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PREFACE

This volume is a compendium of the papers and commentaries that were presented at
the second of a series of conferences on interpretation of environmental data conducted by
the American Statistical Association and the U.S. Environmental Protection Agency's
Statistical Policy Branch of the Office of Standards and Regulations/Office of Policy,
Planning, and Evaluation.

The purpose of these conferences is to provide a forum in which professionals from the
academic, private, and public sectors can exchange ideas on statistical problems that
confront EPA in its charge to protect the public and the environment through regulation of
toxic exposures. They provide a unique opportunity for Agency statisticians and scientists
to interact with their counterparts in the private sector.

The theme of the conference, "Statistical Issues in Combining Environmental Studies,"
is particularly appropriate because policy formulation rarely depends upon a single study.
At any rate, the conclusions from various studies are often seemingly contradictory or the
evidence from any single study is not clear-cut. No matter how inconclusive the evidence
may be, it is still necessary to formulate policies. Recently, great strides have been made
in the formal statistical combination of research information. A new term,
"meta-analysis," has appeared, most often in medicine and social science research reports.
This ASA/EPA research conference was held to make environmental statisticians and
scientists aware of these new techniques and to examine the applicability of the
methodology to environmental studies.

The holding of a research conference and preparation of papers for publication
requires the efforts of many people. Gratitude is expressed to the ASA Committee on
Statistics and the Environment which was instrumental in developing this series of
conferences. In addition, appreciation is given to Dr. Kinley Larntz, University of
Minnesota, for his work in assembling and coordinating the presentations for this
conference. Thanks are also owed to members of the ASA staff and, particularly, Ede
Denenberg and Mary Esther Barnes, who supported the entire effort. Although there was
no provision for a formal peer review, thanks are also due to the reviewers who assessed
the articles for their scientific merit and raised questions which were submitted to the
authors for their consideration.

The views presented in this conference are those of individual writers and should not
be construed as reflecting the official position of any agency or organization.

Following the first conference on "Current Assessment of Combined Toxicant
Effects," in May 1986, the second conference on "Statistical Issues in Combining
Environmental Studies"” was held in October 1986. Two additional conferences were held:
"Sampling and Site Selection for Environmental Studies" in May 1987 and "Compliance
Sampling"” in October 1987. From these two conferences, proceedings volumes will also be
published.

Emanuel Landau, Editor
American Public Health Association

Dorothy G. Wellington, Co-Editor
U.S. Environmental Protection Agency
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SUMMARY

The first set of papers and discussion in the volume begins with an exciting paper by
David M. Eddy introducing a Bayesian method for evaluating and summarizing evidence
from various sources. The sources can include empirical studies and expert judgments.
Graphical methods are provided to display the conclusions from the research synthesis.
One of the highlights of the conference was an interactive computing demonstration of the
techniques given by Eddy and Vic Hasselblad. Robert L. Wolpert's paper discusses the
critical issue of selecting the appropriate scale of measurement for combining evidence.
Following the two papers is discussion by David A. Lane. Lane offers strong support for
the Bayesian viewpoints of Eddy and Wolpert. He also reminds us of potential difficulties
in implementation of the methods.

Larry Hedges, a major contributor to the meta-analysis literature, presents a clear
picture of the issues in combining studies. In contrast to Eddy, Wolpert, and Lane, Hedges
adopts the frequentist viewpoint presenting combined significance tests an confidence
limits. Hedges carefully presents methods and points out their possible limitations. In
discussion of the Hedges paper, James M. Landwehr point out that combining studies should
be considered within the usual framework of statistical applications. Landwehr then takes
us through the steps of standard analysis, illustrating the special aspects of meta-analysis.

In the next paper, Thomas B. Feagans presents his viewpoint on probabilistic
assessments. Feagans bases his methods on the fundamental axioms of probability.
Interesting discussions are given by Harvey M. Richmond, Anthony D. Thrall, and Miley W.
Merkhofer.

The final paper, given by G.P. Patil, G.J. Babu, M.T. Boswell, K. Chatterjee, E. Linder,
and C. Taillie, presents several case studies of combining data in the environmental area,
specifically in marine fisheries management. Lloyd L. Lininger gives a discussion raising
fundamental questions important to any problem of combining studies.

Kinley Larntz
University of Minnesota
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CONFIDENCE PROFILES: A BAYESIAN METHOD
FOR ASSESSING HEALTH TECHNOLOGIES

David Ai. Cddy, M.D., Ph.D.*
J. Alexander McMahon Professor of
Health Policy and Management,

Director

Center for Health Policy Research and Education
Duke University
Durham, North Carolina

INTRODUCTION

The first step in the assessment of a health
technology is to evaluate the existing evidence to
estimate how the technology affects the magnitude
or probability of important health outcomes—its
benefits and harms. These estimates form the basis
for the subsequent steps of an assessment: com-
parison of benefits and harms, estimation of overall
benefit, calculation of marginal returns, and design
of a policy.

At present, for the great majority of health tech-
nologies there is no explicit quantitative estimation
of the technology's effects on health outcomes.
Current clinical and administrative decisions are
typically based on a qualitative subjective judgment
that a technology's benefits outweigh its harms.
However, the rising cost of health care, increasing
competition, concern over wide variations in practice
patterns, increasing malpractice claims, and a
variety of other forces all create pressure for
quantitative estimates of a technology's effects, and
therefore for quantitative assessment methods.

Estimating the effects of a technology on health
outcomes is complicated by several factors. Ideally,
for each technology and each outcome, there would
be several well designed controlled trials that provide
direct evidence of how the technology affects each
outcome. Unfortunately, this ideal is rarely
achieved. The empirical evidence is rarely com-
plete. What evidence is available usually comes from
many different sources, including randomized
controlled trials (RCTs), nonrandomized controlled
trials, uncontrolled clinical series, case-control
studies, cross-sectional studies, case reports,
longitudinal studies, and animal experiments. Even
anecdotes, theories, testimonies, and analogies play a
role in many assessments. Each piece of evidence
can be subject to a variety of biases and other
factors that affect their internal validity,
comparability, and applicability to a particular
assessment (external validity). Much of the available
evidence does not deal with outcomes that are
important to patients (e.g., death), but with
intermediate outcomes (e.g., cholesterol level), or
performance indicators (e.g., the sensitivity of a
diagnostic test). Finally, even pieces of evidence
that are compiete and have the same design can be
inconclusive (e.g., not statistically significant) or
give inconsistent results. Because of these

*] thank Vic Hasselblad, Greg Critchfield, Dick
Smallwood, and Bob Winkler for many helpful
suggestions. 1 especially thank Robert Wolpert for
his contributions to this work and collaboration in
extending it. '

complexities, the process for synthesizing evidence
tends to be highly subjective—which leave them
vuinerable to oversimplification, errors in reasoning,
wishful thinking, and self-interest.

This paper introduces a Bayesian method for
synthesizing the available evidence—from both em-
pirical studies and expert judgments—to estimate the
effect of a health technology on health outcomes.
Called the Confidence Profile Method, it can be used
to evaluate evidence from different types of
empirical studies, adjust individual pieces of evidence
for biases to internal and external validity, combine
evidence from different studies (not necessarily with
the same designs), and incorporate focused subjective
judgments, to derive a probability distribution for the
effect of a health technology on health outcomes.!
Because the probability distribution explicitly
incorporates subjective judgments, it is called a
Confidence Profile. The Profiles for each outcome
can then form the basis for adjustments for risk
aversion, comparison of benefits and harms, and
other steps of a technology assessment.

This paper gives the basic formulas of the method,
and illustrates its use with an analysis of the effect
of a thrombolytic agent—tissue-type plasminogen
activator-—on one-year survival from heart attacks.

DEFINITIONS

The term health technology is used very broadly to
include any intervention that might affect a health
outcome. Examples include health education,
diagnostic tests, treatments, rehabilitation programs,
pain control, and psychotherapy. A health outcome is
an outcome of a disease or injury that people can
experience and care about. Examples are life and
death, pain, disfigurement, disability, anxiety, and
range of motion of a limb. It is important to
distinguish health outcomes from intermediate
outcomes, which are markers of biological changes
that might indicate or affect the probability or
magnitude of health outcomes. Examples are blood
pressure, serum cholesterol, intraocular pressure, and
the reperfusion of a coronary artery after treatment
of a heart attack.

The objective of an assessment is to estimate the
technology's effect on health outcomes. To
accomplish this, we use "chains" that connect the
performance of the technology to the health
outcome. If there is direct evidence that directly
relates performance of the technology to the
occurrence of the health outcome, the chain has a
single link. In other cases the evidence is indirect,
with one body of evidence relating the performance
of the technology to one or more intermediate



outcomes (or followup actions—see below), and other
evidence relating the intermediate outcome(s) to the
health outcome. For example (see illustration
below), to assess the effect of changing dietary
cholesterol on heart attack rates, a two-link chain
might be used; the first link would evaluate evidence
about the effect of diet (the technology) on serum
cholesterol (the intermediate outcome); the second
link would evaluate evidence that reducing serum
cholesterol reduces heart attack rates (the heaith
outcome). When multiple-link chains are used, care
must be taken to examine the accuracy of the
intermediate outcome as an indicator for the heaith
outcome, and any independent effects of the
technology on the health outcome (not mediated
through the intermediate outcome). These issues will
be discussed in detail below.

Change diet—> lower serum cholesterol—>
prevent heart attacks

Followup actions are important in the evaluation of
diagnostic or screen technologies, where the
technology's purpose is to provide information, which
in turn can affect health outcomes only if it changes
a followup action (e.g., changes treatment). For
example, to evaluate screening for ocular
hypertension, a three-link chain would be constructed
to (1) relate the use of the screening test (e.g.,
tonometry) to detection of high intraocular pressure
(an intermediate outcome), relate detection of
elevated pressure to a decision to treat (a followup
action), and (3) relate the treatment to a decrease in
the chance of blindness (a health outcome).

Frequently there are features of the population,
disease, technology, provider or setting that can alter
the effect of a technology on health outcomes.
Examples are the relative risk of a disease in a
population to be screened, the sensitivity or
specificity of a diagnostic test, the dose or frequency
of a drug, the experience of a practitioner, and the
adherence of a patient to a treatment. The
Confidence Profile Method treats these features as
parameters. By performing an assessment as a
function of various parameters, the assessment's
results can be tailored to a variety of circumstances.

MEASURING A TECHNOLOGY'S EFFECT

To estimate a technology's effect on health
outcomes, a suitable measure must be chosen for
each outcome, and an estimate made of how the
technology (compared with a designated control)
changes the outcome, according to the chosen
measure. Quantitative measures provide the least
ambiguous way to describe, and the most powerful
way to calculate, a technology's effect.

Given a quantitative measure for a health outcome,
the effect of a technology can be defined in several
different ways. For dichotomous health outcomes, an
obvious measure of effect is the change in the
probability of the health outcome. For example, if
the chance of the health outcome (e.g., death within
one year) without the technology is 0.8, and the
chance of the health outcome with the technology is
0.4, the effect of the technology by this measure is
-0.4. (The technology caused the chance of death to
be 40% less than without the technology.) For health
outcomes that can take one of several values (e.g.,
mild, moderate or severe pain, or a discrete-valued

health status measure), the technology's effect can
be defined as the shift in probabilities of the
different outcomes. For continuous-valued outcomes
(e.g., weight, IQ, or a continuous-valued health status
measure), the technology's effect can be measured as
the change i tae magnitude of the health outcome.
Other measures of a technology's effect are possible,
such as a change in the odds-ratio, or the percent
change in probability or magnitude of an outcome. In
each case, uncertainty about the technology's effect
can be described as a distribution for the effect, on
the chosen measure.

OVERVIEW OF THE CONFIDENCE PROFILE
METHOD

Steps. The Confidence Profile Method is applied in
five basic steps. This section outlines the steps and
the general form of some of the formulas. Examples
of specific formulas are given in a later section.

1. Define the technology, the control with which it
will be compared (the "designated control”), the
circumstances in which it will be applied (the
"circumstances of interest"™), and the heaith
outcomes it affects. A separate assessment
should be performed for each health outcome.

2. For each health outcome, describe chain(s) that
relate the performance of the technology
(compared with the designated control) to the
occurrence of the health outcome. These chains
should be based on the available evidence and
knowledge of the pathophysiology and
management or the health problem. The chains
should be created so that each piece of evidence
applies to one and only one chain. Each chain
will be analyzed separately, and the results
combined in a later step (step 4).

3. For each chain, derive a probability distribution
for the effect of the technology on the health
outcome, as indicated by the evidence for that
chain. This is accomplished by examining the
evidence for each link of the chain, one link at a
time, deriving a probability distribution for the
link (step 3a), and then combining the probability
distributions across the chain (step 3c).

a. The derivation of a probability distribution
for a link, that describes our knowledge
about the true effect of the action on the
outcome for that link, is accomplished by
first deriving for each link a likelihood
function L(e) for the likelihood of the
observed results of the evidence for the
link as a function of the possible values of
the true effect. To simplify the
discussion, consider a single-link chain
(direct evidence) and denote as ¢ the true
(but unknown) effect of the technology on
the health outcome. Denote the observed
results of an experiment or other source of
evidence as X;;, where the subscripts
denote the ith piece of evidence for the jth
chain. Where there is no ambiguity about
which chain is being considered, the second
subscript will be dropped. (Below, the
collection of evidence for the jth chain will
be denoted X.J- , and the total body of
evidence for ‘all chains will be denoted



X..). The likelihood function we want to
derive for the link, based on, say, n pieces
of evidence, is L(X1. X3, ... XJ)-

i. To derive this likelihood function for
the link, examine each independent
piece of evidence for the link one by
one and derive a function for the
likelihood of the observed result (X i)

as a function of the possible values of
the true effect of the technology
(@. Denote this likelihood function

for the it piece of evidence as
Lax). The form of the likelihood

function will depend on the type of
evidence. The likelihood function for
an RCT will be given in the next
section.

ii. Sometimes the result of a particular
piece of evidence is influenced by
factors that affect internal validity
(e.g., patient selection bias, errors in
measurement of outcomes, crossover
of patients between treated and
control groups), external validity
(e.g., differences between the
circumstances of a trial relating to
the patients, technology, or
providers, compared with the
circumstances of interest in a
particular assessment). Because of
this, the formulas for deriving
likelihood functions for individual
pieces of evidence contain variables
to adjust for these factors. The
requirement is that, when the
appropriate adjustments are made,
the likelihood function for each piece
of evidence should describe the
likelihood of the observed results of
the study in the circumstances of the
study, as a function of the true
effect of the technology in the
circumstances of interest. Specific
examples of likelihood functions that
contain adjustments will be given in
the next section.

iii. Calculate a joint likelihood function
for the observed results of all pieces
of evidence, as a function of the
(unknown) true effect of the
technology in the circumstances of
interest, by multiplying the likelihood
functions of the individual pieces of
evidence (possibly adjusted for biases
to internal and external validity).4

LigiXy, X3, - X)) = Ly(eX)) L(elXy) - - LfeiX,)

iv. Derive a probability distribution for
the effect of the action on the
outcome (for that link), using the
continuous form of Bayes' formula.
Denote this (posterior) probability
distribution by n(eiX.). Thus

t(ewh xzv oy xn) =k L(d\xlc xz: oory x.) ﬂe)

M

@

where %(¢) is a noninformative prior
distribution for e, and k is a
normalizing constant. The choice of
a suitable noninformative prior
distributions is discussed by Jeffreys
(1961) and Bernardo (1979) in a
general setting, and by Wolpert and
Eddy (1986) in the context of
Confidence Profiles.

If the evidence is direct (a single-link
chain), the posterior probability
distribution derived in the previous step is
the Confidence Profile for the effect of
the technology (skip to step 4). If the
evidence is indirect (a multiple-link chain),
repeat step 3a to derive probability
distributions for each link and proceed to
step 3c.

Combine the probability distributions for
each link to derive a probability
distribution for the entire chain—the
effect of the technology on the health
outcome. If the occurrence of an outcome
for a particular link is determined solely by
the action for that link, and not affected
by any preceding actions, (e.g., if the
technology has no independent effect on
the health outcome not mediated through
the intermediate outcome),” then the
probability distributions for the links are
combined by an operation analogous to
multiplication of two random variables.
Specifically, let ma{ts) be the distribution
for the effect of the technology (t) on a
dichotomous intermediate outcome (),
let r.(ea) be the distribution for the
effect of the intermediate outcome on a
dichotomous health outcome (h), where in
both cases the effect is measured as the
difference in the probability of the
outcome caused by the action (see footnote
3). Then the distribution for the effect of
the technology on the health
outcome (ra(en) is given by

Rt = [ o Raltn) T (i) den 3)

If the occurrence of an outcome is not
determined solely by the action for that
link, but is influenced by an action in a
preceding link, the formula for combining
probability distributions across links of a
chain must include correction factors. The
equation with correction factors is given
below (Eq. [25]).

The result of this step is the probability
distribution, or Confidence Profile, for the
effect of the technology (compared with
the designated control) on the health
outcome, for a particular chain.

If there are two or more chains, combine their
separate probability distributions to derive a
single probability distribution that incorporates
the evidence in all the chains. Let X.; be the
evidence for the it® chain, let ngelx,) be the
probability distribution for the effect of the



technology, based on the evidence in the ith
chain, and let a(e) be the (noninformative) prior

for the technology's effect. The formula is 4)

n(e)

=]
Tty Xy o Xon) = k Ty (EXoy) Ry(EKeg) - - - Ra(EKad) [—’—]

where k is a normalizing constant and n is the
number of chains. This equation assumes the
posterior distributions for each chain are
independent in the sense that no piece of
evidence is used in more than one chain.
Equation (4) will be derived below (Eq.[33)).

S. Sometimes a body of evidence will compare the
technology (T) with a control (C°®) that is
different from the designated control (C). When
this occurs, the effect of the technology
compared with the designated control (call
this ¢.) can be found as follows:

a. use steps 1-4 to derive a probability
distribution for the effect of T compared
with C* (call this ‘e, ),

b. similarly, derive a probability distribution
for the effect of C* versus the designated
control C (call this ¢..)© and

c. calculate the probability distribution for
the effect of the technology compared
with the designated control by convolving
the probability distributions outlined in the
previous two steps. Specifically,
let mn.(¢e) be the distribution for the
effect of the technology compared with
the control C°®, let =x () be the
distribution for the effect of the
technology compared with the designated
control C, and let =.(e.) be the
distribution for the effect on the health
outcome of the control C* compared with
the designated control C. Then

Telt) = [Reolter) Xeltete) deee  (5)

Use of Subjective Judgments. When applying the
formulas of the Confidence Profile Method, empirical
evidence is used to the greatest extent possible to
estimate the necessary variables. However,
whenever the available empirical evidence is
incomplete, focused subjective judgments must be
used to complete an assessment.’ An important
feature of the Confidence Profile Method is that
whenever subjective judgments are used, uncertainty
about any variable being estimated can be
incorporated in the analysis by describing a
probability distribution for the variable (instead of
using a point estimate), and integrating over the
variable. No additional subjective "weighing" of
individual pieces of evidence is required; the "weight"
of each piece of evidence (along with any
adjustments) is automatically captured in the
likelihood functions and therefore in the Confidence
Profiles calculated from them. This feature will be
illustrated below. Because the Confidence Profile
automatically encodes this uncertainty about the
variables in the formulas, as well as the uncertainty
due to the random sampling that affects empirical
observations, there is no need to perform sensitivity
analysis for such factors.8 .

ILLUSTRATION

The Confidence Profile Method will be illustrated
with formulas for evidence involving RCTs with
dichotomous intermediate outcomes and health
outcomes, where the technology's effect is measured
as the difference it causes in the probability of the
health outcome. Use of the formulas will be
illustrated with an assessment of the effect on
one-year survival of a thrombolytic agent
(tissue-type plasminogen activator) used to treat
heart attacks. The Method currently includes
formulas for other types of experimental designs
(e.g., nonrandomized controlled trials, clinical series,
case-control studies, and some cross-sectional
designs); categorical and  continuous-valued
intermediate outcomes and health outcomes; and
other measures of a technology’'s effect (e.g., change
in odds-ratio, and percent change in a rate). These
are described elsewhere (Eddy and Wolpert 1986).

Background. Tissue-type plasminogen activator
(t-PA) is one of several thrombolytic agents used to
dissolve (lyse) blood clots (thrombi) in coronary
arteries after heart attacks, with the intention of
restoring blood flow through the coronary artery
(reperfusion), and thereby increasing the chance of
survival. There are conflicting policies about the use
of t-PA (and about payment for it by third-party
payers). The conflicts reflect the complexity of the
available evidence. The main problem is that there is
no single RCT that compares the effect of t~PA with
conventional care or any other thrombolytic agents
on long-term (one-year) survival. The available
studies of t-PA (see Table I) involve intermediate
outcomes (e.g., perfusion and reperfusion),
short-term outcomes (in-hospital mortality), and
different controls (placebo, conventional care, and
intravenous streptokinase). In addition to the studies
described in Table I, a large number of studies have
examined other thrombolytic agents—intravenous
streptokinase (IV SK), intracoronary streptokinase (IC
SK), and urokinase (UK) (Yusuf et al 1985). While
they do not provide direct evidence about t-PA, they
contain information to compare the various controls
used in studies involving t-PA.

Likelihood Function for an RCT. The likelihood
function for an RCT is derived from the binomial
distribution. Designate the occurrence of the health
outcome a "success" (s), the nonoccurrence of the
outcome a "failure” (f), and the true probability of a
success in the treated and control groups as pj and
pPo. respectively. Let the number of people in the
treated and control groups be n] and ng, the observed
number of successes in each group be sy and sg, and
the observed number of failures in each group be f}
and fg (s;j + f; = nj). The joint likelihood function for
po and pj, given observed values of sg, fo. 5i, and f] is

L(po, prlsor fir 510 £1) = (o)™ (1-po)® (01)" (1-p, )" (6)

Designate the "effect" of a technology as e which in
this case is definedas e=p,-p,. A joint likelihood
function for e and pg can be derived by substituting
pere  for p) in Equation (6).

Lt poisor for 51 /1) = (P0)® (1-pa)® (prt€)" (1-poe? )

If it is reasonable to behave as though there were no
prior knowledge linking pg and ¢ a marginal



likelihood function for ¢ can be obtained by
integrating the function L(e,pg) with respect to a
marginal noninformative prior distribution for pg.
Because p) is a probability, then 0<ps+e<1, and
the assumption of independence is an approximation;
it is a very close approximation, however, for a wide
range of possible values of pg and e The
reasonableness of the assumption is only threatened
when pg and approach 0 or 1, and the sample sizes
are small. Furthermore, other measures of effect
(e.g., change in odds ratio, percent change in rate,
and relative risk) can be used to help achieve
independence between pg and ¢ (Wolpert and Eddy
1986). If g(pg) is the (possibly noninformative) prior
for pg, the marginal likelihood function for ¢ is

Lo fo 51, fi) = [ (o)™ (1-pf® e’ (1-peef go0) dpo  (8)

There are several possible choices for noninformative
priors for the parameter pg. Use of a uniform prior
and the normal approximation for the binomial
likelihood function leads to the approximation

L{Elso for 51 1) = NGLOY) €)]

where Nu.c?) is the normal distribution with
mean W=s/n -sgny  and variance o3 = sofi/(ng)’ +

1 fillay)’. It can be shown that the parameters u

and ¢o? differ only by terms of order (ling + Uny)

from those that would be obtained with other
reasonable candidates for noninformative priors.

Equation (9) can be illustrated with the TIMI study,
the results of which are given in Table 1 (TIMI 1985).
Figure 1 shows the likelihood function for the effect
on reperfusion of t-PA compared with IV SK
calculated from Equation (9) with sg = 44, fo = 78, 5]
= 78, f1 = 40. The horizontal axis of this figure is ¢,
the true effect of the technology (compared with IV
SK) on reperfusion. There is no vertical scale
because a likelihood function is defined only up to an
arbitrary constant. The likelihood function can be
multiplied by a noninformative prior and normalized
to derive a posterior distribution that has a virtually
identical appearance. It would show that t-PA
(compared with IV SK) can be expected to increase
the probability of reperfusion by about 30%, with a
95% range of confidence? from 18% to 42%.

Adjustment of Likelihood Functions for Biases.
Adjustment of evidence for biases that affect their
internal validity, or for factors that affect their
applicability to a particular assessment (external
validity) will be illustrated with formulas that adjust
likelihood functions for RCTs to correct for errors in
outcome measurement, crossover of patients, and
two types of confounding factors. Formulas have
also been written to adjust studies for differences in
length of followup.

Adjustment for Errors in Measurement of Outcomes.
In an RCT, the joint likelihood function for Po and p)
is a function of the observed number of successes and
failures in the treated and control groups.
Unfortunately, there can be errors in the method
used to determine whether an outcome is a success or
failure, due to such problems as an imperfect
measurement instrument, errors in reporting, clerical
errors, and so forth. If the true outcomes were
kpown, the counts of successes and failures could
simply be corrected, and used in Equation (8)." More

frequently, it is only possible to estimate the chance
of error. Let gp be the probability that, in the
control group, a true success will be incorrectly
labeled a failure, and let by be the probability that,
in the control group, a true failure will be labeled a
success. Let a3 and b] be the corresponding
probabilities for the treated group. It is easy to show
that .

Lo, pilse fou 31, f1s a0, by, ay, by) = (19)

P-.u-a.) + (1-p.)b,]'° . P"“‘ + (l-po)(l-bo)]"

e+ (t-pitn]" - [ + a-poa-syf*

Each of the expressions in brackets represents the
true probability of a success or failure, as a function
of the values of p;, a; and b;.

The joint likelihood function for ¢ and  po (L(E, po)) 10
can again be obtained by substituting ¢ + pg for p; in
Equation (10), and a marginal likelihood function
for ¢ can be obtained by integrating L(e py) with
respect to a (possibly noninformative) prior
distribution for pg.

Any uncertainty about agp, bg, a1, and/or by can be
described with probability distributions, and the
expression integrated with respect to the uncertain
variable(s), causing any uncertainty about any of
these parameters to be encoded in the likelihood
function. Thus, if uncertainty about ag is described
by h(ag), then

Lo £1) = | Lipo. prlag) h(ag) daq an

Incorporating uncertainty about all four parameters
(ag, aj, bo, d1) would involve quadruple integration.

This feature of the Confidence Profile Method can be
illustrated by deriving a likelihood function for the
reperfusion rates observed in the TIMI study,
adjusting for the possibility that the observed
reperfusion rates might have been distorted by the
performance of the coronary angiography used to
measure reperfusion. Suppose we estimate by =
0.05 and by} - 0.05 (based on estimates of the
proportion of patients with occluded arteries that can
be opened by angiography alone), and ag = a; = 0
(assuming that angiography will not close an open
artery). Using these estimates of ay a;, b., bl’ and
Equation (10), the adjusted likelihood function for the
effect of t-PA versus IV SK on reperfusion, derived
from the TIMI study, is shown in Figure 2.

Intensity and Additive Bias. Often the circumstances
of a study do not precisely match the circumstances
of interest, making it difficult to compare studies or
to apply them directly (without adjustment) to a
particular assessment. Examples are differences in
the population, the technology, the providers, or
other factors that can modify a technology's effect.
These differences can affect the interpretation of a
study in two basic ways, to create what will be called
an intensity bias and/or an additive bias.

A bias is an intensity bias if it has a proportional
effect on the effectiveness of the technology.
Specifically, a factor is said to affect the intensity of
a technology if, whatever the effect of the



technology in the absence of the factor (g), the
presence or modification of the factor causes the
effect (call this ¢ ) to be ¢ =tw, where t is the
measure of the magnitude of the bias caused by the
factor. Thus, t = ] implies a factor causes no
intensity bias. Examples of factors that affect the
intensity of a technology are the dose of a drug,
frequency of an examination, skill of a provider, type
of ‘equipment, or susceptibility of a patient to a
treatment. The notion of intensity is described in
statements such as "this technology has improved
20% since the study was completed,” and "the effect
of this technology in community hospitals will be only
80% that observed in a research setting.” Notice
that if a technology has no effect (e = 0), presence or
modification of the factor will leave the technology
with no effect, and if the technology is harmful,
increasing its intensity will indicate it is more
harmful.

An additive bias shifts the probability or magnitude
of an outcome in the treated and/or control groups by
a constant amount. Specifically, a factor is said to
cause an additive bias if, whatever the true effect of
the technology in the circumstances of interest (g
the bias causes the observed effect (¢) tobe e¢'=f+
+ ¢, where 8§ is the amount of the additive bias.
Thus, 8 = 0 implies no additive bias, and B can be
positive or negative. An example of a factor that
causes additive bias is any difference between the
treated and control groups of a controlled trial that
can modify the probability of the health outcome,
even in the absence of the technology (e.g., age of
the patient, severity of the health problem).

If a particular study is thought to be affected by one
or more factors that create an intensity or additive
bias, with estimates of the intensity (t) and additive
biases (@), the likelihood function for pg, py, and
therefore for ¢ can be found by substituting p+te
for ¢ in Equation (8). For example, in a randomized
controlled trial the adjusted joint likelihood function
for ¢ and pg would be given by

(12)

L(e. plson fo 51. fir B. ) = (00)"® (1-pof® (po+B+12)"® (1-po-B-te st

Uncertainty about fort can be described with
probability distributions and the likelihood function
integrated over those variables. If there are several
independent factors affecting additive bias and/or
intensity bias, pandt can be vectors.

Additional issues must be considered when adjusting
for a bias that is uncertain or variable, and that
affects more than a single experiment. One example
is that several experiments can be affected by the
same bias. Another example is that a factor can
modify the effect of a technology on 2 health
outcome, but the effect must be estimated from
indirect evidence. In such a case it is not possible to
adjust the bias simply by adjusting the likelihood
function for an individual experiment (as in Eq. {12)).

In the first example the appropriate approach
depends on whether the biases affecting the separate
experiments are independent. Suppose there are n
studies affected by the same biases fandt, which
have distributions 2(B) and A(t). If the biases are
independent, the likelihood function for combined
evidence in the n studies is given by ’

L(FO' Pl‘xd- xolv---Xom B- t) = (13)

|

If the biases are completely dependent, such that
t:eir magnitudes are the same in all n experiments,
then

[I | Lt o piX1, B, 0 £(B) h(t)dpdr]

lb-ul

I L-(Po' Pllx-m b' t) K(B) h(t) ﬂ df]

LW de.u.X.;..--‘x... Bo t) = (14)
J J [t i 8.9 -+ Lion pitem B. )] 8681 500 ) )

The second example can arise if all the evidence is
gathered in experimental circumstances that are
different from the circumstances of interest. In such
cases, the approach is first to analyze all the
evidence to derive a posterior distribution for the
technology's effect in the experimental setting, call
this ae’lX..), and then derive a posterior
distribution for the technology's effect in the
circumstances of interest by substituting e=f + ',

for ¢. If there is uncertainty about port, it
can be incorporated by convolution. That is,

w(elX,.) = 2@ * (A(x) * ~(eW.)] (15)

where * is the convolution operator and ® is the
multiplication operator for two distributions.!2 Use
of Equation (15) will be illustrated below.

Dilution and Contamination. A frequent problem in
controlled trials is that some subjects in the "treated
group” might not receive the designated technology,
which “dilutes" the observed effectiveness of the
technology, and some subjects in the control group
might inappropriately receive the technology,
thereby "contaminating” the control group and
distorting the observed effectiveness of the
technology. In some cases, the number of subjects in
each group who "cross over" and the number of
successes and failures in each group are known. If it
is reasonable to assume they are similar to the other
subjects with respect to factors that can affect
outcomes, the counts could be corrected and an
appropriate likelihood function could be derived along
the lines of Equation (8).

Let gg be the number of subjects in the control group
who cross over to receive the technology, and let qi
be the number of subjects in the group offered the
technology (the "treated" group) who cross over and
do not receive the technology. Further, let j and k be
the number of successes in the crossover control
group and the crossover treated group, respectively.
Then

Lipo. p1) =

AR TEN Lt A 7 LA TS L

As before, the marginal likelihood function for ¢
can be calculated by substituting e+pg for p; to
derive a joint likelihood function for ¢ and pg, and
then integrating that with respect-to a (possibly
noninformative) prior distribution for pg.

(16)



A more complicated formula is required if there is
reason to believe that subjects who cross over are not
similar to the other subjects with respect to the
expected effect of the technology. Let Byand <,
be additive and intensity biases, respectively, that
cause the subjects in the control group who cross
over to respond differently to the technology than
subjects chosen randomly from the "treated" group.
Let pg’ designate the probability of a success in this
subset of the control group that crosses over to
receive treatment. Then in these subjects the effect
of the technology is ¢ =py~pe = + 12 = B + ®p;-po).

and the probability of all success is py =
B+ t(p1-pe) + po Similarly, let B, and <, be
additive and intensity biases that cause subjects in
the treated group who cross over to respond
differently to the technology than subjects chosen
randomly from the control group. Let p;' be the
probability of success in this subset of the treated
group. Then in these subjects the effect of the
technology is & = pi=p" = Bi+1€ = By+1,(p)—po)

and the probability of success is
P = pr=Bi+ti(py-po) . Using this notation

Lpo 20) = (™' (1 - p0)® ™% "% (aY (1 = py ™

e a-p" - et (A=p)r~n-nt

An expression in terms of Bo. B to and 1, is
easily obtained by substituting o + to(p;=po)+py  foOr
PO_' and - Bg + % (py — po) for P|’ in Equation (17).
As before, a likelihood function for ¢ can be
obtained by substituting pg + ¢ for p; and
integrating over a (possibly noninformation) prior
distribution for pg. Uncertainty 2Lout the fsorts
can be described with probability distributions and
the likelihood function integrated over those
variables.

Equations (16) and (17) will not be illustrated here.

Multiple-Link Chains. Derivation of a Confidence
Profile from indirect evidence involving multiple-link
chains is performed in two steps: first evaluate
evidence for each link in the chain to derive a
probability distribution for that link, and then
calculate across the links to obtain a probability
distribution for the entire chain. Formulas for the
first step have been described. Formulas for the
second step will be given for a two-link chain
involving dichotomous intermediate outcomes and
heaith outcomes, taking into account the possibility
that the intermediate outcome is not a perfect
indicator for the health outcome.

Derivation of the formula is illustrated in Figure 3.
Let T represent the event the technology is not done
(the control group); T] represent the event the
technology is done (the treated group); Ip represent
the event the intermediate outcome does not occur;
I1 represent the event the intermediate outcome does
occur; and H represent the event the health outcome
occurs. Thus, the circles represent various events
and combination of events (e.g., [[1,T}] is the event
that the technology is done [T1] and the intermediate
outcome occurs [I1]).

Define q as the probability of the intermediate
outcome occurring, in the absence of the technology
(g = Prob(liTy)). and p as the probability of the
health outcome, in the absence of the intermediate
outcome and the absence of the technology (p =

amn

Prob(HYo, To))- Let e, be the difference in the
probability of the intermediate outcome (w) with and
without the technology (t) (the "effect” of the
technology on the probability of the intermediate
outcome), and let €t be the effect of the
intermediate outcome (w) on the health outcome (h),
in the absence of the technology. That is, define

Ee = Prob(I\|T)) = Prob(/,|T,), (18)

and
= Prob(t\f,, To) ~ Prob(H\ly. To) (19

By these definitions
Prob(IN,, To) = p + € (20)

Now let A, be the difference in the probability of
the jI category of the intermediate outcome, caused
by the presence of the technology (versus without the
technology). That is

Ay = Prob(IlV, T\) = Prob(1{l, Ty), 21
forjm0and j= 1.

This factor can be thought of as representing the
inaccuracy of the intermediate outcome as a
predictor of the health outcome. If the presence of
the technology has no effect on the occurrence of the
health outcome, other than to modify the probability
of occurrence of the intermediate outcome, then the
inaccuracy A, will be 0.

Using this notation,

(22)
Prob(iNT,) = [(q-fe.)(p»g,d,, )] + [(1-‘,.;_)(,,.1,,)],
and
Prob(ITy) = q(p + £,,) + p(1—9) (23)
After simplifying,

€ = Prob(/iT\) = P(INTo) = € Cau + I, A, Prob(IT}) (24)
1

All of the parameters in Equation (24) can be
distributions, either because they are estimated from
empirical data and are therefore subject to sampling
(and possibly subject to bias), or because they are
estimated subjectively, with some uncertainty. In
such cases the addition, subtraction, and
multiplication operators in Equation (24) become the
corresponding operators that apply to the
distributions (e.g., addition of two scalars becomes
convolution of two distributions). In symbols, let n.(e)
be the distribution for e, na(*) be the distribution
for eu.fo() be the distribution for Ag and f,(s)
be the distribution for A, . Let vy, =Prob(r,), and
h(e+) distributions for Y;, fori=0,1. Then (25)

n(e) = [ﬂn(t.) . M(Cu)] . [Vo(lo) * ho(Yo)l * (u(ha) » hx(Y.)l]

where * is the convolution operator, and ® is the
multiplication operator. Distributions for f.(A.)

and A(y) can be derived from empirical data by
deriving a likelihood function for the parameter and
multiplying by a noninformative prior to the
parameter. When deriving distributions for the
elements of Equation (25), care must be taken to



ensure that they are independent—the same piece of
evidence can not contribute to more than one
distribution.

Example of Calculating Multiple-Link Chains.
Equation (25) can be used to derive a probability
distribution for the effect of t-PA compared with IV
SK on one-year survival, using reperfusion as an
intermediate outcome. A distribution for e, is
obtained from Equations (8) and (2), with sg, fo. 1, f1
estimated from the TIMI study (sg = 44, ? =78,5) =
78, f1 = 40) and a noninformative prior. Similarly, a
distribution for ¢, is obtained from Equations (8)
and (2) using data reported by Kennedy (summarized
in Fig. 4); sg = 85, fo = 17, 51 =14, 1 = 0, where the
subscript 0 refers to patients who do not reperfuse,
and the subscript 1 refers to patients who reperfuse.

Distributions for the “inaccuracy” of the
intermediate outcome can be estimated from data
that relate the intermediate outcome to the health
outcome, with and without the thrombolysis (as
defined in Eq. [18]). Kennedy's data (Fig. 4) again
can be used to derive the needed distributions for A,
and A,. The distribution is obtained by deriving a
likelihood function for the difference in rates (see
Eq. [8)) and multiplying by a noninformative prior
(see Eq. [2)).14

Distributions for Prob(/gT,) and Proyl,T,) are

obtained in a similar fashion. First derive a

likelihood function for the likelihood of the true rates

of the event if interest (e.g., Iy, the nonoccurrence of

the intermediate outcome), as a function of the

observed rates. For example, if we denote Prob(/yT))
as Yo and Prob(/|iT)) as vy, then

Layis, f) = (0" (1-y" (26)

where s; is the observed number of occurrences of
the event of interest, and f; is the number of
nonoccurrences of the event. Then a posterior
distribution for y, can be obtained by

Afyis: ) = k Lvis: fi) ® () 270

where =x.(y) is a noninformative prior distribution
for ¥ and £ is a normalizing constant.

With the necessary distributions for e, tu A Aq. Yo
and v, estimated from data reported by TIMI! and
Kennedy, Equation (25) can be used to derive a
probability distribution for the effect of t-PA (versus
IV SK) on one-year survival, using reperfusion as an
intermediate outcome. The result is shown in Figure
5.

Estimating Long-Term Outcomes from Short-Term
Outcomes. The formulas for chains can be used to
estimate long-term outcomes from data on
short-term outcomes. This can be accomplished by
constructing a chain that relates the technology to
the short-term outcome (link 1), and the short-term
outcome to the long-term outcome (link 2). The
chain can be executed if there are data from previous
research relating the short-term outcome to the
long-term outcome.

- This feature can be particularly useful in tracking the
evolution of a technology. A long-term experiment
can be conducted to evaluate the effect of a new

technology, on both short-term and long-term
outcomes. As variants of the technology are
developed, short-term experiments can be conducted
to test the effect of the new versions on short-term
outcomes, while data from the original (long-term)
experiment can be used for the second link.

Adjusting for Different Controls. Assessment of a
health technology is often complicated by the fact
that studies compare different variations of the
technology with different controls. For example,
Collen compared t-PA with conventional care, TIMI
compared t-PA with IV SK, Kennedy compared 1C SK
with conventional care, and other RCTs have
compared [V SK with conventional care, and IC SK
with conventional care. In general, it is useful to
think of a "family” of technologies, all intended to
affect the same health outcomes (e.g., survival) for
the same health problem (e.g., heart attacks). Each
family would then consist of different variations of a
basic type of technology (e.g., thrombolytic agents)
and their controls, Ty, Tj,..., T,. The existing
evidence might compare any pair of technologies in
the family.

