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DEDICATION

John C. Griffiths was one of the early leaders in the use of statistics in the geological
sciences. As an attest to his world class stature, he was the first recipient of the William C.
Krumbein Award by the International Association of Mathematical Geology in 1977, named
after one of his contemporaries. Griffiths, Krumbein, Felix Chayes and a few others introduced
geologists and geological students to statistical methods in sampling, experimental design,
petrology, mineralogy, sedimentology, stratigraphy and other aspects of the geosciences
throughout the 1950�s, 1960�s and 1970�s as documented in approximately 100 scientific papers
and several text books. 

John Griffiths was born on February 29, 1912 in Wales. He earned 3 degrees from the
University of Wales including a PhD in 1937 in glacial geology and petrography, a Diploma of
Imperial College at the Royal College of Science in London, and a second PhD from the
University of London in 1940. He was employed as a research petrographer on oil well drilling
projects from 1940 to 1947 in Trinidad, where he was married on July 26, 1941. He was a
professor in geosciences at the Pennsylvania State University from 1947 to his retirement in
1977, and thereafter was a Professor Emeritus until his death on June 2, 1992 in State College,
PA. The day before his death at age 80, he was conducting research in the Earth and Mineral
Sciences Library at Penn State. During his many years as a professor, he served as the Head of
the Department of Mineralogy (and Geochemistry) from 1955 to 1966, and as the Director of
Planning Research for the entire University from 1969 to 1971.

Dr. Griffiths was an excellent teacher who instilled scientific rigor and an appreciation for
proper sampling and the use of statistics in the minds of many students. While at Pennsylvania
State University, he taught univariate statistics, bivariate statistics, and multivariate statistics;
periodically, he also taught a course in time series analysis.  New graduate students, relying upon
the foundation of their undergraduate studies, would be confronted by this feisty Welshman,
armed with more than 20 years of data on a local stratified gravel deposit from previous classes,
saying things like �You call yourselves geologists; you can�t even tell me how many layers there
are in this gravel deposit.� Students soon learned that Dr. Griffiths was challenging them to use
statistical analysis as a guide to the unknown in a scientific method for solving problems in the
geosciences.

J.C. Griffiths approached teaching, research and much of life in general, with a blend of
humor, history, and lessons learned from other sciences, observations from current events, and a
strong foundation of scientific rigor and ethics. With the advances in computer science in the
1950�s and 1960�s, Griffiths expanded his areas of interest into related fields of computer
modeling, operations research and cybernetics. In the 1960�s and 1970�s, he proposed drilling
the entire United States on a 20-mile grid spacing, wherein approximately 7500 drill holes each
10,000 to 15,000 feet deep would almost certainly result in the discovery of billions of dollars
worth of oil, gold, uranium, zinc, copper and other valuable minerals overlooked by
conventional �hit-and-miss� type of exploration.  In the early days of research on the correlation
between cigarette smoking and the incidence of lung cancer, Griffiths was requested to meet
with a famous statistical researcher for dinner the evening before his cancer research speech at
the University.  Griffiths was a smoker at that time, and his recollection of the evening was, �I



Beyond his many professional accomplishments, John C. Griffiths was a great
person. This document was prepared in his honor and with great respect for
his accomplishments as a geostatistician, a teacher, and a major contributor to
our understanding of sedimentary and geochemical processes.

took one look at that man�s statistics and I knew that I had 2 choices: I either had to give up
cigarettes or give up statistics.�

Following his retirement from the full time faculty in 1977, J. C.  Griffiths worked with the
U. S. Geological Survey in Reston VA and continued his research with graduate students on
quantifying the geology of the world by country for mineral resource assessment purposes. He
served as a consultant to DER (now DEP) and EPA  from 1984 to 1988 on a cooperative project
to support development of Pennsylvania�s Coal Remining regulatory package.



DISCLAIMER

The statements in this document are intended solely as guidance.  This document is not intended,
nor can it be relied upon, to create any rights enforceable by any party in litigation with the
United States.  EPA may decide to follow the guidance provided in this document, or to act at
variance with the guidance, based on its analysis of the specific facts presented.  This guidance is
being issued in connection with amendments to the Coal Mining Point Source Category.
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Chapter 1: Introduction

From 1984 through 1988, the U.S. Environmental Protection Agency (EPA) and the
Pennsylvania Department of Environmental Resources (PA DER, now PA DEP) studied the
water quality of long-term pre-existing discharges from abandoned mine lands throughout
Pennsylvania as part of a cooperative project on remining.  Water quality data from these
discharges were examined using univariate, bivariate, and time series statistical analyses to
assess coal mine drainage discharge behavior.  The results of the statistical analyses were
included in a series of eight unpublished reports prepared for PA DEP and EPA by Dr. J. C.
Griffiths of the Pennsylvania State University in 1987 and 1988.  

This report presents a compilation of the work by Dr. Griffiths and co-authors and was prepared
by PA DEP and EPA, to support proposal of the Coal Remining Subcategory under existing Coal
Mining industry regulations (40 CFR part 434).  This report specifically supports statistical
procedures provided in EPA�s Coal Remining Statistical Support Document (EPA-B-001-001),
and is intended to be a companion to that document.  Chapter 1 of the Coal Remining Statistical
Support Document contains a description of the remining program history in Pennsylvania from
1984 to 1999, including the development of the REMINE computer program and permitting
procedures used in issuing approximately 300 remining permits during that time period.  Chapter
1 of the Statistical Support Document also contains the results of an evaluation of state remining
programs in 20 states that was completed by the Interstate Mining Compact Commission
(IMCC).  

Several publications described and documented the mining engineering and treatment costing
components of the original cooperative remining project of EPA and PA DER (listed and briefly
described in Chapter 1 of the Coal Remining Statistical Support Document), but the statistical
work of Dr. J.C. Griffiths and co-authors was not published or widely disseminated, and John C.
Griffiths died at age 82 in June, 1992.  This report was compiled, edited and completed by his
co-authors and DynCorp, I & ET.  J.C. Griffiths is listed as the major author posthumously
because this document contains his original work and is a tribute to him and his work.   

There are several additional correlations between this report and the Coal Remining Statistical
Support Document.  
� Chapter 2 of the Coal Remining Statistical Support Document contains descriptions of the

three fundamental acid mine drainage discharge types and their respective behaviors (flow
and water quality relationships) that are based on work done in the statistical studies of the
Arnot, Ernest, and Markson discharges featured in Chapters 4, 6, and 8 of this report. 

� Chapter 5 of the Coal Remining Statistical Support Document includes numerous figures and
tables depicting various options in baseline pollution load development (e.g., Table 5.1a) that
are based upon the data sets in Chapters 4 through 8 and Appendices A through F of this
report. 

� Chapter 5 of the Coal Remining Statistical Support Document contains additional data from
1988 to 1999 of the Fisher and Markson sites, providing excellent additional information on
the long term variations in these discharges.  
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The establishment of the baseline pollution load for a coal remining permit requires the proper
sampling and chemical analysis of the abandoned mine drainage discharges, and the appropriate
statistical analysis of the flow, water quality and pollution load data.  The term proper sampling
in this report, is taken in two contexts:  (1)  following the recommended procedures for
collection of surface- and ground-water samples, (including measurements of flow and water
quality parameters, and fixing, storing and transporting the samples to the laboratory for
chemical analyses), and  (2)  collecting a sufficient number of samples over an adequate duration
and sampling interval in order to be representative of the variations in flow and water quality of
the discharges throughout the year.  

Guidelines and protocols for water sample collection from EPA, the U.S. Geological Survey
(USGS), and other sources, are compiled in Table 9.1.  These 14 manuals and related
publications represent some of the most recent technical guidance disseminated by Federal
agencies on water sampling.  Much of this information is founded on common sense and earlier
publications on this subject, and include for example, recommendations, sampling streams and
major mine discharges at approximately mid-stream and mid-depth to avoid unrepresentative
effects of surface debris, bottom sediments, chemical stratification or lack of mixing near stream
banks.  Water sampling procedures are as important as the laboratory analysis and the statistical
analysis of the discharge data.  If the water sampling procedures are flawed or unrepresentative,
the laboratory analyses, regardless of its high degree of accuracy and precision, may be
meaningless.  Similarly, the most rigorous statistical analysis may be worthless if it is based
upon faulty laboratory analyses or flawed sampling procedures.  

The statistical aspects of proper sampling are summarized in Chapter 9 of this report and are
discussed in numerous other references including Griffiths (1967) and Griffiths and Ondrick
(1968) concerning the proper sampling of geologic populations.  In statistical analyses, it is
always important to work with samples that are representative of the population from which they
are drawn (see Chapter 2 of this report).  Since most of the abandoned mine discharges included
in this report flow continuously, there is an almost infinite number of samples that could be
drawn throughout the water year.  For example, one sample collected every hour equals 720
samples per month or 8,760 samples per year.  Representative sample collection should be
assessed in regards to practicality, feasibility, and cost. 

Chapter 2 of this report provides an introduction to the statistical methods that may be employed
in establishing baseline pollution load, and Chapter 3 describes the data analysis algorithm that
was developed for evaluating mine drainage discharges (see Figure 1.2a of the Coal Remining
Statistical Support Document and Figure 3.1 of this report).  Abandoned mine drainage
discharge data from six sites in Pennsylvania are statistically analyzed and presented in graphs
and tables in Chapters 4 through 8 and Appendixes A through F of this report.  The locations of
these sites are shown in Figure 1.1.  More detailed site maps and descriptions of the site
characteristics are included in the beginning of each chapter.  Chapter 9 is a summary of the
statistical analyses presented throughout this report, with emphasis on the interpretations of time
series analysis and quality control limits.  
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Chapter 2: Statistical Analysis of Mine Drainage Data

If discharges from abandoned mines did not vary in flow or water quality parameters through
time, it would not be necessary to use statistics to determine the baseline pollution loads of a
remining site.  In fact, the baseline determination would involve little effort, in terms of
representative sampling and chemical and data analyses.  A mine operator or regulatory agency
could simply collect one sample to initially establish the baseline flow and water quality, and
then collect a second sample at some later time before remining commences to document that the
flow and water quality parameters do not vary through time.  However, abandoned mine
discharges typically vary significantly in flow and/or quality throughout the water year, and it is
necessary to use statistics to quantify and explain these variations.  Data representing this
variation and the statistical analysis of such variation are presented in the succeeding chapters of
this report.  This chapter provides an introduction to the statistical methods that may be
employed in determining the baseline pollution load.

Variation
The fundamental problem to be addressed in determining baseline pollution load is how to
statistically summarize the natural variations in flow and water quality parameters before
remining commences, in order to enable the separation of mining-induced changes in pollution
load from natural seasonal variations in pollution load during and following remining operations. 
This problem is depicted in Figure 2.1, which shows hypothetical variations in acid load of an
abandoned mine discharge before (pre), during, and after remining.  It is important to note that
Figure 2.1 is presented for graphical description of statistical triggers only and that the after-
mining scenario represented in this figure is atypical.  In almost all cases, remining will improve
water quality.  Whatever the case, water quality data should be plotted and statistically analyzed
to determine whether adverse effects have occurred. 

Figure 2.1: Example of Acid Load Variation Before, During, and After Remining
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In Figure 2.1, the acid load varied greatly before remining commenced ranging from nearly zero
pounds of acidity per day (lbs/day) to nearly 1,000 lbs/day.  Observe that before remining, the
discharge usually varies somewhat symmetrically above and below the central value of 500
lbs/day (central tendency) and that the variations are generally contained between the values of
50 lbs/day and 950 lbs/day which have been labeled the lower and upper control levels.  Also
note that the acid load was higher than the upper control level on one or two occasions before
remining commenced.  However, during remining the acid load was above the upper control
level much more frequently, while the acid load is still varying somewhat symmetrically above
and below the central tendency value for at least the first two years during remining.  Finally,
during the last three years of remining and following the completion of remining, the acid load
still varies above and below the central tendency value, but there appears to be a trend of
increasing acidity between the central tendency value and the upper control level.

In order to determine baseline pollution load, it is necessary to statistically analyze the data to
find a measure of central tendency (e.g., mean or median) and a measure of the patterns of
variation or the dispersion of the individual observations (i.e., samples around the central
tendency as shown in Figure 2.1).  In order to separate mining-induced changes in pollution load
from natural seasonal variations, it is necessary to develop a statistical mechanism to determine
when variations in the pollution load are out of control; that is, when significant deviations from
the pre-remining baseline have occurred which can be attributed to factors other than natural
seasonal variations (e.g., problems within remining operations, unrepresentative baseline,
inappropriate monitoring). 

There are two types of variation in pollution load which are of interest in evaluating monitoring
data during and after remining in order to determine whether the variations are out of control
from the established baseline conditions.
  
� Dramatic Trigger - The first and most obvious pattern of variation occurs when there are a

series of extreme events which consistently exceed the upper control level as shown in
Figure 2.1 during the first two years of remining.  During this time, the variation pattern
indicates a sudden and dramatic increase in pollution load which may be attributed to
remining, and which is referred to as the dramatic trigger.  

� Subtle Trigger - The second pattern of variation of concern is a trend of gradually increasing
pollution load (as shown in the right side of Figure 2.1,) where the general pattern of acid
load observations is increasing above the baseline central tendency value for several years
without ever exceeding the upper control level.  In this case, when the central tendency
values are calculated for each water year during remining, a corresponding gradual increase
in central tendency values will be detected until a significant difference exists between the
baseline central tendency and a central tendency calculated for a water year after remining
has commenced.  As this second pattern of variation is much less dramatic than the first, and
takes much more time and effort to detect, it is referred to as the subtle trigger.

The reason that these two patterns of variation are referred to as triggers is that they can be used
to set off or initiate the requirement for a mine operator to treat a pre-existing discharge to a
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numerical effluent limitation.  In issuing a remining permit, the regulatory authority makes a
determination that the site can be mined without causing additional pollution, and that the
pollution abatement plan in the permit application demonstrates that the existing baseline
pollution load will be reduced.  The mine operator and the regulatory authority anticipate
environmental improvement through remining without the need to treat the pre-existing
discharge.  However, the possibility exists that degradation of the discharge may occur,
temporarily or permanently, as the result of remining if the pollution abatement plan is not
implemented as required or if unforeseen circumstances develop.

If fair and reasonable consideration is given to the concerns of the mine operator and protection
of the environment, the treatment triggers must be carefully established so that they are:  (a)  not
set off prematurely or erroneously, adversely affecting the mine operator, or  (b)  set off too late
resulting in additional mine drainage pollution without treatment.  Even the most thorough
representative sampling program of a given water year may not capture the most extreme events,
because the worst storm (flood) and the most severe drought are rare events and do not occur in
every water year.  Although it is unreasonable to require a mine operator to collect baseline
water samples until the 100 year storm event or a significant drought are captured, it is also
unreasonable to require the mine operator to commence treatment the first time that the extreme
event or upper control level of the baseline is exceeded.  The reagent costs alone for treating
some pre-existing pollutional discharges can be several hundred dollars per day and the total cost
of building a treatment plant can be more than one million dollars.  Costs for treatment of some
worst case post mining discharges in the State of Pennsylvania were as high as $ 700 /day
(hydrated lime).  Cost for construction of these discharges were greater than $ 2.1 million.       

Conversely, the regulatory authority is not fulfilling its environmental protection mandate if the
upper control level and extreme events of baseline are routinely being exceeded and the
additional mine drainage pollution effects are obvious, but treatment has not yet been required
because statistical analysis of the water year has not been completed.  In light of these concerns,
problems that need to be resolved statistically with respect to the dramatic and subtle triggers
are:

� Dramatic trigger -  how high should the upper control level or tolerance level be, and how
many excursions above this upper level are tolerable before it is determined that the system
is out of control and treatment of the discharge must be initiated.  

� Subtle trigger -  how much deviation from the baseline central tendency value is tolerable in
succeeding water years before it can be determined that a significant difference exists.  

Both of these problems may be addressed statistically with a relatively simple quality control
approach to the data.

Normal Distribution
The quality control approach used in this report and much of statistical work in general, is
dependent upon the frequency distribution of the sample data.  It is important to collect
representative samples, because it is usually impossible or impractical to measure and analyze
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the entire population of the parameter being studied.  Whether the samples represent variation in
a single point through time (e.g., seasonal variations in the acidity of an abandoned mine
discharge) or spatial variations in a parameter of interest (e.g., variations in the mean acidity of
surface mine discharges from the lower Kittanning coal seam of 200 sites in western
Pennsylvania), one of the first steps of statistical analysis, typically, is to plot the frequency
distribution of the data.  According to Sir Ronald A. Fisher (1970), the founder of many
important statistical advances since the 1920�s:

�The idea of an infinite population distributed in a frequency distribution in respect of
one or more characters is fundamental to all statistical work.  From a limited experience,
for example, of individuals of a species, or of the weather of a locality, we may obtain
some idea of the infinite hypothetical population from which a sample is drawn, and so of
the probable nature of future samples to which our conclusions are to be applied.  If a
second sample belies this expectation we infer that it is, in the language of statistics, drawn
from a different population; that the treatment to which the second sample of organisms
had been exposed did in fact make a material difference, or that the climate (or the methods
of measuring it) had materially altered.  Critical tests of this kind may be called tests of
significance, and when such tests are available we may discover whether a second sample
is or is not significantly different from the first.�  (p. 41)

Fisher (1970) also states:

�Statistics may be regarded as (i)  the study of populations, (ii)  the study of variation,
(iii) the study of methods of the reduction of data (p. 1)� [and] �.A statistic is a value
calculated from an observed sample with a view to characterizing the population from
which it is drawn.�  (p. 41)

The frequency distribution is a graphical summary of the sample data, and its shape and
accompanying summary statistics enable a greater understanding of how a variate behaves.  This
understanding is gained through comparison of the frequency distribution of observed data to the
shape and characteristics of a known mathematical or theoretical distribution, such as the normal
distribution or binomial distribution.  The normal distribution shown in Figure 2.2 is the most
widely known and most useful frequency distribution.  It is also known as the Gaussian error
curve or bell-shaped curve.

The key statistical parameters of a normal frequency distribution are the mean, as the measure of
central tendency (i.e., shown as  in Figure 2.2), and the standard deviation or the variance, asX
the measure of variation or dispersion (i.e., the standard deviation is shown as  in Figure 2.2). $σ
The mean is the arithmetic average of the data, which is computed by dividing the sum of all of
the observations by the total number of observations.  The variance is the sum of the squares of
the deviations of all of the observations from the mean.  The standard deviation is the positive
square root of the variance.
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According to Fisher (1970) and Griffiths (1967), the sample mean ( ) and standard deviationX
( ) determined from a random sample are best estimators of the corresponding population$σ
mean ( ) and standard deviation ( ) in a normal distribution.  They are defined as "bestµ σ
estimators" because these statistics are consistent, efficient, and sufficient, and in the most
desirable outcome, unbiased as well.  A primary goal of parametric statistical analysis is that the
statistical estimators (e.g., mean and standard deviation) of the sample distribution will converge
on the population parameters (i.e., the true mean and variance of the entire population).  Most
parametric statistical methods, including tests of significance, are based upon:  (a)  the use of the
mean and the standard deviation as best sufficient statistical estimators, and  (b)  the assumption
that the sample data are normally distributed.

Figure 2.2: Example of Normal Distribution

In addition, probability statements, which are used in significance testing, quality control
techniques and other statistical methods, are frequently based upon some special properties of
the normal distribution (see Griffiths, 1967, pp. 263 � 267).  The area under the curve of the
normal distribution in the interval between the mean minus one standard deviation and the mean
plus one standard deviation (as shown in Figure 2.2, from Griffiths, 1967, p. 259) is 67.45%,
while 95.46% of the area of the normal distribution is contained in the interval of the mean plus
and minus two standard deviations (i.e.,  +/- 2  ).  Therefore, from the table of areas of theX $σ
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normal distribution it may be stated that 95% of the area of the distribution will be contained in
the interval of  +/- 1.96  , Griffiths, 1967, p. 265).X $σ

Quality Control - Normal Distribution
The type of statistical analysis known as quality control was largely developed by Shewhart
(1931, 1939) and others to evaluate tolerable amounts of variation in manufacturing processes. 
Since then, the quality control approach has been applied to many other fields of study.  Many of
the variates studied in very large samples, such as the number of defective light bulbs produced
by a manufacturing process, were empirically shown to closely approximate a normal
distribution.  Consequently, the most typical applications of quality control statistics involve a
normal distribution.  

The frequency distribution of the data is essentially arranged along the vertical axis of the quality
control graph as shown in Figure 2.3.  The actual histogram of value classes is typically omitted
from the graph.  The mean of the data set, or grand mean of the means of sets of observations, is
usually plotted as the measure of central tendency.  Quality control levels, known as confidence
intervals, are established at plus and minus two or three standard deviations from the mean. 
Individual observations through time, or comparisons of sets of data representing variations in
operator performance, are then plotted along the horizontal axis in order to evaluate the patterns
of variation in these observations with respect to the confidence intervals around the mean.  As
95.46% of the area of the normal frequency distribution is contained in the interval of the mean
+/- two standard deviations, it is expected that approximately 95 out of 100 observations will
occur within the confidence intervals.  

Figure 2.3: Example of a Quality Control Graph (Griffiths, 1967, p. 318)

According to Griffiths (1967):
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If the observations are in control, they will fluctuate randomly around the mean value, and
some 5 in 100 will fall outside the 2 limits or 3 in 1,000 will be expected outside the 3σ σ
limits.  If a number of observations exceeding these expectations fall outside the control
limits, these observations may be looked upon as not belonging to the same population.

The fact that the observations are ordered, however, permits an extension of this
generalization; the observations need not fall outside the limits to indicate lack of control. 
For example, in an industrial process which produces a homogeneous product when the
process is in control, the wear on a machine may develop gradually; then a series of
observations will show a systematic trend, i.e., the characteristic of random variation will be
lost.  Such trends arise from a systematic bias, and it is customary to search for an
�assignable cause� and remove the interfering source of variation by replacing worn parts in
the machine and so on.  The systematic trend may appear and the presence of such a trend
warns the observer that his observations are not in control (p. 318).

Asymmetric Distribution
A major problem that is frequently encountered in the statistical analysis of water quality
parameters and many other variates of natural systems behavior is that the sample data are not
normally distributed (Reimann and Filzmoser, 2000).  In analyzing the concentrations of acidity,
iron, sulfates, or other water quality parameters of abandoned mine discharges, ground water and
surface water, it is typical to have many small valued observations in the data set and a few very
large values representing extreme events.  This type of behavior appears to be relatively common
for variates which are related to seasonal variations, climatic effects, and geological or biological
systems (for examples, see Aitcheson & Brown (1973), Griffiths (1967), and Krumbein &
Graybill (1965)).  The frequency distribution for this type of variate is highly asymmetric as
shown in Figure 2.4.  The few very high valued observations cause the frequency distribution to
have a long tail toward the high extremes, which is a condition of asymmetry termed positive
skewness.

Figure 2.4 : Stem-and-leaf of Discharge (Example of Asymmetric Distribution)      

N = 81
Leaf Unit = 0.10

40 0 0111100000222222222222222223333344444444
(24) 0 555555555566666777888899
17 1 0123334
10 1 69

8 2 13
6 2 69
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1 4
1 4
1 5 0
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In the normal frequency distribution, the values are symmetrically distributed around the mean,
and the mean and standard deviation are best statistical estimators of the population.  In a highly
skewed frequency distribution, the mean may not be the best estimator of central tendency, and
the standard deviation may not be the best measure of dispersion. 

For example, the few extreme values bias the mean toward the high values, and 95% of the area
of the curve is not contained within ± 2 standard deviations from the mean.  In cases where the
frequency distribution is not normal, the concept of the quality control approach may still be
pursued, but data analysis adjustments must be made to either:  (a)  transform the observed
frequency distribution to approximate normality, or  (b)  employ different statistics (e.g., use of
the median instead of the mean) in the quality control technique.

The logarithmic transformation of the data is usually the most effective transformation to reduce
positive skewness in the frequency distribution.  The lognormal distribution had been
extensively described by Aitcheson and Brown (1973) and examples of lognormal behavior of
variates are found in Griffiths (1967), Krumbein and Graybill (1965) and other sources. 
However, a logarithmic transformation of the raw data will not solve all problems of asymmetry
or other conditions of non-normality of the frequency distribution.  Additional information on
transformations of data is described later in this chapter and in Box and Cox (1964), Griffiths
(1967, p. 306), and Krumbein and Graybill (1965, p. 216).

In order to evaluate different statistics that may be applicable to the quality control approach, it
is necessary to explain and differentiate nonparametric statistics, distribution free statistics, and
order statistics.  It is also necessary to compare exploratory data analysis with confirmatory data
analysis.  

� Conventional Parametric Statistical Analysis - statistical estimators, such as the mean and
standard deviation, are used to approximate the corresponding parameters of the population,
the true mean and variance.  

� Nonparametric Statistical Analysis - tests of significance are performed without depending
on the constraints of a known frequency distribution and the parameters of that known
frequency distribution (e.g., the mean and variance of the normal distribution). 
Nonparametric statistical tests are also used where the scale level of the data are only
nominal or ordinal, rather than on interval or ratio scales used in more rigorous statistical
analyses. However, if the data conform to a known frequency distribution, there are
parameters for that distribution.

� Distribution-free Statistics - is used to describe statistical analyses where parameters are
estimated independently of the shape of the frequency distribution, such as the use of the chi-
square statistic to test the class by class departure from the expected value.

� Order Statistics - is applied to statistical analyses where the shape of the frequency
distribution is important, but is evaluated less rigorously than in conventional parametric
statistical analyses.  In order statistics, the median is typically used as the measure of central
tendency instead of the mean, and quartiles or related values are typically used to measure
dispersion, the spread of values about the median, or the shape of the distribution.  The
position of the median in an ordered set of observations is the middlemost position.  For
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example, when 15 values are ordered from low to high, the depth (position) of the median is
at the (N+1)/2 position = 8th position.  The position of the two quartiles (Q1, Q3) in this
ordered set is halfway between the median and the extremes (e.g., lower quartile (Q1) is at
the (8+1)/2 = midway between the 4th and 5th observation).  The quartile (Q1 in this case), is
found by counting in from either extreme to the 4th observation.  The quartiles essentially
divide the frequency distribution into fourths, so that half of the values in the distribution are
contained in the interval between the lower quartile and the upper quartile as shown in Figure
2.5 (i.e., within box).  Other values of spread or dispersion are similarly determined based
upon their rank or order in the frequency distribution.

Figure 2.5: Net Alkalinity Boxplot for Fisher Mine Site Discharge (from U.S. EPA Coal

Remining Statistical Support Document, March 2000, EPA-821-B-00-001)

As a final note on the relationships of the various frequency distributions discussed herein and
elsewhere (see Fisher (1970), Fisher (1973), Griffiths (1967), Krumbein and Graybill (1965) and
Tukey (1977)), regardless of the shape of the frequency distributions in samples of water quality
parameters or almost any other variable of interest, the distribution of the means of sample sets
or means of repeated sampling efforts tend to be normally distributed.  Generally, frequency
distributions tend toward normality as the number of observations in the sample set becomes
very large (i.e., greater than 1 million observations).  However, most samples of mine drainage
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data used in remining permitting and monitoring will contain a relatively small number of
observations (i.e., less than 30).

Exploratory and Confirmatory Data Analyses
Most of the statistical analyses discussed thus far, especially significance tests, can be included
in the realm of confirmatory data analysis rather than exploratory data analysis.

According to Tukey (1977):

The principles and procedures of what we call confirmatory data analysis are both
widely used and one of the great intellectual products of our century.  In their
simplest form, these principles and procedures look at a sample -- and at what that
sample has told us about the population from which it came -- and assess the
precision with which our inference from sample to population is made.  We can no
longer get along without confirmatory data analysis.  But we need not start with
it�.(p. vi) 

Once upon a time, statisticians only explored.  Then they learned to confirm exactly �
to confirm a few things exactly, each under very specific circumstances.  As they
emphasized exact confirmation, their techniques inevitably became less flexible.  The
connection of the most used techniques with past insights was weakened.  Anything
to which a confirmatory procedure was not explicitly attached was described as
�mere descriptive statistics,� no matter how much we had learned from it (p. vii). 

Exploratory data analysis is detective work...  Confirmatory data analysis is
judicial or quasi-judicial in character�. Unless the detective finds the clues, judge or
jury has nothing to consider.  Unless exploratory data analysis uncovers
indications, usually quantitative ones, there is likely to be nothing for
confirmatory data analysis to consider. (p. 1).

From the preceeding discussion of statistical analyses, it is apparent that there are many
statistical methods and approaches to analyzing data.  In order to establish the statistical methods
to be used in analyzing abandoned mine discharge data for remining permitting and monitoring,
it is necessary to consider the relationship between the characteristics of the sample data and the
types of questions to be addressed in determining the baseline pollution load of the discharges. 
Sometimes, the characteristics of the available data do not lend themselves well to the type of
statistical analysis which would be most appropriate to solve the problem.  The type of statistical
analysis which is:  (1)  appropriate to apply to a specific data set, and (2)  desired or necessary to
answer specific questions about the data depends upon numerous factors.  These factors include:  

� the sampling method,
� the number of observations included in the sample,
� the interval between observations in time (or space),
� the number of measurements performed (e.g., analyzing a water sample for 12 chemical

constituents),
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� the scale level of the data (i.e., nominal, ordinal, interval, ratio), and 
� the frequency distribution of the data. 

Univariate/Bivariate and Multivariate Analysis
Statistical analyses which evaluate a single variable are referred to as univariate analyses, while
bivariate analyses evaluate the relationship between two variables.  Multivariate statistical
analyses concurrently evaluate the relationships among more than two variables.  Statistical
methods involving the frequency distribution of a variable(e.g., chi-square �goodness of fit� test,
T-test of the significance of means, F-test of variance ratios) are examples of univariate
statistical analyses.  Linear regression and correlation (e.g., correlation coefficient (r), and
coefficient of determination (r 2)) are examples of bivariate analyses, while multiple regression,
factor analysis, principal components analysis, and cluster analysis are examples of multivariate
analyses.  

It is obvious that it will be very difficult, if not impossible, to use a univariate statistical method
to solve a multivariate problem.  For example, assume a mine drainage data set contains 100
water samples (i.e., number of observations, N = 100) which have been analyzed for 20 chemical
constituents (i.e., number of parameters, p = 20), an N x p data matrix of 100 x 20 results, within
which some of the parameters may be highly correlated or dependent upon each other (e.g.,
acidity, sulfate, and iron may vary in a closely associated pattern).  If the problem to be solved is
�how many independent sources of information are contained in the data matrix,� a multivariate
or �p-dimensional� problem exists that should be addressed with a multivariate statistical method
such as principal components analysis or factor analysis.  The evaluation of the shape of the
frequency distribution of any or all of the 20 variates, in a univariate statistical context, may be
an important part of the data analysis process, but it would not solve the multivariate problem.

As the level of sophistication and rigor of the statistical analysis increases from univariate
through bivariate and multivariate to include some very powerful statistical methods such as
time-series analysis, the requirements placed upon the quality of the data set increase in a
corresponding manner.  As described earlier, many parametric, univariate statistical methods are
based upon the assumption that the sample data are normally distributed.  Many bivariate
statistical methods, such as linear regression which uses a least-squares method to determine a
best fitting regression line, assume that the scatter of data points (when the two variates are
plotted together) occurs in a uniform pattern, known as homoscedasticity.  In general terms for
correlation and regression analyses, this means that:  (a)  the scatter of the data points does not
increase as the data values of the two variates increase, and  (b)  the data are normally distributed
orthogonal to the regression line (i.e., within sections drawn perpendicular to the regression line
at equal intervals along the line).  Many multivariate statistical methods are based upon the
assumption of joint normality of the data matrix (i.e., that all of the variates are normally
distributed).  Most multivariate statistical analyses are also greatly impeded by missing data
(e.g., where 75 of 100 water samples were analyzed for 20 parameters, and the remaining 25
samples were analyzed for 12 parameters), as adjustments are made to the data matrix in order to
enable the use of the matrix algebra necessary to mathematically solve the problem.  The proper
use of time series analysis generally requires a very large number of observations, equally
spaced in time (i.e., equal intervals between observations), with no missing data.
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Time Series Analysis
As stated earlier, the fundamental statistical problem to be addressed in determining baseline
pollution load for remining permitting and monitoring purposes is how to summarize the natural
variations in flow and water quality parameters before remining commences, in order to enable
the separation of mining-induced changes in pollution load from natural seasonal variations in
pollution load during and following remining operations.  Conceptually, this is the type of
statistical problem which is ideally solved by time-series analysis or a specialized area of time-
series analysis, known as intervention analysis.  However, the data quality requirements for these
types of statistical analyses will exceed the available data for most remining cases, and to require
remining permit applicants to collect sufficient data for these analyses would be an onerous and
expensive task.  The principles of time-series analysis will be briefly introduced here, and more
fully explained in later Chapters.  

The use of time series analysis in this report is chiefly for research purposes where adequate data
exist.  The results of research with time series analyses of relatively large mine drainage
databases provide a better understanding of the behavior of abandoned mine discharges as they
vary through time, and facilitate the application of a relatively simple quality control approach to
the statistical analysis of the smaller sets of discharge data typically used in computing baseline
pollution load in remining permits.

According to Vandaele (1983):

A time series is a collection of observations generated sequentially through time.  The
special features of a time series are that the data are ordered with respect to time, and
that successive observations are usually expected to be dependent.  Indeed, it is this
dependence from one time period to another which will be exploited in making
reliable forecasts�. It also will be useful to distinguish between a time series process
and a time series realization.  The observed time series is an actual realization of an
underlying time series process.  By a realization we mean a sequence of observed
data points and not just a single observation.  The objective of time series analysis is
to describe succinctly this theoretical process in the form of an observable model that
has similar properties to those of the process itself. (p. 3)�. A time series model
consisting of just one variable is appropriately called a univariate time series model. 
A univariate time series model will use only current and past data on one variable�..
A time series model which makes explicit use of other variables to describe the
behavior of the desired series is called a multiple time series model.  The model
expressing the dynamic relationship between these variables is called a transfer
function model.  The terms transfer function model and multiple time series model
are used interchangeably. (p. 8)�. Finally, a special form of transfer function model
is the intervention model.  The special characteristic of such a model is not the
number of variables in the model, but that one of the explanatory variables captures
the effect of an intervention, a policy change, or a new law. (p. 9).
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The use of intervention analysis to evaluate remining discharge data might be particularly
appropriate providing that adequate data quality exists.  One of the seminal works in intervention
analysis is described in Tiao and Box and Hamming (1973) and Box and Tiao (1975) in which
photochemical smog data from Los Angeles was analyzed in order to evaluate the effect of a
new law requiring the reduction of reactive hydrocarbons upon the oxidant pollution level in the
city.  This is analogous to analyzing abandoned mine drainage pollution load data collected
before, during and after remining in order to determine the effect of remining upon the level of
the baseline pollution load in the presence of significant seasonal variations.  An example of the
use of intervention analysis of abandoned mine drainage data is the study by Duffield (1985) of
the Arnot discharges, that are also featured in Chapter 4 of this report.

According to Box and Tiao (1975, p. 70):

Data of potential value in the formulation of public and private policy frequently
occur in the form of time series.  Questions of the following kind often arise:  �Given
a known intervention, is there evidence that change in the series of the kind expected
actually occurred, and, if so, what can be said of the nature and magnitude of the
change?� �   In the examples quoted, however, the data are in the form of time
series, in which successive observations are usually serially dependent and often
nonstationary and there may be strong seasonal effects.  Thus, the ordinary
parametric or nonparametric statistical procedures which rely on independence or
special symmetry in the distribution function, are not available nor are the blessings
endowed by randomization.

Intervention analysis and other methods of time series analysis are very powerful statistical tools
which would be desirable and useful in evaluating baseline pollution load data, but these types of
statistical analyses will usually be inappropriate for remining permitting due to inadequate data
availability and data quality.  Therefore, it was necessary to develop a data analysis algorithm
which recognized or allowed for the use of time-series analyses, but did not require the routine
use of these statistical methods in order to answer the desired questions about the remining
discharge data.

A flow chart outlining the data analysis algorithm for determining the baseline pollution load is
shown in Figure 3.1.  The algorithm includes evaluations of data quality, univariate statistical
analyses, bivariate statistical analyses and time series analyses methods to establish quality
control limits.  The algorithm includes steps to evaluate the normality of the frequency
distribution and transform the data if the distribution is not normal (i.e., positively skewed);
however, the use of the statistical methods in the algorithm does not require the distribution to be
normal.  The algorithm contains elements of parametric statistical analysis, but it is primarily
based upon order statistics and non-parametric statistics.
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Chapter 3: Mine Drainage Data Analysis Algorithm

A flow chart outlining the data analysis algorithm for determining baseline pollution load is
shown in Figure 3.1.  The algorithm includes evaluations of data quality, univariate statistical
analyses, bivariate statistical analyses and time series analyses.  The algorithm also includes
steps to evaluate the normality of the frequency distribution and logarithmically transforms the
data if the distribution is not normal (i.e., positively skewed); however, the use of the statistical
methods in the algorithm does not require the distribution to be normal.

All of the statistical analyses included in the algorithm are contained in the MINITAB1 computer
software package, which was used to assess the data presented in this report.  The analysis
contained in MINITAB was incorporated into the REMINE2 computer software package
developed by EPA, PA DEP, and Pennsylvania State University.  Other software packages
included Statistical Analysis Software (SAS) and Stat Graphics.  A significant feature of the
algorithm and the MINITAB program in general is that a user with limited statistical analysis
experience can perform the rudiments of the baseline pollution load analysis without
encountering too much difficulty, while the user with greater statistical training can expand the
statistical analysis to include a much greater array of statistical methods if desired.  The
remainder of this chapter is devoted to explaining the elements of this remining data analysis
algorithm.

Data from six study sites were submitted to the standard procedures shown in Figure 3.1.  (These
data are described in detail in Chapters 4 through 8.)  There are twelve steps in the complete
analysis, and it should be emphasized that only the first nine are needed for routine remining
permits. Steps 11 and 12 are for research purposes only.  The most important step is initial
examination of the data (Step 1, Figure 3.1).  Following this examination, missing values are
identified and adjusted.  Additionally, any extreme outliers (Step 3) should be examined to see if
they are real observations or errors of entry at some stage in the data collection procedure.

The next step (Step 4) is to graph discharge (flow) versus days (ordered observations).
Frequently, it is advisable to plot log discharge in order to reduce extreme variations. This
procedure also helps to reduce extreme positive skewness (if present in the data).  This reduction
of asymmetry improves the subsequent analysis of the data and makes the probability statements
more reliable. Because extreme observations may result from unusual events (such as heavy
downpours, snowmelt), the reduction of variation should be used with discretion. In many cases,
these unusual extreme data values may indicate events of considerable importance in the study of
the natural variation in the data.
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Step 5 is also crucial for determining regularity of the sampling to further identify the larger gaps
in the data.  The plot of discharge versus days prepared in Step 4 is one way of seeing this aspect
of behavior in the data.  Another useful procedure is to take �first differences� of days (or order
of observation).  This procedure leads to a frequency distribution and a histogram in which the
intervals between observations are clearly displayed.
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Raw
Data

1. Initial examination.
2. Adjust missing values to *.
3. Examine for unusual values.

4. Graph discharge or Log discharge vs days.
5. Check for unequal intervals, missing data, and extremes.

MINITAB

6. Univariate statistics.
DESCRIBE - Summary Statistics.

HISTOGRAM: symmetry?

If positive skew

7. Describe Histogram

No

9. Bivariate analysis.
 Var. (x) vs. pH
 Var (x) vs. Disch. or Log Disch.
 Association r2
 Cross-correlation.
 Regression if required.

10. Time series plots (TSPLOT) for each variable.
       1. Search for missing values.
       2. Periodicity?
       3. Outliers
       4. Quality Control Graphs.

11. Box - Jenkins Time Series Analysis
   1. Identification: Acf, Pacf, Acf,  Pacf
   2. Estimation of Model parameters.
   3. Residuals to check for outliers.
   4. Forecasts (wher required).

12. Sampling by Simulation
   1. Choose samples (18 for example) according to recommended procedure.
   2. Test by quality control graphs.
   3. TSPLOTs using mean, median and various multiples of standard deviation.

Yes

Log

13. Adopt procedure for routine analysis in the field.

8. Examine and Edit Outliers

Figure 3.1   Algorithm for Analysis of Mine Drainage Discharge Data
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Ideally, all the intervals between the observations should be equal; in practice, this is rarely
achieved.  One or two days on either side of the ideal date is adequate for fourteen-day intervals. 
Many gaps of five or six days make the subsequent analysis much less exact and larger intervals
(e.g., 90 days) make the analysis more difficult to interpret correctly.  Large gaps in the data
preclude rigorous time series analysis which requires a very close approximation to equal
intervals between observations.  In general, the more sophisticated the statistical analysis, the
more sensitive it is to data gaps.

As a general recommendation, it is helpful to insert a missing data symbol (e.g., *) where there
are data gaps (i.e., a few missing flow measurements or a few missing values for water quality
parameters) and produce the mean, median, standard deviation, etc. of the truncated data set.  If
the frequency distribution of the variable is reasonably representative (e.g., symmetric), or has
been made so by log transformation, then the means may be substituted for each missing data
symbol (*) and the frequency distribution and summary statistics (mean, median, standard
deviation) rerun on more complete data.  Of course, insertion of the mean does not gain
information; it only makes subsequent analysis more correct.  If the data are asymmetric, the
median is a more representative estimate of the �central tendency� and should be used rather
than the mean.  

This entire procedure (Steps 1�5, Figure 3.1) is aimed at �massaging� the data into a form
suitable for statistical analysis.  If there are only a few observations (18 or so, for example) it is
somewhat arbitrary whether or not one wishes to smooth the data, because very little extended
analysis will be appropriate.

Univariate Analysis (Algorithm Steps 6, 7, and 8)

In Step 6, the data are analyzed and plotted to obtain the summary statistics and to examine
graphical displays of the data to determine the presence of skewness and extreme values.  Stem
and Leaf plots can be used in place of histograms of frequency distributions as shown in Figure
2.4. 

This procedure includes calculating statistics for each individual variable (univariate statistics). 
An example of this procedure is displayed in Table 3.1 of the summary statistics for the analysis
of the data from the Clarion site (discussed in Chapter 5).  In this example, there are seven
parameters and eleven summary statistics that were calculated using the REMINE program. 
There are N = 96 observations (column 1 of Table 3.1); N* (column 2) is the number of missing
observations (19 for the discharge variable).  Columns 3 and 4 list the means and medians
respectively.  Column 5 is a special kind of mean, called by Tukey (1977, p. 46) the �trimmed
mean.� Columns 6 and 7 contain the standard deviation (STDEV) and standard errors
(SEMEAN) of the mean as measures of spread.  Columns 8 and 9 list two extremes (min and
max) yielding the range of the values.  Columns 10 and 11 contain the quartiles (Q1 and Q3), 
yielding a measure of spread around the central tendency (mean or median); this spread is less
sensitive to the extremes and so is often preferred in distributions which are irregular (e.g.,
strongly skewed).  The coefficient of variation (Column 12), usually expressed in percent
(CV%), is defined as the ratio of the standard deviation to the mean multiplied by 100.  This is a
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useful approximate guide to the degree of variation in a parameter.  In general, a CV < 30%
represents a stable (in control) parameter.  Most of these parameters, however, show much larger
variation, principally because of the large effects of extreme events.

Table 3.1: Summary Statistics for S3CLAR (N=96)

N N* Mean Median
Trimmed

Mean
Standard
Deviation

Standard Error
of the Mean 

pH 96 0 3.696 3.195 3.612 0.985 0.101

Discharge 77 19 12.58 6.30 9.00 22.66 2.58

Acidity 96 0 522.4 483.5 505.6 346.4 35.4

Total Iron 96 0 82.40 75.00 79.31 51.01 5.21

Ferrous Iron 96 0 54.84 39.50 47.44 66.99 6.84

SO4 96 0 1528. 1569.0 1525.9 566.0 57.8

Ferric Iron 96 0 27.56 23.60 31.01 70.58 7.2

Minimum Maximum
First

Quartile
Third

Quartile
Coefficient of

Variation

pH 2.670 6.430 3.002 4.455 26.6

Discharge 0.05 172.00 3.59 12.54 188.1

Acidity 1.0 1546.0 232.5 737.7 66.3

Total Iron 8.70 257.00 39.70 110.25 61.9

Ferrous Iron 0.90 612.18 25.12 68.60 122.2

SO4 296.0 3241.0 1181.5 1878.2 37.0

Ferric Iron -581.68 152.00 5.00 55.00 256.1

A second series of statistics referred to as letter values (e.g., H-spread) is sometimes calculated 
to identify various measures of spread.  These spreads can be used to set limits for water quality
(see Tables 8.6 and 8.7, (Q3-Q1)).  These letter values (LVALS) were first defined by Tukey
(1977, p. 22) and are mentioned in the MINITAB Reference Manual (p. 168).  These values are
best described in Velleman and Hoaglin (1981, p. 33). 

If the data are positively skewed (i.e., skewed towards the high end of the values on the variable
scale) the data should be logarithmically transformed and the univariate analysis repeated (Step
7, Figure 3.1).  The log transformation tends to make the histogram more symmetrical, although
there is a tendency to over-correct in some cases and introduce negative skewness.

It is possible to use another transformation such as the square root of the variable, which may
well suffice to avoid over-correction that came from the logarithmic change.  The use of various
transformations is reviewed in Tukey (1977, Chapter 3) and specifically for symmetry, in the
MINITAB Handbook (p. 72 � 76) and the MINITAB Reference Manual (p. 50 � 52).  It is also
discussed in Velleman and Hoaglin (1981, p. 46 � 49) and Box and Cox, (1964).  
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In evaluating the statistics produced for the transformed data, the user should be cautious of the
coefficient of variation values.  Use of the coefficient of variation with log transformed data may
result in extreme distortion because the transformation leads to a mean of small value.  This
results in a denominator of the ratio that is small resulting in a CV that is inflated.

