United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park NC 27711 EPA-450/4-86-003 January 1986

Air

\$EPA

Continued Analysis And Derivation Of A Method To Model Pit Retention

CONTINUED ANALYSIS AND DERIVATION OF A METHOD TO MODEL PIT RETENTION

By K.D. Winges C.F.Cole

TRC Environmental Consultants, Inc. Englewood, Colorado 80112

Contract No. 68-02-3886

EPA Project Officers: J.L. Dicke J.S. Touma

E.S. The Company of t

U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Radiation
Office of Air Quality Planning and Standards
Research Triangle Park, N.C. 27711

January 1986

DISCLAIMER

This report has been reviewed by the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, and approved for publication as received from TRC Environmental Consultants, Inc. Approval does not signify that the contents necessarily reflect the views and policies of the U.S. Environmental Protection Agency, nor does mention of trade names for commercial products constitute endorsement or recommendation for use. Copies of this report are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161.

TABLE OF CONTENTS

SECTION	TITLE	PAGE
1.0	SUMMARY AND PURPOSE	1
2.0	BACKGROUND	5
	2.1 SUMMARY OF PREVIOUS DATA ANALYSIS	
3.0	SIGMA-THETA DATA ANALYSIS	11 13
4.0	ANALYSIS OF ESCAPE FRACTION EQUATIONS	24 25 29 32 35 38 39 39
5.0	ESCAPE FRACTION ALGORITHM FOR ISC	51
6.0	CONCLUSIONS AND RECOMMENDATIONS 6.1 CONCLUSIONS 6.2 RECOMMENDATIONS FOR FUTURE WORK. REFERENCES APPENDIX A - AIR SCIENCES AUDIT REPORT APPENDIX B - HOURLY METEOROLOGICAL DATA BASE APPENDIX C - FORTRAN LISTING OF MODIFIED ISCST PROGRAM	53 56 61 A-1 B-1
	APPENDIX D - TEST RUNS AND SAMPLE INPUT FILE	

	•	
	•	

1.0 SUMMARY AND PURPOSE

This report continues the analysis of pit retention meteorology and predictive escape fraction equations begun in EPA's "Dispersion of Airborne Particulates in Surface Coal Mines" (EPA, 1985). The purpose of this work, which is described in this report, was three-fold:

- Examine the existing meteorological and smoke release data base to determine the relationship between in-pit and out-of-pit sigma-theta and alphabetic stability class in order to identify trends and other systematic behavior.
- Incorporate other physical or meteorological parameters (particularly wind speed) into the original Winges escape fraction equation. Refinements to the basic equation are to be tested against the existing field data.
- Prepare and document a computer algorithm to predict escape fraction for use in the ISC model.

The analysis of the meteorological data in and out of the pit yields an important finding: the sigma-theta (standard deviation of horizontal wind direction) inside the pit is almost always greater than the sigma-theta value measured simultaneously outside the pit. This indicates that the horizontal turbulence in the pit is greater than outside, and it is suspected that the enhanced in-pit sigma-thetas are induced by mechanical turbulence as air passes over, and in the wake of, the mine pit wall. The degree to which the in-pit sigma-theta exceeds that out-of-pit (1) increases with wind speed, but is not related to Pasquill-Gifford stability class.

Both the in-pit and out-of-pit sigma-thetas appear to provide a reasonably good measure of alphabetic stability class, when computed over a one-hour time period. The alphabetic stability classes measured in and out of the mine pits are identical to, or only one class removed from, the Pasquill-Gifford stability class for roughly 80% of the data base hours.

^{1.} As measured by the ratio of out-of-pit sigma theta divided by in-pit sigma-theta.

In an effort to incorporate other physical and meteorological parameters (especially wind speed) into the original Winges escape fraction equation, four alternative modifications to the Winges equation were derived. The alternative escape fraction equations differ in simplifying assumptions and in complexity:

- ALTERNATIVE 1: CONSTANT-K LINEAR MODEL. The derivation of this equation assumes a constant value of eddy diffusivity with pit depth, and assumes that eddy diffusivity varies linearly with wind speed.
- ALTERNATIVE 2: CONSTANT-K DETAILED MODEL. Like the previous derivation, the alternative 2 escape fraction equation assumes that vertical diffusivity is constant with pit depth. However the influence of both wind speed and stability class on diffusivity is taken into account by introducing the Monin-Obukhov length as a measure of stability.
- ALTERNATIVE 3: VARIABLE-K LINEAR MODEL. The derivation of this equation recognizes that eddy diffusivity is not constant with pit depth.
- ALTERNATIVE 4: VARIABLE-K DETAILED MODEL. The most complicated of the four alternatives, this derivation uses variable eddy diffusivity with pit depth, and incorporates Monin-Obukhov length as a measure of stability. An involved numerical solution is required to compute escape fraction with this alternative.

The four alternative escape fraction equations were evaluated by comparing values of escape fraction computed from the alternative equations with values of escape fraction inferred from the smoke release data. In general, the alternative equations predicted smaller escape fractions than did the original Winges equation. Furthermore, all of the alternative equations exhibit a much greater change in escape fraction with wind speed than does the original Winges equation, and the increase in predicted escape fractions with wind speed matches the trend observed in the smoke release data. In this sense, the introduction of wind speed into the Winges equation is successful.

However, the overall conclusion drawn from examining all of the alternative equations' predicted escape fractions is that they do not perform as well as would be liked. The correlation coefficients between predicted escape fractions and those inferred from the smoke release data are never greater than 0.39, and attempts at optimizing the agreement by introducing linear coefficients into the alternative escape fraction equations show very Discrepancies between analytically predicted escape little improvement. fractions and those inferred from the smoke release data are attributed to two factors. First, it must be remembered that the smoke release data do not provide a direct measure of escape fraction, and it is possible that some differences in measured and predicted escape fractions are misinterpretation of the smoke data. Second, the original Winges equation, and all of the alternative equations, assume that dust is removed from the mine pits by dispersion rather than by convection. This suggests that the Winges equations may be better predictors of escape fraction during stable conditions than during unstable or neutral conditions. A re-examination (and possibly re-interpretation) of the smoke release data gathered during stable conditions may be warranted, particularly since it is the stable atmospheres that induce peak concentrations downwind of surface mines.

Each of the four alternative escape fraction equations was coded into a FORTRAN algorithm, and tested in the ISC model with input data from a hypothetical surface coal mine. Run times for the four different algorithms were recorded during the tests. As expected, the equations using the more detailed analysis technique required more computer processing time. The two techniques based on the linear model (Alternatives 1 and 3) required approximately the same processing time as the original version of ISCST. Alternative 2 (Constant-K, detailed model) increased the run time by roughly a factor of 1.5, while Alternative 4 (Variable-K, detailed model) increased the run time by roughly a factor of 5.

2.0 BACKGROUND

Pit retention is the term used to describe the tendency for particulate matter released inside a surface mine pit to remain inside the pit. The pit retention phenomenon is important because most air quality models that are used to simulate particulate dispersion from surface mines treat these emissions as if they occurred at grade level, and ignore the possibility that a portion of the particulate matter may be trapped inside the pit, or that the characteristics of the dust plume may be altered by the presence of the pit.

Two years ago the U.S. EPA's Office of Air Quality Planning and Standards initiated a comprehensive study of the pit retention phenomenon (EPA, 1985). This investigation began with a data collection field study at four Western surface coal mines. Meteorological parameters were measured simultaneously in and out of the mine pits for a total duration of approximately 300 hours. In addition, a smoke release program was conducted to provide data concerning air motion within the pits. At each of the four mines, smoke generators at the bottoms of the pits were used to release discrete 10-second puffs of diesel fuel smoke. An observer positioned at the top of the pit filmed each smoke release on a video cassette recorder (VCR). Roughly 800 such smoke release experiments were conducted at the four mines, and the VCR observations were synchronized with the in-pit and out-of-pit meteorological measurements.

These field data were later reduced and interpreted in order to investigate relationships between meteorological variables and the behavior of the smoke puffs. For each smoke release experiment, the time from initial smoke release until the smoke puff exited the pit, or until the smoke puff was no longer visible, was determined by viewing the VCR tape. This time was used to define a discrete smoke release "episode". All of the data determined by analyzing the VCR tapes, were organized into episodes. Meteorological data (wind speeds, wind directions, temperatures, etc.) were averaged over the episode duration for analysis, along with subjectively determined variables

(characteristic flow pattern and location of plume exit), and elapsed time duration of the smoke release episode. This information formed the data base for subsequent analysis.

2.1 SUMMARY OF PREVIOUS DATA ANALYSIS

Several different kinds of analyses were made with the data base, as discussed in "Dispersion of Airborne Particulates in Surface Coal Mines" (EPA, 1985). A comparison of winds in and out of the pits during smoke releases showed that in-pit wind speeds are, on the average, 25% less than the out-of-pit wind speeds, and wind speeds both in and out of the pit were positively correlated. Wind direction in and out of the pits, however, was not correlated, so that a knowledge of wind direction at the top of the pit (ie., at grade level) cannot predict wind direction within the pit.

The smoke puff observations by themselves did not provide a quantitative measure of particulate pit retention. (1) Consequently, a part of the data analysis was devoted to inferring escape fraction from the smoke puff observations by using two independent methods —— one based on a simple settling model, the other based on the source depletion particle deposition model. Both methods relied on assumed particle size distributions: one for particles smaller than 30 microns aerodynamic diameter (called the universal distribution), and one for particles up to 130 microns aerodynamic diameter (called the EDS distribution). It was found that the value of escape fraction inferred from both the settling and the deposition models is greater for unstable and neutral atmospheric conditions, as shown in Table 2.1 This suggests that stable atmospheres may suppress vertical motion causing particulate matter to be retained in the mine pits. In a similar manner, the

^{1.} A quantitative measure of pit retention is expressed by the escape fraction, ϵ , which is equal to the total mass of particulate that escapes from the pit, divided by the mass of particulate emitted within the pit.

TABLE 2.1 ESCAPE FRACTION SHOWN BY STABILITY

PARTICLE SIZE DISTRIBUTION	STABILITY(1)	SETTLING MODEL	DEPOSITION MODEL	WINGES EQUATION
UNIVERSAL	UNSTABLE	1.00	0.93	0.99
	NEUTRAL	1.00	0.81	0.92
	STABLE	1.00	0.58	0.58
EDS	UNSTABLE	0.81	0.59	0.90
	NEUTRAL	0.90	0.36	0.59
	STABLE	0.70	0.21	0.20

^{1. &}quot;A" stability class used for unstable; "D" used for neutral; "F" used for stable.

values of escape fraction determined by the settling and deposition models were grouped by National Weather Service wind speed class, as shown in Table 2.2. This analysis indicates that the escape fraction increases with increasing wind speed, as would be expected --- higher wind speeds tend to remove more particulate matter from the pits.

TABLE 2.2
ESCAPE FRACTION BY WIND SPEED

DISTRIBUTION	WIND SPEED (CLASS)	EXIT VELOCITY (SETTLING)	SOURCE DEPLETION (DEPOSITION)	WINGES EQUATION
UNIVERSAL	1	1.00	0.78	0.90
	2	1.00	0.84	0.91
	3	1.00	0.86	0.95
	4	1.00	0.88	0.95
	5	1.00	0.88	0.96
EDS	1	0.75	0.35	0.70
	2	0.85	0.46	0.70
	3	0.96	0.43	0.73
	4	0.96	0.43	0.69
	5	0.99	0.43	0.76

Two analytical expressions which predict escape fraction from meteorological and mine pit parameters were tested. The Winges equation (Winges, 1981), which expresses escape fraction as a function of pit depth, vertical diffusivity, and deposition velocity, was found to be superior:

$$\varepsilon = \frac{1}{1 + \left(\frac{V_d}{K_z}\right)H}$$

where ϵ is the escape fraction

 V_d is the larger of deposition or settling velocity, m/s

 K_2 is vertical diffusivity, m^2/sec

H is pit depth, m.

The Winges equation was applied independently to each of the smoke release episodes, and the average values of predicted escape fraction were grouped by Pasquill-Gifford stability class and by wind speed. These predicted escape fractions are shown in Tables 2.1 and 2.2, where they are compared with the escape fractions inferred from the measured field data. Reasonably good agreement is indicated between the escape fractions inferred from the settling and deposition models and those predicted by the Winges equation when the data are grouped by stability class. The values of the Winges escape fraction decrease as the atmosphere becomes more stable, just as the measured values do.

When the data are grouped according to wind speed, as in Table 2.2, the agreement between escape fraction inferred from the field data, and escape fraction predicted by the Winges equation, is not especially good. One reason for this may be that the Winges equation does not include wind speed explicitly in estimating escape fraction. This suggests that the performance of the Winges equation may be improved by incorporating wind speed into the equation.

2.2 OVERVIEW OF CURRENT DATA ANALYSIS

The findings from the previous analyses (EPA, 1985) suggest two kinds of follow-on investigations. First, the moderate success of the Winges equation in predicting escape fractions inferred from the field data leads to a question of whether the Winges equation can be improved. In particular, can the agreement between predicted and inferred escape fractions be improved by introducing new variables (eg., wind speed), or by modifying the equation to take into account more accurate representations of dispersion. These questions are explored in Chapter 4 of this report.

The second follow-on investigation concerns the meteorological data collected in and out of the pits. EPA's analysis in January 1985 looked at meteorological conditions that were coincident with smoke puff releases, and were averaged over a time period equal to the episode duration of the smoke puff release. This meant that the values of sigma-theta measured in and out of the pits were converted to alphabetic stability class over time periods equal to the smoke puff episodes, which were generally between 30 seconds to ten minutes in duration. The equivalent alphabetic stability class for these short sampling times was predominantly "D", and as a consequence, further analyses of sigma-theta stability class were not performed. In this present report the values of sigma-theta stability class are recomputed over fifteen minute and one-hour time intervals, as described in the "Guideline on Air Quality Models (Revised)" (EPA, 1984). The details and findings of this investigation are discussed in Chapter 3.

•			

3.0 SIGMA-THETA DATA ANALYSIS

The use of sigma-theta as a measure of atmospheric stability is especially attractive in the analysis of the field data because this is the only turbulence parameter that was measured independently and simultaneously inside and outside the pit. (1) In addition, the recent "Guideline on Air Quality Models (Revised)" (EPA, 1984) recommends the use of sigma-theta as an acceptable measure of stability class, and provides a uniform method to convert short-term values of sigma-theta to one-hour stability classes. Because a majority of the alphabetic stability classes computed previously were Category "D", there was some question about the accuracy of the field data itself. A quality assurance audit of the instrumentation and the software used to measure sigma-theta was made.

3.1 SIGMA-THETA AUDIT

Air Sciences, Inc., the company responsible for collecting the field data, was asked to perform an audit of the wind direction and wind speed instrumentation and the software in the data logger that were used to collect the 1983 field data. Their findings are included in Appendix A of this report. In summary, there were two separate causes of error discovered in the collection and calculation of sigma-theta values:

• POLLING FREQUENCY. The data logger used to interrogate the wind direction sensor was programmed to poll once every 10 seconds, and then compute a one-minute standard deviation from these six samples. This is a low polling frequency. The effect of the low polling frequency would be to introduce random errors in computed one-minute values of sigma-theta. That is, some values of sigma-theta would be artificially too big, and some values would be too small, but over

^{1.} Sigma w, the standard deviation of vertical wind speed, was only measured out of the pit (EPA, 1985).

a large number of computed sigma-thetas the random errors would cancel one another. The effect of this error would tend to diminish with the number of computed sigma-theta values, and it would be expected that over a full one-hour time interval the error inherent in individual one-minute sigma-theta values would cancel out. Consequently, the polling frequency error is not important in one-hour sigma-theta values.

• COMPUTATION OF STANDARD DEVIATION. In computing sigma-theta, the software used in the data logger employed an equation for sample variance⁽¹⁾, as opposed to population variance. The difference in variance computed with the two equations is insignificant for a large number of samples, but when the number of samples, n, is small, the difference can be significant (Mendenhall, 1968):

"...It can be shown that for small samples (n small) the sample variance tends to underestimate [sigma squared], and that the formula

$$s^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}{n-1}$$

provides better estimates."

The error introduced in this manner is systematic, and can be corrected very easily by multiplying the individual one-minute sigma-theta values by 1.1, which is derived as follows:

$$sigma_{corrected} = (6/5)^{1/2} sigma_{one-minute}$$

where sigma corrected = corrected value of sigma-theta

sigma = value of sigma-theta from field data

(6/5) = ratio of n and n-1

^{1.} Variance is standard deviation squared.

The conclusion from the instrumentation and software audit is that sigma-theta values computed from the field data will be accurate if 1) the averaging time for computation of overall sigma-theta is increased so that random errors will cancel, and 2) individual one-minute sigma-theta values are multiplied by 1.1 before processing.

3.2 DATA AVERAGING

When the instrument and data logger software audit was completed, the field data were averaged into discrete, consecutive, one-hour time intervals. The one-hour averaging time was chosen since this is the standard time interval used for dispersion model input, and because the "Guideline on Air Quality Models (Revised)" (EPA, 1984) relates alphabetic stability classes to one-hour sigma-theta values. The field data base was that submitted at the conclusion of the field data gathering effort (Hittman and Air Sciences, 1983), except that spurious, illegible characters introduced into the data base during transcription from cassette to magnetic tape had been removed. The period of record for the field data base is shown in Table 3.1, by mine.

TABLE 3.1
FIELD DATA PERIOD OF RECORD IN 1983

MINE	PERIOD OF RECORD
YAMPA	JUNE 28 (1000 - 1400 HRS) JUNE 29 (0800 - 1400 HRS) JUNE 30 (0800) - JULY 2 (0700)
CABALLO	JULY 11 (1200)- JULY 16 (0200)
SPRING CREEK	JULY 19 (0700) - JULY 22 (1000)
ROSEBUD	AUGUST 1 (1100) - AUGUST 5 (1000)

One-hour averages of wind speed (in and out of the pit) and wind direction (in and out of the pit) were computed by scalar averaging and unit vector averaging, respectively.

The one-hour averages of sigma-theta in and out of the pit were computed as follows. First, individual sigma-theta values were multiplied by 1.1 to correct for the error in the data logger software. Next, fifteen consecutive one-minute values of sigma-theta were summed and averaged by the root-mean-squared (rms) method for each quarter hour within a fixed one-hour time period. Finally, the four consecutive 15 minute averages of sigma-theta were combined into an hourly sigma-theta value with the equation

$$sigma_{1-hour} = \left(\frac{sigma_{15}^{2} + sigma_{15}^{2} + sigma_{15}^{2} + sigma_{15}^{2}}{4}\right)^{1/2}$$

where sigma is one-hour average sigma theta

sigma₁₅ is fifteen minute sigma-theta

This procedure has been recommended to compute average sigma-theta values in order to minimize wind direction meander effects (EPA, 1984).

Hourly daytime stability classes were computed using sigma-theta classifications and wind speed criteria shown in Table 9-2 and hourly nightime stabilities were computed using Table 9-3 criteria (EPA, 1984). Both of these methodologies eliminate unrealistic occurrences of stable and unstable conditions that would not occur with the Pasquill-Gifford stability typing scheme. For each hour of data, two independent sigma-theta stabilities (one in the pit, one outside the pit) were calculated.

The Pasquill-Gifford (P-G) stability class was determined from cloud cover and ceiling recorded in the field observer's logs, combined with average out-of-pit wind speed during each hour. The procedures used to compute P-G stability class were those used by the National Climatic Data Center (NCDC) in deriving STAR distributions.

The final parameter computed was the ratio of the hourly average sigma-theta measured out of the pit, divided by the sigma-theta measured in

the pit. This ratio of sigma-theta values is a dimensionless variable that indicates whether turbulence (as measured by sigma-theta) is greater in or out of the pit. Values of sigma-theta ratio smaller than 1.0 indicate greater turbulence in the pit than out of the pit.

The processed hourly data averages are included in Appendix B of this report. Each data record (one horizontal line) shows a one-hour average of the meteorological parameters. Data fields filled with 999s indicate missing or invalid data.

The one-hour averaged data base shown in Appendix B is different from the data base used previously (EPA, 1985) to examine escape fractions in this respect: the data base in Appendix B presents one-hour averages of meteorological variables, as opposed to averages computed over the smoke puff release episode time.

3.3 METEOROLOGICAL DATA ANALYSIS

It is seen from the one-hour meteorological data in Appendix B that the value of sigma-theta outside the pit is almost always smaller than sigma-theta inside the pit. This is indicated by the value of the parameter RAT (ratio of the hourly sigma-theta out of the pit, divided by the hourly sigma-theta in the pit) which is almost always less than 1.0. In fact, of the 247 valid hourly observations during which both sigma-theta (out) and sigma-theta (in) were present, only 21 of the observations (1) indicate that the sigma-theta ratio is greater than 1.0. This indicates that the horizontal

^{1.} The first measured value of sigma-theta ratios on Julian day 181, at time 8:59, was discarded from the data set. This is the first reading of a new measurement run, and it appears to be erroneous. The subsequent value of sigma-theta in the pit at time 9:59 was flagged as incorrect by Air Sciences, Inc.

wind direction fluctuation inside the pit is greater than outside the pit, which is as expected. The in-pit wind sensor responds to the mechanical turbulence caused by airflow over the edge of the pit, and by the wake created downwind of the pit walls. The out-of-pit sensor is not subject to these wake effects since it is located above the mechanically induced pit turbulence region. It should be remembered that sigma-theta does not necessarily measure vertical mixing, and it would be a mistake to conclude that pollutants inside the pit would be more thoroughly dispersed vertically than those outside the pit.

To examine the relationship of sigma-thetas in and out of the mine pits, all data were segregated into groups defined by values of sigma-theta ratio less than and greater than 1.0. The average wind speeds in and out of the mine pits, segregated by sigma-theta ratios, are shown in Table 3.2.

TABLE 3.2
AVERAGE WIND SPEED (kts.) OUT AND IN PIT
GROUPED BY SIGMA-THETA RATIOS

WIND SPEED LOCATION	SIGMA-THETA RATIO < 1.0	SIGMA-THETA RATIO > 1.0
OUT	7.99	4.62
IN	5.71	4.12

Table 3.2 shows that when the ratio of sigma-thetas is less than 1.0 (ie., when sigma-theta out of the pit is less than in the pit) that wind speeds are appreciably larger than when the sigma-theta ratio is greater than 1.0. The relationship of sigma-theta ratios with wind speed can be seen by listing average values of sigma-theta ratio with wind speed categories, in Table 3.3. It is evident that the ratio of in-pit and out-of-pit sigma-thetas depends strongly on wind speed. Values of the ratio decrease with increasing wind speed.

TABLE 3.3 COMPARISON OF WIND SPEED AND SIGMA-THETA RATIO

OUT OF PIT WIND SPEED (kts.)	SIGMA-THETA RATIO
0 - 3	0.80
4 - 6	0.66
7 - 10	0.60
11 - 16	0.52
17 - 21	0.35
GREATER THAN 21	0.40

The relationship in Table 3.3 could be caused by either 1) increased turbulence in the pit with greater wind speeds, or 2) decreased turbulence out of the pit with greater wind speeds. Examining the sigma-theta values in and out of the pit as a function of wind speeds, suggests that the second explanation is correct.

TABLE 3.4
SIGMA-THETA OUT AND IN PITS
AS A FUNCTION OF WIND SPEED

OUT OF PIT WIND SPEED (kts.)	SIGMA-THETA OUT (deg)	SIGMA-THETA IN (deg)	
0 - 3	14.0	19.5	
4 - 6	13.9	21.7	
7 - 10	13.4	23.7	
11 - 16	10.2	20.2	
17 - 21	8.3	24.8	
GREATER THAN 21	7.2	17.8	

The values of sigma-theta out of the pit decrease with increasing wind speed, as seen in Table 3.4. This means that the horizontal fluctuations of wind direction decrease with greater wind speed out of the pit, as would be expected, since higher wind speeds tend to increase wind direction persistence. Inside the pit, however, mechanical turbulence of the pit itself

dominates the flow, and horizontal wind directions are more nearly constant regardless of wind speed.

Table 3.5 shows the number of occurrences of alphabetic stability class determined by the Pasquill-Gifford method versus those indicated by sigma-theta in the pit. If the two methods agreed perfectly, then all of the values in Table 3.5 would lie along a line drawn from the upper left of the Table to the lower right. When grouped by general stability category (ie, unstable, neutral, and stable) the agreement is fairly good. For any given value of Pasquill-Gifford stability class, the sigma-theta stability class in the pit tends to be slightly more unstable. Similarly, the comparison of Pasquill-Gifford stability with out-of-pit sigma-theta stability (shown in Table 3.6) exhibits similar general agreement, with the sigma-theta method showing more neutral stability ("D" class) than the Pasquill-Gifford method. Finally, a comparison of sigma-theta stabilities in and out of the pits shown in Table 3.7 indicates that stabilities inside the pit are, by and large, more diverse than stabilities outside the pit. While there are 136 occurrences of neutral ("D") stability measured out of the pit, there are only 55 measured in the pit.

TABLE 3.5

NUMBER OF OCCURRENCES OF STABILITY CLASS

DETERMINED BY PASQUILL-GIFFORD AND

SIGMA-THETA MEASURED IN-PIT

PASQUILL-GIFFORD		SIGN	1a—Theta	IN-PIT		
	_A	В	С	D	E	F
A	2	0	0	0	0	0
В	31	9	5	4	0	0
С	30	21	8	7	0	0
D	3	10	2	24	1	0
E	0	0	0	10	6	10
F	0	0	0	11	19	38

TABLE 3.6

NUMBER OF OCCURRENCES OF STABILITY CLASS
DETERMINED BY PASQUILL-GIFFORD AND
SIGMA-THETA MEASURED OUT-OF-PIT

PASQUILL-GIFFORD	SIGMA-THETA OUT-OF-PIT					
	A	В	С	D	E	F
A	0	4	1	1	0	0
В	13	19	22	11	0	0
С	1	7	26	36	0	0
D	0	0	0	42	0	0
E	0	0	0	24	7	0
F	0	0	0	41	32	18

TABLE 3.7

NUMBER OF OCCURRENCES OF STABILITY CLASS
DETERMINED BY SIGMA-THETA OUT-OF-PIT
AND SIGMA-THETA MEASURED IN-PIT

	SIGMA-THETA OUT-OF-PIT				
_A	В	C	D	E	F
12	14	20	18	0	0
0	2	13	24	0	0
0	1	6	8	0	0
1	0	1	45	7	1
0	0	0	17	5	4
o	0	0	24	17	7
	12 0 0 1	12 14 0 2 0 1 1 0 0 0	A B C 12 14 20 0 2 13 0 1 6 1 0 1 0 0 0	A B C D 12 14 20 18 0 2 13 24 0 1 6 8 1 0 1 45 0 0 0 17	A B C D E 12 14 20 18 0 0 2 13 24 0 0 1 6 8 0 1 0 1 45 7 0 0 0 17 5

In general, however, the agreement between all three stability typing schemes (Pasquill-Gifford, sigma-theta in the pit, and sigma-theta out of the pit) is reasonably good. Table 3.8 shows the number of hours in which the various stability classes differ by 0, 1, 2, 3, 4, or 5 categories. Table 3.8 shows that the Pasquill-Gifford method and the sigma-theta in-pit yield the same alphabetic category 87 hours out of a possible 251 hours, and they differ by one category 106 hours. From this, it can be seen that stability class determined by the Pasquill-Gifford method and by measuring sigma-theta in the pit are within one stability category for (87 + 106/251 = .77) 77% of the valid data hours. Similarly, the P-G and the sigma-theta (out-of-pit) stabilities agree within one stability class 82% of the hours, and sigma-theta stabilities in and out of the pit agree within one stability class 64% of the time.

TABLE 3.8
DIFFERENCES IN STABILITY CLASSES

LASSES FFER BY	P-G & SIGMA-THETA IN-PIT	P-G & SIGMA-THETA OUT OF PIT	SIGMA-THETA IN & OUT OF PIT
o	87	112	77
1	106	138	82
2	55	54	69
3	3	1	19
4	0	0	0
5	0	0	0
TOTALS	251	305	247

This good agreement between sigma-theta and Pasquill-Gifford stabilites seemingly contradicts the poor agreement between sigma-theta and P-G stability detected in the previous examination of smoke release episode stabilities (EPA, 1985) in which the majority of the sigma-theta stability classes were found to be "D" class. The most likely reason for poor agreement between sigma-theta stabilities and P-G stabilities in the previous investigation is that the data sampling times in the smoke release data were limited to the episode duration, which varied from one minute to, at most, 20 minutes. Over these short time periods the horizontal wind direction fluctuations are small.

4.0 ANALYSIS OF ESCAPE FRACTION EQUATIONS

In the previous report (EPA, 1985), TRC evaluated two equations for computing the escape fraction. The evaluation data were the inferred escape fractions from the video-tape interpretations. The comparison of the data with the available formula indicated that the equation developed by Winges offered promise. This section details the efforts to extend the original Winges formula.

The original Winges equation was based on a theoretical analysis of diffusion of particles from an open depression in the ground. The derivation of the equation will be presented later in this document, but a general discussion of the overall technique and assumptions is pertinent here. The diffusion of particles from a sub-surface depression can be treated as a steady-state process, such that three phenomena are in constant mass-balance: the emission of dust in the pit, the deposition of dust on the surfaces of the pit and the flux of dust out of the pit.

The mass-balance approach was augmented by the key assumption that the transport of material within the pit could be completely characterized by the diffusion process — that is, that the mean properties of the wind do not result in any transport of the material out of the pit, rather only the random motions of the wind are responsible for dust loss to the atmosphere. This assumption may be paraphrased as saying that there is no vertical wind within the pit, but there is vertical turbulent diffusion. It is important to emphasize that the concern here is only with vertical motion of the air since the emissions are assumed to occur within a cut from a flat surface and vertical motion is necessary for the escape of particles.

The key parameters are those that concern the vertical diffusion of particles from the pit. In the original Winges equation a simple gradient transfer approach was taken in which the vertical flux was assumed to be proportional to the gradient of concentration of dust within each vertical layer in the pit and the proportionality constant, called the eddy

diffusivity, was assumed to be a constant for all heights. This approach, which will be called the Constant-K approach, yielded a simple equation for computation of the escape fraction. For implementation of the above equation, a value of the eddy diffusivity was taken from the literature. Evidence from Draxler (1979) suggests that different eddy diffusivities should be used for different stabilities.

In addition to the experimental evidence offered by TRC, there is ample evidence from the scientific literature that the eddy diffusivity, and hence the escape fraction, is related to the wind speed (Draxler, 1979). The purpose of the current investigation is to determine if wind speed could be incorporated into the previous equation. The logical place to incorporate the wind speed into the earlier formula is through the characterization of diffusion (the eddy diffusivity). Horizontal wind speed influences the vertical diffusion near a surface because a considerable portion of the turbulence near the surface results from frictional shearing caused by the wind as it passes over the surface. If the wind exerts more force on the surface (as a result of greater wind speeds), then it can be expected to create more turbulence.

The current report addresses two general avenues for incorporation of the effect of wind speed on pit retention and within each of these avenues there are options. All of these techniques are presented rather than presenting a single method in the interest of completeness. Later in this chapter, all of the newly-developed techniques will be compared with the experimental data. In addition to a comparison with the experimental data as interpreted in the earlier study, this report also offers a new interpretation of the video tape data. Without detailed experimental data it is not possible to determine if the more complex techniques result in greater accuracy.

4.1 DERIVATION OF THE CANDIDATE ESCAPE FRACTION EQUATIONS

As stated earlier, the original Winges equation was based on the assumption that the eddy diffusivity is a constant throughout the pit. The assumption of a constant eddy diffusivity is based in large part on the lack

of understanding of what the dispersion behavior inside a pit really is. It is likely that the flow and turbulence patterns inside a pit are highly complex and not easily represented. Most research on turbulence characteristics are for flow over uniform flat surfaces or simple geometric shapes. Even the few studies which have been performed on shapes similar to a mine pit would not be expected to generalize to all orientations or configurations. Thus, the simple assumption of a horizontally well mixed volume of air with a single value of the eddy diffusivity was used in the original Winges equation because the actual behavior of the eddy diffusivity in the pit is unknown.

4.1.1 THE ORIGINAL WINGES EQUATION

The derivation of the original Winges equation is not in the open literature and may not be available to some readers. The fraction of material which escapes the pit may be represented by the following equation:

$$\varepsilon = \frac{F}{E} \tag{1}$$

where: ε = escape fraction (dimensionless)

F = flux of material from the pit (g/sec-m²)

E = emission rate within the pit (g/sec-m²)

By a simple mass balance argument, the dust emitted in the pit must either be deposited on the internal surfaces of the pit or transported as a flux out of the pit. Mathematically this is represented by:

$$E = F + D \tag{2}$$

where: D = deposition in the pit (g/sec-m²)

The original Winges equation attempted to treat a very simplified dispersion scenario, and a number of assumptions were made to simplify the mathematical solution. These include:

- 1. All emissions occur at the bottom of the pit.
- 2. The only mechanism for transport of material out of the pit is turbulent diffusion. This assumption, discussed earlier, means that vertical wind speeds will be ignored.
- 3. The vertical flux of material is constant with height. This must occur if the flow is in steady-state, otherwise concentrations would be building-up inside the pit.
- 4. The turbulence within the pit is constant throughout the pit. This is the constant eddy diffusivity assumption.
- 5. Deposition occurs at the bottom of the pit and is proportional to the concentration at the bottom of the pit. The assumption of deposition being proportional to concentration at the ground is well supported in the literature (see for example, Chamberlain and Chadwick, 1953). The proportionality constant has the units of a velocity and is termed the "deposition velocity".
- 6. Concentrations directly above the pit, resulting from pit emissions, fall to zero at some height above the pit. This condition is necessary as a boundary condition for the differential equations to be solved. It is a reasonable assumption, since emissions that are mixed to the top of the pit would be carried away by the prevailing wind, so that the wind would provide a constant supply of "clean" air at the top of the pit. The original Winges equation used the assumption that concentrations fall to zero at the top of the pit, because it turns out that this results in the greatest percentage of material being lost and thus may be viewed as a conservative assumption. This assumption is generalized here to simply say that concentrations must fall to zero at some height above the bottom of the pit, H, and that height may be specified by the user. conservative, the user may select a value of H equal to the depth of the pit so that the zero height is the top of the pit and thereby maximize the escape of emissions.