Given whatever comparisons exist, the Confidence
Profile Method can be used to derive Profiles for
other comparisons that can be related by various
independent pieces of evidence. This is performed by
convolution. In general, let x;(¢;) be the
Confidence Profile for the effect of Technology T;
compared with Technology Tj. If there is a Profile
that relates Technology 1 “to Technology 2, and
another Profile that relates Technology 2 to
Technology 3, then a Profile relating Technology 1 to
Technology 3 can be derived by

Tia(era) = [ male) Rosle13m€12) deg s (28)

This use of the Confidence Profile Method will be
illustrated below.

Comparing Different Technologies. A closely related
problem is that existing evidence might relate two
technologies in a family to a common third
technology (e.g., to the same control), and a
policymaker wants to compare the first two
technologies to each other. For example we might
have a Profile that related Technology 1 to 3 and
another Profile derived from independent evidence
that related 2 to 3, and want to derive a Profile that
related Technology 1 to 2. This is also accomplished
by convolution.

Rya(e12) = I Ria(er) Raa(Ers — €12 dEiy 29)
Equation (29) will be illustrated below (Fig. 10).

Combining Chains. The evidence for a technology
often involves more than one chain. For example,
there might be direct evidence from one or more
RCTs relating the technology directly to the health
outcome (chain 1), as well as indirect evidence that
the technology changes an intermediate outcome,
which is related to the health outcome (chain 2). A
probability distribution for the effect of a technology
that combines both bodies of evidence is obtained by
first deriving probability distributions for each of the
chains separately, and then multiplying the two
distributions, point by point (with an additional term
that depends on the prior distribution for the



technology's effect). Specifically let =y(elX.;) be the
distribution for the technology's effect derived from
the first chain, =x,(elX,;) be the distribution derived
from the second chain, and so forth for an arbitrary
number of chains (n). We seek the distribution
for x(elX.;, X - X.a)» based on all n chains.

For each chain, by Bayes formula
x(EX.) = k; L{elX.;) x(e) (30)
and therefore

L{eX ) = \k; x(eX,) 1n(e) 3}

where =(¢) is the (noninformative) prior distribution
for & and k; is a normalizing constant.

Furthermore,

R(EXas Xogs oo Xo) = k L(EX 10 Xogy oo X RCE) (32)
=k Ly(elX.y) Ly(eXep) -+ L,(€IX.) m(E)

Substituting Equation (31) into (32)
R(EXo1. X2, n Xoa) = £ [mz. r{elX,) un(e)] (e) (33)

= "'I:[ [’t.(tb\’ .‘)] [l h!(t)]""

where k and k’ are normalizing constants.

ASSESSMENT OF THE EFFECT OF t-PA ON
ONE-YEAR SURVIVAL

The evidence summarized in Table 1 and the formulas
just given can be used to derive a Confidence Profile
for the effect on one-year survival of t-PA versus
conventional care (Eddy 1986). The result is shown in
Figure 6, marked r(elX..).

Notice that none of the existing controlled trials
examines this question directly; the Profile must be
derived from the indirect evidence in Table 1, using
the methods just described. The specific steps are (1)
construct a two-link chain that relates t-PA (versus
IV SK) to reperfusion, and reperfusion to one-year
survival; (2) use the results of the TIMI study and
Equation (8) to derive a probability distribution for
the first link, the effect of t-PA (versus IV SK) on
reperfusion; (3) use the results of the Kennedy study
to derive a probability distribution for the second link
of the chain (Eq. [19]), and to estimate the
inaccuracy of reperfusion as a predictor of one-year
survival (Eq. {21]);(4) combine the evidence about the
links (and the connection between links) to derive a
probability distribution for the effect of t—~PA versus
IV SK on a one-year survival (Eq. [25]); (5) combine
the results of 20 other studies (summarized in Yusuf
et al 1985) to derive a probability distribution that
relates IV SK to conventional care (Eq. [8]) (see Eddy
1986 for details); (6) use Equation (28) to derive a
probability distribution for the effect on one-year
survival of t-PA versus conventional care (call this
x,). This distribution is illustrated in Figure 6,
marked x(eiX,,).

Then (7) construct a new chain that related t-PA
versus conventional care (instead of IV SK) to
reperfusion, and reperfusion to one-year survival; (8)
use the results of Collen's study to derive a
probability distribution for the first link (Eq. [8)); (9)

using probability distributions for the second link and
the inaccuracy of reperfusion, calculate across the
chain (with corrections for the inaccuracy of
reperfusion) to derive a probability distribution for
the effect of t-PA versus conventional care on
one-yea~ curvival (Eq. .[25]) (marked ry(eiX.,)in Fig. 6);
and (11) combine =,andn, by Equation (33). The
results is the Confidence Profile in Figure 6
marked m(eX..). This Profile combines the evidence in
the TIMI, Collen and Kennedy studies, as well as 20
RCTs that compare IV SK with conventional care.

The Method can also be used to derive a Profile for
the effect of IV SK (compared with conventional
care). That Profile, the result of combining direct
evidence from 20 RCTs in step S above, is shown
beside the Profile for t-PA in Figure 7. (Because of
the high degree of certainty about the effectiveness
of IVSK, the scale for Fig. 7 is twice as high as the
scale for the other figures.)

Adjustment for Intensity Bias. The use of the
Confidence Profile Method to adjust for possible
biases can be illustrated with a problem that arises in
the interpretation of the evidence on t-PA. The
effect of t-PA observed in published RCTs might
underestimate the true effect of t-PA in realistic
settings, because in the trials patients were
catheterized before administration of t-PA
(to observe perfusion), which delayed administration
of the drug, which in turn might have decreased its
effectiveness. The impact of this possibility can be
included in the assessment by estimating how much
more effective t-PA might be in actual clinical
settings. (This estimate can be based on animal
studies, knowledge of clotting mechanisms,
knowledge of the mechanism of action of the drug,
and review of human studies that recorded outcomes
as a function of time.) For example, if the trials are
believed to understate the true effect of t-PA by
about 20% (implying an intensity bias in the trials
of t= 0.8), the Profile marked t = 0.8 in Figure 8
would be obtained by applying Equation (12). If there
were uncertainty about the estimated intensity bias
described, say, by a beta distribution with a mean =
0.8 and variance = 0.2, the Profile marked t = 0.8u
in Figure 9 would be obtained. Figure 9 also includes
for comparison the original, unadjusted Profile
(marked ¢ =1).

Comparing Generations of Technologies. Use of the
Confidence Profile Method to compare different
variations of a technology is illustrated in Figures 6
and 10. Figure 6 showed the effects of two individual
versions (t-PA and IV SK), both compared with
conventional care. Figure 10 shows the effect of
t-PA compared with IV SK, calculated from Equation
(29).

RESEARCH PLANNING

Once Confidence Profiles for the effects of a
technology on various outcomes have been derived,
they can be used for a variety of purposes, such as
adjustment for risk aversion, comparison of a
technology’'s benefits and harms, derivation of a
measure of overall benefit, and research planning.
This section uses the results of the assessment of
t-PA compared with conventional care to illustrate

“one of these uses—research planning.



Research planning is a complicated activity, ideally
involving estimating the probability a new
experiment will yield particular results, the
probabilities those particular results will change
behavior, and the change in health outcomes
expected from the change in behavior. The
Confidence Profile itself provides an estimate of the
third element—how use of the technology is expected
to change health outcomes. The Confidence Profile
Method can also estimate the first element—the
probability a particular experiment will yield a result
that will change behavior. For convenience we will
call this a "Delta Result” or & Result (drawing on the
common use of the Greek letter "A " to denote a
difference or change). Notice that a single
experiment can produce several different A Results,
depending on the type of action the result triggers,
and the force with which it triggers it (i.e., the
proportion of people who will change behavior if the
result occurs). For example, if an experiment
indicates a technology causes a 60% increase in
survival, 99% of physicians might adopt it, whereas if
the experiment indicates a 5% increase in survival,
only 10% of physicians might adopt it. When the
chance of a 3 Result and the Profile for the effect of
a change in use of the technology are combined with
estimates of the second element—how a 4 Result will
change use of the technology—the impact of the
experiment on health outcomes can be calculated,
different experiments compared, and priorities set.

Use of the Confidence Profile Method to calculate
the probability a particular experiment will yield a &
Result is illustrated for an RCT, using a particular &
Result—a statistically significant result. The
principles behind the calculations are as follows.
Let § be the observed difference between the rate in
the treated and control groups of an RCT (thus §=
51/ny) - sg/ng), let € be the true difference, and
let fi5ie) be the distribution for the observed
difference, given a true difference of ¢. Define u
to be the threshold for determining statistical
significance of an RCT under the null hypothesis of
no effect.

1 will depend on the level of statistical significance
chosen, and whether a one-tail or two-tail test is
being performed. For example, if a level of
significance of p = 0.05 is chosen, and if we are
performing a one-t3il test for a positive difference in
rates of a dichotomous outcome, then u is found by
solving the following equation for u

1
0.05 = [ 18 = 0) 4§
1 3

To calculate the probability that an RCT of
_ Pparticular size ng and n; will yield a statistically
significant result, first derive a distribution for the
outcome of the trial, based on the current
distribution for the true effect of the technology (the
Confidence Profile x(eiX..)). This distribution is

1
[ ASie) nteix..) die)
-1

qu the one-tail test just described, the probability a
trial will yield a statistically significant result is

.

11
| | fidte) mteix..) de a8
1!

(34)

(3s)

(36)
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To apply Equation (36) we need a distribution
for fsie). This will depend on the experimental
design and the available empirical data. For
example, if the contemplated trial is an RCT, it is
appropriate to expand f{8le) over pp to obtain

1
fSie) = Iﬂapo €) 2o dpo

where g(pg) is a prior distribution for pg. For
sufficiently large sample sizes, flblpge) is well
approximated by a_ normal distribution with mean p
=¢ and variance o’ = [p(1 - paling + [(ps + €X1 ~ po - €}V,

" where ng and ny are the number of
observations in the control and treated groups of the
contemplated experiment. A distribution for pg can
be derived from the currently existing evidence using
the methods described in previous sections (e.g., Egs.
{26} and [27)).

Application of Equation (36) is illustrated with an
analysis of the probability that RCTs of various sizes
will yield statistically significant results (one-tail, p
= 0.05), using the Profile for the effect of the
technology illustrated in Figure 6. The results are
shown in Figure 11. For example, given the existing
evidence about the effect of t-PA versus
conventional care, the probability a new RCT with a
total of 1200 patients would show a statistically
significant increase in one-year survival is about
80%. If the trial were to simulate "actual practice”
and not involve catheterization, the probability of a
statistically significant result would be higher
because the Profile for the technology in this
circumstance shows a greater effect (see Figs. 8 and
9). This will not be illustrated here.

This section has focused on calculating the
probability of a statistically significant result.
Recall that the method is more general, and can be
applied to a wide variety of & Results. Examples of
other A Results are that the experiment will show
the technology has a "positive” effect (5>0), the
experiment will show an effect between, say, 0 and
10% (0<550.10), the experiment will show an
effect greater than 10% ((§ > 0.10), and so forth.

DISCUSSION

The health of millions of people and the expenditure
of billions of dollars depend on the decisions of health
care practitioners and policymakers about the
appropriate use of medical technologies. If these
decisions are not to be arbitrary, they should be
based on estimates of the effects or outcomes of the
technologies—what good or harm they can be
expected to cause. Making these estimates
accurately, however, can be extremely difficult. The
traditional approach involves collecting individual
pieces of evidence, and "synthesizing" their results
into a conclusion by a single global subjective
judgment. The result of this process is usually a
statement such as "the technology should be used for
the following indications..." Rarely is there an
explicit description of the expected magnitude of the
technology's effect, much less a description of how
that magnitude was estimated or the range of
uncertainty.

For complicated assessment problems that involve
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many pieces of evidence, evidence from studies with
different designs, indirect evidence involving
intermediate outcomes, biases, or other complicating
factors, this approach is vulnerable to
oversimplification, errors in reasoning, and wishful
thinking.

The Confidence Profile Method was developed to
provide a formal framework and formulas for
adjusting and combining evidence, and incorporating
subjective judgments, to estimate a technology's
effect on outcomes. The Method breaks the process
of evaluating evidence into parts—down to the level
of individual chains, individual pieces of evidence,
and individual biases—and then combines the parts.
The result is a quantitative (and visual) description of
a technology's effect, both the magnitude of the
effect and the range of uncertainty about the effect.

Depending on the available evidence, other
techniques are available for making quantitative
estimates of the technology on a heaith outcome. If
the evidence consists of a single RCT that compares
the designated technology with the designated
control, in circumstances that match the
circumstances of interest, standard statistical
methods can be used to estimate the effect of the
technology and confidence limits. If the evidence
consists of several RCTs that all compare the same
technology with the same control in the
circumstances of interest, their results pooled, again
yielding an estimate of the effect and confidence
limits. If there are several RCTs, but some differ
with respect to the recipients or other confounding
factors, these differences can sometimes be adjusted
for by stratification and related statistical
techniques (KleinbauT et al 1984, Anderson et al
1980). Meta-analysis 8 can be used to analyze a
collection of RCTs and calculate an estimate and
confidence_limits for the "effect size"” of a
technology19 (Glass 1977; Hedges and Olkin 1985). A
collection of RCTs involving dichotomous outcomes
can be analyzed to calculate a combined odds-ratio
and confidence limits for the odds ratio (Mantel and
Haenszel 1959; Mantel 1966; Peto et al 1977).

All these methods imply direct evidence from
controlled trials. When this type of evidence exists,
the Confidence Profile Method can also derive
probability distributions for the effects of
technologies, measured in a variety of ways such as
the difference in probabilities, the odds ratio, the
percent change in outcome rate. However, there is a
large class of technologies for which the existing
evidence is not suitable for analysis by other
techniques, but that can be analyzed with the
Confidence Profile Method. Some features of this
class of technologies are: (1) there are no RCTs—the
assessment must be based on one body of evidence
relating the technology to intermediate outcomes
and/or followup actions, and other evidence relates
the intermediate outcomes (and followup actions) to
health outcomes; (2) there are RCTs, but they differ
from each other with respect to the technology being
assessed, the control, the population, the providers,
or other important features; (3) there are multiple
studies with different designs (e.g., RCTs,
nonrandomized controlled studies, clinical series,
case-control studies, cross-sectional studies); and (4)
interpretation of individual pieces of evidence is
complicated by errors in outcome measurement,
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crossover of patients between "treated"” and control
groups, differences in length of followup, and other
important factors. The assessment of t-PA
illustrates many of these features.

The Confidence Profile Method also differs from
other methods by its formal incorporation of
subjective judgments. It is important to understand
the role of subjective judgment in the Confidence
Profile Method. Specifically, the Confidence Profile
Method does not require subjective judgments.
Rather it enables decisionmakers to incorporate
subjective judgments should they feel a need to do
so. If the evidence is clearcut and decisionmakers
are content to accept it at face value, the
Confidence Profile Method can be used to derive a
posterior distribution for the technology's effect
without using any subjective judgments (other than
the initial judgment that the evidence is "clearcut,”
and other than the choice of a noninformative prior).
If on the other hand, a decisionmaker identifies
factors that influence the interpretation of the
evidence, and if the decisionmaker wants to
incorporate subjective judgments about these factors
in the interpretation of the evidence, the Confidence
Profile Method provides a formal language for
accomplishing that.

It will never be possible to completely eliminate the
need for subjective judgments in the evaluation of
health technologies. The Confidence Profile Method
attempts to improve the use of subjective judgment
in several ways. First, by providing a formal
framework for breaking the assessment problem into
parts, the Method decreases the demands on
subjective  judgments. Instead of requiring
policymakers and experts to make global judgments
about dozens of factors all at once (e.g., "Should
t-PA be used for patients with acute MI?"), the
Method allows them to focus on one factor at a time
(e.g., "By how much (what proportion) does a
60-minute delay in administration of t-PA reduce its
effectiveness in increasing survival after an acute
MI?"). Second, the judgments are targeted at
elements that are intuitively accessible, and for
which there is usually some supporting empirical
evidence or practical experience. Third, the Method
allows anyone who is uncertain about a parameter to
express that uncertainty as a probability
distribution. The uncertainty thus expressed about
any parameter will be carried by the formulas
through the entire analysis, automatically (according
to the axioms of probability theory) combined with
any uncertainty about any other parameters, and
included in the final Confidence Profile. Fourth, the
Method makes assumptions and judgments explicit,
allowing for review. Fifth, it provides a formal
language for combining subjective judgments; experts
can think together about a parameter and describe
their collective beliefs in a probability distribution.
Disagreements can be explored by performing
separate assessments, or resolved by describing a
bimodal distribution for the parameter in question.
Last, the Method can be used to estimate the value
of additional information about a parameter that
must be estimated subjectively.

Once derived, the Confidence Profiles have several
uses in the design of health policies. The Profiles
themselves provide explicit, visual descriptions of the
effect of the technology—including the range of



uncertainty about the effect—for use by
decisionmakers (patients, practitioners, and
policymakers). They can be revised to test the

impact of different assumptions or beliefs about a
variable, or to tailor an assessment to a particular
set of circumstances (defined by a particular set of
parameters). Because the Profiles provide a
quantitative description of the uncertainty about a
technology's effect, they enable the use of formal
methods for incorporating risk aversion (e.g.,
calculating certainty equivalents and expected
utilities). The Profiles (or certainty equivalents)
provide a basis for comparing a technology's benefits
and harms (using multidimensional utility theory), and
enable the derivation of a quantitative measure of
"overall” benefit (or harm). The quantitative
measure of benefit also provides a basis for
estimating a technology's marginal returns, and
therefore for setting priorities. Profiles based on
existing evidence can be used to estimate the value
of conducting additional empirical research to collect
more empirical evidence. Finally, a Profile can be
continually revised to incorporate new evidence
about a particular aspect of the assessment (e.g., new
direct evidence, new indirect evidence, or new
evidence about a particular parameter [e.g., bias] in
the assessment).

The Confidence Profile Method (as do all methods of
technology assessment) depends on the quality of the
available evidence. While the Confidence Profile
Method can combine evidence from many sources,
and can adjust evidence for a wide variety of biases,
it can not create evidence where it does not exist.
Like all methods of technology assessment, the value
of the Confidence Profile Method is improved if the
volume and quality of empirical research is improved.

FOOTNOTES

1 The method itself is more general, being
applicable to the assessment of evidence about the
effect of a wide variety of interventions on a wide
variety of outcomes. However, the development of
the Confidence Profile Method was initially
stimulated by a need to assess health technologies.

Some outcomes can be both health outcomes
(people care about them) and intermediate outcomes
(they are physiological variables that indicate the
probability of other health outcomes.) An example is
obesity.

3 In general, for each link, the antecedent event (on
the left) will be called an "action” and the subsequent
event (on the right) will be called an "outcome.”
Thus for a two-link chain involving one intermediate
outcome: for the first link the ™action" is the
performance of the technology, and the "outcome" is
the intermediate outcome; for the second link the
"action” is the occurrence of the intermediate
outcome, and the "outcome” is the health outcome.

4 This assumes the pieces of evidence are
independent. If pieces of evidence are not
independent, a joint likelihood function for the
dependent pieces of evidence must be derived before
use of Equation (1). Equation (1) also assumes that
there is a particular true value of that ail the
pieces of evidence are trying to estimate. If there is
reason to believe this is not the case—that the effect
being estimated by one experiment is different than
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the effect being estimated by another—hierarchial
Bayesian methods can be used to estimate a
distribution for the true effects (Wolpert and Eddy
1986).

S For example, for dichotomous health outcomes
and intermediate outcomes, this condition requires
that Prob(H[I,T) = Prob(H[,Tg) = Prob(HII), where H is
the occurrence of the health outcome, 1 is the
occurrence of the intermediate outcome, T is the
performance of the designated technology and Tg is
the designated control.

6 The two distributions should be independent in the
sense that each is derived from different pieces of
evidence.

7 These judgments are called "focused” because
they are made one at a time about specific elements
of an assessment.

As with standard statistical methods, sensitivity
analyses might still be required to examine the
importance of structural assumptions, such as the
choice of a statistical model for a particular
experiment.

9 The 95% "range of confidence" is defined here as
the range that has a 95% posterior probability of
containing the true value. It is not the same as a
confidence interval or confidence limit (see footnote
1.

10 Where there is no danger of ambiguity, the
parameters on which the likelihood function is
conditioned will not be listed. Thus in this case
Ug, po) = LIL, pdso. fo 510 fie %0 B0 &, By)

11 Coronary angiography involves placing a catheter
at the opening of the coronary artery and injecting a
dye. Either the catheter or the dye could possibly
open an occluded artery.

T2 Let X and Y be random variables with
distributions f(x) and fy(y), respectively. The
distribution for the random variable W = X+Y,
denoted as f,(w) is calculated as

S = fy o fpo | [V,

The distribution for the random variable Z = XY,
denoted f,(z), is calcuated as

=ty ofy= | ot fln o

13 See footnote 12.

14 The distribution for i, is calculated from
Equation (8) using sg = 35, fo = 6, s] = 85, f1 = 17.
Similarly, 1, is calculated from Equation (8) using sp
=§8 fo= 5. 51 =14, /1 = 0.

In this case the distribution for Prob (Ig[T}) is
calculated from Equations (26) and (27) with sg = 41,
fo = 93, and the distribution for P(I]|T}) is calculated
from Equations (26) and (27) with s} = 93 and f] = 41.

16 The Profile in Figure 10 is different from the
srofile in Figure S (indicating greater certainty and a
slightly greater effect, because the former is based
on the results of the TIMI study, while the latter
incorporates information from both the TIMI study
and Collen's study.

*Confidence limits” (and "confidence intervals")
do not define a probability distribution for a
parameter. Confidence limits can be thought of as
defining the set of null hypotheses that will cause the



observed results of a trial to be not statistically
significant at a specified significance level.

18 The term "meta-analysis” is often used in two
senses. It is the name of a specific technique for
combining evidence to estimate the effect size. It
has also been used as a general term for the entire
class of techniques used to combine evidence from
many sources. Here the term is used in the
restricted sense.

The effect size is defined as the difference in
magnitude or rate of the outcome with and without
the technology, divided by the standard deviation of a
parameter in the control group.

REFERENCES

Eddy, D.M. 1986. The Use of Confidence Profiles to
Assess Tissue-Type Plasminogen Activator. Chapter
in Acute Coronary Care 1987 G.S. Wagner and R.
Califf (Eds). Martinus Nijhoff Publishing Company.

Eddy, D.M. and R. Wolpert. Extensions of The
Confidence Profile Method for Technology
Assessment I, Center for Health Policy Research and
Education Working Paper, 1986 (in preparation).

Wolpert, R. and D.M. Eddy. Extensions of The
Confidence Profile Method for Technology
Assessment II, Center for Health Policy Research and
Education Working Paper, 1986 (in preparation).

Jeffreys, H. Theory of Probability (3rd Edn.). Oxford
University Press, London, 1961.

Bernardo, J.M. Reference Posterior Distributions for

Bayesian Inference (with discussion). J. Royal Statist.

Soc.41 113-147, 1979.

Collen, D., E.J. Topol, A.J. Teifenbrunn et al. 1984.
Coronary Thrombolysis with Recombinant Human
Tissue-Type Plasminogen Activator: A Prospective,
Randomized, Placebo-Controlled Trial. Circulation
70, 1012-1017.

Hedges, L.V., 1. Olkin, 1985. Statistical Methods for
Meta-Analysis. Academic Press, London.

Kennedy, J.W., J.L. Ritchie, K.B. Davis, et al. 198S.
The Western Washington Randomized Trial of
Intracoronary Streptokinase in Acute Myocardial

13

Infarction. A 12-Month Follow-up Report. NEJM

312, 1073-1078.

Kleinbaum, D.G., L.L. Kupper,
1984.  Epidemiologic Research, Principles and
Quantitative Methods. Lifetime Learning
Publications, Belmont, CA. pp 343-351.

H. Morgenstern.

Anderson S., Auquier A., Hauck W.W. et al.
Statistical Methods for Comparative Studies.
Techniques for Bias Reduction. New York, John
Wiley & Sons, 1980.

Mantel, N. 1966. Evaluation of Survival Data and
Two.New Rank Order Statistics Arising in Its
Consideration. Cancer Chemother Rep 50, 163.

Mantel, N. and W. Haenszel. 1959. Statistical
Aspects of the Analysis of Data from Retrospective
Studies of Disease. JNCI 22, 719-748.

Peto, R., M. C. Pike, P. Armitage et al. 1977. Design
and Analysis of Randomized Clinical Trials Requiring
;;ollon?‘gged Observation of Each Patient. Br. J. Cancer

Glass, G. V. 1977. Integrating Findings: The
Meta-Analysis of Research, in L. Shulman (Ed)
Review of Research in Education Vol. 5, Itasca, IL,
Peacock.

TIMI Study Group. 1985. The Thrombolysis in
Myocardial Infarction (TIMI) Trial. Phase I Findings.
NEJM 312, 932-936.

Verstraete, M., R. Bernard, M. Bory et al. 1985a.
Randomised Trial of Intravenous Recombinant
Tissue-Type Plasminogen Activator, versus
Intravenous Streptokinase in Acute Myocardial
Infarction. Lancet 1, 842-847.

Verstraete, M., W. Bleifeld, R. W. Brower et al.
1985b. Double-Blind Randomised  Trial of
Intravenous Tissue-Type Plasminogen Activator
versus Placebo in Acute Myocardial Infarction.
Lancet 2, 965-969.

Yusuf, S., R. Collins, R. Peto et al. 198s.
Intravenous and Intracoronary Fibrinolytic Therapy in
Acute Myocardial Infarction: Overview of Results on
Mortality, Reinfarction and Side-Effects from 33
Randomized Controlled Trials. European Heart J. 6,
556-585.



14

TABLE I: EVIDENCE FOR T-PA ANALYSIS

Comparison Rates Statistical
Study Trestment  Costrol Owtcome Trestmemt  Comtrol  pvalue  Signficance
TiMI -PA IV SK  reperfusion® wus wi2 0001 yes
in-hospital mortaluyt m4e 17147 01 no
Collen t-PA placcbo  repoarfusion 5133 1714 0001 yes
Verstracte  I-PA IVSK  perfusion 4Y/61 62 0054 ®0
in-hospital mortality ed ¥es 0s no
Vesstaete  -PA placebo  perfusion 62 13762 0.0001 yes
in-hospital mortality 164 “6s 0388 [ 1]
Kensedy  IC SK CcCt reperfusion 307134 w16 0.0001 yes
12-month morality 11134 17me 0107 no

® Raics arc givea for patienis with partial or lotal occlusion.
t Rates are gives for all paticnts eatcred into the study, inchuding patients with no
£ CC = coaventional care
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Choosing a Measure of Treatment Effect

Robert L Wolpert, Duke University

1. Introduction

Any new drug, surgical procedure, or other medi-
cal treatment must be shown to be effective before
many insurance companys will reimburse for its use,
and hence before it can become part of general medi-
cal practice. Before it can displace existing alterna-
tive treatments, it must be shown to have some
advantage— to be more effective, less expensive,
safer, or more convenient. Showing that such a treat-
ment is effective at all, or more effective than existing
treatments, requires evidence.

Evidence about the effectiveness of an experimen-
tal treatment can take many different forms, depend-
ing upon the design of the experiment intended to
measure or detect treatment effect; the simplest evi-
dence to analyze is that from a well-designed random-
ized controlled trial (RCT).

In such a trial subjects are randomly assigned to
one of two or more groups. Usually one group (called
the control group) receives "conventional care” (the
standard and expected treatment at the time of the
trial) while another (called the treated group) receives
the experimental treatment, but in all other respects
the patient protocols are identical for the two groups.
In more complicated designs several groups might be
given different treatments or different variations of a
single treatment, all to be compared simulitaneously.

The evidence from the trial consists of recorded
measurements of experimental quantities for each sub-
ject. From this evidence the investigator can try to
detect and quantify any systematic difference between
the treated group and the control group; since the
patient protocols were otherwise identical, such a
difference must be attributed to either chance variation
(from the random assignment of subjects to the
groups) or to the treatment.

A systematic difference between the groups could
be caused by improvement (or harm) caused by the
treatment, by chance variations in the study popula-
tions, by side effects of the treatment or control proto-
cols, or even by differing sample sizes in the treated
and control groups. The investigator must choose a
measure of treatment effect which is sensitive to the
expected improvement or harm caused by the treat-
ment, and relatively insensitive to unimportant side-
effects and to chance variations.

The large sample sizes necessary t0 minimize
chance fluctuation are not always attainable in medical
trials. This forces us to pay careful attention to the
probability distribution of the chance variations due to
random sampling and may lead us to consider com-
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bining the evidence from multiple trials. When the
evidence from a single trial is inconclusive, or when
the evidence from several sources seems to be con-
tradictory, we might like to pool the evidence from
more than one trial and make inferences on the basis
of a synthesis of all available evidence.

The investigator has more freedom in the choice
of an effect measure when inference about treatment
effect is be made using the evidence from a single
trial than when evidence from several studies must be
combined. We will see below that it is sometimes
possible for an investigator to choose a measure of
effect which is comparable across studies, despite the
inevitable variations in patient population and treat-
ment detail, and to pool the evidence using objective
Bayesian methods.

The problem of synthesizing evidence from multi-
ple trials is a statistical minefield where at every step
we are tempted to make assumptions and
simplifications which can threaten the validity of our
analysis. Yet without making some of these assump-
tions we can make no progress at all. We have to
assume that the treatments studied in the several trials
are in some way comparable, for example, and that
the effect of treatment can be compared meaningfully
despite differences among the experimental conditions
(such as patient populations) of the trials. We usually
make broad assumptions about the stochastic indepen-
dence of evidence from separate trials, and also of the
conditional independence of study results within
different arms of each single trial. This note illus-
trates a simple fact— that the "technical” assumptions
made to simplify a statistical analysis often have real
consequences. Sometimes we must adapt our method
of analysis to assure that the assumptions are not
flagrantly false, in order to assure that our findings
will accurately reflect what was observed.

In Section 2 the ideas are introduced in a simple
example, the binomial RCT, in which only a single bit
of data is taken for each subject. The formalities and
notation necessary for the case of evidence from more
general designs of clinical trials is considered else-
where (Wolpert and Berger (1986), Wolpert and Eddy
(1986)). A summary follows in Section 3. [ would
like to thank David Eddy for introducing me to the
idea of using Bayesian methodology to combine evi-
dence from clinical trials. The present work grew out
of my efforts to understand and to extend the scope of
his method of Confidence Profiles (see Eddy 1986).



2. The Binomial Trial

A binomial trial is an RCT in which the only
experimental quantity measured for each subject is
whether the subject did or did not experience a partic-
ular favorable event, such as one-year survival follow-
ing a surgical procedure. The random assignment of
subjects to treatment groups and the (assumed) sto-
chastic independence of outcomes among subjects
together guarantee that the total number X* of subjects
in the treatment group who do experience the favor-
able outcome (which we call a "success”) will have
the binomial probability distribution with known sam-
ple size n* but unknown success probability p; simi-
larly the number X° of successes in the control group
will have the binomial distribution with possibly
different parameters n° and p°.

2.1. Measures of Treatment Effect

Since the measured outcome was described as
"favorable”, the treatment will be regarded as effective
if p* exceeds p* and its effect will be quantified as

g= g(p’, f) (2.1)

for some function g(¢, p°) which vanishes when p'=p°
and is positive when p>p°. The investigator can
choose among many such functions g(-,’), and so
amorg many measures € of treatment effect.

One such measure of treatment effect is the
change in probability of success

CP = p'~p". (2.22)

With this measure (and the law of large numbers) it is
especially easy to predict the increased number of
successes if the treatment is given to some number N
of subjects-- it is just NxCP. An individual patient or
physician considering the treatment might be more
interested in the relative-risk of failure

RR := (1-p)/(1-p%), (2.2b)

which represents the fractional decrease in the proba-
bility (1-p) of the unfavorable outcome. It would be
especially meaningful for cases in which the pre-
treatment success probability p° is close to one. In
case p° is close to O, the fractional-increase in success
probability

Fl := pip° (2.c)

would be more meaningful. Another choice, which
(for small effects) is nearly equal to RR when p° is
near 1, to 1/FI when pf is near 0, and to the exponen-
tial e*? for moderate p*, is the odds ratio

R .= 2A=P)
pI(1-p°)
Estimates of the odds ratio are often reported in pub-
lished accounts of clinical trials or retrospective stu-
dies of treatment effect.

(22d)
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It is more convenient to work with a measure of
effect which is positive when the treatment is helpful
(i.e. when pf > p°) and vanishes when p’ = p%, so we
make simple transformations using logarithms where
necessary to find:

(22)

Change in Probability: €cp = p-p°
Log Relative-Risk: Err = -log a-p)

(1-p°)
Log Fractional-Increase: €7 := log(p'/p°)

‘ —
Log Odds-Ratio: Eor = log M

piI(1-p%)

The untransformed measures can be recovered as
CP=¢cp, RR=¢ ™ Fl=¢" and OR = "%

Any of these four choices might be an appropriate
way to measure of to report treatment effect; in each
case € = 0 if p' = p* (whatever the values of n* and n°)
and ¢ >0 if and only if the treatment improves suc-
cess probability, i.e. p' > p°. From each measure ¢
and the value of g7, any of the other measures can be
computed. How is the experimenter to choose among
them?

An answer emerges when we consider the problem
of combining the evidence about & from several
independent trials, and consider carefully the assump-
tions we will want to make. For simplicity we will
assume that the conditions of the trials were substan-
tially identical except possibly for some inevitable
variation in the patient populations (and thus in the
success probabilities p! and p{ across trials), so that
the true treatment effect

e = 2o, pf) (2.33)

would not be expected to differ from one study to
another. David Eddy (1986) has shown how evidence
from trials which do differ in substantial ways can
sometimes be adjusted for the differences (in order to
minimize the effect of between-study variation) and
then combined to produce a pooled estimate of treat-
ment effect.

We can easily calculate the joint likelihood func-
tion

[;"] e a-py™™ [;c] @0 a-pp™,

which reflects all the experimental evidence from the
i trial about pf and pf. Unfortunately that evidence is
not in a form which makes it simple to make infer-
ences about the treatment effect &.

For any of the four effect measures introduced
above in (2.2), the relation (2.3) can be inverted by

(2.4)



some function G(:,") satisfying:
pi=G(&, ). 2.5)

The binomial probability distribution function for X}
and Xt can now be rewritten as a function of € and pf,
yielding a joint likelihood function for these two
parameters:

L, A& | XX = L, (GepDof | X'X°)

= (Gl& )" (1-G(e g™ @0 1-pp)™ T
Note that the Jacobian

J(& pA) = %G(e, 7

of the transformation (p',p°)—(e,p°) does not enter the
formula for the transformed likelihood function,
though it does enter the formula for the transformed
prior density (and therefor the formula for the
transformed posterior density). If we have a prior
density function expressing joint uncertainty about p’
and pf, and wish to transform to one expressing joint
uncertainty about € and pf, we would calculate it as
the product

ﬂar-(e’P:) = “Pa,c(c(evpc)»f) J(E’ pc)'

Of course, it is sometimes more natural to specify the
joint prior density function nef(e,p‘) directly. If it is
proper and nondegenerate, it can be written as a pro-
duct of a marginal and a conditional density function
* in either of two ways:

R, E6:P°) = 7€) 7, (PFlE)
= f(P:) ﬂ,,c(ilf)

If evidence about € is available from two or more stu-
dies, all with the same pf, we should multiply the pro-
duct of all the individual likelihood functions times
the joint prior density function in order to find a con-
sensus joint posterior, then integrate with respect to p°
and multiply by a normalizing constant ¢ to find a
marginal posterior density for €:

Te(elXy, * * - Xi) =

(2.6)

2.7

(2.8a)
(2.8b)

2.9)
10y
¢ J;{ qu,:(G(evP')'P‘ I XE.X.‘)} R, (&:P°) dp’.

Indeed this possibility of combining evidence from
multiple studies is one of the principal reasons Baye-
sians have for computing likelihood functions (rather
than posterior densities) from experiments. It is the
product of likelihood functions, and not posterior den-
sities, which must appear between the braces { - - - }
in (2.9), to avoid including the prior density function
(k+1) times instead of once. For this same reason it is
important to include the Jacobian term only when
transforming density functions and not when
transforming likelihood functions.
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Unfortunately, it is frequently the case that the
separate trials do not share the same pf, so that (2.9)
cannot be used to find a posterior density function for
€. Rather, pf is a nuisance parameter which varies
from study to study. In that case it is appropriate to
find the posterior density function for € in each study
individually by integrating the product of the indivi-
dual likelihood function (2.6) and a joint prior density:

Re(€ | XiX) = (2.10a)
1

c !L,,(G(e,pf)pf | XX)m, (e, pf) dpf.

This will give a marginal posterior density function
for € on the basis of the observations (X}, X{) from the
i* study, but how can we combine them? What we
really need are likelihood functions for €, not posterior
density functions.

It is not obvious what a "marginal likelihood func-
tion for €” is or how one ought to be computed in the
presence of nuisance parameters like pf, but we do
know what we would like to be able to do with one—
multiply it times a (marginal) prior density function
n.(€) to produce the posterior density function
nw(e | X$,X5). Substituting (2.8a) into (2.10a) gives

mo(e | X4X?) =
1

c 1 L, AGEP)PE | XiXD) me(e) @, (pfle) dpf

(2.10b)

and suggests that we define our marginal likelihood
function by the quotient m,(€ | X.,X7) / me(€) :

Ly(e | X} XD) =

1
le(G(e.p;‘).pf | XLX?) e, (PlE) dpy.

(2.11)

Now that we have a likelihood function for each trial,
we can combine the evidence from the several’ trials
to find a posterior density function for £ given all the
observed data:

nl(elxlv""xk)=

[
c ue(e)rl{i L, AGp).pi | XiXDm fls)dp?}-
=l

(2.12)

The use and properties of marginal likelihood func-
tions (2.11) and posterior measures (2.12) are
described elsewhere (Wolpert and Berger, 1986).

It is here that an opportunity arises to simplify the
analysis. If we can choose an effect measure

e = g(p, pf)
in such a way that ¢ and pf are a priori independent,
ie.

R, £ (E:P) = Te(€) (P, (2.8¢)



then the conditional prior = ﬂe(pﬂe) in (2.11) and
(2.12) is just the marginal prior © ﬂ,(pf), with no func-
tional dependence upon €. This simplifies the
integrals and, moreover, allows us to use a noninfor-
mative prior for p{ in computing' a marginal posterior
density function (2.12) for e. Using a noninformative
prior minimizes the influence of any subjective opin-
ion on the analysis.

We will return in Section 3 to the consequences
and advantages of using an effect measure indepen-
dent (under the prior) of p#, i.e. one satisfying (2.8c);
we first consider what that independence means in
specific examples, and how to achieve it in general.

2.2. The Assumption of Prior Independence

The assumption of prior independence of € and pf
requires the use of an effect measure & = g(p}, pf) con-
sistent with that assumption, but simplifies the analysis
thereafter by allowing the investigator to ignore prior
beliefs and preliminary evidence about the value of pf
in each study when searching for evidence from that
study about the treatment effect.

Consider once again the four effect measures
introduced in (2.2) for binomial trials:

Change in Probability: €p = P
1_ s
Log Relative-Risk: e = -log| UL
n w [(l—p‘)]
Log Fractional-Increase: €5 = log(p/p°)
. (1-
Log Odds-Ratio: eon = | -H—P-'l]
o Py

One way to investigate the prior dependence of € and
F is to predict how the treatment would act on subpo-
pulations with differing pretreatment success probabil-
ities p°. Suppose, for example, that the treatment
were known to improve the pretreatment success pro-
bability of a subpopulation with p° = 0.50 to a post-
treatment probability of p' = 0.60. What would be the

success probability following treatment for a different
subpopulation, one with a pretreatment success proba-
bility of only pf = 0.25? Or for a subpopulation with
a higher pretreatment success probability of p° = 0.757
The four proposed measures of treatment effect differ
in their predictions.