Step 8 in Figure 3.1 is used to check and accept or modify outliers.  Outliers tend to inflate the
variance or spread of the data and make the statistical tests less sensitive.  For this reason,
outliers should be reduced only after deciding that such extreme values are not �real� or when it
is specifically desired to make the statistical testing more sensitive.  As mentioned earlier, some
outliers are indicators of unusual events (e.g., floods, storms) and should not be removed or even
subdued, but instead should be used to reflect the occasional unusual events.

Bivariate Analysis 

The next step in data analysis (see Step 9) concerns the relationship between pairs of variables
(bivariate analysis).  If two variables are closely associated (e.g., a correlation coefficient, r >
0.8), both may be reflecting the same source of variation and one may be considered redundant. 
It is possible to use this kind of feature to select the simpler test (or less expensive analyte) and
ignore the other parameter in subsequent studies.  Sometimes several variables reflect the effects
of the same events.

One expects, for example, pH to decline with increasing acidity and sulfate.  In the case of
calcium and manganese, on the other hand, one expects sympathetic variation.  If examination of
the data shows that this expected relationship is not present, the reason for its absence should be
sought.

The correlation coefficient (r) is usually used to represent the (linear) relationship between any
pair of variables.  The coefficient of determination (r 2) is, however, a better measure of the
intensity of the association between a pair of variables; for example, r = 0.7 looks large because
the range of r is from �1 to +1, but it means that r 2 = 0.49 or 49% of the variation is common to
the two variables and there is 51% of the variation �unexplained� by the association.  It is
necessary, therefore, to realize that one needs  r > 0.8 to claim that a strong association exists
(i.e., > 64% in common).

Another feature which is illuminated by using r 2 as well as r is the statistical test which
accompanies a specific value of r.  For a sample size of N = 174 (Table 6.3), a value of r > 0.124
is significantly different from zero at the five percent probability level.  This should be
accompanied by the corresponding value of r 2. In Table 6.3, the correlation coefficient between
pH and acidity is r = !0.365.  This value comfortably exceeds the r = (±) 0.124, thus it is
statistically significant. Nevertheless, the corresponding r 2 = 0.133 means that only 13.3% of the
variation is common to both variables.

In the graphs presented in Figures 6.5a and 6.5c, the variation of both parameters increases as
their values increase.  This phenomenon is called heteroscedasticity. In general, it is advisable to
plot the logs of the variables which tends to make the variables homoscedastic.  Since
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heteroscedastic variables show a difference in variability with changes in values of the
parameter, no probability statement should be made without transformation so that the variables
are homoscedastic.  Peculiarly, the change from heteroscedasticity to homoscedasticity does not
lead to a major change in the value of r, but does make the probability statements more reliable.

One more avenue should be explored in bivariate analysis, and that is to determine whether there
is any lag in correlations between pairs of variables.  Cross-correlation analysis is performed to
see if a weak relationship at zero lag may be much stronger at greater lags.  This could result
from a delayed effect.  For example, suppose discharge increases and sometime later, pH drops.
Correlation at zero lag may be quite low, but at some higher lag it may increase showing that it
takes time for the effect of changes in discharge to affect pH or some other variable.  The cross-
correlation function (CCF) is the measure used for this purpose.  For example, suppose that an
event occurs and affects one variable immediately but only affects another variable five
observations later.  In this case, the linear correlation coefficient at zero lag may be quite low but
may show a strong association after a five day lag.  The cross-correlation function calculates the
linear association between observation 0 to t days apart and so gives a picture of when the
association is strongest.  The range of t is from � (sqrt (N) + 10) to (sqrt (N) + 10) where N is the
number of observations in the series.  In most of the examples presented in this report,  there did
not appear to be any lag in the effects.

Time Series Analysis

The remaining steps (10 through 12, Figure 3.1) were used to set up baseline behavior based on
relatively long data records.  In this way, expected behavior of various parameters are
established for comparison with the shorter data records that are commonly used in routine
remining permitting.  The likelihood of unusual events is then displayed, and the frequency of a
single or a few unusual observations may be used to judge how often these events occur.   In this
way, these events can be distinguished from other departures that lead to warnings, triggers, or
exceedances in pollution load and therefore, would be less likely to result in false alarms. 

One procedure which is readily available as part of the full Box-Jenkins treatment, but was not
used in these studies, was Transfer Function analysis.  This analysis would be a most attractive
way to correct variation in some parameter (e.g., Fe) for variation in flow and then proceed to
analyze the residual variation in the parameter after the effects of flow were removed.  This
would also be an alternative way of looking at the �load� variable in place of concentration.

Similarly, there is a procedure in Box-Jenkins analysis called �intervention analysis� which may
be used to compare and contrast variation in a parameter before and after treatment is applied. 
This has obvious applications to remining operations.  Needless to say, use of these procedures
requires an extensive set of observations taken at equal intervals, with few data gaps.

Variation in many of the parameters, from the different locations, appears to follow a common
pattern.  There is usually some type of gradient present in the data which may be increasing or
decreasing over time.  This results in a typical autocorrelation function (Acf) pattern and a large
spike at lag 1 in the partial autocorrelation function (Pacf).  This trend should be removed before
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fitting a model.  This is best done in nearly all the examples in this particular series of
investigations by taking first differences of the variable of interest.  The subsequent model-fitting
usually leads to a moving average model.  In Box-Jenkins notation this is an IMA (0,1,1) model. 
It is essentially a random walk after first differences are taken.

Quality Control (QC) Limits

Step 10 of the algorithm on times series plots of the variables  (Figure 3.1) includes an item (# 4)
on quality control graphs.  Items 2 and 3 of Step 12 (sampling by simulation) also refer to quality
control graphs.  The final step of the algorithm (Step 13) is a procedure for routine statistical
analysis of data contained in remining permits.  From the discussion of quality control
throughout Chapter 2, it is obvious that the development of a relatively simple quality control
approach for mine drainage data analysis is a major objective of this report and a significant
component of the routine procedure in Step 13 of the algorithm.  Chapters 4 through 8 contain
further discussion, tables and plots of various examples of quality control limits.  Examples from
the six mine drainage case study sites lead to the statistical summary and review of quality
control limits in Chapter 9, wherein options for the routine use of quality control limits are
presented.  

Throughout this report the conventional quality control limits based upon the mean and standard
deviation of the normal frequency distribution are compared to another set of non-parametric
quality control limits based upon the median and other order statistics (e.g., quartiles, H-spreads,
C-spreads), which may be more applicable to mine drainage data that frequently do not conform
to normality.  The quality control options in Chapter 9 of this report are a component of the
routine procedures for establishing baseline pollution load and monitoring in remining permits. 
These procedures are related to the recommended statistical procedures set forth in Chapter 3
and Appendix A of EPA�s Coal Remining Statistical Support Document.  However, the user of
these routine procedures should be ever mindful that no single set of quality control limits or
specific statistical test will be perfectly applicable to all mine drainage sets or even to all
discharge parameters within the same data set.  The user should carefully examine the data and
follow the fundamental steps of the algorithm in order to properly use the statistical tools that are
most applicable to the characteristics of the data. 

In the following chapters, more than one equation was used to calculate QC interval spreads.
These equations were chosen based on the distributions of the parameters collected in the given
data sets (i.e., number of results, amount of variability, lack of normality, etc.)

The first equation ( ) is based on the typical confidence interval for a mean under theX ± 2 $σ
normal distribution. However, unlike the typical equation for a confidence interval around a
mean, the standard deviation was not divided by the square root of the number of results (N).
The exact interpretation of the usual confidence interval is that the true mean of all post-
remining results for the given site will fall into the calculated interval with 0.95 probability. For
the purpose of quality control, however, this interval may be extremely tight, given the large
number of results collected for each dataset. For baseline permit pollution load data sets, the
number of results collected would likely be much less, and therefore would produce wider
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intervals.  A different value of N (N’) could be used in the equation, reflecting the number of
results likely to be collected and used to calculate the mean that will be compared to the interval.
For example, if monthly samples are collected for a year, N’ would equal 12. However, if the
purpose of the interval is to evaluate individual results rather than a mean, then N’ should equal
1. This is what was done in Chapters 4, 6, 7 and 8, where the above equation is used.

The two other equations that are used in quality control tables in the following chapters are non-
parametric, in that they do not require that the collected data follow a normal distribution. They
are based on the non-parametric equivalent of the mean (the median) and the non-parametric
statistic for variability (the interquartile range). The first interval,

, Md
1.25 *  H spr

±
−

196
135

. *(
.

. * '
)

N
is discussed in McGill, Tukey and Larsen (1978). This interval is used to assess whether a
median follows the same population as the baseline pollution load data, and is therefore divided
by the square root of N’, where N’ is the expected number of remining results. The chosen
multiplier, 1.96, is appropriate when it is assumed that the variability of the baseline data and the
remining data are approximately equal. However, if the variability of the baseline data and
remining data are different,  a smaller multiplier (1.39) is appropriate. When it is not known
whether the two variances will differ, the midpoint of 1.39 and 1.96, (i.e., 1.7) could be used.
The above equation is used in Chapters 6, 8 and 9. 

A second equation, Md ± 1.58 * (H-spr.), was used in Chapter 4. In this second equation, the
value of 1.58 was chosen by using the midpoint multiplier (1.7) and simplifying the equation by
multiplying by 1.25 and dividing by 1.35. The purpose of this equation differs from the previous
one, in that it is designed to evaluate individual results, rather than the remining median.
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Chapter 4: Analysis of Data from the Arnot 001, 003 and 004 Discharges

The Arnot mine site is located in Tioga County, Pennsylvania in the northeastern portion of the
bituminous coal region.  The Arnot discharges are from an abandoned underground mine on the 
Bloss (B) coal seam, which is the subject of a hydrogeologic study by Duffield (1985).  The
relationships between flow and water quality parameters of the Arnot mine site are also
described in Smith (1988) and Hornberger et al. (1990).  A map of the Arnot site is shown in
Figure 4.1.   The data set for the Arnot site contains 82 samples from each of the 3 mine drainage
discharges for the time period from January 28, 1980 to August 14, 1983.

It is advisable to examine the distribution of the missing values because they will lead to
difficulties as the analytical (statistical) tools get more sophisticated.  In particular, time series
analysis demands observations at regular time intervals.  On the other hand, it is impractical to
expect that there will be no missing values, because during a storm event, the sampling location
may become inaccessible for various time intervals.  It is best, therefore, to recommend time
interval limits for the period in which a sample may be taken, and which, for statistical analysis,
will be considered to be within the time interval (e.g., any time within a two week period will be
assigned as an observation taken 2 weeks apart at the mid-point of the time interval). In any case
it is advisable to examine the data carefully before attempting a quantitative analysis.  Therefore,
it is recommended that a graph of discharge (and/or other variables) against time be prepared and
examined carefully to determine the distribution of missing values, position of the extremes, etc.

A typical example is illustrated in Figure 4.2 which is a plot of log (base 10) of flow versus time
for all three point sources from the same mine.  The flow for Arnot 001 is usually the largest
followed by Arnot 004, then Arnot 003.  All three show the same general pattern of variation.

The samples were supposed to be taken at 14 day intervals but, in practice, the intervals vary
from 1 day up to 40 days.  All intervals equal to or exceeding 20 days are accented in Figure 4.2. 
These longer intervals include, of course, many missing values.  When a time series model is
fitted to these data, they are “forced” into equal interval status.  The effect of these departures
from equal intervals is to suppress any seasonal periodicity that may be present.

It may be observed that in 1980 the runoff occurred in March, April and May; in 1981 in March
and April; in 1982 in March and June; and in 1983 in April and May.  These variations tend to
suppress any seasonal effect in the occurrence of extreme values.
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Figure 4.1: Map of Arnot Mine Site
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Figure 4.2: Log Flow vs. Time (Arnot 001, 003, and 004) Procedures to Adjust the Data
Set for Missing Data

In some cases, it will be advantageous to insert some suitable value in place of the missing
observation and the procedures for selection of a suitable value can differ.  One such approach is
to insert the mean value for the series or, if the frequency distribution is somewhat skewed
(asymmetric), the median may be more representative.  

There are also smoothing procedures varying from simple ones, such as the average of a pair of
values on either side of the missing observation, through running averages using any of several
larger sets of numbers.  These, smoothing procedures, are described in Velleman and Hoaglin
(1981, Chapter 6) and (Cleveland, 1979).

A typical, but rather elaborate example, specifically designed for time series analysis, is
described by Damsleth (1986).  This example begins with “simple linear interpolation between
observations preceding and following the gap” then identifying and estimating a univariate time
series model for the “adjusted series” which, in turn, yields “optimal estimators using the
model.”  The new series is used to build a transfer function model between two series (such as
acidity and flow) and calculating new optimal values which are in turn used to estimate new
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model parameters (Damsleth, p. 46-47).  The conclusions reached by Damsleth (p. 47) are:  “The
various steps in the process gave only small changes in the estimates for missing values, and the
model and parameter estimates were almost unaffected….”.

It should be clear that missing observations can be a very difficult problem.  Another aspect of
this “data massaging” procedure arises when attempts are made to reduce the magnitude of the
error of residuals when fitting a time series model.  In a series of flow observations, for example,
there maybe some extremely large values that arise from unusual events (e.g., heavy rainfall,
perhaps persisting for several days, sudden water run-off from snow melt, etc.).  These “natural”
events of limited duration can increase the residual error quite seriously and usually do not
represent persistent increased contamination.  In the series of mine drainage data examined in
this chapter, these unusually large values are often associated with missing data.  This means that
if one inserts a very small value (near zero) for the missing value, the entire range in parameter
values occurs within a short period.  It is advisable to reduce this wide range, first by not using
low values for zero or missing values but by using one of the procedures described above. 
Secondly, the extreme high values should be smoothed out (i.e., large variance, and wide
confidence limits which tend to be insensitive to large departures in the data).  The effects of
these adjustments may be estimated by running the series, after removing the zero values, both
with the original extreme values and with the extremes adjusted by some form of smoothing.

In comparing the results of the more sophisticated smoothing technique described by Damsleth
with other “quick and dirty” techniques, it was found that the changes were not very different. 
Therefore, it was concluded that elaborate smoothing procedures are unnecessary for mine
drainage data sets.

Univariate Analysis

The analysis commences with the summary statistics displayed in Tables 4.1a to 4.1c.  The
number of samples (N) for each variable is listed first, followed by the number of missing values
(N*).  The statistical summary then follows with values for the arithmetic mean, median,
trimmed (10%) mean, standard deviation, standard error of the mean, minimum, maximum, and
the first and third quartiles.  A convenient procedure for comparing variabilities among different
variables, and among the same variables from different sources, is by means of the Coefficient of
Variation (CV) where CV% = (standard deviation / mean) *100 expressed in percent.  The
values are displayed in Table 4.2 for convenient comparisons.  For all three Arnot sources, pH
has the smallest variability (around 4%), whereas, discharge has the largest variability (Arnot 1:
CV=112%, Arnot 3: CV=70.0%, Arnot 4: CV=78.1%).
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Table 4.1a:  Summary Statistics for Arnot 001 Data

N N* Mean Median
Trimmed

Mean
Standard
Deviation

Standard Error
of the Mean

pH 81 0 4.8505 4.8400 4.8479 0.2221 0.0247

Temperature 67 14 9.448 9.100 9.403 1.424 0.174

Discharge 81 0 0.7961 0.5000 0.6747 0.8955 0.0995

Acidity 81 0 20.04 16.00 19.42 11.26 1.25

Alkalinity 81 0 6.457 5.000 5.918 5.480 0.609

Total Iron 81 0 0.21111 0.20000 0.21096 0.07583 0.00843

Ferrous Iron 81 0 0.11728 0.10000 0.11507 0.07872 0.00875

SO4 81 0 173.23 177.00 173.22 44.05 4.89

Ca 75 6 109.52 111.00 109.73 22.76 2.63

Mg 75 6 86.03 82.00 85.76 24.87 2.87

Mn 75 6 1.7104 1.6200 1.6776 0.6666 0.0770

Al 72 9 1.425 1.045 1.384 0.982 0.116

Minimum Maximum
First

Quartile
Third

Quartile
Coefficient of

Variation 

pH 4.2000 5.4500 4.6800 5.0200 4.5

Temperature 7.000 12.900 8.400 10.000 15.1

Discharge 0.0100 5.0910 0.2300 0.8615 112.0

Acidity 3.00 64.00 11.00 28.00 56.2

Alkalinity 0.000 37.000 3.000 8.000 84.8

Total Iron 0.00000 0.40000 0.20000 0.25000 35.9

Ferrous Iron 0.00000 0.30000 0.10000 0.20000 67.1

SO4 66.00 277.00 140.50 201.50 25.4

Ca 66.00 152.000 93.00 127.00 20.8

Mg 31.00 145.000 69.00 104.00 28.9

Mn 0.5400 3.9500 1.2800 2.0300 39.0

Al 0.100 3.640 0.602 2.277 68.9
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Table 4.1b:  Summary Statistics for Arnot 003 Data

N N* Mean Median
Trimmed

Mean
Standard
Deviation

Standard Error
of the Mean

pH 82 0 3.2782 3.265 3.2727 0.1095 0.0121

Temperature 67 15 8.551 8.600 8.548 0.916 0.112

Discharge 82 0 0.2157 0.1610 0.2671 0.1509 0.0167

Acidity 82 0 86.37 84.50 85.7 22.55 2.49

Total Iron 82 0 1.0963 1.1000 1.0919 0.2843 0.0314

Ferrous Iron 82 0 0.3610 0.3000 0.3405 0.2340 0.0258

SO4 82 0 168.99 165.00 168.66 43.79 4.84

Ca 75 7 59.75 61.00 59.52 11.69 1.35

Mg 75 7 73.60 70.00 72.49 23.00 2.66

Mn 77 5 3.203 2.760 3.110 1.338 0.152

Al 73 9 5.079 4.680 5.060 2.213 0.259

Minimum Maximum
First

Quartile
Third

Quartile
Coefficient of

Variation

pH 3.0400 3.7000 3.2100 3.3325 3.3

Temperature 6.200 11.700 8.100 9.000 10.7

Discharge 0.04 0.5650 0.1010 0.3282 70.0

Acidity 42.00 151.00 67.75 104.00 26.1

Total Iron 0.3000 2.0000 0.9000 1.2000 25.9

Ferrous Iron 0.0000 1.5000 0.2000 0.4000 64.8

SO4 85.00 262.00 134.00 211.25 25.9

Ca 38.00 90.00 49.00 69.00 19.5

Mg 38.00 142.00 55.00 89.00 31.2

Mn 1.540 6.900 2.040 4.350 41.7

Al 0.700 9.440 3.400 6.960 43.6
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Table 4.1c: Summary Statistics of Arnot 004 Data

N N* Mean Median
Trimmed

Mean
Standard
Deviation

Standard Error
of the Mean

pH 81 0 3.2794 3.2800 3.2675 0.1409 0.0157

Temperature 67 14 8.466 8.600 8.487 0.906 0.111

Discharge 81 0 0.5307 0.4030 0.4887 0.4143 0.0460

Acidity 81 0 96.99 96.00 95.85 26.61 2.96

Total Iron 81 0 1.2630 1.200 1.243 .418 0.0464

Ferrous Iron 81 0 0.4198 0.3000 0.3973 0.2638 0.0293

SO4 80 1 171.80 166.50 170.79 39.04 4.36

Ca 75 6 54.293 54.000 54.164 8.022 0.926

Mg 75 6 67.68 65.00 67.27 18.52 2.14

Mn 75 5 2.714 2.445 2.637 0.979 0.112

Al 73 8 6.453 5.900 6.317 2.590 0.303

Log Discharge 81 0 -0.3954 -0.3947 -0.4024 0.3266 0.0363

Ferric Iron 81 0 0.843 0.800 0.845 0.382 0.043

Minimum Maximum
First

Quartile
Third

Quartile
Coefficient of

Variation

pH 3.0000 3.9400 3.1900 3.3350 4.3

Temperature 6.100 10.700 8.100 9.000 10.7

Discharge 0.1220 1.8380 0.2090 0.7365 78.1

Acidity 62.00 168.00 73.00 121.00 27.4

Total Iron 0.600 2.8 0.900 1.500 33.1

Ferrous Iron 0.0000 1.4 0.2500 0.5000 62.8

SO4 86.00 268.00 143.00 200.00 22.7

Ca 39.000 79.000 49.000 60.000 14.8

Mg 17.00 110.00 54.00 75.00 27.4

Mn 1.200 6.500 1.987 3.247 36.1

Al 0.710 13.560 4.325 8.350 40.1

Log Discharge -0.9136 0.2643 -0.6799 -0.1330 82.6

Ferric Iron 0.000 1.700 0.600 1.100 5.1



Chapter 4

4-8

Table 4.2:  Coefficient of Variation (%)

Variable Arnot 001 Arnot 003 Arnot 004

pH 4.5 3.3 4.3

Temperature 15.1 10.7 10.7

Flow 112.0 70.0 78.1

Log (Discharge) - - 82.6

Acid 56.2 26.1 27.4

Alkalinity 84.8 - -

Total Iron 35.9 25.9 33.1

Ferrous Iron 67.1 64.8 62.8

Ferric Iron - - 5.1

SO4 25.4 25.9 22.7

Ca 20.8 19.5 14.8

Mg 28.9 31.2 27.4

Mn 39.0 41.7 36.1

Al 68.9 43.6 40.1

The same CV order of magnitude is maintained by each variable in each of the three sources. 
Log discharge does nothing to reduce the relative variation (CV) as can be seen from the value
for Arnot 004 (82.6%).  Discharge is highest in Arnot 001, moderate in 004, and lowest in 003. 
The coefficient of variation reflects this order and suggests that this parameter varies in
proportion to its absolute value (heteroscedastic), again reinforcing that the appropriate
transformation is to logarithms.

The majority of the variables in the histogram-like displays of data from Arnot 001 are
symmetrical, such as sulfate shown in Figure 4.3.  The most asymmetric is discharge which is
seen in Figure 4.4.  When this variable is transformed to logarithms it becomes symmetrical.
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Figure 4.3: Stem-and-leaf of Sulfate (Arnot 001)
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Figure 4.4: Stem-and-leaf of Discharge (Arnot 001)
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The Arnot 003 and 004 data are substantially similar to that of Arnot 001.  The histogram of pH
data for the Arnot 003 discharge is very symmetrical, as shown in Figure 4.5, as is the histogram
of sulfate data for the Arnot 004 discharge shown in Figure 4.6.  Flow measurement data of the
Arnot 004 discharge are asymmetric and positively skewed, as shown in Figure 4.7.
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Figure 4.5: Stem-and-leaf of pH (Arnot 003)
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Figure 4.6: Stem-and-leaf of Sulfate (Arnot 004)

N = 80

Leaf Unit = 1.0                N* = 1

1 0 8

3 11 00

16 1 2222333333333

33 1 44444444444555555

(18) 1 666666666666667777

29 1 88888999

21 2 000000111

12 2 2222233

5 2 455

2 2 66



Statistical Analysis of Abandoned Mine Drainage in the Assessment of Pollution Load

4-11

Figure 4.7: Stem-and-leaf of Acidity (Arnot 004)

Figure 4.7 : Stem-and-leaf of Acid.       
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Bivariate Analysis

The relationships between log discharge and every other parameter are similar (i.e., inverse and
approximately linear).  That is, as discharge increases in volume the amount of each variable,
calcium, magnesium, manganese and aluminum, decreases, or in high flows the concentration is
diluted.  A good example of this relationship is the plot of manganese versus flow for the Arnot
001 discharge, shown in Figure 4.8.

Figure 4.8: Plot of Manganese vs. Log Flow (Arnot 001)
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Figure 4.9: Plot of Acidity vs. Flow (Arnot 003)

Figure 4.10: Plot of Manganese vs. Flow (Arnot 003)
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For Arnot 003, acidity vs. discharge possesses a clear, curvilinear association (Figure 4.9), which
would become inversely linear if discharge was expressed in logs.  Cross-correlation of these
variables had maximum association of �0.648 at zero lag, or about 42% of the variation (r2)is
common to both variables.  Sulfate, manganese and aluminum vs. discharge also showed this
same curvilinear association of dilution with increasing flow.  The example of manganese is seen
in Figure 4.10.

A plot of sulfate versus acidity from the Arnot 004 discharge data showed the expected positive
association but again the scatter around a straight line is very large.  The expected association of
calcium and magnesium is extremely weak.  Any relationship between manganese and total iron
is obscured by an extreme value in iron.  It seems somewhat strange that the data from Arnot
004, which is located between Arnot 001 and 003, should present such a confused picture of
these bivariate relationships relative to those of Arnot 001 and 003 data; possibly Arnot 004
contains more outliers than 001 or 003.

Time Series Analysis

A qualitative time series analysis was performed by plotting successive variables against (equal
interval) time periods.  It is convenient to start with the variable discharge (flow) for Arnot 003
(Figure 4.11a) which may be compared with the same plot on a much larger scale (Figure 4.2). 
The four maxima (peaks) are quite striking in both graphs.  Since the date of the first observation
is January 28, 1980, the first peak is in March (1980), marked in the graph by the number 3; the
numbers in Figure 4.11a go from 1 to 10 (=0) and then start at 1 again and so on for each cycle
of 10.  The next peak is 22 (March, 1981) followed closely by another at 26 (May, 1981). 
Subsequent peaks occur at 43 (March, 1982), 48 (June, 1982) and then 73 (April, May, 1983). 
Suppose there existed an annual cycle (i.e., 26 observations, one every two weeks) then, starting
with March = 3, the next peak should be 29, then 55, 81, etc.  Missing observations (see Figure
4.2) and peak discharges at varying intervals, not equal annual cycles, make a seasonal pattern
obscure.

Using discharge as the base which controls the concentration of acidity for example, one would
expect pH to also show similar cycles in Figure 4.11b.  Instead, the first peak and the following
double peak are similar to those shown by discharge, but the peak at 40 is not.  There is a peak at
48 in both plots but then the pH declines and stays below its mean throughout the subsequent
series; there is no sign of the discharge peak at 73.  The scatter diagram of pH vs. discharge
showed no relationship.

The relationship between acidity and time (Figure 4.11c), tends to be inversely related to the
relationship between discharge and time, i.e., the peaks of discharge coincide with the minima
(maximum dilution) of acidity. This is supported by the scatter diagram between acidity and
discharge (Figure 4.9).  There is a slight tendency for this to be true of total iron (Figure 4.11d)
but there was no sign of such a relationship in the scatter diagram of iron vs. discharge.

Sulfate, as expected from its scatter plot against discharge shows inverse relationships in Figure
4.11e, with peaks coinciding with discharge troughs.  Calcium, magnesium, manganese, and
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aluminum also show this inverse relationship to discharge (see Figure 4.11f of aluminum for
example).  

Figure 4.11a: Plot of Discharge vs. Time (Arnot 003)

Figure 4.11b: Plot of pH vs. Time (Arnot 003)
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Figure 4.11c: Plot of Acidity vs. Time (Arnot 003)

Figure 4.11d: Plot of Total Iron vs. Time (Arnot 003)

Figure 4.11e: Plot of Sulfate vs. Time (Arnot 003)
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Figure 4.11f: Plot of Aluminum vs. Time (Arnot 003)

The time series plots shown in Figures 4.11a to 4.11f can be used as quality control graphs in the
following manner.  Confidence limits around the mean are simple to prepare from the descriptive
statistics in Tables 4.1a to 4.1c and these can be inserted in, for example, Figure 4.11c.  Two
kinds of confidence limits are included for comparison. The first is based upon the mean and
standard deviation of the normal frequency distribution.  The second is based upon the median
and other order statistics and is for use in cases where the frequency distribution is not normal
(e.g. skewed) or in other non-parametric applications.  These two kinds of quality control
approaches are discussed in more detail in Chapter 5.  The most typical quality control limit is
the conventional range of the mean (plus or minus two standard deviations) which, in a normal
distribution includes some 95 percent of the observations (i.e., one expects in a moderately long
(say > 30) series about 2 � 3 observations outside these limits on either side of the mean).  If we
wish to relax the requirement of a normal distribution we may use the range encompassed by
order statistics, for example Md ± 1.58 (H-spr.), which is approximately equivalent to the
conventional measure (Velleman and Hoaglin, 1981, p. 81).  The multiplier (2) in the
conventional example may be replaced with 3 for a more stringent test in which only 3 in 1000
are expected to fall outside the (3 ) limits, strictly in a normal distribution.  The limits for eachσ
of the eleven variables from the Arnot 003 data are displayed in Table 4.3, including the range
around the means and around the medians.  The range around the mean exceeds that around the
median in pH, temperature, ferrous iron, and total iron, whereas the range around the median
exceeds that around the mean in the seven other variables.  These seven variables show
associated variation either directly or inversely so this consistency is to be expected.  The reason
for the reversal in relationship for the other four may arise from inconsistent occurrence of
outliers in the data for these variables.  pH is usually symmetrical and probably closely normal;
temperature, ferric iron and total iron have very marked peculiarities.



Statistical Analysis of Abandoned Mine Drainage in the Assessment of Pollution Load

4-17

Table 4.3:  Comparison of Confidence Belts Around Mean and Median (Arnot 003 Data)

Mean Std. Dev. Median H-spr. Lower Upper Lower Upper Range

Variable X       $σ Md Q3 - Q1 Around Mean Around Median Mean Median

pH 3.2782 0.1095 3.265 0.1225 3.059 3.497 3.071 3.459 0.438 0.388

Temperature 8.551 0.916 8.6 0.9 6.719 10.383 7.178 10.022 3.664 2.844

Flow 0.2157 0.1509 0.161 0.2272 -0.086 0.518 -0.198 0.52 0.604 0.718

Acidity 86.37 22.55 84.5 36.25 41.27 131.47 27.225 141.775 90.2 114.55

Total Iron 1.0963 0.2843 1.1 0.3 0.528 1.665 0.626 1.574 1.137 0.948

Ferrous Iron 0.361 0.234 0.3 0.2 -0.107 0.829 -0.016 0.616 0.936 0.632

SO4 168.99 43.79 165 77.25 81.41 256.57 42.945 287.055 175.16 244.11

Ca 59.75 11.69 61 20 36.37 83.13 29.4 92.6 46.76 63.2

Mg 73.6 23 70 34 27.6 119.6 16.28 123.72 92 107.44

Mn 3.203 1.338 2.76 2.31 0.527 5.879 -0.89 6.41 5.352 7.3

Al 5.079 2.213 4.68 3.56 0.653 9.505 -0.945 10.305 8.852 11.25

The mean, median, and their associated ranges are included in Figures 4.11a to 4.11f.  The means
and medians are reasonably close with the median usually being less than the mean.  This
suggests that the outliers are on the large side (i.e., positive skewness) and are pulling the mean
up more than the median.  The seven variables which show associated variation should probably
all be log transformed.  The pH is already in log units, but temperature and the iron variables are
not, on the whole, consistent enough to make any general recommendation.  Total iron or any
combination of these should be carefully checked because their variation is open to a variety of
problematic explanations, and until one can be sure that these measures are meaningful, they
should be treated with circumspection.

From the point of view of setting up triggers, either of the ranges around the mean or median
would suffice.  If the confidence belts were constructed around the mean, then for the Arnot 003
data, the following observations fall on, near or totally outside them, as shown in Table 4.4. 
Apparently the 2 sigma limits are more sensitive to these deviations and the H-spread usually
shows less observations outside the limits; since 2 sigma = about 95% confidence limits, then 2.5
are expected to exceed the upper limit.  Three, therefore, is an expected number and needs no
reaction.  The iron observations are again somewhat inconsistent.

Table 4.4: Observations Falling Beyond Confidence Limits of 2 Standard Deviations
Around the Mean Beyond the (1.58*) H-Spread (Arnot 003 Data)

Number of Observations

Variable >2 $σ >(1.58) H-Spread

pH 4 8

Temperature 3 7

Discharge 3 3

Acid 3 1
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Total Iron 6 8

Ferrous Iron 2 8

SO4 1 0

Ca 2 0

Mg 3 2 

Mn 5 0

Al 0 0

The approach to Box-Jenkins Time Series analysis may be simplified to accomplish preliminary
exploration of the data.  We may, therefore, examine the autocorrelation function (Acf) and the
partial autocorrelation function (Pacf) to the data and evaluate their first differences, if necessary.
From this analysis it can be decided whether the data appear to represent the Integrated Moving
Average (IMA) (0,1,1) model described in Chapter 3, or whether a new model should be fitted.

In general, if the Autocorrelation Factor (Acf) looks more or less J-shaped (e.g., Figure 4.12a for
Arnot 001 discharge data), it is close enough to the model already described to need no further
analysis.  If it is subsequently decided to pursue the analysis to model fitting then the full Box-
Jenkins procedures described in Chapter 3 should be undertaken.

For the Arnot 001 data, the Acf for discharge (Figure 4.12a), calcium (Figure 4.12b), and
aluminum (Figure 4.12c) all conform to the J-shape and are considered to be adequately modeled
by an IMA (0,1,1) model.  The total iron (Figure 4.12d) and ferrous iron graphs do not show this
form of Acf so would require a more formal analysis.  From these Acf�s, however, it is suspected
that a simple Moving Average (MA) (0,0,1) would be adequate to represent these data.  In other
words, the data appear to represent a random walk.
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Figure 4.12a: Autocorrelation Function of Discharge (Arnot 001)

Figure 4.12b: Autocorrelation Function of Calcium (Arnot 001)
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Figure 4.12c: Autocorrelation Function of Aluminum (Arnot 001)

Figure 4.12d: Autocorrelation Function of Total Iron (Arnot 001)
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To check these conclusions, the discharge parameter was run through the full Box-Jenkins
autocorrelation function analysis and, as in Chapter 3, a first difference was required to reduce the
Acf to that expected from white noise.  An autoregressive integrated (ARI) (1,1,0) model was
fitted for diagnostic purposes, and while most criteria were satisfactory, the confidence belts
around the coefficient of the differenced series included zero.  For that reason, this model was
rejected and the IMA (0,1,1) appears most appropriate.  This analysis of Arnot 001 data was then
terminated.

Arnot 003 data yielded similar results and the Acf�s of discharge and log discharge were almost
identical.  Acf�s for calcium, magnesium, manganese, and aluminum were similar in form; total
iron and ferrous iron are peculiar and probably representative of random variation.  A comparison
of the standard deviations of the raw data from Table 4.1b and the residuals after fitting the model
is illustrated in Table 4.5.  There is little improvement from fitting the models, further confirming
that the variation in these data are essentially random.

Table 4.5: Comparison of Total Iron and Ferrous Iron  

Variable $σ $σe

Total Iron 0.284 0.252

Ferrous 0.239 0.231

A few examples of the Acf-Pacf analysis are also included for selected variables from the analysis
of the Arnot 004 data.  The Acf of pH (Figure 4.13a) is not very informative and the Pacf is
identical (Figure 4.13b).  Without further analysis these data may be taken to represent a random
walk.  Log discharge in Figure 4.13c possesses typical features of the IMA (0,1,1) model, a rapid
decline in the Acf (J-shape) and a single large spike in the Pacf (Figure 4.13d).  These features
suggest a first difference followed by a first order moving average model.
  
Figure 4.13a: Autocorrelation Function of pH (Arnot 004)
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Figure 4.13b:  Partial Autocorrelation Function of pH (Arnot 004)

Figure 4.13c: Autocorrelation Function of Log Discharge (Arnot 004)
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Figure 4.13d: Partial Autocorrelation Function of Log Discharge (Arnot 004)

Figure 4.13e: Autocorrelation Function of Ferric Iron (Arnot 004)

          -1.0 -0.8 -0.6 -0.4 -0.2  0.0  0.2  0.4  0.6  0.8  1.0
            +----+----+----+----+----+----+----+----+----+----+
  1   0.556                          XXXXXXXXXXXXXXX
  2   0.324                          XXXXXXXXX
  3   0.310                          XXXXXXXXX
  4   0.249                          XXXXXXX
  5   0.139                          XXXX
  6  -0.026                         XX
  7  -0.075                        XXX
  8  -0.025                         XX
  9   0.057                          XX
 10  -0.001                          X
 11  -0.021                         XX
 12  -0.069                        XXX
 13   0.017                          X
 14   0.001                          X
 15  -0.120                       XXXX
 16  -0.105                       XXXX
 17  -0.105                       XXXX
 18  -0.120                       XXXX
 19  -0.100                        XXX



Chapter 4

4-24

Figure 4.13f: Partial Autocorrelation Function of Ferric Iron (Arnot 004)
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Ferric iron shows similar patterns to log discharge, suggesting an IMA (0, 1, 1) model.  This is
similar to some of the measures of iron content in Arnot 001 and Arnot 003. 

Summary

One of the most interesting features in the time series analyses of the Arnot site is the absence or
lack of obvious seasonal patterns.  Based upon this data set, it appears that this arises for the
following reasons:

� The peak flow occurs during Spring snow-melt and runoff.  This varies over several
months, from February to April, so that successive maxima may not occur at the same
time each year.

� Another peak flow may occur in early summer as the result of intense short duration
storms.  Again this is not strictly confined to exactly the same period from year to year.

� If the missing values occur during these events, and they often appear to be so related,
then the extreme values do not occur in a uniform cycle; this confuses any seasonal
pattern which may be present.
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Chapter 5: Analysis of Data from the Clarion Site

The Clarion mine site is located in northern Clarion County, Pennsylvania, in the northwestern
portion of the bituminous coal region.  The acid mine discharge (S3CLAR) was from an
abandoned surface mine on the Upper and Lower Clarion coal seams that was the site of
abandoned mine reclamation and a cooperative research project by the Bureau of Abandoned
Mine Reclamation of the Pennsylvania Department of Environmental Resources and the U.S.
Bureau of Mines.  During this project, alkaline addition (in the form of crushed limestone) was
incorporated into the reclamation procedures as an attempt to reduce the acid mine drainage
pollution, as described by Lusardi and Erickson (1985).  A map of the Clarion site is shown in
Figure 5.1, which is adapted from Lusardi and Erickson (1985).

The data set used for most of the statistical analysis of the Clarion site contains 96 samples for
the time period from December 15, 1981 to August 4, 1986.  Of these data, approximately half
(N = 49) are pre-treatment, and the other half (N = 47) are post-treatment with the crushed
limestone, alkaline-addition reclamation procedure.  Missing data presented a problem in the
statistical analysis of the discharge and water quality characteristics.
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Figure 5.1: Map of Clarion Mine Site
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Univariate Analysis 

Initially, there were 104 observations in this data set.  However, at least 19 samples were missing
flow measurements, and others were missing one or more water quality parameters.  Discharge
and pH were plotted against date to see where the largest gaps occurred.  After careful
examination, the data set was reduced to 96 rows containing seven columns:  pH, discharge,
acidity, total iron, sulfate, ferrous iron, and ferric iron. Ferric iron is determined by subtracting
ferrous iron from total iron.  The statistics describing the variables were derived and mean values
were inserted in rows with missing values.  The data were then rerun to yield Table 5.1.

Table 5.1: Summary Statistics for S3CLAR (N=96)

N N* Mean Median Trimmed
Mean

Standard
Deviation

Standard Error
of the Mean

pH 96 0 3.696 3.195 3.612 0.985 0.101

Discharge 79 17 12.57 6.70 9.09 22.37 2.52

Acidity 96 0 522.4 483.5 505.6 346.4 35.4

Total Iron 96 0 82.40 75.00 79.31 51.01 5.21

Ferrous Iron 96 0 48.38 37.75 45.97 34.46 3.52

SO4 96 0 1528.4 1569.0 1525.9 566.0 57.8

Ferric Iron 96 0 34.02 23.60 31.44 32.05 3.3

Minimum Maximum First
Quartile

Third
Quartile

Coefficient
of Variation

pH 2.670 6.430 3.002 4.455 26.6

Discharge 0.05 172.00 3.60 12.48 178.0

Acidity 1.0 1546.0 232.5 737.7 66.3

Total Iron 8.70 257.00 39.70 110.25 61.9

Ferrous Iron 0.90 143.00 23.87 66.65 71.2

SO4 296.0 3241.0 1181.5 1878.2 37.0

Ferric Iron - 4 152.00 6.00 55.00 94.2

The very high magnitude of variation in discharge is shown by the value of the Coefficient of
Variation (CV% = standard deviation/mean *100) = 180.1%.  The coefficients of variation for
pH and sulfate are reasonable.  However, the CV% for acidity and all iron parameters are rather
large.  Correction for some exceptional values is proposed when the variables take values which
are either very unlikely or even sometimes impossible.

The frequency distribution for sulfate appears to be symmetrical (Figure 5.2).  However, some
variables exhibit positive skewness including discharge (Figure 5.3a) and acidity (Figure 5.4a). 
Attempts were made to make these frequency distributions more symmetrical by transforming to
logarithms, but this transformation over-corrected and resulted in negative skewness. 
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For example, log discharge (Figure 5.3b) is slightly negatively skewed and log acidity is
extremely skewed (Figure 5.4b).  It was decided, therefore, to use the data without
transformation.

Figure 5.2: Stem-and-leaf of Sulfate
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Figure 5.3a: Stem-and-leaf of Discharge
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Figure 5.3b: Stem-and-Leaf of Log Discharge
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Figure 5.4a: Stem-and-leaf of Acid
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Figure 5.4b: Stem-and-leaf of Log Acid
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Due to the 19 missing discharge values, a second modified data set was prepared by omitting
each row with a missing value for discharge; this left 79 rows with complete observations.  This
step was essential to the study of the association between discharge and other parameters using
plotting routines or cross-correlation.  Summary statistics for the modified data set are presented
in Table 5.2.  

Table 5.2: Summary Statistics for S3CLAR Adjusted Data Deck (N=79)

N Mean Median
Trimmed

mean
Standard
Deviation

Standard Error
of the Mean

pH 79 3.624 3.160 3.533 0.967 0.109

Discharge 79 12.57 6.70 9.09 22.37 2.52

Acidity 79 556.1 499.0 542.1 361.2 40.6

Total Iron 79 86.70 78.50 83.80 53.45 6.01

Ferrous Iron 79 51.23 40.00 49.01 35.92 4.04

SO4 79 1586.3 1619.0 1578.6 559.6 63.0

Ferric Iron 79 35.47 26.00 32.89 33.80 3.80

Minimum Maximum
First

Quartile
Third

Quartile
Coefficient of

Variation

pH 2.670 6.430 2.950 4.050 26.7

Discharge 0.05 172.00 3.60 12.48 178.0

Acidity 1.0 1546.0 234.0 819.0 65.0

Total Iron 8.70 257.00 43.00 118.00 61.6

Ferrous Iron 0.90 143.00 25.50 73.50 70.1

SO4 364.0 3241.0 1193.0 1948.0 35.3

Ferric Iron -4.00 152.00 6.00 55.20 95.3

In this adjusted data set (N=79), the coefficients of variation for pH, discharge, acidity, total
iron, and sulfate remain close to the same values even after adjustment.  CV% for ferrous iron
and ferric iron were greatly reduced.  The frequency distributions showed similar positive
skewness except for sulfate which appeared essentially symmetrical.

Bivariate Analysis

In order to have a measure of the degree of linear association among pairs of variables and to
ensure that any relationship is not obscured by time lags, cross-correlation functions for each
parameter were obtained (Figure 5.5 for N=79 observations).  Discharge and pH showed their
maximum degree of association at zero lag (0.357, Figure 5.5a) and it is suspected that the value
of this relationship is inflated by the one exceptional value.  In other words, it is doubtful that
these data could be used to substantiate any real degree of association. The maximum degree of
association between acidity and discharge is �0.3 (Figure 5.5b); the direction of association
(increase of acidity with decrease of discharge) is likely to be correct, but the degree (r 2 = 9%) is
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very small.  Similarly, sulfate and discharge show several values of cross-correlation greater than
0.2 at lags of 0, 7, 8, and �15, so that no real association can be claimed (Figure 5.5c).

The use of the cross-correlation function in bivariate and time series analyses is discussed in
Chapters 3 through 9 of this report.  In these chapters, an r value of 0.2 or a more conservative
value of 0.3 have been arbitrarily selected as critical values, with the inference that r values of
less than these critical values are not significantly different than 0, and therefore can be deleted
from consideration.  These arbitrary critical values were selected by rounding off the values of r
that are significant at the 5% level for the sample sizes contained in this report (e.g., for this data
set of the Clarion discharge where N = 96, the value of r that is significant at the 5% level with
90 degrees of freedom is 0.205 (Table 22 in Arkin and Colton, 1963, p.155)).  

Figure 5.5a: Cross Correlation Function for pH and Discharge
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Figure 5.5b: Cross Correlation Function for Acidity and Discharge

Figure 5.5c: Cross Correlation Function for Sulfate and Discharge
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By omitting discharge, it is possible to use the data deck of N=96 and again examine
relationships among pairs of variables (see Figure 5.6).  The plot of pH against acidity (Figure
5.6a) is curvilinear with pH decreasing rapidly as acidity increases.  Below a pH of 3, acidity
still increases but the pH stabilizes.  Acidity and sulfate (Figure 5.6b) show positive direct linear
association with a wide scatter of data points. 

Figure 5.6a: Plot of pH vs. Acidity

Figure 5.6b: Plot of Acidity vs. Sulfate



Statistical Analysis of Abandoned Mine Drainage in the Assessment of Pollution Load

5-11

Figure 5.6c: Plot of Iron vs. Sulfate

The importance of these plots is that, despite a wide scatter and tendency to show
heteroscedasticity (See Figure 5.6c, total iron vs. sulfate), the association is similar for all pairs
of variables (i.e., direct linear association).  The comparison of the characteristics of
homoscedasticity and heteroscedasticity in bivariate plots of data is described in Chapters 3, 6
and 9 of this report and shown in Figures 6.5a through 6.5c.  When the variation of two variables
increases as their values increase, heteroscedasticity is present, and it is generally advisable to
logarithmically transform these variables, which tends to make the plot of the variables
homoscedastic if the standard deviation increases approximately proportionally to concentration
prior to transformation.  

The persistence of these linear relationships allow us to use one, or at most two, variables for
detailed analysis.  The conclusions from this analysis may be applied to the other variables.  In
most cases, there appear to be relationships that are roughly linear.  However, the very wide
scatter of the data makes the associations rather weak. 

