
United States Environmental Protection Agency

AIR

Office of Air Quality Planning and Standards Technical Support Division Research Triangle Park, NC 27711 MARCH 1990 EPA 450/4-90-003

€EPA

AIRS FACILITY SUBSYSTEM SOURCE CLASSIFICATION CODES AND EMISSION FACTOR LISTING FOR CRITERIA AIR POLLUTANTS

AIRS Facility Subsystem

Source Classification Codes and Emission Factor Listing

for Criteria Air Pollutants

EPA Document Number: EPA 450/4-90-003

Prepared by the

MONITORING & REPORTS BRANCH and the NATIONAL AIR DATA BRANCH

Technical Support Division Office of Air Quality Planning & Standards

U.S. ENVIRONMENTAL PROTECTION AGENCY

Research Triangle Park, North Carolina 27711

MARCH 1990

U.S. Environmental Protection Agency Region 5, Library (PL-12J) 77 West Jackson Boulevard, 12th fillion Chicago, IL 60604-3590 This report is published by the U.S. Environmental Protection Agency (EPA) to report information of general interest in the field of air pollution. Copies are available free of charge to Federal employees, current contractors and grantees, and nonprofit organizations - as supplies permit - from the Library Services Office (MD-35), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711; or, for a fee, from the National Technical Information Services, 5285 Port Royal Road, Springfield, Virginia 22161.

Publication No. EPA-450/4-90-003

ü

ABSTRACT

This report provides industrial Source Classification Codes (SCCs) and emission factors for use in the estimation, storage and retrieval of point source air pollutant emissions in the Aerometric Information Retrieval System (AIRS) Facility Subsystem (AFS) of the U.S. Environmental Protection Agency. These codes and factors have been developed for the six criteria pollutants: particulate matter (with TSP as the indicator pollutant), sulfur oxides, nitrogen oxides, reactive volatile organic compounds, carbon monoxide, and lead. The major goal of this document is to provide assistance to State air pollution emission inventory personnel who prepare air emissions data for submission to the U.S. Environmental Protection Agency as required by the U.S. Code of Federal Regulations (40CFR). Calculation of emission estimates is discussed as well as the Source Classification Code (SCC) system of associating air pollution estimates with unique, identifiable industrial processes.

TABLE OF CONTENTS

.

.

Page 1

USER INFORMATION Purpose Of This Document What This Document Contains Sources Of SCCs And Emission Factors Other Forms Of This Document Additional Information About AFS Quality Of New Emission Factor Estimates How To Calculate Emissions Whom To Call For Technical Assistance Help Us Improve This Document	1 3 4 4 5 6 6 9 10
List Of Abbreviations And Symbols	11
Conversion Factors	13 14
Key To Emission Factors	14
	15
SOURCE CLASSIFICATION CODES AND EMISSION FACTOR LISTING	17
External Combustion Boilers Electric Generation (SIC 4911) Industrial Commercial/Institutional Space Heaters	19 21 25 27
Internal Combustion Engines Electric Generation (SIC 4911) Miscellaneous Industrial Commercial/Institutional Engine Testing Fugitive Emissions	31 31 32 33 33 34
Manufacturing Industries Chemical Manufacturing (Major SIC Group: 28) Food And Agriculture (Major SIC Groups: 01, 02, 07, 20, 21,	37
42, 44, 51) Primary Metal Production (Major SIC Groups: 10, 33)	79 89 103

¥

Manufacturing Industries (continued)

Mineral Products (Major SIC Groups: 11, 12, 14, 28, 29, 115 Petroleum Industry (Major SIC Group: 29) 136 Pulp & Paper And Wood Products (Major SIC Groups: 24, 25, 140 Rubber And Miscellaneous Plastics Products (Major SIC Groups: 30, 75) 146 Fabricated Metal Products (Major SIC Groups: 34, 50) 148 Oil And Gas Production (Major SIC Group: 13) 152 Building Construction (Major SIC Group: 15) 154 Machinery, Miscellaneous (Major SIC Group: 35) 155 Electrical Equipment (Major SIC Group: 76) 155 Transportation Equipment (Major SIC Groups: 37, 50, 75) 156 Photographic Equipment (Major SIC Group: 38) 156 Health Services (Major SIC Group: 80) 157 Leather And Leather Products (Major SIC Group: 31) 157 Textile Products (Major SIC Groups: 22, 30) 157 Printing And Publishing - Typesetting (Major SIC Group: 27) 158 159 Miscellaneous Manufacturing Industries (Major SIC Group: 39) 161 Organic Solvent/Petroleum Product Evaporation (SICs: 25, 33-39, 75) Organic Solvent Evaporation - Dry Cleaning

Organic Solvent Evaporation - Dry Cleaning	
(Major SIC Group: 72)	165
Organic Solvent Evaporation - Degreasing	
(Major SIC Groups: 25, 33-39, 75)	165
Surface Coating Operations (Major SIC Groups: 22-37)	169
Petroleum Product Storage (Refineries Oil And Gas Fields	
Only) (Major SIC Groups: 13, 29)	182
Bulk Terminals/Plants - Petroleum Storage Tanks	
(Major SIC Groups: 42, 51)	187
Printing/Publishing - Printing Process (Major SIC Group: 27)	192
Transportation And Marketing Of Petroleum Products	
(Major SIC Groups: 44, 45, 51)	194
Organic Chemical Storage - Fixed Roof Tanks	
(Major SIC Groups: 28, 29, 30, 51)	199
Organic Chemical Transportation (Major SIC Groups: 28,	
29, 30, 51)	218
Organic Solvent Evaporation - Miscellaneous	
(Major SIC Groups: 40, 47, 76)	219

Page 1

TABLE OF CONTENTS (Continued)

Page

Solid Waste Disposal	
Government	225
Commercial/Institutional	
Industrial	228
•	
Explanatory Notes: Individual SIC Groups Or SCCs	231

,

*

AIRS/Facility Subsystem Source Classification Codes and EMISSION FACTOR Listing

-- USER INFORMATION --

AIRS/FACILITY SUBSYSTEM SOURCE CLASSIFICATION CODES AND EMISSION FACTOR LISTING FOR CRITERIA AIR POLLUTANTS

The Source Classification Codes (SCCs) are the "building blocks" upon which the National Emissions Data System (NEDS) -- the national depository of point source emission data -- was structured. **NEDS has now been completely replaced by the new Aerometric Information Retrieval System (AIRS)/Facility Subsystem (AFS)**. The SCCs used in NEDS will continue to be used in AFS. Each SCC represents a unique process or function within a source category logically associated with a point of air pollution emissions. In AFS, any operation that causes air pollution can be represented by one or more of these SCCs. SCC is a very critical data item since, without an appropriate SCC, a process can not be properly identified for retrieval purposes, nor the emissions properly calculated.

PURPOSE OF THIS DOCUMENT

The purpose of this document is to establish a more efficient process and a welldefined structure for accessing and presenting emission factor information generated by EPA. In addition, this document:

- (1) consolidates by SCC, all currently available emission factors into one document;
- (2) corrects or deletes previously published emission factors, as necessary; and
- (3) provides newly developed SCCs and emission factors.

This document will be revised, and revisions distributed, as the development of new emission factors may warrant. This document does NOT take the place of <u>Compilation of Air Pollutant Emission Factors</u>, Fourth Edition, AP-42.

WHAT THIS DOCUMENT CONTAINS

Emission factors for the six criteria pollutants (PM_{10} , Sulfur Oxides, Nitrogen Oxides, Volatile Organic Compounds, Carbon Monoxide, and Lead) that correspond to

each SCC are presented in this document. These factors are intended for use as default values if a State AFS user cannot supply better estimates of emissions. These factors, for the most part, are taken directly from AP-42. In certain cases, however, they may be (1) derived from information not yet incorporated into AP-42 or (2) based merely on the similarity of one process to another for which emissions information **does** exist.

The Source Classification Code and Emission Factor Listing in this document replaces all previous listings. The inventory has been updated to include all emission factor changes and additions through the latest supplement to AP-42. This revised document contains a number of new SCCs.

SOURCES OF SCCs AND EMISSION FACTORS

This document contains emission factor listings for the six criteria pollutants as mentioned above. In addition, Particulate Matter (PM) emission factors are retained in this document, even though PM_{10} has replaced PM/TSP as a criteria pollutant. All emission factors reported in the following documents are consolidated and presented in a tabular format in this document:

- AP-42 (Fourth Edition, September 1985)
- Supplement A to AP-42 (December 1986)
- Supplement B to AP-42 (September 1988)
- Criteria Pollutant Emission Factors for the 1985 NAPAP Emissions Inventory, (May 1987)
- Interim Report on New or Revised PM_{10} and Other Emission Factors (April 1988) and
- Gap Filling PM₁₀ Emission Factors for Selected Open Area Dust Sources, EPA-450/4-88-003, (February 1988)
- NEDS SCC/Emission Factor Listing PM₁₀ (Second Edition, August 1988)

OTHER FORMS OF THIS DOCUMENT

The IBM magnetic tape version of the entire AFS/SCC file is available to requestors with mainframe computer capabilities/access from the National Air Data Branch of the U.S. EPA at the address given below. A PC diskette version of this document is also available. The PC version (requires 512K of RAM and an IBM PC-XT or more advanced type machine) features user friendly menus to assist in retrieval and access of emission factors selected by one of the following field descriptions:

- Source Classification Code,
- SIC Code,
- Industry Group Name, or
- SCC Process Name.

Within the selected categories, users can see emission factors for all pollutants. This PC diskette version will also allow users to "customize" their own copy of the diskette/document by enabling emission factor changes or the addition of new SCCs and emission factors. Any comments regarding these computerized formats should be directed to:

Chief, Operations Maintenance Section (MD-14)National Air Data Branch (NADB)U. S. Environmental Protection AgencyResearch Triangle Park, NC 27711

Commercial: (919) 541-5584 FTS: 629-5584

ADDITIONAL INFORMATION ABOUT AFS

More information regarding the AIRS Facility Subsystem -- data coding, data entry and retrieval capabilities -- is contained in the following AIRS User Guides:

AIRS Volume VIII: Coding Facility Emissions Data AIRS Volume IX: Storing Facility Emissions Data AIRS Volume X: Retrieving Facility Emissions Data

For information on the availability of these publications, please feel free to contact NADB at the above address.

QUALITY OF NEW EMISSION FACTORS

Emission factor estimates that have been added to this listing are not of the known quality as the previously reported AP-42 based emission factors. By AP-42 standards, these estimates should be considered of "E" quality, because they have not been subjected to rigorous quality assurance. In some cases, the new emission factors may be of higher quality, but the data must be extensively reviewed and verified before higher ratings could be validated. The goal of some recent efforts was to fill gaps in previous documents and to consolidate all criteria emission factors within one document. As previously discussed, information was gathered from a variety of sources, including unverified State data, secondary references such as draft or unpublished reports, and personal communication.

HOW TO CALCULATE EMISSIONS

In order to calculate emissions using the emission factors in this publication, certain data values must be present, including:

- (1) an annual operating rate;
- (2) fuel parameters, if applicable;
- (3) emission factor from the SCC file; and
- (4) percent control efficiency, if a control device is present.

Calculated emissions are derived as follows:

Calculated Emissions (Tons/Year) =

Annual Operating x Emission Factor x Fuel Parameters x 100 - % ControlRate for SCCFrom SCC FileIf ApplicableEfficiency2,000 Pounds/Ton100

Where:

Emission Factor = Pounds/SCC Unit

Fuel Parameter	=	Ash or Sulfur Content of Fuel by Weight Percent
Control Efficiency	=	Pollutant Control Device Percent Efficiency

Fugitive Emissions Calculations

The AFS SCCs were recently expanded to include many individual unit operations within chemical process units. One additional SCC in most chemical process units is for **"Fugitive Emissions: General"**. Fugitive emissions or equipment leaks are not proportional to production rate, but rather are associated with process unit complexity (i.e., the number of equipment components in the process unit). As a result, the emissions from equipment leaks are presented in pounds per process unit-year, not pounds/SCC unit like other SCCs. To implement the fugitive emissions estimate given in the listing, the source must be coded with AFS emission estimation method code 8 (emissions to be calculated by a computerized method) with an associated annual fuel process rate that indicates the number of process units in operation during the year. This permits the AFS inventory computer program automatically to calculate emissions. Emission estimates are presented for equipment leaks in a limited number of chemical process unit types.

VOC Emissions Calculation

Agency policy and EPA guidance to States on the preparation of VOC emission inventories indicate that certain VOCs that are considered to be photochemically nonreactive under atmospheric conditions should be excluded from emission inventories for ozone State Implementation Plan (SIP) development. This subject is discussed further in the report <u>Procedures for the Preparation of Emission Inventories for Precursors of</u> <u>Ozone, Volume I</u>), Third Edition, (EPA-450/14-88-021). However, some of these photochemically nonreactive VOCs are toxic (e.g., methylene chloride) and should be included in the air toxics inventories. Air toxics are not addressed specifically in this document. Compiling toxics inventories may involve different needs and requirements.

Nonreactive VOC components are identified by data given in the <u>Air Emission</u> <u>Species Manual, Volume 1 -- Volatile Organic Compounds Species Profiles</u>, (EPA 450/2-88-003a) and in AP-42. However, some categories do not have VOC species data. These categories use the AP-42 nonmethane VOC emission factors to represent reactive VOC emission factors. The following compounds are considered to be photochemically nonreactive:

- Methane
- Ethane
- Trichlorotrifluoroethane (Freon 113)
- Methylene Chloride
- 1,1,1-Trichloroethane (Methyl Chloroform)
- Trichlorofluoromethane
- Dichlorodifluoromethane
- Chlorodifluoromethane
- Trifluoromethane
- Dichlorotetrafluoroethane

SO_X Emission Calculations

Emissions of sulfur oxides (SO_X) represent the total weight of gaseous SO_2 and SO_3 emissions expressed as the equivalent weight of sulfur dioxide SO_2 . SO_3 emissions are adjusted to the equivalent weight of SO_2 by multiplying the SO_3 emissions by the ratio of molecular weights (64/80) to express as the equivalent weight of SO_2 . The weight of SO_2 and SO_3 adjusted to an equivalent weight of SO_2 are then added and reported as SO_2 emissions. Particulate sulfate is reported as particulate rather than SO_2 .

NO_X Emission Calculations

For NO_X emissions, the emissions are expressed as the equivalent weight of NO₂, regardless of what NO_X species are actually emitted. Molecular weight adjustments similar to those shown above for SO₂ to an NO₂ basis are appropriate. All emission factors that appear in this document are expressed as the equivalent weight of NO₂. Normally, AP-42 emission factors for NO_X are expressed as NO₂, unless indicated otherwise.

WHOM TO CALL FOR TECHNICAL ASSISTANCE

Emission Factors

Comments, questions, or requests for assistance should be addressed to:

Chief, Criteria Emissions Section (MD-14) Office of Air Quality Planning and Standards U.S. Environmental Protection Agency Research Triangle Park, NC 27711

Commercial: (919) 541-5575 FTS: 629-5575

Source Classification Codes

Comments, questions, or requests for assistance should be addressed to:

Chief, Operations and Maintenance Section (MD-14) Office of Air Quality Planning and Standards U.S. Environmental Protection Agency Research Triangle Park, NC 27711

Attn: Sue Kimbrough

Commercial: (919) 541-5457 FTS: 629-5457

HELP US IMPROVE THIS DOCUMENT

A brief questionnaire discussing the usefulness and format of this publication (with a postage-paid return envelope) has been included at the end of the document. Since this document is prepared to assist emissions inventory personnel, please take a moment to fill out the form and return it to us and let us know if this document is useful or how its' content and format could be more helpful.

In the questionnaire, you may also request additional copies of this listing and changes of address where necessary. Our goal is to get this document into the hands of all State personnel to whom it will provide assistance in preparing good emissions inventories.

LIST OF ABBREVIATIONS AND SYMBOLS

ABBREVIATIONS

.

A	Ash content of fuel, by weight percent
BBL	Barrels*
BOF	Basic Oxygen Furnace
CHP	Cumene Hydroperoxide
DCBZ	Dichlorobenzene
DCB	Dichlorobutene
DCIPE	Dichloroisopropyl Ether
DCP	Dichloropropane
DIPB	Diisopropylbenzene
EAF	Electric Arc Furnace
H.S.S.	Horizontal Stud Soderberg
JP-4	Naphtha-Type Jet Fuel
LDV	Light Duty Vehicle
LPG	Liquified Petroleum Gas
MBA-AP	Methyl Benzyl Alcohol-Acetophenone
MCB	Monochlorobenzene
MDI	Methylenebis(4-phenyl isocyanate)
MEK	Methyl Ethyl Ketone
MIBK	Methyl Isobutyl Ketone
MDV	Medium Duty Vehicle
MMA	Methyl Methacrylate
MMBtu/Hr	Million British Thermal Units per Hour
NEG	Negligible emissions
PART	Particulate
PO	Propylene Oxide
RVP	Reid Vapor Pressure, the absolute pressure of
	gasoline at 100° in psia as determined by ASTM
	Method D323-72.
S	Sulfur content of fuel, by weight percent
SCC	Source Classification Code
SCFM	Standard Cubic Feet per Minute*
Sq. Ft.	Square Feet

TBA	t-Butyl Alcohol
TDA	Toluene Diamine
TDI	Toluene Diisocyanate
VOC	Volatile Organic Compound
V.S.S.	Vertical Stud Soderberg
w/	with
w/o	without

SYMBOLS

Ca	Calcium
CO	Carbon Monoxide
CO ₂	Carbon Dioxide
FeSi	Ferrosilicon
HC1	Hydrochloric Acid
HCN	Hydrogen Cyanide
HNO3	Nitric Acid
H ₂ SO ₄	Sulfuric Acid
Lb	Pound*
MgO	Magnesium Oxide
Na	Sodium
NH ₃	Ammonia
NOX	Nitrogen Oxides
P ₂ O ₅	Phosphorus Pentoxide
SOX	Sulfur Oxide
TiO ₂	Titanium Dioxide

^{*} Readers more familiar with metric units may use the conversion table on the next page.

To Convert From	То	Multiply By
	_	
Acre	Square Meter (m ²)	4047
Acre	hectare (ha)	2.471
Barrel (Bbl) - Petroleum*	Gallon (gal)	42
Barrel (Bbl)	Liter (l)	159
Gallon (gal)	Liter (l)	3.785
Inch (in)	Centimeter (cm)	2.54
Feet (ft)	Meter (m)	0.3048
Square feet (ft ²)	Square meter (m ²)	0.0929
Cubic feet (ft^3)	Cubic meter (m ³)	0.0283
Cubic feet (ft ³)	Liters (1)	28.316
Cubic feet/minute	Cubic centimeter/second	472.0
Cubic yard (yd ³)	Cubic meter (m ³)	0.77
Board foot	Cubic meter (m^3)	0.0024
Btu	Gram/calorie (g/cal)	251.98
Pound steam/hour [†]	Btu/hour	1400.0
Btu/hour	Watt	0.293
Pound (lb)	Kilogram (kg)	0.45
Ton	Kilogram (kg)	907.1
Pound/ton (lb/ton)	Gram/kilogram (g/kg)	0.496
Fahrenheit	Centigrade	(°F-32) 5/9
Centigrade	Fahrenheit	(°C+32) 9/5

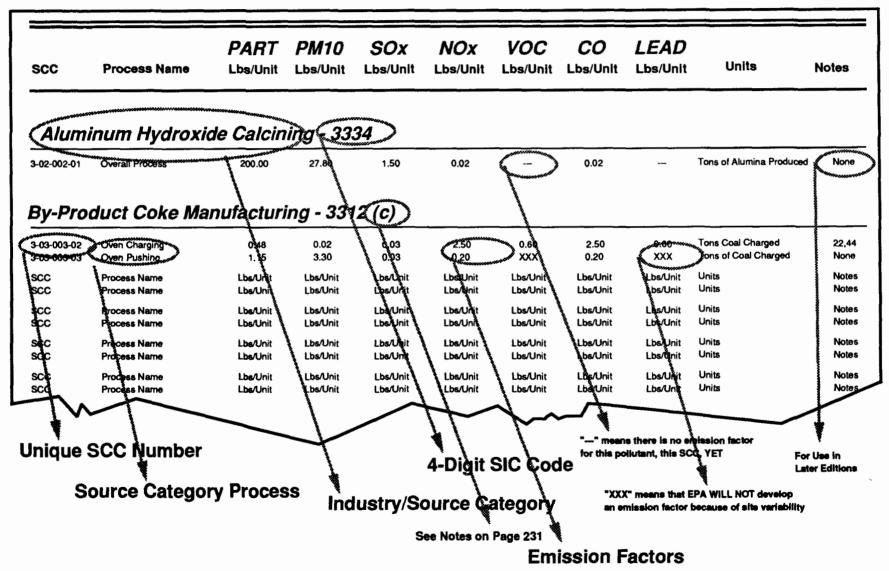
CONVERSION FACTORS

*42 gal/bbl is the standard as used in the oil industry. For other industries, different gallons/bbl apply.

[†] Typical value based on common boiler design parameters. Value will vary depending upon steam temperature and pressure.

KEY TO EMISSION FACTORS

1. An "A" accompanying an emission factor means that this factor is the weighted average <u>ash</u> content of the fuel burned, expressed as a percent. See, for example, SCC 1-01-001-01 on page 19. If the weighted average ash content of the pulverized anthracite coal burned were five percent (5%), then the emission factor would become 2.3 x 5, or 11.5 pounds, of PM_{10} emitted per ton of anthracite coal burned (before control).


2. An "S" accompanying an emission factor means that this factor is the weighted average sulfur content of the fuel burned, expressed as a percent. See, for example, SCC 1-01-004-01 on page 20. If the weighted average sulfur content of the Grade 6 oil burned were three percent (3%), then the emission factor would become 9.6 x 3, or 28.8, pounds of PM_{10} emitted per one thousand gallons of Grade 6 oil burned (before control).

3. The entry "---" means that, as yet, we have no emission factor for this SCC. See, for example, SCC 1-01-002-17 on page 19.

4. The entry "xxx" means that EPA will not produce a generic emission factor for this SCC because of the variability of operating parameters from point to point. See, for example, SCC 1-02-007-99 on page 24.

5. "PART" refers to all particulate matter of all sizes. PM_{10} refers only to particulate matter from 0.0 to 10.0 microns in diameter.

How To Use This Document:

.

