•	•	•	0.143		52	0.00
NY	WAYNE CO	165,304	•	•	•		0.081	52	0.00
NY		89,123	•	•	•	0.103	0.085	•	•
	WESTCHESTER CO	874,866	•	•	•	0.109	0.090	•	•
NC	ALEXANDER CO	27,544	•	•	•	0.133	0.096	•	•
NC	AVERY CO	14,867	•	•	•	0.096	0.082	•	
NC	BEAUFORT CO	42,283	•	•	•				0.01
NC	BUNCOMBE CO	174,821	•	•	•	0.114	0.090	55	•
NC	CABARRUS CO	98,935	•	•		••••		46	
NC	CALDWELL CO	70,709	-	•	•	0.114	0.098	•.	•.
NC	CAMDEN CO	5,904	•	•	•	0.092	0.079	•	•
NC	CASWELL CO	20,693	•	•		0.119	0.096	•	•
NC	CATAWBA CO	118,412	•	•	•	.•		44	•
NC	CHATHAM CO	38,759	•		•	0.106	0.090	•	0.00
NC	CUMBERLAND CO	274,566	4.2	•		0.112	0.098	47	
NC	DAVIDSON CO	126,677	•	•		•	•	48	•
NC	DAVIE CO	27,859	•	•		0.123	0.102	•	•
NC	DUPLIN CO	39,995	•			0.104	0.091		
NC	DURHAM CO	181,835	5.2			0.112	0.095	47	
NC	EDGECOMBE CO	56,558	•			0.107	0.091	43	
NC	FORSYTH CO	265,878	5.4	•	0.0170	0.123	0.100	63	0.02
NC	FRANKLIN CO	36,414			•	0.110	0.099		
NC	GASTON CO	175,093	•					41	
NC	GRANVILLE CO	38,345	0.9			0.130	0.098	•	
NC	GUILFORD CO	347,420	3.6			0.115	0.097	54	
NC	HARNETT CO	67,822	•	•				63	
NC	HAYWOOD CO	46,942	•		•	0.109	0.102	49	
NC	HENDERSON CO	69,285						43	
NC	JOHNSTON CO	81,306				0.111	0.092		
NC	LENOIR CO	57,274				0.109	0.092		
NC	LINCOLN CO	50,319				0.117	0.090		
NC	MC DOWELL CO	35,681						48	
NC	MARTIN CO	25,078	•			0.094	0.084		0.00
NC	MECKLENBURG CO	511,433	5.0		0.0177	0.135	0.110	73	0.01
NC	MITCHELL CO	14,433	•					52	
NC	NEW HANOVER CO	120,284				0.102	0.087	41	0.02
NC	NORTHAMPTON CO	20,798		-		0.109	0.087		
NC	ONSLOW CO	149,838	•	•	•			42	•
NC	ORANGE CO	93,851	3.8	•	•	•		- 16-	•
NC	PASQUOTANK CO	31,298	0.0	•	•	•	•	40	•
NC	PERSON CO	30,180	•	•	•	0.117	0.093		0.016
NC	PITT CO	107,924		•	•	0.117	0.093	42	0.011

Table A-12. Maximum Air Quality Concentrations by County, 1998 (continued)

State	County	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)		O ₃ (8-hr) 4th Max (ppm)	PM ₁₀ 2nd Max (µg/m³)	SO ₂ 24-hr (ppm)
NC	ROCKINGHAM CO	86,064		The State of the S	Badri Digurdaliti. 200m:Dirin, quellgellas lant, establica.	0440	CONTRACTOR CONTRACTOR CONTRACTOR	and a second to the second of the second	
NC	ROWAN CO	110,605		•	•	0.112			
NC		•	0.8	•	•	0.126	0.101		0.012
	SWAIN CO	11,268		•	. •	0.090	0.078	39	0.006
NC	WAKE CO	423,380	5.4	.•	•	0.124	0.106	63	•
NC	WAYNE CO	104,666	•		•	•	•	44	
NC	YANCEY CO	15,419	•	•	•	0.083	•	•	
ND	BILLINGS CO	1,108		•	•	0.060	•	•	0.004
ND	BURLEIGH CO	60,131		•	•		•	32	
ND	CASS CO	102,874	•	•	•	0.068			0.005
ND	DUNN CO	4,005		. •			•		0.005
ND	GRAND FORKS CO	70,683			•			81	
ND	MC KENZIE CO	6,383				0.065			0.013
ND	MC LEAN CO	10,457		• '	. •	•			0.008
ND ·	MERCER CO	9,808			0.0047	0.069	0.059	28	0.018
ND	MORTON CO	23,700		_	•				0.116
ND	OLIVER CO	2,381			0.0031	0.067	0.058		0.014
ND	STARK CO	22,832		• .				40	
ND	STEELE CO	2,420			0.0026	0.068	0.059	48	0.010
ND	WILLIAMS CO	21,129				_			0.013
ОН	ADAMS CO	25,371							0.036
ОН	ALLEN CO	109,755			·	0.102	0.089	46	0.017
ОН	ASHTABULA CO	99,821	•	•	•	0.116	0.096	.0	0.020
ОН	ATHENS CO	59,549	•	•	•	0.110	0.030	39	0.020
OH	BELMONT CO	71,074	• .	•	•	•	•	54	•
ОН	BUTLER CO	291,479	•	0.02	•	0.118	0.092	74	0.022
ОН	CLARK CO	147,548	•	0.02	•	0.115	0.100		0.022
ОН	CLERMONT CO	150,187	•	•	•		0.100	•	
OH	CLINTON CO		•	•	•	0.117		•	0.021
OH	COLUMBIANA CO	35,415	•	•		0.118	0.103		
		108,276		0.05	0.0146	0.440		88	0.049
OH	CUYAHOGA CO	1,412,140	6.4	0.65	0.0273	0.113	0.094	117	0.037
OH	DELAWARE CO	66,929	•			0.119	0.102	•	•
OH	FRANKLIN CO	961,437	3.7	0.03	• .	0.113	0.096	83	0.019
OH	FULTON CO	38,498	• •	0.35	•		•	•	•
OH	GEAUGA CO	81,129	•	. •	•	0.117	0.088		
OH	GREENE CO	136,731	•	•	•	0.116	0.097	43	
OH -	HAMILTON CO	866,228	4.4	0.01	0.0293	0.124	0.092	84	0.029
ОН	HANCOCK CO	65,536	•	-				44	
ОН	JEFFERSON CO	80,298	3.6		•	0.089	0.077	65	0.047
ОН	KNOX CO	47,473				0.102	0.091	•	
ОН	LAKE CO	215,499	1.6		•	0.123	0.100	50	0.057
ОН	LAWRENCE CO	61,834				0.136	0.101	50	0.020
ОН	LICKING CO	128,300				0.112	0.096		
ОН	LOGAN CO	42,310		0.24		0.099	0.081		
ОН	LORAIN CO	271,126			_	0.105	0.088	80	0.020
ОН	LUCAS CO	462,361	2.1			0.106	0.090	51	0.024
ОН	MADISON CO	37,068				0.112	0.099		
ОН	MAHONING CO	264,806	•	•	•	0.114	0.097	62	0.023
ОН	MEDINA CO	122,354	•	•	•	0.114	0.092	32	0.020
ОН	MEIGS CO	22,987	•	•	•	0.100	0.032	•	0.006
OH	MIAMI CO	93,182	•	• '	•			•	0.026
OH	MONROE CO		•	•	•	0.109	0.090	F 4	•
ОН		15,497		0.04	•	0.440		54	
OH	MONTGOMERY CO	573,809	3.4	0.01	•	0.112	0.093	61	0.022
OH	MORGAN CO	14,194	•	•		•	•		0.070
UH	OTTAWA CO	40,029						54	

Table A-12. Maximum Air Quality Concentrations by County, 1998 (continued)

State	County	1990 Population	CO 8-hr (ppm)	Pb QMax (μg/m³)	NO ₂ AM (ppm)	O ₃ (1-hr) 2nd Max (ppm)	O ₃ (8-hr) 4th Max (ppm)	PM ₁₀ 2nd Max (µg/m³)	SO ₂ 24-hi (ppm
ОН	PORTAGE CO	142,585				0.110	0.097		
ОН	PREBLE CO	40,113	•	•	-	0.102	0.081		
ОН	RICHLAND CO	126,137	•	. •	•	002		66	
ОН	SANDUSKY CO	61,963	•	•	•	•	•	72	•
ОН	SCIOTO CO	80,327	•	•	•	•	•	54	0.014
OH	SENECA CO	59,733	•	•	•	•	•	56	0.014
OH	STARK CO	367,585	3.5	•	•	0.115	0.098	58	0.029
OH	SUMMIT CO	514,990	3.0	0.02	•	0.114	0.097	70	0.044
ОН	TRUMBULL CO	227,813	5.0	0.02	•	0.115	0.101	63	
OH			•	•	•				0.049
OH	TUSCARAWAS CO	84,090	•	•	•	0.112	0.088	•	0.048
	UNION CO	31,969	•	•	•	0.112 0.123	0.088	•	•
OH	WARREN CO	113,909	•	•	•				•
OH	WASHINGTON CO	62,254	•	•	•	0.115	0.091	68	•
OH	WOOD CO	113,269	•	•	•	0.097	0.083		•
OH	WYANDOT CO	22,254		•				92	•
OK	CLEVELAND CO	174,253	2.6	•	0.0124	0.111	0.093	•	•
OK	COMANCHE CO	111,486	1.8	•		0.093	0.085	•	•
OK	GARFIELD CO	56,735	•	•	0.0079	•	•	.:	
OK	KAY CO	48,056	•		•	•		41	0.02
ОК	LATIMER CO	10,333	•		•	0.108	0.093	•	•
ОК	MC CLAIN CO	22,795	•		•	0.104	0.087	•	•
OK	MAYES CO	33,366	•		•	0.106	0.087	•	•
OK	MUSKOGEE CO	68,078	•		0.0075	0.091	0.081	70	0.01
OK	OKLAHOMA CO	599,611	4.1		0.0099	0.109	0.090	46	0.00
OK	OKMULGEE CO	36,490			•	0.106	0.092		
ОК	TULSA CO	503,341	4.7		0.0150	0.119	0.093	56	0.059
OR	CLACKAMAS CO	278,850				0.136	0.081	36	
OR	COLUMBIA CO	37,557	•		•	0.093	0.066		
OR	DESCHUTES CO	74,958	4.4					69	
OR	JACKSON CO	146,389	5.3	0.03		0.117	0.085	70	
OR	JOSEPHINE CO	62,649	4.7					51	
OR	KLAMATH CO	57,702	4.5					80	
OR	LAKE CO	7,186						75	
OR	LANE CO	282,912	4.6	0.02		0.106	0.078	78	
OR	MARION CO	228,483	4.6			0.112	0.077		
OR	MULTNOMAH CO	583,887	4.6	0.05			_	59	
OR	UMATILLA CO	59,249						68	
OR	UNION CO	23,598						57	
OR	YAMHILL CO	65,551	•	0.30	•	•	•	٠.	•
PA	ADAMS CO	78,274	0.6	0.00	0.0034	•	•	•	•
PA	ALLEGHENY CO	1,336,449	3.8	0.06	0.0310	0.118	0.104	130	0.06
PA	ARMSTRONG CO	73,478				0.113	0.100		
PA	BEAVER CO	186,093	1.5	0.05	0.0187	0.116	0.100	86	0.09
	BERKS CO	336,523	3.2	0.71	0.0208	0.116	0.098	58	0.02
PA	BLAIR CO							58	
PA		130,542	1.2	•	0.0126	0.114	0.098		0.032
PA	BUCKS CO	541,174	3.5		0.0180	0.115	0.096	59	0.02
PA	CAMBRIA CO	163,029	3.1	0.04	0.0152	0.124	0.098	64	0.02
PA	CARBON CO	56,846	• •	0.12	•			•	•
PA	CENTRE CO	123,786		•	•	0.113	0.092		•
PA	CHESTER CO	376,396	•	•	•			66	•-
PA	CLEARFIELD CO	78,097				0.116	0.101		
PA	DAUPHIN CO	237,813	3.0	0.04	0.0185	0.116	0.097	65	0.02
PA	DELAWARE CO	547,651	•	0.04	0.0191	0.125	0.099	72	0.03
PA	ERIE CO	275,572	5.1		0.0142	0.122	0.098	64	0.06

Table A-12. Maximum Air Quality Concentrations by County, 1998 (continued)

State	County .	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)	O ₃ (1-hr) 2nd Max (ppm)	O ₃ (8-hr) 4th Max (ppm)	PM ₁₀ 2nd Max (µg/m³)	SO ₂ 24-hr (ppm)
PA	FRANKLIN CO	121,082				0.120	0.104		
PA	GREENE CO	39,550		•	•	0.110	0.100		0.021
PA	LACKAWANNA CO	219,039	1.9	·	0.0160	0.108	0.089	54	0.026
PA	LANCASTER CO	422,822	1.9	0.04	0.0149	0.119	0.101	62	0.020
PA	LAWRENCE CO	96,246	2.4		0.0188	0.096	0.077	93	0.032
PA	LEHIGH CO	291,130	2.9	• •	0.0163	0.106	0.095	51	0.030
PA	LUZERNE CO	328,149	3.1		0.0148	0.102	0.088	53	0.022
PA	LYCOMING CO	118,710				0.099	0.084		0.021
PA	MERCER CO	121,003		0.04		0.121	0.106	75	0.029
PA	MONROE CO	95,709	1.0			0.108	0.091		0.014
PA	MONTGOMERY CO	678,111	1.8	0.04	0.0193	0.126	0.103	54	0.022
PA	NORTHAMPTON CO	247,105	2.5	0.00	0.0170	0.111	0.089	37	0.033
PA	PERRY CO	41,172		0.00	0.0060	0.110	0.092	53	0.012
PA	PHILADELPHIA CO	1,585,577	4.9	1.64	0.0340	0.116	0.095	105	0.030
PA	SCHUYLKILL CO	152,585	1.4	1.01		00			0.026
PA	WARREN CO	45,050		•	•	•	•	•	0.028
PA	WASHINGTON CO	204,584	2.0	•	0.0172	0.127	0.108	62	0.043
PA	WESTMORELAND CO	370,321	2.3	0.04	0.0172	0.101	0.082	71	0.039
PA	YORK CO	339,574	2.4	0.05	0.0176	0.112	0.002	60	0.023
RI	KENT CO	161,135		0.05	0.0100	0.112	0.093	32	
RI	PROVIDENCE CO	596,270	4.7	•	0.0249	0.098	0.007	5 <u>2</u> 59	0.027
RI	WASHINGTON CO	110,006	4.7	•		0.101	0.077	33	0.027
SC	ABBEVILLE CO	23,862	•	•	•	0.101	0.000	• ,	•
SC	AIKEN CO	120,940	•	0.02	•	0.114	0.091	51	•
SC	ANDERSON CO	145,196	•	0.02	•	0.111	0.102	31	•
SC	BARNWELL CO	20,293	•	•	•	0.123	0.102	44	•
SC	BEAUFORT CO	20,293 86,425	•	0.03	•	0.111		44	•
SC	BERKELEY CO	128,776	•.	0.03	•	0.106	0.083	•	•
SC	CHARLESTON CO	295,039	2.9	0.03	0.0095	0.100	0.083	57	0.013
SC	CHEROKEE CO	44,506	2.9	0.05	0.0033	0.120	0.096	37	0.013
SC	CHESTER CO	32,170	•		•	0.120	0.093	•	•
SC	COLLETON CO	34,377	•	•	•	0.099	0.093	•	•
SC	DARLINGTON CO	61,851	•	•	• *	0.108	0.089	•	•
SC	EDGEFIELD CO	18,375	•	•	•	0.100	0.009	•	•
SC	FAIRFIELD CO	22,295	•	•	•	0.115		53	•
SC	FLORENCE CO	114,344	•	0.01	•	•	•		•
SC	GEORGETOWN CO	46,302	•	0.02	•	•	•	75	0.004
SC	GREENVILLE CO	320,167	4.3	0.02	0.0166	•	•	58 .	0.015
SC	GREENWOOD CO	59,567	4.0	0.02	0.0100	•	•	50 .	0.013
SC	LEXINGTON CO	167,611	•	0.01	•	•	•	188	0.022
SC		57,494	•	. •	•	0.106	0.093	100	0.006
SC	OCONEE CO PICKENS CO	93,894	•	•	•	0.108	0.093	•	
SC	RICHLAND CO	285,720	3.7	0.01	0.0137	0.109	0.098	145	0.010
SC	SPARTANBURG CO	226,800	5.7	0.01	0.0137	0.116	0.098	48	0.010
SC	SUMTER CO	102,637	•	0.01	•			40	•
SC	UNION CO	30,337	•		•	0.105	0.087	•	•
SC	WILLIAMSBURG CO	36,815	•		•	0.105	0.087	•	•
			•	0.02	•	0.091	0.079	57	•
SC	YORK CO	131,497 25,207	•	0.02	•	0.114		57 54	٠.
SD SD	BROOKINGS CO	· ·	•	•	•	•	•	54 54	•
	MINNEHAHA CO	123,809	•	•	•	•	•		•
SD	PENNINGTON CO	81,343	•	•	•		0.000	113	
TN	ANDERSON CO	68,250	•	•	•	0.107	0.088		0.024
TN TN	BLOUNT CO	85,969	•	•		0.120	0.110	64	0.038
1.04	BRADLEY CO	73,712	•		0.0145		•	50	0.031

Table A-12. Maximum Air Quality Concentrations by County, 1998 (continued)

State	County	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)	O ₃ (1-hr) 2nd Max (ppm)		PM ₁₀ 2nd Max (µg/m³)	SO ₂ 24-hr (ppm)
TN	COFFEE CO	40,339			0.0045	0.096	0.081		0.015
TN	DAVIDSON CO	510,784	5.6	•	0.0045	0.120	0.001	66	0.015
TN	HAMBLEN CO	50,480	5.0	•	0.0109	0.120	0.091		
TN	HAMILTON CO	285,536	•	•	•	0.121	0.103	57	0.036
TN	HAWKINS CO	44,565	•	•	•	0.131	0.103	57	
TN	HAYWOOD CO	•	•	•	•	0.100		•	0.057
TN	HUMPHREYS CO	19,437	•	•	•	0.128	0.098	•	0.009
TN	JEFFERSON CO	15,795	•	•	•			•	0.019
TN		33,016			•	0.126	0.107		•
	KNOX CO	335,749	3.9	0.00	•	0.138	0.114	64	•
TN	LAWRENCE CO	35,303	•	•		0.105	0.090	40	
TN	MC MINN CO	42,383	•	•	0.0151		•	84	0.045
TN	MADISON CO	77,982	•	0.01	•	•	•	38	
TN	MAURY CO	54,812	•	•	•	•	•	75	•
TN	MONTGOMERY CO	100,498	•	•	•	•	•	45	0.020
TN	POLK CO	13,643	•		•	•	. •		0.111
TN	PUTNAM CO	51,373	•			0.106	0.090	•	•
TN	ROANE CO	47,227	•	0.33	•			67	0.022
TN	RUTHERFORD CO	118,570				0.104	0.087		
TN	SEVIER CO	51,043	•			0.120	0.106		
TN	SHELBY CO	826,330	5.4	2.02	0.0285	0.130	0.103	65	0.041
TN	STEWART CO	9,479							0.013
TN	SULLIVAN CO	143,596	3.4	0.31	0.0170	0.115	0.097	50	0.039
TN	SUMNER CO	103,281	2.1	•	0.0131	0.127	0.107	87	0.046
TN	UNION CO	13,694				-		174	
TN	WASHINGTON CO	92,315						47	
TN	WILLIAMSON CO	81,021		1.25	-	0.114	0.096		
TN	WILSON CO	67,675				0.105	0.085		
TX	BEXAR CO	1,185,394	4.6		0.0240	0.121	0.090	61	_
TX	BOWIE CO	81,665	•				-		0.009
TX	BRAZORIA CO	191,707				0.111	0.090		
TX	BREWSTER CO	8,681		-	•	0.077	0.070	•	•
TX	CAMERON CO	260,120	3.2	0.01	•	0.081	0.071	62	0.005
TX	CASS CO	29,982			•	0.001	0.07 1	0L	0.008
TX	COLLIN CO	264,036	•	0.67	•	0.118	0.097	75	0.000
TX	DALLAS CO	1,852,810	4.4	0.10	0.0200	0.118	0.094	68	0.006
TX	DENTON CO	273,525	7.7		0.0200	0.122	0.101		0.000
TX	ELLIS CO	85,167	•	0.30	•	0.122	0.101	67	0.023
TX	EL PASO CO	591,610	8.3	0.14	0.0310	0.135	0.097	258	0.023
TX	GALVESTON CO		0.5	0.14					
TX	GREGG CO	217,399	•	•	0.0030	0.168	0.113	69	0.039
TX		104,948		•		0.129	0.104		
	HARRIS CO	2,818,199	5.2	•	0.0230	0.203	0.121	129	0.024
TX	HIDALGO CO	383,545	•	•		0.086	0.071	•	
TX	JEFFERSON CO	239,397	•	•	0.0079	0.143	0.096	.:	0.050
TX	LUBBOCK CO	222,636	•	•	•	•		44	•
TX	MARION CO	9,984	•	•	•	0.094	0.076		
TX	NUECES CO	291,145	•	•		0.102	0.082	68	0.029
TX	ORANGE CO	80,509	•	•	0.0089	0.110	0.076	•	
TX	SMITH CO	151,309		•		0.108	0.090	•	
TX	TARRANT CO	1,170,103	2.5	٠	0.0140	0.128	0.102	50	
TX	TRAVIS CO	576,407	1.1	•	0.0040	0.115	0.088	•	•
TX	VICTORIA CO	74,361			•	0.097	0.078		
TX	WEBB CO	133,239	3.9	0.02	•	0.097	0.067		
UT	CACHE CO	70,183	5.0	•		0.080	0.068	76	
UT	DAVIS CO	187,941	3.1	•	0.0201	0.122	0.096		0.010

Table A-12. Maximum Air Quality Concentrations by County, 1998 (continued)

State	County	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)	O ₃ (1-hr) 2nd Max (ppm)		PM ₁₀ 2nd Max (µg/m³)	SO ₂ 24-hr (ppm)
UT	GRAND CO	6,620					antania (1966) di Salambana (1966) di perapa	52	
UT	SALT LAKE CO	725,956	5.7	0.09	0.0272	0.124	0.095	105	0.010
UT	SAN JUAN CO	12,621		0.03	0.0272	0.124	0.093	105	0.010
UT	UTAH CO	263,590	6.0	•	0.0239	0.114	0.090	80	•
UT	WEBER CO	158,330	7.5	•	0.0243	0.111	0.090	71	•
VT	BENNINGTON CO	35,845		•	0.02-10	0.085	0.075		•
VT.	CHITTENDEN CO	131,761	2.4	•	0.0175	0.082	0.073	54	0.008
VT	RUTLAND CO	62,142	2.4		0.0127	0.002	0.070	48	0.029
VT	WASHINGTON CO	54,928						49	0.020
VA	ARLINGTON CO	170,936	2.3		0.0253	0.112	0.098		
VA	CAROLINE CO	19,217				0.121	0.095		
VA	CARROLL CO	26,594						36	
VA	CHARLES CITY CO	6,282		•	0.0117	0.116	0.092		0.019
VA	CHESTERFIELD CO	209,274				0.116	0.090		
VA	CULPEPER CO	27,791						39	
VA	FAIRFAX CO	818,584	3.3	0.03	0.0234	0.127	0.103	45	0.025
VA	FAUQUIER CO	48,741		•		0.111	0.093		
VA	FREDERICK CO	45,723				0.113	0.098		
VA.	HANOVER CO	63,306			•	0.125	0.100		
VA	HENRICO CO	217,881				0.121	0.096		
VA .	KING WILLIAM CO	10,913					•	48	
VA	LOUDOUN CO	86,129				0.116	0.102	₹.	
VA	MADISON CO	11,949	•			0.115	0.098		•
VA	NORTHUMBERLAND CO	10,524						44	
VA	PRINCE WILLIAM CO	215,686			0.0146	0.124	0.098	50	
VA	ROANOKE CO	79,332			0.0141	0.126	0.099		0.009
VA	ROCKINGHAM CO	57,482		•	•			55	0.009
VA	STAFFORD CO	61,236	. •			0.126	0.092	•	•
VA	TAZEWELL CO	45,960	•	•		. •	•	38	
VA	WARREN CO	26,142	•	•	•		•	45	•
VA	WISE CO	39,573	•	. •	. •		•	40	•
VA	WYTHE CO	25,466		•	•	0.098	0.087	•	• .
VA	ALEXANDRIA	111,183	3.5	•	0.0272	0.114	0.094		0.022
VA	CHARLOTTESVILLE	40,341	. •		•	•	•	49	•
VA	CHESAPEAKE	151,976	• .	•		•	•	. 48	
VA	FREDERICKSBURG	19,027		•	•			41	•
VA	HAMPTON	133,793		•		0.104	0.090	47	0.018
VA VA	NEWPORT NEWS	170,045	2.8	•		•	•		
VA VA	NORFOLK	261,229	6.2	0.01	0.0194	•	•	49	0.021
VA VA	RICHMOND	203,056	1.9	0.01	0.0212	•	• -	53	0.016
	ROANOKE	96,397	3.9	•	•		0.007	64	•
VA VA	SUFFOLK WINCHESTER	52,141 21,947	•	•	•	0.105	0.087		•
WA	ASOTIN CO	17,605	•	• 1	•	•	•	48	•
WA	BENTON CO	112,560	•	•	•	•	•	86	•
WA	CHELAN CO	52,250	•	•	•	•	. •	90 46	•
WA	CLALLAM CO	56,464	•	•	•	0.062	0.046	39	0.007
WA	CLARK CO	238,053	5.5	•	0.0121	0.002	0.046	26	0.007
WA	COWLITZ CO	82,119		•	0.0121	0.097	0.070	45	•
WA	KING CO	1,507,319	5.5	2.03	0.0073	0.094	0.070	45 67	0.016
WA	KITSAP CO	189,731			0.0204				0.016
WA	KITTITAS CO	26,725	•	•	•	٠	•	24 72	•
WA	KLICKITAT CO	16,616	. •	• •	•	0.077	0.063	72	•
	ALIONIA JO	10,010				0.077	0.003		

Table A-12. Maximum Air Quality Concentrations by County, 1998 (continued)

State	County	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)	O ₃ (1-hr) 2nd Max (ppm)		PM ₁₀ 2nd Max (µg/m³)	SO ₂ 24-hi (ppm
WA	PIERCE CO	586,203	5.8			0.126	0.085	62	0.020
WA	SKAGIT CO	79,555		•	•	0.052	0.042		0.042
	SNOHOMISH CO	465,642	5.1	•	•			44	0.009
WA WA	SPOKANE CO	361,364	6.8	•	•	0.082	0.070	89	
WA	STEVENS CO	30,948		•	•	0.002		82	
WA	THURSTON CO	161,238	4.8	•	•	0.105	0.074	47	
WA	WALLA WALLA CO	48,439		•	·			136	
WA	WHATCOM CO	127,780	•			0.070	0.056	32	0.015
WA	YAKIMA CO	188,823	5.1					81	
wv	BROOKE CO	26,992	U					63	0.062
wv	CABELL CO	96,827		· ·		0.136	0.105		0.023
wv	FAYETTE CO	47,952						45	
wv	GREENBRIER CO	34,693				0.113	0.102		0.014
wv	HANCOCK CO	35,233	13.2		0.0145	0.099	0.088	119	0.067
wv	KANAWHA CO	207,619	2.0		0.0221	0.115	0.091	42	0.03
wv	MARSHALL CO	37,356						53	0.06
WV	MONONGALIA CO	75,509			-			48	0.04
wv	OHIO CO	50,871	3.5			0.104	0.087	56	0.04
wv	PUTNAM CO	42,835						53	
wv	WAYNE CO	41,636						43	0.03
wv	WOOD CO	86,915				0.111	0.094	54	0.08
WI	BROWN CO	194,594	•			0.098	0.077		0.01
WI	COLUMBIA CO	45,088				0.089	0.076		
WI	DANE CO	367,085		•		0.089	0.076	79	0.01
WI	DODGE CO	76,559				0.100	0.081		
WI	DOOR CO	25,690		-		0.114	0.092		
WI	DOUGLAS CO	41,758		_				44	
WI	FLORENCE CO	4,590				0.086	0.076		
WI	FOND DU LAC CO	90,083	-			0.094	0.078		
WI	JEFFERSON CO	67,783		•		0.093	0.082		
WI	KENOSHA CO	128,181		•		0.127	0.093		
WI	KEWAUNEE CO	18,878		•		0.107	0.091		
WI	MANITOWOC CO	80,421	•		0.0034	0.114	0.097		
WI	MARATHON CO	115,400	•			0.098	0.077	59 .	0.03
WI	MILWAUKEE CO	959,275	2.5	•	0.0212	0.129	0.093	64	0.02
WI	ONEIDA CO	31,679				0.086	0.070		0.04
WI	OUTAGAMIE CO	140,510				0.086	0.072		
WI	OZAUKEE CO	72,831				0.134	0.095		
WI	POLK CO	34,773	0.6			0.090	0.078		
WI	RACINE CO	175,034	3.0			0.124	0.084		
WI	ROCK CO	139,510				0.100	0.084		•
WI	ST CROIX CO	50,251				0.090	0.073		
WI	SAUK CO	46,975			0.0042	0.089	0.080		
WI	SHEBOYGAN CO	103,877				0.134	0.095		
WI	VERNON CO	25,617	•			0.082	0.073	41	•
WI	VILAS CO	17,707	•				•	27	
WI	WALWORTH CO	75,000				0.100	0.084	. •	
WI	WASHINGTON CO	95,328	•		•	0.103	0.079		
WI	WAUKESHA CO	304,715	2.1			0.097	0.077	62	
WI	WINNEBAGO CO	140,320	•	·		0.084	0.074		
WI	WOOD CO	73,605	•			•	•		0.02
WY	ALBANY CO	30,797		•			•	44	
WY	CAMPBELL CO	29,370		•				66	
WY	CONVERSE CO	11,128		•				77	•

Table A-12. Maximum Air Quality Concentrations by County, 1998 (continued)

State	County	1990 Population	CO 8-hr (ppm)	Pb QMax (μg/m³)	NO ₂ AM (ppm)	O ₃ (1-hr) 2nd Max (ppm)	O ₃ (8-hr) 4th Max (ppm)	PM ₁₀ 2nd Max (µg/m³)	SO ₂ 24-hr (ppm)
		110 man - 110 ma				COLLEGE SALES CONTROL OF THE S	,		
WY	FREMONT CO	33,662		-				70	
WY	LARAMIE CO	73,142						31	•
WY	NATRONA CO	61,226		•				37	•
WY	PARK CO	23,178		•			•	51	
WY	SHERIDAN CO	23,562		•				82	
WY	SWEETWATER CO	38,823						70	
WY	TETON CO	11,172				0.072	0.066	64	

Highest second maximum non-overlapping 8-hour concentration (Applicable NAAQS is 9 ppm) CO

Highest quarterly maximum concentration (Applicable NAAQS is 1.5 µg/m3) Pb Highest arithmetic mean concentration (Applicable NAAQS is 0.053 ppm)

 NO_2 Highest second daily maximum 1-hour concentration (Applicable NAAQS is 0.12 ppm)

 O_3 (1-hr) = O_3 (8-hr) = PM_{10} = SO_2 = Highest fourth daily maximum 8-hour concentration (Applicable NAAQS is 0.08 ppm) Highest second maximum 24-hour concentration (Applicable NAAQS is 150 μg/m3)
Highest second maximum 24-hour concentration (Applicable NAAQS is 0.14 ppm)

PPMUnits are parts per million

Units are micrograms per cubic meter µg/m³

Data from exceptional events not included.

Note: The reader is cautioned that this summary is not adequate in itself to numerically rank counties according to their air quality. The monitoring data represent the quality of air in the vicinity of the monitoring site but may not necessarily represent urban-wide air quality.

Table A-13. Maximum Air Quality Concentrations by Metropolitan Statistical Area, 1998

the transfer of the second							entantian manifest		eoranization-sylvation	
Metropolitan Statistical Area	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)	O ₃ 1-hr (ppm)	O ₃ 8-hr (ppm)	PM ₁₀ Wtd AM (µg/m³)	PM ₁₀ 2nd Max (µg/m³)	SO ₂ AM (ppm)	SO ₂ 24-hr (ppm)
ABILENE, TX .	119,655	ND	ND	· ND	ND	ND	ND	ND	ND	ND
AGUADILLA, PR	128,172	ND	ND	. ND	ND	ND	ND	ND	ND	ND
AKRON, OH	657,575	3	0.02	ND	0.11	0.10	24	70	0.010	0.044
ALBANY, GA	112,561	ND	ND	ND	ND	ND	IN	66	0.001	0.006
ALBANY-SCHENECTADY-TROY, NY	861,424	4	0.03	0.015	0.10	0.08	21	58	0.004	0.016
ALBUQUERQUE, NM	589,131	6	ND	0.016	0.09	0.07	17*	87	ND	ND
ALEXANDRIA, LA	131,556	ND	ND	ND	ND	ND	ND	ND	ND	ND
ALLENTOWN-BETHLEHEM-EASTON, PA	595,081	3	0.12	0.017	0.11	0.10	IN	41	0.011	0.033
ALTOONA, PA	130,542	1	ND	0.013	0.11	0.10	IN	58	0.008	0.032
AMARILLO, TX	187,547	ND	ND	ND	ND	ND	ND	ND	ND	ND
ANCHORAGE, AK	226,338	8	ND	ND	ND	ND	26	98	ND	ND
ANN ARBOR, MI	490,058	ND	ND	ND	0.10	0.09	ND	ND	ND	ND
ANNISTON, AL	116,034	ND	ND	ND	ND	ND	IN	IN	ND	ND
APPLETON-OSHKOSH-NEENAH, WI	315,121	ND	ND	ND	0.09	. 0.07	ND	ND	ND	ND
ARECIBO, PR	155,005	ND	ND	ND	ND	ND	ND	ND	ND	ND
ASHEVILLE, NC	191,774	ND	ND	ND	0.11	0.09	20	55 .	ND	ND
ATHENS, GA	126,262	ND	ND	ND	ND	ND	ND	ND	ND	ND
ATLANTA, GA	2,959,950	4	0.01	0.024	0.16	0.13	31	71	0.005	0.019
ATLANTIC-CAPE MAY, NJ	319,416	ND	ND	ND	0.12	0.09	ND	ND	0.003	0.010
AUGUSTA-AIKEN, GA-SC	415,184	ND	0.02	ND	0.12	0.10	28	60	0.003	0.011
AURORA-ELGIN, IL	356,884	ND	ND	ND	ND	ND	ND	ND	ND	ND
AUSTIN-SAN MARCOS, TX	846,227	1	ND	0.004	0.12	0.09	ND	ND	ND .	ND
BAKERSFIELD, CA BALTIMORE, MD	543,477	3	0.00	0.024	0.16	0.12	40	131	ND	ND
BANGOR, ME	2,382,172 91,629	5 ND	0.01 ND	0.026	0.14	0.11	31	65	0.007	0.020
BARNSTABLE-YARMOUTH, MA	134,954	ND	ND	ND ND	0.09 ND	0.08 ND	18 ND	40 ND	ND ND	ND
BATON ROUGE, LA	528,264	4	0.05	0.019	0.13	0.11	32*	64*		ND 0.036
BEAUMONT-PORT ARTHUR, TX	361,226	ND	ND	0.009	0.13	0.11	ND	ND	0.007 0.008	0.036 0.050
BELLINGHAM, WA	127,780	ND	ND	ND	0.14	0.16	13	31	0.005	0.050
BENTON HARBOR, MI	161,378	ND	ND	ND	0.14	0.09	ND	ND	ND	ND
BERGEN-PASSAIC, NJ	1,278,440	4	ND	IN	0.10	0.09	38*	59*	0.004	0.018
BILLINGS, MT	113,419	5	ND	ND	ND	ND	ND	ND	0.004	0.032
BILOXI-GULFPORT-PASCAGOULA, MS	312,368	ND	ND	0.004	0.12	0.10	IN	IN	0.003	0.022
BINGHAMTON, NY	264,497	ND	ND	ND	ND	ND	IN	51	ND	ND
BIRMINGHAM, AL	840,140	4	ND	0.009	0.14	0.11	36	109	0.007	0.032
BISMARCK, ND	83,831	ND	ND	ND	ND	ND	16	32	0.006	0.116
BLOOMINGTON, IN	108,978	ND	ND	ND	ND	ND	ND	ND	ND	ND
BLOOMINGTON-NORMAL, IL	129,180	ND	ND	ND	ND	ND	ND	ND	ND	ND
BOISE CITY, ID	295,851	4	ND	0.020	ND	ND	27	67	ND	ND
BOSTON, MA-NH	3,227,707	3	0.03	0.031	0.11	0.10	32	71	0.010	0.036
BOULDER-LONGMONT, CO	225,339	5	ND	ND	0.11	0.09	IN	45	ND	ND
BRAZORIA, TX	191,707	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
BREMERTON, WA	189,731	ND	ND	ND	ND	ND	13	24	ND	ND
BRIDGEPORT, CT	443,722	3	ND	0.018	0.13	0.10	21	46	0.007	0.024
BROCKTON, MA	236,409	ND	ND	800.0	0.11	0.09	ИD	ИD	ND	ND
BROWNSVILLE-HARLINGEN-SAN BENITO, TX	260,120	3	0.01	ND	0.08	0.07	25*	62*	0.001	0.005
BRYAN-COLLEGE STATION, TX	121,862	ND	ND	ND	ND	ND	ND	ND	ND	ND
BUFFALO-NIAGARA FALLS, NY	1,189,288	3	0.04	0.021	0.11	0.09	24	55	0.009	0.049
BURLINGTON, VT	151,506	2	ND	0.018	ND	ND	21	54	0.002	0.008
CANTON MASSILON OF	279,501	ND	ND	ND	ND	ND	ND	ND	ND	ND
CANTON-MASSILLON, OH CASPER, WY	394,106	4 ND	ND	ND	0.12	0.10	26	58	0.007	0.029
CASPER, WY CEDAR RAPIDS, IA	61,226	ND	ND	ND	ND 0.00	ND	17	37 76	ND 0.00E	ND 0.000
CHAMPAIGN-URBANA, IL	168,767 173,025	3 ND	ND ND	ND ND	0.08 0.11	0.07 0.08	25 24	76 51	0.005	0.020
enumental Community its	110,020	IND	IVD	טאו	0.11	0.00	4	51	0.003	0.019

