United States Environmental Protection Agency Office of Air Quality
Planning and Standards
Research Triangle Park, NC 27711

EPA - 454/R-00-021a
April 2000

Air

©EPA

Hot Mix Asphalt Plants Kiln Dryer Stack Manual Methods Testing

Asphalt Plant A
Clayton, North Carolina
Volume 1 of 2

FINAL REPORT

EMISSIONS TEST AT AN ASPHALT CONCRETE PRODUCTION PLANT: ASPHALT PLANT "A" - CLAYTON, NORTH CAROLINA

VOLUME I OF II REPORT TEXT APPENDICES A & B

EPA Contract No. 68D70069 Work Assignment No. 2-09

Prepared for:

Mr. Michael L. Toney (MD-19)
Work Assignment Manager
SCGA, EMC, OAQPS
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711

September 1999 P-\1529\FINRPT\PLANT A

Submitted by

PACIFIC ENVIRONMENTAL SERVICES, INC. 5001 S. Miami Blvd., Suite 300 Post Office Box 12077 Research Triangle Park, NC 27709-2077 (919) 941-0333 FAX (919) 941-0234

U.S. Environmental Protection Agency Region 5, Library (PL-12J) 77 West Jackson Boulevard, 12th Flow Chicago, IL 60604-3590

DISCLAIMER

This document was prepared by Pacific Environmental Services, Inc. (PES) under EPA Contract No. 68D70069, Work Assignment No. 2-09. This document has been reviewed following PES' internal quality assurance procedures and has been approved for distribution. The contents of this document do not necessarily reflect the views and policies of the U.S. EPA. Mention of trade names does not constitute endorsement by the EPA or PES.

TABLE OF CONTENTS

VOLU	UME I		Page
1.0	INTR	ODUCTION	. 1-1
2.0	SUM	MARY OF RESULTS	. 2-1
	2.1 2.2	OXYGEN AND CARBON DIOXIDE MEASUREMENTS PCDDs/PCDFs MEASUREMENTS 2.2.1 Baghouse Inlet - Asphalt Production with RAP 2.2.2 Baghouse Outlet- Asphalt Production with RAP 2.2.3 Baghouse Outlet - Asphalt Production without RAP	. 2-1 . 2-4 . 2-8
	2.3	PARTICULATE MATTER AND METALS MEASUREMENTS 2.3.1 Baghouse Inlet - Asphalt Production with RAP 2.3.2 Baghouse Outlet- Asphalt Production with RAP 2.3.3 Baghouse Outlet - Asphalt Production without RAP	2-13 2-20
	2.4	DETERMINATION OF VISIBLE EMISSIONS	2-29
3.0	PROC	CESS DESCRIPTION	. 3-1
. 4.0	SAM	PLING LOCATIONS	. 4-1
	4.1 4.2	BAGHOUSE INLET SAMPLING LOCATION	
5.0	SAM	PLING AND ANALYSIS PROCEDURES	. 5-1
	5.1	LOCATION OF MEASUREMENT SITES AND SAMPLE/VELOCITY TRAVERSE POINTS	. 5-1
	5.25.3	DETERMINATION OF STACK GAS VOLUMETRIC FLOW RATE	. 5-1
	5.4	AND EMISSION CORRECTION FACTORS	
	5.5 5.6	DETERMINATION OF POLYCHLORINATED DIBENZO-P-DIOXINS AND POLYCHLORINATED DIBENZOFURANS	
	5.6 5.7	DETERMINATION OF PARTICULATE MATTER AND METALS DETERMINATION OF PLUME OPACITY	

TABLE OF CONTENTS (Concluded)

VOLU	IME I								P	Page
6.0				CE/QUALITY CO				• • • • • • •		6-1
	6.1	6.1.1 6.1.2 6.1.3 6.1.4	Baromet Tempera Pitot Tul Differen	ATION OF APPARATUS 6-1 arometers 6-1 emperature Sensors 6-1 itot Tubes 6-1 ifferential Pressure Gauges 6-3 ry Gas Meter and Orifice 6-3						
	6.2	6.2.1 6.2.2 6.2.3 6.2.4	Measure Velocity Flue Gas Moisture	SUREMENTS						6-3 6-5 6-5 6-5
	6.3	ANAL'	YSES							6-8
APPE	NDIX A	7	PROCE	SS DATA						
APPE	ndix e	3	RAW F	IELD DATA						
				Raw Field Data Raw Field Data						
VOLU	JME II									
APPE	NDIX C		ANALY	TICAL DATA						
	,	Appen	dix C.2	Analytical Data Analytical Data Analytical Data	Metho	od 23 PCDD	s/PCDFs			
APPE	NDIX I)	COMP	UTER SUMMAR	IES					
				Computer Summ						
APPE	ENDIX I	3	QA/QC	DATA AND CE	RTIFI	CATIONS				
APPE	ENDIX I	₹	FIELD	TESTING PART	ICIPA	NTS				

LIST OF TABLES

VOLUME I	Page
TABLE 2.1	EMISSIONS SAMPLING TEST LOG ASPHALT PLANT "A" - CLAYTON, NC
TABLE 2.2	PCDDs/PCDFs EMISSIONS SAMPLING AND INLET GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC
TABLE 2.3	PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC
TABLE 2.4	PCDDs/PCDFs CONCENTRATIONS AND 2378 TOXIC EQUIVALENT CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC
TABLE 2.5	PCDDs/PCDFs EMISSIONS SAMPLING AND STACK GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC
TABLE 2.6	PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

LIST OF TABLES (Continued)

VOLUME I		Page
TABLE 2.7	PCDDs/PCDFs STACK GAS CONCENTRATIONS AND 2378 TOXIC EQUIVALENT STACK GAS CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN ROTARY DRUM DRYER BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC	2-11
TABLE 2.8	PCDDs/PCDFs EMISSIONS SAMPLING AND STACK GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "A" - CLAYTON, NC	2-12
TABLE 2.9	PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "A" - CLAYTON, NC	. 2-14
TABLE 2.10	PCDDs/PCDFs CONCENTRATIONS AND 2378 TOXIC EQUIVALENT CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT CONCRETE PRODUCTION WITHOUT RAP ASPHALT PLANT "A" - CLAYTON, NC	. 2-15
	PARTICULATE/METALS EMISSIONS SAMPLING AND INLET GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC	. 2-16
TABLE 2.12	PARTICULATE MATTER CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON NC	. 2-17

LIST OF TABLES (Continued)

VOLUME I	<u>Pag</u>	<u>e</u>
TABLE 2.13	METALS CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC	8
TABLE 2.14	PARTICULATE/METALS EMISSIONS SAMPLING AND STACK GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC	21
TABLE 2.15	PARTICULATE MATTER CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC	22
TABLE 2.16	METALS CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC	23
TABLE 2.17	PARTICULATE/METALS EMISSIONS SAMPLING AND STACK GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "A" - CLAYTON, NC	25
TABLE 2.18	PARTICULATE MATTER CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "A" - CLAYTON, NC	26
TABLE 2.19	METALS CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER-BAGHOUSE OUTLET ASPHALT PRODUCTIONWITHOUT RAP ASPHALT PLANT "A" - CLAYTON NC	27

LIST OF TABLES (Continued)

VOLUME I	Page
TABLE 3.1	PLANT OPERATING CONDITIONS ASPHALT PLANT "A" - CLAYTON, NC
TABLE 3.2	ASPHALT MIX SPECIFICATIONS ASPHALT PLANT "A" - CLAYTON, NC
TABLE 3.3	FUEL SPECIFICATIONS ASPHALT PLANT "A" - CLAYTON, NC
TABLE 3.4	SPECIFICS OF PLANT OPERATION ASPHALT PLANT "A" - CLAYTON, NC
TABLE 5.1	SAMPLING LOCATIONS, TEST PARAMETERS, AND TEST METHODS SUMMARY ASPHALT PLANT "A"-CLAYTON, NC
TABLE 6.1	SUMMARY OF TEMPERATURE SENSOR CALIBRATION DATA ASPHALT PLANT "A" - CLAYTON, NC 6-2
TABLE 6.2	SUMMARY OF PITOT TUBE DIMENSIONAL DATA ASPHALT PLANT "A" - CLAYTON, NC
TABLE 6.3	SUMMARY OF DRY GAS METER AND ORIFICE CALIBRATION DATA ASPHALT PLANT "A" - CLAYTON, NC
·	SUMMARY OF METHOD 23/ METHOD 29 FIELD SAMPLING QA/QC DATA ASPHALT PLANT "A" - CLAYTON, NC
TABLE 6.5	SUMMARY OF METHOD 23 STANDARDS RECOVERY EFFICIENCIES ASPHALT PLANT "A" - CLAYTON, NC
TABLE 6.6	SUMMARY OF METHOD 29 ANALYSIS QC DATA LAB CONTROL SPIKES ASPHALT PLANT "A" - CLAYTON, NC

LIST OF TABLES (Concluded)

VOLUME I		Page
TABLE 6.7	SUMMARY OF METHOD 29 ANALYSIS QC DATA POST DIGESTION MATRIX SPIKES RUN NO. S-M29-0-1 ASPHALT PLANT "A" - CLAYTON, NC	6-11
TABLE 6.8	METHOD 29 DUPLICATE ANALYSIS QC DATA RUN NO. S-M29-0-2 ASPHALT PLANT "A" - CLAYTON, NC	6-12
TABLE 6.9	METHOD 29 SERIAL DILUTION ANALYSIS QC DATA ASPHALT PLANT "A" - CLAYTON, NC	6-13
TABLE 6.10	METHOD 29 METHOD BLANK ANALYSIS QC DATA ASPHALT PLANT "A" - CLAYTON, NC	6-14
TABLE 6.11	METHOD 29 FIELD AND REAGENT BLANK ANALYSIS QC DATA ASPHALT PLANT "A" - CLAYTON, NC	6-15
TABLE 6.12	METHOD 29 MERCURY SPIKE ANALYSIS QC DATA ASPHALT PLANT "A" - CLAYTON, NC	6-16
TABLE 6.13	METHOD 29 MERCURY BLANK ANALYSIS QC DATA ASPHALT PLANT "A" - CLAYTON, NC	6-18

LIST OF FIGURES

VOLUME I	Pag	<u>ze</u>
Figure 1.1	Key Personnel and Responsibility for Testing - Asphalt Plant "A", Clayton, NC	-3
Figure 1.2	Sampling Locations - Asphalt Plant "A", Clayton, NC	-4
Figure 4.1	Baghouse Inlet Sampling Location - Asphalt Plant "A", Clayton, NC 4-	- 3
Figure 4.2	Baghouse Inlet Point Locations - Asphalt Plant "A", Clayton, NC 4	-4
Figure 4.3	Baghouse Outlet Sampling Location - Asphalt Plant "A", Clayton, NC 4	-5
Figure 4.4	Baghouse Outlet Point Locations - Asphalt Plant "A", Clayton, NC 4	-6
Figure 5.1	Method 23 Sample Train Schematic - Asphalt Plant "A" Clayton, NC 5	-3
Figure 5.2	Method 29 Sample Train Schematic - Asphalt Plant "A", Clayton, NC 5	-6
Figure 5.3	Method 29 Sample Recovery Scheme (Sample Fractions 1-4) Asphalt Plant "A", Clayton, NC	-7
Figure 5-4	Method 29 Sample Recovery Scheme (Sample Fraction 5) Asphalt Plant "A", Clayton, NC	-8

1.0 INTRODUCTION

The United States Environmental Protection Agency (USEPA) is investigating the asphalt concrete production source category to identify and quantify emissions of hazardous air pollutants (HAPs) from rotary aggregate dryers used at these facilities. There are two types of rotary drum dryers in use at asphalt concrete production plants; parallel flow, wherein the direction of travel of the drying aggregate is the same as the direction of travel of the burner exhaust gases, and counter flow, wherein the aggregate and exhaust gas flows are opposite to each other. On May 7, 1997, a work assignment was issued by EPA's Office of Air Quality Planning and Standards, Emissions Measurement Center, (OAQPS, EMC) to Pacific Environmental Services, Inc. (PES), of Research Triangle Park, North Carolina. The work assignment specified that emissions testing for HAPs be conducted on one of each type of aggregate dryer. Two candidate facilities were therefore identified and selected as host facilities for the testing program.

This document describes the test procedures, results, and quality assurance procedures that were employed during the testing of a counter flow rotary drum aggregate dryer, which was located at Asphalt Plant "A" in Clayton, North Carolina. The facility was identified as a candidate by EPA due to its location close to EPA facilities in Research Triangle Park, North Carolina, and because it is typical of counter flow rotary dryers in the asphalt production source category. The results of the emissions testing program conducted at a facility employing a parallel flow rotary aggregate dryer are presented in a separate report.

The scope of the work assignment was to plan and conduct an air emissions testing program to quantify emission rates of HAPs from the rotary aggregate drier located at Asphalt Plant "A". The planning and testing phase of the program was conducted under EPA Contract No. 68D20162, Work Assignment No. 4-13. Because the period of performance of the contract expired on September 30, 1997, PES was issued a second work assignment to complete the data reduction, a portion of the analysis, and the preparation of the draft report, which was completed under EPA Contract No. 68D70002, Work Assignment No. 0-005. This final report incorporates comments from EPA and the National Asphalt Pavement Association, and includes a process description and process data collected by EPA's Emission Standards Division (ESD) contractor. The final report was prepared under EPA Contract No. 68D70069, Work Assignment No. 2-09.

The primary objective of the test program was to obtain data on the controlled and uncontrolled emissions of polychlorinated dibenzo-p-dioxins (PCDDs or "dioxins") and polychlorinated dibenzofurans (PCDFs or "furans"), particulate matter (PM), and metallic HAP and non-HAP compounds from rotary drum dryers. A secondary objective of the test program was to observe and record plume opacity. The data will be used by ESD to determine whether

HAPs are emitted at levels that would justify regulation under the Maximum Achievable Control Technology (MACT) program.

The test program at Asphalt Plant "A" was completed during the week of August 18, 1997. The basic test methods that were employed were EPA Test Methods 1 (sample point location), 2 (gas velocity), 3 (gas molecular weight), 4 (gas moisture volume content), 5 (particulate matter concentration), 9 (plume opacity), 23 (dioxin and furan concentration) and 29 (metals concentrations). PM concentrations were determined by using tared filters in the Method 29 sampling train. The work assignment issued by EMC called for testing to be conducted during the production of asphalt with Reclaimed Asphalt Pavement, or RAP. At the request of EPA, an additional sampling run was conducted while the makeup material consisted solely of virgin aggregate. The results of all four of the test runs are presented in Section 2.0 of this report. The work assignment also specified testing to quantify both controlled and uncontrolled emissions. However, during the initial stages of testing of the uncontrolled dryer exhaust, sampling had to be discontinued due to extremely high grain loading conditions which far exceeded the sampling capacity of the Method 23 and Method 29 sampling trains. After telephone consultations with personnel from ESD and EMC, testing activities of the uncontrolled emissions were deleted from the scope of work.

PES used three subcontractors to assist in the completion of this testing effort. Deeco, Inc. (DEECO) of Raleigh, North Carolina; Triangle Laboratories, Inc. (TLI) of Durham, North Carolina, and Atlantic Technical Services, Inc. (ATS) of Chapel Hill, North Carolina. DEECO provided source testing support at the inlet locations (prior to cancellation of these testing activities), visual emissions observations of controlled emissions, and sample recovery support. TLI provided analytical services for the quantification of PCDDs/PCDFs and metals in the collected samples, and ATS provided on-site sampling support as well as support during preparation of the site test plan, draft report and calculation of the emissions test results.

The test program organization and major lines of communication are presented in Figure 1.1. The PES Project Manager communicated directly with the EPA Work Assignment Manager (WAM) and coordinated all of the on-site testing activities. The sampling locations at Asphalt Plant "A" are shown in Figure 1.2.

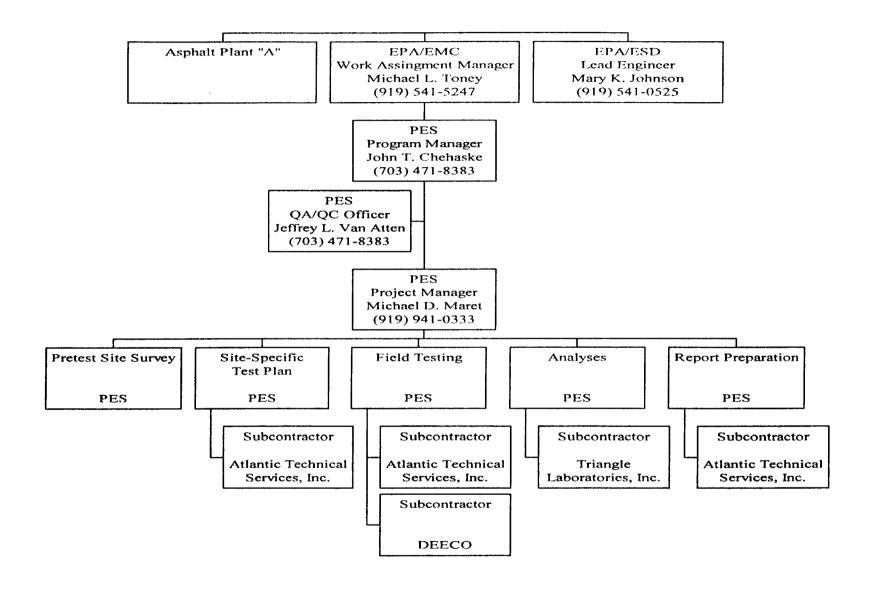


Figure 1.1 Key Personnel and Responsibility for Testing - Asphalt Plant "A", Clayton, NC

Figure 1.2 Sampling Locations - Asphalt Plant "A", Clayton, NC

2.0 SUMMARY OF RESULTS

This section summarizes the results of the testing program at the Asphalt Plant "A". The following pages present the times and durations of each of the sampling runs that were conducted, the sampling parameters during each run, the effluent gas parameters, and the concentrations and mass emission rates of the target HAPs. Sampling of emissions was conducted on three consecutive days from August 19, 1997 through August 21, 1997, during which time four sampling runs for both dioxins and furans (PCDDs/PCDFs) and metals were conducted. Table 2.1 presents the "Emissions Test Log" which summarizes clock times, target pollutants, and downtime due to filter and port changes for each of the Method 23 and Method 29 sampling runs attempted. The results of the PCDDs/PCDFs sampling during asphalt production with RAP are presented in Tables 2.2 through 2.7, and the results of the PCDDs/PCDFs sampling conducted during production with virgin aggregate are presented in Tables 2.8 through 2.10. The results of the particulate matter (PM) and metals sampling runs conducted during RAP addition are presented in Tables 2.11 through 2.16, and the results of the PM and metals runs conducted during asphalt production with virgin aggregate are presented in Tables 2.17 through 2.19.

2.1 OXYGEN AND CARBON DIOXIDE MEASUREMENTS

Concurrent with the Method 23 and Method 29 sampling at the baghouse outlet, bag samples of the effluent gas were collected and analyzed using an Orsat® apparatus to determine oxygen (O₂) and carbon dioxide (CO₂) concentrations for the purpose of calculating stack gas molecular weight. The O₂ and CO₂ concentrations presented for the first sampling run are the average of the O₂ and CO₂ concentrations measured during runs two and three. The diluent concentrations are presented in this manner because the results of the analyses from the first run were misplaced during the field testing portion of the test program and were not recovered. The diluent concentrations measured during the second and third runs should be representative of the concentrations during the first run, because the operating conditions were essentially unchanged.

2.2 PCDDs/PCDFs MEASUREMENTS

PCDDs/PCDFs results are presented as 1) actual concentrations and mass emission rates, 2) concentrations adjusted to 7 % O₂, and 3) concentrations adjusted to 7 % O₂ and 2378 tetrachlorinated dibenzo-p-dioxin (TCDD) toxic equivalent basis. Adjustment of the congeners to a 2378 toxic equivalent basis was accomplished using the Toxic Equivalency Factor (TEF) values developed by the NATO Committee on the Challenges of Modern Society, August 1988.

TABLE 2.1

EMISSIONS SAMPLING TEST LOG
ASPHALT PLANT "A" - CLAYTON, NC

Run ID	Date	Target Pollutant	Run Time (24-hr clock)	Down Period(s)	Comment
Baghouse Inl	et				
S-M23-I-1*	8/19/97	PCDDs/PCDFs	0915-1010	0930-1005	Probe & filter plug
S-M29-I-1*	8/19/97	PM & Metals	0915-1010	0930-1005	Probe & filter plug
Baghouse Ou	ıtlet				
S-M23-O-1	8/19/97	PCDDs/PCDFs	0915-1456	0930-1104	Inlet sampling issues
S-M29-O-1	8/19/97	PM & Metals	0915-1454	0930-1104	Inlet sampling issues
S-M23-O-2	8/20/97	PCDDs/PCDFs	0822-1240	0902-0904 0946-0952 1031-1042 1114-1119 1201-1206	Port change Port change Port change Port change Port change
S-M29-O-2	8/20/97	PM & Metals	0822-1240	0904-0909 0946-0951 1031-1036 1114-1119 1200-1205	Port change Port change Port change Port change Port change
S-M23-O-3	8/20/97	PCDDs/PCDFs	1405-1730	1447-1452 1527-1529 1604-1613 1648-1655	Port change Port change Port change Port change
				Run stopped du	e to lightning
S-M29-O-3	8/20/97	PM & Metals	1405-1735	1447-1452 1529-1534 1613-1618 1655-1700	Port change Port change Port change Port change
				Run stopped du	e to lightning

TABLE 2.1 (Concluded)

EMISSIONS SAMPLING TEST LOG ASPHALT PLANT "A" - CLAYTON, NC

Run ID	Date	Target Pollutant	Run Time (24-hr clock)	Down Period(s)	Comment
S-M23-O-4	8/21/97	PCDDs/PCDFs	0741-1148	0821-0823 0903-0905 0945-0948 1028-1030 1110-1113	Port change Port change Port change Port change Port change
S-M29-O-4	8/21/97	PM & Metals	0741-1153	0823-0828 0905-0910 0948-0953 1030-1035 1113-1118	Port change Port change Port change Port change Port change

^{*} Test runs were aborted due to high grain loading conditions at the baghouse inlet sampling location. Subsequent test runs canceled.

The Method 23 sample fractions consisted of a sample train front-half solvent rinse, a particulate filter, a back-half solvent rinse, and an XAD®-2 sorbent resin module. During analysis, each of the sample fractions was extracted, concentrated, combined, and analyzed using a Gas Chromatograph with a Mass Spectrometer detector (GC/MS), according the procedures outlined in Method 23. During analysis, the combined sample extract was separated with a DB-5 capillary column. Where the results of that analysis indicated the presence of 2378 TCDF congeners, the analysis was repeated using a DB-225 capillary column so that the TCDF congeners could be more readily separated and quantified.

The results of the analyses indicated the presence of several congeners that were qualified as Estimated Maximum Possible Concentrations, or EMPCs. From time to time during the Method 23 analyses, a peak elutes at the position expected for a particular congener, but the peak fails validation based on the theoretical split of chlorine isotopes. That is to say that the number of Cl³⁵ isotopes and the number of Cl³⁷ isotopes attached to the PCDDs/PCDFs congeners should agree with the Cl³⁵/Cl³⁷ ratio found in nature. For each congener, this ratio must agree within 15%. If the mass ratio of chlorine isotopes does not agree with the natural chlorine isotope ratio, then the peak is flagged as an EMPC.

The values presented as "Total PCDDs" are the sum of the "12346789 OCDD" polychlorinated dibenzo-p-dioxin and all of the dioxins labeled "Total"; "Total PCDFs" values are the sum of the "12346789 OCDF" polychlorinated dibenzofuran and all of the furans labeled

"Total". "Total PCDDs + Total PCDFs" values are the sum of the "Total PCDDs" and "Total PCDFs" values. Values that have been qualified as being EMPC have been included in the sums. Concentrations and emission rates based on or including EMPC values are denoted by braces ({ }).

2.2.1 Baghouse Inlet - Asphalt Production with RAP

Table 2.2 summarizes the PCDDs/PCDFs emissions sampling and stack gas parameters at the baghouse inlet. For reasons stated previously, only one sampling run was conducted at this location. Sampling was aborted approximately 10 minutes into the sample run when the isokinetic sampling rate could not be maintained due to blockage of the sampling nozzle and the probe liner with particulate matter. Sampling was halted at both the inlet and the outlet locations, the sample train was disassembled, and large amounts of particulate matter were removed from the sample nozzle, glass liner, and front half of the filter housing into a precleaned glass sample jar. The sample train was then reassembled, leak checked, and the attempt was made to continue sampling. After approximately 10 more minutes of sampling, the sample train plugged again, and the decision was made by the EPA WAM to cancel testing of the uncontrolled dryer emissions.

Although the test cannot be considered to be valid due to the low sample volume of 10.94 dry standard cubic feet (dscf), which is equivalent to 0.310 dry standard cubic meters (dscm), PES, at the direction of EPA, recovered the sample fractions and submitted them for analysis by the subcontracting laboratory. The inlet gas temperature was 230°F and contained 5.3% by volume CO₂, 13.1% by volume O₂, and 26.5% by volume moisture. The inlet gas volumetric flow rate was 30,119 actual cubic feet per minute (acfm) which is equivalent to 16,819 dry standard cubic feet per minute (dscfm) or 476.3 dry standard cubic meters per minute (dscmm).

Table 2.3 presents the PCDDs/PCDFs concentrations of the baghouse inlet gas stream. The concentration of total PCDDs was 151 nanograms per dry standard cubic meter (ng/dscm), and the concentration of total PCDFs was 2.9 ng/dscm. The concentration of total PCDDs/PCDFs was 154 ng/dscm. The total PCDDs mass emission rate was 4,305 micrograms per hour (μ g/hr) and the total PCDFs mass emission rate was 83.9 μ g/hr. The mass emission rate of total PCDDs/PCDFs was 4,389 μ g/hr.

The PCDDs/PCDFs 2378 toxic equivalent concentrations at the baghouse inlet are presented in Table 2.4. Each PCDDs/PCDFs congener has been corrected to a reference O₂ concentration of 7%, and then multiplied by the appropriate NATO 2378 TCDD toxic equivalent factor. Because the measured oxygen concentration was 13.1% by volume, the corrected concentrations are greater than the actual concentrations. The concentration of total PCDDs was 268 ng/dscm, corrected to 7% O₂ and the concentration of total PCDFs was 5.23 ng/dscm corrected to 7% O₂, therefore the total PCDDs/PCDFs concentration was 274 ng/dscm, corrected to 7% O₂. The total PCDDs concentration was 0.398 ng/dscm corrected to 7% O₂ and 2378-TCDD equivalents, and the total concentration of PCDFs was 0.143 ng/dscm corrected to 7% O₂ and 2378-TCDD equivalents. The concentration of total PCDDs/PCDFs corrected to 7%

TABLE 2.2 PCDDs/PCDFs EMISSIONS SAMPLING AND INLET GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M23-I-1
Date	8/19/97
Time	0915-1010
Total Sampling Duration, minutes	20
Average Sampling Rate, dscfm ^a	0.55
Sample Volume:	
dscf ^b	10.94
dscm ^c	0.310
Inlet Gas Temperature, °F	230
O ₂ Concentration, % by volume	13.1
CO ₂ Concentration, % by volume	5.3
Moisture, % by volume	26.5
Inlet Gas Volumetric Flow Rate:	
acfm ^d	30,119
dscfm ^a	16,819
dscmm Isokinetic Sampling Ratio, %	476.3
	77.0

^a Dry standard cubic feet per minute at 68°F and 1 atm ^b Dry standard cubic feet at 68°F and 1 atm

[°] Dry standard cubic meters at 20°C and 1 atm

d Actual cubic feet per minute

^{*} Dry standard cubic meters per minute at 20°C and 1 atm

TABLE 2.3

PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

CONGENER	CONCENTRATION ^a ng/dscm, as measured	EMISSION RATE $^{ extsf{b}}$ μ g/hr		
	S-M23-I-1	S-M23-I-1		
Dioxins				
2378 TCDD	{0.0129}	{0.369}		
Total TCDD	0.161	4.61		
12378 PeCDD	0 0161	0.461		
Total PeCDD	0 226	6 46		
123478 HxCDD	0.0646	1.84		
123678 HxCDD	0.129	3.69		
123789 HxCDD	0 161	4.61		
Total HxCDD	1.45	41.5		
1234678 HpCDD	2 32	66.4		
Total HpCDD	5.16	148		
Octa CDD	144	4,105		
Total CDD	151	4,305		
Furans	(0.0646)	{1.84}		
2378 TCDF	{0.0646}	12.9		
Total TCDF	0.452	0.738		
12378 PeCDF	0.0258	1.84		
23478 PeCDF	0.0646	11.1		
Total PeCDF	0.387	5.53		
123478 HxCDF	0.194	1.84		
123678 HxCDF	0.0646	1		
234678 HxCDF	{0.0646}	{1.84} 0.646		
123789 HxCDF	0.0226	17.5		
Total HxCDF	0.613	17.5		
1234678 HpCDF	0.387			
1234789 HpCDF	0.129	3.69		
Total HpCDF	0.968	27.7		
Octa CDF	0.516	14.8		
Total CDF	2.94	83.9		
Total PCDDs + PCDFs	154	4,389		

Nanogram per dry standard cubic meter at 20°C and 1 atm.

b Micrograms per hour.

^{ } Estimated Maximum Possible Concentration. EMPC values are counted in totals and averages.

TABLE 2.4

PCDDs/PCDFs CONCENTRATIONS AND 2378 TOXIC EQUIVALENT CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

CONGENER	CONCENTRATION ng/dscm, adjusted to 7% O ₂	m, adjusted to 2378-TCDD ^b ng/dscn	
	S-M23-I-1	Equivalent Factor	S-M23-I-1
Dioxins			
2378 TCDD	{0.0230}	1.00	{0.0230}
Total TCDD 12378 PeCDD	0.288 0.0288	0.500	0.0144
Total PeCDD 123478 HxCDD	0.403 0.115	0.100	0.0115
123478 HxCDD	0.230	0 100	0.0230
123789 HxCDD	0.288	0.100	0.0288
Total HxCDD	2.59		
1234678 HpCDD	4.14	0.010	0.0414
Total HpCDD	9.20		
Octa CDD	256	0.001	0.256
Total PCDD	268		{0.398}
<u>Furans</u>			
2378 TCDF	{0.115}	0.100	{0.0115}
Total TCDF	0.805 0.0460	0.050	0.00230
12378 PeCDF 23478 PeCDF	0.0460	0.500	0.00230
Total PeCDF	0.690	0.500	0.0373
123478 HxCDF	0.345	0.100	0.0345
123678 HxCDF	0.115	0.100	0.0115
234678 HxCDF	{0.115}	0.100	{0.0115}
123789 HxCDF	0.0403	0.100	0.00403
Total HxCDF	1.09		
1234678 HpCDF	0.690	0.010	0.00690
1234789 HpCDF	0.230	0.010	0.00230
Total HpCDF	1.73		1
Octa CDF	0.920	0.001	0.000920
Total CDF	5.23		{0.143}
Total PCDDs + PCDFs	274		{0.541}

Nanogram per dry standard cubic meter adjusted to 7% oxygen at 20°C and 1 atm.

North Atlantic Treaty Organization, Committee on the Challenges of Modern Society. Pilot study on International Information Exchange on Dioxins and Related Compounds: International Toxicity Equivalency Factor (I-TEF) Methods of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds. Report No. 176, August 1988.

Estimated Maximum Possible Concentration. EMPC values are counted in totals and averages.

O₂ and 2378-TCDD equivalents at the baghouse inlet gas stream was 0.541 ng/dscm. The reader is reminded that assumptions made on the basis of the results of testing at inlet location should be made with care, due to the low sample volume and because only one sampling run was conducted at the inlet location instead of the three normally preferred.

2.2.2 Baghouse Outlet - Asphalt Production with RAP

PES conducted three Method 23 sampling runs at the baghouse outlet during the production of asphalt concrete with RAP. Table 2.5 summarizes the PCDDs/PCDFs sampling and exhaust gas parameters. Each sampling run was 240 minutes in duration, with the exception of the third test run which was 200 minutes. The third test run was stopped early at the direction of the EPA WAM due to storms and lightning in the vicinity of the test location. The (3-run) average sample volume was 153.390 dscf or 4.344 dscm. The (3-run) average stack gas temperature was 206°F and contained 5.3 % CO₂ by volume, 13.1 % O₂ by volume, and 21.6% moisture by volume. The (3-run) average stack gas volumetric flow rate was 36,596 acfm or 22,533 dscfm or 638.1 dscmm.

Table 2.6 presents the PCDDs/PCDFs concentrations and emission rates at the baghouse exhaust. The (3-run) average concentration of total PCDDs was 0.127 ng/dscm, and the (3-run) average concentration of total PCDF in the stack gas was 0.0796 ng/dscm. The (3-run) average concentration of total PCDDs/PCDFs was 0.207 ng/dscm. These values corresponded to average emission rates of 4.69 μ g/hr for total PCDDs, 3.04 μ g/hr for total PCDFs, and 7.72 μ g/hr for total PCDDs/PCDFs compounds.

Table 2.7 presents the PCDDs/PCDFs concentrations adjusted to a reference diluent concentration of 7% O₂. Since the oxygen concentration of the effluent gas was greater than 7% for every sampling run, the adjusted PCDDs/PCDFs values are greater than the actual values. The (3-run) average adjusted concentration of total PCDDs was 0.227 ng/dscm @ 7% O₂, the (3-run) average adjusted concentration of total PCDFs was 0.142 ng/dscm @ 7% O₂, and the (3-run) average adjusted concentration of total PCDDs/PCDFs was 0.369 ng/dscm @ 7% O₂. Also presented in Table 2.7 are the PCDDs and PCDFs concentrations at 7 % O₂, adjusted to a toxicity equivalent to that of 2378 TCDD. The (3-run) average concentration of PCDDs was 0.000240 ng/dscm when presented on a 2378-TCDD toxic equivalent basis, the (3-run) average concentration of PCDFs was 0.00590 ng/dscm when presented on a 2378-TCDD toxic equivalent basis, and the concentration of total PCDDs/PCDFs compounds was 0.00830 ng/dscm, corrected to a 2378-TCDD toxic equivalent basis, at a reference diluent concentration of 7% O₂.

2.2.3 Baghouse Outlet - Asphalt Production without RAP

At the request of EPA, PES conducted one test run at the baghouse outlet during the production of asphalt concrete without the addition of RAP. Table 2.8 summarizes the PCDDs/PCDFs emissions sampling. The total sampling time for the test run was 240 minutes. The sample volume was 165.621 dscf or 4.690 dscm. The stack gas temperature was 180 °F and contained 3.2 % CO₂, 10.8 % O₂, and 18.9 % moisture. The stack gas volumetric flow rate was 37,027 acfm or 24,580 dscfm or 696.0 dscmm.

TABLE 2.5

PCDDs/PCDFs EMISSIONS SAMPLING AND STACK GAS PARAMETERS
ROTARY DRUM DRYER - BAGHOUSE OUTLET
ASPHALT PRODUCTION WITH RAP
ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M23-O-1	S-M23-O-2	S-M23-O-3	Average
Date	8/19/97	8/20/97	8/20/97	
Time	0915-1456	0822-1240	1405-1730	
Sampling Duration, minutes	240	240	200	227
Average Sampling Rate, dscfm ^a	0.524	0.774	0.743	0.680
Sample Volume:				
dscf b	125.786	185.768	148.617	153.390
dscm ^c	3.562	5.260	4.208	4.344
Stack Gas Temperature,°F	185	223	209	206
O ₂ Concentration, % by volume	13.1	13.1	13.1	13.1
CO ₂ Concentration, % by volume	5.3	5.5	5.1	5.3
Moisture, % by volume	18.4	24.1	22.4	21.6
Stack Gas Volumetric Flow Rate:				
acfm ^d	30,291	41,402	38,097	36,596
dscfm²	20,210	24,166	23,222	22,533
dscmm ^e	572.3	684.3	657.6	638.1
Isokinetic Sampling Ratio, %	94.6	106.8	106.7	102.7

^{*} Dry standard cubic feet per minute at 68°F and 1 atm

^b Dry standard cubic feet at 68°F and 1 atm

[°] Dry standard cubic meters at 20°C and 1 atm

^d Actual cubic feet per minute at stack conditions

^e Dry standard cubic meters per minute at 20°C and 1 atm

TABLE 2.6

PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

CONGENER	CONCENTRATION ang/dscm, as measured			EMISSION RATE ^b μg/hr				
	S-M23-O-1	S-M23-O-2	S-M23-O-3	Average	S-M23-O-1	S-M23-O-2	S-M23-O-3	Average
<u>Dioxins</u>								
2378 TCDD	ND	ND	{0 000713}	{0 000238}	ND	ND	{0.0281}	{0.00938}
Total TCDD	0 00197	0.00380	0 00238	0 00271	0.0675	0 156	0.0938	0 106
12378 PeCDD	ND	ND	0 00119	0 000396	ND	ND	0 0469	0.0156
Total PeCDD	{0 0112}	0.00570	0 00713	{0.00802}	{0.386}	0.234	0 281	{0.300}
123478 HxCDD	ND	ND	0 00190	0 00634	ND	ND	0.0750	0.0250
123678 HxCDD	0.00281	{0.00380}	0.00475	{0 00379}	0.0964	{0.156}	0.188	{0.147}
123789 HxCDD	0.00562	ND	{0 00238}	{0 00266}	0.193	ND	{0.0938}	{0 0955}
Total HxCDD	0.0337	0 0152	0 0356	0 0282	1 16	0.624	1.41	1.06
1234678 HpCDD	0.0168	{0.00760}	0 0143	{0 0129}	0 578	{0.312}	0 563	{0 484}
Total HpCDD	0.0281	0.00760	0 0143	0 0166	0 964	0.312	0.563	0 613
Octa CDD	0 149	0 0361	0 0309	0 0719	5.11	1.48	1.22	2 60
Total PCDD	{0.224}	0 0684	0 0903	0 127	{7 68}	2 81	3 56	4.69
Furans					ļ			
2378 TCDF	{0.00225}	ND	0 00475	{0 00233}	{0 0771}	ND	0 188	{0.0882}
Total TCDF	0.00842	0 00760	0 00713	0 00772	0.289	0.312	0 281	0.294
12378 PeCDF	{0.00168}	ND	0 00166	{0 00112}	{0.0578}	ND	0 066	{0.0412}
23478 PeCDF	{0.00281}	ND	0.00238	{0.00173}	{0.0964}	ND	0.0938	{0 063}
Total PeCDF	0 0140	ND	0 0143	0 00943	0 482	ND	0.563	0.348
123478 HxCDF	0 0112	0.00760	0.0143	0 0110	0.386	0.312	0 563	0 420
123678 HxCDF	0 00281	0.00190	0 00475	0 00315	0.0964	0.0781	0 188	0.121
234678 HxCDF	0.00562	0.00380	0 00475	0 00472	0.193	0.156	0 188	0.179
123789 HxCDF	ND	ND	ND	0.00	ND	ND	ND	0.00
Total HxCDF	0 0337	0 0209	0.0404	0 0317	1.16	0.859	1.59	1 20
1234678 HpCDF	{0 0197}	0 0133	0 0214	{0.0181}	{0 675}	0.546	0.844	{0.688}
1234789 HpCDF	0 0112	0 00380	{0.00713}	{0.00739}	0.386	0.156	{0.281}	{0.274}
Total HpCDF	0 0112	0.0228	0.0214	0 0185	0.386	0 937	0.844	0.722
Octa CDF	0.0112	0.0114	0.0143	0 0123	0 386	0 468	0.563	0 472
Total PCDF	0 0786	0 0627	0.0974	0.0796	2.70	2 58	3.84	3.04
Total PCDD +								
PCDF	{0.302}	0.131	0.188	{0.207}	{10.4}	5.39	7.41	{7.72}

Nanogram per dry standard cubic meter at 20°C and 1 atm.

b Micrograms per hour.