,

SOURCE CLASSIFICATION CODES AND EMISSION FACTOR LISTING

EXTERNAL COMBUSTION BOILERS

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
EXTERI	NAL COMBUSTIC	ON BOILE	RS							
EXTERN		I BOILER	S - ELECT	RIC GEN	ERATIO	N - SIC	4911 (a)		
	ite Coal - 4911									
	- Pulverized Coal	10.0 A	2.3 A	39.0 S	18.0	0.07	0.6	0.0133	Tons Burned	
	- Traveling Grate	9.1	4.8	39.0 S	10.0	0.07	0.6	0.0133	Tons Burned	
	(Overfeed) Stoker			5/10 0			•••			
Bitumin	ous Coal - 4911									
	- Pulverized Coal: Wet	7.0 A	2.6 A	39.0 S	34.0	0.07	0.6	0.0133	Tons Burned	
	Bottom									
1-01-002-02	- Pulverized Coal: Dry Bottom	10.0 A	2.3 A	39.0 S	21.0	0.07	0.6	0.0133	Tons Burned	
1-01-002-03	- Cyclone Furnace	2.0 A	0.26 A	39.0 S	37.0	0.07	0.6	0.0133	Tons Burned	
	- Spreader Stoker	60.0	12.0	39.0 S	14.0	0.07	5.0	0.0133	Tons Burned	
	- Traveling Grate (Overfeed) Stoker	16.0	6.0	39.0 S	7.5	0.07	6.0	0.0133	Tons Burned	
1-01-002-12	Pulverized Coal: Dry Bottom (Tangential)	10.0 A	2.3 A	39.0 s	15.0	0.07	0.6		Tons Burned	
1-01-002-17	 Atmospheric Fluidized Bed Combustion 			14.0	13.0	0.07			Tons Burned	
Subbitu	minous Coal - 491	11								
	- Pulverized Coal: Wet Bottom	7.0 A	2.6 A	35.0 S	34.0	0.07	0.6	0.0133	Tons Burned	
1-01-002-22	2 - Pulverized Coal: Dry Bottom	10.0 A	2.3 A	35.0 S	21.0	0.07	0.6	0.0133	Tons Burned	
1-01-002-23	5 - Cyclone Furnace	2.0 A	0.26 A	35.0 s	37.0	0.07	0.6	0.0133	Tons Burned	
	- Spreader Stoker	60.0	12.0	35.0 S	14.0	0.07	5.0	0.0133	Tons Burned	
	5 - Traveling Grate (Overfeed) Stoker	16.0	6.0	35.0 S	7.5	0.07	6.0	0.0133	Tons Burned	
1-01-002-26	5 - Pulverized Coal: Dry Bottom (Tangential)	10.0 A	2.3 A	35.0 S	15.0	0.07	0.6		Tons Burned	

. .

. .

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit		NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTES
Lianite -	4011								
	- Pulverized Coal	6.3 A	2.18 A	30.0 S	14.0	0.07	0.6	0.0133	Tons Burned
	- Pulverized Coal: Tangential Firing	6.3 A	2.18 A	30.0 s	8.0	0.07	0.6		Tons Burned
1-01-003-03	- Cyclone Furnace	6.7 A	0.87 A	30.0 S	17.0	0.07	0.6	0.0133	Tons Burned
1-01-003-04	- Traveling Grate (Overfeed) Stoker	2.9 A	1.07 A	30.0 S	6.0	0.07	6.0	0.0133	Tons Burned
1-01-003-06	- Spreader Stoker	6.8 A	1.36 A	30.0 S	6.0	0.07	5.0	0.0133	Tons Burned
and the second se	<u> Oil - 4911</u>								
1-01-004-01	- Grade 6 Oil: Normal Firing	13.0 S,(b)	9.6 \$	159.3 S	67.0	0.76	5.0	0.0042	1000 Gallons Burned
1-01-004-04	- Grade 6 Oil: Tangential Firing	13.0 S,(b)	9.6 S	159.3 s	42.0	0.76	5.0	0.0042	1000 Gallons Burned
1-01-004-05	- Grade 5 Oil: Normal Firing	10.0	7.4	159.3 s	67.0	0.76	5.0	0.0042	1000 Gallons Burned
1-01-004-06	- Grade 5 Oil: Tangential Firing	10.0	7.4	159.3 S	42.0	0.76	5.0	0.0042	1000 Gallons Burned
Distillate	<u> Oil - 4911</u>								
1-01-005-01	- Grades 1 and 2 Oil	2.û	1.0	143.6 S	24.0	0.2	5.0	0.0004	1000 Gallons Burned
1-01-005-04	 Grade 4 Oil: Normal Firing 	7.0	5.19	150.0 S,(c)	67.0	0.76	5.0	0.0004	1000 Gallons Burned
1-01-005-05	- Grade 4 Oil: Tangential Firing	7.0	5.19	150.0 S,(c)	42.0	0.76	5.0	0.0004	1000 Gallons Burned
Natural (<u>Gas - 4911</u>								
1-01-006-01	- Boilers > 100 MBtu/Hr except	3.0	3.0	0.6	550.0	1.4	40.0		Million Cubic Feet Burned
1-01-006-02	Tangential - Boilers < 100 MBtu/Hr except	3.0	3.0	0.6	140.0	2.8	35.0		Million Cubic Feet Burned
1-01-006-04	Tangential - Tangentially Fired Units	3.0	3.0	0 .6	275.0	1.4	40.0		Million Cubic Feet Burned

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit		LEAD Lbs/Unit	UNITS NOTES
	<u>Gas - 4911</u> (c)								
1-01-007-01	- Boilers > 100 MBTU/HR	3.0	3.0	950.0 S	550.0	1.4	40.0		Million Cubic Feet Burned
1-01-007-02	- Boilers < 100 MBTU/HR	3.0	3.0	950.0 S	140.0	2.8	35.0		Million Cubic Feet Burned
<u>Coke - 4</u> 1-01-008-01	911 (c) - All Boiler Sizes	10.0 A	7.9 A	39.0 S	21.0	0.07	0.6		Tons Burned
	ark Waste - 4911								
	- Bark-Fired Boiler - Wood/Bark Fired	47.0 7.2	16.8 6.48	0.15 0.15	2.8 2.8	1_4 1_4	4.0 4.0		Tons Burned Tons Burned
1-01-009-02	Boiler	7.2	0.40	0.15	2.0	1.4	4.0		
1-01-009-03	- Wood-Fired Boiler	8.8	6.48	0.15	2.8	1.4	4.0	•••	Tons Burned
Liquified	l Petroleum Gas (<u> (LPG) - 49</u>	<u>11</u>						
1-01-010-01		0.28	0.28	86.5 S,(c)		0.26	3.3		1000 Gallons Burned
1-01-010-02		0.26	0.26	86.5 S,(c)) 12.4	0.25	3.1		1000 Gallons Burned
Bagasse		14.0	F (0.0		2.0.40	20/2		Tons Burned
	- All Boiler Sizes	16.0	5.6	0.0	1.2	2.0 (c)) 2.0 (c)	Tons Burnea
	<u>aste - 4911</u>								
1-01-012-01	- Specify Waste Material in Comments		•••		3.8	2.0			Tons Burned
1-01-012-02	- Refuse Derived Fuel		44.0						Tons Burned
Liquid W	Vaste - 4911								
	- Specify Waste					1.0	•••		1000 Gallons Burned
1-01-013-02	Material in Comments	61.0 A	12.5 A	147.0 S	20.0	1.0	5.0	1.68(d)) 1000 Gallons Burned
					2010		2.0		
EXIERN	AL COMBUSTION	V BUILER	<u> 5 - IIVDUS</u>	I RIAL (a)					
	ite Coal - 1000-39								
1-02-001-01	- Pulverized Coal	10.0 A	2.3 A	39.0 S	18.0	0.07	0.6	0.0133	Tons Burned

• •

• •

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Anthrao	ite Coal - 1000-39	00		<u></u>			<u> </u>			
			()	70.0.0	10.0	0.07	0.4	0.0133	Tons Burned	
1-02-001-04	- Traveling Grate	9.1	4.8	39.0 S	10.0	0.07	0.6	0.0135	Tons Burned	
	(Overfeed) Stoker	10.0	F 2	70.0.0	3.0	10.0	90.0	0.0133	Tons Burned	
1-02-001-07	- Hand-Fired	10.0	5.2	39.0 S	5.0	10.0	90.0	0.0133	tons burned	
Bitumin	ous Coal - 1000-3	9 <u>99</u>								
1-02-002-01	- Pulverized Coal: Wet	7.0 A	2.6 🛦	39.0 S	34.0	0.07	0.6	0.0133	Tons Burned	
	Bottom									
1-02-002-02	2 - Pulverized Coal: Dry	10.0 A	2.3 A	39.0 S	21.0	0.07	0.6	0.0133	Tons Burned	
	Bottom									
1-02-002-03	5 - Cyclone Furnace	2.0 A	0.26 A	39.0 S	37.0	0.07	0.6	0.0133	Tons Burned	
1-02-002-04	- Spreader Stoker	60.0	12.0	39.0 S	14.0	0.07	5.0	0.0133	Tons Burned	
1-02-002-05	5 - Overfeed Stoker	16.0	6.0	39.0 S	7.5	0.07	6.0	0.0133	Tons Burned	
1-02-002-06	5 - U nderfee d Stoker	15.0	6.2	31.0 S	9.5	1.3	11.0	0.0133	Tons Burned	
1-02-002-12	2 - Pulverized Coal: Dry Bottom (Tangential)	10.0 A	2.3 A	39.0 S	15.0	0.07	0.6		Tons Burned	
1-02-002-13	5 - Wet Slurry			44.3	9.3	0.4			Tons Burned	
1-02-002-17	7 - Atmospheric			14.0	13.0	0 .07	•••		Tons Burned	
	Fluidized Bed									
	Combustion									
1-02-002-19	9 - Cogeneration	10.0 A	2.3 A	39.0 S	15.0	0.07	0.6		Tons Burned	
Subbitu	iminous Coal - 100	00-3999								
	1 - Pulverized Coal: Wet	7.0 A	2.6 A	35.0 S	34.0	0.07	0.6	0.0133	Tons Burned	
1-02-002-21	Bottom	1.0 A	2.0 4	35.00	5410	0107	••	010100	Foria Barried	
1-02-002-22	2 - Pulverized Coal: Dry	10.0 A	2.3 A	35.0 S	21.0	0.07	0.6	0.0133	Tons Burned	
	Bottom	1010 /	210 /					••••		
1-02-002-23	3 - Cyclone Furnace	2.0 A	0.26 A	35.0 S	37.0	0.07	0.6	0.0133	Tons Burned	
	4 - Spreader Stoker	60.0	12.0	35.0 S	14.0	0.07	5.0	0.0133	Tons Burned	
	5 - Traveling Grate	16.0	6.0	35.0 S	7.5	0.07	6.0	0.0133	Tons Burned	
1-02-002-23	(Overfeed) Stoker	10.0	0.0	33.0 3		0.01	0.0	010123		
1-02-002-34	6 - Pulverized Coal: Dry	10.0 A	2.3 A	35.0 S	15.0	0.07	0.6		Tons Burned	
1-02-002-20	Bottom (Tangential)	10.0 A	2.J K	33.0 3	15.0	0.07	0.0			
1-02-002 20		10.0 A	2.3 A	35.0 S	15.0	0.07	0.6		Tons Burned	
1-02-002-25	9 - Cogeneration	IU.U A	2,3 A	33.0.2	13.0	0.07	0.0		TOUS DULLIED	

Name Lbs/Unit Lbs/Unit <th< th=""><th>SCC Process</th><th>PART</th><th>PM10</th><th>SOx</th><th>NOx</th><th>VOC</th><th>CO</th><th>LEAD</th><th>UNITS</th><th>NOTES</th></th<>	SCC Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
-02-003-01 - Pulverized Coal: -02-003-02 - Pulverized Coal: -02-003-02 - Pulverized Coal: -02-003-03 - Cyclone Furnace -02-003-04 - Traveling Grate -02-003-04 - Traveling Grate -02-003-06 - Spreader Stoker -02-003-06 - Spreader Stoker -02-003-06 - Spreader Stoker -02-003-06 - Spreader Stoker -02-003-06 - Cogeneration -02-003-06 - Cogeneration -02-003-07 - Gade S 011 -02-004-04 - Grade S 011 -02-004-04 - Grade S 011 -02-005-04 - Grade S 1 nd 2 01 -02-005-04 - Grade S 1 nd 2 01 -02-005-04 - Grade S 1 nd 2 0	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
-02-003-01 - Pulverized Coal: -02-003-02 - Pulverized Coal: -02-003-02 - Pulverized Coal: -02-003-03 - Cyclone Furnace -02-003-04 - Traveling Grate -02-003-04 - Traveling Grate -02-003-06 - Spreader Stoker -02-003-06 - Spreader Stoker -02-003-07 - Cogeneration -02-003-07 - Cogeneration -02-003-08 - Cogeneration -02-003-07 - Cogeneration -02-004-04 - Grade 5 0il -02-004-04 - Grade 5 0il -02-005-04 - Grade 5 0il -02-005-04 - Grade 4 0il -02-005-04 - Cogeneration -02-005-04 - Cogeneration -03-0 -04-05 -05-0 -05-0 -05-0 -05-0 -05-0 -05-0 -05-0 -00-0 -0	_ianite - 1000-3999									
Tangential Firing 0.0 <td></td> <td>6.3 A</td> <td>2.18 A</td> <td>30.0 S</td> <td>14.0</td> <td>0.07</td> <td>0.6</td> <td>0.0133</td> <td>Tons Burned</td> <td></td>		6.3 A	2.18 A	30.0 S	14.0	0.07	0.6	0.0133	Tons Burned	
1-02-003-04 - Traveling Grate (Overfeed) Stoker 2.9 A 1.07 A 30.0 S 6.0 0.07 6.0 0.0133 Tons Burned 1-02-003-06 - Spreader Stoker 6.8 A 1.36 A 30.0 S 6.0 0.07 5.0 0.0133 Tons Burned 1-02-003-07 - Cogeneration 6.3 A 2.18 A 30.0 S 8.0 0.07 0.6 Tons Burned Residual Oil - 1000-39999 1-02-004-04 - Grade 6 0il 12.0 S, (b) 10.8 S 158.6 S 55.0 0.28 5.0 0.0042 1000 Gallons Burned 1-02-004-04 - Grade 5 0il 10.0 (b) 9.0 158.6 S 55.0 0.28 5.0 0.0042 1000 Gallons Burned 1-02-005-01 - Grade 5 1 and 2 0il 2.0 1.0 143.6 S 20.0 0.2 5.0 0.0004 1000 Gallons Burned 1-02-005-05 - Cogeneration 2.0 1.0 143.6 S 20.0 0.2 5.0 0.0004 1000 Gallons Burned 1-02-005-05 - Cogeneration 2.0 1.0 143.6 S 20.0 0.2 5.0 1000 Gallons Burned 1-02-006-01 - Ov		6.3 A	2.18 A	30.0 S	8.0	0.07	0.6	0.0133	Tons Burned	
1000 controls of the stoker 1000 minute in the intervention of the stoker 1000 minute in the intervention of the stoker 102-003-06 - Spreader Stoker 6.8 A 1.36 A 30.0 S 6.0 0.07 5.0 0.0133 Tons Burned 102-003-07 - Cogeneration 6.3 A 2.18 A 30.0 S 8.0 0.07 0.6 Tons Burned Residual Oil - 1000-3999 102-004-01 - Grade 5 0il 12.0 S, (b) 10.8 S 158.6 S 55.0 0.28 5.0 0.0042 1000 Gallons Burned 1-02-004-04 - Grade 5 0il 10.0 (b) 9.0 158.6 S 55.0 0.28 5.0 0.0042 1000 Gallons Burned 1-02-004-05 - Cogeneration 12.0 S 10.8 S 158.6 S 55.0 0.28 5.0 1000 Gallons Burned 1-02-005-01 - Grade 1 and 2 0il 2.0 1.0 143.6 S 20.0 0.2 5.0 0.0004 1000 Gallons Burned 1-02-005-04 - Grade 4 0il 7.0 6.3 150.0 S, (c) 20.0 0.2 5.0 1000 Gallons Burned 1-02-005-04 - Cogeneration 2.0 1.0 143.6 S 20.0	-02-003-03 - Cyclone Furnace	6.7 A	0.87 A	30.0 S	17.0	0.07	0.6	0.0133	Tons Burned	
-02-003-07 - Cogeneration 6.3 A 2.18 A 30.0 S 8.0 0.07 0.6 Tons Burned Residual Oil - 1000-3999 -02-004-01 - Grade 6 0il 12.0 S, (b) 10.8 S 158.6 S 55.0 0.28 5.0 0.0042 1000 Gallons Burned -02-004-04 - Grade 5 0il 10.0 (b) 9.0 158.6 S 55.0 0.28 5.0 0.0042 1000 Gallons Burned -02-004-05 - Cogeneration 12.0 S 10.8 S 158.6 S 55.0 0.28 5.0 0.0042 1000 Gallons Burned -02-005-01 - Grades 1 and 2 0il 2.0 1.0 143.6 S 20.0 0.2 5.0 0.0004 1000 Gallons Burned -02-005-04 - Grade 4 0il 7.0 6.3 150.0 S, (c) 20.0 0.2 5.0 0.0004 1000 Gallons Burned -02-005-05 - Cogeneration 2.0 1.0 143.6 S 20.0 0.2 5.0 0.0004 1000 Gallons Burned -02-006-01 - Over 100 MBtu/Hr 3.0 3.0 0.6 550.0 1.4 40.0 Million Cubic Feet Burned -02-006-02 - 10-100 MBtu/Hr	_	2.9 A	1.07 A	30.0 S	6.0		6.0	0.0133	Tons Burned	
Residual Oil - 1000-3999 -02:004-01 - Grade 6 0il 12.0 \$,(b) 10.8 \$ 158.6 \$ 55.0 0.28 5.0 0.0042 1000 Gallons Burned -02:004-04 - Grade 5 0il 10.0 (b) 9.0 158.6 \$ 55.0 0.28 5.0 0.0042 1000 Gallons Burned -02:004-05 - Cogeneration 12.0 \$ 10.8 \$ 158.6 \$ 55.0 0.28 5.0 1000 Gallons Burned -02:005-01 - Grades 1 and 2 0il 2.0 1.0 143.6 \$ 20.0 0.2 5.0 0.0004 1000 Gallons Burned -02:005-05 - Cogeneration 2.0 1.0 143.6 \$ 20.0 0.2 5.0 0.0004 1000 Gallons Burned -02:005-05 - Cogeneration 2.0 1.0 143.6 \$ 20.0 0.2 5.0 0.0004 1000 Gallons Burned -02:005-05 - Cogeneration 2.0 1.0 143.6 \$ 20.0 0.2 5.0 1000 Gallons Burned -02:005-05 - Cogeneration 2.0 1.0 143.6 \$ 20.0 0.2 5.0 1000 Gallons Burned -02:005-02 - 10-100 MBtu/Hr 3.0	-02-003-06 - Spreader Stoker	6.8 A		30.0 S			5.0	0.0133	Tons Burned	
-02-004-01 - Grade 6 0il 12.0 S, (b) 10.8 S 158.6 S 10.0 (b) 9.0 158.6 S 10.0 (c) 9.0 158.6 S 10.0 (c) 9.0 158.6 S 10.0 (c) 158.6 S 10.0 (c) 10.0 (c) 9.0 158.6 S 10.0 (c) 158.6 S 10.0 (c) 15.0 10.0 (c) 158.6 S 10.0 (c) 15.0 10.0 (c) 1000 (c) 1000 (c) 1000 (c) 1000 (c) 13.7 (c) 1000 (c) (c) 13.7 (c) 1000 (c) (c) (c) 13.7 (c) 1000 (c)	-02-003-07 - Cogeneration	6.3 A	2.18 A	30.0 S	8.0	0.07	0.6		Tons Burned	
-02-004-04 - Grade 5 0il 10.0 (b) 9.0 158.6 S 55.0 0.28 5.0 0.0042 1000 Gallons Burned -02-004-05 - Cogeneration 12.0 S 10.8 S 158.6 S 55.0 0.28 5.0 1000 Gallons Burned Distillate Oil - 1000-3999 10.0 (b) 2.0 1.0 143.6 S 20.0 0.2 5.0 0.0004 1000 Gallons Burned -02-005-01 - Grades 1 and 2 0il 2.0 1.0 143.6 S 20.0 0.2 5.0 0.0004 1000 Gallons Burned -02-005-05 - Cogeneration 2.0 1.0 143.6 S 20.0 0.2 5.0 0.0004 1000 Gallons Burned -02-005-05 - Cogeneration 2.0 1.0 143.6 S 20.0 0.2 5.0 1000 Gallons Burned Natural Gas - 1000-39999 1.0 143.6 S 20.0 0.2 5.0 1000 Gallons Burned 1-02-006-02 - 10-100 MMBtu/Hr 3.0 3.0 0.6 140.0 2.8 35.0 Million Cubic Feet Burned 1-02-006-04 - Cogeneration 3.0 3.0	Residual Oil - 1000-3999									
1-02-004-05 - Cogeneration 12.0 S 10.8 S 158.6 S 55.0 0.28 5.0 1000 Gallons Burned Distillate Oil - 1000-39999 1000 Gallons Burned 1000 Gallons Burned -02-005-01 - Grades 1 and 2 0il 2.0 1.0 143.6 S 20.0 0.2 5.0 0.0004 1000 Gallons Burned -02-005-05 - Gogeneration 2.0 1.0 143.6 S 20.0 0.2 5.0 0.0004 1000 Gallons Burned -02-005-05 - Cogeneration 2.0 1.0 143.6 S 20.0 0.2 5.0 1000 Gallons Burned Natural Gas - 1000-3999 1.0 143.6 S 20.0 0.2 5.0 1000 Gallons Burned 1-02-006-01 - Over 100 MBtu/Hr 3.0 3.0 0.6 140.0 2.8 35.0 Willion Cubic Feet Burned 1-02-006-02 - 10-100 MBtu/Hr 3.0 3.0 0.6 100.0 5.3 20.0 Willion Cubic Feet Burned 1-02-006-04 - Cogeneration 3.0 3.0 0.6 275.0 1.4 40.0	-02-004-01 - Grade 6 Oil	12.0 S,(b)		158.6 S	55.0				1000 Gallons E	Burned
Distillate Oil - 1000-3999 -02-005-01 - Grades 1 and 2 0il 2.0 1.0 143.6 S 20.0 0.2 5.0 0.0004 1000 Gallons Burned -02-005-04 - Grade 4 0il 7.0 6.3 150.0 S,(c) 20.0 0.2 5.0 0.0004 1000 Gallons Burned -02-005-05 - Cogeneration 2.0 1.0 143.6 S 20.0 0.2 5.0 1000 Gallons Burned Natural Gas - 1000-3999	-02-004-04 - Grade 5 Oil	10.0 (b)	9.0	158.6 S	55.0	0.28		0.0042	1000 Gallons E	Burned
-02-005-01 - Grades 1 and 2 0il 2.0 1.0 143.6 S 20.0 0.2 5.0 0.0004 1000 Gallons Burned -02-005-04 - Grade 4 0il 7.0 6.3 150.0 S,(c) 20.0 0.2 5.0 0.0004 1000 Gallons Burned -02-005-05 - Cogeneration 2.0 1.0 143.6 S 20.0 0.2 5.0 0.0004 1000 Gallons Burned -02-005-05 - Cogeneration 2.0 1.0 143.6 S 20.0 0.2 5.0 0.0004 1000 Gallons Burned -02-005-05 - Cogeneration 2.0 1.0 143.6 S 20.0 0.2 5.0 1000 Gallons Burned -02-006-01 - Over 100 MBtu/Hr 3.0 3.0 0.6 140.0 2.8 35.0 Million Cubic Feet Burned 3.0 3.0 0.6 100.0 5.3 20.0 Willion Cubic Feet 1-02-006-03 - Less Than 10 3.0 3.0 0.6 275.0 1.4 40.0 Willion Cubic Feet 1-02-006-04 - Cogeneration 3.0 3.0 950.0 S 140.0 2.8<	-02-004-05 - Cogeneration	12.0 S	10.8 S	158.6 S	55.0	0.28	5.0		1000 Gallons E	Burned
1-02-005-04 - Grade 4 0il 7.0 6.3 150.0 \$,(c) 20.0 0.2 5.0 0.0004 1000 Gallons Burned 1-02-005-05 - Cogeneration 2.0 1.0 143.6 \$ 20.0 0.2 5.0 1000 Gallons Burned Natural Gas - 1000-3999 1-02-006-01 - Over 100 MBtu/Hr 3.0 3.0 0.6 550.0 1.4 40.0 Willion Cubic Feet Burned 1-02-006-02 - 10-100 MMBtu/Hr 3.0 3.0 0.6 140.0 2.8 35.0 Million Cubic Feet Burned 1-02-006-03 - Less Than 10 3.0 3.0 0.6 100.0 5.3 20.0 Million Cubic Feet Burned 1-02-006-04 - Cogeneration 3.0 3.0 0.6 275.0 1.4 40.0 Million Cubic Feet Burned 1-02-006-04 - Cogeneration 3.0 3.0 0.6 275.0 1.4 40.0 Million Cubic Feet Burned 1-02-007-01 - Petroleum Refinery 3.0 3.0 950.0 \$ 140.0 2.8 35.0 Million Cubic Feet Burned 1-02-007-01 - Petro	Distillate Oil - 1000-3999									
1-02-005-05 - Cogeneration 2.0 1.0 143.6 S 20.0 0.2 5.0 1000 Gallons Burned Natural Gas - 1000-3999 1-02-006-01 - Over 100 MBtu/Hr 3.0 3.0 0.6 550.0 1.4 40.0 Million Cubic Feet Burned 1-02-006-02 - 10-100 MMBtu/Hr 3.0 3.0 0.6 140.0 2.8 35.0 Million Cubic Feet Burned 1-02-006-03 - Less Than 10 3.0 3.0 0.6 100.0 5.3 20.0 Million Cubic Feet Burned 1-02-006-04 - Cogeneration 3.0 3.0 0.6 100.0 5.3 20.0 Million Cubic Feet Burned 1-02-006-04 - Cogeneration 3.0 3.0 0.6 275.0 1.4 40.0 Million Cubic Feet Burned Process Gas - 1000-3999 (c) 1-02-007-01 - Petroleum Refinery 3.0 3.0 950.0 S 140.0 2.8 35.0 Million Cubic Feet Burned 1-02-007-01 - Petroleum Refinery 3.0 3.0 950.0 S 140.0 2.8 35.0 Million Cubic Feet Burned	-02-005-01 - Grades 1 and 2 0il	2.0	1.0	143.6 S	20.0				1000 Gallons E	Burned
Natural Gas - 1000-3999 -02-006-01 - Over 100 MBtu/Hr 3.0 3.0 0.6 550.0 1.4 40.0 Million Cubic Feet Burned -02-006-02 - 10-100 MMBtu/Hr 3.0 3.0 0.6 140.0 2.8 35.0 Million Cubic Feet Burned -02-006-03 - Less Than 10 3.0 3.0 0.6 100.0 5.3 20.0 Million Cubic Feet Burned -02-006-04 - Cogeneration 3.0 3.0 0.6 275.0 1.4 40.0 Million Cubic Feet Burned -02-006-04 - Cogeneration 3.0 3.0 0.6 275.0 1.4 40.0 Million Cubic Feet Burned -02-007-01 - Petroleum Refinery 3.0 3.0 950.0 S 140.0 2.8 35.0 Million Cubic Feet Burned I-02-007-01 - Petroleum Refinery 3.0 3.0 950.0 S 140.0 2.8 35.0 Million Cubic Feet Burned I-02-007-04 - Blast Furnace Gas 2.9 2.9 950.0 S 23.0 0.0 (c) 13.7 (c) Million Cubic Feet	-02-005-04 - Grade 4 Oil	7.0	6.3	150.0 S,(c)	20.0		5.0	0.0004	1000 Gallons B	Burned
1-02-006-01 - Over 100 MBtu/Hr 3.0 3.0 0.6 550.0 1.4 40.0 Willion Cubic Feet Burned 1-02-006-02 - 10-100 MMBtu/Hr 3.0 3.0 0.6 140.0 2.8 35.0 Willion Cubic Feet Burned 1-02-006-03 - Less Than 10 3.0 3.0 0.6 100.0 5.3 20.0 Million Cubic Feet Burned 1-02-006-04 - Cogeneration 3.0 3.0 0.6 275.0 1.4 40.0 Million Cubic Feet Burned Process Gas - 1000-3999 (c) 1-02-007-01 - Petroleum Refinery 3.0 3.0 950.0 s 140.0 2.8 35.0 Million Cubic Feet Burned Invectors 1-02-007-01 - Petroleum Refinery 3.0 3.0 950.0 s 140.0 2.8 35.0 Million Cubic Feet Burned Invectors 1-02-007-04 - Blast Furnace Gas 2.9 2.9 950.0 s 23.0 0.0 (c) 13.7 (c) Million Cubic Feet	-02-005-05 - Cogeneration	2.0	1.0	143.6 S	20.0	0.2	5.0		1000 Gallons I	Burned
-02-006-02 - 10-100 MMBtu/Hr 3.0 3.0 0.6 140.0 2.8 35.0 Million Cubic Feet Burned -02-006-03 - Less Than 10 3.0 3.0 0.6 100.0 5.3 20.0 Million Cubic Feet Burned -02-006-04 - Cogeneration 3.0 3.0 0.6 275.0 1.4 40.0 Million Cubic Feet Burned -02-007-01 - Petroleum Refinery 3.0 3.0 3.0 950.0 S 140.0 2.8 35.0 Million Cubic Feet Burned -02-007-01 - Petroleum Refinery 3.0 3.0 950.0 S 140.0 2.8 35.0 Million Cubic Feet Burned -02-007-04 - Blast Furnace Gas 2.9 2.9 950.0 S 23.0 0.0 (c) 13.7 (c) Million Cubic Feet	<u> Vatural Gas - 1000-3999</u>									
Burned Burned	-02-006-01 - Over 100 MBtu/Hr	3.0	3.0	0.6	550.0	1.4	40.0			Feet
MMB tu/Hr Burned -02-006-04 - Cogeneration 3.0 3.0 0.6 275.0 1.4 40.0 Million Cubic Feet Burned Burned Burned Million Cubic Feet Burned Process Gas - 1000-3999 (c) Million Cubic Feet Burned -02-007-01 - Petroleum Refinery 3.0 3.0 950.0 S 140.0 2.8 35.0 Million Cubic Feet Gas Burned Burned Million Cubic Feet 1-02-007-04 - Blast Furnace Gas 2.9 2.9 950.0 S 23.0 0.0 (c) 13.7 (c) Million Cubic Feet	-02-006-02 - 10-100 MMBtu/Hr	3.0	3.0	0.6	140.0	2.8	35.0			Feet
Direction Direction Direction Direction Burned Burned Burned Burned Burned 1-02-007-01 - Petroleum Refinery 3.0 3.0 950.0 S 140.0 2.8 35.0 Million Cubic Feet Gas Burned Burned Burned Burned Burned 1-02-007-04 - Blast Furnace Gas 2.9 2.9 950.0 S 23.0 0.0 (c) 13.7 (c) Million Cubic Feet		3.0	3.0	0.6	100.0	5.3	20.0			Feet
1-02-007-01 - Petroleum Refinery 3.0 3.0 950.0 S 140.0 2.8 35.0 Million Cubic Feet Gas . Burned 1-02-007-04 - Blast Furnace Gas 2.9 2.9 950.0 S 23.0 0.0 (c) 13.7 (c) Million Cubic Feet	-02-006-04 - Cogeneration	3.0	3.0	0.6	275.0	1.4	40.0			Feet
Gas Burned 1-02-007-04 - Blast Furnace Gas 2.9 2.9 950.0 S 23.0 0.0 (c) 13.7 (c) Million Cubic Feet	Process Gas - 1000-3999	(c)								
	-	3.0	3.0	950.0 S	140.0	2.8	35.0			Feet
Burned	1-02-007-04 - Blast Furnace Gas	2.9	2.9	950.0 S	23.0	0.0 (c) 13.7	(c)	Million Cubic Burned	Feet
1-02-007-07 - Coke Oven Gas 6.2 4.35 680.0 S 80.0 1.2 (c) 18.4 (c) Million Cubic Feet	1-02-007-07 - Coke Oven Gas	6.2	4.35	680.0 S	80.0	1.2 (c) 18.4	(c)	Million Cubic	Feet