A treatment whose effect is to change the success
probability by a fixed amount, and which improves
one subpopulation from p* = 0.50 to p' = 0.60, must
add 0.10 to p° for each subpopulation. This would
increase p°=0.25 to p’=0.35, p°=0.75 to p'=0.85, and
lead to impossibly high predicted success probabilities
for p°>0.90. Conversely a treatment whose effect is to
add a fixed constant to the log-odds, or maintain a
fixed odds ratio, and which improves one
subpopulation’s success odds from 0.50/0.50 = 1.0 to
0.60/0.40 = 1.5, must generate an odds ratio of 1.5 in
each subpopulation. This would increase p° = 0.25
(with odds 0.25/0.75 = 1/3) to p'= 1/3 (with odds
(173)/(23) = 0.5 = 1.5x1/3), for a net increase of only
0.0833 in the success probability, and would increase
P =0.75 (with odds 0.75/0.25 = 3) to p’ = 9/11 (with
odds (9/11¥(2/11) = 4.5 = 1.5x3) for a net increase of
0.0682. Such an improvement in odds ratio would
improve p* = 0.01 or 0.99 only to p* = 0.015 or 0.995,
respectively, for an increase of only about 0.005,
while pf = 0.5 is increased twenty times as much, a
full 0.100. In general a treatment whose effect is
measured as an odds ratio would be expected to cause
a smaller increase in success probability near the
extremes of p=0 or p°=1 than near intermediate
values such as p*=0.5, while one whose effect is
measured as a shift in the probability of success
would be expected to cause the same size of increase
for any p°. Table 2.1 summarizes some of the predic-
tions of each of these four treatment effect measures,
with asterisks (***) indicating an impossibly large
prediction.

Success Probability
Effect Measure pc=.01 é‘-—.ZS p:=50 pc=-75 pt='99
0110 035 0600 0850 .,
Increased probability  140)  (+.100) (+.100) (+.100)
- 0208 0400 0600 0800  0.992
Relative risk (+.198) (+.150) (+.100) (+.050) (+.002)
. 0012 0300 0600 090 .,
Fractional increase (+.002) (+.050) (+.100) (+.150)
Odds rati 0015 0333 0600 0818 0993
rato (+005) (+083) (+.100) (+.068) (+.003)

Table 2.1. Measures of Treatment Effect for Binomial Experiments
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If we expect that the increase in success probabil-
ity due to treatment will be smaller for subpopulations
with very high or very low initial success probability
7’ then necessarily our prior beliefs about p° and €
cannot be independent if we measure treatment effect
as increased success probability g, :=pp°. With
such a measure the conditional density nw(elp‘)
would have to be more concentrated near ¢ = 0 for p°
close to 0 or 1 than for p° close to 0.5, and in particu-
lar it must display functional dependence upon pf.
Similarly in this situation p and e could not be
independent under the prior distribution if the effect of
such a treatment were measured as a decrease in the
relative risk or a fractional increase in the success pro-
bability; of the four measures introduced in (2.2), only
the odds-ratio measure is consistent with a smaller
shift p’~p° at both extremes than for moderate p* if p*
and € are to be independent. Only the relative-risk
measure is consistent with a larger shift for small p¢
and a smaller shift for large pf, and only the
fractional-increase measure is consistent with the
opposite pattern of a smaller shift for small p° and a
larger one for large p*, if p° and € are to be indepen-
dent.

The example above illustrates how one can
approach the problem of choosing a measure of treat-
ment effect in general to assure that, under the prior
specification, € and pf are stochastically independent.
First imagine a subpopulation with moderate popula-
tion characteristics p. One at a time consider several
possible treatment outcomes py for the studied treat-
ment on that moderate subpopulation, from the most
pessimistic (ph < p§) to no-effect (ph = pf) to the most
optimistic (py > p§). For each, predict the treatment
outcome p; for other subpopulations with population
characteristics pf varying over the gamut from 0 to 1
(or at least over a subinterval of high prior probabil-
ity), and try to identify a useful invariant € = g(¢',p°)
(such as p'—p*, p'Ip°, (1-pW(1-p°), etc.).

The procedure just described leads to an effect-
measure € whose conditional distribution, given pf,
does not depend on pf— i.e. to an effect measure sto-
chastically independent of p°.

For convenience in later computations,
reparameterize if necessary so that eé=0 denotes no-
effect and >0 describes a treatment which improves
the success probability; in our case, that required tak-
ing logarithms or negative logarithms. In the more
general setting (described in Wolpert and Berger
(1986)) it may also be necessary to introduce a nui-
sance variable n} describing population attributes in
the i treated population unrelated to treatment effect,
so that the treated-group parameter (here p'e (0,1), but
more generally some parameter 6° taking values in a
parameter space ©) can be written as a function of &,
1}, and the control-group parameter 6°:

o' = G(en}, 6.

2.3. Benefits of an Independent Effect Measure

Business leaders and policy makers welcome the
opportunity Bayesian analysis affords of explicitly
incorporating prior knowledge and subjective beliefs
into their analyses, but scientists must scrupulously
avoid the appearance of subjectivity. While the (sub-
jective) choice of designs, models, and methods
always influences study results regardless of whether
the statistical methods used are Bayesian, frequentist,
or those of some other school, Bayesian methods have
sometimes been criticized on the grounds that their
explicit use of prior information precludes objectivity.
More recently objective Bayesian methods have been
developed which use prior density functions selected
on some basis other than subjective beliefs. A
number of authors (e.g. Berger (1986), Bernardo
(1979), Jeffreys (1961), and Box and Tiao (1973))
have recommended methods for selecting prior density
functions to meet various objective criteria. These
criteria include the preservation of invariance under
some change of measurement origin or scale, the max-
imization of the likelihood function’s contribution
(and minimization of the prior’s contribution) to the
Kullback-Leibler measure of information contained in
the poswerior distribution, and the stationarity of the
prior measure under certain infinitesimal deformations.
The prior density functions these authors recommend
(which do not always coincide) are variously called
"noninformative” or "reference” priors.

In general equation (2.12) for the posterior density
function for € calls for integration of each likelihood
function with respect to a conditional prior measure
on the possible values of p*. If € and p* are stochasti-
cally dependent, i.e. if the conditional density function
for pf given € does in fact depend on ¢, then a nonin-
formative prior density cannot be used in the integral.
Independence of & and pf opens up the possibility of
using a noninformative prior density function m.(dpf)
in those integrals:

Te€ | Xy, o X = (2.12b)
k l
c ME)I'II{I L, (G(epd)Pi | X?Xf)m(pf)dpf}

and hence of avoiding overt subjectivity. While it is
true that subjective prior opinion has still played a
role (in directing the choice of an effect measure
€ = g(*)), that role now enters as part of the unavoid-
able one of model selection.

Often there are observable patient attributes which
might help a clinician make a more specific prediction
for a particular patient or subpopulation of patients
than is possible for all patients together. For example,
in the binomial trial it might be possible to observe p*



(or evidence bearing on pf) in individual subjects or
subpopulations of subjects. In such situations one
would prefer to have a conditional posterior density
function = A X(p’ | p% X1, - - - Xp) expressing the
uncertainty remaining about p* after considering all the
evidence from the trials, given the value of p°, rather
than the posterior density function (2.12b) for some
abstract measure of treatment effect. If an indepen-
dent treatment effect measure has been used, then it is
possible to derive from (2.12b) the desired conditional
posterior density function. For fixed pf, (2.5)
expresses p' as an explicit function of e— thus we can
just change variables in (2.12b) to calculate this con-
ditional posterior density as

Ty | P Xy - X =

P PO, - - - XD (P )P

With this conditional posterior density for p’ a further
change of variables using (2.3) leads to formulas for
the conditional posterior densities of any of the four
effect measures €cp, €gp, €p OF Eox following obser-
vation of the available study data. The prior indepen-
dence of £ and p* together with the assumption that p°
can vary from study to study (which implies that the
studies we have observed offer no evidence about the
value of p° in a later study) allow us to compute and
report posterior density functions for any of the four
treatment effect measures (or any other which can be
expressed in the form (2.3) and (2.5)):

R, -+ X8 | Xy - - X =

1

(2.14)

(2.15)

7 xCortercd | P Ko - X orexa AP )P

Here exx, Gxx(',’), and Jxx(:,") represent the effect size
(2.3), inverse function (2.5), and Jacobian for the
treatment effect measure chosen for reporting resuits.
Thus the investigator can choose separately the best
treatment effect measure for internal computations
(presumably, one satisfying the prior independence
criterion recommended above) and the best one for the
reporting of results (perhaps one with intuitive
appeal). Equations (2.12 - 2.15) allow one to derive
posterior distributions, either marginally or condition-
ally given the values of observable patient attributes,
for the post-treatment population parameter p' or for
any of the effect measures. There is no reason to
choose an intuitively appealing affect measure for
internal computations.

3. Summary

Four different measures of treatment effect were
introduced, all for assessing improvement (due to
treatment) in success probability on the basis of evi-
dence from simple (binomial) randomized controlled
trials. The measures were shown to lead to differing
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predictions for the effect of treatment within subpopu-
lations with characteristics varying from those of the
study population.

Objective Bayesizn methods for synthesizing the
evidence from multiple trials were introduced, and
were shown to take an especially simple form if used
with a treatment effect measure chosen to satisfy a
technical condition: that the parameter vector describ-
ing the pre-treatment condition of the treated popula-
tion be stochastically independent (under the prior
probability assessment) of the chosen measure of
treatment effect. It was shown how a measure of
treatment effect can be selected precisely in order to
validate that assumption, and how the results of the
research synthesis can be used to provide a
quantification of posterior uncertainty about that or
any other measure of treatment effect.

In the course of developing the methods a new
definition of partial likelihood was introduced, one in
which nuisance parameters are removed by integrating
with respect to a conditional prior distribution. This
notion is developed in detail elsewhere (Wolpert and
Berger, 1986). A new method of presenting study
resuits was also -introduced, the conditional posterior
distribution for treated group population parameters.
This t00 is developed in detail elsewhere (Wolpert and
Eddy, 1986).

In research synthesis it is often necessary to make
simplifying assumptions in order to reduce the terribly
difficult problem of combining evidence from dissimi-
lar trials to a sequence of more manageable problems.
Some of these assumptions are about the trials them-
selves: about the details of the treatment used, the
nature of the subjects, or the methods by which sub-
jects were assigned to treatment groups. Others are
"technical” in the sense that they concern aspects of
the statistical models we construct rather than aspects
of the trials themselves. Sometimes it is possible to
adapt our proposed model in order to arrange that the
technical assumptions be approximately true. This
can avoid compromising the validity of an analysis by
basing it on assumptions known to be false.

Bayesian statistics, applied with caution, offers a

promising methodology for synthesizing the results
from clinical trials.
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Comment on Eddy's Confidence Profile Method

David A. Lane, University of Minnesota

David Eddy and his co-workers are in the process
of constructing an impressive and potentially very
useful technology. whose purpose it is to guide the
deliberations of a panel evaluating health practices.
They have chosen to build their technology on a
Bayesian foundation. The main pucrpose of this
comment is to offer several arguments in support of
that choice, which are presented in Section | below.
In Section 2, | raise some questions about the way in
which Eddy implements the Bayesian program and
point out some alternative approaches.

1. Bavesian Analysis and Integrative Inference

1 claim that Bayesian analysis is the right way to
attack the inferential problem that is the focus of
this Conference and of Eddy's paper, the problem of
integrative inference. To make clear the content of
" this claim, 1 will begin by defining the problem of
integrative inference and describing what Bayesian
analysis is. Then, | will outline the Bayesian
approach to integrative inference and discuss its
advantages.

The problem of integrative inference: A decision-
maker is irying to determine what course of action
10 take. Which action is appropriate depends on
what the consequences of the various possible
actions will be. So the decision-maker asks a panel
of experts to predict these consequences. For
example, he might ask the experts to tell him what
risk of cancer is assumed by some particular
population if it is exposed to various levels of a
particular chemical. The decision-maker expects the
experts answer to refiect 3ll the evidence available
to them, and he needs them 10 use this evidence to
produce their best prediction about what will occur
as a function of the action he takes, along with some
measure of uncertainty about their prediction.

Typically, there are many different streams of
evidence that affect the experts’ judgement about
the consequences they want to predict. Some of this
evidence comes from formal studies that directly
relate the actions and outcomes of interest. But
there are other sources as well, involving different
modes of knowing: theory from basic sciences like
chemistry and toxicology; data from laboratory
studies using animal models or in vitro cell
preparations; even hunches based on professional
lore and personal experience. This evidence cannot
be ignored; it even affects the way the experts think
about the meaning of the data obtained from the
best designed formal studies, as they try to
generalize or modify them to apply to the special
circumstances surrounding the actual predictions on
which the relevant decision hinges.
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The different streams of evidence may point in
different directions. The experts have to evaluate
the evidentiary significance of each of the streams,
and then they must integrate their evaluations 10
come up with the predictions on which the choice of
action depends. How are the experts to proceed?
This is the problem of integrative inference.

Bayesian analysis: The purpose of a Bayesian
analysis is 10 measure the analyst's uncertainty
about some propositions that are refevant to the
problem at hand, in the light of the available
evidence. Two attributes distinguish Bayesian
analysis from other statistical methodologies. The
first is the broad view Bayesian analysis takes of
just what constitutes “evidence”. All of the modes of
knowing -- theory, "hard” data from formal
experimentation, observation and experience -- can
yield evidence that is incorporated into a Bayesian
analysis. Second, in a Bayesian analysis, all
uncertainty, from whatever source, is measured in
the same scale, that of subjective probability. This
makes it possible to use the laws of probability to
combine the uncertainty about particular
propositions arising from different sources and
ultimately to merge different streams of evidence to
obtain an overall judgement about the plausibility of
the proposition of primary inferential interest. The
use of these laws in this way is supported by a
normative theory for reasoning in the face of
uncertainty, the theory of coherent inference
developed by de Finetti (see de Finetti (1974)).

The B . , ive inf :
The Bayesian strategy for integrative inference can
be summarized as follows. Expert judgement is used
to decompose the problem of primary inferential
interest into a series of component problems, each of
which is more accessible to the knowledge and
experience of the expert analysts. Then, the original
problem and each of the component problems is
formulated in terms of subjective probability
evaluations, and the refations between the problems
determine corresponding refations that must obtain
between the probability evaluations. Next, the
component evaluations are carried out, using
techniques of direct expert elicitation or model-
based Bayesian updating (when appropriate
quantitative data are available). Finally, the
solutions to the component evaluations are merged
according to the laws of probability to yield an
answer to the overall problem. Implementations of
this strategy can be found in Eddy (1980), where it
is applied to the evaluation of effectiveness of cancer
screening, and Lane (1987, 1988), where it is used to
deveiop a procedure for causality assessment for



adverse drug reactions.

: There are
three important advantages to the Bayesian
approach to integrative analysis, compared 10
alternatives such as global introspection (where the
experts list all the relevant factors and sources of
information, and then do an implicit mental
integration to reach their overall conclusion),
qualitative decision algorithms, or frequentist
statistical techniques for combining evidence:

(1) It answers the question that the decision-
maker asks Suppose the decision-maker is
concerned about the lifetime attributable incidence
of cancer, if the individuals in a specified population
are exposed to a chemical at a specified level. The
output of a Bayesian integrative analysis will be a
probability distribution for that incidence. This
distribution describes the expert’'s uncertainty about
what that incidence would be if the population were
actually exposed at the indicated level. based on all
the evidence available to them. The mean of that
distribution is their best prediction for what the
attributable incidence will be if the decision-maker
adopts a course of action that resuits in the given
level of exposure. As such, it is the appropriate
quantity to measure the expected frequency of
cancer due to exposure for use in a decision analysis
to select the best course of action, according to the
normative theory of decision-making under
uncertainty developed in Savage (1972). The
“spread” of the experts’ distribution gives the
decision-maker information about how sensitive his
choice of action is to the residual uncertainty the
experts have about their prediction, in the light of all
the available evidence. In contrast, frequentist
estimates do not take into account information
derived from modes of knowing other than formal
studies, except through the imprecise process of
mode| specification, and frequentist measures of
uncertainty only take into account "sampling
variability” and do not regard uncertainty due 1o
mode! mis-specification. In addition, it is hard to see
how to combine the estimates of a unit-free “effect
size” that are obtained in frequentist meta-analysis
with measures of the value of the appropriate
consequences, as is required in formal analysis to
determine the best available course of action.

(2) All the available evidence can be
incorporated into 3 Bayesian analysis. in the most
appropriate form. In contrast to frequentist
statistical methods, expert opinion can enter
explicitly into a Bayesian integrative analysis.
Moreover, by skillfully decomposing the problem of
primary interest, the questions that elicit the
experts’ opinions can be formulated in such a way
that the experts can understand their meaning
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unambiguously and actually bring the knowledge
and experience that constitute their expertise to
bear to answer them. In addition, Bayesian analysis
can process quantitative data quantitatively, in
contrast 10 nonstatistical approaches to integrative
inference like global introspection or qualitative
decision aigorithms. That expert opinion and
quantitative data are both expressed in terms of
subjective probability in a Bayesian analysis means
that it is straight-forward to merge evidence from
these two different sources.

(3) M&L&mmmn:mﬂmmn

. The

normative force of the combination rules means that
it is simply inconsistent to disagree with the global
conclusions of a Bayesian analysis without finding an
appropriate source for the disagreement at a level
localized at those questions of theory and
observation where expertise actually resides. In
essence, anyone disagreeing with the conclusion
derived from a Bayesian analysis must believe
either that some relevant piece of evidence was not
included (and, if he says what it is, the omission can
be easily corrected), or that the experts who carried
out the analysis were wrong about some specific
conciusion they derived from their shared
knowledge base (and. if he gives a convincing reason
why. the analysis can be appropriately modified)

2. The Confidence Profile Method

In practice, Bayesian analysis is only as good as
the methodology that implements it. If the
methodology does not ask the user to produce some
relevant piece of evidence, or elicits 1t in such a way
that its actual evidentiary content is obscured. then
the analysis will not be based on all the available
evidence, theoretical possibilities notwithstanding
And if assumptions are built into the methodology
that describe how the experts ought to feel about the
relation between various propositions, then the
analysis will reflect those assumptions rather then
the experts’ actual beliefs.

To what extent does Eddy’s Confidence Profile
Method succeed in fulfilling the promise of Bayesian
integrative analysis? | will discuss three
reservations [ have about it, listed in increasing
order of seriousness. Two factors must be kept in
mind in mitigation of these criticial remarks: first,
the method is still in the early stages of its
development, so it is likely that later versions will
improve its performance; second, no technology will
ever achieve the normative status of de Finetti's or
Savage's theories.

(1) The role that expertise plays in the method
is 100 restriclive. The method takes the formal
study as its primary unit of analysis. Expert opinion



is brought to bear qualitatively to create the chain
structure that directs the analysis; from then on, its
only role is to adjust results obtained from each of
the formal studies that the experts regard as
relevant to the analysis. However, direct theoretical
arguments from basic science can affect expert
opinion about the strength of particular links quite
independently of any data obtained from a formal
study, and personal experience and professional lore,
if carefully expressed and evaluated, can
supplement or even substitute for formal studies as
evidentiary sources for certain kinds of propositions.
Neither the paper nor the demonstration of the
method presented at the Conference indicate that
these types of evidence would enter into the
“confidence profile” (or using a more standard and
less confusing terminology, the posterior distribution
of the outcome of interest).

example, consider equation (1), which asserts that
the likelihood function for epsilon, based on the
results of n "independent” studies. can be factored as
the product of n separate likelihood functions, one
for each of the studies. Recall what epsilon is: it is
the “true effect of the technology in the
circumstances of interest”. Now, as Eddy recognizes,
the “circumstances of interest” are not typically the
circumstances in which the n studies were carried
out: for example, patient popuiations can differ with
respect to key demographic variables (like age and
sex) and severity of the underlying clinical condition,
and the way in which the ireatment is administered
can change {rom study to study. As aresult, it is
essential to adjust the results of each study to take
such differences into account, and so Eddy’'s method
requires such an adjustment for external validity.
How do the experts carry out this adjustment?
Presumably, they have a mental model that
describes how they believe the "true effect” depends
on the different variables for which they adjust. The
experts sampling distribution for the results of a
study depend on the study's circumstances and the
experts’ views on how circumstances affect outcome;
thus, these distributions do not depend just on
epsilon, but on the parameters of the adjustment
model as well. Conditioning on the parameters of
this mode! and on epsilon, the experts can regard the
results of n “physically independent” studies as
independent random variables. However, unless
they do not believe that study data can affect their
opinions about the relation between the “true effect”
of a study and the value of the adjustment variables,
the experts’ marginal distribution for all the study
results, just given epsilon, will not factor as the
product of the the marginal distributjon for each
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study result, just given epsilon. This is the
factorization that is asserted by equation (1). Since
it is nearly impossible to imagine that the experts
would not change their opinions about how the “true
effect” of a health technology depends on such
factors as patient age, sex, baseline clinical condition
and mode of delivery of the technology, in the light
of data from studies that test the technology on
particular patient populations, equation (1) is nearly
always faise.

The same kind of argument applies 1o many
other formulae in Eddy’'s paper. What this argument
implies is that the experts will make their successive
adjustments incoherently, since nothing in the
method will guarantee that they update their
(implicit) adjustment mode! parameters in the light
of the evidence in the studies they sequentially
examine. Since, as Eddy argues, these adjustments
constitute an essential step in the process of
combining evidence (quantitatively as well as
qualitatively), this incoherence is a serious
deficiency in the method. Making the adjustment
models explicit is the only way to correct this
deficiency; carrying it out will be a major
undertaking.

Three problems have 10 be solved. First, the
increased complexity of the underlying mode|
imposes knowledge representation difficulties: what
needs to be updated in the light of information of
which type, and how can this updating be carried
out in a computationally efficient way? David
Spiegelhalter has developed a very promising
approach to this question in his work on structures
for Bayesian expert systems; see Speigelhalter
(1986) for an introduction to this important line of
research. Second. the more parameters in a
Bayesian model, the higher the dimension of the
integration that needs (o be carried out to achieve
the appropriate marginal distributions. Recent
research in approximate methods for high-
dimensional integration in the Bayesian context is
summarized in Kass, Tierney and Kadane (1988).
The third problem is probably the most difficult:
how are the experts ideas about the form of the
adjustment mode! to be elicited and expressed? This
is part of the more general problem with Eddy's
method discussed below.

3. The method provides no technology to deal
opinion and measuring expert uncertainty. The
probabilities that appear in de Finetti's normative
theory represent an idealized construction: the price
that the evaluator would be neutral between buying
and selling a ticket worth $1 of the proposition of
interest is true and otherwise valueless. This price
eXists by an easy monotonicity argument, just as the



price that you would just be willing to pay to
purchase a new house exists; but it can be
exceedingly difficult to determine this price exactly,
especially since the de Finetti transaction is entirely
metaphorical, whereas at least you may be required
to "put your money where your mouth is” with
respect to the house. Thus, the advantages of de
Finetti's normative theory for a procedure based on
subjective probability depends to a large extent on
how the designers of the procedure solve the
problem of measuring probabilities with precision.

That people encounter serious difficulties when
they try to measure their uncertainty about
propositions is well-documented in the psychological
literature; see for example Kahneman, Slovic and
Tversky (1982). Whether or not an expert can
provide a2 meaningful measure of his uncertainty
about a proposition depends crucially on the context
in which the proposition is to be interpreted and the
care with which it is formulated. The most difficult
problem that confronts the designers of any
‘procedure based on subjective probability is to
frame assessment tasks that are accessible to the
knowledge and experience of the experts who must
use the procedure. There is no discussion in Eddy's
paper about how he has dealt with this problem
with respect to the conlidence profile method.

Based on my own work with experts on the
causality assessment of adverse drug reactions, | am
quite skeptical about the ability of experts to assess
directly a distribution for such complicated, "global”
adjustment variables as Eddy’s tau and beta in a
way that accurately and coherently incorporates all
their relevant beliefs and opinions. Exactly what
questions are the experts asked when they assess
these distributions? What internal consistency
checks are made to show that they understand what
these questions mean and that their answers to
them are mutually consistent? What happens when
experts disagree? Does the method provide any way
to probe for the sources of their disagreement and to
construct models for the adjustment factors that are
based on a pooled knowledge base and command
general agreement among those with the relevant
expertise? Eddy's method seems to ignore these
questions; its technique for handling subjective
probability evaluations appears to be just global
introspection, with all its faults and pitfalls (see Lane
(1984), made quantitative. For a different approach
that attempts to determine which assessment tasks
are accessible to the relevant experts and to use the
rules of probability to decompose unaccessible
problems of interest into accessible components, see
Lane (1987, 1988).
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STATISTICAL ISSUES IN THE META-ANALYSIS OF

ENVIRONMENTAL STUDIES

Larry Hedges, The University of Chicago

The rapid growth of research literatures in many
areas of scientific interest has led to an almost
universal desire to find better ways to understand the
accumulated research evidence. The use of
statistical methods for combining studies or
"meta-analysis” has been one response to the problem
of extracting summary evidence from a body of
related research results. Statistical methods for
combining the results of different studies have
recently come into wide use in psychology (Smith &
Glass, 1977; Glass & Smith, 1979), sociology (see e.g.,
Crane & Mehard, 1983), and the biomedical sciences
(see e.g., Stampfer, 1982). There is a longer tradition
of such work in physical sciences such as chemistry
(see e.g., Clarke, 1920) and physics (see e.g., Birge,
1932 or Rosenfeld, 1975). Of course, there is a long
tradition of research in statistics and agricultural
science on combining the results of research studies
(see e.g., Tippett, 1931; Fisher, 1932; Pearson, 1932;
Cochran, 1937; Yates and Cochran, 1938).

Many different terms have been used to describe
the process of combining results from a series of
experiments. The terms meta-analysis and
quantitative research synthesis are used in social
science; the terms overview and pooling of results
are used in the biomedical sciences, and the terms
review and critical review are often used in the
physical sciences. | prefer the terms research
synthesis or research review. In each case the
general organization of the problem is the same. In
the simplest case, each study provides an estimate of
a parameter that is believed to be the same across
studies, and these estimates from different studies
are combined to yield an overall estimate of the
parameter. In more complex (and more realistic)
cases the estimates from individual studies are used
to study the variation of the parameter across
studies. For example, if the parameter of interest is
a treatment effect then meta-analyses involve using
estimates of treatment effects from individual
studies to estimate an overall treatment effect or to
study its variation across experiments.

It is important to recognize that combining
experiments does not mean pooling raw data. Direct
pooling of raw data from different experiments may
produce misleading results. One example of the
misleading consequences of pooling raw data is
Simpson's (1954) paradox, which arises when two 2 X
2 tables both show an effect in a given direction, yet
a summary table based on pooling the cell counts of
the individual tables shows the opposite effect. A
real life example is that recent demographic
statistics showed that the death rate has gone down
in every Illinois age cohort, but the gverall death rate
is higher. The substantive explanation, of course, is
that the population is now older. The point of this
example is that the overall pooled statistics do not
reflect the results in the individual age cohorts.
Similarly, the results of analyses using raw data
pooled across studies may actually conceal some
aspects of the results of individual studies.

It is perhaps interesting to note that the term
meta-analysis arose as an attempt to describe an
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activity that was an analysis of the results of the
analyses from individual studies (Glass, 1976). The
assumption is that the relevant result of the
statistical analysis of an individual study is a
parameter estimate. The information from different
studies is combined via their parameter estimates. If
these estimates are sufficient statistics then of
course no information is 1lost in combining
information via these statistics.

_Qﬂx.ls_h_DsﬂLab_:_tm_b_e_ms_&;_uJ_qi

One of the first questions that arises in
connection with combining research results is why is
it desirable to do so. The answer depends to some
extent on the use that is to be made of the research
review. Policy decisions and many scientific
decisions frequently require information about a
phenomenon under a wide range of conditions. For
example, these decisions may involve questions about
the probable effect of a treatment under a specific,
even eccentric set of conditions. Research reviews
are perhaps most helpful to inform decisions that
involve general conclusions about a typical range of
situations. They are likely to be less helpful in

identifying precisely what to expect in a very
specific or a very eccentric situation. There are,
however, several general reasons to expect that
combining evidence will be useful.

Even wvery similar studies differ in their

experimental conditions and in the details of their
execution. Obviously, planned and plausibly relevant
differences in study design or procedure may result in
differences in study results.

There are also many subtle, unplanned, and often
unrecognized differences between studies that often
lead to variation in study results. Seemingly
irrelevant differences in experimental conditions,
procedures, or measurement methods quite
frequently lead to substantial variation in study
results. Even large single studies involve a limited
set of experimental conditions and context which
reduces the generalizability of their findings.

Syntheses based on several studies draw evidence
from across contexts to provide conclusions that are
more robust to variations in experimental context
and thus more useful for broad policy decisions.

1.2 Syntheses May Utilize a Less Biased "Sample" of
the Evidence.

The selection of evidence on which to base a
policy decision is essentially a sampling process.
Haphazard or uncontrolled sampling of evidence can
lead to very substantial biases. Unfortunately there
are often sharply conflicting interests in the policy
making context which may have vested interest in
drawing attention to the particular subsets of the
research evidence that support their viewpoint.
Research results are often part of the rhetoric of
competing interests. Thus there is a natural
tendency for competing interests to emphasize



different parts of the total body of research evidence
(different studies) which most closely corresponds to
their own beliefs. That is, different interests have a
tendency to emphasize biased subsamples of the total
body of research evidence. One crucial aspect of
quantitative systhesis of research is arriving at a
minimally biased sample of research studies in which
to base inferences. Carefully operationalized
procedures for selecting research evidence can
reduce both bias and the appearance of bias in study
selection.

1.3 Synthesis F li wi Policy Mal M

Do Anyway.

Policy makers are frequently required to make
decisions even though they are faced with many
studies yielding possibly inconclusive or conflicting
findings. That is, policy makers will derive general
conclusions. The only question is whether they do so
via formal, quantitative means or informal, intuitive
means. One of the difficulties in relying on the
intuitive procedures for combining research results is
that the intuition of many people (even sophisticated
people) is horrendously bad (see Hedges & Olkin,
1985). Procedures that seem intuitively sensible are
often highly misleading. For example, there is a
tendency to look for the prepondenance of evidence
by asking what proportion of the studies actually
found a statistically significant effect. Examination
of such a procedure will demonstrate that when
effects of interest are small, this procedure not only
has a very poor chance of detecting a real treatment
effect, but its properties do not improve as the
amount of evidence (the number of studies) increases
(see Hedges and Olkin, 1985, pages 48-52). The
fundamental problem is that research results,
whether they are expressed as estimates, the
outcomes of significance tests, or p-values, have a
substantial scholastic component. It is simply
difficult to find the structure in a series of scholastic
observations without some sort of formal methods.
Informal methods either ignore a great deal of
information or use it suboptimally. Moreover, it is
difficult to deduce the properties of informal
methods of combining research results. Thus even if
they were adequate, it would be difficult to produce
a convincing demonstration that this was the case.

1.4 Synthesis Increases Statistical Power.

One of the most obvious advantages of
quantitative research synthesis is that the pooling of
information from different studies increases the
statistical power of hypothesis tests (e.g., for the
treatment effect) and decreases standard error of
estimates of the experimental effect. Thus the
evidence from several studies that are marginal or
submarginal in terms of statistical power but are
otherwise well done might be combined to yield a
relatively powerful test for the existence of a
treatment effect.

the Process of Accumulating Evidence from
Diff R B Studi

18S.

The generation of scientific knowledge begins
with the conduct of the individual experiments to
generate empirical evidence. A single experiment
seldom stands alone, however. The generation of new
scientific knowledge almost invariably involves the
synthesis of evidence from several replicated
studies. Evidence from relevant experiments

31

becomes part of the scientific knowledge-base only
after it has been suitably synthesized and
interpreted. Every scientist learns rules of
methodology or procedure that are designed to insure
the validity of original research studies. Because the
combination of evidence across studies is just as
important to the generation of scientific knowledge
as the combination of evidence (from different
observations) within studies, rigorous procedure in
original research. Moreover, procedural rigor serves
the same purpose in both contexts: It protects the
validity of conclusions from potential sources of
bias. In fact, the parallels between procedure in
original research and research synthesis are usually
used as the basis for examining rigor in research
synthesis.

This paper is an examination of statistical issues
in research synthesis. 1 am using a broad definition
of statistical issues which assumes statisticians have
a contribution to make in every stage of a research
enterprise. The convenience, the treatment that
follows is organized into a sequence of generic stages
that apply equally well to any original research study
or to any research synthesis.

2.0 Issues in Problem Formulation.

Problem formulation is often conceptualized as
the first step in any original research study or
research review (Cooper, 1984; Light & Pillemer,
1984). It involves formulating the precise questions
to be answered by the review. One aspect of
formulating questions is deciding whether the purpose
of the review is confirmatory (hypothesis testing) or
exploratory (hypothesis genorating).

A second aspect of problem formulation
concerns decisions about when studies are similar
enough to combine. That is, deciding whether
treatments, controls, experimental procedure, and
study outcome measures are comparable enough to be
considered. Philosophers of science have provided a
conceptualization that is helpful in thinking about
this problem. They distinguish the theoretical or
conceptual variables about which knowledge is sought
(called constructs) from the actual examples of these
variables that appear in studies (called operations).

For example, we may want to know if a
particular method of teaching mathematics leads to
better mathematical problem solving. To find out, a
comparative study is conducted in which students are
randomly assigned to teachers, some of whom use the
new method. The students are then given a problem
solving test to determine which group of students
were better at mathematical problem solving. The
exact conceptualization of mathematical problem
solving is a construct. The particular test used to
measure problem solving is an operation cor-
responding to that construct.

Similarly, the particular teaching method as
defined conceptually is a construct, while the
behavior of a particular teacher trying to implement
that teaching method is an operation. The point here
is that even when studies share the same constructs,
they are sure to differ in the operations that
correspond to those constructs.

Thus defining questions precisely in a research
review involves deciding on the constructs of
independent variables, study characteristics and
outcomes that are appropriate for the questions
addressed by the review and deciding on the
operations that will be regarded as corresponding to
the constructs. That is, the reviewer must develop



both construct definitions and a set of rules for
deciding which concrete instances (of treatments,
controls, or measures) correspond to those constructs.

Although the questions of interest might seem
completely self-evident in a review of related
clinical trials, a little reflection may convince you
that there are subtleties in formulating precise
questions. For example, consider clinical trials in
which the outcome observed is the death rate. At
first, the situation seems completely clearcut, but
there are subtleties. Should deaths from all causes
be included in the death rate or only deaths related
to the disease under treatment? If the Ilatter
approach is used, how are deaths related to side
effects of the treatment to be counted? If there is
follow-up after different intervals, which intervals
should be used? Should unanticipated or data defined
variables (such as "sudden death”) be used? Careful
thinking about the problem under review usually leads
to similar issues which require consideration.

Selecting Constructs and Operations.

One of the potential probiems of meta-analysis
or quantitative research syntheses is that they may
combine incommensurable evidence. Some meta-
analysis have been criticized for combining "apples
and oranges.” This is essentially a criticism of the
breadth of constructs and operations chosen. In one
sense breadth of constructs and operations chosen
must reflect the breadth of the question addressed by
the review. The issue is complicated by the fact that
constructs and operations chosen must reflect the
breadth of the questions addressed by the review.
The issue is complicated by the fact that constucts
and operations are often distinguished more narrowly
by the reviewer than may be reflected in the final
presentation of results. Thus the issue of constructs
and operations are to be included in the review and
then what constructs and operations are to be
distinguished in the data analysis of the review, and
finally which constructs and operations are presented
in the results of the review.

Meta-analyses have tended to use rather broad
constructs and operations in their presentation of
results (Cook & Leviton, 1980). This may have
resulted from the arguments of Glass and his
associates (Glass, McGaw, & Smith, 1981) who urged
meta-analysts to seek general conclusions. It may
also be a consequence of the ease with which
quantitative methods can analyze data from large
numbers of studies (Cooper & Arkin, 1981). It is
important to recognize however that while broad
questions necessitate the ipnclusion of studies with a
range of constructs and operations, they need not
inhibit the meta-analyst from distinguishing
variations of these constructs in the data analysis and
in presentation of results.

2.1.1 Broad Versus Narrow Constructs.

The advantage of broad constructs and
operations is that they may support broad
generalizations. Because they are maximally

inclusive, broad constructs and operations obviate
most arguments about studies that should have been
included, but were not.

However, the uncritical use of very broad
constructs in meta-analysis is problematic. Analyses
based on operationalization of broad constructs are
vulnerable to the criticism that overly broad choices
of construct obscure important differences among
the narrower constructs subsumed therein. For
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example Presby (1978) argued that the broad
categories of therapies used by Smith and Glass
(1977) in their review of studies of the effectiveness
of psychotherapy obscured important differences
between therapies and their effectiveness. A similar
argument may be made about the breadth of outcome
constructs. Moreover, empirical data from research
synthesis sometimes confirm the truth of these
arguments.

Perhaps the most successful applications of
broad or multiple constructs in meta-analysis are
those that may include broad constructs in the review
but distinguish narrower constructs in the data
analysis and presentation of results. This permits the
reviewer to examine variations in the pattern of
resuits as a function on construct definition. It also
permits separate analyses to be carried out for each
narrow construct (see e.g., Cooper, 1979, Linn &
Peterson, 1985, Eagly & Carli, 1981; Thomas &
French, 1985). A combined analysis across constructs
may be carried out where appropriate or distinct
analyses for the separate constructs may be
presented.

Another issue of breadth arises at the level of
operationalization of constructs. The reviewer will
always have to admit several different operations for
any given construct. Treatments will not be
implemented identically in all studies and different
studies will measure the outcome construct in
different ways. Thus, the reviewers must judge
whether each operation is a legitimate representation
of the corresponding construct. This involves
obtaining as much information as possible about the
treatment actually implemented and the outcome
actually used in each study. This may involve the use
of secondary sources such as technical reports,
general descriptions of treatment implementations,
test reviews, or published tests.

In spite of the difficulty they may present to the
reviewer, multiple operations can enhance the
confidence in relationships between constructs if the
analogous relationships between operations hold
under a variety of different (and each imperfect)
operations (Campbell, 1969). However, increased
confidence comes from multiple operations only when
the different operations are in fact more related to
the desired construct than to some other construct
(see Webb, Campbell, Sechrest, & Grove, 1981 for a
discussion of multiple operationism). Thus although
multiple operations can lead to increased confidence
through "triangulation” of evidence, the
indiscriminate use of broad operations can also
contribute to invalidity of results via confoundings of
one construct with another (see Cooper, 1984).

A crucial aspect of problem formulation is
distinguishing whether the purpose of the review is to
test a small number of reasonably well-defined
hypotheses, or to generate new hypotheses.
Obviously new hypotheses (even new variables) arise
in the course of meta-analyses, just as in any
scientific activity. The critical issue is to distinguish
the clearly a priori hypotheses from those that are
suggested by the data. This distinction has
implications for the choice of statistical analysis
procedures used in the meta-analysis and for
interpretation of results. Most statistical tests
calculate levels of statistical significance assuming



that the hypothesis is 3 priori and is tested in
isolation. When statistical tests are suggested by the
data the usual procedures for assessing statistical
significance are likely to be misleading. Similarly,
when many statistical analyses are conducted on the
same data, the usual significance levels will not
reflect the chance of making 3t least one Type |
error in the collection of tests (the simultaneous
significance level). Thus when conducting many tests
in an exploratory mode there is a tendency to
"capitalize on chance.”

One method of dealing with the problem of
exploratory analysis in research reviews is to use
statistical methods that are specifically designed for
exploratory analysis such as clustering methods
(Hedges & Olkin, 1983, 1985). Another alternative is
to adjust the significance level to reflect the fact
that many tests are conducted on the same data
(Hedges & Olkin, 1985). The problem with this and
all other simultaneous procedures is that they reduce
the power of statistical tests and the effect is
dramatic when many tests are conducted simul-
taneously.

Another alternative is the use of procedures that
do not involve statistical significance. The simplest
procedures are simply descriptive statistics.
Graphical procedures such as Light and Pillemer's
(1984) funnel diagrams, Hedges and Olkin's (1985)
confidence interval plots, or many of the graphical
ideas presented by Tukey (1977) may also be helpful.

A third alternative is to randomly divide the
data into two subsets. The first subset is used to
generate hypotheses whose statistical significance is
then evaluated (cross validated) on the second subset
(Light & Pillemer, 1984).