Time Series Analysis

Under time series analysis, the data are analyzed in three steps.  First, the data may be displayed
as graphical plots against time, and quality control limits of two standard deviations (using
results from Tables 5.1 and 5.2) may be inserted to show the unusual departures from the mean
or median.  Second, the data for each variable may be submitted to autocorrelation function
analysis (Acf).  This permits comparison of variability over time for each parameter and serves
to yield a preliminary identification of suitable models for more complex analysis.  Third and
finally, the data for selected variables are subjected to more complete Box-Jenkins analysis to
identify and compare appropriate time series models.
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The plot of pH versus time is shown in Figure 5.7a.  The most striking feature is the large change
in the magnitude of variation after the 50th observation.  It appears as if an entirely different
environment occurred after the 51st  observation (June 30, 1984).  Because the two parts of the
curve are so different, the two standard deviation limits for the mean underestimate the variation
in the later part of the curve.  This leads to six values exceeding the two standard deviation
limits.  It would require data representing a much longer period to determine if this change is a
unique circumstance or a regular occurrence.

Figure 5.7b displays a plot of acidity versus time and shows a somewhat different pattern, hence
the low degree of association earlier described.  Total iron versus time (Figure 5.7c) has a pattern
similar to that of acidity versus time, although there is an extreme peak for acidity at time period
73 and iron has smaller peaks at 77 and 79.   Sulfate versus time (Figure 5.7d) varies in the same
manner as acidity and total iron.

It seems evident that for pH, acidity, total iron, and sulfate there is a break after the 40th

observation (Figures 5.7a through 5.7d) reflecting the effect of lime treatment at that time.  In
this series of graphs, it can be observed that the effect of lime treatment was not persistent, and
instead, disappeared with time. 

Figure 5.7a: Plot of pH vs. Time
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Figure 5.7b: Plot of Acidity vs. Time

Figure 5.7c: Plot of Iron vs. Time

Figure 5.7d: Plot of Sulfate vs. Time
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Autocorrelation Functions

It should be noted that the autocorrelation function (Acf) may be used to identify the kind of
model which best represents the data for more detailed analysis and curve-fitting.  The Acf of pH
(Figure 5.8a) shows a sharp decline with increasing lag, and would probably require a first
difference to remove this �trend.�  Acf�s of acidity (Figure 5.8b) and total iron (Figure 5.8c) are
similar and possess similar implications.  Sulfate (Figure 5.8d) shows a much weaker degree of
autocorrelation but is still of the same general form.

Figure 5.8a: Autocorrelation Function of pH



Statistical Analysis of Abandoned Mine Drainage in the Assessment of Pollution Load

5-15

Figure 5.8b: Autocorrelation Function of Acid

Figure 5.8c: Autocorrelation Function of Total Iron
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Figure 5.8d: Autocorrelation Function of Sulfate

The Acf of ferrous iron showed no evident pattern and initially, at least, could be considered to
show random variation.  Ferric iron effectively showed no variation.  One cannot but suspect that
these variables need careful examination, in regards to field measurement and laboratory testing
procedure.

Modeling Selected Variables by Box-Jenkins Time Series Analysis

Three of the variables were chosen for more detailed analysis; pH, sulfate, and ferrous iron.  pH
shows, essentially, variation that is similar to sulfate.  Presumably, they should both possess
somewhat similar models.  Ferrous iron was included to see if variation was random.

The Acf of first difference for pH gave a chi-square (goodness-of-fit test for the given model) of
40.17 with 25 degrees of freedom yielding a probability of less than 0.05 and greater than 0.02. 
The original data gave a chi-square of 285.3 with 25 degrees of freedom (P < 0.001).  Taking a
second difference led to an increase in the chi-square value to 70.26 which suggests over-
differencing.

The chi-square of 32.56 with 22 degrees of freedom (df) for Acf of residuals after fitting a one
step autoregressive AR (1,0,0) model gives a 0.10 > P > 0.05 (Table 5.3).  This effectively
reduced the Acf, and the accompanying partial autocorrelation functions (Pacf) possessed what
appear to be significant spikes at lags 10 and 19.  These spikes were ignored because, to
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conclude that they were reflections of real seasonal effects would require the existence of a
significant spike at low lags (say at lag 5) and this did not occur.  Up to period 42, the residuals
are very small.  At period 42, there is a serious departure and residuals show larger fluctuations
from period 50 onwards.

Table 5.3: Summary of Time Series Models for pH, Clarion Mine

No Model Residuals Standard Deviation

Chi-sq. df P Residual Original

1. AR(1,0,0) 32.56 22 0.10 > P > 0.05 0.572 0.985

2. MA(0,1,1) 36.26 23 0.5 > P > 0.2 0.579 0.985

The standard deviations, after fitting either model, are almost the same (Table 5.3) each
representing about a 60% reduction.  The relevant equations for the models of the pH variable
are:

1. AR: z t  =   0.821z t-1   + 3.676   + a t
2. MA: z t  =   a t   -  0.247a t-1

As may be seen in Table 5.4, the two models used for sulfate variation are the AR (1,0,0) and the
moving average, MA (0,0,1) models.  The chi-square statistics are similar but the AR (1) yields
an Acf of residuals without any significant spikes.  The MA (1) does not achieve as clean an Acf
of residuals.

The standard deviations of the residuals (Table 5.4) from both models offer only minor reduction
in the original standard deviation of the raw data (< 10%).  A comparison of both models as
predictors of future observations is displayed in Figure 5.9.  The projections and the 75%
confidence limits are similar in both models.  It is quite clear that both models show the one step
memory and then approximate the overall mean value for the next nine periods.  It is fairly
evident in Figure 5.9, that the expected values from the AR (1) model fluctuate around the
overall mean and fail to duplicate closely, the wide swings present in the raw data.  This is
because the model is based on the entire record of 96 observations and the fluctuations are very
large during the first 35 and the last 30 periods (see Figure 5.7d).  

Table 5.4: Summary Statistics for Time Series Models of SO4 from Clarion Site

N Model Residuals Standard Deviation
Chi-sq. df P Residual Original

1. AR(1,0,0) 9.184 22 > 0.99 522.3 566.0

2. MA(0,0,1 9.204 22 > 0.99 535.6 566.0
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Figure 5.9: Projections of Sulfate Data
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The relevant equations for the models of the sulfate variable are:

1. AR (1):    z t   =   0.348z t-1   + 1550.9  +  a t
2. MA (1):    z t   =   a t   + 0.345a t-1   + 1526.1

Four models were used in an attempt to find a �best� fit for the ferrous iron variable.  The usual
one step models AR (1) and MA (1) led to satisfactory results which were very similar (Table
5.5).  The autocorrelation functions of the residuals from both led to chi-squares of 20.50 and
26.10 respectively.  The degrees of freedom were 23 in both cases, and the probability
statements are similar.  Hence, in effect, either of these models are adequate representations of
the raw data.  The standard deviations of the residuals were close (29.81 and 31.00 respectively). 
However, these standard deviations represent very little improvement over the standard deviation
of the raw data (see Table 5.5).

Since there were some irregular spikes in the lag 2 position of the autocorrelation functions of
the residuals from the first two models, more complex models were applied, (MA (2) and an
ARMA(1,1)).  From Table 5.5, it can be seen that the outcomes, in terms of probability of
achieving a chi-square value as large as these from a white noise (i.e., random) series, is very
likely.  The standard deviations are close to those of the simpler models and nothing was gained
by attempting to fit these more elaborate models.

Table 5.5: Summary of Time Series Models for Ferrous Iron, Clarion Site

No. Model Residuals Standard deviation

Chi-sq. df P Residual Original

1. AR(1,0,0) 20.50 23 0.6 < P < 0.7 29.81 34.46

2. MA(0,0,1) 25.10 23 0.3 < P < 0.4 31.00 34.46

3. MA(0,0,2) 17.60 22 0.7 < P < 0.8 29.76 34.46

4. ARMA(1,0,1) 20.60 22 0.5 < P < 0.6 29.96 34.46

The relevant equations for the models of the ferrous iron parameter are:

1. AR (1):              z t     =     0.512z t-1   + 48.2   + a t
2. MA (1):             z t     =     a t   +   0.411a t-1   + 48.4
3. MA (2):             z t     =     48.34   +   a t   + 0.466a t-1   + 0.302a t-2
4. ARMA (1,1):    z t     =     48.18   +  0.545z t-1   +   a t   - 0.044a t-1

Significance tests of the coefficients for ferrous iron suggest they are likely to be real except for
the coefficient of the moving average (MA) term in the ARMA model.  Because the confidence
limits include zero, this model is rejected.
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Quality Control Limits

There is a very large number of methods for defining quality control limits and there are
arguments for and against all of them.  This section of the chapter is an attempt to compare
different limits for the Clarion site data.  Unfortunately, the standard deviations and spreads for
the variables in this data set are very large, and may be atypical.  Also, the probability statements
refer to comparisons of single samples; multiple comparisons using several samples may require
inflation of the control limits or a reduction in the probability statements.

Table 5.6 contains the statistics from which the quality control limits may be derived.  The
original summary statistics for this data set (N=79) are shown in Table 5.2, and Appendix C
contains a table of various spreads for this data set.  The column in Table 5.6 labeled H-spr/1.349
is included because it is supposed to be an approximate estimate of the standard deviation
(Velleman and Hoaglin, 1981, p.54).  These values may be compared with the corresponding
standard deviations in the adjacent column.  The H-spread estimate for the standard deviation of
pH is smaller than the observed value.  The estimate for the standard deviation of discharge is
much smaller than (one-third of) the observed value, probably reflecting the marked skewness of
these data, which arises from a few extremely large values.  The H-spread estimate for acidity is
larger than the observed value, and is suspected to be a reflection of the skewed data.  The
estimates for sulfate, total iron, ferrous iron and ferric iron are all similar to their observed
values.

Table 5.6: Comparison of Statistics used to calculate the QC limits ( =79)′N

Variable Mean Median H-spread C-spread
Standard
Deviation H-spread/1.349

pH 3.624 3.16 1.06 3.38 0.967 0.786

Discharge 12.57 6.7 8.745 50.44 22.37 6.48

Acid 556.1 499 562.5 1381 361.2 416.98

Total Iron 86.7 78.5 73 181.5 53.45 54.11

Ferrous Iron 51.23 40 47.45 128.2 35.92 35.17

SO4 1586.3 1619 716 2125.99 558.6 530.76

Ferric Iron 35.47 26 49.15 99.1 33.8 36.43

A number of possible spreads which could be used to set up quality control limits are listed in
Table 5.7.  The first example is the conventional spread of the mean plus and minus twice the
standard deviation.  In a normal frequency distribution this would include about 95 percent of the
distribution or, alternately, it is expected that about 5 observations in every 100 would fall
outside these limits.  The constraint of strict normality may be relaxed considerably so that this is
a reasonably general confidence interval.  This spread would be used to compare to individual
results (i.e., =1).   ′N
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Table 5.7: Comparison of QC Limits (Spreads) around Mean and Median
Mean 2 Standard±

Deviation
Mean 2 Standard±

Deviation / ′N
Median 1.58 *  ±
H-spread / ′N

=79′N
Variable LL UL LL UL LL UL

pH 1.69 5.56 3.41 3.84 2.97 3.35

Discharge -32.2 57.3 7.5 17.6 5.1 8.3

Acid -166.3 1278.5 474.8 637.4 399.0 599.0

Total Iron -20.2 193.6 74.7 98.7 65.5 91.5

Ferrous Iron -20.61 123.07 43.15 59.31 31.57 48.43

SO4 469.1 2703.5 1460.6 1712.0 1491.7 1746.3

Ferric Iron -32.1 103.1 27.9 43.1 17.3 34.7

Median 1.58 *  ±
H-spread / ′N

Mean 2 Standard±
Deviation /  ′N

=18′N
Variable LL UL LL UL

pH 2.77 3.55 3.17 4.08

Discharge 3.4 10.0 2.0 23.1

Acid 289.5 708.5 385.8 726.4

Total Iron 51.3 105.7 61.5 111.9

Ferrous Iron 22.33 57.67 34.30 68.16

SO4 1352.4 1885.6 1323.0 1849.6

Ferric Iron 7.7 44.3 19.5 51.4

If the number of samples is taken into account it must be emphasized that the calculated interval
refers to means of sets of samples of size ; for example, if the number of observations is′N
chosen as base, then 1 , in this case, = 1/  = 0.113, or for 2 (1/ ) = 0.226 . ′N 79 $σ ′N $σ
These limits are much too restricted.  Relaxing this requirement, to say an  = 18, gives′N
0.471 , and this again refers to means based on sample sizes of 18.  This would appear to be$σ
too restrictive, because too many observations would fall beyond these limits.  Similar features
apply to each estimate containing N where > 1.′N

Since the sample size is usually one ( = 1), the multiplier will be 2 times  or some′N $σ
equivalent in non-parametric form.  The intervals (quality control limits) listed in Table 5.7 show
a comparison of the conventional parametric limits (based upon 2  ), together with non-$σ
parametric limits (1.58 (H-spread) / ) where the sample sizes are = 79 and = 18.′N ′N ′N

Three different estimates of quality control limits around the median are given in Table 5.8:  the
median plus or minus the [C-spread], the median plus or minus 1.58 times the [C-spread] over
root N, and the median plus or minus 3 times the H-spread.  The conventional limits (means 2 
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) are given for comparison in the last column.  The spreads are obtained from the Table in$σ
Appendix C. 

Table 5.8: Comparison of QC Limits around the Median using Various Forms of Spread

Median  C-spread± Median 1.58*±
C-spread  / ′N

Median 3 * H-spread± Mean  2 * Standard±
Deviation

Variable LL UL LL UL LL UL LL UL

pH -0.22 6.54 1.38 4.94 -0.02 6.34 1.69 5.56

Discharge -43.7 57.1 -19.9 33.3 -19.5 32.9 -32.2 57.3

Acid -882.0 1880.0 -228.3 1226.3 -1188.5 2186.5 -166.3 1278.5

Total Iron -103.0 260.0 -17.1 174.1 -140.5 297.5 -20.2 193.6

Ferrous Iron -88.20 168.20 -27.52 107.52 -102.35 182.35 -20.61 123.07

SO4 -507.0 3745.0 499.3 2738.7 -529.0 3767.0 469.1 2703.5

Ferric Iron -73.1 125.1 -26.2 78.2 -121.5 173.5 -32.1 103.1

The median  C-spread compares reasonably well with the median 3 * (H-spread) in Table± ±
5.8 except for discharge where the latter is much smaller than the former.  The quality control
limits around the mean yield smaller spreads than either the 3 * (H-spread) or the C-spread,
except for discharge.  The value of the mean + 2 compares well with the median + C-spread$σ
for discharge.

These comparisons of quality control limits shown in Tables 5.7 and 5.8 are more easily
understood if the description is illustrated in graphs.  Figure 5.7a is a graph of the pH of the
discharge from the Clarion site with the mean and median inserted.  It is obvious that the
extremely high values after the 50th observation (i.e., after treatment begins), affect the mean
much more strongly than the median.  The difference between the mean and the median is
largely due to the pronounced skewness induced by these few large values.

The C-spread and the 3 * (H-spread) quality control limits in Table 5.8 compare very closely.  If
these limits are used, only one value falls on or near them.  About 7 values fall beyond the 2
sigma limits in Figure 5.7a.  The spread of 1.58 * (H-spread / ) is more constraining than′N
these 2 sigma limits; if it were plotted on Figure 5.7a, 14 observations would fall on or beyond
this value of spread.

If adjustment is made for a sample size of = 6, the limits are much more restrictive and the′N
majority of values after the treatment was initiated fall beyond this limit.  The lower quality
control limits for pH in Table 5.8 fall outside the limits of this graph, but are of little interest in
the present circumstances.  For pH, these arguments are mostly illustrative because prior to
treatment, the values vary around the median of 3.16, indicating the acidic nature of the
discharge.  After treatment (after the 50th observation in Figure 5.7a), the pH frequently exceeds
5, but only one value exceeds 6.  From the 85th observation onwards, the pH has returned to on or
below the median value.  
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The second graphical example of quality control is the plot of sulfate as shown in Figure 5.7d. 
In both Figures 5.7a and 5.7d it is assumed that the observations are evenly spaced in time,
which is not always true (see Figure 4.2 in Chapter 4).  In Figure 5.7d, the mean and median
coincide fairly closely, suggesting a symmetrical frequency distribution.  It seems obvious that
the spread of median 3 * (H-spread) is much too wide (i.e., 3717.0); if it were plotted on±
Figure 5.7d, no observation would come close to it.  The spreads of mean plus or minus two
sigma and the median 1.58 * (H-spread /  ) are very similar and either would be equally± ′N
effective, although the 2  limits plotted on Figure 5.7d appear to be more sensitive.  $σ

In conclusion, no simple recommendation on quality control limits can be made on the basis of
these observations of the Clarion site, which may or may not be representative.  It seems likely
that establishment of the form of the frequency distribution, particularly symmetry, appears to be
most desirable when setting up the quality control limits.  It seems clear in this analysis that the
limits are not consistent from variable to variable.  If this is true in the analyses of data from
different sites, then perhaps different forms of spread with different limits may be necessary for
each variable.  

Summary

It seems clear from the data that there was a marked change in the environment after the 50th

observation (May 8, 1984).  This is confirmed by the knowledge that �Limestone application
was performed in May and June 1984� (Lusardi and Erickson, 1985, p. 318).  These authors also
conclude that �one year after the limestone application, the water quality in the seeps reflected
no substantial inhibition or neutralization.  Improvements in water quality noted in late 1984
have not persisted.�  pH shows marked improvement (less acidic water) from June 30, 1984
onwards. However, by April 5, 1986 the pH has returned to pre-treatment levels; these changes
are in accord with the conclusions given above.  Nevertheless, discharge also shows a change
and fluctuates over a much larger range after the treatment date.  It is doubtful whether this can
be attributed to the treatment.

The time series plot for acidity (Figure 5.7b) fluctuates above the mean up to the 50th observation
and then becomes much less variable until just beyond the 70th observation.  There is a large
spike of increased acidity at 75 and then acidity declines back to the mean value from the 90th

observation onwards.

In the case of total iron, the first 19 observations vary closely around the mean of the entire
series; then, from observation 20 to 45, total iron shows much larger fluctuations, way above the
mean.  From the 45th to 55th observation, the variations in concentration are suppressed and from
55th observation onwards, the variability increases but remains around the mean value.  Sulfate
varies roughly in parallel with acidity and no special effect can be attributed to treatment.
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Chapter 6:  Analysis of Data from Ernest Refuse Pile Site,
           Indiana County, PA

The Ernest mine site is located in the Crooked Creek watershed in Indiana County, PA near the
town of Ernest (see Figure 6.0). The U.S. Army Corps of Engineers (USACE) completed
construction of Crooked Creek dam in 1940 and has managed the lake since then for flood
control and recreational purposes.  The Commonwealth of Pennsylvania constructed and
operated Crooked Creek State Park at the lake prior to 1981 when the USACE acquired the
facility.  Some portions of the Crooked Creek watershed were impacted by acid mine drainage
from extensive bituminous coal mining, particularly the McKee Run tributary, from the town of
Ernest downstream to the town of Creekside at the confluence with the main stem of Crooked
Creek.  The Ernest mine complex, including a large underground mine and associated coal refuse
pile, was operated from the early 1900�s to 1965 when the mine was abandoned.  

An acid mine drainage treatment plant was constructed by the Pennsylvania Department of
Environmental Protection and operated from June 1978 until May 1980 when problems with iron
sludge recycling operations led to the closure of the plant.  The water quality samples and flow
measurements from the Ernest refuse pile discharge that are discussed in this chapter were
collected between March 1981 and December 1985 as part of studies to evaluate water quality
and aquatic biology in the Crooked Creek watershed following closure of the treatment plant. 
The raw data are listed in Appendix D.  There are 198 observations (N = 198), consisting of
values for 10 parameters:  1)  Days (developed from the date that the sample was taken);  2)  pH; 
3)  Flow;  4)  Acidity;  5)  Acid load;  6) Total Iron (Fe);  7) Total Iron load;  8) Ferrous Iron
(FFe);  9) Sulfate (S04);  10) Sulfate load.  

There is a rather large time gap (four months) between the first three observations and the
remainder of the samples that were collected at approximately weekly intervals.  There were also
at least 15 samples without pH and/or ferrous iron data.  After these samples were omitted and
other adjustments were made (see Figure 3.1), a revised data set of 174 observations was
compiled and used for most of the statistical analyses presented in this chapter.  Time gaps in the
data should be considered in examining the time series analyses, because elements of the time
series analysis assume that there are equal intervals between observations.
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Figure 6.0: Map of Ernest Mine Site
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Univariate Analysis 

Summary statistics for the adjusted data (N = 174) are presented in Table 6.1. 

Table 6.1: Summary Statistics of Data (N=174)

N Mean Median
Trimmed

Mean
Standard
Deviation

Standard Error
of the Mean

Days 174 985.6 1027.0 995.3 457.2 34.7

pH 174 2.5061 2.5000 2.5018 0.1524 0.0116

Flow 174 127.2 51.0 85.9 337.0 25.5

Acidity 174 3621 3539 3585 1357 103

Acid Load 174 3367 1843 3031 3639 276

Total iron 174 527.2 515.5 520.5 210.0 15.9

Iron Load 174 626.6 275.0 563.1 722.3 54.8

Ferrous Iron 174 364.8 360.5 351.5 251.9 19.1

SO4 174 3887.4 3804.0 3915.5 1105.2 83.8

SO4 Load 174 3837 2108 3431 4198 318

Minimum Maximum
First

Quartile
Third

Quartile
Coefficient of

Variation

Days 0.0 1735.0 703.0 1343.5 46.4

pH 2.1 3.1 2.4 2.6 6.1

Flow 2.0 3188.0 8.0 163.2 265.0

Acidity 778 16401 3016 4301 37.5

Acid Load 111 17663 412 5641 108

Total iron 20.0 1929.0 395.0 653.0 39.8

Iron Load 10.0 2758.0 50.5 1147.7 115

Ferrous Iron 8.0 1760.0 161.5 512.0 69.1

SO4 142.0 6115.0 3155.0 4759.5 28.4

SO4 Load 117 17746 513 6394 109

The coefficient of variation (CV%) remains within fairly reasonable limits for pH, acidity, and
iron.  However, variability in ferrous iron (69%) is large.  Sulfate is in reasonable control (CV =
28%).  Flow, acid load, iron load, and sulfate load show very large variability (all greater than
CV = 100%) which suggests that the large variability of the load-type variables is largely due to
the high degree of variability shown by flow.  These parameters require log transformation to
control this variability.  The frequency distribution of pH is symmetrical (Figure 6.1a) while
flow is skewed, although the major part of the skewness arises from two extremely high values
(Rows 142-3 in Appendix Table D, flow = 3003.0 gpm and 3188.0 gpm respectively).  All other
values of this parameter range from less than 10 to hundreds.  Similarly, acidity has an extremely
high value (Appendix D Table, Row 143 = 16,401 mg/L); acid load (Figure 6.1b) is skewed. 
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Total iron and total iron load follow the same pattern.  Ferrous iron has one exceptional value. 
Sulfate (Figure 6.1f) is negatively skewed, whereas sulfate load is positively skewed.  This
behavior is an indication of the effect that flow can have on a parameter.

Table 6.2: Summary Statistics of Data (N=174)

N Mean Median Trimmed
Mean

Standard
Deviation

Standard Error
of the Mean

Days 174 985.6 1027.0 995.3 457.2 34.7

pH 174 2.5061 2.5000 2.5018 0.1524 0.0116

Log Flow 174 1.6062 1.7076 1.6081 0.6970 0.0528

Log Acidity 174 3.5349 3.5489 3.5440 0.1466 0.0111

Log Acid Load 174 3.1854 3.2654 3.1930 0.6138 0.0465

Log Total Iron 174 2.6836 2.7122 2.6997 0.2066 0.0157

Log Iron Load 174 2.3564 2.4393 2.3703 0.7244 0.0549

Log Ferrous Iron 174 2.3989 2.5569 2.4442 0.4696 0.0356

Log SO4 174 3.5646 3.5802 3.5815 0.1748 0.0133

Log SO4 Load 174 3.2403 3.3240 3.2480 0.6143 0.0466

Minimum Maximum
First

Quartile
Third

Quartile
Coefficient of

Variation

Days 0.0 1735.0 703.0 1343.5 46.4

pH 2.1000 3.1000 2.4000 2.6000 6.1

Log Flow 0.3010 3.5035 0.9031 2.2127 43.4

Log Acidity 2.8910 4.2149 3.4795 3.6336 4.1

Log Acid Load 2.0453 4.2471 2.6149 3.7514 19.3

Log Total Iron 1.3010 3.2853 2.5966 2.8149 7.7

Log Iron Load 1.0000 3.4406 1.7032 3.0598 30.7

Log Ferrous Iron 0.9031 3.2455 2.2082 2.7093 19.6

Log SO4 2.1523 3.7864 3.4990 3.6776 4.9

Log SO4 Load 2.0682 4.2491 2.7098 3.8058 18.9

Summary statistics for log (base 10) transformed data are listed in Table 6.2  (N = 174).  The
variables are now either well-behaved (CV  20%) or are not too extreme (CV 50%).  Load≤ ≤
variables show the largest CV%.  This is most likely largely due to flow variability.  

Histograms of the log transformed data are displayed in Figures 6.1c, 6.1e, and 6.1g.  By plotting
the histograms of the original data alongside that of the transformed data, the effect of the
transformation is clear.  Because pH is already expressed in logarithms, no transformation was
applied.  In all other parameters, log transformation expanded low magnitude values and reduced
asymmetry (for acid load in Figures 6.1b and 6.1c), sometimes perhaps, too much (Figures 6.1d
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and 6.1e, iron and log iron respectively).  Similarly, because the histogram of sulfate is
negatively skewed, log transformation accentuated the negative skewness (Figures 6.1f and 6.1g)
making log transformation unnecessary.  All load variables are strongly positively skewed when
untransformed and the log transformation helps to improve their symmetry.  

Figure 6.1a: Histogram of pH, (N = 174)

Figure 6.1b: Histogram of Acid Load, (N = 174)

Figure 6.1c: Histogram of Log Acid Load ( N=174)
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Figure 6.1d: Histogram of Total Iron (N=174)

Figure 6.1e: Histogram of Log Total Iron (N=174)

Figure 6.1f: Histogram of SO4 (N=174)
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Figure 6.1g: Histogram of Log SO4 (N=174)

Bivariate Analysis

The bivariate statistical analysis of the Ernest data includes bivariate plots (routinely used in
regression and correlation analyses), the use of a correlation matrix to compare and evaluate
correlation coefficients, and the use of cross correlation functions to determine if lags in the data
for certain parameters tend to obscure correlations that may be present.  The correlation matrix is
an element of some multivariate statistical analyses, such as principal components analysis and
factor analysis (in the r mode).  The cross-correlation function is an element of time series
analysis because it computes and graphs correlations between two time series.  Both of these
statistical tools are included in this discussion of bivariate analysis because they are useful in
examining the relationship between pairs of variables.  

The correlation coefficients for all pairs of variables are shown in Table 6.3.  The correlation
coefficient (r) at the five percent probability level is given above the table and all correlation
coefficients larger than this number are significantly different from zero.  For example, only iron
vs. pH (r = 0.124) is not significantly different from zero.  Similarly, ferrous iron vs. acidity (r =
0.045) and sulfate vs. ferrous iron (r = 0.083) are also not significantly different from zero.  All
other coefficients reflect a real association (statistically significant), however, in many cases, the
degree of association (r 2 x 100%) is small.  For example, the correlation of acidity and pH (r =
!0.365) indicates an inverse linear association between the two variables as would be expected,
but the degree of association is small (r 2 = 13%).
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Table 6.3: Correlation Coefficients for 9 Parameters (N=174, r0.05 = 0.159)

pH Flow Acid Acid Load Total Iron Iron Load Ferrous Iron SO4

Flow 0.191

Acidity !0.365 0.308

Acid Load 0.483 0.206 !0.224

Total Iron 0.124 0.337 0.526 0.263

Iron Load 0.498 0.229 !0.262 0.913 0.375

Ferrous iron 0.248 !0.020 0.045 0.337 0.480 0.388

SO4 !0.547 !0.184 0.600 !0.307 0.174 !0.339 0.083

SO4 Load 0.472 0.438 !0.030 0.906 0.386 0.890 0.285 !0.293

There are three large correlation coefficients between acid load vs. iron load, acid load vs. sulfate
load, and iron load vs. sulfate load.  These correlation coefficients are all around r = 0.9 (i.e.,
about 80 percent in common), probably because of the domination of flow in the measurement of
load variables.  Whereas, the individual concentration variables acidity vs. iron (r = 0.526),
acidity vs. sulfate (r = 0.6), and iron vs. sulfate (r = 0.174) show much lower association (the
largest r2  is 36 %).  In addition, any load variable vs. concentration of the same variable shows
no appreciable relationship.  Thus, the relatively high correlation coefficients due to the
inclusion of flow in all load variables is an artifact from the calculation for load (concentration x
0.01212 x flow).  

When one examines the cross-correlation functions (Figures 6.2a to 6.2d), it can be seen that the
largest correlation occurs at lag zero in Figure 6.2a (pH vs. log flow) and at lag one in Figure
6.2c (pH vs. log acid load) and that the correlations are of the same order of magnitude.  Because
pH vs. log acidity (Figure 6.2b) yields the strongest r = !0.466 at lag zero, which is much
weaker than the value yielded by pH vs. acid load (Figure 6.2c), it is suspected that the effect of
flow on load is responsible for the higher correlation.  The highest correlation in Figure 6.2d (pH
vs. log iron) occurs at lag 19 (r = !0.336), but values of r > 0.25 occur haphazardly at many lags
and any association is likely to be very weak.
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Figures 6.2a and 6.2b: Cross Correlation Functions of pH vs. Log Flow, and pH vs.
Log Acid (respectively)
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Figures 6.2c and 6.2d: Cross Correlation Functions of pH vs. Log Acid Load, and pH
vs. Log Iron (respectively)

When either pH (which is a logarithmic measure) or logarithms of the other parameters are
plotted against days, they appear to show periodic variation with a very large degree of scatter
(see for example, pH vs. days (Figure 6.3a) and log flow vs. days (Figure 6.3b)).  Log acidity vs.
days was not as evident, but log acid load vs. days (Figure 6.3c) is clearly periodic.  Here again,
the effect of flow on load is likely to be responsible for the cyclical appearance.
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Figure 6.3a: Plot of pH vs. Time (days)

Figure 6.3b: Plot of Log Flow vs. Time (days)
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Figure 6.3c: Plot of Log Acid Load vs. Time (days)

Bivariate plots of untransformed data were made and it was found that in most cases, there was
little relationship between concentration and load (e.g., Figure 6.4, acidity vs. acid load).  The
only discrepancies are extreme values which occur as outliers (e.g., observation 158).

Figure 6.4: Plot of Acid vs. Acid Load
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bivariate plots of untransformed load variables are included in Figures 6.5a through 6.5c.  In
Figures 6.5a and 6.5c, the spread of the variables increases with magnitude (i.e., the data are
heteroscedastic and so should be expressed in logarithms).  Figure 6.5b (acid load and sulfate
load) is reasonably homoscedastic, indicating that sulfate load and acid load are not skewed in
their frequency distribution.  There are obvious extreme outliers in each of the three figures (e.g.,
observation 133 in Figures 6.5a and 6.5b, and observation 158 in Figures 6.5b and 6.5c).

Figure 6.5a: Plot of Iron Load vs. Acid Loading

Figure 6.5b: Plot of Acid Load vs. Sulfate Loading
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Figure 6.5c: Plot of Iron vs. Sulfate Load

Bivariate plots of logarithmically transformed data are shown in Figures 6.6a to 6.6d.  Log
acidity vs. log flow (Figure 6.6a) shows no relationship.  The exceptional values of two
observations of flow occur as outliers.  Log acid load, iron load, and sulfate load vs. log flow
showed strong linear associations (Figure 6.6b), with various outliers for the extreme values of
flow.  There appears to be no simple relationship between log acidity and log acid load (Figure
6.6c).  The only real association appears to be positive linear between log sulfate and log acid
(Figure 6.6d) which, as would be expected, tend to increase together.  The presence of two
extreme outliers probably would diminish the value of the correlation coefficient between them.

Figure 6.6a: Bivariate Plot of Log Acidity vs. Log Flow
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Figure 6.6b: Bivariate Plot of Log Sulfate vs. Log Flow

Figure 6.6c: Bivariate Plot of Log Acidity vs. Log Acid Load
 



Chapter 6

6-16

Figure 6.6d: Bivariate Plot of Log Sulfate vs. Log Acid

Time Series Analysis

Time series plots of six selected variables are displayed in Figures 6.7a through 6.7f.  pH (Figure
6.7a) illustrates the gap of missing data (September through December, 1982) and possesses two
extreme positive values during July 1983 (pH = 3.1) and December 1984 (pH = 3.1).  The July
1983 maximum is followed by an extreme minimum (pH = 2.1).  Time series plots of flow
(Figure 6.7b) and acidity (Figure 6.7c) are dominated by extreme values (March 19 and 26 for
the former, and March 26 for the latter). 

Time series plots of the load variables (iron, acid and sulfate Figures 6.7d, 6.7e, and 6.7f
respectively) are similar and appear to possess a seasonal component in May of each year.  This
apparent cyclicity is confounded by maxima in March and September 1981, August 1984, and
April 1985.  The most striking feature is the remarkable similarity in all three graphs, a feature
not evident in graphs of the variables expressed as concentrations.
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Figure 6.7a: Time Series Plot of pH

Figure 6.7b: Time Series Plot of Flow
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Figure 6.7c: Time Series Plot of Acidity

Figure 6.7d: Time Series Plot of Iron Load 
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Figure 6.7e: Time Series Plot of Acid Load

Figure 6.7f: Time Series Plot of Sulfate Load
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Quality Control Limits for the Variables

Two measures of quality control were used to illustrate this aspect of the analysis.  The first is
conventional (mean ± 2x the standard deviation).  The second is non-parametric (median ± 1.96
x a function of the H-spread).  Since sample size, = 1, the function is: (1.25 * H-Spread /′N
1.35).  Both measures are based on analysis of the Clarion data ( �Quality Control Limits,�
Chapter 5).  Summary statistics for these measures are listed in Tables 6.4 and 6.5.  At the base
of each table are statistics for the three load variables expressed in logarithms.  

Table 6.4: Base Data for Calculation of Quality Control Limits of Ernest Data

No. Variable Mean X Median R = H-spread C-spread $σ H-spread/1.345

2. pH 2.506 2.50 0.2 0.530 0.1524 0.148

3. Flow 127.2 51.0 153.0 342.0 337.0 113.4

4. Acid 3621. 3539. 1283. 3493. 1357. 951.1

5. Acid Load 3367. 1843. 5210. 11307. 3639. 3862.1

6. Total Iron 527.2 515.5 358. 647. 210. 265.4

7. Iron Load 626.6 275.0 1096. 2193. 722.3 812.5

8. Ferrous Iron 364.8 360.5 348. 807. 251.9 258.

9. SO4 3887.4 3804. 1583. 3933. 1105.2 1173.5

10. SO4 Load 3837. 2108. 5857. 13711. 4198. 4341.7

Log. Data

5. Log Acid Load 3.120 3.265 1.127 1.869 0.631 0.835

7. Log Iron Load 2.277 2.439 1.352 2.168 0.747 1.002

10. Log SO4 Load 3.175 3.324 1.089 1.917 0.632 0.807

Table 6.5: Two Measures of Quality Control (1)  ± 2 $σ
(2) 1.96 [(1.25 H-spread) / 1.35 ]′N

No. Variable
Mean
( )X  ± 2 X $σ Md ± 1.96(..)

 1.96 [(1.25 H-

spread)/ 1.35 ′N Median 2 $σ
2. pH 2.506 2.201 to 2.811 2.137 to 2.863 0.363 2.500 0.305

3. Flow 127.2 -546.8 to 801.2 -226.7 to 328.7 277.7 51.0 674.0

4. Acid 3621 907 to 6335 1211 to 5867 2328 3539 2714

5. Acid Load 3367 -3911 to 10645 -7612 to 11298 9455 1843 7278

6. Total Iron 527.2 107.2 to 947.2 -134.2 to 1165.2 649.7 515.5 420.0

7. Iron Load 626.6 -818.0 to 2071.2 -1714.0 to 2264.0 1989.0 275.0 1444.6

8. Ferrous Iron 365 -139 to 868.6 -271 to 992 632 361 504

9. SO4 3887.4 1677.0 to 6097.8 931.1 to 6676.9 2872.9 3804.0 2210.4

10. SO4 Load 3837 -4559.0 to 12233.0 -8521.4 to 12737.4 10629.4 2108.0 8396.0
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Log. Data

5. Log Acid 3.120 1.858 to 4.382 1.220  to 5.310 2.045 3.265 1.262

7. Log Iron 2.277 0.783 to 3.771 -0.015 to 4.893 2.454 2.439 1.494

10. Log SO4 3.175 1.911 to 4.439 1.348 to 5.300 1.976 3.324 1.264

These two quality control limits are inserted as dashed lines in Figures 6.7a through 6.7f.  For pH
(Figure 6.7a), similar limits resulted from both measures.  The mean and median coincide (on the
scale of the graph in Figure 6.7a), and frequency distribution of pH is essentially symmetrical.

For flow and acidity (Figures 6.7b and 6.7c respectively), the standard deviations are inflated by
rare extreme values.  Thus, the quality control limits for both measures are essentially insensitive
except to the extremes.  It should be noted that the range is small.

The quality control limits for the load variables are wide, with the lower limits falling below
zero.  The lower limits are, therefore, omitted from the graphs (Figures 6.7d through 6.7f).  The
respective means and medians are not very different in magnitude and neither are the positive
control limits.  The use of either quality control limit would have little effect in identifying
exceedences of baseline pollution load.  It appears from these graphs that either measure would
suffice.  Sensitivity to departures from set limits could be increased by dividing by the square
root of N�, or by increasing sample size (e.g., from 1 to 4).  This would reduce the range to half
its original value.  On the other hand, use of the root N� factor with N� > 1, could increase the
sensitivity too much and many values of these widely fluctuating parameters would fall outside
the limits thereby calling for action.  If fluctuations arise from �natural causes� and not from
mining activity, this would be undesirable.  Obviously, the entire range of pH, for example, is
small (2.1 � 3.1) and the discharge is consistently acidic.

Model Identification

Autocorrelation functions form the basis for model identification in applying full-scale Box-
Jenkins time series analysis.  Hence, the autocorrelation and partial autocorrelation functions
were run on the data for each variable.  The graphs are presented in Figures 6.8a, 6.8b, 6.8c,
6.8e, and 6.8g, for the autocorrelation functions (Acf) and Figures 6.8d, 6.8f, and 6.8h for the
partial autocorrelation functions (Pacf).
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Figure 6.8a: Autocorrelation Function of pH

Figure 6.8b: Autocorrelation Function of Iron
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Figure 6.8c: Autocorrelation Function of Flow

Figure 6.8d: Partial Autocorrelation Function of Flow
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Figure 6.8e: Autocorrelation Function of Acidity

Figure 6.8f: Partial Autocorrelation Function of Acidity 
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Figure 6.8g: Autocorrelation Function of Acid Load

Figure 6.8h: Partial Autocorrelation Function of Acid Load
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pH (Figure 6.8a), flow (Figure 6.8c), and three load parameters (e.g., see Figure 6.8g for acid
load) yield similar Autocorrelation functions (Acf�s).  The concentration variables acidity
(Figure 6.8e), iron (Figure 6.8b), and sulfate (Figure not available) also show similar Acf�s, but
the former set (which includes load) differs from the latter.  The former set shows a strong
decline throughout the function.  This decline is confirmed by the single large spike at lag 1 in
the corresponding partial autocorrelation factors (Pacf�s, Figures 6.8d  and 6.8h).  This behavior
implies that all these variables require a first difference to remove the trend.  The Acf and Pacf
for each of the concentration variables (e.g., Figures 6.8e and 6.8f) suggest moving average
(MA) models with at most two terms (or one term and a first difference).  It is perhaps advisable
to try an auto-regressive moving average (ARMA) model in which the AR term could proxy for
the first difference and the MA term would take care of the remainder.

Model Fitting:  pH

It was decided to attempt to fit an auto-regressive integrated moving average (ARIMA) model
(1,1,1) to variation in pH.  The correlation coefficient between the AR and MA coefficients was
r = 0.81, which implies that they are closely associated (i.e., both are unlikely to be necessary). 
Testing the Acf of the residuals yielded a chi-square = 27.16 with 28 degrees of freedom (i.e.,
the Acf is not significantly different from that of white noise).  There is only one significant
spike at lag 20 in this Acf, thus, it is effectively clean.  Any further differencing results in
overdifferencing (i.e., chi-square of the Acf increases to significant again).  The model has
improved the variation (Pacf of the residuals has no significant spikes) but contains an
unnecessary coefficient .  Clearly, the AR (1) is adequately taken care of by the first$Φ1

difference.

If we now fit a moving average model with a first difference (i.e., an MA (0,1,1) model), the Acf
of the residuals yields a chi-square of 26.87 with 29 degrees of freedom (thus, not significantly
different from an Acf of white noise).  Any further differencing overcompensates.  The only
significant spike is at lag 20 as in the previous model.  Because this is an isolated significant
autocorrelation way out from zero lag, it is considered a random discrepancy.  The Pacf of the
residuals is also clean.  The 95% confidence limits around the MA coefficient ( ) does not$θ 1

contain zero.  Hence, the MA coefficient is significantly different from zero (real) and,
incidentally, about the same size as in the ARIMA model (  = 0.594).  The residual standard$θ 1

deviation is = 0.126, a reduction in the pH of the original data from 0.152 to 0.126.  The$σe

relationship may be expressed as:

z t  = z t �1  + a t � 0.594a t-1  
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Model Fitting: Flow (Log)

An AR (1,0,0) model was fitted to the variation in logarithms of the flow variable; it was
considered that the AR(1) coefficient would �take care of� the first difference.  Chi-square of the
residual = 30.06 with 28 degrees of freedom (0.50 > P > 0.30; i.e., not significantly different
from that expected from white noise).  There are no significant spikes in the Acf or Pacf values.  

This model yields the following equation with standard deviation of the residuals  = 0.347$σe

(reduced from 0.697 for the original standard deviation of the logarithms of flow in Table 6.2):

z t = 0.873 z t � 1 + 1.636 + a t   

Model Fitting: Acidity (Log)

From the Acf, developed during the identification step of the Box-Jenkins series, it was decided
to try an MA (0,1,2) model which would presumably clear out the large spikes at the first three
lags in the Acf.  Upon fitting, it turned out that the correlation coefficient between the two
moving average coefficients ( and ) was !0.612 (i.e., as one increased the other$θ 1 $θ 2

decreased).  A chi-squared test of the residual Acf yielded 29.86 with 28 degrees of freedom
(0.50 > P > 0.30).  The Acf spike at lag 6 is significantly larger than its error.

Upon testing the coefficients of this model, the  = 0.642 and is real, but the second  =$θ 1 $θ 2

!0.640 and its confidence belt included zero.  The standard deviation of the residuals is 0.139.

An MA (0,0,2) model showed no correlation among the two coefficients or between either
coefficient and the mean.  The residual chi-square = 32.77, with 27 degrees of freedom (0.30 > P
> 0.20) is not significantly different from that expected from white noise (random error).  The
relevant equation is:

z t  = 3.536  + a t  + 0.205a t-1  + 0.274a t-2  

with standard deviation of the residuals as = 0.136, a small improvement over the MA (0,1,2)$σe

model and some slight improvement over the original standard deviation (0.147) of the variable
logarithms given in Table 6.2.

Model Fitting: Acid Load (Log)

As a first approximation, an MA (0,1,1) was fitted to these data and a trend term was included to
determine if it gave rise to any improvement.  The Acf of the residuals yielded a chi-square =
22.41 with 28 degrees of freedom (0.80 > P > 0.70), not significantly different from an Acf of
white noise.  A barely significant spike occurred at lag 16 in the Acf and Pacf.  It was not
supported by any other diagnostic characteristic and so was ignored.  The correlation coefficient
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between the trend constant and the MA coefficient ( )= !0.01.  Therefore, they are$θ 1

effectively independent.  However, on testing the trend term, its 95% confidence limits include
zero, and therefore, the trend constant does not make any real contribution to explaining the
variation of log acid load.  The MA coefficient ( ) = 0.247 and is real.  The equation may be$θ 1

expressed as (the trend term is omitted for reasons given above):  

zt  = a t � 0.247a t-1  

The standard deviation of the residuals is 0.355, which is approximately half the original
standard deviation of 0.614.

Two other models were fitted to these data (an ARI (1,1,0) and an ARMA (1,0,1)), again
assuming that the AR coefficient would proxy for the first difference in the ARMA model.  A
chi-square of the residuals from the ARI model yielded 22.11 with 29 degrees of freedom (0.90
> P > 0.80).  Clearly, the first differences and the autoregressive coefficient ( ) reduced anyΦ1

unusual occurrences in the data.  There were no significant spikes in the Acf but there is a
possible one at lag 16 in the Pacf (i.e. the MA (0,1,1) model).  The AR coefficient was
significantly different from zero ( = !0.203) and the standard deviation of the residuals is $Φ $σe

= 0.353, a considerable reduction from the original value of 0.614 for standard deviation of the
logarithms (see Table 6.2).  The equation is:

z t  = 0.797z t-1 � 0.203z t-2 + a t
`

The ARMA (1,0,1) model possessed two coefficients and a mean.  Their respective correlations
were r12 ( vs. ) = 0.03, r13 = 0.55, and r23 ( vs. ) = 0.01, effectively independent for$Φ1 X X $θ 1

the first and third and not very large for the second.  Acf of the residuals yielded a chi-square of
24.32 with 27 degrees of freedom (0.70 > P > 0.50), indicating no significant difference from an
Acf for white noise.  The autoregressive coefficient ( = 0.881) and the mean ( = 3.196)$Φ1 X
were real, whereas the 95% confidence limits around the moving average coefficient (  =$θ 1

0.171) contains zero.  The standard deviation of the residuals is 0.347, the same order of
magnitude as the previous models fitted to log acid load.

