530-SW-90-029A

CHARACTERIZATION OF MUNICIPAL WASTE COMBUSTION ASH, ASH EXTRACTS, AND LEACHATES. COALITION ON RESOURCE RECOVERY AND THE ENVIRONMENT

TABLE OF CONTENTS

SECT	ION		<u>PAGE</u>
EXEC	CUTIVE SUN	MMARY	ES-1
1.0	1.1 1.2	BACKGROUND SCOPE OF WORK	1-1
2.0	FACILITY 2 2.1 2.2 2.3 2.4	A FINDINGS FACILITY ZA DESCRIPTION CHEMICAL CHARACTERIZATION OF ASH CHEMICAL CHARACTERIZATION OF LEACHATES CHEMICAL CHARACTERIZATION OF ASH EXTRACTS	2-1 2-3 2-3
3.0	FACILITY 2 3.1 3.2 3.3 3.4	ZB FINDINGS FACILITY ZB DESCRIPTION CHEMICAL CHARACTERIZATION OF ASH CHEMICAL CHARACTERIZATION OF LEACHATES CHEMICAL CHARACTERIZATION OF ASH EXTRACTS	3-1 3-3 3-4
4.0	FACILITY 2 4.1 4.2 4.3 4.4	C FINDINGS FACILITY ZC DESCRIPTION CHEMICAL CHARACTERIZATION OF ASH CHEMICAL CHARACTERIZATION OF LEACHATES CHEMICAL CHARACTERIZATION OF ASH EXTRACTS	4-1 4-2 4-3
5.0	FACILITY 2 5.1 5.2 5.3 5.4	CD FINDINGS FACILITY ZD DESCRIPTION CHEMICAL CHARACTERIZATION OF ASH CHEMICAL CHARACTERIZATION OF LEACHATES CHEMICAL CHARACTERIZATION OF ASH EXTRACTS	5-1 5-2 5-3
6.0	FACILITY 2 6.1 6.2 6.3 6.4	E FINDINGS FACILITY ZE DESCRIPTION CHEMICAL CHARACTERIZATION OF ASH CHEMICAL CHARACTERIZATION OF LEACHATES CHEMICAL CHARACTERIZATION OF ASH EXTRACTS	6-1 6-2 6-3
7.0	SUMMAR ' 7.1 7.2 7.3	Y OF RESULTS CHEMICAL CHARACTERIZATION OF ASH CHEMICAL CHARACTERIZATION OF LEACHATES CHEMICAL CHARACTERIZATION OF ASH EXTRACTS	7-1 7-3
REFE	RENCES		R-1
APPE	NDICES		
	A B C	FINAL WORK PLAN ASH RESULTS LEACHATE RESULTS ASH EXTRACT RESULTS	

ii

TABLES

NUMBER	·	PAGE
ES-1 ES-2 ES-3	Major Features of MWC Facilities Major Features of MWC Ash Disposal Facilities Ash Dioxin Results	ES-4 ES-6 ES-8
ES-4	Comparison of Ash Extract Metal Analyses Results with Leachate Metal Analyses Results	ES-12
1-1	Sample Analyses	. 1-4
2-1	Restricted Wastes, Facility ZA	. 2-6
2-2	Ash Semivolatile Results - Sample ZA-AH-003, Facility ZA	. 2-7
2-3	Ash Dioxin Results - Sample ZA-AH-003, Facility ZA	. 2-8
2-4	Ash Metals Analyses, Facility ZA	. 2-9
2-5	Ash Conventional Analyses, Facility ZA	2-10
2-6	Leachate Semivolatile Analyses, Facility ZA	2-11
2-7	Leachate Metals Analyses, Facility ZA	2-12
2-8	Leachate Conventional Analyses, Facility ZA	2-13
2-9	Leachate Dioxin Analyses, Facility ZA	2-14
2-10	Comparison of Ash Extracts Semivolatile Analyses with Leachate Semivolatile Analyses, Ranges of Concentrations, Facility ZA	2-15
2-11	Comparison of Ash Extracts Metals Analyses with Leachate	2-16
	Metals Analyses, Ranges of Concentrations, Facility ZA	
2-12	Comparison of Ash Extracts Conventional Analyses with	2-17
	Leachate Conventional Analyses, Ranges of	
	Concentrations, Facility ZA	
3-1	Ash Semivolatile Results - Sample ZB-AH-001, Facility ZB	. 3-7
3-2	Ash Dioxin Results - Sample ZB-AH-001, Facility ZB	. 3-8
3-3	Ash Metals Analyses, Facility ZB	. 3-9
3-4	Ash Conventional Analyses, Facility ZB	3-10
3-5	Leachate Metals Analyses, Facility ZB	3-11
3-6	Leachate Conventional Analyses, Facility ZB	3-12
3-7	Leak Detection System Sample Metals Analyses, Facility ZB	3-13
3-8	Leak Detection System Sample Conventional Analyses, Facility ZB	3-14
3-9	Comparison of Ash Extracts Metals Analyses with Leachate	3-15
	Metals Analyses, Ranges of Concentrations, Facility ZB	
3-10	Comparison of Ash Extracts Conventional Analyses with	3-16
	Leachate Conventional Analyses, Ranges of Concentrations, Facility ZB	
4-1	Ash Semivolatile Results - Sample ZC-AH-003, Facility ZC	
4-2	Ash Dioxin Results - Sample ZC-AH-003, Facility ZC	. 4-7
4-3	Ash Metals Analyses, Facility ZC	. 4-8
4-4	Ash Conventional Analyses, Facility ZC	. 4-9
4-5	Leachate Metals Analyses, Facility ZC	4-10
4-6	Leachate Conventional Analyses, Facility ZC	4-11
4-7	Comparison of Ash Extracts Metals Analyses with Leachate	4-12
	Metals Analyses, Ranges of Concentrations, Facility ZC	
4-8	Comparison of Ash Extracts Conventional Analyses with Leachate	4-13
	Conventional Analyses, Ranges of Concentrations, Facility ZC	
5-1	Ash Semivolatile Results - Sample ZD-AH-003, Facility ZD	. 5-7
5-2	Ash Dioxin Results - Sample ZD-AH-003, Facility ZD	. 5-8

TABLES (Continued)

NUMBER		<u>PAGE</u>
5-3	Ash Metals Analyses, Facility ZD	5-9
5-4	Ash Conventional Analyses, Facility ZD	5-10
5-5	Leachate Metals Analyses, Facility ZD	5-11
5-6	Leachate Conventional Analyses, Facility ZD	5-12
5-7	Comparison of Ash Extract Semivolatile Results to Leachate Semivolatile Results, Facility ZD	5-13
5-8	Comparison of Ash Extracts Metals Analyses with Leachate Metals Analyses, Ranges of Concentrations, Facility ZD	5-14
5-9	Comparison of Ash Extracts Conventional Analyses with Leachate . Conventional Analyses, Ranges of Concentrations, Facility ZD	5-15
6-1	Acceptable Waste, Facility ZE	6-5
6-2	Ash Dioxin Results - Sample ZE-AH-003, Facility ZE	6-6
6-3	Ash Metals Analyses, Facility ZE	6-7
6-4	Ash Conventional Analyses, Facility ZE	6-8
6-5	Leachate Semivolatile Analyses, Facility ZE	6-9
6-6	Leachate Metals Analyses, Facility ZE	6-10
6-7	Leachate Conventional Analyses, Facility ZE	6-11
6-8	Comparison of Ash Extract Semivolatile Results to Leachate	6-12
	Semivolatile Results, Ranges of Concentrations, Facility ZE	0 12
6-9	Comparison of Ash Extracts Metals Analyses with Leachate	6-13
	Metals Analyses, Ranges of Concentrations, Facility ZE	• .5
6-10	Comparison of Ash Extracts Conventional Analyses with Leachate .	6-14
7.4	Conventional Analyses, Ranges of Concentrations, Facility ZE	7.6
7-1	Comparison of Ash Semivolatile Results	7-6
7-2	Ranges of Concentrations of Semivolatiles in Fly Ash, Bottom Ash, and Combined Ash from Municipal Waste Incinerators	7-7
7-3	Ash Dioxin Results	7-8
7-4	Ranges of Concentrations of PCDDs, PCDFs, and PCBs in Fly Ash,	7-9
	Bottom Ash, and Combined Ash From Municipal Waste Incinerators	
7-5	Ash Metals Analyses, Ranges of Concentrations	7-11
7-6	Ranges of Concentrations of Inorganic Constituents in Fly Ash, Combined Ash, and Bottom Ash from Municipal Waste Incinerators	7-12
7-7	Ash Conventional Analyses, Ranges of Concentrations	7-14
7-8	Leachate Semivolatile Results, Ranges of Concentrations	7-15
7-8 7-9	Concentrations of Organic Constituents in Leachate from	7-15
7-3	Municipal Waste Landfills, Ash Monofills, and Co-Disposal Sites	7-10
7-10	Leachate Dioxin Results, Ranges of Concentrations	7-18
7-11	Concentrations of PCDDs/PCDFs in Leachates from Ash Monofills,	7-19
7-11	Ranges of Concentrations	7-13
7-12	Leachate Metals Analyses, Ranges of Concentrations	7-20
7-13	Ranges of Leachate Concentrations of Inorganic	7-21
7-13	Constituents from Monofills	7-21
7-14	Leachate Conventional Analyses, Ranges of Concentrations	7-23
7-1 4 7-15		7-23
/-13	Ranges of Extract Concentrations of Organic Constituents From Municipal Waste Inciperator Combined Fly Ash and Bottom Ash	1-24
	Municipal Waste Incinerator Combined Fly Ash and Bottom Ash	
7-16	for Three Leaching Procedures	7 25
/- (0	Ash Extracts Metals Analyses, Ranges of Concentrations	7-25
	Comparison of Literature Values with Results Obtained During CORRE Study	

R339911 iv

FIGURES

NUMBER			PAGE
5-1	Water Quality Lysimeter Installation Detail	••••••	5-4

R339911

ACRONYMS AND DEFINITIONS

ASTM	American Society for Testing and Materials
AWQC	Ambient Water Quality Criteria
CDC	Centers for Disease Control
Co-Disposal	Disposal together of municipal solid wastes and municipal solid waste combustion ashes
CORRE	Coalition on Resource Recovery and the Environment
EP	Extraction Procedure
EPA	U.S. Environmental Protection Agency
ESP	Electrostatic Precipitator
g	grams
kg	kilograms
L	liter
MCL	Maximum Contaminant Level
mg	milligrams
Monofill	A landfill that contains only solid waste combustion ashes and residues
MSW	Municipal Solid Wastes
MWC	Municipal Waste Combustion
MWEP	Monofilled Waste Extraction Procedure, also known as SW-924
ND	Not detected.
PAHs	Polynuclear Aromatic Hydrocarbons
PCBs	Polychlorinated Biphenyls
PCDDs	Polychlorinated dibenzo-p-dioxins
PCDFs	Polychlorinated dibenzofurans
pg	picogram
ppb	parts per billion
ppt	parts per trillion
QA/QC	Quality Assurance/Quality Control
RCRA	Resource Conservation and Recovery Act
SMCL	Secondary Maximum Contaminant Level
SW-924	Deionized Water Extraction Test Method
TCLP	Toxic Characteristics Leaching Procedure Test Method
TDS	Total Dissolved Solids
TE	Toxicity Equivalents
TEF	Toxic Equivalency Factors
TOC	Total Organic Carbon
μg	micrograms

R339911 Vi

ACRONYMS AND DEFINITIONS (Continued)

TCDD	Tetrachloro Dibenzo-p-Dioxin
PeCDD	Pentachloro Dibenzo-p-Dioxin
HxCDD	Hexachloro Dibenzo-p-Dioxin
HpCDD	Heptachloro Dibenzo-p-Dioxin
OCDD	Octachloro Dibenzo-p-Dioxin
TCDF	Tetrachloro Dibenzofuran
PeCDF	Pentachloro Dibenzofuran
HxCDF	Hexachloro Dibenzofuran
HpCDF	Heptachloro Dibenzofuran
OCDF	Octachloro Dibenzofuran

R339911 VII

This report has undergone internal review by the United States Environmental Protection Agency and by the Coalition on Resource Recovery and the Environment and has been subjected to peer review as well.

Peer Reviewers

Frank J. Roethel, Ph.D.
Research Professor
Marine Sciences Research Center
Waste Management Institute
SUNY
Stoneybrook, New York

Taylor Eighmy
Research Professor
Department of Civil Engineering
University of New Hampshire
Durham, New Hampshire

David S. Kosson, Ph.D.
Research Professor
College of Engineering
Department of Chemical and
Biochemical Engineering
Rutgers University
Piscataway, New Jersey

"Publication of this document shall not be construed as endorsement of the views expressed herein by The United States Conference of Mayors, the Conference of Mayors Research and Education Foundation, or any federal funding agency."

EXECUTIVE SUMMARY

This report has been prepared for the United States Environmental Protection Agency (EPA) and the Coalition on Resource Recovery and the Environment (CORRE). EPA and CORRE have cosponsored this study, conducted by NUS Corporation, to enhance the data base on the characteristics of Municipal Waste Combustion (MWC) ashes, laboratory extracts of MWC ashes, and leachates from MWC ash disposal facilities.

The Coalition on Resource Recovery and the Environment (CORRE) was established to provide credible information about resource recovery and associated environmental issues to the public and to public officials. In providing information, CORRE takes no position as to the appropriateness of one technology compared to others. CORRE recognizes that successful waste management is an integrated utilization of many technologies which taken as a whole, are best selected by an informed public and informed public officials.

Incineration of municipal solid waste (MSW) has become an important waste disposal alternative because it provides an effective means of reducing the volume of MSW as well as an important source of energy recovery. Currently, 10 percent of MSW is incinerated. Based on the number of municipal waste combustion (MWC) facilities being planned across the country, this percentage is expected to increase to roughly 16-25 percent by the year 2000.

As incineration has grown in popularity, so has concern over the management of increasing volumes of ash. Ashes from MWC facilities have, on occasion, exhibited a hazardous waste characteristic as determined by the EP Toxicity Test. The debate regarding the regulatory status of ash and the representativeness and validity of the EP test continues. Congress is considering several legislative initiatives that would give EPA clear authority to develop special management standards for ash under Subtitle D of RCRA.

To conduct this study, NUS collected combined bottom and fly ash samples from five mass-burn MWC facilities and leachate samples from the companion ash disposal facilities.

The facilities sampled were selected by CORRE to meet the following criteria:

- The facilities were to be state-of-the-art facilities equipped with a variety of pollution control equipment.
- The facilities were to be located in different regions of the United States.
- The companion ash disposal facilities were to be equipped with leachate collection systems or some means of collecting leachate samples.

The identities of the facilities are being held in confidence.

The ash and leachate samples collected were analyzed for the Appendix IX semivolatile compounds, polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDDs/PCDFs), metals for which Federal primary and secondary drinking water standards exist, and several miscellaneous conventional compounds. In addition, the ash samples were analyzed for major components in the form of oxides. The ash samples were also subjected to six laboratory extraction procedures and the extracts were then analyzed for the same compounds as the ash samples. The following six extraction procedures were used during this study:

- Acid Number 1 (EP-TOX).
- Acid Number 2 (TCLP Fluid No. 1).
- Acid Number 3 (TCLP Fluid No. 2).
- Deionized Water (Method SW-924), also known as the Monofill Waste Extraction Procedure (MWEP).
- CO₂ saturated deionized water.
- Simulated acid rain.

These extraction procedures have been used separately by a variety of researchers on MWC ashes but never have all six procedures been used on the same MWC ashes. This study was designed to compare the analytical results of the extracts from all six procedures with each other and with leachate collected from the ash disposal facilities used by the MWC facilities.

All sampling, laboratory preparation, and laboratory analysis followed stringent EPA quality assurance/quality control (QA/QC) procedures. The work was performed in accordance with the Work Plan (Appendix A) prepared by NUS for this project and with a QA/QC Plan prepared by NUS and approved by EPA. A detailed listing of the positive results is presented in a data base which is included in this Report as Appendix B (Ash), Appendix C (Leachate), and Appendix D (Ash Extracts). The results in the data base are presented as reported by the laboratories, complete with the laboratory's qualifications. Summaries of the results are presented in Sections 2.0 through 7.0. These summaries include the laboratory's qualifiers and also qualifiers placed on the data as a result of data validation.

When the laboratories did not report a positive value for a compound (i.e., the compound was not present above laboratory detection limits), the compound was reported as not detected (ND) in the tables in the text. The laboratory detection limits are the method detection limits for each specific method, unless interferences were encountered during the analysis. When interferences occurred, the laboratory adjusted the method detection limits by an appropriate dilution factor. The analytical methods used in this study were selected so that the method detection limits were well below present levels of human, environmental, or regulatory concerns.

The EPA publication "Interim Procedures for Estimating Risk Associated with Exposures to Mixtures of Chlorinated Dibenzo-p-Dioxins and Dibenzo-furans (CDDs and CDFs)" was used to evaluate the dioxin data. These procedures use Toxicity Equivalency Factors (TEFs) to express the concentrations of the different isomers and homologs as an equivalent amount of 2,3,7,8-Tetrachloro Dibenzo-p-Dioxin (2,3,7,8-TCDD). The Toxicity Equivalents, as calculated by using the TEFs, are then totaled and compared to the Centers for Disease Control (CDC) recommended upper level of 2,3,7,8-TCDD Toxicity Equivalency of 1 part per billion in residential soil (Kimbrough, 1984).

The major features of the five MWC facilities are provided in Table ES-1, and the major features of the MWC Ash Disposal Facilities are provided in Table ES-2. Pertinent information regarding the operating conditions of the MWC facilities, as well as information about the air pollution control equipment used by the facilities, is also provided in Table ES-1.

TABLE ES-1

MAJOR FEATURES OF MWC FACILITIES

Operational	Facilities										
Features	ZA	ZB	zc	ZD	ZE						
Facility Type	Energy recovery, continuous feed, reverse- reciprocating grate.	Energy recovery, continuous feed, reciprocating grate	Energy recovery, continuous feed, reverse- reciprocating grate.	Energy recovery, continuous feed, reciprocating grate.	Energy recovery, continuous feed, reciprocating grate.						
Startup Date	May 1986	Early 1987	January 1987	1975	September 1987						
Capacity	275 tons/day/boiler 2 boilers	75 - 100 tons/day/boiler 2 boilers	400 tons/day/boiler 3 boilers	750 tons/day/boiler 2 boilers	750 tons/day/boiler 2 boilers						
Combustion 1,800-2,000°F at stoker Temperature		1,800°F	1,750-1,800°F	1500-1700°F flue gas as it enters superheater	1,800°F at the grate						
Temperature of air entering the boiler	Under fire: 250°F Over fire: ambient	Under fire: ambient Over fire: ambient	Under fire: 380°F Over fire: ambient	Under fire: ambient Over fire: ambient	Under fire: ambient Over fire: ambient						
Volume of air entering boiler	Under fire: 70,000-90,000 lb/hour Over fire: 41,000 lb/hour	Under fire: 10,890 cu ft/min Over fire: 5,900 cu ft/min	Under fire: 34,000 ft ³ /min Over fire: 11,000 ft ³ /min	Under fire: 48,000 ft ³ /min Over fire: 32,000 ft ³ /min							
Source of ash quench water	Floor drains, rain water.	Cooling tower and boiler blowdowns, septic system discharge, floor drains.	Tertiary effluent from neighboring sewage treatment plant.	Cooling tower and boiler blowdowns.	Wastewater from plant processes.						
Air pollution control equipment	Lime slurry is injected into flue gas after economizer, fabric filter baghouses.	Dry lime is injected into flue gas after economizer, fabric filter baghouses. Fly ash has phosphoric acid added to it and is agglomerated before being mixed with bottom ash	Electrostatic precipitators.	Electrostatic precipitators	Lime slurry is injected into flue gas after economizer, electrostatic precipitators. Fly ash has water added to it and is agglomerated before being mixed with bottom ash.						
Approximate waste composition	Residential: 40% Commercial/ Light Industrial: 60%	Residential: 80% Commercial/ Light Industrial: 20%	Residential: 60% Commercial/ Light Industrial: 40%	Residential: 90% Commercial/ Light Industrial: 10%	Residential: 65% Commercial/ Light Industrial: 35%						

TABLE ES-1 MAJOR FEATURES OF MWC FACILITIES PAGE TWO

Operational	Facilities								
features	ZA	28	zc	ZD	ZE				
Amount of electricity generated	13.1 megawatts/hour	4.5 megawatts/hour	29 megawatts/hour	35 megawatts/hour	45 megawatts/hour				
Amount of electricity used internally by facility	ectricity used ternally by		2.5 megawatts/hour	2.5 to 3.5 megawatts/hour	7 megawatts/hour				
Material removed from incoming refuse	Large appliances, other unacceptable material diverted to demolition landfill.	Large appliances, material that will not pass through the boilers.	Large appliances, material that will not pass through the boilers.	Large appliances, material that will not pass through the boilers.	Large appliances, material that will not pass through the boilers				
Material removed from ash	Tone.		Ferrous metal removed from ash at the MWC facility.	Ferrous metal removed from ash at the MWC facility.	Items greater than 10 inches in diameter				

TABLE ES-2
MAJOR FEATURES OF MWC ASH DISPOSAL FACILITIES

Operational	Facilities Facilities								
Features	ZA	ZB	zc	ZD	ZE Monofill - double liner (HDPE and clay)				
Facility Type	Monofill - single clay liner	Monofill - double liner (HDPE and compacted till soil)	Codisposed facility - bottom-clay liner synthetic sidewall liners	Monofill - unlined. Ash is placed over trash deposited before 1975					
Startup Date	1986	October 1988	Landfill - 1984 Ash Disposal - 1985	1975	1987				
Disposal Capacity	83,400 cubic yards	90,000-100,000 tons	Total capacity 9 million tons	Remaining capacity - 990,000 tons (6 years)	Permitted for 20 years, approximately 3 8 million tons				
Amount of Ash Disposed			400,000 tons/year. 40% ash (2/3 of ash from 2C MWC facility)	450 tons/day	525 tons/day				
Materials other than Ash disposed of	Ash		Non-burnable materials from 2 MWC facilities. Overflow from 2nd MWC facility.	None	None				
Leachate Collection System	Perforated PVC pipe in a coarse aggregate envelope	Slotted HDPE	Main header - PVC collection trenches - gravel with fabric filter	None - leachate samples were collected from well points installed in the ash	Slotted HDPE				
Cover			Daily - native soil and shredded tires. Intermediate - soil compacted to 10-6 permeability. Final - native soils. Final - clay or HDPE.		Daily cover - soil. Intermediate - soil compacted to 10 ⁻⁶ permeability. Final - clay of HDPE				
Compaction of Ash	Only as bulldozer spreads ash in ash fill.	Bulldozer spreads and compacts ash in 8-12 inch lifts.	Track mounted compactor.	Only as bulldozer spreads ash in ash fill.	Vibrating roller.				

The major findings of the ash sampling and analyses during this study are described in the following paragraphs.

Of the five ash samples (one from each facility) analyzed for the Appendix IX semivolatile compounds, four samples contained bis(2-ethylhexyl)phthalate, three contained di-n-butyl phthalate, and one contained di-n-octyl phthalate. Two PAHs, phenanthrene and fluoranthene, were detected in only one of the five ash samples. These semi-volatile compounds were detected in the parts per billion (ppb) range.

The results for the five ash samples (one from each facility) analyzed for PCDDs/PCDFs are presented in Table ES-3. This table also includes the calculated Toxicity Equivalents (TE) for each homolog of PCDD/PCDF. These TEs were calculated using EPA's methodology (EPA, March 1987). The data in this table indicate that PCDDs/PCDFs were found at extremely low levels in each ash sample. The Total TE for each ash sample was below the Centers for Disease Control (CDC) recommended 2,3,7,8-TCDD Toxicity Equivalency limit of 1 part per billion in residential soil (Kimbrough, 1984).

All 25 of the ash samples (five daily composites from each facility) were analyzed for the metals on the primary and secondary drinking water standards lists as well as for the oxides of five major ash components. Although, the results from these analyses indicate that the ash is heterogeneous, this heterogenicity appears to have been reduced by the care taken when compositing the ash samples during this study. Comparison of the results of this study with results reported in the literature (EPA, October 1987) indicates that the variability of results for each compound appears to have been reduced in this study.

Metals showing the widest range of concentrations among samples collected at each facility included barium (ZB); cadmium (ZB); chromium (ZD, ZE); copper (ZA, ZB, ZC); lead (ZD); manganese (ZA, ZC); mercury (ZE); zinc (ZB, ZD, ZE); and silicon dioxide (ZA).

Metals showing the widest variation of concentrations between the facilities included barium (results for Facility ZC are lower than the results for the other facilities); iron (results for each facility vary from all of the other facilities); lead (results for Facility ZD are higher than the results for the other facilities); mercury (results for Facilities ZC and ZD are lower than the results for the other facilities);

TABLE ES-3 **ASH DIOXIN RESULTS**

						Samples	(pg/g or ppt)				
Compound	Toxicity Equivalency	ZA-AH-003		ZB-AH-001		ZC-AH-003		ZD-AH-003		ZE-AH-003	
Compound	Factor (TEF) ⁽¹⁾	Value	Toxicity Equivalents	Value	Toxicity Equivalents	Value	Toxicity Equivalents	Value	Toxicity Equivalents	Value	Toxicity Equivalents
2,3,7,8-TCDD	1	10	10	24	24	16	16	35	35	10	10
Other TCDD	0.01	206	2.06	351	3.51	281	2.81	541	5 41	120	1 2
2,3,7,8-TCDF	01	263	26.3	617	61 7	236	23.6	626	62.6	176	17.6
Other TCDF	0 001	1,688	1.69	3,721	3.72	1,208	1 21	2,633	2.63	1,136	1 14
1,2,3,7,8-PeCDD	0.5	33	16.5	118	59	71	35.5	ND	0	35	17.5
Other PeCDD	0 005	317	1.59	759	3.80	1,051	5 26	1,910	9 55	248	1 24
1,2,3,7,8-PeCDF	01	61	6.1	194	19.4	64	64	151	15 1	52	5 2
2,3,4,7,8-PeCDF	0.1	46	4.6	162	16.2	56	5.6	171	17.1	43	4 3
Other PeCDF	0 001	484	0 484	1,527	1.53	607	0.607	1,736	1 74	448	0 448
1,2,3,4,7,8-H _X CDD	0.04	12	0.48	40	16	66	2.64	86	3.44	11	0 44
1,2,3,6,7,8-H _X CDD	0.04	17	0.68	34	1.36	90	3.6	148	5 92	11	0 44
1,2,3,7,8,9-H _X CDD	0 04	28	1.12	79	3.16	120	4.8	194	7 76	22	0 88
Other H _X CDD	0.0004	154	0.062	342	0.137	925	0.37	853	0.34	104	0 042
1,2,3,4,7,8-H _X CDF	0 01	74	0 74	336	3 36	218	2.18	654	6.54	95	0 95
1,2,3,6,7,8-H _X CDF	0 01	131	1 31	524	5.24	279	2.79	660	6 60	134	1.34 0.45
1,2,3,7,8,9-H _X CDF	0.01	36	0.36	127	1.27	193	1 93	479	4.79	45	0 20
2,3,4,6,7,8-H _X CDF	0 01	5	0.05	54	0.54	70	0.70	124	1 24	20	0.028
Other H _X CDF	0 0001	281	0.0281	939	0 0939	635	0.0635	1,686	0 169	280 122	0 122
1,2,3,4,6,7,8-H _P CDD	0 001	159	0.159	319	0 3 1 9	1,849	1 85	1,555	1 56		0 122
Other H _P CDD	0 00001	140	0.0014	288	0.00288	1,511	0 0151	1,384	0 0138	0 155	0.155
1,2,3,4,6,7,8-H _P CDF	0 001	139	0.139	539	0 539	653	0.653	1,842	1 84		0.155
1,2,3,4,7,8,9-H _P CDF	0 001	8	800.0	48	0.048	83	0 083	119	0 119	16 44	0 00044
Other H _P CDF	0 00001	51	0.00051	197	0 00197	254	0 00254	384	0 00384	294	0 00044
OCDD	0	313	0	544	0	6,906	0	4,519	0		0
OCDF	0	66	0	243	0	563	0	893	0	59	63 7
TOTAL TES			74.5	<u> </u>	211	<u> </u>	119		189		03 /

Toxicity Equivalency Factors are EPA's current recommended Factors, (EPA, March 1987). Not detected below 221 pg/g (1)

sodium (results for Facilities ZD and ZE are lower than the results for the other facilities); calcium oxide (the results for Facilities ZA and ZB are higher than the results for the other facilities); and silicon dioxide (the results for Facility ZC are higher than the results for the other facilities).

Some additional findings of the ash sampling and analyses are as follows:

- The ashes are alkaline with the pH ranging from 10.36 to 11.85.
- The ashes are rich in chlorides and sulfates. The total soluble solids in the ashes varied from 6,440 to 65,800 ppm.
- The ashes contained unburnt total organic carbon (TOC) ranging from 4,060 ppm (0.4 percent) to 53,200 ppm (5.32 percent).

The major findings of the leachate sampling and analysis during this study are summarized in the following paragraphs.

Only four Appendix IX semivolatile compounds were found in the leachates from the ash disposal facilities. Benzoic acid was found in both leachate samples collected at one of the five ash disposal facilities. Phenol, 3-methylphenol, and 4-methylphenol were found in some of the leachate samples from one of the other facilities. All of these compounds were detected at very low levels (2-73 ppb).

PCDDs/PCDFs were only found in the leachate from one facility. The homologs found are the more highly chlorinated homologs. The data obtained during this study appears to indicate that PCDDs/PCDFs do not readily leach out of the ash in the ash disposal facilities. The low levels found in the leachates of the one facility probably originated from the solids found within the leachate samples because these samples were not filtered nor centrifuged prior to analysis.

None of the leachate samples exceeded the EP Toxicity Maximum Allowable Limits established for the eight metals in Section 261.24 of 40 CFR 261. In addition, the data from this study indicate that although the leachates are not used for drinking purposes, they are close to being acceptable for drinking water use, as far as the metals are concerned.

Some other findings of the leachate sampling and analyses are as follows:

- Sulfate values ranged from 14.4 mg/L to 5,080 mg/L, while Total Dissolved Solids (TDS) ranged from 924 mg/L to 41,000 mg/L.
- The field pH values ranged from 5.2 to 7.4.
- Ammonia (4.18-77.4 mg/L) and nitrate (0.01-0.45 mg/L) were present in almost all leachate samples.
- Total Organic Carbon values ranged from 10.6 to 420 ppm.

The major findings from the analysis of the ash extracts during this study are summarized as follows:

- Of the five composite samples of the deionized water (SW-924) extracts analyzed for the Appendix IX semivolatile compounds (one from each facility), only one sample contained low levels of benzoic acid (0.130 ppm).
- None of the extracts contained PCDDs/PCDFs. These data confirm the findings of the actual field leachate samples that PCDDs/PCDFs are not readily leached from the ash.

The data obtained during the metals analyses of the ash extracts indicate that, in general, the extracts from the EP Toxicity, the TCLP 1, and the TCLP 2 extraction procedures have higher metals content than the extracts from the deionized water (SW-924), the CO₂, and the Simulated Acid Rain (SAR) extraction procedures. The EP Toxicity Maximum Allowable Limits for lead and cadmium were frequently exceeded by the extracts from the EP Toxicity, TCLP 1, and TCLP 2 extraction procedures. One of the extracts from the EP Toxicity extraction procedure also exceeded the EP Toxicity Maximum Allowable Limit for mercury.

None of the extracts from the deionized water (SW-924), the CO₂, and the Simulated Acid Rain (SAR) extraction procedures exceeded the EP Toxicity Maximum Allowable Limits. In addition, the majority of the extracts from these three extraction procedures also met the Primary and Secondary Drinking Water Standards for metals.

Table ES-4 compares the range of concentrations of the metals analyses of the ash extracts with the range of concentrations for leachate as reported in the literature (EPA, October 1987) and the range of concentrations for the leachates as determined in this study. For the facilities sampled during this study, the data in Table ES-4 indicate that the extracts from the deionized water (SW-924), the CO₂, and the SAR extraction procedures simulated the concentrations for lead and cadmium in the field leachates better than the extracts from the other three extraction procedures.

TABLE ES-4

COMPARISON OF ASH EXTRACT METAL ANALYSES RESULTS

WITH LEACHATE METAL ANALYSES RESULTS

	Samples (μg/L)										
Parameter	EP TOX Extracts	TCLP 1 Extracts	TCLP 2 Extracts	CO ₂ Extracts	DI H ₂ O Extracts	SAR Extracts	Leachate (Literature) ⁽¹⁾	Leachate (CORRE)			
Arsenic	ND-31	ND	ND-60	ND-53	ND-45	ND	5-218	ND-400			
Barium	23-455	161-1,850	12-809	126-530	139-3,050	129-3,960	1,000	ND-9,220			
Cadmium	25-1,200	ND-1,150	ND-1,560	ND-354	ND-7.6	ND-6.0	ND-44	ND-4			
Chromium	ND-86	ND-8.0	ND-799	ND-9.8	ND-16	ND-10	6-1,530	ND-32			
Copper	24-5,170	5-858	5.4-1,400	8.8-620	12-534	8.5-610	22-24,000	ND-12			
Iron	ND-82,000	ND-7,220	ND-162,000	ND-304	ND-115	ND-97	168- 121,000	108-10,500			
Lead	ND-19,700	ND-10,500	ND-26,400	ND-504	ND-3,410	ND-3,940	12-2,920	ND-54			
Manganese	250-8,540	ND-5,170	3.8-7,370	ND-2,390	ND-20	ND-6.4	103-4,570	310-18,500			
Mercury	ND-203	ND-3.8	ND-4.6	ND-155	ND-0.96	ND-1.1	1-8	ND			
Selenium	ND	ND	ND	ND	ND	ND-23	2.5-37	ND-340			
Silver	ND	ND	ND	ND-16	ND	ND	70	ND			
Sodium	33,600- 225,000	1,380,000- 1,640,000	38,700- 228,000	24,800- 168,000	24,100- 209,000	24,200- 201,000	200,000- 4,000,000	188,000- 3,800,000			
Zinc	67-95,600	9.7-79,500	26-164,000	5-127,000	5.4-1,340	12-1,290	ND-3,300	5 2-370			

TABLE ES-4
COMPARISON OF ASH EXTRACT METAL ANALYSES RESULTS
WITH LEACHATE METAL ANALYSES RESULTS
PAGE TWO

		Samples (µg/L)									
Parameter	EP TOX Extracts	TCLP 1 Extracts	TCLP 2 Extracts	CO ₂ Extracts	DI H ₂ O Extracts	SAR Extracts	Leachate (Literature)(1)	Leachate (CORRE)			
Aluminum Oxide*	ND-150,000	ND-62,800	ND-152,000	ND-90,700	ND-203,000	ND-118,000	NR	ND-920			
Calcium Oxide*	592,000- 4,810,000	666,000- 2,750,000	692,000- 3,640,000	398,000- 1,920,000	141,000- 1,740,000	142,000- 1,800,000	21,000	64,600- 8,390,000			
Magnesium Oxide*	27,300- 130,000	55-375,000	623-137,000	207-59,300	21-379	12-430	NR	14,800- 367,000			
Potassium Monoxide*	10,100- 189,000	14,600- 210,000	15,100- 1,110,00	12,300- 155,000	13,100- 189,000	14,500- 181,000	21,500	79,700- 1,620,000			
Silıcon Dioxide*	5,090-98,700	379-51,700	820-143,000	418-71,800	402-3,990	364-3,770	NR	470-15,300			

ND Not Detected

NR Not Reported in the literature.

(1) EPA, October 1987.

* The ash extracts were analyzed as ions for these compounds and reported as oxides. The leachates were analyzed and are reported as ions for these compounds.

1.0 INTRODUCTION

This report, "Characterization of Municipal Waste Combustion Ash, Ash Extracts and Leachates," has been prepared for the United States Environmental Protection Agency (EPA) and the Coalition on Resource Recovery and the Environment (CORRE) in response to Work Assignment Number 90 under EPA Contract Number 68-01-7310.

This study was initiated by Ms. Gerry Dorian of EPA and Dr. Walter Shaub of CORRE.

1.1 BACKGROUND

Prior to the passage of the Resource Conservation and Recovery Act of 1976 (RCRA), disposal of municipal solid waste (MSW) and the ash from municipal waste combustion (MWC) facilities was not regulated by EPA but was regulated primarily by individual states and local municipalities. With the passage of RCRA, the disposal of MSW has been regulated under Subtitle D of RCRA. The regulations in Subtitle D stipulate that any municipal waste disposal facility that does not meet the criteria promulgated under RCRA must be closed. Because of the need to meet these criteria, there has been a steady decrease in the number of sites available for MSW disposal.

Incineration of municipal solid waste (MSW) has become an important waste disposal alternative because it provides an effective means of reducing the volume of MSW as well as an important source of energy recovery. Currently 10 percent of MSW is incinerated. Based on the number of municipal waste combustion (MWC) facilities being planned across the country, this percentage is expected to increase to roughly 16-25 percent by the year 2000.

As incineration has grown in popularity, so has concern over the management of increasing volumes of ash. Ashes from MWC facilities have, on occasion, exhibited a hazardous waste characteristic as determined by the EP Toxicity Test. The debate regarding the regulatory status of ash and the representativeness and validity of the EP test continues. Congress is considering several legislative initiatives that would

give EPA clear authority to develop special management standards for ash under Subtitle D of RCRA.

In the meantime, EPA and CORRE have cosponsored this study conducted by NUS to enhance the data base on the characteristics of MWC ashes, laboratory extracts of MWC ashes, and leachates from MWC ash disposal facilities.

The Coalition on Resource Recovery and the Environment (CORRE) was established to provide credible information about resource recovery and associated environmental issues to the public and to public officials. In providing information, CORRE takes no position as to the appropriateness of one technology compared to others. CORRE recognizes that successful waste management is an integrated utilization of many technologies which taken as a whole, are best selected by an informed public and informed public officials.

1.2 SCOPE OF WORK

NUS collected samples of fresh ash from five mass-burn MWC facilities. All of the ash samples collected were combined fly ash and bottom ash samples.

The facilities sampled were selected by CORRE to meet the following criteria:

- The facilities were to be state-of-the-art facilities equipped with a variety of pollution control equipment.
- The facilities were to be located in different regions of the United States.
- The companion ash disposal facilities were to be equipped with leachate collection systems or some means of collecting leachate samples.

The identities of the facilities are being held in confidence.

These samples were submitted to laboratories for chemical analyses. In addition, these ash samples were subjected to six different laboratory extraction procedures and the extracts were then analyzed. NUS also collected leachate samples from the five MWC ash disposal facilities used by the MWC facilities. The leachate samples

were also sent to a laboratory for analysis. The analyses performed on each type of sample are outlined in Table 1-1.

Collection of the ash and leachate samples generally followed the Work Plan prepared for this project (NUS, December 1988). A copy of this Work Plan is included in Appendix A. Five composite ash samples were collected from each of the five MWC facilities. The ash samples were collected each day over 5 days (Monday-Friday) of facility operation. Starting times for sample collection were different each day so that a wide range of time could be covered. Ash grab samples were collected at a fixed point each hour for 8 hours. These 8 grab samples were placed in a 5-gallon container for compositing into each day's 8-hour composite sample.

Originally, the ash samples were to be collected using the method outlined in ASTM D234-86 Standard Method for Collection of a Gross Sample of Coal, Condition B, full-stream cut. However, because of the configuration of the ash handling equipment at each facility, minor modifications to this sampling method were needed to collect the most representative samples from each facility. A description of how the samples were collected at each facility is presented in the appropriate Facility Description (Sections 2.0 through 6.0).

Prior to analysis, the samples were prepared in the laboratory by implementing the following procedures:

- Each composite sample was passed over a 2-inch screen. Material passing the 2-inch screen was set aside. Material larger than 2 inches was subjected to repeated blows with a 5-pound sledge hammer dropped from a height of 1 foot. If a piece did not break after being subjected to three blows of the hammer, it was weighed, the weight recorded, and the piece was discarded. Material that broke was then reduced in size to pass the 2-inch screen and recombined with the original material that was smaller than 2 inches.
- Each composite sample was dried at 105°C and crushed to pass a 3/8-inch screen and riffled or coned and quartered to obtain a 1,000 gram sample. The sample was then properly labeled and stored in a clean, dry, cool, secure area. For further details, see ASTM Standard D346.

TABLE 1-1 **SAMPLE ANALYSES**

Matrix	Preparation	Analyses	Comments
Ash	Screened, Crushed, Dried, Crushed, Riffled, or Coned and Quartered	Metals ⁽¹⁾	
		Conventionals ⁽²⁾	
		Appendix IX - Semivolatiles	Only 1 sample/facility
		PCDDs/PCDFs	Only 1 sample/facility
		PCBs	Only 1 sample from 2 different facilities
Leachates	Laboratory filtered and added HNO ₃ to pH < 2	Metals ⁽³⁾	
	Laboratory added H ₂ SO ₄ to pH < 2 (added to ZA samples in field)	TOC; NH ₃ -N	
		Alkalinity as CaCO ₃	
		TDS; NO ₃ -N; SO ₄ ; PO ₄	
		Cl; Kjeldahl Nitrogen (ZA samples only)	
		Appendix IX - Semivolatiles	
		PCDDs/PCDFs	
		PCBs	Only 1 sample from 2 different facilities
Ash Extracts		Metals ⁽⁴⁾	
		Conventionals ⁽⁵⁾	
		Appendix IX - Semivolatiles	Only on 1 composite ash extract from each facility
		PCDDs/PCDFs	Only on 1 composite ash extract from each facility
		PCBs - Deionized water extract - Facilities ZA and ZE	Only on 1 composite ash extract from each of 2 facilities

⁽¹⁾

1-4 R339911

Metals: As, Ba, Cd, Cr, Pb, Hg, Se, Ag, Na, Cu, Fe, Mn, and Zn. Oxides of Al, Si, Ca, Mg, K. Conventionals: TOC, total soluble salts, NH₃-N, NO₃-N, SO₄, PO₄, CO₃, Cl, moisture content, (2) and pH.

⁽³⁾ Soluble forms of Al, As, Ba, Cd, Ca, Cr, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Si, Ag, Na, Metals: Zn (Nickel analyzed only on samples from facility ZA).

Metals: Al, As, Ba, Cd, Ca, Cr, Cu, Fe, Pb, Mg, Mn, Hg, K, Se, Si, Ag, Na, Zn.

TABLE 1-1 SAMPLE ANALYSES PAGE TWO

(5) Conventionals:

Facility ZA: NO₃-N, PO₄, Cl, SO₄, TDS, TOC, NH₃-N, Alkalinity on all extracts. Facility ZB: NO₃-N, PO₄, Cl, SO₄ - TCLP 1; TCLP 2; EPTOX; and CO₂ extracts.

NO₃-N, PO₄, Cl, SO₄, TDS, TOC, NH₃-N, Alkalinity - Deionized Water extract.

PO₄, TOC - SAR extract.

Facilities ZC, ZD, ZE:

 NO_3 , PO_4 , Cl, SO_4 , NH_3 -N - TCLP 1; TCLP 2; EPTOX; and CO_2 extracts. NO_3 , PO_4 , Cl, SO_4 , TDS, TOC, NH_3 -N, Alkalinity - Deionized Water extract.

PO₄, TOC, NH₃-N - SAR extract.

Metals and Appendix IX semi-volatile compounds were analyzed in strict adherence to the EPA third edition of SW-846.

The conventional parameters were analyzed according to the applicable methods described in the "Methods for Chemical Analysis of Water and Wastewaters," EPA-600/2-79-020, March 1983. Where necessary, a DI extraction was done on the ash, except for NH₃-N where a 2M KCl solution was used.

PCBs, PCDDs, and PCDFs were analyzed in the homolog form according to the procedures described in Appendix B of the December 1988 Work Plan. In addition, for the PCDDs and PCDFs the concentrations of the individual 2, 3, 7, 8 isomers were determined for each homolog.

The ash samples were analyzed as outlined in Table 1-1. In addition, a portion of the prepared samples were subjected to the following six laboratory extraction procedures:

- Acid Number 1 (EP-TOX).
- Acid Number 2 (TCLP Fluid No. 1).
- Acid Number 3 (TCLP Fluid No. 2).
- Deionized Water (Method SW-924), also known as the Monofill Waste Extraction Procedure (MWEP).
- CO₂ saturated deionized water.
- Simulated acid rain.

These extraction procedures have been used separately by a variety of researchers on MWC ashes but never have all six procedures been used on the same MWC ashes. This study was designed to compare the analytical results of the extracts from a procedures with each other and with leachate collected from the ash disposal facilities used by the MWC facilities.

The laboratory adhered to the appropriate Federal Register leaching requirements for the first three methods. The extraction solutions and the extraction procedures used for the CO₂ saturated deionized water and the simulated acid rain are given in Appendix A of the Work Plan (NUS, December 1988). The SW-924 method is described in Vol.1 "Characterization of MWC Ashes and Leachates from Landfills, Monofills, and Co-Disposal Sites," EPA, October 1987. The extracts from the ash were analyzed as outlined in Table 1-1.

Leachate samples were collected from the five facilities to which the individual MWC facilities sent ashes for disposal. At two of the ash disposal facilities, two grab samples were collected from leachate collection sumps. At another ash disposal facility, one grab sample was collected from a valve on the leachate collection line. At the fourth ash disposal facility, two grab samples were collected from one shallow water quality lysimeter, and a third grab sample was collected from a second shallow water quality lysimeter. Seven leachate samples were collected from the fifth ash disposal facility: three in February 1988, two in November 1988, and two in June 1989. All seven samples were grab samples collected from the same leachate collection manhole. The leachates collected from this fifth facility were collected and analyzed by NUS under a separate contract to EPA. The results of this study

were reported in detail in a separate report (EPA, August 1989). Since results of that study are very pertinent to this study, the results are repeated in the present report.

The leachate samples were shipped to the laboratories for the analyses listed in Table 1-1. Because of difficulties in shipping or obtaining preservatives, the leachates samples collected during this study were not preserved in the field, but were packed in ice and shipped immediately to the laboratory. The laboratories were instructed to immediately add the required preservatives in the laboratory after filtering, as applicable. Since the laboratories preserved the samples within 48 hours of sample collection, the samples were not adversely affected.

All sampling and analytical procedures used in this project followed stringent Quality Assurance/Quality Control (QA/QC) requirements as outlined in a Quality Assurance Project Plan prepared for EPA by NUS and approved by EPA's QA Officer in February 1988 (NUS, February 1988).

Summaries of the results of the analyses of the samples from each MWC Facility are presented in Sections 2.0 through 6.0. An overall summary is presented in Section 7.0. The tables in these sections are presented at the end of each section.

A detailed listing of the positive results, as reported by the laboratories, is presented in a data base which is included in this report as Appendix B (ash), Appendix C (leachate), and Appendix D (ash extracts). When the laboratories did not report a positive value for a compound (i.e. the compound was not present above laboratory detection limits), the compound was reported as not detected (ND) in the tables in the text. The laboratory detection limits are the method detection limits for each specific method, unless interferences were encountered during the analysis. When interferences occurred, the laboratory adjusted the method detection limits by an appropriate dilution factor. The analytical methods used in this study were selected so that the method detection limits were well below present levels of human, environment or regulatory concerns.

The EPA publication "Interim Procedures for Estimating Risk Associated with Exposures to Mixtures of Chlorinated Dibenzo-p-Dioxins and -Dibenzofurans (CDDs and CDFs)" was used to evaluate the Dioxin data. These procedures use Toxicity Equivalency Factors (TEFs) to express the concentrations of the different isomers and homologs as an equivalent amount of 2,3,7,8-Tetrachloro Dibenzo-p-Dioxin

(2,3,7,8-TCDD). The Toxicity Equivalents, as calculated by using the TEFs, are then totaled and compared to the Centers for Disease Control (CDC) recommended upper level of 2,3,7,8-TCDD Toxicity Equivalency of 1 part per billion in residential soil (Kimbrough, 1984).

2.0 FACILITY ZA FINDINGS

2.1 FACILITY ZA DESCRIPTION

Facility ZA consists of two mass-burn, water-wall boilers. Refuse is charged into the boilers by overhead cranes, moves inside the boilers on grates, and is discharged into ash quench reactors on the bottom of the boilers. A lime slurry is added to the flue gas where it is mixed with the fly ash. This mixture is then collected in baghouses and mixed in with the bottom ash for disposal. The steam generated at the facility is used to produce electricity, which is sold to a local utility. The following details provide operational information for this facility.

Startup Date: May 1986.

Refuse Feed Rate: 275 tons/day/boiler.

Operating Temperature: 1,800° - 2,000° F at the stoker.

Residence Time: Approximately 1-1/2 hours in the boiler where

the grates can be slowed to allow wet loads more time to dry out; 1-1/2 hours from ash

discharge to ash pile.

Backup Fuel: Natural gas - is used if operating temperature

drops below 1,500°F. Has only been used at

startups and shutdowns.

Air Temperature into Furnace: Underfire air - 250° F;

Overfire air - ambient temperature.

Air Feed Rate: Underfire air - varies, normally between

70,000-90,000 lbs./hour.

Overfire air - 40,000 lbs./hour.

Refuse Feed Method: Old and new refuse is mixed with an overhead

crane. Mixed refuse is loaded into boilers with

the overhead crane.

Trash Accepted: Residential, commercial, industrial waste

generated in local community. Restrictions are listed in Table 2-1. Medical waste is being accepted. No sewage sludge is accepted. No

known waste oil program in the state. Some

waste oil comes into the facility.

Normal Moisture Content of Ash:

20 - 30%

(As measured by the facility)

Source of Ash Quench Water:

Ash quench water consists of water from floor

drains and some rain water.

Electricity Generated:

13.1 Megawatts/hour.

Electricity Used by the Facility:

1.7 Megawatts/hour.

Ash Handling Equipment

A lime slurry is injected into the flue gas just in de the quench reactor to neutralize acid gases formed in the boiler. The flue gas then passes through the baghouses, where the fly ash-lime mixture is removed from the flue gases. This mixture is transported back to the ash dischargers on the bottom of each boiler, where it is mixed with the bottom ash.

The fly ash is mixed with the bottom ash in the ash discharger. From there, the ash mixture is discharged onto a large shaker conveyor, travels to a grizzly where large items are removed, is discharged onto a small shaker conveyor, and then is discharged onto an inclined conveyor belt. The ferrous material is removed at the top of the conveyor by a rotating electromagnet. The ash falls from the inclined conveyor belt onto the ash pile. The ash is loaded onto trucks for transportation to the ash fill. After passing through a trommel, where small particles of ash clinging to the metal are removed, the ferrous material is trucked to a steel manufacturer.

The ash samples at this facility were collected as the ash came off the inclined belt. The ash had a tendency to segregate itself at the top of the inclined belt, with the larger particles coming directly off the belt and the finer, wetter particles sticking to the belt. These fine, wet particles started back down the underside of the belt and were scraped off the belt about 1 foot below the top of the conveyor. After the ferrous material was removed, the samples were collected so that half of each hourly grab sample consisted of the larger particles and half of the sample consisted of the finer particles.

2.2 CHEMICAL CHARACTERIZATION OF ASH

Table 2-2 presents the results of the semivolatile analysis of the ash samples from Facility ZA. The data presented in the table indicate that three phthalates were detected in sample ZA-AH-003, the only sample from this facility analyzed for the Appendix IX semivolatiles. The di-n-butyl phthalate appears to be the result of laboratory contamination. The other compounds indicate the presence of plastic material in the ash. This same sample also contained 107 ng/g (parts per billion (ppb)) of dichlorobiphenyl (PCB). This was the only PCB congener detected in this sample.

Table 2-3 presents the results of the polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/PCDF) analyses of sample ZA-AH-003. Toxicity equivalency values were calculated according to EPA's methodology (EPA, March 1987) and are also presented in this table. The data in this table indicate that the PCDDs/PCDFs levels found in the ash are substantially below the Centers for Disease Control (CDC) recommended upper level of 2,3,7,8-TCDD toxicity equivalency of 1 part per billion in residential soil (Kimbrough, 1984).

The results of the metals analyses for the ash from this facility are presented in Table 2-4. The data presented in this table indicate that, except for copper, manganese, and silicon dioxide, the results were fairly constant during the week of sampling.

The results for the conventional analyses are presented in Table 2-5. The data in this table indicate that the results were also fairly constant during the week, except for TOC, and ammonia.

