BIOLOGICAL FIELD AND LABORATORY METHODS FOR MEASURING THE QUALITY OF SURFACE WATERS AND EFFLUENTS

Edited by
Cornelius I. Weber, Ph.D.
Chief, Biological Methods
Analytical Quality Control Laboratory National Environmental Research Center-Cincinnati

Program Element 1BA027

NATIONAL ENVIRONMENTAL RESEARCH CENTER

OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY CINCINNATI, OHIO 45268
U.S. Environmental Protection Agency

Region 5, Litrary (PL-12J)
77 West Jackson Boutevard, 12th Floo Chicago, IL 60604-3590

Review Notice

This report has been reviewed by the National Environmental Research Center, Cincinnati, and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

FOREWORD

Man and his environment must be protected from the adverse effects of pesticides, radiation, noise and other forms of pollution, and the unwise management of solid waste. Efforts to protect the environment require a focus that recognizes the interplay between the components of our physical environment - air, water, and land. The National Environmental Research Centers provide this multidisciplinary focus through programs engaged in

- studies on the effects of environmental contaminants on man and the biosphere, and
- a search for ways to prevent contamination and to recycle valuable resources.
This manual was developed within the National Environmental Research Center - Cincinnati to provide pollution biologists with the most recent methods for measuring the effects of environmental contaminants on freshwater and marine organisms in field and laboratory studies which are carried out to establish water quality criteria for the recognized beneficial uses of water and to monitor surface water quality.

Andrew W. Breidenbach, Ph.D.
Director
National Environmental
Research Center, Cincinnati, Ohio

PREFACE

This manual was published under Research Objective Achievement Plan 1BA027-05AEF, "Methods for Determining Biological Parameters of all Waters," as part of the National Analytical Methods Development Research Program. The manual was prepared largely by a standing committee of senior Agency biologists organized in 1970 to assist the Biological Methods Branch in the selection of methods for use in routine field and laboratory work in fresh and marine waters arising during short-term enforcement studies, water quality trend monitoring, effluent testing and research projects.

The methods contained in this manual are considered by the Committee to be the best available at this time. The manual will be revised and new methods will be recommended as the need arises.
The Committee attempted to avoid duplicating field and laboratory methods already adequately described for Agency use in Standard Methods for the Examination of Water and Wastewater, 13th edition, and frequent reference is made to this source throughout the manual.

Questions and comments regarding the contents of this manual should be directed to:

Cornelius I. Weber, Ph.D.
Chief, Biological Methods Branch
Analytical Quality Control Laboratory
National Environmental Research Center
U.S. Environmental Protection Agency
Cincinnati, Ohio 45268

BIOLOGICAL ADVISORY COMMITTEE

January 1, 1973

CHAIRMAN: Cornelius I. Weber, Ph. D.

Name	Program	Name	Program
Anderson, Max	Indiana Office, Region V, Evansville, IN	Maloney, Thomas	Natl. Eutrophication Research Program, Corvallis, OR
Arthur, John W.	Natl. Water Quality Lab, Duluth, MN	Mathews, John	Region VI, Dallas, TX
Bugbee, Stephen L.	Region VII, Kansas City, MO	Murray, Thomas	Office of Air \& Water Programs,
DeBen, Wally	Natl. Coastal Pollution Research Program, Corvallis, OR	Nadeau, Dr. Royal	Oil Spill Research Program, Edison,
Duffer, Dr. William R.	Natl. Water Quality Control Research Program, Ada, OK	Nebeker, Dr. Alan V.	Western Fish Toxicology Lab, Cor-
Gakstatter, Dr. Jack H.	Natl. Eutrophication Survey Program, Corvallis, OR	Oldaker, Warren	vallis, OR Region I, Needham Heights, MA
Harkins, Dr. Ralph	Region VI, Ada, OK	Parrish, Loys	Region VIII, Denver, CO
Horning, William	Newtown Fish Toxicology Lab, Newtown, OH	Phelps, Dr. Donald K.	NatI. Marine Water Quality Laboratory, Narragansett, RI
Ischinger, Lee	Natl. Field Investigations Center, Cincinnati, OH	Prager, Dr. Jan C.	Natl. Marine Water Quality Laboratory, Narragansett, RI
Jackson, Dr. Herbert W. Karvelis, Ernest	Natl. Training Center, Cincinnati, OH Nat1. Field Investigations Center, Cincinnati, OH	Preston, Ronald	Wheeling Office, Region III, Wheeling, WV
Kerr, Pat	Natl. Fate of Pollutants Research Program, Athens, GA	Sainsbury, John Tebo, Lee	Region X, Seattle, WA Region IV, Athens, GA
Keup, Lowell E.	Office of Air \& Water Programs, Washington, DC	Thomas, Nelson A.	Large Lakes Research Program, Grosse Ile, MI
Kleveno, Conrad	Region V, Chicago, IL	Tunzi, Dr. Milton	Region IX, Alameda, CA
LaBuy, James	Region III, Charlottesville, VA	Wagner, Richard A.	Region X, Seattle, WA
Lassiter, Dr. Ray	Region IV, Southeast Water Lab, Athens, GA	Warner, Richard W.	Natl. Field Investigations Center, Denver, CO

Other personnel who were former members of the Advisory Committee or assisted in the preparation of the manual:

Austin, R. Ted	Natl.Eutrophication Survey, Corvallis, OR
Boyd, Claude E.	Savannah River Ecology Lab, Aiken, SC
Collins, Dr. Gary	Analytical Quality Control Lab, Cincinnati, OH
Garton, Dr. Ronald	Western Fish Toxicology Lab, Cor- vallis, OR
Hegre, Dr. Stanley	Natl. Marine Water Quality Lab, Karragansett, RI
Katko, Albert	Natl. Eutrophication Survey, Cor- vallis, OR
McFarland, Ben	Analytical Quality Control Labora- tory, Cincinnati, OH

McKim, Dr. James
Mackenthun, Kenneth

Mason, William T. Jr. Analytical Quality Control Lab, Cincinnati, OH

Analytical Quality Control Lab, Cincinnati, OH
Natl. Field Investigations Center, Denver, CO

Region IX, San Francisco, CA
Natl. Training Center, Cincinnati, OH
Newtown Fish Toxicology Lab, Newtown, OH

PERSONNEL CONTRIBUTING TO THE BIOLOGICAL METHODS MANUAL

SUBCOMMITTEES:

Biometrics

Lassiter, Dr. Ray - Chairman
Harkins, Dr. Ralph
Tebo, Lee

Plankton

Maloney, Thomas - Chairman
Collins, Dr. Gary
DeBen, Wally
Duffer, Dr. William
Katko, Albert
Kerr, Pat
McFarland, Ben
Prager, Dr. Jan
Seeley, Charles
Warner, Richard
Periphyton-Macrophyton
Anderson, Max - Chairman
Boyd, Dr. Claude E.
Bugbee, Stephen L.
Keup, Lowell
Kleveno, Conrad

Macroinvertebrates

Tebo, Lee - Chairman
Garton, Dr. Ronald Lewis, Philip A. Mackenthun, Kenneth Mason, William T., Jr. Nadeau, Dr. Royal Phelphs, Dr. Donald Schneider, Robert Sinclair, Ralph
Fish
LaBuy, James - Chairman
Karvelis, Ernest
Preston, Ronald
Wagner, Richard

Bioassay

Arthur, John -- Chairman
Hegre, Dr. Stanley
Ischinger, Lee
Jackson, Dr. Herbert
Maloney, Thomas
McKim, Dr. James
Nebeker, Dr. Allan
Stephan, Charles
Thomas, Nelson

INTRODUCTION

The role of aquatic biology in the water pollution control program of the U. S. Environmental Protection Agency includes field and laboratory studies carried out to establish water quality criteria for the recognized beneficial uses of water resources and to monitor water quality.

Field studies are employed to: measure the toxicity of specific pollutants or effluents to individual species or communities of aquatic organisms under natural conditions; detect violations of water quality standards; evaluate the trophic status of waters; and determine long-term trends in water quality.

Laboratory studies are employed to: measure the effects of known or potentially deleterious substances on aquatic organisms to estimate "safe" concentrations; and determine environmental requirements (such as temperature, pH , dissolved oxygen, etc.) of the more important and sensitive species of aquatic organisms. Field surveys and water quality monitoring are conducted principally by the regional surveillance and analysis and national enforcement programs. Laboratory studies of water quality requirements, toxicity testing, and methods development are conducted principally by the national research programs.

The effects of pollutants are reflected in the population density, species composition and diversity, physiological condition and metabolic rates of natural aquatic communities. Methods for field surveys and long-term water quality monitoring d sribed in this manual, therefore, are directed marily toward sample collection and processing, organism identification, and the measurement of biomass and metabolic rates. Guidelines are also provided for data evaluation and interpretation.

There are three basic types of biological field studies; reconnaissance surveys, synoptic surveys, and comparative evaluations. Although there is a considerable amount of overlap, each of the above types has specific requirements in terms of study design.

Reconnaissance suıveys may range from a brief perusal of the stury area by boat, plane, or
car, to an actual field study in which samples are collected for the purpose of characterizing the physical boundaries of the various habitat types (substrate, current, depth, etc.) and obtaining cursory information on the flora and fauna. Although they may be an end in themselves, reconnaissance surveys are generally conducted with a view to obtaining information adequate to design more comprehensive studies. They may be quantitative or qualitative in approach. As discussed in the biometrics section, quantitative reconnaissance samples are very useful for evaluating the amount of sampling effort required to obtain the desired level of precision in more detailed studies.

Synoptic surveys generally involve an attempt to determine the kinds and relative abundance of organisms present in the environment being studied. This type of study may be expanded to include quantitative estimates of standing crop or production of biomass, but is generally more qualitative in approach. Systematic sampling, in which a deliberate attempt is made to collect specimens from all recognizable habitats, is generally utilized in synoptic surveys. Synoptic surveys provide useful background data, are valuable for evaluating seasonal changes in species present, and provide useful information for long-term surveillance programs.

The more usual type of field studies involve comparative evaluations, which may take various forms including: comparisons of the flora and fauna in different areas of the same body of water, such as conventional "upstreamdownstream" studies; comparisons of the flora and fauna at a given location in a body of water over time, such as is the case in trend monitoring; and comparisons of the flora and fauna in different bodies of water.

Comparative studies frequently involve both quantitative and qualitative approaches. However, as previously pointed out, the choice is often dependent upon such factors as available resources, time limitations, and characteristics of the habitat to be studied. The latter factor may be quite important because the habitat to be studied may not be amenable to the use of quan-
titative sampling devices.
A special field method that warrants a brief notation is scuba (Self Contained Underwater Breathing Apparatus). Scuba enables the biologist to observe, first hand, conditions that otherwise could be described only from sediment, chemical, physical, and biological samples taken with various surface-operated equipment. Equipment modified from standard sampling equipment or prefabricated, installed, and/or operated by scuba divers has proven very valuable in assessing the environmental conditions where surface sampling gear was inadequate. Underwater photography presents visual evidence of existing conditions and permits the monitoring of longterm changes in an aquatic environment.*

By utilizing such underwater habitats as Tektite and Sublimnos, biologists can observe, collect, and analyze samples without leaving the aquatic environment. Scuba is a very effective tool available to the aquatic biologist, and methods incorporating scuba should be considered for use in situations where equipment operated at the surface does not provide sufficient information.

[^0]
SAFETY

The hazards associated with work on or near water require special consideration. Personnel should not be assigned to duty alone in boats, and should be competent in the use of boating equipment (courses are offered by the U. S. Coast Guard). Field training should also include instructions on the proper rigging and handling of biological sampling gear.

Life preservers (jacket type work vests) should be worn at all times when on or near deep water. Boats should have air-tight pr foam-filled compartments for flotation and be equipped with fire extinguishers, running lights, oars, and anchor. The use of inflatable plastic or rubber boats is discouraged.

All boat trailers should have two rear running and stop lights and turn signals and a license plate illuminator. Trailers 80 inches (wheel to wheel) or more wide should be equipped with amber marker lights on the front and rear of the frame on both sides.

Laboratories should be provided with fire extinguishers, fume hoods, and eye fountains. Safety glasses should be worn when mixing dangerous chemicals and preservatives.

A copy of the EPA Safety Manual is available from the Office of Administration, Washington, D.C.

CONTENTS

FOREWORD : PREFACE
BIOLOGICAL ADVISORY COMMITTEE
PERSONNEL CONTRIBUTING TO THE BIOLOGICAL METHODS MANUAL
INTRODUCTION
BIOMETRICS
PLANKTON
PERIPHYTON
MACROPHYTON
MACROINVERTEBRATES
FISH
BIOASSAY
APPENDIX

BIOMETRICS

BIOMETRICS

Page
1.0 INTRODUCTION 1
1.1 Terminology 1
2.0 STUDY DESIGN 2
2.1 Randomization 2
2.2 Sample Size 4
2.3 Subsampling 6
3.0 GRAPHIC EXAMINATION OF DATA 6
3.1 Raw Data 6
3.2 Frequency Histograms 6
3.3 Frequency Polygon 7
3.4 Cumulative Frequency 7
3.5 Two-dimensional Graphs 8
4.0 SAMPLE MEAN AND VARIANCE 9
4.1 General Application 9
4.2 Statistics for Stratified Random Samples 10
4.3 Statistics for Subsamples 10
4.4 Rounding 10
5.0 TESTS OF HYPOTHESES 11
5.1 T-test 11
5.2 Chi Square Test 13
5.3 F-test 15
5.4 Analysis of Variance 15
6.0 CONFIDENCE INTERVAIS FOR MEANS
AND VARIANCES 18
7.0 LINEAR REGRESSION AND CORRELATION 19
7.1 Basic Concepts 19
7.2 Basic Computations 20
7.3 Tests of Hypotheses 24
7.4 Regression for Bivariate Data 26
7.5 Linear Correlation 27
8.0 BIBLIOGRAPHY 27

BIOMETRICS

1.0 INTRODUCTION

Field and laboratory studies should be wellplanned in advance to assure the collection of unbiased and precise data which are technically defensible and amenable to statistical evaluation. The purpose of this chapter is to present some of the basic concepts and techniques of sampling design and data evaluation that can be easily applied by biologists.

An attempt has been made to present the material in a format comfortable to the nonstatistician, and examples are used to illustrate most of the techniques.

1.1 Terminology

To avoid ambiguity in the following discussions, the basic terms must be defined. Most of the terms are widely used in everyday language, but in biometry may be used in a very restricted sense.

1.1.1 Experiment

An experiment is often considered to be a rigidly controlled laboratory investigation, but in this chapter the terms experiment, study, and field study are used interchangeably as the context seems to require. A general definition which will usually fit either of these terms is "any scientific endeavor where observations or measurements are made in order to draw inferences about the real world."

1.1.2 Observation

This term is used here in much the same manner as it is in everyday language. Often the context will suggest using the term "measurement" in place of "observation." This will imply a quantified observation. For statistical purposes, an observation is a record representing some property or characteristic of a real-world object.

This may be a numeric value representing the weight of a fish, a check mark indicating the presence of some species in a bottom quadrat in short, any type of observation.

1.1.3 Characteristics of interest

In any experiment or sampling study, many types of observations or measurements could be made. Usually, however, there are few types of measurements that are related to the purpose of the study. The measurement of chlorophyll or ATP in a plankton haul may be of interest, whereas the cell count or detritus content may not be of interest. Thus, the characteristic of interest is the characteristic to be observed or measured, the measurements recorded, analyzed and interpreted in order to draw an inference about the real world.

1.1.4 Universe and experimental unit

The experimental unit is the object upon which an observation is made. The characteristic of interest to the study is observed and recorded for each unit. The experimental unit may be referred to in some cases as the sampling unit. For example, a fish, an entire catch, a liter of pond water, or a square meter of bottom may each be an eyperimental unit. The experimental unit must bu clearly defined so as to restrict measurements to only those units of interest to the study. The set of all experimental units of interest to the study is termed the "universe."

1.1.5 Population and sample

In biology, a population is considered to be a group of individuals of the same species. The statistical use of the term population, however, refers to the set of values for the characteristic of interest for the entire group of experimental units about which the inferences are to be made (universe).

When studies are made, observations are not usually taken for all possible experimental units. Only a sample is taken. A sample is a set of observations, usually only a small fraction of the total number of observations that conceivably could be taken, and is a subset of the population. The term sample is often used in everyday language to mean a portion of the real world which has been selected for measurement, such as a water
sample or a plankton haul. However, in this section the term "sample" will be used to denote "a set of observations" - the written records themselves.

1.1.6 Parameter and statistic

When we attempt to characterize a population, we realize that we can never obtain a perfect answer, so we settle for whatever accuracy and precision that is required. We try to take an adequately-sized sample and compute a number from our sample that is representative of the population. For example, if we are interested in the population mean, we take a sample and compute the sample mean. The sample mean is referred to as a statistic, whereas the population mean is referred to as a parameter. In general, the statistic is related to the parameter in much the same way as the sample is related to the population. Hence, we speak of population parameters and sample statistics.

Obviously many samples may be selected from most populations. If there is variability in the population, a statistic computed from one sample will differ somewhat from the same statistic computed from another sample. Hence, whereas a parameter such as the population mean is fixed, the statistic or sample mean is a variable, and there is uncertainty associated with it as an estimator of the population parameter which derives from the variation among samples.

2.0 STUDY DESIGN

2.1 Randomization

In biological studies, the experimental units (sampling units or sampling points) must be selected with known probability. Usually, random selection is the only feasible means of satisfying the "known probability" criterion. The question of why known probability is required is a valid one. The answer is that only by knowing the probability of selection of a sample can we extrapolate from the sample to the population in an objective way. The probability allows us to place a weight upon an observation in making our extrapolation to the population. There is no other quantifiable measure of "how well" the selected sample represents the population.

Thus our efforts to select a "good" sample should include an appropriate effort to define the problem in such a way as to allow us to estimate the parameter of interest using a sample of known probability; i.e., a random sample.

The preceding discussion should leave little doubt that there is a fundamental distinction between a "haphazardly-selected" sample and a "randomly-selected" sample. The distinction is that a haphazardly-selected sample is one where there is no conscious bias, whereas a randomlyselected sample is one where there is consciously no bias. There is consciously no bias because the randomization is planned, and therefore bias is planned out of the study. This is usually accomplished with the aid of a table of random numbers. A sample selected according to a plan that includes random selection of experimental units is the only sample validly called a random sample.

Reference to the definition of the term, sample, at the beginning of the chapter will remind us that a sample consists of a set of observations, each made upon an experimental or sampling unit. To sample randomly, the entire set of sampling units (population) must be identifiable and enumerated. Sometimes the task of enumeration may be considerable, but often it may be minimized by such conveniences as maps, that allow easier access to adequate representation of the entity to be sampled.

The comment has frequently been made that random sampling causes effort to be put into drawing samples of little meaning or utility to the study. This need not be the case. Sampling units should be defined by the investigator so as to eliminate those units which are potentially of no interest. Stratification can be used to place less emphasis on those units which are of less interest.

Much of the work done in biological field studies is aimed at explaining spatial distributions of population densities or of some parameter related to population densities and the measurement of rates of change which permit prediction of some future course of a biologically-related parameter. In these cases the sampling unit is a unit of space (volume, area). Even in cases where the sampling unit is not a unit of space, the problem may often be stated
in such a manner that a unit of space may be used, so that random sampling may be more easily carried out.

For example, suppose the problem is to estimate the chlorophyll content of algae in a pond at a particular time of year. The measurement is upon algae, yet the sample consists of a volume of water. We could use our knowledge of the way the algae are spatially distributed or make some reasonable assumptions, then construct a random sampling scheme based upon a unit of volume (liter) as the basic sampling unit.

It is not always a simple or straightforward matter to define sampling units, because of the dynamic nature of living populations. Many aquatic organisms are mobile, and even rooted or sessile forms change with time, so that changes occurring during the study often make data interpretation difficult. Thus the benefit to be derived from any attempt to consider such factors in the planning stage will be considerable.

Random sample selection is a subject apart from the selection of the study site. It is of use only after the study objectives have been defined, the type of measurements have been selected, and the sampling units have been defined. At this point, random sampling provides an objective means of obtaining information to achieve the objectives of the study.

One satisfactory method of random sample selection is described. First, number the universe or entire set of sampling units from which the sample will be selected. This number is N . Then from a table of random numbers select as many random numbers, n, as there will be sampling units selected for the sample. Random numbers tables are available in most applied statistics texts or books of mathematical tables. Select a starting point in the table and read the numbers consecutively in any direction (across, diagonal, down, up). The number of observations, n (sample size), must be determined prior to sampling. For example, if n is a two-digit number, select two-digit numbers ignoring any number greater than n or any number that has already been selected. These numbers will be the numbers of the sampling units to be selected.

To obtain reliable data, information about the
statistical population is needed in advance of the full scale study. This information may be obtained from prior related studies, gained by pre-study reconnaissance, or if no direct information is available, professional opinion about the characteristics of the population may be relied upon.

2.1.1 Simple random sampling

Simple (or unrestricted) random sampling is used when there is no reason to subdivide the population from which the sample is drawn. The sample is drawn such that every unit of the population has an equal chance of being selected. This may be accomplished by using the random selection scheme already described.

2.1.2 Stratified random sampling

If any knowledge of the expected size or variation of the observations is available, it can often be used as a guide in subdividing the population into subpopulations (strata) with a resulting increase in efficiency of estimation. Perhaps the most profitable means of obtaining information for stratification is through a prestudy reconnaissance (a pilot study). The pilot study planning should be done carefully, perhaps stratifying based upon suspected variability. The results of the pilot study may be used to obtain estimates of variances needed to establish sample size. Other advantages of the pilot study are that it accomplishes a detailed reconnaissance, and it provides the opportunity to obtain experience in the actual field situation where the final study will be made. Information obtained and difficulties encountered may often be used to set up a more realistic study and avoid costly and needless expenditures. To maximize precision, strata should be constructed such that the observations are most alike within strata and most different among strata, i.e., minimum variance within strata and maximum variance among strata. In practice, the information used to form strata will usually be from previously obtained data, or information about characteristics correlated with the characteristic of interest. In aquatic field situations, stratification may be based upon depth, bottom type, isotherms, and numerous other variables suspected of being correlated with the character-
istic of interest. Stratification is often done on other bases such as convenience or administrative imperative, but except where these correspond with criteria which minimize the variation within strata, no gain in precision may be expected.

Number of Strata

In aquatic biological field studies, the use of knowledge of biological cause-and-effect may help define reasonable strata (e.g., thermoclines, sediment types, etc., may markedly affect the organisms so that the environmental feature may be the obvious choice for the strata divisions). Where a gradient is suspected and where stratification is based on a factor correlated to an unknown degree with the characteristic of interest, the answer to the question of how many strata to form and where to locate their boundaries is not clear. Usually as many strata are selected as may be handled in the study. In practice, gains in efficiency due to stratification usually become negligible after only a few divisions unless the characteristic used as the basis of stratification is very highly correlated with the characteristic of interest.

2.1.3 Systematic random sampling

In field studies, the biologist frequently wishes to use some sort of transect, perhaps to be assured of including an adequate cross section while maintaining relative ease of sampling. The use of transects is an example of systematic sampling. However, a random starting point is chosen along the transect to introduce the randomness needed to guarantee freedom from bias and allow statistical inference.

The method of placement of the transect should be given a great deal of thought. Often transects are set up arbitrarily, but they should not be. To avoid arbitrariness, randomization should be employed in transect placement.

2.2 Sample Size

2.2.1 Simple random sampling

In any study, one important early question is that of the size of the sample. The question is important because if, on the one hand, a sample is too large, the effort is wasteful, and if, on the
other hand, a sample is too small, the question of importance to the study may not be properly answered.

Case 1-Estimation of a Binomial Proportion

An estimate of the proportion of occurrence of the two categories must be available. If the categories are presence and absence, let the probability of observing a presence be $P(0<P$ <1) and the probability of observing an absence be $\mathrm{Q}(0<\mathrm{Q}<1, \mathrm{P}+\mathrm{Q}=1)$. The second type of information which is needed is an acceptable magnitude of error, d, in estimating P (and hence Q). With this information, together with the size, n, of the population, the formula for n as an initial approximation $\left(\mathrm{n}_{0}\right)$, is:

$$
\begin{equation*}
\mathrm{n}_{0}=\frac{\mathrm{t}^{2} \mathrm{PQ}}{\mathrm{~d}^{2}} \tag{1}
\end{equation*}
$$

The value for t is obtained from tables of "Student's t" distribution, but for the initial computation the value 2 may be used to obtain a sample size, n_{0}, that will ensure with a .95 probability, that P is within d of its true value. If n_{0} is less than 30 , use a second calculation where t is obtained from a table of "Student's t " with $n_{0}-1$ degrees of freedom. If the calculation results in an n_{0}, where $\frac{\mathrm{n}_{0}}{\mathrm{~N}}<.05$, no further calculation is warranted. Use n_{0} as the sample size. If $\frac{\mathrm{n}_{0}}{\mathrm{~N}}>.05$, make the following computation:

$$
\begin{equation*}
\mathrm{n}=\frac{\mathrm{n}_{0}}{1+\frac{\mathrm{n}_{0}-1}{\mathrm{~N}}} \tag{2}
\end{equation*}
$$

Case 2 - Estimation of a Population Mean for Measurement Data

In this case an estimate of the variance, s^{2}, must be obtained from some source, and a statement of the margin of error, d, must be expressed in the same units as are the sample observations. To calculate an initial sample size:

$$
\begin{equation*}
\mathrm{n}_{0}=\frac{\mathrm{t}^{2} \mathrm{~s}^{2}}{\mathrm{~d}^{2}} \tag{3}
\end{equation*}
$$

If $\mathrm{n}_{0}<30$, recalculate using t from the tables, and if $\frac{\mathrm{n}_{0}}{\mathbf{N}}>.05$, a further calculation is in order:

$$
\begin{equation*}
\mathrm{n}=\frac{\mathrm{n}_{0}}{1+\frac{\mathrm{n}_{0}}{\mathrm{~N}}} \tag{4}
\end{equation*}
$$

After a sample of size, n, is obtained from the population, the basic sample statistics may be calculated. The calculations are the same as for equations (11) through (15) unless the sample size, n, is greater than 5 percent of the population N. If $\frac{n}{N}>.05$, a correction factor is used so that the calculation for the sample variance is:

$$
\begin{equation*}
s^{2}=\left(\frac{N-n}{N}\right) \frac{\Sigma X_{i}^{2}-\frac{\left(\Sigma X_{i}\right)^{2}}{n}}{n-1} \tag{5}
\end{equation*}
$$

The other calculations make use of, s^{2}, as calculated above, wherever s^{2} appears in the formulas.

2.2.2 Stratified random sampling

To compute the sample size required to obtain an estimate of the mean within a specified acceptable error, computations can be made similar to those for simple random sampling: a probability level must be specified; an estimate of the variance within each stratum must be available; and the number of sampling units in each stratum must be known. Although this involves a good deal of work, it illustrates the need for a pilot study and indicates that we must know something about the phenomena we are studying if we are to plan an effective sampling program.

If the pilot study or other sources of information have resulted in what are considered to be reliable estimates of the variance within strata, the sampling can be optimally allocated to strata. Otherwise proportional allocation should be used. Optimal allocation, properly used, will result in more precise estimates for a given sample size.

For proportional allocation the calculation for sample size is:

$$
\begin{equation*}
\mathrm{n}=\frac{\frac{\mathrm{t}^{2} \Sigma \mathrm{~N}_{\mathrm{K}} \mathrm{Sk}^{2}}{\mathrm{Nd}^{2}}}{1+\frac{\Sigma \mathrm{N}_{\mathrm{K} \mathrm{Sk}^{2}}^{\mathrm{N}^{2} \mathrm{~d}^{2}}}{}} \tag{6}
\end{equation*}
$$

where $t=$ the entry for the desired probability level from a table of "Student's t " (use 2 for a rough estimate) $; \mathrm{N}_{\mathrm{k}}=$ the number of sampling units in stratum $\mathrm{k} ; \mathrm{sk}^{2}=$ the variance of stratum $\mathrm{k} ; \mathrm{N}=$ the total number of sampling units in all strata; and $d=$ the acceptable error expressed in the same units as the observations.

For optimal allocation, the calculation is:

$$
\begin{equation*}
\mathrm{n}=\frac{\frac{\mathrm{t}^{2}\left(\Sigma \mathrm{~N}_{\mathrm{k}} \mathrm{k}\right)^{2}}{\mathrm{~N}^{2} \mathrm{~d}^{2}}}{1+\frac{\mathrm{t}^{2} \Sigma \mathrm{~N}_{\mathrm{k} \mathrm{sk}^{2}}^{\mathrm{N}^{2} \mathrm{~d}^{2}}}{}} \tag{7}
\end{equation*}
$$

where the symbols are the same as above and where $s_{k}=\sqrt{s_{k}{ }^{2}}$, the standard deviation of stratum k [see Equations (16) to (19)].

Having established sample size, it remains to determine the portion of the sample to be allocated to each stratum.

For proportional allocation:

$$
\begin{equation*}
\mathrm{n}_{\mathrm{k}}=\frac{\mathrm{nN}_{\mathrm{k}}}{\mathrm{~N}} \tag{8}
\end{equation*}
$$

where $n_{k}=$ the number of observations to be made in stratum k .

For optimal allocation:

$$
\begin{equation*}
\mathrm{n}_{\mathrm{k}}=\frac{\mathrm{nN} \mathrm{~N}_{\mathrm{k}} \mathrm{sk}^{2}}{\sum \mathrm{~N}_{\mathrm{k}} \mathrm{~s}_{\mathrm{k}}} \tag{9}
\end{equation*}
$$

Sample selection within each stratum is performed in the same manner as for simple random sampling.

2.2.3 Systematic random sampling

After the location of a transect line is selected, the number of experimental units (the number of possible sampling points) along this line must be determined. This may be done in many ways depending upon the particular situation. Possible examples are the number of square meter plots of bottom centered along a 100 meter transect ($\mathrm{N}=100$); or the meters of distance along a 400 -meter transect as points of departure for making a plankton haul of some predetermined duration perpendicular to the transect. (In the second example, a question of subsampling or some assumption about local, homogeneous distribution might arise since the plankton net has a radius less than one meter). The interval of sampling, C, determines sample
size: $\mathrm{n}=\mathrm{N} / \mathrm{C}$. The mean is estimated as usual; the variance as for a simple random sample if there are no trends, periodicities, or other nonrandom effects.

2.3 Subsampling

Situations often arise where it is natural or imperative that the sampling units are defined in a two-step manner. For example: colonies of benthic organisms might be the first step, and the measurement of some characteristic on the individuals within the colony might be the second step; or streams might be the first (primary) step, and reaches, riffles or pools as the second step (or element) within the unit. When a sample of primary units is selected, and then for each primary unit a sample is selected by observing some element of the primary unit, the sampling scheme is known as subsampling or two-stage sampling. The computations are straight forward, but somewhat more involved.

The method of selection of the primary units must be established. It may be a simple random sample (equal probabilities), a stratified random sample (equal probabilities within strata), or other scheme such as probability proportional to size (or estimated size) of primary unit. In any case, let us call the probability of selection of the $\mathrm{i}^{\text {th }}$ primary unit, Z_{i}. For simple random sampling, $Z_{i}=\frac{1}{N}$, where N is the number of primary units in the universe. For stratified random sampling, $\mathrm{Z}_{\mathrm{ki}}=\frac{1}{\mathrm{~N}_{\mathrm{k}}}$, where k signifies the $\mathrm{k}^{\text {th }}$ stratum. For selection in which the primary units are selected with probability proportional to their size, the probability of selection of the $j^{\text {th }}$ primary unit is

$$
\begin{equation*}
Z_{j}=\frac{L_{j}}{\sum_{i=1}^{n} L_{i}} \tag{10}
\end{equation*}
$$

where L equals the number of elements in the primary unit indicated by its subscript. If stratification is used with the latter scheme, merely apply the rule to each stratum. Other methods of assigning probability of selection may be used. The important thing is to establish the probability of selection for each primary unit.

3.0 GRAPHIC EXAMINATION OF DATA

Often the most elementary techniques are of the greatest use in data interpretation. Visual examination of data can point the way for more discriminatory analyses, or on the other hand, interpretations may become so obvious that further analysis is superfluous. In either case, graphical examination of data is often the most effortless way to obtain an initial examination of data and affords the chance to organize the data. Therefore, it is often done as a first step. Some commonly used techniques are presented below. Cell counts (algal cells per milliliter) will serve as the numeric example (Table 1).

3.1 Raw Data

As brought out in other chapters of this manual, it is of utmost importance that raw data be recorded in a careful, logical, interpretable manner together with appropriate, but not superfluous, annotations. Note that although some annotations may be considered superfluous to the immediate intent of the data, they may not be so for other purposes. Any note that might aid in determining whether the data are comparable to other similar data, etc., should be recorded if possible.

3.2 Frequency Histograms

To construct a frequency histogram from the data of Table 1, examine the raw data to determine the range, then establish intervals. Choose the intervals with care so they will be optimally integrative and differentiative. If the intervals are too wide, too many observations will be integrated into one interval and the picture will be hidden; if too narrow, too few will fall into one interval and a confusing overdifferentiation or overspreading of the data will result. It is often enlightening if the same data are plotted with the use of several interval sizes. Construct the intervals so that no doubt exist as to which interval an observation belongs, i.e., the end of one interval must not be the same number as the beginning of the next.

The algal count data in Tables 2 and 3 were grouped by two interval sizes (10,000 cells $/ \mathrm{ml}$ and 20,000 cells $/ \mathrm{ml}$) It is easy to see that the data are grouped largely in the range 0 to 6×10^{4} cells $/ \mathrm{ml}$ and that the frequency of occurrence is

TABLE 1. RAW DATA ON PLANKTON COUNTS

Date	Count	Date	Count	Date	Count
June		June		July	
8	23,077	25	7,692	11	44,231
9	36,538	26	23,077	12	50,000
10	26,923	27	134,615	13	26,923
11	23,077	28	32,692	14	44,231
12	13,462	29	25,000	15	46,154
13	19,231	30	146,154	16	55,768
14	21,154	July		17	9,615
15	61,538	1	107,692	18	13,462
16	96,154	2	13,462	19	3,846
17	23,077	3	9,615	20	3,846
18	46,154	4	148,077	21	11,538
19	48,077	5	53,846	22	7,692
20	51,923	6	103,846	23	13,462
21	50,000	7	78,846	24	21,154
22	292,308	8	132,692	25	17,308
23	165,385	9	228,846		
24	42,308	10	307,692		

lesser, the larger the value. Closer inspection will reveal that with the finer interval width (Table 2), the frequency of occurrence does not increase monotonically as cell count decreases. Rather, the frequency peak is found in the interval 20,000 to 30,000 cells $/ \mathrm{ml}$. This observation was not possible using the coarser interval width; the frequencies were "overintegrated" and did not reveal this part of the pattern. Finer interval widths could further change the picture presented by each of these groupings.

Although a frequency table contains all the information that a comparable histogram contains, the graphical value of a histogram is usually worth the small effort required for its construction. Figures 1 and 2 are frequency histograms corresponding to Tables 2 and 3, respectively. It can be seen that the histograms are more immediately interpretable. The height of each bar is the frequency of the interval; the width is the interval width.

3.3 Frequency Polygon

Another way to present essentially the same information as that in a frequency histogram is the use of a frequency polygon. Plot points at the height of the frequency and at the midpoint of the interval, and connect the points with straight lines. The data of Table 3 are used to

TABLE 2. FREQUENCY TABLE FOR DATA IN TABLE 1 GROUPED AT AN INTERVAL WIDTH OF 10,000 CELLS/ML

Interval	Frequency	Interval	Frequency
$0-10$	6	$200-210$	0
$10-20$	7	$210-220$	0
$20-30$	9	$220-230$	1
$30-40$	2	$230-240$	0
$40-50$	6	$250-250$	0
$50-60$	5	$260-260$	0
$60-70$	1	$270-280$	0
$70-80$	1	$280-290$	0
$80-90$	0	$290-300$	0
$90-100$	1	$300-310$	1
$100-110$	2	$310-320$	1
$110-120$	0	$320-330$	0
$120-130$	0	$340-350$	0
$130-140$	2	$350-360$	0
$140-150$	2	$360-370$	0
$150-160$	0	$370-380$	0
$160-170$	1	$380-390$	0
$170-180$	0	$390-400$	0
$180-190$	0		0
$190-200$	0		

illustrate the frequency polygon in Figure 3.

3.4 Cumulative Frequency

Cumulative frequency plots are often useful in data interpretation. As an example, a cumulative frequency histogram (Figure 4) was constructed using the frequency table (Table 2 or 3). The height of a bar (frequency) is the sum of all frequencies up to and including the one being plotted. Thus, the first bar will be the same as the frequency histogram, the second bar equals the sum of the first and second bars of the frequency histogram, etc., and the last bar is the sum of all frequencies.

Figure 1. Frequency histogram; interval width is 10,000 cells/ml.

TABLE 3. FREQUENCY TABLE FOR DATA IN TABLE 1 GROUPED AT AN INTERVAL WIDTH OF 20,000 CELLS/ML

Interval	Frequency	Interval	Frequency
$0-20$	13	$200-220$	0
$20-40$	11	$220-240$	1
$40-60$	11	$240-260$	0
$60-80$	2	$260-280$	0
$80-100$	1	$280-300$	1
$100-120$	2	$300-320$	1
$120-140$	2	$320-340$	0
$140-160$	2	$340-360$	0
$160-180$	1	$360-380$	0
$180-200$	0	$380-400$	0

Closely related to the cumulative frequency histogram is the cumulative frequency distribution graph, a graph of relative frequencies. To obtain the cumulative graph, merely change the scale of the frequency axis on the cumulative frequency histogram. The scale change is made by dividing all values on the scale by the highest value on the scale (in this case the number of observations or 48).

The value of the cumulative frequency distribution graph is to allow relative frequency to be read, i.e., the fraction of observations less than or equal to some chosen value. Exercise caution in extrapolating from a cumulative frequency distribution to other situations. Always bear in mind that in spite of a planned lack of bias, each sample, or restricted set of samples, is subject to influences not accounted for and is therefore unique. This caution is all the more pertinent for cumulative frequency plots because they tend to

Figure 2. Frequency histogram; interval width is 20,000 cells $/ \mathrm{ml}$.
smooth out some of the variation noticed in the frequency histogram. In addition, the phrase "fraction of observations less than or equal to some chosen value" can easily be read "fraction of time the observation is less than or equal to some chosen value." It is tempting to generalize from this reading and extend these results beyond their range of applicability.

Figure 3. Frequency polygon; interval width is 20,000 cells $/ \mathrm{ml}$.

Figure 4. Cumulative frequency histogram; interval width is 10,000 cells $/ \mathrm{ml}$.

3.5 Two-dimensional Graphs

Often data are taken where the observations are recorded as a pair (cell count and time), (biomass and nutrient concentration). Here a quick plot of the set of pairs will usually be of value. Figure 5 is such a graph of data taken from Table 1. Each point is plotted at a height
corresponding to cell count and at a distance from the ordinate axis corresponding to the number of days since the beginning observation. The peaks and troughs, their frequency, together with intimate knowledge of the conditions of the study, might suggest something of biological interest, further statistical analysis, or further field or laboratory work.

In summary, carefully prepared tables and graphs may be important and informative steps in data analysis. The added effort is usually small, whereas gains in interpretive insight may be large. Therefore, graphic examination of data is a recommended procedure in the course of most investigations.

Figure 5. An example of a two-dimensional graph plotted from algal-count data in Table 1.

4.0 SAMPLE MEAN AND VARIANCE

4.1 General Application

Knowledge of certain computations and computational notations is essential to the use of statistical techniques. Some of the more basic of these will be briefly reviewed here.

To illustrate the computations, let us assume we have a set of data, i.e., a list of numeric values written down. Each of these values can be labeled Ly a set of numerals beginning with 1 . Thus, the first of these values can be called X_{1}, the second X_{2}, etc., and the last one we call X_{n}.

The data values are labeled with consecutive numbers (recall from the definitions that these numeric values are observations), and there are n values in the set of data. A typical observation is X_{i}, where i may take any value between 1 and n, inclusive, and the subscript indicates which X is being referenced.

The sum of the numbers in a data set, such as our sample, is indicated in statistical computations by capital sigma, Σ. Associated with Σ are an operand (here, X_{i}), a subscript (here, $i=1$), and a superscript (here, n), $\sum_{i=1}^{n} X_{1}$. The subscript $i=1$ indicates that the value of the operand X is to be the number labeled X_{1} in our data set and that this is to be the first observation of the sum. The superscript n indicates that the last number of the summation is to be the value of X_{n}, the last X in our data set.

Computations for the mean, variance, standard deviation, variance of the mean, and standard deviation of the mean (standard error) are presented below. Note that these are computations for a sample of n observations, i.e., they are statistics.

Mean ($\overline{\mathrm{X}}$):

$$
\begin{equation*}
\overline{\mathrm{X}}=\frac{\sum_{i=1}^{\mathrm{n}} \mathrm{X}_{1}}{\mathrm{n}} \tag{11}
\end{equation*}
$$

Variance (s^{2}):

$$
\begin{equation*}
s^{2}=\frac{\sum_{i=1}^{n} x_{1}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}{n-1} \tag{12}
\end{equation*}
$$

Note: The X_{i} 's are squared, then the summation is performed in the first term of the numerator; in the second term, the sum of the X_{i} 's is first formed, then the sum is squared, as indicated by the parentheses.

Standard deviation (s):

$$
\begin{equation*}
\mathrm{s}=\sqrt{\mathrm{s}^{2}} \tag{13}
\end{equation*}
$$

Variance of the mean $\left(s_{\bar{X}}^{2}\right)$:

$$
\begin{equation*}
\frac{s_{\bar{x}}^{2}}{\bar{x}}=\frac{s^{2}}{n} \tag{14}
\end{equation*}
$$

Standard deviation of the mean or standard $\operatorname{error}\left(\mathrm{s}_{\overline{\mathrm{X}}}\right)$:

$$
\begin{equation*}
s_{\bar{X}}=\sqrt{s_{\bar{X}}^{2}}=\frac{s}{\sqrt{n}} \tag{15}
\end{equation*}
$$

4.2 Statistics for Stratified Random Samples

The calculations of the sample statistics for stratified random sampling are as follows (see 2.2.2 Stratified random samples):

For the mean of stratum k :

$$
\begin{equation*}
\bar{y}=\frac{\sum_{1=1}^{n_{k}} y_{\mathrm{ki}}}{\mathrm{n}_{\mathrm{k}}} \tag{16}
\end{equation*}
$$

i.e., simply compute an arithmetic average for the measurements of stratum k .

For the variance of stratum k :

$$
\begin{equation*}
s^{2}=\frac{\sum_{i=1}^{n_{k}} y_{k i}{ }^{2}-\left(\frac{\left.\sum_{i=1}^{n_{k}} y_{k i}\right)^{2}}{n_{k}}\right.}{n_{k}-1} \tag{17}
\end{equation*}
$$

i.e., simply Equation 12 applied to the data of the $\mathrm{k}^{\mathrm{t}}{ }^{\text {h }}$ stratum.

For the mean of the stratified sample:

$$
\begin{equation*}
\bar{y}_{s t}=\frac{\sum_{k=1}^{m} N_{k} \bar{y}_{k}}{N} \tag{18}
\end{equation*}
$$

for either type allocation or alternatively for proportional allocation:

$$
\begin{equation*}
\overline{\mathrm{y}}_{\mathrm{st}}=\frac{\sum_{\mathrm{k}=1}^{\mathrm{m}} \mathrm{n}_{\mathrm{k}} \overline{\mathrm{y}}_{\mathrm{k}}}{\mathrm{n}} \tag{19}
\end{equation*}
$$

Note that Equations (18) and (19) are identical only for proportional allocation.

4.3 Statistics for Subsamples

If simple random sampling is used to select a subsample, the following formulas are used to calculate the sample statistics (see 2.3 Sub-
sampling):
For the sample mean:

$$
\begin{equation*}
\overline{\bar{y}}=\frac{1}{n \sum_{i=1}^{n}} \cdot \sum_{i=1}^{n}\left(\frac{L_{1} \bar{y}_{i}}{Z_{i}}\right) \tag{20}
\end{equation*}
$$

where $\overline{\bar{y}}$ is the average, computed' over subsamples as well as for the sample

$$
\begin{equation*}
\widetilde{y}_{i}=\frac{\sum_{j=1}^{L_{i}} y_{i j}}{n} \tag{21}
\end{equation*}
$$

where $y_{i j}$ equals the observation for the j th element in the $i^{\text {th }}$ primary unit, and L_{i} is the number of observations upon elements for primary unit i.

For the variance of the sample mean:

$$
\begin{equation*}
s^{2}(\overline{\bar{y}})=\frac{1}{n(n-1)\left(\sum_{i=1}^{n} L_{i}\right)^{2}} \sum_{i=1}^{n}\left(\hat{Y}_{i}-\hat{\bar{Y}}_{n}\right)^{2} \tag{22}
\end{equation*}
$$

where \hat{Y}_{i} is computed as

$$
\begin{equation*}
\hat{Y}_{i}=\frac{L_{i} \bar{y}_{i}}{Z_{i}} \tag{23}
\end{equation*}
$$

where $\hat{\mathrm{Y}}_{\mathrm{n}}$ is computed as

$$
\begin{equation*}
\frac{\mathrm{Y}}{\mathrm{Y}}_{\mathrm{n}}=\frac{1}{\mathrm{n}_{\mathrm{i}}} \sum_{\mathrm{n}}^{\mathrm{n}} \hat{\mathrm{Y}}_{\mathrm{i}}=\overline{\mathrm{y}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~L}_{\mathrm{i}} \tag{24}
\end{equation*}
$$

or alternatively

$$
\begin{equation*}
s^{2}(\overline{\bar{y}})=\frac{1}{n(n-1)\left(\sum_{i=1}^{n} L_{i}\right)^{2}} \cdot \sum \hat{Y}_{i}-\frac{\left(\sum \hat{Y}_{i}\right)^{2}}{n} \tag{25}
\end{equation*}
$$

4.4 Rounding

The questions of rounding and the number of digits to carry through the calculations always arise in making statistical computations. Measurement data are approximations, since they are rounded when the measurements were taken; count data and binomial data are not subject to this type of approximation.

Observe the following rules when working with measurement or continuous data.

- When rounding numbers to some number of decimal places, first look at the digit to the
right of the last place to be retained. If this number is greater than 5 , the last place to be retained is rounded up by 1 ; if it is less than 5 , do not change the last place - merely drop the extra places. To round to 2 decimal places:

Unrounded	Rounded
1.239	1.24
28.5849	28.58

- If the digit to the right of the last place to be retained is 5 , then look at the second digit to the right of the last place to be kept, provided that the unrounded number is recorded with that digit as a significant digit. If the second digit to the right is greater than 0 , then round the number up by 1 in the last place to be kept; if the second digit is 0 , then look at the third digit, etc. To round to 1 place:

Unrounded Rounded 13.251 13.25001		13.3

- If the number is recorded to only one place to the right of the last place to be kept, and that digit is 0 , or if the significant digits two or more places beyond the last place to be kept are all 0 , a special rule (odd-even rule) is followed to ensure that upward rounding occurs as frequently as downward rounding. The rule is: if the digit to the right of the last place to be kept is 5 , and is the last digit of significance, or if all following significant digits are 0 , round up when the last digit to be retained is odd and drop the 5 when the last digit to be retained is even. To round to 1 place:

$\frac{\text { Unrounded }}{13.2500}$		Rounded
13.3500		13.2

Caution: all rounding must be made in 1 step to avoid introducing bias. For example the number 5.451 rounded to a whole number is clearly 5 , but if the rounding were done in two steps it would first be rounded to 5.5 then to 6 .

Retaining Significant Figures

Retention of significant figures in statistical computations can be summarized in three rules:

- Never use more significance for a raw data value than is warranted.
- During intermediate computations keep all significant figures for each data value, and carry the computations out in full.
- Round the final result to the accuracy set by the least accurate data value.

5.0 TESTS OF HYPOTHESES

Often in biological field studies some aspect of the study is directed to answering a hypothetical question about a population. If the hypothesis is quantifiable, such as: "At the time of sampling, the standing crop of plankton biomass per liter in lake A was the same as the standing crop per liter in lake B," then the hypothesis can be tested statistically. The question of drawing a sample in such a way that there is freedom from bias, so that such a test may be made, was discussed in the section on sampling (2.0).
Three standard types of tests of hypotheses will be described: the "t-test," the " χ 2-test," and the "F-test."

5.1 T-test

The t-test is used to compare a sample statistic (such as the mean) with some value for the purpose of making a judgment about the population as indicated by the sample. The comparison value may be the mean of another sample (in which case we are using the two samples to judge whether the two populations are the same). The form of the t-statistic is

$$
\begin{equation*}
\mathrm{t}=\frac{\theta-\Theta}{\mathrm{S}_{\theta}} \tag{26}
\end{equation*}
$$

where $\theta=$ some sample statistic; $\mathrm{S}_{\theta}=$ the standard deviation of the sample statistic; and $\Theta=$ the value to which the sample statistic is compared (the value of the null hypothesis).

The use of the t-test requires the use of t-tables. The t-table is a two-way table usually arranged with the column headings being the probability, α, of rejecting the null hypothesis when it is true, and the row headings being the degrees of freedom. Entry of the table at the
correct probability level requires a discussion of two types of hypotheses testable using the t-statistic.

The null hypothesis is a hypothesis of no difference between a population parameter and another value. Suppose the hypothesis to be tested is that the mean, μ, of some population equals 10 . Then we would write the null hypothesis (symbolized H_{o}) as

$$
\mathrm{H}_{\mathbf{o}}: \mu=10
$$

Here 10 is the value of Θ in the general form for the t-statistic. An alternative to the null hypothesis is now required. The investigator, viewing the experimental situation, determines the way in which this is stated. If the investigator merely wants to answer whether the sample indicates that $\mu=10$ or not, then the alternate hypothesis, H_{a}, is

$$
\mathrm{H}_{\mathrm{a}}: \mu \neq 10
$$

If it is known, for example, that μ cannot be less than 10 , then H_{a} is

$$
\mathrm{H}_{\mathrm{a}}: \mu>10
$$

and by similar reasoning the other possible H_{a} is

$$
\mathrm{H}_{\mathrm{a}}: \mu<10
$$

Hence, there are two types of alternate hypotheses: one where the alternative is simply that the null hypothesis is false ($\mathrm{H}_{\mathrm{a}}: \mu \neq 10$); the other, that the null hypothesis is false and, in addition, that the population parameter lies to one side or the other of the hypothesized value $\left[\mathrm{H}_{\mathrm{a}}: \mu(>\right.$ or $\left.<) 10\right]$. In the case of $\mathrm{H}_{\mathrm{a}}: \mu$ $\neq 10$, the test is called a two-tailed test; in the case of either of the second types of alternate hypotheses, the t-test is called a one-tailed test.

To use a t-table, it must be determined whether the column headings (probability of a larger value, or percentage points, or other means of expressing α) are set for one-tailed or two-tailed tests. Some tables are presented with both headings, and the terms "sign ignored" and "sign considered" are used. "Sign ignored" implies a two-tailed test, and "sign considered" implies a one-tailed test. Where tables are given for one-tailed tests, the column for any probability (or percentage) is the column appropriate to twice the probability for a twotailed test. Hence, if a column heading is .025
and the table is for one-tailed tests, use this same column for .05 in a two-tailed test (double any one-tailed test heading to get the proper twotailed test heading; or conversely, halve the twotailed test heading to obtain proper headings for one-tailed tests).

Testing $H_{o}: \mu \approx M$ (the population mean equals some value M):

$$
\begin{equation*}
\mathrm{t}=\frac{\overline{\mathrm{x}}-\mathrm{M}}{{ }^{s} \overline{\mathrm{x}}} \tag{27}
\end{equation*}
$$

where $\overline{\mathrm{X}}$ is given by equation (11) or other appropriate equation; $M=$ the hypothesized population mean; and $s_{\bar{x}}$ is given by equation (15). The t-table is entered at the chosen probability level (often .05) and $n-1$ degrees of freedom, where n is the number of observations in the sample.

When the computed t-statistic exceeds the tabular value there is said to be a $1-\alpha$ probability that H_{o} is false.

Testing $\mathrm{H}_{\mathrm{o}}: \mu_{1}=\mu_{2}$ (the mean of the population from which sample 1 was taken equals the mean of the population from which sample 2 was taken):

$$
\begin{equation*}
\mathrm{t}=\frac{\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}}{\frac{\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}}{}} \tag{28}
\end{equation*}
$$

where $\mathrm{s}_{\mathrm{x}_{1}}-\overrightarrow{\mathrm{x}}_{2}=$ the pooled standard error obtained by adding the corrected sums of squares for sample 1 to the corrected sums of squares for sample 2, and dividing by the sum of the degrees of freedom for each times the sum of the numbers of observations, i.e.,

$$
s_{\bar{x}_{1}-\bar{x}_{2}}=\sqrt{\frac{\sum x_{1}^{2}-\frac{\left(\sum x_{1}\right)^{2}}{n_{1}}+\sum x_{2}^{2}-\frac{\left(\sum x_{2}\right)^{2}}{n_{2}}}{\left(n_{1}+n_{2}\right)\left[\left(n_{1}-1\right)+\left(n_{2}-1\right)\right]}}(29)^{*}
$$

An alternative and frequently useful form is

$$
\begin{equation*}
s_{\bar{x}_{1}-\bar{x}_{2}}=\sqrt{\frac{\left(n_{1}-1\right) s_{1}{ }^{2}+\left(n_{2}-1\right) s_{2}{ }^{2}}{\left(n_{1}+n_{2}\right)\left(n_{1}+n_{2}-2\right)}} \tag{30}
\end{equation*}
$$

where $s_{1}{ }^{2}$ and $s_{2}{ }^{2}$ are each computed according to equation (12).

For all conditions to be met where the t-test is applicable, the sample should have been selected

[^1]from a population distributed as a normal distribution. Even if the population is not distributed normally, however, as sample size increases, the t-test approaches to applicability. If it is suspected that the population deviates too drastically from the normal, exercise care in the use of the t-test. One method of checking whether the data are normally distributed is to plot the observations on normal probability graph paper. If the plot approximates a straight line, using the t-test is acceptable.

The t-test is used in certain cases where it is known that the parent distribution is not normal. One case commonly encountered in field studies is the binomial. The binomial may describe presence or absence, dead or alive, male or female, etc.

Testing $\mathrm{H}_{\mathrm{o}}: \mathrm{P}=\mathrm{K}$ (the population proportion equals some value K):

$$
\begin{equation*}
t=\frac{p-K}{\sqrt{\frac{p q}{n}}} \tag{31}
\end{equation*}
$$

where $\mathrm{P}=$ the symbol for the population proportion (e.g., proportion of males in the population); $K=a$ constant positive fraction as the hypothesized proportion; $\mathrm{p}=$ the proportion observed in the sample; $\mathrm{q}=$ the complementary proportion (e.g., the proportion of females in the sample or $1-p$); and $n=$ the number of observations in the sample. Note that since p is computed as (number of males in the sample) / (total number of individuals in the sample), it will always be a positive number less than one, and hence, so will q. Again α must be chosen; H_{a} can be any of the types previously discussed; and the degrees of freedom are $\mathrm{n}-1$.

Count data, where the objects counted are distributed randomly, follow a Poisson distribution. If the Poisson can be used as an adequate description of the distribution of the population, an approximate t may be computed.

Testing $\mathrm{H}_{\mathrm{o}}: \mu=\mathrm{M}$ for the Poisson (the mean of the population distributed as a Poisson equals some hypothesized value M):

$$
\begin{equation*}
t=\frac{X-M}{\sqrt{\frac{\bar{X}}{n}}} \tag{32}
\end{equation*}
$$

Note that $\overline{\mathrm{X}}=\sigma^{2}$ for the Poisson, thus $\sqrt{\frac{\overline{\mathrm{X}}}{\mathrm{n}}}$ is the standard deviation of the mean, $\mathrm{s}_{\overline{\mathrm{x}}}$.

5.2 Chi Square Test (χ^{2}-test)

Like t, χ^{2} values may be found in mathematical and statistical tables tabulated in a twoway arrangement. Usually, as with t, the column headings are probabilities of obtaining a larger χ^{2} value when H_{0} is true, and the row headings are degrees of freedom. If the calculated χ^{2} exceeds the tabular value, then the null hypothesis is rejected. The chi square test is often used with the assumption of approximate normality in the population.

Chi square appears in two forms that differ not only in appearance, but that provide formats for different applications.

- One form:

$$
\begin{equation*}
x^{2}=\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\sigma^{2}} \tag{33}
\end{equation*}
$$

is useful in tests regarding hypotheses about σ^{2}.

- The other form:

$$
\begin{equation*}
x^{2}=\Sigma \frac{(0-E)^{2}}{E} \tag{34}
\end{equation*}
$$

where $0=$ an observed value, and $E=$ an expected (hypothesized) value, is especially useful in sampling from binomial and multinomial distribution, i.e., where the data may be classified into two or more categories.

Consider first a binomial situation. Suppose the data from fish collections from three lakes are to be pooled and the hypothesis of an equal sex ratio tested (Table 4).

TABLE 4. POOLED FISH SEX DATA FROM 3 LAKES

No. males	No. females	Total
$892^{*}(919) \dagger$	$946(919)$	1838

*Observed values.
\dagger Expected, or hypothesized, values.

To compute the hypothesized values (919 above), it is necessary to have formulated a null hypothesis. In this case, it was

$$
\left.\mathrm{H}_{\mathrm{o}}: \text { No. males }=\text { No. females }=(.5) \text { (total }\right)
$$

Expected values are always computed based upon the null hypothesis. The computation for χ^{2} is

$$
\chi^{2}=\frac{(892-919)^{2}+(946-919)^{2}}{919}=1.59 \text { n.s.* }
$$

*n.s. $=$ not significant
There is one degree of freedom for this test. Since computed χ^{2} is not greater than tabulated χ^{2} (3.84), the null hypothesis is not rejected. This test, of course, applies equally well to data that has not been pooled, i.e., where the values are from two unpooled categories.

The information contained in each of the collections is partially obliterated by pooling. If the identity of the collections is maintained, two types of test may be made: a test of the null hypothesis for each collection separately; and a test of interaction, i.e., whether the ratio depends upon the lake from which the sample was obtained (Table 5).

TABLE 5. FISH SEX DATA FROM 3 LAKES

Lake	No Males	No Females	Total	χ^{2}
1	$346^{*}(354) \dagger$	$362(354)$	708	.36 n.s.
2	$302(288)$	$274(288)$	576	1.30 n.s.
3	$244(277)$	$310(277)$	554	7.88
				$\mathrm{P}=.005$
Total	$892(919)$	$946(919)$	1838	1.59 n.s.

*Observed values.
\dagger Expected, or hypothesized values.
With the use of the same null hypothesis, the following results are obtained.

The individual χ^{2} 's were computed in the same manner as equation (34), in separate tests of the hypothesis for each lake. Note that the first two are not significant whereas the third is significant. This points to probable ecological differences among lakes, a possibility that would not have been discerned by pooling the data.

The test for interaction (dependence) is made by summing the individual χ^{2} 's and subtracting the χ^{2} obtained using totals, i.e.,

$$
\begin{aligned}
\chi^{2}(\text { interactions }) & =\Sigma \chi^{2} \text { (individuals) }-\chi^{2} \text { (total) } \\
& =.36+1.30+7.88-1.59=7.95
\end{aligned}
$$

The degrees of freedom for the interaction χ^{2} are the number of individual χ^{2} 's minus one; in this case, two. This interaction χ^{2} is significant ($\mathrm{P}>.025$), which indicates that the sex ratio is indeed dependent upon the lake.

Another χ^{2} test may be illustrated by the following example. Suppose that comparable techniques were used to collect from four streams. With the use of three species common to all streams, it is desired to test the hypothesis that the three species occur in the same ratio regardless of stream, i.e., that their ratio is independent of stream (Table 6).

TABLE 6. OCCURRENCE OF THREE SPECIES OF FISH

Stream	Number of organisms			
	Species 1	Species 2	Species 3	
	$24^{*}(21.7) \dagger$	$12(12.5)$	$30(31.7)$	66
2	15	(18.5)	$14(10.6)$	$27(26.9)$
3	28	(27.4)	$15(15.7)$	$40(39.9)$
4	20	(19.4)	$9(11.2)$	$30(28.4)$
Total	87	50	127	53
Expected ratio	$87 / 264$	$50 / 264$	$127 / 264$	

*Observed values.
\dagger Expected, or hypothesized
To discuss the table above, $\mathrm{O}_{\mathrm{ij}}=$ the observation for the $i^{\text {th }}$ stream and the $\mathrm{j}^{\text {th }}$ species. Hence, O_{23} is the observation for stream two and species three, or 27. A similar indexing scheme applies to the expected values, $\mathrm{E}_{\mathrm{i}} \mathrm{j}$. For the totals, a subscript replaced by a dot (.) symbolizes that summation has occurred for the observations indicated by that subscript. Hence, $\mathrm{O}_{.2}$ is the total for species two (50); O_{3}. is the total for stream three (93); and $O_{\text {.. }}$ is the grand total (264).

Computations of expected values make use of the null hypothesis that the ratios are the same regardless of stream. The best estimate of this ratio for any species is $\frac{\mathrm{O} . j}{\mathrm{O} . .}$, the ratio of the sum for species j to the total of all species. This ratio multiplied by the total for stream i gives the expected number of organisms of species j in stream i:

$$
\begin{equation*}
E_{i j}=\left(\frac{O_{. j}}{O . .}\right)\left(O_{i}\right) \tag{35}
\end{equation*}
$$

For example,

$$
\begin{aligned}
\mathrm{E}_{12} & =\left(\frac{\mathrm{O}_{.2}}{\mathrm{O}_{.}}\right)\left(\mathrm{O}_{1 .}\right) \\
& =\frac{50}{264}(66) \\
& =12.5
\end{aligned}
$$

χ^{2} is computed as

$$
\chi^{2}=\sum_{i j} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}=2.69 \text { (n.s.) }
$$

For this type of hypothesis, there are (rows - 1) (colums -1) degrees of freedom, in this case

$$
\text { (3) }(2)=6
$$

In the example, χ^{2} is nonsignificant. Thus, there is no evidence that the ratios among the organisms are different for different streams.

Tests of two types of hypotheses by χ^{2} have been illustrated. The first type of hypothesis was one where there was a theoretical ratio, i.e., the ratio of males to females is $1: 1$. The second type of hypothesis was one where equal ratios were hypothesized, but the values of the ratios themselves were computed from the data. To draw the proper inference, it is important to make a distinction between these two types of hypotheses. Because the ratios are derived from the data in the later case, a better fit to these ratios (smaller χ^{2}) is expected. This is compensated for by loss of degrees of freedom. Thus, smaller computed χ^{2} 's may be judged significant than would be in the case where the ratios are hypothesized independently of the data.

5.3 F-test

The F distribution is used for testing equality of variance. Values of F are found in books of mathematical and statistical tables as well as in most statistics texts. Computation of the F statistic involves the ratio of two variances, each with associated degrees of freedom. Both of these are used to enter the table. At any entry of the F tables for $\left(n_{1}-1\right)$ and $\left(n_{2}-1\right)$ degrees of freedom, there are usually two or more entries. These entries are for various levels of probability of rejection of the null hypothesis when in fact it is true.

The simplest F may be computed by forming the ratio of two variances. The null hypothesis is $\mathrm{H}_{\mathrm{o}}: \sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$. The F statistic is

$$
\begin{equation*}
F=\frac{s_{1}{ }^{2}}{s_{2}{ }^{2}} \tag{36}
\end{equation*}
$$

where $s_{1}{ }^{2}$ is computed from n_{1} observations and $\mathrm{s}_{2}{ }^{2}$ from n_{2}. For simple variances, the degrees of freedom, f, will be $f_{1}=n_{1}-1$ and
$f_{2}=n_{2}-1$. The table is entered at the chosen probability level, α, and if F exceeds the tabulated value, it is said that there is a $1-\alpha$ probability that $\sigma_{1}{ }^{2}$ exceeds $\sigma_{2}{ }^{2}$.

5.4 Analysis of Variance

Two simple but potentially useful examples of the analysis of variance are presented to illustrate the use of this technique. The analysis of variance is a powerful and general technique applicable to data from virtually any experimental or field study. There are restrictions, however, in the use of the technique. Experimental errors are assumed to be normally (or approximately normally) distributed about a mean of zero and have a common variance; they are also assumed to be independent (i.e., there should be no correlations among responses that are unaccounted for by the identifiable factors of the study or by the model). The effects tested must be assumed to be linearly additive. In practice these assumptions are rarely completely fulfilled, but the analysis of variance can be used unless significant departures from normality, or correlations among adjacent observations, or other types of measurement bias are suspected. It would be prudent, however, to check with a statistician regarding any uncertainties about the applicability of the test before issuing final reports or publications.

5.4.1 Randomized design

The analysis of variance for completely randomized designs provides a technique often useful in field studies. This test is commonly used for data derived from highly-controlled laboratory or field experiments where treatments are applied randomly to all experimental units, and the interest lies in whether or not the treatments significantly affected the response of the experimental units. This case may be of use in water quality studies, but in these studies the
treatments are the conditions found, or are classifications based upon ecological criteria. Here the desire is to detect any differences in some type of measurement that might exist in conjunction with the field situation or the classifications or criteria.

For example, suppose it is desired to test whether the biomass of organisms attaching to
slides suspended in streams varies from stream to stream. A simple analysis such as this could precede a more in-depth biological study of the comparative productivity of the streams. Data from such a study are presented in Table 7.

TABLE 7. PERIPHYTON PRODUCTIVITY DATA

Stream	Slide	Biomass (mg dry wt.)
1	1	26
	2	20
	3	14
2	4	25
	2	34
	3	28
	4	Lost
3	1	23
	2	31
	3	40
	4	28

In testing with the analysis of variance, as with other methods, a null hypothesis should be formulated. In this case the null hypothesis could be:
H_{0} : There are no differences in the biomass of organisms attached to the slides that may be attributed to differences among streams.
In utilizing the analysis of variance, the test for whether there are differences among streams is made by comparing two types of variances, most often called "mean squares" in this context. Two mean squares are computed: one based upon the means for streams; and one that is free of the effect of the means. In our example, a mean square for streams is computed with the use of the averages (or totals) from the streams. The magnitude of this mean square is affected both by differences among the means and by differences among slides of the same stream. The mean square for slides is computed that has no contribution due to stream differences. If the null hypothesis is true, then differences among streams do not exist and, therefore, they make no contribution to the mean square for streams. Thus, both mean squares (for streams and for slides) are estimates of the same variance, and with repeated sampling, they would be expected to average to the same value.

If the null hypothesis $\left(\mathrm{H}_{\mathrm{o}}\right)$ is true, the ratio of these values is expected to equal one. If H_{0} is not true, i.e., if there are real differences due to the effect of streams, then the mean square for streams is affected by these differences and is expected to be the larger. The ratio in the second case is expected to be greater than one. The ratio of these two variances forms an F-test.
The analysis of variance is presented in Table 8.

The computations are:

$$
\begin{aligned}
& \mathrm{C}=\frac{(85+85+134)^{2}}{11}=8401.45 \\
& \sum_{\mathrm{ij}} \mathrm{X}_{\mathrm{i}} \mathrm{j}^{2}=26^{2}+20^{2}+\cdots+40^{2}+28^{2}=8936 \\
& \text { Total SS }=8936-8401.45=534.55 \\
& \sum_{i}\left(\frac{\mathrm{X}_{\mathrm{i} .}{ }^{2}}{\mathrm{r}_{\mathrm{i}}}\right)=\frac{85^{2}}{4}+\frac{85^{2}}{3}+\frac{134^{2}}{4}=8703.58 \\
& \text { Streams SS }=8703.58-8401.45=302.13 \\
& \text { Slides w/i streams SS = Total SS - Streams SS } \\
& \begin{array}{l}
=534.55-302.13 \\
=232.42
\end{array}
\end{aligned}
$$

The mean squares (MS column) are computed by dividing the sums of squares (SS column) by its corresponding degrees of freedom (df column). (Nothing is usually learned in this context by computing a total MS.) The F-test is
TABLE 8. F-TEST USING PERIPHTON DATA

Source	df	SS
Total	$N-1^{*}$	$\sum_{i j} X_{i j}{ }^{2}-C$
Streams	$t-1$	$\underset{i}{\sum_{i}} \frac{X_{i}{ }^{2}}{r_{i}}-C$
Slides w/i streams	$\sum_{i}\left(r_{i}-1\right)$	Total SS - Stream SS

*The symbols are defined as: $\mathrm{N}=$ total number of observations (slides); $t=$ number of streams; $r_{i}=$ number of slides in stream i; $\mathrm{X}_{\mathrm{i}} \mathrm{j}=$ an observation (biomass of a slide); $\mathbf{X}_{\mathbf{i}} .=$ sum of the observations for stream i ; and $\mathrm{C}=$ correction for mean $=$
$\frac{\left(\sum_{i j} X_{i j}\right)^{2}}{N}$

Source	df	SS	MS	F
Total	10	534.55		
Streams	2	302.13	151.065	5.20^{*}
Slides w/i streams	8	232.42	29.055	

*Significant at the 0.05 probability level.
performed by computing the ratio, (mean square for streams)/(mean square for slides), in this case, $\frac{151.065}{29.055}=5.20$.