Summary

It is somewhat surprising that there appears to be no seasonal component in the time series
models, particularly in the load variables.  The only satisfactory explanation appears to be the
existence of too many maxima at too many different times with very little repetition during the
same time period. 

Most of the variables show the presence of a trend over time (pH, flow, acidity, acid load, iron
load, ferrous iron).  These variables need a first difference to remove the effects of the trend.  It
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seems evident from the studies to date that a moving average model applied to the first
differences is almost universally the best choice.  In some cases, the autoregressive model,
possibly with a first difference, is also appropriate.  In both cases, there is an indicator that the
variation in whichever parameter is being analyzed, when first differenced, leads to a random
walk.

The quality control analysis, in both cases, suggests that either the mean (plus or minus two
standard deviations) or the non-parametric median (plus or minus a function of the H-spread) are
equally appropriate.  For the present, it is recommended both should be used until one or the
other show superior performance.
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Chapter 7: Analysis of Data from the Fisher Deep Mine Site, Lycoming
County, PA

The Fisher site is located in Lycoming County, Pennsylvania near the village of English Center
(Figure 7.0).  Prior to remining on this site, the land surface was extensively disturbed by
abandoned mine pits and spoil piles, and the Fisher deep mine, a large abandoned underground
mine, occupied much of the subsurface.  Fisher deep mine discharge (monitoring point M-1)
characteristics have been discussed in numerous other reports including Section 5 of EPA�s Coal
Remining Statistical Support Document (EPA-821-B-00-001).

The Fisher deep mine discharge and its impact on the receiving streams is discussed in an
Operation Scarlift Report of 1977 on the Little Pine Creek Watershed.  The Buckeye Run and
Otter Run tributaries of the Little Pine Creek were impacted by AMD from the Fisher deep mine. 
Otter Run was a prolific native brook trout stream prior to being impacted by the Fisher deep
mine discharge, and it has returned to a trout fishery as the result of remining operations. 
Descriptions of the remining operation, geologic characteristics of the area and water quality
improvements are included in Plowman (1989) and Smith and Dodge (1995).

The data set that was analyzed statistically in this chapter (see report by Dr. J.C. Griffiths,
December 1987) includes all baseline pollution load data (i.e., prior to issuance of the first
remining permit) and data from the first year and a half of remining.  Baseline pollution load
data collection took place from May/June 1982 through 1985.  The primary remining permit was
issued on November 5, 1985, and remining operations commenced by February 1986.  Final coal
removal occurred on June 1995 and backfilling was essentially completed within that permit area
by February 1996.  The primary remining permit for this site is contiguous to a previous permit
that did not involve daylighting and to a subsequent remining permit that was issued in 1994 and
completed in July 1999 (that also drained to the M-1 discharge).  The total acreage of these three
permits is 542, of which approximately 200 acres were mined under the initial permit (issued
prior to 1985).  The data set included in Section 5 of the EPA Coal Remining Statistical Support
Document includes monitoring data for the M-1 discharge from 1981 to 1998.  Time plots and
box plots of net acidity, acid load, iron load and net alkalinity show changes in water quality and
pollution load over the four year baseline period, ten years of remining, and two years following
the completion of backfilling of the remining site.

The data analysis presented in this chapter follows the usual flow diagram (Figure 3.1).  The data
consist of 79 observations of seven parameters.  Flow measurements began on June 9, 1982 and
remining of the site began on February 4, 1986.  There were three observations prior to June 9,
1982 (see Appendix E Table).  After excluding these observations and inserting mean values for
samples with a missing parameter, 57 observations remained prior to remining and 19
observations remained after remining commenced.  From the histograms showing skewness of
varying degrees, it was decided to log-transform (base ten) the data.



C
hapter 7

7-2

Figure 7.0:
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After preliminary analysis of the data, the bivariate and time series plots appeared to be
somewhat irregular, and it was decided to measure the intervals between the observations by
creating a new variable (the first differences between the number of days). 

The intervals between observations (days) vary from extremes of one to 104, with a mean of
26.7 days.  This mean is nearly equal to the median (26.5), indicating that the frequency
distribution is symmetrical.  The central part of the distribution Q1 to Q3 lies between 12.7 and
33 days.  The most serious discrepancies are, however, that there are five observations between
70 and 104 days, and four of these are 90 days or more.  These large gaps in the data preclude
rigorous time series analysis which requires approximately equal intervals between observations.

Univariate Analysis

The coefficient of variation (CV%) for flow, acidity, sulfate and manganese (Table 7.1) are all
less than or equal to 20%.  This is surprisingly low when compared to previous data analysis. 
Iron, however, possesses a coefficient of variation of 929 % and aluminum also has a large CV
(71%).

Table 7.1: Summary Statistics for 79 Log Transformed Observations

N N* Mean Median
Trimmed

Mean
Standard
Deviation

Standard Error
of the Mean

Flow 79 0 1.7882 1.8062 1.7754 0.3734 0.0420

Acidity 79 0 1.8700 1.8274 1.8660 0.2183 0.0246

SO4 79 0 2.5316 2.5105 2.5342 0.2124 0.0239

Total Iron 79 0 0.0442 0.0825 0.0575 0.4106 0.0462

Mn 79 0 0.9396 0.9513 0.9335 0.1716 0.0193

Al 79 0 0.4959 0.5539 0.5029 0.3539 0.0398

Interval 78 1 26.72 26.50 24.20 19.95 2.26

Minimum Maximum First
Quartile

Third
Quartile

Coefficient of
Variation

Flow 0.9542 2.7882 1.4771 2.0000 20.9

Acidity 1.4409 2.3747 1.7076 2.0453 11.7

SO4 1.6902 3.0792 2.4346 2.6335 8.4

Total Iron -1.301 0.8450 -0.1024 0.2032 929.3

Mn 0.5775 1.5185 0.8500 1.0253 18.3

Al -0.4948 1.4698 0.3598 0.6628 71.4

Interval 1.00 104.00 12.75 33.00



Chapter 7

7-4

There is little doubt that the coefficient of variation for iron is misleading and serves to illustrate
one of the dangers of using the CV%.  When the mean is very small, as in this case, the CV tends
to become very large, particularly in ratio-type data (i.e., percent or concentration, Griffiths,
1967, Chapter 15, page 316).  It should be used on log data with great care, if at all.

When the data are subdivided into 57 observations (from the beginning of flow measurement to
immediately prior to remining, Table 7.2a), and into 19 observations (after commencement of
remining, Table 7.2b), the CVs of flow, acidity, sulfate, and manganese remain substantially
similar.  Iron, however, shows a marked drop from a CV equal to 109.2 % to a CV equal to
50.2%, implying that there was a major change in variability after the start of remining.  The CV
of aluminum, on the other hand, shows no change from the original data set.

Table 7.2a: Summary Statistics for 57 Log Transformed Observations (Pre-remining)

N Mean Median
Trimmed

Mean
Standard
Deviation

Standard Error
of the Mean

Flow 57 1.7885 1.8062 1.7751 0.3793 0.0502

Acidity 57 1.9176 1.9222 1.9170 0.1964 0.0260

SO4 57 2.4654 2.4771 2.4744 0.1881 0.0249

Total Iron 57 0.2027 0.1461 0.1961 0.2214 0.0293

Mn 57 0.9661 0.9713 0.9652 0.1302 0.0172

Al 57 0.4874 0.5250 0.4928 0.3520 0.0466

Minimum Maximum
First

Quartile
Third

Quartile
Coefficient of

Variation

Flow 0.9542 2.7882 1.4771 2.000 21.2

Acidity 1.4564 2.3747 1.7489 2.0737 10.2

SO4 1.6902 3.0792 2.4013 2.5682 7.6

Total Iron -0.1427 0.7243 0.0453 0.3444 109.2

Mn 0.5775 1.4048 0.8836 1.0528 13.5

Al -0.4948 1.4698 0.3874 0.6389 72.2
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Table 7.2b: Summary Statistics for 19 Log Transformed Observations (During remining)

N Mean Median
Trimmed

Mean
Standard
Deviation

Standard Error
of the Mean

Flow 19 1.7702 1.8062 1.7551 0.3867 0.0887

Acidity 19 1.6673 1.6928 1.6733 0.1018 0.0234

SO4 19 2.6844 2.6335 2.6830 0.1695 0.0389

Total Iron 19 -0.5345 -0.5376 -0.5170 0.2684 0.0616

Mn 19 0.7988 0.7672 0.7953 0.1430 0.0328

Al 19 0.4865 0.6542 0.4954 0.3818 0.0876

Minimum Maximum
First

Quartile
Third

Quartile
Coefficient
of Variation

Flow 1.1461 2.6513 1.4771 2.0000 21.8

Acidity 1.4409 1.7924 1.5694 1.7543 6.1

SO4 2.4150 2.9777 2.5658 2.8751 6.3

Total Iron -1.3010 -0.0655 -0.6021 -0.3565 50.2

Mn 0.6010 1.0569 0.6656 0.9101 17.9

Al -0.3010 1.1239 0.2504 0.7627 78.5

The means also show interesting changes.  Acidity possesses an overall mean of 1.87.  In
comparison, the mean of acidity prior to remining (1.92) is larger than during remining (e.g., see
Figure 2.5, Chapter 2).   Sulfate is lower than the overall mean prior to remining and much
higher than the overall mean during remining.  Log iron shows the most substantial change, from
0.20 before remining (approximately 1.6 in untransformed data units) to �0.53 (0.295) after after
remining operations began.  This represents a very large and favorable change beause the
pollution load has been reduced.  Manganese also shows a quite large change from before to
during remining.

The histograms of log transformed flow (Figure 7.1a), acidity (Figure 7.1b), iron (Figure 7.1c),
manganese (Figure 7.1d), and aluminum (Figure 7.1e) are essentially symmetrical, thus the
transformation has sufficed to reduce the asymmetry in the original data.  Because of the gaps in
the data and their peculiar pattern of variation, it was decided to graph some of the parameters to
show the distribution of gaps and to examine the pattern for cycles. 
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Figure 7.1a: Histogram of Log Flow

Figure 7.1b: Histogram of Log Acid

Figure 7.1c: Histogram of Log Iron

  Histogram of FE   N=79
  Midpoint   Count

-1.2 1 *
-1.0 1 *
-0.8 1 *
-0.6 8 ********
-0.4 6 ******
-0.2 3 ***
 0.0  22 **********************
 0.2 17 *****************
 0.4 9 *********
 0.6 9 *********
 0.8 2 **
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Figure 7.1d: Histogram of Log Manganese

Figure 7.1e: Histogram of Log Aluminum

Log flow versus days is shown in Figure 7.2a, and there does not appear to be much change
coincident with the start of remining.  Furthermore, peak flows occur in various months
throughout the record; there are two in June (1982, 1985) and two in April (1984, 1987) for
example, but they do not appear to recur each year.  No persistent cyclic pattern is evident for
flow.

Log acidity (Figure 7.2b) shows a large change, remaining well above both the mean and median
from November 27, 1981 to September 6, 1984, then falling to the mean around December 18,
1984 and falling consistently below both mean and median following October 26, 1985.  This
change took place prior to activation of the remining permit.  However, mining was occurring on
an adjacent surface mine prior to 1985.  The mean prior to remining (N = 57, Table 7.2a), is
1.9176 (log transformed) and is 82.7 in untransformed units.  After remining, the mean is 1.6673
in log-transformed units and 46.5 in untransformed units.  When the quality control limits around
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the median are inserted using a sample size of 18, the post-remining median is significantly
below the pre-remining limits (see lines in Figure 7.2b).

Graphs of log iron and log manganese are included in Figures 7.2c and 7.2d respectively.  Log
iron shows a marked decrease over time during the pre-remining period with a sharp decline
immediately following commencement of remining.  The confidence limits around the median of
pre-remining are inserted in the graph.  The median and the confidence limits, after remining
began, are much lower and the median lies outside the confidence limits of pre-mining.

Log manganese also shows a decrease after remining began but is not nearly so marked as is log
iron.  However, as in the case of log iron, the median log manganese after remining remains
outside (below) the pre-remining confidence limits.  Log aluminum is plotted against days
(Figure 7.2e), and the pre- and post-remining statistics are fairly similar.  The post-remining
median lies within the confidence limits (for N� = 18) of the pre-remining performance.  There is
no substantial change in the central tendency.
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Figure 7.2a: Log Flow vs. Time (Days)
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Figure 7.2b: Log Acidity vs. Time (Days)
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Figure 7.2c: Log Iron vs. Time (Days)
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Figure 7.2d: Log Manganese vs. Time (Days)
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Figure 7.2e: Log Aluminum vs. Time (Days)
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Another comparison of interest between pre- and post-remining water quality concerns
variances, and parameter pairs may be compared by a variance ratio or F-test.  It is customary to
divide the smaller variance into the larger so that the outcome always equals or exceeds one. 
This is in accord with the F-table of values which tests only that half of the F distribution that
exceeds unity.  In this case, it begins with the flow variables as follows: the calculated ratio, Fcalc
= 0.1495/0.1439 = 1.039.  The expected F-value (F18,55 = 1.79, at the five percent level) is much
larger, thus, there is no difference in the variances before and after remining. 

In the variance ratio for acidity, Fcalc equals 0.0386/0.0104 = 3.722.  The five percent level of
expected F for these degrees of freedom (df) is F50,18 = 2.02, so that the variance for pre-remining
is significantly larger than that for post-remining (a desirable outcome).  The same test
performed for SO4 yields Fcalc equal to 0.0354/0.0287 = 1.232 .  Thus, the pre-remining variance
is not significantly different from that after remining. 

For iron, Fcalc equals 0.0720/0.0490 = 1.469 (not significantly greater than a 5% probability level
of F 18, 56 = 1.79).  The variance of iron concentration after remining is not significantly different
from the variance of iron concentration before remining.  Manganese has a slightly larger
variance post- than pre-remining yielding an F calc = 0.020/0.017 = 1.206, but the difference in
variability is not statistically significant.  Aluminum also possesses a larger variance after
remining than before; the corresponding F calc = 0.1458/0.1239 = 1.176.  This difference is not
significant.  

The behavior of the variance before and after the beginning of remining is as important as the
differences in mean or median.  This is because if the variance becomes significantly smaller
after remining begins, the observed value is much less likely to exceed the confidence limits at
some future time, assuming that the behavior remains consistent.

Bivariate Analysis 

Examination of the relationship among pairs of variables begins with the correlations of zero
order among all pairs of the seven variables (Table 7.3).  The expected value of the correlation
coefficient for a pair of variables with 79 observations (= 78 df), each taken from a population in
which there is no correlation, is approximately r = 0.217 (using 80 df from Table 21, Arkin and
Colton, 1950, p. 140, Table of r for the 1% and 5% points of the r distribution).  This means that
any r < 0.217 is not significantly different from zero. This value is found at the top of Table 7.3.
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Table 7.3: Correlations of Zero Order Among the Seven Variables

Correlation of Seven Variables                                       r (0.05,80) = 0.217

Days Flow Acidity SO4 Total Iron Mn

Flow -0.044

Acidity -0.783 0.082

SO4 0.199 -0.006 -0.093

Total Iron -0.852 -0.013 0.724 -0.211

Mn -0.410 -0.042 0.457 0.396 0.510

Al -0.121 -0.307 0.058 0.250 0.055 0.361

Pairing each variable in turn, against days, shows that a linear association between flow, sulfate,
or aluminum and days is unlikely.  The relationship between acidity and days is negative (i.e.,
inverse).  Acidity decreases as days increase.  This is also the case with the relationship between
days and iron.  In both cases, the proportion of common association (r) among the pairs of
variables is large, 61% for acidity and 73% for iron.  Manganese also shows an inverse
relationship with days but the degree of association is much less (r  2 = 17%).   

Relationships between flow and the other variables, as measured by the correlation coefficient, is
effectively zero.  The exception is aluminum, where the relationship is negative (inverse) and the
degree of association is not very strong (r 2 = 9%).  

Acidity appears to have no simple linear relationship with either sulfate or aluminum, however,
it is positively associated with iron, possessing an r 2 = 52% in common.  Acidity has r 2 = 21%
common association with manganese and again the relationship is positive (i.e., they increase or
decrease together).  Sulfate and manganese are positively associated but the degree of common
association is weak.  Variation in manganese is related to variation in iron in the same way but to
a slightly greater degree.  Manganese is also weakly positively associated with aluminum (the
degree of common association r 2 = 13%).  The strongest correlation coefficient values are
between the pairs of acidity and days, and iron and days.  The decline of acidity and iron with
time is obvious in Figures 7.2b and 7.2c.  It is no surprise, therefore, that the third strongest
association is the positive one between iron and acidity.

As a check that perhaps the maximum degree of association was not of zero order, the cross-
correlation functions (CCF) were run and the principal outcomes are listed in Table 7.4.  To
evaluate these functions, it is reasonable to take a conservative value (for example, r = 0.3) as the
limit below which the relationship is not significantly different from zero.  In the case of flow
versus the other variables, there appears to be no linear association except for aluminum which
has its highest value as inverse (�0.389) at lag �4.  It is likely that the zero order value of �0.302
is not really significantly different from the r value at lag �4.
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Table 7.4: Summary of Important Cross-correlation Functions (CCF) Among Seven
Variables

Variables rmax lag @ rmax lrl >0.3

1. Flow vs. Acid 0.248 - 16 none

2. Flow vs. SO4 - 0.254 - 4 none

3. Flow vs. Fe 0.214 10 none

4. Flow vs. Mn - 0.276 - 4 none

5. Flow vs. Al - 0.389 - 4 -4, -3, 0

6. Acid vs. SO4 - 0.367 14 2 to 4, 14, 15

7. Acid vs. Fe 0.724 0 - 14 to 14, 16 to 18

8. Acid vs. Mn 0.457 0 0, 1

9. Acid vs. Al 0.252 - 18 none

10. SO4 vs. Fe - 0.361 -7 - 9 to - 6, - 4, 2

11. SO4 vs. Mn 0.396 0 0, 3 to 5

12. SO4 vs. Al 0.299 1 none

13. Fe vs. Mn 0.511 0 -2 to 3

14. Fe vs. Al - 0.188 - 12 none

15. Mn vs. Al 0.441 1 - 13, 0, 1

16. Acidity vs. days - 0.783 0 - 18 to 17

17. Iron vs days - 0.852 0 -17, - 15 to 13

Acidity versus sulfate, iron, and manganese are all larger than the critical value of 0.3.  The
cross-correlation function for sulfate has three values exceeding 0.3 (at lags of +4, +2 and +14).
However, these values are all indicative of a low degree of association (<13%) between the two
variables.  Iron and manganese achieve their maximum r at zero lag.  

Sulfate versus iron, manganese, and aluminum show correlations between 0.3 (0.299) and 0.396.
These values are all significantly different from zero.  Correlations are positive between sulfate,
manganese, and aluminum, but negative with iron.  Sulfate behaves independently in all
associations with other variables.  The maximum correlation between iron and manganese
(0.510) occured at 0 lag, and indicates a relatively strong degree of association (26%).  The
relationship between iron and aluminum never exceeded the critical value of r = 0.217.

The correlation between iron and manganese is very weak (<26%) and the maximum is at zero
lag.  The relationship between iron and aluminum does not exceed the critical value of 0.217 (see
Table 7.3).
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The relationship of manganese and aluminum exceeds the critical value of 0.217 at lag  �13 to
�10, lag 0 to 1, and lag 17.  The maximum r (0.441) occurs at lag 1.  Again, if this is a real
association, it is weak (r 2 = 19%).  

Bivariate relationships between pairs of water quality parameters and flow vs. water quality
parameters were plotted.  The results yielded very little that was meaningful with the exception
of iron vs. acidity (Figure 7.3).  This relationship had the highest positive correlation coefficient
(r = 0.724).

Figure 7.3: Plot of Log Iron vs. Acidity
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Time Series Analysis

This analysis is subdivided into three parts.  First, there is a plot of each variable versus the date
collected.  The dates are forced into 79 equal intervals, distorting the graph in terms of horizontal
scale.  (The correct spacing may be seen in Figures 7.2a to 7.2d.)  The second subdivision details
the diagnosis phase of the Box-Jenkins time series analysis using the autocorrelation and partial
autocorrelation functions (Acf and Pacf, respectively).  The third stage comprises modeling
using Box-Jenkins estimation and forecasting programs.

The time series graphs begin with a plot using the variable of the first differences between
collection dates against the observation number(s) (Figure 7.4a).  The trend increases
consistently through time.  Figure 7.4a is included as an example of what happens when a
variable of known structure is analyzed, where any variable with a constant function (increasing
or decreasing) over time will yield a typical Acf and Pacf (Figures 7.5a and 7.5b).

Log flow is plotted against equal intervals in Figure 7.4b.  The variation around the mean
appears to remain reasonably constant throughout the period of observation.  By contrast, in a
plot of log acidity versus date (Figure 7.4c) the variation in acidity is consistently high and above
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the mean until approximately the 29th observation (September 6, 1984), when it decreases to the
mean from observation 30 to 36 (September 21, 1984 to November 23, 1984).  The pattern of
variation then falls well below the mean from observation 37 to 49 (December 18, 1984 to May
22, 1985); from observation 50 to 54 (May 28, 1985 to August 19, 1985) it remains close to the
mean, and from 55 to 79 (September 21, 1985 to August 12, 1987) the range of acidity values
remains consistently below the mean.  Remining began at observation 61 (February 17, 1986).

Sulfate versus observation number (Figure 7.4d) shows no substantive change in variation
around the mean throughout all 79 observations.  The plot of iron versus observation number
(Figure 7.4e) shows a slight decreasing trend prior to remining at observation 61.  From
observation 62 (March 22, 1986) onwards, the variation is well below the mean with two
observations (65, June 10, 1986 and 89, August 12, 1987) below the lower two standard
deviation limit. 

Fluctuations in the concentrations of manganese (Figure 7.4f) are quite large, particularly in the
beginning (observations 1 through 3, November 27, 1981 to May 19, 1982).  From observation 4
through observation 66 (June 9, 1982 through July 15, 1986), the fluctuations are around the
mean (= the median), and from observation 67 to 79 (August 12, 1986 to August 12, 1987), the
observations tend to fall below the mean, varying widely, from observation 73 (February 14,
1987) slightly above the mean to observation 70 and observations 75 to 79 (November 15, 1986
and April 11, 1987 to August 12, 1987) near the lower confidence limits. 

The time series plot of aluminum (Figure 7.4g) begins well above the mean (= the median) in
observations 3 to 9 (May 19, 1982 to September 18, 1982), then falls well below the mean for
observations 11 to 22 (November 13, 1982 to March 2, 1984).  Observations 11, 15, and 19 to 21
(November 13, 1982, May 18, 1983 and December 15, 1983 to January 28, 1984) are all below
the lower confidence limits.  For observations 23 to 79 (March 31, 1984 to August 12, 1987), the
concentration falls around the mean with two strong deviations to the lower confidence limits at
observations 71 and 72 (December 13, 1986 and January 17, 1987).  Remining does not seem to
have had any consistent effect. 
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Figure 7.4a: Collection Dates vs. Observation Number (First Differences)

Figure 7.4b: Plot of Log Flow vs. Time
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Figure 7.4c: Plot of Log Acidity vs. Time

Figure 7.4d: Plot of Log Sulfate vs. Time

Figure 7.4e: Plot of Log Iron vs. Time
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Figure 7.4f: Plot of Log Manganese vs. Time

Figure 7.4g: Plot of Log Aluminum vs. Time

Diagnosis of Time Series Models Using Autocorrelation and Partial Autocorrelation
Functions 

The Acf of days or dates of observation numbers 1 through 79 (Figure 7.5a), shows a steep but
uniform decline as would be expected from the consistent increase (i.e., a strong trend) present in
Figure 7.4a.  The corresponding Pacf (Figure 7.5b) has one large spike at lag 1.  The first
difference is likely to be a random walk.

The Acf of flow has no distinct patterns, with a single small spike at lag 1 (Figure 7.5c).  The
Pacf is similar to the Acf (Figure 7.5d), and a simple auto regression (AR(1)) or moving average
(MA(1)) model would do equally well (or poorly) in describing the behavior.  Acidity, on the
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other hand, shows a marked decline in the Acf (Figure 7.5e) similar to that in Figure 7.5a, but
somewhat less uniform.  The Pacf (Figure 7.5f) has one large spike at lag 1.  Here, a first
difference is necessary to reduce the variation to a stationary series.  Then a simple AR or MA
would probably suffice.  The Acf and Pacf of sulfate are very similar (Figures 7.5g and 7.5h,
respectively), and resemble the corresponding graphs of flow (Figures 7.5c and 7.5d).  A small
spike at lag 1 and a few subdued features are not likely to be significant.

Iron shows an exponential decline in Acf (Figure 7.5i).  The Pacf has a large spike at lag 1,
indicating there is a trend over time which should be removed before the series becomes
approximately stationery (as shown in Figure 7.5j).  The other features appear to be
overwhelmed by the trend. 

The Acf and Pacf of variation in concentration of log manganese (Figures 7.5k and 7.5l) show
similar, if slightly less distinct, characteristics as log Fe concentration.  Their variations, in
overall terms, are somewhat similar.  Again a large spike at lag 1 requires a first difference, but
the remainder of the variation is probably not significant.  The variation in Acf and Pacf of
aluminum (Figures 7.5m and 7.5n) are very similar to each other and to sulfate. Modeling should
begin with a simple AR(1) or MA(1) and the complexity should be increased if there are any
spikes which are significantly above background.

It appears evident that there are two types of variables in terms of their variation patterns.  The
first type is very like the first differences (e.g., Figure 7.5a) in possessing a strong trend, not
always uniformly decreasing; but acidity, iron and possibly manganese all decrease over time. 
The second type (e.g., flow, sulfate, and aluminum) shows no well-marked trend but is much
more irregular in behavior.  When the trend is removed, residual variation will possibly be
similar in all six variables.
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Figure 7.5a: Autocorrelation Function of Days

Figure 7.5b: Partial Autocorrelation Function of Days

Figure 7.5c: Autocorrelation Function of Flow
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Figure 7.5d: Partial Autocorrelation Function of Flow

Figure 7.5e: Autocorrelation Function of Acid

Figure 7.5f: Partial Autocorrelation Function of Acid
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Figure 7.5g: Autocorrelation Function of Sulfate

Figure 7.5h: Partial Autocorrelation Function of Sulfate

Figure 7.5i: Autocorrelation Function of Iron
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Figure 7.5j: Partial Autocorrelation Function of Iron
  -1.0 -0.8 -0.6 -0.4 -0.2  0.0  0.2  0.4  0.6  0.8  1.0
    +----+----+----+----+----+----+----+----+----+----+

 1   0.761                          xxxxxxxxxxxxxxxxxxxx
 2   0.310       xxxxxxxxx
 3   0.181                          xxxxxx
 4   0.069                          xxx
 5  -0.017                          x
 6   0.071                          xxx
 7  -0.003                          x
 8   0.024                          xx
 9  -0.072                        xxx
10   0.049                          xx
11  -0.140                       xxxx
12  -0.067                        xxx
13   0.022                          xx
14   0.016                          x
15  -0.051                         xx
16  -0.127                       xxxx
17   0.000                          x
18   0.045                          xx

Figure 7.5k: Autocorrelation Function of Manganese

Figure 7.5l: Partial Autocorrelation Function of Manganese
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Figure 7.5m: Autocorrelation Function of Aluminum

Figure 7.5n: Partial Autocorrelation Function of Aluminum
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Box-Jenkins Modeling of Variation in the Seven Variables

On the basis of the above diagnostics, variation in flow was modeled using both the AR (1,0,0)
and MA (0,0,1) models.  Tests of the AR (1) model outcome showed no correlation between the
mean and the AR coefficient ( ).  The residual possessed a chi-square of 9.16 with 22 degrees$Φ1

of freedom (df), yielding a probability of greater than 0.99 that the residual variation is white
noise.  Both the Acf and Pacf of the residuals were free of unusual spikes.  The relationship is
shown in Table 7.5.  The residual standard deviation is  = 0.356 compared with an original$σe

standard deviation of  = 0.373, a small improvement.$σ

Table 7.5:  Equations of Models Fitted to Variables from the Fisher Deep Mine

$σe $σ

1a. Flow AR (1) zt = 0.336zt - 1 + 1.791 + at 0.356
0.373

1b. Flow MA (1) zt = 1.788 + at + 0.340at - 1 0.354

2. Acid MA (1) zt = at - 0.533at - 1 0.119 0.218

3. SO4 MA (1) zt = 2.532 + 0.375at - 1 + at 0.197 0.212

4a. Fe AR (1) zt = 0.8502t - 1 + 0.044  + at 0.252
0.411

4b. Fe MA (1) zt = zt - 1 + at - 0.612at - 1 0.219

5. Mn MA (1) zt = zt - 1 + at - 0.551at - 1 0.151 0.172

6. Al MA (1) zt = 0.495 + at + 0.325at - 1 0.333 0.354

In the MA(0, 0, 1) model, there is no correlation between the mean and the moving average
coefficient.  The chi-square of the residuals is 8.879 with 22 df, a probability of P > 0.99 against
white noise.  (The resulting equation is given in Table 7.5, 1b).  The residual standard deviation
is 0.354, which is very close to the AR value of 0.356.  The models have similar equations and
similar residual errors. 

Variation in acidity requires a first difference.  When an MA (0,1,1) model is fitted, the chi-
square of the residuals equals 22.43 with 23 df.  The probability that this would arise from a
white noise series is 0.50 > P > 0.30.  The equation is presented in Table 7.5, number 2, and
yields a residual standard deviation of 0.119 compared with an original standard deviation of
0.218, an almost 50% improvement.

The MA (0,0,1) model was fitted to the variation in sulfate concentration.  The mean is linearly
independent of the MA coefficient.  Chi-square = 14.87 with 22 df, clearly showing (0.90 > P >
0.80) that the residual variation is not different from that of white noise.  The equation is shown
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as No. 3 in Table 7.5 and the residual standard deviation is  = 0.197 compared with an$σe

original standard deviation of 0.212, showing little improvement.  

Two models were fitted to evaluate variation in iron concentration, an AR (1,0,0) and an MA
(0,1,1).  An AR(1) coefficient may be a fair approximation of the first difference in the MA
model.  The mean is relatively small, thus the AR(1) model is not as suitable as the MA (0,1,1)
fitted to first differences mean set equal to zero.  The standard deviations are 0.245 for the AR
model and 0.219 for the MA model compared with  = 0.411 for the original variable, an$σ
improvement of nearly 50 percent.  

Since manganese varies in a manner similar to iron, the MA model was fitted to the first
differences MA (0,1,1).  The chi-square equals 23.82 with 23 df (or 0.50 > P > 0.30, i.e., the
residual variation is likely to be white noise).  One significant spike at lag 4 remained in the Acf
of the residuals.  The equation of the MA (0,1,1) model is in Table 7.5.  The standard deviation
is 0.151 compared with an original standard deviation of 0.172, an improvement of only 10
percent.

Aluminum variation did not require a first difference thus the MA (0,0,1) model was fitted. Chi-
square of the residuals equals 25.71 with 22 df, 0.30 > P > 0.20.  There is no correlation between
the mean and the moving average coefficient.  There is a significant spike at lag 4 as in the
manganese model.  The equation is given as No. 6 in Table 7.5.  The standard deviation equals
0.333 compared with  = 0.354 for the original series (a marginal improvement).$σ

These variables appear to show two patterns of variation. The first pattern is simple MA(1)
performance.  The second pattern is a consistent trend, usually a decline, with time.  This second
pattern is best matched by the MA(1) model of the first differences.  The effects of the trend are
removed by taking first differences.  In several cases, there is a significant spike at lag 4 in the
Acf of the residuals. However, this single spike is not repeated and there is no seasonal effect. 
No further analysis was performed because the large gaps in the time between observations
prevented any more rigorous analysis.

Quality Control

The appropriate use of quality control (particularly in the form of confidence limits around the
mean or median) is illustrated in Figures 7.2c and 7.2d.  This enables comparison between pre-
remining and post-remining water quality conditions and allows for differences in sample size.

The two standard deviation limits around the mean are also inserted in the time series plots
(Figures 7.4b to 7.4g).  These are confidence limits based on a sample size of one (i.e.,

 ).  They do not appear to be very informative; very few observations fall outside theseX ± 2 $σ
limits.  In the pre-remining period, there is a tendency for the range (and the variance, see F-tests
discussed earlier in this chapter) to be very much larger than after remining commences.  As a
result, all the observations after remining tend to fall within these rather wide limits.



Chapter 7

7-30

Summary 

The most important outcome of this analysis is to show that the pattern of variation in these six
variables falls into two groups.  The first group (flow, sulfate, and aluminum) appears to be
unaffected by remining.  The second group (acidity, iron, and manganese) shows a marked
improvement after remining begins.  This improvement is shown in both means (medians) and
variances.  The means are lower and the variances less after remining began than prior to
remining.  
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Chapter 8: Analysis of Data from the Markson Deep Mine Site, Schuylkill
County, PA  

The abandoned Markson Colliery workings are located within the Donaldson Syncline of the
Southern Anthracite Coal Field.  The Markson discharge is located approximately 1.2 miles
upstream from the Rausch Creek Treatment Plant operated by PA DEP in Schuylkill County
(Figure 8.0).  This discharge emanates from an airway of the abandoned Markson Colliery, and
is a principal contributor to the total acid load treated at the plant.  The flow and water quality
characteristics of the Markson discharge were previously described in Smith (1988), Hornberger
et al. (1990), and Brady et al. (1998).  The data set used in most of those studies and in this
chapter was collected by the Pennsylvania Department of Environmental Protection, Bureau of
Abandoned Mine Reclamation (BAMR) which operates the Rausch Creek Treatment Plant. 
BAMR routinely samples and monitors the Markson discharge and another large abandoned
deep mine discharge (Valley View Tunnel discharge) for purposes related to treatment plant
operations.  Additional data and discussion of the flow and water quality characteristics of the
Markson discharge from 1992 to 1999 are contained in Section 5 of the EPA Coal Remining
Statistical Support Document.

The Markson discharge exhibits water quality characteristics that differ greatly from those of
principal discharges from adjacent mines (e.g., the Orchard Airway discharge from the Good
Spring No. 1 Colliery and the Tracy Airway discharge from the Good Spring No. 3 Colliery). 
The pH of the Markson discharge ranges from 3.2 to 3.7, while the pH of the Tracy discharge
ranges from 5.7 to 6.5.  The distinct chemical differences in two discharges from similar
abandoned underground mines in the same coal seams and the same geologic structure are
attributable to stratification of large anthracite deep minepools.  The Tracy discharge is a �top-
water� discharge from a relatively shallow ground water flow system (at elevation 1153 feet),
while the Markson discharge emanates from �bottom water� at a much lower elevation (865 feet)
in the minepool system.  Additional information on the chemical characteristics of stratified
anthracite minepools is found in Barnes et al. (1964), Ladwig et al. (1984) and Brady et al.
(1998).  

The raw data for the Markson discharge are listed in Appendix F.  There are 253 observations,
and the assembled set is comprised of data on nine parameters as follows: days; flow; pH;
acidity; iron; manganese; aluminum; sulfate; ferrous iron.  Days were calculated as the number
of days between the day an observation was collected and the day the first observation was
collected.

The first step was to adjust the data set for missing observations.  The first 147 dates had no
observations for flow.  The original data were, therefore, subdivided into two sets: the first
consisting of eight variables (253 observations); and the second consisting of nine variables,
including flow (107 observations).  A tenth variable (interval) was added by taking the first
differences among days to determine the regularity of the intervals between observations.
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Figure 8.0: Map of Markson Site
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Univariate Analysis

The two data sets (N = 253 and N = 107) were explored initially to determine the shape of the
frequency distributions.  The variables flow, acidity, aluminum, and ferrous iron were considered
to be asymmetric and were transformed to base 10 logarithms.  The summary statistics for these
data sets following log transformation are shown in Table 8.1 (N = 107) and Table 8.2 (N =
253).  
Table 8.1:  Summary Statistics (N=107) 

N N* Mean Median
Trimmed

Mean
Standard
Deviation

Standard Error
of the Mean

Intervals 106 1 7.0660 7.0000 7.0208 0.7840 0.0761

Log Flow 107 0 3.1250 3.0892 3.1089 0.1950 0.0188

pH 107 0 3.2458 3.2000 3.2443 0.0954 0.0092

Log Acidity 107 0 1.9960 2.0000 1.9986 0.0743 0.0072

Total Iron 107 0 27.770 27.006 27.680 9.255 0.895

Mn 107 0 4.8971 4.9700 4.8920 0.9498 0.0918

Log Al 107 0 0.2961 0.3191 0.2988 0.1625 0.0157

SO4 107 0 272.81 271.00 272.41 27.13 2.62

Log Ferrous Iron 105 2 1.3275 1.3979 1.3489 0.2583 0.0250

Minimum Maximum
First

Quartile
Third

Quartile
Coefficient of

Variation

Intervals 5.0000 14.0000 7.0000 7.0000 ---

Log Flow 2.8791 3.8151 2.9930 3.1978 6.2

pH 3.1000 3.5000 3.2000 3.3000 2.9

Log Acidity 1.5051 2.1818 1.9638 2.0414 3.7

Total Iron 6.900 49.871 21.500 33.762 33.3

Mn 1.2000 8.1600 4.4240 5.3100 19.4

Log Al -0.1244 0.7686 0.1793 0.3979 54.9

SO4 210.00 348.00 253.00 292.00 9.9

Log Ferrous Iron 0.5185 1.6758 1.2087 1.5197 75.3

         N* = Number of missing data points in data set
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Table 8.2: Summary Statistics (N = 253) 

N N* Mean Median
Triggered

Mean
Standard
Deviation

Standard Error
of the Mean

Intervals 252 1 7.333 7.000 7.044 1.910 0.120

Log Flow 107 146 3.1250 3.0892 3.1089 0.1950 0.0188

pH 253 0 3.2362 3.2000 3.2209 0.1508 0.0095

Log Acidity 252 1 2.0515 2.0414 2.0483 0.1123 0.0071

Total Iron 253 0 30.703 28.997 30.410 13.026 0.819

Mn 249 4 5.0439 5.1000 5.0470 0.8351 0.0529

Log Al 246 7 0.34588 0.35622 0.35099 0.14314 0.00913

SO4 253 0 297.87 293.00 296.84 44.85 2.82

Log Ferrous Iron 241 12 1.3656 1.4393 1.3865 0.3056 0.0197

Minimum Maximum
First

Quartile
Third

Quartile
Coefficient of

Variation

Intervals 5.000 28.000 7.000 7.000 ---

Log Flow 2.8791 3.8151 2.9930 3.1978 6.2

pH 3.0000 4.4000 3.1000 3.3000 4.7

Log Acidity 1.4771 2.5340 2.0000 2.0197 5.5

Total Iron 3.810 63.500 21.045 39.656 42.4

Mn 1.2000 8.1600 4.6300 5.4200 19.8

Log Al -0.12436 0.76864 0.28358 0.43497 41.4

SO4 155.00 510.00 265.00 325.50 15.1

Log Ferrous Iron -0.1805 1.8037 1.2015 1.5798 22.4

    N* = Number of missing data points in data set

The next step was examination of the regularity in the intervals between observations, (i.e.,  in
Table 8.2; the mean is 7.33 days and the median is 7.0 days).  The majority of the observations
were taken at seven-day intervals as expected.  The range was from 5 to 28 days, however, and
from the histogram (Figure 8.1a) there were seven intervals of eight days, five intervals of six
days, and one interval of five days.  The regularity of these observations is desirable yet
surprising.  It is recommended that determination of the first differences of days should become
a routine procedure for long series of observations in order to examine the regularity of sampling
intervals.  

The next step concerns the magnitude of variation as measured by the coefficient of variation in
percent.  It should be noted (see Tables 8.1 and 8.2) that when the CV% is calculated [CV% =
( /mean) *100] after logs have been taken, the mean values tend to be rather low.  This willσ
automatically inflate the CV%.  It is suspected that this is the case with aluminum and ferrous
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iron in both data sets.  Most of the variation is very low for flow, pH, and acidity (less than
10%).  Only iron, ferrous iron, and aluminum have high CV% values.  This is largely due to low
mean values rather than high standard deviations.

The frequency distributions of selected variables from these data sets are shown in Figures 8.1a
through 8.1i.  The number of samples represented in the histograms for each parameter ranges
from N = 106 (interval) to N = 253 (sulfate) depending on the number of sample results reported
for the corresponding parameter.  The histogram for log flow, with N = 107 (Figure 8.1b), is
skewed right even after taking logs.  The histogram of each data set (N = 252 and N = 107) for
log acidity appears fairly regular with some negative skewness after taking logs (Figures 8.1c
and 8.1d).  The data sets of both iron and manganese result in symmetrical histograms (Figures
8.1e and 8.1f, respectively).  Aluminum is symmetrical after taking logarithms (Figure 8.1g)
whereas, sulfate is essentially symmetrical without transformation (Figure 8.1h).  Ferrous iron is
strongly  negatively skewed after taking logarithms (Figure 8.1i), making further analysis of this
variable suspect.

Figure 8.1a: Histogram of Interval (N=106)
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Figure 8.1b: Histogram of Log Flow (N=107)

Figure 8.1c: Histogram of Log Acidity (data set N=252)

Figure 8.1d: Histogram of Log Acidity (data set N=107)
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Figure 8.1e: Histogram of Iron (N=253)

Figure 8.1f: Histogram of Manganese (N=249)

Figure 8.1g: Histogram of Log Aluminum (N=246)
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Figure 8.1h: Histogram of Sulfate (N=253) 

Figure 8.1i: Histogram of Log Ferrous Iron (N=241)

Bivariate Analysis

The interrelationships among pairs of variables are summarized in Tables 8.3 (N = 107) and 8.4
(N = 253).  The critical level of the correlation coefficient for N = 107 is 0.195.  Any r less than
0.195 is not significantly different from zero.  For the data set with N = 253, any pair with r less
than 0.15 is not significantly different from zero.  These critical values are inserted above each
table.  It was found that the degree of association is best measured by the correlation coefficient
squared = r 2 %.  Due to the large size of the data set, a correlation as low as r = 0.2 can be
considered statistically significant.  However, a correlation of r = 0.2 yields r2 = 0.04 (i.e., only
4% of the variation of one parameter can be explained by the other parameter).   Therefore, a
higher r = 0.4 (r2 = 16%) was arbitrarily chosen to determine the lower limit of interest.  
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Table 8.3:  Correlations Among Variables  (N = 107)  

r < 0.195 not significantly different from 0

Days Log
Flow

pH Log
Acidity

Iron Mn Log Al SO4 Log Ferrous
Iron

Log Flow 0.422

pH 0.536 0.263

Log Acidity -0.396 -0.259 -0.191

Iron -0.174 -0.610 -0.075 0.211

Mn 0.385 0.048 0.169 0.089 0.183

Log Al 0.195 0.474 -0.027 -0.036 -0.402 0.584

SO4 -0.003 -0.165 -0.087 0.264 0.359 0.322 0.095

Log Ferrous
Iron

-0.338 -0.690 -0.175 0.380 0.770 0.036 -0.424 0.400

Interval -0.141 -0.001 -0.119 0.016 -0.067 -0.064 0.042 0.010 0.008

Table 8.4:  Correlations Among Variables (N = 253)

r < 0.15 not significantly different from 0

Days Log
Flow

pH Log
Acidit

Iron Mn Al SO 4 Log Ferrous
Iron

Log Flow 0.422

pH -0.002 0.263

Log Acidity -0.348 -0.259 0.016

Iron -0.401 -0.610 0.180 0.124

Mn -0.036 0.048 -0.030 0.174 0.177

Log Al -0.227 0.474 -0.069 0.133 -0.199 0.435

SO4 -0.589 -0.165 0.171 0.322 0.455 0.289 0.116

Log Ferrous
Iron

-0.334 -0.690 0.079 0.140 0.803 0.042 -0.268 0.356

Interval -0.100 -0.002 -0.088 0.103 -0.020 -0.058 0.027 0.030 0.018

While it is advantageous to use r 2 rather than r as an indication of the strength of any association
between two variables, it is also advisable to examine scatter diagrams to see the relationship
graphically displayed.  Because r and r 2 are really measures of linear association, in those cases
where r is low (and r 2 therefore very low), the graph may show a close curvilinear association. 
For example, in Figure 8.2a (sulfate vs. flow), there could be a curvilinear inverse relationship
between the variables although the scatter at high flows (> 3.4) tends to mask it.  Both total iron
and ferrous iron are also negatively associated with flow (r 2 = 37% in both data sets, see Figure
8.2b, for example for total iron).
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Manganese and aluminum show positive association in both data sets (r 2 = 34% and 16% for the
107 and 253 sample data sets respectively, Figure 8.2c).  Apart from flow and manganese, there
does not appear to be any meaningful relationship between aluminum and any other variable
(Figure 8.2d). 

Manganese and flow do not show a significant positive (i.e., r = 0.048) or inverse relationship
(Figure 8.2e).  Similarly, acidity appears to have no association with any of the other parameters
(e.g., Figures 8.2f and 8.2g).  