Data collection in meta-analysis consists of
assembling a collection of research studies and
extracting quantitative indices of study
characteristics and of effect magnitude (or
relationship between variables). The former s
largely a problem of selecting studies that may
contain information relevant to the specific questions
addressed in the review. It is largely a sampling
process. The latter is a problem of obtaining
quantitative representations of the measures of
effect magnitude and the other characteristics of
studies that are relevant to the specific questions
addressed by the review. This is essentially a
measurement process similar to other complex tasks
or judgments that researchers are sometimes
required to make in other research contexts. The
standard psychological measurement procedures for
ensuring the reliability and validity of such ratings or
judgments are as appropriate in meta-analysis as in
original research (Rosenthal, 1984; Stock, Okun,
Haring, Miller, Kinney, & Ceurvorst, 1982).

S ling in Meta-analysis.

The problem of assembling a collection of
studies is often viewed as a sampling problem: The
problem of obtaining a representative sample of all
studies that have actually been conducted. Because
the adequacy of samples necessarily determines the
range of valid generalizations that are possible, the
procedures used to locate studies in meta-analysis
have been regarded as crucially important. Much of
the discussion on sampling in meta-analysis (e.g.,
Cooper, 1984; Glass, McGaw, & Smith, 1981; Hunter,
Schmidt, & Jackson, 1982; Rosenthal, . 1984),
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concentrates on the problem of obtaining a
representative or exhaustive sample of the studies
that have actually been conducted. However, this is
not the only or even the most crucial aspect of
sampling in meta-analysis. Another, equally
important sampling question is whether the samples
of subjects and treatments in the individual studies
are representative of the subject populations and
treatment populations of interest.

The importance of representative sampling of
subjects is obvious. For example, studies of the
effects of psychotherapy on college students who do
not have psychological problems may not be relevant
to the determination of the effects of psychotherapy
on patients who have real psychological problems.
The importance of representative sampling of
treatments is perhaps more subtle. The question is
whether the treatments which occur in studies are
representative of the situations about which the
reviewer seeks knowledge (Bracht & Glass, 1968). A
representative sample of studies, each of which
involves a nonrepresentative sample of subjects or
treatments, brings us no closer to the truth about the
subject or treatments that we care about.

Thus there are two levels of sampling to be
concerned about in meta-analysis. One level
concerns the mechanism for selecting the sample of
studies that are used in the review. The other
concerns the mechanism used within studies for
selecting individual replication. The situation is
much like that of two-stage samples in sample
surveys. The reviewer samples clusters or secondary
sampling units first; then the individual subjects or
primary sampling units are sampled from the clusters.

Strategies for obtaining respresentative or
exhaustive samples of studies have been discussed by
Glass, McGaw, and Smith (1981) and Cooper (1984).
The problem of obtaining representative samples of
subjects and treatments is constrained by the
sampling of studies and consequently is not under the
complete control of the reviewer. The reviewer can,
however, present descriptions of the samples of
subjects and treatments and examine the relationship
between characteristics of these samples and study
outcomes. Such assessments of the
representativeness of treatments and subjects are
obviously crucial in evaluation of the studies on
which the review is based.

~anal

Missing data is a problem that plagues many
forms of applied research. Survey researchers are
well aware that the best sampling design is
ineffective if the information sought cannot be
extracted from the units that are sampled. Of course
missing data is not a substantial problem if it is
"missing at random,” that is, if the missing
information is essentially a random sample of all the
information available (Rubin, 1976). Unfortunately
there is usually very little reason to believe that
missing data in meta-analysis is missing at random.
On the contrary, it is often easier to argue that the
causes of the missing data are systematically related
to effect size or to important characteristics of
studies. When this is true, missing data poses a
serious threat to the validity of conclusions in
meta-analysis. The specific cases of missing data on
study outcome and missing data on study
characteristics are considered separately.



3.2.1 Missi n .

Studies (such as single case studies) that do not
use statistical analyses are one source of missing
data on study outcome. Other studies use statistics
but do not provide enough statistical information to
allow the calculation of an estimate of the
appropriate outcome parameter. Sometimes this is a
consequence of failure to report relevant statistics.
More often it is a consequence of the researcher's
use of a complex design that makes difficult or
impossible the construction of a parameter estimate
that is completely comparable to those of other
studies. Unfortunately both the sparse reporting of
statistics and  the use of complex designs are
plausibly related to study outcomes. Both result at
least in part from the editorial policies of some
journals which discourage reporting of all but the
most essential statistics. Perhaps the most
pernicious sources of missing data are studies which
selectively report statistical information. Such
studies typically report only information on the
effects that are statistically significant, exhibiting
what has been called reporting bias (Hedges, 1984).
Missing effects can lead to very serious biases,
identical to those caused by selective publication
which are discussed in the section on publication bias.

One strategy for dealing with incomplete effect
size data is 10 ignore the problem. This is almost
certainly a bad strategy. If nothing else, such a
strategy reduces the credibility of the meta-znalysis
because the presence of at least some missing data is
obvious to knowledgeable readers. Another prob-
lematic strategy for handling missing effect size data
is to replace all of the missing values by the same
imputed value (usually zero). Although this strategy
usually leads to a conservative (often extremely
conservative) estimate of the overall average effect
size, it creates serious problems in study
characteristics to effect size. A better strategy is to
extract from the study any available information
about the outcome of the study. The direction (sign)
of the effect can often be deduced even when an
effect size cannot be calculated. A tabulation of
these directions of effects can therefore be used to
supplement the effect size analysis (e.g., Giaconia &
Hedges 1982; Crain & Mahard, 1983). Such a
tabulation can even be used to derive a parametric
estimate of effect (Hedges & Olkin, 1980, 1985).

Perhaps the best strategy to deal with missing
data on study outcomes is the use of the many
analytic strategies that have been developed for
handling missing data in sample surveys (Madow,
Nisselson, & Olkin 1983; Madow, Olkin, & Rubin,
1983;: Madow & Olkin, 1983). Generally these
strategies involve using the available information
(including study characteristics) to estimate the
structure of the study outcome data and the
relationships among study characteristics and study
outcome. They can also be used to study the
sensitivity of conclusions to the possible effects of
missing data. Although these strategies have much
to recommend them they have only rarely been used
in meta-analysis.

Another less obvious form of missing data is
missing data on study characteristics which results
from incompletely detailed descriptions of the
treatment, controls, experimental procedure, or the
outcome measures. In fact, the generally sketchy
descriptions of studies in the published literature
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often constrain the degree of specificity possible in
schemes used to code between study differences.

The problem of missing data about study
characteristics is related to the problem of breadth
of  constructs and operations for study
characteristics. Coding schemes that use a high
degree of detail (and have higher fidelity) generally
result in a greater degree of missing data.
Consequently, vague study characteristics are often
coded on all studies or more specific characteristics
are coded on a relatively few studies (see Orwin &
Cordray, 1985). Neither procedure alone seems to
inspire confidence among some readers of the
meta-analysis.

One strategy for dealing with missing in-
formation about study characteristics is to have two
levels of specificity: a broad level which can be
coded for nearly all studies and a narrower level
which can be coded for only a subset of the studies.
This strategy may be useful if suitable care is
exercised in describing the differences between the
entire collection of studies and the smaller number
studies permitting the more specific analysis. A
more elegant solution is the use of the more refined
methods for handling missing data on study
characteristics are little used but deserve more
attention. One is the collection of relevant
information from other sources such as technical
reports, other more general descriptive reports on a
program, test reviews or articles that describe a
program, treatment, or measurement method. The
appropriate references are often published in
research reports. A second and often neglected
source of information is the direct collection of new
data. For example in a meta-analysis of sex
differences in helping behaviors, Eagly and Crowley
(1986) surveyed a new sample of subjects to
determine the degree of perceived danger in the
helping situations examined in the studies. This
rating of degree of perceived danger to the helper
was a valuable factor in explaining the variability of
results across studies.

An important axiom of survey sample design is
that an excellent sample design cannot guarantee 2
representative sample if it is drawn from an
incomplete enumeration of the population. The
analogue in meta<analysis is that an apparently good
sampling plan may be thwarted by applying the plan
to an incomplete and unrepresentative subset of the
studies that were actually conducted.

The published literature is particularly sus-
ceptible to the claim that it is unrepresentative of all
studies that may have been conducted (the so-called
publication bias problem). There is considerable
empirical evidence that the published literature
contains fewer statistically insignificant results than
would be expected from the complete collection of
all studies actually conducted (Bozarth & Roberts,
1972; Hedges, 1984b; Sterling, 1959). There is also
direct evidence that journal editors and reviewers
intentionally include statistical significance among
their criteria for selecting manuscripts for
publication (Bakan, 1966; Greenwald, 1975; Melton,
1962). The tendency of the published literature to
over-represent statistically significant findings leads
to biased overestimates of effect magnitudes from
published literature (Lane & Dunlap, 1978; Hedges,
1984b), a phenomenon that was confirmed empirically
by Smith's (1980a) study of ten meta-analyses, each



of which presented average effect size estimates for
both published and unpublished sources.

Reporting bias is related to publication bias
based on statistical significance. Reporting bias
creates missing data when researchers fail to report
the details of results of some statistical analyses,
such as those that do not yield statistically
significant results. The effect of reporting bias is
identical to that of publication bias: some effect
magnitude estimates are unavailable (e.g., those that
correspond to statistically insignificant results).

Publication or reporting bias may not always be
severe enough to invalidate meta-analyses based
solely on published articles (see Light and Pillemer,
1984; Hedges, 1984b). Theoretical analysis of the
potential effects of publication bias showed that even
when nonsignificant results are never published (the
most severe form of publication bias), the effect on
estimation of effect size may not be large unless
both the within study sample sizes and the underlying
effect size are small. However, if either the sample
sizes in the studies or the underlying effect sizes are
small, the effect on estimation can be substantial.

The possibility that publication or reporting bias
may inflate effect size estimates suggests that
reviewers may want to consider investigating its
possible impact. One method is to compare the
effect size estimates derived from published (e.g.,
books, journal articles) and unpublished sources (e.g.,
conference presentations, contract reports, or
doctoral dissertations). Such comparisons however
are often problematic because the source of the
study is often confounded with many other study
characteristics. An alternative procedure is to use
statistical corrections for estimation of effect size
under publication bias. This corresponds to modeling
the sampling of studies as involving a censoring or
truncation mechanism. If these corrections produce
a negligible effect, this suggests that publication and
reporting bias are negligible.

There have been relatively few detailed
statistical analyses of the existence and magnitude of
publication and reporting bias. Such studies are badly
needed as are refinements of statistical analysis tools
to handle less extreme and more realistic censoring
models than those considered thus far.

4.0 [ssues in Data Evaluation

Data evaluation in meta-analysis is the process
of critical examination of the corpus of information
collected, to determine which study results are
expected to yield reliable information. Judgments of
study quality are the principal method of data
evaluation. A second aspect of data evaluation is the
use of empirical methods to detect outliers or
influential data points. When properly applied,
empirical methods have uses in both meta-analysis
(Hedges & Olkin, 1985) and in primary research
(Barnett and Lewis, 1978; Hawkins, 1980).

Meta-analysts and other reviewers of research
have sometimes used a single binary (high/low)
judgment which may be useful for some purposes such
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as deciding which studies to exclude from the
review. It is seldom advisable to make such
judgments directly. The reason is that different
researchers do not always agree on which studies are
of high quality. Empirical research suggests that
direct ratings of study quality have very low
reliability (see Orwin &  Cordray, 1985).
Consequently, most meta-analysts at least initially
characterize study quality by using multiple criteria.
One approach to criteria for study quality is the
threats-to-validity approach, in which each study is
rated according to the presence or absence of some
general threats to validity such as those presented by
Campbell and Stanley (1963) or Cook and Campbell
(1979). A second approach is the
methods—description approach (Cooper, 1984) in
which the reviewer exhaustively codes the stated
characteristics of each study's method. A third
approach to assessing study quality is a combination
of the first two approaches involving coding of the
characteristics of study methodology and assessing
threats to validity that may not be reflected in the
characteristics of study methods (Cooper, 1984).

Another source of information in data evaluation
comes from data analyses themselves. It often
happens that one or more observations (estimates of
effect magnitude) fail to fit the pattern of the other
observations. That is, one or more of the data points
fail to conform to the same model as do the other
observations. These deviant observations or outliers
may be the result of studies or situations in which the
treatment is exceptionally powerful or exceptionally
weak. In some cases a careful examination of details
of study design or procedures suggests plausible
reasons for the exceptional treatment effect.

Although statistical methods may be used to
detect outliers in meta-analysis (Hedges & Olkin,
1985), the question of what to do about them cannot
always be resolved so easily. Outliers that result
from detectable (and remediable) errors in
computation should of course be replaced by
estimates based on the correct calculations. When
they are based on suspicious data then a cautious
data analyst might want to delete, or at least
consider separately, such suspicious observations.

The most difficult problem arises when
examination of the outlying studies reveals no
obvious reason why their effects sizes should differ
from the rest. The analysis of data containing some
observations that are outliers (in the sense of not
conforming to the same model at the other studies) is
a complicated task. It invariably requires the use of
good judgment and the making of decisions that are
in some sense, compromises. There are cases (Rocke,
Downs, & Rocke, 1982; Stigler, 1977; Tukey, 1977)
where setting aside a small proportion of the data
(certainly less than 15-20 percent) has some
advantages. If nearly all the data can be modeled in
a simple, straightforward way it is certainly
preferable to do so, even at the risk of requiring
elaborate descriptions of the studies that are set
aside.



Studies that are set aside should not be ignored;
often these studies reveal patterns that are
interesting in and of themselves. Occasionally these
deviant studies share a common characteristic that
suggests an interesting direction for future research.
One of the reasons it is preferabie to use a model
which includes most of the data is that the results of
studies that are identified statistically as outliers
often do not deviate enough to disagree with the
substantive result of the model. That is, an effect
size estimate may exhibit a statistically significant
difference from those of other studies, yet fail to
differ from the rest to an extent that would make a
practical or substantive difference. However, it is
crucial that all data be reported and that any deleted
data be clearly noted.

Data analysis and interpretation are the heart of
the meta-analysis and have a long history in
statistics and the physical sciences. Two distinctly
different directions have been taken for combining
evidence from different studies in agriculture almost
from the very beginning of statistical analysis in that
area. One approach relies on testing for statistical
significance of combined results across studies, and
the other relies on estimating treatment effects
across studies. Both methods date from as early as
the 1930's (and perhaps earlier) and continue to
generate interest among the statistical research
community to the present day.

Testing for the statistical significance of
combined data from agricultural experiments is
perhaps the older of the two traditions. One of the
first proposals for a test of tue statistical
significance of combined results (now called testing
the minimum p or Tippett method) was given by
L.H.C. Tippett in 1931. Soon afterwards, R.A. Fisher
(1932) proposed a method for combining statistical
significance, or p-values, across studies. Karl
Pearson (1933) independently derived the same
method shortly thereafter, and the method variously
called Fisher's method or Pearson's method was
established. Research on tests of the significance of
combined results has flourished since that time, and
now well over 100 papers in the statistical literature
have been devoted to such tests. A review of this
literature with special reference to meta-analysis is
given in Hedges and Olkin (1985).

Tests of the significance of combined results are
sometimes called omnibus or nonparametric tests
because these tests do not depend on the type of data
or the statistical distribution of those data. Instead,
tests of the statistical significance of combined
results rely only on the fact that p-values are
uniformly distributed between 2zero and unity.
Although omnibus tests have a strong appeal in that
they can be applied universally, they suffer from an
inability to provide estimates of the magnitude of the
effects being considered. Thus, omnibus tests do not
tell the experimenter how much of an effect a
treatment has. Consequently omnibus tests are of
limited utility in most research reviews.

In order to determine the magnitude of the
effect of an agricultural, a second approach was
developed which involved combining numerical
estimates of treatment effects. One of the early
papers on the subject (Cochran, 1937) appeared a few
years after the first papers on omnibus procedures.
Additional work in this tradition appeared shortly
thereafter (e.g., Yates & Cochran, 1938; Cochran,
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1943). It is also interesting to note that work on
statistical methods for combining estimates from
different experiments in physics dates from the same
era (Birge, 1932).

This section outlines some of the methods used
for combined significance testing.

Consider a collection of k independent studies
characterized by parameters 6j,..., €y, such as
means, mean differences, or correlations. Assume
further that the ith study produces a test statistic T;
to be used to test the null hypothesis

Hgi: 8; =0, i=1, ..., k,

where large values of the test statistic lead to
rejection of the null hypothesis. The hypothesis
Hgj.....Hpx need not have the same substantive
meaning, and similarly, the statistics Ty,...,Tx need
not be of related form. The omnibus null hypothesis
Hp is that none of the effects is significant, that is,
that all the O's are zero:
Hp: 8] =67 =...=8 =0
Note that the composite hypothesis Hg holds only if
each of the subhypotheses Hg1,...,Hgy holds.
The one-tailed p-value for the ith study is

P; = Prob (T; 2 tjp)}. Q)]

where tjg is the value of the statistic actually
obtained (the sample realization of T;) in the ith
study. If Hg; is true, then P; is uniformly distributed
i the interval [0,1].

m .

) The first test of the significance of combined
results was proposed by Tippett (1931), who pointed
out that if py,...,pk are independent p-values (from
continuous test statistics), then each has a uniform
distribution under Hg. Therefore, if p[j] is the
minimum of pi,....px, a test of Hg at significance
level is obtained by comparing p[]] with 1- (1 -a yk,
so that the test procedure is to

reject Ho if pr1j €1 - (1 -a)l/k )
(

ver - T .

Perhaps the most widely used combination
procedure is that of Fisher (1932). Given k
independent studies and the p-values pj, ..., Dg,
Fisher's procedure uses the product, p1, P2, ---» Pk» 10
combine the p~values. He made use of a connection
between the uniform distribution and the chi-square

distribution, namely, that if U has a uniform
distribution then -2 log U has a chi-square
distribution with two degrees of freedom.

Consequently, when Hp; is true, -2 log p; has a
chi-square distribution with two degrees of freedom.
Because the sum of independent chi-square variables
has a chi~square distribution, we have the very
simple and elegant fact that if Hg is true, then

-2 log (1. P2.----Pk) = -2 log p1-..-2 log py ~ (3)

has a chi-square distribution with 2k degrees of
freedom. Because of this fact, no special tables are



needed for the Fisher method. The test procedure
becomes
reject H,  if P = -2 E log p, 2 €,
0 i
i=1

where the critical value C is obtained from the upper
tail of the chi-square distribution with 2k degrees of
freedom.

[V .

Another procedure for combining p~values is the
inverse normal method proposed by Stouffer,
Suchman, Devinney, Star and Williams (1949). This
procedure involves transforming each p-value to the
corresponding normal score, and then "averaging.”
More specifically, define z; by p; = ¢ (z;), where ¢ (x)
is the standard normal cumulative distribution
function. When Hy is true, the statistic

s -1 (pp+ ... o~ 1(pp)

o i @

Z] 4.+ 2k

has the standard normal distribution. Hence we
reject Hg whenever Z exceeds the appropriate
critical value of the standard normal distribution.

6.4 .

Yet another method for combining k independent
p-values p1,...,px was suggested by George (1977) and
investigated by Mudholkar and George (1979).
Transform each p-value into a logit, log[p/(1 - p)l,
and then combine the logits via the statistic

M
+ ... + log ———. (5)

1-px

L =log
1-py

The exact distribution of L is not simple, but when
Hg is true, George and Mudholkar (1977) show that
the distribution of L (except for a constant) can be
closely approximated by Student's t-distribution with
Sk + 4 degrees of freedom. Therefore, the test
procedure using the logit statistic is

reject Hy if L* = |L| ¥(0.3) (5k +4)/k(Sk+ 2)>C
(6)

where the critical value C is obtained from the
t-distribution with 5ky+ 4 degrees of freedom. [The
term 0.3 in (6) is more accurately given by 3/n 2,

For large values of k, v3 (Sk + 4)/m Z (Sk +2) = 0.55,
so that L™ = (0.55/v k|L).

6.5 .

In spite of the intuitive appeal of using combined
test procedures to combine tests of treatment
effects, there frequently are problems in the
interpretation of results of such a test of the
significance of combined results (see e.g., Adcock,
1960; or Wallis, 1942). Just what can be concluded
from the results of an omnibus test of the
significance of combined results? Recall that the
null hypothesis of the combined test procedure is

Hp: 891 =82 = ... =6, =0;
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that is, Hq states that the treatment effect is zero in
every study. If we reject Hp using a combined test
procedure, we may safely conclude that Hp is false.
However, Hg is false if at least one of 0y, ..., is
different from zero. Therefore, Hg could be flélse
when 81 > 0 and 89 = ... = 8¢ = 0. It is doubtful if a
researcher would regard such a situation as
persuasive evidence of the efficacy of a treatment.

The difficulty in the interpretation of omnibus
tests of the significance of combined results stems
from the nonparametric nature of the tests.
Rejection of the combined nuil hypothesis allows the
investigator to conclude only that the omnibus null
hypothesis is false. Errors of interpretation usually
involve attempts to attach a parametric
interpretation to the rejection of Hg. For example,
an investigator might incorrectly conclude that
because Hp is rejected, the treatment effects are
greater than zero (Adcock, 1960). Alternatively, an
investigator might incorrectly conclude that the
average treatment effect @ is positive. Neither
parametric interpretation of the rejection of Hp is
warranted without additional 3 priori assumptions.

An additional assumption that is sometimes
made is the assumption that there is "no qualitative
interaction.” This assumption is essentially that if
the treatment effect in any study is positive, then no
other treatment effect is negative. That is, all of
the treatment effects are of the same sign but not
necessarily of the same magnitude. While this
assumption may seem innocuous, it is important to
recognize that it must be made independent of the
data and that it may be false. For example, if a drug-
that actually has a positive effect on a specific
disease also has toxic side effects, it might actually
increase the death rate among some (e.g., older or
sicker) patients. If some studies have more older or
sicker patients, it is plausible that they might obtain
negative treatment effects while other studies with
younger or healthier patients found positive
treatment effects.

An important application of omnibus test pro-
cedures is to combine the results of dissimilar studies
to screen for any treatment effect. For example,
combined test procedures can be used to test whether
a treatment has an effect on any of a series of
different outcome variables. Combined test
procedures can even be used to combine the results
of related analyses computed using different
parameters such as correlation coefficients or effect
sizes.

Omnibus tests of the statistical significance of
combined results are poorly suited to the task of
drawing general conclusions about the magnitude,
direction, and consistency of treatment effects
across studies. On the other hand, techniques based
on combination of estimates of effect magnitude do
support inferences about direction, magnitude, and
consistency of effects. Therefore, statistical
analyses based on effect sizes are preferable for
most applications of meta-analysis.

When all of the studies have similar designs and
measure the outcome construct in a similar (but not
necessarily identical) manner, the combined esti-
mation approach is probably the preferred method of
meta-analysis (Hedges & Olkin, 1985).

It is difficult to discuss the problem of com-
bining the results of studies in complete generality.
The purpose and procedures of research studies



obviously vary tremendously even within a discipline.
It is usually the case, however, that research studies
seek to estimate one or more substantively
meaningful parameters. The results of a study can
therefore often be summarized via an estimate of
that parameter and its standard error. An important
special case is the situation where studies examine
the effect of a "treatment"” and the result of the
study is an estimate of the "effect” of this treatment
measured in some relevant fashion. In this case, the
first step in combined estimation is the selection of
an index of effect magnitude. Many different indices
of effect magnitude have been used in meta-analysis
including the raw mean difference between the
standardized difference between treatment and
control group means (e.g., Smith & Glass, 1977), the
observed minus expected frequency of some outcome
like death (e.g., Yusof, Peto, Lewis, Collins, &
Sleight, 1985), the risk ratio between treatment and
control groups (Canner, 1983) or the simple
difference between proportions of some outcome in
the treatment and control groups (e.g., Devine &
Cook, 1983). _

Statistical analysis procedure for meta-analysis
using any of these indices of effect magnitude are
analogous (Elashoff, 1978; Fleiss, 1973; Gilbert,
McPeek, & Mosteller, 1977; Hedges, 1983; Hedges &
Olkin, 1985; Mantel and Haenzel, 1959; Sheele,
1966). All involve large-sample theory and differ
mainly in the details of calculation of standard errors
and bias corrections.

Before discussing examples of modeling pro-
cedure in combined estimation, it is useful to
consider conceptual issues that have implications for
that modeling.

1.1 The Nature of Between-Study Varijation.

Between-study variation is defined as variability
in the study outcome parameters. Three natural
conceptualizations of between-study variation treat
this variation as totally systematic (e.g., fixed),
totally random (e.g., nonsystematic), or mixed
(partially systematic and partially nonsystematic).
These three conceptualizations give rise to three
different types of models for the results of a series
of studies. In the fixed-effects conceptualization,
the true or population values of the treatment
effects in the study are an (unknown) function of
study characteristics. By studying the relationship
between study characteristics and treatment effects
the data analyst tries to deduce stable relationships
that explain essentially all of the variability in study
results except for that attributable to within-study
sampling variability. The evaluation of a particular
explanatory models is part of this process.

The random-effects conception arises from a
model in which the treatment effects are not
functions of known study characteristics. In this
model, the true or population values of treatment
effects vary randomly from study to study, as if they
were sampled from a universe of possible treatment
effects (see Hedges & Olkin, 1985). The random
effects conceptualization is consistent with
Cronbach's (1980) proposal that evaluation studies
should consider a model in which each treatment site
(or study) is a sample realization from a universe of
related treatments. The primary difference between
the interpretation of fixed- and random-effects
models is that between-study variation in treatment
effects is conceived to be unsystematic in
random-effects models and consequently explanation
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of this variance is not possible. Instead the data
analyst usually seeks to quantify this variation by
estimating a (treatment by studies interaction)
"variance component”: an index of the variability of
population treatment effects across studies.

Mixed models involve a combination of the ideas
involved in fixed- and in random-effects models. In
these models, some of the variation between
treatment effects is fixed (i.e., explainable) and some
is random. Consequently, the data Analyst seeks to
explain some of the variation between study results
and quantify the remainder by estimating a variance
component (Raudenbush & Bryk, 1985, DerSimonian &
Laird, 1983). Such models have considerable promise
as data analytic tools for situations in which it is
useful to treat some of the variability between study
results as random.

The most important difference in the outcomes
produced by the three types of statistical analyses
lies in the standard errors that they associate with
the overall (combined) estimate of the treatment
effect. Fixed-effect analyses incorporate only
within-study variability into the estimate of the
standard error of the combined treatment effect.
Fixed-effects analyses produce the smallest standard
error estimates because they are, in fact, conditional
on the known and unknown characteristics of the
particular studies that have been done.
Random-effects analyses include the between-study
variance component in estimates of the standard
error of the overall (combined) estimate of the
treatment effect, and hence produce standard errors
between those of fixed- and random-effects analyses.

1.2 Monitoring Models for Between-Study
DRifference

Although most statisticians have a great deal of
experience which aids their intuition about the
specification and robustness of statistical models
within studies, few of us have broad experience or
accurate intuition about statistical models for
between-study  variation. Unlike  within-study
variation, between-study variation is completely
uncontrolled by the investigator (reviewer) and even
retrospective information about the sampling units
(studies) may be difficult to obtain. Consequently
modeling assumptions about between-study variation
are likely to be wrong, often horrendously wrong. In
such an environment, it is very unwise to depend on
statistical analysis procedures that are strongly
dependent on specification of a particular model for
between-study variation.

Research synthesis requires procedures that are
either robust against misspecification of
between-study models Qr procedures that allow
monitoring of the adequacy of the model for
between-study variation. Nonrobust procedures that
do not permit (indeed compel) comprehensive
monitoring are a recipe for disaster. Two examples
may illustrate the point. The first example concerns
weighting of the results of different studies when
combining estimates of treatment effects. The most
efficient estimate of a common treatment effect
uses a weight for each study that is inversely
proportional to the standard error of the estimated
treatment effect. If you really believe the model,
you use it regardless of the weights it assigns. A
skeptic might believe that no single study should
receive too much weight and therefore place an
upper bound on the weight any study may attain.
This more robust solution (called partial weighting)



was suggested by Yates and Cochran (1938) as an
alternative to excessive belief in a model. The
Techniques of modern robust estimation obviously
have a wide range of possible application in
meta-analysis, but less robust procedures may be just
as useful if their application is carefully monitored.

A second example concerns the use of monolithic
data analysis procedures versus data analysis
procedures that are easy to monitor in detail. In one
sense it is natural to attack the problem of combining
information from different studies by utilizing a
comprehensive statistical model and performing all
aspects of the analysis simultaneously, for example
by maximum likelihood estimation. This procedure is
elegant and may have certain technical advantages.
Yet simultaneous estimation of all aspects of a mode!
may have the disadvantage that it is difficult to
discover parts of the model that are not consistent
with the data. Moreover, failures of one aspect of
the model may affect estimation of other aspects of
the model. The alternative of explicitly computing
estimates from each study and then combining those
estimates using explicit procedures such as
generalized least squares is far less elegant. It may
also have some technical disadvantages, but it has
the advantage that the adequacy of the model is
much easier to monitor. Moreover, failures of one
aspect of the model are less likely to spill over and
create problems in another part of the model. This
issue also arises in econometric modeling where the
same tradeoffs are recognized between so-called
"full information” modeling and "limited information"
modeling. The point here is not that simpler methods
of combining results are better. It is that models for
between-study differences should be tentative and
therefore require serious monitoring. Simpler
combination procedures are often easier to monitor
and therefore have an advantage that might not be
obvious. Methods for monitoring models or for
producing robust combination procedures are
essential in research synthesis.

LZ.lRea.Js.uc_Msxiehng_Qf_B_ﬂ_ggn_S_mdx_

Modelmg between-study differences is often
fraught with complications that are highly
idiosyncratic to particular data set under analysis.
Research syntheses can only be helpful if they make
a serious effort to incorporate these idiosyncrasies
into the data analysis model. Some of the sources of
these idiosyncrasies have already been mentioned.
For example, publication or reporting bias leads to
censoring or truncation at the sampling level of
studies. Other censoring or truncation effects may
exist within studies and both may need to be
explicitly modeled. Similarly, missing data that is
not missing at random may be important to consider
in the model for the data analysis. Finally the
possibility of dependence between supposedly
independent studies cannot be ignored. If a given
team of investigators produces several studies whose
results are more alike than those of other
investigators, dependencies are introduced which may
need to be incorporated into the model specification.

m&mmm_ummmmma

Thns secnon presents statistical methods that
are frequently used in research synthesis. The
outline of methods that follows is intended to be
generic and therefore it does not incorporate the
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complexities that might be added in an actual

research synthesis.
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Suppose that T1.....,Tx are independent esti-
mates of effect magmtude form k studies with
sample sizes ni,...,ny and unknown population effect
magnitude parameters 81, ... , 8x. Assuming that the
standard error of T; is a function of 6;, denote the
standard errors of Tj,...,Tx by 51(97), ... , Sk(8x) and
the estimated standard errors by 51(T1), ..., Sk(Tk).
Assume further that each T; has a normal asymptotic
distribution leading to the large-sample normal
approximation .

T; ~ N(0;, SXT;))
)]

8.1.1 Esti ma; gg the Qverall Average

One of the first statistical questions that arises
is how to estimate the overall average treatment
effect when it is believed that 0y, ..., Oy are very
similar. One way of combining the estlmates is
obviously to take the simple average of Ty,...Tx. The
most precise combination (i.e., the most efficient
estimator of 0 when 8) = @ = 8) is a weighted

average  that takes the standard error
S1(T1).....S5k(Ty) into account. This weighted average
is

T. = Ek w, T /Zk W, ,
(a1 i i i

i=1 (8)

where w; = 1/S%(T}). One slight refinement of (9) is
the iterated estimator T.0) defined by T. (0) = T. and

T.0)a £k
1a1

ui(J 1) -r /2 ui(j-l).j:l,z..-, &)

f=1
2(T.G-1). When N =£X n

where @ (1) = l/S
& 1=1

with ny/N fixed

(that is, if each study has a large sample size) and if
each Si(T) is a continuous function of T, the
estimators T and T () have (the same) asymptotic

distribpticn' leading to the large-sample normal
approximation

T~N(e. $3(T)), (10)
where

s-2my=£X 572 (1.).

i=1 (amn
This result can be used to compute tests of
significance and confidence intervals for based on
T.. For example a 100 (1 - «) percent confidence
interval for @ is given by

T. -2,/2S(T)S @ 5 T.+2q/35.(T), (12)



where z,,,is the two-tailed critical value of the
standard normal distribution. Alternatively, a test of
the hypothesis that @ = 0 uses the statistic

Z=T./S(T.). (13)
which is compared to the critical values of the
standard normal distribution. If the Ti' i=l1,...,k, are

symptotically efficient (have asymptotic variances
equal to the Cramer-Rao lower bound), then T. is
asymptotically efficient.

Note that weighted combinations of estimators
using estimated weights and their iterated coun-
terparts have identical large sample properties. Thus
the decision about whether to iterate to obtain the
estimates of @ used in the weights depends on the
form of S f(e) and on the small sample properties of

T.. If sf(e, is almost independent of 8 for the

plausible values of 9 in the problem at hand, iteration
is ungikely to have much effect. On the other hand,
if Si (@) changes considerably as a function of
plausible values of 8, iteration may change the value
of the estimate by a considerable amount. Note also
that even if the T; are unbiased estimates of 9, T. is
usually biased. The iterated estimators 1.0) wil
usually tend to be less biased than T.

Another point is that the regularity condition
that the n;/N remain fixed as N - &. If we let N
increase by increasing k and letting the ny/N 0,
then a variety of problems arise. For example, under
this condition T. is not even consistent if the T; are
biased estimators of 8 (see Neyman & Scott, 1948).

Combining estimates of effect magnitude across
studies is reasonable if the studies have a common
population effect magnitude ©. In this case,
properties of Ty and on the dependence gf the
variance of the T; on ©,.If the variance $%(8) is
almost independent of 0, then the iteration drocess
will not change the estimates very much. If 52(0) is
greatly influenced by @, then iteration could change
the estimate of B considerably. The iterated
estimators are also likely to be less biased than the
uniterated estimators.

This result is often useful in situations where the
model for the data is well understood, but the obvious
means of obtaining estimates, such as the method of
maximum likelihood, require complicated iterative
methods. The present method yields estimators that
are simple to compute but have the same
large-sample properties as maximum-likelihood
estimators. In addition the diagnostic procedures
routinely used in weighted least squares can be
applied in the usual manner.

If the investigator proposes a linear model for 8,
it may be desirable to see if the model is reasonably
consistent with the estimates Tj,...,Tg. If the model
does not seem reasonably consistent with the data,
then the entire analysis should be suspect. Iterated
estimators, in particular, would not be expected to
perform well if the model is misspecified. Whenever
k > p, a natural test of model specification arises in
connection with the estimator presented above. The
test given below provides a way to check that the
data are consistent with the proposed model.

If 8 =0, then the statistic
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Hy = T'V=-IMXXv-1Mx)-1xXv-Imt (20

is distributed approximately as a chi-square with p
degrees of freedom. The statistic Hy{ can be used as
for a simultaneous test that B} = ... By = 0, or
alternatively as a simultaneous test that 8] = ... 8y =
0. More significantly Hyy is used in the calculation of
a test for goodness of fit or specification of the
linear model. If k >p and the model & = XB is
correctly specified, then the statistic

Hg = T'V-I(T)T - Hy 3))

has an approximate distribution given by

- x2
Hg xk-p

The statistic Hpf is the (weighted) sum of
squares due to the regression model and the statistic
Hg is the (weighted) sum of squares about the
regression plane (the r sum of squares). Thus the test
for model misspecification is a test for larger than
expected residual variation. If Hg is large or
significant, the investigator might use any of the
standard tools of regression analysis (e.g., the
examination of residuals, the search for influential
observations, etc.) to look for problems with the
model.

Note that the linear model analyses described
above can all be performed with standard packaged
computer programs such as SAS PROC GLM. The
weighted regression (or analysis of variance) is
performed by simply specifying the weight for each
case (each Tj) as

2
W, = 1/51(71).

i

The regression coefficients are printed directly and
the variances of the estimated regression
coefficients are the diagonal elements of the inverse
of the (X'WX) matrix. The statistics Hyy and Hg are
printed as the weighted sum of squares due to the
regression model and the weighted error sum of
squares about the regression plane.

8.2 Statistical Methods for Random-Effects
Meta-analysis

1S.

Again suppose that T),...,Tx are independent
estimates of treatment effects from k experiments
with (unknown) population treatment effects
Again denote the standard error of T; given by
Si(T;). Assume as before that the T; are
approximately normally distributed. Now, however,
introduce the random-effects model that ,
are sampled from a hyperpopulation of treatment
effects. Often the are assumed to be normally
distributed. The object of the analysis is to estimate
the mean and variance (the hyperparameters) of
the distribution of population treatment effects, and
to test the hypothesis that = 0.

A distribution-free approach to estimating is
analogous to the procedure used to estimate the
variance component in the one-factor random effects

analysis of variance. The estimate is given by
»
8 < s2 - £% s%(1 )/x, 22)
] Ty it



where ST is the usual sample variance of Tj 3...,Tx

(see Hedges and Olkin, 1985)2 More complex

procedures for  estimating o, under various

distributional assumptions on thé€ © are given in

Champney (1983), Raudenbush and Bryk (1985), and

Hedges and Olkin (1985). _

The usual estimate of @ is the weighted mean

3 -

75 - ¥ x’i’ £¥o)

i i=1

(23)

A2 2
where u: -« 1/(6g * 51(‘1'1)]-

The weighted mean T is approximately distributed

D - N(3. o2), (24)

where o_.% « £
i

Consequently, an approximate confidence interval
for & is given by
] =

T. €0 < T.»

*a/2%« = (25)

za/zc‘

where z 2is defined as in (12). Note that the

used in (24) are not the same as the

2
(-]

Usually ol is larger than zero and consequently T".
differs from T.. Moreover, the standard error ©, of
T". is usually larger (often much larger) than the
standard error g of T.. As a result, overall treatment
effects that are significantly different from zero in a
fixed-effects analysis may not be significant in a
random-effects analysis. The difference, of course,
results from differences in the conceptualization of
the model, and in what counts as sampling error.

8.3 Statistical Methods for Mixed=Eff.

Meta-analysis.

Statistical methods for mixed-effects meta-
analyses have received less complete treatment in
the literature than have fixed- and random-effects
models. There is a great deal of work in progress on
meta-analysis with mixed-effects models. This work
shows potential for resolving differences between
fixed- and random-effects approaches. One useful
treatment of mixed-effects meta-analysis in the

context of educational research is Raudenbush and
Bryk (1985).

8.4 Limitations of Statistical Methods

One of the most important issues faced by any
reviewer is that of the limitations of statistical
methods for answering the types of questions that are
addressed by the review. In spite of a large number
of apparently relevant research studies, it is often
the case that the actual amount of specifically
relevant empirical information is quite small. For
example, in some areas the large bulk of the research
studies fail to meet methodological standards that
are now considered essential. In other cases the
reviewer's interest is focused on very specific
situations which are not adequately represented or
differentiated in the extant research literature. In
still other situations, individual studies (such as very
small clinical trials) are so inadequate that even

a/

weights u;

weights @, used in (9) unless g, is exactly zero.
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pooling a fairly large number of such studies still
leads to parameter estimates with very large
standard errors.

v .

The function of research reviews in science is to
do more than collect and tabulate research results.
It is no accident that the most prestigious journals
that publish research reviews seek reviews that are
"critical,” “integrative," or "synthetic" or that the
words "research synthesis” are sometimes used a a
synonym for ‘"research reviewing." These
descriptions of research reviews imply something
beyond tabulation, they suggest that reviews will not
only present empirical results and generalizations but
will offer explanations in support of those
generalizations. The important issue is that the
explanation consists of more than the empirical
generalization and a sketchy summary of the data on
which it is based. All explanations relate the
phenomenon to be explained to other ideas that are
presumably understood and perceived to be relevant
by the recipient of the explanation. It usually
involves demonstrating the ways in which the new
phenomenon fits into patterns that are familiar and
are perceived to be relevant in some way. We
understand by discovering the many linkages between
a new phenomenon and existing beliefs, relationships,
and empirical data. The function of the explanation
is to make the linkages clear, to make obvious the
ways in which the new phenomenon fits into the
matrix of background beliefs, theories, empirical
data, and relationships. Note that a perfectly
correct generalization alone is not necessarily a good
explanation if the links to appropriate context are
not made obvious.