Table A-13. Maximum Air Quality Concentrations by Metropolitan Statistical Area, 1998 (continued)

letropolitan Statistical Area	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)	O ₃ 1-hr (ppm)	O ₃ 8-hr (ppm)	PM ₁₀ Wtd AM (µg/m³)	PM ₁₀ 2nd Max (µg/m³)	SO ₂ AM (ppm)	SO ₂ 24-hr (ppm)
LARI FOTON NORTH OUARI FOTON OO	500.075									0.040
HARLESTON-NORTH CHARLESTON, SC	506,875	3	0.03	0.010	0.11	0.08	25	57	0.003	0.013
HARLESTON, WV	250,454	2	ND	0.022	0.12	0.09	23	53	0.011	0.037
HARLOTTE-GASTONIA-ROCK HILL, NC-SC	1,162,093	5	0.02	0.018	0.14	0.11	32	72	0.004	0.011
HARLOTTESVILLE, VA	131,107	ND	ND	ND	ND	ND	23	49	ND	ND
HATTANOOGA, TN-GA	424,347	ND	ND	ND	0.13	0.10	29	56	ND	ND
HEYENNE, WY	73,142	ND	ND	ND	ND	ND	IN	31	ND	ND
HICAGO, IL	7,410,858	5	0.10	0.032	0.11	0.09	43	102	0.008	0.051
HICO-PARADISE, CA	182,120	4	0.00	0.013	0.10	80.0	22	57	ND	ND
INCINNATI, OH-KY-IN	1,526,092	4	0.01	0.029	0.12	0.10	. 32	84	0.010	0.040
LARKSVILLE-HOPKINSVILLE, TN-KY	169,439	ND	ND	ND	0.11	0.09	23	45	0.006	0.020
LEVELAND-LORAIN-ELYRIA, OH	2,202,069	6	0.65^{a}	0.027	0.12	0.10	45	117	0.011	0.057
OLORADO SPRINGS, CO	397,014	4	0.01	0.020	0.07	0.06	26	72	0.003	0.011
OLUMBIA, MO	112,379	ND	ND	ND	ND	ND	ND	ND	ND	ND
OLUMBIA, SC	453,331	4	0.01	0.014	0.12	0.10	51	188	0.004	0.022
OLUMBUS, GA-AL	260,860	ND	0.58 ^b	ND .	0.11	0.09	30	55	ND	ND
OLUMBUS, OH	1,345,450	4	0.03°	ND	0.12	0.10	34	83	0.005	0.019
ORPUS CHRISTI, TX	349,894	ND	ND	ND	0.10	0.08	35*	68*	0.004	0.029
UMBERLAND, MD-WV	101,643	ND	ND	ND	ND	ND	IN	IN	IN	IN
ALLAS, TX	2,676,248	4	0.67 ^d	0.020	0.13	0.10	33*	75*	0.003	0.023
ANBURY, CT	193,597	ND	ND	ND	0.12	0.09	20	38	0.004	0.020
ANVILLE, VA	108,711	ND	ND	ND	ND	ND	ND	ND	ND	ND
AVVICE, VA AVENPORT-MOLINE-ROCK ISLAND, IA-IL	350,861	ND	0.01	ND	0.10	0.08	30	121	0.004	0.018
	951,270	3	0.01	ND	0.10	0.10	28	61	0.004	0.018
AYTON-SPRINGFIELD, OH		ND	ND	ND	0.13	0.10	22	47	ND	0.022 ND
AYTONA BEACH, FL	399,413									
ECATUR, AL	131,556	ND	ND	ND	0.10	0.09	IN	IN	0.003	0.011
ECATUR, IL	117,206	ND	0.02	ND	0.09	80.0	32	68	0.005	0.020
ENVER, CO	1,622,980	5	0.11	0.035	0.12	0.10	36	99	0.004	0.023
ES MOINES, IA	392,928	10	ND	ND	0.08	0.07	30	66	ND	ND
ETROIT, MI	4,266,654	4	80.0	0.023	0.13	0.10	40	114	0.012	0.073
OTHAN, AL	130,964	ND	ND	ND	ND	ND	IN	60	ND	ND
OVER, DE	110,993	ND	ND	ND	0.13	0.10	ND	ND	ND	ND
UBUQUE, IA	86,403	ND	ND	ND	ND	ND	. ND	ND	ND	ND
ULUTH-SUPERIOR, MN-WI	239,971	4	ND	ND	0.08	0.07	20	81	ND	ND
UTCHESS COUNTY, NY	259,462	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
AU CLAIRE, WI	137,543	ND	ND	ND	ND	ND	ND	ND	ND	ND
L PASO, TX	591,610	8	0.14	0.031	0.13	0.09	49	198	0.006	0.027
LKHART-GOSHEN, IN	156,198	ND	ND	ND	0.11	0.08	ND	ND	ND	ND
LMIRA, NY	95,195	ND	ND	ND	0.09	0.08	ND	ND	0.003	0.011
NID, OK	56,735	ND	ND	0.008	ND	ND	ND	ND	ND	ND
RIE, PA	275,572	5	ND	0.014	0.12	0.10	IN	61	0.010	0.068
UGENE-SPRINGFIELD, OR	282,912	5	0.02	ND	0.11	0.08	19	78	ND	ND
VANSVILLE-HENDERSON, IN-KY	278,990	4	ND	0.018	0.12	0.10	29	67	0.015	0.071
ARGO-MOORHEAD, ND-MN	153,296	ND	ND	IN	0.07	IN	IN	IN	IN	IN
AYETTEVILLE, NC	274,566	4	ND	ND	0.11	0.10	27	47	ND	ND
AYETTEVILLE-SPRINGDALE-ROGERS, AR	259,462	ND	ND	ND	ND	ND	23*	44*	ND	ND
TCHBURG-LEOMINSTER, MA	138,165	ND	ND	ND	ND	ND	ND	ND	ND	ND
LAGSTAFF, AZ-UT	101,760	ND	ND	ND	0.08	0.07	ND	ND	ND	ND
LINT, MI	430,459	ND	0.01	ND	0.11	0.09	IN	39	0.002	0.014
LORENCE, AL	131,327	ND	ND	ND	ND	ND	IN	42	0.002	0.019
•									0.003 ND	ND
LORENCE, SC	114,344	ND	0.01	ND	ND 0.00	ND o oo	ND IN	ND		
ORT COLLINS-LOVELAND, CO	186,136	4	ND	ND 0.010	0.09	0.08	IN	32 51	ND	ND
ORT LAUDERDALE, FL	1,255,488	4	0.03	0.010	0.11	0.08	22	51	0.003	0.017
ORT MYERS-CAPE CORAL, FL	335,113	ND	ND	ND	0.11	0.09	IN	36	ND	ND

Table A-13. Maximum Air Quality Concentrations by Metropolitan Statistical Area, 1998 (continued)

Metropolitan Statistical Area	1990 Population	CO 8-hr (ppm)	Pb QMax (μg/m³)	NO ₂ AM (ppm)	O ₃ 1-hr (ppm)	O ₃ 8-hr (ppm)	PM ₁₀ Wtd AM (µg/m³)	PM ₁₀ 2nd Max (µg/m³)	SO ₂ AM (ppm)	SO ₂ 24-hr (ppm)
FORT SMITH, AR-OK	175,911	ND	ND	ND	ND	ND	25*	49*	ND	ND
FORT WALTON BEACH, FL	143,776	ND	ND	ND	ND	ND	ND	ND	ND	ND
FORT WAYNE, IN	456,281	3	ND	ND	0.11	0.09	34	66	ND	ND
FORT WORTH-ARLINGTON, TX	1,361,034	3	· ND	0.014	0.13	0.10	26*	50*	ND	ND
FRESNO, CA	755,580	7	0.00	0.020	0.17	0.12	39	117	ND	ND
GADSDEN, AL	99,840	ND	ND	ND	ND	ND	31	63	ND	ND
GAINESVILLE, FL	181,596	ND	ND	ND	0.11	0.09	22	39	ND	ND
GALVESTON-TEXAS CITY, TX	217,399	ND	ND	0.003	0.17	0.11	25*	69*	0.004	0.039
GARY, IN	604,526	5	0.12	0.019	0.12	0.09	32	136	0.009	0.055
GLENS FALLS, NY	118,539	ND	ND	ND	ND	ND	ND	ND	ND	ND
GOLDSBORO, NC	104,666	ND	ND	ND	ND	ND	22	44	ND	ND
GRAND FORKS, ND-MN	103,181	ND	ND	ND	ND	ND	IN	81	ND	ND
GRAND JUNCTION, CO	93,145	5	ND	ND	ND	ND	20	51	ND	ND
GRAND RAPIDS-MUSKEGON-HOLLAND, MI	937,891	3	0.01	ND	0.12	0.10	20	55	0.002	0.008
GREAT FALLS, MT	77,691	5	ND	ND	ND	ND	ND	ND	0.003	0.010
GREELEY, CO	131,821	4	ND	ND	0.10	0.08	IN	39	ND	ND
GREEN BAY, WI	194,594	ND	ND	ND	0.10	0.08	ND	ND	0.003	0.011
GREENSBORO-WINSTON-SALEM-HIGH POINT	1,050,304	5	ND	0.017	0.12	0.10	27	61	0.006	0.023
GREENVILLE, NC	107,924	ND	ND	ND	0.11	0.09	21	42	ND	ND
GREENVILLE-SPARTANBURG-ANDERSON, SC	830,563	4	0.02	0.017	0.13	0.1	24	58	0.003	0.015
HAGERSTOWN, MD	121,393	ND	ND	ND	ND	ND	ND	ND	ND	ND
HAMILTON-MIDDLETOWN, OH	291,479	ND	0.02	ND	0.12	0.09	36	74	0.007	0.022
HARRISBURG-LEBANON-CARLISLE, PA	587,986	3	0.04	0.019	0.12	0.1	22*	65	0.006	0.021
HARTFORD, CT	1,157,585	7	ND	0.02	0.13	0.1	21	66	0.005	0.019
HATTIESBURG, MS	98,738	ND	ND	ND	ND	ND	ND	ND	ND	ND
HICKORY-MORGANTON-LENOIR, NC	292,409	ND	ND	ND	0.13	0.1	23	43	ND	ND
HONOLULU, HI	836,231	2	ND	0.004	0.06	0.05	16	39	0.002	0.009
HOUMA, LA	182,842	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
HOUSTON, TX	3,322,025	5	ND	0.023	0.2	0.12	54*	129*	0.004	0.024
HUNTINGTON-ASHLAND, WV-KY-OH	312,529	7	ND	IN	0.14	0.11	35	92	0.009	0.038
HUNTSVILLE, AL	293,047	3	ND	ND	0.12	0.09	22	56	ND	ND
INDIANAPOLIS, IN	1,380,491	3	0.08e	0.019	0.13	0.1	30	58 `	0.006	0.024
IOWA CITY, IA	96,119	ND	ND	ND	ND	ND	ND	ND	ND	ND
JACKSON, MI	149,756	ND	ND	ND	ND	ND	ND	ND	ND	ND
JACKSON, MS	395,396	4	ND	ND	0.11	0.09	28	76	0.002	0.008
JACKSON, TN	90,801	ND	0.01	ND	ND	ND	IN.	38	ND	ND
JACKSONVILLE, FL	906,727	3	0.02	0.015	0.1	0.1	IN	64	0.004	0.037
JACKSONVILLE, NC	149,838	ND	ND	ND	ND	ND	22	42	ND	ND
JAMESTOWN, NY	141,895	ND	ND	ND	0.11	0.1	23	62	0.007	0.032
JANESVILLE-BELOIT, WI	139,510	ND	ND	ND	0.1	80.0	ND	ND	ND	ND
JERSEY CITY, NJ	553,099	6	ND	0.027	0.12	0.09	27*	63*	0.009	0.024
JOHNSON CITY-KINGSPORT-BRISTOL, TN-VA	436,047	3	0.31	0.017	0.12	0.1	25 IN	50	0.011	0.057
JOHNSTOWN, PA	241,247	3 ND	0.04	0.015	0.12	0.1	IN 07*	64 54*	0.008	0.027
JONESBORO, AR	68,956	ND	ND	ND	ND	ND	27* ND	54*	ND	ND
JOPLIN, MO KALAMAZOO-BATTLE CREEK, MI	134,910	ND	ND	ND	ND	ND	ND	ND	ND	ND
KANKAKEE, IL	429,453	ND	ND	ND	0.11 ND	0.09	IN	66 ND	ND	ND
KANSAS CITY, MO-KS	96,255 1 582 875	ND 5	ND 0.01	ND 0.013	ND 0.13	ND 0.1	ND 35	ND 64	ND 0.005	ND 0.015
ing the state of t	1,582,875	5 ND	0.01 ND	0.013	0.13	0.1	35 ND	64 ND	0.005	0.015
KENOSHA, WI KILLEEN-TEMPLE, TX	128,181 255,301	ND ND	ИD	ND ND	0.13 ND	0.09 ND	ND ND	ND	ND	ND
KNOXVILLE, TN	255,301 585,960	4	0	ND	ND 0.14	0.11	ND 48	ND 174	ND 0.007	ND 0.039
KOKOMO, IN	96,946	ND	ND	ND	0.14 ND		48 ND	174 ND	0.007	0.038
	116,401	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
LA CROSSE, WI-MN										

Table A-13. Maximum Air Quality Concentrations by Metropolitan Statistical Area, 1998 (continued)

Metropolitan Statistical Area	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)	O ₃ 1-hr (ppm)	O ₃ 8-hr (ppm)	PM ₁₀ Wtd AM (µg/m³)	PM ₁₀ 2nd Max (µg/m³)	SO ₂ AM (ppm)	SO ₂ 24-hr (ppm)
	an kankalan kacalah kan Siraha Bukur Bukur kan kan kan kan kan kan Burut biha biha	England State Control of Control	C. St. A. W. C.		and the second s					
LAFAYETTE, IN	161,572	ND	ND	ND	ND	ND	ND	ND	ND	ND
LAKE CHARLES, LA	168,134	ND	ND	0.005	0.12	0.09	ND	ND	0.003	0.012
_AKELAND-WINTER HAVEN, FL	405,382	ND	ND	ND	0.11	0.09	26	91	0.006	0.027
_ANCASTER, PA	422,822	2	0.04	0.015	0.12	0.1	32*	62	0.006	0.02
ANSING-EAST LANSING, MI	432,674	ND	ND	ND		0.08	ND	ND	ND	ND
AREDO, TX	133,239	4	0.02	ND	0.1	0.07	ND	ND	ND	ND
AS CRUCES, NM	135,510	4	0.04	0.01	0.12	80.0	32	148	0.004	0.019
.AS VEGAS, NV-AZ	852,737	10	ND	ND	0.11	0.09	45	188	ND	ND
LAWRENCE, KS	81,798	ND	ND	ND	ND	ND	ND	ND	ND	ND
AWRENCE, MA-NH	353,232	ND	ND	ND	0.1	0.08	IN	39	800.0	0.031
AWTON, OK	111,486	2	ND	IN	0.09	0.09	IN	IN	ND	ND
EWISTON-AUBURN, ME	93,679	ND	ND	ND	ND	ND	18	36	0.004	0.019
EXINGTON, KY	405,936	3	ND	0.011	0.11	0.09	24	64	0.006	0.023
IMA, OH	154,340	ND	ND	ND	0.1	0.09	24	46	0.003	0.017
LINCOLN, NE	213,641	6	ND	ND	0.07	0.06	IN	IN	ND	ND
ITTLE ROCK-NORTH LITTLE ROCK, AR	513,117	5	ND	0.011	0.1	80.0	34*	98*	0.002	0.006
ONGVIEW-MARSHALL, TX	193,801	ND	ND	ND	0.13	0.1	ND	ND	ND	ND
OS ANGELES-LONG BEACH, CA	8,863,164	. 12	0.05	0.043	0.2	0.14	41	78	0.004	0.012
OUISVILLE, KY-IN	948,829	6	ND	0.023	0.14	0.1	27	58	0.009	0.045
OWELL, MA-NH	280,578	3	ND	ND	ND	ND	ND	ND	ND	ND
UBBOCK, TX	222,636	ND	ND	ND	ND	ND	21*	44*	ND	ND
YNCHBURG, VA	193,928	ND	ND	ND	ND	ND	IN	IN	ND	ND
MACON, GA	290,909	ND	ND	ND	0.14	0.11	30	59	0.003	0.019
MADISON, WI	367,085	IN	ND	ND	0.09	0.08	27	75	0.003	0.016
MANCHESTER, NH	50,000	ND	ND	ND	ND	ND	IN	IN	ND	ND
MANSFIELD, OH	174,007	ND	ND	ИD	ND	ND	24	66	ND	ND
MAYAGUEZ, PR	237,143	ND	ND	ND	ND	ND	ND	ND	ND	ND
MCALLEN-EDINBURG-MISSION, TX	383,545	ND	ND	ND	0.09	0.07	ND	ND	ND	ND
MEDFORD-ASHLAND, OR	146,389	5	0.03	ND	0.12	0.09	20	70	ND	ND
MELBOURNE-TITUSVILLE-PALM BAY, FL	398,978	ND	ND	ND	0.1	0.09	17	44	ND	ND
MEMPHIS, TN-AR-MS	1,007,306	5	2.02 ^f	0.029	0.13	0.1	28	65	0.006	0.041
MERCED, CA	178,403	ND	ND	0.011	0.14	0.11	ND	ND	ND	ND
/IAMI, FL	1,937,094	3	ND	0.015	0.11	0.09	28	62	0.001	0.004
MIDDLESEX-SOMERSET-HUNTERDON, NJ	1,019,835	3	0.08 ⁹	0.019	0.12	0.1	ND	ND	0.005	0.018
MILWAUKEE-WAUKESHA, WI	1,432,149	3	ND	0.021	0.13	0.1	30	63	0.004	0.022
MINNEAPOLIS-ST. PAUL, MN-WI	2,538,834	7	0.14 ^h	0.026	0.1	0.08	IN	73	0.005	0.019
MISSOULA, MT	78,687	ND	ND	ND	ND	ND	ND	ND	ND	ND
MOBILE, AL	476,923	ND	ND	ND	0.11	0.1	31	153	0.009	0.073
MODESTO, CA	370,522	5	0	0.018	0.15	0.11	31 ND	105	ND	ND
MONMOUTH-OCEAN, NJ	986,327	3	ND	ND	0.14	0.1	ND	ND	ND 0.000	ND
MONROE, LA	142,191	ND	ND	ND	0.09	0.08	ND	ND 57	0.003	0.012
MONTGOMERY, AL	292,517	ND	ND o oi	ND	0.12 ND	0.09	27 ND	57 ND	0.002	0.01 ND
AUNCIE, IN	119,659	ND	0.9i	ND	ND	ND	ND	ND ND	ND	
MYRTLE BEACH, SC	144,053	ND	ND	ND	ND	ND	ND	ND 41	ND	ND
VAPLES, FL	152,099	ND	ND	ND 0.015	ND 0.1	ND 0.00	IN IN	41 IN	ND	ND 0.027
IASHUA, NH	168,233	5 6	ND 1.25i	0.015	0.1	0.08	IN 33	IN 87	0.007 0.006	0.027
VASHVILLE, TN	985,026	6	1.25 ^j	0.013	0.13	0.11				
NASSAU-SUFFOLK, NY	2,609,212	4 ND	ND	0.022	0.14	0.1	20	46 42	0.007	0.033
NEW BEDFORD, MA	175,641	ND	ND	ND	0.1	0.08	16	42 71	ND 0.006	ND 0.021
NEW HAVEN-MERIDEN, CT	530,180	3	ND	0.027	0.13	0.1	27	71	0.006	0.031
NEW LONDON-NORWICH, CT-RI	290,734	ND	ND	ND	0.12	0.08	18	41 61*	0.004	0.018
NEW ORLEANS, LA	1,285,270	3	0.11	0.02	0.12	0.09	29 56	61*	0.004	0.026
NEW YORK, NY	8,546,846	6	0.14	0.04	0.13	0.09	56 40*	114 71*	0.012	0.038
NEWARK, NJ	1,915,928	5	ИD	0.042	0.12	0.1	40*	71*	0.007	0.025

Table A-13. Maximum Air Quality Concentrations by Metropolitan Statistical Area, 1998 (continued)

				NO						
Metropolitan Statistical Area	1990 Population	CO 8-hr (ppm)	Pb QMax (μg/m³)	NO ₂ AM (ppm)	O ₃ 1-hr (ppm)	O ₃ 8-hr (ppm)	PM ₁₀ Wtd AM (µg/m³)	PM ₁₀ 2nd Max (µg/m³)	SO ₂ AM (ppm)	SO ₂ 24-hr (ppm)
NEWBURGH, NY-PA	335,613	ND	0.14 ^k	ND	0.1	0.09	ND	ND	ND	ND
NORFOLK-VIRGINIA BEACH-NEWPORT NEWS,VA	1,443,244	6	ND	0.019	0.11	0.09	24	49	0.006	0.021
OAKLAND, CA	2,082,914	4	0.01	0.02	0.14	0.1	22	59	0.003	0.021
OCALA, FL	194,833	ND	ND	ND	0.1	0.08	ND	ND	ND	ND
ODESSA-MIDLAND, TX	255,545	ND	ND	ND	ND	ND	ND	ND.	ND	ND
OKLAHOMA CITY, OK	958,839	4	ND	0.012	0.11	0.09	IN	IN	0.003	0.007
OLYMPIA, WA	161,238	5	ND	ND	0.11	0.07	IN	46	ND	ND
OMAHA, NE-IA	639,580	8	0.25 ^l	ND	0.09	0.07	39	106	0.002	0.032
ORANGE COUNTY, CA	2,410,556	7	ND	0.034	0.16	0.09	36	65	0.002	0.005
ORLANDO, FL	1,224,852	4	ND	0.011	0.12	0.1	28	63	0.002	0.007
OWENSBORO, KY	87,189	1	ND	0.013	0.11	0.09	25	57	0.007	0.023
PANAMA CITY, FL	126,994	ND	ND	ND	ND	ND	IN	52	ND	ND
PARKERSBURG-MARIETTA, WV-OH	149,169	ND	ND	ND	0.12	0.09	29	68	0.013	0.089
PENSACOLA, FL	344,406	ND	ND	ND	0.13	0.1	22	50	0.004	0.024
PEORIA-PEKIN, IL	339,172	6	0.02	ND	0.09	0.08	26	54	0.007	0.045
PHILADELPHIA, PA-NJ	4,922,175	5	1.64 ^m	0.034	0.13	0.1	31*	105	0.01	0.035
PHOENIX-MESA, AZ	2,238,480	8	ND	0.035	0.11	0.09	81	208	0.008	0.027
PINE BLUFF, AR	85,487	ND	ND	ND	ND	ND	24*	47*	ND	ND
PITTSBURGH, PA	2,384,811	4	0.06	0.031	0.13	0.11	41	130	0.016	0.094
PITTSFIELD, MA	88,695	ND	ND	ND	0.08	IN	ND	ND	ND	ND
POCATELLO, ID	66,026	ND	ND	IN	ND	ND	27	92	0.006	0.034
PONCE, PR	3,442,660	ND	ND	ND	ND	ND	IN	IN	ND	ND
PORTLAND, ME	221,095	ND	ND	ND	0.12	0.09	IN	67	0.005	0.025
PORTLAND-VANCOUVER, OR-WA	1,515,452	6	0.3	0.012	0.14	0.08	29	59	ND	ND
PORTSMOUTH-ROCHESTER, NH-ME	223,271	ND	ND	0.012	0.12	0.09	IN	IN	0.004	0.016
PROVIDENCE-FALL RIVER-WARWICK, RI-MA	1,134,350	5	ND	0.025	0.11	0.09	18	59	0.007	0.027
PROVO-OREM, UT	263,590	6	ND	0.024	0.11	0.09	28	75	ND	ND
PUEBLO, CO	123,051	ND	ND	ND	ND	ND	IN	52	ND	ND
PUNTA GORDA, FL	110,975	ND	ND	ND	ND	ND	ND	ND	ND	ND
RACINE, WI	175,034	3	ND	ND	0.12	0.08	ND	ND	ND	ND
RALEIGH-DURHAM-CHAPEL HILL, NC	855,545	5	ND	ND	0.12	0.11	25	62	0.005	0.009
RAPID CITY, SD	81,343	ND	ND	ND	ND	ND	31	110	ND	ND
READING, PA	336,523	3	0.71 ⁿ	0.021	0.11	0.09	IN	51	0.009	0.025
REDDING, CA	147,036	ND	ND	ND	0.14	0.11	23	54	ND	ND
RENO, NV	254,667	7	ND	ND	0.09	0.08	46	125	ND	ND
RICHLAND-KENNEWICK-PASCO, WA	150,033	ND	ND	ND	ND	ND	IN	90	ND	ND
RICHMOND-PETERSBURG, VA	865,640	2	0.01	0.021	0.13	0.1	23	53	0.006	0.019
RIVERSIDE-SAN BERNARDINO, CA	2,588,793	5	0.05	0.036	0.24	0.18	50	114	0.002	0.009
ROANOKE, VA	224,477	4	ND	0.014	0.13	0.1	33		0.003	0.009
ROCHESTER, MN	106,470	ND	ND	ND	ND	ND	IN	36	ND	ND
ROCHESTER, NY ROCKFORD, IL	1,062,470	3	ND	ND	0.1	0.09	IN	50	0.01	0.054
	329,676	4	0.04	ND	0.09	0.07	24	52	ND	ND
ROCKY MOUNT, NC	133,235	ND	ND	ND	0.11	0.09	22	43	ND	ND
SACRAMENTO, CA SAGINAW-BAY CITY-MIDLAND. MI	1,340,010	6 ND	0.01	0.021	0.15	0.12	27 ND	99	0.003	0.015
ST. CLOUD, MN	399,320	ND	ND	ND	ND	ND	ND	ND	ND	ND
ST. JOSEPH, MO	190,921	4 ND	ND ND	ND ND	ND	ND	ND	ND	ND 0.007	ND
ST. LOUIS. MO-IL	83,083 1,836,302	6	11.6°	ND 0.026	ND n 14	ND 0.1	IN 46		0.007	0.121
SALEM, OR	278,024				0.14	0.1	46 ND	116 ND	0.009	0.069
SALINAS, CA	355,660	5 2	ND ND	ND 0.01	0.11	0.08	ND 27	ND	ND	ND
SALT LAKE CITY-OGDEN, UT	1,072,227	8	0.09	0.01	0.09 0.12	0.07	27 22	50	ND 0.004	ND 0.01
SAN ANGELO, TX	98,458	ND	ND	0.027 ND	0.12 ND	0.1 ND	33 ND	99 	0.004	0.01
SAN ANTONIO, TX	1,324,749	5	ND	0.024	0.12	0.09	ND 27*	ND 61*	ND	ND
SAN DIEGO, CA	2,498,016	5 5	0.01	0.024	0.12	0.09	43	61* 88	ND	ND 0.016
	2)-100,010	J	0.01	0.020	0.14	V. 1 1	70	00	0.003	0.016

Table A-13. Maximum Air Quality Concentrations by Metropolitan Statistical Area, 1998 (continued)

Metropolitan Statistical Area	1990 Population	CO 8-hr (ppm)	Pb QMax (µg/m³)	NO ₂ AM (ppm)	O ₃ 1-hr (ppm)	O ₃ 8-hr (ppm)	PM ₁₀ Wtd AM (µg/m³)	PM ₁₀ 2nd Max (µg/m³)	SO ₂ AM (ppm)	SO ₂ 24-hr (ppm)
SAN FRANCISCO, CA	1,603,678	4	0.01	0.02	0.07	0.05	22	46	0.002	0.006
SAN JOSE, CA	1,497,577	6	0.01	0.025	0.14	0.09	25	60	ND	ND
SAN JUAN-BAYAMON, PR	1,836,302	6	ND	IN	0.04	0.04	36	99	0.005	0.019
SAN LUIS OBISPO-ATASCADERO-PASO ROBLE	217,162	2	ND	0.011	0.11	0.1	22	67	0.005	0.03
SANTA BARBARA-SANTA MARIA-LOMPOC, CA	369,608	4	0	0.021	0.12	0.09	25	55	0.002	0.002
SANTA CRUZ-WATSONVILLE, CA	229,734	1	ND	0.004	0.09	0.07	29	67	0.001	0.003
SANTA FE, NM	117,043	2	ND	ND	ND	ND	14	28	ND	ND
SANTA ROSA, CA	388,222	3	ND	0.015	0.1	0.09	18	38	ND	ND
SARASOTA-BRADENTON, FL	489,483	6	ND	ND	0.12	0.09	23	82	0.003	0.019
SAVANNAH, GA	258,060	ND	ND	ND	0.1	80.0	26	79	0.003	0.027
SCRANTON-WILKES-BARRE-HAZLETON, PA	638,466	3	ND	0.016	0.11	0.09	29*	54	0.006	0.026
SEATTLE-BELLEVUE-EVERETT, WA	2,033,156	6	2.03 ^p	0.02	0.14	0.09	15	67	0.006	0.016
SHARON, PA	121,003	ND	0.04	ND	0.12	0.11	28*	75*	0.007	0.029
SHEBOYGAN, WI	103,877	ND	ND	ND	0.13	0.1	ND	ND	NĐ	ND
SHERMAN-DENISON, TX	95,021	ND	ND	ND	ND	ND	ND	ND	ND	ND
SHREVEPORT-BOSSIER CITY, LA	376,330	ND	ND	, ND	0.11	0.09	26*	57*	0.002	0.01
SIOUX CITY, IA-NE	115,018	ND	ND	ND	ND	ND	28	56	ND	ND
SIOUX FALLS, SD	139,236	ND	ND	ND	ND	ND	IN	53	ND	ND
SOUTH BEND, IN	247,052	ND	ND	0.012	0.12	0.1	24	45	ND	ND
SPOKANE, WA	361,364	7	ND	ND	0.08	0.07	26	87	ND	ND
SPRINGFIELD, IL	189,550	2	ND	ND	0.09	0.08	25	65	0.007	0.061
SPRINGFIELD, MO	264,346	4	ND	0.012	0.09	0.07	18	43	0.004	0.042
SPRINGFIELD, MA	587,884	5	ND	0.02	0.12	0.09	28	62	0.005	0.026
STAMFORD-NORWALK, CT	329,935	4	ND	ND	0.11	0.09	28	50	0.006	0.025
STATE COLLEGE, PA	123,786	ND	ND	ND 0.015	0.11	0.09	ND 35	ND	ND 0.016	ND 0.067
STEUBENVILLE-WEIRTON, OH-WV STOCKTON-LODI, CA	142,523 480,628	13 5	ND 0	0.015 0.023	0.1 0.12	0.09 0.09	35 29	119 95	0.016 ND	0.067 ND
SUMTER, SC	102,637	ND	0.01	0.023 ND	ND	ND	ND	ND	-ND	ND
SYRACUSE, NY	742,177	3	ND	ND	0.09	0.08	27	62	0.002	0.011
TACOMA, WA	586,203	6	ND	ND	0.13	0.09	18	62	0.002	0.02
TALLAHASSEE, FL	233,598	ND	ND	ND	0.09	0.08	IN	63	ND	ND
TAMPA-ST. PETERSBURG-CLEARWATER, FL	2,067,959	4	0.519	0.012	0.13	0.1	32	105	0.008	0.048
TERRE HAUTE, IN	147,585	ND	0.02	ND	0.1	0.08	28	52	0.01	0.032
TEXARKANA, TX-TEXARKANA, AR	120,132	. ND	ND.	ND	ND	ND	23*	53*	IN	IN
TOLEDO, OH	614,128	2	0.35	ND	0.11	0.09	IN	51	0.004	0.021
TOPEKA, KS	160,976	ND	ND	ND	ND	ND	IN	67	ND	ND
TRENTON, NJ	325,824	ND	ND	0.015	0.11	0.1	ND	ND	ND	ND
TUSCON, AZ	666,880	4	ND	0.017	0.09	0.08	39	78	0.002	0.004
TULSA, OK	708,954	5	ND	0.015	0.12	0.09	25*	56*	0.019	0.059
TUSCALOOSA, AL	150,522	ND	ND	ND	ND	ND	28	53	ND	ND
TYLER, TX	151,309	ND	ND	ND	0.11	0.09	ND	ND	ND	ND
UTICA-ROME, NY	316,633	ND	ND	ND	0.09	80.0	13	45	0.001	0.005
VALLEJO-FAIRFIELD-NAPA, CA	451,186	5	ND	0.014	0.13	0.1	17	46	0.002	0.005
VENTURA, CA	669,016	3	0	0.019	0.14	0.11	24	52	0.003	0.011
VICTORIA, TX	74,361	ND	ND	ND	0.1	0.08	ND	ND	ND	ND
VINELAND-MILLVILLE-BRIDGETON, NJ	138,053	ND	ND	ND	0.12	0.1	ND 40	ND 100	0.004	0.012
VISALIA-TULARE-PORTERVILLE, CA	311,921	4 ND	ND	0.017	0.14	0.11	40 ND	123 ND	ND	ND .
WACO, TX	189,123	ND	UN D	ND 0.027	ND 0.13	ND 0.11	ND 28	ND 57	ND 0.01	ND 0.025
WASHINGTON, DC-MD-VA-WV	4,223,485	5 ND	0.03	0.027	0.13 ND	0.11	28	57 60	0.01	0.025
WATERBURY, CT	221,629	ND	0.02 ND	ND ND	ND ND	ND ND	21 IN	60 52	0.006 ND	0.021 ND
WATERLOO-CEDAR FALLS, IA WAUSAU, WI	123,798 115,400	ND ND	ND ND	- ND	ND 0.1	80.0	24	52 57	0.003	0.031
WAUGAU, WI	110,400	MD				0.00				
WEST PALM BEACH-BOCA RATON, FL	863,518	3	0	0.012	0.11	0.08	22	52	0.001	0.004

Table A-13. Maximum Air Quality Concentrations by Metropolitan Statistical Area, 1998 (continued)

Metropolitan Statistical Area	1990 Population	CO 8-hr (ppm)	Pb QMax (μg/m³)	NO ₂ AM (ppm)	O ₃ 1-hr (ppm)	O ₃ 8-hr (ppm)	PM ₁₀ Wtd AM (µg/m³)	PM ₁₀ 2nd Max (µg/m³)	SO ₂ AM (ppm)	SO ₂ 24-hr (ppm)
WICHITA, KS	485,270	6	0.01	ND	0.1	0.08	26	75	ND	ND
WICHITA FALLS, TX	130,351	ND	ND	ND	ND	ND	ND	ND	ND	ND
WILLIAMSPORT, PA	118,710	ND	ND	ND	0.1	0.08	24*	ND	0.005	0.021
WILMINGTON-NEWARK, DE-MD	513,293	3	ND	0.016	0.13	0.1	28*	76	0.008	0.044
VILMINGTON, NC	171,269	IN	ND	ND	0.1	0.09	IN	40	0.007	0.026
VORCESTER, MA-CT	478,384	4	ND	0.019	0.12	0.1	20	50	0.005	0.017
AKIMA, WA	188,823	5	ND	ND	ND	ND	26	81	ND	ND
OLO, CA	141,092	1	ND	0.011	0.11	0.09	27	73	ND	ND
YORK, PA	339,574	2	0.05	0.019	0.11	0.1	29*	60	0.008	0.023
OUNGSTOWN-WARREN, OH	600,859	ND	ND	0.015	0.12	0.1	39	88	0.009	0.049
YUBA CITY, CA	122,643	4	ND	0.013	0.1	0.09	23	54	ND	ND
YUMA, AZ	106.895	ND	ND	ND	0.1	0.09	ND	ND	ND	ND

co Highest second maximum non-overlapping 8-hour concentration (Applicable NAAQS is 9 ppm)

Pb Highest quarterly maximum concentration (Applicable NAAQS is 1.5 µg/m3) Highest arithmetic mean concentration (Applicable NAAQS is 0.053 ppm)

NO₂ -O₃ (1-hr) -Highest second daily maximum 1-hour concentration (Applicable NAAQS is 0.12 ppm)

Highest fourth daily maximum 8-hour concentration (Applicable NAAQS is 0.08 ppm) Highest weighted annual mean concentration (Applicable NAAQS is 50 µg/m3) O₃ (8-hr) — PM₁₀ —

Highest second maximum 24-hour concentration (Applicable NAAQS is 150 µg/m3)

SO, Highest annual mean concentration (Applicable NAAQS is 0.03 ppm)

Highest second maximum 24-hour concentration (Applicable NAAQS is 0.14 ppm)

ND Indicates data not available

Indicates insufficient data to calculate summary statistic IN

Wtd ---Weighted AM Annual mean

µg/m³ Units are micrograms per cubic meter

PPM Units are parts per million

Data from exceptional events not included.

- These PM_{10} statistics were converted from local temperature and pressure to standard temperature and pressure to ensure all PM_{10} data in this table reflect standard conditions. (*)
- Localized impact from an industrial source in Cleveland, OH. Highest population-oriented site in MSA is in Cleveland, OH (0.05 µg/m³).

Localized impact from an industrial source in Columbus, GA.

Localized impact from an industrial source in Columbus, GA.

Localized impact from an industrial source in Columbus, OH. Highest population-oriented site in MSA is in Columbus, OH (0.01 µg/m³). Localized impact from an industrial source in Frisco, TX. Highest population-oriented site in MSA is in Midlothian, TX (0.30 µg/m³).

Localized impact from an industrial source in Indianapolis, IN.

Localized impact from an industrial source in Memphis, TN. Highest population-oriented site in MSA is in Memphis, TN (0.03 µg/m³).

Localized impact from an industrial source in New Brunswick, NJ.

Localized impact from an industrial source in Eagan, MN. Highest population-oriented site in MSA is in Richfield, MN (0.02 µg/m³).

Localized impact from an industrial source in Muncie, IN.

- Localized impact from an industrial source in Williamson Co., TN.
- Localized impact from an industrial source in Middletown, NY. Highest population-oriented site in MSA is in Middletown, NY (0.03 µg/m³).

Localized impact from an industrial source in Omaha, NE.

Localized impact from an industrial source in Philadelphia, PA. Highest population-oriented site in MSA is in Philadelphia, PA (0.38 µg/m³).

Localized impact from an industrial source in Berks Co., PA. (n)

Localized impact from an industrial source in Herculaneum, MO. Highest population-oriented site in MSA is in Wood River, IL (0.14 µg/m³). (a) (b) (c) (c)

Localized impact from an industrial source in Seattle, WA. This facility has been shut down.

Localized impact from an industrial source in Tampa, FL. Highest population-oriented site in MSA is in Tampa, FL (0.23 µg/m³).

Localized impact from an industrial source in Lorton, VA. Highest population-oriented site in MSA is in Washington, DC (0.02 µg/m³).

Note: The reader is cautioned that this summary is not adequate in itself to numerically rank MSAs according to their air quality. The monitoring data represent the quality of air in the vicinity of the monitoring site but may not necessarily represent urban-wide air quality.

