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SECTION 1
PURPOSE OF DOCUMENT

The Environmental Protection Agency, State, and local air pollution
control agencies are becoming increasingly aware of the presence of
substances in the ambient air that may be toxic at certain concentrationms.
This awareness, in turn, has led to attempts to identify source/receptor
relationships for these substances and to develop control programs to
regulate emissions. Unfortunately, very little information is available on
the ambient air concentrations of these substances or on the sources that
may be discharging them to the atmosphere.

To assist groups interested in inventorying air emissions of various
potentially toxic substances, EPA is preparing a series of documents such as -
this that compiles available information on sources and emissions of these

substances. Other documents in the series are listed below:

substance ubljcatio be

Acrylonitrile EPA-450/4-84-007a

Carbon Tetrachloride EPA-450/4-84-007b

Chloroform EPA-450/4-84-007¢
Ethylene Dichloride EPA-450/4-84-007d
Formaldehyde EPA-450/4-84-007e
Nickel EPA-450/4-84-007f
Chromium EPA-450/4-84-007g
Manganese EPA-450/4-84-007h
Phosgene EPA-450/4-84-0071
Epichlorohydrin EPA-450/4-84-007]

Vinylidene Chloride
Ethylene Oxide

Chlorobenzenes

Polychlorinated Biphenyls (PCBs)

Polycyclic Organic Matter (POM)

Benzene
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EPA-450/4-84-007k
EPA-450/4-84-0071
EPA-450/4-84-007m
EPA-450/4-84-007n
EPA-450/4-84-007p
EPA-450/4-84-007q



This document deals specifically with toxic air emissions from coal and
oil combustion. 1Its intended audience includes Federal, State, and local
air pollution personnel and others who are interested in locating potential
* combustion source emitters of these pollutants and making gross estimates of
air emissions therefrom.

Because of the relatively limited amounts of data available on toxic
air pollutants from coal and oil combustion, and since the configurations of
many sources will not be the same as those described herein, this document
is best used as a primer to inform air pollution personnel about (1) the
types of pollutants found in coal and oil, (2) the formation and behavior of
toxic pollutants during the combustion process, (3) factors affecting the
release of toxics from combustion sources, and (4) available emissions
information indicating the potential for toxic air pollutants to be released
into the air from coal and oil combustion.

The reader is strongly cautioned against using the emissions
information contained in this document to try to develop an exact assessment
of emissions from any particular facility. Since insufficient data are
available to develop statistical estimates of the accuracy of these emission
factors, no estimate can be made of the error that could result when these
factors are used to calculate emissions from any given facility. It is
possible, in some extreme cases, that orders-of-magnitude differences could
result between actual and calculated emissions, depending on differences in
source configurations, control equipment, and operating practices. Thus, in
situations where an accurate assessment of combustion source toxic emissions
is necessary, source-specific information should be obtained to counfirm the
existence of particular emitting operations, the types and effectiveness of
control measures, and the impact of operating practices. A source test
and/or material balance should be considered as the best means to determine

air emissions directly from an operation.
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SECTION 2
OVERVIEW OF DOCUMENT CONTENTS

As noted in Section 1, the purpose of this document is to assist
Federal, State, and local air pollution agencies and others who are
interested in locating potential combustion source toxic air pollutant
emitters and making gross estimates of air emissions therefrom. Because of
the relatively limited data available on toxics from all types of coal and
0il combustion sources, the information summarized in this document does not
and should not be assumed to represent the source configuration or emissions
associated with any particular facility.

The principal basis for the information presented in this document is a
recent final, but unpublished EPA, report on coal and o0il combustion source

toxic emissions. The report reference is given below:

Mead, R. C.; Post, B. K.; Brooks, G. W.

Summary of Trace Emissions From and Recommendations
of Risk Assessment Methodologies for Coal and 0il
Combustion Sources. Prepared under EPA Contract
No. 68-02-3889. Radian Corporation, Research
Triangle Park, North Carolina. July 1986.

The 1986 report was prepared from data gathered through extensive
computerized literature searching (see Appendix A) and telephone/letter
contacts with over 50 individuals affiliated with organizations that address
toxic air emissions from combustion sources. Examples of the groups
contacted include the U. S. EPA (several offices), the U, S. Department of
Energy (DOE), utility industry associations such as the Electric Power
Research Institute (EPRI) and the Utility Air Regulatory Group (UARG), the
Council of Industrial Boiler Owners (CIBO), the American Boiler
Manufacturers Association (ABMA), and the American Petroleum Institute
(API).

This section provides an overview of the contents of this document. It
briefly outlines the nature, extent, and format of the material presented in

the remaining sections of this report.
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Section 3 of this document provides a brief summary of the gross
consumption of coal .and oil in the United States, provides quantitative
dates on the levels of selected toxics in fuels, and describes the various
mechanisms that affect the release of toxic pollutants during coal and oil
combustion.

Section 4 contains emission factors for arsenic, beryllium, cadmium,
chromium, copper, lead, manganese, mercury, nickel, radionuclides,
formaldehyde, and POM emissions from coal and oil combustion sources.

Emission factors are organized in the following hierarchy:

- Fuel type
- Pollutant
- Combustion sector

- Boiler type

Controlled and uncontrolled factors are presented for all pollutants. For
trace metals, the data are presented in terms of measured factors (based on
source tests) and calculated factors (based on levels of trace metals in the
fuels and theoretical partitioning assumptions). 1In addition to the emission
factors, control device effectiveness percentages (i.e., percent removal
levels) are provided for the trace metals based on source test results.

Section S of this document summarizes available procedures for source
sampling and analysis of coal and oil combustion toxic emissions. The
discussion is focused on the 12 selected coal and oil combustion toxics
studied in this document. Details are not prescribed nor is any EPA
endorsement given to or implied for any of these sampling and analysis
procedures. This document provides an overview of applicable sampling
procedures, citing references for those interested in conducting source
tests.

Section 6 contains a bibliography of all references cited in the
document, including appendices.

The document also contains three appendices. Appendix A contains a
description of how the data base of trace element content values (Section 3)

and toxic pollutant emission factors (Section 4) was developed. Fuel
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heating values for typical coals and oils are presented in Appendix B.
These heating values are used in conjunction with trace element content data
to calculate emission factors. Appendix C contains all individual data
values used to generate the summarized emission factor averages and ranges
presented in Section 4. Only measured emission factor data are given in
Appendix C.

This document does not contain any discussion of health or other
envirommental effects of coal and oil combustion toxic emissions, nor does
it include any discussion of ambient air levels.

Comments on the contents or usefulness of this document are welcomed,
as is any information on process descriptions, operating practices, control
measures, and emissions information that would enable EPA to improve its

contents. All comments should be sent to:

Chief, Pollutant Characterization Section (MD-15)
Noncriteria Pollutant Programs Branch

U. S. Environmental Protection Agency

Research Triangle Park, North Carolina 27711
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SECTION 3
BACKGROUND

In this section of the document, information is provided on: (1) the
various types of coals and oils consumed in the United States; (2) the
quantities of coal and oil burned by utility, industrial,
commercial/institutional, and residential sectors; (3) typical toxic
pollutant concentrations in coal and oil; (4) the formation and behavior of
toxic pollutants during combustion; and (5) the effects of combustion source
design and control technology on toxic emissions from coal and oil

combustion.
FUEL CONSUMPTION

The amount and type of fuel consumed by combustion sources has a direct
bearing on trace element emissions. This section characterizes U. S.

consumption of coal and oil.
al and

Coal can be divided into three major types - bituminous, lignite, and
anthracite. Subbituminous coal is sometimes separated out from bituminous
coal as another major type. On a fuel consumption basis, about 95 percent
of all coal combusted in the U. S. is bituminous, 4 percent is lignite, and
1 percent is anthracite (Baig et al., 198l). Figure 3-1 shows the major
coal fields in the U. S. and the type of coal mined in each. The heating
value and trace element content of coal varies by coal type and geographic
region. Appendix B details typical heating values by coal type and
geographic source of the coal.

Two major categories of fuel oil are burned by combustion sources -
residual and distillate oils. These oils are further distinguished by grade

numbers, with numbers 1 and 2 being distillate oils, numbers 5 and 6
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residual, and number 4 either distillate or a mixture of distillate and
residual oils. Typical heating values for fuel oils are presented in
Appendix B on the basis of the geographic section of the country in which

they are consumed.
Fu e by Combustion Sector

Table 3-1 summarizes Department of Energy data on 1986 U. S. coal and
oil use by combustion sector (Energy Information Agency, 1987). 1In 1986, a
total of almost 22,600 x 1012 Btu of coal and oil were consumed by the
utility, industrial, commercial/institutional, and residential sectors. As
shown in Table 3-1, the utility sector consumed the most fuel (over
15,800 x 1012 Btu). About 91 percent of this fuel consumption (by heat
content) was coal, about 8.6 percent was residual oil, and less than one
percent was distillate oil. Bituminous and lignite coal consumption was far-
greater than anthracite coal consumption. Pennsylvania is the only State
where,utilities consume anthracite coal. Proportions of coal versus oil
consumed varied greatly from State to State, with utilities in some States
(California, Oregon, Hawaii, Idaho, and Rhode Island) consuming no coal,
while utilities in other States (Alabama, Arkansas, Iowa, Ohio, South
Dakota, Utah, Washington, and others) consume very little oil and rely
almost exclusively on coal (Energy Information Agency, 1987).

The industrial sector consumed aﬁout 4,700 x 1012 Btu of-coal and oil
in 1986, of which about 57 percent was coal, 18 percent was residual oil and
25 percent was distillate oil. As in the utility sector, some States relied
more heavily on coal while others relied more heavily on oil (Energy
Information Agency, 1987).

In the commercial sector, total coal and oil consumption was about
950 x 1012 Btu, with bituminous and lignite coals accounting for 10 percent,
anthracite for 1.3 percent, residual oil for 26 percent, and distillate oil
for 63 percent of this total. Pennsylvania, Ohio, and Indiana consumed
large amounts of coal relative to oil; and Pennsylvania also accounted for

most of the anthracite coal consumption (Energy Information Agency, 1987).
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The residential sector consumed about 69.2 x 1012 Btu of coal and
1,012 x 1012 Btu of distillate oil in 1986. Residual oil is not used in
residential furnaces. Pennsylvania, Ohio, New York, Indiana, and Kentucky
accounted for 55 percent of national residential coal consumption.
Pennsylvania used two and a half times as much anthracite as bituminous
coal. New York consumed roughly equal amounts of bituminous and anthracite

coal. For the other States, bituminous coal predominated.
CONCENTRATION OF SELECTED TOXIC POLLUTANTS IN FUELS

This section summarizes the available data on the toxic pollutant
content of coal and oil. The discussion is focused primarily on trace
metals. Information on the content of toxic organics in coal and oil was
not generally available. Most of the toxic organics from combustion
processes are formed during the combustion process itself. Where possible,
the data are summarized by fuel type and by geographic region. Ranges,
means, and standard deviations for trace element concentrations found in
previous studies are presented. Typical values for the levels of each
element in coals and oils are also presented.

The most comprehensive source of information on coal composition is the
USGS National Coal Resources Data System (NCRDS). Geochemical and trace
element data are stored within the USCHEM file of NCRDS. As of
October 1982, the file contained information on 7,533 coal samples
representing all U. S. coal provinces. Trace element analysis for about
4,400 coal samples were included in the data base (White et al., 1984).
This computerized data system was not accessed during the current study due
to time and budgetary constraints; however, a summary of the data presented
in White et al. (1984) was revicwed. Pennsylvania State University also
maintains a computerized data base including trace element content of coal
samples. Information from this data base was published by Spackman (1982a;
1982b).

The most extensive source of publisﬁed trace element data was produced
by Swanson et al. of the USGS (1976). This report contains data for 799

coal samples taken from 150 producing mines and includes the most important
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U. S. coal seams. Data from the Swanson study was the initial input into
the USCHEM file of NCRDS.

Another significant source of published data on trace metals in coal is
a study by Ruch et al. of the Illinois State Geological Survey (1974). This
report contains trace element data for 82 coal samples from the Illinois
basin and 19 samples from other states. Other data reviewed generally
collaborate the findings reported in White et al. (1984), Swanson et al.
(1976) and Ruch et al. (1974).

The trace element content of oil is not as well characterized as the
trace element content of coal. Since the major sources of oil composition

data vary from element to element, major references are identified in the

sections on each element.

Arsenic in Fuels

Arsenic in Coal-

Data on the ranges, means, and standard deviations of arsenic in
bituminous, subbituminous, aqchracite, and lignite coals are presented in
Tables 3-2 and 3-3. The concentration of arsenic in coal is highly
variable. From the ranges presented in Table 3-3 it can be seen that
arsenic concentration in individual coal samples varies over four orders of
magnitude. The large standard deviations, which exceed the mean arsenic
concentrations for each type of coal shown in Table 3-2, are anocther
indication of the great variability of the data. Despite this variabilicy,
the table indicates that the average arsenic content of bituminous and
lignite coals is higher than the average arsenic content of subbituminous
and anthracite coals. Since the NCRDS data base, the source of the values
in Table 3-2, is the most comprehensive data base currently available, it is
recommended that the arithmetic means shown in the table be used as
"typical" values for the arsenic content of the four types of coal.

Table 3-4 shows the arsenic content of coal by geographic region.
Again, variability within each region is high, and the standard deviations
approach or exceed the means. One noteworthy trend is that the average

concentration of arsenic is greater in Appalachian and Interior coals than
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TABLE 3-2. CONCENTRATION OF ARSENIC IN COAL BY COAL TYPE?

Number of Arsenic Concentration (ppm)
Coal Type Samples Mean Standard Deviation
Bituminous 3527 20.3 4]1.8
Subbituminous 640 6.17 15.5
Anthracite 52 7.67 19.6
Lignite . 183 22.8 138

3pata presented in White et al., (1984); based on data in the USGS National
Coal Resources Data System (NCRDS) as of 1982. Arithmetic means from this

study may be used as typical values for arsemic coutent of these types of
coals.

‘TABLE 3-3. RANGES OF ARSENIC CONCENTRATION IN COALS BY COAL TYPE

Arsenic Concentration

Coal Type Range (ppm)?
Bituminous 0.02-357
Subbituminous 0.1-16
Anthracite NAb
Lignite 0.1-45

4Lowest and highest values reported in any of the literature reviewed.
Note: The White et al., (1984) study does not list the range of values in
the NCRDS. The Swanson et al., (1976) study, which is a subset of the NCRDS
describing about 800 coal samples does include ranges for bituminous,
subbituminous, and lignite coals from certain geographic regions.

bNA = not available.
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in other coals. This behavior is also noted with other chalcophiles such as
cadmium and nickel (White et al. 1984). The arithmetic mean concentrations
from the White et al. (1984) analysis of the NCRDS may be viewed as

representative values for coals from each geographic region.

Arsenic in 0il-

The arsenic content of o0il also varies with type of oil and with the
State or country of origin. The arsenic content of crude oils varies over
three orders of magnitude. The variability within residual and distillate
oils appears to be somewhat less (see Tables 3-5 and 3-6). However,
previous studies have produced a wide range of estimates for mean or typical
arsenic concentrations in residual oils, with estimates ranging from 0.055
to 0.8 ppm. In general, the average arsenic content of crude and residual
oils is greater than that of distillate oils. Table 3-6 characterizes the
data reviewed in the current study in terms of the ranges of arsenic
concentrations reported in oils and suggested typical values. The typical
arsenic concentration of residual oil is 0.36 ppm and that of distillate oil
is 0.085 ppm. These values were derived by averaging the mean or typical
values reported in the most comprehensive and highest quality studies
reviewed.

While the arsenic content of crude oils varies with country of origin
and with State of origin within the U. S. (Anderson, 1973; PEDCO, 1982;

Cato et al., 1976), the data reviewed show no clear pattern as to whether

domestic or foreign oil has a higher average arsenic content (see
Table 3-7).

Beryllium in Fuels

Beryllium in Coal-

The concentration of beryllium in coal varies by coal type and region in
which the coal is found. As shown in Table 3-8, bituminous and lignite coals
have a higher mean beryllium concentration than subbituminous and anthracite
coals. In the case of subbituminous and lignite coals, the standard deviation

exceeds the mean for beryllium concentration, indicating great variability in
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TABLE 3-6. SUMMARY OF DATA ON ARSENIC IN OIL

Arsenic Concentration (ppm)

Type of 0il Range Typical Value
Residual #6 0.011-0.8 0.36%
Distillate 0.04-0.9 0.085°
Crude 0.0024-1.11 0.26°

aA.verage of the six studies reported in Table 3-5.
bAverage of two studies reported in Table 3-5.

“Arithmetic mean for oils used in U.S., reported in Yen (1975).

TABLE 3-7. CONCENTRATION OF ABRSENIC IN U.S. VERSUS FOREIGN CRUDE QILS

Range (ppm) Mean (ppm) Reference
Foreign 0.01-0.34 0.13 Anderson, 1973
0.0024-0.284 0.12 Filby and Shaw, 1975
Domestic 0.007-0.61 0.14 Anderson, 1973
0.65% 0.65% Filby and Shaw, 1975
0.007-0.05 0.02 Cato, 1976

3Based on one sample of California crude oil.
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TABLE 3-8. CONCENTRATION OF BERYLLIUM IN COAL BY COAL TYPE?

Number of Beryllium Concentration (ppm)
Coal Type Samples Mean Standard Deviation
Bituminous 3527 2.22 1.66
Subbituminous 640 1.30 1.77
Anthracite 52 1.32 0.85
Lignite . 183 1.98 2.71

8Data presented in White et al., (1984); based on data in the USGS National
Coal Resources Data System (NCRDS) as of 1982. Arithmetic means from this

study may be used as typical values for beryllium content of these type of
coals.

TABLE 3-9. RANGES OF BERYLLIUM CONCENTRATION IN COALS BY COAL TYPE

Beryllium Concentration

Coal Type Range (ppm)?
Bituminous 0.05-25
Subbituminous 0.05-13
Anthracite NAP
Lignite 0.2-15

3Lowest and highest values reported in the literature reviewed. WNote: The
White et al., (1984) study does not list ranges of values in the NCRDS.

Valkovic (1983a) provides ranges for bituminous, subbituminous and lignite
coals.

bNA = not avail lable.

MCH/007 3-12



the data. As seen in Table 3-9, the ranges of beryllium concentration are
similar between the coal types. The range of beryllium concentrations in
bituminous coals is somewhat higher than the other coal types. Because
Table 3-8 is based on the NCRDS data base, the most complete data set
currently available, the arithmetic means in that table may be considered as
typical values for the beryllium content of the four coal types.

Table 3-10 lists the arithmetic mean, standard deviation, and range of
beryllium concentration in coal by geographic region. The mean beryllium
content varies by a factor of three between the eight geographical regions
listed. Again, in some cases, the standard deviation exceeds the mean for
beryllium concentration, indicating variability in the data. Nevertheless,
the mean beryllium concentration in coals from the Illinois Basin,
Appalachian and Interior provinces are the highest among the eight regions
listed. The lowest mean beryllium concentration is found in coals from the
Alaska region. The means shown in Table 3-10, drawn from the White et al.
(1984) study, may be regarded as typical values for beryllium concentration
iq the coal-producing regions listed, because the White et al. study is
based on the NCRDS data base.

Beryllium in 0il-

The reported concentrations of beryllium in oil vary by type of oil and
between different studies of the same oil type. As shown in Table 3-11, the
reported ranges for beryllium concentration in residual oil vary
substantially between different investigators. But with one exception, the
means reported agree fairly well. Less data were available with which to
characterize the beryllium concentration in distillate and crude oils. The
two reported mean concentrations of beryllium in distillate oil vary by a
factor of ten. Only one value was found in the literature review
identifying a mean concentration of beryllium in crude oil.

Table 3-12 summarizes the data available to characterize beryllium
concentrations in different types of oil. The typical values shown in the
table are 0.08 ppm for residual oil and 0.05 ppm for distillate. These were
obtained by averaging the mean values found in the studies reported in
Table 3-11. No data were found to allow comparison of the beryllium content

of foreign versus domestic crude oils.
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TABLE 3-12. SUMMARY OF DATA ON BERYLLIUM IN OIL

Beryllium Concentration (ppm)

Type of 0il Range Typical Value
Residual #6 <0.0023-0.38 0.08?
Distillate #2 <0.0076-0.1 0.05°
Crude — 0.002

aAverage of six means reported in Table 3-11.

bAverage of two studies reported in Table 3-11.
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Cadmium Fuels

Cadmium in Coal-

As shown in Table 3-13, the mean cadmium concentration in coal varies
by coal type, with bituminous ceoals having the highest mean cadmium
concentration. However, the standard deviations for each coal type exceed
the means, indicating substantial variability within the data. Table 3-14
lists the ranges of cadmium concentration in four coal types. Bituminous
coals have the broadest cadmium concentration range, from less than 0.02 to
100 ppm. The remaining coal types all have cadmium concentration ranges of
0.1 to less than 10 ppm. The means listed in Table 3-13 may be used as
representative concentrations of cadmium in each coal type because they
were obtained from the NCRDS data base, which is the most comprehensive
currently available for coal fuels.

The concentration of cadmium in coal varies distinctly by geographic
region. Coals from the Interior Province have a higher (arithmetic) mean
cadmium concentration (5.47 ppup tban coals fggm any other region. Coals
from the 1llinois Basin, the eastern section of the Interior Province, have
a mean cadmium concentration of 2.89 ppm. Coals from other regions have
mean cadmium concentrations of less than 1 ppm. The arithmetic means listed
in- Table 3-15 obtained from the White et al. (1984) analysis of the NCRDS
may be used as typical values for cadmium in coal. However, the standard
deviations of the mean concentration in each region approach or exceed che

mean indicating strong variability within the data.

Cadmium in Oil-

The concentration of cadmium in oil varies by oil type. Table 3-16
presents ranges and means of cadmium concentration in residual, distillate,
and crude oil derived from various studies. Table 3-17 summarizes the
ranges of cadmium concentration found in the data base for the current study
by oil type. Residual and distillate oils have similar cadmium .
concentration ranges. The mean cadmium concentrations reported for these
two oil types are also similar with two exceptions. Two groups of

investigators reported mean cadmium concentrations in residual oil of 2.27

MCH/007 - 3-18



TABLE 3-13. CONCENTRATION OF CADMIUM IN COAL BY COAL TYPE?

Number of Cadmium Concentration (ppm)
Coal Type Samples Mean Standard Deviation
Bituminous 3527 0.91 7.3
Subbituminous 640 0.38 0.47
Anthracite 52 0.22 0.30
Lignite 83 0.55 0.61

3pata presented in White et al., (1984); based on data in the USGS National
Coal Resources Data System (NCRDS) as of 1982. Arithmetic means from this

study may be used as typical values for arsenic content of these types of
coals.

TABLE 3-14. RANGES OF CADMIUM CONCENTRATION IN CQALS BY COAL TYPE

Cadmium Concentration

Coal Type Range (ppln)a
Bituminous <0.02-100
Subbituminous 0.04-3.7
Anthracite 0.1-0.3
Lignite : €0.11-5.5

#Lowest and highest values reported in any of the literature reviewed.

Note: The White et al., (1984) study does not list the range of values in
the NCRDS. The Swanson et al., (1976) study, which is a subset of the NCRDS.
describing about 800 coal samples does include ranges for bituminous, and

lignite coals. Valkovic, (1983a) provides a range for cadmium concentration
in subbituminous coal.
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TABLE 3-17. SUMMARY OF DATA FOR CADMIUM IN OIL

Cadmium Concentration {(ppm)

Type of 0il Range Typical Value
Residual #6 0.01-2.27 0.32
Distillate #2 0.01- 0.95 0.21P
Crude .-- 0.03¢

%See text for discussion of this value.
bAverage of two studies in Table 3-16.
cAverage of three studies in Table 3-16.

TABLE 3-18. CONCENTRATION OF CADMIUM IN U.S. VERSUS FOREIGN CRUDE OILS

Range (ppm) Mean (ppm) Reference
Foreign .- 0.027% Valkovic, 1978a
.- 0.0172 Valkovic, 1978a
--- 0.0015% Valkovic, 1978a
Domestic --- 0.01 Youk and Piver, 1983
--- 0.03 Yen, 1975
“-e 0.05 Hofstader et al., 1976

a'Uncert:aint:y ranges from 10-30 percent.
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and 2.00 ppm. Other researchers reported means of less than 0.4 and 0.3 ppm
for residual oil and 0.3 and 0.1 ppm for distillate oil. The mean cadmium
concentration of crude oil has been reported as 0.01, 0.03, and 0.05 ppm.
Typical values for cadmium concentrations in residual, distillate, and crude
oil are given in Table 3-17. The suggested typical cadmium content of
residual oil is 0.30 ppm and for distillate oil is 0.21 ppm. The typical
values for distillate and crude oil were obtained by taking the average of
the reported means.

The "typical" value for residual oil, 0.3 ppm, was based on reported
concentrations in Table 3-16, without using the two high values, 2.27 and
2.02 ppm. These two values appear to represent the upper end of the data
range, compared to other ranges of the concentration of cadmium in residual
oil (Table 3-16). An average concentration of 0.3 ppm was reported for
cadmium in oil in a study by Shih (1980b). This study included samples
taken from utility boilers burning residual oil and it also included more
actual data points (11 total) than other studies. Thus, a typical value of
0.3 ppm cadmium in oil is in agreement with'one of the more complete data
sets available.

Some data were available with which to compare the concentration of
cadmium in foreign and domestic crude oils (Table 3-18). Based on these
limited data, it appears that domestic and foreign crude oils have about the

same cadmium concentration.

Chromium in Fuels

Chromium in Coal-

The mean chromium concentrations in the four primary coal types are
shown in Table 3-19. The mean chromium concentration of anthracite coals,
47.2 ppm, is higher than that of the remaining three coal types. Lignite
has the lowest mean chromium concentration, 13.5 ppm. However, the standard
deviations of the mean for each coal type exceeds the arithmetic mean. This
situation indicates that there is a substantial variability in the data.
Table 3-20 shows the ranges of chromium concentration in the four coal

types. The range for anthracite coals is the highest, 15 to 120 ppm. The
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TABLE 3-19. CONCENTRATION OF CHROMIUM IN COAL BY COAL TYPE?

Number of Chromjium Concentration (ppm)
Coal Type Samples Mean Standard Deviation
Bituminous 3527 20.5 27.5
Subbituminous 640 14.9 25.6
Anthracite 52 47.2 60.9
Lignite 183 13.5 18.2

2Data presented in White et al., 1984. Based on data in the USGS National
Coal Resources Data System (NCRDS) as of 1982. Arithmetic means from this

study may be used as typical values for chromium content of these types of
coal.

TABLE 3-20. RANGES OF CHROMIUM CONCENTRATION IN COALS BY COAL TYPE

Chromium Concentration

Coal Type Range (ppm)?
Bituminous <0.5-70
Subbituminous 0.54-70
Anthracite 15-120
Lignite 3-70

3Lowest and highest values reported in the literature reviewed. Note: the
White et al., (1984) study does not list ranges of values in the NCRDS. The
Swanson et al., (1976) study, a subset of NCRDS containing about 800 samples,

does list ranges for bituminous and lignite coals. Valkovic, (1983a) lists
ranges for subbituminous.
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range for the three remaining coal types are similar, with maximum chromium
concentrations being 70 ppm. The mean chromium concentrations listed in
Table 3-19 may be used as representative concentrations because they are
based on the most complete data set currently available (White et al.,
1984) .

The concentration of chromium in coals from different geographic
regions varies by as much as a factor of four. As shown in Table 3-21,
coals from the Alaska Province and Western Interior have the highest mean
chromium concentrations, 39.7 and 36.9 ppm, respectively. Northern Plains
coals have the lowest reported mean chromium concentration, 7.5 ppm. The
ranges of chromium concentration in coals from different geographic regions
are also shown in Table 3-21. Of interest is the fact that the ranges for
chromium concentration in Northern Plains coals extend to 100 ppm while the
mean is about 7 ppm. Similarly, the ranges for chromium concentration in
Appalachian coals are as high as 400 ppm while the mean is 18.2 ppm. As was
true of the analyses of chromium content by coal type, the standard
deviations for chromium content by geographic region exceed the mean in all

but two cases. Again, this indicates extreme variability in the data.

Chromium in 0il-

Chromium concentration varies between different types of oil.
Table 3-22 provides means and ranges for chromium concentration of residual,
distillate, and crude oils. Of the three types of oil, distillate oil has
the highesc reported mean chromium concentration, 1.6 ppm. The reported
mean chromium concentrations of residual oil range from.0.070 to 0.9 ppm.
The mean concentrations of chromium in crude oil are reported to be 0.0023
to 0.64 ppm. Typical values for chromium in different oil types are shown
in Table 3-23 along with a summary of concentration ranges. The typical
chromium content of residual o0il is 0.40 ppm and the value for distillate
oil is 0.95 ppm. The typical values were obtained by taking the average of
the means for each oil type reported in the several studies listed in
Table 3-22. The apparent conclusion that the typical chromium content of
distillate oil is greater than that of residual oil would not be expected
and may be a result of the fact the that chromium content of oils is highly

variable and few data were available to characterize distillate oil.
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TABLE 3-23. SUMMARY OF DATA FOR CHROMIUM IN OIL

Chromjum Concentration (ppm)
Type of 0il Range Typical Value
Residual 0.0019-<5 0.40%
Distillate 0.048-2 0.95°
Crude 0.0016-0.64 0.27°

aA.verage of seven studies in Table 3-22,
Average of three studies in Table 3-22,

cAverage of four studies in Table 3-22,
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Copper in Coal-

The mean concentration of copper in coal does not vary significantly
between the four major coal types. Mean copper concentrations range from
14.1 to 18.9 ppm, as shown in Table 3-24. The ranges of copper
concentration vary somewhat between the coal types, but most noticeable is

the extent of the range of each coal type (Table 3-25). Bituminous coals

may contain up to 900 ppm copper and lignite may contain up to 289 ppm. The
fact that the standard deviations of the mean copper concentration by coal
type approach or exceed their respective means emphasizes the variability of
the data. The means listed in Table 3-24 may be viewed as typical or
representative values for the concentration of copper in coal because they
were derived from the most complete data set currently available.

The concentration of copper in coals from different geographic regions
varies by up to a factor of three. Coals from the Gulf Province average
about 26 ppm copper, the highest concentration of all regions listed in
Table 3-26. The lowest mean copper concentration is found in coals from the
Northern Plains Province. The arithmetic means listed in Table 3-26 can be

considered as typical values for the concentration of copper in coal from

different regions.

Copper in 0Oils-

The copper concentrations in oil varies with oil type. As shown in
Table 3-27 and 3-28, the highest mean copper concentrations are found in
residual oil with a range in concentration of up to 79 ppm. The copper
concentration of distillate o0il ranges from less than 1 to 11 ppm. Crude
0il has the lowest reported copper concentration, with a single reported
mean of 1.32 ppm. Table 3-28 lists typical values for the copper
concentration in oils. The recommended typical values for residual and
distillate oil are 5.3 ppm and 5.6 ppm, respectively. These values were
determined by taking the average of the means reported in several studies

listed in Table 3-27. The reason the value for distillate oil is slightly
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TABLE 3-24. CONCENTRATION OF COPPER IN COAL BY COAL TYPE?

Number of Copper Concentration (ppm)
Coal Type Samples Mean Standard Deviation
Bituminous 3527 17 .8 17.8
Subbituminous 640 14.1 14.3
Anthracite 52 18.9 16.4
Lignite 183 17.2 21.2

%Data presented in White et al., (1984); based on the USGS National Coal
Resources Data System (NCRDS) as of 1982. Arithmetic means reported in
this study may be used as typical values for copper content of these coals.

TABLE 3-25. RANGES OF COPPER CONCENTRATION IN COALS BY COAL TYPE

Copper Concentration

Coal Type - Range (ppm)?
Bituminous 1.2-911
Subbituminous 0.16-120
Anthracite NAb
Lignite 3.3-289

4Lowest and highest values reported in the literature reviewed. Note:

White et al., (1984) study does not list ranges of values in the NCRDS.

The Swanson et al., (1976) data set is a subset of NCRDS containing data on
about 800 samples and provides ranges for bituminous and lignite coals.
Valkovic (1983a) provides ranges for subbituminous coals.

bNA = not available.
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TABLE 3-28. SUMMARY OF DATA ON COPPER IN OIL

Copper Concentration (ppm)

Type of 0il Range Typical Value
Residual #6 ND-79 5.32
Distillate #2 0.056-11 5.6°
Crude 0.03-6.33 1.3

aAverage of four studies reported in Table 3-27.

Average of the two studies where means were reported in Table 3-27.

“Based on two means reported in Table 3-27.

TABLE 3-29. CONCENTRATION OF COPPER IN U.S. VERSUS FOREIGN CRUDE OILS

Range (ppm) Mean (ppm) Reference
Foreign --- 0.19 Filby and Shah, 1975
--- 0.21 Filby and Shah, 1975
Domestic .- 0.93% Filby and Shah, 1975
--- O.AOb Yen, 1975
0.13-6.33 1.32 Yen, 1975

#Based on single sample of California crude oil.

Based on 23 domestic crude oils.
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higher than for residual oil may be that there is a lack of representazive
data to adequately characterize distillate oil. In general, distillate oil
will have lower trace metal contents than residual oil.

Some data were available with which to compare the copper concentration
in foreign and domestic crude oils (Table 3-29). Based on this limited sec

of data, domestic oils have a higher concentration of copper than do foreign

oils.
Mercury in Fuels

Mercury in Coal-

Table 3-30 presents the mean concentration of mercury in coal by coal
type. Bituminous and anthracite coals have the highest mean mercury
concentration, 0.21 ppm and 0.23 ppm, respectively. The standard deviation
of each mean either approaches or exceeds the mean, indicating strong
variations in the data. Table 3-31 shows the ranges of mercury
concentration in each of the four coal types. Subbituminous coals have the
greatest reported range of mercury concentrations (0.01-8.0 ppm). The means
reported by White et al. (1984) in Table 3-30 may be regarded as typical
values for mercury concentration in coals because the data were based on the
NCRDS, the most comprehensive data set available at this time.

The concentration of mercury in coal also varies by the geographic
region from which the coal is obtained. As shown in Table 3-32, coals from
the Appalachian and Gulf Provinces have the highest mean mercury
concentration, 0.24 ppm for both regions. The lowest mean concentration is
found in coals from the Alaska region. The greatest range of mercury
concentrations is found in coals from the Alaska region with a reported
range of 0.02 ppm to 63 ppm. The means reported by White et al. (1984, may
be regarded as typical concentrations of mercury in coals from each

geographic region.

Mercury in 0il-

The concentration of mercury in oil depends on the type of oil. As
shown in Table 3-33, some reported values for the mean mercury concentration

in crude oil are higher than those reported for residual oil. The reported
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TABLE 3-30. CONCENTRATION OF MERCURY IN COAL BY COAL TYPE?

Number of Mercury Concentration (ppm)
Coal Type Samples Mean Standard Deviation
Bituminous 3527 0.21 0.42
Subbituminous 640 0.10 0.11
Anthracite 52 0.23 0.27
Lignite 183 0.15 0.14

3Data presented in White et al., (1984); based on data in the USGS Natiomal
Coal Resources Data System (NCRDS) as of 1982. Arithmetic means from this

study may be used as typical values for arsenic content of these types of
coals, :

TABLE 3-31. RANGES OF MERCURY CONCENTRATION IN COALS BY COAL TYPE

Mercury Concentration

Coal Type Range (ppm)?
Bituminous <0.01-3.3
Subbituminous 0.01-8.0
Anthracite 0.16-0.30
Lignite ‘ 0.03-1.0

a . . - .

Lowest and highest values reported in any of the literature reviewed.

Note: The White et al., (1984) study does not list the range of values in
the NCRDS. The Swanson et al., (1976) study, which is a subset of the NCRDS
describing about 800 coal samples does include ranges for bituminous and
lignite coals from certain geographical regions. Valkovic, 1983a lists
ranges of mercury concentrations in subbituminous coals.
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mercury concentrations in crude oil range from 0.023 ppm to 30 ppm, while
the range of concentrations in residual oil is 0.007 ppm to 0.17 ppm. Onlv
a single mean value was found in the literature for mercury concentration in
distillate oil; therefore, no conclusions can be drawn about the range of
mercury in distillate oil. Table 3-34 lists typical values for mercury in
0ils. These are 0.06 ppm for residual oil and 0.4 ppm for distillate oil.
The typical values were obtained by taking the average of the means shown in
Table 3-34. The value for distillate oil is the single data point found in
the literature and therefore may not be as representative as the values for
residual and crude oils.

Table 3-35 compares the concentrations of mercury in foreign crude and
domestic crude oils. Based on these data, it appears that domestic crude

oils have higher mercury concentrations than foreign crude oils.

Manganese in Fuels

Manganese in Coal-

The mean concentration of manganese in bituminous, subbituminous, and®
anthracite coals is lower than the concentration in lignite coal.
Table 3-36 lists mean values for manganese in these four types of coal based
on data from the NCRDS. Although the reported mean concentration for
manganese is highest in lignite coals, the range of manganese concentration
is higher in bituminous and subbituminous coals (Table 3-37). Bituminous
coals may contain as much as 4400 ppm manganese and subbituminous coals as
much as 3500 ppm. The means listed in Table 3-36 may be considered typical
values for the manganese concentration in the four coal types listed because
the values are drawn from the most complete data set currently available,
the NCRDS. However, the standard deviations about the means approach or
exceed the mean, indicating considerable variability in the data.

Table 3-38 presents mean concentrations and ranges for manganese in
coal by geographic region. Generally, coals from the Gulf Province have a
higher mean manganese concentration (200 to 300 ppm) than coals from other

regions. The upper end of the range of concentrations are highest for coals
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TABLE 3-34. SUMMARY OF DATA FOR MERCURY IN OIL

Mercury Concentration (ppm)

Type of 0il Range Typical Value
Residual #6 0.007-10 ' 0.062
Distillate #2 — 0.40°
Crude 0.007-30 6.86

aAverage of four studies in Table 3-33; disregarded 10 ppm concentration as
an outlier.

bBased on single study in Table 3-33. May not be representative.

cAverage of four studies in Table 3-33.

TABLE 3-35. MERCURY CONCENTRATIONS IN U.S. VERSUS FOREIGN CRUDE OILS

-
Range (ppm) Mean . (ppm) Reference
Foreign — 0.027 PedCo, 1982
-—— 0.084 PedCo, 1982
—-— 0.05 Anderson, 1973
S . 0.025 Anderson, 1973
—-— 0.006 Anderson, 1973
— 0.01 Anderson, 1973
— 0.09 Anderson, 1973
Domestic 0.023-30 3.24 Yen, 1975
0.007-0.2 —— Anderson, 1973
-—- 0.84 PedCo, 1982
—-— 0.27 PedCo, 1982
-—- 23.1 ‘ PedCo, 1982
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TABLE 3-36. CONCENTRATION OF MANGANESE IN COAL BY COAL TYPE®

Number of Manganese Concentration (ppm)
Coal Type Samples Mean Standard Deviation
Bituminous 3527 100 100
Subbituminous 640 100 200
Anthracite 52 100 200
Lignite 183 300 200

3Data presented in White et al., (1984); based on data in the USGS National
Coal Resources Data System (NCRDS) as of 1982. Arithmetic means from this

study may be used as typical values for manganese content of these types of
coals.,

TABLE 3-37. RANGES OF MANGANESE CONCENTRATION IN COALS BY COAL TYPE

Manganese Concentration

Coal Type Range (ppm)?
Bituminous <3.9-4400
Subbituminous 1.4-3500
Anthracite 20-182
Lignite 7.4-690

3Lowest and highest values reported in any of the literature reviewed.
Note: The White et al,, (1984) study does not list the range of values in
the NCRDS. The Swanson et al., (1976) study, containing about 800 coal
samples does list ranges for bituminous and lignite coals. Valkovic, 1983a
provides a range for manganese in subbituminous coals.
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from the Interior, Rocky Mountain, and Appalachian regions with coals :zrom
these areas containing as much as 4400 ppm, 3500 ppm, and 1400 ppm

manganese, respectively.

Manganese in 0il-

Crude oil appears to have a higher mean manganese concentration than
residual or distillate oils. As shown in Table 3-39, the range of mang.lesc
concentrations in crude oil are from 0.63 ppm to 2.54 ppm, with reported
mean concentrations of 1.17 ppm and 1.4 ppm. Residual oils have reporced
mean concentrations higher than distillate oils. Representative values for
manganese concentration in residual, distillate, and crude oil are shown in
Table 3-40. The typical manganese content of residual oil is 0.49 ppm and
that of distillate oil is 0.21 ppm. These values were obtained by
calculating the average of the mean concentrations for each oil type shown
in Table 3-39.

Some data were available with which to compare the concentration of
manganese in domestic and foreign crude oils. Based on these data, domescic
crude oils may have manganese concentrations two to three times that of

foreign crude oils.