The gradient transfer approach for dealing with turbulent diffusion is to model the turbulent behavior using equations that match laminar flow. In laminar flow the flux of material across any surface resulting from diffusion is proportional to the concentration gradient between the two bodies of fluid on either side of the surface. The proportionality constant is called diffusivity. The turbulent motions called eddys result in far more transfer of material than the laminar diffusion process. However, it is still the gradient in concentration between two bodies of fluid that results in transfer of material, since the eddy motions result in exchange of fluid across the

the concept evolved of assuming the diffusion to be boundary. Thus, the concentration gradient, but here proportional to diffusivity" called the "eddy proportionality constant, used (Bird et al., 1960).

There is a large difference between a laminar diffusivity and an eddy diffusivity. The laminar diffusivity is a function of the physical properties of the fluid, such as its viscosity and temperature. The eddy diffusivity is a property of the flow, and for a given fluid and temperature can vary widely depending on the energy of motion of the fluid and the shearing forces and other phenomena. For these purposes here, it is assumed the vertical motion of particles emitted in the pit can be represented by a gradient transfer equation:

$$F = -K \frac{\partial \chi}{\partial z} \tag{3}$$

where: $K = \text{eddy diffusivity } (m^2/\text{sec})$ $\chi = \text{concentration } (g/m^3)$ z = vertical dimension (m)

The general approach in the Constant-K Model is to assume that the eddy diffusivity, K, is a constant with respect to height of the pit. This constant assumption allows easy integration of equation (3) as follows:

$$\chi = -\frac{F}{K}z + C \tag{4}$$

where: C = constant of integration

It is necessary to evaluate the constant of integration with a boundary condition, and for this purpose, we use the assumption that concentration falls to zero at some height above the surface, H. This is accomplished as follows:

$$0 = -\frac{F}{K} H + C \tag{5}$$

$$C = \frac{F}{K} H \tag{6}$$

where: $H = height at which \chi = 0$ (m)

Now, equation (4) becomes:

$$\chi = \frac{F}{K}(H - z) \tag{7}$$

The above equation can be used to evaluate the term "D" in equation (2) with one additional assumption. The deposition at the surface must be proportional to the concentration at the surface. Mathematically this can be represented as (Chamberlain, 1953):

$$D = \chi_{z_0} u_d \tag{8}$$

where: χ_{z_0} = concentration at the surface (g/m³) u_d = deposition velocity (m/sec)

Equation (7) allows one to compute the concentration at the surface as follows:

$$\chi_{\mathbf{z}_0} = \frac{F}{K}(H - \mathbf{z}_0) \tag{9}$$

where: z_0 = some small height, usually called the roughness height (further detail provided later) (m)

Reforming equation (1) and substituting from above as follows:

$$\varepsilon = \frac{F}{F + D} \tag{10}$$

$$\varepsilon = \frac{1}{1 + \frac{D}{F}} \tag{11}$$

$$\varepsilon = \frac{1}{1 + \frac{d}{\kappa}(H - z_0)}$$
 (12)

Since the roughness height is usually very small when compared to H, it is possible to ignore the roughness height and express the equation as follows:

$$\varepsilon = \frac{1}{1 + \frac{u_d}{\kappa}(H)}$$
 (13)

The above equation is the one used previously (EPA, 1985) in the evaluation of the alternate pit retention formulae and referred to as the original Winges equation.

4.1.2 ALTERNATIVE 1 -- CONSTANT-K USING LINEAR MODEL

The simplest method of incorporating the wind speed into the above formula is to keep the assumption of a constant eddy diffusivity and calculate the value of the eddy diffusivity to be used as a function of the wind speed. This report investigates two general methods for computation of the eddy diffusivity as a function of wind speed. The first of these is based on an assumed linear relationship between wind speed and eddy diffusivity. The second, which will be presented later, involves a more detailed approach for characterizing the eddy diffusivity. The linear assumption results from a number of other assumptions about the relationship between turbulence and wind speed and the derivation of this relationship is presented in the following paragraphs.

The wind speed will generally be measured outside of the pit at some reference height. It is well known that the wind speed in the lower layers of the atmospheric boundary layer increases with height above the surface (Turner, 1970). The shape of the wind speed profile, as it is called, is reflective of the momentum balance of the flow at the surface. In one simplified analysis, the wind speed profile is characterized by two parameters, and these are usually expressed in a logarithmic equation known as the logarithmic profile (Monin and Yaglom, 1971).

$$u = \frac{u_{\star}}{k} \ln(\frac{z}{z_0}) \tag{14}$$

where: u = wind speed (m/sec)
 u*= friction velocity (m/sec)
 k = von Karman constant, usually
 assumed to be 0.35

The two parameters, friction velocity and roughness height, will be used extensively in the analysis throughout this document, and need further explanation. The wind moving over the surface of the earth creates a shear stress at the surface. This shear stress, when divided by the density of the air to reduce it to its kinematic properties, has the units of a velocity squared, and when the square root is taken the result is called the friction velocity. The friction velocity, then, may be thought of as a measure of the shear stress exerted by the wind on the surface of the earth. The surface roughness height is a measure of the surface protrusions which create drag on the wind as it passes. The greater the surface area offered by these protrusions, the greater the drag, and the more gradual the increase of the wind speed with height.

The shear stress at the surface is a way of expressing the transfer of momentum by turbulent motion to the surface of the earth (Monin and Yaglom, 1971). The process of the transfer of momentum in turbulent flows is very similar to the process of the transfer of particles, thus it is useful to examine the momentum transfer process as reflected in the wind speed profile to see what it says about the particulate diffusion process. As with the diffusion of particles, a gradient transfer representation can also be used for the transfer of momentum. In the momentum transfer case, the gradient is the wind speed rather than the concentration of particles proportionality constant here is customarily called the kinematic eddy viscosity instead of the eddy diffusivity as used for the diffusion of particles earlier.

However, the mechanism for momentum transport is exactly the same as the mechanism for turbulent transfer of gasses and particles, and consequently, researchers have used the eddy viscosity as a measure of the eddy diffusivity. The mathematical characterization of this process is as follows (Monin and Yaglom, 1971):

$$u_{\star}^2 = -K_{\nu} \frac{\partial u}{\partial z} \tag{15}$$

where: $K_v = \text{kinematic eddy viscosity } (m^2/\text{sec})$

Differentiate the wind speed profile (equation 14), to develop the following:

$$\frac{\partial u}{\partial z} = \frac{u_*}{k} \frac{1}{z} \tag{16}$$

Substituting and reforming, obtain the following:

$$\mathbf{u}_{\star}^{2} = -\frac{K_{v} \mathbf{u}_{\star}}{kz} \tag{17}$$

$$K_{\cup} = - u_{\star} kz \tag{18}$$

As stated earlier, the wind speed will be measured at some reference height, and consequently, one can compute the resulting eddy viscosity at the same reference height by reforming the logarithmic profile to solve for the friction velocity and substituting the resulting equation into the above equation for the eddy viscosity. This is shown in the next few equations:

$$u_* = \frac{uk}{z}$$

$$\ln(\frac{ref}{z_0})$$
(19)

where: z ref = reference height of wind speed
 measurement (m)

$$K_{v} = \frac{uk^{2}}{2 \operatorname{ref}} z_{ref}$$

$$\ln(\frac{z_{ref}}{z_{0}})$$
(20)

Inserting the solution for the eddy vicosity in place of the eddy diffusivity in equation (13) for the escape fraction yields a solution:

$$\varepsilon = \frac{1}{u_{d} \ln(\frac{z_{ref}}{z_{0}}) H}$$

$$1 = \frac{u_{d} \ln(\frac{z_{ref}}{z_{0}}) H}{u k^{2} z_{ref}}$$
(21)

4.1.3 ALTERNATIVE 2 -- CONSTANT-K USING A MORE DETAILED MODEL

A major shortcoming of the previous approach is that, while it incorporates wind speed in the equation, it has lost the capability to include stability. The original Winges equation allowed the user to select eddy diffusivities based on stability, if desired. The equation in Alternative 1 has used a simplified measure of the turbulence in the atmosphere to substitute for the eddy diffusivity. A problem arises because the logarithmic profile, while a reasonable approximation to the wind speed profile in uniform flow over a flat plate, ignores the effect of the temperature structure of the atmosphere in enhancing or inhibiting vertical mixing. Temperature structure can have a significant effect on the vertical mixing of both mass and momentum, and the atmospheric stability is an often-used concept to characterize this influence.

There is an alternative approach to the one presented in section 4.1.2. It involves considerably more detail and will be presented but not derived here. It is fundamentally different than the previous approach in that it is an empirical approach rather than a theoretical approach. It uses a parameter called the Monin-Obukhov length to characterize the stability aspects of the flow. The Monin-Obukhov length characterization of temperature structure influences on dispersion is viewed as an improvement over the previous stability classification scheme by the meteorological community.

The eddy diffusivity is computed using the following formula (Draxler, 1979):

$$K = \frac{ku_{\star}z}{\phi_{h}}$$
 (22)

where: ϕ_h = normalized temperature profile

The normalized temperature profile may be computed by one of two formulas and uses the Monin-Obukhov length L. In fact, it is necessary to compute the Monin-Obukhov length first because the choice of formulas to use for the normalized temperature profile is made with the quantity Z/L (also used as a measure of the stability). If the stability is unstable (Z/L < 0) then the following formula is used for the normalized temperature profile:

$$\phi_{h} = \frac{0.74}{(1 - 9\frac{Z}{L})^{\frac{1}{2}}} \tag{23}$$

If the stability is stable or neutral ($Z/L \ge 0$) then the following formula is used for the normalized temperature profile:

$$\phi_{h} = 0.74 + 5\frac{z}{L} \tag{24}$$

The computation of the Monin-Obukhov length is complicated. First, one must compute the Bulk Richardson Number, B, using the following equation:

$$B = \frac{gz^2}{T} \frac{\Delta\Theta}{v^2} \tag{25}$$

where: g = gravitational acceleration (9.81 m/sec²)

T = ambient temperature ($^{\circ}$ K) $\Delta\Theta$ = potential temperature gradient ($^{\circ}$ K/m)

Then the Richardson Number itself, Ri, is calculated from the Bulk Richardson using the following equation:

$$B = \frac{Ri}{\ln(\frac{z_{ref}}{z_{o}}) - \psi_{m}}$$

$$\{\frac{\phi_{m}}{\phi_{m}}\}^{2}$$
(26)

where: ψ_{m} and φ_{m} are defined below

For stable and neutral conditions:

$$\phi_{\rm m} = \frac{1}{(1 - 5Ri)} \tag{27}$$

$$\psi_{\rm m} = \frac{-5Ri}{(1 - 5Ri)} \tag{28}$$

While during unstable conditions:

$$\phi_{\rm m} = \frac{1}{(1 - 15Ri)^{1.4}} \tag{29}$$

$$\psi_{\rm m} = \ln(\frac{z_{\rm ref}}{z_0}) - \{\ln(\frac{(\zeta-1)(\zeta_0+1)}{(\zeta+1)(\zeta_0-1)})$$

+
$$2(\tan^{-1}\zeta - \tan^{-1}\zeta_0)$$
 (30)

$$\zeta = (1 - 15Ri)^{\frac{1}{4}}$$
 (31)

$$\zeta_0 = (1 - 15Ri \frac{z_0}{z_{ref}})^{\frac{1}{\zeta_0}}$$
 (32)

It will be noted that equation (26) cannot be solved directly for the Richardson Number. In fact, solution of the equation is a tedious numerical process. A computer algorithm for the solution of this complicated set of equations is included in Appendix C. Alternative numerical solution techniques may be an improvement and should be investigated. Once the Richardson Number has been computed, the Monin-Obukhov length is computed by one of two formulas. If the Richardson Number is less than zero, the following formula applies:

$$\frac{z}{L} = Ri \tag{33}$$

If the Richardson Number is greater than or equal to zero, the following formula applies:

$$\frac{z}{L} = \frac{Ri}{(1 - 5Ri)} \tag{34}$$

The friction velocity is also computed using an empirical equation of the form:

$$u_{\star} = \frac{ku}{2n(\frac{ref}{z_0}) - \psi_{m}}$$
(35)

Once the eddy diffusivity is computed using the above analysis, it is again assumed to be a constant within the pit and escape fraction is computed using equation (13), which has been repeated here for convenience.

$$\varepsilon = \frac{1}{1 + \frac{u_d}{K}(H)}$$
 (13)

4.1.4 ALTERNATIVE 3 -- VARIABLE-K USING LINEAR MODEL

The previous two sections presented alternate methods of extending the earlier equation to include wind speed, while at the same time maintaining the assumption that the eddy diffusivity is a constant throughout the pit. It will be noted that both of the alternatives presented thus far require the input of height in the computation of the eddy diffusivity. Section 4.1.2 used the reference height of the wind speed monitor as the height to input when computing the eddy diffusivity. Since the equations imply that eddy diffusivity is a function of height, it seems logical to investigate the implications on the escape fraction if the eddy diffusivity is input into the current analysis as a function of height.

As with the Constant-K methods, the Variable-K methods will investigate two separate options for characterization of the eddy diffusivity: the linear model and the more complex model, using the Monin-Obukhov length.

Equation (20) shows how the eddy viscosity can be calculated using the linear model. The eddy viscosity is then assumed to be equivalent to the eddy diffusivity based on the similarity of mass and momentum transfer processess (Bird, et al, 1960). The height used to compute the eddy diffusivity appears in two places in equation (20). To generalize the equation for application at all heights, the z_{ref} is replaced in one of the occurrences by z. Equation (20) then becomes:

$$K_{v} = \frac{uk^{2}}{\ln(\frac{z_{f}}{z_{0}})} z$$
(36)

It should be noted that z_{ref} was not replaced by z in the logarithmic term because the friction velocity is still a constant established by a single measurement of u at a reference height (using equation 19 which was then substituted into equation 18 to produce equation 36). The variable relationship for the eddy diffusivity in equation (36) is then substituted into equation (3) to develop a new relationship for the vertical flux:

$$F = -\frac{uk^2}{2 \operatorname{ref}} z \frac{\partial \chi}{\partial z}$$

$$\ln(\frac{z}{z_0})$$
(37)

It is important to note that the vertical flux is still a constant, as required by the steady-state assumption. Therefore, the integration of equation (37) is still possible to develop a relationship for calculating concentration as a function of height. The details of the integration are as follows:

$$\partial \chi = -\frac{\text{Fln}(\frac{z_{\text{ref}}}{z_0})}{uk^2} \frac{1}{z} \partial z$$
 (38)

$$\int_{z_0}^{H} \partial \chi = -\frac{\operatorname{Fln}(\frac{z_{\text{ref}}}{z_0})}{\operatorname{uk}^2} \int_{z_0}^{H} (\frac{1}{z}) \partial z$$
(39)

$$\chi \Big|_{z=H} - \chi \Big|_{z=z_0} = -\frac{\operatorname{Fln}(\frac{z_{\text{ref}}}{z_0})}{\operatorname{uk}^2} \operatorname{ln}(\frac{H}{z_0})$$
 (40).

Since $\chi \big|_{z=H} = 0$

$$\chi_{z_0} = \frac{\operatorname{Fln}(\frac{z_{\text{ref}}}{z_0})}{\operatorname{uk}^2} \operatorname{ln}(\frac{H}{z_0}) \tag{41}$$

The deposition at the surface is computed using equations (8) and (41) as follows:

$$D = u_{d} \chi_{z_{0}} = \frac{u_{d} \operatorname{Fln}(\frac{z_{ref}}{z_{0}})}{uk^{2}} \operatorname{ln}(\frac{H}{z_{0}})$$
(42)

Finally, the escape fraction is computed from equations (11) and (42) as follows:

$$\varepsilon = \frac{1}{1 + \frac{u_d^{\ln(\frac{z_{ref}}{z_0})}}{uk^2 \ln(\frac{H}{z_0})}}$$
(43)

The above equation can be used much as equation (21) is used.

4.1.5 ALTERNATIVE 4 -- VARIABLE-K USING THE MORE DETAILED MODEL

Similar to the Constant-K models, equation (43) fails to allow the escape fraction to be computed as a function of stability. It is possible to overcome this limitation by using the more complex technique for computing the eddy diffusivity as a function of the Monin-Obukhov length. The more complex technique also reveals eddy diffusivity to be a function of height. As with the Linear Model, for the more detailed approach in Section 4.1.3, this report recommended using the reference height of the wind speed monitor to compute the constant eddy diffusivity to be used in the escape fraction computation. It is possible to generalize this process by allowing the eddy diffusivity to vary with height in the computation of the escape fraction. The following equation illustrates the generalization of equation (3):

$$F = -K(z)\frac{\partial \chi}{\partial z}$$
 (44)

Equation (44) can be integrated over the range of z from the roughness height to H as follows:

$$\partial \chi = -\frac{F}{K(z)} \partial z \tag{45}$$

$$\int_{z_0}^{H} \partial \chi = -F \int_{z_0}^{H} (\frac{1}{K(z)}) \partial z$$
 (46)

$$\chi \big|_{z=H} - \chi \big|_{z=z_0} = - F \int_{z_0}^{H} (\frac{1}{K(z)}) \partial z$$
 (47)

Since the concentration is zero at z=H, the following relationship is developed for the concentration at the roughness height:

$$\chi_{z_0} = F \int_{z_0}^{H} \left(\frac{1}{K(z)}\right) \partial z \tag{48}$$

Substituting equation (48) in equation (8) and the result into equation (11) yields the following expression for the escape fraction:

$$\varepsilon = \frac{1}{1 + u_{\mathbf{d}} \int_{\mathbf{z}_0}^{\mathbf{H}} \frac{1}{K(\mathbf{z})} \, \partial \mathbf{z}}$$
 (49)

The integral of the inverse of the eddy diffusivity can be evaluated numerically, by dividing the vertical extent of the pit (from the roughness height to H) into a series of finite elements and computing the eddy diffusivity at each height using the procedures outlines in equations (22) through (35). The process is not as complicated as it appears. The Richardson Number, Ri, the Monin-Obukhov length, L, and the friction velocity, u, need only be computed once with the height of the wind speed monitor, zref, being used for z in all places in equations (25) through (35). Only when computing the eddy diffusivity itself and the normalized temperature profile in equations (22) through (24) should the actual height in the pit be used. Once the eddy diffusivities are computed at each height, the inverse of each is taken, and multiplied by the depth of each finite vertical element. Finally, the resulting values are summed to calculate the integral in equation (49).

4.2 EVALUATION OF CANDIDATE EQUATIONS WITH EXPERIMENTAL DATA

4.2.1 EVALUATION DATA

The only data available for the evaluation of the theoretical escape fraction equations presented in the previous section are the video tape recordings of the smoke releases documented in the earlier report. The major problem with using the smoke release data to evaluate the escape fraction for

mining dust is that the particle size distribution for the smoke particles and the mining dust are very different. In fact, the density and size of the smoke particles are sufficiently small to behave virtually like a gas, for which no pit retention would be expected.

The video tapes do, however, give some information on the residence times of the smoke in the pit. From these residence times it is possible to infer some information about the pit retention behavior of actual mining dust. In the earlier work (EPA, 1985) the escape fraction was inferred from the measurement data using two separate techniques. The first involved the computation of an escape velocity by dividing the vertical depth of the smoke release by the residence time. For any fugitive dust source particles of all different sizes would be released. Each particle would have a different gravitational settling velocity and a deposition velocity. The particles were grouped into classes dependant on size and a characteristic gravitational settling velocity and deposition velocity were assumed for each class. The escape velocity was then compared to the larger of the two characteristic velocities (gravitational settling or deposition) for each class. escape velocity was larger, all particles in the size class were assumed to escape. If the escape velocity was smaller, all particles in the size class were assumed to be retained.

Two separate particle size distributions were evaluated with the above technique, and an overall escape fraction was computed for each distribution. One particle size distribution came from the PEDCo and TRC 1982 study of coal mines (PEDCo and TRC, 1982). The second size distribution came from a similar study conducted by TRC for the mining industry (Shearer, et al, 1981). The PEDCo/TRC study of size distributions considered only particulate matter smaller than 30 microns, while the TRC mining industry study looked at particles as large as 130 microns.

The second technique for computation of the escape fraction developed in the earlier study involved using an additional theoretical expression. It computed the escape fraction from the source depletion equation developed by Van der Hoven (1968) and the meteorological data collected for each smoke release.

The escape fraction was calculated using each of the above techniques and each of the two particle size distributions for all of the roughly 800 smoke releases. The results of this analysis have been reported in the earlier study.

One observation in the course of the earlier study was that escape fraction computed using the first of the two techniques above (using the escape velocity) revealed little or no pit retention for virtually all cases analyzed. This conclusion disagrees with that of the source depletion analysis. Since the video tape data do not measure escape fraction directly, but rather require the user to infer the escape fraction from the measure of the escape velocity, one effort which was undertaken in the current study was to re-evaluate the data extracted from the video tapes to determine if there were other interpretations which could be used to infer the escape fraction.

The end result is that an alternate interpretation of the data was developed. The escape fractions computed by this new technique provided a different yardstick by which the various escape fraction equations could be evaluated. The derivation of the new technique will be presented in the following paragraphs.

It is necessary to compute how a fugitive dust particle would behave if exposed to the conditions that the smoke puff was exposed to. It is assumed that the residence time in the pit would be unaffected by the change from a smoke puff to a fugitive dust puff, but during the residence time, many of the fugitive dust particles would be deposited on the surface and walls of the Those particles which do not deposit during the residence time are assumed to escape. For a puff of fugitive dust, the rate of deposition is constantly changing as is the concentration within the puff. However, if a mathematical characterization of the rate of deposition over time can be established, the total deposition during the puff's residence in the pit can be computed by integrating the deposition rate over time from the release time to the exit time. This analysis is performed with four equations. Generally, the techniques used to calculate the escape fraction here are the same as equation (1). However, in equation (1) the concern was for a continuous release.

Here the concern is for an instantaneous release. Consequently, the flux term in equation (1) has been replaced by a term representing the amount of material which escapes after a certain residence time in the pit, R.

$$\varepsilon = \frac{E - DEPO(t)|_{R}}{E}$$
 (50)

The function DEPO(t) is the total deposition in the pit from the time of release of the smoke puff until some time, t, later (but not later than the residence time, R). The term DEPO is evaluated at t=R in the equation above to determine the total deposition that occurs from the time of release until the puff exits the pit. The function DEPO(t) is defined as follows:

$$DEPO(t) = \int_0^t D(t)WL dt$$
 (51)

Note that the deposition rate, D(t), is a different function than DEPO(t). D(t) is the instantaneous value of the deposition rate at any point in time. As discussed earlier for equation (8), the deposition is assumed to be proportional to the concentration at the surface for uniformly sized particles and in the absence of any change in the meteorological conditions or surface conditions. The concentration is also continuously changing variable in the puff analysis, so a mathematical representation of this proportionality, similar to equation (8), is as follows:

$$D(t) = \chi(t)u_{d}$$
 (52)

where: $\chi(t)$ = average concentration in the pit at any time t u_d = deposition velocity (m/sec)

Finally, define the concentration as a function of time by simply dividing the remaining suspended emissions (amount emitted minus amount deposited from release time until some later time, t) by the dimensions of the pit. This assumes the emissions are well mixed throughout the pit. It is represented as:

$$\chi(t) = \frac{E - DEPO(t)}{HWL}$$
 (53)

where: H = depth of the pit

The above system of four equations can be solved by first substituting equation (53) into equation (52) as follows:

$$D(t) = \frac{u_d^{E} - u_d^{DEPO(t)}}{HWL}$$
 (54)

$$D(t) = \frac{u_d^E}{HWL} - \frac{u_d^{DEPO(t)}}{HWL}$$
 (55)

Now, equation (51) is substituted into equation (55) and the result is:

$$D(t) = \frac{u_d^E}{HWL} - \frac{u_d}{HWL} \int_0^t D(t)WL dt$$
 (56)

$$D(t) = \frac{u_d^E}{HWL} - \frac{u_d}{H} \int_0^t D(t) dt$$
 (57)

$$D(t) + \frac{u_d}{H} \int_0^t D(t) dt = \frac{u_d^E}{HWL}$$
 (58)

Equation (58) is an integral expression which is solved by the following expression for D(t):

$$D(t) = \frac{u_d E}{HWL} e^{-\frac{u_d}{H}t}$$
(59)

Now use equations (51) and (59) to evaluate the function DEPO(t):

$$DEPO(t) = \int_0^t \frac{u_d E}{H} e^{-\frac{u_d}{H}t} dt$$
 (60)

$$DEPO(t) = \frac{u_d E}{H} \int_0^t e^{-\frac{u_d}{H}t} dt$$
 (61)

DEPO(t) =
$$\frac{u_d^E}{H} \left(-\frac{H}{u_d} e^{-\frac{u_d^2}{H}t} + \frac{H}{u_d^2} \right)$$
 (62)

$$DEPO(t) = -E e^{-\frac{u}{H}t}$$
(63)

Finally, evaluate the escape fraction by substituting equation (63) into equation (50) as follows:

$$\varepsilon = \frac{E + E e}{E} \frac{-\frac{u}{H}(R)}{E}$$
(64)

$$\epsilon = e^{-\frac{u_d}{H}(R)}$$
(65)

Using equation (65), which will be called the residence time analysis technique, the escape fraction was computed for each of the roughly 800 smoke releases and for each of the two particle size distributions. This established an additional measurement interpretation for evaluation of the theoretical escape fractions.

4.2.2 COMPARISON OF THE CANDIDATE EQUATIONS WITH THE EVALUATION DATA

There are three different evaluation data sets: one based on the escape velocity, one based on the source depletion equation, and one based on the

residence time analysis. For each of these evaluation data sets, the escape fraction has been computed for two different particle size distributions: the Universal Size Distribution from the PEDCo/TRC Study of 1982 and the Emission Factor Development Study (EDS) size distribution.

For each of the smoke releases a Pasquill-Gifford stability class determined in the original study (EPA, 1985) was used here. Most of the parameters needed by the candidate escape fraction equations were available from the original data. It was necessary to specify some of the additional parameters needed by the candidate equations presented earlier. Table 4.1 illustrates the values of the various parameters assumed in this analysis.

TABLE 4.1
PARAMETERS USED IN THE ESCAPE
FRACTION COMPUTATIONS

PARAMETER	VALUE		
Potential Temperature Gradient (OK/m)			
Stability A	-0.010		
Stability B	-0.007		
Stability C	-0.005		
Stability D	0.000		
Stability E	0.020		
Stability F	0.035		
Reference Height for Wind Monitor	10 m		
Surface Roughness Height	0.03 m		

As depicted in Table 4.2, all of the candidate escape fraction equations exhibit smaller escape fractions for stable conditions than for unstable and neutral conditions, as would be expected. Alternative 2, based on equations (22)-(35) and using equation (13) to compute the escape fraction, demonstrates somewhat better agreement with escape fractions inferred from the source depletion model than do the other alternatives.

TABLE 4.2
ESCAPE FRACTIONS BY STABILITY CLASS^a

Universal Size Distribution						
Equation	Stability Class					
	<u>A</u>	<u>B</u>	<u>_C</u>	_ <u>D</u> _	F	
Evaluation Data:						
Escape Velocity	1.00	1.00	1.00	1.00	1.00	
Source Depletion	0.93	0.88	0.86	0.81	0.58	
Residence Time	0.94	0.94	0.96	0.95	0.91	
Theoretical Formulae:						
Original Winges	0.99	0.98	0.96	0.92	0.58	
Alternative 1	0.40	0.45	0.58	0.65	0.35	
Alternative 2	0.85	0.75	0.70	0.70	0.11	
Alternative 3	0.22	0.28	0.42	0.48	0.24	
Alternative 4	0.78	0.70	0.66	0.65	0.11	

EDS Size Distribution							
Equation	Stability Class						
	A	<u>_B</u> _	<u> </u>	<u>D</u>	F		
Evaluation Data:							
Escape Velocity	0.81	0.85	0.93	0.90	0.70		
Source Depletion	0.59	0.46	0.43	0.36	0.21		
Residence Time	0.59	0.63	0.70	0.68	0.51		
Theoretical Formulae:							
Original Winges	0.90	0.84	0.73	0.59	0.20		
Alternative 1	0.23	0.25	0.37	0.44	0.17		
Alternative 2	0.47	0.34	0.30	0.30	0.03		
Alternative 3	0.10	0.13	0.22	0.27	0.11		
Alternative 4	0.38	0.28	0.26	0.25	0.02		

a Escape fractions were not computed for P-G stability E due to the infrequent occurrence of this stability class (EPA, 1985).

A similar comparison, stratified by wind speed instead of stability is shown in Table 4.3. All of the candidate escape fraction equations show a much greater change in escape fraction with wind speed than does the original Winges equation. The increase in predicted escape fraction with wind speed matches the trend observed in the evaluation data. In this sense, the introduction of wind speed into the escape fraction computation is successful.

However, the overall conclusion made from examining all of the candidate equations' predicted escape fractions, stratified by both wind speed and stability class, is that none of the candidate escape fraction equations match the evaluation data very closely.

The reasons for the discrepancies are not known; however, it is likely that a number of effects contribute to the error in prediction. Included among these effects are the assumption that there is no vertical component to the wind. It is possible that the vertical component of the wind is responsible for considerably more direct transport of the smoke puff out of the pit than turbulent diffusion. Another source of error is the interpretation of the measurement data. Although the computation of the escape fraction in the evaluation data sets is based on the measurement of residence time for a smoke plume, it may not be possible to infer one from the other. Only by actual measurement of particulate release data could such a quantification be made.

Additional attempts were made to examine the degree of agreement of the candidate equations with the evaluation data using linear regression. It is not possible to perform a linear regression for one of the evaluation data sets (the escape velocity techniques with the Universal Size Distribution) because this technique yielded a value of 1.0 for the escape fraction in every one of the puff releases experiments. Linear regressions were performed, however, for the residence time evaluation data set and for the escape velocity evaluation data set using the EDS particle size distribution. The results of the linear regression using the escape velocity evaluation data set (with the EDS particle size distribution) are depicted in Table 4.4. As the table shows, the observed and predicted comparisons in all cases revealed a

TABLE 4.3
ESCAPE FRACTIONS BY WIND SPEED CLASS^a

Universal Size Distribution

Equation		W	ind Speed	Category		
	1	_2_	_3_	_4_	_5_	
Evaluation Data:	1.00	1.00	1.00	1.00		
Escape Velocity	1.00	1.00	1.00	1.00	1.00	
Source Depletion	0.78	0.84	0.86	0.88	0.88	
Residence Time	0.92	0.94	0.97	0.97	0.97	
Theoretical Formulae:						
Original Winges	0.90	0.91	0.95	0.95	0.96	
Alternative 1	0.33	0.49	0.59	0.72	0.80	
Alternative 2	0.65	0.61	0.68	0.78	0.85	
Alternative 3	0.20	0.32	0.43	0.54	0.61	
Alternative 4	0.61	0.56	0.64	0.72	,0.77	

EDS size Distribution Equation Wind Speed Category _1_ _2_ _3_ _4_ _5_ Evaluation Data: Escape Velocity 0.75 0.83 0.96 0.96 0.99 0.46 Source Depletion 0.35 0.43 0.43 0.43 Residence Time 0.73 0.73 0.54 0.62 0.76 Theoretical Formulae: Original Winges 0.70 0.70 0.73 0.69 0.76 0.27 Alternative 1 0.36 0.53 0.66 0.16 Alternative 2 0.31 0.25 0.27 0.36 0.45 Alternative 3 80.0 0.15 0.22 0.31 0.38 Alternative 4 0.27 0.20 0.24 0.30 0.34

Category 1: 0 - 3 knots 2: 4 - 6 3: 7 -10 4: 11 -16 5: 17 -21 6: above 21

^a Wind speed categories are those used by the National Climatic Data Center, defined as follows:

TABLE 4.4

LINEAR REGRESSION RESULTS FOR THE ESCAPE VELOCITY

EVALUATION DATA SET AND THE EDS PARTICLE SIZE DISTRIBUTION

	Regression Parameters			
	<u>a</u>	<u>b</u>	<u>r²</u>	
Original Winges Equation	0.73	0.17	0.03	
Alternative 1	0.65	0.53	0.23	
Alternative 2	0.76	0.29	0.04	
Alternative 3	0.59	1.02	0.39	
Alternative 4	0.67	0.68	0.11	

very low correlation. This implies that it will be extremely difficult to improve the prediction accuracy by adjustment of the theoretical formulae with arbitrary constants.

Similarly, linear regressions were performed with the residence time evaluation data set and each of the candidate equations for both the Universal and the EDS size distributions. The results are depicted in Table 4.5. As with the earlier table, the agreement between measured and predicted is not encouraging.

TABLE 4.5 LINEAR REGRESSION RESULTS FOR THE RESIDENCE TIME EVALUATION DATA SET

	ize Distribut Regress	ion ion Parameters <u>b</u>	<u>r</u> 2
Original Winges Equation	0.86	0.10	0.11
Alternative 1	0.90	0.09	0.22
Alternative 2	0.92	0.04	0.07
Alternative 3	0.90	1.15	0.34
Alternative 4	0.91	0.06	0.11

EDS Size Distribution						
	Regression Parameters $ \underline{a} \qquad \underline{b} \qquad \underline{r^2} $					
Original Winges Equation	0.57	0.12	0.03			
Alternative 1	0.52	0.41	0.22			
Alternative 2	0.63	0.07	0.00			
Alternative 3	0.48	0.94	0.39			
Alternative 4	0.59	0.26	0.03			

5.0 ESCAPE FRACTION ALGORITHM FOR ISC

The previous sections have detailed the development of four separate equations for computing the escape fraction as a function of commonly measurable parameters. This chapter discusses the adaptation of these equations into one of the standard air pollution models, the Industrial Source Complex Model (ISC). Subroutines are developed for each of the four techniques in the previous section for incorporation into the ISC Short-Term Model (ISCST). In addition, it was necessary to make certain changes to the main section of the program and two existing subroutines, INCHK and MODEL.