Table A-14. Metropolitan Statistical Area Air Quality Trends, 1989-1998

Metropolitan	Statistical Area	Trend	#Trend Sites	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
AKRON, OH	OND MAY OLICIT								-				4.52.2
CO LEAD	2ND MAX 8-HOUR	DOWN	1	5.2	5.7	3.3	4.1	3.1	5.3	3.3	3.4	3.2	2.6
O ₃	MAX QUARTERLY MEAN 4TH MAX 8-HOUR	DOWN NS	2 2	0.10 0.10	0.04 0.10	0.06	0.05 0.10	0.06 0.09	0.06 0.09	0.03 0.09	0.04 0.09	0.04 0.09	0.02
	2ND DAILY MAX 1-HOUR	NS	2	0.13	0.11	0.03	0.10	0.09	0.09	0.09	0.09	0.09	0.09 0.11
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	1	34	26	28	27	25	28	26	25	24	24
80	90TH PERCENTILE	DOWN	1	52	49	51	44	49	51	48	35	39	39
SO ₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	DOWN NS	1	0.015 0.053	0.015 0.061	0.015 0.051	0.013 0.064	0.015 0.056	0.012 0.042	0.009 0.046	0.010 0.042	0.012 0.072	0.010 0.044
ALBANY-SCH	ENECTADY-TROY, NY	140	'	0.000	0.001	0.001	0.00-	0.050	0.042	0.040	0.042	0.072	0.044
CO	2ND MAX 8-HOUR	DOWN	1	5.7	6.2	5.4	4.7	3.8	5.2	4.3	3.7	4.5	4.4
LEAD O₃	MAX QUARTERLY MEAN 4TH MAX 8-HOUR	DOWN NS	1 3	0.04	0.13	0.04	0.03	0.03	0.04	0.04	0.03	0.03	0.03
O_3	2ND DAILY MAX 1-HOUR	NS	3	0.08 0.10	0.08 0.10	0.08 0.10	0.08 0.10	0.09 0.10	0.08 0.10	0.08 0.10	0.08 0.09	0.07 0.10	0.08 0.10
PM ₁₀	WEIGHTED ANNUAL MEAN	NS	5 5	21	21	21	21	20	21	18	19	20	20
00	90TH PERCENTILE	NS		36	36	36	34	34	40	32	29	32	36
SO₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	DOWN DOWN	1 1	0.005 0.022	0.006 0.028	0.007	0.006 0.022	0.006	0.006		0.005	0.004	0.003
ALBUQUERQL		DOWN	ı	0.022	0.026	0.030	0.022	0.026	0.027	0.016	0.021	0.017	0.013
CO	2ND MAX 8-HOUR	DOWN	6	6.6	6.1	5.5	5.0	5.1	4.9	5.0	4.3	3.7	3.7
NO ₂	ARITHMETIC MEAN	NS	1_	0.019	0.018	0.004	0.021	0.024	0.023		0.022	0.019	0.016
O_3	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	NS NS	7 7	0.07 0.09	0.07 0.09	0.07 0.08	0.07 0.09	0.07 0.08	0.06 0.08	0.07 0.08	0.07	0.07	0.07
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	8	33	24	22	23	23	22	24	0.08 24	0.08 21	0.09 21
	90TH PERCENTILE	DOWN	8.	52	39	37	34	36	36	39	38	33	32
ALEXANDRIA,		NO		00									
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	NS DOWN	1	23 38	23 38	22 37	25 40	21 36	23 38	21 37	19 27	23 32	23 32
ALLENTOWN-	BETHLEHEM-EASTON, PA	DOWN	•	00	00	37	40	30	30	37	41	32	32
CO	2ND MAX 8-HOUR	DOWN	2	4.8	5.3	5.3	3.8	3.6	6.6	4.7	3.2	2.9	3.0
LEAD	MAX QUARTERLY MEAN	DOWN	1	0.78	0.40	0.46	0.28	0.18	0.13	0.07	0.08	0.09	0.12
NO ₂ O ₃	ARITHMETIC MEAN 4TH MAX 8-HOUR	NS NS	1 3	0.020 0.09	0.017 0.09	0.018	0.018 0.10	0.020	0.021		0.018	0.016	0.016
O ₃	2ND DAILY MAX 1-HOUR	NS	3	0.09	0.03	0.09	0.10	0.08 0.11	0.08 0.11	0.08 0.11	0.10 0.11	0.09 0.11	0.10 0.11
SO ₂	ARITHMETIC MEAN	NS	3	0.009	0.009	800.0	0.007	0.007	0.009			0.009	0.010
ALTOONA, PA	2ND MAX 24-HOUR	NS	3	0.040	0.039	0.036	0.031	0.028	0.045	0.027	0.030	0.030	0.032
CO CO	2ND MAX 8-HOUR	NS	1	1.7	1.7	1.7	2.8	2.0	2.4	1.7	1.9	1.5	1.2
NO ₂	ARITHMETIC MEAN	DOWN	i	0.015	0.015	0.015	0.014		0.015			0.014	0.013
O ₃	4TH MAX 8-HOUR	UP	1	0.07	0.07	0.08	0.09	0.08	0.09	0.09	0.09	0.08	0.10
SO ₂	2ND DAILY MAX 1-HOUR ARITHMETIC MEAN	UP DOWN	1	0.10 0.011	0.10 0.011	0.11	0.10 0.009	0.10	0.11	0.11	0.10	0.11	0.11
002	2ND MAX 24-HOUR	DOWN	i	0.059	0.062	0.044	0.009	0.009 0.052	0.010 0.058			0.010	0.008
ANCHORAGE,	AK							0.00	0.000	0.007	0.000	0.010	0.002
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	DOWN	3	26	31	30	31	28	27	26	25	25	20
ANN ARBOR,	MI	NS	3	47	63	57	61	55	50	51	48	51	37
O ₃	4TH MAX 8-HOUR	NS	1	0.08	0.08	0.08	0.09	0.08	80.0	0.08	0.08	0.09	0.09
ANNUCTON AL	2ND DAILY MAX 1-HOUR	NS	1 .	0.10	0.09	0.11	0.10	0.10	0.09	0.11	0.10	0.10	0.10
ANNISTON, AL PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	1	28	28	29	25	25	24	23	10	22	oe.
. 14140	90TH PERCENTILE	NS	i	46	46	46	37	38	40	40	19 27	23 42	26 41
ASHEVILLE, N													• •
O ₃	4TH MAX 8-HOUR	NS	1	0.07	0.07	0.07	0.06	0.06	0.07	0.07	0.08	0.07	0.08
PM ₁₀	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	UP DOWN	1	0.08 29	0.09 25	0.08 24	0.08 23	0.08 22	0.08 19	0.09 18	0.08 19	0.09 21	0.11 20
	90TH PERCENTILE	DOWN	i	47	41	41	40	43	30	28	29	38	36
ATLANTA, GA	OND MAY O LIQUID	501111											
CO LEAD	2ND MAX 8-HOUR MAX QUARTERLY MEAN	DOWN DOWN	1 2	6.2 0.04	5.4	6.5	5.1	4.9	5.3	4.5	3.7	4.3	4.1
NO ₂	ARITHMETIC MEAN	NS	2	0.023	0.03 0.021	0.04 0.020	0.03 0.020	0.02 0.020	0.03 0.018	0.05 0.017	0.03 0.021	0.02 0.020	0.02 0.019
O ₃	4TH MAX 8-HOUR	NS	2	0.09	0.09	0.12	0.09	0.09	0.11	0.10	0.11	0.10	0.10
D\$4	2ND DAILY MAX 1-HOUR	NS	2	0.12	0.14	0.12	0.13	0.14	0.12	0.14	0.13	0.13	0.14
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	DOWN NS	3 3	33 52	39 68	32 53	28 46	29 47	27	28	27	28	28
SO ₂	ARITHMETIC MEAN	DOWN	3 2	0.007	0.007	0.006	0.006	47 0.006	43 0.004	45 0.004	41 0.004	49 0.004	50 0.004
_	2ND MAX 24-HOUR	DOWN	2	0.043	0.026	0.032	0.028		0.023			0.023	0.017
ATLANTIC-CAF	PE MAY, NJ	NO											
O ₃	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	NS NS	1	0.10 0.12	0.10 0.16	0.11 0.14	0.11 0.12	0.09 0.12	0.09	0.08	0.10	0.10	0.11
SO ₂	ARITHMETIC MEAN	DOWN	1	0.005	0.004			0.003		0.12 0.003	0.11 0.003	0.13	0.12
~	2ND MAX 24-HOUR	NS	i	0.029		0.011		0.014		0.011			0.010

Table A-14. Metropolitan Statistical Area Air Quality Trends, 1989–1998 (continued)

Metropolitan	Statistical Area	Trend	#Trend Sites	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
AUGUSTA-AIK	EN, GA-SC	DOWN	4	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.02
LEAD O₃	MAX QUARTERLY MEAN 4TH MAX 8-HOUR	DOWN NS	1 3	0.03 0.08	0.02	0.09	0.07	0.07	0.08	0.08	0.08	0.08	0.08
-	2ND DAILY MAX 1-HOUR	NS	3	0.10	0.10	0.10	0.09	0.10	0.09	0.10	0.10 19	0.11 21	0.12 22
- PM ₁₀	WEIGHTED ANNUAL MEAN	NS NS	1	21 39	22 36	23 35	22 32	22 35	21 35	19 29	29	31	38
AUSTIN-SAN A	90TH PERCENTILE MARCOS, TX	NO	•										
CO	2ND MAX 8-HOUR	NS	1	4.2 0.017	5.9 0.017	3.4 0.016	3.7 0.017	3.0 0.017	5.8 0.018	3.5 0.021	3.2 0.018	3.2 0.018	3.2 0.018
NO ₂ O ₃	ARITHMETIC MEAN 4TH MAX 8-HOUR	UP NS	1 2	0.017	0.017	0.010	0.017	0.07	0.018	0.08	0.09	0.08	0.07
-	2ND DAILY MAX 1-HOUR	NS	2	0.11	0.11	0.10	0.09	0.09	0.10	0.11	0.10	0.09	0.10
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	2 2	25 37	21 34	24 35	23 34	19 35	20 34	22 35	19 26	19 26	19 26
BAKERSFIELD	90TH PERCENTILE	DOWN	4	0,	0-1	00							
NO ₂	ARITHMETIC MEAN	DOWN	4	0.017	0.017	0.017	0.016	0.015	0.015 0.11	0.013	0.013	0.013	0.013
O ₃	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	NS NS	5 5	0.11 0.13	0.11 0.13	0.10 0.13	0.11 0.12	0.10 0.13	0.13	0.13	0.14	0.12	0.13
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	4	46	47	54	38	33	30	33	28	28	25
-	90TH PERCENTILE	DOWN	4 1	83 0.004	89 0.004	91 0.002	62 0.003	60 0.002	47 0.003	62 0.003	47 0.003	45 0.003	46 0.003
SO ₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	NS DOWN	1	0.004	0.004	0.010	0.010	0.010	0.007	0.008	0.009	0.009	0.009
BALTIMORE, N	MD					0.4		E 4	E 0	4.7	3.6	4.6	4.1
CO LEAD	2ND MAX 8-HOUR MAX QUARTERLY MEAN	DOWN DOWN	3 1	6.5 0.11	7.1 0.06	6.4 0.04	5.5 0.04	5.4 0.04	5.8 0.03 ·	0.03	0.03	0.01	0.01
NO₂	ARITHMETIC MEAN	DOWN	1	0.035	0.034	0.033	0.031	0.033	0.032	0.026	0.027	0.026	0.026
0,	4TH MAX 8-HOUR	NS	7	0.09 0.12	0.09 0.13	0.10 0.14	0.11 0.12	0.09 0.13	0.11 0.13	0.10 0.14	0.10 0.12	0.09 0.14	0.11 0.12
PM ₁₀	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	NS DOWN	7 5	36	33	36	30	29	30	29	27	28	29
1 14110	90TH PERCENTILE	DOWN	5	60	52	58	47	51	53	48	43 0.007	46 0.008	48 0.007
SO₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	DOWN DOWN	2 2	0.012 0.042	0.008	0.009	0.009 0.027	0.008 0.026	0.009	0.006 0.022	0.026	0.005	0.007
BANGOR, ME	ZND MAX 24-HOOR	DOWN										٠.	
PM ₁₉	WEIGHTED ANNUAL MEAN	DOWN	1	26 42	21 33	25 41	22 32	22 34	22 35	20 32	19 27	21 33	18 34
BATON ROUG	90TH PERCENTILE	NS	ı	44	33	41	32	04	00	02			_
LEAD	MAX QUARTERLY MEAN	NS	3	0.08	0.05	0.03	0.10	0.03	0.04	0.05	0.03	0.04	0.05
NO₂	ARITHMETIC MEAN	NS NS	1 3	0.015 0.09	0.014	0.015 0.11	0.016 0.09	0.012 0.08	0.016	0.016 0.08	0.015	0.013	0.01
O ₃	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	NS	3	0.14	0.15	0.13	, 0.11	0.11	0.12	0.12	0.11	0.12	0.13
PM ₁₀	WEIGHTED ANNUAL MEAN	NS	2 2	- 28	28 43	28 49	27 37	22 35	26 41	24 38	24 35	27 44	27 44
SO ₂	90TH PERCENTILE ARITHMETIC MEAN	NS NS	1	44 0.007	0.005		0.008	0.006	0.008	0.006	0.006	0.006	0.007
-	2ND MAX 24-HOUR	NS	i	0.056	0.022		0.033	0.021	0.025	0.034	0.024	0.027	0.036
	ORT ARTHUR, TX	NS	1	2.0	2.3	2.3	2.4	3.3	2.0	1.7	2.1	2.1	2.
CO LEAD	2ND MAX 8-HOUR MAX QUARTERLY MEAN	NS NS	i	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02
NO ₂	ARITHMETIC MEAN	NS	2	0.010	0.009		0.011	0.009	0.010	0.010 0.08	0.010	0.010	
O ₃ "	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	NS NS	3 3	0.09 0.13	0.09 0.12	0.09 0.13	0.10 0.13	0.09 0.12	0.03	0.13	0.12	0.14	
SO₂	ARITHMETIC MEAN	DOWN	2	0.008	0.009	0.008	0.006	0.006	0.006	0.005	0.005	0.006	
	2ND MAX 24-HOUR	DOWN	2	0.088	0.042	0.059	0.044	0.047	0.039	0.025	0.041	0.037	0.033
BELLINGHAM O₃	4TH MAX 8-HOUR	NS	1	0.06	0.06		0.06	0.06	0.06	0.06	0.05	0.06	
	2ND DAILY MAX 1-HOUR	NS	1	0.08	0.08		0.07 0.007	0.08 0.006	0.08 0.007	0.08 0.006	0.08 0.005	0.07 0.005	0.0
SO₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	DOWN DOWN	1	0.006 0.018	0.007 0.028		0.022	0.017	0.019	0.018	0.013	0.012	0.04
BERGEN-PAS	SAIC, NJ								0.0	4.0		4.0	9.
CO	2ND MAX 8-HOUR	DOWN	2 1	7.5 0.035	6.8 0.031		4.5 0.030	5.2 0.029	6.2 0.031	4.9 0.029	3.8 0.028	4.9 0.028	
NO ₂ O ₃	ARITHMETIC MEAN 4TH MAX 8-HOUR	NS	1	0.10	0.10	0.10	0.10	0.08	0.08	0.09	0.10	0.08	0.1
-	2ND DAILY MAX 1-HOUR	NS	1	0.12	0.13 37		0.10 33	0.11 31	0.11 35	0.12 31	0.11 31	0.12 31	
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	DOWN DOWN	3 3	35 61	57 59			51	57	49	48	49	4:
SO ₂	ARITHMETIC MEAN	DOWN	2	0.011	0.010	0.010	0.009	0.008	0.007		0.006		
-	2ND MAX 24-HOUR	DOWN	2	0.045	0.041	0.035	0.040	0.026	0.037	0.027	0.022	0.021	0.02
BILLINGS, MT SO ₂	ARITHMETIC MEAN	DOWN	4	0.018		0.016		0.021	0.015		0.009		
_	2ND MAX 24-HOUR	DOWN	4	0.078		0.069		0.104	0.066	0.059	0.056	0.032	0.02
_	PORT-PASCAGOULA, MS	NS	1	0.08	0.08	0.08	0.08	0.09	0.08	0.09	0.09	0.08	0.0
O ₃	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	NS NS	i	0.12	0.12	0.12	0.11	0.10	0.12	0.11	0.10	0.09	0.1
	ARITHMETIC MEAN	DOWN	1	0.006 0.029	0.007			0.004 0.029	0.003 0.022		0.003	0.002	
SO ₂													

Table A-14. Metropolitan Statistical Area Air Quality Trends, 1989–1998 (continued)

Metropolitar	n Statistical Area	Trend	#Trend Sites	1989		1991	1992	1993	1994	1995	1996	1997	1998
BIRMINGHAM							** # 1 ** *** *** *** *** *** *** *** **		******				
CO	2ND MAX 8-HOUR	DOWN	3	7.5	6.9	7.1	6.9	6.9	6.6	6.3	5.3	5.8	4.7
LEAD O ₃	MAX QUARTERLY MEAN 4TH MAX 8-HOUR	NS	1	0.13	0.14	0.09		0.07	0.07	0.09	0.13	0.13	0.13
O_3	2ND DAILY MAX 1-HOUR	NS NS	6 6	0.08	0.08	0.09		0.08	0.08	0.08	0.10	0.09	80.0
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	6	0.10 31	0.12 35	0.10 32		0.11 27	0.10 25	0.12 26	0.13 25	0.11	0.12
	90TH PERCENTILE	DOWN	. 6	50	57	54		42	38	42	38	26 45	27 40
SO ₂	ARITHMETIC MEAN	DOWN	1	0.008	0.008	0.007		0.009	0.007		0.004	0.006	0.007
BOISE CITY, II	2ND MAX 24-HOUR	NS	1	0.025	0.025	0.020	0.027	0.050	0.037	0.016	0.015	0.018	0.032
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	3	42	29	35	34	. 07	0.5	00			
	90TH PERCENTILE	DOWN	3	85	55 55	35 74	58	37 64	35 63	30 50	28 49	29 46	23
BOSTON, MA-						, ,	00	0+	00	30	49	40	39
CO NO₂	2ND MAX 8-HOUR	DOWN	4	5.0	5.6	4.1	4.7	4.0	4.9	3.6	3.6	3.8	2.9
O ₃	ARITHMETIC MEAN 4TH MAX 8-HOUR	DOWN DOWN	3 4	0.031	0.029	0.031		0.030	0.030	0.027	0.028	0.026	0.027
_	2ND DAILY MAX 1-HOUR	DOWN	4	0.09 0.12	0.09 0.10	0.08 0.13	0.09 0.11	0.09	0.09	0.08	0.09	0.07	0.08
PM ₁₀	WEIGHTED ANNUAL MEAN	NS	7	26	25	24	22	22	0.11 23	0.11 21	0.09 23	0.10 21	0.10 24
80	90TH PERCENTILE	NS	7	41	40	39	35	35	38	34	39	33	41
SO ₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	DOWN DOWN	11	0.010	0.009	0.009	0.009	0.009	0.008	0.006	0.006	0.006	0.006
BOULDER-LO	NGMONT, CO	DOMIA	11	0.041	0.038	0.030	0.037	0.032	0.032	0.023	0.025	0.029	0.023
CO	2ND MAX 8-HOUR	DOWN	2	6.6	5.7	5.7	5.9	5.3	4.5	4.2	4.0	4.4	3.4
O ₃	4TH MAX 8-HOUR	DOWN	1	0.08	0.08	0.07	0.08	0.07	0.07	0.07	0.07	0.07	0.07
PM ₁₀	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	NS	1	0.11	0.10	0.10	0.09	0.10	0.09	0.10	0.09	0.09	0.10
1 14110	90TH PERCENTILE	DOWN DOWN	2 2	29 51	23 39	23	23	24	19	16	17	17	17
BRAZORIA, TX	(DOWN	2	31	39	44	35	44	29	27	27	24	26
O ₃	4TH MAX 8-HOUR	DOWN	1	0.10	0.10	0.10	0.09	0.10	0.09	0.09	0.11	0.08	0.09
BRIDGEPORT,	2ND DAILY MAX 1-HOUR	NS	1	0.15	0.15	0.13	0.13	0.13	0.11	0.15	0.11	0.14	0.11
CO CO	2ND MAX 8-HOUR	DOWN	1	E 0	F 0		47	0.7					
NO ₂ .	ARITHMETIC MEAN	DOWN	i	5.2 0.026	5.0 0.026	5.5 0.025	4.7 0.024	3.7 0.024	5.8 0.026	4.9 0.024	3.0	4.0	2.8
O ₃ -	4TH MAX 8-HOUR	DOWN	ż	0.11	0.11	0.10	0.024	0.024	0.020	0.024	0.024	0.023	0.023
DM	2ND DAILY MAX 1-HOUR	NS	2	0.16	0.15	0.15	0.12	0.16	0.15	0.13	0.11	0.13	0.13
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	DOWN DOWN	1	27	25	28	22	21	26	22	21	21	21
SO ₂	ARITHMETIC MEAN	DOWN	1	47 0.014	41 0.013	49 0.012	37 0.011	43 0.010	44 0.010	37 0.007	32	34	33
	2ND MAX 24-HOUR	DOWN	i	0.051	0.050	0.044	0.040	0.035	0.049			0.007 0.031	0.007 0.024
BROCKTON, N										0.000	0.020	0.001	0.02-7
O ₃	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	NS DOWN	1	0.09	0.09	0.09	0.10	0.09	0.09	0.10	0.10	0.08	0.08
BROWNSVILL	E-HARLINGEN-SAN BENITO, TX	DOWN	ı	0.13	0.12	0.15	0.11	0.11	0.12	0.13	0.10	0.10	0.10
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	1	22	22	24	24	22	23	21	19	21	21
DITECT O NIA	90TH PERCENTILE GARA FALLS, NY	NS	1	36	36	36	36	45	36	35	28	36	36
CO	2ND MAX 8-HOUR	DOWN	3										
LEAD	MAX QUARTERLY MEAN	NS	1	4.4 0.04	3.4 0.03	3.1 0.03	4.6 0.03	3.4 0.05	3,2 0.05	2.6 0.03	2.9 0.03	2.2	2.2
NO ₂	ARITHMETIC MEAN	NS	2	0.022	0.020	0.018	0.018		0.019			0.04 0.018	0.04 0.017
O ₃	4TH MAX 8-HOUR	NS	2.	0.08	0.08	0.09	0.09	0.08	0.08	0.08	0.09	0.08	0.08
PM ₁₀	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	NS DOWN	2	0.10	0.11	0.11	0.11	0.09	0.09	0.10	0.10	0.09	0.11
. 14110	90TH PERCENTILE	NS	12 12	25 47	19 35	25 48	21 33	19 35	19	18	19	19	20
SO ₂	ARITHMETIC MEAN	DOWN	4	0.012		0.012	0.011	0.010	34 0.010	34 0.008	29 0.007	34 0.007	39
LIDI INCTON	2ND MAX 24-HOUR	DOWN	4	0.051	0.054				0.039				0.029
CO CO	2ND MAX 8-HOUR	DOWN						_					
NO ₂	ARITHMETIC MEAN	DOWN NS	1	3.7 0.019	4.6 0.018	3.8 0.017	3.9 0.016	3.9	3.9	2.5	3.3	2.0	2.4
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	ż	25	24	23	23	0.017 21	0.017 21	0.017	0.017 20	0.017 20	0.018 21
00	90TH PERCENTILE	DOWN	- 2	38	38	37	39	36	35	35	29	30	30
SO ₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	DOWN	1	0.007		800.0	0.003	0.003	0.003	0.002	0.002	0.002	0.002
ANTON-MASS		DOWN	1	0.031	0.021	0.022	0.013	0.011	0.013	0.006	0.014	0.012	0.008
O ₃	4TH MAX 8-HOUR	NS	2	0.09	0.09	0.09	0.10	0.08	0.09	0.08	0.09	0.09	U V0
	2ND DAILY MAX 1-HOUR	NS	2	0.11	0.10	0.11	0.09	0.10	0.10	0.10	0.10	0.09	0.08 0.11
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	2	35	30	31	28	26	28	29	25	26	25
SO ₂	90TH PERCENTILE ARITHMETIC MEAN	DOWN	2 1	64	52	50	45	45	50	52	36	44	43
2	2ND MAX 24-HOUR	NS	1	0.012 0.041			0.010	0.010		0.006		0.007	
		110	1	0.041	0.030	0.037	0.040	0.046	0.052	0.033	J.032	0.025	0.029

Table A-14. Metropolitan Statistical Area Air Quality Trends, 1989–1998 (continued)

Metropolitan	Statistical Area	Trend	#Trend Sites	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
CEDAR RAPIDS	S, IA			0.5	0.5	4.4	4.0	3.2	4.2	2.6	7.8	2.4	2.5
CO O ₃	2ND MAX 8-HOUR 4TH MAX 8-HOUR	NS NS	1 1	3.5 0.07	3.5 0.07	4.1 0.05	4.9 0.07	0.07	0.06	0.06	0.07	0.06	0.06 0.07
PM ₁₀	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	NS NS	1 3	0.08 33	0.07 28	0.08 29	0.08 27	0.07 22	0.07 23	0.08 23	0.07 23	0.07 23	24
	90TH PERCENTILE	NS DOWN	3 3	55 0.006	43 0.005	45 0.005	45 0.005	35 0.004	34 0.004	39 0.003	35 0.002	38 0.003	37 0.003
SO ₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	DOWN	3	0.044	0.037	0.033	0.034	0.023	0.027	0.021	0.013	0.014	0.013
CHAMPAIGN-U	IRBANA, IL 4TH MAX 8-HOUR	NS	1	0.08	0.08	0.08	0.07	0.07	0.07	0.08	0.08	0.09	0.08
O ₃	2ND DAILY MAX 1-HOUR	NS	1	0.09	0.09	0.08	0.09	0.07	0.09	0.10	0.09 19	0.09 23	0.11 24
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	DOWN	1	32 56	28 46	30 47	31 47	22 41	25 44	22 44	31	25 35	39
SO ₂	ARITHMETIC MEAN	DOWN	1	0.005	0.004	0.005	0.004		0.004	0.003	0.003 0.013	0.004 0.018	0.003 0.019
CHARLESTON.	2ND MAX 24-HOUR -NORTH CHARLESTON, SC	NS	1	0.025	0.030	0.038	0.018	0.015	0.024	0.011	0.013	0.016	
CO	2ND MAX 8-HOUR	NS	1	5.9	4.7	4.9	5.2	5.8	4.0	6.4	4.7	3.9	2.9 0.03
LEAD	MAX QUARTERLY MEAN ARITHMETIC MEAN	NS DOWN	1 2	0.02 0.008	0.03	0.04 0.008	0.01 0.008	0.01 0.008	0.01 0.007	0.01 0.007	0.01 0.007	0.01 0.007	0.007
NO ₂ O ₃	4TH MAX 8-HOUR	NS	3	0.08	0.08	0.07	0.07	0.07	0.08	0.07	0.07	0.07	0.07
	2ND DAILY MAX 1-HOUR	NS DOWN	3 · 3	0.09 29	0.09 28		0.09 23	0.10 21	0.09 20	0.09 19	0.10 19	0.09 19	0.10 21
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	DOWN	3	45	46	40	34	35	32	28	29	29	37
SO₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	NS DOWN	2 2	0.003 0.024	0.002 0.016		0.003 0.021	0.002 0.014	0.002 0.021	0.002 0.012	0.002 0.014	0.002 0.014	0.002 0.010
CHARLESTON	, wv								0.5	0.4	0.0	10	2.0
CO LEAD	2ND MAX 8-HOUR MAX QUARTERLY MEAN	NS DOWN	1 3	2.9 0.02	2.8 0.04		3.3 0.03	2.2 0.02	3.5 0.03	2.4 0.02	2.3 0.02	1.9 0.01	0.01
NO ₂	ARITHMETIC MEAN	NS	1	0.021	0.020	0.020	0.017	0.018	0.019	0.020	0.020	0.020	0.022
O ₃ ~	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	NS NS	1	0.07 0.10	0.07 0.12	0.08 0.12	0.09 0.07	0.06 0.08	0.06 0.10	0.08 0.11	0.09 0.10	0.08 0.10	0.08 0.12
PM _{to}	WEIGHTED ANNUAL MEAN	DOWN	1	35	36	29	28	29	28	26	24	21	21
	90TH PERCENTILE	DOWN NS	1 2	62 0.014	58 0.012		44 0.009	52 0.009	49 0.010	40 0.007	41 0.008	32 0.009	35 0.009
SO ₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	DOWN	2	0.062	0.056		0.031	0.034	0.037	0.023	0.031	0.031	0.031
	BASTONIA-ROCK HILL, NC-SC	DOWN	5	7.0	7.1	6.3	6.0	5.6	5.8	4.7	4.4	4.8	4.2
CO LEAD	2ND MAX 8-HOUR MAX QUARTERLY MEAN	NS	1	0.03	0.04	0.01	0.08	0.02	0.03	0.01	0.01	0.01	0.02
NO ₂	ARITHMETIC MEAN	NS UP	1 3	0.017 0.09	0.017 0.09		0.016	0.017 0.09	0.016 0.10	0.016	0.016	0.018 0.10	0.018 0.10
O ₃	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	NS	3	0.12	0.12	0.12	0.10	0.13	0.11	0.11	0.13	0.12	0.13
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN NS	3 3	33 50	33 50		30 48	28 41	29 44	28 42	30 44	28 43	30 49
CHARLOTTES	90TH PERCENTILE	NO	3		-								
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN NS	1	30 50	27 44		22 32	24 40	22 33	23 41	21 35	21 36	23 33
CHATTANOOG	90TH PERCENTILE SA, TN-GA		•								-		0.00
O ₃	4TH MAX 8-HOUR	NS NS	2 2	0.08 0.10	0.08 0.12			0.08 0.10	0.09 0.11	0.09 0.11	0.09 0.11	0.09 0.11	0.09 0.13
PM ₁₀	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	DOWN	2	36	38	38	34	32	33	32	32	27	28
CHEYENNE, W	90TH PERCENTILE	DOWN	2	57	61	63	52	52	51	49	53	45	45
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	1	19	19			16	18	15	15	13 20	
CHICAGO, IL	90TH PERCENTILE	DOWN	1	30	30	30	25	24	28	26	25	20	22
CO	2ND MAX 8-HOUR	NS	7	4.5	5.0			4.6	6.4	3.5	3.2		
LEAD	MAX QUARTERLY MEAN ARITHMETIC MEAN	DOWN NS	9 5	0.09 0.026	0.07 0.022	' 0.06 2 0.021		0.06 0.026	0.05 0.029	0.05 0.029	0.04 0.029		
NO ₂ O ₃	4TH MAX 8-HOUR	NS	17	0.08	0.08	0.07	0.09	0.08	0.07	0.08	0.09	0.08	0.08
	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	NS DOWN	17 13	0.10 37	0.09 35			0.09 31	0.10 35	0.12 32			
PM ₁₀	90TH PERCENTILE	DOWN	13	61	60	51	54	51	56	55	45	46	50
SO ₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	DOWN DOWN	10 10	0.008 0.039	0.007 0.037	7 0.008 7 0.040		0.006 0.031	0.006	0.005 0.023	0.005 0.021		
CHICO-PARAL	DISE, CA												
CO	2ND MAX 8-HOUR	DOWN DOWN	2 1	6.4 0.016				4.7 0.016	4.6 0.015	4.1 0.014	4.4 0.013		
NO ₂ O ₃	ARITHMETIC MEAN 4TH MAX 8-HOUR	DOWN	1	0.08	0.08	0.08	0.07	0.08	0.08	0.08	0.08	0.07	0.07
- 3	2ND DAILY MAX 1-HOUR	NS	1	0.10	0.12	0.09	0.09	0.09	0.10	0.09	0.10	0.07	0.10

Table A-14. Metropolitan Statistical Area Air Quality Trends, 1989–1998 (continued)

Metropolitar	n Statistical Area	Trend	#Trend Sites	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
CINCINNATI,			-	koli programa (h. 1941).		MULTINE 79			24.3910D.F.		Y SOUTH OF THE		
CO	2ND MAX 8-HOUR	DOWN	3	4.9	4.2	4.2	4.5	4.7	4.3	3.4	2.9	2.7	3.2
LEAD NO₂	MAX QUARTERLY MEAN ARITHMETIC MEAN	DOWN	1	0.07	0.04	0.04	0.04	0.05	0.04	0.06	0.04	0.03	0.03
O ₃	4TH MAX 8-HOUR	NS NS	2 7	0.024	0.022	0.022	0.021	0.022	0.022	0.021	0.022	0.023	0.022
-3	2ND DAILY MAX 1-HOUR	NS	7	0.09 0.11	0.09 0.11	0.09 0.12	0.09 0.09	0.08 0.10	0.08 0.11	0.09 0.12	0.09 0.11	0.09 0.11	0.09 0.11
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	7	41	36	32	30	31	30	31	28	29	28
	90TH PERCENTILE	DOWN	7	69	64	57	49	58	51	54	42	49	47
SO₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	DOWN	4	0.012	0.012	0.012		0.011	0.009	0.006	0.009	0.009	0.009
CLARKSVILLE	E-HOPKINSVILLE, TN-KY	DOWN	4	0.046	0.054	0.044	0.045	0.044	0.044	0.025	0.035	0.037	0.038
SO ₂	ARITHMETIC MEAN	NS	1	0.007	0.007	0.006	0.009	0.010	0.007	0.006	0.006	0.005	0.006
-	2ND MAX 24-HOUR	DOWN	i	0.042	0.038	0.029	0.036	0.058	0.037	0.000	0.023	0.005	0.020
CLEVELAND-	LORAIN-ELYRIA, OH									0.0.0	0.020	0.010	0.020
CO LEAD	2ND MAX 8-HOUR	DOWN	2	5.9	4.7	4.7	5.1	4.3	5.3	5.7	3.7	3.5	3.2
NO ₂	MAX QUARTERLY MEAN ARITHMETIC MEAN	DOWN DOWN	4 1	0.19	0.32	0.18	0.21	0.21	0.14	0.11	0.06	0.05	0.05
O ₃	4TH MAX 8-HOUR	NS	6	0.025	0.022	0.022	0.021	0.022	0.021	0.021 0.08	0.020	0.020	0.020
_	2ND DAILY MAX 1-HOUR	NS	ĕ	0.10	0.11	0.11	0.10	0.08	0.09	0.08	0.09	0.09 0.10	0.09 0.11
PM ₁₀	WEIGHTED ANNUAL MEAN	NS	11	37	33	35	30	29	35	32	30	30	31
00	90TH PERCENTILE	DOWN	11	60	56	59	50	54	58	55	46	47	49
SO ₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	DOWN	9	0.012	0.010	0.010	0.009	0.008	0.008	0.006	0.006	0.006	0.006
COLORADO S	PRINGS. CO	DOWN	9	0.042	0.041	0.039	0.038	0.039	0.040	0.023	0.030	0.029	0.027
CO	2ND MAX 8-HOUR	DOWN	4	6.0	5.2	4.8	4.4	4.1	3.6	4.1	3.6	3.8	3.1
LEAD	MAX QUARTERLY MEAN	DOWN	ĺ	0.03	0.03	0.03	0.02	0.02	0.02	0.01	0.01	0.01	0.01
NO₂	ARITHMETIC MEAN	NS	3	0.015	0.016	0.016	0.016		0.017	0.017		0.015	0.015
O ₃	4TH MAX 8-HOUR	DOWN	1	0.07	0.07	0.06	0.07	0.06	0.06	0.06	0.06	0.06	0.05
PM ₁₀	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	DOWN DOWN	1 12	0.08 27	0.07 22	0.08	0.07	0.06	0.07	0.07	0.07	0.06	0.06
10	90TH PERCENTILE	DOWN	12	43	35	25 40	22 33	22 36	21 36	19 32	20 31	19 29	20 32
SO ₂	ARITHMETIC MEAN	NS	3	0.004	0.003	0.003	0.004		0.004			0.003	0.003
	2ND MAX 24-HOUR	NS	3	0.013	0.011	0.011	0.013		0.018			0.007	0.009
COLUMBIA, S	C 2ND MAX 8-HOUR	DOMA											
LEAD	MAX QUARTERLY MEAN	DOWN DOWN	1 2	6.5 0.03	5.8 0.03	6.0 0.05	6.3 0.04	5.6	4.7	4.0	3.4	2.9	3.7
NO ₂	ARITHMETIC MEAN	NS	1	0.013	0.03	0.009	0.04	0.02 0.013	0.02 0.011	0.01 0.013	0.01 0.013	0.01	0.01 0.014
O ₃	4TH MAX 8-HOUR	NS	3	0.08	0.08	0.08	0.07	0.08	0.08	0.013	0.08	0.08	0.014
D1.4	2ND DAILY MAX 1-HOUR	NS	3	0.11	0.11	0.10	0.10	0.11	0.10	0.10	0.10	0.10	0.11
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	6	20	20	17	17	16	16	13	15	15	16
SO,	90TH PERCENTILE ARITHMETIC MEAN	DOWN NS	6 4	57 0.002	56 0.002	55	51	49	47	46	45	49	55
002	2ND MAX 24-HOUR	NS	4	0.002	0.002	0.002	0.002 0.013		0.002 0.011			0.002 0.012	0.003
COLUMBUS, O	A-AL		•	0.0	0.0.2	0.0.0	0.010	0.011	0.011	0.000	0.010	0.012	0.011
LEAD	MAX QUARTERLY MEAN	DOMN	1	2.04	2.04	2.04	1.46	1.01	1.43	0.78	0.47	0.45	0.29
O ₃	4TH MAX 8-HOUR	UP	2	0.07	0.07	0.07	0.07	0.08	0.08	0.08	0.09	0.08	0.08
PM ₁₀	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	UP NS	2 1	0.09	0.10	0.09	0.09	0.10	0.10	0.11	0.09	0.10	0.11
	90TH PERCENTILE	NS	i	26 38	29 46	27 40	26 43	25 37	27 44	28 44	22 33	26 39	30 45
COLUMBUS, C)H		•		.0	-,0	-10	0,	77		00	39	40
CO	2ND MAX 8-HOUR	DOWN	3	5.7	4.1	4.8	4.9	3.9	4.5	3.8	2.5	2.4	3.0
LEAD	MAX QUARTERLY MEAN 4TH MAX 8-HOUR	DOWN	2	0.08	0.06	0.06	0.06	0.04	0.04	0.04	0.03	0.04	0.04
O_3	2ND DAILY MAX 1-HOUR	NS NS	3 3	0.09 0.11	0.09	0.09	0.10	0.08	0.08	0.09	0.09	0.09	0.09
PM ₁₀	WEIGHTED ANNUAL MEAN	NS	2	31	0.11 31	0.11 30	0.09 26	0.10 27	0.10 27	0.11 29	0.11 24	0.10 27	0.11 30
	90TH PERCENTILE	NS	2	55	58	53	44	48	47	52	36	52 52	51
SO₂	ARITHMETIC MEAN	DOWN	1	0.008	0.008	0.007	0.006	0.007		0.004			0.005
CORPUS CHR	2ND MAX 24-HOUR	DOWN	1	0.038	0.038	0.033	0.030	0.034	0.041				0.019
O ₃	4TH MAX 8-HOUR	NS	2	0.08	0.08	0.08	0.07	0.00	0.00	0.00	0.00	0.00	0.07
-3	2ND DAILY MAX 1-HOUR	NS	2	0.10	0.08	0.00	0.07 0.09	0.08 0.12	0.08 0.11	0.08 0.12	0.09 0.10	0.08 0.09	0.07 0.10
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	2	30	27	31	29	29	28	28	23	25	25
20	90TH PERCENTILE	- NS	2	45	40	43	41	52	44	44	34	41	41
SO ₂	ARITHMETIC MEAN	NS	2	0.003	0.002		0.003	0.003		0.002			
CUMBERLAND	2ND MAX 24-HOUR	NS	2	0.019	0.013	0.027	0.018	0.024	0.012	0.016	0.013	0.012	0.017
SO ₂	ARITHMETIC MEAN	DOWN	1	0.011	0.010	0.009	0.006	0.008	0.10	0.005	0.003	0.006	ባ ባባራ
-	2ND MAX 24-HOUR	DOWN	i	0.049	0.031			0.008		0.005			
							·	,	,	3.510	2.0.0		0.020

Table A-14. Metropolitan Statistical Area Air Quality Trends, 1989–1998 (continued)

LEAD NO ₂ O ₃	2ND MAX 8-HOUR MAX QUARTERLY MEAN								Language in the Con-				
LEAD NO ₂ O ₃		***	_		. –		E 0	F 4	E 0	ΕO	5.5	3.7	2.7
NO ₂ O ₃		NS DOWN	1 10	4.5 0.18	4.7 0.20	3.8 0.15	5.6 0.17	5.4 0.17	5.3 0.11	5.9 0.12	o.o7	0.07	0.07
O ₃ -	ARITHMETIC MEAN	UP	10	0.012	0.012	0.013	0.015	0.014	0.016	0.019	0.019	0.018	0.016
	4TH MAX 8-HOUR	NS	ż	0.10	0.10	0.10	0.06	0.09	0.10	0.09	0.11	0.09	0.09
	2ND DAILY MAX 1-HOUR	NS	2	0.13	0.14	0.10	0.12	0.13	0.12	0.14	0.12	0.12	0.11
	WEIGHTED ANNUAL MEAN	NS	5	29	28	26	26	27	26	30	30	26	26
	90TH PERCENTILE	NS	5	49	43	39	40	41	41	49	49	41	41
DANBURY, CT	4TH MAX 8-HOUR	NS	1	0.10	0.10	0.11	0.10	0.08	0.10	0.09	0.09	0.08	0.11
	2ND DAILY MAX 1-HOUR	NS NS	i	0.13	0.15	0.14	0.12	0.14	0.13	0.13	0.11	0.14	0.12
	WEIGHTED ANNUAL MEAN	DOWN	i	25	22	26	22	19	26	22	22	21	20
	90TH PERCENTILE	DOWN	1	45	38	44	38	40	37	34	36	35	30
SO ₂	ARITHMETIC MEAN	DOWN	1	0.008	0.007	0.008	0.007	0.006	0.006	0.004	0.005	0.005	0.004
	2ND MAX 24-HOUR	DOWN	1	0.036	0.033	0.032	0.027	0.024	0.037	0.020	0.020	0.024	0.020
	DLINE-ROCK ISLAND, IA-IL	110		0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.02	0.02	0.01
	MAX QUARTERLY MEAN	NS	1	0.02 0.08	0.03	0.01 0.07	0.02 0.08	0.02 0.08	0.02 0.07	0.01 0.07	0.02	0.02	0.07
	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	NS NS	2 2	0.08	0.08	0.09	0.10	0.08	0.09	0.09	0.09	0.08	0.09
	WEIGHTED ANNUAL MEAN	NS	4	32	31	30	29	27	31	31	30	30	32
1.14110	90TH PERCENTILE	NS	4	53	51	46	51	44	51	53	50	49	56
	ARITHMETIC MEAN	DOWN	3	0.005	0.005	0.004	0.004	0.004	0.004	0.004	0.003	0.003	0.003
-	2ND MAX 24-HOUR	DOWN	3	0.025	0.022	0.020	0.019	0.018	0.023	0.017	0.016	0.015	0.013
DAYTON-SPRING			_								0.4		0.0
	2ND MAX 8-HOUR	DOWN	2	4.8	3.2	3.5	3.6	3.6	3.4 0.04	3.0 0.05	2.4 0.04	3.0 0.04	2.8 0.03
	MAX QUARTERLY MEAN	DOWN	2 .3	0.06 0.09	0.05 0.09	0.04 0.09	0.04 0.09	0.06	0.04	0.03	0.04	0.10	0.09
	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	NS NS	3	0.09	0.09	0.05	0.10	0.11	0.11	0.12	0.11	0.11	0.12
	WEIGHTED ANNUAL MEAN	DOWN	3	31	26	28	25	25	24	26	23	24	25
L.m.f9	90TH PERCENTILE	DOWN	š	57	48	43	41	46	40	44	38	41	42
	ARITHMETIC MEAN	NS	2	0.006	0.006	0.005	0.005	0.006	0.006	0.004	0.005	0.005	0.005
•	2ND MAX 24-HOUR	NS	2	0.031	0.023	0.022	0.020	0.031	0.032	0.016	0.027	0.027	0.019
DECATUR, AL								0.5	-00	0.5	04	00	05
	WEIGHTED ANNUAL MEAN	NS	1	25	25	28 54	25	25 44	22 35	25 40	21 32	23 41	25 41
	90TH PERCENTILE	NS	1	42	42	54	41	44	33	40	32	41	41
DECATUR, IL	MAX QUARTERLY MEAN	NS	1	0.07	0.03	0.03	0.03	0.03	0.05	0.03	0.02	0.03	0.02
	4TH MAX 8-HOUR	NS	i	0.08	0.08	0.08	0.09	0.08	0.07	0.08	0.08	0.09	0.08
	2ND DAILY MAX 1-HOUR	NS	1	0.09	0.09	0.10	0.09	0.08	0.10	0.10	0.10	0.09	0.09
	WEIGHTED ANNUAL MEAN	DOWN	1	40	34	36	38	28	29	30	28	27	32
	90TH PERCENTILE	DOWN	1	68	_ 56	54	63	46	53	56	43	41	49
	ARITHMETIC MEAN	DOWN	1	0.012	0.008	0.007	0.005	0.006	0.007	0.005	0.005	0.006	0.005
	2ND MAX 24-HOUR	DOWN	1	0.108	0.060	0.039	0.023	0.025	0.030	0.024	0.022	0.021	0.020
DENVER, CO	OND MAY & HOUR	DOWN	6	7.8	7.2	7.0	8.3	6.6	6.1	5.6	4.8	4.7	3.9
CO LEAD	2ND MAX 8-HOUR MAX QUARTERLY MEAN	DOWN	3	0.05	0.06	0.05	0.06	0.06	0.04	0.05	0.03	0.02	0.02
	ARITHMETIC MEAN	DOWN	ž	0.033	0.032		0.032	0.027	0.032	0.029	0.027	0.029	0.029
	4TH MAX 8-HOUR	DOWN	5	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
. •	2ND DAILY MAX 1-HOUR	NS	5	0.10	0.10	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.10
	WEIGHTED ANNUAL MEAN	DOWN	11	26	24	25	24	27	23	20	20	21	21
	90TH PERCENTILE	DOWN	11	48	46	49	43	55	45	37	37	42	40 0.004
SO ₂	ARITHMETIC MEAN	DOWN	2 2	0.006	0.006 0.020	0.006 0.026	0.007 0.038	0.006 0.025	0.006 0.025	0.004 0.016	0.005 0.020	0.005	0.004
DEC HOMES I	2ND MAX 24-HOUR	NS	2	0.023	0.020	0.020	0.030	0.023	0.025	0.010	0.020	0.021	0.010
DES MOINES, IA	A 2ND MAX 8-HOUR	NS	3	4.4	4.6	4.6	3.9	4.5	3.9	4.0	3.2	3.0	5.7
_	4TH MAX 8-HOUR	NS	2	0.05	0.05		0.04	0.07	0.05	0.05	0.07	0.06	0.06
O ₃	2ND DAILY MAX 1-HOUR	NS	2	0.06	0.07	0.06	0.08	0.08	0.07	0.08	0.08	0.08	0.07
PM ₁₀	WEIGHTED ANNUAL MEAN	NS	3	33	32		28	29	30	30	31	32	26
	90TH PERCENTILE	NS	3	60	56	48	55	49	52	54	53	59	45
DETROIT, MI			_	• •						4 -	0.0	0.0	0.4
CO	2ND MAX 8-HOUR	DOWN	6	6.0	4.5		4.2	4.5 0.03	6.6 0.04	4.5 0.03	3.9 0.03	3.3 0.04	3.1 0.04
LEAD	MAX QUARTERLY MEAN	NS NS	6 2	0.06 0.021	0.05 0.021			0.03	0.022	0.020		0.020	
NO₂	ARITHMETIC MEAN 4TH MAX 8-HOUR	NS NS	8	0.021	0.021			0.021	0.022	0.020	0.021	0.020	0.021
O ₃	2ND DAILY MAX 1-HOUR	NS NS	8	0.12	0.10			0.10	0.12	0.12	0.10	0.11	0.11
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	6	39	36		28	33	38	35	31	28	29
(9	90TH PERCENTILE	DOWN	6	65	64	59	47	55	61	59	50	45	53
SO ₂	ARITHMETIC MEAN	DOWN	10	0.010		0.008		0.007	0.007		0.006		
	2ND MAX 24-HOUR	NS	10	0.037	0.038	0.033	0.030	0.030	0.032	0.030	0.034	0.027	0.032
DOTHAN, AL						•-				^^		0.5	
PM ₁₀	WEIGHTED ANNUAL MEAN	NS	1	26	31			26 52	28 47	28 46	22 36	25 45	27 41
	90TH PERCENTILE	NS	1	42	64	44	43	52	47	40	30	40	41

