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FOREWORD

: 2

Under the Clean Water Act (CWA) the U.S. Environmental Protection Agency (U.S.
EPA) and the States develop programs for protecting the chemical, physical, and biological
integrity of the nation’s waters. Section 304(a)(1) directs the Administrator to develop and
publish "criteria" reflecting the latest scientific knowledge on: (1) the kind and extent of effects
on human health and welfare, including effects on plankton, fish, shellfish, and wildlife, which
may be expected from the presence of pollutants in any body of water, including ground water,
(2) the concentration and dispersal of pollutants, or their byproducts, through biological, physica:
and chemical processes, and (3) the effects of pollutants on biological community diversity,
productivity, and stability. Section 304(a)(2) directs the Administrator to develop and publish
information on, among other things, the factors necessary for the protection and propagation of
shellfish, fish, and wildlife for classes and categories of receiving waters. '

To meet this objective, U.S. EPA has periodically issued ambient water quality criteria
(WQC) guidance beginning with the publication of "Water Quality Criteria 1972" (NAS/NAE,
" 1973). All criteria guidance through late 1986 was summarized in an U.S. EPA document

entitled "Quality Criteria for Water, 1986" (U.S. EPA, 1987). Additional WQC documents that
 update criteria for selected chemicals and provide new criteria for other pollutants have also been
published. In addition to the development of WQC and to continue to comply with the mandate
of the CWA, U.S. EPA has conducted efforts to develop and publish sediment quality criteria
(SQC) for some of the 65 toxic pollutants or toxic pollutant categories. Section 104 of the CWA
authorizes the administrator to conduct and promote research into the causes, effects, extent,
prevention, reduction and elimination of pollution, and to publish relevant information. Section
104(n)(1) in particular provides for study of the effects of pollution, including sedimentation in
estuaries, on aquatic life, wildlife, and recreation. U.S. EPA’s efforts with respect to sediment
criteria are also authorized under CWA Section 304(a).

Toxic contaminants in bottom sediments of the nations’s lakes, rivers, wetlands, and
coastal waters create the potential for continued environmental degradation even where water
column contaminant levels meet established WQC. In addition, contaminated sediments can lead
to water quality impacts, even when direct discharges to the receiving water have ceased. EPA
intends SQC be used to assess the extent of sediment contamination, to aid in implementing
measures to limit or prevent additional contamination, and to identify and implement appropriate
remediation activities when needed.

The criteria presented in this document are the U.S. EPA’s best recommendation of the
concentrations of a substance that may be present in sediment while still protecting benthic
organisms from the effects of that substance. These criteria are applicable to a variety of
freshwater and marine sediments because they are based on the biologically available
concentration of the substancé in sediments. These criteria do not protect against additive,
synergistic or antagonistic effects of contaminants or bioaccumulative effects to aquatic life,
wildlife or human health.




- ‘The criteria derivation methods outlinéd in this document are proposed to provide
+ protection of benthic organisms:from: biological impacts from chemicals present in sediments.
Guidelines and guidance are being developed by U.S. EPA to assist in the application of criteria
presented in this document, in the development of sediment quality standards, and in other
water-related programs of this Agency. : .

These criteria are being issued in support of U.S. EPA’S regulations and policy
initiatives. This document is Agency guidance only. It does not establish or affect legal rights
or obligations. It does not establish a binding norm and is not finally determinative of the issues
addressed. Agency decisions in any particular case will be made by applying the law ana
regulations on the basis of the specific facts. v '

.
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FIGURES .
Figure 1-1. ' Chemical structure and physical-chemical properties of dieldrin,

Figure 2-1  Observed versus predicted (equation 2-4) partition coefﬁcients' for nonionic
organic chemicals (dieldrin datum is highlighted).

Figure 2-2.  Organic carbon-normalized sorption isotherm for dieldrin (top) and probability
plot of K, (bottom) from sediment toxicity tests conducted by Hoke and Ankley
(1991). The line in the top panel represents the relationship predicted with a log
K, of 5.25, that is C, =K, ® C, . ‘

Figure 3-1. Genus mean acute values from water-only acute toxicity tests using freshwater
species vs. percentage rank of their sensitivity. Symbols representing benthic -
species are solid, those representing water column species are open. Asterisks
indicate greater than values. A = adult, J = juvenile, X = unspecified life
stage. S

Figure 3-2. Genus mean acute values from water-only acute toxicity tests using saltwater
species vs. percentage rank of their sensitivity. Symbols. representing benthic
species are solid, those representing water column species are open. Asterisks
indicate greater than values. A = adult, J = juvenile.

Figure 3-3.  Probability distribution of FAV difference statistics to compare water-only data

’ from freshwater vs. saltwater (upper panel) and benthic vs. WQC (lower panel)
data.

Figure 4-1. Percent mortality of amphipods in sediments spiked with acenaphthene or
phenanthrene (Swartz, 1991), endrin (Nebeker et al., 1989; Schuytema et al.,
1989), or fluoranthene (Swartz et al., 1990), and midge in sediments spiked with
dieldrin (Hoke, 1992) or kepone (Adams et al., 1985) relative to pore water toxic
units. Pore water toxic units are ratios of concentrations of chemicals measured
in individual treatments divided by the water-only LC50 value from water-only
tests. (See Appendix B in this SQC document, Appendix B in the endrin,
acenaphthene, fluoranthene and phenanthrene SQC documents, and original
references for raw data.)

Figure 4-2. Percent mortality of amphipods in sediments spiked with acenaphthene or
phenanthrene (Swartz, 1991), dieldrin (Hoke and Ankley, 1991), endrin (Nebeker
et al., 1989; Schuytema et al., 1989) or fluoranthene (Swartz et al. » 1990; DeWitt

“itet al., 1992) and midge in dieldrin spiked sediments (Hoke, 1992) relative to
"predicted sediment toxic units." Predicted sediment toxic units are the ratios of
measured treatment concentrations for each chemical in sediments (ng/goc0)
divided by the predicted LC50 (ug/goo) in sediments (Koc x Water-Only LC50
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(ug/L) ® 1Kg,/1,000g,). (See Appendix B in this document and Appendix B in

* . theacendphthene, endrin, fluoranthene, and phenanthrene SQC documents for raw

Figure 5-1.

Figure 5-2.

Figure 5-3.

Figure 5-4.

data).

Comparison between SQC concentrations and 95% confidence intervals, effect
concentrations from benthic organisms exposed to dieldrin-spiked sediments and
sediment concentrations predicted to be chronically safe in fresh water sediments.
Concentrations predicted to be chronically safe (Predicted Genus Mean Chronic
Values, PGMCYV) are derived from the Genus Mean Acute Values (GMAYV) from
water-only 96-hour lethality tests, Acute Chronic Ratios (ACR) and K values.
PGMCV = (GMAV = ACR)Kyc. Symbols for PGMCVs are A for arthropods,
O for fishes and [J for other invertebrates. Solid symbols are benthic genera;
open symbols water column genera. Arrows indicate greater than values. Error
bars around sediment LC50 values indicate observed range of LC50s. '

Comparison between SQC concentrations and 95% confidence intervals, effect
concentrations from benthic organisms exposed to dieldrin-spiked sediments and -

iment concentrations predicted to be chronically safe in salt water sediments,
Concentrations predicted to be chronically safe (Predicted Genus Mean Chronic
Values, PGMCYV) are derived from the Genus Mean Acute Values (GMAV) from
water-only 96-hour lethality tests, Acute Chronic Ratios (ACR) and K, values.
PGMCV = (GMAV + ACR)K,. Symbols-for PGMCVs are A for arthropods,
O for fishes and [J for other invertebrates. Solid symbols are benthic genera;
open symbols water column genera. Arrows indicate greater than values. Error
bars around sediment LC50 values indicate observed range of LC50s.

Probability distribution of concentrations of dieldrin in sediments from streams,
lakes and estuaries in the United States from 1986 to 1990 from the STORET
(U.S. EPA, 1989b) database compared to the dieldrin SQC values of 1.1 ug/g in
freshwater sediments having TOC = 10% and 0.11 ug/g in freshwater sediments
having TOC = 1% and compared to SQC values for saltwater sediments of 2.0
ug/g when TOC =10% and 0.20 ug/g when TOC=1%, The upper dashed line
on each figure represents the SQC value when TOC = 10%, the lower dashed .
line represents the SQC when TOC = 1%

Probability distribution of concentrations of dieldrin in sediments from coastal and
estuarine sites from 1984 to 1989 as measured by the National Status and Trends
Program (NOAA, 1991). The horizontal dashed line is the saltwater SQC value

of 20 pg/goc.
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SECTION 1
" INTRODUCTION
1.1 GENERAL INFORMATION: |
Under the Clean Water Act (CWA) the U.S. Environmental Protection Agency (U.S.
. EPA) is responsible for protecting the chemical, physical and biological integrity of the nation’s_
waters. .In keeping with this responsibility, U.S. EPA published ambient water quality criteria
(WQOC) in 1980 for 64 of the 65 toxic pollutants or pollutant categories designated as toxic in
the CWA. Additional water quality documents that update criteria for selected consent decree
chemicals and new criteria have been publishéd since 1980. These WQC are numerical
concentration limits that are the U.S. EPA’s best estimate of concentrations protective of human
health and the presence and uses of aquatic life. While .,these WQC play.an importa.ntvrole in
- assuring a healthy aquatic environment, they alone are not sufficient to ens1'1re the protection of
environmental or human health. A
Toxic pollutants in bottom sediﬁlents of the nation’s lakes, rivérs, wetlands, estuaries and
marine coastal waters create the potential for continued environmental degradation even where
water-column concentrations cbmply with established WQC. In | addition, contaminated
sediments can be a significant pollutant source that may cause water quality degradation to
persist, even when other pollutant sources are stopped. The absence of defensible sediment
quality criteria (SQC) makes it difficult to accurately assess the extent of the ecological risks of

contaminated sediments and to identify, prioﬁtize and implement appropriate clean up activities
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and source controls. As a result of the need for a proc;edwure t;.i-assist i?egulatory agencies in
| making de;:isions concemmg coniaminated sediment problems, a U;S. EPA Office of Science
and Technology, Health and Ecological Criteria Division (OST/i-IEC) research team was
established to review alternative approaches (Chapman, 1987). All of the approaches reviewed
had both strengths and weaknesses and no single apbroach was found to be applicable for SQC.
derivation in all situations (U.S. EPA, 1989a). The equilibrinm partitioning (EqP) approach was
selected for nonionic organic chemicals because it presented the greatest promisé for generaﬁng
defensible national numerical chemical-specific SQC applicable across a broad range of sediment -
types. The three principal observations that underlie the EqP method of establishing SQC are:

1. The concentrations of nonionic organic chemicals in sédiments, expressed on an
organic carbon basis, and in pon;' waters correlate to observed biological effects
on sediment dwelling organisms across a range of sediments.

2. Partitioning models can relate sediment concentrations for nonionic organic
chemicals on an organic carbon basis to freely dissolved chemical concentrations
in pore water.