Appendix C contains a listing of the complete program as modified for this purpose. The version of the ISCST Model that is shown in Appendix C is identical to the version currently available from the National Technical Information Service (NTIS) in the UNAMAP series, with a few changes. These changes are listed as follows:

- 1. The version of ISCST in Appendix C has been adapted to run on an IBM-PC Computer. The changes necessary to accomplish this were very minor. OPEN statements were added and the character strings were explicitly declared. Also, all quotation marks were changed to apostrophes.
- 2. A new subroutine called ESCAPE for computation of the escape fraction was added. In Appendix C there are four separate versions of this subroutine corresponding to the four separate techniques developed for the escape fraction computation in the previous chapter.
- The addition of the subroutine ESCAPE required several new user inputs which were added to the ISCST main program and the subroutines INCHK and MODEL through the addition of a new COMMON block called DEPO. The new parementers were deposition velocity array (a separate deposition velocity for each source and each particle size group within each source - very similar to the way gravitational settling velocities are included in the original code), the reference height, ZREF, the surface roughness height, ZO, and a pit depth for each source (incorporated in one of the previously unused storage spaces in the SOURCE array). Changes were made to the ISCST program to allow for user input of these variables. ZREF and ZO were added to the end of the card group 2, card number 2. The pit depth is read for each source at the end of card group 6, card number 1 (after the building height) and the deposition velocities are read as a new card appearing after card group 6, card number 4.

4. The call to the new subroutine was added to the MODEL subroutine at two places: in the loop over particle size classes for the concentration calculation and in the loop over particle size classes in the deposition calculation. The subroutine ESCAPE returns the values of the escape fraction, ESCP, which is then used to reduce the vertical distribution function, V.

Using each separate version of the new subroutine, ESCAPE, four separate versions of a compiled and linked ISCST Model were made and tested with a sample data set to verify that they were operational. Appendix D presents the sample outputs for each of these test data sets. The input file is also shown in Appendix D. The same input file is used for all four versions of the model.

Run times for the four different versions of the model were recorded during the tests. While the absolute values of the runtime is not of interest here, the relative times are significant. As might be expected, the equations using the more detailed analysis technique required more computer processing time. The two techniques based on the linear model (alternatives 1 and 3) required approximately the same processing time as the original version of ISCST. Alternative 2 (Constant-K, detailed model) increased the run time by roughly a factor of 1.5, while Alternative 4 (Variable-K, detailed model) increased the run time by roughly a factor of 5.

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

A number of conclusions can be formulated based on the foregoing analysis. Some of these conclusions have been stated in the previous report (EPA, 1985) and will be restated here for completeness. Other conclusions presented here have not been previously stated and will be discussed in more detail.

It is clear from the analysis of stabilities discussed in chapter 3.0 that the standard deviation of the wind direction measured inside the pit is always larger than that measured outside the pit. This suggests that the horizontal turbulence is greater inside the pit than outside, and a reasonable explanation for this would be that sensors inside the pit respond to mechanical turbulence caused by airflow over, and in the wake of, the pit wall. Outside the pit this mechanically induced turbulence is absent. It must be remembered that the measurement of sigma-theta in the pit says nothing about vertical turbulence inside or outside the pit.

Another observation concerning the stabilities calculated from the standard deviation of the wind direction is that they agree well with the stabilities estimated from the Pasquill-Gifford method which uses cloud cover and ceiling height. The stabilities computed in and out of the pits are either identical, or only one class different from, the P-G stability for about 80% of the data hours.

Four new equations were developed for the computation of the escape fraction as a function of commonly measured parameters. When compared to escape fractions inferred from the smoke release data, none of these new equations were seen to provide accurate predictions of the escape fraction over the full range of stability classes and wind speeds. There are many reasons for this descrepancy between measured and predicted values, but it is important to reiterate that the smoke release experiments did not measure all of the important quantities which define the escape fraction in and out of the pit.

Another possible reason for the discrepancy between measured and predicted escape fractions is that none of the techniques used to calculate the escape fraction considered the vertical motion of the wind (called convection). It is clear from the smoke release video tapes that in many of the experiments, the smoke was moved from the pit by convection of the air rather than by dispersion. In all four of the escape fraction analysis techniques developed here, an essential assumption is that the only mechanism for transfer of material from the pit to the external air is by dispersion — convection is ignored.

The question of the influence of stability is very important. The smoke release data imply that during unstable and neutral conditions a large percentage of the dust emitted in the pit escapes. The various theoretical escape fraction equations disagree with the inferred escape fractions from the smoke releases for unstable and neutral conditions. It is likely that for these conditions, the escape fractions inferred from the measurement data are more accurate than the theoretically calculated escape fractions, because the vertical motion of the air may be quite significant for the unstable and neutral conditions and the theoretical formulae do not consider such motion while the residence time extracted from the video tapes is influenced by the vertical winds. Although analysis of vertical wind speeds instructive in these instances, characterization of the chaotic flow in the pit would be extremely difficult.

For stable cases, however, the situation is quite different. Here again the smoke release data infer that a large percentage of the emitted dust escapes the pit, but all the theoretical formulae conclude that only a small fraction of the emitted dust escapes. For stable conditions one would expect very little vertical motion of the air, thus the primary mechanism for vertical transport should be dispersion, and in fact that is precisely the assumption made in the development of the candidate equations. While confidence increases in the candidate equations for stable conditions, confidence in the experimental data, and in particular in the ability to infer the escape fraction from the smoke release video tapes, decreases for the stable cases. The reason for this is that in both the interpretations of the smoke release data (the escape velocity evaluation data set and the residence time evaluation data set) the escape fraction is computed from the ratio of

the pit depth to the residence time — a quantity called the escape velocity. Vertical motion is implicit in both evaluations, when in fact for stable conditions, there may be no vertical motion at all, and the residence time of the puff in the pit may be as long as the stable conditions persist. Material will leave the pit, but the mechanism is by dispersion, not by a vertical escape velocity. The centerpoint of the puff (the point of maximum concentration) remains in the pit. The smoke release video tapes did not allow for such long residence times, and in fact the residence time in many cases where the puff appeared to disperse in the pit without any vertical motion was arbitrarily defined based on the time when the camera was turned off, or when the puff was no longer visible.

Focus on the stable cases here is appropriate because they are the most important cases to consider. Computer modeling studies done for permitting of surface mining operations typically predict the peak concentrations under stable, low-wind-speed conditions. The inferred escape fractions from the smoke release data imply that a large percentage of the dust escapes the pit during these conditions, while the four candidate equations predict low escape percentages. Since the ability to infer the escape fraction from the smoke release data is the least reliable for the stable conditions, and since the assumptions made to develop the theoretical formulae are most representative of the stable conditions, we conclude that the theoretical formulae are likely to be more correct for these stable conditions than the escape fractions inferred from the smoke releases.

Selecting between the four theoretical formulae for calculation of the escape fraction is not an easy task. None of the equations work particularly well for unstable and neutral conditions, and for the most important conditions, the stable conditions, the evaluation data are suspect and do not provide reliable selection criteria. In all the techniques the escape fraction is defined by the amount of mixing in the pit which allows emissions at the surface of the pit to be mixed upward to where the external flow of wind can carry them away. The amount of mixing is characterized by the eddy diffusivity. For the two models based on the linear model, the amount of mixing is determined from the shearing of the wind speed profile caused by the

surface drag of the earth -- a reasonable assumption for small scale dispersion over a uniform flat plat in the open boundary layer. The other two techniques, called the more detailed models, allow consideration of the stability of the atmosphere as it affects the vertical mixing in the pit.

It is our conclusion, therefore, that one of the more detailed techniques (Alternatives 2 and 4) should offer improved prediction accuracy for the escape fraction for stable conditions. It is also evident from the data evaluation that for particles smaller than 30 microns (the universal particle size distribution) there is little difference between Alternative 2 and Alternative 4 (Constant-K vs Variable-K). We conclude that Alternative 2 is the most reasonable method to use for the escape fraction computation for stable conditions for several reasons. There is no basis on which to postulate a relationship for the eddy diffusivity with height within a mining pit and the assumption of a constant value is the simplest assumption which can be made. Also, the Variable-K method (Alternative 4) significantly increases the computation time when used in the ISC Model, without providing significantly different values than the Constant-K method (Alternative 2).

6.2 RECOMMENDATIONS FOR FUTURE WORK

The attempt to develop a characterization for the escape fraction for mining pits is made difficult by the complexity of the dispersion scenario and the difficulty in collecting meaningful data. In the course of our work, we have identified a number of shortcomings in the data and the analysis techniques and we have considered numerous methods for overcoming these shortcomings. However, we believe that our recommendations should be guided by the practical applications of the analysis techniques that are to be developed. Consequently, we will not attempt to provide recommendations for the resolution of every uncertainty we have identified in the course of our study.

While it would be interesting to determine the vertical motions inside mining pits that result in the escape of dust via vertical winds during neutral and unstable conditions, it is very likely that such motions are too complicated to be predicted and simulated in an operational air quality model. The ultimate use of the air quality model is for permitting purposes, and the most important consideration is the conditions which produce the peak impacts. Invariably it is stable low-wind speed conditions that result in the peak concentrations. We will therefore not recommend such studies as wind tunnel investigations of the flow in and around mining pits, because such studies cannot yet adequately reproduce all atmospheric stability classes. We would also not recommend further equation development to take vertical wind velocities into account, since velocities are likely to be highly dependent on site specific conditions, which would not be known prior to a mine's construction, and ultimately it is not such vertical wind conditions which lead to peak impacts as predicted by the air quality model.

Since we have developed several equations for prediction of the escape fraction, which are hoped to work best for the stable conditions of most concern, our primary recommendation concerns the need to develop a data base for the escape fraction during stable conditions which can be used to evaluate the theoretical formulas. One of the fundamental problems with the smoke release data was that they were collected entirely during daylight hours, when stable conditions rarely exist. The best technique for measuring the escape velocity would be the use of dual tracer experiments where a tracer gas is emitted simultaneously with a tracer particle, such as zinc-sulfide. measuring the relative concentrations of the two tracers downwind, the amount deposited can be determined and the escape fraction readily determined. are problems with such techniques, because re-entrainment of the tracer particles from previous experiments could contaminate later experiments, thus restricting the number of experiments which could be run at a single mining The dual tracers could be run at night, however, when the stable conditions are most persistent. We have not attempted to estimate costs for such a program but it is assumed that such a program would be a relatively high cost option.

An alternative program which would be less costly, and would not suffer the problems associated with the re-entrainment of tracer particles is to perform a series of experiments with a single tracer gas The single tracer experiments could still be run at sulfur-hexafluoride. night when the stable conditions persist, and would provide a direct measure of the ground-level concentration from pollutants emitted at the surface of the pit. While such tracer gases would not undergo deposition, the knowledge of ground-level concentrations at a grid of points throughout the pit as a function of time after release would allow us to fully quantify the dispersion process in the pit. With some assumptions concerning the deposition velocities, the deposition rates of particles on the surface of the pit could be inferred (with much greater accuracy than the smoke releases) and the escape fraction determined. The disadvantage to this technique is that it would require measurement of the tracer concentration at a large number of locations in the pit and it would still involve assumptions concerning the deposition velocities, which would be directly measured in the dual-tracer experiments described earlier. The single tracer program would be significantly cheaper than the dual tracer program, because the sampling equipment for tracer gases is typically low-cost gas syringes which can be analyzed in a remote laboratory with a gas chromatograph.

Another option for establishing a data base for evaluation of the escape fraction equations during stable conditions is to re-evaluate the video-tape recordings. Although the bulk of the experiments were in unstable or neutral conditions, there were roughly 60 experiments during stable conditions. the time the original viewing of these tapes was performed, the viewers did not know the stability. If given the opportunity to examine these tapes again, the limited number of tapes and the knowledge of the stability class might allow the evaluator to more accurately determine the residence time in the pit. The particular items desired would be the trajectory of the puff and the amount of surface contact experienced by the puff. Also those cases where the puff stayed in the pit and dispersed will be evaluated using a much longer residence time than previously used. It is possible that by reviewing the tapes a more accurate representation of the escape fraction for the stable cases can be established. If a new data base for evaluation of the escape fraction equations can be developed, the equations can be evaluated with the same technique used in the current study.

A final option for future work would be a very simple investigation to determine a "ballpark" estimate of the magnitude of pit retention. existing hi-vol data and meteorological data already collected in the vicinity of surface mines, a comparison can be made of actual measured concentrations just downwind of a pit $(C_{measured})$, and modeled concentrations determined from the ISCST model (C modeled), which idealizes the terrain as flat and unaffected by the presence of the pit. Emission rates could be estimated from AP-42, Supplement 14 fugitive dust factors, and a representative background concentration (perhaps from an upwind hi-vol) would be subtracted from the departure measured concentrations. Any in the value of $(C_{measured}/C_{modeled})$ from 1.0 would be due to errors in the emission factors, or to errors in the model. If a long time period is considered -perhaps by examining annual average concentrations -- then random errors in the model and emission factors will cancel out. Difference in the value of $(C_{measured}/C_{modeled})$ from unity would be due to systematic errors, such as pit retention or plume perturbation caused by the pit. In the absence of systematic errors in the emission factors or in idealizing the dust plume, the ratio of (C measured modeled) would be just equal to the escape fraction for the particle size distribution collected by the hi-vols. This approach would be a "first-cut" at estimating the magnitude of pit retention. course, it would offer no insight into the physical mechanisms that control dispersion from the pit, but it would provide an evaluation of the performance of the emission factors and the ISC dispersion model. A study of this sort, using existing data, would cost from \$10,000 to \$20,000.

		,	
		¢	
•			

REFERENCES

- Air Sciences, 1985, letter from R. G. Steen, Principal, Air Sciences, Inc., to C. F. Cole, TRC Environmental Consultants, Inc., April 17, 1985.
- Bird, R. B., W. E. Stewart, and E. N. Lightfoot, 1960, <u>Transport Phenomena</u>, J. Wiley & Sons, New York.
- Chamberlain, A. C. and R. C. Chadwick, 1953, "Deposition of Airborne Radioiodine Vapor," <u>Nucleonics</u> 2, 22-25.
- Draxler, R. R., 1979, "Estimating Vertical Diffusion from Routine Meteorological Tower Measurements," <u>Atmospheric Environment</u>, Vol 13, pp 1559-1564.
- EPA, 1984, "Guideline on Air Quality Models (Revised): Draft," U.S. EPA, OAQPS, Research Triangle Park, NC, November 1984.
- EPA, 1985, "Dispersion of Airborne Particulates in Surface Coal Mines -Data Analysis," EPA-450/4-85-001, prepared for U.S. EPA, OAQPS, Research
 Triangle Park, NC, January 1985 (NTIS No. PB 85-185411).
- Fabrick, A. J., 1982, "Technical Note: Calculation of the Effective Emissions from Mine Pit Operations by Incorporating Particulate Deposition in the Evacuated Pit," MEF Environmental, Del Mar, CA, 1982.
- Hittman and Air Sciences, 1983, "Studies Related to Retention of Airborne Particulates in Coal Mine Pits -- Data Collection Phase," prepared for U.S. EPA, IERL, Cincinnati, Ohio, contract #68-03-3037, August 1983.
- Mendenhall, W., 1968, <u>Introduction to Probability and Statistics</u>, 3rd ed., Duxbury Press, Belmont, CA., January 1968.
- Monin, A. S. and A. M. Yaglom, 1971, <u>Statistical Fluid Mechanics</u>, The MIT Press, Cambridge, MA.
- PEDCo & TRC, 1982, "Characterization of PM-10 and TSP Air Quality Around Western Surface Coal Mines," prepared for EPA, Air Management Technology Branch, contract #68-02-3512, June 1982.
- Shearer, D. L., et al, 1981, "Coal Mining Emission Factor Development Study," prepared by TRC Environmental Consultants, Inc., 0908-D10-15, Englewood, CO, July 1981.
- Turner, D. B., 1970, "Workbook of Atmospheric Dispersion Estimates," U.S. EPA, OAQPS, AP-26, Research Triangle Park, NC, 1970.
- Van der Hoven, I., 1968, "Deposition of Particles and Gases," appearing in Meteorology and Atomic Energy 1968, ed. D. H. Slade, Technical Information Center, U.S. DOE, TID-24190.
- Winges, K. D., 1981, "Description of the ERTEC Mining Air Quality (EMAQ) Model, "ERTEC Northwest, Inc., Seattle, WA.

APPENDIX A

AIR SCIENCES AUDIT REPORT

12687 West Cedar Drive Lakewood, Colorado 80228 303/988-2960

April 17, 1985 Project No. 5-2

TRC Environmental Consultants, Inc. 7002 South Revere Parkway Englewood, CO 80112

Attn: Mr. Cliff Cole Senior Project Manager

RE: Sigma theta audit for TRC project 2990-V82

Gentlemen:

Air Sciences has performed an audit of the wind direction standard deviation signal generated for EPA in the summer of 1983. The audit included an electronic evaluation of the speed and direction circuits used in generating the input for the sigma calculation, and a checking of the software aspects of the calculation. The audit confirms the data as approximately correct as presented in the August 1983 report to EPA.

The direction deviation was calculated on-site by a Campbell Scientific CR-21 data logger taking instantaneous wind speed and direction data from the meteorological sensors. Samples of speed and direction data were taken every ten seconds and from these one minute averages were calculated. Thus, six instantaneous values make up each minute calculation. Note that wind speed and direction vector average was also calculated by the data logger as one-minute averages and any electronic error arising from the sensors, signal conditioning or logger input programming would also affect the wind speed and direction vector averages which were provided in the 1983 report to EPA.

There are several points in the signal conditioning and calculation process where error could arise and a list of them is given below.

- 1 calibration error in direction sensor
- 2 excess friction in speed sensor
- 3 calibration error in electronic conditioning for direction
- 4 calibration error in electronic conditioning for speed
- 5 improper matching of the output of conditioning cards to input of logging unit

- 6 incorrect algorithm built into the digital processing unit
- 7 incorrect field programming of inputs
- 8 incorrect field programming of outputs
- 9 error in transferring data from field tapes to archive tape

Each of these nine items has been investigated as a part of the audit.

- 1-4 The speed sensor, direction sensor, signal conditioning circuitry, and data logger in the pit were identical to those out of the pit. All calibrations and alterations made to the in-pit sensors and circuits were made also to the out-of-pit sensors. sensors and signal conditioning circuits from the out-of-pit station have not been used since the 1983 study. These components were recalibrated as a part of this audit and the calibrations compared with their 1983 calibrations. The in-pit sensors are not available, but because of the similarity of the in-pit and out-of-pit systems, we consider a thorough study of the out-of-pit sensors sufficient to demonstrate the condition of the in-pit system also. calibration documentation is attached. The comparison shows that the components are still in calibration. The checking of the friction of the speed sensor is not documented on the forms. was checked by touch of an experienced technician and no excessive friction was detected.
- The speed and direction conditioning card outputs were checked and found to be in the range of 0 to 1 VDC as was earlier assumed. The conditioning cards had been altered in 1983 to produce an instantaneous signal output rather than an averaged signal. This alteration was checked and found to be correct. The logger units were programmed to accept 0 to 1 VDC inputs as designated by the input program No. 1 (as shown on the logger documentation form, input programming section). Logger program No. 1 scales the data to engineering units by a linear equation. That equation requires a slope and an intercept. Note from the programming list that after the input program number the slope and intercept are given. Slope for speed is 50 mph/VDC and for direction is 540 degrees/VDC. The intercepts are both zero by default since they were not programmed in. Thus, the logger was receiving the data in the proper units and performing the proper scaling.
- The wind direction standard deviation calculational algorithm is attached. It is a numerical procedure for estimating direction standard deviation with listed error of less than 1 percent for deviations less than 40 degrees, which is well within the precision of the measurement. Because direction is a circular function rather than a scalar, the exact mathematical formulation is lengthy and the algorithm in the data logger is only an

approximation. It is based on the assumption that there is no correlation of speed deviation with direction deviation (page B-9). This assumption has been experimentally verified under certain conditions as stated with the algorithm explanation. It is possible that with 10-second scans making up the rather short one-minute averages in the EPA program that this assumption may lead to some error, but we suspect that with several minutes of data averaged together random error of the type we are addressing will cancel.

The standard deviation routine calculates a variance by dividing by (N) rather than (N-1). This introduces an error (underestimate) of about 10 percent in the EPA application where the standard deviation was composed of only six values.

- 7-8 The programming of inputs and outputs has been documented in the report to EPA. These steps have been verified with the programming manual and found to be correct. Whether these steps were followed in the field cannot be checked, but since the speed, direction and deviation data appears to be consistent among sites we assume that no mistakes were made in the field.
- Data were collected in the field on cassette tapes and transferred to other magnetic media in the office. It is conceivable that in this transferral process a column of field data could have been truncated. The data is logged in engineering units in the field and this truncation would not have affected the location of the decimal point. The data transferral program (a trivial program) cannot be located and rechecked, but the data has been studied and truncation error is not apparent. Only truncation of the left column would be of concern to us and if the left-most column were truncated it could only be the hundreds column. Most sigma data is in the range of 0 to 40 degrees, well below the hundred level.

These steps complete the Air Sciences audit of the sigma theta calculation. We will be happy to answer questions that should arise from this audit.

Sincerely,

Rodger G. Steen

Principal

APPENDIX B

HOURLY METEOROLOGICAL DATA BASE

•		

In this Appendix, hourly averaged values of the parameters defined in Table B2.1 are shown for each hour of the meteorological data base.

TABLE B2.1
DEFINITION OF VARIABLES

NAME	MEANING				
DAY	JULIAN DAY ON WHICH DATA WERE RECORDED				
NTIME	TIME AT END OF HOURLY AVERAGE (HHMM)				
WDOUT	OUT-OF-PIT AVERAGE WIND DIRECTION				
WSOUT	OUT-OF-PIT AVERAGE WIND SPEED (mph)				
SGOUT	OUT-OF-PIT AVERAGE SIGMA-THETA (deg)				
ISGOUT	OUT-OF-PIT SIGMA-THETA STABILITY CLASS				
WDIN	IN-PIT AVERAGE WIND DIRECTION				
WSIN	IN-PIT AVERAGE WIND SPEED				
SGIN	IN-PIT AVERAGE SIGMA-THETA (deg)				
ISGIN	IN-PIT SIGMA-THETA STABILITY CLASS				
RAT	SGOUT/SGIN				
IPG .	PASQUILL-GIFFORD STABILITY CLASS				
IWS	WIND SPEED CLASS				

DAY			NTIME	WDOUT	WSOUT	SGOUT	ISGOUT	WDIN	WSIN	SGIN	ISGIN	RAT	IPG
				(DEG)	(MPH)	(DEG)		(DEG)	(MPH)	(DEG)			
-													
179	10	59	1059	164.3	5.1	20.91	2	257.9	4.1	32.31	1	. 65	2
179			1159	15.6	6.2	16.12	3	48.8		18.52	2	.87	2
179		59	1259	11.7	6.3	12.12	4	57.2	6.6	26.03	1	. 47	1
179	13	59	1359	349.9	7.2	11.01	4	51.2	7.2	32.48	1	.34	
180	8	59	859	15.3	3.3	16.59	3	37.5		29.85	1	.56	2
180	9	59	959	351.2	3.2	15.84	3	67.7		38.93	1	.41	2
180	10	59	1059	354.4	3.5	16.58	3	43.7	4.1	18.15	2	.91	2
180	11	59	1159	359.0	4.1	13.99	3	34.6			1	.55	2
180	12	59	1259	329.2	6.4	16.44	3	74.7	5.9	43.26	1	.39	2
180	13	59	1359	320.8	10.8	12.52	3	71.5	8.8	32.97	1	.38	440000000000000000000000000000000000000
181	8	59	859	257.3	4.3	27.37	1	330.6	3.2	2.91	4	9.42	3
181	9	59	959	288.5	9.0	21.32	2	318.3	3.6	999.90	9	9.99	3
181	10	59	1059	268.6	15.0	11.33	4	228.9	11.2	29.07	1	.39	4
181	11	59	1159	273.8	16.0	10.15	4	226.6	10.8	19.77	2	.51	
181	12	59	1259	273.4	17.3	9.80	4	224.6	13.2	20.31	2	. 48	3
181	13	59	1359	272.3	13.7	11.50	4		10.9	22.68	i	.51	4 ড ড ড
181	14	59	1459	280.1	14.3	11.49	4	226.1	11.5	21.67	2	.53	3
181	15	59	1559	275.7	17.0	9.50	٠4	222.8	12.5	19.51	2	. 49	4
181	16	59	1659	280.6	15.6	8.94	4	215.3	12.6	19.66	2	.45	4
181	17	59	1759	266.5	11.6	10.58	4	228.2	9.1	19.11	2	.55	3
181	18	59	1859	253.5	11.6	9.42	4	238.4	8.6	15.43	3	.61	4
181	19	59	1959	223.2	6.9	7.20	5	253.8	3 5.7	15.54	4	.46	6
181	20	59	2059	196.9	6.0	10.99	4	253.7	4.6	21.51	6	.51	6
181	21	59	2159	199.7	8.8	5.83	5	247.2	4.9	21.76	6	.27	5
181	22	59	2259	203.5	12.5	4.88	4	270.7		13.51	4	.36	4
181	23	59	2359	203.2	14.5	5.12	4	274.8	10.4	10.13	4	.51	4
182	0	59	59	209.3	15.4	5.58	4	271.7	12.3	9.44	4	.59	4
182	1	59	159	206.0	14.0	5.77	4		10.8	11.82	4	.49	4
182	2	59	259	96.7	3.3	21.12	6	312.0	5.5	25.20	6	.84	6
182	3	59	359	139.0	2.9	16.77	5	176.2	1.7	29.78	6	.56	6
182	4	59	459	154.7	4.0	16.92	5	175.3	2.0	31.74	6	.53	6
182	5	59	559	239.4	3.7	22.76	6	285.2	8.3	18.41	4	1.24	6
182	6	59	659	218.6	5.0	23.33	6	265.8	4.7	30.37	6	.77	6
182	7	59	759	320.9	2.1	23.66	1	303.8	3 4.4	26.62	1	.89	2
182	8	59	859	277.6	2.6	30.88	1	334.5	4.2	31.20	1	.99	2 2 2 2 3
182	9	59	959	224.6	4.3	27.09	1	10.7	4.5	29.35	1	.92	2
182	10	59	1059	341.8	5.5	23.86	1	123.9	6.7	36.09	1	.66	2
182		59	1159	286.5	10.1	13.19	3	224.7			1	.48	3
182	12	59	1259	257.6	17.2	10.39	4	234.9	12.8	16.02	3	.45	3
182	13	59	1359	248.8		11.25	4	241.3	13.3	15.54	3	.72	3
			1459	231.0		11.94	4			19.44	2	.61	3
			1559	212.8		14.10	3			21.68	2	. 65	3
			1659	261.1		12.12	4	237.3		19.48	2	.62	3 3 3
			1759	247.6	8.8	12.73	3	241.0		20.25	2	.63	3
			1859	245.9	8.6	9.80	4	241.5		14.25	3	. 69	3
			1959	220.3		9.53	4	263.7		15.35	4	.62	5
			2059	182.0	5.9	11.67	4	280.8		23.14	6	.50	6
			2159	139.5	4.9	11.78	4	179.5		25.74	6	. 46	6
			2259	191.6	6.0	17.95	5	242.5		26.43	6	. 68	6
			2359	203.6	9.4	14.22	4	265.0		21.62	5	. 66	5
183	0		59	200.9		7.19	4			11.63	4	.62	5
183		59	159	190.3	9.3	15.10	4	254.7		30.46	6	.50	5
183		59	259	200.4	9.7	13.24	4	244.0		33.18	6	.40	5
183		59	359	221.9		8.66	4	246.4		15.50	4	.56	4
183		59	459	214.4		8.00	4			15.67	4	.51	4
183		59	559	216.7		7.39	4			12.60	4	. 59	4
183	6	59	659	223.7	13.9	9.14	4	247.7	7 9.1	46.77	4	.20	4

DAY	NTIME	WDOU'		JT SGQUT	ISGO	DEG)	WSIN (MPH)	SGIN (DEG)	ISG	SIN RAT	IPO	5 IW
192 12 5	9 1259	203.4	6.7	21.93	2	332.3	5.4999		9	9.99	2	2
192 13 5		158.2	8.6	19.29	2	209.9	5.9 31		í	.61	2	3
	9 1459	183.5	7.7	24.45	i	174.8	5.6 31			.77	2	3
192 15 5		174.8	8.3	23.57	1	213.1			1		~	3
192 16 5		209.6	8.0	16.84	3		6.0 29		1	.80	2 2	ა 3
	9 1859	221.1	5.1	17.17	3 3	251.6	6.5 25		1	. 66	3	ა 2
192 19 5		322.4	4.2			272.5	4.4 22		1	.75		4
192 20 5				9.11	4	302.8	3.9 13		5	. 69	6	2
		27.0	5.0	7.10	5	22.3	3.7 13		5	.52	ద	2
	9 2159	22.5	4.4	20.51	6	286.1	2.6 15		5	1.29	6	2
192 23 5		152.1	4.1	9.90	4	132.0	2.0 24		6	.40	6	មួយមួ
193 0 5		169.2	5.8	9.75	4	180.3	3.0 31		6	.31	6	2
193 1 5		186.4	5.3	11.12	4	241.3	1.6 30		6	.36	6	=
193 2 5		162.8	5.6	6.46	5	136.2	2.0 29		6	.22	6	2
193 3 5		180.0	4.4		5	191.5	2.2 17		6	.32	6	2
193 4 5		152.2	3.6	6.66	5	194.6	2.0 15		5	.42	6	1
193 5 5		130.4	2.7	6.48	5	269.4	1.1 13		5	. 4 9	6	1
193 6 5		136.9	5.5		5	209.9	1.8 21		6	-26	6	2
193 7 5		150.7	6.2	8.45	4	148.7	3.3 31	. 47	1	.27	3	2
193 8 5		161.5	9.6	7.68	4	184.8	5.1 3i	. 25	1	.25	3	3
193 9 5		181.8			3	200.6	7.2 19	.06	2	. 68	3 3 3 3	3 3
	9 1059	193.6		11.54	4	205.9	7.4 23		1	.48	3	3
193 11 5		226.9		12.27	4	235.3	10.3 20	. 59	2	.60	4	4
193 12 5		234.8	16.6	10.46	4		11.5 21		2	.48	3	4
193 13 5	9 1359	231.3	14.3	11.70	4	232.5	10.5 19		2	.60	3	4
193 14 5		216.3	13.5	11.65	4	221.2	9.7 24		1	. 47	3	4
193 15 5		201.0	12.8	11.78	4	205.0	8.9 23	. 49	1	.50	\bar{s}	4
	9 1659	207.0	13.0	11.48	4	225.1	9.0 24	- 86	1	- 46	3	4
193 17 5	9 1759	212.4	13.3	10.69	4	232.1	9.7 21	.18	2	.50	4	4
193 18 5	9 1859	215.4	13.4	10.05	4	233.1	8.0 24	. 90	1	.40	4	4
193 19 5	9 1959	210.9	10.3	7.81	4	244.2	5.3 29		6	.26	5	3
193 20 5	9 2059	188.5	5.0		5	234.9	1.9 26		5	.22	6	2
193 21 5	9 2159	150.0	5.4		5	237.3	1.1 10		4	.43	6	2
	9 2259	168.0	4.7		4	267.0	1.6 14		5	.69	6	2
193 23 5		113.8	2.5		6	279.2	1.2 17		5	1.05	6	i
194 0 5		144.2	1.8		5	271.3	1.0 13		5	1.01	6	1
194 1 5		150.5	3.9		4	174.6	1.1 14		5	.89	6	1
194 2 5		151.7	2.2		6	184.6	1.3 16		5	1.18	6	1
194 3 5		296.5	1.9		5	290.2	1.3 15		5	1.06	6	1
194 4 5		311.5	2.6		4	286.5	1.9 12		4	.70		
194 5 5		315.4	3.0		4	319.2	3.0 10		4	.76	6. 6	1 1
194 6 5		330.3	3.0		4	333.1	2.6 10			.84		1
194 7 5		132.9	4.1		4	38.7	1.5 23		1	.29	6	
194 8 5		86.2	3.4		2	51.7	2.2 26		1	.74	3	2
194 9 59		337.0	8.0		4	314.9	5.6 21	05	2		SSSS	1
194 10 5		330.9	9.0		4	337.4	6.5 21		2	.44		3
	7 1159		10.8		4	338.1	7.0 22		2	.51	ن	553
194 12 5		334.5	9.7		3	322.6	7.0 23			.43	د	<u>ي</u>
194 13 59		351.5	7.5		2	332.5			1	.58	2	<u> </u>
194 14 59		347.3	7.2		2	999.099	6.4999		9 .		2	2
194 15 59		265.3	6.9		2				9	9.99	2	2
194 16 59		342.6	6.0		2	999.099			9	9.99	2	2
194 17 59						999.099			9	9.99	2 2	2
194 18 59		1.3	5.2		3 4	999.099			9	9.99	2	2
194 19 59		7.5	4.6		4	999.099			9	9.99	3	2
194 20 59		21.3	4.6		5	999.099			9	9.99	6	2
194 21 59		42.2	7.4		5	999.099			9	9.99	6	2
194 21 59		69.4	8.6		5	999.099			9	9.99	5	3
		100.0	5.7		5	999.099			7	9. 99	6	2
194 23 59	7 2007	141.7	2.6	18.54	6	999.099	79.0999	90 (9	9.99	6	1