2.3 CHEMICAL CHARACTERIZATION OF LEACHATES

The MSW facility unit accepting ash from MWC Facility ZA is lined and is used exclusively for the disposal of ash from Facility ZA. The leachate from the ash disposal facility for MWC Facility ZA was not sampled at the same time that the ash was sampled. However, NUS collected samples of the leachate in February and November 1988 and in June 1989 under a separate contract with EPA. The samples are grab samples collected from the same leachate collection manhole. The manhole was sampled, accumulated water was removed, and the manhole was

allowed to refill with leachate that had been stored in the ash fill. The manhole was then resampled. The results of the 1988 sampling events were reported in detail previously (EPA, August 1989) and are summarized here, together with the results of the 1989 sampling event.

The results for the semivolatile analysis of these samples are presented in Table 2-6. As shown in this table, phenol was detected on two different occasions, whereas 3-methylphenol and 4-methylphenol were each detected once.

The results for the metals analysis of the leachate samples are shown in Table 2-7. None of the metals detected exceeded the EP Toxicity Maximum Allowable Limit. Although the leachates are not required to meet Drinking Water Standards, a comparison of the leachate results with the Primary and Secondary Drinking Water Standards established under the Safe Drinking Water Act (EPA: BNA, June 1989 and EPA: BNA, October 1988) was made. This comparison indicates that the majority of the metals results met these standards in the leachates.

Table 2-8 presents the results of the conventional analyses of the leachate samples. TDS values ranged from 13,700 mg/L to 41,000 mg/L, and the pH values ranged from 6.7 to 7.4. Chloride, TDS, and Sulfate exceeded their Secondary Drinking Water Standards in all of the leachate samples.

The results of the dioxin analysis of the leachate samples are presented in Table 2-9. This table shows that only very small amounts of the more highly chlorinated homologs (hepta-CDD, octa-CDD, and hepta-CDF) were found in the leachate samples.

No PCBs were detected in ZA-LE-006, the only leachate sample analyzed for PCBs.

2.4 CHEMICAL CHARACTERIZATION OF ASH EXTRACTS

No PCDDs/PCDFs or PCBs were detected in the composite sample from the Deionized Water Extracts of the ash from Facility ZA.

Table 2-10 presents the results of the Appendix IX semivolatile analysis of the composite sample from the Deionized Water Extracts (SW-924) of the ash from MWC Facility ZA. Benzoic acid (130 ppb) was the only Appendix IX semivolatile compound

found in this composite sample. For comparison, this table also presents the range of results of the Appendix IX semivolatile analyses of the actual leachate samples from the ashfill serving this facility. The leachate from the ashfill contained very low levels of phenol (up to 32 ppb); 3-methylphenol (up to 6 ppb); and 4-methylphenol (up to 6 ppb).

Table 2-11 presents the range of results of the metals analyses of ash extracts from MWC Facility ZA and the range of results for leachate samples from the ashfill serving this facility. For comparison, this table also lists the EP Toxicity Maximum Allowable Limits, and the Primary and Secondary Drinking Water Standards established under the Safe Drinking Water Act (EPA: BNA, June 1989 and EPA: BNA, October 1988).

The results presented in Table 2-11 indicate that the extracts from the EP Toxicity Extraction technique generally contain higher concentrations of metals than the extracts produced by the other extraction techniques. The data in this table also indicate that the extracts from the deionized water extraction technique (SW-924) generally contain lower concentrations of metals than the extracts produced by the other extraction techniques.

For this facility, the extracts from the EP toxicity extraction technique are the only ones that exceeded the EP Toxicity Maximum Allowable Limits established in Section 261.24 of 40 CFR 261 for cadmium, lead, and mercury.

Although the ash extracts would not be required to meet Drinking Water Standards, a comparison of the ash extract results with the Drinking Water Standards was made. This comparison indicates that the majority of the metals results met these standards.

Table 2-12 presents the range of results of the conventional analyses of the ash extracts from MWC Facility ZA and the range of results of the leachate samples from the ashfill serving this facility. For comparison, this table also lists the Primary Drinking Water Standards for nitrate, as well as the Secondary Drinking Water Standards for chloride, sulfate, and Total Dissolved Solids (TDS). The data in this table indicate that the results for the conventional compounds obtained from the deionized water extraction technique (SW-924) are generally lower than the results from the other extraction techniques.

TABLE 2-1

RESTRICTED WASTES FACILITY ZA

ALL COVERED VEHICLES <u>MUST</u> LIFT OR ROLL BACK TARP FOR INSPECTION AT SCALE <u>PRIOR</u> TO ENTERING FACILITY OR TIP OUT ON FLOOR AS DIRECTED

PROHIBITED WASTES

- NO Wallboard/Drywall
 - Nonburnable Construction Materials
 - Sealed Drums or Containers
 - Tar/Asphalt
 - Tires
 - Bales
 - Infectious Materials
 - Major Auto Parts (Batteries, Fenders, etc.)
 - Other Unacceptable Items

NO HAZARDOUS WASTE PER STATE / FEDERAL REGULATIONS

TRUCKS WITH UNACCEPTABLE LOADS SHALL BE:

- DENIED ENTRY OR
- RELOADED AND REDIRECTED TO LANDFILL

ALL VEHICLES SUBJECT TO INSPECTION

R339911 2-6

TABLE 2-2

ASH SEMIVOLATILE RESULTS - SAMPLE ZA-AH-003
FACILITY ZA

Parameter	Ash Sample Result (μg/kg)				
Bis(2-ethylhexyl)phthalate	250,000				
Di-n-octyl phthalate	2,000T				
Di-n-butyl phthalate	430JB				

- J Indicates approximate value because contaminants were detected at levels below Method Detection Limits, but above the instrument detection limits.
- B Laboratory identified compound as not being detected substantially above the level reported in laboratory blanks. Laboratory may be the source of the contamination.
- The mass spectrum does not meet EPA CLP criteria for confirmation, but compound presence is strongly suspected.

R339911 2-7

TABLE 2-3 ASH DIOXIN RESULTS - SAMPLE ZA-AH-003 **FACILITY ZA**

PCDD/PCDF Homolog	Ash Sample Result pg/g (ppt)	Toxicity Equivalency Factor ⁽¹⁾	Toxicity Equivalent (ppt)
2,3,7,8-TCDD	10	1.0	10
Other TCDD	206	0.01	2.06
1,2,3,7,8-PeCDD	33	0.5	16.5
Other PeCDD	317	0.005	1.59
1,2,3,4,7,8-H _X CDD	12	0.04	0.48
1,2,3,6,7,8-H _X CDD	17	0.04	0.68
1,2,3,7,8,9-H _X CDD	28	0.04	1.12
Other H _X CDD	154	0.0004	0.062
1,2,3,4,6,7,8-H _P CDD	159	0.001	0.159
Other H _P CDD	140	0.00001	0.0014
OCDD	313	0	0
2,3,7,8-TCDF	263	0.1	26.3
Other TCDF	1,688	0.001	1.69
1,2,3,7,8-PeCDF	61	0.1	6.1
2,3,4,7,8-PeCDF	46	0.1	4.6
Other PeCDF	484	0.001	0.484
1,2,3,4,7,8-H _X CDF	74	0.01	0.74
1,2,3,6,7,8-H _X CDF	131	0.01	1.31
1,2,3,7,8,9-H _X CDF	36	0.01	0.36
2,3,4,6,7,8-H _X CDF	5	0.01	0.05
Other H _X CDF	281	0.0001	0.0281
1,2,3,4,6,7,8-H _P CDF	139	0.001	0.13 9
1,2,3,4,7,8,9-H _P CDF	8	0.001	800.0
Other H _P CDF	51	0.00001	0.00051
OCDF	66	0	0
Total Toxicity Equivalent			74.5 ppt

⁽¹⁾ Toxicity Equivalency Factors are EPA's current recommended factors (EPA, March 1987).

2-8 R339911

TABLE 2-4
ASH METALS ANALYSES
FACILITY ZA

			Samples		
Parameter	ZA-AH-001	ZA-AH-002	ZA-AH-003	ZA-AH-004	ZA-AH-005
METALS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Arsenic	50	49	51	45	37
Barium	529	480	554	523	436
Cadmium	43	41	5 6	32	41
Chromium	93	90	79	64	55
Copper	1,420	7,360	1,160	994	946
Iron	63,300	57,400	48,600	44,100	46,000
Lead	1,580	1,180	1,820	1,480	1,660
Manganese	1,020	835	849	1,360	587
Mercury	10.4	22.9	25.1	16.9	18.0
Selenium	ND	ND	ND	ND	ND
Silver	4.8	5.0	8.7	4.1	7.9
Sodium	10,200	9,970	11,000	9,350	10,400
Zinc	6,900	4,310	6,600	4,740	4,540
METAL OXIDES	(%)	(%)	(%)	(%)	(%)
Aluminum Oxide	8.52	9.37	9.0	9.23	9.85
Calcium Oxide	20.5	20.3	22.2	15.1	18.4
Magnesium Oxide	1.38	1.33	1.31	1.5	1.21
Potassium Monoxide	1.2	1.1	1.24	1.2	1.15
Silicon Dioxide	22.4	22.2	21.9	27.3	43.8

ND Not detected.

R339911 2-9

TABLE 2-5

ASH CONVENTIONAL ANALYSES
FACILITY ZA

	11-44	Samples								
Parameter	Units	ZA-AH-001	ZA-AH-002	ZA-AH-003	ZA-AH-004	ZA-AH-005				
рН	S.U.	11.83	11.85	11.79	11.80	11.68				
Moisture Content*	%	0.9	1.9	1.6	1.1	1.7				
тос	mg/kg	18,100	22,000	11,400	23,400	35,600				
Total Soluble Solids	mg/kg	52,400	49,800	50,400	46,500	48,400				
Ammonia	mg/kg	4.47	2.89	5.98	11.5	5.98				
Nitrate	mg/kg	2.86	2.29	2.22	2.54	4.23				
Ortho Phosphate	mg/kg	ND	ND	ND	ND	ND				
Total Alkalinity	mg/kg	7,540	8,000	7,730	8,100	8,050				
Chloride	mg/kg	18,300	17,800	23,700	19,100	16,300				
Sulfate	mg/kg	5,020	4,800	6,100	4,620	3,770				

ND Not detected.

R339911 - 2-10

^{*} Determined after samples were prepared.

TABLE 2-6 LEACHATE SEMIVOLATILE ANALYSES FACILITY ZA

Dozomator	Samples (in μg/L)									
Parameter	ZA-LE-001	ZA-LE-002	ZA-LE-003	ZA-LE-004	ZA-LE-005	ZA-LE-006	ZA-LE-007			
Phenol	ND	19	32	ND	ND	41	2 J			
3-Methylphenol	ND	ND	6 1	ND	ND	ND	ND			
4-Methylphenol	ND	ND	61	ND	ND	ND	ND			

ND Not Detected.

Indicates approximate value because contaminants were detected at levels below detection limits, but above the instrument detection limits.

Note: All Samples were collected from Manhole (1):

- ZA-LE-001 was standing liquid sampled on February 11, 1988.
- ZA-LE-002 was sampled on February 11, 1988 immediately after standing liquid was removed.
- ZA-LE-003 was sampled on February 11, 1988 1 hour after standing liquid was removed.
- ZA-LE-004 was sampled on November 29, 1988 immediately after standing liquid was removed.
- ZA-LE-005 was sampled on November 29, 1988 1-1/2 hours after manhole refilled.
- ZA-LE-006 was sampled on June 13, 1989 1 hour after standing liquid was removed.
- ZA-LE-007 was sampled on June 13, 1989 2-1/2 hours after collecting ZA-LE-006.

TABLE 2-7
LEACHATE METALS ANALYSES
FACILITY ZA

			Samples (in ii	o/i)			Stand	lards/Criteria (in j	ıg/L)
					74-1 F-006	ZA-1 F-007	EP Toxicity Maximum	Safe Drinking Water Act(a)	Safe Drinking Water Act ^(b)
ZA-LE-001	ZA-LE-002	ZA-LE-003	ZA-LE-004	2M-FE-003	2A-EE-000	2/(12-00)			SMCLs
NA	NA	NA	NA	NA	920	700	SNA	SNA	SNA
160	130	140	260	400	47	59			SNA
NA	NA	NA	NA	NA	ND	ND			SNA
ND	1.7	1 1	ND	ND	1 3	14	1,000		SNA
NA	NA	NA	NA	NA	3,270,000	5,360,000	SNA	<u> </u>	SNA
8	32	18	16	22	ND	ND	5,000	50	SNA
ND	ND	ND	ND	ND	ND	ND	SNA	SNA	1,000
3,400	650	120	2,400	1,600	770	790	SNA	SNA	300
11	24	25	54	42	18	8	5,000	50	SNA
NA	NA	NA	NA	NA	51,000	70,000	SNA	SNA	SNA
4.600	310	370	1,230	800	1,000	2,600	SNA	SNA	50
	ND	ND	ND	ND	ND	ND	200	2 0	SNA
<u></u>	ND	ND	ND	ND	ND	ND	SNA	SNA	SNA
	NA NA	NA	NA	NA	525,000	516,000	SNA	SNA	SNA
	<u> </u>	130	260	340	24	33	1,000	10	SNA
ļ		NA	NA	NA	2,100	5,700	SNA	SNA	SNA
<u> </u>	 	ND	ND	ND	ND	ND	5,000	50	SNA
		ļ	NA	NA	3,000,000	3,800,000	SNA	SNA	SNA
	ļ		130	60	250	250	SNA	SNA	5,000
	160 NA ND NA 8 ND 3,400	NA NA 160 130 NA NA NA NA ND 1.7 NA NA 8 32 ND ND 3,400 650 11 24 NA NA 4,600 310 ND NA NA 120 120 NA NA NA NA	NA NA NA 160 130 140 NA NA NA ND 1.7 1 1 NA NA NA 8 32 18 ND ND ND 3,400 650 120 11 24 25 NA NA NA 4,600 310 370 ND ND ND ND ND ND NA NA NA 120 120 130 NA NA NA NA NA NA NA NA NA NA NA NA	ZA-LE-001 ZA-LE-002 ZA-LE-003 ZA-LE-004 NA NA NA NA 160 130 140 260 NA NA NA NA ND 1.7 1 1 ND NA NA NA NA 8 32 18 16 ND ND ND ND 3,400 650 120 2,400 11 24 25 54 NA NA NA NA 4,600 310 370 1,230 ND ND ND ND ND ND ND ND NA NA NA NA 120 120 130 260 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA 160 130 140 260 400 NA NA NA NA NA ND 1.7 1 1 ND ND NA NA NA NA NA 8 32 18 16 22 ND ND ND ND ND 3,400 650 120 2,400 1,600 11 24 25 54 42 NA NA NA NA NA 4,600 310 370 1,230 800 ND ND ND ND ND ND ND ND ND ND NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA <	ZA-LE-001 ZA-LE-002 ZA-LE-003 ZA-LE-004 ZA-LE-005 ZA-LE-006 NA NA NA NA NA 920 160 130 140 260 400 47 NA NA NA NA NA ND ND NA NA NA NA ND ND 1.7 1.1 ND ND ND 13 NA NA NA NA NA NA NA NA ND ND 13 NA NA NA NA NA NA ND ND	ZA-LE-001 ZA-LE-002 ZA-LE-003 ZA-LE-004 ZA-LE-005 ZA-LE-006 ZA-LE-007 NA NA NA NA NA 920 700 160 130 140 260 400 47 59 NA NA NA NA NA ND ND ND ND 1.7 1.1 ND ND 13 1.4 1.4 NA NA NA NA NA NA NA ND ND	ZA-LE-001 ZA-LE-002 ZA-LE-003 ZA-LE-004 ZA-LE-005 ZA-LE-006 ZA-LE-007 Maximum Allowable Limit Maximum Allowabl	ZA-LE-001

Blank space indicates analysis is below detection limits

NA Not analyzed due to differences in scope of work

ND Not Detected

SNA Standard Not Available

(a) Primary Drinking Water Standards

(b) Secondary Drinking Water Standards

Note. All Samples were collected from Manhole (1).

- ZA-LE-001 was standing liquid sampled on February 11, 1988
- /A LE 002 was sampled on February 11, 1988 immediately after standing liquid was removed
- (A-LE 003 was sampled on February 11, 1988 1 hour after standing liquid was removed
- ZA LE 004 was sampled on November 29, 1988 immediately after standing liquid was removed
- ZA LE 005 was sampled on November 29, 1988 1-1/2 hours after manhole refilled
- ZA LE 00b was sampled on June 13, 1989 1 hour after standing liquid was removed
- ZA-LE-007 was sampled on June 13, 1989 2-1/2 hours after collecting ZA-LE-006

TABLE 2-8 **LEACHATE CONVENTIONAL ANALYSES FACILITY ZA**

				Samples				Standards/ Criteria
Parameter	ZA-LE-001	ZA-LE-002	ZA -LE-002 ZA-LE-003 ZA-LE		ZA-LE-004 ZA-LE-005		ZA-LE-007	Primary and Secondary Drinking Water Quality Standards
Ammonia - Distilled (as N)	35 mg/L	23 mg/L	26 mg/L	5.5 mg/L	5 3 mg/L	20 mg/L	28 mg/L	SNA
Organic Carbon	53 mg/L	77 mg/L	110 mg/L	17 mg/L	23 mg/L	25 mg/L	420 mg/L	SNA
Chloride	22,000 mg/L	17,000 mg/L	18,000 mg/L	7,700 mg/L	8,300 mg/L	14,000 mg/L	19,000 mg/L	250 mg/L(b)
Nitrogen, Kjeldahl	43 mg/L	34 mg/L	38 mg/L	NA	NA	NA	NA	SNA
Sulfate (SO ₄)	1,000 mg/L	1,500 mg/L	1,500 mg/L	1,000 mg/L	700 mg/L	780 mg/L	620 mg/L	250 mg/L(b)
рН	6.7	69	72	7.4	6.7	72	7 1	SNA
Solids, Dissolved @ 180°C	41,000 mg/L	29,000 mg/L	32,000 mg/L	13,700 mg/L	16,300 mg/L	24,700 mg/L	31,300 mg/L	500 mg/L ^(b)
Specific Conductance @ 25°C	46,000 µmhos/cm	33,000 µmhos/cm	38,000 µmhos/cm	NA	NA	>10,000 µmhos/cm (field)	> 10,000 µmhos/cm (field)	SNA
Total Alkalinity	NA	NA	NA	68 mg/L	44 mg/L	81 mg/L	120 mg/L	SNA
Pht Alkalinity	NA	NA	NA	NA	NA	0	0	SNA
Carbonate Alkalinity	NA	NA	NA	NA	NA	0	0	SNA
Nitrate (as N)	NA	NA	NA	0 2 mg/L	0.2 mg/L	<0.01 mg/L	<0.01 mg/L	10 mg/L(a)
Phosphorus	NA	NA	NA	0 18 mg/L	0 19 mg/L	1.1 mg/L	1 2 mg/L	5NA

NA Not analyzed due to differences in scope of work.

SNA Standard Not Available

(a) Primary Drinking Water Standards

Secondary Drinking Water Standards

Note: All Samples were collected from Manhole (1):

- ZA-LE-001 was standing liquid sampled on February 11, 1988
 ZA-LE-002 was sampled on February 11, 1988 immediately after standing liquid was removed
 ZA-LE-003 was sampled on February 11, 1988 1 hour after standing liquid was removed
 ZA-LE-004 was sampled on November 29, 1988 immediately after standing liquid was removed
 ZA-LE-005 was sampled on November 29, 1988 1 1/2 hours after manhole refilled

- ZA-LE-006 was sampled on June 13, 1989 1 hour after standing liquid was removed
- ZA-LE-007 was sampled on June 13, 1989 2-1/2 hours after collecting ZA-LE-006

TABLE 2-9 LEACHATE DIOXIN ANALYSES FACILITY ZA

	Samples (ppb)										
Parameter	ZA-LE-001	ZA-LE-002	ZA-LE-003	ZA-LE-004	ZA-LE-005	ZA-LE-006	ZA-LE-007				
2,3,7,8-TCDD	ND	ND	ND	ND ·	ND	ND	ND				
TCDD-TOT	ND	ND	ND	ND	ND	ND	ND				
PeCDD	ND	ND	ND	ND	ND	ND	ND				
HXCDD	ND	ND	ND	ND	ND	ND	ND				
HPCDD	0.222	ND	ND	ND	ND	ND	ND				
OCDD	0.107	0.094	0.057	0.048	0.049	ND	ND				
2,3,7,8-TCDF	ND	ND	ND	ND	ND	ND	ND				
TCDF-TOT	ND	ND	ND	ND	ND	ND	ND				
PeCDF	ND	ND	ND	ND	ND	ND	ND				
HXCDF	ND	ND	ND	ND	ND	ND	ND				
HPCDF	0.076	ND	ND	ND	ND	ND	ND				
OCDF	ND	ND	ND	ND	ND	ND	ND				
2,3,7,8-TCDD(1) equivalency ppb	2 x 10 ⁻⁴	0.00	0.00	0.00	0.00	ND	ND				

ND Not Detected.

Note: All Samples were collected from Manhole (1):

- ZA-LE-001 was standing liquid sampled on February 11, 1988.
- ZA-LE-002 was sampled on February 11, 1988 immediately after standing liquid was removed.
- ZA-LE-003 was sampled on February 11, 1988 1 hour after standing liquid was removed.
- ZA-LE-004 was sampled on November 29, 1988 immediately after standing liquid was removed.
- ZA-LE-005 was sampled on November 29, 1988 1-1/2 hours after manhole refilled.
- ZA-LE-006 was sampled on June 13, 1989 1 hour after standing liquid was removed.
- ZA-LE-007 was sampled on June 13, 1989 2-1/2 hours after collecting ZA-LE-006.
- (1) 2,3,7,8-TCDD Equivalency calculated using Toxicity Equivalency Factors currently recommended BY EPA (EPA, March 1987).

TABLE 2-10

COMPARISON OF ASH EXTRACTS SEMIVOLATILE ANALYSES WITH LEACHATE SEMIVOLATILE ANALYSES RANGES OF CONCENTRATIONS FACILITY ZA

Davamatas	Samples (μ g/L)		
Parameter	Deionized Water Extract	Leachate		
Benzoic acid	130	ND		
Phenol	ND	ND - 32		
3-Methylphenol	ND	ND - 6J		
4-Methylphenol	ND	ND - 6J		

ND Not detected

R339911 2-15

J indicates approximate value because contaminants were detected at levels below detection limits, but above the instrument detection limits.

TABLE 2-11 COMPARISON OF ASH EXTRACTS METALS ANALYSES WITH LEACHATE METALS ANALYSES
RANGES OF CONCENTRATIONS
FACILITY ZA

				racit	IIY ZA					
				Samples (in µg/L)				Standa	ards/Criteria (ii	n μg/L)
			EP Toxicity	Safe	Safe					
Parameter	CO ₂ Extracts	DI H ₂ O Extracts	EP TOX Extracts	TCLP 1 Extracts	TCLP 2 Extracts	SAR Extracts	Leachate ^(c)	Maximum Allowable Limit	Drinking Water Act ^(a) MCLs	Drinking Water Act SMCLs
Arsenic	ND	ND	ND-31	ND	ND	ND	47-400	5,000	50	SNA
Barium	218-282	457-557	177-455	505-651	449-809	464-561	ND	100,000	1,000	SNA
Cadmium	63-108	ND-7.6	592-1,000	ND	ND-695	ND	ND-1 7	1,000	10	SNA
Chromium	ND-5 1	6 8-10	6-72	ND	ND-20	ND-10	ND-32	5,000	50	SNA
	268-620	160-534	790-2,620	104-301	7 6-213	128-610	ND	SNA	SNA	1,000
Copper	40-304	21-115	14-21,700	6 6-46	20-75,400	ND	120-3,400	SNA	5NA	300
Lead	ND-40	1,960-3,410	94-11,300	ND-996	ND-174	1,740-3,940	8-54	5,000	50	SNA
	1,540-2,390	ND-20	2,450-4,030	ND-4 1	3 8-5,440	ND-2 8	310-4,600	SNA	SNA	50
Manganese Mercury	ND-155	ND	23-203	ND-3 8	ND-0 88	ND-0 81	ND	200	2	SNA
Selenium	ND	ND	ND	ND	ND	ND-23	24-340	1,000	10	SNA
Silver	ND-16	ND	ND	ND	ND	ND	ND	5,000	50	SNA
Sodium	108,000- 152,000	130,000- 174,000	108,000- 150,000	1,450,000- 1,520,000	71,700- 228,000	108,000- 160,000	3,000,000- 3,800,000	SNA	SNA	SNA
Zinc	22,700-34,400	651-1,340	37,800-75,900	42-377	31-78,500	690 -1,290	60-370	SNA	SNA	5,000
Aluminum Oxide	179-302	ND-195	ND-29,300	223-3,100	180-1,850	ND-166	700-920	SNA	SNA	SNA
Calcium Oxide	693,000- 699,000	684,000- 699,000	2,330,000- 3,580,000	669,000- 2,380,000	692,000- 3,540,000	1,100,000- 1,800,000	3,270,000- 5,360,000	SNA	SNA	SNA
Magnesium Oxide	32,000-42,800	50-379	27,300- 58,900	74-400	623-66,900	12-18	51,000- 70,000	SNA	SNA	SNA
Potassium Monoxide	114,000- 143,000	134,000- 168,000	10,100- 154,000	143,000- 210,000	63,300- 224,000	118,000- 168,000	516,000- 525,000	SNA	SNA	SNA
Silicon Dioxide	36,600-71,800	616-1.640	29,000-98,700	2,790-5,520	1,360-81,100	364-877	2,100-5,700	SNA	SNA	SNA

ND Not Detected SNA Standard Not Available

Primary Drinking Water Standards Secondary Drinking Waier Standards Results for aluminum, calcium, magnesium, potassium, and silicon are for metals and not oxides (a) (b)

TABLE 2-12 COMPARISON OF ASH EXTRACTS CONVENTIONAL ANALYSES WITH LEACHATE CONVENTIONAL ANALYSES RANGES OF CONCENTRATIONS FACILITY ZA

					IGEIT ZA					
				Samples (in mg/L)				Stan	mg/L)	
Parameter	CO ₂ Extracts	DI H ₂ O Extracts	EP TOX Extracts	TCLP 1 Extracts	EP Toxicity Maximum Allowable Limit	Safe Drinking Water Act(a) MCLs	Safe Drinking Water Act ^(b) SMCLs			
Ammonia-Distilled (as N)	0 21-0 44	0 21-0 28	0 27-0 45	0 22-0 38	ND-0 28	0 89-1 03	5 3-35	SNA	SNA	SNA
Total Organic Carbon	23 9-64 2	15 3-43 5	2,210-2,520	2,040-2,340	2,200-2,400	12 8-42 5	17 420	SNA	SNA	SNA
Chloride	773-1,040	802-1,170	748-1,160	971-1,250	686-1,410	840-1,200	7,700-22,000	SNA	SNA	250
Sulfate	832-1,050	429-603	917-1,320	489-567	617-1,110	507-627	620-1,500	SNA	SNA	250
Solids, Dissolved @ 180°C	3,920-4,890	2,890-4,220	8,090-11,800	8,820-10,700	9,230-11,100	2,970-4,420	13,700 41,000	SNA	SNA	500
Total Alkalinity	1,240-1,630	908-1,590	1,250-2,630	2,390-3,060	2,130-3,350	856-1,710	44-120	SNA	SNA	SNA
Nitrate (as N)	0 13-0 30	0 12-0 20	0 11-0 21	0 13-0 18	0 07 0 16	3 04-3 25	ND-0 2	SNA	10	SNA
Orthophosphate	ND-0 09	ND	ND-0 94	ND	ND	ND	0 18-1 2	SNA	SNA	SNA
Extract's Initial pH	6 15 6 25	12 29-12 48	12 08-12 31	12 08-12 31	12 09-12 27	12 08 12 27	NA	SNA	SNA	SNA
Extract's Final pH	12 25 12 48	12 24 12 47	5 03 6 97	11 23-12 04	5 8/-11 12	12 05-12 24	NA NA	SNA	SNA	SNA

NA Not analyzed due to differences in scope of work ND Not Detected

SNA Standard Not Available
(a) Primary Drinking Water Standards.
(b) Secondary Drinking Water Standards

3.0 FACILITY ZB FINDINGS

3.1 FACILITY ZB DESCRIPTION

Facility ZB consists of two mass-burn, water-wall boilers. Refuse is charged into the boilers by front-end loaders, moves inside the boilers on grates, and is discharged into an ash quench tank located below the boilers. Dry lime is added to the flue gas where it is mixed with the fly ash. This mixture is then collected in baghouses and mixed with the bottom ash for disposal. The steam generated at the facility is used to generate electricity, which is sold to a local utility. The following details outline the operational information for this facility.

Startup Date Early 1987.

Refuse Feed Rate: 75-100 tons/day/boiler.

Operating Temperature: 1,800° F.

Residence Time: Approximately 1/2 to 3/4 hour in the boiler, where

the grates can be slowed to allow wet loads more time to dry out; approximately 20 minutes from ash

quench to ash pile.

Backup Fuel: Propane -- is used during start ups and shut downs.

Air Feed Information: Underfire air comes directly from the tipping floor

and is not preheated unless trash is very wet. Overfire air comes from inside the boiler room and is not preheated except by the heat buildup in the

building.

Air Feed Rate: Primary Air - 10,890 cubic feet/minute

Secondary Air - 5,900 cubic feet/minute

Grate Information: There are four zones on the grates: Drying Zone,

Burn Zone, Burn Down Zone, Cool Down Zone. The speed of each zone can be maintained separately.

Refuse Feed Method: Refuse is dumped on the tipping floor, where new

refuse is mixed with old refuse with a front-end loader. The front-end loader can only mix waste near the working face of the pile. If the piles are

large (normal condition), the front-end loader

cannot effectively mix the refuse located on the bottom of the pile away from the working face. The front-end loader is also used to load the trash into the feed hoppers. NUS personnel also observed several trucks backing right up to the feed hoppers and dumping the loads directly into the feed hoppers or right in front of the hoppers. These loads were fired directly into the boiler without any mixing.

Trash Accepted:

Residential (80%), commercial, and light industrial (20%) waste generated in the surrounding communities. No sewage sludge is accepted.

Normal Moisture

Content of Ash: 36-37 percent.

(As measured by the facility.)

Source of Ash Quench Water: Ash Quench Water consists of water used to rinse

the ash bins; water draining from the ash; septic system discharge; and blowdowns from cooling

tower and boiler.

Electricity Generated:

4.5 Megawatts/hour.

Electricity Used by Facility:

0.6 Megawatts/hour.

Ash-Handling Equipment

The bottom ash is discharged into one of two quench tanks that are equipped with drag flight conveyors. The ash settles to the bottom of the quench tank and is moved along by the drag flights. It then travels up an incline and is dumped into ash bins (roll-off containers).

Dry lime is injected into the flue gas to neutralize any acidic gases. The lime-fly ash mixture is collected in baghouses and transported back into the main building. Phosphoric acid and water are mixed with the lime-fly ash mixture. The resulting mixture is agglomerated and is then added to the bottom ash as the bottom ash travels up the incline and before it is dumped into the ash bins.

The mixed ash is deposited in the ash bins in two piles. As the first pile reaches the top of the bin, the ash conveyor is shut down so that the bin can be moved to start

the second pile. Once the bins are full, the ash conveyor is again shut down so that the bins can be switched. The bins are transported daily to the ash disposal facility.

The ash bins are equipped with drains so that some of the free moisture in the ash can drain off. When the ash bins are switched, the drains on the full bins are capped, the outside of the bin is washed off, and the full bin is moved into the yard. Once in the yard, the ash is leveled off and covered with tarps. The ash conveyor is restarted when the empty bin is in place and the caps on the drains are removed. This process can take anywhere from 10 to 30 minutes. The fly ash is continually discharged onto the incline of the drag conveyor during the changing of the ash bins.

The ash samples at Facility ZB were collected as the ash traveled up the inclined portion of the drag conveyor, just after the fly ash was mixed with the bottom ash. Each partial sample was collected from 1, 2, or 3 different flights, depending on the quantity of ash present on the flights.

3.2 CHEMICAL CHARACTERIZATION OF ASH

Table 3-1 presents the results of the semivolatile analysis of the ash samples from Facility ZB. The results in this table indicate that bis(2-ethylhexyl)phthalate was detected in sample ZB-AH-001, the only sample from this facility analyzed for the Appendix IX semivolatiles. This compound appears to be the result of laboratory contamination.

Table 3-2 presents the results of the polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/PCDF) analyses of sample ZB-AH-001. Toxicity equivalency values were calculated according to EPA's methodology (EPA, March 1987) and are presented in this table. The data in this table indicate that the PCDDs/PCDFs levels found in the ash are substantially below the Centers for Disease Control (CDC) recommended upper level of 2,3,7,8-TCDD toxicity equivalency of 1 part per billion in residential soil (Kimbrough, 1984).

The results of the metals analyses for the ash from this facility are presented in Table 3-3. The data in this table indicate that, except for barium, cadmium, copper, and zinc, the results were fairly constant during the week of sampling.

The results for the conventional analyses are presented in Table 3-4. The data in this table indicate that, except for TOC, ammonia, chloride, sulfate, and total alkalinity, the results were also fairly constant during the week.

3.3 CHEMICAL CHARACTERIZATION OF LEACHATES

The facility used for the disposal of ash from MWC Facility ZB is lined and is used exclusively for the disposal of ash from Facility ZB.

The leachate sample (ZB-LE-001) from the ash disposal facility for MWC Facility ZB was a grab sample collected from a valve on the main leachate collection line. A second sample (ZB-LE-002) was collected from the leak detection system located under the primary liner.

No Appendix IX semivolatile compounds or PCDDs/PCDFs were detected in the leachate sample from the ash disposal facility for MWC Facility ZB, or in the sample from the leak detection system.

The results for the metals analysis of the leachate sample are shown in Table 3-5. The data in this table indicate that none of the compounds exceeded the EP Toxicity Maximum Allowable Limit. Although the leachate is not required to meet Drinking Water Standards, a comparison of the leachate results with the Primary and Secondary Drinking Water Standards established under the Safe Drinking Water Act (EPA: BNA, June 1989 and EPA: BNA, October 1988) was made. This comparison indicates that the majority of the metals results met these standards in the leachate.

Table 3-6 presents the results of the conventional analyses of the leachate sample (ZB-LE-001). The TDS value was 40,600 mg/L and the pH of the leachate was 6.5.

The results for the metals analysis of the sample from the leak detection system (ZB-LE-002) are shown in Table 3-7. The data in this table indicate that none of the compounds exceeded the EP Toxicity Maximum Allowable Limit. Although this water is not required to meet Drinking Water Standards, a comparison of the results with the Primary and Secondary Drinking Water Standards established under the Safe Drinking Water Act (EPA: BNA, June 1989 and EPA: BNA, October 1988) was made. This comparison indicates that the results for all metals met these standards in the sample from the leak detection system.

Table 3-8 presents the results of the conventional analyses of the samples from the leak detection system. The TDS value was 535 mg/L and the pH of the sample was 6.5.

The data in both Tables 3-7 and 3-8 indicate that the liner is intact and no leachate is entering the leak detection system.

3.4 CHEMICAL CHARACTERIZATION OF ASH EXTRACTS

No Appendix IX semivolatile compounds or PCDDs/PCDFs were detected in the composite sample from the deionized water extracts (SW-924) of the ash from MWC Facility ZB.

Table 3-9 presents the range of results of the metals analyses of the ash extracts from MWC Facility ZB and the results for the leachate sample from the ash fill serving this facility. For comparison, this table also lists the EP Toxicity Maximum Allowable Limits, and the Primary and Secondary Drinking Water Standards established under the Safe Drinking Water Act (EPA: BNA, June 1989 and EPA: BNA, October 1988).

The results presented in Table 3-9 indicate that the extracts from the EP toxicity, the TCLP 1, and the TCLP 2 extraction techniques generally contain higher concentrations of metals than the extracts produced by the other extraction techniques. The data in this table also indicate that the extracts from the CO₂ extraction technique generally contain lower concentrations of metals than the extracts produced by the other extraction techniques.

For this facility, none of the extracts exceeded the EP Toxicity Maximum Allowable Limits established in Section 261.24 of 40 CFR 261.

Although the ash extracts would not be required to meet Drinking Water Standards, a comparison of the ash extract results with the Drinking Water Standards was made. This comparison indicates that the majority of the metals results met these standards.

Table 3-10 presents the range of results of the conventional analyses of the ash extracts from MWC Facility ZB and the leachate sample from the ash fill serving this

facility. For comparison, this table also lists the Primary Drinking Water standards for nitrate, as well as the Secondary Drinking Water Standards for chloride, sulfate, and Total Dissolved Solids (TDS). The data in this table indicate that the results for the conventional compounds from the CO₂ extraction technique are generally lower than the results from the other extraction techniques.

TABLE 3-1

ASH SEMIVOLATILE RESULTS - SAMPLE ZB-AH-001
FACILITY ZB

Parameter	Ash Sample Result (μg/kg)
Bis(2-ethylhexyl)phthalate	810JB

- Indicates approximate value because contaminants were detected at levels below Method Detection Limits, but above the instrument detection limit.
- B Laboratory identified compound as not being detected substantially above the level reported in laboratory blanks. Laboratory may be the source of the compound.

TABLE 3-2 **ASH DIOXIN RESULTS - SAMPLE ZB-AH-001 FACILITY ZB**

PCDD/PCDF Homolog	Ash Sample Result pg/g (ppt)	Toxicity Equivalency Factor ⁽¹⁾	Toxicity Equivalent (ppt)	
2,3,7,8-TCDD	24	1.0	24	
Other TCDD	351	0.01	3.51	
1,2,3,7,8-PeCDD	118	0.5	59	
Other PeCDD	759	0.005	3.80	
1,2,3,4,7,8-H _X CDD	40	0.04	1.6	
1,2,3,6,7,8-H _X CDD	34	0.04	1.36	
1,2,3,7,8,9-H _X CDD	79	0.04	3.16	
Other H _X CDD	342	0.0004	0 137	
1,2,3,4,6,7,8-H _P CDD	319	0.001	0.319	
Other H _P CDD	288	0.00001	0.00288	
OCDD	544	0	0	
2,3,7,8-TCDF	617	0.1	61.7	
Other TCDF	3,721	0.001	3.72	
1,2,3,7,8-PeCDF	194	0.1	19.4	
2,3,4,7,8-PeCDF	162	0.1	16.2	
Other PeCDF	1,527	0.001	1.53	
1,2,3,4,7,8-H _X CDF	336	0.01	3.36	
1,2,3,6,7,8-H _X CDF	524	0.01	5.24	
1,2,3,7,8,9-H _X CDF	127	0.01	1.27	
2,3,4,6,7,8-H _X CDF	54	0.01	0.54	
Other H _X CDF	939	0.0001	0.0939	
1,2,3,4,6,7,8-H _P CDF	5 39	0.001	0.539	
1,2,3,4,7,8,9-H _P CDF	48	0.001	0.048	
Other H _P CDF	197	0.00001	0.00197	
OCDF	243	0	0	
Total Toxicity Equivalent			211 ppt	

⁽¹⁾ Toxicity Equivalency Factors are EPA's current recommended factors (EPA, March 1987).

3-8 R339911

TABLE 3-3
ASH METALS ANALYSES
FACILITY ZB

		PACIEIT							
	Samples								
Parameter	ZB-AH-001	ZB-AH-002	ZB-AH-003	ZB-AH-004	ZB-AH-005				
METALS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)				
Arsenic	28	45	31	56	54				
Barium	484	322	1,000	260	283				
Cadmium	52	152	64	57	58				
Chromium	53	74	67	118	65				
Copper	9,330	1,370	674	842	4,440				
Iron	18,800	19,300	13,600	21,500	22,200				
Lead	1,070	1,630	1,490	1,420	1,740				
Manganese	508	559	622	846	515				
Mercury	8.2	11	7.7	8.0	12				
Selenium	5.7	ND	ND	ND	ND				
Silver	6.9	9.4	6.0	10	5.4				
Sodium	8,200	9,210	8,940	9,810	10,600				
Zinc	8,580	6,480	4,360	15,800	6,450				
METAL OXIDES	(%)	(%)	(%)	(%)	(%)				
Aluminum Oxide	8.46	10.3	9.35	9.26	7 39				
Calcium Oxide	19.4	22.3	21.2	20.6	25.7				
Magnesium Oxide	1.40	1.62	1.45	1.54	1.19				
Potassium Monoxide	0.941	0.827	0.938	0.912	0 866				
Silicon Dioxide	28.9	22.1	29.4	28.2	19.0				

ND Not detected.

TABLE 3-4

ASH CONVENTIONAL ANALYSES
FACILITY ZB

Parameter	Units	Samples						
rarameter	Utiles	ZB-AH-001	ZB-AH-002	ZB-AH-003	ZB-AH-004	ZB-AH-005		
рH	S.U.	11.48	10.91	11.49	11.59	11.67		
Moisture Content*	%	4.5	5.1	2.7	3 8	8.8		
тос	mg/kg	14,600	29,600	22,800	29,400	17,000		
Total Soluble Solids	mg/kg	36,700	65,800	44,000	45,300	55,300		
Ammonia	mg/kg	3.69	10.6	3.93	4 85	4.76		
Nitrate	mg/kg	2.65	2.75	1.45	2 09	2.87		
Orthophosphate	mg/kg	ND	ND	ND	ND	DИ		
Total Alkalinity	mg/kg	4,520	1,590	5,150	6,650	6,320		
Chloride	mg/kg	18,600	44,200	19,500	28,000	31,400		
Sulfate	mg/kg	963	764	3,130	2,440	1,340		

ND Not detected.

^{*} Determined after samples were prepared.

TABLE 3-5 LEACHATE METALS ANALYSES **FACILITY ZB**

	Sample (µg/L)	Sta	Standards/Criteria (µg/L)					
Parameter	ZB-LE-001	EP Toxicity Maximum Allowable Limit	Safe Drinking Water Act ^(a) MCLs	Safe Drinking Water Act ^(b) SMCLs				
Aluminum	ND	SNA	SNA	SNA				
Arsenic	ND	5,000	50	SNA				
Barium	9,220	100,000	1,000	SNA				
Cadmium	4.0	1,000	10	SNA				
Calcium	8,390,000	SNA	SNA	SNA				
Chromium	ND	5,000	50	SNA				
Copper	8.8	SNA	SNA	1,000				
Iron	840	SNA	SNA	300				
Lead	ND	5,000	50	SNA				
Magnesium	17,300	SNA	SNA	SNA				
Manganese	17,600	SNA	SNA	50				
Mercury	ND	200	2.0	SNA				
Potassium	1,620,000	SNA	SNA	SNA				
Selenium	ND	1,000 10		SNA				
Silicon	3,150	SNA SNA		SNA				
Silver	ND	5,000	50	SNA				
Sodium	2,450,000	SNA	SNA	SNA				
Zinc	8.3	SNA	SNA	5,000				

ND Not detected.

SNA Standard Not Available.

(a)

Primary Drinking Water Standards. Secondary Drinking Water Standards. (b)

3-11 R339911

TABLE 3-6 LEACHATE CONVENTIONAL ANALYSES **FACILITY ZB**

	Sample	Standards/Criteria			
Parameter	ZB-LE-001	Primary and Secondary Drinking Water Quality Standards			
Ammonia-Distilled (as N)	4.18 mg/L	SNA			
Organic Carbon	30 mg/L	SNA			
Temperature (field)	9°C	SNA			
Sulfate (SO ₄)	171 mg/L	250 mg/L ^(b)			
pH (field)	6.5	SNA			
Solids, Dissolved @ 180°C	40,600 mg/L	500 mg/L ^(b)			
Specific Conductance @ 25°C (field)	>10,000 µmhos/cm	SNA			
Total Alkalinity	65 mg/L	SNA			
Nitrate (as N)	0.45 mg/L	10 mg/L ^(a)			
Orthophosphate	0.01 mg/L	SNA			

SNA Standard Not Available.

Primary Drinking Water Standards. Secondary Drinking Water Standards. (b)

3-12 R339911

TABLE 3-7 LEAK DETECTION SYSTEM SAMPLE METALS ANALYSES **FACILITY ZB**

	Sample (µg/L)	Standards/Criteria (μg/L)					
Parameter	ZB-LE-002	EP Toxicity Maximum Allowable Limit	Safe Drinking Water Act ^(a) MCLs	Safe Drinking Water Act ^(b) SMCLs			
Aluminum	19	SNA	SNA	SNA			
Arsenic	ND	5,000 50					
Barium	64	100,000	1,000	SNA			
Cadmium	ND	1,000 10					
Calcium	112,000	SNA	SNA				
Chromium	ND	5,000	SNA				
Copper	5.4	SNA SNA		1,000			
Iron	ND	SNA	300				
Lead	ND	5,000	SNA				
Magnesium	15,700	SNA	SNA	SNA			
Manganese	6.7	SNA	SNA	50			
Mercury	ND	200	2.0	SNA			
Potassium	10,900	SNA	SNA	SNA			
Selenium	ND	1,000	10	SNA			
Silicon	3,590	SNA SNA SN					
Silver	ND	5,000	50	SNA			
Sodium	14,000	SNA	SNA	SNA			
Zinc	7.5	SNA	SNA	5,000			

ND Not detected.

SNA Standard Not Available.

(a)

Primary Drinking Water Standards. Secondary Drinking Water Standards. (b)

3-13 R339911

TABLE 3-8

LEAK DETECTION SYSTEM SAMPLE CONVENTIONAL ANALYSES
FACILITY ZB

	Sample	Standards/Criteria		
Parameter	ZB-LE-002	Primary and Secondary Drinking Water Quality Standards		
Ammonia-Distilled (as N)	<0.05 mg/L	SNA		
Organic Carbon	10.6 mg/L	SNA		
Temperature (field)	5°C	SNA		
Sulfate (SO ₄)	197 mg/L	250 mg/L ^(b)		
pH (field)	6.5	SNA		
Solids, Dissolved @ 180°C	535 mg/L	500 mg/L ^(b)		
Specific Conductance @ 25°C (field)	880 µmhos/cm	SNA		
Total Alkalinity	154 mg/L	SNA		
Nitrate (as N)	0.01 mg/L	10 mg/L ^(a)		
Orthophosphate	<0.01 mg/L	SNA		

SNA Standard Not Available.

(a) Primary Drinking Water Standards.

(b) Secondary Drinking Water Standards.

TABLE 3-9 COMPARISON OF ASH EXTRACTS METALS ANALYSES WITH LEACHATE METALS ANALYSES RANGES OF CONCENTRATIONS FACILITY ZB

				Samples (in µg/L)				Standards/Criteria (in µg/L)		
Parameter										Safe
i	CO ₂ Extracts	DI H ₂ O Extracts	EP TOX Extracts	TCLP 1 Extracts	TCLP 2 Extracts	SAR Extracts	Leachate ^(c)	Maximum Allowable Limit	Drinking Water Act(a) MCLs	Drinking Water Act ^(b) SMCLs .
Arsenic	ND-53	ND	ND	ND	ND	ND	ND	5,000	50	SNA
Barium	126-381	454-3,050	182-350	498-1,850	321-511	1,150-3,960	9,220	100,000	1,000	SNA
Cadmium	ND-9.2	ND	25-485	ND	ND-833	ND	4 0	1,000	10	SNA
Chromium	ND	ND	ND	ND	ND	ND	ND	5,000	50	SNA
Copper	8 8-30	18-35	25-803	10-36	5 4-262	21-64	8.8	SNA	SNA	1,000
Iron	ND	ND	ND	ND	ND-3,360	ND	840	SNA	SNA	300
Lead	ND	ND-731	ND-19	ND	ND	ND-291	ND	5,000	50	SNA
Manganese	ND-11	ND	250-1,790	ND-5 8	39-2,250	ND	17,600	SNA	SNA	50
Mercury	ND	ND	0.73-9.8	ND-0.25	0 37-4.6	ND	ND	200	2	SNA
Selenium	ND	ND	ND	ND	ND	ND	ND	1,000	10	SNA
Silver	ND	ND	ND	ND	ND	ND	ND	5,000	50	SNA
Sodium	114,000- 168,000	123,000- 209,000	128,000- 225,000	1,410,000- 1,450,000	116,000- 183,000	117,000- 201,000	2,450,000	SNA	SNA	SNA
Zinc	5-21	40-349	67-9,630	9 7-49	26-10,000	20-287	83	SNA	SNA	5,000
Aluminum Oxide	4,990-90,700	161-48,400	ND-100	1,410-62,800	ND-7,760	102-102,000	ND	SNA	SNA	SNA
Calcium Oxide	737,000- 1,920,000	810,000- 1,740,000	3,240,000- 4,810,000	1,810,000- 2,750,000	3,210,000- 3,640,000	699,000- 1,690,000	8,390,000	SNA	SNA	SNA
Magnesium Oxide	207-24,600	21-68	70,400-130,000	55- 9 20	12,400-137,000	17-65	17,300	SNA	SNA	SNA
Potassium Monoxide	99,200-155,000	108,000- 189,000	101,000- 189,000	122,000- 203,000	100,000- 167,000	114,000- 181,000	1,620,000	SNA	SNA	SNA
Silicon Dioxide	418-1,280	406-2,300	5,090-32,900	379-3,560	820-79,000	544-2,330	3,150 .	SNA	SNA	SNA

ND Not Detected SNA Standard Not Available

Primary Drinking Water Standards Secondary Drinking Water Standards

Results for aluminum, calcium, magnesium, potassium, and silicon are for metals and not oxides

TABLE 3-10 COMPARISON OF ASH EXTRACTS CONVENTIONAL ANALYSES WITH LEACHATE CONVENTIONAL ANALYSES RANGES OF CONCENTRATIONS

					CILITY ZB							
	Samples (in mg/L)								Standards/Criteria (in mg/L)			
Parameter	CO ₂ Extracts	Di H ₂ O Extracts	EP TOX Extracts	TCLP 1 Extracts	TCLP 2 Extracts	SAR Extracts	Leachate	EP Toxicity Maximum Allowable Limit	Safe Drinking Water Act(a) MCLs	Safe Drinking Water Actib) SMCLs		
Ammonia-Distilled (as N)	NA	0 10-0 28	NA	NA	NA	NA	4 18	SNA	SNA	SNA		
Total Organic Carbon	NA	3.37-6 52	NA	NA	NA	4 52-11 5	30 0	SNA	SNA	5NA		
Chloride	1,080-2,930	1,070-3,040	1,020-3,440	1,340-3,500	1,270-2,720	NA	NA	SNA	SNA	250		
Sulfate	22 9-662	ND-119	55 6-95 0	4 4-524	674-1,110	NA	171	SNA	SNA	250		
Solids, Dissolved @ 180°C	NA	2,180-4,310	NA	NA	NA	NA	40,600	SNA	SNA	500		
Total Alkalinity	NA	285- 996	NA	NA	NA	NA	65	SNA	SNA	SNA		
Nitrate (as N)	0 14-0 36	0 11-0 24	0 13-0 34	0 13-0 31	0 07-0 30	NA	0 45	SNA	10	SNA		
Orthophosphate	ND-0 01	ND	0 06-1 32	ND-0 01	0.01-1 75	ND	ND-0 01	SNA	SNA	SNA		
Extract's Initial pH	5 51-5 84	11 78-12 24	11 83-12 30	11 78-12 24	11 78-12 24	11 45-12 01	NA	SNA	SNA	SNA		
Extract's Final pH	9 39-10 61	11 12-12 48	5 77-8 64	10 40-11 83	6 23-9 53	10 83-12 42	NA	SNA	SNA	SNA		

NA Not analyzed due to differences in scope of work ND Not Detected SNA Standard Not Available (a) Primary Drinking Water Standards (b) Secondary Drinking Water Standards

4.0 FACILITY ZC FINDINGS

4.1 FACILITY ZC DESCRIPTION

Facility ZC consists of three mass-burn, water-wall boilers. Refuse is charged into the boilers by overhead cranes, moves inside the boilers on grates, and is discharged into ash quench units on the bottom of the boilers. Fly ash in the exhaust gas is collected and mixed with the bottom ash for disposal. The steam generated at the facility is used to generate electricity, which is sold to a local utility. The following details provide operational information for this facility.

Startup Date: January 1987.

Refuse Feed Rate: 400 tons/day/boiler.

Operating Temperature: 1,750-1,800° F.

Residence Time: Approximately 1-1/2 hours in boiler, where the

grates can be slowed to allow wet loads more time

to dry out.

Backup Fuel: Natural gas - has only been used at start ups and

shut downs.

Air Temperature Into Furnace: Underfire air 380° F; overfire air not heated.

Air Feed Rate: Varies--underfire air 40,000 cfm; overfire air

6.000 cfm.