When the calculated F value (5.20) is compared with the F values in the table (tabular F values) where $\mathrm{df}=2$ for the numerator and $\mathrm{df}=$ 8 for the denominator, we find that the calculated F exceeds the value of the tabular F for probability . 05 . Thus, the experiment indicates a high probability (greater than 0.95) of there being a difference in biomass attached to the slides, a difference attributable to differences in streams.

Note that this analysis presumes good biological procedure and obviously cannot discriminate differences in streams from differences arising, for example, from the slides having been placed in a riffle in one stream and a pool in the next. In general, the form of any analysis of variance derives from a model describing an observation in the experiment. In the example, the model, although not stated explicitly, assumed only two factors affecting a biomass measurement streams and slides within streams. If the model had included other factors, a more complicated analysis of variance would have resulted.

5.4.2 Factorial design

Another application of a simple analysis of variance may be made where the factors are arranged factorially. Suppose a field study where the effect of a suspected toxic effluent upon the fish fauna of a river was in question (Tables 9 and 10). Five samples were taken about onequarter mile upstream and five, one-quarter mile downstream in August of the summer before the plant began operation, and the sampling scheme was repeated in August of the summer after operations began.

Standard statistical terminology refers to each of the combinations $P_{1} T_{1}, P_{2} T_{1}, P_{1} T_{2}$, and $P_{2} T_{2}$ as treatments or treatment combinations. Of use in the analysis is a table of treatment totals.

In planning for this field study, a null and alternate hypothesis should have been formed. In fact, whether stated explicitly or not, the null hypothesis was:
H_{0} : The toxic effluent has no effect upon the weight of fish caught

This hypothesis is not stated in statistical terms and, therefore, only implicitly tells us what test to make. Let us look further at the analysis before attempting to state a null hypothesis in statistical terms.

In this study two factors are identifiable: times and positions. A study could have been done on each of the two factors separately, i.e., an attempt could have been made to distinguish whether there was a difference associated with times, assuming all other factors insignificant, and likewise with the positions. The example, used here, however, includes both factors simultaneously. Data are given for times and for positions but with the complication that we cannot assume that one is insignificant when studying the other. For the purpose of this study, whether there is a significant difference with times or on the other hand with positions, are questions that are of little interest. Of interest to this study is whether the upstreamdownstream difference varies with times. This type of contrast is termed a positions-times interaction. Thus, our null hypothesis is, in statistical

TABLE 9. POUNDS OF FISH CAUGHT PER 10 HOURS OVERNIGHT SET OF A 125-FOOT, $11 / 2$-INCH-MESH GILL NET

	Positions	
Times	Upstream $\left(\mathbf{P}_{1}\right)$	Downstream $\left(\mathrm{P}_{2}\right)$
Before	28.3	29.0
$\left(\mathrm{~T}_{1}\right)$	33.7	28.9
	38.2	20.3
	41.1	36.5
	17.6	29.4
After	15.9	19.2
$\left(\mathrm{~T}_{2}\right)$	29.5	22.8
	22.1	24.4
	37.6	16.7
	26.7	11.3

TABLE 10. TREATMENT TOTALS FOR THE DATA OF TABLE 9

Total	Positions		
	Upstream	Downstream	Times totals
Before	158.9	144.1	303.0
After	131.8	94.4	226.2
Positions totals	290.7	238.5	Grand total

terminology.
H_{o} : There is no significant interaction effect
Computations for testing this hypothesis with the use of an analysis of variance table are presented below.

Symbolically, an observation must have three indices specified to be completely identified: position, time, and sample number. Thus there are three subscripts: $X_{i j k}$ is an observation at position i, time j, and from sample k. A value of 1 for i is upstream; 2, downstream; 1 for j is before; 2, after. A particular example is X_{123}, the third sample upstream after the plant began operation, or 22.1 pounds. A total (Table 10) is specified by using the dot notation. For the value of $X_{i j}$, then the individually sampled values for position \mathbf{i}, time j are totaled. It is a total for a treatment combination. For example, the value of X_{11}. is 158.9 , and the value of X_{1}.., where samplings and times are both totaled to give the total for upstream, is 290.7 .

For a slight advantage in generality, let the following additional symbols apply: $t=$ number of times of sampling (in this case $t=2$); $p=$ number of positions samples (in this case $p=2$); $\mathrm{s}=$ number of samples per treatment combination; and $\mathrm{n}=$ the total number of observations.

The computations are:
Correction for mean (CT):

$$
\begin{aligned}
\frac{\left(\sum X_{i j k}\right)^{2}}{n} & =\frac{(529.2)^{2}}{20} \\
& =14002.63
\end{aligned}
$$

Treatment Sum of Squares (SSTMT):
$\frac{\left(\Sigma \mathrm{X}_{\mathrm{i} .}{ }^{2}{ }^{2}\right)}{\mathrm{s}}-\mathrm{CT}$
$\frac{(158.9)^{2}}{5}+\frac{(1318)^{2}}{5}+\frac{(144.1)^{2}}{5}+\frac{(94.4)^{2}}{5}-14002.63=456.69$
(Note that the divisor (5) may be factored out here, if desired, but where a different number of samples is taken for each treatment combination it should be left as above.)

Positions Sum of Squares (SSP):
$\frac{\Sigma \mathrm{Xi}_{\mathrm{i}} .{ }^{2}}{\mathrm{st}}-\mathrm{CT}$
$\frac{(250.7)^{2}}{10}+\frac{(238.5)^{2}}{10}-14002.63=136.24$

Times Sum of Squares (SST):
$\frac{\Sigma \mathrm{X} \cdot \mathrm{j} .{ }^{2}}{\mathrm{sp}}-\mathrm{CT}$
$\frac{(303.0)^{2}}{10}+\frac{(226.2)^{2}}{10}-14002.63=294.91$
Interaction of Positions and Times Sum of Squares (SSPT):
SSTMT - SSP - SST
456.69-136.24-294.91=25.54

Error Sums of Squares:

$$
\begin{aligned}
& \Sigma \mathrm{X}_{\mathrm{i} j \mathrm{k}^{2}}-\mathrm{SSTMT}-\mathrm{CT} \\
& 15308.24-456.69-14002.63=848.92
\end{aligned}
$$

Although not important to this example, the main effects, positions and times, are tested for significance. The F table is entered with $\mathrm{df}=1$ for effect tested, and df = 16 for error. The positions effect is not significant at any probability usually employed. The times effect is significant with probability greater than .95 . The interaction effect is not significant, and we, therefore, conclude that no effect of the suspected toxic effluent can be distinguished in this data. Had the F value for interaction been large enough, we would have rejected the null hypothesis, and concluded that the effluent had a significant effect (Table 11).

TABLE 11. ANALYSIS OF VARIANCE TABLE FOR FIELD STUDY DATA OF TABLE 9

Source	df	SS	MS	F
Treatments	3	456.69		
Positions	1	136.24	136.24	2.56
Times	1	294.91	294.91	$5.55 *$
Positions	1			
\quad X times	16	848.94	25.54	<1
Error			53.05	

6.0 CONFIDENCE INTERVALS FOR MEANS AND VARIANCES

When means are computed in field studies, the desire often is to report them as intervals rather than as fixed numbers. This is entirely reasonable because computed means are virtually always derived from samples and are subject to the same uncertainty that is associated with the sample.

The correct computation of confidence intervals requires that the distribution of the observations be known. But very often approximations are close enough to correctness to be of use, and often are, or may be made to be, conservative. For computation of confidence intervals for the mean, the normal distribution is usually assumed to apply for several reasons: the central limit theorem assures us that with large samples the mean is likely to be approximately normally distributed; the required computations are well known and are easily applied; and when the normal distribution is known not to apply, suitable transformation of the data often is available to allow a valid application.

The confidence interval for a mean is an interval within which the true mean is said to have some stated probability of being found. If the probability of the mean not being in the interval is α (α could equal $.1, .05, .01$ or any probability value), then the statement may be written

$$
\mathrm{P}\left(\mathrm{CL}_{1}<\mu<\mathrm{CL}_{2}\right)=1-\alpha
$$

This is read, "The probability that the lower confidence limit (CL_{1}) is less than the true mean (μ) and that the upper confidence limit $\left(\mathrm{CL}_{2}\right)$ is greater than the true mean, equals $1-\alpha$." However, we never know whether or not the true mean is actually included in the interval. So the confidence interval statement is really a statement about our procedure rather than about μ. It says that if we follow the procedure for repeated experiments, a proportion of those experiments equal to α will, by chance alone, fail to include the true mean between our limits. For example, if $\alpha=.05$, we can expect 5 of 100 confidence intervals to fail to include the true mean.

To compute the limits, the sample mean, $\overline{\mathrm{X}}$; the standard error, $s_{\bar{x}}$; and the degrees of freedom, $\mathrm{n}-1$; must be known. A $\mathrm{t}_{\alpha, \mathrm{n}-1}$ value from tables of Student's t is obtained corresponding to $n-1$ degrees of freedom and probability α. The computation is

$$
\begin{aligned}
& \mathrm{CL}_{1}=\overline{\mathrm{X}}-\left(\mathrm{t}_{\alpha}\right)\left(\mathrm{s}_{\overline{\mathrm{X}}}\right) \\
& \mathrm{CL}_{2}=\overline{\mathrm{X}}+\left(\mathrm{t}_{\alpha}\right)\left(s_{\overline{\mathrm{X}}}\right)
\end{aligned}
$$

Other confidence limits may be computed, and one additional confidence limit is given in
this section - the confidence limits for the true variance, $\boldsymbol{\sigma}^{2}$. The information needed here is similar to that needed for the mean, namely, the estimated variance, s^{2}; the degrees of freedom, $\mathrm{n}-1$; and values from χ^{2} tables. The values from χ^{2} depend upon the degrees of freedom and upon the probability level, α. The confidence interval is

$$
\mathrm{p}\left[\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\chi^{2}} \leqq \alpha^{2} \leqq \frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}}\right]=1-\alpha
$$

This will be illustrated for $\alpha=.05 ;(n-1)=30$; and $\mathrm{s}^{2}=5$. Since $\alpha=.05 ; 1-\frac{\alpha}{2}=0.975$; the associated $\chi^{2}{ }_{.975}=16.8$ and the $\chi^{2}{ }_{0.025}=$ 47.25. Thus, the probability statement for the variance in this case is

$$
\mathbf{P}\left(3.19 \leqq \sigma^{2} \leqq 16.8\right)=.95
$$

7.0 LINEAR REGRESSION AND CORRELATION

7.1 Basic Concepts

It is often desired to investigate relationships between variables, i.e., rate of change of biomass and concentration of some nutrient; mortality per unit of time and concentration of some toxic substance; chlorophyll and biomass; or growth rate and temperature. As biologists, we appreciate the incredible complexity of the realworld relationships between such variables, but, simultaneously, we may wish to investigate the desirability of approximating these relationships with a straight line. Such an approximation may prove invaluable if used judiciously within the limits of the conditions where the relation holds. It is important to recognize that no matter how well the straight line describes the data, a causal relationship between the variables is never implied. Causality is much more difficult to establish than mere description by a statistical relation.

When studying the relationship between two variables, the data may be taken in one of two ways. One way is to measure two variables, e.g., measure dry weight biomass and an associated chlorophyll measurement. Where two variables

BIOLOGICAL METHODS

are measured, the data are termed bivariate. The other way is to choose the level of one variable and measure the associated magnitude of the other variable.

Straight line equations may be obtained for each of these situations by the technique of linear regression analysis, and if the object is to predict one variable from the other, it is desirable to obtain such a relation. When the degree of (linear) association is to be examined, no straight line need be derived - only a measure of the strength of the relationship. This measure is the correlation coefficient, and the analysis is termed correlation analysis.

Thus, linear regression analysis and linear correlation analysis are two ways in which linear relationships between two variables may be examined.

7.2 Basic Computations

7.2.1 Regression equation

The regression equation is the equation for a straight line,

$$
Y=a+b x
$$

A graphic representation of this function is a straight line plotted on a two-axis graph. The line intercepts the y-axis a distance, a, away from the origin and has a slope whose value is b. Both a and b can be negative, zero, or positive. Figure 6 illustrates various possible graphs of a regression equation.

The regression equation is obtained by "leastsquares," a technique ensuring that a "best" line will be objectively obtained. The application of least-squares to the simple case of a straight line relation between two variables is extremely simple.

In Table 12 is a set of data that are used to illustrate the use of regression analysis. Figure 7 is a plot of these data along with fitted line and confidence bands.

In fitting the regression equation, it is convenient to compute at least the following quantities:
(1) $\mathrm{n}=$ the number of pairs of observation of X and Y,
(2) $\Sigma X=$ the total for X,
(3) $\Sigma Y=$ the total for Y,

TABLE 12. PERCENT SURVIVAL TO FRY STAGE OF EGGS OF GOGGLE-EYED WYKE VERSUS CONCENTRATION OF SUPERCHLOROKILL IN PARENTS' AQUARIUM WATER

Percent survival (Y)	Concentration, $\mathrm{ppb}(\mathrm{X})$
74.	1.
82.	1.
68.	1.
65.	2.
60.	2.
72.	2.
64.	3.
60.	3.
57.	4.
51.	4.
50.	4.
55.	6.
24.	6.
28.	6.
36.	10.
0.	10.
10.	
4.	

(4) $\Sigma X^{2}=$ the total of the squared X 's,
(5) $\Sigma \mathrm{Y}^{2}=$ the total of the squared Y 's,
(6) $\Sigma \mathrm{XY}=$ the total of the products of the X, Y pairs,
(7) $(\Sigma X)^{2}=$ the square of quantity (2),
(8) $(\Sigma Y)^{2}=$ the square of quantity (3),
(9) $(\Sigma X)(\Sigma Y)=$ the product of quantities (2) and (3),
(10) $\mathrm{CT}_{x}=$ quantity (7) divided by quantity (1), (11) CT_{y} = quantity (8) divided by quantity (1), (12) $\mathrm{CT}_{\mathrm{xy}}=$ quantity (9) divided by quantity (1).

With the calculation of these quantities, most of the work associated with using linear regression is complete. Often calculating machine characteristics may be so utilized that when one quantity is calculated the calculation of another is partly accomplished. Modern calculators and computers greatly simplify this task.

In Table 13 are the computed values of quantities (1) through (12) for the data of Table 12.

The estimated value for the slope of the line, b , is computed using

$$
\begin{equation*}
\mathrm{b}=\frac{\Sigma \mathrm{XY}-\mathrm{CI}}{\Sigma \mathrm{X}^{2}-\mathrm{CT} \mathrm{x}}=\frac{(6)-(12)}{(4)-(10)} \tag{37}
\end{equation*}
$$

For the example, this is

$$
\begin{aligned}
b & =\frac{2453-3726.67}{498-338} \\
& =-8
\end{aligned}
$$

rounded to the nearest whole number.
Computation of the estimated intercept, a, is as follows:

$$
\begin{align*}
a & =\bar{y}-b \bar{x} \tag{38}\\
& =\frac{\Sigma Y}{n}-b \frac{\Sigma X}{n} \\
& =\frac{(3)}{(1)}-b \frac{(2)}{(1)}
\end{align*}
$$

which for the example

$$
\begin{aligned}
& =\frac{860}{18}-(-8) \frac{78}{18} \\
& =82
\end{aligned}
$$

rounded to the nearest whole number.
Thus, the regression equation for this data is

$$
\hat{\mathrm{Y}}=82-8 \mathrm{X}
$$

where $\hat{Y}=$ the percent survival, and $X=$ concentration of pesticide.

Figure 7 shows the regression line, plotted along with the data points. Note that this line appears to be a good fit but that an eye fit might have been slightly different and still appear to be a "good fit." This indicates that some uncertainty is associated with the line. If a value for y is obtained with the use of the regression equation with a given x, another experiment, however well controlled, could easily produce a different value. The predicted values for y are

TABLE 13. COMPUTED VALUES OF QUANTITIES (1) THROUGH (12) FOR THE DATA OF TABLE 12

Quantity	
(1)	Value
(2) $\sum \mathrm{X}$	18
(3) $\sum \mathrm{Y}$	78
(4) $\sum \mathrm{X}^{2}$	860
(5) $\sum \mathrm{Y}^{2}$	498
(6) $\sum \mathrm{XY}$	51,676
(7) $\left(\sum \mathrm{X}\right)^{2}$	2,453
(8) $\left(\sum \mathrm{Y}^{2}\right.$	6,084
(9) $\left(\sum \mathrm{X}\right)(\Sigma \mathrm{Y})$	739,600
(10) CT_{X}	67,080
(11) CT_{y}	338
(12) $\mathrm{CT}_{\mathrm{xy}}$	$41,088.89$

subject to some uncertainty, and a statement of that uncertainty should invariably accompany the use of the predicted y .

7.2.2 Confidence intervals

The proper statement of the uncertainty is an interval estimate, the same type as those previously discussed for means and variances. The probability statement for a predicted y depends upon the type of prediction being made. The regression equation is perhaps most often used to predict the mean y to be expected when x is some value, but it may also be used to predict the value of a particular observation of y when x is some value. These two types of predictions differ only in the width of the confidence intervals. A confidence interval for a predicted observation will be the wider of the two types because of uncertainty associated with variations among observations of y for a given x.

To compute the confidence intervals, first compute a variance estimate. This is the variance due to deviations of the observed values from the regression line. This computation is:

$$
\begin{equation*}
s_{y \cdot x}^{2}=\frac{\Sigma Y^{2}-C T_{y}-\frac{\left(\Sigma X Y-C T_{x y} .\right)^{2}}{\left(\Sigma X^{2}-C T_{x}\right)}}{n^{-2}} \tag{39}
\end{equation*}
$$

For this example:

$$
\mathrm{sy}_{\mathrm{y} \cdot \mathrm{x}}^{2}=\frac{51,676-41,089-\frac{(2,453-3,727)^{2}}{(498-338)^{2}}}{18-2}=28
$$

This statistic is useful in other computations as will become apparent.

For the confidence interval, the square root of the above statistic, or the standard error of deviations from regression is required, i.e.,

$$
\begin{equation*}
s_{y \cdot x}=\sqrt{s_{y}^{2} \cdot x}=5 \tag{40}
\end{equation*}
$$

The confidence limits are computed as follows for a predicted mean:

$$
\begin{equation*}
\mathrm{CL}\left(\frac{\Lambda}{\bar{Y}}\right)=\mathrm{a}+\mathrm{bX} \mathrm{X}_{\mathrm{p}} \pm\left(\mathrm{t}_{\alpha}\right)\left(s_{y . x}\right) \sqrt{\frac{1}{\mathrm{n}}+\frac{\left(\mathrm{X}_{\mathrm{p}}-\overline{\mathrm{X}}\right)^{2}}{\left(\Sigma \mathrm{X}^{2}-\mathrm{CT}_{\mathrm{x}}\right)}} \tag{41}
\end{equation*}
$$

where t_{α} is chosen from a table of t values using $\mathrm{n}-2$ degrees of freedom and probability level α; $\stackrel{\Lambda}{\mathrm{Y}}=$ the computed Y for which the confidence interval is sought, a mean $\frac{\Lambda}{Y}$ predicted to be

Figure 6. Examples of straight-line graphs illustrating regression equations.

Figure 7. Regression analysis of data in Table 12.
observed on the average when the X value is X_{p}; $X_{p}=$ the particular X value used to compute \bar{Y}; $\bar{X}=$ the mean of the X's used in these computations; $\frac{\Sigma X}{n}=\frac{(2)}{(1)} ; \Sigma X^{2}=$ relation (4) in the computations; and $\mathrm{CT}_{\mathrm{x}}=$ relation (10) in the computations. Note that in using Equation (41) where the signs (\pm) are shown, the minus $(-)$ sign is used when computing the lower confidence limit and the plus (+) for the upper.

If a confidence interval for a particular Y (given a particular X, i.e., \hat{Y}) is desired, the confidence limits are computed using

$$
\begin{equation*}
C L(\hat{Y})=a+b X_{p} \pm\left(t_{\alpha}\right)\left(s_{y}, x\right) \sqrt{\left.1+\frac{1}{n}+\frac{\left(X_{p}-\tilde{X}\right)^{2}}{\left(\Sigma X^{2}-C T_{x}\right.}\right)} \tag{42}
\end{equation*}
$$

Note that Equation (42) differs from Equation (41) only by the addition of 1 under the radical. All the symbols are the same as for Equation (41). Again these confidence intervals will be wider than those for $\hat{\bar{Y}}$.

If a graphical representation of the confidence interval for $\hat{\bar{Y}}$ or \hat{Y} over a range of X is desired, merely compute the confidence interval for several (usually about 5) values of X, plot them on the same graph as the regression line, and draw a smooth curve through them. The intervals at the extremes of the data will be wider than the intervals near the mean values. This is because the uncertainty in the estimated slope is greater for the extreme values than for the central ones.

With such a plot, the predicted value of Y and its associated confidence interval for a given X can be read (see Figure 7, vertical line corresponding to $X=3$ and notation).

7.2.3 Calibration curve

Often with data such as that given in Table 12 , a calibration curve is needed from which to predict X when Y is given. That is, the linear relation is established from the data where values of X (say pesticide) are fixed and then Y (survival of eggs) is observed, where this relation predicts Y given X; then unknown concentrations of the pesticide are used, egg survival measured, and the relation is worked backwards
to obtain pesticide concentration from egg survival. This may be done graphically from a plot such as that illustrated in Figure 7. Predicted X's and associated contidence intervals may be read from the plot (see horizontal line corresponding to $y=40$ and notation).

Calibration curves and confidence intervals may also be worked algebraically. Where the problem has fixed X's, as in the example, the equation for X should be obtained algebraically, i.e.,

$$
\begin{equation*}
X=\frac{(Y-a)}{b} \tag{43}
\end{equation*}
$$

$\hat{\wedge}$

for a predicted $X(\bar{X})$ given a mean value \bar{Y}_{m} from a sample of m observations, the confidence limits may be computed as follows:
compute the quantity

$$
\begin{equation*}
A=b^{2}-\frac{t_{\alpha}^{2} s_{y . x}^{2}}{\left(\Sigma \mathrm{X}^{2}-C T_{x}\right)} \tag{44}
\end{equation*}
$$

compute the confidence limits as
$\mathrm{CL}(\hat{\bar{X}})=\overline{\mathrm{X}}+\frac{\mathrm{b}\left(\overline{\mathrm{Y}}_{\mathrm{m}}-\overline{\mathrm{Y}}\right)}{\mathrm{A}} \pm \frac{\mathrm{t}_{\alpha} \mathrm{s}_{\mathrm{y}} \cdot \mathrm{x}}{\mathrm{A}} \sqrt{\left.\mathrm{A}\left(\frac{1}{\mathrm{~m}}+\frac{1}{\mathrm{n}}\right)+\frac{\left(\overline{\mathrm{Y}}_{\mathrm{m}}-\overline{\mathrm{Y}}\right)^{2}}{\left(\Sigma \mathrm{XX}^{2}-\mathrm{CT}\right.} \mathrm{X}_{\mathrm{X}}\right)}$
where $\bar{Y}_{m}=$ the average of m newly observed Y values; $\overline{\mathrm{X}}, \mathrm{b}, \overline{\mathrm{Y}}, \mathrm{s}_{\mathrm{y} . \mathrm{x}}, \Sigma \mathrm{X}^{2}, \mathrm{CT}_{\mathrm{x}}$, and $\mathrm{n}=$ values obtained from the original set of data and whose meanings are unchanged. Note that may equal one, and \bar{Y}_{m} would therefore be a single observation.

7.3 Tests of Hypotheses

If it is not clear that a relationship exists between Y and X, a test should be made to determine whether the slope differs from zero. The test is a t-test with $n-2$ degrees of freedom. The t value is computed as

$$
\begin{equation*}
\mathrm{t}=\frac{\mathrm{b}-\beta_{\mathrm{o}}}{\mathrm{~s}_{\mathrm{b}}} \tag{45}
\end{equation*}
$$

where

$$
s_{\mathrm{b}}=\frac{s \mathrm{~s} \cdot \mathrm{x}}{\sqrt{\Sigma \mathrm{X}^{2}-\mathrm{CT}_{\mathrm{x}}}}
$$

Since the null hypothesis is

$$
\mathrm{H}_{\mathrm{o}}: \beta_{\mathrm{O}}=0
$$

set $\beta_{o}=0$ in the t-test and it becomes

$$
\mathrm{t}=\frac{\mathrm{b}}{\mathrm{~s}_{\mathrm{b}}}
$$

If the computed t exceeds the tabular t, then the null hypothesis is rejected and the estimated slope, b, is tentatively accepted. Other values of β_{0} may be tested in the null hypothesis and in the t -test statistic.

With data such as those in Table 12, another hypothesis may be tested - that of lack of fit of the model to the data, or bias. This idea must be distinguished from random deviations from the straight line. Lack of fit implies a nonlinear trend as the true model, whereas random deviations from the model imply that the model adequately represents the trend. If more than one Y observation is available for each X (3 in the example Table 12), random fluctuations can be separated from deviations from the model, i.e., a random error may be computed at each point so that deviations from regression may be partitioned into random error and lack of fit.

The test is in the form of an analysis of variance and is illustrated in brief form symbolically in Table 14. Here, the F ratio MSL/MSE tests linearity, i.e., whether a linear model is sufficient; the ratio MSR/MSD tests whether the slope is significantly different from zero.

TABLE 14. ILLUSTRATION OF ANALYSIS OF VARIANCE TESTING LINEARITY OF REGRESSION AND SIGNIFICANCE OF REGRESSION

Source	df	MS	F
Total	$\mathrm{n}-1$		
Regression	1	MSR	MSR/MSD
Devations from regression	$\mathrm{n}-2$	MSD	
Lack of fit	$\mathrm{m}-2$	MSL	MSL/MSE
Error	$\mathrm{n}-\mathrm{m}$	MSE	

To use this analys:s, one set of computations must be made i_{1} addition to those of Table 13. The computation is the same as that for treatment sums of squares in the analysis of variance previously discussed; in this case, levels of X are comparable to treatments. First compute the sum of the Y's, T_{i}, for each level of X. For $\mathrm{X}=1, \mathrm{~T}_{1}=224$, etc. Then compute:

$$
\Sigma \frac{\mathrm{T}^{2}}{\mathrm{~K}_{\mathrm{i}}}
$$

where $\mathrm{k}_{\mathrm{i}}=$ the number of observations for the
level of X ; in this case always 3. For the example,

$$
\Sigma \frac{\mathrm{T}_{\mathrm{i}}^{2}}{\mathrm{k}_{\mathrm{i}}}=51341
$$

With this, the analysis of variance table (Table 15) may be constructed. In the first part of Table 15, the sums of squares and degrees of freedom are given symbolically to relate to the computations of Table 13 and to the above computations. The mean squares (MS) are always obtained by dividing SS by df .

When the data for Table 12 are analyzed (second part of Table 15), there is a very unusual coincidence in the values of MS for deviations from regression, lack of fit, and error. Note that this is coincidence and they must always be computed separately.

As already known from the graph, t-test, etc., the regression is highly significant. A negative result from the test for nonlinearity (lack of fit) was also suspected from the visually-satisfactory fit of Figure 7. Therefore, for this range of data, we can conclude that a linear (straight line) rela-
TABLE 15. ANALYSIS OF VARIANCE OF THE DATA OF TABLE 12 ; TESTS FOR LINEARITY AND SIGNIFICANCE OF REGRESSION*

Source	df	
Total	$\mathrm{n}-1$	$\sum \mathrm{Y}^{2}-\mathrm{CT}_{\mathbf{y}}$
Regression	1	$\frac{\left(\Sigma \mathrm{XY}-\mathrm{CT}_{\mathrm{xy}}\right)^{2}}{\left(\Sigma \mathrm{X}^{2}-\mathrm{CT}_{\mathrm{x}}\right)}$
Deviations from regression	$\mathrm{n}-2$	Total SS - Regression SS
Lack of fit	$\mathrm{m}-2$	Deviation SS - Error SS
Error	$\mathrm{n}-\mathrm{m}$	$\Sigma \mathrm{Y}^{2}-\frac{\Sigma \mathrm{T}_{\mathrm{i}}{ }^{2}}{\mathrm{ki}_{\mathrm{i}}}$

*Symbols refer to quantities of Table 13 or to symbols defined in the text immediately preceding this table.

For the data of Table 12:

Source	df	SS	MS	Γ
Total	17	10,587		
Regression	1	10,139	10,139	$362^{* *}$
Deviations from				
\quad regression	16	448	28	
Lack of fit	4	113	28	1 n.s.
Error	12	335	28	

[^2]tionship exists, with estimated slope and intercept as computed.

7.4 Regression for Bivariate Data

As mentioned, where two associated measurements are taken without restrictions on either, the data are called bivariate. Linear regression is sometimes used to predict one of the variables by using a value from the other. Because no attempt is usually made to test bivariate data for lack of fit, a test for deviation from regression is as far as an analysis of variance table is taken. Linearity is assumed. Large deviations from linearity will appear in deviations from regression and cause the F values that are used to test for the significance of regression to appear to be nonsignificant.

Computations for the bivariate case exactly follow those for the univariate case [quantities (1) to (12) and as illustrated for the univariate case, Table 13]. The major operating difference is that, for bivariate data, the dependent variable is chosen as the variable to be predicted, whereas for univariate data, the dependent variable is fixed in advance. For example, if the bivariate data are pairs of observations on algal biomass and chlorophyll, either could be considered the dependent variable. If biomass is being predicted, then it is dependent. For the univariate case, such as for the data of Table 12, percent survival is the dependent variable by virtue of the nature of the experiment.

In the preceding section, it was seen that X and its confidence interval could be predicted from Y for univariate data (Equations 43, 44, and 45). But note that Equation (43) is merely

TABLE 16. TYPES OF COMPUTATIONS ACCORDING TO VARIABLE PREDICTED AND DATA TYPE*

Predicted variable	Bivariate data	Univariate data (fixed X's)
Y	$y=R_{1}(X)$	$y=R_{1}(X)$
X	$x=R_{2}(Y)$	$X=R_{1}^{-1}(y)$

* R_{1} symbolizes the regression using Y as dependent variable, $\mathbf{R}_{\mathbf{2}}$ a regression computed using X as dependent variable, $\mathrm{R}_{1}{ }^{-1}$ is a algebraic rearrangement solving for X when the regression was R_{1}.
an algebraic rearrangement of the regression of 'Y on X. For the bivariate case, this approach is not appropriate. If a regression of Y on X is fitted for bivariate data, and subsequently a prediction of X rather than Y is desired, a new regression must be computed. This is a simple task, and all the basic quantities are contained in a set of computations similar to computations in Table 13. A summary of the types of computations for univariate and bivariate data is given in Table 16.

Since the computations for the bivariate regression of Y on X are the same as those for the univariate case, they will not be repeated. Where X is to be predicted, all computations proceed simply by interchanging X and Y in the notation. The computations for b and a are:
for the slope:

$$
\begin{align*}
b_{x . y} & =\frac{\Sigma X Y-C T_{x y}}{\Sigma Y^{2}-C T_{y}} \tag{46}\\
& =\frac{(6)-(12)}{(5)-(11)}
\end{align*}
$$

for the intercept:

$$
\begin{align*}
a_{X . y} & =\frac{(\Sigma X)}{n}-b_{X \cdot y} \frac{(\Sigma Y)}{n} \tag{47}\\
& =\frac{(2)}{(1)}-b_{x . y} \frac{(3)}{(1)}
\end{align*}
$$

7.5 Linear Correlation

If a linear relationship is known to exist or can be assumed, the degree of association of two variables can be examined by linear correlation analysis. The data must be bivariate.

The correlation coefficient, r, is computed by the following:

$$
\begin{equation*}
x=\frac{\Sigma X Y-C T_{x y}}{\sqrt{\left(\Sigma X^{2}-C T_{x}\right)\left(\Sigma Y^{2}-C T_{y}\right)}} \tag{48}
\end{equation*}
$$

A perfect correlation (all points falling on a straight line with a nonzero slope) is indicated by a correlation coefficient of, $r=1$, or $r=-1$. The negative value implies a decrease in one of the variables with an increase in the other. Correlation coefficients of $r=0$ implies no linear relationship between the variables. Any real data will result in correlation coefficients between the extremes.

If a correlation coefficient is computed and is of low magnitude, test it to determine whether it is significantly different from zero. The test, a t-test, is computed as follows:

$$
t=\frac{r}{\sqrt{\frac{\left(1-r^{2}\right)}{(n-2)}}}
$$

The computed t is compared with the tabular t with $\mathrm{n}-2$ degrees of freedom and chosen probability level. If the computed t exceeds the tabular t, the null hypothesis that the true correlation coefficient equals zero is rejected, and the computed r may be used.

8.0 BIBLIOGRAPHY

Cochran, W. G. 1959. Sampling techniques. John Wiley and Sons, New York. 330 pp.
Li, J. C. R. 1957. Introduction to statistical inference. Edward Brothers, Inc., Ann Arbor. 553 pp.
Natrella, M. G. 1963. Experimental statistics. National Bureau of Standards Handbook No. 91, U.S. Govt. Printing Office.
Snedecor, G. W., and W. G. Cochran. 1967. Statistical methods, 6 th edition. Iowa State Univ. Press, Ames.
Southwood, R. T. E. 1966. Ecological methods with particular reference to the study of insect populations. Chapman and Hall, Ltd., London. 391 pp.
Steele, R. G. D., and J. H. Torrie. 1960. Principles and procedures of statistics with special reference to the biological sciences. McGraw Hill, New York. 481 pp.
Stuart, A. 1962. Basic ideas of scientific sampling. Hafner, New York. 99 pp.

PLANKTON

PLANKTON

Page
1.0 INTRODUCTION 1
2.0 SAMPLE COLLECTION AND PRESERVATION 1
2.1 General Considerations 1
2.1.1 Influential factors 1
2.1.2 Sampling frequency 2
2.1.3 Sampling locations 2
2.1.4 Sampling depth 2
2.1.5 Field notes 3
2.1.6 Sample labelling 3
2.2 Phytoplankton 3
2.2.1 Sampling equipment 3
2.2.2 Sample volume 4
2.2.3 Sample preservation 4
2.3 Zooplankton 4
2.3.1 Sampling equipment 4
2.3.2 Sample volume 5
2.3.3 Sample preservation 5
3.0 SAMPLE PREPARATION 5
3.1 Phytoplankton 5
3.1.1 Sedimentation 6
3.1.2 Centrifugation 6
3.1.3 Filtration 6
3.2 Zooplankton 6
4.0 SAMPLE ANALYSIS 6
4.1 Phytoplankton 6
4.1.1 Qualitative analysis of phytoplankton 6
4.1.2 Quantitative analysis of phytoplankton 8
4.2 Zooplankton 12
4.2.1 Qualitative analysis of zooplankton 12
4.2.2 Quantitative analysis of zooplankton 12
5.0 BIOMASS DETERMINATION 13
5.1 Dry and Ash-Free Weight 13
5.1.1 Dry weight 14
5.1.2 Ash-free weight 14
5.2 Chlorophyll 14
5.2.1 In vitro measurements 14
5.2.2 In vivo measurement 15
5.2.3 Pheophytin correction 15
5.3 Cell Volume 16
5.3.1 Microscopic (algae and bacteria) 16
5.3.2 Displacement (zooplankton) 16
5.4 Cell Surface Area of Phytoplankton 16
6.0 PHYTOPLANKTON PRODUCTIVITY 16
6.1 Oxygen Method 16
6.2 Carbon-14 Method 17
7.0 REFERENCES 17

PLANKTON

1.0 INTRODUCTION

Plankton are defined here as organisms suspended in a body of water and because of their physical characteristics or size, are incapable of sustained mobility in directions counter to the water currents. Most of the plankton are microscopic and of essentially neutral buoyancy. All of them drift with the currents.

Plankton consists of both plants (phytoplankton) and animals (zooplankton), and complex interrelationships exist among the various components of these groups. Chlorophyll-bearing plants such as algae usually constitute the greatest portion of the biomass of the plankton. Phytoplankton use the energy of sunlight to metabolize inorganic nutrients and convert them to complex organic materials. Zooplankton and other herbivores graze upon the phytoplankton and, in turn, are preyed upon by other organisms, thus passing the stored energy along to larger and usually more complex organisms. In this manner nutrients become available to large organisms such as macroinvertebrates and fish.

Organic materials excreted by plankton, and products of plankton decomposition, provide nutrients for heterotrophic microorganisms (many of which are also members of the plankton assemblage). The heterotrophs break down organic matter and release inorganic nutrients which become available again for use by the "primary producers." In waters severely polluted by organic matter, such as sewage, heterotrophs may be extremely abundant, sometimes having a mass exceeding that of the algae. As a result of heterotrophic metabolism, high concentrations of inorganic nutrients become available and massive algal blooms may develop.

Plankton may form the base of the food pyramid and drift with the pollutants; therefore, data concerning them may be particularly significant to the pollution biologist. Plankton blooms often cause extreme fluctuations of the dissolved oxygen content of the water, may be one of the causes of tastes and odors in the water and, if present in large numbers, are aesthetically objectionable. In some cases, plankton may be of limited value as indicator organisms because
the plankton move with the water currents; thus, the origin of the plankton may be obscure and the duration of exposure to pollutants may be unknown.

The quantity of phytoplankton occurring at a particular station depends upon many factors including sampling depth, time of day, season of year, nutrient content of water, and the presence of toxic materials.

2.0 SAMPLE COLLECTION AND PRESERVATION

2.1 General Considerations

Before plankton samples are collected, a study design must be formulated. The objectives must be clearly defined, and the scope of the study must remain within the limitations of available manpower, time, and money. Historical, biological, chemical, and physical (especially hydrological) data should be examined when planning a study. Examination of biological and chemical data often reveals areas that warrant intensive sampling an.i other areas where periodic or seasonal sampling will suffice.

Physical data are extremely useful in the design of plankton studies; of particular importance are data concerning volume of flow, currents, prevailing wind direction, temperature, turbidity (light penetration), depths of reservoir penstock releases, and estuarine salinity "wedges."

After historical data have been examined, the study site should be visited for reconnaissance and preliminary sampling. Based on the results of this reconnaissance and on the preliminary plankton data, the survey plan can be modified to better fulfill study objectives and to facilitate efficient sampling.

2.1.1 Influential factors

In planning and conducting a plankton survey, a number of factors influence decisions and often alter collection routines. Since water currents determine the directions of plankton movements, knowing the directions, intensity, and complexity of currents in the sampling area is important. Some factors that influence cur-
rents are winds, flow, solar heating, and tides.
Sunlight influences both the movements of plankton and primary production. Daily vertical plankton migrations are common in many waters. Cloud cover, turbidity, and shading (e.g., from ice cover and dense growths of vegetation) influence the amount of light available to plankton.

Chemical factors, such as salinity, nutrients, and toxic agents, can profoundly affect plankton production and survival.

The nutrients most frequently mentioned in the literature as stimulators of algal growth are nitrogen and phosphorus; however, a paucity of any vital nutrient can limit algal production. The third category of chemical factors, toxic agents, is almost limitless in its components and combinations of effects. Toxic compounds may be synergistic or antagonistic to one another and may either kill planktonic organisms or alter their life cycles. Many chemicals discharged in industrial effluents are toxic to plankton.

2.1.2 Sampling frequency

The objectives of the study and time and manpower limitations dictate the frequency at which plankton samples are taken. If it is necessary to know the year-round plankton population in a body of water, it is necessary to sample weekly through spring and summer and monthly through fall and winter. However, more frequent sampling is often necessary. Because numerous plankton samples are usually needed to characterize the plankton, take daily samples whenever possible. Ideally, collections include one or two subsurface samples per day at each river sampling station and additional samples at various depths in lakes, estuaries, and oceans.

2.1.3 Sampling locations

In long-term programs, such as ambient trend monitoring, sampling should be sufficiently frequent and widespread to define the nature and quantity of all plankton in the body of water being studied. In short-term studies designed to show the effects of specific pollution sources on the plankton, sampling station locations and sampling depths may be more restricted because
of limitations in time and manpower.
The physical nature of the water greatly influences the selection of sampling sites. On small streams, a great deal of planning is not usually required; here, locate the stations upstream from a suspected pollution source and as far downstream as pollutional effects are expected. Take great care, however, in interpreting plankton data from small streams, where much of the "plankton" may be derived from the scouring of periphyton from the stream bed. These attached organisms may have been exposed to pollution at fixed points for unknown time periods. On rivers, locate sampling stations, both upstream and downstream from pollution sources and, because lateral mixing often does not occur for great distances downstream, sample on both sides of the river. In both rivers and streams, care should be taken to account for confusing interferences such as contributions of plankton from lakes, reservoirs, and backwater areas. Plankton sampling stations in lakes, reservoirs, estuaries, and the oceans are generally located in grid networks or along longitudinal transects.
The location, magnitude, and temperature of pollutional discharges affect their dispersal, dilution, and effects on the plankton. Pollutants discharged from various sources may be antagonistic, synergistic, or additive in their effects on plankton. If possible, locate sampling stations in such a manner as to separate these effects.
In choosing sampling station locations, include areas from which plankton have been collected in the past. Contemporary plankton data can then be compared with historical data, thus documenting long-term pollutional effects.

2.1.4 Sampling depth

The waters of streams and rivers are generally well mixed, and subsurface sampling is sufficient. Sample in the main channel and avoid backwater areas. In lakes and reservoirs where plankton composition and density may vary with depth, take samples from several depths. The depth at the station and the depth of the thermocline (or sometimes the euphotic zone) generally determines sampling depths. In shallow areas (2 to 3 meters, 5 to 10 feet), subsurface
sampling is usually sufficient. In deeper areas, take samples at regular intervals with depth. If only phytoplankton are to be examined, samples may be taken at three depths, evenly spaced from the surface to the thermocline. When collecting zooplankton, however, sample at 1meter intervals from the surface to the lake bottom.

Because many factors influence the nature and distribution of plankton in estuaries, intensive sampling is necessary. Here, marine and freshwater plankton may be found along with brackish-water organisms that are neither strictly marine nor strictly freshwater inhabitants. In addition to the influences of the thermocline and light penetration on plankton depth distribution, the layering of waters of different salinities may inhibit the complete mixing of freshwater plankton with marine forms. In estuaries with extreme tides, the dimensions of these layers may change considerably during the course of the tidal cycle. However, the natural buoyancy of the plankton generally facilitates the mixing of forms. Estuarine plankton should be sampled at regular intervals from the surface to the bottom three or four times during one or more tidal cycles.

In deep marine waters or lakes, collect plankton samples at 3- to 6-meter intervals throughout the euphotic zone (it is neither practical nor profitable to sample the entire water column in very deep waters). The limits of sampling depth in these waters may be an arbitrary depth below the thermocline or the euphotic zone, or both. Perform tow or net sampling at 90° to the wind direction.

2.1.5 Field notes

Keep a record book containing all information written on the sample label, plus pertinent additional notes. These additional notes may include, but need not be restricted to:

- Weather information - especially direction and intensity of wind
- Cloud cover
- Water surface condition - smooth? Is plankton clumping at surface?
- Water color and turbidity
- Total depth at station
- A list of all types of samples taken at station.
- General descriptive information (e.g., direction, distance, and description of effluents in the vicinity). Sampling stations should be plotted on a map.

2.1.6 Sample labelling

Both labels and marker should be water proof (a soft-lead pencil is recommended). Insert the labels into sample containers immediately as plankton samples are collected. Record the following information on all labels:

- Location
name of river, lake, etc.
distance and direction to nearest city state and county
river mile, latitude, and longitude, or other description
- Date and time
- Depth
- Type of sample (e.g., grab, vertical plankton net haul, etc.)
- Sample volume, tow length
- Preservatives used and concentration
- Name of collector

2.2 Phytoplankton

2.2.1 Sampling equipment

The type of samping equipment used is highly dependent upon where and how the sample is being taken (i.e., from a small lake, large deep lake, small stream, large stream, from the shore, from a bridge, from a small boat, or from a large boat) and how it is to be used.

The cylindrical type of sampler with stoppers that leave the ends open to allow free passage of water through the cylinder while it's being lowered is recommended. A messenger is released at the desired depth to close the stoppers in the ends. The Kemmerer, Juday, and Van Dorn samplers have such a design and can be obtained in a variety of sizes and materials. Use only nonmetallic samplers when metal analysis, algal assays, or primary productivity measurements are being performed. In shallow waters and when surface samples are desired, the
sampler can be held in a horizontal position and operated manually. For sampling in deep waters, the Nansen reversing water bottle is often used and a boat equipped with a winch is desirable. Take caution when sampling from bridges with a Kemmerer type water bottle; if the messenger is dropped from the height of a bridge, it can batter and destroy the triggering device. To avoid this, support a messenger a few feet above the sampler by an attached string and drop it when the sampler is in place.

Net collection of phytoplankton is not recommended for quantitative work. Nannoplankton and even larger algae, such as some pennate diatoms, are thin enough to pass through the meshes of the net if oriented properly. Using a pump also presents problems: when the water is stratified, the tubing must be flushed between samplings and delicate algae may be harmed.

2.2.2 Sample volume

No fixed rule can be followed concerning the volume of sample to be taken - sampling personnel must use their own judgment. The volume of the sample needed depends on the numbers and kinds of analyses to be carried out, e.g., cell counts, chlorophyll, dry weight. When phytoplankton densities are less than 500 per ml , approximately 6 liters of sample are required for Sedgwick-Rafter and diatom species proportional counts. In most cases, a 1 - to 2 -liter sample will suffice for more productive waters.

2.2.3 Sample preservation

Biologists use a variety of preservatives, and each has advantages. If samples are to be stored for more than 1 year, the preferred preservative is formalin (40 percent formaldehyde $=100$ percent formalin), which has been neutralized with sodium tetraborate (pH 7.0 to 7.3). Five milliliters of the neutralized formalin are added for each 100 ml of sample. This preservative will cause many flagellated forms to lose flagella. Adding saturated cupric sulfate solution to the preserved samples maintains the green color of phytoplankton samples and aids in distinguishing phytoplankton from detritus. One milliliter of the saturated solution per liter of sample is adequate. Adding detergent solution prevents
clumping of settled organisms. One part of surgical detergent to five parts of water makes a convenient stock solution. Add 5 ml of stock solution per liter of sample. Do not use detergent when diatom slides are to be made.

Merthiolate is less desirable as a preservative, but offers the advantage of staining cell parts and simplifying identification. It also causes some of the algae, such as blue-greens, to lose gas from their vacuoles and, therefore, enhances settling. Samples preserved with merthiolate are not sterile, and should not be stored for more than 1 year. After that time formalin should be used. Merthiolate solution is prepared by dissolving the following in 1 liter of distilled water.

- 1.0 gram of merthiolate (sodium ethylmercury thiosalicylate).
- 1.0 ml of aqueous saturated iodinepotassium iodide solution prepared by dissolving 40 grams of iodine and 60 grams of potassium iodide in 1 liter of distilled water.
- 1.5 gram of Borax (sodium borate)

Dissolve each of the components separately in approximately 300 ml of distilled water, combine, and make up to 1 liter with distilled water. Add the resulting stock solution to samples to give a final concentration (V / V) of $36 \mathrm{mg} /$ liter (i.e., 37.3 ml added to 1 liter of sample).

2.3 Zooplankton

2.3.1 Sampling equipment

Zooplankton analyses require larger samples than those needed for phytoplankton analyses. Collect quantitative samples with a messengeroperated water bottle, plankton trap, or metered plankton net. Obtain semi-quantitative samples by filtering surface water samples through nylon netting or by towing an unmetered plankton net through the water. In moderately and highly productive waters, a 6 -liter water sample is usually sufficient. In oligotrophic, estuarine, and coastal waters, remove zooplankters from several hundred liters of the waters being sampled with the use of towed nets. Take duplicate samples if chemical analyses are desired.

Several sampling methods can be used.

Towing

An outboard motor boat fitted with a small davit, meter wheel, wire-angle indicator, and hand-operated winch is desirable. A 3 - to $5-\mathrm{kg}$ weight attached to the line is used to sink the net. Maintain speed to ensure a wire angle near 60° for easy calculation of the actual sampling depth of the net. The actual sampling depth equals the amount of wire extended times the cosine of the wire angle.

Oblique tow-Make an 8 -minute tow at four levels in the water column (2 minutes at each level: just above the bottom, $1 / 3$ total depth, $2 / 3$ total depth, and just below the surface) to estimate zooplankton abundance.

Horizontal tow--Take samples for estimating zooplankton distribution and abundance within a particular layer of water with a messengeroperated net equipped with a flow-through measuring vane (such as the Clarke-Bumpus sampler). Each tow lasts from 5 to 8 minutes.

Vertical two--Lower a weighted net to the desired depth, record the amount of line extended, and retrieve at a rate of 0.5 to 1.0 meters per second. The volume of water strained can be estimated. Duplicate vertical tows are suggested at each station.
To sample most sizes of zooplankters, two nets of different mesh size can be attached a short distance apart on the same line.

> Net casting

Zooplankton can also be sampled from shore by casting a weighted net as far as possible, allowing the net to reach depth, and hauling to shore at the rate of 0.5 to 1.0 meters per second. Take several samples to obtain a qualitative estimate of relative abundance and species present.

Suggested net sizes are: No. 6 (0.239 mm aperture) for adult copepods in estuarine and coastal waters; No. $10(0.158 \mathrm{~mm})$ for copepodites in saline water or microcrustacea in fresh water; and No. $20(0.076 \mathrm{~mm})$ for rotifers and nauplii. The No. 20 net clogs easily with phytoplankton because of its small aperture size.

Rinse messenger-operated samplers with clean
water, allow to dry, and lubricate all moving parts with light machine oil. Clean nylon netting material thoroughly, rinse with clean water, and allow to dry (out of direct sunlight) before storing.

2.3.2 Sample volume

The sample volume varies with the specific purpose of the study. Twenty-liter surface samples obtained by bucket and filtered through a No. 20 net are large enough to obtain an estimate of zooplankton present in flowing streams and ponds. In lakes, large rivers, estuaries and coastal waters, filter $1.5 \mathrm{~m}^{3}$ (horizontal tow) to $5 \mathrm{~m}^{3}$ (oblique tow) of water through nets for adequate representation of species present.

2.3.3 Sample preservation

For identification and enumeration, preserve grab samples in a final concentration of 5 percent neutral (add sodium tetraborate to obtain a pH of 7.0 to 7.3) formalin. Adding either 70 percent ethanol or 5 percent neutral formalin, each with 5 percent glycern (glycerol) added, to preserve the concentrated net samples. Formalin is usually used for preserving samples obtained from coastal waters. In detritus-laden samples, add 0.04 percent Rose Bengal stain to help differentiate zooplankters from plant material.

For chemical analysis (taken, in part, from Recommended Procedures for Measuring the Productivity of Plankton Standing Stock and Related Oceanic Properties, National Academy of Sciences, Washington, D.C. 1960), the concentrated sample is placed in a fine-meshed (bolting silk or nylon) bag, drained of excess water, placed in a plastic bag, and frozen for laboratory processing. If the sample is taken from an estuarine or coastal station, the nylon bag is dipped several times in distilled water to remove the chloride from interstitial seawater which can interfere with carbon analysis.

3.0 SAMPLE PREPARATION

3.1 Phytoplankton

As the phytoplankton density decreases, the amount of concentration must be increased and, accordingly, larger sample volumes are required.

As a rule of thumb, concentrate samples when phytoplankton densities are below 500 per ml ; approximately 6 liters of sample are required at that cell concentration. Generally, 1 liter is an adequate routine sample volume.

The following three methods may be used for concentrating preserved phytoplankton, but sedimentation is preferred.

3.1.1 Sedimentation

Preserved phytoplankton samples can often be settled in the original storage containers. Settling time is directly related to the depth of the sample in the bottle or settling tube. On the average, allow 4 hours per 10 mm of depth. After settling, siphon off the supernatant (Figure 1) or decant through a side drain. The use of a detergent aids in settling. Exercise caution because of the different sedimentation rates of the diverse sizes and shapes of phytoplankton.

3.1.2 Centrifugation

During centrifugation, some of the more fragile forms may be destroyed or flagella may become detached. In using plankton centrifuges, many of the cells may be lost; modern continuous-flow centrifuges avoid this.

3.1.3 Filtration

To concentrate samples by filtration, pass through a membrane filter. A special filter apparatus and a vacuum source are required. Samples containing large amounts of suspended material (other than phytoplankton) are difficult to enumerate by this method, because the suspended matter tends to crush the phytoplankters or obscure them from view. The vacuum should not exceed 0.5 atmospheres. Concentration by filtration is particularly useful for samples low in plankton and silt content.

3.2 Zooplankton

The zooplankton in grab samples are concentrated prior to counting by allowing them to settle for 24 hours in laboratory cylinders of appropriate size or in specially constructed settling tubes (Figure 1).

Figure 1. Plexiglas plankton settling tube with side drain and detachable cup. Not drawn to scale.

Take care to recover organisms (especially the Cladocera) that cling to the surface of the water in the settling tube.

4.0 SAMPLE ANALYSIS

4.1 Phytoplankton

4.1.1 Qualitative analysis of phytoplankton

The optical equipment needed includes a good quality compound binocular microscope with a mechanical stage. For high magnification, a substage condenser is required. The ocular lens should be 8 X to 12 X . Binocular eyepieces are generally preferred over a monocular eyepiece because of reduced fatigue. Four turret-mounted objective lenses should be provided with magnifications of approximately $10,20,45$, and

100X. When combined with the oculars, the following characteristics are approximately correct.

Objective lens	$\begin{gathered} \text { Ocular } \\ \text { lens } \end{gathered}$	Subject magnification	Maximum working distance between objective and cover slip, mm	Depth of focus, μ
10X	10X	100X	7	8
20X	10X	200X	1.3	2
45X	10x	450X	0.5-0.7	1
100X	10X	1000X	0.2	0.4

An initial examination is needed because most phytoplankton samples will contain a diverse assemblage of organisms. Carry out the identification to species whenever possible. Because the size range of the individual organisms may extend over several orders of magnitude, no single magnification is completely satisfactory for identification. For the initial examination, place one or two drops of a concentrate on a glass slide and cover with a No. 1 or No. 1-1/2 cover slip. Use the 10X objective to examine the entire area under the cover slip and record all identifiable organisms. Then examine with the 20 and 45 X objectives. Some very small organisms may require the use of the 100 X objective (oil immersion) for identification. The initial examination helps to obtain an estimate of population density and may indicate the need for subsequent dilution or concentration of the sample, to recognize characteristics of small forms not obvious during the routine counting procedure, and to decide if more than one type of counting procedure must be used.

When identifying phytoplankton, it is useful to examine fresh, unpreserved samples. Preservation may cause some forms to become distorted, lose flagella, or be lost together. These can be determined by a comparison between fresh and preserved samples.

As the sample is examined under the microscope, identify the phytoplankton and tally under the following categories: coccoid bluegreen, filamentous blue-green, coccoid green, filamentous green, green flagellates, other pigmented flagellates, centric diatoms, and pennate diatoms. In tallying diatoms, distinguish be-
tween "live" cells, i.e., those that contain any part of a protoplast, and empty frustules or shells.
The availability of taxonomic bench references and the skill of the biologist will govern the sophistication of identification efforts. No single reference is completely adequate for all phytoplankton. Some general references that should be available are listed below. Those marked with an asterisk are considered essential.
American Public Health Assocsation, 1971. Standard methods for the examination of water and wastewater. 13th edition. Washington, D.C.
Bourrelly, P. 1966-1968. Les algues d'eau douce. 1966. Tome I-III, Boubee \& Cie, Paris.
Fott, B. 1959. Algenkunde. Gustav Fischer, Iena. (2nd revised edition, 1970.)
Prescott, G. W. 1954. How to know the fresh-water algae. W. C. Brown Company, Dubuque. (2nd edition, 1964.)
*Prescott, G. W. 1962. Algae of the Western Great Lakes Area. (2nd edition), W. C. Brown, Dubuque.
*Smith, G. M. 1950. The freshwater algae of the United States. (2nd edition), McGraw-Hill Book Co., New York.
Ward, H. B., and G. C. Whipple. 1965. Fresh-water biology. 2nd edition edited by W. T. Edmonson. John Wiley and Sons, New York.
*Weber, C. I. 1966. A guide to the common diatoms at water pollution surveillance system stations. USDI, FWPCA, Cincinnati.
West, G. S., and F. E. Fritsch. 1927. A treatise on the British freshwater algae. Cambridge Univ. Press. (Reprinted 1967; J. Cramer, Lehre; Wheldon \& Wesley, Ltd.; and Stecherthafner, Inc., New York.)
Specialized references that may be required for exact identification within certain taxonomic groups include:

Brant, K., and C. Apsteın. 1964. Norđisches Plankton. A. Asher \& Co., Amsterdam. (Reprint of the 1908 publication published by Verlag von Lipsius \& Tischer, Kiel and Leipzig.)
Cleve-Euler, A. 1968. Die diatomeen von Schweden und Finnland, I-V. Bibliotheca Phycologica, Band 5, J. Cramer, Lehre, Germany.
Cupp, E. 1943. Marine plankton diatoms of the west coast of North America. Bull. Scripps lnst. Oceanogr., Univ. Calif., 5:1-238.

Curl, H 1959. The phytoplankton of Apalachee Bay and the Northwestern Gulf of Mexico. Univ. Texas Inst. Marine Sci., Vol. 6, 277-320.
*Drouet, F. 1968. Revision of the classification of the Oscillatoriaceae. Acad. Natural Sci., Philadelphia.
*Drouet, F., and W. A. Daily. 1956. Revision of the coccoid Myxophyceae. Butler Univ. Bot. Stud. XII., Indianapolis.
Fott, B. 1969. Studies in phycology. E. Schweizerbart'sche Verlagsbuchhandlung (Nagele u. Obermiller), Stuttgart, Germany.
*Fritsch, F. E. 1956. The structure and reproduction of the algae. Volumes I and II. Cambridge University Press.
Geitler, L. 1932. Cyanophyceae. In: Rabehnorst's Kryptoga-men-Flora, 14:1-1096. Akademische Verlagsgesellschaft m.b.H., Leipzig. (Available from Johnson Reprint Corp., New York.)
Glezer, Z. I. 1966. Cryptogamic plants of the U.S.S.R., volume VII: Siloflagellatophyceae. Moscow. (English Transl. Jerusalem, 1970) (Available from A. Asher \& Co., Amsterdam.)
Gran, H. H., and E. C. Angst. 1930. Plankton diatoms of Puget Sound. Univ. Washington, Seattle.
Hendey, N. I. 1964. An introductory account of the smaller algae of British coastal waters. Part V: Baccilariophyceae (Diatoms). Fisheries Invest. (London), Series IV.
Huber-Pestalozzı, G., and F. Hustedt. 1942. Die Kieselalgen. In: A. Thienemann (ed.), Das Phytoplankton des Susswassers, Die Binnenge wasser, Band XVI, Teil II, Halfte II. E. Schweizerbart'sche Verlagsbuch-handlung, Stuttgart. (Stechert, New York, reprinted 1962.)
*Hustedt, F. 1930. Die Kieselalgen. In: L. Rabenhorst (ed.), Kryptogamen-Fiora von Deutschland, Osterreich, und der Schweiz. Band Vii. Akademische Verlagsgesellschaft m.b.h., Leipzig. (Johnson Reprint Co., New York.)
*Hustedt, F. 1930. Bacillariophyta. In: A Pascher (ed.), Die Suswasser-Flora Mitteliuropas, Heft 10. Gustav Fischer, Jena. (University Microfilms, Ann Arbor, Xerox.)
Hustedt, F. 1955. Marine littoral diatoms of Beaufort, North Carolina. Duke Univ. Mar. Sta. Bull. No. 6. Duke Univ. Press, Durham, N. C., 67 pp.
Irenee-Marie, F. 1938. Flore Desmidiale de la region de Montreal. Laprairie, Canada.
*Patrick, R., and C. W. Reimer. 1966. The diatoms of the United States. Vol. I. Academy of Natural Sciences, Philadelpha.
Tiffany, L. H., and M. E. Britton. 1952. The algae of Illinois. Reprinted in 1971 by Hafner Publishing Co., New York.
Tilden, J. 1910. Minnesota algae, Vol. I. The Myxophyceae of North America and adjacent regions including Central America, Greenland, Bermuda, the West Indies and Hawaii. Univ. Minnesota. (First and unique volume) (Reprinted, 1969, in Bibliotheca Phycologica, 4, J. Cramer, Lehre, Germany.)

4.1.2 Quantitative analysis of phytoplankton

To calibrate the microscope, the ocular must be equipped with a Whipple grid-type micrometer. The exact magnification with any set of oculars varies, and therefore, each combination of oculars and objectives must be calibrated by matching the ocular micrometer against a stage micrometer. Details of the procedure are given in Standard Methods, 13th Edition.

When counting and identifying phytoplankton, analysts will find that samples from most natural waters seldom need dilution or concentration and that they can be enumerated
directly. In those samples where algal concentrations are extreme, or where silt or detritus may interfere, carefully dilute a $10-\mathrm{ml}$ portion of the sample 5 to 10 times with distilled water. In samples with very low populations, it may be necessary to concentrate organisms to minimize statistical counting errors. The analyst should recognize, however, that manipulations involved in dilution and concentration may introduce error.

Among the various taxa are forms that live as solitary cells, as components of natural groups or aggregates (colonies), or as both. Although every cell, whether solitary or in a group, can be individually tallied, this procedure is difficult, time consuming, and seldom worth the effort. The unit or clump count is easier and faster and is the system used commonly within this Agency. In this procedure, all unicellular or colonial (multi-cellular) organisms are tallied as single units and have equal numerical weight on the bench sheet.

The apparatus and techniques used in counting phytoplankton are described here.

Sedgwick-Rafter (S-R) Counting Chamber

The S-R cell is 50 mm long by 20 mm wide by 1 mm deep; thus, the total area of the bottom of the cell is $1000 \mathrm{~mm}^{2}$ and the total volume is $1000 \mathrm{~mm}^{3}$ or one ml . Check the volume of each counting chamber with a vernier caliper and micrometer. Because the depth of the chamber normally precludes the use of the $45 \times$ or 100X objectives, the $20 \times$ objective is generally used. However, special long-working-distance, higherpower objectives can be obtained.
For the procedure, see Standard Methods, 13th Edition. Place a 24 by 60 mm , No. 1 coverglass diagonally across the cell, and with a largebore pipet or eyedropper, quickly transfer a $1-\mathrm{ml}$ aliquot of well-mixed sample into the open corner of the chamber. The sample should be directed diagonally across the bottom of the cell. Usually, the cover slip will rotate into place as the cell is filled. Allow the S-R cell to stand for at least 15 minutes to permit settling. Because some organisms, notably blue-green algae, may
float, examine the underside of the cover slip and add these organisms to the total count. Lower the objective lens carefully into position with the coarse focus adjustment to ensure that the cover slip will not be broken. Fine focus should always be up from the cover slip.

When making the strip count, examine two to four "strips" the length of the cell, depending upon the density of organisms. Enumerate all forms that are totally or partially covered by the image of the Whipple grid.

When making the field count, examine a minimum of 10 random Whipple fields in at least two identically prepared S-R cells. Be sure to adopt a consistent system of counting organisms that lie only partially within the grid or that touch one of the edges.

To calculate the concentration of organisms with the S-R cell, for the strip count:

$$
\text { No. per } \mathrm{ml}=\frac{\mathrm{C} \times 1000 \mathrm{~mm}^{3}}{\mathrm{~L} \times \mathrm{D} \times \mathrm{W} \times \mathrm{S}}
$$

where:
C $=$ number of organisms counted (tally)
$L=$ length of each strip (S-R cell length), mm
$D=$ depth of a strip (S-R cell depth), mm
$W=$ width of a strip (Whipple grid image width), mm
$S=$ number of strips counted
To calculate the concentration of organisms with the field count:

$$
\text { No. per } \mathrm{ml}=\frac{\mathrm{C} \times 1000 \mathrm{~mm}^{3}}{\mathrm{~A} \times \mathrm{D} \times \mathrm{F}}
$$

where:
$C=$ actual count of organisms (tally)
$A=$ area of a field (Whipple grid image area), mm^{2}
$D=$ depth of a field (S-R cell depth), mm
$F=$ number of fields counted
Multiply or divide the number of cells per milliliter by a correction factor for dilution (including that resulting from the preservative) or for concentration.

Palmer-Maloney (P-M) Nannoplankton Cell

The P-M cell was especially designed for enumerating nannoplankton with a high-dry objective (45 X). It has a circular chamber 17.9 mm in diameter and 0.4 mm deep, with a volume of 0.1 ml . Although useful for examining samples containing a high percentage of nannoplankton, more counts may be required to obtain a valid estimate of the larger, but less numerous, organisms present. Do not use this cell for routine counting unless the samples have high counts.

Pipet an aliquot of well-mixed sample into one of the $2 \times 5 \mathrm{~mm}$ channels on either side of the circular chamber with the cover slip in place. After 10 minutes, examine the sample under the high-dry objective and count at least 20 Whipple fields.

To calculate the concentration of organisms:

$$
\text { No. per } \mathrm{ml}=\frac{\mathrm{C} \times 1000 \mathrm{~mm}^{3}}{A \times D \times \Gamma}
$$

where:
$\mathrm{C}=$ number of organisms counted (tally)
$A=$ area of a field (Whipple grid image), mm^{2}
$D=$ depth of a field (P-M cell depth), mm
$F=$ number of fields counted
Bacterial Counting Cells and Hemocytometers
The counting cells in this group are preciselymachined glass slides with a finely ruled grid on a counting plate and specially-fitted ground cover slip. The counting plate proper is separated from the cover slip mounts by parallel trenches on opposite sides. The grid is ruled such that squares as small as $1 / 20 \mathrm{~mm}(50 \mu)$ to a side are formed within a larger $1-\mathrm{mm}$ square. With the cover slip in place, the depth in a PetroffHausser cell is $1 / 50 \mathrm{~mm}(20 \mu)$ and in the hemocytometer $1 / 10 \mathrm{~mm}(100 \mu)$. An optical micrometer is not used.

With a pipet or medicine dropper, introduce a sample to the cell and at high magnification identify and count all the forms that fall within the gridded area of the cell.

To calculate the number of organisms per milliliter, multiply all the organisms found in the gridded area of the cell by the appropriate factor. For example, the multiplication factor
for the Petroff-Hausser bacterial counting cell is based on the volume over the entire grid. The dimensions are $1 \mathrm{~mm} \times 1 \mathrm{~mm} \times 1 / 50 \mathrm{~mm}$. which gives a volume of $1 / 50 \mathrm{~mm}^{3}$ and a factor of 50,000 .

Carefully follow the manufacturer's instructions that come with the chamber when purchased. Do not attempt routine counts until experienced in its use and the statistical validity of the results are satisfactory. The primary disadvantage of this type of counting cell is the extremely limited capacity, which results in a large multiplication factor. Densities as high as 50,000 cells $/ \mathrm{ml}$ are seldom found in natural waters except during blooms. Such populations may be found in sewage stabilization ponds or in laboratory cultures.

For statistical purposes, a normal sample must be either concentrated or a large number of mounts per sample should be examined.

Membrane Filter

A special filtration apparatus and vacuum source are required, and a 1 -inch, 0.45μ membrane filter is used.

Pass a known volume of the water sample through the membrane filter under a vacuum of 0.5 atmospheres. (Note: in coastal and marine waters, rinse with distilled water to remove salt.) Allow the filter to dry at room temperature for 5 minutes, and place it on top of two drops of immersion oil on a microscope slide. Place two drops of oil on top of the filter and allow it to dry clear (approximately 48 hours) at room temperature, cover with a cover slip, and enumerate the organisms. The occurrence of each species in 30 random fields is recorded.

Experience is required to determine the proper amount of water to be filtered. Significant amounts of suspended matter may obscure or crush the organisms.

Calculate the original concentration in the sample as a function of a conversion factor obtained from a prepared table, the number of quadrates or fields per filter, the amount of sample filtered, and the dilution factor. (See Standard Methods, 13th Edition.)

Inverted Microscope

This instrument differs from the conventional microscope in that the objectives are mounted below the stage and the illumination comes from above. This design allows cylindrical counting chambers (which may also be sedimentation tubes) with thin clear glass bottoms to be placed on the stage and sedimented plankton to be examined from below, and it permits the use of short focus, high-magnification objectives including oil immersion. A wide range of concentrations is automatically obtained by merely altering the height of the chamber. Chambers can be easily and inexpensively made: use tubular Plexiglas for large capacity chambers, and flat, plastic plates of various thicknesses, which have been carefully bored out to the desired dimension, for smaller chambers; then cement a No. 1 or No. 1-1/2 cover slip to form the cell bottom. Precision-made, all-glass counting chambers in a wide variety of dimensions are also available. The counting technique differs little from the $S-R$ procedure, and either the strip or separate field counts can be used. The Whipple eyepiece micrometer is also used.