ND Non Detectable - Results are below target analyte detection limits. ND values are counted as zero in totals and averages.

^{ } Estimated Maximum Possible Concentration. EMPC values are counted in totals and averages.

TABLE 2.7

PCDDs/PCDFs STACK GAS CONCENTRATIONS AND 2378 TOXIC EQUIVALENT STACK GAS CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN ROTARY DRUM DRYER BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

	ng/d		FRATION* ed to 7 percei	nt O ₂	OD TEF	2378 TOXIC EQUIVALENTS ng/dscm, adjusted to 7 percent O ₂		1	
CONGENER	S-M23-O-1	S-M23-O-2	S-M23-O-3	Average	2378-TCDD TEF	S-M23-O-1	S-M23-O-2	S-M23-O-3	Average
Dioxins									
2378 TCDD Total TCDD	ND 0.00350	ND 0.00678	{0.00127} 0.00423	{0 000423} 0.00484	1.0	ND	ND	{0 00127}	{0.000423}
12378 PeCDD Total PeCDD	ND {0 0200}	ND 0.0102	0.00423 0.00212 0.0127	0.00484	0 50	ND	ND	0.00106	0.000353
123478 HxCDD 123678 HxCDD 123789 HxCDD	ND 0.00500 0.0100 0.0600	ND {0.00678} ND 0.0271	0.00339 0.00847 {0.00423} 0.0635	0.00113 0.00113 0.00675 {0.00475} 0.0502	0 10 0 10 0 10	ND 0.000500 0.00100	ND {0.000678} ND	0.000339 0.000847 {0 000423}	0.000113 {0.000675} {0.000475}
Total HxCDD 1234678 HpCDD Total HpCDD	0.0300 0.0300 0.0500	{0.0271 {0.0136} 0.0136	0.0033 0.0254 0.0254	{0.0230} 0.0297	0.01	0.000300	{0.000136}	0.000254	{0.000230}
Octa CDD Total CDD	0.265 {0 399}	0.0644 0.122	0.0550 0 161	0 128 {0 227}	0.001	0 000265 0.00207	0.0000644 {0.0000877}	0.0000550 {0.00425}	0.000128 {0.000240}
<u>Furans</u>									<u> </u>
2378 TCDF Total TCDF	{0.00400} 0.0150	ND 0 0136	0 00847 0 0127	{0.00416} 0.0138	0 10	{0.000400}	ND	0.000847	{0.000416}
12378 PeCDF 23478 PeCDF Total PeCDF	{0.00300} {0.00500} 0.0250	ND ND ND	0 00296 0.00423 0 0254	{0 00199} {0.00308} 0.0168	0.05 0.50	{0.000150} {0.00250}	ND ND	0 000148 0.00212	0.0000994 {0.00154}
123478 HxCDF 123678 HxCDF 234678 HxCDF 123789 HxCDF	0.0230 0.0200 0.00500 0.0100 ND 0.0600	0 0136 0.00339 0.00678 ND 0.0373	0.0254 0.0254 0.00847 0.00847 ND 0.0720	0.0103 0.0197 0.00562 0.00842 0.00 0.0564	0 10 0.10 0.10 0.10	0.00200 0.000500 0.00100 ND	0.00136 0.000339 0.000678 ND	0.00254 0.000847 0.000847 ND	0.00197 0.000562 0.000842 0.00
Total HxCDF 1234678 HpCDF 1234789 HpCDF Total HpCDF	{0.0350} 0.0200 0.0200	0.0373 0.0237 0.00678 0.0407	0.0381 {0.0127} 0.0381	{0.0323} {0.0132} 0.0329	0.01 0.01	{0.000350} 0.000200	0 000237 0.0000678	0.000381 {0.000127}	{0.000323} {0.000132}
Octa CDF Total CDF	0.0200 0.0200 0.140	0.0407 0.0203 0.112	0.0381 0.0254 0.174	0.0329 0.0219 0.142	0.001	0.0000200 {0.00712}	0.0000203 0.00270	0.0000254 0.00788	0.0000219 {0.00590}
Total CDD + CDF	{0.539}	0.234	0.335	{0.369}		{0.00919}	{0.00357}	{0.0121}	{0.00830}

Nanogram per dry standard cubic meter adjusted to 7 percent oxygen at 20°C and 1 atm.

North Atlantic Treaty Organization, Committee on the Challenges of Modern Society. Pilot study on International Information Exchange on Dioxins and Related Compounds: International Toxicity Equivalency Factor (I-TEF) Methods of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds. Report No. 176, August 1988.

ND Non Detectable - Results are below target analyte detection limits. ND values are counted as zero in totals and averages

^{ } Estimated Maximum Possible Concentration. EMPC values are counted in totals and averages.

TABLE 2.8

PCDDs/PCDFs EMISSIONS SAMPLING AND STACK GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M23-O-4
Date	8/21/97
Time	0741-1148
Sampling Duration, minutes	240
Average Sampling Rate, dscfm ^a	0.690
Sample Volume:	
dscf ^b	165.621
dscm ^c	4.690
Stack Gas Temperature, °F	180
O ₂ Concentration, % by volume	10.8
CO ₂ Concentration, % by volume	3.2
Moisture, % by volume	18.9
Stack Gas Volumetric Flow Rate:	
acfm ^d	37,027
dscfm ^a	24,580
dscmm ^e	696.0
Isokinetic Sampling Ratio %	93.7

^a Dry standard cubic feet per minute at 68°F and 1 atm

^b Dry standard cubic feet at 68°F and 1 atm

[°] Dry standard cubic meters at 20°C and 1 atm

^d Actual cubic feet per minute at stack conditions

^e Dry standard cubic meters per minute at 20°C and 1 atm

Table 2.9 presents the PCDDs/PCDFs stack gas concentrations and emission rates. The concentration of total PCDDs was 0.0527 ng/dscm, and the concentration of PCDFs was 0.0576 ng/dscm. The concentration of total PCDDs/PCDFs was 0.110 ng/dscm. These values corresponded to emission rates of 2.20 µg/hr for PCDDs, 2.40 µg/hr for PCDFs and a total emission rate of 4.60 µg/hr for all PCDDs/PCDFs. Table 2.10 presents the PCDDs/PCDFs concentrations adjusted to 7% O_2 . The measured stack gas O_2 concentration was 10.8 %. Therefore, the adjusted PCDDs/PCDFs concentrations were greater than the actual concentrations. The adjusted concentration of total PCDDs was 0.725 ng/dscm @ 7 % O_2 , and 0.0792 ng/dscm @ 7 % O_2 for PCDFs. The adjusted concentration of total PCDDs/PCDFs was 0.152 ng/dscm @ 7 % O_2 . Table 2.10 also presents the adjusted concentrations in 2378 toxic equivalents. The TEF concentration for total PCDDs/PCDFs was 0.004 µg/dscm.

2.3 PARTICULATE MATTER AND METALS MEASUREMENTS

2.3.1 Baghouse Inlet - Asphalt Production with RAP

As stated previously, only one sampling test run was attempted at the baghouse inlet. Table 2.11 summarizes the particulate matter/metals emissions sampling and gas parameters at the baghouse inlet. The total sampling time was 20 minutes. The sample volume was 10.491 dscf or 0.297 dscm. The exhaust gas temperature was 230 °F and contained 5.3% CO₂, 13.1% O₂, and 26.1% moisture. The exhaust gas volumetric flow rate was 23,773 acfm or 13,353 dscfm or 378 dscmm. Although the test was not valid due to a low sample volume, the sample was recovered, extracted, and analyzed at the instruction of the EPA WAM to determine particulate matter and metals catch weights.

Table 2.12 summarizes the exhaust gas particulate matter concentrations and emission rates at the baghouse inlet. The concentration was 63.7 grains per dry standard cubic foot (gr/dscf) or 146 grams per dry standard cubic meter (g/dscm). The concentrations are also shown adjusted to $7\% O_2$. The average mass emission rate was 7,296 pounds per hour (lb/hr) or 3,310 kilograms per hour (kg/hr).

Table 2.13 summarizes the exhaust gas metals concentrations and emission rates. Most of the target metals were found to be present in the sample. Concentrations ranged from 11,944 micrograms per dry standard cubic meter ($\mu g/dscm$) for phosphorus to 3.26 $\mu g/dscm$ for selenium.

PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES
ROTARY DRUM DRYER - BAGHOUSE OUTLET
ASPHALT PRODUCTION WITHOUT RAP
ASPHALT PLANT "A" - CLAYTON, NC

CONGENER	CONCENTRATION ^a ng/dscm, as measured	EMISSION RATE $^{\mathrm{b}}$ $\mu_{\mathrm{g}}/\mathrm{hr}$
	S-M23-O-4	S-M23-O-4
Dioxins		
2378 TCDD	ND	ND
Total TCDD	{0.00149}	{0.0623}
12378 PeCDD	ND	ND
Total PeCDD	0.00213	0.0890
123478 HxCDD	ND	ND
123678 HxCDD	0.00213	0.0809
123789 HxCDD	ND	ND
Total HxCDD	0.0149	0.623
1234678 HpCDD	{0.00853}	{0.356}
Total HpCDD	{0.0149}	{0.623}
Octa CDD	0.0192	0.801
Total PCDD	{0.0527}	{2.20}
Furans		
2378 TCDF	ND	ND
Total TCDF	0.00640	0.267
12378 PeCDF	ND	ND
23478 PeCDF	{0.00213}	{0.0890}
Total PeCDF	0.00213	0.0890
123478 HxCDF	0.00640	0.267
123678 HxCDF	0.00213	0.0890
234678 HxCDF	0.00426	0.178
123789 HxCDF	ND	ND
Total HxCDF	0.0192	0.801
1234678 HpCDF	0.0107	0.445
1234789 HpCDF	0.00426	0.178
Total HpCDF	0.0192	0.801
Octa CDF	0.0107	0.445
Total PCDF	0.0576	2.40
Total PCDDs + PCDFs	{0.110}	{4.60}

^a Nanogram per dry standard cubic meter at 20°C and 1 atm.

b Micrograms per hour.

ND Non Detectable - Results are below target analyte detection limits. ND values are counted as zero in totals and averages.

^{ } Estimated Maximum Possible Concentration. EMPC values are counted in totals and averages.

TABLE 2.10

PCDDs/PCDFs CONCENTRATIONS AND 2378 TOXIC EQUIVALENT CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT CONCRETE PRODUCTION WITHOUT RAP ASPHALT PLANT "A" - CLAYTON, NC

CONGENER	CONCENTRATION ^a ng/dscm, adjusted to 7 % O ₂	2378-TCDD ^b Toxic Equiv.	2378 TOXIC EQUIVALENTS ng/dscm, adjusted to 7 % O ₂
	S-M23-O-4	Factor	S-M23-O-4
Dioxins			
2378 TCDD Total TCDD	ND {0.00205}	1.000	ND
12378 PeCDD Total PeCDD	ND 0.00293	0.500	ND
123478 HxCDD	ND	0.100	ND
123678 HxCDD	0.00293	0.100	0.000293
123789 HxCDD	ND	0.100	ND
Total HxCDD	0.0205	1	
1234678 HpCDD	{0.0117}	0.010	{0.000117}
Total HpCDD	{0.0205}		
Octa CDD	0.0264	0.001	0.0000264
Total CDD	{0.725}		{0.000437}
Furans			
2378 TCDF	ND	0.100	ND
Total TCDF	0.00880		
12378 PeCDF	ND	0.050	ND
23478 PeCDF	{0.00293}	0.500	{0.00147}
Total PeCDF	0.00293		
123478 HxCDF	0.00880	0.100	0.000880
123678 HxCDF	0.00293	0.100	0.000293
234678 HxCDF	0.00587	0.100	0.000587
123789 HxCDF	ND	0.100	ND
Total HxCDF	0.0264	0.010	0.000147
1234678 HpCDF	0.0147	0.010 0.010	0.000147 0.0000587
1234789 HpCDF	0.00587 0.0264	0.010	0.0000387
Total HpCDF Octa CDF	0.0264	0.001	0.0000147
Total CDF	0.0792	0.001	{0.000345}
Total PCDDs + PCDFs	{0.152}		{0.000389}

Nanogram per dry standard cubic meter adjusted to 7 percent oxygen at 20°C and 1 atm.

b North Atlantic Treaty Organization, Committee on the Challenges of Modern Society. Pilot study on International Information Exchange on Dioxins and Related Compounds: International Toxicity Equivalency Factor (I-TEF) Methods of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds. Report No. 176, August 1988.

ND Non Detectable - Results are below target analyte detection limits. ND values are counted as zero in totals and averages.

^{ }Estimated Maximum Possible Concentration. EMPC values are counted in totals and averages.

TABLE 2.11

PARTICULATE/METALS EMISSIONS SAMPLING AND INLET GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M29-I-1
Date	8/19/97
Time	0915-1010
Sampling Duration, minutes	20
Average Sampling Rate, dscfm ^a	0.525
Sample Volume:	
dscf ^b	10.491
dscm ^c	0.297
Inlet Gas Temperature, °F	230
O ₂ Concentration, % by volume	13.1
CO ₂ Concentration, % by volume	5.3
Moisture, % by volume	26.1
Exhaust Gas Volumetric Flow Rate:	
acfm ^d	23,773
dscfm ^a	13,353
dscmm ^e	378
Isokinetic Sampling Ratio, %	93.6

^a Dry standard cubic feet per minute at 68°F and 1 atm.

^b Dry standard cubic feet at 68°F and 1 atm.

[°] Dry standard cubic meters at 20°C and 1 atm.

^d Actual cubic feet per minute at inlet gas conditions.

^e Dry standard cubic meters per minute at 20 °C and 1 atm.

TABLE 2.12

PARTICULATE MATTER CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M29-I-1
Date	8/19/97
Time	0915-1010
Particulate Matter Concentration:	
gr/dscf ^a	63.7
gr/dscf @ 7% O ₂ ^b	114
g/dscm ^c	146
g/dscm @ 7% O ₂ d	260
Particulate Matter Emission Rate:	
lb/hr •	7,296
kg/hr ^f	3,310

^a Grains per dry standard cubic foot at 68°F and 1 atm.

^b Grains per dry standard cubic foot at 68°F and 1 atm adjusted to 7 percent O₂.

^c Grams per dry standard cubic meter at 20°C and 1 atm.

^d Grams per dry standard cubic meter at 20°C and 1 atm adjusted to 7 percent O₂.

^{*}Pounds per hour.

^fKilograms per hour.

TABLE 2.13

METALS CONCENTRATIONS AND EMISSION RATES **ROTARY DRUM DRYER - BAGHOUSE INLET** ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M29-I-1
Date	8/19/97
Clock Time, 24-hr Clock	0915-1010
Antimony (Sb)	
μg/dscm*	ND
μg/dscm @ 7% O ₂ ^b	ND
g/hr ^c	ND
Arsenic (As)	
μg/dscm ^a	51.2
μg/dscm @ 7% O ₂ ^b	91.2
g/hr ^c	1.16
Barium (Ba)	
μg/dscm ^a	2,063
μg/dscm @ 7% O ₂ ^b	3,677
g/hr ^c	46.8
Beryllium (Be)	
μg/dscm ^a	ND
μg/dscm @ 7% O ₂ ^b	ND
g/hr ^c	ND
Cadmium (Cd)	
μg/dscm ^a	22.5
μg/dscm @ 7% O ₂ ^b	40.1
g/hr ^c	0.511
Chromium (Cr)	
μg/dscm ^a	91.7
μg/dscm @ 7% O ₂ ^b	163
g/hr ^c	2.08
Cobalt (Co)	
μg/dscm ^a	89.2
μg/dscm @ 7% O ₂ ^b	159
g/hr ^c	2.02
Copper (Cu)	
μg/dscm ^a	417
μg/dscm @ 7% O ₂ ^b	743
g/hr ^c	9.46

ND - Not detected.

 $^{^{\}bullet}$ Micrograms per dry standard cubic meter @ 20 °C and 1 atm. $^{\circ}$ Micrograms per dry standard cubic meter @ 20 °C and 1 atm, adjusted to 7% $O_2.$

^c Grams per hour.

TABLE 2.13 (Concluded)

METALS CONCENTRATIONS AND EMISSION RATES **ROTARY DRUM DRYER - BAGHOUSE INLET** ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M29-I-1
Lead (Pb)	
μg/dscm ^a	170
μg/dscm @ 7% O ₂ ^b	302
g/hr ^c	3.85
Manganese (Mn)	
μg/dscm ^a	3,946
μg/dscm @ 7% O ₂ ^b	7,032
g/hr ^c	89.5
Mercury (Hg)	
μg/dscm²	ND
μg/dscm @ 7% O ₂ ^b	ND
g/hr ^c	ND
Nickel (Ni)	
μg/dscm ^a	39.8
μg/dscm @ 7% O ₂ ^b	70.9
g/hr ^c	0.903
Phosphorus (P)	
μg/dscm ^a	11,934
μg/dscm @ 7% O ₂ ^b	21,267
g/hr ^c	271
Silver (Ag)	
μg/dscm"	ND
μ g/dscm @ 7% O_2^b	ND
g/hr ^c	ND
Selenium (Se)	
μg/dscm ^a	3.26
μg/dscm @ 7% O ₂ ^b	5.81
g/hr ^c	0.0740
Thallium (Tl)	
μg/dscm ^a	9.76
μg/dscm @ 7% O ₂ ^b	17.4
g/hr ^c	0.221
Zinc (Zn)	
μg/dscm ^a	1,752
μg/dscm @ 7% O ₂ ^b	3,123
g/hr ^c	39.8

Micrograms per dry standard cubic meter @ 20°C and 1 atm.
 Micrograms per dry standard cubic meter @ 20°C and 1 atm, adjusted to 7% O₂.

Grams per hour.

ND - Not detected.

2.3.2 Baghouse Outlet - Asphalt Production with RAP

Table 2.14 summarizes the particulate matter/metals emissions sampling and stack gas parameters. The total sampling time for each test run was 240 minutes, except the third test run which was 200 minutes. The average sample volume was 166.137 dscf or 4.704 dscm. The average stack gas temperature was 203°F and contained 5.3% CO₂, 13.1% O₂, and 20.2% moisture. The average stack gas volumetric flow rate was 37,437 acfm or 23,661 dscfm or 670 dscmm.

Table 2.15 summarizes the stack gas particulate matter concentrations and emission rates. The average concentration was 0.0176 gr/dscf or 0.0402 g/dscm. The concentrations are also shown adjusted to $7\% O_2$. The average emission rate was 3.43 lb/hr or 1.56 kg/hr.

Table 2.16 summarizes the stack gas metals concentrations and emission rates. Most of the target metals were found to be present in all three samples. Average concentrations ranged from $0.0231~\mu g/dscm$ for antimony to $45.5~\mu g/dscm$ for phosphorus. Beryllium was not detected during any of the sampling runs, cobalt was only detected during the first run, and silver and thallium were only detected during two of the sampling runs. There were two instances where the target metal was detected, but was present at a concentration less than the concentration detected in the reagent blank samples. In these two cases (antimony during the third run and silver during the second run) a value of 0.00~has been reported.

2.3.3 Baghouse Outlet - Asphalt Production without RAP

PES conducted one test run at the baghouse outlet during asphalt production without RAP. Table 2.17 summarizes the particulate matter/metals emissions sampling and stack gas parameters. The total sampling time for the test run was 240 minutes. The sample volume was 168.390 dscf or 4.768 dscm. The stack gas temperature was 180° F and contained $3.2 \% \text{ CO}_2$, $10.8 \% \text{ O}_2$, and 18.7 % moisture. The stack gas volumetric flow rate was 36,415 acfm or 24,240 dscfm or 686 dscmm.

Table 2.18 summarizes the stack gas particulate matter concentrations and emission rates. The concentration was 0.00122 gr/dscf or 0.00279 g/dscm. The concentrations are also shown adjusted to 7% O₂. The average PM emission rate was 0.253 lb/hr or 0.115 kg/hr.

Table 2.19 summarizes the stack gas metals concentrations and emission rates. Most of the target metals were present in the sample. Concentrations ranged from 0.0436 μ g/dscm for silver to 15.2 μ g/dscm for phosphorus. In general, the emissions of metals during production without RAP was less that emissions during production with RAP. In the cases of antimony, silver, and selenium, the quantities detected in the sample were less than the quantities detected in the reagent blanks. For these three targets, values of 0.00 have been reported.

TABLE 2.14

PARTICULATE/METALS EMISSIONS SAMPLING AND STACK GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M29-O-1	S-M29-O-2	S-M29-O-3	Average
Date	8/19/97	8/20/97	8/20/97	
Time	0915-1454	0822-1240	1405-1735	
Sampling Duration, minute	240	240	200	227
Average Sampling Rate, dscfm ^a	0.644	0.830	0.723	0.732
Sample Volume:				
dscf b	154.579	199.270	144.561	166.137
dscm ^c	4.377	5.643	4.094	4.704
Stack Gas Temperature, °F	179	222	207	203
O ₂ Concentration, % by volume	13.1	13.1	13.1	13.1
CO ₂ Concentration, % by volume	5.3	5.5	5.1	5.3
Moisture, % by volume	17.4	19.0	24.2	20.2
Volumetric Flow Rate:				
acfm ^d	32,964	42,043	37,305	37,437
dscfm ^a	22,478	26,229	22,276	23,661
dscmm ^e	637	743	631	670
Isokinetic Sampling Ratio, %	95.6	103.9	106.5	102.0
Stack Gas Opacity:				
Average Opacity, %	< 5	< 5	< 5	< 5
Calculated Average, %	2.15	1.21	0.702	1.35
Max. Single Reading, %	15	20	15	-
Max. 6-min. Block Avg., %	6.25	2.62	1.67	-
Max. 6-min Rolling Avg., %	6.46	2.75	2.17	-

^{*} Dry standard cubic feet per minute at 68°F and 1 atm.

^b Dry standard cubic feet at 68°F and 1 atm.

[°] Dry standard cubic meters at 20°C and 1 atm.

^d Actual cubic feet per minute at stack conditions.

^e Dry standard cubic meters per minute at 20°C and 1 atm.

TABLE 2.15

PARTICULATE MATTER CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M29-O-1	S-M29-O-2	S-M29-O-3	Average
Date	8/19/97	8/20/97	8/20/97	
Time	0915-1454	0822-1240	1405-1735	
Particulate Matter Concentration:				
gr/dscf ^a	0.0449	0.00482	0.00292	0.0176
gr/dscf @ 7% O ₂ ^b	0.0800	0.00858	0.00521	0.0313
g/dscm ^c	0.103	0.0110	0.00669	0.0402
g/dscm @ 7% O ₂ d	0.183	0.0196	0.0119	0.0716
Particulate Matter Emission Rate:				
lb/hr ^e	8.65	1.08	0.558	3.43
kg/hr ^r	3.93	0.491	0.253	1.56

^{*} Grains per dry standard cubic foot at 68°F and 1 atm.

^b Grains per dry standard cubic foot at 68°F and 1 atm adjusted to 7 percent O₂.

^c Grams per dry standard cubic meter at 20°C and 1 atm.

^d Grams per dry standard cubic meter at 20°C and 1 atm adjusted to 7 percent O₂.

e Pounds per hour.

f Kilograms per hour.

TABLE 2.16

METALS CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M29-O-1	S-M29-O-2	S-M29-O-3	Average
Date	8/19/97	8/20/97	8/20/97	
Time	0915-1454	0822-1240	1405-1735	
Antimony (Sb)				
μg/dscm ^a	0.0640	0.00532	0.00	0.0231
μg/dscm @ 7% O ₂ ^b	0.114	0.00947	0.00	0.0412
g/hr ^c	0.00244	0.000237	0.00	0.000893
Arsenic (As)				
μg/dscm ^a	0.608	0.133	0.188	0.310
μg/dscm @ 7% O ₂ ^b	1.08	0.238	0.334	0.552
g/hr ^c	0.0232	0.00594	0.00712	0.0121
Barium (Ba)	*****			
μg/dscm ^a	49.9	8.37	4.39	20.9
μg/dscm @ 7% O ₂ ^b	89.0	14.9	7.82	37.2
g/hr ^c	1.91	0.373	0.166	0.815
Beryllium (Be)			3,125	0.010
μg/dscm ^a	ND	ND	ND	ND
μg/dscm @ 7% O ₂ ^b	ND	ND	ND	ND
g/hr ^c	ND	ND	ND	ND
Cadmium (Cd)	112	112	1,12	112
μg/dscm ^a	0.199	0.395	0.440	0.345
μg/dscm @ 7% O ₂ ^b	0.355	0.704	0.784	0.614
g/hr ^c	0.00759	0.0176	0.0166	0.0139
Chromium (Cr)	0.00757	0.0170	0.0100	0.0157
μg/dscm ^a	1.47	0.161	0.125	0.584
μg/dscm @ 7% O ₂ ^b	2.61	0.287	0.222	1.04
g/hr ^c	0.0560	0.00719	0.00472	0.0226
Cobalt (Co)	0.0200	0.00717	0.001,2	0.0220
μg/dscm ^a	0.416	ND	ND	0.139
μg/dscm @ 7% O ₂ ^b	0.741	ND	ND	0.247
g/hr ^c	0.0159	ND	ND	0.00529
Copper (Cu)	0.0123			0.0002
μg/dscm ^a	4.05	0.77	1.68	2.16
μg/dscm @ 7% O ₂ ^b	7.21	1.37	2.99	3.86
g/hr ^c	0.155	0.0342	0.0635	0.0841
Lead (Pb)	0.133			3.3011
μg/dscm ^a	6.07	1.41	26.6	11.4
μg/dscm @ 7% O ₂ b	10.8	2.51	47.4	20.2
g/hr ^c	0.232	0.0628	1.01	0.434

^a Micrograms per dry standard cubic meter @ 20° C and 1 atm.

^b Micrograms per dry standard cubic meter @ 20°C and 1 atm, adjusted to 7% O₂.

^c Grams per hour.

ND - Not Detected.

TABLE 2.16 (Concluded)

METALS CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

S-M29-O-1	S-M29-O-2	S-M29-O-3	Average
47.1	5.88	3.46	18.8
83.9	10.5	l I	33.5
1.80	0.262	0.131	0.731
0.500	0.431	3.78	1.57
0.892	0.767	6.74	2.80
0.0191	0.0192	0.143	0.0605
0.868	0.298	0.784	0.650
1.55	0.53	k i	1.16
0.0332		1	0.0254
90.9	20.4	25.3	45.5
1		1	81.2
		Í	1.78
			•
ND	0.00	0.151	0.0505
l .		l .	0.0900
I .	t .	į ·	0.00191
0.139	0.0603	2.32	0.840
0.248	1	4.13	1.50
1	1	1	0.0319
ND	0.0372	0.0562	0.0311
1	1	}	0.0555
1		1	0.00126
1			3.33.23
32.3	10.4	9.22	17.3
i	1		30.8
1	í	1	0.682
	47.1 83.9 1.80 0.500 0.892 0.0191 0.868 1.55 0.0332 90.9 162 3.47 ND ND ND	47.1 5.88 83.9 10.5 1.80 0.262 0.500 0.431 0.892 0.767 0.0191 0.0192 0.868 0.298 1.55 0.53 0.0332 0.0133 90.9 20.4 162 36.3 3.47 0.909 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 0.139 0.0603 0.248 0.107 0.00532 0.00269 ND 0.0372 ND 0.0663 ND 0.00166 32.3 10.4 57.5 18.6	47.1 5.88 3.46 83.9 10.5 6.17 1.80 0.262 0.131 0.500 0.431 3.78 0.892 0.767 6.74 0.0191 0.0192 0.143 0.868 0.298 0.784 1.55 0.53 1.40 0.0332 0.0133 0.0297 90.9 20.4 25.3 162 36.3 45.1 3.47 0.909 0.959 ND 0.00 0.151 ND 0.00 0.270 ND 0.00 0.00573 0.139 0.0603 2.32 0.248 0.107 4.13 0.00532 0.00269 0.0877 ND 0.0372 0.0562 ND 0.0663 0.100 ND 0.00166 0.00213 32.3 10.4 9.22 57.5 18.6 16.4

^a Micrograms per dry standard cubic meter @ 20°C and 1 atm.

^b Micrograms per dry standard cubic meter @ 20°C and 1 atm, adjusted to 7% O₂.

^c Grams per hour.

ND - Not detected

TABLE 2.17

PARTICULATE/METALS EMISSIONS SAMPLING AND STACK GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M29-O-4
Date	8/21/97
Time	0741-1153
Sampling Duration, minutes	240
Average Sampling Rate, dscfm ^a	0.702
Sample Volume:	
dscf ^b	168.390
dscm ^c	4.768
Stack Gas Temperature, °F	180
O ₂ Concentration, % by volume	10.8
CO ₂ Concentration, % by volume	3.2
Moisture, % by volume	18.7
Stack Gas Volumetric Flow Rate:	
acfm ^d	36,415
dscfm ^a	24,240
dscmm ^e	686
Isokinetic Sampling Ratio, %	95.0
Stack Gas Opacity:	
Average Opacity, %	< 5
Calculated Average, %	0.104
Max. Single Reading, %	5
Max. 6-min. Block Avg., %	0.42
Max. 6-min Rolling Avg., %	0.42

^{*} Dry standard cubic feet per minute at 68°F and 1 atm.

^b Dry standard cubic feet at 68°F and 1 atm.

[°] Dry standard cubic meters at 20°C and 1 atm.

^d Actual cubic feet per minute at stack conditions.

^e Dry standard cubic meters per minute at 20°C and 1 atm.

TABLE 2.18

PARTICULATE MATTER CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M29-O-4
Date	8/21/97
Time	0741-1153
Particulate Matter Concentration:	
gr/dscf²	0.00122
gr/dscf @ 7% O ₂ b	0.00168
g/dscm ^c	0.00279
g/dscm @ 7% O ₂ ^d	0.00384
Particulate Matter Emission Rate:	
lb/hr ^e	0.253
kg/hr ^f	0.115

^a Grains per dry standard cubic foot at 68°F and 1 atm.

^b Grains per dry standard cubic foot at 68°F and 1 atm adjusted to 7 percent O₂.

^c Grams per dry standard cubic meter at 20°C and 1 atm.

^d Grams per dry standard cubic meter at 20°C and 1 atm adjusted to 7 percent O₂.

e Pounds per hour.

^fKilograms per hour.

TABLE 2.19

METALS CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "A" - CLAYTON, NC

Date Time Antimony (Sb) μg/dscm ^a μg/dscm @ 7% O ₂ ^b	8/21/97 0741-1153 0.00 0.00
Antimony (Sb) μg/dscm ^a	0.00
Antimony (Sb) μg/dscm ^a	
μg/dscm ^a	
n · •	0.00
11 MENUDOMINION ((V V)	
g/hr ^c	0.00
Arsenic (As)	
μg/dscm³	ND
μg/dscm @ 7% O ₂ ^b	ND
g/hr ^c	ND
Barium (Ba)	
μg/dscm ^a	2.06
μg/dscm @ 7% O ₂ ^b	2.84
g/hr ^c	0.0849
Beryllium (Be)	0.0015
μg/dscm ^a	ND
$\mu g/dscm @ 7\% O_2^b$	ND
g/hr ^c	ND
Cadmium (Cd)	112
μg/dscm ^a	ND
$\mu g/dscm @ 7\% O_2^b$	ND
g/hr ^c	ND
Chromium (Cr)	112
μg/dscm ^a	0.00881
$\mu g/dscm @ 7\% O_2^b$	0.0121
g/hr ^c	0.000363
Cobalt (Co)	0.000505
μg/dscm ^a	ND
μg/dscm @ 7% O ₂ ^b	ND
g/hr ^c	ND
Copper (Cu)	• • •
μg/dscm ^a	0.277
$\mu g/dscm @ 7\% O_2^b$	0.381
g/hr ^c	0.0114
Lead (Pb)	
μg/dscm ^a	0.371
$\mu g/dscm @ 7\% O_2^b$	0.511
g/hr ^c	0.0153

Micrograms per dry standard cubic meter @ 20°C and 1 atm.

^b Micrograms per dry standard cubic meter @ 20°C and 1 atm, adjusted to 7% O₂.

Grams per hour.

TABLE 2.19 (Concluded)

METALS CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M29-O-4
Manganese (Mn)	
μg/dscm ^a	14.8
μg/dscm @ 7% O ₂ ^b	20.4
g/hr ^e	0.611
Mercury (Hg)	
μg/dscm ^a	0.438
μg/dscm @ 7% O ₂ ^b	0.603
g/hr	0.0181
Nickel (Ni)	
μg/dscm ^a	0.0778
μg/dscm @ 7% O ₂ ^b	0.107
g/hr ^c	0.00320
Phosphorus (P)	1
μg/dscm ^a	15.2
μg/dscm @ 7% O ₂ ^b	20.9
g/hr ^c	0.624
Silver (Ag)	
μg/dscm ^a	0.00
μg/dscm @ 7% O ₂ ^b	0.00
g/hr ^c	0.00
Selenium (Se)	
μg/dscm³	0.00
μg/dscm @ 7% O ₂ ^b	0.00
g/hr ^c	0.00
Thallium (Tl)	
μg/dscm ^a	ND
μ g/dscm @ 7% O_2^b	ND
g/hr ^c	ND
Zinc (Zn)	
μg/dscm ^a	4.80
μg/dscm @ 7% O ₂ ^b	6.61
g/hr ^c	0.198

^c Grams per hour.

 $^{^{\}rm a}$ Micrograms per dry standard cubic meter @ 20° C and 1 atm. $^{\rm b}$ Micrograms per dry standard cubic meter @ 20° C and 1 atm, adjusted to 7% $\rm O_2.$

2.4 DETERMINATION OF VISIBLE EMISSIONS

Visible Emissions Observations (VEOs) of the stack exhaust were made during the testing by a certified observer. Observations were made simultaneously with the testing, except during the first run when VEOs were suspended during the period from 1207 to 1304 when the location of the sun was directly over the observer. The average opacity during asphalt production with RAP is presented along with the outlet stack gas parameters in Table 2.14. For each run the calculated average opacities were 2.15, 1.21, and 0.702%. Since VEO observations are recorded in 5% increments, the average opacity during these runs is more properly reported as less than 5% opacity. Also presented are the maximum single opacity observed, the maximum 6-minute block average, and the maximum 6-minute rolling average during each test run. During the production of asphalt without RAP, the the calculated average opacity of the outlet gas stream was 0.104%; however, this result is more properly reported as an average opacity of < 5 %. The opacity data during production with RAP are presented along with the stack gas parameters in Table 2.17.

3.0 PROCESS DESCRIPTION

The Asphalt Plant "A" concrete production facility in Clayton, North Carolina, has been in operation since 1989. It is a counter flow, continuous drum mix process. The dryer/mixer is an ASTEC double-barrel drum, a variation of the drum mixer, with a rated capacity of 400 tons per hour (tph). The plant has the capability of producing up to 15 asphalt mix types, with or without the use of RAP.

Asphalt concrete, called "hot mix asphalt" (HMA) by the industry, is a mixture of well-graded, high quality aggregate that is heated and mixed with liquid asphalt cement to produce paving material. The characteristics of the asphalt concrete are determined by the relative amounts and types of aggregate (and RAP) used. In the asphalt reclamation process, old asphalt pavement is removed from the road surface, transported to the plant, and crushed and screened to the appropriate size for further processing.

In the counter flow continuous double-barrel drum mix process, virgin aggregate of various sizes is fed to the drum by cold feed controls in proportions dictated by the final mix specifications. Aggregate is delivered by conveyor belt to the inner drum, entering at the opposite end of the burner (hence, the descriptor "counter" flow). The aggregate moves toward the burner within the inner drum and is dried. The hot aggregate falls to the outer drum through holes at the burner end of the inner drum. As the hot aggregate moves along the outer drum, liquid asphalt cement and conditioner are delivered to the drum mixer by a variable flow pump that is electronically linked to the aggregate feed weigh scales. Recycled dust from the control system and RAP (if used) are also added into the outer drum. The resulting asphalt concrete mixture is discharged from the outer drum and conveyed to storage silos for delivery to trucks.

There are five cold storage bins and three hot mix storage silos at Asphalt Plant "A". The hot mix storage silo capacity is 200 tons each, for a total of 600 tons. There are three screens for aggregate sizing and one 52,000 gallon (130 ton) heated asphalt cement storage vessel. The plant uses virgin and recycled No. 2 fuel oil, supplied by Noble Oil Services, Inc., for all its process fuel needs. A fuel assay report is presented in Appendix A. Virgin fuel oil is used during extremely cold weather and/or if there is a fuel-related problem with the burner. Therefore, virgin fuel is usually only used during the winter months (January/February). The amount of energy needed from the fuel for the asphalt production process is 225,600 BTU per ton of asphalt produced. The hot gas contact time with the aggregate is approximately one minute, and the process time from the beginning of the drum to the coater is approximately six minutes.

Asphalt Plant "A" uses an asphalt cement (AC) called AC-20, obtained from Citgo of Wilmington, North Carolina. An anti-strip conditioner, called Perma-Tac (from Arr-Maz), is sometimes used; antistrip is required for all North Carolina Department of Transportation jobs. For PM control, the Asphalt Plant "A" facility uses a fabric filter. The fabric filter is an ASTEC Pulse-Jet, equipped with 1,024 14-ounce Nomex bags and is operated with an air-to-cloth ratio of 5.54:1 feet per minute. The process exits the drum and coater and proceeds into the fabric filter, where it is exhausted through a stack. As mentioned above, the dust collected by the PM control devices is recycled to the process.

Data were taken at 15-minute intervals during the entire "test period" (i.e., the time period when at least one manual and both instrumental tests were running). According to plant personnel, the plant was operating under normal conditions during the tests.

The average asphalt concrete production rates during the four test runs were 171, 276, 240, and 185 tph, respectively, corresponding to total production of 735, 1,187, 840, and 778 tons. During the first three test runs (August 19 and August 20), a surface asphalt coating that included RAP was produced. During the fourth test run (August 21), a surface coating (accounting for 75 % of the total asphalt concrete produced) and a binder coating (accounting for 25 % of total production) were produced, both without RAP. Recycled No. 2 fuel oil was used for fuel in the production process during the tests. Conditioner was used during the four test runs at a rate of 0.25 % of the asphalt cement used, for a total of 186, 302, 220, and 200 pounds, respectively, during the four test runs.

Table 3.1 summarizes the operating conditions observed during the EPA source test periods at Asphalt Plant "A". Tables 3.2 and 3.3 describe the asphalt mixes produced and the fuel used, respectively, during the tests. Table 3.4 describes the specifics of plant operation during the tests. Appendix A shows all the data recorded during the tests, along with the results of statistical analyses.