Refuse Feed Method: Old and new refuse is mixed with an overhead

crane. Mixed refuse is loaded into boilers with the overhead crane. Not much mixing was observed by

NUS personnei.

Trash Accepted: Any residential, commercial, or industrial waste

generated in the local community. No sewage sludge is accepted. Some waste oil is disposed of at

the facility.

Source of Ash Quench Water: Ash quench water consists of effluent from a local

sewage treatment plant.

Electricity Generated: 29 Megawatts/hour.

Electricity Used by Facility: 2-1/2 Megawatts/hour.

Ash-Handling Equipment

The flue gas passes through electrostatic precipitators (ESPs), where the fly ash is removed from the flue gases. The fly ash is then transported back to ash quench reactors located at the bottom of each boiler, where it is mixed with the bottom ash.

The fly ash is mixed with the bottom ash in the ash quench reactors. From there, the ash mixture is discharged onto a large shaker conveyor. It travels to a grizzly, where large items are removed, is discharged onto a small shaker or pan conveyor, and is then discharged onto an inclined conveyor belt. The ferrous material is removed at the top of the conveyor belt by a rotating electromagnet. The ash falls from the inclined belt onto a final shaker conveyor and then falls through one of two chutes onto the ash pile. The ash is loaded onto trucks for transportation to the ash fill. The ferrous material is recycled after passing through a trommel, where small particles of ash clinging to the metal are removed.

The ash samples at Facility ZC were collected from the final shaker conveyor after the ferrous material was removed and before the ash passed through the chutes onto the ash pile. The ash had a tendency to segregate itself at the top of the inclined conveyor belt. The large particles came directly from the inclined conveyor and onto the shaker conveyor, whereas the finer, wetter particles stuck to the belt and started back down on the underside of the inclined conveyor. These finer particles were scraped off the underside of the belt about 6 feet from the top of the conveyor. Ash samples were collected both from the shaker conveyor and as the ash was scraped off the bottom of the inclined conveyor.

During the first part of one day's sampling, the samples were collected as the ash came off the grizzly because the inclined conveyor was shut down for repairs. In addition, the location of the sampling point on the final shaker conveyor changed as the facility changed the chutes being used to deposit the ash on the ash pile.

4.2 CHEMICAL CHARACTERIZATION OF ASH

Table 4-1 presents the results of the semivolatile analysis of the ash samples from Facility ZC. The data in this table indicate that bis(2-ethylhexyl)phthalate and di-n-butyl phthalate were detected in sample ZC-AH-003, the only sample from this

facility analyzed for the Appendix IX semivolatiles. These compounds appear to be the result of laboratory contamination.

Table 4-2 presents the results of the polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/PCDF) analyses of sample ZC-AH-003. Toxicity equivalency values were calculated according to EPA's methodology (EPA, March 1987) and are presented in this table. The data in this table indicate that the PCDDs/PCDFs levels found in the ash are substantially below the Centers for Disease Control (CDC) recommended upper level of 2,3,7,8-TCDD toxicity equivalency of 1 part per billion in residential soil (Kimbrough, 1984).

The results of the metals analyses for the ash from this facility are presented in Table 4-3. The data in this table indicate that, except for copper and manganese, the results were fairly constant during the week of sampling.

The results for the conventional analyses are presented in Table 4-4. The data in this table indicate that, except for nitrate, and total alkalinity, the results were also fairly constant during the week.

4.3 CHEMICAL CHARACTERIZATION OF LEACHATES

The facility used for the disposal of ash from MWC Facility ZC is lined and is also used for the disposal of ash from a different MWC facility. In addition, municipal waste in excess of the capacity of the MWC facilities is disposed of at this ash disposal facility. Of the ash disposed of at this facility, two-thirds of it comes from MWC Facility ZC. The two leachate samples from the ash disposal facility for MWC Facility ZC were two grab samples collected from the same leachate collection sump.

No Appendix IX semivolatile compounds or PCDDs/PCDFs were detected in the leachate samples from the ash disposal facility for MWC Facility ZC.

The results for the metals analysis of the leachate samples are shown in Table 4-5. The data in this table indicate that none of the compounds exceeded the EP Toxicity Maximum Allowable Limit. Although the leachates are not required to meet Drinking Water Standards, a comparison of the leachate results with the Primary and Secondary Drinking Water Standards established under the Safe Drinking Water Act

(EPA: BNA, June 1989 and EPA: BNA, October 1988) was made. This comparison indicates that the results for all but manganese met these standards in the leachate.

Table 4-6 presents the results of the conventional analyses of the leachate samples. TDS values ranged from 924 mg/L to 932 mg/L, and the pH of the leachate was 6.9.

4.4 CHEMICAL CHARACTERIZATION OF ASH EXTRACTS

No Appendix IX semivolatile compounds or PCDDs/PCDFs were detected in the composite sample from the deionized water extracts (SW-924) of the ash from MWC Facility ZC.

Table 4-7 presents the range of results of the metals analyses of the ash extracts from MWC Facility ZC and the range of results for the leachate samples for the ash fill serving this facility. For comparison, this table also lists the EP Toxicity Maximum Allowable Limits, and the Primary and Secondary Drinking Water Standards established under the Safe Drinking Water Act (EPA: BNA, June 1989 and EPA: BNA, October 1988).

The results presented in Table 4-7 indicate that the extracts from the EP Toxicity, the TCLP 1, and the TCLP 2 extraction techniques generally contain higher metal concentrations than the extracts produced by the other extraction techniques. The data in this table also indicate that the extracts from the deionized water extraction technique (SW-924) and the SAR extraction technique generally contain lower metal concentrations than the extracts produced by the other extraction techniques.

For this facility, the extracts from the EP Toxicity, as well as the TCLP 2 extraction techniques, exceeded the EP Toxicity Maximum Allowable Limits established in Section 261.24 of 40 CFR 261 for cadmium and lead, whereas the extracts from the TCLP 1 extraction technique exceeded the EP Toxicity Maximum Allowable Limits only for cadmium.

Although the ash extracts would not be required to meet Drinking Water Standards, a comparison of the ash extract results with the Drinking Water Standards was made. This comparison indicates that the majority of the metals results met these standards.

Table 4-8 presents the range of results of the conventional analyses of the ash extracts from MWC Facility ZC and the range of results for the leachate samples from the ash fill serving this facility. For comparison, this table also lists the Primary Drinking Water Standards for nitrate, as well as the Secondary Drinking Water Standards for chloride, sulfate, and Total Dissolved Solids (TDS).

TABLE 4-1

ASH SEMIVOLATILE RESULTS - SAMPLE ZC-AH-003

FACILITY ZC

Parameter	Ash Sample Result (µg/kg)
Bis(2-ethylhexyl)phthalate	310JB
Di-n-butyl phthalate	400JB

- J Indicates approximate value because contaminants were detected at levels below Method Detection Limits, but above the instrument detection limits.
- B Laboratory identified compound as not being detected substantially above the level reported in laboratory blanks Laboratory may be the source of the compound.

TABLE 4-2 ASH DIOXIN RESULTS - SAMPLE ZC-AH-003 FACILITY ZC

PCDD/PCDF Homolog	Ash Sample Result pg/g (ppt)	Toxicity Equivalency Factor ⁽¹⁾	Toxicity Equivalent (ppt)
2,3,7,8-TCDD	16	1.0	16
Other TCDD	281	0.01	2.81
1,2,3,7,8-PeCDD	71	0.5	35.5
Other PeCDD	1,051	0.005	5.26
1,2,3,4,7,8-H _X CDD	66	0.04	2.64
1,2,3,6,7,8-H _X CDD	90	0.04	3.6
1,2,3,7,8,9-H _X CDD	120	0.04	4.8
Other H _X CDD	925	0.0004	0.37
1,2,3,4,6,7,8-H _P CDD	1,849	0.001	1 85
Other H _P CDD	1,511	0.00001	0.0151
OCDD	6,906	0	0
2,3,7,8-TCDF	236	0.1	23.6
Other TCDF	1,208	0.001	1 21
1,2,3,7,8-PeCDF	64	0.1	6.4
2,3,4,7,8-PeCDF	56	0.1	5.6
Other PeCDF	607	0.001	0.607
1,2,3,4,7,8-H _X CDF	218	0.01	2.18
1,2,3,6,7,8-H _X CDF	279	0.01	2.79
1,2,3,7,8,9-H _X CDF	193	0.01	1.93
2,3,4,6,7,8-H _X CDF	70	0.01	0.70
Other H _X CDF	635	0.0001	0.0635
1,2,3,4,6,7,8-H _P CDF	653	0.001	0.653
1,2,3,4,7,8,9-H _P CDF	83	0.001	0.083
Other H _P CDF	254	0.00001	0.00254
OCDF	563	0	0
Total Toxicity Equivalent			119 ppt

⁽¹⁾ Toxicity Equivalency Factors are EPA's current recommended factors, (EPA, March 1987).

4-7 R339911

TABLE 4-3
ASH METALS ANALYSES
FACILITY ZC

		PACILITY			
			Samples		
Parameter	ZC-AH-001	ZC-AH-002	ZC-AH-003	ZC-AH-004	ZC-AH-005
METALS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Arsenic	31	36	30	`28	29
Barium	213	193	248	314	331
Cadmium	42	49	52	47	48
Chromium	51	53	57	45	48
Copper	1,150	524	4,470	758	547
Iron	21,300	20,000	23,500	22,100	25,000
Lead	2,380	2,580	1,760	2,630	1,710
Manganese	1,200	826	898	565	51 8
Mercury	1.8	1.1	2.3	3.2	1 7
Selenium	ND	ND	ND	ND	ND
Silver	8.8	12	5.8	5.6	6.0
Sodium	8,630	8,940	7,940	8,040	7,370
Zinc	4,660	7,170	4,390	4,180	4,110
METAL OXIDES	(%)	(%)	(%)	(%)	(%)
Aluminum Oxide	8.64	7.98	6.67	6.65	5.93
Calcium Oxide	9.7	11.4	10.8	10.3	10.6
Magnesium Oxide	1.02	1.17	1.3	1.08	1,11
Potassium Monoxide	0.875	1.07	1.04	1.03	0.992
Silicon Dioxide	62.9	53.8	48.4	57.0	49.5

R339911 4-8

TABLE 4-4

ASH CONVENTIONAL ANALYSES
FACILITY ZC

Parameter	11-14-	Samples					
	Units	ZC-AH-001	ZC-AH-002	ZC-AH-003	ZC-AH-004	ZC-AH-005	
рН	S.U.	11.75	11.82	11.58	11.82	11 74	
Moisture Content*	%	1.0	1.5	2.0	. 0.6	1 4	
тос	mg/kg	9,020	12,300	14,100	9,830	17,800	
Total Soluble Solids	mg/kg	24,600	22,000	23,600	23,000	26,100	
Ammonia	mg/kg	1.49	1.86	1.40	1 33	2.10	
Nitrate	mg/kg	6.46	0.11	0.09	0.14	0.28	
Orthophosphate	mg/kg	ND	ND	ND	ND	ND	
Total Alkalinity	mg/kg	2,690	2,970	1,210	2,840	3,040	
Chloride	mg/kg	5,180	3,870	4,180	5,860	5,280	
Sulfate	mg/kg	7,870	5,900	7,400	9,060	10,300	

R339911 4-9

^{*}Determined after samples were prepared.

TABLE 4-5 LEACHATE METALS ANALYSES **FACILITY ZC**

Parameter	Sample	s (µg/L)	Standards/Criteria (ug/L)				
	ZC-LE-001	ZC-LE-002	EP Toxicity Maximum Allowable Limit	Safe Drinking Water Act ^(a) MCLs	Safe Drinking Water Act ^(b) SMCLs		
Aluminum	ND	ND	SNA	SNA	SNA		
Arsenic	ND	ND	5,000	50	SNA		
Barium	7.8	8.0	100,000	1,000	SNA		
Cadmium	ND	ND	1,000	10	SNA		
Calcium	64,600	65,800	SNA	SNA	SNA		
Chromium	ND	ND	5,000	50	SNA		
Copper	ND	ND	SNA	SNA	1,000		
iron	108	115	SNA	SNA	300		
Lead	ND	34	5,000	50	SNA		
Magnesium	22,600	23,000	SNA	SNA	SNA		
Manganese	493	501	SNA	SNA	50		
Mercury	ND	ND	200	2.0	SNA		
Potassium	79,700	81,200	SNA	SNA	SNA		
Selenium	ND	ND	1,000	10	SNA		
Silicon	4,570	4,840	SNA	SNA	SNA		
Silver	ND	ND	5,000	50	SNA		
Sodium	188,000	191,000	SNA	SNA	SNA		
Zinc	13	9.0	SNA	SNA	5,000		

SNA Standard Not Available.

(a)

Primary Drinking Water Standards. Secondary Drinking Water Standards. (b)

4-10 R339911

TABLE 4-6

LEACHATE CONVENTIONAL ANALYSES
FACILITY ZC

Parameter	Sam	ples	Standards/Criteria		
Parameter	ZC-LE-001	ZC-LE-002	Primary and Secondary Drinking Water Quality Standards		
Ammonia-Distilled (as N)	68.2 mg/L	77.4 mg/L	SNA		
Organic Carbon	47.2 mg/L	49.3 mg/L	SNA		
Temperature (field)	21°C	NA	SNA		
Sulfate (SO ₄)	14.5 mg/L	14.4 mg/L	250 mg/L(b)		
pH (field)	6.9	NA	SNA		
Solids, Dissolved @ 180°C	924 mg/L	932 mg/L	500 L(b		
Specific Conductance @ 25°C (field)	1,800 µmhos/cm	NA	SNA		
Total Alkalinity	560 mg/L 566 mg/L		SNA		
Nitrate (as N)	0.40 mg/L 0.41 mg/L		10 mg/L ^(a)		
Orthophosphate	<0.01 mg/L <0.01 mg/L		SNA		

NA Not analyzed a second time. Temperature, specific conductance, and pH were only measured once in the field.

R339911 4-11

SNA Standard Not Available.

⁽a) Primary Drinking Water Standards.

⁽b) Secondary Drinking Water Standards.

TABLE 4-7

COMPARISON OF ASH EXTRACTS METALS ANALYSES WITH LEACHATE METALS ANALYSES

RANGES OF CONCENTRATIONS

FACILITY ZC

			Stand	ards/Criteria (i	n μg/L)					
Parameter										Safe Drinking
	CO ₂ Extracts	DI H ₂ O Extracts	EP TOX Extracts	1CLP 1 Extracts	TCLP 2 Extracts	SAR Extracts	Leachate(c)	Maximum Allowable Limit	Drinking Water Act(a) MCEs	Water Act(b) SMCLs
Arsenic	ND	ND-45	ND-22	ND	ND-60	ND	ND	5,000	50	SNA
Barium	148-245	139-192	23-198	197-275	12-223	129-182	7880	100,000	1,000	SNA
Cadmium	30-110	ND	897-1,200	646-1,020	758-1,380	ND-6 0	ND	1,000	10	SNA
Chromium	6 8-9 8	8 6-16	36-72	5 6-8 0	162-265	5 9-8 3	ND	5,000	50	SNA
Copper	33-146	12-46	929-2,300	50-291	41-1,200	8 5-36	ND	SNA	SNA	1,000
Iron	ND-33	ND-14	3,160-24,300	ND-113	14,400-46,300	ND-97	108-115	SNA	SNA	300
l ead	44-159	ND-53	5, 180-10,400	337-2, 9 60	8,090-11,700	ND-201	ND 34	5,000	50	SNA
Manganese	788-1,420	ND-20	2,600-8,540	1,900-5,170	2,750-7,370	ND-6 4	493-501	SNA	SNA	50
Mercury	ND	ND-0 32	ND-0 67	ND-0 49	0 32-0 44	ND-1 1	ND	200	2	SNA
Selenium	ND	ND	ND	ND	NĐ	ND	ND	1,000	10	SNA
Silver	ND	ND	ND	ND	ND	ND	ND	5,000	50	SNA
Sodium	139,000- 166,000	140,000- 189,000	129,000- 158,000	1,510,000- 1,640,000	123,000- 170,000	124,000- 160,000	188,000- 191,000	SNA	SNA	SNA
Zinc	4,370-127,000	37-270	57,000-80,100	24,300-47,400	51,900-94,400	30-132	9-13	SNA	SNA	5,000
Aluminum Oxide	70-106	50,400-203,000	20,000-34,500	ND-1,320	98,200-118,000	74,500-118,000	ND	SNA	SNA	
Calcium Oxide	621,000- 759,000	141,000- 193,000	1,300,000- 1,600,000	1,110,000- 1,330,000	1,500,000- 1,820,000	142,000- 199,000	64,600-65,800	SNA	SNA	SNA
Magnesium Oxide	23,200-34,700	42-318	47,800-63,000	39,400-375,000	59,700-83,600	49-430	22,600-23,000	SNA	SNA	SNA
Potassium Monoxide	108,000- 142,000	116,000- 159,000	110,000- 127,000	83,200-134,000	91,200- 1,110,000	104,000- 136,000	79,700-81,200	SNA	SNA	SNA
Silicon Dioxide	20,000-34,500	503-1,560	20,900-79,000	22,400-51,700	7,170-48,700	518-1,410	4,570-4,840	SNA	SNA	SNA

SNA Standard Not Available

(a) Primary Drinking Water Standards

(b) Secondary Drinking Water Standards

(c) Results for aluminum calcium, magnesium, potassium, and silicon are for metals and not oxides

TABLE 4-8 COMPARISON OF ASH EXTRACTS CONVENTIONAL ANALYSES WITH LEACHATE CONVENTIONAL ANALYSES
RANGES OF CONCENTRATIONS
FACILITY ZC

					icient ec					
				Samples (in mg/L)				Stane	dards/Crit eria (in	mg/L)
Parameter							t eachate	EP Toxicity Maximum Allowable Limit	Sale Drinking Water Act(a) MCLs	Safe Drinking Water Act(b) SMCLs
Ammonia-Distilled (as N)	0 12 0 19	0 16-0 24	0 19-0 30	0 15-0 19	0 18-0 32	28302	68 2-77 4	SNA	SNA	SNA
Total Organic Carbon	NA	4 51-7 35	NA NA	NA	'NA	2 58-5 54	47 2-49 3	SNA	SNA	SNA
Chtoride	173-195	181-230	183-226	1 89-2 55	196-281	NA	NA	SNA	SNA	250
Sulfate	587-777	187-448	727-1,650	585-984	536 1,140	NA	14 4 14 5	SNA	SNA	250
Solids, Dissolved @ 180°C	NA	1,050-1,320	NA	NA	NA	NA	924-932	SNA	SNA	500
Total Alkalinity	NA	228-696	NA	NA	NA	NA	5 60-5 66	SNA	SNA	SNA
Nitrate (as N)	0 07 1 59	0 06-0 94	0 31-0 71	0 25 1 33	0 08-15 3	NA	0 40 0 41	5NA	10	SNA
Orthophosphate	ND-0 02	ND-0 01	ND-0 22	ND-0 01	0 79-2 04	ND-0 01	ND	SNA	SNA	SNA
Extract's Initial pH	5 74-5 93	10 52-10 70	10 63-10 84	4 86-5 01	3 28-3 64	10 20-10 41	NA	SNA	SNA	SNA
Extract's Final pH	6 68-6 99	10 28-10 60	4 97-5 02	5 99-7 00	4 63-4 79	10 25-10 63	NA	SNA	SNA	SNA

NA Not analyzed due to differences in scope of work ND Not Detected SNA Standard Not Available (a) Primary Drinking Water Standards Secondary Drinking Water Standards

5.0 FACILITY ZD FINDINGS

5.1 FACILITY ZD DESCRIPTION

Facility ZD consists of two mass-burn, water-wall boilers. Refuse is charged into the boiler by overhead cranes, moves inside the boilers on grates, and is discharged into an ash quench tank located below the boilers. Fly ash in the exhaust gas is collected and mixed with the bottom ash for disposal. The steam generated by the facility is used to generate electricity, which is sold to a local utility. The following details outline operational information for this facility.

Refuse Feed Rate: 750 tons/day/boiler.

Operating Temperature: 2,400-2,600° F.

Residence Time: Approximately 45 minutes in boiler where the

grates can be slowed to allow wet loads more time to dry out; approximately 10 minutes from ash

quench to ash pile.

Backup Fuel: None.

Air Feed Information: Primary air comes from the charging floor and

tipping floor. Secondary air comes from outside the

building. Neither is preheated.

Refuse Feed Method: Refuse is dumped on the tipping floor. The tipping

floor is covered, but is not totally enclosed. Old and new waste is mixed with an overhead crane. Mixing of the waste did not appear to be done frequently. The overhead crane loads the waste into the feed

hopper on the boilers.

Trash Accepted: Residential (90%) and commercial/light industrial

(10%) waste generated in surrounding communities. No sewage sludge, pathological, hazardous, biological, dental, or liquid wastes are

accepted.

Source of Ash Quench Water: Ash quench water consists of blowdowns from

cooling tower and boiler and cooling water. City

water is used as makeup water.

Ash-Handling Equipment

The bottom ash is discharged into one of two quench tanks, which are equipped with drag flight conveyors. The ash settles to the bottom of the quench tank and is moved along by the drag flights, then travels up an incline, and is discharged into a trommel with 3-inch openings. The material that is larger than 3 inches in size travels through the trommel and is deposited in a truck. This material is then sent to an onsite magnetic separator, where the ferrous metal is removed. Any remaining material is added to the waste in the receiving trench and is sent back through the incinerator. The material that is smaller than 3 inches in size drops through the trommel onto a vibrating conveyor. A rotating magnet is used to remove the ferrous material. All other material is deposited in a truck for disposal in the ash fill.

The fly ash is removed from the exhaust gas by electrostatic precipitators (ESPs) and is mixed with the bottom ash in the quench tanks. The drag flights are shut down when trucks are being switched.

The ash samples at Facility ZD were collected from the vibrating conveyor just after the electromagnet removed the ferrous material and just before the ash was deposited in the truck used to transport it to the ash disposal facility. This MWC facility had two ash conveyors that it could use to move the ash from the ash quench tanks to the ash trucks. All of the samples were collected from just one ash conveyor.

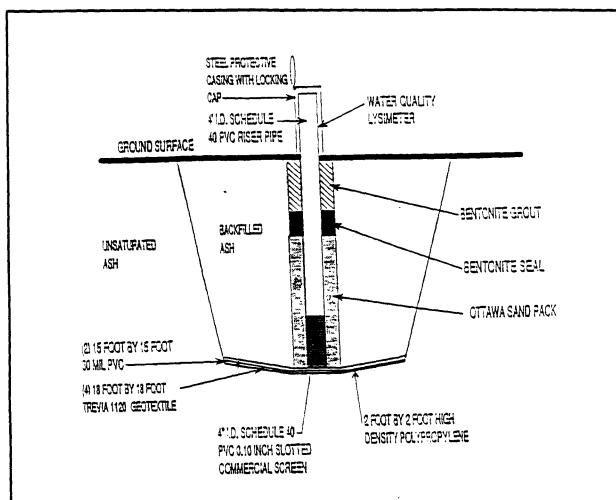
5.2 CHEMICAL CHARACTERIZATION OF ASH

Table 5-1 presents the results of the semivolatile analysis of the ash samples from Facility ZD. The data in this table indicate that some phthalates were detected in sample ZD-AH-003, the only sample from this facility analyzed for the Appendix IX semivolatiles. These compounds appear to be the result of laboratory contamination. The data also indicate that low levels of phenanthrene (310 ppb) and fluoranthene (170 ppb) were detected in sample ZD-AH-003. Phenanthrene and fluoranthene are polynuclear aromatic hydrocarbons (PAHs) and are common products of the combustion of organic material.

Table 5-2 presents the results of the polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/PCDF) analyses of sample ZD-AH-003. Toxicity

equivalency values were calculated using EPA's methodology (EPA, March 1987) and are presented in this table. The data in this table indicate that the PCDDs/PCDFs levels found in the ash are below the Centers for Disease Control (CDC) recommended upper level of 2,3,7,8-TCDD toxicity equivalency of 1 part per billion in residential soil (Kimbrough, 1984).

The results of the metals analyses for the ash from this facility are presented in Table 5-3. The data in this table indicate that, except for chromium, copper, lead, and zinc, the results were fairly constant during the week of sampling.


The results for the conventional analyses are presented in Table 5-4. The data in this table indicate that, except for TOC, nitrate, sulfate, and chloride, the results were also fairly constant during the week the samples were collected.

5.3 CHEMICAL CHARACTERIZATION OF LEACHATES

The facility used for the disposal of ash from MWC Facility ZD is unlined and is used exclusively for the disposal of ash from Facility ZD. The leachate samples from the ash disposal facility for MWC Facility ZD were grab samples collected from shallow water quality lysimeters installed in the ash fill after the ash had been placed. Samples ZD-LE-001 and ZD-LE-003 were collected from the same lysimeter in an area of more recently disposed ash. Sample ZD-LE-002 was collected from a lysimeter in an area of older ash. Figure 5-1 gives a general description of the lysimeter's construction.

No Appendix IX semivolatile compounds or PCDDs/PCDFs were detected in the leachate samples from the ash disposal facility for MWC Facility ZD.

The results for the metals analysis of the leachate samples are shown in Table 5-5. The data in this table indicate that the results for all three samples are generally consistent. However, the results for ZD-LE-002, which was collected in an area of older ash, are generally lower than the results for the other two samples.

NOTE: ILLUSTRATION NOT TO SCALE

WATER QUALITY LYSIMETER ID	TOTAL DEPTH BELOW GRADE (Feet)	THICKNESS BENTONITE CEMENT GROUT (Feet)	THICKNESS BENTONITE SEAL (Feet)	THICKNESS OF OTTAWA SAND (Feet)
B-3A	9.5	2.25	2.25	5.0
C-1AA	10.5	4.0	2.25	4.25
C-4A	10.0	3.5	2.0	4.5
E-1A	10.25	3.75	2.0	4.5

FIGURE 5-1
WATER QUALITY LYSIMETER INSTALLATION DETAIL

The data in Table 5-5 also indicate that none of the metals exceeded the EP Toxicity Maximum Allowable Limits. Although the leachates are not required to meet Drinking Water Standards, a comparison of the leachate results with the Primary and Secondary Drinking Water Standards established under the Safe Drinking Water Act (EPA: BNA, June 1989 and EPA: BNA, October 1988) was made. This comparison indicates that the results for all but iron and manganese met these standards.

Table 5-6 presents the results of the conventional analyses of the leachate samples. TDS values ranged from 8,030 mg/L to 13,000 mg/L.

5.4 CHEMICAL CHARACTERIZATION OF ASH EXTRACTS

No PCDDs/PCDFs were detected in the composite sample from the deionized water extracts of the ash from MWC Facility ZD.

Table 5-7 presents the results of the Appendix IX semivolatile analysis of the composite sample from the deionized water extract of the ash from MWC Facility ZD. Benzoic acid (26 ppb) was the only Appendix IX semivolatile compound found in this composite sample. This table also indicates that no Appendix IX semivolatile compounds were detected in the leachate samples from the ash fill serving this facility.

Table 5-8 presents the range of results of the metals analyses of the ash extracts from MWC Facility ZD and the range of results of the leachate samples from the ash fill serving this facility. For comparison, this table also lists the EP Toxicity Maximum Allowable Limits, and the Primary and Secondary Drinking Water Standards established under the Safe Drinking Water Act (EPA: BNA, June 1989 and EPA: BNA, October 1988).

The results presented in Table 5-8 indicate that the extracts from the EP Toxicity, the TCLP 1, and the TCLP 2 extraction techniques generally contain higher concentrations of metals than the extracts produced by the other extraction techniques. For this facility, the extracts from the EP toxicity, the TCLP 1, and the TCLP 2 extraction techniques exceeded the EP Toxicity Maximum Allowable Limits established in Section 261.24 of 40 CFR 261 for cadmium and lead.

Although the ash extracts would not be required to meet Drinking Water Standards, a comparison of the ash extract results with the Drinking Water Standards was made. This comparison indicates that the majority of the metals results met these standards.

Table 5-9 presents the range of results of the conventional analyses of the ash extracts from MWC Facility ZD and the leachate samples from the ash fill serving this facility. For comparison, this table also lists the Primary Drinking Water Standards for nitrate, as well as the Secondary Drinking Water Standards for chloride, sulfate, and Total Dissolved Solids (TDS).

TABLE 5-1

ASH SEMIVOLATILE RESULTS - SAMPLE ZD-AH-003
FACILITY ZD

Parameter	Ash Sample Result (µg/kg)
Bis(2-ethylhexyl)phthalate	390JB
Di-n-butyl phthalate	270JB ₁
Fluoranthene	170J
Phenanthrene	310J

- J Indicates approximate value because contaminants were detected at levels below Method Detection Limits, but above the instrument detection limit.
- B Laboratory identified compound as not being detected substantially above the level reported in laboratory blanks. Laboratory may be the source of the compound.
- B₁ Compound was identified during data validation as not being detected substantially above the level reported in the laboratory blanks. Laboratory may be the source of the contamination.

TABLE 5-2 **ASH DIOXIN RESULTS - SAMPLE ZD-AH-003 FACILITY ZD**

PCDD/PCDF Homolog	Ash Sample Result pg/g (ppt)	Toxicity Equivalency Factor ⁽¹⁾	Toxicity Equivalent (ppt)
2,3,7,8-TCDD	35	1.0	35
Other TCDD	541	0.01	5.41
1,2,3,7,8-PeCDD	ND	0.5	0
Other PeCDD	1,910	0.005	9 55
1,2,3,4,7,8-H _X CDD	86	0.04	3 44
1,2,3,6,7,8-H _X CDD	148	0.04	5 92
1,2,3,7,8,9-H _X CDD	194	0.04	7 76
Other H _X CDD	853	0.0004	0 34
1,2,3,4,6,7,8-H _P CDD	1,555	0.001	1 56
Other H _P CDD	1,384	0.00001	0 0138
OCDD	4,519	0	0
2,3,7,8-TCDF	626	0.1	62 6
Other TCDF	2,633	0.001	2 63
1,2,3,7,8-PeCDF	151	0.1	15 1
2,3,4,7,8-PeCDF	171	0.1	17 '
Other PeCDF	1,736	0.001	1 74
1,2,3,4,7,8-H _X CDF	654	0.01	6 .54
1,2,3,6,7,8-H _X CDF	660	0.01	6.60
1,2,3,7,8,9-H _X CDF	479	0.01	4.79
2,3,4,6,7,8-H _X CDF	124	0.01	1.24
Other H _X CDF	1,6 86	0.0001	0 169
1,2,3,4,6, 7,8 -H _P CDF	1,842	0.001	1 84
1,2,3,4,7, 8,9- H _P CDF	119	0.001	0.119
Other H _P CDF	384	0.00001	0.00384
OCDF	893	0	0
Total Toxicity Equivalent			18 9 ppt

ND - Not detected below 221 pg/g.

5-8

⁽¹⁾Toxicity Equivalency Factors are EPA's current recommended factors (EPA, March 1987).

TABLE 5-3
ASH METALS ANALYSES
FACILITY ZD

		Samples								
Parameter	ZD-AH-001	ZD-AH-002	ZD-AH-003	ZE-AH-004	ZD-AH-005					
METALS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)					
Arsenic	30	54	43	44	36					
Barium	411	440	545	434	432					
Cadmium	51	66	69	42	39					
Chromium	87	199	70	54	52					
Copper	1,050	96 0	1,490	959	1,800					
Iron	34,600	37,100	27,400	31,100	22,900					
Lead	4,090	5,040	2,980	2,860	22,400					
Manganese	574	609	618	965	636					
Mercury	0.91	1.5	2.1	0.55	0.97					
Selenium	2.9	ND	3.1	3.9	3.2					
Silver	7.5	9.4	11	6.3	7.6					
Sodium	6,050	6,480	6,500	6,100	5,890					
Zinc	5,660	6,560	8,000	4,930	4,260					
METAL OXIDES	(%)	(%)	(%)	(%)	(%)					
Aluminum Oxide	12	12	13	9.9	11					
Calcium Oxide	11	11	10	12	11					
Magnesium Oxide	2.0	1.9	2.2	2.2	1 8					
Potassium Monoxide	1.4	1 1	0.7 9	1.1	0. 98					
Silicon Dioxide	35	37	35	32	36					

TABLE 5-4

ASH CONVENTIONAL ANALYSES
FACILITY ZD

Parameter		Samples					
	Units	ZD-AH-001	ZD-AH-002	ZD-AH-003	ZD-AH-004	ZD-AH-005	
рН	S.U.	10.69	10.60	10.51	10.36	10.46	
Moisture Content*	%	0.4	1 6	1.2	1.2	0.9	
тос	mg/kg	25,800	30,000	52,100	11,400	53,200	
Total Soluble Solids	mg/kg	6,850	13,200	6,440	8,740	7,150	
Ammonia	mg/kg	1.00	1 04	1.02	0.90	1.08	
Nitrate	mg/kg	1.59	1.14	0.44	0.96	0.72	
Orthophosphate	mg/kg	ND	0.05	0.05	0.05	0.05	
Total Alkalinity	mg/kg	852	558	786	852	922	
Chloride	mg/kg	1,270	2,190	766	854	869	
Sulfate	mg/kg	2,220	5,580	1,680	2,360	1,800	

^{*} Determined after samples were prepared.

TABLE 5-5 **LEACHATE METALS ANALYSES FACILITY ZD**

	Samples (μg/L)		Standards/Criteria (μg/L)				
Parameter				EP Toxicity	Safe Drinking	Safe Drinking	
, diameter	ZD-LE-001	ZD-LE-002	ZD-LE-003	Maximum Allowable Limit	Water Act(a) MCLs	Water Act ^(b) SMCLs	
Aluminum	ND	ND	ND	SNA	SNA	SNA	
Arsenic	ND	ND	ND	5,000	50	SNA	
Barium	40	18	38	100,000	1,000	SNA	
Cadmium	ND	ND	ND	1,000	10	SNA	
Calcium	477,000	386,000	470,000	SNA	SNA	SNA	
Chromium	ND	ND	ND	5,000	50	SNA	
Copper	12	4.6	7.3	SNA	SNA	1,000	
Iron	187	523	211	SNA	SNA	300	
Lead	ND	ND	ND	5,000	50	SNA	
Magnesium	345,000	367,000	340,000	SNA	SNA	SNA	
Manganese	79 5	718	857	SNA	SNA	50	
Mercury	ND	ND	ND	200	0.2	SNA	
Potassium	636,000	229,000	632,000	SNA	SNA	SNA	
Selenium	ND	ND	ND	1,000	10	SNA	
Sílicon	15,300	8,760	14,900	SNA	SNA	SNA	
Silver	ND	ND	ND	5,000	50	SNA	
Sodium	2,480,000	1,340,000	2,580,000	SNA	SNA	SNA	
Zinc	8 7	ND	5 2	SNA	NA	5,000	

Not detected ND

SNA Standard Not Available

(a)

Primary Drinking Water Standards Secondary Drinking Water Standards (b)

TABLE 5-6 LEACHATE CONVENTIONAL ANALYSES FACILITY ZD

		Standards/Criteria					
Parameter		Samples					
T draine (c)	ZD-LE-001 ZD-LE-002		ZD-LE-003	Secondary Drinking Water Quality Standards			
Ammonia-Distilled (as N)	4.38 mg/L	28 4 mg/L	NA(2)	SNA			
Organic Carbon	28.8 mg/L	30.7 mg/L	NA(2)	SNA			
Temperature (field)	30°C	19°C	30°C	SNA			
Sulfate (SO ₄)	4,920 mg/L	4,140 mg/L	5,080 mg/L	250 mg/L(b)			
pH (field)	NA ⁽¹⁾	NA(1)	NA ⁽¹⁾	SNA			
Solids, Dissolved @ 180°C	12,700 mg/L	8,030 mg/L	13,000 mg/L	500 mg/L(b)			
Specific Conductance @ 25°C (field)	>10,000 µmhos/cm	9,400 µmhos/cm	> 10,000 µmhos/cm	SNA			
Total Alkalinity	709 mg/L	744 mg/L	711 mg/L	SNA			
Nitrate (as N)	0.04 mg/L	<0 01 mg/L	<0.01 mg/L	10 mg/L(a)			
Orthophosphate	0.24 mg/L	0.17 mg/L	0.22 mg/L	SNA			

^{*} pH meter was not working properly.

⁽¹⁾ Not analyzed due to pH meter not working properly.

Not analyzed since this sample was a duplicate of ZD-LE-001 and only selected parameters were analyzed for SNA Standard Not Available.

⁽a) Primary Drinking Water Standards.

⁽b) Secondary Drinking Water Standards.

TABLE 5-7

COMPARISON OF ASH EXTRACT SEMIVOLATILE RESULTS TO LEACHATE SEMIVOLATILE RESULTS FACILITY ZD

Parameter	Samples (μg/L)				
rarameter	Deionized Water Extract	Leachate			
Benzoic Acid	26 JT	ND			

ND Not Detected.

- Indicates approximate value because contaminants were detected at levels below Method Detection Limits, but above the instrument detection limits.
- The mass spectrum does not meet EPA CLP criteria for confirmation, but compound presence is strongly suspected.

TABLE 5-8 COMPARISON OF ASH EXTRACTS METALS ANALYSES WITH LEACHATE METALS ANALYSES RANGES OF CONCENTRATIONS FACILITY ZD

								Standa	ards/Criteria (ii	n µg/L)
		Samples (ιn μg/L)						EP loxicity	Safe	Safe
Parameter	CO ₂ Extracts	DI H ₂ O Extracts	EP TOX Extracts	TCLP 1 Extracts	1CLP 2 Extracts	SAR Extracts	Leachate(c)	Maximum Allowable Limit	Drinking Water Act ^(a) MCLs	Drinking Water Act ^{(t} SMCLs
Arsenic	ND	ND	ND	ND	ND	ND	ND	5,000	50	SNA
Barium	227-502	201-285	162-290	245-418	110-586	166-262	18-40	100,000	1,000	SNA
Cadmium	167-354	ND	195-1,100	426-1,150	601-1,560	ND	ND	1,000	10	SNA
Chromium	ND	ND	ND-49	ND-8 0	145-799	ND	ND	5,000	50	5NA
Copper	42-246	34-80	24-1,550	8 5-858	125-1,400	32 82	4 6 12	SNA	SNA	1,000
tron	ND-45	ND	1,200-27,100	ND-7,220	32,800-103,000	ND	187-523	SNA	SNA	300
Lead	127-504	ND	3,490-19,700	4,050-10,500	22,700-26,400	ND-43	ND	5,000	50	5NA
Manganese	931-1,420	ND	1,320-4,900	1,940-3,110	3,350 5,750	ND	718 857	SNA	SNA	50
Mercury	ND-0 77	ND-0 90	ND-0 29	ND-0 53	ND	0 27-0 53	ND	200	2	SNA
Selenium	ND	ND	ND	ND	ND	ND	ND	1,000	10	SNA
Silver	ND	ND	ND	ND	ND	ND	ND	5,000	50	SNA
Sodium	24,800-49,800	24,100-42,600	33,600-52,500	1,380,000- 1,430,000	38,700-68,300	24,200-42,100	1,340,000- 2,580,000	SNA	SNA	SNA
Zinc	15,200-30,600	5 4-24	30,300-95,600	43,400-79,500	61,000-164,000	12-35	ND-8 7	SNA	SNA	5,000
Aluminum Oxide	ND-204	71,000-97,900	4,870-18,200	344-6,090	88,600-130,000	/2,300 84,200	ND	SNA	SNA	\$NA
Calcium Oxide	398,000- 759,000	199,000- 255,000	592,000- 1,250,000	666,000- 970,000	949,000- 1,670,000	194,000- 246,000	386,000- 477,000	SNA	SNA	SNA
Magnesium Oxide	35,000-59,300	71-156	42,600 86,500	56,300-73,000	94,100-121,000	52 319	340,000- 367,000	SNA	SNA	SNA
Potassium Monoxide	12,300-33,400	13,100-30,400	17,000-38,600	14,600-32,000	15,100-40,900	14,500-31,200	229,000- 636,000	SNA	SNA	SNA
Siticon Dioxide	24,000 29,700	402-642	27,400-49,100	25,600-33,400	118,000- 143,000	703-989	8,760 15,300	SNA	SNA	SNA

ND Not Detected SNA Standard Not Available

(a) (b)

Primary Drinking Water Standards Secondary Drinking Water Standards

Results for aluminum calcium, magnesium, potassium, and silicon are for metals, aid not oxides (c)

TABLE 5-9

COMPARISON OF ASH EXTRACTS CONVENTIONAL ANALYSES WITH LEACHATE CONVENTIONAL ANALYSES RANGES OF CONCENTRATIONS FACILITY ZD

					CILITY					
		Samples (in mg/L)								mg/t)
Parameter .	CO ₂ Extracts	DI H ₂ O Extracts	EP TOX Extracts	TCLP T Extracts	FCLP 2 Extracts	SAR Extracts	Leachate	FP Toxicity Maximum Allowable Limit	Safe Drinking Water Act ^(a) MCLs	Safe Drinking Water Act ^(b) SMCLs
Ammonia Distilled (as N)	0 07-0 0 9	0 08-0 17	0 12-0 20	0 12-0 14	0 16-0 20	3 56-4 1	4 38 28 4	SNA	SNA	SNA
Total Organic Carbon	NA	9 19-18 9	NA.	NA	NA	9 94-19 7	28 8-30 7	SNA	SNA	SNA
Chloride	39 7-77 2	34 2-70 2	43.5-82 2	83 9-109	56 4-141	NA	NA	SNA	SNA	250
Sulfate	336-572	247-371	197-629	360-703	438-872	NA	4,140 5,080	SNA	SNA	250
Solids, Dissolved @ 180°C	NA	598-842	NA	NA	NA	NA	8,030 13,000	SNA	SNA	500
Total Alkalinity	NA	201-288	NA	NA NA	NA.	NA	709 /44	SNA	SNA	SNA
Nitrate (as N)	0 20-0 26	0 03-0 18	0 03-0 16	0 03 0 07	0 01 0 12	NA	ND 0 04	SNA	10	SNA
Orthophosphate	ND 0 06	ND	ND-0 06	0 01-0 04	0 48 1 66	ND 0 01	0 17-0 24	SNA	SNA	SNA
Extract's Initial pH	4 58-4 96	9 97-10 10	8 82-10 20	4 85-4 95	3 16-3 55	9 19 9 72	NA	SNA	SNA	SNA
Extract's Final pH	6 42 6 71	10 18-10 44	4 96-5 18	5 69-6 34	4 10-4 41	9 88-10 31	NA .	SNA	SNA	SNA

NA Not analyzed due to differences in scope of work ND Not Detected

(a) Primary Drinking Water Standards
(b) Secondary Drinking Water Standards

6

•

6.0 FACILITY ZE FINDINGS

6.1 FACILITY ZE DESCRIPTION

Facility ZE consists of two mass-burn, water-wall boilers. Refuse is charged into the boilers by overhead cranes, moves inside the boilers on grates, and is discharged into ash quench reactors on the bottom of the boilers. Dry lime is added to the flue gas where it is mixed with the fly ash. This mixture is then collected in electrostatic precipitators and mixed in with the bottom ash for disposal. The steam generated at the facility is used to generate electricity, which is sold to a local utility. The following details outline the operational information for this facility.

Startup Date: September 1987.

Refuse Feed Rate: 750 tons/day/boiler.

Operating Temperature: 1,800° F.

Residence Time: Approximately 1 hour in the boiler, where the

grates can be slowed to allow wet loads more time

to dry out.

Backup Fuel: Natural gas--is used during start ups and shut downs

and if the boiler drops below 1,800° F.

Air Feed Information: Both primary and secondary air comes from the

tipping floor. Air is not normally preheated, but the

facility has the capability to preheat air.

Refuse Feed Method: Refuse is dumped onto the tipping floor, where

new refuse is mixed with the old refuse with an overhead crane. Two cranes work during the hours in which trucks are unloading. The pit at ZE is the largest pit of any of the facilities studied; thus it is easier for the crane operator(s) to keep areas open for trucks to discharge. The overhead cranes load

the refuse into the feed hoppers on the boilers.

Trash Accepted: Any residential (65% of total) and commercial/light

industrial (35% of total) waste generated in surrounding communities. Table 6-1 lists the

material accepted at this facility.

Source of Ash Quench Water: Ash quench water consists of any water used in the

process (spray drier) and water used in other parts

of the plant.

Electricity Generated: 45 Megawatts/hour. Electricity Used by Facility: 7 Megawatts/hour.

Ash-Handling Equipment

The bottom ash is discharged from the ash quench reactors onto a vibrating conveyor. This conveyor dumps the ash onto an inclined conveyor. The inclined conveyor discharges onto a grizzly, where large items (material greater than 10 inches) are separated out. The smaller material (material less than 10 inches) passes through the grizzly and is discharged into ash bins for transportation to the ash disposal facility.

Fly ash from the generator and the economizer areas is discharged into the ash quench reactors, where it is mixed with the bottom ash. Fly ash from the spray drier (where a lime slurry is injected into the flue gas) and the electrostatic precipitators is transported to a drum, where water is added to the fly ash/lime mixture. This mixture is then discharged onto the inclined conveyor and mixed with the bottom ash.

The ash samples at Facility ZE were collected from the end of the inclined belt just before the ash passed through the grizzly into the ash bins.

6.2 CHEMICAL CHARACTERIZATION OF ASH

No Appendix IX semivolatiles were detected in sample ZE-AH-003, the only sample from this facility analyzed for the Appendix IX semivolatiles. This sample did contain 98 ng/g (ppb) of dichlorobiphenyl (PCB). This was the only PCB cogener detected in this sample.

Table 6-2 presents the results of the polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/PCDF) analyses of sample ZE-AH-003. Toxicity equivalency values were calculated using EPA's methodology (EPA, March 1987) and are presented in this table. The data in this table indicate that the PCDDs/PCDFs levels found in the ash are substantially below the Centers for Disease Control (CDC)

recommended upper level of 2,3,7,8-TCDD toxicity equivalency of 1 part per billion in residential soil (Kimbrough, 1984).

The results of the metals analyses for the ash from this facility are presented in Table 6-3. The data in this table indicate that, except for chromium, mercury, and zinc, the results were fairly constant during the week of sampling.

The results for the conventional analyses are presented in Table 6-4. The data in this table indicate that, except for TOC, total soluble solids, ammonia, and total alkalinity, the results were also fairly constant during the week.

6.3 CHEMICAL CHARACTERIZATION OF LEACHATES

The facility used for the disposal of ash from MWC Facility ZE is lined and is used exclusively for the disposal of ash from Facility ZE. The leachate samples from the ash disposal facility for MWC Facility ZE were grab samples collected from the same leachate collection sump.

The results for the semivolatile analysis of these samples are presented in Table 6-5. As shown in this table only benzoic acid was detected in both samples; 73 ppb in one sample and 52 ppb in the second.

No PCDDs/PCDFs or PCBs were detected in the leachate samples from this ash fill.

The results for the metals analysis of the leachate samples are shown in Table 6-6. The data in this table indicate that none of the compounds exceeded their EP Toxicity Maximum Allowable Limit. Although the leachates are not required to meet Drinking Water Standards, a comparison of the leachate results with the Primary and Secondary Drinking Water Standards established under the Safe Drinking Water Act (EPA: BNA, June 1989 and EPA: BNA, October 1988) was made. This comparison indicates that the results of all but barium, iron and manganese met these standards in the leachates.

Table 6-7 presents the results of the conventional analyses of the leachate samples. TDS values ranged from 25,900 mg/L to 26,300 mg/L, and the pH of the leachate was 5.2.

6.4 CHEMICAL CHARACTERIZATION OF ASH EXTRACTS

No PCDDs/PCDFs or PCBs were detected in the composite sample from the deionized water extracts of the ash from MWC Facility ZE.

Table 6-8 presents the results of the Appendix IX semivolatile analysis of the composite sample from the deionized water extracts of the ash from MWC Facility ZE. Benzoic acid (66 ppb) was the only Appendix IX semivolatile compound detected in this composite sample. This table also indicates that benzoic acid (52 and 73 ppb) was the only Appendix IX semivolatile compound found in the leachate samples from the ash fill serving this facility.

Table 6-9 presents the range of results of the metals analyses of the ash extracts from MWC Facility ZE and the range of results for the leachate samples from the ash fill serving this facility. For comparison, this table also lists the EP Toxicity Maximum Allowable Limits, and the Primary and Secondary Drinking Water Standards established under the Safe Drinking Water Act (EPA: BNA, June 1989 and EPA: BNA, October 1988).

The results presented in Table 6-9 indicate that the extracts from the EP Toxicity and the TCLP 2 extraction techniques generally contain higher concentrations of metals than the extracts produced by the other extraction techniques.

For this facility, the extracts from the EP Toxicity and the TCLP2 extraction techniques exceeded the EP Toxicity Maximum Allowable Limits established in Section 261.24 of 40 CFR 261 for lead.

Although the ash extracts would not be required to meet Drinking Water Standards, a comparison of the ash extract results with the Drinking Water Standards was made. This comparison indicates that the majority of the metals results met these standards.

Table 6-10 presents the range of results of the conventional analyses of the ash extracts from MWC Facility ZE and the leachate samples from the ash fill serving this facility. For comparison, this table also lists the Primary Drinking Water Standards for nitrate, as well as the Secondary Drinking Water Standards for chloride, sulfate, and Total Dissolved Solids (TDS).

TABLE 6-1

ACCEPTABLE WASTE FACILITY ZE

Acceptable waste means household garbage, trash, rubbish and refuse.

Acceptable waste excludes: pathological and biological waste; oil sludge; large concentrations of plastics; cesspool or other human waste; human and animal remains; large automobile and vehicular parts; tires; trailers; agricultural equipment; marine vessels or similar items; farm and other large machinery; wire and cable; tree logs and wood greater than six (6) feet in length and six (6) inches in diameter; tree stumps greater than twelve (12) inches in diameter; liquid wastes; non-burnable construction material and/or demolition debris; wallboard; asbestos and asbestos products; explosives (including ammunition and firearms); chemicals (including any empty containers thereof); radioactive materials and hazardous refuse of any kind (including any empty containers thereof) such as cleaning fluids; flammables; petroleum products (including drained oil); cutting oils; paints; acids; caustics; pesticides; insecticides; poisons, drugs; or any other materials that would be likely to cause the Facility to violate an air or water quality effluent standard or to pose a threat to health or safety or which may cause damage to or adversely affect the operation of the Facility.

TABLE 6-2

ASH DIOXIN RESULTS - SAMPLE ZE-AH-003
FACILITY ZE

PCDD/PCDF Homolog	Ash Sample Result pg/g (ppt)	Toxicity Equivalency Factor ⁽¹⁾	Toxicity Equivalent (ppt)
2,3,7,8-TCDD	10	1.0	10
Other TCDD	120	0.01	1 2
1,2,3,7, 8-PeC DD	35	0.5	17 5
Other PeCDD	248	0.005	1 24
1,2,3,4,7,8-H _X CDD	11	0.04	0 44
1,2,3,6,7,8-H _X CDD	11	0.04	0 44
1,2,3,7,8,9-H _X CDD	22	0.04	0 88
Other H _X CDD	104	0.0004	0 042
1,2,3,4,6,7,8-H _P CDD	122	0.001	0 122
Other H _P CDD	0	0.00001	0
OCDD	294	0	0
2,3,7,8-TCDF	176	0.1	17 6
Other TCDF	1,136	0.001	1 14
1,2,3,7,8-PeCDF	52	0.1	5 2
2,3,4,7,8-PeCDF	43	0.1	4 3
Other PeCDF	448	0.001	0 448
1,2,3,4,7,8-H _X CDF	95	0.01	0 95
1,2,3,6,7,8-H _X CDF	134	0.01	1 34
1,2,3,7, 8,9- H _X CDF	45	0.01	0 45
2,3,4,6,7,8-H _X CDF	20	0.01	0.20
Other H _X CDF	280	0.0001	0 028
1,2,3,4,6,7,8-H _P CDF	155	0.001	0.155
1,2,3,4,7,8,9-H _P CDF	16	0.001	0 016
Other H _P CDF	44	0.00001	0.00044
OCDF	59	0	0
Total Toxicity Equivalent			63.7 ppt

⁽¹⁾ Toxicity equivalency factors are EPA's current recommended factors, (EPA, March 1987).