Figure 8.2a: Plot of Sulfate vs. Log Flow

Figure 8.2b: Plot of Iron vs. Log Flow
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Figure 8.2c: Plot of Manganese vs. Log Aluminum

Figure 8.2d: Plot of Log Aluminum vs. Sulfate

Figure 8.2e: Plot of Manganese vs.  Log Flow
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Figure 8.2f: Plot of Log Acidity vs. Log Flow

Figure 8.2g: Plot of Log Acidity vs. Iron

Since there does not appear to be any very strong relationship among these variables, they were
examined in pairs using cross-correlation functions (CCF).  The outcomes are summarized in
Table 8.5.  There do not appear to be any discrepancies between the correlation coefficient and
the cross-correlation coefficient results [i.e., the relationships at zero lag (Tables 8.3 and 8.4) and
at any other lags (Table 8.5)].  There are wide regions of the CCF that are above the 0.2 limits
demonstrating that, for the most part, interrelationships among these variables are weak to
almost non-existent.  The only two that stand out are the relationships between flow and iron and
iron and ferrous iron (and therefore, between flow and ferrous iron). 
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Table 8.5:  Cross-correlations Among Variables

No. Variables r lag @ r max 0.2r >

1. pH vs. Flow  0.305 -6 - 8 to 7

2. Acid vs. Flow - 0.382 -5 - 13 to 0

3. Iron vs. Flow - 0.676 -2 - 16 to + 6, 15 to 20

4. Mn vs. Flow - 0.334 12 -21, -11, 7 to 20

5. Al vs. Flow 0.475 0 - 13 to 13

6. SO4 vs. Flow - 0.502 -8 - 18 to - 1, 6 to 20

7. Ferrous Iron vs. Flow - 0.740 -1 - 15 to 6, 16 to 20

8. Acid vs. pH - 0.321 -5 - 16,- 8,- 7,- 5 to -3, -1, 2, 3

9. Iron vs. pH -0.175 -12 none

10. Mn vs. pH 0.288 13 -14, 6 to 13

11. Al vs. pH  0.232 -20 - 20

12. SO4 vs. pH 0.296 11 8 to 14

13. Ferrous Iron vs. pH - 0.227 -13 - 14 to - 12, -10, 2

14. Iron vs. Acid 0.226 9 0,  4, 9

15. Mn vs. Acid - 0.287 13 13

16. Al vs. Acid - 0.214 13 13

17. SO4 vs. Acid 0.29 2 - 17, - 4 to 0, 2

18. Ferrous Iron vs. Acid 0.373 0 - 2 to 6, 9, 10

19. Mn vs. Iron - 0.283 14 -20,  3,  14, 16 to 18, 20

20. Al vs. Iron - 0.562 3 - 20, -9 to 17

21. SO4 vs. Iron - 0.458 20 - 20, -18 to 2, 12 to 20

22. Ferrous Iron vs. Iron 0.776 0 -11 to 13

23. Al vs. Mn 0.584 0 -20 to -15, -5 to 1

24. SO4 vs. Mn 0.326 -1 -2 to 1

25. Ferrous Iron vs. Mn - 0.281 -16 - 20 to - 15, - 10

26. SO4 vs. Al 0.419 17 - 20 to - 10, -8, -7, 5, 6, 9 to 20

27. Ferrous Iron vs. Al - 0.478 -3 - 16 to  8

28. Ferrous Iron vs. SO4 0.473 4 - 20 to - 8, -2 to 13

Time Series Analysis

One of the most striking features of the time series plots (Figures 8.3a through 8.3f) is the
limited variation which they show.  Another feature of interest is the unusual variation shown by
log flow.   The major flow event from February 1986 to July 1986 is worth noting and does not
appear in any of the other graphs.  This emphasizes a lack of relationship between the
parameters.  Clearly, there appears to be no associated variation among the parameters, except
for the pair that includes iron and ferrous iron.
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Figure 8.3a: Time series Plot of Flow
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Figure 8.3b: Plot of Manganese
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Figure 8.3c:  Time Series Plot of Sulfate
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Figure 8.3d: Time Series Plot of Iron
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Figure 8.3e: Time Series Plot of Aluminum
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Figure 8.3f: Time Series Plot of Acidity
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Quality Control Applied to the Variables

Two measures of quality control are calculated and summarized in Tables 8.6 and 8.7; in Table
8.6 the conventional two standard deviation limits around the mean are given for each of the
eight variables (these limits are presented, for example, in Figure 8.3a). 

Table 8.6.  Quality Control Limits  ± X 2 $σ

Parameter Mean X Standard Deviation $σ  ± 2 $σ X 2 $σ
Log Flow 3.125 0.195 0.39 2.76 to 3.52

pH 3.246 0.095 0.19 3.056 to3.436

Log Acidity 1.996 0.074 0.148 1.848 to 2.144

Iron 27.770 9.285 18.51 9.20 to 46.34

Mn 4.897 0.950 1.9 2.997 to 6.797

Log Al 0.296 0.163 0.326 (-0.03) to 0.622

SO4 272.81 27.13 54.26 218.55 to 381.33

Log Ferrous Iron 1.328 0.258 0.516 0.812 to 1.844

Table 8.7. Quality Control Limits: Md ± [1.96 * 1.25(Q1-Q3)/1.35 ] ′N
N = 253 data set, except flow, N = 107).

Median Q1 Q3 Q3- Q1 ′N 1.35* ′N Lower Limit Upper Limit

Log Flow 3.089 2.993 3.198 0.205
1 1.350 2.717 3.461

12 4.677 2.982 3.196

pH 3.2 3.1 3.3 0.2
1 1.350 2.837 3.563

12 4.677 3.095 3.305

Log Acidity 2.041 2 2.092 0.092
1 1.350 1.874 2.208

12 4.677 1.993 2.089

Iron 28.997 21.045 39.656 18.611
1 1.350 -4.779 62.773

12 4.677 19.247 38.747

Mn 5.1 4.63 5.42 0.79
1 1.350 3.666 6.534

12 4.677 4.686 5.514

Log Al 0.356 0.284 0.435 0.151
1 1.350 0.082 0.630

12 4.677 0.277 0.435

SO4 293 265 325.5 60.5
1 1.350 183.204 402.796

12 4.677 261.305 324.695

Log Ferrous
Iron 1.439 1.202 1.58 0.378

1 1.350 0.753 2.125
12 4.677 1.241 1.637

Furthermore, for Table 8.7, two sample sizes are used, the first with sample size = 1 and the′N
second with = 12.  The set of quality control limits used in Figures 8.3b through 8.3f are the ′N
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limits of a confidence interval (C.I.) Around the median, based on Tukey�s non-parametric
formula of:

Median ± [1.96 (Q 1 � Q 3) 1.25 / (1.35  )′N

Two values of  are used, (namely, = 1 and = 12) in Figures 8.3b, 8.3c, 8.3d, 8.3e, and′N ′N ′N
8.3f.  

Many of the observations, which fall outside the limits when = 1, are single observations and′N
need no activity to explain the exceedance.  The longer areas of departure in flow (Figure 8.3a)
are due to natural events and presumably, are not related to mining activity.  It would be
expected that this extreme and long-term departure would be reflected in the variation of the
other parameters, but this is not the case.  

With nearly all other parameters it appears that the control limits are somewhat tight and that
most of the variation outside of the control limits is irregular and of short duration (e.g.,
manganese in Figure 8.3b and sulfate in Figure 8.3c).

Iron shows two relatively long term, mostly positive deviations beyond the control limits (Figure
8.3d) in the period up to observation 80 (February 20, 1986).  These deviations are not repeated
in later observations.  Sulfate (Figure 8.3c) also extends beyond the upper limits for the first 30
observations (i.e., before February 28, 1985) and appears to decrease with time.  The behavior of
aluminum within the quality control limits (Figure 8.3e) is similar to manganese and sulfate. 
However, the aluminum values drop below the lower limit for most of the observations from 185
to 225.  Acidity (Figure 8.3f) shows little variation, with a few isolated peaks extending outside
the upper limits.  In three cases (October 1983, March 1984 and June 1984) consecutive results
exceeded the upper limit. 

Model Identification 

Identification of appropriate models is performed by using the autocorrelation (Acf) and partial
autocorrelation (Pacf) functions of the eight parameters.  There are three types of functions
which can be characterized by appearance. The first type shows a strong steady decline from a
high value.  Flow (Figure 8.4a), iron (Figure 8.4b), aluminum (Figure 8.4d), and ferrous iron are
examples of this type.  All these parameters show a large spike at lag 1 in their Pacf (see iron in
Figure 8.4c and aluminum in Figure 8.4e).  These characteristics imply the parameter possesses a
trend which must be removed before further time series analysis.  Removal may be achieved by
taking first differences.  An example can be demonstrated using days, which increase in value
throughout the period of observation.  Taking first differences results in random walk
characteristics (Figure 8.4f).  Thus, the first difference is sufficient to make this parameter
stationary.

The second type of function shows a less pronounced decline (e.g., pH (Acf in Figure 8.4g)). The
Pacf of pH, however, shows a pronounced spike at lag 1, and it too requires taking first



Chapter 8

8-22

differences to become stationary (Figure 8.4h).  Manganese (Acf in Figure 8.4i) is similar to pH
except its Pacf does not have a pronounced spike at lag 1 (Figure 8.4j).  Therefore,  an AR model
may be suitable.  The first coefficient ( ) may suffice for the first difference.  $Φ1

The third type of function is represented by sulfate which appears to show a trend as well as
some irregularities (Acf in Figure 8.4k).  Before the irregularities can be evaluated the strong
spike in the Pacf at lag 1 must be reduced (Figure 8.4l).

Figure 8.4a: Autocorrelation Function of Flow
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Figure 8.4b: Autocorrelation Function of Iron

Figure 8.4c: Partial Autocorrelation Function of Iron
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Figure 8.4d: Autocorrelation Function of Aluminum

Figure 8.4e: Partial Autocorrelation Function of Aluminum
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Figure 8.4f: Autocorrelation Function of Intervals

Figure 8.4g: Autocorrelation Function of pH
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Figure 8.4h: Partial Autorcorrelation Function of pH

Figure 8.4i: Autocorrelation Function of Manganese
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Figure 8.4j: Partial Autocorrelation Function of Manganese

Figure 8.4k: Autocorrelation Function of Sulfate
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Figure 8.4l: Partial Autocorrelation Function of Sulfate

Model Fitting to Selected Variables

Since many of the parameters show similar types of variation in terms of their Acf and Pacf
representations, only some parameters were submitted to full time series analysis.  The outcomes
are summarized in Tables 8.8 and 8.9.  Table 8.8 summarizes the tests performed on each model
fitted to each parameter.  Table 8.9 presents the models as equations relating values at time t to
previous values of the parameters or its associated shock term (random error term, i.e., at-1).  

There are only 107 observations of flow, and although first differences are indicated by the steep
and steady decline of the Acf and the single large spike at lag 1 in the Pacf, it was decided to try
an AR (1) model to determine whether the AR coefficient was an adequate proxy for the first$Φ1

difference.  When an AR (1) was fitted to this variable, both and the mean were independent$Φ1

(see r = 0 in No. 1, Table 8.8).  The chi-squared value has a probability between 0.20 and 0.10 of
not being different from white noise.  There were many spikes left in the Acf of the residuals but
an AR (1) would suffice as a first approximation.  It seems likely that the MA (0,1,1) would be a
superior model.

Two models were fitted to the variation in pH.  The first was an AR (1,0,0) model.  While
parameter estimates were independent (r = 0, No. 2. Table 8.8), the chi-square of the Acf of the
residuals was significantly different from white noise.  There was only one significant spike at
lag 3.  The second model was an AR (1,1,1) which could more adequately represent variation in
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pH.  The AR and MA coefficients were not, however, independent (r = 0.64, No. 3 in Table 8.8). 
The residual Acf yielded a chi-square value that is not significantly different from that of white
noise.  This model is indeed adequate to represent the series and there were no significant spikes
in the Acf or Pacf of the residuals.  The residual standard deviation showed a small improvement
over the original standard deviation of the series (0.140 and 0.139 versus 0.151, see Table 8.8).  

Table 8.8:  Tests of the Different Models for Each Parameter
Standard Deviation

N Parameter Model ra Chi-sq d.f. P Spike Resid. Original

1. Flow AR (1,0,0) 0 29.16 22 0.20 > P > 0.10 many 630.43 931.14

2. pH AR (1,0,0) 0 34.85 22 0.05 > P > 0.02 1@3 0.140 0.151

3. pH AR/MA (1,1,1) 0.64 25.11 22 0.30 > P > 0.20 none 0.139

4. Iron MA (0,1,1) 0 17.17 23 0.90 > P > 0.80 none 8.069 13.026

5. Iron AR (1,1,0) 0 27.68 23 0.30 > P > 0.20 1@2 8.349

6. Mn MA (0,0,1) 0 38.27 26 0.02 > P > 0.01 1@2 0.902 0.835

7. Mn AR (1,0,0) 0 28.44 22 0.20 > P > 0.10 1@2 0.875

8. Mn MA (0,1,1) 0 30.79 23 0.20 > P > 0.10 1@10 0.721

9. SO4 MA (0,1,1) 0 41.05 23 0.02 > P > 0.01 @3,6,9,12 33.01 44.85

10 SO4 AR (1,0,0) 0 108.09 22 <0.001 @1,2,3+ 36.96

11 SO4 AR (1,0,0) [3]b 89.70 23 <0.001 many 46.90

12 SO4 AR (1,1,0)  88c 32.72 21 0.05 > P > 0.02 @6.9 32.83

13 SO4 AR (2,1,1) > 0.7d 32.85 21 0.05 > P > 0.02 @6,9,12 32.72 44.85

a.  Correlation among the parameter estimates.

b.  This [3] = a seasonal @ lag 3.

c.  r12 = 0.88; r13 =0.4; r23 = -0.24

d.  All coefficients highly positively correlated (i.e., redundant). >0.7

Acidity was considered to be sufficiently similar to pH and for this reason, not require any
special testing from the Acf and Pacf of the original series.  From the Acf and Pacf and from
previous model fitting, an AR (1,1,1) or the MA (0,1,1) would be likely to adequately represent
this variable.

Iron showed the same steep decline as flow as well as the same large spike at lag 1 in the Pacf. 
For this reason, two models were fitted to variation in this parameter.  The MA (0,1,1) easily met
all tests (see No. 4 in Table 8.8) and is an adequate representative model.  The AR (1,1,0) met
most of the tests, but not as successfully (see probability for chi-square, No. 5, Table 8.8).  There
also remained a significant spike at lag 2 in both the Acf and Pacf of the residuals from fitting
the AR model.  There was a large reduction in the standard deviation compared with its value in
regards to the original series (see No. 4, Table 8.8).  Ferrous iron was not analyzed because it
resembled total iron so closely that similar results would be expected. 
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Manganese appears to possess a mixture of the characteristics of iron and pH in its Acf and Pacf. 
For this reason, three models were tried.  The simple MA (0,0,1) was not adequate in terms of
the chi-square value of the Acf of the residuals (No. 6, Table 8.8).  It also possessed a significant
spike at lag 2.  When a simple AR (1,0,0) model was used, the chi-square of the residuals was
not significantly different from that of white noise and the standard deviation of the residuals
was reduced from that of the simple MA.  There was still a significant spike at lag 2 in both the
Acf and Pacf of the residuals.

As a check, a simple MA (0,0,1) was fitted to the first differences of manganese (i.e., an MA
(0,1,1)).  The results were similar, although the spike at lag 2 disappeared and a weak spike
appeared at lag 10.  This was determined to be too far along the Acf to be ignored.  The standard
deviation of the residuals was much improved 0.721 (No. 8, Table 8.8); over 76% improvement
over the original series (Table 8.1 wherein the standard deviation is 0.9498 from N = 107).

Sulfate also showed a mixture of types in its Acf and Pacf and for this reason, was explored at
greater length; first the MA (0,1,1) was fitted because this model appears to fit many cases in
previous reports.  The chi-square of the residuals was significantly different from that of white
noise.  There were many spikes in the Acf and Pacf at lags 3, 6, 9, and 12 implying a seasonal
repetition.  Next, an AR (1,0,0) was fitted to see how much of the trend shown by the large spike
at lag 1 in the Pacf, could be reduced (No. 10, Table 8.8).  The chi-square value was very large
(P<<0.001) and there were many spikes at various lags in the Acf and Pacf of the residuals.

The next model applied was an AR (1,0,0) with a seasonal three term.  This model proved
ineffective because the chi-square value of the residuals remained very large (probability
<<0.001 see No. 11, Table 8.8).  The next step was to apply AR (1,1,0) with a seasonal AR of
lag 2.  Lag 2 of the first differences is equivalent to lag 3 in the original series (No. 12 in Table
8.8).  This result was a strong improvement in the value of chi-square, but was still significantly
different from that of white noise (0.05>P>0.02); the Acf and Pacf possessed spikes at lags 6 and
9. Finally, an AR (2,1,1) was applied and all the coefficients ( , , ) were highly$Φ1 $Φ 2 $Φ 3

correlated and showed strong redundancies (No. 13, Table 8.8).  The chi-square was essentially
the same as in the previous model and possessed significantly large spikes at 6, 9 and 12.

It is important at this stage, to examine what the results of these models mean in terms of
equations.  When a suitable model is found, the coefficients should have some implications of
substantive value.  In most cases, a simple model possessing an equation that is easy to interpret
is adequate.  An AR (1,0,0) such as that for flow or pH is an example.  As the models become
more complicated, interpretation of the equations becomes more difficult.  Unless there are
definite reasons that a more comprehensive model would be appropriate, it is prudent to use a
reasonably simple model.

The equations for the models used in Table 8.8 are summarized in Table 8.9.   The first eleven 
equations are relatively simple.  The last two equations, however, are obviously complicated,
and  it was decided to stop the analysis at this stage.  It is suspected that the simple AR or MA
models of the first differences are sufficient to represent most of the parameters.  However, a
seasonal model of some kind is required for sulfate.  From the Acf and Pacf of the original
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series, an AR model of first differences is likely to be most parsimonious.  It will require an
additional seasonal term (possibly an AR at lag 3) to remove the remaining significant spikes.

Table 8.9: Model Equations for the Variables (see Table 8.8)

No. Variable Equation

1. Flow AR(1) Zt = 0.742 Zt -1 + 1487.2 + at

2. pH AR (1) Zt = 0.372 Zt -1 + 3.235 + at

3. pH AR/MA (1,1,1) Zt = 1.121 Zt -1 -  0.121 Zt -2 - 0.808at -1

4. Iron MA (0,1,1) Zt = Zt -1 +at - 0.525at -1

5. Iron AR (1,1,0) Zt = .629 Zt -1 + 0.371t -2 + at 

6. Mn MA (0,0,1) Zt = 4.90 +at +.270 at -1

7. Mn AR (1,0,0) Zt= 0.404 Zt -1 + 4.913 + at

8. Mn MA (0,1,1) Zt = Zt -1 + at + 0.611 at -1

9. SO4 MA (0,1,1) Zt = Zt -1 + at + 0.725 at -1

10. SO4 AR (1,0,0) Zt = 0.550 Zt -1 + 296.9 + at

11. SO4 AR (1,0,0) Zt = 0.572 Zt -1 + at

12. SO4 AR (1,1,0) (2,0,0) Zt = 1.118 Zt -1 - 0.941 Zt -8 - 1.281 Zt -3 - 0.153zt-4 +at

13. SO4 AR/MA (2,1,1) Zt = 1.380 Zt -1 + .188 Zt -2 + .182 Zt -3+ at - 0.424 at -1

Summary

The first important characteristic of the variables from the Markson site is the lack of wide
variation except in the flow variable.  The second characteristic is the lack of any strong
relationships between pairs of variables.  The only high r values are the expected correlations
between iron and ferrous iron, flow and ferrous iron, and flow and iron.  The iron ferrous iron 
association is positive, whereas with flow, both are negative (i.e., high flows may lead to dilution
of iron).  The most striking feature of the time series graphs is the high flow over the period of
February 1986 to July 1986, particularly because the flow is in logs.  In general, this does not
show up in any other variable.  There are two very peculiar features which should be
emphasized.  First, there does not appear to be any reflection of this high flow event in most of
the other variables (iron and ferrous iron are exceptions); second, pH shows no relationship to
acidity or sulfate.

The most appropriate time series models require a first difference to remove any trend.  For
many cases, this may be adequately accomplished by an AR (1) term in the models.  The
residual, after fitting this kind of model, is a close approximation to white noise (i.e., random
variation).  The residual could, in most cases, be modeled fairly adequately by the usual MA
(0,1,1) moving average model.  This implies that once the trend is removed, the remaining
variation is similar to a random walk.  This could account for whatever relationships there are
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between the variables, and suggests that linear correlation is not adequate to evaluate the
relationships that do exist between the variables.  The trend could well be due to the extreme
event in the flow variable.

Sulfate however, does appear to show some possible indications of a seasonal pattern.  It seems
to possess some irregularities which go beyond the �random walk� type of residual.  A number
of models were tried in this case but none did any better than the MA.  Nevertheless, there were
many spikes in the Acf of the residual from the first differenced series at what appear to be
regular intervals of lags 3, 6, 9, and 12.  This implies a seasonal structure at three period
intervals (which is a four period interval in the original series).  The more complex models failed
one or more of the test criteria and rather than complicate the issue further, the analysis was
terminated.
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Chapter 9: Statistical Summary and Review of Quality Control Limits

Establishment of  baseline pollution loads for a coal remining permit requires proper sampling
and chemical analysis of pre-existing abandoned mine discharges, and the appropriate statistical
analysis of flow, water quality, and pollution load data.  The term �proper sampling�  is taken in
two contexts:  (1) collection and analysis of surface water and groundwater samples, including
field measurements of flow and water quality parameters, sample preservation, transportation
and storage, and chemical analyses, and  (2) collection of  a sufficient number of samples with
sampling period duration and intervals that adequately represent the variations in flow and water
quality  throughout the water year.   Abundant scientific literature exists on collection and
analytical procedures for water samples. Guidelines and protocols for water sample collection
from EPA, the U.S. Geological Survey (USGS) and other sources are compiled in Table 9.1, and
are discussed briefly in Chapter 1.  

Table 9.1: Guidance and Protocols For Water Sample Collection

#
Type of

Resource Title Source HTML 

1 Field
Procedures

National Field Manual for the
Collection of Water Quality Data

USGS http://h2o.usgs.gov/owq/Fieldproced
ures.html

2 Field
Operations

Manual

EMAP Surface Waters Field
Operations Manual for Lakes:
June, 1997 EPA/620/R-97/001

EPA http://www.epa.gov/emjulte/html/pu
bs/docs/surfwatr/97fopsman.htm

3 Monitoring
Guidance

Office of Water NEP Monitoring
Guidance EPA-842-B-92-004

EPA http://www.epa.gov/OWOW/estuarie
s/guidance/

4 Procedures Procedures for Handling and
Chemical Analysis of Sediment
and Water Samples.  EPA/CD-
81-1

EPA/ US
Army Corps

of
Engineers

http://www.epa.gov/owgwwtr1/info/
PubList/monitoring/docs/027.pdf

5 Protocols National Water-Quality
Assessment (NAWQA) Method
and Guideline Protocols

USGS http://wwwrvares.er.usgs.gov/nawqa
/protocols/doc_list.html

6 Sampling Ground Water Sampling
EPA: A Workshop Summary
Nov. 30- Dec. 2, 1993.
EPA/600/R-94/205

EPA http://www.epa.gov/swerust1/cat/gw
wkshop.pdf

7 Techniques Publications on Techniques of
Water Resource Investigations

USGS http://water.usgs.gov/owq/FieldMan
ual/chapter1/twri.html

8 Sample
Preservation

Fixing Water Samples Bureau of
Mines and Reclamation  ID#
562-3200-203 
May 1, 1997

EPA/
Bureau of

Mining and
Reclamation

http://www.dep.state.pa.us/dep/subje
ct/All_Final_Techinal_guidance/bmr

/562-3200-203.htm
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9 Sampling Quality-control design for
surface-water sampling in the
National Water-Quality
Assessment program (USGS
Open File Report 97-223)

USGS http://wwwrvares.er.usgs.gov/nawqa
/protocols/doc_list.html

10 Sampling Ground-Water Data-Collection
Protocols and Procedures for the
National Water-Quality
Assessment Program: Collection
and Documentation of Water-
Quality Samples and Related
Data (USGS Open-File Report
95-399)

USGS http://wwwrvares.er.usgs.gov/nawqa
/protocols/doc_list.html

11 Sampling Field Guide to Collecting and
processing samples of stream-
water samples for the National-
Water Quality Assessment
program (USGS Open File
Report 94-458)

USGS http://wwwrvares.er.usgs.gov/nawqa
/protocols/doc_list.html

Most of this report and EPA�s Coal Remining Statistical Support Document (EPA-821-B-00-
001) are devoted to discussion of the second context (sample period duration and interval) of
proper sampling of pre-existing discharges and to the associated statistical analyses of the
sample data. 

The baseline pollution load is essentially a statistical summary of a data set generally consisting
of 12 or more samples collected prior to issuance of a remining permit.  Chapter 2 of this report
provides an overview and explanation of exploratory and confirmatory statistical methods that
may be used in establishing the baseline pollution load.  The fundamentals of univariate,
bivariate, multivariate, and time-series statistical analyses also are outlined in Chapter 2.  The
algorithm for analysis of mine drainage discharge data (see Figure 3.1) developed in 1987 by Dr.
J.C. Griffiths and other authors of this report is described step by step in Chapter 3, and also is
included in Chapter 1 of the Coal Remining Statistical Support Document.  This algorithm was
used in conducting the univariate, bivariate and time series analyses of the six relatively long
term mine drainage data sets described in Chapters 4 through 8 and Appendices A through F of
this report.  Chapter 5 of the Coal Remining Statistical Support Document contains an additional
10-20 years of data on some of these six sites including data collected prior to, during, and post-
remining.

The sampling plan, data collection/organization and statistical analysis components of
establishing the baseline pollution load should be integrated in a continuous process.  In general,
abandoned mine discharges flow continuously, thus, it should not be difficult to collect an
adequate number of samples.  However, these discharges frequently exhibit significant variations
in flow and water quality, and logistical problems may be encountered in attempting to capture
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the full range and distribution of seasonal variations.  Ideally, there are no missing data, and a
sufficient number of samples are collected throughout the water year, at equal sampling intervals
that are small enough to capture the range of natural seasonal variations.  Continuous flow
recorders and automated water quality samplers may be part of that ideal world, but they are
rarely available or justifiable for use in remining permitting activities.  Typically in routine
remining permit sampling, adjustments must be made in data organization and analysis to
account for missing data, unequal sampling intervals, data that are not normally distributed or
that lack expression of the true extremes, and other problems.

This chapter summarizes the findings of the statistical analyses of abandoned mine discharge
data contained in Chapters 4 through 8 and Appendices A through F of this report.  This
summary includes examples of sampling plans, data organization, univariate analysis, bivariate
analysis and time series analysis, with emphasis on the practical applications of the time series. 
The chapter concludes with a review of the use of quality control limits for establishing and
monitoring baseline pollution load at remining sites.

Sampling

The sampling plan is critical in all statistical studies and is one of the most difficult problems to
resolve.  One problem is the usual compromise between the samples one would like to collect
and the cost of collecting them.  From a research point of view, to perform a time series analysis
that correctly models the variation of a parameter (e.g.,  flow), it is necessary to obtain
observations over several years so that the model becomes truly representative.  Such large
collections of data are rare and the six long term data sets presented in this report are both
atypical and best-case scenarios.  

Another requirement that is critical for time series analysis is that the samples should be
collected at equal time intervals.  This criterion is almost impossible to achieve in routine
sampling  practice.  For example, when an extreme event occurs, it is usually for at most a few
days, and the common sampling intervals of one week, two weeks, or one month could easily
miss the event.  Secondly, if the event is a heavy snowfall or a flood, it may be physically
impossible to access the sample location.  The data analyzed for the studies presented in this
report address these problems and other causes of unequal intervals and missing or erroneous
data (e.g., loss of sample, incorrect data entry).

It is advisable to establish a sampling plan that recognizes these difficulties.  It is also essential
to examine the data in detail, as described in the earlier chapters of this report.  It should be
recognized that because of the nature of a typical data set, a rigorous statistical analysis must not
be taken too far; one must compromise by being as accurate as possible without requiring
impossible precision.  (It is, theoretically, always possible to measure the degree of precision by
replicate sampling although, in practice, replicate sampling may be too costly).  The following
guidelines are, therefore, a compromise and are presented as recommended guidelines only.  

Sampling should be representative, cover a period of at least one year, and include both high and
low flow periods within that year.  Suppose 12 samples are taken at a rate of one per month for a
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year.  This scenario may not adequately represent baseline conditions because local extreme
storm events typically occur within a few days and can result in a great range in variability
between monthly samples.  Extreme events are often missed with this sampling arrangement. 

One recommendation for representative sample collection within the Appalachian Basin would
be to use stratified sampling; divide the year into three periods of about equal length, arranged to
cover high and low flow periods as follows:

January � March April � June September � November 

high flow intermediate flow low flow

90 days 
(91 days during leap year)

91 days       91 days

The months of July, August, and December are eliminated from this recommended scenario
because these months typically don�t include extremes and include events covered during the
other three periods.  Taking one sample every 15 days within each of the three intervals would
equal a total of 18 samples.  Of course, to determine initial baseline pollution loading, it is
preferable to increase the number of sample intervals and to extend the sampling period for more
than a single year.

Data Preparation and Organization 

It is always advisable to examine raw data before submitting it to analysis.  The presence of
unusual values and missing data usually require some kind of action.  These and other features of
the data set are best examined by graphical procedure.  A graph of discharge or log discharge in
gallons per minute versus days can be very helpful in identifying data gaps and unusual values
(e.g., Figure 9.1).
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Figure 9.1: Example Graph Log Discharge versus Days (Also Figure 4.2)

Figure 9.1 can be used to observe two kinds of information: 

1) Missing values.  The distribution of missing values is critical to more sophisticated analysis
(particularly, time series).  In general, a few missing values are not very serious, but if there
are many and if they occur in clusters (Figure 9.1), the omissions may make further analysis
very inexact.  

 
Missing values frequently occur during extreme events because during these events, sample
sites are difficult to access.  Sometimes, if the missing values are few and widely distributed,
they may be replaced by the means (if the frequency distribution of the data is reasonably
symmetrical), or by the median (if the frequency distribution of data is extremely skewed).

In Chapters 7 and 8, a frequency distribution of the first differences between days of
observation was constructed. Once constructed, both the number and the concentration
density of missing observations was clearly displayed as the frequency of intervals of
different lengths between observations.  The variation for the Fisher site is from one day
(difference = 0) to an interval of 104.  The mean (26.7 days) is very nearly equal to the
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median (26.5 days), thus, the distribution is roughly symmetrical around the expected
sampling interval of 28 days.  The central 50 percent of the distribution (Q1 � Q3) lies
between 12.3 and 33 days.  The most serious discrepancies are, however, that there are five
observations between 70 and 104 days (four of these are 90 days or more).  These large gaps
in the data preclude rigorous time series analysis which requires a very close approximation
to equal intervals between observations.  

2) Extreme Values.  The second kind of preliminary observation is to examine the data for
extreme values (usually on the high side).  Again, the distribution of extremes is important. 
Prior to examination of this data, it was believed that extreme flows would occur at regular
seasonal intervals, for example, during the Spring melt.  However, examination of the data
presented in Figure 4.2 shows that extreme events were spread over periods from February to
April (for Spring melts) and from May through June (for intense summer rains, often as
thunderstorms).  These wide spreads of extreme events, together with missing data (which
often occurred during extreme events), made it very difficult to detect any expected true
seasonal effects.  

One further point concerning extremes, is the fact that these extremes tend to introduce
strong skewness (asymmetry) into the frequency distribution.  This skewness is usually
positive (i.e., extreme values are at the high end of the data distribution).  It is conventional
to apply a transformation to reduce this skewness, and logarithmic transformation is usually
the most effective.  It is sometimes questionable, however, to what extent the effects of
extreme events should be suppressed if at all.  Thus, it is prudent to examine the raw data
very carefully to decide whether transformation is appropriate.   

Another effect of expressing variables in logs instead of concentration is shown in Figure
4.8, where manganese (mg/L) is plotted against log transformed discharge (cubic feet per
second, cfs).  There is an obvious linear association between the two variables.  If discharge
is expressed arithmetically in cfs (see Figure 4.9), the association is curvilinear.  However,
there is still a strong association between the variables.  Note also that there are several
outliers that appear to deviate from the trend.  Expression of the log transformed data tends
to suppress the effects of extreme outliers.

Univariate Analysis

The main features of the univariate statistical analyses described in Chapters 4 through 8 are the
frequency distributions of the water quality parameters and flow measurement data, and the
tables of summary statistics (e.g., Tables 4.1, 5.1, 6.1, 7.2, and 8.2).  These tables typically
include the following summary statistics:  number of observations (N), number of missing
observations (N*), mean, median, 10 % trimmed mean, standard deviation, standard error of the
mean, minimum and maximum values (i.e., range) and quartiles.  Several of these summary
statistics are included in Table 1.2a of EPA�s Coal Remining Statistical Support Document and
are incorporated as conditions of remining permits (i.e., median, range, and quartiles).
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An additional statistic, the coefficient of variation (CV) is included in the tables in Chapters 4-8. 
The coefficient of variation, usually expressed in percent (CV%), is defined as the ratio of the
standard deviation to the mean multiplied by 100.  This is a useful approximate guide to the
degree of variation in a parameter.  In general, a CV < 30% represents a stable, in control
variable.  In Chapters 4 through 8, most of the parameters showed much larger variation,
principally because of the effects of extreme events.  Use of the coefficient of variation with log
transformed data may result in extreme distortion because the transformation leads to a mean of
small value, resulting in a divisor of the ratio that is small and thus a CV that is inflated.  

In Chapters 4 through 8, the frequency distributions of many water quality and pollution load
variables were found to be normally distributed, or at least symmetrically distributed, around a
value of central tendency (see for example, Figures 4.5 and 8.1e).  Numerous other variables had
frequency distributions that exhibited positive skewness.  In Figure 5.3a, for example, there are
two single observations for discharge at 50 and 80-85 gallons per minute which represent
extreme events in flow. These values introduce a strong positive skewness in the histogram
towards high values.  In Figure 5.3b, discharge is transformed to log flow and the skewness is
now towards the negative side (i.e., the transformation has over-corrected for positive skewness). 
In such cases, it is best not to log transform the data.  Acidity (mg/L, Figure 5.4a) is somewhat
symmetrical and, as would be expected, log transformation introduces a strong negative
skewness (Figure 5.4b).  Again, no transformation should be used. 

It is possible of course, to use a less pronounced transformation (such as the square root of the
variable) that may avoid the over-correction that can result from logarithmic transformation. 
The use of various transformations is reviewed by Tukey (1977, Chapter 3), Velleman and
Hoaglin (1981, p. 46-49), and Box and Cox (1964).  

Bivariate Analysis

Bivariate analysis is used to examine the relationship between pairs of variables.  One expects,
for example, pH and acidity or sulfate to be inversely related (as acidity increases pH declines). 
In the case of calcium and manganese, on the other hand, one expects positive correlation (both
either increase or decrease together).  The correlation coefficient (r) is used to represent the
(linear) relationship between any pair of variables.  The coefficient of determination (r2),
however, is a better measure of the intensity of the association between a pair of variables.  For
example, an r = 0.7 seems large because the range of r is from �1 to +1.  However, r = 0.7 means
that r2 = 0.49, or that there is 49% in common between the two variables, with 51% of the
variation �unexplained� by the association.  For example, it would be necessary to have an r >
0.8 (i.e., > 64% in common) to claim that a strong association exists.  (See Chapter 8 for
additional discussion)

Another feature that can be evaluated using r and r2 is the statistical test that accompanies a
specific value of r.  For example, the probability statement that for a sample size of N = 174 (see
Chapter 6), a value of r > 0.124 is significantly different from zero at the 5 percent probability
level, should be accompanied by the corresponding value of r2.  In Table 6.3, the correlation
coefficient between pH and acidity (r = -0.365) comfortably exceeds the r (+/-) 0.124, thus, it is



Chapter 9

9-8

statistically significant.  Nevertheless, the corresponding r2 = 0.133 indicates that only 13.3% of
the variation is common to both variables. 

Bivariate analysis of the Ernest site data also showed a strong association between all pairs of
the load variables (r2 > 80%, see Figures 6.5a, b, and c).  This clearly suggests that because
discharge is used as a common factor in converting concentration to load, it tends to overwhelm
the relationships among the other variables.  This problem with pollution load variables also was
detected in the analysis of data from the other sites described in Chapters 4 through 8.  

In Figures 6.5a and 6.5c, the variation between the parameters increases as their values increase. 
This phenomenon is called heteroscedasticity and, in general, it is advisable to plot the logs of
the values to make them homoscedastic.  Since heteroscedastic parameters show a difference in
variability with change in values, no probability statement should be made without
transformation to make the variables homoscedastic.  Peculiarly, the change from
heteroscedasticity to homoscedasticity does not lead to a major change in the value of r. 
However, it does make the probability statements more reliable.  

One more avenue was explored during bivariate analyses in Chapters 4 through 8, and that was
to determine whether there is any lag in association between parameter pairs.  The cross-
correlation function is used for this purpose.  The cross-correlation function calculates the linear
association between observations 0 to t days apart, and thus gives an indication of when the
association is strongest.  The range of t is from �{  +10} to { +10}, where N is theN N
number of observations in the series.  For example, if an event occurs that affects one parameter
immediately and affects another parameter five observations later, the linear correlation
coefficient may be quite low at zero lag but may show a strong association after a five day lag.  

Bivariate statistical analysis of data from the Fisher site (Chapter 7) can be used as an example
of the use of the cross-correlation function.  The correlation coefficients of zero order for each
pair of variables are given in Table 7.3.  The zero order value of r = 0.663 for acid versus iron
was the highest correlation between any of the water quality parameters.  The zero order
correlation coefficient for iron and manganese is r = 0.396, and this is the maximum value.  The
maximum correlation coefficients and corresponding lag values from the cross-correlation
functions are summarized in Table 7.4. Few are meaningful, and most are barely significant. 
This indicates that the degree of association was correctly represented for these variables by their
conventional zero order correlation coefficients (Table 7.3).

Time Series Analysis

There are two fundamental aspects to the time series analyses described in Chapters 4 through 8
and Appendix A:

1) use of a simple time series plot of the data for a particular water quality or flow variable,
with or without quality control limits, to assist in evaluating patterns of variation through
time (essentially an exploratory data analysis step), and
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2) application of the full Box-Jenkins time series analysis and model building procedures (see
Figure 9.2).  

Figure 9.2: Flow Chart for Box-Jenkins Time Series Analysis
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Time series analysis begins with a plot of the observations against time (days or dates).  This plot
is a simple outcome and can give helpful guidance to the type of time series that is represented
by the variation in the data.  Furthermore, the quality control limits, either some suitable multiple
of (2 or 3 times) the standard deviation or, in this report, a non-parametric substitute for the
standard deviation (e.g., confidence intervals around the median):

= Md ± 1.96 [1.25 R / (1.35 ]′N
Where, R = the Interquartile Range (after McGill, R., et al., 1978).

With this application, outliers plotting beyond the confidence limits are easily seen, and the
arrangement of the outliers may be either irregular (occurring as unique individuals) or
systematic (e.g., periodic).  Examples are given in Figure(s) 8.3.

When the plotting procedure is complete, analysis may continue using standard Box-Jenkins
Time Series modeling.  There is also an exhaustive Box-Jenkins procedure may be applied if
there is a suitable computer package available.  The main advantage of the exhaustive Box-
Jenkins analysis is that very thorough testing may be performed as an automatic procedure at
each stage in the analysis.  The exhaustive procedure is described in many textbooks (e.g., Box
and Jenkins, 1970, Nelson, 1973, and Vandaele, 1983) and the package of computer programs
for pursuing the step by step analysis is also readily available in many computer systems
programs (e.g., Dixon�s BMDP Manuals (after 1980)).  

A flow chart for Box-Jenkins time series analysis is provided in Figure 9.1. The first step is to
identify a tentative model and to improve on the model by iteration through the procedure, until
a more satisfactory model is found.  The global model is called an ARIMA model or an
Autoregressive Integrated Moving Average Model.  This family of models may be summarized
for convenience as an AR (autoregressive) or MA (moving average) model.  A back-operator is
defined as Bzt = zt-1 where zt is the set of observations taken at various equally-spaced values of t
(time).  An autoregressive model may be represented as AR (1,0,0) which stands for an
autoregressive model of order (1) with no differences (0) and no moving average terms (0); an
analogous series is the MA (0,0,1).  This permits extensions to AR (2), ARI (2,1,0) etc. and
similarly for the MA models MA (2), IMA (0,1,2) etc.  Seasonal models may be included as, for
example, an ARIMA (1,1,1) (1,0,1), which represents a first order ARIMA model, together with
first order seasonal autoregressive and moving average terms (Box and Jenkins, 1970, p. 322).

The basis for identification of a suitable model is the autocorrelation function (Acf) and the
partial autocorrelation function (Pacf) of the observations.  It is assumed that the series is
stationary (i.e., the observations are free of trend).  If a trend is present, it is typical to take first
differences of the observations and to analyze zt �1 instead of zt.  In practice, it is rare to require 
second differences, but they are available if needed.  This is where the back-operator (Bzt = zt �1)
is useful and is why a differenced series is called integrated.  The form of the Acf and Pacf is
usually adequate to determine an appropriate model and one may then proceed to the estimation
stage.  
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The variables flow, acidity and acid-load from the Ernest Refuse Pile data were chosen as
examples of the use of Acf and Pacf in selecting a preliminary model.  Flow shows a steady,
almost straight line decline in Acf values over the first 15 lags, implying the presence of a strong
trend (Figure 6.8c).  This is confirmed by the corresponding Pacf which consists of a large
overwhelming spike at lag 1 (Figure 6.8d).  It is advisable to take first differences to remove the
effect of the trend.  After differencing, a first order MA (0,1,1) fits the series adequately.

The Acf for variation in log transformed acidity is entirely different in appearance, possesses at
least three significant peaks at lags 1, 2, 3, and is otherwise reasonably featureless (Figure 6.8e). 
The corresponding Pacf shows only two spikes at lags 1 and 2 (Figure 6.8f).  An MA (0,1,2)
model was tried and found to be over-identified (i.e., possessed too many coefficients).  For this
reason an MA (0,0,2) was fitted and found adequate.  

When log transformed acid-load was examined, the Acf and Pacf were almost identical to their
equivalents for flow (compare Figures 6.8 c and d with 6.8 g and h).  There is little doubt that
flow dominates the variation when the variable is converted from concentration to load using
flow as the divisor.  

After complete analysis using a variety of models, it was concluded that the first order MA
(0,1,1) was the most parsimonious and appropriate model for the Ernest site, and showed no
significant departures from what was expected after stringent testing.  The form of the equation
is:  zt = at � 0.247 a t�1 with the coefficient  being from log acid load.$θ

The Markson site data presented in Chapter 8 and Appendix F provides the best example of the
full range of the Box-Jenkins time series analysis.  The steps in the analytical procedure shown
in Figure 9.1 are followed using sulfate data because it was one of the few parameters where a
seasonal component appeared to be present (although never finally identified).

Identification of a tentative model was made through the Acf and Pacf of sulfate in Figures 8.4k
and 8.4l.  The MA (0,1,1) was chosen as a starting model because the Pacf had a single large
spike (Figure 8.4l) and because this model was, in general, the most suitable for many other
parameters at different sites.  It was then necessary to test the residuals (i.e., the deviations of
observed values from those of the fitted model).  The Acf of the residuals yielded a chi-square of
41.05 with 23 degrees of freedom leading to a probability that a chi-square value as high as the
one observed arising from white noise equals 0.01<P<0.02.  In other words, the chi-square is too
large to be acceptable.  The Acf of the residuals is summarized in Table 9.1.  It can be seen that
significant spikes occur at lags 3, 6, 9 (i.e., in a possible periodic recurrence usually shown by a
seasonal type model).  The interval of three observations in the first differences is likely to
represent four in the original data, thus, the intervals are four weeks apart.  If a difference of the
residual is taken, the chi-square equals 145.93 with 23 degrees of freedom.  Hence, the series is
now over-differenced and only the differences of the initial series are required.
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Table 9.2: Acf of the Residuals from Fitting an MA Model to the Original Observations
After Taking a First Difference: SO4

Lags 1-8 -0.07 0.04 0.13 0.02 -0.01 -0.12 0.00 0.01

Standard Error 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.07

Lags 9-16 -0.17 -0.03 -0.12 0.10 -0.07 0.01 0.05 -0.01

Standard Error 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
Mean = -1.972; Standard Error = 2.076; N = 252
* Spikes beyond the 16th lag unlikely to be real.  Chi-square = 41.05; 0.01<P<0.02; degrees of freedom =
23

The Pacf is also listed in Table 9.2 and the significant peaks (i.e., those beyond twice their
standard error) are at 3, 6, 9, and 11 or 12.  This again suggests a seasonal model.  It should be
noted that these spikes only slightly exceed their standard error thus, the seasonal effect, if
present, is weak.

Table 9.3: Pacf of the Residuals from Fitting an MA Model to the Original
Observations After Taking a First Difference: SO4

Lags 1-8 -0.07 0.03 0.14 0.04 -0.02 -0.14 -0.03 0.03

Lags 9-16 -0.13 -0.05 -0.13 0.12 -0.03 0.03 -0.01 -0.02

2 Standard Error = 2 [1/ ] = 2(0.063) = 0.126.252

Examination of the residuals plotted against the date of observation shows no clear pattern of
deviation.  As can be seen in table 9.3, the significant residuals are arranged irregularly and
occur prior to the 130th observation (out of 253 observations).

Table 9.4: Arrangement of Significant Deviations of the Residuals 
(> 2 Standard Error = 66.02)

Observation Numbers of Significant Residuals 

< Expected > Expected

33 45

80 87 , 90

104 103

122 121
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Continuing with model fitting and diagnostic testing, the next step is to examine the estimators
of the parameters.  For an IMA (0,1,1), there are two estimators: the coefficient of the noise term 
at-1 (  = 0.725), and the overall residual standard deviation.  Calculated 95% confidence limits$θ
for  are 0.639 and 0.811, clearly confirming that the coefficient is real because the interval doesθ
not contain 0 or 1. 

A number of potentially appropriate models were fitted to see if a suitable model could be found.
The results of model fitting for the Markson site data are summarized at the bottom of Table
8.8).  The best candidate was the IMA (0,1,1).  All other models had notable failures of one or
more diagnostic tests.  This outcome implies that the first differences (zt-1) of the original
observations (zt) represent a random walk.  The seasonal effect appears to be too weak to show a
positive response.

With the exception of the final step (forcasting or predicting future values), the time series
examples from the Ernest and Markson sites discussed above provide a summary of the Box-
Jenkins procedures listed in Figure 9.1.  The last step was attempted using all the data sets
presented in this report without great success.  Results of this attempt using the Clarion site
sulfate data are presented in Chapter 5.  The reasons for this, described below, are characteristic
of the six abandoned mine drainage data sets analyzed in this report.