3. The distribution of ”‘sensitivities of benthic and waier column organisms to
chemicals are similar; thus, the currently established WQC final chronic values
(FCV) can be used to define the acceptable effects concentration of a chemical
freely-dissolved in pore water.

The EqP approach, therefore, assumes that: (1) the partitioning of the chemical between

sediment organic carbon and interstitial water is at equilibrium; (2) the concentration in either

phase can be predicted using appropriate partition coefficients and the measured concentration
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in the other phase; (3) orgamsms recexve eqmvalent exposure from water-only exposures or from
; any ethbrated phase elther from pore water via respiration, from sediment via ingestion or
other sediment-integument exchange or from a mixture of both exposure routes; (4) for nonionic
chemicals, effect concentrations in sediments on an organic ca.rbon. basis can be predicted using
the organic carbon partition coefficient (K,c) and effects concentrations in water; (5) the FCV
concentration is an appropriate effects concentration for freely-dissolved chemical in interstitial
water; and (6) the SQC (ug/goc) derived as the product of the K, and FCV is protectivg of
benthic organisms. SQC concentrations presented in this document are expressed as ug
- chemical/g sediment organic carbon and not on an interstitial water basis because: (1) pore water.
is difficult to adequately sample; and (2) significant amounts of the dissolved chemical may be
associated with dissolved organic carbon; thus, to'tal chemical cdncentrations in interstitial water
may overestimate exposure. | | |
The data that support the EqP approach for' derivihg SQC for nonionic organic
chemicals are reviewed by Di Toro et al. (1991) and U.S. EPA, (1993a). Data supporting these
observations for dieldrin are presented in this document.
SQC generated using the EqP method are smmble for use in pmv1dmg guidance to-

regulatory agencies because they are:

[o

. numerical values;
2. chemical specific;
3. applicable to most sediments;

4. predictive of biological effects; and

5. protective of benthic orgﬁnisms.




As i 1s the case with WQC the SQC reﬂect the use of avaﬂalble scxentlﬁc dam to: (1) assess the
| likelihood of sxgmﬁcant envuonmental effects to benthic organisms ﬁrom chemicals in sediments;
and (2) to derive regulatory requirements which will protect against these effects.

It should be emphasized that these criteria are intended to pfotect benthic organisms from
the effects of chemicals associated with sediments. SQC are intended to apply to sediments
permanently inundated with water, intertidal sediment and to sediments inundated periodically
for durations sufficient to permit development of benthic az:semb]agés. They do not apply to
occasionally inundated soils containing terrestrial organisms. These éﬁteﬂa do not address the

question of possible contamination of upper trophic level organisms or the synergistic, additive
or antagonistic effects of multiple chemicals. SQC addressing these issues may result in values
lower or higher than those presented in this dOéument. The SQC presented in this document
represent the U.S. EPA’s best recommendation at this time of the coﬁcentmtion of a chemical
in sediment that will not adversely affect most benthic ofganisms. SQC values may be adjusted
to account for future data.

SQC values may also nwd to be adjusted because of site specLﬁc consxdemtlon In spill
situations, where chemical ethbnum between water and sediments has not yet been reached,
sediment chemical concentrations _less than SQC may pose risks to benthic organisms. This is
because for spills, disequilibrium concentrations jn interstitial and .overlying water may be
proportionally higher relative to sediment concentrations, Research has shown that the source
or "quality” of TOC in the sediment does not effect chemical binding (DeWitt et al., 1992).
However, the physical form of the chemical in the sediment may have an effect. At some sites

concentrations in excess of the SQC may not posé risks to benthic organisms, because the

-
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compound may be a component of a paltmulate such as coal or S;JOt or excwd solubility such
| as undlssolved oil or chem1ca1 In these situations, the national SQC would be overly protective
of benthic organisms and should not be used unless modiﬁed using the procedures outlined in
the "Guidelines for Deﬁving Site-specific Sediment Quality Criterial for the Protection of Benthic
Organisms” (US EPA, 1993b). The SQC may be underprotective where the toxicity of other
chemicals are additive with the SQC chemical or species of unusual sensitivity occur at the site.

This document presents; the theoretical basis and‘the éupporl:ing data relevant to the
derivation of the SQC for dieldrin. An understanding of the "Guidelines for Deriving Numerical
~ National Water Quality Cn'texéa for the Protection of Aquatic Organisms and Their Uses”
(Stephan et al., 1985), response to public comment (U.S. EPA, 1985) and "Technical Basis for
Denvmg Sediment Quality Criteria for Nomomc Organic. Contaminants for the Protection of
Benthic Organisms by Using Equilibrium Partitioning” (U.S. EPA 1993a) is necessary in order
" to understand the following text, ;ables and calculations. -Guidance for the acceptable use of
SQC values is contained in "Guide for the Use and Application of Sediment Quality Criteria for
Nonionic Organic Contaminants” (U.S. EPA, 1993c).

1.2 GENERAL INFORMATION: DIELDRIN

Dieldrin is the common name of a persistent, non-systemic organochlorine insecticide used
for control of public health insect pests, termites and locusts. It is formulated for use as an
emulsifiable concentrate, wettable and dustable powder and granulér product. Other than direct
usage of dieldrin, another source of dieldrin in the environment stems from the quick

transformation of aldrin, also an organochlorine pesticide, to dieldrin. Both dieldrin and aldrin
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usage peaked in the mid-1960s and declined until the early 1970s. Dieldrin and aldrin have been

restricted frbfn registfatibn a;1d production in the United States since | 1974 (U S EPA, 1980a).

Dieldrin is a cyclic hydrocarbon havix_lg a chlorine substituted methanobridge (Figure 1-1).
It is structurally similar to endrin, its endo-endo stereoisomer, and has similar physico-chemical
chlorine properties, except that it is more difficult to degrade m the environment (Wang, 1988).

Dieldrin is a colorless crystalline solid at room temperature, having a melting point of about

- 176°C and specific gravity of 1.75 at 20°C. It also has a vapor pressure of 0.4 mPa and a

solubility of 0.19 mg/L at 20°C (Hartley and Kidd, 1987).

Dieldrin is considered to be toxic to aquatic organisms, bees and mammals (Hartley and -
i(idd, 1987). The acute toxicity of dieldrin ranges from 0.5 to 740 ug/L for fresh'water and 0.7
to >100 ug/L for saltwater organisms (Al';pendix A). Differences between dieldrin
concentrations causing acute lethality and chronic toxicity in -species acutély sensitive to this
insecticide are small; acute-chronic ratios range from 2.417 to 12.82 fbr three species (Table 3-
3). Dieldrin bioconcentrates in aquatic animals from 400 to 68,000 l:lmes the concentration in
water (U.S. EPA, 1980a). The WQC for dieldrin (U.S. EPA, 1980a) is derived using a Final
Residue Value calculate& using bidconcentmtion data ahd the FDA action level to protect
marketability of fish and shellfish; therefore, the WQC is not "effect# based". The SQC for
dieldrin is effects based. Itis calculated from the Final Chronic Value @CW derived in section

3.

1.3 OVERVIEW OF DOCUMENT:

Section 1 provides a brief review of the EqP methodology, and a summary of the
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MOLECULAR FORMULA . CpH,C10
MOLECULAR WEIGHT : 380.93
DENSITY , | 1.75 gl/ce (20°C)
MELTING POINT ' 176°C |
PHYSICAL FORM : Colorless crystal
. .~ VAPOR PRESSURE 0.40 mPa (20°C)

CAS NUMBER: 60-57-1
- TSL NUMBER: IO 15750
COMMON NAME: Dieldrin (also dieldrine and ndieldrin)
. TRADE NAME: Endrex (Shell); Hexadrin
CHEMICAL NAME: 1,2,3,4,10,10,hexachlom-1R,4S',4aS,5R,6R,7S,SSR,SaR-
octahydro-6,7-epoxy-1,4:5,8-dimethanoaphthalene (IUPAC)

FIGURE 1-1. Chemical structure and physical-chemical properties of dieldrin.




physical-chemical properties ;md. aquatic toxicity of dieldrin. So;ction Zl'mviews a variety qf
methods and"data useful in ’de;i\;mg partitioﬁ coefficients for dieldrin and includes the Koe
recommended for use in the derivation of the dieldrin SQC. Section 3 reviews équatic toxicity
data contained in the dieldrin WQC document (U.S. EPA, 1980a).and new data that were used
to derive the FCV used in this document to derive the SQC concentration. In addition, the
comparative sensitivity of benthic and water column species is examined as the justification for
the use of the FCV for dieldrin in the derivation of the SQC. Section 4 feviews data on the_
toxicity pf dieldrin in sediments, the need for organic carbon normalization of dieldrin sediment
. concentrations and the accuracy of the EqP prediction of sediment toxicity using K, and an |
effect concentration m water. Data from Sections 2, 3 and 4 are use& in Section 5 as the basis
for the derivation of the SQC for dieldrin and '1ts uncertainty. The ‘SQC for dieldrin is then
compared to STORET (US EPA, 1989b) and National Status and Trends (NOAA, 1991) data
on dieldrin’s environmental occurrence in sedimentg. .Section 6 concludes with the criteria

statement for dieldrin. The references used in this document are listed in Section 7.




SECTION 2

PARTITIONING

2.1 DESCRIPTION OF THE EQUILIBRIUM PARTITIONING METHODOLOGY:

Sediment quality criteria (SQC) are the numerical concentrations of individual chemicals
which are intended to be predictive of biological effects, protective of the presence of benthic
organisms and applicable to the range of natural sediments from lakes, streams, estuaries and
" near coastal marine waters. Asa cbnsequence, they can be used in much the same way as water
quality criteria (WQC); ie., the concentration of,a chemical which is protective of the intended
use such as aquatlc life protection. For nonionic organic chemicals, SQC are expressed as ug
- chemical/g organic carbon and apply to sediments having = 0.2% ‘organic carbon by dry
weight. A brief overview follows of the concepts which underlie the equilibrium partitioning
(EqP) methodology for deriving SQC. The methodology is discussed in detail in the "Technical
Basis for Deriving Sediment Quality Criteria for Nonionic Organic Contaminants for the
Protection of Benthic Organisms by Using Equilibrium Partitioning” (U.S. EPA, 1993a),
hereafter referred to as the SQC Technical Basis Document.