Meta-analysis has prompted a considerable
amount of debate in some quarters during the last ten
years. Perhaps the controversy is understandable as
a natural consequence of the introduction of a new
research paradigm. Some of the controversy seems
to be based on a misunderstanding of meta-analysis.
Part of it may be an inevitable consequence of the
rough edges of the first few studies produced by any
new research paradigm. But some of the criticisms
seem to suggest that meta-analyses have sometimes
failed as explanations. This is disturbing because
research reviews using meta-analysis must succeed
as explanations if they are to be useful. Moreover, if
they are to have any lasting impact they must be
convincing explanations to the researchers and policy
makers who are most knowledgeable about the
subject matter under review. Meta-analyses that
convince only other experts in meta-analysis are not
useful. A crucial question is why do explanations
based on meta-analyses sometimes fail as
explanation and how can they be improved.

9.1 .LxAﬂnAJumJﬁgiEaQLDLimmhxjg

Meta—analyses and indeed any research reviews
that offer precise conclusions are likely to face some
difficulties as credible explanation. The reason is
that to make generalizations across studies the
reviewer must ignore a great many differences
among those studies. Glass, McGaw, and Smith
(1981) have argued that generalizing across studies is
not logically different from generalizing across
individual subjects within an experiment. While this
may be true at some level, the analogy ignores an
important perceptual difference between



generalizations within and across studies. The
experimental paradigm predisposes researchers to
view the generalization across subjects as natural
because, by definition, the differences between
subjects are "experimental errors" (see Cronbach,
1957). The few systematic individual difference
variables recognized in the experimental paradigm
are incorporated into the design and all other
differences are by definition nonsystematic.

Differences between studies, on the other hand,
are viewed as systematic because the same
experimental paradigm stresses the importance of
the design of research studies. A great deal of the
training and professional effort of researchers is
. devoted to learning about, planning, and
implementing systematic aspects of research studies
that make one study different from another. 1|
emphasize that the differences between studies are
viewed by knowledgeable researchers as systematic,
because researchers strive to make their studies
systematically different from those of other
researchers to obtain new information. They do so
because they believe these differences could have an
effect on the results of the study. Moreover, the
differences between studies are not usually
unidimensional. The design and execution of research
studies is so complex that even "similar” studies
often differ in many ways. For this reason, it would
be expected that researchers would have difficulty
with any method of generalizing across studies,
because such methods implicitly relegate the many
complex and important differences between studies
to the status of "error" or unsystematic variation.
Researchers are likely to find even more
problematic, statistical methods for generalizing
across studies that explicitly define all of the
unmodeled variation between study results to be
sampling error. Conventional statistical methods
(such as t tests, analysis of variance and multiple
regression analysis) applied to effect sizes are
examples of this type. Statistical methods developed
specifically for meta—analysls separate variation
between studies that is due to sampling error within
studies from that which is due to systematic
variation between studies.

The most persistent criticisms of meta-analysis
stem, in part, from the perspective of researchers
who feel that differences among studies and among
their results are systematic and that meta-analysis
fails in some way to recognize those differences.
Perhaps the most consistent of these criticisms of
meta-analysis (which could be criticisms of any
review) have come to be called the "apples and
oranges" criticism and the "garbage-in garbage-out"”
criticism.

The apples and oranges criticism maintains that
meta-analysis combines evidence from studies which
do not have the "same" procedures, independent

variables, or dependent variables. Thus
meta-analysis is combining the incommensurable
because studies exhibit systematic differences.

Another statement of essentially the same criticism
(Presby, 1978) is that combining research studies into
overly broad categories obscures important
differences between those studies and their results.
In each case, the fundamental issue is the breadth of
constructs that are the "same,” and the critic's
position is that only aggregation across a rather
narrow range of treatment, control, and outcome
constructs is sensible.
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The "garbage-in garbage—out” criticism
(Eysenck, 1978) is that by abandoning "critical
judgment" about the quality of research studies

reviewed, meta-analysis placed too much emphasis
on studies of low quality. Because studies of low
quality are presumably subject to many biases, they
cannot be the foundation of reliable knowledge.
Meta-analysis therefore becomes another case of
garbage-in garbage-out. Although the criticism
concerns the question of methodological quality, it is
firmly rooted in the conception that there are
systematic differences (in methodology) between
studies that influence study results.

9.2 Improving Meta-analysis in the Service

Scientific Explanation.

The improvement of meta-analysis as
explanation depends on greater attention to both
methodological detail and to persistent criticisms of
meta-analysis. Critics tell us why they do not find
meta-analyses to be convincing as explanation.
Attempts to respond to those criticisms (where they
do not conflict with other requirements of
methodology) are likely to yield more persuasive
meta-analyses. Many of these criticisms are among
the issues discussed in earlier sections of this
chapter, but two general issues emerge. One is the
issue of specificity versus generality of constructs.
The other is the appropriate use of quantitative
methods.

The issues of specificity arise because
researchers tend to think of studies in terms of
specific and rather narrow constructs. This tendency
toward specificity is reflected in the usually narrow
choice of constructs in conventional reviews (Cook &
Leviton, 1980). Meta-analyses are likely to be more
credible as explanation if they use (or at least
distinguish) constructs of treatment, control, and
outcome that are relatively nmarrow and relatively
specific to the research domain at hand.
Meta-analyses are also likely to be more credible if
they use conceptions of study quality that recognize
the specific difficulties associated with the domain
under study. By treating between-study differences
in rather specific ways, meta-analyses will offer a
richer variety of connections with researcher's
conceptualizations of the research domain.

The issues of appropriate use of quantitative
methods might be interpreted to include all issues of
the formal (mathematical) appropriateness of
statistical methods in a given situation. More
important is the question of when should statistical
methods be used given that they are formally
correct. Researchers are not always comfortable
with the use of quantitative method to empirically
"define" the differences among studies that deserve
consideration. For example, the argument that study
quality can be defined empirically by determining
which groups of studies give different answers has
not always been persuasive. Critics seem to be
saying that quantitative analyses cannot carry the
whole load. Meta-analyses are likely to be more
persuasive if they use qualitative methods to
determine interesting differences among studies.
Researchers know both that quantitative methods
cannot resolve all questions and that these methods
must be guided and set in context by qualitative
analysis. Qualitative information that is not
explicitly coded as between-study differences has an
important role in interpretation and should not be
neglected even if it requires rather lengthy



descriptions of important aspects of individual
studies (Light & Pillemer, 1984).

The net effect of these suggestions would be to
make meta-analyses look more like conventional
narrative reviews, involving perhaps fewer studies
distinguishing narrower constructs, and providing
more detailed qualitative and conceptual arguments.
In fact, earlier conventional reviews of an area may
be a model for conceptualization and level of
operational detail that are appropriate. The most
persuasive meta-analysis is likely to be one that
combines the strengths of qualitative reviews and
those of serious quantitative methodology.
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DISCUSSION

Chao W. Chen,
U.S. Environmental Protection Agency

Dr. Hedges has given an excellent discussion
about general issues that one should consider when
combining information from different studies.
However, the methodologies proposed in his pre-
sentation do not appear to have much usefulness for
most problems that the U.S. Environmental Pro-
tection Agency (EPA) encounters in environ- mental
management. A major difficulty in environmental
management is that scientists often cannot provide
precise estimates of environmental risk posed by a
pollutant because of a lack of scientific knowledge
and data. As is usually the case, very little is known
about the potential risks of chemicals in the air,
water, or workplace. Our knowledge is even weaker
with respect to the mechanism of carcinogens. Yet
EPA is frequently called upon to make decisions on
the management of environmental risk, in the face of
such an enormous uncertainty. A simple example is
about the issue of whether one should combine benign
and malignant tumors in statistical evaluations of
carcinogen data. This decision could make a big
difference in classifying an agent as to whether or
not it is carcinogenic. For instance, suppose that
three benign and four malignant neoplasms of the
same cell type are found in a group of 50 animals,
versus none in a control group of 50 animals. When
these incidence data are analyzed separately, none of
them is statistically significant (one-sided, p > 0.05)
with the use of the Fisher Exact Test. However,
when benign and malignant tumors are combined
(0/50 vs. 7/50), the incidence is highly significant
(one-sided, p < 0.007). Since there are scientific
reasons for favoring and opposing combination of
neoplasms, it would be more appropriate to reflect
this uncertainty in risk assessment and management.
The "meta-analysis"” which considers only statistical
variability is not capable of taking into account this
dynamic nature of the problem.

The methodologies presented by Hedges consist
of two parts: namely, combining significance tests
and statistical analysis of combined effect size. The
procedure for analyzing combined effect size is
mainly an analysis-of-variance (ANOVA)-type
approach, which may not be adequate for the kind of
problem usually encountered by the EPA in the area
of risk assessment. Some of the procedures used to
combine significance tests are multiple comparison
tests in nature (e.g., minimum p method), which is
certainly not the objective of combining information
from different studies. In the minimum p method,
the null hypothesis Hg:Hg; = Hpy = ... = Hgg
is rejected if

P <1 - (1 - a)l/k

where pm is the minimum of p;, p2. .... Pk
This procedure is simply a simultaneous inference
test for a family of k independent statements (Sj, i
= 1, 2, ..., k) with a family error rate a. This canbe
easily seen as follows: .
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pj = Pr(S; is incorrect)
l-pj = Pr(S; is correct)

l-a = Pr(all S; are correct) = M(l-p;) < (l-pm)k
i

Therefore, the null hypothesis Hg is rejected if
Py < 1 = (1-a)l/k

Similarly, the use of Fisher's procedure of combining
information from different studies may not be
appropriate, as the following example demonstrates.
Suppose two studies are identical except for the
sample size and are summarized in 2x2 tables as
follows:

14 | 20 140 | 200

10 | 10 | 100 | 100

The p values for these two studies are, respectively,
0.60 and 0.04, using the one-sided Fisher Exact Test.
The combined result by Fisher's procedure is
-2L;log(p;) = 3.2, which has a one-sided p-value
of 0.52 under Hy. Clearly, it is not appropriate to
perform such a statistical procedure when one of the
two null hypotheses is already rejected. This
example demonstrates that combining significance
tests as proposed may not be meaningful.

The last example I will present is the problem of
combining cancer risk assessment results. Since
there are many uncertainties associated with each
step in risk assessment, the problem of combining
these results is complex and obviously could not be
resolved by ANOVA-type statistical approaches.
Table 1 provides hypothetical information on a
suspect carcinogen which induced liver tumors in
both male and female B6C3F1 mice via either the
gavage or inhalation routes of exposure. This suspect
carcinogen also induced leukemia in male and female
F344 rats by inhalation, but failed to induce tumors
in Osborne-Mendel rats in a lifetime gavage bioassay
or in Sprague-Dawley rats in a one-year inhalation
study. There is a debate in the scientific community
with regard to the significance of B6C3F1 mouse
liver tumors to humans because of the high spon-
taneous tumor rates in these animals. The problem
facing EPA is how to use this and other information
to arrive at a conclusion or decision as to whether
this suspect carcinogen could cause cancer in
humans, and if it is a human carcinogen, to determine
its risk to humans.



Assuming that the compound is a human car-
cinogen, the risk estimates (risk at 1 ug/m3) are
calculated with a dose-response model that is linear
at low doses. It is generally accepted that low-dose
linearity provides a plausible upper-bound estimate
of risk. However, some fragmental information
indicates that the true shape of the dose-response

is not known. In combining statistical significance
tests or effect sizes (risk estimates), it is desirable to
take into account all the available scientific infor-
mation, which is itself very uncertain. Statistical
procedures, such as meta-analysis, that take into
account only the sampling varialility, are clearly not
adequate.

curve may be sublinear, but the degree of curvature

TABLE 1. SIGNIFICANCE LEVELS, p, OF TREND TEST FOR VARIOUS BIOASSAYS
AND ESTIMATES OF CANCER RISK AT 1 ug/m3,
CALCULATED ON THE BASIS OF THESE STUDIES
p-values Risk
Route of estimates
Animals Sex exposure Site Malignant Benign Combined at 1 ug/m32
B6C3F1 mice M Gavage Liver 0.018 N.S. N.S. 6 x 10-°
F Gavage Liver 0.003 N.S. N.S. 7 x 1076
M Inhalation Liver 0.001 0.001 0.001 5 x 10°7
F Inhalation Liver 0.001 N.S. 0.001 4 x 107
Osborne-Mende) M Gavage No response
rats
F Gavage No response
F344 rats M Inhalation Leukemia  0.004 6 x 107
F Inhalation Leukemia  0.050 1 x 107
Sprague-Dawley M Inhalation No response
rats
F Inhatation No response

2These estimates are calculated on the basis of malignant tumors alone. In practical risk assessment,
estimates could also be calculated on the basis of benign and/or benign and malignant tumors combined.
For ease of presentation, they are not presented here,

N.S. = Not significant (p > 0.05).
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DISCUSSION
James M. Landwehr, AT&T Bell Laboratories

Combining the results from several studies
through performing a meta-analysis of them is
clearly becoming both important and widely prac-
ticed, especially in the social sciences. Prof.
Hedges has, in this paper as well as in other pub-
lications, carefully and systematically presented
the statistical methodology of meta-analysis. In
this discussion 1 will briefly give an overall
framework for statistical applications that I find
useful. Then I will relate meta-analysis to this
framework, identify parts of meta-analysis that
need further attention, and make several sugges-
tions concemning the methodology.

Before proceeding, let me briefly state my
main point and general conclusion. Meta-
analysis should not be thought of as some com-
pletely new and different kind of statistical
methodology. Its steps fit nicely within the
framework that we use for statistical applications.
Doing a meta-analysis well, however, requires
much care with the underlying assumptions and
the conclusions.

I like to think of a statistical application as
having five main parts. The first is problem for-
mulation, including the design of the study or
experiment, and data collection. The second step
can be thought of as data analysis, or descriptive
statistics, or exploratory data analysis; this step
often uses graphical displays extensively. Fol-
lowing the data analysis is construction of more
forrnal models, which can either be deterministic
and/or stochastic. The fourth step involves for-
mal statistical inference, perhaps expressed in
terms of parameters of a model constructed previ-
ously, along with diagnostic checking of the
model. Finally, the results must be presented in a
way that is informative to the audience.

Clearly there is some subjectivity in the
definitions of these steps and overlap between
them, but it is not necessary to be terribly pre-
cise. I will relate some of the terms, methods,
and issues of meta-analysis to these steps.

Problem Formulation, Study Design, Data
Collection. Some of the important points of
meta-analysis related to this step are the follow-
ing: the breadth of questions asked in the separate
studies and in the meta-analysis; having clear
definitions of the variables; making sure that it is
reasonable to treat the parameters as being the
same across studies; and considering whether or
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not there is a "representative sample” of studies,
subjects, and treatments. Judgments of the qual-
ity of the individual studies are an important part
of the data evaluation process. Prof. Hedges dis-
cussed these issues carefully and extensively.

Data Analysis, Descriptive Statistics, Graphi-
cal Displays. This is an important part of statisti-
cal applications that deserves more emphasis in
meta-analysis. Plotting the data in various ways
and studying the plots should be done at an early
stage of any application. This helps the analyst to
become familiar with the data, to find possible
errors, to generate new ideas and hypotheses, and
to get initial views on whether or not the data
will answer questions of interest. Sometimes
simple plots do give clear and convincing
answers to the important questions, so this is all
the analysis that is really necessary.

Suppose we have an estimated parameter T;
with its estimated standard deviation 5;(T;) from
the i** study, for i from 1 to K. We should
display these values somehow. For example,
construct a plot with estimated parameter value
on the ordinate and study index on the abscissa.
The ordinate has a * at 7; and a vertical line
from T; — 25;(T;) to T; + 25,(T;), and the abscissa
is the index i. Examining such a plot gives a
rough idea of whether or not the differences
among the estimates T; are consonant with the
internal confidence intervals from the individual
studies. That is, does it appear that the studies
are consistently estimating a common parameter
or not? The plot might indicate particular studies
that seem quite different from the rest, either in
the estimate T; or its estimated variability.

For any moderator variable (i.e., explanatory
variable) X; that measures some relevant charac-
teristic of the i” study, we should also construct
the corresponding plot in which the abscissa is X;
rather than the study index i. For the ordinate
plot the same vertical line as before. This plot
shows the general relationship between the
parameter being studied and the moderator vari-
able X. Many such plots should be constructed
and studied using whatever variables are available
for analysis.

In their book, Hedges and Olkin (1985) do
give an example of a plot of the type described
two paragraphs earlier. However, it appears on
page 252 of the book! It is the first plot of data



that is shown and follows much discussion of sta-
tistical models and tests. I suggest that such
plots should be constructed and used at the very
beginning of any meta-analysis, before getting
into more complicated modeling, testing, and
estimation.

Models, Deterministic andl/or Stochastic.
The canonical model in meta-analysis seems to
be the following. From the i study we have
some parameter 6;, its estimate T; from sample
size n;, and a formula for the standard deviation
of T;, which is denoted s5;(8;). Generally we
assume that T; is approximately normally distri-
buted. From each study there is essentially one
data point, T;. The key difference between this
situation and most other statistical problems is
that here we also have an estimated standard
deviation, namely s;(T;), for this data point that is
calculated without using any information from
other data points. Typically in statistical problems
we must use the variability across data points in
order to calculate a standard deviation that
applies to a particular data point.

Here is a specific model illustrating these
concepts taken from Chapter 5 of Hedges and
Olkin (1985). Suppose the i# study has experi-
mental and control groups and response variable
Y. Assume that in the expenmemal group the
observation on the j subjcct Y; i, is d:stnbuted
normally with mean u ' and vanance 2, and in
the control group Y;™* is distributed normally
with mean p* and variance o;2. Define the
parameter for the meta-analysis to be
0,=(u " ~u"')/o;; this standardized mean differ-
ence is called the effect size for the i** experi-
ment. It is invariant under linear transformation
of the response variable for the study. In meta-
analysis there must be reason to believe that the
population effect sizes 6; are measuring the same
conceptual and operational quantity across dif-
ferent studles The value 6; can be estimated by
T; (Y - Y “Y/s;, where s; is the pooled
within-group sample standard deviation. Then
\n; T; has a noncentral ¢—distribution with non-
centrahty  parameter \n; 6; where
n,—nfn, /(nE +nf). This implies that the
expected value of T; is approximately 6; and its
variance is approximately 1/n;.

Let’s consider a few of the assumptions
underlying this model, apart from the obvious
one that the 6;’s may have a common value 0
across studies. We assume that the variables Y in
the different studies are measuring the same
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underlying theoretical construct. We also assume
that the variables in the different studies are
linearly equivalent; that is, that they are really
measuring the same operational parameter apart
from separate linear transformations in each
study. Another assumption is that this parameter
0 is meaningful. We assume that in each study
there is equal variance within the control and
treatment groups, and that the distributions are
normal. We also assume independence across
studies and that it is reasonable to summarize the
responses from the i# study by the single vari-
able T;.

Suppose the observed values T; and s;(T,)
imply, using the statistical model, that the ;s
are not all equal to a common value 8. This type
of conclusion is an important output of a meta-
analysis and could be substantively important.
An alternate conclusion, however, might be that
one or more of the assumptions in the statistical
model is false, which could lead to different sub-
stantive conclusions. This alternative does not
seem to be routinely considered in meta-analysis.
I believe that an important methodological chal-
lenge for meta-analysis is to develop informal or
formal ways to check the assumptions such as
those just listed. Checking these assumptions
would give one more faith in the substantive con-
clusions from the ‘formal statistical models of
meta-analysis.

Statistical Inference from Models. The goal
at this stage is to use the models to explain
essentially all of the variability in the study
results except for within-study sampling variabil-
ity. That is, we want to use the model(s)
developed at the previous step to model the
between-study variability. For example, we
might want to test the null hypothesis that the
6;’s across all studies are equal against the alter-
native that at least one 6; is different. A different
altenative could be that there are two different
0’s corresponding to some prespecified character-
ization of the studies. Under the assumption that
all ©;’s are equal, we might want an overall
estimate and confidence interval using all the stu-
dies. If there are moderator (explanatory) vari-
ables X; and Z;, we might want to fit some linear
or nonlinear regression model relating 6; to X;
and Z;. The basic statistical approach for answer-
ing such questions is to use the estimated varia-
bility s;(T;) for each T; to see if the hypothesis or
model in question is adequate to explain all the
between-study variability. Statistical procedures



can be developed to do this and are discussed by
Prof. Hedges.

The real problem, as in the previous step
concemning model construction, is what to con-
clude if the null hypothesis is rejected. While the
alternative being considered might in fact hold, it
is also possible that one or more assumption such
as those listed previously might not be valid.
The challenge for meta-analysis methodology, as
in other statistical applications, is to decide when
the framework of a specific mathematical statisti-
cal model is useful for analysis. I would like to
see more discussion and work on this issue.

Presentation of Results. It is obviously
important that the conclusions be presented so
that the intended audience understands and
believes them. This is an important part of any
statistical application. I suggest that the presenta-
tion of results from a meta-analysis include plots
like those discussed earlier in the Data Analysis
section, but supplemented with additional infor-
mation from the Models and Statistical Inference
stages. For example, if the between-study varia-
bility can be adequately modeled by dividing the
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studies into two groups with a common 0 in each
group, this situation can be shown on the plot by
ordering the studies along the abscissa so that
those in the same group are adjacent and
members of the group are labeled, say using
braces. Similarly, we can supplement other plots
to show fitted relationships to moderator variables
or confidence intervals.

The advantage of this approach is that it
stays close to the data and is not likely to
overwhelm the audience with confusing technical
details. Technical discussion does, of course,
have its place, but it is also important to present
the results so that the audience finds them plausi-
ble and intuitively reasonable, given the data.
Appropriately chosen plots are more likely to
achieve this than are complicated tables and state-
ments about levels of statistical significance.

In summary, in my view the problems of
meta-analysis are clearly important. The key
points of meta-analysis fit nicely within the stan-
dard stages of a statistical analysis. But, as with
other statistical applications, doing a meta-
analysis well requires much care and thought at
each stage.



INTEGRATION OF EMPIRICAL RESEARCH:
THE ROLE OF PROBABILISTIC ASSESSMENT

Thomas B. Feagans
Decisions in Complex Environments

1.0 Introduction

If risk assessments conducted to support
important environmental decisions are to use all
of the relevant information available, some means
of combining or integrating empirical studies is
needed. Such means should be designed and
discussed with a clear understanding of the
function being served by the integration. One
such function is that served by a probabilistic
assessment. The primary purpose of this paper
is to address probabilistic assessments and the
function they serve within the decision-making
process.

Probabilistic assessments and their function
will be clearly distinguished from two other types
of integration which serve two other functions.
Terms such as“integration, ‘synthesize, and

‘combine’ are ambiguous. Metz-analyses! And
what will be called state of information

asss:ssm:msz also integrate information, but in
different ways for different purposes. The
functions served by these two types of
integrations will be described briefly in sections
2.0 and 3.0, respectively. These descriptions
serve to distinguish the other two types of
integrationg from probabilistic assessments, but
are not comprehensive discussions of these two
complex topics.

Probabilistic assessmentsand their function
are described in section 4.0. Being the focus of
the paper, this topic is discussed more
thoroughly, The concept which underlies various
possible approaches to probabilistic assessment
is the concept of probability In section 4.1
probability is discussed both from the perspective
of the producer and from the perspective of the
user of probability assignments.

In section 4.2 an approach to probabilistic
assessment is presented and advocated. The
approach presented is advocated as a normative
framework because it has greater generality than
the alternatives.

A distinction is made in section 4.3 between
advocating that an approach to probabilistic
assessment be regarded as a normative
framework and prescribing that an approach be
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applied in a particular circumstance. Two less
general approaches that are special cases of the
general framework are mentioned as possibilities
for those circumstances where full generality is
not needed and/or feasible.

There is a dual nature to the functions
provided by three types of integration discussed
below. On the one hand, each integrates
available knowledge; but on the other hand, each
deals with and represents uncertainty. Although
much has been written on uncertainty, the great
complexity of the topic has been underrated. The
need for thiree types of integration of knowledge
and concomitant means of dealing with and
representing uncertainty has been overlooked.
As a result, the unique principles and mode of
thought that should guide probabilistic (risk)
assessments do not secem to have been
thoroughly understood. In section 5.0, the
apparent reasons this situation has persisted are
analyzed, and some practical reasons for
improving the situation are identified.

2.0 Meta-Analysis -

One means of integrating knowledge under
development within the discipline of statistics, is
“meta-analysis.” The development of meta-
analysis began in earnest when the size of the

.research literature on various topics which

needed to be integrated for the purposes of
education program evaluations, regulatory policy
assessments, and other policy-related analyses
became so large that narrative integrations were
deemed unsatisfactory. "Although scholars
continued to integrate studies narratively, it was
becoming clear that chronologically arranged
verbal descriptions of research failed to portray

the accumlated knowledge."3

There are by now some standard definitions.
The original analysis of data in research studies is
called pri is.4 Typically, statistical
methods are applied in such analyses. The
reanalysis of such data for the purpose of
answering new questions, or the original
research question with better statistical

techniques, is called secondary analysis.”

A distinction is needed before addressing the
definition of meta-analysis. Pooling the data
analyzed in a set of primary analyses and
deriving new results from the pooled data needs
to be distinguished from a statistical analysis of
the set of results of a set of primary analyses.
Current definitions tend to define meta-analysis



For many situations data will be sparse for
some aspects of the phenomena to be represented
no matter how the model is constructed. For
example, many dose-response relationships of-
interest extend beyond directly applicable data.
The im; ¢ of simulation modeling and the
generality of the probability theory are enhanced
in such situations.

Model construction is a joint process
requiring cooperation between those persons
expert at probabilistic modeling and those
persons with expertise concemning the substantive
phenomena being modeled. Lack of expertise of
both types can lead to avoidable mistakes. Those
untrained in probabilistic modeling can make
avoidable mistakes of one type and modelers
unfamiliar with the substantive phenomena being
represented can make another type. Both types
of avoidable mistakes are possible despite the fact
that there is generally no right or correct model.

4.2.2 Selection of Probability Assessors

Probability judgments are made as inputs to
the probabilistic model for the most significant
uncertair {actors. These judgments represent
both the knowledge and uncertainty about that
factor. They are also produced by particular
individuals with particular histories, expertises,
and points of view.

Probabilistic assessment is more subjective
than meta-analysis. Two probability assessors
will generally not make exactly the same
judgments even based on the same evidence and
even if they have similar points of view.
Furthermore, unless the available evidence is
strong in its implications for the judgments to be
made, equally well informed individuals can
diverge significantly in the judgments they make.

Since probability assignments can be so
subjective the choice of those individuals asked
to make the judgments is very important. Thus,
the subprocess of selecting who is to make the
probability Judgmenls for significant uncertainties
is very important.¥’ For each uncertainty this
subprocess involves the steps of identifying a set
of highly qualified candidates, deciding how
many assessors to have and then selecting a
"balanced” set. In this context balance would be
a matter of representing adequately the diverse
perspectives that exist within the set of highly
qualified candidates. Lack of balance would be
having all the judgments made by those who
share a similar perspective when dlvcrse.

perspectives exist.
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Obviously, it is important that those with
diverse perspectives be identified in the initial
step of the subprocess. There will not be perfect
information about perspectives and their
implications for probability judgments apriori,
but peers will be familiar with ways in which
perspectives diverge among their colleagues, so a
balanced set can be identified and chosen. The
details of the participation of agencies, review
committees, etc. can vary, but in one way or
another the involvement of peers in the selection
process is preferred.

4.2.3 Elicitation of Probability Assi

A probabilistic assessment derives
(probabilistic) implications from all of the
available information and analysis relevant to the
connection between possible policy alternatives
and the consequences of concern. In making
probability assignments probability assessors
integrate diverse studies, background
information, and any other considerations they
deem relevant. The flexibility needed to assure
that any considerations deemed relevant can be
factored into the judgment goes hand in hand
with the fact that there are no hard and fast rules
for making probability assignments in general.

An example of the kind of judgments health
experts may be asked to make is the probabilistic
representation of the uncertain relationship
between doses of a (suspected) pollutant and the
resulting response (under specified conditions) in
a specified group of people. Probability
assignments may involve two uncertainties:
uncertainty as to the fraction of people (if any) in
the population for whom a causal relationship
exists between exposure to realistic levels of the
pollutant and the occurrence of a given adverse
health effect; and, uncertainty as to the level that
would affect a given fraction if a causal
relationship indeed does exist for that fraction.
In such cases the required set of probability
judgments may be decomposed into two sets of
judgments from which the required set may be
derived mathematically: a set of probability
judgments concerning existence of a causal
relationship below a specified upper bound level
for various fractions of the group; and a set of
probability judgments concerning the level at
which various fractions of the group would be
affected if a causal relationship does indeed exist
for the fraction addressed below the specified
upper bound level.



How to integrate various studies in making
the probability assignmonts is a decision made by
the substantive expert. Whether the probability
judgments concerning a dose/respoanse
relationship are decomposed into two sets is a
modeling decision to be made by the modeler,
after consultation with the substantive experts.
But after all such modeling decisions are made it
is the substantive expert who decides how to
incorporate both positive and negative studies,
and how to integrate studies of various types,
such as epidemiological, human clinical, and
animal toxicological studies.

No matter what algorithmic analyses may
have been performed, each expert making such
judgments is the final arbiter for his or her own
judgments and for how to arrive at them. Each
expert uses and mentally integrates all
information that he or she believqghould have a
bearing on a given judgment.”~Each expert
decides how much weight to give each piece of
information and how to incorporate that
information. No information is deliberately
thrown away. No attempt is made to encourage
close agreement with other experts.

Although those with substantive expertise
concerning the phenomena being analyzed are
generally the final arbiters of probability
assignments, they can be aided in various ways.
As with modeling, the making of probability
assignments is best thought of as a cooperative
process in which professional analysts elicit
probability assignments from substantive
experts. The assignments are clicited in such a
way that they are coherent, cognitive biases are
minimized, and motivational biases are
discouraged.

A formal process for eliciting probability
assignments has been developed by
psychologists and decision analysts. This

process is called ili ing.43 As well
as applying various techniques for eliciting
coherent probability assignments that either are or
closely represent the assigner's judgments, the
process encourages assignments that are as free
of cognitive and motivational biases as is
feasible. Research on such biases has been
applied in developing the process.

The type of coherence achieved is dependent
on the generality of the theory of probability
applied. Under the deFinetti/Ramsey theory
sharp probability assignments are forced; under
the Koopman theory upper and lower probability
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assignments are allowed. Coherence under the
Koopman theory is simply a matter of the entire
set of probability assignments being logically
consistent.

Allowing upper and lower probability
assignments provides the flexibility sometimes
needed. When the relevant information
supporting an assignment is sparse, sharp
assignments may be hard to make and
unnecessarily arbitrary. The allowance of upper
and lower probability assignments assures that
the expert making the judgments truly discerns a
difference in making his or her comparisons, no
matter how weak the state of information. There
may be vagueness as to where this discernible
difference disappears, but this vagueness is not a

problem in practice.44 Experimental evidence
evaluated by internal psychometric criteria
suggests that experts perform well using this

general theory.43

4.2.4 Computation and Presentation of
Monte Carlo simulation is required except for
very simple models such as the simplest of

benchmark models.46 Statements exist in the
literature on applying the Monte Carlo method to
the effect that the model calculation should be
iterated M times, where M varies some with the
statement. The perspective being taken in such
statements is that at least M iterations are needed
to approximate well the distribution that would be
approached in the limit were the number of
iterations performed exceedingly large. But
computation can require significant resources, o
how many iterations should be done requires a
judgment as to the marginal value of improving
the approximation versus the marginal value of
spending the required resources to improve the
assessment in some other way.

In conventional Monte Carlo simulations each
input to the model on a given iteration has either
been a single assigned value or a single value
arrived at by random selection from a probability
distribution. Iterating the computation, with the
random selections from all the input probability
distributions repeated on each iteration, has given
the desired probabilistic output.

In a probabilistic assessment done in full
generality there are two changes from the
approach just described. First, in general the
input probabilities are upper and lower
probability assignments rather than sharp




assignments. As a result, if at least one of the
inputs is in terms of upper and lower
probabilities rather than sharp then the output is
in terms of upper and lower probabilities rather
than sharp.

Second, since in general more than one
individual is making probability assignments for
each significant uncertain factor in the
probabilistic model, there is not a unique set of
probabilistic representations of uncertainty on
which to base the Monte Carlo simulation. The
multiple representations of the primary
uncertainties capture the phenomenon of
secondary uncertainty, that there is no
nonarbitrary best way of representing the primary
uncertainties. Ideally, the existence of secondary
uncertainty is propogated to the output of the
simulation. An added dimension is used to
enable an output to represent secondary

uncertainty.47 Number the N uncertainties
1,2,...,N; let r; be the number of representations
for the ith uncertainty; then there arery x ry x ...
x rr(:combinations of the probabilistic inputs to
the model. Were we to iterate M times for each
of the R combinations then a distribution of R
points could be plotted in the added dimension
for each point of the corresponding output which
did not represent secondary uncertainty. When R
gets large a representative sample, say S, of the
R combinations can be used.

In the resulting outputs rather than a single
sharp probability for an event there is a
probability (risk) ribbon. The graphical
representation of a ribbon has width, height, and
shape rather than being a single point.48 The
width and shape of the ribbon tend to reflect the
state of information supporting the probabilistic
measure for that event; the ribbon will tend to be
straight and thin, and thus most like a single
number, when the state of information for the
event in question is strong and clear; the ribbon
will tend to lack integrity in this sense when the
state of information is weak and amorphous.
Thus, the more general output conveys useful
information.
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The approach to probabilistic (risk)
assessment outlined in section 4.2 is the most
general approach but not the only possible
approach. There are two other levels of
generality possible corresponding to the two
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other levels of generality for probability
discussed in section 4.1. The three levels of
generality are nested in the sense that the least
general is a special case of each of the other two
and the middle level (Ramsey/deFinetti) is a
special case of the most general.

An important distinction concerns advocating
an approach as a normative framework and
prescribing its implementation in particular
circumstances. There are various kinds of
circumstances in which one of the less general
approaches can justifiably be prescribed despite
the fact that from a normative point of view this
introduces bias and reduces control. For
example, if those conducting the assessment
and/or those using the assessment are unprepared
for the greater generality the potential benefits of
that generality may not occur in practice.

However, even if a less general approach is
prescribed and implemented, it shoul ne so
for the right reasons and with an understanding
of why and what has been lost. Currently, less
general approaches are sometimes prescribed and
implemented for what appear to be partially
wrong reasons. In the next section the current
situation in this regard is analyzed briefly.

5.0

Probabilistic assessments are based on a
different set of principles and require a different
mode of thought than other types of assessments.
The process is not directed toward estimating a
correct, true, or actual probability or set of
probabilities. Rather, the process is directed
toward generating probability assignments that
represent the state of information about the
relationship of interest as well as possible.
Criteria for how well this has been done in a
given case are in terms of how well the process
has been conducted. How well the overall
process has been conducted will be a matter of
how well the subprocesses addressed in sections
4.2.1-4.2.4 have been conducted. Evaluation of
particular performances of these subprocesses
should be conditional on the resources it is
reasonable to allocate for conducting them.

When the wrong mode of thought is adopted
in thinking about probabilistic assessments
unwarranted conclusions about points of practical
significance can be the result. At present this
type of mistake is still prevalent. The explanation
seems to be that the mode of thinking appropriate
for the scientific research on which probabilistic -
assessments should be based is carried over to



the probabilistic assessments. Some aspects of
thinking about scientific inference should carry
over but some should not.

Perhaps the most frequent type of mistake is
the procrustean forcing of probability
assessments into molds apparently associated
with scientific objectivity. Encouraging sharp
probability judgments and expert convergence
has as an objective single number probabilities
for specified events. Such outputs do not reflect
the states of information on which they are
based. They certainly are not more objective.

The paradigm which assigns the same
probability (risk) to individuals who are
obviously at different risks not only suppresses
secondary uncertainty but primary uncertainty as
well. This paradigm has the added problem that
in general important information is not integrated
into the formal probabilistic assessment process.

The practical upshot of such mistakes is
poorly informed decision making. Even when
public decision making is poorly informed for
understandable reasons, it tends to result in poor

public policy.
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DISCUSSION
Harvey M. Richmond, U.S. Environmental Protection
Agency

My remarks will address briefly some of the
history and past reviews of the ideas put for-
ward by Thomas Feagans. ! will also briefly
describe the current status of risk assessment
efforts sponsored by the Office of Air Quality
Planning and Standards (OAQPS) involving de-
cisfon analytic approaches.

As noted in Tom Feagans' paper, the approach
to probabilistic (risk) assessment described in
the paper was developed within the U.S. EPA's
OAQPS by Tom Feagans and William F. Biller.
The initial risk assessment work by Feagans
and Biller occurred during the review of the
ozone national ambient air quality standard
in 1977. The ozone risk assessment employed
the traditional (Ramsey/definetti) decision
analytic approach to probability. During the
ozone standard review, EPA requested formation
of a Science Advisory Board (SAB) Subcommittee
on Health Risk Assessment to review the ozone
risk assessment. The SAB Subcommittee met in
April 1979 and raised a number of questions
dout the initial decision analytic appli-
cation to ozone.l The Subconmittee en-
couraged OAQPS to pursue development, but
not application, of the Feagans/Biller
approach., The Subcommittee also
recommended that OAQPS explore alternative
approaches to risk assessment that
employed decision analytic and Bayesian
techniques.

During the period from 1979 to 1983, O0AQPS
pursued development and review of several ’
alternative approaches on risk assessment to
aid decision making on.national ambient air
quality standards (NAAQS).Z2 In parallel with
the alternative approaches projects, Feagans
and Biller further developed the approach
used for the ozone risk assessment to the
more general framework involving upper-
and lower-probability assignments dis-
cussed in the paper for this conference.

In the Spring of 1981, OAQPS asked six
experts in a variety of fields including
statistics, decision analysis, and
philosophy of science to review a report
by Feagans and Biller describing their
approach.’ The reviews generally indicated
that the approach advocated by Feagans
and Biller was promising and merited
further development, although a number of
the reviewers expressed reservations about
the practicality of any near-term applica-
tion of the approach by EPA. One of the
six reviewers, Dr. Isaac Levi, Professor
of Philosophy at Columbia University
stated the following,

Feagans and Biller are exploring ways
and means of avoiding the polarisation
existing in current theory between
Bayesians and anti-Bayesians. They
suggest specifying upper and lower
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probabilities (i.e., intervals of

probabilities) for the purpose of probability

and risk assessment. This old idea, going
back to Keynes and Koopman and advocated by

philosophers and statisticians such as I.J.

Good, H. E. Kyburg and C.A.B. Smith over

20 years ago has not been widely appreciated

either by statisticians or philosophers. VYet,

fn my view, variants on such approaches hold
the most promise for yielding approaches to
risk assessment which exhibit the generality,
flexibility, neutrality, and lack of
arbitrariness which standard “Bayesian" and

*anti-Bayesian"™ approaches lack.

The concerns of several of the reviewers aout
the possible near-term application of the
approach are captured by the following comments
of another reviewer, Dr. David Bell, a decision
analyst at Harvard University:

It is well known that there are decreasing
returns to scale with the complexity of a
model to the point where you can end up
worse off than no model at all. [ think the
models here are overly complex for the
current state of applied art. 1 agree with
the approach but I believe it is a little
too much all at once. I would be happier
seeing more modest goals at this point, If
the report is only intended to be a look at
the future or as a research document as
opposed to a draft of an EPA manual then I'm
content. I don't belijeve its realistic to
expect a methodology such as this to be
performed with much creedence given to it,
in the next 10 years.s
In May 1981 the SAB Subcommittee met to

~eview the report by Feagans and Biller and

the six reviews commissioned by EPA. In a
September 1981 report, the Subcommittee
concluded that, “While the F/B approach may
have comnendable aspects as a research effort,
it is not, in its present form, an implementable
tool for public policy decision making...."

The Subcomnittee also recommended that the
authors publish their works in peer-reviewed
journals so that others in the profess ional
community could judge the merits of their
viewpoint. The Subcommittee suggested that all
material relating to upper- and lower-
probabilities be considered basic research and
that DAQPS should focus on standard decision
analysis or Bayesian methods, using single-
valued probability assignments, for developing
an implementable tool.

0AQPS, following the advice of the SAB
Subcomnittee, has focused on development of
decision analytic approaches based on single-
valued probability assignments since 1981,

The 0AQPS risk program moved from the develop-
mental stage to a real world application with
the initiation of the lead NAAQS risk assess-
ment project in 1983. The project, man aged

by Argonne National Laboratory under an
interagency agreement with OAQPS, has been
reviewed by EPA's Clean Air Scientific
Advisory Committee (CASAC) in May 1985 and



March 1986. Probabilistic dose-response
relationships were elicited from 10 nationally
recognized experts (4 experts for one end-
point and 6 experts for the other) for two
distinct health endpoints., Probability
encoding was unnecessary for a third

endpoint for which a large epidemiological
data base existed and a Bayesian statistical
approach was used to represent the uncertainty
in the dose-response relationship. The
probability encoding and dose-response

aspects of the lead risk project have

recefved generally favorable reviews

from CASAC members. A final report

describing the methods and results from

the lead_risk assessment will be released
shortly,”’

EPA is pursuing similar risk assessment
efforts as part of its review of the ozone
NAAQS. Efforts are underway to address
both health and welfare effects associated
with exposure to ozone.8,% Both efforts
employ elicitation of expert judgment to
integrate the results of different studies
using standard decision analytic approaches.