TABLE 6-3
ASH METALS ANALYSES
FACILITY ZE

2		Samples							
Parameter	ZE-AH-001	ZE-AH-002	ZE-AH-003	ZE-AH-004	ZE-AH-005				
METALS	(mg/kg)	(mg/kg)	(mg/k g)	(mg/kg)	(mg/kg)				
Arsenic	16	17	19	15	20				
Barium	407	491	505	391	792				
Cadmium	34	35	38	37	18				
Chromium	665	71	87	67	70				
Copper	990	1,300	1,820	1,500	930				
Iron	34,600	43,000	45,100	40,200	33,900				
Lead	1,550	1,380	1,170	1,170	1,600				
Manganese	593	640	531	598	581				
Mercury	7.6	4.7	13	4.8	3.2				
Selenium	ND	ND	ND	4.7	ND				
Silver	4.4	5.6	5.4	13	11				
Sodium	6,750	6,410	7,500	5,880	7,700				
Zinc	8,280	3,530	3,600	3,400	2,120				
METAL OXIDES	(%)	(%)	(%)	(%)	(%)				
Aluminum Oxide	11	9.7	10	10	10				
Calcium Oxide	15	14	13	14	13				
Magnesium Oxide	2.0	1.6	1.9	1.8	1.6				
Potassium Monoxide	1.2	1.2	1.4	0.95	1.0				
Silicon Dioxide	31	31	35	30	32				

TABLE 6-4

ASH CONVENTIONAL ANALYSES
FACILITY ZE

Parameter	Umita	Samples					
rarameter	Units	ZE-AH-001	ZE-AH-002	ZE-AH-003	ZE-AH-004	ZE-AH-005	
ρΗ	S.U.	11.61	11.69	11.71	11.40	11.82	
Moisture Content*	%	2.5	1.9	1.4	1.3	0.6	
тос	mg/kg	34,000	8,920	4,060	7,290	43,300	
Total Soluble Solids	mg/kg	22,900	25,900	35,500	26,100	11,200	
Ammonia	mg/kg	5.05	3.64	8.69	7.32	2.77	
Nitrate	mg/kg	2.90	3.19	4.51	4.10	4.23	
Orthophosphate	mg/kg	ND	ND	ND	ND	ND	
Total Alkalinity	mg/kg	3,490	4,710	2,990	7,310	7,590	
Chloride	mg/kg	9,220	10,900	14,100	10,400	7,550	
Sulfate	mg/kg	2,190	1,500	2,790	2,530	2,270	

^{*} Determined after samples were prepared.

TABLE 6-5

LEACHATE SEMIVOLATILE ANALYSES

FACILITY ZE

Baramatar	Samples (µg/L)				
Parameter	ZE-LE-001	ZE-LE-002			
Benzoic acıd	73	52			

TABLE 6-6 LEACHATE METALS ANALYSES FACILITY ZE

_	Sample	es (µg/L)	Standards/Criteria (µg/L)				
Parameter	ZE-LE-001	ZE-LE-002	EP Toxicity Maximum Allowable Limit	Safe Drinking Water Act ^(a) MCLs	Safe Drinking Water Act ^(b) SMCLs		
Aluminum	ND	ND	SNA	SNA	SNA		
Arsenic	ND	ND	5,000	50	SNA		
Barium	3,080	2,970	100,000	1,000	SNA		
Cadmium	ND	ND	1,000	10	SNA		
Calcium	5,670,000	5,570,000	SNA	SNA	SNA		
Chromium	ND	ND	5,000	50	SNA		
Copper	ND	ND	SNA	SNA	1,000		
Iron	10,500	7,480	SNA	SNA	300		
Lead	ND	ND	5,000	50	SNA		
Magnesium	14,800	15,000	SNA	SNA	SNA		
Manganese	17,100	18,500	SNA	SNA	50		
Mercury	ND	ND	200	2.0	SNA		
Potassium	1,430,000	1,450,000	SNA	SNA	SNA		
Selenium	ND	ND	1,000	10	SNA		
Silicon	498	470	SNA	SNA	SNA		
Silver	ND	ND	5,000	50	SNA		
Sodium	2,430,000	2,470,000	SNA	SNA	SNA		
Zinc	27	70	SNA	SNA	5,000		

SNA Standard Not Available.

(a) Primary Drinking Water Standards.
(b) Secondary Drinking Water Standards.

6-10 R339911

TABLE 6-7

LEACHATE CONVENTIONAL ANALYSES
FACILITY ZE

	San	Standards/Criteria	
Parameter	ZE-LE-001	ZE-LE-002	Primary and Secondary Drinking Water Quality Standards
Ammonia-Distilled (as N)	9.78 mg/L	11.4 mg/L	SNA
Organic Carbon	28.9 mg/L	25.5 mg/L	SNA
Temperature (field)	23°C	NA	SNA
Sulfate (SO ₄)	312 mg/L	309 mg/L	250 mg/L(b)
pH (field)	5.2	NA	SNA
Solids, Dissolved @ 180°C	26,300 mg/L	25,900 mg/L	500 mg/L(b)
Specific Conductance @ 25°C (field)	>10,000 µmhos/cm	NA	SNA
Total Alkalinity	95.2 mg/L	117 mg/L	SNA
Nitrate (as N)	0.01 mg/L	0.01 mg/L	10 mg/L ^(a)
Orthophosphate	<0.01 mg/L	<0.01 mg/L	SNA

NA Not analyzed a second time. Temperature, specific conductance and pH were only measured once in the field.

SNA Standard Not Available.

⁽a) Primary Drinking Water Standards.

⁽b) Secondary Drinking Water Standards.

TABLE 6-8

COMPARISON OF ASH EXTRACT SEMIVOLATILE RESULTS TO LEACHATE SEMIVOLATILE RESULTS RANGES OF CONCENTRATIONS FACILITY ZE

Parameter	Samples (µg/L)				
r arameter	Deionized Water Extract	Leachates			
Benzoic Acid	66T	52-73			

The mass spectrum does not meet EPA CLP criteria for confirmation, but compound presence is strongly suspected.

TABLE 6-9 COMPARISON OF ASH EXTRACTS METALS ANALYSES WITH LEACHATE METALS ANALYSES RANGES OF CONCENTRATIONS **FACILITY ZE**

				Samples (in µg/L)				Standards/Criteria (in µg/L)		
									Safe	Safe
Parameter	CO ₂ Extracts	DI H ₂ O Extracts	EP TOX Extracts	TCLP 1 Extracts	TCLP 2 Extracts	SAR Extracts	Leachate ^(c)	Maximum Allowable Limit	Drinking Water Act(a) MCLs	Drinking Water Act ^(b) SMCLs
Arsenic	ND	ND	ND	ND	ND	ND	ND	5,000	50	SNA
Barium	205-530	355-496	173-228	161-458	222-408	302-408	2,970-3,080	100,000	1,000	SNA
Cadmium	17-117	ND	352-724	29-349	301-685	ND	ND	1,000	10	SNA
Chromium	ND	ND	19-86	ND	141-289	ND	ND	5,000	50	SNA
Copper	76-274	123-325	484-5,170	5-119	12-1,030	88-391	ND	SNA	SNA	1,000
Iran	ND-142	ND	36,600-82,000	ND	81,500-162,000	ND	7,480-10,500	SNA	SNA	300
Lead	22-85	ND	7,580-15,400	ND-169	4,110-8,840	ND-115	ND	5,000	50	SNA
Manganese	618-1,560	ND	2,740-4,910	364-4,060	3,070-3,970	ND	17,100-18,500	SNA	SNA	50
Mercury	ND-6 3	ND-0.96	ND-0 65	ND	0 27-2 1	0 22-1 0	ND	200	2	SNA
Selenium	ND	ND	ND	ND	ND	ND	ND	1,000	10	SNA
Silver	ND	ND	ND	ND	ND	ND	ND	5, 00 0	50	SNA
Sodium	64,400-85,600	58,500-82,700	66,200-83,600	1,400,000- 1,590,000	66,800-86,200	53,200-68,000	2,430,000- 2,470,000	SNA	SNA	SNA
Zinc	2,450-9,850	20-91	48,000-82,400	222-16,300	36,900-82,700	41-192	27-70	SNA	SNA	5,000
Aluminum Oxide	ND-52	4,570-47,400	46,800-150,000	ND-159	104,000- 152,000	1,960-50,500	ND	SNA	SNA	SNA
Calcium Oxide	914,000- 1,200,000	343,000- 538,000	1,920,000- 2,100,000	1,340,000- 1,730,000	1,990,000- 2,200,000	352,000- 475,000	5,570,000- 5,670,000	SNA	SNA	SNA
Magnesium Oxide	36,900-47,800	100-188	74,900-103,000	37,600-61,000	89,000-116,000	59-170	14,800-15,000	SNA	SNA	SNA
Potassium Monoxide	38,000-57,700	35,800-61,200	37,300-69,800	34,500-59,400	35,500-64,400	34,400-46,400	1,430,000- 1,450,000	SNA	SNA	SNA
Silicon Dioxide	19,800-32,400	1,170-3,990	46,800-65,700	5,050-12,300	120,000- 136,000	911-3,770	470-498	SNA	SNA	SNA

ND Not Detected

SNA Standard Not Available

(b)

Primary Drinking Water Standards Secondary Drinking Water Standards Results for aluminum, calcium, magnesium, potassium, and silicon are for metals and not oxides (c)

TABLE 6-10

COMPARISON OF ASH EXTRACTS CONVENTIONAL ANALYSES WITH LEACHATE CONVENTIONAL ANALYSES RANGES OF CONCENTRATIONS FACILITY ZE

				Samples (in mg/L)			İ	Standards/Criteria (in mg/L)		
Parameter	CO ₂ Extracts	DI H ₂ O Extracts	EP TOX Extracts	TCLP 1 Extracts	TCLP 2 Extracts	SAR Extracts	Leachate	EP Toxicity Maximum Allowable Limit	Safe Drinking Waler Act ^(a) MCLs	Safe Drinking Water Act ^(b) SMCLs
Ammonia-Distilled (as N)	0 24-0 38	0 20-0 46	0 36-0 61	0 21-0 46	0 26-0 50	3 72-4 11	9 78-11 4	SNA	SNA	SNA
Total Organic Carbon	NA	16 3-23 3	NA	NA	NA	14 9-24 9	25 5-28 9	SNA	SNA	SNA
Chloride	341-709	317-702	328-583	342-818	334-693	NA	NA .	SNA	SNA	250
Sulfale	635-919	140-190	719-926	891-1,230	883-1,090	NA	309-312	SNA	SNA	250
Solids, Dissolved @ 180°C	NA	1,120-1,690	NA	NA	NA	NA	25,900-26,300	SNA	SNA	500
Total Alkalinity	NA	162-234	NA	NA	NA	NA	95 2-11/	SNA	SNA	SNA
Nitrate (as N)	0 39-1 23	0 08-0 17	0 17-0 22	0 11-0 21	0 13-0 18	NA	0 01	SNA	10	SNA
Orthophosphate	ND	ND	0 12-1 04	ND-0 02	0 75-1 99	ND	ND	SNA	SNA	SNA
Extract's Initial pH	4 72-5 18	11 27-11 52	11 04-11 32	5 01-5 08	3 42-3 60	11 37 11 75	NA	SNA	SNA	SNA
Extract's Final pH	6 77-7 17	10 99-11 50	4 95-5 09	7 10-8 18	4 51-4 63	10 87 11 38	NA NA	SNA	SNA	SNA

NA Not analyzed due to differences in scope of work ND Not Detected SNA Standard Not Available (a) Primary Drinking Water Standards (b) Secondary Drinking Water Standards

7.0 SUMMARY OF RESULTS

This section presents a summary of the data presented in Sections 2.0 through 6.0. It also compares the data generated during this present study with data reported in a previous EPA sponsored study (EPA, October 1987).

7.1 CHEMICAL CHARACTERIZATION OF ASH

Table 7-1 presents the results of the Appendix IX semivolatile analyses for the ash samples from each facility. The data in this table indicate that phthalates were found in the ash samples from each MWC facility, except for Facility ZE, and that two PAHs were detected in the ash from Facility ZD.

Table 7-2 compares the range of concentrations of semivolatile compounds found in the combined fly/bottom ash from this study with the range of concentrations found in fly ash, and bottom ash reported in the literature, as summarized in a previous report (EPA, October 1987). The data in this table indicate that fewer compounds were found in the ash during this present study as compared to the data provided in the literature. The concentrations of the compounds which were found in this study are generally similar to those reported in the literature.

Table 7-3 presents the results of the PCDD/PCDF analyses of the ash samples from each facility. This table also presents the Toxicity Equivalency Factor (TEF) for each PCDD/PCDF homolog, the Toxicity Equivalency (TE) for each homolog calculated according to EPA's Methodology (EPA, March 1987), and a Total TE for each sample. Although PCDDs/PCDFs were detected in each ash sample, the levels found were below the Centers for Disease Control (CDC) recommended upper level of 2,3,7,8-TCDD Toxicity Equivalency of 1 part per billion in residential soils (Kimbrough, 1984).

Table 7-4 compares the ranges of concentrations of PCDDs/PCDFs found in ash samples during this study with the ranges of concentrations of PCDDs/PCDFs reported in the literature and summarized in a previous report (EPA, October 1987). The data in this table indicate that the levels of PCDDs/PCDFs found in the ash during

this present study are generally lower than the range of PCDDs/PCDFs found in other ash samples, as reported in the literature.

Table 7-4 also presents the range of concentrations of PCBs in fly ash, bottom ash, and combined ash. The data in this table indicate that only Dichloro Biphenyl was found in the ash during this present study.

Table 7-5 presents the range of results of the metals analyses for the ash from each facility. Metals showing the widest range of concentration among samples collected at each facility included barium (ZB); cadmium (ZB); chromium (ZD, ZE); copper (ZA, ZB, ZC); lead (ZD); manganese (ZA, ZC); mercury (ZE); zinc (ZB, ZD, ZE) and silicon dioxide (ZA).

Metals showing the widest variation of concentrations between the facilities included barium (results for Facility ZC are lower than the results for the other facilities); iron (results for each facility vary from all of the other facilities); lead (results for Facility ZD are higher than the results for the other facilities); mercury (results for Facilities ZC and ZD are lower than the results for the other facilities); sodium (results for Facilities ZD and ZE are lower than the results for the other facilities); calcium oxide (the results for Facilities ZA and ZB are higher than the results for the other facilities); and silicon dioxide (the results for Facility ZC are higher than the results for the other facilities).

Table 7-6 compares the ranges of concentrations of metals found in the ash during this study with the ranges of concentrations of metals found in fly ash, bottom ash, and combined ash as reported in the literature and summarized in a previous report (EPA, October 1987). The data in this table indicate that the results obtained during this study are generally similar to the previous results.

Several compounds (aluminum, cadmium, calcium, mercury, and potassium) exhibited higher levels during this study than those reported previously for combined ash. The levels of copper found during this study are higher than the results reported previously for combined ash, but are still lower than the results reported previously for bottom ash. The magnesium results reported in this study are higher than the results reported previously for all three types of ash. However, the results for magnesium are close to those previously reported. The levels of

silicon found in the ash during this study are much higher than the levels found in previous studies.

Table 7-7 presents the range of results of the conventional analyses for the ash from each facility. Compounds showing the widest range of values between samples at each facility included TOC (ZA, ZB, ZD, ZE); ammonia (ZA, ZB, ZE); nitrate (ZC, ZD); total alkalinity (ZB, ZC, ZE); chloride (ZB, ZD); sulfate (ZB, ZD); and total soluble solids (ZE).

Compounds showing the widest variation between facilities included TOC (results for Facilities ZD and ZE are higher than the results for the other facilities); total soluble salts (results for Facilities ZA and ZB are higher than the results for the other facilities); ammonia (results for Facilities ZC and ZD are lower than the results for the other facilities); total alkalinity (results for Facility ZA are higher than the results for the other facilities); chloride (results for Facilities ZA and ZB are higher than the results for the other facilities); and sulfate (results for Facility ZC are higher than the results for the other facilities).

7.2 CHEMICAL CHARACTERIZATION OF LEACHATES

Table 7-8 presents the range of results of the Appendix IX semivolatile analyses for the leachate samples from each facility. The data in this table indicate that phenols were detected in the leachate from the ashfill serving MWC Facility ZA and that benzoic acid was detected in the leachate from the ashfill serving MWC Facility ZE.

Table 7-9 compares the ranges of concentrations of the semivolatile compounds found in the leachates in this study with the ranges of concentrations of organic compounds reported in the literature and summarized in a previous report (EPA, October 1987). The data in this table indicate that very few semivolatile compounds were found in the leachates during this study. The levels of phenol detected in the leachates during this study are much lower than the levels of phenol found in the leachates from the MSW landfills or co-disposal sites.

Table 7-10 presents the range of concentrations of PCDDs/PCDFs found in the leachate samples from each facility. PCDDs/PCDFs were only found at extremely low levels in the leachates from the ashfill for Facility ZA.

Table 7-11 compares the ranges of concentrations of PCDDs/PCDFs found in the leachates during this study with the ranges of concentrations of PCDDs/PCDFs found in leachates during a previous study (EPA, October 1987). The data in this table indicate that the leachates did not contain significant quantities of PCDDs/PCDFs. The data in this table also indicate that the homologs most often found in leachates from ash monofills are the more highly chlorinated homologs (HpCDD, HpCDF, OCDD, OCDF) which are also the homologs with the relatively lower Toxicity Equivalency Factors (TEFs).

Table 7-12 presents the results of the metals analyses of the leachate from each facility. For comparison, this table also presents the EP Toxicity Maximum Allowable Limit, and the Primary and Secondary Drinking Water standards established under the Safe Drinking Water Act (EPA: BNA, June 1989 and EPA: BNA, October 1988). The data in this table indicate that all of the metals were below their EP Toxicity Maximum Allowable Limit. The data in this table also indicate that, although the leachates are not used for drinking purposes, the majority of the metals results met the Primary or Secondary Drinking Water Standards.

Table 7-13 compares the ranges of concentrations of metals in the leachates from this study with the ranges of concentrations of metals in leachates found in the literature and summarized in a previous NUS report (EPA, October 1987). The data in this table indicate that the EP Toxicity Maximum Allowable Limits were not exceeded by the leachates from ash monofills in either this study or in the previous NUS report. The data in this table also indicate that a number of compounds are reported as having higher concentrations in the leachates from this study than the leachates from the previous study.

Table 7-14 presents the range of results of the conventional analyses for the leachate from each facility. Sulfate values ranged from 14.4 mg/L to 5,080 mg/L, and TDS values ranged from 924 mg/L to 41,000 mg/L.

7.3 CHEMICAL CHARACTERIZATION OF ASH EXTRACTS

The only Appendix IX semivolatile compound detected in the deionized water extracts (SW-924) was benzoic acid, which ranged from below the detection limits to $130~\mu g/L$. Table 7-15 compares the ranges of concentrations of semivolatile compounds found in the deionized water ash extracts (SW-924) during this study

with the ranges of concentrations of organics found in ash extracts from a previous report (EPA, October 1987). All studies show that MWC ash extracts are generally free of semivolatile compounds.

Table 7-16 compares the ranges of concentrations of the metals analyses of the ash extracts found during this study with the ranges of concentrations of metals analyses of extracts as reported in the literature and summarized in a previous NUS report (EPA, October 1987). The data in this table indicate that the extracts from the EP Toxicity, the TCLP 1, and the TCLP 2 extraction procedures contained generally higher levels of metals than the extracts from the other extraction procedures.

The data in this table also indicate that the extracts from the deionized water extraction procedure (SW-924), both from this study and from the literature, and the extracts from the CO₂ and the SAR extraction procedures meet the EP Toxicity Allowable Limits. The extracts from the EP Toxicity, TCLP 1, and the TCLP 2 extraction procedures occasionally exceeded the EP Toxicity Maximum Allowable Limits for some metals.

For the facilities sampled during this study, the data indicate that the extracts from the deionized water (SW-924), the CO₂, and the SAR extraction procedures simulated the concentrations for lead and cadmium in the field leachates better than the extracts from the other three extraction procedures.

TABLE 7-1

COMPARISON OF ASH SEMIVOLATILE RESULTS

Parameter	Samples (µg/kg)							
rarameter	ZA-AH-003	ZB-AH-001	ZC-AH-003	ZD-AH-003	ZE-AH-003			
Bis(2-ethylhexyl) phthalate	250,000	810JB	310JB	39018	ND			
Di-n-octyl phthalate	2,000T	ND	ND	ND	ND			
Di-n-butyl phthalate	430JB	ND	400JB	270JB1	ND			
Fluoranthene	ND	ND	ND	ال 170	ND			
Phenanthrene	ND	ND	ND	310J	ND			

ND Not detected.

- Indicates approximate value because contaminants were detected at levels below Method Detection Limits, but above the instrument detection limits.
- B Laboratory identified compound as not being detected substantially above the level reported in laboratory blanks. Laboratory may be the source of the compound.
- B₁ Compound was identified during data validation as not being detected substantially above the level reported in the laboratory blanks. Laboratory may be the source of the contamination.
- The mass spectrum does not meet EPA CLP criteria for confirmation, but compound presence is strongly suspected.

TABLE 7-2

RANGES OF CONCENTRATIONS OF SEMIVOLATILES IN FLY ASH, BOTTOM ASH,
AND COMBINED ASH FROM MUNICIPAL WASTE INCINERATORS

Constituent	Range, Fly Ash (ppb)	Range, Bottom Ash (ppb)	Range, Combined Ash (ppb)
Naphthalene	270-9,300	570-580	ND
Biphenyl	2-1,300	NR	ND
Acenaphthylene	ND-3,500	37-390	ND
Anthracene	1-500	53	ND
Fluorene	0-100	ND-150	ND
Phenanthrene	21-7,600	500-540	ND-310J
Di-n-butyl phthalate	ND	360	ND-430JB
Fluoranthene	0-6,500	110-230	ND-170J
Pyrene	0-5,400	150-220	ND
Butyl benzyl phthalate	ND	180	ND
Chrysene	0-690	ND-37	ND
Bis(2-ethylhexyl)phthalate	85	2,100	ND-250,000
Benzanthrene	0-300	NR	ND
Benzo(k)fluoranthene	ND-470	ND-51	ND
Benzo(a)pyrene	ND-400	ND-5	ND
Benzo(g,h,i)perylene	0-190	ND	OZ
Diethyl phthalate	6,300	NR	NO
Acenaphthene	NR	28	ND
Normal alkanes	50,000	NR	ND
Chlorobenzenes	80-4,220	17	ND
Chlorophenois	50.1-9,630	0	ND
Di-n-octyl phthalate	NR	NR	ND-2,000T
Country	USA, Canada, Japan and The Netherlands	USA and Canada	USA

ND Not detected.

NR Not reported in the literature.

Source: Fly ash and bottom ash ranges are from "Characterization of MWC Ashes and Leachates from MSW Landfills, Monofills, and Co-Disposal Sites," EPA 530-SW-87-028A, October 1987. Combined Ash ranges are from this study.

Indicates approximate value because contaminants were detected at levels below Method Detection Limits, but above the instrument detection limits.

B Laboratory identified compound as not being detected substantially above the level reported in laboratory blanks. Laboratory may be the source of the compound.

The mass spectrum does not meet EPA CLP criteria for confirmation, but compound presence is strongly suspected.

TABLE 7-3
ASH DIOXIN RESULTS

						Samples (į	og/g or ppt)				
Compound	Toxicity Equivalency	ZA-AH-003 ZE		ZB-A	H-001	ZC·A	H-003	7D-A	H 003	ZE-A	АН 003
factor (1Ef) ⁽¹⁾	Value	Toxicity Equivalents	Value	Toxicity Equivalents	Value	Toxicity Equivalents	Value	Toxicity Equivalents	Value	Toxicity Equivalents	
2.3.7.8-TCDD	1	10	10	24	24	16	16	35	35	10	10
Other TCDD	0 01	206	2 06	351	3 51	281	2 81	541	5 41	120	12
2.3.7.8-TCDF	01	263	26 3	617	61 7	236	23 6	626	62 6	176	17 6
Other TCDF	0 001	1,688	1 69	3,721	3 72	1,208	1 21	2,633	2 63	1,136	1 14
1.2.3.7.8-PeCDD	0.5	33	16 5	118	59	71	35 5	ND	0	35	175
Other PeCDD	0 005	317	1 59	759	3 80	1,051	5 26	1,910	9 55	248	1 24
1,2,3,7,8-PeCDF	01	61	61	194	19 4	64	6.4	151	15 1	52	5.2
2.3.4.7.8 PeCDF	01	46	46	162	16 2	56	5 6	171	17 1	43	4 3
Other PeCDF	0 001	484	0 484	1,527	1 53	607	0 607	1,736	1 74	448	0 448
1,2,3,4,7,8 HxCDD	0.04	12	0.48	40	16	66	2 64	86	3 44	11	0 44
1.2.3.6.7.8-HxCDD	0 04	17	0 68	34	1 36	90	36	148	5 92	11	0 44
1,2,3,7,8,9-HxCDD	0 04	28	1 12	79	3 16	120	48	194	7 76	22	0 88
Other HxCDD	0 0004	154	0 062	342	0 137	925	0 37	853	0 34	104	0 042
1,2,3,4,7,8 HxCDF	0.01	74	0 74	336	3 36	218	2 18	654	6 54	95	0 95
1,2,3,6,7,8-HxCDF	0.01	131	1 31	524	5 24	279	2 79	660	6 60	134	1 34
1,2,3,7,8,9 HxCDF	0 01	36	0 36	127	1 27	193	1 93	479	4 79	45	0 45
2.3.4.6.7.8-HxCDF	0.01	5	0 05	54	0 54	70	0 70	124	1 24	20	0 20
Other HxCDF	0 0001	281	0 0281	939	0 0939	635	0 0635	1,686	0 169	280	0 028
1,2,3,4,6,7,8, HpCDD	0 001	159	0 159	319	0 319	1,849	1 85	1,555	1 56	122	0 122
Other HpCDD	0 00001	140	0 0014	288	0 00288	1,511	0 0151	1,384	0 0138	0	0
1,2,3,4,6,7,8-HpCDF	0 001	139	0 139	539	0 539	653	0 653	1,842	1 84	155	0 155
1,2,3,4,7,8,9 HpCDF	0 001	8	0 008	48	0 048	83	0 083	119	0 119	16	0 016
Other HpCDF	0 00001	51	0 00051	197	0 00197	254	0 00254	384	0 00384	44	0 00044
OCDD	0	313	0	544	0	6,906	0	4,519	. 0	294	0
OCDF	0	66	0	243	0	563	0	893	0	59	0
Total TEs			74 5		211		119		189		637

⁽¹⁾ Toxicicty Equivalency Factors are EPA's current recommended factors (EPA, March 1987) ND Not detected below 221 pg/g

TABLE 7-4

RANGES OF CONCENTRATIONS OF PCDDs, PCDFs, and PCBs IN FLY ASH, BOTTOM ASH, AND COMBINED ASH FROM MUNICIPAL WASTE INCINERATORS

Constituent	Range, Fly Ash (ppb)	Range, Combined Ash (Literature) (ppb)	Range, Bottom Ash (ppb)	Range, Combined Ash (CORRE) (ppb)
Mono CDD	2.0	NR	ND	NA
Di CDD	0.4-200	NR	ND	NA
Tri CDD	1.1-82	NR	ND	NA
Tetra CDD	ND-250	0.14-14	< 0.04-0.65	0 130-0.576
Penta CDD	ND-722	1.9-50	ND-3	0 283-1.91
Hexa CDD	ND-5,565	1.4-78	ND-2.3	0.148-1.28
Hepta CDD	ND-3,030	1.4-120	ND-6.3	0.1 22-3.36
Octa CDD	ND-3,152	0.84-89	ND-29	0 294-6.91
2,3,7,8-TCDD	0.1-42	0.02-0.78	<0.04-0.7	0.010-0.035
Total Poly CDD	5.23-10,883	6.2-350	ND-110	RNR
Mono CDF	41	NR	1.1	NA
Di CDF	ND-90	NR	0.63	NA
Tri CDF	0.7-550	NR	ND	NA
Tetra CDF	ND-410	2.3-91	0.15-1.4	1 31-4.34
Penta CDF	ND-1,800	1.6-37	0.07-6.2	0.543-2.06
Hexa CDF	Tr-2,353	1.2-35	ND-2.5	0.52 7-3.6
Hepta CDF	Tr-666	0.62-36	ND-6.9	0.198-2.345
Octa CDF	ND-362	0.18-8.4	ND-3.7	0.059-0.893
2,3,7,8-TCDF	0.1-5.4	0.41-12	ND-10	0 176-0.626
Total Poly CDF	3.73-3,187	6.14-153.9	ND-65	RNR

TABLE 7-4
RANGES OF CONCENTRATIONS OF PCDDs, PCDFs, and PCBs
FROM MUNICIPAL WASTE INCINERATORS (ppb)
PAGE TWO

Constituent	Range, Fly Ash (ppb)	(ppb) Combined Ash (Literature) (ppb) (ppb)		Range, Combined Ash (CORRE) (ppb)
Mono CB	0.29-9.5	ND	ND-1.3	ND
Di CB	0.13-9.9	0.126-1.35	ND-5.5	98-107
Tri CB	ND-25	0.35-14.3	ND-80	ND
Tetra CB	0.5-42	16.5-16.5	ND-47	ND
Penta CB	0.87-225	ND	ND-48	ND
Hexa CB	0.45-65	NR	ND-39	ND
Hepta CB	ND-0.1	NR	ND	ND
Octa CB	ND-1.2	NR	ND	ND
Nona CB	ND	NR	ND	ND
Deca CB	ND	NR	ND	ND
Total PCB	ND-250	ND-32.15	ND-180	ND
Country	USA, Canada, W. Germany, The Netherlands, Japan	USA	USA, Canada, Japan	USA

NA Not analyzed. ND Not detected.

NR Not reported in the literature.

RNR Results not reported in this manner. 2,3,7,8-TCDD toxicity equivalents were calculated

and are reported in Table 7-3.

Tr = 0.01 < Tr < 0.1 ng/g.

Source: Results in first three columns are from "Characterization of MWC Ashes and Leachates

from MSW Landfills, Monofills, and Co-Disposal Sites," EPA, October 1987. Results in last

column are from this study.

TABLE 7-5

ASH METALS ANALYSES
RANGES OF CONCENTRATIONS

			Samples		
Parameter	ZA-AH-001 - ZA-AH-005	ZB-AH-001 - ZB-AH-005	ZC-AH-001 - ZC-AH-005	ZD-AH-001 - ZD-AH-005	ZE-AH-001- ZE-AH-005
METALS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Arsenic	37-51	28-56	28-36	30-54	15-20
Barium	436-554	260-1,000	193-331	411-545	391-792
Cadmium	32-56	52-152	42-52	39-69	18-38
Chromium	55-93	53-118	45-57	52-199	67-665
Copper	946-7,360	674-9,330	524-4,470	959-1,800	930-1,820
iron	44,100- 63,300	13,600- 22,200	20,000- 25,000	22,900- 37,100	33,900- 45,100
Lead	1,180- 1,820	1,070- 1,740	1,710- 2,630	2,860- 22,400	1,170- 1,600
Manganese	587-1,360	508-846	518-1,200	574-965	531-640
Mercury	10.4-25.1	7.7-12	1.1-3.2	0.55-2.10	3 2-13.0
Selenium	ND	ND-5.7	ND	ND-3.9	ND-47
Silver	4.1-8.7	5.4-10.0	5.6-12	6.3-11.0	4 4-13 0
Sodium	9,350- 11,000	8,200- 10,600	7,370- 8,940	5,890- 6,500	5,880- 7,770
Zinc	4,310- 6,900	4,360- 15,800	4,110- 7,170	4,260- 8,000	2,120- 8,280
METAL OXIDES	(%)	(%)	(%)	(%)	(%)
Aluminum Oxide	8.52-9.85	7.39-10.3	5.93-8.64	9.9-13.0	9 7-11 0
Calcium Oxide	15.1-22.2	19.4-25.7	9.70-11.4	10.0-12.0	13 0-15 0
Magnesium Oxide	1.21-1.50	1.19-1.62	1.02-1.30	1.8-2.2	1 6-2.0
Potassium Monoxide	1.10-1.24	0.827-0.941	0.875-1.07	0.79-1.4	0.95-1 4
Silicon Dioxide	21.9-43.8	19.0-29.4	48.4-62.9	32.0-37.0	30-35

ND Not Detected.

TABLE 7-6

RANGES OF CONCENTRATIONS OF INORGANIC CONSTITUENTS
IN FLY ASH, COMBINED ASH, AND BOTTOM ASH
FROM MUNICIPAL WASTE INCINERATORS

Parameter	Fly Ash (ppm)	Combined Bottom and Fly Ash (Literature) (ppm)	Bottom Ash (ppm)	Combined Bottom and Fly Ash (CORRE) (ppm)
Arsenic	15-750	2.9-50	1.3-24.6	15-56
Barium	88-9,000	79-2,700	47-2,000	193-1,000
Cadmium	< 5-2,210	0.18-100	1.1-46	18-152
Chromium	21-1,900	12-1,500	13-520	45-665
Lead	200-26,600	31-36,600	110-5,000	1,070-22,400
Mercury	0.9-35	0.05-17.5	ND-1.9	0 55-25.1
Selenium	0.48-15.6	0.10-50	ND-2.5	ND-5.7
Silver	ND-700	0.05-93.4	ND-38	4 1-13.0
Aluminum	5,300-176,000	5,000-60,000	5,400-53,400	5 93-13 0(1)
Antimony	139-760	<120-<260	NR	NA
Beryllium	ND-<4	0.1-2.4	ND-<0.44	NA
Bismuth	36-<100	NR	ND	NA
Boron	35-5,654	24-174	85	NA
Bromine	21-250	NR	NR	NA
Calcium	13,960-270,000	4,100-85,000	5,900-69,500	9 7-25 7 ⁽¹⁾
Cesium	2,100-12,000	NR	NR	NA
Cobalt	2.3-1,670	1.7-91	3-62	NA
Copper	187-2,380	40-5,900	80-10,700	524-9,330
iron	900-87,000	690-133,500	1,000-133,500	13,600-63,300
Lithium	7.9-34	6.9-37	7-19	NA
Magnesium	2,150-21,000	700-16,000	880-10,100	1 02-2.2 ⁽¹⁾
Manganese	171-8,500	14-3,130	50-3,100	508-1,360
Molybdenum	9.2-700	2.4-290	29	NA
Nickel	9.9-1,966	13-12,910	9-226	NA

TABLE 7-6
RANGES OF CONCENTRATIONS OF INORGANIC CONSTITUENTS
IN FLY ASH, COMBINED ASH, AND BOTTOM ASH
FROM MUNICIPAL WASTE INCINERATORS
PAGE TWO

Parameter	Fly Ash (ppm)	Combined Bottom and Fly Ash (Literature) (ppm)	Bottom Ash (ppm)	Combined Bottom and Fly Ash (CORRE) (ppm)
Phosphorus	2,900-9,300	290-5,000	3,400-17,800	NA
Potassium	11,000-65,800	290-12,000	920-13,133	0.79-1.4(1)
Silicon	1,783-266,000	NR	1,333-188,300	19.0- 62 .9 ⁽¹⁾
Sodium	9,780-49,500	1,100-33,300	1,800-33,300	5,880-11,000
Strontium	98-1,100	12-640	81-240	NA
Tin	300-12,500	13-380	40-800	NA
Titanium	< 50-42,000	1,000-28,000	3,067-11,400	NA
Vanadium	22-166	13-150	53	NA
Yttrium	2-380	0.55-8.3	NR	NA
Zinc	2,800-152,000	92-46,000	200-12,400	2,120-15,800
Gold	0.16-100	NR	NR	NA
Chloride	1,160-11,200	NR	NR	766-44,200
Country	USA, Canada	USA	USA, Canada	USA

⁽¹⁾ Results are for oxides and are expressed as percents.

Source: The results in t

The results in the first three columns are from "Characterization of MWC Ashes and Leachates from MWS Landfills, Monofills, and Co-Disposal Sites," EPA 530-SW-87-028A, October 1987. The results in the last column are from this study.

NA Not analyzed, as it was not part of the scope of work for this project.

ND Not detected.

NR Not reported in the literature.

TABLE 7-7

ASH CONVENTIONAL ANALYSES
RANGES OF CONCENTRATIONS

		S	amples (mg/kg)	
Parameter	ZA-AH-001- ZA-AH-005	ZB-AH-001- ZB-AH-005	ZC-AH-001- ZC-AH-005	ZD-AH-001- ZD-AH-005	ZE-AH-001- ZE-AH-005
Ammonia-Distilled (as N)	2.89-11.5	3.69-10.6	1.33-2.10	0.90-1.08	2.77-8.69
Total Organic Carbon	11,400- 35,600	14,600- 29,600	9,020- 17,800	11,400- 53,200	4,060- 43,300
Chloride	16,300- 23,700	18,600- 44,200	3,870- 5,860	766- 2,190	7,550- 14,100
Sulfate	3,770- 6,100	764- 3,130	5,900- 10,300	1,6 8 0- 5,580	1,500- 2,7 9 0
Solids, Dissolved @ 180°C	46,500- 52,400	36,700- 65,800	22,000- 26,100	6,440- 13,200	11,200- 35,500
Total Alkalinity	7,540- 8,100	1,590- 6,650	1,210- 3,040	558-922	2,9 9 0- 7,5 9 0
Nitrate (as N)	2.22-4.23	1.45-2.87	0.09-6.46	0.44-1.59	2.9-4.51
Orthophosphate	ND	ND	ND	ND-0.05	ND
рН	11.68-11.85	10.91-11.67	11.58-11.82	10.36-10.69	11.4-11.82

ND Not Detected.

7-14

TABLE 7-8

LEACHATE SEMIVOLATILE RESULTS

RANGES OF CONCENTRATIONS

	Samples (μg/L)							
Parameter	ZA-LE-001- ZA-LE-007	ZB-LE-001	ZC-LE-001- ZC-LE-002	ZD-LE-001- ZD-LE-003	ZE-LE-001- ZE-LE-002			
Benzoic acid	ND	ND	ND	ND	52-73			
Phenol	2J-32	ND	ND	ND	ND			
3-Methylphenol	ND-6J	ND	ND	ND	ND			
4-Methylphenol	ND-6J	ND	ND	ND	ND			

ND Not Detected.

Indicates approximate value because contaminants were detected at levels below Method Detection Limits, but above the instrument detection limit.

CONCENTRATIONS OF ORGANIC CONSTITUENTS IN LEACHATE
FROM MUNICIPAL WASTE LANDFILLS, ASH MONOFILLS, AND CO-DISPOSAL SITES

Constituent	Range (Literature) (µg/L)	NUS Municipal (µg/L)	NUS Codisposal (µg/L)	Ash Monofill (CORRE) (ug/L)
Acetone	140-11,000	4-4,600	ND-1,500	NA
Benzene	2-6,080	ND	ND	NA
Benzoic Acid	NR	NR	NR	ND-73
Bromomethane	10-170	ND	ND	NA
1-Butanol	50-360	ND	ND	NA
Carbon tetrachloride	2-398	ND	ND	NA
Chlorobenzene	2-237	ND	ND	NA
Chloroethane	5-860	ND	ND	NA
Bis(2-chloroethoxy)methane	2-25	ND	ND	ND
Chloroform	2-1,300	ND	ND	NA
Chloromethane	10-170	ND	ND	NA
Delta BHC	0-5	ND	ND	NA
Dibromomethane	5-25	ND	ND	NA
1,4-Dichlorobenzene	2-37	ND	ND	ND
Dichlorodifluoromethane	10-450	ND	ND	NA
1,1-Dichloroethane	2-6,300	ND	ND	NA
1,2-Dichloroethane	0-11,000	ND-16	ND	NA
Cis-1,2-Dichloroethene	4-190	ND	ND	NA
Trans-1,2-Dichloroethene	4-2,760	ND	ND	NA
Dichloromethane	2-3,300	ND	ND	NA
1,2-Dichloropropane	2-100	ND-230	ND	NA
Diethyl phthalate	2-330	ND	ND	ND
Dimethyl phthalate	4-55	ND	ND	ND
Di-n-butyl phthalate	4-150	ND-23	ND	ND
Endrin	0-1	ND	ND-250	NA
Ethyl acetate	5-50	ND	ND	NA
Ethyl benzene	5-4,900	ND	ND-15	NA
Bis(2-ethylhexyl)phthalate	6-150	ND	ND	ND

TABLE 7-9
CONCENTRATIONS OF ORGANIC CONSTITUENTS IN LEACHATE
FROM MUNICIPAL WASTE LANDFILLS, ASH MONOFILLS, AND CO-DISPOSAL SITES
PAGE TWO

Constituent	Range (Literature) (µg/L)	NUS Municipal (µg/L)	NUS Codisposal (µg/L)	Ash Monofill (CORRE) (ug/L)
Isophorene	10-16,000	ND	ND	ND
Methyl ethyl ketone	110-28,000	290-12,000	ND-2,200	NA
Methyl isobutyl ketone	10-660	ND	ND	NA
3-Methylphenol	NR	NR	NR	ND-6J
4-Methylphenol	NR	NR	NR	ND-6J
Napthalene	4-68	ND	ND	ND
Nitrobenzene	2-120	ND	ND	ND
4-Nitrophenol	17-40	ND	ND	ND
Pentachlorophenol	3-470	ND	ND	ND
Phenol	10-28,800	ND-2,100	ND-2,100	ND-32
2-Propanol	94-10,000	ND	ND	NA
1,1,2,2-Tetrachloroethane	7-210	ND	ND	NA
Tetrachioroethene	2-620	ND	ND	NA
Tetrahydrofuran	5-260	ND	ND	NA
Toluene	2-3,200	ND-1,100	ND-120	NA
Toxaphene	0-5	ND-16	ND	NA
1,1,1-Trichloroethane	0-2,400	ND	ND	NA
1,1,2-Trichloroethane	2-500	ND	ND	NA
Trichloroethene	1-1,120	ND	ND	NA
Trichlorofluoromethane	4-100	ND-230	ND	NA
Vinyl chloride	0-110	ND	ND	NA
m-Xylene	21-79	ND	ND	NA
p-Xylene and o-Xylene	12-50	ND-23	ND-290	NA

NA Not analyzed, as it was not part of the scope of work for this study.

Source: The first three columns are from "Characterization of MWC Ashes and Leachates From MSW Landfills, Monofills, and Co-Disposal Sites," EPA, October 1987. The last column is from this study.

NR Not reported in the literature.

ND Not detected.

Indicates approximate value because contaminants were detected at levels below Method Detection Limits, but above the instrument detection limit.

TABLE 7-10

LEACHATE DIOXIN RESULTS
RANGES OF CONCENTRATIONS

	Samples (ppb)								
Parameter	ZA-LE-001- ZA-LE-007 ZB-LE-001		ZC-LE-001- ZC-LE-002	ZD-LE-001- ZD-LE-003	ZE-LE-001- ZE-LE-002				
2,3,7,8-TCDD	ND	ND	ND	ND	ND				
TCDD-TOT	ND	ND	ND	ND .	ND				
PeCDD	ND	D	ND	ND	ND				
HXCDD	ND	ND	ND	ND	ND				
HPCDD	ND-0.222	ND	ND	ND	ND				
OCDD	ND-0.107	ND	ND	ND	ND				
2,3,7,8-TCDF	ND	ND	ND	ND	ND				
TCDF-TOT	ND	ND	ND	ND	Ŋ				
PeCDF	ND	ND	ND	ND	ND				
HXCDF	ND	ND	ND	ND	ND				
HPCDF	ND-0.076	ND	ND	ND	ND				
OCDF	ND	ND	D	ND	ND				
2,3,7,8-TCDD ⁽¹⁾ Equivalency ppb	2 x 10-4	ND	ND	ND	ND				

ND Not Detected.

^{(1) 2,3,7,8-}TCDD equivalency calculated using Toxicity Equivalency Factors currently recommended by EPA (EPA, March 1987).

TABLE 7-11

CONCENTRATIONS OF PCDDs/PCDFs IN LEACHATES FROM ASH MONOFILLS
RANGES OF CONCENTRATIONS

Compound	Field Leachate Monofill B (ppb)	Field Leachate Monofill C (ppb)	Field Leachate Monofill D (ppb)	Field Leachate Facility ZA (ppb)
2,3,7,8-TCDD	<0.06-0.28	< 0.05-1.6	<0.22-<0.26	ND
Total TCDD	<0.06-6.6	< 0.05-28	0.13-0.27	ND
Total PeCDD	< 0.05-25	< 0.03-93	< 0.22-0.4	ND
Total H _X CDD	< 0.02-22	<0.02-130	2.1-2.2	ND
Total H _P CDD	0.00 9-2 1	< 0.02-172	8.2-8.8	ND-0 222
Total OCDD	0.14-14	0.06-120	23-25	ND-0 107
Total Dioxin	0.149-88.6	0.06-543	33.93-36.17	NR
2,3,7,8-TCDF	<0.05-3.7	< 0.08-11	0.37-0.4	ND
Total TCDF	< 0.05-22	< 0.08-65	2.9-3	ND
Total PeCDF	<0.02-17	< 0.02-64	2.3-2.4	ND
Total H _X CDF	< 0.01-16	< 0.01-76	1.9-1.9	ND
Total H _P CDF	0.05-9.4	< 0.03-60	1.2-1.3	ND-0 076
Total OCDF	0.05-1.9	0.04-15	0.81-0.84	ND
Total Furan	0.1-66.3	0.04-280	9.21-9.34	NR
2,3,7,8-TCDD (1) Equivalency (µg/kg or µg/L)	0.000-0.037	0.000-0.062	0.000-0.001	2 x 10 ⁻⁴

ND Not detected.

Source: The results for Monofill B, Monofill C, and Monofill D are from "Characterization of MWC Ashes and Leachates from MSW Landfills, Monofills and Co-Disposal Sites," EPA, October 1987. The results from Facility ZA are from this study.

NR Not reported, since the results were reported in another fashion.

^{(1) 2,3,7,8-}TCDD equivalency calculuated using Toxicity Equivalency Factors currently recommended by EPA (EPA, March 1987).

TABLE 7-12

LEACHATE METALS ANALYSES
RANGES OF CONCENTRATIONS

			Standards/Criteria (in µg/L)					
Parameter	ZA-LE-001- ZA-LE-007	ZB-LE-001	ZC-LE-001- ZC-LE-002	ZD-LE-001- ZD-LE-003	ZE LE 001- ZE LE-002	EP Toxicity Maximum Allowable Limit	Safe Drinking Water Act(a) MCLs	Safe Drinking Water Act(b) SMCLs
Arsenic	47-400	ND	ND	ND	ND	5,000	50	SNA
Barium	ND	9,220	78-80	18-40	2,970-3,080	100,000	1,000	SNA
Cadmium	ND-1 7	40	ND	ND	ND	1,000	10	SNA
Chromium	ND-32	ND	ND	ND	ND	5,000	50	SNA
Copper	ND	88	ND	4 6-12	ND	SNA	SNA	1,000
Iron	120-3,400	840	108-115	187-523	7,480-10,500	SNA	SNA	300
l ead	8-54	ND	ND-34	ND	ND	5,000	50	SNA
Manganese	310-4,600	17,600	493-501	718-857	17,100-18,500	SNA	SNA	50
Mercury	ND	ND	ND	ND	ND	200	2	SNA
Selenium	24-340	ND	ND	ND	ND	1,000	10	SNA
Silver	ND	ND	ND	ND	ND	5,000	50	SNA
Sodium	3,000,000-3,800,000	2,450,000	188,000-191,000	1,340,000-2,580,000	2,430,000-2,470,000	SNA	SNA	SNA
Zinc	60-370	8 3	9-13	5 2-8 7	2/-70	SNA	SNA	5,000
Aluminum	700-920	ND	ND	ND	ND	SNA	SNA	SNA
Calcium	3,270,000-5,360,000	8,390,000	64,600-65,800	386,000-477,000	5,570,000-5,670,000	SNA	SNA	SNA
Magnesium	51,000-70,000	17,300	22,600-23,000	340,000-367,000	14,800-15,000	SNA	SNA	SNA
Potassium	516,000-525,000	1,620,000	79,700-81,200	229,000-636,000	1,430,000-1,450,000	SNA	SNA	SNA
Silicon	2,100-5,700	3,150	4,570-4,840	8,760-15,300	470 498	SNA	SNA	SNA

ND Not Detected

SNA Standard Not Available

(a) Primary Drinking Water Standards (b) Secondary Drinking Water Standards

TABLE 7-13

RANGES OF LEACHATE CONCENTRATIONS
OF INORGANIC CONSTITUENTS FROM MONOFILLS

Constituent	Concentration (Literature) (mg/L)	Concentration (CORRE Study) (mg/L)	EP Toxicity Maximum Allowable Limit (mg/L)	Primary Drinking Water Standard (mg/L)
Arsenic	0.005-0.218	ND-0.400	5.0	0.050
Barium	1.0	ND-9.22	100.0	1 000
Cadmium	ND-0.044	ND-0.004	1.0	0 010
Chromium	0.006-1.53	ND-0.032	5.0	0 050
Lead	0.012-2.92	ND-0.054	5.0	0 0 50
Mercury	0.001-0.008	DИ	0.2	0 002
Selenium	0.0025-0.037	ND-0.340	1.0	0 010
Silver	0.07	ND	5.0	0 050
Aluminum	NR	ND-0.920	SNA	SNA
Beryllium	NR	NA	SNA	SNA
Boron	NR	NA	SNA	SNA
Calcium	21	64.6-8,390	SNA	SNA
Cobalt	NR	NA	SNA	SNA
Copper	0.022-24	ND-0.012	SNA	SNA
Iron	0.168-121	0.108-10.5	SNA	SNA
Lithium	NR	NA	SNA	SNA
Magnesium	NR	14.8-367	SNA	SNA
Manganese	0.103-4.57	0.310-18.5	SNA	SNA
Molybdenum	NR	NA	SNA	SNA
Nickel	ND-0.412	NA	SNA	SNA
Potassium	21.5	79.7-1,620	SNA	SNA
Sodium	200-4,000	188-3,800	SNA	SNA
Strontium	NR	NA	SNA	SNA
Tin	NR	NA	SNA	SNA
Silicon	NR	0.470-15.3	SNA	SNA

TABLE 7-13
RANGES OF LEACHATE CONCENTRATIONS
OF INORGANIC CONSTITUENTS FROM MONOFILLS
PAGE TWO

Constituent	Concentration (Literature) (mg/L)	Concentration (CORRE Study) (mg/L)	EP Toxicity Maximum Allowable Limit (mg/L)	Primary Drinking Water Standard (mg/L)
Titanium	NR	NA	SNA	SNA
Vanadium	NR	NA	SNA	SNA
Yttrium	NR	NA	SNA	SNA
Zinc	ND-3.3	0.0052-0.370	SNA	SNA
Chloride	1,803-18,500	7,700-22,000	SNA	SNA
Sulfate	94	14.4-5,080	SNA	SNA
pН	8.04-8.3	5.2-7.4	SNA	SNA
TDS	11,300-28,900	924-41,000	SNA	SNA

ND Not detected.

Source:

First column is from "Characterization of MWC Ashes and Leachates from MSW Landfills, Monofills, and Co-Disposal Sites," EPA, October 1987. Second column is

from this study.

NR Not reported in the literature.

NA Not analyzed, as it was not part of the scope of work for this study.

SNA Standard Not Available.