Nickel in Fuels

Nickel in Coal-

_The concentration of nickel in coal varies with coal type. Based on
data from the NCRDS, anthracite coals appear to have the highest mean nickel
concentration of the four major coal types (Table 3-42). Subbituminous and
lignite coals have the lowest mean nickel concentrations. Table 3-43 lists
the ranges of nickel concentrations in coal by coal type. Of the four ctypes
of coal, bituminous coal has the highest absolute nickel concentration, with
some samples as high as 300 ppm nickel. The mean nickel concentrations
given in Table 3-42 can be considered as typical values for nickel
concentration in the four coal types. There is great variability in these

data; however, based on the fact that the standard deviations of each mean
exceed the mean itself.
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TABLE 3-40. SUMMARY OF DATA FOR MANGANESE IN OIL

Manganese Concentration (ppm)

Type of 0il Range Typical Value
. a b
Residual #6 ND-27 0.49
Distillate #2 0.015-1.45 0.21°¢
Crude 0.63-2.54 1.39

4ND = not detectable.
bAverage of nipe studies in Table 3-39.
cAverage of two studies reported in Table 3-39.

dAverage of two studies in Table 3-39.

TABLE 3-41. CONCENTRATION OF MANGANESE IN U.S. VERSUS FOREIGN CRUDE OILS

Range (ppm) Mean (ppm) Reference
Foreign - 0.79 Valkovic, 1983a
— 0.21 Valkovic, 1983a
—— 0.048 PedCo, 1982
Domestic 0.63-2.54 1.17 Yen, 1975
— 1.4 Vouk and Piver, 1983
0.013-1.45% _— ~ Anderson, 1973

a .
Values are means for crude oils from ten states.
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TABLE 3-42. CONCENTRATION OF NICKEL IN COAL BY COAL TYPE®

Number of Nickel Concentration (ppm)
Coal Type Samples Mean Standard Deviation
Bituminous 3527 16.9 19.2
Subbitumious 640 7.02 8.44
Anthracite ‘ 52 28.5 32.0
Lignite 183 8.35 19.7

3Data presented in White et al., (1984); based on data in the USGS National
Coal Resources Data System (NCRDS) as of 1982. Arithmetic means from this

study may be used as typical values for nickel content of these types of
coals.

TABLE 3-43. RANGES OF NICKEL CONCENTRATION IN COALS BY COAL TYPE

Nickel Concentration

Coal Type Range (ppm)?
Bituminous 1.5->300
Subbituminous 0.32-69
Anthracite 17 -50
Lignite 3-70

3 owest and highest values reported in any of the literature reviewed.
Note: The White et al., (1984) study does not list the range of values in
the NCRDS. The Swansom et al., (1976) study, which is a subset of the
NCRDS describing about 800 coal samples, does include ranges for bituminous
and lignite coals from certain geographical regions. Valkovic (1983a) lists

ranges for nickel concentration in subbituminous coals.
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Coals from the Interior Province and some parts of cthe Appalachiaun
Province have higher mean nickel concentrations than coals from other
regions. Table 3-44 presents (arithmetic) mean concentrations and ranges o:
concentrations of nickel in coals from seven geographical regions. Lowest
mean nickel concentrations are reported for coals from the Northern Plains
and Rocky Mountain Provinces. But coals from these areas also show a ulide
range of nickel concentrations, up to 300 ppm for coals from the Northern
Plains and 340 ppm for coals from the Rocky Mountain province. The mean
concentrations shown in Table 3-44 from the White et al. (1984) study can be
viewed as typical or representative values for the nickel concentration in
coal from the geographic regions listed. Again, the standard deviations

about each mean are large, indicating considerable variability in the data.

Nickel in 0il-

In relative comparison to the other trace elements under study, fuel
oils contain large amounts of nickel. The concentration of nickel in oil
varies significantly by oil type. Table 3-45 shows that crude oil may
contain over 300 ppm nickel while residual oil usually contains 6 ppm to
70 ppm. Distillate oil contains less nickel, 1 ppm to 18 ppm. Table 3-46
summarizes the range of nickel concentrations in oil by oil type and shows a
typical mean value. The typical values (24.0 ppm for residual oil and
3.38 pﬁm for distillate oil) were obtained by taking the average of the
means reported for each oil type in Table 3-45. The typical value for
nickel concentration in crude oil is significantly higher than that for
residual and distillate oils.

Table 3-47 gives mean nickel concentrations for foreign and domestic
crude oils. The data are widely scattered for both foreign and domestic
crudes. The reported means for foreign crudes range from less than 1 ppm to

117 ppm nickel and 2.4 ppm to 165.8 ppm in domestic crudes.

Lead in Fuels

The concentration of lead in coal from the U. S. ranges from <1 to
33 ppm, although some coals have been found to contain over 250 ppm lead

(U. S. Environmental Protection Agency, 1985). The weighted average lead
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TABLE 3-46. SUMMARY OF DATA FOR NICKEL IN OIL

Nickel Concentration (ppm)

Type of 0il Range Typical Value
Residual #6 6-73 24.0%
Distillate #2 0.15-18 3.38°
Crude 0.3-344.5 72.2°

aAverage of six studies in Table 3-45.
bAverage of two studies in Table 3-45.
cAverage of six studies in Table 3-45.

TABLE 3-47. NICKEL CONCENTRATION IN U.S. VERSUS FOREIGN CRUDE OILS

<

Range (ppm) Mean (ppm) Reference
Foreign --- 44 .1 Anderson, 1973
c_- 8.8 Anderson, 1973
-- . 59 Anderson, 1973
.- 117 PedCo, 1982
--e 0.609 PedCo, 1982
Domestic - 0.3-35 - --- Spaite and Devitt, 1979
49.1-344.5 165.8 Yen, 1975
1.4-4.3 2.4 Anderson, 1973
.- 93.5 Filby and Shah, 1975
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concentration in coal from the U. S. has been reported as 8.3 ppm (U. S.
Environmental Protection Agency, 1985). In the derivaction of emission
factors in this report for lead from coal combustion, an average of 8.3 ppm
lead was used for bituminous coal and 8.1 ppm for anthracite coal (U. S.
Environmental Protection Agency, 1983).

The limited data base used to determine the concentration of lead in oil
reported that the lead content of residual oil averaged about 1 ppm and
ranged from 0.1-0.5 ppm for distillate oil (U. S. Environmental Protection
Agency, 1985). The derivation of emission factors for lead from oil
combustion in this report were based on a lead concentration of 1 ppm in
residual oil. For distillate oil, the average of the reported range of lead

concentrations, 0.3 ppm (0.1-0.5 ppm), was used.

Thorjum in Coal

The concentration of thorium in coal does not vary significantly by
coal type. Table 3-48 shows that mean thorjum concentrations range from
about 3 ppm in bituminous coals to 7 ppm in lignite. The ranges of thorium
concentration do vary by coal type, as seen in Table 3-49. Bituminous coals
can contain as much as 79 ppm thorium while the highest wvalue found (in the
literature reviewed) for anthracite is about 14 ppm. The mean
concentrations listed in Table 3-48 can be regarded as representative of the
thorium concentration in coal by coal type. These values are based on data
from the NCRDS, the most complete data set available.

The concentration of thorium in coals varies somewhat by geographical
region. Table 3-50 shows that coals from the Gulf Province have a somewhat
higher concentration of thorium than do coals from other regions. The means
reported by White et al. (1984) may be regarded as typical values for
thorium concentration in coals {rom these regions.

Of special interest is the concentration of some radiocactive isotopes
of thorium in coal. Table 3-51 lists mean concentrations of thorium-232 in
coals from several States and one region. Of the States for which data were
available, coals from Pennsylvania have the highest mean thorium-232

concentration, 0.4 picoCuries per gram (pCi/g).
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Uranium in Coal

The data presented in Table 3-52 indicate that the uranium content of
the four major coal types does not vary significantly. However, lignite
coals have a slightly higher mean uranium concentration than the remaining
three coal types. Bituminous and subbituminous coals have a wider reporced
range of uranium concentrations, up to 39 and 76 ppm for these two coal
types, respectively. The means listed in Table 3-53 may be viewed as typical
values for uranium in coal because they are based on the most complete data
set currently available. However, the standard deviations about the means
are greater than the means themselves, indicating variability in the data
set.

Table 3-54 lists means and ranges of uranium in coal by geographic
region. There is not a large difference in mean uranium concentrations
among coals from these regions. But coal from the Western Interior and the
Gulf Province have higher mean concentrations of uranium than do coals from
other regions. The means listed in the table can be regarded gs typical for
coal from each region.

The uranium-238 concentrations in coal from five states and one region
are given in Table 3-55. Highest uranium-238 concentrations are seen in

coals from Kentucky and Colorado, 0.91 and 0.877 pCi/g, respectively.
BEHAVIOR OF TOXIC POLLUTANTS DURING COMBUSTION

Trace metals contained in fuels are released during the combustion
process. They may be retained in the bottom ash, or they may be emitted via
the flue gas. Trace elements present in flue gas may be contained in the fly
ash or they may be in vapor form. Polycyclic organic matter (POM) is also
formed during combustion and emitted to the atmosphere. This section
describes the behavior of trace metals and radionuclides during combustion
processes and discusses the formation/transformation of POMs and

formaldehyde.
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TABLE 3-52. CONCENTRATION OF URANIUM IN COAL BY COAL TYPE?

Number of Uranium Concentration (ppm)
Coal Type Samples Mean Standard Deviation
Bituminous 3527 1.85 2.71
Subbituminous 640 2.13 3.84
Anthracite 52 1.94 3.38
Lignite : 183 3.37 10.3

aData presented in White et al., 1984; based on data in the USGS National
Coal Resources Data System (NCRDS) as of 1982. Arithmetic means from this
study may be used as typical values for uranium in coal.

TABLE 3-53. RANGES OF UBANIUM CONCENTRATION IN COALS BY COAL TYPE

Uranium Concentration

Coal Type Range (ppm)?
Bituminous <0.2-59
Subbituminous 0.4-76
Anthracite 0.3-25.2
Lignite 0.5-16.7

#Lowest and highest values reported in the literature reviewed. Note: The
White et al., (1984) study does not list the range of values in the NCRDS.
The Swanson et al., (1976) study, a subset of the NCRDS containing data on
about 800 coal samples does provide ranges. This table is based primarily
on the Swanson et al., (1976) study and Valkovic, (1983a).
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Partitioning and Enrichment Behavior of Trace Metals during Combuszion

The concepts of partitioning and enrichment are frequently used to
characterize the behavior of trace elements in combustion processes.
Partitioning generally refers to the split of the trace element among the
various boiler outlet streams: bottom ash, fly ash, and flue gas.
Enrichment refers to the difference in trace element concentration between
different streams or to the change in trace element concentration of botcom
ash or fly ash as a function of particle size.

One method of describing partitioning behavior is by reporting the
fraction of the total elemental mass input that leaves the boiler via each
of the outlet streams. Another method is to compare the trace element
concentration of one outlet stream to that of another through enrichment
ratios (or enrichment factors). In general, enrichment ratios are

calculated by the following equation:

. - 13/
ij = —
e’ Re

where
ERij = enrichment ratio for element i in stream j
C.. = concentration of element i in stream j
CRj = concentration of reference element R in stream j
= concentration of element i in fuel

Re - concentration of reference element R in fuel

An enrichment ratio greater than 1 indicates that the element 1is
"enriched” in the given stream, or, expressed another way, that the element
"partitions” to the given stream. Different reference elements commonly used
by various authors are aluminum, iron, scandium, and titanium. These
elements are chosen because their partitioning and enrichment behavior is
often comparable to that for the total mass. That is, their concentration

by weight in all ash streams and size fractions is constant.
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Various classification schemes have been developed to describe
partitioning or enrichment behavior (Klein, et al., 1975b; Coles et a
1979; Baig et al., 1981). The classification scheme used by Baig et al.
(1981) is as follows:

- Class 1. Elements which are approximately equally distributed
between fly ash and bottom ash, or show little or no small
particle enrichment.

- Class 2. Elements which are enriched in fly ash relative to
bottom ash, or show increasing enrichment with decreasing particle
size.

- Class 3. Elements which are intermediate between Classes l and 2.

- Class 4. Elemeuts which are emitted in the gas phase.

Because of factors such as differences in classification schemes used
by different investigators, different and ill-defined dividing lines between
the classes, sampling and analytical errors in the data used to determine
classification, and variations in the behavior of an eflement in different
studies, it is not possible to make an absolute classification of the
elements. However, such a classification scheme is useful in indicating
general trends in the behavior of the elements. Several of the elements
have shown behavior characteristics of each of the first three classes in
different studies. These elements were assigned to Class 3, since Classes 1
and 2 represent the extremes in behavior-and Class 3 is intermediate between
them.

Based on information in about 20 previous studies, Baig et al. (1981)
classified arsenic and cadmium as Class 2 elements. Beryllium, chromium,
manganese, and nickel were placed in Class 3. Copper was not included in
the Baig et al. (1981) study, but may also be placed in Class 3. Mercury
behaved as a Class 4 element. Brief descriptions of the behavior of each
element follow:

As. Arsenic has exhibited Class 2 behavior in almost every study.

Therefore, As is considered to be a Class 2 element (Baig et al., 1981).
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Be. Beryllium has exhibited Class 1 behavior in some studies, Class 2
in others, and Class 3 in others. This difference in classification could
be due in part to differences in criteria used to assign elements to one
class over another, or could be due to differences in the behavior of Be in
different combustion systems. For this study, Be is considered as a Class 2
element (Baig et al., 1981).

Cd. Cadmium has exhibited Class 2 behavior in every study examined,
and is therefore considered to be a Class 2 element (Baig et al., 1981).

Cr. Chromium, like Be, has shown Class 1, 2, and 3 behavior in
different studies, and is considered as a Class 3 element (Baig ec al.,
1981).

Cu. Copper has shown Class 2 behavior in most studies (Klein et al.,
1975b; Mann et al., 1978; Radian Corporation, 1975a; Cowherd, 1975).
However, Class 1 and 3 behavior has also been reported (Davison et al.,

1974; Natusch et al., 1974; Coles et al., 1979). Copper is considered a

Class 3 element, but resembles Class 2 more closely than the other Class 3
elements do.

Mn. Manganese has also shown Class 1,!2, and 3 behavior, and will be

considered as a Class 3 element. However, since it has been reported to

show Class 1 behavior more frequently and Class 2 behavior less frequently
than the other Class 3 elements, it may come closer to Class 1 behavior than
to Class 2 and resemble Class 1 elements more than the other Class 3
elements do (Baig et al., 1981).

Ni. Nickel has shown Class 1, 2, and 3 behavior, and will be
considered as a Class 3 element (Baig et al., 1981).

Hg. Mercury is a Class 4 element at normal stack temperature of 150°¢
(300°F). Lower temperatures, however, will cause condensation of some of

the gaseous mercury so that it can be considered as Class 2 (Baig et al.,
1981).

Theories Explaining Trace Metal Behavior in Coal Combustion Systems-

Volatilization/condensation mechanism. One of the most widely held,
fundamental theories that has been proposed to explain the behavior of trace

elements in coal combustion systems is the volatilization/condensation
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mechanism (VCM). This theory suggests that volatile species in the ash are
vaporized in the firebox, where peak temperatures of 1650°¢C (3000°F) are
typical for pulverized coal-fired boilers. As the flue gas cools to
370-430°C (700-800°F) in the convective heat transfer section and further to
150°¢ (300°F) in the air preheater, the volatilized species condense. These
species may condense or adsorb onto existing particles according to the
available surface area or they may condense homogeneously, forming fine
particles. The elements thus volatilized would be depleted in the bottom
ash and concentrated in the fly ash, since the fly ash has mbre relative
surface area than the bottom ash and since the bottom ash does not come in
contact with the,volatilized elements long enough for the elements to
condense on the bottom ash (Baig et al., 1981).

The VCM primarily explains the behavior of the Class 2 elements, but it
also explains the behavior of the other classes of elements. The Class 1
elements are the nonvolatile matrix elements that do not vaporize in the
boiler. These elements form the fly ash matrix on which the volatilized
elements condense. The Class 1 elements are thus equally distributed
between bottom ash and fly ash, and show no small particle enrichment. The
Class 3 elements apparently are partially vaporized in the boiler, and thus
show behavior intermediate between Classes 1 and 2. The Class 4 elements
are highly volatile. They do not condense or condense only partially as the
flue gas cools to normal stack temperature (Baig et al., 1981).

The VCM also explains the enrichment of Class 2 elements on small
particle sizes. Because smaller particles have a higher surface area,
relative to their mass, than the larger particles, they have more available
area on which Class 2 and 3 elements can condense. The Class 1 elements are
not vaporized, and thus show no dependence of concencration on particle
size.

Compound boiling points. Kaakinen et al. (1975) have compared
enrichment ratios for several elements to various measures of element
volatility, including melting points, boiling points, and vapor pressures of
elemental and oxide forms, and reported that the oxide properties generally

showed good agreement.
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All of the Class 2 and Class 4 elements included in the current study
(As, Cd, and Hg) have elemental or oxide boiling points less than 1650°¢C
(3000°F). Class 1 elements, such as Al, have boiling points greater than
1650°¢C (3000°F). The Class 3 elements also generally have elemental and
oxide boiling points greater than 1650°C (3000°F), and so would be expected
to behave like the Class 1 elements.

A simple correlation of the element or oxide boiling points thus does
not explain the behavior of all trace elements. A fraction of these
elements, however, may form compounds other than oxides (such as chlorides
or carbonyls) that are volatile. Reducing conditions can exist during the
initial combustion stage that might contribute to the formation of such
compounds. Moreover, the compounds formed and the fractions of the element
forming the volatile and nonvolatile compounds might vary under different
combustion systems and different conditions of furnace temperature, coal
time/temperature history, excess air, and coal composition. Such variations
could explain the observed variation in the behavior of these elements in
different combustion systems (Baig et al., 1981).

Elemental association in coal. The association of trace elements in
coal (with the organic fraction or inorganic matrix) has also been suspected
of playing a key role in the fate of elements upon combustion (Mann et al.,
1978; Edwards et al, 1980a). The theory is that trace elements bound in the
organic phase are atomized during combustion, while those occluded with the
mineral matter in the coal are less likely to be vaporized. Moreover,
actual volatilization of the organically associated elements may not be
necessary for trace element enrichment. Deposition of the nonvolatilized
trace elements associated with the organic fraction, on the remaining
mineral inclusions that form the fly ash, will give a similar inverse
dependence of concentration with size. This theory may explain the behavior

of certain elements, but not éll (Baig et al., 1981)..

Theories Explaining Trace Metal Behavior in 0il Combustion Systems-
Since no bottom ash is formed from oil combustion, it can generally be
assumed that all of the trace elements present in the o0il are emitted with

the fly ash or in the gas phase. There are few data on particle size
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association of trace metals emitted from oil combustion systems.
Volatilization/condensation mechanisms may play a role in the behavior of
elements in oil combustion systems. However, oil fly ash particles have
irregular, honeycombed surfaces as opposed to coal fly ash particles which
have smooth, round surfaces. Therefore, surface area will not necessarily
have a strong dependence on particle size, and trace metal enrichment on
small particles may not be as pronounced for oil combustion as for coal

combustion (Baig et al., 1981).
v Radionuclides During Combustion

Naturally occurring radionuclides present in coal include uranium-238
(U-238), uranium-235 (U-235), thorium-232 (Th-232), and potassium-40 (K-40)
as well as their daughter products. Some of these include Th-230, Th-228,
radon-228 (R-228), R-226, lead-210 (Pb-210) and polonium 210 (Po-210). For
the purposes of this study, U-238 and Th-232 will be used as indicators of
radionuclide emissions. These two species have the longest half-lives
(4.5 x 10° years for U-238 and 1.4 x 1010 years for Th-23i) and are the
parent species of the two predominant decay chains. They have been selected
as indicators of radionuclides in previous risk assessments (Environmental
Research and Technology, Inc., 1983; U. S. Environmental Protection Agency,
1984a).

Radioactive uranium and thorium contained in the coal feed is
partitioned between the bottom ash and fly ash during combustion. Very
little, if any, radionuclides are emitted to the atmosphere in vapor form
(Roeck et al., 1983)

Several studies have found that U-238 is enriched in the small (<1 um
diameter) fly ash particles (Coles et al., 1978; Klein et al., 1975b;

Roeck et al., 1983). Uranium-238 would be termed a Class 2 element using
the terminology developed previously. It has been postulated that a portion
of the uranium in coal is associated with the silicate (i.e., coffinite) and
follows the alumino-silicate minerals which melt and drop out as slag during
the combustion process. Another fraction of the U-238 is dispersed in the

coal as uranite and becomes volatile as uranium oxide (UO3) during
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combustion and continues along with the flue gas and fly ash. At normal
stack temperatures the UO3 condenses out on the fly ash, preferentially
concentrating on the smaller fly ash particles because of their larger
surface area to mass ratio (Coles et al., 1978).

Some studies have found that for Th-232, there is little preferential
partitioning between the slag and the collected or discharged fly ash
(Coles et al., 1978; Klein et al., 1975b). Other studies have indicated
small particle enrichment in the fly ash (Roeck et al., 1983). Thorium-232

would be termed a Class 3 element using the terminology developed in
previously.

a (o) jon of POM and d e During Combustion

Formaldehyde-

Formaldehyde is formed and emitted during combustion of

hydrocarbon-based fuels such as coal and oil. Formaldehyde is present in

the vapor phase of the flue gas. Since formaldehyde is subject to oxidation
and decomposition at the high temperatures encountered during combustion,
large units with efficient combustion resulting from closely regulated
aix-fuel ratios, uniformly high combustion chamber temperatures, and
relatively long retention times should have lower formaldehyde emission

rates than do small, less efficient combustion units (Hangebrauck et al.,
1964; Rogozen et al., 1984b).

Polycyclic Organic Matter-

The term polycyclic organic matter (POM) defines a broad class of
compounds which generally includes all organic structures having two or more
fused aromatic rings (i.e., rings which share a common border). Polycyclic
organic matter with up to seven fused rings have been identified.
Theoretically, millions of POM compounds could be formed; however, the list
of species that have been identified and studied is more on the order of
approximately 100 (U. S. Environmental Protection Agency, 1980b).

Nine major categories of compounds have been defined by the U. §S.
Environmental Protection Agency to constitute the class known as POM

(Shih et al., 1980a). The nine categories are as follows.
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1. Polycyclic aromatic hydrocarbons (PAHs) - the PAHs include
naphthalene, phenanthrene, anthracene, fluoranthene,
acenaphthalene, chrysene, benzo(a)anthracene,
cyclopenta(c,d)pyrene, the benzpyrenes, indeno(l,2,3-c,d)pyrene,
benzo(g,h,i)perylene, coronene, and some of the alkyl derivatives
of these compounds.

2. Aza arenes - aza arenes are aromatic hydrocarbons containing a
ring nitrogen.

3. Imino arenes - these are aromatic hydrocarbons containing a ring
nitrogen with a hydrogen.

4. Carbonyl arenes - these are aromatic hydrocarbons containing one
ring carbonyl group.

S. Dicarbonyl arenes - also known as quinones, contain two ring
carbonyl groups.

6. Hydroxy carbonyl arenes - these are ring carbonyl arenes
containing hydroxy groups and possibly alkoxy or acyloxy groups.

7. Oxa arenes and thia arenes - oxa arenes contain a ring oxygen
atom, while thia arenes contain a ring sulfur atom.

8. Polyhalo compounds - these include the polychlorinated
dibenzo-p-dioxin (PCDDs), polychlorinated dibenzofurans (PCDFs),
and polychlorinated biphenyls (PCBs), and also brominated analogs
of these compounds such as polybrominated biphenyls (PBBs).

9. Pesticides - including aldrin, chlordane, and DDT.

These categories were developed to better define and standardize the types
of compounds considered to be POM.

The two POM chemical groups most commonly found in emission source
exhaust and ambient air are PAHs, which contain carbon and hydrogen only,
and the PAH-nitrogen analogs. Information available in the literature on
POM compounds generally pertains to these PAH groups. Because of the
dominance of PAH information (as opposed to other POM categories) in the
literature, many reference sources have inaccurately used the terms POM and
PAH interchangeably. The majority of information in this report on POM

physical/chemical properties, formation mechanisms, and emissions pertains

to PAH compounds.

MCH/007 - 3-71



Polycyclic organic compounds are formed in stationary combustion
sources as products of incomplete combustion. The rates of POM formation
and emission are dependent on both fuel characteristics and combustion
process characteristics. Emissions of POM can originate from POM compounds
contained in fuels that are released during combustion or from high
temperature transformations of organic compounds in the combustion zoune
(Shih et al., 1980a; National Academy of Sciences, 1972; National Research
Council, 1983). .

Two important fuel characteristics affecting POM formationm in
combustion sources are (1) the carbon to hydrogen ratio and molecular
structure of the fuel and (2) the chlorine and bromine content of the fuel
{Shih et al., 1980a). 1In general, the higher the carbon to hydrogen ratio,
the greater the probability of POM compound formation. Holding other

combustion variables comstant, the tendency for hydrocarbons present in a

fuel to form POM compounds is as follows.

aromatics > cycloolefins > olefins > paraffins

Based on both carbon to hydrogen ratio and molecular struccture
considerations, the tendency for the combustion of various fuels to form POM

compounds is as follows (Shih et al., 1980a).

coal> lignite > wood > waste oil > residual oil > distillate oil

In the formation of chlorinated and brominated POM compounds during
stationary source fuel combustion, the chlorine and bromine content of the
fuel plays a major role. Based on the chlorine content of fuels, the

tendency to form chlorinated POM compounds during combustion is:
bituminous coal > wood > lignite > residual oil > distillacte oil

Similarly, based on the bromine content of fuels, the tendency to form

brominated POM compounds during combustion is:

bituminous coal > lignite > residual oil > distillate oil > wood
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The primary combustion process characteristics affecting POM compound
formation and emissions are (Shih et al., 1980a; Hangebrauck et al., 1964;

Barrett et al., 1983):

- combustion zone temperature,

- residence time in the combustion zones,

- turbulence or mixing efficiency between air and fuel,
- air/fuel ratio, and

- fuel feed size.

With adequate residence time and efficient mixing, temperatures in the
800-1000°c (1472-1832°F) range will cause complete destruction of POM
compounds such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated
dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs). Concentrations
of polyaromatic hydrocarbons (PAHs) also decrease rapidly with increasing
temperature (Shih et al., 1980a),.

The most important reason for incomplete combustion of fuel, thereby
resulting in POM formation, is insufficient mixing between air, fuel, and
combustion products. Mixing is a function of the combustion unit’s
operating practices and fuel firing configuration. Hand- and stoker-fired
solid fuel combustion sources generally exhibit very poor air and fuel
mixing relative to other types of combustion sources. Liquid fuel units and
pulverized solid fuel units provide good air and fuel mixing (Shih et al.,
1980a; Hangebrauck et al., 1964; Barretr et al., 1983; Kelley, 1983).

The air/fuel ratio present in combusﬁion environments is important in
POM formation because certain quantities of air (i.e., oxygen) are needed to
stoichiometrically carry out complete combustion. Air supply is
particularly important in systems with poor air and fuel mixing. Combustien
environments with a poor air supply will generally have lower combustion
temperatures and will not be capable of completely oxidizing all fuel
present. Systems experiencing frequent start-up and shut-down will also
have poor air/fuel ratios. Unburned hydrocarbons, many as POM compounds,
can exist in such systems and eventually be emitted through the source

stack. Generally, stoker and hand-fired solid fuel combustion sources have
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problems with insufficient air supply and tend to generate relatively large
quantities of POM as a result (Shih et al., 1980a; Kelley, 1983,
Barrett et al., 1983).

In solid and liquid fuel combustion sources, fuel feed size can
influence combustion rate and efficiency, therefore, POM compound formation
is affected. For liquid fuel oils, a poor initial fuel droplet size
distribution is conducive to poor combustion conditions and an enhanced
probability of POM formation. In most cases, fuel droplet size distribution
is primarily influenced by fuel viscosity. As fuel viscosity increases, the
efficiency of atomization decreases and the droplet size distribution shifts
to the direction of larger diameters. Therefore, distillate oils are more
readily atomized then residual oils and result in finer droplec size
distribution. This behavior combined with distillate oil‘s lower carbon to
hydrogen ratio means that residual oil sources inherently have a higher
probability of POM formation and emission then distillate oil sources
(Shih et al., 1980a; Hangebrauck et al., 1964; Kelley, 1983).

For solid fuels, fuel size affects POM formation by significantly
impacting combustion rate. Solid fuel combustion involves a series of
repeated steps, each with the potential to form POM compounds. First, the
volatile components near the surface of a fuel particle are burned followed
by burning of the residual solid structure. As fresh, unreacted solid
material is exposed, the process is repeated. Thus, the larger the fuel
particle, the greater the number of times this sequence is repeated and the
longer the residence time required to complete the combustion process. With
succeeding repetitions, the greater the probability of incomplete combustion
and POM formation. Again, stoker and hand-fired solid fuel combustion units
represent the greatest potential for POM emissions due to fuel size
considerations (Shih et al., 1980a).

Polycyclic organic matter can be emitted from fuel combustian sources
in both gaseous and particulate phases. The compounds are initially formed
as gases, but as the flue gas stream cools, a portion of the POM
constituents adsorb to solid fly ash particles present in the stream. The
rate of adsorption is dependent on temperature, and on fly ash and POM

compounds characteristics. At temperatures above 150°¢C (302°F), most POM
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compounds are expected to exist primarily in gaseous form. In several types
of fuel combustion systems, it has been shown that POM compounds are
preferentially adsorbed to smaller (submicron) fly ash particles because of
their larger surface area to mass ratios. These behavioral characteristics
of POM emissions are important in designing and assessing POM emission
control systems (Shih et al., 1980a; Kelley, 1983; Griest and Guerin, 1979;

Sonnichsen, 1983).
EFFECTS OF COMBUSTION SOURCE DESIGN AND CONTROL TECHNOLOGY ON EMISSIONS
of t jile opulatio

Boiler Design-

Boiler design influences the rate of trace metal and POM emissions.
Types of coal-fired boilers used in the ucility, industrial, and
commercial/institutional sectors include pulverized coal-fired, cyclone, and
stoker units. Pulverized units are characterized by ash removal method as
dry bottom or wet bottom. There is little variatidn in the design of
oil-fired units, and almost all are tangentially fired. Table 3-56 shows
the prevalence of each boiler type (in tarms of 1978 fuel use) in the
utilicy, industrial, and commercial/institutional sectors.

The utility sector is dominated by pulverized dry bottom coal-fired
units. In the future, the percentage of these units is expected to
increase. Coal-fired pulverized wet bottom and cyclone boilers are no
longer sold due to their inability to meet NOx standards. Stoker boilers,
currently accounting for less than one percent of the total, are obsolete
due to their inefficiency and are being retired.

In the industrial sector, more natural ‘gas is used relative to coal and
oil. Pulverized coal-fired units are the most common type of coal-fired
unit; however, stoker units (mainly spreader stokers) also account for a
large percentage of total coal use.

The commercial/institutional sector consumes a greater proportion of
oil and natural gas relative to coal consumption than the other two sectors.

Small underfeed stokers are the predominant type of coal-fired boiler. Some

MCH/007 . 3-75



TABLE 3-56. POPULATION CHARACTERISTICS OF UTILITY, INDUSTRIAL AND
COMMERCIAL BOILERS IN TERMS OF BOILER DESIGN AND FUELS, 1978

Percent of Total Fuel Use (Heat Input)
for Each Sector

Commercial/
Boiler Type Utilitya Industriaxb Institutional®
Coal~-Fired Boilers
Pulverized Dry Bottom 49.6 7.1 0.4
Pulverized Wet Bottom 7.2 1.7 0.02
Cyclone 7.4 0.4 -
Stoker 0.7 7.1 2.4
0il-Fired Boilers BTV 19.6 51.6
Gas~-Fired Boilers 13.6 57.4 43.6
Otherd - 0.01 0.04
Total fuel consumption
by extetuallﬁombustion
sources (10°° Btu) 16,761 8,236 4,777

33ource: Shih et al., 1980b
cSoutce: Suprenant et al., 1980a
dSource: Suprenant et al., 1980b
Other includes wood and refuse.
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of the larger institutional sources in this sector are pulverized coal-fired

boilers and spreader stokers.

Control Status-

All coal-fired utility boilers are equipped with some form of
particulate emissions control device. High efficiency electrostatic
precipitators (ESPs) are the most common. Data on the distribution of
control techniques for coal-fired utility boiler particulate emissions are
shown in Table 3-57 (Radian Corporation, 1983). A study of coal-fired
utility boilers larger than 100 MW and placed in service since 1950 showed
that in 1980 about 92 percent of the generating capacity was controlled with
ESPs, 2 percent with fabric filters, 1 percent with scrubbers, and the
control status of 5 percent was unknown (Barrett et al., 1983). New units
subject to NSPS must control particulate emissions by about 99 percent, so
the control status of coal-fired utility boilers is expected to improve over
time. More current (1984) data on the control status of utility boilers is
contained in the POWER data base maintained by the Utility Data Institute
(UDI) in Washington, D.C.

The Utility Data Institute is a private data base management group
under cornitract to the Edison Electric Institute (EEI) to manage their
"POWER"” data base. The data base contains power plants utilizing coal, oil,
and other fuels organized alphabetically by State. Information included for
each plant includes about 300 parameters including name, location, latitude
and longitude, capacity, fuel type, fuel use, criteria pollutant emissions,
control status, and stack parameters. Most of the data are obtained from
DOE/EIA Form 767. The utilities send UDI a copy of these forms when they
return them to DOE. Other data comes from direct contacts and surveys of
utilities.

In 1984, about 17 percent of the utility coal generating capacity was
equipped with flue gas desulfurization (FGD) systems. The majority of these
were lime or limestone scrubber systems. It is predicted that by 1992,
about 31 percent of coal generating capacity will be equipped with FGD
systems (Melia et al., 1984).

Oil-fired utility boilers are often uncontrolled; however some are

equipped with mechanical precipitators, cyclones, or ESPs (Shih et al.,
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TABLE 3-57. BREAKDOWN OF CONTROL TECHNIQUES FOR REDUCING PARTICULATE
EMISSIONS FROM COAL-FIRED UTILITY BOILERS

Percent of Total

Number of Boilers Generating Capacity
Control Device Type With This Control Represented
Esp® 979 92.6
Wet Scrubber’ 32 4.2
Baghouse 47 2.1
Mechanical Collector® 137 1.1

2EsP category also includes units listed as having a combination of control
techniques, units using flue gas conditioning to improve ESP performance,
and a small number of units for which no control method was listed.

bDoes not include units with scrubbers for flue gas desulfurization (FGD)
unless the scrubber is the only particulate control device.

®Includes units which have only mechanical control techniques (cyclones,
multicyclones).

Source: Radian Corporation, 1983.
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1980b). The POWER data base contains current information on the control
status of oil-fired utility boilers.

Coal-fired industrial boilers are less well controlled than utility
boilers. Based on a 1976 survey of over 2,500 units, about 14 percent were
controlled with ESPs, 47 percent with cyclones, 4 percent with scrubbers,

1 percent with fabric filters, and 33 percent were uncontrolled

(Suprenant et al., 1980a). The applicability of these percentages to the
entire industrial boiler population is unknown. In general, larger units
are more likely to be controlled than smaller units, and pulverized coal and
cyclone boilers are more likely to be controlled than stokers (Suprenant

et al., 1980a). The NSPS for industrial boilers (>100 million Btu) and
small boilers (<100 million Btu) will result in improved emissions control
in the future. Oil-fired industrial boilers are typically uncontrolled.

Commercial and residential boilers and furnaces are typically
uncontrolled. However, cyclones are in place at some of the larger

commercial/institutional coal-fired boilers (Suprenant et al., 1980b).

Trace Metal and Radionuclide Emissions

Boiler design affects the amount of ash entrained in the flue gas.
Since all of the trace metals and radionuclides reviewed, except mercury,
are emitted predominantly in particulate form, the amount of fly ash emitted
will influence the amount of trace metals emitted. Table 3-58 presents the
fraction of coal ash emitted as fly ash for different combinations of boiler
firing configurations and coal types (Baig et al., 1981). The fractions for
bituminous coal-fired boilers are based on several tests. The values for
lignite and anthracite are much less certain. Further testing is necessary
to determine if the three types of coals generate different ratios of fly
ash to bottom ash when burned in similar boilers.

Boiler configuration may also affect the volatilization/condensation
behavior of trace elements, and hence their emission rates. This is
especially true for Class 3 elements which show enrichment in the fly ash in
some studies and not in others (Baig et al., 198l). Elements may be more

likely to be vaporized in large pulverized coal-fired boilers where
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TABLE 3-58. COAL ASH DISTRIBUTION BY BOILER TYPE?

Percent Fly Ash/Percent Bottom Ash

Bitumingus Lignige Anthracéca
Furnace Type Coal Coal Coal
Pulverized dry bottom 80/20 35/65 85/15
Pulverized wet bottom 65/35 -- -~
Cyclone 13.5/86.5 30/70 -
Stoker 60/ 40 35/65 5/ 95

3source: Baig et al., 1981

Based on several studies of coal ash from large and intermediate size coal-
fired boilers.

“Based on an analysis of uncontrolled particulate emissions.
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combustion is more efficient due to higher temperatures, longer vesidetce
times, and efficient mixing of air and fuel; and they may be volatilized to
a lesser degree in smaller, less efficient, lower temperature combuscion
systems. The temperature of the stack gas and fly ash characteristics
influence the condensation behavior of volatilized trace metals and their
adsorption onto fly ash particles.

The efficiency of control devices in removing trace elements depends on
whether the elements are in vapor or particulate form and on the size of the
fly ash particles with which the elements are associated. Typical
particulate controls on industrial and utility boilers include multicyclones
and ESPs. Scrubbers are applied to some utilities for SO2 (and particulate)
control. For elements such as manganese, which tend to show an even
distribution on all sizes of particulates, collection efficiency of
particulate control devices should be similar to overall particulate control
efficiency. However other elements such as arsenic, cadmium, copper and
U-238 are enriched in the smaller particulate fractions (<1 um). Mechanical
collection devices such as cyclones and multicyclones generally show
decreasing collection efficiency as particle size decreases; therefore, the
collection efficiency of trace elements concentrated on small particles will
be less than overall particulate collection efficiency. Although not as
severe as for cyclones, this condition also exists for scrubbers and ESPs.
ESPs often show a minimum collection efficiency in the 0.1 to 1 um diameter
size range {(Ondov et al., 1979a).

Furthermore, ESPs and cyclones will not reduce emissions of elements,
such as mercury, emitted in the vapor phase. A portion of the other trace
metals, especially the Class 2 elements, may also remain in vapor form in

the flue gas, and may thereby escape collection.

Polvcyclic Organic Matter Emissions

Polycyclic organic matter emission rates are also influenced by boiler
design. As noted previously, POM formation depends on temperature,
residence time, efficiency of air and fuel mixing, air/fuel ratio, and fuel

feed size. Based on these criteria, pulverized dry bottom and wet bottom
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coal-fired units would have the lowest POM emission factors of any
coal-fired units. These units are generally large, temperature of the
combustion zone is high [around 1,650°C (3,000°F)], residence time in the
combustion zone is relatively long (0.5 sec), air/fuel ratios are constant
and adequate for efficient combustion, and the coal feed is pulverized into
small particles. Cyclone-fired boilers would have the next lowest PO
emission rates. Stokers would have higher emission rates, with overfeed and
underfeed stokers having slightly higher emission rates than spreader
stokers. Stoker units are usually smaller, temperatures in the combustion
zone are lower due to the 30 to 60 percent excess air present, mixing
between air and fuel is less efficient, the on-off cycle results in
fluctuations in the air/fuel ratio, and fuel feed size is larger. These
factors lead to increased POM formation. Hand stoked units would have the
highest emission factors of all coal-fired units (Shih et al., 1980a;
Barrett et al., 1983).

Oil-fired units have less of a tendency to form POM than coal-fired
units due to fuel characteristics. Based on fuel characteristics, residual
oil fired units are more likely to form POM than distillate oil fired units.
Based on boiler design characteristics, large oil-fired utility boilers
would have the lowest POM emission rates, followed by industrial boilers.
Based on design, home heating units would have higher POM emission rates;
however, these are usually fired with distillate oil which would tend to
reduce emissions (Shih et al., 1980a).

Polycyclic organic matter is emitted in both vapor and parciculate
phases, with the vapor phase generally predominating, and theé particulate
phase showing small particle enrichment. Particulate POM, particularly fine
particles, would be controlled most effectively by baghouses or ESPs. No
control of gaseous POMs would be achieved by baghouse and ESP systems. Wet
scrubbers could potentially be effective for controlling particulate and
gaseous POM. Scrubbers would condense the POM compounds existing as vapors
and collect them as the gas stream is saturated in the scrubber.
Multicyclones would be the poorest control system for POM emissions because
they are ineffective on fine particles and would have no control effect on
gaseous POM (Kelley, 1983).
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Wet FGD/ESP systems, while providing for the control of POM condensed
on particulate matter at the entrance to the ESP, have been shown to be poor
at controlling vapor phase POM. Tests examining benzo(a)pyrene showed that
condensation of the vapor phase POM compound would occur in the scrubber,
but significant collection of POM particles remaining in the gas flow

through the scrubber was not achieved (Kelley, 1983).
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SECTION 4
TOXIC AIR POLLUTANT EMISSION FACTORS
FOR COAL AND OIL COMBUSTION

This section contains emission factors for selected toxic air
pollutants from coal and oil combustion. Factors are presented for arsenic,
beryllium, cadmium, chromium, copper, manganese, mercury, nickel, lead,
formaldehyde, POM, and selected radionuclides (uranium-238, thorium-232).