Transfer a sample into the desired counting chamber (pour with the large chambers, or pipet with $2-\mathrm{ml}$ or smaller chambers), fill to the point of overflow, and apply a glass cover slip. Set the chamber aside and keep at room temperature until sedimentation is complete. On the average, allow 4 hours per 10 mm of height. After a suitable period of settling, place the chamber on the microscope stage and examine with the use of the $20 \times, 45 \times$, or $100 \times$ oil immersion lens. Count at least two strips perpendicular to each other over the bottom of the chamber and average the values. Alternatively, random field counts can be made; the number depends on the density of organisms found. As a general rule, count a minimum of 100 of the most abundant species. At higher magnification, count more fields than under lower power.

When a 25.2 mm diameter counting chamber is used (the most convenient size), the conversion
of counts to numbers per ml is quite simple:

$$
\text { No. per ml (strip count) }=\frac{\mathrm{C} \times 1000 \mathrm{~mm}^{3}}{\mathrm{~L} \times \mathrm{W} \times \mathrm{D} \times \mathrm{S}}
$$

where:
C $=$ number of organisms counted (tally)
$L=$ length of a strip, mm
$\mathrm{W}=$ width of a strip (Whipple grid image width), mm
$D=$ depth of chamber, mm
$S=$ number of strips counted

$$
\text { No. per ml }(\text { field count })=\frac{C \times 1000 \mathrm{~mm}^{3}}{A \times D \times F}
$$

where:
$\mathrm{C}=$ number of organisms counted (tally)
$A=$ area of a field (Whipple grid image area), mm^{2}
$D=$ depth of chamber, mm
$F=$ number of fields counted
Diatom Analysis
Study objectives often require specific identification of diatoms and information about the relative abundance of each species. Since the taxonomy of this group is based on frustule characteristics, low-power magnification is seldom sufficient, and permanent diatom mounts are prepared and examined under oil immersion.

To concentrate the diatoms, centrifuge 100 ml of thoroughly mixed sample for 20 minutes at $1000 \times g$ and decant the supernatant with a suction tube. Pour the concentrated sample into a disposable vial, and allow to stand at least 24 hours before further processing. Remove the supernatant water from the vial with a suction tube. If the water contains more than 1 gm of dissolved solids per liter (as in the case of brackish water or marine samples), salt crystals form when the sample dries and obscure the diatoms on the finished slides. In this case, reduce the concentration of salts by refilling the vial with distilled water, resuspending the plankton, and allowing the vial to stand 24 hours before removing the supernatant liquid. Repeat the dilution several times if necessary.

If the plankton counts are less than 1000 per ml , concentrate the diatoms from a larger volume of sample (1 to 5 liters) by allowing them to settle out. Exercise caution in using this
method, however, to ensure quantitative removal of cells smaller than 10 microns in diameter.

Thoroughly mix the plankton concentrate in a vial with a disposable pipet, and deliver several drops to a No. 1, circular $18-\mathrm{mm}$ coverglass. Dry the samples on a hotplate at $95^{\circ} \mathrm{C}$. (Caution: overheating may cause splattering and crosscontamination of samples.) When dry, examine the coverglasses to determine if there is sufficient material for a diatom count. If not, repeat the previous steps one or two more times, depending upon the density of the sedimented sample. Then heat the samples on a heavy-duty hotplate 30 minutes at approximately $570^{\circ} \mathrm{C} 10$ drive off all organic matter. Remove grains of sand or other large objects on the cover glass with a dissection needle. The oil immersion objective has a very small working distance, and the slide may be unusable if this is not done.

Label the frosted end of a $25-\times 75-\mathrm{mm}$ microscope slide with the sample identification. Place the labelled slide on a moderately warm hotplate $\left(157^{\circ} \mathrm{C}\right)$, put a drop of Hyrax or Aroclor 5442 (melt and use at about $138^{\circ} \mathrm{C}$) mounting medium (Index of Refraction 1.66-1.82) at the center, and heat the slide until the solvent (xylene or toluene) has evaporated (the solvent is gone when the Hyrax becomes hard and brittle upon cooling).

While the coverglass and slide are still hot, grasp the coverglass with a tweezer, invert. and place on the drop of Hyrax on a slide. It may be necessary to add Hyrax at the margin of the coverglass. Some additional bubbles of solvent vapor may appear under the coverglass when it is placed on the slide. When the bubbling ceases, remove the slide from the hotplate and place on a firm, flat surface. Immediately apply slight pressure to the coverglass with a pencil eraser (or similar object), and maintain until the Hyrax cools and hardens (about 5 seconds). Spray a protective coating of clear lacquer on the frosted end of the slide, and scrape the excess Hyrax from around the coverglass.

Identify and count the diatoms at high magnification under oil. Examine random lateral strips the width of the Whipple grid, and identify and count all diatoms within the borders of the grid until 250 cells (500 halves) are tallied.

BIOLOGICAL METHODS

Ignore small cell fragments. If the slide has very few diatoms, limit the analysis to the number of cells encountered in 45 minutes of scanning.
When the count is completed, total the tallies and calculate the percentages of the individual species.

4.2 Zooplankton

4.2.1 Qualitative analysis of zooplankton

In the initial examination, remove excess preservative from the sample with the use of an aspirator bulb attached to a small piece of glass tubing whose orifice is covered with a piece of No. 20 mesh netting. Swirl the sample, and with a large-bore pipet, remove a portion of the suspension and place 2 ml into each section of a four-compartment glass culture dish (100×15 mm). Examine a total of 8 ml for adult Copepoda, Cladocera, and other large forms with the use of a binocular dissecting microscope at a magnification of 20 to $40 x$. Count and identify rotifers at a higher magnification (100X). All animals should be identified to species if possible. For qualitative analysis of relative frequency, the following classification is suggested:

Species in fields, $\%$	Relative frequency
$60-100$	abundant
$30-60$	very common
$5-30$	common
$1-5$	occasional
<1	rare

The following taxonomic bench references are recommended:

Calman, W. T. 1912. The Crustacea of the order Cumacea in the collection of the United States National Museum. No. 1876-Proc. U. S. Natl. Mus. 41: 603-676.
Chien, S. M. 1970. Alonella fitzpatricki sp. n. and A. leei sp. n: new Cladocera from Mississippi. Trans. Amer. Microsc. Soc. 89(4): 532-538.
Conseil Permanent International Pour L'Exploration De La Mer. 1970. Fiches D'Identification du Zooplankton. Sheets No.'s 1-133.
Davis, C. 1949. The pelagic Copepoda of the northeastern Pacific Ocean. Univ. Wash. Publ. in Biol. 14:1-188. Univ. Wash. Press, Seattle.
Davis, C. 1955. The marine and freshwater Plankton, Mich. State Univ. Press, East Lansing.

Edmondson, W. T. (ed.). Ward, H. B. and G. C. Whipple. 1959. Fresh-water biology. John Wiley and Sons, New York, 1248 pp.
Faber, D. J. and E. J. Jermolajev. 1966. A new copepod genus in the plankton of the Great Lakes. Limnol. Oceanogr. 11(2): 301-303.
Ferguson, E., Jr. 1967. New ostracods from the Playa lakes of eastern New Mexico and western Texas. Trans. Amer. Microsc. Soc. 86(3):244-250.
Hyman, L. H. 1951. The Invertebrates: Acanthocephala, Aschelminthes, and Ectoprocta. The pseudocoelomate Bilateria. Vol. III. McGraw-Hill, New York, 572 pp.
Light, S. F. 1938. New subgenera and species of diaptomid copepods from the inland waters of California and Nevada Univ. Calif. Publ. in Zool. 43(3): 67-78. Univ. Calif. Press, Berkeley.
Marsh, C. C. 1933. Synopsis of the calanoid crustaceans, exclusive of the Diaptomidae, found in fresh and brackısh waters, chrefly of North America. No. 2959, Proc. U. S. Nat. Mus. 82 (Art. 18): 1-58.
Pennak, R. W. 1953. Fresh-water invertebrates of the United States. The Roland Press Co., New York. 369 pp.
Ruber, E. 1968. Description of a salt marsh copepod cyclops (Apocyclops) spartinus n. sp. and a comparison with closely related species. Trans. Amer. Microsc. Soc. 87(3):368-375.
Wilson, M. S. 1956. Nor th American Harpacticoid copepods.

1. Comments on the known fresh water species of the Canthocamptidae.
2. Canthocamptus oregonensis n. sp. from Oregon and California. Trans. Amer. Microsc. Soc. 75 (3): 290-307.
Wilson, M. S. 1958. The copepod genus Halicyclops in North America, with a description of a new species from Lakc Pontchartrain, Louisiana, and the Texas coast. Tulane Studies Zool. 6(4): 176-189.
Zimmer, C. 1936. California Crustacea of the order Cumacea. No. 2992. Proc. U. S. Natl. Mus. 83:423-439.

4.2.2 Quantitative analysis of zooplankton

Pipet Method

Remove excess liquid using a screened (No. 20 mesh net) suction device until a 125 - to $250-\mathrm{ml}$ sample volume remains. Pour the sample into a conical container graduated in milliliters, and allow the zooplankton to settle for 5 minutes. Read the settled volume of zooplankton; multiply the settled volume by a factor of five to obtain the total diluted volume; and add enough water to obtain this volume. Insert a $1-\mathrm{ml}$ Stempel pipet into the water-plankton mixture, and stir rapidly with the pipet. While the mixture is still agitated, withdraw a $1-\mathrm{ml}$ subsample from the center of the water mass. Transfer the subsample to a gridded culture dish $(110 \times 15 \mathrm{~mm})$ with $5-\mathrm{mm}$ squares. Rinse the
pipet with distilled water into a culture dish to remove any adherent organisms. Enumerate (about 200 zooplankters) and identify under a dissecting microscope.

To calculate the number of plankton with an unmetered collecting device:

$$
\text { Total no. }=\frac{D V}{S V} \times T N
$$

To calculate the number of plankton with a metered collecting device:

$$
\text { No. per } \mathrm{m}^{3} \text { of water }=\frac{\mathrm{TN} \times \frac{\mathrm{DV}}{\mathrm{SV}}}{\mathrm{Q}}
$$

where:
DV = total diluted volume, ml
$\mathrm{SV}=$ total subsample volume, ml
$\mathrm{TN}=$ total no. zooplankters in sample
$\mathrm{Q}=$ quantity of water strained, m^{3}

Counting Chamber

Bring the entire concentrate (or an appropriate aliquot) to a volume of 8 ml , mix well, and transfer to a counting chamber $80 \times 50 \times 2$ mm ($8-\mathrm{ml}$ capacity). To fill, use the technique previously described for the Sedgwick-Rafter cell. The proper degree of sample concentration can be determined only by experience.

Using a compound microscope equipped with an ocular Whipple grid, enumerate and identify the rotifers (to species if possible) in 10 strips scanned at a magnification of $100 \times$ (one-fifth of the chamber volume). Enumerate the nauplii also during the rotifer count. Count the adult microscrustacea under a binocular dissecting microscope at a magnification of 20 to $40 \times$ by scanning the entire chamber. Species identification of rotifers and microcrustacea often require dissection and examination under a compound microscope (see Pennak, 1953).

When calculating the number of plankton, determine the volume of the counting chamber from its inside dimensions. Convert the tallies to organisms per liter with the use of the following relationships:

$$
\begin{gathered}
\text { Rotifers per liter }=\frac{T \times C}{P \times V} \\
\text { Microcrustacea per liter }=\frac{T \times C}{S \times V}
\end{gathered}
$$

where:
$T=$ total tally
$C=$ total volume of sample concentrate, ml
$\mathbf{P}=$ volume of 10 strips in the counting chamber, ml
$V=$ volume of netted or grab sample, liters
$S=$ volume of counting chamber, ml

5.0 BIOMASS DETERMINATION

Because natural plankton populations are composed of many types of organisms (i.e., plant, animal, and bacterial), it is difficult to obtain quantitative values for each of the component populations. Currently-used indices include dry and ash-free weight, cell volume, cell surface area, total carbon, total nitrogen, and chlorophyll content. The dry and ash-free weight methods yield data that include the particulate inorganic materials as well as the plankton. Cell volume and cell surface area determinations can be made on individual components of the population and thus yield data on the plant, the animal, or the bacterial volume, or surface area, or both. Chlorophyll determinations yield data on the phytoplankton.

5.1 Dry and Ash-Free Weight

To reduce the amount of contamination by dissolved solids, wash the sample with several volumes of distilled water by centrifugation or settling. After washing, concentrate the sample by centrifugation or settling. If possible, take sufficient sample to provide several aliquots each having at least 10 mg dry weight. Process at least two replicate aliquots for each sample. (Generally, 10 mg dry weight is equivalent to 100 mg wet weight.)

5.1.1 Dry weight

Place the aliquot of concentrated sample in a tared porcelain crucible, and dry to a constant weight at $105^{\circ} \mathrm{C}$ (24 hours is usually sufficient). Subtract the weight of crucible to obtain the dry weight.

5.1.2 Ash-free weight

After the dry weight is determined, place the crucible in a muffle furnace at $500^{\circ} \mathrm{C}$ for 1 hour. Cool, rewet the ash with distilled water, and bring to constant weight at $105^{\circ} \mathrm{C}$. The ash is wetted to reintroduce the water of hydration of the clay and other minerals that, though not driven off at $105^{\circ} \mathrm{C}$, is lost at $500^{\circ} \mathrm{C}$. This water loss often amounts to 10 percent of the weight lost during ignition and, if not corrected for, will be interpreted as organic matter. Subtract the weight of crucible and ash from the dry weight to obtain ash-free weight.

5.2 Chlorophyll

All algae contain chlorophyll a, and measuring this pigment can yield some insight into the relative amount of algal standing crop. Certain algae also contain chlorophyll b and c. Since the chlorophyll concentration varies with species and with environmental and nutritional factors that do not necessarily affect the standing crop, biomass estimates based on chlorophyll measurements are relatively imprecise. Chlorophyll can be measured in vivo fluorometrically or in acetone extracts (in vitro) by fluorometry or spectrophotometry.

5.2.1 In vitro measurement

The algae differ considerably in the ease of pigment extraction. The diatoms extract easily, whereas the coccoid greens extract with difficulty. Complete extraction of pigments from all taxonomic groups, therefore, requires disruption of the cells with a tissue grinder or blender, or by freezing or drying. Generally, pigment is more difficult to extract from old cells than from young cells.

Concentrate the algae with a laboratory centrifuge, or collect on a membrane filter ($0.45-\mu$ porosity) or a glass fiber filter ($0.45-\mu$ effective pore size). If the analysis will be delayed, dry
the concentrate and store frozen in a desiccator. Keep the stored samples in the dark to avoid photochemical breakdown of the chlorophyll.

Place the sample in a tissue grinder, cover with 2 to 3 milliliters of 90 percent aqueous acetone (use reagent grade acetone), add a small amount (0.2 ml) of saturated aqueous solution of magnesium carbonate and macerate.

Transfer the sample to a screw-capped centrifuge tube, add sufficient 90 percent aqueous acetone to bring the volume to 5 ml , and steep at $4^{\circ} \mathrm{C}$ for 24 hours in the dark. Use the solvent sparingly, avoiding unnecessary pigment dilution. Agitate midway during the extraction period and again before clarifying.

To clarify the extract, centrifuge 20 minutes at 500 g . Decant the supernatant into a clean, calibrated vessel ($15-\mathrm{ml}$, screw-capped, calibrated centrifuge tube) and determine the volume. Minimize evaporation by keeping the tube capped.

Three procedures for analysis and concentration calculations are described.

Trichromatic Method

Determine the optical density (OD) of the extract at $750,663,645$, and 630 nanometers (nm) using a 90 percent aqueous acetone blank. Dilute the extract or shorten the light path if necessary, to bring the OD_{663} between 0.20 and 0.50 . The 750 nm reading is used to correct for turbidity. Spectrophotometers having a resolution of 1 nm or less are preferred. Stopper the cuvettes to minimize evaporation during the time the readings are being made.

The chlorophyll concentrations in the extract are determined by inserting the corrected $1-\mathrm{cm}$ OD's in the following equations. (UNESCO 1966).

$$
\begin{aligned}
& \mathrm{C}_{a}=11.64 \mathrm{D}_{663}-2.16 \mathrm{D}_{645}+0.10 \mathrm{D}_{630} \\
& \mathrm{C}_{b}=-3.94 \mathrm{D}_{663}+20.97 \mathrm{D}_{645}-3.66 \mathrm{D}_{630} \\
& \mathrm{C} c=-5.53 \mathrm{D}_{663}-14.81 \mathrm{D}_{645}+54.22 \mathrm{D}_{630}
\end{aligned}
$$

where $\mathrm{C}_{a}, \mathrm{C}_{b}, \mathrm{C}_{c}$ are the concentrations, in milligrams per liter, of chlorophyll a, b, and c, respectively, in the extract; and $\mathrm{D}_{663}, \mathrm{D}_{645}$, and D_{630} are the $1-\mathrm{cm}$ OD's at the respective wavelengths, after subtracting the $750-\mathrm{nm}$ blank.

The concentration of pigment in the phytoplankton grab sample is expressed as $\mathrm{mg} / \mathrm{m}^{3}$ or $\mu \mathrm{g} / \mathrm{m}^{3}$ or $\mu \mathrm{g} /$ liter and is calculated as follows:

$$
\mathrm{mg} \text { chlorophyll } a / \mathrm{m}^{3}=\frac{\mathrm{C}_{a} \times \text { volume of extract (liters) }}{\text { volume of grab sample }\left(\mathrm{m}^{3}\right)}
$$

Fluorometric (for chlorophyll a)

The fluorometric method is much more sensitive than the photometric method and permits accurate determination of much lower concentrations of pigment and the use of smaller sample volumes. Optimum sensitivity is obtained at excitation and emission wavelengths of 430 and 663 nm , respectively, using a R-136 photomultiplier tube. Fluorometers employing filters should be equipped with Corning CS-5-60 excitation and CS-2-64 emission filters, or their equivalents. Calibrate the fluorometer with a chlorophyll solution of known concentration.

Prepare a chlorophyll extract and determine the concentration of chlorophyll a by the spectrophotometric method as previously described.

Prepare serial dilutions of the extract to provide concentrations of approximately 0.002 , $0.006,0.02$ and 0.06 mg chlorophyll a per liter of extract, so that a minimum of two readings are obtained in each sensitivity range of the fluorometer ($1 / 3$ and $2 / 3$ of full scale). With the use of these values, derive factors to convert the fluorometer readings in each sensitivity range to milligrams of chlorophyll a per liter of extract.

$$
F_{S}=\frac{\text { Conc. chlorophyll } a(\mathrm{mg} / \mathrm{l})}{\text { fluorometer reading }}
$$

where F_{S} is the fluorometric conversion factor and s is the sensitivity range (door).

5.2.2 In vivo measurement

Using fluorescence to determine chlorophyll a in vivo is much less cumbersome than methods involving extraction; however, it is reportedly considerably less efficient than the extraction method and yields about one-tenth as much fluorescence per unit weight as the same amount in solution. The fluorometer should be calibrated with a chlorophyll extract that has been analyzed with a spectrofluorometer.

To determine the chlorophyll a, zero the fluorometer with a distilled water blank before taking the first sample reading at each sensitivity level.

Mix the phytoplankton sample thoroughly to ensure a homogenous suspension of algal cells. Pour an aliquot of the well-mixed sample into a cuvette, and read the fluorescence. If the reading (scale deflection) is over 90 units, use a lower sensitivity setting, e.g., $30 \times>10 \times>3 \times>1 \times$. Conversely, if the reading is less than 15 units, increase the sensitivity setting. If the samples fail to fall in range, dilute accordingly. Record the fluorescent units based on a common sensitivity factor, e.g., a reading 50 at $1 \times$ equals 1500 at 30X.

5.2.3 Pheophytin Correction

Pheophytin is a natural degradation product of chlorophll and often occurs in significant quantities in phytoplankton. Pheophytin a, although physiologically inactive, has an absorption peak in the same region of the visible spectrum as chlorophyll a and can be a source of error in chlorophyll determinations. In nature, chlorophyll is converted to pheophytin upon the loss of magnesium from the porphyrin ring. This conversion can be accomplished in the laboratory by adding acid to the pigment extract. The amount of pheophytin a in the extract can be determined by reading the OD_{663} before and after acidification. Acidification of a solution of pure chlorophyll a results in a 40 percent reduction in the OD_{663}, yielding a "before:after" OD ratio $\left(663 \mathrm{~b} / 663_{\mathrm{a}}\right)$ of 1.70 . Samples with $663 \mathrm{~b} / 663_{\mathrm{a}}$ ratios of 1.70 are considered free of pheophytin a, and contain algal populations consisting mostly of intact, nondecaying organisms.

Conversely, samples containing pheophytin a but not chlorophyll a show no reduction in OD_{663} upon acidification, and have a $663 \mathrm{~b} / 663_{\mathrm{a}}$ ratio of 1.0 . Samples containing both pigments will have ratios between 1.0 and 1.7 .

To determine the concentration of pheophytin a, prepare the extract as previously described and determine the OD_{663}. Add one drop of 1 NHCl to the cuvette, mix well, and reread the OD_{750} and OD_{663} after 30 seconds.

Calculate the chlorophyll a and pheophytin a as follows:

```
Chlorophyll \(a\left(\mathrm{mg} / \mathrm{m}^{3}\right)=\frac{26.7\left(663_{b}-663_{a}\right) \times \mathrm{E}}{\mathrm{V} \times \mathrm{L}}\)
Pheophytin \(a\left(\mathrm{mg} / \mathrm{m}^{3}\right)=\frac{26.7\left(1.7 \times 663_{a}-663 b\right) \times \mathrm{E}}{\mathrm{V} \times \mathrm{L}}\)
```

where $663 b$ is the $1-\mathrm{cm}$ corrected OD_{663} before acidification; $663 a$ is the OD_{663} after acidification; E the volume of acetone used for the extraction (ml); V the volume of water filtered (liters); and L the path length of the cuvette (cm).

5.3 Cell Volume

5.3.1 Microscopic (algae and bacteria)

Concentrate an aliquot of sample by settling or centrifugation, and examine wet at a $1000 \times$ magnification with a microscope equipped with a calibrated ocular micrometer. Higher magnification may be necessary for small algae and the bacteria. Make optical measurements and determine the volume of 20 representative individuals of each major species. Determine the average volume (cubic microns), and multiply by number of organisms per milliliter.

5.3.2 Displacement (zooplankton)

Separate sample from preservative by pouring through a piece of No. 20 mesh nylon bolting cloth placed in the bottom of a small glass funnel. To hasten evaporation, wash sample with a small amount of 50 percent ethanol to remove excess interstitial fluid and place on a piece of filter or blotting paper. Place the drained plankton in a $25-, 50$, or $100-\mathrm{ml}$ (depending on sample size) graduated cylinder, and add a known volume of water from a burette. Read the water level in the graduated cylinder. The difference between the volume of the zooplankton plus the added water and the volume of the water alone is the displacement volume and, therefore, the volume of the total amount of zooplankton in the sample.

5.4 Cell Surface Area of Phytoplankton

Measure the dimensions of several representative individuals of each major species with a
microscope. Assume the cells to be spherical cylindrical, rectangular, etc., and from the linear dimensions, compute the average surface area (μ^{2}) per species. Multiply by the number of organisms per milliliter (Welch, 1948, lists mathematical formulas for computing surface area).

6.0 PHYTOPLANKTON PRODUCTIVITY

Phytoplankton productivity measurements indicate the rate of uptake of inorganic carbon by phytoplankton during photosynthesis and are useful in determining the effects of pollutants and nutrients on the aquatic community.

Several different methods have been used to measure phytoplankton productivity. Diurnal curve techniques, involving pH and dissolved oxygen measurements, have been used in natural aquatic communities by a number of investigators. Westlake, Owens, and Talling (1969) present an excellent discussion concerning the limitations, advantages, and disadvantages of diurnal curve techniques as applied to nonisolated natural communities. The oxygen method of Gaarder and Gran (1927) and the carbon-14 method of Steeman-Neilson (1952) are techniques for measuring in situ phytoplankton productivity. Talling and Fogg (1959) discussed the relationship between the oxygen and carbon- 14 methods, and the limitations of both methods. A number of physiological factors must be considered in the interpretation of the carbon-14 method for measurement of phytoplankton productivity. Specialized applications of the carbon-14 method include bioassay of nutrient limiting factors and measurement of the potential for algal growth.

The carbon-14 method and the oxygen method have the widest use, and the following procedures are presented for the in situ field measurement of inorganic carbon uptake by these methods.

6.1 Oxygen Method

General directions for the oxygen method are found in: Standard Methods for the Examination of Water and Wastewater, 13th Edition, pp. 738-739 and 750-751.

Specific modifications and additions for apparatus, procedures, and calculations are:

Apparatus - Rinse the acid-cleaned sample bottles with the water being tested prior to use.

Procedure - Obtain a profile of the input of solar radiation for the photoperiod with a pyroheliometer. Incubate the samples at least 2 hours, but never longer than to that point where oxygen-gas bubbles are formed in the clear bottles or dissolved oxygen is depleted in the dark bottles.

Calculations - Using solar radiation profile and photosynthetic rate during the incubation period, adjust the data to represent phytoplankton productivity for the entire photoperiod.

6.2 Carbon-14 Method

General directions for the carbon-14 method are found in Standard Methods for the Examination of Water and Wastewater, 13th Edition, pp. 739-741 and 751-752.

Specific modifications and additions for apparatus, procedures, and calculations are listed below:

Apparatus - A fuming chamber is not required. Use the methods of Strickland and Parsons (1968) to prepare ampoules containing a carbonate solution of the activity desired.

Procedure - The carbon-14 concentration in the filtered sample should yield the number of counts required for statistical significance; Strickland and Parsons suggest a minimum of 1,000 counts per minute. Obtain a profile of the input of solar radiation for the photoperiod with a pyroheliometer. Incubate up to 4 hours; if measurements are required for the entire photoperiod, overlap 4 -hour periods from dawn until dusk (e.g., 0600-1000, 0800-1200, 1400-1800, 1600-2000) A 4-hour incubation period may be sufficient, however, provided energy input is used as the basis for integrating the incubation period into the entire photoperiod. To dry and store the filters, place the membranes in a desiccator for 12 hours following filtration. Fuming with HCl is not required, and dried filters may be stored indefinitely.

Calculations - Using solar radiation profile and photosynthetic rates during the incubation period, adjust data to represent phytoplankton productivity for the entire photoperiod.

7.0 REFERENCES

7.1 Sample Collection and Preservation

7.1.1 General considerations

Hutchinson, G. E. 1957. A treatise on limnology, Vol. 1. Geography, Physics, and Chemistry. John Wiley and Sons, Inc., New York.
Hutchinson, G. E. 1967. A treatise on limnology, Vol. 2, Introduction to lake biology and the limnoplankton. John Wiley and Sons, Inc., New York.
Reid, G. K. 1961. Ecology of inland waters and estuaries. Reinhold Publishing Co., New York.
Ruttner, F. 1953. Fundamentals of limnology (transl. by D. G. Frey and F. E. J. Fry), University of Toronto Press, Toronto, Canada.

7.1.2 Phytoplankton

Ingram, W. M., and C. M. Palmer. 1952. Simplified procedures for collecting, examining, and recording plankton. JAWWA. 44:617.
Lackey, J. B. 1938. The manipulation and counting of river plankton and changes in some organisms due to formalin preservation. Pub. Health Rep. 53:2080.
Weber, C. 1. 1968. The preservation of phytoplankton grab samples. Trans. Amer. Microscop. Soc. 87:70.
Welch, P. S. 1948. Limnological methods. Blakiston Co., Philadelphia.

7.1.3 Zooplankton

Arnon, W., et al. 1965. Towing characteristics of plank ton sampling gear. Limnol. Oceanogr. 10(3):333-340.
Barlow, J. P. 1955. Physical and biological processes determining the distribution of zooplankton in a tidal estuary. Biological Bull. 109(2):211-225.
Barnes, H., and D. J. Tranter. 1964. A statistical examination of the catches, numbers, and biomass taken by three commonly used plankton nets. Aust. J. Mar. Freshwater Res. 16(3):293-306.

BIOLOGICAL METHODS

Bayly, I. A. E. 1962. Ecological studies on New Zealand lacustrine zooplankton with special reference to Boeckella propinqua Sars (Copepoda: Calanoida). Aust. J. Mar. Freshwater Res. 13(2):143-197.
Brooks, J. L. 1957. The systematics of North America Daphnia. Yale Univ. Press, New Haven.
Culver, D. A., and G. J. Brunskill. 1969. Fayetteville Green Lake, New York. V. Studies of primary production and zooplankton in a meromictic marl lake. Limnol. Oceanogr. 14(6):862-873.
Curl, H., Jr. 1962. Analysis of carbon in marine plankton organisms. J. Mar. Res. 20(3):181-188.
Dovel, W. L. 1964. An approach to sampling estuarine macroplankton. Chesapeake Sci. 5(1-2): 77-90.
Faber, K. J. 1966. Free-swimming copepod nauplii of Narragansett Bay with a key to their identification. J. Fish. Res. Bd. Canada, 23(2):189-205.
Faber, K. J. 1966. Seasonal occurrence and abundance of free-swimming copepod nauplii in Narragansett Bay. J. Fish. Res. Bd.Canada, 23(3):415-422.
Frolander, H. F. 1957. A plankton volume indicator. J. Cons. Perm. int. explor. Mer. 22(3):278-283.
Frolander, H. F. 1968. Statistical variation in zooplankton numbers from subsampling with a Stempel pipette. JWPCF, 40(2), Pt. 2: R 82-R 88.
Galbraith, M. G., Jr. 1967. Size-selective predation on Daphnia by rainbow trout and yellow perch. Trans. Amer. Fish. Soc. 96(1):1-10.
Hall, D. J. 1964. An experimental approach to the dynamics of a natural population of Daphnia galeata mendotae. Ecology, 45(1):94-112.
Hazelwood, D. H., and R. A. Parker. 1961. Population dynamics of some freshwater zooplankton. Ecology, 42(2):266-274.
Herman, S. S., J. A. Mihursky, and A. J. McErlean. 1968. Zooplankton and environmental characteristics of the Patuxent River Estuary. Chesapeake Sci. 9(2):67-82.
Johnson, W. E. 1964. Quantitative aspects of the pelagic entomostracan zooplankton of a multibasin lake system over a 6-year period. Verh. Internat. Verein. Limnol. 15:727-734.
Jossi, J. W. 1970. Annotated bibliography of zooplankton sampling devices. U. S. Fish. Wildl. Serv., Special Scientific Report. Fisheries. No. 609.
Likens, G. E., and J. J. Gilbert. 1970. Notes on quantitative sampling of natural populations of planktonic rotifers. Limnol. Oceanogr. 15(5):816-820.
McGowan, J. A., and V. J. Fraundorf. 1966. The relationship between size of net used and estimates of zooplankton diversity. Limnol. Oceanogr. 11(4):456-469.
National Academy of Sci. 1969. Recommended procedures for measuring the productivity of plankton standing stock and related oceanic properties. Washington, D. C., 59 pp .
Paquette, R. G., and H. F. Frolander. 1967. Improvements in the Clarke-Bumpus plankton sampler. J. Cons. Perm. int. explor. Mer. 22(3)284-288.
Paquette, R. G., E. L. Scott, and P. N. Sund. 1961. An enlarged Clarke-Bumpus sampler. Limnol. Oceanogr. 6(2):230-233.
Pennak, R. W. 1957. Species composition of limnetic zooplankton communities. Limnol. Oceanogr. 2(3):222-232.
Smith, M. W. 1961. A limnological reconnaissance of a Nova Scotian brown-water lake. J. Fish. Res. Bd. Canada, 18(3):463-478.
Smith, P. E., R. C. Counts, and R. I. Clutter. 1968. Changes in filtering efficiency of plankton nets due to clogging under tow. J. Cons. Perm. int. explor. Mer. 32(2):232-248.
Smyly, W. J. P. 1968. Some observations on the effect of sampling technique under different conditions on numbers of some fresh-water planktonic Entomostraca and Rotifera caught by a water-bottle. J. Nat. Hist. 2:569-575.
Stross, R. G., J. C. Neess, and A. D. Hasler. 1961. Turnover time and production of planktonic crustacea in limed and reference portion of a bog lake. Ecology, 42(2):237-245.
Tranter, D. J., J. D. Kerr, and A. C. Heron. 1968. Effects of hauling speed on zooplankton catches. Aust. J. Mar. Freshwater Res. 19(1):65-75
Ward, J. 1955. A description of a new zooplankton counter. Quart. J. Microscopical Sci. 96:371-373.
Yentsch, C. S., and A. C. Duxbury. 1956. Some factors affecting the calibration number of the Clarke-Bumpus quantitative plankton sampler. Limnol. Oceanogr. 1(4):268-273.
Yentsch, C. S., and F. J. Hebard. 1957. A gauge for determining plankton volume by the mercury immersion method. J. Cons. Perm. int. explor. Mer. 32(2):184-190.

7.2 Sample preparation and analysis

7.2.1 Sample analysis - phytoplankton

Hasle, G. R., and G. A. Fryxell. 1970. Diatoms: cleaning and mounting for light and electron microscopy. Trans.Amer. Microscop. Soc., 89(4):469-474.

Holmes, R. W. 1962. The preparation of marine phytoplankton for microscopic examination and enumeration on molecular filters. U. S. Fish and Wildlife Serv., Special Scientific Report. Fisheries No. 433, 1-6.

Jackson, H W., and L. G. Williams. 1962. Calibration and use of certain plankton counting equipment. Trans. Amer. Microscop. Soc. 81:96.
Lackey, J. B. 1938. The manipulation and counting of river plankton and changes in some organisms due to formalin preservation. Publ. Health Repts. 53(47):2080-93.
Levinson, S. A., R. P. MacFate. 1956. Clinical laboratory diagnosis. Lea and Febiger, Philadelphia.
Lund, J. W. G., C. Kipling, and E. D. LeCren. 1958. The inverted microscope method of estimating algae numbers and the statistical basis of estimations by counting. Hydrobiologia, 11(2):143-70.
McCrone, W. C., R. G. Draftz, and J. G. Delly. 1967. The particle atlas. Ann Arbor Science Publishers, Inc., Ann Arbor.
McNabb, C. D. 1960. Enumeration of freshwater phytoplankton concentrated on the membrane filter. Limnol. Oceanogr. 5:57-61.
National Academy of Sciences. 1969. Recommended procedures for measuring the productivity of plankton standing stock and related oceanographic properties. NAS, Washington, D. C. 59 pp.
Palmer, C. M., and T. E. Maloney. 1954. A new counting slide for nannoplankton. Amer. Soc. Limnol. Oceanog. Spec. Publ. No. 21, pp. 1-6.
Prescott, G. W. 1951. The ecology of Panama Canal algae. Trans. Amer. Microscop. Soc. 70:1-24.
Schwoerbel, J. 1970. Methods of hydrobiology (freshwater biology). Pergamon Press, Hungary, 200 pp
Utermohl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodek. Mitl. Intern. Ver. Limnol. 9:1-38.

7.2.2 Biomass determination

Chlorophyll

Lorenzen, C. J. 1966. A method for the continuous measurement of in vivo chlorophyll concentration. Deep Sea Res. 13:223-227.
Lorenzen, C. J. 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol. Oceanogr. 12(2):343-346.
Moss, B. 1967. A spectrophotometric method for the estimation of percentage degradation of chlorophylls to pheo-pigments in extracts of algae. Limnol. Oceanogr. 12(2):335-340.
Strickland, J. D. H., and T. R. Parsons. 1968. A practical handbook of seawater analysis. Fisheries Res. Board of Canada, Bulletin No. $167,311 \mathrm{pp}$.
United Nations Educational, Scientific, and Cultural Organization. 1966. Monographs on oceanographic methodology. 1. Determination of photosynthetic pigments in sea water. UNESCO, Paris. 69 pp.
Yentsch, C. S., and D. W. Menzel. 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Res. 10:221-231.

Cell Surface Area

Mackenthun, K. M. 1969. The practice of water pollution biology. U.S. Dept. Interior, FWPCA. 281 pp
Mullin, M. M., P. R. Sloan, and R. W. Eppley. 1966. Relationship between carbon content, cell volume, and area in phytoplankton. Limnol. Oceanogr. 11(2):307-311.
Welch, P. S. 1948. Limnological methods. Blakiston Co., Philadelphia. 344 pp.

7.3 Phytoplankton productivity

American Public Health Association. 1970. Standard Methods for the Examination of Water and Wastewater, 13th Edition, APHA, Washington, D. C.
Beyers, R. J., J. L. Larimer, H. T. Odum, R. A. Parker, and N. E. Armstrong. 1963. Directions for the determination of changes in carbon dioxide concentration from changes in pH. Publ. Inst. Mar. Sci., Univ. Texas, 9:454-489.
Beyers, R. J., and H. T. Odum. 1959. The use of carbon dioxide to construct pH curves for the measurement of productivity. Limnol. Oceanogr. 4(4):499-502.
Bransome, Edwin D., Jr. (ed.) 1970. The current status of liquid scintillation counting. Grune and Stratton, Inc., New York. 394 pp.
Chase, G. D., and J. L. Rabinowitz. 1967. Principles of radioisotope methodology. 3rd edition. Burgess Publ. Co., Minneapolis. 633 pp.
Edwards, R. W., and M. Owens. 1962. The effects of plants on river conditions IV. The oxygen balance of a chalk stream. J. Ecol. 50:207-220.
Fee, E. J. 1969. Numerical model for the estimation of photosynthetic production, integrated over time and depth in natural waters. Limnol. Oceanogr. 14(6):906-911
Gaarder, T., and H. H. Gran. 1927. Investigations of the production of plankton in the Oslo Fjord. Rapp. et Proc Verb., Cons. Internatl. Explor. Mer. 42:1-48.

BIOLOGICAL METHODS

Goldman, C. R., and R. C. Carter. 1965. An investigation by rapid Carbon-14 bioassay of factors affecting the cultural eutrophication of Lake Tahoe, California-Nevada. J. WPCF, 37(7):1044-1059.
Goldman, C. R. 1969. Measurements (in situ) on isolated samples of natural communities, bioassay technique for nutrient limiting factors. In: A manual on methods for measuring primary production in aquatic environments (R. A. Vollenweider, ed.) IBP Handbook, No. 12. F. A. Davis, Philadelphia. pp. 79-81.
Goldman, C. R. 1963. Measurement of primary productivity and limiting factors in freshwater with C-14. In: Proc. conf. on primary productivity measurement, marine and freshwater (M. S. Doty, ed.) Univ. of Hawaii, Aug.Sept. 1961. U. S. Atomic Energy Commission, Div. Tech. Inf. T.I.D. 7633, 103-113.
Goldman, C. R. 1968. The use of absolute activity for eliminating serious errors in the measurement of primary productivity with C-14. J. Cons. Int. Explor. Mer. 32:172-179.
Jenkins, D. 1965. Determination of primary productivity of turbid waters with carbon-14. J. WPCF, 37:1281-1288.
Jitts, H. R., and B. D. Scott. 1961. The determination of zero-thickness activity in geiger counting of C^{14} solutions used in marine productivity studies. Limnol. Oceanogr. 6:116-123.
Jitts, H. R. 1963. The standardization and comparison of measurements of primary production by the carbon-14 technique. In: Proc. Conf. on Primary Productivity Measurement, Marine and Freshwater (M. S. Doty, ed.) Univ. of Hawaii, Aug.-Sept. 1961. U. S. Atomic Energy Commission, Div. Tech. Inf. T.I.D. 7633, 103-113.
Joint Industry/Government Task Force of Eutrophication. 1969. Provisional algal assay procedure. pp.16-29.
McAllister, C. D. 1961. Decontamination of filters in the C14 method of measuring marine photosynthesis. Limnol. Oceanogr. 6 (3):447-450.
Odum, H. T. 1956. Primary production in flowing water. Limnol. Oceanogr. 1(2):102-117.
Odum, H. T. 1957. Primary production measurements in eleven Florida springs and a marine turtle grass community. Limnol. Oceanogr. 2(2):85-97.
Odum, H. T., and C. M. Hoskin. 1958. Comparative studies on the metabolism of marine waters. Publ. Inst. Mar. Sci., Univ. of Texas, 5:16-46.
Owens, M., and R. W. Edwards. 1963. Some oxygen studies in the River Lark. Proc. Soc. for Water Treatment and Examination, 12:126-145.
Park, K., D. W. Hood, and H. T. Odum. 1958. Diurnal pH variation in Texas bays and its application to primary production estimation. Publ. Inst. Mar. Sci., Univ. Texas, 5:47-64.
Rodhe, W., R. A. Vollenweider, and A. Nauwerck. 1958. The primary production and standing crop of phytoplankton. In: Perspectives in Marine Biology (A. A. Buzzati-Traverso, ed.), Univ. of California Press. pp. 299-322.
Saijo, Y., and S. Ichimura. 1963. A review of recent development of techniques measuring primary production. In: Proc. conf. on primary productivity measurement, marine and freshwater (S. Doty, ed.) Univ. Hawaii, Aug.-Sept. 1961. U. S. Atomic Energy Commission, Div. Tech. Inf. T.I.D. 7633, 91-96.
Steeman-Neilson, E. 1952. The use of radioactive carbon (C-14) for measuring organic production in the sea. J. Cons. Int. Explor. Mer. 18:117-140.
Strickland, J. D. H., and T. R. Parsons, 1968. A practical handbook of seawater analysis. Fish. Res. Bd. Canada, Bull. No. $167,311 \mathrm{pp}$.
Talling, J. F., and G. E. Fogg. 1959. Measurements (in situ) on isolated samples on natural communities, possible limitations and artificial modifications. In: A manual of methods for measuring primary production in aquatic environments (R. A. Vollenweider, ed.) IBP Handbook, No. 12, F. A. Davis, Philadelphia. pp. 73-78.
Thomas, W. H. 1963. Physiological factors affecting the interpretation of phytoplankton production measurements. In: Proc. conf. on primary productivity measurement, marine and freshwater (M. S. Doty, ed.) Univ. Hawaii, Aug.-Sept. 1961. U. S. Atomic Energy Commission, Div. Tech. Inf. T.I.D. 7633, 147-162.
Verduin, J. 1952. Photosynthesis and growth rates of two diatom communities in western Lake Erie. Ecology, 33(2):163-168.
Westlake, D. F., M. Owens, and J. F. Talling. 1969. Measurements on non-isolated natural communities. In: A manual on methods for measuring primary production in aquatic environments (R. A. Vollenweider, ed.) IBP Handbook, No. 12. F. A. Davis, Philadelphia. pp. 90-100.

PERIPHYTON

PERIPHYTON

Page
1.0 INTRODUCTION 1
2.0 SAMPLE COLLECTION AND PRESERVATION 2
2.1 Qualitative Sampling 2
2.2 Quantitative Sampling 2
3.0 SAMPLE PREPARATION AND ANALYSIS 3
3.1 Sample Preparation 3
3.2 Sample Analysis 3
4.0 BIBLIOGRAPHY 5

PERIPHYTON

1.0 INTRODUCTION

Periphyton is an assemblage of a wide variety of organisms that grow on underwater substrates and includes but is not limited to, bacteria, yeasts and molds, algae, protozoa, and forms that may develop large colonies such as sponges and corals. All organisms within the community are not necessarily attached but some may burrow or live within the community structure of the attached forms.

Literally translated, periphyton means "around plants," such as organisms overgrowing pond weeds, but through widespread usage, the term has become associated with communities of microorganisms growing on substrates of any nature. Aufwuchs (Seligo, 1905), the German noun for this community, does not have an equivalent English translation, but essentially means growing on and around things. Other terms that are essentially synonymous with periphyton or describe important or predominant components of the periphytic community are: nereiden, bewuchs, laison, belag, besatz, attached, sessile, sessile-attached, sedentary, seeded-on, attached materials, slimes, slime growths, and coatings. Some of these terms are rarely encountered in the literature. Terminology based on the nature of the substrate is as follows:

$\frac{\text { Substrate }}{\text { various }}$	epiholitic, nereiditic, sessile
plants	epiphytic
animals	epizooic
wood	epidendritic, epixylonic
rock	epilithic

Most above-listed Latin-root adjectives are derivatives of nouns such as epihola, epiphyton, epizoa, etc. (After Srameck-Husek, 1946 and Sladeckova, 1962).

Periphyton was recognized as an important component of aquatic communities before the beginning of the 20th century, and the study of periphyton was initiated in Europe in the early 1900's. Kolkwitz and Marsson in two articles
(1908 and 1909) made wide use of components in this community in the development of the saprobic system of water quality classification. This system has been continued and developed in Middle and Eastern Europe (Srameck-Husek, 1946; Butcher, 1932, 1940, 1946; Sladeckova, 1962; Sladecek and Sladeckova, 1964; Fjerdingstad, 1950, 1964, 1965).

The study of periphyton was introduced in the United States in the 1920's and expanded in the 1930 's. The use of the community has grown steadily and rapidly in water quality investigations (Blum, 1956; Cooke, 1956; Patrick, 1957; Cairns, et al., 1968).

The periphyton and plankton are thie principal primary producers in waterways - they convert nutrients to organic living materials and store light energy through the processes of photosynthesis. In extensive deep waters, the plankton are probably the predominant primary producers. In shallow lakes, ponds, and rivers, the periphyton are the predominant primary producers.

Periphyton is the basis of the trickling filter system form of secondary sewage treatment. It is the film of growths covering the substrate in the filter that consumes nutrients, micro-solids, and bacteria from the primary treated sewage passing through the filter. As these growths accumulate, they eventually slough from the substrate, pass through the filter, and are captured in the final clarifier; thus, they change chemical and biological materials to a solid that can be removed with the physical process of settling. Excellent studies and reports on this process have been published by Wisniewski (1948), Cooke (1959), and Holtje (1943).

The periphyton community is an excellent indicator of water quality. Changes may range from subtle alteration of species composition to extremely dramatic results, such as when the addition of organic wastes to waters supporting a community of predominately diatom growths result in their replacement by extensive slime colonies composed predominately of bacteria such as Sphaerotilus or Leptomitus and vorticellid protozoans.

Excessive growth stimulated by increased nutrients can result in large, filamentous streamers that are esthetically unpleasing and interfere with such water uses as swimming, wading, fishing, and boating, and can also affect the quality of the overlying water. Photosynthesis and respiration can affect alkalinity (U. S. FWPCA, 1967) and dissolved oxygen concentrations (O'Connell and Thomas, 1965) of lakes and streams. Metabolic byproducts released to the overlying water may impart tastes and odors to drinking waters drawn from the stream or lake, a widespread problem throughout the United States (Lackey, 1950; Silvey, 1966; Safferman, et al., 1967). Large clumps of growth may break from the site of attachment and eventually settle to form accumulations of decomposing, organic, sludge-like materials.

Periphyton have proven useful in, reconnaissance surveys, water quality monitoring studies, short-term investigations, research and development, and enforcement studies. The investigation objectives dictate the nature, approach, and methodology of sampling the periphyton community. Factors to be considered are the time and duration of the study and the characteristics of the waterway.

Sladeckova (1962) published an extensive review of methodology used in investigating this community.

2.0 SAMPLE COLLECTION AND PRESERVATION

2.1 Qualitative Sampling

Time limitations often prohibit the use of artificial substrate samplers for quantitative collection, and thus necessitate qualitative sampling from natural substrates. Periphyton usually appear as brown, brownish-green, or green growths on the substrate. In standing or flowing water, periphyton may be qualitatively collected by scraping the surfaces of several different rocks and logs with a pocket knife or some other sharp object. This manner of collecting may also be used as a quantitative method if accurate measurements are made of the sampled areas. When sampling this way, limit collections to
littoral areas in lakes and shallow or riffle areas in flowing water where the greatest number and variety of organisms are found. Combine the scrapings to a volume of 5 to 10 ml for a sufficient sample. In lakes and streams where long strands of filamentous algae occur, weigh the sample.

After scraping has been completed, store the material in bottles containing 5 percent formalin. If the material is for chlorophyll analysis, do not preserve. Store at $4^{\circ} \mathrm{C}$ in the dark in 100 ml of 90 percent aqueous acetone. Use bottle caps with a cone-shaped polyethytene seal to prevent evaporation.

2.2 Quantitative Sampling

The standard (plain, $25 \times 75 \mathrm{~mm}$) glass microscope slide is the most suitable artificial substrate for quantitative sampling. If less fragile material is preferred, strips of Plexiglas may be used in place of glass slides.

Devices for exposing the substrates can be modified to suit a particular situation, keeping in mind that the depth of exposure must be consistant for all sampling sites. In large rivers or lakes, a floating sampler (APHA, 1971) is advantageous when turbidities are high and the substrates must be exposed near the surface. In small, shallow streams or littoral areas of lakes where turbidity is not a critical factor, substrates may be exposed in several ways. Two possible methods are: (a) attach the substrates with PLASTIC TAK adhesive to bricks or flat rocks in the stream bed, or (b) anchor Plexiglas racks to the bottom to hold the substrates. In areas where siltation is a problem, hold the substrates in a vertical position to avoid a covering of silt. If desired, another set of horizontally-exposed substrates could be used to demonstrate the effects of siltation on the periphyton community.

The number of substrates to be exposed at each sampling site depends on the type and number of analyses to be performed. Because of unexpected fluctuations in water levels, currents, wave action, and the threat of vandalism, duplicate samplers should be used. A minimum of four replicate substrates should be taken for each type of analysis.

The length of exposure depends upon many factors, including the survey time schedule, growth patterns, which are seasonal, and prevailing hydrologic conditions. On the assumption that periphyton growth rate on clean substrates proceeds exponentially for 1 or 2 weeks and then gradually declines, the optimum exposure period is 2 to 4 weeks.

3.0 SAMPLE PREPARATION AND ANALYSIS

3.1 Sample Preparation

Sample preparation varies according to the method of analysis; see the 13th edition of Standard Methods, Section 602-3 (APHA, 1971).

3.2 Sample Analysis

3.2.1 Identification

In addition to the taxonomic references listed in the Plankton Section, the following bench references are essential for day-to-day periphyton identification.

Algae

Desikachary, T. W. 1956. Cyanophyta. Indian Counc. Agric. Res., New Delhi.
Fairdi, M. 1961. A monograph of the fresh water species of Cladophora and Rhizoclonium. Ph.D. Thesis, Univ. Kansas (available in Xerox from University Microfilms, Ann Arbor).
Islan, A. K., and M. Nurul. 1963. Revision of the genus Stigeoclonium. Nova Hedwigia, Suppl. 10. J. Cramer, Weinheim, Germany.
Rananthan, K. R. 1964. Ulotrichales. Indian Counc. Agric. Res., New Delhi.
Randhawa, M. S. 1959. Zygnemaceae. Indian Counc. Agric. Res., New Delhi.
Tiffany, L. H. 1937. Oedogoniales, Oedogoniaceae. In: North American Flora, 11(1):1-102. N. Y. Bot. Garden, Hafner Publ. New York.

Fungi

Cooke, W. Bridge. 1963. A laboratory guide to fungi in polluted waters, sewage, and sewage treatment systems. USDHEW, USPHS, DWSPC, Cincinnati.

Protozoa

Bick, H. 1967-69. An illustrated guide to ciliated protozoa (used as biological indicators in freshwater ecology). Parts 1-9. World Hlth. Organ., Geneva, Switzerland.
Kudo, R. R. 1963. Protozoology. Charles Thomas, Publ., Springfield, Ill.

Rotifers

Donner, J. 1966. Rotifers. Butler and Tanner, Ltd., London.
Edmundson, W. T. 1959. Freshwater biology. John Wiley and Sons, New York.
Pennak, R. W. 1953. Freshwater invertebrates of the United States. Ronald Press, New York.

Microcrustacea

Edmondson, W. T. (see above).
Pennak, R. W. (see above).

3.2.2 Counts and enumeration

Sedgwick-Rafter Method

Shake vigorously to mix the sample, transfer 1 ml to a Sedgwick-Rafter cell, and make strip counts, as described in the Plankton Section, except that a cell count is made of all organisms. If the material is too concentrated for a direct count, dilute a $1-\mathrm{ml}$ aliquot with 4 ml of distilled water; further dilution may be necessary. Even after vigorous shaking, the scrapings may contain large clumps of cells. These clumps can result in an uneven distribution of material in the counting chamber that could seriously affect the accuracy of the count. Should this condition occur, stir 50 ml of the sample (or a proper dilution) in a blender for 1 minute and reexamine. Repeat if necessary. Caution: Some colonial organisms cannot be identified in a fragmented condition. Therefore, the sample must be examined before being blended.

The quantitative determination of organisms on a substrate can then be expressed as:

$$
\text { No. cells } / \mathrm{mm}^{2}=\frac{\mathrm{C} \times 1000 \mathrm{~mm}^{3} \times \mathrm{V} \times \mathrm{DF}}{\mathrm{~L} \times \mathrm{W} \times \mathrm{D} \times \mathrm{S} \times \mathrm{A}}
$$

where:
$\mathrm{C}=$ number of cells counted (tally)
$\mathrm{V}=$ sample volume, ml
DF = dilution factor
$\mathrm{L}=$ length of a strip, mm
W. = width of a strip (Whipple grid image width), mm
D = depth of a strip (S-R cell depth), mm
$\mathrm{S}=$ number of strips counted
A " = area of substrate scraped, mm^{2}

Diatom Species Proportional Count

Before preparing the diatom slides, use an oxidizing agent to digest the gelatinous stalks and other extracellular organic materials causing cell clumping. Before the oxidant is added, however, centrifuge or settle the sample to remove the formalin.

If centrifugation is preferred, transfer the sample to a conical tube and centrifuge 10 minutes at $1000 \times \mathrm{G}$. Decant the formalin, resuspend the sample in 10 ml of distilled water, and recentrifuge. Decant, take up the sample in 8 ml of 5 percent potassium (or ammonium) persulfate, and transfer back to the (rinsed) sample vial.

If the settling method is preferred, follow the instructions given in the Plankton Section for removing salt from the diatom concentrate, but add persulfate or hydrogen peroxide instead of distilled water. After the formalin is replaced by the oxidant, heat the sample to $95^{\circ} \mathrm{C}$ for 30 minutes (do not boil). Cool, remove the oxidant by centrifugation or settling, and take up the diatoms in 2 to 3 ml of distilled water. Proceed with the preparation of the permanent diatom mount as described in the Plankton Section. Label the slide with the station location and inclusive sample dates. Carry out the diatom strip count as described in the Plankton Section, except that separated, individual valves (half cell walls) are tallied as such, and the tally is divided by two to obtain cell numbers.

3.2.3 Biomass

Cell Volume
See the Plankton Section.

> Dry and Ash-free Weight

See the Plankton Section.
Centrifugation, Sedimentation and Displacement
Centrifugation. Place sample in graduated centrifuge tube and centrifuge for 20 minutes at $1000 \times$ G. Relate the volume in milliliters to the area sampled.

Sedimentation. Place sample in graduated cylinder and allow sample to settle at least 24 hours. Relate the volume in milliliters to the area sampled.

Displacement. Use displacement for large growths of periphyton when excess water can be readily removed. Once the excess water is removed, proceed as per Plankton Section; however, do not pour sample through a No. 20 mesh, nylon bolting cloth.
Chlorophyll

The chlorophyll content of the periphyton is used to estimate the algal biomass and as an indicator of the nutrient content (or trophic status) or toxicity of the water and the taxonomic composition of the community. Periphyton growing in surface water relatively free of organic pollution consists largely of algae, which contain approximately 1 to 2 percent chlorophyll a by dry weight. If dissolved or particulate organic matter is present in high concentrations, large populations of filamentous bacteria, stalked protozoa, and other nonchlorophyll bearing microorganisms develop and the percentage of chlorophyll a is then reduced. If the biomass-chlorophyll a relationship is expressed as a ratio (the autotrophic index), values greater than 100 may result from organic pollution (Weber and McFarland, 1969; Weber, 1973).

$$
\text { Autotrophic Index }=\frac{\text { Ash-free Wgt }\left(\mathrm{mg} / \mathrm{m}^{2}\right)}{\text { Chlorophyll a }\left(\mathrm{mg} / \mathrm{m}^{2}\right)}
$$

To obtain information on the physiological condition (or health) of the algal periphyton, measure the amount of pheophytin a, a physiologically inactive degradation product of chlorophyll a. This degradation product has an absorption peak at nearly the same wavelength as chlorophyll a and, under severe environmental conditions, may be responsible for most if not all of the OD_{663} in the acetone extract. The presence of relatively large amounts of pheophytin a is an abnormal condition indicating water quality degradation. (See the Plankton Section.)

To extract chlorophyll, grind and steep the periphyton in 90 percent aqueous acetone (see Plankton Section). Because of the normal seasonal succession of the algae, the taxonomic composition and the efficiency of extraction by steeping change continually during the year. Although mechanical or other cell disruption may not increase the recovery of pigment from
every sample, routine grinding will significantly increase (10 percent or more) the average recovery of chlorophyll from samples collected over a period of several months. Where glass slides are used as substrates, place the individual slides bearing the periphyton directly in separate small bottles (containing 100 ml) of acetone when removed from the sampler. Similarly, place periphyton removed from other artificial or natural substrates in the field immediately in 90 percent aqueous acetone. (Samples should be macerated, however, when returned to the lab.)

Acetone solutions of chlorophyll are ex-
tremely sensitive to photodecomposition and lose more than 50 percent of their optical activity if exposed to direct sunlight for only 5 minutes. Therefore, samples placed in acetone in the field must be protected from more than momentary exposure to direct sunlight and should be placed immediately in the dark. Samples not placed in acetone in the field should be iced until processed. If samples are not to be processed on the day collected, however, they should be frozen and held at $-20^{\circ} \mathrm{C}$.

For the chlorophyll analysis, see the Plankton Section.

4.0 BIBLIOGRAPHY

American Public Health Association. 1971. Standard methods for the examınation of water and wastewater, 13th ed., APHA, New York.
Blum, J. L. 1956. The ecology of river algae. Bot. Rev. 22(5): 291.
Butcher, R. W. 1932. Studies in the ecology of rivers. II. The microflora of rivers with special reference to the algae on the river bed. Ann. Bot. 46:813-861.
Butcher, R.W. 1940. Studies in the ecology of rivers. IV. Observations on the growth and distribution of sessile algae in the River Hull, Yorkshire. J. Ecology, 28:210-223.
Butcher, R. W. 1946. Studies in the ecology of rivers. VII. The algae of organically enriched waters. J. Ecology, 35:186-191.
Butcher, R. W. 1959. Biological assessment of river pollution. Proceedings Linnean Society, 170:159-165; Abstract in: J. Sci. Food Agrı. 10:(11):104.
Cairns, J., Jr., D. W. Albough, F. Busey, and M. D. Chanay. 1968. The sequential comparison index - A simplified method for nonbiologists to estimate relative differences in biological diversity in stream pollution studies. JWPCF,40(9):1607-1613.
Cooke, W. B. 1956. Colonization of artificial bare areas by meroorganisms. Bot. Rev. 22(9):613-638.
Cooke, W. B. 1959. Fungi in polluted water and sewage. IV. The occurrence of fungi in a trickling filter-type sewage treatment plant. In: Proceedıng, 13th Industrial Waste Conference, Purdue University, Series No. 96, 43(3):26-45.
Cummins, K. W., C. A. Tyron, Jr., and R. T. Hartman (Editors). 1966. Organism-substrate relationships in streams. Spec. Publ. No. 4, Pymatuning Lab. of Ecol., Univ. Pittsburgh. 145 pp.
Fjerdingstad, E. 1950. The microflora of the River Molleaa with spectal reference to the relation of the benthal algae to pollution. Folia Limnol. Scand. No. 5, Kobenhaven, 123 pp .
Fjerdingstad, E. 1964. Pollution of stream estimated by benthal phytomicroorganisms. I A saprobic system based on communities organisms and ecological factors. Hydrobiol. 49(1):63-131.
Fjerdingstad, E. 1965. Taxonomy and saprobic valency of benthic phytomicroorganisms. Hydrobiol. 50(4):475-604.
Hawkes, H. A. 1963. Effects of domestic and industrial discharge on the ecology of riffles in midland streams. Intern. J. Air Water Poll. 7(6/7):565-586.
Holtje, R. H. 1943. The biology of sewage sprinkling filters. Sewage Works J. 15(1):14-29.
Keup, L. E, 1966. Stream biology for assessing sewage treatment plant efficiency. Water and Sewage Works, 113:11-411.
Kolkwitz, R., and M. Marsson. 1908. Oekologie der pflanzlichen Saprobien. Berichte Deutschen Botanischen Gesellschaft, 26a:505-519.
Kolkwitz, R., and M. Marsson. 1909. Oekologie der Tierischen Saprobien. Internationale Revue Gesamten Hydrobiologe Hydrographie, 2:126-152.
Lackey, J. B. 1950. Aquatic biology and the water works engineer. Public Works. 81:30-41,64.
Mackenthun, K. M. 1969. The practice of water pollution biology. U. S. FWPCA, Washington, D.C. 281 pp.
Mackenthun, K. M., and L. E. Keup. 1970. Biological problems encountered in water supplies. JAWWA, 62(8):520-526.
O'Connell, J. M., and N. A. Thomas. 1965. Effect of benthic algae on stream dissolved oxygen. Proc. ASCE, J. Sanit. Eng. Div. 91:1-16.
Odum, H. T. 1957. Trophic structure and productivity of Silver Springs, Florida. Ecol. Monogr. 27:55-112.
Parrish, L. P., and A. M. Lucas. 1970. The effects of waste waters on periphyton growths in the Missouri River. (Manuscript). U. S. FWPCA Nat'1. Field Investigations Center, Cincinnati.

BIOLOGICAL METHODS

Patrick, R. 1957. Diatoms as indicators of changes in envitonmental conditions. In: Biological Problems in Water PollutionTransactions of the 1956 Seminar, Robert A. Taft Sanitary Engineering Center, U. S. Public Health Service, Cincinnati, Ohio. pp. 71-83. W57-36.
Rohlich, G. A., and W. B. Sarles. 1949. Chemical composition of algae and its relationship to taste and odor. Taste Odor Control J. 18:1-6.
Safferman, R. S., A. A. Rosen, C. I. Mashni, and M. E. Morris. 1967. Earthy - smelling substance from a blue-green alga. Environ. Sci. Technol. 1:429-430.
Seligo, A. 1905. Uber den Ursprung der Fischnahrung. Mitt.d. Westpr. Fisch. 17(4):52.
Silvey, J. K. G. 1966. Taste and odors - Joint discussion effects of organisms. JAWWA, 58(6):706-715.
Sladecek, V., and A. Sladeckova. 1964. Determination of the periphyton production by means of the glass slide method. Hydrobiol. 23:125-158.
Sladeckova, A. 1962. Limnological investigation methods for the periphyton ("Aufwuchs") community. Bot. Rev. 28:286-350.
Srameck-Husek. 1946. (On the uniform classification of animal and plant communities in our waters) Sbornik MAP, 20(3): 213 Orig. in Czech.
Strickland, J. D. H. 1960. Measuring the production of marine phytoplankton. Bull. No. 122. Fish. Res. Bd. Canada, Ottawa, 172 pp. (Review of methods of primary production measurement, many applicable to periphyton analyses.)
Thomas, N. A. 1968, Methods for slide attachment in periphyton studies. (Manuscript). U. S. FWPCA, Nat'l. Field Investigations Center, Cincinnati.
U. S. Federal Water Pollution Control Administration. 1967. Effects of pollution on aquatic life resources of the South Platte River in Colorado. Vol. 2. Technical Appendix. USFWPCA, Cincinnati. 85pp.
Warner, R. W., R. K. Ballentine, and L. E. Keup. 1969. Black-water impoundment investigations. U. S. FWQA, Cincinnati, Ohio. 95 pp.
Weber, C. 1973. Recent developments in the measurement of the response of plankton and periphyton to changes in their environment. In: Bioassay Techniques and Environmental Chemistry. G. Glass, ed. Ann Arbor Science Publishers, Inc., p 119-138.
Weber, C. I., and B. McFarland. 1969. Periphyton biomass-chlorophyll ratio as an index of water quality. Presented at the 17 th Annual Meeting, Midwest Benthological Society, Gilbertsville, Ky., April, 1969.
Weber, C. I., and R. L. Raschke. 1966. Use of a floating periphyton sample for water pollution surveillance. U. S. FWPCA, Cincinnati, Ohio.
Weston, R. S., and C. E. Turner. 1917. Studies on the digestion of a sewage filter effluent by a small and otherwise unpolluted stream. Mass. Inst. Technol., Sanit. Res. Lab. Sewage Exper. Sta. 10:1-43.
Wisniewski, T. F. 1948. The chemistry and biology of milk waste disposal. J. Milk Food Technol. 11:293-300.
Young, O. W. 1945. A limnological investigation of periphyton in Douglas Lake, Michigan. Trans. Amer. Microscop. Soc. 64:1.

MACROPHYTON

MACROPHYTON

1.0 INTRODUCTION
Page
2.0 SAMPLE COLLECTION AND ANALYSIS 1
2.1 Qualitative Sampling 2
2.2 Quantitative Sampling 2
3.0 REFERENCES 3

MACROPHYTON

1.0 INTRODUCTION

Macrophytes are all aquatic plants possessing a multi-cellular structure with cells differentiated into specialized tissues. Included are the mosses, liverworts, and flowering plants. Their sizes range from the near microscopic watermeal to massive cypress trees. The most commonly dealt with forms are the herbaceous water plants.

Macrophyton may be conveniently divided into three major growth types:

Floating. These plants have true leaves and roots and float on the water surface (duckweed, watermeal, water hyacinth).

Submerged. These plants are anchored to the substratum by roots and may be entirely submersed or have floating leaves and aerial reproductive structures (water milfoil, eel grass, pondweeds, bladderwort).
Emersed. These plants are rooted in shallow water and some species occur along moist shore lines. The two major groups are:

Floating leafed plants (water lilies and water shields).
Plants with upright shoots (cattails, sedges, woody shrubs, rice and trees.
The use of macrophytes in water quality investigations has been sorely neglected. Kolkwitz and Marsson (1908) used some species in their saprobic system of water quality classification, but they are rarely mentioned in most literature. A number of pollutants have dramatic effects on macrophyte growth:
Turbidity restricting light penetration can prevent the growth of submerged weeds.

Nutrients can stimulate overproduction of macrophytes in numbers sufficient to create nuisances or can stimulate excessive plankton growths that effect an increase in turbidities, thus eliminating macrophyte growths.

Herbicidal compounds, if present at sublethal concentrations, can stimulate excessive growths or they can, at higher concentrations, destroy plant growths.

Organic or inorganic nutrients, or both, can support periphytic algal and slime growths sufficient to smother and thus destroy submersed forms.

Sludge deposits, especially those undergoing rapid decomposition, usually are too unstable or toxic to permit the growth of rooted plants.

The rampant growth of some macrophytes has caused concern over recent years (Holm et al. 1969). Millions of dollars are spent each year in controlling macrophytes that interfere with irrigation operation, navigation, and related recreational uses. Mechanical cutting, application of herbicides, and habitat alteration are the primary control methods. Mackenthun and Ingram (1967) and Mackenthun (1969) have reviewed and summarized control techniques.

Yount and Crossman (1970) and Boyd (1970) discussed schemes for using macrophytes to remove nutrients from effluents and natural waters.

Aquatic macrophytes are a natural component of most aquatic ecosystems, and are present in those areas suitable for macrophyte growth, unless the habitat is altered. Furthermore, the proper proportions of macrophytes are ecologically desirable (Wilson, 1939; Hotchkiss, 1941; Penfound, 1956; Boyd, 1971). Boyd (1970, 1971) introduced concepts of macrophyte management opposed to the current idea of eradicating aquatic macrophytes from many aquatic ecosystems. Much additional research is needed on the role of macrophytes in aquatic ecosystems.

The objective of an investigation dictates the nature and methodology of sampling macrophytes. Critical factors are the time available, how critical the information is, expertise available, duration of the study, and characteristics of the waterway.

Techniques are few, and the investigator's best asset is his capability for innovating sound procedures.

2.0 SAMPLE COLLECTION AND ANALYSIS

Collecting representative genera from the macrophyton community is generally not difficult because of their large size and littoral habitats. Macrophytes may be readily identified to genera and some to species in the field, or they may be dried in a plant press and mounted for

BIOLOGICAL METHODS

further identification. Small, delicate species may be preserved in buffered 4 percent formalin solution. Some of the more useful taxonomic works for identification are Muenscher (1944), Eyles and Robertson (1944), Fassett (1960) and Winterringer and Lopinot (1966).