Bloavaﬂablhty of a chexmcal at a particular sediment concentration often differs from one
sediment type to another. Therefore, a method is necessary for determining a SQC based on the
bioavailable chemical fraction in va sediment. For nonionic organic chemicals, the
concentration-response relationship for the bidlogical effect of concern can most often be

i

correlated with the interstitial water (i.e., pore water) concentration (ug chemical/liter pore
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1921). From a purely practical point of view, ‘this c_oxrelation Isulggests tflat if it were possible
to measurc; the poré vs.laterl ch.emical conceﬁtration, or predict itt: from the total sediment
concentration and the relevant sediment properties, then that conce;ntration could be used to
quantify the exposure concentration for an organism. Thus, lmouwledge of the partitioning of
chemicals between the solid and liquid phases in a sediment is a necessary component for
establishing SQC. It is for this reason that the methodology descﬁbed below is called the
equilibrium partitioning (EqP) method. ‘

It is shown in the SQC Technical Basis Document (U.5. EPA, 1993a) that the final acute
' values (FAVs) in the WQC documents are appropriate for benthic organisms for a wide range
of chemicals. (The data showing this for dieldrin are prgsented in Section 3). Thus, a SQC can
be established using the final chronic value (FC\"I) derived using the WQC Guidelines (Stephan
et al., 1985) as the acceptable effect concentration in pore or overlying water (see Seétion 5),
and the partition coefficient can be used to relate the pofe water concgntration to the sediment
concentration via the partitioning equation. This acceptable concenﬁ'ation in Mment is the
SQC.

The calculation is as followskz Let FCV Q;g/L) be the acceptable concentration in water -
for the chemical of interest; then compute the SQC using the partition coefficient, (Ky)
(/Kg,timer), between sediment and water:

SQC = K, ECV | S @-1)
This is the fundamental equation used to generate the SQC. Its utility depends upon the
existence of a methodology for quantifying the partition coefficient, K,.

Organic carbon appears to be the dominant sorption phase for nonionic organic chemicals
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. in natumlly occumng sedments and thus conu'ols the bxoavaﬂablhty of these compounds in
| sediments. Ev1dence for th:s can be found in numerous toxicity tests, bioaccumulation studies
and chemical analyses of pore water and sediments (Di Toro et al., 1991). The evidence for
dieldrin is discussed in this section and section 4. The organic carl;on binding of a ;chemical in
sediment is a func_tion of thét chemical’s organié carbon partition coefficient (K.c) and the
weight fraction. of organic carbon in the sediment (f,). The relationship ‘is as follows:

It follows that:
SQCoc = Koc FCV : 2-3)

~ where SQCoc is the sediment quality criterion 01: a sediment organic carbon basis.

Koc is not usually measured directly (although it can be dome, see section 2.3).
Fortunately, Koc is closely related to the octanol-watexf pﬁﬁﬁon coefficient (Koy) (equation 2-5).
which has been measured for many compounds, and can be measured very accurately. The next

section reviews the available information on the Kow for dieldrin.

2.2 DETERMINATION OF Ky, FOR DIELDRIN:

Several approaches have been used to determine Ky, for the denvatlon of SQC as-discussed
in the SQC Technical Basis Document At the U.S. EPA, Envu'onmenml Research Laboratory
at Athens, GA (ERL,A) three methods were selected for measurement and two for estimation
of Kow. The measurement methods were shake-centrifugation (SC), generator column (GCol),

and slow-stir-flask (SSF), and the estimation methods were SPARC (SPARC Performs
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Automated Reasoning in Chemistry; Karickhoff et al., 1989) and CLOGP (Chou and Jurs,

1979). Data were also extracted from the litorature. The SC method is a standard procedure in
the Organization for Economic Cooperation and Development (OECD) guidelines for ;;esting
chemicals, therefore, it has regulatory precedence. .

In_ the examination of the literature data primary references were found listing measured
Kows for dieldrin ranging from 4.09 to 6.2 (Table 2-1). Primary neférences were found in the
literature for estimated log;Koyw ranging from 3.54 to 5.40 (Table 2~1). The range of reported

values for dieldrin is sxgmﬂcantly greater than the range of values for some other compounds,

and we were not able to determine from studymg the primary articles that any value was more

llkcly to be accurate than any other.

2
.

TABLE 2-1. DIELDRIN MEASURED AND ESTIMATED LOG,Kow VAI;UES .

METHOD - LOG, Koy REFERENCE

Measured 4.09 Ellington and Stancil, 1988
Measured 4.54 Brooke, et al., 1986
Measured 4.65 De Kock and Lord, 1987
Measured .5.40 De Bruijn et al., 1989
Measured 6.2 . Briggs, 1981

Estimated ' : 3.54 Mabey et al., 1982
Estimated 5.40 SPARC'

'SPARC is from SPARC Performs Automated Reasoning in Chemustry, (Karickhoff et al.,
1989).

A Koy value for SPARC is also included in Table 2—1. SPARC is a computer expert system
under development at ERL,A, and the University of Georgia, at Athens. For more information

on SPARC see U.S. EPA (1993a). The SPARC estimated log, o Kow value for dieldrin is 5.40.
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We had little confidence in the avaﬂable measured or estxmated values for Kow, therefore the
| SC, GCol, SSF methods were used to provide additional data from which to define Koy for -
dieldrin (Table 2-2). The SC method yielded a log,Kow = 5.01 (n=7), the GCol method
yielded a log,Kow = 5.16 (n=7), and the SSF method ylelded a log;oKow = 5.34 (n—7)
Companson of the results from the SC GCol SSF and SPARC Kow determmatlon methods for
the five chemicals for which SQC are currently being developed (acenaphthene, dieldrin, endrin,
fluoranthene and phenanthrene) indicate that the SSF method provides the best estimate of Kow
(U.S. EPA, 1993a). The SSF method had less variability, less experimental bias (Bias is defined
as the mean difference between the best-fit estimate of Koy, using all four methods and the
estimates from each method.) and was generally in the range of the SC, GCol, and SPARC
methods (U.S. EPA, 1993a). Therefore, the .§SF value of 5.34 is the value for log;)Kow -
recommended for SQC derivation. This value agrees with the SPARC estimated value and the
average of the values measured by the three methods nﬁder carefully controlled conditions at
ERL,A. This Koy is the logarithm of the mean of 7 Ky, measurements made by SSF. The logs
of the Koy values measured by SSF range from 5.08 to 5.43.
2.3 DERIVATION OF K¢ FROM:HADSORPTION STUDIES:

Two types of experimental measurements of the K. are available. The first type
involves experiments which were designed to measure the partitien coefficient in particle
suspensions. The second type of measﬁrement is from sediment toxicity tests in which
measurements of sediment dieldrin, sediment orge.nic carbon (OC) and non-dissolved organic

carbon (DOC)-associated dieldrin dissolved in pore water were used to compute K.

2.3.1 Koc FROM PARTICLE SUSPENSION STUDIES:




Laboratory stu.dies to charactenze adsorption are generally conducted using particle
suspensior;s.' The hi’gh‘conéentrations of soﬁ&s and turbulent condiztioﬁs necessary to keép the
mixture in suspension make data interpretation difficult as a ]@t of@ particle interaction effect.
This effect suppresses the partition coefficient relative to that obsefvefi for undisturbed sediments
(Di Toro, 1985; Mackay and Powers, 1987).

TABLE 2-2. SUMMARY OF LOG,;K,w VALUES FOR ]DIEIDRiN MEASURED BY THE
U.S. EPA, ENVIRONMENTAL RESEARCH LABORATORY, ATHENS, GA.

SHAKE GENERATOR  SLOW STIR
CENTRIFUGATION COLUMN " FLASK
(o) : (GCol) (SSF)
5.04 4.89 5.33
5.00 4.88 5.43
5.04 5.18 5.38
5.03 5.15 5.33
5.04 : 5.26 5.43
4.88 , 5.38 ' 5.08
4.99 5.67 . 5.28
5.04
5.01° . 5.16° 5.34%

*Value considered outlier and omitted from mean Co»mputamon
*Log,, of mean measured values.

Based on analysis of an extensive body of experimental data for a wide range of
compound types and experimental conditions, the particle interaction model (Di Toro, 1985)
yields the following relationship for estimating Kp: -

foc Koc

Kp = ‘ -9
1 +mfocKoc/ Vx




’

where m is the particle concentration in the sﬁspension (kg/L), and vx = 1.4, an empirical

constant. The K, is givén by:

LogiKoc = 0.00028 + 0.983 10g,Koy ) 2-5)
Figure 2-1 éompares observed partition coefficient data for the reversible component with
calculated values estimated with the particle interaction model (Equation 2-4 and Equation 2-5)
for a wide range of compounds (Di Toro, 1985). The observed partition coefficient for dieldriq

using adsorption data (Sharom et al., 1980) is highlighted on this plot. The observed log;Kp

of 1.68 reflects significant particle interaction effects. The observed partition coefficient is more

than an order of magnitude lower than the value expected in the absence of particle effects ( ie. s

1og¢Kp = 3.32 from the focKoc = 2100 L/kg). Koo was computed from equation 2-5.
Several sorption isotherm experiments with particle suspensions that provide an additional
way to compute Ko were found in a comprehensive ]iteraﬁre search for partitioning information
for dieldrin (Table 2-3). TheKoc values derived from these data are lower than Koc values from
laboratory measurements of Koy. The lower K, can be explained from the particle interaction
effects. Partitioning in a quiescent settmg wouldmresult in less desorption and higher K. These
data are presented as exami)les of particle interaction effects only as 100 percent reversibility
is assumed in the absence of desorption studies and actual Ko can not be computed. |
In the absence of particle effects, Ko is related to Kow via Equation 2-5. F01" log;oKow
= 5.34 (ERL,A, mean measured vahie), this expression results in an estimate of log,Koc =

5.25.
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Figure 2-1  Observed versus predicted (equation 2-4) partition coefficients for nonionic
organic chemicals (dieldrin datum is highlighted).




2.3. 2 Koc FROM SEDIMENT TOXICITY TESTS
| Measurements of Koc are avaﬂable from sediment toxicity tests using dieldrin (Hoke and
Ankley, 1992). These tests were with a sediment havmg an avemge Organic carbon content of
1.75 percent (Table 4-1; Appendix B). Dieldrin concentrations were measured in sedlments and
unﬁltered pore waters prev1d1ng the data necessary to calculate the partition coefficient for an
undisturbed bedded sediment. Since it is likely that organic carbon compiexing_in pore water
is significant for dieldrin, organic carbon concentrations were also measured in pore water.
Figure 2-2 is a plot of the organic carbon-normalized sorption isotherm for dieldrin, Where the

sediment dieldrin concentration (1g/goc) is plotted versus calculated free (dissolved) pore water
concentration (#g/L). Using pore water organic carbon concentrations (DOC), and assuming
Kpoc equal to Koc, the calculated free pore water.‘dieldrin concentration Cp, (xg/L) is presented
in Figure 2-2 is given by:

CPORE

C = ' - (2-6)
1 + mpoc Kpoc

where Cypopr is the measured total pore water concentration and mpoc is the measured DOC
concentration (U.S. EP;&, 1993a).

The data used to make this plot are included in Appendix B. The line of unity slope
corresponding to the log;Koc = 5.25 derived from SSF is compared to the data. The data from
the sediment toxicity test fall on the line of unity slope for log;)Koc = 5.25.