DAY			NTIME	WDOUT (DEG)	WSOUT		ISG	OUT WDIN WSIN SGI (DEG) (MPH) (DEG		IN RAT	IPG
195	O	59	59	158.4	3.2	12.19	4	999.0999.0999.9	0 9	9.99	6
195		59	159	310.5	3.2	17.35	5	999.0999.0999.9	_	9.99	6
195		59	259	317.7	3.6	3.00	6	799.0999.0999.	_	9.99	6
195		59	359	305.7	2.4	10.62	4	999.0999.0999.9		9.99	5
195		59	459	319.3	3.2	3.21	6	999.0999.0999.		9.99	6
195		59	559	325.0	2.7	3.60		327.0 2.6999.9		7.77 9.99	
195		59	559	301.3			6 4	241.1 1.4999.9			5
			759	146.9	1.4	10.67	•			9.99	6 -
195		59			5.5	6.00	4		_	9.99	2
195		59	859	151.4	7.9	7.24	4	163.4 3.9999.9		9.99	2
195		59	959	157.0	8.6	9.44	4	165.7 6.0999.9		9.99	Ξ.
			1159	157.2	9.5	15.49	3	177.8 7.3999.9		9.99	мамама
			1259	160.9	9.7	13.43	3	153.9 6.4 34.7		.39	Ξ
			1359	147.3		11.85	4	143.7 7.2 29.0	5 1	.41	3
195	14	59	1459	132.9	11.1	16.20	3	125.0 6.9 30.4	7 1	.53	3
195	15	59	1559	191.8	9.6	16.20	3	206.9 6.1 30.8	18	.52	3
195	16	59	1659	197.8	11.1	14.40	3	224.0 7.4 25.0	7 1	.57	300
195	17	59	1759	207.1	9.7	12.77	3	234.3 7.2 24.3	io 1	.53	3
195	18	59	1859	198.8	9.0	10.59	4	224.8 6.5 20.9	ত 2	.51	3
195			1959	229.5		8.84	4	255.1 8.0 17.7		.50	5
			2059	209.8	5.6	9.65	4	264.3 2.9 21.5		. 45	6
			2259	226.8		8.38	4	237.9 12.3 29.7		.28	4
195			2359	332.2		6.41	4	326.2 20.2 17.8		.36	4
196		59	59	332.2		7.96	4	323.7 14.8 17.9		.44	4
196		59	159	333.8		8.27	4	327.0 13.9 18.9		.44	4
196		59	259	345.6			4	340.7 10.2 25.8		.32	4
						8.18					4
196		59	359	331.3		7.32	4	325.4 10.5 16.0		. 46	
196		59	459	335.6		7.57	4	332.0 10.0 19.8		.39	4
196		59	559	343.6		7.56	4	344.5 9.5 23.7		.32	4
196		59	659	341.7		7.43	4	333.6 9.7 19.4		.38	4
196		59	759	335.6		7.52	4	327.6 12.3 15.8		. 48	4
196		59	859	340.4		7.20	4	339.2 10.5 21.3		.34	4
196		59	959	357.0		8.63	4	11.9 8.6 25.0		.35	4
			1059		16.3	8.71	4	37.5 10.7 19.8		.44	4
			1159	346.0		9.22	4	349.0 9.6 20.6		. 45	4
			1259	332.1		9.27	4	324.8 11.1 15.7	2 3	.59	3 3
196	13	59	1359	343.8		8.11	4	349.5 10.0 23.6	0 1	.34	3
196	14	59	1459	349.0	12.6	11.32	4	345.2 8.3 23.5	33 1	. 48	3
196	15	59	1559		11.7	13.38	3	30.1 7.9 22.5	io 1	. 59	3 2
196	16	59	1659	323.4	6.1	17.54	2	331.5 5.2 23.6	5 i	.74	2
			1859	79.8	6.7	7.90	4	91.8 4.8 19.5	5 2	.40	3
196	19	59	1959	121.3	16.4	5.72	4	113.1 11.7 15.0	6 4	.37	4
			2059	140.5		6.62	5	137.5 4.2 28.8	5 6	.23	5
			2159	188.6	7.0	8.69	4	225.0 4.4 18.7	72 6	.46	6
			2359	315.9	8.1	7.22	5	302.0 5.6 14.3	4 4	. 49	5
197		59	59	319.4	9.6	6.91	5	323.7 14.8 17.9		.39	5
197		59	159	347.2	4.7	7.02	5	327.0 13.9 18.9		.37	6
200		59	759	116.6		999.90	9	94.8 2.5 11.3		9.99	3
			1059	116.0		999.90	9	134.3 4.6 25.4		9.99	3 3
			1159			999.90	9	91.4 4.9 20.5		9.99	3
			1259			999.90	9			7.77 9.99	3 3
			1359	131.7	5.7	21.46	2	33.1 4.5 27.4		.78	i
			1459	144.1	7.2	25.35	1	89.2 5.7 22.5		1.13	2 2
			1559	130.1	7.8	22.46	2	110.8 6.4 21.8		1.03	2
			1659	108.8	8.1	17.10	3	125.9 6.2 22.8		.76	2 3
			1759	118.2		12.71	3	110.9 9.1 11.		1.08	
			1959	212.0		9.47	4	323.8 7.5 19.3		. 49	4
200	22	59	2259	226.9	5.0	12.77	5	303.4 4.1 18.4	12 6	. 69	6

DAY NTIME	WDOUT WSOUT (DEG) (MPH)	SGOUT ISGOUT (DEG)	WDIN WSIN SGIN IS (DEG) (MPH) (DEG)	BGIN	RAT	IPG IWS
201 1 59 159	281.9 6.6	9.22 4	274.8 4.4 17.80	6	.52	6 2
201 2 59 259	280.3 6.2	7.95 4	273.1 3.8 22.16	6	.36	6 I
201 3 59 359	323.0 3.8	18.78 6	119.1 3.9 15.71	5	1.20	6 1
201 4 59 459	358.0 3.9	12.32 4	142.8 3.0 16.92	5	.73	5 1
201 6 59 659	279.3 4.2	9.66 4	290.9 3.4 16.25	5	.59	6 2
201 7 59 759	258.5 3.2	8.46 4	322.0 2.2 14.01	3	.60	2 1
201 8 59 859	106.1 2.3	11.80 4	113.7 2.1 12.84	Ī	.92	Z 1
201 9 59 959	153.8 4.6	14.26 3	99.7 4.1 16.43	Ī	.87	<u> </u>
201 10 59 1059	66.2 3.0	9.33 4	106.4 3.0 11.64	4	.80	$\frac{2}{2}$ $\frac{1}{1}$
201 11 59 1159	11.9 2.3	17.20 3	142.9 1.8 24.21	1	.71	2 1 2 2 2 1 2 1
201 12 59 1259	90.4 2.8	13.10 3	122.6 2.8999.90	9	7.75	1 1
201 13 59 1359	23.8 3.6	20.71 2	999.0999.0999.90	9	9.99	1 1
201 14 59 1459	102.7 8.6	8.04 4	106.8 8.7999.90	9	9.99	ā ā
201 15 59 1559	101.3 14.0	6.27 4	109.9 11.3 9.49	4	.65	4 4
201 16 59 1659	107.2 10.7	7.66 4	109.6 9.0 6.94	4	1.10	
201 17 59 1759	116.8 6.0	10.21 4	103.6 4.9 11.57	4	.88	2 5
201 18 59 1859	112.6 6.5	9.26 4	108.0 6.4 8.69	4	1.07	= =
201 19 59 1959	134.4 7.5	5.93 5	111.9 4.9 10.62	4	.56	5 Q Q Q Q 4 5 Q 5 5 4
201 20 59 2059	266.3 15.8	9.96 4	286.1 11.6 18.83	4	.53	4 4
202 0 59 59	306.9 7.4	10.88 4	293.8 4.2 10.46	4	1.04	6 2
202 1 59 159	265.2 4.7	20.58 6	266.3 3.3 21.56	6	.95	6 2
202 2 59 259	290.6 5.1	13.37 5	281.2 5.3 8.13	4	1.64	6 2
202 4 59 459	277.5 6.5	7.96 4	274.7 6.6 7.87	4	1.01	6 2 6 2
202 5 59 559	284.0 6.1	7.75 4 9.81 4	279.5 5.2 17.18	5	.57	6 2
202 5 59 659				5	.57	
202 7 59 759		8.98 4 10.45 4		_		6 2
202 8 59 859				4	1.96	2 1
202 8 57 857			108.1 3.6 11.43 106.7 5.9 13.79	4 3	1.03	2 1
202 10 59 1059					1.10	2 2 2 2 2 2
202 10 57 1057			136.4 5.6999.90 270.0 6.6999.90	9 9	9.99	2 2
					9.99	2 3
202 12 59 1259 202 13 59 1359	107.3 7.6 105.1 10.3		999.0999.0999.90 999.0999.0999.90	9	9.99 9.99	2 3 2 3
			999.0999.0999.90	7. 9	7.77 9.97	2 3 2 3
202 14 59 1459 202 15 59 1559	103.0 9.7 127.8 10.5	18.87 2 13.35 3			7.77 7.77	4) 3 3
202 16 59 1659	95.0 8.1	16.32 3	999.0999.0999.90 999.0999.0999.90	9 9	7.77 7.77	900000000000000000000000000000000000000
202 17 59 1759	106.8 7.0	18.73 2	999.0999.0999.90	9		2 3
202 17 57 1757	83.7 9.2				9.99	2 2
			999.0999.0999.90	9	9.99	
	32.8 3.1	24.15 6	999.0999.0999.90	9	9.99	6 1
	270.8 4.6 281.9 3.4	7.57 5	999.0999.0999.90	9	9.99	6 2
203 1 59 159 203 3 59 359		12.79 5	999.0999.0999.90	9	9.99	6 1
203 5 59 559		3.87 5	999.0999.0999.90	9	9.99	6 2
203 6 59 659	269.8 4.8 282.5 5.5	5.87 5 8.76 4	266.4 3.0 19.78 288.3 4.2 11.67	6 4	.30	6 2 6 2 6 2
203 7 59 759	353.1 2.0	14.60 3	121.3 1.9 19.63	2	.75 .74	2 1
203 8 59 859	307.7 7.0	14.66 3	276.8 6.0 13.81	3	1.06	3 2
203 9 59 959	299.5 6.4	11.71 4	281.7 6.4 18.20	2		2 2
200 / 0/ /07	2//#3 0:4	414/1 7	2011/ 0.4 10.20	<u>*</u>	• 64.	به ند

DAY NTIME	WDOUT WSOUT (DEG) (MPH)	SGOUT (DEG)	ISGO	NIGW TUE	WSIN (MPH)	SGIN (DEG)	ISGIN	RAT	IPG .
213 11 59 1159	999.0999.0		9	352.8	3 13.2	24.69	i	9.99	9
213 12 59 1259	999.0999.0	999.90	9		7 11.6		2	9.99	9
213 14 59 1459	246.3 13.7	18.02	4		1 12.9		1	.73	3
213 15 59 1559	153.0 15.0	8.46	4	105.4		20.47	2	. 41	4
213 16 59 1659	150.2 12.9	8.59	4	114.5		10.74	4	.80	3
213 17 59 1759 213 18 59 1859	151.7 11.4 249.9 8.7	9.09 18.14	4 2	115.5 47.5		10.94	4 1	.83 .76	3 3
213 19 59 1959	227.9 7.9	14.72	4	7.5		27.45	6	.54	5 5
213 20 59 2059	186.1 7.2	13.68	4	95.3		38.09	6	.36	6
213 21 59 2159	218.4 10.8	17.63	4	346.5		29.65	6	.59	5
213 22 59 2259	234.1 11.6	13.41	4	345.8		15.60	4	.86	5
213 23 59 2359	215.4 12.6	15.15	4	337.7		17.97	4	.84	4
214 0 59 59	216.0 13.7	14.45	4	355.5		28.42	5	.51	4
214 1 59 159	228.6 11.7	15.34	4	1.6		21.80	4	.70	5
214 2 59 259 214 3 59 359	232.0 11.2 231.1 10.6	13.30 13.75	4 4	358.4 357.4		24.71 23.23	5 5	. 54 . 59	. 5 5
214 4 59 459	227.4 9.3	15.01	4	357.2		20.03	4	.75	5
214 5 59 559	229.9 10.6	11.70	4	1.9		21.40	4	.55	5
214 6 59 659	240.1 9.0	14.92	4	359.		21.57	5	.69	5
214 7 59 759	244.4 10.4	15.38	3	349.3		18.16	2	.85	5 3
214 8 59 859	246.6 10.1	17.48	3	3 5 3.0		23.39	i	.75	3
214 9 59 959	270.8 11.2	16.91	3	357.8		29.35	1	.58	3
214 10 59 1059	264.0 10.6	17.83	2	351.6		25.96	1 -	.69	3 3
214 11 59 1159 214 12 59 1259	297.8 11.2 283.3 13.6	12.70 15.08	3 4	316.7 335.5		14.47 22.11	3 2	. 88 . 68	ن ح
214 13 59 1359	271.8 13.3	18.73	2		7 11.0		1	.81	3 3
214 14 59 1459	286.9 12.1	15.76	3	331.4		25.66	1	.61	3
214 15 59 1559	290.9 11.3	13.33	3	320.4		20.16	2	.66	3 3
214 16 59 1659	280.7 8.6	14.33	3	332.7		22.14	2	. 65	3
214 17 59 1759	199.1 9.1	11.50	4	94.0		31.57	1	.36	3
214 18 59 1859	163.8 19.0	11.29	4		9 11.7		2	.61	4
214 19 59 1959	164.2 17.6	8.89	4	114.4		18.67	4	. 48	4
214 20 59 2059 214 21 59 2159	174.2 14.3 195.4 11.1	14.54 19.40	4 4	108.4		30.31	4	.48	4 5
214 21 37 2137 214 22 59 2259	182.7 10.6	14.53	4	83.7 112.7		41.81	6 5	.46 .41	5
214 23 59 2359	203.4 7.1	15.21	4	74.9		37.12	6	.41	6
215 0 59 59	308.0 4.4	8.67	4	305.9		13.44	5	. 65	6
215 1 59 159	274.0 6.2	10.20	4	315.7	7 4.0	13.50	5	.76	6
215 2 59 259	227.8 3.6	13.76	5	257.1		21.06	6	- 65	6
215 3 59 359	207.9 3.5	22.58	6	204.9		19.49	6	1.16	6
215 4 59 459 215 5 59 559	202.4 5.7 223.8 4.8	23.12 26.72	6 6	126.7 128.9		35.26 28.48	6	• 66 • 94	6 6
215 6 59 659	230.5 3.7	22.28	6	123.2		29.66	6	.75	6
215 7 59 759	276.1 6.1	17.67	2	354.		17.45	3	1.01	3
215 8 59 859	266.7 7.7	18.36	2	4.8		24.77	1	.74	3
215 9 59 959	237.7 11.3	15.51	3		4 10.0		2	.71	3
215 10 59 1059	266.6 8.8	18.25	2	353.6		33.23	1	.55	3
215 11 59 1159	259.9 8.1	20.06	2	356.		25.56	1	. 78	2
215 12 59 1259 215 13 59 1359	246.2 7.5 251.9 6.8	23.24	1 2	346.:		29.42 25.87	1 1	.79 .78	2 2
215 14 59 1459	228.2 6.4	21.91	2	359.2		30.34	1	.72	2
215 15 59 1559	187.1 7.4	24.15	1	90.2		32.21	1	.75	2 2
215 16 59 1659	204.5 5.5	25.60	1	80.0		29.61	1	.86	2
215 17 59 1759	173.3 6.4	18.33	2	96.4	4 4.8	23.94	1	.77	2 2
215 18 59 1859	145.4 7.0	12.57	3	131.2		16.14	3	.78	3
215 19 59 1959	154.6 8.7	9.26	4	129.0		21.30	6	.43	5
215 20 59 2059	156.1 11.7	6.19	4	120.7		21.84	5	.28	5 5
215 21 59 2159 215 22 59 2259	164.9 9.2 214.7 6.4	8.64 17.70	4 5	117.0 299.:		27.08 27.73	6 6	.32 .64	5
215 23 59 2359	112.3 4.8	11.80	4	159.2		21.57	6	.55	6
·	· · - -	. – •			•			-	-

DAY		N	TIME	WDOUT (DEG)	WSOUT (MPH)	SGOUT (DEG)		WDIN (DEG)	WSIN (MPH)	SGIN (DEG)	ISGIN	RAT	IFG 1	(WS
216	0.5	59	59	130.4	3.6	13.01	5	124.	6 2.5	5 22.13	6	.59	ó	1
215		59	159	45.6		6.97		108.		18.74		.37	6	i
216		59	259	170.7	3.4	14.82		301.	7 2.4	23.95	6	.62	6	1
216	3 5	59	359	161.9	2.5	10.65	4	58.	5 2.5	5 20.09	6	.53	6	1
216	4 5	59	459	200.3	2.3	11.84	4	36.	0 2.0	17.91	6	.60	6	1
216	5 5	59	559	185.4	1.9	9.94	4	92.	7 1.7	7 16.86	5	.59	6	1
216	6 5	59	659	259.3	4.2	13.12		333.	2 2.7	7 23.53	6	.56	6	=
216	8 5	59	859	350.1	2.8	14.12	3	296.	4 2.5	3 22.22	2	.54	2	i
216	9 5	59	959	262.0	5.0	19.85	2	356.	2 4.4	20.53	2	.97	2 2 2	~
216	10 5	59	1059	272.1	5.9	26.82	1	355.	2 5.2	2 27.39	1	.98	2	2
216	11 5	59	1159	310.5	5.4	23.58		323.		29.97		.79		GNNN
216	12 5	59	1259	336.2	6.2	19.88		278.	6 6.8	3999.90	9	9.99	1	2
216	13 5	59	1359	64.2	4.9	21.88		999.	0999.0	999.90	9	9.99	1	2
216	14 5	59	1459	136.9	8.3	14.12		999.	0999.0	999,90	9	9.99	2	Z
216	15 5	59	1559	163.8	10.9	14.21		999.	0999.0	999.90	9	9.99	3	3
216	16 5	59	1659	93.0	12.7	13.06	3	999.	0999.0	999.90	9	9.99	3	4
216	17 5	59	1759	96.5	17.5	10.19	4	999.	0999.0	999.90	9	9.99	4	4
216	13 5	59	1859	114.5	12.8	8.02	4	999.	0999.0	999.90	9	9.99	4	4
216	19 5	59	1959	157.0	10.4	8.65		999.	0999.0	999.90	9	9.99	5	3
216			2059	207.7	4.9	11.55	4	999.	0999.0	999.90	9	9.99	6	2
216	21 5	59 :	2159	127.6	3.4	7.69	4	999.	0999.0	999,90	9	9.99	6	1
216		59	2259	280.4	3.2	9.93	4	999.	0999.0	999.90	9	9.99	6	1
216			2359	282.4	11.4	11.71	4	999.	0999.0	999.90	9	9.99	5	3
217		59	59	271.6		10.35		999.	0999.0	999.90	9	9.99	5	3
217		59	159	246.7	5.8	13.59	4	999.	0999.0	999.90	9	9.99	6	2
217		59	259	90.6	5.9	13.63	4	999.	0999.0	999.90	9	9.99	6	2
217	3 5	59	359	99.6	4.0	11.82	4	999.	0999.0	999.90	9	9.99	6	1
217		59	459	144.8	2.9	13.21	5	999.	0999.0	999.90	9	9.99	6	1
217		59	559	196.0		21.64		999.	0999.0	999.90	9	9.99	6	1
217		59	659	273.1		11.24		317.	6 1.5	5 23.37		. 48	6	1
217		59	759	293.6		14.23		33.		16.29		.87	2 3	1
217		59	857	285.6		14.04		337.		3 17.97		.78	3	2
217	9 5	59	959	277.4	8.1	16.49	3	343.	0 6.8	18.74	2	.88	2	3