TABLE 3.1

PLANT OPERATING CONDITIONS
ASPHALT PLANT "A" - CLAYTON, NC

	Test Run				
Process Data	S-M23-O-1 S-M29-O-1 8/19/97 0915-1456	S-M23-O-2 S-M29-O-2 8/20/97 0822-1240	S-M23-O-3 S-M29-O-3 8/20/97 1405-1735	S-M23-O-4 S-M29-O-4 8/21/97 0741-1153	
Product Type(s)*	surface mix, with RAP (BCSC, Type RDS)	surface mix, with RAP (BCSC, Type RDS)	surface mix, with RAP (BCSC, Type RDS)	surface mix, no RAP (BCSC, Type HDS); and binder (BCBC, Type H)	
Asphalt Concrete Production Rate, tph Average ^b Range Total Produced, tons	171 146-254 735	276 223-302 1,187	240 152-254 840	185 150-204 778	
Mix Temperature, °F Average ^b Range	305 295-315	312 303-346	310 299-322	308 271-351	
Raw Material (Virgin Aggregate) Use Rate, tph Average ^b Range Total Used, tons	145 126-213 622	236 191-255 1,013	205 138-215 718	176 142-194 740	
RAP Use rate, tph Average ^b Range Total Used, tons Asphalt Cement Use rate, tph	18 13-27 76	28 21-32 119	24 17-27 85	none	
Average ^b Range Total Used, tons	8.7 7.5-12.6 37	14.0 11.4-15.5 60	12.3 7.8-13.0 43	9.2 7.8-10.6 39	
Conditioner (lb) ^c	186	302	216	200	

TABLE 3.1 (Concluded)

PLANT OPERATING CONDITIONS ASPHALT PLANT "A" - CLAYTON, NC

	Test Run				
Process Data	S-M23-O-1 S-M29-O-1 8/19/97 0915-1456	S-M23-O-2 S-M29-O-2 8/20/97 0822-1240	S-M23-O-3 S-M29-O-3 8/20/97 1405-1735	S-M23-O-4 S-M29-O-4 8/21/97 0741-1153	
Fabric Filter Operation ^b				·	
Temperature, °F	102	255	222	201	
Inlet Outlet	193 170	255 214	232 195	201 175	
Pressure Drop inches water	!				
Average ^b Range	1.8 1.5-2.9	3.3 2.1-4.0	2.5 1.8-2.9	1.9 1.8-2.0	
Fuel					
Use Rate,d gal/hr	214	410	334	280	
Total Used, gal	920	1,762	1,168	1,117	

BCSC, Type HDS = bituminous concrete, surface coarse, type high density surface
BCSC, Type RDS = bituminous concrete, surface coarse, type high density surface with RAP
BCBC, Type H = bituminous concrete, binder coarse (type H)
(See Table 3.2 for more detail on product specifications)

^b As a straight average of the 15-minute interval data shown in Appendix A.

^c The amount of conditioner used was calculated as 0.25 percent of the asphalt cement.

^d Fuel use rate was calculated from the total fuel used during the time interval.

ASPHALT MIX SPECIFICATIONS ASPHALT PLANT "A" - CLAYTON, NC

TABLE 3.2

Product	Material	Amount
Surface Coating (BCSC, Type HDS)	78-M screenings sand asphalt cement conditioner	50% aggregate 30% aggregate 20% aggregate 5.2% mix 0.25% cement
Surface Coating, with RAP (BCSC, Type RDS)	78-M dry screenings natural sand RAP Asphalt cement total additional from RAP conditioner	43% aggregate 27% aggregate 20% aggregate 10% aggregate 5.1% mix 4.6% mix 0.5% mix 0.25% cement
Binder (BCBC, Type H)	78-M #67 screenings sand asphalt cement conditioner	16% aggregate 46% aggregate 20% aggregate 18% aggregate 4.5% mix 0.25% cement

TABLE 3.3

FUEL SPECIFICATIONS ASPHALT PLANT "A" - CLAYTON, NC

Fuel Type	Characteristics		Descriptor(s)
OIL	flash point lead sulfur	150°F 28 mg/kg 3590 mg/kg (0.36%)	recycled no. 2 diesel fuel

TABLE 3.4

SPECIFICS OF PLANT OPERATION ASPHALT PLANT "A" - CLAYTON, NC

		Test	Run	
Parameter	S-M23-O-1 S-M29-O-1 8/19/97 0915-1456	S-M23-O-2 S-M29-O-2 8/20/97 0822-1240	S-M23-O-3 S-M29-O-3 8/20/97 1405-1735	S-M23-O-4 S-M29-O-4 8/21/97 0741-1153
Plant Shut Downs ^a (with approximate duration)	none	0930 (14 min)	none	none
Plant Production Rate Change(s)	mix rate slowed from nominally 250 to 200 tph 1200-1500: mix rate slowed from nominally 200 to 150 tph	0945-1245: mix rate increased from nominally 225 to 300 tpy	1715-1745: mix rate decreased from nominally 250 to 150 tph	1030-1200: mix rate increased from nominally 180 to 200 tph
Produce Changes	none	none	none	0730-0815, 0900-0915, 1015-1115: HDS produced (600 tons) 0830-0900, 0915-1000, 1155-1200: binder produced 195 tons)

^a Shutdown occurred because the RAP feed went down.

4.0 SAMPLING LOCATIONS

Isokinetic sampling runs were attempted at both the baghouse inlet and outlet sampling locations, but sampling was canceled at the baghouse inlet at the direction of the EPA WAM. Detailed descriptions of the sampling locations and traverse point layouts follow.

4.1 BAGHOUSE INLET SAMPLING LOCATION

The baghouse inlet location consisted of a 48-1/2-inch diameter round duct which connected the outlet of the drier to the baghouse. A schematic diagram of the inlet sampling location is presented in Figure 4.1. The duct exited the drier vertically, made a 90° bend for the run over to the baghouse, and made a second 90° bend prior to running down into the baghouse. In order to enable for the extraction of gas samples at the baghouse inlet, plant personnel installed two four-inch sample ports 25 inches upstream of the entrance to the baghouse. The nearest upstream disturbance to the sample port was a downward turning elbow, which was located 28 inches (0.58 diameters) from the sample ports. The nearest disturbance downstream of the sample ports was the entrance into the baghouse, which was located 25 inches (0.52 diameters) from the sample ports. Based upon the criteria outlined in Method 1, this sample location was not suitable for isokinetic source sampling. However, after consultation with EPA EMC and EPA ESD personnel, the location was selected because an alternate location with better stack geometry did not exist.

To conduct isokinetic sampling at this location, PES selected the maximum number of sample points for particulate traverses as specified in Method 1, which was 24. The 24-point sampling matrix (which is presented in Figure 4.2) consisted of two twelve-point sample traverses on diameters offset 90° to each other. Prior to the initiation of isokinetic sampling activities at this location, a cyclonic flow check using a Type-S pitot tube was conducted. The results of the cyclonic flow check indicated an average rotation angle from null (α) of 7.2°. Since this angle was less than 20° as specified in Method 1, the sampling location was considered acceptable for isokinetic sampling without modification to the duct or the sampling method.

4.2 BAGHOUSE OUTLET SAMPLING LOCATION

The baghouse outlet sampling location consisted of a square stack attached to the opposite end of the baghouse from the inlet duct. The stack was 49-3/4 inches deep by 33 inches wide, and the equivalent duct diameter was 39.7 inches. Six sample ports were located in the

49-3/4 inch wall. The nearest downstream disturbance from the sample ports was the stack exit, which was located 24 inches (0.60 equivalent duct diameters) from the sample ports. The nearest upstream disturbance to the sample ports was the baghouse ID fan, which was located 88 inches (2.2 equivalent duct diameters) from the sample ports. For this sample location, the minimum number of sample points specified by Method 1 was 24. Accordingly, PES used a 24-point sampling matrix consisting of six four-point sample traverses. Figure 4.3 presents a schematic diagram of the baghouse outlet sampling location. Figure 4.4 presents the baghouse outlet sample traverse point locations.

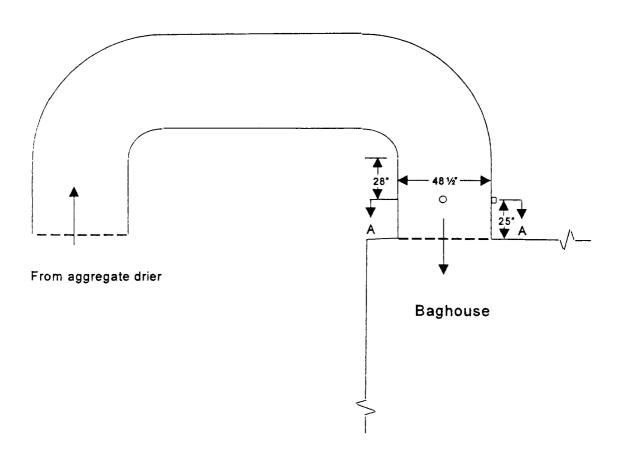
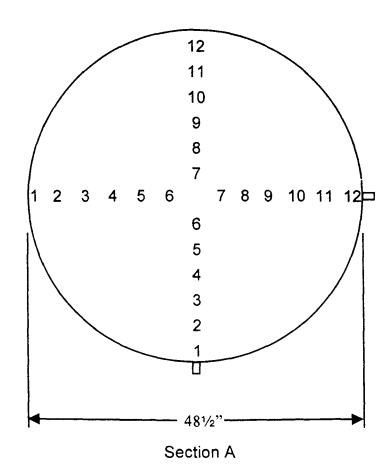



Figure 4.1 Baghouse Inlet Sampling Location - Asphalt Plant "A", Clayton, NC

Traverse Point Number	Distance from inside wall inches
1 2 3 4 5 6 7 8	1.02 3.25 5.72 8.58 12.1 17.3 31.2 36.4 39.9
10 11 12	42.8 45.3 47.5

Figure 4.2 Baghouse Inlet Point Locations - Asphalt Plant "A", Clayton, NC

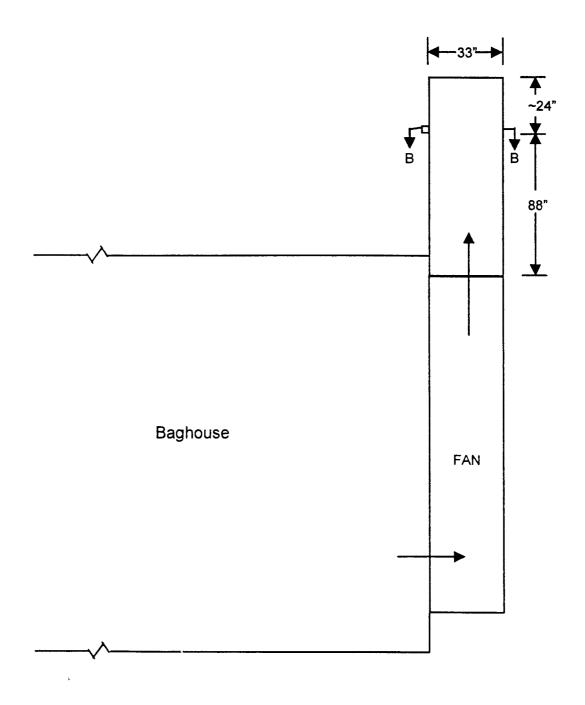
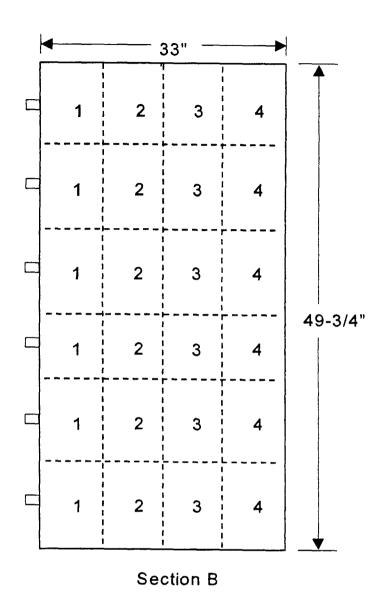



Figure 4.3 Baghouse Outlet Sampling Location - Asphalt Plant "A", Clayton, NC

Traverse Distance from Point Inside wall (inches)

1 4.1
2 12.4
3 20.6
4 28.9

Figure 4.4 Baghouse Outlet Point Locations - Asphalt Plant "A", Clayton, NC

5.0 SAMPLING AND ANALYSIS PROCEDURES

Table 5.1 summarizes the sampling locations, test parameters, test methods, number of tests, and net run time of each test event. Brief descriptions of each method follow:

5.1 LOCATION OF MEASUREMENT SITES AND SAMPLE/VELOCITY TRAVERSE POINTS

EPA Method 1, "Sample and Velocity Traverses for Stationary Sources," was used to select the measurement site at the baghouse outlet, and as a guideline for the selection of the measurement site at the baghouse inlet. The cyclonic flow check procedure outlined in Method 1 was used to evaluate the suitability of the inlet location for isokinetic sampling. The sample traverse locations at both the inlet and the outlet sampling locations were determined using Method 1 procedures. The measurement sites are discussed in Section 4.0.

5.2 DETERMINATION OF STACK GAS VOLUMETRIC FLOW RATE

EPA Method 2, "Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)," was used to determine gas volumetric flow rate at the baghouse inlet and outlet. A Type S pitot tube, constructed according to Method 2 criteria and having an assigned coefficient of 0.84, was connected to an inclined-vertical manometer and used to measure velocity pressure. A Type K thermocouple attached directly to the pitot tube was used to measure gas temperature. For each sampling run, the gas velocity was calculated from the average of the square roots of the velocity pressure readings, the average gas temperature, the molecular weight, and the stack static pressure. The volumetric flow rate was calculated as the product of the average gas velocity and the duct cross-sectional area.

5.3 DETERMINATION OF DRY MOLECULAR WEIGHT AND EMISSION CORRECTION FACTORS

EPA Method 3B, "Gas Analysis for the Determination of Emission Rate Correction Factor or Excess Air," was used to measure CO₂ and O₂ content of the stack gases. Gas samples were extracted from the baghouse outlet using the integrated, single-point bag sampling technique. The bag contents were analyzed onsite within four hours after sample collection using an Orsat® analyzer to determine concentrations of CO₂ and O₂. The Orsat® analyzer used for gas analysis had 0.2 % subdivisions.

TABLE 5.1

SAMPLING LOCATIONS, TEST PARAMETERS, AND
TEST METHODS SUMMARY
ASPHALT PLANT "A" - CLAYTON, NC

Sampling Location	Parameter	Test Methods	No. of Tests	Net Run Time, Minutes
Baghouse Inlet	Flow Rate O ₂ /CO ₂ Moisture PCDDs/PCDFs PM/Metals	EPA 1 & 2 EPA 3 EPA 4 EPA 23 EPA 29	1 1 1 1	20 20 20 20 20 20
Baghouse Outlet	Flow Rate O ₂ /CO ₂ Moisture PCDDs/PCDFs PM/Metals		3 3 3 3 3	240 240 240 240 240

5.4 DETERMINATION OF STACK GAS MOISTURE CONTENT

EPA Method 4, "Determination of Moisture Content in Stack Gases," was used to determine gas moisture content. The quantity of condensate collected during each sampling run was determined gravimetrically as the difference of the pre- and post-test impinger weights. The gas moisture volume was then calculated as the ratio of the moisture volume (assuming a conversion factor of 0.0415 grams per cubic foot) to the sum of the moisture volume and the dry gas volume as indicated by the dry gas meter. The Method 4 procedure was conducted simultaneously with each Method 23 and Method 29 sampling run.

5.5 DETERMINATION OF POLYCHLORINATED DIBENZO-P-DIOXINS AND POLYCHLORINATED DIBENZOFURANS

EPA Method 23, "Determination of Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans From Stationary Sources" was used to determine PCDDs and PCDFs at the baghouse inlet and outlet. A schematic of the Method 23 sampling train is shown in Figure 5.1. Gas samples were extracted from the gas streams isokinetically, and passed through a glass nozzle, heated glass-lined sample probe, a heated glass fiber filter, a coil

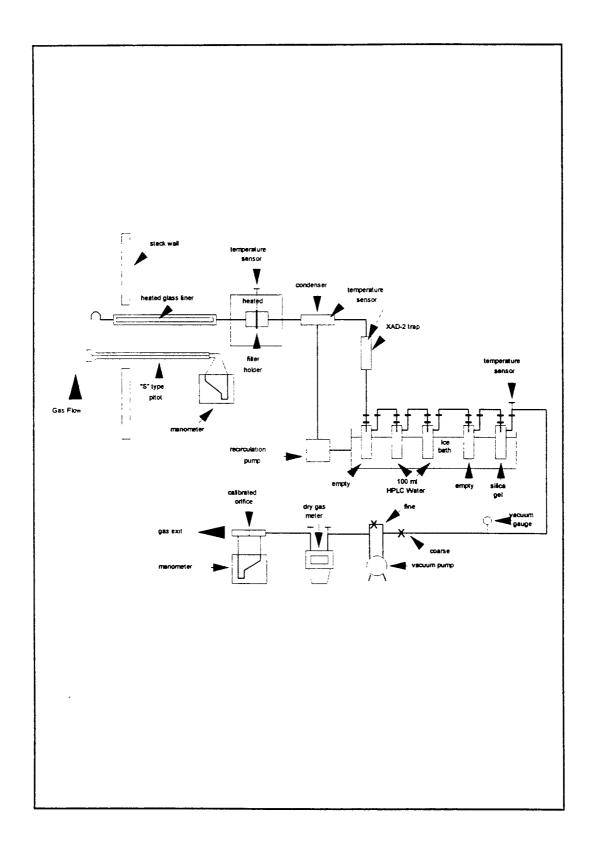


Figure 5.1 Method 23 Sample Train Schematic - Asphalt Plant "A", Clayton NC

condenser, and a sorbent resin trap containing approximately 40 grams of spiked XAD®-2 sorbent resin. Ice water from the impinger bath was continuously recirculated through water jackets on the coil condenser and the XAD®-2 sorbent resin trap to cool the sample gas and facilitate absorption of PCDDs and PCDFs onto the XAD®-2 resin. At the conclusion of each sample run, the sample train components (except the sorbent trap) were rinsed the with pesticide-grade acetone, methylene chloride, and toluene.

Upon receipt by the subcontract laboratory, TLI, the samples were concentrated combined, and analyzed using a GC/MS. Sample aliquots were initially separated using a DB-5 capillary column. In cases where the results of the analyses using the DB-5 column indicated the presence of 2378 PCDFs; the sample was re-analyzed using a DB-225 capillary column, and the results of the DB-225 analysis were used for the subsequent calculations of emission rate and toxic equivalency for the 2378 PCDFs congener.

5.6 DETERMINATION OF PARTICULATE MATTER AND METALS

EPA Method 29, "Determination of Metals Emissions From Stationary Sources," was used to determine filterable PM and metals at the baghouse inlet and baghouse outlet locations. The target metals included: Antimony (Sb), Arsenic (As), Barium (Ba), Beryllium (Be), Cadmium (Cd), Chromium (Cr), Cobalt (Co), Copper (Cu), Lead (Pb), Manganese (Mn), Mercury (Hg), Nickel (Ni), Phosphorus (P), Silver (Ag), Selenium (Se), Thallium (Tl), and Zinc (Zn). A Method 29 sampling train schematic is presented in Figure 5.2.

Gas samples were withdrawn from the gas streams isokinetically and through a glass nozzle, heated glass-lined sample probe, a heated quartz fiber filter, and an impinger train containing reagents for the absorption of metals. The first impinger in the train was empty, the second and third impingers each contained 100 milliliters (ml) of a 5 % nitric acid (HNO₃)/10 % hydrogen peroxide (H₂O₂) solution, the fourth impinger was empty, the fifth and sixth impingers each contained 100 ml of a 4 % potassium permanganate (KMnO₄)/10 % sulfuric acid (H₂SO₄) solution, and the last impinger contained a known quantity of silica gel.

The sample recovery scheme for metals is shown in Figures 5.3 and 5.4. At the conclusion of each sampling run, the front half of the sampling train (i.e., in front of the tared quartz fiber filter) was rinsed with acetone followed by a solution of 0.1 N HNO₃. The first three impingers were quantitatively recovered and rinsed with 100 ml of HNO₃ solution; the impinger contents and the rinses were collected in a pre-cleaned glass sample bottle. The contents of the fourth and fifth impingers were recovered and impingers rinsed with 100 ml of fresh acidified potassium permanganate solution, followed by a rinse with 100 ml of deionized water into a pre-cleaned glass sample bottle. The fourth and fifth impingers were then rinsed with 25 ml of 8 N HCL solution, which was collected in pre-cleaned glass sample jar containing 200 ml of deionized water.

Analyses for the determination of PM concentrations and emission rates were conducted at PES' facilities in Research Triangle Park, NC. The acetone and nitric acid probe rinses and the filters were transferred to pre-cleaned, tared beakers, evaporated to dryness, desiccated, and

weighed to constant weight. At the conclusion of the PM analysis, the beakers were sealed with ParafilmTM and transported to the subcontract laboratory, TLI, for determination of the target metals content. Each sample run generated two fractions for the analysis of all target metals except mercury, and five fractions for analysis of mercury. Analysis for the target metals was conducted according to the sample analysis scheme presented in Figures 5.3 and 5.4. Except for mercury, analyses of the target metals were conducted using the analytical method which resulted in the lowest detection for each metal; either graphite furnace atomic absorption spectroscopy (GFAAS), or inductively coupled argon plasma (ICP) emission spectroscopy. Analysis for mercury content was determined using cold vapor atomic absorption spectroscopy (CVAAS).

5.7 DETERMINATION OF PLUME OPACITY

EPA Method 9, "Visual Determination of the Opacity of Emissions from Stationary Sources" was used to quantify visible emissions from the baghouse outlet stack. DEECO, PES' subcontractor, provided a certified VEO. The observer was certified to read plume opacities at a field training session held in Raleigh, North Carolina by Eastern Technical Associates of Raleigh, North Carolina on March 12, 1997 (Certificate No. 257158).

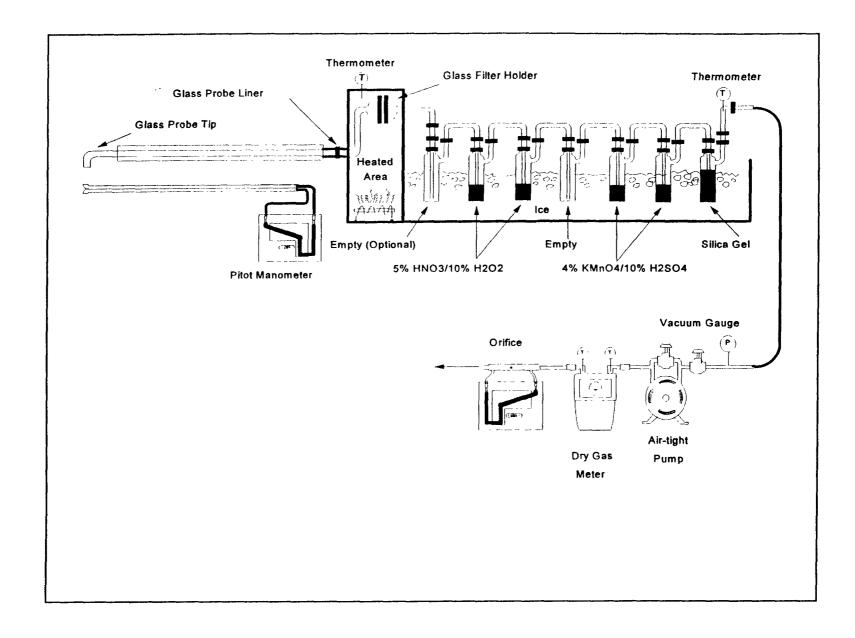


Figure 5.2 Method 29 Sample Train Schematic - Asphalt Plant "A", Clayton NC

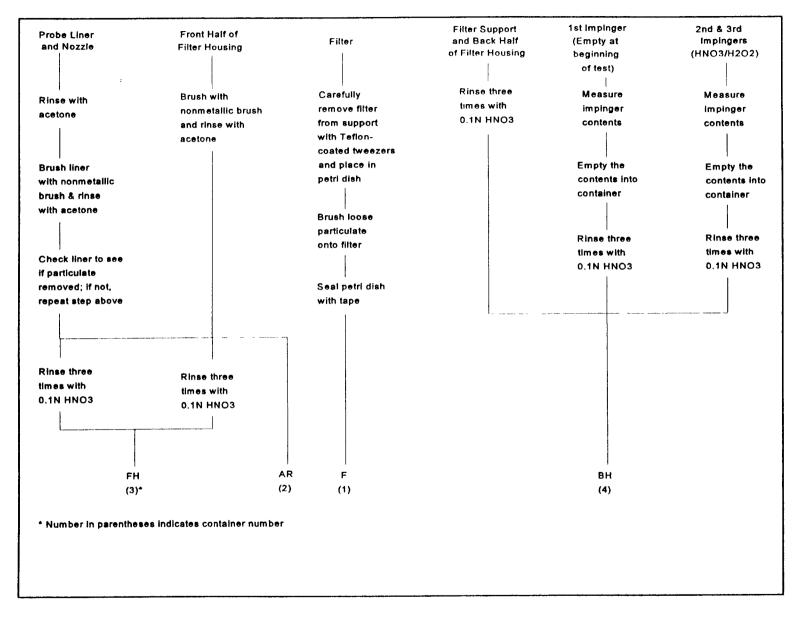


Figure 5.3 Method 29 Sample Recovery Scheme (Sample Fractions 1-4)
Asphalt Plant "A", Clayton NC

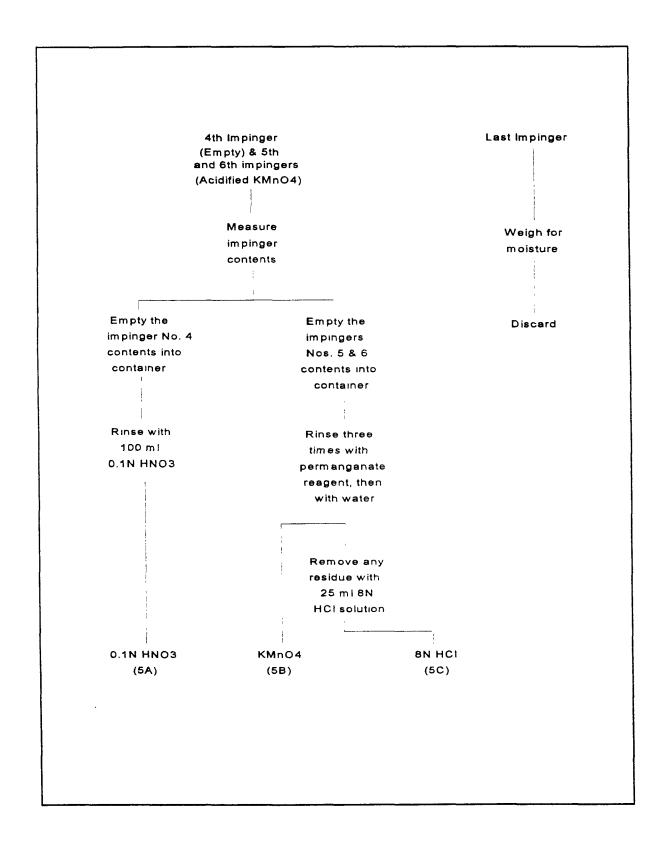


Figure 5.4 Method 29 Sample Recovery Scheme (Sample Fraction 5)
Asphalt Plant "A", Clayton NC

6.0 QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES AND RESULTS

This section describes the specific QA/QC procedures employed by PES during the performance of this source testing program. PES' quality assurance program was based upon the procedures and guidelines contained in the "Quality Assurance Handbook for Air Pollution Measurement Systems, Volume III, Stationary Source Specific Methods," EPA/600/R-94/038c, as well as in the test methods to ensure the collection, analysis, and reporting of reliable source test data.

6.1 CALIBRATION OF APPARATUS

Since no mechanism exists for an independent measurement of emissions from the source, careful preparation, checkout, and calibration of the source testing sampling and analysis equipment is essential to ensure the collection of data of high quality. PES maintains a comprehensive schedule for preventative maintenance, calibration, and preparation of the source testing equipment.

6.1.1 Barometers

PES used aneroid barometers which were calibrated against a station pressure value reported by a nearby National Weather Service Station, and corrected for elevation.

6.1.2 Temperature Sensors

The responses of the Type K thermocouples used in the field testing program were checked using Calibration Procedure 2e as described in the Quality Assurance Handbook. The response of each temperature sensor was recorded when immersed in an ice water bath, at ambient temperature, and in a boiling water bath; each response was checked against an ASTM 3F reference thermometer. Table 6.1 summarizes the results of the thermocouple checks and the acceptable levels of variance. Digital temperature readouts were checked for calibration using a thermocouple simulator having a range of 0-2400 °F.

6.1.3 Pitot Tubes

For the measurement of velocity pressure in the gas streams, PES used Type S pitot tubes constructed according to EPA Method 2 specifications. Pitot tubes meeting these geometric specifications are assigned a baseline pitot coefficient (C_p) of 0.84 and need not be

TABLE 6.1

SUMMARY OF TEMPERATURE SENSOR CALIBRATION DATA ASPHALT PLANT "A" - CLAYTON, NC

Temp.		Tempera	ture, °R	Absolute	ЕРА	
Sensor I.D.	Usage	Reference Sensor		Difference %	Criteria %	
5C	Stack Gas	498 562 628	498 561 629	0 0.17 0.16	< ±1.5 < ±1.5 <±1.5	
5B	Stack Gas	496 553 596	499 559 596	0.60 1.0 0	< ±1.5 < ±1.5 < ±1.5	
RT3	Stack Gas	501 532 670	501 532 672	0 0 0.30	< ±1.5 < ±1.5 < ±1.5	
RT20	Stack Gas	492 534 672	493 532 671	0.20 0.37 0.15	< ±1.5 < ±1.5 < ±1.5	
RT11	Impinger Exit	496 532 670	495 534 670	0.20 0.37 0	< ±1.5 < ±1.5 < ±1.5	
SH4	Impinger Exit	497 532 670	496 535 669	0.20 0.56 0.15	< ±1.5 < ±1.5 < ±1.5	

subjected to a wind tunnel calibration. PES performs, at a minimum, annual calibration checks of pitots using Calibration Procedure 2 as found in the Quality Assurance Handbook. The results of the dimensional checks for each pitot tube used in this test program are summarized in Table 6.2.

6.1.4 <u>Differential Pressure Gauges</u>

PES uses Dwyer inclined/vertical manometers to measure differential pressures. These include velocity pressure, static pressure, and meter orifice pressure. Manometers are selected with sufficient sensitivity to accurately measure pressures over the entire range of expected values. Manometers are primary standards and require no calibration.

6.1.5 Dry Gas Meter and Orifice

The Method 23 and 29 dry gas meters and orifices were calibrated in accordance with Calibration Procedure 5 in the Quality Assurance Handbook. This procedure involves direct comparison of the dry gas meter to a reference dry test meter. The reference dry test meter is calibrated annually against a wet test meter. Before its initial use in the field, the metering system was calibrated at several flow rates over the normal operating range of the metering system. For the initial calibration to be considered valid, the results of individual meter calibration factors (γ), cannot differ from the average by more than 0.02, and the results of individual meter orifice factors (ΔH_{ω}), cannot differ from the average by more that 0.20. After field use, the metering system calibration was checked at the average flow rate and highest vacuum observed during the test period. The results of the post-test meter correction factor check cannot differ by more that 5% from the average meter correction factor obtained during the initial, or thereafter, the annual calibration. Table 6.3 presents the results of the dry gas meter and orifice calibrations. All dry gas meters and orifices used in this test program met the method calibration requirements.

6.2 ON-SITE MEASUREMENTS

The on-site QA/QC activities include:

6.2.1 Measurement Sites

Prior to sampling, the stack was checked dimensionally to determine the suitability of the measurement site locations with respect to the Method 1 criteria. Distances to upstream and downstream disturbances, test port locations, and inside stack dimensions were checked to evaluate the uniformity of the stack cross sectional area. The inside stack dimensions, stack wall thickness, and sample port lengths were measured to the nearest 0.1 inch.

TABLE 6.2

SUMMARY OF PITOT TUBE DIMENSIONAL DATA ASPHALT PLANT "A" - CLAYTON, NC

			RESULTS					
Measure- ment	Criteria	Pitot Tube Identification						
		5C	5B	RP-20				
α_1	$-10^{\circ} \le a_1 \le 10^{\circ}$	2.5	2	2				
α_2	$-10^{\circ} \le a_1 \le 10^{\circ}$	-2.5	-1	1				
β,	-5° ≤ a ₁ ≤ 5°°	1	2	0				
β_2	$-5^{\circ} \le a_1 \le 5^{\circ}$	-1	0	1				
γ	-	2.5	1	0.5				
θ	-	0	0.5	0				
A	-	1.013	0.990	1.0065				
$Z = A \tan \gamma$	≤ 0.125 in.	0.044	0.017	0.009				
$W = A \tan \theta$	≤ 0.03125 in.	0	0.009	0				
D_{t}	$\begin{array}{c} 0.1875" \leq D_t \\ \leq 0.375" \end{array}$	0.370	0.383	0.375				
A/2D _t	$1.05 D_t \le P \le$ $1.50 D_t$	0.389≤0.55≤0.555	0.402≤0.5≤0.575	0.394≤0.503≤0.563				
	Acceptable	Yes	Yes	Yes				
Assign	ned Coefficient	0.84	0.84	0.84				

6.2.2 <u>Velocity Measurements</u>

All velocity measurement apparatus were assembled, leveled, zeroed, and leak-checked prior to and at the end of each sampling run. The stack static pressure was determined at a single point within the stack corresponding to the average velocity pressure as obtained during the pretest velocity traverse.

TABLE 6.3

SUMMARY OF DRY GAS METER AND ORIFICE CALIBRATION DATA
ASPHALT PLANT "A" - CLAYTON, NC

Meter	Dry Gas Meter Correction Factor (γ)				Meter Orifice Coefficient (ΔH _@)			
Box No.	Pre- test	Post-test	% Diff.	EPA Criteria	Average	Range	EPA Criteria	
M5-4	1.021	1.046	2.5	<5%	1.818	1.740 - 1.869	1.618 - 2.018	
M5-9	1.016	1.016	0.0	<5%	1.776	1.708 - 1.823	1.576 - 1.976	
MB-11	0.987	1.008	2.1	<5%	1.93	1.873 - 1.970	1.730 - 2.130	
MB-10	0.965	0.979	1.45	<5%	1.747	1.683 - 1.820	1.547 - 1.947	

6.2.3 Flue Gas Sampling

Integrated flue gas samples were collected in Tedlar® gas bags from the baghouse exhaust. Prior to their initial use, the bags were leak checked and purged with nitrogen to ensure cleanliness. Prior to and after completion of each sampling run, the stack gas molecular weight sampling system was leak checked. The bag samples were analyzed on-site using an Orsat® analyzer. Prior to use the Orsat® analyzer was assembled and replenished with fresh reagents and leak checked as per the manufacturer's procedures.

6.2.4 Moisture

During sampling, the exit gas temperature of the last impinger in each sampling train was maintained below 68°F to ensure condensation of stack gas water vapor. The moisture gain in the impinger train due to flue gas moisture was determined gravimetrically using a digital top-loading electronic balance with a resolution of 0.1 g. For subsequent calculations of the flue gas moisture volume, the calculated moisture volume due to the impinger weight gain was compared to the stack gas saturation volume at the average stack gas temperature. If the calculated moisture volume due to impinger weight gain exceeds the saturation volume, the assumption is made that moisture droplets entered to sampling system, and the saturation volume is used to

calculate stack gas molecular weight. The lower moisture value obtained using the reference method and saturation method was subsequently used in all Method 23 and Method 29 calculations.

6.2.5 Method 23/Method 29

The QA/QC activities for the for Method 23 and Method 29 sampling trains were similar. Prior to field testing, all glassware used was pre-cleaned according to the guidelines presented in Methods 23 and 29. The Method 23 glassware was cleaned based upon procedures presented in Section 3A of "The Manual of Analytical Methods for the Analysis of Pesticides in Human and Environmental Samples." The Method 29 sampling train glassware was prepared by first rinsing with hot tap and then water and then washed in hot soapy water. Next, all glassware was rinsed three times with tap water, followed by three additional rinses with water. Then all glassware was soaked in a 10 percent (V/V) nitric acid solution for a minimum of 4 hours, rinsed three times with water, then rinsed a final time with acetone, and allowed to air dry. On all of the Method 23 and Method 29 glassware, openings where contamination could occur were covered with ParafilmTM or Teflon® tape until the trains were assembled for sampling.

Table 6.4 summarizes the results of the post-test sample train leak checks for the Method 23 and Method 29 sampling trains, as well as the isokinetic sampling ratios for each of the sampling runs attempted. It should be noted that the Method 23 and Method 29 sampling runs at the baghouse inlet were aborted after approximately 20 minutes of sampling. Although the Method 29 isokinetic sampling ratio was within the required tolerance, the Method 23 ratio was not. This was due to the significant pressure drop across the train from the collected particulate matter and the XAD®-2 sorbent resin trap, which made it impossible to collect a gas at the flow rate required by the isokinetic rate equation. All pre- and post-test sample train leak checks met the acceptance criteria.

In order to evaluate the effectiveness of the on-site cleanup procedures, field blank samples of the Method 23 and Method 29 sample trains were collected during the field test program. The sample trains were assembled in same manner as the trains prepared for actual sampling runs and were transported to the baghouse outlet sampling location. The sample trains were each leak-checked and allowed to heat to the normal operating temperature. They were then leak-checked again and transported to the on-site field laboratory for recovery. The samples generated from the field blank trains were handled and analyzed in the same manner as the other samples generated during actual test runs.

In order to evaluate contamination levels in the sampling reagents, blank samples of all reagents used for both the Method 23 and Method 29 sampling were collected. These sample blanks were submitted for analysis along with the run samples and field blank samples for analysis.

TABLE 6.4

SUMMARY OF METHOD 23/ METHOD 29 FIELD SAMPLING QA/QC DATA
ASPHALT PLANT "A" - CLAYTON, NC

Date	Site	Run No.	Post-Test Leak Rate (cfm)	EPA Criteria	Percent Isokinetic	EPA Criteria
8/19/97	Baghouse Inlet	S-M23-I-1*	0.003	<0.02 cfm	77.0	90-110%
		S-M29-I-1*	0.007	<0.02 cfm	93.6	90-110%
	Baghouse Outlet	S-M23-O-1	0.002	<0.02 cfm	94.6	90-110%
		S-M29-O-1	0.004	<0.02 cfm	95.6	90-110%
8/20/97	Baghouse Outlet	S-M23-O-2	0.002	<0.02 cfm	106.8	90-110%
		S-M29-O-2	0.005	<0.02 cfm	103.9	90-110%
		S-M23-O-3	0.009	<0.02 cfm	106.7	90-110%
		S-M29-O-3	0.009	<0.02 cfm	106.5	90-110%
8/21/97	Baghouse Outlet	S-M23-O-4	0.001	<0.02 cfm	93.7	90-110%
		S-M29-O-4	0.008	<0.02 cfm	95.0	90-110%

^{*} Run aborted due to high grain loading at baghouse inlet location.

6.3 ANALYSES

Table 6.5 presents the results of the recoveries of the internal standards in the PCDDs/PCDFs samples. The recoveries for run S-M23-O-4 are elevated because an insufficient amount of recovery standard was added to the sample. Due to the nature of the error, the measured amounts of PCDDs/PCDFs congeners in the sample are not biased. Analysis of method, field, and reagent blanks showed background levels of the congeners less that the target detection limits for each congener.

The results of QA/QC analyses for Method 29 are presented in Tables 6.6 through 6.13. Table 6.6 presents the results of the TLI Lab Control Spike. All lab control spike recoveries were within 10 percent of the spiked amount. The post digestion matrix spike (Table 6.7) indicated recoveries outside of the QC criteria (75%-125%) for Ag, Be, P, Pb, and Se on the front-half spikes, and As, and Mn, on the back-half spikes. The results of the spikes indicate matrix effects specific to these analytes in the native sample matrix. The results of the duplicate analysis performed are presented in Table 6.8. A duplicate analysis is not reported for Tl since graphite furnace atomic absorption (GFAA) was used after analysis by inductively coupled plasma emission spectroscopy (ICP) indicated high negative values. The GFAA apparatus takes two separate aliquots sample of the and averages the result. The ICP takes a continuous aliquot, performs three analyses, and averages the result. Since the analysis for most of the target metals was less than 10 times the reporting detection limit (RDL), the duplicate analysis should not be considered a valid qualifier for those analytes. These cases are noted as "<RDL". For duplicate analyses which are reported the QC criteria is ± 20%.