A probability plot of the observed experimental log,;Koc values is shown in the lower

_panel of Figure 2-2. The longoc values are approximately normally distributed with a mean

of Logyo Koc = 5.32 and a standard error of the mean of 0.109. This value is in agreement
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Figure 2-2.  Organic carbon-normalized sorption isotherm for dieldrin (top) and probability
plot of K, (bottom) from sediment toxicity tests conducted by Hoke and Ankley
(1991). The line in the top panel represents the relationship predicted with a log
K. of 5.25, that is C, ,.=K_ ® oF '
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with log;)Koc = 5.25, which ‘was computed from the SSF determined (Section 2.2) dieldrin

| log,Kow Of 5.34 (Equation ﬁ-S).

TABLE 2-3. SUMMARY OF K,. VALUES FOR DIELDRIN
DERIVED FROM LITERATURE SORPTION ISOTHERM DATA.

Observed n Solids (SD)

LogyKoc (SD) (g/L) References
4.20 (0.14) 4 5.0 - Eye, 1968
4.14 (0.15) 3 16.4 (4.6) Betsill, 1990
4.10 1 100.0 - Briggs, 1981

-

2.4 SUMMARY OF DERIVATION OF Koc FOR DIELDRIN:

The Ko selected to calculate the sediment qua]i-ty criteria for dieldrin is based on the
regression of log, K to log,Kow (Equation 2-5), using the dieldrin log, K, of 5.34 recently
measured by ERL,A. This approach, rather than the use of the Ko from toxicity tests was
adopted because the regression equauon is based-on the most robust dataset available that spans
a broad range of chemicals and particle types, thus encompassing a wide range of Ky, and foc. -

The Tegression equation yields a log;oKoc = 5.25. This value is in agreement with the log; Ko

of 5.32 measured in the sediment toxicity tests.
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SECTION 3
TOXICITY OF DIELDRIN: WATER EXPOSURES

3.1 TOXICITY OF DIELDRIN IN WATER: DERIVA'HON OF DIELDRIN WATER
‘ QUALITY CRITERIA:

The equilibrium partitioning (EqP) method for derivation of sediment quality criteria
(SQC) uses the dieldrin water quality criterion (W QC) Final Chronic Value (FCV) and partition.
coefficients (Koc) to estimaté the maximum concentrations of nonionic organic chemicals in
sediments, expressed on an organic carbon basis, that will not cause adverse effects to benfhic
organisms. For this document, life stages of species classed as benthic are either species that
live in the sediment (infauna) or on the sediment .’surface (epibenthic) and obtain their food from
either the sediment or water column (U.S. EPA, 1989c). In this section (1) the FCV from the
dieldrin WQC document (U.S. EPA, 1980a) is revised uéing new aquatic toxicity test data; and
(2) the use of this FCV. is justified as the effects concentration for SQC derivation;
3.2 ACUTE TOXICITY - WATER EXPOSURES: _
| One hundred and forty five standard toxicity tests with dieldrin have been conducted on
25 freshwater species from 19 genera (Appendix A). Eighty six‘ of these tests are from one
. study with the guppy, Poecilla fetigu]ag (Chadv&ick and Kiigemagi, 1968). Overall genus mean
acute values (GMAVs5) range from 0.5 to 740 rg/L. Fishes, damselflys, isopods, glass shrimp,
stoneflies, and mayﬂies were most sensitive; GMAVs for these taxa range from 0.5 to 24 png/L.
Seventeentests on thirteen benthic species from twelve genera are contained in this database

(Figure 3-1; Appendix A). Benthic organisms were among both the most sensitive, and most
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A Arthropods ‘ Orcongctes (A)
O Other Invertebrates Gammarus (A.X)
. O .Fishes -
3 Simocephalus (J,X)
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PERCENTAGE RANK OF FRESHWATER GENERA
Genus mean acute values from water-only acute toxici.ty tests using freshwater

species vs. percentage rank of their sensitivity. Symbols representing benthic
species are solid, those representing water column species are open. Asterisks
indicate greater than values. A = adult, J = juvenile, X = unspecified life
stage.
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res1stant freshwater specxes to dleldrm GMAVs range from 0.5 to- 740 pg/L Of the epibenthic

species tested channel catﬁsh stoneﬂles mayﬂws, damselflies, and isopods were most
sensitive; GMAVs range from 0.5 to 12 pg/L. Infaunal species tested include only the
stoneflies, Pteronarcys californica (LC50 = 4.416 ug/L) and Pterénarcella badia (.C50 = 0.5
pg/L). The final acute value (FAV) deﬁved from the overall GMAVSs (Stephan et al. 1985) for
freshw-ater organisms is 0.3595 ug/L (Table 3-2).

Thirty two acute tests have been conducted on 23 saltwater species fromx 21 genera

(Appendix A). Overall GMAVs range from 0.70 to > 100 ug/L. Sensitivities of saltwater

organisms were similar to those of freshwater organisnis. Fishes and crustaceans were the most

sensitive. Within this database there are results from 23 tests on benthic life-stages of 16 species
from 14 genera (Figure 3-2; Appendix A). l.;:gnthic organisms were among both the most
sensitive, and most resistant, saltwater genera to dieldrin. The most sensitive t;enthic species
is the pink shrimp, Peneaus duorarum, with a flow-through 96 hour LCS0 of 0.70 /L based
on measured concentrations. The American eel, Anquilla rostrata, has a similar sensitivity to
dieldrin with a 96 hr LC50 of 0.9 ug/L. Other benthic species for which there are data appear
less sensitive; ‘GMAVs range from 45 to > 100 ug/L. .The FAYV derived from the overall
GMAVs (Stephan et al., 1985) for saltwater organisms is 0.6594 ug/L (Table 3-2), less than the

acute value for the economically important P. duorarum,

3.3 CHRONIC TOXICITY - WATER EXPOSURES:

Chronic toxicity tests have been éonducted with dieldrin using two freshwater fish;

rainbow trout, Oncorhynchus mykiss, and the guppy, P. reticulata, and a saltwater mysid,
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Figure 3-2. Genus mean acute values from water-only acute toxicity tests using saltwater
species vs. percentage rank of their sensitivity. Symbols representing benthic
species are solid, those Tepresenting water column species are open. Asterisks
indicate greater than values. A = adult, J = juvenile.
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Mysidopsis bahia, (Table 3-1). Both O. r_nll&sgand the M. bahia havé benihic life stages.
| (Chronic t<;xi'city tesfs usmg 0. ms and P. reticulata fail to meet the test requirement of

measured concentration for use in | deriving WQC. Recently, an early life-étagc test was
successfully completed using rainbow trout, | O. mykiss (Brooke, 1993). The acixte-chronic ratio |
ACR, from this test (11.39) was almost identical to the value of 12.82 from unmeasured tests
with this fish (Table 3-1; 3-2). This néw value will be added to this document following public
comment. Timekdid not permit its inclusion in this draft.

Dieldrin concentrations were not measured in freshwater tests. However, the nominal
and measured concentrations in the salt Watér M. bahia chronic test differed by Iess than 20%
at all concentrations. One life cycle test has been conducted with O. mykiss (Chadwick and
Shumway 1969). There was a 97% reduction in"survival and a 36% reduction in growth of the
survivors in 0.39 pg/L relative to control fish; all fish died at 1.2 rg/L. Q. mykiss were not
significantly affected at concentrations of 0.012 to 0. 12“ug/L. No progeny were tested. The
other freshwater chronic test was a three-generation study using the guppy, P. ‘reticulz‘lta
(Roelofs, 1971). Because exposure concehtxations were increased from the test with the first
generation to the tests with the nex»tﬁ two generations, and because there was no effect at any
concentration in the first tesf, only results from the second two tests are reported here (Table
3-2). There was no effect on P. reticulata survival at dieldrin conceﬁtrations from 0.2 to 1.0
pg/L. Mean brood size was reduced by 32% at 2.5 pg/L.

Saltwater M. bahia exposed to dieldrin in a life-cycle test were affected at concentrations
similar to those affecting the two freshwater fish mentioned above. M. bahia exposed to 1.1 and

1.6 ug/L (U.S. EPA, 1980b) had a 35% and 58% reduction in survival, respectively, relative
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to control M.babhia. 'Ihere were no 31gn1ﬁcant effects at 0.10 to 0.49 ug/L No effects were
}observed on reproductlon at any concentratlon tested and progeny response was not recorded.
One life-cycle and one partial life-cycle test were conducted thh the polychaete worm,
Ophryotrocha diadema (Hooftman and Vink, 1980; Tables 3-1 and 3-2) The observed nominal
no effect concentration was of O 1 pg/L (below limit of analytical detecuon) for the life-cycle
test initiated with larvae and 1.2 pg/L (based on measured concentrai;ions) for the partial life-
cycle test initiated with adults. For the life-cycle test with larvae there‘were 40, 37 81 and 99%
decreases in reproductive potential, (combined effect on number of egg masses and embryo
sgrvival), relative to carrier control worms at 0.3, 1.5, 3.1 and 13 rg/L, respectively. Embryo
survival was reduced by 35, 16, 61 and 71% at dieldrin concentrations of 0.3, 1.5, 3.1 and 13
ug/L, tespectively. At 13 pg/L dieldrin survival was reduced to 34% relative to the controls.
In the O.diadema partial life-cycle test, reproductive potential was reduced by 57, 92,-97 and
100% relative to the carrier control in concentrations of 2.6, 8, 23 ax;d 72 pg/L. Sixty-three
percent of adults in 72 ug/L died. Reductions in egg survival Weré 39, 70, 62 and 100%
relative to controls in concentrations of 2.6, 8, 23 and 72 pg/L, respecﬁvely. The chronic
sensitivity of this species appears similar to that of the other species tested chronically but acute
sensitivity is low: 96 hr LC50 > 100 pg/L for adults and larvae.

The difference between acute and chmmc sensitivity to dleldrm for acutely sensitive
species is approximately an order-of-magnitude or less (Table : 3-2). The acute-chronic ratio
(ACR) for acutely insensitive polychaetes was > 56.63 in one test and > 577.4ina second.
The available ACRs for acutely sensitive species are 2.417 for P. Leﬁ:_uia__ta, 6.129 for M. bahia

and 12.82 for_ O. mykiss. The Final Acute-Chronic Ratio (ACR), the geomeuic mean of these
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three values, is 5.748.

Thn; FCVs (fabie 3-i), are u;éd as the effect concentrations for calculating the SQC for
benthic species. The FCV for freshwater organisms of 0.0625 rg/L is the quotient of the FAV
of 0.3595 pg/L and the final ACR of 5.748. Similarly,' the FCV for saltwater organisms of
0.1147 rg/L is the quotient of the FAV of 0.6594 pg/L and the final ACR of 5.748.

