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INTRODUCTION

The purpose of this fact sheet is to demonstrate an
approach for describing the relationship between variables
using regression. The fact sheet is targeted toward
persons in state water quality monitoring agencies who are
responsible for nonpoint source assessments and
implementation of watershed management.

Regression can be used to model or predict the behavior
of one or more variables. The general regression model,
where € is an error term, is given as

y = Bo +B1"1 T +ann T e ey
In this equation, the behavior of a single dependent
variable (y) is modeled with one or more independent
variables (x;, ..., x,). The x’s may be linear or nonlinear
(e.g., x; can represent X2, x°, x’!, etc.). By, ..., B, are
numerical constants that are computed using equations
described later. Nonlinear models are commonly applied
to physical systems, but they are somewhat more difficult
to analyze because iterative techniques are involved when
the model cannot be transformed to a linear model. The
use of two or more independent variables (x) in a linear
function to describe the behavior of y is referred to as
multiple linear regression. In either case, regression
techniques attempt to explain as much of the variation in
the dependent variable as possible.

In nonpoint source analyses, linear regression is often
used to determine the extent to which the value of a water
quality variable (y) is influenced by land use or hydrologic
factors (x) such as crop type, soil type, percentage of land
treatment, rainfall, or stream flow, or by another water
quality variable. Practical applications of these regression
results include the ability to predict the water quality
impacts due to changes in the independent variables.

SIMPLE LINEAR REGRESSION

-

The simplest form of regression is to consider one
dependent and one independent variable using
y =B, +Pyx + € )

where y is the dependent variable, x is the independent
variable, and B, and B, are numerical constants

representing the y-intercept and slope, respectively.

Helsel and Hirsch (1995) summarize the key assumptions
regarding application of linear regression (Table 1). The
uses of a regression analysis should not be extended
beyond those supported by the assumptions met. Note
that the normality assumption (assumption 5) can be
relaxed when testing hypotheses and estimating confidence
intervals if the sample size is relatively large.

The fitst step in applying linear regression (assumption 1
in Table 1) is to examine the data to see if linear
regression makes sense—that is, to use a bivariate scatter
plot to see if the points approximate a straight line. If
they fall in a straight line, linear regression makes sense;
if they do not, a data transformation might be needed, or
perhaps a nonlinear relationship should be used.

To illustrate the use of linear regression, the fraction of
water (split) collected by a water and sediment sampler
for a plot-sized runoff sampler is used (Dressing et al.,
1987). In this data set the sampling percentage (split) was
measured for a range of flow rates. The scatter plot
(Figure 1) shows that linear regression can be applied.

Presuming that the data are representative (assumption 2
in Table 1), the next step is to develop the regression line
using the method of least squares (Freund, 1973). To
determine the values of B, and B, in Equation 2, the
following equations can be used (Helsel and Hirsch,
1995): -
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where 7, X, and y are the number of observations, the
mean of the independent variable (e.g., flow rate), and the
mean of the dependent variable (e.g., split), respectively.
S,y is the sum of the xy cross products and SS, is the sum
of the squares x.
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variance for the
prediction

Obtain best
linear unbiased
estimator of y

Test hypotheses,
estimate confidence or
prediction intervals

(1) The model form is v
correct: y is linearly
related to x

v

v

v
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(3} The variance of the
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(4) The residuals are
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{5) The residuals are
normally distributed
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predicted split; 3, is plotted as the regression line in
Figure 1. By visual inspection, 3, and [, seem reasonable.

Residuals plotted as a function of predicted values of y,
residuals plotted as a function of time, and normal
probability plots of residuals are the most effective
approaches to evaluate the last three assumptions listed in
Table 1, respectively. The fourth column of Table 2
presents the residuals, ¢;, which are computed as the
observed split minus the predicted split (y; - )-

The plot of residuals should appear to be a uniform band
of points around 0, as shown in Case A of Figure 2
(Ponce, 1980). In Figure 2, residuals are plotted as a
function of predicted values of y. The analyst should look
for two types of patterns when evaluating assumption 3
from Table 1 (e.g., constant variance). The first is a
pattern of increasing or decreasing variance with predicted
values of y, as depicted in Case B of Figure 2. The
second is a pattern (e.g., a trend, a curved line) of the
residual with predicted values of y. Both characteristics
are usually assessed based on a review of the residual
plots and professional judgment alone. The analyst may
also need to examine other variables besides predlcted
values of y to fully evaluate assumption 3.