· .

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD	UNITS NOTES
Process	Gas - 1000-3999								
FIUCESS	Gas - 1000-3999	(C)							Burned
1-02-007-10	- Cogeneration			950.0 S		2.8			Million Cubic Feet Burned
1-02-007-99	- Other: Specify in Comments	ХХХ	ХХХ	950.0 S	ххх	ххх	ХХХ	XXX	Million Cubic Feet Burned
Coke - 1	000-3999 (c)								
1-02-008-02	- All Boiler Sizes	7.0 A	5.5 A	39.0 S	14.0	0.07	0.6		Tons Burned
1-02-008-04	- Cogeneration	7.0 A	5.5 A	39.0 S	14.0	0.07	0.6		Tons Burned
Wood/B	ark Waste - 1000-	.3999							
	- Bark-Fired Boiler (>	47.0	16.8	0.15	2.8	1.4	4.0		Tons Burned
	50,000 LB Steam)								
1-02-009-02	- Wood/Bark-Fired Boiler (> 50,000 LB STM)	7.2	6.48	0.15	2.8	1.4	4.0		Tons Burned
1-02-009-03	- Wood-Fired Boiler (> 50,000 LB STM)	8.8	7.9	0.15	2.8	1.4	4.0		Tons Burned
1-02-009-04	- Bark-Fired Boiler (< 50,000 LB Steam)	47.0	16.8	0.15	0.68	1.4	4.0		Tons Burned
1-02-009-05	- Wood/Bark-Fired Boiler (< 50,000 LB STM)	7.2	6.48	0.15	0.68	1.4	4.0		Tons Burned
1-02-009-06	- Wood-Fired Boiler (< 50,000 LB Steam)	8.8	7.9	0.15	0.68	1.4	4.0		Tons Burned
1-02-009-07	- Wood Cogeneration	7.2	6.48	0.15	2.8	1.4	4.0		Tons Burned
Liquified	l Petroleum Gas ((LPG) - 10	00-3999						
1-02-010-01		0.28	0.28	86.5 S,(c) 13.2	0.26	3.3		1000 Gallons Burned
1-02-010-02		0.26	0.26	86.5 S,(c		0.25	3.1	·	1000 Gallons Burned
Ranasse	e - 1000-3999								
	- All Boiler Sizes	16.0	5.6	0.0	1.2	2.0	2.0		Tons Burned
Solid Wa	aste - 1000-3999								
	- Specify Waste			1.6	5.9	2.0			Tons Burned

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS I	NOTES
	Aste - 1000-3999 Material in Comments - Refuse Derived Fuel		44.0						Tons Burned	
	Vaste - 1000-3999 - Specify Waste Material in Comments			28.0	23.0	1.0			1000 Gallons Burned	
1-02-013-02	- Waste Oil	61.0 A	51.0 A	147.0 S	20.0	1.0	5.0	1.68(d)	1000 Gallons Burned	
CO Boil	er - 1000-3999									
	- Natural Gas	3.0	3.0	0.6	140.0	2.8	35.0		Million Cubic Feet Burned	
1-02-014-02	- Process Gas	3.0	3.0	950.0 S	140.0	2.8	35.0		Million Cubic Feet Burned	
1-02-014-03	- Distillate Oil	2.0	1.0	143.6 S	20.0	0.2	5.0		1000 Gallons Burned	
1-02-014-04	- Residual Oil	12.0 S	9.0 S	158.6 S	55.0	0.28	5.0		1000 Gallons Burned	

۰ ·

EXTERNAL COMBUSTION BOILERS - COMMERCIAL/INSTITUTIONAL (a)

Anthracite Coal - 4000-489	9, 4920-9	999						
1-03-001-01 - Pulverized Coal	10.0 A	2.3 A	39.0 S	18.0	0.07	0.6	0.0133	Tons Burned
1-03-001-02 - Traveling Grate	9.1	4.8	39.0 S	10.0	0.07	0.6	0.0133	Tons Burned
(Overfeed) Stoker								
1-03-001-03 - Hand-Fired	10.0	5.2	39.0 S	3.0	10.0	90.0	0.0133	Tons Burned
Bituminous Coal - 4000-48	<u>. 4920-</u>	<u>.9999</u>						
1-03-002-05 - Pulverized Coal: Wet Bottom	7.0 A	2.6 A	39.0 S	34.0	0.07	0.6	0.0133	Tons Burned
1-03-002-06 - Pulverized Coal: Dry Bottom	10.0 A	2.3 A	39.0 S	21.0	0.07	0.6	0.0133	Tons Burned
1-03-002-07 - Overfeed Stoker	16.0	6.0	39.0 S	7.5	0.07	6.0	0.0133	Tons Burned
1-03-002-08 - Underfeed Stoker	15.0	6.2	31.0 S	9.5	1.3	11.0	0.0133	Tons Burned
1-03-002-09 - Spreader Stoker	60.0	12.0	39.0 S	14.0	0.07	5.0	0.0133	Tons Burned
1-03-002-14 - Hand-Fired	15.0	7.8	31.0 S	3.0	10.0	90.0	0.0133	Tons Burned
1-03-002-16 - Pulverized Coal: Dry Bottom (Tangential)	10.0 A	2.3 A	39.0 S	15.0	0.07	0.6		Tons Burned
1-03-002-17 - Atmospheric			14.0	13.0	0.07			Tons Burned

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Bitumino	ous Coal - 4000-4	899 4920-	9999	·						
Ditarinito	Fluidized Bed Combustion	000, 1020	0000							
Subbitur	ninous Coal - 400	00-4899, 49	920-9999							
	- Pulverized Coal: Wet Bottom	7.0 A	2.6 A	35.0 S	34.0	0.07	0.6	0.0133	Tons Burned	
1-03-002-22	- Pulverized Coal: Dry Bottom	10.0 A	2.3 A	35.0 S	21.0	0.07	0.6	0.0133	Tons Burned	
1-03-002-23	- Cyclone Furnace	2.0 A	0.26 A	35.0 S	37.0	0.07	0.6	0.0133	Tons Burned	
1-03-002-24	- Spreader Stoker	60.0	12.0	35.0 S	14.0	0.07	5.0	0.0133	Tons Burned	
1-03-002-25	 Traveling Grate (Overfeed) Stoker 	16.0	6.0	35.0 s	7.5	0.07	6.0	0.0133	Tons Burned	
1-03-002-26	- Pulverized Coal: Dry Bottom (Tangential)	10.0 A	2.3 A	35.0 S	15.0	0.07	0.6		Tons Burned	
Lianite -	4000-4899, 4920)-9999								
1-03-003-05	- Pulverized Coal	6.3 A	2.18 A	30.0 S	14.0	0.07	0.6	0.0133	Tons Burned	
1-03-003-06	 Pulverized Coal: Tangential Firing 	6.3 A	2.18 A	30.0 S	8.0	0.07	0.6	0.0133	Tons Burned	
1-03-003-07	 Traveling Grate (Overfeed) Stoker 	2.9 A	1.07 A	30.0 S	6.0	0.07	6.0	0.0133	Tons Burned	
1-03-003-09	- Spreader Stoker	6.8 A	1.36 A	30.0 S	6.0	0.07	5.0	0.0133	Tons Burned	
Residua	<u> 1 Oil - 4000-4899</u> ,	4920-999	<u>9</u>						N.	
1-03-004-01	- Grade 6 Oil	12.0 S,(b)		158.6 S	55.0	1.13	5.0	0.0042	1000 Gallons Burned	
1-03-004-04	- Grade 5 Oil	10.0 (b)	6.5	158.6 S	55.0	1.13	5.0	0.0042	1000 Gallons Burned	
<u>Distillate</u>	Oil - 4000-4899.	4920-9999	9							
1-03-005-01	- Grades 1 and 2 Oil	2.0	1.08	143.6 S	20.0	0.34	5.0	0.0004	1000 Gallons Burned	
1-03-005-04	- Grade 4 Oil	7.0	4.5	150.0 S	20.0	0.34	5.0	0.0004	1000 Gallons Burned	
Natural (Gas - 4000-4899,	4920-9999	9							
	- Over 100 MMBtu/Hr	3.0	3.0	0.6	550.0	1.4	40.0		Million Cubic Feet Burned	
1-03-006-02	- 10-100 MMBtu/Hr	3.0	3.0	0.6	140.0	2.8	35.0		Million Cubic Feet Burned	

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Natural C	Gas - 4000-4899.	4920-999	9							
	- Less Than 10 MMBtu/Hr	3.0	3.0	0.6	100.0	5.3	20.0		Million Cubic Feet Burned	
Process	Gas - 4000-4899,	4920-999	99							
	- Sewage Gas		•••	4.5	••••	3.0		•••	Million Cubic Feet	
-03-007-99	• Other Not Classified	ххх	ххх	ххх	ХХХ	ххх	XXX	ххх	Burned Million Cubic Feet Burned	
Nood /R	ark Waste - 4000-	4800 402	0.000							
	- Bark-Fired Boiler	47.0	16.8	0.15	0.68	1.4	4.0		Tons Burned	
-03-009-02	- Wood/Bark Fired Boiler	7.2	6.5	0.15	0.68	1.4	4.0		Tons Burned	
-03-009-03	- Wood-Fired Boiler	8.8	7.9	0.15	0.68	1.4	4.0		Tons Burned	
iquified	l Petroleum Gas ((LPG) - 40	<u>00-4899, 4</u>	4920-9999	2					
-03-010-01		0.28	0.28	86.5 S,(c)		0.5	1.9		1000 Gallons Burn	
-03-010-02	- Propane	0.26	0.26	86.5 S,(c)	8.8	0.47	1.8		1000 Gallons Burn	ed
Solid Wa	ste - 4000-4899.	4920-999	9							
-03-012-01	- Specify Waste Material in Comments			1.6	5.9	2.0			Tons Burned	
-03-012-02	- Refuse Derived Fuel		44.0						Tons Burned	
Liquid W	/aste - 4000-4899	, 4920-99	99							
-03-013-01	- Specify Waste					1.0			1000 Gallons Burn	ed
-03-013-02	Material in Comments - Waste Oil	61.0 A	51.0 A	147.0 S	20.0	1.0	5.0	1.68(d)	1000 Gallons Burn	ed
	- Sewage Grease Skimmings						•••		1000 Gallons Burn	ed
EXTERN	AL COMBUSTIO	N BOILER	<u>S - SPACE</u>	HEATER	<u>S</u> (a)					
	al - 1000-3999									
	- Distillate Oil	2.5	1,25	143.6 S	18.0	0.7	5.0		1000 Gallons Burn	ed

• •

· ·

r.

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS N	NOTES
Industrial	- 1000-3999									
1-05-001-06 -		3.0	3.0	0.6	100.0	5.3	20.0		Million Cubic Feet Burned	
1-05-001-10 -	Liquified Petroleum Gas (LPG)	1.85	1.85	86.5 S	7.5	0.5	1.95		1000 Gallons Burned	
1-05-001-13 -	Waste Oil: Air Atomized Burner	64.0 A	57.0 A	147.0 S	20.0	1.0	5.0	2.04(d)	1000 Gallons Burned	
1-05-001-14 -	Waste Oil: Vaporizing Burner	2.4 A		147.0 S	20.0	1.0	5.0	0.02	1000 Gallons Burned	
Commer	cial-Institutional	4000-489	<u>. 4920-9</u>	999						
1-05-002-05 -	Distillate Oil	2.5	1.25	143.6 S	18.0	0.7	5.0		1000 Gallons Burned	
1-05-002-06 -	Natural Gas	3.0	3.0	0.6	100.0	5.3	20.0		Million Cubic Feet Burned	
1-05-002-09 -	Wood	25.0	25.0	0.5	1.0	1.7	150.0		Tons Burned	
1-05-002-10 -	Liquified Petroleum Gas (LPG)	1.85	1.85	86.5 S	7.5	0.5	1.95		1000 Gallons Burned	
1-05-002-13	Waste Oil: Air Atomized Burner	64.0 A	57.0 A	147.0 S	20.0	1.0	5.0	. 2.04(d)	1000 Gallons Burned	
1-05-002-14 ·	Waste Oil: Vaporizing Burner	2.4 A		147.0 S	20.0	1.0	5.0	0.02	1000 Gallons Burned	

INTERNAL COMBUSTION ENGINES

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTES
INTERN	AL COMBUST	TION ENGIN	IES						
INTERN	AL COMBUSTI	ON ENGINE	S - ELECT	RIC GEN	ERATIO	N - SIC	<u>4911</u>		
Distillate	e Oil (Diesel) - 4	4911							
2-01-001-01		5.0	4.8	140.0 s	67.8	4.77	15.4	•••	1000 Gallons Burned
2-01-001-02	- Reciprocating	33.5	32.0	31.2	469.0	32.1	102.0		1000 Gallons Burned
Natural	<u>Gas - 4911</u>								
2-01-002-01		14.0	14.0	0.6	413.0	12.6	115.0	•	Million Cubic Feet Burned
2-01-002-02	- Reciprocating	10.0	10.0	0.6	3400.0	82.9	430.0		Million Cubic Feet Burned
Process	s Gas - 4911								
	- Reciprocating					83.0		•••	Million Cubic Feet Burned
Landfill	<u>Gas - 4911</u>								
2-01-008-01						 -			Million Cubic Feet
									Burned
2-01-008-02	- Reciprocating							•	Million Cubic Feet Burned
Keroser	ne/Naphtha (Je	et Fuel) - 491	1						
2-01-009-01	- Turbine	5.0	4.8	6.2	67.8	4.77	15.4		1000 Gallons Burned
2-01-009-02	2 - Reciprocating	33.5	32.0	6.2	469.0	32.1	102.0		1000 Gallons Burned
Geysers	s/Geothermal -	4911							
	- Steam Turbine					0.0		•	Tons of Steam Produced
INTERN	IAL COMBUSTI	ON ENGINE	<u>S - MISCE</u>	LLANEO	US				
Flares -	4911								
	9 - Heavy Water	XXX	XXX	xxx	XXX	xxx	xxx	XXX	1000 Gallons Burned

.

.

•

.