Table 6.9 presents the results of the serial dilution analyses. Serial dilution analyses are not considered valid when the analyte concentration is less that 10 times RDL for ICP analyses. and 5 times RDL for GFAA analyses. The quality control relative percent deviation (RPD) for serial dilutions is \pm 10%. For results that exceed the QA limits matrix interferences are suspected. All analytes in the method blank (MB) shown in Table 6.10 were detected at levels less than or equal to the reporting detection limit (RDL), with the exception of lead (Pb). TLI used RDLs of 1-10 times the instrument detection limit (IDL) for reporting purposes. IDLs for metallic analytes range from 0.2 - 8 ppb. Lead was detected in the method blank at concentrations of 2.82 micrograms per liter (µg/L), which is slightly greater than the RDL of 2 μg/L for Pb. Lead results for run S-M29-O-2 are likely due to laboratory contamination. Lead results for runs S-M29-I-1 and S-M29-O-1 should be considered estimated, and Pb results for run S-M29-O-3 should be considered valid. Table 6.11 presents the results of the field blank and reagent blank analysis. Reagent blanks were collected to quantify the presence of contamination in the reagents used for the sampling program. A field blank train was assembled transported to the sampling location, leak checked, returned to the field lab and recovered. The field blank provides a check on the recovery efficiency from the sample trains. The results of the field and reagent blank analyses indicate that bias of the results due to cross contamination between field glassware trains and contamination of the reagents used for sampling is negligible.

Table 6.12 presents results mercury spike analyses. Lab control spikes performed for mercury indicate recoveries within the QC criteria of \pm 20 %. Pre-digestion matrix spikes for mercury indicate recoveries in excess of the QC limits, which indicate an interference for

TABLE 6.5
SUMMARY OF METHOD 23 STANDARDS RECOVERY EFFICIENCIES
ASPHALT PLANT "A" - CLAYTON, NC

					Percent Reco	very			
	TLI Blank	S-M23- I-1	S-M23- O-1	S-M23- O-2	S-M23- O-3	S-M23- O-4	S-M23- O-FB	S-M23- O-RB	QC LIMITS
FULL SCREEN ANALYSIS Internal Standards 2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDD	92 5 80.9 92.4 100 92.8 83.6 72.2 85.0 67.5	98.5 89.0 95.5 103 102 93.6 71.1 78.3 60.5	69.4 63.2 67.1 68.2 68.8 65.4 42.3 50.4 36.0	62 4 55.6 57.6 60.5 65.7 58 8 41 3 44.9 27.5	184 163 161 170 187 173 105 109 65 1	120 98.7 107 112 113 103 88.5 90.1 68.8	49.5 34.3 44.9 54.8 34.7 40.1 32.7 38.2 36.9	88.5 76.4 89.1 99.3 74.0 78.2 56.7 61.3 60.9	40-130% 40-130% 40-130% 40-130% 40-130% 25-130% 25-130%
Surrogate Standards 2,3,7,8-TCDD 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8,9- HpCDF	105 87.7 93.9 89.6 107	97.6 93.2 94.6 88.0 83.6	96.1 86.1 87.3 81 0 88.7	98 8 85.1 92.1 91.9 84.9	98.4 88.6 98.2 87.9 91.3	106 93.4 97.6 85.9 98.7	123 112 91.1 82 4 85.4	107 102 90.2 91.6 89.0	70-140% 70-140% 70-140% 70-140% 70-140%
Alternate Standards 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF	97.3 84.8	91.3 99.0	58.1 61.4	54.3 62.0	120 173	117 107	32.2 34.1	66.8 76.9	40-130% 40-130%
CONFIRMATION ANALYSIS Internal Standards 2,3,7,8-TCDF	72 .7	73.7	59.8	52.4	148	104		67.7	40-130%

^{*} Confirmation analysis was not necessary on S-M23-0-FB because no TCDF were detected in the full screen analysis.

TABLE 6.6

SUMMARY OF METHOD 29 ANALYSIS QC DATA
LAB CONTROL SPIKES
ASPHALT PLANT "A" - CLAYTON, NC

Analyte	Spike Amount (µg)	Recovered Amount (µg)	Recovery (%)
Ag	50	45.11	90
As	50	45.25	90
Ва	50	49.05	98
Be	50	47.58	95
Cd	50	48.64	97
Со	50	49.24	98
Cr	50	48.24	96
Cu	50	49.07	98
Mn	50	48.63	97
Ni	50	47.19	94
Р	1000	981.55	98
Pb	50	46.89	94
Sb	50	48.51	97
Se	50	47.66	95
Tl	50	45.00	90
Zn	200	199.45	100

SUMMARY OF METHOD 29 ANALYSIS QC DATA POST DIGESTION MATRIX SPIKES RUN NO. S-M29-O-1 ASPHALT PLANT "A" - CLAYTON, NC

TABLE 6.7

]	Front Half		Back Half
Analyte	Recovered Amount (μg/L)	Recovery (%)	Recovered Amount (µg/L)	Recovery (%)
Ag	37.13	74	41.57	83
As	66.21	79	36.64	73
Ba	2207.64	LS	60.46	80
Be	31.50	63	45.63	91
Cd	44.31	84	52.79	94
Со	60.73	85	46.23	92
Cr	187.14	80	55.26	88
Cu	216.04	86	69.47	95
Mn	2026.71	LS	68.47	47
Ni	112.31	79	61.16	90
P	4053.51	74	1409.02	79
Pb	231.32	68	108.50	89
Sb	83.39	78	47.69	95
Se	80.62	74	46.09	82
Tl	N/A	N/A	20.6	82
Zn	1289.01	LS	456.69	88

LS - Low spike; % Recovery is not considered valid when spike amount is less than 20% of recovered amount

N/A - QC analysis not reported since method of standard additions (MSA) was performed.

TABLE 6.8

METHOD 29 DUPLICATE ANALYSIS QC DATA RUN NO. S-M29-O-2
ASPHALT PLANT "A" - CLAYTON, NC

		Front Half			Back Half	
Analyte	Sample (µg)	Duplicate (μg)	RPD (%)	Sample (μg)	Duplicate (μg)	RPD (%)
Ag	0.173	0.188	<rdl< td=""><td><0.106</td><td><0.106</td><td><rdl< td=""></rdl<></td></rdl<>	<0.106	<0.106	<rdl< td=""></rdl<>
As	0.592	0.913	<rdl< td=""><td><0.532</td><td><0.532</td><td><rdl< td=""></rdl<></td></rdl<>	<0.532	<0.532	<rdl< td=""></rdl<>
Ва	51.1	50.8	0.589	0.914	0.915	<rdl< td=""></rdl<>
Ве	<0.100	<0.100	<rdl< td=""><td><0.106</td><td><0.106</td><td><rdl< td=""></rdl<></td></rdl<>	<0.106	<0.106	<rdl< td=""></rdl<>
Cd	2.13	2.11	0.943	<0.106	0.108	<rdl< td=""></rdl<>
Со	<0.100	<0.100	<rdl< td=""><td><0.106</td><td><0.106</td><td><rdl< td=""></rdl<></td></rdl<>	<0.106	<0.106	<rdl< td=""></rdl<>
Cr	9.97	10.1	1.30	0.435	0.427	<rdl< td=""></rdl<>
Cu	4.43	4.37	1.36	2.03	1.94	<rdl< td=""></rdl<>
Mn	33.4	33.4	0.00	1.70	1.70	<rdl< td=""></rdl<>
Ni	6.09	6.15	0.98	0.846	0.853	<rdl< td=""></rdl<>
Р	60.4	59.5	1.50	58.3	57.7	1.03
Pb	5.78	5.60	3.16	2.52	2.53	0.396
Sb	4.15	4.26	2.62	<0.426	<0.426	<rdl< td=""></rdl<>
Se	3.96	4.06	2.49	0.336	<0.319	<rdl< td=""></rdl<>
Tl	0.210	N/A	N/A	<0.213	N/A	N/A
Zn	46.7	46.7	0.00	15.6	15.7	0.639

Note: Duplicate analysis not reported for elements analyzed by GFAA. Tl was analyzed by GFAA

TABLE 6.9

METHOD 29 SERIAL DILUTION ANALYSIS QC DATA
ASPHALT PLANT "A" - CLAYTON, NC

	Serial Dilution,	Run No. S-M29-O-1	
Analyte	Sample μg	Serial Dilution μ g	RPD *
Ag	<0.100	<0.500	<rdl< td=""></rdl<>
As	2.66	<2.50	<rdl< td=""></rdl<>
Ba	221	242	9.07%
Be	<0.100	<0.500	<rdl< td=""></rdl<>
Cd	0.218	<0.500	<rdl< td=""></rdl<>
Со	1.82	1.95	<rdl< td=""></rdl<>
Cr	14.7	18.2	21.3%
Cu	17.3	18.1	4.52%
Mn	203	226	10.7%
Ni	7.26	8.72	<rdl< td=""></rdl<>
P	332	385	14.8%
Pb	19.7	23.0	15.5%
Sb	4.46	4.91	<rdl< td=""></rdl<>
Se	4.39	5.40	<rdl< td=""></rdl<>
Tl	<0.200	N/A	N/A
Zn	114	130	13.1%

^{* &}lt; 10 RDL / 5 RDL - Serial dilution analyte results are not considered valid when the concentration in the analyte is less than 10 times the Reported Detection Limit (RDL) for ICP analysis and 5 times the RDL for GFAA analysis. RPD = Relative percent deviation.

TABLE 6.10

METHOD 29 METHOD BLANK ANALYSIS QC DATA
ASPHALT PLANT "A" - CLAYTON, NC

Analyte	Reporting Detection Limit (µg/L)	Recovered Amount (μg/L)	Pass or Fail *
Ag	1	0.13	Pass
As	5	2.09	Pass
Ba	2	0.20	Pass
Be	1	0.01	Pass
Cd	1	0.44	Pass
Со	1	0.19	Pass
Cr	2	1.08	Pass
Cu	2	0.22	Pass
Mn	2	0.19	Pass
Ni	3	1.00	Pass
Р	30	0.70	Pass
Pb	2	2.82	Fail
Sb	4	1.10	Pass
Se	3	1.14	Pass
Tl	2	0.10	Pass
Zn	12	7.27	Pass

^{*} Method Blank considered "Pass" when recovered amount is less than the reporting detection limit (RDL).

The RDL is used instead of the instrument detection limit (IDL). IDL ranges from 0.2 0-8 ppb for many analytes. TLI used RDL values of 1-10 times IDL for reporting purposes.

TABLE 6.11

METHOD 29 FIELD AND REAGENT BLANK ANALYSIS QC DATA
ASPHALT PLANT "A" - CLAYTON, NC

	Field	Blank	Reagen	t Blank
Analyte	Front Half (µg)	Back Half (μg)	(Front Half) μg	Back Half (μg)
Ag	0.107	<0.100	0.270	<0.100
As	0.627	<0.500	<0.500	<0.500
Ba	4.66	0.237	4.33	0.326
Be	<0.100	<0.100	<0.100	<0.100
Cd	<0.100	0.130	<0.100	<0.100
Со	<0.100	<0.100	<0.100	<0.100
Cr	9.5	0.376	9.33	0.222
Cu	1.05	0.624	1.06	1.44
Mn	1.09	7.17	0.911	34.7
Ni	4.82	<0.300	4.68	0.606
Р	<3.00	12.1	<3.00	55.3
Pb	<0.200	6.59	<0.200	0.265
Sb	4.91	<0.400	4.18	<0.400
Se	4.27	0.421	4.35	<0.300
Tl	<0.200	<0.200	<0.200	<0.200
Zn	3.02	2.96	2.60	2.03

TABLE 6.12

METHOD 29 MERCURY SPIKE ANALYSIS QC DATA
ASPHALT PLANT "A" - CLAYTON, NC

Sample ID	Spike Amt µg	Recovery	Recovery Limits
Lab Control Spike	es		
LCS 1	5	106%	80-120%
LCS 1 Dup	5	100%	80-120%
LCS 2	5	100%	80-120%
LCS 2 Dup	5	95%	80-120%
Matrix Spikes (Pro	e-Digestion)		
O-M29-1	5	170%	80-120%
O-M29-1 Dup	5	170%	80-120%
O-M29-3	5	168%	80-120%
O-M29-3 Dup	5	160%	80-120%
O-M29-4	5	155%	80-120%
O-M29-4 Dup	5	152%	80-120%
I-M29-1	5	88%	80-120%
I-M29-1 Dup	5	103%	80-120%

mercury due to a matrix effect present in the native sample. Results for mercury should be considered biased low. Method blanks, field blanks, and reagent blanks for mercury indicated that the sample results for mercury were not biased due to mercury contamination in the reagents, of due to cross contamination in the sampling apparatus. Mercury blank results are presented in Table 6.13.

TABLE 6.13

METHOD 29 MERCURY BLANK ANALYSIS QC DATA ASPHALT PLANT "A" - CLAYTON, NC

Sample ID	Detection Limit μg/L	Recovered Amount μg/L
Method Blank		
MB-1	0.02	0.008
MB-1 Dup	0.02	0.016
MB-2	0.02	0.003
MB-2 Dup	0.02	0.003
Field Blank and R	eagent Blank	
FH	<0.400	<0.400
FH - Dup	<0.400	<0.400
ВН	<0.60	<1.20
BH- Dup	<0.60	<1.20
HNO3	<0.224	<0.400
HNO3 - Dup	<0.224	<0.400
KMnO4	<0.62	<1.16
KMnO4 - Dup	<0.62	<1.16
HCL		<0.376
HCL - Dup		<0.376

APPENDIX A PROCESS DATA

Appendix A: Process Data

ASPHALT PLANT "A"

Test Run 1

Test Date: August 19, 1997 Total Test Time: 4.3 hrs

	Ī		Asphalt (Concrete				T Total		Asp	halt	Calcu	ulated
]	İ		Produ	ction	Asphalt	Aggreg	ate Use	RAP	Use	Cement Use		Conditioner Use	
		Product	Rate	Total	Temp.	Rate	Total	Rate	Total	Rate	Total	Rate	Total
Time	Event	Type	(TPH)	(tons)	(oF)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)
0915	*	RDS	250		315	213		26		12.5		0.03	
1100		RDS	254		304	211		27		12.6		0.03	
1115	*	RDS	202		295	171		22		10.2		0.03	
1130		RDS	202		311	170		21		10.0		0.03	
1145		RDS	200		304	168		21		10.0		0.03	
1200	*	RDS	150		299	127		15		7.8		0.02	
1215		RDS	152		306	126		16		7.5		0.02	
1230		RDS	149		306	127		16		7.7		0.02	
1245		RDS	150		300	127		15		7.7		0.02	
1300		RDS	152		300	128		16		7.6		0.02	
1315		RDS	150		300	127		16		7.8		0.02	
1330		RDS	150		310	128		15		7.6		0.02	
1345		RDS	149		301	127		15		7.7		0.02	
1415		RDS	147		313	127		13		7.6		0.02	
1430		RDS	146		307	127		15		7.5		0.02	
1445		RDS	150		305	128		15		7.7		0.02	
1456		RDS	151		304	129		15		7.7		0.02	
Total**	l			735			622	I	76		37		0.093
Mean			171		305	145		18		8.7		0.02	
St. Dev			35		5	29		4		1.7		0.004	
Min			146		295	126		13		7.5		0.02	
Max			254		315	213		27		12.6		0.03	

^{*}See Table 4 for a description of these events.

^{**}Because running total data were not available, the run totals were calculated from the average of the TPH data multiplied by the total run time.

Appendix A: Process Data

As PHALT PLANT "A"

Test Run 1

Test Date: August 19, 1997 Total Test Time: 4.3 hrs

		<u> </u>		Fabric Fi	lter			
			Inlet	Outlet	Pressure	Fuel	Use	
		Product	Temp.	Temp.	Drop	Rate	Total	Visible
Time	Event	Туре	(oF)	(oF)	(in. H2O)	(GPM)	(gal)	Emissions
0915	*	RDS	245	200	2.9	5	80	none
1100		RDS	240	200	2.5	5	1693	none
1115	*	RDS	220	195	2.5	5	1817	none
1130		RDS	205	185	2.0	5	1855	none
1145		RDS	205	180	2.0	3	1911	none
1200	*	RDS	180	170	1.8	3	1994	none
1215		RDS	175	160	1.5	3	2036	none
1230		RDS	185	160	1.5	3	2092	none
1245		RDS	180	160	1.8	3	2136	none
1300		RDS	180	160	1.5	3	2192	none
1315		RDS	185	160	1.5	3	2234	none
1330		RDS	185	160	1.5	3	2274	none
1345		RDS	182	160	1.7	3	2336	none
1415		RDS	180	160	1.5	3	2388	none
1430		RDS	180	160	1.5	3	2441	none
1445		RDS	180	160	1.5	3	2489	none
1456		RDS	170	160	1.5	3	2533	none
Total**							920	
Mean			193	170	1.8	3.5		
St. Dev			22	15	0.4	0.9		
Min			170	160	1.5	3.0		
Max			245	200	2.9	5.3		<u> </u>

^{*} See Table 4 for a description of these events.

^{**} Because running total data were not available, the run totals were calculated from the average of the TPH data multiplied by the total run time.

Appendix A: Process Data

ASPHALT PLANT "A"

Test Run 2

Test Date: August 20, 1997 a.m.

Total Test Time: 4.3 hrs

		<u> </u>	Asphalt (Concrete				1		Asr	halt	Calc	ulated
			Produ		Asphalt	Aggreg	ate Use	RAF	Use	, .	nt Use	1	oner Use
1		Product	Rate	Total	Temp.	Rate	Total	Rate	Total	Rate	Total	Rate	Total
Time	Event	Type	(TPH)	(tons)	(oF)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)
0822		RDS	225		306	192		21		11.5		0.03	
0845		RDS	226		304	191		24		11.5		0.03	
0900		RDS	223		316	192		22		11.5		0.03	
0915		RDS	225		306	191		23		11.4		0.03	
0930	*	RDS	223		346	214		24		11.5		0.03	
0945	*	RDS	249		308	213		25		12.7		0.03	
0100		RDS	298		312	254		30	_	15.3		0.04	
1015		RDS	299		314	254		30		15.5		0.04	
1030		RDS	301		308	255		30	_	15.3		0.04	
1045		RDS	300		314	254		31		15.2		0.04	
1100		RDS	300		303	255		26		15		0.04	
1115		RDS	301		314	253		32		15		0.04	
1130		RDS	302		309	255		31		15		0.04	
1145		RDS	300		311	255		31		15.4		0.04	
1200		RDS	300		317	254		30		15.3		0.04	
1215		RDS	300		307	252		31		15		0.04	
1230		RDS	298		313	255		29		15		0.04	
1240		RDŚ	299		310	253		30		15		0.04	
Total**				1,187			1,013		119		60		0.151
Mean			276		312	236		28		14.0		0.04	
St. Dev			34		9	27		4		1.7		0.00	
Min			223		303	191		21		11.4		0.03	
Max			302		346	255		32		15.5		0.04	

^{*} See Table 4 for a description of these events.

^{**} Because running total data were not available, the run totals were calculated from the average of the TPH data multiplied by the total run time.

ASPHALT PLANT "A"

Test Run 2

Test Date: August 20, 1997 a.m.

Total Test Time: 4.3 hrs

	7		,	7				
	1		<u> </u>	Fabric F]
}			Inlet	Outlet	Pressure	<u></u>	Use	
	[Product	Temp.	Temp.	Drop	Rate	Total	Visible
Time	Event	Type	(oF)	(oF)	(in. H2O)	(GPM)	(gal)	Emissions
0822		RDS	230	185	2.1	5	324	none
0845		RDS	230	192	2.6	5	427	none
0900		RDS	230	190	2.8	5	512	none
0915		RDS	235	197	2.8	5	592	none
0930	*	RDS	195	200 ⁻	2.1	3	704	none
0945	*	RDS	260	205	2.8	7	760	none
0100		RDS	270	215	3.2	7	869	none
1015		RDS	270	225	3.1	7	984	none
1030		RDS	270	230	3.8	7	1118	none
1045		RDS	271	228	3.6	7	1200	none
1100		RDS	269	225	3.5	7	1335	none
1115		RDS	262	220	3.8	7	1440	none
1130		RDS	270	225	4.0	7	1539	none
1145		RDS	270	225	3.8	8	1663	none
1200		RDS	270	230	3.5	7	1757	none
1215		RDS	265	225	3.9	7	1881	none
1230		RDS	268	220	3.8	7	1993	none
1240		RDS	260	220	3.8	6	2086	none
Total**						1	1,762	
Mean			255	214	3.3	6.3		
St. Dev			21	15	0.6	1.2		
Min			195	185	2.1	3.0		
Max			271	230	4.0	8.0		

^{*}See Table 4 for a description of these events.

^{**} Because running total data were not available, the run totals were calculated from the average of the TPH data multiplied by the total run time.

ASPHALT PLANT "A"

Test Run 3

Test Date: August 20, 1997 p.m.

Total Test Time: 3.5 hrs

			Asphalt (Concrete				T		Asr	halt	Calc	ulated
			Produ		Asphalt	Aggreg	ate Use	RAP	Use	Cement Use		l .	oner Use
		Product	Rate	Total	Temp.	Rate	Total	Rate	Total	Rate	Total	Rate	Total
Time	Event	Type	(TPH)	(tons)	(oF)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)
1405		RDS	250		309	214		25		12.6		0.03	
1415		RDS	251		303	211		27		13.0		0.03	
1430		RDS	251		312	212		27		13.0		0.03	
1445		RDS	252		311	212		26		13.0		0.03	
1500		RDS	245		305	212		25		12.8		0.03	
1515		RDS	245		320	212		22		12.5		0.03	
1530		RDS	254		310	215		26		12.8		0.03	
1545		RDS	250		307	213		25		12.9		0.03	
1600		RDS	249		307	211		24		13.0		0.03	
1615		RDS	247		322	215		23		12.7		0.03	
1630		RDS	252		312	214		25		12.6		0.03	
1645		RDS	250		316	213		24		12.8		0.03	
1700		RDS	249		315	213	•	25		12.8		0.03	
1715	*	RDS	205		307	172		24		10.5		0.03	
1735		RDS	152	l	299	138		17		7.8		0.02	_
Total**				840			718		85		43		0.108
Mean			240		310	205		24		12.3		0.03	
St. Dev			26		6	21		2		1.3		0.003	
Min			152		299	138		17		7.8		0.02	
Max			254		322	215		27		13.0		0.03	

^{*}See Table 4 for a description of these events.

^{**} Because running total data were not available, the run totals were calculated from the average of the TPH data multiplied by the total run time.

ASPHALT PLANT "A"

Test Run 3

Test Date: August 20, 1997 p.m.

Total Test Time: 3.5 hrs

				Fabric Fi	lter			
			Inlet	Outlet	Pressure	Fuel	Use	
		Product	Temp.	Temp.	Drop	Rate	Total	Visible
Time	Event	Туре	(oF)	(oF)	(in. H2O)	(GPM)	(gal)	Emissions
1405		RDS	240	200	2.8	6	2560	none
1415		RDS	238	200	2.9	5	2630	none
1430		RDS	232	200	2.5	5	2731	none
1445		RDS	235	195	2.5	5	2823	none
1500		RDS	230	195	2.5	5	2873	none
1515		RDS	240	195	2.8	6	2992	none
1530		RDS	235	195	2.5	6	3071	none
1545		RDS	240	195	2.5	5	3162	none
1600		RDS	245	200	2.5	6	3248	none
1615		RDS	235	200	2.5	5	3333	none
1630		RDS	240	200	2.5	6	3415	none
1645		RDS	240	200	2.5	6	3488	none
1700		RDS	240	200	2.5	6	3602	none
1715	*	RDS	210	190	2.0	5	3656	none
1735		RDS	180	165	1.8	3	3728	none
Total**							1,168	
Mean			232	195	2.5	5.3		
St. Dev			16	9	0.3	0.8		
Min			180	165	1.8	3.0		
Max			245	200	2.9	6.0		

^{*} See Table 4 for a description of these events.

^{**} Because running total data were not available, the run totals were calculated from the average of the TPH data multiplied by the total run time.

Appendix A: Process Data
ASPHALT FLANT "A"

Test Run 4

Test Date: August 21, 1997 Total Test Time: 4.2 hrs

			Asphalt (Concrete						Asphalt		Calculated	
			Produ		Asphalt	Aggreg	ate Use	RAP	Use	Ceme	nt Use	Condition	oner Use
		Product	Rate	Total	Temp.	Rate	Total	Rate	Total	Rate	Total	Rate	Total
Time	Event	Туре	(TPH)	(tons)	(oF)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)
0741	}	HDS	150		315	142		0		7.8		0.02	
0745		HDS	179		306	169	•	0		9.2		0.02	
0800		HDS	177		302	169		0		9.2		0.02	
0815		HDS	177		335	168		0		9.3		0.02	
0830		Binder	178		300	171		0		8.1		0.02	
0845		Binder	179		300	171		0		8.2		0.02	
0900		HDS	184		351	174		0		9.0		0.02	
0915		Binder	179		283	167		0		9.1		0.02	
0930		Binder	181		297	172		0		8.5		0.02	
0945		Binder	178		319	172		0		8.0		0.02	
1000		Binder	177		320	171		0		7.8		0.02	
1015		HDS	176		350	167		0		9.3		0.02	
1030	*	HDS	200		271	191	,	0		10.4		0.03	
1045		HDS	200		303	190		0		10.6		0.03	
1100		HDS	200		282	189		0		10.4		0.03	
1115		HDS	200		310	190		0		10.5		0.03	
1130		HDS	200		289	191		0		10.3		0.03	
1145		HDS	200		318	189		0		10.6		0.03	
1153		Binder/ HDS	204		297	194		0		8.9		0.02	
Total**				778			740		0		39		0.10
Mean			185		308	176		0		9.2		0.02	
St. Dev			13		21	13		0		1.0		0.00	
Min			150		271	142		0		7.8		0.02	
Max			204		351	194		0		10.6		0.03	

^{*}See Table 4 for a description of these events.

^{**} Because running total data were not available, the run totals were calculated from the average of the TPH data multiplied by the total run time.

ASPHALT PLANT "A"

Test Run 4

Test Date: August 21, 1997 Total Test Time: 4.2 hrs

I				Fabric Fi	lter			
			Inlet	Outlet	Pressure	Fuel	Use	
		Product	Temp.	Temp.	Drop	Rate	Total	Visible
Time	Event	Туре	(oF)	(oF)	(in. H2O)	(GPM)	(gal)	Emissions
0741		HDS	195	168	2.0	5	146	none
0745		HDS	203	178	2.0	4	216	none
0800		HDS	203	177	2.0	4	288	none
0815		HDS	205	178	2.0	4	363	none
0830		Binder	195	170	2.0	4	440	none
0845		Binder	200	170	2.0	3	474	none
0900	·	HDS	210	180	2.0	4	560	none
0915		Binder	200	180	1.8	3	626	none
0930		Binder	195	170	2.0	4	669	none
0945		Binder	195	175	1.9	4	743	none
1000		Binder	190	168	1.9	4	812	none
1015		HDS	192	170	1.8	4	871	none
1030		HDS	205	170	1.9	5	932	none
1045	*	HDS	210	180	2.0	5	1004	none
1100		HDS	205	175	1.9	5	1063	none
1115		HDS	200	180	1.8	4	1133	none
1130		HDS	205	175	1.9	4	1208	none
1145		HDS	210	180	2.0	5	1285	none
1153	\ 	Binder/ HDS	210	180	1.9	4	1323	none
Total**							1,177	
Mean			201	175	1.9	4.2	l	
St. Dev			6	5	0.1	0.6		
Min			190	168	1.8	3.0		
Max			210	180	2.0	5.0		

^{*} See Table 4 for a description of these events.

^{**} Because running total data were not available, the run totals were calculated from the average of the TPH data multiplied by the total run time.

SPECIALIZED ASSAYS ENVIRONMENTAL 2960 Foster Creighton Drive Naphville, Tennessee 37204 ANALYTICAL REPORT

** Original report and a copy of the chain of custody will follow by mail.

NOBLE OIL CO. 7680 ATIN: LARRY PRICE

5617 CLYDE RHYNE DRIVE

SANFORD, NC 27330

Sample ID: 861-625 OIL

Project:

Project Name:

Sampler:

State Certification: 387

Lab Number: 97-A065425

Date Collected: 7/25/97

Time Collected:

Date Received: 8/ 7/97

Time Received: 9:00

Sample Type: Oil

			Repeat	Örav	ыı					
Arulytu	Result	<u>Uhits</u>	Limit	Linke	Pactor	Dette	Time	Amilyec	Method	Exact:
***************************************	** *******		******		****	*******	•••••	*********		
**EIJLB*										
Amenio	ND	TO AC	1.0	1.0	1	8 11 157	14:29	R. Street	6010A	2146
Cachaim	ND	mg Ag	1.0	1.0	1	8 AL A7	14:29	K. Street	601UA	2146
Crettman	ND	ng Ag	1.0	7.0	1	8 /11./57	14:29	R. Street.	60107	2146
Leaf	28.0	ng ya	1.0	1.0	1	8 A1 A7	14:29	R.Street	EOTO#	2146
Nicol	NO	ua ya	1.0	1.0	1	e VT KU	34:2 9	R. Scrone	ectron	21.46
-CONDAY CHEATEIRY INDINE	1008°									
Ottains in Oil	464.	ωβ.∳G	10.0	20.0	1	8 A2 A7	15:50	K.Wate	9576	2668
Adh	0.57	ť		0.01	1	8/9/57	14:17	A Herdison	D402	343.3
Flash Point, Cassal (Lp	TA CEHEALF	150F				8 A4 A7	9:22	D. Hoer	1076	3455
B ullur	3590	ng /kg	100.	5.∞	20	8 /4/87	12:37	G. Baun	ASTINCTION	8920

NO = Not detected at the report limit.

Planti point Agrituability regarded to the neverent 10 day F.

Report Approved By:

Report Date: 8/14/97

Theodore J. Duello, Ph.D., Q.A. Officer Michael H. Dunn, M.S., Technical Director Danny B. Hale, M.S., Laboratory Director

MATERIAL SAFETY DATA SHEET

Manufacturer ARR-MAZ PRODUCTS, L.P. 621 Snively Avenue Winter Haven, Fl 33880 Emergency Phone Number 941-293-7884

PRODUCT INFORMATION

Trade Name:

AD-bere LOF 65-00

Chemical Family:

Amines

Composition:

Modified Fatty Amidoamine

HMIS RATING:

Health Hezard

2 Moderate

Planmability Hazard

1 Slight

Reactivity Hazard

0 Minimal

D.O.T. Shipping

Classification:

Not regulated

PHYSICAL DATA

Boiling Point (°F):

> 500°F

Solubility in Water.

Slight **<**1

Vapor Pressure (mmHg at 25°C): Vapor Density (Air = 1):

>1

Appearance:

Dark brown liquid

Odor:

Mild

Specific Gravity (at 77°F):

0.96 - 0.98

FIRE EXPLOSION

Flash Point PM Closed Cun °F:

>300 °F

Extinguishing Media:

CO2, foam, or dry chemical

Special Fire Fighting Procedures:

West NIOSH/MSHA approved self-contained breathing equipment

and protective clothing.

Rev. Date: 11/26/96

Z-9061

APPENDIX B RAW FIELD DATA

Appendix B.1

Raw Field Data

Baghouse Inlet

Plant:	ASPHALT PLANT "A"	
Date: 8/18/97		
Sampling Location:	ashouse Inlit	·
Inside of Far Wall to Outs		
Inside of Near Wall to Out	side of Nipple (Nipple Length): _ 나용 "	\
Distance Downstream fro	m Flow Disturbance (Distance B):
2	$\frac{2}{2}$ inches / Stack I.D. = $\frac{0.4}{2}$	<u>50</u> dd *
Distance Upstream from	Flow Disturbance (Distance A):	
Calculated By:	$\frac{3/2}{0.99} \text{ inches / Stack I.D.} = 0.6$	96 dd Schematic of Sampling Location

Traverse	Fraction	Length	Product of	Nipple	Traverse Point
Point	of	(inches)	Columns 2 & 3	Length	Location
Number	Length	i	(To nearest 1/8")	(inches)	(Sum of Col. 4 & 5)
l	0.021	48	1.00%	4	\$ 5
2	0.067)	3 1/4		714
3	0.118		5 5/8		9 5/8
4	0.177		8 1/2		12%
5	0.250		12		16
6	0.356		17-18		21 1/8
7	6.644		30 %		347/0
8	0.750		36		40
9	0.823		39%		431/2
10	0.882		423/8		463/8
l1	0.933		44 3/4		483/4
12	0.979	4	47	J	51

GAS VELOCITY AND VOLUMETRIC FLOW RATE

Plant: PES/EPA Archat Plant #	A" Date: 8/18/97
Sampling Location: Baylouse Inlet	Clock Time; 13:00
Run #: PRELIMINARY	Operators: AB /AD
Barometric Pressure, in. Hg: 29,90	Static Pressure, in. H ₂ O:
Moisture, %: 25 Molecular wt., Dry:	Pitot Tube, Cp: <u>ወ-ኔ</u> ፈ
Stack Dimension, in. Diameter or Side 1:	<i>५</i> ४ Side 2: <u>५</u> ४
Wet Bulb. OF: Dry Bulb. OF:	

Qs_{std}=

lydonie	Traverse Point Number	Velocity Head in. H ₂ O	Stack Temp. °F
_0	A	0.36	194
	χ 2	0.25	195
_0	3	0.26	193
4	4	0.23	195
_0	Ç	0.26	194
0	Ç	0.34	193
_11	7	0.50	194
0	8	0.39	196
12	9	0.36	194
_4	10	0.34	195
_10	1)	0.22	193
10	12	0.25	195
_15	B 1	0.26	194
0	d	0.12	193
12	3	0.10	194
_10	4	0.30	196
-8	.5	0.24	194
12	6	0.30	195
10	7	0.38	193
•	8	0.33	195
	9	0.30	194
9	16	0.23	193
18	11	0.12	194
	12	0.09	196
1=7.2°v		<u>№ -0512</u>	To = 194, 3

o, ~ F:		-	
Md = (0.44 x %C	0 ₂) + (0.32 x %)	O ₂) + (0.28 x %N ₂))
Md = (0.44 x) + (0.32 x) + (0.28 x)
Md =			
Ms = Md x (1	100) + 18 (-	100)	
Ma = ()	x (1 - 100)	+ 18 ()	
Ma =			
Te = 0	F =	°R (°F + 460)	
$Ps = Pb + \frac{S.P.}{13.6}$	= () +	13.6	
Ps =	in. Hg		
₩ =			
Vs = 85.49 x Cp :	√ √ × √		
Vs = 85.49 x ()×()× √	
Vs =	ft/s		•
As -	₹ ²		
Qs = Vs x As x 60	0 s/m		
Qs =	×	x 60	
Co =	actm		
Qa _{std} = Qa x 17.6	347 x Ps x (1 -	* H ₂ O 100	
Ce _{std} =	x 17.647 x —	x (1	100

dactm

				11 VDB	.512	-								
	A PACIFIC		IENTAL SERV			FIE	ELD DAT	`A				V _{i.} : Si	ondensers	
	Date Sampling L	$\frac{2-19-9}{\text{ocation}}$	nlet to	bas house	-			\	l'robo	: Length : Tube LD	and Type	6'6/a	stalf[O	
	Operator , Barometric	Pressure (§	29.9	90	_	8	· · · · · · · · · · · · · · · · · · ·	FB	Nozzi Assur Meter	c I.D med Mois r Box Nu	.312 sture, % nber	25 5-4		
	Filter Num Pretest Les Pretest Pite	ber(s) ok Rate = <u>0.</u> ot Leak Chec	k 0.001	@ <u> 0''</u> in			A Chematic of		Meter Refer	r Gamma renco∆ p Test Leak	$\frac{1.02}{50}$ $Ratc = 6$	D.003 c	ſm @ <u>⊋o″</u>	
	Read and F		ck ots Every	松 5 Min		Traver Temp. Sen	r <mark>sc Point La</mark> Isor ID No.	j	Post 7	Fest Orsa	Leak Che	k		1
	Traverse Point Number	Sampling Time, (min.)	Clock Time (24-bout clock)	Gas Meler Reading (Va) R 3			s. Dillerental la. 11 ₂ 0 Actual	Sinck Temp. • [F			Impinger Temp.	Dry Gas M Inlet (Title)* F	eler Temp. Outlet (Pout F	l'ump Vacuum In. IIg
	<u> 4 </u>	0	14:15	696.812 696.812		1.34	1.8	231	231		6 7 63	89	84	7
155 - 5	<u> </u>	70	19:25 19:30/04	761.93 5704.831 707.928	0.42	2.26	2.3	729	237		59 68	49 90	86 91	22 18
	-	30	 	· · ·							·			
	5	50	<u> </u> 											
	7	40	<u> </u>											
	9	70 80	<u> </u> 							:				
	10	10	<u> </u>							<u> </u>				
	1	loo	; —							,				<u> </u>
	12	110	7		 		J		-	,				

METHOD 23 CDD/CDF SAMPLE RECOVERY DATA

9-23-I-1

					7- 2	5-1				
Plant: A≤	PHALT PL	ANT "A"			Run No	:# P &	[/			
Sample Da	te: 8/19	1/97	Filter No.(s):		Job No.	Job No.: 5413,003				
Sample Lo	Sample Location: INLET									
Recovery Date: 8/19/97 XAD-2 Trap No.(s): 5-23-I-1										
Sample Re	covery Pe	erson:			·					
			Moisture	Data		等。自由	建			
Impingers		1	2 (100 ml H2O) (untipped)	. 3	4 (knockout) (untipped)	Silica gel (untipped)				
Final wt.	433.5	4.74.1	699.8	703.9	594.4	888.7	g			
Initial wt.	408.7	922.3	699.Z	703.6	593.3	883.3	g			
Net wt.	24.8	51.8	0.6	0.3	1.10-t	5.8.4	g			
			Descrip	Hon	JOAC =	780	840			
Train Syste	em:			· · · · · · · · · · · · · · · · · · ·						
Probe:										
Filter: Cold	or -		Loading	g - <u> </u>						
Impinger C	contents:					·				
Silica Gel:	@Grams	Used -	Color -	%	Spent -					
Condensa	te Observe	ed In Front H	Half:							
		Re	covered Samp	ole Fractions			3 (a)			
Filter Cont	ainer No.				marke	d/sealed:				
XAD Modu	ule Contair	ner No.:				d/sealed: -				
Probe (FH) & Back Half Rinse (Acetone) Container No.: Liquid level marked/sealed:										
Probe (FH) & Back I	Liquid marke		$\widehat{}$						
Impinger Contents Container No.: Liquid level marked/sealed:										
		······) Container No.	:	Liquid — marke	level d/sealed:				
						201	•			

294.1 COND. 292.6

ا وج	प्रस्त

Plant

Date

Sample Type _

Run Number __ Operator .

Static Pressure (P.)

Pretest Pitot Leak Check Pretest Orsat Leak Check

A PACIFIC ENVIRONMENTAL SERVICES, INC.