APPENDIX C

FORTRAN LISTING OF MODIFIED ISCST PROGRAM

	,		
		•	

```
THE FOLLOWING LINE OF CODE HAS BEEN ALTERED TO RUN ON IBM-PC
    CHARACTER*4 TITLE, IQUN, ICHIUN, CONDEP
COMMON QF (43500)
                                                          50106010
    DIMENSION IZERO(161), IQF(1)
    1 NSDBRP (150), IDSDR (200), IPERD, NPNTS, NAVG, NHOURS, NDAYS, NTDAY, LINE, S0106040
2 ID, IN, TITLE (15), IQUN (3), ICHIUN (7) _CONDEP(4) | TMTT | TTT
THE FOLLOWING LINE OF CODE HAS BEEN ADDED TO COMPUTE ESCAPE FRACTION
                                                         TRC 001
    COMMON/DEPO/UD(200,20), ZREF, ZO
EQUIVALENCE (ISW, IZERO), (QF, IQF)
                                                          50106060
    SET MAXIMUM LIMIT FOR "QF" ARRAY. MUST AGREE WITH VALUE USED TO S0106070
C
С
    DIMENSION "QF".
    LIMIT = 43500
THE FOLLOWING LINE OF CODE HAS BEEN ADDED TO RUN ON IBM-PC
    OPEN (6,FILE='LPT1:')
WRITE (6,5432)
5432 FORMAT ('1',21X,'ISCST (VERSION 80339)'/
    1 22X, 'AN AIR QUALIT/ DISPERSION MODEL IN'/
2 22X, 'SECTION 3. MODELS PROPOSED SEPBO FOR 81 GUIDELINES.'/
3 22X, 'IN UNAMAP (VERSION 4) DEC 80'/
4 22X, 'SOURCE% FILE 16 ON UNAMAP MAGNETIC TAPE FROM NTIS.')
С
    CLEAR "QF" ARRAY AND "LOGIX" BLOCK.
                                                          50106100
    DO 10 I = 1,LIMIT
                                                          50106110
  10 \ QF(I) = 0.0
                                                          50106120
    DO 20 I = 1,161
                                                          50106130
  20 IZERU(I) = 0
                                                          50106140
    SET INPUT AND OUTPUT LOGICAL UNIT NUMBERS.
                                                          50106150
    IN = 5
                                                          50106160
    IO = 6
THE FOLLOWING LINE OF CODE HAS BEEN ADDED TO RUN ON IBM-PC
    OPEN (5.FILE='ISCIN')
С
    INFUT TITLE.
                                                          50106180
    READ(IN,9001) (TITLE(I), I=1,15)
                                                          50106190
C
    INPUT LOGIC OPTIONS.
                                                          50106200
    READ(IN, 9002) (ISW(I), I=1, 40)
                                                          50106210
С
    INPUT SOURCE & RECEPTOR SIZE VALUES.
THE FOLLOWING LINES OF CODE HAVE BEEN ALTERED TO COMPUTE ESCAPE FRACTION
    READ(IN, 9003) NSOURC, NXPNTS, NYPNTS, NXWYPT, NGROUP, IPERD, NHOURS, S0106230
    1 NDAYS, ZREF, ZO
DETERMINE NUMBER OF TIME PERIODS TO BE CALCULATED.
    NAVG = 0
                                                          S0106260
    DO 30 I = 7,14
                                                          50106270
    IF (ISW(I) .LE. 0) GOTO 30
                                                          50106280
    NAVG = NAVG + 1
                                                          50106290
  30 CONTINUE
                                                          50106300
C
    CALCULATE TOTAL NUMBER OF RECEPTORS.
                                                          50106310
    NPNTS = NXPNTS*NYPNTS + NXWYPT
                                                          50106320
    NGROPS = NGROUP
                                                          50106330
    IF (NGROUP .LE. 0) NGROPS = 1
                                                          90106340
    NN = NAVG*NPNTS*NGROPS
                                                          50106350
C
    CALCULATE INDICES FOR STORAGE ALLOCATION.
                                                          S0106360
    I1 = NPNTS + NPNTS + 1
                                                          50106370
    I2 = I1 + NN
                                                          S0106380
    13 = 12
                                                          50106390
    IF(ISW(15) .EQ. 1) I3 = I2 + NPNTS*NGROPS
                                                          50106400
    14 = 13
                                                          50106410
    15 = 13
                                                         50106420
    IF (NXPNTS .EQ. O .OR. NYPNTS .EQ. O) GOTO 40
                                                          50106430
    I4 = I3 + NXPNTS
                                                          50106440
```

```
I5 = I4 + NYPNTS
                                                                  50106450
  40 I6 = I5
                                                                  50106460
     17 = 15
                                                                  90106470
     IF (NXWYPT .EQ. O) GOTO 50
                                                                  50106480
     I6 = I5 + NXWYPT
                                                                  50106490
     I7 = I6 + NXWYPT
                                                                  50106500
  50 18 = 17
                                                                  50106510
     IF(ISW(4) .NE. O) IB = 17 + NPNTS
                                                                  50106520
     19 = 18
                                                                  50106530
     IF(ISW(17) .NE. 0) I9 = I8 + 4*NN
                                                                  50106540
     I10 = I9
                                                                  50106550
     I11 = I10
                                                                  50106560
     112 = 110
                                                                  50106570
     IF(ISW(18) .LE. 0) GOTO 60
                                                                  50106580
     I10 = I9 + 150*NAVG*NGROPS
                                                                  50106590
     I11 = I10 + 50*NAVG*NGROPS
                                                                  50106600
     I12 = I11 + NAVG*NGROPS
                                                                  50106610
  60 I13 = I12 + 215*NSOURC - 1
                                                                  50106620
С
     DETERMINE IF CALCULATED STORAGE ALLOCATION EXCEEDS LIMIT.
                                                                  50106630
     IF(I13 .LE. LIMIT) GOTO 70
                                                                  50106640
     WRITE(ID, 9004) I13, LIMIT
                                                                  50106650
     STOP
                                                                  50106660
0
     CALL INPUT ROUTINE.
                                                                  50106670
  70 CALL INCHK(QF(1),QF(I1),QF(I2),QF(I3),QF(I4),QF(I5),QF(I6),QF(I7),S0106680
    1 QF(IB),QF(I9),IQF(I10),IQF(I11),QF(I12))
C
     CALL MODEL ROUTINE.
                                                                  50106700
     CALL MODEL (QF(1),QF(I1),QF(I2),QF(I3),QF(I4),QF(I5),QF(I6),QF(I7),S0106710
    1 QF(I8),QF(I9),IQF(I10),IQF(I11),QF(I12))
                                                                  50106720
     STOP
                                                                  50106730
 9001 FORMAT (15A4)
                                                                  S0106740
 9002 FDRMAT (4012)
                                                                  50106750
C THE FOLLOWING LINE OF CODE HAS BEEN ALTERED TO COMPUTE ESCAPE FRACTION
 9003 FORMAT(816,2F10.0)
9004 FORMAT('1',58H ***ERROR*** CALCULATED STORAGE ALLOCATION LIMIT S0106770
    1EQUALS, 16,752H AND EXCEEDS THE MAXIMUM STORAGE ALLOCATION LIMIT OFS0106780
    2,16,/16H RUN TERMINATED.)
                                                                  50106790
                                                                  50106800
```

```
SUBROUTINE MODEL (CALC, CHIAV, CHIAN, GRIDX, GRIDY, XDIS, YDIS, GRIDZ,
                                                                        50300010
     1 CHIMAX, CHISO, IPNT, ICOUNT, SOURCE)
                                                                        50300020
C
                    SUBROUTINE MODEL (VERSION 80339), PART OF ISCST.
      THIS ROUTINE CONTAINS THE MODEL EQUATIONS FOR CALCULATING GROUND- 50300030
C
C
     LEVEL CONCENTRATION OR DEPOSITION INCLUDING THE PLUME RISE
                                                                        50300040
C
     EQUATIONS. THIS ROUTINE ALSO CONTROLS THE CALCULATION AND OUTPUT S0300050
     OF ALL TABLES THE PROGRAM PRODUCES.
C
                                                                        50300040
C
                                                                        50300070
      INTEGER OFLG, OFLGS
                                                                        50300080
THE FOLLOWING LINE OF CODE ADDED TO RUN ON IBM-PC
С
      CHARACTER*4 TITLE, IQUN, ICHIUN, CONDEP
LOGICAL FZERO, WAKE, POLAR, DONE, SGZDON, IFLAG(8), ISW24
                                                                        50300090
     COMMON /LOGIX/ ISW(40), NSOURC, NXPNTS, NYPNTS, NXWYPT, NGROUP,
                                                                        50300100
     1 NSDGRP(150), IDSDR(200), IPERD, NPNTS, NAVG, NHDURS, NDAYS, NTDAY, LINF, S0300110
     2 IO, IN, TITLE (15), IQUN (3), ICHIUN (7), CONDEP (6), LIMIT, MIMIT
                                                                        50300120
      COMMON /MET/ IDAY (366), ISTAB (24), AWS (24), TEMP (24), AFV (24),
                                                                        50300130
     1 AFVR(24), HLH(24,2), P(24), DTHDZ(24), DECAY(24), PDEF(6,6),
                                                                        50300140
     2 DTHDEF(6,6), GAM11, GAM21, ZR, DDECAY, IMET, ITAP, TK, UCATS(5)
                                                                        50300150
    THE FOLLOWING LINE OF CODE ADDED TO COMPUTE ESCAPE FRACTION
      COMMON/DEFO/UD(200,20), ZREF, ZO
                                                                        TRC 002
      DIMENSION CALC(1), CHIAV(1), CHIAN(1), GRIDX(1), GRIDY(1), XDIS(1),
                                                                        50300160
     1 YDIS(1), GRIDZ(1), CHIMAX(1), CHI50(150,1), IPNT(50,1), ICOUNT(1),
                                                                        50300170
     2 SOURCE (215,1)
                                                                        50300180
      DIMENSION COSNUM(360),SINNUM(451),RLH(48),SASIGZ(36),SBSIGZ(36),
                                                                        50300190
     1 SP(6),SQ(6),SC(6),SD(6),KAVG(8),MSTAB(24),IMOS(11),ISEAS(12)
                                                                        50300200
      EQUIVALENCE (COSNUM(1), SINNUM(91)), (ISW20, ISW(40)), (VS, SIGYD, XD),
                                                                        50300210
     1 (TS,SIGZO), (POLAR,DONE), (ISW(23),QFLGS)
                                                                        50300220
      DATA SASIGZ / 158.08,170.22,179.52,217.41,258.89,346.75,2*453.85,
                                                                        S0300230
     1 90.673,98.483,109.3,61.141,34.459,32.093,32.093,33.504,36.65,
                                                                        50300240
     2 44.053,23.331,21.628,21.628,22.534,24.703,26.97,35.42,47.618,
                                                                        50300250
     3 15.209,14.457,13.953,13.953,14.823,16.187,17.836,22.651,27.074,
                                                                        50300260
     4 34.219 /
                                                                        50300270
      DATA SBSIGZ / 1.0542,1.0932,1.1262,1.2644,1.4094,1.7283,2*2.1166,
                                                                        50300280
     1 .93198,.98332,1.0971,.91465,.86974,.81066,.64403,.60486,.56589,
                                                                        50300270
     2 .51179,.81956,.75660,.63077,.57154,.50527,.46713,.37615,.29592,
                                                                        50300300
     3 .81558,.78407,.68465,.63227,.54503,.46490,.41507,.32681,.27436,
                                                                        50300310
     4 .21716 /
                                                                        50300320
      DATA SC,SD / 24.1667,18.333,12.5,8.333,6.25,4.1667,2.5334,1.8096,
                                                                        50300330
     1 1.0857,.72382,.54287,.36191 /, SP,SQ / .004781486,.006474168,
                                                                        50300340
     2 .009684292,.014649868,.019584802,.029481132,1.1235955,1.1086475,
                                                                        50300350
     3 1.0905125,1.0881393,1.0857763,1.0881393 /
                                                                        90300340
      DATA KAVG / 1,2,3,4,6,8,12,24 /
                                                                        50300370
      DATA IMOS / 32,61,92,122,153,183,214,245,275,306,336 /
                                                                        50300380
      DATA ISEAS / 1,1,2,2,2,3,3,3,4,4,4,1 /
                                                                        50300390
C
                                                                        50300400
C***
      INITIALIZE.
                                                                        50300410
C
                                                                        50300420
      ISW24 = ISW(24) .EQ. 1
                                                                        50300430
C
      INITIALIZE COSNUM & SINNUM ARRAYS WITH COSINE & SINE VALUES OF
                                                                        50300440
C
      INTEGER WIND DIRECTIONS.
                                                                        50300450
      DO 10 I = 1,451
                                                                        50300460
      A1 = I
                                                                        50300470
   10 \text{ SINNUM(I)} = \text{SIN(A1*.017453293)}
                                                                        50300480
C
      IF MAX 50 TABLES ARE NOT COMPUTED, ICOUNT & IPNT DO NOT EXIST.
                                                                        50300490
      IF(ISW(18) .LE. 0) GOTO 30
                                                                        50300500
C
      INITIALIZE POINTER ARRAY & COUNTER FOR MAXIMUM FIFTY TABLES.
                                                                        50300510
      II = NAVG
                                                                        50300520
      IF (NGROUP .GT. 0) I1 = I1*NGROUP
                                                                        S0300530
      DO 20 I = 1, Ii
                                                                        50300540
      ICOUNT(I) = 0
                                                                        50300550
      DO 20 J = 1,50
                                                                        50300560
   20 IPNT(J,I) = J
                                                                        50300570
      CALCULATE VIRTUAL DISTANCES FOR ALL SOURCES AND STABILITY
                                                                        50300580
      CATEGORIES. ALSO CHECK SOURCE-RECEPTOR DISTANCES.
                                                                        50300570
```

```
30 \text{ LINE} = 100
                                                                        50300600
    DO 310 I = 1,NSOURC
                                                                        50300610
    ITYPE = SOURCE(1,I)
                                                                        50300620
    IWAK = ITYPE/8192
                                                                        50300630
    ITYPE = ITYPE - (ITYPE/16) *16
                                                                        50300640
    IF(ITYPE-1) 40 ,110,140
                                                                        50300650
 40 HB = SOURCE(11,I)
                                                                        90300660
    HW = SOURCE(12,I)
                                                                        50300670
    IF (HB .LE. 0.0 .AND. HW .LE. 0.0) GDTD 190
                                                                        98300680
    H = HB
                                                                        50300690
    IF(HW .LT. HB) H = HW
                                                                        50300700
    DO 50 J = 1.36
                                                                        50300710
50 SOURCE(81+J,I) = (1.2*H/SASIGZ(J))**(1./SBSIGZ(J)) - .01*H
                                                                        50300720
    IF(HW .GE. HB) GOTO 70
                                                                        50300730
    DD 60 J = 1,6
                                                                        50300740
 60 SDURCE(75+J,I) = (.85*HW*SP(J))**SQ(J) - .01*HW
                                                                        50300750
    GOTO 160
                                                                        50300760
 70 IF(HW .GT. 5.*HB) GOTO 90
                                                                        50300770
    DO 80 J = 1,6
                                                                        50300780
 80 SOURCE(75+J.1) = ((.35*HW+.5*HB)*SP(J))**SQ(J) - .01*HB
                                                                        50300790
    GOTO 160
                                                                        20300800
 90 H = .85*HB
                                                                        50300810
    IF (IWAK .EQ. 1) H = 2.25*HB
                                                                        50300820
    DO 100 J = 1.6
                                                                        20200830
100 SOURCE(75+J,I) = (H*SP(J))**SQ(J) - .01*HB
                                                                        50300840
    GOTO 160
                                                                        S0300850
110 SIGYO = SOURCE(9.1)
                                                                        50300860
    SIGZO = SOURCE(8,I)
                                                                        50300870
    DO 120 J = 1,6
                                                                        20300880
120 IF(SIGYD .GT. 0.0) SDURCE(75+J,I) = (SIGYD*SP(J))**SQ(J)
                                                                        50300890
    DO 130 J = 1,36
                                                                        50300900
130 IF(SIGZO .GT. 0.0) SOURCE(B1+J, I) = (SIGZO/SASIGZ(J))**
                                                                        50300910
                                         (1./SBSIGZ(J))
                                                                        50300920
   GOTO 160
                                                                        50300930
140 XO = SOURCE(9,I)
                                                                        50300740
    DO 150 J = 1.36
                                                                        S0300950
150 \text{ SOURCE}(81+J,I) = .001*X0
                                                                        50300960
    NO VIRTUAL DISTANCES CAN BE LESS THAN ZERO.
                                                                       50300970
160 DO 170 J = 1,6
                                                                       50300980
170 IF(SOURCE(75+J,I) .LT. 0.0) SOURCE(75+J,I) = 0.0
                                                                       50300990
    DO 180 J = 1,36
                                                                        50301000
180 IF (SDURCE(81+J,I) .LT. 0.0) SDURCE(81+J,I) = 0.0
                                                                        50301010
190 \text{ A1} = 99.99
                                                                        50301020
    IF(ITYPE-1) 200 ,210 ,220
                                                                        50301030
200 \text{ XDP} = 0.0
                                                                        50301040
    H = HB
                                                                        50301050
    IF (HW .LT. HB) H = HW
                                                                        50301060
    A1 = 3.*H
                                                                        50301070
    IF(A1 .LT. 99.99) A1 = 99.99
                                                                        50301080
    GOTO 230
                                                                        50301090
210 XOP = 2.15*SIGYO
                                                                        50301100
    GOTO 230
                                                                        50301110
220 \text{ XOP} = .5641896*SOURCE(9.I)
                                                                        50301120
230 NSO = SOURCE(2,I)
                                                                        50301130
    XS = SOURCE(4,I)
                                                                        50301140
    YS = SOURCE(5,1)
                                                                        50301150
    IF (NXPNTS .EQ. O .OR. NYPNTS .EQ. O) GOTO 270
                                                                        50301160
    POLAR = .FALSE.
                                                                        50301170
    IF(ISW(2) .EQ. 2 .OR. ISW(2) .EQ. 4) POLAR = .TRUE.
                                                                        50301180
    DO 260 J = 1, NYPNTS
                                                                        50301190
    YR = GRIDY(J)
                                                                        50301200
    I1 = YR
                                                                        S0301210
    DO 260
            K = 1,NXPNTS
                                                                        50301220
    XR = GRIDX(K)
                                                                        50301230
    IF (.NOT.POLAR) GOTO 240
                                                                        50301240
    YR = XR * COSNUM(II)
                                                                        50301250
    XR = XR*SINNUM(I1)
                                                                        50301260
240 A3 = YR - YS
                                                                        50301270
    XR = XR - XS
                                                                        50301280
```

```
50301290
      A2 = SQRT(XR*XR + A3*A3) - XQP
                                                                           50301300
      IF(A2 .GE. A1) GOTO 260
                                                                           50301310
      IF(LINE .LT. 57) GOTO 250
                                                                           50301320
      WRITE(ID,9011)
                                                                           50301330
     WRITE(ID,9005) TITLE
     WRITE(ID,9002) CONDEP
                                                                           50301340
                                                                           50301350
     LINE = 16
 250 WRITE(ID, 9003) NSD, GRIDX(K), GRIDY(J), A2
                                                                           50301360
      LINE = LINE + 1
                                                                           50301370
                                                                           50301380
 260 CONTINUE
                                                                           50301390
 270 IF (NXWYPT .EQ. 0) GOTO 310
      POLAR = .FALSE.
                                                                           50301400
      IF(ISW(3) .EQ. 2) POLAR = .TRUE.
                                                                           50301410
                                                                           50301420
      DO 300 J = 1,NXWYPT
      YR = YDIS(J)
                                                                           50301430
      XR = XDIS(J)
                                                                           50301440
                                                                           50301450
      IF (.NOT.POLAR) GOTO 280
                                                                           50301460
      I1 = YR
      YR = XR*COSNUM(I1)
                                                                           50301470
      XR = XR*SINNUM(I1)
                                                                           50301480
  280 YR = YR - YS
                                                                           50301490
      XR = XR - XS
                                                                           50301500
      A2 = SQRT(XR*XR + YR*YR) - XQP
                                                                           50301510
      IF(A2 .GE. A1) GOTO 300
                                                                           50301520
      IF(LINE .LT. 57) GOTO 290
                                                                           50301530
                                                                           50301540
      WRITE(ID,9005) TITLE
      WRITE(IO, 9002) CONDEP
                                                                           50301550
                                                                           50301560
      LINE = 16
  290 WRITE(ID,9003) NSD,XDIS(J),YDIS(J),A2
                                                                           50301570
                                                                           50301580
      LINE = LINE + 1
                                                                           50301590
  300 CONTINUE
                                                                           50301600
  310 CONTINUE
      INITIALIZE NUMBER DAYS, HOURS & HOURS PER DAY. SET MIXING HEIGHT
C
                                                                           50301610
C
                                                                           50301620
      NTDAY = 0
                                                                           50301630
      IF(ISW(19) .GT. 1) GOTO 320
                                                                           50301640
                                                                           50301650
      NHOURS = 24
                                                                           50301660
  320 \text{ IHM} = 1
      IF(ISW(20) .GT. 0) IHM = 2
                                                                           50301670
C
                                                                           50301680
                                                                           S0301690
      BEGIN LOOP OVER DAYS OF METEOROLOGICAL DATA.
C***
C
                                                                           50301700
      DO 1690 \text{ IDY} = 1, \text{NDAYS}
                                                                           50301710
      WRITE(*,*) ' STARTED DAY NO.', IDY
      IF(ISW(19) .EQ. 1) GDTO 380
                                                                           50301720
      INPUT A DAY OF CARD MET DATA.
                                                                           S0301730
      DO 370 I = 1.NHOURS
                                                                           50301740
      READ(IMET, 9004) JDAY, AFV(I), AWS(I), HLH(I, 1), TEMP(I), DTHDZ(I),
                                                                           50301750
     1 ISTAB(1),P(1),DECAY(1)
                                                                           50301760
      IF(ISTAB(I) .GT. 6) ISTAB(I) = 6
                                                                            50301770
      AFVR(I) = AFV(I)
                                                                            50301780
      IF(JDAY .LT. 1) JDAY = 1
                                                                            50301790
      IF(I.EQ.1) JDY=JDAY
                                                                           90301795
      IF(ISW(21) .EQ. 3 .AND. ISW(22) .EQ. 3) GOTO 350
                                                                           50301800
      COMPUTE WIND SPEED CATEGORY IN ORDER TO LOAD DEFAULT VALUE FOR
                                                                           50301810
      P OR DTHDZ.
                                                                            50301820
      IST = ISTAB(I)
                                                                           50301830
      DD 330 J = 1,5
                                                                           S0301840
      ISP = J
                                                                           50301850
      IF(UCATS(J) .GE. AWS(I)) GOTO 340
                                                                            50301860
  330 CONTINUE
                                                                           S0301870
                                                                            50301880
  340 IF(ISW(21) .NE. 3) P(I) = PDEF(ISP,IST)
                                                                           50301890
      IF(ISW(22) .NE. 3) DTHDZ(I) = DTHDEF(ISP, IST)
                                                                            50301900
  350 IF(ISW(6) .NE. 2) GOTO 370
                                                                           50301910
      IF(I .GT. 1) GOTO 360
                                                                           50301920
      WRITE(ID, 9001) JDAY
                                                                           50301940
```

```
WRITE(IO, 9005) TITLE
                                                                             50301950
      WRITE(ID, 9007) JDAY
                                                                             50301960
      WRITE(10,9006)
                                                                             50301970
 360 WRITE(IO,9008) I,AFV(I),AWS(I),HLH(I,1),TEMP(I),DTHDZ(I),
                                                                             50301980
     1 ISTAB(I),P(I),DECAY(I)
                                                                             50301990
 370 CONTINUE
                                                                             50302000
      LINE = 0
                                                                             50302010
      GOTO 480
                                                                             50302020
      INPUT PRE-PROCESSED MET DATA.
                                                                             50302030
  380 IF(IDAY(IDY) .GT. 0) GOTO 410
                                                                             50302040
      I1 = IDY + 1
                                                                             90302050
      IF(IDAY(I1) .GT. 0) GOTO 390
                                                                             50302060
      READ(IMET) ISTAB
                                                                             50302070
      GOTO 1690
                                                                             50302080
  390 READ(IMET) JYR, IMO, DAY, ISTAB
                                                                             50302090
      LSTAB = ISTAB(1)
                                                                             S0302100
      IF(LSTAB .GT. 6) LSTAB = 6
                                                                             50302110
      DD 400 I = 2,24
                                                                             50302120
      IF(ISTAB(I) .GT. 6) ISTAB(I) = 6
                                                                             50302130
      KSTT = ISTAB(I) - LSTAB
                                                                             50302140
      IF(KSTT .GT. 1) ISTAB(I) = LSTAB + 1
                                                                             50302150
      IF(KSTT .LT. -1) ISTAB(I) = LSTAB - 1
                                                                             50302160
  400 \text{ LSTAB} = \text{ISTAB(I)}
                                                                             50302170
      GOTO 1690
                                                                             50302180
  410 READ(IMET) JYR, IMO, DAY, ISTAB, AWS, TEMP, AFV, AFVR, HLH
                                                                             50302190
r
      REARRANGE MIXING HEIGHTS.
                                                                             50302200
      DO 420 I = 1,2
                                                                             50302210
      DD 420 J = 1.24
                                                                             50302220
      K = (24*(I-1)) + J
                                                                             50302230
  420 \text{ RLH(K)} = \text{HLH(J,I)}
                                                                             S0302240
      DO 430 I = 1,48,2
                                                                             S0302250
      J = .5*I + 1
                                                                             90302260
  430 \text{ HLH}(J.1) = \text{RLH}(I)
                                                                             S0302270
      DO 440 I = 2,49,2
                                                                             50302280
      J = .5*I
                                                                             S0302290
  440 HLH(J,2) = RLH(I)
                                                                            S0302300
      IF(IDY .EQ. 1) LSTAB = ISTAB(1)
                                                                             50302310
      IF(LSTAB .GT. 6) LSTAB = 6
                                                                             50302320
      DO NOT ALLOW STABILITY TO VARY RAPIDLY & ADJUST FOR URBAN MODES.
                                                                             50302330
      DO 460 I = 1,24
                                                                             50302340
      IF(ISTAB(I) .GT. 6) ISTAB(I) = 6
                                                                             50302350
      MSTAB(I) = ISTAB(I)
                                                                             S0302360
      KSTT = ISTAB(I) - LSTAB
                                                                             50302370
      IF(KSTT .GT. 1) ISTAB(I) = LSTAB + 1
IF(KSTT .LT. -1) ISTAB(I) = LSTAB - 1
                                                                             50302380
                                                                             50302390
      IF(ISW(20) .EQ. 0) GOTO 460
                                                                             50302400
      IF(ISW(20) .EQ. 1) GOTO 450
                                                                             50302410
      IF(ISTAB(I) .EQ. 6) ISTAB(I) = ISTAB(I) - 1
                                                                             90302420
      GOTO 460
                                                                             50302430
  450 IF(ISTAB(I) .GT. 4) ISTAB(I) = 4
                                                                             50302440
  460 LSTAB = ISTAB(I)
                                                                             50302450
      IF(ISW(6) .NE. 2) GOTO 480
                                                                             50302460
      WRITE(ID, 9001) IDY
                                                                             50302470
      WRITE(10,9005) TITLE
                                                                             50302480
      WRITE(10,9007) IDY
                                                                             50302490
      WRITE(ID, 9009)
                                                                             50302500
      DO 470 I = 1.24
                                                                             S0302510
  470 WRITE(ID,9010) I.AFV(I),AFVR(I),AWS(I),HLH(I.IHM),TEMP(I),
                                                                             50302520
     1 MSTAB(I).ISTAB(I)
                                                                             50302530
      LINE = 0
                                                                             50302540
  480 CONTINUE
                                                                             50302550
C
      SET JULIAN DAY.
                                                                             50302560
                                                                             50302570
      IF(ISW(19) .EQ. 1) JDY = IDY
      FETCH SEASON & MONTH.
                                                                             S0302580
      IF(ISW(19) .EQ. 1) GOTO 500
                                                                             50302590
      DO 490 I = 1,11
                                                                             50302600
      IMO = I
                                                                             50302610
      IF(IMOS(I) .GT. JDY) GOTO 500
                                                                             50302620
```

```
490 CONTINUE
                                                                           50302630
      IMO = 12
                                                                           50302640
  500 CONTINUE
                                                                           50302650
      ISEA = ISEAS(IMO)
                                                                           90302660
\Gamma
                                                                           90302670
     BEGIN LOOP OVER MET DATA FOR EACH HOUR.
                                                                           50302680
C***
C
                                                                           50302690
      DO 1670 IHR = 1.NHOURS
                                                                           50302700
      IST = ISTAB(IHR)
                                                                           50302710
      IF URBAN MODE 2, ADJUST STABILITY FOR CALCULATION OF SIGY & SIGZ. S0302720
C
      ISTUM2 = IST
                                                                           50302740
      IF(ISW(20) .EQ. 2) ISTUM2 = IST - 1
      IF(ISTUM2 .LT. 1) ISTUM2 = 1
                                                                           50302750
                                                                           50302760
      UBAR = AWS(IHR)
      FV = AFV(IHR)
                                                                           50302770
      FVR = AFVR(IHR)
                                                                           50302780
      HM = HLH(IHR, IHM)
                                                                           50302790
      SET MIXING HEIGHT TO 10000.0 SD THAT ONLY FIRST TERM OF VERTICAL
C
                                                                          50302800
      EQUATION IS COMPUTED (RURAL MODE, E & F STABILITIES ONLY).
С
                                                                           50302810
      IF(ISW(20) .EQ. O .AND. IST .GT. 4) HM = 10000.0
                                                                           50302820
      TA = TEMP(IHR)
                                                                           S0302830
      IF (HM .GT. 0.0) HMI = 1./HM
                                                                           S0302840
C
      COMPUTE WIND SPEED CATEGORY FOR THIS HOUR.
                                                                           S0302850
      DO 510 I = 1,5
                                                                           50302860
      ISP = I
                                                                           50302870
      IF(UCATS(I) .GE. UBAR) GOTO 520
                                                                           S0302880
  510 CONTINUE
                                                                           50302890
      ISP = 6
                                                                           50302900
  520 IF(ISW(19) .EQ. 2) GOTO 530
                                                                           50302910
      PP = PDEF(ISP.IST)
                                                                           S0302920
      DTH = DTHDEF(ISP.IST)
                                                                           50302930
      DECAY(IHR) = DDECAY
                                                                           50302940
      GOTO 540
                                                                           50302950
  530 PP = P(IHR)
                                                                           50302960
      DTH = DTHDZ(IHR)
                                                                           S0302970
  540 CONTINUE
                                                                           50302980
      CLEAR CALCULATION ARRAY FOR SOURCE SUMMATIONS.
                                                                           50302990
      NPNTS2 = NPNTS + NPNTS
                                                                           50303000
      DO 550 I = 1,NPNTS2
                                                                           50303010
  550 CALC(I) = 0.0
                                                                           50303020
      SET IFLAG FOR DAILY TABLES IF HOUR/TIME PERIOD = INTEGER MULTIPLE.S0303030
      DO 560 I = 1.8
                                                                           50303040
      IF(ISW(I+6) .NE. 1) GOTO 560
                                                                           50303050
      IFLAG(I) = .FALSE.
                                                                           50303060
      IF(MOD(IHR,KAVG(I)) .EQ. O) IFLAG(I) = .TRUE.
                                                                           50303070
  560 CONTINUE
                                                                           S0303080
      IF (HM .LE. 0.0) GOTO 1490
                                                                           50303090
      COMPUTE X & Y SCALARS OF RANDOM FLOW VECTOR.
                                                                           50303100
      FVRCOS = (FVR+180.)*.017453293
                                                                           50303110
      FVRSIN = SIN(FVRCOS)
                                                                           50303120
      FVRCOS = COS(FVRCOS)
                                                                           50303130
C
                                                                           50303140
C***
      BEGIN LOOP OVER SOURCES.
                                                                           50303150
C
                                                                           50303160
      DO 1480 IS = 1,NSOURC
                                                                           50303170
      CLEAR CALCULATION ARRAY FOR EACH SOURCE.
                                                                           50303180
      DO 570 I = 1,NPNTS
                                                                           50303190
  570 \text{ CALC}(I) = 0.0
                                                                           50303200
      HS = SOURCE(7, IS)
                                                                           50303210
      IF(HS .GT. HM) GOTO 1480
                                                                           50303220
      ITYPE = SOURCE(1,IS)
                                                                           50303230
      XS = SOURCE(4,IS)
                                                                           50303240
      YS = SOURCE(5, IS)
                                                                           50303250
      ZS = SOURCE(6, IS)
                                                                           S0303260
      VS = SOURCE(9,IS)
                                                                           50303270
      HB = SOURCE(11, IS)
                                                                           50303280
      HW = SOURCE(12, IS)
                                                                           50303290
      D = SOURCE(10.IS)
                                                                           50303300
```

```
TS = SOURCE(8,IS)
                                                                            50303310
      NSO = SOURCE(2.IS)
                                                                            50303320
      IWAK = ITYPE/8192
                                                                            80303330
      QFLG = ITYPE/512 - (ITYPE/8192)*16
                                                                            50303340
      NVS = ITYPE/16 - (ITYPE/512)*32
                                                                            50303350
      ITYPE = ITYPE - (ITYPE/16)*16
                                                                            90303340
      XY = SOURCE(ISTUM2+75.IS)
                                                                            50303370
      FZERO = .FALSE.
                                                                            50303380
      XMAX = 0.0
                                                                            50303390
      RETRIEVE SOURCE EMISSIONS RATE (IF ANY).
£.
                                                                            50303400
      QTK = 1.0
                                                                            50303410
      IF (QFLG .LE. O .AND. QFLGS .LE. O) GOTO 640
                                                                            50303420
      I1 = IS
                                                                            50303430
      IF (QFLGS .LE. 0) GOTO 580
                                                                            50303440
      I1 = 1
                                                                            50303450
      QFLG = QFLGS
                                                                            90303460
  580 I2 = ISEA
                                                                            50303470
      GOTO (630,590 ,600 ,610 ,620 ) ,QFLG
                                                                            50303480
  590 I2 = IMO
                                                                            50303490
      GOTO 630
                                                                            50303500
  600 I2 = IHR
                                                                            50303510
      GDTD 630
                                                                            50303520
  610 I2 = (IST-1)*6 + ISP
                                                                            50303530
      GOTO 630
                                                                            50303540
  620 I2 = (ISEA - 1)*24 + IHR
                                                                            50303550
  630 \text{ QTK} = SOURCE(12+119, I1)
                                                                            50303540
  640 QTK = SOURCE (3, IS) *TK*QTK
                                                                            S0303570
      CALCULATE EFFECTIVE WIND SPEED.
                                                                            90303580
      UBARS = UBAR
                                                                            50303590
      IF(PP) 670,670,650
                                                                            90303400
  650 IF(HS) 670,670,660
                                                                            50303610
C
      NOTEX
             ZR IS IN RECIPROCAL FORM.
                                                                            50303620
  660 A1 = HS
                                                                            90303430
      IF (HS .LT. 10.0) A1 = AMIN1(10.0, 1./ZR)
                                                                            50303640
      UBARS = UBAR*(A1*ZR)**PP
                                                                            50303650
  670 UBARI = 1./UBARS
                                                                            50303660
      BEGIN PLUME RISE CALCULATIONS FOR STACK-TYPE SOURCES.
                                                                            50303670
      IF(ITYPE-1) 680,840,840
                                                                            50303680
  680 WAKE = .FALSE.
                                                                            50303690
      IF(VS) 690,690,700
                                                                            50303700
      CHECK FOR DOWNWASH STACK HEIGHT ADJUSTMENT. VS = 0.
\mathbf{C}
                                                                            50303710
  690 \text{ IF}(ISW(25) .EQ. 2) HS = HS -3.*D
                                                                            50303720
C
      IF EXIT VELOCITY, VS, EQUALS O THEN DHA = 0.
                                                                            50303730
      DHAWAK = HS
                                                                            50303740
      IF(HS .LT. 2.5*HB .AND. HS .LT. HB+1.5*HW) WAKE = .TRUE.
                                                                            50303750
      GOTO 840
                                                                            90303760
  700 VSD = VS*D
                                                                            50303770
C
      CHECK FOR DOWNWASH STACK HEIGHT ADJUSTMENT, VS > 0.
                                                                            50303780
      IF(ISW(25) .EQ. 2 .AND. VS .LT. 1.5*UBARS) HS = HS + (VS*UBARI)
                                                                            50303770
     1 -1.5)*(D+D)
                                                                            20202800
      GAMJI = 1./(.33333333+UBARS/VS)
                                                                            50303810
      GAMJI = GAMJI*GAMJI
                                                                            50303820
      IF (DTH .LE. 0.0) GOTO 710
                                                                            50303830
      S = 9.8*DTH/TA
                                                                            50303840
      SI = 1./S
                                                                            50303850
      SS = SORT(S)
                                                                            50303860
      SSI = 1./SS
                                                                            50303870
  710 IF(TS-TA) 730,730,720
                                                                            80303880
      IF SOURCE TEMPERATURE = 0, SET EQUAL TO AMBIENT AIR TEMP.
                                                                            50303890
  720 IF(TS) 730,730,740
                                                                            90303900
  730 FM = VSD*VSD*.25
                                                                            50303910
      F = 0.0
                                                                            50303920
      FZERO = .TRUE.
                                                                            50303930
      GOTO 770
                                                                            50303940
  740 \text{ TOT} = \text{TA/TS}
                                                                            50303950
      FM = TOT*VSD*VSD*.25
                                                                            50303960
      F = 2.45*VSD*D*(1.-TOT)
                                                                            50303970
       IF(F .GT. 55.0) GOTO 750
                                                                            50303980
```

```
FC = .0727*VSD**1.33333333
                                                                           50303990
      GOTO 760
                                                                           50304000
  750 FC = .0141*VSD**1.6666667
                                                                           50304010
  760 IF(F .GT. FC) GOTO 770
                                                                           50304020
      FZERO = .TRUE.
                                                                           90304030
      F = 0.0
                                                                           50304040
  770 IF(HB .LE. 0.0) GOTO 800
                                                                           50304050
      IF (DTH .GT. 0.0) GOTO 780
                                                                           50304060
C
      TEST FOR WAKE EFFECTS-CALCULATE XPLUME.
                                                                           50304070
      DHA = 3.*FM*(HB+HB)*GAMJI*UBARI*UBARI
                                                                           50304080
      DHAWAK = DHA**.33333333
                                                                           50304090
      GOTO 790
                                                                           50304100
  780 DHA = 3.*FM*GAMJI*UBARI*SSI
                                                                           50304110
      IF(1.570796327*UBARS*SSI.GT.HB+HB) DHA = DHA*SIN(SS*(HB+HB)*UBARI)S0304115
      DHAWAK = DHA**.3333333
                                                                           50304120
      DHA1 = 3.*VSD*UBARI
                                                                           50304130
      IF (DHAWAK .GT. DHA1) DHAWAK = DHA1
                                                                           50304140
  790 DHAWAK = HS + DHAWAK
                                                                           50304150
      IF (DHAWAK.LT.2.5*HB .AND. DHAWAK.LT.HB+1.5*HW) WAKE = .TRUE.
                                                                           50304160
  800 IF(DTH .GT. 0.0) GDTD 830
                                                                           50304180
      IF(FZERO) GOTO 820
                                                                           50304190
      IF(F .GT. 55.0) GOTO 810
                                                                           50304200
      XPLUME = 49.*F**.625
                                                                           50304210
      GOTO 840
                                                                           50304220
  B10 XPLUME = 119.*F**.4
                                                                           50304230
      GOTO 840
                                                                           50304240
  820 XPLUME = 4.*D*UBARI*(VS+3.*UBARS)**2/VS
                                                                           50304250
      GOTO 840
                                                                           50304260
  830 XPLUME = 1.570796327*UBARS*SSI
                                                                           50304270
      IF(.NOT.FZERO) XPLUME = XPLUME + XPLUME
                                                                           50304280
  840 CONTINUE
                                                                           50304290
C
      CHECK FOR FINAL PLUME RISE OPTION.
                                                                           50304300
      IF(.NOT.ISW24) GOTO 880
                                                                           50304310
      IF(DTH .GT. 0.0) GOTO 850
                                                                           50304320
      DHA = 3.*FM*XPLUME*GAMJI*UBARI*UBARI
                                                                           50304330
      IF(.NOT.FZERO) DHA = DHA + 1.5*F*XPLUME*XPLUME*GAM11*UBARI**3
                                                                           50304340
      GOTO 870
                                                                           50304350
  850 IF(FZERD) GOTO 860
                                                                           50304360
      DHA = 6.*F*GAM2I*UBARI*SI
                                                                           50304370
      GOTO 870
                                                                           50304380
  860 DHA = 3.*FM*GAMJI*UBARI*SSI
                                                                           50304390
  870 DHA = DHA**.33333333
                                                                           50304400
  880 CONTINUE
                                                                           50304410
\mathbf{C}
                                                                           50304420
C*** BEGIN LOOP OVER RECEPTOR POINTS.
                                                                           50304430
C
                                                                           50304440
      IF (NXPNTS .NE. O .AND. NYPNTS .NE. O) GOTO 900
                                                                           50304450
  890 IF(NXWYPT .EQ. 0) 60T0 1400
                                                                           50304460
      GOTO 910
                                                                           50304470
  900 J = 0
                                                                           50304480
      POLAR = .FALSE.
                                                                           50304490
      IF(ISW(2) .EQ. 2 .OR. ISW(2) .EQ. 4) POLAR = .TRUE.
                                                                           50304500
      NEXTR = 1
                                                                           50304510
      GOTO 920
                                                                           50304520
  910 I = 0
                                                                           50304530
      NEXTR = 3
                                                                           50304540
      POLAR = .FALSE.
                                                                           50304550
      IF(ISW(3) .EQ. 2) POLAR = .TRUE.
                                                                           50304560
  920 CONTINUE
                                                                           50304570
      IF(NEXTR-2) 930,950,970
                                                                           50304580
  930 J \approx J + 1
                                                                           50304590
      IF (J. GT. NYPNTS) GOTO B90
                                                                           50304600
      YR = GRIDY(J)
                                                                           50304610
      IF(.NOT.FOLAR) GOTO 940
                                                                           50304620
      IYR = YR
                                                                           50304630
      YRS = SINNUM(IYR)
                                                                           90304640
      YRC = COSNUM(IYR)
                                                                           50304650
  940 \text{ IJ} = (J-1)*NXPNTS
                                                                           50304660
      I = 0
```