2.1 Qualitative Sampling

Qualitative sampling includes visual observation and collection of representative types from the study area. Report the extent of growth as dense when coverage is continuous, moderate when growths are common, and sparse when the growth is rarely encountered. The crop of plants may be comprised of just one genus or may be a mixture; if a mixture, estimate the percentage of individual types.

Sampling gear is varied and the choice of tools usually depends on water depth. In shallow water, a garden rake or similar device is very effective for collecting macrophytes. In deeper water, employ grabs, such as the Ekman, to collect submersed types. In recent years, scuba diving has gained popularity with many investigators in extensive plant surveys. Phillips (1959) provides detailed information on qualitative sampling.

2.2 Quantitative Sampling

Quantitative sampling for macrophytes is usually to determine the extent or rate of growth or weight of growth per unit of area. The study objectives determine whether measurements will involve a single species or several.

Before beginning a quantitative investigation, develop a statistical design to assist in determining the best sampling procedure, sampling area size, and number of samples. Often proce-
dures adapted from terrestrial plant surveys are applicable in the aquatic environment. The following references will be helpful in adopting a suitable technique: Penfound, 1956; Westlake, 1966; Boyd, 1969; Forsberg, 1959, 1960; Edwards and Owens, 1960; Jervis, 1969; Blackburn, et al., 1968.

Standing crop. Sampling should be limited to small, defined subareas (quadrates) with conspicuous borders. Use a square framework with the poles anchored on the bottom and floating line for the sides. Collect the plants from within the frame by hand or by using a long-handled garden rake. Forsberg (1959) has described other methods such as laying out long, narrow transects.

Obtain the wet weight of material after the plants have drained for a standard period of time, determined by the investigator. Dry the samples (or subsamples for large species) for 24 hours at $105^{\circ} \mathrm{C}$ and reweigh. Calculate the dry weight of vegetation per unit area.

Planimeter accurate maps to determine the total area of investigation. If additional boat or air reconnaissance (using photographs) is done to determine type and extent of coverage, data collected from the subareas can then be expanded for the total study area. Boyd (1969) describes a technique for obtaining surface coverage by macrophytes in a small body of water.

Productivity. Estimate standing crops at predetermined intervals to relate growth rates to pollution, such as nutrient stimulation, retardation, or toxicity from heavy metals and thermal effects. Wetzel (1964) and Davies (1970) describe a more accurate method with the use of a carbon-14 procedure to estimate daily productivity rates of macrophytes.

MACROPHYTON

3.0 REFERENCES

Blackburn, R. D., P. F. White, and L. W. Weldon. 1968. Ecology of submersed aquatic weeds in south Florida canals. Weed Sci. 16:261-266.
Boyd, C. E. 1969. Production, mineral nutrient absorption, and biochemical assimilation by Justicia americana and Alternanthera philoxeroides. Archiv. Hydrobiol. 66:139-160.
Boyd, C. E. 1970. Vascular aquatic plants for mineral nutrient removal from polluted waters. Econ. Bot. 24:95-103.
Boyd, C. E. 1971. The limnological role of aquatic macrophytes and their relationship to reservoir management. In: Reservoir Fisheries and Limnology, G. E. Hall (cd.), Spec. Publ. No. 8. Amer. Fish. Soc., Washington, D.C. pp. 153-166.
Davies, G. S. 1970. Productivity of macrophytes in Marion Lake, British Columbia. J. Fish. Res. Bd. Canada, 27:71-81.
Edwards, R. W., and M. Owens. 1960. The effects of plants on river conditions. I. Summer crops and estimates of net productivity of macrophytes in a chalk stream. J. Ecol. 48:151-160.
Eyles, D. E., and J. L. Robertson, Jr. 1944. A guide and key to the aquatic plants of the southeastern United States. Public Health Bull. No. 286. U. S. Gov. Printing Office, Washington, D.C. 151 pp .
Fassett, N. C. 1960. A manual of aquatic plants. Univ. Wisconsin Press, Madison. 405 pp.
Forsberg, C. 1959. Quantitative sampling of subaquatic vegetation. Oikos, 10:233-240.
Forsberg, C. 1960. Subaquatic macrovegetation in Osbysjon, Djurholm. Oikos, 11:183-199.
Holm, L. G., L. W. Weldon, and R. D. Blackburn. 1969. Aquatic weeds. Science, 166:699-709.
Hotchkiss, N. 1941. The limnological role of the higher plants. In: A symposium of hydrobiology, Univ. Wisconsin Press, Madison. pp. 152-162.
Jervis, R. A. 1969. Primary production in the freshwater marsh ecosystems of Troy Meadows, New Jersey. Bull. Torrey Bot. Club, 96:209-231.
Kolkwitz, R., and M. Marsson. 1908. Oekologie der pflanzlichen Saprobien. Berichte deutschen botanischen Gesellschaft, 26a:505-519. Mackenthun, K. M. 1969. The practice of water pollution biology. U. S. FWPCA, Cincinnati. 281 pp.
Mackenthun, K. M., and W. M. Ingram. 1967. Biological associated problems in freshwater environments. U. S. FWPCA, Cincinnati. 287 pp.
Muenscher, W. C. 1944. Aquatic plants of the United States. Comstock Pub. Co., Ithaca, 374 pp.
Penfound, W. T. 1956. An outline for ecological life histories of herbaceous vascular hydrophytes. Ecology, 33:123-128.
Phillips, E. A. 1959. Methods of vegetation study. Henry Holt \& Co., New York, 107 pp.
Westiake, D. F. 1966. The biomass and productivity of Gylceria maxima. I. Seasonal changes in biomass. J. Ecol. 54:745-753.
Wetzel, R. G. 1964. A comparative study of the primary productivity of higher aquatic plants, periphyton, and phytoplankton in a large shallow lake. Int. Rev. ges. Hydrobiol. 49•1-61.
Wilson, L. R. 1939. Rooted aquatic plants and their relation to the limnology of fresh-water lakes. In: Problems of Lake Biology. Publ. No. 10, Amer. Assoc. Adv. Sci. pp. 107-122.
Winterringer, G. S., and A. C. Lopinot. 1966. Aquatic plants of Illinois. Ill. State Museum Popular Ser. Vol. VI, In. State Museum Division. 142 pp.
Yount, J. L., and R. A. Crossman, Jr. 1970. Eutrophication control by plant harvesting. JWPCF, 42:173-183.

MACROINVERIEBRAIES

MACROINVERTEBRATES

Y'age
1.0 INTRODUCTION 1
2.0 SELECTION OF SAMPLE SITES 2
2.1 Systematic Sampling 2
2.2 Random Sampling 2
2.3 Measurement of Abiotic Factors 2
2.3.1 Substrate 2
2.3.2 Depth 4
2.3.3 Current Velocity 4
2.3.4 Salinity 4
3.0 SAMPLING METHODS 5
3.1 Quantitative 5
3.1.1 Definitions and Purpose 5
3.1.2 Requirements 5
3.1.3 Advantages 5
3.1.4 Limitations 6
3.2 Qualitative 6
3.2.1 Definitions and Purpose 6
3.2.2 Requirements 6
3.2.3 Advantages 6
3.2.4 Limitations 6
3.3 Devices 7
3.3.1 Grabs 7
3.3.2 Sieving Devices 9
3.3.3 Coring Devices 9
3.3.4 Artificial Substrates 10
3.3.5 Drift Nets 11
3.3.6 Photography 12
3.3.7 Qualitative Devices 12
4.0 SAMPLE PROCESSING 12
4.1 Sieving 12
4.2 Preservation 13
4.3 Labelling 13
4.4 Sorting and Subsampling 13
4.5 Identification 14
4.6 Biomass 15
5.0 DATA EVALUATION 15
5.1 Quantitative Data 15
5.1.1 Reporting Units 15
5.1.2 Standing Crop and Taxonomic Composition 15
5.1.3 Diversity 16
5.2 Oualitative Data 18
5.2.1 Indicator Organism Schemes 18
5.2.2 Reference Station Methods 18
6.0 LITERATURE CITED 32
7.0 TAXONOMIC BIBLIOGRAPHY 33
7.1 Coleoptera 33
Page
7.2 Crustacea 34
7.3 Diptera 34
7.4 Ephemeroptera 35
7.5 Hemiptera 36
7.6 Hirudinea 36
7.7 Hydracarina 36
7.8 Lepidoptera 36
7.9 Megaloptera 36
7.10 Mollusca 36
7.11 Odonata 37
7.12 Oligochaeta 37
7.13 Plecoptera 37
7.14 Trichoptera 37
7.15 Marine 38

MACROINVERTEBRATES

1.0 INTRODUCTION

The aquatic macroinvertebrates, as discussed in this section, are animals that are large enough to be seen by the unaided eye and can be retained by a U. S. Standard No. 30 sieve (28 meshes per inch, 0.595 mm openings) and live at least part of their life cycles within or upon available substrates in a body of water or water transport system.

Any available substrate may provide suitable habitat including bottom sediments, submerged logs, debris, pilings, pipes, conduits, vascular aquatic plants, filamentous algae, etc.

The major taxonomic groups included in fresh water are the insects, annelids, molluscs, flatworms, roundworms, and crustaceans. The major groups in salt water are the molluscs, annelids, crustaceans, coelenterates, porifera, and bryozoans.

Benthic macroinvertebrates can be defined by location and size but not by position in the trophic structure since they occupy virtually all levels. They may be omnivores, carnivores, or herbivores; and in a well-balanced system, all three types will likely be present. They include deposit and detritus feeders, parasites, scavengers, grazers, and predators.

Species present, distribution, and abundance of aquatic macroinvertebrates may be subject to wide seasonal variations. Thus, when conducting comparative studies, the investigator must be quite careful to avoid the confounding effects of these seasonal changes. Seasonal variations are particularly important in fresh-water habitats dominated by aquatic insects having several life stages, not all of which are aquatic.

The macroinvertebrates are important members of the food web, and their well-being is reflected in the well-being of the higher forms such as fish. Many invertebrates, such as the marine and fresh-water shellfish, are important commercial and recreational species. Some, such as mosquitos, black flies, biting midges, and Asiatic clams, are of considerable public health significance or are simple pests; and many forms are important for digesting organic material and recycling nutrients.

A community of macroinvertebrates in an aquatic ecosystem is very sensitive to stress, and thus its characteristics serve as a useful tool for detecting environmental perturbations resulting from introduced contaminants. Because of the limited mobility of benthic organisms and their relatively long life span, their characteristics are a function of conditions during the recent past, including reactions to infrequently discharged wastes that would be difficult to detect by periodic chemical sampling.

Also, because of the phenomenon of "biological magnification" and relatively longterm retention of contaminants by benthic organisms, contaminants such as pesticides, radioactive materials, and metals, which are only periodically discharged or which are present at undetectable levels in the water, may be detected by chemical analyses of selected components of the macroinvertebrate fauna.

In pollution-oriented studies of macroinvertebrate communities, there are basically two a pproaches-quantitative and qualitative-that may be utilized singly or in combination. Because of the basic nature of this decision, the section of this manual relating to sampling methods and data evaluation of macroinvertebrates is arranged on the basis of whether a quantitative or qualitative approach is used.

Ideally, the design of macroinvertebrate studies should be based upon study goals or objectives; however, the ideal must frequently be tempered by the realities of available resources, time limitations imposed on the study, and the characteristics of the habitat to be studied. To aid in selecting the most advantageous sampling method, sample sites, and data evaluation, the reader of this section should be familiar with the material in the "Introduction" of this manual, particularly those portions outlining and discussing requirements of the various types of field studies in which an investigator may become involved.
To supplement the material contained in this manual, a number of basic references should be available to investigators of the benthic community, particularly to those engaged in water
pollution studies. These include Standard Methods (2), Welch (57), Mackenthun (37), Kittrell (29), Hynes (26), and Buchanan and Sommers (9).

2.0 SELECTION OF SAMPLE SITES

As discussed and defined more fully in the section on biometrics, sample sites may be selected systematically or by various randomization procedures.

2.1 Systematic Sampling

Unless the data are to be utilized for quantitative evaluations, some type of systematic sampling is generally employed for synoptic surveys and reconnaissance studies. Line transects established at discrete intervals across a river or stream and sampled at quarter points or more frequent intervals are a form of systematic sampling and serve as an excellent means of delimiting and mapping the habitat types. In lakes, reservoirs, and estuaries, transects may be established along the short or long axis or may radiate out from a pollution source. If a random start point is used for selecting sampling sites along the transects, the data may be amenable to quantitative evaluation (see Biometrics Section). As will be discussed, however, the confounding effects of changes in physical characteristics of the environment along the transect must be fully recognized and accounted for.

In another form of systematic sampling, the investigator, using a variety of gear, consciously selects and intensively samples all recognizable habitat types. As previously mentioned, this form of sample site selection is useful for synoptic surveys and for comparative studies where qualitative comparisons are being made.

2.2 Random Sampling

For conducting quantitative studies, where a measure of precision must be obtained, some type of randomization procedure must be employed in selecting sampling sites. This selection may be carried out on the whole of the area under study (simple random sampling), or the randomization procedure may be conducted independently on selected strata (stratified random sampling). Because the characteristics of
macroinvertebrate communities are so closely related to physical factors such as substrate type, current velocity, depth, and salinity, a design using simple random sampling is seldom meaningful. Therefore, the investigator should stratify the habitat on the basis of known physical habitat differences and collect samples by the random grid technique within each habitat type.

As alluded to above, and regardless of the method of sample site selection, the biologist must consider and account for those natural environmental variations that may affect the distribution of organisms. Among the more important natural environmental variables in fresh-water habitats are substrate type, current velocity, and depth. In estuaries, the salinity gradient is an additional variable that must be accounted for.

2.3 Measurement of Abiotic Factors

2.3.1 Substrate

Substrate is one of the most important factors controlling the characteristics of the community of aquatic macroinvertebrates found at a given location in a body of water (49). Over a period of time, the natural substrates may be greatly altered by the discharge of particulate mineral or organic matter, and the location and expanse of various substrate types (silt, sand, gravel, etc.) may change because of normal variations in hydrolic factors such as current velocity and stream flow. The biologist, therefore, must be cognizant of changes in the nature and properties of the substrate which may provide clues on the quality and quantity of pollutants and consider factors which affect the normal distribution of the benthic fauna.

Where the pollutant has a direct effect on the characteristics of the substrate, the effects of changes in water quality may be inseparable from the effects of changes in the substrate. In cases where substrate deterioration has occurred, faunal effects may be so obvious that extensive sampling may not be required, and special attention should be given to the physical and/or chemical characterization of the deposits.

In conducting synoptic surveys or other types of qualitative studies and taking into account
the limitations of available sampling devices, sampling sites should be selected to include all available substrates. If these qualitative samples are to be used for determining the effects of pollutants where the pollutant does not have a direct affect on the substrate, the investigator must bear in mind that only the fauna from sites having similar substrates (in terms of organic content, particle size, vegetative cover, and detritus) will provide valid data for comparison.

For quantitative studies, it is sometimes necessary in the interest of economy and efficiency and within the limitations of the available gear, to sample primarily at sites having substrates which normally support the most abundant and varied fauna, and devote a minimum effort to those substrates supporting little or no life. For instance, in many large, swiftlyflowing rivers of the Midwest and Southeast, the areas of "scour" with a substrate of shifting sand or hardpan may be almost devoid of macroinvertebrates; sampling effort may be reduced there in
favor of the more productive areas of "deposition" on the inside of bends or in the vicinity of obstructions. Just the opposite situation may occur in many of the swiftly-flowing upland streams, where most of the effort may be devoted to sampling the productive rubble and gravel riffle areas instead of the pools.

Because of the importance of substrate (in terms of both organic content and particle size) in macroinvertebrate studies, it is suggested that sufficient samples be collected to conduct the following minimal analyses and evaluations:

- In the field, classify and record, on suitable forms, the mineral and organic matter content of the stream, lake, or estuary bottom at each sample site on a percentage basis with the use of the categories shown in Table 1. Although the categories given in Table 1 may not apply universally, they should be applicable to most situations with only slight modification.

TABLE 1. CATEGORIES FOR FIELD EVALUATION OF SOIL CHARACTERISTICS*

Type	Size or characteristic
Inorganic Components	
Bed rock or solid rock	
Boulders	$>256 \mathrm{~mm}$ (10 in .) in diameter
Rubble	64 to 256 mm ($21 / 2$ to 10 in .) in diameter
Gravel	2 to 64 mm (1/12 to $21 / 2 \mathrm{in}$.) in diameter
Sand	0.06 to 2.0 mm in diameter; gritty texture when rubbed between fingers.
Silt	0.004 to 0.06 mm in diameter
Clay	$<0.004 \mathrm{~mm}$ in diameter; smooth, slick feeling when rubbed between fingers
Marl	Calcium carbonate; usually gray; often contains fragments of mollusc shells or Chara; effervesces freely with hydrochloric acid
Organic Components	
Detritus	Accumulated wood, sticks, and other undecayed coarse plant materials
Fibrous peat	Partially decomposed plant remains; parts of plants readily distinguishable
Pulpy peat	Very finely divided plant remains; parts of plants not distinguishable; varies in color from green to brown; varies greatly in consistence-of ten being semi-fluid
Muck	Black, finely divided organic matter; completely decomposed

[^3]- In the laboratory, evaluate the inorganic components by conducting a wet and dry particle size analysis on one or more samples and preferably on replicate samples from each sampling site with the use of standard sieves and following the modified Wentworth classification shown in Table 2. Detailed procedures for sediment analysis are found in IBP handbook No. 16.*

TABLE 2. SOIL PARTICLE SIZE CLASSIFICATION*

Name	Particle size (mm)	U.S. standard sieve series $\#$
Boulder	>256	
Rubble	$64-256$	
Coarse gravel	$32-64$	\dagger
Medium gravel	$8-32$	10
Fine gravel	$2-8$	35
Coarse sand	$0.5-2$	120
Medium sand	$0.25-0.5$	230
Fine sand	$0.125-0.25$	
Very fine sand	$0.0625-0.125$	
Silt	$0.0039-0.0625$	Centrifuge (750 rpm, 3 min) \ddagger Clay

*Modified from Wentworth (58); see Cummins, K. A. 1962. An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. Amer. Midl. Nat, 67:477-504.
\dagger Standard sieves with 8 - mm diameter openings are commonly available.
\ddagger Jackson, M. L. 1956. Soil chemical analysis. Univ. Wisconsin Press, Madison.

- Determine the organic content by drying and ashing a representative sample of the sediments; use the methods outlined in the Plankton Section.

2.3.2 Depth

Depth indirectly affects the distribution of aquatic macroinvertebrates as a result of its influence on the availability of light for plant growth, on water temperature, on the zonation of bottom deposits, on the water chemistry (particularly oxygen), and phototactic responses of organisms. In regard to the selection of

[^4]sampling sites for both qualitative and studies, depth must be measured and included as an independent variable in the study design.

2.3.3 Current velocity

Current velocity affects the distribution of organisms in lotic environments and along the windswept shores of lentic environments, both directly (because of differing species requirements) and indirectly (sorting of bottom sediments). Therefore, it is of critical importance that velocity be considered when sampling sites are selected, and when data are analyzed. Only sites with comparable velocity should be compared. At the actual time of sampling, determine velocity at each sample site by using a suitable current measuring device. The TSK flow meter listed in the appendix is suitable if modified by the addition of a stabilizing fin and propeller lock.

- At depths greater than 3 feet, use the two-point method (1); take readings at 0.2 and 0.8 of the depth below the surface. The average of these two observations is taken as the mean velocity.
- At depths less than 3 feet, the 0.6 -depth method (1) is used; take readings at 0.6 of the depth below the surface.
- Where artificial substrate samplers are being utilized, take the reading directly upstream of the sampler and at the same depth.

2.3.4 Salinity

Salinity is an important factor in marine and estuarine environments. The salinity of sea water is approximately 35 parts per thousand; salinity of fresh water is generally a few parts per million. In estuaries, where sea water and fresh water meet, there may be wide fluctuations of salinity with tides and river discharge. This area may be inhabited to some extent by both freshand salt-water forms, but the number of species is usually less than that that occurs under more stable conditions of salinity (35). Since movement, as well as general location of many species, is governed by tides and salinity, these must be taken into account in determining sampling time and location.

Because of the extreme spatial and temporal fluctuations of salinity in estuaries, simple, rapid instrumental methods of measurement are more desirable than slower, more precise chemical methods (38).

Wide-range, temperature-compensated conductivity salinometers are recommended for determining both horizontal and vertical salinity profiles at high-slack and low-slack tide levels in the area of estuary or reach of river being studied.

3.0 SAMPLING METHODS

3.1 QUANTITATIVE

3.1.1 Definitions and purpose

Although the data may be evaluated in various ways, a quantitative method essentially involves an estimation of the numbers or biomass (standing crop) of the various components of the macroinvertebrate community per unit area in all or a portion of the available habitats (including artificially introduced habitats) in the ecosystem being studied, and provides information on the species composition, richness of species and distribution of individuals among the species.

3.1.2 Requirements

Obtain quantitative estimates by using devices that sample a unit area or volume of habitat, such as a Surber square-foot sampler, which in use presumably collects all organisms enclosed within the frame of the sampler, or an artificial substrate sampler having a fixed volume or exposing a fixed amount of surface.

In the study of macroinvertebrate populations, the sampling precision is affected by a number of factors, including: size, weight, and construction of the sampling device, the type of substrate, and the distribution of organisms in and on the substrate. For example, it is expected that the estimates of standing crop drawn from a series of samples will be more precise (have a lower coefficient of variation) when the community consists of a few species represented
by a large number of individuals, evenly distributed in the substrate. Conversely, a large coefficient of variation would be expected if the fauna consists of a large number of species with a patchy distribution of individuals. To obtain the same level of precision at a given level of probability, a larger number of replicates would be required in the latter case than in the former. In general, the smaller the surface area encompassed by a sampling device, the larger the number of samples required to obtain a desired level of precision. Thus, precision can be increased by collecting larger samples, or by increasing the numbers of samples collected.
An objective, quantitative approach necessitates that a measure of the precision of the estimates be obtained - thus, replicate sampling in each habitat or stratum selected for study is an absolute requirement. For measurement of precision, three replicates are an absolute minimum. (A series of single samples taken at discrete points along a transect do not represent replicate samples of benthic organisms unless it can be demonstrated that the physical characteristics of the habitat do not change along the transect.)

It is preferable, if data are available (or can be obtained by reconniassance or exploratory studies), to determine the number of replicates on the basis of the desired level of precision as discussed in the Biometrics Section.

3.1.3 Advantages

In addition to providing the same data obtained from a qualitative study, the standing crop data generated by a quantitative study provide a means of comparing the productivity of different environments; and if a measure of turnover is available, the actual production can be computed.

The use of quantitative sampling devices in carefully chosen habitats is recommended because they reduce sampling bias resulting from differences in expertise of the sample collector.
The data from properly designed quantitative studies are amenable to the use of simple but
powerful statistical tools that aid in maintaining the objectivity of the data evaluation process. The measures of precision and probability statements that can be attached to quantitative data reduce the possibilities of bias in the data evaluation process and make the results of different investigators more readily comparable.

The advantages, then, of quantitative methods are:

- They provide a measure of productivity.
- The investigator can measure precision of estimates and attach probability statements, thus providing objective comparisons.
- The data of different investigators may be compared.

3.1.4 Limitations

Presently, no sampling devices are adequate to sample all types of habitat; so when quantitative devices are used, only selected portions of the environment may be sampled.

Sampling precision is frequently so low that prohibitive numbers of replicate samples may be required to obtain meaningful estimates. Sample processing and analysis are slow and timeconsuming. In some cases, therefore, time limitations placed on a study may prohibit the use of quantitative techniques.

3.2 Qualitative

3.2.1 Definitions and purpose

The objective of qualitative studies is to determine the presence or absence of forms having varying degrees of tolerance to contaminants and to obtain information on "richness of species." Samples are obtained with the use of a wide variety of collecting methods and gear, many of which are not amenable to quantitation on a unit-area basis. When conducting qualitative studies, an attempt is usually made to collect all species present by exhaustive sampling in all available habitat types.

3.2.2 Requirements

Recognizing and locating various types of habitats where qualitative samples can be collected and selecting suitable collecting
techniques require experience and a high level of expertise.

When conducting comparative studies of the macrobenthos, a major pitfall is the confounding effect of the differences in physical habitat among the different stations being studied. This danger is particularly inherent in qualitative studies when an attempt is made to systematically collect representative specimens of all species present at the sampling stations or reaches of river being compared. Unfortunately, differences in habitat unrelated to the effects of introduced contaminants may render such comparisons meaningless. Minimize this pitfall by carefully recording, in the field, the habitats from which specimens are collected and then basing comparisons only on stations with like habitats in which the same amount of collecting effort has been expended.

3.2.3 Advantages

Because of wide latitude in collecting techniques, the types of habitat that can be sampled are relatively unrestricted. Assuming taxonomic expertise is available, the processing of qualitative samples is often considerably faster than that required for quantitative samples.

3.2.4 Limitations

Collecting techniques are subjective and depend on the skill and experience of the individual who makes the field collections. Therefore, results of one investigator are difficult to compare with those of another.

As discussed elsewhere, the drift of organisms into the sample area may bias the evaluation of qualitative data and render comparisons meaningless.

No information on standing crop or production can be generated from a qualitative study.

3.3 Devices

3.3.1 Grabs

Grabs are devices designed to penetrate the substrate by virtue of their own weight and leverage, and have spring- or gravity-activated closing mechanisms. In shallow waters, some of these devices may be rigged on poles or rods and physically pushed into the substrate to a
predetermined depth. Grabs with springactivated closing devices include the Ekman, Shipek, and Smith-McIntyre; gravity-closing grabs include the Petersen,* Ponar, and Orange Peel. Excellent descriptions of these devices are given in Standard Methods (2) Welch (57). Grabs are useful for sampling at all depths in lakes, estuaries, and rivers in substrates ranging from soft muds through gravel.

In addition to the previously discussed problems related to the patchy distribution of organisms in nature, the number and kinds of organisms collected by a particular grab may be affected by:

- depth of penetration
- angle of closure
- completeness of closure of the jaws and loss of sample material during retrieval
- creation of a "shock" wave and consequent "wash-out" of near-surface organisms
- stability of sampler at the high-flow velocities often encountered in rivers.

Depth of penetration is a very serious problem and depends on the weight of sampler as opposed to the particle size and degree of compaction of the bottom sediments. The Ekman grab is light in weight and most useful for sampling soft, finely divided substrates composed of varying proportions of fine sand, clay, slit, pulpy peat, and muck. For clay hardpan and coarse substrates, such as coarse sands and gravels, the heavier grabs such as the orange peel or clam shell types (Ponar, Petersen, Smith-McIntyre) are more satisfactory. Auxiliary weights may be added to aid penetration of the substrate and to add stability in heavy currents and rough waters.

Because of differences in the depth of penetration and the angle of "bite" upon closure, data from the different grabs are not comparable. The Ekman essentially encloses a square, which is equal in area from the surface to

[^5]maximum depth of penetration before closure. In soft substrates, for which this grab is best suited, the penetration is quite deep and the angular closure of the spring-loaded jaws has very little effect on the volume of sample collected. In essence this means that if the depth of penetration is 15 cm , the organisms lying at that depth have the same opportunity to be sampled as those lying near the surface.

In clam-shell type grabs, such as the Petersen, Ponar, Shipek, and Smith-McIntyre, the original penetration is often quite shallow: because of the sharp angle of "bite" upon closure, the area enclosed by the jaws decreases at increasing depths of substrate penetration. Therefore, within the enclosed area, organisms found at greater depths do not have an equal opportunity to be sampled as in the case of the Ekman grab and other sampling methods described in the next section. This problem is particularly true of the Shipek sampler - the jaws do not penetrate the substrate before closure and, in profile, the sample is essentially one-half of a cylinder.

Probably one of the most frustrating aspects of sampling macroinvertebrates with various types of grabs relates to the problem of incomplete closure of the jaws. Any object - such as clumps of vegetation, woody debris, and gravel - that cannot be sheared by the closing action of the jaws often prevents complete closure. In the order of their decreasing ability to shear obstructing materials, the common grabs may be ranked: Shipek, Smith-McIntyre, Orange Peel, Ponar, Petersen, and Ekman. If the Ekman is filled to within more than 5 cm of the top, there may be loss of substrate material on retrieval (16). An advantage of the Ekman grab is that the surface of the sediment can be examined upon retrieval, and only those samples in which the sediment surface is undisturbed should be retained.

All grabs and corers produce a "shock" wave as they descend. This disturbance can affect the efficiency of a sampler by causing an outward wash (blow-out) of flocculent materials near the mud-water interface that may result in
inadequate sampling of near-surface organisms such as phantom midge larvae, and some chironomid midges. The shock wave of the Ekman grab is minimized by the use of hinged, freely-opening top flaps. The Ponar grab is a modified Petersen with side curtains and a screen on the top. The screen allows water to pass and undoubtedly reduces the shock wave; however, divers have observed blow-out with this device (16).

Grab-collected samples provide a very imprecise estimate of the numbers of individuals and numbers of taxa of aquatic macroinvertebrates. A summary of data from various sources shows that the mean coefficient of variation (C) for numbers of individuals collected by Ponar, Petersen, and Ekman grabs was 46,48 , and 50 percent, respectively (Table 3). In most of the studies on which the calculations in Table 3 are based, the level of replication ranged from three to six samples. Estimations of number of taxa are more precise: for Ponar, Petersen, and Ekman grabs, the mean calculated C was 28,36 , and 46 percent respectively (Table 3).

On the basis of the calculations in Table 4, there appear to be no consistent differences in the precision of estimates collected by Ekman, Ponar, and Petersen grabs in mud or sand substrates. The poor closure ability of the Ekman in coarse substrates such as gravel is demonstrated by the large C values for the Ekman as compared with values for the Petersen and Ponar in gravel substrates.

Another way of demonstrating the reliability of grab sample estimates of macrobenthos standing crop is to calculate, at a given probability level, the range of values around the sample mean in which the true mean should lie if a given number of replicate samples were collected. From the data shown in Table 3 for the Petersen, Ponar, and Ekman grabs in various types of substrate, coefficients of variation near 50 percent for numbers of individuals and 35 percent for numbers of taxa should be expected with 3 to 6 replicates. With the use of these expected values, the true mean for numbers of individuals and number of taxa of macroinvertebrates should lie within plus or minus 36 percent

TABLE 3. MEAN AND MODAL VALUES FOR COEFFICIENTS OF VARIATION* (EXPRESSED AS PERCENTAGE) FOR NUMBERS OF INDIVIDUALS AND NUMBERS OF TAXA OF MACROINVERTEBRATES COLLECTED BY VARIOUS DEVICES

Sampling device	Individuals		Taxa		Remarks
	Mean	Modet \dagger	Mean	Mode \ddagger	
Rock-filled barbeque basket	32	21-30	20	11-20	22 sets of samples with 4-6 reps. per set (52) and 2 sets of samples having 15 and 16 reps. (13).
Ponar	46	41-50	28	11-20	12 sets of samples with $3-12$ reps. per set (16,31)
Petersen	48	51-60	36	21-30	21 sets of samples with $3-6$ reps. per set (31,53 , 54).
Ekman	50	41-50	46	$31-40$	27 sets of samples with $3-12$ reps. per set $(8,16,31$, 45, 53).
Surber	50	41-50			60 sets of samples having 6 reps. per set (20).
Corer \dagger	50				7 sets of samples having 10 reps. per set (8).
Stovepipe	56	31-40	38	21-30	32 sets of samples having 3-4 reps. per set (53).

*Coefficient of variation $=($ standard deviation $\times 100) /$ mean .
\dagger Frequency distribution based on 10% increments.
\ddagger Oligochaetes only.
and 25 percent, respectively, of the sample mean at a 95 percent probability level, if 10 replicates were collected. (See Biometrics Section.)

Precision would, of course, be increased if additional samples were collected, or if the sampling method were more precise.

Since the assumptions necessary for the statistical calculations shown in Tables 3 and 4 are not likely met in the data of different investigators collected from different habitats, the above calculations only provide a gross approximation of the precision to be expected. They do, however, serve to emphasize the very imprecise nature of grab sample data and the resultant need for careful stratification of the type of the habitat sampled and sample replication.

TABLE 4. MEAN COEFFICIENTS OF VARIATION (EXPRESSED AS PERCENTAGE) FOR NUMBERS OF INDIVIDUALS AND NUMBERS OF TAXA OF MACROINVERTEBRATES COLLECTED IN DIFFERENT SUBSTRATES BY GRAB-TYPE DEVICES AND A CORER DEVICE*

Sampling device	Substrate						
	Mud		Sand		Gravel		
	Ind.	Taxa	Ind.	Taxa	Ind.	Taxa	
Ekman	49	40	41	21	106	74	
Petersen	41	29	50	41	49	20	
Ponar	46	25	38	33	48	19	
Corert	50						

*Calculated from data in references $(8,16,31,45,53,54)$. \dagger Oligochaetes only.

3.3.2 Sieving devices

For quantitative sampling, the well-known Surber square-foot sampler (2, 57) is the most commonly used sieving device. This device can be used only in flowing water having depths not greater than 18 inches and preferably less than 12 inches. It is commonly used for sampling the rubble and gravel riffles of small streams and may be used in pools where the water depth is not too great.

When using a sieving-type device for quantitative estimates, reliability may be affected by:

- adequacy of seating of the frame on the substrate
- backwash resulting from resistance of the net to water flow - at high velocity of flow this may be significant
- care used in recovering the organisms from the substrate materials
- depth to which the substrate is worked
- drift of organisms from areas upstream of the sample site

To reduce the possibility of bias resulting from upstream disturbance of the substrate, always stand on the downstream side of a sieving device and take replicates in an upstream or lateral direction. Never start in the upstream portion of a pool or riffle and work in a downstream direction.

The precision of estimates of standing crops of macrobenthos obtained with Surber-type sieving devices varies widely and depends on a number of factors including the uniformity of substrate and distribution of organisms therein, the care used in collecting samples, and level of sample replication.

For a large series of Surber samples from southeastern U. S. trout streams, the coefficient of variation (C) ranged from 11 percent to greater than 100 percent (Table 3). The mean value of C was near 50 percent, and more than one-half of the C values fell between 30 and 50 percent. These values are similar to the 20 to 50 percent reported by Allen (1) and for those discussed above for grab sample data.

3.3.3 Coring devices

Included in this category are single- and multiple-head coring devices, tubular inverting devices, and open-ended stovepipe-type devices.

Coring devices are described in Standard Methods (2) and Welch (57). Corers can be used at various depths in any substrate that is sufficiently compacted so that the sample is retained; however, they are best suited for sampling the relatively homogeneous soft sediments of the deeper portions of lakes.

Because of the small area sampled, data from coring devices are likely to provide very imprecise estimates of the standing crop of macrobenthos. As the data in Table 3 illustrate, the variability in numbers of oligochaetes (a dominant component of the fauna studied) collected in corers is similar to that for grab-type devices; however, the corer data were calculated from two to three times as many replicate samples and were collected from a relatively homogeneous substrate.

Such additional replication with corers is feasible because of the small amount of material per sample that must be handled in the laboratory. Multiple-head corers have been used in an attempt to reduce the field sampling effort that must be expended to collect large series of core samples (19).

The Dendy inverting sampler (57) is a highly efficient coring-type device used for sampling at depths to 2 or 3 meters in nonvegetated substrates ranging from soft muds through coarse sand. Because of the small surface area sampled, data obtained by this sampler suffer from the same lack of precision (51) as the coring devices described above. Since the per-sample processing time is reduced, as with the corers, large series of replicates can be collected. The Dendy sampler is highly recommended for use in habitats for which it is suitable.

Stovepipe-type devices include the Wilding sampler $(2,57)$ and any tubular material such as 60 to 75 cm sections of standard $17-\mathrm{cm}-$ diameter stovepipe (51) or 75 cm sections of $30-\mathrm{cm}$-diameter aluminum irrigation pipe fitted with handles. In use, the irrigation pipe or commercial stovepipe is manually forced into the substrate, after which the contained vegetation and coarse substrate materials are removed by hand. The remaining materials are repeatedly stirred into suspension, removed with a longhandled dipper, and poured through a woodenframed floating sieve. Because of the laborious and repetitive process of stirring, dipping, and sieving large volumes of material, the collection of a sample often requires 20 to 30 minutes.

The use of stovepipe samplers is limited to standing or slowly moving waters having a maximum depth of less than 60 cm . Since
problems relating to depth of sediment penetration, changes in cross-sectional area with depth of penetration, and escapement of organisms are circumvented by stovepipe samplers, they are recommended for quantitative sampling in all shallow water benthic habitats. They probably represent the only quantitative device suitable for sampling shallow-water habitats containing stands of rooted vascular plants and will collect organisms inhabiting the vegetative substrates as well as those living in sediments. The coefficients of variation for the stovepipe samples in Table 3 are comparable to the coefficients for grab samples, although the stovepipe samples were collected in heavily vegetated and consequently highly variable habitats.

3.3.4 Artificial substrates

The basic multiple-plate sampler (23) and rock-filled basket sampler (21) have been modified by numerous workers $(17,40)$ and are widely used for investigating the macroinvertebrate community. Both samplers may be suspended from a surface float or may be modified for use in shallow streams by placing them on a rod that is driven into the stream bottom or anchored in a piece of concrete (24).

A multiple-plate sampler similar to that described by Fullner (17), except with circular plates and spacers, is recommended for use by EPA biologists. This sampler is constructed of $0.3-\mathrm{cm}$ tempered hardboard cut into $7.5-\mathrm{cm}$ diameter circular plates and $2.5-\mathrm{cm}$ circular spacers. A total of 14 plates and 24 spacers are required for each sampler. The hardboard plates and spacers are placed on a $1 / 4$-inch $(0.625 \mathrm{~cm})$ eyebolt so that there are eight single spaces, one double space, two triple spaces, and two quadruple spaces between the plates. This sampler has an effective surface area (excluding the bolt) of 0.13 square meter and conveniently fits into a wide-mouth glass or plastic jar for shipment and storage. Caution should be exercised in the reuse of samplers that may have been subjected to contamination by toxicants, oils, etc.

The rock basket sampler is a highly effective device for studying the macroinvertebrate community. A cylindrical, chromeplated basket
(2) or comparable enclosure filled with 30,5 to 8 -cm-diameter rocks or rock-like material is recommended for use by EPA biologists.

To reduce the number of organisms that escape when the samplers are retrieved, the multiple-plate sampler and the rock-filled basket sampler should be enclosed by a dip net constructed of 30 -mesh or finer grit bolting cloth.

Artificial substrate samplers, to a great extent, depend on chance colonization by drifting or swimming organisms; and, thus, the time of exposure may be critical to the development of a relatively abundant and diverse community of organisms. Adequate data are currently unavailable to determine the optimum exposure period, which is likely to differ in different bodies of water and at different times of the year. Until more data become available, adoption of a 6-week exposure period (2) is provisionally recommended as standard. If study time limitations reduce this period, the data must be evaluated with caution and, in no case, should data be compared from samplers exposed for different time periods (43).

In deeper waters, artificial substrate samplers should be suspended from floats and should be well up in the photic zone so that periphytic growths can develop and provide food for grazing forms of macroinvertebrates. Unless the water is exceptionally turbid, a 1.2 -meter (4-foot) depth is recommended as standard. If the water is less than 2.5 meters deep, the sampler should be suspended from a float halfway between the water surface and the stream bed.

In some situations, artificial substrate methods are the best means of conducting quantitative studies of the ability of an aquatic environment to support a diverse assemblage of macroinvertebrate organisms. Advantages of the method are:

- The confounding effects of substrate differences are reduced.
- A higher level of precision is obtained than with other sampling devices (Table 3).
- Quantitatively comparable data can be obtained in environments from which it is virtually impossible to obtain samples with conventional devices.
- Samples usually contain negligible amounts of extraneous material, permitting quick laboratory processing.

Limitations of artificial substrate samplers are:

- The need for a long exposure period makes the samplers unsuited for short-term survey studies.
- Samplers and floats are sometimes difficult to anchor in place and may present a navigation hazard.
- Samplers are vulnerable to vandalism and are often lost.
- Samplers provide no measure of the condition of the natural substrate at a station or of the effect of pollution on that substrate, including settled solids.
- Samplers only record the community that develops during the sampling period, thus reducing the value of the collected fauna as indicators of prior conditions.

Two other objections often made to the use of artificial substrate samplers are that they are selective to certain types of fauna and the data obtained do not provide a valid measure of the productivity of a particular environment. The validity of the latter objection depends on study objectives and may be of minor consequence in many pollution-oriented studies. The selectivity of artificial substrate samplers is a trival objection, since all currently available devices are selective. The selectivity of conventional sampling devices other than artificial substrates is directed toward those organisms that inhabit the types of substrate or substrates for which a particular type of sampler is designed.

3.3.5 Drift nets

Nets having a 15 by $30-\mathrm{cm}$ upstream opening and a bag length of 1.3 m (No. 40 mesh netting) are recommended for small, swift streams. In large, deep rivers with a current of approximately 0.03 meters per second (mps), nets having an opening of $0.093 \mathrm{~m}^{2}$ are recommended (2). Anchor the nets in flowing water (current not less than 0.015 mps) for from 1 to 24 hours, depending on the density of bottom
fauna and hydrologic conditions. Place the top of the nets just below the surface of the water to permit calculation of the flow through the nets and to lessen the chance for collection of floating terrestrial insects. Do not permit the nets to touch bottom. In large rivers, maximum catches are obtained 0.3 to 0.6 meter above the bottom in the shoreline zone at depths not exceeding 3 meters.
Drift nets are useful for collecting macroinvertebrates that migrate or are dislodged from the substrate; they are particularly well-suited for synoptic surveys because they are lightweight and easily transported. Thousands of organisms - including larvae of stoneflies, mayflies, caddisflies, and midges and other Diptera, may be collected in a sampling period of only a few hours. Maximum drift intensity occurs between sunset and midnight (55). Elliot (14) presents an excellent synopsis of drift net methodology.

3.3.6 Photography

The use of photography is mainly limited to environments that have suitably clear water and are inhabited by sessile animals and rooted plants. Many estuarine habitats, such as those containing corals, sponges, and attached algal forms, fall in this category and can be photographed before, during, and after the introduction of stress. The technique has been used with success in south Florida to evaluate changes brought about by the introduction of heated effluents.

The technique for horizontal underwater photos using scuba gear involves placing a photographically identifiable marker in the habitat to be photographed and an additional nearby marker on which the camera is placed each time a photograph is taken. By this means, identical areas can be photographed repeatedly over a period of time to evaluate on-site changes in sessile forms at both affected and control stations. Vertical, overhead photos may also be taken under suitable conditions.

3.3.7 Qualitative devices

The investigator has an unlimited choice of gear for collecting qualitative samples. Any of
the qualitative devices discussed previously, plus hand-held screens, dip nets, rakes, tongs, post hole diggers, bare hands, and forceps can be used. For deep-water collecting, some of the conventional grabs described earlier are normally required. In water less than 2 meters deep, a variety of gear may be used for sampling the sediments including long-handled dip nets and post-hole diggers. Collections from vascular plants and filamentous algae may be made with a dip net, common garden rake, potato fork, or oyster tongs. Collections from floating debris and rocks may be made by hand, using forceps to catch the smaller organisms.

In shallow streams, short sections of common window screen may be fastened between two poles and held in place at right angles to the water flow to collect organisms dislodged from upstream materials that have been agitated.

4.0 SAMPLE PROCESSING

4.1 Sieving

Samples collected with grabs, tubular devices, and artificial substrates contain varying amounts of finely divided materials such as completely decomposed organic material, silts, clays, and fine sand. To reduce sample volume and expedite sample processing in the laboratory, these fines should be removed by passing the sample through a U. S. Standard No. 30 sieve. Sieves may range from commercially constructed models to homemade sieves framed with wood or metal. Floating sieves with wooden frames reduce the danger of accidental loss of both sieve and sample when working over the side of a boat in deeper waters. A good sieve contains no cracks or crevices in which small organisms can become lodged.

If at all possible, sieving should be done in the field immediately after sample collection and while the captured organisms are alive. Once preserved, many organisms become quite fragile and if subjected to sieving will be broken up and lost or rendered unidentifiable.

Sieving may be accomplished by one of several techniques depending upon the reference of the individual biologist. In one technique, the sample is placed directly into a sieve and the
sieve is then partially submerged in water and agitated until all fine materials have passed through. The sieve is agitated preferably in a tub of water.

A variation of this technique is to place the original sample in a bucket or tub, add screened water, stir, and pour the slurry through a U. S. Standard No. 30 sieve. Only a moderate amount of agitation is then required to completely clean the sample. Since this method requires considerably less effort, most biologists probably prefer it.

In both of the above methods, remove all the larger pieces of debris and rocks from samples collected, clean carefuly, and discard before the sample is stirred or agitated.

The artificial substrate samplers are placed in a bucket or tub of screened water and are dismantled. Each individual piece of substrate material is shaken and then cleaned gently under water with a soft brush (a soft grade of toothbrush is excellent), examined visually, and laid aside. The water in the bucket or tub is then poured through a U. S. Standard No. 30 sieve to remove the fines.

4.2 Preservation

Fill sample containers no more than one-half full of sample material (exclusive of the preservative). Supplemental sample containers are used for samples with large volumes of material. Obtain ample numbers and kinds of sample containers before the collection trip: allow two or three 1 -liter containers per grab sample, a 1-liter container for most artificial substrate samples, and 16-dram screw-cap vials for miscellaneous collections.

Preserve the sample in 70 percent ethanol. A 70 percent ethanol solution is approximated by filling the one-half-full bottle, containing the sample and a small amount of rinse water, with 95 percent ethanol. Do not use formalin.

4.3 Labelling

Make sample labels of water-resistant paper and place inside the sample container. Write all information on the label with a soft-lead pencil. Where the volume of sample is so great that several containers are needed, additional
external labels with the \log number and notations such as 1 of 2,2 of 2 , are helpful for identifying sample containers in the laboratory.

Minimum information required on the sample label is a sample identification (log) number. The \log number identifies the sample in a bound ledger where the name of water body, station number, date, sampling device used, name of sample collector, substrate characteristics, depth, and other environmental information are placed.

4.4 Sorting and Subsampling

For quantitative studies, sort and pick all samples by hand in the laboratory using a lowpower scanning lens. To pick organisms efficiently and accurately, add only very small amounts of detritus (no more than a heaping tablespoon full) to standard-sized ($25 \times 40 \times 5$ cm), white enamel pans filled approximately one-third full of water. Small insects and worms will float free of most debris when ethanol--preserved samples are transferred to the waterfilled pan.

Analysis time for samples containing excessively large numbers of organisms can be substantially reduced if the samples are subdivided before sorting. The sample is thoroughly mixed and distributed evenly over the bottom of a shallow tray. A divider, delineating one-quarter sections, is placed in a tray, and two opposite quarters are sorted. The two remaining quarters are combined and sorted for future reference or discarded (57). The aliquot to be sorted must be no smaller than one-quarter of the original sample; otherwise considerable error may result in estimating the total numbers of oligochaetes or other organisms that tend to clump. The same procedure may be followed for individual taxonomic groups, such as midges and worms, that may be present in large numbers.

Numerous techniques other than hand-picking have been proposed to recover organisms from the sample, including sugar solutions, salt solutions, stains, electricity for unpreserved samples in the field, bubbling air through sample in a tube, etc. The efficacy of these techniques is affected both by the characteristics of the substrate material and the types of organisms. No
technique, or combination of techniques, will completely sort out or make more readily discernible all types of organisms from all types of substrate material. In the end, the total sample must be examined. If technicians are routinely conducting the picking operation, these techniques may lead to overconfidence and careless examination of the remainder of the sample. If used with proper care, such aids are not objectionable; however, they are not recommended as standard techniques.

As organisms are picked from the debris, they should be sorted into major categories (i.e., insect orders, molluscs, worms, etc.) and placed into vials containing 70 percent ethanol. All vials from a sample should be labeled internally with the picker's name and the lot number and kept as a unit in a suitable container until the organisms are identified and enumerated, and the data are recorded on the bench sheets. A typical laboratory bench sheet for fresh-water samples is shown in the Appendix.

4.5 Identification

The taxonomic level to which animals are identified depends on the needs, experience, and available resources. However, the taxonomic level to which identifications are carried in each major group should be constant throughout a given study. The accuracy of identification will depend greatly on the availability of taxonomic literature. A laboratory library of basic taxonomic references is essential. Many of the basic references that should be available in a tenthos laboratory are listed at the end of the chapter.

For comparative purposes and quality control checks, store identified specimens in a reference collection. Most identifications to order and family can be made under a stereoscopic microscope (up to 50 X magnification). Identification to genus and species often requires a compound microscope, preferably equipped with phase contrast (10,45 , and 100X objectives) or Nomarski (interference phase) optics.

To make species identifications, it is often necessary to mount the entire organism or parts
thereof on glass slides for examination at high magnification. Small whole insects or parts thereof may be slide-mounted directly from water or 70 percent ethanol preservative if CMC mounting media is used. Label the slides immediately with the sample log number and the name of the structure mounted. Euparol mounting medium may be preferable to CMC for mounts to be kept in a reference collection. Place specimens to be mounted in Euparol in 95 percent ethanol before mounting.

To clear opaque tissue, heat (do not boil) in a small crucible ($5-\mathrm{ml}$ capacity) containing 5 to 10 percent KOH solution (by weight) until it becomes transparent. The tissue can be checked periodically under a stereoscopic microscope to determine if it is sufficiently cleared. Then transfer the tissue stepwise to distilled water and 95 percent ethanol for 1 minute each and mount with CMC or Euparol. Several different structures can be heated simultaneously, but do not reuse the KOH solution.

The above methods work well for clearing and mounting midges, parts of caddisflies, mayflies, stoneflies, other insects, crustaceans, and molluscs; however, worms, leeches, and turbellarians require more specialized treatment before mounting (10,47).

Larval insects often comprise the majority of macroinvertebrates collected in artificial substrate samplers and bottom samples. In certain cases, identifications are facilitated if exuviae, pupae, and adults are available. Collect exuviae of insects with drift nets or by skimming the water's surface with a small dip net near the shore. Obtain adults with sweep nets and tent traps in the field or rear larvae to maturity in the laboratory.

The life history stages of an insect can be positively associated only if specimens are reared individually. Rear small larvae individually in 6to 12 -dram vials half filled with stream water and aerated with the use of a fine-drawn glass tubing. Mass rearing can be carried out by placing the larvae with sticks and rocks in an aerated aquarium. Use a magnetic stirrer inside of the aquarium (41) to provide a current.

4.6 Biomass

Macroinvertebrate biomass (weight of organisms per unit area) is a useful quantitative estimation of standing crop. To determine wet weights, soak the organisms in distilled water for 30 minutes, centrifuge for 1 minute at 140 g in wire mesh cones, and weigh to the nearest 0.1 mg . Wet weight, however, is not recommended as a useful parameter unless, by a determination of suitable conversion factors, it can be equated to dry weight.

To obtain dry weight, oven dry the organisms to a constant wepight at $105^{\circ} \mathrm{C}$ for 4 hours or vacuum dry at $105^{\circ} \mathrm{C}$ for 15 to 30 minutes at $1 / 2$ atmosphere. Cool to room temperature in a desiccator and weigh. Freeze drying $\left(-55^{\circ} \mathrm{C}, 10\right.$ to 30 microns pressure) has advantages ovei oven drying because the organisms remain intact for further identification and reference, preservatives are not needed, and cooling the material in desiccators after drying is not required. The main disadvantage of freeze drying is the length of time (usually 24 hours) required for drying to a constant weight.

To completely incinerate the organic material, ash at $550^{\circ} \mathrm{C}$ for 1 hour. Cool the ash to ambient temperature in a desiccator and weigh. Express the biomass as ash-free dry weight.

5.0 DATA EVALUATION

5.1 Quantitative Data

5.1.1 Reporting units

Data from quantitative samples may be used to obtain:

- total sidnding crop of individuals, or biomass, or both per unit area or unit volume or sample unit, and
- numbers or biomass, or both, of individual taxa per unit area or unit volume or sample unit.
Data from quantitative samples may also be evaluated in the same manner as discussed for qualitative s mples in part 5.2.

For purposes of comparison and to provide data useful for determining production, a
uniform convention must be established for the units of data reported. For this purpose, EPA biologists should adhere to the following units:

- Data from devices sampling a unit area of bottom will be reported in grams dry weight or ash-free dry weight per square meter ($\mathrm{gm} / \mathrm{m}^{2}$), or numbers of individuals per square meter, or both.
- Data from multiplate samplers will be reported in terms of the total surface area of the plates in grams dry weight or ash-free dry weight or numbers of individuals per square meter, or both.
- Data from rock-filled basket samplers will be reported as grams dry weight or numbers of individuals per sampler, or both.

5.1.2 Standing crop and taxonomic composition

Standing crop and numbers of taxa in a community are highly sensitive to environmental perturbations resulting from the introduction of contaminants. These parameters, particularly standing crop, may vary considerably in unpolluted habitats, where they may range from the typically high standing crop of littoral zones of glacial lakes to the sparse fauna of torrential soft-water streams. Thus, it is important that comparisons are made only between truly comparable environments. Typical responses of standing crop or taxa to various types of stress are:

Stress	Standing crop (numbers or biomass)	Number of taxa
Toxic substance	Reduce	Reduce
Severe temperature alterations	Variable	Reduce
Silt	Reduce	Reduce
Inorganic nutrients	Increase	Variable often no detectable change
Organic nutrients (high O_{2} demand)	Increase	Reduce
Sludge deposits (non-toxic). .	Increase	Reduce

Organic nutrients and sludge deposits are frequently associated. The responses shown are by no means simple or fixed and may vary depending on a number of factors including:

- a combination of stresses acting together or in opposition,
- indirect effects, such as for example the destruction of highly productive vegetative substrate by temperature alterations, sludge deposits, turbidity, chemical weed control,
- the physical characteristics of the stressed environment, particularly in relation to substrate and current velocity.

Data on standing crop and numbers of taxa may be presented in simple tabular form or pictorially with bar and line graphs, pie diagrams, and histograms. Whatever the method of presentation, the number of replicates and the sampling variability must be shown in the tables or graphs. Sampling variability may be shown as a range of values or as a calculated standard deviation, as discussed in the Biometrics Section of this manual.

Data on standing crop and number of taxa are amenable to simple but powerful statistical techniques of evaluation. Under grossly stressed situations, such analyses may be unnecessary; however, in some cases, the effects of environmental perturbations may be so subtle in comparison with sampling variation that statistical comparisons are a helpful and necessary tool for the evaluative process. For this purpose, biologists engaged in studies of macroinvertebrates should familiarize themselves with the simple statistical tools discussed in the Biometrics Section of this manual.

5.1.3 Diversity

Diversity indices are an additional tool for measuring the quality of the environment and the effect of induced stress on the structure of a community of macroinvertebrates. Their use is based on the generally observed phenomenon that relatively undisturbed environments support communities having large numbers of species with no individual species present in overwhelming abundance. If the species in such a community are ranked on the basis of their
numerical abundance, there will be relatively few species with large numbers of individuals and large numbers of species represented by only a few individuals. Many forms of stress tend to reduce diversity by making the environment unsuitable for some species or by giving other species a competitive advantage.

The investigator must be aware that there are naturally occurring extreme environments in which the diversity of macroinvertebrate communities may be low, as for example the profundal fauna of a deep lake or the black fly-dominated communities of the high gradient, bed rock section of a torrential stream. Furthermore, because colonization is by chance, diversity may be highly variable in a successional community; for this reason, diversity indices calculated from the fauna of artificial substrate samplers must be evaluated with caution. These confounding factors can be reduced by comparing diversity in similar habitats and by exposing artificial substrate samplers long enough for a relatively stable, climax community to develop.

Indices, such as $\frac{S}{N}, \frac{S}{\log N}$, and $\frac{S-1}{\log N}$ where $S=$ number of taxa and $N=$ total number of individuals, are merely additional means of summarizing data on total numbers and total taxa in a single numerical form for evaluation and summarization. They add no new dimension to the methods of data presentation and analyses discussed above and, in addition, are highly influenced by sample size. Sample size in this context relates to the total number of organisms collected (an uncontrollable variable in most macroinvertebrate sampling), not to the area or volume of habitat sampled. Do not use such indices for summarizing and evaluating data on aquatic macroinvertebrate communities.

There are two components of species diversity:

- richness of species

- distribution of individuals among the species.

It is immediately obvious that the second component adds a new dimension that was not considered in the methods for evaluating data
discussed above. The distribution of individuals among the species may be readily presented in frequency distribution tables or graphs; but for any appreciable number of samples, such methods of presentation are so voluminous that they are virtually impossible to compare and interpret.

Indices of diversity based on information theory. as originally proposed by Margalef (39) and subsequently utilized by numerous workers, include both components of species diversity as enumerated above. Additionally, a measure of the component of diversity due to the distribution of individuals among the species can readily be extracted from the overall index. For purposes of uniformity, the Shannon-Weaver function is provisionally recommended for calculating mean diversity $\overline{\mathrm{d}}$.

The machine formula presented by Lloyd, Zar, and Karr (34) is:

$$
\overline{\mathrm{d}}=\frac{C}{N}\left(N \log _{10} N-\Sigma n_{i} \log _{10} n_{i}\right)
$$

where $\mathrm{C}=3.321928$ (converts base $10 \log$ to base 2 [bits]); $\mathrm{N}=$ total number of individuals; and $n_{i}=$ total number of individuals in the i th species. When their tables (reproduced in Table 5) are used, the calculations are simple and straightforward, as shown by the following example:

Number of individuals in each taxa (n 's)	$\begin{gathered} \mathrm{n}_{\mathrm{i}} \log _{10} \mathrm{n}_{\mathrm{i}} \\ \text { (from Table 5) } \\ \hline \end{gathered}$
41	66.1241
5	3.4949
18	22.5949
3	1.4314
,	. 0000
22	29.5333
1	. 0000
2	. 6021
12	12.9502
4	2.4082
Total $\quad 109$	139.1391

Total number of taxa, $s=10$
Total number of individuals, $\mathrm{N}=109$

$$
\begin{aligned}
& \mathrm{N} \log _{10} N=222.0795(\text { from Table } 5) \\
& \Sigma n_{i} \log _{10} n_{i}=139.1391 \\
& =\frac{3.321928}{109}(222.0795-139.1391) \\
& =0.030476 \times 82.9404 \\
& =2.5
\end{aligned}
$$

Mean diversity, $\overline{\mathrm{d}}$, as calculated above is affected both by richness of species and by the distribution of individuals among the species and may range from zero to $3.321928 \log \mathrm{~N}$.

To evaluate the component of diversity due to the distribution of individuals among the species, compare the calculated $\overline{\mathrm{d}}$ with a hypothetical maximum \bar{d} based on an arbitrarily selected distribution. The measure of redundancy proposed by Margalef (39) is based on the ratio between $\overline{\mathrm{d}}$ and a hypothetical maximum computed as though all species were equally abundant. In nature, equality of species is quite unlikely, so Lloyd and Ghelardi (33) proposed the term "equitability" and compared \bar{d} with a maximum based on the distribution obtained from MacArthur's (36) broken stick model. The MacArthur model results in a distribution quite frequently observed in nature one with a few relatively abundant species and increasing numbers of species represented by only a few individuals. Sample data are not expected to conform to the MacArthur model, since it is only being used as a yardstick against which the distribution of abundances is being compared. Lloyd and Ghelardi (33) devised a table for determining equitability by comparing the number of species (s) in the sample with the number of species expected (s ') from a community that conforms to the MacArthur model. In the table (reproduced as Table 6 of this Section), the proposed measure of equitability is:

$$
e=\frac{s^{\prime}}{s}
$$

where $s=$ number of taxa in the sample, and $s^{\prime}=$ the tabulated value. For the example given above (without interpolation in the table):

$$
\mathrm{e}=\frac{\mathrm{s}^{\prime}}{\mathrm{s}}=\frac{8}{10}=0.8
$$

Equitability "e," as calculated, may range from 0 to 1 except in the unusual situation where the distribution in the sample is more equitable than the distribution resulting from the MacArthur model. Such an eventuality will result in values of e greater than 1 , and this occasionally occurs in samples containing only a few specimens with several taxa represented. The estimate of \bar{d} and e improves with increased sample size, and samples containing less than 100 specimens should be evaluated with caution, if at all.

When Wilhm (59) evaluated values calculated from data that numerous authors had collected from a variety of polluted and unpolluted waters, he found that in unpolluted waters \bar{d} was generally between 3 and 4 , whereas in polluted water, $\overline{\mathrm{d}}$ was generally less than 1 . However, collected data from southeastern U. S. waters by EPA biologists has shown that where degradation is at slight to moderate levels, $\overline{\mathrm{d}}$ lacks the sensitivity to demonstrate differences. Equitability e, on the contrary, has been found to be very sensitive to even slight levels of degradation. Equitability levels below 0.5 have not been encountered in southeastern streams known to be unaffected by oxygen-demanding wastes, and in such streams, e generally ranges between 0.6 and 0.8 . Even slight levels of degradation have been found to reduce equitability below 0.5 and generally to a range of 0.0 to 0.3 .

Agency biologists are encouraged to calculate both mean diversity \bar{d} and equitability e for samples collected in the course of macroinvertebrate studies. (If the mean and range of values found by different sampling methods and under varying levels and types of pollution are reported to the Biological Methods Branch, these data will be included in tabular form in future revisions of this Section.)

5.2 Qualitative Data

As previously defined, qualitative data result from samples collected in such a manner that no estimate of numerical abundance or biomass can be calculated. The output consists of a list of taxa collected in the various habitats of the environment being studied. The numerous
schemes advanced for the analysis of qualitative data may be grouped in two categories:

5.2.1 Indicator-organism scheme

For this technique, individual taxa are classified on the basis of their tolerance or intolerance to various levels of putrescible wastes (4, 5, 30, 42, 48). Taxa are classified according to their presence or absence in different environments as determined by field studies. Beck (6) reduced data based on the presence or absence of indicator organisms to a simple numerical form for ease in presentation.

5.2.2 Reference station methods

Comparative or control station methods compare the qualitative characteristics of the fauna in clean water habitats with those of fauna in habitats subject to stress. Patrick (46) compared stations on the basis of richness of species and Wurtz (61) used indicator organisms in comparing stations.

If adequate background data are available to an experienced investigator, both of these techniques can prove quite useful-particularly for the purpose of demonstrating the effects of gross to moderate organic contamination on the macroinvertebrate community. To detect more subtle changes in the macroinvertebrate community, collect quantitative data on numbers or biomass of organisms. Data on the presence of tolerant and intolerant taxa and richness of species may be effectively summarized for evaluation and presentation by means of line graphs, bar graphs, pie diagrams, histograms, or pictoral diagrams (27).

The calssification by various authors of representative macroinvertebrates according to their tolerance of organic wastes is presented in Table 7. In most cases, the taxonomic nomenclature used in the table is that of the original authors. The pollutional classifications of the authors were arbitrarily placed in three categories tolerant, facultative, and intolerant - defined as follows:

- Tolerant: Organisms frequently associated with gross organic contamination and are generally capable of thriving under anaerobic conditions.
- Facultative: Organisms having a wide range of tolerance and frequently are associated with moderate levels of organic contamination.
- Intolerant: Organisms that are not found associated with even moderate levels of organic contaminants and are generally intolerant of even moderate reductions in dissolved oxygen.

When evaluating qualitative data in terms of material such as that contained in Table 7, the investigator should keep in mind the pitfalls mentioned earlier, as well as the following:

- Since tolerant species may be found in both clean and degraded habitats, a simple record of their presence or absence is of no significance. Therefore, the indicator-organism technique can provide positive evidence of only one condition-clean water-and this only if taxa classified as intolerant are collected. An exception to this rule would occur where sensitive species may be totally
absent because of the discharge of toxic substances or waste heat.
- Because evaluations are based on the mere presence or absence or organisms, a single specimen has as much weight as a large population. Therefore, data for the original classification and from field studies may be biassed by the drift of organisms into the study area.
- The presence or absence of a particular taxa may depend more on characteristics of the environment, such as velocity and substrate, than on the level of degradation by organic wastes. This affects both the original placement of the taxa in the classificatory scheme and its presence in study samples.
- Technique is totally subjective and quite dependent upon the skill and experience of the individual who makes the field collections. Therefore, results of one investigator are difficult to compare with those of another, particularly where data are summarized in an index such as that proposed by Beck (6).