Table A-14. Metropolitan Statistical Area Air Quality Trends, 1989–1998 (continued)

Metropolitan	Statistical Area	Trend	#Trend Sites	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
DUBUQUE, IA			kerkerian) att (Millermeth Al-Salermeth Approximation) (201					THE STATE OF STREET	A STATE OF THE SAME				
SO ₂ DULUTH-SUPE	ARITHMETIC MEAN 2ND MAX 24-HOUR	NS DOWN	1 1	0.005 0.030	0.005 0.037	0.004 0.028	0.004 0.029	0.003 0.014	0.005 0.037	0.006 0.027	0.003 0.022	0.003 0.022	0.003 0.022
CO	2ND MAX 8-HOUR	NS	1	, 9.9	4.4	5.2	4.0	4.1	4.3	4.5	4.5	3.2	3.7
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	DOWN DOWN	6 6	26 39	22 41	23 37	20 34	19	19	19	19	18	20
DUTCHESS CO	DUNTY, NY	1				37	34	32	31	32	32	31	30
O_3	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	DOWN DOWN	1 1	0.10 0.13	0.10 0.13	0.10 0.13	0.10 0.11	0.09 0.14	0.10 0.12	0.09 0.12	0.09 0.11	0.09 0.11	0.09 0.11
EL PASO, TX										•			
CO LEAD	2ND MAX 8-HOUR MAX QUARTERLY MEAN	DOWN DOWN	5 4	9.8 0.30	10.9 0.27	9.1 0.27	8.1 0.19	8.0 0.18	6.6 0.12	6.8 0.13	8.4 0.20	6.9 0.09	6.6 0.11
NO ₂	ARITHMETIC MEAN	NS	2	0.025	0.022	0.023	0.026	0.026	0.029	0.029	0.029	0.027	0.025
O ₃	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	NS DOWN	3 3	0.08 0.13	0.08 0.12	0.08 0.12	0.07 0.12	0.07 0.11	0.07 0.13	0.08	0.08 0.12	0.08	0.07
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	8 ·	37	32	28	28	24	25	0.11 28	27	0.11 23	0.11 23
80	90TH PERCENTILE	DOWN	8	68	63	53	50	43	47	51	51	45	44
SO ₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	DOWN DOWN	3 3	0.013 0.055	0.010 0.055	0.010 0.047	0.012 0.053	0.009 0.049	0.007 0.029	0.008 0.038	0.008	0.007	0.006 0.028
ELMIRA, NY	ATLIMAY & HOLID	NC		0.07									
O_3	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	NS NS	1 1	0.07 0.09	0.07 0.10	0.08 0.10	0.09 0.09	0.07 0.09	80.0 80.0	0.07 0.09	0.08 0.09	0.07 0.08	0.07 0.09
SO ₂	ARITHMETIC MEAN	DOWN	1	0.005	0.005	0.005	0.005	0.005	0.004	0.004	0.004	0.003	0.003
ERIE, PA	2ND MAX 24-HOUR	DOWN	1	0.026	0.021	0.022	0.021	0.019	0.023	0.014	0.016	0.015	0.011
NO ₂	ARITHMETIC MEAN	NS	1	0.015	0.015	0.013	0.014	0.014	0.015	0.015	0.015	0.015	0.014
O ₃	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	NS NS	1 1	0.09 0.12	0.09 0.10	0.08 0.11	0.09 0.10	0.08 0.11	0.08 0.10	0.09	0.09	0.08	0.09
SO ₂	ARITHMETIC MEAN	DOMN	i	0.014	0.014	0.010	0.10	0.011	0.010	0.11 0.009	0.10 0.011	0.10	0.12
EUGENE-SPRII	2ND MAX 24-HOUR	NS	1	0.074	0.057	0.044	0.056	0.072	0.076	0.050	0.066	0.035	0.068
CO	2ND MAX 8-HOUR	NS	2	5.5	4.9	5.2	6.2	5.3	5.9	5.2	5.2	5.0	4.3
LEAD	MAX QUARTERLY MEAN	NS	1	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
O ₃	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	NS NS	2 2	0.06 0.08	0.06 0.09	0.07 0.09	0.07 0.10	0.07 0.08	0.05 0.09	0.07 0.08	0.06 0.11	0.09 0.07	0.06 0.10
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	2 5	31	28	32	28	29	25	23	20	21	18
EVANSVILLE-H	90TH PERCENTILE IENDERSON, IN-KY	DOWN	5	62	56	65	56 .	63	46	44	37	37	34
CO	2ND MAX 8-HOUR	NS	1	2.3	2.5	2.0	2.3	2.6	2.7	2.7	2.0	2.3	2.1
NO ₂ O ₃	ARITHMETIC MEAN 4TH MAX 8-HOUR	DOWN NS	1 5	0.020 0.09	0.018 0.09	0.021	0.018 0.09	0.017 0.08	0.018	0.017	0.017	0.016	0.018
	2ND DAILY MAX 1-HOUR	NS	5	0.11	0.11	0.03	0.09	0.10	0.08	0.09	0.10	0.09	0.09
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	DOWN NS	4	34	31	32	29	29	31	31	25	26	27
SO₂	ARITHMETIC MEAN	DOWN	4 7	54 0.013	50 0.014	47 0.013	49 0.012	49 0.012	51 0.012	52 0.010	40 0.011	44 0.011	44 0.012
FAYETTEVILLE	2ND MAX 24-HOUR	DOWN	7	0.056	0.062	0.061	0.068	0.051	0.048			0.048	0.046
O ₃	4TH MAX 8-HOUR	NS	2	0.08	0.08	0.09	0.08	0.08	0.09	0.08	0.08	0.09	0.09
_	2ND DAILY MAX 1-HOUR	NS	2	0.10	0.10	0.10	0.09	0.11	0.10	0.10	0.10	0.10	0.11
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	DOWN NS	1	29 47	31 50	27 45	26 39	27 41	25 40	23 35	25 39	25 41	27 41
FAYETTEVILLE	-SPRINGDALE-ROGERS, AR												
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	NS NS	1	26 37	23 38	24 38	22 30	24 39	25 40	24 36	23 36	20 31	20 31
FLINT, MI													
O ₃	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	NS NS	1	0.08 0.10	0.08 0.10	0.08 0.10	0.09 0.09	0.07 0.10	0.07 0.09	0.07 0.09	0.08 0.10	0.08 0.10	0.08
FLORENCE, AL	•	•											
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	DOWN DOWN	1	24 39	24 39	24 41	21 34	23 37	20 34	22 37	18 29	19 32	22
SO ₂	ARITHMETIC MEAN	DOWN	1	0.005		0.004	0.004		0.003		0.003		0.003
FORT COLLING	2ND MAX 24-HOUR LOVELAND, CO	DOWN	1	0.036	0.027	0.025	0.019		0.022			0.020	0.019
CO	2ND MAX 8-HOUR	DOWN	1	8.3	7.0	9.8	6.9	6.6	6.0	5.2	5.1	5.2	4.1
O ₃	4TH MAX 8-HOUR	NS	2	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
	2ND DAILY MAX 1-HOUR	NS	2	0.09	0.08	0.09	0.09	0.09	0.10	0.09	0.09	0.09	0.09
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	1	29	23	25	23	22	22	22	20	16	16

Table A-14. Metropolitan Statistical Area Air Quality Trends, 1989–1998 (continued)

Metropolitan	Statistical Area	Trend	#Trend Sites	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
FORT LAUDER							4.0	0.7	0.0	3.9	3.3	3.2	2.5
CO	2ND MAX 8-HOUR	DOWN NS	5 1	4.8 0.03	4.0 0.01	4.1 0.02	4.2 0.04	3.7 0.03	3.6 0.03	0.02	0.05	0.04	0.04
LEAD NO₂	MAX QUARTERLY MEAN ARITHMETIC MEAN	NS	i	0.009	0.009	0.009	0.009	0.010	0.009	0.011	0.010	0.010	0.010
0,	4TH MAX 8-HOUR	NS	3	0.08	0.08	0.07	0.06	0.08	0.08	0.07	0.07	0.07 0.09	0.07 0.10
-	2ND DAILY MAX 1-HOUR	NS	3	0.11	0.09	0.09	0.10	0.10	0.09	0.09	0.09	0.09	0.10
O3 O3	-CAPE CORAL, FL 4TH MAX 8-HOUR	DOWN	1	0.08	0.08	0.07	0.06	0.07	0.07	0.08	0.07	0.06	0.07
0 3	2ND DAILY MAX 1-HOUR	NS	1	0.10	0.08	80.0	80.0	0.08	0.09	0.09	0.07	0.08	0.11
FORT SMITH,	AR-OK	DOWN	1	28	26	25	24	25	24	26	25	22	22
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	NS	i	43	38	37	36	39	38	44	36	39	39
FORT WAYNE	, IN								0.00	0.40	0.00	0.00	0.00
0,	4TH MAX 8-HOUR	NS	1	0.09 0.12	0.09	0.08 0.10	0.09 0.09	0.09 0.10	0.08 0.11	0.10 0.11	0.09 0.11	0.09 0.10	0.09
PM ₁₀	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	NS NS	1	29	27	27	23	23	24	24	17	20	24
LIA110	90TH PERCENTILE	DOWN	· i	53	53	44	38	36	43	44	28	28	39
	I-ARLINGTON, TX		_		4.0	0.7	4.0	0.4	2.0	3.2	3.0	3.0	2.9
CO	2ND MAX 8-HOUR	DOWN NS	2 2	4.8 0.03	4.2 0.03	3.7 0.02	4.0 0.03	3.4 0.03	3.2 0.03	0.03	0.02	0.02	0.02
LEAD NO₂	MAX QUARTERLY MEAN ARITHMETIC MEAN	NS	1.	0.013	0.012	0.014	0.015	0.013	0.017	0.017	0.015	0.016	0.013
O ₃	4TH MAX 8-HOUR	NS	2	0.10	0.10	0.10	0.11	0.08	0.09	0.10	0.10	0.09	0.09
_	2ND DAILY MAX 1-HOUR	NS	2 3	0.13 24	0.14 24	0.15 23	0.12 21	0.11 21	0.13 20	0.14 24	0.13 25	0.12 22	2:
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	NS NS	3	38	41	33	31	33	33	38	40	34	3
SO ₂	ARITHMETIC MEAN	NS	ĭ	0.001	0.002	0.002		0.001	0.002	0.001	0.001	0.001	0.00
=	2ND MAX 24-HOUR	NS ·	1	0.007	0.008	0.006	0.013	0.005	0.006	0.004	0.011	0.011	0.01
FRESNO, CA	OND MAY O LIGHT	DOWN	4	5.7	5.7	6.1	4.6	4.2	4.9	4.2	4.2	3.5	3.
CO LEAD	2ND MAX 8-HOUR MAX QUARTERLY MEAN	DOWN	1	0.07	0.07	0.04	0.04	0.03	0.02	0.02	0.01	0.01	0.0
NO ₂	ARITHMETIC MEAN	DOWN	4	0.021	0.021	0.021	0.020	0.021	0.020	0.020	0.019	0.018	0.01
O ₃	4TH MAX 8-HOUR	NS	5	0.10	0.10 0.14	0.10	0.11 0.14	0.11 0.14	0.11 0.13	0.10 0.13	0.10 0.14	0.11 0.13	0.1 0.1
DM	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	NS DOWN	5 5	0.14 55	55	0.15 54	45	43	40	41	35	40	3
PM ₁₀	90TH PERCENTILE	DOWN	5	107	107	100	73	86	63	80	59	77	6
GADSDEN, A	L			00		00	04	33	30	30	23	26	3
PM _{to}	WEIGHTED ANNUAL MEAN	NS '	2 2	28 45	33 55	32 56	31 52	58	46	43	36	47	5
GAI VESTON-	90TH PERCENTILE TEXAS CITY, TX	NO	2	+0	00	00	0		.0				_
LEAD	MAX QUARTERLY MEAN	DOWN	1	0.03	0.02	0.02	0.02	0.03	0.02	0.03	0.02	0.02	0.0
O ₃	4TH MAX 8-HOUR	NS	1 1	0.10 0.14	0.10 0.15	0.09 0.15	0.09 0.10	0.07 0.18	0.11 0.13	0.09 0.20	0.14 0.11	0.08 0.18	0.1 0.1
DM	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	NS DOWN	3	28	24	22	24	24	. 23	25	19	20	2
PM _{to}	90TH PERCENTILE	DOWN	3	47	40	38	35	45	36	40	27	32	3
SO₂	ARITHMETIC MEAN	NS	1	0.008	0.007	0.007	0.005	0.005	0.006 0.052	0.006 0.089	0.014 0.067	0.006	
C451/ III	2ND MAX 24-HOUR	NS	1	0.045	0.063	0.050	0.039	0.056	0.052	0.069	0.007	0.000	0.00
GARY, IN CO	2ND MAX 8-HOUR	NS	2	4.3	4.2	4.1	4.4	4.7	5.6	3.9	3.3	3.7	3.
LEAD	MAX QUARTERLY MEAN	NS	4	0.23	0.21	0.11	0.11	80.0	0.17	0.12	0.13	0.10	
O ₃	4TH MAX 8-HOUR	NS NC	3 3	0.08 0.10	0.08 0.09	0.08 0.11	0.09 0.11	0.08 0.09	0.07 0.11	0.08 0.12	0.10 0.11	0.09 0.11	0.0
PM _{te}	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	NS DOWN	3 8	33	33	29	26	24	26	25	21	22	2
	90TH PERCENTILE	DOWN	8	54	52	45	43	39	42	41	33	33	
SO₂	ARITHMETIC MEAN	DOWN	5	0.011	0.010		0.007	0.007 0.032	0.006 0.032	0.005 0.022	0.005 0.023	0.005 0.024	
	2ND MAX 24-HOUR	DOWN	5	0.047	0.048	0.028	0.028	0.032	0.032	0.022	0.020	0.024	0.02
GLENS FALL SO ₂	S, NY ARITHMETIC MEAN	DOWN	1	0.004		0.004			0.004	0.003	0.002		
	2ND MAX 24-HOUR	DOWN	1	0.023	0.040	0.020	0.017	0.018	0.027	0.011	0.013	0.013	0.01
GOLDSBORC		DOWN	1	27	27	27	24	24	21	20	23	23	2
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	DOWN	i	46	46		36	36	33	30	33	36	
GRAND FOR										4.0		2,-	_
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	1	24	25		18 33	17 28	16 28	. 18 30	15 22	15 22	
CDAND DAD	90TH PERCENTILE	DOWN	1	48	38	34	33	28	20	30	22	~~	-
GRAND HAP	IDS-MUSKEGON-HOLLAND, MI 2ND MAX 8-HOUR	NS	í	4.5	3.5	4.0	3.2	3.2	4.0	4.6	3.3	2.4	
LEAD	MAX QUARTERLY MEAN	DOWN	3	0.03	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	
O ₃	4TH MAX 8-HOUR	NS	4	0.10	0.10		0.10	0.08	0.08	0.09	0.10	0.09 0.10	
-	2ND DAILY MAX 1-HOUR	DOWN DOWN	4 2	0.13 29	0.13 30		0.11 35	0.10 22	0.11 27	0.12 21	0.12 20	19	
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	DOWN	2	29 46	55		54	39	46	40	35	32	3
		DOWN	1	0.004		0.004			0.003	0.002	0.002	0.002	0.00
SO₂	ARITHMETIC MEAN	DOWN	i	0.016	0.012				0.013	0.011		0.008	

Table A-14. Metropolitan Statistical Area Air Quality Trends, 1989-1998 (continued)

Metropolitan	Statistical Area	Trend	#Trend Sites	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
GREAT FALLS,						erendara baharan Sala	artification for the state of						
CO PM ₁₀	2ND MAX 8-HOUR WEIGHTED ANNUAL MEAN 90TH PERCENTILE	NS NS NS	1 1 1	5.6 20 31	5.6 24 39	6.6 21 44	5.8 21 40	6.9 21 40	4.8 21 34	6.2 18 30	5.4 19 35	6.4 20 32	4.5 20 32
GREELEY, CO			•	0.	00	77	40	-+0	04	30	33	32	32
CO O ₃	2ND MAX 8-HOUR 4TH MAX 8-HOUR	DOWN	1	7.3	7.1	7.8	7.5	5.8	5.2	5.3	7.0	4.8	4.4
O ₃	2ND DAILY MAX 1-HOUR	NS NS	1	0.07 0.10	0.07 0.11	0.08 0.10	0.08 80.0	0.06 0.09	0.06 0.09	0.07 0.09	0.07 0.10	0.07 0.10	0.07 0.10
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	1	30	25	26	25	23	23	20	18	18	17
GREEN BAY, W	90TH PERCENTILE	DOWN	1	50	43	51	43	39	37	34	30	30	30
SO ₂	ARITHMETIC MEAN	DOWN	1	0.006	0.005	0.005	0.004	0.003	0.003	0.004	0.003	0.003	0.003
CREENCRORO	2ND MAX 24-HOUR	DOWN	1	0.024	0.020	0.042	0.021	0.018	0.015			0.017	0.011
CO	-WINSTON-SALEM-HIGH POINT 2ND MAX 8-HOUR	DOWN	1	9.7	6.8	6.6	5.7	5.5	6.0	6.2	4.3	4.7	5.4
NO ₂	ARITHMETIC MEAN	NS	i	0.016	0.017	0.016	0.015	0.017	0.017		0.016	0.017	0.017
O ₃ -	4TH MAX 8-HOUR	NS	2	0.08	0.08	0.09	0.08	0.08	0.09	0.09	0.09	0.09	0.09
 DN4	2ND DAILY MAX 1-HOUR	UP	2	0.09	0.11	0.10	0.10	0.12	0.11	0.11	0.11	0.11	0.12
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	DOWN DOWN	3 3	32	31	31	27	27	25	26	24	24	25
SO ₂	ARITHMETIC MEAN	NS	3 1	51 0.007	49 0.008	48 0.007	41 0.006	45 0.006	35 0.007	39 0.007	35 0.007	37 0.007	39 0.006
002	2ND MAX 24-HOUR	NS	i	0.024	0.023	0.027	0.019	0.022	0.007		0.007	0.007	0.023
GREENVILLE,		NO											
O ₃	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	NS NS	1 1	0.08 0.10	0.08 0.10	0.08 0.09	0.08 0.10	0.08 0.11	0.09 0.09	0.08	0.08	0.09	0.10
GREENVILLE-S	SPARTANBURG-ANDERSON, SC		•	0.10	0.10	0.03	0.10	0.11	0.09	0.10	0.10	0.12	0.11
LEAD	MAX QUARTERLY MEAN	DOWN	3	0.04	0.04	0.04	0.02	0.02	0.02	0.02	0.01	0.01	0.02
O ₃	4TH MAX 8-HOUR	UP	4	0.08	0.08	0.08	0.08	0.08	0.09	0.08	0.09	0.09	0.09
SO ₂	2ND DAILY MAX 1-HOUR ARITHMETIC MEAN	UP NS	4 1	0.10	0.09	0.10	0.09	0.11	0.10	0.11	0.11	0.10	0.12
, 002	2ND MAX 24-HOUR	NS NS	i	0.002 0.011	0.002 0.011	0.003 0.017	0.003 0.013	0.003 0.012	0.003			0.003	0.003
HAMILTON-MID	DLETOWN, OH	110	•	0.011	0.011	0.017	0.010	0.012	0.010	0.007	0.012	0.014	0.015
O_3	4TH MAX 8-HOUR	NS	2	0.09	0.09	0.10	0.09	0.07	0.09	0.09	0.09	0.09	0.09
PM ₁₀	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	NS NS	2 4	0.11 34	0.12 34	0.11	0.10	0.12	0.11	0.13	0.11	0.11	0.11
1 14110	90TH PERCENTILE	NS	4	60	60	36 61	30 51	31 63	30 53	34 58	29 45	30 54	30 53
SO ₂	ARITHMETIC MEAN	DOWN	ż	0.010	0.010	0.009	0.007		0.008			0.007	0.006
	2ND MAX 24-HOUR	DOWN	2	0.040	0.037	0.040	0.033	0.035	0.038			0.034	0.021
HARRISBURG- LEAD	LEBANON-CARLISLE, PA	NO		0.04	0.04	0.04	0.04	0.04	0.04				
NO ₂	MAX QUARTERLY MEAN ARITHMETIC MEAN	NS NS	1 2	0.04 0.014	0.04 0.013	0.04 0.014	0.04 0.013	0.04 0.011	0.04 0.015	0.04 0.014	0.04 0.015	0.04	0.04
O ₃	4TH MAX 8-HOUR	NS	3	0.09	0.09	0.09	0.10	0.011	0.013	0.014	0.013	0.013	0.012
-	2ND DAILY MAX 1-HOUR	NS	3	0.10	0.11	0.11	0.09	0.11	0.12	0.11	0.10	0.11	0.11
PM ₁₀	WEIGHTED ANNUAL MEAN	NS	1	21	19	22	18	21	22	21	19	22	22
SO ₂	90TH PERCENTILE ARITHMETIC MEAN	NS DOWN	1 2	33 0.006	35	39 0.006	27	30	44	32	31	33	33
002	2ND MAX 24-HOUR	NS	2	0.029	0.005 0.021	0.021	0.005 0.022	0.006 0.021	0.007 0.035			0.005	0.005 0.017
HARTFORD, CT	Γ			0,000	0.02.	0.021	0.01.12	0.021	0.000	0.017	0.021	0.022	0.017
CO	2ND MAX 8-HOUR	DOWN	2	6.7	6.7	6.1	6.1	5.6	6.4	5.8	5.0	4.8	5.4
NO₂ O₃	ARITHMETIC MEAN 4TH MAX 8-HOUR	NS DOWN	1 3	0.020	0.019	0.020	0.017		0.020			0.018	0.020
O_3	2ND DAILY MAX 1-HOUR	NS	3	0.11 0.15	0.11 0.15	0.10 0.16	0.11 0.12	0.09 0.15	0.10 0.13	0.10 0.13	0.10 0.10	0.08 0.14	0.10 0.12
PM ₁₀	WEIGHTED ANNUAL MEAN	NS	6	23	20	23	20	18	20	16	17	18	18
	90TH PERCENTILE	DOWN	6	37	. 35	38	34	31	35	29	30	33	31
SO ₂	ARITHMETIC MEAN	DOWN	4	0.007	0.007		0.006		0.006	0.004	0 040	0.004	0.004
HONOLULU, HI	2ND MAX 24-HOUR	DOWN	4	0.034	0.030	0.030	0.027	0.019	0.027	0.019	0.018	0.021	0.019
CO	2ND MAX 8-HOUR	DOWN	3	2.6	2.2	2.0	2.1	2.4	2.3	2.0	1.9	1.8	1.7
LEAD	MAX QUARTERLY MEAN	NS	2	0.03	0.01	0.01	0.01	0.01	0.00	0.00	0.01	0.02	0.02
O ₃	4TH MAX 8-HOUR	UP	1	0.02	0.02	0.03	0.04	0.05	0.05	0.05	0.05	0.04	0.05
PM ₁₀	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	NS NS	1	0.05 16	0.05 16	0.05 17	0.06 17	0.06 16	0.06 19	0.06	0.05	0.05	0.06
10	90TH PERCENTILE	NS NS	i	20	23	25	22	22	26	15 23	16 24	18 23	20 27
SO ₂	ARITHMETIC MEAN	DOWN	1 '	0.002		0.002		0.002				0.001	0.002
LIOTURA : A	2ND MAX 24-HOUR	NS	3	0.006	0.006		0.006		0.006			0.005	0.007
HOUMA, LA	4TH MAX 8-HOUR	NS	4	0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.40	0.00	0.00
O ₃	2ND DAILY MAX 1-HOUR	NS NS	1	0.08 0.11	0.08 0.12	0.08 0.10	0.08 0.09	0.07 0.10	0.08 0.10	0.09 0.14	0.10 0.09	0.08 0.10	0.08 0.11
			•	0.11	0.12	0.10	0.00	0.10	5.10	0.,17	5.05	J. 10	0.11

Table A-14. Metropolitan Statistical Area Air Quality Trends, 1989–1998 (continued)