TABLE 7-14 LEACHATE CONVENTIONAL ANALYSES
RANGES OF CONCENTRATIONS

			Standards/Criteria (in mg/L)					
Parameter	ZA-LE-001- ZA-LE-007	ZB-LE-001	ZC-LE-001- ZC-LE-002	ZD-LE-001- ZD-LE-003	2E-LE-001- 2E-LE-002	EP Toxicity Maximum Allowable Limit	Safe Drinking Water Act(a) MCLs	Safe Drinking Water Act ^(b) SMCLs
Ammonia-Distilled (as N)	5 3-35	4 18	68 2-77 4	4 38-28 4	9 78-11 4	SNA	SNA	SNA
Total Organic Carbon	17-420	30	47 2-49 3	28 8-30 7	25 5-28 9	SNA	SNA	SNA
pH (field) (standard units)	6 7-7 4	6.5	69	' NR	5 2	SNA	SNA	SNA
Sulfate	620-1,500	171	14 4-14 5	4,140-5,080	309-312	SNA	SNA	250
Solids, Dissolved @ 180°C	13,700-41,000	40,600	924-932	8,030-13,000	25,900-26,300	SNA	SNA	500
Total Aikalinity	44-120	65	560-566	709-744	95 2-117	SNA	SNA	SNA
Nitrate (as N)	ND-0 2	0 45	0 40-0 41	ND-0 04	0 01	SNA	10	SNA
Orthophosphate	0 18-1 2	0 01	ND	0 17-0 24	ND	SNA	SNA	SNA
Specific Conductivity	33,000-46,000 μmhos/cm	> 10,000 µmhos/cm	1,800 µmhos∕cm	9,400->10,000 µmhos/cm	>10,000	SNA	SNA	SNA
Chloride	7,700-22,000	NA	NA	NA NA	NA	SNA	SNA	250
Temperature (°C) (field)	NA	9	21	19-30	23	SNA	SNA	SNA
Kjeldahl Nitrogen	34-43	NA.	NA	NA	NA	SNA	SNA	SNA

NA Not analyzed, due to differences in scope of work.
ND Not detected

NR Not reported; pH meter not working properly SNA Standard not available

(a) Primary Drinking Water Standards
(b) Secondary Drinking Water Standards

TABLE 7-15

RANGES OF EXTRACT CONCENTRATIONS OF ORGANIC CONSTITUENTS FROM MUNICIPAL WASTE INCINERATOR COMBINED FLY ASH AND BOTTOM ASH FOR THREE LEACHING PROCEDURES

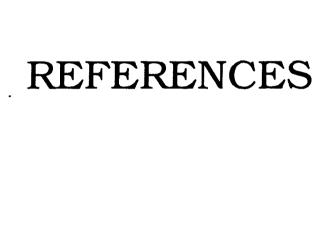
	Range of Concentrations (ppm)								
Constituents		d Water Procedure ature)	Extraction Procedure	Toxic Characteristic Leaching	Deionized Water Extraction				
	First Extraction	Second Extraction	Test (Literature)	Procedure (Literature)	Procedure (CORRE)				
Naphthalene	ND	ND	ND-8	ND	ND				
Methyl naphthalene	ND-0.080	ND	ND-18	ND	ND				
Oleyi Alcohol ⁽¹⁾	ND-0.088	ND	ND	ND	ND				
Methoxy ethane(2)	ND	ND	ND	ND	ND				
Methoxy ethanol	ND	ND-0.006	ND	ND-0.013	ND				
Dimethyl propdiol ⁽³⁾	ND-0.160	ND-0.140	ND-0.190	ND-0.140	ND				
Phenol	ND	ND-0.033	ND	ND	ND				
Bis oxy ethanol ⁽⁴⁾	ND-0.096	ND-0.018	ND	ND	ND				
Ethoxy ethanol ⁽⁵⁾	ND-0.310	ND-0.390	ND	ND	ND				
Cycloocta decone(6)	ND-0.580	ND-1.2	ND	ND	ND				
M. Furan dione ⁽⁷⁾	ND	ND	ND	ND	ND				
E. Dim dioxane ⁽⁸⁾	ND-0.510	ND	ND	ND	ND				
Benz, Di carboxy A	ND	ND-0.002	ND	ND	ND				
Benzoic acid	NR	NR	NR	NR	ND-0.130				

ND Not detected.

NR Not reported in the literature.

Source: "Characterization of MWC Ashes and Leachates From MWS Landfills, Monofills, and Co-Disposal Sites," EPA, October 1987. Last column are the results of this study.

- (1) (2)-9 Octadecen-1-01 (CAS 143-28-2).
- (2) 1-Methoxy-2-(methoxy methoxy)ethane (9C1) (CAS 74498-88-7).
- (3) 2,2-Dimethyl-1,3-propanedial (CAS 162-30-7).
- (4) 2,2-{1,2-Etharediylbis (oxy) bis-}ethanol (CAS 112-27-6).
- (5) (2)-9 Octadecer-1-01 (CAS 143-28-2).
- (6) 1,4,7,10,13,16-Hexaoxa cycloocta decane (CAS 17455-13-9).
- (7) 3,4-Dimethyl-2,5-furadione (9C1) (CAS 766-39-2).
- (8) 5-Ethyl-2,2-dimethyl-1,3,-dioxane (9C1) (CAS 25796-26-3).


TABLE 7-16

ASH EXTRACTS METALS ANALYSES RANGES OF CONCENTRATIONS COMPARISON OF LITERATURE VALUES WITH RESULTS OBTAINED DURING CORRE STUDY

					S	amples (in µg/l	.)					Standards/Criteria
Parameter	SW-924 (DI H ₂ O) (Literature)	DI H ₂ O Extracts (CORRE)	EPTOX Extracts (Literature)	EP TOX Extracts (CORRE)	TCLP Extracts (Literature)	TCLP 1 Extracts (Literature)	TCLP 2 Extracts (Literature)	TCLP 1 Extracts (CORRE)	TCLP 2 Extracts (CORRE)	CO ₂ Extracts	SAR Extracts	(in µg/L) EP Toxicity Maximum Allowable Limit
Arsenic	5-50	ND-45	5-100	ND-31	5-37	10-30	10-100	ND	ND 60	ND 53	ND	5,000
Barium	150-390	139-3,050	27-6,300	23-455	NR	100-3,200	50-630	161-1,850	12-809	126-530	129 3,960	100,000
Cadmium	5-30	ND-7 6	10-3,940	25-1,200	25-3,320	30 1,900	10-470	ND-1,150	ND-1,560	ND-354	ND-6 0	1,000
Chromium	2 5-20	ND-16	5 9-460	ND-86	25-439	200-320	10-160	ND-8 0	ND-799	ND 9 8	ND-10	5,000
Copper	2 5-190	12-534	39-1,190	24-5,170	2 5-19	50-90	20-20	5-858	5 4-1,400	8 8-620	8 5 610	SNA
Iron	2 5-38	ND-115	4,500- 143,000	ND-82,000	828-60,600	183,000- 230,000	2,180-6,330	ND-7,220	ND-162,000	ND 304	ND 97	SNA
Lead	25 2,980	ND 3,410	20-34,000	ND-19,700	655-30,100	900 47,000	50 6,100	ND 10,500	ND 26,400	ND 504	ND 3 940	5,000
Manganese	ND 10	ND-20	3,600-6,240	250 8,540	4,200-11,900	7,040-7,470	3,220 3,340	ND 5,170	3 8 7,370	ND 2,390	ND 6-4	SNA
Mercury	10 100	ND 0 96	ND-6,000	ND 203	4.4	50-60	ND-100	ND 3.8	ND-4 6	ND-155	ND 1.1	200
Selenium	2 5 50	ND	2-100	ND	2 5 25	10-10	10-50	ND	ND	ND	ND 53	1,000
Silver	ND-50	ND	1-100	ND	NR	20-40	10-50	ND	ND	ND-16	ND	5,000
Sodium	68,300 85 300	24,100- 209,000	89,900- 100,000	33,600- 225,000	NR	103,000- 110 000	1,410,000- 1 500,000	1,380,000- 1 640 000	38,700- 228,000	24,800- 168,000	24, 20 0- 201, 000	SNA
Zinc	1 5 960	5 4 1,340	38,500- 726,000	67 95,600	23,300 373,000	72,200- 83,200	23,500- 32,000	9 7 79,500	26 164,000	5 127,000	12-1,290	SNA
Aluminum Oxide	1/0 29,400	ND-203,000	31,900 43,800	ND-150,000	NR	30, 8 00- 32, 80 0	90-90	ND-62,800	ND 152,000	ND-90,700	ND 118,000	SNA
Calcium Oxide	122,000 536,000	141,000- 1,740,000	77,000- 1,740,000	592,000- 4,810,000	NR	1,930,000- 1,990,000	362,000- 1,430,000	666,000- 2,750,000	692,000 3,640,000	398,000 1,920,000	142,000 1,800,000	SNA
Magnesium Oxide	ND 190	21 379	22,800- 42,700	27,300- 130,000	NR	41,700- 41 800	140-27,900	55 375,000	623-137,000	207-59,300	12 430	SNA
Potassium Monoxide	85,200- 120,000	13,100- 189,000	10,000- 154,000	10,100- 189,000	NR	106,000- 111,000	86,500- 93,900	14,600 210,000	15,100- 1,110,000	12,300 155,000	14 500- 181,000	SNA
Silicon Dioxide	NR	402-3,990	NR	5,090-98,700	NR	NR	NR	379-51,700	820 143,000	418-71,800	364 3,770	SNA

ND Not detected NR Not reported in the literature SNA Standard not available

REFERENCES

- EPA (U.S. Environmental Protection Agency). March 1987. Risk Assessment Forum: "Interim Procedures for Estimating Risks Associated With Exposure to Mixtures of Chlorinated Dibenzo-p-dioxins and Dibenzofurans (CDDs and CDFs)." EPA/625/3-87/012.
- EPA (U.S. Environmental Protection Agency). October 1987. "Characterization of MWC Ashes and Leachates from Landfills, Monofills, and Co-Disposal Sites." EPA 530-SW-87-028A, prepared by NUS Corporation, Pittsburgh, Pennsylvania, for Office of Solid Waste and Emergency Response, Washington, D.C.
- EPA (U.S. Environmental Protection Agency). October 1988. "National Secondary Drinking Water Regulations", <u>40 CFR 143</u>, September 26, 1988, as cited in Environment Reporter, Bureau of National Affairs, Washington, D.C.
- EPA (U.S. Environmental Protection Agency). June 1989. "National Primary Drinking Water Regulations," <u>40 CFR 141</u>, April 17, 1989, as cited in <u>Environment Reporter</u>, Bureau of National Affairs, Washington, D.C.
- EPA (U.S. Environmental Protection Agency). August 1989. "Municipal Waste Combustion Ash and Leachate Characterization, Monofill Baseline Year." Prepared by NUS Corporation, Pittsburgh, Pennsylvania, for Office of Solid Waste and Emergency Response, Washington, D.C.
- EPA (U.S. Environmental Protection Agency). December 1989. "Municipal Waste Combustion Ash and Leachate Characterization, Monofill-Second Year Study". Draft. Prepared by NUS Corporation, Pittsburgh, Pennsylvania, for Office of Solid Waste and Emergency Response, Washington, D.C.

Kimbrough, R.I., H. Falk, P. Stehr and G. Fries, 1984. "Health Implications of 2,3,7,8-Tetrachlorodibenzodioxin (TCDD) Contamination of Residential Soil", J. Tox. & Environ. Health, 14, 47-93.

R339911 R-1

NUS Corporation, February 1988. "Final Quality Assurance Project Plan (QAPP) for Characterization of Leachates and Soils." Pittsburgh, Pennsylvania.

NUS Corporation, December 1988. "Final Work Plan, U.S. EPA and The Coalition on Resource Recovery and the Environment (CORRE)." Pittsburgh, Pennsylvania.

R339911 R-2

APPENDIX A

FINAL WORK PLAN

PARK WEST TWO CUPF MINE ROAD RITTSBURGH, PA 15975-1071 (412) 758-1080

FINAL WORK PLAN

U.S. EPA AND THE COALITION ON RESOURCE RECOVERY AND THE ENVIRONMENT (CORRE)

NUS PROJECT NUMBER

DECEMBER 1988

SUBMITTED FOR NUS BY:

HAIA ROFFMAN Y

TABLE OF CONTENTS

SECT	<u>TON</u>		PAGE
1.0	INTRODUC	TION	1-1
2.0	DETAILED S	SCOPE OF WORK	2.1
	2.1	FIELD SAMPLING	
	2.1 1	Sampling Procedures	
	2,1 1.1	Sample Collection	2-1
	2.1 2	Sample Numbering	2-4
	2.1 3	Sample Documentation	
	2,1.4	Sample Handling	2-5
	2.1.5	Sample Packaging and Shipping	2-5
	2.1.6	Equipment Decontamination	. 2-6
	2.2	SAMPLE HANDLING AND PREPARATION	2-6
	2.2.1	Ash Sample Preparation	
	2.2.2	Extraction Sample Preparation	
	2.2.3	Field Leachate Analysis	2-9
3.0	SAMPLE AN	IALYSES	3-1
4.0	DATA EVAL	UATION AND ANALYSIS	4-1
5.0	REPORTS		5-1
6.0	SCHEDULE		6-1
APPE	ENDICES		
	A	CARBON-DIOXIDE-SATURATED DEIONIZED WATER AND	. A-1
	8	PCDD/PCDF AND PCB ANALYTICAL PROCEDURES AND	B- 1

TABLES

NUMBER		PAGE
1-1	Sampling and Analysis Summary	. 1-2
2-1	Analytical Parameters, Containers, and Preservatives	
2-2	Sample Preparation and Chemical Analysis by Laboratories	7.8

iii

1.0 INTRODUCTION

This work plan has been prepared for the United States Environmental Protection Agency (EPA) and the Coalition on Resource Recovery and the Environment (CORRE) in response to a jointly-sponsored EPA and CORRE study to characterize the composition of municipal waste combustion (MWC) ashes and associated leachates from the corresponding monofills.

The objective of this study is to collect ash samples from five MWC facilities and subject them to laboratory analysis and several laboratory extractions, as well as to collect natural leachates from the MWC Ash Monofills in which these ashes are disposed. Results of this study will enhance the data base on the characteristics of MWC ashes, extracts, and leachates from MWC ash monofills. The data obtained in this study must be of high quality, from the perspective of both sampling and chemical analysis. Table 1-1 provides a summary of the number of samples to be taken and the types of analyses to be performed.

This phase of the project concentrates on five MWC facilities. Additional facilities may be added to the study at a later date by the study sponsors.

All information obtained throughout this study, including the identification of the facilities participating in this study, will be treated with utmost confidentiality. Only selected NUS personnel will have access to the data. Except for these selected NUS project team members, no one, including the EPA sponsors of the study, will have access to the data. All project data will be kept in a secure locked file or work area at all times. Access to this area will be strictly limited.

Section 2.0 of this work plan addresses the scope of work. Recommendations included in the EPA publication entitled "Sampling and Analysis of Municipal Refuse Incineration Ash" will be adhered to. Section 3.0 describes the analytical protocols; Section 4.0 delineates data validation and evaluation; Section 5.0 describes the content of the draft and final reports to be produced; and Section 6.0 addresses the study schedule.

R33989 1-1

TABLE 1-1
SAMPLING AND ANALYSIS SUMMARY
CORRE

I. MWC TOTAL ASH

5	5(3)	25	Metals(1) and conventionals(2)
2	1(3)	2	PCBs
5	1(3)	5	PCDDs/PCDFs
5	1(3)	5	Semivolatiles (Appendix IX)

II. MWC ASH EXTRACTS

5	5(3)	150	Metals ⁽¹⁾ and conventionals ⁽²⁾ utilizing the extraction procedures listed in Section 2.2.2
5	1(3)	5(4)	Semivolatiles and PCDDs/PCDFs
2	1(3)	2(4)	PCBs

III. FIELD LEACHATES

4	2	8	Metals(1) and conventionals(2)
1	2	2	PCBs
4	2	8	PCDDs/PCDFs
4	2	8	Semivolatiles

- (1) Includes metals on primary and secondary drinking water standard lists and others as follows: As, Ba, Cd, Cr, Pb, Hg, Se, Ag, Na, Cu, Fe, Mn, and Zn; Al, Si Ca, Mg, K.
- (2) Includes the following conventional parameters: TOC, total soluble salts, NH₃-N, NO₃-N, SO₄, PO₄, CO₃, CI, and pH.
- (3) Each sample represents a composite of 8 individual samples collected per day.
- (4) A composite of the extracts from only one extraction procedure will be analyzed for semivolatiles, PCDDs/PCDFs and PCBs. The extraction procedure to be chosen will be determined at a later date based on results obtained for metals and conventional parameters.

R339**69** 1-2

2.0 DETAILED SCOPE OF WORK

This section provides the program elements for sampling and analysis of MWC ashes from five facilities and MWC Ash Monofill leachates from four facilities. It also provides the scope of work for data evaluations and interpretation, reporting, and the QA/QC elements necessary for ensuring a meaningful program.

It is assumed in this Work Plan that the five MWC facility and associated MWC Ash Monofill sites will be selected by CORRE. Site locations and a contact person at each facility will be identified by CORRE and provided to NUS.

2.1 FIELD SAMPLING

The purpose of this task is to perform the actual collection of leachate from four MWC Ash Monofills and ash samples from five MWC facility sites, document the sampling, and handle and ship the samples in accordance with the following procedures.

2.1.1 Sampling Procedures

2.1.1.1 Sample Collection

Leachate Sample Collection

Four MWC facilities will be chosen for leachate sampling. Leachates will be collected from the leachate collection system of the MWC Ash Monofill. Two samples will be collected at each of the four facilities for laboratory analysis of metals, conventional parameters, PCDDs/PCDFs, and Appendix IX semivolatiles. Two samples collected from only one facility will be analyzed for PCBs.

Leachate samples will be taken from the collection system as grab samples. Candidate sampling locations include collection sumps and/or drainage ditches. The NUS onsite person will select the sampling points in cooperation with facility personnel. Preferably, the samples will be collected by submerging the sample containers. Alternatively, they will be collected using stainless-steel buckets attached to an aluminum handle or a polyethylene rope.

R33989 2-1

All sample containers will be filled to capacity to prevent oxidation and precipitation of dissolved metals.

Samples destined for metal analyses will be filtered in the field prior to acidification, if possible. If impracticable to filter in the field, samples will not be acidified in the field but only cooled and instructions sent to the laboratory (VERSAR) to filter and acidify upon receipt of sample.

All samples destined for semivolatile analyses (Appendix IX), PCDDs/PCDFs and PCBs if found to be turbid, will be centrifuged by the analyzing laboratories (VERSAR and BATTELLE) prior to being extracted for analysis. Only the liquid will be analyzed. Instructions to centrifuge will be sent from the field with the applicable samples by the NUS Sampler.

Leachate sampling will be performed by NUS personnel. Table 2-1 lists the number of samples, analytical parameters, containers, and preservatives applicable to collection of the leachate samples. These samples will be analyzed for metals and conventional parameters, PCDDs, PCDFs, and Appendix IX semivolatile compounds. One sample per site from only two facilities will be analyzed for PCBs.

MWC Ash Sample Collection

Five ash composite samples will be collected at five MWC facilities. Ash samples will be collected from a conveyor. Sampling will be performed by facilities. An NUS sampling expert will be on site during the ash sampling.

The following procedures will be employed during ash sampling:

- Samples will be collected with a shovel.
- Grab samples will be taken from the conveyor using "ASTM D2234-86 Standard Methods for Collection of a Gross Sample of Coal," Condition B, full-stream cut.
- Collection will be done at a fixed point each hour for 8 hours.

R33989 2-2

TABLE 2-1

ANALYTICAL PARAMETERS, CONTAINERS, AND PRESERVATIVES

CORRE

Samples	Type of Analysis	Container(s)(1)	Preservative(2)
OURCE: I	MWC MONOFILL LEACHATE		
8	Metals(3)	One 1-liter polyethylene	HNO ₃ to pH < 2
8	TOC, NH ₃ -N	One 1-liter polyethylene	H ₂ SO ₄ to pH < 2
8	TDS, NO ₃ -N, SO ₄ , PO ₄	One 1-liter polyethylene	
8	CO ₃	One 500-mL polyethylene	HNO ₃ to pH < 2
2	PCBs	Two 1/2-gailon amber glass	
8	PCDDs/PCDFs	Two 1/2-gailon amber glass	
R	Semivolatiles (Appendix IX)	Two 1/2-gailon amber glass	

SOURCE: MWC ASH

Number

200(5)	Metals ⁽³⁾ , semivolatiles (Appendix IX), PCDDs/PCDFs/PCBs, and conventional ⁽⁴⁾ parameters in ash and in ash extractions listed in Section 2.2.2	1 quart	
--------	---	---------	--

- (1) All containers will have Teflon-lined, screw-on lids.
- (2) All samples will be cooled to 4°C.
- (3) As, Ba, Cd, Cr, Pb, Hg, Se, Ag, Na, Cu, Fe, Mn, and Zn; Oxides Al, Si, Ca, Mg, K.
- (4) TOC, total soluble salts, NH₃-N, NO₃-N, SO₄, PO₄, CO₃, Cl, and pH.
- The 200 samples will be grouped as 8-hour composites yielding a total of 25 samples. Two of the 25 composite samples extractions will also be analyzed for PCBs and 5 will be analyzed for PCDDs/PCDFs and semivolatiles (Appendix IX).

R33989 2-3

- The eight samples will be scooped into a 5-gallon container and will be composited into an 8-hour composite sample. The container will be sealed, labeled, and stored for shipment at the end of the 5 days of sampling. Sample handling and shipping will be done by NUS personnel.
- Samples will be collected each day over 5 days of facility operation. Starting time for sample collection will be one 1 hour later each day. For example, Monday sample collection will begin at 8:00 a.m., Tuesday at 9:00 a.m., etc.

Table 2-1 lists the number of samples, analytical parameters, containers, and preservatives for the leachate and ash samples.

2.1.2 Sample Numbering

All samples will be assigned a field identification number to include codes for the site name, sample type, and station number. The site name may be abbreviated using a two- or three-letter code, such as ML. The sample type will be denoted as either LE, for leachate samples, or AH, for ash samples. The station number will refer to a specific sampling location, if applicable.

Additional codes will be utilized for identifying the first hour of ash sampling and the date. The date will be noted by two digits for the month, day, and the year; the hour of day will be designated by four digits. For example, an ash sample collected at the first location on December 20, 1988, at 10:00 a.m., would be designated as follows:

- ML-AH-001
- 12-20-88-1000

2.1.3 Sample Documentation

All site activity and sampling will be documented in a waterproof, bound, log book to be completed by the NUS onsite personnel. Additionally, the following documents will be prepared to track each sample through shipping and analysis:

- <u>Sample labels</u> One per sample container; information on the label will include date, time,
 sample number, analysis, and preservative.
- Traffic report forms Individual forms for each individual laboratory.

R33969 2.4

- <u>Chain-of-custody forms</u> One per sample shipment to an individual laboratory.
- <u>Chain-of-custody seals</u> Two per cooler, affixed so that the cooler cannot be opened without breaking the seals.
- Airbills One per sample shipment to an individual laboratory.

2.1.4 Sample Handling

All liquid samples will be placed on ice in a cooler immediately after collection. Required preservatives for the liquid samples will be added as soon as possible after collection. The subsequent list of procedures will then be followed:

- Complete proper decontamination.
- Tighten and secure the lid of each container.
- Seal each container in a watertight plastic bag.

Samples will be shipped the day they are collected via a qualified carrier for next-day delivery. Ash samples will be shipped to the VERSAR laboratory upon completion of sampling at each facility.

2.1.5 Sample Packaging and Shipping

To ensure that the laboratories will receive enough sample volume, all samples will be treated as environmental samples. The following steps will be taken during packaging and shipping:

- Plug the drain and line the cooler with a large, impervious plastic sheet.
- Place samples in the cooler.
- Include several watertight ice packs.
- Fill with a light, absorbent, packing material such as vermiculite.
- Place laboratory copies of sample documentation in a sealed plastic bag and tape to the cooler lid.

R339**69** 2-5

- Affix custody seals.
- Secure the cooler with strapping tape.
- The traffic report forms will indicate whether the field team believes that a sample is of medium concentration.

2.1.6 Equipment Decontamination

Dedicated disposable or laboratory-cleaned equipment will be used to collect all samples. After use, any nondisposable equipment, such as a shovel, will be decontaminated using the following steps, as applicable:

- Tap water and laboratory-grade soap wash
- Tap water rinse
- 10 percent nitric acid solution rinse
- Di water rinse
- Solvent rinse
- DI water rinse
- Air dry
- Foil wrapping and storage in a secure area

2.2 SAMPLE HANDLING AND PREPARATION

Samples collected during the field sampling will consist of two basic types of media: field leachate and MWC ash samples.

All field leachate samples except those to be analyzed for PCBs and PCDDs/PCDFs will be shipped to VERSAR. Samples to be analyzed for PCBs and PCDDs/PCDFs will be shipped to Battelle Columbus.

2.2.1 Ash Sample Preparation

All field MWC ash samples will be sent to VERSAR. VERSAR will prepare these samples for analysis by implementing the following procedures:

- Each composite will be passed over a 2-inch screen. Material passing the 2-inch screen will be set aside. Material larger than 2 inches will be subjected to repeated blows with a 5-pound sledge hammer dropped from a height of 1 foot. If a piece does not break after being subjected to three blows of the hammer, it will be weighed, the weight recorded, and discarded. Material that breaks will then be reduced in size to pass the 2-inch screen and recombined with the original material smaller than 2 inches.
- Each composite sample will be dried, crushed to pass a 3/8-inch screen and riffled or coned and quartered to obtain a 1,000-gram sample. The sample will then be properly labeled and stored in a clean, dry, cool, secure area. For further details, see ASTM Standard D346.

Selected portions of five leachate extractions for each of the extraction methodologies will be sent to Battelle Columbus for PCDD/PCDF and PCB analysis. Table 2-2 summarizes the analysis by laboratories.

2.2.2 Extraction Sample Preparation

VERSAR will extract ash samples using six different extraction methods, as follows:

- Acid No. 1 (EP-TOX)
- Acid No. 2 (TCLP Fluid No. 1)
- Acid No. 2 (TCLP Fluid No. 2)
- Method 924
- CO₂ saturated deionized water
- Simulated acid rain

The laboratory will adhere to the appropriate Federal Register leaching requirements for the first four methods. The extraction solutions and the extraction procedures for the CO₂ saturated deionized water and the simulated acid rain are given in Appendix A.

R33969 2-7

TABLE 2-2

SAMPLE PREPARATION AND CHEMICAL ANALYSIS BY LABORATORIES
CORRE

Sample Media	Preparation	Analysis*
MWC Total Ash	VERSAR	VERSAR: Metals, * Conventionals, * Semivolatiles ** BATTELLE COLUMBUS: PCBs, PCDDs/PCDFs
MWC Ash Extractions	VERSAR	VERSAR: Metals, Conventionals, Semivolatiles BATTELLE COLUMBUS: PCBs, PCDDs/PCDFs
Field Leachates	VERSAR	VERSAR: Metals, Conventionals, Semivolatiles BATTELLE COLUMBUS: PCBs, PCDDs/PCDFs

^{*} See footnotes to Table 2-1 for detailed individual analyses of metals and conventional parameters.

^{**} Appendix IX.

VERSAR will analyze the extracts for metals, conventional parameters, and the semivolatile compounds on the Appendix IX list and will ship the selected extract samples to Battelle Columbus for PCB, PCDF, and PCDD analyses.

2.2.3 Field Leachate Analysis

Leachate samples collected from the field will be analyzed for metals, conventional parameters, and semivolatile compounds by VERSAR and for PCBs and PCDDs/PCDFs by Battelle Columbus.

radie t

3.0 SAMPLE ANALYSES

All analyses except for PCBs, PCDD/PCDFs, and conventional parameters will be conducted in strict adherence to the EPA third edition of SW-846 and will include all deliverables specified by the applicable method.

The conventional parameters will be analyzed according to the applicable methods described in the "Methods for Chemical Analysis of Water and Wastewaters," EPA-600/4-79-020, March 1983.

PCBs, PCDDs, and PCDFs will be analyzed in the homolog form according to the procedures described in Appendix B. In addition, for the PCDDs and PCDFs the concentrations of the individual 2, 3, 7, 8 isomers will be determined for each homolog.

3-1

4.0 DATA EVALUATION AND ANALYSIS

Results obtained from the laboratories will be validated, according to EPA national validation guidelines; evaluated; and interpreted. The data will be compiled into a single data base.

Results of laboratory analyses will be validated by qualified NUS chemists, according to QA standards established by EPA. The data validation is independent of internal validation performed by the laboratories involved, and is intended to assure high quality data.

The validated data will be compiled into a single data base. These data will be compared with literature information and with Applicable or Relevant and Appropriate Requirements (ARARs). Attempts will be made to evaluate the environmental effects of the ashes and the leachates.

Operating data for the sampled facilities during the sampling period will be provided, as available, from the facility personnel.

Ť

5.0 REPORTS

NUS will prepare a draft report, which will contain the following descriptions:

- MWC facilities sampled. Facility identification will be kept in confidence, and only codes will be used.
- MWC ash monofills sampled. Facility location will be limited to identification by codes only.
- Sampling procedures.
- Analytical procedures.
- Results.
- Evaluation of results.

The draft report will be submitted for review by EPA and CORRE. A final report will be issued upon receipt of comments from EPA and CORRE.

EPA and CORRE may provide a list of three potential peer reviewers who will be given the opportunity to comment on the draft report. The peer reviewer's comments will also be incorporated in the final report.

APPENDIX A

CARBON-DIOXIDE-SATURATED DEIONIZED WATER AND SIMULATED ACID RAIN EXTRACTION SOLUTIONS AND EXTRACTION PROCEDURES

CO2 SATURATED ELUANT

The intent of this eluant formation is to simulate a relatively "natural" low pH rainwater without the use of atmospheric man-made contaminants common such as HC1 and SO_4 .

- One must develop a "pH-time of purging" relationship curve. This is done simply by plotting observed pH to delta time during purge of distilled water with compressed CO₂. Pursuant to Henry's gas law (attached text) an equilibrium of CO₂ at controlled ambient temperature in liquid from gas will be reached—at this time pH and time of purge should be recorded and thereafter used as a reference for preparing the CO₂ saturated distilled water solutions.
- Step 2 After obtaining the reference pH and CO₂ time, use the prepared eluant per SW-846 procedures.

SYNTHETIC ACID RAIN ELUANT

The intent of this eluant formation is to simulate an acid rain representative of the Northeastern United States according to the National Atmosphere Deposition Program (NADP) quality reference.

Step 1 Prepare the following primary solution

Parameter	Units		
Distilled water	4 liters		
NaNO ₃	0.11 50 grams (gm)		
KNO ₃	0. 2196 gm		
NH4NO3	0. 648 gm		
MgC1 ₂	0.0 821 gm		
H ₂ SO ₄	0.1755 gm of [98 percent]		
CaSOA	0.10 57 gm		

- Step 2 To achieve a more reasonable pH representative of the Northeast, dilute the solution prepared in Step 1 by ten (10) fold.
- Step 3 Utilize the eluant prepared form Step 2 pursuant to SW-846 procedures.

A-1

R33989

the pure component, the conditions are favorable for phase separation. Phase separation occurs when the Gibbs energy of the two-phase system is lower than that of the homogeneous system. Figure 3.9d shows the type of phase diagram that results if the positive deviations from Racult's law are so large that there is a range of immiscibility of the two liquids.

It is important to notice that in all of these four diagrams the vapor pressure of the component present at higher concentration approaches the values given by Raoult's law as its mole fraction approaches unity. Other types of deviations from Raoult's law are also found. A component may show positive deviations in dilute solutions and negative deviations in concentrated solutions or vice versa.

Solutions that exhibit a maximum or a minimum in the vance present curves exhibit a minimum or a maximum in the boiling point curves. When a boiling point curve was a maximum or a minimum, the solutions having the maximum or minimum boiling points are called assectopes. These solutions distill without change in composition because the liquid and the vapor have the same composition. Many examples of assocropic solutions are known. At I asso, ethanol, which boils at 78.3 °C, and water form a minimum-boiling assocrope that boils at 78.174 °C and contains 4.0% water by weight. Hydrochloric acid, which boils at -80 °C, and water form a maximum-boiling assocrope at 106.584 °C that contains 20.222% HCl by weight.

115 MEXCRYS LAW

In all the examples shown in Fig. 3.9 there is a region at low concentration where the partial pressure of the solute (the component at low concentration) is directly proportional to its mole fraction.

$$P_0 = X_0 X_0 \tag{9.61}$$

The subscript 2 indicates that the solute is being considered. This equation is referred to as Henry's law, and the constant K_0 is referred to as the Henry's law constant. In dilute solutions the environment of the militor component is constant, and its second tendence is prescribed to its mole fraction. For norselfal follutions Henry's law holds for the solute in the same range where Racult's law holds for the solvent. For ideal solutions $K_0 = P_{00}$ and Henry's law becomes identical with Racult's law.

The value of the Henry's law constant K_0 is obtained by pletting the radii P_0/Z_0 versus Z_0 and extrapolating to $Z_0=0$. Such a piot is shown latter in Fig. 3.11.

It is convenient to express the solubilities of gases in liquids by use of Henry's low constants. A few gas solubilities at 25 °C are summarised in this way in Table 3.2.

^{*} M. J. McClathan, J. Chen. M., 49, 516 (1969).

[†] L. M. Rentey and co-vertices, America Date, Advance in Chemistry Artic, American Chemical Society, Washington, D.C., 1968.

Up to a pressure of I atm Henry's law holds within I to 3% for many slightly soluble green.

Table 3.2 Heavy's Law Comman for Gam at 25 °C*

Salvent Water 5.34 × 10" 2.75 × 100 6.51 × 10° 1.79 × 10° 3.30 × 10* 4.34 × 10° 1.22 × 10° 1.25 × 10° 8.57 × 104 4.27 × 100 1.01 × 100 8.67 × 10° 23.0 × 100

* & - A/2. The partial pressure of the gas is given in user. Renneple L. Using the Henry's law constant, calculate the schubility of carbon dismide PWELE at 25 °C at a partial pressure of CO₂ over the solution of 760 terr. Assume

 $R = \frac{A_0}{Z_0} = 1.35 \times 10^0 \text{ terr} = \frac{760 \text{ terr}}{\sqrt{\text{CO}_0}} \left((\text{CO}_0) + \frac{1000}{18.02} \right)$

that a liter of saludon contains practically 1000 g of waser.

Since (CO₄) may be considered negligible in comparison with the number of moles of water, 1000/18.02.

$$(CO_{b}) = \frac{(760 \text{ tart})(55.40 \text{ mol } L^{-1})}{1.25 \times 10^{-3} \text{ tart}} = 3.36 \times 10^{-6} \text{ mol } L^{-1}$$

The colubility of a gas in liquide usually degreess with ingressing taggers now, not have in constally evalved in the solution process. There are numerous enterpmany organic liquids. It is a common observation that a glass of cold water, when d to recen temperature, there the presence of many small air bubbles.

The schilling of an unreactive gas is due to insermelecular attractive forces between gas molecules and solvent molecules. There is a good forrelation between

the salubilities of gases in solvents motoruse. I now a a good convention between the salubilities of gases in solvents at room temperature and their beiling points. Substances with low beiling points (He, He, Ne, Ne, etc.) have weak intermelecular attractions and are therefore not very soluble in liquids.

The salubility of gases in water is usually degreesed by the addition of other—solutes, particularly electrolyses. The extent of this "talking out" vertex considerably with assess in his, but with a first salt the ministry different strength in many the same for different gases. The solubility of liquids and solids in water also

The INTE na for 4 of .

116

where and pa and

It is CODCED efficien activity

> where # SEED OF T

The che SEADOFT. it is nee There a and Hes

· Activi

where of it i

$$HA^{-1} = H^{+} + A^{-(n+1)}$$

$$(6.6)$$

the thermodynamic dissociation constant $R_{i,a,a}$ is given by

$$R_{t-0} = \frac{a_{2} \cdot (A^{-(n+1)}y_{-(n-1)} - R_{t} \frac{y_{-n+1}}{y_{-n}})}{(HA^{-n})y_{-n}} = R_{t} \frac{y_{-n+1}}{y_{-n}}$$
(6.7)

Substituting equation 6.5 and rearranging yields

$$pR_{t} = pR_{t-0} - \frac{(2n+1)AI^{1/2}}{(1+I^{1/2})}$$
 (6.8)

Emample 6.3 Estimate pK, and pK, for H,PO, at 25 °C and 0.01 logic strength.

$$pR_{I} = pR_{I=0} - \frac{(2n+1)(0.5001)(0.01)^{1/6}}{(1+0.01^{1/6})} = pR_{I=0} - (2n+1)0.046$$

$$pR_{I} = 2.148 - 0.046 = 2.102$$

$$pR_{0} = 7.198 - 3(0.046) = 7.000$$

AS CARBON MOXIDE CARBONIC ACED, AND ESCARBONATE ION THERMODYNAMICS

The equilibria discussed in this section are of interest because of the importance of CO, in the regulation of the pH of blood. The kinetics of these reactions are discussed in Section 16.6.

Only a small fraction of the CO₂ dissolved in water is hydrated to carbonic solid.

The hydration constant Ra is written

$$\mathcal{Z}_{a} = \frac{(H_{a}CO_{a})}{(CO_{a})} \tag{6.10}$$

At 25 °C, Z, = 0.002 58. The seandard enthalpy change and the standard entropy change are both unfavorable for the hydration reaction, as shown by the values in Table 6.2; nevertheless, CO₂ has to be hydrated in order for the disselved OO₂ produced by metabolism in our tissues to be converted to HCO₂" and be transported to our lungs. The entropy change for reaction 6.9 is negative, because joining two molecules to form one reduces the translational and rotational degrees of freedom of the system, ΔC_p is negative because H_0O+CO_0 can absorb more heat per degree increase in temperature than HeOOs.

Carbonie acid is a semewhat stronger acid than seeds acid.

$$R_{\text{mon}} = \frac{(H^{+})(HOO_{0}^{-})}{(H_{0}CO_{0})}$$
 (6.12)

u

Kuss

 $K_{\lambda} =$

L =

· Fre • AG

At 25 Howe and it carbo to dis specia TM

Thus

Calcul

The prima diameter to the control of 0.026

dace 6 If we reactio & HC

Table 6.2 Thermodynamic Quantities at 25 °C and Zero Ionic Strength 4.3

	•				_	
(6.6)	Equilibrium Constant	pΚ	S	AH	AS*	AC)
	$R_k = \frac{(H_0 C C_0)}{(C C_0)}$	2.59	3,530	1,130	-8	-63
(6.7)	$K_{\text{Eqeco}} = \frac{(H^{\bullet})(\text{HCO}_{\bullet}^{\bullet})}{(\text{H}_{\bullet}\text{CO}_{\bullet})}$	3.77	3,170	1,010	-14	- 28
	$K_{i} = \frac{(H^{\bullet})(HCO_{i}^{\bullet})}{(CO_{i}) + (H_{i}CO_{i})}$	6.352	8,666	2,240	-21.6	- 90
(F 9)	$I_{\bullet} = \frac{(H^{\bullet})(CO(\bullet))}{(HCO(\bullet))}$	10.329	14,092	3,603	- 35.2	-45

From J. T. Edmil, CO₂: Chemical, Maximizal, and Physiological Aspects, NASA 83-188, 1889.
 ΔG° and ΔH° in onl mol⁻¹; ΔS° and ΔG² in onl K⁻¹ mol⁻¹.

It 25 °C, the acid dissociation constant $K_{\rm E_0CO_0}=1.72\times10^{-4}$ (pK = 3.77). However, this is not the acid dissociation constant you will find if you look in tables, and it is not the one you would use in the laboratory to do calculations on hisrbonate buffers. The reason is that in the laboratory you are not ordinarily able to distinguish between dissolved CO₂ and H₂CO₃ and simply lump these two pecies together by counting all dissolved CO₂ as H₂CO₃.

The first acid dissociation constant K, for carbonic acid is defined as

$$R_{L} = \frac{(H^{+})(HOO_{2}^{-})}{(H_{2}CO_{2}) + (CO_{2})} = \frac{(H^{+})(HCO_{2}^{-})}{(H_{2}CO_{2})[1 + (CO_{2})/(H_{2}CO_{2})]}$$
(6.13)

hu

$$R_1 = \frac{R_{2400}}{1 + 1/K_1}$$
 (6.14)

Calculating K_1 from the values of K_1 and K_2 . At 25 °C that are given above, we beat $K_1 = 7.85 \times 10^{-7}$ (p.f. = 6.352). This is the pK you would find in timeting individed CO₂.

The first dissociation of carbonic acid is of special inverse because it is the rimary buffer system in blood. The Henry law constant (Section 3.15) for the interchation of CO₂ between the me and squeous phases at 38 °C is 3.5 × 10 med per torr 1. Thus, since the normal nartial pressure of carbon districts in the liveous of the lungs is 40 torr, the normal sencentration of CO₂ is the liveous in the liveous of the lungs is 40 torr, the normal sencentration of bienrhouses ion in our blood is 1.026 mel L⁻¹. The normal concentration of bienrhouses ion in our blood is 1.026 mel L⁻¹, and so equation 6.13 may be written

$$pH = pK_1 + \log \frac{(HCO_0^-)}{(CO_0) + (H_0CO_0)}$$
 7.4 = 6.1 + $\log \frac{0.098}{0.0013}$ (6.15)

ince 6.1 is the value of pK_1 at 0.15 moi L^{-1} ionic strength and $(H_2OO_2) \ll (CO_2)$. If we hyperventilate (breathe hard), reaction 6.9 shifts to the left; this causes reaction 6.11 to shift to the left and, as a result, the pH rism. If the concentration of HOO_2 in our blood is too high, the blood pH is too high and the body increases

ns of us re

: •--d.

% 0)

nr py
du in
d CO;
: transec us
.o_b.ses
. more

(6.11)

(1 2)

its rate of excretion of HCO." in the urine. In this way the pH of blood is maintained in the relatively narrow range of 7.0 to 7.5.

6.4 RELATION BETWEEN MICROSCOPIC DISSOCIATION CONSTANTS AND MACROSCOPIC DESCRIPTION CONSTANTS

The acid dissociations of amino acids offer interesting examples of the relations between what are called microscopic dissociation constants and macroscopic dissociation constants. Microscopic dissociation constants are defined in terms of particular ionic species and are not ordinarily acceptible experimentally. In the dissociation of stycine

the microscopic constants are K_{11} , K_{10} , K_{21} , K_{30} and K_{sr}

When glycine is titrated, we do not have information on the relative amounts of the dipolar ion, "HeNCHeCOs", and the uncharged molecule, HeNCHeCOsH, and so we define the first acid dissociation constant K_{ij} a macrescopic dissociation constant, by

$$K_1 = \frac{(H^+)[(-H_0NCH_0CO_0^-) + (H_0NCH_0CO_0H)]}{(-H_0NCH_0CO_0H)}$$

$$= K_1 + K_2 = 10^{-0.00}$$
(6.17)

where K_{11} and K_{12} are the microscopic dissociation constants for the two possible dissociations of a first proton, second acid-dissociation constant is given by

$$K_{0} = \frac{(H^{\bullet})(H_{\bullet}NCH_{\bullet}CO_{0}^{-})}{[(^{\bullet}H_{\bullet}NCH_{\bullet}CO_{0}^{-}) + (H_{\bullet}NCH_{\bullet}CO_{0}H)]}$$

$$= \frac{1}{1/K_{eq} + 1/K_{eq}} = 10^{-6.76}$$
(6.18)

where K_{01} and K_{00} are the microscopic dissociation constants for the two possible dissociations of a second process. This same formulation would apply to any dibasic acid. In addition, the principle of detailed balancing (Section 15.11) yields a further relationship between the values of the four microscopic consumnts.

$$K_{12}K_{00} = K_{12}K_{03} \tag{6.19}$$

Since K_1 and K_2 are known (values are given for 25 °C in Table 6.1), we need a value of only one of the four microscopic constants in order to calculate values of

30

Table 16.2 Half-Lives for the Hydration Debydration Leaction for CO.-RCO. - M 25 °C

pH	he
3	0.0006
4	9.006
5	0.82
6	5.9
7	14.9
	14.8
9	5.7

In it is necessary

(16.16)

4 w H,CO, the pH, and at ple equipment. er 'point when M reaction in t for the process applyied by the O. ehydrated.

> which corresponds to a reversible first-order reaction. As shown in Section 15.8, the half-life of such a reaction is given by

$$t_{1/2} = \frac{0.808}{k_1 + k_2} \tag{16.21}$$

Applying this relation to the hydration of CO.

$$b_{1/2} = \frac{0.668}{k_1 + k_0 K_0 / (H^+) + k_{-6} + k_{-1} (H^+) / K_{2666}}$$

$$= \frac{0.668}{0.0375 + \frac{8.5 \times 10^{-12}}{(H^+)} + 8.06 \times 10^{\circ} (H^+)}$$
(16.22)

Values of the half-life calculated with this equation are given in Table 16.2. The reaction

$$OH^- + HCO_0^- = \frac{6 \times 10^{4} (m_0^2 L^2)^{-4} c^{-4}}{1.3 \times 10^{4} c^{-4}} CO[- + H_0O]$$
 (16.23)

has to be considered at higher pH values.

CC -) (16.17)

it remains in of CO. Since C by use of

(15.18)

(15.19)

+ (HCO.") =

(16.20)

16.7 ACED AND BASE CATALYSIS

Acids and been estalyne many reactions in which they are not consumed. Suppose the rate of disappearance of a substance \$ (often called the substrate of the catalytic reaction) is first order in 8; -d(8)/dt = k(8). The first-order rate constant k for the reaction in a buffer solution may be a linear function of (H*), (OH*), (HA), and (A"), where HA is the weak acid in the buffer and A" is the corresponding

$$k = k_0 + k_0 \cdot (H^*) + k_{ext} \cdot (OH^*) + k_{dA}(HA) + k_{A^*}(A^*)$$
 (18.94)

In this expression A₀ is the first-order rase constant at sufficiently low concentrations of all of the caselytic species H*, OH*, HA, and A*. The se-called caselytic

1

In water CO₂ exists largely as dissolved CO₂ (see Section 6.5) instead of as H₂CO₂. The half-life for the hydration-dehydration reaction depends on the pH, and at neutral pH values is long enough that it may be studied with simple equipment. It is the slowness of this reaction that accounts for the fidding of the endpoint when carbonate ion is titrated with acid. The half-time for this uncatalyzed reaction in aqueous buffers is of special interest because it is too long to account for the process of slimination of CO₂ in our lungs. In living things this reaction is catalyzed by the enzyme carbonic anhydrase so that CO₂ may be hydrated, and H₂CO₂ dehydrated, more rapidly.

In order to discuss the kinetics of the uncatalysed hydration of CO₂₀ it is necessary to consider the following reactions.

The rate constants are for 25 °C.

The rate equation for CO₂ is

$$\frac{d(CO_{\bullet})}{dt} = -k_{\bullet}(CO_{\bullet}) + k_{-1}(H_{\bullet}CO_{\bullet}) - k_{\bullet}(OH^{-})(CO_{\bullet}) + k_{-0}(HCO_{\bullet}^{-}) \quad (16.17)$$

The reaction $H^+ + HCO_0^- \Rightarrow H_0CO_0$ course so rapidly that it remains in equilibrium in an experiment in which we follow the hydration of CO_0 . Since HCO_0^- and H_0CO_0 remain in equilibrium, we may eliminate H_0CO_0 by use of

$$\frac{(H^{+})(HCO_{0}^{-})}{(H_{c}CO_{0})} = R_{0,cos_{0}} = 1.70 \times 10^{-6}$$
 (16.18)

to obtain

$$\frac{d(CO_{\bullet})}{dt} = -[k_1 + k_2(OH^{-})](CO_{\bullet}) + [k_{-1} + k_{-1}(H^{+})/K_{2a-2a-1}(HCO_{0}^{-})]$$
(16.19)

Since the total concentration of dissolved CO₂ is $(OO_2) + (H_2OO_2) + (HOO_2^-) \approx (CO_2) + (HOO_2^-)$, this equation has the form

$$\frac{d(A)}{dt} = -k_f(A) + k_f(B) \tag{16.90}$$

APPENDIX B

PCDD/PCDF AND PCB ANALYTICAL PROCEDURES AND QA/QC PROTOCOLS

METHOD AND QUALITY ASSURANCE

FOR

DETERMINATION OF 2,3,7,8 SUBSTITUTED POLYCHLORINATED DIBENZO-P-DIOXINS AND 2,3,7,8 SUBSTITUTED POLYCHLORINATED DIBENZOFURANS IN ENVIRONMENTAL SAMPLES BY HIGH RESOLUTION GAS CHROMATOGRAPHY-HIGH RESOLUTION MASS SPECTROMETRY

INTRODUCTION

The purpose of this document is to describe the procedures used for determining the levels of 2,3,7,8 substituted polychlorinated dibenzo-p-dioxins and 2,3,7,8 substituted polychlorinated dibenzofurans (2,3,7,8-PCDD/PCDF) in water, ash, laboratory extracts, and soil samples. The procedure used for determination of the total levels of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/PCDF) congener classes is also described.

SAMPLE HANDLING

Upon receipt, the samples are kept continuously in either locked storage or under supervision of a sample custodian. When notified of sample receipt, the designated sample custodian picks up and logs in the samples, assigning each a unique number. After the samples are logged in, they are transferred to the extraction lab following chain of custody and are assigned a new designated custodian. When the extractions are completed, the remaining samples are transferred in the original containers back to the original sample custodian for permanent storage. The sample extracts are transferred via chain of custody to the mass spectrometry laboratory for analysis by the MS sample custodian who, upon completion of the group of analyses, transfers the extracts back to the original sample custodian for storage.

EXTRACTION PROCEDURE

Aqueous Samples. Samples containing sediment are filtered and the sediment saved for extraction. Aliquots of the sample are spiked with the 5 to 40 ng of the 13 C12 internal standards listed in Table 1.

The samples are extracted three times with methylene chloride, the extracts combined, and then concentrated to 5 mL in a Kudurna-Danish apparatus. The dried sediments are added to thimbles containing 0.5 inches of silica gel and then extracted with benzene in a soxhlet extractor for 18

hours. The extracts are concentrated to approximately 10 mL with three-stage Snyder columns, and then added to the corresponding water extracts. The combined extracts are then further concentrated to approximately 4 mL.

Ash and Soil Samples. Ten gram aliquots of sample are spiked with the same levels of the tetra- through octa-13C12 dioxins and furans used for the aqueous samples. The Soxhlet extractor is assembled and the sample extracted for 18 hours with 250 mL of benzene. After extraction, the benzene extract is concentrated to approximately 5 mL with a 3-stage Snyder column. Method blank and native spike samples are extracted at the same time as the test samples.

The sample extract is diluted to 50 to 60 mL with hexane and washed with 1 to 5 10 mL aliquots of concentrated sulfuric acid. The combined acid washes from each extract are extracted with hexane, which is combined with the corresponding sample extract. The combined extract is concentrated to 5 mL and transferred to a multilayered silica gel column. The first layer contains 44 percent sulfuric acid on silica gel while the second contains activated silica gel, 44 percent concentrated sulfuric acid on silica gel, and 33 percent 1M sodium hydroxide on silica gel. The purpose of these columns is to remove acidic and basic compounds and easily oxidized materials from the extracts. The silica gel support provides a large surface area for contact with the sample extracts, thus improving the cleanup efficiency. The PCDD/PCDF isomers are eluted from the columns with 70 mL of hexane and the entire eluate, including the original extract volume, is collected. The hexane eluate is then concentrated to 2-3 mL with a gentle stream of nitrogen.

The hexane solution is fractionated on a column containing approximately 5 g of activated basic alumina with 10 mL of hexane/methylene chloride (97:3, v/v) and 40 mL of hexane/methylene chloride (1:1, v/v) as elution solvents. The eluate is collected, concentrated to near dryness, and diluted to 2 mL with hexane.

This eluate is then fractionated further on a column containing approximately 2 g of activated basic alumina with 3 mL of hexane/methylene chloride (97:3, v/v) and 50 mL of hexane/methylene chloride (1:1, v/v) as elution solvents. The eluate is collected, concentrated to near dryness,

and dissolved in 50 μ L of n-decane containing 5 to 10 ng of an absolute recovery standard, 1,2,3,4-TCDD- 13 C12. This solution is stored at 0 C and protected from light until analysis.

If the sample is still not suitable for analysis, additional cleanup may be used. As part of this procedure, the extract is fractionated on a column containing 1 g of activated florisil with 15 mL of hexane, 20 mL of ethyl ether/hexane (6:94, v/v), and 75 mL of methylene chloride/hexane (3:1, v/v) as elution solvents. The eluate is then taken to near dryness and brought up in 50 μ L of n-decane before analysis.

ANALYSIS

The extracts are quantified for 2,3,7,8-PCDD/PCDF and/or total PCDDs/PCDFs by combined capillary column gas chromatography/high resolution mass spectrometry (HRGC/HRMS). The HRGC/HRMS system consists of a Carlo Erba Model 4160 gas chromatograph interfaced directly into the source of a VG 7070 mass spectrometer. A 60 meter D8-5 capillary column is used to accomplish the chromatographic separations. Helium is used as a carrier gas in both types of analyses with a flow velocity of approximately 30 cm/sec. The mass spectrometer is operated in the electron impact (EI) ionization mode at a mass resolution of 9,000-12,000 (M/AM, 10 percent valley definition). The operating parameters of the HRGC/HRMS system are summarized in Table 2. All HRGC/HRMS data are acquired by multiple-ion-detection (MID) with a VG Model 11-250J Data System. The exact masses monitored are shown in Table 3.