EMISSION FACTORS FOR OIL-FIRED COMBUSTION SOURCES

The literature was reviewed for measured and calculated oil emission
factors. A summary of emission factors for the nine trace metals, POM, and
formaldehyde emitted from the combustion of residual and distillate oil are
presented and discussell below. No data were identified for radionuclide
emissions from oil combustion.

The summarized emission factors should not be construed to represent a
fully characterized or representative emission rate for the given combustion
source situation. Extensive data quality assurance procedures, necessary
to reasonably characterize a data set as representative of a particular
source, were not performed in this study because of time and budgetary
constraints. Instead, the summarized factors are simply straightforward
calculations of emission factor averages and ranges based on data presented
in the literature. The summarized factors are not to be considered as
suggested emission factor values for use in other activities such as regula-

tory development or specification of acceptable ambient concentrations.

S a ssion Factors
A summary of toxic pollutant emission factors for residual and

distillate oil combustion are presented in Table 4-1. These are uncon-

trolled emission factors that could be used in efforts such as emission
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TABLE 4-1. SUMMARY OF TOXIC POLLUTANT EMISSION
FACTORS FOR OIL COMBUSTION®

12

Emission Factor (1b/10 "~ Btu)
Pollutant Residual 0il Distillate 0il
Arsenic 19 4.2
Beryllium 4.2 2.5
Cadmium 15.7 10.5
Chromium 21 48
Copper 280 280
Lead 28° 8.9%
Mercury 3.2 3.0
Manganese 26 14
Nickel ' 1260 170
POM S.Ab 22.5
Formaldehyde 405° _ 405°

2a11 emission factors are uncontrolled, and are applicable to oil-fired
boilers and furnaces in all combustion sectors unless otherwise noted.

bThis value was calculated using all available residual oil data given
in Table 4-35. If the upper end of the range of available data is
excluded when calculating an average value (which could be used in this

table), t&f average factor for POM from residual oil combustion becomes
4.1 1b/107" BTU.

cApplicable to utility boilers only.
dApplicable to industrial, commercial, and residential boilers.

®The formaldehyde factors are based on very limited and relatively old

data. Consult Table 4-37 and accompanying discussion for more detailed
information.
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inventory development. They are applicable to all types of oil-fired
boilers in all four combustion sectors (utility, industrial,

commercial/institutional, and residential).

Derivation of Summary Trace Metal Emission Factors-

The summarized emission factors for eight of the nine trace metals
studied were calculated from the typical level of these metals in residual
and distillate oil assuming the entire mass of the trace metals entering the
boiler in the oil feed is emitted in the flue gas. Typical values for the
trace element content of residual and distillate oils presented in Section 3
were used in the calculations. These were average values based on a review
of several previous studies of the trace element composition of oil.

Typical trace metal concentrations in the oil feed (expressed in ppm) were
converted to emission factors (lb trace metal emitted per 1012 Btu of oil
burned) assuming heating values of 150,000 Btu/gal for residual oil and
141,000 Btu/gal for distillate oil, and densities of 944 g/1 (7.88 lb/gal)
for residual oil and 845 g/1 (7.05 1b/gal) for distillate oil. The heating
values are documented in Appendix B.

Since 0il combustion generates no bottom ash, the assumption that
100 percent of the trace metals entering the boiler in the oil feed are
emitted in the flue gas is reasonable. The calculated uncontrolled emission
factors based on this assumption would be independent of boiler design and
combustion sector.

Limited emission factor data for lead emissions from oil combustion are
presented here. The consideration of lead as a trace pollutant from coal
and oil combustion was added to this project by EPA late in the data
analyses process. For this reason, the treatment of lead, including the
availability of emission factor data, is very abbreviated compared to the
other trace pollutants in the document. Only a limited number of the
references listed in the report bibliography in Section 6 were evaluated for
lead data. ‘

The general agreement between measured and calculated emission factors
from several references lends some confidence to the summarized values.
However, they should be considered in light of the high variability of trace

elements in o0il. Furthermore, the data base on distillate oil was much less
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complete than the data base on residual oil and coal. For some metals,
there were only two or three available studies reporting their occurrence in
distillate oil. The representativeness of the distillate oil emission
factors is, therefore, somewhat uncertain.

Another data gap is the effects of particulate control technologies on
trace metal emissions from oil-fired boilers. Many trace metals are
enriched in the small particle fractions of the fly ash from coal combustion
sources. However, oil fly ash has different characteristics, and whether
the volatilization/condensation theories predicting small particle
enrichment are applicable to oil combustion sources is uncertain. There is
a lack of literature on the form of trace emissions from oil combustion
(vapor or particulate) and on the association of trace elements with various
size fractions of the oil fly ash. Without this information, the efficiency
of particulate control devices at removing trace metal emissions cannot be
calculated. Almost all of the calculated and measured emission factors

reported in previous studies are uncontrolled.

Derivation of POM and Formaldehyde Emissioﬁ Factors-

A qualitative discussion of theories of POM and formaldehyde formation
and behavior during combustion is presented in Section 3. No methods for
calculating POM and formaldehyde emission factors were found in the
literature. The emission factors presented in Table 4-1 are average values
derived from test data contained in the literature.

More test data are available for POM emission factors from residual oil
than from distillate oil. Reported PQM emission factors for both types of
oil vary over two orders of magnitude. The data show no clear pattern as to
whether boiler type, boiler size, combustion sector, or oil grade influence
POM emissions. Part of the observed variation may be due to variations in
sampling and analytical methodology between studies.

Only four measured formaldehyde emission factors were available in the
literature. While these are in fairly close agreement, the scarcity of data
make the representativeness of the summarized emission factor highly uncer-

tain. There are not enough data to derive separate formaldehyde emission
factors for residual versus distillate oil.
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The effect of particulate control technologies on POM and formaldehyde
emissions is another area lacking data. There are few measurements of POM in
controlled emission streams, and little data on the distribution of POM and
formaldehyde in the vapor versus particulate phases. Theoretically, a large
portion of POM and formaldehyde should be present in vapor form and would
therefore escape collection; however, very limited test data for residual
oil-fired sources appears to indicate lower POM emission factors for

controlled versus uncontrolled boilers.
Arsenic Emission Factors

Based on a typical residual oil arsenic content of 0.36 ppm, the
summarized uncontrolled arsenic emission factor for residual oil combustion
is 19 1b/1012 Btu. This is in the middle range of values calculated in five
previous studies, which range from less than 0.5 to 42 1b/1012 Btu (see
Table 4-2). Eight measured arsenic emission factors from the literature are
shown in Table 4-3. Uncontrolled emission factors reported by two authors

range from 4.2 to 37 lb/lO12 Btu, and are in good agreement with the

recommended value of 19 1b/1012 Btu. Since levels in fuels were often below
the detection limit, it is not possible to calculate mass balance closure for
the test runs. Leavitt et al. (1980) reports higher emission factors,
despite the presence of control devices. The reason for this is unknown.

The summarized distillate oil arsenic emission factor is
4.2 1b/1012 Btu based on a typical level of 0.085 ppm in distillate oil.
This is in good agreement with previously calculated factors of 3.0 and
8.1 1b/1012 Btu from two studies summarized in Table 4-4. Only four
measured values are reported in the literature, ranging from 1.5 to

3.5 1b/10*2 Btu (see Table 4-5).
issio actors

The summarized uncontrolled beryllium emission factor for residual oil

is 4.2 1b/1012 Btu. This is in general agreement with previously calculacted

values shown in Table 4-6 which range from 0.05 to 5.57 1b/1012 Btu. There

is some uncertainty regarding the calculated values reported in the
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TABLE 4-4. CALCULATED UNCONTROLLED ARSENIC EMISSION FACTORS
FOR DISTILLATE OIL-FIRED BOILERS?

Summary Previous Studies
Emission Suprenant Suprenant
Factor’S et al., 1980b et al., 1980a
. d
Emission Factor 4.2 3.0 8.1
(1b/10%2 Btu)
Concentration 0.085 0.1-0.21d -

in Fuel (ppm)

4calculated assuming all arsenic present in oil feed is emitted through the
stack.

bCalculaced from typical level of arsenic in distillate oil derived in
Section 3. Emission factor assumes all arsenic present in oil feed is

emitted through the stack., A density of 7.05 lb/gal and heating value of
141,000 Btu/gal are assumed.

. .

cCalculaced arsenic emission factors (1b/1012 Btu) for controlled distillate
oil-fired boilers are: multiclone, 2.06; ESP, 0.50; scrubber, 0.42. See
text for discussion.

dThere is an apparent discrepancy between the calculated emission factor and
the values measured for arsenic in the fuel as reported in this reference.
The reference states the assumption that all arsenic measured in the oil
feed is emitted through the stack, but the numbers presented do not agree
with this statement. This discrepancy could not be resolved from the
information given in the reference.
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Suprenant et al. (1980a, 1980b) studies. The reference stated that emission
factors were calculated assuming all beryllium present in the oil feed is
emitted; however, the numbers presented for beryllium levels in oil and
corresponding emission factors do not agree with this statement (see

Table 4-6). The calculated beryllium factors reported by Tyndall et al.
(1978), Shih et al. (1980b), and Anderson (1973) are in closer agreement
with the summarized factor than are the values reported by Suprenant et al.
(1980a, 1980b).

Measured beryllium emission factors for residual oil combustion vary
over three orders of magnitude, from 0.14 to 250 1b/1012 Btu, as shown in
Table 4-7. The causes of this variation are uncertain. Since beryllium
contents of many of the fuels were below the detection limit, mass balance
closure for the test runs cannot be calculated.

The summarized beryllium emission factor for distillate oil is
2.5 1b/1012 Btu, as shown in Table 4-8. This is higher than that reported
in previous studies by Suprenant et al. (1980a; 1980b); but as explained in
the preceding paragraph and in Table 4-8, there is a discrepancy between the
values Suprenant et al. (1980b) reported for beryllium content of oil and
the corresponding calculated emission factors reported. The values are not
consistent with the assumptions stated in that reference about the
calculation procedures. Three tests of beryllium emissions from distillate
oil-fired sources are shown in Table 4-9. Measured beryllium emission

factors range from 0.52 to 1.2 lb/].O12 Btu, which are slightly below the

summarized value of 2.5 1b/1012 Btu, but much higher than the valuesg

previously calculated by Suprenant et al. (1980a, 1980b).
Cadmium Emission Factors

The summary uncontrolled cadmium emission factor for residual oil
combustion sources is 15.7 1b/1012 Btu. Table 4-10 compares this factor
with values calculated in six previous studies. It is in general agreement
with values for domestic residual oil combustion calculated by Shih et al.
(1980b) and Anderson (1973). The validity of emission factors calculated in

Suprenant et al. (1980b) is uncertain because the level of cadmium in oil and
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TABLE 4-8. CALCULATED UNCONTROLLED BERYLLIUM EMISSION FACTORS
FOR DISTILLATE OIL-FIRED BOILERS?

Summary Previous Studjes
Emission Suprenant Suprenant
Factor’'S et al., 1980b et al., 1980a
Emission Factor 2.5 0.09d 0.05
(1b/10'2 Bru)
Concentration 0.05 0.0076d .-

in Fuel (ppm)

4calculated assuming all beryllium present in oil feed is emitted through the
stack.

bCalculated from typical level of beryllium in distillate oil derived in
Section 3. Emission factor assumes all beryllium present in oil feed is
emitted through the stack. A density of 7.05 lb/gal and heating value of
141,000 Btu/gal are assumed.

cCalculated beryllium emission factors (1b/1012 Btu) for distillate oil-fired

boilers are: multiclone, 1.58; ESP, 0.35; scrubber, 0.15. See text for
discussion. .

dThete is a discrepancy between the calculated emission factor and the values
measured for beryllium in the fuel as reported in this reference. The
reference states the assumption that all beryllium measured in the oil feed
is emitted through the stack, but the numbers presented do not agree with

this statement. This discrepancy could not be resolved from the information
given in the reference.
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corresponding calculated emission factors reported in this study are
inconsistent with the calculation procedures described in the reference.

Measured cadmium emission factors from previous studies, shown in
Table 4-11, range from 0.048 to 212 1b/1012 Btu. Values reported by Leavitt
et al. (1978b) are higher than values reported in the other studies despite
the presence of particulate control devices. The causes of the large
variation in measured cadmium emission factors are unknowm.

The summary cadmium emission factor for distillate oil combustion is
10.5 1b/1012 Btu. This value is similar to previously calculated factors
shown in Table 4-12 and to three measured emission factors of 4.9 to
25.6 1b/1012 Btu shown in Table 4-13. Cadmium was not detected in a fourth
test. As described in Table 4-12 and in the preceding paragraph, there is
some question as to the method of derivation and validity of the previously
calculated emission factors reported by Suprenant et al. (1980b).

Chromjum Emission Factors

Based on a typical chromium level of 0.4 ppm in residual oil, the
summarized chromium emission factor is 21 1b/1012 Btu. This is in general
agreement with values calculated in four previous studies ranging from 5 to
69.7 lb/lo12 Btu (see Table 4-14). The fifth study, by Suprenant et al.
(1980b), reported chromium levels in oil of 0.2 to 0.5 ppm, which are
similar to the summary value of 0.4 ppm; but the same study reported a
calculated emission factor of 116 1b/1012 Btu. This is inconsistent, since
it would mean that more chromium is emitted from the boiler than {is
contained in the oil feed.

Measured chromium emission factors shown in Table 4-15 are generally
higher than calculated emission factors. Several references reporting
emissions tests of coal-fired boilers noted that corrosion of the sampling
train components was suspected to occur causing chromium measurements to be
too high (Baig et al., 1981). Since sampling systems used at oil-fired
sources are similar, contamination due to corrosion of the sampling train
components may partially account for the measured values being higher than
the calculated chromium emission factors. Mass balances for some of the

studies indicate more chromium being emitted than is contained in the oil
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TABLE 4-12. CALCULATED UNCONTROLLED CADMIUM EMISSION
FACTORS FOR DISTILLATE OIL-FIRED BOILERS?

Summary Previous Studies
Emission Suprenant Suprenant
Factor”'® et al., 1980b et al., 1980a
d
Emission Factor 10.5 5.8 3.0
(1671012 Beu)
d
Concentration 0.21 0.95 ---

in Fuel (ppm)

3calculated assuming all cadmium present in oil feed is emitted through the
stack.

bCalculated from typical level of cadmium in distillate oil derived in
Section 3. Emission factor assumes all cadmium present in oil feed is
emitted through the stack. A density of 7.05 1lb/gal and heating value of
141,000 Btu/gal are assumed.

Ccalculated cadmium emission factors (1b/1012 Btu) for controlled distillate

oil-fired boilers are: multiclone, 7.45; ESP, 1.58; scrubber, 0.63.

See
text for discussion.

dThere is an apparent discrepancy betwsen the calculated emission factor and
the values measured for cadmium in the fuel as reportrd in this reference.
The reference states the assumption that all arsenic measured in the oil
feed is emitted through the stack, but the numbers presented do not agree
with this statement. This discrepancy could not be resolved from the
information given in the reference.
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feed. Another factor is that the chromium content of oil used at some of the
tested facilities (see Table 4-15) is higher than the typical chromium
content of residual oil (0.4 ppm) derived in Section 3.

The summarized chromium emission factor for distillate oil is
47.5 1b/1012 Btu. This is based on an assumed chromium content of 0.95 ppm
for distillate oil. The summary value is slightly lower than values
calculated in two previous studies shown in Table 4-16, (56.0 and

83.7 1b/1012 Btu). Measured chromium emission factors from six tests

summarized in Table 4-17 range from 2.3 to 370 1b/1012 Btu, with five of the

six tests reporting emission factors below 67.4 1b/1012 Btu. Thus, the
measured values generally support the calculated emission factor of
47.5 1b/10'2 Beu.

Emission factors for hexavalent chromium (Cr+6) for distillate and
residual oil combustion are given in Tables 4-14 and 4-16. The factors were
derived by applying a ratio of hexavalent chromium to total chromium
emissions to existing emission factors for oil combustion. The ratio was
obtained through testing a coal-fired spreader stoker boiler and analyzing
emissions for both total chromium and hexavalent chromium. In the data
source for these emission factors, no distinction was made concerning the
types of oil burned. For this report, it was assumed that utility boilers
burned residual oil and other boilers burn distillate oil. All emission

factors are assumed to be for uncontrolled sources.

Copper Emission Factors

The summarized copper emission factor for residual oil combustion is
278 lb/1012 Btu. This is in the middle range of values calculated in
previous studies. As shown in Table 4-18, previously calculated values
range from 5 to 812 1b/1012 Btu depending on the assumed copper content of
oil. The measured copper emission factors listed in Table 4-19 vary over a
similar range, from 4.6 to 1,100 lb/1012 Btu, and are in general agreement
with the calculated values. The copper content of the fuels where tests
were performed do not correlate directly with measured emission rates. In

some cases, mass balances do not exhibit good closure.
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TABLE 4-16., CALCULATED UNCONTROLLED CHROMIUM EMISSION
FACTORS FOR DISTILLATE OIL-FIRED BOILERS?

Summary Previous Studijes
Emission Suprenant Suprenant
Factor?’© et al., 1980b et al., 1980a
Emission Factor 47.5 (0.17-0.23)% 83.7 56.0
(1b/10? Beuw)
Concentration 0.95 0.8-2.0 .-

in Fuel (ppm)

#Calculated assuming all chromium present in oil feed is emitted through
the stack.

bBased on typical level of chromium in distillate oil derived in Section 3.
Emission factor assumes all chroium present in oil feed is emitted through

the stack. A density of 7.05 1b/gal and heating value of 141,000 Btu/gal
is assumed.

€Calculated total chromium emission factors (1b/1012 Btu) for controlled
distillate oil-fired boilers are: multiclone, 27.8; ESP, 13.92; iﬁrubber,
3.84. The calculated hexavalent chromium emission factors (1b/10™" Btu)
for controlled distillate oil-fired boilers are: multiclone, 0.08;
ESP, 0.04; scrubber, 0.01. See text for discussion.

dThe range of values in parentheses are for hexavalent chromium. They were
derived by applying the ratio of hexavalent chromium to total chromium
emissions (obtained from tests of a coal-fired boiler) to existing
emission factors for distillate oil-fired boilers. By sector, the
hexavalent chromium emission factors are: industrial boilers, 0.17;
commercial boilers, 0.23; residential boilers, 0.20.
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The summarized copper emission factor for distillate oil,

280 lb/lO12 Btu, is essentially the same as the summarized value for
residual oil. It is between the distillate oil emission factors calculated
in the two previous studies shown in Table 4-20. Table 4-21 summarizes
measured emission factors. Five of the six reported measured emission
factors are less than 63 1b/1012 Btu, well below the summary value; however,
the mass balances for the Castaldini et al. (1981b, 1982) tests do not
close, with only about 10 to 20 percent of the copper that enters in the oil

feed being emitted.

Mercury Emission Factoxs

The mercury emission factor for residual oil combustion derived in this
study is 3.2 1b/1012 Btu. This is in close agreement with previously
calculated values shown in Table 4-22, which range from 0.47 to 6.67 1b/1012

Btu. Measured mercury emission factors are well below calculated factors,
ranging from 0.052 to 1.4 1b/1012 Btu. Mercury is volatile and it is
suspected that a substantial portion of mercury present in the vapor phase
escaped detection. For those test runs on Table 4-23 where mass balances
can be calculated, only about 3 to 20 percent of the mercury entering in the
oil feed was measured in the emissions. A

The summary emission factor for mercury from distillate oil combustion
is 3.0 1b/1012 Btu. This is based on a level of mercury in oil of 0.06 ppm,
the same concentration used for residual oil. As described in Section 3,
only a single value for the mercury content of distillate oil (0.40 ppm) was
recorded in the literature. It was felt that rather than using a single
data point to represent all distillate oil, it would be more appropriate to
use the same mercury concentration for both residual and distillate oils.
This concentration is based on several tests of residual oils (see
Section 3). As shown in Tables 4-24 and 4-25, the summary emission factor
of 3.0 1b/1012 Btu is in close agreement with previously calculated and
measured values reported in Suprenant et al. (1980b, 1979). Measured
mercury emission factors reported by Castaldini et al. (1981b), are somewhat
higher (14-17 1b/1012 Btu) due to the higher mercury content of the oil

(0.40 ppm).
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TABLE 4-20. CALCULATED UNCONTROLLED COPPER EMISSION a
FACTORS FOR DISTILLATE OIL-FIRED BOILERS

Summary ’ Previous Studies
Emission Suprenant Suprenant
Factotb et al., 1980b et al., 1980a
Emission Factor 280° 476 87.3
(1b/10%? Bew)
Concentration 5.6 5.5-11.0 ---

in Fuel (ppm)

%calculated assuming all copper present in oil feed is emitted through
the stack.

bThe calculated copper emission factors (lb/lO12 Btu) for controlled

distillate oil-fired boilers are: multiclone, 165.2; ESP, 42;
scrubber, 25.2. See text for discussion.

®Based on typical level of copper in distillate oil derived in Section 3.
Emission factor assumes all copper present in the oil feed is emitted

through the stack. A density of 7.05 lb/gal and a heating value of
141,000 Btu/gal are assumed.

MCH/007 " 4-30



*110 Z§ 103 1e3/n3g 000° I¥1 Jo anTEA Suyjeay SWNSSE SUOTIIBIND]E)

*18TIUIPTISIY = Y ‘[PUOTINITISUI/[BIDISWWO) = ) ‘tetaysnpuy = 1 ‘A3T(vIn = n

*330 sajnutw @[ ‘uo s3ajnutm Q] ‘Ipom Sut(s4> ® ur 3uyjierado 3TU

+adA3 un® aanssaad Y81y - I13710q UWOIT I8ED UT IIUINQ UOTSIIAUOH

*g3jIUN UIA3S 10J UNI II3M $183] 31y

*A1snonutjuod Burieiado 11up

3

°

Qo

*§831833 om]
q
e

wa1skg Sutivay

7861 ‘tuipieise)y Suisuspuo) 131BM I0H q pat1oaauooun (L%’ 0) 33e1(1381Q "¢
3ingsaiyg
6.61 ‘"1% 19 jueuaidng y3tH (BUOTIUDAUO) b paf1oajuodup —— aje{(TISIQ uw.ﬁmm
Q1861 ‘“{® I3 turpieise) *on mo1 Keionig 3 paitoajuodup (0" 11) s [11I81Q 5€9
qQI861 ‘"1 13 tuipielse) *oN mo1 Keaenig | pa11013u0dun (0°11) CRLARGSERLH pES
1L61 ‘718 33 Ano1 59011 188D .| patioajuodup -~ 170 T# nm.hﬁxo.m—
1(61 ‘T1€ 38 AA2q ,uoll 18¥) q patlioajuoduq - 170 T¢# qt 6769
Aduai1a joay ad£j, 1ajtog g103998 sNnivlg (uwdd ‘3juajuop ad L], (nag z oﬁ\nﬂw
1013U0) aaddo)) 20104 m0mmmwam

§51181433108deqy [ang

S¥41109 QA¥13-TI0 ALVITILSIA HOd SWOIOVA NOISSIWI ¥Add0D QIUNSVIH

"12-% 19Vl

4-31

MCH/007



pinoo Kouedaiosip STy

Po9J 11© 3yl ul paanseaw ojussie [P IPYI uojldumsse oyl $93IPIS POURAIJIX BY]
9yl uy £INd19W I10J painswaul SINTPA Y3 pur 103108J UOJSSTWa Paleind[ed ayl uesmisq Aouvdeaosip juoaedde ue s} aaay]

*90U819Jel 9yl U UIAJS UOTIVWIOJUJ Oyl WO1J PIATOSIA 8q Jou

*juswaiels SIY3l Yiym 9918w jou op pejussead siaqunu eyl Ing ‘3}dw3Ss 8yl yYInoaya paljjwa sy

‘@ousaelel syl uy pailzodaa se yang

p

‘UOTSSNOSTp 10J IX3] 99§

"£8°0 '19qqn1os 4z ‘gs3

T

aae 1vd/nag 000°061 3o anfea Sujiwey pue 1/2 Y46 30 K3jsuep y
Ainoxsw 11® sawnsse 1030} uoyssimy

‘suototainm

1318 Si9]joq POIJI-1J0 TENPISaA PIT1oiIuod 103 (nag

‘jow
‘€ U0}3DIG U PAATASP [}O [enpISe

‘yowls 9yl ySnoayy peiajwe s§ pevy |

-o~\a~v §103093 UOSSTWR AIn21aw paienote)
‘paumsse

3s a9yl yY3Inoayi pe3jjrwe ST peaj (10 uj Juasaad

X uj Aanoxem jo [ead] (eoyddl woxjy voumazuauon

10 uy 3juasaxd Lanoxsw [Iv Fujumsse page(notey

(wdd) 1ong ug

600°0 1 B¢ {0°0 990°0 vm&.o %0°0 90°0 uorleizuaduo)

(nag Nﬁoﬁ\naV

(%0 499 S S°t ec.e 1°2 c't 1031084 UofssTWy
£L61 £L61 q0861 1% 32 qQO861 "1® I°? q0861 "1® 3@ 8L61 "1® 239 u.auououm

‘uosiapuy ‘uosaapuy 33jABO] 4Yiys jupugadng 112PUL]L uoyssywy ,
$3Tpn15 SNOTASXT Kaevummg

51104 QIUId-110 TVAAISTY WOd SYOLOVA NOISSING A¥NO¥IW QITIONINOONN QALVINDTVD

T~y T4Vl

4-32

MCH/007



*golpa

Jiwpe si3uing 19Mo[ ‘ite A{uo JTWpE si1duinq jJo Mo1 dol ‘uUOTIV[NIITIAIX sed an(Jj) SuorITPuOd

‘uot1B{N211731 sed an(y Bursq

autiaseg

3

ueyl 12318213 3B (3Nng
ON-MO] 19pun pajeiadp

)

X
+(UOT3B[N>11731 §¥8 anyj pue 11 §83IX3 PIINP3II) su0131puod ~QN-MOl 13pun kumwsv

-13[10q 2WES 3yl Jo 3II|INC pue JI[UT I13QQqRIIS 1IF P3ISI]

" SUOTITPUOD FUT[ISEBq IO [BWIOU 13pun P3IISIL

§013811930818Q) [ong

q
©1eTIU3pIsay = § ‘1PUOTIINITISUI/[BIDIAWWO) = ) ‘1tetaisnpuy = 1 ‘Airyrin = Ny
apniy
qig61 ‘weyloqui331H pue 13dmeg paaTJ-11%M n pa3t1t101juoduq (%0°0) jlenpisdy [:1 uwms.c
apnigy
qI861 ‘weyloqui33ty pue 13dmeg pa1TJ-11%M n pa110a13uooug (€0°0) /1enpisay 1:1 501L0°0
apniy
Q1861 ‘weyloquidBtry pue 13imeg pP21T3-118M n pa11013u00Up (%0°0) J1enpisayg 1:1 SEU°0
8L61 ‘1% 38 13118) IqnIIIJEMN 1 pa110a3juodup (1°0>) 110 9¢# vwmc.o
8L61 ‘18 33 1931E) aqnl I3IeN 1 paitoxjuoouq (1°0>) 110 94 vﬁ.d
8L61 ‘“1® 15 19118 aqn3xajey 1 patioxjuoduqy (1°0>) 110 9# SI°1
6.61 ‘“1% 39 aayostiy 1duang 10 ¢
‘q8/61 ‘T1® T8 3111ABI] /1803 1eadajug 1 SUOTIYITH - 110 9# a¢.~
6./61 ‘'“1{® 19 1aydsty asuing {10 12qqnidg
‘4861 ‘TT€ 33 I31ABI /180y 1Ba3ajuy 1 /3uo121IINY - —-——- 110 9¢ Amu.c _
CRIERES E3Y adL3 121104 g103998 snJIeIg (wdd ‘3juajuoy ad{y (ng z 01/41)
1013U09) Kano 19R) x030eg mommmmsm

S¥ITIOY dIYIS-TIO TVAAISAY YOd SUOLOVA zommmwzm AYRDVAR AIANSVAR

“€2-% J19VL

4-33

MCH/007



TABLE 4-24. CALCULATED UNCONTROLLED MERCURY EMISSION
FACTORS FOR DISTILLATE OIL-FIRED BOILERS®

Previous Studies

b e ‘Suprenant
Summary Emission Factor '’ et al., 1980b
Emission Factor 3.0 4.0

(1b/10*2 Bu)

Concentration 0.06
in Fuel (ppm)

3Calculated assuming all mercury present in oil feed is emitted through
- the stack.

bCalculat:ed from typical level of mercury in distillate oil derived in
Section 3. Emission factor assumes all mercury present in oil feed is
emitted through the stack. A density of 7.05 1b/gal and heating value of
141,000 Btu/gal are assumed.

Ccalculated mércury emission factors (1b/1012 Btu) for controlled distillate

0il-fired boilers are: multiclone, 3; ESP, 2.25; scrubber, 0.78. See text
for discussion.
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Manganese Emission Factors

A summary manganese emission factor of 26 lb/lo12 Btu was determined
for residual oil combustion. This is in the middle range of values
calculated in five previous studies (2 to 70.6 1b/1012 Btu). The values
reported in a sixth study by Suprenant et al. (1980b), shown in Table 4-26,
are inconsistent. The calculated emission factor shows 2 1/2 times more
manganese being emitted than is input to the boiler in the oil feed.

As shown in Table 4-27, measured manganese emission factors are
generally in agreement with the calculated value, ranging from 1.0 to
66 1b/1012 Btu with the exception of one reported value of 200 1b/1012 Btu.
Due to imprecise measurements of manganese in the oil feed, mass balance
closures for the test runs cannot be calculated.

The summarized manganese emission factor for distillate oil is
14 1b/1012 Btu. This is in close agreement with previously calculated
values shown in Table 4-28. Measured emission factors shown in Table 4-29
range from 0.71 to 50 1b/1012 Btu, but mass balance closure is poor for the
two test runs where it can be calculated. g

Nickel Emission Factors

The nickel content of residual oils is relatively high (typically about
24 ppm), and the summarized uncontrolled emission factor is 1,260 1b/1012
Btu. This value is in agreement with previously reported values of 500 to
2,240 lb/lOl'2 Btu shown in Table 4-30. Eleven measured emission factors
summarized in Table 4-31 range from 74 to 3,600 lb/lO12 Btu. These are in
general agreement with calculated factors. For some test runs, mass
balances indicate more nickel being emitted than is input in the oil feed.
This may be due to corrosion of sampling train components. Corrosion has
been suggested as a cause of elevated nickel emissions measurements in
similar tests of coal-fired boilers (Baig et al., 1981).

Distillate oil generally contains less nickel than residual oil
(typically about 3.4 ppm), and an emission factor of 170 lb/lO12 Btu is

suggested. This is in the same range as previously calculated nickel
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TABLE 4-28. CALCULATED UNCONTROLLED MANGANESE EMISSION
FACTORS FOR DISTILLATE OIL-FIRED BOILERS?

Summary Previous Studies
Emission Suprenant Suprenant
Factor®'S et al., 1980b et al., 1980a
Emission Factor 14 14.2 9.8
(1b/10%2 Bew)
Concentration 0.28 0.25-0.3 .---

in Fuel (ppm)

4Calculated assuming all manganese present in oil feed is emitted through
the stack.

Based on typical level of manganese in distillate oil derived in Section 3.
Emission factor assumes all manganese present in oil feed is emitted

through the stack. A density of 7.05 lb/gal and heating value of
A41,000 Btu/gal is assumed.

€Ccalculated manganese emission factors (1b/1012 Btu) for controlled distillate

oil-fired boilers are: multiclone, 6.44; ESP, 3.08; scrubber, 1.54. See
text for discussion.
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emission factors reported in the literature (see Table 4-32)., Measured
emission factors reported in Table 4-33 range from 2.7 to 674 1b/1012 Btu,
but are generally lower than calculated values. For some tests, this

appears to be due to lower than average nickel content of the oil feed.
Lead ssion Facto

Emission factors for lead from oil combustion were taken from an EPA
background document supporting the national ambient air quality standard
(NAAQS) for lead (U. S. Environmental Protection Agency, 1985). In that
document, emission factors for distillate and residual oil combustion were
presented, based on the concentration of lead in oil (either distillate or
residual) and the assumption that 50 percent of the lead in the fuel is
emitted to the atmosphere. Separate emission factors for boiler types by
sector of boiler use were not included in this reference. Therefore, it was
assumed that utility boilers burned residual oil and all other sectors burned
distillate oil. All emission factors assume emissions are uncontrolled.
Heating values of 150,000 Btu/gal and 141,000 Btu/gallon were used for
residual and distillate oil, respectively. Based on these data, the
uncontrolled emission factor for lead from utility oil combustion is

28 1b/1012 Btu. The uncontrolled emission factor for industrial, commercial,

and residential boilers is 8.9 1b/1012 Btu.

OM ssio o

In the evaluation and comparison of POM emission factors for oil

combustion, consideration should be given to:

- the methods used to take and analyze samples,

- the measurement of particulate POM only or of gaseous and
particulate POM,

- the physical phase in which emissions predominantly occur,

- the number of POM compounds analyzed for, and

- the specific POM compounds analyzed for.
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TABLE 4-32. CALCULATED UNCONTROLLED NICKEL EMISSION
FACTORS FOR DISTILLATE OIL-FIRED BOILERS?

Summary Previous Studies
Emission Suprenant
Factor '© Suprenant, 1980b et al., 1980a
Emission Factor 170 260.3 106
(1b/10%2 Bru)
Concentration 3.4 1-18 .-

in Fuel (ppm)

%calculated assuming all nickel present in oil feed is emitted through the
stack.

bBased on typical level of nickel in distillate oil derived in Section 3.
Emission factor assumes all nickel present in oil feed is emitted through
the stack. A density of 7.05 lb/gal and heating value of 141,000 Btu/gal
is assumed.

Scalculated nickel emission factors (1b/1012 Btu) for controlled distillate

oil-fired boilers are: mutliclone, 86.7; ESP, 47.6; scrubber, 6.8. See
text for discussion.
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The literature contains POM emission factor data that span from the early
1960s to the present. The methods used in the past source tests to sample
and analyze POM compounds from combustion sources have varied considerably
with respect to sample collection, preservation, preparation, and component
analysis techniques. Because of this variability, it is often difficult to
make valid comparisons of POM emission results because the forms, species,
and sensitivity of measurements may be grossly different between tests even
though both report a total POM result.

One important factor affecting the comparability of results involves
whether the sample collection technique attempted to collect gaseous as well
as particulate POM. Many of the earlier source tests used only a standard
EPA Method 5 sample collection procedure and thus did a less than adequate
job of collecting many POM compounds emitted in gaseous form. More recently,
a Modified Method 5 approach has become popular for combustion source
testing. The Modified Method 5 approach employs a resin filter to trap
condensible organics including POM. Because gaseous POM have been shown to
often be dominant in total combustion source POM emissions, the inclusion of
a gaseous POM collection procedure is important. Knowing the physical forms
of POM sampled for in a test is crucial to being able to compare one test's
results with those of another test of the same or similar source.

In the evaluation and comparison of any total POM emissions data, some
definition must be known or established as to what constitutes total POM. As
discussed, the number of POM compounds that conceivably may be formed during
combustion processes runs into the hundreds. Few, if any, source tests
analyze for that many compounds. The majority of the combustion source POM
emission tests in the literature analyzed for less than 25 specific POM
compounds. The largest number of compounds analyzed for was 56. When one
test analyzed for only 10 POM compounds and one other for 25 POM compounds,
total POM results will not be comparable between the two tests.

In assessing the number of specific POM compounds analyzed, the specific
compounds analyzed for should also be carefully evaluated. In many
combustion source tests for POM emissions, the 25 POM compounds expected to
occur in the largest quantity are analyzed for. Other tests, however,

analyze for POM compounds on the basis of compound toxicity such that several
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compounds that may occur in only minute proportions, but are highly toxic,
are analyzed for at the expense of high volume/low toxicity compounds. A
good example of this situation was seen in several tests where naphthalene
was and was not analyzed for. Naphthalene generally constituted a sizable
portion of total POM emissions in the tests where it was measured. However,
in terms of other POM compounds [e.g., benzo(a)pyrene], it is viewed as
having a low toxicity. Other tests, more concerned with the quantification
of toxic POM emissions from combustion sources, did not include naphthalene
in the list of analyzed compounds and, therefore, had a significantly lower
total POM value than those that did. The exclusion or inclusion of specific
compounds can therefore be highly important in the evaluation and comparison
of POM emissions data. .

Despite the problems and considerations outlined above which influence
the ability to define total POM and compare POM results between different
source tests, the summarized oil combustion POM data in Table 4-34 are
presented without regard to differentiating the POM species tested for, the
test methods used, etc. These differentiations were not possible to make
given the scope of this document. The data in Table 4-34 are presented to
i{llustrate what has been reported in the literature as total POM emissions
from oil combustion. The reader can judge the level of inconsistency in the
summary total POM data (Table 4-34) by reviewing the constituent individual
source test results given in Tables 4-35 and 4-36.

As discussed, summarized POM emission factors for oil combustion are
derived from measured emission factors reported in the literature. There is
no reliable method for quantitatively predicting POM emissions. POM
emission factors from tests of fifteen uncontrolled residual oil-fired
boilers in the utility, industrial, and commercial sectors were available in
the literature. As summarized in Table 4-34, the average POM emission

factor for these tests is 8.4 1b/1012 Btu, with factors for the 15 boilers

ranging from 0.07 to 77.3 lb/1012 Btu. Information on each test is recorded
in Table 4-35. Based on these limited data, boiler type and combustion
sector did not appear to influence POM emission factors significantly.

As shown in Tables 4-34 and 4-35, a POM emission factor of 5.8 lb/lOl'2
Btu was measured at one utility boiler controlled with a cyclone.

Polycyclic organic matter emissions were not detected from another utility
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TABLE 4-34., SUMMARY OF TOTAL POM EMISSION FACTORS FOR OIL COMBUSTION
Emissio?zFactor Number of

Type of 0il/ (1b/10 " Bru) Boilers
Control Status Average Range Tested
Residual Oil:

Uncontrolled 8.4 0.07-77.3% 17

Cyclomnes .- 5.8 1
Distillate Oil:

Uncontrolled <22.5 <0.28-41.2 5

*The upper end of the range, 77.3 lb/1012 Btu, could be considered an outlier
from the rest of the range; however, nothing in the test report suggested
this to be the case. If this value is excluded when i&lculating an average
emission factor, the average factor is only 4.1 1lb/10™" Betu.
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boiler equipped with a cyclone and from two utility boilers equipped with
ESPs. While test results for these four boilers may indicate lower POM
emission factors for boilers equipped with particulate control devices, this
is uncertain since uncontrolled emission factors for the four boilers are
not available for comparison, and the minimum POM detection limit of the
sampling and analysis methodologies for these test runs is unknown. Based
on theoretical considerations it is believed that a substantial portion of
POM emissions would be present in vapor form in the flue gas and would
escape collection by particulate control devices.

Measured POM emission factors for five distillate oil-fired boilers are
available. Specifics of each test are listed in Table 4-36. Three of the
tests were on residential furnaces. A commercial/institutional boiler and
an industrial boiler were also tested. As shown in Tables 4-34 and 4-36,
the average POM emission factor for these five tests is approximately

22.5 1b/1012 Btu. Emission factors ranged from less than 0.28 for the
industrial boiler to 41.2 1b/1012 Btu for the commercial boiler. Emission

factors for the residential furnaces ranged from less than 0.33 to less than
35.9 1b/10*2 Beu.

Formaldehyde Emission Factoxs

Formaldehyde emission factors are based on emissions testing since there
is no reliable method for calculating quantitative emission factors. Only
four measured emission factors for oil-fired combustion sources were
available in the literature. These are summarized in Table 4-37. Reported

emission factors ranged from 160 to 640 1b/1012 Btu, with the average value

being 405 1b/1012 Btu.
EMISSION FACTORS FOR COAL-FIRED COMBUSTION SOURCES

Emission factors for coal-fired sources are derived from a combination
of measured data and calculated emission factors. The literature was
reviewed for test data from which trace element emission factors (in terms of

pounds emitted per 1012 Btu of coal input) could be derived. About 35
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references reported measured emission factors for one or more of the trace
pollutants and types of combustion sources under study. Procedures for
calculating trace element emissions were also reviewed. The utility and
industrial sectors are the best characterized combustions sectors, while
relatively few test data are available for the commercial/institutional and
residential sectors. Trace metal and POM emissions are considerably better
characterized in the literature than radionuclide and formaldehyde emissions.