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTES
INTERNA			S - INDUS	TRIAL					
Distillate	Oil (Diesel) - 10	00-3999							
2-02-001-01		5.0	4.8	140.0 s	67.8	4.77	15.4		1000 Gallons Burned
2-02-001-02	- Reciprocating	33.5	32.0	31.2	469.0	32.1	102.0		1000 Gallons Burned
2-02-001-03	•	5.0	4.8	140.0 S	6 7.8	4.77	15.4		1000 Gallons Burned
	Cogeneration								
2-02-001-04	- Reciprocating:	33.5	32.0	31.2	469.0	32.1	102.0		1000 Gallons Burned
	Cogeneration								
Natural C	Gas - 1000-3999								
2-02-002-01		14.0	14.0	0.6	300.0	6.9	120.0		Million Cubic Feet
_									Burned
2-02-002-02	- Reciprocating	10.0	10.0	0.6	3400.0	82.9	430.0		Million Cubic Feet
	, -								Burned
2-02-002-03	- Turbine:	14.0	14.0	0.6	413.0	12.6	115.0		Million Cubic Feet
	Cogeneration								Burned
2-02-002-04	 Reciprocating: 	10.0	10.0	0.6	3400.0	82.9	430.0		Million Cubic Feet
	Cogeneration								Burned
Gasoline	- 1000-3999								
2-02-003-01	- Reciprocating	6.47	6.2	5.31	102.0	147.7 (c	3940.0		1000 Gallons Burned
Large Bo	ore Engine - 100	0-3999							
2-02-004-01		50.0	46.0	150.0 S,(c)	500.0	13.0	130.0		1000 Gallons Burned
	- Dual Fuel (Oil/Gas)	2.2	2.0	0.7	18.0	1.5	5.9		1000 Horsepower-Hours
2-02-004-03	- Cogeneration: Dual	0.035	0.032		31.7	1.32	1.05		100,000 Brake
	Fuel								Horsepower-Hours
Residual	/Crude Oil - 100	00-3999							
	- Reciprocating	33.5	30.8 (c)	155.0 S,(c)	469.0	32.1	102.0		1000 Gallons Burned
Kerosen	e/Naphtha (Jet I	Fuel) - 1000	7-3999						
2-02-009-01		5.0	4.8	6.2 (c)	67.8	4.77	15.4		1000 Gallons Burned
	- Reciprocating	33.5	32.0	6.2 (c)	469.0	32.1	102.0		1000 Gallons Burned
2-02-009-02	- Keethiocatting		54.0	0.2 (0)	407.0	36.1	102.0		Note all this burned

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	
Liquifier	d Petroleum G	as (I PG) - 10(00-3000 "	.)					
2-02-010-01		5.0	5.0	0.35	139.0	83.0	129.0	•	1000 Gallons Burned
2-02-010-02		5.0	5.0	0.35	139.0	83.0	129.0		1000 Gallons Burned
INTERN	AL COMBUST	ION ENGINES	- COMN		<u>/INSTITU</u>	JTIONA	<u>L</u>		
Distillate	e Oil (Diesel) -	4000-4899, 4	920-9999						
	- Reciprocating	33.5	32.0	31.2	469. 0	32.1	102.0		1000 Gallons Burned
2-03-001-02	- Turbine	5.0	4.8	140.0 S	67.8	4.77	15.4		1000 Gallons Burned
Natural	Gas - 4000-48	99, 4920-999 <u>9</u>	2						
2-03-002-01	- Reciprocating	10.0 (c)	10.0	0.6	3400.0	82.9	430.0		Million Cubic Feet Burned
2-03-002-02	- Turbine	14.0	14.0	0.6	413.0	12.6	115.0		Million Cubic Feet
2-03-002-03									Burned Million Cubic Feet Burned
2-03-002-04	Cogeneration - Cogeneration				•				Million Cubic Feet Burned
Gasolin	e - 4000-4899.	4920-9999							
	- Reciprocating	6.47	6.2	5.31	102.0	147.7	3940.0		1000 Gallons Burned
Liquified	d Petroleum G	as (I PG) - 400	00-4899.	4920-999	99 (c)				
2-03-010-01	- Propane:	5.0	5.0	0.35	139.0	83.0	129.0		1000 Gallons Burned
2-0 3-0 10-02	Reciprocating - Butane: Reciprocating	5.0	5.0	0.35	139.0	83.0	129.0		1000 Gallons Burned
INTERN	AL COMBUST	ION ENGINES	<u>S - ENGIN</u>	<u>IE TESTIN</u>	VG				
Aircraft	- 3500-3599, 3	3700-3799							
	- Turbojet	11.8	11.3	13.0	14.6	46.0	32.7		1000 Gallons Burned
	- Turboshaft	11.8	11.3	13.0	14.6	46.0	32.7		1000 Gallons Burned

۰**۰**

,

.

.

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTES
Aircraft	- 3500-3599, 3700	0-3799	,	<u></u>					
	- Jet A Fuel								1000 Gallons Burned
2-04-001-11	- JP-5 Fuel								1000 Gallons Burned
2-04-001-12	- JP-4 Fuel								1000 Gallons Burned
2-04-002-02	<u>Motor - 3500-359</u> - Liquid Propellant		<u></u>						Tons of Fuel Consumed
	<u>- 3500-3599, 370</u> - Natural Gas	0-3799 (c) 14.0	14.0	0.6	300.0	6.9	120.0		Million Cubic Feet Burned
2-04-003-02	- Diesel/Kerosene	5.0	4.8	6.2	67.8	4.77	15.4	•	1000 Gallons Burned
Recipro	cating - 3500-359	9. 3700-3	799 (c)						
2-04-004-01		6.47	6.2	5.31	102.0	148.0	3940.0		1000 Gallons Burned
2-04-004-02	- Diesel/Kerosene	33.5	32.0	31.2	469.0	32.1	102.0		1000 Gallons Burned
INTERN	AL COMBUSTIOI	V ENGINE	<u>S - FUGITI</u>	VE EMIS	<u>SIONS</u>				
Other N	ot Classified - 100	<u> 00-9999</u>							
2-88-888-01	- Specify in Comments				•				1000 Gallons Burned
2-88-888-02	- Specify in Comments								Million Cubic Feet Burned
2-88-888-03	 Specify in Comments 								1000 Horsepower-Hours

MANUFACTURING INDUSTRIES

	rocess ame	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
CHEMICAL	MANUFACT	URING -	MAJOR G	ROUP 2	8					
Adipic Acid	- 2869									
3-01-001-01 - Gen		0.9	0.037	0.0	53.6	42.7	115.0		Tons of Product	
3-01-001-02 - Raw	Material Storage	0.0	0.0	0.0	0.0	2.2	0.0		Tons of Product	
3-01-001-03 - Cyc Oxí	lohexane dation	0.0	0.0	0.0	0.0	40.0	115.0		Tons of Product	
3-01-001-04 - Nit	ric Acid Reaction	0.0	0.0	0.0	53.0	0.0	0.0		Tons of Product	
3-01-001-05 - Adi	pic Acid Refining	0.1	0.004	0.0	0.6	0.5	0.0		Tons of Product	
	ing, Loading, and rage	0.8	0.032	0.0	0.0	0.0	0.0		Tons of Product	
3-01-001-07 - Abs	orber				9.5	0.4			Tons of Product	
3-01-001-08 - Dry	er				•	0.0			Tons of Product	
3-01-001-09 - Coo						0.0			Tons of Product	
3-01-001-80 - Fug Gen	itive Emissions: meral				•	62000.0			Process Unit-Year	
3-01-001-99 - Oth	er Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Produced	
Ammonia Pi	roduction - 28	73								
3-01-003-05 - Fee Des	dstock sulfurization			0.019		7.2	13.8		Tons of Ammonia Produced	
3-01-003-06 - Pri Nat	mary Reformer: Cural Gas Fired	0.144	0.144	0.0048	5.4	0.012	0.136		Tons of Ammonia Produced	
3-01-003-07 - Pri		0.9	0.86	2.6	5.4	0.38	0.24		Tons of Ammonia Produced	
3-01-003-08 - Car Reg	bon Dioxide Jenerator	0.0	0.0	0.0	0.0	1.04	2.0		Tons of Ammonia Produced	
3-01-003-09 - Cor	•	0.0	0.0	0.0	0.0	1.2			Tons of Ammonia Produced	
3-01-003-99 - Oth	er Not Classified	XXX	XXX	XXX	ххх	XXX	ХХХ	ХХХ	Tons of Ammonia Produced	
Carbon Blac	ck Production	- 2895								
3-01-005-01 - Cha		2300.0		0.0	0.0	8943.29	33500.0		Tons Produced	
3-01-005-02 - The	ermal Process	0.0	0.0	0.0	0.0	0.0	0.0		Tons Produced	

· · ·

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Carbon I	Black Production	- 2895	, , , , , , , , , , , , , , , , , , ,						1944 - Torrison Constanting - Torrison Consta	
	- Gas Furnace Process: Main Process Vent	3.2	3.2	0.0	0.0	1400.0	5300.0		Tons Produced	
3-01-005-04	- Oil Furnace Process: Main Process Vent	6.53	6.53		0.56	100.0	2800.0		Tons Produced	
3-01-005-06	- Transport Air Vent	0.58	0.58	0.0	0.0	0.0	0.0		Tons Produced	
	- Pellet Dryer	0.45	0.45	0.1	0.73	0.3			Tons Produced	
3-01-005-08	- Bagging/Loading	0.06	0.06	0.0	0.0	0.0	0.0		Tons Produced	
3-01-005-09	 Furnace Process: Fugitive Emissions 	0.2	0.2	0.0	0.0	0.0	0.0		Tons Produced	
3-01-005-99	- Other Not Classified	XXX	XXX	ХХХ	XXX	XXX	ХХХ	ххх	Tons Product	
Charcoa	I Manufacture - 2	861								
3-01-006-01	- General	266.0	250.0		24.0	314.0	344.0		Tons Produced	
3-01-006-03	- Batch Kiln	266.0	255.4		24.0	314.0	344.0		Tons Produced	
3-01-006-04	- Continuous Furnace	266.0	255.4		<i>2</i> 4.0	314.0	344.0		Tons Produced	
3-01-006-05	- Briquetting	56.0	24.1	0.0	0.0	0.0	0.0		Tons Produced	
3-01-006-99	- Other Not Classified	XXX	XXX	XXX	XXX	0.35	XXX	XXX	Tons Product	
Chloro-A	Ikali Production -	2812								
3-01-008-01	- Liquefaction (Diaphragm Cell Process)			0.0		0.0	•••		100 Tons Chlorine Liquified	
3-01-008-02	- Liquefaction (Mercury Cell Process)			0.0		0.0			100 Tons Chlorine Liquified	
3-01-008-03	•	0.0	0.0	0.0	0.0	0.0	0.0		100 Tons Chlorine Liquified	
3-01-008-04	- Chlorine Loading: Storage Car Vent	0.0	0.0	0.0	0.0	0.0	0.0		100 Tons Chlorine Liquified	
3-01-008-05	- Air Blowing of Mercury Cell Brine	0.0	0.0	0.0	0.0	0.0	0.0		100 Tons Chlorine Liquified	
3-01-008-99	- Other Not Classified	XXX	ххх	XXX	ххх	ХХХ	XXX	ххх	100 Tons Chlorine Liquified	

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit								
Cleanino	Chemicals - 284	1. 2842								
	- Spray Drying: Soaps and Detergents	90.0	60.0		•	0.06			Tons Produced	
3-01-009-02	- Speciality Cleaners					1500.0			Tons Product	
3-01-009-99	- Other Not Classified	XXX	Tons Produced							
Explosive	es - Trinitrotoluen	e - 2892								
	- Batch Process:				25.0	0.0			Tons Produced	
	Nitration Reactors									
	Fume Recovery									
3-01-010-12	- Batch Process:				55.0	0.0			Tons Produced	
	Nitration Reactors									
	Acid Recovery									
3-01-010-13	- Batch Process:				37.0	0.0			Tons Produced	
	Nitric Acid									
3-01-010-14	Concentrators - Batch Process:			14.0	40.0	0.0			Tons Produced	
5-01-010-14	Sulfuric Acid			14.0	40.0	0.0	•••			
	Concentrators									
3-01-010-15	- Batch Process: Red	25.0	23.5	2.0	26.0	1.1			Tons Produced	
5 01 010 15	Water Incinerator	2310	23.7	2.0	2010					
3-01-010-21	- Continuous Process:				8.0	0.0			Tons Produced	
• • <i>,</i> • • • •	Nitration Reactor									
	Fume Recover									
3-01-010-22	- Continuous Process:				3.0	0.0			Tons Produced	
	Nitration Reactor									
	Acid Recover									
3-01-010-23	- Continuous Process:	0,25	0.24	0.24	7.0	1.1			Tons Produced	
	Red Water									
	Incinerator									
	- Open Burning: Waste	180.0		•••	150.0	1.1	56.0		Tons TNT Burned	
3-01-010-99	- Other Not Classified	XXX	Tons Produced							
Hydroch	loric Acid - 2819									
3-01-011-01	- Rotary Kiln			0.0	0.0	0.0			Tons Final Acid	
3-01-011-08	- Handling and Storage								1000 Gallons Aci	d

. .

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Hydroch	(99.9% Removal)					<u>, , , , , , , , , , , , , , , , , , , </u>	·····		<u> </u>	
3-01-011-99	- Other Not Classified	XXX	XXX	xxx	XXX	XXX	XXX	XXX	Tons Final Acid	
Hydroflu	oric Acid - 2819									
3-01-012-02	- Rotary Kiln: Acid Reactor	0.0	0.0	2.7	0.07	0.02			Tons Acid	
3-01-012-03		75.0	38.2	0.0	0.15	0.0			Tons Fluorspar	
3-01-012-04	- Fluorspar Handling Silos	60.0	30.6	0.0	0.0	0.0	0.0		Tons Fluorspar	
3-01-012-05	- Fluorspar Transfer	6.0	3.1	0.0	0.0	0.0	0.0		Tons Fluorspar	
	- Tail Gas Vent			45.0					Tons Acid	
3-01-012-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Acid	
Nitric Ac	id - 2873									
3-01-013-01	- Absorber Tail Gas (Pre-1970			0.0	43.0	0.0			Tons Pure Acid Produced	
3-01-013-02	Facilities) - Absorber Tail Gas (Post-1970 Facilities)			0.0	1.8	0.0			Tons Pure Acid Produced	
3-01-013-03	- Nitric Acid Concentrators (Pre- 1970)			0.0	10.0	0.0			Tons Pure Acid Produced	
3-01-013-04	- Nitric Acid Concentrators (Post- 1970)			0.0	10.0	0.0			Tons Pure Acid Produced	
3-01-013-99	- Other Not Classified	XXX	XXX	XXX	XXX	ххх	xxx	xxx	Tons Pure Acid Produced	
Paint Ma	anufacture - 2851	(e)								
	- General Mixing and Handling	5.5 (c)	4.7	0.0	0.0	30.0	0.0	•••	Tons Paint Produc	ed
3-01-014-02	- Pigment Handling	20.0	17.0	0.0	0.0	0.0	0.0		Tons Pigment Processed	
3-01-014-03	- Solvent Loss:								Tons of Solvent L	ost

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	
Paint M	anufacture - 2851 General	(e)							
3-01-014-04	- Raw Material Storage		•				•••		1000 Gallons Stored
3-01-014-99	Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Product
Varnish	Manufacturing - 2	851							
	- Bodying Oil			0.0	0.0	40.0			ions Produced
3-01-015-02	- Oleoresinous			0.0	0.0	150.0			Tons Produced
3-01-015-03	5 - Alkyd			0.0	0.0	160.0	•••		Tons Produced
3-01-015-05	- Acrylic			0.0	0.0	20.0			Tons Produced
3-01-015-99	Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Produced
Phosph	oric Acid: Wet Pro	cess - 28	74						
3-01-016-01	- Reactor	0.0	0.0	0.0	0.0	0.0			Tons Phosphate Rock
3-01-016-02	2 - Gypsum Pond	0.0	0.0	0.0		0.0	••••		Tons Phosphate Rock
3-01-016-03	6 - Condensor	0.0	0.0	0.0	• • •	0.0			Tons Phosphate Rock
3-01-016-99	Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Produced
Phosph	oric Acid: Therma	I Process	- 2874						
3-01-017-02	2 - Absorber: General			0.0	0.0	0.0		•	Tons Phosphorous Burned
3-01-017-03	5 - Absorber w/ Packed Tower	` 2.14	2.14	0.0	0.0	0.0			Tons of P205
3-01-017-04	- Absorber w/ Venturi Scrubber	2.53	2.53	0.0	0.0	0.0			Tons of P205
3-01-017-05	5 - Absorber w/ Glass Mist Eliminator	0.69	0.69	0.0	0.0	0.0			Tons of P205
3-01-017-06	5 - Absorber w/ Wire Mist Eliminator	5.46	5.46	0.0	0.0	0.0	••••		Tons of P205
3-01-017-07	7 - Absorber w/ High- pressure Mist Eliminator	0.11	0.11	0.0	0.0	0.0			Tons of P205
3-01-017-08	3 - Absorber w/ ESP	1.66	1.66	0.0	0.0	0.0			Tons of P205
3-01-017-99	Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Produced
Plastics	Production - Spe		<u>ucts - 282</u>	<u>1</u> (1)					
7-01-019-01	I - Polyvinyl Chlorides	35.0	23.0	0.025	200.0	17.0			Tons Product

• •

· ·

SCC Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Plastics Production - Spe	cific Prod	ucts - 282	1 0				^ر <u>، </u>	·····	
and Copolymers:									
General									
3-01-018-02 - Polypropylene and	3.0	2.0		131.0	0.7			Tons Product	
Copolymers: General									
3-01-018-03 - Ethylene-Propylene								Tons Product	
Copolymers: General									
3-01-018-05 - Phenolic Resins:					14.6			Tons Product	
General									
3-01-018-07 - Polyethylene (High					36.0			Tons Product	
density):General									
3-01-018-08 - Monomer and Solvent			0.0	0.0	25.4			Tons Product	
Storage									
3-01-018-09 - Extruder		•••	0.0	0.0	11.0			Tons Product	
3-01-018-10 Conveying			0.0	0.0	0.46			Tons Product	
3-01-018-11 - Storage			0.0	0.0	0.01			Tons Product	
3-01-018-12 - Polyethylene (Low					7.7			Tons Product	
Density):General									
3-01-018-13 - Recovery and			0.0	0.0	60.0			Tons Product	
Purification System									
3-01-018-14 - Extruder			0.0	0.0	60.0			Tons Product	
3-01-018-15 - Pellet Silo			0.0	0.0	0.0			Tons Product	
3-01-018-16 - Transfering/Handling			0.0	0.0	0.0			Tons Product	
/Loading/Packing									
3-01-018-17 - Polystyrene: General					11.1			Tons Product	
3-01-018-18 - Reactor					0.0			Tons Product	
3-01-018-19 - Solvent Recovery			0.0	0.0	1.6			Tons Product	
3-01-018-20 - Polymer Drying					0.0			Tons Product	
3-01-018-21 - Extruding/			0.0	0.0	0.0			Tons Product	
Pelletizing/									
Conveying/Storage									
3-01-018-22 - Acrylic Resins:					1.2			Tons Product	
General									
3-01-018-27 - Polyamide Resins:				1.0	1.6			Tons Product	
General									
3-01-018-32 - Urea-Formaldehyde					20.0			Tons Product	
-									
Resins: General									

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NO	TES
Plastics	Production - Spe	cific Produ	ucts - 282	1 /0						
	- Polyester Resins: General					0.5			Tons Product	
3-01-018-38	- Polyester/Alkyd Resins: Reactor Kettle			0.0	0.0	4.8	0.0		Tons of Polyester/Alkyd Resin Produced	
3-01-018-39	- Polyester/Alkyd Resins: Resin Thinning Tank	0.0	0.0	0.0	0.0	6.7	0.0		Tons Thinning Solvent Used	
3-01-018-40	- Polyester/Alkyd Resins: Resin Storage Tank	0.0	0.0	0.0	0.0	11.1	0.0		1000 Gallons Thinned- Resin Stored	
3-01-018-42	• • • • • • • • •					50,0		•	Tons Product	
3-01-018-47	- Epoxy Resins: General				••••	6,8		•	Tons Product	
3-01-018-49	 Acrylonitrile- Butadiene-Styrene (ABS) Resin 				, ,	60.0			Tons Produced	
3-01-018-52	- Polyfluorocarbons: General			•••				~	Tons Product	
	<u>lene - 2821</u> ø									
	- Recovery System			··-		40.0			Tons Product	
	- Purification System					30.0			Tons Product	
3-01-018-63				0.0	0.0	30.0			Tons Product	
	- Pellet Silo/Storage			0.0	0.0	0.0			Tons Product	
3-01-018-65	- Transfering / Conveying			0.0	0.0	0.0			Tons Product	
3-01-018-66	- Packing/Shipping			0.0	0.0	0.0			Tons Product	
Polyethe 3-01-018-70	e <u>r Resins - 2821</u> (1)					50.0			Turne Brand and	
	- Reactor - Blowing Agent: Freon					50.0			Tons Product	
	- Blowing Agent: Freen - Miscellaneous					0.0			Tons Product Tons Product	

. .