Given the model, it is necessary to estimate the parameters for best fit.  Diagnostics are applied
to determine if the model is adequate and may also be used to compare different models to select
the most appropriate.  Finally, predictions or forecasts may be made of future values based on
the selected model.  This last step was shown to be of little value because extreme events inflated
the confidence limits around the forecasts and thus, were not useful.  There are many alternative
extensions of the analytical time series procedure that can be followed, but because of extreme
events, and because of difficulties with missing data and unequal values of t, it was considered
imprudent to pursue the analysis further. 

Quality Control Limits

The main objective of this study was to perform a statistical analysis (i.e., univariate, bivariate,
and time series analyses) of numerous, long term abandoned mine drainage data sets in order to
provide the foundation for developing and implementing a simple quality control approach for
routine baseline pollution load analyses for remining permits.  The six data sets included in
Chapters 4 through 8 and Appendixes A through F of this report contain a greater number of
samples (N) for a longer duration (and in some cases a tighter sampling interval) than typical
remining permit baseline pollution load data sets.  In addition, the statistical analyses in these
chapters are more rigorous and exhaustive (see Figure 3.1) than intended for routine use in
remining permits.  However, much was learned from the statistical analyses of these six data sets
(particularly the time series analyses) that can be applied to the use of quality control limits in
establishing baseline pollution load and monitoring variations in the pollution load.   
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Two examples of the many variables in the six data sets are illustrated in Figures 8.3.  Figure
8.3c indicates a variation in sulfate from the Markson site over a period of 253 days.  Variation
in total iron is shown over the same period in Figure 8.3d.  As a guide to this �long range�
variation, quality control limits are inserted in both graphs.  One set of those limits consists of
the conventional mean ( ) and the range between plus and minus two standard deviations (±2X

).  The second set is calculated around the median (Md) and Tukey�s recommended non-$σ
parametric limits:

Md  ±  1.96 [1.25 R / {1.35 ( )}]′N

Where, R (H-Spread) = the interquartile (Q3 � Q1) range (described in McGill et al., 1978 and
Velleman and Hoaglin, 1981, p. 79).

In Figure 8.3c, the sample size for the sigma limits ( ) is one.  However, for the non-′N
parametric limits, the sample size is 12.  Thus, the denominator becomes 1.35 x  = 1.35′N

x  = 4.677.  These quality control limits are equivalent to confidence limits and are in12
common use in manufacturing.  Quality control is maintained by choosing a sample size of, say
4, and then calculating the confidence limits around the mean of samples of size 4 which are

reduced from the single sample case by the  = 1/2.  This is, in turn, based on the
1
4

relationship between the standard deviation of a single observation and the standard deviation of
a mean with sample size 4 (i.e., the standard error of the  mean, as  follows (Griffiths,$σx $σx
1967, p.22):

 = / $σx $σ ′N

Where, = the standard error of the mean.$σx

By increasing the sample size, the confidence belts may be reduced to any desired (or affordable)
limits.  While this relationship holds, strictly speaking, only for a normal distribution, it is
approximately true for nearly all symmetrical distributions and is substantially true for moderate
departures in skewness or kurtosis.

A further series of options may be tailored to the particular problem at hand by adjusting the
width of the confidence limits.  In the examples discussed thus far, the limits were at the 95
percent probability level.  In other words, using the range of two standard deviations, we include
95 out of every 100 observations and only 5 are expected to fall outside these limits.  The same
feature is approximately true of the non-parametric range.  This range may be widened to 3
standard deviations, in which case about 3 observations in 1000 are expected outside the quality
control limits.  



Statistical Analysis of Abandoned Mine Drainage in the Assessment of Pollution Load

9-15

In Figure 8.3c for sulfate, the two standard deviation limits emphasize the nature of the variation. 
Variation in sulfate starts out above the mean and above the upper confidence belt, but gradually
declines with time until beyond observation number 135.  Beyond observation 135, variation
tends to remain within the confidence belts, and after the 230th observation, variation remains
around the lower confidence belts.  The quality control limits help to indicate this gradual
decline despite the wide variation.  The first 35 observations are persistently above the upper
quality control limit, implying that some treatment of the discharge is necessary.  Departures
such as the 80th and 105th observations, on the other hand, are isolated events and no action is
required.

The same features appear in the graph of total iron (Figure 8.3d).  The earlier observations (to
about 80) are mostly above the mean and around the upper quality control level.  From 80
onwards, variation remains below the mean and is lowest beyond the 230th observation.  In both
graphs, there are some large gaps of missing observations.

In setting up baselines, and in subsequently using the baselines to judge the variation in any
particular parameter, the sample size is always one so that only the conventional spread of two
standard deviations and the equivalent spread measured by the interquartiles around the median
are relevant.  In this case the relationship:  Md ± [1.96 {1.25 R / (1.35 }] with   = 1′N ′N
reduces to Md ± (1.815R) and the calculations for sulfate and total iron are outlined in Table 8-7.

These calculations are presented to show the orders of magnitude of the different quality control
limits.  The rather large difference in the spreads around the mean and the median for ferrous
iron (Tables 8.6 and 8.7), is essentially due to the strong negative skewness of the logs of ferrous
iron.  This example clearly shows that the non-parametric spread around the median is more
suitable for these data.  Little is lost if the distribution is symmetrical and much is gained if the
data are either positively or negatively skewed.

Conclusions

The main objective of this study was to perform a statistical analysis (i.e., using univariate,
bivariate, and time series approaches) of numerous, long term abandoned mine drainage data sets
in order to provide the foundation for developing and implementing a simple quality control
approach for routine baseline pollution load analyses for remining permits.

Sample Collection

Establishment of baseline pollution loads for a coal remining permit requires proper sampling
and chemical analysis of pre-existing abandoned mine discharges, and the appropriate statistical
analysis of flow, water quality, and pollution load data. 
� The term proper sampling means the collection of a sufficient number of samples for a

duration and at approximately constant intervals that adequately represent the variations in
flow and water quality throughout the water year.
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� Sampling should be representative, cover a period of at least one year, and include both high
and low flow periods within that year.

� One recommendation for representative sample collection within the Appalachian Basin
would be to use stratified sampling; divide the year into three periods of about equal length,
arranged to cover high and low flow periods.

Discharge Variability

These pre-existing discharges frequently exhibit significant variations in flow and water quality,
and logistical problems may be encountered in attempting to capture the full range and
distribution of seasonal variations.  There are two types of variation in pollution load that are of
interest in evaluating monitoring data during and after remining to determine whether the
variations are out of control compared to the established baseline conditions.
� The first and most obvious pattern of variation occurs when there are a series of extreme

events, which consistently exceed the upper control level. This variation pattern indicates a
sudden and dramatic increase in pollution load which may be attributed to remining, and
which is referred to as the dramatic trigger.

� The second pattern of variation of concern is a trend of gradually increasing pollution load,
where the general pattern of pollution load observations is increasing above the baseline
central tendency value over time without exceeding the upper control level. As this second
pattern of variation is much less dramatic than the first, and takes much more time and effort
to detect, it is referred to as the subtle trigger.  The reason that these two patterns of variation
are referred to as triggers is that they can be used to initiate the requirement for a mine
operator to treat a pre-existing discharge to a numeric effluent limit. If fair and reasonable
consideration is given to the concerns of the mine operator and protection of the
environment, the treatment triggers must be carefully established so that they are:  (a) not set
off prematurely or erroneously, adversely affecting the mine operator, or  (b) set off too late
resulting in additional mine drainage pollution without treatment.

Data Set - Initial Evaluation

The baseline pollution load is essentially a statistical summary of a data set generally consisting
of 12 or more samples collected prior to issuance of a remining permit.   In routine sampling for
remining permits, adjustments must be made in data organization and analysis to account for
missing data, unequal sampling intervals, and data that are not normally distributed or that lack
expression of the true data extremes.
� It is always advisable to examine raw data before submitting it to statistical analysis.  The

presence of unusual values and missing data usually require some kind of action.  A graph of
concentration versus time or discharge or log discharge in gallons per minute versus days can
be very helpful in identifying data gaps and unusual values.  Missing values frequently occur
during extreme events because during these events, sample sites are difficult to access. 

� Another kind of preliminary evaluation is to examine the data for extreme values (usually on
the high side). The wide spreads of extreme events, together with missing data (which often
occur during extreme events) may make it very difficult to detect any expected true seasonal
effects.
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Univariate Analysis

� The main features of the univariate statistical analyses are the frequency distributions of the
water quality parameters and flow measurement data, and the tables of summary statistics
(e.g., Tables 4.1, 5.1, 6.2, 7.2 and 8.2). 

� The frequency distribution is a graphical summary of the sample data.  Its shape and
accompanying summary statistics enable a greater understanding of how a parameter
behaves.  The normal distribution (shown in Figure 2.2) is the most widely known and most
useful frequency distribution.  It is also known as the bell-shaped curve. 

� A major problem that is frequently encountered in the statistical analysis of water quality
parameters is that the sample data are not normally distributed because it is typical to have
many small valued observations in the data set and a few very large values representing
extreme events.  Extremes tend to introduce strong skewness (asymmetry) into the frequency
distribution. This skewness is usually positive (i.e., extreme values are at the high end of the
data distribution). It is conventional to apply a transformation, commonly logarithmic, to
reduce this skewness (See Figure 5.3a).  However, it is prudent to examine the raw data very
carefully to decide whether data transformation is appropriate.

� The frequency distributions of many water quality and pollution load variables (Chapters 4
through 8) were found to be normally distributed, or at least symmetrically distributed,
around a value of central tendency (see for example, Figures 4.5 and 8.1e).  Numerous other
variables had frequency distributions that exhibited positive skewness. 

� An additional univariate statistic, the coefficient of variation (CV) is included in the Tables
in Chapters 4 � 8.  The coefficient of variation, usually expressed in percent (CV%), is
defined as the ratio of the standard deviation to the mean multiplied by 100.  This is a useful
approximate guide to the degree of variation in a parameter. In general, a CV<30%
represents a stable, in control variable.  In Chapters 4 through 8, most of the parameters
showed much larger variation, principally because of the effects of extreme events. Use of
the coefficient of variation with log transformed data may result in extreme distortion
because the transformation leads to a mean of small value, resulting in a divisor of the ratio
that is small and thus a CV that is inflated. 

� One additional parameter of interest is the number of days between sampling events. This
should be approximately constant, because any outlying results could distort relationships
between other parameters.

Bivariate Analysis

Bivariate analysis is used to examine the relationship between pairs of variables. 
� The correlation coefficient (r) is usually used to represent the (linear) relationship between

any pair of variables. The coefficient of determination (r2) is, however, a better measure of
the intensity of the association between a pair of variables.  For example, r = 0.7 looks large
because the range of r is from �1 to +1, but it means that r2 = 0.49 or 49% of the variation is
common to the two variables and therefore, 51% of the variation is �unexplained� by the
association.  It is necessary, therefore, to realize that one needs r > 0.8 to claim that a strong
association exists; i.e., > 64% in common.
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� Generally, the correlations between concentration parameters were not strong, except for
those that are known to be related (e.g., pH and acidity, total and ferrous iron). 

� Bivariate analysis of some data sets (e.g., Ernest site data, Chapter 6) showed a strong
association between all pairs of the load variables (r2>80%, see Figures 6.5a, b and c). This
clearly suggests that because discharge is the common factor in converting concentration to
load, it tends to overwhelm the relationships among the other variables. 

� Heteroscedasticity occurs when the variation between the parameters increases as their
values increase (see Figures 6.5a and 6.5c). In general, to correct for heteroscedasticity, it is
advisable to plot the logs of the values to make them homoscedastic and to calculate
correlations using log-transformed values.

� Cross-correlation analysis is performed to determine whether there is any lag in correlations
between pairs of variables; i.e., to see if a relationship that is weak at zero lag is stronger at
greater lags.  This observation could result from a delayed effect, where one variable does
not associate with another variable immediately, but only after a specific lag or period of
time.  For example, in a small watershed, where base flow is dominated by several large
abandoned deep mine discharges, the peak of concentrations and pollution loads of acidity,
iron and other parameters may occur several days or weeks following the peak of stramflow,
due to the residence time in the groundwater system. 

� The cross-correlation function (CCF) calculates the linear association between observation 0
to t days and so gives a picture of when the association is strongest.  In the use of the cross-
correlation function in bivariate and time series analyses in this report, r values of 0.2 or the
more conservative r =  0.3 have been selected as critical values.  This selection infers that r
values less than these critical values are not significantly different than 0, and therefore can
be deleted from consideration.  Even if a lag correlation is significantly greater than 0, the
relationship may still be weak (low r2).  In most of the examples presented in this report,
there did not appear to be any very significant lag in the effects.

Time Series

Two fundamental aspects to the time series analyses (described in Chapters 4 through 8 and
Appendix A) are: (1) the use of a simple time series plot of the data for a particular water quality
or flow variable, with or without quality control limits, to assist in evaluating patterns of
variation through time (essentially an exploratory data analysis step), and (2) the application of
the full Box-Jenkins time series analysis and model building procedures (see Figure 9.2).  
� Time series analysis begins with a plot of the observations against time (days or dates). This

plot is a simple outcome and can give helpful guidance to the type of time series that is
represented by the variation in the data. With this graph, outliers plotting beyond the
confidence limits are easily seen, and the arrangement of the outliers may be either irregular
(occurring as unique individuals) or systematic (e.g., periodic).

� The first step of Box-Jenkins time series analysis is to identify a tentative model and to
improve on the model by iteration through the procedure, until a more satisfactory model is
found. The basis for identification of a suitable model is the autocorrelation function (Acf)
and the partial autocorrelation function (Pacf) of the observations. The form of the Acf and
Pacf is usually adequate to determine an appropriate model and one may then proceed to the
estimation stage.
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� Given the model, it is necessary to estimate the parameters for best fit. Diagnostics are
applied to determine if the model is adequate and may also be used to compare different
models to select the most appropriate.  In order to fit a model with reasonably reliable
estimates, there should be at least 2-3 years of data collected at even time intervals (e.g.,
either weekly or monthly).

� The last step of Box-Jenkins time series analysis is to make predictions or forecasts of future
values based on the selected model. This last step was shown to be of little value because
extreme events inflated the confidence limits around the forecasts and thus, were not useful.

� There are many alternative extensions of the analytical time series procedure that could have
been followed, but because of extreme events, and because of difficulties with missing data
and unequal values of t (intervals between collection times), it was considered imprudent, for
the purposes of this report, to pursue the analysis further.

� Most of the variables show the presence of a trend over time (pH, flow, acidity, acid load,
iron load, ferrous iron). These variables need a first difference to remove the effects of the
trend. It seems evident from the studies to date that a moving average model applied to the
first differences is almost universally the best choice. In some cases, the autoregressive
model, possibly with a first difference, is also appropriate. In both cases, there is an indicator
that the variation in whichever parameter is being analyzed, when first differenced, leads to a
random walk (the parameter is equally likely to move in one direction as the other, i.e., there
is no trend).

� It is somewhat surprising that there appears to be no seasonal component in the time series
models, particularly in the load variables. The only satisfactory explanation appears to be the
existence of too many maxima at too many different times with very little repetition during
the same time period.

Quality Control

There are many methods for defining quality control limits and there are arguments for and
against all of them.  Throughout this report the conventional quality control limits based upon
the mean and standard deviation of the normal frequency distribution are compared to another
set of non-parametric quality control limits based upon the median and other order statistics
(e.g., quartiles, H-spreads, C-spreads), which may be more applicable to mine drainage data that
frequently do not follow a normal distribution.  
� The quality control analyses suggest that either the mean (plus or minus two standard

deviations) or the non-parametric median (plus or minus a function of the H-spread) are
equally appropriate. For the present, it is recommended both should be used until one or the
other show superior performance.

� The quality control approach used in this report and much of statistical work in general, is
dependent upon the frequency distribution of the sample data. As 95.46% of the area of the
normal frequency distribution is contained in the interval of the mean +/-two standard
deviations, it is expected that approximately 95 out of 100 observations will occur within
these confidence intervals. In the normal frequency distribution, the values are symmetrically
distributed around the mean and the mean and standard deviation are best statistical
estimators of the population. In a highly skewed frequency distribution, the mean may not be
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the best estimator of central tendency, and the standard deviation may not be the best
measure of dispersion.

� Quality control limits can be set to compare to a specific number of remining results by
setting a specific value of NN for the equations defined in the chapters.  These limits can be
used as a subtle trigger for a mean or median, depending on the distribution or data.  A quick
trigger can also be set in the same manner by setting NN=1.  For example, if one measurement
is to be taken per month for a remining year, NN= 12 can be used (equation, page 3-9) to set a
subtle trigger for the baseline median.

� The quality control approach should provide adjustments so that the number of monitoring
samples (N) and the number of baseline samples (N) can be set to be equal when comparing
these time periods (i.e., monitoring N=12 should be compared to a baseline N=12 even if the
baseline contains 36 or more samples from several water years.

� Since intervals based on the median and interquartile range are non-parametric, data does not
have to be transformed for normal distribution.  However,  it is still recommended that the
data are graphed, evaluated, and transformed if transformation would improve distribution. 
This improved distribution would lead to improved statistical control and a tighter estimate
of the confidence belts around the median.

� The analyses presented in this report were conducted using long-term data sets with frequent
samples.  It would be impracticial to expect this type of analysis for a remining operation. 
Although large data sets are preferable, the practical alternative is to employ a simple quality
control approach that allows the use of data sets that are typically compiled for remining
permits.
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Appendix A: Hamilton Discharge Data

The Hamilton site is a permitted remining site located in Clearfield County, Pennsylvania, as
shown in Figure A.1.  Several years of background (pre-mining) baseline data existed for two
abandoned mine discharges on the site (Hamilton 01 and Hamilton 08).  This site was selected to
be the initial data set statistically analyzed by Dr. J.C. Griffiths during February to April of 1987. 
The first two reports of the eight report series of statistical analyses completed by Dr. Griffiths in
1987 and 1988 were on the Hamilton site.  Report No. 1 was a preliminary evaluation of the
MINITAB1 software package for the analysis of remining data, performed on the Hamilton 01
and 08 data files.  Report No. 2 was an evaluation of the usefulness of MINITAB in conducting a
time series analysis, including Box-Jenkins procedures, of the Hamilton 08 discharge data set. 
Since these first two reports were preliminary or exploratory in nature, they were not as well
developed as far as evaluation of the various steps of the data analysis algorithm (see Figure 3.1)
as succeeding reports (Report Nos. 3 � 8).  These succeeding reports are the subject of Chapters
4 through 8 of this report (Report No. 8 of the original Griffiths report was a synopsis of Report
Nos. 1 to 7).  However some items of interest, not found in the other reports, were expressed in
the Hamilton site reports, and the data set is a good example of remining permit data.  Thus, it
was determined that the elements of these two reports (although somewhat sketchy in places)
and the data sets would be presented in this Appendix.  

The Hamilton 01 data had problems (missing data and the presence of a few exceptionally high
values) similar to the other data sets described in Chapters 4 through 8.  For high values of
manganese and sulfate, for example, it was stated that it is important to decide whether to keep
or reject the values as outliers with the assumption they are data recording errors and therefore,
not really meaningful.  Examination of each example, case by case, is recommended to make an
appropriate decision.  Logarithmic transformation of some variables was attempted, but
introduced negative skewness in the sulfate data. Ultimately, it was determined that the sulfate
data appeared to be acceptable without transformation.

Some univariate and bivariate analyses were conducted on the Hamilton 08 discharge data. It
was found that there was no obvious relationship between flow and acidity.  There also was no
apparent relationship between acidity and sulfate.  There seems to be a weak inverse relationship
between manganese and flow (flow increases as manganese decreases).  Simple time series plots
of acidity, iron, manganese, and sulfate data from the Hamilton 08 discharge were also
performed, and some obvious cycles were observed.  
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Figure A.1: Map of Hamilton Site
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Following application of stem and leaf plots, box plots, scatterplots and time series plots, it was
determined that Cross-Correlation functions, Rootogram functions, and the Box-Jenkins
procedures in the software package should be applied.  It was also concluded that many
additional analytical tools could be used including analysis of variance, t-tests, Chi-Square tests,
and regression.  It is necessary to emphasize that while these tests are easy to apply, both their
applicability and the interpretation of the results may be very demanding.

The objective of Griffiths Report No. 2 was an attempt to fit a model to the Hamilton 08
discharge data, and preferably, to find a single simple model that would provide a reasonably
close fit.  It is desirable to find a single model, if feasible, for all five variables.  The Box-Jenkins
time series analysis procedure was used for this purpose (Box and Jenkins, 1970).  This
procedure consists of a convenient package of computer programs that embrace the entire
modeling process.  A wide variety of models, collectively known as the ARIMA models, is
available in this package.  Use of this sophisticated procedure requires that the data be collected
at equal time intervals.  This requirement was only partially fulfilled by the Hamilton 08 data. 
Therefore, application of the resulting model(s) should be limited.

Eventually, when the model meets the demands of the criteria, it may be used to forecast future
values of the variable, accompanied by an appropriate estimate of the confidence limits at a
selected probability level.  Any new observations may be added to the chosen model and the fit
examined for acceptance or rejection.  These data should be taken at the same time intervals as
the original series (i.e., if the original observations are taken at two week intervals the new
observations should also be taken at two week intervals).  The number of samples need not be
extensive; six to twelve would be acceptable.  

If second differences of the flow data set are taken, the Acf and Pacf show many large spikes
suggesting that the series has been overdifferenced.  It therefore seems evident that an MA
(0,1,1) model may be most suitable.  The first check criterion is a measure of correlation among
the parameters.  Since, in this case, there is only one parameter, this does not apply.  The second
criterion is the Acf of the residuals; if the model �fits� well, all systematic variation has been
removed and the remainder is random (equals white noise).  There are two tests at this stage: the
first is an overall Portmanteau test (Box-Pierce-Ljung Statistic) of all autocorrelations taken
together.  For this case the result is X 2 = 17.95 with 29 degrees of freedom.  It is not
significantly greater than that expected from white noise, hence it is feasible to consider that
these residuals represent random variation and, on the basis of this criterion, there is no evidence
to reject the model.

The second test is to examine the individual autocorrelations against twice their standard errors.
Since none exceed this value there is no evidence to require further refinement in the model. 
When first differences of the residuals are taken, the Portmanteau test yields a highly significant
value, implying overdifferencing.  The Pacf of the residuals confirms this diagnosis.
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A number of alternative models were fitted to log-transformed flow data and the results are
summarized in Table A.1.  Both the AR (1,0,0) and MA (0,1,1) models fit equally well.  The
coefficient ( ) in the AR model is approximately equivalent to the first difference in the MAΦ
model.  Attempts to improve on these simple models by using additional coefficients, seasonal
and otherwise, failed to provide any substantial improvement.  Thus, it was decided to select one
of the simpler models.

Table A.1: Alternate Models Fitted to Log Flow Data
No. Model Residual

Sum of
Squares

Coefficients Acf 
spikes

Portmanteau 
Chi-Square

statistic

Residual
Standard
Deviation

1 MA (0,1,1) 30.73  * None 17.95 0.519

2 AR (1,0,0) 28.57  * None 27.58 0.503

3 AR (1,1,1) 30.34 θ1 not
significantly

different from 0

None 17.89 0.520

4 AR (2,0,0) 28.57
, Φ1 Φ 2

significantly
correlated

None 27.58 0.505

5 AR (1,1,0) 30.83  * None 19.88 0.522

6 AR (1,0,0) (1,0,0) 25.72  * None 22.11 0.481

7 AR (1,0,0) (0,0,1) 29.81  notΦ1
significantly

different from 0

None 13.40 0.523

* All coefficients are significantly different from 0 or 1, and there are not significant correlations
between coefficients

It was concluded that the most appropriate model, common to all variables, is the simple moving
average of the first differences of the observations, or an MA (0,1,1) model.  The resulting
equations for each variable are:

Log Flow z t     =  z t �1     + a t   - 0.415at-1

Log Acidity z t     =  z t �1     + a t   -0.381at-1

Log Fe z t     = z t �1     + a t   -0.824at-1

Log Mn z t     = z t �1     + a t   -0.662at-1

S04 z t     = z t �1     + a t   -0.408at-1
The model implies that the observation at time t (zt) equals its previous value plus a contribution
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from the shock term (at) and an additional, smaller contribution from the shock term of the
previous period (at-1).  The system appears to have only a one-step memory and is otherwise a
typical random variable.

The absence of a seasonal component may be attributed to the fact that there are extreme
variations in the data which tend to smother any smaller systematic contribution.  There appears
to be two main reasons for this, one of which may be modified.  The first is the presence of zeros
in the data and the absence of an attempt to smooth the data.  Smoothing may well be of major
importance in reducing the effects of extreme variations and thus, reducing the confidence limits
around forecasts. The second reason is that the unusual events represented by large positive
residuals are not repeated at the same interval during each annual cycle.  Thus, a heavy influx of
water from spring melt is common but is not consistently heavy, and rarely occurs on the same
date.  Again, there are heavy late spring storms which lead to flooding, but do not occur every
year and do not always occur in the same month.  Thus the spread of events from February to
June would tend to smooth out any persistent cyclical feature that may be present.  A much
longer series would be needed to check these possible effects.

There is one other aspect to the data that may be of importance.  It may not be desirable to
perform a test of the observations that is too stringent, because it could result in too many false
alarms.  Thus, a fairly simple, robust test is desirable in practice.  The present MA models may
well be adequate for this purpose.  Investigations at more locations may help to clarify these
questions.
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Hamilton 01

Rows Days Flow Acidity Total Iron Manganese Sulfate
1 0 9.70 337.0 43.30 5.12 868.0
2 34 3.00 360.0 20.00 6.80 900.0
3 73 10.00 305.0 14.00 9.00 652.0
4 119 0.00 400.0 33.00 8.00 823.0
5 161 0.00 294.0 25.00 3.00 422.0
6 202 0.00 307.0 19.00 4.00 550.0
7 216 0.00 305.0 27.00 4.00 342.0
8 231 0.00 300.0 19.00 4.10 419.0
9 244 28.61 539.0 8.50 3.00 142.0

10 257 7.71 195.0 35.00 2.90 430.0
11 271 28.00 174.0 16.20 5.00 494.0
12 286 7.70 184.0 16.00 8.20 510.0
13 299 7.70 230.0 21.50 4.00 600.0
14 313 7.70 306.0 28.00 7.00 612.0
15 329 7.70 254.0 28.00 11.30 382.0
16 342 7.70 394.0 35.00 10.00 423.0
17 356 7.70 444.0 19.00 5.30 705.0
18 369 7.70 340.0 35.00 7.20 399.0
19 383 0.00 474.0 75.00 8.00 872.0
20 386 2.10 714.0 75.00 8.20 608.0
21 411 82.00 222.0 62.00 4.60 550.0
22 425 7.70 258.0 54.30 7.70 500.0
23 455 28.60 274.0 7.00 7.00 550.0
24 467 28.00 282.0 42.00 56.00 700.0
25 482 28.00 284.0 20.00 5.10 510.0
26 495 28.00 268.0 20.00 5.90 681.0
27 510 61.30 220.0 9.50 4.80 620.0
28 524 105.00 202.0 7.20 4.90 598.0
29 538 28.00 214.0 10.00 5.20 613.0
30 552 105.00 110.0 3.70 2.30 587.0
31 565 105.00 118.0 8.00 2.90 358.0
32 579 105.00 162.0 14.70 5.00 469.0
33 593 28.00 224.0 25.00 3.80 655.0
34 608 28.00 250.0 25.00 4.90 713.0
35 624 28.00 98.0 12.50 4.50 477.0
36 636 105.00 197.0 19.00 4.00 397.0
37 650 28.00 78.0 6.00 3.70 612.0
38 666 7.70 264.0 18.00 5.00 600.0
39 680 28.00 218.0 5.20 3.00 542.0
40 692 28.00 286.0 10.00 5.90 643.0
41 706 0.00 458.0 13.00 6.50 746.0
42 721 7.70 352.0 8.50 7.50 811.0
43 734 0.00 356.0 6.90 7.30 778.0
44 748 2.10 632.0 9.30 7.90 568.0
45 762 7.70 392.0 8.70 9.30 831.0
46 772 2.10 364.0 9.00 8.00 806.0
47 790 7.70 336.0 7.50 8.00 835.0
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48 799 7.70 334.0 7.00 8.00 798.0
49 818 7.70 316.0 9.00 7.00 655.0
50 832 7.70 306.0 9.00 6.00 713.0
51 846 7.70 370.0 12.80 4.90 794.0
52 857 7.70 306.0 9.00 8.00 674.0
53 867 7.70 346.0 9.00 8.00 719.0
54 874 28.00 206.0 8.00 5.53 431.0
55 885 28.00 264.0 8.00 6.00 566.0
56 899 28.00 264.0 10.00 6.00 594.0
57 916 105.00 261.0 3.75 4.00 333.0
58 930 61.00 226.8 2.25 3.00 29.6
59 944 61.00 155.6 4.00 3.00 276.0
60 958 61.00 133.4 2.75 2.30 181.0
61 972 61.00 168.1 4.20 3.90 300.0
62 989 29.00 74.2 9.80 5.10 343.0
63 1000 28.97 142.2 8.00 7.80 491.0
64 1015 7.80 158.3 12.00 6.00 550.0
65 1028 0.00 191.3 7.50 9.00 511.0
66 1043 7.80 232.6 9.00 10.00 584.0
67 1052 7.80 266.8 7.50 7.00 690.0
68 1070 7.80 300.7 9.50 19.00 531.0
69 1085 7.80 317.3 8.00 14.00 452.0
70 1098 7.80 326.6 9.50 11.50 755.0
71 1116 1.20 314.7 6.00 10.00 805.0
72 1126 2.20 287.3 8.50 9.00 816.0
73 1141 7.90 265.6 7.50 9.00 780.0
74 1154 6.10 184.5 8.00 9.50 608.0
75 1171 8.90 121.2 9.00 4.40 300.0
76 1184 41.70 91.6 3.10 3.30 261.0
77 1197 2.20 166.1 5.50 4.80 396.0
78 1210 197.00 197.0 8.50 5.30 524.0
79 1221 0.00 226.1 6.50 7.30 652.0
80 1238 61.00 215.7 8.00 7.50 609.0
81 1248 131.00 84.6 1.20 2.90 187.0
82 1266 0.00 107.8 4.00 2.20 242.0
83 1280 7.90 126.7 6.50 3.50 337.0
84 1294 18.80 107.1 3.90 2.80 246.0
85 1308 12.10 128.2 6.00 2.80 264.0
86 1322 11.00 126.7 7.30 3.60 284.0
87 1336 8.90 124.7 6.30 2.90 255.0
88 1351 12.00 102.4 5.50 2.40 236.0
89 1365 2.70 190.4 9.00 6.30 455.0
90 1379 4.60 179.4 6.50 5.50 385.0
91 1393 4.60 189.3 7.00 4.30 481.0
92 1407 2.70 202.3 8.00 7.80 596.0
93 1421 4.60 664.7 8.00 6.50 466.0
94 1434 12.10 163.8 3.90 3.20 299.0
95 1450 4.60 194.3 3.90 4.60 466.0
96 1464 9.90 231.5 8.50 5.50 612.0
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97 1477 5.40 265.6 9.50 9.80 700.0
98 1487 2.70 264.7 8.50 9.80 1223.0
99 1504 4.60 447.7 1.60 10.60 716.0

100 1515 4.60 287.2 1.82 10.30 667.0
101 1526 2.20 282.8 11.82 7.50 664.0
102 1548 27.10 175.1 4.76 10.71 369.0
103 1581 23.60 201.8 4.57 6.07 362.0
104 1599 14.60 238.3 3.94 2.40 613.0
105 1623 54.30 120.5 1.77 1.66 275.0
106 1688 18.80 200.8 6.90 4.50 395.0
107 1700 18.80 198.1 5.99 4.61 326.0
108 1711 15.90 218.0 5.90 5.44 504.0
109 1731 8.90 250.0 44.80 11.30 603.0
110 1742 13.30 222.0 6.22 21.50 509.0
111 1760 15.90 259.0 3.70 10.70 621.0
112 1770 9.90 324.0 3.62 6.48 617.0
113 1784 7.90 305.0 3.76 6.51 622.0
114 1798 7.90 492.0 6.51 6.52 641.0
115 1814 8.90 625.0 9.06 5.83 609.0
116 1826 9.90 294.0 8.83 7.07 721.0
117 1842 11.00 356.0 10.40 7.59 802.0
118 1855 3.30 359.0 6.28 6.74 840.0
119 1865 4.00 355.0 10.60 7.52 874.0
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Hamilton 8

Rows Days Flow Acidity Total Iron Manganese Sulfate
1 0 0 298 16.1 4.49 750
2 132 0 291 15 4.5 202
3 155 0 291 19 6 141
4 170 0 221 21.1 6 170
5 202 0 250 15 4.5 184
6 244 70 300 28 6 166
7 258 33 226 11 5.1 183
8 272 33 272 19 3.2 145
9 287 33 236 27 9.5 199

10 300 33 262 30 9 200
11 314 33 348 23 8 240
12 330 19 376 25 5 160
13 343 9 404 120 4.3 184
14 357 9 490 25 9 300
15 370 9 416 38 2 161
16 384 9 558 40 4.9 848
17 398 9 448 40 6.8 300
18 412 2 344 21.5 7 750
19 426 9 362 40 7.5 262
20 456 9 328 13 8.1 675
21 468 9 356 33.7 6.5 650
22 483 19 290 29 5.4 700
23 496 32 238 10.5 5.5 677
24 511 32 270 13.7 5.6 693
25 525 32 254 17.2 5.5 647
26 539 19 256 17 6.5 649
27 553 120 204 14 3.8 662
28 566 70 216 13.7 4.5 487
29 580 32 224 12.9 10 495
30 594 19 238 14.7 3.4 591
31 609 32 278 14.7 5 680
32 624 32 232 18.68 4.6 600
33 636 32 219 5.99 5.1 493
34 650 32 187 4.8 3.9 575
35 666 9 386 16 5 498
36 680 32 336 7.11 3.5 702
37 692 32 320 16.1 8.5 707
38 706 0 660 7.5 6.5 751
39 721 9 382 8.5 8 801.99
40 734 0 340 8.5 5.5 797
41 748 2 454 7.5 8.2 592.99
42 762 9 460 11.5 10.1 862.01
43 772 2 414 7.5 7 851
44 790 9 390 10 10 993
45 799 9 394 7.5 10 894.99
46 818 9 396 11 6 752
47 832 9 370 7.5 5 852
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Rows Days Flow Acidity Total Iron Manganese Sulfate

A-10

48 846 9 430 9.8 6.2 774
49 857 9 472 9 9 819.99
50 867 9 448 8 7 817
51 874 32 270 10 6 514
52 885 9 292 8 6 543
53 899 9 372 9 8 629
54 916 49 409.4 11 5.5 449
55 930 120 324.2 8.5 3.5 365
56 944 70 282.2 6 4 363
57 958 70 283.8 10 3.8 275
58 972 32 270 4.8 2.2 322
59 989 19 112.6 11.5 6.2 390
60 1000 19 164.8 7.9 6.9 453.99
61 1015 8.9 178.4 11 7 517
62 1028 8.9 204.2 8 7 516
63 1043 8.9 247.7 10 6.3 588.99
64 1052 8.9 178.4 8.5 1.3 180
65 1070 2.4 320 8.5 12 396
66 1085 8.1 339 11 10 466
67 1098 6.7 342.1 17 9.5 791.01
68 1116 1.8 376.8 7.5 10 879
69 1126 3.3 340.9 9.5 10.5 808
70 1141 6.1 338.1 8 11 910
71 1154 5.4 291 14 13 854
72 1171 18.8 252.1 8 10 510
73 1184 72.3 151.5 7 5.3 382
74 1197 44 238.7 6 5.3 465
75 1214 18.8 254.4 8 6.5 555
76 1221 18.8 283 8 8 676.01
77 1238 9.9 309.4 8.5 10 677
78 1248 360 141.9 5.5 3.4 294
79 1266 37.1 197.9 7 4.5 436
80 1280 12.1 206.6 8.5 5 464
81 1294 46.7 198.3 9 4 334
82 1308 62.8 214.8 8.5 3.2 313
83 1322 44 202.8 8 4.3 335
84 1336 37 212 7 3.4 343
85 1351 49 189 7 4.3 345
86 1365 22 223.1 12 5.3 440
87 1379 17 232.9 7.5 5.3 413
88 1392 12 270.8 7 4.8 543
89 1407 7.9 270.8 8.3 8 621
90 1421 14.6 310.8 8.3 8.5 669.99
91 1434 25.3 221.2 8 4.5 443
92 1450 12.1 273.6 8.4 4.6 552
93 1464 11 294.1 8 6.8 618
94 1477 8.9 329 9 10 625
95 1487 7.9 232.6 7.5 11 667.01
96 1504 6.2 369.6 3.1 12.1 911
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Rows Days Flow Acidity Total Iron Manganese Sulfate
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97 1515 7.1 375.1 3.3 12.6 746
98 1526 7.1 371.6 11.6 9 827.01
99 1548 23.6 292.5 16.46 13.83 494.99

100 1581 37.1 238.2 9.15 6.02 600
101 1599 25.3 271.2 8.5 2.31 561
102 1623 140 171.2 4.56 2.18 311
103 1688 57 225.7 13.8 4.55 481.01
104 1700 44 228.3 12.22 4.7 299
105 1711 32.9 259 8.9 5.42 527
106 1731 23.6 298 0.1 8.43 616
107 1742 21.9 294 13.4 14.1 569
108 1760 21.9 329 19.7 5.51 646.99
109 1770 17.3 360 17 7.37 629
110 1784 15.9 347 16.5 7.44 634
111 1798 14.6 381 14.4 6.57 640
112 1814 14.6 394 17.1 5.6 801
113 1876 13.3 401 17.3 5.58 846.99
114 1842 12.1 401 15 7.96 858.01
115 1855 11 408 13.3 6.72 879
116 1865 8.9 451 16.2 7.82 874
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Statistical Analysis of Abandoned Mine Drainage in the Assessment of Pollution Load

B-1

Arnot 001
ROW DATE PH TEMP ACIDITY ALK TOT. FE FFE SO4 CA MG MN AL DISCH flow gpm DATE
1 1/28/80 5.02 ND 12 4 0.2 0.1 180 ND ND ND ND 0.531 238.33 29248
2 2/29/80 4.86 9.8 23 4 0.2 0.2 96 ND ND ND ND 0.291 130.61 29280
3 3/31/80 5.08 7.6 9 4 0.3 0.2 91 ND ND ND ND 2.375 1065.97 29311
4 4/22/80 5.03 8.4 14 8 0.4 0.3 122 ND ND ND ND 1.474 661.58 29333
5 5/10/80 4.83 9.2 13 7 0.3 0.2 141 93 77 1.58 0.63 1.240 556.55 29351
6 5/31/80 4.82 10.8 12 8 0.2 0.0 177 96 67 1.62 0.70 0.514 230.70 29372
7 6/18/80 4.70 11.0 27 3 0.2 0.1 181 118 64 1.69 3.64 0.446 200.18 29390
8 6/30/80 4.68 11.3 23 2 0.3 0.3 186 107 82 1.68 0.73 0.366 164.27 29402
9 7/19/80 4.50 9.9 28 0 0.2 0.1 177 111 82 1.34 0.81 0.466 209.15 29421
10 8/12/80 4.73 11.2 31 7 0.2 0.1 204 121 80 1.85 1.57 0.241 108.17 29445
11 8/27/80 4.68 12.9 24 6 0.3 0.2 206 115 90 1.86 1.39 0.241 108.17 29460
12 9/11/80 4.89 9.8 31 6 0.3 0.2 182 133 95 1.78 2.67 0.196 87.97 29475
13 9/27/80 4.91 8.9 28 6 0.2 0.2 193 135 99 1.92 2.71 0.150 67.32 29491
14 10/16/80 4.66 9.3 35 5 0.3 0.2 240 136 124 1.71 2.87 0.209 93.81 29510
15 11/7/80 4.97 9.6 41 37 0.1 0.1 211 130 113 2.44 1.93 0.209 93.81 29532
16 11/30/80 4.20 8.6 28 0 0.1 0.1 259 144 114 1.87 2.23 0.209 93.81 29555
17 12/18/80 4.75 7.6 28 5 0.3 0.3 231 152 103 2.52 3.19 0.209 93.81 29573
18 1/5/81 4.92 9.1 26 18 0.2 0.1 179 146 145 2.67 2.29 0.209 93.81 29591
19 1/19/81 4.77 7.5 27 9 0.3 0.1 228 139 141 2.70 2.60 0.178 79.89 29605
20 1/31/81 4.92 9.1 26 18 0.2 0.1 179 141 127 2.68 2.87 0.193 86.62 29617
21 2/19/81 5.02 7.0 8 7 0.3 0.2 117 70 67 0.82 0.19 0.010 4.49 29636
22 3/8/81 5.07 8.0 16 7 0.1 0.1 159 80 76 1.61 0.92 1.332 597.84 29653
23 3/21/81 5.03 8.0 15 6 0.1 0.1 151 83 87 1.41 0.91 0.718 322.26 29666
24 4/11/81 5.02 8.7 6 18 0.2 0.0 140 91 76 1.50 0.36 0.718 322.26 29687
25 4/30/81 5.38 8.3 12 12 0.2 0.2 131 79 69 1.28 0.22 1.063 477.11 29706
26 5/16/81 5.45 8.3 10 16 0.2 0.0 134 76 76 1.04 0.27 1.332 597.84 29722
27 5/29/81 5.03 9.0 11 5 0.3 0.1 124 96 68 1.41 0.50 0.862 386.89 29735
28 6/18/81 5.13 12.0 10 5 0.2 0.1 154 120 80 1.79 0.97 0.542 243.27 29755
29 6/30/81 5.10 8.9 9 11 0.2 0.0 151 90 86 1.24 ND 0.673 302.06 29767
30 7/13/81 4.95 9.4 16 7 0.2 0.2 140 99 90 1.55 0.35 0.584 262.12 29780
31 7/28/81 4.72 8.6 19 6 0.2 0.2 188 129 81 2.33 0.94 0.420 188.51 29795
32 8/30/81 4.84 11.3 28 4 0.2 0.0 195 120 105 2.49 2.04 0.274 122.98 29828
33 9/29/81 4.63 9.1 31 7 0.2 0.1 210 130 118 3.95 2.28 0.209 93.81 29858
34 10/15/81 4.50 9.8 33 0 0.2 0.2 244 129 125 3.80 2.52 0.209 93.81 29874
35 10/29/81 4.69 9.1 39 6 0.2 0.1 205 124 111 2.75 2.08 0.241 108.17 29888
36 12/8/81 4.82 7.9 12 5 0.2 0.2 186 102 92 2.17 1.51 0.459 206.01 29928
37 12/16/81 4.84 8.3 15 14 0.2 0.2 189 108 83 1.77 1.12 0.420 188.51 29936
38 1/6/82 5.04 7.8 13 8 0.2 0.0 185 111 75 1.87 1.70 0.500 224.42 29957
39 1/14/82 5.02 ND 12 8 0.2 0.1 106 79 46 1.02 0.68 0.673 302.06 29965



Appendix B

B-2

ROW DATE PH TEMP ACIDITY ALK TOT. FE FFE SO4 CA MG MN AL DISCH flow gpm DATE
40 2/23/82 5.22 7.3 16 5 0.3 0.2 160 ND ND ND ND 0.861 386.44 30005
41 3/2/82 5.01 8.4 10 4 0.2 0.1 172 115 58 1.16 0.10 0.673 302.06 30012
42 3/31/82 5.05 8.9 8 7 0.2 0.0 107 80 58 0.98 0.25 2.912 1306.99 30041
43 5/6/82 5.13 9.0 13 14 0.3 0.2 124 110 54 0.95 0.50 0.910 408.44 30077
44 5/19/82 4.96 ND 19 7 0.2 0.2 148 99 101 ND ND 0.584 262.12 30090
45 5/26/82 4.78 ND 12 9 0.2 0.0 118 100 83 0.74 0.87 0.628 281.87 30097
46 6/2/82 4.92 ND 64 11 0.2 0.0 151 95 82 0.68 0.58 0.765 343.35 30104
47 6/10/82 5.34 ND 10 16 0.4 0.2 99 66 51 0.85 0.51 3.484 1563.72 30112
48 6/11/82 5.10 9.2 8 11 0.3 0.2 130 68 77 0.95 0.27 3.124 1402.14 30113
49 6/16/82 4.94 9.0 10 9 0.3 0.1 170 118 46 1.11 0.45 1.984 890.48 30118
50 6/25/82 4.92 10.0 14 9 0.2 0.1 186 125 42 1.22 0.56 1.168 524.23 30127
51 6/30/82 5.19 ND 13 8 0.2 0.1 185 93 71 1.39 0.70 0.910 408.44 30132
52 7/1/82 4.91 9.8 11 4 0.2 0.2 148 96 74 1.31 0.61 0.861 386.44 30133
53 7/8/82 4.84 9.8 11 3 0.2 0.2 141 103 72 1.38 0.79 0.178 79.89 30140
54 7/16/82 4.67 10.9 15 13 0.0 0.0 161 102 76 1.60 0.78 0.565 253.59 30148
55 7/28/82 4.78 ND 17 4 0.2 0.1 169 102 87 1.57 1.58 0.437 196.14 30160
56 8/6/82 4.72 ND 15 4 0.2 0.1 171 101 92 1.70 2.00 0.378 169.66 30169
57 8/12/82 4.74 10.5 41 3 0.2 0.2 202 ND ND 1.68 2.27 0.355 159.33 30175
58 8/17/82 4.69 ND 22 2 0.1 0.0 211 114 93 2.01 ND 0.325 145.87 30180
59 8/26/82 4.67 12.2 25 2 0.0 0.0 198 124 109 0.54 2.96 0.289 129.71 30189
60 9/12/82 4.65 12.5 25 2 0.1 0.1 201 123 104 1.18 2.55 0.246 110.41 30206
61 10/2/82 4.54 11.7 26 2 0.2 0.1 252 130 130 2.24 2.73 0.219 98.29 30226
62 10/16/82 4.48 9.6 40 1 0.2 0.1 238 130 107 2.17 2.64 0.187 83.93 30240
63 10/30/82 4.57 11.7 40 1 0.1 0.1 212 142 107 2.75 3.08 0.210 94.25 30254
64 11/5/82 4.42 ND 31 0 0.1 0.1 252 143 95 2.70 ND 0.199 89.32 30260
65 11/24/82 4.58 7.8 39 2 0.2 0.0 240 137 130 2.66 3.22 0.166 74.51 30279
66 12/16/82 4.59 9.2 37 2 0.2 0.2 277 127 118 2.09 2.98 0.188 84.38 30301
67 1/8/83 4.57 7.8 31 0 0.2 0.0 254 127 128 2.39 3.22 0.216 96.95 30324
68 2/5/83 4.84 7.8 10 4 0.2 0.1 159 150 31 1.45 0.44 0.565 253.59 30352
69 3/1/83 4.94 ND 22 5 0.1 0.0 191 104 116 1.49 1.46 0.569 255.38 30376
70 4/6/83 5.06 8.3 3 6 0.2 0.1 182 82 62 1.29 0.80 1.613 723.96 30412
71 4/23/83 4.97 9.0 6 4 0.2 0.1 125 70 69 1.40 0.60 2.617 1174.59 30429
72 5/5/83 4.86 8.6 9 3 0.2 0.1 171 66 41 0.96 0.51 5.091 2284.99 30441
73 5/10/83 4.99 ND 16 5 0.3 0.1 66 80 77 0.67 1.16 3.032 1360.85 30446
74 5/20/83 4.92 9.2 4 6 0.2 0.1 92 75 70 1.41 1.15 2.112 947.93 30456
75 5/31/83 4.92 8.9 7 6 0.1 0.0 140 81 61 1.32 0.66 1.382 620.28 30467
76 6/14/83 4.81 9.3 8 5 0.2 0.1 132 98 62 1.76 0.69 0.821 368.49 30481
77 6/30/83 4.76 9.7 15 4 0.3 0.1 169 125 54 1.05 0.41 0.673 302.06 30497
78 7/16/83 4.67 11.8 31 3 0.2 0.1 180 118 93 1.92 0.92 0.568 254.94 30513
79 8/2/83 4.64 11.7 23 3 0.2 0.1 189 123 79 1.90 1.60 0.448 201.08 30530
80 8/5/83 4.65 ND 20 2 0.3 0.1 167 123 87 1.92 1.68 0.425 190.75 30533
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ROW DATE PH TEMP ACIDITY ALK TOT. FE FFE SO4 CA MG MN AL DISCH flow gpm DATE
81 8/14/83 4.68 12.2 25 3 0.4 0.2 220 116 91 2.03 1.94 0.364 163.37 30542