3.4 APPLICABILITY OF THE WATER QUALITY CRITERION AS THE EFFECTS
CONCENTRATION FOR DERIVATION OF THE DIELDRIN SEDIMENT
QUALITY CRITERION:

The use of the FCV (the chronic effects-based WQC concentration) as the effects

‘concentration for calculation of the EqP-based SQC assumes that benthic (infaunal and

epibenthic) species, taken as a group, have sensi'iivities similar to all benthic and water column
species tested to derive the WQC concentration. Data supporting the reasonableness of this
assumption over all chemicals for which there are puBlikhed or draft WQC documents are
presented in Di Toro et al. (1991), and the SQC Technical Basis Document (U.S. EPA, 1993a).
The conclusion of similarity of sensitivity is supported by comparisons between (1) acute valués
for the most sensitive benthic specles and acute values for the most sensitive water column
species for alllchemicals; (2) acute values for all benthic species and acute values for all species
in the WQC documents across all chemicals after standardizing the LCSO values; (3) FAVs
calcula_ted for benthic species alone and FAVs calculated for all species in the WQC documents;
and (4) individual chemical comparisons of benthic species vs. all species. Ogly in this last
comparison are dieldrin-specific comparisons of the sensitivity of benthic and all (benthic and

water-column) species conducted. The following parégraphs examine the data on the similarity
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-of sensmwty of benthlc and all specles for d1eldrm
| For dxeldrm benthlc species account for 12 out of 19 genera tested in freshwater, and
14 out of 21 genera tested in saltwater (Flgures 3-1, 3-2). An initial test of the difference
between the freshwater and saltwater FAVs for all species (water column and benthic) exposed
to dieldrin was performed using the Approximate Randomization method (Noreen, 1989). The
Approximate Randomization method tests the significance level of a test statistic when compared
to a distribution of statistics generated from many random subsamples The test statistic in thls
case is the difference between the fmshwater FAV, computed from the freshwater (combined

water column and benthic) species LC50 values, and the saltwater FAV computed from the
saltwater (combined water column and benthlc) species LC50 values (Table 3- -1). In the
Approximate Randomization method, the freshwater LC50 values and the saltwater LCS0 values
are combined into one data set. The data set is shuffled, then sepai'ated back so that randomly
generated "freshwater” and "saltwater” FAVs can be comi)utedl The LCSO values are separated
back such that the number of LC50 values used to mlculate the sample FAVs are the same as
the number used to calculate the original FAVs. These two FAVs are subtracted and the
difference used as the sample statlstlc This is done many times so that the sample statistics
make up a distribution that is representative of the population of FAV differences (Figure 3-3).
The test statistic is compared to this distribution to determine it’s level of significance. The null
hypothesis is that the LC50 values that eomprise the saltwater and fresh:water data bases are not
different. If this is true, the difference between the actual freshwater and saltwater FAVs should
be common to the majority of randomly generated FAV differences. For dieldrin, the test-

statistic falls at the 31 percentile of the generated FAYV differences. Since the probability is less
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than 95%, the hypothesxs of no s1gmﬁcant difference in sensmwty for freshwater and saltwater
| species is accepted (Table 3-3)

Since freshwater and saltwater species showed similar sensitivity, a test of difference in
sensitivity for benthic and all (benthic and water column species combined hereafter referred
to as "WQC") organisms combining freshwater and saltwater specics using the Approximate
Randomization method was performed. The test statistic in this case is the difference between
the WQC FAV, computed from the WQC LC;, values, and the benthic FAV, computed from_ |
the benthic organism LCs, values. This is slightly different then the previous test for saltwater

and freshwater species. The difference is that saltwater and freshwater species in the first test -
| represent two separate groups. In this test the benthic organismS are a subset of the WQC
organisms set. In the Approximate Randomiza.'tion method fcr this test, the number of data
points coinciding with the number of benthic organisms are Selccted from the WQC data set.
A "benthic” FAV is computed. The original WQé FAV and the "benthic” FAYV are then used
to compute the difference statistic. This is done many times and the distribution that results is
- representative of the population of FAV difference statistics. The test statistic is compared to
this distribution to determine its level of signiﬁcance. The probability distribution of the
computed FAV differences are sho;vn inlthe bottom panel of Figure 3-3. The test statistic for
this analysis falls at the 72 pcrcentile and the hypothesis of no difference in sensitivity is
accepted (Table 3-3). This analysis suggests that the FCV for dieldrin based on data from all

tested species is an appropriate effects concentration for benthic organisms.
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" TABLE 3-3. RESULTS OF APPROXIMATE RANDOMIZATION TEST FOR
THE EQUALITY OF THE FRESHWATER AND SALTWATER FAV
DISTRIBUTIONS FOR DIELDRIN AND APPROXIMATE
RANDOMIZATION TEST FOR THE EQUALITY OF BENTHIC AND
COMBINED BENTHIC AND WATER COLUMN (WQC) FAV

DISTRIBUTIONS.
Compar-
ison Habitat or Water Type* AR Statistic® = Probability®
Fresh Fresh (19) Salt (21) -0.305 31
vs Salt . ‘
Benthic  Benthic (26) WQC (40) 0090 - 72
vs Water
Column +
Benthic (WQC)

Y

*Values in parentheses are the number of LC50 values used in the comparison.

PAR statistic = FAV difference between original compared groups.

“Probability that the theoretical AR statistic < that the observed AR statistic given
that the samples came from the same population.
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SECTION 4

TOXICITY OF DIELDRIN (ACTUAL AND PREDICTED): SEDIMENT EXPOSURE

4.1 TOXICITY OF DIELDRIN IN SEDIMENTS:

The toxicity of dieldﬁn spiked into clean sediments has been tested with two saltwater
species (a polychaete and the sand shrimp) and two freshwater species (an amphipod and a
midge) (Table 4-1). Therefore, genera]izatioxis c;f dieldrin’s toxicity across species or Sédiments
are lxm1ted 'i‘he endpoint‘repdrted in these studies was mortality. Details about exposure
methodology are piovided because, unlike aquatic tox_icit§ tests, sediment testing methodologies
have not been standardized. Data are available from many experiments using both field and
Iaboratory sediments contaminated with mixtures of dieldrin and other compounds. Data from
these studies have not been includeci"ilere because it is not possible to determiﬁe the contribution
of dieldrin to the obseﬁed toxicity.

The only saltwater experiments that tested dieldrin-spiked sediments were conducted by
McL_eese et al. (1982) and McLeese and Metcalfe (1980). These began with clean sediments
that were added to dieldrin-coated beakers just prior to the addition of test organisms. This is
in marked contrast to tests with freshwater sedime;nts that were spil;ed with dieldrin days or

weeks prior to test initiation. As a result, the dieldrin concentrations in the sediment and
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ovc_erly'ing water varied greatly over the course of these saltwater expei‘ithents and exposure

conditions are uncertain. In addition, transfer of test organisms to freshly prepared beakers

’ every 48 hours further complicates interpretation of results of McLeese et al. (1982) because

exposure conditions change several times during the course of the test. McLeese et al. (1982)

tested the effects of dieldrin on the polyéhaete worm, Nereis
(17% sand and 83% silt and clay) in 12 day toxicity tests. No worms died in 13 pglg dry wt
sediment, the highest concentration tested. McLeese and Metcalfe (1980) tested the effects p_f
dieldrin in sand with a TOC content of 0.28 % on the sand shrimp, Crangon septemspinosa. The
4 day LC50 was 0.0041 ug/g dry wt. sediment, and 1.46 ug/g,.. Concentrations of dieldrin in

water overlying the sediment were 10 times the LC50 in water. The authors conclude that

sediment-associated dieldrin contributed little tc;wards the toxicity observed.

The effects of dieldrin-spiked sediments from three fresh-water sites in Minnesota on the

~ fresh-water amphipod, Hyalella azteca have been studied by Hoke and Ankley (1991). The total

organic carbon (TOC) concéntrations in the three sediments were 1.7%,2.9%, and 8.7%. The
sediments weré rolled in dieldrin-coated jars at 4°C for 23 &ays. Mortality of H. azteca in these
flow-through tests was related to seﬁiment exposure because dieldrin concentrations in overlying
water were generally below detection limits. There was no dose-response relationship observed
in the results from the definitive test with one of the sediments (Ai1p6rt Pond), or in the results

from further testing with this sediment using H. azteca (Hoke and Ankley, 1992; Hoke 1992).

For this reason only the data from the range finder test with this sediment are used in the

- analysis of the toxicity data (sections 4.1, 4.2, 4.3), and in Figures 4-1 and 4-2. The ten-day

LC50’s increased with increasing TOC when dieldrin concentration was expressed on a dry
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wexght basxs but mcreased only shghtly with increasing organic . carbon when dieldrin |
concentration was expressed on an organic carbon basis (Table 4-1). LC50’s normalized to dry
weight differed by a factor of 21.2 (18.2 to 386 yg/g)over a 5.0 fold mnge of TOC. In contrast,
the organic carbon normalized LC50’s differed by a factor of 3.4 ‘(1,1073 to 3,682 ug/goo).
The effects of dieldrin-spiked sediments from two freshwater sites in Minnesota on the
fresh water midge, Chironomus tentans, have been studied by Hoke (1:992). The TOC contents
in the two sediments were 1.5 and 2.0%. The sc;,diments were rolled‘in dieldrin coated jars at

4°C for one month, stored at 4°C for two months, and then rolled ét 4°C for an additional

month. LC50s normalized to dry weight differed by a factor of 2.89 (0 53 to 1.53 ug/g dry wt).

LCSOs normalized to organic carbon differed by a factor of 2.22 (35.33 to 78.46). 1t is not
surprising that organic carbon normalization had little effect, given the small range of TOC (1.5
to 2.0%).

Overall, the need for organic normalization qf tfxe concentratiﬁn of nonionic organic
chemicals in sediments is presented in the Technical Basis Document (U.S.EPA, 1993a). The
need for organic carbon normalization for dieldrin is supported by the dieldrin-spiked toxicity
tests described above. Although it is. important to demonstrate that orgahic carbon normalization
is mecessary if SQC are to be developed using the EqP approach, it is fundamentally more
important to demonstrate that Ko and water only effects concentrations can be used to predict
the effects concentration for dieldrin and other nonionic organic chemicéls on an organic carbon
basis for a range of sediments. Evidence supporting this prediction for dieldrin and other

nonionic organic chemicals follows in section 4.3.
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4.2 CORRELATION BETWEEN ORGANISM RESPONSE AND PORE WATER
o CONCENTRATION: - - -

One corollary of the EqP theory is that freely dissolved pore-water LC50s for a given
orgémism should be constant across sediments of v@hg organic carbon content (U.S.EPA,
1993a). Appropriate pore-water values are available from two studies (Table 4-2). Data from
tests with water column épecies were not considered in this analysis.  Hoke and Ankley (1991)
found 10-day LC50 values for H. azteca based on pore-water concentrations differed by a factor
of 870 (57.6 to 458 pug/L) for three sediments containing from 1.7 to 8.7% TOC. Therefore‘,
pore water normalized LC50 values provide only a slight improvement over LC50s for dieldrin
" expressed on a dry weight basis which varied By a fact(;r of 21.2 (18.2 to 386 ug/L). Hoke
(1992) found 10-day LC50 values for the.C. tentans based on predicted pore water
concentrations (the sediment concentration multiplied by the K, differed by a factor of 2.17
(0.23 t0 0.50). This variability is slightly less than that.shown when dry wt (factor of 2.89) is
used, but s1m1lar to that shown when organic carbon (factor of 2.22) normalization is uséd.
Partitioning to dissolved organic carbon was proposed to explain the lack of similarity of LC50
values based on total pore water dieldrin concentrations.