LEAD MAX QU. NO2 ARITHME O3 4TH MAX 2ND DAII PM10 WEIGHTI 90TH PE SO2 ARITHME 2ND MAX HUNTINGTON-ASHLAND CO 2ND MAX LEAD MAX QU. O3 4TH MAX 2ND DAII PM10 WEIGHTI 90TH PE SO2 ARITHME 2ND MAX HUNTSVILLE, AL CO 2ND MAX CO 2ND MAX CO 2ND MAX PM10 WEIGHT 90TH PE INDIANAPOLIS, IN CO 2ND MAX CO 2ND MAX PM10 WEIGHT 90TH PE INDIANAPOLIS, IN CO 2ND MAX LEAD MAX QU NO2 ARITHME O3 4TH MAX 2ND DAI PM10 WEIGHT 90TH PE	Á 8-HOUR ARTERLY MEAN 〈 8-HOUR LY MAX 1-HOUR ED ANNUAL MEAN ETIC MEAN X 24-HOUR X 8-HOUR 〈 8-HOUR LY MAX 1-HOUR ED ANNUAL MEAN ETIC MEAN X 8-HOUR	DOWN DOWN NS NS DOWN DOWN DOWN DOWN NS DOWN NS DOWN NS NS DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN	4240105577 12335588 11122 2	5.8 0.04 0.022 0.11 0.18 32 53 0.005 0.026 5.5 0.06 0.09 0.12 34 58 0.013 0.075 0.07	6.8 0.02 0.023 0.11 31 50 0.005 0.025 4.7 0.04 0.09 0.11 34 54 0.012 0.070 4.2 0.07 0.09	6.0 0.022 0.122 0.17 31 48 0.005 0.025 4.4 0.04 0.09 0.13 32 50 0.012 0.050 4.1 0.08 0.11 28	6.8 0.01 0.022 0.10 30 48 0.005 0.022 4.1 0.04 0.10 0.10 0.010 0.043 4.2 0.08 0.11	5.6 0.01 0.019 0.10 0.16 30 0.005 0.020 3.8 0.04 0.08 0.11 28 52 0.011 0.052 4.0	4.9 0.01 0.021 0.09 0.15 31 50 0.004 0.018 5.2 0.03 0.09 0.13 52 0.010 0.049 3.5 0.004	4.0 0.01 0.021 0.10 0.17 30 48 0.004 0.026 3.8 0.04 0.09 0.12 30 48 0.009 0.034 3.6 0.034	5.3 0.00 0.020 0.12 0.16 26 39 0.004 0.022 3.7 0.03 0.09 0.10 26 39 0.008 0.028	4.3 0.00 0.021 0.10 0.17 29 48 0.003 0.017 3.8 0.02 0.08 0.11 28 4.008 0.031 3.1 0.08 0.10 0.08	3.8 0.00 0.019 0.11 0.17 29 48 0.003 0.018 7.2 0.02 0.08 0.13 26 44 0.008 0.033 0.09 0.12
LEAD MAX QU. NO2 ARITHME O3 4TH MAX 2ND DAII PM10 WEIGHTI 90TH PE SO2 ARITHME 2ND MAX HUNTINGTON-ASHLAND CO 2ND MAX LEAD MAX QU. O3 4TH MAX 2ND DAII PM10 WEIGHTI 90TH PE SO2 ARITHME 2ND MAX HUNTSVILLE, AL CO 2ND MAX CO 2ND MAX PM10 WEIGHT 90TH PE INDIANAPOLIS, IN CO 2ND MAX CO 2ND MAX PM10 WEIGHT 90TH PE INDIANAPOLIS, IN CO 2ND MAX LEAD MAX QU NO2 ARITHME O3 4TH MAX 2ND DAI PM10 WEIGHT 90TH PE	ARTERLY MEAN ETIC MEAN (8-HOUR LY MAX 1-HOUR ED ANNUAL MEAN RCENTILE ETIC MEAN K 24-HOUR K 8-HOUR ARTERLY MEAN (8-HOUR ED ANNUAL MEAN RCENTILE ETIC MEAN K 8-HOUR ED ANNUAL MEAN K 8-HOUR X 8-HOUR X 8-HOUR LY MAX 1-HOUR ED ANNUAL MEAN K 8-HOUR LY MAX 1-HOUR ED ANNUAL MEAN ETIC MEAN K 8-HOUR LY MAX 1-HOUR ED ANNUAL MEAN ETIC MEAN K 8-HOUR LY MAX 1-HOUR ED ANNUAL MEAN ETIC MEAN K 8-HOUR ARTERLY MEAN ETIC MEAN	DOWN DOWN NS NS DOWN DOWN DOWN NS DOWN NS NS DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN	240 105577 12335588 11122	0.04 0.022 0.11 0.18 32 53 0.005 0.026 5.5 0.06 0.09 0.12 34 58 0.013 0.075 5.2 0.07 0.09	0.02 0.023 0.11 31 50 0.005 0.025 4.7 0.04 0.09 0.11 34 0.012 0.070 4.2 0.07	0.02 0.022 0.12 0.17 31 48 0.005 0.025 4.4 0.09 0.13 32 50 0.012 0.050	0.01 0.022 0.10 0.16 30 48 0.005 0.022 4.1 0.04 0.10 0.10 29 46 0.010 0.043 4.2	0.01 0.019 0.10 0.16 30 50 0.005 0.020 3.8 0.04 0.08 0.11 28 20.011 0.052 4.0 0.09	0.01 0.021 0.09 0.15 31 50 0.004 0.018 5.2 0.03 0.09 0.13 31 52 0.010 0.049	0.01 0.021 0.10 0.17 30 48 0.004 0.026 3.8 0.04 0.09 0.12 30 48 0.009 0.034 3.6 0.034	0.00 0.020 0.12 0.16 26 39 0.004 0.022 3.7 0.09 0.10 26 3.008 0.028	0.00 0.021 0.10 0.17 29 48 0.003 0.017 3.8 0.02 0.08 0.11 28 45 0.008 0.031 3.1 0.08 0.010	0.00 0.019 0.11 0.17 29 48 0.003 0.018 7.2 0.02 0.08 0.13 26 44 0.008 0.033 3.3 0.09 0.012
NO2 ARITHME O3 4TH MAX 2ND DAII PM10 WEIGHTI 90TH PE SO2 ARITHME 2ND MAX HUNTINGTON-ASHLAND CO 2ND MAX LEAD MAX QU O3 4TH MAX 2ND DAII PM10 WEIGHT 90TH PE SO2 ARITHMI 2ND MAX HUNTSVILLE, AL CO 2ND MAX HUNTSVILLE, AL CO 2ND MAX PM10 WEIGHT 90TH PE INDIANAPOLIS, IN CO 2ND MAX LEAD MAX QU NO2 ARITHMI O3 4TH MAX 2ND DAI PM10 WEIGHT	ETIC MEAN (8-HOUR LY MAX 1-HOUR ED ANNUAL MEAN RCENTILE ETIC MEAN K 24-HOUR K 8-HOUR ARTERLY MEAN K 8-HOUR ED ANNUAL MEAN K 8-HOUR ED ANNUAL MEAN K 8-HOUR EX 9-10-10-10-10-10-10-10-10-10-10-10-10-10-	DOWN NS NS DOWN DOWN DOWN NS DOWN NS NS DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN	4 10 15 5 7 7 1 2 3 3 5 5 8 8 1 1 1 2 2 2	0.11 0.18 32 53 0.005 0.026 5.5 0.06 0.09 0.12 34 58 0.013 0.075 5.2 0.07 0.09	0.11 0.19 31 50 0.005 0.025 4.7 0.04 0.09 0.11 34 54 0.012 0.070 4.2 0.07	0.12 0.17 31 48 0.005 0.025 4.4 0.09 0.13 32 0.012 0.050 4.1 0.08 0.11	0.10 0.16 30 48 0.005 0.022 4.1 0.04 0.10 0.10 29 46 0.010 0.043 4.2 0.08	0.10 0.16 30 0.005 0.020 3.8 0.04 0.08 0.11 28 52 0.011 0.052 4.0 0.09	0.09 0.15 31 50 0.004 0.018 5.2 0.03 0.09 0.13 31 52 0.010 0.049	0.10 0.17 30 48 0.004 0.026 3.8 0.04 0.09 0.12 30 48 0.094 0.034 3.6 0.08 0.10	0.12 0.16 39 0.004 0.022 3.7 0.03 0.09 0.10 26 0.008 0.028	0.10 0.17 29 48 0.003 0.017 3.8 0.02 0.08 0.11 28 0.008 0.031 3.1 0.08 0.10	0.11 0.17 29 48 0.003 0.018 7.2 0.02 0.08 0.13 264 40.008 0.033 3.3 0.09 0.12
O3 4TH MAX 2ND DAII PM10 WEIGHTI 90TH PE SO2 ARITHME 2ND MAX HUNTINGTON-ASHLAND CO 2ND MAX LEAD MAX QU O3 4TH MAX 2ND DAII PM10 WEIGHT 90TH PE SO2 ARITHME 2ND MAX HUNTSVILLE, AL CO 2ND MAX CO 2ND MAX HUNTSVILLE, AL CO 2ND MAX PM10 WEIGHT 90TH PE INDIANAPOLIS, IN CO 2ND MAX LEAD MAX QU NO2 ARITHME O3 4TH MAX 2ND DAI PM10 WEIGHT 90TH PE INDIANAPOLIS, IN CO 2ND MAX LEAD MAX QU NO2 ARITHME O3 4TH MAX 2ND DAI PM10 WEIGHT 90TH PE	LY MAX 1-HOUR ED ANNUAL MEAN RCENTILE ETIC MEAN K 24-HOUR K, WY-KY-OH K 8-HOUR ARTERLY MEAN K 8-HOUR ED ANNUAL MEAN K 24-HOUR K 8-HOUR K 9-HOUR K 9	NS DOWN DOWN NS DOWN NS NS DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN	10 5 5 7 7 1 2 3 3 5 5 8 8 1 1 1 2 2 2	0.18 32 53 0.005 0.026 5.5 0.06 0.09 0.12 34 58 0.013 0.075 5.2 0.07 0.09 32	0.19 31 50 0.005 0.025 4.7 0.04 0.09 0.11 34 54 0.012 0.070 4.2 0.07	0.17 31 4.4 0.005 0.025 4.4 0.09 0.13 32 0.050 0.012 0.050	0.16 30 48 0.005 0.022 4.1 0.04 0.10 29 46 0.010 0.043 4.2 0.08	0.16 30 505 0.005 0.020 3.8 0.04 0.08 52 0.011 0.052 4.0 0.09	0.15 31 0.004 0.018 5.2 0.03 0.09 0.13 31 52 0.010 0.049 3.5 0.09	0.17 30 48 0.004 0.026 3.8 0.04 0.09 0.12 30 0.034 48 0.009 0.034 3.6 0.08 0.10	0.16 26 30 0.004 0.022 3.7 0.03 0.09 0.10 26 39 0.008 0.028	0.17 29 48 0.003 0.017 3.8 0.02 0.08 0.11 28 45 0.008 0.031 3.1 0.08 0.10	0.17 29 48 0.003 0.018 7.2 0.02 0.08 0.13 26 44 0.008 0.033 3.3 0.09 0.12
PM ₁₀ WEIGHTI 90TH PE SO ₂ ARITHME 2ND MAX HUNTINGTON-ASHLAND CO 2ND MAX LEAD MAX QU O ₃ 4TH MAX 2ND DAI PM ₁₀ WEIGHT 90TH PE SO ₂ ARITHME 2ND MAX HUNTSVILLE, AL CO 2ND MAX QU O ₃ 4TH MAX 2ND DAI PM ₁₀ WEIGHT 90TH PE INDIANAPOLIS, IN CO 2ND MAX LEAD MAX QU NO ₂ ARITHME O ₃ 4TH MAX 2ND DAI PM ₁₀ WEIGHT O ₃ 4TH MAX 2ND DAI PM ₁₀ WEIGHT O ₃ 4TH MAX 2ND DAI PM ₁₀ WEIGHT O ₃ 4TH MAX 2ND DAI PM ₁₀ WEIGHT	ED ANNUAL MEAN RCENTILE ETIC MEAN K 24-HOUR K 8-HOUR ARTERLY MEAN K 8-HOUR ARTERLY MEAN K 8-HOUR ED ANNUAL MEAN K 24-HOUR K 8-HOUR ED ANNUAL MEAN K 8-HOUR LY MAX 1-HOUR ED ANNUAL MEAN K 8-HOUR LY MAX 1-HOUR ED ANNUAL MEAN ETIC MEAN K 8-HOUR LY MAX 1-HOUR ED ANNUAL MEAN ERCENTILE EX 8-HOUR ANTERLY MEAN ETIC MEAN	DOWN DOWN DOWN NS DOWN NS NS DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN	5577 12335588 11122	32 53 0.005 0.026 5.5 0.06 0.09 0.12 34 58 0.013 0.075 5.2 0.07 0.09 32	31 50 0.005 0.025 4.7 0.04 0.01 34 54 0.012 0.070 4.2 0.07 0.09 32	31 48 0.005 0.025 4.4 0.04 0.09 0.13 32 50 0.012 0.050 4.1 0.08 0.11	30 48 0.005 0.022 4.1 0.04 0.10 29 46 0.010 0.043 4.2 0.08	30 50 0.005 0.020 3.8 0.04 0.08 0.11 28 52 0.011 0.052 4.0 0.09	31 50 0.004 0.018 5.2 0.03 0.09 0.13 31 52 0.010 0.049 3.5 0.09	30 48 0.004 0.026 3.8 0.04 0.12 30 4.8 0.09 0.034 3.6 0.08 0.10	26 39 0.004 0.022 3.7 0.03 0.09 0.10 26 39 0.008 0.028 3.0 0.08 0.10	29 48 0.003 0.017 3.8 0.02 0.08 0.11 28 45 0.008 0.031 3.1 0.08 0.10	29 48 0.003 0.018 7.2 0.02 0.08 0.13 26 44 0.008 0.033 3.3 0.09 0.12
2ND MAX HUNTINGTON-ASHLAND CO 2ND MAX LEAD MAX QU O ₃ 4TH MAX 2ND DAI PM ₁₀ WEIGHT 90TH PE SO ₂ ARITHMI 2ND MAX HUNTSVILLE, AL CO 2ND MAX O ₃ 4TH MAX 2ND DAI PM ₁₀ WEIGHT 90TH PE INDIANAPOLIS, IN CO 2ND MAX LEAD MAX QU NO ₂ ARITHMI O ₃ 4TH MAX 2ND DAI PM ₁₀ WEIGHT 90TH PE	K 24-HOUR y, WV-KY-OH K 8-HOUR ARTERLY MEAN G 8-HOUR ED ANNUAL MEAN RECENTILE ETIC MEAN K 24-HOUR X 8-HOUR Y MAX 1-HOUR ED ANNUAL MEAN ET MEAN K 8-HOUR LY MAX 1-HOUR ED ANNUAL MEAN ERCENTILE EX 8-HOUR ANNUAL MEAN ERCENTILE	DOWN NS DOWN NS NS DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN	7 12335588 11122	0.026 5.5 0.06 0.09 0.12 34 58 0.013 0.075 5.2 0.07 0.09 32	0.025 4.7 0.04 0.09 0.11 34 54 0.012 0.070 4.2 0.07 0.09 32	0.025 4.4 0.04 0.09 0.13 32 50 0.012 0.050 4.1 0.08 0.11	0.022 4.1 0.04 0.10 0.10 29 46 0.010 0.043 4.2 0.08	0.020 3.8 0.04 0.08 0.11 28 52 0.011 0.052 4.0 0.09	0.018 5.2 0.03 0.09 0.13 31 52 0.010 0.049 3.5 0.09	0.026 3.8 0.04 0.09 0.12 30 48 0.009 0.034 3.6 0.08 0.10	0.022 3.7 0.03 0.09 0.10 26 9 0.008 0.028 3.0 0.08 0.10	0.017 3.8 0.02 0.08 0.11 28 45 0.008 0.031 3.1 0.08 0.10	0.018 7.2 0.02 0.08 0.13 26 44 0.008 0.033 3.3 0.09 0.12
HUNTINGTON-ASHLAND CO 2ND MAX LEAD MAX QU O3 4TH MAX 2ND DAII PM ₁₀ WEIGHT SO2 ARITHMI 2ND MAX HUNTSVILLE, AL CO 2ND MAX QND DAII PM ₁₀ WEIGHT 90TH PE INDIANAPOLIS, IN CO 2ND MAX LEAD MAX QU NO2 ARITHMI O3 4TH MAX 2ND DAI PM ₁₀ WEIGHT 90TH PE 1001 PM ₁₀ WEIGHT 90TH PE 1001 PM ₁₀ WEIGHT	A, WV-KY-OH K 8-HOUR K 8-HOUR LY MAX 1-HOUR ED ANNUAL MEAN K 24-HOUR K 8-HOUR	NS DOWN NS NS DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN	1 2 3 3 5 5 5 8 8 1 1 1 2 2 2	5.5 0.06 0.09 0.12 34 58 0.013 0.075 5.2 0.07 0.09 32	4.7 0.04 0.09 0.11 34 0.012 0.070 4.2 0.07 0.09 32	4.4 0.04 0.09 0.13 32 50 0.012 0.050 4.1 0.08 0.11	4.1 0.04 0.10 0.10 29 46 0.010 0.043 4.2 0.08	3.8 0.04 0.08 0.11 28 52 0.011 0.052 4.0 0.09	0.03 0.09 0.13 31 52 0.010 0.049 3.5 0.09	0.04 0.09 0.12 30 48 0.009 0.034 3.6 0.08 0.10	0.03 0.09 0.10 26 39 0.008 0.028 3.0 0.08 0.10	0.02 0.08 0.11 28 45 0.008 0.031 3.1 0.08 0.10	0.02 0.08 0.13 26 44 0.008 0.033 3.3 0.09 0.12
LEAD MAX QU. O ₃ 4TH MAX 2ND DAII PM ₁₀ WEIGHT 90TH PE SO ₂ ARITHMI 2ND MAX HUNTSVILLE, AL CO 2ND MAX O ₃ 4TH MAX 2ND DAI PM ₁₀ WEIGHT 90TH PE INDIANAPOLIS, IN CO 2ND MAX LEAD MAX QU NO ₂ ARITHMI O ₃ 4TH MAX 2ND DAI PM ₁₀ WEIGHT 90TH PE	ARTERLY MEAN (8-HOUR (8-HOUR ED ANNUAL MEAN ROENTILE ETIC MEAN X 24-HOUR X 8-HOUR (8-HOUR LY MAX 1-HOUR ED ANNUAL MEAN ROCENTILE X 8-HOUR ANNUAL MEAN X 8-HOUR X 8-HOUR ANNUAL MEAN ROCENTILE X 8-HOUR ARTERLY MEAN ETIC MEAN	DOWN NS NS DOWN DOWN DOWN DOWN NS NS DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN	2335588 11122	0.06 0.09 0.12 34 58 0.013 0.075 5.2 0.07 0.09 32	0.04 0.09 0.11 34 54 0.012 0.070 4.2 0.07 0.09 32	0.04 0.09 0.13 32 50 0.012 0.050 4.1 0.08 0.11	0.04 0.10 0.10 29 46 0.010 0.043 4.2 0.08	0.04 0.08 0.11 28 52 0.011 0.052 4.0 0.09	0.03 0.09 0.13 31 52 0.010 0.049 3.5 0.09	0.04 0.09 0.12 30 48 0.009 0.034 3.6 0.08 0.10	0.03 0.09 0.10 26 39 0.008 0.028 3.0 0.08 0.10	0.02 0.08 0.11 28 45 0.008 0.031 3.1 0.08 0.10	0.02 0.08 0.13 26 44 0.008 0.033 3.3 0.09 0.12
O ₃ 4TH MAX 2ND DAII PM ₁₀ WEIGHT 90TH PE SO ₂ ARITHMI 2ND MAX HUNTSVILLE, AL CO 2ND MAX O ₃ 4TH MAX 2ND DAI PM ₁₀ WEIGHT 90TH PE INDIANAPOLIS, IN CO 2ND MAX LEAD MAX QU NO ₂ ARITHMI O ₃ 4TH MAX 2ND DAI PM ₁₀ WEIGHT 90TH PE	(8-HOUR LY MAX 1-HOUR ED ANNUAL MEAN ERCENTILE ETIC MEAN X 24-HOUR X 8-HOUR X 8-HOUR LY MAX 1-HOUR ED ANNUAL MEAN ERCENTILE X 8-HOUR ARTERLY MEAN ETIC MEAN	NS NS DOWN DOWN DOWN DOWN DOWN DOWN DOWN NS NS DOWN DOWN	335588 11122	0.09 0.12 34 58 0.013 0.075 5.2 0.07 0.09 32	0.09 0.11 34 54 0.012 0.070 4.2 0.07 0.09 32	0.09 0.13 32 50 0.012 0.050 4.1 0.08 0.11	0.10 0.10 29 46 0.010 0.043 4.2 0.08	0.08 0.11 28 52 0.011 0.052 4.0 0.09	0.09 0.13 31 52 0.010 0.049 3.5 0.09	0.09 0.12 30 48 0.009 0.034 3.6 0.08 0.10	0.09 0.10 26 39 0.008 0.028 3.0 0.08 0.10	0.08 0.11 28 45 0.008 0.031 3.1 0.08 0.10	0.08 0.13 26 44 0.008 0.033 3.3 0.09 0.12
2ND DAI PM ₁₀ WEIGHT 90TH PE SO ₂ ARITHMI 2ND MAI HUNTSVILLE, AL CO 2ND MAI CO 2ND MAI PM ₁₀ WEIGHT 90TH PE INDIANAPOLIS, IN CO 2ND MAI LEAD MAX QU NO ₂ ARITHMI O ₃ 4TH MAI 2ND DAI PM ₁₀ WEIGHT 90TH PE	LY MAX 1-HOUR ED ANNUAL MEAN RECENTILE ETIC MEAN X 24-HOUR X 8-HOUR C 8-HOUR LY MAX 1-HOUR ED ANNUAL MEAN RECENTILE X 8-HOUR ARTERLY MEAN ETIC MEAN	NS DOWN DOWN DOWN DOWN NS NS DOWN DOWN DOWN	5 5 8 1 1 1 2 2	34 58 0.013 0.075 5.2 0.07 0.09 32	34 54 0.012 0.070 4.2 0.07 0.09 32	32 50 0.012 0.050 4.1 0.08 0.11	29 46 0.010 0.043 4.2 0.08	28 52 0.011 0.052 4.0 0.09	31 52 0.010 0.049 3.5 0.09	30 48 0.009 0.034 3.6 0.08 0.10	26 39 0.008 0.028 3.0 0.08 0.10	28 45 0.008 0.031 3.1 0.08 0.10	26 44 0.008 0.033 3.3 0.09 0.12
SO ₂ ARITHMI 2ND MAX HUNTSVILLE, AL CO 2ND MAX 2ND DAI PM 20 2ND DAI PM 20 2ND DAI POTH PE INDIANAPOLIS, IN CO 2ND MAX QU NO ₂ ARITHMI O ₃ 4TH MAX 2ND DAI PM 2ND DAI PM 20 2ND PM	RCENTILE ETIC MEAN X 24-HOUR X 8-HOUR C 8-HOUR LY MAX 1-HOUR ED ANNUAL MEAN ERCENTILE X 8-HOUR ARTERLY MEAN ETIC MEAN	DOWN DOWN DOWN NS NS DOWN DOWN	5 8 8 1 1 2 2	58 0.013 0.075 5.2 0.07 0.09 32	54 0.012 0.070 4.2 0.07 0.09 32	50 0.012 0.050 4.1 0.08 0.11	46 0.010 0.043 4.2 0.08	52 0.011 0.052 4.0 0.09	52 0.010 0.049 3.5 0.09	48 0.009 0.034 3.6 0.08 0.10	39 0.008 0.028 3.0 0.08 0.10	45 0.008 0.031 3.1 0.08 0.10	44 0.008 0.033 3.3 0.09 0.12
SO ₂ ARITHMI 2ND MAX HUNTSVILLE, AL CO O ₃ 4TH MA3 2ND DAI PM ₁₀ WEIGHT 90TH PE INDIANAPOLIS, IN CO 2ND MAX LEAD NO ₂ ARITHMI O ₃ 4TH MA3 2ND DAI PM ₁₀ WEIGHT 90TH PE	ETIC MEAN X 24-HOUR X 8-HOUR K 8-HOUR LY MAX 1-HOUR ED ANNUAL MEAN ERCENTILE X 8-HOUR ARTERLY MEAN ETIC MEAN	DOWN DOWN NS NS DOWN DOWN	8 1 1 2 2	0.013 0.075 5.2 0.07 0.09 32	0.012 0.070 4.2 0.07 0.09 32	0.012 0.050 4.1 0.08 0.11	0.010 0.043 4.2 0.08	0.011 0.052 4.0 0.09	0.010 0.049 3.5 0.09	0.009 0.034 3.6 0.08 0.10	0.008 0.028 3.0 0.08 0.10	0.008 0.031 3.1 0.08 0.10	0.008 0.033 3.3 0.09 0.12
2ND MA3 HUNTSVILLE, AL CO 2ND MA3 O3 4TH MA3 2ND DAI PM 10 WEIGHT 90TH PE INDIANAPOLIS, IN CO 2ND MA3 LEAD MAX QU NO2 ARITHMI O3 4TH MA3 2ND DAI PM 10 WEIGHT 90TH PE	X 24-HOUR X 8-HOUR K 8-HOUR LY MAX 1-HOUR ED ANNUAL MEAN ROENTILE X 8-HOUR ARTERLY MEAN ETIC MEAN	DOWN DOWN NS NS DOWN DOWN	8 1 1 2 2	5.2 0.07 0.09 32	4.2 0.07 0.09 32	4.1 0.08 0.11	4.2 0.08	4.0 0.09	3.5 0.09	3.6 0.08 0.10	3.0 0.08 0.10	3.1 0.08 0.10	3.3 0.09 0.12
CO 2ND MAX O3 4TH MAX 2ND DAI PM ₁₀ WEIGHT 90TH PE INDIANAPOLIS, IN CO 2ND MAX LEAD MAX QU NO2 ARITHMI O3 4TH MAX 2ND DAI PM ₁₀ WEIGHT 90TH PE	K 8-HOUR LY MAX 1-HOUR ED ANNUAL MEAN ERCENTILE X 8-HOUR ARTERLY MEAN ETIC MEAN	NS NS DOWN DOWN	1 1 2 2	0.07 0.09 32	0.07 0.09 32	0.08 0.11	0.08	0.09	0.09	0.08 0.10	0.08 0.10	0.08 0.10	0.09 0.12
O ₃ 4TH MA) 2ND DAI PM ₁₀ WEIGHT 90TH PE INDIANAPOLIS, IN CO 2ND MAX LEAD MAX QU NO ₂ ARITHMI O ₃ 4TH MA) 2ND DAI PM ₁₀ WEIGHT	K 8-HOUR LY MAX 1-HOUR ED ANNUAL MEAN ERCENTILE X 8-HOUR ARTERLY MEAN ETIC MEAN	NS NS DOWN DOWN	1 1 2 2	0.07 0.09 32	0.07 0.09 32	0.08 0.11	0.08	0.09	0.09	0.08 0.10	0.08 0.10	0.08 0.10	0.09 0.12
PM ₁₀ 2ND DAI PM ₁₀ WEIGHT 90TH PE INDIANAPOLIS, IN CO 2ND MAX LEAD MAX QU NO ₂ ARITHMI O ₃ 4TH MAX 2ND DAI PM ₁₀ WEIGHT 90TH PE	ED ANNUAL MEAN RCENTILE X 8-HOUR ARTERLY MEAN ETIC MEAN	DOWN DOWN	2 2	32	32		0.11	0.11	0.11				
90TH PE INDIANAPOLIS, IN CO 2ND MAX LEAD MAX QU NO₂ ARITHMI O₃ 4TH MAX 2ND DAI PM₁₀ WEIGHT 90TH PE	RCENTILE X 8-HOUR ARTERLY MEAN ETIC MEAN	DOWN	2				27	24	23	23	21		22
INDIANAPOLIS, IN CO 2ND MAX LEAD MAX QU NO2 ARITHMI O3 4TH MAX 2ND DAI PM10 WEIGHT 90TH PE	X 8-HOUR ARTERLY MEAN ETIC MEAN	DOWN			47	50	44	41	34	33	32	39	35
LÉAD MAX QU NO ₂ ARITHM O ₃ 4TH MAX 2ND DAI PM ₁₀ WEIGHT 90TH PE	ARTERLY MEAN ETIC MEAN		2							0.0	0.0		0.7
NO2 ARITHMI O3 4TH MAX 2ND DAI PM ₁₀ WEIGHT 90TH PE	ETIC MEAN	DOWN	6	4.0 0.66	4.0 0.76	5.2 0.51	3.5 0.45	4.0 0.45	3.5 0.69	3.9 0.21	0.06	3.2 0.04	2.7 0.05
O ₃ 4TH MAX 2ND DAI PM ₁₉ WEIGHT 90TH PE		NS	1	0.018	0.018	0.018	0.018	0.018	0.019	0.020	0.018	0.015	0.019
2ND DAI PM ₁₉ WEIGHT 90TH PE		NS	6	0.09	0.09	0.09	0.09	0.08	0.08	0.09	0.09	0.10	0.09
90TH PE	LY MAX 1-HOUR	NS	6	0.11 35	0.10 33	0.10 31	0.09 28	0.10 28	0.11 28	0.11 28	0.12 23	0.10 23	0.11 24
	ED ANNUAL MEAN	DOWN DOWN	13 13	58	54	49	43	51	46	46	34	36	39
	ETIC MEAN	DOWN	8	0.010	0.009	0.008	0.007	0.008	0.007 0.039	0.005 0.021	0.005 0.024	0.005	0.005
JACKSON, MS	X 24-HOUR	DOWN	8	0.038	0.033	0.029	0.029	0.036	0.039	0.021	0.024	0.020	0.021
O ₃ 4TH MAX	X 8-HOUR	UP	2	0.07	0.07	0.08	0.07	0.07	0.07	0.07	0.08	0.08	0.08
2ND DAI	LY MAX 1-HOUR	UP DOWN	2 1	0.08 26	0.10 26	0.09 26	0.08 27	0.09 23	0.09 21	0.09 23	0.09 22	0.10 24	0.11 20
	ED ANNUAL MEAN ERCENTILE	DOWN	i	44	44	44	43	38	32	34	34	36	32
JACKSON, TN		501171	•	04	00	07	07	00	00	25	22	23	23
	ED ANNUAL MEAN ERCENTILE	DOWN DOWN	2 2	31 47	28 44	27 39	27 41	23 37	23 32	43	34	34	34
JACKSONVILLE, FL	ENOCHTICE	DOWN		71			• •						
CO 2ND MA	X 8-HOUR	DOWN	5	5.5	4.2	3.7 0.03	4.1 0.02	4.0 0.05	3.8 0.02	3.6 0.03	3.1 0.02	2.6 0.02	2.8 0.02
	IARTERLY MEAN ETIC MEAN	DOWN NS	2 1	0.04 0.015	0.04 0.015	0.014	0.014	0.015	0.014	0.016	0.015	0.014	0.015
	X 8-HOUR	NS	ż	0.08	0.08	0.08	0.07	0.08	0.08	0.07	0.07	0.07	0.08
2ND DAI	LY MAX 1-HOUR	NS	2	0.11	0.11	0.09 32	0.10 26	0.11 27	0.10 26	0.11 27	0.09 24	0.10 24	0.10 27
	ED ANNUAL MEAN ERCENTILE	DOWN DOWN	3 3	36 50	34 45	32 44	38	37	39	41	32	35	38
	ETIC MEAN	DOWN	5	0.004	0.004		0.003	0.003	0.003	0.003	0.003	0.003	0.003
2ND MA	X 24-HOUR	DOWN	5	0.037	0.037	0.023	0.023	0.025	0.030	0.019	0.020	0.017	0.021
JACKSONVILLE, NC	ED ANNUAL MEAN	DOWN	1	24	24	24	23	23	20	20	22	20	22
90TH PE	ERCENTILE	NS	i	39	39	39	35	35	28	29	32	32	37
JAMESTOWN, NY		LID	4	0.00	0.00	0.00	0.08	0.08	0.08	0.08	.0.09	0.08	0.09
	X 8-HOUR ILY MAX 1-HOUR	UP NS	1 1	0.08 0.10	0.08 0.10	0.08 0.10	0.08	0.10	0.09	0.00	0.10	0.11	0.11
	ED ANNUAL MEAN	NS	2	21	21	21	18	16	16	16	17	17	19
90TH PE	ERCENTILE	NS	2	39	39	39	29 0.009	32 0.009	33 0.008	0.007	28 0.006	34 0.006	37 0.006
	ETIC MEAN X 24-HOUR	DOWN DOWN	2 2	0.011 0.051	0.010	0.010	0.009	0.009	0.053	0.007	0.033		0.026
JERSEY CITY, NJ													
CO 2ND MA	X 8-HOUR	DOWN	1	7.3	7.2 0.030		6.0 0.028	5.6 0.027	5.9 0.026	6.2 0.026	4.9 0.027	4.3 0.026	4.1 0.027
	ETIC MEAN X 8-HOUR	DOWN NS	1 1	0.031 0.10	0.030		0.028	0.027	0.026	0.10	0.027	0.020	0.027
2ND DA	ILY MAX 1-HOUR	NS	1	0.12	0.18	0.14	0.11	0.13	0.12	0.13	0.12	0.12	0.12
PM ₁₆ WEIGHT	TED ANNUAL MEAN	NS	3	33	31	32	26	27	32 55	25 40	27 41	26 41	26 41
90TH PI	ERCENTILE IETIC MEAN	NS DOWN	3 2	51 0.014	52 0.013	53 0.012	43 0.010	44 0.009	55 0.009	40 0.007	41 0.008		
SO₂ ARITHM 2ND MA	X 24-HOUR	DOWN	2	0.047		0.035		0.030	0.036				

Table A-14. Metropolitan Statistical Area Air Quality Trends, 1989-1998 (continued)

Metropolitan	Statistical Area	Trend	#Trend Sites	1988		1990	1991	1992	1993	1994	1995	1996	1997
	Y-KINGSPORT-BRISTOL, TN-VA							Makadin Kingena a		M 14/40-W 14/4			
CO .	2ND MAX 8-HOUR	NS	1	3.7	3.4	3.3	3.0	6.5	3.4	3.0	3.0	3.5	3.4
NO₂ O	ARITHMETIC MEAN 4TH MAX 8-HOUR	NS NS	1	0.019	0.019	0.019	0.018	0.017		0.018	0.018	0.018	0.017
O ₃	2ND DAILY MAX 1-HOUR	NS NS	. 1	0.08	0.08	0.10	0.08	0.08	0.09	0.08	0.09	0.08	0.08
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	3	31	0.12 32	0.12	0.10 29	0.13 29	0.10 28	0.11 27	0.10 26	0.11 25	0.12 25
10	90TH PERCENTILE	DOWN	3	50	50	50	44	50	42	43	42	42 42	39
SO ₂	ARITHMETIC MEAN	NS	š	0.010	0.009	0.009	0.009	0.008	0.009	0.008	0.009	0.009	
-	2ND MAX 24-HOUR	NS	3	0.053	0.044	0.044	0.039	0.042	0.045	0.039	0.044	0.050	0.043
OHNSTOWN,													
CO	2ND MAX 8-HOUR	NS	1	4.1	3.7	4.8	4.4	4.2	4.1	3.5	4.8	2.7	3.1
NO ₂	ARITHMETIC MEAN	DOWN	1	0.019	0.018	0.019	0.018	0.017				0.016	0.015
O₃	4TH MAX 8-HOUR	NS	1	0.08	0.08	0.08	0.10	0.07	0.08	0.08	0.09	0.08	0.09
SO ₂	2ND DAILY MAX 1-HOUR	NS	1	0.10	0.10	0.11	0.09	0.10	0.09	0.10	0.10	0.10	0.12
3O ₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	DOWN	1	0.017	0.014	0.015	0.013	0.015	0.014	0.012	0.011	0.009	0.008
ALAMAZOO-I	BATTLE CREEK, MI	DOWN	1	0.089	0.046	0.043	0.052	0.049	0.080	0.042	0.034	0.030	0.027
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	1	34	28	29	27	24	. 26	26	22	23	27
* ***10	90TH PERCENTILE	DOWN	i	61	58	56	42	39	44	50	33	38	47
ANSAS CITY,			•	•				00	-1-1	00	00	00	77
co ·	2ND MAX 8-HOUR	DOWN	3	5.2	4.4	4.0	3.9	4.2	4.3	3.3	3.2	3.2	3.7
LEAD	MAX QUARTERLY MEAN	NS	5	0.06	0.03	0.03	0.02	0.02	0.02	0.02	0.03	0.10	0.10
NO ₂	ARITHMETIC MEAN	NS	3	0.011	0.011	0.010	0.010	0.009	0.010	0.010	0.012	0.010	0.012
O ₃	4TH MAX 8-HOUR	UP	6	0.07	0.07	0.07	0.08	0.08	0.07	0.08	0.09	0.08	0.09
DM	2ND DAILY MAX 1-HOUR	UP	6	0.10	0.10	0.10	0.09	0.10	0.10	0.12	0.10	0.11	0.12
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	7	34	31	32	30	30	30	24	33	26	27
SO ₂	90TH PERCENTILE ARITHMETIC MEAN	DOWN	7	56	51	51	47	48	47	44	56	40	44
302	2ND MAX 24-HOUR	NS NS	5 5	0.004	0.003	0.003	0.003	0.003	0.003			0.004	0.003
ENOSHA, WI	ZIND WIAX 24-HOUR	NO	ວ	0.016	0.022	0.017	0.016	0.020	0.025	0.018	0.024	0.013	0.010
O ₃	4TH MAX 8-HOUR	NS	2	0.10	0.10	0.08	0.11	0.08	0.09	0.09	0.10	0.08	0.09
- 3	2ND DAILY MAX 1-HOUR	NS	2	0.13	0.11	0.14	0.11	0.11	0.12	0.12	0.13	0.11	0.12
NOXVILLE, Th			_		•	• • • • • • • • • • • • • • • • • • • •	****	•	0	0	0.10	0.11	0.12
СО	2ND MAX 8-HOUR	DOWN	['] 1	6.7	5.1	4.5	4.5	4.6	4.3	4.1	3.3	4.8	3.9
O₃	4TH MAX 8-HOUR	UP	4	0.07	0.07	0.09	0.08	0.08	0.09	0.09	0.09	0.09	0.10
514	2ND DAILY MAX 1-HOUR	UP	4	0.09	0.11	0.10	0.10	0.11	0.11	0.12	0.11	0.12	0.13
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	8	32	32	34	30	30	32	31	31	26	26
80	90TH PERCENTILE	DOWN	8	51	53	52	47	48	49	49	49	44	41
SO ₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	NS NS	3 3	0.006	0.006	0.006	0.006		0.006			0.006	0.005
AKE CHARLE		NO	3	0.030	0.030	0.034	0.034	0.037	0.034	0.034	0.037	0.033	0.028
O ₃	4TH MAX 8-HOUR	NS	1	0.09	0.09	0.09	0.09	0.07	0.08	0.08	0.08	80.0	0.09
-3	2ND DAILY MAX 1-HOUR	NS	i	0.12	0.03	0.12	0.03	0.07	0.10	0.08	0.09	0.00	0.09
AKELAND-WI	NTER HAVEN, FL		•	0	0	0.12	0	0.10	0.10	0.11	0.05	0.11	0.12
SO ₂	ARITHMETIC MEAN	NS	2	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.005	0.005	0.006
_	2ND MAX 24-HOUR	NS	2	0.015	0.018	0.015	0.015		0.016			0.016	0.022
ANCASTER, F													
CO	2ND MAX 8-HOUR	NS	1 .	4.1	3.4	2.6	2.6	3.0	3.8	2.4	2.6	3.3	1.9
LEAD	MAX QUARTERLY MEAN	NS NS	1	0.05	0.06	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
NO₂ O-	ARITHMETIC MEAN 4TH MAX 8-HOUR	NS NS	1	0.018	0.017		0.015	0.015				0.016	0.015
O ₃	2ND DAILY MAX 1-HOUR	NS NS	1	0.09	0.09	0.09	0.10	0.09	0.10	0.09	0.10	0.09	0.10
PM ₁₀	WEIGHTED ANNUAL MEAN	UP	1	0.10 31	0.10 31	0.12 30	0.11 27	0.12 31	0.11 38	0.12	0.10	0.13	0.12
10	90TH PERCENTILE	NS	i	52	52	45	27 41	51 54	61	33 55	31 46	34 50	34 50
SO ₂	ARITHMETIC MEAN	NS	i	0.007			0.006	0.007		0.006		0.007	
_	2ND MAX 24-HOUR	DOWN	i	0.037	0.028	0.023	0.023	0.026				0.023	0.020
NSING-EAST	ΓLANSING, MI								3.000	0			3.320
O_3	4TH MAX 8-HOUR	NS	2	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
	2ND DAILY MAX 1-HOUR	NS	2	0.10	0.10	0.11	0.09	0.10	0.09	0.10	0.09	0.09	0.10
AS CRUCES,		D01111							_				
CO	2ND MAX 8-HOUR	DOWN	1	6.1	6.3	6.5	4.9	8.7	5.0	4.4	4.3	4.8	4.2
LEAD	MAX QUARTERLY MEAN	DOMN	2	0.16	0.17	0.15	0.13	0.12	0.05	0.09	0.07	0.07	0.07
O ₃	4TH MAX 8-HOUR	NS NC	2	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.06
DМ	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	NS	2	0.10	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.08	0.09
PM ₁₀	90TH PERCENTILE	DOWN DOWN	3 3	45 74	35	31	31 57	30 47	- 33	34	33	27	27
SO ₂	ARITHMETIC MEAN	DOWN	3 2	0.010	60 0.011	52	0.009	47 0.006	55	55	50	43	42
J 0 2	2ND MAX 24-HOUR	DOWN	2	0.010		0.010	0.052	0.006	0.004		0.004		
	LITE MAN ET HOUR	DOWN	۲ .	0.001	0.056	0.000	0.052	0.055	0.023	0.021	0.030	0.014	0.012

Table A-14. Metropolitan Statistical Area Air Quality Trends, 1989–1998 (continued)

LITTLE ROCK-NORTH LITTLE ROCK, AR NO ₂ ARITHMETIC MEAN NS 1 0.009 0.009 0.009 0.012 0.009 0.011 0.011 O ₃ 4TH MAX 8-HOUR NS 2 0.07 0.07 0.08 0.08 0.08 0.08 0.08 2ND DAILY MAX 1-HOUR NS 2 0.09 0.10 0.10 0.09 0.10 0.09 0.11	88 0.07 0.08 6 99 0.09 0.09 0 77 82 90 88 0.07 0.08 6 80 0.07 0.08 6 80 0.09 0.10 6 81 14 15 84 22 25 86 0.005 0.005 0 85 0.019 0.020 0 85 28 26	8.2 0.07 0.09 60 90 0.08 0.10 15 28 0.006 0.021
NS 3 0.08 0.07 0.07 0.08 0.08 0.05 0.07 0.08 0.08 0.05	88 0.07 0.08 6 99 0.09 0.09 0 77 82 90 88 0.07 0.08 6 80 0.07 0.08 6 80 0.09 0.10 6 81 14 15 84 22 25 86 0.005 0.005 0 85 0.019 0.020 0 85 28 26	0.07 0.09 60 90 0.08 0.10 15 28 0.006 0.021
2ND DAILY MAX 1-HOUR NS 1 60 60 69 90 48 43 47 47 47 47 47 47 47	17 53 60 17 82 90 18 0.07 0.08 18 0.09 0.10 13 14 15 14 22 25 16 0.005 0.005 0 15 0.019 0.020 0	0.08 0.10 0.10 15 28 0.006 0.021
LAWRENCE, MA.NH	77 82 90 18 0.07 0.08 18 0.09 0.10 13 14 15 14 22 25 16 0.005 0.005 0 15 0.019 0.020 0 15 28 26	0.08 0.10 15 28 0.006 0.021
O ₃ 4TH MAX 8-HOUR 2ND DAILY MAX1-HOUR NS 1 0.08 0.08 0.07 0.09 0.07 0.09 0.00 0.10 0.00 0.10 0.00 0.00 0.00	08 0.09 0.10 13 14 15 15 15 16 0.005 0.005 0.005 0.020 0.025 0.019 0.020 0.025 28 26	0.10 15 28 0.006 0.021
2015 DAILY MAX 1-HOUR NS 1	13 14 15 24 22 25 26 0.005 0.005 0. 25 0.019 0.020 0. 25 28 26	15 28 0.006 0.021
SO2 ARITHMETIC MEAN DOWN 2 0.008 0.008 0.008 0.006 0	24 22 25 26 0.005 0.005 0. 25 0.019 0.020 0. 25 28 26	28 0.006 0.021
LAWTON, OK PMIO SUPPLY STATE ANNUAL MEAN NS 1 32 30 0.27 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.028 0.028 0.037 0.028 0.028 0.037 0.028 0.037 0.028 0.038 0.0	25 0.019 0.020 0. 25 28 26	0.021
LAWTON, OK	25 28 26	
LEWISTON-AUBURN, ME		26
LEWISTON-AUBURN, ME		48
SO2	20 20 21	18
SO2		31
LEXINGTON, KY		0.004 0.019
NO2 ARITHMETIC MEAN DOWN 1 0.019 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.010 0		
O3 4TH MAX 8-HOUR NS 2 0.09 0.09 0.08 0.08 0.08 0.08 0.05 ND DAILY MAX 1-HOUR NS 2 0.11 0.10 0.09 0.08 0.10 0.10 0.01 PM₁0 WEIGHTED ANNUAL MEAN DOWN 3 31 29 29 25 24 28 22 PM₁0 WEIGHTED ANNUAL MEAN DOWN 3 50 48 46 40 42 46 44 SO₂ ARITHMETIC MEAN NS 1 0.006 0.006 0.007 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00		5.2 0.011
PM ₁₀	9 0.08 0.08	0.08
SOLIT PERCENTILE DOWN 3 50 48 46 40 42 46 44 45 46 44 45 46 44 45 46 44 45 46 44 45 46 44 45 46 44 45 46 44 45 46 44 45 46 44 45 46 44 45 46 44 45 46 44 45 46 44 45 46 44 45 46 44 45 46 44 45 46 44 45 46 44 46 44 45 46 44 46 44 45 46 44 46 44 45 46 44 46 44 46 44 46 44 46 44 46 44 46 44 46 44 47 45 43 40 44 44 47 50 41 41 41 41 41 41 41 4		0.10 20
LIMA, OH O3		0.006
O ₃ 4TH MAX 8-HOUR NS 1 0.09 0.08 0.09 0.08 0.09 0.08 0.09 0.08 2ND DAILY MAX 1-HOUR NS 1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 SO ₂ ARITHMETIC MEAN DOWN 1 0.006 0.005 0.006 0.004 0.005 0.004 0.005 2ND MAX 24-HOUR NS 1 0.033 0.026 0.021 0.020 0.023 0.036 0.016 LINCOLN, NE CO 2ND MAX 8-HOUR NS 1 0.06 0.06 0.06 0.06 0.07 0.05 0.006 2ND DAILY MAX 1-HOUR NS 1 0.06 0.06 0.06 0.06 0.07 0.05 0.006 2ND DAILY MAX 1-HOUR NS 1 0.06 0.07 0.07 0.07 0.06 0.08 0.06 9DTH PERCENTILE DOWN 2 33 29 30 25 26 28 28 20 9DTH PERCENTILE DOWN 2 51 49 53 42 38 46 48 LITTLE ROCK-NORTH LITTLE ROCK, AR NO ₂ ARITHMETIC MEAN NS 1 0.009 0.009 0.009 0.012 0.009 0.011 0.011 O ₃ 4TH MAX 8-HOUR NS 2 0.07 0.07 0.08 0.08 0.08 0.08 2ND DAILY MAX 1-HOUR NS 2 0.07 0.07 0.08 0.08 0.08 0.08 9DTH PERCENTILE NS 2 0.07 0.07 0.08 0.08 0.08 0.08 0.08 2ND DAILY MAX 1-HOUR NS 2 0.07 0.07 0.08 0.08 0.08 0.08 0.08 9DTH PERCENTILE NS 4 49 49 43 47 44 47 55 SO ₂ ARITHMETIC MEAN NS 1 0.002 0.003 0.003 0.005 0.006 0.003 0.005 2ND MAX 24-HOUR DOWN 1 0.000 0.014 0.012 0.012 0.017 0.009 0.005 LONGVIEW-MARSHALL, TX O ₃ 4TH MAX 8-HOUR NS 1 0.009 0.09 0.09 0.09 0.09 0.09 0.09 0		0.023
2ND DAILY MAX 1-HOUR	9 0.09 0.09	0.08
NS 1 0.033 0.026 0.021 0.020 0.036 0.015	11 0.11 0.09	0.10
CO		0.003
O3 4TH MAX 8-HOUR NS 1 0.06 0.06 0.06 0.06 0.07 0.07 0.05 0.06 2ND DAILY MAX 1-HOUR NS 1 0.06 0.07 0.07 0.07 0.05 0.06 PM ₁₀ WEIGHTED ANNUAL MEAN DOWN 2 33 29 30 25 26 28 22 SOTH PERCENTILE DOWN 2 51 49 53 42 38 46 48 LITTLE ROCK-NORTH LITTLE ROCK, AR NS 1 0.009 0.009 0.009 0.012 0.009 0.011 0.01 O3 ARITHMETIC MEAN NS 1 0.009 0.009 0.009 0.012 0.009 0.011 0.01 O4 4TH MAX 8-HOUR NS 2 0.07 0.08 0.08 0.08 0.08 PM ₁₀ WEIGHTED ANNUAL MEAN DOWN 4 29 29 25 28 27 27 22	.9 3.4 5.0	4.3
No.	0.06 0.05	0.05
90TH PERCENTILE LITTLE ROCK-NORTH LITTLE ROCK, AR NO2 ARITHMETIC MEAN O3 4TH MAX 8-HOUR NS 1 0.009 0.009 0.009 0.012 0.009 0.011 0.011 O4 2ND DAILY MAX 1-HOUR NS 2 0.09 0.10 0.10 0.09 0.00 0.00 0.00 0.00		0.07
NO2 O3 ARITHMETIC MEAN NS 1 0.009 0.009 0.009 0.009 0.002 0.009 0.009 0.011 0	45 44 39	40
O3 4TH MAX 8-HOUR NS 2 0.07 0.07 0.08 0.09 0.10 0.01 0.01 0.01 0.01 0.01 0.09 0.03 0.08 0.08 0.08 0.09 0.09 SO2 ARITHMETIC MEAN NS 1 0.002 0.003 0.003 0.005 0.006 0.003 0.002 LONGVIEW-MARSHALL, TX O3 4TH MAX 8-HOUR NS 1 0.09 0.09 0.08 0.08 0.09 0.09	11 0.011 0.010 0	0.011
PM ₁₀ WEIGHTED ANNUAL MEAN DOWN 4 29 29 25 28 27 27 26 28 90TH PERCENTILE NS 4 49 49 43 47 44 47 55 20 28 28 27 27 27 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29		0.08
90TH PERCENTILE NS 4 49 49 43 47 44 47 56 SO ₂ ARITHMETIC MEAN NS 1 0.002 0.003 0.003 0.005 0.006 0.003 0.003 2ND MAX 24-HOUR DOWN 1 0.010 0.014 0.012 0.012 0.017 0.009 0.008 LONGVIEW-MARSHALL, TX O ₃ 4TH MAX 8-HOUR NS 1 0.09 0.09 0.09 0.08 0.08 0.09 0.09	29 26 25	25
2ND MAX 24-HOUR DOWN 1 0.010 0.014 0.012 0.012 0.017 0.009 0.008 LONGVIEW-MARSHALL, TX		0.002
O ₃ 4TH MAX 8-HOUR NS 1 0.09 0.09 0.08 0.08 0.09 0.09		0.00
	0.10 0.08	0.0
LOS ANGELES-LONG BEACH, CA	15 0.11 0.12	0.13
CO 2ND MAX 8-HOUR DOWN 13 9.6 9.0 8.8 7.8 6.8 8.0 7.8		6.
LEAD MAX QUARTERLY MEAN DOWN 6 0.09 0.10 0.08 0.06 0.06 0.09 NO ARITHMETIC MEAN DOWN 13 0.044 0.041 0.041 0.038 0.036 0.039 0.038		0.04
O ₃ 4TH MAX 8-HOUR DOWN 14 0.14 0.14 0.12 0.13 0.13 0.12 0.1	11 0.11 0.10	0.09
2ND DAILY MAX 1-HOUR DOWN 14 0.22 0.19 0.19 0.20 0.17 0.17 0.19 PM ₁₀ WEIGHTED ANNUAL MEAN DOWN 9 57 49 53 41 40 39 30	15 0.14 0.12 39 38 39	0.18 30
90TH PERCENTILE DOWN 9 88 78 80 64 65 59 6	64 61 57	0.003
2ND MAX 24-HOUR DOWN 4 0.015 0.012 0.013 0.015 0.011 0.008 0.008		0.000
LOUISVILLE, KY-IN CO 2ND MAX 8-HOUR DOWN 4 6.0 5.9 5.9 5.2 5.4 5.9 4.	.4 3.9 5.0	4.4
LEAD MAX QUARTERLY MEAN DOWN 2 0.05 0.04 0.05 0.05 0.05 0.02 0.00	05 0.02 0.02	0.0
O ₃ 4TH MAX 8-HOUR NS 4 0.08 0.08 0.09 0.07 0.09 0.01		0.09
PM ₁₀ WEIGHTED ANNUAL MEAN DOWN 6 35 34 33 30 29 30 2	29 26 29	20
SO, ARITHMETIC MEAN DOWN 4 0.010 0.010 0.010 0.009 0.010 0.010 0.000		0.00
2ND MAX 24-HOUR DOWN 4 0.055 0.041 0.037 0.034 0.035 0.040 0.026		0.03

Table A-14. Metropolitan Statistical Area Air Quality Trends, 1989–1998 (continued)