The trace pollutant emission factors presented for coal combustion
should be viewed as realistic average estimates based on the available data.
It should be recognized that there is considerable uncertainty in these
estimates due to the wide variability in trace element levels in coal (see
Section 1), variations in the design and operating parameters of boilers and
control devices, and uncertainty in sampling and analytical methodologies
for detecting trace pollutants. '

Also, it may be difficult to compare emission factors for different
control technologies for a given trace element because of the limited data.
In some cases, only a single test result was available from which to report
an emission ’factor for a particular boiler type/control technique pair.

Thus, some values reported in the summary tables may seem incongruous, when

actually, they reflect the data available in the literature.

In general, the sources of data and procedures for deriving emission
factors are similar for the nine trace metals under study. Summarized
emission factors are presented and compared with previously measured and
calculated values.

The summarized emission factors should not be construed to represent a
fully characterized or representative emission rate for the given combustion
source situation. Extensive data quality assurance procedures, necessary
to reasonably characterize a data set as representative of a particular
source, were not performed in this study because of time and budgetary
constraints. Instead, the summarized factors are simply straightforward
calculations of emission factor averages and ranges based on data presented

in the literature. The summarized factors are not to be considered as
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suggested emission factor values for use in other activities such as regula-
tory development or specification of acceptable ambient comncentrations.

Due to the relatively greater availability of test data for bituminous
coal-fired utility and industrial boilers, summary emission factors for
bituminous coal combustion can generally be derived from test data. The
data indicate that for similar types of boilers and control devices,
emission factors between the utility and industrial sectors are similar.
There is a lack of data on trace metal emissions for the commercial/
institutional sector. However, the boilers used in this sector are similar
in size and design to the smaller industrial boilers. Therefore,
emission factors for commercial/institutional boilers can be derived from
information on the other combustion sectors. There is also a lack of data
on lignite and anthracite combustion, so emission factors for these types of
coal must be calculated.

Trace metal emission factors for coal-fired residential furnaces are
described. A calculation procedure based on the trace metal countent of coal
and on partitioning data from a limited number of tests of residential
furnaces is used to derive emission factors for each of the trace metals
(excluding lead). The summarized emission factors for each trace metal are

compared with previously reported emission factors.

Arsenic Emission Factors-

Table 4-38 presents summarized arsenic emission factors for utility,
industrial, and commercial/institutional boilers. Where possible, these
were derived from emissions tests at representative boilers. The data base
is summarized in Tables 4-39 through 4-44., For each sector/coal type/
boiler design/control technology combination, the average arsenic emission
factor and range of emission factors found in the literature are presented.
The number of boilers and number of test rums froﬁ which these averages are
derived are also included in the tables. More detailed information on each
test, including the test references, are included in Appendix C, Tables C-1
through C-9.
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TABLE 4-38. SUMMARIZED ARSENIC EMISSION FACTORS FOR COAL-FIRED BOILERS

missi 012 tu) by Coal Tvpe

Boiler Type/Control Status Bituminous Lignite Anthracite
Pulverized Dry Bottom:

Uncontrolled 684 1390 266

Multiclone 335 683 130

ESP 40.1 82 15.6

Scrubber 17.2 35 6.7

v We

Uncontrolled 538 2730 521

Multiclone 264 1340 256

ESP 67.2 343 65

Scrubber 76.7 156 29.8
Cyclome:

Uncontrolled 115-310 235-632 45-121

Multiclone 56-152 114-310 22-59

ESP 14.4 29 5.6
Spreadex Stoker:

Uncontrolled 264-542 538-1100 103-210

Multiclone 129-265 263-540 50-103

ESP 33-67 67-137 13.26
Querfeed Stoker:

Uncontrolled 542-1030 1100-2100 210-401

Multiclone 265-505 540-1030 103-196

ESP 67-129 137-263 26-50
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TABLE 4-39. SUMMARY OF MEASURED ARSENIC EMISSION FACTORS
FOR BITUMINOUS COAL-FIRED UTILITY BOILERS

Emission Factor Number of
(lb/lo12 Btu) Boilers Number of
Boiler Type/Control Status Averagea Range Tested Data Points
ulverized ottom:
Uncontrolled 684 62-1360 5 20
Mechanical Precipitator 653 19-1980 2 10
ESP, or Mechanical Ppt. 40.1 0.35-242 15 37
followed by ESP
Mechanical Ppt/2 ESPs 6.1 0.29-13.2 1 5
in Series
Scrubber 17.2 3.95-31.4 4 6
ESP/Scrubber 14.9 “-- 1 1
Bulverjzed Wet Bottom:
ESP or Mechanical Ppt. 67.2 15.3-165 4 4
followed by ESP
Scrubber 76.7 .e- 1 1
Cyclone:
Uncontrolled 310 130-490 1 2
ESP 14.4 6.3-27.9 5 6
Scrubber 813 --- 1 1
Stoker:
Mechanical Ppt. or 3006 432-5580 2 2
Multiclone
Fabric Filter 0.77 --- 1 1

%Each boiler tested was weighted equally in determining this average. An
arthmetic mean value was calculated for each boiler, and then a mean of
these means was calculated.
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TABLE 4-40. SUMMARY OF MEASURED ARSENIC EMISSION FACTORS
FOR SUBBITUMINOUS COAL-FIRED UTILITY BOILERS

Emissio?zFactor
Boiler Type/ (1b/10"° Btu) Number of Number of
Control Status Average Range Boilers Data Points
Pulverized Coal-Fired:
ESP 0.17 — 1 1
Scrubber 11 —— 1 1
Cyclone:
Uncontrolled 860 -— 1 1
Scrubber 810 - 1 1
Unspecified Boiler Type:
ESP 6.2 2.4-10 2 2

TABLE 4-41. SUMMARY OF MEASURED ARSENIC EMISSION FACTORS
FROM LIGNITE COAL-FIRED UTILITY BOILERS

EmissioTzFactor
Boiler Type/ (1b/10"° Btu) Number of Number of
Control Status Average Range Boilers Data Points
Pulverized Dry Bortom:
Multiclone 382 367-397 2 2
ESP 2.3 -— 1 1
Cyclone:
Multiclone 270 -— 1 1
ESP 5.8 -— 1 1
ESP/Scrubber 11.2 -— 1 1
Spreader Stoker:
Multiclone 265 —— 1 1
ESP (5.3, -—— 1 1
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TABLE 4-42. SUMMARY OF MEASURED ARSENIC EMISSION FACTORS
FOR BITUMINOUS COAL-FIRED INDUSTRIAL BOILERS

Emission Factor
Boiler Type/ (lb/lo12 Btu) Number of Number of

Control Status Average® Range Boilers Data Points

Pulverized Dry Bottom:

Uncontrolled 690 - 1 2
Multiclone 7900 - 1 1
Multiclone/Scrubber 214 - 1 1
ESP 44.6 15.8-120 5 6

Pulverized Wet Bottom:
Multiclone 32.5 -— 1 1

Spreader Stoker:

Uncontrolled 264 0.27-835 7 14
Multiclone 478 102-853 2 2
Multiclone/ESP 43 .4 31-53.7 2 : 3

Qverfeed Stoker:

Uncontrolled 1030 60-2600 4 5
Economizer/Dust 395 370-420 1 2
Collector

%Each boiler tested was weighted equally in determiming this average. An

arithmetic mean value was calculated for each boiler, and then a mean of
these means was calculated.
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TABLE 4-43.

SUMMARY OF MEASURED ARSENIC EMISSION FACTORS FOR
SUBBITUMINOUS COAL-FIRED INDUSTRIAL BOILERS

Emission Factor

Boiler Type/ (167102 Bru) Number of Number of
Control Status Averagea Range Boilers Data Points
Spreader Stoker:
Uncontrolled 217 68-490 2 4
Mechanical Ppt/ESP 4.4 3.0-5.8 1 2

%Each boiler tested was weighted equally in determining this average. An
arithmetic mean value was calculated for each boiler, aad then a mean of
these means was calculated.
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TABLE &4-44. SUMMARY OF MEASURED ARSENIC EMISSION FACTORS FOR
COMMERCIAL/INSTITUTIONAL COAL-FIRED BOILERS

Emission Factor Number
Coal Type/ (1@11012 Btu) Number of of Data
Boiler Type Control Status Averagea Range Boilers Points
Bituminous Coal:
Pulverized Dry Uncontrolled 4470 -—— 1 1
Bottom Multiclone/ 51.1 - 1 1
Scrubber
Underfeed Stoker Uncontrolled 4.2 -~ 1 1
Spreader Stoker Mechanical Ppt 11.6 -— 1 1
Overfeed Stoker Mechanical Ppt 25.6 -— 1 1
Anthracite Coal:
Stoker Uncontrolled 137 5.3-235 3 3
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Bitumipous Coal-Fired Pulverjzed Dry Bottom Boilexs. The summary arsenic

emission factor for uncontrolled pulverized dry bottom boilers is

684 lb/lol2 Btu. This is the average emission factor for tests of
uncontrolled emissions from five utility boilers reported in the literature
’(see Table 4-39). This factor is in agreement with the emission factor of
690 1b/1012 Btu measured at one uncontrolled industrial pulverized dry
bottom boiler in the data base (Table 4-40). 1t is also in general
agreement with the previously calculated emission factors shown in

Table 4-45. The only commercial/institutional boiler of this description
tested had a higher emission factor (Table 4-44). The level of arsenic in
the coal was not reported for that test, and the causes of the higher
emissions measurement could not be determined.

Only three pulverized dry bottom bollers with mechanical precipitators
(multiclones) were tested - two utility and one industrial boiler (see
Tables 4-39 and 4-42). A meaningful average cannot be derived from these
tests. One boiler tested had extremely low arsenic emissions (19 to
49 1b/1012 Btu) and the other two had arsenic emissions which were higher
than any of the uncontrolled boilers tested (over 1000 1b/1012 Btu). The
industrial boiler which had the highest emission factor was burning high
arsenic coal (137 ppm as opposed to an average of 20.3 ppm for bituminous
coal). However, Ehe two utility boilers were burning coal of similar
arsenic content (13-19 ppm). It is uncertain whether boiler and countrol
design and operating parameters, sampling methodology, or both, account for

the discrepancy.
. Since the data are limited and inconsistent, the summary emission
factor for bituminous coal-fired pulverized dry bottom boilers was derived
by applying a control percentage to the uncontrolled emission factor. As
shown on Table 4-46, testing of a mechanical precipitator omn a combustion_
source showed an average control efficiency of 51 percent. This control
efficiency is consistent with theory. For overall particulate control,
multiclones can achieve greater efficiencies (Shih et al. (1980b) estimated
70.2 percent), but they are less efficient at controlling smaller particles,
and arsenic is enriched on small fly ash particles. Applying the 51 percent
control factor to the uncontrolled emission factor of 684 1‘0/1012 Btu, an
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TABLE 4-46.

ARSENIC REMOVAL EFFICIENCY OF CONTROLS®

4 Control Efficiency Number of Number of

Control Device Averageb Range Boilers Test Runs
Mechanical Ppt. 51.0 25.8-70.8 1 3
- ESP 87.5 50.0-97.6 7 21
FGD Scrubber -— 5.8-97.3 2 2
ESP/Scrubber 98.9 -— 1 1
2 ESPs in Series 99.6 99.2-99.97 1 5

3These control efficiencies represent measured conmtrol levels reported in
the literature. They may or may not be indicative of the long-term
performance of these types of controls on arsenic emissions from combustion
sources, The average values should not be construed to represent an EPA-

recommended efficiency level for these devices.

bEach emission test weighted equally.
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emission factor of 335 lb/1012 Btu is obtained for pulverized dry bottom

boilers controlled with mechanical precipitators.

The summary emission factor for ESP-controlled pulverized dry bottom
boilers, 40.1 1b/1012 Btu, is an average of 37 tests run on 15 utility
boilers (Table 4-39). Tests of industrial boilers (Table 4-42) yield a
similar average. The scrubber controlled emission factor is
17.2 1b/1012 Btu, based on six tests of four utility boilers. These

emission factors are in agreement with previously calculated values shown
in Table 4-45.

oal- \'d d W . Data from four boilers
show that the average emission factor for ESP-controlled pulverized wet
bottom boilers is 67.2 1b/1012 Btu. There is a lack of data for pulverized
wet bottom boilers controlled by other means. The percent arsenic control
efficiencies of ESPs and multiclones measured in the literature are
presented in Table 4-46. Using these control efficiencies and the
67.2 1b/1012 Btu factor for ESP- controlled boilers, the uncontrolled
emigssion factor would be 538 1b/1012 Btu and the mechanicgl precipitator-
(or multiclone-) controlled emission factor would be 264 1b/1012 Btu,
Calculations support these factors.

If all of the arsenic in typical bituminous coal (20.3 ppm) were
emitted during combustion, the maximum uncontrolled emission factor would
be 1,560 1b/1012 Btu, assuming a heat content of 13,077 Btu/lb. If arsenic
was emitteé in the same proportion as total particulates, an uncontrolled
emission factor of 1,010 1b/1012 Btu would be expected. This assumes
65 percent of the ash is emitted as fly ash (Baig et al., 1981). Since
arsenic is preferentially concentrated in the fly ash, an emission factor
between these two values would be expected,

The emission factor data for ESP-controlled wet bottom units is
inconsistent with what would theoretically be expected in relation to
ESP-controlled dry bottom units. Since wet bottom boilers have a lower fly
ash to bottom ash ratio than dry bottom boilers (65:35 vs 80:20), it would
be expected that uncontrolled and controlled emissions of arsenic would be
higher for dry bottom units provided all other emission-affecting variables

between the two bollers were constant. The data available for this report
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show an ESP-controlled dry bottom boiler factor of 40.1 1b/1012 Btu as
opposed to a 67.2 factor for wet bottom units. This discrepancy is probably
a function of the limited emissions data base for wet bottom boilers
controlled by ESP's. There were only four test values from which to base
the wet bottom number, while the dry bottom factor was based on 37 data
points., With such a limited basis for wet bottom units, it is unlikely that
a truly representative average could be determined. Where more precise
information is needed for an ESP-controlled wet bottom boiler, the reader is

advised to seek out additional, more current test data that may be available
or conduct site-specific testing.

Bituminous Goal-Fired Cyclone Boilexrs. Cyclone boilers controlled with ESPs
emit an average of 14.4 1b/1012 Btu. The lower emission factor for cyclone
boilers as opposed to pulverized coal boilers is consistent with previously
calculatad values and with theory. Cyclone boilers emit a lower proportion
of fly ash versus bottom ash than do pulverized coal-fired boilers. The
summarized uncontrolled emission factors are presented as a range (from 115
to 310 1b/1012 Btu). Assuming an arsenic control efficiency of 87.5 percent
for ESPs, the uncontrolled emission factor corresponding to l4.4 1b/1012 Btu
would be 115 1b/1012 Btu; however, limited test data and calculations
suggest a slightly higher value. The average uncontrolled factor for one
boiler tested is 310 1b/1012 Btu. Calculations show a minimum uncontrolled
emission factor of 210 15/1012 Btu for cyclone boilers. This calculation
assumes arsenic is emitted in the same proportion as total particulates
(13.5 percent of total ash is emitted as fly ash (Baig et al., 1981)). It
also assumes that the typical arsenic content of bituminous coal is
20.3 ppm, and that the heating value {s 13,077 Btu/lb. In reality, arsenic
is concentrated in the fly ash, so a somewhat higher emission factor would
be expected.

Mechanical precipitators, which reduce arsenic emissions by about

51 percent, would produce emission factors for bituminous coal-fired cyclone

boilers of between 56 and 152 1b/1012 Btu.

The only value reported for a cyclone boiler controlled by a scrubber
(see Table 4-39) is much higher than ESP-controlled or uncontrolled emission

factors and is inconsistent with theory. There is not enough information to
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derive a reliable emission factor for coal-fired cyclone boilers controlled

with scrubbers.

Bituminous Coal-Fired Stoker Bojlers. The most complete data on stoker
boilers are for the industrial sector. Fourteen tests of seven industrial
spreader stokers and five tests of four overfeed stokers are summarized in
Table 4-42 and in Appendix C, Table C-7. It is uncertain whether these two
types of stokers should be combined in determining an average emission
factor. The range and average measured emission factors are lower for the
spreader stokers than for the overfeed stokers (averages of 264 versus

1,030 1b/1012 Btu, respectively). Weighting all eleven boilers equally,

regardless of type, the average emission factor of 542 1b/1012 Btu can be
derived for all industrial stoker boilers.

Summary emission factors for spreader stokers in Table 4-38 are
presented as a range, with the average for spreader stokers at the lower end
of the range and the average for all stokers at the upper end. One of the
utility boilers tested (Table 4-39) falls within this range, the other can
be excluded as an outlier. Applying the control percentages in Table 4-46
to either end of this range, the emission factors for spreader stokers
controlled with multiclones would range from 129 to 265 1b/1012 Btu, and for
ESPs would range from 33 to 67 1b/1012 Btu. These ranges are in general
agreement with the limited test data on controlled spreader stokers
presented in Table 4-42.

For uncontrolled overfeed stokers the summarized range of emission

factors is 542 1b/1012 Btu (the mean for all stokers tested) to

1,030 1b/1012 Btu (the mean for overfeed stokers tested). Controlled
emission factors, based on the control efficiencies in Table 4-46, would be

265 to 505 1b/1012 Btu for multiclone-controlled overfeed stokers and 67 to

129 lb/1012 Btu for ESP-controlled overfeed stokers.

Based on limited data, about 60 percent of the total ash from stoker
boilers fired with bituminous coal 15 emitted as fly ash (Baig et al.,
1981). The type of stoker is not specified. This would lead to a minimum
calculated arsenic emission rate of 930 1b/1012 Btu if arsenic were
distributed equally between fly ash and bottom ash. This calculation does

not account for the enrichment of arsenic on fly ash, which would have the
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effect of raising the emission factor. It is uncertain why measured

emission factors for spreader stokers are generally below this calculated
value.

ub inou - e Jo] . Summary emission factors for
subbituminous coal-fired boilers were not calculated. There is a lack of
test data, and much of the available information does not distinguish
between bituminous and subbituminous coals. Tables 4-40 and 4-43 summarize

the data on emission factors for subbituminous coal which are available in
the literature.

Lignicte Coal-Fired Boilers. The only data on lignite coal-fired boilers are
for 'the utility sector and are presented in Table 4-41 and in Appendix C,
Table C-6. Since there are only one or two tests of each boiler
type/control device combination, representative emission factors cannot be
derived from the test data. The assumption can be made that the main cause
of variability between similar boilers firing bituminous and lignite coal
would be the different average arsenic content of the two types of coal.
Making this assumption, emission factors for lignite combustion can be
calculated from the emission factors for bituminous combustion by applying a
ratio to account for the higher average arsenic content of lignite coal
(22.8 versus 20.3 ppm) and for the difference in heating values

(7,194 Btu/1b for lignite versus 13,077 Btu/lb for bituminous). Summary
emission factors calculated in this manner are presented in Table 4-38.
There are inadequate data to determine whether burning lignite as opposed to
bituminous coal results in any differences in the proportion of fly ash to
bottom ash generated, or in the characteristics of the fly ash, or trace
element enrichment behavior, so these types of considerations were not
incorporated into the calculations. As can be seen by comparing the
emission factors in Table 4-38 with the test data for lignite combustion

summarized in Table 4-41, there is general agreement between the two sets of
factors.
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Anthracite Coal-Fired Boilers. The only data for anthracite combustion is
testing of three commercial/ institutional stoker boilers summarized in
Table 4-44. Summary emission factors for anthracite combustion can be
calculated from summarized bituminous coal factors by applying a ratio to
account for the different arsenic content of the two types of coal (7.67 ppm
for anthracite and 20.3 ppm for bituminous) and for the different heat
contents (12,700 for anthracite versus 13,077 for bituminous). These
calculated values are shown in Table 4-38. The measured arsenic emission
factor for uncontrolled stoker boilers (137 1b/1012 Btu) is in good
agreement with the calculated values for spreader stokers

(103-210 157102 Beu).

Beryllium Emission Factors-

Table 4-47 presents summary beryllium emission factors for utilicy,
industrial, and commercial/institutional boilers. Where possible, these
were derived from emissions test data. The data base is summ%rized in
Tables 4-48 through 4-53. Ranges and average measured emission factors
along with the number of boilers tested and the number of fest runs are
presented for each combination of sector, coal type, boiler design, and
control technology. More detailed information on individual tests, Including

references, is presented in Appendix C (Tables C-11 through C-19).

Bituminous Coal-fired Pulverized Dry Bottom Bojlers. The summary emission
factor for uncontrolled pulverized dry bottom boilers fired with bituminous

coal is 81 1b/1012 Btu. As shown on Table 4-48, this is the average of

seventeen tests of four utility boilers. This is in agreement with
previously calculated values shown in Table 4-54. One industrial and one
commercial boiler were also tested. The measured emission factor for the
industrial boiler was lower than for any of the utility boilers tested,

and the commercial boiler was higher than any of the utility boilers (see
Tables 4-51 and 4-53). However, since these are only single data points, it
is believed that the summarized average emission factor of 81 1b/1012 Btu

for utility boilers is more representative of emissions from boilers in all

three sectors.
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TABLE 4-47.

SUMMARIZED BERYLLIUM EMISSION
FACTORS FOR COAL-FIRED BOILERS

12

m cto b/10 "~ Btu) by Coal Type
Boiler Type/Control Status Bituminous Lignite Anthracite
ulverize or Wet
tom) :

Uncontrolled 81 131 50

Multiclone 52 84 32

ESP 3.0 4.9 1.8

Scrubber 0.11 0.18 0.07
Cyclone Boilers:

Uncontrolled <81 <130 <50

Multiclone <52 &84 <32

ESP 0.52 0.84 0.32
Stoker Boilers:

Uncontrolled 73 118 45

Multiclone 9.8-46 16-74 6-28

ESP 5.9 9.5 3.6
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TABLE 4-48. SUMMARY OF MEASURED BERYLLIUM EMISSION FACTORS

FOR BITUMINOUS COAL-FIRED UTILITY BOILERS

Emission Factor Number of Number
Boiler Type/ (1b/1012 Btu) Boilers of Data
Control Status Averagea Range Tested Points
Pulverized Dry Bottom:
Uncontrolled 80.9 41-140 4 17
Mechanical Ppt. 93.5 26-171 2 10
ESP or Mech. Ppt/ESP 3.8 {0.11-32 12 25
Mech. Ppt/2 ESPs in 0.082 0.007-0.209 1 5
series
Scrubber 0.11 -— 1 1
Pulverized Wet Bottom: )
Scrubber 0.086 -— 1 1
Cyclone:
ESP 0.52 0.19-1.05 4 4
Scrubber 0.86 -— 1 1
Stoker:
Mech. Ppt or Multiclone 12.8 5.6-20.0 2 2
Fabric Filter 0.13 ——— 1 1

2Each boiler tested was weighted equally in determining this average. An

arithmetic mean value was calculated for each boiler, and then a mean of
these means was calculated.
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TABLE 4-49. SUMMARY OF MEASURED BERYLLIUM EMISSION FACTORS
FOR SUBBITUMINOUS COAL-FIRED UTILITY BOQILERS

Emission Factor

Boiler Type/ (lb[lolz Btu) Number of Number of
Control Status Average Range Boilers Data Points

Pulverized Coal Fired:

ESP 1.0 -—- 1 1

Scrubber 0.60 -— 1 1
Cyclone:

Uncontrolled 18.0 -—- 1 1

Scrubber 1.6 —— 1 1

Unspecified Boiler Type:

ESP 0.63 0.38-0.88 2 2
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TABLE 4-50.

SUMMARY OF MEASURED BERYLLIUM EMISSION FACTORS
FOR LIGNITE COAL-FIRED UTILITY BOILERS

Emission Factor
(1b/10'% Bru)

Boiler Type/ Number of Number of
Control Status Average Range Boilers Data Points
Pulverized Dry Bottom:
Multiclones 2.4 2.3-2 2 2
ESP (2.3 - 1 1
Cyclone:
Cycloue 6.8 -— 1 1
ESP 0.70 - 1 1
Spreader Stoker:
Multiclone 13.7 -— 1 1
ESP 0.26 -— 1 1
MCH/007
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TABLE 4-51.

SUMMARY OF MEASURED BERYLLIUM EMISSION FACTORS

FOR BITUMINOUS COAL-FIRED INDUSTRIAL BOILERS

Boiler Type/

Emission Factor
(1b/10'2 Bey)

Number of

Number of

Control Status Averagea Range Data Points

Pulverized Dry Bottom:

Uncontrolled 15 -— 2

Multiclone 93 -— 1

Multiclone/Scrubber 2.3 -—- 1

ESP 1.1 0.19-2.0 6
Pulverized Wet Bottom:

Multiclone 0.21 - 1
Spreader Stoker:

Uncontrolled 106 0.30-780 14

Multiclone 7.7 3.a-12.1 2

Multiclone/ESP 32 0.2-120 3
Overfeed Stoker:

Uncontrolled 16 .6 3.9-39 5

Economizer/Dust 4.3 3.7-4.9 2

Collector

%Each boiler tested was weighted equally in determining this average. An
arithmetic value was calculated for each boiler, and then a means of these

means was calculated.
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TABLE 4-52.

SUMMARY OF MEASURED BERYLLIUM EMISSION FACTORS
FOR SUBBITUMINOUS COAL-FIRED INDUSTRIAL BOILERS

Emission Factor

Boiler Type/ (1b[1012 Btu) Number of Number of
Control Status Averagea Range Boilers Data Points
Spreader Stoker:
Uncontrolled 41.3 6.2-70 2 4
Mechanical Ppt/ESP 2.0 0.77-3.3 1 2

%Each boiler tested was weighted equally in determining this average. An

arithmetic mean value was calculated for each boiler, and then a mean of
these means was calculated.

TABLE 4-53. SUMMARY OF MEASURED BERYLLIUM EMISSION FACTORS FOR
' COMMERCIAL/INSTITUTIONAL COAL-FIRED *BOILERS
Emission Factor Number Number
Coal Type/ (1b/10'2 Bew) of of Data
Boiler Type Control Status Average Range Boilers  Points
Bituminous Coal:
Pulverized Dry Uncontrolled 307 -— 1 1
Bottom Multiclone/ 0.95 -— 1 1
Scrubber
Spreader Stoker Mechanical Ppt 7.9 -—- 1 1
Overfeed Stoker Mechanical Ppt 0.77 -— 1 1
Anthracite Coal:
Stoker Uncontrolled 11.1 0.93-21.8 3 3
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There are insufficient data to derive a meaningful average emission
factor for multiclone-controlled pulverized dry bottom boilers. Although the
coals for the two utility boilers tested contained the same amount of

beryllium (1.4 to 1.7 ppm for both boilers), emission factors for one boiler

averaged 52 lb/lO12 Btu, and for the other boiler averaged 154 1b/1012 Btu.

A summary emission factor of 51 1b/1012 Btu was calculated by applying a
control efficiency of 37 percent to the uncontrolled emission factor of

81 lb/lO12 Btu. This control efficiency is specific to beryllium, and was
determined from tests of control device efficiency found in the data base
(see Table 4-55).

The summary emission factor for ESP-controlled pulverized dry bottom
boilers is 3.0 1b/1012 Btu. This is an average of tests of 12 utilicy.
boilers and five industrial boilers, with each boiler weighted equally.
Only one boiler with a scrubber was tested and it was found to emit

0.11 1b/10*2 Btu (see Table 4-48).

- N Wet . Tests of five
ESP-controlled pulverized wet bottom boilers yielded an average emission
factor of 3.5 1b/1012 Btu (Table 4-48). Data are lacking on uncontrolled

wet bottom boilers and wet bottom boilers controlled by other technologies.

Bituminous Coal-Fired Cvclone Bojlers. The average measured emission factor
for four cyclone boilers controlled with ESPs is 0.52 1b/1012 Btu

(Table 3-106). The lower emission factor for cyclone boilers in contrast to
pulverized coal-fired boilers is consistent with previously calculated
emission factors and may be explained by the fact that cyclone boilers emit
less fly ash than pulverized coal-fired boilers (Baig et al., 1981).

There are no emissions tests of uncontrolled cyclone boilers or of
multiclone-controlled cyclone boilers in the literature. The emission
factors for pulverized coal-fired boilers may be used as an upper estimate
of beryllium emissions from cyclone boilers. In reality, emissions may be
somewhat lower because less fly ash is emitted, but the volatilization/
condensation behavior of beryllium has not been well enough characterized to

calculate a precise emission factor for cyclone boilers.
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TABLE 4-55. BERYLLIUM REMOVAL EFFICIENCY OF CONTROLS?

Z Control Efficiency Number of Number of
Control Device Averageb Range Boilers Test Runs
Mechanical Ppt. 37.0 34.6-40.9 1 3
ESP 82.4° 22.0-99.95° 62 19°
91.94 86.7-99.95¢ 5¢ 16°
FGD Scrubber 94.3 91.1-97.5 2 2
2 ESPs irn Series 99.94 99.91-99.995 1 5

%These control efficiencies represent measured control levels reported
in the literature. They may or may not be indicative of the long-term
performance of these types of controls on beryllium emissions from
combustion sources. The average values should not be comstrued to

represent an EPA-recommended efficiency level for these devices.

bEach emission test weighted equally.

cAverage and range represent data from all six ESP-controlled boilers
in the data set for which controlled and uncontrolled data are available.

Average and range represent data for five out of six ESP-controlled boilers
in the data set. The other boiler was excluded as an outlier. Control
efficiency for the outlier was 34.4 percent, while for the other five
boilers, control efficiencies were over 86 percent.
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Bitumjnous Coal-Fired Stoker Boilers. Several tests of industrial boilers
(summarized in Table 4-51) were used to characterize bituminous coal-fired
stoker boiler emissions. For eleven uncontrolled stoker boilers (four
overfeed and seven spreader stokers), the average beryllium emission factor,
weighting each boiler equally, is 73 1b/1012 Btu. Two utility, two
industrial, and one commercial spreader stoker controlled with multiclones
were tested (see Tables 4-48, 4-51, and 4-53). The average emission factor

for these five boilers is 9.8 lb/lO12 Btu. This is lower than the value of

46 1b/1012 Btu which may be calculated by applying a beryllium control
efficiency of 37 percent (see Table 4-55) to the summary uncontrolled
emission factor for stoker boilers. The summarized emission factor for
multiclone-controlled stokers is therefore presented as a range, from 9.8 to
46 1b/10'2 Beu.

Assuming a control efficiency of 91.9 percent (Table 4-55), the

emission factor for ESP-controlled stokers would be 5.9 1b/1012 Btu.

Subbituminoug Coal-Fired Bojlers. Much of the literature does not
distinguish between bituminous and subbituminous coals. Due to a lack of
data, emission factors specific to subbituminous coal are not presented.
Measured emission factors for subbituminous coal combustion available in the

literature are summarized in Tables 4-49 and 4-52, and in Appendix C.

e and Anthracite Coal-Fired Bojlers. Data on lignite-fired boilers
are limited. Table 4-49 summarizes the measured emission factors found in
the literature. The only measured emission factors available for anthracite
coal are from tests of three commercial/institutional stokers. These are
summarized in Table 4-52.

Due to the lack of data, beryllium emission factors for lignite and
anthracite coal were calculated from the summary factors for bituminous
coal. These were proportioned to account for the differences in beryllium
content and heating values of the three coals. From Table 3-8, the average
beryllium content of bituminous coal is 2.22 ppm, the average beryllium
content of lignite is 1.98 ppm, and that of anthracite is 1.32 ppm. Heating
values for the three coals are 13,077 Btu/lb for bituminous, 7,194 for
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lignite, and 12,700 for anthracite. The factors determined by this
procedure are given in Table 4-47. Emission factors calculated for lignite
are somewhat higher than bituminous coal emission factors, and emission

factors for anthracite are lower.

Cadmium Emission Factors-

Table 4-56 contains typical cadmium emission factors for utility,
industrial, and commercial/institutional combustion sectors derived from
data available in the literature. The data base is summarized in
Tables 4-57 through 4-62. For each sector/coal type/boiler design/control
device combination, the number of boilers tested, the number of test runs
made, and the average and range of emission factors measured are reported.

A summary of each test, including references, is contained in Appendix C,
Tables C-20 through C-29.

Bituminous Coal-Fired Pulverized Dry Bottom Bojlers. Pulverized dry bottom
boilers in the utility, industrial, and commercial/institutional sectors
have been tested. Results are summarized in Tables 4-57, 4-60, and 4-62,
The results of the industrial boiler test were excluded because the mass
balance suggested more cadmium being emitted than was input to the boiler.
Testing of five uncontrolled utility boilers yielded an average cadmium
emission factor of 44.4 1b/1012 Btu. This is in agreement with previously
calculated values shown in Table 4-63. Using the average cadmium content of
bituminous coal (0.91 ppm), the predicted cadmium emissions would be between
55 and 70 1b/1012 Btu. The lower value assumes 80 percent of the total ash
generated is emitted as fly ash (Baig et al., 1981l) and that cadmium is
emitted in the same proportion as total particulates. The upper value
assumes all cadmium present in the coal feed is emitted. Since cadmium is
enriched in the fly ash, the actual value should be between the two.

Since
calculated and measured values are in close agreement, the measured value
(44.4 1b/1012 Btu) may be viewed as a typical cadmium emission factor for
uncontrolled pulverized dry bottom boilers. However, as noted in Section 3,
some coals from the Interior region have much higher than average cadmium

contents, which would result in higher cadmium emissions.
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TABLE 4-56. SUMMARIZED CADMIUM EMISSION FACTORS FOR COAL-FIRED BOILERS

missi o) b 012 Bt by Coal Tvpe

Boiler Type/Control Status Bituminous Lignite Anthracite
Pulverized Dry Bottom:

Uncontrolled 44 .4 48.8 11

Multiclone 31.6 34.8 7.9

ESP 9.2 (5.0-20)2 10 (5.5-22) 2.3 (1.2-5.0)

Scrubber 0.35-1.6 0.38-1.8 0.09-0.40

v W ottom:

Uncontrolled 45-70 49-77 11-17

Multiclone 32-50 35-55 8.0-12

ESP 1.4 1.5 0.35
¢yclone:

Uncontrolled 28 31 7.0

Multiclone 20 22 5.0

ESP 1.3 1.4 0.32

ead oker:

Uncontrolled 21-43 23-47 5.2-11

Multiclone 6.6-30 7.3-33 1.6-7.5

ESP 5.3-11 5.8-12 1.3-2.7

eed oker:

Uncontrolled 43-82 47-90 11-20

Multiclone 30-58 33-64 7.5-14

ESP 11-21 12-23 2.7-5.2

%9.2 is the average bituminous coal emission factor for all boilers tested.
The lower end of the given range is the average factor for 13 utility
boilers tested, and the upper end is the average of 5 industrial boilers

tested.
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TABLE 4-57. SUMMARY OF MEASURED CADMIUM EMISSION FACTORS
FOR BITUMINQUS COAL-FIRED UTILITY BOILERS

Emission Factor Number of
Boiler Type/ (157102 Bew) Boilers  Number of
Control Status Averagea Range Tested Data Points

Pulverized Dry Bottom:

Uncontrolled 44 .4 9.2-167 5 17

Mechanical Ppt. , 161 15-487 2 10

ESP or Mech. Ppt/ESP 5.0 0.22-52.8 13 26

2 ESPs in Series 46 -— 1 1

Scrubber 1.6 1.2-1.95 2 2
Pylverized Wet Bottom:

ESP or Mech. Ppt/ESP 1.4 0.56-2.6 S 5

Scrubber 0.086 —~— 1 1
Cyclone:

Uncontrolled 28 22-35 1 2

ESP ' 1.3 0.35-3.0 5 6

Wet Scrubber 488 — 1 1
Stoker:

Mechanical Ppt. or 13.2 4.2-22.1 2 2

Multiclooe

Fabric Filter 0.33 -—- 1 1

%Each boiler tested was weighted equally in determining this average. An
arithmetic mean value was calculated for each boiler, and them a mean of
these means was calculated.
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TABLE 4-58. SUMMARY OF MEASURED CADMIUM EMISSION FACTORS
FOR SUBBITUMINQUS COAL-FIRED UTILITY BOILERS

Emission Factor

Boiler Type/ Aﬁlbllolz Btu) Number of Number of
Control Status Average Range Boilers Data Points

Pulverized Coal Fired:

ESP <0.40 -—- 1 1

Scrubber 4.0 -— 1 1
Cyclone:

Uncontrolled 4400 — 1 1

Scrubber 490 = 1 1

Unspecified Boiler Type:

MCH/007 ) 4-89



TABLE 4-59. SUMMARY OF MEASURED CADMIUM EMISSION FACTORS
FOR LIGNITE COAL-FIRED UTILITY BOILERS

Emission Factor

Boiler Type/ (lh/1012 Btu) Number of Number of
Control Status Average Range Boilers Data Points
Puiverized Dry Bottom:
Multiclone 15.4 5.1-25.6 2 2
ESP {3.5 -—- 1 1
Cyclone Boilers:
Cyclone 16 -— 1 L
ESP 1.2 -— 1 1
ESP/Scrubber 30.6 1.8-59 1 2
Spreader Stoker:
Multiclone 5.3 -—— 1 1
ESP 1.9 —— 1 1
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TABLE 4-60. SUMMARY OF MEASURED CADMIUM EMISSION FACTORS
FOR BITUMINOUS COAL-FIRED INDUSTRIAL BOQILERS

Emission Factor
Boiler Type/ (1b[1012 Btu) Number of Number of

Control Status Averagea Range Boilers Data Points

Pulverized Dry Bottom:

Uncontrolled 290 ——— 1 1
Multiclome 465 - 1 1
ESP 20 0.49-39 5 5
Multiclone/Scrubber 0.98 —— 1 1

Pulverized Wet Bottom:

Multiclone 1.5 ——— 1 1

Spreader Stoker:

Uncontrolled 21 4.1-65 7 14
Multiclone 0.56 0.19-0.93 2 2
ESP 1.36 0.009-4.2 2 3

Overfeed Stoker:

Uncontrolled 82 12-300 4 s
Economizer/Dust 56 44-67 1 2
Collector

#Each boiler was weighted equally in determining this average. An arithmetic

mean value was calculated for each boiler, and then a mean of these means
was calculated.
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TABLE 4-61.

SUMMARY OF MEASURED CADMIUM EMISSION FACTORS FOR
SUBBITUMINQUS COAL~-FIRED INDUSTRIAL BOILERS

Emission Factor

Boiler Type/ (lb[lO12 Btu) Number of Number of
Control Status Averagea Range Boilers Data Points
Spreader Stoker:
Uncontrolled 99 4.,9-290 2 4
Mechanical Ppt/ESP 9.8 5.7-14 1 2

3gach boiler tested was weighted equally in determining this average. An
arithmetic mean value was calculated for each boiler, and then a mean of
these means was calculated.
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TABLE 4-62.

SUMMARY OF MEASURED CADMIUM EMISSION FACTORS FOR
COMMERCIAL/INSTITUTIONAL COAL-FIRED BOILERS

Emission Factor Number Number

Coal Type/ (lb/lO12 Btu) of of Data

Boiler Type Control Status Average Range Boilers Points
Bituminous Coal:

Pulverized Dry Uncontrolled 12.8 -~ 1 1

Bottom Multiclone/Scrubber 0.35 —— 1 1

Spreader Stoker Mechanical Ppt. 5.6 - 1 1

Overfeed Stoker Mechanical Ppt. 1.2 —— 1 1
Anthracite Coal:

Stoker Uncontrolled 2.4 1.4-3.5 3 3
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Only three sources with multiclones were tested, one of which had
relatively low emissions, while the other two had extremely high emissions.
A meaningful average cannot be derived from these tests. The summarized
emission factor shown on Table 4-56 was derived from the uncontrolled
emission factor (44.4 1b/1012 Btu) by assuming multiclones are 28.9 percent
efficient for cadmium control. This efficiency for cadmium was derived from
test data at the inlet and outlet of a multiclone applied to a combustion
source (see Table 4-64). The multiclone-controlled emission factor
calculated by this method is 31.6 lb/lO12 Btu.

The ranges of measured cadmium emission factors for utility and
industrial pulverized dry bottom boilers were similar, but the average for
industrial boilers was somewhat higher. The data are summarized in
Tables 4-57 and 4-60. The cadmium control efficiencies for the ESPs in the
data base also varied greatly (see Table 4-64). For this reason, the
summary emission factor is expressed as a range, with the average utility
boiler emission factor (5.0 1b/1012 Btu) being the low end of the range and
the average industrial boiler factor (20 1b/1012 Btu) being the high end.
An average of all 18 utility and industrial boilers yields a cadmium
emission factor of 9.2 1b/1012 Btu.

A utility boiler and a commercial/institutional boiler, both controlled
with scrubbers, were tested and found to have cadmium emissions of 1.6 and
0.35 1b/1012 Btu, respectively. These measurements were used to derive the

range of summarized cadmium factors shown in Table 4-56.

Bituminous Coal-Fired Pulverized Wet Bottom Boilers. Based on tests of five
boilers, ESP-controlled wet bottom boilers may emit less cadmium than
ESP-controlled dry bottom boilers as shown in Table 4-57. The cadmium
contents of the coals burned during these tests were not reported. Based on
these tests, the summary emission factor for ESP-controlled pulverized wet
bottom boilers is 1.4 1b/1012 Btu.