A more detailed evaluation of the degree to which the response of benthic organisms can
be predicted from toxic units of substances in pore water can be made utilizing results from
toxicity tests w1th sediments spiked with other substances including acenaphthene and
phenanthrene (Swartz, 1991), dleldrm (Hoke 1992), endrin (Nebeker et al., 1989; Schuytema
et al., 1989), fluoranthene (Swartz et al., 1990; DeWitt et al., 1992), or kepone (Adams et al.,
1985) (Figure 4-1; Appendix B). The data included in this analysis come from tests conducted

at EPA laboratories or from tests which utilized deéigns at least as rigorous as those conducted
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at the EPA laboratories. Tests with acenaphtheng and phenz;nthrenez‘ "used two saltwater
| amphipods .(v Lep toche;gu_’ s pllimuIQSus and Eohaustorius estuarius) and marine sediments. Tests
with fluoranthene used a saltwater amphipod (Rhepoxynius _gblbnius) and marine sediments.
Freshwater sediments spikéd with endrin were tested using the amphipod H. azteca: while
kepone—spil.ced' sediments were tested using the midge, C. tentans. Figure 4-1 presents the
percentage mortalities of tile benthic species tested in individual treatments for each chemical
versus "pore v&ater toxic units"(PWTU) for all sediments tested. PWTUs are the concentration
of the chemlcal In pore water (ug/L) divided by the water only LC50 (ug/L). Theoretically,
' 50% mortahty should occur at one mterstmal water toxic unit. At concentrations below one
PWTU there should be less than 50% mortallty, and at concentrations above one PWTU there
should be greater than 50% mortality. Figure 451 shows that at concentrations below one PWTU
mortality was generally low, and increased sharply at approximately one PWTU. Therefore this
comparison supports the concept that interstitial water céncentrations can be used to predict the
response of an organism to a chemical that is not sediment specific. This pore water
normalization was not used to derive SQC in this document because of the compleXation of
nonionic organic chemicals with po;e‘water DOC (Section 2) and the difficulties of adequately
sampling pore waters.
4.3 TESTS OF THE EQUILIBRIUM PARTITIONING PREDICTION OF SEDIMENT

TOXICITY:
SQC derived using the EqP approach utilize partition coefficients and FCVs from WQC

documents to derive the SQC concentration for protection of benthic organisms. The partition

coefficient (Koc) is used to normalize sediment concentrations and predict biologically available
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concentrations across sediment types. The datavrequired to test the organic carbon normalization

for dieldrin in sediments are’ available for 2 benthic species. Data from tests with water column
species were not included in this analysis. Testing of this component of SQC derivation requires
three elements: (1) a water-only effect concentration, such as a ld—dﬁy LC50 value in pg/L; 2
an ide:ntical sediment effect concentration on an organic calrbpn basis, such as a 10-day LC50
value'in 1g/goc; and (3) a partition coefficient for the chemical, Ky in L/Kg,.. This section
presents evidence that the observed effect concentration in sediments (2) can be piedicted
utilizing the water effect concentration (1) and the partition coefﬁciént @3).

Predicted ten-day LC50 values from dieldrin-spiked sediment tests with H. azteca (Hoke and

‘Ankley, 1991) were calculated (Table 4-2) using the log,, Koc value of 5.25 from Section 2 of

this document and the water-only LC50 value (;.3 ug/L). Ratios of actual to predicted LC50’s
for dieldrin averaged 1.26 (range 0.827 to 2.83) in tests with thrée sediments (Table 4-2).
Similarly, predicted 10-day LC50 values for dieldrin-spiiced sediment tests with C. tentans were
calculated using the log;o Koc of 5.25 and a 10-day water only ]JC50 value of 0.29 ug/L.
Ratios of predicted to actual LC50s for dieldrin averaged 1.02 (mngejO.69 to 1.52) in tests with
two sediments (Table 4-2). The overall mean for both species was 1.16.

A more detailed evaluation of the accuracy and precision of the EqP prediction of the
response of benthic organisms can be made using the results of toxicity tests with amphipods
exposed to sediments spiked with acenaphthene, phenanthrene, dieldrin, endrin, or fluoranthene.
The data included in this analysis came from tests conducted at EPA laboratories or from tests
which utilized designs at least as rigorous as those éonducfed at the EPA laboratories. Data

from the kepone experiments are not included because a measured K., for kepone obtained using
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the slow stir flask method is.not available. Swartz (1991) exposed the saitwater amphipods E.
" estuariug ax;d ‘L. plun’mlg. sus ’to ;c.emphmene m three marine sedimehts having organic carbon
contents ranging from 0.82 to 4.2% and to phenanthrene in three inarine sediments haviﬁg
organic carbon contents ranging from 0.82 to 3.6 %. Swartz et al. (1!990) exposed the saltwater
amphxpod R. abronius to ﬂuoranthene in three marine sediments havmg 0.18, 0.31 and 0.48%
organic carbon. Hoke and Ankley (1991) exposed the amphipod I_{,, _a_zm to three dieldrin-
spiked freshwater sediments having 1.7, 2.9 and 8.7% organic carbon and Hoke (1992) exposed
the midge C. tentans to two freshwater dieldrin-spiked sediments having 2.0 and 1.5 % organic
 carbon, Nebeker et al. (1989) and Schuytema et al. (1989) exposed H. azteca to three endrin-
%piked sediments having 3.0, 6.1 and 11.2% organic carbén. Figure 4-2 presents the percentage
mortalities of amphipods in individual treatment; of each chemical versus "predicted sediment
toxic units" (PSTU) for each sediment treatment. PSTUs are the concentration of the chemical
in sediments (ug/goc) divided by the predicted LC50 (pg/goc) in sediments (the product of K,
and the 10-day water-only LC50). In this normalization, 50% morta_lity should occur at one
PSTU. At concentrations below one PSTU mortality was genérally loiv, and increased sharply
at one PSTU. The means of the LCSOs for these tests calculated on a PSTU basis were 1. 90
for acenaphthene, 1.16 for dieldrin, 0.44 for endrin, 0.80 for fluoranthene, and 1.22 for :
phenanthrene. The mean value for the five chemicals is 0.99. This illustrates that the EqP
method can account for the effects of different sediment properties and properly predict the

effects concentration in sediments using the effects concentration from water only exposures.

2oL
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. " - SECTIONS5
CRITERIA DERIVATION FOR DIELDRIN

5.1 CRITERIA DERIVATION:

The water quality criteria (WQC) Final Chronic Value (FCV), without an averaging
period or return frequency (See section 3), is used to calculate of sediment quality criteria (SQC)
because it is probable that the concentration of cohtaminants in sediments are relatively stable
" over time, thus exposure to sedentary benthic species should be chronic and relatively constant.

This is in contrast to the situation in the water column, where a rapid change in exposure and

exposures of limited durations can occur due to fluctuations in effluent concentrations, dilutions .

in receiving waters or the free-swimming or planktonic nature of water column organisms. For
some parhcular uses of the SQC it may be.appropriate to use the areal extent and vertical
stratification of contamination of a sediment at a site in much the same way that averaging
periods or mixing zones are used with WQC.

| The FCV is the value that should protect 95% of the tested species included in the
calculation of the WQC from chronic effects of the substance. The FCV is the quotient of the‘
Final Acute Value (FAV), and the final Acﬁte Chronic Ratio (ACR) for the substance. The
FAY is an estimate of the acute LCSQ or EC50 concentration of the substance corresponding to
a cumulative probability of 0.05 for the genera from eiéht or more families for which acceptable
acute tests have been conducted on the substance. The ACR is the mean ratio of ;cute to

chronic toxicity for three or more species exposed to the substance that meets minimum database
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requirements. For more information on the calculation of ACks, FAVs, and FCVs see the

" National Water Quality Criteria Guidelines (Stephan et al., 1985). The FCV used in this
document differs from the FCV in the dieldrin WQC document (U.S. EPA, 1980) because it
incorporates recent data not included in that document, and omits some data which does not meet
the data requirements established in the WQC Guidelines (Stephan et al., 1985).

The equilibrium partitioning (EqP) method for calculating SQC is based on tl}e following
procedure. If FCV (ug/L) is the éhronic concentration from the WQC for the chemical of
interest, then the SQC (pg/g sediment), is computed using the partition coefficient, K, (L/g
sediment), between seélinient and pore water:

SQC = K; FCV | | G-1

Since organic carbon is the predominant.'sorpﬁon phase for nqnionic organic chemicals
in naturally occurring sediments, (salinity, grainsize and other sediment parameters have
inconsequential roles in sorption, see sections 2.1 aﬁd 4.3) the organic carbon partition
coefficient, (Koc) can be substituted for K. Therefore, on a sediment orgahic carbon basis, the
SQCoc (ug/200), is

SQCoc = Koc FCV | G-2)
Since (Koo is presumably independent of sediment type for non-ionic organic chemicals, so also
i5 SQCyc. Table 5-1 contains the calculation of the diel‘drin SQC.

The organic carbon normalized SQC is apphcable to sedlments with an organic carbon
fraction of foc = 0.2%. For sedlments with e < 0 2%, organic carbon normalization and

s

SQC may not apply.