8.19.97

Filter Number(s) Mary -001 - (Mar) Pretest Leak Rate = .005 cfm@ 15"

ASPHALT PLANT "A"

Sampling Location Foliat to Bag house
Sample Type PNI - Metal 5

S29. I-

Thy!
L

Sche	matic	of	
Traverse	Point	Lay	yout

Minutes

(O)	Condensers
	V _{I.} : Silica gel
N,	Total I O

Probe Length and Type	_4	Gla	<u>ج د</u>		
Pitot Tube I.D. No.	58				
Nozzle I.D.	3	A A IB	<u>.3</u> ١	7	
Assumed Moisture, % _	2	52			
Meter Box Number					
Meter \$ 11@	$\frac{77}{6}$	٥			
Meter Gamma	1.01	۰			
References p	213				
Post Test Leak Rate =		cfm @	2) Dii	_ in. [1
Post Test Pitot Leak Che	:ck				

Post Test Orsat Leak Check

BAB Titer come

Dane							yout						-
raye		•			Temp. Sen	sor ID No.	1		l			1	
Travene					Orilice Pre	s. Differential				Impinger	Dry Gas Me	eler Temp.	լդան
Number	Time, (mis.)	(24-hour clock)			Desked	n. 11 ₂ 0 Actual		Тетр. Тетр	Filter .• F	Temp.	Inci	United	Vacuum in. 11g
	0	Start		IIIIIII	TIMILLE			111111	MIIII		IIIIIII	HIIIIII	
1012	901			.23	1.20	1.90	230	233	12(2)	5	91	-88	3
ď	DO51			.52			233	835	285		9.3		5
	B 101	9:30					228	234	2(2)	49	96		33
(# K1	10:05						232	257				6
70	101	IMO						1					
Ø								7					
9	.63301							7					
6	100351							1					
8								- 1	,				
8													
7													
b ₂	130651							7	1				
6	C\$ 601							7					
1	12651								,				
3	103 701								,				
W									,				<u> </u>
Ý									,				
1	1 D851								, 				
3	82 901								,				
		-							,				
Q									,				<u> </u>
1											•		
7	110 1								,			<u> </u>	
	Page Traverne Polici Number 11 12 10 10 10 10 11 11 11 11 11 11 11 11 11	Page	Page of	Page	Traverse Point Plane, Clack Three Point Plane, (24-hour clock) (Na) ft 3 in. 1120 O !. Ata	Page	Page	Temp. Sensor ID No. Stack Time Color Reading Color Color	Temp. Sensor 10 No. Sensor 10 No.	Temp. Sensor ID No. Temp. Sensor ID No. Stack Time Clock Time	Temp. Sensor 10 No. Slack Froke Temp. (24-hour) Reading Illed 4 Pt. (241) In. Illed 4 Pt. (24-hour) Illed 4 Pt	Page	Page

MULT COPY

MPLE RECOVERY DATA

Plant: ASPA	HALT PLANT "A"	/ 			R	ın No.: 3	329-I-1		
_	9-97 Sample Box No.: - Job No.: S 413-003								
Sample Loca	Sample Location: In Let								
Sample Type: Particulate/Metals									
Sample Recovery Person: Troy Abrenatly / Barry Ray freld									
Container Description Volume, ml Sealed/Level Marked									
Front Half									
1	Filter No.(s) M97-	001							
2	Acetone Rinse	, 	···			•			
3	Nitric Rinse	and the second of the second second	r aska Forta	12 marray at 2 11 11 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14		at one or sea mander	AND LINES NEW MERCHANISM AND ADMINISTRATION OF THE PARTY		
Back Half									
4	Nitric Rinse - Imp. 1	,2,3, + Back 1/2	Filter						
5A	Nitric Rinse - Imping	Nitric Rinse - Impinger No. 4							
5B	KMNO4/H2O Rinse - Impingers 5 & 6								
5C	5C HCl Rinse - Impingers 5 & 6								
Moisture Da	la								
Impinger	Contents	Initial		Т	Weig	ht, gran			
No.		Volume, ml		itial	Fi	nal	Net		
	Empty 5% HNG /10% H202	too _m		3.1		3.	50.0		
2	5% HNG- 10% H202	100		4.7	72		18.4		
3	5% HNO3/10% H2O2	100	i	30.3		4.9	4.6		
4	Empty KmNon / Luca			2 ,2	63		0.5		
5	1 7 77304	100		7.0	[8]		6.5		
6		100	1	41.1	741		0.6		
	Silica Gel	200	18	4,8	17	1.0	4.2		
			 						
		ļ					78.8 /		
Total Comments:			<u> </u>		· 		10.00		
Comments.									

Appendix B.2

Raw Field Data

Baghouse Outlet

GAS ANALYSIS DATA FORM

PLANT	ASPHALT PLANT, "A"	COMMENTS:
DATE 8/20/97	TEST NO 523/579-0-2	
SAMPLING TIME (24 Nr CLOC	j ,	
SAMPLING LOCATION	SAGHORE OLTLET	
SAMPLE TYPE (BAG, INTEG	RATED, CONTINUOUS)	
ANALYTICAL METHOD	Okar	
AMBIENT TEMPERATURE_	S	
OPERATOR		<u> </u>

RUN	1	1		2		3	AVERAGE		MOLECULAR WEIGHT OF
GAS	ACTUAL READING	NET	ACTUAL READING	NET	ACTUAL READING	NET	NET VOLUME	MULTIPLIER	STACK GAS (DRY BASIS) M _d .
COZ	5.4	5.4	5, 5	5.5			5.45	44./100	
O ₂ (NET IS ACTUAL O ₂ READING MINUS ACTUAL CO ₂ READING)	18.4	13.0	18.7	13.Z			13.10	32.′100	
CO(NET IS ACTUAL CO READING MINUS ACTUAL O ₂ READING)								²⁸ /100	
N ₂ (net is 100 minus actual co reading)						·		28 ₁₁₀₀	

TOTAL

GAS ANALYSIS DATA FORM

PLANTASPHALT PLANT "A"	COMMENTS
DATE 8-20-17 TEST NO M29-0-3	
SAMPLING TIME (24-hr CLOCK)	
SAMPLING LOCATION Outlet	
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS)	
ANALYTICAL METHODORSAT ®	
AMBIENT TEMPERATURE 68°F	
OPERATOR	,

RUN		l		2		3	AVERAGE NET VOLUME	MULTIPLIER	MOLECULAR WEIGHT OF STACK GAS (DRY BASIS) . Md.
GAS	ACTUAL READING	NET	ACTUAL READING	NET	ACTUAL READING	NET			
COZ	5.0	5.0	5.2	5,2			5.1	44./100	
O ₂ (NET IS ACTUAL O ₂ READING MINUS ACTUAL CO ₂ READING)	18.Z	٦.٤,	18.2	13.0			/3,1.	32,100	
CO(NET IS ACTUAL CO READING MINUS ACTUAL O ₂ READING)								28/100	
N ₂ (NET IS 100 MINUS ACTUAL CO READING)						·		28 100	

TOTAL

GAS ANALYSIS DATA FORM

PLANT ASPHALT PLANT "A"	COMMENTS:
DATE 8/21/97 TEST NO #4	
SAMPLING TIME (24 br CLOCK)	
SAMPLING LOCATION <u>OUTLET</u>	
SAMPLE TYPE (BAG INTEGRATED; CONTINUOUS)	
ANALYTICAL METHOD	
AMBIENT TEMPERATURE	
OPERATOR	

RUN	1		2		3		AVERAGE		MOLECULAR WEIGHT OF
GAS	ACTUAL READING	NET	ACTUAL READING	NET	ACTUAL READING	NET	NET VOLUME	MULTIPLIER	STACK GAS (DRY BASIS) . M _d .
COZ	3.2	3. Z						44./100	
O2(NET IS ACTUAL O2 READING MINUS ACTUAL CO2 READING)	14.018	10.8 L	<i>'</i>					32 _{.′100}	
CO(NET IS ACTUAL CO READING MINUS ACTUAL O ₂ READING)								28/100	
N ₂ (HET IS 100 MINUS ACTUAL CO READING)								28 _{*100}	

TOTAL

RUN NO. A

OURCE NAME Baghous	e C	Outle!	F	OBSER	19-	Y DATE			T TIME		510P	тім <i>Е</i> ОЪ	
DDRESS		<u> </u>	·	SEC				<u>.</u>	SEC				
ASPHALT PL	<u> </u>	A''		MIN	0	15	30	45	MIN	0	15	30	45
1010.Rd		eland	Rd)	1	5	Ō	5	0	31	<u>ට</u>	30	5	0
CITY	STATE	VC Z	IP	2	0	0	0	5	32		0	0	2
PHONE	SOURCE	ID NUMB	ER	3	0	0	5	5	33 34	3	5	3/6	7
PROCESS EQUIPMENT		OPERATI	VG MODE	5	<u>0</u>	0	0	2	35	3	D	7	
aggregate dryer		0050474	NG MODE	6		-	5	8	36	5	0	0	0
baghouse		NOCH		7	0	5	3	7	37	0	5	0	
DESCRIBE EMISSION POINT START WELD STACK	0.7.0.0		•	8	4	0	0	5	38	0	5	0	0
FIART WHOLD STRCK		RELATIVE	TOOBSERVER		3	15	0	5	39		-	5	O
START 29 ft STOP Sine	START	O s	TOPSONR	10	=	13	5	63	40	0	2	0	Ö
START 450 TSTOP STOP	4		OBSERVER	11		K	5		41	0	5	0	7-
		mall amo	<u> </u>	12	0	0	5	0	42	5	7	0	る
START CONCURS COMING	STOP 3	ch co	m densection	13	0	0	0	5	43	<u>a</u>	D	0	D
EMISSION COLORATION TE STARTOOL STOP			VTINUOUS 🗹 RMITTENT 🗆	14	3	Ŏ	0	5	44	5-	0	O	a
WATER DROPLETS PRESENT	IF WAT	ER DROPL	ET PLUME	15	5	5	0	0	45	0	0	0	U
NO 🗆 YESTOF			ETACHED O	16	0	0	5	Ŏ	46	5	0	5	0
POINT IN THE PLUME AT WHICH	9 OPACII (341) STOP	Y WAS DE		17	0	0	0	<u> </u>	47	8	0	5	Q
DESCRIBE BACKGROUND	3107	-saul	<u></u>	18	0	5	0	0	48	0	0	0	O
START frees .	SIOP	Some		19	0	0	0	0	49	10	3	0	0
BACKGROUND.COLOR START GIECA STOP	1	NOITIONS	510Pganl	20	Ŏ	0	5	0	50	0	0	0	0
	WIND (DIRECTION		21	-	0	0	5	51	0	0	0	0
START 2-4 P STOP			TOP same	22	10	5	0	0	52	0	5	0	D
AMBIENT TEMP START 77 STOP 86		ULB TEMP	RH.percent	23	0	10	5	15	53	5	0	0	0
	 		<u> </u>	24	0	0	0	0	54	0	0	0	0
Source Layout Sketch	Dra	w North A	rrow	25	0	0	()	0	55	0	0	0	0
3,\05 8 4		(-	-})	26	15	0	0	\bigcirc	56	5	0	0	5
g 🕺	Ymissio	n Point -		27		5	0	0	57	5	0	0	0
				28		10	0	0	58	0	0	0	O
300	40k			29	0	5	5	0	59	5	10	0	0
Sun & Wind _	7		R+ ···>	30	9	0	10	5	60	0	0	0	0
Plume and =	Observe	ers Position	inge 42		RAGE (OPACII ERIOD	TY FOR		8 NUM	1BER 0 5	F REAL % WE		ABOVE 3
	β°'	~~,20,	6:18			OPAC	TY RE	ADINGS					
J-40	gion Line			ORS	ERVER	M.	INIMUI ME IPR			` \	XIMUN C	<u>1 15</u> 1	
	· · · · · · · · · · · · · · · · · · ·							<u> </u>	Jay	10 (203	ha	<u>. w</u>
COMMENTS - undicate	s fusi	tive e	missica	OBS	ERVER	S SIG	NATU	£		DA	TE 8-,	19-9	7
obstru				ORG	ANIZA	TION	DEE	ω	Inc				
I HAVE RECEIVED A COPY OF		PACITY OF	SERVATIONS	CER	TIFIED	BY F	TA			DA	TE .	3/97	
SIGNATURE		DATE		VER	FIED B					DA		<u></u> .	

RUN NO. \ \B

SOURCE NAME Baghouse Ex	;;+		OBSER B-	VATION				T TIME		STOP	TIME	
AUURESS			SEC	1			•••	SEC				
ASPHALT PLANT	" <u>#"</u>		MIN	0	15	30	45	MIN	0	15	30	45
1010 Rd CC	levela	nd Rd)	1	5	ව	0		31	0	0		/
CITY STATE	VC. Z	IP .	2	/	/	0	<u>5</u>	32	Ó	0	5	0
PHONE SOURCE	ID NUMBE	ER.	3	0	0	0	0_	33	0	Ö	0	
			4	0	5	0	0	34	5	0	0	0
PROCESS EQUIPMENT	OPERATIN	IG MODE	5	5	5	5	0	35	0	0	ථ	೦
control Equipment,	OPERATIA	IG MODE	6	0	D	0		36	5	0	0	0
baghouse	non	7al	7	5	٥.	O.	ව	37	0	٧	C	0
DESCRIBE EMISSION POINT STARTYCILOW STOCK STOP			8 ·	Ó	0	0	0	38	0	\	0	D
HEIGHT ABOVE GROUND LEVEL HEIGHT	59ml	OORSERVER			0	0	0	39		$\frac{\circ}{\circ}$	0	
START 29 F) STOP SOME START	\sim	OP same	9 .	0					0	J	Ò	0
DISTANCE FROM OBSERVER DIRECT	ON FROM	OBSERVER	10	೨	0	0	2	40	0	0	0	<u>ට</u>
START 450 FTSTOPSONE START	WESTSI	OP some	11	/	D	5	0	41	10	D	5	0
DESCRIBE EMISSIONS HA			12	0	0	5	5	42	5	O	/	/
START con' 10 con lens STOP 5			13	0	<u> </u>	2	0	43	0	0		5
		TINUOUS E	14	5	1			44	0		0	
START pale, yes STOP some FUGITIV		RMITTENTO		19	0	5	2		12-	0	Ö	ध्य
	ER DROPLE	TACHED V	15	0	/	0	0	45	>_	5	0	0
POINT IN THE PLUME AT WHICH OPACIT			16	0	9	0	12	46	0	0	5	0
START 63 th above ext STOP S			17	0	0	5	0	47	0	0	0	0
DESCRIBE BACKGROUND			18	5	0		0	48	೦	0	ろ	<u>ට</u>
START trees STOP	ane		19	1	-	0		49				0
BACKGROUND COLOR SKY CO	NDITIONS		<u> </u>	5	0	0		 	0	5	0	
START FREE STOP SAME STARTS	rattereds	10Psals	20	0	0	0		50	0	0	0	5
1	IRECTION		21	0.	0	0	5	51	0	5	0	0
START 2 STOP Some START	LB TEMP	TOP Serve	22	0	0	0	0	52	0	0	0	0
	8	RH.percent 38	23	0		0	0	53	5	0		0
373. 33	<u></u>		24	5	0	0	0	54	0	5	O	0
Source Layout Sketch Draw	w North Arr	'ow	25	0	0	0	0	55	0	0	0	0
100		. (.	26	0	0	O	5	56	0	5	0	0
58			27	0	0	/	1	57	0	0	0	O
Mr. ssion	Point		28	1	0	-	1	58	5	5	0	5
		Rt.	29	10	+	0	+o	59		5	2	5
			23	10	5	2	10	33	<u> </u>	9	10	
1		117		I X							(0
Sun- Wind -		42	30	0	0	0	0	60	0	0_	\succeq	
Plume and = Observer	s Position	42.	AVER		PACITY	FOR	<u> </u>	NUME				ABOVE
	s Position	42	AVER. HIGHE	ST PE	PACITY RIOD	FOR 1.	672	NUME		READ % WER		ABOVE
Plume and = Observer	s Position	42 *	AVER. HIGHE	ST PE	PACITY RIOD PACIT	FOR 1.	672 DINGS	NUME	5		RE 1	ABOVE
Plume and = Observer	s Position	42	AVERA HIGHE RANG	ST PE.	PACITY RIOD PACIT	FOR I. Y REA	672 DINGS	NUME	MAX	% WEA	RE 1	ABOVE
Plume and = Observer Stack 140° SumLocation Line	<u></u>		AVERA HIGHE RANG	E OF C	PACITY RIOD PACIT MIN	Y REA	672 DINGS	NUME	MAX	WER MUM OSh	10 20	
Plume and = Observer Stack 140° SumLocation Line	ruction		AVERAHIGHE RANG	E OF C	PACITY RIOD PACIT MIN S NAM	Y REA	672 DINGS	NUME Day: d	MAX A G	WER MUM OSh	RE 1	
Plume and = Observer Stack 140° Sumplocation Line COMMENTS - fusitive obst	ruction n		AVERA HIGHE RANG OBSE OBSE	EST PE E OF C RVER'S	PACITY RIOD DPACIT MIN S NAM S SIGN	Y REA	G12 DINGS VII	NUME Day: d	MAX A G	WER MUM OSL E B	10 20	-97

RUN NO. | c

SOURCE NAME Baghous	e E	xi+		OBSER	VATIO	N DATE	F		TIME OY	*	STOP	TIME	
ADDRESS				SEC				10.	SEC			 	7-
ASPHALT PLA				MIN	0	15	30	45	MIN	0	15	30	45
1010 Rd	((level	and Rd	<u> </u>	5	0	0)	31	5	0	5	5
CITY	STATE	NC	ZIP	2	5	0	5	0	32	10	5	0	0
PHONE	SOURCE	ID NUM	IBER	3	10	5	0	0	33			0	5
PROCESS EQUIPMENT,		OPERA	TING MODE	4	0	0	Ś	/	34	2	0	0	_
aggregate dri	ler	UPERAI	TING MODE	5	0	5	0	5	35	0	5	5	0
CONTROL EQUIPMENT			TING MODE PMAL	6	0	5	ට	0	36	10	5	5	5
BAGHOUSE DESCRIBE EMISSION POINT		700 8	:1.17_	7	5	0	٥.	0	37	5	5	0	5
STARTMECTAngular yellow stack;	STOP -	sare		8	Ó	0	5		38	0	5	5	0
HEIGHT ABOVE GROUND LEVEL	HEIGHT	RELATIVE	ETOOBSERVE	9 .	0	0	0		39	0	5	0	5
START 29 STOP SOUL			STOP SOME M OBSERVER	10		5	5	0	40	5	7	5	
START 300 TSTOP Same	START	ATE	M OBSERVER	1,,		0	5	0	41	5	0	0	
DESCRIBE EMISSIONS	STATE		stor same	12	5	5	#5	0	42	3	10		1
	STOP 5	ane		13				5	43	2		5	-
EMISSION COLOR	PLUME	TYPE. CO	ONTINUOUS E	14	0	10	0	 	44	_	5	0	5
STARTO STOP Same				├ ──		-		0		5_	0	5	10
NO D YES	ŧ		LET PLUME DETACHED &	15	0	/	5	0	45	5	0	5	0
POINT IN THE PLUME AT WHICH	4 · · · · · · · · · · · · · · · · · · ·			16	/	5	0	0	46	0	5	5	5
1 - (- 1 - 1 -	STOP	same		17	5	0	0	5	47	0	0	5	0
DESCRIBE BACKGROUND				18	0	0	3	0	48	0	5	0	5
		samo		19	0	5	5	/	49	0	5	5	5
BACKGROUND COLOR START GALLO STOP Same	1	NOITIONS	s 1510p same	20	10	5	1	-	50	5	5	0	5
Lung dece		IRECTION		21	10	0	5	5	51	+- -	13/	5	5
START 2. 3mph STOP same	1		STOP same.	22	10		0	2	52	5	5	0	
AMBIENT TEMP.		LB TEMP	1 '	23	0	5		1		ò	-	 -	5
START 88 STOP 989	6	₹	34			5	5	0	53	5	0	5	0
	_			24	0	<u> 5</u> _	5_	0	54	5	Ö	/	0
Source Layout Sketch	Drav	w North A Z	arrew 50	25	0	0	5	5	55	5	0	0	0
Q* K		(26	0.	5	5	0	56	0	5	0	5
1	mission	Point		27	5	0	0	0	57	5		5	
1	, Do		/	28	5	5	5	شمرا	58		0	0	5
	Os:			29	0	5	0	0	59	5	5	10	5
Sun & Wind _				30	0	0	5	0	60	0	5	5	5
Plume and =	Observer	s Positio	n		AGE O		FOR		NUME		READ WEF		
140				}				DINGS					
Sun Local	ion Lim			ORSE	RVFR'	MIN S NAM	IMUM			MAX	MUMI		-
201115115								\mathcal{U}	avid	· · · · · · · · · · · · · · · · · · ·		<u>w</u>	
COMMENTS / - inter/en	ence	from	- fositive	OBSE	RVER'	SIGN	ATURE			DAT	E _&-	19-9	17
	na	0		ORGA	NIZAT	ION -	DEE	co	Inc	-			
I HAVE RECEIVED A COPY OF I		ACITY O	BSERVATIONS	CERT	FIED B	YE	TA	1		DAT	E 3	/97	
TITLE		DATE	······································	VERIF	IED BY	,				DAT			

RUN NO. D

SOURCE NAME Baghous	so F	v:+		OBSER			E		T TIME			TIME 5:12	
ADDRESS	<u>~</u>	V) 1		SEC	-19-0	17		/7	SEC		/3	1.7	
ASPHALT	PLANT	"A"-	Corp. a N	MIN	0	15	30	45	MIN	0	15	30	45
1010 Rd		level	and Rd	1	5	5	0	5	31	_	5	0	5
CITY .	STATE	NC	ZIP	3	5	0	0	5	32	5	5	5	5
PHONE	SOURCE	ID NUM	BER	4	00	5	0	10	33	5	5	5	5
PROCESS EQUIPMENT		OPERA1	ING MODE	5	5	5	0	0	35		5	10	
control Equipments;			ING MODE	6	0	0	/	0	36	0	5	5	5
<u>Dashous</u>	50	1101	mal	7		3	5.	5	37	/		/	
DESCRIBE EMISSION POINT START RECTORDS WILLOW	150 p	sam	e	8	1	5	0	2	38	5	5	5	5
HEIGHT ABOVE GROUND LEVEL START 29st STOP Some	HEIGHT	RELATIVE		9 .	/	5	0	5	39	5	0	5	5
DISTANCE FROM OBSERVER	DIRECT		M OBSERVER	10	5:	0	5	5	40	0	5	0	0
START 300 FT STOP some	START	VE .	STOP Sare	11	0	0		/	41	0	0	5	5
DESCRIBE EMISSIONS START CONTING	STOP 🔩	ame		12	5	5_	0	5	42	0	0	0	5
EMISSION COLOR	PLUME	TYPE CO	NTINUOUS OF	13	5_	5	5	5_	43	5	0	9	2
START Littley STOP SINE WATER DROPLETS PRESENT:	FUGITIV	ED INT	ERMITTENT [] LET PLUME:	14	-	/		5	44	0	5	5	5
NO D YESTS	i .	-	DETACHED D	15	5_	5	<u>0</u>	<u>_</u>	45	2	5	5	5
POINT IN THE PLUME AT WHICH				16	5	0	5	0	46	00	5_	5	3
START 3th above exit.	STOP	saul	····	18	5	5		1	48	5	5	0	5
	STOP	some		19	-	9	5	5	49	<u> </u>	5	5	5
BACKGROUND COLOR START GREEN STOP Some	SKY CO			20	10	5	5	5	50 /	5	5	5	
ואוואים במכבם	14//4/0 0	DECTION		21	10	5	5		51	10	10	10	10
STARTH 28 STOP Same	START	NW	STOP some	22	5	5	5	5	52	5	/	7	
AMBIENT TEMP. 85	WET BU	LB IEMP	RH.percent	23	5	5	1	5	53	5.	5	5	10
		~	wow I-40	24	5	5	/	/	54	5	10	10	5
Source Layout Sketch	Drav	v North A	lilom 1	25		/_	0	5	55	5_	5	5	5
		6	\supset	26	0_	5	0	5	56	5	0	5	5
K 84	Emission	Point		27	10	5	0	5	57	5	5	5	5
42	0000		•	28	5	1	5	0	58 59	-	-	2	5
_	- 0			30	5	5	0	0		5	5	5	5
Sun Wind =	Observer	s Position		AVERA		ACITY	FOR	6.46 %	60 NUMB				ABOVE
Stack		tank	•	HIGHE				HE CANCE	L	5 9	% WER	E 4	'
Sun Local	-					MIN	IMUM		0	MAX	мим	10	
	-once			OBSER	IVER'S	NAM	E (PRIN	" <u>U</u>	wid	Go	sh	w	
COMMENTS LE LIVE	interle	(0010		OBSE	NVER'S	ŞIGN	ATURE		_	DATE	8-1	9-9	Z
()			· · · · · · · · · · · · · · · · · · ·	ORGA	NIZATI	ONT	EEC	 :0	Inc				4
I HAVE RECEIVED A COPY OF T	HESE OP	ACITY OF	SERVATIONS	CERTIF	IED B	ETI			<u> </u>	DATE	3/	97	
TITLE		DATE		VERIFI	EO BY		<u> </u>		To saline	A 75			

		Visib	le Emission C	bservat	ion Fo	rm					人A		
SOURCE NAME Baghouse	动士				VATIOI 20-			STAR			STOP Q	TIME :24	
ADDRESS ASPHALT PLANT "A	••			SEC	0	15	30	45	SEC	o	15	30	45
1010 Rd		veland	(Rd)	1	0	0	0	0	31		5	0	0
	STATE	VC ZI	P	2	0	0	0	5	32	_	0	~	0
PHONE		ID NUMBE	īR .	3	0	0	5_	0	33 34	0	0	5	00
PROCESS EQUIPMENT		OPERATIN	G MODE	5	5	<u>0</u>	00	0	35	<u>0</u>	00	50	0
control Equipment,		OPERATIN		6	0	0	0	0	36	0	0	0	5
baghor surgion point		norn	79/	7	0	0	0	0	37	0	0	5	0
DESCRIBE EMISSION POINT STARTURNOW rectangular	tack STOP	same		8	0	0	0	0	38	5		0	5
HEIGHT ABOVE GROUND LEVEL	HEIGHT	RELATIVE T		9	0	0	0	0	39	0	_		0
START 29 ft STOP same	START	-3 ¹¹ S7	OP same	10	5	O	Ö	0	40	0	0	0	0
DISTANCE FROM OBSERVER START 475 STOP SAME			OBSERVER OP Sam C	11	0	5	0	0	41	0	5	5	0
			341.10	12	0	0	0	0	42	0	0	0	0
DESCRIBE EMISSIONS START control tondered	\$70P	Some		13	0	0	5	0	43	0	0	0	0
EMISSION COLOR START 134+ GRESTOP Same	FLIGITIV	TYPE: CON	ITINUOUS 🖪 RMITTENT 🌮	- 14	5	0	_	0	44	D	0	0	5
WATER DROPLETS PRESENT.		ER DROPLE		15	-	0	0	O	45	0	Ö	5	5
NO D YESE	1		TACHED &	16	0	0	0	0	46	10	O	0	0
POINT IN THE PLUME AT WHICH			TERMINED	17	+	0		5	47	0	5	0	0
START 3 Pabove exit	STOP 5	anc		 	0		5	Š	48	13	3	10	12
DESCRIBE BACKGROUND START Lrees	STOP 5	iame		18	0	0	Ó	0		\vdash	 	=	10
BACKGROUND COLOR		NDITIONS		19	0	0	0	0	49			0	0
START Green STOP same	START	brokers	TOPOWICOST	20	0	0	0	0	50	0	0	0	10
START O-1 TO STOP 2-5	WIND E	DIRECTION	\	21	0	0	0	5	51	5	0	0	0
		North S ILB TEMP	TOP N RH.percent	22	0	0	D	0	52	0	0	_	0
START 74 STOP 79		56	65	23	5	10	0	D	53	0	0	0	0
* plantentrance				24	0	0	0	0	54	_	_	0	0
Source Layout Sketch	Dra	w North Ar	row	25	0	0	0	5	55	0	0	0	0
			≯)	26	0	0	0	0	56	5	0	-	0
	Emissio	n Pount		27	0	0	5	0	57	O	0	0	5
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Elilissio	7 7 01111		28	0	0	0	0	58	0	0	5	0
3,0			•	29			0	_	59	0	0	5	0
Sun- Wind _				30		. 0	0	5	60	0	0	0	0
Plume and =	Observe	rs Position		AVER	AGE (PACIT	Y FOR	46%	NUM				ABOV
Stack 14	Δ		recycled asphalt	RANG	SE OF	OPACI	TY REA	DINGS	<u> </u>		% WE		•
Sun Loca	หัญกิ Line	,	h://)avio	MA	XIMUN		
						'S SIG			Jays	3. G	ost TE -		
small intermittent	opaci	4 "puff	s" every		<u></u>	<u>//</u>					ଞ	-20	-97
few minutes for	~/50	econd		4	ANIZA		DEE	(0	nc				
I HAVE RECEIVED A COPY OF SIGNATURE	THESE O	PACITY OF	SERVATIONS	CERT	TIFIED	BY E	TA			DA		3 -	97
TITLE		DATE		VERI	FIED E	3Y		·		DA	T E		
,													

		Vis	ible Emission (Observal	ion Fo	rm		_			الم		
SOURCE NAME Baghouse	e Ex	(it_				N DATI - 97		STAR 9 :	7 TIME 30		STOP	TIME): 3	SO
ASPHALT PLANT "	A."			SEC	0	15	30	45	SEC	0	15	30	45
1010 R	1 CC	levele	and Rd)	1	0	0	0	0	31		0	0	10
CITY	STATE	NC	ZIP	2	0	0	5	0	32	0	5	0	0
PHONE	SOURCE	ID NUME	BER	3		0	0	0	33	0	0	0	0
PROCESS EQUIPMENT ,		OPERATI	NG MODE	5	00	5	00	0	34 35	00	0	50	0
control Equipment	1	OPERATI	ING MODE	6	0	2	0	10 5	36	0	0	10	0
DESCRIBE EMISSION POINT	136	nor		7	0	0	0	ō	37	0	5	0	0
START YEILOWS what stock	STOP -	same		8	0	0	0	0	38	15	0	0	0
HEIGHT ABOVE GROUND LEVEL START 29 STOP SAME	HEIGHT	RELATIVE	TOOBSERVER	9	0	0	0	0	39	0	0	0	0
DISTANCE FROM OBSERVER	DIRECT	ION FROM	1 OBSERVER	70	5	0	0	0	40	0	0	0	0
START 475 FT STOP Same	START	NW s	TOP same	11	0	_	_	_	41	ŏ	0	0	0
START conina	STOP 4			12	0	0	0	8	42	0	0	0	0
EMISSION COLOR START Jight MOSTOP			NTINUOUS 📽 ERMITTENT 🖼	14	C	0	0	6	44	0	10		0
WATER DROPLETS PRESENT:	IF WAT	ER DROPL	ET PLUME	15	_	0	5	ð	45	5	10	0	5
POINT IN THE PLUME AT WHICH	OPACIT		TERMINED	16	0	0	0	0	46	0	O	0	D
START 2-3ft above ait.	STOP 6	same		17	5	_	0	p	47	10	0	0	5
DESCRIBE BACKGROUND	STOP ±	same		18	0	0	0	0	48	0	0	0	0
BACKGROUND COLOR	SKY CO	NOITIONS		19	0	5	0/	0	50	0	-	5	10
WIND SPEED	WIND D	IRECTION		21	0	10	0		51	8	5	0	5
START 1-5 mph STOP Same		North S ILB TEMP.	RH.percent	22	0	0	0	0	52	Ö	0	5	0
START 79 STOP 83	6		60	23	0	0	0	0	53	0	0	0	5
A plant entrance		. 81		24	0	0	0	5	54	5	8	0	0
Source Layout Sketch	Drav	w North Al	A COM	25	-	0	0	0	55	0	0	0	0
	-		9	26	0	0	00	8	56	0	0	0	0
50	≱ mission	Point		28	0	0	0	0	58	15	0	0	0
9		نس	>	29	0	0	O	0	59	5	~	5	0
Sun- Wind _	Observer	s Position		30	0	0	0	5	60	0	10	0	0
Plume and = Stack	``			HIGHE				.78			READ % WEF	_	
Sun Local				RANG	E OF C		Y REA	DINGS	0	MAX	IMUM	15	5
x-40				OBSE	RVER	SNAM	E (PRII	v"/ T)avio	G	sho	<u> </u>	
COMMENTS indicates obstructi		read!	\a a \	OBSE	BVER'	SSIGN	AJURE	1		DAT	F	<u>~</u>	94
(from condensation			7 11. 5	ORGA	NIZAT	WN T	DEE	<u>~</u>	lnc	1	0 4	<u>~_</u> _	•
I HAVE RECEIVED A COPY OF T			SERVATIONS	CERTI	FIED B	Y	TA			DAI	E 3	-9	
SIGNATURE		DATE		VERIF	IED BY					DAT			
ANTE: alemitent one	• • • • • • • • • • • • • • • • • • • •	o Chi		1			<u> </u>			<u></u>			

											ว		
	···		isible Emission (<u> 2 c</u>		
SOURCE NAME Baghous	se E	xit			B-2				1 TIME		STOP	TIME 35	خ
ADDRESS ASPINIT	PLANT	"A"		SEC	0	15	30	45	SEC	0	15	30	45
1010 Rd	((leve la	nd Corp. Rd)	1	0	5		0	31	15	0	0	0
CITY	STATE	Ic.	ZIP	2		0	0	0	32	0	10	0	20
PHONE	SOURCE		ABER	3	0	_			33	0		0	0
PROCESS EQUIPMENT ,		OPERA	TING MODE	5	~	00	0	15	34 35	0	10	$\frac{\mathcal{O}}{2}$	5
aggregate dryer					0		5	0		0	5	0	0
CONTROL EQUIPMENT baghou	se		TING MODE	6	0		0	Ò	36	Š		Q	0
DESCRIBE EMISSION POINT	tack			7	0	0	0	15	37	0	0	0	
STARTrectangular yellaw .	STOP	same		8	0		0		38	0	0	0	0
HEIGHT ABOVE GROUND LEVEL START 29FF STOP SAME	HEIGHT	RELATIV 25+	E 100BSERVER SIOP same	9	O	0	0	0	39	10	0	0	0
DISTANCE FROM OBSERVER			STOP Same	10	0	0	15	0	40	0	0	5	0
START 475# STOP SAME	START	NW	STOP same	11	0	5	0	D	41	0	O	10	Q
DESCRIBE EMISSIONS	L			12	=	D	0	0	42	0	0		0
	STOP &			13	0	0	0	0	43		0	5	0
EMISSION COLOR, START light 5 STOP same	,		ONTINUOUS	14		0	5	0	44	0	0	15	-
WATER DROPLETS PRESENT:	1		TERMITTENT 🗹 PLET PLUME:	15	0	0	5	<u> </u>		U	10	 	0
NO SY YES	1		DETACHED		├──			Q	45			0	0
POINT IN THE PLUME AT WHICH	OPACIT	Y WAS	DETERMINED	16	0	8	5	0	46	0	0		_
START Habove exit	STOP	sume	-	17	0	0	0	0	47	0	0	_	0
DESCRIBE BACKGROUND				18	0	0	-	D	48	0	0	10	0
START Trees BACKGROUND COLOR	STOP SKY CO	Same		19	-	0	5	0	49	0	0	0	0
START Green STOP Some			stop Same	20	10	0	0	0	50	0	0	0	5
		DIRECTIC		21	0	0	0	10	51		10	5	
START 2-6 mpl STOP TOMO			STOPERAME	22	0		_	0	52	0	0	O	0
AMBIENT TEMP START 83 STOP Some	WET BU	ILB TEM		23	0	0	0	0	53	0	0	 -	
	T	<u> </u>	52	24	+	+		 	54	 	0	0	
Source Layout Sketch	Dra	w North	Accom		0	12	5	0		Ŏ	+	0	+=
	۵.0			25	1	Š	0	0	55	0	0	=	0
		(26	10	0	-	5	56	0	0	0	1-
0_ 6	Emission	n Point		27	0	0	0	0	57	0	15	0	0
8 1				28	5	0	0	10	58	0	0	0	
				29	10	0	10	0	59	0	0		0
Sun- Wind _				30	10	10	0	0	60	0	10	0	0
Plume and =	Observe	rs Positii	reculed	1	AGE O			5%	NUM	BER O	READ		ABOV
Stack 140	<u> </u>		asphalt		EST PE				Щ.		% WEF		
Sun Local	ion Line	ر	pile	0855	OVE O	MIN	VIMUN	1	<u> </u>	MAZ	KIMUM	20	2
= .10	-			0832	AVEN .		E IFRII	<u>""D</u>	o avid		iosh	<u>aw</u>	
intermittent opacity	puffs"	bor	~ I second		RVER'S	1	A YE	<u>. </u>		DAI	<i>8</i> -	zo-	97-
account for 58-15	% opac			ORGA	NIZA	ION	EEC	0	Inc		,		
I HAVE RECEIVED A COPY OF SIGNATURE				CERT	IFIED B	Y	TA	 .	<u> </u>	DA	TE	3-9	17
TITLE		DATE		VERI	IED BY					DA			
1	×		7/0 L	1			·		:::/: 4				
			_					^			U	. 46 L	AAG A

٧.