Since no tests of uncontrolled or multiclone-controlled wet bottom
boilers were reported in the literature, emission factors were calculated

based on cadmium levels in coal. Based on an average cadmium content of

0.91 ppm for bituminous coal, uncontrolled cadmium emissions would range

MCH/007 - 4-97



TABLE

4-64. CADMIUM REMOVAL EFFICIENCY OF CONTROLS?

Percent Control Number of Number of
Control Device Averageb Range Boilers Data Polnts
ESP 74.6 18.3-99.7 8 21
Mechanical Ppt. 28.9 24.3-37.5 1 3
ESP/Scrubber 67 >54->67 1 2
2 ESPs in Series 90.5 --- l 1
Scrubber 94 .4 88.9-99.8 2 2

#These control efficiencies represent measured control levels reported

in the literature.

combustion sources.

b

Each emission test weighted equally.
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They may or may not be indicative of the long-term
performance of these types of controls on cadmium emissions from

The average values should not be comnstrued to
represent an EPA-recommended efficiency level for these devices.



from 45 to 70 1b/1012 Btu. The lower end of this range assumes that

65 percent of total ash is emitted as fly ash (Baig et al., 1981) and thac
cadmium is emitted in the same proportion as total particulates. The upper
end of the range assumes all cadmium present in the coal feed is emitted.
Since cadmium is preferentially concentrated in the fly ash, the actual
value should be between these two.

The range of emission factors for multiclone-controlled boilers is
derived from the uncontrolled emission factors by assuming 28.9 percent
cadmium control (see Table 4-64).

- d one ilers. Based on the testing of five
sources, average cadmium emissions for bituminous coal-fired cyclone boilers
controlled by ESPs are estimated to be 1.3 1b/1012 Btu. The lower cadmium
emissions for cyclone boilers versus pulverized coal-fired boilers may be
due to the fact that less fly ash is emitted from cyclone boilers (Baig
et al., 1981).

The only uncontrolled boiler tested emitted 28 1b/1012 Btu. This is
the summarized emission factor shown in Table 4-56. 1t is supported by
calculations. Calculated values, which range from a minimum of 9.4 to a
maximum of 70 1b/1012 Btu, support this value. The minimum factor is
calculated assuming cadmium is emitted in the same proportion as total
particulates and that 13.5 percent of the total ash is emitted as fly ash
(Baig et al, 1981). The maximum value is calculated assuming all cadmium in
the coal is emitted. The actual value should fall between these two
extremes.

Assuming multiclones have a cadmium removal efficiency of 28.9 percent
(Table 4-64), the average emission factor of 20 1b/1012 Btu can be derived

for cyclone boilers controlled with multiclones.

Bituminous Coal-Fired Stoker Boilers. Test results for eleven uncontrolled
industrial stoker boilers were identified. Although the ranges of measured
emission factors overlap, the average cadmium emission factor for the
overfeed stokers was higher than the average for spreader stokers (see

Table 4-60). The combined average for all eleven stokers (both spreader and
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overfeed) is 43 1b/1012 Btu. Summarized typical emission factors are

presented as a range. For spreader stokers, the range is from

21 1b/10 Btu (the average for seven spreader stokers tested) to

43 1b/1012 Btu (the average for all stokers). For overfeed stokers the
range is 43 1b/1012 Btu to 82 lb/lO12 Btu (82 1b/1012 Btu is the average
emission factor for the four overfeed stokers tested). The average emission
factor for multiclone-controlled spreader stokers is 6.6 lb/lO12 Btu based
on tests of two utility boilers, two industrial boilers, and one commercial
boiler. This factor is somewhat lower than expected. Based on average
uncontrolled emissions of 21 1b/1012 Btu and a control efficiency of

28.9 percent for multiclones (Table 4-64), the calculated emission factor
would be between 15 and 30 1b/1012 Btu. The summary emission factor is,
therefore, presented as a range from 6.6 to 30 1b/1012 Bru.

There is a lack of test data on multiclone-controlled overfeed stokers.
Based on uncontrolled emission factors and 28.9 percent cadmium control, the
range of cadmium emission factors for multiclone-controlled overfeed stokers
would be 30 to 58 1b/10%% Beu.

Assuming ESPs result in 74.6 percent cadmium emissions control (see
Table 4-64), typical cadmium emission factors for ESP-controlled spreader
stokers would range from 5.3 to 11 1b/1012 Btu, This is in agreement with
the measured emission factor for an ESP-controlled spreader stoker fired with
subbituminous coal shown in Table 4-61. The calculated emission factor for

overfeed stokers controlled with ESPs ranges from 11 to 21 1b/1012 Btu.

Subbjtuminous Coal-Fired Roilers. The available emission factor data for
subbituminous coal-fired boilers are presented in Tables 4-58 and 4-61.
There are insufficient data to derive summary emission factors. In the
literature, subbituminous coal often is not differentiated from bituminous
coal. As discussed in Section 3, the average cadmium content of
subbituminous coal is less than the average cadmium content of bituminous
coals, so emission factors for subbituminous coal combustion would generally
be expected to be below the emission factors for bituminous coal. The coal
feed for the utility cyclone boiler test summarized in Table 4-58 had an
abnormally high cadmium level (24 ppm versus an average of 0.38 ppm) which

may account for the large measured cadmium emission factors.
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Lignite and Anthracjte Coal-Fired Boilers. All available cadmium test data

for lignite coal-fired boilers are summarized in Table 4-59. The available
data for anthracite coal-fired boilers are presented in Table 4-62. Since
there are not enough measured data to characterize emissions from lignite
and anthracite combustion, typical emission factors are calculated from the
summary bituminous coal emission factors. For these calculations, it is
assumed that for similar boiler designs and control techniques, the main
difference in emissions is due to the cadmium content of the three types of
coal. Based on typical cadmium contents of the three coals shown in

Table 3-13 and heating values in Appendix B, cadmium emission factors for
lignite coals would be higher than those for bituminous coal by a factor of
1.10. Anthracite coal emission factors would be lower by a factor of 0.249.
The calculated summary emission factors for anthracite and lignite coals are
presented in Table 4-56. The measured cadmium emission factors for
lignite-fired boilers shown in Table 4-59 are generally similar to the

calculated emission factors.

Chromium Emission Factors-

Table 4-65 shows chromium emission factors for boilers in the utility,
industrial, and commercial/institutional sectors. These values are
calculated from the average chromium content of bituminous, lignite, and
anthracite coal. Maximum and minimum uncontrolled emission factors are

calculated using the equations:

6
EF = C/H x 10", and

6
EF_, = (C/H)(£) x 10°,

Where:  EF = emission factor (1b/10%2 Btu)
C = concentration of chromium in coal (ppm)
H = heating value of coal (Btu/lb)

f = fraction of coal ash emitted as fly ash
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TABLE 4-65. SUMMARIZED CHROMIUM EMISSION FACTORS FOR COAL-FIRED BOILERS

o 12 oal Type
Boiler Type/Control Status Bituminous Lignite Anthracite
Pulverized Dry Bottom:
Uncontrolled 1250-1570 1500-1880 2970-3720
Multiclone 721-906 866-1080 1710-2150
ESP 356-447 428-536 846-1060
Scrubber 102-129 123-154 244-305
Fabric Filter 0.0034%
ulve W Bottom:
Uncontrolled 1020-1570 1220-1880 2420-3720
Multiclone 588-906 704-1080 1400-2150
ESP 291-447 348-536 690-1060
Scrubber 84-129 100-154 198-305
Cyclone:
Uncontrolled 212-1570 253-1880 502-3720
Multiclone 122-906 146-1080 290-2150
ESP 60-447 72-536 143-1060
Scrubber 17-129 21-154 41-305
Stoker:
Uncontrolled 942-1570 1130-1880 2230-3720
Multiclone 564-906 767-1080 1290-2150
ESP 268-447 379-536 636-1060
2 Mechanical Ppt in series 1.5-5.Sb

%This value is for hexavalent chromiumv(Cr+6) and is applicable to utility

boilers.

bThese values are for hexavalent chromium (Cr+6) and are applicable to
industrial and commercial boilers.
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The minimum value assumes that chromium is emitted in the same proportion as
total particulates. The maximum emission factor assumes all chromium in the
coal feed is emitted. The values substituted into the equations are shown
in Tables 4-66 and 4-67. As described in Section 3, some studies have shown
enrichment of chromium in the £ly ash. If this occurs, the actual emission
factor would be between the minimum and maximum calculated values. Observed
enrichment behavior varies between studies and may be a function of coal
type, boiler design, and control technology. In general, there are not
enough data to develop reliable quantitative enrichment ratios. Therefore,
chromium emission factors cannot be calculated precisely and are expressed
as a range.

Controlled emission factors are calculated from the uncontrolled
emission factors using the control percentages in Table 4-68. These were
derived from measurements of control device efficiency for chromium reported
in the literature reviewed. Tests where the mass balance around the control
device was clearly in error were excluded from the calculations of typical
chromium control efficiencies. The efficiencies shown in Table 4-68 may be
bjased low due to contamination fr&m sampling equipment corrosion. Emission
factors calculated using these efficiencies probably represent, in most
cases, upper bound estimates.

Measured chromium emission factors are summarized in Tables 4-69
through 4-74 and in Appendix C (Tables C-30 through C-39). In general, the
measured values are much higher than the maximum calculated values. The
discrepancy is probably due to corrosion of the sampling train components,
which would result in artificially high measured chromium emission factors
(Baig et al., 1981). Similarly, control device efficiencies for chromium
would be artificially reduced below what might actually be occurring.

For all boilers where chromium content of the coal was reported, the
coal contained between 10 and 40 ppm chromium, with most tests being near
the average value for bituminous coal (20.5 ppm). Therefore, high measured
chromium emission factors were not caused by the combustion of high-chromium
coals. Some references do not contain enough information to perform mass
balance calculations; however, mass balances for several of the boilers
indicate more chromium being emitted than was present in the coal feed.
Corrosion of sampling train components would explain these results.
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TABLE 4-66. VALUES USED IN CALCULATION OF UNCONTROLLED
CHROMIUM EMISSION FACTORS

Concentration of

Chromium in a Heating Valge,
Coal Type Coal, ppm (C) Btu/lb (H)
Bituminous 20.5 13,077
Lignite 13.5 7,194
Anthracite 47.2 12,700

#Source: Table 3-19.
Source: Appendix B.

TABLE 4-67. FRACTION OF COAL ASH EMITTED AS
FLY ASH (F) BY BOILER TYPE

Boiler Type Percent Fly Ash ()
Pulverized Dry Bottom 80
Pulverized Wet Bottom 65
Cyclone 13.5
Stoker 60

®These factors are derived from studies of large and intermediate size
bituminous coal-fired boilers (Baig et al., 1981; Shih et al.,, 1980b).
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TABLE 4-68. CHROMIUM REMOVAL EFFICIENCY OF CONTROLS?

__ Percent Control Number of Number of

Control Device Averageb Range Boilers Data Points
Mechanical Ppt. 42.3 38.9-49.0 1 3
ESP or Mech. Ppt/ESP 71.5 46.7-98.6 5 9
2 ESPs in Series 93.7 82.4-99.4 1 4
ESP/Scrubber 92.9 --- 1 1
Scrubber 91.8 90.0-95.2 2 3
2 Multicyclones in series 50.0° ___ 1 3
Fabric Filter 99.1°¢ 1 3

#These control efficiencies represent measured control levels reported

in the literature. They may or may not be indicative of the long-term
performance of these types of controls on chromium emissions*from
combustion sources. Although it can not be unequivocally determined with
the available data, these control device efficiencies may be biased low
due to contamination from sampling equipment. Emission factors calculated
using these efficiencies probably represent, in most cases, upper bound
estimates. The average values should not be construed to represent an
EPA-recommended efficiency level for these devices.

?Each emission test weighted equally in determining aﬁerage.

cThese control efficiencies are for hexavalent chromium (Cr+6); the
remaining values are for total chromium.
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TABLE 4-69.

SUMMARY OF MEASURED CHROMIUM EMISSION FACTORS
FOR BITUMINOUS COAL-FIRED UTILITY BOILERS

Emission Factor
(1b/1012 Bru)

Boiler Type/ Number of Number of
Control Status Averagea Range Boilers Data Points

Pulverized Dry Bottom:

Uncontrolled 1880 244-7900 4 11

Mechanical Ppt. 8980 510-29,700 2 10

ESP or Mech. Ppt/ESP 2860 1.6-7970 12 20

2 ESPs in Series 740 {74-1740 1 4

Scrubber 21.3 4.5-290 3 5

ESP/Scrubber 17.3 - . 1 1

Fabric Filter 0.0034° _ 1 3
Pulverized Wet Bottom:

ESP or Mech. Ppt/ESP 1770 86-3320 5 5

Scrubber 0.60 -— 1 1
Cyclone:

Uncontrolled 1150 1000-1300 1 2

ESP 1810 18-5340 5 6

Scrubber 107 -— 1 1
Stoker:

Mech. Ppt or Multiclome 1440 455-2420 2 2

Fabric Filter 153 —— 1 1

%Each boiler tested was weighted equally in determining this average. An
arithmetic mean value was calculated for each boiler, and then a mean of
these means was calculated. '

bThis factor is for hexavalent chromium (Cr+6).

reported in the reference, but the range of values was not,
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TABLE 4-70. SUMMARY OF MEASURED CHROMIUM EMISSION FACTORS
FOR SUBBITUMINOUS COAL-FIRED UTILITY BOILERS

Emission Factor
Boiler Type/ (;b11012 Btu) Number of Number of

Control Status Averagea Range Boilers Data Points

Pulverized Coal Fired:

ESP 140 -— 1 1

Scrubber 390 -— 1 1
Cyclone:

Uncontrolled 1100 -— 1 1

Scrubber 100 —— 1 1

Unspecified Boiler Type:

ESP 18.4 8.8~28 2 2

3Each boiler tested was weighted equally in determining this average. An
arithmetic mean value was calculated for each boiler, and then a mean of
these means was calculated.
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TABLE 4-71. SUMMARY OF MEASURED CHROMIUM EMISSION FACTORS
FOR LIGNITE COAL-FIRED UTILITY BOILERS

Emission Factor

Boiler Type/ (1b11012 Btu) Number of Number of
Control Status Average Range Boilers Data Points

Pulverized Dry Bottom:

Multiclone 70.9 67.4-74.4 2 2

ESP 20.0 — 1 1
Cyclone Boiler:

Cyclone 1000 -— 1 1

ESP 7.7 -— 1 1

ESP/Scrubber 4.6 3.1-5.9 1 2
Spreader Stoker: .

Multiclone 30.2 -— 1 1

ESP <5.3 ' -— 1 1
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TABLE 4-72. SUMMARY OF MEASURED CHROMIUM EMISSION FACTORS
FOR BITUMINOUS COAL-FIRED INDUSTRIAL BOILERS

Emission Factor

Boiler Type/ (lb/lO12 Btu) Number of Number of
Control Status Averagea Range Boilers Data Points
Pulve d ttom:
Multiclone 2,560 .- 1 1
ESP ) 1,130 5.8-1,500 4 4
Multiclone/Scrubber 126 “-- 1 1
ulv W om:
Multiclone 12.3 .- 1 1
Spreadey Stokex:
Uncontrolled 3,880 30-8,400 7 13
Multiclone 194 62-325 2 2
Multiclone/ESP 16.6 16-17.2 2 2
2 Mechanical b
Collectors in series 1.5 - 1 3
Qverfeed Stoker:
Uncontrolled 9,380 1,400-49,000 4 5
Economizer/Dust 15,400 8,800-22,000 1 2

Collector

®Each boiler was weighted equally in determining the average. An arithmetic

mean value was calculated for each boiler, and then a mean of these means
was calculated.

bThis factor is for hexavalent chromium (Cr+6). The average emission factor

was given in the reference, but the range of values was not.
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TABLE 4-73.

SUMMARY OF CHROMIUM EMISSION FACTORS FOR
SUBBITUMINOUS COAL-FIRED INDUSTRIAL BOILERS

Emission Factor

Boiler Type/ (1b[106 Btu) Number of Number of
Control Status Averagea Range Boilers Data Points
Spreader Stoker:
Uncontrolled 1750 280~-3500 2 4
Mechanical Ppt/ESP 68 15-120 2 2

3Each boiler tested was weighted equally in determining this average. An
arithmetic mean value was calculated for each boiler, and thenr a mean of
these means was calculated.

MCH/007

4-110



TABLE 4-74. SUMMARY OF MEASURED CHROMIUM EMISSION FACTORS
FOR COMMERCIAL/INSTITUTIONAL COAL-FIRED BOILERS

Emission Factor Number Number

Coal Type/ §1b[1012 Bru) of of Data
Boiler Type Control Status Average Range Boilers Points

Bituminous Coal:

Pulverized Dry Uncontrolled 1920 —— 1 1
Bottom Multiclone/Scrubber 18,1  --- 1 1
Underfeed Stoker Uncontrolled 18.8 —— 1 1
Spreader Stoker Mechanical Ppt. 100 —— 1 1
Overfeed Stoker Mechanical Ppt. 1840 ——— 1 1

Anthracite Coal:

Stoker Uncontrolled 875 1240-1510 3 3
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A few emission factors were available for estimating the emissions of
hexavalent chromium from coal-fired boilers. The data were based on test
results of a pulverized coal boiler (fabric filter control) and a
spreader-stoker boiler controlled by two mechanical collectors in series
(Ajax and Cuffe, 1985). For utility boilers and industrial boilers, the
measured emission factors were used (Tables 4-65, 4-68, 4-69, 4-72, and
4-75). For commercial boilers, the ratio of hexavalent chromium to total
chromium emissions (obtained from the test results) was applied to an
existing total chromium emission factor. These emission factors represent a

limited number of actual data points, but are presented to provide the most
data possible.

Copper Emission Factors-

.

Table 4-76 presents copper emission factors applicable to utility,
industrial, and commercial/institutional boilers. Where possible, these
were derived from emissions test data. Tables 4-77 through 4-82 summarize
measured emission factors reported in the/literature. For each combination
of combustion sector/coal type/boiler design/control technology, the range
and average emission factors are presented. The number of boilers tested
and number of test runs are also included on the tables. Information on
each copper emissions test, including references, are contained in

Appendix C, Tables C-40 through C-49.

tuminous Coal- d verized ttom Bojlers. Seven uncontrolled
pulverized dry bottom boilers were tested: 5 utility boilers, 1 industrial
boiler, and 1 commercial boiler. Results are summarized in Tables 4-77,
4-80, and 4-82. The industrial boiler had a higher copper emission factor
than any of the other boilers, probably due to the fact that the coal it
consumed had more than twice the average copper content of bituminous coals.
The average emission factor for the other six boilers is 848 lb/lo12 Btu.
Emission factors calculated in other prior studies and presented in
Table 4-83 are higher than this measured value; however, the data base for
the current study indicates that previous calculations were based on overly

conservative (high) estimates of copper content in coal. Bituminous coal
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TABLE 4-76.

SUMMARIZED COPPER EMISSION FACTORS FOR COAL-FIRED BOILERS

to 12 tu) by Coal Type

Boiler Type/Control Status Bituminous Lignite Anthracite
Pulverized D Bottom:

Uncontrolled 848 1490 927

Multiclone 503 884 550

ESP 194 341 212

Scrubber 24 42 26

v ed We ottom:

Uncontrolled 573-848 1010-1490 626-927

Multiclone 340-503 597-884 372-550

ESP 86 151 94
Cyclone:

Uncontrolled 147-848 258-1490 161-927

Multiclone 87-503 153-884 95-550

ESP 22 39 24
Spreader Stoker:

Uncontrolled 448-987 787-1730 490-1080

Multiclone 265-590 465-1040 290-645

ESP 67-148 118-260 73-162

e ed okex:

Uncontrolled 987-1360 1730-2390 1080-1490

Multiclone 590-806 1040-1420 645-881

ESP 148-204 260-358 162-223
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TABLE 4-77.

SUMMARY OF MEASURED COPPER EMISSION FACTORS

FOR BITUMINOUS COAL-FIRED UTILITY BOILERS

Emission Factor
(16/10%2 Bry)

Boiler Type/ Number of Number of
Control Status Averagea Range Boilers Data Points
Pulverized Dry Bottom:
Uncontrolled 735 380-1500 5 19
Mechanical Ppt. 1490 210-3140 2 10
ESP or Mech. Ppt/ESP 205 34-974 7 24
Scrubber 24 10-54 2 3
2 ESPs in Series 34.5 1.6-71 1 5
ESP/Scrubber 14.1 —— 1 1
Pulverized Wet Bottom: '
ESP or Mech. Ppt/ESP 85.6 12.3-225 - 5 5
Scrubber 2.3 — 1 1
Cyclone:
Uncontrolled 980 610-1350 1 2
ESP 22 0.05-44.2 5 6
Stoker:
Mechanical Ppt, 265 188-342 2 2
Fabric Filter 5.8 -— 1 1

%Each boiler tested was weighted equally in determining this average. An
arithmetic mean value was calculated for each boiler, and then a mean of
these means was calculated.
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TABLE 4-78.

SUMMARY OF COPPER EMISSION FACTORS FOR

SUBBITUMINOUS COAL~FIRED UTILITY BOILERS

Emission Factor
(1b/10'2 Bew)

Boiler Type/ Number of Number of
Control Status Average Range Boilers Data Points
Pulverized Coal-Fired:
ESP 30 —— 1 1
Scrubber 29 -— 1 1
Cyclone:
Uncontrolled 1000 -— 1 1
Scrubber 170 -— 1 1
Unspecified Boiler Type:
ESP 66 50-82 2 2
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TABLE 4-79.

SUMMARY OF COPPER EMISSION FACTORS FOR
UTILITY BOILERS FIRED WITH LIGNITE COAL

Emission Factor
(16/10%2 Bru)

Boiler Type/ Number of Number of
Control Status Average Range Boilers Data Points
Pulverized Dry Bottom:
Multiclone 286 195-376 2 2
ESP {69.7 — 1 1
Cyclone Boiler:
Cyclone 480 B 1 1
ESP 30.2 —— 1 1
Spreader Stoker:
Multiclone 193 - 1 1
ESP 46.5 -— 1 1
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TABLE 4-80.

SUMMARY OF MEASURED COPPER EMISSION FACTORS FOR
BITUMINOUS COAL-FIRED INDUSTRIAL BOILERS

Emission Facﬁor
(15/10'2 Bey)

Boiler Type/ Number of  Number of
Control Status Averagea Range Boilers Data Points
Pulverized Dry Bottom:
Uncoantrolled 3150 — 1 1
Multiclone 9530 -— 1 1
ESP 155 80.6-230 2 2
Multiclone/Scrubber 19.5 — 1 1
Pulverized Wet Bottom:
Multiclone 45.1 — 1 1
Spreader Sto '
Uncontrolled 448 5.2-1100 7 14
Multicloue 790 411-1170 2 2
ESP 171 0.04-309 2 3
Qverfeed Stoker:
Uncontrolled 1930 200-3500 4 5
Economizer/Dust Collector 4550 4200-4900 1 2

3Each boiler was weighted equally in determining this average. An
arithmetic mean value was calculated for each boiler, and then a mean of
these means was calculated.
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TABLE 4-81.

SUMMARY OF MEASURED COPPER EMISSION FACTORS
FOR SUBBITUMINOUS COAL-FIRED UTILITY BOILERS

Emission Factor

Boiler Type/ (1b/10}2 Bew) Number of Number of
Control Status Averagea Range Boilers Data Points
Spreader Stoker:
Uncontrolled 2070 280-3000 2 4
Mechanical Ppt/ESP 46 18-74 1 2

8Each boiler tested was weighted equally in determining this average. An
arithmetic mean was calculated for each boiler, and then a mean of these

means was calculated.

TABLE 4-82. SUMMARY OF MEASURED COPPER EMISSION FACTORS FOR
COMMERCIAL/INSTITUTIONAL COAL-FIRED BOILERS
Emission Factor Number Number
Coal Type/ (1b/10%2 Bru) of of Data
Boiler Type Control Status Average Range Boilers Points
Bituminous Coal:
Pulverized Dry Uncontrolled 1410 — 1 1
Bottom Multiclone/ 28 -—- 1 1
Scrubber
Underfeed Stoker Uncontrolled 5.1 —— 1 1
Spreader Stoker Mechanical Ppt. 184 —— 1 1
Overfeed Stoker Mechanical Ppt. 153 - 1 1
Anthracite Coal:
Stoker Uncontrolled 241 232-723 3 3
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contains an average of 17.8 ppm copper (see Section 3). Assuming all copper
in the coal feed is emicted, the maximum emission factor for a boiler
burning typical coal would be 1,360 1b/1012 Btu. Since not all copper would
be emitted, this calculated value is in fair agreement with the average
measured emission factor of 848§ 1b/1012 Btu,

A meaningful average emission factor could not be derived from the
three data points on pulverized dry bottom boilers controlled with
multiclones. Testing of one boiler reported relatively low emissions
(210-290 1b/10'2 Btu) while tests of the other two showed emission factors
greater than those for any of the uncontrolled boilers. The coal consumed
in one of thege boilers had four times the average copﬁer concentration.
Since a representative average could not be derived from test data, the
sumnary emission factor shown in Table 4-76 was calculated from the summary
uncontrolled emission factor. Based on test data summarized in Table 4-84,
it was assumed that multiclones are 40.7 percent efficient for copper
removal. The calculated emission factor for pulverized dry bottom boilers
controlled with multiclones is 503 1b/1012 Btu.

Nine pulverized dry bottom boilers controlled with ESPs have been
tested (see Tables 4-77 and 4-80). There is good agreement between
measurements at utility and industrial boilers. The average emission
factor, weighting each boiler equally, is 194 1b/1012 Btu. Four boilers
controlled with scrubbers in the utility, industrial, and commercial sectors
have been tested. From these tests, the summary average copper emission

factor is 24 1b/1012 Btu for scrubber-controlled units.

u - v v t . Testing of five
pulverized wet bottom boilers controlled with ESPs resulted in an average
copper emission factor of 86 1b/1012 Bru, as shown in Table 4-77. This
factor is somewhat lower than that for pulverized dry bottom boilers. This
may be due to different levels of copper in the coal feed or to the effects
of boiler design. Generally, pulverized wet bottom boilers emit less fly
ash than dry bottom boilers.

‘'There are no test data for uncontrolled pulverized wet bottom boilers.
Through a review of the literature, it was found that ESPs are about

85 percent efficient for copper removal from combustion source emissions
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TABLE 4-84. COPPER REMOVAL EFFICIENCY OF CONTROLS?

Percent Control Number of Number of

Control Device Average Range Boilers Data Points
Mechanical Ppt. 40.7 35.6-44.7 1 3
ESP 85.0 28.6-99.2 9 29
ESP/Scrubber 97 .4 ~—— 1 1
2 ESPs in Series 98.7 97 .4-99.94 1 5
Scrubber 91.4 83.0-99.8 2 2

4These control efficiencies represent measured control levels reported

in the literature. They may or may not be indicative of the long-term
performance of these types of controls on copper emissions from combustion
sources. The average values should not be construed to represent an
EPA-recommended efficiency level for these devices.
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(Table 4-84). Using this percentage and an ESP-controlled emission factor
of 86 1b/1012 Btu, the uncontrolled copper emission factor for wet b;ttom
boilers would be 573 lb/lo12 Btu. A realistic upper estimate for copper
from wet bottom units would be represented by the uncontrolled copper
emission factor for pulverized dry bottom boilers (848 1b/1012 Btu). This
range is presented in Table 4-76.

The summary emission factor for wet bottom boilers controlled with
multiclones is derived from the uncontrolled emission factor by assuming

40.7 percent copper control (see Table 4-84). The resulting emission factor

range is 340 to 503 1b/1012 Btu.

The only tested pulverized wet bottom boiler, controlled by a scrubber,
vas found to emit 2.3 1b/10'2 Btu. As shown in Table 4-84, scrubbers in the
data base controlled copper with from 83 to 99.8 percent efficiency. Using
an average control efficiency of 91.4 percent and the uncontrolled emission

range of 573 to 848 1b/1012 Btu, the calculated copper emission factor for

scrubber control would range from 49 to 71 1b/1012 Btu, However, given that

some scrubbers may be 99.8 percent efficient, the measured emission factor

(2.3 1671012 Btu) is plausible.

Bituminous Coal-Fired Cyclone Boilers. The summary emission factor for
cyclone boilers controlled with ESPs, 22 lb/1012 Btu, is based on tests of
five boilers. These tests are summarized in Table 4-77. Since cyclone
boilers generate less fly ash than pulverized coal-fired boilers, it is
reasonable that measured‘emission factors are lower.

Due to a lack of data, uncontrolled emission factors are calculated
from the ESP-controlled factors. A control efficiency of 85 percent is
assumed for ESPs, based on test data in Table 4-84. The uncontrolled
emission factor calculated using this assumption is 147 1b/1012 Btu. Based
on the average copper content of bituminous coal (17.8 ppm) and on the
assumption that 13.5 percent of total ash from cyclone boilers is emitted as
fly ash, the calculated minimum emission factor would be 184 lb/lO12 Btu.
This assumes copper is emitted in the same proportion as total particulates.
In reality, copper is often enriched in the fly ash. A realistic upper

estimate of uncontrolled copper emissions from cyclone boilers would be the

MCH/007 i 4-126



emission factor for pulverized coal-fired boilers (848 1b/1012 Btu).

Therefore, a range of emission factors (147 to 848 1b/1012

in Table 4-76.

Btu) is presented

Assuming 40.7 percent of the copper present in an uncontrolled emission
stream can be controlled with a multiclone, the emission factor for

multiclone-controlled cyclone boilers would range from 87 to 503 1b/1012 Btu.

Bituminous Coal-Fired Stoker Beilers. Eleven uncontrolled stoker boilers

(seven spreader stokers and four overfeed stokers) were tested. Results are
sumpmarized in Table 4-80. The average emission factor for spreader stokers

is 448 1b/1012 Btu. The average for all eleven stokers, weighting each

boiler equally, is 987 1b/10'2 Beu.

The average measured uncontrolled overfeed stoker emission factor,
1,930 1b/1012 Btu, is higher than would be expected given the typical levels
of copper in coal. The typical copper content of bituminous coal is
17.8 ppm (Table 3-24). Assuming all of this is emitted, the maximum
emission factor would be 1,360 1b/1012 Btu. The summary uncontrolled
emission factor for overfeed stokers is presented as a range, from
987 1b/1012 Btu (the measured average for all stokers) to 1,360 1b/1012 Btu
(the calculated maximum emission factor for combustion of typical bituminous
coal). The measured average emissions level of 1,930 1b/1012 Btu is not
considered representative.

The average measured emission factor for five utility, industrial, and
commercial/institutional spreader stokers controlled with multiclones is
4358 1b/1012 Btu. This is within the range that would be calculated from the
uncontrolled emission factor by assuming 40.7 percent copper control
(Table 4-84). The calculated range is 265 to 590 1b/1012 Btu. The
calculated range for multiclone-ceontrolled overfeed stokers is 590 to
806 1b/10%% Beu.

Tests of two spreader stokers controlled with ESPs are summarized in
Table 4-80. There was a wide variation in measured emission factors.
Testing of nine combustion sources controlled with ESPs showed that ESPs are
about 85 percent efficient for copper removal. Applying this efficiency to

the uncontrolled emission factors, ESP-controlled spreader stokers would
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emit from 67 to 148 1b/1012 Btu. Overfeed stokers would emit from 148 to

206 1b/10*2 Beu.

Subbituminous Coal-Fired Bojlers. The available emissions test data for
subbituminous coal combustion are presented in Tables 4-78 and 4-8l1. Many
studies do not distinguish between bituminous and subbituminous coal.
Emission factors specific to subbituminous coal are not presented, but based
on the typical copper content of subbituminous and bituminous coals,

emission factors for the two types of coal should be similar.

Lignite and Anthracite Coal-Fired Boilers. Emission factors for
lignite-fired boilers are summarized in Table 4-79. Testing of three
anthracite-fired stoker boilers is summarized in Table 4-82. There are too
few data to derive representative emission factors. Emission factors for
lignite and anthracite combustion may be derived from the summarized
bituminous coal emission factors presented in Table 4-76. The bituminous
coal emission factors are multiplied by ratios to account for the differing
copper contents and heating values of the three types of coal. Typical
copper contents of the coals are shown in Table 3-24, and heating values are
summarized in Appendix B. The calculated emission factors are presented in
Table 4-76. Calculated lignite and anthracite copper emission factors are
higher than bituminous coal emission factors.

Mercury Emission Factors-.

Mercury is the most volatile of the trace elements studied (see
Section 3). Essentially 100 percent of the mercury contained in the coal
feed is volatilized during combustion and emitted to the atmosphere (Baig
et al., 1981). Much of the mercury is emitted in vapor form, although some
mercury condenses in the stack and is associated with the fine particulate
fractions of the fly ash (Klein et al., 1975b). The literature indicates
that the majority of mercury is emitted in the vapor phase, however, the
proportion of mercury measured in particulate versus vapor phase varies
greatly between tests, and often mass balances do not close well. The form

of mercury present in the flue gas is dependent on temperature and on fly
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ash characteristics. Some literature references also indicate that there
have been large margins of error in sample collection and analysis of vapor
phase mercury. These factors account for some of the differences in
measured mercury emissions between tests.

The distribution of mercury between the vapor and particulate phases
determines whether particulate control devices will be effective for mercury
control. The available test data indicated in some tests that ESPs resulted
in an average of about 50 percent mercury control; however, some tests
indicated no, or very little, reduction in mercury emissions. Many of the
tests reporting higher mercury control efficiencies for ESPs are suspect due
to mass balance closurxre of less than 50 percent around the boiler and/or
control device. It is likely that mercury in the vapor phase escaped
detection in some of these tests. There were no test data on the mercury
removal efficiency of multiclones, but since multiclones are less efficient
than ESPs at small particle collection, very little mercury control would be
expected. Two scrubbers tested resulted in 54 and 94 percent mercury
control. Scrubbing reduces stack gas temperatures from about 150°¢ (300°F)
to about 52°C (125°F), causing mercury to condense and be removed more
effectively (Baig et al., 1981).

Summary mercury emission factors are presented in. Table 4-85. These
are derived from measured emissions tests and from calculations based on the
mercury content of typical coals. Tests of mercury emissions are summarized
in Tables 4-86 through 4-91, and previously calculated emission factors are
summarized in Table 4-92. Appendix C (Tables C-50 through C-59) contains

more information on mercury emissions test results.

u. - o) . Bituminous coal contains an average of about
©0.21 ppm mercury. Assuming all mercury is volatilized during combustion and
emitted, an uncontrolled emission factor of 16 1b/1012 Btu would be
expected. Since mercury is highly volatile and leaves the boiler in vapor
phase, boiler design would have little effect on the expected mercury
emissions. As discussed previously, multiclones would not significantly
reduce mercury emissions. Thus the 16 1b/1012 Btu emission factor would

apply to multiclone-controlled as well as uncontrolled boilers. As
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TABLE 4-85. SUMMARIZED MERCURY EMISSION FACTORS FOR COAL-FIRED BOILERS

s acto b 12 U oa e
Boiler Type/Control Status Bituminous Lignite Anthracice
All Types of Boilers’:
Uncontrolled 16 21 18
Multiclone 16 21 18
ESP 8-16 10-21 9-18
Scrubber 0.96-7.4 1.2-9.6 1.1-8.3

aBoiler types include pulverized coal-fired, cyclone-fired, and stoker

boilers.
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TABLE 4-86. SUMMARY OF MEASURED MERCURY EMISSION FACTORS

FOR BITUMINOUS COAL-FIRED UTILITY BOILERS

Emission Factor
(1b/10'2 Bew)

Boiler Type Number of Number of
Control Status Averagea Range Boilers Dsta Points

Pulverized Dry Bottom:

Uncontrolled 35 3.9-308 3 12

Mechanical Ppt. 8.5 3.7-21.2 1 7

ESP or Mech. Ppt/ESP 11.0 0.41-22.3 13 42

2 ESPs in Series 0.20 0.011-0.56 1 5

Scrubber NDb - 1 1
Pulverized Wet Bottom:

ESP or Mech. Ppt/ESP 4.7 2.6-6.3 5 5

Scrubber 0.16 — 1 1
Cyclone:

Uncontrolled 10 -— 1 1

ESP 8.5 3.95-17.7 5 5

Scrubber 4.9 — 1 1
Stoker:

Mech. Ppt. or Multiclone 14.2 2.5-26 2 2

Fabric Filter 4.6 —— 1 1

3Each boiler tested was weighted equally in determining this average. An
arithmetic mean value was calculated for each boiler and. then a mean of

these means was calculated.

bNot detectable.
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TABLE 4-87. SUMMARY OF MEASURED MERCURY EMISSION FACTORS
FOR SUBBITUMINOUS COAL-FIRED UTILITY BOILERS

Emission Factor

Boiler Type/ (1b/1012 Btu) Number of Number of

Control Status Averagea Range Boilers Data Points

Pulverized Coal Fired:

ESP 4.1 —-— 1 1

Scrubber 11 —— 1 1
Cyclone:

Uncontrolled 81 — 1 1

Scrubber 4.9 -—— 1 1

Unspecified Boiler Type:

2Each boiler tested was weighted equally in determining this average. An
arithmetic mean value was calculated for each boiler, and then a mean of
these means was calculated.
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TABLE 4-88. SUMMARY OF MEASURED MERCURY EMISSION FACTORS
FOR LIGNITE COAL-FIRED UTILITY BOILERS

Emission Factor

Boiler Type/ (1b/1012 Btu) Number of Number of
Control Status Average Range Boilers Data Points

Pulverized Dry Bottom:
Multiclone 5.4 4.4-6.5 2 2
ESP <0.23 -— 1 1
Cyclone Boilers:
Cyclone 22 —— 1 1
ESP 0.46 -— 1 1
Spreader Stoker:

Multicloane 5.6 — 1 1

ESP | 0.53 -——— 1 1
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TABLE 4-89. SUMMARY OF MERCURY EMISSION FACTORS FOR
BITUMINOUS COAL-FIRED INDUSTRIAL BOILERS

Emission Factor
Boiler Type/ ﬁlb/lO12 Btu) Number of Number of

Control Status Averagea Range Boilers Data Points

Pulverized Dry Bottow:
Multiclone 180 — 1 1

ESP 4.25 4.2-4 .4 4 4
Multiclone/Scrubber 86 —— 1 1

Pulverized Wet Bottom:

‘Multiclone 6.7 — 1 1

Spreader Stoker:

Uncontrolled : 3.4 0.76-12 7 14
Multiclomne 15.4 5.8-25.1 2 2

ESP 2.95 1.0-4.2 2 K]

Overfeed Stoker:
Uncontrolled 1.3 0.011-2.1 4 5

Economizer/Dust Collector 0.8 0.39-1.2 1 2

3Each boiler was weighted equally in determining this average. An arithmetic
mean value was calculated for each boiler, and then a mean of these means
was calculated.
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TABLE 4-90.