MAX 5.45 12.90 64.00 37.00 0.40 0.30 277.00 152.00 145.00 3.95 3.64 5.09
MIN 4.20 7.00 3.00 0.00 0.00 0.00 66.00 66.00 31.00 0.54 0.10 0.01
AVG 4.85 9.45 20.04 6.46 0.21 0.12 173.23 109.52 86.05 1.71 1.43 0.80
MED 4.85 9.45 20.04 6.46 0.21 0.12 173.23 109.52 82.00 1.71 1.43 0.80
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Arnot 003
ROW DATE PH TEMP DISCH ACIDITY ACIDLD ALK ALKLD TFE TFELD FE FELD SO4 SO4LD CA CALD MG MGLD MN MNLD AL ALLD
1 1/28/80 3.35 m.v. 0.190 69 32.04 0 0 1.2 0.56 0.5 0.23 162 75.23 m.v. m.v. m.v. m.v. m.v. m.v. m.v. m.v.
2 2/29/80 3.31 8.5 0.117 119 34.14 0 0 1.2 0.34 0.4 0.12 180 51.64 m.v. m.v. m.v. m.v. m.v. m.v. m.v. m.v.
3 3/31/80 3.50 m.v. 0.494 47 56.80 0 0 1.1 1.33 0.3 0.36 93 112.39 m.v. m.v. m.v. m.v. m.v. m.v. m.v. m.v.
4 4/22/80 3.42 8.4 0.360 58 51.05 0 0 1.2 1.06 0.2 0.18 119 104.74 m.v. m.v. m.v. m.v. 1.85 1.63 3.31 2.91
5 5/10/80 3.24 8.5 0.360 70 61.61 0 0 1.0 0.88 0.3 0.26 149 131.14 58 51.05 45 39.61 1.92 1.69 3.76 3.31
6 5/31/80 3.21 8.5 0.360 70 61.61 0 0 0.8 0.70 0.0 0.00 148 130.26 55 48.41 51 44.89 2.40 2.11 3.45 3.04
7 6/18/80 3.29 8.7 0.219 90 48.16 0 0 0.8 0.43 0.3 0.16 169 90.43 61 32.64 66 35.32 2.73 1.46 5.16 2.76
8 6/30/80 3.29 8.9 0.139 81 27.58 0 0 0.8 0.27 0.3 0.10 177 60.26 61 20.77 56 19.07 2.87 0.98 0.88 0.30
9 7/19/80 3.21 8.9 0.128 107 33.61 0 0 0.7 0.22 0.2 0.06 181 56.85 59 18.53 67 21.04 2.48 0.78 4.36 1.40
10 8/12/80 3.26 8.9 0.117 106 30.41 0 0 0.9 0.26 0.6 0.17 208 59.68 66 18.94 70 20.08 4.70 1.35 6.12 1.76
11 8/27/80 3.26 9.0 0.106 99 25.67 0 0 1.0 0.26 0.7 0.18 197 53.93 69 17.89 68 17.63 4.55 1.18 3.85 1.00
12 9/11/80 3.37 8.4 0.092 89 20.13 0 0 1.0 0.23 0.4 0.09 208 47.05 71 16.06 78 17.64 3.70 0.84 5.80 1.31
13 9/27/80 3.37 8.5 0.087 104 22.08 0 0 1.0 0.21 0.4 0.09 191 40.56 74 15.71 72 15.29 4.20 0.89 6.64 1.41
14 10/16/80 3.23 8.9 0.080 102 19.97 0 0 1.0 0.20 0.2 0.04 214 41.89 69 13.51 89 17.42 4.40 0.86 7.09 1.39
15 11/7/80 3.41 8.9 0.072 97 17.16 0 0 0.9 0.16 0.4 0.07 225 39.80 74 13.09 99 17.51 4.90 0.87 7.39 1.31
16 11/30/80 3.31 7.8 0.065 109 17.35 0 0 0.9 0.14 0.1 0.02 218 34.70 77 12.26 95 15.12 4.65 0.74 6.60 1.05
17 12/8/80 3.24 6.9 0.065 108 17.19 0 0 1.2 0.19 0.5 0.08 232 36.93 90 14.33 96 15.28 5.90 0.94 9.40 1.50
18 1/5/81 3.36 6.9 0.052 113 14.36 0 0 1.1 0.14 0.3 0.04 231 29.35 77 9.78 142 18.04 5.70 0.72 9.44 1.20
19 1/19/81 3.17 7.3 0.046 106 11.93 0 0 1.2 0.14 0.3 0.03 215 24.20 77 8.67 127 14.30 6.70 0.75 8.37 0.94
20 1/31/81 3.32 7.3 0.046 104 11.71 0 0 1.2 0.14 0.3 0.03 215 24.20 78 8.78 115 12.94 6.90 0.78 8.03 0.90
21 2/19/81 3.70 6.2 0.363 42 37.30 0 0 0.5 0.44 0.2 0.18 110 97.69 44 39.08 39 34.64 1.95 1.73 0.70 0.62
22 3/8/81 3.36 7.8 0.425 66 68.56 0 0 1.5 1.56 0.1 0.10 158 164.12 46 47.78 49 50.90 2.72 2.82 3.77 3.92
23 3/21/81 3.29 8.1 0.249 83 50.52 0 0 1.5 0.91 0.2 0.12 85 51.74 46 28.00 59 35.91 1.99 1.21 1.79 1.09
24 4/11/81 3.21 8.7 0.226 71 39.26 0 0 1.2 0.66 0.6 0.33 125 69.12 70 38.71 53 29.31 2.62 1.45 1.76 0.97
25 4/30/81 3.46 8.3 0.325 101 80.34 0 0 1.3 1.03 0.3 0.24 150 119.31 52 41.36 64 50.91 3.18 2.53 4.35 3.46
26 5/16/81 3.49 8.3 0.446 140 152.90 0 0 1.2 1.31 0.2 0.22 144 157.27 48 52.42 57 62.25 2.35 2.57 3.23 3.53
27 5/29/81 3.32 8.6 0.325 70 55.68 0 0 1.4 1.11 0.2 0.16 144 114.54 49 38.98 67 53.29 2.07 1.65 3.89 3.09
28 6/18/81 3.41 8.9 0.198 71 34.33 0 0 1.2 0.58 0.2 0.10 165 79.79 56 27.08 66 31.92 2.76 1.34 4.87 2.36
29 6/30/81 3.32 8.7 0.198 79 38.20 0 0 1.1 0.53 0.2 0.10 170 82.21 55 26.60 72 34.82 2.38 1.15 m.v. m.v.
30 7/13/81 3.27 8.2 0.172 80 33.57 0 0 1.2 0.50 0.7 0.29 171 71.76 54 22.26 74 31.06 2.52 1.06 3.81 1.60
31 7/30/81 3.29 8.6 0.136 87 29.03 0 0 1.1 0.37 0.2 0.07 165 55.06 64 21.36 75 25.03 4.65 1.55 4.80 1.60
32 8/30/81 3.32 9.2 0.106 96 24.89 0 0 1.1 0.29 0.4 0.10 143 37.08 62 16.08 83 21.52 4.80 1.25 6.96 1.81
33 9/29/81 3.13 8.4 0.072 95 16.81 0 0 1.2 0.21 1.0 0.18 211 37.33 60 10.62 103 18.22 6.20 1.10 6.96 1.23
34 10/15/81 3.07 8.9 0.065 114 18.15 0 0 1.3 0.21 0.7 0.11 223 35.50 70 11.14 94 14.96 5.95 0.95 6.52 1.04
35 10/29/81 3.24 8.3 0.066 151 24.50 0 0 1.2 0.19 0.8 0.13 221 35.82 70 11.34 99 16.04 4.60 0.75 5.16 0.84
36 11/23/81 3.22 7.7 0.106 101 26.19 0 0 1.5 0.39 0.5 0.13 231 59.90 64 16.59 99 25.67 4.56 1.18 7.34 1.90
37 12/8/81 3.04 7.8 0.106 111 28.78 0 0 1.6 0.42 0.4 0.10 225 58.34 66 17.11 97 25.41 5.60 1.45 7.09 1.84
38 12/16/81 3.11 7.7 0.106 107 27.74 0 0 1.8 0.47 1.5 0.39 223 57.82 62 16.08 99 25.67 4.50 1.17 6.64 1.72
39 1/6/82 3.27 7.9 0.159 120 46.77 0 0 1.6 0.62 0.3 0.12 212 82.62 61 23.77 81 31.57 4.75 1.85 6.57 2.56
40 1/14/82 3.59 m.v. 0.184 64 28.86 0 0 0.8 0.36 0.4 0.18 122 55.01 61 27.51 40 18.04 1.98 0.89 3.05 1.38
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41 2/23/82 3.21 6.5 0.257 133 83.52 0 0 1.7 1.07 0.5 0.31 167 104.87 m.v. m.v. m.v. m.v. m.v. m.v. m.v. m.v.
42 3/2/82 3.15 7.8 0.226 94 51.98 0 0 1.4 0.77 0.5 0.28 179 98.98 58 32.07 82 45.34 2.57 1.42 3.40 1.88
43 3/31/82 3.36 8.5 0.565 57 78.85 0 0 1.0 1.38 0.3 0.42 128 177.07 53 73.32 39 53.95 1.61 2.23 1.90 2.63
44 5/6/82 3.38 8.5 0.363 68 60.39 0 0 1.2 1.07 0.6 0.53 125 111.01 48 42.63 65 57.73 1.88 1.67 1.28 1.14
45 5/19/82 3.28 m.v. 0.338 65 53.77 0 0 1.0 0.83 0.6 0.50 98 81.06 51 42.19 67 55.42 m.v. m.v. m.v. m.v.
46 5/26/82 3.34 m.v. 0.319 60 46.83 0 0 0.9 0.70 0.4 0.31 134 104.59 48 37.47 55 42.93 1.91 1.49 3.40 2.65
47 6/2/82 3.30 m.v. 0.290 58 41.11 0 0 1.0 0.71 0.2 0.14 134 94.97 52 36.85 52 36.85 2.01 1.43 1.75 1.24
48 6/10/82 3.47 m.v. 0.565 50 69.17 0 0 0.8 1.11 0.4 0.55 119 164.62 44 60.87 74 102.37 1.57 2.17 2.90 4.01
49 6/11/82 3.42 9.0 0.516 57 71.93 0 0 1.2 1.51 0.4 0.51 134 169.10 44 55.52 53 66.88 1.61 2.03 2.98 3.76
50 6/16/82 3.31 9.0 0.516 59 74.45 0 0 1.1 1.39 0.2 0.25 128 161.53 48 60.57 69 87.07 1.62 2.04 2.94 3.71
51 6/25/82 3.27 9.0 0.383 59 55.27 0 0 1.1 1.03 0.3 0.28 144 134.89 47 44.03 72 67.45 1.67 1.56 3.26 3.05
52 6/30/82 3.29 m.v. 0.325 60 47.72 0 0 0.9 0.72 0.2 0.16 128 101.81 47 37.38 49 38.97 1.76 1.40 3.56 2.83
53 7/1/82 3.33 9.5 0.307 64 48.09 0 0 1.2 0.90 0.3 0.23 116 87.15 46 34.56 55 41.32 2.01 1.51 3.59 2.70
54 7/8/82 3.35 9.0 0.243 64 38.05 0 0 1.1 0.65 0.2 0.12 146 86.80 45 26.75 49 29.13 1.84 1.09 4.06 2.41
55 7/16/82 3.36 9.7 0.193 79 37.30 0 0 0.7 0.33 0.1 0.05 151 71.30 m.v. m.v. m.v. m.v. 2.30 1.09 m.v. m.v.
56 7/28/82 3.26 m.v. 0.157 67 25.74 0 0 0.9 0.35 0.3 0.12 137 52.62 53 20.36 55 21.13 2.45 0.94 4.29 1.65
57 8/6/82 3.25 m.v. 0.136 69 22.96 0 0 1.0 0.33 0.3 0.10 165 54.90 58 19.30 72 23.96 2.68 0.89 4.67 1.55
58 8/12/82 3.16 9.0 0.125 97 29.66 0 0 0.9 0.28 0.1 0.03 178 54.44 m.v. m.v. m.v. m.v. 2.83 0.87 4.68 1.43
59 8/17/82 3.24 m.v. 0.115 74 20.82 0 0 0.8 0.23 0.0 0.00 184 51.77 59 16.60 83 23.35 2.80 0.79 m.v. m.v.
60 8/26/82 3.20 10.3 0.106 80 20.75 0 0 0.8 0.21 0.4 0.10 158 40.98 63 16.34 84 21.78 3.27 0.85 5.43 1.41
61 9/12/82 3.19 10.0 0.089 86 18.73 0 0 0.7 0.15 0.7 0.15 158 34.40 61 13.28 71 15.46 3.61 0.79 6.26 1.36
62 10/2/82 3.21 9.6 0.073 102 18.22 0 0 0.9 0.16 0.2 0.04 220 39.29 67 11.97 67 11.97 3.45 0.62 6.98 1.25
63 10/16/82 3.14 8.6 0.068 104 17.30 0 0 1.0 0.17 0.2 0.03 215 35.77 74 12.31 77 12.81 3.61 0.60 6.96 1.16
64 10/30/82 3.20 10.0 0.065 110 17.49 0 0 0.5 0.08 0.1 0.02 206 32.76 74 11.77 103 16.38 3.79 0.60 7.94 1.26
65 11/5/82 3.18 m.v. 0.058 104 14.76 0 0 0.3 0.04 0.1 0.01 233 33.06 84 11.92 116 16.46 4.04 0.57 m.v. m.v.
66 11/24/82 3.18 7.4 0.046 114 12.83 0 0 1.0 0.11 0.1 0.01 250 28.14 74 8.33 114 12.83 4.55 0.51 8.29 0.93
67 12/16/82 3.24 8.6 0.040 120 11.74 0 0 1.1 0.11 0.3 0.03 256 25.05 72 7.05 103 10.08 4.68 0.46 9.05 0.89
68 1/8/83 3.15 7.8 0.052 114 14.50 0 0 0.8 0.10 0.2 0.03 262 33.33 80 10.18 102 12.98 4.30 0.55 9.40 1.20
69 2/5/83 3.27 6.8 0.198 81 39.24 0 0 1.1 0.53 0.3 0.15 103 49.90 63 30.52 64 31.00 3.09 1.50 7.88 3.82
70 3/1/83 3.18 m.v. 0.125 103 31.50 0 0 1.5 0.46 0.3 0.09 220 67.28 71 21.71 122 37.31 3.40 1.04 6.78 2.07
71 4/6/83 3.25 8.3 0.361 72 63.59 0 0 2.0 1.77 0.7 0.62 165 145.73 50 44.16 58 51.23 1.54 1.36 3.89 3.44
72 4/23/83 3.25 8.9 0.493 69 83.23 0 0 1.5 1.81 0.4 0.48 145 174.89 45 54.28 48 57.90 1.84 2.22 3.22 3.88
73 5/5/83 3.24 8.5 0.538 86 113.20 0 0 1.2 1.58 0.4 0.53 112 147.42 39 51.33 44 57.92 2.68 3.53 3.62 4.76
74 5/10/83 3.30 m.v. 0.495 67 81.14 0 0 1.1 1.33 0.4 0.48 125 151.38 40 48.44 38 46.02 1.61 1.95 3.02 3.66
75 5/20/83 3.31 9.4 0.470 62 71.29 0 0 0.9 1.03 0.4 0.46 99 113.84 38 43.70 52 59.79 1.71 1.97 3.11 3.58
76 5/31/83 3.15 8.6 0.379 67 62.13 0 0 1.3 1.21 0.2 0.19 100 92.73 48 44.51 58 53.78 2.49 2.31 4.05 3.76
77 6/14/83 3.21 8.9 0.244 74 44.18 0 0 1.0 0.60 0.3 0.18 110 65.67 51 30.45 51 30.45 2.50 1.49 4.98 2.97
78 6/30/83 3.22 8.9 0.163 73 29.11 0 0 1.3 0.52 0.3 0.12 167 66.60 65 25.92 48 19.14 2.10 0.84 5.04 2.01
79 7/16/83 3.24 9.6 0.138 93 31.40 0 0 1.1 0.37 0.3 0.10 156 52.67 61 20.60 70 23.63 2.99 1.01 5.66 1.91
80 8/2/83 3.16 11.7 0.106 94 24.38 0 0 1.1 0.29 0.5 0.13 164 42.53 68 17.64 79 20.49 3.19 0.83 8.68 2.25
81 8/5/83 3.19 m.v. 0.106 83 21.53 0 0 1.0 0.26 0.2 0.05 202 52.39 65 16.86 74 19.19 2.71 0.70 6.96 1.80
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82 8/14/83 3.19 10.0 0.104 93 23.66 0 0 1.3 0.33 0.9 0.23 206 52.42 63 16.03 79 20.10 3.40 0.87 6.76 1.72

max 3.70 11.7 0.565 151 152.90 0 0 2.0 1.81 1.5 0.62 262 177.07 90 73.32 142 102.37 6.90 3.53 9.44 4.76
min 3.04 6.2 0.040 42 11.71 0 0 0.3 0.04 0.0 0.00 85 24.20 38 7.05 38 10.08 1.54 0.46 0.70 0.3
Avg 3.28 8.6 0.216 86 40.25 0 0 1.1 0.59 0.4 0.18 169 77 60 27.5 73.6 32.4 3.2 1.3 5.1 2.1
Med 3.27 8.6 0.161 85 32.81 0 0 1.1 0.44 0.3 0.13 165 60.08 61 21.71 70 25.7 2.76 1.17 4.8 1.76
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Arnot 004
ROW DATE Dischg pH TEMP ACID ACIDLD ALK ALKLD TFE TFELD FE FELD SO4 SO4LD CA CALD MG MGLD MN MNLD AL ALLD
1 1/28/80 0.383 3.36 m.v. 76 71.31 0.0 0.0 1.2 1.13 0.8 0.75 143 134.18 m.v. m.v. m.v m.v m.v m.v m.v m.v
2 2/29/80 0.273 3.32 8.8 152 101.48 0.0 0.0 1.0 0.67 0.4 0.27 160 106.82 m.v. m.v. m.v m.v m.v m.v m.v m.v
3 3/31/80 0.9 3.46 m.v. 67 147.50 0.0 0.0 1.5 3.30 0.4 0.88 138 303.80 m.v. m.v. m.v m.v m.v m.v m.v m.v
4 4/22/80 1.646 3.38 8.4 71 285.94 0.0 0.0 1.0 4.03 0.4 1.61 136 547.71 m.v. m.v. m.v m.v 2.06 8.30 4.10 16.51
5 5/10/80 1.745 3.22 8.4 70 298.84 0.0 0.0 0.9 3.84 0.2 0.85 128 546.45 46 196.38 46 196.38 1.94 8.28 4.80 20.49
6 5/31/80 1.255 3.22 8.5 75 230.26 0.0 0.0 0.9 2.76 0.3 0.92 150 460.52 44 135.09 50 153.51 2.09 6.42 4.51 13.85
7 6/18/80 0.9 3.32 8.6 100 220.14 0.0 0.0 0.9 1.98 0.5 1.10 169 377.04 58 127.68 52 114.47 3.00 6.60 7.62 16.78
8 6/30/80 0.446 3.36 8.9 79 86.20 0.0 0.0 0.9 0.98 0.2 0.22 167 182.22 52 56.74 53 57.83 2.35 2.56 7.06 7.70
9 7/19/80 0.319 3.21 8.9 103 80.50 0.0 0.0 0.6 0.47 0.5 0.39 162 126.62 54 42.21 59 46.11 1.96 1.53 3.67 2.87
10 8/12/80 0.241 3.25 8.9 112 65.92 0.0 0.0 1.1 0.65 1.1 0.65 163 95.94 59 34.73 65 38.26 2.54 1.50 5.96 3.51
11 8/27/80 0.209 3.25 9.0 107 54.65 0.0 0.0 1.0 0.51 0.8 0.41 171 87.33 58 29.62 57 29.11 2.38 1.22 5.80 2.96
12 9/11/80 0.178 3.12 9.0 98 42.78 0.0 0.0 1.2 0.52 0.5 0.22 167 72.89 59 25.75 63 27.50 2.36 1.03 7.99 3.49
13 9/27/80 0.136 3.28 8.8 114 37.91 0.0 0.0 1.2 0.40 0.6 0.20 135 44.89 58 19.29 67 22.28 2.63 0.88 2.33
14 10/16/80 0.209 3.16 9.1 118 60.26 0.0 0.0 1.3 0.66 0.6 0.31 186 94.99 61 31.15 72 36.77 3.40 1.74 8.75 4.47
15 11/7/80 0.15 3.32 9.0 115 42.11 0.0 0.0 1.3 0.48 0.4 0.15 230 84.22 62 22.70 94 34.42 4.00 1.46 10.25 3.75
16 11/30/80 0.122 3.29 7.4 131 39.30 0.0 0.0 1.6 0.48 0.4 0.12 242 72.60 65 19.50 82 24.60 2.73 0.82 5.78 1.73
17 12/18/80 0.15 3.17 6.3 130 47.60 0.0 0.0 1.8 0.66 0.5 0.18 206 75.43 79 28.93 73 26.73 5.10 1.87 9.46 3.46
18 1/5/81 0.15 3.29 6.1 137 50.17 0.0 0.0 1.7 0.62 0.5 0.18 251 91.91 62 22.70 109 39.91 4.00 1.47 9.38 3.44
19 1/31/81 0.123 3.11 6.9 122 36.60 0.0 0.0 1.9 0.57 0.4 0.12 181 54.30 60 18.00 102 30.60 6.50 1.95 11.38 3.41
20 2/19/81 0.274 3.40 8.1 88 58.96 0.0 0.0 0.9 0.60 0.2 0.13 132 88.43 50 33.50 73 48.91 1.83 1.23 1.41 0.94
21 3/8/81 0.718 3.35 8.1 70 123.06 0.0 0.0 1.4 2.46 0.1 0.18 160 281.28 44 77.35 58 101.97 2.61 4.59 5.56 9.78
22 3/21/81 0.563 3.33 7.8 80 110.19 0.0 0.0 1.3 1.79 0.2 0.28 145 199.71 40 55.09 75 103.30 1.92 2.64 3.40 4.68
23 4/11/81 0.459 3.41 8.7 78 87.67 0.0 0.0 1.4 1.57 0.3 0.34 169 189.95 53 59.57 67 75.31 2.33 2.62 4.35 4.89
24 4/30/81 0.584 3.41 8.1 140 200.19 0.0 0.0 1.9 2.72 0.3 0.43 177 253.09 52 74.36 54 77.22 2.82 4.03 5.02 7.18
25 5/16/81 0.765 3.44 8.1 168 314.49 0.0 0.0 1.5 2.81 0.3 0.56 147 275.18 48 89.86 68 127.30 1.91 3.58 5.18 9.70
26 5/29/81 0.673 3.32 8.6 77 126.77 0.0 0.0 1.5 2.47 0.2 0.33 121 199.20 52 85.61 48 79.02 2.03 3.34 5.01 8.25
27 6/18/81 0.459 3.39 8.9 72 80.93 0.0 0.0 1.2 1.35 0.2 0.23 193 216.93 56 62.94 67 75.31 2.24 2.52 6.92 7.78
28 6/30/81 0.42 3.35 8.7 82 84.24 0.0 0.0 1.3 1.34 0.2 0.21 166 170.54 51 52.39 56 57.53 2.10 2.16 m.v m.v
29 7/13/81 0.381 3.36 8.5 111 103.62 0.0 0.0 1.3 1.21 0.5 0.47 159 148.42 50 46.67 64 59.74 2.14 2.00 6.47 3.99
30 7/28/81 0.223 3.31 8.5 103 86.78 0.0 0.0 1.6 1.35 0.4 0.34 143 120.49 52 43.81 82 69.09 2.88 2.43 5.46 4.60
31 8/30/81 0.209 3.28 9.7 100 51.07 0.0 0.0 1.8 0.92 0.5 0.26 198 101.12 55 28.09 63 32.17 3.55 1.81 8.00 4.09
32 9/29/81 0.15 3.10 8.1 111 40.65 0.0 0.0 1.5 0.55 0.4 0.15 185 67.74 58 21.24 103 37.72 4.55 1.67 8.55 3.13
33 10/15/81 0.136 3.00 8.2 124 41.24 0.0 0.0 1.6 0.53 1.4 0.47 211 70.17 64 21.28 92 30.60 4.85 1.61 8.55 2.84
34 10/29/81 0.136 3.19 8.2 137 45.56 0.0 0.0 1.6 0.53 1.1 0.37 222 73.83 57 18.96 110 36.58 4.35 1.45 9.09 3.02
35 11/23/81 0.198 3.19 6.8 126 61.18 0.0 0.0 1.9 0.92 0.5 0.24 235 114.10 58 28.16 96 46.61 4.24 1.06 7.04 3.42
36 12/8/81 0.209 3.19 7.9 133 67.92 0.0 0.0 2.0 1.02 0.5 0.26 221 112.87 56 28.60 77 39.32 4.45 2.27 8.30 4.24
37 12/16/81 0.257 3.15 7.6 121 76.09 0.0 0.0 2.1 1.32 1.1 0.69 204 128.29 54 33.96 83 52.20 3.55 2.23 9.12 5.74
38 1/6/82 0.308 3.16 7.0 131 98.86 0.0 0.0 2.1 1.59 0.6 0.45 196 147.92 53 40.00 74 55.85 4.40 3.32 7.74 5.84
39 1/14/82 0.247 3.46 m.v. 69 64.41 0.0 0.0 2.8 2.61 1.1 1.03 124 115.75 46 42.94 45 42.01 2.10 1.96 0.71 0.66
40 2/23/82 0.5 3.21 7.0 145 177.39 0.0 0.0 1.8 2.20 0.3 0.37 174 212.87 m.v. m.v. m.v. m.v m.v. m.v m.v m.v
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ROW DATE Dischg pH TEMP ACID ACIDLD ALK ALKLD TFE TFELD FE FELD SO4 SO4LD CA CALD MG MGLD MN MNLD AL ALLD
41 3/2/82 0.5 3.17 7.8 97 118.67 0.0 0.0 1.3 1.59 0.4 0.49 168 205.53 49 59.95 70 85.64 1.97 2.41 4.83 4.83
42 3/31/82 1.115 3.30 8.2 73 199.17 0.0 0.0 0.9 2.46 0.4 1.09 140 381.97 46 125.50 59 160.97 1.38 3.77 9.39 9.39
43 5/6/82 0.765 3.40 8.2 65 121.68 0.0 0.0 1.2 2.25 0.8 1.50 144 269.57 49 91.73 42 78.62 1.72 3.22 3.81 7.13
44 5/19/82 0.628 3.25 m.v. 73 112.19 0.0 0.0 1.1 1.69 0.8 1.23 135 207.48 46 70.70 65 99.90 m.v. m.v m.v m.v
45 5/26/82 0.563 3.28 m.v. 64 88.15 0.0 0.0 1.0 1.38 0.3 0.41 125 172.17 48 66.11 64 88.15 1.90 2.62 3.68 5.07
46 6/2/82 0.584 3.27 m.v. 66 94.37 0.0 0.0 0.9 1.29 0.3 0.43 130 185.89 50 71.50 61 87.22 1.85 2.65 4.44 6.35
47 6/10/82 0.971 3.46 m.v. 64 235.27 0.0 0.0 0.9 3.31 0.3 1.10 131 481.57 40 147.04 72 264.68 1.65 6.07 3.64 13.38
48 6/11/82 0.755 3.38 9.0 79 225.82 0.0 0.0 1.1 3.14 0.4 1.14 138 394.47 44 125.77 52 148.64 1.80 5.15 3.81 10.89
49 6/16/82 0.96 3.29 8.8 71 166.80 0.0 0.0 1.1 2.58 0.2 0.47 142 333.60 53 124.51 58 136.26 1.77 4.16 4.02 9.44
50 6/25/82 0.814 3.27 9.0 73 145.14 0.0 0.0 1.1 2.19 0.3 0.60 159 316.12 56 111.34 60 119.29 1.78 3.54 4.06 8.07
51 6/30/82 0.861 3.30 m.v. 69 145.35 0.0 0.0 1.0 2.11 0.4 0.84 145 305.22 45 94.79 63 132.71 1.80 3.79 4.23 8.91
52 7/1/82 0.718 3.34 9.5 64 112.51 0.0 0.0 1.1 1.93 0.3 0.53 103 181.08 51 89.66 42 73.84 1.76 3.09 4.20 7.38
53 7/8/82 0.656 3.31 8.0 66 105.93 0.0 0.0 1.1 1.77 0.2 0.32 140 224.69 52 84.36 43 69.01 2.01 3.23 3.93 6.31
54 7/16/82 0.534 3.39 9.2 74 96.68 0.0 0.0 0.7 0.91 0.3 0.39 137 178.99 54 70.55 47 61.40 1.90 2.48 4.30 6.27
55 7/28/82 0.441 3.32 9.7 81 87.39 0.0 0.0 0.9 0.97 0.3 0.32 145 156.43 54 58.26 43 46.39 2.90 2.05 5.06 5.46
56 8/6/82 0.397 3.28 m.v. 64 62.16 0.0 0.0 0.9 0.87 0.3 0.29 153 148.61 50 48.56 60 58.28 2.09 2.03 5.62 5.46
57 8/12/82 0.366 3.20 9.0 96 85.96 0.0 0.0 0.9 0.81 0.3 0.27 200 179.09 m.v. m.v. m.v. m.v 2.04 1.83 5.26 4.71
58 8/17/82 0.344 3.28 m.v. 72 60.60 0.0 0.0 0.8 0.67 0.0 0.00 168 141.39 55 46.29 60 50.50 2.17 1.83 m.v m.v
59 8/26/82 0.289 3.24 9.4 80 56.57 0.0 0.0 0.8 0.57 0.4 0.28 175 123.64 72 50.91 51 36.06 2.46 1.74 6.15 4.35
60 9/12/82 0.231 3.22 10.3 100 56.52 0.0 0.0 0.8 0.45 0.8 0.45 187 105.69 52 29.39 75 42.39 2.69 1.52 6.96 3.93
61 10/2/82 0.173 3.21 10.7 115 48.67 0.0 0.0 1.1 0.47 0.1 0.04 256 108.35 63 26.67 63 26.67 2.79 1.18 8.03 3.40
62 10/16/82 0.16 3.91 9.2 136 53.24 0.0 0.0 1.3 0.51 0.4 0.16 184 72.03 60 23.49 86 33.67 3.04 1.19 8.40 3.29
63 10/30/82 0.158 3.18 9.7 124 47.93 0.0 0.0 0.6 0.23 0.3 0.12 219 84.66 63 24.35 75 28.99 3.18 1.23 9.57 3.70
64 11/5/82 0.139 3.14 m.v. 121 41.15 0.0 0.0 0.6 0.20 0.1 0.03 221 75.16 62 21.08 101 34.35 3.27 1.11 m.v m.v
65 11/24/82 0.133 3.12 7.8 132 42.95 0.0 0.0 1.2 0.39 0.2 0.07 m.v. m.v. 60 19.52 99 32.21 3.83 1.25 9.40 3.06
66 12/16/82 0.135 3.18 8.3 127 41.95 0.0 0.0 1.5 0.50 0.5 0.17 268 88.52 65 21.47 102 33.69 3.72 1.23 12.90 4.26
67 1/8/83 0.186 3.13 6.9 112 50.97 0.0 0.0 1.5 0.68 0.3 0.14 262 119.23 61 27.76 103 46.87 3.61 1.64 13.50 6.14
68 2/5/83 0.295 3.12 6.4 125 90.22 0.0 0.0 1.9 1.37 0.8 0.58 200 144.35 65 46.91 67 48.36 3.40 2.45 13.56 9.79
69 3/1/83 0.351 3.17 m.v. 115 100.47 0.0 0.0 1.6 1.37 0.6 0.52 227 194.94 62 53.24 80 68.70 3.09 2.65 9.05 7.77
70 4/6/83 0.979 3.20 8.3 95 227.54 0.0 0.0 1.7 4.07 0.3 0.72 166 397.60 49 117.37 74 177.25 1.20 2.87 4.26 10.20
71 4/23/83 1.501 3.23 8.6 77 282.77 0.0 0.0 1.3 4.77 0.3 1.10 213 782.21 44 161.58 17 62.43 2.72 9.99 5.30 19.46
72 5/5/83 1.838 3.13 8.4 128 575.59 0.0 0.0 2.1 9.44 0.7 3.15 207 930.84 39 175.38 54 242.83 3.40 15.29 6.15 27.66
73 5/10/83 1.574 3.29 m.v. 67 258.01 0.0 0.0 1.0 3.85 0.3 1.16 100 385.09 39 150.19 51 196.40 2.03 7.82 4.25 16.37
74 5/20/83 1.358 3.94 8.9 62 205.99 0.0 0.0 0.8 2.66 0.2 0.66 86 285.73 39 129.58 74 145.86 1.98 6.58 4.28 14.22
75 5/31/83 1.07 3.17 8.3 67 175.40 0.0 0.0 1.0 2.62 0.1 0.26 150 392.68 49 128.27 56 146.60 2.62 6.86 4.92 12.88
76 6/14/83 0.787 3.25 8.6 74 142.48 0.0 0.0 0.9 1.73 0.2 0.39 148 284.97 48 92.42 48 92.42 2.18 4.20 5.90 11.36
77 6/30/83 0.587 3.28 9.0 73 104.84 0.0 0.0 0.9 1.29 0.2 0.29 152 218.29 69 99.09 50 71.81 2.12 3.04 5.10 7.32
78 7/16/83 0.488 3.30 9.6 92 109.84 0.0 0.0 1.0 1.19 0.3 0.36 160 191.03 56 66.86 92 109.84 2.43 2.90 6.04 7.21
79 8/2/83 0.417 3.18 9.4 97 98.96 0.0 0.0 1.0 1.02 0.3 0.31 167 170.38 66 67.34 65 66.31 2.59 2.64 6.92 7.06
80 8/5/83 0.403 3.23 m.v. 83 81.84 0.0 0.0 1.0 0.99 0.2 0.20 224 220.86 61 60.14 64 63.10 2.80 2.76 7.39 7.29
81 8/14/83 0.362 3.23 9.4 100 88.57 0.0 0.0 1.2 1.06 0.2 0.18 202 178.90 60 53.14 69 61.11 2.71 2.40 9.40 8.33
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ROW DATE Dischg pH TEMP ACID ACIDLD ALK ALKLD TFE TFELD FE FELD SO4 SO4LD CA CALD MG MGLD MN MNLD AL ALLD

max 1.84 3.94 10.70 168.00 575.59 0.00 0.00 2.80 9.44 1.40 3.15 268.00 930.84 79.00 196.38 110.00 264.68 6.50 15.29 13.56 27.66
min 0.12 3.00 6.10 62.00 36.60 0.00 0.00 0.60 0.20 0.00 0.00 86.00 44.89 39.00 18.00 17.00 22.28 1.20 0.82 0.71 0.66
Avg 0.53 3.28 8.47 96.99 115.40 0.00 0.00 1.26 1.60 0.42 0.49 171.80 210.83 54.29 65.17 67.68 76.74 2.71 3.09 6.45 7.17
Med 0.40 3.28 8.60 96.00 88.15 0.00 0.00 1.20 1.29 0.30 0.36 166.50 175.54 54.00 53.24 65.00 61.11 2.45 2.44 5.85 5.84
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Statistical Analysis of Abandoned Mine Drainage in the Assessment of Pollution Load

C-1

CLARION
ROW DATE pH DISCH ACID TOT. FE FFE SO4

1 2/16/82 3.38 - 189 14.0 9.0 344
2 3/17/82 3.51 - 139 9.8 8.7 296
3 3/30/82 2.90 10.32 1102 33.5 32.1 1611
4 4/12/82 3.13 40.84 607 38.6 27.8 1002
5 4/22/82 2.83 9.43 1038 83.2 30.5 1401
6 5/11/82 2.95 3.59 719 73.9 17.1 1681
7 5/26/82 2.77 9.43 644 85.7 32.6 1406
8 6/9/82 2.78 5.39 793 85.0 32.4 1748
9 6/23/82 3.19 3.60 943 94.6 55.8 1350

10 7/7/82 2.74 0.20 1197 108.0 50.6 1935
11 7/21/82 2.74 3.60 951 97.1 41.9 2064
12 8/3/82 2.83 12.21 708 111.0 61.0 1656
13 8/30/82 2.95 0.45 819 90.0 29.5 1436
14 9/17/82 3.22 0.45 480 72.0 60.6 1114
15 9/27/82 3.20 6.70 317 32.5 0.9 880
16 10/12/82 3.11 1.35 411 46.4 8.6 1294
17 10/26/82 3.17 0.20 441 60.0 22.5 2861
18 11/8/82 3.14 3.60 401 16.0 12.0 1068
19 11/24/82 3.27 14.80 299 45.0 30.6 797
20 12/28/82 3.15 22.00 495 85.5 56.5 1462
21 1/12/83 3.16 9.40 910 182.0 112.0 2436
22 1/26/83 3.12 8.50 985 185.0 101.0 2203
23 2/9/83 3.16 3.60 968 174.0 116.0 1844
24 2/23/83 3.04 5.40 744 129.0 42.0 1355
25 3/9/83 3.04 4.00 850 129.0 34.0 1619
26 4/5/83 3.12 8.50 630 133.0 43.0 1488
27 4/19/83 3.01 9.40 598 137.0 86.0 1870
28 5/10/83 2.94 7.63 990 165.0 69.0 2397
29 5/24/83 2.95 20.20 795 131.0 86.0 1934
30 6/15/83 2.67 0.17 1247 136.0 66.7 2134
31 7/6/83 2.78 4.04 1383 215.0 92.3 3241
32 7/19/83 2.78 2.70 1205 257.0 105.0 2216
33 8/10/83 3.03 5.40 954 182.0 93.0 2275
34 8/23/83 2.88 0.10 985 174.0 119.0 2682
35 9/7/83 2.92 3.60 469 98.4 43.3 1175
36 10/13/83 3.03 5.40 663 102.0 47.0 1652
37 10/26/83 2.76 6.70 636 86.4 25.0 1642
38 11/9/83 3.00 1.30 584 112.0 26.5 1623
39 11/21/83 3.25 12.60 201 73.5 50.0 859
40 12/8/83 3.29 14.60 570 115.0 89.0 1193



Appendix C

ROW DATE pH DISCH ACID TOT. FE FFE SO4

C-2

41 12/20/83 3.18 9.40 992 194.0 136.0 2000
42 1/5/84 3.26 12.21 954 153.0 131.0 2002
43 1/27/84 5.23 - 528 86.0 32.0 1316
44 2/15/84 3.27 - 451 70.0 22.0 1178
45 2/28/84 3.24 - 746 108.0 66.5 1757
46 3/19/84 3.16 - 518 86.0 47.0 1372
47 3/27/84 3.04 - 588 91.0 32.0 1544
48 4/12/84 2.90 - 682 90.0 27.5 1722
49 4/25/84 3.06 - 386 24.0 4.5 839
50 5/8/84 3.03 - 487 67.6 17.0 1250
51 5/22/84 3.09 6.30 359 36.5 25.5 708
52 6/6/84 3.29 6.70 234 54.0 39.0 1367
53 6/27/84 5.68 36.30 255 75.0 73.5 1837
54 7/11/84 5.28 30.50 147 45.0 40.0 980
55 8/8/84 4.66 20.20 416 134.0 132.0 1822
56 8/21/84 5.58 - 182 75.0 55.0 2064
57 9/5/84 6.03 - 19 38.5 33.5 1753
58 10/3/84 4.52 - 265 58.0 46.5 1501
59 10/16/84 4.05 4.00 176 36.0 17.0 1672
60 11/1/84 4.49 5.40 160 27.0 21.0 1572
61 11/14/84 4.70 14.80 175 43.0 36.5 1624
62 11/28/84 5.76 83.93 46 25.0 10.0 556
63 12/12/84 4.79 2.69 160 48.6 41.4 721
64 12/27/84 5.23 36.36 50 20.0 15.6 426
65 1/10/85 4.66 - 378 106.0 97.0 1701
66 2/27/85 4.60 - 289 69.0 64.0 1082
67 3/12/85 5.11 - 60 22.0 9.0 356
68 3/24/85 4.23 - 306 46.0 46.0 1322
69 4/10/85 3.75 28.56 232 36.0 32.2 975
70 4/23/85 3.03 5.39 444 28.0 32.0 1881
71 4/24/85 3.75 28.56 23.2 36.0 32.2 975
72 5/2/85 3.16 6.23 499 78.5 59.0 1843
73 5/22/85 3.06 4.13 1546 62.0 27.0 1280
74 6/4/85 4.35 6.83 489 50.0 23.5 1960
75 7/1/85 5.25 172.00 147 12.5 12.5 17056
76 7/18/85 4.78 0.39 121 11.5 9.0 1580
77 7/31/85 5.33 5.37 164 133.0 33.9 1735
78 8/13/85 6.18 0.05 2 54.0 11.0 1313
79 8/28/85 6.43 0.09 1 102.0 12.0 941
80 9/10/85 6.12 14.82 17 8.7 7.8 617



Statistical Analysis of Abandoned Mine Drainage in the Assessment of Pollution Load

ROW DATE pH DISCH ACID TOT. FE FFE SO4

C-3

81 9/24/85 5.35 1.83 109 22.7 19.8 1528
82 10/22/85 4.88 12.21 165 29.0 27.0 1192
83 11/7/85 4.61 0.95 298 74.0 67.4 1029
84 11/19/85 4.02 9.13 327 76.5 73.5 1284
85 12/4/85 3.58 10.37 419 84.0 75.5 1566
86 12/18/85 3.68 12.48 592 116.0 114.0 1948
87 1/9/86 3.47 4.13 1080 146.0 143.0 2495
88 1/21/86 3.94 7.63 343 62.0 62.0 1258
89 2/3/86 3.69 14.82 370 70.0 64.0 1720
90 2/18/86 4.32 50.54 80 20.6 8.4 364
91 3/4/86 3.40 21.79 516 85.0 62.0 1501
92 4/1/86 2.87 5.40 648 118.0 104.0 2180
93 5/5/86 2.90 3.08 678 74.1 32.0 2100
94 6/2/86 3.00 2.62 508 66.5 30.1 2210
95 7/7/86 3.00 1.21 574 30.5 12.2 2130
96 8/4/86 2.90 12.21 478 96.7 73.0 2120

max 6.43 172.00 1546.00 257.00 143.00 3241.00
min 2.67 0.05 1.00 8.70 0.90 296.00
Avg 3.70 12.57 522.38 82.40 48.38 1528.30
Med 3.20 6.70 483.50 75.00 37.75 1569.00
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Statistical Analysis of Abandoned Mine Drainage in the Assessment of Pollution Load

D-1

ERNEST
ROW DATE DAYS PH FLOW ACID ACIDLD FE FELD FFE SO4 SO4LD

1 3/19/81 0 2.63 55 5219 3444 461 304 452 5410 3571
2 3/27/81 8 2.71 288 5111 17663 447 1544 440 5135 17746
3 3/30/81 11 2.67 229 4986 13701 444 1220 428 5174 14218
4 7/30/81 133 2.50 42 3082 1553 360 181 348 4445 2240
5 8/7/81 141 2.55 39 3564 1668 489 229 320 3552 1662
6 8/13/81 147 2.45 28 3716 1248 459 154 357 3981 1338
7 8/21/81 155 2.48 17 4070 830 500 102 410 4742 967
8 8/26/81 160 2.35 12 4314 621 619 89 419 3716 525
9 9/4/81 169 2.62 340 2165 8833 290 1183 177 3107 12676