While the concept of using upper- and
lower - probabilities has proved to be
too controversial for near-term use
in the risk assessment work sponsored
by OAQPS, many of the ideas, princi-
pals, and specific models developed
by Feagans and Biller are being used
in the current lead and ozone NAAQS
risk assessment projects. It is my
hope that this conference will mark
another step in the constructive
review, discussion, and under-
standing of the innovative
ideas and concepts Tom Feagans and
William Biller have put forth in
this important area,
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DISCUSSION®
Anthony D. Thrall, Electric Power Research Institute

First, I would like to thank Tom Feagans not
only for today's interesting presentation, but
also for his efforts over the past years to alert
the rest of us to some fundamental problems.
These problems arise when we combine the findings
of various researchers in various disciplines in
an attempt to make informed decisions about man-
aging our environment., I am also glad that we
have someone familiar with the workings of the
EPA among our invited speakers because many
issues concerning the combining of studies are
likely to be specific to the field of
application.

Por example, the environwental field seems to
differ in at least one important respect from the
field of application presented by our first
speaker, David Eddy. That is, the range of con-
ditions and outcomes seems to be much more re-
stricted in studies of a specific medical treat-
ment than 1S generally the case in environmental
studies, Similarly, in the study of adverse drug
reactions described by David lLane, the observa-
tional condition of principal interest is the
taking of a specific drug, and the outcomes of
interest are whether an adverse reaction did or
did not occur. In contrast, the review or
establishment of an environmental policy requires
us to formulate alternative policies and to con-
sider many different types of outcome, On the °
other hand, the lessons learned i1n developing
meta-analysis for making decisions about educa-
tion, described by Larry Hedges, may be more
directly applicable to environmental studies,
since both education and the environment are
complex areas of public policy. -

I will not attempt to provide a technical
critique of Tom's presentation in the remaining
time. 1Instead I will simply highlight what seen
to me to be Tom's main points, as an invitation
to others to join 1n the discussion. But I would
first like to try to bring us back to the pres-
ent, everyday world in which we must decide envi-
ronmental 1ssues, making what ugse we can of all
relevant information.

PURPOSES OF SYNTHESIZING ENVIRONMENTAL STUDIES
The EPA's mission is to promulgate environ-
mental regulations that are designed primarily to
protect public health, and secondarily to protect

the public welfare. For the sake of discussion
let's focus on public health. A suspected en-
vironmental problem goes through various stages
of scrutiny by the agency. At several of these
stages, multiple studies must in some way be
synthesized, and therefore the methods of syn-
thesis that have been presented deserve consider-
ation by the agency. Here is one characteriza-
tion of the various stages of scrutiny, as I have
called them, with brief comments about how the
methods of synthesis might be applied,

Identifying potential problems. Oftentimes one
or more animal studies suggest that a compound,
present at some concentration in the environment,
may possibly have an adverse effect on human
health at some dose. In these circumstances it
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may be appropriate to conduct some form of test
of the statistical significance of the combined
studies, as discussed by Hedges. However, rather
than cautiously championing some educational
innovation, we are cautiously evaluating whether
we can afford to dismiss this problem for lack of
evidence. (This decision, of course, would not
be based on statistical significance alone.) The
appropriate null hypothesis is therefore that for
at least one of the sets of experimental condi-
tions, there is a nonzero effect, 1In Hedges'
notation, we would apply a Fisher or Tippett
test, say, to the set of (1-p) values.

Estimating the magnitude of a problem, i.e., the

toxicity of a compound. This can be put in the
estimation framework discussed by Hedges. 1In
education, the standardized test ("instrument")
seems to define what 1s being measured. There
may be no special attachment to the scale of the
standardized test, so dividing the treatment-
control difference by some standard deviation, s,
to obtain an "effect size" presents no inconven-
ience, Moreover the division by s may be
necessary if we are trying to combine the results
of different standardized tests. In contrast, 1.f
we are to combine the treatment-control difter-
ences from several bioassays 1n a manner that 1is
toxicologically meaningful, we may need to retain
the original units or convert to a common tox-
icological unit. For example 1f the bicassays
are on different species, we may need to estimate
the human toxicity corresponding to the results
of each study before combining studies.

Estimating public exposure to a compound. Again

we have a difticult estimation problem. As
Harvey Ricnmond has pointed out in the case of
lead, we are 1interested 1n both the total expo-
sure and the exposure that 1s subject to some
degree of control., Total exposure might be esti-
mated from environmental measurements, but the
controllable portion of the exposure must typic-
ally be estimated by computer simulations of the
emission and dispersion of the compound. Here,
we might consider using expert oplnions about how
to combine the output from different simulation
models or different model runs.

Formulating alternative regulatory actions couid

conceivably require us to combine multiple
studies of, say, the degree of disruption that
would result from various environmental con-
trols. 1In practice, the formulation of alterna-
tives seems to pe less of a synthesis of multiple
studies than an iterative process involving many
people outside and inside the agency, and at many
levels of responsibility. In any case, it should
be noted that the technical or managerial staff
who must synthesize various studies may be the
same people who are defining or helping to define
the regulatory alternatives to be considered.

Estimating the reduction in the risk to public

health for each alternative, This is an ex-
tremely important and difficult estimation prob-



lem that may involve, in David Eddy's termin-
ology, one or more chains each composed of one or
more links. As discussed by Feagans, the studies
to be combined at this stage are not homogeneous
but rather bridge the causal span from regulatory
policy to benefits in public health.

Estimating the cost, in various forms, of each
regulatory alternative. Again, this could be a
very complex estimation problem depending on the
desired degree of realism. I do not know to what
extent current practice entails multiple studies,
nor am I familiar with the special problems of
combining such studies, It would be illuminating
to hear more on this topic from the EPA's Office
of Policy Planning and Evaluation.

Making a decision. The EPA Administrator reviews
and eventually approves the proposal or range of
proposals that have been developed within the
agency. The Administrator, then, is the reader
for whom the agency's "decision package" has been
developed, Undoubtedly over the course of sev-
eral proposals, the reader and the authors learn
how to make the decision package most useful,
that is, what level of summarization or detail
works best, the type of tables and graphics that
are helpful, and so on, To the extent that suc-
cessive administrators agree on these matters, 1t
would seem that this is an opportunity to hone
this particular process of combining studies so
that the decision package fits usefully into the
broader context in which che decision must be
made. .

Once approved by the Administrator, the pro-
posal or range of proposals is published in the
Federal Register and comments are invited from
the public. It sometimes happens that these
comments include studies sponsored by trade asso-
ciations or environmental organizations. It can
also happen that the comments prompt the agency
to conduct further studies, Thus the previous
integration of studies leading to the proposal
must be updated., The Administrator then makes a
final decision, which may be reported in the
Federal Register and/or promulgated in the Code
of Federal Regulations.

I wish to make two rather obvious but never-
theless important points about the role of com-
bining studies at the decision stage. The first
point is that those of us who help to prepare
such "decision packages” should not forget that
the package or system is merely a technical aid
to the individual or group responsible for making
decisions, (David Eddy's situation gstrikes me as
unusual in this regard, for David was both the
principal developer of the decision tools he
describes, and a member of an advisory board only
one step removed from the final decision.)

The second, related point is that there is, I
believe, a natural tendency on the part of public
administrators (at all levels) to ascribe respon-
sibility for difficult highly technical decisions
to some disembodied decision-making process, if
it exists, I think this should be resisted.

Administrators deserve credit and sympathy for
having to make difficult decisions precisely
because their decisions must be based on human
judgment about a larger set of concerns than can
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be "packaged" or "processed.” Moreover, as pres-
sure is brought to bear for the process to yield
a decision that at the time appears desirable or
necessary {and this pressure may come more from
the middle managers who are familiar with the
daily evolution of technical information), the
technical synthesis becomes distorted and less
useful as a genuine source of information.
Difficult though it is, I believe we must recog-
nize and honor the distinct contributions of
technical synthesis on the one hand and indiv-
idual or group judgment on the other. Both are
necessary for responsible decisions,

HIGHLIGHTS FROM FEAGANS
I would like to restate what I understand to
be Tom's key points, with occasional editorial
comments, Again, my purpose 1is to 1nvite discus-
sion by others.

Uncertainty and variability should not be
confused, Uncertdinty refers to our state of
knowledge, whereas variability refers to the
world around us, We are uncertain about, say, a
dose-response function, i.e., the response to
different doses averaged, at least conceptually,
across a large population., Even if this curve of
averages were known, however, 1t is reasonable to
expect that individuals would vary about the
average at each dose. (If the response 1is dich-
otomous, i.e,, an individual either does or does
not respond, then the average tells us the pro-
portion of the population that responds to the
given dose.) Moreover, Feagans argues that the
calculus of probability, which is legitimately
applied to variability in the world, should be
replaced by a different calculus when it comes to
uncertainty.

I agree thdt is important to distinguish be-
tween uncertainty and variability, but I would
add that the distinction is sometimes subtle, In
the example of the dose-response curve, we can
1magine that technical improvements allow a more
accurate determination of delivered dose and that
the individual variation about the new dose-
response curve 13 substantially reduced. The
reduction 1n conditional variability (the var-
1abirlity of the responses to a given dose) can be
interrupted as an increase in certainty, i.e., we
are more certain of the response of an individual
to the more accurately determined dose. Thus the
technical advance increases our certainty by
explaining some part of the variability (the part
due to poorly measured dose, in the example). Of
course, the basic distinction between the state
of our knowledge and the variability of the world
remains intact, since the overall variab:ility of
responses to the uncontrolled doses (however
measured) "delivered” by the environment remains
unchanged.

The goal of combining studies is to reduce uncer-
tainty, not variability. Variability might be
reduced by changing our management of the envi-
ronment, but this is another matter,

There are alternative ways to quantify

uncertainty. Feagans proposes that we change
terms, from "uncertainty” to "“degree of confirma-




tion.” I also Prefer the latter term because 1t
emphasizes the use of experimental or observa-~
tional results as evidence for or against a
scientific proposition, and it is le<s likely to
be confused with some quantification of one's
feeling of uncertainty., Feagans goes on to dis-
cuss three different schools of thought with
regard to quantifying degrees of confirmation:
classical statistics (standard errors, confidence
intervals, p-values, etc.), Bayesian statistics
(posterior distributions, or risk profiles to use
the term of David Eddy and co-workers), and
Koopman's probability intervals,

With regard to eliciting the opinion of
experts on a matter subject to doubt, it seems to
me that we've moved away from “"degree of confirm-
ation” back toward "uncertainty.” There are two
distinct questions concerning the elicitation and
quantification of expert opinion: 1) 1s the
logical foundation of the procedure sound, 1.e.,
are the results meaningful, and 2) do decision-
makers find such results useful.

As to the technical i1ssues of what questions
to ask the experts, how to ask them, and how to
encode the responses, my only comment is on the
last 1ssue., That is, the simpler encodings would
seem to be more reliable, 1.e,, a single-valued
probability seems preferable to a probability
interval, which seems preferable to a prior dis-~
tribution. My general concern is that these
methods may give a false sense of specificity.
Whatever protocol 1s chosen, the method can only
oryanize and express knowledqge; i1t cannot .reate
knowledge, (Admittedly, this is a somewhat fuzzy
‘distinction.) In cases where the evidence 1is
scant or contradictory the respective procedures
should yield wide confidence intervals, wide
probability intervals, or "vague” posterior dis-
tributions. Even 1f the procedures do give such
readings, we can only hope that the decision~
maker 1s sufficiently sophisticated to discern
the simple message, "We don't know."

A coherent program of research and analysis 1is
needed, In discussing the scientific work re-
quired to determine appropriate air quality
standards, Feagans identifies three major links
in the causal chain leading from environmental
standard to public health benefit: the effect
that adherence to the proposed standard will have
on human exposure to the pollutant, the relation-
ship between exposure and effective dose, and the
consequences for public health as determined by
the dose-response relationship. To ensure that
research funds are put to best use, Feagans makes
the very sensible suggestion that we start with
the last link and work backwards. That is, we
should determine what reductions in dose would be
most beneficial so that the most beneficial re-
ductions in exposure and the most appropriate
environmental standards can be identified. This
is tantamount to designing multiple studies, a
topic that seems as important as our current
topic, summarizing the evidence from multiple
studies, Perhaps the design of multiple environ-
mental studies can be discussed in a future
EPA/ASA Conference.
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IS QUANTITATIVE SYNTHESIS REALLY NECESSARY?

In the interests of inviting discussion I
would like to close by asking whether the various
quantitative methods presented really improve our
understanding of environmental issues and thereby
gquide environmental policy. According to Feagans
(or my understanding of Feagans), the research
synthesis we are discussing 1s designed to reduce
uncertainty (or at least reduce confusion by
quantifying uncertainty). But of course the
synthesis by 1tself cannot reduce variations in
environmental conditions or variations among
individual responses to a given set of condi-
tions.

If the aim of research synthesis, then, 1is to
reduce uncertainty, how much effort of this kind
do the various aspects of an environmental issue
deserve? It seems that on close examination any
1ssue 1s fraught with uncertainties, These un-
certainties may not be important, however,

Consider, for example, a different area of
public policy-~deciding how much to spend on the
maintenance and improvement of rdédways. Here 1t
geems that reducing uncertainties 1s less impor-
tant than reaching a compromise between ade-
quately i1nformed people who have different prior-
ities. The costs of roadway maintenance must by
novw be well established, as are the reasons for
roadway maintenance, e.g., safety, reduced wear
on vehicles, promotion of commerce, and the
pleasure of driving one's car on well-maintained
roads. The last consideration, by the way, may
be the most decisive and the most di1fficult to
quantify, But perhaps the quantification of this
factor through multiple surveys of drivers fol-
lowed by a synthesis of the multiple results 1is
unnecessary. Are there analogous tactors 1in
environmental policy?

It seems to me to be worthwhile to take stock
of how we are currently precing together the
results of various environmental studies and the
manner and extent to which such syntheses guide
environmental policy. How, for example, did we
decide to phase out leaded gasoline? Case
studies of this kind would help to clarify the
current and potential benefits of the quantita-
tive methods under dJiscussion,

1. The opinions expressed by the author do nnt
necessarily reflect the prevailing views of
the Electric Power Research Institute,



DISCUSSION
Miley W. Merkhofer, Applied Decision Analysis, Inc.

In the course of his paper, Tom Feagans has
raised and commented on some very fundamental
issues. Some of these 1issues, such as the
role or function of analysis and the wmeaning
and use of probability, are highly complex and
more than a little controversial.

Since there are aspects of Toam's paper with
which 1 disagree, it is only fair that amy
comments be prefaced with two confessions.
First, I am a decision analyst. Like wmost
decision analysts, when confronted with a
problem requiring a subjective approach to
probability 1 use the standard
Bernoulli - Laplace - De Morgan definition of
probability that Tom <criticizes as the
"level-two generality."” It is only natural to
expect that proposals requiring the relearning
of basic concepts and methods of analysis
would be approached by decision analysts with
a sense of skepticism. Second, there has been
a tremendous amount written about the various
definitions of probability. As & practitioner
rather than a student of the philosophy of
science, I have not read wmost of this
literature. Thus, you wmight characterize me

as somewvhat biased and largely wuninformed
about many of Tom's key arguments. Those of
you who have followed Tom's paper will, of
course, recognize this as Tom's '"canonical
situation"!

Having appropriately undermined oy
credibility in this context, I will now

proceed to my comments. My discussion will be
organized into three segments. First, I'll
give you my view of the basic problem that Tom
is addressing. Second, I1'll indicate what I
think are some of the important criteria for
judging approaches for integrating information
for environmental decision making. Third,
I1'll indicate some specific aspects of Toam's
paper with which I agree and some with which 1
disagree.

As 1 see it, the basic problem 1is as
illustrated in Figure 1. Health, safety, and
environmental decisions involving risk must be
based on scientific knowledge, but the gap
between the available knowledge and the

Probobilimtic (Risk)
Asssssment

Scientific knowledge:

— primary analysis ¢ inconciusive dato

~ secondory anqlysis
- mata anolysis

- stote—of—information;
ossessments

Decision
Making

Figure 1. The Problem of Health and Environmentai
Decision Making and the Potentiol Role
of Risk and Probabilistic Assessment
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that would make decision making
casier is great. In most cases what is
offered to decision makers 1is inconclusive
data, unstructured opinion, and debate. Risk
assessment (or, more generally, probabilistic
assessment) is meant to provide an efficient
link between scientific knowledge and decision
making--a link that 1is designed to lead to
more efficient and defensible decisions. It
is in this sense that probabilistic assessment
may be regarded as a wmeans for integrating
empirical research.

Figure 2 indicates the way risk and
probabilistic assessment work. A model
representing the cause-effect linkages between

information

decision alternatives (such as choices among
regulatory policies) and consequences (like
numbers of deaths and various types of

is constructed. Because of lack of
knowledge, some of the parameters of this
model and the structure of the model are
uncertain. This uncertainty is described and
quantified using a theory of probability, and
the model 1is then wused to translate the
parameter and mode 1 probabilities into
probability distributions over risk outcomes.
Finally, these distributions are summarized
using various statistics (such as expected
value) to provide quantitative indices of risk.

Figure 3 illustrates an important point
about the nature of risk and probabilistic
assessment. What is  quantified 1s not
real-world risk, it is risk as represented by
a model, an abstraction of reality. It |is
clear to anyone who has ever conducted a risk
assessment that the process involves making
many simplifying assumptions and
approximations. What is sometimes less clear
is that the quantitative measures produced by
a risk assessment must be translated back into
the real world. The measures produced by a
risk assessment are based on an imper fect,
incomplete approximation. Making a decision
requires considering the risk estimates along

morbidity)

with other information relevant to the
decision, 1including values and information
about the weaknesses and limitations of the
risk assessment. Thus, a risk or

probabilistic assessment can never be a means
for making decisions; it is only an aid to
decision making.

Recognizing that risk and probabilistic
assessment are aids to decision making makes
it easier to identify some of the
characteristics we would like the methods used
in such assessments to have. Table 1 shows
some evaluation criteria that would seem to be
important when comparing methods. The
criteria are categorized as either internal or
external. Internal criteria, such as logical
soundness, completeness, and accuracy, lie
within the domain of analysis and relate to
the quality of analysis. External criteria
reflect the desires and constraints imposed by
users of risk assessment, by the public, and
by the limitations of time and resources.

Logical soundness relates to the degree to
which a method can be justified in terms of
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Table 1
SOME CONSIDERATIONS FOR EVALUATING
ASSESSMENTS AND ASSESSMENT METHODS

e logical soundness

e completeness i internal

® accuracy

e acceptability

e effectiveness g external

e practicality
theory and whether actual applications are
likely to violate fundamental assumptions.
Completeness addresses whether the method

accounts for all important problem aspects and
whether, due to difficulties encountered in
practice, an analyst who uses the method is
likely to omit certain considerations because
they are difficult to accommodate. Accuracy
relates to the precision and possible biases
of the wmethoed and to the sensitivity of
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assumptions that have not or cannot Dbe
tested. Acceptability relates largely to the
actitudes of and perceptions of potential
users, clients, and consumers of risk and
probabilistic assessment, especially decision
makers and the public. Effectiveness deals
with the method's ability to enable risk and
probabilistic assessment to accomplish its
intended ends; nanmely, describing and
quantifying the level of risk in a way that is
useful to the decision making process.
Practicality reflects the extent to which the

method can be conducted in the real-world,
problem-solving environment wusing available
resources and information.

The above criteria are not necessarily
coamplete. Other sets may be preferable. The
above set is offered for two purposes. One is

to justify an opinion that there is no "right"
or "wrong" way to define probabilities and to
per form probabilistic assessments. The reason
for this conclusion is that it would be
unusual for any single method to be clearly
superior according to every evaluation
criterion. 1Indeed, streangths in some areas,
such as logical soundness or completeness,
typically lead to weaknesses in others, such
as practicality. The second reason for
introducing explicit evaluation criteria is to
suggest that the appropriate way to judge
whether one method is superior to another is
not to determine whether ome 1is preferable
according to one or two dimensions, but to
identify all of the dimensions that are
important, estimate the performance of each
method along each dimension, and then consider
the relative importance of the various
dimensions.

Although we have used different words, 1
believe that Tom shares most, if not all, of

the views expressed above. Tom's paper
recognizes the value of a general theory of
probabilicy as a practical means for



integrating empirical studies. He places this
theory within a decision analysis framework
with the intent of providing an effective aid
for decision wmaking. Furthermore, he argues
that "less general" definitions of probability
and amethods of analysis should be selected if
called for by the specifics of the problem at
hand. These are valid and important points
that Tom contributes in his paper.

In order to explain further the logic of
approach selection and to provide a basis for
discussing some of the points in Tom's paper
with which 1 disagree, it is useful to apply
some of the explicit evaluation criteria
introduced sbove. For example, the criterion
of logical soundness mwmight be applied to
evaluate classical, Bayesian, and intuitive
probabilities, the theories that Tom
respectively refers to as level-one, -two, and
-three generalities.

The classical definition of probability
would seem to score high on logical
soundness., The theory has a long history and
is well developed. The practice of using
relative frequency is supported by the law of
large numbers and considerable empirical
evidence. The principal weaknesses appear to
be defining and justifying the conceivable
outcomes to an uncertainty as equally likely
and treating a small number of data points as
if they were a large number of identical
trials. All in all, though, classical
probability is <clearly a well-developed,
internally consistent theory.

What about Bayesian probabilities? Tom
criticizes the Bayesian approach because the
standard method of elicitation does not
necessarily reveal personal probabilities.
His argument is that the state of information
on which probabilities are based wmatters and
that the information underlying the preference
lottery used for eliciting subjective
probabilities is different than that for the
uncertain event. In particular, the reference
lottery is a "known" probability, whereas the
uncertainty 1is an "unknown" probability.
According to Tom, when the subject says that
he 1is indifferent Dbetween betting, for
example, on a probability wheel and betting on
the uncertain event, he is not necessarily
equating probabilities. Like the subjects in
Ellsberg's paradox, he may simply prefer to
bet on known probabilities.

It is, of course, true that the state of
information matters with Bayesian
probabilities. This is the essense of the
subjective approach. It is also true that
elicitation techniques may fail to elicit
probabilities that are consistent with a
person's underlying information and beliefs,

due to cognitive biases for example. However,
this is a practical difficulty rather than a
logical flaw. The reasons for this assertion
follow.

For probability encoding, analysts use a
variety of different elicitation techniques.
They deliberately switch among frames of
reference for the purpose of identifying and
alerting the subject to any inconsistencies in
reasoning. Betting is only one analogy that
is used. The analyst will also ask whether
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the reference and uncertain events are judged
equally probable.
Furthermore, one of the most commonly used

probability encoding techniques, the interval
technique, does not suffer from the problem
that Tom wamentions. With the interval
technique, the analyst divides the range of
uncertainty into regions that are judged by
the subject to be equally 1likely. For
example, if the subject thinks it equally

likely that the uncertain variable will lie
above or below a given valye, that value 1is
assumed to be the median of the distribution.
Since all comparisons with this technique are
based on the uncertain event, the sudject is
not required to compare known and unknown
probabilities.

Since subjective probabilities are based on
a well-developed, internally consistent theory,
Bayesian probabilities would also seem to
score high on logical soundness. The fact
that the basic axioms of probability calculus
apply means that analyses based on subjective
probabilities are similarly well founded in
theory.

What about Koopman's
probabilities? Unfortunately,
yet had an opportunity to

intuitive
I have not as
explore the

foundations of Tom's " level~three
generalicy.” Although Tom offers several
references, Koopman's theory 1is not widely

known, as evidenced by the fact that it is not
mentioned in the dozen or so reference texts
that 1 keep on my bookshelf. The fact that
the basic axioms do not apply to Koopman's
probabilities (because additivity does not
hold) could be a serious problem. Theory is
clearly needed to replace the important role
that additivity plays in the integration and
propagation of probabilities, the process that
was illustrated in Figure 3.

To further explore the strengths and
weaknesses of the alternative definicions of
probability, the other evaluation criteria
listed in Figure 4 might be usefully applied.
In the interests of brevity, however, 1 will
raise only one other point. This one relates
to criteria of completeness, practicality, and
effectiveness.

There 1is the implication in Tom's paper
that, for situations where data is very
sparse, subjects will find it very difficulr

to provide probability numbers that are
sufficiently sharp for a standard analysis. I
have not found this to be the case. Figure 4
provides one example. The uncertain quantity
in this case is a parameter, called effective
porosity, that geologists use to describe the
percent of void space in rock. In this case
the rock in question is a very large rock at
Han ford, Washington, that 1is being considered
as one possible location for the nation's
first nuclear waste repository. The value of
this parameter 1is important for assessing the
risk that radioactive material stored in the
repository will escape to the accessible
environment. The curves show the probability
distributions independently encoded from five

experts.
Each curve in Figure 4 was carefully
generated using probability encoding
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techniques. To support these assessments,
there was, in effect, only one data point from
directly applicable tests, and that test was
of questionable accuracy. There fore, it
should not be surprising that the experts felt
tremendous uncertainty (up to six orders of
magnitude) and disagreed with one another.
Despite the lack of data, the experts were
quite adamant about the precise location of
their curves. In every case, the final twenty
to thirty minutes of each probability encoding
exercise was spent exploring whether the curve
should be moved two to three percentage points
in one direction or the other, judgments that
were in each case made definitively by the
expert. The precision of these estimates was,
evidently, based on convictions born of
personal experience with tests on similar rock
and differing theories about how processes of
formation affect the parameter in question.
Any uncertainty bands existing in the minds of
the subjects were clearly insignificant
relative to the differences of opinion. In
this instance at least, the added work of
assessing uncertainty bands would not have
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provided much additional insight to decision
makers. 1In addition, permitting indecision in
the encoding process might be less effective
at forcing the sort of hard thinking that is
so important to the formulation of scientific
judgments.

In conclusion, although I disagree with
some of the specific points of Tom's paper, 1

endorse his central theme that probability
applied within a decision analysis framework
can be a powerful and practical way of
integrating empirical research. The

exploration of alternative theories for the
foundation of risk and probabilistic
assessment is important, for advancements in
this area are most likely to produce major
improvements in our ability to analyze complex
problems.

Risk assessment is an art as well as a
science. The real <challenge 1is to select
methods that illuminate and provide insights
without misleading. Research that extends the
useful options or provides 1insights for the
choice of methods is clearly of high value.
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1. INTRODUCTION

When a substantive problem needs a solution,
the information needed is invariably not available
as desired. Encountered or historical data -aga
have to be used (Hennemuth, Patil, and Ross, 1986;
Hennemuth, Patil, and Tailiie, 19@5; Patil, 1984;
Patil, Rao, and Zelen, 1986). Often, an ad hoc
decision is made by the manager based on
incomplete or inadequate data involving similar
situations, perhaps sugmented by various experts
opinions. EBcological studies in this manner have
been done on a continual but informal basis. This
points up the importance of developing systematic
methods to combine studies. Three approaches that
have been 5enerally used are: (1) combining
different data sets to obtain a long-enough time
series or a large-enough data set to perform the
desired analysis; (2) co.biné:g the results of
different studies; and (3) combining expert
opinions.

1.1 Combining Data Sets

Usually, pooling occurs for the same t of
data taken under different conditions, including
different locations, and different seasons or
different years. Aiternatively. entirely
different types of data may be combined. It
becomes necessary to assume that some underlying
common features exist among various data sets; 1in
order to extract these features, it is necessary
to tranaform the data sets to make them
comparable.

Section 2 is an example where individuai;g
small recruitment data sets, (giving the number of
fish of "catchable" size entering a fish stock),
for different species of fish and different stocks
from various oceans are combined to give a data
set large enough to estimate a "universal”
recruitment distribution. This may then be used
to estimate a recruitment distribution for an
individual fish stock.

Another common situation arises when a change
in the instrumentation or in the data collection

rotocol occurs during the course of an
investigation. If there is only one such change,
then the two data sets need to be combined into
one. Here the purpose of combining data is to
obtain a consistent data set for use in testing
hypotheses, investigating trends, etc. Section 3
is an example that involves a change from one ship
to another in a marine fisheries research trawl
survey. A paired experiment is carried out to
compare the fishing r of the two ships. The
results of the experiment are used to calibrate
the two data sets.

1.2 Combining Results

. Extrapolation from one situation to another
is usually done by assuming a super model that
combines the results of the two different
situations.

Section 7 describes a method for as.essing
the risk of a toxicant to a species of fish by
utilizing results from laboratory tests.

Estimates of toxic concentrations obtained from
various bio-assay tests are combined to form new
data sets. A pattern is established for each of
the data sets by curve fitting. The curves are
used in turn for extrapolating the long-teram toxic
effect as a function of the short-term effect on a
species for which the results on short-term
effects are available.

Sections 4, 5 and 6 discuss an environmental
index effort for coastal and estuarine
degradation. The overall approach combines the
results of a statistical analysis on data from a
control region with the data from a test region to
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produce a single number indicating in some manner
the health of the environment. Section 5 uses the
reproductive success of osprey as an example. The
reYrodgctlve success varied in time with DDT
pollution. A period of time with little pollution
effect is used as a control instead of a control
region.
. Section 6 is another example in which
dissolved oxygen measurements are used. The
formulation is different since the measurements
are combined with the results of three statistical
studies on laboratory experiments. The laboratory
studies produce three different dose-response
curves for three different species and for three
different responses. The dose is exposure to low
dissolved oxygen episodes. The three responses
are mortality, reduced growth and avoidance. The
results of these studies are combined with
dissolved oxygen measurements to produce a single
number for each low dissolved oxyfen episode.
Section 8 describes the initial stages of an
analysis whose goal is to partition the causes of
early-life-mortality of fish among various
climatic and pollutant variables. The data set
(Summers et al. 18984) is a historical data set
which combines several ecological studies. The
fish data set is a stock index data set for each
species. This index is the catch per unit effort
which was estimated from many sources. A model
relating fishing in the Potomac river and fishing
in the Chesapeake Bay was constructed and the
results were combined with landings data to give
the stock index. The environmental data consisted
of river flow and temperature. Pollution data
include gross indicators of Yollution such as
population size, employment levels, sewage
discharged, dredﬁing and some loading variables
such as dissolved oxygen and nutrients. All of
these data sets were combined to give a .
multivariate time—series data set for analysis and
interpretation. .
The purpose of the analysis and interpretation
of this combined data set was to be able to
evaluate different statistical techniques.
Furthermore, different techniques use different
modeling assumptions and, therefore, may reveal
different pollution effects on different species.
It should be worthwhile to be able to combine the
results of these analyses by the methods of
combining expert opinions to provide a more
accurate picture of pollution effects.

1.3 Combining Expert Opinions

Included in .this approach is the combining of
different models where specific p-values are
available for each model. These correspond to

robabilities of various propositions as related
y experts. There may be two or more propositions
of which exactly one is correct. Each model or
expert gives probabilities of these propositions.
There are two cases., Either the probabilities add
to one, or the probabilities add to a value less
than one. The latter case allows the possibility
of an opinion to be held in ’'reserve.’

Section 9 gives a brief review of some of the
problems and possible approaches for the
combination of expert opinions. Sections 4, 5, and
6 are also relevant in this connection. To begin
with, opinions are solicited on potentially
informative variables. Even after this is
accomplished, there remains a considerable need to
identify and utilize expert opinions on issues,
such as, what data sets are suitable, how to
organize the data, what to use as control and as
test regions, and how to combine and susmarize the
data into indices that are comparable. "The
choice of variables is not easy and usually
involves extensive exploratory data analysis”
(0’Connor and Dewling 1986).



The candidate data sets result from many
different studies on different aspects of the
ecosystems. These are expected to yield
information regarding the health of the ecosystem.
Examples include benthic species composition and
abundance, fish and shellfish diseases, fecundity
in fish and shellfish, mortality in eggs and
larvae of fish and shellfish in the field and
reproductive success in marine birds. Also
included are measures of pollution, such as
toxicants in marine foods, pollutants in the
sediments and dissolved oxygen in the water
column. When the available indices are considered
over a region and through time, a picture of the
ecological health of the region begins to emerge.
At this stage a meta analysis of the separate
index values over time and/or space should be of
some help to the managers in their task of
managing natural resources.

2. RECRUITMENT DATA AND KERNEL APPROACH
2.1 Background

For several years the Northeast Fisheries
Center (NEFC) has been assembling recruitment
series for a large number of oceanic fish stocks.
Recruitment is defined by the number of fish of
‘catchable’ size entering a fish stock.
Estimation of recruitment distributions is
important for the assessment and prediction of
long term frequencies of good and poor year
clesses. In this connection, several parametric
distributional models have been fitted to each of
the available recruitment data sets (Hennemuth
Palmer, and Brown, 1980; Patil and Taillie, 1981).
The small sample sizes prevented relimble
assessment of goodness-of-fit. It also proved
difficult to effectively discriminate between
competin els, e.g., between the gamma and the
lognorma distribution.

In view of the preceding, Richard Hennemuth
of NEFC suggested tnat the recruitment data for
the various stocks be combined into a single large
data set and analyzed with the two-fold purpose:

(i) better assess the fitting performance of
the different methods and els,

ii) arrive at a fairly precise estimate for
a "universal” recruitment distribution.

2.2 Combining the Data Sets

Recruitment series for 18 stocks were selected
for analysis. The data and histograms for the
individual stocks appear in Table 2.1. Sample
sizes range from 10 for North Sea mackerel to 43
for Georges Bank haddock. On the whole, the data
exhibit strong positive skewness with the
occasional occurrence of large positive values
cgrresponding to the appearance of a strong year
class.

When combining data, the various data sets
must have some common features (or there would be
no reason to combine) as well as some differences
(or the matter would be trivial). The trick is to
model the common features and to suitably adjust
the data for the differences before co-binins.
The large combined dats set is then used to draw
relisble inferences concerning the common
features.

In our case, it is hypothesized that the pth
recruitment data set can be described as a random
sample from a scale-parameter family of
distributions

F(x.ep) ] F(x/op). (2.1)

Here the scale parameter 6_ is allowed to vary

from stock to stock. The functional form of the
cdf F is assumed to be the same for all stocks
and therefore represents a "universal” recruitment
distributjon. The pth data set is adjusted by
dividing through by a suitable scale statistic.
The arithmetic mean (divided by 5) was used in the
present analysis but it may be worthwhile to
mention some other poasibilities:
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a) As pointed out previously, large positive
values are sometimes encountered. For a given
stock, it may be entirely a matter of chance
whether such a value occurs in the available data.
The arithmetic mean is sensitive to the presence
of large values. Thus, uains the arithmetic mean .
to descale, introduces considerable extraneous
variability into the combined data set. A scale
statistic such as the geometric mean may be
preferred for this reason.

)} The assumption that the different stocks
differ only in the scaling is only an
approximation. One might attempt to develop data
transformations that would just for differences
in distributional shape as well. For exanqle. the
z~-score of the logged data adjusts for scaling and
also for certain t of shape parameters (e.g.,
Weibull, lognon-alg.

2.3 Bstimating the Universal Recruitment
Distribution

Having combined the descaled recruitment
values, the next step is estimation of the common

cdf F. Here a nonparametric approach has been
ad:gted. In passing, it may be noted that the
problem would be trivial if we were prepared to

assume a parametric form for F. In fact, if F(-)
= G(+,9) where G is a known distribution and ¢

is a vector of unknown parameters, then from (2.1)
the pth data set is a random sample from
G(x/6,.,). From this, the joint likelihaod can be

written down and parameters estimated in the usual
way.

The nonparametric method employed is a
variation of the kernel technique. The
distribution to be estimated is approximated by a
mixture of lognormal distributions. There is one
lognormal (known as a kernel) for each available

observation. Each kernel is "centered” so that
its geometric mean is located at the corresponding
observation. The various kernels are taken to
have the same logarithmic standard deviation,
which is known as the bandwidth.

The central theme in application of kernel
methodology is determination of suitable
bandwidth. Overly small bandwidths yield
estimated pdf’s whose TraYhs have a rough, jagﬁed
appearance. Excessively large bandwiths smoot
the probability mass over a wide interval, losing
most of the local features of the data. There is
extensive literature on kernel methods (Wertz and
Schneider, 1979) and we will not here dwell upon
the technical aspects except to point out that
bandwidth determination was done through
cross—-validation.

The histogram of the combined data set is
shown in Figure 2.1. Superimposed are the fitted
lognormal distribution, the fitted gamma
distribution and the kernel estimate. Parameter
estimation for the goamma and gggnornal was done by
the method of maximum likelih . Inad uaci of
the lognormal fit is readily apparent. he kernel
fit, while generally acceptable, does exhibit a
leftward bias for amall year classes. We have
been able to remove most of this bias by either of
two techniques: (i) variable bandwidths and (ii)
regression toward the mean of the kernel centers.
The gamma distribution also shows a leftward bias,
and a right hand tail that is much too short
to give an adequate fit.

2.4 Estimating Individual Recruitment
Distributions Interpretation
of the Kernel Estimator

The simplest estimate of the recruitment
distribution for a particular stock is formed by
rescaling the universal recruitment distribution.
However, the assumptions which led to the
universal curve are only approximations and the
preceding estimate will be inaccurate in certain
respects. This raises the question of whether the
limited data that is available on a particular



stock can be used to improve the estimate. Here
the James-Stein (1961) paradigm may offer some
guidence. Envision the separate (descaled)
recruitment distributions as forming a cloud of
points in the space of all probability
distributions. The universal curia 2stimates the
center of this cloud. Use the available data to
ocbtain, perhaps byﬂthe kernel method, a low

quality estimate F_ for a particular

distribution. For the final estimate, use a
convex ligear combination of the imprecise

estimate F. and the precise but inaccurate

universal estimate. . ]

It may be of interest to close this section
with an interpretation of the kernel estimator.
The recruitment process is governad by many
factors, both environmental and biological.
Currentiy there is little understanding of what
these factors are, how they operate quantitatively
and how they interact. The kernel method attempts
to account for the annual variability in

TABLE 2.1

8BCD GEORSES BANK COD

recruitment without developing a detailed
explanator¥ model. Consider the multidimensional
space of all relevant factors and let this space
be partitioned into N subsets, one for eacg
available recruitment value; the subsets occur
with the same long term relative frequency of 1/N.
Conditional ugon a particular partitioning set,
there is still residual environmental variability
within that set and a corresponding variability in
recruitment. It is this variability that is
represented by the lognormal kernels. Each kernel
is centered at the corresponding observation, in
effect treating each observation as typical for
its partition set.