SUMMARY OF MEASURED MERCURY EMISSION FACTORS
FOR SUBBITUMINOUS COAL-FIRED INDUSTRIAL BOILERS

Emission Factor

Boiler Type/ lellolz Btu) Number of Number of
Control Status Averagea Range Boilers Data Points
Spreader Stoker:
Uncontrolled 4.8 0.64~17 2 4
Mechanical Ppt/ESP 0.50 0.37-0.64 1 2

®Each boiler tested was weighted equally in determining this average. An
arithmetic mean value was calculated for each boiler, and then a mean of
these means was calculated.
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TABLE 4-91. SUMMARY OF MEASURED MERCURY EMISSION FACTORS
FOR COMMERCIAL/INSTITUTIONAL COAL-FIRED BOILERS

Emission Factor Number Number

Coal Type/ (1b(1012 Btu) of of Data
Boiler Type Control Status Average Range Boilers Points

Bituminous Coal:

Pulverized Dry Uncontrolled 5.8 -— 1 1

Bottom Multiclone/Scubber 1.1 -— 1 1

Underfeed Stoker Uncontrolled 0.42 -— 1 1

Spreader Stoker Mechanical Ppt. 1.4 -——- 1 1

Overfeed Stoker Mechanical Ppt. 13.0 -—— 1 1 -
Anthracite Coal:

Stoker ° Uncontrolled 5.3 3.5-7.0 3 3

MCH/007 4-136



121IU9pTS9Y = Y ‘{PuUOTIINITISUI/]BIDIBWWOY = J ‘{etaisnpul = I ‘KIT113Q = iy

aossuang
6161 ‘M1uzday pue st{alduyaq 91 | pailoaluoduf pax1gd~-1p0) d13BWOINY 3jroeayIuy
q0861 ‘“1¢% 39 juruaiadng 9'Yy o) pa1ioxjuodun 124018 21108 13Uy
1861 ‘“(¥ 339 8Breq 11-€¢5°0 2 ‘1t ‘n paiioajuodup 19%038 33108IYIUY
1861 ‘T 1% 79 31eq 11-6 21 °'n poi1oxjuoduy mo130q K1g pozliaAlng ajtoBIyIUY
aoBuIng
6161 ‘3Tuzay pue sT133uyaq 91 i pe11013u0duUn pei13-1€0) dTIBWOINY a3tud1]
13qqnidog 13N 10 auoiaLy 10
q0861 ‘1% 32 yiys YA n ‘4T *IUOTITIINKH mo3jjog K1g poziidAIng ajtus1]
1861 ‘*1¢ 39 31eg 97-9° L n pa11023u0dU() auo 3Ky a3tuld1g
194038 10
1861 ‘1€ 39 Breq £z 2 ‘1 'n JUOTITITNN wo3jog K1q paziIdAIng ajtuldtg
19%013§ 10
1861 ‘71¢ 3@ 31eg 9Z-0°6 9 ‘I *‘n po11013u0>Uf) wo3jog Kig pazriaayng a31us1
1 n 13qQQqnadE I9M
6/61 ‘}tuzay pue styaduyaq 91 1°‘n dsa (s3dPuUIng [BYJUAPTEIY
1q0861 ‘“1¢ 7@ jusuaidng t19)03g ‘auo(a4p
‘e0861 '“(¥ 19 jueuaidng 91 2 ‘1 ‘n *3dg 18d1UBYI3K ‘mojjog 19K PIZTIIA[NG
‘q0861 ‘1% I8 4TYg ‘mo3j0g Aig paziiaAing)
‘1861 ‘1€ 39 8teq 91 10 ‘1 ‘n - Pdi1oijuodup saddy 11V snoutmwnitg
CRIERERE ] sniels [0IJU0) adky aartog ad{3 1v0o)

1
g5101938

(n3d -o~\9~V
103084 uolssImy

NOI1SNEHO0D TVOD ¥0d SHOIOVA NOISSINA AUNDYAR AALVIAITIVD

'¢6-% FTLVL

4-137

MCH/007



discussed in previous paragraphs, ESPs may result in up to 50 percent
mercury control. Therefore, the emission factor for ESP-controlled boilers
is expressed as a range, from 8 to 16 lb/lO12 Btu. Scrubbers were shown to
result in 54 to 94 percent mercury control, so emission factors for
scrubber-controlled boilers would range from 0.96 to 7.4 1b/1012 Btu.

In general, measured bituminous coal emission factors summarized in
Tables 4-86, 4-89, and 4-91 support the calculated values. Average emission
factors for uncontrolled and multiclone-controlled boilers of various
designs range from 1.3 to 35 1b/10*% Btu. (One industrial boiler and one
utility boiler tested emitted over 180 1b/1012 Btu, but these appear to be
outliers. The mercury content of the coals for these two tests were not
reported, sc mass balance calculations are not possible.) The data show no
significant differences in mercury emissions between different boiler types
or different combustion sectors. The average measured emission factors for
various types of ESP-controlled boilers range from 2.9 to 11 1b/1012 Btu,
and emission factors for scrubber controlled boilers ranged from

undetectable amounts to 4.9 lb/lo12 Btu. (There was one scrubber-controlled

bbiler emitting 86 lb/lO12 Btu, but this is an outlier. The mercury content

of the coal feed was not reported.) These measured values are in general

agreement with the calculated values shown in Table 4-85,

Subbjituminous Coal-Fired Bojlers. Emission factors for subbituminous
coal-fired boilers were not calculated because much of the literature does
not distinguish between bituminous and subbituminous coals. Based on
mercury content and heating values of the two coals, it would be expected
that emission factors for subbituminous coal would be slightly lower than
for bituminous coal. The available test data for subbituminous coal
combustion are summarized in Tables 4-87 and 4-90.

t d c -Firedi Bo . Lignite contains about 0.15 ppm
and anthracite about 0.23 ppm mercury. Emission factors for lignite and
anthracite combustion are presented in Table 4-85. These were calculated
using the same procedures that were used to calculate bituminous coal

emission factors. The lignite and anthracite emission factors are slightly
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higher than bituminous coal emission factors. Measured emission factors
derived from the available test data on lignite and anthracite fired

combustion sources are summarized in Tables 4-88 and 4-91.

Manganese Emission Factors-

Summarized manganese emission factors for coal-fired boilers are
presented in Table 4-93. These are based on measurements of manganese
emissions and on theoretical calculations. They are applicable to utilicy,
industrial, and commercial/institutional boilers. Tables 4-94 through 4-99
summarize the available manganese emissions data. For the various
combustion sector/coal type/boiler design/control technology scenarios, the
average and range of measured manganese emission factors are presented.
Tables C-60 through C-69, in Appendix C, provide additional information on
each emissions test, including references. Previously calculated manganese
emission factors are listed in Table 4-100.

- v d o . Six uncontrolled,
pulverized dry bottom boilers were tested. Measured emission factors are
summarized in Tables 4-94 and 4-99. The average emission factor, weighting
each boiler equally is 2,980 1b/1012 Btu. This emission factor is similar
to previously calculated emission factors listed in Table 4-100.

Data on boilers controlled with multiclones, summarized in Tables 4-94
and 4-97, are highly variable. According to the emissions tests reviewed,
multiclones remove about 54.3 percent of the manganese present in the flue
gas. Applying this control efficiency to the summary uncontrolled emission
factor yields the emission factor of 1,390 1b/1012 Btu for bituminous
coal-fired pulverized dry bottom boilers controlled with multiclones.

Measured emission factors for 11 pulverized utility boilers and 4
industrial boilers controlled with ESPQ are summarized in Tables 4-94 and
4-97. The average emission factor, weighting each boiler equally, is
642 1b/1012 Btu. This is the summary emission factor given in Table 4-93.

A total of five pulverized dry bottom boilers controlled with
scrubbers were tested. These include utility, industrial, and commercial/

institutional boilers. The average emission factor from these tests is

36 1b/10%2 Beu.
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TABLE 4-93. SUMMARIZED MANGANESE EMISSION FACTORS
FOR COAL-FIRED BOILERS

E on Facto b 012 tu) by Coal Tvpe

Boiler Type/Control Status Bituminous Lignite Anthracite
ulverjzed tom:

Uncontrolled 2,980 16,200 3,070

Multiclone 1,390 7,580 1,430

ESP 642 3,500 661

Scrubber 36 196 37
Bulverjzed Wet Bottom:

Uncontrolled 808-2,980 4,410-16,250 832-3,070

Multiclone 377-1,390 2,050-7,580 388-1,430

ESP 177 965 182
Cyclone:

Uncontrolled 690-1,300 3,760-7,090 710-1,340

Multiclone 322-607 1,760-3,310 332-625

ESP 151 823 155

Scrubber 70-131 382-714 72-135
Stokex:

Uncontrolled 2,170 11,800 2,230

Multiclone 196-1,010 1,070-5,510 202-1,040

ESP 31-475 169-2,590 32-489
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TABLE 4-94.

SUMMARY OF MEASURED MANGANESE EMISSION FACTORS

FOR BITUMINOUS COAL-FIRED UTILITY BOILERS

Emission Factor
(167102 Beu)

Boiler Type/ Number of Number of
Control Status Averagea Range Boilers Data Points
Pulverized Dry Bottom:
Uncontrolled 3040 300-9300 5 20
Mechanical Ppt. 2250 460-4750 2 10
ESP or Mech. Ppt/ESP 635 1.0-9240 11 35
2 ESPs in Series 149 8.05-463 1 5
ESP/Scrubber 28 -—— 1 1
Scrubber 46 4.6-318 3 6
Pulverized Wet Bottom:
ESP or Mech. Ppt/ESP 177 7.4-418 5 5
Scrubber 0.95 -— 1 1
Cyclone:
Uncontrolled 1300 1300-1300 1 2
ESP 151 11-314 5 6
Scrubber 126 -— 1 i
Stoker:
Mech., Ppt or Multiclone 246 188-304 2 2
Fabric Filter 18 -— 1 1

3Each boiler tested was weighted equally in determining this average. An
arithmetic mean value was calculated for each boiler, then a mean of these

means-was calculated.
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TABLE 4-95,

SUMMARY OF MEASURED MANGANESE EMISSION FACTORS
FOR SUBBITUMINOUS COAL-FIRED UTILITY BOILERS

Emission Factor
12

Boiler Type/ (1b/10 ~ Btu) Number of Number of

Control Status Average Range Boilers Data Points
Pulverized Coal:

ESP 43 ——— 1 1

Scrubber 110 — 1 1
Cyclome:

Uncontrolled 600 — ! 1

Scrubber 120 — 1 1
Unspecified Boiler Type:

ESP 27 19-35 2 2
MCH/007
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TABLE 4-96. SUMMARY OF MEASURED MANGANESE EMISSION FACTORS
FOR LIGNITE COAL~FIRED UTILITY BOILERS

Emission Factor

Boiler Type/ (lb/IO12 Btu) Number of Number of
Control Status Average Range Boilers Data Points

Pulverized Dry Bottom:
Multiclone 1620 1560~1680 2 2

ESP 17 - 1 1

Cyclone Boiler:

Cyclone 1600 - 1 1
ESP 11 -~ 1 1
ESP/Scrubber 2.94 2.92-2.96 1 2

Spreader Stoker:
Multiclone 1790 . — 1 1

ESP <10 - 1 1
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TABLE 4-97.

SUMMARY OF MEASURED MANGANESE EMISSION FACTORS
FOR BITUMINOUS COAL-FIRED INDUSTRIAL BOILERS

Emission Factor

Boiler Type/ (1b/10124§59) Number of Number of
Control Status Aneragea Range Boilers Data Points
Pulverized Dry Bottom:
Multiclome 790 — 1 1
ESP 661 274-790 4 4
Multiclone/Scrubber 15 -— 1 1
Pulverized Wet Bottom:
Multiclone 15 -— 1 1
Spreader Stokex:
Uncontrolled 2310 16-14,000 7 14
Multiclome 103 23.9-183 2 2
ESP 31 10.6-51.4 2 3
Qverfeed Stoker:
Uncontrolled 1930 230~-6700 4 5
Economizer/Dust 2050 1100-3000 1 2
Collector

3gach boiler weighted

equally in determining this average. Am arithmetic

mean value was calculated for each boiler, and then a mean of these means

was calculated.

MCH/007

4-144



TABLE 4-98.

SUMMARY OF MEASURED MANGANESE EMISSION FACTORS
FOR SUBBITUMINOUS COAL-FIRED INDUSTRIAL BOILERS

Emission Factor

Boiler Type/ (19]1012 Btu) Number of Number of

Control Status Averagea Range Boilers Data Points
Spreader Stoker:

Uncontrolled 10,560 1,300-17,000 2 4

Mech. Ppt/ESP 45 28-62 1 2

2Each boiler tested was weighted equally in determining this average. An
arithmetic mean value was calculated for each boiler, and then a mean of
these means was calculated.
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TABLE 4-99.

SUMMARY OF MEASURED MANGANESE EMISSION FACTORS
FOR COMMERCIAL/INSTITUTIONAL COAL-FIRED BOILERS

Emission Factor Number Number
Coal Type/ g1b11012 Btu) of of Data
Boiler Type Control Status Average Range Boilers Points
Bitumingus Coal:
Pulverized Dry Uncoutrolled 268Q — 1 1
Bottom Multiclone/Scrubber 26 -— 1 1
Underfeed Stoker TUncontrolled 3.5 - 1 1
Spreader Stoker Mechanical Ppt. 188 —— 1 1
Overfeed Stoker Mechanical Ppt. 290 —— 1 1
Anthracite Coal:
Stoker Uncongrolled 114 40-163 3 3
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Bituminous Coal-Fired Pulverized Wet Bottom Bojlers. The literature
contains fewer data on pulverized wet bottom boilers. The average measured
emission factor for five utility boilers controlled with ESPs is
177 lb/1012 Btu. This is lower than the factor for dry bottom boilers. In
general, pulverized wet bottom boilers emit less fly ash than dry bottom
boilers.

There are no data on uncontrolled pulverized wet bottom boilers. A
review of tests of eight ESP-controlled boilers indicates an average
manganese control efficiency of 78.1 percent. By applying this control

efficiency to the measured ESP-controlled emission factor of 177 lb/lo12 Btu,

the corresponding uncontrolled emission factor would be 808 1b/1012 Btu. A
reasonable maximum estimate of uncontrolled manganese emissions from
pulverized wet bottom boilers would be the measured uncontrolled emission
factor for pulverized dry bottom boilers (2,980 1b/1012 Btu). This range of _
emission factors is summarized in Table 4-93.

Multiclones can result in a 54.3 percent reduction in manganese
emissions (Table 4-101). Based on the summarized uncgntrolled emission
factors of 808 to 2,980 1b/1012 Btu, the multiclone-controlled emission
factors would range from 377 to 1,390 1b/1012 B
result in 89.1 percent manganese control (Table 4-101), emission factors for

boilers controlled with scrubbers would range from 88 to 324 lb/1012 Btu.

tu. Assuming scrubbers

However, the one measured value (Table 4-94) is well below this range. Data
are insufficient to summarize an emission factor for scrubber-controlled

pulverized wet bottom boilers.

Bituminous Coal-Fired Cyclone Boilers. Emission factors measured at five

cyclone boilers controlled with ESPs are summarized in Table 4-94. The
average measured emission factor is 151 1b/1012 Btu. Based on this
emission factor and a manganese control efficiency of 78.1 percent for

ESPs (from Table 4-101), an uncontrolled emission factor of 690 1b/1012 Btu
can be calculated. One uncontrolled cyclone boiler tested emitted

1,300 1b/1012 Btu. The summary uncontrolled emission factor is, therefore,

expressed as a range, from 690 to 1,300 1b/1012 Btu. The summary

multiclone-controlled emission factor of 322 to 607 1b/1012 Btu is
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TABLE 4-101. MANGANESE REMOVAL EFFICIENCY OF CONTROLS?

Percent Control Number of Number of

Control Device A.verageb Range Boilers Data Points
Mechanical Ppt. 54.3 40.6-63.2 1 3
ESP 78.1 9.4-99.7 8 27
ESP/Scrubber 97.7 - 1 1
2 ESPs in Series 9% .4 90.2-99.8 1 5
Scrubber 89.1 80.0-98.2 2 2

#These control efficiencies represent measured control levels reported
in the literature. They may or may not be indicative of the long-term
performance of these types of controls on manganese emissions from
combustion sources. The average values should not be construed to

represent an EPA-recommended efficiency level for these devices.

bEach emission test weighted equally. '
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calculated based on a control efficiency of 54.3 percent for multiclones
(Table 4-101). Assuming 89.1 percent manganese control efficiency, an
emission factor of 70 to 131 1b/1012

controlled with scrubbers. This is in agreement with the single measured

Btu is estimated for cyclone boilers
emission factor available.

Bituminous Coal-Fired Stoker Boilers. Since measured manganese emission
factors for spreader and overfeed stokers in all three combustion sectors
were similar, they were combined to calculate average emission factors
applicable to all stokers. The average measured emission factor for eleven
uncontrolled stokers (Table 4-97) is 2,170 1b/1012 Btu,

The average emission factor for six tests of mechanical precipitator-
(or multiclone-) controlled stokers summarized in Tables 4-94, 4-97, and
4-99 is 196 1b/1012 Btu. This emissions level is considerably lower than
what would be expected based on the uncontrolled emission factor. Assuming
54.3 percent control, the calculated multiclone-controlled emission factor is
1,010 1b/1012 Btu. A range of emission factors is presented in Table 4-93
for manganese emissions from multiclone-controlled stokers.

Two stokers controlled with ESPs were found to emit an average of
31 1b/1012 Btu. However, the ESP-controlled stoker manganese emissions level
that can be calculated, using the determined control efficiency of
12 geu, 1s 475 1b/10%2

Btu. Because of the degree of variability between the measured and

78.1 percent and uncontrolled emissions of 2,170 1lb/10

calculated factors, the range of these factors is presented in the emission

factor summarization.

ubb ous Coal - ed Boilers. Much of the literature does not
distinguish between subbituminous and bituminous coals, so summary emission
factors for subbituminous coal have not been calculated. The two coals
contain similar amounts of manganese (Table 3-36), and emissions would be
expected to be similar. The available test data for subbituminous

coal-fired utility and industrial boilers are summarized in Tables 4-95 and
4-98.
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TABLE 4-102. SUMMARIZED NICKEL EMISSION FACTORS FOR COAL-FIRED BOILERS

m io a 012 a e

Boiler Design/Control Status Bituminous Lignite Anthracite
ulverized Dr ottom:

Uncontrolled 1030-1290 928-1160 1790-2240

Multiclone 522-654 470-587 906-1140

ESP 280-352 252-1316 487-610

Scrubber 37-46 33-.42 64-81
Pulverjzed WetC Bottom:

Uncontrolled 840-1290 154-1160 1460-2240Q

Multiclone 425-654 382-587 739-1140

ESP 228-352 205-316 397-610

Scrubber 30-467 27-42 53-81
Cyclone:

Uncontrolled 174-1290 157-1160 303-2240

Multiclone 88-654 79-587 153-1140

ESP 47-352 43-316 82-610

Scrubber 6.3-46 5.6-42 11-81
Sgoker:

Uncontrolled 775-1290 696-1160 1350-2240

Multiclone 392-654 352-587 683-1140

ESP 211-352 189-316 367-610
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TABLE 4-103.

VALUES USED IN CALCULATION OF UNCONTROLLED

NICKEL EMISSION FACTORS

Concentration of Nickel

Heating Value

Coal Type in Coal, ppm (C)a Btu/1lb (H)b
Bituminous 16.9 13,077
Lignite 8.35 7,194
Anthracite 28.5 12,700

aSource: Table 3-42.

Source: Appendix B.
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Controlled nickel emission factors are calculated from the uncontrolled
emission factors using the average control efficiencies presented in
Table 4-104. These control efficiencies are specific to nickel and are
derived from tests of controlled coal-fired boilets reported in the
literature. The efficiencies shown in Table 4-104 may be biased low due to
contamination from sampling equipment corrosion. Emission factors
calculated using these efficiencies probably represent, in most cases, upper
bound estimates.

Measured nickel emission factors are summarized in Tables 4-105 through
4-110 and in Appendix C, Tables C-70 through C-79. Previously calculated
nickel emission factors are listed in Table 4-111. In general, measured
uncontrolled and controlled emission factors are higher than the maximum
calculated emission factor for the combustion of typical coals. The nickel
content of the coal feed (for tests where this was reported) was generally
between 10 and 25 ppm, which is similar to the average nickel content of
bituminous coal (16.9 ppm). Thus, the high measured average emission
factors are not due to the combustion of high-nickel coals. For many tests,
mass balances indicate more nickel being emitted than is input in the coal
feed. Some references noted that corrosion of sampling train components was
suspected to cause the high measured emission factors (Baig et al., 1981).
Since it appears that measured nickel emission factors are questionable, the
summary values given in Table 4-102 are based on calculations involving fuel

content data, element partitioning assumpéions. and control efficiency
assumptions.

Trace Metal Emission Factors for Residential Coal Combustion-

Summary emission factors for eight trace metals are presented in
Tables 4-112 and 4-113. The literature reported only three tests of
residential furnaces from which trace metal emission factors could be
derived. These were tests of automatic furnaces equipped with stokers, and
each was burning bituminous coal. The measured emission factors are
summarized in Table 4-114. As can be seen from the table, there is great
variability in trace metal emission factors for the three furnaces. This

may be due to variations in the trace metal content of the coals and to
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TABLE 4-104. NICKEL REMOVAL EFFICIENCY OF CONTROLS®

__Percent Control Number of Number of

Control Device Averageb Range Boilers Data Points
Mechanical Ppt. 49.4 34.5-64.4 1 3
ESP 79.1 48.8-99.5 5 14
2 ESPs in Series 96.6 91.5-99.2 1 5
ESP/Scrubber 97.2 .-- 1 1
Scrubber 96.4 95.6-97.3 2 2

%These control efficiencies represent measured control levels reported

in the literature. They may or may not be indicative of the long-term
performance of these types of controls on nickel emissions from
combustion sources. Although it can not be unequivocally determined
with the available data, these control device efficiencies may be biased
low due to contamination from sampling equipment. Emission factors
calculated using these efficiencies probably represent, in most cases,
upﬁer bound estimates. The average values should not be construed to
represent an EPA-recommended efficiency level for these devices.

bEach emission test weighted equally.
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TABLE 4-105.

SUMMARY OF MEASURED NICKEL EMISSION FACTORS
FOR BITUMINOUS COAL~-FIRED UTILITY BOILERS

Emission Factor
(1b/10%2 Bew)

Boiler Type/ Number of Number of
Control Status A,veragea Range Boilers Data Points
Pulverized Dry Bottom:
Uncontrolled 1480 690-5000 4 10
Mechanical Ppt. 7870 260-23,500 2 10
ESP or Mech. Ppt/ESP 2780 520-5760 11 20
2 ESPs in Series 360 132-724 1 4
ESP/Scrubber 12.2 -—— 1 1
Scrubber 68 12-104 2 5
+ Pulverized Wet Bottom:
ESP or Mech. Ppt/ESP 1260 74-2550 5 5
Scrubber 1.1 -— 1 1
Cyclone:
Uncontrolled 960 [ ——— 1 1
ESP 907 4.6-2020 5 5
Scrubber 46 -— 1 1
Stoker:
Mech. Ppt. or Multiclome 3260 1330-5180 2 2
Fabric Filter 165 -— 1 1

%Each boiler tested was weighted equally in determining this average. An
arithmetic mean value was calculated for each boiler, and then a mean of

these means was calculated.
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TABLE 4-106.

SUMMARY OF MEASURED NICKEL EMISSION FACTORS
FOR SUBBITUMINOUS COAL-FIRED UTILITY BOILERS

Emission Factor
(1b/10'2 Bey)

Boiler Type/ Number of Number of
Control Status Average Range éoilers Data Points
Pulverized Coal Fired:
ESP 70 — 1 i
Scrubber 50 -— 1 1
Cyclone:
Uncontrolled 1700 ——— 1 1
Scrubber 46 — 1 1
Unspecified Boiler Type:
ESP 13.2 5.4-21 2 2
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TABLE 4-107.

SUMMARY OF MEASURED NICKEL EMISSION FACTORS

FOR LIGNITE COAL~-FIRED UTILITY BOILERS

Emission Factor
(1b/10'? Bey)

Boiler Type/ Number of Number of
Control Status Average Range Boiler Data Points
Pulverized Dry Bottom:
Multiclone 439 267-611 2 2
ESP (158 -— 1 1
Cyclone Boiler:
Cyclone 740 — 1 1
ESP <109 -— 1 1
Spreader Stoker:
Multiclone 641 -— 1 1
ESP (88 —-— 1 1
MCH/007 4-159



TABLE 4-108.

SUMMARY OF MEASURED NICKEL EMISSION FACTIORS
FOR BITUMINOUS COAL-FIRED INDUSTRIAL BOILERS

Emission Factor
(1b/10'2 Beu)

Boiler Type/ Number of Number of
Control Status Averagea Range Boilers Data Points
Pulverized Dry Bottom:
Multiclone 1,390 —-—— 1 1
ESP 470 10-930 2 2
Multiclone/Scrubber 60 — 1 1
Pulverized Wet Bottom:
Multiclone 1.5 -— 1 1
Spreader Stoker:
Uncontrolled 5,770 32-20,600 6 12
Multiclone 130 31-230 2 2
ESP 1,020 . -— 1 !
Overfeed Stoker:
Uncontrolled 4,610 840-23,000 4 5
Economizer/Dust 22,200 16,500-28,000 1 2
Collector

%Each boiler was weighted equally in determining this average. An arithmetic
mean value was calculated for each boiler, and then a8 mean of these means

was calculated.
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TABLE 4-109.

SUMMARY OF MEASURED NICKEL EMISSION FACTORS FOR
SUBBITUMINQUS COAL-FIRED INDUSTRIAL BOILERS

Emission Factor

Boiler Type/ (1b/1012 Btu) Number of Number of
Control Status Averagea Range Boilers Data Points
Spreader Stoker:

Uncontrolled 2370 840-6500 2 3

Mech. Ppt/ESP 30 -—- 1 1

8gach boiler tested was weighted equally in determining this average. An
arithmetic mean value was calculated for each boiler, and then a mean of
these means was calculated.
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TABLE 4-110.

SUMMARY OF MEASURED NICKEL EMISSION FACTORS FOR
COMMERCIAL/INSTITUTIONAL COAL-FIRED BOILERS

Emission Factor Number Number

Coal Type/ (Lb/lﬂlz Btu) of of Data
Boiler Type Control Status Average Range Boilers Points
Bituminous Coal:
Pulverized Dry Uncontrolled 2430 —— 1 1
Bottom ;
Multiclone/Scrubber 309 —— 1 1

Underfeed Stoker Uncontrolled 30 —— 1 1
Spreader Stoker =~ Mechanical Ppt. 91 -— 1 1
Overfeed Stoker Mechanical Ppt. 1530 — 1 1

Anthracite Coal:

Stoker

Uncontrolled 825 314-1090 3 3
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TABLE 4-114. MEASURED TRACE METAL EMISSION FACTORS FOR
BITUMINOUS COAL-FIRED RESIDENTIAL FURNACES

12

Emission Factor (1b/10°° Bew)?®
Trace Element Average Range
Arsenic 813 31-2400
Cadmium 71 8.9-155
Chromium 233 (0.69)b 44.5-387
Copper 179 38.7-356
Mercury 19.2 7.7-26.7
Manganese 1290 44-3640
Nickel 1110 3.9-3030

%Based on testing of three furnaces.

The factor in parentheses is for hexavalent chromium.

MCH/007 4-167



variations in combustion and sampling conditions. It was not felt that the
average measured emission factor of just three coal samples burned in three
furnaces would be representative of residential combustion in general,
Therefore, the summarized emission factors in Tables 4-112 and 4-113 are
calculated according to the methodology of DeAngelis and Reznik (1979).
The equation is:
EF, = (C,/H)(F,) x 10°
i i i

Where: EF, = emission factor for trace element i (1b/1012 Btu),

C1 = concentration of trace element i in coal (ppm),
H = typical heating value of coal (Btu/lb), and
Fi = fraction of trace element input in the coal feed which

is emitted to the atmosphere.

Values for C1 are taken from Section 3. Tables in Section 3 report average
trace metal contents of different types of coal (bituminous, subbituminous,
anthracite, and lignite) as well as averages for each coal-producing region
of the country (Appalachian, Interior, Northern Plains, and Rocky
Mountains). These average trace metal contents represent hundreds of coal
samples.

Heating values (H) by coal type and geographic region are summarized in
Appendix B. Footnotes in Tables 4-112 and 4-113 also document the heating
values assumed for the calculations.

The fraction of each metal emitted to the atmosphere (Fi) was developed
by DeAngelis and Reznik (1979). Values for Fi were based on the observed
partitioning behavior of each trace element in two tests of residential
furnaces. Where information from these tests was inconsistent, partitioning
behavior of the element in larger (utility and industrial) coal-fired
boilers was also considered in estimating Fi' DeAngelis and Reznik (1979)
recommended Fi values of 1.0 for mercury, 0.75 for arsenic and cadmium, and
0.10 for the other metals. The more volatile the element, the larger the
proportion emitted.
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The emission factors presented in Tables 4-112 and 4-113 can be used
for the residential sector. In general, the average measured emission
factors (Table 4-114) are similar to the calculated emission factors. The
high measured value for nickel may be due to corrosion of sampling train

components.

Lead Emission Factors-

Emission factors for lead from coal combustion are presented in this
section. As discussed previously, a limited data base was used to obtain
emission factors for lead. They were taken directly from an EPA background
document for support of the national ambient air quality standard (NAAQS)
(U. S. Environmental Protection Agency, 1985). The emission factors were
based on the type of coal burned, bituminous and anthracite. The reference
used the premise that utility, industrial, and commercial boilers burned
bituminous coal and residential boilers burmed anthracite coal. Heating
values of 13,077 Btu/lb coal and 12,648 Btu/lb coal were used for bituminous
and anthracite coal, respactively to convert the emission factors to a
1b lead emit:ted/lo12 Btu basis. Uncontrolled and controlled emission factors
for lead from coal combustion were calculated to be:

Uncontrolled Egission Controlled Em{ision
Sector Factor (1b/10 Btu) Factor (1b/10 Btu)
Utilicy 507.4 25.37
Industrial 507.4 223.3
Commercial 507.4 223.3
Residential 510.0 510.0

The efficiency of controls were provided in the reference (U. S.
Environmental Protection Agency, 1985). For utility boilers, an average
control efficiency of 95 percent was applied to coal-fired utility boilers.
Control efficiencies for industrial and commercial boilers were reported as
56 percent and no control was assumed for residential boilers.

Additional data concerning measured and calculated emission factors for

lead from coal and oil combustion are shown in Tables 4-115 through 4-119.
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TABLE 4-116.

SUMMARY OF MEASURED LEAD EMISSION FACTORS
FOR BITUMINQUS COAL-FIRED UTILITY BOILERS

EmissioTzFactor Number of
Boiler Type/ (1b/10"~ Btu) Boilers Number of
Control Status Averagea Range Tested Data Points
ve d ottom:
Uncontrolled 316 2.8 - 1249 4 5
ESP or Mechanical 49 7.0 - 90.9 2 26
Ppt./ESP
Scrubber 16.8 2.8 - 24.2
Tangential Cyclone + 163 95 - 282 1 4
2 ESP
Wall Fired Cyclone + 98 76 - 107 1 4
2 ESP
Pulverized Wet Bottom:
ESP 63.8 1.1 - 183.8 7 7
Mechanical Ppt./ESP 646 c-. 1
Scrubber 22.3 22.3 1
Cyclope:
ESP 15.3 4.0 - 19.2
Mechanical Ppt. 213 .--
Wet Scrubber 4 .-
Stokex:
Mechanical Ppt. or 1408 1154 - 1663 3 3
Multiclone
Fabric Filter 2.6 --- 1
Cyclone + ESP + 50 0.2 - 149 4

Scrubber

®Each boiler tested was weighted equally in determining this average. An
arithmetic mean value was calculated for each boiler, and then a mean of
these means was calculated.
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TABLE 4-117.

SUMMARY OF LEAD EMISSION FACTORS FOR UTILITY BOILERS

Emissiongactor Number of
Coal/ Boiler Type/ (1b/107" Btu) Boilers
0il Type Control Status Average Range Tested
Anthracite ulv [°)
ESP 91 --- 1
Stokerx:
Multiclones 1419 --a 1
Lignite Bulverized Dry Bottom:
ESP 9.7 5.8 - 13.5 3
Multicyclones 154 42.1 - 256 3 )
Bulverized Wet Bottom:
ESP 4.7 .e- 1
Cyclope:
ESP 18 9.0 - 26.1 1
Multicyclones 358 --- 1l
Stoker:
ESP 6 --- 1
. Multicyclones 217 153.5 - 281 1
Residual 01l Tangential:
ESP 9.3 .-- ---
Uncontrolled 47 16.0 - 112.0
Wall:
ESP 9.3 --- ---
Uncontrolled 47 16.0 - 112.0

MCH/007

4-175



TABLE 4-118. SUMMARY OF LEAD EMISSION FACTORS FOR BITUMINOUS
COAL-FIRED INDUSTRIAL BOILERS

EmissioTzFactor Number of
Boiler Type/ (Ab/10° "~ Btu) Boilers Number of
Control Status Average Range Tested Data Points
ulv d

Uncontrolled 2 --- 1 1
Mulcticlone 0.65 --- 1 1
ESP 91 .en 6 6
Multiclone/Scrubber 24 . 1 1
Spreader Stoker:
Uncontrolled 1.6 .ee - --a
Multiclone 0.49 --- eas .-
ESP 1.2 - .e- -
MCH/007
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TABLE 4-119.

SUMMARY OF MEASURED LEAD EMISSION FACTORS

FOR COMMERCIAL/INSTITUTIONAL BOILERS

EmissioTzfactor Number Number
Coal Type/ Control (15/10°" Brw) of of Data
Boiler Type Status Average Range Boilers Points
tumino oal:
Pulverized Dry Multiclone 374 “-- 1 1
Bottom
Stoker Scrubber 20 .-- 1 1
Multiclone 281 .- 2 2
Uncontrolled 656 .- 2 2 -
Residual 0il:
Tangential Uncontrolled 52 1§.0 - 186.0 4 4
Scrubber 7.1 4.7 - 9.5 2 2
Wall Uncontrolled 52 16.0 - 186.0 2 2
Scrubber 7.1 4.7 - 9.5 2 2
Discillate Ofl:
Tangential Uncontrolled 85 47 - 112.0 3 3
Wall Uncontrolled 85 47 - 112.0 3 3
Source: Suprenant et gl,, 1980b; Goldberg and Higginbotham, 1981.
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Radionuclide Emission Factors

Measured U-238 emission factors for twenty-one utility boilers were
reported in the literature. These data are summarized in Table 4-120.
Information on each test, including the type of coal burned and the
literature reference, is included in Appendix C (Table C-80). Thorium
emission factors for fourteen boilers were reported in the literature.
These data are summarized in Table 4-121 and in Appendix C (Table C-81).

Pulverized dry bottom boilers controlled with ESPs are the most common
type of utility boiler and are also the best characterized in terms of
uranium and thorium emissions. The average U-238 emission factor for eight
boilers of this type is 6.55 picoCuries per gram of particulate emissions
(pCi/g), and the average thorium emission factor is 3.0 pCi/g. For those
tests where coal heating values and input rates were reported, radionuclide
emissions can also be expressed in terms of pCi/106Btu heat input. The
average emission factors for U-238 and Th-232 are 295 and 170 pCi/lO6 Btu,
respectively. Uranium-238 emissions expressed in this manner vary over
2 orders of magnitude for the eight sources tested. This is a function of
the wide variation in total particulate (including uranium) emissions
between boilers. The ratio of uranium to total particulate emissions
(pCi/g) is much less variable between tests.

Measured U-238 and Th-232 emission factors for pulverized dry bottom
boilers controlled with scrubbers are also summarized in Tables 4-120 and
4-121. From the limited data available, it appears that radionuclide
emission factors for boilers controlled with scrubbers are similar to
emission factors for boilers controlled with ESPs.

Data on cyclone and stoker boilers controlled with ESPs, scrubbers, and
fabric filters are also included in Tables 4-120 and 4-121. The data base
is too limited to draw conclusions about representative U-238 and Th-232
emission factors for cyclone and stoker boilers. In general emission
factors are on the same order of magnitude as emission factors for
pulverized dry bottom boilers.

Very few data were available concerning uncontrolled emission factors
for radionuclides from coal-fired boilers. An estimate of 30,000 pCi/lO6
Btu (for U-238 only) was developed for utility boilers by back calculating
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from the controlled emission factors for five utility boilers. The boiler
types included one stoker, one cyclone, two pulverized coal-dry bottom and
one pulverized coal tangentially-fired boiler. Ome boiler burned
subbituminous coal and the remaining boilers burned lignite coal. The high
and low ends of the range of amount of radiocactivity in the coal were
averaged in back calculating the uncontrolled emission factor.

There is a potential that the type of coal burned may affect U-238 and
Th-232 emission factors. Tables 3-48 and 3-52 indicate that lignite coal
has higher average total uranium and thorium concentrations than bituminous
coal. However, the standard deviations around the mean values are larger
than the means themselves, indicating great variability in the data.
Emissions test data for four lignite boilers and several bituminous coal
boilers are shown in Tables C-80 and C-81. These data do not show a strong

correlation between type of coal burned and measured radionuclide emission

factors.
POM Emission Factors

The measurement of POM emissions from combustion sources has been a
focus of recent research. Factors affecting the formation and emission of
POM are discussed in Section 3. Based on theoretical considerations, it is
predicted that pulverized coal-fired boilers would emit less POM than
cyclone boilers, which in turn would emit less POM than stoker boilers. It
was also postulated that larger boilers would emit less POM per unit of heat
input than smaller bollers. Measured emission factors reported in the
literature support these conclusions.

The same considerations given previously for evaluating POM emissions
data from oil combustion apply equally to the evaluation of POM emissions
from coal combustion. In assessing total POM emission factors for coal

combustion, the following factors should be analyzed.

- the methods used to take and analyze samples
- the measurement of particulate POM only or of gaseous and

particulate POM
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- the physical phase in which emissions predominantly occur
- the number of POM compounds analyzed for

- the specific POM compounds analyzed for

The individual source POM emissions data given in Appendix C, Tables C-82
through C-87, are characterized according to the evaluation criteria listed
above. However, as with the oil combustion results, the summary total POM
data for coal combustion in Table 4-122 does not distinguish total POM
according to the number of compounds analyzed for, the test methods used,
etc. The reader can consult Tables C-82 to C-87 to determine the level of
inconsistency among the summarized reported total POM emission results.

Measured POM emission factors for about 90 coal-fired boilers and
furnaces are summarized in Tables C-82 through C-87 in Appendix C. Based on
the available data, it does not appear that coal type or particulate control -
technology have a significant effect on measured emission factors.
Therefore, data have been summarized by sector and by boiler type regardless
of control technology. Table 4-122 presents the averafe measured emission
factor and range of emission factors for each sector and type of boiler.

Table 4-122 shows that pulverized coal-fired utility boilers have the
lowest POM emission factors, averaging 3.9 1b/1012 Btu. Cyclone boilers
have higher emission factors; and utility stoker boilers emit more POM per
unit of heat input than other types of utility boilers.

Measured POM emission factors for industrial pulverized coal-fired
boilers are also relatively low, averaging 35.3 1b/1012 Btu. A large number
of industrial, commercial, and residential stoker boilers have been tested.
As shown in Table 4-122, measured POM emissions for stoker boilers are
highly variable. Reported emission factors vary over three orders of
magnitude. Average POM emission factors for stokers in the industrial,
commercial, and residential sectors are quite high (~100 to
3000 lb/lo12 Btu). The reasons for the extreme variability in the data are
unknown. Sources of variation would include sampling and analytical
methodology, type of coal, boiler design (spreader versus underfeed), boiler

size, and operating parameters. Most commercial and residential boilers

tested were underfeed stokers, and were probably smaller than the industrial
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TABLE 4-122. SUMMARY OF MEASURED TOTAL POM EMISSION FACTORS
FOR COAL-FIRED SOURCES

Emission Factor
12

(1b/10 Btu) Number of

Sector/Boiler Type Averagea Range Boilers Testad
Utility:

Pulverized Coal® 3.9¢ 0.03-18.6 2%

Cyelone® 9.0 0.11-57.2 10

stoker® 29.6 0.13-114 8
Industrial:

Pulverized Coalf 35.3 2.8-121 6

Stoker® 96.0 2.7-413 17 y
Residential/Commercial:"

Stoker 3,046 13.8-18,000 , 25

Hand Stoked 26,095 * 57.5-84,600 5

Magazine Feed 2,717 9.7-8,177* 4

2Each boiler tested was weighted equally in calculating these averages.

bSix boilers were controlled with ESPs, four with combination multicyclone/

ESP systems, three with cyclones, two with wet scrubbers, one was
uncontrolled, and the control status of ten was not reported.

©One boiler.with a POM emission factor of 565 lb/lO12 Btu was excluded from

these calculations because it was an outlier to the iita set. If this
boiler was included, the average would be 23.9 1b/10™" Btu.

dEight boilers were controlled with ESPs and one with a wet scrubber; the
control status of the other boiler was not reported.

®Four boilers were controlled with cyclones, one with a fabric filter, and
control status of the other three was not reported.

fThtee boilers were controlled with multicyclone/ESP systems, two with ESPs,
and one with a multicyclone.

€ome boiler was controlled with an ESP, one with a multicyclone, and the
remaining 15 were uncontrolled.

hCa:egory includes residential and small commercial boillers. All were
uncontrolled.

iThe range for bic¥31nous coal is 2,632 to 8,177 1b/1012 Btu, with the average

beingla,aoa 1b/10 Btu. The range for anthrafite coal is 9.7 to 49.4
1b/10™" Btu, with the average being 29.6 1b/10°° Btu.
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stokers tested. These factors may partially explain the higher average POM
emission factor for small commercial/residential stokers compared to
industrial stokers.

Data on three hand stoked residential units are highly variable, but
indicate that hand stoked combustion sources may have significantly higher

POM emissions than automatic stokers.

Formaldehyde Emission Factors

There are insufficient data on formaldehyde to characterize emissions
by boiler type or combustion sector. Only one reference was identified
which contained measured formaldehyde emission factors. The seven
individual tests are summarized in Table 4-123. Emission factors range from
63 to 2,100 1b/1012 Btu, with an average of 446 1b/1012 Btu. The average
would be 170.5 1b/1012 Btu if the apparent outlier of 2100 1b/10%2 Beu is
excluded from the calculation. The fact that a hand stoked unit had the
lowest emission factor is inconsistent with theory. The two tests of
pulverized coal-fired boilers indicate that these units may have slightly
lower emission factors than stoker boilers; however, the number of tests is
too few to make this conclusion with certainty.

Since formaldehyde is a product of incomplete combustion, it is likely
that modern units, particularly for utilities, would have lower emissions
chag those in these tests which date to the mid-1960's. Additional
emissions testing is clearly needed to establish reliable boiler emission
factors for formaldehyde.