		Visib	le Emission O	bservat	ion Fo	rm					9	~	ט
OURCE NAME Baghouse	Exi	·+	0		/ATIOI 20-			STAR	T TIME		STOP	71ME	
DDRESS ASPHALT	PLANIT	"A"		SEC	0	15	30	45	SEC	0	15	30	45
1010 Rd			no Rd)	1	0	. 0		0	31	0	0	0	Ò
CITY	STATE	21		2	0			0	32		0	男15	5
		ID NUMBE	- R	3	0	0	0		33	0	0	٥	0
	300/102			4	0		0		34	0	0	0	0
PROCESS EQUIPMENT		OPERATIN	G MODE	5	0	0	0	0	35	0	O	5	0
CONTROL EQUIPMENT baghe	1160	OPERATIN	G MODE Grma	6	10	0	0	0	36	0	=	Š	15
	050	~	or ma!	7	5	0	0	0	37	0	0	\cup	0
DESCRIBE EMISSION POINT START Yellow rectangular	STOP	same		8	0	0	0	0	38	0	0	ව	0
HEIGHT ABOVE GROUND LEVEL	HEIGHT	RELATIVE T	OOBSERVER	9	0	0	10		39	15	0	15	
START 29 STOP Same			OBSERVER	10	0	_	0		40	O	0	0	0
START 475 + STOP Same				11	0	0	0		41	0	0	0	0
DESCRIBE EMISSIONS				12	0	0	Ö	0	42	5	_	0	0
		sane		13	0	0	0	0	43	0	0	5	0
EMISSION COLOR			RMITTENT &	14	5	0	0	0	44	0	0	0	10
START : LH Creq STOP WATER DROPLETS PRESENT:		ER DROPLE		15	0	15	10	0	45	10	0	0	0
NO TO YES	1		TACHED [0	10	46	 	0	0	0
POINT IN THE PLUME AT WHICH	OPACIT	Y WAS DE	TERMINED	16	-	10	5	0		0	10	+	
START4 Stabove exit	STOP	same		17		5	┼─	 	47	5		0	0
DESCRIBE BACKGROUND				18	0	10	0	0	48			\Box	0
61000	STOP	NDITIONS		19	0	0	0	Q	49	0	_	0	0
BACKGROUND COLOR START ALLA STOP Same			TOPORdon	20	0	0	0	0	50	0	0		0
WIND SPEED	WIND D	DIRECTION		21	-		5	0	51	0	0	0	0
START 5-10 5 10P 5-16	START	NW s	TOP NW	22	10	0	0	~	52	0	10	0	
AMBIENT TEMP START 83 STOP 84	WET BU	JLB TEMP.	RH.percent	23	0	0	o	15	53		13	0	0
1 plantinanie	1		<u> </u>	24	10	10	10	15	54	5	ŏ	10	0
Source Layout Sketch	Dra	w North Ar	row	25	0	0	0	0	55	0	0	0	0
		C	\rightarrow	26	10	Ö	D	† <u> </u>	56	2	10	0	$\overline{\circ}$
10'2	1	6	ノ	27	tŏ	5	5	0	57	1	10	1	0
78 4	missio	n Point		28	15	6	12	0	58	0	0	12	ガ
				29	13	0	0	づ	59	15	1	10	10
				30	1	15	17	1	60	B	12	<u>+=</u>	5
Sun-> Wind Plume and =	Observe	rs Position	سيساء ٥٥٠		AGE (PACIT	Y FOR		NUM	BER O	F REAL	DINGS	ABOV
Stack	· ·		recepted	HIGH	EST P	ERIOD	2	. 921			% WE	RE	
Suntaca	~.	>	روبيردابط	RANG	GE OF		TY REA NIMUN	ADINGS A	0	MA	XIMUN	1 15	•
7-40			nighait	OBS	RVER	'S NAN		NTI	avio			naw)
COMMENTS			3040	OBS	RVER	's sigi	VATUB		کا لاحد ر	DA	B-7	· · ·	
intermittent opacity	a cyc	les of	- FORDA	CRC	ANIZA	<u> </u>	1	1/~	<u> </u>	ــــــــــــــــــــــــــــــــــــــ	0-6		1
for ~ / second						1_)EEC	0	nc				
I HAVE RECEIVED A COPY OF SIGNATURE	THESE O	PACITY OF	SERVATIONS	CERT	IFIED	E E	TA			DA	^{TE} 3-	-16-0	17
TITLE		DATE		VERI	FIED B					DA	TE		
)													

٠.

			isible Emission	0036, 48							JA		
SOURCE NAME Baghouse	F.	 }	·-··	OBSER	-		E		TIME		STOP		
ADDRESS	LXI				20-	-97		14	05		1	5:05	
ADDRESS ASPHALT PL	ANT "	A <u>"</u>		SEC	0	15	30	45	SEC	0	15	30	45
1010 Rd	(0)	ever	and Rd)	1	0	0	0	0	31	0	0	0	0
CITY	STATE	10	ZIP	2	0	0	_	5	32	0	0	0	0
PHONE	SOURCE	ID NUA	ARFR	3	0	0	0	0	33	0	0	0	0
	300/102			4	5	0	0	0	34	0	5	0	0
PROCESS EQUIPMENT 9997E99 te Vryer		OPERA	TING MODE	5	0	0	0	0	35	10	0	D	0
CONTROL EQUIPMENT			TING MODE	6	0	5	0	0	36	0	0	0	0
DESCRIBE EMISSION POINT .		No.	rma/	7	_	0		0	37		0	ව	
START retangular yellow	STOP	Sam	۵	8		6	5	D	38	15	0	10	0
HEIGHT ABOVE GROUND LEVEL	HEIGHT	RELATIV	E TO OBSERVER	9	0	01	3		39	0	0	0	0
START 299 STOP some	START	29 ft	STOP some	10		5	3		40				
DISTANCE FROM OBSERVER	DIRECTI	ON FRO	M OBSERVER	<u> </u>	0	13	10	10	 	Ó	0	0	0
START 300 FT STOP Same	START	NĽ	STOP same	11	0	10	=	\circ	41	0	0	1	5
	STOP 4	same		12	0	0	0	10	42	0	0	0	0
EMISSION COLOR			ONTINUOUS []	13	0	0	0	0	43	0	0	5	-
START HOLLY STOP			TERMITTENT &	14	0	0	15	0	44	0	0	10	0
WATER DROPLETS PRESENT:	1		PLET PLUME:	15	10	0	0	10	45	0	5	0	0
NO VESTO	1 .		DETACHED D	16	0	0	0	-	46	0	0	0	0
met.				17	0		0	0	47	0	5	0	0
DESCRIBE BACKGROUND	3707	Sam	٧	18		10		0	48	0	0	0	0
	STOP	Sam	e		 		18	0	 	+	 	+	
BACKGROUND COLOR	SKY COL	VOITION	15	19	0	0	0	-}	49	5	9	0	0
START green STOP same				20	5	0	0	0	50		0	0	0
WIND SPEED START Z- 7 mph STOP	WIND D			21	0	-	0	10	51	0	0	0	
AMBIENT TEMP	WET BU	LB TEM	STOP SOME P. RH.percent		0	0	5	<u>し</u>	52	0	0	0	0
START 93 STOP 95	7		42	23	0	0	0	0	53	5	0	0	0
				24	0	0	0	5	54	0	5	0	5
Source Layout Sketch	Drav	v North	Airow Z. 40	25	6	5	0	0	55	0	0	10	TE
		(0/0	26	10	0	0	0	56	_	0	0	0
ROL A		,	\smile	27	10	0	5	0	57	0	0	0	5
1 .	Smission	Point	\	28	10	10	0	0	58	5	5	0	1
42	£.	2.102		29	+-	10	13	Ü	59	0	0	0	
	G			30	0	10	0	0	60	0	5	12	1
Sun-→ Wind → Plume and =	Observer	<u>s_</u> Positii	on		AGE O	<u>, </u>		10		BER OF		NVGS	10
Stack	X	1	troleum		EST PE	_		2.29%			% WE		_
Sun Local		حلح	tanks	_	-		Y REA	DINGS		4441	KIMUM		
	nt entr	Tary #		OBSE	RVER'	S NAM	E (PRI	NTIT	David	<u></u>	show		
COMMENTS		<u> </u>			RVER				AVI CI	DAT			
					2			de la				0-9	7
				ORGA	NIZAT	ION	DE	Eco)n	د			-
I HAVE RECEIVED A COPY OF SIGNATURE	THESE OF	ACITY (OBSERVATIONS	CERT	IFIED E	F	TA			DA	^{TE} 3	197	
TITLE		DATE		VERIF	IED B	Y				DAT	E		
		L											

		Visible Emission (Observat	ion Fo	rm					′ ろ	В	
SOURCE NAME BAGHOUS	E Ex	,r	OBSER		V DATE			TIME		STOP	TIME: 10	
ADDRESS ÁSPHALT PLAN	τ "A"	,	SEC	0	15	30	45	SEC	0	15	30	45
		land Rd	1	0	5	0	0	31	0	0	0	0
CITY	STATE	NC ZIP	2	10	~	0	5	32	0	0	0	0
PHONE		ID NUMBER	3	0	0	Q	10	33	0	-	0	6
PROCESS EQUIPMENT,	 	OPERATING MODE	5	0	0	0	2	34 35	0	00	5	20
control Equipment		OPERATING MODE	6	0	0	0	0	36	_	5	5	0
DESCRIPE EMISSION POINT		normal	7	0	0		0	37	0	0	0	0
DESCRIBE EMISSION POINT START O rectangular stocks	STOP S	same	8	0	5	0		38	0	0	0	0
HEIGHT ABOVE GROUND LEVEL START 29 STOP SAME	HEIGHT.	RELATIVE TO OBSERVER	9	0	0	0	->	39	\bigcirc	0	0	0
DISTANCE FROM OBSERVER	DIRECT	ION FROM OBSERVER	10		0	0	0	40	5	0	0	0
START 300 ft STOP SOME	START	NE STOP same	11	0	0	10	0	41	0	0	0	0
START CONING	STOP S	-	12	5	0	0	0	42	0	0	0	10
EMISSION COLOR		TYPE: CONTINUOUS	13				5	43	0	0	0	0
START STRYSTOP Same		E INTERMITTENT OF	14	0	0	2		44		_	_	
WATER DROPLETS PRESENT:	1	ER DROPLET PLUME: CHED D DETACHED D	15	5	10	0		45		_	0	0
POINT IN THE PLUME AT WHICH	OPACIT		16	0	10	0	0	46	0	0	0	<u>B</u>
START 3 ^{ft} above exit.	STOP	Same	17	0	0	0	0	47	0	0	_	0
DESCRIBE BACKGROUND			18	5	-/	_	0	48	_		0	10
START Trees BACKGROUND COLOR	STOP SKY CO	DAME broken	19	0		16	0	49	0	0	0	0
START green STOPSame	1	overests TOP in	20	0	0	0	0	50	0	مدا	0	0
START 2-8 PSTOP \$3 MPL	WIND D	NN STOP Same	21	D	0	0	0	51	0	-	0	0
AMBIENT TEMP		JLB TEMP. RH, percent	22	5	10	0	0	52	0	0	0	0
START 73 STOP 84	74	1 42	23	0	0	0	0	53	0	0	0	0
		I-40	24	0	0	0	0	54	5	0	0	1-
Source Layout Sketch	Dra	w North Arrow	25	0	0	0	0	55	_	0	0	5_
			26	0	10	_	<u> </u>	56	-	0	0	0
4	mission	n Point	27	_		_	<u> </u>	57	0	10	0	0
	.م	7	28	10	5	10	10	58	5	10	0	Ŏ
	05	- keym	29	10	0	0	=	59	10	10	0	0
Sun- Wind _	Observe	is fosition	30	0			10	60	0	0		15
Plume and =	~ <			ST PE	PACIT RIOD		467	NOM		" HEAL % WE!		ABOVE
Sun Lodai	<u> </u>		RANG	E OF (DINGS			KIMUM		<u> </u>
			OBSE	RVER'.	SNAM			、、	1 (١	<u>`</u>	<u></u>
COMMENTS			OBSE	BVER"	S SIGN	ATUR	5 7	Jays IC	DAT		0-2	<u> </u>
			ORGA	NIZAT	100	Dar		15.		<u>0-20</u>	0-9	<u> </u>
I HAVE RECEIVED A COPY OF I	HESE OF	PACITY OBSERVATIONS	CERT	FIED B	YE1	- 4	<u></u>	1200	DA	<i>E</i> 3	/97	
TITLE		DATE	VERIF	IED BY		<u></u>	į	٠ س	DAT		<u>, </u>	
			- 			··	7					M9.4 :

1 0 0 0 51 0 0 0 0 0 0 0 0 0				le Emission ()bserval	ion Fo	rm						<u>) င</u>						
ASPHBLT PLANT 9"	OURCE NAME Barhouse	Exit	Γ		8-20					15									
DIO Rd	DDRESS _					o	15	30	45			15	30	45					
STATE		(Ckv	e band	Rd	1	0	0	0		31		0	0	0					
NONE	ITY X	STATE	C ZII	, ,	2	0	ı	0	0	32	0	0							
ROCESS EQUIPMENT OPERATING MODE 5 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0				·R	3	0		0	0	33	0			0					
Secretar Secretary Secre						-				ļ	<u>D</u>		Õ	0					
OPERATING MODE OPER	aggregate dryer		UPERATIN	G MUDE	<u> </u>	0	0			 	0	-	0						
SESCRIBE EMISSION POINT STAPP ST	CONTROL EQUIPMENT, ",					0					5		0	0					
SYMP Technique Stop Some 8 5 0 38 0 0 0 0 0 0 0 0 0	DESCRIBE EMISSION POINT							 	0	ļ	\mathcal{L}	<u> </u>		_					
START 29th STOP	START rectangular sbot s	TOP 5				5	0						0						
DISTANCE FROM OBSERVER START AL STOP SOME 11 0 0 0 41 10 - C C DESCRIBE EMISSION START AL STOP SOME 11 0 0 0 41 10 - C C DESCRIBE EMISSIONS START CONTO STOP SOME 12 5 0 0 5 42 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HEIGHT ABOVE GROUND LEVEL	HEIGHT F	RELATIVE T コロゲ こっ	OOBSERVER		0		 	<u> </u>	39	<u>. </u>		0	10					
START 300 STOP 50mL START NE STOP 50mL 11 0 0 0 0 11 10 0 0	DISTANCE FROM ORSERVER	DIRECTI	ON FROM	OBSERVER	10	0	0	0		40	0	0	0	0					
DESCRIBE EMISSIONS START CONTINA STOP SMAL 12	START 300 FT STOPSame				11	0	0	p	0	41	10	<u> </u>		0					
START STOP START STOP START	DESCRIBE EMISSIONS				12	5	0	0	5	42		0	0	0					
START STOP FUGITIVE MTERMITTENT 14	COMMITTEE			PUDUNIT	13	_	0	0	0	43	0	0	0	0					
WATER DROPLETS PRESENT: If WATER DROPLET PLUME NO MY VESD ATTACHED DETACHED 15 0 0 0 0 0 0 0 0 0	START 19 LAUSTOP				14	D	_		_	44	0	_	<u> </u>	0					
POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED 16	WATER DROPLETS PRESENT:	IF WATE	ER DROPLE	T PLUME		0	0	_	10	45	0	0	0	0					
17 0 0 - 47 0 0 0 18 0 0 0 0 0 0 0 0 0		1			16	0	0	0	0	46	0	0	0	0					
18 0 0 48 5 0 0 0				LIMMINED	17		0	0		47	0	0	-	10					
START CPB		5101	<u> </u>		18		-	-	-	48	5	-	0	0					
START GREN STOP SAME START BURE ASTOP SAME 20 0 0 0 50 0 C	START EVES				19			0	10	49		10	0						
WIND SPEED START 3-5 *** STOP 1-3** START \$ STOP SAME START 3-5 *** STOP 1-3** START \$ STOP SAME START 3-5 *** STOP 5-3** STOP SAME START 91 STOP 81 WET BULB TEMP. RH. percent 42 23 0 0 0 5 5 0 0 0 0 Source Layout Sketch Draw North Arrow	1			<u> </u>	10				50		1=	† <u> </u>							
START 3-5 PSIOP 1-3 START START START START START START START START STOP START STAR	WIND CREED	MANO C		100 3-1-0								10	50	10					
AMBIENT TEMP START 91 STOP 21	START 3-5 mph STOP 1-3-1	START	E s		22									0					
Source Layout Sketch Draw North Arrow 25 05 05 05 05 00 26 00 05 05 05 05 05 07 27 05 05 05 05 05 06 27 05 05 05 06 28 00 00 05 05 05 06 06 07 08 Sundy Wind Plume and Plume and Stack 1400 Disservers Position Plume and Stack 1400 Sundy Calippi Line Wind Sundy Calippi Line Wind OBSERVER'S NAME (PRINT) OBSERVER'S SIGNATURE ORGANIZATION DEFCO AVERAGE OPACITY READINGS MINIMUM OBSERVER'S SIGNATURE ORGANIZATION DEFCO AVERAGE OPACITY READINGS MAXIMUM OBSERVER'S SIGNATURE ORGANIZATION DEFCO AVERAGE OPACITY OBSERVATIONS CERTIFIED BY ETA DATE 3/47	ANADIENT TENAD	WETBL	JLB TEMP.		/ 			+		- +				tŏ					
Source Layoui Sketch Draw North Arrow 25 05 05 00 06 26 07 27 05 05 05 07 28 07 29 07 07 08 Sun't Wind Plume and Stack 140° Sun't Occalion Line Plant Entrance COMMENTS Description Observers Position AVERAGE OPACITY FOR 1. 46 MINIMUM MAXIMUM MAXIMUM OBSERVER'S NAME (PRINT) OBSERVER'S SIGNATURE ORGANIZATION ORGANIZATION ORGANIZATION ORGANIZATION DATE SIGNATURE OPATE SIGNATURE OPATE OPATE SIGNATURE OPATE OPATE SIGNATURE OPATE	START II STOP UN		<u>' 7</u> _			+=	+-	- ×			- 			10					
Sund Wind Deservers Position Stack 1400 Deservers Position Point David Goshaw Comments Deservers Position Observers Position Point Comments Comments Deservers Position Deservations Comments Deservers Position David Goshaw Comments Deservers Position Deservations Comments Deservers Signature Comments Deservers Deserver	Source Layout Sketch	Dra	w North Ar	Cox wor	.			.+>	5	55	+-		+-	12					
Sundy Wind Observer Position Plume and = Observer Position Stack 140° Patrole um Stack 140° Patrole um Stack 140° Patrole um Sundocation Line Position Pos	•				}		10	_+	1) 56				0					
Sundy Wind	, <u> </u>	~		ノ	27	15	To			57	0		0	C					
Sundy Wind	7	missio	n Point	7	28	1	5/7		10	58	0	 —	- C	0					
Sundocation Line Siack Sundocation Line Sundocation Line Foliant COMMENTS Observers Position Plume and — Patrole um Siack Sundocation Line Foliant Observers Position Patrole um AVERAGE OPACITY FOR 1.46 NUMBER OF READINGS ABOUTH AND MAXIMUM 10 OBSERVER'S NAME IPRINTI David Goshaw OBSERVER'S SIGNATURE ORGANIZATION ORGANIZATION ORGANIZATION DATE SIGNATURE DATE SIGNATURE OATE OATE OATE OATE OATE OATE OATE OATE		B	5.65	•	29		C	-	5	59		70	TC						
Plume and Stack Stack Sun docation Line Sun docation Line Foliant COMMENTS AVERAGE OPACITY FOR 1.46 NUMBER OF READINGS ABOUT AND STAND AND STAND AND AND AND AND AND AND AND AND AND	د. بر الجاري - بر الجاري		_		30				_ _	- 60	10) 5	0	0					
Siack Sundocation Line Sundocation Line Aplant COMMENTS COMME		Observe	Position	ماه					1 11	NUN	ABER	OF REA	DINGS	ABO					
SUNTOCATION LINE Helant COMMENTS OBSERVER'S NAME (PRINT) David Goshaw OBSERVER'S SIGNATURE ORGANIZATION DEFCO INC I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS SIGNATURE MINIMUM O MAXIMUM TO OBSERVER'S NAME (PRINT) David Goshaw OATE 9 - 20 - 6 ORGANIZATION DEFCO INC DATE 3/47	Stack	10.0										% W	HE						
COMMENTS OBSERVER'S SIGNATURE ORGANIZATION ORGANIZATION OF THESE OPACITY OBSERVATIONS CERTIFIED BY ETA DATE DATE DATE 3/47	Sun floca	tion Line	>		720	GE UP				<u>Ž</u>	MA	XIMU	u 10	2					
OBSERVER'S SIGNATURE ORGANIZATION ORGANIZATION ORGANIZATION ORGANIZATION ORGANIZATION OATE 3/47 SIGNATURE	4 6/3	unt Intranc	e e		OBS	ERVER	R'S NA	ME (PF	ן נזאונ	David	1 C	Tos	hau)					
ORGANIZATION DEFCO Inc I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS CERTIFIED BY ETA DATE 3/47					OBS	ERVE	7.5 510	NATU		/		0 0 5 0							
I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS CERTIFIED BY ETA DATE 3/47					OR	SANIZA	TION	7-	ra:	/		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
SIGNATURE	I HAVE RECEIVED A COPY OF	THESE C	PACITY OF	SERVATION	S CER	TIFIED	BY 1		t CO	100		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
	SIGNATURE			 		RIFIED		1/1	·		0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							

Visible Emission Observation Form

		*	le Emission (TA							
SOURCE NAME Baghous	se E	xit			/ATIOI -21-	V DATE	· [STAR.	TIME 41		STOP B	TIME							
ADDRESS) ASPIJACT PLANT "A"				SEC MIN	o	15	30	45	SEC	0	15	30	45						
1010 Rd (Ca)	leven	d Rd)	1	0	0	0	0	31	0	0	0	0						
	STATE	N/C ZII	P	2	0	0	0	0	32	<u>O</u>	<u>٥</u>	0	Q						
PHONE	SOURCE	ID NUMBE	'R	3	0	0	Ö	0	33	Q	0	0	0						
				4	0	0	Q	0	34	0	ð	Ö	0						
PROCESS EQUIPMENT aggregate drye,	<u></u>	OPERATIN		5	0	0	5	O	35	0	0	0	0						
CONTROL EQUIPMENT,	se	OPERATIN	G MODE	6	0	0	0	0	36	Ó	0	5	0						
DESCRIBE EMISSION POINT				7	0	0	Ö	\mathcal{O}	37	\mathcal{O}	0	0	0						
START Yellow rectangular stack	TOP	same		8	0	0	0	0	38	0	0	Ö	5						
HEIGHT ABOVE GROUND LEVEL START 29H STOP SOME				<u> </u>	0	0	0	0	39	0	0	0	0						
DISTANCE FROM OBSERVER	DIRECT	ION FROM	OBSERVER	10	0	_	0	0	40	0	0	0	0						
START 475 STOP same	START	NW ST	OP same	11	0	0	0	0	41	0	0	0	0						
DESCRIBE EMISSIONS START COMING, contensating S			mins	12	0	0	0	0	42	0	0	0	0						
EMISSION COLOR			TINUOUS E	13	0	0	0	0	43	0	0	0	0						
START I grey STOP same			RMITTENT [14	0	0	0	0	44	0	0	0	0						
WATER DROPLETS PRESENT	1	ER DROPLE		15	0		0	0	45	0	0		Ó						
NO D YEST			TACHED &	16	0	0	0	0	46	0	5	0	0						
START 2-3 ft above exit				17	0	0	0	0	47	0									
DESCRIBE BACKGROUND		<u> </u>	_ <u> </u>	18	0	0	0	O	48	0									
START trees	STOP	same		19	0	ŏ	10	5	49	0									
BACKGROUND COLOR START & TELL STOP SAME		noillons,	TOP \ \ 2010	20	0	10	0	0	50	0	5 0 0 5 0 0 5 0 0 0 0 0 0 0 0								
WIND SPEED		DIRECTION	OFC IE MY	21	0	Ιŏ	0	0	51	0									
START 0-2 PSTOP 0-2"	START		10P same	22	0	10	0	0	52	0	5 0 0 0 0 0 0								
AMBIENT TEMP START 71 STOP 75		ILB TEMP.	RH.percent	23	0	0	10	10	53	0		 -	5						
START II STUP TO	1	<u> </u>	1 17	24	0	0	0	0	54	0	0	0	0						
Source Layout Sketch	Dra	w North Ari	row	25	0	0	0		55		0	0	0						
		. (>	26	0	0	0	0	56	12	0	10							
	7	×)	27	16	0	0	0	57	0	1	0	ठि						
Sup ⁵	Émissio	n Point		28	0	10		0	58	5	0	0	0						
~ Co.				29	0	0	+ -	0	59	0	0	1 c	10						
Sun-> Wind -	1			30	0	$+\bar{c}$	0	0	60	0	0	0	0						
Plume and =	Observe	ers Position	recycled				Y FOR	427			F REAL		ABOV						
Stack 140			asphalt "hill"		EST PL	OPACI	TY REA	DINGS			% WE XIMUN	<u> </u>							
Sun Local			•	OBSI	RVER)avic										
COMMENIS							NA TUR			DA	B-2	1-97							
				ORG	ANIZA	TION ?	DEÉ	ico	Inc	_1									
I HAVE RECEIVED A COPY OF SIGNATURE	THESE O	PACITY OB	SERVATIONS	CERI	IFIED	0 V	ETA		<u> </u>	DA	TE C	3/	97						
TITLE	·	DATE		VERI	FIED B					DA	TE	K							
								·											

		Visibl	le Emission C	bservat	ion Fo	rm						T C	
DURCE NAME Baghous	se E	Exit				V DATI		STARI 9:	53_		STOP /C	TIME :53	
DORESS ASPHALT PLANT "A"				SEC MIN	0	15	30	45	SEC	o	15	30	45
	vethan	nd Rd)		1	0	0	0	0	31	0	0	0	S
TY	STATE	ACC ZIF	,	2	0	0	0	5	32	0	0	0	0
HONE	SOURCE	ID NUMBE	R	3	0	0	0	0	33	0	\bigcirc	0	2
ROCESS EQUIPMENT		OPERATIN	C MODE	4	0	0	0	0	34	0	12	Õ	2
aggregate drye	r			5	0	0	0	0	35	0	0	0	<u> </u>
ONTROL EQUIPMENT bag house		OPERATIN	G MODE	6	0	0	0	0	36	0	0	0	0
ESCRIBE EMISSION POINT		1		7	0	0	0	0	37	0	$\downarrow \mathcal{O}$	0	C
TART Yellow tande stocks	STOP	SAME		8	0	0	0	0	38	0	0	0	C
EIGHT ABOVE GROUND LEVEL	HEIGHT	RELATIVE T		9	0	0	0	0	39	0	0	0	1
START 29ft STOP same			OP Same	10	0	0	0	0	40	0	0	0	0
START 435 FT STOP SOME	TART 475 STOP same START NW STOP Same								41	0		5	3
DESCRIBE EMISSIONS	13/5/1/		- Unite	12	0	00	5	0	42	0	0	0	0
	STOP	same		13	0	10	10	0	43	10	0	0	C
MISSION COLOR			TINUOUS &	14	+	10	 _	0	44	16	17	1	2
START grey STOPSane			RMITTENT D	-	00	+	10	+		 -	10	8	15
NATER DROPLETS PRESENT. NO Ø YESD		TER DROPLE CHED 🗆 DE		15	+	10	0	10	45	0	-		12
POINT IN THE PLUME AT WHICH				16	0	0	0	0	46		0	0	C
START 2-5 Ft above exit		SAME		17	0	0	6	0	47	0	0	0	(
DESCRIBE BACKGROUND				18	0	0	O	0	48	0	5	0	1
	STOP	SAME	<u> </u>	19	10	0	0	0	49	0	0	0	0
BACKGROUND COLOR	SKYC	ONDITIONS		20	0	0	0	0	50	0	6		C
START GREEN SAME	WIND	CLEAT S	TUPDAME	21	0		_	10	51	+	6		12
START 1-3 m STOP SAME			TOP South	<u> </u>		19	0		52	0	10	0	6
AMBIENT TEMP	WET B	ULB TEMP.	RH percen	22	10	0	10	19		49	15		ح
START 78 STOP 82		67	56	23	10	6		40	53	+-		0	_{
4 bpinguous				24	10	0	10	Q	54	→ >	ЛŎ	5	2
Source Layout Sketch	Dre	w North Ar	row	25	10	10	0		55		10	0	\ \ \ \ \
		(/	7)	26	10	C	0		56	0	-	-	C
silas	Emissio	n Paint		27	10		0	0	57	0) C	0 (
₹	<i>[[]]]]]]]]]]]]]]]]]]</i>			28	0	C	0	0	58	0	C	0	(
,				29	0				59	C	7 6	0	
٠ ٨				30	10		- 	10	60	0	10	0	12
Sun- → Wind → Plume and =	Observ	ers Position	- on 1-1				TY FOR	<u> </u>		MBER	OF REA	DING	
Stack	recycled	HIGH	IEST F	PERIOD	0	.42 7) % W	ERE	6		
	asphalt pilc	RANGE OF OPACITY READINGS MINIMUM O MAXIMUM 5					-						
3-40 Sun Loca		-		OBSERVER'S NAME IPRINTI David Goshau									
COMMENTS		· · · · · · · · · · · · · · · · · · ·		OBSERVER'S SIGNATURE DATE 8-2									
				CORCANIZATION				, -	17				
I HAVE RECEIVED A COPY OF	SERVATION	DEECO INC											
SIGNATURE TITLE		VERIFIED BY DATE											
								<u>. </u>		L_			

		Visit	ble Emission ()bservat	ion Fo	rm					41	<u> </u>	
SOURCE NAME Baghou	SE.	Exit		OBSER	VATIOI 8-21	V DATE			TIME SS		STOP	TIME //: S	<i>i</i> 8
ADDRESS	ANT "A			SEC	0	15	30	45	SEC	0	15	30	45
1010 Rd	-	eland 1	Rd)	1	0	0	0	0	31	0	0	0	0
CITY	STATE	NC Z	IP	2	0	0	0	0	32	0	9	A A	0
PHONE		ID NUMB	ER	3	00	00	0	0	33	0	0	$\frac{2}{5}$	00
PROCESS EQUIPMENT		OPERATIO	VG MODE	5	0	0	0	0	35	Ö	O	0	0
CONTROL EQUIPMENT , baghou		OPERATII	VG MODE	6	0	S	0	0	36	0	Q	0	0
		L		7	0	0	0	0	37	0	0	0	0
START Yellow START	TART Y CLOW STOR STOR SAME								38	0	0	0	Ò
HEIGHT ABOVE GROUND LEVEL		9	0	0	0	0	39	0	0	0	0		
START 29 ft STOP Same	TOP SAMÉ OBSERVER	10	0	0	0	0	40	0	0	0	0		
START 475 STOP SAME		11	0	0	0	0	41	0	0	0	0		
DESCRIBE EMISSIONS				12	0	0	0	0	42	0	5	0	0
	STOP -			13	0	0	0	5	43	0	3	0	0
EMISSION COLOR START Grey STOP same	1		ITINUOUS E RMITTENT 🗅	14	0	ठ	D	0	44	5	ि	0	0
WATER DROPLETS PRESENT:		ER DROPLE		15	0	0	0	5	45	_	o	0	0
NO & YESO			ETACHED O	16	0	0	0	15	46	0	0	0	15
POINT IN THE PLUME AT WHICH			TERMINED	17	 - -	0	0	0	47	5	0	12	K
START 2-5 Ft above exit	STOP	same		18	10	 		 	48	 	 	12	15
1	STOP	SAMÉ		-	10	0	0	10		0	0	10	10
BACKGROUND COLOR	SKY CO	NDITIONS	·	19	15	10	0	0	49	19	10	10	0
START goe Blue STOP ame	START	ckar s	TOP SAME	20	0	0	5	10	50	10	0	0	0
START 2- 4 "P STOP SAME		Souths	700	21	0	0	0	0	51	0	0	0	0
AMBIENT TEMP		ILB TEMP.		22	0	0	0	0	52	0	0	0	0
START 62 STOP 85		68	48	23	0	0	0	10	53	0	0	0	0
Topany france	e	-		24	0	0	0	Õ	54	5	0	0	0
Source Layout Skeich		w North Ar	row	25	0	0	0	0	55	0	0	0	0
			<i>A</i>)	26	0	0	0		56	0	0	0	0
75,103	Emission	Point		27	0	0	0	0	57	0	0	0	0
\$ Y	21/11/33/07	, , , , , , , , , , , , , , , , , , , ,		28	0	0	0	0	58	0	0	0	0
1				29	0	0	0	0	59	(3)	0	0	0
Sun- Wind _				30	0	0	0	0	60	0	0	C	0
Plume and = Stack			AGE O	-		21%	NUM				ABOVE		
Z.40 San Loca		RANGE OF OPACITY READINGS											
40		OBSERVER'S NAME IPRINTI David Goshaw											
COMMENTS				OBSERVER'S SIGNATURE / DATE									
				ORGANIZATION DEFCO Inc					- 93				
I HAVE RECEIVED A COPY OF	SERVATIONS	CERT	FIED B	V)EE C TA	<u> </u>	ne	DA	E 2	97			
SIGNATURE	SIGNATURE								.i.	DAT		フナ	
					:								

								1	-C , W				
	ENVIRONMENTAL SE	ERVICES, INC.		FII	ELD DA'I	ľA	$\begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} =$			1 J	ondensers		-
	ASPHALT PLANT						¬ co −	-			nei ger		1
	8-19-57			-	-		N ₂			<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~]
				1	1		Douba La		d There	410000		•	
Sampling L	ocation Stack			1.			Pitot Tul	engin an	ortype _	7 9000			-
Sampic Tyl Run Numb	$m = \frac{M-23}{3}$	23-0-1			BCDEF		Norde I	ne 1.D. i	224	(7			-
				10	00000		Assume		•				~
Operator .	Pressure (R) _3	9.9	- [- 1				pei W	R 11			-
Darometric	sure (R) $\frac{1}{\sqrt{O(J)}}$		-			1.00	Meier	8882 OX (AND):	1.95	<u> </u>			~
State Non	ber(s) Outlet	# / un /c] .	PRAIL	Meter C		0.98	2			
	k Raic = 0.00 H cf								NIA		······		-
	of Leak Check		. 1.1g [(m @		~ •
	at Leak Check	/		C.	chematic of				eak Chec				
	Record all Data Every	<- Min			rsc Point L	anaut			Leak Chec				-
Page	of	Milli				ayout	1	1			1	1	-
Traverse		Gas Meler	Velocity		nsor ID No.	Slack	Probe	I	nopinger	Dry Gas Me	<u> </u>	Pump	٦
Poiet	Sampling / Clock Time Time, (24-bout	Reading	liced4 fa		b. II ₂ O	Temp. • F	Temp. / Fi	lter	Temp.	Inlet	Oullet	Vacuum	1 4 4 7
Number	(min.) clock)	(/F) U 3	la. 1/20	Desked	Actual	1.(5)	Temp.	F	• F	(Fa) F	Chour E.	In. Hg	XA]
	0/0 10915						(X	11111/	1111111.			7111111	1
AI	5 10920		3.5	7.0	7.0	308	24819		5-9	88	88	10	65
	10 10925		318	516	5.6	109	33013		54	92	89	10	63
2	15 10930		3.1	412	4.2	209	330/3		5-5	97	91	8	63
	20 11010/	305.08	3.2	414	4.4	308	24012		65	57	95		65
3	25- 11104	OX:40	0.39	1.44	1.44	207	24312		25	100	100	3	64
7,	30 11/09	311.66	0.65	430	1.30	206			64	101	101	 	64
4	35- 1114	314.30	0.46	0192	0.92	508	24412		25	422	101	الم	64
	40/01/11/9	316.754	CHO	0.80	0.80	310	336 33		66	108	103	3	66
B 1	40/05-11/22	351.92	1.7	3.8	كِيْدِن	206			24	107	104	<u></u>	58
	10 1123	327.09	44	3.8	3.8	184	348 13	20 (24	116	107	7	61
	20 1//3	33/54	1/3	2.6	2.6	191	23812		65	118	108		61
	25 11142		0.57		1114	191			65	118	110	-	63
 	30 11143			0184		191	23812		68 68	119	111	3	64
4	35 11154		0.45		0(90)	190	24212		67	119	112	7	65
		34314)			0,80	184	243/2	_	66	120	114	3	65
Ci	5 11211		10/	2,20	2,20	175	249 12		25	117	115	4	65
-	10 11216			3.40	2,40	133	34212		66	120	115	4	65
3	15 11971	357:52	0.45		0.90	172	243 12.		65	122	116	3	66
	20 1/224			0,90	0.90	169	246 12		66	121	116	3	65
5	25 11231	362 05		0.30	0.30	169	248 12		<i>9</i> 7	121	11.7	3	66
	30 11230					-	245 12			121	118	7	05
		<u> </u>	- De (C)	_ <u> </u>	1 4	1 / W / I	بالاستان الماسي	J) 1/	A 7	/0~/	1/1/7	4 1 '	

in secondations standamen what files mentalings

Page 2 of 5

Plant Name: ASPHACT PLANT "A" Test Date: 8 - 19 - 97

Run Number: 0-1 S-m23-0-1 Operator: This

Traverse	Sampling	/ Clock Time			4 -4-	s. Differential	Stack	Probe	Impinger	Dry Gas N	Acter Temp.	Pump	J YAID
Point Number	Time, (min.)	(24-hour clock)	Reading (VL) ft ³	1 lead (4P ₄) in. H2 O	(All) Desired	in. II ₂ O	Temp. • F (ζ)	Temp./ Filter Temp. F	Temp.	Inlet (E _{in})* F	Outlet (E _{out}) •F	Vacuum In. Hg	כורג
C-4	35	1 1241	365,21	0.09	0.18	0.18	170	249 1255	105	121	118	2	65
	40/0	1 1246/124	3446	0,09	0.18	0.18	16.9	250/255	45-	121	118	2	65
D	5	11258)	1.00	2.00		169	246 125%	66	121	118	5	65
	ID	11302	374.625	1000	2.00	7.00	165	247/254	66	121	119	7	62
2	15	11307	277110	120	٦.	14	167	743 1 255	66	121	118	5	65
	20	1:313	319.14	, ر	• 4.	14	169	142 / 254	66	() ~	175	7	65
3	25	1 1314	30,214	1020		. 1	169	243 / 252	66	123	117	5	66
	30	1323	381.42]	٠٥٥			171	240 / 253	66	12)	119	3	67.
- 4	15	1 1574	381720	:00	16	116	172	711 25-	67	121	117	3	67
<u></u>	4010	,	884012	1,0%	16	-116	174	215 214	67	121	119	2	67
E/	5	1790	387717	الزم	416	16	18/	242 / 257	67	(2)	119	3	67
ઘ	10	1350	392.395	-05			169	745/251	65	122	119	3	66
	20	11350	39397	,08	-		186	247 / 263	66	122	[17	7	66
	25	11460	395301	108	191	16	180	797 / 257	6 C	122	119	3	66
	30	1 1405	396,992	113	-3	.3	192	245 / 251 246 / 256	68	125			67
4	35	1 1410	394.420	110	12	12	187	47 / 255	64	123	119	2_	68
	40/0	11445 1014	400, 190	15	1 2	12	187	364 267	68	127	119		<u>~</u>
FI	5	1421	407-589	135	17	17	198	702 1263	64	120	1,9	2	6
	10	1 1116	405,09r	135	11	- , -	198	247 755	68	122	120	7	68
<u> </u>	15	1 1431	407.084	121	142	.9~	187	794 / 756	64	121	120	2	60
	20	1 1436	209,030	181	142	142	187	245 / 255	64	12 7	120	2	68
	25	1141	4/1/1/3	141	47	.87	147	242 /257	64	121	120	2	67
	30	1110	414512	14.	187	187	197	194 1253	64	127	120	3	60

Page	3	oľ	3_	
------	---	----	----	--

Plant Name:	ASPHALT PLANT "A"	Test Date:
Run Number:	0-1 5-1923-0-1	Operator: Ca

	Sampling / Clock Time	Gas Meter			s. Differentia	Stack	Probe	Impinger	Dry Gas I	Meter Temp.	Pump
Point Number	Time, (24-hour (min.) clock)	Reading (VL) ft ³	I lead (4Pa) in. 1120		in. 11 ₂ O	Temp. ° F	Temp. / Filter Temp. F	Temp.	Inlet (E _{le})* F	Outlet (E _{out}) •F	Vacuum In. Hg
F 4	35 / 1451	417438		18	18	167	245 / 253	68	122	120	3
	10 / 1456	420.00		19	50	165	245/257	68	122	120	3
	1						/				
	/						1				
	/	138.502	0.690		1.289	184	/		117	113	
	1						/		5.	5	
	1						/				
	1						1				
	1										
	1						/				
		6/0	t20	18.4			/				
			57.								
		Md:	79.6								
			- 27.1								
		\(5	=	44.17	·						
		- Vv	I	= 94.	2						
											