TABLE 5. FUNCTIONS FOR CALCULATING SPECIES DIVERSITY AND (FOR PERFECTLY RANDOM SAMPLING) ITS STANDARD ERROR LOGARITHMS ARE TO BASE 10. TABLE VALUES aRE ACCURATE TO WITHIN ± 1 IN THE EIGHTH SIGNIFICANT FIGURE. (REPRODUCED WITH PERMISSION FROM LLOYD, ZAR, AND KARR, 1968.)

n	$\log n!$	$n \log n$	$n \log ^{2} \mathrm{n}$	n	$\log n!$	$\mathrm{n} \log \mathrm{n}$	$n \log ^{2} n$
1	. 0000	. 0000	. 0000	14	10.9404	16.0458	18.3905
2	. 3010	. 6021	. 1812	15	12.1165	17.6414	20.7479
3	. 7782	1.4314	. 6829	16	133206	19.2659	23.1985
4	1.3802	2.4082	1.4499	17	14.5511	20.9176	25.7381
5	2.0792	3.4949	2.4428	18	158063	22.5949	28.3628
6	2.8573	4.6689	3.6331	19	17.0851	24.2963	31.0690
7	3.7024	59157	4.9993	20	183861	26.0206	33.8536
8	4.6055	7.2247	6.5246	21	19.7083	27.7666	36.7135
9	5.5598	8.5882	8.1952	22	21.0508	29.5333	39.6462
10	6.5598	10.0000	10.0000	23	22.4125	31.3197	42.6490
11	7.6012	11.4553	11.9295	24	23.7927	33.1251	45.7196
12	8.6803	12.9502	13.9756	25	25.1906	34.9485	48.8559
13	9.7943	14.4813	16.1313	26	26.6056	36.7893	52.0559

n	$\log \mathrm{n}!$	$\mathrm{n} \log \mathrm{n}$	$n \log ^{2} \mathrm{n}$	n	$\log n!$	$\mathrm{n} \log \mathrm{n}$	$\mathrm{n} \log ^{2} \mathrm{n}$
27	28.0370	38.6468	553177	84	126.5204	1616395	311.0395
28	29.4841	405204	58.6395	85	128.4498	1640006	316.4259
29	30.9465	42.4095	62.0196	86	130.3843	166.3669	321.8364
30	32.4237	44.3136	65.4566	87	132.3238	168.7382	3272709
31	33.9150	46.2322	68.9490	88	134.2683	171.1145	332.7291
32	35.4202	48.1648	72.4952	89	136.2177	173.4957	338.2108
33	36.9387	50.1110	76.0942	90	138.1719	175.8818	343.7157
34	38.4702	52.0763	797445	91	140.1310	178.2728	349.2437
35	40.0142	54.0424	83.4451	92	142.0948	180.6685	354.7946
36	41.5705	56.0269	871948	93	144.0632	183.0689	3603680
37	43.1387	58.0235	90.9925	94	146.0364	185.4740	365.9640
38	44.7185	60.0318	94.8372	95	148.0141	187.8837	371.5821
39	46.3096	620515	987280	96	149.9964	190.2980	377.2223
40	47.9116	64.0824	102.6638	97	151.9831	192.7169	382.8844
41	49.5244	66.1241	106.6439	98	153.9744	195.1402	388.5682
42	51.1477	68.1765	1106674	99	155.9700	197.5679	394.2734
43	52.7811	70.2391	114.7334	100	157.9700	200.0000	400.0900
44	54.4246	72.3119	118.8412	101	159.9743	202.4365	405.7477
45	56.0778	74.3946	122.9900	102	161.9829	204.8772	411.5164
46	57.7406	76.4869	127.1791	103	163.9958	2073222	417.3059
47	59.4127	78.5886	131.4078	104	166.0128	2097715	423.1160
48	61.0939	80.6996	1356755	105	168.0340	212.2249	428.9466
49	62.7841	82.8196	139.9814	106	170.0593	214.6824	434.7976
50	64.4831	84.9485	144.3250	107	172.0887	217.1441	440.6686
51	66.1906	87.0861	148.7056	108	174.1221	219.6098	446.5597
52	67.9066	89.2322	153.1227	109	176.1595	222.0795	452.4706
53	69.6309	91.3866	157.5757	110	178.2009	224.5j32	458.4013
54	71.3633	93.5493	162.0642	111	180.2462	227.0309	464.3514
55	73.1037	957199	1665874	112	182.2955	229.5124	470.3210
56	74.8519	97.8985	171.1450	113	184.3485	231.9979	476.3098
57	76.6077	100.0849	175.7365	114	186.4054	2344872	482.3178
58	78.3712	102.2788	180.3613	113	188.4661	236.9803	488.3447
59	80.1420	104.4803	185.0191	116	190.5306	239.4771	494.3905
60	81.9202	106.6891	189.7093	117	192.5988	241.9777	500.4550
61	83.7055	108.9051	194.4316	118	194.6707	244.4821	506.5380
62	85.4979	111.1283	199.1854	119	196.7462	246.9901	512.6395
63	87.2972	113.3585	203.9705	120	198.8254	249.5017	518.7594
64	89.1034	115.5955	208.7863	121	200.9082	252.0170	5248974
65	90.9163	117.8394	2136326	122	202.9945	254.5359	531.0535
66	92.7359	120.0899	218 J088	123	2050844	257.0583	537.2275
67	94.5619	122.3470	223.4148	124	207.1779	259.5843	543.4194
68	96.3945	124.6106	228.3500	125	209.2748	262.1138	549.6290
69	98.2333	126.8806	233.3143	126	211.3751	264.6467	553.8561
70	100.0784	129.1569	238.3071	127	213.4790	267.1831	362.1007
71	101.9297	131.4393	243.3282	128	215.5862	269.7229	568.3627
72	103.7870	133.7279	248.3772	129	217.6967	272.2661	574.6420
73	105.6503	136.0226	253.4540	130	219.8107	2748126	580.9383
74	107.5196	138.3231	2585380	131	2219280	277.3625	587.2517
75	109.3946	140.6296	263.6891	132	224.0485	279.9158	593.5821
76	111.2754	142.9418	268.8469	133	226.1724	282.4723	599.9292
77	113.1619	145.2598	274.0312	134	2282995	285.0320	6062930
78	115.0540	147.5834	279.2417	135	230.4298	287.5951	612.6735
79	116.9516	149.9125	284.4781	136	232.5634	290.1613	619.0704
80	118.8547	152.2472	289.7401	137	234.7001	292.7307	625.4837
81	120.7632	154.5873	295.0275	138	236.8400	295.3033	631.9134
82	122.6770	156.9327	300.3400	139	238.9830	2978791	638.3592
83	124.5961	159.2835	305.6774	140	241.1291	300.4579	644.8212

TABLE 5. (Continued)

TABLE 5. (Continued)

n	$\log n!$	$\mathrm{n} \log \mathrm{n}$	$\mathrm{n} \log ^{2} \mathrm{n}$	n	$\log n$!	$n \log \mathrm{n}$	$\mathrm{n} \log ^{2} \mathrm{n}$
369	788.6608	947.2327	2431.5714	426	936.8329	1120.1285	2945.2766
370	791.2290	950.2346	2440.3942	427	939.4633	1123.1927	2954.4774
371	793.7983	953.2377	2449.2241	428	942.0948	1126.2579	2963.6844
372	796.3689	956.2420	2458.0610	429	9447272	1129.3242	2972.8976
373	798.9406	959.2474	2466.9050	430	947.3607	1132.3914	2982.1171
374	801.5135	962.2540	2475.7559	431	949.9952	1135.4597	2991.3428
375	804.0875	965.2617	2484.6139	432	952.6307	1138.5290	3000.5746
376	806.6627	968.2706	2493.4787	433	955.2672	1141.5993	3009.8126
377	809.2390	971.2807	2502.3506	434	957.9047	1144.6705	3019.0568
378	811.8165	974.2919	2511.2294	435	960.5431	1147.7428	3028.3071
379	814.3952	977.3043	2520.1151	436	963.1826	1150.8161	3037.5636
380	816.9749	980.3178	2529.0077	437	965.8231	1153.8904	3046.8261
381	819.5559	983.3324	2537.9072	438	968.4646	1156.9657	3056.0948
382	822.1379	986.3482	2546.8135	439	971.1071	1160.0419	3065.3696
383	824.7211	989.3651	2555.7268	440	9737505	1163.1192	3074.6505
384	827.3055	992.3832	2564.6469	441	976.3949	1166.1974	3083.9374
385	829.8909	995.4024	2573.5738	442	979.0404	1169.2766	3093.2305
386	832.4775	9984227	2582.5075	443	981.6868	1172.3568	3102.5295
387	835.0652	1001.4441	2591.4480	444	984.3342	1175.4380	3111.8346
388	837.6540	1004.4667	2600.3953	445	986.9825	1178.5202	3121.1458
389	840.2440	1007.4904	2609.3493	446	989.6318	1181.6033	3130.4629
390	842.8351	1010.5152	2618.3102	447	9922822	1184.6875	3139.7861
391	845.4272	1013.5411	2627.2777	448	994.9334	1187.7725	3149.1152
392	848.0205	1016.5681	2636.2520	449	997.5857	1190.8586	3158.4504
393	850.6149	1019.5963	2645.2330	450	1000.2389	1193.9456	3167.7915
394	853.2104	1022.6255	2654.2206	451	1002.8931	1197.0336	3177.1385
395	855.8070	1025.6558	2663.2150	452	1005.5482	1200.1226	3186.4915
396	858.4047	1028.6873	2672.2160	453	1008.2043	1203.2125	3195.8505
397	861.0035	1031.7198	2681.2237	454	1010.8614	12063033	3205.2154
398	863.6034	1034.7534	2690.2380	455	1013.5194	1209.3952	3214.5862
399	866.2044	1037.7882	2699.2589	456	1016.1783	1212.4880	3223.9629
400	868.8064	1040.8240	2708.2865	457	10188382	1215.5817	3233.3455
401	871.4096	1043.8609	2717.3206	458	1021.4991	1218.6764	3242.7339
402	874.0138	1046.8989	2726.3613	459	1024.1609	1221.7720	3252.1283
403	876.6191	1049.9379	2735.4086	460	1026.8237	1224.8686	3261.5284
404	879.2255	1052.9781	2744.4624	461	1029.4874	1227.9661	3270.9345
405	881.8329	1056.0193	2753.5228	462	1032.1520	1231.0646	3280.3464
406	884.4415	1059.0616	2762.5897	463	1034.8176	1234.1640	3289.7641
407	887.0510	1062.1049	2771.6631	464	1037.4841	1237.2643	3299.1876
408	889.6617	1065.1493	$2780.743 n$	465	1040.1516	1240.3656	3308.6169
409	892.2734	1068.1948	2789.8293	466	1042.8200	1243.4678	3318.0521
410	894.8862	1071.2414	2798.9222	467	1045.4893	1246.5710	3327.4930
411	897.5001	1074.2890	2808. 0215	468	1048.1595	1249.6750	3336.9396
412	900.1150	1077.3376	2817.1272	469	1050.8307	1252.7801	3346.3921
413	902.7309	1080.3874	2826.2394	470	10535028	1255.8860	3355.8503
414	905.3479	1083.4381	2835.3580	471	1056.1758	1258.9928	3365.3142
415	907.9660	1086.4900	2844.4830	472	1058.8498	1262.1006	3374.7838
416	910.5850	1089.5428	2853.6143	473	1061.5246	1265.2093	3384.2592
417	913.2052	1092.5967	2862.7521	474	1064.2004	1268.3189	3393.7403
418	915.8264	1095.6517	2871.8962	475	1066.8771	12714295	3403.2271
419	918.4486	1098.7077	2881.0467	476	1069.5547	1274.5409	3412.7196
420	921.0718	1101.7647	2890.2035	477	1072.2332	1277.6533	3422.2177
421	923.6961	1104.8228	2899.3666	478	1074.9126	12807665	3431.7216
422	926.3214	1107.8819	2908.5360	479	1077.5930	1283.8807	3441.2310
423	928.9478	1110.9420	2917.7117	480	1080.2742	1286.9958	3450.7462
424	931.5751	1114.0031	2926.8938	481	1082.9564	1290.1118	3460.2669
425	934.2035	1117.0653	2936.0820	482	1085.6394	1293.2287	3469.7933

n	$\log \mathrm{n}$!	$\mathrm{n} \log \mathrm{n}$	$n \log ^{2} \mathrm{n}$	n	$\log \mathrm{n}$!	n log n	$\mathrm{n} \log ^{2} \mathrm{n}$
483	1088.3234	1296.3465	34793253	540	1242.7390	1475.4926	+031.6268
484	1091.0082	1299.4651	3488.8630	541	12454722	1478.6597	4041.4687
485	1093.6940	13025847	34984062	542	1248.2061	1481.8276	4051.3156
486	1096.3806	1305.7032	35079550	543	1250.9409	1484.9963	4061.1676
487	1099.0681	1308.8266	35175094	544	1253.6765	1488.1638	4071.0247
488	1101.7565	1311.9489	35270693	545	1256.4129	1491.3361	4080.8868
489	1104.4458	13150720	3536.6349	546	1259.1501	1494.5072	4090.7541
490	1107.1360	1318.1961	3546.2059	547	1261.8881	1497.6791	4100.6263
491	1109.8271	1321.3210	3555.7825	548	1264.6269	1500.8517	4110.5035
492	1112.5191	13244468	3565.3646	549	1267.3665	1504.0252	41203859
493	1115.2119	1327.5735	3574.9523	550	1270.1068	1507.1995	4130.2732
494	1117.9057	1330.7011	3584.5454	551	1272.8480	1510.3745	4140.1655
495	1120.6003	1333.8296	3594.1441	552	1275.5899	15135504	41500629
496	1123.2957	1336.9589	3603.7482	553	1278.3327	1516.7270	4159.9652
497	1125.9921	1340.0891	3613.3578	554	1281.0762	1519.9044	4169.8726
498	1128.6893	13432202	3622.9730	555	1283.8205	1523.0826	4179.7849
499	1131.3874	1346.3522	3632.5935	556	1286.5655	1526.2616	4189.7021
500	1134.0864	1349.4850	3642.2195	557	1289.3114	1529.4413	4199.6245
501	1136.7862	1352.6187	3651.8510	558	1292.0580	1532.6219	4209.5516
502	1139.4869	1355.7333	3661.4879	559	1294.8054	1535.8032	42194838
503	1142.1885	1358.8887	3671.1302	560	1297.5536	1538.9833	4229.4210
504	1144.8909	1362.0250	3680.7779	561	1300.3026	1542.1682	4239.3630
505	1147.5942	13651621	3690.4310	562	1303.0523	15453518	42493099
506	1150.2984	1368.3002	3700.0896	563	1305.8028	1548.5362	4259.2618
507	1153.0034	1371.4390	3709.7535	564	1308.5541	1551.7214	4269.2187
508	1155.7093	1374.5788	37194228	565	1311.3062	1554.9074	4279.1804
509	1158.4160	1377.7193	3729.0974	566	1314.0590	1558.0941	4289.1470
510	1161.1235	1380.8608	3738.7775	567	1316.8126	1561.2816	4299.1185
511	1163.8320	1384.0031	3748.4629	568	1319.5669	1564.4698	43090949
512	1166.5412	1387.1462	3758.1536	569	1322.3220	1567.6589	4319.0762
513	1169.2514	1390.2902	3767.8496	570	1325.0779	1570.8487	4329.0623
514	1171.9623	1393.4350	3777.5510	571	1327.8345	1574.0392	4339.0533
515	1174.6741	1396.5807	3787.2577	572	1330.5919	1577.2305	4349,0492
516	1177.3868	1399.7272	3796.9697	573	1333.3501	15804226	43590499
517	1180.1003	1402.8746	38066870	574	1336.1090	1583.6154	4369.0354
518	1182.8146	1406.0228	3816.4095	575	1338.8687	1586.8090	4379.0658
519	1185.5298	1409.1718	3826.1374	576	1341.6291	15900033	4389.0810
520	1188.2458	1412.3217	3835.8705	577	1344.3903	1593.1984	4399.1010
521	1190.9626	1415.4724	38456089	578	1347.1522	1596.3943	4409.1258
522	1193.6803	1418.6240	3855.3526	579	1349.9149	1599.5909	4419.1535
523	1196.3988	1471.7764	3865.1015	580	1352.6783	1602.7882	44291898
524	1199.1181	1424.9296	3874.8556	581	1355.4423	1605.9863	4439.2291
525	1201.8383	1428.0836	3884.6150	582	1358.2074	1609.1852	4449.2731
526	1204.5592	1431.2385	3894.3795	583	1360.9731	1612.3848	4459.3218
527	1207.2811	1434.3942	3904.1493	584	1363.7395	1615.5851	4469.3734
528	1210.0037	1437.5507	3913.9243	585	1366.5066	1618.7862	44794337
529	1212.7271	1440.7080	3923.7045	586	1369.2745	1621.9880	4489.4967
530	1215.4514	1443.8662	3933.4899	587	1372.0432	1625.1906	4499.5645
531	1218.1765	1447.0252	3943.2804	588	1374,8125	1628.3939	4509.6370
532	1220.9024	1450.1850	3953.0761	589	1377.5827	1631.5979	4519.7143
533	1223.6292	1453.3456	3962.8770	590	1380.3535	1634.8027	4529.7963
534	1226.3567	1456.5070	3972.6830	591	1383.1251	1638.0082	4539.8830
535	1229.0851	1459.6693	3982.4942	592	1385.8974	1641.2144	4549.9744
536	1231.8142	1462.8323	3992.3105	593	1388.6705	1644.4214	4560.0706
537	1234.5442	1465.9962	4002.1319	594	1391.4443	1647.6291	4570.1714
538	1237.2750	1469.1609	4011.9584	595	1394.2188	1650.8376	4580.2769
539	1240.0066	1472.3263	4021.7901	596	1396.9940	1654.0468	590.3871

TABLE 5. (Continued)

n	$\log n$!	$n \log \mathrm{n}$	$n \log ^{2} \mathrm{n}$	n	$\log \mathrm{n}$!	$n \log n$	$n \log ^{2} n$	n	$\log \mathrm{n}$!	$\mathrm{n} \log \mathrm{n}$	$\mathrm{n} \log ^{2} \mathrm{n}$	n	$\log n!$	$n \log n$	$n \log ^{2} \mathrm{n}$
597	1399.7700	1657.2567	4600.5020	654	1559.1662	1841.3878	5184.5706	711	1720.7210	2027.6793	578..6769	768	1884.2611	22159574	6393.8376
598	1402.5467	1660.4673	4610.6215	655	1561.9824	1844.6380	5194.9459	712	1723.5735	2030.9657	5793.2892	769	1887.1430	2219.2773	6404.6710
599	1405.3241	1663.6787	4620.7457	656	1564.7993	1847.8889	5205.3254	713	1726.4265	2034.2528	5803.9055	770	1890.0335	2222.5978	6415.5081
600	1408.1023	1666.8907	4630.8746	657	1567.6169	1851.1404	5215.7092	714	1729.2802	2037.5405	5814.5257	771	1892.9205	2225.9189	6426.3489
601	1410.8811	1670.1035	4641.0081	658	1570.4351	1854.3926	5226.0973	715	1732.1346	20408288	5825.1500	772	1895.8082	2229.2405	64371935
602	1413.6608	1673.3171	4651.1463	659	1573.2540	1857.6455	5236.4897	716	1734.9895	2044.1177	j835.7783	773	1898.6963	2232.5627	6448.0419
603	1416.4411	1676.5313	4661.2891	660	1576.0735	1860.8990	5246.8865	717	1737.8450	2047.4072	58464105	774	1901.5851	2235.8855	6458.8940
604	1419.2221	1679.7463	4671.4365	661	1578.8938	1864.1532	5257.2875	718	1740.7011	2050.6973	5857.0468	775	1904.4744	2239.2088	64697498
605	1422.0039	1682.9620	4681.5886	662	1581.7146	1867.4080	5267.6927	719	1743.5578	2053.9881	58676370	776	1907.3642	2242.5327	6480.6094
606	1424.7863	1686.1784	4691.7452	663	1584.5361	1870.6635	5278.1022	720	1746.4152	2057.2794	5878.3312	777	1910.2547	2245.8571	6491.4727
607	1427.5695	1689.3955	4701.9065	664	1587.3583	1873.9196	5288.5161	721	1749.2731	2060.5713	5888.9794	778	1913.1456	2249.1821	6502.3396
608	1430.3534	1692.6134	4712.0724	665	1590.1811	1877.1764	5298.9341	722	1752.1316	2063.8638	3899.6316	779	1916.0372	2252.5077	6513.2103
609	1433.1380	1695.8319	4722.2429	666	15930046	1880.4338	5309.3564	723	1754.9908	2067.1570	5910.2877	780	19189293	2255.8338	6524.0847
610	1435.9234	1699.0512	4732.4180	667	1595.8287	1883.6919	5319.7830	724	1757.8505	20704507	5920.9478	781	1921.8219	2259.1604	6534.9628
611	1438.7094	1702.2712	4742.5977	668	1598.6535	1886.9507	5330.2138	725	1760.7109	2073.7450	59316118	782	1924.7151	22624877	6545.8446
612	1441.4962	1705.4919	4752.7819	669	1601.4789	1890.2101	5340.6489	726	1763.5718	2077.0400	5942.2797	783	1927.6089	2265.8154	65567301
613	1444.2836	1708.7133	4762.9707	670	1604.3050	1893.4701	5351.0881	727	1766.4333	2080.3355	5952.9517	784	1930.5032	2269.1438	6567.6193
614	1447.0718	1711.9354	4773.1641	671	1607.1317	1896.7308	5361.5317	728	1769.2955	2083.6316	59636275	785	1933.3981	2272.4727	6578.5122
615	1449.8607	1715.1582	4783.3620	672	1609.9597	1899.9921	5371.9794	729	1772.1582	2086.9283	59743073	786	1936.2935	2275.8021	6589.4088
616	1452.6503	1718.3817	4793.5645	673	16127871	1903.2541	5382.4313	730	1775.0215	2090.2257	5984.9910	787	1939.1893	2279.1321	66003090
617	1455.4405	1721.6059	4803.7715	674	1615.6158	1906.5168	5392.8875	731	1777.8854	20935236	59956786	788	1942.0860	2282.4626	6611.2129
618	1458.2315	1724.8309	4813.9831	675	1618.4451	1909.7800	5403.3478	732	17807499	2096.8221	6006.3701	789	1944.9831	2285.7937	6622.1205
619	1461.0232	1728.0565	4824.1992	676	1621.2750	1913.0440	5413.8124	733	1783.6150	2100.1212	60170656	790	19478807	2289.1254	6633.0317
620	1463.8156	1731.2828	4834.4198	677	16241056	1916.3085	5424.2812	734	1786.4807	2103.4209	6027.7650	791	1950.7789	2292.4576	6643.9467
621	1466.6087	1734.5099	4844.6450	678	16269368	1919.5737	5434.7542	735	1789.3470	2105.7212	6038.4683	792	1953.6776	2295.7903	6654.8652
622	1469.4025	1737.7376	4854.8746	679	1629.7687	1922.8396	5445.2313	736	1792.2139	21100221	60491754	793	1956.5769	2299.1236	6665.7875
623	1472.1970	1740.9660	4865.1088	680	1632.6012	1926.1060	5455.7125	737	1795.0814	2113.3235	60598865	794	1959.4767	2302.4575	6676.7134
624	1474.9922	1744.1952	4875.3475	681	16354344	1929.3732	5466.1981	738	1797.9494	2116.6256	6070.6015	795	1962.3771	2305.7918	66876429
625	1477.7880	1747.4250	4885.5906	682	1638.2681	1932.6409	5476.6877	739	1800.8181	2119.9282	60813203	796	1965.2780	2309.1268	66985761
626	1480.5846	1750.6555	4895.8383	683	1641.1026	1935.9093	5487.1815	740	1803.6873	2123.2314	6092.0430	797	1968.1794	2312.4623	6709.5129
627	1483.3819	1753.8867	4906.0905	684	16439376	1939.1784	5497.6794	741	1806.5571	2126.5353	6102.7697	798	1971.0814	2315.7983	6720.4334
628	1486.1798	1757.1187	4916.3470	685	1646.7733	1942.4480	5508.1816	742	1809.4275	21298397	6113.5002	799	1973.9840	2319.1349	6731.3975
629	1488.9785	1760.3512	4926.6082	686	16496096	1945.7183	5518.6878	743	1812.2985	21331447	6124.2345	800	1976.8871	2322.4720	6742.3452
630	1491.7778	1763.5845	4936.8737	687	1652.4466	1948.9893	5529.1982	744	1815.1701	21364503	6134.9727	801	1979.7907	2325.8096	6753.2965
631	1494.5779	1766.8185	4947.1437	688	16552842	1952.2608	5539.7128	745	1818.0422	2139.7564	61457140	802	1982.6949	2329.1478	6764.2515
632	1497.3786	1770.0532	4957.4182	689	1658.1224	1955.5330	5550.2314	746	1820.9150	2143.0631	61564608	803	1985.5996	2332.4866	6775.2100
633	1500.1800	1773.2885	4967.6971	690	1660.9612	1958.8059	5560.7542	747	1823.7883	21463705	6167.2105	804	1988.5049	2335.8258	6786.1722
634	1502.9821	1776.5246	4977.9804	691	1663.8007	1962.0793	5571.2811	748	18266622	21496784	6177.9642	805	1991.4106	2339.1657	6797.1380
635	1505.7849 1508.5883	1779.7613	4988.2682	692	1666.6408	1965.3534	5581.8122	749	1829.5367	2152.9869	61887216	806	1994.3170	2342.5060	${ }^{6808.1074}$
${ }_{637} 636$	1508.5883 1511.3924	1782.9987 1786.2368	4998.5604 5008.8571	693 694	1669.4816 1672329	1968.6281	5592.3474 56028866	750	18324117	2156.2959	6199.4829	807	1997.2239	2345.8469	6819.0804
637	1511.3924 1514.1973	1786.2368	5008.8571	694	1672.3229	1971.9035	5602.8866	751	1835.2874	2159.6056	6210.2480	808	2000.1313	2349.1884	6830.0569
638	1514.1973	1789.4756	5019.1581	695	1675.1649	1975.1794	5613.4299	752	1838.1636	21629158	62210170	809	2003.0392	2352.5303	6841.0371
639	1517.0028	1792.7150	5029.4636	696	1678.0075	1978.4560	5623.9774	753	1841.0404	21662266	6231.7898	810	2005.9477	2355.8729	6852.0209
640	1519.8089	1795.9552	5039.7734	697	1680.8507	1981.7332	5634.5289	754	1843.9178	2169 5380	62425664	811	2008.8567	2359.2159	6863.0082
641	1522.6158	1799.1960	50500877	698	1683.6946	1985.0111	5645.0845	755	1846.7957	21728499	62533469	812	2011.7663	23625595	6873.9992
642	1525.4233	1802.4375	5060.4064	699	16865391	1988.2895	5655.6442	756	1849.6742	21761625	62641311	813	2014.6764	23659036	6884.9937
643 644	1528.2316	1805.6796 1808.9225	5070.7294 5081.0568	700	1689.3842	1991.5686	5666.2079	757	1852.5533	2179.4756	62749191	814	2017.5870	23692483	6895.9918
644 645	1531.0404 1533500	1808.9225 1812.1660	5081.0568 5091.3886	701 702	16922299 1695.0762	1994.8483 1998.1286	5676.7758	758	1855.4330	21827892	6285.7110	815	2020.4982	23725934	69069935
646	1536.6602	1815.4102	5101.7248	703	1697.9232	2001.4996	5697.9236	759 760	1858.3132 1861.1941	2186.1025 2189.4183	62965066 6307.3060	816 817	2023.4099 2026.3221	23759391 2379.2854	6917.9987 6929.0074
647	1539.4711	1818.6551	5112.6653	704	1700.7708	2004.6911	5708.5037	761	1864.0754	2192.7337	6318.1093	818	2029.2348	2382.6322	6929.0074 6940 198
648	15422827	1821.9006	5122.4102	705	17036189	2007.9733	5719.0878	762	1866.9574	2196.0497	6328.9163	819	2032.1481	23859795	69510357
649	1545.0950	1825.1468	5132.7594	706	1706.4678	2011.2561	5729.6758	763	1869.8399	2199,3662	6339.7271	820	2035.0619	2389.3273	6962.0551
650	1547.9079	1828.3937	5143.1130	707	1709.3172	2014.5395	5740.2680	764	1872.7230	2202.6833	63505416	821	20379763	2392.6757	6973.0781
651	1550.7215	1831.6412	5153.4709	708	1712.1672	2017.8235	5750.8642	765	187:.6067	22060010	636136011	822	2040.8911	2396.0246	69841047
652	15535357	1834.8894	5163.8331	709	${ }^{1715.0179}$	2021.1082	5761.4644	766	1878.4909	2209.3192	6372.1821	823	2043.8065	2399.3741	69951347
653	1556.3506	1838.1383	5174.1997	710	1717.8691	2024.3934	5772.0686	767	1881.3737	2212.6380	63830079	824	2046.7225	2402.7240	70061683

TABLE 5. (Continued)

n	$\log \mathrm{n}$!	$n \log n$	$n \log ^{2} n$	n	$\log n!$	$n \log \mathrm{n}$	$n \log ^{2} \mathrm{n}$
825	20496389	24060745	7017.2054	882	2216.7274	2597.9033	7652.0425
826	2052.5559	2409.4255	7028.2462	883	2219.6734	26012833	7663.2784
827	2055.4734	2412.7770	7039.2903	884	22226198	26046638	7674.5175
828	2058.3914	2416.1291	2050.3380	885	22255668	2606.0448	7685.7600
829	2061.3100	2419.4817	7061.3893	886	22285142	26114263	7697.0059
830	2064.2291	2422.8348	7072.4440	887	22314621	26148082	7708.2549
831	20671487	24261884	70835023	888	2234.4105	26181907	7719.5074
832	20700688	2429.5426	7094.5640	889	22373594	26215736	77307632
833	20729894	2432.8973	71056293	890	22403088	26249571	7742.0222
834	2075.9106	2436.2525	71166980	891	22432587	26283410	7753.2846
835	20788323	24396082	7127.7703	892	22462091	2631.7254	7764.5502
836	20817545	2442.9644	7138.8460	893	22491599	26351104	7775.8192
837	20846772	2446.3212	71499252	894	22521113	26384957	7787.0914
838	20876005	2449.6785	71610079	895	22550631	26418816	7798.3670
839	2090.5242	2453.0363	71720942	896	22580154	26452680	7809.6458
840	20934485	2456.3946	7183.1838	897	22609682	26486548	78209279
841	20963733	2459.7534	7194.2770	898	22639214	26520421	7832.2133
842	20992986	2463.1128	72053736	999	22668752	2655.4300	7843.5020
843	21022244	2466.4726	7216.4736	900	22698295	26588182	78.547939
844	21051508	2469.8330	7227.5772	901	22727842	26622070	78660891
845	2108.0776	2473.1939	72386842	902	22757394	26635963	7877.3876
846	21110050	2476.5553	72497946	903	22786931	26689860	78886893
847	21139329	24799172	7260.9086	904	22816312	26723763	7899.9943
848	21168613	2483.2797	72720259	905	22846079	26757669	7911.3026
849	21197902	24865426	72831467	906	22875650	26791581	79226141
850	21227196	24900061	7294.2709	907	22905226	26825498	79339288
851	2125.6495	2493.3700	7305.3986	908	22934807	26859419	79452468
832	21285800	24967345	7316.5297	909	22964393	26893346	79565681
853	2131.3109	2500.0995	7327.6642	910	22993983	26927277	2967.8926
854	2134.4424	2503.4650	7338.8022	911	23023578	26961212	79792203
855	21373744	25068310	73499436	912	23153178	26995153	7990.5513
856	21403068	2510.1975	7361.0884	913	23682783	27029098	80018855
857	2143.2398	2513.5645	7372.2366	914	23112393	27063048	80132230
858	21461733	2516.9321	73833882	915	23142007	2709 ¢003	80245636
859	2149.1073	2520.3001	7394.5433	916	23171626	27130963	80359075
860	2152.0418	2523.6686	74057018	917	23201249	27164927	8047.2546
861	21549768	2527.0377	7416.8636	918	23230878	27198896	80586049
862	21579123	25304073	74280289	919	23260511	27232869	80699584
863	21608483	2533.7773	7439.1975	920	23290149	27266848	8081.3152
864	2163.7848	2537.1479	7450.3696	921	23319792	27300831	80926752
865	21667218	2540.5189	7461.5450	922	23349439	27334819	81040383
866	21696594	2543.8905	34727238	923	23379191	27368812	81154047
867	21725974	2547.2625	74839060	924	23408748	2740.2809	8126.7742
868	21755359	2550.6351	74950916	925	23438409	27436811	8138.1470
869	2178.4749	25540082	7506.2805	926	23468075	27470818	8149.5229
870	2181.4144	2557.3817	7517.4728	927	23497746	27504829	81609021
871	21843544	2560.7558	7528.6686	928	2352.7421	2753.8845	81722844
872	2187.2950	2564.1304	7539.8676	929	23557101	27572866	8183.6699
873	21902360	25675054	7551.0700	930	2358.6786	27606891	81950586
874	21931775	25708810	7562.2758	931	23616476	27640921	82064504
875	21961195	25742570	7573.4849	932	23646170	2767.4956	8217.8455
876	2199.0620	2577.6336	7584.6974	933	23675869	27708996	8229.2438
877	2202.0050	25810106	7595.9133	934	23703572	27743140	8240.6451
878	2204.9485	25843882	7607.1324	935	23735280	27777088	82520437
879	22078925	25877662	7618.3549	936	23764993	27811142	82634574
880	22108370	25911447	7629.5808	937	2379.4710	27845200	8274.8683
881	2213.7820	25945238	76408100	938	23824433	2787.9262	82862823

n	$\log n!$	$n \log \mathrm{n}$	$n \log ^{2} n$	n	$\log n!$	$n \log \mathrm{n}$	$n \log ^{2} \mathrm{n}$
939	2385.4159	2791.3330	82976995	995	25526090	2982.8340	8942.0084
940	2388.3890	27947402	83091199	996	2555.6072	2986.2663	89536007
941	2391.3626	27981478	83205433	997	25586059	2989.6991	89631960
942	2394.3367	2801.5559	83319700	998	25616051	2993.1323	89767944
943	23973112	$280496+5$	83433998	999	25646046	2996.5659	8988.3956
944	2400.2862	28083735	83548326	1000	25676046	30000000	9000.0000
945	2403.2616	28117831	83662687	1001	25706051	30034345	9011.6072
946	24062375	28151930	8377.7079	1002	25736059	3006.8694	90232174
947	2409.2138	2818.6034	8389.1503	1003	2576.6072	30103048	9034.8307
948	2412.1906	28220143	84005937	1004	2579.6090	30137406	9046.4469
949	2415.1679	2825.4256	94120442	1005	25826111	3017.1769	90580660
950	24181456	2828.8374	84234960	1036	25856137	3020.6136	90696881
951	2421.1238	2832.2497	8434.9507	1007	2588.6168	30240507	9081.3132
952	2424.1024	2835 6624	84464087	1008	2591.6202	3027.4882	9092.9413
953	2427.0815	2839.0755	84578698	1009	25946241	3030.9262	9104.5724
954	24300611	28424891	84693339	1010	2597.6284	30343646	91162063
955	24330411	2845.9032	84808011	1011	26006332	3037.8034	9127.8433
956	24360216	28493177	8492.2715	1012	26036384	30412427	9139.4832
957	24390025	28527327	8503.7450	1013	26066440	30446823	9151.1260
958	24419838	28561481	8515.2216	1014	26096500	30481225	9162.7719
959	24449657	28595640	85267012	1015	26126565	3051.5630	91744205
960	2447.9479	28629804	85381840	1016	26156634	30550040	91860723
961	2450,9307	28663972	8549.6698	1017	2618.6707	30584454	9197.7269
462	24539138	28698144	8561.1588	1018	2621.6784	30618872	92093845
963	24568975	28732321	8572.6508	1019	2624.6866	30653295	9221.0450
954	24596815	28766502	858.41459	1020	2627.6952	3068.7722	92327084
965	24628661	28800688	8595 64+2	1021	2630.7043	3072.2153	9244.3749
966	24658510	2883.4879	8607.1454	1022	2633.7137	3075.6588	9256.0441
967	24688365	28869074	86186498	1023	26367236	3079.1028	9267.7163
968	2471.8223	2890.3273	86301571	1024	26397339	3082.5471	92793915
969	24748087	28937477	8641.6676	1025	2642.7446	30859919	92910696
970	2477.7934	2897.1686	86331812	1026	26457537	30894372	9302.7306
971	24807827	29005898	86646973	1027	26487673	3092.8828	93144346
972	2483.7703	29040116	86762174	1028	2651.7793	30963289	93261213
973	24867584	29074338	86877402	1029	2654.7917	30997754	93378110
974	2489.7470	29108564	86992660	1030	2657.8046	31032223	9349.5038
975	2492.7360	29142795	87107948	1031	26608178	31066697	93611993
976	24957254	29177030	8722.3267	1032	2663.8315	31101174	9372.8977
977	24987153	29211270	87338617	1033	2666.8456	3113.5656	93845991
978	25017057	2924.5314	87453997	1034	2669.8601	3117.0142	93963033
979	2504.6965	29279752	87569407	1035	26728751	3120.4633	94080105
989	25076877	2931.4016	87684847	1036	26758904	31239127	941972065
981	2510.6794	2934.8273	87800319	1037	26789062	31273625	9431.4336
982	2513.6715	29382535	87915819	1038	26819224	3130.8128	$94+31494$
983	25166640	29416801	8803 :351	1039	26849390	31342635	9454.8682
984	2519.6570	29451071	88146913	1040	26879560	3137.7147	94665897
985	25226505	29485347	88262505	1041	2690.9735	3141.1662	9478.3142
986	2525.6443	2931.9626	88378127	1042	26939914	31446181	94900416
987	25286386	2955.3910	88493781	1043	26970096	3148.0705	9501.7719
988	2531.6334	2958.8199	88609463	1044	2700.0284	31515233	95135050
989	2534.6286	29622491	8872.5176	1045	2703.0475	31549763	9525.2410
990	2537.6242	2965.6788	8884.0918	1046	27060670	31584301	9536.9799
991	2540.6203	2969.1090	8895.6692	1047	2709.0869	3161.8842	95487216
992	2543.6168	29725396	89072495	1048	2712.1073	3165.3386	$9560+662$
993	2546.6138	2975.9706	89188328	1049	2715.1281	3168.7935	95722136
994	2549.6111	2979.4020	89304191	1050	2718.1493	3172.248	839640

TABLE 6. THE DIVERSITY OF SPECIES, \bar{d} CHARACTERISTIC OF MacARTHUR'S MODEL FOR VARIOUS NUMBERS OF HYPOTHETICAL SPECIES, $\mathrm{s}^{*}{ }^{*}$

s^{\prime}	d	s'	\bar{d}	s'	\bar{d}	s'	\bar{d}
1	0.0000	51	5.0941	102	6.0792	205	7.0783
2	0.8113	52	5.1215	104	6.1069	210	7.1128
3	1.2997	53	5.1485	106	6.1341	215	7.1466
4	1.6556	54	5.1749	108	6.1608	220	7.1796
5	1.9374	55	5.2009	110	6.1870	225	7.2118
6	2.1712	56	5.2264	112	6.2128	230	7.2434
7	2.3714	57	5.2515	114	6.2380	235	7.2743
8	2.5465	58	5.2761	116	6.2629	240	7.3045
9	2.7022	59	5.3004	118	6.2873	245	7.3341
10	2.8425 .	60	5.3242	120	6.3113	250	7.3631
11	2.9701	61	5.3476	122	6.3350	255	7.3915
12	3.0872	62	5.3707	124	6.3582	260	7.4194
13	3.1954	63	5.3934	126	6.3811	265	7.4468
14	3.2960	64	5.4157	128	6.4036	270	7.4736
15	3.3899	65	5.4378	130	6.4258	275	7.5000
16	3.4780	66	5.4594	132	6.4476	280	7.5259
17	3.5611	67	5.4808	134	6.4691	285	7.5513
18	3.6395	68	5.5018	136	6.4903	290	7.5763
19	3.7139	69	5.5226	138	6.5112	295	7.6008
20	3.7846	70	5.5430	140	6.5318	300	7.6250
21	3.8520	71	5.5632	142	6.5521	310	7.6721
22	3.9163	72	5.5830	144	6.5721	320	7.7177
23	3.9779	73	5.6027	146	6.5919	330	7.7620
24	4.0369	74	5.6220	148	6.6114	340	7.8049
25	4.0937	75	5.6411	150	6.6306	350	7.8465
26	4.1482	76	5.6599	152	6.6495	360	7.8870
27	4.2008	77	5.6785	154	6.6683	370	7.9264
28	4.2515	78	5.6969	156	6.6867	380	7.9648
29	4.3004	79	5.7150	- 158	6.7050	390	8.0022
30	4.3478	80	5.7329	160	6.7230	400	8.0386
31	4.3936	81	5.7506	162	6.7408	410	8.0741
32	4.4381	82	5.7681	164	6.7584	420	8.1087
33	4.4812	83	5.7853	166	6.7757	430	8.1426
34	4.5230	84	5.8024	168	6.7929	440	8.1757
35	4.5637	85	5.8192	170	6.8099	450	8.2080
36	4.6032	86	5.8359	172	6.8266	460	8.2396
37	4.6417	87	5.8524	174	6.8432	470	8.2706
38	4.6792	88	5.8687	176	6.8596	480	8.3009
39	4.7157	89	5.8848	178	6.8758	490	8.3305
40	4.7513	90	5.9007	180	6.8918	500	8.3596
41	4.7861	91	5.9164	182	6.9076	550	8.4968
42	4.8200	92	5.9320	184	6.9233	600	8.6220
43	4.8532	93	5.9474	186	6.9388	650	8.7373
44	4.8856	94	5.9627	188	6.9541	700	8.8440
45	4.9173	95	5.9778	190	6.9693	750	8.9434
46	4.9483	96	5.9927	192	6.9843	800	9.0363
47	4.9787	97	6.0075	194	6.9992	850	9.1236
48	5.0084	98	6.0221	196	7.0139	900	9.2060
49	5.0375	99	6.0366	198	7.0284	950	9.2839
50	5.0661	100	6.0510	200	7.0429	1000	9.3578

[^6]TABLE 7. CLASSIFICATION, BY VARIOUS AUTHORS, OF THE TOLERANCE OF VARIOUS MACROINVERTEBRATE TAXA TO DECOMPOSABLE ORGANIC WASTES; TOLERANT (T), FACULTATIVE (F), AND INTOLERANT (I)

Macroinvertebrate	T	F	I	Macroinvertebrate	T	F	I
Porifera				Prosopora			
Demospongiae				Lumbriculidae	60		
Monaxonida				Hirudinea			
Spongillidae			42*	Rhynchobdellida			
Spongilla fragilis		48		Glossıphoniidae			
Bryozoa				Glossiphonia complanata	48		
Ectoprocta				Helobdella stagnalis	48,42		
Phylactolaemata				H. nepheloidea	48		
Plumatellidae				Placobdella montifera	60		
Plumatella repens		51		P. rugosa		48	
P. princeps var. mucosa	48			Placobdella		42	
P. p. var. mucosa spongiosa		48		Piscicolidae			
P. p. var. fruticosa	48			Piscicola punctata		60	
P. polymorpha var. repens			48	Gnathobdellida			
Cristatellidae				Hirudidae			
Cristatella mucedo		51		Macrobdella	28		
Lophopodidae				Pharyngobdellida			
Lophopodella carteri			42	Erpobdellidae			
Pectinatella magnifica			48,42	Erpobdella punctata	48		
Endoprocta				Dina parva	48		
Urnatelhdae				D. microstoma	48		
Urnatella gracilis		48,42		Dina		42	
Gymnolaemata				Mooreobdella microstoma	42		
Ctenostomata				Hydracarina			5
Paludicellidae				Arthropoda			
Paludicella ehrenbergi		48		Crustacea			
Coelenterata				Isopoda			
Hydrozoa				Asellidae			
Hydrorda				Asellus intermedius		48	
Hydridae				Asellus	60	42	5,4
Hydra		42		Lirceus		42	
Clavidae				Amphipoda		4	
Cordylophora lacustris		42		Talitrıdae			
Platyhelminthes				Hyallela azteca		5,3,	
Turbellaria		42				4,42	
Tricladida				H. knickerbockeri	48		
Planaridae				Gammarıdae			
Planaria		48		Gammarus		42	
Nematoda		42		Crangonyx pseudogracilis		42	
Nematomorpha				Decapoda			
Gordioida				Palaemonidae			
Gordiidae		48		Palaemonetes paludosus		5,3,	
Annelida						4	
Oligochaeta	5,4	48		P. exilipes	48		
Plesiopora				Astacidae			
Naididae		48		Cambarus striatus	25		
Nais		42		C. fodiens	1		
Dero		48		C. bartoni bartoni		1	1
Ophidonais	60			C. b. cavatus		1	
Stylaria		42		C. conasaugaensis			1
Tubificidae				C. asperimanus			1
Tubifex tubifex	48,42			C. latimanus		1	
Tubifex	48,18,60			C. acuminatus			1
Limnodrilus hoffmeisteri	48,3,42			C. hiwassensis			1
L. claparedianus	48			C. extraneus			1
Limnodrilus	48,18,60			C. diogenes diogenes	1		
Branchiura sowerbyi	42			C. cryptodytes \dagger			1

[^7]TABLE 7. (Continued)

Macroinvertebrate	T	F	I	Macroinvertebrate	T	F	1
C. floridanus		1		Psilotanypus bellus	42		
C. carolinus \ddagger	1			Tanypus stellatus	44,12	18,60	5
C. longulus longirostris			1	T. carinatus		42	
Procambarus raneyi			1	T. punctipennis		44,12	
P. acutus acutus	1			Tanypus		44,12	
P. paeninsulanus		1		Psectrotanypus dyari	44,12	48	
P. spiculifer			1	Psectrotanypus		44	
P. versutus			1	Larsia lurida		4	
P. pubescens		1		Clinotanypus caliginosus			44,12
P. litosternum		1		Clinotanypus		4	
P. enoplosternum		1		Orthocladius obumbratus			60
P. angustatus		1		Orthocladius		5.48	60,42,
P. seminolae		1					+4,12
P. truculentus \ddagger	1			Nanocladius			4,42
P. advena \ddagger	1			Psectrocladius niger		42	
P. pygmaeus \ddagger	1			P. julia		42	
P. pubischelae		1		Psectrocladius			+,44
P. barbatus		1		Metriocnemus lundbecki			4
P. howellae		1		Cricotopus bicinctus			3,4,
P. troglodytes	1						44,12
$P_{\text {P }}$ epicyrtus		1		C. bicinctus group	42		
P. fallax	1			C. exilis		44	12
P. chacei		1		C. exilis group		42	
P. lunzi		1		C. trifasciatus		44	12
Orconectes propinquas		42		C. trifasciatus group		42	
O. rusticus		42		C. politus			44,12
O. juvenilis O. erichsonianus			1	C. tricinctus		44	${ }_{18}^{12}$
O. erichsonianus Faxonella clypeata		1		C. absurdus			18,44, 12
$\xrightarrow[\text { Insecta }]{ }{ }^{\text {Faxonella clypeata }}$		1		Cricotopus			12 44
Diptera				Corynoneura taris			4
Chironomidae				C. scutellata			44,12
Pentaneura inculta		60	3,4	Corynoneura			5,42,
P. carneosa		60,44	60,12				12
P. flavifrons	5			Thienemanniella xena			4,42
P. melanops	44,12			Thienemanniella			4,44
P. americana			44,12	Trichocladius robacki			3,4
Pentaneura			42,44	Brillia par			4
Ablabesmyia janta		$\begin{gathered} 3,4 \\ 42 \end{gathered}$		Diamesa nivoriunda			$\begin{gathered} 18,42, \\ 44, \end{gathered}$
A. americana		48,60	5	Diamesa			60
A. illinoense	12	44		Prodiamesa olivacea			12
A. mallochi		42	4	Chironomus attenuatus group	5,4,		44
A. ornata			4		42,12		
A. aspera			4	C. riparius	18,44,		
A. peleensis		4			12		
A. auriensis			4	C. riparius group	42		
A. rhamphe		42		C. tentans			12
Ablabesmyia			42	C. tentans-plumosus	60		
Procladius culiciformis P denticulatus	60	44,12		C. plumosus	48,18,		48,12
${ }_{\text {Pr }}^{\text {Procladius }}$ dentus	42				60		
Procladius	12	$\begin{gathered} 4,44 \\ 12 \end{gathered}$		C. plumosus group C. carus	42 4		
Labrundinia floridana			4	C. crassicaudatus	4		
L. pilosella			42	C. stigmaterus	4		
L. virescens			4	C. flavus		60	
Guttipelopia		42		C. equisitus		60	
Conchapelopia		42		C. fulvipilus	4		
Coelotanypus scapularis		42		C. anthracinus			12
C. concinnus	42	$\begin{aligned} & 48,60 \\ & 44,12 \end{aligned}$	44	C. paganus		12	12

\ddagger Not usually inhabitant of open water; are burrowers.

TABLE 7. (Continued)

Macroinvertebrate	T	F	1	Macronnvertebrate	T	H	I
Chironomus	5	60		Cladotanytarsus		42	
Kiefferullus dux	4		44,12	Micropsectra dives		60	12
Cryptochironomus fulvus	3,4		44,12	M deflecta			42
C. fulvus group		42		M. nigripula			44.12
C. digitatus		48	12	Calopsectra gregarius	5		
C. sp. B (Joh.)			5	Calopsectra			44.12
C. blarina		42	12	Stempellina johannseni		44	12
C. psittacinus			60	Culicidac	4		
C. nais		42		Culex pipiens	18,44		
Cryptochironomus	5			A nopheles punctipennis			44
Chaetolabis atroviridis			12	Chaoborndae			
C. ochreatus			12	Chaoborus punctipennis		60.42	44
Endochironomus nigricans		4,42	44,12	Ceratopogonidae	5,4	42	
Stenochironomus macateei			42,44	Palpomyia tibialis		60	
S. hilaris			3,4	Palpomyia		48,60	
Stictochironomus devinctus			4,12	Bezzia glabra	44		
S. varius			44	Stilobezzia antenalis	44		
Xenochironomus xenolabis			42	Tipulıdae	4	42	
X. rogersi		42		Tipula caloptera			44
X. scopula			44,12	T. abdominalis			44
Pseudochironomus richardson			44,12	Pseudolimnophila luteipennis			44
Pseudochironomus			12	Hexatoma			44
Parachironomus abortivus group		42		Eriocera		60	
P. pectinatellae		42		Psychodidac	4		
Cryptotendipes emorsus		42		Psychoda alternata	44		
Microtendipes pedellus			44,12	P. schizura	44		
Microtendipes			12	Psychoda	42		
Paratendipes albimanus			44,12	Telmatoscopus albipunctatus	60		
Tribelos jucundus			12	Telmatoscopus			44
T. fuscicornis			42	Simulidac	42	44	5,4
Harnischia collator		42		Simulium vittatum		18,44	
H. tenuicaudata			44	S. venustrum			44
Phaenopsectra			42	Simulium			3
Dicrotendipes modestus		42		Prosimulum johannseni			44
D. neornodestus		44	42,12	Cnepha pecuarum			44
D. nervosus		42	12	Stratiomyudae	4		
D. incurvus	42			Stratiomys descalis	44		
D. fumidus			42,12	S. meigeni	44		
Glyptotendipes senilis			42	Odontomyia cincta		44	
G. paripes	4		12	Tabanidae	4		
G. meridionalis		42		Tabanus atratus	18	44	
G. lobiferus	$48,4,$		44,12	T. stygius	44	44	
G. barbipes	42			T. benedictus T. giganteus	44		44
G. amplus		42		T. İneola	44		
Glyptotendipes	12			T. variegatus			44
Polypedilum halterale		42	4,12	Tabanus			44
P. fallax		5,44,	4	Syrphidae	$\begin{gathered} 4 \\ 44 \end{gathered}$		
P. scalaenum	4	12 42		Syrphus americanus Eristalis bastardi	$\begin{gathered} 44 \\ 18.44 \end{gathered}$		
P P. illinoense		3,4,	44,12	E. aenaus	44		
		42,44		E. brousi	44		
P. tritum		42		Eristalis	44		
P. simulans		42	12	Empididae		42	
P nubeculosum			12	Ephydridac			
P. vibex			44	Brachydeutera argentata	44		
Polypedilum		48,44	12	Anthomyiidac		42	
Tanytarsus neoflavellus		44,12	18	Lepidoptera			
T. gracilentus			12	Pyralididae		5,4	
T. dissimilis			42	Trichoptera			
Rheotanytarsus exiguus Rheotanytarsus	5	42	3,4	Hydropsychidae Hydropsyche orris		42	

TABLE 7. (Continued)

Macromvertebrate	T	F	1	Macronvertebrate	T	F	1
H. bifida group		42		Caenidae			
H. simulans			42	Caenis dimmuta	4		
H. frisoni			42	Caenis		42	48
H. incommoda		48	5,3,4	Tricory thadae		42	
Hydropsyche			5,4	Siphlonuridae			
Cheumatopsyche		5,18,		Isonychia			42
		3,4,		Plecoptera			5,4
		42		Perlidac			
Macronemum carolina			5,3,4	Perlesta placida		18	3
Macronemum			42	A croneuria abnormis		42	
Potamyia flava		42		A. arida			42
Psychomyudae				Nemouridae			
Psychomyla			42	Taeniopteryx nivals			42
Neureclipsis crepuseularis			42	Allocapnia viviparia		18	
Polycentropus		42	5,48 4	Perlodidae Isoperla bilineata			42
Curnellus fraternus		42		Neuroptera			
Oxyethira			5,4	Sisyridae			
Rhyacophilidae				Climacia areolaris			42
Rhyacophila			48	Megaloptera			
Hydroptilidae				Corydalidae			
Hydroptila waubesiana			42	Corydalis cornutus		42	5,3,4
Hydroptila			5,3,4	Sıalıdae			
Ochrotrichia			42	Sialis infumata			48
Agraylea			42	Sialis		42	
Leptoceridae			48	Odonata			
Leptocella		5,4	42	Calopterygidae			
Athripsodes			42	Hetaerina titia			4
Oecetis		5,4		Agnonidae			
Philopotamdae				Argia apicalis		42	
Chimarra perigua			3,4	A. translata		42	
Chimarra			5,4	Argia			5,4
Brachycentridae				Ischnura verticals	48	42	
Brachycentrus			4	Enallagma antennatum		42	
Molannidae			48	E. signatum		42	48
Ephemeroptera				Aeshnidae			
Heptagenudae				A nax junius			48
Stenonema integrum		32,42		Gomphidae			
S. rubromaculatum			32	Gomphus pallidus		5,3,4	
S. fuscum			32	G. plagiatus			48
S. pulchellum		32		G. externus			48
S. ares		32		G. sptniceps		42	
S. scitulum		42		G. vastus		42	
S. femoratum		18,42	32	Gomphus		5,4	
S. terminatum			42	Progomphus			5,4
S. interpunctatum			32,42	Dromogomphus		42	
S. i. ohioense			32	Erpetogomphus		42	
S. i. canadense			32	Libellulidac			
S. i. heterotarsale		32		Libellula lydia		18	
S. exiguum			5,3,4	Neurocordulia moesta		42	
S. smithae			5,3,4	Plathemis		42	
S. proximum			3	Macromia		5,42	4
S. tripunctatum			32	Hemiptera	4		
Stenonema			32	Corixidae		42	
Hexagenudae				Corixa	18		
Hexagenia limbata			42	Hesperocorixa	18		
H. bilineata		60	48	Gerridae			
Pentagenia vittgera			42	Gerris	18		
Bactidae				Belostomatidae			
Baetis vagans			42	Belostoma	18,3		
Callibaetis floridanus	4			Hydrometridac			
Callibaetis		18		Hydrometra martini	3		

TABLE 7. (Continued)

Macroinvertebrate	T	F	I	Macroinvertebrate	T	F	I
Coleoptera	$4 \S$			P. gyrina		28	
Elmidae				P. acuta		28	28
Stenelmis crenata			18,50	P. fontinalis		28	28
S. sexlineata		42,50	18	P. anatina	28		
S. decorata	50			P. halei	28		
Dubiraphia		42,50		P. cubensis	28		
Promoresia			50	P. pumilia	3		
Optioservus		50		Physa	5,4		
Macronychus glabratus			50	Aplexa hypnorum		28	28
Anacyronyx variegatus			50	Lymnaeidae			
Microcylloepus pusillus			50	Lymnaea ovata	28		
Gonielmis dietrichi		50		L. peregra		28	
Hydrophilidae				L. caperata		28	
Berosus	42			L. humilis		28	
Tropisternus natator	18			L. obrussa		28	
T. lateralis	3			L. polustris		28	28
T. dorsalis			48	L. auricularia		28	
Dytiscidae				L. stagnalis		28	28
Laccophilus maculosus	18			L. s. appressa			28
Gyrinidae				Lymnaea	4	42	
Gyrinus floridanus	3			Pseudosuccinea columella		28	
Dineutus americanus	18			Galba catascopium	28		
Dineutus		42		Fossaria modicella	28		
Mollusca				Planorbidae			
Gastropoda				Planorbis carinatus			28
Mesogastropoda				P. trivolvis	28		
Valvatidae				P. panus	28		
Valvata tricarinata		28	48,28	P. corneus		28	28
V piscinalis		28		P. marginatus			28
V. bicarinata			48	Planorbis		28	
V. b. var. normalis			48	Segmentina armigera	28		
Viviparidae				Helisoma anceps		28	
Vivaparus contectoides			48 48	H. trivolvis		28	
V. subpurpurea			48	Helisoma	3,4		
Campeloma integrum C. rufum		28		Gyraulus arcticus		28	
C. rufum C. contectus		28		Gyraulus		28	
C. fasciatus		28		Ancylidae			
C. decisum			28	Ancylus lacustris		28	28
C. subsolidum		48,28		Ferrissia fusca		28	
Campeloma		60		F. tarda		28	
Lioplax subcarinatus			48	F. rivularis			28
Pleuroceridae				Ferrissia	5,3,4	42	
Pleurocera acuta		48,28		Bivalvia			
P. elevatum		28		Eulamellibranchia			
P.e.lewisi		28		Margaritiferidae			
Pleurocera		28		Margaritifera margaritifera			28
Goniobasis livescens		48,28		Unionidae			
G. virginica	28			Unio complanata	28		
Goniobasis		28	5,4	U. gibbosus	28	28	
Anculosa		28		U. batavus			28
Bulimidae				U. pictorum			28
Bulimus tentaculatus		28		U. tumidus		28	
A mnicola emarginata			48	Lampsilis luteola		28	
A. limosa			48	L. alata		28	
Somatogyrus subglobosus			48	L. anadontoides		28	
Basommatophora				L. gracilis		48	
Physidae				L. parvus			48
Physa integra	18,28	28		Lampsilis		48,42	
P. heterostropha	28	28		Quadrula pustulosa		28,42	

§Except riffle bettles

TABLE 7. (Continued)

Macroinver tebrate	T	F	I	Macroinvertebrate	T	F	1
Q. undulata		28		S. s. var. lilycashense		48	
Q. rubiginosa		28		S. sulcatum		28	
Q. lachrymosa		28		S. stamineum		48,28	
Q. plicata		28		S. moenanum		28	28
Truncilla donaciformis			48	S. vivicolum		28	28
T. elegans			48	S. solidulum			28
Tritigonia tuberculata		28		Sphaerium		42	
Symphynota costata		28		Musculium securis		28	
Strophitus edentulus		28		M. transversum	48,28	28	
Anodonta grandis		28,42		M. truncatum	48	28	
A. imbecillis		48,28		Musculium	60		
A. mutabilis			28	Pisidium abditum	28		
A lasmodonta costata		28		P. fossarinum			28
Proptera alata			42	P. pauperculum crystalense		48,28	
Leptodea fragilis			42	P. amnicum		28	28
A mblema undulata		28		P. casertanum			
Lasmigona complanata		28		P. compressum	48	28	
Obliquaria reflexa			60	P. fallax		28	
Heterodonta				P. henslorvanum		28	
Corbiculidae				P. idahoensis	28		
Corbicula manilensis			42	P. complanatum	48,28	48,28	
Sphaeriidae	5,4			P. subtruncatum		28	
Sphaerium notatum	28			Pisidium		48	
S. corneum		28		Dresisseniidae			
S. rhomboideum		28		Mytilopsis leucophaeatus		28	
S. striatinum		28		Mactridae			
S. s. var. corpulentum		48		Rangia cuneata		28	

BIOLOGICAL METHODS

6.0 LITERATURE CITED

1. Allen, K. R. 1951. The Horokıwi Stream - a study of a trout population. New Zealand Marine Dept. Fish Bull. \#10. 231 pp.
2. American Public Health Association. 1971. Standard methods for the examination of water and wastewater, 13th edition. American Public Health Association, New York. 874 pp.
3. Beck, W. M., Jr., Bıological parameters in streams. Florida State Board of Health, Gainesville. 13 pp. (Unpublished)
4. Beck, W. M., Jr., Indicator organism classification. Florida State Board of Health, Gainesville. Mimeo. Rept. 8 pp. (Unpublished)
5. Beck, W. M., Jr. 1954. Studies in stream pollution biology: I. A stmplified ecologıcal classification of organisms. J. Fla. Acad. Sciences, 17(4):211-227.
6. Beck, W. J., Jr. 1955. Suggested method for reporting biotic data. Sewage Ind. Wastes, 27(10):1193-1197.
7. Brınkhurst, R. O. 1963. Taxanomical studies on the Tubificidae (Annelida, Olgochaeta). Internatl. Rev. Hydrobiol, (Systematische Beihefle) 2: 1-89.
8. Brinkhurst, R. O., K. E. Chua, and E. Batoosingh. 1969. Modifications in sampling procedures as appled to studies on the bacteria and tubificid oligochaetes mhabiting aquatic sediments. J. Fish. Res. Bd. Canada, 26(10):2581-1593.
9. Buchanan, T. J., and W. P. Sommers. 1969. Techniques of water investigations of the United States. Geological Survey. Chapter 8A, Discharge Measurements at Gaging Stations, Book 3, Applications of Hydraulics.
10. Carpenter, J. H. 1969. A new killing and fixing technique for small anımais. Trans. Amer. Microscop. Soc. 88-450-451.
11. Chutter, F. M. and R. G. Noble. 1966. The rellability of a method of sampling stream invertebrates. Arch. Hydrobiol., 62(1):95-103.
12. Curry, L. L. 1962. A survey of environmental requirements for the midge (Diptera: Tendipedidae). In: Biological Problems in Water Pollution. Transactons of Third Seminar, C. M. Tarzwell, ed., USDHEW, PHS, Robert A. Taft Sanitary Engineering Center, Cincinnati.
13. Dickson, K. L., J. Carrns, Jr., and J. C. Arnold. 1971. An evaluation of the use of a basket-type artifictal substrate for sampling macromvertebrate organisms. Trans. Am. Fish. Soc. 100(3):553-559.
14. Elhott, J. M. 1970. Methods of sampling invertebrate drift in running water. Ann. Limnol. 6(2): 133-159.
15. Ellot, J. M. 1971. Some methods for the statistical analysis of samples of benthic invertebrates. Freshuater Bological Association, U.K. Ferry House, Ambleside, Westmorland, England. 144 pp.
16. Flannagan, J. F. 1970. Efficiencies of varous grabs and corers in sampling freshwater benthos. J. Fish. Res. Bd. Canada, 27(10):1691-1700.
17. Fullner, R. W. 1971. A comparison of macroinvertebrates collected by basket and modified multiple-plate samplers. JWPCF, 43(3):494-499.
18. Gaufin, A. R., and C. M. Tarzwell. 1956. Aquatic macroinvertebrate communties as indicators of organic pollution in Lytle Creck. Sewage \& Ind. Wastes, 28(7)-906-924.
19. Hamilton, A. L., W. Burton, and J. Flannagan. 1970. A multuple corer for sampling profundal benthos. J. Fish Res. Bd. Canada, 27(10):1867-1869.
20. Hassler, W. W., and L. B. Tebo, Jr. 1958. I shh management investigations on trout streams. Fed. Aid Proj. F4-R Comp. Report. Fish. Div., N.C. Wildl. Resour. Comm., Raleigh, N.C.
21. Henson, E. B. 1965. A cage sampler for collecting aquatic fauna. Turtox News, 43(12):298-299.
22. Henson, E. B. 1958. Description of a bottom fauna concentrating bag. Turtox News, 36(1):34-36.
23. Hester, F. E., and J. S. Dendy. 1962. A multiple-plate sampler for aquatic macroinvertebrates. Trans. Amer. Fish. Soc. 91(4):420-421.
24. Hilsenhoff, W. L. 1969. An artifictal substrate device for sampling benthic stream invertebrates. Limnol. Oceanogr. 14(3):465-471.
25. Hubbs, H. H., Jr. 1965. List of Georgia crayfishes with their probable reactions to wastes (lethal chemicals not taken into consideration). Mimeo. Rept. 1 p. (Unpublished)
26. Hynes, H. B. N. 1970. The ecology of running waters. Liverpool Univ. Press.
27. Ingram, W. M., and A. F. Bartsch. 1960. Graphic expression of biological data in water pollution reports. JWPCF, 32(3):297-310.
28. Ingram, W. M. 1957. Use and value of biological indicators of pollution: Fresh water clams and snails. In: Bological Problems in Water Pollution, C. M. Tarzwell, ed. USDHEW, PHS, R. A. Taft Sanitary Engineering Center, Cincinnatı.
29. Kittrell, F. W. 1969. A practical guide to water quality studies of streams. USDI, FWPCA, Washington, D. C.
30. Kolkwitz, R., and M. Marsson, 1909. Ecology of anımal saprobia. Int. Rev. of Hydrobology and Hydrogeography, 2.126-152. Translation In: Bology of Water Pollution, USDI, FWPCA, Cincinnatı. 1967.
31. Lewis, P. A., W. T. Mason, Jr., and C. I. Weber. A comparison of Petersen, Ekman, and Ponar grab samples from river substrates. U. S. Environmental Protection Agency, Cincinnati. In preparation.
32. Lewis, P. A. 1969. Mayfles of the genus Stenonema as indicators of water quality. Presented at: Seventeenth Annual Meeting of the Mid. Benth• Soc., Kentucky Dam Village State Park, Gilbertsvile, Ky. 10 pp.
33. Lloyd, M., and R. J. Ghelardi. 1964. A table for calculatıng the "equitablity" component of species diversity J. Anim. Ecol. 33:217-225.
34. Lloyd, M., J. H. Zar, and J. R. Karr. 1968. On the calculation of information - theoretical measures of diversity. Am. Mid. Nat. 79(2):257-272.
35. Macan, T. T. 1963. Freshwater ecology. Camelot Press Ltd., London and Southampton, England. 338 pp.
36. MacArthur, R. H. 1957. On the relative abundance of bird specees. Proc. Nat. Acad. Scı., Washington, 43:293-295.
37. Mackenthun, K. M. 1969. The practice of water pollution biology. USDI, FWPCA, Washington, D. C.
38. Mangelsdorf, D. C. 1967. Salınty measurements in estuaries. Estuaries. Publication $\# 83$, American Association for the Advancement of Sclence. pp. 71-79.
39. Margalef, D. R. 1957. Information theory in ecology. General systems 3:36-71. (English translation by W. Hall.)
40. Mason, W. T., Jr., J. B. Anderson, and G. E. Morrison. 1967. A limestone-filled artuficial substrate sampler-float unit for collecting macronnertebrates from large streams. Prog. Fish-Cult. 29(2):74.
41. Mason, W. T., Jr. and P. A. Lewis. 1970. Rearng devices for stream insect larvae. Prog. F1sh.-Cult. 32(1):61-62,
42. Mason, W. T., Jr., P. A. Lewis, and I. B. Anderson. 1971. Macroinvertebrate collections and water quality monitoring in the Ohio River Basin, 1963-1967. Cooperative Report, Office Tech. Programs. Ohio Basin Region and Analytical Quality Control Laboratory, WQO, USEPA, NERC-Cincinnatı.
43. Mason, W. T., Jr., C. I. Weber, P. A. Lewis, and E. C. Julian. 1973. Factors affecting the performance of basket and multiplate macronvertebrate samplers. Freshwater Biol. (U.K.) 3 :In press.
44. Paine, G. H., Jr. and A. R. Gaufin. 1956. Aquatic diptera as indicators of pollution in a midwestern stream. Ohio J. Scı. $56(5): 291$.
45. Paterson, C. G., and C H. Fernando. 1971. A comparison of a simple corer and an Ekman grab for sampling shallow-water benthos. J. Fish. Res. Bd. Canada, 28(3):365-368.
46. Patrick, R. 1950. Biological measure of stream conditions. Sewage Ind. Wastes, 22(7):926-938.
47. Pennak, R. W. 1953. Freshwater invertebrates of the United States. Ronald Press Co., New York. 769 pp.
48. Richardson, R. E. 1928. The bottom fauna of the middle Illmois River, 1913-1925: Its distribution, abundance, valuation, and index value in the study of stream pollution. Bull. I11. Nat. Hist. Surv. XVII(XII):387-475.
49. Scott, D. C. 1958. Bological balance in streams. Sewage Ind. Wastes, 30: 1169-1173.
50. Sinclair, R. M. 1964. Water quality requirements of the family Elmidae (Coleoptera). Tenn. Stream Poll. Cont. Bd., Dept. Public Health. Nashville.
51. Tebo, L. B., Jr. 1955. Bottom fauna of a shallow euthrophic lake, Lizard Lake, Pocahontas County, Iowa. Amer. Mid. Nat. 54(1):89-103.
52. U.S. Environmental Protection Agency. Data collected from the Coosa, Chattahoochee, Escambia and Savannah Rivers by the Aquatic Brology Branch, Region IV, Survellance and Analysis Division, Athens, Georgia. (Unpublished)
53. U.S. Environmental Protection Agency. Data collected from the vicinity of Big Cypress Swamp jetport, south Florida, by the Aquatic Bıology Branch, Region IV, Surveillance and Analysis Division, Athens, Georgia. (Unpublished)
54. U.S. Public Health Service. 1963. Data collected from the Ohio, Wabash and Allegheny Rivers by the Biology Section, National Water Quality Network, Cincinnat1, Ohio. (Unpublished)
55. Waters, T. F. 1962. Diurnal periodicity in the drift of stream invertebrates. Ecology, 43(2):316-320.
56. Waters, T. F. 1969. Invertebrate drift-ecology and significance to stream fishes. In: Symposium Salmon and Trout in Streams, T. G. Nor thcote, ed. H. R. MacMillan Lectures in Fisherres. Univ. British Columbia, Vancouver. pp. 121-134.
57. Weich, P. S. 1948. Limnological methods. The Blakiston Co., Phladelphia, Pa. 381 pp.
58. Wentworth, C. K. 1922. A scale of grade and class terms for clastic sediments. J. Geology, 30:377-392.
59. Wilhm, J. L. 1970. Range of diversity index in benthic macroinvertebrate populations. JWPCF, 42(5):R 221-R 224.
60. Wimmer, G. R., and E. W. Surber. 1952. Bottom fauna studies in pollution surveys and interpretation of the data. Presented at: Fourteenth Mid. Wildl. Conf., Des Moines, Iowa. 13 pp.
61. Wurtz, C. B. 1955. Stream biota and stream pollution. Sewage Ind. Wastes, 27(11):1270-1278.

7.0 TAXONOMIC BIBLIOGRAPHY

7.1 Coleoptera

Brown, H. P. 1970. A key to the dryopoid genera of the new world (Coleoptera, Dryoidea). Ent. News, 81:171-175.
Hinton, H. E. 1940. New genera and species of Elmidae (Coleoptera). Trans. Royal Entomol. Soc. 91(3):65-104.
Leech, H. B. 1948. Contributions toward a knowledge of the insect fauna of Lower Califormia. No. 11, Coleoptera:Haliplidae, Dytiscidae, Byrinidae, Hydrophlidae, Lımnebiudae. Proc. Calif. Acad. Sci. 24:375-484, 2 pl.

BIOLOGICAL METHODS

Sanderson, M. W. 1938. A monographic revision of the North American species of Stenelmis (Dryopidae:Coleoptera). Kansas Univ. Dept. Eng. 25(22):635-717.
Sanderson, M. W. 1953. A revision of the nearctic genera of Elmidae (Coleoptera). J. Kansas Ent. Soc. 26(4):148-163.
Sanderson, M. W. 1954. A revision of the nearctic genera of Elmidae (Coleoptera). J. Kansas Ent. Soc. 27(1):1-13.
Sinclair, R. M. 1964. Water quality requirements of the family Elmidae (Coleoptera). Tenn. Stream Pollution Control Board, Nashville. 14 pp .
Wilson, C. B. 1923. Water beetles in relation to pondfish culture, with life histories of those found in fishponds at Fairport, Iowa. Bull. U.S. Bur. Fish. XXXIX: 231-345.

Wooldridge, D. P. 1967. The aquatic Hydrophilidae of Illnnois. Ill. State Acad. Sci. 60(4):422-431.
Young, F. N. 1954. The water beetles of Florida. Univ Fla. Press. Biol. Science Series, V(1):1-238.