. Also note that the bandwidth expresses the
within-partition-set variability. In particular,
the bandwidth must decrease toward zero as the
partition becomes finer (i.e. as the number of
observations increases). It follows that the
bandwidth cannot be treated as a universal
constant: the bandwidth appropriate to a
particular stock is larger than the bandwidth
obtained for the combined data.
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31.480
1,930
« 333
4.308
‘. 620
1.280
6.3%0
12.783
1.310
2.0883
3.408

NAHD NORTHEAST ARCTIC HADDOCK

(12,3F12.2,3
N
17 $0.00

479
150
344
439

30

r{]
247

GBHR BEORSEZS BANK HERRING 1§ g 1
(12,3F12.2,8
N

12 350.00

3544
1868
2113
1383
1733
1910
1184
833
759
3844
787
748

MEAN

273.88
9.380
3.000
7.2‘0
8.760
400
«320
4.940
2.800
30. 450
8.150
1.780
1.460
1.780
3.700
6.340
1.100
.860

MEAN

1743.23

10.126
5.337
6.037
4.3529
J.014
3.437
3.383
2,443
2.149

10.983
2.1483
2.129

8D cv 8XKEW KURT LOGMEAN
1499.03 1.304 2,401 8.39¢ 6.219
|
]
ni
nme s
(1] 11 ]
decccteccctocnctcavaboccntecactaccnd

0 3 10 13 20 25 30 33

s cv SKEW KURT LOEGMEAN
345,36 1.262 2.690 10,125 3.037
]
n
nit |
1 1N |
Pemcmpeccctacccpocccteccnbonnc peanad

0 3 10 3 20 25 30 35

1975 - 1976 EXCLUDED

KURT LOGMEAN
2.848 7.309

sD cv SKEW
995.86 371 <9560
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1.079
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NSHR NORTH SEA HERRING

KURT LOGMEAN
8.800

KURT LOBGMEAN

8.730

KURT LOGMEAN

(12,3F12.2,5F8.3)
N 1x MEAN ) €V SKEM
18 2000, 00 7771.11 4620.03  .395  1.566  5.244
21370 10,483
5640 2.820
7820 3.910
1980 990 n
16720 8.360 ]
7330 3. 668 "
8730 4,345 1
10950 S.47% e t e
8710 2,855  teccctoccatacans
$290 2.6 0 S 10 1S
7580 3.790
7620 3.810
3820 1.910
9040 4,330
7110 3.588
5010 2.9508
2240 1.120
5900 2.950
NWHR NORWEGIAN SPRING SPAWNING HERRING
(12,3F12.2,5F8.3)
N 1 NEAN $0 CV  SKEW
20 3000.00  13734.95  18876.33 1.352 2.307 7.919
79267 26.089
20718 6.906
11254 3.7%1
12642 4214 2
4680 1.560 :
3114 1.038 TR
4538 1.519 TR
3723 1.241 ns
2937 .79 i1 1808 1} ] [ |
47442 15,014  #eccetocccbecacteccctocaatenans
28631 9.544 0 S 10 15 20 25 30
9927 3.309
2007 936 11194 3.731
17987 5.985 487 .229
11426 3.809 599 .200
942 314 1194 .398
BBNC GEORGES BANK NACKEREL
(12,3F12.2,5F8.3)
N 1 NEAN 1) CV  SKEW
16 400.00 1934.88 1776.28  .918 2.137 7.53%0
917 2.293
428 1.070
429 1.073
sS4l 1.353 2
1208 3.020 1 3
3179 7.948 mn 3
7791 19.478 (TITTR]] 1
3085 7713 beeccpeccepaccctoncns
3208 8.020 0 S 10 15 20
1616 4.040
1686 4.219
1202 3.008
1868 4,470
2300 5,730
800 2.000
700 1.7%0
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LO8SD
371

LO8SD
1.341
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NSMC NORTH SEA MACKEREL § g § 1979 EXCLUDED

(12,3F12.2,5F8.3)
N iX MEAN 90 cy SKEN KURT LOGMEAN LO6SD
10 100,00 743.20 985,02 1.286 2.253 4.790 4.017 1,080
1077 10.770
3481 34.810
535 6.330
447 4,870 (] ]
173 1.730 st 1 ]
524 3,260 Pprvccdsranpoavcapracanpssecbocanpancay
587 5.870 4] -] 10 13 20 23 30 33
318 3.180
83 .8%50
83 .050
NSSA NORTH SEA SAITHE
(12,3F12.2,5F8.3)
N 1 HEAN $D cv SKEW KURT LOGMEAN L06SD
18 $0000.00  2465372.11  153240.17 L8577 1.32%5  4.4622 12.330 . 580
60818 1.216
8089%0 1.618
1962466 3.92%
141893 2.938 [ ]
191399 3.832 ]
154993 3.100 ns
424108 8.482 s
434820 8.738 (TT1I I ] ]
469071 9.381 R L e e
2374633 4,753 0 s 10 18
2346391 4,728
2402469 4,803
281407 5.632
710448 . 14,209
255149 $.103
179341 3.387
194909 3.938
282436 S.649
NSWH NORTH SEA WHITING
(12,3F12.2,3F8.3)
N 1§ MEAN 8D cv SKEW KURT LOBMEAN LOGSD
16 300000.00 1333274.00 5630841.20 473 514 2,27 13.981 518
1495430 4,983
335120 1.184
480024 2.267
774709 2.582 '
975353 3.254 11
2609047 8.4697 11
859892 2.066 1081
776330 2.%88 1 n
824927 2.730 bocmmdoones
1784215 S.947 0 s 10
2321981 7.740
1406143 S.334
2240953 7.470
1332480 4,442
14413503 4,808
1254008 4.180
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SAPD SQUTH AFRICAN PILCHARD g g 8 1974 EXCLUDED

(12,3F12.2,5F8.3)
N 1X MEAN L1) cv SKEW KURT LOGMEAN LOGSD
r{ 3000.00 13673. 46 10153.32 743 1.3464 4,043 9.272 714
12500 4.1487
9320 3,107
4730 2.23¢0
6060 2.020 [
9730 3.243 i
21300 7,100 (]
37600 12,833 mn
41500 13.867 m
31300 10,433 (TTT R ]
26000 8.667 s 1 12
18500 6.187 tomccdecccdoccay
16200 3.400 0 S 10 13
11600 3.867
4870 2.290
3340 1.180
2280 . 760
4620 1.540
11500 3.833
9220 3.073
4590 2.197
3820 1.940
9100 3.033
4310 1.437
11200 3.733
18100 6.033
13900 4.8633
SAAN SOUTA AFRICAN ANCHOVY
(12,3F12.2,5F8.3) .
N 1 MEAN sd cv SKEW KURT LOGMEAN LO6SD
13 11.00 36.03 14.81 264 . 683 3.088 3.992 . 260
39.1 3.3533
33 3.000
S8 S.091
1] 6.102 ]
30 4,348 ins
36 3.091 1518
'} 3.543 ([T ]
4 4.182 toonumponans
43.2 3.927 0 3 10
90.1 8.191
34 4,909
78 §.909
36 3.091
SARM SOUTH AFRICAN ROUND HERRINS
{12,3F12.2,5F8.3)
N X MEAN 80 cv SKENW KURT LOGMEAN L0880
13 .50 2.83 2.18 .7%8 .923 2,481 +751 71
1.3 2.167
1.5 2,500
2 3.333
3.2 3.333 ]
7.4 12,333 [ ]
8.3 10.300 s
3.3 8.833 sl
1.3 2,167 tommmponccpocncs
1.4 2,333 ] 3 10 15
.7 1.167
b 1.000
3.9 4.300
1.9 3.147
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GBSH GEORSES BANK SILVER HAKE

(12,3F12.2,5F8.3)
N 1 MEAN 80 CVY  BKEW  KURT LOSMEAN  LOGSD
22 250.00 1207,08 810.48  .471 1.116 3.381  4.885 .47
339 1.356
42 1,848
871 2.284
883 3.532 8
1308 5.220 :
1993 7.972 ?
2207 8.828 ni
2993 11.972 mn
3297 13.028 sasing 3 8
1951 7.804  dmcoepomentomas
1119 4476 0 3 10 1S
026 2.504
403 2.412
539 2.236
517 2.060
439 1,756
894 3.576
1174 4,698
1100 4.400
1563 6.632
1400 $.5600
530 2.200
PVAN PERUVIAN ANCHOVY
(12,3F12.2,5F8.3)
N 1x NEAN 80 €V  SKEW  KURT LOGMEAN  LOGSD
16 50,00 307.%6 141.00  .458  .081 2,040 S.589  .389
332 5,533
237 3.950
183 3,090
403 6.717 11
193 3.217 11
439 7.317 nu
383 6.383 508NN
338 $.833  #ecectonees
377 6.283 o0 8§ 10
ss3 9.217
539 8.983
52 .867
160 2,647
180 3.000
150 2.667
392 4.533

FIGURE 2.1

Lognormal
s ¢ o o Gamma

- e - Kernel

78



3. ESTIMATION OF
RELATIVE FISHING POWER OF DIFFERENT VESSELS

3.1 Introduction

This section discusses standardization
and ling of data from different parts of a
sample survey. Trawl surveys carried out by NEFC
at Woods Hole are used to monitor the year to Kear
changes in the abundance of several merine fis
stocks. The principal objective of these surveys
is to provide data necessary to asseas the
production potential of traditional and
underutilized species (see Byrne and Fogarty
1985). These surveys may also be of use in
assessing the long-term effects of pollution,
where a time series of data is necessary to
determine t .

A critical aspect of any long-term survey
gro(ral is the standardization of survey units.

nherent differences in vessels, nets, etc., which
change from time to time, may introduce bias due
to differences in the resulting fishing power.

Two ships, the Albatross IV and the Delaware 11,
have been used at different times in the last two
decades. A conversion factor may be necessary to
make the various parts of the survey comparable.
The conversion factor may be different for
different species depending on their size, weight,
schooling behavior, etc.

To see if there is any difference in the
fishing power, and to estimate the conversion
factor, if necessary, Kaired tows were made using
the Albatross IV and the Delaware II off southern
New England and on Georges Bank. The station
locations were preselected using a stratified
sampling scheme. A total of 142 successful pairs
of tows were performed with these vessels during
1982 over a large area that encompassed a variety
of depth and bottom types.

Byrne and Fogarty (1985) carried out an
analysis of the data using non-parametric methods
by rank transforming the observations. But, this
method loses much of the information contained in
the data.

Due to the highly skewed nature of the
distribution of the catches, the difference in the
mean catches is not an efficient estimate of the
relative fishing power. In multispecies fish
surveys, when large areas are sampled, any
particular species usually occupies only a part of
the total survey area. In these circumstances,
the zero values can be taken to represent areas of
unsuitable or unoccupied habitat. The proportion
of non-zero values in the sample estimates the
proportion of the total survey area that is
occ%gie¢ by the species. .

e interpretation of the proportions of
non-zeros in a s le as an estimate of habitat
ares may be vague in some situations, especially
for mobile populations. A suitable habitat may
change from time to time due to many factors
including the timing of the survey, or the
non—-occupancy of an area simply because of low
population level. However, keeping the zeros
separate often enables one to fit a relatively
simple distribution like the lognormal to the
non-zero values.

Transformations like log(a+x) have been
suggested to avoid the problem of zeros in the log
transformation, where a > 0 is a constant. The
problem here is the choice of a. e
transformation using a = 1 has been studied at
Woods Hole to transform the data to normality.
Because of the large proportion of zeros,
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log(1l+X) 1is far from normally distributed, which
-aﬁes it difficult to retransform and interpret
the results expressed in the transformed scale.
Further it has been observed that different values
of a near 1 lead to different conclusions so
this class of transformations leads to unreliable
conclusions.

3.2 Method

It is reasonable to assume that the population
mean of the catch per tow varies in proportion to
the relative abundance of fish over a region.
Further, a zero catch by both the vessels at a
station is non-informative with regard to the
relative "fishinf power” of the ships. Zero
catches may simp { be due to lack of fish in the
area. Consequently, it is enough to consider
those pairs of the data where at least one
component is non-zero. This leads to the
consideration of the independent vectors
(X‘.Y‘).....(XP,Y ) where for each i, X 20, Yi
20 and X v Y0 0. It may be reasonable to

define @ = B(X|{X>0)/E(Y|Y>0) as the relative

fishinf power (or the conversion factor). A
natural estimate of 0 is

e = [ J/(L .

i [nx iglxll/[ny ilel]

where ny and ny are the number of non-zero
observations Xi and Y respectively. If the X;
and Yi are assumed to have lognormal

distributions, then sowme modification of this
formulation is required (see Babu 1986). Further,
the bias can easilg be estimated using the paired
data and shown to be practically negligible. The
paired data set is also used in estimating the
standard errors.

3.3 Results
A total of 32 species were identified for the

analysis. The non-zero values are agproxxlately
lognormally distributed. Overall relative fishing

power was computed for catch in numbers and in
weight. Table 3.1 gives the estimates.

Table 3.1
Catch in| Log Fishing Power |Standard Brror
Weight -.2780 0.0850
Number -.1401 0.1040

Both in terms of total numbers and total
weight, Delaware 11 appears to have significantly
more f1shinf power than Albatross IV.

The results for the 32 species are presented
in Tables 3.2 and 3.3. For additional
?i;gg;sion. see Babu, Pennington, and Patil
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SPECIES

Smooth Dogfish

Spiny Dogfish

Winter Skate

Little Skate

Silver Hake

Atlantic Cod

Haddock

White Hake

Red Hake

Spotted Hake

American Plaice

Sumaser Flounder

Fourspot Flounder

Yellowtail Flounder

Winter Flounder

Windowpane

Butterfish

Bluefish

Scup

Longhorn Sculpin

Sea Raven

Northern Sea Robin

Amer. Sand Lance

Ocean Pout

Goose Fish

Amer. Lobster

Jonah Crad

Rock Crab

Sea Scallop

Shortfin 3quid

Longfin Squid

Bay and Striped
"Anchovy Combined

SPECIES

Smocoth Dogfish

Spiny Dogfish

Winter Skate

Little Skate

Silver Hake

Atlantic Cod

Haddock

White Hake

Red Hake

Spotted Hake

American Plaice

Sumaer Flounder

Fourspot Flounder

Yellowtail Flounder

Winter Flounder

Windowpane

Butterfish

Bluefish

Scup

Longhorn Sculpin

Sea Raven

Northern Sea Robin

Amer. Sand Lance

Ocean Pout

Goose Fish

Amer. Lobster

Jonah Crab

Rock Crad

Ses Scallop

Shortfin Squiad

Longfin Squid

Bay end Striped
Anchovy Combined

tPA

10
33
43

29
$3
43
44
36
81
19
21
36
18
13
18
14
13
43

5
29
19
64
80

7
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$PA

10
33
43
55
95
12
10

8
36
16

5
29
53
43
44
36
81
19
21
36
18
13
18
14
13
43

S
29
19
64
80

7

BOTH NONZERO

IRS MEAN

.1869
-.2914
-.0954
-.1732

.2846

.0376
-.1738

.5918

.1978
-.3107

-1.0456

0945
-.0468
«.3764

.1619

.0340
-.1153

.3214

L3177
-.0498

.1529

.1998

-1.2217
-.1354
-.1728
-.0764

-1.0961
-.4385

.118
-.5004
-.0108

1.9778

CATCH IN NUMBERS

TABLE 3.2

A .NONZERO D.7ERO

STAND $PAIRS MEAN

ERROR

.2503
. 2437
.2178
.1051
.1011
.2388
.2817
.3390
.1921
. 1531
.6390
. 1339
.1116
.1065
. 1396
.1383
.1983
.2665
. 2267
.1418
.1905
. 2020
4179
.2390
.2392
.1209
.5920
. 1488
1814
1746
1633

1.0729

BOTH NONZERO

IRS MEAN

L0851
-.3556
-.1559
-.1143

L1723
-.5914
~.2444

.3374

.3582
-.1491
~-.5414

.0713
-.0040
-~.2999

- 1346

. 1135
-.0796

- 1435

4261
-.0987

.2548

.0101
-.2677
-.2743

.2097
-.2799

-1.0757
-.1062

-1041
-.2813
-.0042

1.3880

STAND
ERROR

.2425
.2433
.1914
.1079
.0747
4649
. 3535
3499
.1858
.1382
.6889
.1695
.0963
.1251
. 1446
<1712
.1286
.2661
.2418
.1329
.2218
.1931
.2119
.3833
.4206
.1612
.7001
.1235
.1514
1738
.1178

.8388

6
10

21
16

3
12
13

11
11

12
14
12
11

12
11

11
15
16
19

10
i6

7

.3466
1.2035§
1.0165

.6284
1.4740

.8318

.0000

.8550

5713

. 3385

.8254

.7750

L3181

.7187

.0000

.6013

.7529

.3226
1.2772

L5071

6577

.6846

7134

.2310

.2628

.5894

.4642

6774

.2310

.5886
1.1250

3.5186

A.ZERO D.NONZERO

STAND #PAIRS MEAN

ERROR
.1987 8
.8345 11
4751 11
.2453 17
. 4985 13
.5133 3
.0000 6
.2583 12
.2705 19
. 2431 8
86967 1
. 2968 £
.1665 16
4769 7
.0000 16
L3476 23
3150 17
. 1683 7
.5825 11
.2606 3
4144 16
.3525 7
.3018 11
. 2267 H
.2093 19
.2100 18
.2074 27
.2519 29
L1331 8
.3049 17
4741 17
1.7880 5
TABLE 3.3

.2878
.5398
1.4617
.5463
1.1121
1.1755
.8540
1.2006
.6264
.7758
2.0794
. 1386
.7160
1.3806
. 4839
. 4572
1.1357
1.3802
. 3258
. 0000
. 4300
.4540
1.6870
.8664
.6712
.3655
.8238
.9752
.89231
1.0700
1.3970

5.1205

CATCH IN WEIGHT

A.NONZERO D.ZERO

#PAIRS MEAN

10

21
16

12
13

11
11

12
14

11

12
11

11
15
16
19

10
16

2.4826
2.5624
2.0419
.7703
.3066
3.1104
2.6654
2.0549
.6349
.9876
1.6953
2.8378
1.0732
1.4991
2.2043
.2257
.5895
1.9613
1.0089
.9644
1.5180
.8202
.8443
9635
2.1525
2.7667
.8044
5769
.0770
1.2309
1.1352

1.58357

STAND
ERROR

1.1533
1.0804
.8819
.2853
. 158587
1.5477
1.8353
6454
. 2846
.4176
.9776
.8842
. 4339
.8161
1.0037
.1623
.2549
.7428
.5148
.3961
.5683
.3671
.4968
.7453
.7944
.7012
.2726
. 2468
0770
4524
.4596

.9191

80

STAND
ERROR

.2187
L3167
. 5940
.1925
. 4659
. 9456
.4666
.4923
.2003
. 4921
.0000
.1381
.3569
.7196
.2313
.1678
.3645
.7634
.1668
.0000
. 1852
L3677
.8258
4741
.2661
.1704
.J3279
.2992
.4297
. 4334
.5038

2.7365

A.ZERO D.NONZERO

$PAIRS MBAN

8
11
11
17
13

3

(]
12
19

8

1

S
16

7
16
23
17

7
11

3
16

7
11

5
19
18
27
29

6
17
17

5

3.4733
2.5255
2.5011
1.1513
1.2148
3.9963
2.1186
~2+0173
.9625
.9450
2.7081
2.6152
. 7532
1.7449
1.8175
1.1653
1.3903
3.6719
2.41238
.5973
1.6428
.7268
1.5818
1.9910
2.5994
2.0594
.9936
.6782
.5669
1.5985
1.1851

2.0447

STAND
ERROR

1.3641
.8603
.9447
.3756
. 4570

2.3170

1.0568
.8742

. .3310

.4475
. 0000
1.1661
.3307
.6272
.4821
.3594
.4612
1.4393
.8804
. 4175
.4948
5172
.5785
.9972
.7016
.5299
.2623
. 1897
. 3425
4684
.3802

1.1973

DIFF.
MEAN

.0588
.6640
-.4452
.0821
.3619
-.3437
-.8540
-.5456
-.05851
-.4373
-1.2540
.6364
-.4009
-.6639
-.4839
L1441
-.3828
-1.0576
L9515
.5071
. 2277
.2306
-.9716
-.4354
-.4085
.2239
-.3597
-.2978
-.4621
-.4814
-.2720

-1.6019

DIFF.

MEAN

-.9907
.0369
-.4592
-.3810
-.90823
-.8859
.5469
.0376
-.3276
.0426
-1.0128
. 2226
.3200
-.2458
.3868
-.9397
-.8007
-1.7107
-1.4049
. 3671
-.1247
.0934
~-.7375
-1.0276
-.4469
.7072
-.1891
-.1013
~.4898
-.3876
-.0499

-.5090

STAND.
ERROR

.2955
.8925
.7606
.3118
.6822
1.0759
.4666
.5560
.3366
.5498
.6967
.3273
.3939
.8633
.2313
.3860
.4818
.7817
5771
. 2606
.4461
.5094
.8791
.5258
.3386
.2704
.3880
.3911
.4498
.5299
.6918

3.2688

STAND.

ERROR

1.7863
1.3811
1.2923
LATLT
.4828
2.7864
2.1178
.9333
-4365
6121
.9776
1.4634
.5458
1.0293
1.1135
.3943
.5269
1.6197
1.0199
5755
.7536
.6342
.7610
1.2449
1.0599
.8789
.3783
3113
L3511
.6512
.5965

1.5094

ESTIMATE

. 1334
-.2251
-. 1219
-.1472

.28623

L0197
-.35855

.2835

- 1387
-.3198

-1.1408

L1722
-.0731
-.3807
-.0106

. 0466
-.1540

21779

.4024

.07758

.1644

.2040

-1.1760
-.1868
-.2512
~.0263
-.5810
~.4207

.223
-.4985
-.0243

1.6297

ESTIMATE

.0361
-.3438
-.1624
-.1276

.1471
-.5994
-.2230

.3004

.2530
~-.1398
-.6969

.0733

.0058
-.2991

.1388
-.0535
-.1201

.0948

. 3286
-.0751

.2246

L0172
-.3015
-.3395

. 1204
-.2477
-.3895
-. 1065

.0109
-.2870
-.0059

.9428

STAND.
ERROR

.1910
. 2351
.2094
.0996
.1000
.2331
2411
.2895
.1668
. 1475
.4709
.1239
1074
.1087
. 119§
.1302
. 1833
.2522
.2110
. 1246
.1752
.1878
L3774
.2178
. 1954
.1104
. 3245
.1391
1520
.1658
.1589

1.0194

STAND.
ERROR

. 2403
.2396
. 1893
.1082
.0739
.4585
.3487
L3277
.1709
1348
. 5615
. 1684
.0949
1242
.1434
.1570
.1249
.2626
.23563
. 1295
.2127
.1847
.2042
.3663
.3910
.1585
.3328
.1148
1391
16877
.1156

.7312



4. A CRYSTAL CUBE FOR COASTAL
AND ESTUARINE DEGRADATION

Environmental regulators and decision-makers
would like to have a crystal ball that could
predict how ecosystems would respond to factors
such as stress, pollution or over—fishing. 1In
this way, information on important parameters such
as amounts of contaminants entering an estuary,
their effect on the biota, the propagation of
these effects through the ecosystem, and
subsequent recover¥ after the removal of these
stresses, could all be properly considered in the
use and protection of important natursl resources.
In the real world, however, such predictions
cannot be made with certainty.

This conceptual crystal cube has a series of
faces, each of which resents a specific
parameter that can be directly related to marine
environmental degradation. At present, ten
indices or faces of the cube are being tested:
dietary risks from contaminants in marine foods;
contaminant stress in sediments; contaminant
stress in the water column; human pathogen risks;
benthic species and composition; fish and
shellfish diseases; reproduction in fish and
shellfish; mortality of eggs and larvee of fish
and shellfish; reproductive success in marine
birds; and oxygen deségtion. For details, see
Boswell and Patil él 1986), Patil (1984a,b),
Patil and Taillie (1985}, and Pugh, Patil,
and Boswell (1986).

The emphasis in testing these indices is on
standardizing long tera data sets in order to
construct a single summary variable—te an
index——to represent each. This index is based on
a variable that measures contamination or,
ideally, contamination effects. The choice of
such a variable is not easy and usuallly involves
extensive data analysis. To be useful, the
index--summarizing data—-must be sensitive to
contamination and relatively insensitive to other
factors.

The use of this variable index in the crystal
cube analyses is in the separation of "concern or
alarm"” fros "no concern” conditions. Here,
concern or alarm does not necessarily mean only
the violation of legislated or regulated
standards, but indicates that the scientific
community is not able to certify that issues of
widespread public concern will not arise from
existing environmental stress.

The index is calibrated so that when the
number falls in the range of 0 to 1, there is "no
cause for concern."”

A fla{ is raised as soon as the index
becomes 1. The range from 1 to 10 indicates
"warning;" something is happening and should be
investigated. A value of the index in the range
from 1 to 10 indicates that the environment has
been adversely affected.

The range sbove 10 indicates "cause for alarm.”
The index 1s designed to be 10 when there is
scientific resson for grave ecological concern.

The fundamental concept underézing the use of
a single summary variable for each of the ten
measures of environmental degradation is to
compare conditions in a stressed estuary or
coastal area with those from a clean region. The
crystal cube with ten faces, each with a single
sussary veriable representing one important
environmental pollution parameter, will flag cases
where legal or acientific benchmarks for concern
or alarm are exceeded. )

Ultimately, this technique can assist the
environ-enta{ sanager or regulator, who must
evaluate large data sets, to narrow attention to
those specific environmental g;ru-eters where
there are serious problems. e crystal cube is
not intended to be the "ideal” crystal ball
desired by environmental managers, but it does
provide a potential framework for evaluating and
comparing different environmental measures that
must ultimately be weighed not only against each
other, but also against other (e.g., economic,
asesthetic, etc.) considerations. Thus, e
crystal cube could develop into & valuable tool to
he¥; define or delineate "unreasonable
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degradation” and make envirommental
decision-making a more systematic science,
reflecting an integration of the complexity in
ecosystems.

5. REPRODUCTIVE SUCCESS OF MARINE BIRDS
ON THE EAST COAST

Ospreys are large marine birds nesting and
fishing on the east coast of the United States.
They nest in accessible areas using the same
nesting sites from year to year, and they are
tolerant of humans. This has permitted the entire
osprey Yopulatxon to be censused at regular
intervals since 1974 (see Spitzer, Poole, and
Scheibel 1983). In common with other shore birds,
reproductive potential of the osprey is sensitive
to the presence in the environment of toxicants
such as DDT. At the same time, osprey
reproduction is much affected by naturally
occurring stresses such as wind, storms and food
shortage. Thus, any index of enthroYogenic impact
upon osprey reproduction must carefully
incorporate the effects of natural variation.

Figure 5.1 gives three-year moving-average
plots of the refroductive success of osprey
at several locations along the East Coast. Here,
reproductive success is measured as the average
number of young fledglings in the active nests.

It is evident that there is both spatial and
tesporal variablity. Much of the temporal
varxabllit¥ is attributed to the effects of DDT.
In the ear 1970's there was extensive DDT
pollution which gradually cleared from the
environment after its use was banned. The years
1973 to 1979 are transition years when the effects
of DDT were still present. The 1980°’s appear to
be essentially free from DDT effects upon osprey
reproduction.
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For the reasons just described, the five
years from 1980 to 1984 were selected as the
reference or control period used to calculate a
reference value, R, using the effects of natural
variability in the environment. The index, in its
basic form, is given by

1 = R/Y, (5.1)

where R is the reference value for reproductive
success, expressed in young per active nest, and Y
is the reproductive success observed in the year
and the region being indexed. The reference value
R is the estimated 10th percentile of the
distribution of reproductive success during the
unstressed reference period from 1980 to 1384.
Thus, index values greater than 1 indicate that
reproductive success is so low that it could occur
only one year in 10 under unstressed conditions.



The index is constructed to flag cases where the
reproductive success falls short of the
reference values.

The index is calibrated in the range 0 to 1
using data from 1980 to 1984. On the other hand,
expert opinion of knowledgeable biologists is
necessary to calibrate the index in alarming
situations. When the reproductive rate of the
ospreys drops below about .8 young per active
nest, then the pogulation tends to decrease
(Spitzer 1985). he basic index, using a
reference value of R=1.7 young per active nest
calculated from the combined data from the East
Coast, was calibrated to take the value 10 when
the reproductive success is .8 young per active
nest. The index then becomes

1= (V)¢ = (1.1/Y)? (5.2)

where ¢ is the constant used for calibration.
The values of the index 55.2) are tabulated

below for the four regions (i) the Northeast Coast

from New York City to Boston, (ii) Massachusetts,

(iii) Gardiners Island located off the tip of Long
Island, and (iv) area surrounding New York City.
Index of Osprey Reproduction
Region 51969 1970 1971 1972 1973
Northeast Coast :35.0 22.8 19.7 28.0 11.2
Maassachusetts :26.6 4.4 11.7 4.4 .6
Gardiners Island :17.9 17.9 35.0 1643.6 29.6
New York City :66.2 61.7 20.7 29.6 66.2
Region:1974 1975 1976 1977 1978 1979
Northeest Coast' 7.2 7.2 2.0 4.6 4.2 3.6
Massachusetts: 1.7 1.9 .8 18.8 3.7 1.5
Gardiners I-land:ll.7 22.8 5.7 4.1 10.0 21.7
New York City:!17.1 6.1 2.5 3.2 2.9 2.9

The values in the above table were calculated
using the global reference value R = 1.7 obtained
from the combined data for the entire Northeast
Coast. The population of ospreys on Gardiners
Island is stressed by a limited food supply.

Using a global reference value for such
populations results in index values perpetually in
the warning or alarm range. A local index based
upon a local reference value is to be preferred in
such cases because we are atte-pting to index
stresses of authrogogenic origin. or ospreys a
local index was calculated for each region using

the {eara 1980 to 1984 as a reference period. The
resu tinﬁ index is shown in Figure 5.2 for each
of the three local regions. Notice, in

particular, that the local Gardiners Island index
approaches the value 1 as the DDT passes from the
environment. This was not the case when a global
reference value was used.

6. LOW DISSOLVED OXYGEN: AN INDEX

wWhen the amount of oxygen dissolved in the
water drops below 5 mg/1l the ecosystem becomes
stressed. The biological response is species
dependent and varies with the temperature, the
concentration level as well as the duration of
exposure. Three responses have been identified
for incorporation into an index: r j (10%

of surf cleams), avoidance (by 50% of red hake),
and reduced growth (15X for winter flounder over

the summer season). These species were chosen as
the moat sensitive from among important species
for which data were available.

To calculate an index value, dissolved pxygen
data must be available for a given location on a
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- throughout the summer.

Figure 5.2 INDEX I FOR OSPREY DATA
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daily basis throughout the susmer season.
Low-dissolved-oxygen (low DO) episodes, defined to
occur when the dissolved oxygen concentration
drops below 5 mg/l, occur in the summer =onths.

An index value for the season is the maximum of
index values calculated for the low DO episodes
The value calculated for a
given low DO episode is, in turn, the sum of three
values corresponding to the three responses. To
calibrate the index (see discussion in Sections 4
and 5) to be 10 in an alarming situation the value
corresponding to mortality is multiplied by 10
before adding.

Before an index can be calculated, it is
necessary to know the intensity of each response
to low DO concentrations; this is estimated by
laboratory studies. The resulting dose-response
curves provide reference values to compare with
the observed low DO concentrations. Three curves,
giving the day’s exposure to produce the indexed
response as a function of the DO concentration
must be determined. Since the effect of low DO
varies with temperatures, the average summertime
temperature in the region to be indexed is used.

Let ¢4 be the observed DO concentration on

the ith day of a low DO episode, i=1,2,...,n .

Let m, 8 and ry stand for the days exposure

to a DO concentration of < to produce the

mortality, avoidance and reduced growth
respectively. The index can be formulated as

n n n
10 £ L+ T L + 2 .L
i=1 ™ i=1 % i=1 Vi
n n
10 1] .
151 [-' + %'- + ] -

i i rj

I

where q; is the combination of the three

exposure curves. The data is summarized into DO
categories and the above calculation is simplified
by using the frequencies. The index becomes

k
I1=ZXf
i=1

is the number of days that the low DO

193 (6.1)

where fi



episode has concentrations in the ith category
(corresponding to the value qi) and where is

the number of categories. The calculation of an
index value is illustrated in Table 6.1.

TABLE 6.1

Calculation of the dissolved oxygen index

for a low DO episode at the Narrowsx,
New York Harbor, Summer 1975
DISSOLVED FREQUENCY COMB INED | CONTRIBUTION
OXYGEN OBSERVED AT DO|RESPONSE|TO THE
CONCENTRATION| CONCENTRATION |CURVE INDEX
1.0 0 - 0.0
1.2 0 4.55 0.0
1.4 2 4.35 8.7
1.6 0 4.17 0.0
1.8 1 4.08 4.1
2.0 3 3.91 11.7
2.2 1 3.70 3.7
2.4 2 3.55 7.1
2.6 2 3.33 6.7
2.8 2 3.11 6.2
3.0 1 2.86 2.9
3.2 2 2.63 5.7
3.4 1 2.38 2.4
3.6 3 2.08 6.2
3.8 2 1.79 3.6
4.0 2 1.52 3.0
4.2 3 1.11 3.3
4.4 4 0.67 2.7
4.6 3 0.22 0.7
4.8 1 0.16 0.2
5.0 2 0.01 0.0
TOTAL INDEX 78.9

‘The Narrows is known to be polluted.

This index has undergone many changes froa
the original formulation and is cu;rentlx being
looked at. The final form of the index has not
been fixed at this time. The example given in
Table 6.1 is for illustration purposes; the data
is for a summer season which may not correspond to
one low-dissolved-oxygen episode required for the
purposes of this index.

7. COMBINING BIO—ASSAY RESULTS
FOR EXTRAPOLATION OF CHRONIC EFFECT
THRESHOLDS FOR RISK ASSESSMENT

7.1 Introduction

Ecological effects of toxic chemicals are
commonly assessed by estimating a "safe” exposure
level, below which no effects will occur. To
Yrotect organisms at their most sensitive stages,

ife cycle tests or, in some cases, early life
stage tests are necessary for estimation of
chronic effect threshold levels. It is not
feasible to conduct tests for every possible
toxicant and species of interest. Instead, "safe”
levels are commonly extrapolated from laboratory
test results of a few standard test species and
particular life stages by applying correction
factors and subjective judgement. Suter, et al.
1986a) propose a more structured approach called,
Analysis of Extrapolation Error” (AEE) of .
extrapolating chronic effect thresholds. 1Its main
features and advantages over traditional methods
lie in the explicit quantification of the
consequence of exc ing the estimated safe level,
of interspecies differences in sensitivity between
tested and extrapolated species, and the variable
relationship between acute and chronic effects of
icals. See also Linder, Patil, Suter, and

Taillie (1986).

7.2 Acute—Chronic Extrapolation
ARE is based on statistical analysis of acute

and chronic toxicity test data sets collected
using uniform experimental protocols. For each
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species and chemical pair, two different studies
are conducted to determine long-term low-level
effect, or maximal allowable toxic concentration
(MATC) and 96-hour LC50 high-level effect to
achieve 50X mortality in hours. If enough of
these results are available, a functional
relationship, the so called acute-chronic
extrapolation can be estimated. It is used in
turn to_extrapolate from the LC50 to the MATC (see
Figure 7.1). Note that each LC50-MATC pair is the
result of a different study reported in the
toxicological literature. To ensure
compatability, only results obtained under similar
experimental conditions with uniform protocols are
used for establishing the acute-chronic
relationship.

Estimated error (residuals) about that
relationship and error of the parameter estimates
determine the error of an extrapolated MATC,
similar to prediction variances in ordinary_ linear
regression analysis. This allows the calculation
of the risk that a given environmental
concentration of the chemical being assessed
gxfeedstthe extrapolated MATC for the species of
interest.
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Tife-cycle tests plotted agatast logaritims of 96-0 tlgp

! values determined for the same species and chemical in the
same laboratory. The line 4s derived bv an

. errors-in-varisblies regression;

Figure 7.1 (fror
Suter et al., 1986a)

Suppose we want to assess the chronic effect
of a given chemical on species A of fish. If an
1C50 is available for this species-toxicant pair,
the acute-chronic extrapolation can be agplied
directly. The variability of the data about any
fitted curve is quite large. As a result,
different classes of curves might be considered
for defining the extrapolation relationship. In
the applications examined so far, logarithmic
transformation in both variables produced a linear
:reng and homogeneity (equal variances) about that

rend.

7.3 Taxonomic and 2-step extrapolation
In the case where no test results on species A

of interest are available, another test species B
has to be chosen for the purpose of extrapolation.



The uncertainty due to extrapolating from B to A
depends on the difference of the sensitivities of
s jes A and species B to the chemical. This
difference is assumed to be proportional to the
"taxonomic distance" between A and B. For this
reason, extrapolation relationships are estimated
between taxa having the next higher taxon in
common. This is done by pairing IC50's of common
chemicals to members of the two taxa, whenever
there are enough such pairs to allow curve
fitting. The resulting curve is used for
extrapolating the 1C50 of the species of interest
from the LC50 of the test species. This is called
taxonomic extrapolation. Figure 7.2 depicts an
example of a taxonomic extrapolation between two
different genera that are members of the family
Salmonjdee. The 1C50°'s data base is compiled

either from a single laboratogasgr from several
laboratories (Suter et al. 1986b). The data base
is screened to insure compatability with respect
to testing conditions. As with the acute-chronic
extrapolation, the data are log transformed to
produce linearity and homogeneity.
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Figure 7.2 (from
Suter et al., 1986b)

Taxonomic and subsequent acute—chronic
extrapolation are combined in order to extrapolate
to a chronic effect threshold. Thus, Z = c+dY =
c+d(a+bX), results from combining Y = a+bX, the
estimated line for taxonomic extrapolation and
Z = c+dY, the estimated line for acute-chronic
extrapolation. The variance of an extrapolated
MATC 1s calculated under the assumption of
statistical independence between the set of
variables associated with the two extrapolations.
Estimated variance of an extrapolated MATC is
quite large especially when the extrapolation
requires more than one step. Assuming a normal
distribution for the extrapolated MATC (Suter et
at. 1986a) is therefore not likely to affect the
resulting risk calculation too strongly.

7.4 The Data

We focus in the following on the acute-chronic
extrapolation. Most of the problems and issues
discussed arise equally in the context of the
taxonomic extrapolations. Let (Xi.Yi) be an

LC50-MATC pair for a particular toxicant species
combination (i = 1,...,n). The following are the
features of the acute-chronic "data set” of Fig.
(i) Bach point (or pair) represents a

reported result from a bio—a-sa¥ experiment.

(ii) Different points result from different
studies.

(iii) The collection of points has been
gathered from the literature. Hence the (xi.vi)

may not constitute a random sample from the
population of all gossible LC50-MATC pairs.
(iv) Since ( 1.Y ) are estimates of

threshold concentrations, they are themselves
random quantities. There is considerable
uncertainty about their "true" values.

7.5 Combining Estimates

Traditional methods of extrapolation are often
based on the use of a single test species such as
fathead minnow for fresh water fish. The ratio of
its MATC to IC50 is multiplied by Xo, the LC50

for the species of interest; using the above
notation, this is

Y- X,Y;/X;, where (X,,¥)
denotes (1C50, MATC? o% the test species.

This provides a point estimate of the chronic
threshold concentration. It is subsequently
"scaled down" by correction factors accounting for
the uncertainties due to extrapolation and natural
variabilities. The final value for the
extrapolated MATC degends strongly on the test
species chosen as well as on the particular
sources of uncertainties considered.

An improved combined estimate can be obtained
by using the test results of several toxicants and
several species. Let bi = vi/xi be the "slope”

from the test on the ith toxicant-s ies pair. A
combination estimate can be formed by means of a
linear combination of the individual estimates

using weights Wi

In some cases, when the weights are chosen
proportional to the statistical influence of the
corresponding observations, the resulting
combination estimate turns out to correspond to a
particular estimate of that curve. For linear
regression through the origin, the slope estimate
is obtained by choosing the weights proportional
to the squared lengths of the i

JEIXy T v

b 1 = =T wb., ,
T x? T xz 11
where bi = yi/xi ’
d x§
an w, = ,
LI % x:

(i=1l,...,n) .
Thus, combining extrapolation factors (estimates)

bi is equivalent to estimating an extrapolation
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curve for the collection of points (xi’Yi)' This

motivates the procedures described below.

:g:;nye ?g:g not cgnsidered any of the
icalities such as variable t i

correcticn for the intercept. e transformation or

The main advantage of estimating an
extrapolation curve over traditional method lies
in the availability of standard error estimates.
Thus the method provides explicit quantification
of the sources of errors involved. Combining all
available LC50-MATC pairs reduces the uncertainty
by using the largest possible data set. On the
other hand, it increases the variability because a
wide variety of toxicants and species are "lumped”
together. Bxtrapolation by using results of one
particular class of chemicals reduces this
variability. However the representativeness of
the remaining species might be in question after
the data have been partitioned by chemical class.
The use of the azgropriate data set for a given
extrapolation problem needs to be carefully
examined.

Notice

7.6 The Model

Logarithmic tranaformation of both Xi

produces linearity and homogeneity to a
satisfactory degree given the natural
variabilities. We propose an errors—in-variables
igIV) model for estimation of the extrapolation

ine for the date described in 7.4. The
assumptions underlying ordinary least-squares
(OLS& regression analysis are clearly violated.
In the errors—in-variables model (Xi.Yi) are

assumed to have been recorded with error. They
represent unknown mathematical quantities (Ui'vi)'

and Yi

Linearity is assumed between the Ui and Vi.
resulting in the model:
X. = U.+0.
b Poloov, = ey, iz 1,000,
Yi = Vi+¢i

Normal distributions with zero means are commonly
assumed for the errors ‘i’ £ with

var(&i) = o:, var(:i) = c:, cov(éi,ci) = 0, and
(6i,ti) independent of (63"j) for 1 # .