Metropolitan	Statistical Area	Trend	#Trend Sites	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
LOWELL, MA-I		NO											
CO LUBBOCK, TX	2ND MAX 8-HOUR	NS	1	5.3	7.3	5.8	5.9	5.1	6.5	7.8	4.5	3.6	3.4
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	1	34	24	25	22	20	23	21	22	17	17
LYNCHBURG,	90TH PERCENTILE VA	DOWN	1	55	36	39	34	30	33	34	34	27	27
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	1	30	24	28	24	26	23	24	23	23	21
MADISON, WI	90TH PERCENTILE	NS	1	47	43	41	39	44	33	49	36	.37	33
PM ₁₀	WEIGHTED ANNUAL MEAN	NS	1	34	24	25	22	21	22	23	20	20	27
MANCHESTER	90TH PERCENTILE	NS	1	58	36	38	32	36	33	43	30	34	43
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	2	24	20	20	18	18	15	14	16	19	17
MANSFIELD, C	90TH PERCENTILE	DOWN	2	36	34	38	31	37	34	26	28	29	28
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	1	27	27	27	26	28	29	25	24	23	24
MEDEODD AC	90TH PERCENTILE	NS	1	42	42	40	39	44	49	42	40	39	41
MEDFORD-ASI CO	ALAND, OR 2ND MAX 8-HOUR	DOWN	1	11.0	8.2	8.1	6.4	6.9	6.2	5.3	6.4	5.7	5.2
LEAD	MAX QUARTERLY MEAN	NS	1	0.04	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.03
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	DOWN DOWN	4 4	45 94	35 67	34 62	31 52	30 53	28 47	22 36	21 35	23 36	21 33
	TITUSVILLE-PALM BAY, FL			34		02	32	55	47	30	33	30	33
O ₃	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	DOWN NS	2 2	0.08 0.10	0.08 80.0	0.07 0.09	0.07 0.08	0.07 0.09	0.07	0.07	0.07	0.07	0.07
MEMPHIS, TN-		143	2	0.10	0.06	0.09	0.00	0.09	0.09	80.0	0.09	0.09	0.09
CO LEAD	2ND MAX 8-HOUR	DOWN	5	8.2	7.5	6.1	7.7	7.6	7.3	6.0	5.3	5.0	4.9
NO ₂	MAX QUARTERLY MEAN ARITHMETIC MEAN	NS UP	4 1	1.08 0.026	1.04 0.023	0.79 0.024	1.00 0.026	1.05 0.026	1.03 0.027	0.65 0.027	1.04 0.024	0.59	0.93
O ₃	4TH MAX 8-HOUR	NS	4	0.08	0.08	0.09	0.08	0.08	0.08	0.09	0.10	0.09	0.09
PM ₁₀	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	NS DOWN	4	0.11 31	0.11	0.11 27	0.10 28	0.11 29	0.11 27	0.13 27	0.12 27	0.12 26	0.12 25
	90TH PERCENTILE	NS	2 2	42	50	45	44	49	43	45	40	44	25 41
SO₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	DOWN	2 2	0.007 0.029	0.007	0.007 0.025	0.007		0.005			0.003	0.003
MERCED, CA	2ND WAX 24-1100H	DOVVIN	2	0.029	0.027	0.025	0.031	0.029	0.025	0.019	0.011	0.011	0.011
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	1	.52	53	52	46	43	39	39	31	31	31
MIAMI, FL	90TH PERCENTILE	DOWN	1	102	95	106	75	86	55	77	50	50	50
ÇÓ	2ND MAX 8-HOUR	DOWN	2	7.3	6.0	7.2	6.2	5.3	4.4	4.9	4.5	3.8	3.1
LEAD NO ₂	MAX QUARTERLY MEAN ARITHMETIC MEAN	DOWN NS	1 2	0.08 0.013	0.03 0.011	0.02 0.011	0.01 0.011	0.01 0.012	0.01 0.010	0.01 0.011	0.01 0.011	0.01 0.012	0.01
O ₃	4TH MAX 8-HOUR	NS	4	0.08	0.08	0.07	0.06	0.07	0.08	0.07	0.07	0.07	0.07
PM ₁₀	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	NS DOWN	4 3	0.11 27	0.10 28	0.09 26	0.10 27	0.10 27	0.09 26	0.09 24	0.09 25	0.10 23	0.10 26
	90TH PERCENTILE	DOWN	3	39	37	37	39	36	35	31	37	31	36
SO₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	NS NS	1 1	0.001 0.003	0.001	0.001	0.001 0.005	0.001 0.004	0.001 0.004			0.001 0.004	0.001
	OMERSET-HUNTERDON, NJ	140	•	0.003	0.003	0.003	0.005	0.004	0.004	0.004	0.003	0.004	0.004
CO LEAD	2ND MAX 8-HOUR	DOWN	1	5.4	5.4	4.2	3.9	3.7	4.3	5.3	3.3	3.8	3.0
O ₃	MAX QUARTERLY MEAN 4TH MAX 8-HOUR	DOWN NS	1	0.38 0.10	0.30 0.10	1.15 0.11	1.22 0.11	0.33 0.09	0.12 0.10	0.07 0.09	0.06 0.10	0.08 0.09	0.08 0.10
	2ND DAILY MAX 1-HOUR	DOWN	1	0.13	0.14	0.12	0.12	0.12	0.11	0.12	0.11	0.12	0.12
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	DOWN	1	34 59	29 46	30 45	25 38	25 43	27 44	22 35	25 41	25 41	25 41
SO ₂	ARITHMETIC MEAN	DOWN	1	0.010	0.007	0.007	0.006	0.005	0.005	0.004	0.005	0.005	0.005
MILWAUKEE-W	2ND MAX 24-HOUR /AUKESHA, WI	DOWN	. 1	0.037	0.032	0.025	0.026	0.018	0.028	0.018	0.024	0.019	0.018
CO	2ND MAX 8-HOUR	DOWN	5	3.9	4.5	3.7	3.2	4.0	4.5	3.0	1.9	2.0	2.1
LEAD NO₂	MAX QUARTERLY MEAN ARITHMETIC MEAN	DOWN DOWN	1	0.06 0.020	0.08	0.06 0.018	0.05 0.018	0.04 0.017	0.03 0.017	0.05 0.017	0.03 0.017	0.03	0.03 0.016
O ₃	4TH MAX 8-HOUR	NS	8	0.10	0.019	0.018	0.09	0.017	0.017	0.017	0.10	0.016	80.0
	2ND DAILY MAX 1-HOUR	NS DOWN	8	0.13	0.11	0.14	0.10	0.10	0.12	0.11	0.10	0.12	0.11
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	DOWN	4 4	· 35 57	33 57	29 49	26 41	26 45	28 42	27 49	25 38	24 38	27 41
SO₂	ARITHMETIC MEAN	DOWN	1	0.005	0.006	0.005	0.004	0.003	0.004	0.004	0.004	0.004	0.004
	2ND MAX 24-HOUR	NS	1	0.027	0.040	0.029	0.023	0.018	0.032	0.025	0.028	0.028	0.022

Table A-14. Metropolitan Statistical Area Air Quality Trends, 1989–1998 (continued)

Metropolitan	Statistical Area	Trend	#Trend Sites	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
MINNEAPOLIS	S-ST. PAUL, MN-WI												
CO	2ND MAX 8-HOUR	DOWN	3	9.0	6.5	7.2	5.9	5.2	6.4	6.0	5.1	4.5	4.9
LEAD	MAX QUARTERLY MEAN	DOWN	3	0.38	0.77 0.017	0.31 0.016	0.25 0.016	0.12 0.018	0.07 0.019	0.23 0.017	0.12 0.019	0.09 0.017	0.06 0.018
NO₃	ARITHMETIC MEAN	NS NS	1 4	0.017 0.07	0.017	0.010	0.07	0.018	0.019	0.07	0.019	0.07	0.07
O ₃	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	NS NS	4	0.09	0.09	0.07	0.09	80.0	80.0	0.10	0.09	0.09	0.09
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	8	28	26	25	21	21	21	22	21	21	22
10	90TH PERCENTILE	DOWN	8	46	42	40	36	33	33	38	34	32	36
SO,	ARITHMETIC MEAN	DOWN	8	0.004	0.004	0.004	0.003	0.003	0.003		0.002	0.002	0.002
	2ND MAX 24-HOUR	DOWN	8	0.021	0.020	0.021	0.019	0.015	0.014	0.012	0.013	0.013	0.011
MOBILE, AL	4TH MAX 8-HOUR	NS	2	0.07	0.07	0.08	0.05	0.07	0.07	0.07	0.08	0.08	0.08
O ₃	2ND DAILY MAX 1-HOUR	NS	2	0.09	0.10	0.07	0.10	0.09	0.09	0.11	0.10	0.11	0.11
PM _{to}	WEIGHTED ANNUAL MEAN	NS	4	31	31	32	34	32	31	29	25	26	30
(V	90TH PERCENTILE	NS	4	42	49	49	51	51	51	43	40	45	47
SO₂	ARITHMETIC MEAN	NS	1	0.008	0.008	0.009	0.010	0.010	0.011		0.009	0.008	0.009
	2ND MAX 24-HOUR	NS	1	0.064	0.038	0.050	0.054	0.066	0.052	0.053	0.070	0.049	0.073
MODESTO, CA	2ND MAX 8-HOUR	DOWN	1	11.8	10.5	9.4	5.9	6.6	6.3	5.4	5.6	4.2	5.4
LEAD	MAX QUARTERLY MEAN	DOWN	i	0.04	0.04	0.04	0.02	0.02	0.02	0.01	0.01	0.01	0.01
NO ₂	ARITHMETIC MEAN	DOWN	i	0.027	0.026	0.024	0.022	0.024	0.023	0.022	0.022	0.021	0.020
O ₃ `	4TH MAX 8-HOUR	NS	1	0.09	0.09	0.10	0.09	0.08	0.09	0.09	0.10	0.09	0.08
	2ND DAILY MAX 1-HOUR	NS	1	0.11	0.12	0.11	0.11	0.11	0.12	0.13	0.13	0.11	0.13
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	2	46	44	48	39	40	37	34	28 41	30 48	23 38
MONMOUTH-C	90TH PERCENTILE	DOWN	2	91	85	101	69	72	54	68	41	40	30
CO	2ND MAX 8-HOUR	DOWN	2	6.1	5.7	5.5	4.7	5.3	4.9	3.8	4.4	3.7	3.0
Ŏ,	4TH MAX 8-HOUR	NS	1	0.11	0.11	0.11	0.11	0.09	0.10	0.08	0.11	0.09	0.10
-	2ND DAILY MAX 1-HOUR	DOWN	1	0.14	0.14	0.15	0.14	0.13	0.11	0.15	0.12	0.13	0.13
MONTGOMER		110		0.00		0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.07
O ₃	4TH MAX 8-HOUR	NS NS	1 1	0.08	0.08	0.08 0.09	0.07 0.10	0.08 0.11	0.09 0.10	0.08 0.10	0.09 0.10	0.08	0.07 0.12
PM ₁₀	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	NS NS	i	0.10 23	0.10 27	26	24	23	25	26	23	24	28
. 14110	90TH PERCENTILE	NS	i	35	41	44	39	34	36	43	37	40	39
NASHUA, NH													
CO	2ND MAX 8-HOUR	NS	2	6.2	7.1	6.9	6.8	5.2	7.5	6.8	7.7	4.7	4.5
NO₂	ARITHMETIC MEAN	NS	1	0.022	0.019	0.016	0.015	0.016	0.015	0.014	0.019	0.016	0.015
O ₃	4TH MAX 8-HOUR	NS NS	2 2	0.07 0.09	0.07 0.10	0.08 0.10	0.09 0.10	0.08 0.11	0.08 0.10	0.08 0.10	0.08 0.10	0.08 0.11	0.09
PM ₁₀	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	NS NS	3	20	18	19	17	16	14	13	16	17	18
1 111/10	90TH PERCENTILE	NS	3	34	32	34	29	28	31	25	29	29	30
SO ₂	ARITHMETIC MEAN	DOWN	3	0.008	0.007	0.005	0.006	0.006	0.006	0.005	0.005	0.006	0.005
	_ 2ND MAX 24-HOUR .	DOWN	3	0.040	0.036	0.024	0.025	0.022	0.028	0.023	0.021	0.025	0.019
NASHVILLE, T	N OND MAY S LIGHT	DOMN	3	7.4	5.9	5.0	5.5	6.4	5.4	4.8	3.9	4.7	4.4
CO LEAD	2ND MAX 8-HOUR MAX QUARTERLY MEAN	DOWN NS	3 5.	7.4 0.63	1.26	1.06	0.99	0.89	0.93	1.78	0.57	0.63	0.74
NO ₂	ARITHMETIC MEAN	NS	1	0.012	0.012	0.010	0.014	0.012	0.020	0.014	0.012	0.012	0.011
O ₃ *	4TH MAX 8-HOUR	UP	7 .	0.08	0.08	0.09	0.08	0.08	0.08	0.08	0.09	0.09	0.09
-	2ND DAILY MAX 1-HOUR	UP	7	0.10	0.11	0.10	0.10	0.10	0.10	0.10	0.11	0.11	0.11
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	6	37	36	35	31	31	30	31	28	28	28
60	90TH PERCENTILE ARITHMETIC MEAN	DOWN	6 2	58 0.011	57 0.013	52 0.012	48 0.008	47 0.010	51 0.007	50 0.005	43 0.006	47 0.006	45 0.005
SO₂	2ND MAX 24-HOUR	DOWN NS	3	0.062	0.013	0.012	0.023	0.010	0.007	0.005	0.008	0.008	0.003
NASSAU-SUFF	FOLK, NY		•	J.00L	5.555	0.002	0.040	V.V-17		0.020		2.3.3	
CO	2ND MAX 8-HOUR	DOWN	1	6.5	7.2	6.6	5.6	5.6	5.4	5.0	4.9	4.7	4.0
NO₂	ARITHMETIC MEAN	DOWN	1	0.029	0.028	0.029	0.026	0.026		0.025		0.025	0.022
O ₃	4TH MAX 8-HOUR	NS	1	0.11	0.11	0.11	0.11	0.09	0.10	0.09	0.11	0.09	0.11
DAA	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	NS DOWN	1 2	0.15 27	0.14 27	0.18 27	0.13 22	0.13 23	0.13 23	0.15 19	0.12 18	0.14 20	0.14 18
PM ₁₀	90TH PERCENTILE	DOWN	2	54	54	54	38	42	39	33	29	34	30
SO ₂	ARITHMETIC MEAN	DOWN	2	0.010	0.009	0.009	0.008	0.008	0.007		0.007		0.006
7	2ND MAX 24-HOUR	DOWN	2	0.045	0.045	0.039	0.039	0.033	0.037	0.030	0.028	0.029	0.028
NEW BEDFOR	RD, MA	• • •	_								.		
Ο,	4TH MAX 8-HOUR	NS NS	1	0.09 0.12	0.09	0.10	0.10	0.09 0.09	0.07 0.10	0.08 0.14	0.11 0.12	0.09 0.12	0.09 0.10
0,				0.12	0.13	0.13	0.11	0.09	17 113	11 14			U. 111
PM ₁₀	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	DOWN	i	23	23	20	17	17	19	14	16	18	16

Table A-14. Metropolitan Statistical Area Air Quality Trends, 1989–1998 (continued)

wetropolitai	n Statistical Area	Trend	#Trend Sites	1989	·	1991	1992	1993	1994	1995	1996	1997	199
NEW HAVEN-	MERIDEN, CT						eromentaren						
NO_2 O_3	ARITHMETIC MEAN	ИS	1	0.028	0.027	0.028		0.027	0.030	0.025	0.026	0.024	0.02
O_3	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	NS NS	2 2	0.10	0.10	0.10	0.12	0.08	0.09	0.09	0.10	0.08	0.10
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	6	0.15 32	0.13 30	0.16 33	0.12 27	0.14 29	0.14	0.14	0.11	0.14	0.13
	90TH PERCENTILE	DOWN	ĕ	51	49	58	46	51	29 52	24 41	22 36	23 36	2:
SO₂	ARITHMETIC MEAN	DOWN	2	0.012	0.010	0.010			0.008			0.005	0.00
EW LONDO	2ND MAX 24-HOUR	DOWN	2	0.071	0.045	0.055	0.042	0.038	0.049	0.031	0.027	0.028	0.028
O ₃	N-NORWICH, CT-RI 4TH MAX 8-HOUR	NC		0.40									
O_3	2ND DAILY MAX 1-HOUR	NS NS	1 1	0.12 0.14	0.12	0.11	0.11	0.09	0.10	0.09	0.10	0.10	0.1
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	2	23	0.16 21	0.14 24	0.12 20	0.13 18	0.12 22	0.14 17	0.12	0.15	0.1
	90TH PERCENTILE	DOWN	2	39	35	40	32	31	39	29	19 31	18 29	1
SO ₂	ARITHMETIC MEAN	DOWN	1	0.008	0.008	0,007		0.006	0.005			0.004	0.00
EW ORLEAN	2ND MAX 24-HOUR	DOWN	1	0.027	0.029	0.027	0.025	0.019	0.029	0.017	0.016	0.022	0.01
CO	2ND MAX 8-HOUR	DOWN	•		4.0	4.0							
LEAD	MAX QUARTERLY MEAN	NS	2 1	6.1 0.09	4.9 0.05	4.2 0.03	5.4 0.03	5.1	4.6	3.6	4.0	3.3	3.2
NO ₂	ARITHMETIC MEAN	NS	2	0.09	0.05	0.03	0.03	0.02 0.016	0.02 0.015	0.03 0.016	0.02 0.015	0.02	0.0
O ₃	4TH MAX 8-HOUR	NS	6	0.08	0.08	0.08	0.07	0.010	0.013	0.018	0.015	0.014	0.01
DM	2ND DAILY MAX 1-HOUR	NS	6	0.10	0.10	0.10	0.10	0.10	0.11	0.11	0.10	0.10	0.0
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	DOWN	1	31	27	26	27	25	25	24	22	25	2
SO ₂	ARITHMETIC MEAN	DOWN NS	1 2	49	44	48	39	42	40	37	31	36	3
002	2ND MAX 24-HOUR	NS NS	2	0.003 0.017	0.003	0.004	0.005	0.005	0.005			0.004	0.00
EW YORK, N	Υ		-	0.017	0.010	0.025	0.018	0.019	0.021	0.019	0.025	0.016	0.02
CO	2ND MAX 8-HOUR	DOWN .	5	7.7	7.1	6.7	6.1	5.3	5.9	6.5	4.6	3.6	3.
LEAD	MAX QUARTERLY MEAN	NS	1	0.12	0.16	0.12	0.11	0.16	0.14	0.12	0.16	0.16	0.1
NO₂	ARITHMETIC MEAN 4TH MAX 8-HOUR	DOWN	2	0.044	0.043	0.043	0.037	0.040	0.042			0.038	0.03
O_3	2ND DAILY MAX 1-HOUR	NS · NS	5 5	0.09	0.09	0.10	0.11	0.08	0.09	0.09	0.10	0.09	0.1
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	12	0.12 34	0.13 31	0.14 29	0.12 26	0.12	0.12	0.12	0.12	0.13	0.12
	90TH PERCENTILE	NS	12	56	52	46	41	25 41	28 47	25 41	26 40	26 41	25
SO₂	ARITHMETIC MEAN	DOWN	7	0.015		0.014	0.013		0.013				0.008
EWARK, NJ	2ND MAX 24-HOUR	DOWN	7	0.060	0.054	0.048	0.051		0.054				0.030
CO	2ND MAX 8-HOUR	DOWN	3	7.6	7.1	0.0		4.0					
NO ₂	ARITHMETIC MEAN	NS	4	0.030		8.3 0.028	5.6 0.030	4.9 0.028	7.7 0.030	6.0 0.028	5.1 0.029	4.6	3.7
O_3	4TH MAX 8-HOUR	NS	2	0.09	0.09	0.10	0.10	0.020	0.09	0.028	0.029	0.028 0.09	0.029
D3.4	2ND DAILY MAX 1-HOUR	NS	2	0.12	0.13	0.12	0.10	0.12	0.11	0.12	0.11	0.11	0.12
PM ₁₀	WEIGHTED ANNUAL MEAN	NS	3	35	31	30	29	30	35	28	31	31	3
SO ₂	90TH PERCENTILE ARITHMETIC MEAN	NS DOWN	3	59	55	52	44	52	57	46	49	49	49
502	2ND MAX 24-HOUR	DOWN	4 4	0.012 0.047		0.010 0.035	0.009 0.040		0.008 0.033			0.006	
WBURGH, I	NY-PA		•	0.047	0.040	0.000	0.040	0.023	0.033	0.025	0.027	0.023	0.02
LEAD	MAX QUARTERLY MEAN	DOWN	2	1.42	1.01	0.66	0.58	0.34	0.08	0.08	0.06	0.20	0.10
CO	GINIA BEACH-NEWPORT NEW 2ND MAX 8-HOUR												
NO,	ARITHMETIC MEAN	NS NS	3 1	5.2 0.020	4.5 0.019	5.1	4.3	5.0	5.4	4.3	4.3	4.0	4.6
O ₃	4TH MAX 8-HOUR	NS	3	0.02.0	0.019	0.020	0.020 0.08	0.021 0.09	0.019 0.09	0.018 (0.019
	2ND DAILY MAX 1-HOUR	NS	3	0.10	0.10	0.10	0.13	0.12	0.09	0.08	0.08 0.09	0.08 0.11	0.09
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	3	27	26	26	22	23	20	20	21	22	22
SO ₂	90TH PERCENTILE	DOWN	3	43	38	42	37	40	31	34	32	34	34
302	ARITHMETIC MEAN 2ND MAX 24-HOUR	DOWN DOWN	2	0.007	0.007			0.007	0.007	0.006	0.006	0.006	0.006
KLAND, CA	2110 W/ X 24-110011	DOWN	2	0.033	0.025	0.022	0.024	0.026	0.024	0.022	0.022 (0.025	0.020
CO	2ND MAX 8-HOUR	DOWN	6	4.9	4.8	4.8	4.0	3.4	3.6	2.7	2.9	2.9	2.9
LEAD	MAX QUARTERLY MEAN	DOWN	4	0.13	0.08	0.10	0.02	0.02	0.02	0.02	0.01	0.01	0.01
NO ₂ O ₃	ARITHMETIC MEAN 4TH MAX 8-HOUR	DOWN	2	0.022			0.020		0.020			0.017	0.018
O_3	2ND DAILY MAX 1-HOUR	NS NS	8 8	0.07	0.07	0.06	0.06	0.06	0.07	0.06	0.08	0.07	0.06
PM _{to}	WEIGHTED ANNUAL MEAN	DOWN	4	0.10 32	0.09 31	0.09 33	0.09 27	0.11 24	0.10 24	0.13 21	0.10	0.09	0.10
	90TH PERCENTILE	DOWN	4	56	56	63	43	41	38	36	22 34	21 33	19
SO ₂	ARITHMETIC MEAN	NS	3	0.002	0.002		0.002	0.002).002 (30 2.002
LAHOMA CI	2ND MAX 24-HOUR	DOWN	3	0.013			0.009						0.002
CO .	2ND MAX 8-HOUR	DOWN	2	ΕO	4 -	0.0	4.5	F 0	4 -				
LEAD	MAX QUARTERLY MEAN	DOWN	2 1	5.2 0.04	4.5 0.04	3.9 0.04	4.3	5.2	4.3	3.8	4.0	4.0	3.4
NO ₂	ARITHMETIC MEAN	NS	3	0.04			0.03 0.011	0.02	0.01 0.012		0.01	0.00	0.00
O ₃	4TH MAX 8-HOUR	NS	. 4	0.013	0.012	0.08	0.011	0.011	0.07			0.013 (0.08	0.012
	2ND DAILY MAX 1-HOUR	NS	4	0.10	0.10	0.10	0.09	0.07	0.07	0.08	0.09	0.08	0.08
PM ₁₀	WEIGHTED ANNUAL MEAN	NS	4	23	22	22	22	21	21	21	24	22	22
10	90TH PERCENTILE	NS	4	38	36	35			21	~ 1	24	~~	

Table A-14. Metropolitan Statistical Area Air Quality Trends, 1989–1998 (continued)

Metropolitan	Statistical Area	Trend	#Trend Sites	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
OLYMPIA, WA	WEIGHTED ANNUAL MEAN	DOWN	1	28	24	25	24	24	17	17	16	16	14
PM ₁₀	90TH PERCENTILE	DOWN	1	74	44	43	42	49	30	35	30	36	22
OMAHA, NE-IA CO	2ND MAX 8-HOUR	NS	2	4.8	5.2	5.8	5.9	5.3	4.0	5.5 1.03	4.9 1.00	4.2 0.35	5.3 0.05
LEAD	MAX QUARTERLY MEAN	NS	6 3	0.94 0.07	0.84 0.07	0.75 0.06	1.33 0.06	1.29 0.06	1.68 0.05	0.06	0.06	0.06	0.06
O ₃	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	DOWN NS	3	0.07	0.07	0.08	0.08	0.06	0.07	0.08	0.07	0.07	0.08
PM ₁₉	WEIGHTED ANNUAL MEAN	DOWN	7	42	37	36 59	36 62	31 48	33 52	30 52	33 49	33 52	34 60
	90TH PERCENTILE	NS	7	64	63	59	02						
ORANGE COU	2ND MAX 8-HOUR	DOWN	4	9.0	8.3	7.0	7.5	5.8	7.3	5.7 0.033	5.8 0.029	4.8 0.028	5.0 0.029
ÑÖ₂	ARITHMETIC MEAN	DOWN	3	0.038	0.039	0.038	0.034 0.10	0.032 0.10	0.034	0.033	0.028	0.020	0.023
O ₃ ~	4TH MAX 8-HOUR	DOWN	4 4	0.12 0.21	0.12	0.18	0.17	0.15	0.16	0.12	0.12	0.11	0.14
PM ₁₀	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	DOWN		45	45	41	37	36	36	41	33	37	33 52
1, 141/9	90TH PERCENTILE	DOWN	2	72	75	68	53	57 0.002	54 0.002	68 0.003	47 0.001	50 0.001	0.002
SO₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	NS DOWN	1	0.002 0.008	0.002	0.002 0.007	0.002 0.008	0.002	0.002	0.005	0.004	0.006	0.005
ORLANDO, FL							0.0	2.0	3.6	3.3	3.3	3.6	3.0
CO	2ND MAX 8-HOUR	DOWN	2 2	4.3 0.02	4.5 0.01	3.6 0.00	3.9 0.00	3.8 0.00	0.00	0.00	0.00	0.00	0.00
LEAD	MAX QUARTERLY MEAN ARITHMETIC MEAN	NS NS	1	0.013	0.012		0.011	0.012	0.011	0.010	0.013	0.013	
NO ₂ O ₃	4TH MAX 8-HOUR	DOWN	3	0.09	0.09	0.08	0.07	0.08	0.08	0.08	0.08	0.07 0.10	0.08 0.11
=	2ND DAILY MAX 1-HOUR	NS	3	0.11	0.11	0.09 27	0.10 24	0.10 24	0.10 23	0.10 22	0.10 23	23	
PM ₁₀	WEIGHTED ANNUAL MEAN	NS NS	3 3	27 36	27 37	35	36	33	31	32	33	33	35
SO ₂	90TH PERCENTILE ARITHMETIC MEAN	NS NS	1	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002		
_	2ND MAX 24-HOUR	NS	1	0.006	0.011	0.007	0.007	0.011	0.012	0.006	0.008	0.006	0.007
OWENSBORO NO ₂	ARITHMETIC MEAN	NS	1	0.014	0.011		0.012	0.012	0.012	0.013	0.011	0.012	
O ₃	4TH MAX 8-HOUR	NS	1	0.08	0.08		0.08	0.08 0.11	0.08 0.11	0.09 0.11	0.09	0.09 0.11	
	2ND DAILY MAX 1-HOUR	NS DOWN	1 3	0.10 31	0.11 29	0.09	0.09 27	25	29	27	24	24	
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	DOWN	3	49	45	45	45	45	45	48	41	42	
SO₂	ARITHMETIC MEAN	DOWN	1	0.010	0.009			0.009	0.009	0.007 0.028	0.007 0.020	0.007	
-	2ND MAX 24-HOUR	DOWN	1	0.053	0.038	0.044	0.053	0.050	0.035	0.020	0.020	0.027	0.02.0
	RG-MARIETTA, WV-OH MAX QUARTERLY MEAN	NS	1	0.04	0.02	0.02	0.02	0.02	0.01	0.02	0.02		
LEAD O₃	4TH MAX 8-HOUR	NS	2	0.09	0.09			0.08	0.09	0.09	0.10	0.09	
0,	2ND DAILY MAX 1-HOUR	DOWN	2	0.12	0.11			0.11 0.014	0.11 0.017	0.12 0.010	0.11 0.010		
SO ₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	NS NS	1 1	0.016 0.076	0.014 0.064			0.065	0.084	0.041	0.046		
PENSACOLA	, FL						0.00	0.09	0.08	0.09	0.08	0.08	0.09
O ₃	4TH MAX 8-HOUR	NS NS	2 2	0.08 0.09	0.08 0.11			0.10	0.11	0.12			0.12
SO ₂	2ND DAILY MAX 1-HOUR ARITHMETIC MEAN	DOWN	í	0.007	0.008	0.006	0.007	0.005		0.003			
_	2ND MAX 24-HOUR	DOWN	1	0.057	0.078	0.056	0.057	0.032	0.039	0.019	0.015	0.028	3 0.02
PEORIA-PEK	IN, IL 2ND MAX 8-HOUR	DOWN	1	7.7	7.4	6.3	7.2	7.3	5.7	5.6			
CO LEAD	MAX QUARTERLY MEAN	DOWN	i	0.04	0.04	0.02	0.02	0.03	0.02	0.03			
O ₃	4TH MAX 8-HOUR	NS	2	0.08	0.08			0.07		0.08 0.09			
-	2ND DAILY MAX 1-HOUR	NS	2 2	0.10 28	0.08			0.08 22		22			
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	NS DOWN	2	46	45	5 43	45	37	41	40	34		
SO₂	ARITHMETIC MEAN	NS	2	0.007			0.007		0.007		0.007	0.007	
	2ND MAX 24-HOUR	NS	2	0.046	v.vo:	0.000	0.043						
PHILADELPH CO	2ND MAX 8-HOUR	DOWN	9	7.1	4.9			4.7					
LEAD	MAX QUARTERLY MEAN	NS	11	1.25									
NO ₂	ARITHMETIC MEAN	NS NS	7 8	0.027 0.10				0.025					
O ₃	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	NS NS	8 8	0.10			0.11	0.13	0.12	0.13	0.12	2 0.1	3 0.1
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	6	35	3	2 35	5 29	30	33				
10	90TH PERCENTILE	NS	6	60		7 60 0 0.009					2 47 7 0.007		
	ARITHMETIC MEAN	DOWN	13	0.011	U.UT	U.UU	, U.UUO	0.000	, 0.000	0.007	0.007	0.02	

Table A-14. Metropolitan Statistical Area Air Quality Trends, 1989-1998 (continued)

PHOENIX-MES CO LEAD			Sites										1998
	A, AZ					Trans. Herberten		ALM DESCRIPTIONS			78.87		
	2ND MAX 8-HOUR MAX QUARTERLY MEAN	DOWN DOWN	8	7.6	6.7	6.2	. 6.5	6.0	6.3	6.2	5.7	5.1	5.3
O ₃	4TH MAX 8-HOUR	UP	2 8	0.09	0.09 0.07	0.11 0.08	0.06	0.05	0.05	0.06	0.04	0.02	0.02
-	2ND DAILY MAX 1-HOUR	NS	8	0.10	0.07	0.10	0.07 0.11	0.08 0.11	0.08 0.11	0.08 0.12	0.09 0.11	0.09 0.10	0.08 0.10
PM ₁₀	WEIGHTED ANNUAL MEAN	NS	8	49	43	43	40	41	40	41	41	46	38
00	90TH PERCENTILE	NS	8	73	66	66	63	61	62	65	61	70	63
SO ₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	NS	1	0.002	0.003	0.005	0.004	0.003	0.003	0.002	0.003	0.004	0.004
PINE BLUFF, A	R	NS	1	0.006	0.011	0.013	0.010	0.009	0.009	0.008	0.017	0.009	0.011
PM ₁₀	WEIGHTED ANNUAL MEAN	NS	1	27	21	19	22	23	25	26	23	O.E.	25
	90TH PERCENTILE	NS	1	44	39	30	38	39	39	56	39	25 41	25 41
PITTSBURGH,			_								-		
CO LEAD	2ND MAX 8-HOUR MAX QUARTERLY MEAN	DOWN	5	5.3	5.6	4.3	4.8	3.8	4.3	3.8	3.3	2.5	2.6
NO ₂	ARITHMETIC MEAN	DOWN DOWN	4 5	0.12	0.09	0.09	0.07	0.07	0.08	0.06	0.04	0.05	0.04
O ₃	4TH MAX 8-HOUR	NS	8	0.023	0.023	0.023	0.022	0.022	0.023	0.021	0.021	0.020	0.022
-	2ND DAILY MAX 1-HOUR	NS	8	0.11	0.10	0.08	0.09	0.07 0.11	0.09 0.11	0.Q9 0.12	0.10 0.11	0.09 0.12	0.09
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	13	35	33	34	30	29	33	29	28	29	0.11 28
20	90TH PERCENTILE	DOWN	13	62	61	59	52	51	62	52	47	52	50
SO ₂	ARITHMETIC MEAN	DOWN	16	0.017	0.016	0.015	0.015	0.015	0.015	0.011	0.011	0.011	0.011
PITTSFIELD, M.	2ND MAX 24-HOUR	DOWN	16	0.072	0.071	0.058	0.072	0.061	0.073	0.044	0.043	0.046	0.042
O ₃	4TH MAX 8-HOUR	NS	1	0.08	0.08	0.09	0.09	0.00	0.00	0.07	0.07		
	2ND DAILY MAX 1-HOUR	NS	i	0.09	0.08	0.09	0.09	0.09 0.11	0.08 0.09	0.07 0.09	0.07 0.11	0.08	80.0
PONCE, PR			,	0.00	0	0.10	0.11	0.11	0.03	0.05	0.11	0.09	0.08
PM₁o	WEIGHTED ANNUAL MEAN	DOWN	1	46	38	30	29	30	27	24	24	29	28
ODTI AND MI	90TH PERCENTILE	NS	1	73	60	47	49	53	38	33	35	47	51
PORTLAND, ME O3	= 4TH MAX 8-HOUR	NO		0.40									
O_3	2ND DAILY MAX 1-HOUR	NS NS	1 1	0.10 0.13	0.10	0.09	0.11	0.10	0.09	0.09	0.10	0.08	0.10
PM ₁₀	WEIGHTED ANNUAL MEAN	NS	2	27	0.13 25	0.14 26	0.12 23	0.11 25	0.12	0.12	0.10	0.13	0.12
10	90TH PERCENTILE	NS	2	44	39	44	38	44	24 43	28 50	24 36	26 43	23 39
SO ₂	ARITHMETIC MEAN	DOWN	ī	0.010	0.010	0.009	0.008		0.008				0.005
ODTI AND WA	2ND MAX 24-HOUR	DOWN	1	0.039	0.034	0.032	0.029	0.032	0.043		0.021	0.023	0.025
CO	NCOUVER, OR-WA 2ND MAX 8-HOUR	, DOMA!	_										
LEAD	MAX QUARTERLY MEAN	DOWN DOWN	2	8.2	8.5	9.1	7.0	6.3	7.0	5.7	6.1	5.4	5.1
O ₃	4TH MAX 8-HOUR	NS	2 4	0.07 0.06	0.06 0.06	0.06 0.08	0.05	0.06	0.04	0.03	0.02	0.04	0.05
-	2ND DAILY MAX 1-HOUR	NS	4	0.00	0.12	0.09	0.06 0.10	0.07 0.09	0.06 0.09	0.06 0.10	0.07 0.12	0.09 0.08	0.06 0.11
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	6	25	25	26	23	25	23	20	20	21	19
	90TH PERCENTILE	DOWN	6	45	42	43	39	43	37	31	33	32	31
	ROCHESTER, NH-ME												
NO_2 O_3	ARITHMETIC MEAN 4TH MAX 8-HOUR	DOWN	1	0.015	0.015				0.013				0.012
O_3	2ND DAILY MAX 1-HOUR	NS NS	2 2	0.09 0.12	0.09	0.08	0.10	0.09	0.09	0.09	0.09	0.08	0.10
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	2	21	0.11 20	0.14 19	0.11 19	0.11 18	0.11 14	0.12	0.10	0.13	0.11
10	90TH PERCENTILE	DOWN	2	34	33	36	32	30	27	15 26	16 27	17 29	18 29
SO ₂	ARITHMETIC MEAN	DOWN	1	0.008	0.007		0.006		0.006				0.004
DOVIDENCE E	2ND MAX 24-HOUR	DOWN	1	0.029	0.025	0.021	0.027		0.022				0.016
CO CO	ALL RIVER-WARWICK, RI-MA 2ND MAX 8-HOUR	NO											
NO ₂	ARITHMETIC MEAN	NS NS	1	6.2 0.024	7.3	7.4	6.3	5.4	6.7	7.0	4.4	5.6	4.7
O ₃	4TH MAX 8-HOUR	NS	2	0.024	0.024 0.09	0.025	0.023	0.022 0.08	0.022				0.025
-	2ND DAILY MAX 1-HOUR	DOWN	2	0.12	0.03	0.09	0.10	0.08	0.09 0.12	0.09 0.13	0.10	0.07	0.09
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	3	31	29	30	24	26	29	24	0.10 27	0.11 25	0.11 23
	90TH PERCENTILE	DOWN	. 3	48	44	48	40	43	49	38	41	38	36
	ARITHMETIC MEAN	DOWN	5	0.010	0.009	0.008	0.009	0.008	0.007				0.005
ROVO-OREM,	2ND MAX 24-HOUR	DOWN	5	0.043	0.039	0.039	0.044	0.036	0.035				0.029
	ARITHMETIC MEAN	NS	1	0.028	0.005	0.000	0.010	0.000	0.004	0.000	0.004	0.000	0.004
O ₃	4TH MAX 8-HOUR	NS NS	1	0.028	0.025 0.07	0.022	0.019 0.07	0.026 0.07	0.024 0.07	0.023	0.024		0.024
	2ND DAILY MAX 1-HOUR	NS	i	0.11	0.09	80.0	0.09	0.07	0.07	0.07	0.10	80.0 80.0	0.07 0.10
	WEIGHTED ANNUAL MEAN	DOWN	3	49	32	42	37	38	34	29	34	30	27
UEDI O OO	90TH PERCENTILE	DOWN	3	95	55	91	68	71	56	49	57	50	47
UEBLO, CO	MEIOLITED ANNUAL MEAN	DOI!":						•			٠.	-50	.,
	WEIGHTED ANNUAL MEAN	DOWN	1	33	26	30	26	26	30	26	26	27	22
ACINE, WI	90TH PERCENTILE	DOWN	1	55	43	46	46	38	45	45	42	41	33
	2ND MAX 8-HOUR	DOWN	1	6.4	5.5	57	4.0	4 4	4.0	4.0	0.0	0 1	0.0
	4TH MAX 8-HOUR	NS	1	0.11	0.11	5.7 0.09	4.9 0.10	4.1 0.08	4.3 0.08	4.3	3.0	3.1	3.0
	2ND DAILY MAX 1-HOUR	NS	i	0.14	0.11	0.14	0.10	0.10	0.08	0.09 0.11	0.10 0.13	0.08 0.12	0.10 0.12

Table A-14. Metropolitan Statistical Area Air Quality Trends, 1989–1998 (continued)

Metropolitan	Statistical Area	Trend	#Trend Sites	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
	HAM-CHAPEL HILL, NC 2ND MAX 8-HOUR	DOWN	1	10.9	8.7	8.8	7.3	7.2	6.9	6.6	5.6	6.6	5.4
CO O ₃	4TH MAX 8-HOUR	NS	i	0.09	0.09	0.09	0.09	0.08 0.11	0.10 0.11	0.08 0.10	0.08 0.09	0.08 0.11	0.10 0.12
_	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	NS DOWN	1 2	0.11 29	0.12 29	0.11 26	0.10 24	25	22	23	25	25	24
PM _{to}	90TH PERCENTILE	NS	2	46	45	41	36	39	31	34	39	39	40
RAPID CITY, SI	D WEIGHTED ANNUAL MEAN	NS	2	26	27	28	25	23	29	24	23	25	24
PM ₁₀	90TH PERCENTILE	NS	2	46	44	47	40	38	50	41	36	41	38
READING, PA CO	2ND MAX 8-HOUR	DOWN	1	5.0	6.4	4.6	4.6	3.8	5.4	3.9	3.4	3.0	3.0
LEAD	MAX QUARTERLY MEAN	DOWN	10	0.74	0.66 0.022	0.72 0.022	0.62 0.020	0.52 0.021	0.54	0.37 0.021	0.35 0.022	0.41 0.021	0.43
NO₂	ARITHMETIC MEAN 4TH MAX 8-HOUR	NS NS	1 2	0.023 0.09	0.022	0.022	0.10	0.09	0.09	0.08	0.09	0.09	0.09
O ₃	2ND DAILY MAX 1-HOUR	NS	2	0.11	0.11	0.12	0.10	0.11	0.10	0.11	0.11	0.11	0.11
SO ₂	ARITHMETIC MEAN	DOWN	2 2	0.011 0.042	0.010 0.035	0.010 0.034	0.009 0.033	0.009	0.011 0.040	0.009 0.033	0.009	0.030	0.024
REDDING, CA	2ND MAX 24-HOUR	DOWN	2	0.042					•				
O ₃	4TH MAX 8-HOUR	NS	1	0.07	0.07 0.09	80.0 80.0	0.07 0.08	0.07 0.07	0.06 0.09	0.08 0.09	0.07 0.08	0.07 0.08	0.07 0.09
	2ND DAILY MAX 1-HOUR	NS DOWN	1 1	0.09 26	25	29	25	20	24	20	19	17	18
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	DOWN	i	44	42	56	45	37	39	34	32	30	30
RENO, NV	OND MAY O HOUD	DOWN	5	7.3	7.0	7.5	5.9	5.0	6.0	4.4	5.2	5.0	4.7
CO O₃	2ND MAX 8-HOUR 4TH MAX 8-HOUR	NS	4	0.07	0.07	0.07	0.07	0.07	0.06	0.07	0.07	0.07	0.06
O ₃	2ND DAILY MAX 1-HOUR	NS	4	0.10	0.11	0.09 36	0.08 36	0.09 40	0.09 36	0.08 32	0.09 29	0.08 32	0.09 31
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN DOWN	6 6	42 83	44 92	73	64	71	65	52	52	52	54
RICHMOND-PI	90TH PERCENTILE ETERSBURG, VA	DOWN							0.4	0.0	2.9	3.2	2.8
CO	2ND MAX 8-HOUR	DOWN	2 1	4.0 0.025	4.4 0.023	3.7 0.024	2.5 0.023	3.9 0.024	3.4 0.024	2.6 0.022	0.022	0.021	
NO₂	ARITHMETIC MEAN 4TH MAX 8-HOUR	DOWN NS	4	0.023	0.028	0.08	0.09	0.09	0.10	0.09	0.09	0.08	
O ₃	2ND DAILY MAX 1-HOUR	NS	4	0.11	0.11	0.11	0.12 22	0.12 23	0.11 21	0.11 23	0.10 24	0.12 22	
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN NS	3 3	28 43	25 40	26 45	36	43	33	38	37	37	37
SO ₂	90TH PERCENTILE ARITHMETIC MEAN	DOWN	ĭ	0.009	0.006	0.006	0.005	0.007	0.006	0.005	0.005	0.005	
-	2ND MAX 24-HOUR	NS	1	0.032	0.034	0.027	0.024	0.023	0.022	0.016	0.027	0.024	0.024
	AN BERNARDINO, CA 2ND MAX 8-HOUR	DOWN	7	5.1	4.4	5.1	3.6	3.5	3.5	3.4	2.9	3.1	2.9
CO LEAD	MAX QUARTERLY MEAN	NS	4	0.06	0.05	0.06	0.03	0.04	0.04	0.04	0.04 0.027	0.04 0.024	
NO⁵	ARITHMETIC MEAN	DOWN	7 15	0.030 0.16	0.029 0.16	0.029 0.15	0.027 0.15	0.028 0.14	0.028	0.029	0.027	0.12	
O ₃	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	DOWN	15	0.10	0.10	0.21	0.20	0.18	0.19	0.18	0.17	0.15	
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	11	67	60	57	47	46 78	44 68	· 71	43 66	42 64	
	90TH PERCENTILE	DOWN NS	11 4	102 0.002	94 0.002	88 0.002	76 0.002	0.002	0.002	0.002	0.001	0.001	
SO₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	DOWN	4	0.013	0.006			0.006	0.004	0.005	0.004	0.004	0.007
ROANOKE, VA	1			0.014	0.013	0.014	0.013	0.014	0.013	0.013	0.013	0.013	0.014
NO₂	ARITHMETIC MEAN 4TH MAX 8-HOUR	NS NS	1	0.014	0.013			0.07	0.08	0.08	0.08	0.07	0.08
O ₃	2ND DAILY MAX 1-HOUR	NS	1	0.10	0.09			0.10 35	0.10 36	0.09 34	0.08 33		
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN NS	2 2	35 55	36 58		32 48	56	55	54	58		
SO ₂	90TH PERCENTILE ARITHMETIC MEAN	DOMN	1	0.005	0.004	0.004	0.004	0.004	0.004	0.003			
_	2ND MAX 24-HOUR	DOWN	1	0.022	0.018	0.019	0.016	0.018	0.011	0.010	0.014	0.013	0.009
ROCHESTER,	, MN WEIGHTED ANNUAL MEAN	DOWN	1	30	28	23	21	20	21	20			
PM ₁₀	90TH PERCENTILE	DOWN	ĺ	50	48	37	37	31	33	32	34	. 31	3-
ROCHESTER,	, NY	NS	2	3.6	3.5	3.3	3.5	3.2	4.5	3.2	3.7		
CO O ₁	2ND MAX 8-HOUR 4TH MAX 8-HOUR	NS NS	2	0.09	0.09	0.09	0.10	0.08	0.08	0.08	0.09	0.07	
U 1	2ND DAILY MAX 1-HOUR	NS	2	0.10	0.11			0.09 23	0.09 20	0.11 21	0.08 21		
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	2 2	24 42	21 38			40	33	37	35	33	3 3
SO₂	90TH PERCENTILE ARITHMETIC MEAN	DOWN	2	0.013	0.012	0.011	0.011	0.010			0.009		
-	2ND MAX 24-HOUR	NS	2	0.054	0.040	0.043	0.039	0.041	0.043	0.038	0.033	0.030	. 0.05
ROCKFORD,	IL 2ND MAX 8-HOUR	DOWN	1	6.6	6.5			4.3		4.5			
CO LEAD	MAX QUARTERLY MEAN	DOWN	1	0.07	0.09	0.04	0.06	0.03		0.03			
O ₃	4TH MAX 8-HOUR	NS NE	2	0.08 0.09				80.0 80.0		0.08 0.10			
-	2ND DAILY MAX 1-HOUR	NS NS	2 1	25				16					3 2
PM ₁₀	WEIGHTED ANNUAL MEAN							26	36	39	29	3 4:	23