7.2 Crustacea

Bousfreld, E. L. 1958. Fresh-water amphipod crustaceans of glaciated North America. Canad. Field Nat. 72:55-113.
Crocker, D. W. 1957. The crayfishes of New York State. N.Y. State Mus. and Sci. Service Bull. 355. pp. 13-89.
Hobbs, H. H., Jr. 1942. The crayfishes of Florida. Univ. Fla. Bıol. Scl. Series, III(2):1-179.
Hobbs, H. H., Jr. and C. W. Hart, Jr. 1959. The freshwater decapod crustaceans of the Appalachicola drainage system in Florida, southein Alabama, and Georgia. Bull. Fla. State Mus., Biol. Sc1. 4(5):145-191.
Holsinger, J. R. 1967. Systematics, speciation, and distributıon of the subterranean amphipod Stygonectes. US Nat. Mus. Bull. 32:1-827.
Francois, D. D. 1959. The crayfishes of New Jersey. Ohio J. Sci. 59(2):108-127.
Ortmann, A. E. 1931. Crayfishes of the southern Appalachians and Cumberland Plateau. Ann. Carnegie Mus. 20:61-160.
Rhoades, R. 1944. Crayfishes of Kentucky, with notes on variations, distributions, and descriptions of new species and subspecies. Amer. Midl. Nat. 31:111-149.
Riegel, J. A. 1959. The systematics and distribution of crayfishes in California. Calif. Fish Game, 45(1):29-50.
Stansbery, D. H. 1962. A revised checklist of the crayfish of Ohio (Decapoda:Astacidae). Ohio State Univ. Dept. Zool. Ent., Columbus. 5 pp.
Turner, C. L. 1926. The crayfish of Ohio. Ohio Biol. Surv. Bull. No. 13, 3(3):145-195.
Wılliams, A. B. 1954. Speciation and distribution of the crayfishes of the Ozark Plateau and Ouachita Provinces. Kans. Univ. Sci. Bull. 36(12):803-918.
Willıams, A. B. 1965. Marine decapod crustaceans of the Carolınas. USDI, Fish Wildl. Serv., Bur. Comm. Fish. 65(1):1-298.

7.3 Diptera

Bath, J. L., and L. D. Anderson. 1969. Larvae of seventeen species of chironomid midges from southern California. J. Kans. Entomol. Soc. 42(2):154-176.
Beck, E. C., and W. M. Beck, Jr. 1959. A checklist of the Chıronomidae (Insecta) of Florida (Diptera:Chironomidae). Bull. Fla. State Mus. 4(3):85-96.
Beck, E. C., and W. M. Beck, Jr. 1969. The Chironomidae of Florida. Fla. Ent. 52(1):1-11.
Beck, W. M., Jr. and E. C. Beck, 1964. New Chironomidae from Florida. Fla. Ent. 47(3):201-207.
Beck, W. M., Jr. and E. C. Beck. 1966. Chıronomıdae (Diptera) of Florida. Part 1. Pentaneurini (Tanypodinae). Bull. Fla. State Mus. 10(8):305-379.
Beck, W. M., Jr. and E. C. Beck. 1969. Chironomidae (Diptera) of Florida. Part III. The Harnischua complex. Bull. Fla. State Mus. 13(5):277-313.
Cook, E. F. 1956. The nearctic Chaoborinae (Diptera:Culicidae). Minn. Agr. Exp. Sta. Tech. Bull. 21 8:1-102.
Curran, H. C. 1965. The families and genera of North Amerıcan Diptera. H. Tripp Co., Woodhaven, N.Y. 515 pp.
Curry, L. L. 1958. Larvae and pupae of the species of Cryptochironomus (Diptera) in Michigan. ASLO, 3(4):427-442.
Curry, L. L. 1962. A key for the larval forms of aquatic midges (Tendipedidae:Diptera) found in Michigan. NIH Rept. No. 2, Contract No. RG-6429. Dept. Biol. Central Mich. Univ., Mt. Pleasant. 149 pp.
Darby, R. E. 1962. Midges associated with California rice fields, with special reference to their ecology (Diptera:Chironomidae). Hilgardia, 32(1):1-206.
Dendy, J. S., and J. E. Sublette. 1959. The Chironomidae (=Tendipedidae:Diptera) of Alabama, with Descriptions of Six New Species. Ann. Ent. Soc. Amer. 52(5):506-519.
Frommer, S. 1967. Review of the anatomy of adult Chironomidae. Calif. Mosquito Contr. Assoc., Tech. Series Bull. No. 1. 40 pp.
Hamilton, A. L., O. A. Saether, and D. R. Oliver. 1969. A classification of the nearctic Chironomidae. Fish. Research Bd. Can., Tech. Rept. 129.42 pp.

Hauber, U. A. 1947. The Tendipedinae of Iowa. Amer. Mid. Nat. 38(2):456-465.
*Johannsen, O. A. 1934. Aquatic Diptera. Part I. Nemocera, exclusive of Chironomidae and Ceratopogonidae. Mem. Cornell Univ. Agr. Exp. Sta. 164:1-70.
*Johannsen, O. A. 1935. Aquatic Diptera. Part II. Orthorrhapha-Brachycera and Cyclorrhapha. Mem. Cornell Univ. Agr. Exp. Sta. 177:1-62.
*Johannsen, O. A. 1937. Aquatic Diptera. Part III. Chironomidae: subfamilies Tanypodinae, Diamesinae, and Orthocladiinae. Mem. Cornell Univ. Agr. Exp. Sta. 205:1-84.
*Johannsen, O. A. 1934-37. "Aquatic Diptera" may be purchased from Entomological Reprint Specialists, East Lansing, Mich. 48823.

Johannsen, O. A. 1937a. Aquatic Diptera. Part IV. Chironomidae: subfamily Chironominae. Mem. Cornell Univ. Agr. Exp. Sta. 210:1-56.
Johannsen, O. A. 1964. Revision of the North American species of the genus Pentaneura (Tendipedidae:Diptera). J. New York Ent. Soc. 54.
Johannsen, O. A. H. K. Townes, F. R. Shaw, and E. Fisher. 1952. Guide to the insects of Connecticut. Part VI. The Diptera of true flies. Bull. Conn. Geol. and Nat. Hist. Surv. 80:1-255.
Malloch, J. R. 1915. The Chironomidae or midges of Illinois, with particular reference to the species occurring in the Illinois River. Bull. III. State Lab. Nat. Hist. 10:273-543.
Mason, W. T., Jr. 1968. An introduction to the identification of Chironomid larvae. Division of Pollution Surveillance, FWPCA, USDI, Cincinnati. 90 pp. (Revised 1973).
Roback, S. S. 1953. Savannah River tendipedid larvae. Acad. Nat. Sci., Philadelphia, 105:91-132.
Roback, S. S. 1957. The immature tendipedids of the Philadelphia area. Acad. Nat. Sci., Philadelphia Mono. No. 9. 148 pp.
Roback, S. S. 1963. The genus Xenochironomus (Diptera:Tendipedidae) Kieffer, taxonomy and immature stages. Trans. Amer. Ent. Soc. 88:235-245.
Roback, S. S. 1969. The immature stages of the genus Tanypus Meigen. Trans. Amer. Ent. Soc. 94:407-428.
Saeter, O. A. 1970. Nearctic and palaearctic Chaoborus (Diptera:Chaoboridae). Bull. Fish. Res. Bd. Can., No. 174. 57 pp.
Stone, A., C. W. Sabrasky, W. W. Wirth, R. H. Foote, and J. R. Coulson, eds. A catalog of the Diptera of America north of Mexico. USDA Handbook No. 276.
Stone, A., and E. R. Snoddy. 1969. The blackflies of Alabama (Diptera:Simuliidae). Auburn Univ. Agr. Exp. Sta. Bull. No. 390.93 pp. Sublette, J. E. 1960. Chironomid midges of California. Part I. Chironominae, exclusive of Tanytarsini (Calopsectrini). Proc. U.S. Natl. Museum, 112:197-226.
Sublette, J. E. 1964. Chironomid midges of California. Part II. Tanypodinae, Podonominae, and Diamesinae. Proc. U.S. Natl. Museum, 115(3481):85-136.
Sublette, J. E. 1964. Chironomidae (Diptera) of Louisiana. Part I. Systematics and immature stages of some lentic chironomids of west central Louisiana. Tulane Studies Zool. 11(4):109-150.
Thomsen, L. C. 1937. Aquatic Diptera. Part V. Ceratopogonidae. Mem. Cornell Univ. Ga. Exp. Sta. 210:57-80.
Townes, H. K. 1945. The nearctic species of Tendipedini. Amer. Mid. Nat. 34(1):1-206.
Wood, D. M., B. I. Peterson, D. M. Davies, and H. Gyorhos. 1963. The black flies (Diptera:Simuliidae) of Ontario. Part II. Larval identification, with descriptions and illustrations. Proc. Ent. Soc. Ontario, 93:99-129.

7.4 Ephemeroptera

Berner, L. 1950. The mayflies of Florida. Univ. Fla. Press, Gainesville. 267 pp.
Berner, L. 1959. A tabular summary of the biology of North American mayfly nymphs (Ephemeroptera). Bull. Fla. State Mus. 4(1):1-58.
Burks, B. D. 1953. The mayflies, or Ephemeroptera, of Illinois. Bull. Ill. Nat. Hist. Surv. 26:1-216.
Edmunds, G. F., Jr., R. K. Allen, and W. L. Peters. 1963. An annotated key to the nymphs of the families and subfamilies of mayflies (Ephemeroptera). Univ. Utah Biol. Series XII(1):1-55.
Leonard, J. W., and F. A. Leonard. 1962. Mayflies of Michigan trout streams. Cranbrook Institute Sci., Michigan. 139 pp.
Needham, J. G., J. R. Traver, and Yin-Chi Hsu. 1935. The biology of mayflies. Entomological Reprint Specialists, Inc., East Lansing, Mich.
Needham, J., and H. E. Murphy. 1924. Neotropical mayflies. Bull. Lloyd Libr. No. 24, Entom. Series No. 4, pp. 5-79, Cincinnati.
Spieth, H. T. 1947. Taxonomic studies on the Ephemeroptera: Part IV. The genus Stenonema. Ann. Entomol. Soc. Am. XL:1-162.

7.5 Hemiptera

Brooks, G. T. 1951. A revision of the genus A nisops (Notonectidae, Hemiptera). Univ. Kans. Sci. Bull. XXXIV(8):301-519.
Cummings, C. 1933. The giant water bugs (Belostomatidae, Hemiptera). Univ. Kans. Sci. Bull. XXI(2):197-219.
Hungerford, H. B. 1933. The genus Notonecta of the world. Univ. Kans. Sci. Bull. XXI(9):5-195.
Hungerford, H. B. 1948. The Corixidae of the western hemisphere. Kans. Univ. Sci. Bull. 32:1-827.
Hungerford, H. B., and R. Matsuda. 1960. Keys to subfamilies, tribes, genera, and subgenera of the Gerridae of the world. Univ. Kans. Sci. Bull. XLI(1):3-23.
Schaefer, K. F., and W. A. Drew. 1968. The aquatic and semiaquatic Hemiptera of Oklahoma. Proc. Okla. Acad. Sci. 47:125-134.
Schaefer, K. F., and W. A. Drew. 1969. The aquatic and semiaquatic Hemiptera (Belostomatidae and Saldidae) of Oklahoma. Proc. Okla. Acad. Sci. 48:79-83.

7.6 Hirudinea

Meyer, M. C., and J. P. Moore. 1954. Notes on Canadian leeches (Hirudinea), with the description of a new species. Wasmann J. Biology, 12(1):63-95.
Sawyer, R. T. 1967. The leeches of Louisiana, with notes on some North American species (Hirudinea, Annelida). Proc. La. Acad. Sci. XXX: 32-38.

7.7 Hydracarina

Crowell, R. M, 1960. The taxonomy, distribution, and developmental stages of Ohio water mites. Bull. Ohio Biol. Surv. 1(2):1-77.

7.8 Lepidoptera

Lange, W. H. 1956. A generic revision of the aquatic moths of North America (Lepidoptera:Pyralidae Nymphulinae). Wasmann J. Biology, 14(1):59-114.

7.9 Megaloptera

Baker, J. R., and H. H. Neunzig. 1968. The egg masses, eggs, and first instar larvae of eastern North American Corydalidae. Ann. Ent. Soc. Amer. 61(5):1181-1187.
Davis, K. C. 1903. Aquatic insects in New York State. Part 7, Sialididae of North and South America. N. Y. State Mus. Bull. 68:442-486.
Needham, J. G., and C. Betten. 1901. Aquatic insects in the Adirondacks. N. Y. State Mus. Bull. 47:383-612.
Ross, H. H., and T. H. Frison. 1937. Studies of nearctic aquatic insects. Bull. Ill. Nat. Hist. Surv. 21:57-78.

7.10 Mollusca

Amos, M. H. 1966. Commercial clams of the North American Pacific Coast. US Bur. Comm. Fish. Circular, 237:1-18.
Baker, F. C. 1928. The fresh-water mollusca of Wisconsin. Wisc. Acad. Sci. Bull. Part I. Gastropoda, 70:1-505. Part II. Pelecypoda, 70:1-495.
Branson, B. A. (No date). Checklist and distribution of Kentucky aquatic gastropods. Ky. Dept. Fish and Wildl., Res. Fish. Bull. No. 54. pp. 1-20.

Call, R. E. 1899. Mollusca of Indiana. Ind. Dept. Geol. Nat. Res., 24 th Ann. Rept. pp. 337-535.
Clarke, A. H., Jr. and C. O. Berg. 1959. The freshwater mussels of central New York with an illustrated key to the species of northeastern North America. Mem. Cornell Univ. Agr. Exp. Sta. 367:1-79.
Clench, W. J., and R. D. Turner. 1956. Freshwater mollusks of Alabama, Georgia, and Florida from the Escambia to the Suwannee River. Fla. State Mus. Bull. 1(3):97-239.
Goodrich, C. 1932. The Mollusca of Michigan. Univ. Mich. Handbook Series No. 5, pp. 1-120.
Heard, W. H., and J. Burch. 1966. Key to the genera of freshwater pelecypods of Michigan. Mich. Mus. Zool., Univ. Mich., Circ. No. 4 Ann Arbor.
Ingram, W. M. 1948. The larger freshwater clams of California, Oregon, and Washington. J. Ent. Zool. 40(4):72-92.
Leonard, A. B. 1959. Gastropods in Kansas. Kans. Univ. Dept. Zool., State Biol. Surv. 224 pp.
Murry, H. D., and A. B. Leonard. 1962. Unionid mussels in Kansas. Kans. Univ. Dept. Zool., State Biol. Surv. No. 28.104 pp.
Ortmann, A. E. 1919. A monograph of the naiades of Pennsylvania. Part III, Systematic account of the Genera and species. Carnegie Inst. Mus. 8(1):1-378.

Robertson, I. C. S., and C. L. Blakeslee. 1948. The Mollusca of the Nagara frontier region. Bull. Buffalo Soc. Nat. Sci. 19(3):1-191.
Sinclair, R. M., and B. G. Isom. 1963. Further studies on the introduced asiatic clam Corbicula in Tennessee. Tenn. Stream Poll. Control Bd., Tenn. Dept. Public Health. 75 pp.
Stein, C. B. 1962. Key to the fresh-water mussels (family Unionidae) of western Lake Erie. Ohio State Univ., Stone Lab. 5 pp.
Taft, C. 1961. The shell-bearing land snails of Ohıo. Bull. Ohio Bıl. Surv. 1(3):1-108.
Thompson, F. G. 1968. The aquatic snails of the famıly Hydrobildae of peninsular Florida. Univ. Fla. Press. 268 pp.

7.11 Odonata

Byers, C. F. 1930. A contribution to the knowledge of Florida Odonata. Univ. Fla. Biol. Sci. Ser. 1(1):1-327.
Gorman, P. 1927. Guide to the insects of Connecticut. Part V, The Odonata or dragonflies of Connecticut. Conn. Geol. Nat. Hist. Surv. 39:1-331.
Kennedy, C. H. 1915. Notes on the life history and ecology of the dragonflies (Odonata) of Washington and Oregon. Proc. US Nat. Mus. 49:259-345.
Kennedy, C. H. 1917. Notes on the life history and ecology of the dragonflies (Odonata) of central California and Nevada. Proc. US Nat. Mus. 52:483-635.
Needham, J. G., and M. J. Westfall, Jr. 1954. Dragonfles of North America. Univ. Calif. Press, Berkeley and Los Angeles. 615 pp.
Walker, E. M. 1958. The Odonata of Canada and Alaska. Vol. 1 and 2. Univ. Toronto Press, Toronto.
Williamson, E. B. 1899. The dragonfles of Indiana. Ind. Dept. Geol. Nat. Res., 24th Annual Rept. pp. 229-333.
Wright, M., and A. Peterson. 1944. A key to the genera of Anisopterous dragonfly nymphs of the United States and Canada (Odonata, suborder Anisoptera). Ohio J. Sci. 44:151-166.

7.12 Oligochaeta

Brinkhurst, R. O. 1964. Studies on the North American aquatic Oligochaeta. Part I, Proc. Acad. Nat. Sci., Philadelphia, 116(5):195-230.
Brinkhurst, R. O. 1965. Studies on the North American aquatic Oligochaeta. Part II. Proc. Acad. Sci., Philadelphia, 117(4):117-172.
Brinkhurst, R. O. 1969. Oligochaeta. In: Keys to Water Quality Indicative Organisms (Southeast United States). FWPCA, Athens, Ga. Galloway, T. W. 1911. The common fresh-water Oligochaeta of the United States. Trans. Amer. Micros. Soc. 30:285-317.

7.13 Plecoptera

Claasen, P. W. 1931. Plecoptera nymphs of America (north of Mexico). Published as Volume III of the Thomas Say Foundation, Ent. Soc. Amer. Charles C. Thomas, Springfield, Ill.
Claasen, P. W. 1940. A catalogue of the Plecoptera of the world. Merm. Cornell Univ. Agr. Exp. Sta. 232-:1-235.
Frison, T. H. 1935. The stoneflies, or Plecoptera, of Illinois. Bull. Ill. Nat. Hist. Surv. 20:281-371.
Frison, T. H. 1942. Studies of North American Plecoptera. Bull. Ill. Nat. Hist. Surv. 22:235-355.
Gaufin, A. R., A. V. Nebeker, and J. Sessions. 1966. The stoneflies (Plecoptera) of Utah. Univ. Utah Biol. Series, 14(1): 1-93.
Harden, P. H., and C. E. Mickel. 1952. The stoneflies of Minnesota (Plecoptera). Univ. Minn. Agr. Exp. Sta. 201:1-84.
Hilsenhoff, W. L. 1970. Key to genera of Wisconsin Plecoptera (stoneflies) nymphs, Ephemeroptera (mayfly) nymphs, Trichoptera (caddisfly) larvae. Res. Rept. No. 67, Wis. Dept. Nat. Res., Madison.
Jewett, S. G., Jr. 1955. Notes and descriptions concerning western stoneflies (Plecoptera). Wasmann J. Biol. 91(1): 1-543.
Jewett, S. G., Jr. 1959. The stoneflies (Plecoptera) of the Pacific Northwest. Ore. State Coll. Press. 95 pp.
Jewett, S. G., Jr. 1960. The stoneflies (Plecoptera) of California. Bull. Calif. Insect Surv. 6(6):125-177.
Nebeker, A. V., and A. R. Gaufin. 1966. The Capnia Columbiana complex of North America (Capniidae:Plecoptera). Trans. Amer. Ent. Soc. 91:467-487.
Needham, J. G., and P. W. Classen. 1925. A monograph of the Plecoptera or stoneflies of America north of Mexico. Published as Volume II of the Thomas Say Foundation, Ent. Soc. Am. Charles C. Thomas, Springfield, Ill.
Ricker, W. E., and H. H. Ross. 1968. North American species of Taeniopteryx (Plecoptera:Insecta). J. Fish. Res. Bd. Can. 25:1423-1439.

7.14 Trichoptera

Betten, C. 1934. The caddisflies or Trichoptera of New York State. N. Y. State Mus. Bull. 292:1-576.
Edwards, S. W. 1966. An annotated list of the Trichoptera of middle and west Tennessee. J. Tenn. Acad. Sci. 41:116-127.
Flint, O. S. 1960. Taxonomy and biology of nearctic limnephelid larvae (Trichoptera), with special reference to species in eastern United States. Entomologica Americana, 40: 1-120.

BIOLOGICAL METHODS

Flint, O. S. 1961. The immature stages of the Arctopsychinae occurring in eastern North America (Trichoptera:Hydropsychidae). Ann Ent. Soc. Amer. 54(1):5-11.

Flint, O. S. 1962. Larvae of the caddısfly Genus Rhyacophila in eastern North America (Trichoptera:Rhyacophilidae). Proc. US Natl. Mus. 113:465-493.

Flint, O. S. 1963. Studies of neotropical caddisflies. Part I, Rhyacophilidae and Glossosomatidae (Trichoptera). Proc. US Natl. Mus. 114:453-478.

Flint, O. S. 1964. The caddisflies (Trichoptera) of Puerto Rico. Univ. Puerto Rico Agr. Exp. Sta. Tech. Paper No. 40.80 pp.
Flint, O. S. 1964a. Notes on some nearctic Psychomyiidae with special reference to their larvae (Trichoptera). Proc. US Nat. Mus. Publ. No. 3491, 115:467-481.
Hickin, N. E. 1968. Caddis larvae, larvae of the British Trichoptera. Associated Univ. Presses, Inc., Cranbury, N. J. pp. 1-480.
Leonard, J. W., and F. A. Leonard. 1949. An annotated list of Michigan Trichoptera. Mich. Mus. Zool. Occ. Paper No. 522. pp. 1-35.
Lloyd, J. T. 1921. North American caddisfly larvae. Bull. Lloyd Libr. No. 21, Entom. Series No. 1. pp. 16-119.
Ross, H. H. 1941. Descriptions and records of North American Trichoptera. Trans. Amer. Entom. Soc. 67:35-129.
Ross, H. H. 1944. The caddısflies, or Trichoptera, of Illinois. Bull. Ill. Nat. Hist. Surv. 23:1-326.
Wiggns, G. B. 1960. A preliminary systematic study of the North American larvae of the caddisflies, family Phryganeidae (Trichoptera). Can. J. Zool. 38:1153-1170.
Wiggins, G. B. 1962. A new subfamily of phryganeid caddsflies from western North America (Tnchoptera:Phryganeidae). Can. J. Zool. 40:879-891.

Wiggins, G. B. 1963. Larvae and pupae of two North American limnephilid caddisfly genera (Trichoptera:Limnephilidae). Bull. Brooklyn Ent. Soc. 57(4):103-112.
Wiggins, G. B. 1965. Additions and revisions to the genera of North American caddisflies of the family Brachycentridae with special reference to the larval stages (Trichoptera). Can. Ent. 97:1089-1106.
Wiggins, G. B., and N. H. Anderson. 1968. Contributions to the systematics of the caddisfly genera Pseudostenophylax and Phllocasca with special reference to the immature stages (Trichoptera:Limnephilidae). Can. J. Zool. 46:61-75.
Yamamoto, T., and G. B. Wiggins. 1964. A comparative study of the North American species in the caddisfly genus Mystacides (Trichoptera:Leptoceridae). Can. J. Zool. 42:1105-1126.

7.15 Marine

Hartman, O. 1961. Polychaetous annelids from California. Allan Hancock Pacific Expeditions. 25:1-226. Hartman, O., and D. J. Reish. 1950. The marine annelids of Oregon. Ore. State Coll. Press, Corvallis, Ore. Miner, R. W. 1950. Field book of seashore life. G. P. Putnam's Sons, New York.
Smith, R. I. 1964. Keys to the marine invertebrates of the Woods Hole region. Woods Hole Marine Biol. Lab., Cont. No. 11.
Smith, R., F. A. Pitelha, D. P. Abbott, and F. M. Weesner. 1967. Intertidal invertebrates of the central California coast. Univ. Calif. Press. Berkeley.

FISH

FISH

Page1.0 INTRODUCTION 1
2.0 SAMPLE COLLECTION 1
2.1 General Considerations 1
2.2 Active Sampling Techniques 2
2.2.1 Seines 2
2.2.2 Trawls 3
2.2.3 Electrofishing 5
2.2.4 Chemical Fishing 5
2.2.5 Hook and Line 6
2.3 Passive Sampling Techniques 7
2.3.1 Entanglement Nets 7
2.3.2 Entrapment Devices 7
3.0 SAMPLE PRESERVATION 10
4.0 SAMPLE ANALYSIS 11
4.1 Data Recording 11
4.2 Identification 11
4.3 Age, Growth, and Condition 11
5.0 SPECIAL TECHNIQUES 11
5.1 Flesh Tainting 11
5.2 Fish Kill Investigations 12
6.0 REFERENCES 13
7.0 BIBLIOGRAPHY 14
7.1 General References 14
7.2 Electrofishing 14
7.3 Chemical Fishing 15
7.4 Fish Identification 16
7.5 Fish Kills 18

FISH

1.0 INTRODUCTION

To the public, the condition of the fishery is the most meaningful index of water quality. Fish occupy the upper levels of the aquatic food web and are directly and indirectly affected by chemical and physical changes in the environment. Water quality conditions that significantly affect the lower levels of the food web will affect the abundance, species composition, and condition of the fish population. In some cases, however, the fish are more sensitive to the pollutant(s) than are the lower animals and plants; they may be adversely affected even when the lower levels of the food web are relatively unharmed.

Many species of fish have stringent dissolved oxygen and temperature requirements and are intolerant of chemical and physical contaminants resulting from agricultural, industrial, and mining operations. The discharge of moderate amounts of degradable organic wastes may increase the nutrient levels in the habitat and result in an increase in the standing crop of fish. This increase, however, usually occurs in only one or a few species and results in an imbalance in the population. The effects of toxic wastes may range from the elimination of all fish to a slight reduction in reproductive capacity, growth, or resistance to disease and parasitism.

Massive and complete fish kills are dramatic signs of abrupt, adverse changes in environmental conditions. Fish, however, can repopulate an area rapidly if the niche is not destroyed, and the cause of the kill may be difficult to detect by examination of the fish community after it has recovered from the effects of the pollutant. Chronic pollution, on the other hand, is more selective in its effects and exerts its influence over a long period of time and causes recognizable changes in the species composition and relative abundance of the fish.

The principal characteristics of interest in field studies of fish populations include: (1) species present, (2) relative and absolute abundance of each species, (3) size distribution, (4) growth rate, (5) condition, (6) success of reproduction, (7) incidence of disease and parasitism,
and (8) palatability. Observations of fish behavior can also be valuable in detecting environmental problems; e.g. ventilation rates, position in the current, and erratic movement. Fish may also be collected for use in laboratory bioassays, for tissue analyses to measure the concentrations of metals and pesticides, and for histopathologic examination.

Fisheries data have some serious limitations. Even if the species composition of the fish in a specific area were known before and after the discharge of pollutants, the real significance of changes in the catch could not be properly interpreted unless the life histories of the affected species were understood, especially the spawning, seasonal migration, temperature gradient and stream-flow responses, diurnal movements, habitat preferences, and activity patterns. Without this knowledge, fish presence or absence cannot be correlated with water quality. Of course, any existing data on the water quality requirements of fish would be of great value in interpreting field data.

Fisheries data have been found useful in enforcement cases and in long-term water quality monitoring (Tebo, 1965). Fishery surveys are costly, however, and a careful and exhaustive search should be conducted for existing information on the fisheries of the area in question before initiating a field study. State and Federal fishery agencies and universities are potential sources of information which, if available, may save time and expense. Most states require a collecting permit, and the state fishery agency must usually be contacted before fish can be taken in a field study. If data are not available and a field study must be conducted, other Federal and State agencies will often join the survey and pool their resources because they have an interest in the data and have found that a joint effort is more economical and efficient.

2.0 SAMPLE COLLECTION

2.1 General Considerations

Fish can be collected actively or passively. Active sampling methods include the use of seines, trawls, electrofishing, chemicals, and

BIOLOGICAL METHODS

hook and line. Passive methods involve entanglement (gill nets and trammel nets) and entrapment (hoop nets, traps, etc.) devices. The chief limitations in obtaining qualitative and quantitative data on a fish population are gear selectivity and the mobility and rapid recruitment of the fish. Gear selectivity refers to the greater success of a particular type of gear in collecting certain species, or sizes of fish, or both. All sampling gear is selective to some extent. Two factors that affect gear selectivity are: (1) the habitat or portion of habitat (niches) sampled and (2) the actual efficiency of the gear. A further problem is that the efficiency of gear for a particular species in one area does not necessarily apply to the same species in another area. Even if nonselective gear could be developed, the problem of adequately sampling an area is difficult because of the nonrandom distribution of fish populations.

Temporal changes in the relative abundance of a single species can be assessed under a given set of conditions if that species is readily taken with a particular kind of gear, but the data are not likely to reflect the true abundance of the species occurring in nature.

Passive collection methods are very selective and do not obtain representative samples of the total population. Active methods are less selective and more efficient, but usually require more equipment and manpower. Although the choice of method depends on the objectives of the particular fishery investigation, active methods are generally preferred.

2.2 Active Sampling Techniques

2.2.1 Seines

A haul seine is essentially a strip of strong netting hung between a stout cork or float line at the top and a strong, heavily-weighted lead line at the bottom (Figure 1). The wings of the net are often of larger mesh than the middle portion, and the wings may taper so that they are shallower on the ends. The center portion of the net may be formed into a bag to aid in confining the fish. At the ends of the wings, the cork and lead lines are often fastened to a short stout pole or brail. The hauling lines are then attached to the top and bottom of the brail by a short bridle.

Figure 1. The common haul seine. (From Dumont and Sundstrom, 1961.)

Deepwater seining usually requires a boat. One end of one of the hauling lines is anchored on shore and the boat pays out the line until it reaches the end. The boat then changes direction and lays out the net parallel to the beach. When all of the net is in the water, the boat brings the end of the second hauling line ashore. The net is then beached rapidly.

The straight seines (without bags), such as the common-sense minnow seines, can usually be handled quite easily by two people. The method of paying out the seine and bringing it in is similar to the haul seine, except the straight seine is generally used in shallow water where one member of the party can wade offshore with lines.
Bag and straight seines vary considerably in dimensions and mesh size. The length varies from 3 to 70 meters, and mesh size and net width vary with the size of the fish and the depth of the water to be sampled.

Nylon seines are recommended because of the ease of maintenance. Cotton seines should be treated with a fungicide to prevent decay.

Seining is not effective in deep water because the fish can escape over the floats and under the lead line. Nor is it effective in areas that have snags and sunken debris. Although the results are expressed as number of fish captured per unit area seined, quantitative seining is very difficult. The method is more useful in determining the variety rather than the number of fish inhabiting the water.

2.2.2 Trawls

Trawls are specialized submarine seines used in large, open-water areas of reservoirs, lakes, large rivers, estuaries, and in the oceans. They may be of considerable size and are towed by boats at speeds sufficient to overtake and enclose the fish. Three basic types are: (1) the beam trawl used to capture bottom fish (Figure 2), (2) the otter trawl used to capture nearbottom and bottom fish (Figure 3), and (3) the mid-water trawl used to collect schooling fish at various depths.

The beam trawls have a rigid opening and are difficult to operate from a small boat. Otter trawls have vanes or "otter boards," which are
attached to the forward end of each wing and are used to keep the mouth of the net open while it is being towed. The otter boards are approximately rectangular and usually made of wood, with steel strapping. The lower edge is shod with a steel runner to protect the wood when the otter slides along the bottom. The leading edge of the otter is rounded near the bottom to aid in riding over obstructions.

The towing bridle or warp is attached to the board by four heavy chains or short heavy metal rods. The two forward rods are shorter so that, when towed, the board sheers to the outside and down. Thus, the two otters sheer in opposite directions and keep the mouth of the trawl open and on the bottom. Floats or corks along the headrope keep the net from sagging, and the weights on the lead-line keep the net on the bottom. The entrapped fish are funneled back into the bag of the trawl (cod end).

A popular small trawl consists of a 16 - to 20 -foot ($5-$ to $6-\mathrm{m}$) headrope, semiballoon modified shrimp (otter) trawl with $3 / 4$-inch (1.9 $\mathrm{cm})$ bar mesh in the wings and cod end. A $1 / 4-$ inch $(0.6 \mathrm{~cm})$ bar mesh liner may be installed in the cod end if smaller fish are desired. This small trawl uses otter boards, the dimensions of which, in inches, are approximately 24 to 30 (61 to $76 \mathrm{~cm}) \times 12$ to $18(30$ to 46 cm$) \times 3 / 4$ to $1-1 / 4$ inches (0.9 to 3.2 cm), and the trawl can be operated out of a medium-sized boat.

The midwater trawl resembles an otter trawl with modified boards and vanes for controlling the trawling depth. Such trawls are cumbersome for freshwater and inshore areas.

Trawling data are usually expressed in weight of catch per unit of time.

The use of trawls requires experienced personnel. Boats deploying large trawls must be equipped with power winches and large motors. Also, trawls can not be used effectively if the bottom is irregular or harbors snags or other debris. Trawls are best used to gain information on a particular species of fish rather than to estimate the overall fish population. See Rounsefell and Everhart (1953), Massman, Ladd and McCutcheon (1952) and Trent (1967) for further information on trawls.

Figure 2. The beam trawl. (From Dumont and Sundstrom, 1961.)

Figure 3. The otter trawl. (From Dumont and Sundstrom, 1961.)

2.2.3 Electrofishing

Electrofishing is a sampling method in which alternating (AC) or direct (DC) electrical current is applied to water that has a resistance different from that of fish. The difference in the resistance of the water and the fish to pulsating DC stimulates the swimming muscles for short periods of time, causing the fish to orient towards and be attracted to the positive electrode. An electrical field of sufficient potential to immobilize the fish is present near the positive electrode.

The electrofishing unit may consist of a 110 -volt, 60 -cycle, heavy-duty generator, an electrical control section consisting of a modified, commercially-sold, variable-voltage pulsator, and electrodes. The electrical control section permits the selection of any AC voltage between 50 to 700 and any DC voltage between 25 to 350 and permits control of the size of the electrical field required by various types of water. The alternating current serves as a standby for the direct current and is used in cases of extremely low water resistance.

Decisions on the use of $A C, D C$, pulsed DC, or alternate polarity forms of electricity and the selection of the electrode shape, electrode spacing, amount of voltage, and proper equipment depend on the resistance, temperature, and total dissolved solids of the water. Light-weight conductivity meters are recommended for field use. Lennon (1959) provides a comprehensive table and describes the system or combination of systems that worked best for him.

Rollefson $(1958,1961)$ thoroughly tested and evaluated AC, DC, and pulsating DC, and discussed basic electrofishing principles, wave forms, voltage -- current relationships, electrode types and designs, and differences between AC and DC and their effects in hard and soft waters. He concluded that pulsating DC was best in terms of power economy and fishing ability when correctly used. Haskell and Adelman (1955) found that slowly pulsating DC worked best in leading fish to the anode. Pratt (1951) also found the DC shocker to be more effective than the AC shocker.

Fisher (1950) found that brackish water requires much more power (amps) than fresh-
water, even though the voltage drops may be identical. Seehorn (1968) recommended the use of an electrolyte (salt blocks) when sampling in some soft waters to produce a large enough field with the electric shocker. Frankenberger (1960), Larimore, Durham and Bennett (1950) and Latta and Meyers (1961) have excellent papers on boat shockers. Frankenberger and Latta and Meyers used a DC shocker and Larimore et al. an AC shocker. Stubbs (1966), used DC or pulsed DC, and has his (aluminum) boat wired as the negative pole. In his paper, he also shows the design and gives safety precautions that emphasize the use of the treadle switch or "deadman switch" in case a worker falls overboard.

Backpack shockers that are quite useful for small, wadeable streams have been described by Blair (1958) and McCrimmon and Berst (1963), as has a backpack shocker for use by one man (Seehorn, 1968). Most of these papers give diagrams for wiring and parts needed.

There are descriptions of electric trawls (AC) (Haskell, Geduliz, and Snolk, 1955, and Loeg, 1955); electric seines (Funk, 1947; Holton, 1954; and Larimore, 1961); and a fly-rod electrofishing device employing alternating polarity current (Lennon, 1961).

The user must decide which design is most adaptable to his particular needs. Before deciding which design to use, the biologist should carefully review the literature. The crew should wear rubber boots and electrician's gloves and adhere strictly to safety precautions.

Night sampling was found to be much more effective than day sampling. Break sampling efforts into time units so that unit effort data are available for comparison purposes.

2.2.4 Chemical fishing

Chemicals used in fish sampling include rotenone, toxaphene, cresol, copper sulfate, and sodium cyanide. Rotenone has generally been the most acceptable because of its high degradability; freedom from such problems as precipitation (as with copper sulfate) and persistant toxicity (as with toxaphene); and relative safety for the user.

Rotenone, obtained from the derris root (Deguelia elliptica, East Indies) and cube root
(Lonchocarpus nicour, South America), has been used extensively in fisheries work throughout the United States and Canada since 1934 (Krumholz, 1948). Although toxic to man and warm-blooded animals ($132 \mathrm{mg} / \mathrm{kg}$), rotenone has not been considered hazardous in the concentrations used for fish eradication (0.025 to 0.050 ppm active ingredient) (Hooper, 1960), and has been employed in waters used for bathing and in some instances in drinking water supplies (Cohen et al., 1960, 1961). Adding activated carbon not only effectively removes rotenone, but it also removes the solvents, odors, and emulsifiers present in all commercial rotenone formulations.

Rotenone obtained as an emulsion containing approximately 5 percent active ingredient, is recommended because of the ease of handling. It is a relatively fast-acting toxicant. In most cases, the fish will die within 1 to 2 hours after exposure. Rotenone decomposes rapidly in most lakes and ponds and is quickly dispersed in streams. At summer water temperatures, toxicity lasts 24 hours or less. Detoxification is brought about by five principal factors: dissolved oxygen, light, alkalinity, heat, and turbidity. Of these, light and oxygen are the most important factors.

Although the toxicity threshold for rotenone differs slighly among fish species, it has not been widely used as a selective toxicant. It has, however, been used at a concentration of 0.1 ppm of the 5 percent emulsion to control the gizzard shad (Bowers, 1955).

Chemical sampling is usually employed on a spot basis, e.g. a short reach of river or an embayment of a lake. A concentration of 0.5 ppm active ingredient will provide good recovery of most species of fish in acidic or slightly alkaline waters. If bullheads and carp are suspected of being present, however, a concentration of 0.7 ppm active ingredient is recommended. If the water is turbid and strongly alkaline, and resistant species (i.e., carp and bullheads) are present, use $1-2 \mathrm{ppm}$. To obtain a rapid kill, local concentrations of 2 ppm can be used; however, caution is advised because rotenone dispersed into peripheral water areas may kill fish as long as the concentration is above 0.1 ppm .

A very efficient method of applying emulsion products is to pump the emulsion from a drum mounted in the bottom of a boat. The emulsion is suctioned by a venturi pump (Amundson boat bailer) clamped on the outboard motor. The flow can be metered by a valve at the drum hose connection. This method gives good dispersion of the chemical and greater boat handling safety, since the heavy drum can be mounted in the bottom of a boat rather than above the gunwales, as required for gravity flow.

Spraying equipment needed to apply a rotenone emulsion efficiently varies according to the size of the job. For small areas of not more than a few acres, a portable hand pump ordinarily used for garden spraying or fire fighting is sufficient. The same size pump is also ideal for sampling the population of a small area.

A power-driven pump is recommended for a large-scale or long-term sampling program. A detailed description of spraying equipment can be found in Mackenthun and Ingram (1967). The capacity of the pump need not be greater than 200 liters per minute. Generally speaking, a $1-1 / 2$ H.P. engine is adequate.

The power application of rotenone emulsives requires a pressure nozzle, or a spray boom, or both, and sufficient plumbing and hose to connect with the pump. The suction line of the pump should be split by a "Y" to attach two intake lines. One line is used to supply the toxicant from the drum, and the other line, to supply water from the lake or embayment. The valves are adjusted so the water and toxicant are drawn into the pumping system in the desired proportion and mixed.

In sampling a stream, select a 30 - to $100-$ meter reach depending on the depth and width of the stream; measure the depth of the section selected, calculate the area, and determine the amount of chemical required. Block off the area upstream and downstream with seines. To detoxify the area downstream from the rotenone, use potassium permanganate. Care must be exercised, however, because potassium permanganate is toxic to fish at about 3 ppm .

2.2.5 Hook and line

Fish collection by hook and line can be as simple as using a hand-held rod or trolling baited
hooks or other lures, or it may take the form of long trot lines or set lines with many baited hooks. Generally speaking, the hook and line method is not acceptable for conducting a fishery survey, because it is too highly selective in the size and species captured and the catch per unit of effort is too low. Although it can only be used as a supporting technique, it may be the best method to obtain a few adult specimens for heavy metal analysis, etc., where sampling with other gear is impossible.

2.3 Passive Sampling Techniques

2.3.1 Entanglement nets

Gill and trammel nets are used extensively to sample fish populations in estuaries, lakes, reservoirs, and larger rivers.

A gill net is usually set as an upright fence of netting and has a uniform mesh size. Fish attempt to swim through the net and are caught in the mesh (Figure 4). Because the size of the mesh determines the species and size of the fish to be caught, gill nets are considered selective. The most versatile type is an experimental gill net consisting of five different mesh size sections. Gill nets can be set at the surface, in midwater, or at the bottom, and they can be operated as stationary or movable gear. Gill nets made of multifilament or monofilament nylon are recommended. Multifilament nets cost less and are easier to use, but monofilament nets generally capture more fish. The floats and leads usually supplied with the nets can cause net entanglement. To reduce this problem, replace the individual floats with a float line made with a core of expanded foam and use a lead-core leadline instead of individual lead weights.

The trammel net (Figure 5) has a layer of large mesh netting on each side of loosely-hung, smaller gill netting. Small fish are captured in the gill netting and large fish are captured in a "bag" of the gill netting that is formed as the smaller-mesh gill netting is pushed through an opening in the larger-mesh netting. Trammel nets are not used as extensively as are gill nets in sampling fish.

Results for both nets are expressed as the number or weight of fish taken per length of net per day.

Stationary gill and trammel nets are fished at right angles to suspected fish movements and at any depth from the surface to the bottom. They may be held in place by poles or anchors. The anchoring method must hold the net in position against any unexpected water movements such as, runoff, tides, or seiches.

Drifting gill or trammel nets are also set and fished the same as stationary gear, except that they are not held in place but are allowed to drift with the currents. This method requires constant surveillance when fishing. They are generally set for a short period of time, and if currents are too great, stationary gear is used.

The use of gill nets in the estuaries may present special problems, and consideration should be given to tidal currents, predation, and optimum fishing time, and to anchors, floats, and line.

The gunnels of any boat used in a net fishing operation should be free of rivets, cleats, etc., on which the net can catch.

2.3.2 Entrapment devices

With entrapment devices, the fish enter an enclosed area (which may be baited) through a series of one or more funnels and cannot escape.

The hoop net and trap net are the most common types of entrapment devices used in fishery surveys. These traps are small enough to be deployed from a small open boat and are relatively simple to set. They are held in place with anchors or poles and are used in water deep enough to cover the nets, or to a depth up to 4 meters.

The hoop net (Figure 6) is constructed by covering hoops or frames with netting. It has one or more internal funnels and does not have wings or a lead. The first two sections can be made square to prevent the net from rolling in the currents.

The fyke net (Figure 7) is a hoop net with wings, or a lead, or both attached to the first frame. The second and third frames can each hold funnel throats, which prevent fish from escaping as they enter each section. The opposite (closed) end of the net may be tied with a slip cord to facilitate fish removal.

Figure 4. Gill net. (From Dumont and Sundstrom, 1961.)

Figure 5. Trammel net. (From Dumont and Sundstrom, 1961.)

Figure 6. Hoop net. (From Dumont and Sundstrom, 1961.)

Figure 7. Fyke net. (From Dumont and Sundstrom, 1961.)

Hoop nets are fished in rivers and other waters where fish move in predictable directions, whereas the fyke net is used when fish movement is more random such as in lakes, impoundments, and estuaries. Hoop and fyke nets can be obtained with hoops from 2 to 6 feet (0.6 to 1.8 meters) in diameter, but any net over 4 feet (1.2 meters) in diameter is too large to be used in a fishery survey.

Trap nets use the same principle as hoop nets for capturing fish, but their construction is more complex. Floats and weights instead of hoops give the net its shape. The devices are expensive, require considerable experience, and are fished in waters deep enough to cover them.

One of the most simple types is the minnow trap, usually made of wire mesh or glass, with a single inverted funnel. The bait is suspended in a porous bag. A modification of this type is the slat trap; this employs long wooden slats in a cylindrical trap, and when baited with cheese bait, cottonseed cake, etc., it is used very successfully in sampling catfish in large rivers (Figure 8).

Most fish can be sampled by setting trap and hoop nets of varying mesh sizes in a variety of
habitats. Hoop and trap nets are made of cotton or nylon, but nets made of nylon have a longer life and are lighter when wet. Protect cotton nets from decay by treatment. Catch is recorded as numbers or weight per unit of effort, usually fish per net day.

3.0 SAMPLE PRESERVATION

Preserve fish in the field in 10 percent formalin. Add 3 grams borax and 50 ml glycerin per liter of formalin. Specimens larger than 7.5 cm should be slit on the side at least one-third of the length of the body cavity to permit the preservative to bathe the internal organs. Slit the fish on the right side, because the left side is generally used for measurements, scale sampling, and photographic records.
Fixation may take from a few hours with small specimens to a week or more with large forms. After fixation, the fish may be washed in running water or by several changes of water for at least 24 hours and placed in 40 percent isopropyl alcohol. One change of alcohol is necessary to remove the last traces of formalin. Thereafter, they may be permanently preserved in the 40 percent isopropyl alcohol.

Figure 8. Slat trap. (From Dumont and Sundstrom, 1961.)

4.0 SAMPLE ANALYSIS

4.1 Data Recording

The sample records should include collection number, name of water body, date, locality, and other pertinent information associated with the sample. Make adequate field notes for each collection. Write with water-proof ink and paper to ensure a permanent record. Place the label inside the container with the specimens and have the label bear the same number or designation as the field notes, including the locality, date, and collector's name. Place a numbered tag on the outside of the container to make it easier to find a particular collection. Place any detailed observations about a collection on the field data sheet. Record fishery catch data in standard units such as number or weight per area or unit of effort. Use the metric system for length and weight measurements.

4.2 Identification

Proper identification of fishes to species is important in analysis of the data for water quality interpretation. A list of regional and national references for fish identification is located at the end of this chapter. Assistance in confirming questionable identification is available from State, Federal, and university fishery scientists.

4.3 Age, Growth, and Condition

Changes in water quality can be detected by studying the growth rate of fishes. Basic methods used to determine the age and growth of fish include:

- Study of fish length-frequencies, and
- Study of seasonal ring formations in hard bony parts such as scales and bones.

The length-frequency method of age determination depends on the fact that fish size varies with age. When the number of fish per length interval is plotted on graph paper, peaks generally appear for each age group. This method works best for young fish.

The seasonal ring-formation method depends on the fact that fish are cold-blooded animals and the rates of their body processes are affected
by the temperature of the water in which they live. Growth is rapid during the warm season and slows greatly or stops in winter. This seasonal change in growth rate of fishes is often reflected in zones or bands (annual rings) in hard bony structures, such as scales, otoliths (ear stone), and vertebrae. The scales of fish may indicate exposure to adverse conditions such as injury, poor food supply, disease, and possibly water quality.

Note the general well being of the fish - do they appear emaciated? diseased from fungus? have open sores, ulcers, or fin rot? parasitized? Check the gill condition, also. Healthy fish will be active when handled, reasonably plump, and not diseased. Dissect a few specimens and check the internal organs for disease or parasites. The stomachs can be checked at this time to determine if the fish are actively feeding.

5.0 SPECIAL TECHNIQUES

5.1 Flesh Tainting

Sublethal concentrations of chemicals, such as phenols, benzene, oil, 2, 4-D, are often responsible for imparting an unpleasant taste to fish flesh, even when present in very low concentrations. Flesh tainting is nearly as detrimental to the fisheries as a complete kill.

A method has been developed (Thomas, 1969) in which untainted fish are placed in cages upstream and downstream from suspected waste sources. This procedure will successfully relate the unacceptable flavor produced in native fish if exposed to a particular waste source.

To ensure uniform taste quality before exposure, all fish are held in pollution-free water for a 10 -day period. After this period, a minimum of three fish are cleaned and frozen with dry ice as control fish. Test fish are then transferred to the test sites, and a minimum of three fish are placed in each portable cage. The cages are suspended at a depth of 0.6 meter for 48 to 96 hours.

After exposure, the fish are dressed, frozen on dry ice, and stored to $0^{\circ} \mathrm{F}$ until tested. The control and exposed samples are shipped to a fishtasting panel, such as is available at the food science and technology departments in many of
the major universities, and treated as follows: (a) The fish are washed, wrapped in aluminum foil, placed on slotted, broiler-type pans, and cooked in a gas oven at $400^{\circ} \mathrm{F}$ for 23 to 45 minutes depending on the size of the fish. (b) Each sample is boned and the flesh is flaked and mixed to ensure a uniform sample. (c) The samples are served in coded cups to judges. Known and coded references or control samples are included in each test. The judges score the flavor and desirability of each sample on a point scale. The tasting agency will establish a point on the scale designated as the acceptable and desirable level.

5.2 Fish Kill Investigations

Fish mortalities result from a variety of causes, some natural and some man-induced. Natural fish kills are caused by phenomena such as acute temperature change, storms, ice and snow cover, decomposition of natural organic materials, salinity changes, spawning mortalities, and bacterial, parasitic, and viral epidemics. Man-induced fish kills may be attributed to municipal or industrial wastes, agricultural activities, and water manipulations. Winter kills occur in northern areas where ice on shallow lakes and ponds becomes covered with snow, and the resulting opaqueness stops photosynthesis. The algae and vascular plants die because of insufficient light, and their decomposition results in oxygen depletion. Oxygen depletion and extreme pH variation can be caused also by the respiration or decay of algae and higher plants during summer months in very warm weather. Kills resulting from such causes are often associated with a series of cloudy days that follow a period of hot, dry, sunny days.

Occasionally fish may be killed by toxins released from certain species of living or decaying algae that reached high population densities because of the increased fertility resulting from organic pollution.

Temperature changes, either natural or the
result of a heated water discharge, will often result in fish kills. Long periods of very warm, dry weather may raise water temperatures above lethal levels for particular species. A windinduced seiche may be hazardous to certain temperature-sensitive, deep-lake, cold-water fish, or fish of shallow coastal waters.

Disease, a dense infestation of parasites, or natural death of weakened fish at spawning time must always be suspected as contributory factors in fish mortalities.

Explosions, abrupt water level fluctuations, hurricanes, extreme turbidity or siltation, discharges of toxic chemicals, certain insecticides, algicides, and herbicides may each cause fish kills.

Recent investigations in Tennessee have shown that the leaking of small amounts of very toxic chemicals from spent pesticide-containing barrels used as floats for piers and diving rafts in lakes and reservoirs can produce extensive fish kills.

Fish die of old age, but the number so afflicted at any one time is usually small.

All possible speed must be exercised in conducting the initial phases of any fish kill investigation because fish disintegrate rapidly in hot weather and the cause of death may disappear or become unidentifiable within minutes. Success in solving a fish kill problem is usually related to the speed with which investigators can arrive at the scene after a fish kill begins. The speed of response in the initial investigation is enhanced through the training of qualified personnel who will report immediately the location of observed kills, the time that the kill was first observed, the general kinds of organisms affected, an estimate of the number of dead fish involved, and any unusual phenomena associated with the kill.

Because there is always the possibility of legal liability associated with a fish kill, lawyers, judges, and juries may scrutinize the investigation report. The investigation, therefore, must be made with great care.

6.0 REFERENCES

Blair, A. A. 1958. Back-pack shocker. Canad. Fish Cult. No. 23, pp. 33-37.
Bowers, C. C. 1955. Selective poisoning of gizzard shad with rotenone. Prog. Fish-Cult. 17(3):134-135.
Cohen, J. M., Q. H. Pickering, R. L. Woodward, and W. Van Heruvelen. 1960. The effect of fish poisons on water supplies. JAWWA, 52(12):1551-1566.
Cohen, J. M., Q. H. Pickering, R. L. Woodward, and W. Van Heruvelen. 1961. The effect of fish poisons on water supplies. JAWWA, 53(12)Pt. 2:49-62.
Dumont, W. H., and G. T. Sundstrom. 1961. Commercial fishing gear of the United States. U.S. Fish and Wildlife Crreular No. 109. U.S. Government Printing Office, Washington, D.C., 61 pp.

Fisher, K. C. 1950. Physiological considerations involved in electrical methods of fishing. Canad. Fish Cult. No. 9, pp. 26-34.
Frankenberger, L. 1960. Applications of a boat-rigged direct-current shocker on lakes and streams in west-central Wisconsin. Prog. Fish-Cult. 22(3):124-128.
Funk, J. L. 1947. Wider application of electrical fishing method of collecting fish. Trans. Amer. Fish. Soc. 77:49-64.
Haskell, D. C., and W. F. Adelman, Jr. 1955. Effects of rapid direct current pulsations on fish. New York Fish Game J. 2(1):95-105.
Haskell, D. C., D. Geduldiz, and E. Snolk. 1955. An electric trawl. New York Fish Game J. 2(1):120-125.
Holton, G. D. 1954. West Virginia's electrical fish collecting methods. Prog. Fish-Cult. 16(1):10-18.
Hooper, F. 1960. Pollution control by chemicals and some resulting problems. Trans. Second Seminar on Biol. Problems in Water Pollution, April 20-24, USPHS, Robert A. Taft San. Engr. Ctr., Cincinnati, p241-246.
Krumholz, L. A. 1948. The Use of Rotenone in Fisheries Research J. Wildl. Mgmt. 12(3):305-317.
Larimore, R. W. 1961. Fish population and electrofishing success in a warm water stream. J. Wildl. Mgmt. 25(1):1-12.
Larimore, R. W., L. Durham, and G. W. Bennett. 1950. A modification of the electric fish shocke: for Lake Work. J. Wildl. Mgmt. 14(3):320-323.
Latta, W. C., and G. F. Meyers. 1961. Night use of a D C electric shocker to collect trout in lakes. Trans. Amer. Fish.Soc. 90(1):81-83.
Lennon, R. E. 1959. The electrical resistivity in fishing investigations. U.S. Fish Wildl. Serv., Spec. Sci. Rept. Fish. No. 287, pp. 1-13.
Lennon, R. E. 1961. A fly-rod electrode system for electrofishing. Prog. Fish-Cult. 23(2):92-93.
Loeb, H. A. 1955. An electrical surface device for crop control and fish collection in lakes. New York Fish Game J. 2(2):220-221.
McCrimmon, H. R., and A. H. Berst. 1963. A portable A C - D C backpack fish slocker designed for operation in Ontario streams. Prog. Fish-Cult. 25(3):159-162.
Mackenthun, K. M. 1969. The practice of water pollution biology. USDI, FWPCA, 281 pp.
Mackenthun, K. M., and W. M. Ingram. 1967. Biological associated problems in freshwater environments, their identification, investigation and control. USDI, FWPCA, 287 pp.
Massman, W. H., E. C. Ladd, and H. N. McCutcheon. 1952. A surface trawl for sampling young fishes in tidal rivers. Trans. North Amer. Wildl. Conf. 17:386-392.
Pratt, V. S. 1951. A measure of the efficiency of alternating and direct current fish shockers. Trans. Amer. Fish.Soc. 81(1):63-68.
Rollefson, M. D. 1958. The development and evaluation of interrupted direct current electrofishing equipment. Wyo. Game Fish Dept. Coop. Proj. No. 1. pp. 1-123.
Rollefson, M. D. 1961. The development of improved electrofishing equipment. In: Proc. Forty-first Ann. Conf. West.Assoc. St. Game and Fish Comm. pp.218-228.
Rounsefell, G. A., W. H. Everhart. 1953. Fishery science: Its methods and applications. John Wiley and Sons, New York.
Seehorn, M. E. 1968. An inexpensive backpack shocker for one man use. In: Proc. 21 st. Ann. Conf. Southeastern Assoc. Game and Fish Comm. pp. 516-524.
Stubbs, J. M. 1966. Electrofishing, using a boat as the negative. In: Proc. 19th Ann. Conf. Southeastern Assoc. Game and Fish Comm. pp. 236-245.
Tebo, Jr., L. B. 1965. Fish population sampling studies at water pollution surveillance system stations on the Oho, Tennessee, Clinch and Cumberland Rivers. Applications and development Report No. 15, Div. Water Supply and Pollution Control, USPHS. Cincinnati. 79 pp.
Thomas, N. 1969. Flavor of Ohio River channel catfish (Ictalarus punctatus Raf.).USEPA. Cincinnati. 19 pp.
Trent, W. L. 1967. Attachment of hydrofoils to otter boards for taking surface samples of juvenile fish and shrimp. Ches. Sci. 8(2):130-133.

BIOLOGICAL METHODS

7.0 BIBLIOGRAPHY

7.1 General References

Allen, G. H., A. C. Delacy, and D. W. Gotshall. 1960. Quantitatıve sampling of marine fishes -- A problem in fish behavior and fish gear. In: Waste Disposal in the Marine Environment. Pergamon Press. pp 448-511.
American Public Health Association et al. 1971. Standard methods for the examination of water and wastewater. 13th ed. APHA, New York. pp. 771-779.
Breder, C. M., and D. E. Rosen. Modes of reproduction in fishes. Amer. Mus. Natural History, Natural History Press, New York. 941 pp.
Calhoun, A., ed. 1966. Inland fisheries management. Calif. Dept. Fish and Game, Sacramento. 546 pp.
Carlander, K. D. 1969. Handbook of freshwater fishery; Life history data on freshwater of the U.S. and Canada, exclusive of the Perciformes, 3rd ed. Iowa State Unıv. Press, Ames. 752 pp.
Curtis, B. 1948. The Life Story of the Fish. Harcourt, Brace and Company, New York. 284 pp.
Cushing, D. H. 1968. Fisheries bıology. A study in populatıon dynamics. Univ. Wis. Press, Madison. 200 pp.
FAO. 1964. Modern fishing gear of the world: 2. Fishing News (Books) Ltd., London. 603 pp.
Green, J. 1968. The biology of estuarine animals. Univ. Washington, Seattle. 401 pp .
Hardy, A. 1965. The open sea. Houghton Mifflin Company, Boston. 657 pp.
Hynes, H. B. N. 1960. The biology of polluted water. Liverpool Univ. Press, Liverpool. 202 pp.
Hynes, H. B. N. 1970. The ecology of running waters. Univ. Toronto Press. 555 pp .

- Jones, J. R. E. 1964. Fish and river pollution. Butterworths, London. 203 pp.

Klein, L. 1962. River pollution 2: causes and effects. Butterworths, London. 456 pp.
Lagler, K. F. 1966. Freshwater fisheries biology. William C. Brown Co., Dubuque. 421 pp.
Lagler, K. F., J. E. Bardach, and R. R. Miller. 1962. Ichthyology. The study of fishes. John Wiley and Sons Inc., New York and London. 545 pp .
Macan, T. T. 1963. Freshwater ecology. Jonn Wiley and Sons, New York. 338 pp.
Marshall, N. B. 1966. Lufe of fishes. The World Publ. Co., Cleveland and New York. 402 pp.
Moore, H. B. 1965. Marne ecology. John Wiley and Sons, Inc., New York. 493 pp.
Reid, G. K. 1961. Ecology of inland waters and estuaties. Reinhold Publ. Corp., New York. 375 pp.
Ricker, W. E. 1958. Handbook of computations for bıological statistics of fish populations. Fish. Res. Bd. Can. Bull. 119. 300 pp.
Ricker, W. E. 1968. Methods for the assessment of tish production in fresh water. International Bıological Program Handbook No. 3. Blackwell Scientific Publications, Oxford and Edmburgh 326 pp.
Rounsefell, G. A., and W. H. Everhart 1953. Fishery science, its methods and applicatıons. John Wiley \& Son, New York. 444 pp.
Ruttner, F. 1953. Fundamentals of limnology. Univ. Toronto Press, Toronto. 242 pp .
Warren, C. E. 1971. Brology and water pollution control. W. B. Saunders Co., Phladelphia. 434 pp.
Welch, P. S. 1948. Limnological methods. McGraw-Hill, New York. 381 pp.

7.2 Electrofishing

Applegate, V. C. 1954. Selected bibliography on applications of electricity in fishery science. U.S. Fish and Wildl. Serv., Spec. Sci. Rept. Fish. No. 127. pp. 1-55.
Bailey, J. E., et al. 1955. A direct current fish shocking technique. Prog. Fish-Cult. 17(2):75.
Burnet, A. M. R. 1959. Electric fishing with pulsatory electric current. New Zeal. J. Scl. 2(1)-48-56.
Burnet, A. M. R. 1961. An electric fishing machıne with pulsatory direct current. New Zeal. J. Sci. 4(1):151-161.
Dale, H. B. 1959. Electronic fishing with underwater pulses. Electronics, 52(1):1-3.
Elson, P. F. 1950. Usefulness of electrofishing methods. Canad. Fish Cult. No. 9, pp. 3-12.
Halsband, E. 1955. Untersuchungen uber die Betaubungsgrenzimpulzaheln vor schiedener suswasser Fische. Archiv. fur Fishereiwissenschaft, 6(1-2):45-53.
Haskell, D. C. 1939. An electrical method of collecting fish. Trans. Amer. Fish.Soc. 69:210-215.
Haskell, D. C. 1954. Electrical fields as applied to the operatıon of electric fish shockers. New York Fish Game J. 1(2):130-170.
Haskell, D. C., and R. G. Zilliox. 1940. Further developments of the electrical methods of collecting fish. Trans. Amer. Fish. Soc. 70:404-409.

Jones, R. A. 1959. Modifications of an alternate-polarity electrode. Prog. Fish-Cult. 21 (1):39-42.
Larkins, P. A. 1950. Use of electrical shocking devices. Canad. Fish. Cult., No. 9, pp. 21-25.
Lennon, R. E., and P. S. Parker. 1955. Electric shocker developments on southeastern trout waters. Trans. Amer. Fish. Soc. 85:234-240.
Lennon, R. E., and P. S. Parker. 1957. Night collection of fısh with electricity. New York Fish Game J. 4(1):109-118.
Lennon, R. E., and P. S. Parker. 1958. Applications of salt in electrofishing. Spec. Sci. Rept., U.S. Fish Wildl. Serv. No. 280.
Ming, A. 1964a. Boom type electrofishing device for sampling fish populations in Oklahoma waters. Okla. Fish. Res. Lab., D-J Federal Aid Proj. FL-6, Semiann. Rept. (Jan-June, 1964). pp. 22-23.
Ming, A. 1964b. Contributions to a bibliography on the construction, development, use and effect, of electrofishing devices. Okla. Fish. Res. Lab., D-J Federal Aid Proj. FL-6, Semiann. Rept. (Jan.June, 1964). pp. 33-46.
Monan, G. E., and D. E. Engstrom. 1962. Development of a mathematical relationship betweet electrifield parameters and the electrical characteristics of fish. U.S. Fish Wildl. Serv., Fish. Bull. 63(1):123-136.
Murray, A. R. 1958. A direct current electrofishing apparatus using separate excitation. Canad. Fish Cult., Nu. 23, pp. 27-32.
Northrop, R. B. 1962. Design of a pulsed DC-AC shocker, Conn. Bd. Fish and Game, D-J Federal Aid Proj. F-25-R, Job No. 1.
Omand, D. N. 1950. Electrical methods of fish collection. Canad. Fish Cult. No. 9, pp. 13-20.
Petty, A. C. 1955. An alternate-polarity electrode. New York Fish Game J. 2(1):114-119.
Ruhr, C. E. 1953. The electric shocker in Tennessee. Tenn. Game Fish Comm. (mimeo). 12 pp.
Saunders, J. W., and M. W. Smith. 1954. The effective use of a direct current fish shocker in a Prince Edward Island stream. Canad. Fish. Cult., No. 16, pp. 42-49.
Schwartz, F. J. 1961. Effects of external forces on aquatic organisms. Maryland Dept. Res. Edu., " sapeake Biol. Lab., Contr. No. 168, pp. 3-26.
Smith, G. F. M., and P. F. Elson. 1950. A-D.C. electrical fishıng apparatus. Canad. Fish Cult., No. 9, pp. 34-46.
Sullivan, C. 1956. Importance of size grouping in population estimates employing electric shockers. Prog. Fish-Cult. 18(4):188-1^0.
Taylor, G. N. 1957. Galvanotaxic response of fish to pulsating D.C. J. Wildl. Mgmt. 21 (2) - 201-213.
Thompson, R. B. 1959. The use of the transistorized pulsed direct current fish shocker in assessing populations of resident fishes. In: Proc. Thirty-ninth Ann. Conf. West. Assoc. St. Fish and Game Comm. pp. 291-294.
Thompson, R. B. 1960. Capturng tagged red salmon with pulsed direct current. U.S. Fish Wildl. Serv., Spec. Sci. Rept. - Fish, No. $355,10 \mathrm{pp}$.
Vibert, R., ed. 1967. Fishing with electricity - Its applications to biology and management. European Inland Fish Adv. Comm. FAO, United Nations, Fishing News (Books) Ltd. London, 276 pp.
Webster, D. A., J. L. Forney, R. H. Gibbs, Jr., J. H. Severns, and W. F. Van Woert.1955. A comparison of alternating and drrect electric currents in fishery work. New York Fish Game J. 2(1) 106-113.
Whitney, L. V., and R. L. Pierce. 1957. Factors controlling the input of electrical energy into a fish in an electrical field. Limnol. Oceanogr. 2(2):55-61.

7.3 Chemical Fishing

Hester, F. E. 1959. The tolerance of elght species of warm-water fishes to certain rotenone formulations. In: Proc. 13th Ann. Conf. Southeastern Assoc. Game and Fish Comm.
Krumholz, L. A. 1950. Some practical considerations in the use of rotenone in fisheries research. J. Wildl. Mgmt., vol. 14.
Lawrence, J. M. 1956. Preliminary results on the use of potassium permanganate to counteract the ef ${ }^{+}$cts of rotenone on fish. Prog. Fish-Cult. 18(1):15-21.
McKee, J. E., and H. W. Wolf, eds. 1963. Water quality criteria. 2nd ed. Calif. Water Quality Control Bord Publ. 3A.
Ohio River Valley Water Sanitation Commission. 1962. Aquatic life resources of the Ohio River. pp. 7^-84.
Post, G. 1955. A simple chemical test for rotenone in water. Prog. Fish-Cult. 17(4) 190-19i.
Post, G. 1958. Time vs. water temperature in rotenone dissipation. In: Proc. 38th Ann. Conf. Game and Fish Comm. pp. 279-284.
Solman, V. E. F. 1949. History and use of fish poisons in the United States. Dominion Wildlife Service. $\mathrm{n}^{+} \quad$. 15 pp.
Sowards, C. L. 1961. Safety as related to the use of chemicals and electricity in fishery manager U.S. Fish and WildI. Serv., Bur. Sport Fish and Wild1., Branch Fish Mgt., Spearfish. South Dakota. 33 pp.
Tanner, H. A., and M. L. Hayes. 1955. Evaluation of toxaphene as a fish poison. Colo. Coop. Fish. Res. Unit, Quar. Rep. 1(3-4):31-39.
Turner, W. R. 1959. Effectiveness of various rotenone-containing preparations in eradicating farm pond fish populations. Kentucky Dept. Fish and Wildl. Res., Fish. Bull. No. 25, 22 pp.
Wilkins, L. P. 1955. Observations on the field use of cresol as a stream-survey method. Prog. Fish-Cult. 17:85-86.

BIOLOGICAL METHODS

7.4 Fish Identification

General.

Bailey, R. M., et al. 1970. A list of common and scientific names of fishes from the United States and Canada. 3rd ed. Spec. Publ. Amer. Fish. Soc. No. 6. 149 pp.
Blair, W. F., and G. A. Moore. 1968. Vertebrates of the United States. McGraw Hill, New York. pp. 22-165.
Eddy, S. 1957. How to know the fresh-water fishes. Wm. C. Brown Co., Dubuque. 253 pp.
Jordan, D. S., B. W. Evermann, and H. W. Clark. 1955. Check list of the fishes and fish like vertebrates of North and Middle America north of the northern boundary of Venezuela and Colombia. U.S. Fish Wildl. Ser., Washington, D.C. 670 pp.
LaMonte, F. 1958. North American game fishes. Doubleday, Garden City, N.Y. 202 pp.
Morita, C. M. 1953. Freshwater fishing in Hawaii. Div. Fish Game. Dept. Land Nat. Res., Honolulu. 22 pp.
Perlmutter, A. 1961. Guide to marine fishes. New York Univ. Press, New York. 431 pp.
Scott, W. B., and E. J. Crossman. 1969. Checklist of Canadian freshwater fishes with keys of identification. Misc. Publ. Life Sci. Div. Ontario Mus, 104 pp.
Thompson, J. R., and S. Springer. 1961. Sharks, skates, rays, and chimaeras. Bur. Comm. Fish., Fish Wildl. USDI Circ. No. 119,19 pp.