TABLE 5-1. SEDIMENT QUALITY CRITERIA FOR DIELDRIN

Type of Log,Kow Log;Koc ~ FCv SQCoc

Water Body (/kg) L/kg) (eg/L) (18/8oc)
Fresh Water 5.34 5.25 0.0625 11*
Salt Water 5.34 5.25 0.1147 20°

‘SQCoc = (10°% L/kgoc)*(10? kgoo/200)*(0.0625 ug dieldrin/L) = 11 pg dieldrin/g,,
’SQCoc = (10°% L/kgoc)*(10° Kgoo/goc)*(0.1147 pg dieldrin/L) = 20 pg dieldrin/g,,.
Since organic carbon is the factor controlling the bioavailability of nonionic organic
~ compounds in sediments, SQC have been developed on an organic carbon basis, not on a dry
weight basis. When the chemical concentratigns in sediments are reported as dry weight
concentration and organic carbon data are available, it is best to convert the sediment
concentration to ug chemical/gram organic carbon. These concentrations can then be directly
compared to ;he SQC value. This facilitates comparisons between the SQC and field
concentrations relative to identification of hot spots and the degree to which sediment
concentrations do or do not excwd SQC values. The conversion from dry weight ‘to organic
carbon normalized concentration can be done using the following fo¥mula:
- pg Chemical/gye = pg Chemical/gppy wr + (% TOC =+ 100)
= pg Chemical/gypyor © 100 = % TOC
For example, a freshwater sediment with a concentration 6f 0.1 ug chemical/gppy or and
0.5% TOC has an organic carbon-normalized concentration of 20 pg/goc (0.1 ug/g,,km * 100
+ 0.5 = 20 ug/goc) which exceeds the freshwater SQC of 11 pg/goc. Another freshwater

sediment with the same concentration of dieldrin (0.1 pg/gpry wr) but a TOC concentration of
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5 O% would have an orgamc carbon normahzed concentratmn of 2, O ug/gc,c 0.1 pg/gpry wr ®
100 = 5.0 =2.0 ;zg/goc), whlch is below the SQC for d1eldrm

In situations where TOC values for particular sediments are not avajlabie, a range of
TOC values may be used in a "worst case” or "best case" amalysis. | In this case, the organic -
carbon-normalized SQC values (SQCyo) may be “"converted” to dry weight-normalized SQC
values (SQCpry wr). This "conversion" must be done fo:i each level of TOC of interest:

SQCorywr = SQCoc(ug/goc) * (% TOC + 100) | |
where SQCppy wr is the dry weight normalized SQC value. For ema;nple, the SQC value for
. freshwater sediments with 1% organic carbon is 0.11 pg/g: |
SQCory wr. = 11 pgl/goc ® 1% TOC + 100 == 0.11 ug/gmyw

This method is used in the analysis of the STOﬁET data in section 5.4.
5.2 UNCERTAINTY ANALYSIS: ‘

Some of the uncertainty in the calculation of thg diéldrin SQC can be estimated from the
degree to which the EqP model, which is the basis for the criteria, can rationalize the available
sediment toxicity data. The EqP model asserts that (1) the bioavai]abi]ity of nonionic organic
chemicals from sediments is equal on an organic carbon basis, and (2) that the effects
concentration in sediment (ug/g,) can be estlmatedfrom the product of } the effects concentration
from water only exposures (ug/L) and the partition coefficient Ko (i../kg). The uncertainty
associated with the SQC can be obtained from a quantitative estimate of the degree to which the
available data support these assertions.

The data used in the uncertainty analysis are from the water-only and sediment toxicity tests |

that have been conducted to fulfill the minimum database requirements for the development of
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SQC (See Sectlon 4 3 and Techmcal Bas1s Document U S. EPA, 1993a) These freshwater and
| saltwater tests span a range of chemlcals and orgamsms they include both water-only and
sediment exposures and they are replicated within each chemical—organism-exposure media
treatment. These data were analyzed using an analysis of variance (ANOVA) to estimate the
'uneertainty (i.e. the variance) essociated with varying the exposure media and that associated
with experimental error. If the EqP model were perfect, then there would be only experimental
error. Therefore, the uncertainty associated with the use of EqP is the variance associated with
varying exposure media.

The data used in the uncertainty analysis are illustrated in Figure 4-2. The data for dieldrin
are summarized in Appendix B. LC50s for sedlment and water-only tests were computed from
these data. The EqP model can be used to normahze the data in order to put it on a common
basis. The LC50s from water-only exposures (LCS50y; ug/L) are related to the organic carbon-
normalized LC50s from sediment exposures (LC50; oc; ﬁg/goc) via the partitioning equation:

LC505,0c = KocL.C50y, (5-3)

The EqP model asserts that the toxicity of sediments expressed on an organic carbon basis equals '
the toxicity in water tests multiplied by the Koc. Therefore, both LC505,0c and Ko ®LC50y, are

estimates of the true LC50, for each chemical-organism pair. In this analysis, the uncertainty

of Koc is not treated separately. Any error associated with Ko will be reflected in the

uncertainty attributed to varying the exposure media.

- In order to perform an analysis of variance, a model of the random variations is required.
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As discussed above’, experimen,ts that seek to vallidatelequaticm 5-3 are subj'ect to various sources
of random va'riations: A nunxlber <.>f chemicals and organisms have beén tested. Each chemical -
organism pair was tested in water-only exposures and in different sediments. Let o represent
the random variation due to this source. Also, each experiment isl rcphcated Let € represeht
the random variation due to this source. If the model were perfect, &em would be no random
variations other than that due to experimental error which is reflected m the replications. Hence
o represents the uncertainty due to the approximations inherent in the model aﬁd € represents
the experimental error. Let (0,)? and (0c)? be the variances of these random variables. Let i
. index a specific chemical-organism pair. Let j index the exposure media, water-ohly, or the
individual sedimeits. Let k index the replication of the experiment. Then the equation that
describes this relationship: ’

IN(LC50,0) = s + agy +E550 | | (5-4)
where In(LC50);;,, are either In(LC50,) or ln(LCSOs,;,c) corresponding to a water-only or
sediment exposure; g; are the population of In(LC50) for chemical-ofganism pair i. The error
structure is assumed to be lognormal which corresponds to assuming that the errors are
proportional to the means, e.g. 20%, rather than absolute quantities, e.g. 1 ug/L. The statistical
problem is to estimate g;, (0,)?, and (o¢)> The maximum likelihood method is used to make
these estimates (U.S. EPA, 1993a). The results are shown in Table‘ 5-2.

The last line of Table 5-2 is the uncertainty associated with thg: SQCG; i.e., the variance |

associated with the exposure media variability."
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Table 5-2: ANALYSIS OF VARIANCE FOR DERIVATION OF
SEDIMENT QUALITY CRITERIA CONFIDENCE LIMITS FOR

DIELDRIN.
Source of Uncertainty | Paxameter Value
(1g/god)
Exposure media o o, 0.39
Replication ‘ Oc - 0.21
Sediment Quality Criteria Osqc* 0.39

*Osoc = 0,

. The confidence limits for the SQC are compl'ited using this estimate of uncertainty for SQC.
For the 95% confidence interval limits, the significance level is 1.96 for normally distributed

€I10I1S.

- Hence;

In(SQCoc)urrzr = I(SQCo) + 1.9605yc (5-5)
In(SQCoc)owzr = In(SQCoc) - 1.9605c ' (5-6)

The confidence limits are given in Table 5-3.
The organic carbon normalized SQC is applicable to sediments with an organic carbon
fraction of foc = 0.2%. For sediments with foc < 0.2%, organic carbon normalization and

SQC do not apply.




TABLE 5-3. SEDIMENT QUALITY CRITERIA
- CONFIDENCE LIMITS FOR DIELDRIN

Sediment Quality Criteria
95% Confidence Limits (ug/god)_
Type of SQCoc
Water Body 18/80c Lower Upper
Fresh Water 11 5.2 24
Salt Water 20 9.5 4

3.3  COMPARISON OF DIELDRIN SQC AND UNCERTAINTY CONCENTRATIONS TO
SEDIMENT CONCENTRATIONS THAT ARE TOXIC OR PREDIC'I'ED TO BE
CHRONICALLY ACCEPTABLE. 5
Insight into the magnitude of protection afforded to benthic species by SQC

concentrations and 95% confidence intervals can be inferred using effect concentrations from

toxicity tests with benthic species exposed to sediments spiked with dieldrin and sediment
concentrations predicted to be chronically safe to organisms tested m water-only exposures

(Figures 5-1 and 5-2). Effect concentrations in sediments ean be predicted from water-only

toxicity data and K, values (See Section 4). Chronically acceptable eoncentrations are

extrapolated from genus mean acute value (GMAV) from water-only, 96-hour lethahty tests
usmg acute-chromc ratios (ACR). Therefore, it may be reasonable to combine these two
predictive procedures to estimate, for dieldrin, chronically acceptable sediment concentrations

(Predicted Genus Mean Chronic Value, PGMCYV)) from GMAVs (Appendix A), ACRs (Table

3-2) and the Ky (Table 5-1):

PGMCV = (GMAV + ACR)® K, v _ " ¢-7
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Water-only tests: (96 HR LC50 + ACR) Koo

A Arthropod _
O Other Invertebrate A
O Fishes - A -

Logio Ko =525 ‘ A

ACR=575 A

SEDIMENT TESTS: 10d LCS0

* C.tentans = 56.9p,g/goc - ;
frange 2 tests = 35.3 to 78.5ug/goe
® tazteco = 164019/g0c A
range 3 tests = 1070 to 3680 oA
A OO
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PERCENTAGE RANK OF FRESHWATER GENERA
Comparison between SQC concentrations and 95% confidence intervals, effect

concentrations from benthic organisms exposed to dieldrin-spiked sediments and

iment concentrations predicted to be chronically safe in fresh water sediments.
Concentrations predicted to be chronically safe (Predicted Genus Mean Chronic
Values, PGMCYV) are derived from the Genus Mean Acute Values (GMAYV) from
water-only 96-hour lethality tests, Acute Chronic Ratios (ACR) and K. values.

- PGMCV = (GMAV + ACR)K,.. Symbols for PGMCVs are A for

O for fishes and [J for other invertebrates. Solid symbols are benthic gengra;
open symbols water column genera. Arrows indicate greater than values. Error
bars around sediment LC50 values indicate observed range of LC50s.
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Figure 5-2. Comparison between SQC concentrations and 95% confidence intervals, effect
concentrations from benthic organisms exposed to dieldrin-spiked sediments and
sediment concentrations predicted to be chronically safe in salt water sediments.
Concentrations predicted to be chronically safe (Predicted Genus Mean Chronic
Values, PGMCYV) are derived from the Genus Mean Acute Values (GMAV) from
water-only 96-hour lethality tests, Acute Chronic Ratios (ACR) and K values.
PGMCV = (GMAV + ACR)Kyc. Symbols for PGMCVs are A for arthropods,
O for fishes and [J for other invertebrates. Solid symbols are benthic genera;
open symbols water column genera. Arrows indicate greater than values. Error
bars around sediment LC50 values indicate observed range of L.C50s.
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In Figures 5-1and 52 each h PGMCV foi' fishes, arthropods or other invertebrates tested
| in water is plotted agamst the percentage rank of 1ts sensitivity. Results from toxicity tests with
benthic organisms exposed to sediments spiked with dieldrin (Table 4-1) are p]aced in the
PGMCYV rank appropriate to the test-specific effect concentration. (For example, the 10-day
LC50 for H. azteca, (1,640 pg/goo) is placed between the PGMCYV of 742 /gy for the
stonefly, Acroneuria, and the PGMCV of 6,605 pg/goc for the cladoceran, Simocephalus.)
Therefore, LC50 or other effect concentrations are intermingled in this figure with_
concentrations predicted to be chronically safe. Care should be taken by the reader in
' interpreting these data with dissimilar endpoints. The follov&"ing discussion of SQC, drganisxn
sensitivities and PGMCVs is not intended to provide accurate predictions of the responses of taxa _
or communities of benthic organisms relative to ;peciﬁc concentrations of dieldrin in sediments
in the field. It is, however, intended to guide scientists and managers through the complexity
of available data relative to potential risks to benthic taxa' posed by sediments contaminated with
dieldrin.