Two EIV models have been studied extensively:
(Kendall snd Stuart, 1979; Gleser 1983).
(i) The structural model: the i
assumed to be a random sample,.
(ii) The functional model: no assumption on

the Ui'

are

For identifiability in both mwodels, one of the
variance parameters has to be ass known a
priori. 1In the classical case, this is A = 0%/0%-

More complicated models would be more
realistic for the extrapolation problem. These
are:

(iii) The ultrastructual model: U random but
Yg;g)different locations for different i (Dolby,
(iv) The model with error in the equation

(Schneeweiss, 1976). .

Both (iiis and (iv) can not be distinguished
from the functional model (ii) unless replicate
observations are available or additional a priori
assumptions about the error structure are made
(Gleser, 1 . .

Maximum likelihood estimators of the slope #8
and the intercept a for both, the structural and
the functional model, are:

B = h + sign(SXY)(h3+0)%;
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where h = SYY-ASXK . a = Y-;X;
28XY

where bars denote averages and SXX, SXY, SYY the
usual corrected sums of squares.

The correspgnding OLS slope b = SXY/SXX is
smaller than @ in absolute value, thus downward

biased. # can also be obtained by minimizing the
sum of squared distances from (xi'Yi) to the

line under a vertical angle with tangent of B/
(Mandel, 1984). Sugh a east-squaregen of #/

interpretation of # allows for straightforward
generalizations to weighted EIV in the case of
unequal variances (Sprent, 1966). Thus reporting
biases and inhomogeneities resulting from
combining the LC50-MATC estimetes can be
incorporated in the model. This produces the

estimates:
B = B¥r(b"sn)%; where n¥ = SYYIASXKT
2sxy”
I R o L
I w,
1
SXX" = £ w, (X;-X")%, etc.

7.7 Risk Calculation and Evaluation

The final risk calculation is determined by the
statistical distribution of the MATC that has been
extrapolated from an input LC50. Exact
distributions of the BRIV estimators are not
tractable. Given the large variabilities,
estimates of asymptotic standard error combined
with normality assumption are considered accurate
enough in this context. For future refinements,
resampl ing methods such as the bootstrap might be
a{plied to obtain small semple distributions or
standard error estimates.

For the approximate variance of an

extrapolated MATC, we add a variance term (;:)

to the variance of a fitted Y-value as given in
Mandel, 1984. This results in the following
formula for the weighted EIV model:

v;r(Ynew)

(1+8%/2)% (x-X) 2

= ;‘+;33§+sa 5%7 +
¢ ‘[ 1 gxx"+28SXY"/2+#3sSYYY /22

~

gfsxx"—gﬁsxv'+sxx"

where S3 =
¢ n-2
~ s? - -
o= -
1+8% /2

It has been frequently sug ested (Lindley,
1946; Kendall and Stuart, 19 to use OLS
regression if the purpose of the analysis is
prediction even when the X’s have been measured
with error. Prediction, or in general regression
analysis is based on the covariation of the two
random variables X and Y. Predictions by means
of the conditional properties of Y iven X are
poasible for the structural EIV model. The
situation is different in the functional model.
Strictly speaking, the (xi'Yi) constitute

different random variables for i = 1,...;n. The
only existing relationship lies in the proposed



structure (in this case, the line) for the
location of the means. Thus this is not a
classical prediction problem, since no conditional
means or variances are involved. It is for this
reason, we propose to use EIV estimates for

the extrapolation problem.

The method of combining estimates for
extapolating MATC's is based on purely statistical
grounds. Relative magnitudes of estimated
standard errors seem to be appropriate from a
biological point of view. For the applicability
of the methods, the results (absolute itudes;
have to be evaluated in terms of their blologica
meaning. This has been done extensively (Suter et
al., 1586:) by comparing extrapolated MATC's with
measured MATC’s for toxicant-species combinations,
where the results are available. In addition the
method was compared to the traditional approaches
using only results on fathead minnow. It has been
generally found to out perform the old methods.

8. COMBINING CONCLUSIONS ACROSS SPECIES

The NOAA Chesapeake Bay Stock Assessment
Committee has been set up to help develop a plan
to establish a cooperative stock assessment
grogral. The Center for Statistical Ecology and

nvironmental Statistics has been studying various
continuous and categorical multiple time series
methods to partition the effects of fishing
mortality, natural mortality and the effects of

llutant loadings on stock sizes (Boswell

inder, Ord, Patil, and Taillie, 1986). The data
set used to evaluate these methods was compiled
from historical environmental data, pollution
data, and fishing data (see Summers et al. 1984).
As such as possible, the environmental and
pollution varisbles were chosen to be meaningful
in terms of the fish stocks to be investigated.
However, the pollution variables are
macro-pollution variables which give gross
indications of the corresponding pollution
loadings.

Examples of environmental variables are
average monthly air temperature, river temperature
and flow, wind speed and direction, etc. Ex les
of pollution variables of regions in or near the
selected water systems are human population size,
e-Yloyees in manufacturing industries, sewage
volume discharge, acreage in improved farmland,
total annual volume dredged, five-day biochemical
oxygen demand for loadings from treatment plants,
minimum 28 day average summertime dissolved
oxygen, etc. The fish data, consisting of
information from various sources, was combined to
give a stock index in the form of catch per unit
effort for the dominant fishing gear used in the
region. Different species were chosen for
different parts of the Chesapeake Bay. For the
Potomac River system, the species chosen are
;{riped gass, American shad, American oyster and

ue crab.

The results of a study of the pollution
effects on fish stocks would be of interest to
managers with the job of deciding what pollution
is in need of abatement ﬁrograns. It may turn out
that different fish stocks are affected
differently by the pollutants. If the study could
provide some measure of impact for each pollutant
on each species and if the lanager can provide
weights giving the i rtance of each species,
then the problem can be approached bg the method
of combining expert opinions, described in the
next section. With nacropoliut1on variables such
as those included in the study, clear-cut results
are not to be expected. This study was mainly to
identify, adapt, and develop the statistical
techniques as needed. . .

The first technique considered is that of
multivariate time-series regression. Thas
requires the assumption of some functional form to
incorporate the effect of the variables on the
stock size variable. The usual assumption of a
linear model was used and all biologically
meaningful lags were incorporated.

Categorical regression was used by Summers et
al (1984) and was studied here as a starting point
for modifications to incorporate meaningful

86

biological concepts into the lag structure. The
meth tried incg;gorate a distributed lag
structure and a combination of continuous and
categorical methods.

Transfer function modeling was also tried.

It is possible that various meth would
yield different results. If the correct method to
use is unknown, then the combining of the results
of various studies using different methods may
grovide better results than any one study by

tself. This problem is analogous to the problem
of combining expert opinions as outlined in the
next section.

9. COMBINING CONCLUSIONS FROM EXPERTS

The necessity for combining probabilities

could arise in two situations—-described
respectively as the group decision problem and the
panel of experts problem. 1In the first,
individuals with different probability judgements
and different preferences) have to make a joint
ecision. Under certain circumstances, this joint
decision could be the result of maximizing a group
expected utility where the expectation is taken
with respect to a combined or group probability
distribution. In general, the group decision
problem is intractable. (References to various
asgects of this problem include Arrow (1951)
Hyland and Zeckhause (1980) and Wilson (19685.)

The second situation, the panel of experts
problem, is set in the context of a single
decision maker who wishes to combine information

obtained from various experts, rather than
opinions. ile, in the group decision problem,
agreement on probabilities would facilitate
solution of the problem, divergence of information
is beneficial for a decision maker seeking
independent sources of information as input into

his or her fudgenen;. ’
Morris (1977), Winkler (1981),

Lindley
(1983,1985) and others produce resolutions of the
panel of experts problem. In Lindley (1983), the
decision maker has a diffuse prior on the quantity
of interest. The conditional distribution of
expert assessaments given the true value of the
arameter is multivariate normal with the
individual expert's assessment of the mean
allowing for bias and with the decision maker
having to specify the covariances between the
different expert assessments. The decision
meker’s posterior mean, given the expert
assessments, is then shown by Lindley to be a
weighted average of the experts’ assessed means.
. Note that it is always at least as good to
include additional experts (if they are free) as
not to include them. This is a different way of
stating the standard result on the non-negative
value of information. However, this assumes that
all experts have appropriate incentives to gather
and to report information.

In certain circumstances, the likelihood
function of expert assessments may be impossible
to specify. In this case, insights obtained from
group decision theory and axiomatic approaches to
combination may help in aggregating assessments
without explicitly calculating posterior
distributions. Axiomatic approaches are to be
found in Madansky (1964), Morris (1983) and the
extensive literature in Section 3 of Genest and
Zidek (1986). Madansky (1964) considered the
linear :gxnion pool, a weighted arithmetic average
of probabilities, and showed that such a linear
opinion pool was not "externally Bayesian with a
fixed constitution.” That is, it was impossible
to find a set of non-negative weighting constants
such that a posterior based on a common likelihood
and a weighted prior would be the same as a
weighted posterior based on a common likelihood
and different priors. Raiffa (1968) argues that,

in this case, thgsgriors should be combined.
The Wilson (1 ) theory of s{ndicates yields
a geometric average of individual probability

distributions (or an arithmetic average of log
odds ratios) as the appropriate combined
distribution. This avoids the difficulty found by
Madansky.

An example due to John Pratt (cited in Raiffa



(1968)) shows that linear opinion pools have an
additional deficiency of not preserving the
independence of events after combination. Genest
and Zidek (1986) discuss recent investigations of
this independence preservation property.

. Another reaction to the lack of a well-
specified likelihood function is to dispense with
probability theory and rely on the Dempster-Shafer
theory of combining evidence. (Shafer (1976),

Krantz and Miyamoto (1983).)
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DISCUSSION
Lloyd L. Lininger, U.S. Environmental Protection Agency

The problems presented in this paper
give an idea of the diversity and
difficulty of the problesm that are
routinely encountered at the U.S.
Environmental Protection Agency.
to draw attention to the diversity
because I think that it is currently not
practical to think of developing a
methodology for combining studies that is
simultaneously applicable to all problems.
I think the problems presented also point
out the basic reason we must work on the
problem of combining results of studies.
Namely, we are unable to do "the"
experiment that we believe is required to
make a decision. We have to use the
information we have from other studies
that were designed for a different pur-
pose and possibly augment them with
further studies to make the decision.
This always requires the assumption of
some model, possibly with some error
structure included.

I am confident that any attempt to
apply the methodologies advocated by the
previous speakers to these problems would
soon expose the difficulties and
uncertainties of those procedures. I do
believe that those attempts should be
made. * They would result in systematic
approaches to modeling the underlyaing
problems and focus attention in the most
appropriate places.

The recruitment data presented is use-
ful for emphasizing several points. When
combining studies we must always keep in
mind the "question" we wish to address.
The authors state that one of the
objectives is to estimate a "universal"
recruitment distribution. First, note
that the solution will be a "distribution"
which is a somewhat unusual outcome for
an experiment. Details of the analyses

I wish
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are lacking, but I would be interested in
the sequential aspect of each of the
individual samples, the possible
relationships between species and the way
the 18 species were selected from all
species. Finally, I would ask why a
"universal” distribution is desired. Too
frequently, one looks for a question that
combining data sets might answer, instead
of looking for ways to answer a question
by combining data sets and developing an
appropriate model.

The "crystal cube" problem is also a
long standing problem in statistics. How
do we reduce a multivariate model to a
one dimension model that will serve as an
index of the phenomenon in which we are
interested? Unfortunately, the termino-
logy gives no help in deriving or under-
standing how such an index would be
derived. The relationships between faces
and some "geometrical" concepts would be
helpful before this terminology 1is
accepted.

The problems presented in
tend to combine studies each
collected information on the same
problem. Problems which are "linked
linearly"” as in the exposition by Eddy
and Wolpert require different modeling
approaches.

Finally, any methodology to combine
data across studies assumes some under-
lying model, If extensive effort has
gone into developing a model to combine
studies, then it is relatively straight
forward to do simulation studies to
evaluate the characteristics of the model.
None of the presentations exploited this
useful technique.

this paper
of which



06

ORGANIZING COMMITTEE

Chair: Kinley Larntz, Washington State University-Pullman
Dorothy Wellington, Environmental Protection Agency
Walter S. Liggett, National Bureau of Standards
Emanuel Landau, American Public Health Administration

This Conference is the second in a series of research
conferences organized by the American Statistical
Association, supported by a cooperative agreement between
ASA and the Office of Standards and Regulations, under the
Assistant Administrator for Policy Planning and Evaluation,
Environmental Protection Agency.

ASA/EPA CONFERENCE ON STATISTICAL ISSUES IN
COMBINING ENVIRONMENTAL STUDIES

OMNI SHOREHAM HOTEL
WASHINGTON, D.C.

OCTOBER 1-2, 1986

American Statistical Association
806 Fifteenth Street, N.W.
Washington, D.C. 20005

werdoly SIPNIS [eIudmUOIIAUg FUNNqWO) U SINSS] [EINISIIRIS UO IDUIIIJU0) VdI/VSV 'V XIANIddV



16

PROGRAM
WEDNESDAY, OCTOBER 1

9:00 a.m.
INTRODUCTION

Kinley Larntz, Washington State University
Dorothy Wellington, Environmental Protection Agency

9:10 a.m.
CONFIDENCE PROFILES:
A BAYESIAN METHOD FOR ASSESSING HEALTH TECHNOLOGIES
David Eddy & Robert Wolpert, Duke University

10:40 a.m.
BREAK

10:55 a.m.
DISCUSSANT

David Lane, University of Minnesota/McGill University

11:30 a.m.
COMPUTER DEMOUSTRATION OF CONFIDENCE PROFILES METHODOLOGY
12:15 p.m
LUNCH
1:30 p.m.

META-ANALYSIS AND ENVIRONMENTAL STUDIES
Larry V. Hedges, University of Chicago

3:00 p.m.
BREAK

3:15p.m
DISCUSSANTS

Chao Chen, Environmental Protection Agency
James M. Landwehr, AT&T Bell Laboratories

4:00 p.m.
FLOOR DISCUSSION

4:45 p.m.
RECEPTION

THURSDAY, OCTOBER 2

9:00 a.m.
INTEGRATION OF EMPIRICAL RESEARCH:
THE ROLE OF PROBABILISTIC ASSESSMENT

Thomas Feagans, Decisions in a Complex Environment, Inc.

10:30 a.m.
BREAK

10:45 a.m.
DISCUSSANTS

Harvey Richmond, Environmental Protection Agency
Anthony D. Thrall, Electric Power Research Institute
Lee Merkhofer, Applled Decision Analysis, Inc.

11:30 a.m.
FLOOR DISCUSSION

12:00 p.m.
LUNCH

I:15 p.m

STATISTICAL ANALYSIS OF POOLED DATA IN ECOLOGICAL AI'D

ENVIRONMENTAL WORK WITH SOME EXAMPLES
G. J. Babu, M. Boswell, K. Chatterjee, E. Linder,
G. P. Patii, & C. Tailie
Pennsylvania State University

2:30 p.m.
DISCUSSANT

Lloyd Lininger, State University of New York, Albany

3:00 p.m
BREAK

3:15p.m
CONCLUDING PANEL DISCUSSION

Kinley Larntz, Washington State University



APPENDIX B: Conference Participants

ASA/EPA CONFERENCE ON STATISTICAL ISSUES
IN COMBINING ENVIRONMENTAL STUDIES
October 1-2, 1986

OMNI SHOREHAM HOTEL
WASHINGTON, DC

G.J. Babu

Pennsylvania State University
Department of Statistics
University Park, PA 16802

R. Clifton Bailey
U.S. EPA

6507 Divine Street
McLean, VA 22101

James C. Baker

U.S. EPA Region 8

999 18th Street, Suite 1300
Denver, CO 80202-2413

Ted O. Berner

Battelle Columbus Division
2030 M Street, N.W., Suite 700
Washington, DC 20036

M. Boswell

Pennsylvania State University
Department of Statistics
University Park, PA 16802

Robert N. Brown

Food and Drug Administration
200 C Street, S.W., MC~HFF-118
Washington, DC 20204

K. Chatterjee

Pennsylvania State University
Department of Statistics
University Park, PA 16802

Chanfu Chen

Lederle Laboratories
Building 60, Room 203
Pearl River, NY 01965

Chao Chen

U.S. EPA

401 M Street, S.W., RD-689
Washington, DC 20460

Jean Chesson

Battelle

2030 M Street, N.W.
Washington, DC 20036

Keewhan Choi

Exxon Corporation

Four Bloomingdale Drive, #517
Somerville, NJ 08876

Vincent James Cogliano

U.S. EPA

ORD, OHEA, CAG

401 M Street, S.W., MC-RD-689
Washington, DC 20460

Margaret Conomof
U.S. EPA

401 M Street, S.W.
Washington, DC 20460

Giles Crane

Department of Health
John Fitch Plaza, CN-360
Trenton, NJ 08625

John P. Creason

U.S. EPA

HERL/Biometry Division/MD-55
Research Triangle Park, NC 27711

J. Michael Davis

U.S. EPA

MD-52, ECAO

Research Triangle Park, NC 27711

Hari H. Dayal

Fox Chase Cancer Center
430b Rhawn Street
Philadelphia, PA 19111

Elizabeth A. Dutrow

U.S. EPA

401 M Street, S.W. (TS-798N)
Washington, DC 20460

David Eddy

Duke University

Center for Health Policy Analysis
Durham, NC 27706

92



Thomas B. Feagans

Decisions in a Complex Environment, Inc.

636 Wayland Place
State College, PA 16803

Bernice T. Fisher

U.S. EPA

1600 S. Eads Street, #5255
Arlington, VA 22202

Ruth E. Foster

U.S. EPA

401 M Street, N.W.
Washington, DC 20460

Michael E. Ginevan
9039 Sligo Creek Parkway, #1108
Silver Spring, MD 20901

John Goldsmith

U.S. EPA

Biometry Division, MD-55
Research Triangle Park, NC 27711

Noel P. Greis

Bell Comnunications Research
331 Newman Springs Road
Red Bank, NJ 07701

Gary F. Grindstaff

U.S. EPA

TS-798, 401 M Street, S.W.
Washington, DC 20460

Vic Hasselblad

Center for Health Policy Research
and Education

Duke University

Durham, NC 27706

Larry V. Hedges
University of Chicago
College of Education
Chicago, IL 60637

Robert W. Jernigan
U.S. EPA-SPB
American University
Washington, DC 20016

Woodruff B. Johnson

U.S. EPA

401 M Street, S.W., Room 223
Washington, DC 20460

Borko D. Jovanovic

. University of Massachusetts
Department of Public Health
Amherst, MA 01003

Marvin A. Kastenbaum
The Tobacco Institute Inc.
1875 Eye Street, N.W.
Washington, DC 20006

Richard F. Kent

U.S. EPA

1 Scott Cirlce, NW. #716
Washington, DC 20036

Kay T. Kimball

Oak Ridge National Laboratory
P.0. Box X, 45008, MSF-260
Oak Ridge, TN 37831

Kathleen D. Knox

U.S. EPA

401 M Street, S.W., PM-223
Washington, DC 20460

Herbert Lacayo, Jr.
U.S. EPA

4520 King Street, #502
Alexandria, VA 22302

Emanuel Landau

American Public Health Assn.
1015 15th Street, N.W.
Washington, DC 20005

James M. Landwehr

AT&T Bell Laboratories

Statistical Models and Methods
Research Department

Murray Hill, NJ 07974

David Lane

University of Minnesota
270 Vincent Hall
Minneapolis, MN 55455

Kinley Larntz

Washington State University
Program in Statistics
Pullman, WA 99164-6212

Walter S. Liggett, Jr.

Center for Applied Mathematics
National Bureau of Standards
Gaithersburg, MD 20899

E. Linder

Pennsylvania State University
Department of Statistics
University Park, PA 16802

93



Lloyd Lininger

State University of New York-Albany
(U.S. EPA)

Albany, NY

Bertram D. Litt

U.S. EPA
OPP/Statistics (TS-769)
14502 Woodcrest Drive
Rockville, MD 20853

Rebecca A. Madison
U.S. EPA

401 M Street, S.W.
Washington, DC 20460

Sam Marcus

National Center for Health
Statistics

13417 Keating Street

Rockville, MD 20853

Elizabeth H. Margosches
U.S. EPA (TS-798)

401 M Street, S.W.
Washington, DC 20460

Lee Merkhofer

Applied Decision Analysis
300 Sand Hill Road

Menlo Park, CA 94025

Barry 1. Milcarek

Mobil Oil Corporation

150 East 42nd Street, Room 1324
New York, NY 10017

Patricia Murphy

U.S. EPA-Cincinnati
26 West Saint Clair
Cincinnati, OH 45268

Tom M. Murray

U.S. EPA

401 M Street, S.W.
Washington, DC 20460

C.J. Nelson

U.S. EPA (TS-798)

401 M Street, S.W.
Washington, DC 20460

Barry D. Nussbaum

U.S. EP4

EN-397F, 401 M Street, S.W.
Washington, DC 20460

G.P. Patil

DPennsylvania State University
Department of Statistics
University Park, PA 16802

Susan A. Perlin

U.S. EPA

401 M Street, S.W.
Washington, DC 20460

Lorenz R. Rhomberg
U.S. EPA (TS-798)

401 M Street, S.W.
Washington, DC 20460

Harvey Richmond

U.S. EPA

OAOPS, MC-MD12

Research Triangle Park, NC 27711

Wilson B. Riggan

U.S. EPA

HERL/Biometry Division/MD-55
Research Triangle Park, NC 27711

Frederick H. Rueter

CONSAD Research Corporation
121 North Highland Avenue
Pittsburgh, PA 15217

Joel Schwartz

U.S. EPA

1207 Fourth Street, S.W.
Washington, DC 20024

Judy A. Stober

U.S. EPA

26 West St. Clair
Cincinatti, Ohio 45268

Miron L. Straf

Comniittee on National Statistics
National Academy of Sciences/NRC
2101 Constitution Avenue, N.W.
Washington, DC 20418

’ Da;'id J. Svendsgaard

U.S. EPA
MD-55
Research Triangle Park, NC 27711

C. Tadilie

Pennsylvania State University
Department of Statistics
University Park, PA 16802

94



Anthony D. Thrall

Zlectric Power Research Institute
P.O. Box 10412

Palo Alto, CA 94303

Harit Trivedi
Pennsylvania Department

of Environmental Resources
Bureau of Information Systems
Harrisburg, PA 17110

Alta Turner

Ebasco Services Inc. *
160 Chubb Avenue
Lyndhurst, NJ 07071

Paul G. Wakim

American Petroleum Institute
1220 L Street, N.W.
Washington, DC 20005

John Warren

U.S. EPA

03023 (PM-223)

401 M Street, S.W.
Washington, DC 20460

Dorothy Wellington
U.S. ZP4

401 M Street, S.W.
Washington, DC 20460

Herbert L. Wiser

U.S. EPA .
Office of Air and Radiation
ANR-443, USEPA
Washington, DC 20460

Robert Wolpert

Duke University

Center for Health Policy Analysis
Durham, NC 27706

You-yen Yang

U.S. EPA

401 M Street, S.W.
Washington, DC 20460

95



as the latter, but in discussions it is sometimes

applied to the former as well.6 In this paper the
usual definition of meta-analysis is both accepted
and adhered to, with reanalysis of pooled data
considered to be a third form of secondary
analysis and not a form of meta-analysis. The
distinction between meta-analyses and other
analyses is then a clear-out distinction between
analysis of empirical data in the case of the latter
and analyses of results of empirical studies in the
case of the former.

Returning to the rationale for doing meta-
analysis, it has been cast along the lines that by
using the deductive power of mathematics, in the
form of statistical techniques, to integrate the
results of a large set of studies it can be done
more satisfactorily than by narration, just as the
analysis of data in one of the original studies is
done more satisfactorily by such techniques than
by narration.” In the process of putting this
rationale into some perspective, we can work
toward specification of the function served by
meta-analysis.

There are problems for both meta-analysis
and secondary analysis of pooled data. For
secondary analysis of pooled data, the raw data is
not available in many cases. For meta-analysis,
conventional statistical procedures are
problematic for both statistical and conceptual

reasons.8 For both, study designs tend to differ
in significant respects.

In the face of such problems, two-extremes
are to be avoided. On the one hand, application
of statistical methods is useful even when the
conditions under which they are applied are not
perfect in some sense. Also, methods more
suitable for meta-analysis are being developed.
The idea of developing and applying meta-
analytic methods is unimpeachable, and not using
them due to inertia or purism unwarranted.

On the other hand, it is important to avoid
false dichotomies. Various means of informing
policy decisions can be complementary rather
than viewed as competitors Statistical methods
are one powerful means of bringing the deductive
power of mathematics to bear, means that serve
an important function. But narration and other
uses of mathematics which serve other functions
need to be brought to bear as well.

The function in the decision-making process
provided by meta-analyses is the application of
statistical algorithms to the results of primary or
secondary empirical studies. The purpose. is to
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help deduce, infer, and consolidate implications
of sets of studies. In so doing meta-analyses can
reduce the amount of narration needed in state of
information assessments.

The choice of algorithms to be applied in
meta-analyses is subjective, but not arbitrary.
Both substantive and statistical theoretical
principals are applied where possible in making
these choices. The choices are generally both
judgmental and affected by substantive empirical
content. Although two different persons might
choose two different algorithms and/or sets of
studies in a given case, any two persons would
get the same result from correct application of the

same algorithm to the same set of results.d
Thus, although all three types of integration have
both subjective and objective (intersubjective)
aspects, meta-analysis has more objective aspects
than the other two. For non-empirical Bayesian
analyses some judgment would also enter as
input to the algorithm in the form of subjective
priors.

3.0 State of Information Assessments

Before making important policy decisions, it
is useful to assess what is known and what is
uncertain about the relationship between options
and their consequences. Such assessments serve
the ultimate purpose of the society maintaining as
much control as possible over its future. Societal
decison-making agents should make important
decisions with what the society knows as a
collective available to them. They should not
make such decisions under the assumption that
we know more about the connections between
decison alternatives and their consequences than

we do.10
Such assessments have been done in various
forms and in all these forms, narration has played
an important role. While meta-analyses can
reduce the need for narration, they cannot
eliminate this need. Non-formal exposition is
essential for the task of interpreting the formal
results of primary, secondary, and meta-
analyses, particularly in interpreting their
implications for the policy.decisions at hand.
Even for primary research, "often the statistical
analysts is just a preliminary to the discussion of
the underlying meaning of the data."11
1 i (or
scientific assessments) serve the function within
the decison-making process of assessing.the state
of knowledge on which one or more important



decisions are to be based. It is not the purpose of
such assessments to add to the state of
knowledge, either through empirical inquiry or
through statistical analyses of data. Rather, the
purpose is to assess the knowledge accumulated
up to a point in time that is relevant to the
decisions to be made at that time.

An important issue concermswhether there is a
quanﬁt:ﬁvethmcasugegfy the degree to which a
given hypothesis, , or other proposition
has been confirmed at a given time. Were such a
measure to exist, it could play an important role
in state of information assessments. The degree
to which various theories about the shape and
location of dose-response relationships were
confirmed could be addressed, for example.
Another example would be discussion of the
degree to which the existence of a causal
relationship between a given pollutant and a
specified effect was disconfirmed by one or more
negative studies.

This issue has received a great deal of
attention from philosophers of science,
measurement theorists, and statisticians interested
in the foundations of their subject. Up until the
mid-nineteenth century, attempts were made to
construct theories of induction which guaranteed
the truth of the conclusions to which their
applications led. As soon as it became clear that
some uncertainty or doubt about the truth of
conclusions of inductive inferences is inevitable,
methodologists began to consider scientific
theories to be more or less probable, more or less

worthy of rational belicf.12Various attempts to
reduce inductive logic to probability theory have
followed. Despite efforts by such outstanding
intellects as DeMorgan, 13 Jevons, 14 Pearce, 15

Keynes, 16 and Camap,17 all such attempts have
failed.

These attempts have failed for a reason.
Degree of confirmation or inductive support and
probability are distinct concepts. The difference
is subtle, but real and important. The failure to
discern and explicate this distinction has
bedeviled the history of these two (historically)
conflikted topics.

Most generally, the concept of probability has
to do with the balance of favorable and
unfavorable evidence; the concept of degree of
confirmation has to do with the amount (and
kind) of supporting evidence. If there is little
evidence, favorable or unfavorable, for a
proposition, probability assignments concerning

the truth of the proposition can reasonably be
near 0.5 . In contrast, by any reasonable account
of confirmation, the degree of confirmation for

. the proposition is near 0.0.
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Perhaps the most thorough attempt to develop
a confirmation theory based on inductive logic
was that of the philosopher of science, Rudolf
Camap. It is Carnap's terminology, "degree of
confirmation,” that is being used to describe the
quantitative concept that is is important for the
state of information integrative function.
Camap's work gave rise to thorough critiques of
objectivist confirmation theories, and in his later
years he began shifting toward a Bayesian point
of view.l

The overoptimism concerning the possibility
of a fully general and objective framework that
pervades the historical attempts to develop
inductive logic has been another obstacle to
progress. Measurement of degrees of
confirmation and probability are, most generally,
more subjective than meta-analyses. The
objectivity, in the sense of intersubjectivity, that
is inherent tc the meta-analysis function is
unachievable for the other two integrative
functions. We have used the appelation "meta-
analysis" to name an algorithmic function since
that term is gaining wide usage and the usage
seems to roughly correspond to that function. (It
should be kept in mind that from a decision-
theoretic point of view, it is the functions, not the
semantics, that are important.) One of the major
keys to progress that has been made recently in
confirmation theory is relaxation of the

requirements of objectivity. 19,20 Although
Shafer and Krantz have made significant
progress in what we are calling confirmation
theory, they do not recognize the distinction
between probability and degree of confirmation.
Hence, like so many before them, they refer to
what we are calling degree of confirmation as
"probability.” Likewise, Cohen makes what
appears to be a similar distinction in terms of

“Pascalian probability” and "Bacgonian
probability” 21
4.0 ilisti

The role of probabilistic assessment in the
decision-making process is to use whatever
information and statistical analysis exists at the
time the decision in question is to be made and

" relate the consequences the decision is designed

to affect back to decision alternatives in a way



that will achieve as much control as is feasible
under the circumstances. Thus, the third
integrative function, probabilistic assessment,
uses the outputs of the first two integrative
functions, meta-analysis and the state of
information assessment. It is in turn an input to
valuation analysis, decision analysis, and
ultimately decision-making. Valuation analyses
and decision analyses accomplish two other
functions needed in support of decision
making.22,23

Control is a meta-objective concerning the
relationship between decision alternatives and
primary objectives under uncertainty, Control in
the sense meant here is analogous to the
tightness/slack aspect of a steering mechanism
and is not tied to any particular regulatory policy
direction. The ultimate justification of the
approach suggested to probabilistic assessment is
that (in general) its greater generalty gives more
control.

Risk assessments are probabilistic
assessments in which the consequences are

“ adverse.24 Risk assessments also include

description of the seriousness of the adverse

effects. The primary objectives in risk

asf»tgessments are the avoidance of adverse health
effects.

4.1 Probability

There are many ways the complex topic of
probability can be addressed. In this discussion,
we address the relationship between the levels of
generality possible in making probability
assignments and the perspective of the user of
these assignments. This discussion will provide
the basis for the selection of an approach to
probabilistic (risk) assessment.

There are various possible interpretations of
probability statements from the point of view of
how they came to be made. These various
interpretations have been much discussed for a
long time. Three levels of generality fall out of
all these discussions. At the lowest level of
generality, probability assignments are made as
the ratio of two nonnegative integers; if one of
the integers is larger it is the denominator. This
ratio may result from the application of a logical
or relative frequency mathematical model.

The user of probability assignments only
cares about how the probabilities were assigned
in so far as it sheds light on how well a set of
such assignments can be expected to predict in
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the probabilistic sense. Measurement of how
well sets of probabilities p.edict involves two
criteria, the criteria of calibration and resolu -

tion.25 A canonical process of probability
assignments can be defined in terms of these two

criteria.26 A canonical process of probability
assignments is one in which the assignments are
distributed randomly over the [0, 1] range
(canonical resolution) and approach perfect
calibration as a limit (canonical calibration).
Many discussions of probability seem to
implicitly assume a canonical process.
Canonicity does not necessarily obtain even
at the lowest level of generality in the making of
probability assignments. The phenomenon of
ambiguity, illustrated by the Ellsburg Paradox

experiments, demonstrates this fact.27 The
resolution of that paradox revolves around the
theme of carefully distinguishing and analyzing
the diverse perspectives of the maker and user of

probability assignments. 28

A second level of generality in making
probability assignments is the degree of belief
interpretation developed by the English philoso -
pher, Frank Ramsey, 29 and the Italian statisti -

cian Bruno deFinetti.30 This interpretation has
been much used by decision analysts and

Bayesian statisticians. 31 At this level of
generality, probability assignments can be made
by using a particular mathematical model, but
only if the situation is deemed to justify the use
of such a model. Many situations obviously do
not. In such cases, final integration of the
available information is done mentally and
probability assignments are made judgmentally.
Algorithmic devices, such as the
mathematical/statistical models used in
mathematical statistics in general and meta-
analysis in particular, can be very useful aids in
arriving at these judgmental assignments. Also,
probabilistic models can be built which
decompose the relationship in question so that the
assignment can be derived from less difficult
assignments. Thus, the amount of mental
integration required is reduced to more
manageable size.

At this level of generality, the fact that from
the user's perspective canonicity may not obtain
becomes critically important. It has been
considered a positive characteristic of the
Ramsey/deFinetti theory that despite iits greater.
generality, and hence flexibility in application, its



uninterpreted formal properties are equivalent to
those of the narrower interpretations mentioned
above--in other words, the usual probability
mathematics applies. n However, when
judgmental assignments are made using states of
information that will not give canonical
probabilistic prediction, from a user's
perspective, two probability assignments which
are numerically equal should be interpreted
differently.

In short, at the more general level, users
ot probabilities should interpret them in terms of
both their numerical value and the state of
information on which they are based. The
divergency of probability from canonicity in
general gives rise to the phenomenon of

agggndau_ﬁsk.n The effect of secondary risk is
to give less control to the user than he or she
would have with canonical prediction. However,
the user will have less control than he or she
could have under the circumstances of the
existing state of information if he or she
misinterprets the probabilities to be canonical (in
terms of probabilistic prediction) when they are
not.

It happens that since both the numerical value
of a probability and the state of information on
which it is based are important, the
Ramsey/deFinetti theory of probability is
conceptually flawed, even from the perspective
of applying it in making probability assignments.
According to the theory, personal probabilities
are revealed by sets of choices between pairs of
bets. One bet in each pair is canonical by
definition, and the other bet is not. But since
states of information on which probabilities are
based matter and since the states of information
are different for the two bets within each pair,
choices between each of these pairs of bets do
not necessarily reveal personal probabilities. In
general, the choices are affected by both the
person's belief and the person's attitudes toward
secondary risks.

Fortunately, there is an even more general
theory of probability which does not havethis
problem. It is no accident that it is a more
general theory that lacks this problem. Even
though the Ramsey/deFinetti theory is more
general than the first theory discussed above, it is
not general enough. Both of the theories which
are not general enough to serve as the basis of
a normative framework for probabilistic g}r;xsk)
assessmcnt are available, as special cases ofsiftore
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general theory, for the domains to which they are
general enough to apply. These domains are
large sets of problems to which the methods of
classical and Bayesian statistics, respectively,
appropriately apply.

The more general theory of probability
needed for the integrative function we are calling
probabilistic assessment is the theory axiomitized

by Bernard Koopman.33’34 On this view,
probability is an intuitive comparative relation
that in general is only partially ordered.

The distinctive characteristic of an intuitive
concept is that a large range of statements that
employ a term signifying the concept can be
understood and the meaning of the term cannot
be explained in terms of more primitive

concepts.35 An intuitive concept can be applied
correctly without using an explicit set of rules of

application.36 An intuitive concept is itself
primitive.

Just as for the Ramsey/deFinetti theory, the
key to eliciting probability judgments under the
Koopman theory is to set up a comparison
between the situation of interest and a canonical
situation. The fact that under this theory
probability is only a partially ordered comparative
relation means that for some comparisons
between the situation of interest and chosen
canonical probabilities, the person making the
probability judgments does not judge either to be
more likely than the other. The fact that there is
a range of canonical probabilities for which this
is true in general means that in general, Jower
probabilitics and nnm.nmhmxhnss are clicited
rather than

Axiomatically, the fact that in general
probability assignments are not sharp means that
an axiom which holds in the less general versions
of probability (the additivity axiom) does not
hold. The fact that in the Koopman theory the
axioms associated with canonical situations do
not apply is actually an advantage since there is
less chance for confusion; that is, there is less
chance that a user will interpret upper and lower
probabilities to be canonical probabilities. The
impression that it is an advantage of the
deFinetti/Ramsey axioms that they are equivalent
to the canonical (Kolmogorov) axioms is a
misimpression generated by focusing on
convenience of calculation for the producer rather
than on the needs of the user. Assuredly, users
have to leam how- to interpret correctly the
different kinds of output which result.



4.2 Normative Framework

The approach to probabilistic (risk)
assessment described below was developed
within the U.S. EPA Office of Air Quality
Planning and standards risk analysis program by
William F. Biller and the author.38 Support
analyses for national ambient air quality
standards (NAAQS) must deal with enormous
complexity. Thus, as general as possible an
approach was needed and developed. Because of
its generality, the approach serves well as a
normative framework for probabilistic assess -
ments. A normative framework should be as
general as possible because it is relatively easy to
reduce the generality of such a framework for the
purposes of a specific application where the
generality is either not needed or not advisable,
but almost impossible to increase the generality
of a framework within the context of a specific
appliation.

The process of conducting a probabilistic
(risk) assessment can be thought of as
conducting a set of subprocesses that together
make up the whole assessment: First, there is the
subprocess of constructing a probabilistic risk
model. Second; there is the subprocess of
selecting those who are to make probability
assignments, often substantive experts. Third,
there is the subprocess of eliciting probability
assignments. Finally, there is the subprocess of
computing and presenting outputs.

4.2.1 Model Construction

The process of constructing a probabilistic
risk model proceeds most rationally in
accordance with a "back logic.” The starting
point is a set of adverse effects that regulatory
policy could reduce. Starting with the
consequences to be reduced, possible regulatory
alternatives are identified which could reduce
these consequences if adopted. Whether a causal
relationship exists is uncertain in some cases. In
all cases, the exact quantitative relationship
between policy alternatives and consequences is
uncertain. Both of these uncertainties can be

handled formally within the framework.40
Assuming the relationship between policy
alternatives and consequences of concern is
decomposed for the purpose of reducing
judgments to more manageable size, back logic is
used to assure that the component models
interface appropriately. For example, suppose the

L1

relationship between possible NAAQS's for a
pollutant and adverse health effects to which the
pollutant contributes is decomposed into three
models:

1. standard-exposure model,

2. exposure-dose (physiological) model,

3. dose-response model.

It is the input-output structure of the dose-
response model that is chosen first; then the
exposure-dose model is chosen so that the dose
given as an output is in the form of the input
needed for the exposure-dose model. Similarly,
the standard-exposure model is chosen so that the
exposure output is the input needed by the
exposure-dose model. The component models
are chosen to give the most accurate output, with
the form of the output a given constraint. This is
the way the form of standards are best chosen,
rather than relating standards directly to effects.

These component models are probabilistic
models, so the overall model that relates decision
options to the consequences to be affected is a
probabilistic model. There is ordinarily no
“correct” degree of fineness for the structure of
the representation. Obviously a factor is. the
importance of the problem and the resources
available for the assessment. A finer and
therefore larger model costs more to build and
implement. This is one of several questions of
scale that must be decided before doing the
assessment. The ideal would be to have
alternative models of varying fineness of
structure and then crosscheck and interrelate
them. Such an approach would make the most
use of indirect (background) information and
coherence in the sense of consistency. Making
maximum use of indirect information and
coherence is most important for situations in
which direct data is sparse.

Available data, statistical analyses of data,
and indirect information are all considered in the
process of constructing and choosing the
probabilistic (risk) model. If two possible
alternative models appear to be of equal merit as
representations of the situation, but one has
better information available to support probability
judgments and other inputs, then it is preferred.
If there is better data for the lesser
representation, there is a tradeoff. If the better
representation (model) is a refinement of the
lesser representation, then the better
representation is preferred since the data available
for the grosser. (lesser) representation constrains
the inputs to the better representation.