50304670

```
NEXTR = 2
                                                                             50304680
 950 I = I + 1
                                                                             50304690
      IF(I .LE. NXPNTS) GOTO 960
                                                                             50304700
      NEXTR = 1
                                                                             50304710
      GOTO 920
                                                                             50304720
 960 \text{ IJ} = \text{IJ} + 1
                                                                             50304730
      XR = GRIDX(I)
                                                                             50304740
      GOTO 990
                                                                             50304750
 970 I = I + 1
                                                                             50304760
      IF(I .GT. NXWYPT) GOTO 1400
                                                                             50304770
      YR = YDIS(I)
                                                                             50304780
      IF(.NOT.POLAR) GOTO 980
                                                                             50304790
      IYR = YR
                                                                             50304800
      YRS = SINNUM(IYR)
                                                                             50304810
      YRC = COSNUM(IYR)
                                                                             50304820
 980 \text{ IJ} = \text{NXPNTS*NYPNTS} + \text{I}
                                                                             50304830
      XR = XDIS(I)
                                                                             50304840
 990 CONTINUE
                                                                             50304850
      IF (POLAR) GOTO 1000
                                                                             50304860
      XR1 = XR - XS
                                                                             S0304870
      YR1 = YR - YS
                                                                             50304880
      GOTO 1010
                                                                             90304890
1000 XR1 = XR*YRS - XS
                                                                             50304900
      YR1 = XR*YRC - YS
                                                                             50304910
      CHECK IF TERRAIN ELEVATION IS LOWER THAN STACK HEIGHT.
                                                                             50304920
 1010 IF(ISW(4).NE.1.DR.HS+ZS-GRIDZ(IJ).GT.O.O.DR.ITYPE.EQ.2) GDTD 1020 S0304930
      IF(LINE .EQ. 0) WRITE(IO, 9011)
                                                                             50304940
      WRITE(IO, 7012) NSO, XR, YR
                                                                             50304950
      STOP
                                                                             S0304760
      CALCULATE DOWNWIND DISTANCE, XBAR.
                                                                             50304970
 1020 XBAR = -(XR1*FVRSIN + YR1*FVRCOS)
                                                                             50304980
      IF(XBAR .LE. 0.0) GDTD 920
IF(XMAX .LE. 0.0) GDTD 1030
IF(XBAR .GT. XMAX .AND. ISW(4) .EQ. 0) GDTD 920
                                                                             50304990
                                                                             50305000
                                                                             50305010
      CALCULATE CROSSWIND DISTANCE.
                                                                             50305020
 1030 YBAR = XR1*FVRCOS - YR1*FVRSIN
                                                                             80305030
      XDP = 0.0
                                                                             50305040
      1./SQRT(3.14159265) = .5641896 (CALCULATE EFFECTIVE RADIUS.)
                                                                             50305050
      IF(ITYPE .EQ. 2) XOP = .5641876*XO
                                                                             90305060
      IF(ITYPE .EQ. 1) XOP = 2.15*SIGYO
                                                                             50305070
      A1 = 3.*HB
                                                                             50305080
      IF(HW .LT. HB) A1 = 3.*HW
                                                                             50305090
      IF(A1 .LT. 99.99) A1 = 99.99
                                                                             50305100
      IF((XBAR-XOP) .LT. 0.0) GOTO 920
                                                                             50305110
      A2 = SQRT(XBAR*XBAR + YBAR*YBAR) - XOP
                                                                             50305120
      IF(A2 .LT. A1) GOTO 920
                                                                             50305130
      YP = XBAR*1.19175359
                                                                             50305140
      IF(YBAR .GT. YP) GOTO 920
                                                                             50305150
С
      ADJUST XBAR TO DOWNWIND EDGE OF AREA SOURCE.
                                                                             50305160
      IF(ITYPE .EQ. 2) XBAR = XBAR - XDP
                                                                             50305170
      RESUME PLUME RISE CALCULATIONS.
C
                                                                             50305180
      H = HS
                                                                             50305190
      IF(ITYPE .GT. 0) 60T0 1095
                                                                             50305200
      IF(ISW24) GOTO 1090
                                                                             50305210
      IF(VS .LE. 0.0) GOTO 1095
                                                                             S0305220
      IF(DTH .GT. 0.0) GOTO 1040
                                                                             50305230
      XP = XPLUME
                                                                             50305240
      IF (XBAR .LT. XPLUME) XP = XBAR
                                                                             50305250
      DHA = 3.*FM*XP*UBARI*UBARI*GAMJI
                                                                             50305260
      IF(.NOT.FZERO) DHA = DHA + 1.5*F*XP*XP*GAM1I*UBARI**3
                                                                             50305270
      GOTO 1060
                                                                             50305280
 1040 IF(FZERO) GOTO 1070
                                                                             50305290
      IF (XBAR .LT. XPLUME) GOTO 1050
                                                                             50305300
      DHA = 6.*F*GAM2I*UBARI*SI
                                                                             50305310
      GOTO 1060
                                                                             50305320
 1050 XP1 = SS*XBAR*UBARI
                                                                             50305330
      DHA = 3.*FM*GAMJI*UBARI*SSI*SIN(XP1) + 3.*F*GAM2I*UBARI*SI*
                                                                             50305340
             (1.-COS(XP1))
                                                                             50305350
```

```
1060 DHA = DHA**.33333333
                                                                           50305360
                                                                           50305370
      GOTO 1090
                                                                           50305380
 1070 DHA = 3.*FM*GAMJI*UBARI*SSI
      IF(XBAR .GE. XPLUME) GOTO 1080
                                                                           50305390
      XP1 = SS*XBAR*UBARI
                                                                           50305400
                                                                           50305410
      DHA = DHA*SIN(XP1)
                                                                           50305420
 1080 DHA = DHA**.33333333
      DHA1 = 3.*VSD*UBARI
                                                                           50305430
      IF (DHA .GT. DHA1) DHA = DHA1
                                                                           50305440
                                                                           S0305450
      EFFECTIVE PLUME HEIGHT.
C
                                                                           50305460
 1090 H = HS + DHA
      ADJUST H DUE TO TERRAIN
                                                                           50305470
C
 1095 IF(ISW(4).NE.1.QR.ISW(1).NE.1.QR.NVS.NE.0.QR.ITYPE.EQ.2) GOTO 1100S0305480
                                                                           50305490
      A1 = ZS - GRIDZ(IJ)
                                                                           50305500
      IF(A1 .GT. 0.0) GOTO 1100
      H = H + A1
                                                                           50305510
                                                                           50305520
 1100 CONTINUE
      IF(H .LE. HM) GOTO 1110
                                                                           50305530
      XMAX = XBAR
                                                                           50305540
      IF POLAR & NEXTR=2 & NO TERRAIN, SKIP RINGS FOR THIS RADIAL.
                                                                           50305550
      IF(.NOT.POLAR .OR. NEXTR .NE. 2 .OR. ISW(4) .NE. 0) GOTO 920
                                                                           50305540
      NEXTR = 1
                                                                           S0305570
                                                                           50305580
      GOTO 920
 1110 XBARK = .001*XBAR
                                                                           50305590
      XBARY = XBARK
                                                                           50305600
      XBARZ = XBARK
                                                                           50305610
      CALL SIGMAZ TO COMPUTE EFFECTIVE DOWNWIND DISTANCE INDEX, IXDIST. S0305620
C
                                                                           50305630
      IF(ITYPE .EQ. 0 .AND. .NOT.WAKE) I1 = 4
                                                                           50305640
      CALL SIGMAZ (XBARK, SIGZ, BBAR, ISTUMZ, IXDIST, I1, SASIGZ, SBSIGZ,
                                                                           50305650
     1 SOURCE (82, IS))
                                                                           50305660
      CALCULATE LATERAL AND VERTICAL SIGMAS.
                                                                           50305670
\Gamma
      SGZDON = .FALSE.
IF(ITYPE .GT. 0) GOTO 1130
                                                                           50305680
                                                                           50305490
 1120 IF(.NOT.WAKE) GOTO 1190
                                                                           50305700
      A1 = HB
                                                                           50305710
      IF (HW .LT. HB) A1 = HW
                                                                           50305720
      IF(XBAR .GE. 10.*A1) GOTO 1130
                                                                           50305730
      SGZDON = .TRUE.
                                                                           50305740
      SIGZ = .7*A1 + .067*(XBAR-3.*A1)
                                                                           50305750
      IF(ISTUM2 .GT. 2) GOTO 1140
                                                                           50305760
      A3 = XBARK + SOURCE(IXDIST+81, IS)
                                                                           S0305770
      CALL SIGMAZ(A3,A2,BBAR,ISTUM2,IXDIST,1,SASIGZ,SBSIGZ,DUMMY)
                                                                           50305780
      SIGZ = AMAX1(SIGZ,A2)
                                                                           50305790
                                                                           50305800
      GOTO 1140
 1130 XBARZ = XBARK + SOURCE(IXDIST+81,IS)
                                                                           50305810
 1140 IF(ITYPE .GT. 0) GOTO 1180
                                                                           50305820
      IF (DHAWAK .GT. 1.2*HB) GOTO 1190
                                                                           50305830
      IF(XBAR .GE. 10.*A1) GOTO 1180
                                                                           50305840
      IF(HW .LE. 5.*HB) GOTO 1160
                                                                           50305850
      IF (IWAK .EQ. 1) GOTO 1150
                                                                           90305860
      SIGY = .35*HB + .067*(XBAR-3.*HB)
                                                                           50305870
      GOTO 1170
                                                                           50305880
 1150 \text{ SIGY} = 1.75*HB + .067*(XBAR - 3.*HB)
                                                                           50305890
      GOTO 1170
                                                                           50305700
 1160 SIGY = .35*HW + .067*(XBAR - 3.*A1)
                                                                           50305910
 1170 IF(ISTUM2 .GT. 2) GOTO 1200
                                                                           50305920
      A3 = XBARK + XY
                                                                           50305930
      TH = .017453293*(SC(ISTUM2)-SD(ISTUM2)*ALOG(A3))
                                                                           50305740
      A2 = 465.11628*A3*TAN(TH)
                                                                           50305750
      SIGY = AMAX1(SIGY,A2)
                                                                           50305960
      GOTO 1200
                                                                           50305970
 1180 XBARY = XBARK + XY
                                                                           50305780
 1190 TH = .017453293*(SC(ISTUM2)-SD(ISTUM2)*ALOG(XBARY))
                                                                           50305990
      SIGY = 465.11628*XBARY*TAN(TH)
                                                                           50306000
 1200 SIGYI = 1./SIGY
                                                                           50306010
      IF(ITYPE .EQ. 2) GOTO 1210
                                                                           50306020
      A1 = .5*(YBAR*SIGYI)**2
                                                                           50306030
      IF(A1 .GT. 50.0) GOTO 920
                                                                            50306040
```

```
1210 IF (SGZDON) GOTO 1220
                                                                          90304050
      CALL SIGMAZ(XBARZ,SIGZ,BBAR,ISTUM2,IXDIST,1,SASIGZ,SBSIGZ,DUMMY)
                                                                          50306060
      IF (SIGZ .GT. 5000. .AND. NVS .EQ. 0) SIGZ = 5000.
                                                                          50306070
 1220 SIGZI = 1./SIGZ
                                                                          90306080
      CALCULATE DECAY TERM.
                                                                          50306090
      XBARU = XBAR*UBARI
                                                                          50306100
      DECAYT = 1.0
                                                                          50306110
      IF(DECAY(IHR) .GT. 0.0) DECAYT = EXP(-DECAY(IHR)*XBARU)
                                                                          50306120
      CHECK CONCENTRATION-DEPOSITION SWITCH.
C
                                                                          50306130
      IF(ISW(1) .EQ. 2) GOTD 1320
                                                                          50306140
C
      CONCENTRATION EQUATION.
                                                                          50306150
      CHECK FOR PARTICULATES WITH SETTLING VELOCITIES.
                                                                          50306160
      IF(NVS .GT. 0) GOTO 1260
                                                                          50306170
      IF (SIGZ*HMI .LT. 1.6) GOTO 1240
                                                                          50306180
      CALCULATE "BOX-MODEL" CONCENTRATION
C
                                                                          50306190
      IF(ITYPE .EQ. 2) GOTO 1230
                                                                          50306200
      CHI = QTK*UBARI*SIGYI*HMI*EXP(-A1)*DECAYT*.39894228
                                                                          50306210
      GOTO 1390
                                                                          50306220
 1230 A3 = .70710678*SIGYI
                                                                          50306230
      A4 = (XOP+YBAR)*A3
                                                                          50306240
      A5 = -(XOP-YBAR)*A3
                                                                          50306250
      A3 = ERFX(A4.A5)
                                                                          50306260
      CHI = QTK*XO*HMI*UBARI*A3*.5*DECAYT
                                                                          50306270
                                                                          50306280
      CALCULATE VERTICAL TERM FOR ALL SOURCE TYPES W/O PARTICLE
                                                                          50306290
      SETTLING VELOCITIES.
                                                                          50306300
 1240 V = 0.0
                                                                          50306310
      A2 = 0.0
                                                                          50306320
 1250 VL = V
                                                                          50306330
      A2 = A2 + 2.0
                                                                          50306340
      HMA2 = A2*HM
                                                                          50306350
      A3 = (HMA2-H)*SIGZI
                                                                          90306360
      A4 = (HMA2+H)*SIGZI
                                                                          50306370
      A3 = -.5*A3*A3
                                                                          80306380
      A4 = -.5*A4*A4
                                                                          50306390
      A5 = 0.0
                                                                          90306400
      IF(A3 .GT. -50.) A5 = EXP(A3)
                                                                          50306410
      A6 = 0.0
                                                                          50306420
      IF(A4 .GT. -50.) A6 = EXP(A4)
                                                                          50306430
      V = V + A5 + A6
                                                                          50306440
      IF (ABS (V-VL) .GT. 1.E-8) GOTO 1250
                                                                          90306450
      A2 = H*516ZI
                                                                          50306460
      V = EXP(-.5*A2*A2) + V
                                                                          50306470
      GDT0 1300
                                                                          50306480
      CALCULATE VERTICAL TERM FOR ALL SOURCE TYPES WITH SETTLING
                                                                          50306490
      VELOCITIES.
C
                                                                          90306500
 1260 V = 0.0
                                                                          50304510
      DO 1290 K=1,NVS
                                                                          90306515
      SUM = 0.0
                                                                          50306520
      SUM1 = 0.0
                                                                          50306530
      JP70 = K + 35
                                                                          50306550
      XBARUV = SOURCE(JP70.IS) *XBARU
                                                                          50306560
      JP70 = K + 55
                                                                          50306570
      GAMMA = SDURCE(JP70, IS)
                                                                          50306580
      JP70 = K + 15
                                                                          50306590
      PHI = SOURCE (JP70, IS)
                                                                          50306600
      A2 = 0.0
                                                                          50306610
      A3 = (-H+XBARUV)*SIGZI
                                                                          50306620
      A5 = -.5*A3*A3
                                                                          50306630
      IF(A5 .GT. -50.) SUM = EXP(A5)
                                                                          50306640
      IF(GAMMA .LE. 0.0) GOTO 1270
                                                                          50306650
      A4 = (H - XBARUV)*SIGZI
                                                                          S0306660
      A5 = -.5*A4*A4
                                                                          50306670
      IF(A5 .GT. -50.) SUM = SUM + EXP(A5)*GAMMA
                                                                          80306680
      CALL VERT (H, HM, XBARUV, SIGZI, GAMMA, A2, SUM)
                                                                          50306690
 1270 A2 = 2.0
                                                                          90306700
```

```
S0306710
     A3 = (HM + HM - H + XBARUV) * SIGZI
     A5 = -.5*A3*A3
                                                                 50306720
     IF(A5 .GT. \sim50.) SUM1 = EXP(A5)
                                                                 50306730
THE FOLLOWING LINE OF CODE ALTERED TO COMPUTE ESCAPE FRACTION
     IF(GAMMA .LE. 0.0) GOTO 1280
A4 = (HM+HM+H-XBARUV)*SIGZI
                                                                 50306750
     A5 = -.5*A4*A4
                                                                 50306760
     IF(A5 .GT. \sim50.) SUM1 = SUM1 + EXP(A5)*GAMMA
     CALL VERT (H.HM. XBARUV.SIGZI, GAMMA, A2.SUM1)
THE FOLLOWING LINES OF CODE ALTERED/ADDED TO COMPUTE ESCAPE FRACTION
1280 CALL ESCAPE(ZREF,ZO,TA,IST,UBAR,UD(IS,K),SOURCE(14,IS),ESCP)
                                                                 TRC 003
     V = V + .5*PHI*(SUM+SUM1)*ESCP
                                                                 50306790
1290 CONTINUE
                                                                 20309800
С
     CALCULATE CONCENTRATON FOR ALL SOURCE TYPES WITH VERTICAL TERM.
                                                                 50306810
1300 IF(ITYPE .EQ. 2) GOTO 1310
                                                                 50306820
     CHI = QTK*UBARI*SIGYI*SIGZI*EXP(-A1)*V*DECAYT*.31830989
                                                                 50306830
     GOTO 1390
                                                                 50306840
1310 A3 = .70710678*SIGYI
                                                                 50306850
     A4 = (XDP+YBAR)*A3
                                                                 50304840
     A5 = -(XDP-YBAR)*A3
                                                                 50306870
     A3 = ERFX(A4,A5)
                                                                 20309880
     CHI = QTK*XO*SIGZI*UBARI*V*DECAYT*A3*.39894228
                                                                 50306890
     GOTO 1390
                                                                 50306900
     BEGIN DEPOSITION CALCULATIONS.
                                                                 50306910
 1320 IF(NVS .GT. 0) GOTO 1330
                                                                 50306920
     IF(LINE .EQ. 0) WRITE(ID.9011)
                                                                 50306930
     WRITE(I0,9013) NSO
                                                                 50306940
     STOP
                                                                 50306950
     CALL SIGMAZ TO COMPUTE AVERAGE EFFECTIVE DOWNWIND DISTANCE, BBAR. S0306960
 1330 CALL SIGMAZ(XBARZ,SIGZ,BBAR,ISTUMZ,IXDIST,2,SASIGZ,SBSIGZ,DUMMY)
                                                                 50306970
     V = 0.0
                                                                 50306980
     DO 1370 K = 1,NVS
                                                               50306990
     JP70 = K + 55
                                                                 50307000
     GAMMA = SOURCE(JP70.IS)
                                                                 50307010
     JP70 = K + 15
                                                                 50307020
     PHI = SOURCE(JP70.IS)
                                                                 50307030
     JP70 = K + 35
                                                                 50307040
     XBARUV = XBARU*SOURCE(JP70,IS)
                                                                 S0307050
     A5 = (1.-BBAR)*XBARUV
                                                                 50307060
     GAM1 = 1.0
                                                                 50307070
     GAM2 = GAMMA
                                                                 50307080
     A2 = 0.0
                                                                 50307090
     SUM = 0.0
                                                                 50307100
 1340 SUML = SUM
                                                                 50307110
     A2 = A2 + 2.
                                                                 S0307120
     HMA2 = A2*HM
                                                                 50307130
     A3 = (HMA2-H+XBARUV)*SIGZI
                                                                 50307140
     A6 = 0.0
                                                                 50307150
     A3 = -.5*A3*A3
                                                                 50307160
     IF(A3 .GT. -50.) A6 = EXP(A3)*GAM1*(BBAR*(HMA2-H)-A5)
                                                                 50307170
     IF (GAMMA .GT. 0.0) GOTO 1350
                                                                 50307180
     SUM = A6
                                                                 50307190
     GOTO 1360
                                                                 50307200
 1350 A4 = (HMA2+H-XBARUV)*SIGZI
                                                                 50307210
     A7 = 0.0
                                                                 50307220
     A4 = -.5*A4*A4
                                                                 50307230
     IF(A4 .GT. -50.) A7 = EXP(A4)*GAM2*(BBAR*(HMA2+H)+A5)
                                                                 S0307240
     SUM = SUM + A6 + A7
                                                                 50307250
     IF(ABS(SUM-SUML) .LT. 1.E-8) GDTD 1360
                                                                 50307260
     GAM1 = GAM2
                                                                 50307270
     GAM2 = GAM2*GAMMA
                                                                 50307280
     GOTO 1340
                                                                 50307290
 1360 \text{ A3} = (H-XBARUV)*SIGZI
                                                                 50307300
     A7 = -.5*A3*A3
                                                                 50307310
     A3 = 0.0
                                                                 50307320
```

```
IF(A7 .GT. -50.) A3 = (BBAR*H + A5)*EXP(A7)
                                                                     50307330
THE FOLLOWING LINES OF CODE ALTERED/ ADDED TO COMPUTE ESCAPE FRACTION
     CALL ESCAPE(ZREF,ZO,TA,IST,UBAR,UD(IS,K),SOURCE(14,IS),ESCP)
     V = V + (1.-GAMMA)*PHI*(A3 + SUM)*ESCP
1370 CONTINUE
                                                                     50307350
     FINISH DEPOSITION CALCULATIONS.
                                                                     90307340
     IF (ITYPE .EQ. 2) GOTO 1380
                                                                     50307370
     CHI = QTK*SIGYI*SIGZI/XBAR*EXP(-A1)*DECAYT*V*.15915494
                                                                     50307380
     GO TO 1390
                                                                     S0307385
 1380 CHI = QTK*XO*SIGZI/XBAR*DECAYT*V*ERFX((XOP+YBAR)*SIGYI*.70710678 S0307390
    1 .-(XDP-YBAR)*SIGYI*.70710678)*.39894228
                                                                     50307400
     STORE CONCENTRATION OR DEPOSITION INTO CALC ARRAY. GO GET
                                                                     50307410
     NEXT RECEPTOR.
                                                                     S0307420
 1390 CALC(IJ) = CHI
                                                                     S0307430
     IJP = IJ + NPNTS
                                                                     50307440
     CALC(IJP) = CALC(IJP) + CHI
                                                                     S0307450
     GOTO 920
                                                                     50307460
 1400 CONTINUE
                                                                     50307470
     IF (NGROUP .EQ. 0) GOTO 1480
                                                                     50307480
     NSUM = 0
                                                                     50307490
     DO 1470 IG = 1.NGROUP
                                                                     50307500
     NS = NSOGRP(IG)
                                                                     90307510
     DO 1460 N = 1.NS
                                                                     50307520
     NNSO = IDSOR(NSUM+1)
                                                                     50307530
     IF(NNSO .GT. 0) GOTO 1410
                                                                     50307540
     NNSO = -NNSO
                                                                     50307550
     MNSO = IDSOR(NSUM) + 1
                                                                     50307560
     IF(NSO .LT. MNSO .OR. NSO .GT. NNSO) GOTO 1460
                                                                     50307570
     GOTO 1420
                                                                     50307580
 1410 IF (NNSD .NE. NSO) GOTO 1460
                                                                     90307590
     LOAD THIS SOURCE CHI INTO APPROPRIATE CHIAV ARRAYS.
                                                                     90307600
 1420 \text{ IAVG} = 0
                                                                     50307610
     DD 1440 I = 1.8
                                                                     50307620
     IF(ISW(I+6) .NE. 1) GOTO 1440
                                                                     50307430
     I1 = NPNTS*((IG-1)*NAVG + IAVG)
                                                                     50307640
      IAVG = IAVG + 1
                                                                     50307650
      DO 1430 J = 1,NPNTS
                                                                     50307660
      IF7 = I1 + J
                                                                     50307670
 1430 CHIAV(IP7) = CHIAV(IP7) + CALC(J)
                                                                     50307680
 1440 CONTINUE
                                                                     50307690
     IF(ISW(15) .NE. 1) GOTO 1460
                                                                     50307700
     LOAD SOURCE CHI FOR ANNUAL TABLE FOR THIS SOURCE GROUP.
                                                                     50307710
     12 = (IG-1)*NPNTS
                                                                     50307720
     DO 1450 J = 1, NPNTS
                                                                     50307730
     IP7 = I2 + J
                                                                     50307740
 1450 CHIAN(IP7) = CHIAN(IP7) + CALC(J)
                                                                     90307750
 1460 \text{ NSUM} = \text{NSUM} + 1
                                                                     S0307760
 1470 CONTINUE
                                                                     50307770
     GET NEXT SOURCE
                                                                     50307780
 1480 CONTINUE
                                                                     50307790
 1490 IF (NGROUP .GT. 0) GOTO 1520
                                                                     50307800
     LOAD ALL SOURCE CHI"S INTO APPROPRIATE CHIAV ARRAYS.
                                                                     50307810
      IAVG = 0
                                                                     90307820
     DO 1510 I = 1.8
                                                                     50307830
      IF(ISW(I+6) .NE. 1) GOTO 1510
                                                                     50307840
      IP6 = IAVG*NPNTS
                                                                     50307850
      IAVG = IAVG + 1
                                                                     50307860
      DO 1500 J = 1, NPNTS
                                                                      50307870
      I2 = IP6 + J
                                                                      S0307880
      IP7 = NPNTS + J
                                                                      50307890
 1500 CHIAV(I2) = CHIAV(I2) + CALC(IP7)
                                                                     50307900
 1510 CONTINUE
                                                                      50307910
C
                                                                      50307920
      BEGIN LOOP OVER ALL SOURCE GROUPS.
                                                                      50307930
                                                                      50307940
 1520 \text{ NSUM} = 1
                                                                      50307950
```

```
50307960
      IG = 1
      IF(NGROUP .LE. 0) GOTO 1540
                                                                           50307970
                                                                           50307980
 1530 NS = NSOGRP(IG)
                                                                           90307990
      ITO = NSUM + NS - 1
                                                                           50308000
C
      BEGIN LOOP OVER ALL TIME PERIODS FOR THIS HOUR.
                                                                           50308010
C
С
                                                                           50308030
 1540 \text{ IAVG} = 0
                                                                           50308040
      DO 1640 I = 1.8
      FOR DAILY TABLES COMPUTE AVERAGES, WRITE TO TAPE & PRINT.
                                                                           50308050
C
      IF(ISW(I+6) .NE. 1) GOTO 1640
                                                                           20308090
                                                                           50308070
      IAVG = IAVG + 1
      IF(.NOT.IFLAG(I)) GOTO 1640
                                                                           50308080
      I1 = NPNTS*((IG-1)*NAVG + IAVG - 1)
                                                                           50308090
      IF(KAVG(I) .EQ. 1.OR. ISW(1) .EQ. 2) GOTO 1560
                                                                           50308100
                                                                           50308110
      A1 = 1./KAVG(I)
                                                                           50308120
      DO 1550 J = 1, NPNTS
      IP7 \approx Ii + J
                                                                           50308130
                                                                           50308140
 1550 \text{ CHIAV}(IP7) = \text{CHIAV}(IP7)*A1
 1540 IF(ISW(5) .EQ. 1) WRITE(ITAP) IHR, JDY, IG, (CHIAV(I1+J), J=1, NPNTS) S0308150
      IF(IPERD .GT. O .AND. IPERD .NE. IHR/KAVG(I)) GOTO 1570
                                                                           50308160
      IF(ISW(16) .NE. 1) GOTO 1570
                                                                           50308170
      IP7 ≈ I1 + 1
                                                                           50308180
      CALL DYOUT (GRIDX, GRIDY, XDIS, YDIS, CHIAV (1P7), KAVG (1), JDY, IHR, 1,
                                                                           50308190
     1 NSUM.ITO.IG)
                                                                           50308200
      CALCULATE HIGHEST & SECOND HIGHEST TABLES IF DESIRED.
                                                                           50308210
 1570 IF(ISW(17) .NE. 1) GOTO 1600
                                                                           50308220
      NPNTS2 = NPNTS + NPNTS
                                                                           50308230
      NPNTS3 = NPNTS2 + NPNTS
                                                                           50308240
      IP4 = 4*I1
                                                                           50308250
      512 ≈ 2**9 SHIFT HOUR VALUE & STORE WITH DAY.
C
                                                                           50308260
      IHRTS = 512*IHR
                                                                           50308270
      DO 1590 J = 1.NPNTS
                                                                           50308280
      JP4 = IP4 + J
                                                                           50308290
      JP5 \approx Ii + J
                                                                           50308300
      JP2 = JP4 + NPNTS2
                                                                           50308310
      JP3 ≈ JP4 + NPNTS3
                                                                           50308320
      IF(CHIMAX(JP4) .GE. CHIAV(JP5)) GOTO 1580
                                                                           50308330
      JP1 = JP4 + NPNTS
                                                                           50308340
      CHIMAX(JP2) = CHIMAX(JP4)
                                                                           50308350
      CHIMAX(JP4) = CHIAV(JP5)
                                                                           90308340
      CHIMAX(JP3) = CHIMAX(JP1)
                                                                           50308370
      CHIMAX(JP1) = JDY + IHRT5
                                                                           20308380
      GOTO 1590
                                                                           50308390
 1580 IF(CHIMAX(JP2) .GE. CHIAV(JP5)) GOTO 1590
                                                                           50308400
      CHIMAX(JP2) = CHIAV(JP5)
                                                                           50308410
      CHIMAX(JF3) = JDY + IHRT5
                                                                           50308420
 1590 CONTINUE
                                                                           50308430
      CALCULATE 50 HIGHEST CONCENTRATIONS (DEPOSITIONS).
                                                                           50308440
 1600 IF(ISW(18) .NE. 1) GOTO 1610
                                                                           50308450
      IP7 = (IG-1)*NAVG
                                                                           50308460
      IP6 = I1 + 1
                                                                           50308470
      IP7 = IP7 + IAVG
                                                                           50308480
      CALL MAX50(CHIAV(IP6),CHI50(1,IP7),IPNT(1,IP7),ICOUNT(IP7),
                                                                           50308490
     1 IHR JDY)
                                                                           50308500
C
      CLEAR "CHIAV" ARRAY FOR THIS SOURCE GROUP & APPROPRIATE TIME
                                                                           50308510
      PERIOD.
                                                                           50308520
 1610 DO 1620 J = 1.NPNTS
                                                                           50308530
 1620 \text{ CHIAV}(I1+J) = 0.0
                                                                           50308540
 1630 CONTINUE
                                                                           90308550
 1640 CONTINUE
                                                                           50308560
      IG = IG + 1
                                                                           50308570
      IF(IG .GT. NGROUP) GOTO 1650
                                                                           50308580
      NSUM = NSUM + NS
                                                                           50308590
      GOTO 1530
                                                                           20308900
      STORE ANNUAL AVERAGE.
                                                                           50308410
 1650 IF(ISW(15) .NE. 1 .OR. NGROUP .GT. 0) GOTO 1670
                                                                           50308620
```

```
DO 1660 I = 1,NPNTS
                                                                              50308630
      IP6 = I + NFNTS
                                                                              S0308640
 1660 \text{ CHIAN}(I) = \text{CHIAN}(I) + \text{CALC}(IP6)
                                                                              50308650
\Gamma
      END HOURLY LOOP.
                                                                              90308660
 1670 CONTINUE
                                                                              50308670
\mathbf{C}
      CLEAR DAILY AVERAGES ARRAY BEFORE GOING TO NEXT DAY.
                                                                              90308680
      NPNTS2 = NAVG*NPNTS
                                                                              90308690
      IF (NGROUP .GT. 0) NPNTS2 = NPNTS2*NGROUP
                                                                              50308700
      DO 1680 I = 1,NPNTS2
                                                                              50308710
 1680 \text{ CHIAV}(I) = 0.0
                                                                              50308720
      NTDAY = NTDAY + 1
                                                                              80308730
 1690 CONTINUE
                                                                              50308740
      END OF MET DATA.
                                                                              S0308750
      NDAYS = NTDAY
                                                                              50308760
      NSUM = 1
                                                                              90308770
      IG = 1
                                                                              50308780
      IF (NGROUP .LE. 0) GOTO 1710
                                                                              50308790
 1700 NS = NSDGRP(IG)
                                                                              50308800
      ITO = NSUM + NS - 1
                                                                              50308810
      PRINT "N"-DAY TABLE
                                                                              50308820
 1710 IF(ISW(15) .NE. 1) GOTO 1730
                                                                              50308830
      NHTOT = NTDAY*24
                                                                              50308840
      IF (ISW(19) .NE. 1) NHTOT = NDAYS*NHOURS
                                                                              50308850
      HTOT = 1./FLOAT(NHTOT)
                                                                              90308860
      IF(ISW(1) .EQ. 2) HTOT = 1.0
                                                                              50308870
      I1 = (IG-1)*NPNTS + 1
                                                                              50308880
      I2 = I1 + NPNTS - 1
                                                                              50308890
      DD 1720 I = I1.I2
                                                                              50308900
 1720 \text{ CHIAN(I)} = \text{CHIAN(I)}*HTOT
                                                                              50308710
      CALL DYOUT (GRIDX, GRIDY, XDIS, YDIS, CHIAN (I1), 75, IDY, IHR, 1, NSUM, ITO, S0308920
                                                                              50308930
      IF(ISW(5) .EQ. 1) WRITE(ITAP) NHOURS,NTDAY,NGROUP,(CHIAN(I),
                                                                              50308740
     1 = [1, 12)
                                                                              50308950
C
                                                                              50308960
C
      BEGIN LOOP OVER TIME PERIODS.
                                                                              50308970
 1730 \text{ IAVG} = 0
                                                                              50308780
      DO 1750 I = 1.8
                                                                              50308990
      IF(15W(I+6) .NE. 1) GOTO 1750
                                                                              50309000
      IAVG = IAVG + 1
                                                                              50309010
      PRINT HIGHEST & SECOND HIGHEST CONCENTRATION (DEPOSITION) TABLES.
                                                                              50309020
      IF(ISW(17) .NE. 1) GOTO 1740
                                                                              50309030
      IP6 = 4*NPNTS*((IG-1)*NAVG + IAVG - 1) + 1
                                                                              50309040
      CALL DYOUT (GRIDX, GRIDY, XDIS, YDIS, CHIMAX (IP4), KAVG (I), IDY, IHR, 2,
                                                                              50309050
     1 NSUM, ITO, IG)
                                                                              50309060
      IP6 = IP6 + NPNTS + NPNTS
                                                                              50309070
      CALL DYOUT (GRIDX, GRIDY, XDIS, YDIS, CHIMAX (IP6), KAVG (I), IDY, IHR, 3,
                                                                              50309080
     1 NSUM, ITO, IG)
                                                                              50309090
      PRINT MAXIMUM 50
                                                                              50309100
 1740 IF(ISW(18) .NE. 1) GDTD 1750
                                                                              50309110
      IP6 = (IG-1)*NAVG + IAVG
                                                                              50309120
      CALL MAXOT (CHI50 (1, IP6), GRIDX, GRIDY, XDIS, YDIS, IPNT (1, IP6),
                                                                              50309130
     1 ICOUNT (IP6), KAVG(I), NSUM, ITO, IG)
                                                                              50309140
 1750 CONTINUE
                                                                              90309150
      IG = IG + 1
                                                                              50309160
      IF(IG .GT. NGROUP) GOTO 1760
                                                                              50309170
      NSUM = NSUM + NS
                                                                              50309180
      GOTO 1700
                                                                              50309190
 1760 IF(ISW(5) .NE. 1) GDTD 1770
                                                                              50309200
      ENDFILE ITAP
                                                                              50309210
      ENDFILE ITAP
                                                                              50309220
 1770 RETURN
                                                                              50309230
 9001 FORMAT('1',121X,9HMET. DATA/122X,3HDAY,14)
                                                                              50309240
 9002 FORMAT(31X,69H* SOURCE-RECEPTOR COMBINATIONS LESS THAN 100 METERS S0309250
     10R THREE BUILDING/34X,25HHEIGHTS IN DISTANCE. NO ,6A4,
                                                                              50309260
     2 16H IS CALCULATED *///46X,25H- - RECEPTOR LOCATION - -/51X,
                                                                              50309270
        1HX,8X,10HY (METERS),10X,8HDISTANCE/31X,6HSOURCE,11X,
                                                                              50309280
     4 23HOR RANGE
                       OR DIRECTION, 9X, 7HBETWEEN/31X, 6HNUMBER, 11X,
                                                                              50309290
     5 21H (METERS)
                        (DEGREES),11X,BH(METERS)/30X,30(2H- )/)
                                                                              50309300
```

```
50309310
9003 FORMAT (31X, 15, 8X, 2F13.1, 7X, F10.2)
                                                                        50309320
9004 FORMAT(18,5F8.0,18,2F8.0)
9005 FORMAT(32X,4H*** ,15A4,4H ***//)
                                                                        50309330
9006 FORMAT (//68X,10HPOT. TEMP./29X,4HFLDW,7X,15HWIND
                                                           MIXING, 13X,
                                                                        50309340
                                  DECAY/28X,16HVECTOR
                                                            SPEED,5X,
    1 8HGRADIENT, 17X, 16HWIND
                                                                        50309350
                  TEMP.
   264HHEIGHT
                         (DEG. K
                                       STABILITY
                                                  PROFILE
                                                             COEFFICIENS0309360
                                 (MPS)
                                          (METERS)
                                                    (DEG. K) PER METERS0309370
    3T/20X,92HHDUR
                    (DEGREES)
        CATEGORY EXPONENT
                               (PER SEC)/19X,47(2H -)/)
                                                                        50309380
9007 FORMAT (49X,29H* METEOROLOGICAL DATA FOR DAY,14,2H *)
                                                                        50309390
9008 FORMAT(21X,I2,F11.1,F10.2,F11.1,F9.1,F12.4,I9,F13.4,E15.6)
                                                                        50309400
9009 FORMAT (//47X,6HRANDOM/38X,2(4HFLOW,6X),16H WIND
                                                         MIXING, 15X,
                                                                        50309410
                    ADJUSTED/37X,2(6HVECTOR,4X),27H SPEED
                                                                        50309420
    1 19HINPUT
    2 TEMP.,2(3X,9HSTABILITY)/29X,6HHDUR ,2(10H (DEGREES)),3X,
                                                                        50309430
                  (METERS) (DEG. K)
                                       ,2(BHCATEGORY,4X)/27X,40(2H -)/)50309440
    3 30H(MPS)
9010 FORMAT (30X, I2, F11.1, F10.1, F10.2, F11.1, F9.1, I9, I12)
                                                                        50309450
9011 FORMAT('1')
                                                                        90309460
9012 FORMAT(10X,46H*** ERROR *** PHYSICAL STACK HEIGHT OF SOURCE, 15/
                                                                        50309470
    1 10X,52HIS LOWER THAN THE TERRAIN ELEVATION FOR THE RECEPTOR/10X, S0309480
    1 12HLOCATED AT (,F 9.1,1H,,F 9.1,19H). RUN TERMINATED.)
                                                                        50309490
9013 FORMAT(10X,25H***ERROR*** SOURCE NUMBER,16,41H HAS NO GRAVITATIONAS0309500
    1L SETTLING CATEGORIES,/10X,52HWITH WHICH TO CALCULATE DEPOSITION. S0309510
    2 RUN TERMINATED.)
                                                                        50309520
     END
                                                                        50309530
```

```
С
     SUBROUTINE INCHK (CALC.CHIAV.CHIAN.GRIDX,GRIDY,XDIS,YDIS,GRIDZ,
                                                                   50200010
    1 CHIMAX, CHI50, IPNT, ICOUNT, SOURCE)
                                                                   50200020
С
                  SUBROUTINE INCHK (VERSION 80339), PART OF ISCST.
     THIS ROUTINE READS THE REST OF THE INPUT VARIABLES AND PROVIDES
                                                                   50200030
E
С
     DEFAULT VALUES IF REQUIRED. ALSO TABLES LISTING THE INPUT VARI-
                                                                   50200040
С
     ABLES ARE CONTROLLED BY THIS ROUTINE.
                                                                   50200050
C
                                                                   50200060
THE FOLLOWING LINES OF CODE ALTERED TO RUN ON IBM-PC
     CHARACTER*1 ATHRUF
     CHARACTER*4 TITLE, METER, SEASON, IBLANK, IQUN, ICHIUN, CONDEP
LOGICAL DONE
     INTEGER WAKE, QFLG, QFLGS
                                                                   50200080
     COMMON /LOGIX/ ISW(40), NSOURC, NXPNTS, NYPNTS, NXWYPT, NGROUP,
                                                                   50200090
     1 NSDGRP(150), IDSDR(200), IPERD, NPNTS, NAVG, NHOURS, NDAYS, NTDAY, LINE, S0200100
    2 IO.IN.TITLE(15),IQUN(3),ICHIUN(7),CONDEP(6),LIMIT,MIMIT
                                                                   50200110
     COMMON /MET/ IDAY (366), ISTAB (24), AWS (24), TEMP (24), AFV (24),
                                                                   50200120
     1 AFVR(24), HLH(24,2), P(24), DTHDZ(24), DECAY(24), PDEF(6,6),
                                                                   50200130
    2 DTHDEF(6,6), GAM1I, GAM2I, ZR, DDECAY, IMET, ITAP, TK, UCATS(5)
                                                                   50200140
THE FOLLOWING LINE OF CODE ADDED TO COMPUTE ESCAPE FRACTION
     COMMON/DEPO/UD(200,20), ZREF, ZO
DIMENSION GRIDX(1), GRIDY(1), XDIS(1), YDIS(1), GRIDZ(1), SOURCE(215,1) SO200150
     DIMENSION METER(2), SEASON(2,4), ATHRUF(6), UCTDEF(5)
                                                                   50200160
     EQUIVALENCE (ISW(23),QFLGS)
                                                                   50200170
     DATA ATHRUF / 'A', 'B', 'C', 'D', 'E', 'F' /
                                                                   50200180
     DATA UCTDEF / 1.54,3.09,5.14,8.23,10.8 /
                                                                   50200190
     DATA METER /'(MET', 'ERS)'/
                                                                   50200200
     DATA SEASON / WINT , 'ER ', 'SPRI', 'NG ', 'SUMM', 'ER ', 'AUTU',
                                                                   50200210
     1 'MN ' /
                                                                   S0200220
     DATA IBLANK /'
                                                                   50200230
С
     CHECK "ISW" AND SET DEFAULT VALUES.
                                                                   50200240
     DEFAULT TO CONCENTRATION ON RECTANGULAR GRID & DISCRETE POINTS.
                                                                   50200250
   10 IF(ISW(1) .LE. 0) ISW(1) = 1
                                                                   S0200260
     IF(ISW(2) .LE. 0) ISW(2) = 1
                                                                   50200270
     IF(ISW(3) . LE. O) ISW(3) = 1
                                                                   50200280
С
     DEFAULT CARD MET PARAMETERS.
                                                                   50200270
     IF(NDAYS .LE. 0) NDAYS = 1
                                                                   50200300
C
     DEFAULT TO PRE-PROCESSED MET DATA WITH RURAL OPTION.
                                                                   50200310
     IF(ISW(19) . LE. 0) ISW(19) = 1
                                                                   50200320
     IF(ISW(19) .EQ. 2) ISW(20) = 0
                                                                   50200330
C
     DEFAULT TO PROGRAM"S WIND PROFILE EXPONENT AND VERTICAL POTENTIAL SO200340
     TEMPERATURE GRADIENT VALUES.
                                                                   50200350
     IF(ISW(21) .LT. 1) ISW(21) = 1
                                                                   50200360
     IF(ISW(22) .LT. 1) ISW(22) = 1
                                                                   50200370
C
     DEFAULT TO FINAL PLUME RISE FOR ALL RECEPTORS.
                                                                   50200380
     IF(ISW(24) .LT. 1) ISW(24) = 1
                                                                   50200390
     DEFAULT TO NO STACK DOWNWASH ADJUSTMENT.
C
                                                                   50200400
     IF(ISW(25) .LT. 1) ISW(25) = 1
                                                                   50200410
C
     READ GRID THEN DISCRETE POINTS
                                                                   50200420
     IF (NXFNTS .EQ. O .OR. NYPNTS .EQ. O) GOTO 70
                                                                   50200430
     IF(ISW(2) .NE. 3) READ(IN,9020) (GRIDX(I),I=1,NXPNTS)
                                                                   50200440
     IF(ISW(2) .LT. 3) READ(IN,9020) (GRIDY(I), I=1,NYPNTS)
                                                                   50200450
     IF(ISW(2) .NE. 3) GOTO 30
                                                                   50200460
C
     GENERATE GRID, THEN READ DISCRETE POINTS.
                                                                   50200470
     READ(IN, 9020) GRIDX(1),DX
                                                                   50200480
     I2 = NXPNTS - 1
                                                                   50200490
     DO 20 I = 1, I2
                                                                   50200500
     I1 = I + 1
                                                                   50200510
   20 GRIDX(I1) = GRIDX(I) + DX
                                                                   50200520
   30 IF(ISW(2) .LT. 3) GOTO 50
                                                                   50200530
     READ(IN, 9020) GRIDY(1), DY
                                                                   S0200540
     I2 = NYPNTS - 1
                                                                   S0200550
     DO 40 I = 1, I2
                                                                   50200560
     I1 = I + 1
                                                                   S0200570
```

```
40 GRIDY(I1) = GRIDY(I) + DY
                                                                             50200580
   50 IF(ISW(2) .NE. 2 .AND. ISW(2) .NE. 4) GOTO 70
                                                                             50200590
      SET DEFAULT DIRECTION VALUES.
                                                                             50200600
      DO 60 I = 1,NYPNTS
                                                                             50200610
   60 IF (GRIDY(I) .LE. 0.0 .OR. GRIDY(I) .GT. 360.0) GRIDY(I) = 360.0
                                                                             50200620
   70 IF (NXWYPT .EQ. 0) GOTO 90
                                                                             50200630
      READ(IN, 9020) (XDIS(I), I=1, NXWYPT)
                                                                             50200640
      READ(IN, 9020) (YDIS(I), I=1, NXWYPT)
                                                                             S0200650
      IF(ISW(3) .NE. 2) GOTO 90
                                                                             S0200660
С
      SET DEFAULT DIRECTION VALUES.
                                                                             50200670
      DO BO I = 1,NXWYPT
                                                                             S02006B0
   80 IF(YDIS(I) .LE. 0.0 .OR. YDIS(I) .GT. 360.0) YDIS(I) = 360.0
                                                                            50200690
      CHECK FOR TERRAIN HEIGHTS
                                                                             50200700
   90 IF(ISW(4) .NE. 1) GOTO 125
IF(NXPNTS .EQ. O .OR. NYPNTS .EQ. O) GOTO 110
                                                                             S0200710
                                                                             S0200720
      READ TERRAIN FOR GRID AND DISCRETE REC"S; READ NO OF SOURCE GROUPSSO200730
C
      DO 100 J = 1,NYPNTS
                                                                             50200740
      I1 = (J-1)*NXPNTS
                                                                             50200750
     I2 = I1 + NXPNTS
                                                                             50200760
      I1 = I1 + 1
                                                                             50200770
  100 READ(IN, 9020) (GRIDZ(I), I=I1, I2)
                                                                             50200780
  110 IF (NXWYPT .EQ. 0) GOTO 120
                                                                             50200790
      I1 = NXPNTS*NYPNTS + 1
                                                                             50200800
      READ(IN, 9020) (GRIDZ(I), I=11, NPNTS)
                                                                             50200810
  120 DO 121 I=1,NPNTS
                                                                             50200820
  121 \text{ GRIDZ}(I) = \text{GRIDZ}(I) * .3048006
                                                                             90200830
  125 IF(NGROUP .EQ. 0) GOTO 140
                                                                             50200840
      READ(IN, 9023) (NSOGRP(I), I=1, NGROUP)
                                                                             50200850
      I1 = 0
                                                                             50200860
      DO 130 I = 1.NGROUP
                                                                             50200870
  130 \text{ Ii} = \text{Ii} + \text{NSOGRP(I)}
                                                                             50200880
      READ(IN, 9024) (IDSOR(I), I=1, I1)
                                                                             50200870
      DEFAULT OR READ WIND PROFILE EXPONENTS, VERTICAL POTENTIAL
C
                                                                            50200900
      TEMPERATURE GRADIENTS.
                                                                             50200910
  140 IF (ISW(21) .NE. 2) GOTO 160
                                                                             50200920
      DO 150 J = 1,6
                                                                             S0200930
  150 READ(IN, 9020) (PDEF(I,J), I=1,6)
                                                                             50200940
  160 IF (ISW(22) .NE. 2) GOTO 180
                                                                             50200950
      DD 170 J = 1,6
                                                                            50200960
  170 READ(IN, 9020) (DTHDEF(I, J), I=1,6)
                                                                             50200970
      ENTER OFLGS AND WIND SPEED CATEGORIES.
                                                                             50200980
  180 READ(IN, 9020) ZR, (UCATS(I), I=1,5)
                                                                             50200990
      DD 190 I = 1.5
                                                                            50201000
      IF (UCATS (I) .GT. 0.0) GOTO 190
                                                                             50201010
      UCATS(I) = UCTDEF(I)
                                                                            50201020
  190 CONTINUE
                                                                            50201030
      READ GENERAL INPUT VARIABLES & SET DEFAULT VALUES.
                                                                            50201040
  200 READ(IN, 9021) TK, BETA1, BETA2, DDECAY, (IQUN(I), I=1,3),
                                                                           50201050
     1 (ICHIUN(I), I=1,7), IMET, ITAP
                                                                            50201060
      IF (TK .LE. 0.0 .AND. ISW(1) .EQ. 1) TK = 1.E6 IF (TK .LE. 0.0 .AND. ISW(1) .EQ. 2) TK = 1.0
                                                                             S0201070
                                                                             50201080
      IF (BETA1 .LE. 0.0) BETA1 = .6
                                                                            50201090
      IF (BETA2 .LE. 0.0) BETA2 = .6
                                                                            50201100
      IF (IMET .LE. 0 .AND. ISW(19) .EQ. 1) IMET = 9
                                                                           50201110
      IF (IMET .LE. 0 .AND. ISW(19) .EQ. \cdot2) IMET = IN
                                                                             50201120
      IF(ITAP .LE. 0) ITAP = 3
                                                                             50201130
      IF(ZR .LE. 0.0) ZR = 10.0
                                                                             50201140
      DD 210 I = 1.3
                                                                             50201150
      IF(IQUN(I) .NE. IBLANK) GOTO 230
                                                                             50201160
  210 CONTINUE
                                                                             50201170
      IF(ISW(1) .EQ. 2) GOTO 220 IQUN(1) = '(GRA'
                                                                             50201180
                                                                             50201190
      IQUN(2) = 'MS/S'
                                                                             50201200
      IQUN(3) = 'EC'
                                                                             50201210
      GOTO 230
                                                                             50201220
  220 IQUN(1) = ' (G'
                                                                             50201230
      IQUN(2) = 'RAMS'
                                                                             S0201240
      IQUN(3) = ') ' '
                                                                             50201250
  230 DO 240 I = 1,7
                                                                             50201260
```

```
50201270
     IF (ICHIUN (I) .NE. IBLANK) GOTO 260
                                                                      50201280
 240 CONTINUE
     IF(ISW(1) .EQ. 2) GOTO 250
                                                                      50201290
     ICHIUN(1) = '(MIC'
                                                                      50201300
     ICHIUN(2) = 'ROGR'
                                                                      50201310
     ICHIUN(3) = 'AMS/'
                                                                      50201320
     ICHIUN(4) = 'CUBI'
                                                                      50201330
     ICHIUN(5) = 'C ME'
                                                                      50201340
     ICHIUN(6) = 'TER'
                                                                      50201350
                                                                      50201360
     ICHIUN(7) =
                                                                      50201370
     GOTO 260
 250 ICHIUN(1) = '(GRA')
                                                                      50201380
     ICHIUN(2) = 'MS/S'
                                                                      S0201370
     ICHIUN(3) = 'QUAR'
                                                                      50201400
     ICHIUN(4) = 'E ME'
                                                                      50201410
     ICHIUN(5) = 'TER '
                                                                      50201420
     ICHIUN(6) = '
                                                                      50201430
     ICHIUN(7) = '
                                                                      50201440
     READ "DAY" ARRAY & MET IDENTIFICATION.
С
                                                                      50201450
  260 IF(ISW(19) .NE. 1) GOTO 270
                                                                      50201460
     READ(IN, 9022) (IDAY(I), I=1,366)
                                                                      50201470
     READ(IN, 9024) ISS, ISY, IUS, IUY
                                                                      50201480
     NDAYS = 365
                                                                      50201490
     IF(MOD(ISY,4) .EQ. O) NDAYS = 366
                                                                      50201500
     READ(IMET) ISSI, ISYI, IUSI, IUYI
                                                                      50201510
     IF(ISS.EQ.ISSI.AND.ISY.EQ.ISYI.AND.IUS.EQ.IUSI.AND.IUY.EQ.IUYI)
                                                                      50201520
                                                                      50201530
     1 GOTO 280
     WRITE(ID.9025) ISS.ISSI,ISY,ISYI,IUS,IUSI,IUY,IUYI
                                                                      50201540
                                                                      50201550
     FOR CARD MET DATA SET RURAL-URBAN SWITCH TO RURAL.
                                                                      50201560
  270 \text{ ISW}(20) = 0
                                                                      50201570
  280 IF(NSDURC .GT. 0) GOTO 290
                                                                      50201580
     WRITE(10,9026)
                                                                      50201590
      STOP
                                                                      50201600
C*
                                                                      50201610
C
      READ SOURCE DATA.
                                                                      50201620
С
     MOST VARIABLES ARE READ DIRECTLY INTO THE "SOURCE" ARRAY WHICH
                                                                      50201630
C
     HAS 215 STORAGE LOCATIONS ALLOCATED PER SOURCE. STORAGE LOCATION SO201640
С
      1 CONTAINS WAKE, QLFG, NVS & ITYPE PACKED INTO THE FIRST LOCATION.SO201650
     STORAGE LOCATIONS 2-13 CONTAIN% NSO, Q, X, Y, ZS, HS, TS OR
C
                                                                      50201660
C
      SIGZO, VS OR SIGYO OR XO, D, HB, BUILDING LENGTH, AND BUILDING
                                                                      50201670
C
      WIDTH, RESPECTIVELY. STORAGE LOCATIONS 16-35 CONTAIN PHI, 36-55 SO201680
С
     CONTAIN SETTLING VELOCITIES AND 56-75 CONTAIN GAMMA. STORAGE
                                                                      50201690
С
     LOCATIONS 76-81 CONTAIN STABILITY-DEPENDENT LATERAL VIRTUAL
                                                                      50201700
C
      DISTANCES AND LOCATIONS 82-117 CONTAIN STABILITY AND XBAR-
                                                                      50201710
С
      DEPENDENT VERTICAL VIRTUAL DISTANCES BOTH OF WHICH ARE COMPUTED
                                                                      50201720
С
      IN SUBROUTINE MODEL. STORAGE LOCATIONS 120-215 CONTAIN Q
                                                                      50201730
C
      ADJUSTMENT FACTORS AS A FUNCTION OF EITHER TIME OF DAY-SEASONAL ORSO201740
C
      STABILITY-WIND SPEED VARIATIONS. STORAGE LOCATIONS 14, 15, 118, &50201750
C
      119 ARE CURRENTLY NOT BEING USED.
                                                                      50201760
  290 II = 1
                                                                      50201780
  300 IF(II .GT. NSOURC) GOTO 320
                                                                      50201790
THE FOLLOWING LINES OF CODE ALTERED TO COMPUTE ESCAPE FRACTION
     READ(IN,9027) NSO,ITYPE,WAKE,NVS,QFLG,(SOURCE(I,II),I=3,13),
                                                                      50201800
     1 PITDEP(II)
                                                                      TRC 006
IF(NVS .LE. 0) GOTO 310
                                                                      50201810
      INPUT VARIABLES RELATED TO PARTICULATE SOURCES.
                                                                      50201820
     READ(IN, 9020) (SOURCE(15+I, II), I=1, NVS)
                                                                      50201830
     READ(IN, 9020) (SOURCE(35+I,II), I=1,NVS)
                                                                      50201840
      READ(IN, 9020) (SOURCE (55+1, II), I=1, NVS)
                                                                      S0201850
      READ(IN, 9020) (UD(II, I), I=1, NVS)
  310 CONTINUE
                                                                      50201860
C
     PACK SOURCE VARIABLES WAKE, QFLG, NVS & ITYPE INTO FIRST LOCATION.SO201870
C
      ALSO STORE SOURCE NUMBER.
                                                                      50201880
      SOURCE(1,II) = ITYPE + NVS*16 + QFLG*512 + WAKE*8192
                                                                      S0201870
```

```
SOURCE(2,II) = NSO
                                                                           50201700
      II = II + 1
                                                                           50201910
      GDTD 300
                                                                           50201920
C
      ENTER SOURCE EMISSION RATE SCALARS.
                                                                           50201930
  320 \text{ II} = 1
                                                                           50201940
      IF(QFLGS .LT. 1 .DR. QFLGS .GT. 5) GDTD 330
                                                                           50201950
      DONE = .TRUE.
                                                                           50201960
      QFLG = QFLGS
                                                                           50201970
      GOTO 350
                                                                           50201780
  330 DONE = .FALSE.
                                                                           50201990
  340 IF(II .GT. NSOURC) GOTO 430
                                                                           50202000
      ITYPE = SOURCE(1,II)
                                                                           50202010
      QFLG = ITYPE/512 - (ITYPE/8192)*16
                                                                           50202020
      IF(OFLG .LT. 1 .OR. QFLG .GT. 5) GOTO 420
                                                                           50202030
  350 J = 1
                                                                           50202040
      I = 4
                                                                           50202050
      GOTO (400,360,370,380,390), QFLG
                                                                           50202060
  360 I = 12
                                                                           50202070
      GOTO 400
                                                                           50202080
  370 I = 24
                                                                           50202090
      GOTO 400
                                                                           50202100
  380 J = 6
                                                                           50202110
      I = 6
                                                                           50202120
      GOTO 400
                                                                           50202130
  390 J = 4
                                                                           50202140
      I = 24
                                                                           50202150
  400 DO 410 I1 = 1,J
                                                                           50202160
      IFR = (I1-1)*I + 120
                                                                           50202170
      ITO = IFR + I - 1
                                                                           50202180
  410 READ(IN, 9020) (SOURCE(I2, II), I2=IFR, ITO)
                                                                           50202190
      IF (DONE) GOTO 430
                                                                           50202200
  420 II = II + 1
                                                                           50202210
      GOTO 340
                                                                           50202220
C
      LIST ALL INPUT VARIABLES IF DESIRED.
                                                                           50202230
  430 IF(ISW(6) .LE. 0) GOTO 820
                                                                           50202240
      WRITE(ID, 9029) (TITLE(I), I=1,15)
                                                                           50202250
      WRITE(ID, 9030) (ISW(I), I=1,14)
                                                                           50202260
      WRITE(ID, 9031) (ISW(I), I=15,25)
                                                                           50202270
      WRITE(ID,9032) NSOURC,NGROUP, IPERD, NXPNTS, NYPNTS, NXWYPT
                                                                           50202280
      IF(ISW(19) .EQ. 2) WRITE(ID, 9033) NHOURS, NDAYS
                                                                           50202290
      WRITE(IO,9034) TK,BETA1,BETA2,ZR,IMET
                                                                           50202300
      IF(ISW(19) .NE. 1) GOTO 440
                                                                           50202310
      WRITE(ID, 9035) DDECAY, ISS, ISY, IUS, IUY
                                                                           50202320
  440 CONTINUE
                                                                           50202330
      IF(ISW(5) .GT. 0) WRITE(IO, 9036) ITAP
                                                                           50202340
      WRITE(ID,9056) LIMIT,MIMIT
                                                                           90202350
      WRITE(ID, 9029) (TITLE(I), I=1,15)
                                                                           50202360
                                                                            50202370
      LINE = 6
      IF(ISW(19) .NE. 1) GOTO 450
                                                                           50202380
      PRINT "DAY" ARRAY.
C
                                                                            50202390
      LINE = 18
                                                                           50202400
      WRITE(ID, 9037) (IDAY(I), I=1,366)
                                                                            50202410
  450 IF (NGROUP .EQ. 0) GOTO 470
                                                                            50202420
C
      PRINT SOURCE GROUP INFO.
                                                                            50202430
      LINE = LINE + 12
                                                                           50202440
      WRITE(IO,9057) (NSOGRP(I),I=1,NGROUP)
                                                                            50202450
      13 = 0
                                                                            50202460
      DO 460 I = 1,NGROUP
                                                                            50202470
  460 I3 = I3 + NSOGRP(I)
                                                                            50202480
      WRITE(10,9058) (IDSOR(I),I=1,I3)
                                                                            50202490
      PRINT UPPER BOUND OF FIRST 5 WIND SPEED CATEGORIES.
                                                                            90202500
  470 LINE = LINE + 6
                                                                           50202510
      WRITE(ID,9001) (UCATS(I), I=1,5)
                                                                           50202520
      IF(ISW(19).EQ.2.AND.ISW(6).EQ.2) GOTO 530
                                                                           50202530
      IF(ISW(21) .EQ. 3) GOTO 500
                                                                            50202540
C
      PRINT WIND PROFILE EXPONENTS.
                                                                            50202550
      LINE = LINE + 12
                                                                            50202560
      IF(LINE .LT. 57) GOTO 480
                                                                            S0202570
```

```
S0202580
      LINE = 15
      WRITE(10,9029) TITLE
                                                                           S0202590
  480 WRITE(IO, 9059)
                                                                           50202600
      WRITE(ID, 9016) (I1, I1=1,6)
                                                                           50202610
      DO 490 I = 1.6
                                                                           50202620
  490 WRITE(IO,9017) ATHRUF(I),(PDEF(J,I),J=1,6)
                                                                           50202630
  500 IF(ISW(22) .EQ. 3) GOTO 530
                                                                           S0202640
      PRINT VERTICAL POJENTIAL TEMPERATURE GRADIENTS.
                                                                           50202650
      LINE = LINE + 12
                                                                           50202660
      IF(LINE .LT. 57) GDTO 510
                                                                           50202670
      LINE = 15
                                                                           50202680
      WRITE(ID, 9029) TITLE
                                                                           50202690
  510 WRITE(ID, 9060)
                                                                           50202700
      WRITE(ID, 9016) (I1, I1=1,6)
                                                                           50202710
      DO 520 I = 1,6
                                                                           50202720
  520 WRITE(ID, 9017) ATHRUF(I), (DTHDEF(J, I), J=1,6)
                                                                           50202730
      PRINT RECEPTOR INFO.
                                                                           S0202740
  530 IF(NXPNTS .EQ. O .OR. NYPNTS .EQ. O) GOTO 550
                                                                           50202750
      LINE = LINE + 20
                                                                           50202760
      IF(LINE .LT. 57) GOTO 540
                                                                           50202770
      LINE = 6
                                                                           50202780
      WRITE(10,9029) TITLE
                                                                           S0202790
  540 IF(ISW(2) .EQ. 1 .OR. ISW(2) .EQ. 3) WRITE(IO,9038)
                                                                           S0202800
      IF(ISW(2) .EQ. 2 .OR. ISW(2) .EQ. 4) WRITE(ID, 9039)
                                                                           50202810
      WRITE(IO, 9040) (GRIDX(I), I=1, NXPNTS)
                                                                           50202820
      IF(ISW(2) .EQ. 1 .OR. ISW(2) .EQ. 3) WRITE(ID, 9041)
                                                                           50202830
      IF(ISW(2) .EQ. 2 .OR. ISW(2) .EQ. 4) WRITE(ID, 9042)
                                                                           50202840
      WRITE(IO, 9040) (GRIDY(I), I=1, NYPNTS)
                                                                           50202850
  550 IF(NXWYPT .EQ. 0) GOTO 570
                                                                           50202860
      LINE = LINE + 5 + NXWYPT/5
                                                                           S0202870
      IF(LINE .LT. 57) GOTO 560
                                                                           50202880
      LINE = 6
                                                                           50202890
      WRITE(ID, 9029) TITLE
                                                                           S0202900
  560 IF(ISW(3) .EQ. 1) WRITE(ID,9043)
                                                                           50202910
      IF(ISW(3) .EQ. 2) WRITE(IO,9044)
                                                                           50202920
      WRITE(ID, 9045) (XDIS(I), YDIS(I), I=1, NXWYPT)
                                                                           50202930
      PRINT TERRAIN HEIGHTS.
                                                                           50202940
  570 IF(ISW(4) .NE. 1) GOTO 580
                                                                           S0202950
      CONDEP(3) = 'HGT'
                                                                           50202960
      CALL DYOUT (GRIDX, GRIDY, XDIS, YDIS, GRIDZ, 99, IDY, IHR, 1, 0, 0, 0)
                                                                           50202970
      FRINT OUT SOURCE INFO.
                                                                           S0202980
  580 CONTINUE
                                                                           50202990
      LINE = 100
                                                                           50203000
      I3 = 0
                                                                           50203010
      DO 600 I = 1,NSOURC
                                                                           S0203020
      IF(LINE .LE. 56) GOTO 590
                                                                           50203030
      WRITE(ID, 9029) (TITLE(J), J=1,15)
                                                                           50203040
      WRITE(IO,9046) ((IQUN(J),J=1,3),I2=1,2),(METER(1),METER(2),J=1,10)S0203050
      LINE = 18
                                                                           50203060
  590 CONTINUE
                                                                           S0203070
      ITYPE = SOURCE(1,I)
                                                                           50203080
      GET WAKE OPTION, SOURCE NO., NVS & TYPE FROM FIRST WORD.
C
                                                                           50203090
      NSO = SOURCE(2,I)
                                                                           50203100
      WAKE = ITYPE/8192
                                                                           50203110
      QFLG = ITYPE/512 - (ITYPE/8192)*16
                                                                           50203120
      NVS = ITYPE/16 - (ITYPE/512)*32
                                                                           50203130
      ITYPE = ITYPE - (ITYPE/16)*16
                                                                           50203140
      IF (NVS .GT. 0) I3 = 1
                                                                           50203150
      WRITE(ID, 9047) NSD, ITYPE, WAKE, NVS, (SOURCE(J, I), J=3, 13)
                                                                           50203160
      LINE = LINE + 1
                                                                           50203170
  600 CONTINUE
                                                                           50203180
      IF(I3 .NE. 1) GOTO 630
                                                                           50203190
      PRINT OUT PARTICLE CATEGORY INFORMATION.
С
                                                                           50203200
      LINE = 100
                                                                           50203210
      DO 620 I = 1,NSOURC
                                                                           50203220
      IF(LINE .LT. 43) GOTO 610
                                                                           50203230
      WRITE(IO, 9029) (TITLE(J), J=1, 15)
                                                                           50203240
      WRITE(ID.9049)
                                                                           50203250
```

```
LINE = 10
                                                                          50203260
610 CONTINUE
                                                                          50203270
    ITYPE = SOURCE(1,I)
                                                                          50203280
    NSO = SOURCE(2, I)
                                                                          50203290
    NVS = ITYPE/16 - (ITYPE/512)*32
                                                                          50203300
    IF(NVS .LE. 0) GOTO 620
                                                                          50203310
    WRITE(I0,9050) NSO
                                                                          50203320
    I2 = 15 + NVS
                                                                          50203330
    WRITE(ID,9051)
                     (SOURCE(J.I),J=16,I2)
                                                                          90203340
    I2 = 35 + NVS
                                                                          90203350
    WRITE(I0,9052)
                    (SOURCE(J,I),J=36,12)
                                                                          50203360
    I2 = 55 + NVS
                                                                          50203370
    WRITE(ID, 9053) (SOURCE(J, I), J=56, I2)
                                                                          50203380
    LINE = LINE + 14
                                                                          50203390
620 CONTINUE
                                                                          50203400
    PRINT SOURCE EMISSION RATE SCALARS.
                                                                          90203410
630 I = 1
                                                                          50203420
    IF (QFLGS .LT. 1 .OR. QFLGS .GT. 5) GOTO 640
                                                                          50203430
    DONE = .TRUE.
                                                                          50203440
    QFLG = QFLGS
                                                                          50203450
    LINE = 100
                                                                          50203460
                                                                          50203470
    GOTO 670
640 DONE = .FALSE.
                                                                          50203480
    J = 1
                                                                          50203490
650 IF(J .GT. 5) GOTO 820
                                                                          50203500
    LINE = 100
                                                                          50203510
    I = 1
                                                                          50203520
660 IF(I .GT. NSOURC) GOTO 810
                                                                          50203530
    ITYFE = SOURCE(1,I)
                                                                          50203540
    QFLG = ITYPE/512 - (ITYPE/8192)*16
                                                                          50203550
    IF (QFLG .NE. J) GOTO 800
                                                                          50203560
    NSO = SOURCE(2.I)
                                                                          50203570
670 GOTO (680,700,720,740,770), QFLG
                                                                          S0203580
680 IF(LINE .LT. 54) GOTO 690
                                                                          50203590
    WRITE(ID, 9029) TITLE
                                                                          50203600
    WRITE(ID, 9002)
                                                                          50203610
    IF(DONE) WRITE(IO,9003)
                                                                          50203620
    WRITE(IO, 9004) ((SEASON(I1, I2), I1=1,2), I2=1,4)
                                                                          50203630
                                                                          50203640
    LINE = 14
690 IF (.NOT.DONE) WRITE (IO. 9005) NSO
                                                                          50203650
    WRITE(ID, 9006) (SOURCE(I1, I), I1=120, 123)
                                                                          50203660
    IF (DONE) GOTO 820
                                                                          50203670
    LINE = LINE + 3
                                                                          50203680
    GOTO 800
                                                                          50203690
700 IF(LINE .LT. 54) GOTO 710
                                                                          50203700
    WRITE(ID, 9029) TITLE
                                                                          50203710
    WRITE(10,9007)
                                                                          50203720
    IF (DONE) WRITE (ID, 9003)
                                                                          50203730
    WRITE(ID,9008)
                                                                          50203740
    WRITE(10,9013)
                                                                          50203750
    LINE = 14
                                                                          50203760
710 IF (.NOT. DONE) WRITE (10,9009) NSO
                                                                          90203770
    WRITE(ID, 9010) (SOURCE(I1, I), I1=120, 131)
                                                                          50203780
    IF (DONE) GOTO 820
                                                                          50203790
    LINE = LINE + 3
                                                                          50203800
    GOTO 800
                                                                          S0203810
720 IF(LINE .LT. 50) GOTO 730
                                                                          50203820
    WRITE(ID, 9029) TITLE
                                                                          S0203830
    WRITE(ID, 9011)
                                                                          50203840
    IF(DONE) WRITE(IO,9003)
                                                                          50203850
    WRITE(ID, 9012)
                                                                          50203860
    WRITE(ID, 9013)
                                                                          50203870
    LINE = 14
                                                                          S0203B80
730 IF(.NOT.DONE) WRITE(ID,9009) NSD
                                                                          50203890
    WRITE(IO, 9014) (I1, SOURCE(119+I1, I), I1=1, 24)
                                                                          50203700
    IF (DONE) GOTO 820
                                                                          50203910
    LINE = LINE + 7
                                                                          50203920
    GOTO 800
                                                                          50203930
```

```
50203940
 740 IF(LINE .LT. 49) GOTO 750
                                                                          50203950
     WRITE(ID, 9029) TITLE
     WRITE(10,9015)
                                                                          50203960
                                                                          50203970
      IF (DONE) WRITE (IO, 9003)
      WRITE(ID, 9016) (I1, I1=1,6)
                                                                          50203980
                                                                          50203990
      WRITE(ID,9013)
                                                                          50204000
      LINE = 16
  750 IF(.NOT.DONE) WRITE(ID,9009) NSD
                                                                          50204010
      D0 760 I1 = 1,6
                                                                          50204020
      IFR = (I1-1)*6 + 120
                                                                          50204030
      ITO = IFR + 5
                                                                          50204040
  760 WRITE(IO,9017) ATHRUF(I1),(SOURCE(I2,I),I2=IFR,ITO)
                                                                          50204050
                                                                          50204060
      IF (DONE) GOTO 820
                                                                          50204070
      LINE = LINE + 8
                                                                          50204080
      GOTO 800
                                                                          50204090
  770 IF(LINE .LT. 37) GOTO 780
      WRITE(ID, 9029) TITLE
                                                                          50204100
      WRITE(ID,9018)
                                                                          50204110
                                                                          50204120
      IF(DONE) WRITE(IO,9003)
                                                                          50204130
      WRITE(10,9012)
                                                                          50204140
      WRITE(I0,9013)
      LINE = 14
                                                                          50204150
  780 IF (.NOT.DONE) WRITE (IO, 9009) NSO
                                                                          50204160
      DD 790 I1 = 1.4
                                                                          50204170
                                                                          50204180
      IFR = (I1-1)*24 + 119
      WRITE(ID, 9019) SEASON(1, I1), SEASON(2, I1)
                                                                          50204190
                                                                          50204200
  790 WRITE(IO,9014) (I2,SOURCE(I2+IFR,I),I2=1,24)
                                                                          50204210
      IF(DONE) GOTO 820
                                                                          50204220
      LINE = LINE + 22
                                                                          50204230
  800 I = I + 1
      GOTO 660
                                                                          50204240
  810 J = J + i
                                                                          S0204250
                                                                          50204260
      GOTO 650
      STORE RECIPROCAL SQUARED OF BETA1, BETA2 AS GAM11, GAM21 AND STORESO204270
C
C
      RECIPROCAL OF ZR.
                                                                          50204280
  B20 CONTINUE
                                                                          50204290
      GAM1I = 1./(BETA1*BETA1)
                                                                          50204300
      GAM2I = 1./(BETA2*BETA2)
                                                                          50204310
      ZR = 1./ZR
                                                                          S0204320
      COMPUTE EFFECTIVE BUILDING WIDTH FOR ALL SOURCES & STORE IN
                                                                          50204330
      LOCATION 12 OF "SOURCE" ARRAY. BUILDING LENGTH & WIDTH WILL NO
                                                                          50204340
      LONGER BE NEEDED. ALSO, RELOCATE AREA SOURCE COORDINATES FROM
                                                                          50204350
€:
C
      THE SOUTHWEST CORNER TO THE CENTER OF THE AREA SOURCE.
                                                                          50204360
      DO 830 I = 1,NSOURC
                                                                          50204370
C
      2/SQRT(3.14159265) = 1.1283792
                                                                          50204380
      SOURCE(12,I) = 1.1283792*SQRT(SOURCE(12,I)*SOURCE(13,I))
                                                                          50204390
      ITYPE = SOURCE(1,I)
                                                                          50204400
      IF(ITYPE-(ITYPE/16)*16 .NE. 2) GOTO 830
                                                                          50204410
      A1 = .5*SOURCE(9,I)
                                                                          50204420
      SOURCE(4,I) = SOURCE(4,I) + A1
                                                                          50204430
      SOURCE(5,I) = SOURCE(5,I) + A1
                                                                          50204440
  830 CONTINUE
                                                                          S0204450
C
      SET HEADING.
                                                                          50204460
      IF(ISW(1) .EQ. 1) GOTO 840
                                                                          50204470
      CONDEP(1) = '
                     TO'
                                                                          50204480
      CONDEP(2) = 'TAL'
                                                                          S0204490
      CONDEP(3) = 'DEPO'
                                                                          50204500
      CONDEP(4) = 'SITI'
                                                                          50204510
      CONDEP(5) = 'ON '
                                                                          50204520
      CONDEP(6) = '
                                                                          S0204530
      GOTO 850
                                                                          S0204540
  840 CONDEP(1) = 'AVER'
                                                                          S0204550 -
      CONDEP(2) = 'AGE'
                                                                          S0204560
      CONDEP(3) = 'CONC'
                                                                          50204570
      CONDEP(4) = 'ENTR'
                                                                          S0204580
      CONDEP(5) = 'ATIO'
                                                                          50204590
      CONDEP(6) = 'N
                                                                          50204600
  850 CONTINUE
                                                                          50204610
      RETURN
                                                                          50204620
```

```
9001 FORMAT(/34X,64H*** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CS0204630
    1ATEGORIES ***/60X.12H(METERS/SEC)//46X.5(F7.2.1H.))
                                                                      50204640
7002 FORMAT (39X,54H* SOURCE EMISSION RATE SCALARS WHICH VARY SEASONALLYS0204650
                                                                      50204660
9003 FORMAT (56X,19H* FOR ALL SOURCES *//)
                                                                      50204670
9004 FORMAT(40X,4(2A4,7X)/20X,40(2H- )/)
                                                                      50204680
9005 FORMAT (/20X,12HSOURCE NO. =,16)
                                                                      50204690
9006 FORMAT (38X,4(E10.5,5X))
                                                                      50204700
9007 FDRMAT(41X.51H* SDURCE EMISSION RATE SCALARS WHICH VARY MONTHLY * S0204710
    1 //)
                                                                       50204720
                                                                     , 50204730
9008 FORMAT (7X,51HJANUARY FEBRUARY
                                      MARCH
                                                APRIL
                                                          MAY
    1 58HJUNE
                   JULY
                            AUGUST
                                     SEPTEMBER
                                               OCTOBER NOVEMBER
                                                                      50204740
    2 BHDECEMBER/)
                                                                       50204750
9009 FORMAT (/13H SOURCE NO. =, 16)
                                                                       50204760
9010 FORMAT (5X,12E10.4)
                                                                       50204770
9011 FORMAT (32X,68H* SOURCE EMISSION RATE SCALARS WHICH VARY FOR EACH HS0204780
    10UR OF THE DAY *//)
                                                                       50204790
9012 FORMAT (5X,6(14HHOUR
                            SCALAR, 6X))
                                                                       50204800
9013 FORMAT(1X,65(2H- )/)
                                                                       50204810
9014 FORMAT (4(5X,6(I3,3X,E10.5,4X)/))
                                                                      S0204820
9015 FORMAT (30X,73H* SOURCE EMISSION RATE SCALARS WHICH VARY WITH STABIS0204830
    1LITY AND WIND SPEED *//)
                                                                       50204840
9016 FORMAT(16X,9HSTABILITY,29X,19HWIND SPEED CATEGORY/16X,8HCATEGORY, S0204850
    1 9X,6(I1,14X))
                                                                       50204860
9017 FORMAT(19X,A1,5X,6(5X,E10.5))
                                                                       50204870
9018 FORMAT (32X, 68H* SOURCE EMISSION RATE SCALARS WHICH VARY SEASONALLYSOZO4880
    1 AND DIURNALLY *//)
                                                                       50204890
9019 \text{ FORMAT}(59X,9HSEASON = ,2A4)
                                                                       50204700
9020 FORMAT (8F10.0)
                                                                       50204910
9021 FORMAT (EB. 0, 3F8. 0, 3A4, 7A4, 2I2)
                                                                       S0204920
9022 FORMAT(80I1)
                                                                       50204930
9023 FORMAT (2014)
                                                                       50204940
9024 FORMAT (1316)
                                                                       50204950
9025 FORMAT('1',10X,63H*** ERROR *** MET DATA REQUESTED DOES NOT MATCHS0204960
    1 MET DATA READ./10X,28H"REQUESTED/READ" VALUES ARE%/10X,
    2 21HSURFACE STATION NO. =,16,1H/,16,23H YEAR OF SURFACE DATA =,16,50204980
    3 1H/, 16/10X, 23HUPPER AIR STATION NO. =, 16, 1H/, 16,
    4 25H YEAR OF UPPER AIR DATA =,16,1H/,16/10X,15HRUN TERMINATED.)
                                                                      50205000
9026 FORMAT('1',10X,73H*** ERROR *** NUMBER OF SOURCES TO BE READ EQUASO205010
    1LS ZERO. RUN TERMINATED.)
                                                                      50205020
THE FOLLOWING LINE OF CODE ALTERED TO COMPUTE ESCAPE FRACTION
9027 FORMAT(15,211,12,11,E8.0,2F7.0,9F6.0)
                                                                       50205030
9028 FORMAT(9X,I1,5F10.0)
                                                                       50205040
9029 FORMAT('1'//32X,4H*** ,15A4,4H ***//)
                                                                       50205050
9030 FORMAT(18X,40HCALCULATE (CONCENTRATION=1,DEPOSITION=2),29X,
                                                                       50205060
    1 8HISW(1) =,14/18X,55HRECEPTOR GRID SYSTEM (RECTANGULAR=1 OR 3, POSO205070
    2LAR=2 OR 4),14X,8HISW(2) =,I4/
                                                                       S0205080
    3 18X,48HDISCRETE RECEPTOR SYSTEM (RECTANGULAR=1,POLAR=2),21X,
                                                                       S0205090
    4 8HISW(3) =, I4/, 18X, 40HTERRAIN ELEVATIONS ARE READ (YES=1, NO=0),
                                                                       50205100
    5 29X.8HISW(4) = ,I4/,18X,
                                                                       50205110
    6 45HCALCULATIONS ARE WRITTEN TO TAPE (YES=1,NO=0),24X,8HISW(5) =, S0205120
                                                                       50205130
    8 48HLIST ALL INPUT DATA (NO=0, YES=1, MET DATA ALSO=2),21X,
                                                                       50205140
    9 BHISW(6) =,14//18X,39HCDMPUTE AVERAGE CONCENTRATION (OR TOTAL,
                                                                       50205150
    O 12H DEPOSITION)/18X,32HWITH THE FOLLOWING TIME PERIODS%/20X,
                                                                       50205160
    1 19HHOURLY (YES=1,NO=0),48X,8HISW(7) =,14/20X,
                                                                       50205170
    2 19H2-HOUR (YES=1,NO=0),48X,8HISW(8) =,14/20X,
                                                                       50205180
    3 19H3-HOUR (YES=1,NO=0),48X,8HISW(9) =,14/20X,
                                                                       S0205190
     4 19H4-HOUR (YES=1,NO=0),47X,9HISW(10) =,I4/20X,
                                                                      -50205200
    5 19H6-HOUR (YES=1,NO=0),47X,9HISW(11) =,I4/20X,
                                                                       50205210
     6 19HB-HOUR (YES=1,NO=0),47X,9HISW(12) =,I4/20X,
                                                                       50205220
    7 20H12-HOUR (YES=1,NO=0),46X,7HISW(13) =,14/20X,
                                                                       50205230
    B 20H24-HDUR (YES=1,NO=0),46X,9HISW(14) =,I4)
                                                                       50205240
 9031 FORMAT(18X,35HPRINT "N"-DAY TABLE(S) (YES=1,NO=0),33X,
     1 9HISW(15) =,I4//18X,58HPRINT THE FOLLOWING TYPES OF TABLES WHOSE S0205260
    2TIME PERIODS ARE/18X,36HSPECIFIED BY ISW(7) THROUGH ISW(14)%/20X, S0205270
```

```
3 25HDAILY TABLES (YES=1,NO=0),41X,9HISW(16) =,I4/20X,
                                                                          S0205280
    4 44HHIGHEST & SECOND HIGHEST TABLES (YES=1,NO=0),22X,9HISW(17) =, S0205290
    5 14/20X,30HMAXIMUM 50 TABLES (YES=1,NO=0),36X,9HISW(18) =,14/18X, S0205300
    6 57HMETEOROLOGICAL DATA INPUT METHOD (PRE-PROCESSED=1,CARD=2),11X,50205310
    7 9HISW(19) =,14/18X,58HRURAL-URBAN OPTION (RURAL=0,URBAN MODE 1=1,S0205320
   BURBAN MODE 2=2),10X,9HISW(20) =,I4/18X,57HWIND PROFILE EXPONENT VASO205330 9LUES (DEFAULTS=1,USER ENTERS=2,3),11X,9HISW(21) =,I4/18X, S0205340
    O 64HVERTICAL POT. TEMP. GRADIENT VALUES (DEFAULTS=1, USER ENTERS=2, S0205350
    13),4X,9HISW(22) =,14/10X,49HSCALE EMISSION RATES FOR ALL SOURCES (S0205360
    2NO=0,YES>0),19X,9HISW(23) =,14/18X,53HPROGRAM CALCULATES FINAL PLUS0205370
    3ME RISE ONLY (YES=1,NO=2),15X,9HISW(24) =, I4/18X,
                                                                          50205380
    4 59HPROGRAM ADJUSTS ALL STACK HEIGHTS FOR DOWNWASH (YES=2.NO=1).
                                                                          S0205390
       9X,9HISW(25) = 14
                                                                          S0205400
9032 FORMAT(/18X,23HNUMBER OF INPUT SOURCES,46X,8HNSOURC =,I4/18X,
                                                                          S0205410
    1 40HNUMBER OF SOURCE GROUPS (=0,ALL SOURCES),29%,8HNGROUP =,14/18%SO205420
    2,53HTIME PERIOD INTERVAL TO BE PRINTED (=0,ALL INTERVALS),17X,
                                                                          50205430
    3 7HIPERD =,14/18X,31HNUMBER OF X (RANGE) GRID VALUES.38X,8HNXFNTS S0205440
    4=,14/18X,31HNUMBER OF Y (THETA) GRID VALUES,38X,8HNYPNTS =,14/18X,50205450
    5 28HNUMBER OF DISCRETE RECEPTORS, 41X,8HNXWYPT =, I4)
                                                                          50205460
9033 FORMAT(18X,46HNUMBER OF HOURS PER DAY IN METEOROLOGICAL DATA,23X, S0205470
    1 8HNHOURS =, I4/18X, 37HNUMBER OF DAYS OF METEOROLOGICAL DATA, 32X,
                                                                          50205480
    2 8H NDAYS = 14)
                                                                          50205490
9034 FORMAT(18X,44HSOURCE EMISSION RATE UNITS CONVERSION FACTOR,27X,
                                                                          50205500
    1 6H TK =,E10.5/18X,47HENTRAINMENT COEFFICIENT FOR UNSTABLE ATMOSPS0205510
    2HERE, 22X, 8H BETA1 =, F5.3/18X, 45HENTRAINMENT COEFFICIENT FOR STABLESO205520
    3 ATMOSPHERE, 24X, 8H BETA2 =, F5.3/, 18X,
                                                                          S0205530
    4 52HHEIGHT ABOVE GROUND AT WHICH WIND SPEED WAS MEASURED, 18%,
                                                                          50205540
           ZR = .F7.2,8H METERS/18X,
                                                                          S0205550
    6 42HLOGICAL UNIT NUMBER OF METEOROLOGICAL DATA, 29X, 6HIMET =, I4)
                                                                          S0205560
9035 FORMAT(18X,52HDECAY COEFFICIENT FOR PHYSICAL OR CHEMICAL DEPLETIONS0205570
    1 ,18X,7HDECAY =,E12.6/18X,19HSURFACE STATION NO.,
                                                                          S0205580
    3 53X,5HISS =,16/18X,20HYEAR OF SURFACE DATA,52X,5HISY =,13/18X,
                                                                          50205570
    4 21HUPPER AIR STATION NO., 51X, 5HIUS =, 16/18X,
                                                                          50205600
    5 22HYEAR OF UPPER AIR DATA, 50X, 5HIUY =, 13)
                                                                          50205610
9036 FORMAT(18X,39HLOGICAL UNIT OF CALCULATION "SAVE" TAPE,30X,
                                                                          50205620
    18HITAP = ,14)
                                                                          50205630
9037 FORMAT(44X,43H*** METEOROLOGICAL DAYS TO BE PROCESSED ***/
                                                                          S0205640
    1 63X,6H(IF=1)//B(11X,5(10I2,2X)/))
                                                                          50205650
9038 FORMAT(//42X,48H*** X-COORDINATES OF RECTANGULAR GRID SYSTEM ***/ S0205660
    1 62X,8H(METERS)/)
                                                                          S0205670
9039 FORMAT(//47X,35H*** RANGES OF POLAR GRID SYSTEM ***/62X.
                                                                          50205680
    1 BH (METERS) /)
                                                                          50205690
9040 FORMAT(100(5X.10(F10.1.1H.)/))
                                                                          50205700
9041 FORMAT(//42X,48H*** Y-COORDINATES OF RECTANGULAR GRID SYSTEM ***
                                                                          S0205710
    1 /62X,8H(METERS)/)
                                                                          S0205720
9042 FORMAT(//45X,42H*** RADIAL ANGLES OF POLAR GRID SYSTEM ***/
                                                                          50205730
    1 /62X,9H(DEGREES)/)
                                                                          50205740
9043 FORMAT(//47X,45H*** X,Y COORDINATES OF DISCRETE RECEPTORS ***/
                                                                          S0205750
    1 62X,8H(METERS)/)
                                                                          50205760
9044 FORMAT(//39X,53H*** RANGE,THETA COORDINATES OF DISCRETE RECEPTORS S0205770
    1***/58X,16H(METERS,DEGREES)/)
                                                                          50205780
9045 FORMAT(100(6X,5(1H(,F9.1,1H,,F9.1,4H),
                                                                          50205790
9046 FORMAT(55X,19H*** SOURCE DATA ***//21X,13HEMISSION RATE,38X,
                                                                          50205800
    1 5HTEMP.,4X,9HEXIT VEL./24X,8HTYPE=0,1,40X,2(6HTYPE=0,4X)/10X,
                                                                          50205810
    2 3HT W,8X,3A4,38X,18H(DEG.K);
                                     (M/SEC);,12X,3(5HBLDG.,4X)/10X,
                                                                          S0205820
    3 20HY A NUMBER
                        TYPE=2,25%,4HBASE,12%,53HVERT.DIM HORZ.DIM DIAMS0205B30
    4ETER HEIGHT
                                                                ,3A4,5X.
                    LENGTH
                               WIDTH/3X,19HSOURCE P K PART.
                                                                          50205840
    5 1HX,8X,43HY
                       ELEV.
                                HEIGHT
                                         TYPE=1
                                                   TYPE=1,2 ,4(6HTYPE=0,50205850
    6 3X)/3X,31HNUMBER E E CATS. *PER METER**2,2(5(1X,2A4),1X)/
                                                                          50205860
    7 63(2H -)/)
                                                                          50205870
9047 FQRMAT(IB, I3, I2, I5, 3X, E11.5, 2F10.1, FB.1, 2F9.2, 1X, 5F9.2)
                                                                          50205880
9048 FURMAT(IB, I3, I2, I5, 3X, 2A4, A3, 1X, 2F9.1, 3F9.2, 1X, 5F9.2)
                                                                          50205870
9049 FORMAT(50X,31H*** SOURCE PARTICULATE DATA ***//)
                                                                          50205900
9050 FDRMAT(/10X,19H*** SOURCE NUMBER =,16,4H ***)
                                                                          S0205710
9051 FORMAT(/10X,15HMASS FRACTION =/2(10X,10(F7.5,1H,)/))
                                                                          S0205920
9052 FDRMAT(/10X,31HSETTLING VELOCITY(METERS/SEC) =/2(10X,10(F7.4,1H,) S0205930
                                                                          50205740
9053 FORMAT(710X,32HSURFACE REFLECTION COEFFICIENT =/2(10X,10(F7.5,1H,
                                                                          S0205950
                                                                          50205960
```