MCH,/007 - 4-184



*IRYIUIPIGIY = ¥ ‘[PUOTIINITISUT/[VIOIAWWO) = ) ‘[wTIISAPUY = I ‘KIT{TIIN = n,

‘1% 79 yonvaqaluey

7961 paj1oxjuoouj 4 paxolg pusy £9

%961 ‘"% 19 yoneiqaduey patt1oajuooup ) 12%03§ paszjaapun 08¢
¥961 ‘“1€ 33 yoneiqaduey pa1101ju0dun 1 19%03§ pa’jaapun 0012
¥967 ‘*1€ 39 yoneiqaluey pa1ox3uodup 1 1901g a9peaxadg 0z
¥961 ‘1% 39 yoneviqaduey p3t1oxjuodupn n 13%03¢ 31eaBurvy) ovi
7961 ‘1€ 19 jyoneiqaduey pa11oxjuodup 1 wojjog A1q paz1a3AIng 06

%961 ‘T1% 79 3yonei1qadusy pajioxjuodup n wojjog Aig paziaaAIng ocT

33Ul 13 )3y SNJBIg 1013009 81030098 adL1 xattog (nag Nﬁc—\nﬁv

103083 LOISBIWY

STOVNYNA OGNV SYITION QZ¥I4-"TVOD HOA SHOLOVA NOISSINA FAAHAATVAHOA QIHASVAH “€TT-% I19vy

N

4-185

MCH/007



SECTION 5
SOURCE TEST PROCEDURES

This section contains a collection of sampling and analysis procedures
that have been used to quantify trace metal, POM, formaldehyde, and
radionuclide emissions from coal and oil combustion sources. With the
exception of real time techniques, quantification of emissions involves
three steps: (1) sample collection, (2) sample recovery and preparation,
and (3) quantitative analysis. This section briefly describes general
methodologies associated with each of these steps that have been published
in the literature. No attempt has been made to produce an exhaustive
listing or a detailed description of the many methodologies that have been
used. The purpose of this section is to present basic sampling and analysis
principles and examples of how these principles have been applied to
various combustion sources. The presentation of these published methods:in
this report does not constitute endorsement or recommendation or signify
that the contents necessarily reflect the views and policies of the U. S.
Environmental Protection Agency. Separate discussions are provided for

trace metals, POM, formaldehyde, and radionuclides.
TRACE METALS

Recent research has been sponsored by EPA that was focused on
developing source test procedures for trace metals from combustion sources
(Osmond et al., 1988). The recommended sampling and analysis procedures
produced by this research are described here. The recommended procedures
are designed to quantify the following trace metals: lead, zinc, chromium,
copper, nickel, manganese, selenium, arsenic, beryllium, thallium, silver,
antimony, phosphorus, and barium. In cases where only arsenic, lead,
mercury, or beryllium specifically are of interest, the reader may want to
use specific EPA reference methods that have been published in 40 CFR

Part 61 for these metals. The reference methods are identified below:
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Lead - Reference Method 12
Mercury - Reference Methods 101, 10lA
Reference Methods 103, 104

Beryllium

Arsenic - Reference Method 108

For mercury, Reference Methods 101 and 10lA are similar and differ
primarily in the solution used for sample collection (acidic iodine
monochloride in 10l and acidic potassium permanganate in 10l1A). Method 101
was promulgated for use at chlor-alkali plants, while Method 10lA was
developed sewage sludge incinerators. For applications to combustion
sources, 10lA would likely be more appropriate. Reference Method 103 for
beryllium is a screening method to indicate the relative presence of
beryllium. Method 104 is a more quantitative set of procedures that can be
used to effectively measure beryllium releases from combustion sources.

The recommendation from the recent combustion source trace metals test

method research are summarized below.

Samplin ethod

The sampling system design that was found to be the most desirable for
trace metals from combustion sources is a modified EPA Method 5 train due to
its particulate collection efficiency, ease of operation, availability, and
cost (Osmond et al., 1988). The absorbing solutions identified to collect
the trace metals include nitric acid, hydrogen peroxide, and acidified
potassium permanganate. The configuration and components of the sampling
train contained an EPA Method 5 glass probe, a heated filter box containing
a quartz fiber filter, an empty condensate collecting impinger, two
5 percent nitric acid/10 percent hydrogen peroxide impingers, one impinger
containing acidified permanganate, a silica gel impinger, and the usual EPA
Method 5 meter box and vacuum pump. The Method 5 train is illustrated in
Figure 5-1. The recommended impinger design in shown in Figure 5-2.

This design was evaluated in the laboratory by spiking the absorbing
solutions with the metals of interest and digesting three samples either

with conventional heating or open vessel microwave digestion methods. Both
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digestion methods were found to yield recoveries of 100 + 20 percent of the
spiked metals. However, discounting the time involved in initially
evaporating the sample to near dryness, the microwave method was
approximately eight times faster than the conventional heating method.

High purity filters were also spiked with the metals of interest and
digested using either Parr® Bombs or microwave pressure relief vesse.s.
Analysis of the samples showed that both digestion methods gave recoveries
of 100 + 20 percent for the spiked metals, but the microwave pressure relief
vessel digestion was approximately 20 times faster than the conventional
Parr® Bomb digestion. Digestion of spiked baghouse flyash samples using
microwave techniques gave recoveries of 70 to 100 percent for all of the
metals except beryllium. For all microwave digestions, it was found that
the best spike recoveries were obtained by heating the samples for a rotal
of about 15 minutes in 1 to 3-minute power cycles.

Following the extensive laboratory testing of the modified Method 5
system, a field test program was conducted at a municipal solid waste
incinerator. Although trace metals collection in the train as a whole was
evaluated, the back-half impingers were specifically examined to see first
if the metals had reached them, then to determine the collection
characteristics of the five impinger arrargement. The experimental test
-approach was formulated to compare the relative collection efficiencies of
the recommended Method 5 sampling train and an alternate sampling train
using the same five impinger configuration, but with a reduced absorbent
strength (i.e., 0.1 N HNO3 instead of 5 percent HNO3) in two of the
impingers. Furthermore, samples were collected to compare the mercury
collection efficiency of the proposed Method 5 sampling train to that of EPA
Method 10lA for mercury.

The results of the analytical data analyses indicate that there are no
significant differences between the metals collection ability of 0.1 N
nitric acid and 5 percent nitric acid. The recommended Method 5 sampling
train was also found to be similar statistically to the EPA Method 10l1A in
collecting mercury. Front- and back-half metal distributions indicate that,
with the exception of mercury, arsenic, barium, and phosphorus, most of the

metals are captured in the front-half or filter section of the train.
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Analvtical Method

There are a number of methods described in the literature for measuring
low levels of trace metals. These analytical methods include atomic
absorption spectroscopy (AAS), inductively coupled plasma argon spectroscopy
(ICAP), differential pulse anodic stripping voltametry (ASV), optical
emission spectroscopy [OES (DC arc/AC spark)], X-ray fluorescence (XRF),
neutron activation analysis (NAA), particle induced X-ray emission analysis
(PIXIE), and spark source mass spectrometry (SSMS). A comparison of the
detection limits of these techniques is given in Table 5-1.

The analytical technique recommended for use with the modified Method 5
sampling procedure is ICAP (Osmond et al., 1988). ICAP is an attractive
method for the analysis of most elements due to its low cost, acceptable
sensitivity, and multi-element analysis capabilities. ICAP can be combined
with AAS for those elements, such as mercury, arsenic, selenium, and lead,
for which ICAP is not as sensicive.

General instrument availability is a factor in choosing a recommended
analytical method. ICAP and AAS are generally more available than the
nondestructive methods for XRF or NAA. Samples should first be analyzed by
ICAP for all elements except mercury. An analysis for mercury can be done
using cold vapor atomic absorption. If lead, arsenic, and selenium are not
found in the ICAP analysis or are found at levels at or near the detection
limicts, the samples should be reanalyzed for these elements using AAS. Lead
should be analyzed by flame AAS, but selenium and arsenic should either be
analyzed using a graphite furnace or hydride method. Based upon the minimum
detection limits for ICAP and AAS and assuming a sampling time of 2 hours
and a sampling rate of 10 L/minute, this method combination could be used to
detect the elements in question at ppb levels in stack gas, as shown in
Table 5-2. NAA can be used to supplement the ICAP/AAS method if NAA is

available and proper standards can be obtained.
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TABLE 5-2. MINIMUM DETECTABLE LEVELS OF METALS IN THE STACK GAS

Analytical Analytical Concentration Concentration
Detection Detection in the Stack in the Stack
Limit (Igeal) (Typical) Gas (Idegl) Gas (Typ%cal)
Elements (ppb) (ppb) (ppb) (ppb)

cd 1 20 0.0182 0.3638

Cr 2 50 0.0783 1.9583

Ni 5 35 0.1725 1.2075

Mn 0.5 2 0.0185 0.0742

As 0.2 1 0.0054 0.0272

Be 3 5 0.6793 1.1321

Cu 2 30 0.0637 0.9550

Hg 0.001 0.5 0.0000 0.0051

Zn 1 5 0.0313 0.1567

Pb 10 100 0.0984 0.9842

Se 0.1 3 0.0026 0.0773

P 76 250 4.9970 16.4375

Note: Final Sample Size = 100 mL
Sampling Rate = 10 L/min
Sampling Time = 120 min

a . : . .
Concentration in ng/mL (in solution).

Volume/volume concentration in the stack gas.
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POLYCYCLIC ORGANIC MATTER

The major objective of POM measurement is the quantitative capture and
recovery of both particle-bound and vapor phase constituents, while
simultaneously preserving the integrity of the sample. A second important
factor in sample collection is the ability to capture sufficient quantities
to allow subsequent chemical analysis. Although collection methods take
different forms, most are similar in principle, utilizing both filtration
and adsorption collection techniques. The sampling and analytical methods
for this document were extracted from a recent EPA report on POM entitled
"Locating and Estimating Air Emissions from Sources of Polycyclic Organic

Matter" (EPA-450/4-84-007p) (U. S. Environmental Protection Agency, 1987).
Sampling Method

Sample Collection-

Collection of POM material from stationary sources is generally
achieved by using a sampling system that captures both particula:; and
condensables (Burlingame et al., 1981; Sonnichsen, 1983; DeAngelis et al.,
1980; Cottone, 1985). The most prevalent method is the modified Method 5
sampling train equipped with a sorbent resin for collection of condensables.
Another method, the Source Assessment Sampling System (SASS), a high volume
variation of Method 5, has found application when large sample sizes are
required. Methods which are not specifically designed to optimize
collection of condensables have also been used and are reported in the
literature (Jones et al., 1977). A brief description of the modified

Method 5 and the SASS trains is provided. General characteristics of each

method are compared in Table 35-3. A detailed procedures manual describing

each of these methods is available in a separate report

(Schlickenrieder et al., 1984).
Modified Method 5 (MM3). The MM5 sampling train (shown in Figure 5-3 with a

sorbent resin trap) is an adaptation of the EPA Method 5 train commonly used

in measuring particulate emissions. The modifications are the addition of a
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TABLE 5-3. COMPARISON OF MODIFIED METHOD 5 TRAIN/SASS CHARACTERISTICS

Characteristic MMS Train ~ SASS
Inert materials of construction Yes No
Percent isokinecity achievable 90 - 110 70 - 150%
Typically used to traverse Yes No
Particle-sizing of sample No Yes
Sample size over a 4-6 hour 3 30

period (dscm)

Sampling flow rate (dscmm) 0.02 - 0.03 0.09 - 0.1¢&

aAssuming reasonably uniform, nonstratified flow.

Source: Schlickenrieder et al., 1984.

’
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condensor and a sorbent module between the filter and the impingers. The
condensor cools the gas stream leaving the filter and conditions the streams
prior to entering the sorbent module. The sorbent module contains a polymer
resin designed to adsorb a broad range of volatile organic species. A
variety of resins have been used including Tenax, Chromsorb 102, and XAD-2,
with XAD-2 being the most widely recommended for vapor phase organic
compounds including POM. After the sorbent trap, the sample gas is routed
through impingers, a pump, and a dry gas meter. The MM5 train is designed
to operate at flow rates of approximately 0.015 dscmm (0.5 dscfm) over a

4 hour sampling period. Sample volumes of 3 dscm (100 dscf) are typical.

A major advantage of the MMS train is that the method provides both a
quantitative sample of POM analysis and a determination of particulate
loading (front-half filterable particulates) comparable to EPA Method 5. A
disadvantage is that large sampling periods are required to collect enough -

sample to support chemical analysis.

Source Assessment Sampling System (SASS). The SASS train (shown in

Figure 5-4) is a multi-component sampling system designed for the collection
of particulate, volatile organies, and trace metals (Lentzen et al., 1978).
Three heated cyclones and a heated filter allow size fractionation of the
particulate sample. Volatile organic material is collected in a sorbent
trap containing XAD-2 resin. Volatile inorganic species are collected in a
series of impingers before the sample gas exits the system through a pump
and a dry gas meter. Large sample volumes are required to ensure adequate
recovery of sample fractioms. The system is designed to operate at a flow
rate of 0.113 scmm (4.0 scfm). Sample volumes of 30 dscm (1000 dscf) are
typical.

An advantage of the SASS train is that the sample is collected in a
manner that allows a determination of the amount of POM associated with each
of the particle size fractions. Another advantage is the large quantity of
sample collected, which makes SASS the sampler of choice when a large
variety of chemical and biocassay analyses are desired. A disadvantage to
using the SASS train is that the system is not designed to have the ability

to traverse the stack. Also, the need for constant flow to assure proper
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size fractionation renders the SASS train less amenable for compliance
determination since isokinetic conditions are not achieved. Isokinetic
conditions can be maintained at the sacrifice of particle sizing capability.
Another drawback includes potential corrosion of the stainless steel

components of the SASS train by acidic stack gases.

Sample Recovery-

Quantitative recovery of POM requires the separation of POM from the
remainder of the collected material, as well as efficient removal from
collection media. Solvent extraction techniques which are commonly used for
recovery of POM from filters, adsorbent, and liquid media are briefly
described.

Soxhlet. Soxhlet extraction is generally recognized as the standard method -
for preparing a POM-containing solvent extract of solid matrices (Griest and
Caton, 1983). This technique is applicable for the extraction of POM from
both filter and sorbent catches. This procedure has been specified as a
standard reference for extraction of POM by the American Society for Testing
Materials, the U. S. Intersociety Committee on Recommended Methods, and the
U. S. Environmental Protection Agency'’s Procedures Manual for Level 1
Environmental Assessment (Griest and Caton, 1983).

Filter samples are folded and placed directly in the extraction chamber
of the soxhlet. Polymeric resins are typically transferred to cellulose or
glass extraction thimbles and then placed in the soxhlet for extraction.
Recommended solvents and extraction periods vary depending on the sample
matrix and the collection media (Griest and Caton, 1983; Lee and Schuetzle,
1985). Typical solvents used for extraction of POM from filters, include
methylene chloride, cyclohexane, or benzene (Schlickenrieder et al., 1984;
Lee and Schuetzle, 1985; lLee et al., 1979; Griest and Caton, 1983). Some
investigators recommend an initial extraction with methylene chloride
followed by subsequent extraction with a more polar solvent such as methanol
(Jones et al., 1977). Solvents for extraction of polymeric resins are

typically chosen based on the nature of the adsorbent. Methylene chloride
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followed by methanol is commonly selected for extracting POM from XAD-2 and
Chromsorb 102 resins. Hydrocarbons, such as pentane followed by methanol,

have been recommended for extracting Tenax (Jones et al., 1977).

Sonication. Ultrasonic agitation or sonication uses high intensity
ultrasonic vibration (~20 KHz) to enhance solvent sample contact.

Extractions involve the insertion of a sounication probe into the
sample-containing extraction vessel, or a sonication bath in which the
sample-containing extraction vessel is set. Filter samples are typically
shredded and placed in a glass extraction vessel along with solvents.
Sonication is typically carried out for periods ranging frém a few minutes

to one hour (Griest and Caton, 1983). Extracted POM are then separated from
insoluble materials using conventional filtration techniques. Table 5-4 ‘
lists reported ultrasonic agitation recoveries of POM from air particulate -
and coal fly ash using a range of extraction periods and solvents (Griest

and Caton, 1983). Recommended solvents include cyclohexane, benzene,

acetonitrile, tetrahydrofuran, and methylene chloride (Griest and Caton, ¢
1983).

Solvent Partitioning. Solvent partitioning, or liquid-liquid extraction is
the traditional procedure for extraction from liquid sample matrices
(Lentzen et al., 1978; Griest and Caton, 1983). The extraction is typically
performed in a separatory fumnel by agitation and shaking the
sample-containing liquid with a suitable solvent. Reported solvents include

methylene chloride and cyclohexane (Griest and Caton, 1983).

Analytica ethod

A variety of analytical techniques have been used to quantify the POM
content of complex environmental samples. This section presents a brief

overview of the most commonly used techniques.
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High Performance Liquid Chromatography (HPLC)-

The use of liquid chromatography for the determination of specific POM
compounds in complex environmmental samples has increases significantly in
recent years. Detailed reviews are available in the literature that
describe various modes of separation, and applications of liquid
chromatography (LC) in the measurement of POM (Dong et al., 1982; Wise,
1985; May and Wise, 1985; Zelenski et al., 1980b; Vandemark et al., 1982;
James et al., 1985; Wise, 1983; Federal Register, 1984). Although not
offering the high separation efficiency of capillary Gas Chromatography
(GC), HPLC offers three distinct advantages for POM analysis. First, HPLC
offers a variety of stationary and mobile phases which provide selectivity
for the separation of POM isomers not generally separated by GC. Second,
HPLC coupled with a fluorescence detector provides both sensitivity and
selectivity. Individual POM compounds have characteristic fluorescence
excitation and emission spectra. Finally, HPLC is an extremely useful
fractionation technique for the isolation of POM for subsequent analysis by

8ther chromatographic or spectroscopic techniques.

Gas Chromatography (GC)-

Several studies have been performed using gas chromatography for the
separation and determination of POM in environmental samples. Detailed
reviews are available in the literature that describe various applications
of GC (Bartle, 1985; Federal Registex, 1984; Chuang and Petersen, 1983).

The most frequently used detector for GC analysis of POM is the flame
ionization detector (FID). 1Its general response character makes it ideal
for several classes of compounds, but necessitates an extensive clean-up
procedure prior to GC to eliminate possible interfering compounds. The
advantages of using FID include linear response, sensitivity, and day-to-day
quantitative reliability to routine determinations. Typical detection
limits are below 1 ng.

Numerous applications using the combination of Gas Chromatography and
Mass Spectrometry (GC/MS) are also described. EPA Methods 625 and 1625 are
both GC/MS techniques for the determination of POM compounds (Federal
Register, 1984). Advantages of GC/MS techniques include a high level of
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sensitivity for trace level detection, versatility for the separation of a
large number of compounds, and specificity for absolute identification. The
marked disadvantage is that is is significantly more expensive than other

techniques.
FORMALDEHYDE

There is no EPA Reference Method for source sampling and analysis of
formaldehyde. The procedures described here were extracted from the EPA
report "Locating and Estimating Air Emissions from Sources of Formaldehyde”
(EPA-450/4-84-007e) (U. S. Environmental Protection Agency, 1984b). Though
no reference method exists, EPA has published a recommended sampling and
analysis procedure for aldehydes in general that includes formaldehyde
(Thrun et al., 1981; Harris et al., 1979). This method involves the
reaction of formaldehyde with 2,4-dinitrophenylhydrazine (DNPH) in
hydrochloric acid (HCl) to form 2,4-dinitrophenylhydrazone. The hydrazone
is then analyzed by high performance liquid chromacogréphy (HPLC).

Exhaust containing formaldehyde is passed through a modified Method 5
system with impingers or bubblers containing DNPH in 2N HCl (Figure 5-5).
The molar quantity of DNPH in the impingers must be in excess of the total
molar quantity of aldehydes and ketones in the volume of gas sampled.
Formaldehyde, higher molecular weight aldehydes, and ketones in the gas
react with DNPH to yield hydrazone derivatives, which are extracted from the
aqueous sample with chloroform. The chloroform extract is washed with
2N HCl followed by distilled water, and is then evaporated to dryness. The
residue is dissolved in acetonitrile. The solution is then analyzed by HPLC
with an ultraviolet (UV) detector set at a wavelength of 254 microms. The
mobile phase is 62 percent acetonitrile/38 percent water. The recommended
column is a 4.6 mm by 25 cm stainless steel 5 micron Zorbax ODS (Dupont)
reverse phase column, and the flow rate is 1.5 ml/min. Under the above
conditions, the residence time of formaldehyde is 4.46 minutes. The
detection limit of the method is 0.1 ng to 0.5 ng. Aldehydes have been
recovered from air sample spikes with an average efficiency of 96 percent

(+5.5 percent) (Thrun et al., 1981).
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Modifications of this general method have been applied for low level
ambient air measurements of formaldehyde. In estimating low levels by this
procedure, precautions must be taken to insure that degradation of the
absorbing reagent does not occur. One measure found to be helpful consists
of conditioning the glass samplers by rinsing them with dilute sulfuric acid
followed by rinsing with the 2,4-DNPH absorbing solution (Elia, 1983).

Because higher molecular weight aldehydes and ketones also react with
DNPH, they may interfere with the analysis of formaldehyde at some
chromatographic conditions. Thus, it may be necessary to adjust the
chromatographic conditions in order to give adequate separation of the
formaldehyde-DNPH derivative (2,4-dinitrophenylhydrazone) from the hydrazone
derivatives formed by higher molecular weight aldehydes and ketones. It may
also be necessary to adjust the acetonitrile/water ratio to avoid
interference with residual DNPH.

When sulfur dioxide is present in the emission stream, it can dissolve
in the absorbing solution to produce sulfite ion, which reacts rapidly with
formaldehyde to form bisulfite. This side reaction should not be a problem
as long as the absorbing solution is kept acidic (pH < 3). However, the
effect of high sulfur dioxide concentrationrs on the accuracy of the method
has not been tested (Elia, 1983).

It should be noted that unpredictable deterioration has been observed
for some samples analyzed by this method. Samples should therefore be
analyzed within a few hours after collection (Elia, 1983). Finally, the

method does not apply when formaldehyde is contained in particulate matter.

RADIONUCLIDES

There is no EPA Reference Method for source sampling radionuclide
emissions. However, information on testing radionuclide emissions from
combustion sources, principally coal-fired utility and industrial boilers,
is available from EPA’'s previous National Emission Standards for Hazardous
Air Pollutant (NESHAP) development program for radionuclides. Radionuclide
test reports indicate that the general testing procedure involves sampling

the source for particulate matter emissions using either an EPA Method S
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train or a SASS train (as described earlier in this section) and having the
collected particulate matter analyzed for radiochemical activity
(Roeck et al., 1983; Roberson and Eggleston, 1983).

Generally, the SASS or Method 5 trains are operated according to their
specified procedures. The one consideration which was brought out was that
the sampling must produce a minimum mass of sample to satisfy the
requirements for a valid radioassay. The minimum mass requirement was found
to range from 200 mg to 4 g depending on the analytical laboratory and their
types of equipment. Based on available data, a minimum sample size of
500 mg was established (Roberson and Eggleston, 1983). Since it inherently
collects a larger volume of sample, a SASS train may be preferred over
Method 5 for radionuclide emissions testing.

Radiochemical analysis procedures include basic chemistry techniques
such as drying, ashing, total sample dissolution, and sequential separation. -
Individual isotopes are measured for radiocactivity concentration using high
sensitivity instrumentation. Radiochemical techniques are traced
gravimetrically or'radioactively, as appropriate, to the species analyzed.
Isotopic identification methods include utilization of parent-daughter
growth/decay characteristics and/or characteristic alpha energy
idencification such that reported isotopes are specifically determined.
Also, to maximize amalytical sensitivity, all techniques are applied in a

manner that uses the entire sample mass (Roberson and Eggleston, 1983).
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APPENDIX A
DATA BASE DEVELOPMENT

The coal and o0il combustion toxic pollutant emissions data base for the
report "Summary of Trace Emissions From and Recommendations of Risk
Assessment Methodologies for Coal and 0il Combustion Sources"” was developed
through manual and computerized literature searching and through telephone
contacts with individuals knowledgeable in the areas of combustion sources
and toxic emissions from combustion. The literature search effort consisted
of searching the Radian library and relevant company project files for
combustion source toxic emissions data that either were developed by the
company or were obtained through projects related to this topic, and
searching computerized data bases of the Dialog® information system. The
in-house search proved successful in that approximately 100 documents were
identified as potentially being useful to the objectives of the project.
These were obtained and evaluated.

The Dialog® search consisted of searching nine data bases that were
identified as having the highest probability of containing information
relating to combustion source trace emissions aﬁd risk assessment
methodologies. These data bases, the dates back to which each was searched,
and any exclusions/restrictions applied to, a data base search are summarized
in Table A-1.

The computerized search of these nine data bases identified
1,808 citations that potentially could be useful to the objectives of the
project. Abstracts of these 1,808 citations were evaluated and a list of
506 citations were specified from this review that appeared to warrant a
full review to extract their toxic emissions data. During the review of the
abstracts, approximately 240 references were discounted on the basis of
being of only marginally applicable or of containing data that applies to
foreign sources. References containing emissions data on combustion sources
located outside the United States were specified by EPA to not be obtained.

Another 105 were discarded on the basis that they were exact duplicates with
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TABLE A-1. DATA BASES SEARCHED IN THE DIALOG® SYSTEM

Data Base Dates Searched Restrictions
Chemical Abstracts (CA) Search 1972 1985 a
NT1S 1964 - 1985 a
Compendex 1970 - 1985 a
DOE Energy 1974 - 1985 a
Electric Power Database 1972 - 1985 a
Pollution Abstracts 1970 - 1985 a
Environmental Bibliography 1974 - 1985 a
Enviroline 1970 - 1985 a
Federal Research in Progress Current a

aLimited to references available in English; all patent literature was

excluded.
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a reference previously identified or they were duplicates of work that had
been published or presented in another source. 1In total, 161 references
were obtained from the computerized literature search and evaluated for this
study.

The final source of data for the project was the Emissions Assessment
Data System (EADS) which is maintained by the Air and Energy Engineering
Research Laboratory (AEERL) of the U. S. EPA at Research Triangle Park,
North Carolina. The EADS contained computerized summaries of 197 reports of
tested trace metal emissions from combustion sources. Upon a review of the
summaries, most of the test reports were found to be duplicates of
references previously identified and analyzed or were not directly
applicable for reasons of being concerned with wood or organic waste fuels

and unapplicable sources such as internal combustion engines.
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APPENDIX B
FUEL HEATING VALUES

The information presented in this appendix on fuel heating values is
intended to supplement the emission factors provided in Section 4 in the
calculation of toxic emissions for a combustion source. Fuel heating values
are useful in calculating toxic pollutant emissions when available emission
factors are expressed in terms of mass of emissions/mass of fuel burned
(e.g., 1b As/ton coal) and only the source’s total energy input level
(106 Btu/yr) is known or when the emission factor is expressed in terms of
mass of emissions/unit heat energy input (lb Ni/lO6 Btu) and only the total
quantity of fuel burned (tons/yr) is known. Heating content values are
provided in this appendix for coal and oil fuels.

Coal is a general term used to describe a wide range of materials that
are burned to produce heat, which in turn in some combustion sectors, is
used to generate energy. Four recognized classes containing a total of
13 component'groups are used to classify different types of coal. The

parameters predominantly used to classify coals are:

- the amount of volatile matter contained in the coal;

- the amount of fixed carbon contained in the coal;
- the amount of inherent moisture contained in the coal; and
- the amount of oxygen contained in the coal.

The four coal classes and their component groups are presented in Table B-1
(Babcock and Wilcox, 1978; Singer, 1981). Typical heating values of
domestic coals are illustrated in Table B-2. Mean heating values, by coal

group, based on the data in Table B-2 are given below.

Meta-anthracite - 11,029 Btu/lb
Anthracite - 13,061 Btu/lb
Semianthracite - 12,857 Btu/lb
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TABLE B-1. CLASSIFICATION OF COALS

Coal Class Component Groups

1. Anthracitic Meta-anthracite
Anthracite

Semianthracite

w N

I1. Bituminous Low volatile bituminous

Medium volatile bituminous
High volatile A bituminous
High volatile B bituminous

High volatile C bituminous

[V O I ]

I1I. Subbituminous Subbituminous A
Subbituminous B
C

Subbituminous

w N =

IV. Lignitic Lignite A

Lignite B

N~

Sources: Babcock and Wilcox (1978); Singer (1981).
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Low volatile bituminous - 13,976 Btu/lb
Medium volatile bituminous - 13,878 Btu/lb
High volatile A bituminous - 13,451 Btu/lb
High volatile B bituminous - 12,286 Btu/lb
High volatile C bituminous - 11,228 Btu/lb
Subbituminous A - 10,735 Btu/1lb
Subbituminous B - 9,478 Btu/lb
Subbituminous C - 8,450 Btu/lb

Lignite A - 7,194 Btu/lb

The mean heating value of each major class of coal, calculated from the data
in Table B-2, is as follows.

Anthracitic - 12,698 Btu/lb

Bituminous - 13,077 Btu/1lb
Subbituminous - 9,554 Btu/lb

Lignitic - 7,194 Btu/1lb (lignite A only)

More information on coal heating values expressed by the geographical
source of the coal, is provided in Table B-3.

The heating value of coal, like the trace metal content, varies between
coal regions, between mines within a region, between seams within a mine,
and within a seam. The variability is minimal compared to that found with
trace metal levels, but nevertheless it may be important when attempting to
use fuel heat content as a factor in source emission calculations. Data
presented in Table B-4 illustrate coal heat content variability. Heat
content among coals from several different mines within a region appears to
exhibit greater variability than either variability within a mine or within
a seam. For the sample points in Table B-4, intermine variability averaged
15 percent, intramine variability 7 percent, and intraseam variability
3 percent. Since few combustion sources burn coal from just one seam or one
mine, coal heat content variability may significantly affect emissions
estimates that are being calculated using emission factors, coal use data,
and coal heat content data, even if the source gets all its coal from the

same area of the country.
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TABLE B-3. MEAN COAL HEATING VALUES BY GEOGRAPHIC REGION

Region Heating Value, Btu/lb

Northern Appalachia

Maryland 11,344
Pennsylvania 11,825
Ohio : 10,909
Northern West Virginia 11,975

Central Appalachia

Eastern Kentucky 11,326

Virginia 11,802

Southern West Virginia 11,975
Central

Indiana 10,811

Illinois 10,710

Western Kentucky 11,326

[
Northwest (Powder River Basin)

Montana 8,987

Wyoming 9,169
Southwest

New Mexico 8,966

Source: U. S. National Committee for Geochemistry (1980).
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The term fuel oil is conveniently applied to cover a wide range of
petroleum products, including crude petroleum, lighter petroleum fractions
such as kerosene, and heavier residual fractiomns left after distillation.

To provide standardization and a means for comparison, specifications have
been established that separate fuel oils into various grades. Fuel oils are
graded according to specific gravity and viscosity, with No. 1 Grade being
the lightest and No. 6 the heaviest. The heating value of fuel oils is
expressed in terms of Btu/gal of oil at 16°¢ (60°F) or Btu/lb of oil. The
heating value per gallon increases with specific gravity because there is
more weight per gallon. The heating value per pound of 0il varies inversely
with specific gravity because lighter oil contains more hydrogen.

For an uncracked distillate or residual oil, heating value can be

approximated by the following equation.
Btu/lb = 17,660 + (69 x API gravity)
For a cracked distillate, the relationship become%,
Btu/lb = 17,780 + (54 x API gravicy).
Typical heating values of predominantly used fuel oils are presented in
Tables B-5 and B-6 through B-10. Tables B-6 to B-10 represent a summary of
an extensive assessment of fuel oils that has been conducted by the U. S.

Department of Energy’s Bartlesville Energy Technology Center. Figure B-1

provides a key to the fuel oil regions as presented in Tables B-6 to B-10.
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APPENDIX C
EMISSION FACTORS MEASURED AT INDIVIDUAL COAL-FIRED BOILERS

This appendix summarizes the data base for measured emission factors
from coal-fired boilers. It was compiled from a review of the literature
included in Section 6. The summary tables are organized by pollutant. The
tables for the eight trace metals, arranged in alphabetical order, are
first. Tables for radionuclides are next, followed by tables for POM.
Within each pollutant, tables are organized by combustion sector, coal type,
and boiler design. Each table lists the average measured emission factor
for each boiler tested. The range of emission factors measured at each
boiler is also listed if results of more than one test run were reported.
For each test, the tables also list the control status of the boiler, and

the reference for the information.
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TABLE C-1.

MEASURED ARSENIC EMISSION FACTORS FOR UTILITY,
BITUMINOUS COAL, PULVERIZED DRY BOTTOM BOILERS

Emission Factor

(1b/10*2 Bew
Mean” Range Control Status Reference
48.8 --- Mech. Ppt/ESP Shih et al,, 1980b
30.2 .-- Mech. Ppt/ESP Shih et al., 1980b
3.95 -~ Wet Scrubber Shih et al., 1980b
26° .e- ESP Baig et al., 1981
138°¢ 62-242 ESP Evers et gl., 1980
886° 792-924 Uncontrolled Evers et al,, 1980
54 ... ESPd Sawyer and Higginbotham, 1981la-
61 .es ESP® Sawyer and Higginbotham, 198la
43 .e- ESP® Sawyer and Higginbotham, 198la
820 - Unconcrolledd Sawyer and Higginbotham, 1981la
910 --- Uncontrolled® §awyer and Higginbotham, 1981a
500 .- Uncontrolled® Sawyer and Higginbotham, 1981a
68 --- Low Effic. ESP® Higginbotham and Goldberg, 1981
70 .- Low Effic. ESP® Higginbotham and Goldberg, 1981
110 .-- Low Effic. ESP® Higginbotham and Goldberg, 1981
430 --- Uncontrolledd Higginbotham and Goldberg, 1981
330 .- Uncontrolled® Higginbotham and Goldberg, 1981
140 “.- Uncontrolled® Higginbotham and Goldberg, 1981
620 .. Uncontrolled® Higginbotham and Goldberg, 1981
310 .- Uncontrolled® Higginbotham and Goldberg, 1981
1360 --- Uncontrolled Scinto et al., 1981
9.4 .-- ESP Scinto et al., 1981
14.9 --- ESP/Scrubber Scinto ef al., 1981
1274f 890-1980 Mech. Ppt. Zielke and Bittman, 1982-
192f 17-290 Mech. Ppt/lst ESP Zielke and Bittman, 1982
in Series of 2
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TABLE C-1. MEASURED ARSENIC EMISSION FACTORS FOR UTILITY, BITUMINOUS
COAL, PULVERIZED DRY BOTTOM BOILERS (Continued)

Emission Factor

(1b/10'2 Beu)

Mean® Range Control Status Reference

6.18  <0.29-13.2  Mech. Ppt/2 ESPs Zielke and Bittman, 1982

in Series

31.4 --- Venturi Scrubber Ondov et al., 197%a

12.2 8.19-24.6 Venturi Scrubber Ondov et al., 1979%a

21.4 --- Venturi Scrubber Ondov et al., 1979%a

0.46"  0.35-0.51  ESP ondov et al,, 1979b

- 13.4-35.5%  Esp Ondov et al., 1979b .
641 62-66 Uncontrolled Cowherd et al,, 1975

3R 19-49 Mech. Ppt. Cowherd et al., 1975

“This column gives arithmetic mean values for each boiler tested. Footnotes
indicate how many measurements each mean represents, if this information was
included in the reference. If only a single measurement was reported, it is
included in this column.

bAverage of tests of six different boilers.
cAverage of eight tests of the same boiler.
dBoiler operating under baseline (design) conditionms.

®Boiler operating under low-NO_ conditions - certain burners admit only air
rather than fuel, or different fuel/air ratios are admitted than under
design operating conditions.

fAverage of seven tests of the same boiler.
gAverage of five tests of the same boiler.
hAverage of three tests of the same boiler.

1Range for six tests of the same boiler.
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TABLE C-2.

MEASURED ARSENIC EMISSION FACTORS FOR UTILITY PULVERIZED
WET BOTTOM BOILERS FIRED WITH BITUMINOUS CoOAL

Emission Factor

(lb/lO12 Btu) Control Status Reference
15.3 Mech. Ppt/ESP Shih, et al., 1980b
44 .2 ESP Shih, et al,, 1980b
44.2 ESP Shih, et al., 1980b
76.7 Venturi Scrubber Shih, et al., 1980b
165 ESP Shih, ef al., 1980b
572 ESP Shih, et al., 1980b.
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TABLE C-3. MEASURED ARSENIC EMISSION FACTORS FOR UTILITY
CYCLONE BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor

(15/10'2 Bew)
Mean Range Control Status Reference
813 --- Wet Scrubber Shih, et al., 1980b
6.3 --- ESP Shih, et gl., 1980b
11.4 --- ESP Shih, et al., 1980b
27.9 --- ESP Shih, et al,, 1980b
12.8 .- ESP Shih, et al., 1980b
310b 130-490 Uncontrolled Klein, et al,, 1975b;
Lyon, 1977
13.5b 12-15 High Efficiency ESP Klein, gt al,, 1975b;
Lyon, 1977

“This column gives the arithmetic mean vilues for each boiler tested.
Footnotes indicate how many measurements each mean represents, if this
information was included in the reference. If ouly a single measurement was
reported, it is included in this column.

b
Averge of two tests of the same boiler.
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TABLE C-4. MEASURED ARSENIC EMISSION FACTORS FOR UTILITY
STOKER BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor

(].b/lO12 Btu) Control Status Reference
0.77 Fabric Filter Shih, et al., 1980b
5580 Mechanical Ppt. Shih, et al., 1980b
432 Multiclone Shih, et al., 1980b

TABLE C-5. MEASURED ARSENIC EMISSION FACTORS FOR UTILITY
BOILERS FIRED WITH SUBBITUMINOUS COAL

Emission Factor

Control Status

Reference

(lb/IO12 Btu) Boiler Type
860 Cyclone
810 Cyclone
11 Pulverized
0.17 Pulverized
2.4 NR?
10 NR

Uncontrolled

'FGD Scrubber

Venturi Scrubber
ESP (hot side)
ESP (cold side)

ESP (hot side)

Leavitt, et al., 1979
Leavitt, et al., 1979
Radian, 1975

Radian, 1975

Mann, et al., i978

Mann, e al., 1978

4NR = not reported.
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TABLE C-6.

MEASURED ARSENIC EMISSION FACTORS FOR

UTILITY BOILERS FIRED WITH LIGNITE COAL

Emission Factor
(167102 Beu)

Boiler Type

Control

Status

Reference

397

367
<2.3
5.8

11.2

270
265

<5.3

Pulverized Dry Bottom

Pulverized Dry Bottom

Pulverized Dry Bottom

Cyclone

Cyclone

Cyclone
Spreader Stoker

Spreader Stoker

Multiclone
Multiclome
ESP
ESP

ESP/Wet
Scrubbers

Multiclone
Multiclone

ESP

Shih et al., 1980b
Shih et al., 1980b
Shih et al., 1980b
Shih et al., 1980b

Schock et al., 1979

Radian, 1975
Shih et al., 1980b

Shih et al., 1980b
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TABLE C-1l1.

MEASURED BERYLLIUM EMISSION FACTORS FOR UTILITY PULVERIZED

DRY BOTTOM BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor
(167102 Beuw)

a
Mean

Range Control Status Reference
0.11 --- Wet Scrubber Shih et al., 1980b
0.44 --- Mech. Ppt/ESP Shih et al., 1980b
<0.11 --- Mech. Ppt/ESP Shih et al., 1980b
0.60° ee ESP Baig et al., 1981
0.89° 0.62-1.89 ESP Evers et al., 1980 -
102°¢ 92-114 Uncontrolled Evers et al., 1980
% -- ese® Sawyer and Higginbotham, 1981a
12 ons ESP® Sawyer and Higginbotham, 1981a
9.5 “.- Esp® Sawyer and Higginbotham, 198la
140 --- Uncom:rolledd Sawyer and Higginbotham, 198la
140 .e- Uncontrolled® Sawyer and Higginbotham, 198la
100 “-- Uncontrolled® Sawyer and Higginbotham, 198la
21 .- Low Effic. ESP®  Higginbotham and Goldberg, 1981
31 “e- Low Effic. ESP®  Higginbotham and Goldberg, 1981
32 --- Low Effic. ESP®  Higginbotham and Goldberg, 1981
42 : --- .Unconcrolledd Higginbotham and Goldberg, 1981
45 --- Uncontrolled® Higginbotham and Goldberg, 1981
41 .- Uncontrolled® Higginbotham and Goldberg, 1981
154f 141-171 Mech. Ppt. Zielke and Bittman, 1982
MCH/007
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TABLE C-11. MEASURED BERYLLIUM EMISSION FACTORS FOR UTILITY PULVERIZED
DRY BOTTOM BOILERS FIRED WITH BITUMINOUS COAL (Continued)

Emission Factor

(1b 'Olzgﬁtu)

Mean® Range Control Status Reference

19.Af 18.1-22.1 Mech. Ppt/lst ESP Zielke and Bittman, 1982
in series of 2

0.082% 0.007-0.209 Mech. Ppt/2 ESPs Zieklke and Bittman, 1982
in series

- 0.97-1.7%  Esp Ondov et gl., 1979b

SZi 44-59 Uncontrolled Cowherd et al., 1975 -

33t 26-38 Mechanical Ppt. Cowherd et al., 1975

%This column gives arithmetic mean values for each boiler tested. Footnotes
indicate how many measurements each mean represents, if this information
was included in the reference. If only a single measurement was reported,
ic is included in this column.

bAverage of tests of six different boilers.
cAverage of eight tests of the same boiler.
dBoiler operating under baseline (design) conditions.