.

c 1

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
nu	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Polvureti	hane - 2821 @									
3-01-018-80						52.0			Tons Product	
3-01-018-81	- Blowing Agent: Freon					0.0			Tons Agent Used	
3-01-018-82	- Blowing Agent: Methylene Chloride	•••			•••	0.0			Tons Agent Used	
3-01-018-83	- Transfering/ Conveying/ Storage	•••		0.0	0.0	0.0			Tons Product	
3-01-018-84	- Packing/Shipping			0.0	0.0	0.0			Tons Product	
	- Other Not Classified								Tons Product	
Plastics	Production - Gen	eral Proce	<u>esses - 28</u>	<u>21</u> (1)						
3-01-018-90	- Catalyst Preparation					0.47			Tons Product	
3-01-018-91	- Reactor Vents					0.4			Tons Product	
3-01-018-92	- Separation Processes					2.0	•••		Tons Product	
3-01-018-93	- Raw Material Storage			0.0	0.0	0.034			Tons Raw Material	
3-01-018-94	- Solvent Storage	•••		0.0	0.0	0.018			Tons Solvent	
3-01-018-99	- Other Not Classified	XXX	xxx	XXX	XXX	XXX	XXX	XXX	Tons Product	
Phthalic	Anhydride - 2865	5								
3-01-019-01	- o-Xylene Oxidation:	138.0	130.0	9.4	0.0	0.0	301.0	•••	Tons Produced	
3-01-019-02	Main Process Stream - o-Xylene Oxidation:	13.0	12.2	0.0	0.0	0.0	0.0		Tons Produced	
	Pre-Treatment									
3-01-019-04	- o-Xylene Oxidation:	89.0	83.7	0.0	0.0	2.4	0.0		Tons Produced	
	Distillation									
3-01-019-05	•	56.0	52.6	0.0	0.0	0.0	100.0		Tons Produced	
	Oxidation: Main									
	Process Stream									
3-01-019-06		5.0	4.7	0.0	0.0	0.0	0.0		Tons Produced	
	Oxidation: Pre-									
	Treatment									
3-01-019-07	- Naphthalene	38.0	35.7	0.0	0.0	10.0	0.0		Tons Produced	
	Oxidation:									
	Distillation									

SCC Proc Nam	cess ne	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Printing Ink Ma	nufacture -	2803								
3-01-020-01 - Vehicle General	Cooking:	0.0	0.0			120.0			Tons Produced	
3-01-020-02 - Vehicle 0ils		0.0	0.0			40.0			Tons Produced	
3-01-020-03 - Vehicle Oleores	-	0.0	0.0			150.0			Tons Produced	
3-01-020-04 - Vehicle Alkyds		0.0	0.0			160.0			Tons Produced	
3-01-020-05 - Pigment	Mixing	2.0				6.2			Tons Pigment	
3-01-020-99 - Other N	+	XXX	XXX	XXX	XXX	xxx	xxx	XXX	Tons Produced	
Sodium Carbo	nate - 2812									
3-01-021-01 - Solvay Recover	Process: NH3	0.0	0.0			0.0			Tons Produced	
3-01-021-02 - Solvay Handlin	Process:	50.0	10.5			0.0			Tons Produced	
3-01-021-03 - Trona C Screeni	rushing/			0.0	• 0.0	0.0			Tons of Ore Proce	ssed
3-01-021-04 - Calcine		368.0	24.6	0.0		0.2			Tons of Ore Proce	essed
3-01-021-05 - Calcine		390.0	37.0	0.01	2.45	0.07	.		Tons of Ore Proce	essed
3-01-021-06 - Rotary Fired		84.0	17.6	0.0		0.0			Tons Product	
3-01-021-07 - Fluid E	Bed Dryer: ct Fired	146.0	19.0	0.0	0.0	0.0			Tons Product	
3-01-021-08 - Dissolv				0.0	0.0	0.0			Tons Product	
3-01-021-12 - Rotary		3.1	0.16		••••	0.0			Tons of Dry NAHCC Feed	3
3-01-021-13 - Bleache	er: Gas Fired	311.0	7.8			0.0			Tons of Dry Feed	
3-01-021-14 - Rotary Tube		67.0	14.0	0.0	0.0	0.0	0.0		Tons Produced	
3-01-021-99 - Other I	Not Classified	XXX	XXX	XXX	XXX	0.0	xxx	XXX	Tons Produced	
Sulfuric Acid -	Chamber P	Process - 2	2819							
3-01-022-01 - Genera						0.0			Tons of Pure Acid Produced	ł

• •

,

SCC	Process Name		ART ps/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Sulfuric	Acid - Contact F	Proce	ss - 28	819							
	- Absorber/@ 99.9% Conversion	(g)	2.5	2.5	4.0	0.004	0.0			Tons 100% H2SO4	
3-01-023-04	- Absorber/a 99.5% Conversion	(g)	2.5	2.5	7.0	0.004	0.0		•••	Tons 100% H2SO4	
3-01-023-06	- Absorber/@ 99.0% Conversion	(g)	2.5	2.5	14.0	0.004	0.0			Tons 100% H2SO4	
3-01-023-08	- Absorber/a 98.0% Conversion	(g)	2.5	2.5	27.0	0.004	0.0		•••	Tons 100% H2SO4	
3-01-023-10	- Absorber/@ 97.0% Conversion	(g)	2.5	2.5	40.0	0.004	0.0		•	Tons 100% H2SO4	
3-01-023-12	- Absorber/a 96.0% Conversion	(g)	2.5	2.5	55.0	0.004	0.0			Tons 100% H2SO4	
3-01-023-14	- Absorber/a 95.0% Conversion	(g)	2.5	2.5	70.0	0.004	0.0			Tons 100% H2SO4	
3-01-023-16	- Absorber/@ 94.0% Conversion	(g)	2.5	2.5	82.0	0.004	0.0			Tons 100% H2SO4	
3-01-023-18	- Absorber/@ 93.0% Conversion	(g)	2.5	2.5	96.0	0.004	0.0			Tons 100% H2SO4	
3-01-023-19	- Concentrator						0.0			Tons 100% H2SO4	
	- Tank Car and Truck Unloading				0.1		0.0			Tons 100% H2SO4 Loaded	
	- Storage Tank Vent		•••		0.1		0.0			Tons 100% H2SO4 Stored	
3-01-023-22	- Process Equipment Leaks						0.0			Tons 100% H2SO4	
	- Other Not Classified		xxx	XXX	XXX	ХХХ	XXX	XXX	XXX	Tons Produced	
	<u>g. Fiber Mfg S</u> - Polyamide (e.g.,	Deciti	<u>c Proc</u> 	<u>10CIS - 282</u> 	<u>4</u> 0.0	0.0	7.0			Tons Fiber	
3-01-024-02	Nylon) - Polyesters (e.g.,			•••			90.0			Tons Fiber	
3-01-024-05	Dacron) - Polyfluorocarbons									Tons Product	
3-01-024-10	(e.g., Teflon) - Acrylics (e.g.,						90.0			Tons Product	

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Syn. Org	. Fiber Mfg Spe	ecific Proc	lucts - 282	24			<u></u>			
<u>e</u> pin <u>er</u> gi	Orlon)									
3-01-024-14 -	Polyolefins (e.g.,					73.0			Tons Product	
	Polypropylene)									
3-01-024-15 -	Vinyls (e.g., Saran)								Tons Product	
3-01-024-16	Aramid					7.0			Tons Product	
Svn Ora	<u>. Fiber Mfg Ger</u>	neral Proc	esses - 28	324						
	· Dope Preparation				0.0	10.0			Tons Product	
3-01-024-22					0.0	6.0			Tons Product	
	- Fiber Extrusion				0.0	10.0			Tons Product	
	- Washing/ Drying/				0.0	96.0			Tons Product	
J-01-024-24	Finishing					/010				
3-01-024-25	- Fiber Storage			0.0	0.0	0.0			Tons Product	
	- Equipment Cleanup			0.0	0.0	0.0			Tons Product	
	- Solvent Storage			0.0	0.0	34.0			Tons Solvent	
	- Other Not Classified	xxx	XXX	XXX	XXX	XXX	XXX	XXX	Tons Produced	
Callulasi	c Fiber Productio	n - 2823								
	- Viscose (e.g.,	<u>///-2020</u>				0.0			Tons Fiber	
5 01 025 01	Rayon)					••••				
3-01-025-05						290.0			Tons Produced	
	- Other Not Calssified	XXX	XXX	xxx	XXX	XXX	XXX	XXX	Tons Produced	
5 01 025 77		~~~				, ANA	AAA			
<u>Synthetic</u>	<u>c Rubber (Manufa</u>	<u>acturing C</u>	<u>)nly) - 282</u>	<u>2</u>						
3-01-026-01	- General					83.0			Tons Product	
3-01-026-02	- Butyi (Isobutyiene)								Tons Product	
3-01-026-08	- Acrylonitrile					20.0			Tons Product	
3-01-026-09	- Dryers					5.02			Tons Product	
3-01-026-10	- Blowdown Tank					0.0			Tons Product	
3-01-026-11	- Steam Stripper					0.0			Tons Product	
3-01-026-12	- Pre-storage Tank					0.0			Tons Product	
3-01-026-13	- Monomer Recovery:					0.52			Tons Product	
	Absorber Vent									
3-01-026-14	- Blending Tanks					0.84			Tons Product	
3-01-026-15	- Isoprene								Tons Product	
3-01-026-16	- Latex: Monomer					17.0			Tons Product	

. . .

SCC Process Name	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Synthetic Rubber (Manu	Ifacturing C)nly) - 282	2						
Removal			-						
3-01-026-17 - Latex: Blending Tank		•			0.2			Tons Product	
3-01-026-25 - Chloroprene	•••							Tons Product	
3-01-026-30 - Silicone Rubber		•••						Tons Product	
3-01-026-99 - Other Not Classified	xxx E	XXX	XXX	XXX	XXX	XXX	XXX	Tons Product	
Ammonium Nitrate Prod	luction - 28	73							
3-01-027-04 - Neutralizer	4.35	4.35			0.0			Tons Produced	
3-01-027-07 - Rotary Drum	292.0	5.8			0.0			Tons Produced	
Granulator									
3-01-027-08 - Pan Granulator	2.68	0.05			0.0			Tons Produced	
3-01-027-09 - Bulk Loading	0.02	•			0.0			Tons Produced	
(General)									
3-01-027-10 - Bagging of Product	0.19				0.0	•••		Tons Produced	
3-01-027-11 - Neutralizer: High	4.35	4.35			0.0			Tons Produced	
Density									
3-01-027-12 - Prilling Tower: High	n 3.1 8	3.0			0.0			Tons Produced	
Density									
3-01-027-14 - Prilling Cooler:	1.6	0.01			0.0	•••		Tons Produced	
High Density		• ••							
3-01-027-17 - Evaporator/	0.52	0.49			0.0			Tons Produced	
Concentrator: High									
Density	()	3.4						To a Devidence d	
3-01-027-18 - Coating: High Density	4.0	5.4			0.0			Tons Produced	
3-01-027-20 - Solids Screening					0.0			Tons Produced	
3-01-027-21 - Neutralizer: Low	4.35	4.35			0.0			Tons Produced	
Density	4.55	4.55			0.0				
3-01-027-22 - Prilling Tower: Low	0.92	0.8			0.0			Tons Produced	
Density					•••				
3-01-027-24 - Prilling Cooler: Los	w 51.6	0.2			0.0			Tons Produced	
Density									
3-01-027-25 - Prilling Dryer: Low	114.4	0.2			0.0			Tons Produced	
Density									
3-01-027-27 - Evaporator/	0.52	0.49		•	0.0			Tons Produced	
Concentrator: Low									

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	-	
Ammonii	um Nitrate Produ	ction - 28	73							
	Density									
3-01-027-28	- Coating: Low Density	4.0	3.4			0.0			Tons Produced	
	- Rotary Drum	16.2	0.5			0.0	••••		Tons Produced	
	Granulator Coolers									
3-01-027-30	- Pan Granulator	36.6	0.5			0.0			Tons Produced	
	Coolers									
Normal S	Superphosphate	- 2874								
	- Grinding/Drying	9.0	4.6						Tons Produced	
	- Rock Unloading	0.56	0.29	0.0	0.0	0.0	0.0		Tons P205 Produced	d
3-01-028-04	- Rock Feeder System	0.11	0.06	0.0	0.0	0.0	0.0		Tons P205 Produce	d
3-01-028-05	-	0.52	0.44	0.0	0.0	0.0	0.0		Tons P205 Produce	d
	- Curing Building	7.2	6.1	0.0	0.0	0.0	0.0		Tons P205 Produce	d
3-01-028-07	- Bagging/Handling			0.0	0.0	0.0	0.0		Tons P205 Produce	d
3-01-028-20	- Mixing								Tons Fertilizer	
									Produced	
3-01-028-21	- Den					0.0	••		Tons Fertilizer	
									Produced	
3-01-028-22	- Curing					0.0			Tons Fertilizer	
									Produced	
3-01-028-23	- Ammoniator/					0.0			Tons Fertilizer	
	Granulator								Granulated	
3-01-028-24	- Dryer					0.0			Tons Fertilizer	
									Granulated	
3-01-028-25	- Cooler					0.0			Tons Fertilizer	
									Granulated	
Triple Su	perphosphate -	<u>2874</u>								
	- Rock Unloading	0.16	0.08	0.0	0.0	0.0	0.0		Tons P205 Produce	d
3-01-029-04	- Rock Feeder System	0.03	0.02	0.0	0.0	0.0	0.0		Tons P205 Produce	d
3-01-029-05	- Run of Pile:	0.03	0.02	0.0	0.0	0.0	0.0		Tons P205 Produce	d
	Mixer/Den/Curing									
3-01-029-06	- Granulator:	0.1	0.08			0.0			Tons P205 Produce	d
	Reactor/Dryer									
3-01-029-07	- Granulator: Curing	0.2	0.17	0.0	0.0	0.0	0.0		Tons P205 Produce	d
3-01-029-08	 Bagging/Handling 			0.0	0.0	0.0	0.0		Tons P205 Produce	d

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS N	IOTES
Triple Si	perphosphate - 2	2874								
3-01-029-20						0.0			Tons Fertilizer Produced	
3-01-029-21	- Den					0.0			Tons Fertilizer Produced	
3-01-029-22	- Curing					0.0			Tons Fertilizer Produced	
3-01-029-23	- Ammoniator/ Granulator					0.0	••••		Tons Fertilizer Granulated	
3-01-029-24	- Dryer					0.0			Tons Fertilizer Granulated	
3-01-029-25	- Cooler					0.0			Tons Fertilizer Granulated	
Ammoni	um Phosphates -	<u>2874</u>								
3-01-030-01	- Dryers and Coolers	1.5	1.3	3.1	1.7	0.03			Tons P205 Produced	
3-01-030-02	- Ammoniator/ Granulator	1.52	1.3	0.3	0.0	0.0			Tons P205 Produced	
3-01-030-03	- Screening/Transfer	0.06	0.05	0.0	0.0	0.0	0.0		Tons P205 Produced	
3-01-030-04	- Bagging/Handling			0.0	0.0	0.0	0.0		Tons P205 Produced	
3-01-030-20	- Mixing					0.0			Tons Fertilizer Produced	
3-01-030-21	- Den			0.0	0.0	0.0			Tons Fertilizer Produced	
3-01-030-22	- Curing			***		0.0		• • •	Tons Fertilizer Produced	
3-01-030-23	- Ammoniator/ Granulator			0.0	0.0	0.0			Tons Fertilizer Granulated	
3-01-030-24	- Dryer			0.0	0.0	0.0	•		Tons Fertilizer Granulated	
3-01-030-25	- Cooler			0.0	0.0	0.0			Tons Fertilizer Granulated	
3-01-030-99	- Other Not Classified	ххх	xxx	xxx	ххх	XXX	ххх	ххх	Tons Produced	
	- HNO3 - Paraxylene -	nyl Tereph	<u>thalate - 2</u> 	<u>869</u> 0.0	0.06	39.6	38.0		Tons Produced	

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD	UNITS	NOTES
Torophth							,	.		
Terepriti	alic Acid/Dimeth	<u>үг төгөрт</u>	linalale - Z	009						
3-01-031-02	- Reactor Vent			0.0	0.0	30.0	34.0		Tons Produced	
3-01-031-03	- Crystallization, Separation, and Drying Vent			0.0	0.0	3.8	0.0		Tons Produced	
3-01-031-04	- Distillation and Recovery Vent	•	0.0	0.0	0.0	2.2	0.0		Tons Produced	
3-01-031-05	- Product Transfer Vent	•••	0.0	0.0	0.0	3.6	4.0		Tons Produced	
3-01-031-80	- Fugitive Emissions								Process Unit-Year	
3-01-031-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Produced	
	<u>al Sulfur Productions</u> - Mod. Claus: 2 Stage	<u>on - 2819</u>	(h)	280.0	0.35	3.0			Tons 100% Sulfur	
5-01-052-01	w/o Control (92-95% Removal)			200.0	0.35	5.0				
3-01-032-02	- Mod. Claus: 3 Stage w/o Control (95-96% Removal)			189.0	0.1	2.1			Tons 100% Sulfur	
3-01-032-03	- Mod. Claus: 4 Stage w/o Control (96-97%			145.0	0.1	2.1			Tons 100% Sulfur	
3-01-032-04	Removal) - Sulfur Removal Process (99.9%			4.0	0.1	2.1			Tons 100% Sulfur	
3-01-032-99	Removal) - Other Not Classified	xxx	xxx	xxx	xxx	XXX	xxx	ххх	Tons Product	
Pesticid	es - 2879									
3-01-033-01	- Malathion					0.05	•••		Gallons of Produc	t
3-01-033-11	- Agricultural Pesticides: General				•••				Gallons Stored	
3-01-033-12	- Agricultural Pesticides: General	•••							Pounds Stored	
3-01-033-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Produced	