9054 FORMAT(34X,27H* SEASONAL SOURCE STRENGTHS,3A4,	50205970
1 26HFOR EACH HOUR OF THE DAY *//20H *** SOURCE NUMBER =,I5,4H ***)	S0205980
9055 FORMAT(/4X,A4,A2/2(/4X,4HHOUR,I8,11I10/2X,8HSTRENGTH,12E10.4))	50205990
9056 FORMAT(18X,22HALLOCATED DATA STORAGE,48X,7HLIMIT =,16,6H WORDS/	50206000
1 18X,42HREQUIRED DATA STORAGE FOR THIS PROBLEM RUN,28X,	50206010
2 7HMIMIT =,16,6H WORDS)	50206020
9057 FORMAT('1',33X,65H*** NUMBER OF SOURCE NUMBERS REQUIRED TO DEFINE	50206030
1SOURCE GROUPS ***/62X,8H(NSOGRP)//3(15X,20(14,1H,)/))	50206040
	50206050
1 62X,7H(IDSOR)//8(15X,14(I6,1H,)/))	50206060
9059 FORMAT(//51X,30H*** WIND PROFILE EXPONENTS ***//)	50206070
9060 FORMAT(//42X,48H*** VERTICAL POTENTIAL TEMPERATURE GRADIENTS ***/	
1 53X,26H(DEGREES KELVIN PER METER)//)	50206090
FND	50206100