®Boiler operating under low-NO_ conditions - certain burners admit only air
rather than fuel, or different fuel/air ratios are admitted than under
design operating conditions.

Average of seven tests of the same boiler.
gAverage of five tests of the same boiler.
hRange for three tests of the same boiler.
iAverage of three tests of the same boiler.
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TABLE C-

12.

MEASURED BERYLLIUM EMISSION FACTORS FOR UTILITY PULVERIZED
WET BOTTOM BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor

(lb/lO12 Btu) Control Status Reference
0.88 Mechanical Ppt/ESP Shih et al., 1980b
1.7 ESP Shih et al., 1980b
1.0 ESP Shih et al., 1980b
0.086 Venturi Wet Scrubber Shih et gl., 1980b
3.7 ESP Shih e al., 1980b
10.2 ESP Shih et al,, 1980b ~
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TABLE C-13.

MEASURED BERYLLIUM EMISSION FACTORS FOR UTILITY
CYCLONE BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor

(1b/10% Beu)

Control Status

Reference

0.86
0.60
1.05
0.19

0.23

Wet Scrubber

ESP

ESP

ESP

ESP

Shih et al,, 1980b
Shih et al,, 1980b
Shih et al,, 1980b
Shih et al., 1980b

shih et al,, 1980b

TABLE C-14.

MEASURED BERYLLIUM EMISSION FACTORS FOR UTILITY
STOKER BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor

(1b/1012 Btu)

Control Status

Reference

0.13 Fabric Filter Shih et al,, 1980b

5.6 Mechanical Ppt Shih et al,, 1980b

20.0 Multiclone Shih et al., 1980b
MCH/007 Cc-16



TABLE C-15. MEASURED BERYLLIUM EMISSION FACTORS FOR UTILITY
BOILERS FIRING SUBBITUMINQUS COAL

Emission Factor

(lb/lo12 Btu) Boiler Type Control Status Reference
18.0 Cyclone Uncontrolled Leavitt et al., 1979
1.6 Cyclone Venturi Scrubber Leavictt et al,, 1979
0.60 Pulverized Venturi Scrubber Radian 1973
1.0 Pulverized ESP (hot side) Radian 1973
0.38 Unspecified ESP (cold side) Mann et al., 1978
0.88 Unspecified ESP (hot side) Mann et al., 1978 -
TABLE C-16. MEASURED BERYLLIUM EMISSION FACTCRS FOR
UTILITY BOILERS FIRING LIGNITE COAL
Emission Factor Control
(1b/1012 Btu) Boiler Type Status Reference
2.3 Pulverized Dry Bottom Multiclone Shih et al., 1980b
2.6 Pulverized Dry Bottom Multiclone Shih et al., 1980b
<2.3 Pulverized Dry Bottom ESP Shih et al., 1980b
0.70 Cyclomne ESP Shih et al., 1980b
6.8 Cyclone Cyclone Radian 1975
13.7 Spreader Stoker Multiclone Shih et al., 1980b
0.26 Spreader Stoker ESP Shih eg al., 1980b
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TABLE C-20.

MEASURED CADMIUM EMISSION FACTORS FOR PULVERIZED DRY
BOTTOM UTILITY BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor
12

(1b/10°~ Btu)
Mean® Range Control Status Reference
2.6° - ESP Baig et al., 1981
1.2 --- Wet Scrubber Shih et al., 1980b
1.9 --- Mechanical Ppt/ESP Shih et al., 1980b
1.4 --- Mechanical Ppt/ESP Shih et al., 1980b
26.5° 11.4-52.8  ESP Evers et al., 1980 .
137¢ 114-167 Uncontrolled Evers et al., 1980
6.6 . --- ESPd Sawyer and Higginbotham, 1981la
9.8 .-- I.‘JSl’le Sawyer and Higginbotham, 1981a
3.8 .- ESP® Sawyer and Higginbotham, 198la
41 --- Uncontrolledd Sawyer and Higginbotham, 1981la
12 .- Uncontrolled® Sawyer and Higginbotham, 1981la
11 --- Uncontrolled® Sawyer and Higginbotham, 1981la
4.5 - Low Effic. ESPS Higginbotham and Goldberg, 1981
7.1 .- Low Effic. ESP® Higginbotham and Goldberg, 1981
10 --- Uncontrolledd Higginbotham and Goldberg, 1981
9.2 --- Uncontrolled® Higginbotham and Goldberg, 1981
.- 10-14 Uncontrolled Scinto eg al,, 1981
<4.6 .- ESP Scinto et al., 1981
<4.6 .- ESP/Scrubber Scinto et al,, 1981
MCH/007 c-22



TABLE C-20. MEASURED CADMIUM EMISSION FACTORS FOR PULVERIZED DRY BOTTOM
UTILITY BOILERS FIRED WITH BITUMINOUS COAL (Continued)

Emission Factor

(1b/10%% Bew)

Mean® Range Control Status Reference
291f 136-487 Mechanical Ppt. Zielke and Bittman, 1982
46 --- Mech. Ppt/2 ESPs Zielke and Bittman, 1982
in Series
1.95 --- Venturi Scrubber Ondov et al., 1979a;
Hobbs et al., 1983
.n- 0.22-0.6%  EsP Ondov et al., 1979b
31h 15-56 Mechanical Ppt. Cowherd et al., 1975
42h -
24-74 Uncontrolled Cowherd et al., 1975

%This column gives arithmetic mean values for each boiler tested.

indicate how many measurements each mean represents, if this information
was included in the reference. If only a single value was reported, it is

included in this column.
bAvetage of tests of six boilers.

cAverage of eight tests of the same boiler.

dTested while boiler was operating under baseline (design) conditions.

®Tested while boiler was operating under low-NOx conditions - certain
burners admit air rather than fuel, or differenit fuel/air ratios are
admitted than under design operating conditions.

fAverage of seven.tests of the same boiler.
gRange for four tests of the same boiler.

h
Average of three tests of the same boiler.

MCH/007 C-23

Footnotes



TABLE C-21. MEASURED CADMIUM EMISSION FACTORS FOR UTILITY PULVERIZED
WET BOTTOM BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor

(lb/lo12 Btu) Control Status Reference
1.9 Mechanical Ppt/ESP Shih et al,, 1730b
0.56 ESP Shih et al., 1980b
0.63 ES? Shih et al,., 1980b
0.086 Venturi Scrubber Shih et al., 1980b
1.4 ESP Shih et al., 1980b
2.6 ESP Shih et al,, 1980b-

r
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TABLE C-22.

MEASURED CADMIUM EMISSION FACTORS FOR UTILITY
CYCLONE BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor
(1b/10'2 Bew).

Mean® Range Control Status Reference
488 --- Wet Scrubber Shih et al., 1980b
3.0 --- ESP Shih gt al,., 1980b
1.1 --- ESP Shih et al,. 1980b
0.35 --- ESP Shih et gl.., 1980b
1.1 .- ESP Shih et al., 1980b -
28,5b 22-35 Uncontrolled Klein et al,, 1975b; Lyon, 1977
0.8° 0.7-0.9 ESP

Klein et al., 1975b; Lyon, 1977
[

-
“This column gives the arithmetic mean values for each boiler tested.
Footnotes indicate how many measurements each mean represents, if this

information was included in the reference.
reported, it is included in this column.

bAverage of two tests of the same boiler.
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TABLE C-23. MEASURED CADMIUM EMISSION FACTORS FOR UTILITY
STOKER BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor

(1b/1012 Btu) Control Status Reference
0.33 Fabric Filter Shih et al,, 1980b
4.2 Mechanical Ppt. Shih et al,, 1980b
22.1 Multiclone Shih et al., 1980b

]

TABLE C-24. MEASURED CADMIUM EMISSION FACTORS FOR UTILITY
BOILERS FIRED WITH SUBBITUMINOUS COAL

Emission Factor

(lb/lO12 Btu) Boiler Type Control Status Reference
4400 Cyclone Uncontrolled Leavitt et al., 1979
490 Cyclone Scrubber Leavitt et al., 1979
4.0 Pulverized Venturi Scrubber Radian, 1975
<0.40 Pulverized ESP (hot side) Radian, 1975
0.39 NR ESP (cold side) Mann et al., 1978
1.7 NR ESP (hot side) Mann et al,, 1978

NR = not reported.
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TABLE C-25. MEASURED CADMIUM EMISSION FACTORS FOR
UTILITY BOILERS FIRED WITH LIGNITE COAL

Emission Factor

(167102 Bew)

Mean® Range Boiler Type Control Status Reference

25.6 --- Pulverized Dry Bottom Multiclone Shih et al., 1980b
5.1 --- Pulverized Dry Bottom Multiclone Shih et al., 1980b

<3.5 --- Pulverized Dry Bottom  ESP Shih et al., 1980b
1.2 --- Cyclone ESP Shih et al., 1980b

16 .-- Cyclone Cyclone Radian, 1975

30.6b 1.8-59 Cyclone ESP/Scrubbers Schock et al., 197;
5.3 .- Spreader Stoker Multiclone Shih eg al., 1980b
1.9 .e- Spreader Stoker ESP Shih et al., 1980b

“This column gives arithmetic mean values for each boiler tested. Footnotes
indicate how many measurements each mean represents, if this information
was included in the reference. If only one value was reported, it is
included in this column.

bAverage of two tests of the same boiler.
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TABLE C-30.

MEASURED CHROMIUM EMISSION FACTORS FOR PULVERIZED DRY

BOTTOM UTILITY BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor

:]!Z]le Beu)
Mean® Range Control Status Reference
3000°* ¢ - ESP Baig et al., 1981
12.3 --- Wet Scrubber Shih et al., 1980b
7970° .-- Mechanical Ppt/ESP  Shih et al., 1980b
3930° .-- Mechanical Ppt/ESP  Shih et al.. 1980b
7900 .- Uncontrolled® Sawyer and Higginbotham, 1981la°
3700 .-- ESPd Sawyer and Higginbotham, 198la
2300 --- Uncontrolled® Sawyer and Higginbotham, 198la
380 --- Uncontrolled® Sawyer and Higginbotham, 1981la
2400 --- Uncontrolledd Higginbotham and Goldberg, 1981
2800 .-- Uncontrolled® Higginbotham and Goldberg, 1981
2000 --- Uncontrolled® Higginbotham and Goldberg, 1981
2500 .-- Uncontrolled® Higginbotham and Goldberg, 1981
390 --- .ESPG Higginbotham and Goldberg, 1981
1000 .-- Esp® Higginbotham and Goldberg, 1981
244 --- Uncontrolled Scinto et al., 1981
17.3 --- ESP/Scrubber Scinto et al., 1981
17,200f 8200-29,700 Mechanical Ppt. Zielke and Bittman, 1982
37808 1520-7210 Mech. Ppt/lst ESP Zielke and Bittman, 1982
in Series of 2
740" <74-1740  Mech. Ppt/2 ESPs Zielke and Bittman, 1982
in Series
MCH/007
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TABLE C-30. MEASURED CHROMIUM EMISSION FACTORS FOR PULVERIZED DRY BOTTOM
UTILITY BOILERS FIRED WITH BITUMINOUS COAL (Continued)

Emission Factor
12

(15710~ Btu)
Mean® Range Control Status Reference
48 --- Venturi Scrubber Ondov et gl., 1979%a
31 4.5-290 Venturi Scrubber Ondov et al,, 1979a
12 “ne Venturi Scrubber Ondov et al., 1979%a
1.9t 1.6-2.3  ESP Ondov et al., 1979b
7.1-70.83  Esp Ondov et al.. 1979b )
770 . 510-1120 Mech. Collector Cowherd et gl., 1975
1320t 1000-1840 Uncontrolled Covherd et al., 1975
0.0036% ... Controlled Ajax and Cuffe, 1985

#This column gives arithmetic mean values for each boiler tested. Footnotes
indicate how many measurements each mean represents, if this information was
included in the reference. If only a single value was raported, it is
included in this column.

bSuspected corrosion of sampling train components may account for higher than
expected measured values.

cAwerage of tests of six boilers.
dTested while boiler was operating under baseline (design) conditions,.

®Tested while boiler was operating under low-NO_ conditions - certain burners
admit air rather than fuel, or different fuel/air ratios are admitted than
under design operating conditions.

fAverage of seven tests of the same boiler.
8Average of six tests of the same boiler.
hAverage of four tests of the same boiler.
iAverage of three tests of the same boiler.
JRange for six tests of the same boiler.

kAverage reported for three tests of the same boiler. This value is for
hexavalent chromium (Cr+6).
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TABLE C-31.

MEASURED CHROMIUM EMISSION FACTORS FOR UTILITY PULVERIZED
WET BOTTOM BOILERS FIRED WITH BITUMINOUS COAL

. a
Emission Factor

(lb/lO12 Btu) Control Status Reference
86 Mechanical Ppt/ESP Shih et al. ., 1980b
339 ESP Shih et al., 1980b
2040 ESP Shih et al,, 1980b
0.60 Venturi Scrubber Shih et al,, 1980b
3320 ESP Shih et al., 1980b
3070 ESP Shih et al_, 1960;

%The reference notes that suspected corrosion of the sampling train may

account for higher than expected values.
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TABLE C-32. MEASURED CHROMIUM EMISSION FACTORS FOR UTILITY
CYCLONE BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor

(1b/10%2 Bew)
Mean? Range Control Status Reference
107 .- Wet Scrubber Shih et al., 1980b
1820 .- ESP Shih et al,, 1980b
5340° .- ESP Shih et al., 1980b
674° .- ESP Shih et gl., 1980b
1170° .- ESP Shih et al., 1980b )
1150° 1000-1300 Uncontrolled Klein et al., 1975b; Lyon, 1977
32¢ 18-46 ESP Klein et al., 1975b; Lyom, 1977

!

. L
*This column gives the arithmetic mean values for each boiler tested.
Footnotes indicate how many measurements each mean represents, if this
information was included in the reference. If only a single value was
reported, it is included in this column.

bReference notes that suspected corrosion of sampling train may account for
higher than expected values.

c .
Average of two tests of the same boiler.
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TABLE C-33., MEASURED CHROMIUM EMISSION FACTORS FOR UTILITY
STOKER BOILERS FIRED WITH BITUMINOUS COAL

Emission Factora
12

(1b/10 Btu) Control Status Reference
153 Fabric Filter Shih et al., 1980b
2420 Mechanical Ppt. Shih et al ., 1980b
455 Multiclone Shih et al., 1980b

dReference notes that suspected corrosion of the sampling train may account
for higher values than expected.
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TABLE C-34,

MEASURED CHROMIUM EMISSION FACTORS FOR UTILITY

BOILERS FIRED WITH SUBBITUMINOUS COAL

Emission Factor
12

(1b/107" Btu) Boiler Type " Control Status Reference
1100 Cyclone Uncontrolled Leavitt et al., 1979
100 Cyclone Scrubber Leavitt et al., 1979
390 Pulverized Venturi Scrubber Radian, 1975
140 Pulverized ESP Radian, 1975
8.8 NR ESP Mann et al., 1978
28 NR ESP Mann et al., 1978
NR = Not Reported.
MCH/007 C-38



TABLE C-35. MEASURED CHROMIUM EMISSION FACTORS FOR
UTILITY BOILERS FIRED WITH LIGNITE COAL

Mean® Range Boiler Type Control Status Reference
74.4 --- Pulverized Dry Bottom Multiclone Shih et al., 1980b
67.4 --- Pulverized Dry Bottom Multiclone Shih et al., 1980b
20.0 --- Pulverized Dry Bottom ESP Shih et al., 1980b
<7.7 --- Cyclone ESP Shih et al., 1980b
1000 .-- Cyclone Cyclone Radian, 1975

a.eb 3.1-5.9 Cyclone ESP/Scrubbers Schock et al., 1975
30.2 .-- Spreader Stoker Multiclone Shih et al,, 1980b
<5.3 .-- Spreader Stoker ESP Shih et al., 1980b

A

%This column gives arithmetic mean values for each boiler tested. Footnotes
indicate how many measurements each mean represents, if this information
was included in the reference. If only one value was reported, it is
included in this column.

bAverage of two tests of the same boiler.
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TABLE C-40.

MEASURED COPPER EMISSION FACTORS FOR PULVERIZED DRY
BOTTOM UTILITY BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor
(1671012 Bew)

Mean? Range Control Status Reference
13.5 .- Wet Scrubber Shih et al., 1980b
177 .- Mechanical Ppt/ESP Shih et al., 1980b
48.8 .- Mechanical Ppt/ESP Shih et al., 1980b
268° 92.4-660  ESP Evers et al., 1980
8967 792-1010  Uncontrolled Evers et al., 1980
1000 “-- Uncontrolled® Sawyer and Higginbotham, 198la
680 “-- Uncontrolledd Sawyer and Higginbotham, 198la
780 .e- Uncontrolled® Sawyer and Higginbotham, 1981a
100 --- Esp® | Sawyer and Higginbotham, 1981a
48 --- ESPd Sawyer and Higginbotham, 198la
82 “-- ESPd Sawyer and Higginbotham, 198la
1100 e Uncontrolled® Higginbotham and Goldberg, 1981
830 --- Uncont:rolledd Higginbotham and Goldberg, 1981
490 --- Uncontrolledd Higginbotham and Goldberg, 1981
1500 --- Uncontrolledd Higginbotham and Goldberg, 1981
240 ee Esp® Higginbotham and Goldberg, 1981
290 .- ESPd Higginbotham and Goldberg, 1981
220 .- esp? Higginbotham and Goldberg, 1981
541 --- Uncontrolled Scinto et al,, 1981
34 --- ESP

Scinto et al.,, 1981
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TABLE C-40. MEASURED COPPER EMISSION FACTORS FOR PULVERIZED DRY BOTTOM
UTILITY BOILERS FIRED WITH BITUMINOQUS COAL (Continued)

Emission Factor

(167102 Bew)
Mean® Range Control Status Reference
14.1 -a- ESP/Scrubber Scinto et 3l., 1981
2720° 2380-3140 Mechanical Ppt. Zielke and Bittman, 1982
580° 440-974  Mech. Ppt/lst ESP Zielke and Bittman, 1982
in Series of 2
35.55  1.6-71.0  Mech. Ppt/2 ESPs Zielke and Bittman, 1982
in Series -
27 10.1-54  Venturi Scrubber Ondov et al., 197%a
20 -e- Venturi Scrubber Ondov et al., 1979%a
4408 380-480 Uncontrolled Cowherd et al., 1975
2608 210-290  Mechanical Ppt. Cowherd et al,, 1975

%This column gives arithmetic mean values for each boiler tested. Footnotes
indicate how many measurements each mean represents, if this information was
included in the reference. If only a single value was reported, it is
included in this columm.

bAvetage of eight tests of the same boiler.
®Tested while boiler was operating under baseline (design) conditions.

dTested while boiler was operating under low-NOx conditions - certain burners
admit air rather than fuel, or different fuel/air ratios are admitted than
under design operating conditions.

ekverage of seven tests of the same boiler.
fAverage of five tests of the same boiler.

gAverage of three tests of the same boiler.
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TABLE C-41. MEASURED COPPER EMISSION FACTORS FOR UTILITY PULVERIZED
WET BOTTOM BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor
12

(1b/10 Btu) Control Status Reference
23.2 Mechanical Ppt/ESP Shih et al,, 1980b
12.3 ESP Shih et al., 1980b
30.2 ESP Shih et al., 1980b
2.3 Venturi Scrubber Shih et al,, 1980b
137 ESP Shih et al,., 1980b
225 ESP Shih et al,, 1980b-
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TABLE C-42. MEASURED COPPER EMISSION FACTORS FOR UTILITY
CYCLONE BOILERS FIRED WITH BITUMINQUS COAL

Emission Factor

(16/10%2 Bew)
Mean® Range Control Status , Reference
167 .- Vet Scrubber Shih et al., 1980b
19.5 .-- ESP Shih et al., 1980b
22.8 --- ESP Shih et al., 1980b
44.2 .-- ESP Shih et al., 1980b
23.2 cee ESP shih et al., 1980b
10.8° 7.0-16.5 Uncontrolled Klein et al., 1975b; Lyon, 1977
0.26®  0.05-0.48  ESP Klein et al., 1975b; Lyon, 1977

%This column gives the arithmetic values for each boiler tested. Footnotes
indicate how many measurements each mean represents, if this information
was included in the reference. If only a single value was reported, it is
included in thig column.

bAvetage of two tests of the same boiler.

MCH/007 i c-48



TABLE C-43. MEASURED COPPER EMISSION FACTORS FOR UTILITY
STOKER BOILERS.FIRED WITH BITUMINOUS COAL

Emission Factor

(1b/102 Beuw)

Control Status

Reference

5.8

342

188

Fabric Filter
Mechanical Ppt.

Multiclone

Shih et al., 1980b
Shih et al.,, 1980b

Shih et al,, 1980b

TABLE C-44. MEASURED COPPER EMISSION FACTORS FOR UTILITY

BOILERS FIRED WITH SUBBITUMINOUS COAL ¢
Emission Factor
(1b/1012 Btu) Boiler Type Control Status Reference
1000 Cyclone Uncontrolled Leavitt et al,, 1979
170 Cyclone Scrubber Leavitt et al., 1979
29 Pulverized Venturi Scrubber Radian, 1975
30 Pulverized ESP Radian, 1975
82 NR ESP Mann et al., 1978
50 NR ESP Mann et al.,, 1978

NR = Not Reported.
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TABLE C-45. MEASURED COPPER EMISSION FACTORS FOR
UTILITY BOILERS FIRED WITH LIGNITE COAL

Emission Factor
12

(1b/10 Btu) Boiler Type Control Status Reference

376 Pulverized Dry Bottom Multiclone Shih et al., 1980t
195 Pulverized Dry Bottom Multiclone Shih et al., 1980t

<69.7 Pulverized Dry Bottom ESP Shih et al,, 1980t
30.2 Cyclone ESP Shih et al., 1980t

480 Cyclone Cyclone Radian, 1975

193 Spreader Stoker Multiclone Shih et al., 1980£
46.5 . Spreader Stoker ESP Shih et al., 1980b
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TABLE C-50. MEASURED MERCURY EMISSION FACTORS FOR PULVERIZED DRY
BOTTOM UTILITY BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor

(167102 Bru)

Mean® Range Control Status Reference

11° - ESP Baig et al., 1981

¥° .- Wet Scrubber Shih et al,, 1980b

22.1 .-- Mechanical Ppt/ESP Shih et al,., 1980b

22.3 .e- Mechanical Ppt/ESP Shih et al., 1980b
5.9% 3.6-8.2  Mechanical Ppt/ESP  Kalb, 1975 )
5.8° 1.32-9.68 ESP Evers et al., 1980

72° 11.4-308  Uncontrolled Evers et al., 1980

23 --- Uncont:rolledf Sawyer and Higginbotham, 198la

18 .- ESPf Sawyer and Higginbotham, 198la

10 ... Uncontrolled® Higginbotham and Goldberg, 1981
3.9 --- Uncontrolledf Higginbotham and Goldberg, 1981

16 --- Uncontrolled Higginbotham and Goldberg, 1981
1.5 .-- Esp8 Higginbotham and Goldberg, 1981
2.6 --- ESPf Higginbotham and Goldberg, 1981
2.0 ... ESPf Higginbotham and Goldberg, 1981
3.1 .- ESPf Higginbotham and Goldberg, 1981
§.5"  3.7-21.2  Mechanical Ppt. Zielke and Bittman, 1982
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TABLE C-50. MEASURED MERCURY EMISSION FACTORS FOR PULVERIZED DRY BOTTOM
UTILITY BOILERS FIRED WITH BITUMINOUS COAL (Continued)

Emission Factor

(16/10*2 Bew)
Mean® Range Control Status Reference
0.75®  0.41-2.0  Mech. Ppt/lst ESP Zielke and Bittman, 1982
. in Series of 2
0.201 <0.011-0.561 Mech. Ppt/2 ESPs Zielke and Bittman, 1982

in Series

%This column gives arithmetic mean values for each boiler tested. Footnotes
indicate how many measurements each mean represents, if this information
was included in the reference. If only a single value was reported, it is -
included in this column.

bAverage of tests of six boilers.

°ND = not detected. . .
dAverage of 14 tests of the same boiler.

eAverage of eight tests of the same boiler.

Tested while boiler was operating under low-NO_ conditions - certain
burners admit air rather than fuel, or different fuel/air ratios are
admitted than under design operating conditions.

ETested while boiler was operating under baseline (design) conditions.
hAverage of seven tests of the same boiler.

iAverage of five tests of the same boiler.
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TABLE C-55. MEASURED MERCURY EMISSION FACTORS FOR
UTILITY BOILERS FIRED WITH LIGNITE COAL

Emission Factor

(lb/lo12 Btu) Boiler Type Control Status Reference
4.4 Pulverized Dry Bottom Multiclone Shih et al., 1980b
6.5 Pulverized Dry Bottom Multiclone Shih et al., 1980b
<0.23 Pulverized Dry Bottom  ESP Shih et al., 1980b
0.46 Cyclone ESP Shih et al., 1980b
22 Cyclone Cyclone Radian, 1975
5.6 Spreader Stoker Multiclone Shih et al,, 1980k
0.53 Spreader Stoker ESP Sthih et al., 1980b
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TABLE C-60. MEASURED MANGANESE EMISSION FACTORS FOR PULVERIZED DRY
BOTTOM UTILITY BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor
(167102 Bew)

Mean® Range Control Status Reference
420° .- ESP Baig et al,, 1981
30.2 “=- Wet Scrubber Shih et al., 1980b
886 .-- Mechanical Ppt/ESP Shih et al., 1980b
393 --- Mechanical Ppt/ESP Shih et al., 1980b
2450° 286-9240 ESP Evers et al., 1980
3820° 2900-5280  Uncontrolled Evers et al., 1980
9300 .- Uncontrolled® Sawyer and Higginbotham, 198la
7000 .- Uncontrolled® Sawyer and Higginbotham, 198la
7700 --- Uncontrolled® Sawyer and Higginbotham, 198la
1300 --- ESPd Sawyer and Higginbotham, 198la
920 - Esp® Sawyer and Higginbotham, 198la
740 - Esp® Sawyer and Higginbotham, 198la
800 .- Uncontrolled? Higginbotham and Goldberg, 1981
4saf 300-640 Uncontrolled® Higginbotham and Goldberg, 1981
1608 110-240 Esp® Higginbotham and Goldberg, 1981
--- 1180-1280 Uncontrolled Scinto et al., 1981
68 .e- ESP Scinto et al., 1981
28 “e- ESP/Scrubber Scinto et ;;h, 1981
3790h 2570-4750 Mechanical Ppt. Zielke and Bittman, 1982

MCH,/007 ) C-66



TABLE C-60. MEASURED MANGANESE EMISSION FACTORS FOR PULVERIZED DRY BOTTOM
UTILITY BOILERS FIRED WITH BITUMINOUS COAL (Continued)

Emission Factor
12

(1b/10°° Bru)
Mean® Range Control Status Reference
7938 570-1040  Mech. Ppt/lst ESP  Zielke and Bittman, 1982
in Series of 2
169t 8.05-463 Mech. Ppt/2 ESPs Zielke and Bittman, 1982
in Series
g8’ .e- Venturi Scrubber ondov et al., 1979a
537 4.6-318 Venturi Scrubber ondov et gl., 1979a )
36.5 .a= Venturi Scrubber Ondov et al., 1979a
1.08  o0.97-1.1 ESP Ondov et al,, 1979b
.-- 21.0-95.6%  EsP ondov et al., 19796
16308 960-2690 Uncontrolled Cowherd et al., 1975
7108 460-1100 Mechanical Ppt. Cowherd et al., 1975

%This column gives arithmetic mean values for each boiler tested. Footnotes
indicate how many measurements each mean represents, if this information
was included in the reference. If only a single value was reported, it is
included in this column.

bAverage of six boilers.
cAverage of eight tests of the same boiler.
dTested while boiler was operating under baseline (design) counditions.

®Tested while boiler was operating under low-NOx conditions - certain
burners admit air rather than fuel, or differenit fuel/air ratios are
admitted than under design operating conditions.

fAverage of four tests of the same boiler.
gAvetage of three tests of the same boiler.
hAverage of seven tests of the same boiler.
iAverage of five tests of the same boiler.
jSame boiler tested at two different times.

kRange of six tests of the same boiler.
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TABLE C-61.

MEASURED MANGANESE EMISSION FACTCRS FOR UTILITY PULVERIZED
WET-BOTTOM BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor
12

(1b/107" Btu) Control Status Reference
7.4 Mechanical Ppt/ESP Shih et al., 1980b
62.7 ESP Shih et al., 1980b
181 ESP Shih et al., 1980b
0.95 Venturi Wet Scrubber Shih et al,, 1980b
214 ESP. Shih et al., 1980b
418 ESP Shih et al,, 1980b°
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TABLE C-62. MEASURED MANGANESE EMISSION FACTORS FOR UTILITY
CYCLONE BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor

(1b/10%2 Bew)
Mean? Range Control Status Reference
126 we- Wet Scrubber Shih et al., 1980b
170 --- ESP Shih et al., 1980b
314 - ESP Shih et al., 1980b
53.5 .- ESP shih et al., 1980b
182 -- ESP Shih et al., 1980b
1300° 1300-1300 Uncontrolled Klein et al., 1975b
36° 11-60 ESP Klein et al., 1975b

“This column gives the arithmetic mean values for each boiler tested.
Footnotes indicate how many measurements each mean represents, if this
information was included in the reference. If only a single value was
reported, it is included in this column.

bAverage of two tests of the same boiler.
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TABLE C-63. MEASURED MANGANESE EMISSION FACTORS FOR UTILITY
STOKER BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor
12

(1b/10 Btu) Control Status \ Reference
17.9 Fabric Filter Shih et al,, 1980b
304 Mechanical Ppt. Shih ex al., 1980b
188 Multiclone Shih et al,, 1980b

TABLE C-64. MEASURED MANGANESE EMISSION FACTORS FOR UTILITY
BOILERS FIRED WITH SUBBITUMINOUS COAL

Emission Factor

(lb/lo12 Btu) Boiler Type Control Status Reference
600 Cyclone Uncontrolled Leavitt et al., 1979
i20 Cyclone Scrubber Leavitt et al., 1979
110 Pulverized Venturi Scrubber Radian, 1975
43 Pulverized ESP Radian, 1975
19 Nr? ESP Mann et al., 1978
35 NR ESP Mann et al,, 1978

3R = not reported.
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TABLE C-65. MEASURED MANGANESE EMISSION FACTORS FOR
UTILITY BCILERS FIRED WITH LIGNITE COAL

Emission Factor
(1b/10%2% Bew)

Control

Mean® Range Boiler Type Status Reference
1680 --- Pulverized Dry Bottom Multiclone Shih et al,., 1980b
1560 --- Pulverized Dry Bottom Multiclone Shih et al.. 1980b

17.2 .-- Pulverized Dry Bottom ESP Shih et al,, 1980b

10.9 .-- Cyclone ESP Shih et al., 1980b
1600 --- Cyclone Cyclone Radian, 1975

2.94b 2.92-2.96 Cyclone ESP/Scrubber Schock et al,, 1979
1790 --- Spreader Stoker Multiclone Shih et al,, 1980b
<10 --- Spreader Stoker ESP . Shih et al., 1980b

%This column gives arithmetic mean values for each boiler tested. Footnotes
indicate how many measurements each mean represents, if this information
was included in the reference. If only one value was reported, it is

included in this column.

b
Average of two tests of the same boiler.
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TABLE C-70.

MEASURED NICKEL EMISSION FACTORS FOR PULVERIZED DRY

BOTTOM UTILITY BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor

(167102 Bew)
Mean? Range éontrol Status Reference
2,600°°¢ ae- ESP Bajg et al,, 1981
104 “e- Wet Scrubber Shih et al., 1980b
5,760° --- Mechanical Ppt/ESP  Shih et al., 1980b
4,480° .- Mechanical Ppt/ESP  Shih et al., 1980b
1,600 - Esp? Sawyer and Higginbotham, 198la
1,100 - Esp® Sawyer and Higginbotham, 198la
5,000 --- Uncont:rolledd Sawyer and Higginbotham, 198la
1,500 .- Uncontrolled® Sawyer and Higginbotham, 1981la
700 e espd Higginbotham and Goldberg, 1981
1,400 --- Uncontrolledd Higginbotham and Goldberg, 1981
913f 520-1,400  ESP® Higginbotham and Goldberg, 1981
1,005  1,100-1,600 Uncontrolled® Higginbotham and Goldberg, 1981
430 --- Uncontrolled Scinto et al,, 1981
12.2 12.1-12.4  ESP/Scrubber Scinto et al., 1981
15,3008  8,030-23,500 Mechanical Ppt. Zielke and Bittman, 1982
2, 550" 1,010-4,870 Mech. Ppt/lst ESP  Zielke and Bittman, 1982
in Series of 2
360t 132-726  Mech. Ppt/ 2 ESPs  Zielke and Bittman, 1982
in Series
35j --- Venturi Scrubber Ondov, 1979%a
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TABLE C-70. MEASURED NICKEL EMISSION FACTORS FOR PULVERIZED DRY BOTTOM
UTILITY BOILERS FIRED WITH BITUMINOUS COAL (Continued)

Emission Factor

(1b710? Beu)
Mean? Range Control Status Reference
307 12-94 Venturi Scrubber Ondov, 1979a
840t 690-1,100  Uncontrolled Covherd et al., 1975
ssof 260-720  Mechanical Ppt. Covherd et al., 1975

3This column gives arithmetic mean values for each boiler tested. Footnotes
indicate how many measurements each mean represents, if this information
was included in the reference. If only a single value was reported, it is
included in this column.

bAverage of tests of six boilers.

CReference noted that corrosion of sampling train components may account for
higher than expected nickel emissions measurements.

dTested while boiler was operating under baseline (design) conditions.

®Tested while boiler was operating under low-NO_ conditions - certain
burners admit air rather than fuel, or different fuel/air ratios are
admitted than under design operating conditions.

fAverage of three tests of the same boiler.
8Average of seven tests of the same boiler.
hAverage of six tests of the same boiler.

iAverage of four tests of the same boiler.

jTests of the same boiler during two different time periods.
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TABLE C-71. MEASURED NICKEL EMISSION FACTORS FOR UTILITY PULVERIZED
WET BOTTOM BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor

(lb/lo12 Btu) Control Status Reference
4.4 Mechanical Ppt/ESP Shia et al., 1980b
3722 ESP Shih et al., 1980b
14702 ESP Shih et al., 1980b
1.1 Venturi Scrubber Shih e al,, 1980b
18502 ESP shih et al., 1980b
25502 ESP Shih gt al., 1980b°

“Reference noted that corrosion of sampling train components may account for
higher than expected nickel emissions measurements.

TABLE C-72. MEASURED NICKEL EMISSION FACTORS FOR UTILITY
CYCLONE BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor

(lb/lol? Btu) Control Status Reference

46.5 Wet Scrubber Shih et al., 1980b

9972 ESP Shih et al,, 1980b

2000% ESP Shih et al., 1980b

20202 ESP Shih et al., 1980b

1330% ESP Shih et al., 1980b
960 Uncontrolled Klein et al,, 1975b; Lyon, 1977
4.6 ESP Klein et al,, 1975b; Lyon, 1977

%Reference noted that corrosion of sampling train components may account for
higher than expected nickel emissions measurements.
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TABLE C-73.

MEASURED NICKEL EMISSION FACTORS FOR UTILITY
STOKER BOILERS FIRED WITH BITUMINOUS COAL

Emission Factor
(1b/10%2 Beuw)

Control Status

Reference

165
5180

13302

Fabric Filter
Mechanical Ppt.

Multiclone

Shih et al., 1980
Shih et al., 1980t

Shih et al., 1980t

8Reference noted that corrosion of sampling train components may account for
higher than expected nickel emission measurements.

TABLE C-74.

MEASURED NICKEL EMISSION FACTORS FOR UTILITY
BOILERS FIRED WITH SUBBITUMINQUS COAL

Emission Factor

(1b/1012 Btu) Boiler Type Control Status Reference
1700 Cyclone Uncontrolled Leavitt, 1979
46 Cyclone Scrubber Leavitt, 1979
50 Pulverized Scrubber Radian, 1975
70 Pulverized ESP Radian, 1975
5.4 ) ESP Mann et al., 1978
21 NR ESP Mann et al., 1978
¥R = not reported.
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TABLE C-75.

MEASURED NICKEL EMISSION FACTORS FOR

UTILITY BOILERS FIRED WITH LIGNITE COAL

Emission Factor Control
(1b/1012 Boiler Type Status Reference
6112 Pulverized Dry Bottom Multiclone Shih et al,, 1980b
2672 Pulverized Dry Bottom Multiclone  Shih et al., 1980b
<158 Pulverized Dry Bottom ESP Shih et al.,, 1980b
<109 Cyclone ESP Shih et al,, 1980b
740 Cyclone Cyclone Radian, 1975
6412 Spreader Stoker Multiclone Shih eg al., 1980b
<88 Spreader Stoker ESP Shih et al,, 1980b

“Reference noted that corrosion of sampling train components may account for
higher than expected nickel emissions measurements.
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TABLE C-83. TOTAL POM EMISSIONS FROM CYCLONE
COAL-FIRED UTILITY BOILERS

Total POM
Emissionlgactor
1b/10
Coal Type Controls Used Btu-heat Input Reference
a ESP 1.2 - 7.4° Hangebrauck et al,, 196
a a 4.3° Barrett ot al., 1983
Bituminous ESP 2.049 Haile et al., 1983
Bituminous ESP 0.46% Haile et al., 1983
B{tuminous ESP 57.2%f Shih et al., 1980b
Bituminous ESP 2.7%8 Shih et al,., 1980b
Lignite ESP 0.11%'® Shih et al., 1980b
Lignite ESP 1.6%1 Shih et al., 1980b
B tuminous ESP 5.6%1 Shih et al., 1980b
B{tuminous Wet Scrubber 16.2%°% Shih et al., 1980b

3Data were not reported in the available literature.

Factor represents predominantly particulate POM emissions. Ten specific
POM compounds were analyzed for during these tests, Specific compounds
identified were benzo(a)pyrene, pyrene, benzo(e)pyrene, perylene,
benzo(g,h,i)perylene, coronene, and fluoranthene. Pyrene, benzo(e)pyrene,

benzo(a)pyrens, and benzo(g,h,i)perylene accounted for the majority of
total POM emissions.

“Factor represents only particulate POM emissions. The principal
constituents of total POM emissions were pyrene (53 percent), benzo(e)pyren

(20 percent), benzo(a)pyrene (11 percent), benzo(g,h,i)perylene (10 percent
and fluoranthene (4 percent).

dFactor represents both particulate and gaseous POM emissions. Nine specific
POM compounds were analyzed for during these tests. Specific compounds
identified were naphthalene, fluorene, phenanthrene, and chrysene.
Naphthalene constituted from 90 to 99 percent of total POM emissions. Factc
represents the mean of five tests of the same boiler.

®Factor represents both particulate and gaseous POM emissions. Fifty-six
specific POM compounds were analyzed for during these tests.
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TABLE C-83. TOTAL POM EMISSIONS FROM CYCLONE
COAL-FIRED UTILITY BOILERS (Continued)

fRepOtCed value is for naphthalene. No other POM compounds were detected.

gReported value is for phenyl naphthalene. No other POM compounds were
detected.

hReported value is for biphenyl. No other POM compounds were detected.

iReported value is for trimethyl propenyl naphthalene. No other POM
compounds were detected.

jSpecif:lc compounds identified were ethyl biphenyl, phenanthrene, and
methylphenthrene. Methylphenthrene constituted 84 percent of total POM
emissions.

kSpecific compounds identified were biphenyl, decahydronaphthalene, ditert-
butyl naphthalene, dimethyl isopropyl naphthalene, hexamechyl biphenyl,
hexamethyl hexahydro indacene, dihydronaphthalene, C, . substituted
naphthalene, C 0 substituted decahydronaphthalene, meghyl naphthalene,
anthracene/phenanthrene, 9,10-dihydronaphthalene/1-1' diphenylethene,
1,1'-bis (p-ethylphenyl)-ochana/tecranechyl biphenyl, S-methyl-benz-c-
acridine, and 2,3-dimethyl decahydronaphthalene. Biphenyl, 1,1-bis(p-
ethylphenyl) -ethane/tetramethyl biphenyl, and methyl naphthalene constitute
almost 80 percent of total POM emissions.
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