QUALITY ASSURANCE

The operation of the HRGC/HRMS is evaluated each day for accuracy of quantification and isomer resolution by analyzing a standard mixture containing PCDD and/or PCDF isomers. When the analysis is for determination of 2,3,7,8-PCDD/PCDF, the mixture contains isomers listed in Table 1 along with the unlabelled isomers listed in Table 1A. The retention times for

each of the 2,3,7,8 isomers, relative to the corresponding isotopically labeled congener, are also determined from this standard mixture of isomers.

Other native PCDD/PCDF isomers may also be included in this mixture but not quantified. Mixtures of selected PCDD/PCDF isomers are also analyzed once or twice a week to evaluate the stability of the chromatographic elution windows. The stability of the mass focus is assured by use of a PFK "lock mass" to correct for any mass focus drift.

Native spike and laboratory blank samples are processed during the extraction and cleanup of the samples. The native spike samples are used to evaluate the accuracy of quantification, while the method blank samples are used to demonstrate freedom from contamination.

RECOVERIES OF INTERNAL STANDARDS

The relative response factors used in determination of the recoveries of the isotopically labelled internal standards which are spiked into the samples (Table 1) are calculated by comparison of the responses from the internal standards to the response from the external standard, $1.2.3.4-TCDD-13C_{12}$, which is added following the sample extraction. The formula for this response factor calculation is:

$$Rf = \frac{Ais \times Q1234}{A1234 \times Qis}$$

where:

Rf = Response factor

Ais = Sum of integrated areas for isotopically labelled internal standards

Q1234 = Quantity of 1,2,3,4-TCDD-13C12

A1234 = Sum of integrated areas for $1,2,3,4-TCDD-13C_{12}$

Qis = Quantity of isotopically labelled internal standard.

The values for the response factors are calculated for each daily standard analysis. The average value is used in determining the recovery of the isotopically labelled internal standards. The recoveries are calculated by comparing the sum of the responses from the two ions monitored for each

isotopically labelled internal standard to the sum of the responses from the two ions for the 1,2,3,4-TCDD- 13 C12 external standard. The formula used in the recovery calculation is:

Recovery (%) =
$$\frac{Ais \times Q1234 \times 100}{A1234 \times Qis \times Rfa}$$

where:

Ais = Sum of integrated areas for internal standard

Q1234 = Quantity of 1,2,3,4-TCDD-13C12

100 = Conversion factor for %

A1234 = Sum of integrated areas for $1,2,3,4-TCDD-13C_{12}$

Qis = Quantity of isotopically labelled internal standard

Rfa = Average response factor.

QUANTIFICATION

A relative response factor is calculated for each individual 2,3,7,8 isomer by comparing the sum of the responses from the two masses monitored for each class, at the appropriate retention time, to the sum of the responses from the two ions for the corresponding isotopically labelled internal standard in each daily standard analysis. The formula for the response factor calculations:

where:

Rf = Response factor

An = Sum of integrated areas for native isomer

Qis = Quantity of internal standard

Ais = Sum of integrated areas for internal standard

On = Quantity of native isomer.

The values calculated for the daily response factors are then averaged and this average is used in all calculations used to quantify the data.

The PCDD/PCDF isomers are then quantified by comparing the sum of the responses from the two ions monitored for each class, at the appropriate retention time, to the sum of the responses from the corresponding isotopically labelled congener. The octa-CDD-13C12 is used to quantify the octa-CDF. The formula for quantifying the PCDD/PCDF isomers is:

Concentration (ppb) =
$$\frac{An \times Qis}{Ais \times W \times Rfa}$$

where:

Conc. = Concentration in parts-per-billion (ppb) of target isomer or congener class

An = Sum of integrated areas for the target isomer or congener class

Qis = Amount of internal standard in grams

Ais = Sum of integrated areas for the target isomer or congener class

W = Sample weight in grams

Rfa = Average response factor.

Each pair of resolved peaks in the selected-ion-current chromatogram is evaluated manually to determine if it meets the criteria for a PCDD or PCDF isomer. By examining each pair of peaks separately, quantitative accuracy is improved over what is obtained when all the peaks in a selected chromatographic window are averaged. When averaged data are used, it is possible for pairs of peaks with high and low chlorine isotope ratios to produce averaged data that meet the isotope ratio criterion. For example, two pairs of peaks having chlorine isotope ratios of 0.56 and 0.96, both outside of the acceptable range, would have an average ratio of 0.76.

The criteria that are used to identify PCDD and PCDF isomers are:

- (1) Simultaneous responses at both ion masses;
- (2) Chlorine isotope ratio within ± 15% of the theoretical value;
- (3) Chromatographic retention times with in windows determined from analyses of standard mixtures:

(4) Signal-to-noise ratio equal to or greater than 2.5 to 1.

The 2,3,7,8-substituted PCDD/PCDF isomers and the octa-CDD include the additional criterion that they coelute within \pm 2 seconds of their isotopically labelled analogs.

A most possible concentration (MPC) is calculated for samples in which isomers of a particular chlorine congener class are not detected. The formula used for calculating the MPC is:

MPC (ppb) =
$$\frac{\text{Hn} \times \text{Qis} \times 2.5}{\text{His} \times \text{W} \times \text{Rf}}$$

where:

MPC = Single isomer most possible concentration (ppb);

Hn = Height of congener class isomers;

Qis = Quantity of internal standard (ng);

His = Peak height of internal standard;

W = Sample weight (g)

Rfa = Average response factor; and

2.5 = Signal-to-noise ratio.

ACCURACY AND PRECISION

The recovery of the ¹³C labelled internal standards which experience the entire sample preparation is measured by comparison to the response of 1,2,3,4-TCDO-¹³C₁₂ which is added to the extract immediately prior to analysis. Recoveries range between 70 and 120 percent, depending on the sample matrix. Those samples which require additional clean-up are spiked with 2,3,7,8-TCDO-³⁷Cl4 as another reference for recovery calculations.

Duplicate analyses are performed periodically as another means of insuring method performance. Daily standard analysis provides a check of instrument performance and precision. Response factor calculations are compared with established values and are not to exceed 20 percent

difference. Three and five point calibration curves are periodically performed to demonstrate instrument linearity.

TABLE 1. LABELLED ISOMERS FOR SAMPLE QUANTIFICATION

Isomer	Approximate Spiking Level (ng)
2,3,7,8-tetra-CDF-13C12	10
2,3,7,8-tetra-CDD-13C12	10
1,2,3,7,8-penta-CDF- ¹³ C ₁₂	10
1,2,3,7,8-penta-CDD-13C12	10
1,2,3,4,7,8-hexa-CDF-13C ₁₂	35
1,2,3,6,7,8-hexa-CDD-13C ₁₂	10
1,2,3,4,6,7,8-hepta-CDO-13C12	25
1,2,3,4,6,7,8-hepta-CDF-13C12	25
Octa-CDD-13C12	25

TABLE 1A. NATIVE ISOMERS FOR RESPONSE FACTORS AND RETENTION TIMES

Isomer	Approximate Spiking Level (ng)
2,3,7,8-tetra-CDF	10
2,3,7,8-tetra-CDD	10
1,2,3,7,8-penta-CDF	10
2,3,4,7,8-penta-CDF	10
1,2,3,7,8-penta-CDD	10
1,2,3,4,7,8-hexa-CDF	10
1,2,3,6,7,8-hexa-CDF	10
1,2,3,7,8,9-hexa-CDF	10
2,3,4,6,7,8-hexa-CDF	10
1,2,3,6,7,8-hexa-CDD	10
1,2,3,4,7,8-hexa-CDD	10
1,2,3,7,8,9-hexa-CDD	10
1,2,3,4,6,7,8-hepta-CDF	25
1,2,3,4,7,8,9-hepta-CDF	25
1,2,3,4,6, 7,8-hepta-CDD	25
Octa-CDD	25
Octa-CDF	25

TABLE 2. HRGC/HRMS OPERATING PARAMETERS

Mass Resolution	9000-12000 (M/AM, 10% valley definition)
Electron Energy	70 eV
Accelerating Voltage	4000 volts (7070H) or 6000 volts (7070E)
Source Temperature	225-250 C
Preamplifier Gain	10-7 amp/volt
Electron Multiplier Gain	~106
Column	CP Sil 88 50M or DB-5 60M
Transfer Line Temperature, DB-5	300 C
Injector Temperature, DB-5	300 C
Column Temperature-Initial, DB-5	160 C
Column Temperature-Program, DB-5	20 C/min to 240 C hold for 40 min 20 C/min to 320 C hold for 30 min
Carrier Gas	Helium
Flow Velocity	~30 cm/min
Injection Mode	Splitless
Injection Volume	0.5-2 µL

TABLE 3. EXACT MASSES USED FOR THE DETERMINATION OF PCDD AND PCDF

Compound	Accurat	e Mass	Theoretical Isotope Ratio
	Mass 1	Mass 2	Mass 1/Mass 2
Tetrachlorodibenzo-p-diaxins	319.8965	321.8936	0.77
Tetrachlorodibenzofurans	303.9016	305.8987	0.77
Pentachlorodibenzo-p-dioxins	355.8546	357.8517	1.54
Pentachlorodibenzofurans	339.8597	341.8567	1.54
Hexachlorodibenzo-p-dioxins	389.8156	391.8127	1.23
Hexachlorodibenzofurans	373.8207	375.8178	1.23
deptachlorodibenzo-p-dioxins	423.7766	425.7737	1.03
deptachlorodibenzofurans	407.7817	409.7788	1.03
Octachlorodibenzo-p-dioxins	457.7377	459.7347	0.88
Octachlorodibenzofurans	441.7428	443.7398	0.88
Tetrachlorodibenzo-p-dioxin-13C ₁₂ Tetrachlorodibenzofuran-13C ₁₂	331.9367	333.9338	0.77
	315.9418	317.9389	0.77
Pentachlorodibenzo-p-dioxin-13C ₁₂	367.8948	369.8918	1.54
Pentachlorodibenzofuran-13C ₁₂	351.8999	353.8969	1.54
dexachlorodibenzo-p-dioxin-13C ₁₂ dexachlorodibenzofuran-13C ₁₂	401.85 58	403.8529	1.23
	385.8609	387.8580	1.23
Heptachlorodibenzo-p-dioxin-13C ₁₂ Heptachlorodibenzofuran-13C ₁₂	435.8168	437.8139	1.03
	419.8219	421.8190	1.03
octachlorodib enzo-p-dioxin-13C 12	469.7779	471.7749	0.88

APPENDIX B

APPENDIX B

Modified Method 680 for Special Analytical Services Test

Identification and Measurement of Pesticides and PCBs by Gas Chromatography/Mass Spectrometry

November 18, 1985

For further information, contact Ann Alford-Stevens or James W. Eichelberger, Physical and Chemical Methods Branch, Environmental Monitoring and Support Laboratory, Office of Research and Development, U. S. Environmental Protection Agency, Cincinnati, Chio 45268.

1. SCOPE AND APPLICATION

1.1. This method provides procedures for identification and measurement of polychlorinated biphenyls (PCBs) and the pesticides listed below. This method is applicable to samples containing PCBs as single congeners or as complex mixtures, such as commercial Aroclors. PCBs are identified and measured is isomer groups (i.e., by level of chlorination). The existence of 209 possible PCB congeners makes impractical the listing of the Chemical Abstracts Service Registry Number (CASRN) for each potential method analyte. Because PCBs are identified and measured as isomer groups, the non-specific CASRN for each level of chlorination is used to describe method analytes.

Analyte(s)	Formula	CASRN
Aldrin	C ₁₂ HgCl6	309-00-2
BHC, alpha	C6H6Cl6	319-84-6
BHC, beta	C6H6C16	319-85-7
BHC, delta	C6H6Cl6	319-86-8
BHC, gamma	C6H6Cl6	58-89-9
Chlordane, alpha	C ₁₀ H ₆ Cl ₈	5103 - 71 -9
Chlordane, gamma	C ₁₀ H ₆ Cl _B	5103-74-2
4,4'-DDD	C14H10C14	72-54-8
4,4'-DDE	C14HeCl4	72-55-9
4,4'-DDT	C14H9C15	50-29-3
Dieldrin	C12H8C160	60-57-1
Endosulfan I	C9H6C1603S	9 59-98- 8
Endosulfan II	C8H6C1603S	3321 3-65-9
Endosulfan sulfate	C9H4C1604S	1031-07-8
Endrin	C ₁₂ HgCl60	72-20-8
Endrin ketone	C ⋅ 2H gCl6 O	53494-70-5
Heptachlor	С: Н 5С17	76-44-8
Heptachlor epoxide	C ∋H 5C17O	1024-57-3
Methoxychlor	C ₁₆ H ₁₅ Cl ₃ O ₂	72-43 5
Nonachlor, trans	C ₁₀ H5Cl9	3 9765-8 0 5
PCBs	_	
Monochlorobiphenyls	C ₁₂ H ₉ Cl	27323-18-8
Dichlorobiphenyls	C12H8C12	25512-42-9
Trichlorobiphenyls	C12H7Cl3	25323-68-6
Tetrachlorobiphenyls	C ₁₂ H ₆ Cl ₄	26914-33-0
Pentachlorobiphenyla	C ₁₂ H ₅ Cl ₅	25429-29-2
Hexachlorobiphenyls	C12H4C16	26601-64-9
Heptachlorobiphenyls	C12E3C17	28655-71-2
Octachlorobiphenyls	C ₁₂ E ₂ Cl ₈	31472-63-0
Nonachlorobiphenyls	C128Cl9	53742-07-7
Decachlorobiphenyl	C ₁₂ Cl ₁₀	2051-24-3

1.2 Detection limits vary among method analytes and with sample matrix, sample preparation procedures, and individual samples, depending on the type and quantity of other sample components. The following guidance is based on numerous analyses of calibration solutions with one instrument over a period of approximately six months. Pesticide analytes other than endosulfans I and II can be identified and accurately measured when the injected aliquot contains 2 ng of each analyte; the endosulfans require

about 4 ng each. Detection limits for individual PCB congeners increase with increasing number of chlorine atoms, with the detection limit for decachlorobiphenyl being about 5-10 times higher than that of a monochlorobiphenyl. A monochlorobiphenyl can be identified and measured when the injected extract aliquot contains 1 ng. The detection limit for total PCBs will depend on the number of individual PCB congeners present.

2. SUMMARY OF METHOD

Sample extract components are separated with capillary column gas chromatography (GC) and identified and measured with low resolution, electron ionization mass spectrometry (MS). An interfaced data system (DS) to control data acquisition and to store, retrieve, and manipulate mass spectral data is essential. Two surrogate compounds are added to most samples before sample preparation; these compounds are $^{13}\text{C}_{12}$ -4,4'-DDT and $^{13}\text{C}_{6}$ -gamma-BHC. Two internal standards, chrysene-d₁₂ and phenanthrene-d₁₀, are added to each sample and blank extract before GC/MS analysis and are used to calibrate MS response. Each concentration measurement is based on an integrated ion abundance of one characteristic ion.

All pesticides are identified as individual compounds, and a concentration is calculated by relating the MS response of each compound to the MS response of one of the two internal standards, usually the internal standard with GC retention time nearer that of the pesticide analyte. This has been predetermined by order of library entries with the specialized software for automated identifications and measurements.

PCBs are identified and measured as isomer groups (i.e., by level of chlorination). A concentration is measured for each PCB isomer group; total PCB concentration in each sample extract is obtained by summing isomer group concentrations. Nine selected PCB congeners are used as calibration standards, and one internal standard, chrysene- d_{12} , is used to calibrate MS response.

3. DEFINITIONS

- 3.1 Concentration calibration solution (CAL) -- A solution of PCB calibration congeners, pesticide analytes, surrogate compounds, and internal standards used to calibrate the mass spectrometer response.
- 3.2 Congener number -- Throughout this method, individual PCBs are described with the number assigned by Ballschmiter and Zell (1). (This number is also used to describe PCB congeners in catalogs produced by Ultra Scientific, Hope, RI.)
- 3.3 Internal standard -- A pure compound added to each sample and blank extract in known amounts and used to calibrate concentration measurements of PCBs and pesticide analytes that are sample components. The internal standard must be a compound that is not a sample component.
- 3.4 Laboratory performance check solution (LPC) -- A solution of method analytes, surrogate compounds, and internal standards used to evaluate the performance of the GC/MS/DS with respect to a defined settled method criteria.
- 3.5 Laboratory reagent blank (LRS) -- An aliquot of extraction solvent that is exposed to all glassware, apparatus, equipment, method reagents, etc., that a sample extract solvent would be exposed to. All internal

- standards and surrogates are used with the LRB solvent, which is concentrated to the final volume of a sample extract and is analyzed exactly the same as an sample extract.
- 3.6 Laboratory surrogate spike measured value (LS1) -- The surrogate compound concentration measured with the same procedures used to measure sample components.
- 3.7 Laboratory surrogate spike theoretical value (LS2) -- The known or true value of the concentration of surrogate compound added to the environmental sample. The known value is determined from standard gravimetric and/or volumetric techniques used during sample fortification.
- 3.8 Surrogate compound -- A compound that is not expected to be found in the sample, is added to the original environmental sample to monitor performance, and is measured with the same procedures used to measure sample components. Associated with the surrogate compound are two values, laboratory surrogate spike measured value (LS1) and laboratory surrogate spike theoretical value (LS2).

4. INTERFERENCES

- 4.1 Interferences may be caused by contaminants in solvents, reagents, glassware, and other sample processing equipment. All of these materials must be demonstrated to be free of interferences by routine analysis of laboratory solvent blanks (LSB).
- 4.2 For both pesticides and PCBs, interference can be caused by the presence of much greater quantities of other sample components that overload the capillary column; additional sample extract preparation procedures must then be used to eliminate interferences. Capillary column GC retention times and the compound-specific characteristics of mass spectra eliminate many interferences that formerly were of concern with pesticide/PCB determinations with electron capture detection. The approach and identification criteria used in this method for PCBs eliminate interference by most chlorinated compounds other than other PCBs. With the isomer group approach, coeluting PCBs that contain the same number of chlorines are identified and measured together. Therfore, coeluting PCBs are a problem only if they contain different number of chlorine atoms. This interference problem is obviated by the rigorous identification criteria incorporated into the specialized software.

5. APPARATUS AND EQUIPMENT

5.1 COMPUTERIZED GC/MS SYSTEM

5.1.1 The GC must be capable of temperature programming and be equipped with all required accessories, such as syringes, gases, and a capillary column. The GC injection port must be designed for capillary columns. Manual splitless injections were used to acquire data used as the basis for quality control requirements. An automatic injector, however, is desirable, because it should provide more precise retention times and areas. On-column injection techniques are encouraged because they minimize high mass descrimination and analyte degradation problems.

With some GCs, however, the irreproducibility of the low initial temperature required for on-column injections will cause irreproducible retention times (RTs) and relative retention times (RTs). That can result in an inability to distinguish between two closely eluting pesticide isomers. Splitting injections are not recommended.

- 5.1.2 Full range mass spectra are obtained with electron ionization at a nominal electron energy of 70 eV. To ensure sufficient precision of mass spectral data, the required MS scan rate must allow acquisition of at least five full-range mass spectra while a sample component elutes from the GC. The MS must produce a mass spectrum meeting all usual criteria for ≤20 ng of decafluorotriphenylphosphine (DFTPP) introduced through the GC inlet.
- 5.1.3 An interfaced data system (DS) is required to acquire, store, reduce, and output mass spectral data. The DS must be capable of searching a data file for specific ions and plotting ion abundances versus time or spectrum number to produce extracted ion current profiles (EICPs). Also required is the capability to obtain chromatographic peak areas between specified times or spectrum numbers in EICPs. Total data acquisition time per cycle should be >0.5 s and must not exceed 1.5 s.
- 5.2 GC COLUMN -- A 30 m X 0.32 mm ID fused silica capillary column coated with a 0.25 um or thicker film crosslinked phenyl mathyl silicone (such as Durabond-5 (DB-5), J and W Scientific, Rancho Cordova, CA) or polydiphenyl vinyl dimethyl siloxane (such as SE-54, Alltech Associates, Deerfield, IL) is required. Operating conditions known to produce acceptable results with these columns are shown in Table 1; separation of pesticide analytes and PCB calibration congeners with a DB-5 column and those operating conditions is shown in Figure 1. Retention times have been reported (2) for all 209 PCB congeners with an SE-54 column, which provides the same retention order for PCBs and essentially the same separation capabilities as a DB-5 column.

5.3 MISCELLANEOUS EQUIPMENT

- 5.3.1 Volumetric flasks various common sizes with ground glass stoppers
- 5.3.2 Microsyringes various common sizes

6. REAGENTS AND CONSUMABLE MATERIALS

- 6.1 SOLVENTS -- Righ purity, distilled-in-glass.
- 6.2 MS PERFORMANCE CHECK SOLUTION -- Prepare a 10 ng/uL solution of decafluorotriphenylphosphine (DFTFF) in an appropriate solvent.
- 5.3 INTERNAL STANDARDS -- Chrysene-d₁₂ and phenanthrene-d₁₀ are used as internal standards. They are added to each sample extract just before analysis and are contained in all concentration calibration and performance check solutions. A solution of internal standards is provided.
- 6.4 SURROGATE COMPOUNDS -- 13C12-4,4'-DDT and 13C6-gamma-BBC are added to every blank and to most samples before extraction and are included in every concentration calibration/ performance check solution. Required solutions of surrogate compounds are provided.

- 6.5 PCB CONCENTRATION CALIBRATION CONGENERS -- The nine individual PCB congeners listed in Table 2 are used as concentration calibration compounds for PCB determinations. One isomer at each level of chlorination is used as the concentration calibration standard for all other isomers at that level of chlorination, except that decachlorobiphenyl (Cl₁₀) is used for both Cl₉ and Cl₁₀ isomer groups. The needed solution of PCB congeners is provided.
- 6.6 PESTICIDE CALIBRATION SOLUTION -- Provided.
- CALIBRATION SOLUTIONS (CALs) -- Five hexane solutions are required.

 Instructions for preparation of CALS are provided with the PCB calibration congener solution. CALs contain a constant concentration of the ISs (chrysene-d₁₂ and phenanthrene-d₁₀) and varying concentrations of the individual pesticide analytes, the nine PCB calibration congeners, and the two surrogate compounds (\$^{13}C_{12}\$-DDT and \$^{13}C_{6}\$-gassa-BHC). (Composition and concentrations are given in Table 3.) Each solution contains both ISs, both surrogate compounds, the nine PCB concentration calibration congeners, and each of the single-compound pesticide analytes. The lowest concentration solution contains each individual pesticide analytes and PCB calibration congener at a concentration near but greater than its anticipated detection limit. (Because MS response to PCBs decreases with increasing level of chlorination, PCB congener concentrations in CALS increase with level of chlorination.) Components of the highest concentration CAL are present at a concentration that allows injections of 2-uL aliquots without MS saturation or GC column overloading.
- 6.11 LABORATORY PERFORMANCE CHECK SOLUTION -- The medium concentration CAL (#3, Table 3) is used as the laboratory performance check solution (LPC) to verify response factors and to demonstrate adequate GC resolution and MS performance.

7. CALIBRATION

Demonstration and documentation of initial calibration are required before any samples are analyzed and intermittently throughout sample analyses as dictated by results of continuing calibration checks. After initial calibration is successfully performed, a continuing calibration check is required at the beginning and end of each 12-h period during which analyses are performed.

7.1. INITIAL CALIBRATION

- 7.1.1 Calibrate and tune the MS with standards and procedures prescribed by the manufacturer with any necessary modifications to meet USEPA requirements.
- 7.1.2 Inject a 2-uL aliquot of the 10 ng/uL DFTFF solution and acquire a mass spectrum that includes data for m/s 45-450. If the spectrum does not meet all usual criteria, the MS must be hardware tuned to meet all criteria before proceeding with calibration.
- 7.1.3 Inject a 2-wL aliquot of the medium concentration CAL and acquire data from m/s 45 to 510. Acquire >5 spectra during elution of each GC peak. Total cycle time should be >0.5 s and <1.5 s.

7.1.4 Performance Criteria

- 7.1.4.1 GC performance -- baseline separation of beta-BHC and gamma-BHC; baseline separation of endrin ketone and chrysene-d₁₂; height of Cl₁-PCB peak >80% beta-BHC peak height; height of chrysene-d₁₂ peak >20% of the peak height of methoxychlor coeluting with the Cl₈-PCB congener. (If methoxychlor and Cl₈-PCB are resolved, chrysene-d₁₂ peak height = >40% of each.)
- 7.1.4.2 MS sensitivity -- Signal/noise ratio of ≥ 5 for m/z 499 of PCB congener #209, Cl₁₀-PCB.
- 7.1.4.3 MS calibration -- Abundance of >40% and <60% of m/z 502 relative to m/z 498 for PCB congener #209.
- 7.1.4.4 Lack of degradation of endrin. Examine an extracted ion current profile (EICP) for m/z 67 in the retention time window between 4,4-DDE and endosulfan sulfate; confirm that the abundance of m/z 67 at the retention time of endrin aldehyde (See Figure 1) is <10% of the abundance of m/z 67 produced by endrin.
- 7.1.4.5 Lack of degradation of \$^{13}C_{12}-4,4'-DDT. Examine EICPs for m/z 258 and m/z 247 in the retention time window that includes 4,4'-DDD, 4,4'-DDE and 4,4'-DDT; m/z 258 would be produced by \$^{13}C_{12}-4,4'DDE, and m/z 247 by \$^{13}C_{12}-4,4'-DDD. Confirm that the total abundance of both ions is <5% of m/z 247 produced by \$^{13}C_{12}-4,4'-DDT.
- 7.1.5 Replicate Analyses of CALs -- If all performance criteria are met, analyze each of the other four CALs.

7.1.6 Response Factor Calculation

7.1.6.1 Calculate five response factors (RFs) for each pesticide analyte, PCB calibration congener, and surrogate compound relative to either phenanthrens—d₁₀ or chrysens—d₁₂. (Phenanthrens—d₁₀ is used for pesticides eluting before heptachlor epoxide; Chrysens—d₁₂ is used for all PCBs and for heptachlor epoxide and later eluting pesticides.) Use standard Incomprocedures to calculate each RF:

$RF = A_X Q_{is} / A_{is} Q_X$

- where $\lambda_{\rm X}$ = integrated ion abundance of quantitation ion for a posticide, a PCB calibration congener or a surrogate compound,
 - Ais = integrated ion abundance of m/s 240, the quantitation ion when chrysene-d₁₂ is used as the internal standard or m/s 188, the quantitation ion when phenanthrene-d₁₀ is used as the internal standard,

- Q_{1s} = injected quantity of chrysene-d₁₂ or phenanthrene-d₁₀,
- $Q_{\rm X}$ = injected quantity of pesticide analyte, PCB calibration congener or surrogate compound.

RF is a unitless number, units used to express quantities must be equivalent.

- 7.1.7 Response Factor Reproducibility -- For each pesticide analyte, PCB calibration congener and surrogate compound, calculate the mean RF from analyses of each of the five CALS. When the RSD exceeds 20%, analyze additional aliquots of appropriate CALS to obtain an acceptable RSD of RFs over the entire concentration range, or take action to improve GC/MS performance.
- 7.1.8 Record a spectrum of each CAL component. (Background subtraction and spectrum averaging may be needed.) Judge the acceptability of recorded spectra by comparing them to spectra in libraries and by using information in Tables 4-6. If an acceptable spectrum of a pesticide analyte or PCB calibration congener is not acquired, take necessary actions to correct GC/MS performance. If performance cannot be corrected, report sample extract data for the particular compound(s), but document the affected compound(s) and the nature of the problem.

7.2. CONTINUING CALIBRATION CHECK

- 7.2.1 With the following procedures, verify initial calibration at the beginning and end of each 12-h period during which analyses are to be performed.
- 7.2.2 Calibrate and tune the MS with standards and procedures prescribed by the manufacturer.
- 7.2.3 Analyze a 2-uL aliquot of the DFTPP solution and ensure acceptable MS calibration and performance.
- 7.2.4 Inject a 2-uL aliquot of CAL #3 (Table 3) and analyze with the same conditions used during Initial Calibration.
- 7.2.5 Demonstrate acceptable performance for criteria described in Sect. 7.1.4.
- 7.2.6 Determine that neither the area measured for m/s 240 for chrysene-d₁₂ nor that for m/s 188 for phenanthrene-d₁₀ has decreased by more than ²⁵¹ from the area measured in the most recent previous analysis of a calibration solution and by more than ⁵⁰⁴ from the mean area measured during initial calibration.
- 7.2.7 RF Reproducibility For an acceptable Continuing Calibration Check, the measured RF for each analyte/surrogate compound must be within +20% of the mean value calculated (Sect. 7.1.6) during Initial Calibration. If not, remedial action must be taken; recalibration may be necessary.

- 7.2.8 Remedial actions must be taken if criteria are not met; possible remedies are:
 - 7.2.8.1 Check and adjust GC and/or MS operating conditions.
 - 7.2.8.2 Clean or replace injector liner.
 - 7.2.8.3 Flush column with solvent according to manufacturers instructions.
 - 7.2.8.4 Break off a short portion (approximately 0.33 m) of the column; check column performance by analysis of performance check solution.
 - 7.2.8.5 Replace GC column: performance of all initial calibration procedures then required.
 - 7.2.8.6 Adjust MS for greater or lesser resolution.
 - 7.2.8.7 Calibrate MS mass scale.
 - 7.2.8.8 Perform initial calibration procedures.

8. PROCEDURES

8.1 GC/MS ANALYSIS

- 8.1.1 Remove the sample extract or blank from storage and allow it to warm to ambient laboratory temperature if necessary. With a stream of dry, filtered nitrogen, reduce the extract/blank volume to the appropriate volume. Final volume for all blanks and all samples except ORD-11 is 1 mL; final volume for ORD-11 is 10 mL. (See attached flow chart for extract preparation scheme for solid samples.) If sample ORD-11, add 200 uL of the IS solution; otherwise, add 20 uL of the IS solution. Internal standard concentration = 7.5 ng/uL of extract.
- 8.1.2 Inject a 2-wL aliquot of the extract/blank into the GC operated under conditions used to produce acceptable results during calibration.
- 8.1.3 Acquire mass spectral data with the same data acquisition time and GC/MS operating conditions previously used to determine response factors.
- 8.1.4 Examine data for saturated ions in mass spectra of target compounds, if saturation occurred, dilute and reanalyse the extract after the quantity of the ISs is adjusted appropriately.

42.

8.1.5 For each IS, determine that the area measured in the sample extract has not decreased by >25% from the area measured during the most recent previous analysis of a calibration solution or by >50% from the mean area measured during initial calibration. If either criterio is not met, remedial action must be taken to improve sensitivity, and the sample extract must be reanalysed.

- 8.2 IDENTIFICATION AND MEASUREMENT PROCEDURES -- Use software for automated identification and measurement of PCBs and posticides. (See Users' Guide)
 - 8.2.1 Use the grand mean RF calculated during Initial Calibration.

 CAUTION: For PCB analyses with automated data interpretation a linear fit algorithm will produce erroneous concentration data.
 - 8.2.2 Examine results obtained on the status report (for individual components identified as PCBs) and the quantitation report (for pesticide analytes) and PCB isomer groups. Individual spectra should be examined and compared to appropriate spectra acquired during calibration.
 - 8.2.2 Report calculated values to three significant figures.

REFERENCES

- 1. Ballschmiter, K. and M. Zell, Fresenius Z. Anal. Chem., 302, 20, 1980.
- Mullin, M. D., C. Pochini, S. McCrindle, M. Romkes, S. E. Safe, and L. M. Safe, "High Resolution PCB Analysis: Synthesis and Chromatographic Properties of All 209 PCB Congeners", <u>Environ. Sci. Technol.</u> 18, 466, 1984.
- Rote, J. W. and W. J. Horris, "Use of Iostopic Abundance Ratios in Identification of Polychlorinated Biphenyls by Mass Spectrometry", J. Assoc. Offic. Anal. Chem. 56(1), 188, 1973.

Table 1. Recommended GC Operating Conditions

Column Type:

SE-54 or DB-5

Film Thickness:

≥0.25 um

Column Dimensions:

30 m X 0.32 mm

Helium Linear Velocity:

28-29 cm/sec at 250°C

Temperature Program for Splitless
Injection:
(Analysis time = approximately 40 min)

Inject at 80°C and hold 1 min; increase at 30°/min to 160°C and hold 1 min; increase at 3°/min to 310°C.

2=

Inject at 80°C and hold 1 min; heat rapidly to 160°C and hold 1 min; increase at 3°/min to 310°C.

Table 2. PCB Congeners Used as Concentration Calibration Standards

Isomer Group	Congener Number	Chlorine Substitution	Approx. RRT4
Monochlorobiphenyl	1	2	0.30
Dichlorobiphenyl	5	2,3	0.43
Trichlorobiphenyl	29	2,4,5	0.54
Tetrachlorobiphenyl	50	2,2',4,6	0.56
Pentachlorobiphenyl	87	2,2',3,4,5'	0.80
Hexachlorobiphenyl	154	2,21,4,41,5,61	0.82
Heptachlorobiphenyl	18.8	2,2',3,4',5,6,6'	0.88
Octachlorobiphenyl	200	2,2',3,3',4,5',6,6'	1.03
Nonachlorobiphenyl ^a	-		-
Decachlorobiphenyl	209	2,21,3,31,4,41,5,51,6,61	1.3

Retention time relative to chrysene-d₁₂ with a 30 m x 0.31 mm ID SE-54 fused silica capillary column and the following GC conditions: splitless injection at 80°C; hold for 1 min; heat rapidly to 160°C and hold 1 min; increase at 3°C/min to 310°C.

b Decachlorobiphenyl is used as the calibration congener for both nonand decachlorobiphenyl isomer groups.

Table 4. Known Relative Abundances of Ions in PCB Molecular Ion Clusters

m/2	Relative Intensity	<u>m/s</u>	Relative Intensity		Relative Intensity
Monochlo	robiphenyls	Hexachlor	obiphenyls	None chile	robiphenyls
188	100	358	50.9	460	26.0
189	13.5	359	6.89	461	3.51
190	33.4	360	100	462	76.4
192	4.41	361	13.5	463	10.3
_		362	82.0	464	100
Dichloro	biphenyls	363	11.0	465	13.4
222	100	364	36.0	466	76.4
223	13.5	365	4.77	467	10.2
224	66.0	366	8.92	468	37.6
225	8.82	367	1. 17	469	5.00
226	11.2	368	1.20	470	
227	1.44	369	0.15	470 471	12.4
• • ′	1177	303	0.13		1.63
Med ablas	ahi ahaanla	Uanta ahi a	aa bi ab aassi a	472	2.72
256	obiphenyls 100	392	robiphenyls	473	0.35
			43.7	474	0.39
257	13.5	393	5.91		
258	98.6	394	100		robiphenyl
259	13.2	395	13.5	494	20.8
260	32.7	396	98.3	495	2.81
261	4.31	397	13.2	496	68.0
262	3.73	398	53.8	497	9. 17
263	0.47	399	7.16	498	100
		400	17.7	499	13.4
	orobiphenyls	401	2.34	500	87.3
290	76.2	402	3.52	501	11.7
291	10.3	403	0.46	502	50.0
292	100	404	0.40	503	6.67
293	13.4			504	19.7
294	49.4		obiphenyls	505	2.61
295	6.57	426	33.4	506	5.40
296	11.0	427	4.51	507	0.71
297	1.43	428	87.3	508	1.02
298	0.95	429	11.8	509	0.13
		430	100		
	oro biphenyls	431	13.4		
324	61.0	432	65.6		
325	8.26	433	8.76		
326	100	434	26.9		
327	13.5	435	3.57		
328	65.7	436	7.10		
329	8.78	437	0.93		
330	21.7	438	1.18		
331	2.86	439	0.15		
332	3.62	440	0.11		•
333	0.47	• • • •			
334	0.25				

Source: J. W. Rote and W. J. Morris, J. Assoc. Offic. Anal. Chem. 56, 188, 1973.

Table 5. Quantitation, Confirmation, and Interference Check Ions for PCBs, Internal Standards, and Surrogate Compounds

Analyte/ IS/Surr.	Approx. RRT Range	Nom.	Quant. Ion	Confirm. Ion	Expected Ratio ⁸	Accept. Ratio ⁴	M-70 Confirm Ion	Inter Chec M+70	k I
PCB Isome	er Group								
Cl ₁	0.30-0.35	188	188	190	3.0	2.5-3.5	152 ^b	256	22
Cl ₂	0.38-0.50	222	222	224	1.5	1.3-1.7	152	292	25
C1 ₃	0.46-0.64	256	256	258	1.0	0.8-1.2	186	326	29
C1 ₄	0.55-0.82	29 0	292	290	1.3	1.1-1.5	220	360	32
Cls	0.64-0.92	324	326	324	1.6	1.4-1.8	254	394	36
C1 ₆	0.75-1.1	358	360	362	1.2	1.0-1.4	288	430	39.
C17	0.88-1.2	392	394	396	1.0	0.8-1.2	322	464	43
C18	0.99-1.21	426	430	428	1.1	0.9-1.3	356	498	46
Clg	1.16-1.28	460	464	466	1.3	1.1-1.5	390	•	45
C1 ₁₀	1.3	494	498	500	1.1	0.9-1.3	424	-	•
Internal	standard								
Chryse: Phenan	ne-d ₁₂ threne-d ₁₀	240 188	240 188	241 189	5.1 6.6	4.3-5.9 6.0-7.2	-	-	-
Surrogate	e compound								
13C6-9	ame-180 4,4'-007	294 364	187 247	189 249	1.5	1.1-1.4 1.2-1.8	•	•	4

A Ratio of quantitation ion to confirmation ion

b Monodichlorobiphenyls lose EC1 to produce an ion at m/s 152.

Table 6. Quantitation and Characteristic Ions for Pesticide Analytes, Internal Standards and Surrogate Compounds (Ordered by Retention Time)

Analyte/Internal Surrogate Compoun		Approx.	Quant.	Ions (Approximate Relative Abundance)
Alpha-BHC	(362)	0.43	219	181 (100), 183 (90), 219 (70)
Beta-BHC	(288)	0.47	219	181 (100), 183 (90), 219 (70)
Gamma-BHC	(288)	0.48	219	181 (100), 183 (90), 219 (75)
'3c ₆ -gamma-BHC	(294)	0.48	225	187 (100), 189 (90) 225 (80), 227 (40)
Phenanthrene-d ₁₀	(188)	0.49	188	188 (100), 189 (15),
Delta-BHC	(288)	0.51	219	181 (100), 183 (90), 219 (70)
Heptachlor	(370)	0.58	272	100 (100), 272 (60), 274 (40)
Aldrin	(362)	0.64	263	66 (100), 263 (40), 265 (25)
Heptachlor epoxid	le (386)	0.70	353	81 (100), 353 (80), 355 (65)
Gamma-chlordane	(406)	0.74	373	373 (100), 375 (95)
Endosulfan I	(404)	0.76	195	195 (100), 339 (50), 341 (35)
Alpha-chlordane	(406)	0.76	373	373 (100), 375 (95)
Trans-nonachlor	(440)	0.77	409	409 (100), 407 (85)
Dieldrin	(378)	0.80	79	79 (100), 263 (10), 108 (15)
4,4'-DDE	(316)	0.81	246	246 (100), 248 (65)
Endrin	(378)	0.83	81	81 (100), 263 (75)
Endosulfan II	(404)	0.85	195	195 (100), 339 (50), 341 (35)
4,4'-DDD	(318)	0.87	235	235 (100), 237 (65), 165 (65)
Endrin aldehyds	(378)	0.88	67	67 (100), 345 (30)
Endosulfan sulfat	te (420)	0.92	272	272 (100), 274 (80), 387 (50)
4,4'-DDT	(352)	0.93	235	235 (100), 237 (65), 165 (65)
¹³ c ₁₂ -4,4'-907	(364)	0.93	247	247 (100), 249 (65)
Endrin ketone	(378)	0.99	67	67 (100), 317 (50)
Chrysene-d ₁₂	(240)	1.00	240	240 (100), 241 (20)
Methoxychlor	(344)	1.03	227	227 (100), 228 (15)

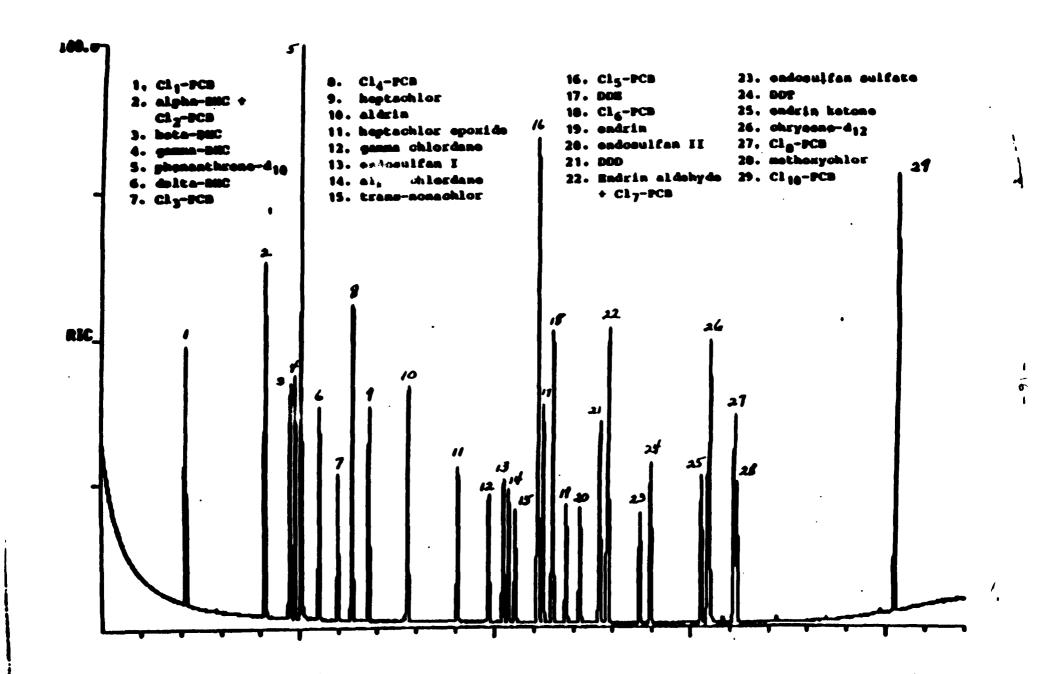


Figure 1. Total Ion Current Profile of PCB Calibration Congeners and Pesticide Analytes.

APPENDIX B

ASH RESULTS

(ZA) ASH

SAMPLE NUMBER: DILUTION FACTOR: DESCRIPTION: UNITS:	ZA AH () ASH UG/KG	01 ZA AH 002 ASH	ZA - AH - 003 1 ASH UG/KG	ZA AH-003D 20 ASH UG/KG	ZA-AH-004 ASH	ZA-AH-005 ASH
*** BASE/NEUTRALS ***						
PP CAS NO COMPO						
69B 117-84-0 DI-N-OCT	YLHEXYL)PHTHALATE NA L PHTHALATE NA L PHTHALATE NA	NA NA NA	2000T 430JB	250000	NA NA NA	NA NA NA

(ZA) ASH

SAMPLE NUMBER: DILUTION FACTOR:	ZA AH 001	ZA AH 001 ZA AH-002		ZA AH 003D	ZA - AH -004	ZA-AH-005
DESCRIPTION: UNITS:	ASH UG/KG	ASH	A SH Ug∕kg	ASH UGZKG	ASH	ASH
*** ACIDS ***						
PP CAS NO COMPOUND						

NO PARAMETERS DETECTED FOR THIS CATEGORY

(ZA) ASH

SAMPLE NUMBER:	ZA-AH-001	ZA-AH-002	ZA-AH-003	ZA-AH-003D	ZA-AH-004	ZA-AH-005
DILUTION FACTOR: DESCRIPTION: UNITS:	ASH UG/KG	ASH	ASH UG/KG	ASH UG/KG	ASH	ASH
*** PESTICIDES ***						
PP CAS NO COMPOUND						
DICHLOROBIPHENYL	NA	NA	107	NA	NA	NA

(ZA) ASH

SAMPLE N		ZA AH-001	ZA-AH-002	ZA-AH-003	ZA-AH-003D	ZA-AH-004	ZA - AH-005
DILUTION DESCRIPT UNITS:		ASH	ASH	ASH	ASH	ASH	ASH
B-4	2378 TCDD TOTAL TCDD 2378 TCDF TOTAL TCDF 12378 PeCDD TOTAL PeCDD 12378 PeCDF 23478 PeCDF TOTAL PECDF 123478 HxCDD 123678 HxCDD 123789 HxCDD 123478 HxCDD 123478 HxCDF 123478 HxCDF 1234678 HxCDF 1234678 HxCDF 1234678 HyCDF 1234678 HyCDF 1234678 HyCDF 1234678 HyCDF 1234678 HyCDD TOTAL HyCDD 1234678 HyCDF			10 216 263 1951 33 350 61 46 591 12 17 28 211 74 131 36 5 527 159 299 139 8 198 313 66			

Dioxin Results are in pg/g

Note: Only 1 Ash Sample From This Facility Was Analyzed For Dioxins.

(ZA) ASH

	SAMPLE NUMBER: DILUTION FACTOR: DESCRIPTION: UNITS:		ZA AH 001 ASH MG/KG	ZA AH 002 ASH MG/KG	ZA AH 003 ASH MG/KG	ZA AH-003D ASH	ZA -AH-004 ASH MG/KG	ZA-AH-005 ASH MG/KG
	+++ INORGANICS PP CAS NO	*** COMPOUND						
æ - 5	3 4 6 8 10 11 12 14 15 19 20 24	ARSENIC BARIUM CADMIUM CHROMIUM COPPER IRON LEAD MANGANESE MERCURY SILVER SODIUM ZINC	50 529 43 93 1420 63300 1580 1020 10.4 4.8 10200 6900	49 480 41 90 7360 57400 1180 835 22.9 5.0 9970	51 554 56 79 1160 48600 1820 849 25.1 8.7 11000 6600		45 523 32 64 994 44100 1460 1360 16.9 4.1 9350 4740	37 436 41 55 946 46000 1660 587 18.0 7.9 10400 4540

(ZA) ASH

DILUTI	B NUMBER: ION FACTOR: IPTION: :	ZA-AH-001 ASH MG/KG	ZA-AH-002 ASH MG/KG	ZA-AH-003 ASH MG/KG	ZA-AH-003D Ash	ZA-AH-004 ASH MG/KG	ZA-AH-005 ASH MG/KG
	·						
*** GE	BOCHEMICAL PARAMETERS ***						
PP	CAS NO COMPOUND						
	Hq	11.83	11.85	11.79		11.80	11.68
	MOISTURE CONTENT %	0.9	1.9	1.6		1.1	1.7
	TOC	18100	22000	11400		23400	35600
	TOTAL SOLUBLE SOLIDS	52400	4980 0	50400		46500	48400
	AMMONIA	4.47	2.89	5. 98		11.5	5.98
	NITRATE	2.86	2.29	2.22		2.54	4.23
	ORTHO PHOSPHATE	<0.05	<0.05	<0.05		<0. 0 5	<0.05
_	TOTAL ALKALINITY	7540	8000	7730		8100	8050
7	CHLORIDE	18300	17800	23700		19100	16300
Ó	SULFATE	5020	4800	6100		4620	3770
	ALLMINUM OXIDE X	8.52	9.37	9.0		9.23	9.85
	CALCIUM OXIDE X	20.5	20.3	22.2		15.1	18.4
	MAGNESIUM OXIDE %	1.38	1.33	. 1.31		1.50	1.21
	POTASSIUM MONOXIDE %	1.20	1.10	1.24		1.20	1.15
	SILICON DIOXIDE X	22.4	22.2	21.9		27.3	43.8

(ZB) ASH

SAMPLE NUMBER: DILUTION FACTOR: DESCRIPTION: UNITS:		ZB-AH-001	ZB AH-002	ZB - AH - 003	ZB AH-004	ZB-AH-005	
		ASH UG/KG	ASH	ASH	ASH	ASH	
***	BASE/NEUTRA	ALS ***					
PP	CAS NO	COMPOUND					
66B	117-81-7	BIS(2-ETHYLHEXYL)PHTHALATE	810JB	NA	NA	NA	NA

4

(ZB) ASH

SAMPLE NUMBER: ZB-AH-001 ZB AH-002 ZB AH -003 ZB-AH-004 ZB AH-005 DILUTION FACTOR: DESCRIPTION: ASH ASH ASH ASH ASH UNITS: UG/KG

*** ACIDS ***

PP CAS NO COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

80

SAMPLE NUMBER: DILUTION FACTOR:	ZB AH 001	ZB- AH 002	ZB AH-003	ZB AH 004	ZB-AH 005
DESCRIPTION: UNITE:	ASH	ASH	ASH	HCA	ASH
2378 TCDD	24				
TOTAL TCDD	375				
2378 TCDF	617				
TOTAL TCDF	4338				
12378 PeCDD	118				
TOTAL PeCDD	877				
12378 PeCDF	194				
23478 PeCDF	162				
TOTAL PeCDF	1883				
123478 HxCDD	40				
123678 HxCDD	34				
123789 HxCDD	79				
TOTAL HxCDD	495				
123478 HxCDF	336				
123678 HxCDF	524				
123789 HxCDF	127				
234678 HxCDF	54				
TOTAL HxCDF	1980				
1234678 HpCDD	3 19				
TOTAL H _P CDD	607				
1234678 HpCDF	539				
1234789 HpCDF	48				
TOTAL HPCDF	784				
OCDD	544				
OCDF	243				

(ZB) ASH

	SAMPLE NUMP DILUTION FA		ZB AH 001	ZR AH 002	ZB AH 003	ZB-AH 004	ZB AH 005
	DESCRIPTION UNITS:		ASH MG/KG	ASH MG/KG	ASH MG/KG	ASH HG/KG	ASH Mg/kg
	*** INORGAN	*** INORGANICS ***					
	PP CAS	NO COMPOUND					
	3	ARSENIC	28	45	31	56	54
	4	BARIUM	484	322	1000	260	283
	6	CADHIUM	52	152	64	57	58
	8	CHROMIUM	53	74	67	118	65
	10	OOPPER .	9330	1370	674	842	4440
	11 12	IRON LEAD	18800	19300	13600	21500	22200
	14	MANGANESE	1070 508	1630	1490	1420	1740
•	15	MERCURY	8.2	559 11	622 7.7	846	515
•	18	SELENIUM	5.7	11	1.1	8.0	12
•	19	SILVER	6.9	9.4	6.0	10	5.4
	20	SODIUM	8200	9210	8940	9810	10600
	24	ZINC	8580	6480	4360	15800	6450

<u>ም</u>

(ZB) ASH

SAMPLE NUMBER: DILUTION FACTOR: DESCRIPTION: UNITS:		ZB-AH -001	ZB-AH 002	ZB AH-003	ZB-AH-004 ASH MG/KG	2B-AH-005 ASH MG/KG	
		ASH MG/KG	ASH MG/KG	ASH MG/KG			
*** GI	ROCHEMI CA	L PARAMETERS ***					
PP	CAS NO	COMPOUND					
		Hq	11.48	10.91	11.49	11.59	11.67
		MOISTURE CONTENT %	4.5	5.1	2.7	3.8	8.8
		TOC	14600	29600	22800	29400	17000
		TOTAL SOLUBLE SOLIDS	36700	65800	44000	45300	55300
		AM A	3.69	10.6	3.93	4.85	4.76
		NITRATE	2.65	2.75	1.45	2.09	2.67
		ORTHO PHOSPHATE	<0.05	<0.05	<0.05	<0.05	<0.05
		TOTAL ALKALINITY	4520	1590	5150	66 50	6320
ф	•	CHLORIDE	18600	44200	19500	28000	31400
÷		SULFATE	963	764	3130	2440	1340
11		ALUMINUM OXIDE %	8.46	10.3	9.35	9.26	7.39
		CALCIUM OXIDE *	19.4	22.3	21.2	20.6	25.7
		MAGNESIUM OXIDE %	1.40	1.62	1.45	1.54	1.19
		POTASSIUM MONOXIDE %	0.941	0.827	0.938	0.912	0.866
		SILICON DIOXIDE X	28.9	22.1	29.4	28.2	19.0

(ZC) ASH

SAMPLE NUMBER: DILUTION FACTOR: DESCRIPTION: UNITS:		2C-AH-001	ZC AH-002	ZC- AH- 003	2C-AH 004	ZC-AH-005	
		ASH	A SH	ASH UG/KG	ASH	ASH	
***	BASE/NEUTRA	\LS ***					
PP	CAS NO	COMPOUND			•		
66B 68B	117-81-7 84-74-2	BIS(2-ETHYLHEXYL)PHTHALATE DI-N-BUTYL PHTHALATE	NA NA	AH AH	310JB 400JB	NA NA	NA NA

27-4

(ZC) ASH

SAMPLE NUMBER:	ZC AH-001	ZC AH 002	ZC AH 003	ZC AH-004	ZC-AH-005
DIBUTION FACTOR: DESCRIPTION:	ASH	ASH	ASH	ASH	ASH
UNITS:			UG/KG		

*** ACIDS ***

PP CAS NO COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

<u>F</u>

(ZC) ASH

SAMPLE NUMBER: DILUTION FACTOR:		ZC-AH-001	ZC-AH-002	ZC-AH-003	ZC -AH -004	2C AH-005
DESCRIPTION: UNITS:		ASH	ASH	ASH	ASH	ASH
	2378 TCDD			16		
	TOTAL TCDD			297		
	2378 TCDF TOTAL TCDF			236 1444		
	12378 PeCDD			71		
	TOTAL PeCDD			1122		
	12378 PeCDF			64		
	23478 PeCDF			56		
	TOTAL PeCDF			727		
	123478 HxCDD			66		
	123678 HxCDD			90		
	123789 HxCDD			120		
	TOTAL HxCDD			1201 218		
	123478 HxCDF 123678 HxCDF			279		
	123789 HxCDF			193		
	234678 HxCDF			70		
	TOTAL HxCDF			1395		
	1234678 HpCDD			1849		
	TOTAL HPCDD			3360		
	1234678 HpCDF			653		
	1234789 HpCDF			83 990		
	TOTAL HpCDF			69 0 6		
	OCDD			563		
	OCDF			300		

	: AMPLE NUMBER: DILUTION FACTOR).	ZC: AH 001	ZC AH 002	ZC AH 003	ZC AH-004	ZC AH-005
	DESCRIPTION: UNITS:		ASH MG/KG	ASH MG/KG	ASII MG/KG	ASH MG/KG	ASH MG/KG
	*** INORGANICS	***					
	PP CAS NO	COMPOUND					
	3	ARSENIC	31	36	30	28	29
	4 6 8	BARIUM CADMIUM CHROMIUM	213 42 51	193 49 53	248 52 57	314 47	331 48
	10 11	COPPER IRON	1150 21300	524 20000	4470 23500	45 758 22100	48 547 25000
	12 14	LEAD MANGANESE	2380 1200	2580 826	1760 898	2630 565	1710 518
B- 15	15 19	MERCURY SILVER	1.8 8.8	1.1 12	2.3 5.8	3.2 5.6	1.7 6.0
U I	20 2 4	SODIUM ZINC	8630 4 660	8940 7170	7940 43 9 0	8040 4180	7370 4 110

(ZC) ASH

SAMPLE NUM		ZC-AH-001	ZC-AH- 002	ZC-AH-003	ZC-AH-004	2C-AH-005
DILUTION FACTOR: DBSCRIPTION: UNITS:		ASH Mg/kg	ASH MG/KG	ASH MG/KG	ASH MG/KG	ASH MG/KG
*** GBOCHE	MICAL PARAMETERS ***					
PP CAS	NO COMPOUND		•			
	Hq	11.75	11.82	11.58	11.82	11.74
	MOISTURE CONTENT %	1.0	1.5	2.0	0.6	1.4
	TOC	9020	12300	14100	9830	17800
	TOTAL SOLUBLE SOLIDS	2460 0	22000	23600	23000	26100
	AMMONIA	1.49	1.86	1.40	1.33	2.10
	NITRATE	6. 4 6	0.11	0.09	0.14	0.28
	ORTHO PHOSPHATE	< 0.05	<0.05	<0.05	<0.05	< 0.05
_	TOTAL ALKALINITY	2690	2970	1210	2840	3040
\$	CHLORIDE	5180	3870	4180	5860	5280
16	SULFATE	7870	5900	7400	9060	10300
51	ALUMINUM OXIDE %	8.64	7.98	6.67	6.65	5.93
	CALCIUM OXIDE %	9.7	11.4	10.8	10.3	10.6
	MAGNESIUM OXIDE %	1.02	1.17	1.3	1.08	1.11
	POTASSIUM MONOXIDE %	0.875	1.07	1.04	1.03	0.992
	SILICON DIOXIDE X	62.9	53.8	48.4	57.0	49.5

(ZD) ASH

DILL	PLE NUMBER: PTION FACTO PRIPTION: PS:		ZD-AH-001 ASH	ZD-AH 002 ASH	ZD-AH-003 1 ASH UG/KG	ZD-AH 004 ASH	ZD-AH-005 ASH
*** PP	BASE/NEUTR	ALS *** COMPOUND					
66B 68B 39B 81B	117-81-7 84-74-2 206-44-0 85-01-8	BIS(2-ETHYLHEXYL)PHTHALATE DI-N-BUTYL PHTHALATE FLUORANTHENE PHENANTHRENE	NA NA NA NA	NA NA NA NA	390JB 270J 170J 310J	NA NA NA NA	NA AA NA AA

B-17

(ZD) ASH

SAMPLE NUMBER: ZD AH-001 ZD AH 002 2D- AH-003 -ZD-AH-004 ZD-AH -005 DILUTION FACTOR: ASH ASH DESCRIPTION: ASH ASH ASH UNITS: UG/KG - -

*** ACIDS ***

PP CAS NO COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

B-18

(ZD) ASH

SAMPLE NUMBER: DILUTION FACTOR:	2D-AH 001	ZD-AH-002	ZI) AH-003	ZD AH- 004	2D-AH-005
DESCRIPTION: UNITS:	ASH	ASH	ASH	HZA	ASH
2378 TCDD TOTAL TCDD 2378 TCDF TOTAL TCDF 12378 PeCDD TOTAL PeCDD 12378 PeCDF 23478 PeCDF 23478 PeCDF 123678 HxCDD 123678 HxCDD 123678 HxCDD 123678 HxCDF 123678 HxCDF 123678 HxCDF 123678 HxCDF 123678 HxCDF 12368 HxCDF 12369 HxCDF 12369 HxCDF 12369 HxCDF 12369 HxCDF 12369 HxCDF 12369 HxCDF			35 576 626 3259 ND 1910 151 171 2058 86 148 194 1281 654 660 479 124 3603 1555 2939		
1234678 HrCDF 1234789 HpCDF TOTAL HpCDF OCDD OCDF			1842 119 2345 4519 893		

Dioxin Results are in pg/g

Note: Only 1 Ash Sample From This Facility Was Analyzed For Dioxins.