, **,** ,

s •

SCC	Process Name	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Aniline -	2869									
3-01-034-02									Tons Produced	
	- Reactor Cycle Purge					0.2			Tons Product	
	Vent									
3-01-034-04	- Dehydration Column Vent					0.2			Tons Product	
3-01-034-05	- Purification Column			•••		0.2			Tons Product	
	Vent									
3-01-034-06	- Fugitive Emissions	•••			•				Process Unit-Year	
Ethanola	mines - 2869									
3-01-034-10	- General								Tons Produced	
3-01-034-11	- Ammonia Scrubber Vent					0.0			Tons Product	
3-01-034-12	- Vacuum Distillation:					0.0			Tons Product	
	Jet Vent									
	 Fugitive Emissions 						•••		Process Unit-Year	
	- Ethylenediamine					0.4			Tons Produced	
	 Hexamethylenediamine 					0.4			Tons Produced	
3-01-034-25	 Hexamethylene- tetramine 					0.4			Tons Produced	
7 01 07/ 70						o (Topo Duoduood	
3-01-034-30	- Methylamines					0.4 0.4			Tons Produced Tons Produced	
	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Produced	
			~~~	~~~	~~~	~~~	~~~	~~~	Tons produced	
Inorgani	<u>c Piqments - 2816</u>	<u>5</u>								
3-01-035-01	- TiO2 Sulfate Process: Calciner	230.0	27.6	8.0		0.0			Tons Produced	
3-01-035-02	- TiO2 Sulfate			3.6		0.0			Tons Produced	
	Process: Digestor									
3-01-035-03	- TiO2 Chloride Process: Reactor			•••		0.0	220.0		Tons Produced	
3-01-035-06	- Lead Oxide: Barton	0.64	0.64			0.0		0.44	Tons Produced	
	Pot									
3-01-035-07	- Lead Oxide: Calciner	15.0	15.0			0.0		14.0	Tons Produced	
3-01-035-10	- Red Lead	1.0	1.0			0.0		0.9	Tons Produced	

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Inorgoni	Diamonto 001									
	<u>c Pigments - 2816</u>	-								
3-01-035-15		0.69	0.69			0.0	•••	0.55	Tons Produced	
	- Lead Chromate	0.2	•			0.0		0.13	Tons Produced	
	• Ore Grinding			0.0	0.0	0.0	0.0		Tons Produced	
3-01-035-51	,	8.0	6.9		•••				Tons Produced	
	- Pigment Milling			0.0	0.0	0.0	0.0		Tons Produced	
	- Pigment Dryer								Tons Produced	
3-01-035-54	<ul> <li>Conveying/Storage/</li> <li>Packing</li> </ul>	•••	•-•	0.0	0.0	0.0	0.0		Tons Produced	
3-01-035-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	ХХХ	XXX	Tons Produced	
	<u> Bicarbonate - 281</u>	12								
3-01-038-01		•••							Tons Product	
	<u>n Cyanide - 2819</u>	•								
3-01-039-01	- Air Heater					14.0	•••		Tons Product	
	- Ammonia Absorber				•	0.0			Tons Product	
3-01-039-03	- HCN Absorber					0.0			Tons Product	
	<u>duction - 2873</u>			,						
3-01-040-01	- General: Specify in Comments					0.0			Tons Product	
3-01-040-02		0.0214	0.011			0.0			Tons Produced	
	Concentration (controlled)									
3-01-040-03	- Prilling	3.8	3.57			0.0			Tons Produced	
3-01-040-04	- Drum Granulation	241.0	4.82			0.009			Tons Produced	
3-01-040-05	- Coating	4.0	3.4			0.0			Tons Produced	
3-01-040-06	- Bagging	0.19				0.0			Tons Produced	
	- Bulk Loading	0.02				0.0			Tons Produced	
	- Non-Fluidized Bed	3.8	3.4			0.0			Tons Produced	
	Prilling (Agricultural Grade)		2						. one in ouded	
3-01-040-09	•	3.6	3.1			0.0			Tomo Decidios d	
5-01-040-09	Prilling (Feed Grade)	3.0	3.1			0.0			Tons Produced	

· ·

,

.

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD	UNITS	NOTES
Urea Pro	<u> duction - 2873</u>									
	- Fluidized Bed Prilling (Agricultural Grade)	6.2	3.7			0.02			Tons Produced	
3-01-040-11	- Fluidized Bed Prilling (Feed Grade)	3.6	0.9			0.04			Tons Produced	
3-01-040-12	- Rotary Drum Cooler	7.45	0.05			0.0			Tons Produced	
3-01-040-13	- Solids Screening				•••	0.0	•••		Tons Produced	
Nitrocel	lulose - 2892									
_	- Nitration Reactor	0.0	0.0	1.4	14.0	0.0	0.0		Tons Produced	
3-01-041-02	- Sulfuric Acid Concentrators	0.0	0.0	68.0	0.0	0.0	0.0		Tons Produced	
3-01-041-03	- Boiling Tubs	0.0	0.0	0.0	2.0	0.0	0.0		Tons Produced	
3-01-041-04	- Nitric Acid Concentrators	0.0	0.0	0.0	14.0	0.0	0.0		Tons Produced	
3-01-041-99	- Other Not Classified	XXX	XXX	XXX	XXX	0.0	0.0	XXX	Tons Produced	
Lead All	kyl Mfg (Na/Pb.	Alloy Proc	<u>cess) - 286</u>	<u> 9</u>						
	- Recovery Furnace	59.3	59.3	0.0	2.67	0.0		55.0	Tons Produced	
3-01-042-02	- Process Vents: Tetraethyl Lead					6.25		4.0	Tons Produced	
3-01-042-03	- Process Vents: Tetramethyl Lead			0.0	0.0	193.5		150.0	Tons Produced	
3-01-042-04	- Sludge Pits	1.9		•••			• • • •	1.2	Tons Produced	
Lead Al	<u>kyl Mfg (Electoly</u> - _{General:}	<u>rtic Proce</u>	<u>ss) - 2869</u> 	0.0		1.4		1.0	Tons Produced	
Organic	Electrolytic Proc									
<u>UIGAIIIC</u> 3-01-045-01	<u>Fertilizer - 2873</u> - General: Mixing/Handling			0.0	0.0	0.0			Tons Processed	

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTES
Pharmac	eutical Preparati	ons - 2834	1						
	- Vacuum Dryers					0.47			Hundreds of Pounds of Product
3-01-060-02	- Reactors					0.0		•••	Hundreds of Pounds of Product
3-01-060-03	- Distillation Units					11.8	•		Hundreds of Pounds of Product
3-01-060-04	- Filters					0.09	•••		Hundreds of Pounds of Product
3-01-060-05	- Extractors					0.006			Hundreds of Pounds of Product
3-01-060-06	- Centrifuges					0.006			Hundreds of Pounds of Product
3-01-060-07	- Crystallizers					0.006			Hundreds of Pounds of Product
3-01-060-08	- Exhaust Systems					0.006			Hundreds of Pounds of Product
3-01-060-09	- Air Dryers					1.7			Hundreds of Pounds of Product
3-01-060-10	- Storage/Transfer					0.07			Hundreds of Pounds of Product
3-01-060-11	- Coating Process					200.0			Tons Solvent in Coating
3-01-060-12	- Granulation Process					200.0			Tons Solvent Consumed
3-01-060-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Hundreds of Pounds of Product
	c Chem. Mfg G	eneral Pro	cesses -	<u>2812, 28</u>	<u>13, 2810</u>	<u>5, 2819</u>			
3-01-070-01	- Fugitive Leaks					0.0			Tons Product
	- Storage/Transfer					0.0			Tons Product
	- Acetone: General	<u>39</u> 							Tons Produced
	Production - 2869 - Methyl Ethyl Ketone	2			, 	11.6			Tons Produced

.

· ·

.

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Ketone F	Production - 2869									
	- Methyl Isobutyl Ketone								Tons Produced	
Acetone	Production - 2869	2								
3-01-091-51	- Cumene Oxidation				0.0	7.6			Tons Product	
3-01-091-52	- CHP Concentrator		•••			4.2			Tons Product	
3-01-091-53	- Light-ends Distillation Vent		•••		0.0	0.6			Tons Product	
3-01-091-54	<ul> <li>Acetone Finishing</li> <li>Column</li> </ul>				0.0	1.3	•••		Tons Product	
3-01-091-80	- Fugitive Emissions					450000.0			Process Unit-Year	
	Production - 2869 - Other Not Classified	xxx	xxx	xxx	xxx	xxx	xxx	xxx	Tons Produced	
	- Product Recovery Absorber				0.1	174.0	1360.0		Tons Produced	
3-01-100-03	- Vacuum System Vent			0.0	0.0	0.2			Tons Produced	
	- Briquetting					0.0			Tons Produced	
	- Secondary Sources: Dehydration Column, Vacuum System			0.0	0.0	0.2			Tons Produced	
3-01-100-80	- Fugitive Emissions								Process Unit-Year	
	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	ххх	Tons Produced	
	al Phosphorous - I	<u>2819</u>								
3-01-112-01						0.0			Tons Processed	
3-01-112-02						0.0			Tons Processed	
	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Product	
Boric Ac 3-01-113-01	- Dryer		0.58						Tons Dried	

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
	<u>ım Chloride - 2800</u>									
3-01-114-01	- Dryer		2.68						Tons Product	
Formald	<u>ehyde - 2869</u>									
	- Formaldehyde: Silver Catalyst			0.0	0.0	13.0			Tons Produced	
3-01-120-02	- Formaldehyde: Mixed Oxide Catalyst					16.0			Tons Produced	
	- Absorber Vent					2.2			Tons Product	
3-01-120-06	- Fractionator Vent				•••	0.1			Tons Product	
3-01-120-07	- Fugitive Emissions					36000.0			Process Unit-Year	
Acetalde	<u>ehyde - 2869</u>									
3-01-120-11	<ul> <li>Acetaldehyde from Ethylene</li> </ul>			0.0	0.0	2.8			Tons Produced	
3-01-120-12	- Acetaldehyde from Ethanol			0.0	0.0	0.04			Tons Produced	
3-01-120-13	- Off-Air Absorber Vent					4.5			Tons Product	
3-01-120-14	- Off-Gas Absorber Vent					5.6			Tons Product	
<b>3-01-12</b> 0-17	- Fugitive Emissions					165000.0			Process Unit-Year	
<u>Butyrald</u> 3-01-120-21	<u>ehyde - 2869</u> - _{General}					240.0			Tons Produced	
Acrolein						120.0			Tons Product	
	- CO2 Stripping Tower - Aqueous Acrolein	•••				120.0 6.0			Tons Product	
	Receiver									
	- Distillation System					54.0			Tons Product	
	<ul> <li>Refrigeration Unit</li> </ul>					54.0			Tons Product	
	- Fugitive Emissions								Process Unit-Year	
3-01-120-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Produced	

· · ·

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Oraanic	Dyes/Pigments -	2865								
	- Other Not Classified	XXX	ххх	ХХХ	XXX	XXX	ХХХ	ХХХ	Tons Dyes/Pigment Produced	S
Chlorop	<u>rene - 2869</u>									
3-01-124-01	- General								Tons Product	
3-01-124-02	- Butadiene Dryer					2.4			Tons Product	
3-01-124-03	- Chlorination Reactor					0.47			Tons Product	
3-01-124-04	- Dichlorobutene Still					7.8			Tons Product	
3-01-124-05	<ul> <li>Isomerization and 3,4-DCB Recovery Vent</li> </ul>		••••			0.3			Tons Product	
3-01-124-06	- Chloroprene Stripper					0.3			Tons Product	
	- Brine Stripper					0.3			Tons Product	
	- Fugitive Emissions								Process Unit-Year	
Ethvlene	Dichloride - 286	9								
	- Ethylene Dichloride			0.0	0.0	24.1			Tons Produced	
3-01-125-02	via Oxychlorination - Ethylene Dichloride					1.3			Tons Produced	
	via Direct									
3-01-125-04	Chlorination - Caustic Scrubber					0.0			Tons Product	
	- Reactor Vessel					0.0			Tons Product	
	- Distillation Unit					0.0			Tons Product	
	- Fugitive Emissions	•••				180000.0			Process Unit-Year	
Chlorom	<u>ethanes - 2869</u>									
3-01-125-10				0.0	0.0	12.3			Tons Produced	
	- Recycled Methane			0.0	0.0	4.2			Tons Product	
	Inert-Purge									
3-01-125-12	- Drying Bed			0.0	0.0	0.1			Tons Product	
	Regeneration Vent									
3-01-125-14	<ul> <li>Fugitive Emissions</li> </ul>			0.0	0.0	482000.0			Process Unit-Year	

SCC	Process Name	PART	PM10	SOx	NOx	VOC	СО	LEAD	UNITS	NOTES
	name	Lbs/Unit	<u> </u>							
Ethyl Ch	loride - 2869									
	- Ethyl Chloride:					0.0			Tons Produced	
5 01-125 15	General									
Perchlor	roethylene - 2869	1								
3-01-125-20		·		0.0	0.0	3.5			Tons Produced	
3-01-125-21	- Distillation Vent			0.0	0.0	0.09			Tons Product	
3-01-125-22	- Caustic Scrubber			0.0	0.0	0.005			Tons Product	
3-01-125-24	- Fugitive Emissions	•••		0.0	0.0	730000.0			Process Unit-Year	
1.1.1-Tri	ichloroethane - 28	869								
3-01-125-25									Tons Produced	
3-01-125-26	- HCl Absorber Vent					0.2			Tons Product	
3-01-125-27	- Drying Column Vent					2.0			Tons Product	
3-01-125-28	- Distillation Column Vent			•		0.16			Tons Product	
3-01-125-29	<ul> <li>Fugitive Emissions</li> </ul>					77000.0	•		Process Unit-Year	
Trichlor	oethylene - 2869									
3-01-125-30						1.3			Tons Produced	
3-01-125-31	- Distillation Unit					0.03			Tons Product	
3-01-125-32	- Neutralizer					15.2			Tons Product	
3-01-125-33	- Product Drying			•••	••••	0.8			Tons Product	
3-01-125-34	Column - Fugitive Emissions					730000.0			Process Unit-Yea	r
Chlorob	enzene - 2869 ()									
	- Chlorobenzenes:					0.8			Tons Produced	
	General									
Vinvl Ch	loride - 2869									
3-01-125-40						6.5			Tons Produced	
	- Cracking Furnace				`	0.0			Tons Product	
	- HCL Recovery					0.2			Tons Product	
	- Light-ends Recovery					2.0			Tons Product	
	- Drying Column:					2.0			Tons Product	

• •

•

.

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD	UNITS	NOTES
				20070111					······································	
Vinyl Chl	<u>oride - 2869</u>									
	Dichloroethane					_				
3-01-125-45	- Drying Column: Vinyl Chloride Monomer					2.0	•••	•••	Tons Product	
3-01-125-46	Product Recovery		•			1.4			Tons Product	
3-01-125-47	Still - Cracking Furnace					0.0			Tons Product	
5 01 125 47	Decoking									
3-01-125-50	- Fugitive Emissions					275000.0			Process Unit-Year	
Vinvlider	e Chloride - 286	9								
3-01-125-51						15.7			Tons Product	
	- Dehydrochlorination Reactor		•	0.0	0.0	12.4			Tons Product	
3-01-125-53	- Distillation Column			0.0	0.0	1.4			Tons Product	
3-01-125-55	Vent - Fugitive Emissions		•••			19000.0			Process Unit-Year	
Chlorina	ted Organics - 28	369								
	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	ххх	Tons Produced	
Bromina	ted Organics - 28	<u>369</u>								
	- Bromine Organics	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Produced	
Fluoroca	rbons/Chlorofluc	orocarbon	<u>s - 2869</u>							
3-01-127-01				0.0	0.0	17.1			Tons Produced	
3-01-127-02	- Distillation Column			0.0	0.0	16.6			Tons Product	
3-01-127-03	- HCl Recovery Column			0.0	0.0	0.0	•••		Tons Product	
3-01-127-20	- Chlorofluorocarbon 12/11					6.2	•••		Tons Produced	
3-01-127-30	- Chlorofluorocarbon 23/22		•			38.0			Tons Produced	
3-01-127-40	- Chlorofluorocarbon					13.0	•••		Tons Produced	
7-01-127-80	- Fugitive Emissions								Process Unit-Year	

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	<b>CO</b> Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Ammoniı	ım Sulfate - 2873	•								
	Rotary Dryer	46.0	45.4			1.48			Tons Product	
	Fluid Bed Dryer	218.0	21.8	•••		1.48			Tons Product	
Acetic Ac	<u>cid - 2869</u>									
	Acetic Acid via Methanol			0.0	0.06	4.0			Tons Produced	
-01-132-05 -	Acetic Acid via Butane			0.0	0.08	14.0			Tons Produced	
6-01-132-10 -	Acetic Acid via Acetaldehyde			0.0	0.0	22.0			Tons Produced	
	<u>cid - 2869</u>									
3-01-132-21 -						240.0			Tons Product	
	Quench-Absorber			•••		239.0			Tons Product	
	Extraction Column					1.6			Tons Product	
	Vacuum System				•	10.5			Tons Product	
5-01-132-27 -	• Fugitive Emissions	•••			•••				Process Unit-Year	•
	<u>ds Mfg Other N</u>									
5-01-132-99 -	• Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Produced	
Acetic Ar	<u> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>									
<b>3</b> -01-133-01 -	General			0.0	0.0	5.5	•••		Tons Produced	
5-01-133-02 -	- Reactor By-Product Gas Vent					9.0			Tons Product	
5-01-133-03 -	· Distillation Column Vent					1.4			Tons Product	
5-01-133-80 -	• Fugitive Emissions						•••		Process Unit-Year	
<u>Esters Pr</u>	oduction - 2869									
5-01-137-01 -	Ethyl Acrylate					29.1			Tons Produced	
	Butyl Acrylate					5.4			Tons Produced	
5-01-137-99 -	Acrylates: Specify in Comments	XXX	XXX	xxx	XXX	0.6	XXX	xxx	Tons Produced	

· •

.

2

•

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit		UNITS	NOTES
				LDS/Onit	LDS/Unit		LDS/Onit	Lbs/Unit		
	e Production - 28	13								
	- Raw Material					0.0			Tene Theorythmut	
5-01-140-01	- Kaw Material Handling				•••	0.0		•••	Tons Throughput	
3-01-140-02	- Grinding/Milling					0.0			Tons Throughput	
3-01-140-03	- Mixing					0.0			Tons Throughput	
3-01-140-04	- Waste Handling				13.5	9.3			Tons Throughput	
3-01-140-05	- General								Million Cubic Fee	t
									Produced	
<u>Bisphen</u>	<u>ol A - 2869</u>									
3-01-152-01			••••			0.0			Tons Produced	
Butadier	ne - 2869									
3-01-153-01	- General								Tons Product	
3-01-153-10	- Houdry Process:		•••			23.0			Tons Product	
7 01-157 11	General - Flue Gas Vent					0.1			Tons Product	
	- Dehydrogenation					11.0			Tons Product	
3-01-133-12	Reactor					11.0			Tons Product	
3-01-153-20	- N-Butene Process:					23.0			Tons Product	
	General									
3-01-153-21	- Flue Gas Vent					0.1			Tons Product	
3-01-153-22	- Hydrocarbon Absorber		•			10.0			Tons Product	
	Column									
3-01-153-80	- Fugitive Emissions					313000.0			Process Unit-Year	
Cumene	<u>- 2865</u>									
3-01-156-01	- General					1.1			Tons Produced	
3-01-156-02	- Benzene Drying					0.4			Tons Product	
	Column									
3-01-156-03	- Catalyst Mix Tank Scrubber Vent	•••				0.3			Tons Product	
3-01-156-04	- Wash-Decant System					0.02	<b>.</b>		Tons Product	
2 0. 120 04	Vent									
3-01-156-05	- Benzene Recovery					0.03			Tons Product	
3-01-156-06	- Cumene Distillation					0.06			Tons Product	

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS NOTE
	Name	Lbs/Unit							
Cumene	- 2865								
	Vent								
3-01-156-07 -	DIPB Stripping Vent					0.002			Tons Product
	Fugitive Emissions					150000.0			Process Unit-Yr
Cvclohex	ane - 2865								
3-01-157-01 -						0.006			Tons Produced
3-01-157-02 -	Blowndown Tank					0.0			Tons Product
	Discharge								
3-01-157-03 -	Pumps/Valves/								Tons Product
	Compressors								
3-01-157-04 -	· Catalyst Replacement					0.0			Tons Catalyst Removed
3-01-157-80 -	<ul> <li>Fugitive Emissions</li> </ul>					240000.0			Process Unit-Yr
Cyclohex	<u> (anone/ol - 2869</u>								
3-01-158-01						78.0			Tons Produced
	- High Pressure					33.5	•••		Tons Product
	Scrubber Vent								
3-01-158-03 -	- Low Pressure					5.2			Tons Product
	Scrubber Vent								
3-01-158-21 -	- Hydrogenation					3.0			Tons Product
	Reactor Vent								
3-01-158-22 -	- Distillation Vent					0.12	•••		Tons Product
3-01-158-80 -	<ul> <li>Fugitive Emissions</li> </ul>				•••		•••		Process Unit-Yr
Vinvl Ace	etate - 2869								
3-01-167-01									Tons Produced
	- Inert-Gas Purge Vent					8.8			Tons Product
	- CO2 Purge Vent					0.6			Tons Product
	- Inhibitor Mix Tank			• • •		5.6			Tons Product
	Discharge								
3-01-167-80	- Fugitive Emissions			• • • •		360000.0			Process Unit-Year
3-01-167-99	- Other Not Classified	XXX	Tons Produced						
Ethvl Ber	nzene - 28 <u>65</u>								
3-01-169-01						0.01			Tons Produced
	- Alkylation Reactor					0.0			Tons Product
5 01-107 02	ALL COLICITIES					0.0			

•

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit								
Ethvl Bei	nzene - 2865								- <u></u>	
	Vent									
3-01-169-03	- Benzene Drying				•••	0.0			Tons Product	
	- Benzene Recovery/					0.0			Tons Product	
	Recycle									
3-01-169-05	- Ethylbenzene					0.0			Tons Product	
	Recovery									
3-01-169-06	- Polyethylbenzene					0.0			Tons Product	
	Recovery									
3-01-169-80	<ul> <li>Fugitive Emissions</li> </ul>	•••	•••			329000.0			Process Unit-Year	
Ethvlene	<u> Oxide - 2869</u>									
3-01-174-01				•••	•••	7.8			Tons Produced	
	- Air Oxidation					2.8			Tons Product	
	Process Reactor:									
	Main Vent									
3-01-174-10	- Oxygen Oxidation					8.0			Tons Product	
	Process Reactor: CO2									
	Purge Vent									
3-01-174-11	- Oxygen Oxidation					21.8			Tons Product	
	Process Reactor:									
	Argon Purge Vent									
3-01-174-21	- Stripper Purge Vent		•		•••	0.004			Tons Product	
3-01-174-80	- Fugitive Emissions					168000.0			Process Unit-Year	
Glvcerin	(Glycerol) - 2869	)								
3-01-176-01						130.0			Tons Produced	
3-01-176-10	- Chlorination			0.0	0.0				Tons Product	
	Process: General									
3-01-176-11	- CO2 Absorber					0.8			Tons Product	
3-01-176-12	- Evaporator					0.0	•••	•	Tons Product	
	- Concentrator					0.0		•	Tons Product	
3-01-176-14	- Stripping Column			•••	•••	0.0	•	•	Tons Product	
	- Light-ends Stripping					0.0			Tons Product	
	Column									
3-01-176-16	- Solvent Stripping					0.2			Tons Product	
	Column									

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Glycerin	(Glycerol) - 2869	2								
	- Product Distillation Column					0.0			Tons Product	
5-01-176-18	- Cooling Tower					5.6			Tons Product	
	- Oxidation Process: General					•••			Tons Product	
5-01-176-31	- Light-ends Stripper					30.0			Tons Product	
5-01-176-32	- Concentrator					0.3	•••		Tons Product	
J-01-176-33	- Glycerin Flasher Column					0.3			Tons Product	
-01-176-34	- Product Distillation Column					0.3	•••		Tons Product	
-01-176-80	- Fugitive Emissions		•••						Process Unit-Yr	
	Diisocyanate - 20	<u>865</u>								
5-01-181-01									Tons Produced	
i-01-181-02 ·	- Sulfuric Acid Concentrator					<b>10.</b> 0			Tons Product	
5-01-181-03	- Nitration Reactor					0.05			Tons Product	
-01-181-04	- Catalyst Filtration					0.001			Tons Product	
5-01-181-05 ·	- TDA Vacuum Distillation Vent					0.007	•		Tons Product	
J-01-181-06	- Dichlorobenzene Solvent Recovery					3.0			Tons Product	
5-01-181-07	- TDI Flash Distillation					3.0			Tons Product	
3-01- <b>181-</b> 08	- TDI Purification					3.0			Tons Product	
-01-181-09	- Residue Vacuum Distillation Unit					0.0			Tons Product	
5-01-181-10	- HCl Absorber					0.0			Tons Product	