	'										
	· · · · · · · · · · · · · · · · · · ·										
							/	1			

METHOD 23 CDD/CDF SAMPLE RECOVERY DATA

	(VIL	.11100 23 0	DD/OD! OAIII.	LE REGOVER		5/23-0-1
Plant:	ASPHALT	PLANT "A"			Run No	.:#/
Sample Da	te: 8/19	197	Filter No.(s):		Job No.	:5413-00
Sample Lo	cation:	DUTCET	I The state of the	***************************************	e de justiciones de la compansión de la co	
Recovery [Date: 8//	19/97	XAD-2 Trap N	o.(s): O-M	123-1-	-XAD
Sample Re	covery Pe		1R	The State of the William Control of	v kuradanin ili miteri.	Const. Const. Al. on the Property Section 1
があれる。			Moisture	Data		
Impingers	XAD - 2 Trap	1 (knockout)	2 (100 ml H2O) (untipped)	3 (100 ml H2O) (tipped)	4 (knockout) (untipped)	
Final wt.	533.	1029.0	696.5	680.7	6/5 6	<i>901.8</i> g
Initial wt.	491.6	506.0	696.4	680.5	6/1.7	868.7 g
Net wt.	41.5	573.0	6.1	0.2	3.9	57.97 g
			Descrip	tion / O	THUE TO CA	01.6/
Train Syste	em:					
Probe: -						
Filter: Cold	or		Loading	g		
Impinger C	Contents:					
Silica Gel:	@Grams	Used	Color -	%	Spent -	
Condensa	te Observ	ed In Front H	Half:			
				ole Fractions		
Filter Cont	ainer No.		7.44		marke	d/sealed:
XAD Modu	ıle Contaiı	ner No.:				d/sealed:
					Liquid	
Probe (FH) & Back I	Half Rinse (A	Acetone) Contai	iner No.:		d/sealed:
Prohe /FH	\ & Rack i	Half Rinee (1	Toluene) Contai	iner No ·	Liquid	ievei d/sealed:
1 TODE (1 11	, a back i		Judito, Jona		Liquid	
Impinger C	Contents C	Container No).:	•	1 .	d/sealed:
				_	Liquid	
Impinger F	Rinse (Ace	tone/MeCl2) Container No.	:	marke	ed/sealed:

264.) COND. 263.4

Date Sampling L Sample Ty Run Numb Operator Barometric Static Press Filter Num Pretest Les Pretest Pitc Pretest Ors Read and F	ASPHAL Location L Location L Location L Pressure (R) Location L L L L L L L L L L L L L	SASHOUSE. 2 S S S S S S S S S S S S S S S S S S	"A" stack out -m23-0-2 G. 6.14 15 25	. IIg	Sc	ELD DAT		Pitot Nozzi Assur Mete Mete Mete: Refei Post 1	: Length Tube I.D. ie I.D med Mois r Box Nu r \(^100 \) r Gamma rence\(^000\) r Cst Leal Test Pitot	sture, %	V ₁ : Si Ti 4 9 1 455 7 3 11	(ma 10		
Page_1	of	<u> </u>				sor ID No.	you	T	1	T			7	-
Traverse	Sampling	Clock Time	Gas Meler	Velocity		a. Dillerential	Slack	Pro	the	Impinger	Dry Gas Me	eler Temp.	Tump	7
Point	Time,	/ (24-hour	Reading	ticad4 Pa		b. 11 ₂ O	Temp. F			Temp.	Incl	Chilel	Vacuum	Ì
Number	(min.)	slock)	(W) n 3	b. 1120	Desked	Actual	Million .	Temp	XIIIII	mmm	THE STATE OF THE S	The P.	In. 11g	1
	5/0	1872	420.315	viiiiiii	viiliiii)	3, 3	188	250	25,	70	81	80	<i>anim</i>	5
14	10	1832	430,012		3,3	3.5	123	247		58	83	81	6	5
2	15	1837	433.164	50	15	1.5	196	250		24	89	82	4	5
	20	1447	436572		1.5	1,5	178	252/		59	90	86		5
3	25	1847	434,082		,78	178	201	249/		60	92	\$ 7	3	5
	30	1357	441537	126	אַר.	.18	302	250 /	760	61	92	86	3	2
#	35	187.	445.360		1.7	1.9	200	7441	_	62	94	87	3	5
	40/0	14.2/908		165	1.9	1.9	202	2491	202	62	ae	87	7	برا
F	4	1909	+52.331	138	1. 1	1, 1	201	242/	262	62	96	89	7	₽.
	10	1914	455,117	138		1.1	202	249	261	62	99	92	3	اح
2	15	1919	+37520		166	.66	204	267/	260	62	101	96	2	5
	20	1924	457.444	122	.66	166	205	251 1	261	62	LOI	a L		54
3	25	1429	462390	125	را	\15	208	252	261	62	102	94	2	5
	30	1934	445,340	125	.75	175	210	255 /	259	62	102	94	2	5
4	35	1939	465,921		1.6	1,6		232 /			(0)		3	5
	35	1944	472591		1.6	1.6	210	250/	260	65	102	9.5 9.5	3	5
														ł
														ĺ
				0.646		1.449	702.1				75.0	88.1		l
]	<u> </u>		<u> </u>											
											•			
<u> </u>	ļ													1
1	ŀ	1	1			1	l i	! <i>1</i>						ı

Page <u>a</u> of <u>3</u>

Plant Name: ASPHALT PLANT "A" Test Date: 9-20-97

Run Number: S-m23-0-2 Operator: TMOD / GMG

Traverse	Sampling	/ Clock Time	Gas Meter	Velocity	Orifice Pre	s. Differential	Stack	Probe	Impinger		leter Temp.	Pump Vacuum	
Point	Time,	(24-hour	Reading	I lead (P.)		in. 11 ₂ O	Temp. * F	Temp. / Filter Temp. F	Temp.	Inlet	Outlet (E _{out}) •F	In. Hg	101.1
Number	(min.)	clock)	(K) 43	in. 1120	Desired	Actual	(3)			(L _b)°F			a Th
P	80/0	1916	177591	-10	1, 2	1, 2	311	55 1761	62	104	प्ष		97 - (
F L	5	1957	476002	.40	1,2	1.2	212	755 761	63	LOF	97	2_	57
a	10	1957	479012	130	۰۹۵	.90	217	250 / 254	62	105	100		rg'
2	15	11002	481.670	.30	.av	90	220	248 / 266	67	107	101	2	Ci
8	10	11007	484.691	.76	2.2	2.2	229	294 / 261	62	107	101	<u> </u>	59
3	45	11012	488.677	. 76	2.2	7,2	233	240 / 261	62	110	(03	5	49
*	30	11017	492947		2.3	2.3	236	247 / 263	67	11)	101		6
4	35	1 1027	497.126	.77	2.3	2,3	236	244 / 262	62	1/3	105	6	60
	120	11027	501197	.74	23	23	736	290 / 264	62	114	107	6	GO
		1						1					
	120/0	/ 103]	508,382	2,8	8.4	8.4	235	244 / 20	64	111	106	6.0	60
41	5	1 1042		2.8	8,4	8.4	236	348 / 762	64	1/3	107	10	60
	10	1 1047	53016L	عرح	7.5	7,5	232	747 / 762	64	113	105	10	ĝ-d
2	15	1 1054	526.512	2.5	7.5	7.5	75 Y	36D 1263	64	107	107	10	6 11
	20	1 1759	27379	2.0	6.0	6.0	737	298 / 265	62	107	106	10	60
3	25	1.1104	578.897		6.0	6.0	251	294 / 261	65	109	106	10	61
	30	1 1109	547.251	, 28	. 34-	.74	770	250 / 765	65	109	106	7	6)
4	35	1 1114	545087	,24	.84	.84	779	%p ¹	65	109	100	5	L'1
	160	1											•
		1		1.009		3.507	279.6	1		199-3	03.6		
		1						1					
		1						1					
		1						7					
		1						,					

Page 3 of 3

Test Date: 8 - 40 - 97 Plant Name: ASPHALT PLANT "A"

Run Number: 7923-0-2 Operator: The

INVEISE	Sampling	/ Clock Time				s. Differential		Probe	Impinger	Dry Gas N	Acter Temp.	Pump
Point	Time,	(24-hour	Reading	I lead (P,)		in. 11 ₂ 0	Temp. • F		Temp.	Inlet	Oullet	Vacuum
umber	(min.)	clock)	(L) A3	in. II2O	Desired	Actual	(3)	Temp. F	• F	(Eb)°F	(E _{out}) •F	In. Hg
B	160/0	1114	545.03"									
31	<u>_</u> 5'	1 419	531,623	3.8	8.4	54	233	251 /263	હ્ક	104	103	10
	10	1 1124	557.420	2.8	814	84	234	257 / 254	66	111	105	10
2	15	1 1129	563523	1.5	4.5	4.5	239	255 1 260	66	110	104	10
4	20	1 1134	569.001	1.5	4.5	4-5	236	260 1 261	66	109	103	10
3	25	1 1139	574.220	1.1	3.3	3.3	237	254/262	65	_111	106	10
4	30	1 1144	579,910	1.1	3.3	3,3	237	254 / 262	65	110	104	10
4	35	1 1149	287714	رهح	1.9	1.9	237	255 / 260	66	110	105	106
k	2000	1 454	587.701	ی، ہی	1.9	1,9	239	257 / 262	66	[[]]	106	6
		1	_	X LEA	u.ch	2005 €	134/+	- 1 chec	D FILE	Timp.		
		1		LEA		.000 @	14117	, ,				
	Jod o	112:01	587834	.48	27	2.9	240	267 1262	66	107	101	7
-1	5	11206	342,571	.89	2.6	26	237	260 / 254	66	111	109	7
	10	11210	596.942	וסרו	2.)	2.1	238	260/257	67	112	108	7
2	15	11215	601,220	170	2,1	2.1	237	252 / 259	65	112	105	7
	20	11730	605,43 h	.60	1.8	1.8	239	255 / 260	65	113	105	
3	25	1 1285	609.342	55	1.6	1.6	237	220 / 261	65	113	105	5
	30	1120	613,110	12.	h5	کہا		747 / 760	65	113	106	5
4	35	11235	616,710	.51	1,5	1.5	232	299/258	65	112	106	3
	24060	11240	620321					7		<u></u>		
	17	1						7	<u> </u>			
	*	/		1.169		3,35	234.4			110.8	105.1	
]		1						7	<u> </u>	114.4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		/						 -				

200.00 0431 7.715 727.7

105 98.4

METHOD 23 CDD/CDF SAMPLE RECOVERY DATA

						<u> </u>	1.0
Plant:			ASPHACT PLANT	- "A"	Run No	.:# <i>2</i>	
Sample Da	te: 8/2	0/97	Filter No.(s):		Job No		
Sample Lo	cation: (DUTCET	~				
Recovery [Date:		XAD-2 Trap N	o.(s):			
Sample Re	covery Pe	erson:					
			Moisture	Data			
Impingers	XAD - 2 Trap	1 (knockout)	2 (100 ml H2O) (untipped)	3 (100 ml H2O) (tipped)	4 (knockout) (untipped)	Silica gel (untipped)	
Final wt.	484 9	SEE BELOW	907.3	701.4	6097	976 2	g
Initial wt.	453.3	486.6	691.6	703.5	602.8	863.4	g
Net wt.	31.6	938.2	215.7	-2.1	6.9	62.8	g
			Descrip	lion		1253.1	X
Train Syste	em:			-			
Probe:							
Filter: Colo	or -		Loading	g -			
Impinger C	ontents:						
Silica Gel:	@Grams	Used -	Color -	%	Spent -		
Condensat	e Observe	ed In Front H					
		Re	covered Samp	le Fractions			9040 1.80
Filter Conta	ainer No.					d/sealed:	
XAD Modu	le Contain	er No.:				d/sealed:	
Probe (FH)	& Back F	lalf Rinse (A	cetone) Contai	ner No.:	Liquid marke	level d/sealed:	
Probe (FH)	& Back H	lalf Rinse (T	oluene) Contai	ner No ·	Liquid	level d/sealed:	
		ontainer No.			Liquid		
			Container No.:		Liquid		
CONDA 4	?	H20 740.6			1		1

FIELD DATA SHEET

Plant: ASPHALT PLANT "A"	Sample Type: <u>h 26°</u> Operator: <u>C 644</u>	Nozzle ID: , 25) Thermocouple #:
Sampling Location BAL House Outles Run Number: Date: 8 - 20-92	Phar: 29.8 Ps: -07.5	Assumed Bws: // Filter #:
	O2:O2:	Meter Box #: 11 Y: 987 AH@: 1.950
Pretest Leak Rate: + 665 cfm @ 15 in. Hg.	Probe Length/Type: 5'GL155 Pitot #:	Post-Test Leak Rate:cfm @in. Hg
Pretest Leak Check: Pitot: V Orsat: V	Stack Diameter: As:	Post-Test Leak Check: Pitot: Orsat:

Traverse	Sampling	Clock Time	Gas Meter	Velocity	Orifice Pressu	ure Differential	Stack	Temp	perature	Impinger	Dry Gas A	Aeter Temp.	Pump	1
Point	Time	(24-hour	Reading	Head (∆p)	(ΔH)	in H2O	Temp.		⁰ F	Temp.	Inlet	Outlet	Vacuum	ŀ
Number	(min)	clock)	(Vm) ft 3	in H2O	Desired	Actual	(Ts)	Probe	Filter	o _F	(Tm In ^O F)	(Tm out ^O F)	(in. Hg)	1
	0	1405	620,573											1
AI	5	1416	626819	3.1	9.3	9.3	209	2+8	260	69	106	103	10	16
	10	1415	633.480	3.1	9,3	9,3	247	261	260	69	105	104	10	62
ک	15	1420	639,992	2.1	63	6.3	208	249	261	69	108	101	10	Q Y
	26	1485	646.677	2.)	6.3	6,3	216	247	253	69	110	106	10	60
	35	1450	651, 752	.94	2.8	28	205	241	255	89	112	106	10	C.
	20	16.55	655,672	191	2.9	2.8	203	243	255	69	119	107		63
4	35	1440	660342	.40	112	1.2	204	249	255	69	114	107	30	6 1
	40	1195	663,889	140	1.2	1,2	203	251	250	69	115	104		63
5 1	45	1447 167		2.1	6.3	6.2	209	255	757	69	113	107	11	$G \ni$
		457	676,720	2.)	6.3	6.3	209	757	257	69	114	108	11	6_
2	22	1502	682.999	1,4	4.2	4.2	209	247	255	68	115	104	10	6:
	60	507	688210	1.4	4.2	42	206	750	251	68	115	108	10	63
_3	65	1512	693,199	. 75	9.3	2,3	207	247	751	68	116	108	5	04
	70	1217	697.538	175	2.5	2.3	208	749	252	68	רוג	608		4
	75	1522	701502	,61	1.8	1.8	207	746	250	68	114	107		ؿ
	80	1237	705.317	61	119	1.8	208	717	257	68	115	(0)		67
		1529	710501		3.3	3.3	211	246	25%	68	110	108	_6	<i>57</i>
}	90	1534	715,520		3.3	3.3	210	256	249	60	117	108	6	. 7
	95	1529	719.410	طک	16	16	209	244	780	68	112	167	5	أرآ
	100	1544	773.192	156	1.6	16	210	251	751	64	110	106	5	67
	105	1599	726.187	.32	2220	.96	713	255	259	64	111	100	3	<u>-</u>
	ub	1554	729.058	132	.96	.ab	215	252	249	६४	110	106	3	c 1,
4	115	1559	732.311	.46	1.3	13	214	799	250	68	111	106	3	67
	120	1604	735550	196	42	1.3	216	750	255	69	112	167	2	ķ
		ΔVm	- ,	<u> </u>	ΔH=	†	\$=		······	7	m ⇒	·		

Page	2	of	

Plant Name: ASPHALT PLANT "A" Test Date: 8-20-97

Run Number: S-M23-0-3 Operator: G Gny

Traverse	Sampling / Clock Time				s. Differential	Stack	Probe	Impinger		Acter Temp.	Pump Vacuum
Point Number	Time, (24-hour (min.) clock)	Reading (VL) ft ³	I Icad (P _i) in. I I2O	Desired	in. IJ ₂ O	Temp. ° F	Temp. / Filter Temp. F	Temp.	Inici (E _{le})* F	Outlet (E _{out}) *F	In. Hg
DI	125 /16/3	739,430	168	2.0	2.0	215	247/252	68	110	104	4-
	130 / 1618	743, 267	365	1,9	1,9	213	248 / 250	67	11/	107	4
′7	135 / 1672	795.472	,22		.66	213	262 1 251	67	111	104	2_(
	140 / 1624	7481713	.21	166	.66	213	255 1252	67	111	109	12
ર	1+5 / 1633	751,482	.45	1,3	1.3	216	298 / 253	67	110	108	2
	150 / 1622	754.772	195	1.3	1.3	214	252 750	68	11	167	2
4	155 1 1643	738842	152	15	_ايل_	211	253 22	68	110	187	2
	160 1648	16/211	32	_کہا_	45_	214	250 / 255	29	-11	107	2
E 1	165 / 1655	164,517		,90	.90	211	251 / 253	67		103	2
	170 / 1800	767215		.90	.90	212	250 / 251	64	112	109	2
2	175 / 1705	769742	,25	75	,75	213	252 252	64	112	109	2
- 3	186 / 1716	777-299		10	1,0	205 197	78 1756	64	1/2	109	2
	185 / 1713	777,932	135 25	46	40	193	752 1756	67	110	108	2
4	195 / 1775	780,262	120		160	183	250 / 254	67	109	105	2
<u> </u>	200/1730	787.696	,20	,60	-60	179	25/ 1255	67	108	107	2
<u> </u>	705 1						250/290	67	110	108	2
	2/0/						/				
J	215 /						/				
	226 /						/				
3	295 1	! 									
· · · · · · · · · · · · · · · · · · ·	230 /	<u> </u>					 				<u> </u>
4	231	<u> </u>	 -				' ,				
741440	161, 1000	1 Flore 1		107	411		<u> </u>	L			<u> </u>

CHIED IST IMP. LEMICA.009 @ 741y

METHOD 23 CDD/CDF SAMPLE RECOVERY DATA 5-m23-0-3

Plant:	ASPHALT	PLANT "A"			Run No	:#3_					
Sample Date: 8/20/97 Fitter No.(s): Job No.:											
Sample Lo	cation: (DUTLE	T								
Recovery [Date: 8/	20/97	XAD-2 Trap N	o.(s):							
Sample Re	covery Pe	erson: BH	$R_{}$								
が、影響が		建产营产的	Moisture	Data							
Impingers	XAD - 2 Trap	1 (knockout)	2 (100 ml H2O) (untipped)	3 (100 ml H2O) (tipped)	4 (knockout) (untipped)	Silica gel (untipped)					
Final wt.	502.1	1145.9	799.8	684.4	619.9	932.4					
Initial wt.	766.2	422.6	694.4	687.5	6/2.0	889.4					
Net wt.	35.9	773.3	105.4	(3.1)	7.9	43.0					
			Descrip	tion	ion.	第一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个					
Train Syste	em:					· · · · · · · · · · · · · · · · · · ·					
Probe:	•										
Filter: Col	or -		Loadin	g -							
Impinger C	Contents:										
Silica Gel:		Used -	Color -	%	Spent -						
		ed In Front I	Half:								
			covered Samp	ole Fractions							
Filter Cont	tainer No.					ed/sealed:					
XAD Modu	ule Ćontai	ner No.:			marke	ed/sealed:					
70 10 111001	ale contai	1101 110			Liquid						
Probe (FH	l) & Back	Half Rinse (/	Acetone) Conta	iner No.:		ed/sealed:					
		11 - 16 Po	Talana S.C	: NI- ·		l level					
Probe (FF	I) & Back	Half Kinse (Toluene) Conta	iner No.:		ed/sealed: I level					
Impinger (Contents (Container No	D.:			ed/sealed:					
					1 .	i level					
Impinger I	Rinse (Ace	etone/MeCl2) Container No	••	marke	ed/sealed:					
COND	-2										

METHOD 5 TESTING FIELD DATA SHEET

PAGE 1 of 3

<u> </u>	AND GITY LT PLANT	COSTONIENCE -	9-21.47		e one		SAMPLE I m 2 4		5- <i>m</i> 23- c	NUMBER) - 4-		
SEENALSE		AMBIENIZA	GIVATTE I	AMEJENII I	eneren e	SIGATE	Elite I	Proesu	Nesta	1005221	å i	i
		PRESS	eesns	TEMP	MIMBERB		ele	ANDUNA	श्री के अंदि	i die Meleter	ELIAMENTE E	ĺ
<u>(55.4)</u>		34.1	(lin Hg) - , 25	(deg F) フェ		(ln)	.84	31 Gur	5	,25,	. 25/	
									7. 7.			, 1
SEUMED:	HOX VI	(6)GM	EDGIMENT OAL	THEFIM	SISACIA Identos	ojaleřa:	elejeek	selsi≡ak i ±t≱t	-(e){-1±(t)	e de inti	v(E(0):1)	
(2)	1.00		EACHOLL (V)		Wei	Ņb)	ettsterfalge	(हर्गासुर्वाक्र)	9/5	9/3		
174	mo il	1.950	•987				1002			اــــــا	3.4	}
	ELAPSED			della la la				i i le	शास्त्र	elely!	HAMALES	
Te/AV	गुन्धा	গুট্রপ্র	TO THE STATE OF TH	VELOCHY	dalkida ojaljdoja	seatell Alleh	स्थात्। स्थात्।	coWeki deMo	म्प्रीमाश्चानः सन्दर्भाः	ieaVIe Istopie	reskild.	
전() 1 전 (9)	IIIME (MIN)	inityis Lietisisi	14년(이)(16) Yak(GL 16)	EleAb (hi H20)				(efeler (2)	(U H)(3)	(0.5)	7/A5 (((d. (A)d))	
100	0	741	782,720	3.1	g.9	182	256	255	61	72 77	10	
3	5	746	789.24	3.1	8.5	194	254	256	64	85 79	10	4
·	16	751	795.330 ·	2.2	7.2	183	255	257	65	96 79	10	-
۲	70	901	309.245	1.1	3.1	192	257	25%	64	93 85	6	1
3	75	206	913,2	1.1	3.2	184	257 258	256	64	95 85	6	19
<u> </u>	35	316	921,542	.49	1,3	181	753	255	65	101 90		
	10	148	921.755		~		755	251	65	101 90	3	_](
1	4.5	377/	237372	2.5	7.4	181	26g 25S	25	62	103 92	11	-
2	55	876	343510	116	4.4	176	754	255	6r	105 92	Ø	ال
(874	24967	1.6	18	174	254	25)	62	107 90	9	
	1(0)(A		istelliti Vielkiellet	त्रप्रहासीय विशेष	AVI:	W: deide				AVE REME		
	aldie		A STATE OF THE							Server of the se	4	

(11)	, *)		EMISS	ION IES	11/1/		4		Page	· J 01		,	; ⊁
	BLANT	AND CITY	DAILE	SAMI	LING LOC	ATION	SAMPL	ENYPE	ŔŰ	NNUMB	ER 💮		´γ .
	***************************************	PLANT "A"	0 \6	BACHOL	,५१ ० जा	e4 0-4	m . 3-1		SIL GĖL	0 - 4	100000000000000000000000000000000000000	241121.15	
ΠΆΛΥ.	ELAPSÉT TEST	CLOCK	GASMETER	VELOCITY HEAD)-) 2014110	STACK	PI/OBE	HILTEN OVEN TEMP	SIL GEL IMPINGEN STEMP	DGM IN/OUT TEMP	XXVX	SAMPLE TRÁIN: ACUU:	
POINT NO	TIME? (min)	(24 <u>-</u> lii)	READING Vin (ith)	(111:1120)	(in: l·(20)	(F)	((()	((F)	(30)	<u>(((</u>)5)	* *(?'f)*	(lin. 11g)	1 .
3	65	845	853,678	90,	1,9	176	352	355	<u> </u>	10998		9	63
	70	844	857,580	766	1.9	175	254	257	63	10219		+	63
4	75	853	861.110	156	1.6	176	255	253	64	110 101		3_	6d r=2.9
	80	258	864,675	, 56	1.6	176	247	<u> </u>	65	110 101		3	64 * 30
2	85	905	869,999	1.5	4748	183	33 ≻	255	66	112 10	 	7	64
	90	410	975.232	1,5	3.8	179	253	254	65	113 103		7_	64
2	95	915	979,27	178	2.0	177	2 47	251		115 106			64
444	100	470	993,20	.78	2,0	174	750	251	65,	115 100		4	65
3	los	923	885.352	.20	٠,5	176	75-	<u>257</u>	64	116 110		2_	65
	110	950	887, 498	, 26	.5	176	253	755	63	115 111		2	હુ
4	115	935	840,647	142	1.1	179	329	254		115111			64_
5	120	140	397,571	142	1,)	18/	251	252		115 112		7	64
	125	948	897,842	<u>, 8 2</u>	2.1	178	22~	286		116 112		4	G2
	130	9.5 5	901.710	.83	2.(176	252	525	-65	116 113		4	65
	135	120 9	905.078	,50	1, 3	174	255	256	65	16113		3	65
	140	1067	908.101	.50	1,3	173	ઝ્ડ૮	255		117 113		3	65
3	195	1004	910.001	1/8	,4-	172	765	257	64	112 111		2	64
	156	12 13	912,010	.19	٠, 4	177	733	352	64	119 112		2	64
+	155	10 18	415,831	,11	129	177	756	254	64	113 110		2	64
	166	10 17	915,460	, 11	129	176	257	755	67	111 109		2	64
Page	LIME STOTAL		VOLUME	AVG SQHII	AVG*	SIK i			1	DGM			

Shaat Checked Dy:

Dalu ____

METHOD 5 TESTING FIELD DATA SHEET

y 1

PAGE 3 of 3

2002	2.0000000			DATE			ON S			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
. /	4spha	LT PENAIT	` A "	3-31.97	BAG HOI	nec outce	0-0	M·J	<u> </u>		64 J-MR	3-0-4
8328S	****	ukasan			ole (c) C				in in small	S[6(8)5	6 C Y C	
	40.00	17.31	0.00			della He	(Sp)te(pyglojala	10) 1/14()	73/20/27r	1963,3153
	Backer of the City (. 9989978974446334444653444444	10000 AA AK COOK O' 30 NO AK S	oripios	PHD7070000000000000000000000000000000000	1647/15	3517/15	142 P	3859Ú(?)	33.55
							(den (F)	(60)37	(3.000)	[2] J. Alexander S. H. Lind, Phys. Lett. 12, 114	(CUI)	((R) (S(P))
******	1	165	1070	920.295	1.1	2,9	174	264	256	67	111100	_5_
		170	1035	924 99 6	ليا	2.9	178	25≻	756	64	113 108	5
	2	177	1660	928.486	, 58	15	ىد 18	ጉፏ5	257	64_	114 108	4
		180	1045	931.992	82 ،	1.3	194	252	255	64	115 107	+
	3	195	1050	934.084	118	146	198	255	233	64	114 109	2
		190	LOSS	935,998	,18	144	188	753	751	65	113 107	5
	4	195	11,00	9391364	.25	20.	185	254	255	65	10 107	م
		760	1105	940.940	125	-65	184	357	254	65 65	109 (0)	3
		305	1113	944.62	.70	1.8	184	35×	256	65	109 107	3
		210	1118	9-	.70	.69	187	354	265	64	16 107	2
	_2	235	1123	952,999	126	168	182	251	253	64	111 107	2
		236	1153	955210	120	152	181	255	257	63	110 106	2
		225	1138	957.321	. 20	.57	184	749	754	63	109 106	2
	4	235	1143	460.192	131	.80	186	250	20	63	110 106	2
	-4-	240	11 44	962.637	131	180	185	251	255	64	110106	2
		- 10	' ' ' ' '				- 1-0-				1	
									L]
		31 (2 2 (3 1)		(8) (1) (8)							/N/#	
		HIZE		V(e),UMP	e Eller	salaki. Sakar	(1 8 215					
]	<u> </u>		<u> </u>				•	Ł	"
	•										1001	10.

METHOD 23 CDD/CDF SAMPLE RECOVERY DATA O-M23-4

Plant:	SPHALT PL	ANT "A"			Run No	.:#4	
Sample Da	te:8/2	197	Filter No.(s):		Job No		
Sample Lo	cation:	VILET	•				
Recovery D	1	21/97	XAD-2 Trap N	o.(s):			
Sample Re	•	erson: BH	IR				
			Moisture	Data			
Impingers		1 (knockout)	4 (knockout) (untipped)	Silica gel			
Final wt.	496.3	1249.1	697.6	686.1	610,6	944.2	g
Initial wt.	465.0	506.7	700.0	689.5	603.5	900.1	g
Net wt.	31.3	742.4	(2,4)	(3.4)	7.1	44.1	g
			Descrip	tion	TRE 819.		
Train Syste	em:						
Probe:							
Filter: Cold	or -		Loadin	g -			
Impinger C	ontents:						
Silica Gel:		Used -	Color -	%	Spent -		
		ed In Front I					
			covered Samp	ole Fractions		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Filter Cont	ainer No.					d/sealed:	
XAD Modu	ıle Contaiı	ner No.:			marke	d/sealed:	
Probe (FH) & Back I	Half Rinse (A	Acetone) Conta	iner No.:	Liquid marke	level d/sealed:	
			roluene) Conta		Liquid		
Tione (TT	J & Dack I	1411 1 (11136 (1	i Olderie) Oorita	110.	Liquid		
Impinger C	Contents C	Container No).:			d/sealed:	
Impinger F	Rinse (Ace	etone/MeCl2) Container No	•	Liquid marke	level ed/sealed:	
COND	2						

A PACIFIC	ENVIRONMENTAL SERV		_ [FIE	ELD DAT	'A			V _{I.} : Sil	nidensersica gel	
Date Sampling Lo Sample Typ Run Number	$\begin{array}{cccc} B - 9 - 97 \\ \hline \text{ocation} & 5 + 8 + 4 \\ \hline \text{oc} & M - 23 \\ \hline \text{cr} & F / 0 \\ \hline M - 10 \\ \hline $			FIEL	n Inc.		Probe Length: Pitot Tube I.D. Nozzie I.D. Assumed Mois	No	ND 800	,	
Barometric Static Press Filter Numl Pretest Lea	Pressure (B) <u>29.1</u> ure (B) <u>MA</u> ber(s) k Rate = <u>.010</u> cfm (a Leak Check	Ţ	lig	3	[<i>n</i> / ¹		Meter Box Nur Meter≙ 11@_ Meter Gamma	nber	194 ,945	Im @ 7	in. 11g
Pretest Orsa	ecord all Data Every			Travel	hematic of se Point La sor ID No.	yout		Leak Check	k		
Traverse Point Number	Sampling Clock Time (24-hour clock)	Gas Meler Reading (Va) R 3	Velocity Head4 Pa)	Ordice Pre	s. Differential b. 1120 Actual	Slack Temp. * [F	Prohe Temp. / Filter Temp. * F	Impinger Temp. • F	Dry Gas Me Inlei (Tilly) P	United	l'ump Vacuum In. Hg
	NA 11519	47.351 47.409 47.504	NA	ah d	05@ 11	144				.11111111111	7
		47.59)	Lega	ch.c	ore of	18					

METHOD 23 CDD/CDF SAMPLE RECOVERY DATA

Plant:	SPHALT F	LANT "A"			Run No	: FB	
Sample Da	te: 8/20	9/97	Filter No.(s):		Job No.	••	
Sample Lo	7	FIELD	BLANK				
Recovery D	ate:		XAD-2 Trap N	o.(s): 0-M	23-FB	-XAD	
Sample Re	covery Pe	erson:					
	阿拉斯	語言學的	Moisture	Data			
		1	2 (100 ml H2O) (untipped)	3	4	_	
Final wt.		480.5	698.4	708.1	594,3	868.9	g
Initial wt.	316.5	480.6	696,2	708.1	594.0	888.9	g
Net wt.							g
			Descrip	tion			architecture architecture
Train Syste	em:						
Probe:							
Filter: Cold	or -		Loadin	g -			
Impinger C	contents:						
Silica Gel:	@Grams	Used -	Color -	%	Spent -		
Condensa	te Observ	ed In Front I	Half:				
		Re	covered Sam	ole Fractions			
Filter Cont					marke	ed/sealed:	
XAD Modu	ule Contai	ner No.:				ed/sealed:	
Probe (FH) & Back I	Half Rinse (/	Acetone) Conta	iner No.:	Liquid marke	l level ed/sealed:	
			Toluene) Conta			l level ed/sealed:	
Impinger (Contents (Container No	D.:			l level ed/sealed:	
			2) Container No	.:		i level ed/sealed:	

Date 8-19-95 Sampling Location STACK Sample Type M-29 Run Number O1 Operator MAD Barometric Pressure (B) 29-9 Barometric Pressure (B) - 25 Filter Number(s) Pretest Leak Rate = OU cfm @ 15 in. 11g Pretest Pitot Leak Check Pretest Orsat Leak Check Read and Record all Data Every S Minutes Traverse Point Layout Page Of S Chematic of Traverse Point Layout Traverse Point Layout Traverse Point Layout Traverse Point Layout Temp. Sensor 1D No. Traverse Point Layout Temp. Sensor 1D No. Traverse Point Layout Temp. On Temp. Of T	A PACIFIC	ENVIRONMENTAL SER ASPHALT PLANT			<u> </u>	LD DA'I	l'A			V _I : Si	nudensers	
Sampling Location STACK Sample Type M*2	Plant]	N	A	7	N,	<u> </u>] [30 II ()	
Sample Type M-2				— I	/ . 3.	31/4				4'616	\ < <	
Run Number O O O O O O O O O		_			F.K			_		7 (110	<u>ω</u> ς	
Departure Depa]	ABC	DEF		Pitot Tube I.D	No.	251		
Barometric Pressure (R) 2-9					1000	000		INDEZIE LUL D	KI OFF			
Filter Number(s) Filter Number(s) Fretest Piot Leak Rate = CV cfm @ S in. Ilg Pretest Piot Leak Check Ceave Ceav			<u>a</u>	-1		.,	1					
Filter Number(s) Pretest Rate = CCL cfm@ 15 in.11g Pretest Pota Leak Rate = CCL cfm@ 15 in.11g Pretest Pota Leak Rate = CCL cfm@ 15 in.11g Pretest Pota Leak Check Read and Record all Data Every 5 Minutes Prost Test Drast Leak Check Prost Test Drast Test Drast Drast Test	Static Press	me (P) - 25	_l		NIPPIC	3 1/2	u				·	
Pretest Phot Leak Check		1 - /					<					
Pretest Prior Leak Check			15 in	11.			J	•			 	
Pretest Oreat Leak Check Post Test Priot Leak Check Post Test Oreat								Post Test Leak	Rate = .	201	im @ 7	
Page Of Sempling Clack Time Class Mictor				<u></u>	Sc	hematic of						
Temp. Sensor 1D No. Size			5 Min	utes			wout					
	Page	of					your	1	1		1	$\overline{\exists}$
	Traverse	Sampling / Clock Time	Gas Meles				Slack	Piohe	Lapinger	Dry Gee M	elet Temp	╁
0 1 0915 76 4	1	Time, / (24-hour	Reading						Temp.	Inci	Dullet	┨ '
	Lengton			la. 1120	Desked	Actual	Arithme	Temp. 1	minim	The Contraction	The F	. k
					VIIIIIIII.		303 311111111	-335 / 340	<u> viriinii</u>			**
7 15 1 0730				_	N/A						84	╁╴
20 (10) (10) (10) (10) (10) (10) (10) (10												+
3 25 1 1104 100.42 .40												1-
30	3											+
4 35 1 (1) 4 101, 97 54 1.3 213 232 1250 58 107 104 40 1 (1) 9 1 (0.047) 65 1.6 216 236 1253 52 110 109 D 1 45 400 1 (10.047) 65 1.6 216 236 1253 52 110 109 D 1 45 400 1 (10.047) 1.6 3.7 205 247 1254 57 110 106 50 1 (132 12.744 1.6 3.9 205 247 1254 57 100 107 2 55 1 (137) 126,3 3.2 187 247 1255 57 104 107 3 65 1 (147) 128,8 3 34 180 240 1257 57 104 107 3 65 1 (147) 130.95 2 .54 181 240 1266 58 103 107 4 75 1 (152) 137.5 127 124 1257 104 104				.48								1
40 1 119 10.042 65 1.6 236/253 52 110 109 D 1 45 46364 11607 1.6 3.9 205 241/254 57 110 106 Sto 1 1132 121.74 1.6 3.9 205 241/251 56 11.7 106 2 55 1 1157 126.7 1.3 3.2 187 244/255 57 104 107 60 1 1142 128.8 .3	4	35 / 1115		.54		1.3						1
SO						1.6	216	236/253			109	1
So 1 32 121.74 1.6 3.9 208 243 251 56 11.7 106	Ð	42 大学学	116.07	1.6		3.9	204	244 1254	57	110	106	T
100 1142 128.8 .3 .3 .3 .3 .3 .3 .3				1.6		3.9		2431281	20	در ۱۱	106	
3 65 1 1147 130.95 249 187 240 1 266 58 103 102 70 1 1152 137.15 .2254 191 241 1252 59 101 104 104 104 104 155 1157 136.15 .39						3.2		244 1 522	57	104	107	
70 1 (152 133.15 .22 .54 (91 241 1252 59 104 104 4 75 1 1157 136.15 .59 .97 191 246.1284 6 602 100 80 1 1202 138.784 .35 .87 192 245.1286 60 102 601 88 11206/1011 1415 .5 .75 172 246.1284 6 1 100 98 4 10 1 1016 144.38 .34 .88 173 241.1255 6 1 603 100 2 98 1 1021 146.38 .34 .25 170 246.1259 57 105 103 100 2 98 1 1021 148.13 .14 .35 171 246.1257 66 106 107 .35 171 246.1257 66 107 .35 171 246.1257 66 107 .35 171 246.1257 66 107 .35 171 246.1257 66 107 .35 171 246.1257 66 107 .35 171 246.1257 67 .35 1				1								_
Y 75 1 157 1 36 15 .35 .97 191 246 1 254 40 (02 100 E 1 200 1 120 .35 .87 192 245 1 256 .00 1072 101 E 1 201 141 .35 .75 172 246 1 254 (1) .00 98 2 10 100 144 .38 .74 .85 173 .246 1 254 (4) (03 100 2 95 1231 146 .15 .35 171 .246 1 257 64 105 103 102 3 105 1231 149 .15 .37 167 346 1 257 64 100 102 102 102 103 102 102 103 102 103 102 103 102 103 103 102 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 1												1_
80 1 12 02 178.704 .35 .87 192 245 1 254 60 102 601 E 1 85 1/20/1811 1415 .5 .75 172 246 1 254 61 100 98 2 95 1 1231 144.38 .74 .85 173 241 1 255 61 105 103 100 1 100 1 100 148.13 .14 .35 171 246 1 257 64 104 105 3 105 1 1231 149.51 15 .37 167 344 1 257 64 104 105 110 1 1236 152.14 .2 .5 18 247 74 60 103]							1_
E 98 201/ 8 141.5 3 75 72 246 254 6 100 98 2 10	<u> </u>											4
2 95 1 1231 146.75 (<u> </u>			125	 							4_
2 95 1 1231 146.75 .1 .25 170 24c 1259 57 105 103 103 105 103 105 103 105 103 105 103 105 103 105 103 105 103 105 103 105 103 105 1123 149.57 15 137 167 24c 1257 57 103 102 100 100 100 100 100 100 100 100 100				1-3	 							-
3 105 1 1231 149.57 15 37 167 34 1257 54 102 107 . 110 1 1236 (52.14)				 								-
3 105 / 1231 149.97 15 37 167 344 / 259 57 .103 102				1-11	 		 					-
110 1 1236 (52.14) 5 18 247 24 60 103 102					 							╬
4 115 / 1241 15/3 16 1 10 100 160 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/2	7	1 105 / 1731	# 1 TL 1 1	112				A14 , 521			105	- -
	3			1		. 5	1 7 54 1	1 147 1 711	<i> . </i>	1.00		