	SAMPLE NUMBER: DILUTION FACTOR		2D-AH 001	ZD AH 002	ZD AH-003	ZD- AR-004	ZD AH-005
	DESCRIPTION: UNITS:	••	ASH MG/KG	ASH MG≠KG	ASH MG/KG	ASII MG/KG	ASH MG/KG
	*** INORGANICS	***					
	PP CAS NO	COMPOUND					
	3	ARSENIC	30	54	43	44	36
	4	BARIUM	411	440	545	434	432
	6	CADHIUM	51	66	69	42	39
	8	CHROMIUM	87	199	70	54	52
	10	COPPER	1050	960	1490	959	1800
	11	IRON	34600	37100	27400	31100	22900
	12	LEAD	4090	5040	2980	2860	22400
m	14	MANGANESE	574	609	618	965	636
ም	15	HERCURY	0.91	1.5	2.1	0.55	0.97
8	18	SELENIUM	2.9		3.1	3.9	3.2
•	19	SILVER	7.5	9.4	11	6.3	7.6
	20	SODIUM	6050	6480	6500	6100	5890
	24	ZINC	5660	6560	8000	4930	4260

(ZD) ASH

	E NUMBER:	D.	ZD- AH -001	ZD-AH-002	ZD-AH-003	ZD-AH-004	ZD-AH-005
DILUTION FACTOR: DBSCRIPTION: UNITS:		ASH MG/KG	ASH MG/KG	ASH MG/KG	ASH Mg/kg	ASH MG/KG	
*** G	BOCHEMI CA	L PARAMETERS ***					
PP	CAS NO	COMPOUND					
B-21		pH MOISTURE CONTENT % TOC TOTAL SOLUBLE SOLIDS ANNONIA NITRATE ORTHO PHOSPHATE TOTAL ALKALINITY CHLORIDE SULFATE ALIMINUM OXIDE % MAGNESIUM OXIDE % POTASSIUM MONOXIDE %	10.69 0.4 25800 6850 1.00 1.59 <0.05 852 1270 2220 12 11 2.0	10.60 1.6 30000 13200 1.04 1.14 0.05 558 2190 5580 12 11	10.51 1.2 52100 6440 1.02 0.44 0.05 786 766 1680 13 10 2.2 0.79	10.36 1.2 11400 8740 0.90 0.96 0.05 852 854 2360 9.9 12 2.2	10.46 0.9 53200 7150 1.08 0.72 0.05 922 869 1800 11 11 1.8 0.98
		POTASSIUM MONOXIDE % SILICON DIOXIDE %	1.4 35	1.1 37	0.79 35	1.1 32	0.98 36

(ZE) ASH

SAMPLE NUMBER: ZE-AH-001 ZE-AH-002 ZE AH-003 ZE AH-004 ZE-AH-005
DILUTION FACTOR:
DESCRIPTION: ASH ASH ASH ASH
UNITS:

*** BASE/NEUTRALS ***

PP CAS NO COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

B-22

(ZE) ASH

SAMPLE NUMBER: ZE-AH-001 ZE AH-002 ZE-AH-003 ZE-AH-004 ZE-AH-005
DILUTION FACTOR:
DESCRIPTION: ASH ASH ASH ASH
UNITS:

*** ACIDS ***

PP CAS NO COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

8-23

(ZE) ASH

	MPLE NUMBER: LUTION FACTOR:	ZE-AH-001	ZE-AH-002	ZE-AH-003	ZE-AH-004	ZE-AH-005
D		ASH	ASH	ASH	ASH	ASH
***	* PESTICIDES ***					
	P CAS NO COMPOUND					
	DICHLOROBIPHENYL	NA	NA	98	NA	NA

	SAMELE HOUBER: DILUTION FACTOR:	ZE-AH-001	ZE-AH-002	ZE-AH-003	ZE-AH-004	ZE-AH-005
	DESCRIPTION: UNITS:	ASH	ASH	ASH	ASH	ASH
B-25	2378 TCDD TOTAL TCDD 2378 TCDF TOTAL TCDF 12378 PeCDD TOTAL PeCDD 12378 PeCDF 23478 PeCDF 23478 PeCDF 123478 HxCDD 123678 HxCDD 123678 HxCDD 123478 HxCDD 123478 HxCDF 123678 HxCDF 123678 HxCDF 123678 HxCDF 123678 HxCDF 123789 HxCDF 123789 HxCDF 123789 HxCDF 123789 HxCDF 1234678 HpCDD TOTAL HpCDD 1234678 HpCDD TOTAL HpCDD 1234789 HpCDF			10 130 176 1312 35 283 52 43 543 11 11 22 148 95 134 45 20 574 122 122 155 16 215		
	OCDF			59		

Dioxin Results are in pg/g

Note: Only 1 Ash Sample From This Facility Was Analyzed For Dioxins.

(ZE) ASH

SAMPLE NO		ZE-AH 001	ZE-AH-002	ZE-AH- 003	ZE AH 004	ZE - AH- 005
DILUTION FACTOR: DESCRIPTION: UNITS:		ASH ASH MG/KG MG/KG		ASH HG/KG	ASH MG/KG	ASH MG/KG
*** INORG	ANICS ***					
PP CA	S NO COMPOUND					
3	ARSENIC	16	17	19	15	20
4	BARIUM	407	491	505	391	792
6	CADMIUM	34	35	38	37	18
8	CHROMIUM	665	71	87	67	7 0
10	COPPER	990	1300	1820	1500	930
11	IRON	34600	43000	45100	40200	33900
12	LEAD	1550	1380	1170	1170	1600
14	HANGANESE	593	640	531	598	581
15	MERCURY	7.6	4.7	13	4.8	3.2
18	SELENIUM				4.7	
19	SILVER	4.4	5.6	5.4	13	11
20	SODIUM Zina	6750	6410	7500	5880	7700
24	ZINC	8280	3530	3600	3400	2120

(ZE) ASH

SAMPLE N		ZE- AH-001	ZE-AH-002	ZE-AH-003	ZR-AH-004	ZE-AH-005
DILUTION DESCRIPT UNITS:		ASH HG/KG	ASH MG/KG	ASH Mg/kg	ASH MG/KG	ASH MG/KG
*** GEOCI	HEMICAL PARAMETERS ***					
PP C	AS NO COMPOUND					
	pH	11.61	11.69	11.71	11.40	11.82
	HOISTURE CONTENT %	2.5	1.9	1.4	1.3	0.6
	TOC	34000	8920	4060	7290	43300
	TOTAL SOLUBLE SOLIDS	22900	25900	35500	26100	11200
	A M ONIA NITRATE	5.05 2.90	3.64 3.19	8.69 4.51	7.32 4.10	2.77
	ORTHO PHOSPHATE	2.50 <0.05	<0.05	<0.05	4.10 <0.05	4.23 <0.05
-	TOTAL ALKALINITY	3490	4710	2990	7310	759 0
P	CHLORIDE	9220	10900	14100	10400	75 50
27	SULFATE	2190	1500	2790	2530	2270
	ALUMINUM OXIDE %	11	9.7	10	10	10
	CALCIUM OXIDE %	1:	14	13	14	13
	MAGNESIUM OXIDE X	2 0	1.6	1.9	1.8	1.6
	POTASSIUM MONOXIDE %	1.2	1.2	1.4	0.95	1.0
	SILICON DIOXIDE %	31	31	35	30	32

APPENDIX C

LEACHATE RESULTS

(FACILITIES ZB, ZC, ZD, ZE)

SAMPLE NUMBER:
DESCRIPTION FACTOR:
UNITS:

*** BASE/NEUTRALS ***

PP CAS NO COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

?

SAMPLE NUMBER:
DISAMPLE NUMBER:
DESCRIPTION:
DESCRIPTION:
LEACHATE
LEACHATE

*** ACIDS ***

PP CAS NO COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

C-2

SAMPLE NUMBE		ZB LF 001	ZB LE 002	
ORSCRIPTION: UNITS:		LRACHATE UG/L	LEACHATE UG/L	
+++ INORGANI	CS ***			
PP CAS N	O COMPOUND			
l	HUNIHUJA		19	
1	BARIUM	9220	64	
3	CAUHIUM	4.0		
/	CALCIUM	B 390000	112000	
10	COPPER	8.8	5 4	
11	1 RON	840		
13	Magnesium	17300	15700	
14	Manganese	17600	6 7	
17	POTASSIUM	1620000	10900	
20	SODIUM	2450000	14000	
:4	ZINC	8.3	7.5	
	SILICON	3150	3590	

SAMPLE NUMBER: DILITION FACTOR: DESCRIPTION: UNITS:		2B LE 001 LEACHATE MG/L	ZB-LE-002 LEACHATE MG/L
*** GBOCHEH	ICAL PARAMETERS ***		
PP CAS	NO COMPOUND		
	TOC	30.0	10.6
	AMMONIA	4.18	< 0.05
	NITRATE	0.45	0.01
	ORTHO PHOSPHATE	0.01	<0.01
	TOTAL ALKALINITY	65.0	154
	SULFATE	171	197
	TDS	40600	535
	FIBLD PH	6.5	6.5
	SPECIFIC CONDUCTIVITY UNHOS/CM	>10000	880
	TEMPERATURE (C)	9	5

ទ

(ZC) LRACHATE

SAMPLE NUMBER: · 2C-LE-001 2C-LE-002 DILUTION FACTOR:

DESCRIPTION: LEACHATE LEACHATE UNITS:

*** BASE/NEUTRALS ***

PP CAS NO COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

S

SAMPLE NUMBER: · ZC LE 001 ZC LE 002 DELUTION FACTOR:

DESCRIPTION: LEACHATE LEACHATE UNITS:

*** ACIDS ***

PP CAS NO COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

5

SAMPLE NUMBER: DILUTION FACTOR: USCRIPTION: UNITS:		ZC LE 001	ZC LE 002 LEACHATE UG/L	
		LEACHATE UG/L		
+++ INORG	ANICS ***			
PP CA	S NO COMPOUND			
4	BARIUM	7.8	8.0	
7	CALCIUM	64600	65800	
11	1RON	108	115	
12	LEAD		34	
13	MAGNESTUM	22600	23000	
14	MANGANESE	493	501	
17	POTASSIUM	79700	81200	
20	SODIUM	188000	191000	
24	ZINC	13	9 0	
	SILICON	4570	4840	

SAMPLE NUMBER: DILUTION FACTOR: DESCRIPTION: UNITS:		:	ZC LR-001 LEACHATE MG/L	ZC LE-002 Leachate Mg/L
***	GEOCHEMICAL	PARAMETERS ***		
PP	CAS NO	COMPOUND		
		тос	47.2	49 .3
		APPIONIA	68.2	77.4
		NITRATE	0.40	0.41
		ORTHO PHOSPHATE	<0.01	<0.01
		TOTAL ALKALINITY	560	566
		SULPATE	14.5	14.4
		TDS	924	932
		FIELD PH	6.9	
9		SPECIFIC CONDUCTIVITY UNHOS/CM	1800	
d	b	TEMPERATURE (C)	21	

SAMPLE NUMBER: . ZD LE-001 ZD-LE 002 ZD-LE 003
DILUTION FACTOR:
DESCRIPTION: LEACHATE LEACHATE LEACHATE
UNITS:

*** BASE/NEUTRALS ***

PP CAS NO COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

5

SAMPLE NUMBER: . ZD-LE-001 ZD-LE 002 ZD LE-003
DILITION FACTOR:
DESCRIPTION: LEACHATE LEACHATE LEACHATE

DESCRIPTION: LEACHAIR LEACHAIR LEACHAIR LEACHAIR LEACHAIR LEACHAIR LEACHAIR

*** ACIDS ***

PP CAS NO COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

ر- <u>۲</u>۵

SAMPLE NUMBER: DILUTION FACTOR: DESCRIPTION: UNITS:		ZD- LE 001	ZD LE 002	ZD LE-003
		LEACHATE UG/L	LEACHATE UG/L	LRACHATE UG/L
*** INORG	SANICS ***			
PP CA	AS NO COMPOUND			
4	BARIUM	40	18	38
7	CALCIUM	477000	386000	470000
10	COPPER	12	4.6	7.3
11	IRON -	187	523	211
13	MAGNESIUM	345000	367000	340000
14	MANGANESE	795	718	857
17	POTASSIUM	636 000	229000	632000
20	SODIUM	2480000	1340000	2580000
24	ZINC	8.7		5.2
	SILICON	15300	8760	14900

SAMPLE NUMBER: DILUTION FACTOR: DESCRIPTION: UNITS:		ZD-LE-001	ZD LE 002	ZD- LB-003	
		LEACHATE MG/L	LEACHATE MG/L	LEACHATE MG/L	
*** (GBOCHEM I CAI	L PARAMETERS ***			
PP	CAS NO	COMPOUND			
		тос	28.8	30.7	Na
		AMMONIA	4.38	28.4	NA
		NITRATE	0.04	<0.01	<0.01
		ORTHO PHOSPHATE	0.24	0.17	0.22
		TOTAL ALKALINITY	709	744	711
		SULPATE	4920	4140	5080
		TDS A.	12700	8030	13000
		PIBLD PH *			
Ü		SPECIFIC CONDUCTIVITY UNHOS/CH	→ 100 00	9400	>10000
		TEMPERATURE (C)	30	19	30
N					

* pH meter not working properly.

(ZE) LENCHAUL

SAMPLE NUMBER: DITUTION FACTOR:	7F - 1F - 001 1	/F-1F-002	
DESCRIPTION: UNITS:	LEACHATE UG/L	LEACHATE UG/L	
*** BASE/NEUTRALS ***			
PP CAS NO COMPOUND			
65-85-0 BENZOIC ACED	73	. 52	

*** ACTOS ***

PP CAS NO COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

SAMPLE NUMBER: DELUTION FACTOR: DESCRIPTION: UNITS:		7E LE 001	ZE LE-002 LEACHATE UG/L	
		LEACHATE UG/L		
*** INORG	SANICS ***			
	AS NO COMPOUND			
1	BARIUM	3080	2970	
7	CALCIUM	5670000	5570000	
11	IRON	10500	7480	
13	MAGNESIUM	14800	15000	
14	MANGANESE	17100	18500	
17	POTASSIUM	1430000	1450000	
20	SODIUM	2430000	2470000	
24	Z.I.NC	27	70	
	A I NC	£ •		

SAMPLE NUMBER: DILUTION FACTOR: DESCRIPTION: UNITS:		7E-LF-001	/E-LF-002	
		LEACHATE MG/I	LEACHAIF MG/L	
*** GEOCHEMICAL	PARAMETERS ***			
PP CAS NO	COMPOUND			
	TOC	28.9	25.5	
	AMMONIA	9.78	11.4	
	NITRATE	0.01	0.01	
	ORTHO PHOSPHATE	<0.01	<0.01	
	TOTAL ALKALINITY	95.2	117	
	SULFATE	312	309	
	TDS	26300	25900	
	FIELD PH	5.2		
•	SPECIFIC CONDUCTIVITY UMHOS/CM	>10000		
)	TEMPERATURE (C)	23		

APPENDIX D

ASH EXTRACT RESULTS

130

65-85-0 BENZOIC ACID

NO PARAMETERS DETECTED FOR THIS CATEGORY

Т	
ù	

SAMPLE M		ZA AR 004CO 5	74 AII 0011)111	20 74 ME 0011 PTC	ON ZA ME OOTSME	ZA ME 9011CL1	91-7A-ME-0011CLP2
DULUTION DESCRIPTI		ASILIATRACE	VSE EXTRACT	ASR EXTRACT	ASH TATRACT	ASH FATRACE	ASU EXTRACT
PN115:		16/1	156/1	16/1	FG/1	16/1	DG/1,
			٠				*******
*** 17086	JANICS ***						
PP CA	AS NO COMPOUND						
1	BARTUN	260	527	155	188	616	700
6	CADMIUM	108	1.6	663			136
R	CHROPHUM		6 , R	17	10		12
10	COPPLR	119	181	1110	148	101	9.1
11	1 RON	10	61	21700		16	75100
12	LLAD	10	2200	6110	2200		110
11	MANGANESE	2260	6.1	10 10		1. E	5410
15	MERCURY	1.0		55	0.81	0.13	
18	SELENTUM				6.1		
20	SODITM	108000	130000	126000	108000	1520000	1 10000
21	/ NC	28200	892	71100	697	6"	76000

•

SAMPLE AU		74-4H-001C02 - 74 AH-001D1H20-74 AH-0011P10\-74 AH-001SAR - 74 AH-001TC1P1-74-AH-0011C1					
DITCHON DESCRIPTE UNITS.		ASH EXTRACT	ASH FATRACI	ASH FATRACT	ASH TATRACT	ASHE EXTRACT	ASH FAIRACT
*** GFOCH	EMICAL PARAMETERS ***						
PP CA	S NO COMPOUND						
, <u></u>							
	10C	21.2	17.1	2500	15.0	2140	2230
	AMMONIA	0.33	0.21	0.34	0.89	0.31	0.20
	NITRATE	0.15	0.12	0.12	3.11	0.13	0.10
	ORTHO PHOSPHATE	<0.01	<0.01	0.34	<0.01	<0.02	<0.02
	TOTAL ALKALINITY	1240	908	1450	856	2390	2130
	CHLORIDE	773	950	854	810	971	1030
	SULFATE	896	516	1120	507	552	1110
	ALUMINUM OXIDE %	251	195	18100	166	3100	112
0	CALCIUM OXIDE %	693000	681000	3030000	1100000	669000	2930000
Υ	MAGNESIUM OλIDE %	32000	121	58900	18	400	66900
4	POTASSIUM MONOVIDE %	114000	111000	128000	121000	163000	142000
	SHITCON DIOVIDE X	62 100	715	98700	875	5520	6320
	108	3920	3220	9720	2970	8820	10200

•

(ZAOO2) ASH FATRACT

SAMPLE NUMBER: /A-AH-002CO2 /A-AH-002DIH2O /A-AH-002FPTOX /A-AH-002SAR /A-AH-002TCLP1 /A-AH-002TCLP2
DILUTION FACTOR:

DESCRIPTION: ASH EXTRACT
UNITS:

*** BASE/NEUTRALS ***

PP CAS NO COMPOUND

(7A002) ASH EXTRACT

SAMPLE NUMBER: DILUTION FACTOR:

DESCRIPTION. UNITS:

ASH EXTRACT — ASH EXTRACT — ASH EXTRACT — ASH EXTRACT — ASH EXTRACT

*** ACIDS ***

PP CAS NO

COMPOUND

SAMPLE NUMBER DILUTION FACT		7A AH 002CO2	ZA AH 002D1H	20 7A AH 002FP1	OX ZA AH OO2SAR	ZA AR 0021CL	P1 /A AH-002TCLP2
DESCRIPTION: UNITS:		ASH EVHGACT UG/T	ASH FXTRACT UG/L	ASH EVERACT UGZL	ASH EXTRACT UG/I	ASR EXTRACT UG/I	ASH FXTRACT UG/L
*** INORGANIC	S ***		//				
PP CAS NO	COMPOUND						
1	BARLUM	268	157	177	16.1	651	643
6	CADMIUM	8.3	7.6	750			
H	CHROMEUM	4.2	10	6.0	9.2		
10	COPPER	136	274	790	291	301	213
11	1 RON	301	63	14		6.6	20
12	LEAD		1960	94	2670	360	
11	MANGANESE	1930	5.0	2750			3.8
15	MERCURY	155		203		0.21	0.56
18	SELENIUM				23		
20	SODIUM	152000	174000	150000	160000	1490000	228000
21	21NC	22700	810	37800	814	106	31

(ZAOO2) ASH EXTRACT

SAMPLE NU		/A-AH-002c02	7A-AH 002D1H20	7A-AH 002FPT03	ZA AH-002SAR	ZA -AH -0021C1P1	ZA-AH-002TCLP2
DILUTION DESCRIPTION UNITS:		ASH EXTRACT	ASH FATRACI	ASH EXTRACT	ASH FXTRACT	ASH FXTRACT	ASH FATRACT
	EMICAL PARAMETERS ***						
PP CA	S NO COMPOUND						
	TOC	55.4	33.9	2490	33.4	2330	2240
	AMMON1 A	0.26	0.21	0.27	1.00	0.22	0.28
	NITRATE	0.19	0.14	0.14	3.04	0.14	0.14
	ORTHO PHOSPHATE	0.06	<0.01	<0.01	<0.01	<0.01	<0.01
	TOTAL ALKALINITY	1630	1590	2630	1710	3060	2390
	CHLOR1 DE	1010	1170	1020	1200	1080	1410
	SULFATE	856	603	1190	627	567	617
	ALUMINUM OXIDE %	302	<38	<20	<28	238	1850
	CALCIUM OXIDE %	697000	699000	2330000	1800000	2220000	3240000
P	MAGNESIUM OXIDE %	39400	124	27300	12	74	623
&	POTASSIUM MONOXIDE %	143000	168000	104000	160000	179000	224000
-	SILICON DIOXIDE X	71800	616	29000	364	2850	5950
	ГDS	1860	1220	11800	4120	9620	10900

(ZAOO3) ASH EXTRACT

*** BASE/NEUTRALS ***

PP CAS NO COMPOUND

(ZAOO3) ASIL FATRACI

SAMPLE NUMBER: ZA-AH-003CO2 ZA-AH-003D1H2O ZA-AH-003SAR ZA-AH-003TCLP2 DEBUTON FACTOR:

DESCRIPTION: ASH EXTRACT A

*** ACIDS ***

PP CAS NO COMPOUND

SAMPLE N	IUMBFR: - FACTOR:	ZA AH 003GO2	74 AH 003D1H2	O ZA-AH 003FP103	Z ZA AH 003SAR	7A AH 0031CLP]	ZA-AH-003TCLP2
DESCRIPT UNLES:		ASH EXTRACT UG/I	ASM EXTRACT UG/L	ASH EXTRACT UG/L	ASH EXTRACT UG/L	ASH TATRACT UGZI.	ASH_EXTRAC1 UG/L
*** I NOR	GANICS ***	-			•		
PP C	AS NO COMPOUND						
3	ARSENIC			31			
1	BARTUM	218	557	300	518	595	809
6	CADM I UM	85		1000			695
H	CERROMEUM		9.8	72			13
10	COPPER	310	160	1380	128	163	33
11	LRON	219	37	12000		15	41400
12	LFAD		3410	£1.300	39 1 0	996	81
1.1	MANGANESF	2260		3190			3960
15	MERCURY	21		61	0.20		0.88
20	SODIUM	123000	139000	108000	116000	1520000	123000
21	ZINC	34400	1310	75900	1290	377	76400

(ZAOO3) ASH EXTRACT

SAMPLE NUMBER		ZA~AH-003cO2	ZA-AH 003D1H20	- 7А-АН-003ЕР1Оλ	/A-AH-003SAR	ZA-AH-003fCFP1	7A-AH-003TCLP2
DITUTION FACTOR: DESCRIPTION: UNITS:		ASII FATRACT	ASH FXTRACT	ASH FXTRACT	ASH EXTRACT	ASH FATRACE	ASH EXTRACT

*** GEOCHEMIC	AL PARAMETERS ***						
PP CAS NO	COMPOUND						
				•			
	TOC	23.9	15.3	2460	12.8	2010	2250
	AMMONI A	0.35	0.28	0.35	0.90	0.38	0.22
	NITRAIF	0.13	0.12	0.11	3.20	0.14	0.07
	ORTHO PHOSPHATE	0.02	<0.01	0.94	<0.01	<0.02	<0.01
	TOTAL ALKALINITY	1560	F120	1550	1100	2500	2340
	CHLORIDE	1040	1080	890	1030	1250	965
	SULFAIL	1050	552	1320	530	527	F100
	ALUMINUM OXIDE %	300	71	29300	73	223	1580
7	CALCIUM OXIDE %	694000	695000	3050000	1340000	2380000	3070000
Ė	MAGNESTUM OXIDE %	35000	57	56000	18	110	62300
7	POTASSIUM MONOXIDE %	136000	164000	119000	140000	210000	133000
	STLICON DIOXIDE %	36600	1640	69400	490	2790	3780
	rds -	4890	3620	9620	3630	9420	11000

(ZAOO4) ASH EXTRACT

/A-AH-001CO2 /A-AH-001D1H2O /A-AH-004EPTOX /A-AH-001SAR /A-AH-004EC1P1 /A-AH-004TC1P2

ASH FATRACT - ASH FATRACT - ASH FATRACT - ASH FATRACT - ASH FATRACT - ASH FATRACT

SAMPLE NUMBER: DITUTION FACTOR:

DESCRIPTION:

UNLIS:

*** BASE/NFUTRALS ***

PP CAS NO COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

P-13

(ZAOO1) ASH EXTRACT

SAMPLE NUMBER: DITUTION FACTOR. DESCRIPTION:

ZA-AH-004CO2 ZA-AH-004D1H2O ZA-AH-004FPTOX ZA-AH-004SAR ZA-AH-004TC1P1 ZA-AH-004TC1P2

UNITS:

ASH EXTRACT — ASH EXTRACT — ASH EXTRACT — ASH EXTRACT — ASH EXTRACT — ASH EXTRACT

*** ACIDS ***

PP CAS NO COMPOUND

SAMPLE NO	UMPAR:	ZA AH 001CO2	7A AII 00 IDER2	O ZA AH 0011P1C	OV ZA AREOUTSAR	- 7A AH 0011C1P1 7A-AH-004FCLP2	
BILULION	FACTOR:						
DESCREPTION:		ASIL EXTRACT	ASH TATRACT	ASH EXTRACT	ASH FATRACE	ASH FXTRACT	ASH EXTRACT
UNITS:		140/4	UG/1.	UG/L	UG/L	UG/L	UG/L
		-		- 4			
*** FNOR	GANICS ***						
PP C	AS NO COMPOUND						
1	BARTUM	282	548	302	548	592	149
6	CADMIUM	65		592			48
H	CHROMIUM		8.5	37	8.8		20
10	COPPER	268	477	2620	5.38	167	7.6
- 11	IRON	1.3	21	10800		12	49100
12	LEAD		2210	6390	2800		171
14	MANGANESE	2.390		3010	2.5		2660
15	MERCURY			24		3.8	
18	SELENIUM				8.0		
20	SODIUM	£11000	135000	108000	121000	1460000	71700
21	ZINC	32000	651	51800	1010	12	37700

(7A004) ASH EXTRACT

SAMPLE NUMBE		ZA - AH- 00 1CO2	ZA- 4H-00 1D1H	20 ZA-AH 001EP1	OX ZA-AH-001SAR	74 AH-0011C1	P1 /A AH-004FCLP2
DILUTION FAC DESCRIPTION: UNLLS:		ASH FATRACI	ASH FXTRACT	ASH FATRACI	ASH FXTRACI	ASH FATRACT	ASH EXTRACT
*** GEOCHEMI	CAL PARAMETERS ***						
PP CAS N	IO COMPOUND						
	FOC	34.9	26.2	2210	27.3	2100	2200
	AMMONIA	0.44	0.27	0.45	1.00	0.37	0.22
	NITRATE	0.16	0.13	0.20	3.25	0.11	0.16
	ORTHO PHOSPHATE	0.06	<0.01	0.13	<0.01	<0.02	(0.01
	TOTAL ALKALINITY	1600	910	1250	1060	2530	3350
	CHEORIDE	960	802	7 18	901	1020	686
	SULFATF	8.32	129	917	512	189	980
	ALUMINUM OXIDE %	179	146	16100	94	1170	798
7	CALCIUM OXIDE %	699000	684000	2500000	1190000	674000	692000
Ļ	MAGNESTUM OXIDE %	42800	50	50800	18	219	13500
6	POTASSIUM MONOXIDE %	131000	134000	10100	118000	157000	6.3.300
	SILICON DIOXIDE %	57000	1060	75300	877	4710	1360
	rus	4660	2890	8090	3270	9050	92.30

(7A005) ASH EXTRACT

SAMPLE NUMBER: /A-AH-005CO2 /A AH-005D1H2O ZA-AH-005EPTOX ZA-AH-005TCLP1 /A-AH-005TCLP2 DELUTION FACTOR:

DESCRIPTION: ASH EXTRACT ASH EXT

*** RASE/NEUTRALS ***

PP CAS NO COMPOUND

(ZAOO5) ASH EXTRACT

SAMPLE NUMBER: 7A-AH-005CO2 7A-AH-005D1H20 7A-AH-005EPTOX ZA-AH-005SAR 7A-AH-0054CLP1 7A-AH-0051CLP2
DEBURION FACTOR: ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT UNITS:

*** ACIDS ***

PP CAS NO COMPOUND

D-19

SAMPLE NUMBER: DILUTION FACTOR: DESCRIPTION: UNITS:		ZA AH 005CO2	ZA AH 005CO2 - ZA AH 005D1H2O ZA AH 005EPTON ZA AH 005SAR - ZA-AH 0051					
		ASD FYTRACT UG/T	ASH LXTRACT UG/L	ASIL EXTRACT UG/L	ASH FXTRACT OG/L	ASH EXTRACT UG/L	ASH EXTRACT UG/E	
*** I NORO	JANICS ***							
PP C/	AS NO COMPOUND							
4	BARTUM	257	520	398	561	505	798	
6	CADMITUM	63	6.9	677			455	
8	CHROMEUM	5. l	8.4	48	8.5		16	
10	COPPER	620	534	791	610	196	27	
11	IRON	168	115	9630		12	28800	
12	LEAD		3070	4450	1740	271	174	
14	MANGANESE	1540	20	2450	2.8		2920	
15	MERCURY	8.9		23			0.24	
18	SELFNIUM				7.1			
19	SILVER	16						
20	SODIUM	133000	137000	116000	150000	1450000	129000	
24	ZINC	2.3100	1070	54500	690	163	78500	

(ZAOO5) ASH ENTRACT

SAMPLE NUMBEDILUTION FAC DESCRIPTION: UNITS.	lok:	ZA-AH-005CO2 ASH FATRACT	ZA-AH-005D1H20 ASH FATRACT	ASH FYTRACT	ZA-AH-005SAR ASH FXTRACT	ZA-AH-005TCLP1 ASH EXTRACT	ZA-AH-005TCLP2 ASH EXTRACT
*** GEOCHEMI	CAL PARAMETERS ***						
PP CAS N	O COMPOUND						
	TOC AMMONIA NITRATE ORTHO PHOSPHATE TOTAL ALKALINITY CHIORIDE	64.2 0.21 0.30 0.09 1590	13.5 0.26 0.20 <0.01 1440 968	2520 0.40 0.21 0.47 2090	42.5 1.03 3.21 <0.01 1330	2310 0.34 0.18 <0.01 3050 1020	2400 <0.10 0.16 <0.01 2310 869
D-20	SULFATE ALUMINUM OXIDE % CALCIUM OXIDE % MAGNESIUM OXIDE % POTASSIUM MONOXIDE % SILICON DIOXIDE % TDS	958 258 697000 33500 139000 65100	550 81 698000 379 148000 694 3850	1130 12600 3580000 58800 154000 98700 11100	547 50 1620000 15 168000 561 4100	529 305 677000 92 143000 3600 10700	1080 180 3540000 55400 128000 81100

(ZBOO1) ASH EXTRACT

COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

PP CAS NO

(7BOOL) ASH EXTRACT

SAMPLE NUMBER: DILUTION FACTOR:

DESCRIPTION:

UNITS.

ZB-AH-001CO2 ZB-AH-001D1H2O ZB-AH-001FPTOX ZB-AH-001SAR ZB-AH-001TCLP1 ZB-AH-001TCLP2

ASH FATRACT ASH FATRACT ASH EXTRACT ASH EXTRACT ASH FATRACT ASH FATRACT

*** ACIDS ***

PP CAS NO

COMPOUND

(ZBOOL) ASH EVIRACT

SAMPLE NUMBER: DIEULION FACTOR:		AB- AH 001005	ZB-AH 001CO2 - ZB AH 001D1H2O ZB AH 001FP1OX ZB AH 001SAR - ZB AH 0011CLP1 ZB-AH					
	HTTON:	ASH EXTRACT UG/L	ASD EXTRACT UG/L	ASH FATRACT UG/L	ASH EXTRACT UG/L	ASH EXTRACT UG/L	ASH EXTRACT UG/L	
*** []	NORGANICS ***							
P P	CAS NO COMPOUND							
1	BARLUM	126	2590	182	3960	498	467	
6	CADMIUM	9.2		301			118	
10	COPPER	30	18	803	64	19	5.4	
H	1 RON						3.360	
12	LEAD		29	19				
11	MANGANESE	11		1790		5.8	2060	
15	MERCURY			0.73		0.25	0.37	
20	SODIUM	111000	123000	128000	1 38000	1110000	116000	
24	ZINC	1.3	54	9630	54	30	6110	

(7BOOL) ASH EATRACT

SAMPLE NUMI		/B-AH-001002	7B-AH-001D1H2C) /B-AH-001EPTO	7B-AH-001SAR	ZB-4H-001TCLP1	ZB-AH-001 FCLP2
DILUTION EA DESCRIPTION UNITS:		ASH EXTRACT	ASH FATRACI	ASH EXTRACT	ASH EXTRACT	ASH FXTRACT	ASH EXTRACT
*** GEOCHEN	MICAL PARAMETERS ***						
PP CAS	NO COMPOUND						
	TOC:	NA	6.52	NA	11.5	NA	NA
	AMMONIA	NA	0.18	NA	NA	NA	NA
	NITRATE	0.36	0.24	0.13	NA	0.31	0.30
	ORTHO PHOSPHATE	0.01	<0.01	1.32	<0.01	0.01	1.75
	TOTAL ALKALINITY	NA	337	NA	NA	NA	NA
	CHLORIDE.	1300	1200	2160	NA	1490	1270
	SULFATE .	513	3.6	556	NA	363	728
	ALUMINUM OXIDE %	4990	4850		30400	62800	
7	CALCIUM OXIDE %	909000	810000	3240000	817000	1970000	3210000
24	MAGNESIUM OXIDE %	24600	24	127000	36	920	117000
*	POTASSIUM MONOXIDE %	99200	108000	101000	111000	122000	100000
	SILICON DIOXIDE X	1280	1470	32900	1420	473	42600
	TUS	NA	2180	NA	NA	NA	NA

(ZBOO2) ASH FATRACT

SAMPLE NUMBER: DITUITON FACTOR: DESCRIPTION:

UNLLS

7B-AH-002CO2 7B-AH-002D1H2O 7B-AH-002FPFON 7B-AH-002SAR 7B-AH-002TCLP1 7B-AH-002TCLP2

ASH ENTRACE. ASH ENTRACE. ASH ENTRACE. ASH ENTRACE. ASH ENTRACE. ASH ENTRACE.

*** BASE/NFUTRALS *** .

PP CAS NO

COMPOUND

(ZBOO2) ASH EXTRACT

SAMPLE NUMBER: 7B-AH-002CO2 7B-AH-002EPTOV 7B-AH-002SAR 7B-AH-002TCLP1 7B-AH-002TCLP2
DIFUTION FACTOR.

DESCRIPTION: ASH FATRACT ASH FATRA

*** ACIDS ***

PP CAS NO COMPOUND

(7BOO2) ASH EXTRACT

SAMPLE	NUMBER: N. FACTOR:	7B-AH 002C02	7B-AH 002CO2 - 7B-AH 002D1B20 7B-AH 0021F10X 7B-AH 002SAR - 7B-AH 0021C1F1 7B					
DESCREE		ASH EXTRACT	ASH FATRACT	ASIL EXTRACT	ASH EXTRACT	ASH EXTRACT	ASH EXTRACT	
UNLIS:	*******	11671	UG/1.	uG/L 	UG/L 	UG/1	UG/L	
*** INO	RGANICS ***							
)· ! ·	CAS NO COMPOUND							
ı	BARTUM	249	1050	350	2770	693	511	
6	CADMIUM			485			833	
10	COPPER	27	35	70	21	.36	262	
11	IRON						1590	
11	MANGANESE	8.2		1150		5.8	2250	
15	MERCURY			0.90			1.2	
20	SOD4 UM	168000	209000	225000	201000	1450000	141000	
21	7. I NC	5.0	11	1330	20	11	10000	

(7B002) ASH FATRACE

SAMPLE NUMBER DITCHON FAC DESCRIPTION: PNTES:		7B-AH-002C02 ASH FATRACT	78-AH ODZÐTHZO ASH FATRACI	ZB: ME-002FPTOV ASH FATRACT	ZB-AH-002SAR ASH FATRACI	7B-AH-002TCLP1 ASH FATRACI	/B-AH-002TCLP2 ASH_FXTRACT
*** GFOCHEMIC	CAL PARAMETERS *** O COMPOUND						
D-28	TOC AMMONIA NITRATE ORTHO PHOSPHATE TOTAL ALKALINITY CHEORIDE SULFATE ALUMINUM OXIDE X CALCIUM OXIDE X MAGNESIEM OXIDE X POTASSIUM MONOXIDE X SILICON DIOXIDE X TDS	NA NA 0.33 <0.01 NA 2930 507 26200 1920000 5880 155000 599	5.92 0.28 0.17 <0.01 285 3040 2.6 18400 1740000 68 189000 611 1310	NA NA 0.31 0.10 NA 3110 922 4810000 130000 189000 21500 NA	7.54 NA NA <0.01 NA NA NA 102000 1690000 65 167000 511 NA	NA NA 0.16 <0.01 NA 3500 524 62300 2750000 887 170000 379 NA	NA NA 0.15 0.01 NA 2720 671 3610000 12400 127000 79000 NA

(ZBOO3) ASH EXTRACT

SAMPLE NUMBER: ZB-AH-003CO2 ZB-AH-003DTH2O ZB-AH-003FPTON ZB-AH-003SAR ZB-AH-003FCLP1 ZB-AH-003TCLP2 DITUTION FACTOR:

DESCRIPTION: ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT

bnits:

*** BASE/NEUTRALS ***

PP CAS NO COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

772

(7BOO3) ASH EXTRACT

SAMPLE NUMBER: 7B-AH-003CO2 7B-AH-003D1H2O 7B-AH-003LP1OX 7B-AH-003SAR 7B-AH-003TCLP1 7B-AH-003TCLP2
DITUTION FACTOR:
DESCRIPTION: ASH EXTRACT ASH EXT

*** ACIDS ***

PP CAS NO COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

73

(78003) ASH EXTRACT

SAMPLE NUMBER: DELUGION FACTOR: DESCRIPTION: UNITS:		7B AH 003CO2	ZB AH 003D416	O NR AR 003144	7B AR 0031C1P1 7B-AH-0031CLP2		
		ASH TXTRACT UG/1,	ASH EXTRACT UG/1	ASH EXTRACT UG/L	ASH FATRACT UG/L	ASH EXTRACT UG/L	ASH EXTRACT UG/L
*** NORG	GANICS ***						
PP - C/	AS NO COMPOUND						
4	BARLUM	1 10	151	191	1390	517	321
G	CADMEUM			25			132
10	COPPER	8.8	21	51	.38	17	10
12	LEAD		17		22		
14	MANGANESE			250			1710
15	MERCURY			3.5			0.73
20	SODIUM	132000	126000	161000	117000	1440000	141000
24	ZINC	19	10	67	29	9.7	1580

(ZBOO3) ASH EXTRACT

SAMPLE NUM DITUTION E DESCRIPTION UNITS:	FACTOR:	/B AH-003COC ASH EXTRACT	ZB AH 003D1H20 ASH FXTRACT	ZB-AH-003EP10X ASH FXTRACT	7B-AH-003SAR ASH FATRACT	ZB-AH-003TCTP1 ASH EXTRACT	ZB-AH-0031CLP2 ASH FXTRACT
*** GEOCHE	EMICAL PARAMETERS ***						
PP CAS	S NO COMPOUND						
	TOC AMMONIA NITRATE ORTHO PHOSPHATE TOTAL ALKALINITY CHLORIDE SULFAFE	NA NA O.21 <0.01 NA 1310 662	5.52 0.10 0.12 <0.01 430 1070	NA NA 0.17 0.06 NA 1020 950	7.07 NA NA <0.01 NA NA	NA NA 0.13 <0.01 NA 1340 180	NA NA 0.07 0.03 NA 1290 1110
P 33	ALUMINUM OXIDE % CALCIUM OXIDE % MAGNESIUM OXIDE % POTASSIUM MONOXIDE % SILICON DIOXIDE % TUS	26700 1060000 1090 124000 958 NA	213 814000 37 108000 2300 2490	100 3720000 119000 134000 5090 NA	5950 699000 55 115000 2330 NA	6770 1860000 692 146000 3560 NA	3610000 137000 127000 26800 NA

(7B004) ASH FAIRACI

SAMPLE NUMBER: 78-AH-001CO2 78 AH-004D1H2O 78-AH-004FPTOX 78-AH-004SAR 78-AH-004FCLP1 78-AH-004TCLP2
DITUTION FACTOR:
DESCRIPTION: ASH EXTRACT
*** BASE/NEUTRALS ***

PP CAS NO COMPOUND

(ZBOO4) ASH EXTRACT

COMPOUND

| SAMPLE NUMBER: | 7B-AH-004CO2 | ZB-AH-004D1H2O | ZB-AH-004EPFOX | 7B-AH-004TCLP2 | ZB-AH-004TCLP2 | ZB-AH-

NO PARAMETERS DETECTED FOR THIS CATEGORY

PP CAS NO

(7BOOT) ASH EXTRACT

SAMPLE NUMBER: DILUTION FACTOR: DESCRIPTION: UNLIS:		7B AH 001CO2	7B AB 004D1H2	20 ZB-AH 004FP1C	X 7B AH 0015AR	ZB AB 0011CLP1 ZB-AB-001CLP2	
		ASW 1 X FRACT UG/L	ASH EXTRACT UG/L	ASH EXTRACT UGZL	ASH FATRACE UGZL	ASH FYTRACT UG/L	ASH FXTRACT UG/L
*** I NORO	JANICS ***						
PP C	AS NO COMPOUND						
3	ARSENIC	53					
4 6	BARTUM CADMTUM	381	1020	232 59	1980	1850	401
10 12	COPPER LEAD	11	21 351	33	24 224	15	21
11 15	MANGANESE MERCURY			518 4.9			19 1.7
20 21	SODFUM ZINC	127000 21	157000 319	149000 422	15 1000 168	1 130000 19	156000 26

(7BOO1) ASH FXTRACT

SAMPLE NUMBER OF STREET	FACTOR:	/B AH-001CO2 ASH EXTRACT	ZB-AH 004D1H2C ASH FXTRACI) 78-AH-004FPTOV ASH FXTRACT	. 7B-AH 004SAR ASH EXTRACT	ZB-AH-0011C1P1 ASH FXTRACT	7B-AH-001TCLP2
UNITS:	UNITS:						
	EMICAL PARAMETERS *** S NO COMPOUND						
	TOC AMMONIA NITRATE ORTHO PHOSPHATE	NA NA 0.14 <0.01	3,37 0.11 0.11 <0.01	NA NA 0.15 0.06	5.73 NA NA <0.01	NA NA 0.15 <0.01	NA NA 0.14 0.03
D-36	TOTAL ALKALINITY CHLORIDE SULFATE ALUMINUM OXIDF % CALCIUM OXIDF % MAGNESIUM OXIDE % POTASSIUM MONOXIDE % SILICON DIOXIDE %	NA 1080 22.9 90700 737000 207 124000 418	972 1320 <0.5 167 1250000 21 134000 591	NA 1280 881 3630000 75100 129000 10100	NA NA NA 501 1160000 18 152000 714	NA 1530 10.4 1410 1810000 55 163000 2050	NA 1500 720 7760 3260000 30600 138000 820
	TDS	NA NA	3270	NA	NA NA	2030 NA	NA

(ZBOO5) ASH EXTRACT

SAMPLE NUMBER: DILUTION FACTOR:

DESCRIPTION:

UNLTS: -----

ZB-AH-005CO2 ZB-AH-005D1H2O ZB-AH-005FPTOX ZB-AH-005SAR ZB-AH-005FCFP1 ZB-AH-005FCLP2

ASH EXTRACT - ASH EXTRACT - ASH EXTRACT - ASH EXTRACT - ASH EXTRACT

*** BASE/NEUTRALS ***

PP CAS NO COMPOUND

(ZBOO5) ASH EXTRACT

SAMPLE NUMBER: 7B-AH-005CO2 7B-AH-005DTH20 7B-AH-005EPFOX ZB-AH-005SAR 7B-AH-005TCLP1 ZB-AH-005TCLP2
DESCRIPTION: ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT UNITS:

*** ACTDS ***

PP CAS NO COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

D-38

(7B005) ASH EXTRACT

SAMPLE NUMBER: DITUTION FACTOR: DESCRIPTION: UNITS:		7B AH 005CO2	7 - 78 AB 00501H20 7B AB 005FP10X 7B-ME005SAR - 7B AB 005				ICLP4 7B+MI-005TCLP2
		ASH FYTRACT UG/L	ASH EXTRACT UG/L	ASIL EXTRACT UG/L	ASH FXTRACT UG/L	ASH FATRACI UG/L	ASIL EXTRACT UG/L
*** }	NORGANICS ***						
PP	CAS NO COMPOUND						
4	BARLUM	2 10	1030	244	1150	1590	388
6	CADMIUM			50			15
10	COPPER	11	21	25	36	10	26
12	LEAD		731		293		
11	MANGANESE			396			128
15	MERCURY			9.8		0.25	4.6
20	SODIUM	130000	179000	185000	180000	1130000	183000
21	Z I NC	8.6	253	457	287	37	50

(ZBOO5) ASH EXTRACT

SAMPLE NUME OLLUTION FA DESCRIPTION UNITS:	ACTOR:	ZB-AH-005CO2 ASH EXTRACT	/B-AH-005D4H2O	ZB-AH-005FPTOX ASH EXTRACT	7B-AH-005SAR ASH FXTRACI	ZB-AH-005 (CLP1 ASH EXTRACT	7B-AH-005TCLP2
*** GEOCHEM	ILCAL PARAMETERS ***						
PP CAS	NO COMPOUND						
	TOC AMMONIA NITRATE ORTHO PHOSPHATE TOTAL ALKALINITY CHLORIDE SULFATE ALUMINUM OXIDE %	NA NA 0.17 <0.01 NA 1570 129 47700	4.28 0.10 0.15 <0.01 996 2170 9.0 161	NA NA 0.20 0.06 NA 1740 804	4.52 NA NA <0.01 NA NA NA	NA NA 0.15 <0.01 NA 2030 4.4 17600	NA NA 0.19 0.02 NA 2080 733 1760
P 46	CALCIUM OXIDE % MAGNESIUM OXIDE % POTASSIUM MONOXIDE % STITCON DIOXIDE % LDS	873000 247 128000 527 NA	1300000 21 156000 106 3750	4000000 70400 170000 7570 NA	1530000 17 181000 631 NA	1960000 70 203000 1300 NA	3640000 68000 167000 1460 NA

(2C001) ASH EXTRACT

SAMPLE NUMBER: ZC-AH-001CO2 ZC-AH-001D1H2O ZC-AH-001EPTOX ZC-AH-001TCLP1 ZC-AH-001TCLP2

DILUTION FACTOR:

DESCRIPTION:

ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT

DESCRIPTION:

ASH FAIRAUL ASH FAIRAUL ASH FAIRAUL ASH FAIRAUL ASH FAIRAUL ASH FAIRAUL ASH FAIRAUL ASH FAIRAUL
UNITS:

*** BASE/NEUTRALS ***

PP CAS NO COMPOUND

(ZCOO1) ASH FATRACT

SAMPLE NUMBER: DILUTION FACTOR: DESCRIPTION:

ASH EXTRACT — ASH EXTRACT — ASH EXTRACT — ASH EXTRACT — ASH EXTRACT — ASH EXTRACT

ZC-AH-001CO2 ZC-AH-001D1H2O ZC-AH-001FPTOX ZC-AH-001SAR ZC-AH-001FCFP1 ZC-AH-001FCFP2

UNITS:

*** ACIDS ***

PP CAS NO

COMPOUND

(ZCOOT) ASH EXTRACT

SAMPLE NUMBER:		ZC AH OUTCOS	/C AH-001D11120	ZC AH OOTEPTOX	7C-AN 0015AR	ZC AH-0011CLP1	ZC-AH~001TCLP2
DITUITON FACTOR DESCRIPTION: UNITS:	:	ASH FATRACT UG/L	ASH FXTRACT DG/L	ASH FXTRACT UG/T	ASH EXTRACT DG/L	ASIL EXTRACT UG/L	ASH EXTRACT UG/L
*** INORGANICS	***						
PP CAS NO	COMPOUND						
J	ARSENIC						60
4	BARTUM	198	142	33	1 38	275	40
6	CADMIUM	77		998	6.0	693	980
8	CHROMIUM	6.8	1.1	69	8.3	5.6	221
10	COPPER	81	26	1600	19	50	1200
11	IRON	8.7		3160			23800
12	LEAD	95		7510	30	1940	10100
14	MANGANESE	1420	7.0	5170		2600	7370
15	MERCURY			0.67	0.27		0.44
20	SODIUM	139000	189000	158000	136000	1560000	168000
21	ZINC	11500	118	80100	30	33700	81200

(70001) ASH ENTRACT

SAMPLE NUMBER: DIEUTION FACTO DESCRIPTION: UNITS:	K:	ZC-AH-001CO2 ASH FXTRACT	ZC AH 001D1H20 ASH ENTRACT	ZC~AH-001FPFO) ASH FXTRACT	ASH FXTRACT	ZC-AH-001TCLP ASH FATRACI	ASH FXTRACT
*** GEOCHEMICA	L PARAMETERS *** COMPOUND						
P	TOC AMMONIA NITRATE ORTHO PHOSPHATE TOTAL ALKALINITY CHLORIDE SULFATE ALUMINUM OXIDF % CALCIUM OXIDE % MAGNESIUM OXIDE % POTASSIUM MONOXIDE % SILICON DIOXIDE % TDS	NA 0.14 0.19 0.01 NA 173 658 77 662000 23200 108000 20000 NA	7.22 0.16 0.94 0.01 228 230 418 67800 192000 97 150000 1520 1320	NA 0.30 0.71 0.20 NA 226 879 34400 1550000 63000 118000 79000 NA	5.54 2.80 NA 0.01 NA NA NA 118000 183000 49 109000 965 NA	NA 0.19 0.25 0.01 NA 232 893 1270000 375000 120000 22400 NA	N4 0.32 15.3 1.67 NA 249 985 116000 1750000 80900 126000 43000

(ZCOO2) ASH FATRACI

SAMPLE NUMBER: DITUTION FACTOR. DESCRIPTION:

7C-AH-002CO2 7C-AH-002D1H2O 7C-AH-002FP10X ZC-AH-002SAR 7C-AH-0021CLP1 7C-AH-002TCLP2

UNLIS: ASH FXTRACT — ASH FXTRACT

ı

*** BASE/NEUTRALS ***

PP CAS NO COMPOUND

(20002) ASH EXTRACT

SAMPLE NUMBER: 7C-MI-002CO2 7C-MI-002FPTOX 7C-MI-002SAR 7C-MI-002TCLP1 7C-MI-002TCLP2

DITUTION FACTOR:

DESCRIPTION: ASH FXTRACT ASH FXTRACT ASH FXTRACT ASH FXTRACT ASH FXTRACT ASH FXTRACT

UNITS:

*** ACIDS ***

PP CAS NO COMPOUND

SAMPLE N		ZC AH 002C02	AC AH OOZDIH	120 7C AH 002FPF	OX 7C-AH 002SAR	7C AH 0021CLI	T ZC-AH-002TCLP2
DESCRIPTION: UNITS:		ASH EVIRACI UG/L	ASIL EXTRACT UG/1	ASH EVERACE UG/L	ASH TXTRACT UG/L	ASH EXTRACT UG/L	ASH EXTRACT UG/L
*** 1 NOR	GANIUS ***	•	,				
PP C	AS NO COMPOUND						
3	ARSFNIC		16	20			17
4	BARIUM	192	192	187	136	197	142
6	CADMIUM	30		1120		646	1130
H	CHROM I UM	8.8	12	72	7.5	6.6	213
10	COPPER	61	46	1010	36	71	150
11	LRON			4580			11400
12	LE AU	4.1		10400	38	3.17	11700
11	MANGANESE	972	20	8540		1200	5700
15	MERCURY		0.21		0.21	0.32	
20	SODIUM	150000	174000	144000	129000	1540000	144000
21	ZINC	1370	270	62700	96	24300	78600

(ZCOO2) ASH ENTRACE

SAMPLE NUM		ZC~AH-00200.1	7C - AH 002D1H2	O /C-AH-002FP10	OX /C~AH-002SAR	7C-AH-002TCLP	1 /C-AH-0021C1P2
DESCRIPTION F DESCRIPTION ONLY		ASH FATRACE	ASH FATRACT	ASH FXTRACT	ASH FATRACT	ASH FXTRACT	ASH EXTRACT
*** GFOCHE	MICAL PARAMETERS ***						
PP CAS	S NO COMPOUND						
	TOC	NA	4.51	NA	3.87	NA	NA
	AMMON I A	0.12	0.19	0.25	3.02	0.16	0.18
	NITRATE	0.20	0.40	0.45	NA	0.74	0.23
	ORTHO PHOSPHATE	0.01	<0.01	0.22	0.01	0.01	2.04
	TOTAL ALKALINITY	NA	598	NA	NA	NA	NA
	CHLORADE	193	194	202	NA	255	256
	SULFATE	709	187	727	NA	761	893
	ALUMINUM OXIDE %	70	203000	34500	106000		118000
9	CALCIUM ONFDE %	737000	141000	1600000	142000	1190000	1820000
	MAGNESIUM OXIDE %	26800	318	61800	64	40300	83600
ಹ	POTASSIUM MONOXIDE %	124000	111000	114000	109000	123000	1110000
	SILICON DIOXIDE %	25100	558	75700	722	21300	8000
	ros	NA	1190	NA	NA	NA	NA

(ZCOO3) ASB FATRACE

SAMPLE NUMBER: DILUTION FACTOR.