Marine: Coastal Pacific

Baxter, J. L. 1966. Inshore fishes of California. 3rd rev. Calif. Dept. Fish Game, Sacramento. 80 pp.
Clemens, W. A., and G. V. Wilby. 1961. Fishes of the Pacific coast of Canada. 2nd ed. Bull. Fish. Res. Bd. Can. No. 68. 443 pp.
McAllister, D. E. 1960. List of the marine fishes of Canada. Bull. Nat. Mus. Canada No. 168; Biol. Ser. Nat. Mus. Can. No. 62.76 pp.
McHugh, J. L. and J. E. Fitch. 1951. Annotated list of the clupeoid fishes of the Pacffic Coast from Alaska to Cape San Lucas, Baja, Californa. Calif. Fish Game, 37:491-95.
Rass, T. S., ed. 1966. Fishes of the Pacific and Indian Oceans; Biology and distribution. (Translated from Russian). Israel Prog. for Sci. Translat., IPST Cat. 1411; TT65-501 20; Trans Frud. Inst. Okeaual. 73. 266 pp.
Roedel, P. M. 1948. Common marine fishes of California. Calif. Div. Fish Game Fish Bull, No. 68. 150 pp.
Wolford, L. A. 1937. Marine game fishes of the Pacific Coast from Alaska to the Equator. Univ. Calif. Press, Berkeley. 205 pp.

Marine: A tlantic and Gulf of Mexico

Ackerman, B. 1951. Handbook of fishes of the Atlantic seaboard. American Publ. Co., Washington, D.C.
Bearden, C. M. 1961. Common marne fishes of South Carolina. Bears Bluff Lab. No. 34, Wadmalaw Island, South Carolina.
Bigelow, H. B., and V. C. Schroeder. 1953. Fishes of the gulf of Maine. Fish. Bull. No. 74. Fish Wildl. Serv. 53:577 pp.
Bigelow, H. B. and W. C. Schroeder. 1954. Deep water elasmobranchs and chimaeroids from the northwestern slope. Bull. Mus. Comp. Zool. Harvard College, 112:37-87.
Bohlke, J. E., and C. G. Chaplın. 1968. Fishes of the Bahamas and adjacent tropical waters. Acad. Nat. Sci. Philadelphia. Livingston Publishing Co., Wynnewood, Pa.
Breder, C. M., Jr. 1948. Field book of marine fishes of the Atlantic Coast from Labrador to Texas. G. P. Putnam and Sons, New York. 332 pp.
Casey, J. G. 1964. Angler's guide to sharks of the northeastern United States, Maine to Chesapeake Bay. Bur. Sport Fish. Wildl. Cir. No. 179, Washington, D.C.
Fishes of the western North Atlantic. 1, 1948-Mem. Sears Fdn., Mar. Res. 1.
Hildebrand, S. R., and W. C. Schroeder. 1928. Fishes of Chesapeake Bay. U.S. Bur. Fish. Bull. 43:1-366.
Leim, A. H., and W. B. Scott. 1966. Fishes of the Atlantic Coast of Canada. Bull. Fish. Res. Bd. Canada. No. 155.485 pp.
McAllister, D. E. 1960. List of the marne fishes of Canada. Bull. Nat. Mus. Canada No. 168; Brol. Ser. Nat. Mus. Can. No. 62.76 pp. Pew, P. 1954. Food and game fishes of the Texas Coast. Texas Game Fish Comm. Bull. 33. 68 pp.
Randall, J. E. 1968. Caribbean reef fishes. T. F. H. Publications, Inc., Jersey City.
Robins, C. R. 1958. Check list of the Florida game and commercial marine fishes, including those of the Gulf of Mexico and the West Indies, with approved common names. Fla. State Bd. Conserv. Educ. Ser 12.46 pp .
Schwartz, F. J. 1970. Marine fishes common to North Carolina. North Car. Dept. Cons. Develop., Div. Comm. Sport Fish. 32 pp. Taylor, H. F. 1951. Survey of marine fisheries of North Carolina. Univ. North Car. Press, Chapel Hill.

Freshwater: Northeast

Bailey, R. M. 1938. Key to the fresh-water fishes of New Hampshire. In: The fishes of the Merrimack Watershed. Biol. Surv. of the Merrimack Watershed. N. H. Fish Game Dept., Biol. Surv. Rept. 3. pp. 149-185.
Bean, T. H. 1903. Catalogue of the fishes of New York. N. Y. State Mus. Bull. 60. 784 pp .
Carpenter, R. G., and H. R. Siegler. 1947. Fishes of New Hampshire. N.H. Fish Game Dept. 87 pp.
Elser, H. J. 1950. The common fishes of Maryland - How to tell them apart. Publ. Maryland Dept. Res. Educ. No. 88.45 pp.
Everhart, W. H. 1950. Fishes of Maine. Me. Dept. Inland Fish Game. (ii). 53 pp.
Greeley, J. R., et al. 1926-1940. (Various papers on the fishes of New York.) In: Biol. Surv. Repts, Suppl. Ann. Rept., N.Y. St Cons. Dept.
McCabe, B. C. 1945. Fishes. In: Fish. Sur. Rept. 1942. Mass. Dept. Cons.pp. 30-68.
Van Meter, H. 1950. Identifying fifty prominent fishes of West Virginia. W. Va. Cons. Comm. Div. Fish Mgt. No. 3.45 pp.
Whiteworth, W. R., R. L. Berrieu, and W. T. Keller. 1968. Freshwater fishes of Connecticut. Conn. State Geol. Nat. Hist. Surv. Bull. No. 101.134 pp .

Freshwater: Southeast

Black, J. D. 1940. The distribution of the fishes of Arkansas. Univ. Mich. Ph.D. Thesis. 243 pp.
Briggs, J. C. 1958. A list of Florida fishes and their distribution. Bull. Fla. State Mus. Biol. Sci. 2:224-318.
Carr, A. F., Jr. 1937. A key to the freshwater fishes of Florida. Proc. Fla. Acad. Sci. (1936):72-86.
Clay, W. M. 1962. A field manual of Kentucky fishes. Ky. Dept. Fish Wildi. Res., Frankfort, Ky. 147 pp.
Fowler, H. W. 1945. A study of the fishes of the southern Piedmont and coastal plain. Acad. Nat. Sci., Philadelphia Monogr. No. 7. 408 pp .
Gowanlock, J. N. 1933. Fishes and fishing in Louisiana. Bull. La. Dept. Cons. No. 23.638 pp.
Heemstra, P. C. 1965. A field key to the Florida sharks. Tech. Ser. No. 45. Fla. Bd. Cons., Div. Salt Water Fisheries.
King, W. 1947. Important food and game fishes of North Carolina. N.C. Dept. Cons. and Dev. 54 pp.
Kuhne, E. R. 1939. A guide to the fishes of Tennessee and the mid-South. Tenn. Dept. Cons., Knoxville. 124 pp.
Smith, H. 1970. The fishes of North Carolina. N.C. Geol. Econ. Surv. 2:x1;453 pp.
Smith-Vaniz, W. F. 1968. Freshwater fishes of Alabama. Auburn Univ. Agr. Exper. Sta. Paragon Press, Montgomery, Ala. 211 pp

Freshwater: Midwest

Bailey, R. M., and M. O. Allum. 1962. Fishes of South Dakota. Misc. Publ. Mus. Zool. Univ. Mich. No. 119.131 pp. Cross, F. B. 1967. Handbook of fishes of Kansas. Misc. Publ. Mus. Nat. Hist. Univ. Kansas No. 45.357 pp.
Eddy, S., and T. Surber. 1961. Northern fishes with special reference to the Upper Mississippi Valley. Univ. Minn. Press, Minneapolis. 276 pp.
Evermann, B. W., and H. W. Clark. 1920. Lake Maxinkuckee, a physical and biological survey. Ind. St. Dept. Cons., 660 pp. (Fishes, pp. 238-451).
Forbes, S. A., and R. E. Richardson. 1920. The fishes of Illinois. III. Nat. Hist. Surv. 3: CXXXI. 357 pp.
Gerking, S. D. 1945. The distribution of the fishes of Indiana. Invest. Ind. Lakes and Streams, 3(1):1-137.
Greene, C. W. 1935. The distribution of Wisconsin Fishes. Wis. Cons. Comm. 235 pp.
Harlan, J. R., and E. B. Speaker. 1956. Iowa fishes and fishing. 3rd ed. Iowa State Cons. Comm., Des Moines, 337 pp.
Hubbs, C. L., and G. P. Cooper. 1936. Minnows of Michigan. Cranbrook Inst. Sci., Bull 8.95 pp.
Hubbs, C. L., and K. F. Lagler. 1964. Fishes of the Great Lakes Region. Univ. Mich. Press, Ann Arbor. 213 pp.
Johnson, R. E. 1942. The distribution of Nebraska fishes. Univ. Mich. (Ph.D. Thesis). 145 pp.
Trautman, M. B. 1957. The fishes of Ohio. Ohio State Univ. Press, Columbus. 683 pp.
Van Ooosten, J. 1957. Great Lakes fauna, flora, and their environment. Great Lakes Comm., Ann Arbor, Mich. 86 pp .

Freshwater: Southwest

Beckman, W. C. 1952. Guide to the fishes of Colorado. Univ. Colo. Mus. Leafl. 11.110 pp.
Burr, J. G. 1932. Fishes of Texas; Handbook of the more important game and commercial types. Bull Tex. Game, Fish, and Oyster Comm. No. 5, 41 pp .
Dill, W. A. 1944. The fishery of the Lower Colorado River. Calif. Fish Game, 30:109-211.
LaRivers, I., and T. J. Trelease. 1952. An annotated check list of the fishes of Nevada. Calif. Fish Game, 38(1):113-123.

Miller, R. R. 1952. Bait fishes of the Lower Colorado River from Lake Mead, Nevada, to Yuma, Arzona, with a key for their identification. Calif. Fish Game. 38(1):7-42.
Sigler, W. F., and R. R. Miller, 1963. Fishes of Utah. Utah St. Dept. Fish Game. Salt Lake City. 203 pp.
Walford, L. A. 1931. Handbook of common commercial and game fishes of Califorma. Calif. Div. Fish Game Fish Bull. No. 28. 181 pp. Ward, H. C. 1953. Know your Oklahoma fishes. Okla. Game Fish Dept, Oklahoma City. 40 pp.

Freshwater: Northwest

Baxter, G. T., and J. R. Simon. 1970. Wyoming fishes. Bull. Wyo. Game Fish Dept. No. 4. 168 pp.
Bond, C. E. 1961. Keys to Oregon freshwater fishes. Tech. Bull. Ore. Agr. Exp. Sta. No. 58. 42 pp.
Hankinson, T. L. 1929. Fishes of North Dakota. Pop. Mich. Acad. Sci. Arts, and Lett. 10(1928):439-460.
McPhail, J. D., and C. C. Lindsey. 1970. Freshwater fishes of Northwestern Canada and Alaska. Fish. Res. Bd. Canada, Ottawa. Bull. No. 173. 381 pp.
Schultz, L. P. 1936. Keys to the fishes of Washington, Oregon and closely adjoining regions. Univ. Wash. Publ. Biol. 2(4):103-228.
Schultz, L. P. 1941. Fishes of Glacier National Park, Montana. USDI, Cons. Bull. No. 22.42 pp.
Wilimovsky, N. J. 1954. List of the fishes of Alaska. Stanford Ichthyol. Bull. 4:279-294.

7.5 Fish Kills

Alexander, W. B., B. A. Southgate, and R. Bassindale. 1935. Survey of the River Tees, Pt. II. The Estuary, Chemical and Biological. Tech. Pop. Wat. Pol. Res., London, No. 5.
Anon., 1961. Effects of Pollution on Fish. Mechanism of the Toxic Action of Salts of Zinc, Lead and Copper. Water Pollution Research, 1960:83.
Burdick, G. E. 1965. Some problems in the determination of the cause of fish kills. In: Biological Problems in Water Pollution. USPHS Pub. No. 999-WP-25.
Carpenter, K. E. 1930. Further researches on the action of soluble metallic salts on fishes. J. Exp. Biol. 56:407-422.
Easterday, R. L., and R. F. Miller. 1963. The acute toxicity of molybdenum to the bluegill. Va. J. Sci. 14(4):199-200. Abstr.
Ellis, M. M. 1937. Detection and measurement of stream pollution. Bull. U.S. Bur. Fish. 48:365-437.
Extrom, J. A., and D. S. Farner. 1943. Effect of sulfate mill wastes on fish life. Paper Trade J. 117(5):27-32.
Fromm, P. O., and R. H. Schiffman. 1958. Toxic action of hexavalent chromium on largemouth bass. J. Wildlife Mgt. 22:40-44.
Fujiya, M. 1961. Effects of kraft pulp mill wastes on fish. JWPCF, 33(9):968-977.
Havelka, J., and M. Effenberger. 1957. Symptoms of phenol poisoning of fish. Ann. Czech. Acad. Agric. Sci., U. Serv. Animal Prod. 2(5):421.
Henderson, C., Q. H. Pickering, and C. M. Tarzwell. 1959. Relative toxicity of ten chlorinated hydrocarbon insecticides to four species of fish. Trans. Amer. Fish. Soc. 88:23-32.
Ingram, W., and G. W. Prescott. 1954. Toxic freshwater algae. Amer. Mid. Nat. 52:75.
Jones, J. R. E. 1948. A further study of the reaction of fish to toxic solutions. J. Exp. Biol. 25:22-34.
Kuhn, O., and H. W. Koecke. 1956. Histologische und cytologische Veranderungen der fishkierne nach Einwirkung im wasser enthaltener schadigender Substanzen. Ztschr. F. Zellforsch. 43:611-643. (Cited in Fromm and Schiffman, 1958.)
Mathur, D. S. 1962 a. Histopathological changes in the liver of certain fishes as induced by BHC and lindane. Proc. Natl. Acad. Sci. India, Sec. B, 32(4):429-434.
Mathur, D. S. 1962b. Studies on the histopathological changes induced by DDT in the liver, kidney and intestine of certain fishes. Experientia, 18:506.
Rounsefell, G. A., and W. R. Nelson. 1966. Red-tide research summarized to 1964 , including an annotated bibliography. USDI Special Sci. Rept., Fisheries No. 535.
Schmid, O. J., and H. Mann. 1961. Action of a detergent (dodecyl benzene sulfonate) on the gills of the trout. Nature, 192(4803):675.
Shelford, U. E. 1917. An experimental study of the effects of gas wastes upon fishes, with special reference to stream pollution. Bull. III. Lab. Nat. Hist. 11:381-412.

Skrapek, K. 1963. Toxicity of phenols and their detection in fish. Pub. Health Eng. Absts. XLIV(8):Abst. No. 1385.
Smith, L. L., Jr. et al. 1956. Procedures for investigation of fish kills. A guide for field reconnaissance and data collection. Ohio River Valley Water Sanitation Comm., Cincinnati.
Stansby, M. E. 1963. Industrial fishery technology. Reinhold Publ. Co., New York.
Stundle, K. 1955. The effects of waste waters from the iron industry and mining on Styrian waters. Osterrich Wasserw. (Austria). 7:75. Water Poll. Abs. 29:105. 1956.
U.S. Department of the Interior. 1968a. Pollution caused fish kills 1967. FWPCA Publ. No. CWA-7.
U.S. Department of the Interior. 1968b. Report of the National Technical Advisory Commission. FWPCA, Washington, D.C.
U.S. Department of the Interior. 1970. Investigating fish mortalities. FWPCA Publ. No. CWT-5. Also available from USGPO as No. 0-380-257.
Wallen, I. E. 1951. The direct effect of turbidity on fishes. Bull. Okla. Agr. Mech. Coll. 48(2):1-27.
Wood, E. M. 1960. Definitive diagnosis of fish mortalities. JWPCF, 32(9):994-999.

BIOASSAY

BIOASSAY

Page
1.0 GENERAL CONSIDERATIONS 1
2.0 PHYTOPLANKTON - ALGAL ASSAY 2
2.1 Principle 2
2.2 Planning Algal Assays 2
2.3 Apparatus and Test Conditions 3
2.3.1 Glassware 3
2.3.2 Illumination 3
2.3 .3 pH 3
2.4 Sample Preparation 3
2.5 Inoculum 3
2.6 Growth Response Measurements 3
2.7 Data Evaluation 4
2.8 Additions (Spikes) 5
2.9 Data Analysis and Interpretation 5
2.10 Assays to Determine Toxicity 5
3.0 PERIPHYTON 5
3.1 Static 5
3.2 Continuous Flow 6
4.0 MACROINVERTEBRATES 8
5.0 FISH 8
6.0 REFERENCES 8
6.1 General 8
6.2 Phytoplankton - Algal Assay 9
6.3 Periphyton 10
6.4 Macroinvertebrates 10
6.5 Fish 11
FATHEAD MINNOW CHRONIC TEST 15
BROOK TROUT CHRONIC TEST 25

BIOASSAY

1.0 GENERAL CONSIDERATIONS

The term BIOASSAY includes any test in which organisms are used to detect or measure the presence or effect of one or more substances or conditions. The organism respohses measured in these tests include: mortality, growth rate, standing crop (biomass), reproduction, stimulation or inhibition of metabolic or enzyme systems, changes in behavior, histopathology, and flesh tainting (in shellfish and fish). The ultimate purpose of bioassays is to predict the response of native populations of aquatic organisms to specific changes within the natural environment. Whenever possible, therefore, tests should be carried out with species that are native (indigenous) to the receiving water used as the diluent for the bioassay. Bioassays are important because in most cases the success of a water pollution control program must be judged in terms of the effects of water quality on the condition of the indigenous communities of aquatic organisms. Also, in many cases, bioassays are more sensitive than chemical analyses.

Two general kinds of bioassays are recognized:

- laboratory tests conducted to determine the effects of a substance on a species; more or less arbitrary conditions are employed;
- in situ tests conducted to determine the effects of a specific natural environment; the test organisms are held in "containers" through which the water circulates freely.

The general principles and methods of conducting laboratory bioassays presented in Standard Methods for the Examination of Water and Waste Water, 13th edition (APHA, 1971) apply to most bioassays, and the described methods can be used with many types of aquatic organisms with only slight modification.

The following are suggested improvements to the methods given in Standard Methods, 13th edition (APHA, 1971).

- The 48 - and 96-hour LC50 values are presently important for determining compliance with water quality standards as established by various pollution control authorities. Short-term threshold information can be derived by reporting LC50 values at 24 -hour intervals to demonstrate the shape of the toxicity curve.
- Reports of LC50's should state the method of calculation used and the statistical confidence limits when possible.
- Rubber or plastic materials should be used in bioassay equipment only after consideration has been given to the possibility of the leaching of substances such as plasticizers or sorption of toxicants.
- Test materials should be administered in such a way that their physical and chemical behavior approximates that in natural systems.

Biological tests can be conducted in any kind of water with proper precautions, and although most tests have been conducted in freshwater, the same general principles apply to brackish and salt waters. The literature contains a great many formulations for artificial seawater. Of these, a modification of the Kester et al. (1967) formulation (LaRoche et al., 1970; Zaroogian et al., 1969) seems to support the greatest variety of marine organisms. When metal-containing wastes are to be bioassayed, omitting EDTA and controlling trace metals, as described by Davey et al. (1970), is recommended.

Using a standard toxicant and a parallel series in a standard medium is recommended to help assess variations due to experimental technique and the condition of the organisms. Such tests are also useful in distinguishing effects due to an altered character of the effluent from changes in the sensitivity of the organism, or from changes in the quality of the receiving water.

When making waste management decisions, it is important to consider and tentatively define the persistence of a pollutant. Materials that have half lives less than 48 hours can be termed as rapidly decaying compounds; those with half lives greater than 48 hours but less than 6 months, as slowly decaying; and those compounds in natural waters with half lives longer than 6 months, as long-lived persistent materials.

Bioassays can be conducted over almost any interval of time, but the test duration must be appropriate to the life stage or life cycle of the test organisms and the objectives of the investigation. The purpose of short-term tests, such as acute mortality tests, is to determine toxicant concentrations lethal to a given fraction (usually 50 percent) of the organisms during a short period of their life cycle. Acute mortality tests with fish generally last about 4 to 7 days. Most toxicants, however, cause adverse effects at levels below those that cause mortality. To meet this need, long-term (chronic) tests are designed to expose test organisms to the toxicant over their entire life cycle and measure the effects of the toxicant on survival, growth, and reproduction. Sometimes only a portion of the life cycle is tested, such as studies involving growth or emergence of aquatic insects. With fish, such tests usually last for 30,60 , or 90 days and are often termed subacute.

Laboratory bioassays may be conducted on a "static" or "continuous flow" basis. The specific needs of the investigator and available test facilities determine which technique should be used. The advantages and applications of each have been described in Standard Methods, (APHA, 1971) and by the National Technical Advisory Committee (1968). Generally, the continuousflow technique should be used where possible. Apparatus advantageous for conducting flowthrough tests includes diluters (Mount and Warner, 1965; Mount and Brungs, 1967), valve controlling systems (Jackson and Brungs, 1966) and chemical metering pumps (Symons, 1963).

The biological effects of many industrial wastes are best evaluated in the field; transporting large volumes of industrial wastes to a laboratory for bioassay purposes can be impractical. Testing facilities are best located at the site
of the waste discharge. A bioassay trailer (Zillich, 1969) has proven useful for this purpose. In situ bioassay procedures are also a good method for defining the impact to aquatic life below the source of industrial waste discharges (Basch, 1971).

Biomonitoring, a special application of biological tests, is the use of organisms to provide information about a surface water, effluent, or mixtures thereof on a periodic or continuing basis. For the best results, biomonitoring should maintain continuous surveillance with the use of indigenous species in a flow-through system under conditions that approximate the natural environment.

2.0 PHYTOPLANKTON - ALGAL ASSAY

The Algal Assay Procedure: Bottle Test was published by the National Eutrophication Research Program (USEPA, 1971) after 2 years of intensive evaluation, during which excellent agreement of the data was obtained among the 8 participating laboratories. This test is the only algal bioassay that has undergone sufficient evaluation and refinement to be considered reliable. The following material represents only a brief outline of the test. For more explicit details, see the references.

2.1 Principle

An algal assay is based on the principle that growth is limited by the nutrient that is present in shortest supply with respect to the needs of the organism. The test can be used to identify algal growth-limiting nutrients, to determine biologically the availability of algal growthlimiting nutrients, to quantify the biological response (algal growth response) to changes in concentrations of algal growth-limiting nutrients, and to determine whether or not various compounds or water samples are toxic or inhibitory to algae.

2.2 Planning Algal Assays

The specific experimental design of each algal assay is dictated by the particular problem to be solved. All pertinent ecological factors must be considered in planning a given assay to ensure that valid results and conclusions are obtained.

Water quality may vary greatly with time and location in lakes, impoundments and streams. If meaningful data are to be obtained, therefore, the sampling program must take these variations into account.

2.3 Apparatus and Test Conditions

2.3.1 Glassware

Use good-quality borosilicate glassware. When studing trace nutrients, use special glassware such as Vycor or polycarbonate containers. Although container size is not critical, the surface to volume ratios are critical because of possible carbon limitation. The recommended sample volumes for use in Erlenmeyer flasks are: 40 ml in a 125 ml flask; 60 ml in a 250 ml flask; and 100 ml in a 500 ml flask. Use culture closures such as loose-fitting aluminum foil or inverted beakers to permit good gas exchange and prevent contamination.

2.3.2 Illumination

After inoculation, incubate the flasks at $24 \pm$ $2^{\circ} \mathrm{C}$ under cool-white fluorescent lighting: 200 $\mathrm{ft}-\mathrm{c}(2152$ lux) ± 10 percent for blue-green algae and diatom test species, and $400 \mathrm{ft}-\mathrm{c}$ (4304 lux) ± 10 percent for green algae test species. Measure the light intensity adjacent to the flask at the liquid level.

2.3 .3 pH

To ensure the availability of carbon dioxide, maintain the pH of the incubating cultures below 8.5 by using the sample volumes mentioned above and shaking the cultures at 100 oscillations per minute. In samples containing high concentrations of nutrients, such as highlyproductive surface waters or domestic waste effluents, it may be necessary to bubble air or an air/carbon dioxide mixture through the culture to maintain the pH below 8.5 .

2.4 Sample Preparation

Two alternate methods of sample preparation are recommended, depending upon the type of information to be obtained from the sample:

- membrane filtration (0.45 pore diameter) remove the indigenous algae by filtration if
you wish to determine the growth response to growth-limiting nutrients which have not been taken up by filterable organisms, or if you wish to predict the effect of adding nutrients to a test water at a specific time.
- autoclaving - autoclave samples if you wish to determine the amount of algal biomass that can be grown from all nutrients in the water, including those in the plankton. Autoclaving solubilizes the nutrients in the indigenous filterable organisms and releases them for use by the test organisms.

2.5 Inoculum

The algal test species may be one of those recommended in the Bottle Test or another that has been obtained in unialgal culture. Grow the test species in a culture medium that minimizes the intracellular carryover of nutrients in the test species when transferred from the stock culture to the test water (Table I.) When taken from the stock culture, centrifuge the test cells and discard the supernatant. Resuspend the sedimented cells in an appropriate volume of glass-distilled water containing 15 mg sodium bicarbonate per liter and recentrifuge. Decant the supernatant, resuspend the algae in fresh bicarbonate solution, and use as the inoculum. The amount of inoculum depends upon the algal test species used. The following initial cell concentrations are recommended:

Test organism	Initial cell count $/ \mathrm{ml}$
Selenastrum capricornutum	$1000 / \mathrm{ml}$
Anabaena flos-aquae	$50000 / \mathrm{ml}$
Microcystis aeruginosa	$50000 / \mathrm{ml}$

Prepare test flasks in triplicate.

2.6 Growth Response Measurements

The method used to determine growth response during incubation depends on the equipment available. Cells may be counted with a microscope, using a hemacytometer or a Palmer-Maloney or Sedgwick-Rafter plankton counting chamber. The amount of algal biomass may be determined by measuring the optical density of the culture at 600-750 nm with a colorimeter or spectrophotometer. The amount of chlorophyll contained in the algae may be

TABLE 1. STOCK CULTURE AND CONTROL NUTRIENT MEDIUM

	MACROELEMENTS:		
Compound	Final concentration (mg/l)	Element furnished	Element concentration (mg/i)
NaNO_{3}	25.500	N	4.200
$\mathrm{~K}_{2} \mathrm{HPO}_{4}$	1.044	P	0.186
		K	0.468
MgCl_{2}	5.700	Mg	1.456
$\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	$\mathbf{M g}$	1.450	
		S	1.911
$\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$		Ca	1.203
NaHCO_{3}	4.700	Na	11.004

(If the medium is to be filtered, add the following trace-element-iron-EDTA solution from a single combination stock solution after filtration. With no filtration, $\mathrm{K}_{2} \mathrm{HPO}_{4}$ should be added last to avoid iron precipitation. Stock solutions of individual salts may be made up in 1000 x 's final concentration or less.)

MICROELEMENTS:			
	$(\mu \mathrm{g} / \mathrm{l})$	$(\mu \mathrm{g} / \mathrm{l})$	
$\mathrm{H}_{3} \mathrm{BO}_{3}$	185.64	B	33
MnCl_{2}	264.27	Mn	114
ZnCl_{2}	32.70	Zn	15
CoCl_{2}	0.78	Co	0.35
CuCl_{2}	0.009	Cu	0.003
$\mathrm{Na}_{2} \mathrm{MoO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	7.26	Mo	2.88
FeCl_{3}	96	Fe	33
$\mathrm{Na}_{2} \mathrm{EDTA}^{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	333		

measured either directly (in vivo) by fluorometry or after extraction by fluorometry or spectrophotometry. If available, an electronic particle counter will provide an accurate and rapid count of the cells. All methods used for determining the algal biomass should be related to a dry weight measurement (mg / l) determined gravimetrically. (See the Plankton Section of the manual for analytical details.)

2.7 Data Evaluation

Two parameters are used to describe the growth of a test alga: maximum specific growth rate and maximum standing crop. The maximum specific growth rate ($\mu_{\max }$) for an individual flask is the largest specific growth rate (μ) occurring at any time during incubation. The $\mu_{\max }$ for a set of replicates is determined by
averaging the $\mu_{\max }$ of the individual flasks. The specific growth rate, μ, is defined by:

$$
\mu=\frac{\ln \left(X_{2} / X_{1}\right)}{t_{2}-t_{1}}
$$

where:
$\ln \quad=\log$ to the base "e"
$\mathrm{X}_{2} \quad=$ biomass concentration at the end of the selected time interval
$X_{1} \quad=$ biomass concentration at the beginning of the selected time interval
$t_{2}-t_{1}=$ elapsed time (days) between selected determinations of biomass
Because the maximum specific growth rate ($\mu_{\max }$) occurs during the logarithmic phase of growth (usually between day 3 and day 5), the biomass must be measured at least daily during the first 5 days of incubation.

The maximum standing crop in any flask is defined as the maximum algal biomass achieved during incubation. For practical purposes, the maximum standing crop is assumed to have been achieved when the rate of increase in biomass has declined to less than 5 percent per day.

2.8 Additions (Spikes)

The quantity of cells produced in a given medium is limited by the nutrient present in the lowest relative quantity with respect to the needs of the organism. If a quantity of the limiting substance were added to the test flasks, cell production would increase until this additional supply was depleted or until some other substance became limiting to the organism. Adding substances other than the limiting substance would not increase algal growth. Nutrient additions may be made singly or in combination, and the growth response can be compared with that of unspiked controls to identify those substances that limit growth rate or cell production.

In all instances, the volume of a spike should be as small as possible. The concentration of spikes will vary and must be matched to the waters being tested. When selecting the spike concentration, keep in mind that (1) the concentration should be kept small to minimize alterations of the sample, but at the same time, be sufficiently large to yield a potentially measureable response; and (2) the concentration should be related to the fertility of the sample.

2.9 Data Analysis and Interpretation

Present the results of spiking assays together with the results from two types of reference samples: the assay reference medium and unspiked samples of the water under consideration. Preferably, the entire growth curves should be presented for each of the two types of reference samples. Present the results of individual assays in the form of the maximum specific growth rate (with time of occurrence) and maximum standing crop (with time at which it was reached), both with the confidence interval indicated.

Growth rate limiting nutrients can be determined by spiking a number of replicate flasks with single nutrients, determining the maximum
specific growth rate for each flask, and comparing the averages by a Students' t-test or other appropriate statistical tests.

Data analysis for multiple nutrient spiking can be performed by analysis of variance calculations. In multiple nutrient spiking, accounting for the possible interaction between different nutrients is important and can readily be done by factorial analysis. The same methods described above can be used to determine the nutrient limiting growth of the maximum standing crop.

2.10 Assays to Determine Toxicity

As previously pointed out, the assay may be used to determine whether or not various compounds or water samples are either toxic or inhibitory to algal growth. In this case the substance to be tested for toxicity is added to the standard algal culture medium in varying concentrations, the algal test species is added, and either the maximum standing crop or maximum specific growth rate (or both) determined. These are then compared to those obtained in the standard culture medium without the additions (controls). The LC50, or that concentration at which either 50% of the maximum standing crop or maximum specific growth rate is obtained, as compared with the controls, is then calculated.

3.0 PERIPHYTON

Uniform methods for conducting bioassays with periphyton have not been developed, and their environmental requirements and toxicology are still relatively unknown. Many of the common species have not been successfully cultured, and the bioassays that have been carried out with the algae and other microorganisms occurring in this community were conducted principally to screen potential algicides, fungicides, and other control agents. Two kinds of tests can be conducted with periphyton: static and continuous flow.

3.1 Static

Because the techniques currently employed in the Algal Assay Procedure: Bottle Test (USEPA, 1971) have been more rigorously tested than any procedure previously used for periphyton,

BIOLOGICAL METHODS

this method is recommended for static bioassays with the periphyton.

3.2 Continuous Flow

Many periphyton grow well only in flowing water and can be studied only in situ or in artificial streams (Whitford, 1960; Whitford et al., 1964). The following procedure, which is similar to the method described by McIntire et al. (1964), is tentatively recommended at this time.

- Test Chamber - Twin, inter-connected channels, each approximately $4 " \times 4 " \times$ $36^{\prime \prime}$, with two inches of water circulated by
a paddle wheel. Duplicate chambers should be provided for each condition tested (Figures 1 and 2).
- Current velocity $-30 \mathrm{~cm} / \mathrm{sec}$.
- Temperature $-20^{\circ} \mathrm{C}$
- Light - 400 fc , cool-white (daylight) fluorescent lamps
- Culture medium - Optional
a. Algal Assay Medium (Table 1).
b. Natural surface water supply

Where direct flow-through is not provided, the water exchange rate should ensure a complete change at least six times daily.

Figure 1. Diagram of laboratory stream, showing the paddle wheel for circulating the water between the two interconnected troughs and the exchange water system. (From McIntire et al., 1964).

Figure 2. Diagram of photosynthesis-respiration chamber, showing the chamber with its circulating and exchange water systems, the water jacket for temperature control, the nutrient and gas concentration control system, and the light source.

- Test organism(s) - Optional; filamentous blue-green or green algae or diatoms.
a. Unialgal culture - No standard test organisms are available
b. Periphyton community -- Use "seed" of periphyton from the water resource for which the data are being developed.
- Acclimatization period - The culture (or community) should be allowed to develop in the test chambers for a minimum of two weeks before introducing the test condition.
- Maintaining test conditions - Chemicals are added to the water supply prior to flow into the test chamber. Temperature control may be maintained by placing thermostatically controlled heating (or cooling) elements in the channel.
- Substrate - A minimum of eight $1 " \times 3$ " plain glass slides should be placed on the bottom of each channel.
- Test duration - Two weeks
- Evaluation - The effects of the test condition are evaluated at the end of the test period by comparing the biomass and community structure in the test chambers with that of the control chambers. (See Periphyton Section for methodology.)
a. Biomass - Use four of the eight slides; analyze individually.
(1) Chlorophyll $a\left(\mathrm{mg} / \mathrm{m}^{2}\right)$
(2) Organic matter (Ash-free weight, $\mathrm{g} / \mathrm{m}^{2}$)
b. Cell count and identification - Use four pooled slides.
(1) Cell density (cells $/ \mathrm{mm}^{2}$)
(2) Species proportional count
(3) Community diversity (Diversity Index)
- Toxicity - The toxicity of a chemical or effluent is expressed as the LC50, which is

BIOLOGICAL METHODS

the concentration of toxicant resulting in a 50% reduction in the biomass or cell count. Community diversity is not affected in the same manner as biomass and cell counts, and would yield a much different value.

4.0 MACROINVERTEBRATES

In general, most of the considerations covered by Standard Methods (APHA, 1971) apply equaliy well to macroinvertebrate tests in fresh and marine waters. Recent refinements in acute and chronic methodology for aquatic insects, amphipods, mussels, and Daphnia have been described by Gaufin (1971), Bell and Nebeker (1969), Arthur and Leonard (1970), Dimick and Breese (1965), Woelke (1967), and Biesinger and Christensen (1971), respectively.

5.0 FISH

The general principles and methods for acute and chronic laboratory fish toxicity tests are presented in Standard Methods (APHA, 1971)
and in the report of the National Technical Advisory Committee (1968). Sprague (1969, 1970) has recently reviewed many of the problems and the terminology associated with fish toxicity tests.

Chronic tests are becoming increasingly important as sublethal adverse effects of more and more toxic agents are found to be significant. At present, a chronic fish bioassay test is a relatively sophisticated research procedure and entails large allocations of manpower, time, and expense. Important contributions in this area include those by Mount and Stephan (1969), Brungs (1969), Eaton (1970), and McKim et al. (1971).

Two procedures for chronic toxicity tests using the fathead minnow, Pimephales promelas Rafinesque, and the brook trout, Salvelinus fontinales (Mitchell), developed by the staff of the National Water Quality Laboratory, U.S. Environmental Protection Agency, Duluth, Minn., are presented following the references in this section.

6.0 REFERENCES

6.1 General

American Public Health Association. 1971. Standard methods for the examination of water and wastewater. 13th ed. Amer. Public Health Assoc., New York. 874 pp.
Basch, R. 1971. Chlorinated municipal waste toxicities of rainbow trout and fathead minnows. Mich. Bur. Water Mgmt., Dept. Nat. Res., Lansing, Mich. Final Report of Grant Number 18050 GZZ for the U.S. Environmental Protection Agency.
Davey, E. W., J. H. Gentile, S. J. Erickson, and P. Betzer. 1970. Removal of trace metals from marine culture media. Limnol. Oceanogr. 15:486-488.
Jackson, H. W., and W. A. Brungs. 1966. Biomonitoring of industrial effluents. Proc. 21 st Ind. Waste Conf., Purdue Univ., Eng. Ext. Bull. No. 121. pp. 117.
Kester, D. R., I. W. Duedall, D. N. Connors, and R. M. Pytkowicz. 1967. Preparation of artificial seawater. Limnol. Oceanogr. 12(1):176-179.
LaRoche, G., R. Eisler, and C. M. Tarzwell. 1970. Bioassay procedures for orl and oil dispersant toxicity evaluation. JWPCF, 42:1982-1989.
Mount, D. I., and R. E, Warner. 1965. A serial-diluter apparatus for continuous delivery of various concentrations in water. PHS Publ. No. 99-WP-23. 16 pp .
Mount, D. I., and W. A. Brungs. 1967. A simplified dosing apparatus for fish toxicology studies. Water Res. 1:21-29.
National Technical Advisory Committee. 1968. Water quality criteria. Report of the National Technical Advisory Committee on Water Quality Criteria to the Secretary of the Interior. USDI, FWPCA, Washington, D. C. 234 pp.
Symons, J. M. 1963. Simple continuous flow, low and vanable rate pump. JWPCF, 35:1480-1485.
Zaroogian, G. E., G. Pesch, and G. Morrıson. 1969. Formulation of an artificial medium suitable for oyster larvae development. Amer. Zool. 9:1144.
Zillich, J. 1969. The simultaneous use of continuous flow bioassays and automatic water quality monitormg equipment to cvaluate the toxicity of waste water discharges. Presented at: 44 th Annual Conf. of Mich. Water Poll. Cont. Assoc., Boyne Falls, Mich., June 16, 1969. 3 pp .

6.2 Phytoplankton - Algal Assay

Berge, G. 1969. Predicted effects of fertilizers upon the algae production in Fern Lake. FiskDiv. Skr. Ser. HavUnders. 15:339-355.
Davis, C. C. 1964. Evidence for the eutrophication of Lake Erie from phytoplankton records. Limnol. Oceanogr. 9:275-283.
Edmondson, W. T., and G. C. Anderson. 1956. Artificial eutrophication of Lake Washington. Limnol. Oceanogr. 1(1):47-53.
Francisco, D. E. and C. M. Weiss. 1973. Algal response to detergent phosphate levels. JWPCF, 45(3):480-489.
Fruh, E. G., K. M. Stewart, G. F. Lee, and G. A. Rohlich. 1966. Measurements of Eutrophication and Trends. JWPCF, 38(8):1237-1258.
Goldman, C. R., and R. C. Carter. 1965. An investigation by rapid C ${ }^{14}$ bioassay of factors affecting the cultural eutrophication of Lake Tahoe, California. JWPCF, 37:1044-1063.
Hasler, A. D. 1947. Eutrophication of lakes by domestic drainage. Ecology, 28(4):383-395.
Johnson, J. M., T. O. Odlaug, T. A. Olson and O. R. Ruschmeyer. 1970. The potential productivity of fresh water environments as determined by an algal bioassay technique. Water Resc. Res. Ctr., Univ. Minn. Bull. No. 20.77 pp.
Joint Industry/Government Task Force on Eutrophication. 1969. Provisional Algal Assay Procedure. P. O. Box 3011, Grand Central Station, New York, N.Y., 10017. 62 pp.
Lake Tahoe Area Council. 1970. Eutrophication of Surface Waters - Indian Creek Reservorr, First Progress Report, FWQA Grant No. 16010 DNY.
Maloney, T. E., W. E. Miller, and T. Shiroyama. 1972. Algal Responses to Nutrient Additions in Natural Waters. I. Laboratory Assays. In: Nutrients and Eutrophication, Special Symposia, Vol. I, Amer. Soc. Limnol. Oceanogr., Lawrence, Kansas, p 134-140.
Maloney, T. E., W. E. Miller, and N. L. Blind. 1973. Use of Algal Assay in Studying Eutrophication Problems. Proc. Internat. Assoc. Water Poll. Res., Sixth Conference, Jerusalem, 1972.Pergamon Press.
Middlebrooks, E. J., E. A. Pearson, M. Tunzi, A. Adinarayana, P. H. McGauhey, and G. A. Rohlich. 1971. Eutrophication of surface water - Lake Tahoe. JWPCF, 43:242-251.
Miller, W. E. and T. E. Maloney. 1971. Effects of Secondary and Tertiary Waste Effluents on Algal Growth in a Lake River System. JWPCF, 43(12):2361-2365.
Murray, S., J. Schertig, and P. S. Dixon. 1971. Evaluation of algal assay procedures - PAAP batch test. JWPCF, 43(10):1991-2003.
Oglesby, R. T., and W. T. Edmondson. 1966. Control of Eutrophication. JWPCF, 38(9):1452-1460.
Potash, M. 1956. A biological test for determining the potential productivity of water. Ecology, 37(4):631-639.
Rawson, D. S. 1956. Algal indicators of lake types. Limnol. Oceanogr. 1:18-25.
Schreiber, W. 1927. Der Reinkultur von marinem Phytoplankton und deren Bedeutung fur die Erforschung der Produktions-fahigkeit des Meerwassers. Wissensch. Meeresunters. N.F., 16:1-34.
Shapiro, J. and R. Ribeiro. 1965. Algal growth and sewage effluent in the Potomac estuary. JWPCF, 37(7):1034-1043.
Shelef, G., and R. Halperin. 1970. Wastewater nutrients and algae growth potential. In: H. I. Shuval, ed., Developments in Water Quality Research, Proc. Jerusalem Internat'l. Conf. on Water Quality and Poll. Res., June, 1969. Ann Arbor-Humphrey Science Publ. p. 211-228.

Skulberg, O. M. 1964. Algal problems related to the eutrophication of European water supplies, and a broassay method to assess fertiluzing influences of pollution on inland waters. In: D. F. Jackson, ed., Algae and Man, Plenum Press, N.Y. p. 262-299.
Skulberg, O. M. 1967. Algal cultures as a means to assess the fertilizing influence of pollution. In: Advances in Water Pollution Research, Vol. 1, Pergamon Press, Washington, D. C.
Strom, K. M. 1933. Nutrition of algae. Experiments upon the feasibility of the Schreiber method in fresh waters; the relative importance of iron and manganese in the nutritive medıum; the nutritive substance given off by lake bottom muds. Arch. Hydrobiol. 25:38-47.
Toerien, D. F., C. H. Huang, J. Radimsky, E. A. Pearson, and J. Scherfig. 1971. Final report. provisional algal assay procedures. Report No. 71 -6, Sanit. Eng. Res. Lab., Coll. Eng. Sch. Pub. Hith., Univ. Calf., Berkeley. 211 pp.
U. S. Environmental Protection Agency. 1971. Algal assay procedure: bottle test. National Eutrophication Research Program, USEPA, Corvallis, Oregon.
Wang, W., W. T. Sullivan, and R. L. Evans. 1973. A technique for evaluating algal growth potential in Illinois surface waters. II. St. Water Sur., Urbana, Rept. of Investigation 72, 16 pp.
Weiss, C. M. and R. W. Helms. 1971. Interlaboratory precision test - An eight-laboratory evaluation of the Provisional Algal Assay Procedure: Bottle Test. National Eutrophication Research Program, U. S. Environmental Protection Agency. Corvallis, Oregon. 70 pp.

BIOLOGICAL METHODS

6.3 Periphyton

Burbank, W. D., and D. M. Spoon. 1967. The use of sessile cliates collected in plastic petri dishes for rapid assessment of water pollution. J. Protozool. 14(4):739-744.
Cairns, J., Jr. 1968. The effects of dieldrin on datoms. Mosq. News, 28(2):177-179.
Cairns, J., Jr. 1969. Rate of species diversity restoration following stress in freshwater protozoan communities. Univ. Kansas, Sci. Bull. 48:209-224.
Cairns, J., Jr., and K. L. Dickson. 1970. Reduction and restoration of the number of fresh-water protozoan species following acute exposure to copper and zinc. Trans. Kansas Acad. Sci. 73(1):1-10.
Cairns, J., Jr., A. Scheier, and N. E. Hess. 1964. The effects of alkyl benzene sulfonate on aquatic organisms. Ind. Water Wastes, 1(9):1-7.
Fitzgerald, G. P. 1964. Factors in the testing and application of algicides. Appl. Microbiol. 12(3):247-253.
Jackson, H. W., and W. A. Brungs. 1966. Biomonitoring industrial effluents. Ind. Water Eng. 45:14-18.
McIntire, C. D., R. L. Garrison, H. K. Phinney, and C. E. Warren. 1964. Primary production in laboratory streams. Limnol, Oceanogr. 9(1):92-102.
McIntre, C. D., and H. K. Phinney. 1965. Laboratory studies of periphyton production and community metabolism in lotic environments. Ecol. Monogr. 35:237-258.
McIntire, C. D. 1966a. Some effects of current velocity on perıphyton communities in laboratory streams. Hydrobiol. 27:559-570.
McIntire, C. D. 1966b. Some factors affecting respiration of periphyton communities in lotic environments. Ecology, 47:918-930.
McIntire, C. D. 1968a. Structural characterıstics of benthic algal communities in laboratory streams. Ecology, 49(3):520-537.
McIntire, C. D. 1968b. Physiological-ecological studies of benthic algae in laboratory streams. JWPCF, 40(11) Part 1:1940-1952.
Otto, N. E. 1968. Algaecidal evaluation methods using the filamentous green alga, Cladophora. Rep. No. WC-40, Div. Res., Bur. Reclam., USDI, Denver.
Patrick, R. 1964. Tentative method of test for evaluating inhibitory toxicity of industrial waste waters. ASTM Standards, Part 23, pp. 517-525, American Society for Testing and Materials, Philadelphia, Pa.
Patrick, R. 1966. The effect of varying amounts and ratios of nitrogen and phosphate on algae blooms. Proc. Ind. Waste Conf. (Purdue) 21:41-51.
Patrick, R. 1968. The structure of datom communities in similar ecological conditions. Amer, Nat. 102(924):173-183.
Patrick, R., J. Cairns, Jr., and A. Scheier. 1968a. The relative sensitivity of diatoms, snails, and fish to twenty common constituents of industrial wastes. Prog. Fish-Cult. 30(3):137-140.
Patrick, R., B. Crum, and J. Coles. 1969. Temperature and manganese as determining factors in the presence of diatom or blue-green algal floras in streams. Proc. Nat. Acad. Sci. Phil. 64(2):472-478.
Patrick, R., N. A. Roberts, and B. Davis. 1968b. The effect of changes in pH on the structure of diatom communities. Not. Natur. 416:1-16.
Phaup, J. D., and J. Gannon. 1967. Ecology of Sphaerotilus in an experımental outdoor channel. Water Res. 1:523-541.
Phinney, H. K., and C. D. McIntire. 1965. Effect of temperature on metabolism of periphyton communities developed in laboratory streams. Limnol. Oceanogr. 10(3):341-344.
Whitford, L. A. 1960. The current effect and growth of fresh-water algae. Trans. Amer. Microsc. Soc. 79(3):302-309.
Whitford, L. A., G. E. Dillard, and F. J. Schumacher. 1964. An artificial stream apparatus for the study of lotic organisms. Limnol. Oceanogr. 9(4):598-600.
Whitton, B. A. 1967. Studies on the growth of niverain Cladophora in culture. Arch. Mikrobiol. 58:21-29.
Whitton, B. A. 1970. Toxicity of zinc, copper, and lead to Chlorophyta from flowing waters. Arch. Mikrobiol. 72:353-360.
Williams, L. G., and D. I. Mount. 1965. Influence of zinc on periphytic communities. Amer. J. Bot. 52(1):26-34.
Wuhrmann, K. 1964. River bacteriology and the role of bacteria in self-purification of rivers. In: Principles and Applications in Aquatic Microbiology. John Wiley, NY.
Zimmermann. P. 1961. Experimentelle Untersuchungen uber die okologische Wirkung der Stromungsgeschwindigkeit auf die Lebensgemeinschaften des fliessenden Wassers. Schweiz. z. Hydrol. 23:1-81.

6.4 Macroinvertebrates

Arthur, J. W., and E. N. Leonard. 1970. Effects of copper on Gammarus pseudolimnaeus, Physa integra, and Campeloma decisum in soft water. J. Fish. Res. Bd. Canada, 27:1277-1283.
Bell, H. L., and A. V. Nebeker. 1969. Preliminary studies on the tolerance of aquatic insects to low pH. J. Kansas Entomol. Soc. 42:230-236.
Biesinger, K. E., and G. M. Christensen. 1971. Metal effects on survival, growth, and reproduction and metabolism of Daphnia magna. National Water Quality Laboratory, Duluth, Minnesota, 43 pp.

BIOLOGICAL METHODS

Dimick, R. E., and W. P. Breese. 1965. Bay mussel embryo bioassay. Proc. 12th Pacific Northwest Ind. Conf., College of Engineering, Univ. of Wash. pp. 165-175.
Gaufin, A. R. 1971. Water quality requirements of aquatic insects. Department of Biology, University of Utah. Contract No. 14-12-438, USDI, FWPCA, National Water Quality Laboratory, Duluth. 65 pp.
Woelke, C. E. 1967. Measurement of water quality with the Pacific oyster embryo bioassay. In: Water Quality Criteria, Amer. Soc. for Testing and Materials, Special Tech. Pub. No. 416. pp. 112-120.

6.5 Fish

Brungs, W. A. 1969. Chronic toxicity of zinc of the fathead minnow, Pimephales promelas Rafinesque. Trans. Amer. Fish. Soc. 98:272-279.
Eaton, J. G. 1970. Chronic malathion toxicity to the bluegill (Lepomis macrochirus Rafinesque). Water Res. 4:673-684.
McKim, J. M., and D. A. Benoit. 1971 . Effects of long-term exposures to copper on survival, growth, and reproduction of brook trout Salvelinus fontinalis (Mitchill). J. Fish. Res. Bd. Canada, 28:655-662.
Mount, D. I., and C. E. Stephan. 1969. Chronic toxicity of copper to the fathead minnow (Pimephales promelas, Rafinesque) in soft water. J. Fish. Res. Bd. Canada, 26:2449-2457.
Sprague, J. B. 1969. Measurement of pollutant toxicity to fish. I. Bioassay methods for acute toxicity. Water Res. 3:793-821.
Sprague, J. B. 1970. Measurement of pollutant toxicity to fish. II. Utilizing and applying bioassay results. Water Res. 4:3-32.

RECOMMENDED BIOASSAY PROCEDURES NATIONAL WATER QUALITY LABORATORY DULUTH, MINNESOTA

Recommended Bioassay Procedures are established by the approval of both the Committee on Aquatic Bioassays and the Director of the National Water Quality Laboratory. The main reasons for establishing them are: (1) to permit direct comparison of test results, (2) to encourage the use of the best procedures available, and (3) to encourage uniformity. These procedures should be used by National Water Quality Laboratory personnel whenever possible, unless there is a good reason for using some other procedure.
Recommended Bioassay Procedures consider the basic elements that are believed to be important in obtaining reliable and reproducible results in
laboratory bioassays. An attempt has been made to adopt the best acceptable procedures based on current evidence and opinion, although it is recognized that alternative procedures may be adequate. Improvements in the procedures are being considered and tested, and revisions will be made when necessary. Comments and suggestions are encouraged.

Director, National Water Quality Lab (NWQL)
Committee on Aquatic Bioassays, NWQL

Fathead Minnow Pimephales promelas
Rafinesque Chronic Tests
April, 1971
(Revised January, 1972)

1.0 PHYSICAL SYSTEM

1.1 Diluter

Proportional diluters (Mount and Brungs, 1967) should be employed for all long-term exposures. Check the operation of the diluter daily, either directly or through measurement of toxicant concentrations. A minimum of five toxicant concentrations and one control should be used for each test with a dilution factor of not less than 0.30 . An automatically triggered emergency aeration and alarm system must be installed to alert staff in case of diluter, temperature control or water supply failure.

1.2 Toxicant Mixing

A container to promote mixing of toxicantbearing and w-cell water should be used between diluter and tanks for each concentration. Separate delivery tubes should run from this container to each duplicate tank. Check at least once every month to see that the intended amounts of water are going to each duplicate tank or chamber.

1.3 Tank

Two arrangements of test tanks (glass, or stainless steel with glass ends) can be utilized:
a. Duplicate spawning tanks measuring 1×1 $X 3 \mathrm{ft}$. long with a one sq. ft. portion at one end screened off and divided in half for the progeny. Test water is to be delivered separately to the larval and spawning chambers of each tank, with about onethird the water volume going to the former chamber as to the latter.
b. Duplicate spawning tanks measuring 1×1 $X 2 \mathrm{ft}$. long with a separate duplicate progeny tank for each spawning tank. The larval tank for each spawning tank should be a minimum of $1 \mathrm{cu} . \mathrm{ft}$. dimensionally
and divided to form two separate larval chambers with separate standpipes, or separate $1 / 2$ sq. ft. tanks may be used. Test water is to be supplied by delivery tubes from the mixing cells described in Step 2 above.
Test water depth in tanks and chambers for both a and b above should be 6 inches.

1.4 Flow Rate

The flow rate to each chamber (larval or adult) should be equal to 6 to $10 \tan k$ volumes/ 24 hr .

1.5 Aeration

Total dissolved oxygen levels should never be allowed to drop below 60% of saturation, and flow rates must be increased if oxygen levels do drop below 60%. As a first alternative, flow rates can be increased above those specified in 1.4. Only aerate (with oil free air) if testing a nonvolatile toxic agent, and then as a last resort to maintain dissolved oxygen at 60% of saturation.

1.6 Cleaning

All adult tanks, and larvae tanks and chambers after larvae swim-up, must be siphoned a minimum of 2 times weekly and brushed or scraped when algal or fungus growth becomes excessive.

1.7 Spawning Substrate

Use spawning substrates made from inverted cement and asbestos halved, 3-inch ID drain tile, or the equivalent, each of these being 3 inches long.

1.8 Egg Cup

Egg incubation cups are made from either 3 -inch sections of 2 -inch OD (1 $1 / 2$-inch ID) polyethylene water hose or $4-\mathrm{oz}$., 2-inch OD round glass jars with the bottoms cut off. One end of the jar or hose sections is covered with
stainless steel or nylon screen (with a minimum of 40 meshes per inch). Cups are oscillated in the test water by means of a rocker arm apparatus driven by a 2 r.p.m. electric motor (Mount, 1968). The vertical-travel distance of the cups should be 1 to $11 / 2$ inches.

1.9 Light

The lights used should simulate sunlight as nearly as possible. A combination of Duro-Test (Optima FS) ${ }^{1,2}$ and wide spectrum Grow-lux ${ }^{3}$ fluorescent tubes has proved satisfactory at the NWQL.

1.10 Photoperiod

The photoperiods to be used (Appendix A) simulate the dawn to dusk times of Evansville, Indiana. Adjustments in day-length are to be made on the first and fifteenth day of every Evansville test month. The table is arranged so that adjustments need be made only in the dusk times. Regardless of the actual date that the experiment is started, the Evansville test photoperiod should be adjusted so that the mean or estimated hatching date of the fish used to start the experiment corresponds to the Evansville test day-length for December first. Also, the dawn and dusk times listed in the table need not correspond to the actual times where the experiment is being conducted. To illustrate these points, an experiment started with 5 -day-old larvae in Duluth, Minnesota, on August 28 (actual date), would require use of a December 5 Evansville test photoperiod, and the lights could go on anytime on that day just so long as they remained on for 10 hours and 45 minutes. Ten days later (Sept. 7 actual date, Dec. 15 Evansville test date) the day-length would be changed to 10 hours and 30 minutes. Gradual changes in light intensity at dawn and dusk (Drummond and Dawson, 1970), if desired, should be included within the day-lengths shown, and should not last for more than $1 / 2$ hour from full on to full off and vice versa.

[^8]
1.11 Temperature

Temperature should not deviate instantaneously from $25^{\circ} \mathrm{C}$ by more than $2^{\circ} \mathrm{C}$ and should not remain outside the range of 24 to $26^{\circ} \mathrm{C}$ for more than 48 hours at a time. Temperature should be recorded continuously.

1.12 Disturbance

Adults and larvae should be shielded from disturbances such as people continually walking past the chambers, or from extraneous lights that might alter the intended photoperiod.

1.13 Construction Materials

Construction materials which contact the diluent water should not contain leachable substances and should not sorb significant amounts of substances from the water. Stainless steel is probably the preferred construction material. Glass absorbs some trace organics significantly. Rubber should not be used. Plastic containing fillers, additives, stabilizers, plasticizers, etc., should not be used. Teflon, nylon, and their equivalents should not contain leachable materials and should not sorb significant amounts of most substances. Unplasticized polyethylene and polypropylene should not contain leachable substances, but may sorb very significant amounts of trace organic compounds.

1.14 Water

The water used should be from a well or spring if at all possible, or alternatively from a surface water source. Only as a last resort should water from a chlorinated municipal water supply be used. If it is thought that the water supply could be conceivably contaminated with fish pathogens, the water should be passed through an ultraviolet or similar sterilizer immediately before it enters the test system.

2.0 BIOLOGICAL SYSTEM

2.1 Test Animals

If possible, use stocks of fathead minnows from the National Water Quality Laboratory in Duluth, Minnesota or the Fish Toxicology

Laboratory in Newtown, Ohio. Groups of starting fish should contain a mixture of approximately equal number of eggs or larvae from at least three different females. Set aside enough eggs or larvae at the start of the test to supply an adequate number of fish for the acute mortality bioassays used in determining application factors.

2.2 Beginning Test

In beginning the test, distribute 40 to 50 eggs or 1 -to 5 -day-old larvae per duplicate tank using a stratified random assignment (see 4.3). All acute mortality tests should be conducted when the fish are 2 to 3 months old. If eggs or 1 -to 5 -day-old larvae are not available, fish up to 30 days of age may be used to start the test. If fish between 20 and 60 days old are used, the exposure should be designated a partial chronic test. Extra test animals may be added at the beginning so that fish can be removed periodically for special examinations (see 2.12.) or for residue analysis (see 3.4).

2.3 Food

Feed the fish a frozen trout food (e.g., Oregon Moist). A minimum of once daily, fish should be fed ad libitum the largest pellet they will take. Diets should be supplemented weekly with live or frozen-live food (e.g., Daphnia, chopped earthworms, fresh or frozen brine shrimp, etc.). Larvae should be fed a fine trout starter a minimum of 2 times daily, ad libitum; one feeding each day of live young zooplankton from mixed cultures of small copepods, rotifers, and protozoans is highly recommended. Live food is especially important when larvae are just beginning to feed, or about 8 to 10 days after egg deposition. Each batch of food should be checked for pesticides (including DDT, TDE, dieldrin, lindane, methoxychlor, endrin, aldrin, BHC, chlordane, toxaphene, 2,4-D, and PCBs), and the kinds and amounts should be reported to the project officer or recorded.

2.4 Disease

Handle disease outbreaks according to their nature, with all tanks receiving the same treatment whether there seems to be sick fish in all
of them or not. The frequency of treatment should be held to a minimum.

2.5 Measuring Fish

Measure total lengths of all starting fish at 30 and 60 days by the photographic method used by McKim and Benoit (1971). Larvae or juveniles are transferred to a glass box containing 1 inch of test water. Fish should be moved to and from this box in a water-filled container, rather than by netting them. The glass box is placed on a translucent millimeter grid over a fluorescent light platform to provide background illumination. Photos are then taken of the fish over the millimeter grid and are enlarged into 8 by 10 inch prints. The length of each fish is subsequently determined by comparing it to the grid. Keep lengths of discarded fish separate from those of fish that are to be kept.

2.6 Thinning

When the starting fish are sixty (± 1 or 2) days old, impartially reduce the number of surviving fish in each tank to 15 . Obviously injured or crippled individuals may be discarded before the selection so long as the number is not reduced below 15; be sure to record the number of deformed fish discarded from each tank. As a last resort in obtaining 15 fish per tank, 1 or 2 fish may be selected for transfer from one duplicate to the other. Place five spawning tiles in each duplicate tank, separated fairly widely to reduce interactions between male fish guarding them. One should also be able to look under tiles from the end of the tanks. During the spawning period, sexually maturing males must be removed at weekly intervals so there are no more than four per tank. An effort should be made not to remove those males having well established territories under tiles where recent spawnings have occurred.

2.7 Removing Eggs

Remove eggs from spawning tiles starting at 12:00 noon Evansville test time (Appendix A) each day. As indicated in Step 1.10, the test time need not correspond to the actual time where the test is being conducted. Eggs are loosened from the spawning tiles and at the
same time separated from one another by lightly placing a finger on the egg mass and moving it in a circular pattern with increasing pressure until the eggs begin to roll. The groups of eggs should then be washed into separate, appropriately marked containers and subsequently handled (counted, selected for incubation, or discarded) as soon as possible after all eggs have been removed and the spawning tiles put back into the test tanks. All egg batches must be checked initially for different stages of development. If it is determined that there is more than one distinct stage of development present, then each stage must be considered as one spawning and handled separately as described in Step 2.8.

2.8 Egg Incubation and Larval Selection

Impartially select 50 unbroken eggs from spawnings of 50 eggs or more and place them in an egg incubator cup for determining viability and hatchability. Count the remaining eggs and discard them. Viability and hatchability determinations must be made on each spawning (>49 eggs) until the number of spawnings (>49 eggs) in each duplicate tank equals the number of females in that tank. Subsequently, only eggs from every third spawning (>49 eggs) and none of those obtained on weekends need be set up to determine hatchability; however, weekend spawns must still be removed from tiles and the eggs counted. If unforeseen problems are encountered in determining egg viability and hatchability, additional spawnings should be sampled before switching to the setting up of eggs from every third spawning. Every day, record the live and dead eggs in the incubator cups, remove the dead ones, and clean the cup screens. Total numbers of eggs accounted for should always add up to within two of 50 or the entire batch is to be discarded. When larvae begin to hatch, generally after 4 to 6 days, they should not be handled again or removed from the egg-cups until all have hatched. Then, if enough are still alive, 40 of these are eligible to be transferred immediately to a larval test chamber. Those individuals selected out to bring the number kept to 40 should be chosen impartially. Entire egg-cup-groups not used for survival and growth studies should be counted and discarded.

2.9 Progeny Transfer

Additional important information on hatchability and larval survival is to be gained by transferring control eggs immediately after spawning to concentrations where spawning is reduced or absent, or to where an affect is seen on survival of eggs or larvae, and by transferring eggs from these concentrations to the control tanks. One larval chamber in, or corresponding to, each adult tank should always be reserved for eggs produced in that tank.

2.10 Larval Exposure

From early spawnings in each duplicate tank, use the larvae hatched in the egg incubator cups (Step 2.8. above) for 30 or 60 day growth and survival exposures in the larval chambers. Plan ahead in setting up eggs for hatchability so that a new group of larvae is ready to be tested for 30 or 60 days as soon as possible after the previously tested group comes out of the larval chambers. Record mortalities, and measure total lengths of larvae at 30 and, if they are kept, 60 days posthatch. At the time the larval test is terminated they should also be weighed. No fish (larvae, juveniles, or adults) should be fed within 24 hr 's. of when they are to be weighed.

2.11 Parental Termination

Parental fish testing should be terminated when, during the receding day-length photoperiod, a one week period passes in which no spawning occurs in any of the tanks. Measure total lengths and weights of parental fish; check sex and condition of gonads. The gonads of most parental fish will have begun to regress from the spawning condition, and thus the differences between the sexes will be less distinct now than previously. Males and females that are readily distinguishable from one another because of their external characteristics should be selected initially for determining how to differentiate between testes and ovaries. One of the more obvious external characteristics of females that have spawned is an extended, transparent anal canal (urogenital papilla). The gonads of both sexes will be located just ventral to the kidneys. The ovaries of the females at this time will appear transparent, but perhaps con-
taining some yellow pigment, coarsely granular, and larger than testes. The testes of males will appear as slender, slightly milky, and very finely granular strands. Fish must not be frozen before making these examinations.

2.12 Special Examinations

Fish and eggs obtained from the test should be considered for physiological, biochemical, histological and other examinations which may indicate certain toxicant-related effects.

2.13 Necessary Data

Data that must be reported for each tank of a chronic test are:
a. Number and individual total length of normal and deformed fish at 30 and 60 days; total length, weight and number of either sex, both normal and deformed, at end of test.
b. Mortality during the test.
c. Number of spawns and eggs.
d. Hatchability.
e. Fry survival, growth, and deformities.

3.0 CHEMICAL SYSTEM

3.1 Preparing a Stock Solution

If a toxicant cannot be introduced into the test water as is, a stock solution should be prepared by dissolving the toxicant in water or an organic solvent. Acetone has been the most widely used solvent, but dimethylformanide (DMF) and triethylene glycol may be preferred in many cases. If none of these solvents are acceptable, other water-miscible solvents such as methanol, ethanol, isopropanol, acetonitrile, dimethylacetamide (DMAC), 2-ethoxyethanol, glyme (dimethylether of ethylene glycol, diglyme (dimethyl ether of diethylene glycol) and propylene glycol should be considered. However, dimethyl sulfoxide (DMSO) should not be used if at all possible because of its biological properties.

Problems of rate of solubilization or solubility limit should be solved by mechanical means if at all possible. Solvents, or as a last resort, surfactants, can be used for this purpose, only after
they have been proven to be necessary in the actual test system. The suggested surfactant is p-tert-octylphenoxynonae thoxy-ethanol ($\mathrm{p}-1,1$, 3, 3-tetramethylbutylphenoxynonaethoxyethanol, OPE_{10}) (Triton X-100, a product of the Rohm and Haas Company, or equivalent).

The use of solvents, surfactants, or other additives should be avoided whenever possible. If an additive is necessary, reagent grade or better should be used. The amount of an additive used should be kept to a minimum, but the calculated concentration of a solvent to which any test organisms are exposed must never exceed one one-thousandth of the $96-\mathrm{hr}$. LC50 for test species under the test conditions and must never exceed one gram per liter of water. The calculated concentration of surfactant or other additive to which any test organisms are exposed must never exceed onetwentieth of the concentration of the toxicant and must never exceed one-tenth gram per liter of water. If any additive is used, two sets of controls must be used, one exposed to no additives and one exposed to the highest level of additives to which any other organisms in the test are exposed.

3.2 Measurement of Toxicant Concentration

As a minimum, the concentration of toxicant must be measured in one tank at each toxicant concentration every week for each set of duplicate tanks, alternating tanks at each concentration from week to week. Water samples should be taken about midway between the top and bottom and the sides of the tank and should not include any surface scum or material stirred up from the bottom or sides of the tank. Equivolume daily grab samples can be composited for a week if it has been shown that the results of the analysis are not affected by storage of the sample.

Enough grouped grab samples should be analyzed periodically throughout the test to determine whether or not the concentration of toxicant is reasonably constant from day to day in one tank and from one tank to its duplicate. If not, enough samples must be analyzed weekly throughout the test to show the variability of the toxicant concentration.

3.3 Measurement of Other Variables

Temperature must be recorded continuously (see 1.11.).

Dissolved oxygen must be measured in the tanks daily, at least five days a week on an alternating basis, so that each tank is analyzed once each week. However, if the toxicant or an additive causes a depression in dissolved oxygen, the toxicant concentration with the lowest dissolved oxygen concentration must be analyzed daily in addition to the above requirement.

A control and one test concentration must be analyzed weekly for pH , alkalinity, hardness, acidity, and conductance, or more often, if necessary, to show the variability in the test water. However, if any of these characteristics are affected by the toxicant, the tanks must be analyzed for that characteristic daily, at least five days a week, on an alternating basis so that each tank is analyzed once every other week.

At a minimum, the test water must be analyzed at the beginning and near the middle of the test for calcium, magnesium, sodium, potassium, chloride, sulfate, total solids, and total dissolved solids.

3.4 Residue Analysis

When possible and deemed necessary, mature fish, and possibly eggs, larvae, and juveniles, obtained from the test, should be analyzed for toxicant residues. For fish, muscle should be analyzed, and gill, blood, brain, liver, bone, kidney, GI tract, gonad, and skin should be considered for analysis. Analyses of whole organisms may be done in addition to, but should not be done in place of, analyses of individual tissues, especially muscle.

3.5 Methods

When they will provide the desired information with acceptable precision and accuracy, methods described in Methods for Chemical Analysis of Water and Wastes (EPA, 1971) should be used unless there is another method which requires much less time and can provide the desired information with the same or better precision and accuracy. At a minimum, accuracy should be measured using the method of known additions for all analytical methods for tox-
icants. If available, reference samples should be analyzed periodically for each analytical method.