Page	2	of	2
U			

Plant Name:	ASPHALT PLANT "A"	Test Date:	8-19-97	
Run Number:	()	Operator:	MAD	

Traverse	Sampling	/ Clock Time		Velocity		s. Differential	Stack	Probe	Impinger	Dry Gas N	Acter Temp.	Pump
Point	Time,	/ (24-hour	Reading	Head (Pa)		in. 11 ₂ O	Temp. • F	Temp. / Filter	Temp.	Inlet	Ouliel	Vacuum In. Hg
Number	(min.)	clock)	(K) W3	in. H ₂ O	Desired	Actual	(T)	Temp. F		(E _b)*F	(E _{out}) *F	
EY	120	11346	156.085	.12	NO	3	170	256/257	62	102	105	2
FI	125	11248/1253	189.4	.55		1.3	166	254/248	64	98	98	2
	130	1 1258	162.92	.53		(.3	167	22r 134r	64	102	101	2
7	135	1 1303	164.97	. 19		.47	167	253 1248	65	104	100	2
	140	1 1308	166.96	.16		.4	166	250 1 249	61	104	101	2
3	145	1 1313	169.35	.25		.62	166	248 1248	62	103	103	2
	150	1 1318	171.81	.27		67	167	247 1 249	63	104	103	2
4	155	1 1323	175.04	42		1.05	167	247/24/	64	105	(0)	2
	160	1 (328	178.299	۲۰		1.12	167	5481 544	64	107	104	2
A 1	165	1133433	185.94	. 30		7.5	167	247/245	58	113	105	7
	170	1 134	193.22	24		60	168	244/247	\$7	113	107	7
2	175	1 1346	197.55	.85		2.1	147	2471249	58	115	106	4
	180	1 1351	201.82	.୫୯		22	167	9481 924	59	116	102	4
3		1 1356	204.57	.26		105	166	253	58	114	107	3
	190	1 1401	207.07	.23		.S7	165	023 , 521	57	112	109	3
U	195	1 1406	209.37	.23		.57	165	426142K	58	96	<i>9</i> 9	3
	200		211697	.23		.57	155	257 1052	59	99	98	3
B 1	305	11414/1419	218.2	2.1		5.2	164	252 1256	61	5	107	3
	910	1 1424	224.57	1.9		4.7	168	034 1058	63	110	108	3
2		1 1429	229.56	1.2		3.0	167	255 1256	62	115	109	3
	920		234.22	1.0		2.5	166	254 / 258	62	114	109	3
3	225	1 1439	a 37.27	.42		1.05	167	248 1259	64	115	110	3
	830	1 1444	0740.8Z	.46		1.15	148	247 1259	65	113	110	3
<u> </u>	000		243.63	49	V	1,22	166	349 1 354	65	110	109	3
	ayu	1454	246.974	.49	·	1.22	146	248 246	45	108	106	3

Lear el .004 (2,77%)

MULTI-METALS SAMPLE RECOVERY DATA

Plant:	ASPHALT PLANT "A"						Sz9-0-1	
Date: 8-19	-97	Sample Box No.:			Job	Job No.: 5413.003		
Sample Locat	ion: Outlet							
Sample Type:	Particulate/	Metal5						
Sample Reco	very Person: 7.	v Abenativ	1Ba	rry 1	Rautic	10		
	Description	/ /		/ Volum	e, ml Se	ealed/	Level Marked	
Front Half								
1	Filter No.(s) M97 -	003			-			
2	Acetone Rinse					-		
3	Nitric Rinse				(3)			
Back Half								
4	Nitric Rinse - Imp. 1,	,2,3, + Back 1/2	2 Filter	-		-	•	
5A	Nitric Rinse - Imping	er No. 4						
5B	KMNO4/H2O Rinse	- Impingers 5 &	<u> 86</u>	_				
5C	HCI Rinse - Impinge	rs 5 & 6	12 To A & C		وع باست کا انتیاب	- -	Englished and Fill I is a decided we-	
Moisture Dat	a							
Impinger	Contents	Initial			Weight	Veight, grams		
No.		Volume, ml		itial	Fina		Net	
	Empty			2.6	125		-531.7	537.
2	5% HNO3/6% H202	100		7.4	802		105.2	
3	5% 4NO3/1096 HEOL	100	73.		752		70.6	
4	Empty		52		528		4.1	
5	Empty KMNOM/H2Sex KMNOM/H2Sex Siliga Cecl	160		7.3	685.3		1.0	
6	KMNON /H.Say	100		9.7	709		6.5	
1	5, liga Cecl	200	1 8	74.9	897	.4	22.5	
	1			· . i				
							1001	
Total Comments:					<u> </u>		485.4	691.0
O O THE TOTAL O						<u>.</u>		

				***	3. a. a		(6),] [milensers
	C ENVIRONMENTAL SERV	ICES INC		1/11	ELD DAT	Ά	10,1			
	ASPHOLT PLANT	"A"					- co _ _	-		lica gel
						~	N,			на 11,0
Date	8-20-97									
Sampling L	ocation STACK				/	1	Probe Length		4' 60	455
Sample Ty	pc <u>M 2 9</u>			1.00		}	Pitot Tube 1.D		- Co	
Run Numb				ABC	- 1	}	Nozzle I.D		253	
	MAD		J	1000	2001		Assumed Moi	sture, %	.17.	
	Pressure (B) 79	<u>. 8</u>					Meter Box Nu		WB 10	
	sure (R)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					Meter∆ 11@_		<u>.74</u>	
	iber(s)						Meter Gamma		45	
	ak Raic = 006 cfm		. 11g		·		Reference p			
	of Leak Check <u>CK</u>	<u> </u>							<i>009</i> c	
	at Leak Check			So	hematic of				k Ck Gu	vel
Read and F	Record all Data Every	_5 Min	ules	Trave	rse Point La	yout	Post Test Orsa	t Leak Che	ck	
rage	1 of 7			Temp. Ser	sor ID No.					
Traverse	Sampling Clock Time	Gas Meler	Velocity		a. Dillerental	Slack	l'iohe	Impiager	Dry Gas M	
Point Number	Time, (24-hour clock)	Reading (Va) N J	licod4 Pa in. 1120	Desired	la. 11 ₂ 0 Actual	Temp. • F	Temp. / Filter Temp. F	Temp.	Inlet (Fig.)*F	(Juliel
THINK!	0 10022	49.199	illillilli.	dillinit.	THITTHE WAR	milink	milkinin	<i>illilli</i>	dillini	PowPF
A 1	5 10827	67.9.	3.2	RA	8.8	190	238 1 247	42	80	78
	10 / 0832	66.75	3.3	1	9.1	190	237 / 246	43	8)	78
2	15 10837	73.15	3.4		6.6	194	240 / 247	48	86-	79
	20 10842	80.2	2.3		6.3	193	241 / 248	48	ยา	79
3	25 1 0847	84.88	1.0		2.7	199	241 / 248	49	90	81
	00 10852	89.72	.96		2.6	198	244 / 248	51	92	83
4	35 1 0857	93.25	.4		1.15	191	247 1 248	54	93	84
	40 10802	96.791	.35		1.01	189	242 1 249	58	91	86
3 1	45 10904/0909	104.15	<i>3</i> .3		U,37	200	244 1 244	51	43	87
	50 1 6914	111.46	Q.3		6.37	200	246 1 244	52	93	87
2,	55 1 0919	118.78	2.0		5.49	210	8471247	5}	93	87
	60 1 0924	125.3	1.5		4.11	210	2471 240	53	92	91
5	65 1 0929	130.83	1.2		3.14	215	246/242	53	95	90
	70 1 0934	136.1	1.2		3.14	214	346 1 A43	53	101	93
7	75 1 0939	140.41	75		1.96	213	245 1344	52	102	94
	80 10944	144.631	.77		2.0	214	ayl 1 243	51	102	74
CI	85 10941/015	149.55	1.0		2.61	2/3	244 1 246	51	100	94
	90 1 0956	154.48	, ,		1 1 7		A A			· · · · · · · · · · · · · · · · · · ·
2	95 / 1001	157.47	1.1		2.8	211	241 1244	51	100	95

.96

.93

3.06

2/9

331

843 1244

037

डा

1.01

.100

in. Hg

Pump Vacuum

In. IIg

Z

,ot

at.

160,47

164.85

169.34

.37

.74

Page 2 of 2

Plant Name: ASPHALT PLANT "A" Test Date: _ 8-20-97

Run Number:

Operator: MD

Traverse	Sampling	/ Clock Fime	Gas Meter	Velocity	Orifice Pre	s. Differential	Stack	Probe	Impinger	Dry Gas N	leter Temp.	Pump
Point	Time,	(24-hour clock)	Reading	i lead (P ₁)	(All) Desired	in. II ₂ O	Temp. ° F	Temp. / Filter Temp. F	Temp.	Inict (Toja)* F	Ouliet (E _{oul}) *F	Vacuum In. 11g
Number D	(min.)		(4) n ³	in. H ₂ O	HA		233	241 1 246	58	98	98	3
U	130	11031/1036	187.41	1.0	777	2.6	233	241 1246	59	NO	99	3
2	 	1 1041	191.4	55		1.4	035	243 1 244	55	105	99	3
	135	1 1046	194.76	.55		1.4	235	241 1244	56	105	99	3
3	145	1 1056	198.18	.53		1 38	236	2421244	57	102	97	3
	150	1 1101	201.55	47		1.23	238	24/ 1244	56	101	93	3
4	135		205.6	69		1.8	236	240 1246	57	100	97	3
	160	1 111	209.657	7		1.8	233	239 1245	57	IVD	96	3
€ 1	165	1111/1119	214.45	1.0		2.6	832	240 1246	56	99	96	3
	170	1 1124	219.39	1.1		2.6	232	240 1246	55	100	96	3
2,	175	1 1129	223.26	157		1.4	237	अ। १३५१	57	101	97	3
	180	1 1134	236.67	.55		1.4	236	2121047	58	103	98	3
3	185	1 1139	229.96	.42		1.1	236	A61 176	59	102	98	3
	190	1144	232.96	.70		1.0	a36	241 124	(gQ)	102	97	3
4	195	1 1149	235.9	.24		.89	236	241 1 246	60	100	96	3
	940	1 1154	239.289	.59		1.54	276	239 1 247	58	99	96	3
PI	305	11209/1205	242.46	. 38		1.0	234	242 1247	60	97	97	3
-	210.	1 12/0	245.16	.34		.89	236	243 1 244	40	98	97:	3
12	315	1 /217	248.03	.32		.84	236	244 1 246	60	99	97	2
	220	1 1220	250.87	.34		.69	236	241 1246	57	101	98	9
3	1-7005-	1 1225	254.64	(16		1.74	236	242 1247	58	(03	98	2
	330	11230	928 M	.69		1.82	235	241 1248	56	103	99	2
	0.35	1 1235	262.4	do		1.24	032	242 1	60	105	99	0
L	240	11240	266.098	.65		11.71	833	243 1	61	105	99	2

214.899 0.887

98.265 93.2

Plant: ASPA	HART PLANET "A"					Run No.:	S29-0-Z
Date: 8-20	3-97	Sample Box No	.:			Job No.:	5413.003
Sample Locat	tion: Outlet						
Sample Type	: Particulate	/ Metals		•			
Sample Reco	very Person: Trey	Abernathy /	Barr	y Bay	fic L	d	
	Description /			/ '			Level Marked
Front Half		4					
1	Filter No.(s) m97-	002		_	_		
2	Acetone Rinse				-		
3	Nitric Rinse						
Back Half				美国教	第一位	海 克勒	
4	Nitric Rinse - Imp. 1	,2,3, + Back 1/2	2 Filter				
5A	Nitric Rinse - Imping	er No. 4					
5B	KMNO4/H2O Rinse	- Impingers 5 &	<u> </u>				
5C	HCI Rinse - Impinge	ers 5 & 6					
Moisture Da	ta						
Impinger	Contents	Initial			We	ight, gran	ns
No.		Volume, ml	In	itial		Final	Net
	Empty		72	23.6	140	08.5	684.9
2	HN03/ 4202	100		8.4	8	14.6	176.2
3	4403/4202	100	73	2.0		8.1	76.1
4	Empty		52	<u>5.5</u>	5	33.7	8.2
5	KANNOY / 43,504	100		<u>4.4</u>		690.8	4.4
6	KMN04 /42504	100		9.1		11.7	2.6
7	Silica Cel	200	9:	38.7	8	79.4	40.7
					<u> </u>		
							
			<u> </u>				000 1
Total Comments:			<u> </u>				993.11
Comments:		<u>,, ,,,,</u>					

FIELD DATA SHEET

Plant:	ASPHALT	PEANIT	"A"
Sampling	Location 51	TACK	
Run Num	ber: <u>03</u>	Date:	8-20-97

Pretest Leak Rate: OII cfm @ II in. Hg.

Pretest Leak Check: Pitot: Ck. Orsat:

2

Sample Type:	M29	_Operator:	MAS
Pbar: 29.8	Ps:	25	
COS.	O2:		

Nozzle ID: 253	Thermocouple #:
Assumed Bws: .\රි	Filter #:
Meter Box #:MB10	Y: 965 AH@: 174
	: <u>005</u> cfm @ <u>9</u> in. Hg.
Post-Test Leak Chec	:k; Pitot: Orsat:

Number D (Time (min) 0 5 10 15 20 25 30 35 40	Clock Time (24-hour clock) 1405 1410 1415 1420 1425 1430 1435 1440	Reading (Vm) ft ³ 73.784 78.54 83.41 86.97 89.95 91.75 95.43	Head (Δp) in H2O 1. [4 3.7 7.21	Desired	7 in H20 Actual 2.6 2.9 1.0	Temp. (Is) 3,10 3,07	Probe 237	Filter ///// 245 246	Temp. OF ///// 64 63	102	Outlet (I'm out ^o F)	//// 2
D (2 3	0 S 10 15 20 25 30 35 -10	1405 1410 1415 1420 1425 1430 1435	73.784 78.54 83.61 86.97 89.95 91.75 95.43	1.1 4 37 .21		2.6 2.9 1.0	209	235 237	245 246	///// 64 63	102	101	//// 2
2	S 10 15 20 25 30 35 40	1410 1415 1420 1425 1430 1435	78.54 83.61 86.97 89.95 91.75 95.43	1.1 4 37 .29	HA	2.9	ಎ೦१	237	246	63	103	102	2
2	10 15 20 25 30 35 40	1410 1415 1420 1425 1430 1435	78.54 83.61 86.97 89.95 91.75 95.43	1.1 4 37 .29	HA	2.9	ಎ೦१	237	246	63	103	102	2
2	10 15 20 25 30 35 40	1420 1425 1430 1435	86.97 89.95 91.75 95.43	37		1.0							l
3	15 20 25 30 35 40	1420 1425 1430 1435	86.97 89.95 91.75 95.43	37			. 12						
3	20 25 30 35 40	1425 1430 1435	89.95 91.75 95.43	.21			208	256	246	45	106	102	2
3	25 30 35 40	1435	92.75 95.43			97	212	250	244	47	106	103	८
	35	1435	95.43			.76	200	252	240	47	106	103	2
- 1/	35	1440		.5		.19	209	253	242	48	106	103	l
4			98.97	.5	<u> </u>	1.32	208	254	541	49	105	107	2
		1445	102.185	.47	 	1.24	207	255	240	52	104	102	
e ,	42	447/452	106.97	1.1		2.9	207	254	257	54	104	103	2
	50	1457	112.14	(.)		2.9	207	253	250	22	104	103	
2	57	1502	114.55	.7	 	.52	208	254	921	100	106	103	2
	60	1507	116.71	.19		.5	wg .	253	252	56	108		7
3	65	1512	119.05	.22		, ଟ୍ରଞ	206	253	250	58 58	104	103	2
	70	1517	(21.37	.22	 -	.58	205	253	249	<u>55</u>	104	102	2
	75	1255	124.65	,45.	 	1.18	205	254 253	247		104	102	2
	60	1527	127.923	.49	 	1.27	206			57 51	103	102	
		529/1834	132.61	1.0	 	2.6	209	252	249	57	103	10 (2
	90	1539	137.45	1.1	 	2.9			249	57			2
	95	1544	141.31	.52	 	1:37	208	250	249		105	101	2
	100	1249	144.61	.5	 	1.32	206	250	249	<u>57</u> 56	107	101	2
	102	1224	(47.75	45	 	1.18	708	Z(7)	548	्र रु	706	101	2
	110	1559	151.08	.46	 	1.21	210	250	548	57	106	101	7
	115	1604	155.15	31	 	1.87	211	250	248	58	106		2
	120	1609	159.188	.74	 	1,9	212	248	247		200	१०१	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>
					-V								
	1			<u></u>	1		l				l	l	L
		Δ۷π	1=	√∆p=	<u>ΔH</u> =		Te=				Tm=		

Page	2	of	2
$\boldsymbol{\mathcal{C}}$			

Plant Name:	ASPHALT PLANT "A"	Test Date:	8-20-97
Run Number:	03	Operator:	1 KAD

Traverse	Sampling	/ Clock Time		Velocity		s. Differential		Probe	Impinger	_	leter Temp.	Pump
Point	Time,	(24-hour	Reading	1 lead (P.)	l	in. II ₂ O	Temp. • F	Temp. / Filter Temp. F	Temp.	Inlet (E _{in})* F	Outlet (E _{out}) °F	Vacuum In. IIg
Number	(min.)	clock)	(%) #3	in. 1120	Desired	Actual 8.4	(Ţ)			100	102	
AA	125	11613/1618			NO		212		5B	106	102	55
	130	1 1623	176.16	3.2		84	212		59	11/2	102	3
2	135	1 1628	181.08	4.0		2.4	211	247 / 249		108	103	3
	140	1 (633	186.07	11		2.9	210		60			3
3	145	1 1638	189.17	.321		1.03	12	245 / 251	61	108	197	3
	150	1 1643	192,28	.56		1.0	アクチ	2451751	(and	10	160	
4	122	1 4648	19129	.૨૧		76	211	247/250	62	107	401	3
	160:	1 1653	197.627			. TC	208	2417249	61	105	10)	_خ_
B 1	165	1655/100	204.39	2.0		5.2	209	244 247	63	101	99	3
	١٦٥	1 1705	211.17	2.1		5.5	210	245/ 448	64	101	ዓይ	*
2	175	1 1710	215.67	78	. #	2.06		244 249	65	106	99	3
	180	1 17:5	220,11		/	2.03	211	242/252	167L	107	99	3
10	185	10720	223.46	.56		1.47	240	249 / 251	60	109	161	3
	19	1 1725	227.08	.5B		1.53	199	247 252	#5B	107	re 1	3
4	135	1 1730	230.4	,4		1.06	182	246/ 251	54	107	102	3
	210	1. 回餐	233.615	. 4		1.05	182	245/252	54	109	102	3
C 1	202	1						1				
	210	1				LEah	1.0	0589"H				
2	215	1				ì		1 * 0				
	220	1						1				
3.	2 2 5	1					٠٤.	7		······································		
	230	1	159.831	0.823		2.064	20715	7		105.78	(01.78	
4	735	1			/			7				
·	240					·		,		50	3.4	

746

Plant: ASP	HALT PLANT "A"					Run No.:	529-0-3				
Date: 8 -	20-97	Sample Box No).: <u> </u>			Job No.:	S413.003				
Sample Local	tion: Outlet										
Sample Type	: Particulate	metals									
	very Person: Troy		/ Bo	ard	Ray	field					
Container	Description	7		- (- '		/Level Marked				
Front Half											
1	Filter No.(s) M97	-004									
2	Acetone Rinse			_							
3	Nitric Rinse										
Back Half											
4	Nitric Rinse - Imp. 1	,2,3, + Back 1/2	2 Filter	_							
5A	Nitric Rinse - Imping	ger No. 4	-	_		•					
5B	KMNO4/H2O Rinse	- Impingers 5 8	k 6								
5C HCl Rinse - Impingers 5 & 6											
Moisture Da	a					编奏					
Impinger	Contents	Initial			Wei	ght, grar	ns				
No.		Volume, ml	Ini	tial	F	inal	Net				
	Empty	TOOTA	72	4.7	149	82.2	757.5				
7	HN03/4202	100	72	4.9	876.5		151-6				
3	HAROZ/ 4202	100		0.3	71	0.7	29.9				
4	Empty			3.7	40	7.3	3.6				
5	1, ,,	3	-7/1.	a - 1	77.0	-0. 1	0.9				
	KMANDY/H2SOY	100		9.Z	75	€.J					
4		100	441	3	64	2, 2	૭ .૧				
7	KMNON/HISON Silica Coel		441		64						
7		100	441	3	64	2, 2	૭ .૧				
7		100	441	3	64	2, 2	૭ .૧				
1		100	441	3	64	2, 2	0.9 34A				
Total		100	441	3	82	2, 2	૭ .૧				
1		100	441	3	82	2, 2	0.9 34A				

PAGE 1 of 3

0.00 - 0.00 - 0.00 - 0.00 - 0.00	AND CITY		DATE		NG LOCAT	ØΝ	SAMPLE	BYPE	HEN	NUMBER	
ASPHALI	r PLANT "	4 ''	8-21-97	STA	CIC		M-29	· · ·	04	-	
PEHAIDE		AMEIGNI	GIATIO	AMEIENI	Hilarishi	SISAYES	Elios i	en de Eur	Natur	Noizza	2
		PRESS	RRESS	TEMP	NUMBERS	1907290 V 100030 V 2000	elo	ANDILINE	#XX29220XXXVXXXXXXXXX	NUN TELET	
		(lin Hg)	(in: Hg)	(deg. F)		((10))					
MAD		29.7	25	720		33.5 X	.84	4' 610	. 5 9		.253
SUMEDE	issiv	ЮбМ	EGM	STACK	ETACK	כאי. די		200112-X (V-2002)		i no marco	27.16.0.2
77.34.764.604.446.60	tele), sisti	8 (@)	9/4	ride:IM	Pittoli	orlead	elsteck	elulaejk elulaejk		a O (e jej te i Ge N	(17)(C)(C)R
96			FACTOR (V)	NO	de	(6)	((A) sella (I)	(F/L) Albi	0/4		
17	MB 10	1:74	.965			THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN TRANSPORT NAMED IN THE PERSON NAMED IN TRANSPORT N	210@114x	0.0080			
		l		200279279384730000		F	U	10"			
	日本(1) 日本(1)	(ভারতার	୭୧∛	delbide Vellejobra	afellane.	Stratella	isia(ola)a	12 _1612 	(e)]] (e)=] 	BelVI .	SAMBLE
	ATIME.	iil Mi=	rievojkiej Oslo	HEAD	olalidola		165 (Je	re Me	िश्वीर्धित्रस्थ संस्थितः	INO E	its Alk
ΝO	(MIN)	(etillis)	Vm (cu. (r)	(In H20)	4(fe) (E):10(fe)	(dila in	(0:00 00)	THE RESIDENCE OF THE PARTY OF T		(elde (e)	(list (#[s])
***************************************	O	0741	34.320	///////	111111	77////	111/11	7771///	1/1/ 11/	///////	(/////////
	S	0746	38.74	1.0	2.5	185	247	249	65	79/77	1.5
	10	0754	43.52	.96	2.4	186	250	248	65	82/79	2
	15	0756	47.16	.44	1.16	183	252	249	55	91/80	2
	20 25	0806	50.38 53.00	,39 .2 9	1.02	183	251 249	250	53	93/80	2
3	30	0811	55.53	25	66	180	278	0 52	<u>53</u> 53	93/81	ئ گ
	35	0816	58.82	44	1.16	186	249	250	<u>5</u> 4	94/86	2
	40	0891	62.12	.५५	1.16	186	248	220	57	95/e7	2
	45	823 0878	67.3	1,2	3.16	180	249	251	59	97/96	7
	50	0833	72.85	1.3	3.4	180	247	252	_61_	98/91	7
	55 60	0838	7598 .	.39	1.16	175	2:49.	253	(<u>6</u> 1	19 197	7
	veriAl.	רומט	9(e)(V)	AVESTOR	1.02	AVE	431	252	<u>55</u>	102 193	2
	TIME		ValuMe		ugleta .	ild d ly				IFFIME)	
]		A THE DATE OF THE PARTY AND TH	Washing Transfer Sales State					September 3	1
		_									1

PAGE 2 of 3

	ELANT.	AND OTTY		9AND	SAMPLE	\$161.000.51J						
	ASPHAL	T PLANT	"A"	8-21-97	STA	lek		M.	رم	0	4	
										002/3 00 2002/5/2	e deremante de la compa	्र वर्षा विकेत व्यक्तिक विकास
		:16,155;±0			deilafe				(2)	સાહ્યા	0.000	
1	(3)	X-0.00000000000000000000000000000000000	e kejeK	DGIA	VELCO (STEE			opijiojala	Contraction of the Contraction o	i člolič(elsi:	Park of Grade Services and the	4.5(1)
		angle.	27.77.575.572.5944.54.2534.	# READING	12002000000000000000000000000000000000	Salalos	TEXES	TERM?	ास्ट्रीय	eevi:	3000	430
*****	The second secon			No (cr. ti)		(0.920)	(dep. F)	2C/	2./7		197 /94	Z
ε	3	65	0848	81.48	.71	.55	174	251 250	247	<u>58</u>	101 /94 101 /94	2
²		70	0853	83.71	.19	.50	175	250	247	56	100 195	7
		75	0828	86.12	.24	جي.	175	250	a48	56	99 /95	7
0		80	0903	88.428	.21	.55		251	242	54	104/96	å
Ē		85	0905/0910	93.81	1.4	3.4	182	252	अंह	52	104/97	3
<u> </u>		90	915	99.22	1.4 41	3.4 91	176	257	349	53	106198	<i>ð</i>
-	2	95	0920	102.27	ار. ماد،	85	177	352	SYB	57	108/99	2
<u> </u>		100	0930	105.02	18	.42	175	253	248	54	108/102	2
-	3	105	0935	109.28	(8).	42	174	254	242	55	108/104	2
-		110	0940		.55	1.3	176	256	249	54	108/104	2
<u> </u>	니	115	0945	112.74	.57	1.2	178	254	251	55	108/104	2
-		120	1948 JO953	123.	3.1	7.5	176	253	25	56	109/105	2
JA.		125	0958	131.88	3.1	7.3	176	254	250	58	110/106	7
		130	1003	137.3	1.4	3.3	175	253	251	28	113/107	4
-	2	135	1003	(42.44	1.3	3.0	172	253	252	59	1141 108	빙
}		145	1013	145.9.	55	1.3	172	243	252	49	113/108	2
		150	1013	149.43	.59	1.4	172	247	251	47	112/108	2
	- u	155	1023	151.66	12	47	173	246	253	50	1/2/108	2
<u>i. </u>		- 160	1028	153.922	1.2	-47	774	245	753	52	112/109	2
		100	1000	107.		<u> </u>	 					
}												
 ,												
L		(e e e l'Al	/3(#\S\# \$)#	// / ///	(\$1/E				49	
	İ	e eldir.		KELEKIH.			างเหมีเว					•
	ŀ	(CS) 21M III (CS) 6/6	1				}	1			1	

,02

aβ

PAGE 3 of 3

PLAN	PAND CITY		OATE	SAMPL	INCHESO/A	ION	SAMPLE	TYPE	3(0)	Saviers:	
PSPI	IAIT PLAN	т "A"	8-21-97	61	ACK		M-	29	<u> </u>	24	
			••••••	· · · · · · · · · · · · · · · · · · ·	***************************************	450000000000000000000000000000000000000	2 2000000000000000000000000000000000000	& (- 0.00 to 0.00 to 0.00 to 0.00 to 0.00 to 0.00 to 0.00 to 0.00 to 0.00 to 0.00 to 0.00 to 0.00 to 0.00 to 0	5 CONTRACTOR SOCIO		
	ELAPSED			delta P				FILTER	ું સાહેલા	5)6(1)	37,000
111737	(13/31)	e) sek	DGN.	VELOCITY		97408	epriojela	630513	Night (els		1987,3183
Rejor	TIVE	TIVE	READING		(विश्वविद्य	TEAR	HEAR	(ខ្មែរ	(FEC)	4851) [7	Y,C
NØ.	Acres and a series of the seri	(24-H)	Vm (cu.ft)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************	(deg. F)	(dep. f) 249	(dag)(F)	THE PERSON NAMED IN	111/106	
B 1	165	1030/1035		3,1 2.8	7.3	176	250	248	46	H11/106	3
	170	1045	168.97		4.7	182	251	248	52		-2 -
2	180	1050	181,9	2.0	4.7	180	<i>चेठा</i>	247	51	114/104	2
3	185	1055	186.7	0.71	1.7	188	235	251	56	117/108	2
U	190		159190.15	0.59	1.4	188	234	257	.56	114/108	<u> </u>
4	195	1105	193.11	0:40	0.96	182	234	253	56	112/107	
	260	1110	196.33	0.50	1,2	187	236	727	55	110/107	
<u> </u>	205	1113/1118	200.88	1.00	214	185	236	251	60	106/04	ر
	210	1173	2056.91	120	2.9	183	238	25/	52	109/105	
2	215	1128	208.80	0.35	0.84	184	240	252	52	112/105	1
	220	//33	21.45	0,40	0.96	183	238	252	54	110/105	1
3	125	1138	213:78	0.17	0141	183	237	250	53	108/104	1
	230	1143	215.78	017	0.41	186	241	252	55	106/103	_/_
ч	235	1148	218,22	0,24	0.62	187	243	251	55	105/103	
	240	1153	220.541	0.26	0.62	187	247	25-1	56	105/103	_/_
				•							
				<u> </u>							

Average constitution and the same of the s

Plant:	ASPHALT:	PLANT "A"			F	Run No.:	529-0-14
Date:	te: Sample Box No.:						5413.003
Sample Location: Oxfut							
Sample Type: Paticulate / Metals Sample Recovery Person: Troy Abornathy 1 Barry Ray fre K							
Sample Reco	very Person: Tr	y Abernathy	16	Barry 1	Rey f	ie K	
Container	Description	Annual State of the Control St		Volume	e, ml	Sealed/	Level Marked
Front Half						No.	
1	Filter No.(s) M9	7-005					
2	Acetone Rinse						
3	Nitric Rinse)=11=15=15 (-		
Back Half							
4	Nitric Rinse - Imp. 1	2,3, + Back 1/2	Filter	_			
5A	Nitric Rinse - Imping	er No. 4					
5B	KMNO4/H2O Rinse	- Impingers 5 8	<u> </u>				
5C	HCI Rinse - Impinge	ers 5 & 6		_			_
Moisture Da			建				
Impinger	Contents	Initial			Wei	ght, gran	ns
No.	Contonto	Volume, mi	In	itial	F	inal	Net
	Emoty			7.5	13	99.5	677.0
2	5% HNO3 / H2 UZ	100	69	7.0	70	10.4	93.6
3	Empty 5% HNO3 / H2 OZ HNO3 / H2 OZ	, 60	73	0.8	74	5.8	15.0
4	Empty		<i>5</i> z	3.0		24.7	1.7
5	KMAO4 /HZSOY	100	68	3.6		5.1	1.5
<u>u</u>	KM,04/H2504	100	70	7.8	70	0. 3	2.5
7	Silica Gel	200	89	7.4	92	7.5	30.1
					1	DIAL:	821.42
							
Total Comments:	<u> </u>		<u> </u>				
Comments:							

PAGE 1 of _

PLANT AND CITY	DATE	SAMPLI	NG LOCAT	ÖN	SAMPLE	TYPE	RUN	NUMBER	
ASPHALT PLANT "A"	8-21-97	STA	UL		M-	<u> ۲</u> ۹		وارا 16	mh
OPENATOR AMBIENT	STATIC	AMBIENT	FILTERI	STACK	Piron	PROBEL	ENGTE	Nozza	
PRESS	PRE99	• • • • • • • • • • • • • • • • • • • •	иймееле	ib	Ch	AND LINE			DIAMETER
(In: Hg)	(in Hg)	(deg. F)	1() &	(ln)			1000		
MAY NA	Nia •	1/IA	MIN	MA	IVA	4'61	<u> </u>	VID	.253
VAROWED DOW DOW	EGM	STACK	6TACK		LEAK	HEAK	0/2	(6/6/2	KEAGTOR
MOISTURE BOX No 100	CAL	THERM	PHOL	TABHO	CHECK	CHECK		e(e)(hi±khr	
(%) MG10 1.74	FACTOR (Y)	NO:	DN ALA	NO.	(JAITINI) QPOO.	(FINAL)	ey,	96	
				1-112	.00 (8		· ·	<u> </u>	لـــــا
ELAPSED		Jaline				17 1922		DOM	GAMPLE
TRAVITA TIEST CLOCK POINT TIME STIME	Medel Biraelije	VELUCITY FIEAD	ol: dol:	STACK TEMP	PROBE TEMP	OVEN	MFINGER TEMP	HAMP.	ristalk VAs
(AHERS) (MIM) (244HA)	Vm (cu. (t)	4 5572 5555 5500 5575 5576 5590 54	(in H2O)	7455559463467538979643	4000720460080000972000	(dea F)		((il (i) li))	(in E ri)
	33.944								200000000000000000000000000000000000000
	34,221	ρου <u>.</u>		1					
	27.221	.012	<u>@ 10</u>	The state of the s					
						<u> </u>		<u> </u>	
· ·								 	<u> </u>
		 			· · · · · ·				
TOTAL		AVE SCET	2367567366623624327667040001	AVE		L	J	ZAYE	
STIME .	VOLUME	delas	üellatei	TEMP				(SMEI)	
		ll							j

Plant: As			Run No.:	Field Blank			
Date: 8-21-97 Sample Box No.:						Job No.:	5413.003
Sample Location:							
Sample Type	: Particulate	/Metals		•			
Sample Reco	very Person: Trey	Abarnathy	/ B.	arry	Ray	field	
	Description	,		•		1	Level Marked
Front Half							
1	Filter No.(s) M9	7-006				-	
2	Acetone Rinse						
3	Nitric Rinse				<u> </u>	-1.5	
Back Half							
4	Nitric Rinse - Imp. 1	,2,3, + Back 1/2	2 Filter	_			
5A	Nitric Rinse - Impinger No. 4						
5B	KMNO4/H2O Rinse - Impingers 5 & 6						
5C							
Moisture Da	TABLE TO THE SECOND TO THE SE						建筑建筑
Impinger	Contents	Initial			We	ight, gran	ns
No.		Volume, mi	ln	itial	!	Final	Net
(Enoty		72	0.5	72	0.5	
ک							
	HN03 / 420Z	100	709	4.3	76	94.3	
3	4NO3 / 420Z 41NO3 /4,02	100	704			94.3 ?8.\$	
4	41N63/4,02 Empty		72		72		
	+1N63 /H,02		729 639	1.9	72 6:	?8. \$ \$5. G \$5.4	
4	+1N63 /4,02 Empty KMn04 /4254 KMn04 / H204	100	725 035 735	5. 9 5. 5 5. 4 2. 1	72 6: 73	28. \$ 35. G 5. 4 2. (
4 5	+1N63/4,02 Empty KMn04/4254	100	725 035 735	5, 9 5, 5 5, 4	72 6: 73	?8. \$ \$5. G \$5.4	
4 5	+1N63 /4,02 Empty KMn04 /4254 KMn04 / H204	100	725 035 735	5. 9 5. 5 5. 4 2. 1	72 6: 73	28. \$ 35. G 5. 4 2. (
4 5	+1N63 /4,02 Empty KMn04 /4254 KMn04 / H204	100	725 035 735	5. 9 5. 5 5. 4 2. 1	72 6: 73	28. \$ 35. G 5. 4 2. (
4 5	+1N63 /4,02 Empty KMn04 /4254 KMn04 / H204	100	725 035 735	5. 9 5. 5 5. 4 2. 1	72 6: 73	28. \$ 35. G 5. 4 2. (
4 5	+1N63 /4,02 Empty KMn04 /4254 KMn04 / H204	100	725 035 735	5. 9 5. 5 5. 4 2. 1	72 6: 73	28. \$ 35. G 5. 4 2. (
9 5 4 7	+1N63 /4,02 Empty KMn04 /4254 KMn04 / H204	100	725 035 735	5. 9 5. 5 5. 4 2. 1	72 6: 73	28. \$ 35. G 5. 4 2. (
9 5 4 7	+1N63 /4,02 Empty KMn04 /4254 KMn04 / H204	100	725 035 735	5. 9 5. 5 5. 4 2. 1	72 6: 73	28. \$ 35. G 5. 4 2. (

, UZY

TECHNICAL REPORT I Please read instructions on the reverse bef	
1 REPORT NO EPA-454/R- 20- 531A	3 RECIPIENT'S ACCESSION NO
4 TITLE AND SUBTITLE Final Report - Volume I of II, Emissions Test at an Asphalt Concrete Production Plant	5 REPORT DATE April 2000
Asphalt Plant "A" - Clayton, North Carolina	6 PERFORMING ORGANIZATION CODE
7 AUTHOR(S) Michael D. Maret Franklin Meadows	8 PERFORMING ORGANIZATION REPORT NO
9 PERFORMING ORGANIZATION NAME AND ADDRESS Pacific Environmental Services, Inc	10 PROGRAM ELEMENT NO
Post Office Box 12077 Research Triangle Park. North Carolina 27709-2077	11 CONTRACT/GRANT NO. 68-D-70069
12 SPONSORING AGENCY NAME AND ADDRESS U.S. Environmental Protection Agency	13 TYPE OF REPORT AND PERIOD COVERED Final
Office of Air Quality Planning and Standards Emissions, Monitoring and Analysis Division Research Triangle Park, North Carolina 27711	14 SPONSORING AGENCY CODE EPA/200/04

15 SUPPLEMENTARY NOTES

16 ABSTRACT

The United States Environmental Protection Agency (EPA) is investigating the asphalt concrete production source category to identify and quantify emissions of hazardous air pollutants (HAPs) from rotary aggregate dryers. There are two types of rotary drum dryers in use at asphalt concrete production plants, parallel flow, wherein the direction of travel of the drying aggregate is in the same direction of travel of the the burner exhaust gases, and counter flow, wherein the aggregate and exhaust gas flows are opposite to each other. Plant "A", Clayton, North Carolina was identified and selected by EPA as the host facility at which to obtain data on air emissions from a counter flow continuous drum mix process that utilized a baghouse for control of air emissions.

The primary objective of the testing program was to obtain data on controlled emissions of polychlorinated dibenzo-p-dioxins (PCDDs or "dioxins") and polychlorinated dibenzo-furans (PCDFs or "furans 1) particulate matter (PM) and metallic HAP and non-HAP compounds. Testing of uncontrolled emissions was deleted from the scope of work because the high particulate grain loading at the inlet to the baghouse exceeded the sampling capacity of the Method 23 and Method 29 sampling trains. A secondary objective was to observe and record plume opacity form the baghouse. The data will be used by the EPA's Emission Standards Division to determine whether HAPs are emitted at levels that would justify regulation under the Maximum Achievable Control Technology (MACT) program

During the testing program another EPA contractor monitored and recorded process and emission control system operating parameters, and prepared Section 3.0, Process Description, of this report

This volume (Volume I) is comprised of 166 pages and consists of the report text, and Appendices. A (Process Data) and B (Raw Field Data)

17	KEY WORDS AND DOCUMENT ANAL	YSIS
a DESCRIPTIONS	b IDENTIFIERS OPEN ENDED TERMS	c COASTI Field/Group
Baghouse Dioxins/Furans , Emission Measurements Hazardous Air Pollutants Metals Particulate Matter Volatile Organic Hazardous Air Pollutants	er over 1 to 1 to 1 to 1 to 1 to 1 to 1 to 1 t	· · · · · · · · · · · · · · · · · · ·
18 DISTRIBUTION STATEMENT	19 SECURITY CLASS 7: Report: Unclassified	21 NO OF PAGES 870
Unlimited	20 SECURITY CLASS (To a page) Unclassified	22 PRICE