-01-181-80	- Fugitive Emissions								Process Unit-Yr	
	lethacrylate - 286									
8-01-190-01									Tons Product	
-01 <b>-19</b> 0-02	- Acetone Cyanohydrin Reactor Off-Gas					0.08			Tons Product	

. . .

SCC Process	PART	<b>PM10</b>	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Methyl Methacrylate - 28	69								
3-01-190-03 - Recovery Columns	<u></u>				2.3			Tons Product	
3-01-190-04 - Acetone Evaporation Vacuum Vent					0.008			Tons Product	
3-01-190-10 - Hydrolysis Reactor					13.2			Tons Product	
3-01-190-11 - Distillation Unit					1.9			Tons Product	
3-01-190-12 - MMA and Light-ends Distillation Unit					16.5			Tons Product	
3-01-190-13 - Acid Distillation				•••	1.1			Tons Product	
3-01-190-14 - MMA Purification					14.1	•		Tons Product	
3-01-190-80 - Fugitive Emissions					27000.0			Process Unit-Yr	
Nitrobenzene - 2865									
3-01-195-01 - General					2.7			Tons Produced	
3-01-195-02 - Reactor and Separator Vent				•••	1.9			Tons Product	
3-01-195-03 - Acid Stripper Vent					0.34			Tons Product	
3-01-195-04 - Washer and Neutralizer Vent					0.02			Tons Product	
3-01-195-05 - Nitrobenzene Stripper Vent					0.34			Tons Product	
3-01-195-06 - Waste Acid Storage					0.005			1000 Gallons Stor	red
3-01-195-80 - Fugitive Emissions					138000.0			Process Unit-Yr	
Propylene Production - 2	<u>2869</u>								
3-01-197-05 - General					1.0			Tons Produced	
3-01-197-06 - Reactor	•				0.0			Tons Product	
3-01-197-07 - Drying Tower	•••				0.02	•••		Tons Product	
3-01-197-08 - Light-ends Stripper					0.01			Tons Product	
3-01-197-09 - Fugitive Emissions	••••			•••			•	Process Unit-Yr	
<u>Butylene - 2869</u>									
3-01-197-10 - General								Tons Produced	
Ethylene Production - 28 3-01-197-01 - General	<u>869</u>							Tons Produced	
2-01-13/-01 - General								, one in oudded	

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit								
Sthvlene	Production - 286	9								
	- Flue Gas Vent	<u> </u>			•••	0.86			Tons Product	
	- Pyrolysis Furnace Decoking				••••	0.0	•••		Tons Product	
5-01-197-43	- Acid Gas Removal					0.02			Tons Product	
-01-197-44					•	0.0			Tons Product	
-01-197-45	- Compressor Lube Oil Vent				••••	14.6			Tons Product	
-01-197-49	- Fugitive Emissions					695000.0			Process Unit-Yr	
	Oduction - 2869 - Other Not Classified	ххх	Tons Produced							
Phenol -	2865									
3-01-202-01						20.0			Tons Produced	
5-01-202-02	- Cumene Oxidation			0.0	0.0	7.6			Tons Product	
-01-202-03	- CHP Concentrator				•••	4.2			Tons Product	
-01-202-04	- Light-ends				0.0	0.6			Tons Product	
	Distillation Vent									
-01-202-05	- Acetone Finishing				0.0	1.3		•••	Tons Product	
-01-202-06	- Phenol Distillation Column				0.0	7.6			Tons Product	
6-01-202-10	- Oxidate Wash/				0.0	0.16			Tons Product	
-01-202-11	Separation - CHP Cleavage Vent				0.0	0.95			Tons Product	
	<ul> <li>Fugitive Emissions</li> </ul>					731000.0			Process Unit-Yr	
Propyler	<u>ne Oxide - 2869</u>									
5-01-205-01	- General								Tons Produced	
5-01-205-02	<ul> <li>Chlorohydronation</li> <li>Process: General</li> </ul>								Tons Product	
-01-205-03	- Vent Gas Scrubber Vent					20.5		••••	Tons Product	
-01-205-04	- Saponification Column Vent					0.09		•••	Tons Product	

· ·

٠

.

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Propyler	ne Oxide - 2869									
	- PO Stripping Column Vent		•			0.01			Tons Product	
<b>3</b> -01- <b>20</b> 5-06	- Light-ends Stripping Column Vent					0.01			Tons Product	
3-01-205-07	- PO Final Distillation Column Vent					0.01	•••		Tons Product	
3-01-205-08	- DCP Distillation Column Vent				••••	0.0002	••••		Tons Product	
3-01-205-09	- DCIPE Distillation Column Vent					0.0	•		Tons Product	
3-01-205-20	- Isobutane Hydroperoxide Process: General								Tons Product	
3-01-205-21	- Oxidation Reactor Scrubber Vent					3.5	•••	•••	Tons Product	
3-01-205-22	- TBA Stripping Column Vent				••••	0.008			Tons Product	
3-01-205-23	- Catalyst Mix Tank Vent		•••			0.0	••••		Tons Product	
3-01-205-24	- PO Stripping Column Vent		•••		•••	0.04			Tons Product	
3-01-205-25	- Crude TBA Recovery Column Vent				•••	0.03			Tons Product	
3-01-205-26	- TBA Wash-Decant System Vent					0.01			Tons Product	
3-01-205-27	- Wastewater Stripping Column Vent		•••		•••	1.9	•••		Tons Product	
3-01-205-28	- Solvent Scrubber Vent					1.3			Tons Product	
3-01-205-29	- Solvent Recovery Column Vent					0.0009			Tons Product	
3-01-205-30	- Water Stripping Column Vent					0.003			Tons Product	
3-01-205-31	- Propylene Glycol &					0.1			Tons Product	

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Propylen	e Oxide - 2869			·····		•				
	Dipropylene Glycol									
	Comb ¹ d Vent									
3-01-205-32 -	- Flue Gas Vent					0.08			Tons Product	
3-01-205-40 -	- Ethylbenzene								Tons Product	
	Hydroperoxide									
	Process: General									
3-01-205-41 -	<ul> <li>Oxidation Reactor</li> </ul>					1.0	•••		Tons Product	
	Scrubber Vent									
3-01-205-42 -	• Falling Film	•••				0.01			Tons Product	
	Evaporator Vent									
3-01-205-43 -	· Catalyst Mix Tank					0.0			Tons Product	
	Vent									
3-01-205-44 -	<ul> <li>Separation Column</li> </ul>					0.3			Ions Product	
	Vent									
3-01-205-45 -	Light-ends Stripping					0.3	•••		Tons Product	
* ** *** **	Column Vent				•				Town Devident	
3-01-205-46	Propylene Recovery					0.3			Tons Product	
7-01-205-47	Column Vent - Product Wash-Decant					0.01			Tons Product	
5-01-205-47	System Vent					0.01	•			
3-01-205-48	- Mixed Hydrocarbon					0.003			Tons Product	
5 01 205 40	Wash-Decant System					0.005				
	Vent									
3-01-205-49	- Ethyl Benzene Wash-					0.003			Tons Product	
5 01 205 47	Decant System Vent									
3-01-205-50	- Ethyl Benzene					0.003			Tons Product	
	Stripping Column									
	Vent									
3-01-205-51	- Light-hydrocarbon					0.0			Tons Product	
	Stripping Column									
	Vent									
3-01-205-52	- MBA-AP Stripping				•••	0.02			Tons Product	
	Column Vent									
3-01-205-53	- Dehydration Reactor					0.02			Tons Product	
	System Vent									
3-01-205-54	- Light-impurities					2.5			Tons Product	

. .

•

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Propylen	<u>e Oxide - 2869</u> Stripping Column									
	Vent									
3-01-205-55 -	Styrene Finishing					1.7			Tons Product	
	Column Vent									
3-01-205-80 -	Fugitive Emissions								Process Unit-Yr	
Styrene -	2865									
3-01-206-01 -		•••		0.0	0.04	33.0			Tons Produced	
	Benzene Recycle			•••		0.6			Tons Product	
	Styrene Purification					12.0			Tons Product	
3-01-206-80 -	Fugitive Emissions			•••		248000.0	•		Process Unit-Yr	
Caprolac	tum - 2869									
3-01-210-01									Tons Product	
	- Cyclohexanone			•••		6.2			Tons Product	
5 01 210 02	Purification Vent									
3-01-210-03	- Dehydrogenation				<b>*</b>	0.02			Tons Product	
	Reactor Vent									
3-01-210-04	- Oleum Reactor	•••		•••	•	0.0			Tons Product	
3-01-210-05	- Neutralization					0.08	•••		Tons Product	
	Reactor Vent									
3-01-210-06	- Solvent Separation/					4.0			Tons Product	
	Recovery									
3-01-210-07	<ul> <li>Oximation Reactor/</li> </ul>	•				0.05			Tons Product	
	Separator									
3-01-210-08	•					0.3			Tons Product	
	Purification								Tone Deaduct	
3-01-210-09	- Ammonium Sulfate					1.2		•••	Tons Product	
* ** *** **	Drying					0.1			Tons Product	
3-01-210-10	<ul> <li>Ammonium Sulfate:</li> <li>Cooling/Screening/</li> </ul>					0.1			Tons Product	
	Storage									
3-01-210-80	- Fugitive Emissions								Process Unit-Yr	
3-01-210-00	LARLING CHISSIONS									
Linear Al	kylbenzene - 2869	9								
	- Olefin Process:								Tons Product	
2 0. 2 0.										

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit								
Linear Alky	lbenzene - 28	69								
	General									
3-01-211-02 - E	Benzene Drying					0.008			Tons Product	
	lydrogen Fluoride					22.0			Tons Product	
s	Scrubber Vent									
3-01-211-04 - \	/acuum Refining					0.2			Tons Product	
3-01-211-21 - 0	Chlorination					0.0			Tons Product	
F	Process: General									
3-01-211-22 - P	Parafin Drying				•••	5.6			Tons Product	
c	Column Vent									
3-01-211-23 - H	ICl Absorber Vent					0.1			Tons Product	
3-01-211-24 - A	Atmospheric Wash-					25.0			Tons Product	
	ecant Vent									
3-01-211-25 - E	Benzene Stripping				•••	7.4			Tons Product	
	Column									
3-01-211-80 - F	Fugitive Emissions								Process Unit-Yr	
Methanol -	- 2869									
3-01-250-01 - 0									Tons Produced	
3-01-250-02 - F	Purge Gas Vent					2.2			Tons Product	
3-01-250-03 - <b>E</b>	Distillation Vent					0.8			Tons Product	
3-01-250-04 - H	Fugitive Emissions					575000.0			Process Unit-Yr	
Alcohols F	Production - 28	69								
	Ethanol via Ethylene					0.9			Tons Produced	
3-01-250-10 - 1	•					1.9			Tons Produced	
	Fermentation									
3-01-250-15 - 1					•••	0.0			Tons Produced	
	Alcohols by Oxo					4.0			Tons Produced	
	Process									
-	Fatty Alcohols by					3.0			Tons Produced	
	Hydrogenation									
	Other Not Classified	XXX	ххх	XXX	XXX	XXX	XXX	XXX	Tons Produced	
Fthylene (	<u> Glycol - 2869</u>									
3-01-251-01 - 0									Tons Produced	
						0.95			Tons Produced	
3-01-231-02 - 1	Evaporator Purge		•••	•••		0.93	•••		ions product	

• · · · · · ·

SCC	Process Name	PART	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD	UNITS	NOTES
	Name	Lbs/Unit	LDS/Unit	LDS/Unit	LDS/Unit	LDS/Unit		LDS/Unit		
Ethylene	Glycol - 2869									
	Vent									
3-01-251-03 -	Water Removal Steam					1.2			Tons Product	
	- Jet Ejector									
3-01-251-04 -	Distillation Column					0.0			Tons Product	
	Vent					-				
3-01-251-80 -	<ul> <li>Fugitive Emissions</li> </ul>					24000.0			Process Unit-Yr	
Ether Pro	duction - 2869									
3-01-252-01 -				0.0	0.0	0.16			Tons Produced	
5-01 252-01										
Glycol Et	<u>hers - 2869</u>									
3-01-253-01 -									Tons Produced	
	- Vacuum System Vent					0.03			Tons Product	
3-01-253-05 -	- Catalyst-Methanol					0.02			Tons Product	
	Mix Tank					0.07			Tana Daadhaat	
3-01-253-06 -	- Methanol Recovery Column Vent					0.03			Tons Product	
3-01-253-15	- Catalyst-Ethanol Mix					0.01			Tons Product	
J-01-235-13	Tank									
3-01-253-16 ·	- Ethanol Recovery					0.19			Tons Product	
	Column									
3-01-253-25	- Catalyst-Butanol Mix					0.002			Tons Product	
	Tank									
3-01-253-26 ·	- Butanol Recovery					0.03			Tons Product	
	Column					20100 0			Desses Unit Y-	
3-01-253-80	- Fugitive Emissions					20100.0			Process Unit-Yr	
Nitriles P	Production - 2869									
	- Acetonitrile					200.0		•	Tons Produced	
5-01 254-01	Aceconterice					20000				
Acrvlonit	trile - 2869									
3-01-254-05						220.0	•		Tons Produced	
3-01-254-06	- Absorber Vent:					200.0			Tons Product	
	Normal									
3-01-254-07	- Absorber Vent:					0.5			Tons Product	
	Startup									

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Acrylonitr	ile - 2869									
3-01-254-08 -	Recovery/ Purification Column					20.0			Tons Product	
3-01-254-09 -	Vent Fugitive Emissions			•		22000.0		•	Process Unit-Yr	
Adiponitri	ile - 2869									
	via Adipic Acid: General		••••			1.6			tons Produced	
3-01-254-11 -	Ammonia Recovery Still	•				0.0			Tons Product	
3-01-254-12 -	Product Fractionator Vent					20.0			Tons Product	
3-01-254-13 -	Product Recovery Vent				•••	20.0	••••		Tons Product	
3-01-254-15 -	via Butadiene: General				••••	51.0		•	Tons Produced	
3-01-254-16 -	Chlorination Reactor					36.0			Tons Product	
	Cyanide Synthesis					0.0			Tons Product	
3-01-254-18 -	•				•••	15.5			Tons Product	
3-01-254-20 -	Fugitive Emissions				•••				Process Unit-Yr	
Nitriles Pr	<u> oduction - 2869</u>									
3-01-254-99 -	Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Produced	
Benzene	Production - 2869	)								
3-01-258-01 -	General								Tons Produced	
3-01-258-02 -	Reactor					0.3		•	Tons Product	
3-01-258-03 -	Distillation Unit			•		0.8			Tons Product	
Toluene F	Production - 2869									
3-01-258-05 -	General								Tons Produced	
3-01-258-06 -	Reactor					0.3	••••		Tons Product	
3-01-258-07 -	Distillation Unit					0.8			Tons Product	

• *

٠.

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
	cs Production - 28	<u>369</u>								
3-01-258-10	- p-Xylene: General						•••		Tons Produced	
Mixed X	ylenes - 2869									
3-01-258-15									Tons Produced	
3-01-258-16						0.3			Tons Product	
3-01-258-17	- Distillation Unit					0.8			Tons Product	
Aromati	cs Production - 28	869								
	- Fugitive Emissions					379000.0			Process Unit-Yr	
	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Produced	
Chlorob	enzene - 2869									
	- Tail Gas Scrubber					1.2			Tons Product	
	- Benzene Drying:					0.8			Tons Product	
5 01 501 02	Distillation									
3-01-301-03	- Benzene Recovery		•••	0.0	0.0	0.002			Tons Product	
3-01-301-04	- Heavy-ends			0.0	0.0	0.2			Tons Product	
	Processing									
	- MCB Distillation			0.0	0.0	0.8			Tons Product	
	- Vacuum System Vent		•••	0.0	0.0	0.9			Tons Product	
	- DCB Crystallization			0.0	0.0	0.03			Tons Product	
3-01-301-08	8 - DCB Crystal			0.0	0.0	0.04	•		Tons Product	
7 01 701 10	Handling/ Loading ) - Catalyst					0.0			Tons Catalyst Bu	rned
3-01-301-10	Incineration					0.0				i iicu
3-01-301-80	) - Fugitive Emissions	•••				418000.0			Process Unit-Yr	
Carbon	Tetrachloride - 28	260								
									Ions Product	
3-01-302-01						0.01		•••	Tons Product	
-	2 - Distillation Vent 5 - Caustic Scrubber					0.01			Tons Product	
	) - Fugitive Emissions					166000.0			Tons Product	
3-01-302-80	- rugitive Emissions					,0000.0				
Allyl Ch	<u>loride - 2869</u>									
	- Chlorination					•••			Tons Product	

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit								
Allyl Chlo	oride - 2869									
	Process: General									
3-01-303-02	- HCl Absorber					0.3			Tons Product	
3-01-303-03						130.0			Tons Product	
	Distillation									
3-01-303-04	- Allyl Chloride					130.0			Tons Product	
	Distillation Column									
3-01-303-05	- DCP Distillation					2.0			Tons Product	
	Column									
3-01-303-80	- Fugitive Emissions	•••							Process Unit-Yr	
Allvi Alco	hol - 2869									
3-01-304-01									Tons Product	
	- Catalyst Preparation					450.0			Tons Product	
	- Filtration System					6.4			Tons Product	
	- Light-ends Stripper					22.0			Tons Product	
	- Distillation System					23.0			Tons Product	
	Condenser									
3-01-304-80	- Fugitive Emissions	•••							Process Unit-Yr	
Enichlor	<u>ohydrin - 2869</u>									
3-01-305-01									Tons Product	
	- Epoxidation Reactor	•••				208.0			Tons Product	
	- Azetrope Column					208.0			Tons Product	
	- Light-ends Stripper					0.003			Tons Product	
	- Finishing Column					0.7			Tons Product	
	- Fugitive Emissions		•						Process Unit-Yr	
Nitroalvo	<u>cerin - 2800</u>									
	- Continuous Nitrator								Tons Produced	
	- Continuous Mitrator - Product Purification								Tons Produced	
3-01-401-02	/Neutralization									
3-01-401-03	- Nitric Acid Recovery								Tons Acid Recove	red
Gonoral	Processes - 2865	5 2860								
									Desses Unit H-	
	- Fugitive Leaks		•••						Process Unit-Yr	
5-01-810-01	- Air Oxidation Units		•••			•••			Tons Product	

•

٠

,

. •

٠.

3-01-820-01 - W 3-01-820-02 - W 3-01-820-03 - W	OCESSES - 2865 astewater Stripper astewater Treatment astewater Treatment	5 <u>, 2869</u>  								
3-01-820-01 - W 3-01-820-02 - W 3-01-820-03 - W	astewater Stripper astewater Treatment astewater Treatment									
3-01-820-02 - W 3-01-820-03 - W	astewater Treatment astewater Treatment									
3-01-820-03 - W	astewater Treatment						•••		Tons Product	
									1000 Gallons	
									Wastewater Thro	ughput
									Tons Produc:	
	* · · · · · / * · · · · · · · · · · · ·								Processed	
3-01-830-01 - S						0.85	•••		Tons Product	
3-01-840-01 - D	istillation Units								Tons Product	
C. with a Fr	niaciona 0000									
	<u>nissions - 2800</u>									
	pecify in Comments								Tons Product	
	ield								- ·	
	pecify in Comments								Tons Product	
	ield									
	pecify in Comments	•••							Tons Product	
	ield									
	pecify in Comments		•••						Tons Product	
-	ield									
	pecify in Comments								Process Unit-Yr	
F	ield									
Other Not	Classified 200									
	<u> Classified - 280</u>									
	pecify in Comments								1000 Gallons	
	ield									
	pecify in Comments	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Product	
F	ield									
INODOAN										
INURGAN	IC CHEMICAL S	STURAGE								
Eived Deed	f Tanks - 2800									
	lydrochloric Acid:			0.0	0.0	0.0			1000 Gallons St	orage
	Breathing Loss								Capacity	
	lydrochloric Acid:			0.0	0.0	0.0			1000 Gallons	
	lorking Loss				• •				Throughput	
	lydrofluoric Acid:			0.0	0.0	0.0			1000 Gallons St	orage
B	Breathing Loss								Capacity	

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Fixed Ro	of Tanks - 2800									
	- Hydrofluoric Acid:			0.0	0.0	0.0			1000 Gallons	
3-01-070-04 -	Working Loss			0.0	0.0	0.0	••••		Throughput	
7-01-970-05	- Nitric Acid:			0.0		0.0			1000 Gallons S	+
3-01-070-03 -	Breathing Loss	•••		0.0		0.0			Capacity	storage
3-01-970-06	- Nitric Acid: Working			0.0		0.0			1000 Gallons	
3-01-8/0-06	Loss			0.0	•••	0.0		••••	Throughput	
7-01-970 07				0.0	0.0	0.0		•	1000 Gallons S	*****
5-01-8/0-0/	- Phosphoric Acid:		•••	0.0	0.0	0.0		••••		storage
7-01 070 00	Breathing Loss			0.0	0.0	0.0		•••	Capacity 1000 Gallons	
3-01-8/0-08	- Phosphoric Acid:			0.0	0.0	0.0	•••	•••		
7 01 070 00	Working Loss				• •				Throughput	
3-01-8/0-09	- Sulfuric Acid:				0.0	0.0			1000 Gallons S	storage
	Breathing Loss				• •				Capacity	
3-01-8/0-10	- Sulfuric Acid:				0.0	0.0			1000 Gallons	
	Working Loss								Throughput	
3-01-870-97	- Specify Liquid:			,		0.0			1000 Gallons S	Storage
	Breathing Loss								Capacity	
3-01-870-98	- Specify Liquid:					0.0			1000 Gallons	
	Working Loss								Throughput	
Electing	Roof Tonko 200									
	<u> Roof Tanks - 280</u>	_								
3-01-875-01	- Carbon Disulfide:				0.0	0.0			1000 Gallons S	Storage
	Breathing Loss								Capacity	
3-01-875-02	- Carbon Disulfide:				0.0	0.0			1000 Gallons	
	Withdrawal Loss								Throughput	
3-01-875-97	<ul> <li>Specify Liquid:</li> </ul>								1000 Gallons S	Storage
	Breathing Loss								Capacity	
3-01-875-98	<ul> <li>Specify Liquid:</li> </ul>								1000 Gallons	
	Withdrawal Loss								Throughput	
D	Taula 0000									
	<u>e Tanks - 2800</u>									
3-01-885-01	- Ammonia: Withdrawal					0.0			1000 Gallons	
	Loss								Throughput	
3-01-885-02	- Carbon Monoxide:			0.0	0.0	0.0			1000 Gallons	
	Withdrawal Loss								Throughput	
3-01-885-03	- Chlorine: Withdrawal			0.0	0.0	0.0			1000 Gallons	

•• • •

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Pressure	e Tanks - 2800									
	Loss								Throughput	
3-01-885-04	- Hydrogen Cyanide: Withdrawal Loss			0.0	0.0	0.0			1000 Gallons Throughput	
3-01-885-05	- Sulfur Dioxide:	0.0			0.0	0.0	0.0		1000 Gallons	
	Withdrawal Loss	2004							Throughput	
3-01-885-99	- Specify Gas: Withdrawal Loss	XXX	XXX	XXX	XXX	XXX	XXX	XXX	1000 Gallons Throughput	
<u>CHEMIC</u>	CAL MANUFACTU	JRING - FU	IEL FIRED	EQUIPM	<u>IENT</u>					
Process	Heaters - 2800									
	- Distillate Oil (No. 2)			143.6 S	20.0	0.2		•	1000 Gallons Burned	Ŀ
3-01-900-02	- Residual Oil			158.6 s	50.0	0.28			1000 Gallons Burned	ł
	- Natural Gas			0.6	140.0	2.8			Million Cubic Feet	-
					•				Burned	
3-01-900-04	- Process Gas			950.0 S	140.0	2.8			Million Cubic Feet Burned	
Incinera	tors - 2800									
	- Distillate Oil (No. 2)					0.4	•••		1000 Gallons Burned	ł
3-01-900-12	- Residual Oil				•	0.56			1000 Gallons Burned	d
3-01-900-13	- Natural Gas					5.6			Million Cubic Feet Burned	
3-01-900-14	- Process Gas		•••	•••		5.6			Million Cubic Feet Burned	
	as Flares - 2800 - Specify in Comments	XXX	XXX	XXX	ххх	5.6	ххх	XXX	Million Cubic Feet	
3-01-300-33	Field	~~~	~~~	~~~	~~~	2.0	~~~	~~~	Burned	

SCC Proc Nam	ess PART e Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
OOD AND AG	RICULTURE - M	AJOR GRO	UPS 01,	02,07,	20, 21,	42, 44	. <mark>&amp; 51</mark> ∅		
Alfalfa Dehydrai	tion - 2048								