Table A-14. Metropolitan Statistical Area Air Quality Trends, 1989–1998 (continued)

LEAD	Metropolitan	Statistical Area	Trend	#Trend Sites	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
CO	SACRAMENTO	, CA				5 (4 . mm. 2) (4 . 2 4 . m	and a second second	hille Trike	OMENIA SERVICIO					
NO2 ARITHMETIC MEAN DOWN 4 0.019 0.016 0.016 0.017 0.015 0.0	CO	2ND MAX 8-HOUR							6.4	6.2	5.2	4.9	4.5	4.5
Op														0.01
PMIGHTEANNULA MEAN DOWN 1 1 42 42 43 12 93 29 30 29 25 23 23 23 25 25 23 25 25 25 25 25 25 25 25 25 25 25 25 25														0.015
PMII0 WEIGHTED ANNUAL MEAN DOWN 1 42 42 42 31 129 30 29 35 23 22 32 32 32 32 32 30 14 PRINCENTILE DOWN 1 1 88 8 51 54 49 66 40 40 44 40 67 40 40 44 67 40 44 67	O_3													0.08
SO, ARTH-METIC MEAN DOWN 1 0.08 0.08 0.08 0.00 0.00 0.00 0.00 0.	DΜ													
SO, ARITHMETIC MEAN DOWN 1 0.006 0.005 0.005 0.005 0.005 0.006 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.003 0.003 ST. JOSEPH, MO WEIGHTED ANNUAL MEAN DOWN 1 78 71 79 70 66 62 67 52 57 47 ST. LOUIS, MO-IL CO LEAD MAX CULARTERIX MEAN DOWN 13 0.85 0.76 0.88 0.70 0.57 0.58 0.07 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06	1 10110													
ST. JOSEPH, MO PMile ST. LOUIS, MO-I ST. L	SO ₂													
ST. JOSEPH, MO PMight ERCENTILE DOWN 1	302													
ST. LOUIS, MO-IL CEG 2ND MAX CHAPTERY MEAN DOWN 1 78 71 79 70 56 62 67 52 57 43 48 60 62 67 62 67 52 57 43 48 61 62 67		10			0.0_0	5.5.0	0.0.0	0.0.0	0.000	0.00	0.00	0.000	0.000	0.004
ST. LOUIS, MO-IL CO CO CO CO CO CO CO CO CO C	PM ₁₀		DOWN	1	45	40	44	39	32	34	33	32	31	26
CO			DOWN	1	78	71	79	70	56	62	67	52	57	47
LEAD MAX QUARTERILY MEAN NS 9 0.019 0.018 0.019														
NO2														3.4
O ₃														0.43
PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10	NO ₂													
PMin	O_3													
SO2_ ARITHMETIC MEAN DOWN 16 0.015 0.011 0.010 0.09 0.009 0.008 0.007 0.005 0.005 0.007 0.005 0.005 0.007 0.005 0.007 0.005 0.005 0.007 0.005 0.005 0.007 0.005 0.005 0.007 0.005 0.005 0.007 0.005 0.005 0.007 0.005 0.005 0.007 0.005 0.005 0.007 0.005 0.005 0.007 0.005 0.005 0.007 0.005 0.005 0.007 0.005 0.005 0.007 0.005 0.005 0.007 0.005 0.005 0.007 0.005 0.005 0.005 0.005 0.007 0.005 0.005 0.005 0.005 0.007 0.005 0.005 0.005 0.005 0.005 0.007 0.005 0.005 0.005 0.005 0.007 0.005 0.	PM.													
SO2 ARITHMETIC MEAN DOWN 16 0.012 0.011 0.010 0.009 0.009 0.009 0.009 0.007 0.008 0.007 0.008 0.004 0.007 0.008 0.004 0.007 0.008 0.004 0.007 0.008 0.004 0.007 0.008 0.004 0.007 0.008 0.004 0.007 0.008 0.004 0.007 0.008 0.004 0.007 0.008 0.009 0.008 0.008 0.004 0.007 0.008 0.009 0.008 0.	10													
SALINAS, CA CO 2ND MAX 8-HOUR DOWN 1 2.5 2.5 2.1 2.5 2.1 2.5 2.1 2.5 2.1 2.5 2.1 2.0 1.7 2.4 1.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0	SO ₂													
SALINAS, CA CO 2ND MAX 8-HOUR DOWN 1 2.3 2.5 2.1 2.3 2.1 2.0 1.7 2.4 1.7 1.5 NO 2 ARITHMETIC MEAN DOWN 3 0.07 0.07 0.06 0.06 0.06 0.06 0.07 0.06 0.06	-													
NO2	SALINAS, CA													
O ₃				´ 1	2.3	2.5	2.1	2.3	2.1	2.0	1.7	2.4	1.7	1.9
2ND DAILY MAX 1-HOUR DOWN 3 0.09 0.08 0.08 0.08 0.08 0.07 0.07 0.08 0.07 0.07					0.014	0.012	0.012	0.012	0.012	0.012	0.011	0.011	0.010	0.010
PM10 WEIGHTED ANNUAL MEAN DOWN 1 25 23 23 23 22 20 21 20 21 1 20 21 1 25 21 27 20 21 1 20 21 1 25 21 27 20 21 1 20 21 1 25 21 20 21 1 20 21 21 20 21 1 20 21 21 21 21 21 21 21 21 21 21 21 21 21	O_3													0.06
SALT LAKE CITY-OGDEN, UT CO 2ND MAX 8-HOUR DOWN 1 7.7 6.8 7.5 6.5 6.4 5.9 4.5 6.2 5.4 4.9 LEAD MAX QUARTERLY MEAN DOWN 2 0.12 0.08 0.08 0.05 0.07 0.05 0.05 0.03 0.07 0.08 NO2 ARITHMETIC MEAN NS 2 0.023 0.019 0.020 0.020 0.024 0.023 0.022 0.023 0.022 0.023 2 ATH MAX 8-HOUR NS 2 0.09 0.09 0.08 0.08 0.07 0.08 0.08 0.09 0.08 0.08 0.09 0.08 0.08	DM													0.07
SALT LAKE CITY-OGDEN, UT CO 2ND MAX 8-HOUR DOWN 1 1 7.7 6.8 7.5 6.5 6.4 5.9 4.5 6.2 5.4 4.9 LEAD MAX QUARTERLY MEAN DOWN 2 0.12 0.08 0.08 0.05 0.07 0.05 0.03 0.07 0.08 NO2 ARITHMETIC MEAN NS 2 0.023 0.024 0.020 0.024 0.023 0.022 0.022 0.022 O ₃ ATH MAX 8-HOUR NS 2 0.09 0.09 0.09 0.08 0.07 0.08 0.06 0.08 0.09 0.08 EMBODITY PERCENTILE DOWN 6 11 0.01 0.011 0.10 0.11 0.12 0.11 0.10 0.12 PM-10 WEIGHTED ANNUAL MEAN DOWN 3 0.011 0.009 0.010 0.009 0.007 0.004 0.003 0.003 0.003 SAN ANTONIO, TX CO 2ND MAX 8-HOUR NS 2 6.3 5.4 6 4.7 5.1 3.5 3.8 4.8 4.7 4.8 ELEAD MAX QUARTERLY MEAN DOWN 3 28 25 25 25 23 23 21 19 19 19 PM-10 WEIGHTED ANNUAL MEAN DOWN 3 28 25 0.11 0.10 0.11 0.10 0.11 0.11 0.12 0.11 0.00 0.00	PIVI ₁₀													
CO 2ND MAX 8-HOUR DOWN 1 7.7 6.8 7.5 6.5 6.4 5.9 4.5 6.2 5.4 4.9 LEAD MAX QUARTERLY MEAN DOWN 2 0.12 0.023 0.019 0.020 0.020 0.024 0.023 0.023 0.07 0.05 NO2 NO2 ARITHMETIC MEAN NS 2 0.09 0.09 0.09 0.08 0.08 0.08 0.07 0.08 0.08 0.08 0.09 0.02 0.024 0.023 0.022 0.022 0.022 0.024 ATH MAX 8-HOUR NS 2 0.09 0.09 0.09 0.09 0.09 0.00 0.07 0.08 0.08 0.08 0.08 0.09 0.08 0.09 0.08 0.09 0.09	SALTIAKE CIT		NS	,	3/	39	33	34	35	29	43	34	31	29
LEAD MAX QUARTERIY MEAN DOWN 2			DOWN	1	77	6.8	7.5	6.5	6.4	5 O	4 5	6.0	E 1	4.0
NO2 ARITHMETIC MEAN NS 2 0.023 0.019 0.020 0.024 0.023 0.022 0.023 0.020 0.024 0.023 0.022 0.023 0.022 0.023 0.024 0.023 0.022 0.023 0.022 0.023 0.024 0.024 0.023 0.022 0.023 0.024 0.024 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025 0.025 0.024 0.025 0.024 0.025 0.024 0.025														
Co														
2ND DAILY MAX 1-HOUR NS 2 0.14 0.11 0.10 0.10 0.11 0.12 0.11 0.10 0.12 0.11 0.10 0.12 0.11 0.10 0.12 0.11 0.10 0.10 0.10 0.10 0.10 0.0														
PM10 WEIGHTED ANNUAL MEAN DOWN 6 45 33 41 36 37 32 29 33 29 27 90 90TH PERCENTILE DOWN 6 91 56 89 74 68 53 49 61 49 44 80 2ND MAX 24-HOUR DOWN 3 0.011 0.009 0.010 0.009 0.007 0.004 0.003 0.003 0.003 0.008 0.008 0.008 0.008 0.007 0.004 0.003 0.003 0.003 0.008 0.009 0.009 0.008 0.008 0.009 0.009 0.008 0.008 0.009 0.009 0.008 0.008 0.009 0.009 0.008 0.009 0.009 0.008 0.009 0.009 0.009 0.008 0.009			NS	2	0.14									0.12
SO2 ARITHMETIC MEAN DOWN 3 0.011 0.009 0.010 0.009 0.007 0.004 0.003 0.0	PM ₁₀				45	33	41	36	37	32	29		29	27
2ND MAX 24-HOUR	00													46
SAN ANTONIO, TX CO 2ND MAX 8-HOUR NS 2 6.3 5.4 4.6 4.7 5.1 3.5 3.8 4.8 4.7 4.8 LEAD MAX QUARTERLY MEAN DOWN 1 0.04 0.07 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02	SO ₂													0.003
CO 2ND MAX 8-HOUR NS 2 6.3 5.4 4.6 4.7 5.1 3.5 3.8 4.8 4.7 4.8 LEAD MAX QUARTERLY MEAN DOWN 1 0.04 0.07 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02	CINOTINA IAAS	ZND MAX 24-MOUR	DOWN	3	0.081	0.039	0.051	0.046	0.043	0.013	0.013	0.014	0.008	0.008
LEAD MAX QUARTERLY MEAN DOWN 1 0.04 0.07 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02			NS	2	63	5.4	16	17	5.1	3.5	20	10	47	40
O ₃ 4TH MAX 8-HOUR NS 2 0.08 0.08 0.08 0.07 0.08 0.09 0.09 0.08 0.08 PM ₁₀ 0.09 PM ₁₀ 0.08 0.09 PM ₁₀ 0.09 0.09 0.08 0.09 PM ₁₀ 0.09 PM ₁₀ 0.09 PM ₁₀ 0.09 O ₁ 0.08 0.09 O ₁ 0.09														
2ND DAILY MAX 1-HOUR NS 2 0.11 0.10 0.11 0.11 0.11 0.12 0.12 0.10 0.10														
PM ₁₀ WEIGHTED ANNUAL MEAN DOWN 3 28 25 25 25 25 23 23 21 19 19 19 28 28 25 25 25 25 25 23 23 21 19 19 19 28 28 28 25 25 25 25 25 25 25 28 28 28 28 28 28 28 28 28 28 28 28 28	•			2										
SAN DIEGO, CA CO 2ND MAX 8-HOUR DOWN 8 6.3 5.6 5.3 5.0 4.4 4.7 4.2 4.3 3.8 3.5 LEAD MAX QUARTERLY MEAN DOWN 7 0.027 0.025 0.025 0.024 0.020 0.021 0.021 0.019 0.019 0.018 0.02 ARITHMETIC MEAN DOWN 9 0.11 0.11 0.11 0.10 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.0	PM ₁₀					25	25	25	23	23	21	19		19
CO 2ND MAX 8-HOUR DOWN 3 0.08 0.09 0.04 0.03 0.03 0.02 0.03 0.02 0.02 0.02 0.01 NO2 ARITHMETIC MEAN DOWN 7 0.027 0.025 0.025 0.024 0.020 0.021 0.019 0.019 0.018 0.03 0.03 0.03 0.02 0.03 0.02 0.03 0.03	CAN DIEGO O		DOWN	3	42	40	38	41	40	38	33	27	28	28
LEAD MAX QUARTERLY MEAN DOWN 3 0.08 0.09 0.04 0.03 0.03 0.02 0.03 0.02 0.01 0.012 0.019 0.018 NO2 ARITHMETIC MEAN DOWN 7 0.027 0.025 0.025 0.024 0.020 0.021 0.021 0.019 0.019 0.018 0.03 4HTH MAX 8-HOUR DOWN 9 0.11 0.11 0.11 0.10 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.0			DOMM	o	6.0	E C	FO	E 0	4.4	47		4.0		c -
NO2 ARITHMETIC MEAN DOWN 7 0.027 0.025 0.024 0.020 0.021 0.021 0.019 0.019 0.018 O3 4TH MAX 8-HOUR DOWN 9 0.11 0.11 0.11 0.10 0.09 0.09 0.08 0.08 0.08 0.08 0.08 2ND DAILY MAX 1-HOUR DOWN 9 0.16 0.15 0.15 0.14 0.13 0.11 0.12 0.10 0.11 0.11 PM ₁₀ WEIGHTED ANNUAL MEAN DOWN 3 39 34 37 32 30 31 32 28 27 23 90TH PERCENTILE DOWN 3 57 54 54 44 46 42 46 38 38 38 36 SO ₂ ARITHMETIC MEAN NS 3 0.004 0.004 0.003 0.004 0.002 0.003 0.003 0.004 0.003 0.003 0.004 0.003 0.003 0.004 0.003 0.003 0.004 0.003 0.003 0.004 0.005 0.015 0.015 0.015 0.017 0.017 0.009 0.013 0.012 0.015 0.012 0.011 0.0														
O3 4TH MAX 8-HOUR DOWN 9 0.11 0.11 0.11 0.10 0.09 0.09 0.08 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00				7										
2ND DAILY MAX 1-HOUR DOWN 9 0.16 0.15 0.15 0.14 0.13 0.11 0.12 0.10 0.11 0.11 PM ₁₀ WEIGHTED ANNUAL MEAN DOWN 3 39 34 37 32 30 31 32 28 27 23 30 31 32 28 27 23 30 31 32 28 27 23 30 31 32 28 27 23 30 31 32 28 27 23 30 31 32 28 27 23 30 31 32 28 27 23 30 31 32 28 27 23 30 31 32 28 27 23 30 31 32 28 27 23 30 31 32 28 27 23 30 31 32 28 27 23 30 31 32 28 27 23 30 31 32 28 32 30 31 32 28 32 30 31 32 28 32 30 31 32 28 32 30 31 32 28 32 38 38 36 30 30 30 30 30 30 30 30 30 30 30 30 30														
PM ₁₀ WEIGHTED ANNUAL MEAN DOWN 3 39 34 37 32 30 31 32 28 27 23 90TH PERCENTILE DOWN 3 57 54 54 44 46 42 46 38 38 36 SO ₂ ARITHMETIC MEAN NS 3 0.004 0.004 0.003 0.004 0.002 0.003 0.003 0.004 0.003 0.003 2ND MAX 24-HOUR NS 3 0.015 0.015 0.017 0.017 0.009 0.013 0.012 0.015 0.012 0.011 SAN FRANCISCO, CA CO 2ND MAX 8-HOUR DOWN 4 5.9 5.7 6.2 4.8 4.6 4.3 3.7 3.9 3.4 3.5 LEAD MAX QUARTERLY MEAN DOWN 1 0.08 0.04 0.04 0.02 0.03 0.02 0.03 0.01 0.02 0.01 NO ₂ ARITHMETIC MEAN DOWN 1 0.026 0.021 0.024 0.022 0.024 0.022 0.021 0.022 0.020 0.020 O ₃ 4TH MAX 8-HOUR NS 3 0.06 0.06 0.04 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.05 2ND DAILY MAX 1-HOUR NS 3 0.08 0.06 0.06 0.06 0.08 0.07 0.09 0.08 0.07 0.06 PM ₁₀ WEIGHTED ANNUAL MEAN DOWN 1 33 28 32 29 27 25 21 21 24 22 90TH PERCENTILE DOWN 1 5.9 59 66 56 39 47 34 32 33 34 SO ₂ ARITHMETIC MEAN DOWN 1 0.003 0.002 0.002 0.003 0.002 0.002 0.002 0.002	-3													
SO ₂ ARITHMETIC MEAN NS 3 0.004 0.004 0.003 0.004 0.002 0.003 0.003 0.004 0.003 0.003 0.004 0.003 0.004 0.005 0.0	PM ₁₀													23
SO ₂ ARITHMETIC MEAN NS 3 0.004 0.004 0.003 0.004 0.002 0.003 0.004 0.003 0.004 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.004 0.003 0.001 0.001 0.011 0.0														36
SAN FRANCISCO, CA SAN FRANCISCO, CA CO 2ND MAX 8-HOUR DOWN 1 0.08 0.04 0.04 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02	SO ₂	ARITHMETIC MEAN		3										
CO 2ND MAX 8-HOUR DOWN 4 5.9 5.7 6.2 4.8 4.6 4.3 3.7 3.9 3.4 3.5 LEAD MAX QUARTERLY MEAN DOWN 1 0.08 0.04 0.04 0.02 0.03 0.02 0.03 0.01 0.02 0.01 0.02 0.01 0.02 0.03 0.01 0.02 0.01 0.02 0.03 0.01 0.02 0.01 0.02 0.03 0.01 0.02 0.01 0.02 0.03 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.03 0.01 0.02 0.02 0.03 0.01 0.02 0.02 0.03 0.01 0.02 0.02 0.03 0.01 0.02 0.02 0.03 0.01 0.02 0.02 0.03 0.01 0.02 0.02 0.03 0.01 0.02 0.02 0.03 0.01 0.02 0.02 0.03 0.01 0.02 0.02 0.03 0.01 0.02 0.02 0.03 0.01 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.002				3	0.015									
LEAD MAX QUARTERLY MEAN DOWN 1 0.08 0.04 0.04 0.02 0.03 0.02 0.03 0.01 0.02 0.01 NO2 0.01 NO2 ARITHMETIC MEAN DOWN 1 0.026 0.021 0.024 0.022 0.024 0.022 0.021 0.022 0.020 0.020 0.020 0.020 0.020 0.03 0.01 0.022 0.020			DOWN	,										
NO2 ARITHMETIC MEAN DOWN 1 0.026 0.021 0.022 0.022 0.022 0.022 0.020 0.022 0.0														3.5
O3 4TH MAX 8-HOUR NS 3 0.06 0.06 0.04 0.05 0.05 0.05 0.06 0.06 0.05 2ND DAILY MAX 1-HOUR NS 3 0.08 0.06 0.06 0.06 0.08 0.07 0.09 0.08 0.07 0.06 PM ₁₀ WEIGHTED ANNUAL MEAN DOWN 1 33 28 32 29 27 25 21 21 24 22 90TH PERCENTILE DOWN 1 59 59 66 56 39 47 34 32 33 34 SO ₂ ARITHMETIC MEAN DOWN 1 0.003 0.002 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 <														
2ND DAILY MAX 1-HOUR NS 3 0.08 0.06 0.06 0.06 0.08 0.07 0.09 0.08 0.07 0.06 PM WEIGHTED ANNUAL MEAN DOWN 1 33 28 32 29 27 25 21 21 24 22 90TH PERCENTILE DOWN 1 59 59 66 56 39 47 34 32 33 34 SO ₂ ARITHMETIC MEAN DOWN 1 0.003 0.002 0.002 0.003 0.002 0.001 0.002 0.002 0.002														
PM ₁₀ WEIGHTED ANNUAL MEAN DOWN 1 33 28 32 29 27 25 21 21 24 22 90TH PERCENTILE DOWN 1 59 59 66 56 39 47 34 32 33 34 SO ₂ ARITHMETIC MEAN DOWN 1 0.003 0.002 0.003 0.002 0.001 0.002 0.002 0.002 0.002	\smile_3													
90TH PERCENTILE DOWN 1 59 59 66 56 39 47 34 32 33 34 SO ₂ ARITHMETIC MEAN DOWN 1 0.003 0.002 0.003 0.002 0.001 0.002 0.002 0.002 0.002	PM ₄₀													
SO ₂ ARITHMETIC MEAN DOWN 1 0.003 0.002 0.003 0.003 0.002 0.001 0.002 0.002 0.002 0.002	10													
	SO ₂													
	-	2ND MAX 24-HOUR	DOWN	1	0.015									0.002

Table A-14. Metropolitan Statistical Area Air Quality Trends, 1989–1998 (continued)

		Trend	#Trend	1989 Sites	1990	1991	1992	1993	1994	1990	1990	1997	1998
WATERLOO-CE	DAR FALLS, IA WEIGHTED ANNUAL MEAN	NS	1	35	35	35	34	31	29	36	32	31	30
PM ₁₀	90TH PERCENTILE	DOWN	i	57	57	57	63	48	45	52	48	47	47
WAUSAU, WI	ARITHMETIC MEAN	DOWN	1	0.004	0.004	0.004	0.004	0.004	0.004	0.003	0.003	0.002	0.003
SO	2ND MAX 24-HOUR	NS	ιi	0.030	0.030	0.030	0.024	0.039	0.024	0.022	0.015	0.013	0.031
WEST PALM BE	EACH-BOCA RATON, FL 2ND MAX 8-HOUR	NS	1	3.7	2.7	· 3.1	3.7	3.1	2.8	2.8	2.5	3.6	2.5
NO₂	ARITHMETIC MEAN	NS	1	0.013	0.014	0.012	0.011	0.013	0.012	0.012	0.012	0.012	0.012
O ₃	4TH MAX 8-HOUR 2ND DAILY MAX 1-HOUR	NS · NS	2 2	0.06 0.10	0.06	0.07 0.08	0.06 0.07	0.05 0.12	0.08 0.08	0.07 0.08	0.06 0.09	0.06 0.08	0.06 0.10
PM ₁₀	WEIGHTED ANNUAL MEAN	NS	2	19	19	18	20	19	18	18	18	20	20
	90TH PERCENTILE	NS	2 1	27 0.003	27 0.002	28 0.002	30 0.003	29 0.004	25 0.003	25 0.002	28 0.002	29 0.002	31 0.001
SO ₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	DOWN NS	i	0.003	0.002	0.002	0.003	0.028	0.003	0.002	0.002	0.002	0.004
WHEELING, WV	/-OH	DOM/N		F 0	7.	F.C	5 6	4 4	4.6	5 0	2.5	2.1	2.5
CO CO	2ND MAX 8-HOUR 4TH MAX 8-HOUR	DOWN NS	1 1	5.2 0.08	7.1 0.08	5.6 0.08	5.6 0.09	4.1 0.08	4.6 0.08	5.0 0.08	3.5 0.09	3.1 0.09	3.5 0.08
-	2ND DAILY MAX 1-HOUR	NS	1	0.11	0.11	0.11	0.10	0.11	0.10	0.10	0.11	0.11	0.10
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	DOWN	2 2	34 59	30 50	31 53	30 52	29 51	28 49	28 46	28 42	24 41	25 46
SO₂	ARITHMETIC MEAN	DOWN	3	0.021	0.020	0.020	0.018	0.018	0.015	0.010	0.011	0.010	0.011
WICHITA, KS	2ND MAX 24-HOUR	DOWN	3	0.065	0.064	0.074	0.077	0.075	0.065	0.055	0.058	0.043	0.045
CO	2ND MAX 8-HOUR	DOWN	3	7.9	5.9	5.9	5.6	5.0	4.9	5.2	5.8	4.8	4.8
LEAD O ₃	MAX QUARTERLY MEAN 4TH MAX 8-HOUR	DOWN NS	5 2	0.03 0.07	0.02 0.07	0.02	0.01 0.08	0.01 0.07	0.01 0.06	0.01 0.07	0.01 0.07	0.01 0.07	0.01 0.08
O ₃	2ND DAILY MAX 1-HOUR	NS	2	0.07	0.10	0.09	0.08	0.08	0.09	0.10	0.09	0.09	0.10
PM ₁₀	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	DOWN NS	4 4	30 50	28 49	31 51	32 53	31 56	26 50	27 51	25 43	22 40	24 41
WILLIAMSPOR	T, PA												
O ₃	ATH MAX 8-HOUR	NS NS	1 1	0.07 0.08	0.07 0.09	0.07 0.10	0.08 0.09	0.07 0.09	0.08 80.0	0.07 0.09	0.07 0.08	0.07 0.09	0.08
PM ₁₀	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	NS NS	i	29	26	31	24	24	28	28	25	26	26
	90TH PERCENTILE	NS NC	1 1	46 0.007	50 0.006	60 0.007	36 0.007	47 0.006	52 0.006	49 0.006	36 0.006	40 0.008	40 0.005
SO₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	NS NS	i	0.007	0.025	0.025	0.029	0.005	0.042	0.000	0.028	0.028	0.021
	NEWARK, DE-MD	NS	1	4.5	5.4	4.0	4.1	3.8	4.3	4.6	3.6	4.5	3.1
CO O₃	2ND MAX 8-HOUR 4TH MAX 8-HOUR	NS NS	i	0.10	0.10	0.10	0.11	0.09	0.09	0.09	0.12	0.08	0.09
	2ND DAILY MAX 1-HOUR	NS	1	0.12	0.14	0.14	0.12	0.14	0.12	0.14	0.11	0.12 25	0.12
PM _{to}	WEIGHTED ANNUAL MEAN 90TH PERCENTILE	DOWN	2 2	33 52	30 48	28 45	24 39	25 43	29 52	28 45	25 42	43	24 41
SO₂	ARITHMETIC MEAN	DOWN	2	0.016	0.013	0.012	0.013	0.013	0.012	0.010	0.009	0.008	0.007
WORCESTER,	2ND MAX 24-HOUR MA-CT	DOWN	2	0.048	0.043	0.033	0.046	0.041	0.044	0.036	0.035	0.034	0.027
co	2ND MAX 8-HOUR	DOWN	1	7.9	6.0	7.2	8.0	6.1	5.9	4.2	5.3	3.4	3.5
NO₂ PM₁o	ARITHMETIC MEAN WEIGHTED ANNUAL MEAN	DOWN	1 2	0.026 26	0.022 23	0.023 21	0.024 20	0.028 20	0.025 20	0.021 19	0.019	0.019	0.019 19
**	90TH PERCENTILE	DOWN	2	37	41	38	34	37	36	32	34	32	33
SO₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	DOWN	1 1	0.011 0.040	0.008 0.034	0.009	0.007 0.033	0.007 0.025	0.008 0.024	0.006 0.023	0.005 0.021	0.004 0.021	0.005
YAKIMA, WA													
CO	2ND MAX 8-HOUR WEIGHTED ANNUAL MEAN	NS DOWN	1 2	8.7 33	7.4 33	9.0 40	8.8 32	7.9 35	8.0 29	7.1 24	7.4 30	7.4 32	7.4 26
PM ₁₀	90TH PERCENTILE	DOWN	2	62	62	81	60	63	55	46	59	59	43
YOLO, CA	4TH MAX 8-HOUR	NS	1	0.08	0.08	0.08	0.07	0.09	0.08	0.08	0.08	0.09	0.07
O ₃	2ND DAILY MAX 1-HOUR	NS	1	0.10	0.10	0.11	0.11	0.09	0.10	0.11	0.11	0.09	0.11
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	1 .	46 81	46 81	46 81	35 63	29 62	30 46	30 61	24 40	25 37	22 42
YORK, PA	90TH PERCENTILE	DOWN	1	01	01	01	63	02	40	01	40	3/	44
CÓ	2ND MAX 8-HOUR	DOWN	1 1	4.6	4.4	3.7	3.6	3.3	3.9	2.7 0.04	2.8	3.4 0.04	2.4 0.05
LEAD NO₂	MAX QUARTERLY MEAN ARITHMETIC MEAN	NS DOWN	1	0.05 0.022	0.05 0.022	0.05 0.021	0.05 0.020	0.04 0.022	0.04 0.024	0.021	0.07 0.021	0.04	0.019
03	4TH MAX 8-HOUR	NS	1	0.09	0.09	0.10	0.10	0.08	0.09	80.0	0.09	0.08	0.09
PM ₁₀	2ND DAILY MAX 1-HOUR WEIGHTED ANNUAL MEAN	NS NS	1 1	0.10 31	0.12 30	0.11 32	0.10 27	0.11 31	0.12 32	0.10 30	0.10 28	0.11 31	0.11 31
	90TH PERCENTILE	NS	i	50	56	60	44	52	51	56	46	49	49
SO ₂	ARITHMETIC MEAN 2ND MAX 24-HOUR	NS NS	1	0.008 0.035		0.008 0.020	0.007 0.034	0.008	0.009 0.041	0.006 0.020	0.007 0.022	0.009 0.026	0.008

Table A-14. Metropolitan Statistical Area Air Quality Trends, 1989-1998 (continued)

Metropolit	an Statistical Area	Trend	#Trend	1989 Sites	1990	1991	1992	1993	1994	1995	1996	1997	7 1998
YOUNGSTO	WN-WARREN, OH			ALL COMMUNICATION OF CO.			***********		en fem den				A STATE OF THE STA
O ₃	4TH MAX 8-HOUR	NS	1	0.09	0.09	0.08	0.10	0.09	0.08	0.08	0.10	0.00	0.00
ŭ	2ND DAILY MAX 1-HOUR	NS	i	0.11	0.10	0.12	0.10	0.03	0.00	0.08	0.10	0.09	0.08
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	9	34	31	33	29	27	29	28	26	0.10 25	0.11 27
	90TH PERCENTILE	DOWN	9	55	53	55	49	49	49	48	39	43	47
SO,	ARITHMETIC MEAN	DOWN	ž	0.016	0.016	0.016	0.013	0.011	0.011	0.010	0.009	0.008	0.008
-	2ND MAX 24-HOUR	NS	2	0.043	0.053	0.048	0.056	0.063	0.051	0.010	0.009	0.008	0.008
YUBA CITY,	CA			0.0-10	0.000	0.040	0.000	0.003	0.031	0.036	0.044	0.037	0.030
O ₃	4TH MAX 8-HOUR	NS	2	0.08	0.08	0.08	0.08	0.09	0.08	0.08	0.09	0.09	0.07
•	2ND DAILY MAX 1-HOUR	NS	2	0.09	0.10	0.10	0.00	0.11	0.00	0.08	0.09	0.09	0.07
PM ₁₀	WEIGHTED ANNUAL MEAN	DOWN	- - 1	39	39	39	34	30	34	33	29	29	0.10 23
	90TH PERCENTILE	DOWN	i	60	60	73	57	59	54 51	68	50	48	23 44

CO Highest second maximum non-overlapping 8-hour concentration (Applicable NAAQS is 9 ppm)

Pb Highest quarterly maximum concentration (Applicable NAAQS is 1.5 μ g/m3)

NO₂ Highest arithmetic mean concentration (Applicable NAAQS is 0.053 ppm)

 O_3 (1-hr) = O_3 (8-hr) = PM_{10} = SO_2 = Highest second daily maximum 1-hour concentration (Applicable NAAQS is 0.12 ppm)
Highest fourth daily maximum 8-hour concentration (Applicable NAAQS is 0.08 ppm)
Highest second maximum 24-hour concentration (Applicable NAAQS is 150 µg/m3)
Highest second maximum 24-hour concentration (Applicable NAAQS is 0.14 ppm)

PPM Units are parts per million

μg/m³ Units are micrograms per cubic meter

Table A-15. Number of Days with AQI Values Greater Than 100 at Trend Sites, 1989–1998, and All Sites in 1998

Metropolitan Statistical Area	# of Trend Sites	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	i	> 100
AKRON, OH	5	15	9	30	8	10	8	12	11	6	14	6	14
ALBANY-SCHENECTADY-TROY, NY	7	4	4	9	5	5	6	3	4	3 .	2	13	2
ALBUQUERQUE, NM	21	8	8	5	0	0	1	0	0	0	0	25	0
ALLENTOWN-BETHLEHEM-EASTON, PA	9	11	10	14	3	6	10	17	6	13	18	9	18
ATLANTA, GA	7	14	42	23	18	30	12	33	21	26	43	18	60
AUSTIN-SAN MARCOS, TX	5	4	4	3	1	2	4	12	0	0	5	5	6
BAKERSFIELD, CA	7	113	97	109	100	97	98	104	109	55	75	16	78
BALTIMORE, MD	15	28	29	50	23	48	41	36	28	30	51	22	51
BATON ROUGE, LA	6	.12	28	11	5	5	7	15	7	8	14	10	21
BERGEN-PASSAIC, NJ	8	12	8	11	2.	3	5	11	3	5	0	8	0
BIRMINGHAM, AL	16	5	28	5	12	10	6	32	15	8	23	16	23
BOSTON, MA-NH	25	12	7	13	9	6	10	8	2	8.	. 7	25	9
BUFFALO-NIAGARA FALLS, NY	21	4	8	9	3	1	4	6	. 3	1	13	21	13
CHARLESTON-NORTH CHARLESTON, SC	9	5	1	2	0	2	2	1	3	3	3	9	3
CHARLESTON-NORTH CHARLESTON, 30 CHARLOTTE-GASTONIA-ROCK HILL, NC-S		12	31	12	11	23	9	13	18	26	48	26	51
CHICAGO, IL	46	16	4	22	4	3	8	21	6	9	7	61	10
CINCINNATI, OH-KY-IN	20	19	19	22	3	13	19	23	11	11	14	23	20
CLEVELAND-LORAIN-ELYRIA, OH	24	18	10	23	11	13	23	24	17	11	20	40	22
	10	7	4	17	5	7	10	15	16	8	19	12	23
COLUMBUS, OH	. 8	18	24	2	11	12	15	36	12	15	18	11	36
DALLAS, TX DAYTON-SPRINGFIELD, OH	10	10	13	12	2	11	14	11	18	9	19	13	21
	20	14	9	6	8	3	1	2	0	0	5	29	9
DENVER, CO	30	18	11	- 28	8	5	13	14	13	12	17	32	17
DETROIT, MI	17	25	19	7	10	7	11	5	7	3	5	22	8
EL PASO, TX	8	6	1	0	2	4	1	1	-1	0	1	18	
FORT LAUDERDALE, FL	8	17	16	20	7	9	31	28	14	14	17	8	- 13
FORT WORTH-ARLINGTON, TX	_	91	62	83	69	59	55	61	70	75	67	15	69
FRESNO, CA	11	15	2	8	· 5	0	6	17	11	12	9	22	10
GARY, IN	18	1	10	26	6	3	12	17	7	8	13	10	19
GRAND RAPIDS-MUSKEGON-HOLLAND, M		16		5	2	20	7	6	6	13	25	16	30
GREENSBORO-WINSTON-SALEM-HIGH PT,		6 3	12 2	3	5	9	5	8	7	10	29	7	29
GREENVILLE-SPARTANBURG-ANDERSON,		-		21	1	15	12	13	3	9	22	7	2
HARRISBURG-LEBANON-CARLISLE, PA	7	10	10		15	14	18	14	5	16	10	15	1
HARTFORD, CT	15	19	13	23 0	0	0	0	0	0	0	0	14	
HONOLULU, HI	6	0	0 54	37	32	28	45	66	28	47	38	26	4
HOUSTON, TX	26	43		12	32 7	20 9	22	19	13	12	19	37	2
INDIANAPOLIS, IN	29	15	9	0	2	3	2	1	1	4	10	15	1
JACKSONVILLE, FL	15	4	3	25	9	19	12	16	5	9	7	7	·
JERSEY CITY, NJ	7	15	15				10	22	10	18	, 15	22	1
KANSAS CITY, MO-KS	21	4	2	11	1	4		20	19	36	52	18	5
KNOXVILLE, TN	14	2	23	10	7	20	13	1	. 5	0	0	28	1
LAS VEGAS, NV-AZ	6	36	21	8	4	6	8 2	7	1	1	2	7	'
LITTLE ROCK-NORTH LITTLE ROCK, AR	7	1	1	3	175	124		113	94	ا 60	56	38	5
LOS ANGELES-LONG BEACH, CA	38	215	173	169	175	134	139	21	10	13	24	26	2
LOUISVILLE, KY-IN	18	15	10	15	2	20	27	4.1	19	17	2 4 27	14	
MEMPHIS, TN-AR-MS	13	8	24	9	14	15	10	21				12	, 2
MIAMI, FL	10	5	1	1	3	6	1	2	1	3	8	12	2
MIDDLESEX-SOMERSET-HUNTERDON, N.		19	24	24	8	13	.9	16	8	18	21	1	
MILWAUKEE-WAUKESHA, WI	18	17	٠ 8	24	3	4	9	14	5	4	10	22	1

Table A-15. Number of Days with AQI Values Greater Than 100 at Trend Sites, 1989–1998, and All Sites in 1998 (continued)