Independence of residuals (assumption 4 from Table 1)
can be evaluated by examining residuals plotted as a
function of time. The analyst should look for the same
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Figure 2. Plot of residuals versus predicted values.
(Source: Ponce, 1980)

patterns as before. As an alternative for evaluating
independence, the analyst can also plot the ith residual, e,
as a function of the (i-1)th residual, ¢,,. One word of
caution is in order when reviewing any residual plot: If
there are more points in a certain section of the residual
plot, the residuals might not appear to be a uniform band
of points around 0 (as suggested in Case A of Figure 2);
instead, that section might have a somewhat wider band
(Helsel and Hirsch, 1995). This is an expected result.

The normality of residuals can be assessed by examining a
probability plot. Two problems with nonnormal residuals
are the loss of power in subsequent hypothesis tests and
increased prediction intervals together with the impression
of symmetry (Helsel and Hirsch, 1995).

Figure 3 displays all three of these plots for the split data
analyzed from Table 2. From Figure 3, A and B, the
split residuals appear to be independent of predicted
values of y and time, as well as having constant variance.
Thus, the regression meets assumptions 3 and 4 listed in
Table 1. In this analysis, testing for residual
independence is important since the testing apparatus was
calibrated initially, The pumps or other equipment could
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Figure 3. Plot of split residuals.




have differed in performance over time, which I in furn equations used in computing the analysis of vanance .
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(Helsel and Hirsch, 1993)

S VI
 R? - [SSy s“(n-2)] _ I—SSE

proportion of variation in y explamed

values representmg the stro
rrepresentmg 1o correlation.

Source of
Variation F Significance F

Regression = MSR = ) MSR/MSE p
{Sxy)¥/SS, SSR/1

Residual n-2 SSE MSE = SSE/(n-2)
Total n-1 SSR + SSE

Application to Runoff Sampler Calibration Data
Regression 1 0.486623 0.486623 28.410248 0.0001366

Residual 13 0.222670 0.017128
Total 14 0.709293

“ eg ‘ ‘ j}s:s of runoff sampler calibration data.

Standard Lower Upper
Coefficients Error t Statistic p value 95% 95%

Intercept (B,) 3.1317 0.072914 42.950756 2.14E-15 2.97420 3.28924
Flow Rate (B,) -0.0119 0.002237 -5.330126 0.00014 -0.01675 -0.00709




squares y (SS,) is 0.7093; thus, R? is equal to 1-
(0.2227/0.7093) = 0.686, or 68.6 percent of the variance
is explained by the model. The correlation coefficient, r,
is then equal to -0.828. The overall model can also be
evaluated with the F statistic (28.41), which is computed
in Table 3. The F statistic is a measure of the variability
in the data set that is explained by the regression equation
in comparison to the variability that is not explained by
the regression equation. Since the p value of 0.0001366 is
less than 0.05, the overall model is significant at the 95
percent confidence level. :

Are B, and B, significantly different from zero? The
standard error for B, and {3, in Table 4 can be calculated
as (Helsel and Hirsch, 1995)

SE(B,) = )]
SEB) = — 10
! SSx (10)
where
s = |y, an
n-2

The value s is equal to the standard error of the regression
(which is the same as the standard deviation of the
residuals). The corresponding 7 statistics (with n - 2
degrees of freedom) for B, and B, are then equal to f3, and
B, divided by their respective standard error. The ¢
statistics may then be compared to values from the ¢
distribution to determine whether B, or B, are significantly
different from zero. In this case, B, and B, are both
significantly different from zero based on inspection of
their associated p values in Table 4.

The confidence intervais for B, and B, can be computed
using the following formulas (Helsel and Hirsch, 1995):

Bot2y -0 SE(By) (12)
Bty 0 SEB) (13)

where 2., ., is the ¢ statistic with » - 2 degrees of
freedom. In Table 4, the 95 percent confidence limits are
computed. Since the 95 percent confidence limit was
selected, ¢ is equal to 0.05 (=1-0.95) and «/2 is equal to
0.025. There are 13 degrees of freedom since » is equal
to 15. Based on this information, the ¢ statistic can be
selected from a look-up table; in this case the analyst
would look up #,,,5,3. Table 5 presents percentiles of the
¢ distribution that can be used for this purpose (more
complete tabies are available in most introductory

- Table 5. Percentiles of the 7, ; distribution (values of 7

such that 100(1-c)% of the distribution is less than ?).