The freshwater SQC for dieldrin (11 #8/8oc) is less than any of the PGMCVs or LC50
.values from spiked sediment to:dcit;u"vtests. The PGMCVs for 17 of 19 freshwater genera are
greater than the upper 95% conﬁdence interval of the SQC (23 1g/80c). The 'PGMCVs for the .
stonefly Pteronarcella (15 #8/g.c) and C@genia (18 pug/goc) are below the SQC upper 95%
confidence interval. This illustrates why the slope of the species sensitivity distribution is
important. It also suggests that if the extrapolation from water'only acute lethality tests to
chronically acceptable sediment concentrations is accurate, these or similarly sensitive genera

may be chronically impacted by sediment concentrations marginally above the SQC and possibly
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lcss than the 95% upper conﬁdence mterval For dleldrm PGMCVs range over three orders

of magmtude from the most sensmve to the most tolerant genus. A sediment concentration 20

. #8/goc.

times the SQC would include the GMCVs of one-half of the 12 bentluc genera tested including
stoneflies, mayﬂ1es, isopods and catfish. Tolerant benthic genera such as the amphipod
Gammarus and the crayfish Orconectes tes might be expected 1o not be chronically impacted in
sediments with dieldrin concentrations 1000X the SQC. Data from l.éthality tests with another
freshwater amphipod, Hyalella, exposed to dieldrin spiked into sediments substantiates this
projection; the 10 day LC50s frbm-three tests range from 100 to 350 times the SQC of 11

The saltwater SQC for dieldrin (20 pg/goc) is less than PGMCVs any of the PGMCVs
for saltwater genera. The PGMCV for the penaéid shrimp Penaeus duorarum (21 pg/goc) and
the fish Anguilla rostrata (27 pg/goc) is lower than the upper 95% confidence interval for the
SQC. For dieldrin, PGMCVs from the most sensitive to ihe most tolerapt saltwater genus range
over two orders of magnitude. A sediment concentration 16 times the SQC would include the
GMCYV:s of one-half of the 14 benthic genera tested including four arthropod and three fish
genera. Other genera of benthic arthropods polychaetes, molluscs and fishes are less sensitive
and might not be expected to be chronically impacted in sediments with dieldrin concentrations
100X the SQC.

5.4 COMPARISON OF DIELDRIN SQC TO STORET AND NATIQNAL STATUS AND
TRENDS DATA FOR SEDIMENT DIELDRIN:
A STORET (U.S. EPA, 1989b) data retrieval was performed to obtain a preliminary
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assessment of the concentrations of dleldrm in the sedxments of the- natlon s water bodies. Log

.probablhty plots of dieldrm concentratlons on a dty weight basis in sediments are shown in
Figure 5-3. Dieldrin is found at varying concentrations in sediments from rivers, lakes and near
coastal water bodies in the United States, This is due to its widespiead use and quantity applied
during the 1960s and early 1970s. It was restricted from registration and production in the
Umted States in 1974. Median concentrations are generally at or near detection limits in most

water bodies for data after 1986. There is significant variability with dieldrin concentrations in
sedifnents ranging over nine orders of magnitude within the country.

The SQC for dieldrin can be compared to existing concentrations of dieldrin in sediments
| of natural water systems in the United States as contained in the STORET database (U.S. EPA,
1989b). These data are generally reported on a d;'y weight basis, rather than an organic carbon
normalized basis.  Therefore, SQC values corresponding to sediment organic éarbon levels of
1to 10% are compared to dieldrin’s distribution in sediments as examples only. For fresh
water sediments, SQC values are O.ll ugl/g dry weight in sediments having 1% organic carbon
and 1.1 pg/g dry weight in sediments having 10% organic carbon; for marine sediments SQC
are 020 uglg dry weight and 2.0 ﬁé/g, dry weight respectively. Figure 5-3 presents the
comparisons of these SQC to Pprobability distriﬁutions of observed sediment dieldrin levels for
streams‘ and lakes (fresh water systems, shown on the ixpper panels)‘ and estuaries (marine
systems, lower panel). For both streams (n = 3075) and lakes (n = 457), both the SQC of 0.11
uglg dry weight for 1% organic carbon fresh water sediments and the SQC of 1.1 uglg dry
| _ weigl;_t for 10% organic carbon fresh water sediments are exceeded by less than 1% of the data.

In estuaries, the data (n= 160) indicate that neither criteria, 0.20 ug/g dry weight for sediments
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PROBABILITY

Probability distribution of concentrations of dieldrin in sediments from streams,
lakes and estuaries in the United States from 1986 to 1990 from the STORET
(U.S. EPA, 1989b) database compared to the dieldrin SQC values of 1.1 ug/g in
freshwater sediments having TOC = 10% and 0.11 ug/g in freshwater sediments
having TOC = 1% and compared to SQC values for saltwater sediments of 2.0
ug/g when TOC =10% and 0.20 ug/g when TOC=1%. The upper dashed line
on each figure represents the SQC value when TOC = 10%, the lower dashed

line represents the SQC when TOC = 1%
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havmg 1% organic carbon or2.0 ,ug/g dry welght for sedlments havmg 10% organic carbon are
: exceeded by the post 1986 samples Concentrations of dieldrin i in sediments from estuaries are

two order of magnitude belo_w the SQC value for 1% organic carbon sedimel}ts and three orders
- of magnitude below the SQC value for sedimetxts With TOCs of 16%.

The dieldrin distribution in Figure 5-3 includes data from some samples in which the

dieldrtn concentration was below the detection limit. These data are indicated on the plot as 7.

“less than" symbols (<), and plotted at the reported detection limits. Because these values
represent upper bounds and not measured values the percentage of samples in which the SQC

values are actually exceeded may be less than the percentage reported.v |
| A second database developed as part of the National Status and Trends ngram (NOAA,
1991) is also available for assessing contammant levels in marine sediments that are
representative of areas away from sources of contamination. The probability distribution for
these data, which can be directly expressed on an orgamc wrbon basis, is compared to the
saltwater SQC for d1eldrm (20 pg/goc) on Figure 5-4. Data presented are from sediments with
0.20 to 31.9 percent organic carbon. The median organic carbon normalized dieldrin
concentration (0.08 ug/g.o) is 2 ordets of magnitude below the SQC of 20 ugyc. None of these
samples (n=408) exceeded the criteria. Hence, these results are consistent w1th the precedmg
comparison of the marine SQC to STORET data.

Regional differences in dieldrin concentrations may affect the above conclusions

concerning expected criteria exceedences. This analysis also does not consider other factors
such as the type of samples collected (i.e., whether samples were from surficial grab samples

or vertical core profiles), or the relative frequencies and intensities of sampling in different study
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areas.” It is presented as an a1d in assessmg the range of reported dleldrm sediment

concentratlons and the extent to wh1ch they may exceed the SQC.

' 5.5 LIMITATIONS TO THE APPLICABILITY OF SEDIMENT QUALITY CRITERIA:

Rarely, if ever, are contaminants found alone in naturally occurring sediments.
Obviously, the fact that the concentration of a particular contaminant does not exceed the SQC
does not mean that other chemicals, for which there are no SQC available, are not present m
concentrations sufficient to cause harmful effects. Furthermore, even if SQC were available for

all of the contaminants in a p'articula.r‘ sediment, there might be additi?e or synmergistic effects
that the criteria do not address. In this sense the SQC represent "best case” criteria,

It is theoretically possible that antagonisti:': reactions between chemicals could reduce the
toxicity of a given chemical such that it might not cause unacceptable effects on benthic
organisms at concentrations above the SQC when it oecurs with the antagonistic chemical.
However, antagonism has rarely been demonstrated. What should be much more common are
instances where toxic effects occur at concentrations below the SQC because of the additivity
of tox1c1ty of many common contammants (Alabaster and Lloyd, 1982), e. g. heavy metals and
PAHs, and instances where other toxic compounds for which no SQC exist occur along with
SQC ehemicals. | |

Care must be used in application of EqP-based SQC in.disequilibrium conditions. In
some instances site-specific SQC may be required to address this condition. EqP-based SQC
assume that nonionic organic chemicals are in equilibrium with the sediment and IW and are

associated with sediment primarily through adsorption into sediment organic carbon. In order
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for these assumptlons to be vahd the chemical must be dlssolved in IW ‘and partitioned into
=sedlment orgamc carbon The chemcal must, therefore be assocmted with the sediment for a
sufficient length of time for equilibrium to be reached. In sedunents where particles of
undissolved dieldrin occur, disequilibrium exists and criteria areov;er protective. In liquid
chemical spill situations disequilibrium concentrations in interstitial and overlying water may be
pmpordonately higher relative to sediment concentrations. In th1s case criteria may be
unde;pmtective.
In very dynamic areas, with highly erosional or depositional bedded sedimente,
equilibrium may not be attained wlth_ contaminants. However, even high Ky, nonionic organic
compounds come to equilibrium in clean sediment in a period of days, weeks or months.
Equilibrium times are shorter for mixtures of tv';'o sediments each previously at equilibrium.
This is particularly relevant in tidal situations where large volumes of sediments are eroded and
deposned yet near equilibrium conditions may predommate over large areas. Except for spills
and particulate chemical, near equilibrium is the rule and dlsethbnum is uncommon. In
instances where it is suspected that EqP does not apply for a pamcular sedlment because of

disequilibrium dxscussed above, s1te-spec1ﬁc methodologies may be apphed (U.S. EPA, 1993b).
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SECTION 6

CRITERIA STATEMENT

_ The procedures described in the "Technical Basis for Deriving National Sediment Quality
Criteria for Nonionic Organic Contaminants for the Protection of Benthic Organisms by Using
Equilibrium Partitioning" (U.S. EPA, 1993a) indicate that benthic organisms should be
acceptably protected in freshwater sediments containing < 11 ug dieldrin/g 'organic carbon and
saltwater sediments containing < 20 ug dieldrin/g organic carbon, except possibly where a
.locally important species is very sensitive or sediment organic carbon is < 0.2%.

Conﬁ&ence limits of 5.2 to 24 yg/go;-: fo: freshwater sediments and 9.5 to 44 pug/g, for
saltwater sediments are provided as an estimate o_f the uncertainty associated with the degree to
which the observed concentration in sediment (yg/g_oc),' which may be toxic, can be predicted
using the organic carbon partition coefficient (Koc) and the water-only effects concentration.
Confidence limits do not incorporate uncertainty associated with water quality criteria. An
understanding of the theoretical bas1s of the equilibrium partitioning methodology, uncertainty,
the partitioning and toxicity of dieldrin, and sound judgement are required in the regulatory use
of SQC and their confidence limits.

These concentrations represent the U.S. EPA’s best judgement at this time of the levels -
of dieldrin in sediments that would be protective of bgnthic species. It is the philosophy of the
Agency and the EPA Science Advisory Board that the use of sediment quality criteria (SQCs)

as stand-alone, pass-fail criteria is not recommended for all applications and should frequently
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trigger additional studies at sites under investigaﬁon. The upper'conﬁdénce limit should be
interpreted as a conc;ent;taﬁon above which impacts on benthic species should be expected.
Conversely, the lower confidence limit should be intéxpreted as a concentration below which

impacts on benthic species should be unlikely.

-
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