	Trend Sites	1989	1990	1991			1994			1997	1998	1	AQI > 10 1998
MINNEAPOLIS-ST. PAUL, MN-WI	24	8	4	2	3	0	4	7	1	0	0	37	
MONMOUTH-OCEAN, NJ	3	15	. 21	20	6	11	3	6	12	12	19	4	31
NASHVILLE, TN	17	12	31	13	6	18	21	28	23	20	30	21	32
NASSAU-SUFFOLK, NY	4	14	20	25	5	1.5	10	9	6	8	10	- 8	11
NEW HAVEN-MERIDEN, CT	10	11	17	29	10	17	14	14	- 8	19	10	10	10
NEW ORLEANS, LA	11	4	6	2	5	6	8	20	8	7	7	11	7
NEW YORK, NY	29	29	36	49	10	19	21	19	15	23	17	39	21
NEWARK, NJ	12	21	23	35	10	13	13	20	12	13	23	12	23
NORFOLK-VA BEACH-NEWPORT NEWS,VA-N	VC 12	4	8	7	8	19	- 6	6	4	17	15	12	23 15
DAKLAND, CA	20	6	4	4	3	4	3	12	11	0	11	29	
OKLAHOMA CITY, OK	10	4	4	4	2	2	5	13	2	4	7		12
OMAHA, NE-IA	9	1	1	0	0	1	1	1	1			14	7
DRANGE COUNTY, CA	11	56	45	35	35	25	15	9	9	0	5	12	5
ORLANDO, FL	9	9	4	1	4	25 4	3	1	9	3 4	6	11	6
PHILADELPHIA, PA-NJ	36	44	39	49	24	51	3 26				11	13	14
PHOENIX-MESA, AZ	23	30	12	11	13	16		30	22	32	37	44	38
PITTSBURGH. PA	41	21	19	21			10	22	17	12	17	49	37
PONCE, PR	1	0	19	0	9	13	19	25 .	11	20	39	53	39
PORTLAND-VANCOUVER, OR-WA	12	2	11	-	0	0	0	0	0	0	0	1	0
PROVIDENCE-FALL RIVER-WARWICK, RI-M		9		8	6	0	2	2	6	0	3	17	3
RALEIGH-DURHAM-CHAPEL HILL, NC	1	-	13	20	5	7	7	11	4	10	4	13	5
RICHMOND-PETERSBURG, VA	4	14	15	5	0	11	2	1	1	13	21	18	40
RIVERSIDE-SAN BERNARDINO, CA	10	11	6	18	8	30	13	19	5	21	28	11	28
ROCHESTER, NY	35	187	158	154	174	168	149	124	119	106	94	51	96
SACRAMENTO, CA	8	5	5	16	2	0	1	6	0	6	4	8	4
ST. LOUIS, MO-IL	13	63	36	54	44	14	30	32	30	5	17	33	33
•	54	25	23	32	15	, 9	32	34	20	15	23	63	24
ALT LAKE CITY-OGDEN, UT	12	21	5	20	9	5	13	4	8	1	12	23	19
AN ANTONIO, TX	.7	3	4	3	1	3	4	18	3	3	6	7	6
AN DIEGO, CA	23	127	96	67	66	58	46	48	31	14	33	28	35
AN FRANCISCO, CA	9	0	0	0	0	0	0	2	0	0	0	11	0
AN JOSE, CA	8	18	7	11	3	4	2	10	7	0	5	11	. 8
AN JUAN-BAYAMON, PR	10	0	0	0	0	0	0	0	1 .	2	1	27	1
CRANTON-WILKES-BARRE-HAZLETON, PA	11	6	9	17	3	10	7	12	4	11	7	11	7
EATTLE-BELLEVUE-EVERETT, WA	16	6	9	4	3	0	3	0	6	1	3	26 .	3
PRINGFIELD, MA	13	10	13	15	12	13	12	9	5	10	7	13	. 7
YRACUSE, NY	6	2	1	11	2	4	0	1	0	0	2	8	3
ACOMA, WA	7	3	5	1	. 2	0	2	0	1	0	4	9	4
AMPA-ST. PETERSBURG-CLEARWATER, FL	22	4	6	1 1	1	1	3	2	3	4	11	32	11
OLEDO, OH	6	8	3	6	2	. 7	9	9	11	4	5	6	6
USCON, AZ	20	-2	1	0	1	1	1	3	0	1	0	25	0
ULSA, OK	11	5	16	12	, 1	4	12	21	14	7	9	11	9
ENTURA, CA	12	87	70	87	54	37	63	65	62	44	29	15	30
ASHINGTON, DC-MD-VA-WV	32	24	25	48	14	48	20	29	18	29	45	46	47
EST PALM BEACH-BOCA RATON, FL	6	1	0	0	0	3	0	0	0	0	2	9	2
ILMINGTON-NEWARK, DE-MD	5	12	9	12	7	10	5	12	3	6	8	10	28
OUNGSTOWN-WARREN, OH	9	8	3	14	5	2	0	11	5	3	15	15	22
	1	-			-	_	•	• •	J	J	13	10	44
	1										l		

Table A-16. (Ozone only) Number of Days with AQI Values Greater Than 100 at Trend Sites, 1989–1998, and All Sites in 1998

Metropolitan Statistical Area	# of Trend Sites	1989	1980	1990	1992	1992	1993	1995	1996	1995	1998		AQI > 100 1998
AKRON, OH	2	15	9	30	8	10	8	12	11	6	14	2	14
ALBANY-SCHENECTADY-TROY, NY	3	4	4	9	5	5	6	3	4	3	2	3	2
ALBUQUERQUE, NM	7	0	2	0	0	0	1	, 0	0	0	0	9	0
ALLENTOWN-BETHLEHEM-EASTON, PA	3	11	10	14	3	6	9	17	6	13	18	3	18
ATLANTA, GA	2	14	42	23	18	30	12	33	21	26	43	7	60
AUSTIN-SAN MARCOS, TX	2	4	4	3	1	2	4	12	0	0	5	2	6
BAKERSFIELD, CA	5	111	95	107	100	97	98	104	109	55	75	8	76
BALTIMORE, MD	7	28	28	50	23	48	40	36	28	30	51	8	51.
BATON ROUGE, LA	3	12	28	11	5	5	7	15	7	8	14	7	21
BERGEN-PASSAIC, NJ	1	10	8	11	2	3	5	11	3	5	0	1	0
BIRMINGHAM, AL	6	5	28	5	12	10	6	32	15	8	23	6	23
BOSTON, MA-NH	4	12	7	13	9	6	10	8	2	8	7	5	9
BUFFALO-NIAGARA FALLS, NY	2	4	, 7	9	3	1	4	6	3	1	13	2	13
CHARLESTON-NORTH CHARLESTON, SC	3	5	1	1	0	2	2	1	3	3	3	3	3
CHARLOTTE-GASTONIA-ROCK HILL, NC-S	_	12	29	. 12	11	23	. 9	13	18	26	48	7	51
	17	15	3	22	4	3	7	21	6	9	7	22	10
CHICAGO, IL	7	19	19	22	3	13	19	23	11	11	14	8	20
CINCINNATI, OH-KY-IN	6	17	10	23	10	12	22	21	17	11	19	9	21
CLEVELAND-LORAIN-ELYRIA, OH	3	7	4	17	5	7	10	15	16	8	19	5	23
COLUMBUS, OH	2	18	24	2	11	12	15	36	12	15	18	6	36
DALLAS, TX	3	10	13	12	2	11	14	11		9	19	5	21
DAYTON-SPRINGFIELD, OH	5 5	5	4	0	1	0	0	0	0	0	5	8	9
DENVER, CO	8	18	11	28	7	5	11	12	12	12	17	8	17
DETROIT, MI	3	5	6	1	3	3	7	5	2	1	5	4	6
EL PASO, TX	3	6	1	. 0	2	4	1	1	1	0	1	3	1
FORT LAUDERDALE, FL	2	17	16	20	7	9	31	28	14	14	17	2	17
FORT WORTH-ARLINGTON, TX	5	89	56	20 81	69	59	55	61	70	75	67	7	69
FRESNO, CA	3	15	2	8	5	0	6	17	11	11	9	4	10
GARY, IN	_	16	10	26	6	3	12	17	7	8	13	5	19
GRAND RAPIDS-MUSKEGON-HOLLAND, N		4	12	5	2	20	7	6	6	13	25	6	30
GREENSBORO-WINSTON-SALEM-HIGH P		1		3	5	9	5	8	7	10	29	4	29
GREENVILLE-SPARTANBURG-ANDERSON,		3	2		1	15	12	13	3	9	22	3	22
HARRISBURG-LEBANON-CARLISLE, PA	3	10	10	21	14	14	18	13	5	16	10	3	10
HARTFORD, CT	3	18	13	21 0	0	0	0	0	0	0	0	1	0
HONOLULU, HI	1	0	0	_		_	45	66	28	47	38	12	40
HOUSTON, TX	10	43	54	37	32	28 9	22	19	13	12	19	9	22
INDIANAPOLIS, IN	6	15	9	11	6	3	22	1	1	4	10	2	10
JACKSONVILLE, FL	2	4	3	0	2	_	12	16	5	9	7	1	. 7
JERSEY CITY, NJ	1	15	15	25	9	19				-	15	6	15
KANSAS CITY, MO-KS	6	4	2	11	1	3	10	22	9	18 36	52	7	54
KNOXVILLE, TN	4	2	23	10	7	20	13	20	19	36 0	52 0	4	3
LAS VEGAS, NV-AZ	3	2	2	0	1	2	2	0	2	1	2	2	2
LITTLE ROCK-NORTH LITTLE ROCK, AR	2	1	1	3	0	2	2	7	1		46	14	· 46
LOS ANGELES-LONG BEACH, CA	14	149	130	126	140	. 112	117	97	74	45		7	29
LOUISVILLE, KY-IN	4	13	10	15	2	19	27	21	10	13	24	1 .	
MEMPHIS, TN-AR-MS	4	6	22	9	13	13	10	21	18	17	27	4	27
MIAMI, FL	4	5		1	3	6	1	2	1	3	8	4	8
MIDDLESEX-SOMERSET-HUNTERDON, N		19		24	8	13	9	16	8	18	21	2	22
MILWAUKEE-WAUKESHA, WI	8	17	8	24	3	4	9	14	5	. 4	10	9	12

Table A-16. (Ozone only) Number of Days with AQI Values Greater Than 100 at Trend Sites, 1989–1998, and All Sites in 1998 (continued)

Metropolitan Statistical Area	# of Trend Sites	1989	1990	1991	1992	1993	1994	1995	1996	1007	1000	1	> 100
	OILES	1303	1330	1991			1994		1996	1997	1998	Sites	1998
MINNEAPOLIS-ST. PAUL, MN-WI	4	1	1	0	2	0	0	4	1	0	0	5	1
MONMOUTH-OCEAN, NJ	1	15	21	20	6	11	3	6	12	12	19	2	31
NASHVILLE, TN	7	10	31	13	6	18	21	28	23	20	30	7	32
NASSAU-SUFFOLK, NY	1	14	20	25	5	15	10	9	6	8	10	2	11
NEW HAVEN-MERIDEN, CT	2	11	15	28	10	13	13	14	8	19	10	2	10
NEW ORLEANS, LA	6	4	6	2	5	6	8	20	8	7	7	6	7
NEW YORK, NY	5	24	33	47	10	19	21	18	15	23	17	7	21
NEWARK, NJ	2	20	22	32	10	13	12	20	12	13	23	2	23
NORFOLK-VA BEACH-NEWPORT NEWS, VA-1	VC 3	4	8	7	8	19	6	6	4	17	15	3	15
OAKLAND, CA	8	6	4	3	3	4	3	12	11	0	11	9	12
OKLAHOMA CITY, OK	4	4	4	4	2	2	5	13	2	4	7	4	7
OMAHA, NE-IA	3	0	1	0	0	0	0	0	. 0	0	0	3	0
ORANGE COUNTY, CA	4	43	38	35	35	25	15	8	9.	3	6	4	6
ORLANDO, FL	3	9	4	1	4	4	3	1	1	4	11	4	14
PHILADELPHIA, PA-NJ	8	42	39	49	24	51	25	30	22	32	37	10	37
PHOENIX-MESA, AZ	8	4	7	7	11	16	7	19	17	10	17	18	33
PITTSBURGH, PA	8	14	11	20	8	13	19	24	11	20	39	11	39
PONCE, PR	0	0	0	0	ō	0	0	0	0	0	0	1 6	0
PORTLAND-VANCOUVER, OR-WA	4	0	8	3	6	0	1	2	6	0	3	4	3
PROVIDENCE-FALL RIVER-WARWICK, RI-M		9	13	20	5	7	. 7	11	4	10	4	3	5 5
RALEIGH-DURHAM-CHAPEL HILL, NC	1	10	15	5	0	11	2	1	1	13	21	8	40
RICHMOND-PETERSBURG, VA	4	11	6	18	8	30	13	19 .	5	21	28	4	
RIVERSIDE-SAN BERNARDINO, CA	15	180	153	152	172	167	148	119	116	102	26 94	19	28 96
ROCHESTER, NY	2	5	5	16	2	0	1	6	0	6	4	2	96 4
SACRAMENTO, CA	6	30	17	44	43	14	30	32	30	5	17	12	33
ST. LOUIS, MO-IL	16	21	23	32	15	9	31	34	20	14	23	17	33 24
SALT LAKE CITY-OGDEN, UT	2	14	5	3	0	2	4	4	6	1	23 12	7	. 19
SAN ANTONIO, TX	2	3	4	3	1	3	4	18	3	3	6	2	
SAN DIEGO, CA	9	122	96	67	66	58	46	48	31	14	33	10	6
SAN FRANCISCO, CA	3	0	0	0	0	0	- 0	2	0	0	0	1	35
SAN JOSE, CA	4	7	4	5	3	4	2	10	7	0	5	3	0
SAN JUAN-BAYAMON, PR	0	0	0	0	0	0	0	0	0	0	0.	6	8
SCRANTON-WILKES-BARRE-HAZLETON, PA		6	9	17	. 3	10	7	12	4	11	7	-1	0
SEATTLE-BELLEVUE-EVERETT. WA	2	0	7	3	3	0	3.	. 0	6	·1	3	4	7 3
SPRINGFIELD, MA	4	10	13	15	12	13	12	9	4	10		. 4	
SYRACUSE, NY	1	0	0	11	2	4	0	1	0		7	4	7
TACOMA, WA	1	0	4	0	2	0	2	0		0	2	2	3
TAMPA-ST. PETERSBURG-CLEARWATER, F		4	6	1	1	1	3		1	0 -	4	2.	4
TOLEDO, OH	3	8	3	6	2	7	-	2	3	4	11	7	11
TUSCON, AZ	6	_					9	9	11	4	5	3	6
rulsa, ok	3	0 5	1	0	1	1	1	3	0	1	0	6	0
VENTURA, CA	ა 5	87	16 70	12	1	4	12	21	14	7	9	3	9
WASHINGTON, DC-MD-VA-WV	12		70 25	87 40	54	37	63	65	62	43	29	7	30
WEST PALM BEACH-BOCA RATON, FL	1	23	25	48	14	48	20	29	. 18	29	45	17	47
	2	1	0	0	0	3	0	0	0	0 -	2	2	2
WILMINGTON-NEWARK, DE-MD YOUNGSTOWN-WARREN, OH	1	12	9	12	7	10	5	12	. 3	6	8	4	28
JOINGS TOWN-WARREN, OH	1	8	3	14	5	2	0	11	5	3	15	3	22
					4			-					
t .	1												

Table A-17. Condensed Nonattainment Areas List(a)

				Р	ollutan				Population(d)					
	State	Area Name(b)	O ₃	со	SO ₂	PM ₁₀	Pb	NO ₂	O ₃	co	SO ₂	PM ₁₀	Pb	All
1	AK	Anchorage		1		1				222		170		222
2	AK	Fairbanks		1						30				30
	AK	Juneau				1						12		1:
	AL	Birmingham	1						751			•		75
	AZ	Ajo			1	1.			٠.	•	6	6		1
	AZ	Bullhead City				1						5		
	AZ	Douglas			1	1		•			13	13		1
	AZ	Miami-Hayden			2	1					3	3		
	AZ	Morenci			1						8			
	AZ	Nogales				1						19		.1
	AZ	Paul Spur				1						1		
	AZ	Payson		_	_	1						8		
	AZ	Phoenix	1	1		1			2,092	2,006	٠.	2,122		2,12
	AZ	Rillito	•	•		1			<i>'</i>			0		
	AZ	San Manuel	•	•	1						5			
	AZ. AZ	Yuma	•	•	•	1	•					54		5
	CA	Imperial Valley	•	•	•	1	•	•	•	•	-	92		. 9
		Los Angeles-South Coast Air Basin	1	1	•	- 1	•	•	13,000	13.000	•	13,000	•	13,00
	CA		1		•	1		•	10,000	10,000	•	0	•	,0,00
	CA	Mono Basin (in Mono Co.)	•	•	•	- 1	•	•	•	•	•	18	•	1
	CA	Owens Valley	:	•	•		•	•	1,639	•	•	1,041	•	1,63
	CA	Sacramento Metro	1	•	•	!	•	•				1,041	•	2,49
	CA	San Diego	1	•	•	•	٠,	•	2,498	•	•	•	•	
23	CA	San Francisco-Oakland-San Jose	1	•	•	•	•	•	5,815	•	•		•	5,81
	CA	San Joaquin Valley	1	•	•	1	•	•	2,742	•	•	2,742		2,74
25	CA	Santa Barbara-Santa Maria-Lompoc	1		•	•	•	•	370	•	•		•	37
26	CA	Searles Valley	•	•	•	1	•		•	•		30	•	3
27	CA	Southeast Desert Modified AQMA	1	•	•	2			384	•	. •	349	٠	38
28	CA	Ventura Co.	1	•		• .			669	•	•	•	•.	66
29	CO	Aspen				1				•		5		
30	co	Canon City				1					. •	12	•	1
31	co	Colorado Springs		1						353				35
32	co	Denver-Boulder		1		1				1,800		1,836		1,83
33	CO	Fort Collins		1						106				10
34	CO	Lamar				1						8		
35	CO	Longmont		1						52				
36	CO	Pagosa Springs				1						1		
37	CO	Steamboat Springs				1						6		
38	co	Telluride				1						1		
39	CT	Greater Connecticut	1			1			2,470			126		2,47
40	DC-MD-VA	Washington	•	•	·				3,923					3,92
41	GA GA	Atlanta	1	•	•	•	•	•	2,653					2,6
	GU	Piti Power Plant	•	•	1	•	•	•	2,000	•	0			_,-
12			•	•	1	•	•	•	•	•	0	•	•	
43	GU	Tanguisson Power Plant	•	•		· •	•	•		•	v	26	•	2
44	ID	Bonner Co.(Sandpoint)	•	•		। न		•	٠	•	•	1	•	-
45	ID .	Fort Hall I.R.	•	•	•	ا	•	•	•	•	•		•	
46	ID	Portneuf Valley	•	•	•	1	•	•	•	•	•	74		
47	ID	Shoshone Co.	•	•	•	2		•		•		13	•	7.0
48	IL-IN	Chicago-Gary-Lake County	1		1	3 .	•		7,887		475	625		7,88
49	IN	Marion Co. (Indianapolis)	•	•	•	•	1	•			_ •	•	16	
50	KY	Boyd Co. (Ashland)			1	•	•	•		•	51	•		5
51	KY-IN	Louisville	1			•			834					83

Table A-17. Condensed Nonattainment Areas List(a) (continued)

52 53 54	State	Area Name(b)	O³		ollutan			*			Populati			
53			- 3	СО	SO ₂	PM ₁₀	Pb	NO ₂	O ₃	со	SO ₂	PM ₁₀	Pb	All
	: LA	Baton Rouge	1		•				559			- Allendarine	_	559
54	MA	Springfield (W. Mass)	1						812		-	-	•	812
0-	MD	Baltimore	1				-		2,348	•	•	•	•	2,348
55	MD	Kent and Queen Anne Cos.	1						52	_	•		•	52
56	MN	Minneapolis-St. Paul		1		1				2,310		272		2,310
57	MN	Olmsted Co. (Rochester)			1		-			_,0.0	71	_,_,	•	71
58	МО	Dent					1			•		•	3	3
59	MO	Liberty-Arcadia				_	1			•	•	•	2	2
60	MO-IL	St. Louis	1				1	•	2,390	•	•	•	2	2,390
61	MT .	Butte				1	•	•	2,000	•	•	33		33
62		Columbia Falls	Ī		·	1	•	•	•	•	•	3	•	3
63		Kalispell	•	•	•	1	•	•	•	•	•	12		12
64		Lame Deer	•	:	•	1		•	•		•	1	•	1
65		Lewis & Clark (E. Helena)	•	•	1	•	1	•	•	•	2	1	2	
66		Libby	•	•		1	'	•	•	•	2	3	2	2
67	MT	Missoula	•		•	1	•	•	•	43	•	. 43	•	3
68		Polson	•		• •	1	•	•	•	43	•		•	43
69		Ronan	•	•	٠.•		•	•	•	•	•	3	•	3
70		Thompson Falls	•	•	•	- 1	•	•	•	•	•	2	•	2
71	MT	Whitefish	•	•	•	1	•	•	•	•	•	1		1
72		Yellowstone Co. (Laurel)	•	•	1	'	•	•	. •	•		3	•	3
73		Douglas Co. (Omaha)	•	•	. '	•		•	•	•	5	•		5
74		Anthony	•	•	٠		1	•	•	•	•		. 1	1
75		Grant Co.	•	• •		1	•	-	•	•		2	•	2
76	NM	Sunland Park	•		1	•	•	•		•	28	•	-	28
77	NV	Central Steptoe Valley	J	•	1	•	•	•	. 8	•		•	•	8
78		Las Vegas	•	1	1 .		•	•			2		•	2
79	NV		•			1	•	•	•	258	•	741	•	741
80	NY-NJ-CT	Reno New York-N. New Jersey-Long Island	•	1	•	1	• '			134	• .	254	•	254
81	OH	Cleveland-Akron-Lorain	1	1		1	•	•	17,943	12,338		1,488		17,943
82		Coshocton Co.	•	•	2	1	•	•	•	•	1,683	1,412	•	1,683
83	ОН	Gallia Co.	•	•	1	•		•	•	•	35	•	•	35
84	OH		•	•	1		. •	•	•	•	31	•	•	31
85	OH	Jefferson Co. (Steubenville) Lucas Co. (Toledo)	•	•	1	1	•	•	•	•		4	•	4
86	OH-KY			•	. 1	•	•	•			462	•	•	462
87	OR-K1	Cincinnati-Hamilton Grants Pass	1		•		•	•	1,705		•			1,705
88	OR	Klamath Falls	•	1	•	1	•	•	•	17	•	17	-	17
89	OR		•	1	•		•	•	. •	18	•	18	•	18
90	OR	LaGrande Lakeview	•	•	•	1		•	•		•	12	•	12
٠.		·	•		: .	1	•	•	•		•	3	•	3
91 92	OR OR	Medford Oakridge	•	ı	•	1	•	•	•	62	•	63	•	63
93	OR	•	•	•	•	1	•	•	•	•	•	3	•	3
93	PA PA	Springfield-Eugene Lancaster		•	•	1	•	÷		•	• -	157	•	157
94	PA ·	Pittsburgh-Beaver Valley	1	•			•	•	423				•	423
96	PA PA	Warren Co	1	٠	2	1	•	•	2,468		446	75	•	2,468
				•	2	• .	•	•			22	•	•	22
97 98	PA-DE-NJ-M	IDPhiladelphia-Wilmington-Trenton Allentown-Bethlehem	1	•				•	6,010	•		-	•	6,010
	PA-NJ PR		•	•	1		•	•	•	•	91		. •	91
99		Guaynabo Co.	•	•	•	1	•	•	•	•		85		85
	TN	Shelby Co. (Memphis)		•	•	•	1 .	•			•	•	826	826
	I TX	Beaumont-Port Arthur	1	•	•	•	•	•	361		• •	•	•	361
10	2 TX	Dallas-Fort Worth	1	•	•	•	1	•	3,561	•	•	•	264	3,561

Table A-17. Condensed Nonattainment Areas List(a)

	State	Area Name(b)	O ₃	Po CO	ollutan SO ₂	t(c) PM ₁₀	Pb	NO ₂	O ₃	co	opulat SO ₂	tion(d) PM ₁₀	Pb	All
103	TV	El Paso	1	1		1	•		592	54	•	515	•	592
103		Houston-Galveston-Brazoria	1	·	-				3,731					3,731
105		Ogden	·	1	-	1				63		63		63
106		Salt Lake City	•		1	1					725	725		725
107		Tooele Co.	•	•	1						26			26
108		Ulah Co. (Provo)	•	1	•	1				85		263		263
109		Olympia-Tumwater-Lacey	•	•		1						63		63
110		Seattle-Tacoma	•	•	•	3						730		730
111		Spokane	•	1	•	1				279		177		279
		Wallula	•	•	•	1	•					47		47
112			•	•	•	1	•	•	:	•		54		54
113		Yakima		•	•	•	•	•	80	•	•			80
114		Manitowoc Co.	'	•		•	•	•		•	115	•	•	115
115		Marathon Co. (Wausau)		•	1	•	•	•	1,735		1,0	•	•	1.735
116		Milwaukee-Racine	1	-	:	•	•	•		•	31	•	•	3
117		Oneida Co. (Rhinelander)	٠	•	1		•	•	•	•	31	3	•	
118		Follansbee	•	•	•	1	•	•	•	•		3	•	10
119	W٧	New Manchester Gr. (in Hancock Co)	•	•	1	•	•	•	•	•	10			
120	W۷	WierButler-Clay (in Hancock Co)			1	1	•	•		•	25	22	•	2
121	WY	Sheridan				11	•	•			•	13		13
			32	20	31	77	8	0		33,230		29,804		105,106

Notes:

- (a) This is a simplified listing of Classified Nonattainment areas. Unclassified and Section 185a nonattainment areas are not included. In certain cases, footnotes are used to clarify the areas involved. For example, the lead nonattainment area listed within the Dallas-Fort Worth ozone nonattainment area is in Frisco, Texas, which is not in Dallas county, but is within the designated boundaries of the ozone nonattainment area. Readers interested in more detailed information should use the official Federal Register citation (40 CFR 81).
- (b) Names of nonattainment areas are listed alphabetically within each state. The largest city determines which state is listed first in the case of multiple-city nonattainment areas. When a larger nonattainment area, such as ozone, contains 1 or more smaller nonattainment areas, such as PM₁₀ or lead, the common name for the larger nonattainment area is used. Note that several smaller nonattainment areas may be inside one larger nonattainment area, as is the case in Figure A-1. For the purpose of this table, these are considered one nonattainment area and are listed on one line. Occasionally, two nonattainment areas may only partially overlap, as in Figure A-2. These are counted as two distinct nonattainment areas and are listed on separate lines.
- (c) The number of nonattainment areas for each of the criteria pollutants is listed.
- (d) Population figures were obtained from 1990 census data. For nonattainment areas defined as only partial counties, population figures for just the nonattainment area were used when these were available. Otherwise, whole county population figures were used. When a larger nonattainment area encompasses a smaller one, double-counting the population in the "All" column is avoided by only counting the population of the larger nonattainment area.
- (e) Lead nonattainment area is a portion of Franklin township, Marion county, Indiana.
- (f) Sulfur dioxide nonattainment area is a portion of Boyd county.
- (g) Lead nonattainment area is Herculaneum, Missouri in Jefferson county.
- (h) Lead nonattainment area is a portion of Lewis and Clark county, Montana.
- (i) Ozone nonattainment area is a portion of Dona Ana county, New Mexico.
- (j) Lead nonattainment area is a portion of Shelby county, Tennessee.
- (k) Lead nonattainment area is Frisco, Texas, in Collin county.

Table A-17. Condensed Nonattainment Areas List(a) (continued)

Figure A-1. (Multiple NA areas within a larger NA area) Two SO₂ areas inside the Pittsburgh—Beaver Valley ozone NA. Counted as one NA area.

Figure A-2. (Overlapping NA areas) Searles Valley PM_{10} NA partially overlaps the San Joaquin Valley ozone NA. Counted as two NA areas.

Table A-18. Trend in 8-hr ozone concentrations at National Park and National Monument sites, 1989–98

National Park	Trend	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	
Acadia NP	NS	0.076	0.089	0.095	0.080 1	0.080	0.075 0	0.092 5	0.073 2	0.077	nd nd	
Big Bend NP	UP	2 nd	4 nd	7 0.057	0.061	3 0.063	0.069	0.065	0.073	0.063	0.07	
Brigantine	NS	nd 0.102	nd 0.109	0 0.111	0 0.094	0 0.093	0 0.083	0 0.1	0 0.095	0 0.106	0.091	
Cape Cod NS	NS	13 0.104	17 0.097	34 0.111	8 0.096	13 0.088	2 0.088	10 0.105	13 0.096	18 0.1	22 0.084	
Cape Romain	UP	10 0.064	9 nd	16 0.06	6 0.072	4 0.069	4 0.067	9 0.075	8 0.071	17 0.082	2 0.076	
Chiricahua NM	NS	1 0.066	nd 0.069	0 0.071	0 0.065	0 0.068	0 0.071	0.059	0.072	3 0.065	0.067	
Congaree Swamp	UP	0 nd	0 nd	0.059	0.067	0.063	0.064	0.076	0.074	0.065	0.081	
Cowpens NB	UP	nd 0.081	nd 0.074	0 0.078	0.086	0.082	0.083	0.084	0.080	0.091	0.096	
Denali NP	UP	0.046	0.048	0.049	0.05	0.048	. 0.049	0.053	0.053	6 0.051	15 0.054	
Everglades NP	NS	0.067	0.060	0.060	0.061	0 0.064	0 0.064 0	0.058	0 0.063 0	0 0.066 0	0 0.072 0	:
Glacier NP	NS	0.056	0.050	0.051	0 0.051 0	0 0.044 0	0.055 0	0 nd nd	0.057	0.040 0	0.053	
Grand Canyon NP	NS	0.065	0 0.072 0	0 0.073 0	0.074 0	0.066 0	0.073 0	nd nd	0.073	0.072 0	0.072	
Great Smoky Mtn	UP	0 0.083 2	0.092 5	0.079 2	0.088 5	0.088	0.093 10	0.099 11	0.088 8	0.098 19	0.11 35	
Great Smoky Mtn	UP	0.079 0	0.087 4	0.082	0.075 0	0.089 7	0.088	0.093	0.092 12	0.095 20	0.106 34	
Lassen Volcanic	NS	0.073 0	0.078 1	0.066	0.069	0.064 0	0.078	0.074	0.073	0.067	0.078 1	
Mammoth Cave NP	NS	0.084	0.083	0.078	0.073	0.072 0	0.075	0.088 5	0.082	0.078	nd nd	
Olympic NP	NS	0.044	0.046	0.043	0.046	0.042	0.042	0.049	0.046	0.045	0.046	
Pinnacles NM	NS	0.080	0.083	0 0.084	0 0.084	0.060	0 0.078	0.083	0.094	0 0.076	0.08 <u>8</u>	
Rocky Mountain	UP	0.067	0.057	3 0.076	3 0.071	0 0.071	0 0.076	3 0.076	9 0.072	1 nd	5 0.080	
Saguaro NM	NS	0 0.072	0 0.075	0 0.073	0 0.074	0.082	0.080	0 0.083	0 0.076	nd 0.079	0.077	
Sequoia/Kings C	NS	0.093	0.096	0 0.097	1 0.102	0.106	0.106	0.095	0 0.105	0.097	0.094	
Shenandoah NP	UP	29 0.072	27 0.086	34 0.083	50 0.077	48 0.083	58 0.083	18 0.087	50 0.081	26 0.089	26 0.107	
Theodore Roosevelt	NS	0 0.065	4 0.062	3 0.060	0.057	0.055	2 0.057	7 0.058	0.059	0.071	22 inc	
Yosemite NP	NS	0 0.085 4	0 0.094 19	0 0.080 1	0 0.084 3	0 0.078 0	0 0.077 0	0 0.084 2	0 0.081 1	0 nd nd	0 nd nd	

Notes:

^{1.} The trends statistic is the annual fourth highest daily maximum 8-hour ozone concentration (ppm). The number of exceedances of the level of the 8-hour ozone NAAQS is shown below the concentration value.

^{2. &}quot;nd" indicates no data available for that year.

^{3. &}quot;Inc" indicates less than 90 days of monitoring data available for that year.

^{4. &}quot;NS" indicates no statistically significant trend (at the 0.05 level).

^{5. &}quot;UP" indicates a statistically significant upward trend in ozone concentrations.

Methodology

http://www.epa.gov/oar/aqtrnd98/appendb.pdf

AIRS Methodology

The ambient air quality data presented in Chapters 2 and 3 of this report are based on data retrieved from AIRS on July 14, 1999. These are direct measurements of pollutant concentrations at monitoring stations operated by state and local governments throughout the nation. The monitoring stations are generally located in larger urban areas. EPA and other federal agencies also operate some air quality monitoring sites on a temporary basis as a part of air pollution research studies. The national monitoring network conforms to uniform criteria for monitor siting, instrumentation, and quality assurance.1,2

In 1999, 4,369 monitoring sites reported air quality data for one or more of the six NAAQS pollutants to AIRS, as seen in Table B-1. The geographic locations of these monitoring sites are displayed in Figures B-1 to B-6. The sites are identified as National Air Monitoring Stations (NAMS), State and Local Air Monitoring Stations (SLAMS), or "other." NAMS were established to ensure a long-term national network for urban area-oriented ambient monitoring and to provide a systematic, consistent data base for air quality comparisons and trends analysis. SLAMS allow state or local governments to develop networks tailored for their

immediate monitoring needs.
"Other" monitors may be Special
Purpose Monitors, industrial monitors, tribal monitors, etc.

Table B-1. Number of Ambient Monitors Reporting Data to AIRS

Pollutant	# of Sites Reporting Data to AIRS in 1998	# of Trend Sites 1989–1998
CO	511	363
Pb	306	189
- NO ₂	422	225
O ₃	1,048	661
PM ₁₀	1,436	934
SO ₂	646	482
Total	4,369	2,854

Air quality monitoring sites are selected as national trends sites if they have complete data for at least eight of the 10 years between 1989 and 1998. The annual data completeness criteria are specific to each pollutant and measurement methodology. Table B-1 displays the number of sites meeting the 10-year trend completeness criteria. Because of the annual turnover of monitoring sites, the use of a moving 10-year window maximizes the number of sites available for trends and yields a data base that is consistent with the current monitoring network.

The air quality data are divided into two major groupings: daily (24-hour) measurements and continu-

ous (1-hour) measurements. The daily measurements are obtained from monitoring instruments that produce one measurement per 24-hour period and typically operate on a systematic sampling schedule of once every six days, or 61 samples per year. Such instruments are used to measure PM₁₀ and lead. More frequent sampling of PM₁₀ (every other day or every day) is also common. Only PM₁₀ weighted (for each quarter to account for seasonality) annual arithmetic means that meet the AIRS annual summary criteria are selected as valid means for trends purposes.³ Beginning in 1998, some sites began reporting PM10 data based on local conditions, instead of standard, or "reference," conditions. For these sites, PM₁₀ statistics were converted from local conditions to standard conditions to ensure all PM₁₀ data in this report are consistent and reflect standard conditions.4 Only lead sites with at least six samples per quarter in three of the four calendar quarters qualify as trends sites. Monthly composite lead data are used if at least two monthly samples are available for at least three of the four calendar quarters.

Monitoring instruments that operate continuously produce a measurement every hour for a possible total of 8,760 hourly measurements in a

Figure B-1. Carbon monoxide monitoring program, 1998.

Figure B-2. Lead monitoring program, 1998.

Figure B-3. Nitrogen dioxide monitoring program, 1998.

Figure B-4. Ozone program, 1998.

Figure B-5. PM₁₀ monitoring program, 1998.

Figure B-6. Sulfur dioxide monitoring program, 1998.

Figure B-7. Class I Areas in the IMPROVE Network meeting data completeness criteria.

year. For hourly data, only annual averages based on at least 4,380 hourly observations are considered as trends statistics. The SO₂ standard-related daily statistics require at least 183 daily values to be included in the analysis. Ozone sites meet the annual trends data completeness requirement if they have at least 50 percent of the daily data available for the ozone season, which varies by state, but typically runs from May through September.⁵

Air Quality Trend Statistics

The air quality statistics presented in this report relate to the pollutant-specific NAAQS and comply with the recommendations of the Intra-Agency Task Force on Air Quality Indicators. 6. A composite average of each trend statistic is used in the graphical presentations throughout this report. All sites were weighted equally in calculating the composite average trend statistic. Missing annual summary statistics for the second through

ninth years for a site are estimated by linear interpolation from the surrounding years. Missing end points are replaced with the nearest valid year of data. The resulting data sets are statistically balanced, allowing simple statistical procedures and graphics to be easily applied. This procedure is conservative since endpoint rates of change are dampened by the interpolated estimates.

IMPROVE Methodology

Data collected from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network is summarized in Chapters 2 (PM_{2.5} section) and 6 of this report. The completeness criteria and averaging method used to summarize the IMPROVE data are slightly different from those used for the criteria pollutants. (Data handling guidance is currently being developed for the IMPROVE network. Future summaries will be based on this guidance.)

The source data sets are available on the public FTP site. The PM_{2.5} data were obtained from Dr. James Sisler of Colorado State University. The visibility data were obtained from ftp://alta_vista.cira.colostate.edu/DATA/IMPROVE/Trends 88-98/10-50-90/TREND98.LIS.

The annual average statistics in these files were used to assess trends in this report. The IMPROVE data are not reported in terms of a calendar year. The IMPROVE year runs from March to February of the following year. It follows that the four seasons are: March to May (spring), June to August (summer), September to November (autumn), and December to the following February (winter). The network samplers monitor on Wednesdays and Saturdays throughout the year, yielding 104 samples per year and 26 samples per season. Sites were required to have data at least 50 percent of the scheduled samples (13 days) for every calendar quarter.

IMPROVE monitoring sites are selected as trends sites if they have complete data for at least eight of the 10 years between 1989 and 1998 or (six of seven years for those who began monitoring in 1992). A year is valid only if there are at least 13 samples (50 percent complete) per season for both measured and reconstructed PM_{2.5}. The same linear interpolation applied to the criteria pollutants is applied here. In all, 34 IMPROVE sites met the data completeness criteria. They are denoted in Figure B-7 with a square or a square with an X.

For consistency, the same sites are used in both the $PM_{2.5}$ section and the Visibility chapter. The exception is Washington D.C., which is not

State-supplied MOBILE model inputs for 1990, 1995, and 1996 were used, as well as state-supplied VMT data for 1990. Rule effectiveness from pre-1990 chemical and allied product emissions was removed. Lead content of unleaded and leaded gasoline for the on-road and non-road engine lead emission estimates was revised, and Alaska and Hawaii nonutility point and area source emissions from several sources were added. Also, this report incorporates data from CEMs collected between 1994 and 1998 for NO_x and SO₂ emissions at major electric utilities.

All of these changes are part of a broad effort to update and improve emissions estimates. Additional emissions estimates and a more detailed description of the estimation methodology are available in two companion reports, the National Air Pollutant Emission Trends, 1900–1998 and the National Air Pollutant Emission Trends Procedures Document, 1900–1998, 10,11

References

- 1. Clean Air Act Amendments of 1990, U.S. Code, volume 42, section 7403 (c)(2), 1990.
- 2. Ambient Air Quality Surveillance, 44 CFR 27558, May 10, 1979.
- 3. Aerometric Information Retrieval System (AIRS), Volume 2, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, October, 1993.
- 4. Falke, S. and Husar, R. (1998) Correction of Particulate Matter Concentrations to Reference Temperature and Pressure Conditions, Paper Number 98-A920, Air & Waste Management Association Annual Meeting, San Diego, CA, June 1998.
- 5. Ambient Air Quality Surveillance, 51 FR 9597, March 19, 1986.
- 6. U.S. Environmental Protection Agency Intra-Agency Task Force Report on Air Quality Indicators, EPA-450/4-81-015, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, February 1981.
- 7. Rosenbaum, A. S., Stiefer, M. P., and Iwamiya, R. K. November, 1999. Air Toxics Data Archive and AIRS Combined Dataset: Contents Summary Report. SYSAPP-99/26d. Systems Applications International, San Rafael, CA.

- 8. In most cases, four non-missing quarterly means are available after applying the GLM method, so that the resulting annual mean is the arithmetic mean of the four quarterly averages. In some cases, a quarter was incomplete for all the sites in the database so that no filled-in quarterly mean would be available for that quarter. Seasonal averaging was thus employed to deal with this situation in a reasonable manner.
- 9. Cohen, J.P. and A. K. Pollack. 1990. General Linear Models Approach to Estimating National Air Quality Trends Assuming Different Regional Trends. SYSAPP-90/102. Systems Applications International, San Rafael, CA.
- 10. National Air Pollutant Emission Trends, 1900-1998, EPA-454/R-00-002, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, February 2000.
- 11. National Air Pollutant Emission Trends Procedures Document, 1900-1998, EPA-454/R-00-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, February 2000.

	REPORT DATA THE REVERSE BEFORE COMPLETING)
1. REPORT NO. EPA-454/R-00-003	3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE NATIONAL AIR QUALITY AND EMISSIONS TRENDS REPOR	5. REPORT DATE RT, 1998 6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S) L. AUTRY, R. DAMBERG, C. DAVIS, T. FITZ-SIMONS, N. FRANK, P.	8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT NO.
U.S. ENVIRONMENTAL PROTECTION AGENCY OFFICE OF AIR AND RADIATION OFFICE OF AIR QUALITY PLANNING AND STANDARDS RESEARCH TRIANGLE PARK, NC 27711	11. CONTRACT/GRANT NO.
12. SPONSORING AGENCY NAME AND ADDRESS	13. TYPE OF REPORT AND PERIOD COVERED
	14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES	•
LONG TERM (WHEN AVAILABLE). FOR THE 10 YEAR	R PERIOD FROM 1989 TO 1998, AND FOR THE SHORT ON TO AIR QUALITY TRENDS FROM DATA COLLECTED
WHILE THE POLLUTANTS NAMED ABOVE ARE EMPHINCLUDED. THESE INCLUDE VISIBILITY, ACID DEPOTRENDS IN METROPOLITAN STATISTICAL AREAS. TAPPENDIX OF DATA TABLES.	IASIZED IN THIS REPORT, RELATED TOPICS ARE ALSO SITION, AIR TOXICS, NON-ATTAINMENT AREAS, AND HE REPORT ALSO CONTAINS A SUBSTANTIAL
17. KEY WORDS AND D	DOCUMENT ANALYSIS
a. DESCRIPTORS ACID DEPOSITION, VISIBILITY, AIR TOXICS, AIR POLLUTION TRENDS, POLLUTANT STANDARDS INDEX (PSI) PARTICULATE MATTER, EMISSIONS TRENDS, AIR QUALITY STANDARDS, NON-ATTAINMENT AREAS, CARBON MONOXIDE, LEAD, OZONE, NITROGEN DIOXIDE, SULFUR DIOXIDE.	b. IDENTIFIERS/OPEN ENDED TERMS c. COSATI FIELD/GROUP
18. DISTRIBUTION STATEMENT UNLIMITED	UNCLASSIFIED 21. NO. OF PAGES
	22. PRICE

UNCLASSIFIED