df | «=0.10 | «=0.05 | «=0.025 a=0.010 =0.005
10| 1.3722 | 1.8125 2.2281 2.7638 3.1593
15| 1.3406 | 1.7531 2.1315 2.6025 2.9467
20 | 1.3253 | 1.7247 2.0860 2.5280 2.8453
25| 1.3163 | 1.7081 2.0595 2.4851 2.7874
30| 1.3104 | 1.6973 2.0423 . 2.4573 2.7500
401 1.3031 | 1.6839 2.0211 2.4233 2.7045
50| 1.2987 | 1.6759 2.0086 2.4033 2.6778
75],1.2929 | 1.6654 1.9921 2.3771 2.6430
100 | 1.2901 | 1.6602 1.9840 2.3642 2.6259

statistics books). From Table 5, the appropriate ¢ statistic
is estimated as 2.1604. The lower and upper 95 percent
confidence limits for B, and B, are provided in Table 4,
using Equations 12 and 13. Had the analyst elected to
compute the 90 percent confidence interval, /2 would be
equal to 0.05 and #,,5;; would be estimated as 1.7709.

USING THE REGRESSION LINE

The most obvious use of the regression line is to predict y
values for selected values of x. For example, using the
regression established above (Equation 5), the split for
any flow rate can be estimated. (It is not good practice,
however, to predict values beyond the range of test
conditions.) For a flow rate of 10 gpm, the predicted split
is 3.01 percent; for a flow rate of 50 gpm, the predicted
split is 2.53 percent.

Since in most cases the regression line will not fit the data
perfectly, the uncertainty associated with the predicted
values should be quantified. The regression line can be
used either to establish the confidence interval for the
population mean of y or to determine the prediction
interval for a single value of y. The limits for the single
value of y are wider than the corresponding limits on the
mean of y (Remington and Schork, 1970) because single
observations vary more than means.

The equation for the confidence interval for the population
mean y atx = X is (Helsel and Hirsch, 1995)
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transformation will “fix” the nonlinear and heteroscedastic
problem. With data that are percentages or proportions
(between the values of 0 and 1), the variances at O and 1
are small. The arcsin of the square root of the individual
values is a common transformation that helps spread out
the values near O and 1 to increase their variance
(Snedecor and Cochran, 1980).

There are several disadvantages when applying
transformations to regression applications. The most
important issue is that the regression line and confidence
intervals are symmetric in the transformed form of the
variables. When these lines are transformed back to their
normal units, the lines will no longer be symmetrical.
The most notable time in hydrology when this creates a
problem is when estimating mass loading. To estimate the
mass, the means for short time periods are regressed and
summed to estimate the total mass over a longer period.
This approach is acceptable if no transformations are
used—the analyst is summing the means. However, if a
log transformation was used, summing the mass over the
back-transformed values results in summing the median,
which will result in an estimate that is biased low for the
total mass (Helsel and Hirsch, 1995).

-As an example of nonlinear regression, consider a
common relationship that is used to describe load (L) as a
function of discharge (Q):

=aQ?t (16)
Taking the logarithms of both sides yields

In(Z) = In(e) +5 In(Q) (17)

which has the same form as Equation 2, introduced at the
beginning of this document, where In(L) corresponds to y,
In(a@) corresponds to fB,, & corresponds to B,, and In(Q)
corresponds to x. By taking the logarithms of both sides, -
the nonlinear problem has been reduced to a simple linear
model. The only additional step that the analyst must
perform is to convert L and Q to In{L) and In(Q) before
using standard software. The analyst should be aware that
all of the confidence limits are in transformed units; when
they are plotted in normal units, the confidence intervals
will not be symmetric. '

Figure 5 demonstrates how transforming the data may
improve the regression analysis. In Figure 5A, sulfate
concentrations (in milligrams per liter) are plotted as a
function of stream flow (in cubic feet per second). The
apparent downward trend is typical of a stream dilution
effect; however, the trend is clearly nonlinear. The trend
line plotted in this figure, as well as the residuals plotted
in Figure 5C, demonstrate that a linear mode! would tend
to over- and underestimate suifate concentrations
depending on the flow. Figure 5B displays the same data

after computing the logarithms (base 10) of the sulfate and
flow data. A trend line fitted to these data and the
residual plot (Figure 5D) clearly demonstrate that
applying linear regression after log-transformation would
be appropriate for these data.

CONCLUSION

When properly used, regression analysis can be an
important tool for evaluating nonpoint source data.
However, the analyst should pay close attention that the
application of regression does not exceed the uses that are
met in Table 1. In some instances it might be necessary
to select distribution-free approaches that tend to be more
robust.” The reader is referred to Statistical Methods in
Water Resources (Helsel and Hirsch, 1995) for a more
complete discussion regarding distribution-free
approaches.
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