4.0 STATISTICS

4.1 Duplicates

Use true duplicates for each level of toxic agent, i.e., no water connections between duplicate tanks.

4.2 Distribution of Tanks

The tanks should be assigned to locations by stratified random assignment (random assignment of one tank for each level of toxic agent in a row followed by random assignment of the second tank for each level of toxic agent in another or an extension of the same row).

4.3 Distribution of Test Organisms

The test organisms should be assigned to tanks by stratified random assignment (random assignment of one test organism to each tank, random assignment of a second test organism to each tank, etc.).

5.0 MISCELLANEOUS

5.1 Additional Information

All routine bioassay flow-through methods not covered in this procedure (e.g., physical and chemical determinations, handling of fish) should be followed as described in Standard Methods for the Examination of Water and Wastewater, (American Public Health Association, 1971), or information requested from appropriate persons at Duluth or Newtown.

5.2 Acknowledgments

These procedures for the fathead minnow were compiled by John Eaton for the Committee on Aquatic Bioassays. The participating members of this committee are: Robert Andrew, John Arthur, Duane Benoit, Gerald Bouck, William Brungs, Gary Chapman, John Eaton, John Hale, Kenneth Hokanson, James McKim, Quentin Pickering, Wesley Smith, Charles Stephan, and James Tucker.

6.0 REFERENCES

For additional information concerning flow through bioassays with fathead minnows, the following references are listed:
American Public Health Association. 1971. Standard methods for the examination of water and wastewater. 13th ed. APHA. New York,
Brungs, William A. 1969. Chronic toxicity of zinc to the fathead minnow, Pimephales promelas Rafinesque. Trans. Amer. Fish. Soc. 98(2): 272-279.
Brungs, William A. 1971. Chronic effects of low dissolved oxygen concentrations on the fathead minnow (Pimephales promelas). J. Fish. Res. Bd. Canada, 28(8): 1119-1123.
Brungs, William A. 1971. Chronic effects of constant elevated temperature on the fathead minnow (Pimephales promelas). Trans. Amer. Fish. Soc. 100(4): 659-664.
Carlson, Dale R. 1967. Fathead minnow, Pimephales promelas Rafinesque, in the Des Moines River, Boone County, Iowa, and the Skunk River drainage, Hamilton and Story Counties, Iowa. Iowa State J. Sci. 41(3): 363-374.
Drummond, Robert A., and Walter F. Dawson. 1970. An inexpensive method for simulating Diel patterns of lighting in the laboratory. Trans. Amer. Fish. Soc. 99(2):434-435.
Isaak, Daniel. 1961. The ecological life history of the fathead minnow, Pimephales promelas (Rafinesque).Ph.D. Thesis, Library, Univ. of Minnesota.
Markus, Henry C. 1934. Life history of the fathead minnow (Pimephales promelas). Copeia, (3): 116-122.
McKim, J. M., and D. A. Benoit. 1971. Effect of long-term exposures to copper on survival, reproduction, and growth of brook trout Salvelinus fontinalis (Mitchill). J. Fish. Res. Bd. Canada, 28: 655-662.
Mount, Donald I. 1968. Chronic toxicity of copper to fathead minnows (Pimephales promelas, Rafinesque). Water Res. 2: 215-223.
Mount, Donald I., and William Brungs. 1967. A simplified dosing apparatus for fish toxicology studies. Water Res. 1: 21-29.
Mount, Donald I., and Charles E. Stephan. 1967. A method for establishing acceptable toxicant limits for fish - malathion and the butoxyethanol ester of 2,4-D. Trans. Amer. Fish. Soc. 96(2): 185-193.
Mount, Donald I., and Charles E. Stephan. 1969. Chronic toxicity of copper to the fathead minnow (Pimephales promelas) in soft water. J. Fish. Res. Bd. Canada, 26(9): 2449-2457.
Mount, Donald I., and Richard E. Warner. 1965. A serial-dilution apparatus for continuous delivery of various concentrations of materials in water. PHS Publ. No. 999-WP-23. 16 pp.
Pickering, Quentin H., and Thomas O. Thatcher. 1970. The chronic toxicity of linear alkylate sulfonate (LAS) to Pimephales promelas Rafinesque. JWPCF, 42(2): 243-254.
Prckering, Quentin H., and William N. Vigor. 1965. The acute toxicity of zinc to eggs and fry of the fathead minnow. Progr. Fish-Cult. 27(3): 153-157.
Verma, Prabha. 1969. Normal stages in the development of Cyprinus carpio var. communis L. Acta biol. Acad. Sci. Hung. 21(2): 207-218.

Appendix A

Test (Evansville, Indiana) Photoperiod
 For Fathead Minnow Chronic

Dawn to Dusk Time	Date		Day-length (hour and minute)
6:00-4:45)	DEC.	1	10:45)
6:00-4:30)		15	10:30)
)
6:00-4:30)	JAN.	1	10:30)
6:00-4:45)		15	10:45)
)
6:00-5:15)	FEB. 1	1	11:15) 5-month pre-spawning
6:00-5:45)		15	11:45) growth period
)
6:00-6:15)	MAR.	1	12:15)
6:00-7:00)		15	13:00)
)
6:00-7:30)	APR.	1	13:30)
6:00-8:15)		15	14:15)
6:00-8:45)	MAY	1	14:45)
6:00-9:15)		15	15:15)
)
6:00-9:30)	JUNE	1	15:30)
6:00-9:45)		15	15:45) 4-month spawning) period
6:00-9:45)	JULY	1	$15: 45)$
6:00-9:30)		15	15:30)
)
6:00-9:00)	AUG.	1	15:00)
6:00-8:30)		15	14:30)
6:00-8:00)	SEPT.	1	14:00)
6:00-7:30)		15	13:30)
)
6:00-6:45)	OCT. 1	1	12:45) post spawning period
6:00-6:15)		15	12:15)
)
6:00-5:30)	NOV.	1	11:30)
6:00-5:00)		15	11:00)

Brook Trout Salvelinus fontinales
(Mitchill) Partial Chronic Tests April, 1971
(Revised January, 1972)

1.0 PHYSICAL SYSTEM

1.1 Diluter

Proportional diluters (Mount and Brungs, 1967) should be employed for all long-term exposures. Check the operation of the diluter daily, either directly or through the measurement of toxicant concentrations. A minimum of five toxicant concentrations and one control should be used for each test with a dilution factor of not less than 0.30. An automatically triggered emergency aeration and alarm system must be installed to alert staff in case of diluter, temperature control or water supply failure.

1.2 Toxicant Mixing

A container to promote mixing of toxicantbearing and w-cell water should be used between diluter and tanks for each concentration. Separate delivery tubes should run from this container to each duplicate tank. Check to see that the same amount of water goes to duplicate tanks and that the toxicant concentration is the same in both.

1.3 Tank

Each duplicate spawning tank (preferably stainless steel) should measure $1.3 \times 3 \times 1 \mathrm{ft}$. wide with a water depth of 1 foot and alevinjuvenile growth chambers (glass or stainless steel with glass bottom) $7 \times 15 \times 5 \mathrm{in}$. wide with a water depth of 5 inches. Growth chambers can be supplied test water by either separate delivery tubes from the mixing cells described in Step 2 above or from test water delivered from the mixing cell to each duplicate spawning tank. In the second choice, test water must always flow through growth chambers before entering the spawning tank. Each growth chamber should be designed so that the test water can be drained down to 1 inch and the chamber transferred over a fluorescent light box for photographing the fish (see 2.10).

1.4 Flow Rate

Flow rates for each duplicate spawning tank and growth chamber should be $6-10$ tank volumes/ 24 hr .

1.5 Aeration

Brook trout tanks and growth chambers must be aerated with oil free air unless ther? are no flow limitations and 60% of saturatir : can be maintained. Total dissolved oxygen levels should never be allowed to drop below 60% of saturation.

1.6 Cleaning

All tanks and chambers must be siphoned daily and brushed at least once per week. When spawning commences, gravel baskets must be removed and cleaned daily.

1.7 Spawning Substrates

Use two spawning substrates per duplicate made of plastic or stainless steel which measure at least $6 \times 10 \times 12 \mathrm{in}$. with 2 inches of .25 to .50 inch stream gravel covering the bottom and 20 mesh stainless steel or nylon screen attached to the ends for circulation of water.

1.8 Egg Cup

Egg incubation cups are made from 4 -oz. 2 -inch OD round glass jars with the bottoms cut off and replaced with stainless steel or nylon screen (40 meshes per inch). Cups are oscillated in the test water by means of a rocker arm apparatus driven by a 2 r.p.m. electric motor (Mount, 1968).

1.9 Light

The lights used should simulate sunlight as nearly as possible. A combination of Duro-Test (Optima FS) ${ }^{1,2}$ and wide spectrum Gro-lux ${ }^{3}$ fluorescent tubes has proved satisfactory at the NWQL.

[^9]
1.10 Photoperiod

The photoperiods to be used (Appendix A) simulate the dawn to dusk times of Evansville, Indiana. Evansville dates must correspond to actual dates in order to avoid putting natural reproductive cycles out of phase. Adjustments in photoperiod are to be made on the first and fifteenth of every Evansville test month. The table is arranged so that adjustments need be made only in the dusk times. The dawn and dusk times listed in the table (Evansville test time) need not correspond to the actual test times where the test is being conducted. To illustrate this point, a test started on March first would require the use of the photoperiod for Evansville test date March first, and the lights could go on any time on that day just so long as they remained on for twelve hours and fifteen minutes. Fifteen days later the photoperiod would be changed to thirteen hours. Gradual changes in light intensity at dawn and dusk (Drummond and Dawson, 1970), may be included within the photoperiods shown, and should not last for more than $1 / 2$ hour from full on to full off and vice versa.

1.11 Temperature

Utilize the attached temperature regime (see Appendix B). Temperatures should not deviate instantaneously from the specified test temperature by more than $2^{\circ} \mathrm{C}$ and should not remain outside the specified temperature $\pm 1^{\circ} \mathrm{C}$ for more than 48 hours at a time.

1.12 Disturbance

Spawning tanks and growth chambers must be covered with a screen to confine the fish and concealed in such a way that the fish will not be disturbed by persons continually walking past the system. Tanks and chambers must also be shielded from extraneous light which can affect the intended photoperiod or damage light-sensitive eggs and alevins.

1.13 Construction Materials

Construction materials which contact the diluent water should not contain leachable substances and should not sorb significant amounts of substances from the water. Stainless steel is
probably the preferred construction material. Glass absorbs some trace organics significantly. Rubber should not be used. Plastic containing fillers, additives, stabilizers, plasticizers, etc., should not be used. Teflon, nylon, and their equivalents should not contain leachable materials and should not sorb significant amounts of most substances. Unplasticized polyethylene and polypropylene should not contain leachable substances, but may sorb very significant amounts of trace organic compounds.

1.14 Water

The water used should be from a well or spring if at all possible, or alternatively from a surface water source. Only as a last resort should water from a chlorinated municipal water supply be used. If it is thought that the water supply could be conceivably contaminated with fish pathogens, the water should be passed through an ultraviolet or similar sterilizer immediately before it enters the test system.

2.0 BIOLOGICAL SYSTEM

2.1 Test Animals

Yearling fish should be collected no later than March 1 and acclimated in the laboratory to test temperature and water quality for at least one month before the test is initiated. Suitability of fish for testing should be judged on the basis of acceptance of food, apparent lack of diseases, and 2% or less mortality during acclimation with no mortality two weeks prior to test. Set aside enough fish to supply an adequate number for short-term bioassay exposures used in determining application factors.

2.2 Beginning Test

Begin exposure no later than April 1 by distributing 12 acclimated yearling brook trout per duplicate using a stratified random assignment (see 4.3). This allows about a four-month exposure to the toxicant before the onset of secondary or rapid growth phase of the gonads.

Extra test animals may be added at the beginning so that fish can be removed periodically for special examinations (see 2.13), or for residue analysis (see 3.4).

2.3 Food

Use a good frozen trout food (e.g., Oregon Moist). Fish should be fed the largest pellet they will take a minimum of two times daily. The amount should be based on a reliable hatchery feeding schedule. Alevins and early juveniles should be fed trout starter a minimum of five times daily. Each batch of prepared food should be checked for pesticides (including DDT, TDE, dieldrin, endrin, aldrin, BHC , chlordane, toxaphene, 2,4-D, and PCBs), and the kinds and amounts should be reported to the project officer or recorded.

2.4 Disease

Handle disease outbreaks according to their nature, with all tanks receiving the same treatment whether there seems to be sick fish in all of them or not. The frequency of treatment should be held to a minimum.

2.5 Measuring Fish

Record mortalities daily, and measure fish directly at initiation of test, after three months and at thinning (see 2.6) (total length and weight). Fish should not be fed 24 hours before weighing and lightly anesthetized with MS-222 to facilitate measuring (100 mg MS-222/liter water).

2.6 Thinning

When secondary sexual characteristics are well developed (approximately two weeks prior to expected spawning), separate males, females and undeveloped fish in each duplicate and randomly reduce sexually mature fish (see 4.4) to the desired number of 2 males and 4 females, and discard undeveloped fish after examination. Place two spawning substrates (described earlier) in each duplicate. Record the number of mature, immature, deformed and injured males and females in each tank and the number from each category discarded. Measure total length and weight of all fish in each category before any are discarded and note which ones were discarded.

2.7 Removing Eggs

Remove eggs from the redd at a fixed time each day (preferably after 1:00 p.m. Evansville
time, so the fish are not disturbed during the morning).

2.8 Egg Incubation and Viability

Impartially select 50 eggs from the first eight spawnings of 50 eggs or more in each duplicate and place them in an egg incubator cup for hatch. The remaining eggs from the first eight spawnings (>50 eggs) and all subsequent eggs from spawnings should be counted and placed in separate egg incubator cups for determining viability (formation of neural keel after 11-12 days at $9^{\circ} \mathrm{C}$). The number of dead eggs from each spawn removed from the nest should be recorded and discarded. Never place more than 250 eggs in one egg incubator cup. All eggs incubated for viability are discarded after 12 days. Discarded eggs can be used for residue analysis and physiological measurements of toxicant-related effects.

2.9 Progeny Transfer

Additional important information on hatchability and alevin survival can be gained by transferring control eggs immediately after spawning to concentrations where spawning is reduced or absent, or to where an affect is seen on survival of eggs or alevin, and by transferring eggs from these concentrations to the control tanks. Two growth chambers for each duplicate spawning tank shouid always be reserved for eggs produced in that tank.

2.10 Hatch and Alevin Thinning

Remove dead eggs daily from the hatchability cups described in Step 2.8 above. When hatching commences, record the number hatched daily in each cup. Upon completion of hatch in any cup, randomly (see 4.4) select 25 alevins from that cup. Dead or deformed alevins must not be included in the random selection but should be counted as being dead or deformed upon hatch. Measure total lengths of the 25 selected and discarded alevins. Total lengths are measured by the photographic method used by McKim and Benoit (1971). The fish are transferred to a glass box containing 1 inch of test water. They should be moved to and from this box in a water filled container, rather than by netting them. The glass box is placed on a translucent millimeter grid
over a fluorescent light box which provides background illumination. Photos are then taken of the fish over the millimeter grid and are enlarged into 8×10 inch prints. The length of each fish is subsequently determined by comparing it to the grid. Keep lengths of discarded alevins separate from those which are kept. Place the 25 selected alevins back into the incubator cup and preserve the discarded ones for initial weights.

2.11 Alevin-Juvenile Exposure

Randomly (see 4.4) select from the incubation cups two groups of 25 alevins each per duplicate for 90 -day growth and survival exposures in the growth chambers. Hatching from one spawn may be spread out over a 3 -to 6 -day period; therefore, the median-hatch date should be used to establish the 90-day growth and survival period for each of the two groups of alevins. If it is determined that the median-hatch dates for the five groups per duplicate will be more that three weeks apart, then the two groups of 25 : evins must be selected from those which are less than three weeks old. The remaining groups in the duplicate which do not hatch during the three-week perind are used only for hatchability results and then photographed for lengths and preserved for initial weights. In order to equalize the effects of the incubation cups on growth, all groups selected for the 90 -day exposure must remain in the incubation cups three weeks before they are released into the growth chambers. Each of the two groups selected per duplicate must be kept separate during the 90 -day period. Record mortalities daily, along with total lengths 30 and 60 days post-hatch, and total length and weight at 90 days post-hatch. Alevins and early juveniles should not be fed 24 hours before weighing. Total lengths are measured by transferring the growth chambers described earlier to a translucent millimeter grid over a fluorescent light box for photographing as described in Step 2.10 above. Survival and growth studies should be terminated after three mos ths. Terminated fish can be used for tissue residue analysis and physiological measurements of toxicant-related effects.

2.12 Parental Termination

All parental fish should be terminated when a three-week period passes in which no spawning occurs in any of the spawning tanks. Record mortality and weigh and measure total length of parental fish, check sex and condition of gonads (e.g., reabsorption, degree of maturation, spent ovaries, etc.) (see 3.4).

2.13 Special Examinations

Fish and eggs obtained from the test should be considered for physiological, biochemical, and histological investigations which may indicate certain toxicant-related effects.

2.14 Necessary Data

Data that must be reported for each tank of a chronic test are:
a. Number and individual weights and total lengths of norma!, deformed, and injured mature and immature inales and females at initiation of test, three months after test commences, at thinning and at the end of test.
b. Mortality during the test.
c. Number of spawns and eggs. A mean incubation time should be calculated using date of spawning and the median-hatch dates.
d. Hatchability.
e. Fry survival, growth and deformities.

3.0 CHEMICAL SYSTEM

3.1 Preparing a Stock Solution

If a toxicant cannot be introduced into the test water as is, a stock solution should be prepared by dissolving the toxicant in water or an organic solvent. Acetone has been the most widely used solvent, but dimethylformanide (DMF) and triethylene glycol may be preferred in many cases. If none of these solvents are acceptable, other water-miscible solvents such as methanol, ethanol, isopropanol, acetonitrile, dimethylacetamide (DMAC), 2-ethoxyethanol, glyme (dimethylether of ethylene glycol) diglyme (dimethyl ether of diethylene glycol)
and propylene glycol should be considered. However, dimethyl sulfoxide (DMSO) should not be used if at all possible because of its biological properties.

Problems of rate of solubilization or solubility limit should be solved by mechanical means if at all possible. Solvents, or as a last resort, surfactants, can be used for this purpose only after they have been proven to be necessary in the actual test system. The suggested surfactant is p-tert-octylphenoxynonaethoxyethanol (p-1, 1, 3, 3-tetramethylbutylphenoxynonaethoxyethanol, OPE_{10}) (Triton $\mathrm{X}-100$, a product of the Rohm and Haas Company, or equivalent).

The use of solvents, surfactants, or other additives should be avoided whenever possible. If an additive is necessary, reagent grade or better should be used. The amount of an additive used should be kept to a minimum, but the calculated concentration of a solvent to which any test organisms are exposed must never exceed one one-thousandth of the $96-\mathrm{hr}$. LC50 for test species under the test conditions and must never exceed one gram per liter of water. The calculated concentration of surfactant or other additive to which any test organisms are exposed must never exceed onetwentieth of the concentration of the toxicant and must never exceed one-tenth gram per liter of water. If any additive is used, two sets of controls must be used, one exposed to no additives and one exposed to the highest level of additives to which any other organisms in the test are exposed.

3.2 Measurement of Toxicant Concentration

As a minimum, the concentration of toxicant must be measured in one tank at each toxicant concentration every week for each set of duplicate tanks, alternating tanks at each concentration from week to week. Water samples should be taken about midway between the top and bottom and the sides of the tank and should not include any surface scum or material stirred up from the bottom or sides of the tank. Equivolume daily grab samples can be composituo tor a week if it has been shown that the iesults of the analysis are not affected by storage of the sample.

Enough grouped grab samples should be analyzed periodically throughout the test to determine whether or not the concentation of toxicant is reasonably constant from day to day in one tank and from one tank to its duplicate. If not, enough samples must be analyzed weekly throughout the test to show the variability of the toxicant concentration.

3.3 Measurement of Other Variables

Temperature must be recorded continuously (see 1.11).

Dissolved oxygen must be measured in the tanks daily at least five days a week on an alternating basis, so that each tank is analyzed once each week. However, if the toxicant or an additive causes a depression in dissolved oxygen, the toxicant concentration with the lowest dissolved oxygen concentration must be analyzed daily in addition to the above requirement.

A control and one test concentration must be analyzed weekly for pH , alkalinity, hardness, acidity, and conductance, or more often, if necessary, to show the variability in the test water. However, if any of these characteristics are affected by the toxicant, the tanks must be analyzed for that characteristic daily, at least five days a week, on an alternating basis, so that each tank is analyzed once every other week.

At a minimum, the test water must be analyzed at the beginning and near the middle of the chronic test for calcium, magnesium, sodium, potassium, chloride, sulfate, conductance, total solid, and total dissolved solids.

3.4 Residue Analysis

When possible and deemed necessary, mature fish, and possibly eggs, larvae, and juveniles, obtained from the test, should be analyzed for toxicant residues. For fish, muscle should be analyzed, and gill, blood, brain, liver, bone, kidney, GI tract, gonad, and skin should be considered for analysis. Analyses of whole organisms may be done in addition to, but should not be done in place of, analyses of individual tissues, especially muscle.

3.5 Methods

When they will provide the desired information with acceptable precision and accuracy, methods described in Methods for Chemical Analysis of Water and Wastes (EPA, 1971) should be used unless there is another method which requires much less time and can provide the desired information with the same or better precision and accuracy. At a minimum, accuracy should be measured using the method of known additions for all analytical methods for toxicants. If available, reference samples should be analyzed periodically for each analytical method.

4.0 STATISTICS

4.1 Duplicates

Use true duplicates for each level of the toxic agent, i.e., no water connections between duplicate tanks.

4.2 Distribution of Tanks

The tanks should be assigned to locations by stratified random assignment (random assignment of one tank for each level of the toxic agent in a row, followed by random assignment of the second tank for each level of the toxic agent in another or an extension of the same row).

4.3 Distribution of Test Organisms

The test organisms should be assigned to tanks by stratified random assignment (random assignment of one test organism to each tank, random assignment of a second test organism to each tank, etc.).

4.4 Selection and Thinning Test Organisms

At time of selection or thinning of test organisms the choice must be random (random, as defined statistically).

5.0 MISCELLANEOUS

5.1 Additional Information

All routine bioassay flow-through methods not covered in this procedure (e.g., physical and chemical determinations, handling of fish) should be followed as described in Standard Methods for the Examination of Water and Wastewater (American Public Health Association, 1971).

5.2 Acknowledgments

These procedures for the brook trout were compiled by J. M. McKim and D. A. Benoit for the Committee on Aquatic Bioassays. The participating members of this committee are: Robert Andrew, John Arthur, Duane Benoit, Gerald Bouck, William Brungs, Gary Chapman, John Eaton, John Hale, Kenneth Hokanson, James McKim, Quentin Pickering, Wesley Smith, Charles Stephan, and James Tucker.

6.0 REFERENCES

For additional information concerning flow-through bioassay tests with brook trout, the following references are histed:
Allison, L. N. 1951. Delay of spawning in eatern brook trout by means of artificially prolonged Ight intervals. Prog. Fish-Cult. 13: 111-116.
American Public Health Association. 1971. Standard methods for the examination of water and wastewater. 13th ed. APHA, New York.
Carson, B. W. 1955. Four years progress in the use of artfficially controlled light to induce early spawning of brook trout. Prog. Fish-Cult. 17: 99-102.
Drummond, Robert A., and Walter F. Dawson. 1970. An inexpensive method for simulating Diel patterns of lighting in the laboratory. Trans. Amer. Fish. Soc. 99(2): 434-435.
Fabricius, E. 1953. Aquarıum observations on the spawning behavior of the char,Salmo alpinus. Rep. Inst. Freshwater Res., Drottingholm, 34: 14-48.
Hale, J. G. 1968. Observations on brook trout, Salvelinus fontinalis spawning in 10 -gallon aquaria. Trans. Amer. Fish. Soc. 97 : 299-301.
Henderson, N. E. 1962. The annual cycle in the testis of the eastern brook trout, Salvelinus fontinalis (Mitchill). Can. J. Zool. 40: 631-645.

Henderson, N. E. 1963. Influence of light and temperature on the reproductive cycle of the eastern brook trout Salvelinus fontinalis (Mitchill). J. Fish. Res. Bd. Canada, 20(4): 859-897.
Hoover, E. E.. and H. E. Hubbard, 1937. Modification of the sexual cycle in trout by control of light. Copeia, 4: 206-210.
MacFadden, J. 1961. A population study of the brook trout Salvelinus fontinalis (Mitchill). Wildlife Soc. Puk. Nn, 7.
McKim, J. M., and D. A. Benoit. 1971. Effect of long-term exposures to copper on survival, reproduction, and growth of brook trout Salvelinus fontinalis (Mitchill). J. Fish. Res. Bd. Canada, 28: 655-662.
Mount, Donald I. 1968. Chronic toxicity of copper to fathead minnows (Pimephales promelas, Rafinesque). Water Res. 2: 215-223.
Mount, Donald I., and William Brungs. 1967. A simplified dosing apparatus for fish toxicology studies. Water Res. 1: 21-29.
Pyle, E. A. 1969. The effect of constant light or constant darkness on the growth and sexual maturity of brook trout. Fish. Res. Bull. No. 31. The nutrition of trout, Cortland Hatchery Report No. 36, p 13-19.
U. S. Environmental Protection Agency. 1971. Methods for Chemical Analysis of Water and Wastes. Analytical Quality Control Laboratory, Cincinnati, Ohio.
Wydoski, R. S., and E. L. Cooper. 1966. Maturation and fecundity of brook trout from infertile streams. J. Fish. Res. Bd. Canada, 23(5): 623-649.

Appendix A

Test (Evansville, Indiana) Pho toperiod

For Brook Trout Partial Chronic
Dawn to Dusk

Time	Date		Day-length (hour and minute)	
6:00-6:15)	MAR.	1	12:15)	
6:00-7:00)		15	13:00)	
)	
6:00-7:30)	APR.	1	13:30)	
6:00-8:15)		15	14:15)	
)	
6:00-8:45)	MAY	1	14:45)	
6:00-9:15)		15	15:15)	
)	
6:00-9:30)	JUNE	1	15:30)	Juvenile-adult exposure
6:00-9:45)		15	15:45)	
)	
6:00-9:45)	JULY	1	15:45)	
6:00-9:30)		15	15:30)	
)	
6:00-9:00)	AUG.	1	15:00)	
6:00-8:30)		15	14:30)	
)	
6:00-8:00)	SEPT.	1	14:00)	
6:00-7:30)		15	13:30)	
6:00-6:45)	OCT.		12:45)	Spawning and egg incubation
6:00-6:15)		15	12:15)	
)	
6:00-5:30)	NOV.	1	11:30)	
6:00-5:00)		15	11:00)	
6:00-4:45)	DEC.	1	10:45)	
6:00-4:30)		15	10:30)	
)	
6:00-4:30)	JAN. 1	1	10:30)	Alevin-juvenile exposure
6:00-4:45)		15	10:45)	
)	
6:00-5:15)	FEB. 1	1	11:15)	
6:00-5:45)		15	11:45)	

Appendix B
 Temperature Regime for Brook Trout Partial Chronic

Months		Temperatur
Mar.		9
Apr.		12
May	Juvenile-adult exposur	14
June	Juvenile-adult exposu	15
July		15
Aug.		15
Sept.		12
Oct.		97
Nov.	Spawning and egg incubation	
Dec.		9
Jan.	Alevin-juvenile exposure	9
Feb.	Alevinjuvenile exposure	9
Mar.		-9]

A constant temperature must be established just prior to spawning and egg incubation, and maintained throughout the 3 -month alevin-juvenile exposure.

APPENDIX

APPENDIX

Page
1.0 BENCH SHEETS 1
1.1 Phytoplankton Sedgwick-Rafter Count 1
1.2 Zooplankton Count 2
1.3 Plankton and Periphyton Diatom Analysis 3
1.4 Periphyton Sedgwick-Rafter Count 4
1.5 Plankton and Periphyton Pigment and Biomass 5
1.6 Macroinvertebrates 6
2.0 EQUIPMENT AND SUPPLIES 7
2.1 Plankton and Periphyton 7
2.2 Macroinvertebrates 8
2.3 Fish 11
3.0 UNITS OF MEASUREMENT CONVERSION FACTORS 13

1.0 BENCH SHEETS

1.1 Phytoplankton Sedgwick-Rafter Count

Zooplankton Count

COD	ORGANIBM	TALCY	C/LITMR
	ROT IFHRA		
	Kerstella		
	Brachionus		
	Folyartibra		
	Synchaeta		
	Trichocera		

COPEPODA

Total Crustacea per IIter $<$

PLANKTON AND PERIPHYTON

DIATOM AHALYSIS

1.4 Periphyton Sedgwick-Rafter Count

PERIPHYTON SEDOWICK-RAFIER COUNT

1.5 Plankton and Periphyton Pigment and Biomass

PLANKTON AND PERIPHYTON
 CHLOROPHYLL AND BIOMASS DATA

I. IDENTIFYING INFORMATION:
A. Station:
B. Date:
C. Method of Sample Collection and Handling: \qquad
II. SPECTROPHOTOMETER DATA:
A. OPTICAL PENSTYY MEASUREMENTS:

B. CHLOROPHYLL CALCULATIONS:

III. FLUOROMETER DATA:

IV. ORGANIC MATTER (ASH-FREE WEIGHP)

V. REMARKS:
\qquad

1.6 Macroinvertebrates

MACROINVERTEBRATE LAB BENCH SHEET

Name of water body Collected by Sorted by

Lot No. Station No.
Date collected \qquad

2.0 EQUIPMENT AND SUPPLIES

This section contains an abbreviated list of equipment and supplies used for the collection and analysis of biological samples. The companies and addresses are listed alphabetically at the end of the table. Mention of commercial sources or products in this section does not constitute endorsement by the U. S. Environmental Protection Agency.

Item	Source*	Cat. No.	Unit	Approx. Cost (1973)
2.1 Plankton and Periphyton				
Sampling and field equipment		*		
Water sampler, alpha bottle, nonmetallic, transparent, 6 liter	(30)	1160TT		\$ 150.00
Plankton sampler, Clarke-Bumpus, 12 inch, with No. 10 and No. 20 nets and buckets	(30)	37		400.00
Plankton towing net, Ng. 20 (173 mesh/inch)	(30)			41.00
Plankton net with bucket, Wisconsin style, No. 20 net (173 mesh/inch)	(30)			92.00
Submarine photometer, with deck cell	(7)			500.00
Laboratory equipment				
Balance, analytical, 100 gm capacity, accuracy 0.1 mg .				1,000.00
Balance, Harvard Trip, double beam, (to balance loaded centrifuge tubes)				50.00
Centrifuge, clinical, Centricone, 8 -place				100.00
Centrifuge, IEC, model UV, Refrigerated				850.00
Centrifuge head, 8-place, 100 ml				50.00
Centrifuge shields, cups			8	30.00
Centrifuge trunnion rings			8	20.00
Centrifuge tubes, plain, round bottom, polypropylene, 100 ml			16	9.00
Blood Cell Calculator (counter), 8-Key	(24)	2944-B50		110.00
Red-sensitive photomultiplier tube No. R-136				
Turner No. 110-853 blue lamp, T-5				
Turner No. 110-856, lamp adaptor for T-5 lamp				
Turner No. 110-005, Standard sample holder				
Turner No. 110- , High-Sensitivity sample holder				
Turner No. 110-871, flow-through cuvette				
Corning filter No. CS-5-60 (excitation)				
Corning filter No. CS-2-64 (emission)				
Disposable vials for fluorometer, $12 \times 75 \mathrm{~mm}, 5 \mathrm{ml}$, Kahn type				
Hot-plate, Thermolyne HP-A1915B, thermostatically controlled (to dry diatoms on cover glasses), 115 volts, 750 watts.				
Hot-plate, Chromalox, 230 volts, 2000 watt, $A C$, three heat (to incinerate diatom preparation on cover glasses).				
Microscope and accessories (Americal Optical, Series 10T Trinocular Microstar,				
In-base illuminat r a $\cdot \mathrm{d}$ transformer.				
Trinocular body.				
Graduated mechanical stage.				
Quadruple nose piecs.				
N.A. 1.25 condenser.				
Condenser mount.				
Objective, 4X, Achromatic.				
Objective, 10X, Achromatic,				
Objective, 20X, Achromatic, standard, must have working distance greater than 1 mm for Sedgwick-Rafter counts.				
Objective, 45X, Achromatic.				
Objective, 100X, Achromatic.				
Wide field eyepieces, 10 X ,				

[^10]| Item | Source | Cat. No. | Unit | $\begin{gathered} \text { Approx. } \\ \text { Cost (1973) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Light meter | (29) | Model 756 | | 100.00 |
| Muffle furnace, 1635 Temco, Thermolyne, 240 volts | | | | 180.00 |
| Temperature control for muffle furnace, Amplitrol Proportioning Controller, $0-2400^{\circ} \mathrm{F}$, for 240 volt furnace (recommended for use with Temco 1635). | | | | 230.00 |
| Oven, Thermozone, forced draft, double walled, three shelves, $230^{\circ} \mathrm{C}$. | | | | 350.00 |
| Pipetting machine, automatic, large, BBL. (for dispensing preservative). | (24) | 7750-M10 | | 320.00 |
| *Spectrophotometer, double-beam, recording, resolution 2 nm or better at 663 nm ; Coleman-124 or equivalent. | (1) | | | |
| Washer, mechanical, glassware, variable speed, Southern Cross, Model 300-B-2, Complete. | | | | 330.00 |
| Supplies | | | | |
| Cubitainer, 1 qt (approx 1 liter) | (8) | | 1 doz . | 7.00 |
| Cubitainer shipping carton, 1 qt | (8) | | 1 doz . | 4.00 |
| Bottles, pill, square, DURAGLAS, 3 ounce for periphyton samples. Do not use caps supplied with bottles. | | clear glass | 1/2 gross | 8.00 |
| | | amber glass | 1/2 gross | 15.00 |
| Caps, Polyseal, black, size 38, G. C.M.I. thread No. 400 . Use on Duraglas bottles above. | (16) | | 1/2 gross | 11.00 |
| Crucibles, Coors, high form, porcelain. size 1, capacity 30 ml | (24) | 3319-B55 | Case (36) | 25.00 |
| Crucible covers for above, Size G | (24) | 3319-D47 | Case (72) | 20.00 |
| Desiccator, aluminum, with shelf | (24) | 3747-Ci0 | | 22.00 |
| Merthiolate, powder No. 20, (Thimerosal, N.F.) | (13) | | 1/4 ounce | 2.00 |
| | | | 1 ounce | 7.00 |
| | | | 1 pound | 95.00 |
| Metal plate, $5 \times 10 \times 1 / 8$ inches, steel (to transfer cover glasses between hot-plates). | | | | |
| Micrometer, eye-piece, whipple | (16) | | | 18.00 |
| Micrometer, stage (American Optical) | (16) | 400 | | 32.00 |
| Mounting medium, HYRAX | (3) | | 1 ounce | 10.00 |
| Pipettes, disposable, Pasteur type, 5-3/4 inches | (23) | P5205-2 | $21 / 2$ gross | 8.00 |
| Sedgwick-Rafter Counting Chamber, as prescribed by "Standard Methods for the examination of Water and Wastes." | (30) | 1801 | | 9.00 |
| Tissue grinder, glass, Duall, complete | (12) | size C | | 10.00 |
| Vials, Opticlear, Owens-Illinois, 3 drams, snap caps, for diatom preparation. | (21) | SK-3 | Gross | 11.00 |
| 2.2 Macroinvertebrates | | | | |
| Boat, flat bottom, 14-16 teet, Arkansas Traveler or Boston Whaler with winch and davit, snatch-block meter wheel, and trailer, 18 hp Outboard motor, Life jackets, other accessories | (17) | | | 3,000.00 |
| Cable fastening tools: | (20) | | | |
| Cable clamps, $1 / 8$ inch | | | 25 | 3.00 |
| Nicro-press sleeves, $1 / 8$ inch | | | 100 | 6.00 |
| Nicro-press tool, $1 / 8$ inch | | | 1 | 32.00 |
| Wire cutter, Felco | | 7 | 1 | 7.00 |
| Wire thimbles, $1 / 8$ inch | | | 25 | 2.00 |
| Cable, $1 / 8$ inch, galvanized steel | | | 1000 feet | 89.00 |
| Large capacity, metal wash tubs | | | 1 | 3.00 |
| Core sampler, K. B., multiple, and gravity corers | (30) | 2400 | 1 | 225.00 |
| Hardboard multiplate sampler | (30) | | 1 | 7.50 |
| Trawl net | (30) | | | 100.00 |
| Drift net, stream | (30) | 15 | 2 | 76.00 |
| Grabs | | | | |
| Ponar | (30) | 1725 | 1 | 200.00 |
| Ekman, 6×6 inch | (30) | 196B | 1 | 78.00 |
| Petersen, 100 square inch | (30) | 1750 | 1 | 200.00 |
| Weights for Petersen | (30) | 1751 | 1 pair | 25.00 |

Item	Source	Cat. No.	Unit	Approx. Cost (1973)
Basket, Bar-B-Q, (RB-75) Tumbler	(22)	1	12	25.00
Sieve, US standard No. 30 (0.595 mm opening) and others as needed	(26)	V 73250 L	1 each	10.00
Flow meter, TSK, (propeller type)	(10)	313 T.S.		200.00
Flow meter, electromagnetic, two-axis	(15)			2,600.00
Mounting media, CMC-9 AF	(6)		4 ounce	2.00
Mounting media, CMC-S	(6)		4 ounce	2.00
Low-temp bath	(31)	94370	1	500.00
Water pump, epoxy-encapsulated, submersible and open air.	(14)	1A-MD	2	50.00
Sounding equipment and specialized gear	$(7,9,11)$			
Large, constant temperature holding tanks with $1 / 3 \mathrm{hp}$ water chiller, charcoal	(5)	MT-700	1	540.00
Polyethylene bottles, dark bottles, tubing	(18)			
Cahn electrobalance	(27)	DTL	1	1,000.00
Porcelain balls for baskets (2-inch diameter)	(4)	unlapped	1 pound	0.30
Porcelain multiplates	(4)		1	7.50
Counter, differential, 9 unit, Clay-Adams	(23)	B 4120-4	1	105.00
Counter, hand tally	(24)	3297-H10	2	11.00
Magnifier, Dazor, 2X, floating, with illuminator and base.	(6)	375 A 95	1	50.00
Microscope, compound, trinocular, equipped for bright-field and phase microscopy with 10 X and 15 X wide-field oculars, $4.0 \mathrm{X}, 10 \mathrm{X}, 20 \mathrm{X}, 45 \mathrm{X}$, and 100 X brightfield objectives, and 45 X and 100 X phase objectives.			1	2,000.00
Stereoscopic dissecting Microscope	(32)		1	1,000.00
Tessovar photomacrographic Zoom System		49-65-01	1	1,779.00
Camera body, 35 mm Zeiss Contarex, for Tessovar	(32)	10-2611	1	600.00
Stirrer, magnetic	(6)	375AA4514	1	42.50
Aquaria (of various sizes)	(6)			
Aquatic dip nets	(6)			
Microscope Slides and Cover slips, Standard square, 15 mm	(6)	320A 10	10 gross	31.00
		320 A 210	1 ounce	3.50
Vials, specimen, glass, 1 dram, $15 \mathrm{~mm} \times 45 \mathrm{~mm}$	(6)	315A 57	10 gross	78.00
Petri dish, ruled grid, $150 \mathrm{~mm} \times 15 \mathrm{~mm}$	(2)	315AA4094	12	24.00
Freeze dryer with freezing shelf	(28)	10-800	1	4,000.00
Vacuum oven	(19)	5831	1	300.00

Sources of equipment and supplies for plankton, periphyton, and macroinvertebrates

1. Coleman Instruments

42 Madison St.
Maywood, IL 60153
2. Corning Glass Works

1470 Merchandise Mart
Chicago, IL 60654
3. Custom Research and Development Company, Inc. Mt. Vernon Rd., Route 1, Box 1586
Auburn, CA 95603
4. Ferro Corporation
P. O. Box 20

East Liverpool, OH 43920
5. Frigid Units, Inc. 3214 Sylvania Ave.
Toledo, OH 43613
6. General Biological Inc.

8200 S. Hoyne Ave.
Chicago, IL 60620
7. G-M Manufacturing \& Instrument Company 2417 Third Ave. New York, NY 10451
8. Hedwin Corporation 1209 E. Lincolnway Laporte, IN 46350
9. Hydro Products 11777 Sorrento Valley Rd. San Diego, CA 92121
10. Inter Ocean, Inc.

3446 Kurtz St. San Diego, CA 92110
11. Kahl Scientific Instruments P. O. Box 1166 El Cajon, CA 92022
12. Kontes Glass Company Vineland, NJ 08360
13. Eli Lilly Company 307 E. McCarty St. Indianapolis, IN 46206
14. March Manufacturing Company Glenview, IL 60025
15. Marsh-McBirney, Inc. 2281 Lewis Ave. Rockville, MD 20851
16. Matheson Scientific 1850 Greenleaf Ave. Elk Grove Village, IL 60007
17. MonArk Boat Company Monticello, AK 71655
18. Nalge Corporation Rochester, NY 14602
19. National Appliance Company P. O. Box 23008 Portland, OR 97223
20. National Telephone Supply Company 3100 Superior St. Cleveland, OH 44114
21. Owens-Illinois P. O. Box 1035 Toledo, OH 43666
22. Paramont Wire, Inc. 1035 Westminster Ave. Alhambra, CA 91803
23. Scientific Products 1210 Leon Place Evanston, IL 60201
24. Arthur H. Thomas Company Vine Street at Third P. O. Box 779 Philadelphia, PA 19105
25. G. K. Turner, Assoc. 2524 Pulgas Ave. Palo Alto, CA 94303
26. W. S. Tyler Company Mentor, OH 44060
27. Ventron Instrument Corporation 7500 Jefferson St. Paramont, CA 90723
28. Virtis Company Gardiner, NY 12525
29. Weston Instruments, Inc. 614 Frelinghuysen Ave. Newark, NJ 07114
30. Wildlife Supply Company 301 Cass St. Saginaw, MI 48602
31. Wilkens-Anderson Company

4525 W. Division St.
Chicago, IL 60651
32. Carl Zeiss, Inc. 444 Fifth Ave. New York, NY 10018

2.3 Fish

Sources of information on fishery sampling equipment.
American Association for the Advancement of Science. Annual guide to scientific instruments (Published in Science).
American Society of Limnology and Oceanography. 1964. Sources of limnological and oceanographic apparatus and supplies. Special Publ. No. 1. IX:i-xxxii.
Oceanology International Yearbook/Directory.
Sinha, E. Z., and C. L. Kuehne. 1963. Bibliography on oceanographic instruments. I. General. II. Waves, currents, and other geophysical parameters. Meteorol. Geoastrophys. Abst. Amer. Meterol. Soc. 14:1242-1298; 1589-1637.
U.S. Fish and Wildlife Service. 1959. Partial list of manufacturers of fishing gear and accessories and vessel equipment. Fishery Leaflet 195.27 pp .

Water Pollution Control Federation Yearbook.

UNITS OF MEASUREMENT Conversion Factors and Special Tables

REPRINTED FROM

Units of Weight and Measure International (Metric) and U.S. Customary NBS Miscellaneous Publication 286 May, 1967

CONTENTS

(Reprint includes only those items asterisked) Pago

* INTRODUCTION 1
THE INTERNATIONAL SYSTEM 1
Prefixer 3
HISTORICAL OUTLINE
France. 3
The United States 5
WEIGHTS AND MEASURES IN THE WORLD'S INDEPENDENT STATES
Metric 6
Nonmetric 6
IMPORTANT DATES IN U. S. METRIC HISTORY 7
SELECTED BIBLIOGRAPHY 8
*DEFINITIONS 9
* Definitions of Units 9
* SPELLING AND SYMBOLS FOR UNITS 10
* Some Units and Their Symbols. 10
* UNITS OF MEASUREMENT-CONVERSION FACTORS
*Length 11
*Mass 12
*Capacity, or Volume 13
*Area. 17
*SPECIAL TABLES
*Equivalents of Decimal and Binary Fractions of an Inch in Millimeters 18
*International Nautical Miles and Kilometers 19
UNITS OF MEASUREMENT-TABLES OF EQUIVALENTS
Length 21
Mass 127
Capacity, or Volume 161
Area 219
Chisholm, L.J., Units of Weight and Measure. International (Metric) and U.S. Customary. (NBS Miscellaneous Publication 286). For sale by Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. Price $\$ 2.25$.

Units of Weight and Measure

International (Metric) and U.S. Customary

L. J. Chisholm

Abstract

The primary purpose of this publication is to make available the most often needed weights and measures conversion tables-conversions between the U.S. Customary System and International (Metric) System. A secondary purpose is to present a brief historical outline of the International (Metric) Systemfollowing it from its country of origin, France, through its progress in the United States.

Key Words: Conversion tables, International System (SI), Metric System, U. S. Customary System, weights and measures, weights and measures abbreviations, weights and measures systems, weights and measures units.

Introduction

Two systems of weights and measures exist side by side in the United States today, with roughly equal but separate legislative sanction: the U. S. Customary System and the International (Metric) System. Throughout U. S. history, the Customary System (inherited from, but now different from, the British Imperial System) has been, as its name implies, customarily used; a plethora of Federal and State legislation has given it, through implication, standing as our primary weights and measures system. However, the Metric System (incorporated in the scientists' new SI or Système International d'Unites) is the only system that has ever received specific legislative sanction by Congress. The "Law of 1866" reads:

It shall be lawful throughout the United States of America to employ the weights and measures of the metric system; and no contract or dealing, or pleading in any court, shall be deemed invalid or liable to objection because the weights or measures expressed or referred to therein are weights or measures of the metric system. ${ }^{1}$

Over the last 100 years, the Metric System has seen slow, steadily increasing use in the United States and, today, is of importance nearly equal to the Customary System.

The International System *

```
* For up-to-date information on the international metric system,
    see current edition of The International System of Units (SI),
    Editors: Chester Page and Paul Vigoureux (NBS Special Publication
    330). For sale by Superintendent of Documents, U.S. Government
    Printing Office, Washington, D.C. 204O2. Price }30\mathrm{ cents. For
    NBS policy on the usage of SI, see NBS Technical News Bulletin
    Vol. }55\mathrm{ No. l, pp. 18-20, January 1971.
```

[^11]Six units have been adopted to serve as the base for the International System: *

Length	meter
Mass	kilogram
Time	second
Electric current.	- ampere
Thermodynamic temperature	kelvin
Light intensity.	candela

Some of the other more frequently used units of the SI and their symbols and, where applicable, their derivations are listed below.

SUPPLEMENTARY UNITS			
Quantity Plane angle Solid angle	Unit radian steradian	Symbol rad sr	Derivation
DERIVED UNITS			
Area Volume Frequency Density Velocity Angular velocity Acceleration Angular acceleration Force Pressure Kinematic viscosity Dynamic viscosity Work, energy, quantity of heat Power Electric charge Voltage, potential difference, electromotive force Electric field strength Electric resistance Electric capacitance Magnetic flux Inductance Magnetic flux density Magnetic field strength Magnetomotive force Flux of light Luminance Illumination	square meter cubic meter hertz kilogram per cubic meter meter per second radian per second meter per second squared radian per second squared newton newton per square meter square meter per second newton-second per square meter joule watt coulomb volt volt per meter ohm farad weber henry tesla ampere per meter ampere lumen candela per square meter lux	m^{2} m^{3} Hz $\mathrm{kg} / \mathrm{m}^{3}$ m / s $\mathrm{rad} / \mathrm{s}$ $\mathrm{m} / \mathrm{s}^{2}$ $\mathrm{rad} / \mathrm{s}^{2}$ N $\mathrm{N} / \mathrm{m}^{2}$ $\mathrm{m}^{2} / \mathrm{s}$ $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$ J W C V V / m Ω F Wb H T A/m A lm $\mathrm{cd} / \mathrm{m}^{2}$ lx	$\begin{aligned} & \left(\mathrm{s}^{-1}\right) \\ & \\ & \\ & \left(\mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}^{2}\right) \\ & \\ & \\ & (\mathrm{N} \cdot \mathrm{~m}) \\ & (\mathrm{J} / \mathrm{s}) \\ & (\mathrm{A} \cdot \mathrm{~s}) \\ & (\mathrm{W} / \mathrm{A}) \\ & \\ & (\mathrm{V} / \mathrm{A}) \\ & (\mathrm{A} \cdot \mathrm{~s} / \mathrm{V}) \\ & (\mathrm{V} \cdot \mathrm{~s}) \\ & (\mathrm{V} \cdot \mathrm{~s} / \mathrm{A}) \\ & \left(\mathrm{Wb} / \mathrm{m}^{2}\right) \\ & \\ & (\mathrm{cd} \cdot \mathrm{sr}) \\ & \left(\mathrm{lm} / \mathrm{m}^{2}\right) \end{aligned}$
* Recent (1971) addition of the mole as the unit for amount of substance brings the total to seven units. See asterisked footnote on page 1.			

Definitions

In its original conception, the meter was the fundamental unit of the Metric System, and all units of length and capacity were to be derived directly from the meter which was intended to be equal to one ten-millionth of the earth's quadrant. Furthermore, it was originally planned that the unit of mass, the kilogram, should be identical with the mass of a cubic decimeter of water at its maximum density. The units of length and mass are now defined independently of these conceptions.

In October 1960 the Eleventh General (International) Conference on Weights and Measures redefined the meter as equal to 1650763.73 wavelengths of the orange-red radiation in vacuum of krypton 86 corresponding to the unperturbed transition between the $2 p_{10}$ and $5 d_{5}$ levels.

The kilogram is independently defined as the mass of a particular platinum-iridium standard, the International Prototype Kilogram, which is kept at the International Bureau of Weights and Measures in Sèvres, France.

The liter has been defined, since October 1964, as being equal to a cubic decimeter. The meter is thus a unit on which is based all metric standards and measurements of length, area, and volume.

Definitions of Units

Length

A meter is a unit of length equal to 1650763.73 wavelengths in a vacuum of the orangered radiation of krypton 86.

A yard is a unit of length equal to 0.9144 meter.

Mass

A kilogram is a unit of mass equal to the mass of the International Prototype Kilogram.
An avorrdupors pound is a unit of mass equal to 0.45359237 kilogram.

Capacity, or Volume

A cubic meter is a unit of volume equal to a cube the edges of which are 1 meter.
A liter is a unit of volume equal to a cubic decimeter.
A cubic yard is a unit of volume equal to a cube the edges of which are 1 yard.
A gallon is a unit of volume equal to 231 cubic inches. It is used for measuring liquids only.

A bushel is a unit of volume equal to 2150.42 cubic inches. It is used for measuring dry commodities only.

Area

A square meter is a unit of area equal to the area of a square the sides of which are 1 meter.

A square yard is a unit of area equal to the area of a square the sides of which are 1 yard.

Spelling and Symbols for Units

The spelling of the names of units as adopted by the National Bureau of Standards is that given in the list below. The spelling of the metric units is in accordance with that given in the law of July 28, 1866, legalizing the Metric System in the United States.

Following the name of each unit in the list below is given the symbol that the Bureau has adopted. Attention is particularly called to the following principles:

1. No period is used with symbols for units. Whenever "in" for inch might be confused with the preposition "in", "inch" should be spelled out.
2. The exponents " 2 " "and " 33 " are used to signify "square" and "cubic," respectively, instead of the symbols "sq" or "cu," which are, however, frequently used in technical literature for the U. S. Customary units.
3. The same symbol is used for both singular and plural.

Some Units and Their Symbols

Unit	Symbol	Unit	Symbol	Unit	Symbol
acre	acre	fathom	fath	millimeter	mm
are	a	foot		minim	minim
barrel	bbl	furlong	furlong	ounce	oz
board foot	fbm	gallon	gal.	ounce, avoirdupors	oz avdp
bushel	bu	grain	grain	ounce, liquid	$\operatorname{liq} o z$
carat Celsius, degree centare centigram centıliter	$\begin{aligned} & { }^{\mathrm{C}} \mathrm{C} \\ & \mathrm{ca} \\ & \mathrm{ca} \\ & \mathrm{cg} \\ & \mathrm{cl} \end{aligned}$	gram hectare hectogram hectoliter hectometer	$\begin{aligned} & \mathrm{g} \\ & \mathrm{ha} \\ & \mathrm{hg} \\ & \mathrm{hl} \\ & \mathrm{hm} \end{aligned}$	ounce, troy peck pennyweight pint, liquid pound	oz tr peck dwt liq $p t$ lb
centimeter chain cubic centimeter cubic decimeter cubic dekameter	cm ch cm^{8} dm^{3} dam ${ }^{3}$	hogshead hundredweight inch International Nautical Mile	hhd cwt in	pound, avoirdupois pound, troy quart, liquid rod second	lb avdp lb tr liq qt rod S
			INM		
cubic foot cubic hectometer cubic inch cubic kilometer cubic meter	$\begin{aligned} & \mathrm{ft}^{3} \\ & \mathrm{hm}^{3} \\ & \mathrm{in}^{3} \\ & \mathrm{~km}^{3} \\ & \mathrm{~m}^{3} \end{aligned}$	kelvin	K	square centimeter	cm^{2}
		kilogram	kg	square decimeter	dm^{2}
		kiloliter	kl	square dekameter	dam ${ }^{2}$
		kilometer	km	square foot	ft^{2}
		link	link	square hectometer	hm^{2}
cubic mile	mi^{3}	liquid	liq	square inch	in^{2}
cubic millimeter	mm^{3}	liter	liter	square kilometer	km^{2}
cubic yard	yd^{3}	meter	m	square meter	m^{2}
decigram	dg	microgram	$\mu \mathrm{g}$	square mile	mi^{2}
deciliter	dl	microinch	$\mu \mathrm{in}$	square millimeter	mm^{2}
decimeter dekagram dekaliter dekameter dram, avoirdupois	$\begin{aligned} & \text { dm } \\ & \text { dag } \\ & \text { dal } \\ & \text { dam } \\ & \text { dr avdp } \end{aligned}$	microliter	$\mu \mathrm{l}$	square yard stere	yd^{2} stere
		milligram	mi	ton, metric	t
		milliliter	ml	ton, short yard	short ton yd

Units of Measurement-Conversion Factors*

Units of Length

To	To Convert from Inches	Multiply by
Feet.	-- -	0.08333333
Yards.	-	0.02777778
Centimeters		2.54
Meters...	.-.-	0.0254

To	ultiply
Inches	12
Yards	03333333
Miles.	0000 is, 3^{0}
Centimeters	30.48
Meters.	0.3048
Kilometers.	0.000304 -

* All boldface figures are exact; the others generally are given to seven significant figures.

In using conversion factors, it is possible to perform division as well as the multiplication process shown here. Division may be particularly advantageous where more than the significant figures published here are required. Division may be performed in lieu of multiplication by using the reciprocal of any indicated multiplier as divisor. For example, to convert from centimeters to inches by division, refer to the table headed "To Convert from Inches" and use the factor listed at "centimeters" (2.54) as divisor.

To Convert from Miles	
To	Multiply by
Inches...	63360
Feet.	5280
Yards.	1760
Centimeters.	160934.4
Meters.	1609.344
Kilometers	1.609344

Units of Mass

To Convert from Grams	
To	Multiply by
Grains.	15.43236
Avoirdupois Drams.	0.5643834
Avoirdupois Ounces	0.03527396
Troy Ounces .	0.03215075
Troy Pounds.	0.00267923
Avoirdupois Pounds	0.00220462
Milligrams...	1000
Kilograms	0.001

To Convert from Grains	
Tu	Multiply by
Avoirdupois Drams.	0.03657143
Avoirdupois Ounces.	0.00228571
Troy Ounces.	0.00208333
Troy Pounds.-. .	0.00017361
Avoirdupois Pounds	0.00014286
Milligrams.	64.79891
Grams	0.06479891
Kilograms..	0.00006479891

To Convert from Avoirdupois Pounds	
To	Multiply by
Grains..--. -- -- - . -	7000
Avoirdupois Drams . .-	256
Avoirdupois Ounces...-	16
Troy Ounces .-----...-	14.58333
Troy Pounds.-.	1.215278
Grams.....-.-. --...--	453.59237
Kilograms - --....-.----	0.45359237
Short Hundredweights..	0.01
Short Tons..............	0.0005
Long Tons.....-. .-.	0.0004464286
Metric Tons...-........	0.00045359237

To Convert from Kilograms	
To	Multiply by
Grains	432.36
Avoirdupois Drams	564.3834
Avoirdupois Ounces.	35.27396
Troy Ounces.	32.15075
Troy Pounds.	2.679229
Avoirdupois Pounds.	2.204623
Grams	
Short Hundredweights.	0.02204623
Short Tons.	0.00110231
Long Tons.	0.0009842
Metric Tons	0.001

To Convert from Avoirdupois Ounces	
To ${ }^{-}$	Multiply by
Grains.-	437.5
Avoirdupois Drams . . . -	16
Troy Ounces.	0.9114583
Troy Pounds......-...--	0.07595486
Avoirdupois Pounds...--	0.0625
Grams.-.-.-.-.-.-.-.-.-.	28.349523125
Kilograms.-..-.-.------	0.028349523125

To Convert from Short Hundredweights	
To	Multiply by
Avoirdupois	
Short Tons.	0.05
Long Tons	0.04464286
Kilograms .	45.359237
Metric Tons	0.045359237

To Convert from Long Tons	
To	Multiply by
Avoirdupois Ounces...-	35840
Avoirdupois Pounds...-	2240
Short Hundredweights..	22.4
Short Tons.	1.12
Kilograms...	1016.0469088
Metric Tons....-...-.-.	1.0160469088

To Convert from Troy Ounces	
To	Multiply by
Grains	480
Avoirdupois Drams	17.55429
Avoirdupois Ounces.	1.097143
Troy Pounds.	0.0833333
Avoirdupois Pounds.	0.06857143
Grams.	31.1034768

| To Convert from
 Troy Pounds | | | |
| :--- | :--- | :--- | :--- | :--- |
| To | | | |
| Multiply by | | | |

Units of Capacity, or Volume, Liquid Measure

To Convert from Milliliters	
To	Multiply by
Minims	16.23073
Liquid Ounces	0.03381402
Gills.	0.0084535
Liquid Pints.	0.0021134
Liquid Quarts	0.0010567
Gallons	0.00026417
Cubic Inches	0.06102374
Liters . - -	0.001

To Convert from Cubic Meters	
To	Multiply by
Gallons	264.17205
Cubic Inches	61023.74
Cubic Feet.	35.31467
Liters.	1000
Cubic Yards	1.3079506

To Convert from Liters	
To	Muitiply by
Liquid Ounces_	33.81402
Gills	8.453506
Liquid Pints.	2.113376
Liquid Quarts.	1.056688
Gallons...	0.26417205
Cubic Inches.	61.02374
Cubic Feet	0.03531467
Milliliters..	000
Cubic Meters	0.001
Cubic Yards.	0.00130795

To Convert from Minims	
To	Multiply by
Liquid Ounces.	$0.002083 \quad 33$
Gills.	0.00052083
Cubic Inches.	0.00375977
Milliliters.	0.06161152

To Convert from Gills	
To	Multiply by
Mirams.	920
Liquid Ounces	4
Liquid Pints.	0.25
Laquid Quarts	0.125
Gallons...	0.03125
Cubic Inches..	7.21875
Cubic Feet.	0.004177517
Milliliters.	118.29411825
Liters..	$0.118 \quad 29411825$

To Convert from Liquid Ounces	
To	Multiply by
Minims	480
Gills	0.25
Liquid Pints.	0.0625
Liquid Quarts	0.03125
Gallons.	0.0078125
Cubic Inches	1.8046875
Cubic Feet.	0.00104438
Mulliliters	29.57353
Liters.	0.02957353

To Convert from Cubic Inches	
To	Multiply by
Minims	265.9740
Liquid Ounces.	0.5541126
Gills.	0.1385281
Liquid Pints_	0.03463203
Liquid Quarts	0.01731602
Gallons...	0.0043290
Cubic Feet.	0.0005787
Milliliters.	16.387064
Liters	0.016387064
Cubic Meters	0.000016387064
Cubic Yards.	0.00002143

To	To Convert from Liquid Quarts	To Convert from Gallons	
	Multiply by	To	Multiply by
Minims		Minims..............	61440
Liquid Ounces.	32	Liquid Ounces.......	128
Gills.	8	Gills.....	32
Liquid Pints.	2	Liquid Pints........	8
Gallons.-	0.25	Liquid Quarts.......	4
		Cubic Inches........	231
Cubic Inches..	57.75		
Cubic Feet.	0.03342014	Cubic Feet..........	0.1336806
Milliliters	946.352946	Milliliters.-.......-	3785.411784
Liters.	0.946352946	Liters	3.785411784
		Cubic Meters.	0.003785411784
		Cubic Yards.	0.00495113

Units of Capacity, or Volume, Dry Measure

| | To Convert from
 Liters | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| To | | | |

To	To Convert from Cubic Meters	Multiply by
Pecks	.-.--....	113.5104
Bushels.	.	28.37759

To Convert from Dekaliters	
To	Multiply by
Dry Pints.	18.16166
Dry Quarts.	9.0808298
Pecks.	1.135104
Bushels.	0.2837759
Cubic Inches.	610.2374
Cubic Feet.	0.3531467
Liters.	10

To Convert from Dry Pints		
To		Multiply by
Dry Quarts	---	0.5
Pecks.		0.0625
Bushels		0.015625
Cubic Inches.		33.6003125
Cubic Feet.		0.01944463
Liters		0.55061047
Dekaliters		0.05506105

To	Multiply by
Dry Pints.	16
Dry Quarts	8
Bushels	0.25
Cubic Inches	537.605
Cubic Feet.	0.311114
Liters.	8.8097675
Dekaliters.	0.88097675
Cubic Meters.	0.00880977
Cubic Yards.	0.01152274

To Convert from Bushels	
To	Multiply by
Dry Pints.	64
Dry Quarts.	32
Pecks.	4
Cubic Inches.	2150.42
Cubic Feet.	1.244456
Liters	35.23907
Dekaliters.	3523907
Cubic Meters	0.03523907
Cubic Yards.	0.04609096

To	To Convert from Cubic Inches	Multiply by
Dry Pints..	--------	0.0297616
Dry Quarts.		0.0148808
Pecks.		0.00186010
Bushels.	---	0.000465025
	To Convert from Cubic Yards	
To		Multiply by
Pecks.	----	- 86.78491
Bushels.		- 21.696227

| | To Convert from
 Square Centimeters |
| :--- | :--- | :--- | :--- | :--- |
| To Multiply by | |

To Convert from Hectares	
To	Multiply by
Square Feet	639.1
Square Yards.	959.90
Acres.	2.471054
Square Miles	0.00386102
Square Meters	000

To Convert from Square Meters	
To	Multiply by
Square Inches	1550.003
Square Feet.	10.76391
Square Yards	1.195990
Acres.	0.000247105
Square Centim	0000
Hectares...-	0.0001

To Convert from Square Inches	
To	Multiply by
Square Feet	0.00694444
Square Yards.	0.000771605
Square Centimeters	6.4516
Square Meters...	0.00064516

$\left.\begin{array}{|llllll|}\hline & \begin{array}{c}\text { To Convert from } \\ \text { Square }\end{array} \\ \text { To Yards } \\ \text { Multiply by }\end{array}\right]$

Special Tables
Length-Inches and Millimeters-Equivalents of Decimal and
Binary Fractions of an Inch in Millimeters
From 1/64 to 1 Inch

Length-International Nautical Miles and Kilometers
Basic relation: International Nautical Mile $=\mathbf{1 . 8 5 2}$ kllometers.

Int. nautical miles	Kilometers	Int. nautical miles	Kilometers	Kilometers	Int. nautical miles	Kilometers	Int. nautical miles
0		50	92.600	0		50	26.9978
1	1.852	1	94.452	1	0.5400	1	27.5378
2	3.704	2	96.304	2	1.0799	2	28.0778
3	5.556	3	98.156	3	1.6199	3	28.6177
4	7.408	4	100.008	4	2.1598	4	29.1577
5	9.260	5	101.860	5	2.6998	5	29.6976
6	11.112	6	103.712	6	3.2397	6	30.2376
7	12.964	7	105.564	7	3.7797	7	30.7775
8	14.816	8	107.416	8	4.3197	8	31.3175
9	16.668	9	109.268	9	4.8596	9	31.8575
10	18.520	60	111.120	10	5.3996	60	32.3974
1	20.372	1	112.972	1	5.9395	1	32.9374
2	22.224	2	114.824	2	6.4795	2	33.4773
3	24.076	3	116.676	3	7.0194	3	34.0173
4	25.928	4	118.528	4	7.5594	4	34.5572
5	27.780	5	120.380	5	8.0994	5	35.0972
6	29.632	6	122.232	6	8.6393	6	35.6371
7	31.484	7	124.084	7	9.1793	7	36.1771
8	33.336	8	125.936	8	9.7192	8	36.7171
9	35.188	9	127.788	9	10.2592	9	37.2570
20	37.040	70	129.640	20	10.7991	70	37.7970
1	38.892	1	131.492	1	11.3391	1	383369
2	40.744	2	133.344	2	11.8790	2	38.8769
3	42.596	3	135.196	3	12.4190	3	39.4168
4	44.448	4	137.048	4	12.9590	4	39.9568
5	46.300	5	138.900	5	13.4989	5	40.4968
6	48.152	6	140.752	6	14.0389	6	41.0367
7	50.004	7	142.604	7	14.5788	7	41.5767
8	51.856	8	144.456	8	15.1188	8	42.1166
9	53.708	9	146.308	9	15.6587	9	42.6566
30	55.560	80	148.160	30	16.1987	80	43.1965
1	57.412	1	150.012	1	16.7387	1	43.7365
2	59.264	2	151.864	2	17.2786	2	44.2765
3	61.116	3	153.716	3	17.8186	3	44.8164
4	62.968	4	155.568	4	18.3585	4	45.3564
5	64.820	5	157.420	5	18.8985	5	45.8963
6	66.672	6	159.272	6	19.4384	6	46.4363
7	68.524	7	161.124	7	19.9784	7	46.9762
8	70.376	8	162.976	8	20.5184	8	47.5162
9	72.228	9	164.828	9	21.0583	9	48.0562
40	74.080	90	166.680	40	21.5983	90	48.5961
1	75.932	1	168.532	1	22.1382	1	49.1361
2	77.784	2	170.384	2	22.6782	2	49.6760
3	79.636	3	172.236	3	23.2181	3	50.2160
4	81.488	4	174.088	4	23.7581	4	50.7559
5	83.340	5	175.940	5	24.2981	5	51.2959
6	85.192	6	177.792	6	24.8380	6	51.8359
7	87.044	7	179.644	7	25.3780	7	52.3758
8	88.896	'8	181.496	8	25.9179	8	52.9158
9	90.748	9	183.348	9	26.4579	9	53.4557
		100	185.200			100	53.9957

[^0]: *Braidech, T.E., P.E. Gehring, and C.O. Kleveno. Biological studies related to oxygen depletion and nutrient regeneration processes in the Lake Erie Basin. Project Hypo-Canada Centre for Inland Waters, Paper No. 6, U. S. Environmental Protection Agency Technical Report TS05-71-208-24, February 1972.

[^1]: $* \Sigma$ sign, when unsubscripted, will indicate summation for all observations, hence $\Sigma \mathrm{X}_{1}$ means sum of all observations in sample 1.

[^2]: **Significant at the 0.01 probability level.

[^3]: *Modified from Roelofs, E. W. 1944. Water soils in relation to lake productivity. Tech. Bull. 190. Agr. Exp. Sta., State College, Lansing, Mich.

[^4]: *Holme, N. A., and A. D. MacIntyre. 1971. Methods for the study of marıne benthas. International Biological Program, Davis Company, Philadelphia. 346 pp.

[^5]: *Forest Modification of the Petersen grab described in Welch (57).

[^6]: *The data in this table are reproduced, with permission, from Lloyd and Ghelardi, Reference 33.

[^7]: *Numbers refer to references enumerated in the "Literature"
 section immediately following this table.
 \dagger Albinistic

[^8]: ${ }^{1}$ Mention of trade names does not constitute endorsement.
 ${ }^{2}$ Duro-Test, Inc., Hammond, Ind.
 ${ }^{3}$ Sylvania, Inc., New York, N. Y.

[^9]: ${ }^{1}$ Mention of trade names does not constitute endorsement. ${ }^{2}$ Duro-Test, Inc., Hammond, Ind.
 ${ }^{3}$ Sylvania, Inc., New York, N. Y.

[^10]: *See list of suppliers at the end of this table.

[^11]: ${ }^{1}$ Act of 28 July 1866 (14 Stat. 339)-An Act to authorize the use of the Metric System of Weighte and Measures.