10 9/18/81 183 2.53 47 3819 2153 391 221 184 3677 2074
11 9/30/81 195 2.36 20 4293 1030 519 125 399 2434 584
12 10/9/81 204 2.48 15 4267 768 584 105 339 5343 962
13 10/21/81 216 2.42 12 4900 706 674 97 450 4942 712
14 11/4/81 230 2.46 76 4300 3922 530 483 364 2304 2101
15 11/16/81 242 2.36 32 4698 1804 618 237 387 4842 1859
16 11/30/81 256 2.54 47 4375 2468 486 274 267 4977 2807
17 1/12/82 299 2.69 56 3592 2414 518 348 396 3963 2663
18 1/19/82 306 2.58 47 3858 2178 653 368 408 4031 2273
19 2/1/82 319 2.80 113 2470 3349 366 499 330 1873 2540
20 2/8/82 326 2.43 199 3940 9409 538 1285 520 2804 6696
21 2/23/83 341 2.62 189 2892 6559 463 1050 335 2573 5836
22 3/2/82 348 2.60 208 3004 7497 525 1310 438 3043 7595
23 3/17/82 363 2.54 340 3044 12419 594 2424 485 3025 12342
24 3/30/82 376 2.67 288 2757 9528 639 2208 556 2956 10216
25 5/3/82 410 2.60 94 2809 3169 705 795 642 2951 3329
26 5/10/82 417 2.63 81 2665 2590 694 675 634 2791 2713
27 5/17/82 424 2.63 51 3043 1962 660 403 576 3161 1935
28 5/24/82 431 2.54 42 2855 1439 615 310 518 4002 2017
29 6/8/82 446 2.58 113 2292 3108 278 377 160 2797 3793
30 6/21/82 459 2.55 42 2499 1259 377.2 190 221 2476 1248
31 6/28/82 466 2.49 51 2349 1438 362 222 226 2834 1734
32 7/12/82 480 2.50 39 3455 1617 540 253 319 3794 1776
33 7/19/82 487 2.53 28 3567 1199 596 200 393 4003 1345
34 7/26/82 494 2.48 17 4456 909 694 142 507 4593 937
35 8/2/82 501 2.42 15 4591 826 693 125 470 5125 923
36 8/9/82 508 2.30 6 4589 330 624 45 268 4395 316
37 8/16/82 515 2.26 3.5 4639 195 495 21 118 5208 219
38 8/23/82 522 2.24 3.5 4670 196 540 23 107 5803 244
39 8/31/82 530 2.27 3 5606 202 540 19 132 5114 184
40 1/3/83 655 2.30 3 4306 155 330 12 89 4617 166
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ROW DATE DAYS PH FLOW ACID ACIDLD FE FELD FFE SO4 SO4LD

D-2

41 1/10/83 662 2.40 7 3247 273 276 23 44 3570 300
42 1/17/83 669 2.30 4 4188 201 308 15 30 4256 205
43 2/14/83 697 2.40 8 3105 298 314 30 152 3159 304
44 2/22/83 705 2.50 8 3455 332 353 34 156 3666 352
45 2/28/83 711 2.30 7 3620 305 412 35 182 4298 362
46 3/8/83 719 2.50 15 3545 639 352 63 150 3630 654
47 3/14/83 725 2.40 8 1744 168 400 38 168 2650 255
48 3/22/83 733 2.40 26 2356 736 264 82 122 2860 894
49 3/28/83 739 2.50 75 1273 1147 306 276 121 2348 2116
50 4/4/83 746 2.50 56 1478 995 354 238 142 1619 1089
51 4/11/83 753 2.50 88 1620 1713 381 403 149 2369 2505
52 4/25/83 767 2.50 136 3109 5081 476 778 260 3104 5073
53 5/4/83 776 2.50 179 2872 6178 638 1372 448 3570 7679
54 5/9/83 781 2.50 199 3293 7875 780 1865 478 3745 8955
55 5/18/83 790 2.60 179 3866 8316 895 1925 792 4223 9084
56 5/23/83 795 2.60 252 2690 8146 705 2135 600 2820 8539
57 5/31/83 803 2.60 240 3028 8733 740 2134 700 4321 12461
58 6/7/83 810 2.60 161 3300 6384 820 1586 710 3867 7981
59 6/15/83 818 2.60 152 3060 5589 808 1476 659 2909 5313
60 6/20/83 823 2.60 113 2980 4046 845 1147 659 3260 4427
61 6/27/83 830 2.60 100 3195 3839 659 792 579 3338 4011
62 7/6/83 839 2.60 56 3893 2680 760 511 536 3681 2477
63 7/11/83 844 2.50 35 3350 1409 702 295 468 3256 1369
64 7/18/83 851 2.50 17 3706 758 630 129 435 4088 835
65 7/25/83 858 3.10 17 3559 727 536 109 311 3682 752
66 8/1/83 865 2.40 8 4045 4045 389 54 334 4288 412
67 8/8/83 872 2.10 4 4368 210 456 22 70 5621 270
68 8/15/83 879 2.30 4 4956 238 478 23 80 5283 254
69 8/22/83 886 2.30 3 4293 155 483 17 688 6115 220
70 8/29/83 893 2.20 7 4619 389 462 89 79 5347 450
71 9/6/83 901 2.20 4 4881 235 515 25 79 5389 259
72 9/12/83 907 2.30 8 5113 492 561 54 848 5141 494
73 9/19/83 914 2.30 4 4820 232 510 25 820 5982 288
74 9/26/83 921 2.30 4 4749 200 527 22 700 6014 253
75 10/3/83 928 2.30 3 4953 179 530 19 580 5932 214
76 10/11/83 936 2.30 6 5367 387 540 39 760 5738 414
77 10/17/83 942 2.30 8 4978 479 528 51 860 5657 544
78 10/24/83 949 2.30 4 4891 235 415 20 315 4896 235
79 10/31/83 956 2.30 4 4295 206 430 21 412 4953 238
80 11/14/83 970 2.30 6 3964 286 395 28 183 4459 321
81 11/21/83 977 2.40 6 3616 261 365 26 210 4812 347



Statistical Analysis of Abandoned Mine Drainage in the Assessment of Pollution Load

ROW DATE DAYS PH FLOW ACID ACIDLD FE FELD FFE SO4 SO4LD

D-3

82 11/29/83 985 2.40 23 2077 574 216 60 240 2329 644
83 12/5/83 991 2.70 81 1130 110 93 91 190 1139 1109
84 12/13/83 999 2.60 129 2664 4130 272 422 816 2686 4164
85 12/19/83 1005 2.50 100 2849 3424 278 334 1000 3080 3701
86 12/27/83 1013 2.50 12 3281 473 404 58 1760 3658 527
87 1/3/84 1020 2.60 40 3916 1882 778 373 332 4724 2271
88 1/17/84 1034 2.60 85 5084 5193 855 873 798 5685 5807
89 1/23/84 1040 2.60 50 4954 2977 815 490 810 5211 3131
90 1/30/84 1047 2.60 100 4685 5630 820 985 820 4958 5958
91 2/6/84 1054 2.60 81 4799 4671 1120 1090 765 4869 4739
92 2/13/84 1061 2.60 80 3431 3298 700 673 480 3491 3356
93 2/21/84 1069 2.60 190 3317 7573 530 1210 335 3831 8747
94 2/27/84 1075 2.60 50 3250 2977 520 490 290 3532 3131
95 3/5/84 1082 2.70 170 2619 5350 544 1111 376 2928 5981
96 3/12/84 1089 2.50 152 3255 5945 630 1150 430 4645 8484
97 3/19/84 1096 2.60 170 3190 6516 815 1665 550 4112 8400
98 3/26/84 1103 2.70 189 3633 8251 840 1908 620 4030 9153
99 4/2/84 1110 2.50 200 3336 8027 720 1730 570 3416 8210

100 4/12/84 1120 2.60 288 3259 11279 685 2371 455 3266 11303
101 4/16/84 1124 2.60 263 3176 10037 675 2133 490 3243 10249
102 4/23/84 1131 2.60 288 2601 9001 625 2165 450 2872 9939
103 4/30/84 1138 2.70 300 2600 9373 660 2379 505 2880 10382
104 5/7/84 1145 2.70 275 2947 9739 725 2396 590 3135 10360
105 5/14/84 1152 2.70 300 3088 11132 625 2758 625 3490 12581
106 5/21/84 1159 2.60 251 2709 8171 720 2172 455 3112 9386
107 5/29/84 1167 2.80 350 1905 8012 455 1914 400 1938 8151
108 6/4/84 1173 2.60 313 2713 10204 540 2031 425 3203 12047
109 6/11/84 1180 2.60 198 2349 5589 635 1511 405 2710 6448
110 6/19/84 1188 2.80 345 1369 5676 245 1016 180 1538 6376
111 6/25/84 1194 2.60 320 3761 11462 395 1519 337 3933 15124
112 7/2/84 1201 2.60 189 3241 7361 454 1238 375 3285 7461
113 7/9/84 1208 2.60 199 3110 7437 596 1425 436 3349 8008
114 7/16/84 1215 2.60 198 3014 7171 605 1439 520 3399 8087
115 7/30/84 1229 2.60 128 3480 5353 695 1069 590 3680 5660
116 8/6/84 1236 2.70 100 3071 3690 653 785 575 3481 4183
117 8/13/84 1243 2.90 100 778 935 94 113 56 785 943
118 8/20/84 1250 2.60 350 3236 350 425 1787 270 3513 14775
119 8/27/84 1257 2.50 200 2815 6765 468 1125 298 3562 8561
120 9/4/84 1265 2.50 88 3611 3818 490 518 300 3821 4041
121 9/10/84 1271 2.50 76 3521 3216 460 420 432 4681 4275
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ROW DATE DAYS PH FLOW ACID ACIDLD FE FELD FFE SO4 SO4LD

D-4

122 9/17/84 1278 2.50 60 4054 2923 705 508 525 4270 3079
123 9/24/84 1285 2.60 65 4057 3169 20 797 530 4738 3701
124 10/1/84 1292 2.50 46 4596 2541 890 492 660 4839 2675
125 10/9/84 1300 2.50 30 4467 1074 900 216 670 4813 1157
126 10/16/84 1307 2.50 10 4471 537 810 97 510 5206 626
127 10/22/84 1313 2.40 15 3552 640 470 85 220 4092 738
128 10/29/84 1320 2.40 4 4263 205 516 25 506 5339 257
129 11/7/84 1329 2.30 4 3909 188 440 21 63 4583 220
130 11/13/84 1335 2.30 8 3298 317 396 38 100 4391 422
131 11/19/84 1341 2.30 8 3944 379 374 36 86 4362 419
132 11/29/84 1351 2.40 13 3315 518 414 65 117 3825 598
133 12/5/84 1358 2.40 6 4370 315 322 23 82 4424 319
134 12/10/84 1363 2.50 15 3685 664 310 56 86 3598 649
135 12/17/84 1370 3.10 20 2599 625 326 78 96 3136 754
136 1/3/85 1387 2.50 161 3017 5841 454 879 246 3586 6942
137 1/7/85 1391 2.50 100 3301 3967 568 683 334 3459 4157
138 1/17/85 1401 2.40 88 4121 4359 684 724 422 4293 4541
139 2/26/85 1441 2.70 51 1790 1097 310 190 170 1930 1183
140 3/4/85 1447 2.60 66 3364 2669 418 332 218 3834 3042
141 3/13/85 1456 2.50 46 3462 1914 390 216 210 3576 1977
142 3/19/85 1462 2.60 3003 1697 420 237 168 95 3585 2025
143 3/26/85 1469 2.50 3188 16401 375 1929 184 182 3409 17538
144 4/1/85 1475 2.70 470 2045 11553 306 1729 182 2116 11954
145 4/8/85 1482 2.50 251 3534 10662 536 1617 370 3671 11075
146 4/16/85 1490 2.60 161 3574 6916 650 1258 505 3745 7247
147 4/22/85 1496 2.50 179 4465 9607 725 1560 510 4625 9951
148 4/29/85 1503 2.70 199 3956 9463 815 1949 736 4333 10364
149 5/14/85 1518 2.60 128 3290 5062 863 1328 638 3666 5640
150 5/25/85 1529 2.60 152 3194 5836 751 1372 551 3205 5856
151 5/29/85 1533 2.60 51 3440 2109 675 414 480 3511 2151
152 6/4/85 1539 2.60 56 3042 2048 575 387 425 3143 2116
153 6/11/85 1546 2.50 42 2884 1456 470 237 270 3010 1520
154 6/18/85 1553 2.50 7 3427 288 540 45 175 3814 321
155 6/24/85 1559 2.40 12 3787 546 555 80 230 4950 714
156 7/2/85 1567 2.40 17 3635 743 495 101 162 3925 802
157 7/8/85 1573 2.40 6 3966 286 425 31 134 4532 327
158 7/17/85 1582 2.30 10 3880 466 335 24 36 4321 519
159 7/23/85 1588 2.30 7 3976 335 356 30 52 4660 392
160 7/30/85 1595 2.30 10 4076 490 395 47 17 5267 634
161 8/7/85 1603 2.50 2 4626 111 384 10 8 4864 117



Statistical Analysis of Abandoned Mine Drainage in the Assessment of Pollution Load

ROW DATE DAYS PH FLOW ACID ACIDLD FE FELD FFE SO4 SO4LD

D-5

162 8/27/85 1623 2.30 3 4657 168 406 15 11 5262 190
163 9/5/85 1632 2.30 3 4040 146 420 15 8 5356 193
164 9/12/85 1639 2.30 3 5141 185 428 15 14 5334 192
165 9/18/85 1645 2.30 4 4598 182 398 16 11 5015 199
166 9/25/85 1652 2.30 3 4441 160 378 14 13 4649 168
167 10/16/85 1673 2.50 2 4658 112 410 10 27 5812 140
168 10/30/85 1687 2.50 2 4805 116 403 10 20 5676 136
169 11/5/85 1693 2.40 4 4350 209 410 20 13 4857 117
170 11/13/85 1701 2.60 35 1714 721 116 49 20 1870 787
171 11/20/85 1708 2.50 94 1781 2012 113 128 9 1962 2217
172 12/4/85 1722 2.40 251 3136 9461 385 1162 163 3313 9995
173 12/10/85 1728 2.60 81 2947 2869 376 366 146 142 3062
174 12/17/85 1735 2.50 313 3166 11911 584 2197 400 3689 13879

max 3.10 3188 16401 17663 1929 2758 1760 6115 17746
min 2.10 2 778 111 20 10 8 142 117
Avg 2.51 127.23 3621.0 3367 527 627 365 3887 3840
Med 2.50 51 3539.5 1843 513 275 361 3804 2109
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Statistical Analysis of Abandoned Mine Drainage in the Assessment of Pollution Load

E-1

FISHER
ROW DATE DAYS FLOW ACID SO4 FE MN AL

1 11/27/81 0 50.0 127.0 490 4.00 11.70 -
2 3/11/82 104 75.0 209.0 1100 4.40 25.10 -
3 5/19/82 173 130.0 210.0 550 7.00 33.00 8.00
4 6/9/82 194 273.0 86.9 248 1.06 6.84 20.50
5 6/22/82 207 87.0 105.0 440 3.50 9.44 3.50
6 7/29/82 244 54.0 174.0 290 3.84 8.94 29.50
7 8/20/82 266 30.0 119.0 280 3.32 9.44 6.75
8 8/26/82 272 30.0 125.0 300 4.12 9.44 8.75
9 9/18/82 295 20.0 105.0 370 4.50 10.50 6.30

10 10/9/82 316 30.0 127.0 370 5.30 9.44 6.00
11 11/13/82 351 18.1 138.0 440 4.80 12.10 0.32
12 12/11/82 379 36.8 120.0 410 2.83 9.47 9.20
13 1/22/83 421 30.0 112.0 310 3.10 8.03 5.10
14 2/14/83 444 64.0 108.0 210 2.21 6.99 1.09
15 5/18/83 537 100.0 98.6 220 2.12 6.08 0.50
16 8/17/83 628 44.9 126.0 160 2.56 7.19 3.23
17 8/24/83 635 33.0 107.0 240 0.79 8.15 4.27
18 11/22/83 725 115.0 144.0 430 2.23 9.68 2.75
19 12/15/83 748 614.0 107.0 176 0.99 4.98 0.50
20 12/17/83 750 273.0 93.1 120 1.65 3.78 0.50
21 1/28/84 792 54.0 111.0 260 2.46 7.58 0.50
22 3/2/84 826 100.0 101.0 220 1.13 5.91 1.59
23 3/31/84 855 204.0 146.0 410 1.46 11.80 2.41
24 4/21/84 876 483.0 237.0 1200 4.30 25.40 3.47
25 5/26/84 911 100.0 118.0 280 1.40 8.81 2.52
26 6/27/84 943 87.0 182.0 190 1.62 8.10 1.98
27 7/25/84 971 44.9 149.0 190 1.49 7.72 2.24
28 8/21/84 998 122.0 149.0 120 1.34 7.42 1.78
29 9/6/84 1014 69.0 141.0 300 1.42 9.49 2.78
30 9/21/84 1029 37.0 83.6 49 2.01 10.90 3.10
31 10/3/84 1041 - 70.4 350 1.81 12.10 4.02
32 10/16/84 1054 - 68.3 410 1.22 12.60 4.46
33 10/23/84 1061 21.0 64.2 410 1.09 12.60 3.77
34 10/24/84 1062 - 80.4 460 1.14 12.70 3.77
35 10/29/84 1067 30.0 80.4 440 1.56 15.40 4.45
36 11/23/84 1092 18.0 87.7 550 2.37 15.90 7.56
37 12/18/84 1117 130.0 55.1 320 0.86 10.40 4.05
38 1/26/85 1156 27.0 41.8 230 1.01 6.08 1.92
39 2/23/85 1184 81.0 51.0 272 1.21 7.00 3.58
40 3/11/85 1200 64.0 28.6 292 0.98 7.08 2.61
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41 3/20/85 1209 69.0 53.0 272 1.01 7.35 2.29
42 3/29/85 1218 107.0 42.8 280 1.57 8.42 2.96
43 4/10/85 1230 122.0 53.0 256 1.11 7.36 2.89
44 4/17/85 1237 73.0 67.2 280 1.40 8.77 3.59
45 4/24/85 1244 45.0 57.3 300 1.42 8.89 3.23
46 5/1/85 1251 30.0 63.2 300 1.03 9.30 3.16
47 5/10/85 1260 69.0 45.4 290 1.49 9.65 2.56
48 5/16/85 1266 - 38.0 342 0.90 9.16 1.57
49 5/22/85 1272 18.0 51.4 320 1.33 10.10 4.27
50 5/28/85 1278 69.0 79.0 332 1.25 11.70 3.77
51 6/1/85 1282 174.0 86.9 280 1.24 12.00 3.82
52 6/26/85 1307 45.0 61.2 240 1.90 10.60 2.47
53 7/24/85 1335 54.0 79.0 310 1.33 12.70 3.95
54 8/19/85 1361 18.0 73.1 450 1.20 13.60 4.49
55 9/21/85 1394 24.0 57.1 380 0.82 11.70 2.98
56 10/26/85 1429 9.7 57.1 370 0.72 9.06 2.90
57 11/18/85 1452 299.0 51.2 332 0.90 9.36 3.35
58 11/23/85 1457 87.0 49.2 300 1.02 7.82 4.44
59 12/23/85 1487 64.0 47.3 290 1.17 9.19 3.94
60 1/18/86 1513 18.0 53.2 270 1.18 9.55 5.87
61 2/17/86 1543 54.0 53.2 260 0.86 4.95 2.15
62 3/22/86 1576 448.0 27.6 800 0.49 10.20 4.51
63 4/10/86 1595 75.0 49.3 830 0.28 11.40 4.99
64 5/17/86 1632 30.0 62.0 410 0.32 7.37 6.05
65 6/10/86 1656 33.0 35.3 510 0.05 7.82 4.60
66 7/15/86 1691 18.0 58.8 430 0.26 7.46 13.30
67 8/12/86 1719 18.0 56.8 710 0.44 5.85 6.50
68 9/13/86 1751 14.0 58.8 424 0.25 6.77 5.79
69 10/10/86 1778 45.0 54.9 368 0.20 5.79 6.08
70 11/15/86 1814 100.0 45.1 300 0.54 3.99 1.78
71 12/13/86 1842 130.0 47.0 324 0.49 4.63 0.50
72 1/17/86 1877 204.0 60.8 810 0.25 8.24 0.50
73 2/14/87 1905 75.0 51.0 950 0.21 10.10 4.68
74 3/14/87 1933 75.0 51.0 750 0.42 8.13 5.12
75 4/11/87 1961 130.0 34.2 368 0.31 4.21 1.00
76 5/9/87 1989 64.0 48.9 460 0.40 5.57 1.95
77 6/13/87 2024 23.0 39.1 444 0.29 4.24 3.25
78 7/14/87 2055 45.0 37.1 390 0.28 4.78 3.77
79 8/12/87 2084 0.0 34.4 356 0.11 4.47 1.68

max 614.0 237.0 1200.0 7.00 33.00 29.50



Statistical Analysis of Abandoned Mine Drainage in the Assessment of Pollution Load

ROW DATE DAYS FLOW ACID SO4 FE MN AL

E-3

min 0.0 27.6 49.0 0.05 3.78 0.32
Avg 90.1 84.3 382.2 1.60 9.46 4.23
Med 64.0 67.2 324.0 1.21 8.94 3.50
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Markson Discharge Data





Statistical Analysis of Abandoned Mine Drainage in the Assessment of Pollution Load

F-1

MARKSON
ROW DATE DAYS Flow pH Acidity FE MN AL SO4 FE++ AL Load

1 7/30/81 0 - 3.40 136 38.900 - - 407 32.30 -
2 8/6/81 7 - 3.28 144 43.500 - - 390 40.30 -
3 8/13/81 14 - 3.35 30 43.900 - - 353 41.60 -
4 9/10/81 42 - 3.22 129 50.000 - - 398 45.30 -
5 9/17/81 49 - 3.00 130 43.900 5.320 2.580 325 48.40 -
6 9/24/81 56 - 3.30 114 11.200 5.320 2.850 360 11.00 -
7 10/1/81 63 - 3.30 214 49.100 5.320 3.050 400 51.00 -
8 10/8/81 70 - 3.20 94 46.400 5.300 2.170 370 58.00 -
9 10/15/81 77 - 3.30 104 46.500 5.230 1.900 365 61.00 -

10 10/22/81 84 - 3.20 114 46.700 5.240 2.300 345 52.00 -
11 10/29/81 91 - 3.10 114 49.500 5.900 2.420 365 62.62 -
12 11/5/81 98 - 3.10 120 49.700 5.310 2.260 360 45.39 -
13 11/12/81 105 - 3.20 104 48.300 5.270 2.160 350 54.54 -
14 11/19/81 112 - 3.20 116 50.500 5.130 2.190 330 57.57 -
15 11/25/80 118 - 3.30 110 50.300 5.230 1.990 400 55.55 -
16 12/4/81 127 - 3.30 62 52.400 5.610 2.080 350 60.60 -
17 12/10/81 133 - 3.60 280 54.000 5.580 2.230 360 62.62 -
18 12/17/81 140 - 4.20 282 51.900 5.230 5.180 320 63.63 -
19 12/24/81 147 - 3.40 112 52.200 5.350 1.980 360 57.57 -
20 12/31/81 154 - 3.60 106 53.700 5.270 1.990 360 59.59 -
21 1/7/82 161 - 3.70 136 24.900 2.740 1.270 365 18.36 -
22 1/14/82 168 - 3.50 128 27.900 2.750 1.080 360 31.11 -
23 1/21/82 175 - 3.30 130 49.600 5.420 2.290 345 51.51 -
24 1/28/82 182 - 3.40 106 46.700 4.980 2.190 350 42.30 -
25 2/4/82 189 - 3.40 120 45.800 5.180 2.500 385 45.50 -
26 2/11/82 196 - 3.30 120 42.900 5.090 2.660 330 33.66 -
27 2/18/82 203 - 3.20 100 46.200 5.600 3.150 335 43.35 -
28 2/25/82 210 - 3.40 150 43.700 5.020 2.720 370 33.66 -
29 3/4/82 217 - 3.40 116 41.900 5.030 2.590 350 41.31 -
30 3/11/82 224 - 3.20 100 42.000 5.190 2.740 350 40.29 -
31 3/19/82 232 - 3.20 100 35.600 4.600 2.600 330 35.19 -
32 3/25/82 238 - 3.20 132 33.200 4.500 2.520 340 33.00 -
33 4/1/82 245 - 3.20 112 32.600 4.530 2.580 315 30.60 -
34 4/15/82 259 - 3.10 98 26.000 4.210 2.920 270 20.16 -
35 4/22/82 266 - 3.10 114 28.200 4.290 2.360 280 19.95 -
36 4/30/82 274 - 3.10 120 13.330 4.520 3.050 270 13.00 -
37 5/6/82 280 - 3.10 114 27.360 4.490 3.330 275 18.06 -
38 5/14/82 288 - 3.20 132 26.400 4.370 2.780 295 20.16 -
39 5/21/82 295 - 3.20 128 28.700 4.630 2.330 270 26.52 -
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ROW DATE DAYS Flow pH Acidity FE MN AL SO4 FE++ AL Load

F-2

40 5/26/82 300 - 3.20 104 8.900 4.760 3.100 310 3.41 -
41 6/4/82 309 - 3.20 100 36.500 4.770 2.580 320 27.00 -
42 6/10/82 315 - 3.10 118 31.200 4.980 3.290 325 20.58 -
43 6/18/82 323 - 3.10 118 26.200 4.390 2.880 305 16.59 -
44 6/24/82 329 - 3.10 122 26.400 4.590 3.190 305 18.69 -
45 7/1/82 33 - 3.20 118 24.900 4.350 3.160 375 20.37 -
46 7/8/82 343 - 3.10 124 28.300 4.540 - 315 24.48 -
47 7/14/82 349 - 3.20 130 28.800 4.830 3.520 295 28.40 -
48 7/22/82 357 - 3.20 120 30.400 4.630 3.300 300 - -
49 7/29/82 364 - 3.20 112 35.900 4.680 2.890 296 30.60 -
50 8/5/82 371 - 3.20 104 39.100 4.890 3.080 305 35.70 -
51 8/12/82 378 - 3.20 122 45.600 5.440 2.670 316 43.35 -
52 8/19/82 385 - 3.20 90 35.900 4.920 2.540 320 35.70 -
53 8/26/82 392 - 3.20 106 10.000 5.420 2.470 315 8.67 -
54 9/2/82 399 - 3.20 122 40.700 5.460 2.360 315 39.90 -
55 9/9/82 406 - 3.20 100 34.400 4.750 2.280 345 31.00 -
56 9/16/82 413 - 3.20 112 42.900 4.890 2.420 325 42.00 -
57 9/23/82 420 - 3.20 120 50.700 5.410 1.850 315 43.35 -
58 10/7/82 434 - 3.20 128 47.700 5.290 2.230 365 46.41 -
59 10/14/82 441 - 3.30 124 58.900 4.880 2.200 375 53.00 -
60 10/21/82 448 - 3.40 - 61.900 5.090 2.320 335 55.00 -
61 10/28/82 455 - 3.20 118 57.000 5.240 2.060 315 55.00 -
62 11/4/82 462 - 3.50 120 60.200 5.380 1.910 320 55.00 -
63 11/12/82 470 - 3.30 120 59.500 5.780 1.020 345 56.00 -
64 11/19/82 477 - 3.20 128 22.400 5.970 1.900 345 60.00 -
65 11/26/82 484 - 3.50 130 56.600 5.650 2.120 345 60.00 -
66 12/3/82 491 - 3.10 116 54.300 4.730 2.200 345 54.00 -
67 12/10/82 498 - 3.80 120 48.800 5.580 1.940 345 48.00 -
68 12/17/82 505 - 3.50 110 63.500 5.830 2.030 335 57.00 -
69 12/23/82 511 - 3.20 126 59.100 5.640 2.250 345 50.00 -
70 12/28/82 516 - 3.20 122 54.500 5.490 2.280 345 50.00 -
71 1/6/83 525 - 3.30 254 55.900 5.270 2.030 335 47.00 -
72 1/13/83 532 - 3.30 118 53.960 5.230 1.990 315 50.00 -
73 1/20/83 539 - 3.30 148 53.600 5.320 2.220 290 39.00 -
74 1/27/83 546 - 3.20 120 55.100 5.160 2.250 325 49.00 -
75 2/3/83 553 - 3.40 136 52.000 5.390 2.140 310 50.00 -
76 2/10/83 560 - 3.30 120 32.400 4.810 2.580 360 30.00 -
77 2/17/83 567 - 3.10 106 31.900 4.730 2.730 275 30.00 -
78 2/24/83 574 - 3.20 110 31.500 4.630 2.770 255 31.00 -
79 3/3/83 581 - 3.10 120 30.800 4.810 0.770 305 30.00 -



Statistical Analysis of Abandoned Mine Drainage in the Assessment of Pollution Load

ROW DATE DAYS Flow pH Acidity FE MN AL SO4 FE++ AL Load

F-3

80 3/10/83 588 - 3.20 120 36.900 4.980 3.190 155 35.00 -
81 3/17/83 595 - 3.10 110 33.800 4.860 2.820 300 33.00 -
82 3/25/83 603 - 3.30 102 32.300 5.000 2.460 280 28.00 -
83 3/31/83 609 - 3.30 100 30.400 4.840 2.700 225 21.00 -
84 4/7/83 616 - 3.30 106 23.600 4.240 3.470 265 19.00 -
85 4/14/83 623 - 3.10 136 23.600 5.130 3.260 280 12.00 -
86 4/21/83 630 - 3.10 104 19.000 6.870 4.040 305 6.63 -
87 4/28/83 637 - 3.10 112 19.000 6.920 3.480 295 - -
88 5/5/83 644 - 3.10 128 19.400 7.630 3.440 355 8.40 -
89 5/12/83 651 - 3.10 120 19.000 7.480 - 357 6.63 -
90 5/19/83 658 - 3.10 112 16.700 6.530 3.670 345 6.63 -
91 5/26/83 665 - 4.40 134 5.700 5.200 - 420 5.10 -
92 6/2/83 672 - 3.10 136 17.400 6.400 3.120 285 8.80 -
93 6/9/83 679 - 3.00 115 19.600 6.500 3.260 325 8.67 -
94 6/16/83 686 - 3.10 114 18.400 5.820 2.950 275 11.22 -
95 6/23/83 693 - 3.10 210 17.200 6.110 4.180 365 15.81 -
96 6/30/83 700 - 3.10 342 23.800 5.710 2.310 335 21.42 -
97 7/7/83 707 - 3.10 116 12.900 5.000 3.500 295 12.00 -
98 7/14/83 714 - 3.10 108 15.020 5.630 2.770 300 15.00 -
99 7/20/83 720 - 3.10 116 27.700 5.350 2.880 285 27.70 -

100 7/28/83 728 - 3.10 154 28.900 5.300 2.240 321 28.80 -
101 8/4/83 735 - 3.20 96 6.100 5.750 2.100 299 6.00 -
102 8/18/83 749 - 3.10 98 21.900 5.190 2.280 265 21.90 -
103 8/25/83 756 - 3.10 116 31.700 5.150 2.350 510 31.70 -
104 9/8/83 770 - 3.10 172 35.300 5.600 2.290 260 35.30 -
105 9/15/83 777 - 3.10 108 37.100 5.700 1.970 285 37.00 -
106 9/22/83 784 - 3.20 156 38.000 5.900 2.040 340 38.00 -
107 9/29/83 791 - 3.10 198 18.200 5.920 1.680 310 - -
108 10/6/83 798 - 3.10 176 39.900 6.020 1.270 320 - -
109 10/13/83 805 - 3.10 180 34.400 5.510 1.840 275 - -
110 10/20/83 812 - 3.20 170 34.960 5.210 2.140 320 34.90 -
111 10/27/83 819 - 3.20 158 40.900 5.850 1.750 355 408.00 -
112 11/3/83 826 - 3.20 124 38.400 5.510 1.640 330 38.00 -
113 11/10/83 833 - 3.20 176 38.200 5.540 1.800 300 38.10 -
114 11/17/83 840 - 3.20 134 40.900 5.950 1.930 362 40.00 -
115 11/23/83 846 - 3.10 134 42.370 5.930 2.010 334 41.00 -
116 12/1/83 854 - 3.20 102 34.580 5.240 2.110 295 - -
117 12/8/83 861 - 3.20 114 29.640 5.170 1.980 285 14.49 -
118 12/14/83 867 - 3.20 104 27.900 4.310 2.510 295 27.50 -
119 12/22/83 875 - 3.30 114 21.090 5.050 3.970 260 14.91 -
120 12/29/83 882 - 3.40 108 17.350 4.730 2.700 225 14.49 -
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121 1/5/84 889 - 3.20 110 18.310 5.010 4.240 283 16.38 -
122 1/12/84 896 - 3.20 150 13.650 3.430 1.910 350 12.60 -
123 1/19/84 903 - 3.30 54 11.390 2.620 1.280 158 - -
124 1/26/84 910 - 3.00 142 26.300 4.940 2.730 292 25.50 -
125 2/2/84 917 - 3.10 106 25.650 5.150 1.800 283 - -
126 2/9/84 924 - 3.10 120 28.000 5.290 2.330 292 27.50 -
127 2/16/84 931 - 3.10 112 22.220 4.660 2.070 258 18.80 -
128 2/23/84 938 - 3.20 122 3.810 5.420 2.460 316 3.80 -
129 3/1/84 945 - 3.20 154 18.770 5.340 3.440 269 10.20 -
130 3/8/84 952 - 3.30 194 16.840 5.180 2.730 341 12.81 -
131 3/15/84 959 - 3.20 184 19.190 5.570 3.220 307 18.69 -
132 3/22/84 966 - 3.20 218 24.860 5.780 2.960 316 24.50 -
133 3/30/84 974 - 3.20 110 23.540 5.110 2.500 291 23.50 -
134 4/5/84 980 - 3.20 114 25.300 5.090 2.760 291 0.66 -
135 4/13/84 988 - 3.20 108 14.650 5.180 1.700 272 11.55 -
136 4/19/84 994 - 3.20 94 14.430 5.310 2.050 264 10.71 -
137 5/3/84 1008 - 3.20 152 13.500 4.900 2.700 260 10.71 -
138 5/10/84 1015 - 3.20 80 16.400 5.300 2.100 286 9.45 -
139 5/17/84 1022 - 3.20 144 12.800 4.900 2.300 235 8.19 -
140 5/24/84 1029 - 3.20 156 12.300 4.700 1.500 272 6.09 -
141 6/7/84 1043 - 3.10 172 11.000 3.900 2.200 272 8.80 -
142 6/21/84 1057 - 3.20 184 6.800 3.800 2.200 264 6.00 -
143 6/28/84 1064 - 3.10 144 16.370 5.180 1.870 243 9.34 -
144 7/12/84 1078 - 3.10 128 12.700 5.100 2.600 245 - -
145 7/19/84 1085 - 3.10 110 12.300 3.700 2.500 277 9.87 -
146 7/26/84 1092 - 3.10 124 12.300 4.300 2.100 256 - -
147 8/2/84 1099 1623 3.10 152 13.600 4.200 2.700 317 28.15 81.9
148 8/9/84 1106 1356 3.10 110 20.600 1.200 0.800 249 20.60 19.6
149 8/23/84 1120 1186 3.10 98 23.800 4.500 2.600 270 24.10 64.2
150 8/30/84 1127 1104 3.10 118 34.000 4.600 2.300 305 33.15 61.0
151 9/6/84 1134 1064 3.10 120 33.200 5.000 2.000 290 32.13 63.9
152 9/13/84 1141 1024 3.10 122 35.000 4.900 2.100 276 33.66 60.3
153 9/20/84 1148 1024 3.10 114 21.500 4.200 2.200 255 7.59 51.7
154 9/27/84 1155 984 3.10 118 24.200 4.200 2.300 275 24.20 49.7
155 10/4/84 1162 907 3.10 110 21.000 5.000 2.400 274 21.00 54.5
156 10/11/84 1169 869 3.10 106 25.700 5.500 2.900 298 25.70 57.4
157 10/18/84 1176 831 3.10 110 27.800 5.500 2.600 255 27.80 54.9
158 10/25/84 1183 794 3.10 110 25.300 6.700 2.500 284 28.05 63.9
159 11/1/84 1190 794 3.20 110 6.900 4.900 3.500 282 6.90 46.8
160 11/8/84 1197 794 3.20 114 25.100 6.600 3.500 293 25.10 63.0
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ROW DATE DAYS Flow pH Acidity FE MN AL SO4 FE++ AL Load

F-5

161 11/15/84 1204 794 3.20 126 27.000 5.100 4.000 285 27.00 48.7
162 11/21/84 1210 757 3.20 120 44.000 5.200 1.900 320 44.00 47.3
163 11/29/84 1218 1186 3.20 102 30.000 5.700 2.800 310 47.40 82.4
164 12/6/84 1225 1443 3.30 106 30.000 5.090 2.220 261 45.00 88.3
165 12/13/84 1232 1356 3.20 118 29.569 4.424 1.756 265 29.50 72.1
166 12/20/84 1239 1270 3.20 124 31.290 4.834 1.940 291 31.29 73.8
167 12/28/84 1247 1399 3.20 106 33.961 5.166 1.867 287 33.96 86.9
168 1/3/85 1253 1443 3.20 102 32.794 4.894 2.209 263 32.75 84.9
169 1/10/85 1260 1399 3.30 118 23.094 3.798 1.126 253 33.09 63.9
170 1/17/85 1267 1313 3.40 92 12.510 2.068 0.751 271 12.51 32.6
171 1/24/85 1274 1186 3.50 108 26.331 4.319 1.709 249 26.33 61.6
172 1/31/85 1281 1186 3.30 102 21.965 3.439 1.459 273 20.90 49.0
173 2/7/85 1288 1104 3.40 104 32.125 4.490 2.266 270 27.50 59.6
174 2/14/85 1295 1762 3.30 110 27.006 3.766 0.943 274 27.01 79.8
175 2/21/85 1305 1715 3.20 100 47.837 4.587 1.968 261 21.40 94.6
176 2/28/85 1309 1904 3.20 90 27.706 4.496 2.264 237 17.34 102.9
177 3/7/85 1316 1608 3.20 96 24.718 4.062 2.120 240 15.54 78.5
178 3/14/85 1323 1399 3.20 88 25.887 4.299 1.963 238 16.17 72.3
179 3/21/85 1330 1313 3.20 90 29.120 4.684 2.077 219 19.53 73.9
180 3/28/85 1337 1228 3.20 98 20.675 3.824 1.778 247 18.90 56.4
181 4/4/85 1344 1313 3.20 100 25.545 4.462 2.678 252 20.91 70.4
182 4/11/85 1351 1443 3.20 100 26.890 4.587 1.925 259 20.40 79.6
183 4/18/85 1358 1443 3.10 92 23.168 4.023 1.489 253 4.93 69.8
184 4/25/85 1365 1356 3.20 96 25.092 4.331 1.795 253 15.30 70.6
185 5/2/85 1372 1270 3.20 104 25.374 4.309 1.511 252 20.91 65.8
186 5/9/85 1379 1577 3.10 96 29.277 4.715 2.276 236 23.46 89.4
187 5/16/85 1386 1488 3.10 80 28.376 4.154 2.400 246 19.89 74.3
188 5/23/85 1393 1399 3.10 92 25.557 3.637 0.954 227 23.00 61.2
189 5/30/85 1400 1270 3.10 92 20.992 3.478 1.399 246 17.20 53.1
190 6/6/85 1407 1186 3.10 86 22.321 3.622 1.399 247 15.50 51.6
191 6/13/85 1414 1145 3.20 90 28.997 3.551 1.509 237 23.50 48.9
192 6/20/85 1421 1145 3.20 92 29.512 2.815 1.079 261 28.56 38.7
193 6/27/85 1428 1104 3.30 100 33.395 4.877 1.606 266 30.60 64.7
194 7/3/85 1434 1064 3.30 80 32.667 4.807 1.499 257 29.58 61.5
195 7/11/85 1442 1024 3.30 128 49.871 7.465 1.663 281 28.05 91.9
196 7/18/85 1449 984 3.20 86 33.180 4.661 1.591 300 33.15 55.1
197 7/25/85 1456 907 3.30 78 33.349 4.754 1.632 284 33.00 51.8
198 8/1/85 1463 907 3.30 92 35.080 4.948 1.668 270 34.00 53.9
199 8/8/85 1470 869 3.20 98 29.991 4.153 1.333 285 34.50 43.4
200 8/15/85 1477 869 3.30 92 41.140 4.445 1.418 254 35.50 46.4
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201 8/22/85 1484 831 3.40 110 36.620 5.055 1.178 229 36.00 50.5
202 8/29/85 1491 794 3.30 106 35.917 4.762 1.443 274 35.50 45.4
203 9/5/85 1498 794 3.20 90 39.801 5.061 1.290 270 36.00 48.3
204 9/12/85 1505 794 3.30 134 32.232 4.418 0.922 271 32.00 42.2
205 9/19/85 1512 794 3.40 106 42.605 5.041 1.274 279 39.50 48.1
206 9/26/85 1519 794 3.40 118 41.471 5.469 1.199 292 37.00 52.2
207 10/3/85 1526 869 3.40 114 40.882 5.219 1.500 309 39.00 54.5
208 10/10/85 1533 869 3.30 94 44.588 5.775 1.889 283 39.00 60.3
209 10/17/85 1540 831 3.30 102 36.542 5.115 1.284 298 38.00 51.1
210 10/24/85 1547 831 3.30 102 38.551 4.698 1.340 299 36.00 46.9
211 10/31/85 1554 794 3.30 96 39.511 5.322 1.608 313 38.00 50.8
212 11/7/85 1561 794 3.20 86 37.989 4.781 1.009 294 38.00 45.6
213 11/14/85 1568 794 3.20 90 42.059 5.533 1.301 293 39.50 52.8
214 11/22/85 1576 907 3.20 82 40.527 5.078 1.587 325 20.50 55.4
215 11/27/85 1581 1024 3.20 96 49.232 6.378 2.421 320 38.50 78.5
216 12/5/85 1589 1809 3.30 90 33.762 4.554 1.596 285 33.50 99.0
217 12/12/85 1596 1715 3.30 114 27.262 4.384 2.063 281 27.00 90.4
218 12/19/85 1603 1577 3.20 92 25.320 4.607 2.167 263 25.00 87.3
219 12/26/85 1610 1399 3.20 88 28.270 5.294 2.043 306 25.00 89.0
220 1/2/86 1617 1228 3.30 94 27.100 5.885 3.337 296 27.00 86.9
221 1/9/86 1624 1145 3.30 96 33.434 5.712 2.410 291 28.50 78.6
222 1/16/86 1631 1104 3.30 108 33.000 4.050 0.800 325 29.50 53.7
223 1/23/86 1638 1104 3.20 104 34.800 5.260 2.138 330 31.50 69.8
224 1/30/86 1645 1270 3.30 128 39.300 5.410 2.014 293 37.50 82.6
225 2/6/86 1652 1313 3.30 92 35.500 5.036 2.410 302 34.50 79.5
226 2/13/86 1659 1488 3.20 100 39.000 5.260 2.390 297 33.00 94.1
227 2/20/86 1666 2298 3.20 104 33.500 5.120 2.085 287 31.00 141.4
228 2/27/86 1673 4793 3.30 130 22.900 8.160 5.870 326 13.50 470.1
229 3/6/86 1680 2767 3.20 92 19.700 6.230 3.890 331 15.20 207.2
230 3/13/86 1687 2767 3.20 114 19.400 5.470 3.320 348 16.00 181.9
231 3/20/86 1694 6533 3.30 106 11.100 5.180 3.804 282 4.00 406.8
232 3/27/86 1701 3772 3.30 78 11.800 5.170 3.240 281 5.70 234.4
233 4/3/86 1708 2820 3.30 98 11.300 3.950 2.420 259 10.00 133.9
234 4/10/86 1715 2198 3.40 94 16.400 5.065 2.930 254 12.30 133.8
235 4/17/86 1722 2820 3.30 98 18.300 5.240 2.501 252 13.00 177.6
236 4/24/86 1729 4547 3.40 80 11.200 4.970 2.850 244 4.50 271.6
237 5/1/86 1736 3371 3.40 82 10.300 4.460 2.680 250 5.83 180.7
238 5/8/86 1743 2555 3.40 82 13.700 5.104 2.770 255 3.70 156.7
239 5/15/86 1750 2000 3.30 98 21.200 5.530 3.360 210 3.30 132.9
240 5/22/86 1757 4006 3.40 114 16.400 5.170 2.480 259 12.20 248.9
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ROW DATE DAYS Flow pH Acidity FE MN AL SO4 FE++ AL Load
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241 5/29/86 1764 3427 3.40 32 11.800 4.980 3.000 257 5.00 205.1
242 6/5/86 1771 2608 3.30 76 18.700 5.040 2.480 257 8.40 158.0
243 6/12/86 1778 2049 3.40 102 16.300 5.370 2.560 246 12.00 132.3
244 6/19/86 1785 1762 3.40 86 17.100 5.640 2.570 247 12.40 119.5
245 6/26/86 1792 1532 3.30 94 14.100 5.310 2.630 222 13.00 97.8
246 7/2/86 1798 1399 3.30 102 20.200 7.280 2.520 243 14.91 122.4
247 7/10/86 1806 1270 3.30 100 22.900 5.610 2.470 256 18.50 85.6
248 7/17/86 1813 1186 3.30 100 24.900 6.860 2.230 254 19.00 97.8
249 7/24/86 1820 1145 3.30 92 22.200 5.060 2.070 254 20.00 69.6
250 8/1/86 1828 1270 3.20 102 20.100 4.930 1.990 271 20.10 75.3
251 8/7/86 1834 1228 3.20 86 25.100 5.820 2.180 252 20.50 85.9
252 8/14/86 1841 1145 3.30 86 24.100 5.310 2.150 280 19.00 73.1
253 8/21/86 1848 1064 3.20 94 26.300 5.690 2.300 293 21.50 72.8

max 6533 4.40 342 63.500 8.160 5.870 510 408.00 470.1
min 757 3.00 30 3.810 1.200 0.751 155 0.66 0.0
Avg 1504 3.24 117 30.703 5.044 2.322 298 29.66 38.0
Med 1228 3.20 110 28.997 5.100 2.265 293 27.70 0.0
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