-7C-AH-003CO2 - 7C-AH-003D1H2O 7C-AH-003FPTOX 7C-AH-003SAR - 7C-AH-0031C1P1 7C-AH-0031CLP2

DESCRIPTION.

ASH FATRACT — ASH FATRACT — ASH FATRACT — ASH FATRACT — ASH FATRACT — ASH FATRACT

UNLIS:

*** BASE/NEUTRALS ***

PP CAS NO COMPOUND

(7C003) ASH FXTRACT

SAMPLE NUMBER: ZC-AH-003CO2 ZC-AH-003D1H2O ZC-AH-003EPTOX ZC-AH-003SAR ZC-AH-003TCLP1 ZC-AH-003TCLP2 D11 U11ON FACTOR:

DESCRIPTION: ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT UNION:

*** ACIDS ***

PP CAS NO COMPOUND

_	
T	
U	

SAMPLE NUM		7C AH 003CO2	ZC AH-003D1H2	20-7C-AH-003FP1C	X ZC AH 003SAR	7C-AH-0031CLF1	ZC-AH-003TCLP2
DITUITON TO BESCRIPTED		ASH FATRACT	ASH FATRACT	ASIL EXTRACT	ASIL FATRACT	ASH EXTRACT	ASH EXTRACT
UNITS:	••••	PG/L	06/1.	UG/L	UG/L	UG/L	UG/1.
*** INORGA	NICS ***						
PP CAS	NO COMPOUND						
3	ARSENIC		18				54
1	BARTUM	206	139	188	163	253	12
6	CADMIUM	85		1070	5.3	1020	1380
8	CHROMEUM	7.0	16	42	5.9	6.3	265
10	COPPER	146	17	929	33	151	1200
11	IRON	5.6	11	13500	23		21300
12	LEAD	119		6900	201	719	8190
1.1	MANGANESE	 180	1.7	3840	6.1	3340	4910
15	MERCURY		0.32	0.23	1.1	0.14	0.32
20	SODIUM	111000	155000	129000	121000	1510000	170000
21	ZINC	7 100	55	59700	75	32600	91400

(ZCOO3) ASH EXTRACT

SAMPLE NUME		ZC-AH-003CO2	/C-AH-003D1H20	ZC~AH-003EPTOX	ZC-AH-003SAR	ZC-AH-003TCLP1	ZC-AH-003TCLP2				
DILUTION FACTOR: DESCRIPTION: UNITS:		ASH EXTRACT	ASH EXTRACT	ASH EXTRACT	ASH FXTRACT	ASH EXTRACT	ASH EXTRACT				

*** GFOCHEMICAL PARAMETERS ***											
PP CAS	PP CAS NO COMPOUND										
	тос	NA	7.35	NA	3.26	NA	NA				
	AMMONIA	0.15	0.16	0.22	2.83	0.15	0.21				
	NITRATE	0.40	0.06	0.31	NA	0.76	0.25				
	ORTHO PHOSPHATE	0.01	0.01	0.04	<0.01	0.01	1.48				
	TOTAL ALKALINITY	NA	179	NA	NA	NA	NA				
	CHLORIDE	178	181	188	NA	215	258				
	SULFATE	751	412	756	NA	984	962				
_	ALUMINUM OXIDE %	79	89900	20000	88200		118000				
P	CALCIUM OXIDE %	759000	193000	1300000	199000	1240000	1690000				
52	MAGNESTUM OXIDE %	30400	72	52300	116	46400	80800				
13	POTASSIUM MONOXIDE %	116000	139000	110000	108000	124000	1.35000				
	SILICON DIOXIDE X	28900	888	64500	518	26800	48700				
	TDS	NA	1050	NA	NA	NA	NA				

(2COO4) ASH EXTRACT

SAMPLE NUMBER: ZC-AH-004CO2 ZC-AH-004D1H2O ZC-AH-004FPIOX ZC-AH-004SAR ZC-AH-004TCLP1 ZC-AH-004TCLP2 DILUTION FACTOR: DESCRIPTION: ASH EXTRACT — ASH EXTRACT

UNITS: ______

*** BASE/NEUTRALS ***

PP CAS NO COMPOUND

(ZCOO4) ASH FATRACT

SAMPLE NUMBER: DITUTION FACTOR:

ZC-AH-004CO2 ZC-AH-004D1H2O ZC-AH-004FPIOX ZC-AH-004SAR ZC AH-004TCLP1 ZC-AH-004TCLP2

DESCRIPTION:

UNITS:

ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT

*** ACIDS ***

PP CAS NO

COMPOUND

	SAMPLE NOM DIEUTION F		7C AH 001CO2	ZC AH OO IPTH2	O /C AH-001FP10	X /C AIF 004SAR	ZC AH 0041C1P	1 ZC ~ AH - 004 FCLP2
	DESCRIPTED UNLLS:		ASH EXTRACT UG/F	ASH EXTRACT UG/L	ASH FYTRACT UG/4.	ASH EXTRACT UG/L	ASH EXERACT UG/L	ASH_EXTRACT UG/1.
	*** INORGA	NICS ***				-		
	PP CAS	NO COMPOUND						
	3	ARSENIC		25 •				
	1	BARIUM	245	171	198	182	253	223
	6	CADMIUM	110		897		970	758
	8	CHROMEUM	9.8	8.6	36	6.2	6.1	162
	10	COPPER	33	12	2300	14	66	41
	11	IRON	3.3		24300	72		46300
	12	LEAD	101	53	5180		1610	9470
	11	MANGANESE	788	2.1	2950		5170	2750
7	15	MERCURY		0.32			0.49	
ח	20	SODIUM	153000	140000	140000	127000	1640000	123000
7 1	21	ZINC	127000	37	57000	89	47 100	51900
57 57								

(ZCOO4) ASH EXTRACT

SAMPLE NUMBER:	ZC-AH-004CO2	2 ZC-AH-004DTH	20 ZC-AH-004FPT	OX ZC-AH-004SAR	ZC-AH-004TCLP	ZC-AH-004TCLP2
DITUTION FACTOR: DESCRIPTION: UNITS:	ASH EXTRACT	ASH FATRACT	ASH FXTRACT	ASH FATRACT	ASH EXTRACT	ASH EXTRACT
*** GEOCHEMICAL PARAMETERS ***			•			
PP CAS NO COMPOUND						
TOC	NA	5.08	NA	2.58	NA	NA
AMMONIA	0.19	0.22	0.21	2.88	0.19	0.22
NITRATE	0.07	0.15	0.36	NA	1.33	0.08
ORTHO PHOSPHATE		0.01	<0.01	<0.01	<0.01	0.79
TOTAL ALKALINIT	ΓY NA	696	NA	NA	NA	NA
CHLORIDE	187	193	183	NA	228	196
SULFATE	587	287	1.360	NA	938	536
ALUMINUM OXIDE	x 106	155000	23700	74500		98200
CALCIUM OXIDE X	621000	193000	1310000	170000	1330000	1590000
MAGNESTUM OXIDE	E % 34700	96	47800	375	42300	59700
POTASSIUM MONOX	KIDE % 119000	116000	112000	104000	134000	91200
STLECON DEOXEDE	F % 34500	503	69100	1330	29400	17700
TDS	NA	1160	NA	NA	NA	NA

(7COO5) ASH EXTRACT

SAMPLE NUMBER: ZC-AH-005CO2 ZC-AH-005DEH2O ZC-AH-005FPTOX ZC-AH-005FCLPT ZC-AH-005TCLP2
DESCRIPTION: ASH FXTRACT ASH FXTRACT ASH FXTRACT ASH FXTRACT ASH FXTRACT UNLLS:

*** BASE/NEUTRALS ***

PP CAS NO COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

P 5

(ZCOO5) ASH FATRACT

COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

PP CAS NO

SAMPLE NUMBER:		ZC AH 005CO2	ZC AH 005D11620	ZC AH 005FP10X	ZC-AH OOSSAR	ZC AH 0051CLP1	/C=AH-0051CLP2
DEFUTION FACTOR DESCRIPTION: UNITS:		ASH EXTRACT	ASH FATRACE UG/L	ASIL LATRACT UG/L	ASH FATRACT UG/L	ASH EXTRACT UG/L	ASH EXTRACT UG/L
*** INORGANICS	***						
PP CAS NO	CONDOTACO						
3	ARSENIC			22			24
1	BARTUM	118	111	23	129	201	28
6	CADMEUM	81		1200		761	1260
Н	CHROMIUM	8.5	11	65	7.9	8.0	234
10	COPPER	64	12	1390	8.5	291	568
11	TRON	12		4670	97	113	26800
12	LEAD	159		6830		2960	8090
14	MANGANESE	834		2600	5.7	1900	3760
15	MERCURY			0.56			
20	SODIUM	166000	184000	155000	160000	1560000	164000
21	7.1 NC	7740	133	66500	132	12500	86000

(70005) ASH EXTRACT

SAMPLE NUMBER:		/C-M-005co2	7C AH-005DFH20	ZC-AH~005FPTOX	7C-AH-005SAR	ZC-AH-005TCLP1	/C-AH-005TCLP2				
DESCRIPTION: UNITS:	ж.	ASH FXTRACT	ASH EXTRACT	ASH FATRACI	ASH EXTRACT	ASH FATRACT	ASH FYIRACT				

*** GEOCHEMICAL PARAMETERS ***											
PP CAS NO	COMPOUND										
	FOC.	NA	5.82	NA	5.15	NA	NA				
	AMMON1 A	0.15	0.24	0.19	2.88	0.16	0.21				
	NITRATE	1.59	0.10	0.56	NA	0.78	0.21				
	ORTHO PHOSPHATE	0.02	0.01	0.11	0.01	0.01	1.12				
	TOTAL ALKALINITY	NA	368	NA	NA	NA	NA				
	CHLORIDE	195	207	190	NA	189	281				
	SULFATE	777	388	1650	NA	585	1110				
	ALUMINUM OXIDE %	85	50100	32300	82100	1320	110000				
P	CALCIUM OXIDE %	684000	145000	1350000	173000	1110000	1500000				
6	MAGNESIUM OXIDE %	25800	42	53300	430	39400	74800				
8	POTASSIUM MONOXIDE %	142000	159000	127000	136000	83200	126000				
	SILICON DIOXIDE X	26900	1560	20900	1410	51700	7170				
	rds	NA	1120	NA	NA	NA	NA				

SAMPLE NUMBER:
DITUTION FACTOR:
DESCRIPTION:
UNITS:

ASH EXTRACT ASH FXTRACT ASH EXTRACT

ZD-AH-001CO2 /D-AH-00101H2O ZD-AH-001EPTOX ZD-AH-001SAR ZD-AH-001TCLP1 ZD-AH-001TCLP2

ASH EXTRACT ASH EXTRACT

*** BASE/NEUTRALS ***

PP CAS NO

COMPOUND

65-85-0 BENZOIC ACID

26JT

SAMPLE NUMBER:
DILUTION FACTOR:
DESCRIPTION:
UNITS:
*** ACIDS ***

ZD-AH-001CO2 ZD-AH-001D1H2O ZD-AH-001EPTOV ZD-AH-001SAR ZD-AH-001TCLP1 ZD-AH-001TCLP2

ASH EXTRACT — ASH EXTRACT — ASH EXTRACT — ASH EXTRACT — ASH EXTRACT — ASH EXTRACT

PP CAS NO COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

D-62

F	
9	
w	
Ġ	

SAMPLE NUMBER: DIEDITON FACTOR: DESCRIPTION: UNITS:		7D-AH 001CO2 - 7D AH 001D1N2O 4			A 7D AH OOTSAR	ZD-AH 0011CLP1 ZD-AH 0011CLP2	
		ASH FATRACT UG/A	ASIL EXTRACT UG/L	ASH FXTRACT UG/L	ASH FATRACT UG/L	ASH FYFRACT UG/L	ASH EXTRACT UG/L
*** INORG	ANICS ***						
PP CA	S NO COMPOUND						
1	BARTUM	278	201	290	262	318	131
6	CADM1 UM	251		195		129	636
8	CHROMIUM					8.0	193
10	COPPER	75	61	21	82	11	178
11	1 RON	45		27100		7220	75500
12	LEAD	50 t		3490		10500	26400
14	MANGANESE	1330		1320		1940	3350
15	MERCURY	0.17			0.37		
20	SODIUM	10100	32500	37200	36600	1380000	46200
21	7 INC	26400	17	30300	35	56900	85000

_

.

SAMPLE NUMBER:		ZD MI-001c02	7D-AH-001D1H2O	ZD - AH=001FP10X	/D-AH-001SAR	7D-AH-001TC1P1	/D-AH-001TCLP2
DILUTION FACTOR: DESCRIPTION: UNLIS.		ASH EVERACT	ASH FAIRACT	ASH FAIRACT	ASH EXTRACT	ASH FATRACT	ASH FATRACT
*** GEOCHEMICAL PA	RAMETERS ***						
PP CAS NO	COMPOUND						
TO	c	NA	18.9	NA	19.7	NA	NA
	MONTA	0.09	0,11	0.12	4.10	0.12	0.16
' NI	TRATE	0.20	0.14	0.16	N A	0.05	0.04
OR	THO PHOSPHATE	0.06	<0.01	0.01	<0.01	0.04	1.43
TO	TAL ALKALINITY	NA	254	NA	NA	NA	NA
СН	LORIDE	63.6	55.5	43.5	NA	99.1	81.9
	LFATE	375	249	197	NA	360	447
	UMINUM OXIDE %	204	85200	4870	72300	6090	88600
T	FCIAM OXIDE 2	173000	203000	601000	246000	666000	949000
	GNESIUM OXIDE %	41300	91	51000	113	62900	101000
P 60	TASSIUM MONOVIDE X	25300	20500	19200	24100	18700	23500
	LICON DIOXIDE X	29700	102	29100	880	33100	129000
ar	S	NA	625	NA	NA	NA.	NA

•

(70002) ASH EXTRACT

SAMPLE NUMBER: 7D-AH-002CO2 7D-AH-002D1H2O 7D-AH-002EPTOX ZD-AH-002SAR ZD-AH-002TCLP1 ZD-AH-002TCLP2
D14 U11ON FACTOR:

DESCRIPTION: ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT ONLIS:

*** BASE/NEUTRALS ***

PP CAS NO COMPOUND

(ZDOO2) ASH EXTRACT

SAMPLE NUMBER: DITUTION FACTOR:

ZD-AH-002CO2 ZD-AH-002D1H2O ZD-AH-002EPFOX ZD-AH-002SAR ZD-AH-002TCLP1 ZD-AH-002TCLP2

DESCRIPTION: UNLES:

ASH FXTRACI — ASH FXTRACI — ASH FXTRACI — ASH EXTRACT — ASH EXTRACT — ASH EXTRACT

*** ACIDS ***

PP CAS NO

COMPOUND

SAMPLE NUMBER: DITUTION FACTOR:		7D AH 002CO2 - 7D-AH-002D1H2O 7D AH 002FP10X 7D AH				D AH 002SAR - 7D AH 0021CLP1 /		
DESCREE UNLIS:		ASH FATRACT UG/L	ASH EXTRACT NG/L	ASH EXTRACT UG/L	ASIL EXTRACT UG/L	ASH FXFRACT UG/L	ASH FXTRACT UG/L	
*** NO	RGANIUS ***							
pp	CAS NO COMPOUND							
1	BARTUM	129	259	162	209	418	110	
6	CADMIUM	354		1100		1080	1560	
8	CHROMIUM			49			799	
10	COPPER	148	77	672	70	858	125	
11	TRON			1200			32800	
12	LF AD	356		19700		10200	23900	
11	MANGANESE	931		2710		2080	1750	
15	MERCURY	0.52	0.90		0.27	0.13		
20	SODIUM	49800	42600	52500	42100	1430000	68300	
21	ZINC	.30600	9.7	95600	33	75100	164000	

(ZDOO2) ASB EXTRACT

SAMPLE NUMBI		ZD- MU 002C02	7D - MF 002D4H20	7D - AH - 002FPTOX	/D-AH-002SAR	7D-AH-0021C1P1	7D-AH-002 FCT P2
DEFUTION FAC DESCRIPTION: UNLES:		ASH TXTRACT	ASII TATRACT	ASH FATRACT	ASH FATRACE	ASH EXTRACT	ASH FXTRACT
*** GEOCHEMI	ICAL PARAMETERS ***						
	TOC AMMONIA	NA 0.07	9.19 0.11	NA 0.15	9.94 3.77	NA 0.12	NA 0.19
	NITRATE ORTHO PHOSPHATE TOTAL ALMALINITY CHLORIDE	0.26 <0.01 NA 77.2	0.11 <0.01 249 70.2	0.06 0.06 NA 82.2	NA <0.01 NA NA	0.06 0.01 NA 108	0.12 0.48 NA 111
P	SULFATE ALUMINUM OXIDE % CAECIUM OXIDE %	572 759000	371 88500 255000	566 18200 1160000	NA 84200 241000 52	703 462 934000 70200	872 103000 1470000 121000
&	MAGNESIUM OXIDE % POTASSIUM MONOXIDE % SILICON DIOXIDE % TUS	43100 33400 27900 NA	83 30400 479 842	78700 34100 45000 NA	52 31200 802 NA	70200 32000 32100 NA	121000 40900 143000 NA

(20003) ASH EXTRACT

SAMPLE NUMBER. ZD-AH-003CO2 - ZD-AH-003DEH2O ZD-AH-003FPTOA ZD-AH-003SAK - ZD-AH-003CC1P1 ZD-AH-003TCLP2

DESCRIPTION: ASH EXTRACT
UMIS:

*** BASE/NEUTRALS ***

DILUTION FACTOR:

PP CAS NO COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

20-09

(7D003) ASH EXTRACT

. . . W 1113 TTT

PP CASINO COMPOUND

(70003) ASH EVIRACE

SAMPLE NO		7D AH 003CO2	ZD AH-003011120	ZD AH OO BEPTO	7D AH OO3SAR	ZD AH-0034CLP]	ZD - AH - 003TCLP2
DESCREPT UNLES:		ASH EXTRACT ta./1	ASR EXTRACT GG/L	ASH FYTRACT UG/L	ASIU EXTRACT UGZL	ASH EXTRACT UG/1	ASH EXTRACT UG/L
*** NORG	JANICS ***	<u></u>					
PP C/	AS NO COMPOUND						
1	BARTUM	110	252	190	236	117	385
fi.	CADMIUM	314		576		1150	1300
H	CHROMIUM						232
141	COPPER	12	3.1	1550	32	7.1	302
11	IRON			13300			47500
12	LEAD	12 <i>i</i>		1010	13	6610	25700
11	MANGANESE	1110		2070		3110	1780
15	MERCURY	0.29	0.59		0.53	0.53	
20	SODIUM	24800	31000	33600	29600	1400000	48600
21	71NC	26 100	5.1	5.3900	21	79500	131000

(ZDOO3) ASH FATRACT

SAMPLE NUMB DITEITON TA DESCRIPTION UNITS.	CIOR.	ZD+AH+003C02 ASH +XTRAC1	ZD AH 003D1H20 ASB EXTRACT	O ZD-MI-00 (FPFOX ASH TXTRACT	. ZD-AH-003SAR ASH EXFRACT	ZD AH 0031CTP	1 7D-AH 003FCLP2 ASH EXTRACT
*** GEOCHEM	ICAL PARAMETERS *** NO COMPOUND						
D-72	FOC AMMONIA NITRATE ORTHO PHOSPHATE TOTAL ALKALINITY CHLORIDE SULFATE ALUMINUM OXIDE & CALCIUM OXIDE & MAGNESIUM OXIDE & POTASSIUM MONOXIDE & SILICON DIOXIDE & FDS	NA 0.07 0.23 <0.01 NA 39.7 336 46 398000 15900 24000 NA	10.7 0.11 0.18 <0.01 288 54.5 247 97900 199000 71 18800 118	NA 0.15 0.03 0.01 NA 48.3 238 16500 592000 42600 17000 27400 NA	10.2 3.56 NA <0.01 NA NA NA 73800 209000 98 20000 989 NA	NA 0.11 0.07 0.01 NA 109 625 344 881000 73000 21500 33200 NA	NA 0.20 0.01 1.66 NA 89.3 497 130000 995000 97600 22900 136000 NA

(ZDOO4) ASH EXTRACT

SAMPLE NUMBER: ZD-AH-004CO2 ZD-AH-001D4H2O ZD-AH-004FP1OX ZD-AH-004SAR ZD-AH-004TCLP1 ZD-AH-004TCLP2 DELUCION FACTOR:
DESCRIPTION: ASH EXTRACT ASH EXT

(2D001) ASH EXTRACT

SAMPLE NUMBER: 7D-AH-004CO2 7D-AH-004D1H2O ZD-AH-004FPTOX 7D-AH-004SAR ZD-AH-001TCLP2 7D-AH-001TCLP2 D1101ON FACTOR: 9E-SCRIPTION: ASH EXTRACT ASH EXT

*** ACIDS ***

PP CAS NO COMPOUND

(70001) ASB EXTRACT

SAMPLE NUMBER: BITPLEON FACTOR: DESCRIPTION: UNITS:		7D AH 004CO2	ZD AH 004C02 - ZB AH 004D1H2O ZD AR 001FP1OA ZD AH 004SAR - ZI				
		ASH TATRACT UGZL	ASH EXTRACT GG/1	ASH EXTRACT UG/L	ASH EXTRACT UG/L	ASH EVERACE UGZE	ASH EXTRACT UG/1.
*** I NOR	GANICS ***						
PP C	AS NO COMPOUND						
i	BARTUM	227	210	218	227	282	290
6	CADMIUM	16 <i>i</i>		611	2	522	702
8	CHROMIUM			8.7			145
10	COPPER	246	53	488	49	23	593
11	1 RON			8160			53000
12	LEAD	202		12900		4050	22700
11	MANGANESE	1350		2930		2550	3900
F5	MERCURY	0.77	0.27	0.24	0.27		
20	SODEUM	29500	21100	37800	25600	1420000	40 100
21	7.1 NC	15200	24	70500	12	58400	70600

(ZDOO4) ASH EXTRACT

SAMPLE NUM		7D- MI-001C02	7b - MI-004D1H2	O 7D-AH-004FP10	X /D-AH-004SAR	/D-AH-0043 CLP	1 ZD-AH-001TC1 P2
DILETION F DESCRIPTIO UNITS:		ASH FXTRACT	A ^{COL} FATRACI	ASH EXTRACT	ASH FATRACT	ASH EXTRACT	ASH EXTRACT
*** GFOCHE	MICAL PARAMETERS ***						
PP CAS	NO COMPOUND						
	roc	NA	11.1	NA	15.2	NA	NA
	AMMONIA	0.07	0.08	0.14	3.91	0.13	0.19
	NITRATE	0.25	0.03	0.06	NA	0.05	0.03
	ORTHO PHOSPHATE	<0.01	<0.01	0.03	<0.01	0.01	1.56
	TOTAL ALKALINITY	NA	201	NA	NA	NA	NA
	CHLORIDE	45.9	31.2	58.7	NA	83.9	68.6
	SULFATE	523	265	629	NA	660	637
	ALUMINUM OXIDE %	39	71000	16200	73800	422	96400
9	CALCIUM OXIDE %	550000	200000	1250000	202000	970000	1670000
Τ	MAGNESIUM OXIDE %	45300	156	85100	319	61200	108000
76	POTASSIUM MONOXIDE %	17700	13100	19300	16500	16900	18600
•	SILICON DIOXIDE %	26100	642	49100	703	27500	123000
	ros	NA	598	NA	NA	NA	NA

(7DO05) ASH FATRACT

PP CAS NO COMPOUND

| SAMPLE NUMBER: | 7D-AH-005CQ2 | 7D-AH-005D1H20 | ZD-AH-005EPTOX | ZD-AH-005TCLP1 | 7D-AH-005TCLP2 | ZD-AH-005TCLP2 | ZD-AH-

(ZDOO5) ASH EXTRACT

SAMPLE NUMBER: DILUTION FACTOR:

ZD-AH-005CO2 ZD-AH-005D1H2O ZD-AH-005FP1OX ZD-AH-005SAR ZD-AH-005TCLP1 ZD-AH-005TCLP2

DESCRIPTION:

UNITS:

ASH EXTRACT — ASH EXTRACT — ASH EXTRACT — ASH EXTRACT — ASH EXTRACT

*** ACIDS ***

PP CAS NO

COMPOUND

(ZDOOS) ASH EXTRACT

SAMPLE NUMBER:		7b All 005CO2	ZD AH 005D11120) ZD AN OOSEPTON	ZD AH 005SAR	ZD-AH 0051C1P1	ZD-AH-0051CLP2
DITUITON FACTOR: DESCRIPTION: UNITS:		ASH EXERACT UG/I	ASH EXTRACT UG/L	ASH EXTRACT UGZI	ASH EXTRACT UGZL	ASH EXTRACT UGZI.	ASH_EXTRACT UG/L
*** INORGANICS	***	•					
PP CAS NO	COMPOUND						
4	BARTUM	502	285	239	166	245	586
6	CADMIUM	169		570		126	601
8	CHROMIUM						155
10	COPPER	62	80	85	65	8.5	1400
11	TRON			10800		1040	103000
12	LEAD	170		9070		6060	25200
14	MANGANESE	1420		4900		1950	5750
15	MERCURY			0.29	0.32		
20	SODIUM	26900	33700	36600	24200	1400000	38700
24	ZINC	18800	19	50300	16	43400	61000

(7DOO5) ASH FATRACT

SAMPLE NUMBE		ZD~AH -005c 02	ZD-AH-005D1H20	ZD-AH-005EP10X	ZD-AH~005SAR	7D-AR 0051CLP1	ZD-AH-0051CLP2
	DILUTION FACTOR: DESCRIPTION: UNITS:		ASH FATRACE	ASH FATRACT	ASH FATRACT	ASH FATRACT	ASH EXTRACT
*** GEOCHEMI	CAL PARAMETERS ***						***************************************
PP CAS N	O COMPOUND						
	FOC	NA	17.0	NA	14.3	NA	NA
	AMMONIA	0.08	0.17	0.20	3.74	0.13	0.18
	NITRATE	0.24	0.04	0.08	NA	0.03	0.03
	ORTHO PHOSPHATE	<0.01	<0.01	0.02	0.01	0.01	1.38
	TOTAL ALKALINITY	NA	212	NA	NA	NA	NA
	CHLORIDE	44.6	59.1	73.8	NA	90.8	56.4
	SULFATE	148	251	440	NA	531	4.38
—	ALUMINUM OXIDF %		80600	12600	77900	3370	102000
T	CALCIUM OXIDE %	506000	208000	935000	194000	796000	961000
8	MAGNESIUM OXIDE %	59300	114	86500	145	56300	94100
_	POTASSIUM MONOXIDE %	12300	17900	38600	14500	14600	15100
	SILICON DIOXIDE X	29000	626	38000	877	25600	118000
	TDS	NA	640	NA	NA	NA	NA

SAMPLE NUMBER:

ZE-AH-001CO2 ZE-AH-001EPTOX ZE-AH-001SAR 7E-AH-001TCLP1 ZE-AH-001TCLP2

DESCRIPTION:

ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT

WILLS:

*** BASE/NEUTRALS ***

PP CAS NO COMPOUND

66T

D-81

65-85-0 BENZOIC ACID

SAMPLE NUMBER: DELUTION FACTOR: DESCRIPTION: UNLIS:

2F-MH-001C02 /F-MH-001D1B20 7F-AH-001FPTON 7F-AH-001SAR 7E-AH-001TCLP1 ZF-AH-001TCLP2

ASH ENTRACT — ASH ENTRACT — ASH ENTRACT — ASH ENTRACT — ASH ENTRACT — ASH ENTRACT

*** A(1DS ***

PP CAS NO

COMPOUND

SAMPLE NUMBER:	ZE AH 001002	ZE AR 001002 - ZE ME 001D1R20 ZE ME 001FP10V ZE-AR 001SAR - ZE AR 0011CLP1				
DHITTON FACTOR: DESCRIPTION: UNITS:	VSIL FATRACT VG/1	ASIL EXTRACT UG/L	ASII EXTRACT UGZL	ASIL EXTRACT NG/L	ASH EXTRACT UG/1	ASH EXTRACT UG/L
*** INDRGANTES ***						
PP CAS NO COMPOU	NI)					
I BARTUM	182	196	228	317	2 18	330
6 CADMIUM 8 CHROMIUM	63		637 59		319	575 289
10 COPPER 11 TRON	274	177	484 52200	161	58	50 136000
12 LEAD 11 MANGANESE	85 909		10700 2740		169 1350	88 10 3560
15 MERCURY P 20 SODIUM	85600	0.85 72700	0 . 4 l 82800	1.0 68000	1150000	0.53 86200
21 7.INC	8810	20	82400	41	11900	82700

	NEMBER: N. FACTOR:	Z1 = ME-0010 02	\frac{1}{2}F = AH = 0.0 TD TH 5.0) Z1 = AH=0011 PTOX	ZE-AH-0015AR	ZI -AH 0011CLP1	7F - AH-0011CLP2
DESCRIP		ASH EXTRACT	\SH E\TRACT	ASIL EXTRACT	ASH FATRACT	ASH FATRACT	ASH EATRACT
*** GFO0	HEMICAL PARAMETERS ***						
PP (AS NO COMPOUND						
	TOC ·	NA	21.3	NA	20.8	NA	NA
	AMMON1A	0.27	0.27	0.51	4.11	0.32	0.44
	NITRATE	0.39	0.08	0.17	VA 40. 0.1	0.16	0.16
	ORTHO PHOSPHATE	<0.01	<0.01	0.50	<0.01	<0.01	1.99
	ORTHO THOSPHATE TOTAL ALKALINITY	<0.01 NA	<0.01 169		-		
	ORTHO PHOSPHATE	<0.01	<0.01	0.50 NA	<0.01 NA	<0.01 NA	1.99 NA
	ORTHO PHOSPHATE TOTAL ALKALINITY CHLORIDE	<0.01 NA 486	<0.01 169 448	0.50 NA 387	<0.01 NA NA NA 50000	<0.01 NA 419 1020 86	1.99 NA 470 1010 152000
	ORTHO PHOSPHATE TOTAL ALKALINITY CHLORIDE SULFATE	<0.01 NA 486 697	<0.01 169 448 161 47400 313000	0.50 NA 387 825 90600 2030000	<0.01 NA NA NA 50000 352000	<0.01 NA 419 1020 86 1360000	1.99 NA 470 1040 152000 2130000
	ORTHO PHOSPHATE TOTAL ALKALINITY CHLORIDE SULFATE ALUMENUM OXIDE X CALCIUM OXIDE X MAGNESIUM OXIDE X	<0.01 NA 486 697 1020000 45000	<0.01 169 448 161 47400 313000 115	0.50 NA 387 825 90600 2030000 100000	<0.01 NA NA NA 50000 352000 136	<0.01 NA 419 1020 86 1360000 61000	1.99 NA 470 1040 152000 2130000 116000
D-84	ORTHO PHOSPHATE TOTAL ALKALINITY CHLORIDE SULFATE ALUMENUM OXIDE % CALCIUM OXIDE %	<0.01 NA 486 697	<0.01 169 448 161 47400 313000	0.50 NA 387 825 90600 2030000	<0.01 NA NA NA 50000 352000	<0.01 NA 419 1020 86 1360000	1.99 NA 470 1040 152000 2130000

·

•

•

(ZEOO2) ASH EXTRACT

SAMPLE NUMBER: ZE-AH-002CO2 7F-AH-002DFH20 7F-AH-002EPTOX ZE-AH-002SAR 7E-AH-002TCLP1 ZF-AH-002TCLP2

DILUTION FACTOR:

DESCRIPTION:

ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT.

UNIS:

*** BASE/NEUTRALS ***

PP CAS NO COMPOUND

(7F002) ASH FATRACE

SAMPLE NUMBER: DILLHION FACTOR:

DESCRIPTION:

*** ACIDS *** PP CAS NO

ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT

UNITS:

COMPOUND

.... -......

SAMPLE NO	MHER:	71 AR 002C02	ZE AH 00°D1112	O 71 - AH 0021P10	A 71 AN 002SAR	ZE AH-0021CLE	T 7F AB-0024CLP2
BITUTION	LACTOR:						
DESCRIPTI	ON:	ASH EXTRACT	ASH FATRACT	ASH EXTRACE	ASH EXTRACT	ASH EVERACE	ASH FXTRACT
UNITS:		4.671	86/1	uc/i	UG/1	UG/1	16/1
*** INORG	ANICS ***						
PP CA	S NO COMPOUND						
1	BARTUM	170	190	175	108	161	219
6	CADMEUM	17		724		2.31	685
H	CHROMTUM			86			216
10	COPPER	181	123	5170	127	10	1030
11	IRON			19100			81500
12	LEAD	22		9640		88	6340
11	MANGANESE	618		4910		1180	3810
15	MERCURY		. 80	0.24	0.18		2.1
20	SODIUM	68700	61300	83600	6.3600	1400000	80100
2.1	ZINC	2450	35	57600	66	16300	54700

(7F002) ASH FATRACI

SAMPLE NUMBER DITUTION FACT		7E-AH 002C02	7F MI-002D1B20) ZE-AII 002FPTOX	/F-AH-002SAR	7F - ME 0021C1P1	ZE- AH-0021C1P2
DESCRIPTION: UNITS:		ASIL EXTRACT	ASH EXTRACT	ASH EXTRACT	ASH FATRACI	ASH FATRACE	ASH EXTRACT
*** GEOCHEMIC	'AL PARAMETERS ***	~ ~ 3 = ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					
PP CAS NO	O COMPOUND						
	TOC Ammonia	NA 0.28	16.3	NA O 20	17.8	NA NA	NA O
	NITRATE ORTHO PHOSPHATE	0.26 0.39 <0.01	0.30 0.09 <0.01	0.39 0.19 1.01	3.87 NA <0.01	0.32 0.12 <0.01	0.34 0.16 1.33
	TOTAL ALKALINITY CHLORIDE	NA 471	171 115	NA 481	NA NA	NA 460	NA 513
9	SULFATE ALUMINUM OXIDE % CALCIUM OXIDE %	635 920000	140 19600 364000	802 117000 2100000	NA 38100 389000	911 1340000	926 138000 2110000
88	MAGNESIUM OXIDE % POTASSIUM MONOXIDE % SILICON DIOXIDE %	41300 42600 19800	111 37700 1870	97600 69800 57300	128 41900 1250	54500 38400 9620	113000 61400 123000
	FDS	NA	1140	NA	NA	NA NA	NA

(7F003) ASH FXTRACT

SAMPLE NUMBER: ZE-AH 00 3 CO2 ZE-AH 00 3D HIZO ZE-AH 00 3SAR ZE-AH 00 3SAR ZE-AH-003TCLP1 ZE-AH-003TCLP2 DITUTION FACTOR.

DESCRIPTION: ASH ENTRACT ASH ENTRACT ASH ENTRACT ASH ENTRACT ASH ENTRACT UNITS:

*** BASE/NEUTRALS ***

PP CAS NO COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

20-03

(7E003) ASH EXTRACT

SAMPLE NUMBER:
DITUTION FACTOR:
DESCRIPTION
UNITS.

7F AH-003CO2 7F-AH-003D1H2O 7F-AH-003FP1OA 7F-AH D03SAR 7E-AH-003TCLP1 7F-AH-003TCLP2

ASIL ENTRACT. ASIL EXTRACT. ASIL EXTRACT. ASIL EXTRACT. ASIL EXTRACT. ASIL EXTRACT.

*** ACIDS ***

PP CAS NO COMPOUND

SAMPLE NU		ZF AH-003CO2	ZF -AH-003D111	20 ZE-AH-003FP10	X 7F-AH-003SAR	ZF - AH - 003 FCLP	1 ZE-AH-003TCLP2
DILUTION FACTOR: DESCRIPTION: UNITS:		ASH TXTRACT PG/T	ASH EXTRACT UG/L	ASH_EVTRACT UG/L	ASH EXTRACT UG/1.	ASH EXTRACT UG/L	ASH EXTRACT UG/L
*** [NOR(GANICS ***						
PP C/	AS NO COMPOUND						
4	BARIUM	178	128	206	330	458	384
6	CADMIUM	117		678		29	524
8	CHROM I UM			84			239
10	COPPER	112	134	2220	88	119	39
11	LRON	112		55300			162000
12	LEAD	4.5		7790			4110
14	MANGANESE	1560		2740		364	3970
15	MERCURY	6.3	0.96	0.59	0.64		0.27
20	SODEUM	79100	82700	80800	62200	1590000	85000
24	7.1 NC	9850	35	48000	42	222	56700

(ZEOO3) ASH EXTRACT

SAMPLE NUMBER:		ZE-4H-003CO2	/F-AH-003DTH20	ZE-AH-003EPTOX	ZE-AH-003SAR	ZE-AH-003TCLP1	ZE-AH-003TCLP2
DESCRIPTION: UNITS:		ASH EXTRACT	ASH FXTRACT	ASH EXTRACT	ASH FXTRACT	ASH EXTRACT	ASH EXTRACT
*** GEOCHEMICA	L PARAMETERS ***						
PP CAS NO	COMPOUND						
	тос	NA	17.8	NA	14.9	NA	NA
	AMMONI A	0.30	0.46	0.44	3.98	0.35	0.44
	NITRATE	0.41	0.17	0.19	NA	0.21	0.13
	ORTHO PHOSPHATE	<0.01	<0.01	0.95	<0.01	0.02	1.59
	TOTAL ALKALINITY	NA	162	NA	NA	NA	NA
	CHLORIDE	709	702	583	NA	818	693
	SULFATE	650	169	719	NA	891	935
_	ALUMINUM OXIDE %	51	27800	150000	50500	159	123000
P	CALCIUM OXIDE X	1200000	538000	2100000	475000	1710000	2200000
92	MAGNESIUM OXIDE %	36900	188	82400	170	37600	98900
13	POTASSIUM MONOXIDE %	57700	61200	57000	46400	59400	56900
	SILICON DIOXIDE X	31300	1170	65700	911	5050	123000
	TDS	NA	1690	NA	NA	NA	NA

(ZFOO4) ASH EXTRACT

SAMPLE NUMBER: 7E-AH-001CO2 7E-AH-001D1H20 7E-AH-001EPLOX ZE-AH-001SAR 7E-AH-001TCLP1 ZE-AH-004TCLP2
DESCRIPTION: ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT
DNITS:

*** BASE/NEUTRALS ***

PP CAS NO COMPOUND

(7F001) ASH FATRACI

COMPOUND

SAMPLE NUMBER: Z1-AH-001CO2 Z1-AH-004DH20 Z1-AH-004SAR ZE-AH-004SAR ZE-AH-004TCLP1 ZE-AH-004TCLP2 D11641ON FACTOR:
DESCRIPTION: ASH FATRACT
NO PARAMETERS DETECTED FOR THIS CATEGORY

*** ACIDS ***
PP CAS NO

(ZFOO4) ASH EXTRACT

SAMPLE 1	NUMBER: N. FACTOR:	71 AH 004C02	71 AH 001D1H20) ZE AII 001FP10	A NE AH OOTSAR	ZF-AH 0014CLP1	ZE-AH-004TCLP2
DESCRIPTION: UNITS:		ASH FATRACT UGZL	ASIE EXTRACT UGZI.	ASIC EXTRACT UG/T	ASH EVIRACI PG/I	ASH FATRACT UG/I	ASH EXTRACT UG/L
*** NOI	RGANICS ***						
PP ('AS NO COMPOUND						
ı	BARTUM	530	135	17.3	302	299	408
6	CADMIUM	32		499		198	169
H	CHRON1 UM			83			187
10 11	COPPER	186	325	1680	391	76	12
12	I RON LEAD	<i>e</i> 4		82000			122000
11	MANGANESE	69 857		15400	112	31	6590
15	MERCURY	837		2980		4060	3.360
20	SODIUM	2.1200	como	0.65	0.22		0.80
		74300	68900	74300	62400	1490000	71000
24	Z1NC	2680	91	53600	192	3790	49800

(ZEOOT) ASH EXTRACT

SAMPLE NUMBER:		ZF-AH 001002	/F - AH - 00 1DTH20	/F-AH-001FP10X	/E-AH-001SAR	ZF - AH- 00 LTCLP1	71 - AH-0011C1P2
DESCRIPTION: UNITS:		ASH FATRACI	ASH TATRACT	ASH EXTRACT	ASH FATRACI	ASH FAIRACT	ASH FYTRACT
*** GEOCHEMICA	J. PARAMETERS ***						
PP CAS NO	COMPOUND						
	TOC AMMON I A	NA O 20	23.3	NA O C I	24.9	NA O 16	NA O S O
	AMMONIA NITRATE ORTHO PHOSPHATE	0.38 1.23 <0.01	0.42 0.16 <0.01	0.61 0.22 0.74	4.03 NA <0.01	0.46 0.11 0.02	0.50 0.18 1.01
	TOTAL ALKALINITY CHLORIDE	NA 429	164 437	NA 392	NA NA	NA 477	NA 416
	SULFATE ALUMINUM OXIDE %	919	144 20500	926 134000	NA 1960	1230	1090 106000
P-96	CALCIUM OXIDE % MAGNESIUM OXIDE % POTASSIUM MONOXIDE %	1170000 11300 46800	377000 100 43800	2050000 103000 45200	473000 84 41200	1730000 57300 42000	2200000 106000 40800
•	STLICON DIOVIDE X TOS	26700 NA	2200 1120	61100 NA	2660 NA	10100 NA	124000 NA

(ZEOO5) ASIL EXTRACT

SAMPLE NOMBER: 7E-AH-005CO2 7E-AH-005DTH2O 7E-AH-005EPTOX 7E-AH-005TCLP4 7E-AH-005TCLP2
DESCRIPTION: ASH FATRACT ASH FATRACT ASH FATRACT ASH FATRACT ASH FATRACT ASH FATRACT

*** BASE/NEUTRALS ***

PP CAS NO COMPOUND

(ZEOO5) ASH EXTRACT

SAMPLE NUMBER: DILUTION FACTOR: DISCRIPTION: UNITS. ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT ASH EXTRACT

*** ACTDS ***

PP CAS NO COMPOUND

NO PARAMETERS DETECTED FOR THIS CATEGORY

7

(ZEOOS) ASH EXTRACT

SAMPLE NUMBER: DITUTION FACTOR: DESCRIPTION: UNITS:		ZF AH 005cO2	ZE AB 005CO2 - ZEAB 005D1H2O ZE-AB 005FP1OX ZEAB 005SAR - ZEAB 005TCLP1 ZE-AB-005TCL						
		ASH FATRACT UG/L -	ASH EXTRACT UG/I	ASH TATRACT UG/L	ASH EXTRACT UG/L	ASH FATRACT UG/L	ASH EXTRACT UG/L		
*** I NO!	RGANICS ***								
PP ('AS NO COMPOUND								
1	BARIUM	205	355	183	310	170	222		
(ı	CADMITUM	29		352		81	301		
A .	CHROMLUM			19			141		
10 11	COPPER TRON	76	133	3020 36600	117	5.0	16		
12	LEAD	31		7580	115	5.1	82300 6830		
11	MANGANESE	1010		3000	11.7	1090	3070		
15	MERCURY			*********	0.48	• • • • • • • • • • • • • • • • • • • •	0.27		
20	SODEUM	61400	58500	66200	5 3 2 0 0	1410000	66800		
21	ZINC	3250	65	48000	101	1860	36900		

(7F005) ASH FAIRACT

SAMPLE NUMBER: DITUTION FACTOR: DESCRIPTION: UNITS:		/E-AIF-005CO2 ASIF FATRACT	21 - AH - 005D1H20	ZE-AH-005EPTOA ASH FATRACT	ZE-AH-005SAR ASH EXTRACT	ZF-AH-00510 LP1 ASB EXTRACT	7F-AH-005TCLP2 ASH EXTRACT					
*** GEOCHEMICAL PARAMETERS ***												
PP CAS NO	COMPOUND											
	toc.	NA	16.6	NA	15.8	NA	NA					
	AMMONIA	0.24	0.20	0.36	3.72	0.21	0.26					
	NITRATE	0.14	0.16	0.18	NA	0.18	0.16					
	ORTHO PHOSPHATE	<0.01	<0.01	0.12	<0.01	0.02	0.75					
	TOTAL ALKALINITY	NA	234	NA	NA	NA	NA					
	CHLORIDE	341	317	328	NA	342	334					
	SULFATE	658	190	798	NA	964	883					
	ALUMINUM OXIDE X	52	4570	16800	3780		104000					
P 100	CALCIUM OXIDE %	914000	376000	1920000	361000	1350000	1990000					
75	MAGNESTUM OXTDE %	47800	100	74900	59	52900	89000					
8	POTASSIUM MONOXIDE %	38000	35800	37300	34400	34500	35500					
	STLICON DIOVIDE X	32 100	3990	46800	3770	12300	136000					
	FDS	NA	1160	NA	NA	NA	NA					

U.S. Environmental Protection Agency Region 5, Library (591-16) 230 S. Davit in Street, Room 1070 230 S. Davit in Street, Room 1070