ESCAPE FRACTION SUBROUTINE

ALTERNATIVE 1

CONSTANT-K, LINEAR MODEL

	•	

SUBROUTINE ESCAPE(ZREF,ZO,TA,IS,U,UD,H,ESCP)

C SUBROUTINE ESCAPE, ALTERNATIVE-1 CONSTANT-K LINEAR MODEL AS=ALOG(ZREF/ZO)
 A6=1./.123/ZREF
 A1=UD*A5*H/U*A6
 ESCP=1./(1.+A1)
 RETURN
 END

```
SUBROUTINE ESCAPE (ZREF, ZO, TA, IS, U, UD, H, ESCP)
       DIMENSION DTDZ (6)
     DATA DTDZ/-.01,-.007,-.005,0.,.02,.035/
       A5=ALOG(ZREF/ZO)
       A6=1./.123/ZREF
       B=9.81*ZREF*ZREF*DTDZ(IS)/TA/U/U
       A1=ALOG(ZREF/ZO)
       IF (B.LT.O.) GOTO 1
       XH=0.05
       X=0.15
       FH=XH/((A1+.33333)/1.33333)**2-B
       IF(X.EQ.O.2) X=0.19999999
10
       IF(X.LT.0.2) GOTO 12
       XTEST=-A1/5/(1-A1)
       IF (X.GE.XTEST) X=XTEST-.0001
12
       F=X/(A1*(1.-5*X)+5*X)**2-B
       PH=1./(1.-5*X)
       PS=-5*X*PH
       IF(ABS(F).LT.0.0001) GOTO 100
       IF (X.EQ.XH) GOTO 100
       SL=(F-FH)/(X-XH)
       BINT=F-SL*X
       XNEW=-BINT/SL
       IF(ABS(XNEW-X).LT.0.0001) 60T0 100
       XH≖X
       FH=F
       X=XNEW
       GOTO 10
       XH=Q.
       FH=-B
       X = -.05
20
       IF(X.GE..06667) X=.06666
       IF (X.EQ.O.) X=0.0001
       PH=1.0/(1.0-15*X)**.25
       ZETA=(1.0-15*X)**.25
       ZETAO=(1.0-15*X*ZO/ZREF)**.25
       ARG1=ALOG((ZETA-1.0)*(ZETA+1.0)/((ZETA+1.0)*(ZETAO-1.0)))
       ARG2=2.0*(ATAN(ZETA)-ATAN(ZETAO))
       F=X/((A1-PS)/PH)**2-B
       IF(ABS(F).LT..0001) GOTO 100
       SL=(F-FH)/(X-XH)
       BINT=F-SL*X
       XNEW=-BINT/SL
       IF (ABS (XNEW-X).LT.0.0001) 60T0 100
       XH≔X
       FH≔F
       X=XNEW
       GOTO 20
100
       IF(X.LT.O.) ZOL=X
       IF(X.GE.O.) ZOL=X/(1.0~5*X)
       USTAR=0.35*U/(A1-PS)
       IF(ZOL.LT.O.) PHH=0.74/(1.-9*ZOL)**.5
       IF(ZOL.GE.O.) PHH=.74+5*ZOL
       EDDY=.35*USTAR*ZREF/PHH
       ESCP=1.0/(1.0+UD*H/EDDY)
       RETURN
       END
```

ESCAPE FRACTION SUBROUTINE

ALTERNATIVE 3

VARIABLE-K, LINEAR MODEL

SUBROUTINE ESCAPE(ZREF,ZO,TA,IS,U,UD,H,ESCP)
A5=ALOG(ZREF/ZO)
A6=1./.123/ZREF
A1=UD*A5*ALOG(H/ZO)/U/.123
ESCP=1./(1.+A1)
RETURN
END

ESCAPE FRACTION SUBROUTINE

ALTERNATIVE 4

VARIABLE-K, DETAILED MODEL

```
SUBROUTINE ESCAPE (ZREF, ZO, TA, IS, U, UD, H, ESCP)
       DIMENSION DTDZ(6)
     DATA DTDZ/-.01,-.007,-.005,0.,.02,.035/
       A5=ALOG(ZREF/ZO)
       A6=1./.123/ZREF
       DZ=H/10.
       TEDDY=0.
       DO 3 I=1,10
       Z=DZ*I-DZ/2
       CALL KCAL(ZREF,Z,ZO,TA,DTDZ(IS),U,UD,H,EDDY)
       TEDDY=TEDDY+1./EDDY*DZ
3
     CONTINUE
       ESCF=1./(1.+UD*TEDDY)
       RETURN
       FND
       SUBROUTINE KCAL (ZREF, Z, ZO, TA, DTDZ, U, UD, H, EDDY)
       B=9.81*ZREF*ZREF*DTDZ/TA/U/U
       A1=ALOG(ZREF/ZO)
       IF(B.LT.O.) GOTO 1
       XH=0.05
       X=0.15
       FH=XH/((A1+.33333)/1.33333)**2-B
       IF(X.EQ.0.2) X=0.19999999
10
       IF(X.LT.0.2) GOTO 12
       XTEST=-A1/5/(1-A1)
       IF (X.GE.XTEST) X=XTEST-.0001
12
       F=X/(A1*(1.-5*X)+5*X)**2-B
       PH=1./(1.-5*X)
       PS=-5*X*PH
       IF(ABS(F).LT.0.0001) GDT0 100
       IF (X.EQ.XH) GOTO 100
       SL=(F-FH)/(X-XH)
       BINT=F-SL*X
       XNEW=-BINT/SL
       IF (ABS (XNEW-X).LT.0.0001) GOTO 100
       XH=X
       FH=F
       X=XNEW
       GOTO 10
1
       XH=O.
       FH=-B
       X=-.05
       IF(X.GE..06667) X=.06666
20
       IF (X.EQ.O.) X=0.0001
       PH=1.0/(1.0-15*X)**.25
       ZETA=(1.0-15*X)**,25
       ZETAO=(1.0-15*X*ZO/ZREF)**.25
       ARG1=ALOG((ZETA-1.0)*(ZETA+1.0)/((ZETA+1.0)*(ZETAO-1.0)))
       ARG2=2.0*(ATAN(ZETA)-ATAN(ZETAO))
       F=X/((A1-PS)/PH)**2-B
       IF(ABS(F).LT..0001) GOTO 100
       SL=(F-FH)/(X-XH)
       BINT=F-SL*X
       XNEW=-BINT/SL
       IF (ABS (XNEW-X).LT.0.0001) GOTO 100
       XH=X
       FH=F
       X=XNEW
       GOTO 20
100
       IF(X.LT.O.) ZOL=X
       IF(X.GE.O.) ZOL=X/(1.0-5*X)
       USTAR=0.35*U/(A1-PS)
       IF(ZOL.LT.O.) PHH=0.74/(1.-9*ZOL)**.5
       IF(ZOL.GE.O.) PHH=.74+5*ZOL
       EDDY=.35*USTAR*Z/PHH
       RETURN
       END
```

C - 43

APPENDIX D

TEST RUNS AND SAMPLE INPUT FILE

•			
	9		
	•		

SAMPLE INPUT FILE

	30.	on.	
50.			
10.0	811.0	811.0	กิจจจกิจพมพพลจจจจจกุจจจจก
1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1	·	ċ	
• d • o • o	ċ	ċ	
, 0 1 0	00. 8000. 0.495 0.018594 0.73	00. 9000. 0.495 0.018594 0.73	
	8500. 0.0	3500. 0.0	႔ လုပ္ပံုပုံကိုလုံလုံလုံလုံလုံလွှာလုံလုံလုံလုံလုံလုံလုံလုံလုံလုံလုံလုံလုံလ
FOR EPA PROJECT 0 0 0 0 0 0 0 2 5 0 1000.	120 30.0000032 E 0.278 0.278 0.00744 0.006694 0.006694	220 30,0000032 8 0.274 0.278 0.006594 0.006694 0.006694 0.006694 0.00694 0.00694	26.7 26.7 26.8 26.8 26.8 26.8 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9
TEST CASE FOR EPG 1 3 1 0 0 0 0 0 2 2 2 6500. 10 8000. 10	120 30. 0.227 0.000744 1.00	220 30. 0.227 0.000744 1.00	- -

SAMPLE OUTPUT FILE ALTERNATIVE 1 Constant-K, Linear Model

* DAILY 24-HOUR AVERAGE CONCENTRATION (MICROGRAMS/CUBIC METER)

* ENDING WITH HOUR 24 FOR DAY 1 *

* FROM ALL SOURCES *

* FOR THE RECEPTOR GRID *

*** TEST CASE FOR EPA PROJECT

7500.0, 5.36375 AND OCCURRED AT (* MAXIMUM VALUE EQUALS

X-AXIS (METERS)

40000.0)

7500.0 6500.0 Y-AXIS (METERS)

.00000 .00000 1.07853 5.36375 .00000 .00004 1.29845 4.33673 3.04080

12000.0 / 11000.0 / 10000.0 / 9000.0 / 8000.0 /

O

C

0

C

*** TEST CASE FOR EPA PROJECT

* DAILY 24-HOUR AVERAGE CONCENTRATION (MICROGRAMS/CUBIC METER)

* ENDING WITH HOUR 24 FOR DAY 1 *

* FROM ALL SOURCES *

* FOR THE RECEPTOR GRID *

4.24774 AND OCCURRED AT (* MAXIMUM VALUE EQUALS

7500.0,

* (0.0006

X-AXIS (METERS)

Y-AXIS (METERS) 1 1 1

7500.0

6500.0 1 .00000 .00000 1.06225 4.24774 3.18549

.00000 .00005 1.20241 3.42940 2.22967

12000.0 / 11000.0 / 10000.0 / 9000.0 / 8000.0 /

D-5

SAMPLE OUTPUT FILE ALTERNATIVE 2 Constant-K, Detailed Model ***

SAMPLE OUTPUT FILE ALTERNATIVE 3 Variable-K, Linear Model

* DAILY 24-HOUR AVERAGE CONCENTRATION (MICROGRAMS/CUBIC METER)

* ENDING WITH HOUR 24 FOR DAY 1 *

* FROM ALL SOURCES *

* FOR THE RECEPTOR GRID *

7500.0, 3.59801 AND OCCURRED AT (* MAXIMUM VALUE EQUALS

X-AXIS (METERS)

* (0.0006

7500.0 .00000 .00000 .75939 3.59801 2.83861 6500.0 .00000 .00003 .90017 2.91143 2.01318 12000.0 / 11000.0 / 10000.0 / 9000.0 / 8000.0 / Y-AXIS (METERS)

D-6

·}

ĸ

,

*** TEST CASE FOR EPA PROJECT

*** TEST CASE FOR EPA PROJECT

* DAILY 24-HOUR AVERAGE CONCENTRATION (MICROGRAMS/CUBIC METER)

* ENDING WITH HOUR 24 FOR DAY 1 *

* FROM ALL SOURCES *

* FOR THE RECEPTOR GRID *

3.66439 AND OCCURRED AT (

* MAXIMUM VALUE EQUALS

7500.0,

* (0.0006

X-AXIS (METERS)

7500.0 .00000 .00000 .94175 3.66439 2.72264 .00000 .00004 1.04998 2.94972 1.90222 6500.0 1 12000.0 / 11000.0 / 10000.0 / 9000.0 / 8000.0 / Y-AXIS (METERS)

Ċ,

()

D-7 •

SAMPLE OUTPUT FILE ALTERNATIVE 4 Variable-K, Detailed Model

		•	
,			
	•		
	·		

	TECHNICAL REPORT DAT Please read Instructions on the reverse before	A e completing)
1. REPORT NO. EPA-450/4-86-003	2.	3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE		5. REPORT DATE January 1986
Continued Analysis and Der Model Pit Retention	ivation of a method to	6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S) K. D. Winges C. F. Cole		8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME A TRC Environmental Consulta		10. PROGRAM ELEMENT NO.
7002 South Revere Parkway, Suite 60 Englewood CO 80112		11. CONTRACT/GRANT NO.
		68-02-3886
12. SPONSORING AGENCY NAME AND AD		13. TYPE OF REPORT AND PERIOD COVERED
Monitoring and Data Analysis Division Office of Air Quality Planning and Standards		14. SPONSORING AGENCY CODE
U. S. Environmental Protect Research Triangle Park, No.	tion Agency	EPA/200/04

15. SUPPLEMENTARY NÕTES

Project Officer: J. S. Touma

16. ABSTRACT

This report summarizes the results of a continuing effort to better understand the dispersion and transport of particulate matter released within surface coal mines. The report examines the relationship between critical meteorological parameters in an effort to refine an existing model algorithm to determine escape fraction. Methods to incorporate calculating particulate matter escape fraction into a regulatory air quality model are proposed and FORTRAN program listings of four alternatives are included.

17. KEY WORDS AND DOCUMENT ANALYSIS					
a. DESCRIPTORS	b.identifiers/open ended terms	c. COSATI Field/Group			
Air Pollution Coal Mining Emissions Particulates - Escape Fraction Meteorology					
18. DISTRIBUTION STATEMENT	19. SECURITY CLASS (This Report) Unclassified	21. NO. OF PAGES			
Únlimited	20. SECURITY CLASS (This page) Unclassified	22. PRICE			

INSTRUCTIONS

1. REPORT NUMBER

Insert the EPA report number as it appears on the cover of the publication.

2. LEAVE BLANK

3. RECIPIENTS ACCESSION NUMBER

Reserved for use by each report recipient.

TITLE AND SUBTITLE

Title should indicate clearly and briefly the subject coverage of the report, and be displayed prominently. Set subtitle, if used, in smaller be or otherwise subordinate it to main title. When a report is prepared in more than one volume, repeat the primary title, add volume mber and include subtitle for the specific title.

5. REPORT DATE

Each report shall carry a date indicating at least month and year. Indicate the basis on which it was selected (e.g., date of issue, date of .pt oval, date of preparation, etc.).

6. PERFORMING ORGANIZATION CODE

Leave blank.

7. AUTHOR(S)

Give name(s) in conventional order (John R. Doe, J. Robert Doe, etc.). List author's affiliation if it differs from the performing organization.

8. PERFORMING ORGANIZATION REPORT NUMBER

Insert if performing organization wishes to assign this number.

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Give name, street, city, state, and ZIP code. List no more than two levels of an organizational hirearchy.

10. PROGRAM ELEMENT NUMBER

Use the program element number under which the report was prepared. Subordinate numbers may be included in parentheses.

11. CONTRACT/GRANT NUMBER

Insert contract or grant number under which report was prepared.

12. SPONSORING AGENCY NAME AND ADDRESS

Include ZIP code.

13. TYPE OF REPORT AND PERIOD COVERED

Indicate interim final, etc., and if applicable, dates covered.

14. SPONSORING AGENCY CODE

Insert appropriate code.

15. SUPPLEMENTARY NOTES

Enter information not included elsewhere but useful, such as: Prepared in cooperation with, Translation of, Presented'at conference of, To be published in, Supersedes, Supplements, etc.

16. ABSTRACT

Include a brief (200 words or less) factual summary of the most significant information contained in the report. If the report contains a significant bibliography or literature survey, mention it here.

17. KEY WORDS AND DOCUMENT ANALYSIS

(a) DESCRIPTORS - Select from the Thesaurus of Engineering and Scientific Terms the proper authorized terms that identify the major concept of the research and are sufficiently specific and precise to be used as index entries for cataloging.

(b) IDENTIFIERS AND OPEN-ENDED TERMS - Use identifiers for project names, code names, equipment designators, etc. Use open-ended terms written in descriptor form for those subjects for which no descriptor exists.

(c) COSATI FIELD GROUP - Field and group assignments are to be taken from the 1965 COSATI Subject Category List. Since the majority of documents are multidisciplinary in nature, the Primary Field/Group assignment(s) will be specific discipline, area of human endeavor, or type of physical object. The application(s) will be cross-referenced with secondary Field/Group assignments that will follo the primary posting(s).

18. DISTRIBUTION STATEMENT

Denote releasability to the public or limitation for reasons other than security for example "Release Unlimited," Cite any availability to the public, with address and price.

19. & 20. SECURITY CLASSIFICATION

DO NOT submit classified reports to the National Technical Information service.

21. NUMBER OF PAGES

Insert the total number of pages, including this one and unnumbered pages, but exclude distribution list, if any.

22. PRICE

Insert the price set by the National Technical Information Service or the Government Printing Office, if known.