-02-001-02 - Primary Dryer		9.0	0.0	0.0	0.0	0.0		Tons Product	
-02-001-03 - Meal Col Cyclone	lector 2.6	1.6	0.0	0.0	0.0	0.0		Tons Product	
-02-001-04 - Pellet C Cyclone	ooler 3.0	1.8	0.0	0.0	0.0	0.0		Tons Product	
-02-001-99 - Other No	t Classified XXX	XXX	XXX	XXX	XXX	ХХХ	XXX	Tons Product	
Coffee Roasting		1.1	0.4	0.1	2.6			Tons of Green Be	
-02-002-01 - Direct -02-002-02 - Indirect Roaster		0.6	0.4	0.1	2.6		•••	Tons of Green Be	
-02-002-03 - Stoner/C -02-002-99 - Other No		0.2 XXX	0.0 XXX	0.0 XXX	0.0 XXX	 xxx	 xxx	Tons of Green Be Tons Product	eans
nstant Coffee F				,,,,,					
-02-003-01 - Spray Dr		0.93		0.0	0.0			Tons of Green Be	eans
Cotton Ginning						• •		Bales of Cotton	
5-02-004-01 - Unloadir 5-02-004-02 - Seed Cot	-		0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0		Bales of Cotton	
System 5-02-004-03 - Stick/Bu			0.0	0.0	0.0	0.0		Bales of Cotton	
5-02-004-04 - Miscella 5-02-004-10 - General	neous 1.5 7.0		0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0		Bales of Cotton Bales of Cotton	
Feed and Grain	Terminal Elevator	r <u>s - 5153, 4</u>	<u>221, 4491</u>	_ (k)					
3-02-005-03 - Cleaning	3.0	0.45	0.0	0.0	0.0	0.0		Tons of Grain Processed	
8-02-005-04 - Drying	1.1	0.33	`					Tons of Grain Processed	
3-02-005-05 - Unloadir	ng 1.0	0.18	0.0	0.0	0.0	0.0		Tons of Grain	

. .

.

1

••

. .

SCC	Process Name	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS NOTE
	ivame	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	
Feed and	l Grain Terminal	Elevators	- 5153, 42	21, 4491	(k)				
	(Receiving)				- • •				Processed
3-02-005-06 -	Loading (Shipping)	0.3	0.13	0.0	0.0	0.0	0.0		Tons of Grain Processed
3-02-005-07 -	Removal from Bins (Tunnel Belt)	1.4	0.4	0.0	0.0	0.0	0.0		Tons of Grain Processed
3-02-005-08 -	Elevator Legs (Headhouse)	1.5	0.45	0.0	0.0	0.0	0.0		Tons of Grain Processed
3-02-005-09 -	Tripper (Gallery Belt)	1.0	0.3	0.0	0.0	0.0	0.0		Tons of Grain Process <i>e</i> d
3-02-005-10 -	Removal from Bins (Tunnel Belt)	2.8	0.8	0.0	0.0	0.0	0.0		Tons of Grain Shipped or Received
3-02-005-11 -	Elevator Legs (Headhouse)	4.5	1.35	0.0	0.0	0.0	0.0		Tons of Grain Shipped or Received
3-02-005-12 -	Terminal Elevators: General	10.2		0.0	0.0	0.0	0.0		Tons of Grain Shipped or Received
Feed and	Grain Country	Elevators -	5153. 422	21. 4491	(k)				
3-02-006-03 -		3.0	0.45	0.0	0.0	0.0	0.0		Tons of Grain Processed
3-02-006-04 -	Drying	0.7	0.11					••••	Tons of Grain Processed
3-02-006-05 -	Unloading (Receiving)	0.6	0.09	0.0	0.0	0.0	0.0	••••	Tons of Grain Processed
3-02-006-06 -	Loading (Shipping)	0.3	0.05	0.0	0.0	0.0	0.0		Tons of Grain Process <i>e</i> d
3-02-006-07 -	Removal from Bins (Tunnel Belt)	1.0	0.15	0.0	0.0	0.0	0.0		Tons of Grain Processed
3-02-006-08 -	Elevator Legs (Headhouse)	1.5	0.23	0.0	0.0	0.0	0.0		Tons of Grain Processed
3-02-006-09 -	Tripper (Gallery Belt)	1.7	0.26	0.0	0.0	0.0	0.0	•••	Tons of Grain Shipped or Received
3-02-006-10 -	Removal from Bins (Tunnel Belt)	2.1	0.32	0.0	0.0	0.0	0.0	••••	Tons of Grain Shipped or Received
3-02-006-11 -	Elevator Legs (Headhouse)	4.65	0.7	0.0	0.0	0.0	0.0	•••	Tons of Grain Shipped or Received
3-02-006-99 -	Country Elevators:	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons of Grain

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Feed and	d Grain Country I	Elevators -	5153, 422	1, 4491	(k)				D	
_	General								Processed	
	<u>illing - 2041</u> - Barley Cleaning	0.2	0.12	0.0	0.0	0.0	0.0		Tons of Grain Processed	
<u>Milo Milli</u> 3-02-007-04	<u>ng - 2041</u> - Milo Cleaning	0.4	0.2	0.0	0.0	0.0	0.0		Tons of Grain Processed	
	<u>illing - 2041</u> - Barley Flour Mill	3.0	1.8	0.0	0.0	0.0	0.0		Tons of Grain Processed	
<u>Durum N</u> 3-02-007-11	<u>illing - 2041</u> Grain Receiving	1.0 .	0.15	0.0	0.0	0.0	0.0		Tons of Grain Received	
3-02-007-12	- Precleaning/Handling	5.0	0.75	0.0	0.0	0.0	0.0		Tons of Grain	
3-02-007-13	- Cleaning House			0.0	0.0	0.0	0.0		Received Tons of Grain Received	
3-02-007-14	- Millhouse			0.0	0.0	0.0	0.0		Tons of Grain Received	
Rve Milli	<u>ng - 2041</u>									
	- Grain Receiving	1.0	0.15	0.0	0.0	0.0	0.0		Tons of Grain Received	
3-02-007-22	- Precleaning/Handling	5.0	0.75	0.0	0.0	0.0	0.0		Tons of Grain	
3-02-007-23	- Cleaning House			0.0	0.0	0.0	0.0		Received Tons of Grain Received	
3-02-007-24	- Millhouse	(1) 70.0	42.7	0.0	0.0	0.0	0.0		Tons of Grain Received	
	<u>illing - 2041</u> - Grain Receiving	1.0	0.15	0.0	0.0	0.0	0.0		Tons of Grain	

, , ,

SCC Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Wheat Milling - 2041	₫ 1 <u>847, 218</u> 1, 1997.	<u>_</u>							
								Received	
3-02-007-32 - Precleaning/Handling	5.0	0.75	0.0	0.0	0.0	0.0		Tons of Grain Received	
3-02-007-33 - Cleaning House			0.0	0.0	0.0	0.0		Tons of Grain	
								Received	
3-02-007-34 - Millhouse	(1) 70.0	42.7	0.0	0.0	0.0	0.0		Tons of Grain Received	
								Received	
Corn: Dry Milling - 2041									
3-02-007-41 - Grain Receiving	1.0	0.15	0.0	0.0	0.0	0.0		Tons of Grain	
3-02-007-42 - Grain Drying	0.5	0.3	0.0	0.0	0.0	0.0		Received Tons of Grain	
· · · · · · · · · · · · · · · · · · ·								Received	
3-02-007-43 - Precleaning/Handling	5.0	0.75	0.0	0.0	0.0	0.0		Tons of Grain	-
			• •		• •			Received	
3-02-007-44 - Cleaning House	6.0	3.7	0.0	0.0	0.0	0.0		Tons of Grain	
3-02-007-45 - Degerming and			0.0	0.0	0.0	0.0		Received Tons of Grain	
Milling								Received	
Corn: Wet Milling - 2046									
3-02-007-51 - Grain Receiving	1.0	0.15	0.0	0.0	0.0	0.0		Tons of Grain	
· · · · · · · · · · · · · · · · ·								Received	
3-02-007-52 - Grain Handling	5.0	0.75	0.0	0.0	0.0	0.0		Tons of Grain	
								Received	
3-02-007-53 - Grain Cleaning	6.0	3.7	0.0	0.0	0.0	0.0		Tons of Grain	
3-02-007-54 - Dryers	0.48		0.0	0.0	0.0	0.0		Received Tons of Grain	
J OL OUT J4 DI YEI 3	0140		•••			0.0		Received	
3-02-007-55 - Bulk Loading			0.0	0.0	0.0	0.0		Tons of Grain	
								Received	
3-02-007-56 - Milling			0.0	0.0	0.0	0.0		Tons of Grain	
								Received	
Oat Milling - 2041									
3-02-007-60 - General	2.5		0.0	0.0	0.0	0.0		Tons of Grain	

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	<b>SOx</b> Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Oat Milli	ng - 2041									
									Received	
Dian Mill	ling 2011									
	l <u>ing - 2044</u> - Grain Receiving	0.64	0.1	0.0	0.0	0.0	0.0		Tons of Grain	
5-02-007-71	- Graffi Receiving	0.04	0.1	0.0	0.0	0.0	0.0	•	Received	
8-02-007-72	- Precleaning/Handling	5.0	0.75	0.0	0.0	0.0	0.0		Tons of Grain	
									Received	
8-02-007-73	- Drying	0.3	0.024		•••	•••	•••	•••	Tons of Grain	
									Received	
5-02-007-74	<ul> <li>Cleaning/Milhouse</li> </ul>			0.0	0.0	0.0	0.0		Tons of Grain	
									Received	
Sovbear	Mills - 2075, 204	11								
	- Grain Receiving	1.6	0.24	0.0	0.0	0.0	0.0		Tons of Grain	
								-	Received	
3-02-007-82	- Grain Handling	5.0	0.75	0.0	0.0	0.0	0.0		Tons of Grain	
									Received	
3-02-007-83	- Grain Cleaning			0.0	0,0	0.0	0.0		Tons of Grain	
									Received	
3-02-007-84	- Drying	7.2	4_4	0.0	0.0	0.0	0.0		Tons of Grain	
7 00 007 05	Cooching and	3.3	0.5	0.0	0.0	0.0	0.0		Received Tons of Grain	
5-02-007-65	- Cracking and Dehulling	3.5	0.5	0.0	0.0	0.0	0.0		Received	
3-02-007-86	- Hull Grinding	2.0	1.2	0.0	0.0	0.0	0.0		Tons of Grain	
5 02 007 00	hatt al finiting	2.0		0.0	0.0		0.0		Received	
3-02-007-87	- Bean Conditioning	0.1	0.06	0.0	0.0	0.0	0.0		Tons of Grain	
									Received	
3-02-007-88	- Flaking	0.57	0.35	0.0	0.0	0.0	0.0		Tons of Grain	
									Received	
3-02-007-89	- Meal Dryer	1.5	0.9	0.0	0.0	0.0	0.0		Tons of Grain	
									Received	
5-02-007-90	- Meal Cooler	1.8	1.1	0.0	0.0	0.0	0.0		Tons of Grain Received	
3-02-007-01	- Bulk Loading	0.27	0.04	0.0	0.0	0.0	0.0		Tons of Grain	
3-02-007-91	- BULK LUBUING	0.27	0.04	0.0	0.0	0.0	0.0		Received	

• •

,

•

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS N	OTES
					<u> </u>					<u> </u>
	anufacture - 2082									
3-02-008-02	- Grain Receiving	2.5	0.2	0.0	0.0	0.0	0.0		Tons of Grain Received	
3-02-008-03	- Shipping	1.0	0.07	0.0	0.0	0.0	0.0		Tons of Grain Received	
3-02-008-04	- Handling	5.5	0.45	0.0	0.0	0.0	0.0		Tons of Grain Received	
3-02-008-05	- Grinding			0.0	0.0	0.0	0.0		Tons of Grain Received	
3-02-008-06	- Pellet Coolers			0.0	0.0	0.0	0.0		Tons of Grain Received	
3-02-008-15	- Grinding	0.21		0.0	0.0	0.0	0.0		Tons Grain Processed	
	- Pellet Cooler	0.2		0.0	0.0	0.0	0.0		Tons Grain Processed	
Beer Pro	oduction - 2082									
	- Grain Handling	3.0	0.45	0.0	0.0	0.0	0.0		Tons of Grain Processed	
3-02-009-02	- Drying Spent Grains	5.0	3.0			2.63			Tons of Grain	
3-02-009-03	- Proving								Processed 1000 Gallons	
3-02-009-04	-	0.0	0.0	0.0	0.0		0.0		Barrel-Year of Stored Product	1
3-02-009-05	- Malt Dryer	0.045		•••					Tons Grain Dried	
Whiskey	Fermentation - 2	085								
	- Grain Handling	3.0	0.45	0.0	0.0	0.0	0.0		Tons of Grain Processed	
3-02-010-02	- Drying Spent Grains	5.0	3.0			2.6			Tons of Grain Processed	
3-02-010-03	- Aging	0.0				10.0			Barrel (50 Gal)	
	- Fermentation Tank		0.0			3.0			1000 Gailons Produced	
Wines I	Brandy, and Brand	dv Spirits	- 2084							
3-02-011-03		0.0	0.0	0.0	0.0	0.0	0.0		Barrel-Year of Stored Product	l
3-02-011-04	- Fermentation Tank			•••	•	3.0			1000 Gallons Produced	

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	<b>CO</b> Lbs/Unit	LEAD Lbs/Unit	UNITS NOTES
Wines, B	randy, and Brand	lv Spirits -	- 2084						
	- Fermentation at 52 F					1.06			1000 Gallons Produced
	- Fermentation at 80 F					4.79			1000 Gallons Produced
3-02-011-99	• Other Not Classified	0.0	XXX	XXX	ХХХ	XXX	XXX	XXX	Gallons Produced
Fish Proc	cessing - 2077, 2	091							
3-02-012-01	- Cookers: Fresh Fish Scrap	0.0	0.0			0.03			Tons Fish Meal Produced
3-02-012-02	- Cookers: Stale Fish Scrap	0.0	0.0			3.5			Tons Fish Meal Produced
3-02-012-04	- Canning Cookers	0.0	0.0			1.5			Tons Fish Processed
	- Steam Tube Dryer	5.0	1.05			3.5			Tons Fish Scrap
	- Direct Fired Dryer	8.0	1.68			6.5			Tons Fish Scrap
Meat Sm	okehouses - 201	2 <u>, 2013</u>							
3-02-013-01	- Combined Operations	0.3	0.28	1.0	0.7	0.07	0.6		Tons Meat Smoked
Starch M	lanufacturing - 20	036			•				
	- Combined Operations	8.0	4.9		120.0	250.0			Tons Starch Produced
Sugar Ca	ane Processing -	2061.206	52						
3-02-015-01									Tons Sugar Produced
3-02-015-99	- Other Not Classified	XXX	XXX	XXX	ХХХ	XXX	ххх	ххх	Tons Processed
Sugar Be	eet Processing - 2	2063							
3-02-016-01				0.41	0.06	0.2			Tons Raw Beets
3-02-016-99	- Other Not Classified	XXX	XXX	XXX	ХХХ	XXX	XXX	ххх	Tons Raw Beets
Peanut F	Processing - 2076	6. 2079 <u>.</u> 20	<u>099</u>						
	- Other Not Classified	XXX	XXX	XXX	0.06	ххх	XXX	XXX	Tons Processed
Candy N	lanufacturing - 20	<u>)64. 2066</u>							
	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Product
	<u>e Oil Processing -</u> - Corn Oil: General	2046, 20	<u>74, 2076,</u>	<u>2079</u>		19.0			Tons Extractor Feed
3-02-019-00	- com oit; Generat					19.0			

• ·

7

SCC Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS NOT	ES
Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
legtable Oil Processing	- 2046. 20	74. 2076. 2	2079						
								Cake	
-02-019-07 - Cottonseed Oil:				. <b></b>	18.0			Tons Extractor Feed	
General								Cake	
-02-019-08 - Soybean Oil: General				•••	16.0	*		Tons Extractor Feed	
								Cake	
-02-019-09 - Peanut Oil: General					21.0		•••	Tons Extractor Feed	
								Cake	
/ea. Oil Processina - Ge	neral Proc	esses - 20	46. 2074	. 2076. 2	2079				
-02-019-16 - Oil Extraction					17.0			Tons Extractor Feed	
								Cake	
-02-019-17 - Meal Preparation					1.6			Tons Extractor Feed	
·								Cake	
-02-019-18 - Oil Refining					0.7			Tons Extractor Feed	
								Cake	
-02-019-19 - Fugitive Leaks					1.7			Tons Extractor Feed	
					•			Cake	
-02-019-20 - Solvent Storage	* = •				0.15		•	Tons Raw Seed	
								Processed	
-02-019-99 - Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Refined Oil	
								Produced	
Beef Cattle Feedlots - 02	11								
-02-020-01 - Feed Lots: General	102.2	65.7						Head of Cattle	
	102.2	05.1						Capacity	
-02-020-02 - Feed Lots: General	54.0	34.0						Head of Cattle	
	2110							Throughput	
								····	
Poultry and Egg Product	ion - 0254								
-02-021-01 - Manure Handling: Dry					0.0	<b>-</b>		Number of Chickens-	
								Capacity	
-02-021-02 - Manure Handling: Dry				•	0.0			Number of Chickens-	
								Thruput	
-02-021-05 - Manure Handling: Wet					0.0			Number of Chickens-	
								Capacity	
-02-021-06 - Manure Handling: Wet					0.0			Number of Chickens-	

-

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Poultry a	nd Egg Product	tion - 0254								
									Thruput	
Cotton S	eed Delinting -	0723								
	- Acid Delinting of								Tons Cottonseed	
	Cotton Seeds								Delinted	
Sood Pro	oduction and Pr	ocessina - I	7180 5101	1						
	- Seed Handling:	<u></u>		- 0.0	0.0	0.0			Tons Processed	
	General									
Mushroo	m Growing - 01	82								
3-02-028-01									Tons Produced	
				_						
	<u>oducts - 2021, 2</u>		<u>2024, 2026</u>							
	- Milk: Spray Dryer		• • •	0.0	•				Tons Product	
3-02-030-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Product	
Export G	rain Elevators -	4491, 4221	(k)							
3-02-031-03	- Cleaning	3.0	0.45	0.0	0 <b>.0</b>	0.0	0.0		Tons Grain Proce	ssed
3-02-031-04	- Drying	1.1	0.33						Tons Grain Proce	ssed
3-02-031-05	- Unloadirg	1.0	0.18	0.0	0.0	0.0	0.0		Tons Grain Proce	ssed
3-02-031-06	- Loading	1.0	0.42	0.0	0.0	0.0	0.0		Tons Grain Proce	ssed
3-02-031-07	- Removal from Bins (Tunnel Belt)	1.4	0.4	0.0	0.0	0.0	0.0		Tons Grain Proce	essed
3-02-031-08	- Elevator Legs	1.5	0.45	0.0	0.0	0.0	0.0		Tons Grain Proce	essed
	(Headhouse)									
3-02-031-09	- Tripper (Gallery	1.0	0.3	0.0	0.0	0.0	0.0		Tons Grain Proce	essed
	Belt)									
3-02-031-10	- Removal from Bins	1.7	0.5	0.0	0.0	0.0	0.0		Tons of Grain Sh	ipped
	(Tunnel Belt)					_			or Received	
3-02-031-11	- Elevator Legs	3.3	1.0	0.0	0.0	0.0	0.0		Tons of Grain Sh	ipped
	(Headhouse)								or Received	
<b>Bakeries</b>	<u>s - 2051, 2052</u>									
3-02-032-01	- Bread Baking:	0.0	0.0	0.0	0.0	13.0	0.0		Tons of Bread Ba	ked
	Sponge-Dough Process									21

.

,

*,* '

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	<b>CO</b> Lbs/Unit	LEAD Lbs/Unit	UNITS NOTES
	- 2051, 2052 - Bread Baking: Straight-Dough Process	0.0	0.0	0.0	0.0	1.0	0.0		Tons of Bread Baked
3-02-032-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Product
	Processing - 21 - Other Not Classified	<u>11, 2121,</u> ^{xxx}	2 <u>131, 214</u> ^{xxx}	<u>1</u> 0.48	xxx	0.34	ххх	ххх	Tons Product
	<u>t Frying - 2099, 2</u> - Cooking Vats: General	<u>017, 2051</u> 	<u>, 2092</u> 	0.0	0.0	18.5			Tons Processed
<u>Animal/F</u> 3-02-038-01	Poultry Rendering - General	<u>1 - 2077</u>							Tons Processed
<u>Carob Ki</u> 3-02-039-01	<u>ibble - 2041</u> - Roaster	6.0	0.72				•		Tons Roasted
<u>Cereal -</u> 3-02-040-01	- Dryer		0.66						Tons Dried
	<u>Emissions - 2000</u> - Specify in Comments Field								Tons Product
3-02-888-02	- Specify in Comments								Tons Product
3-02-888-03	Field - Specify in Comments Field								Tons Product
3-02-888-04	- Specify in Comments								Tons Product
3-02-888-05	Field - Specify in Comments Field								Tons Product
	<u>Ot Classified - 200</u> - Other Not Classified	<u></u>							Tons Processed

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Other No	ot Classified - 200	0						<u> </u>		
3-02-999-99	- Other Not Classified	xxx	ХХХ	ххх	ХХХ	ххх	ххх	ХХХ	(Input) Tons Produced (Finished)	
FOOD A	ND AGRICULTUR	E - FUEL	FIRED EQ	<u>UIPMEN</u>	<u>T</u>					
	<u> Heaters - 2000</u>									
3-02-900-01	- Distillate Oil (No. 2)	•••		143.6 S	20.0	0.2			1000 Gallons Burn	ed
3-02-900-02	- Residual Oil			158.6 S	55.0	0.28			1000 Gallons Burn	ed
3-02-900-03	- Natural Gas			0.6	140.0	2.8			Million Cubic Fee Burned	t

## PRIMARY METAL PRODUCTION - MAJOR GROUPS 10 & 33

Aluminum Ore - Bauxite - 1	099							
3-03-000-01 - Crushing/Handling	6.0	5.1	0.0	0.0	0.0	0.0		Tons of Ore
3-03-000-02 - Drying Oven	1.2	0.7	1.4		0.004			Tons of Ore
3-03-000-03 - Fine Ore Storage								Tons Handled
Aluminum Ore: Electro-Red	duction -	3334						
3-03-001-01 ~ Prebaked Reduction	94.0	54.5	57.3 (c)	0.003	0.1	369.0 (c)	•	Tons of Molten
Cell								Aluminum Produced
3-03-001-02 - Horizontal Stud	98.0	56.8	10.0 (c)		1.0	244.0 (c)		Tons of Molten
Soderberg Cell								Aluminum Produced
3-03-001-03 - Vertical Stud	78.0	71.8	17.0 (c)		1.0	349.0 (c)		Tons of Molten
Soderberg Cell								Aluminum Produced
3-03-001-04 - Materials Handling	10.0	5.8	0.0	0.0	0.0			Tons of Molten
								Aluminum Produced
3-03-001-05 - Anode Baking Furnace	3.0	2.8	2.7 (c)		1.0	66.0 (c)		Tons of Molten
								Aluminum Produced
3-03-001-06 - Degassing			0.0	0.0	0.0	0.0		Tons of Molten
								Aluminum Produced
3-03-001-07 - Roof Vents					2.7		• • •	Tons of Molten
								Aluminum Produced

. •

	rocess ame	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOT
Aluminum O	re: Electro-F	Reduction -	3334						
3-03-001-08 - Pre		5.0	2.9			0.0			Tons of Molten
	ssions	2.0	2.7			0.0			Aluminum Produced
3-03-001-09 - H.S		10.0	3.1			0.0	<b></b>		Tons of Molten
	ssions	10.0	5.1			0.0			Aluminum Produced
3-03-001-10 - V.S		12.0	3.7			0.0			Tons of Molten
	ssions	12.0	5.7			0.0			Aluminum Produced
3-03-001-11 - Ano						0.0			Tons of Molten
	itive Emissions					0.0			Aluminum Produced
-									Atumnum Produced
<u>Aluminum H</u>			-						
3-03-002-01 - Ove	rall Process	200.0	24.0	27.8	1.5	0.02			Tons of Alumina
									Produced
<b>By-Product</b>	Coke Manut	acturina - 3	312						
3-03-003-02 - Ove		0.48	0.01	0.02	0.03	2.5	0.6		Tons of Coal Charged
3-03-003-03 - Ove		1.15	0.5	3.3	0.03	0.2	0.07		Tons of Coal Charged
3-03-003-04 - Que	·····	5.24	1.2	0.4	0.6	0.02			Tons of Coal Charged
3-03-003-05 - Coa	-	0.00011		0.0	0.0	0.0	0.0		Tons of Coal Charged
3-03-003-06 - Ove		0.58	0.45	4.0	0.04	2.0			Tons of Coal Charged
3-03-003-07 - Coa	-	(m)		0.0	0.0	0.0	0.0		Tons of Coal Charged
	dling			0.0	0.0	0.0	0.0		Tons of coat charged
3-03-003-08 - Ove	-	0.51	0.48	0.1	0.01	1.5	0.6		Tons of Coal Charged
3-03-003-09 - Coa		•••	•••	0.0	0.0	0.0	0.0		Tons Processed
3-03-003-10 - Coa		0.11	0.05	0.0	0.0	0.0	0.0		Tons Processed
3-03-003-11 - Coa				0.0	0.0	0.0	0.0	•	Tons Processed
3-03-003-12 - Cok	-	0.09 (c)	0.04	0.0	0.0	0.0	0.0		Tons Processed
	eening/Handling	0.07 (0)	0.04	0.0	0.0	0.0	0.0		ions riocessed
3-03-003-13 - Coa	•	3.5	3.4			0.3			Topp of Cool Changed
3-03-003-14 - Top		0.09 (c)	0.08	0.1	0.01	1.5			Tons of Coal Charged Tons of Coal Charged
3-03-003-14 - 10p 3-03-003-15 - Gas			0.08						Million Cubic Feet
3-03-003-15 - Gas	By Product Plant							•••	Gas Processed
3-03-003-16 - Coa	l Storage Pile			0.0	0.0	0.0	0.0		Tons of Coal Charged
Coke Manuf	facture: Ree	hive Proces	s - 3312						
3-03-004-01 - Gen		200.0	<u>97.8</u>	0.0	0.0	8.0	1.0		Tons of Coal Charged
3-03-004-01 * Gen	ci a l	200.0	77.0	0.0	0.0	0.0	1.0		rons of coat charged

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD	UNITS NOTES
			·						
Primary (	Copper Smelting	- 3331							
	Multiple Hearth Roaster	45.0	23.8	280.0	3.6	0.009		0.0536	Tons of Concentrated Ore Processed
3-03-005-03 ·	Reverberatory Smelting Furnace after Roaster	50.0	13.5	180.0	5.8	0.015		0.0579	Tons of Concentrated Ore Processed
3-03-005-04 -	Converter (All Configurations)	36.0	21.2	623.0	0.0	0.0		0.1233	Tons of Concentrated Ore Processed
3-03-005-05 ·	Fire (Furnace) Refining	10.0	9.2	0.0		0.0	•		Tons of Concentrated Ore Processed
3-03-005-06 -	Ore Concentrate Dryer	10.0	4.8	1.0		0.004			Tons of Concentrated Ore Processed
3-03-005-07	Reverb. Smelt. Furnace w/ Ore Charge w/o Roasting	50.0	13.5	320.0	10.3	0.03			Tons of Concentrated Ore Processed
3-03-005-08	Refined Metal Finishing Operations			0.0	0.0	0.0			Tons of Concentrated Ore Processed
3-03-005-09	Fuidized Bed Roaster	55.0	29.2	360.0		0.0			Tons of Concentrated Ore Processed
3-03-005-10	- Electric Smelting Furnace	100.0	58.0	240.0		0.0			Tons of Concentrated Ore Processed
3-03-005-11	- Electrolytic Refining			0.0	0.0	0.0			Tons of Concentrated Ore Processed
3-03-005-12	- Flash Smelting	140.0	83.0	820.0		0.0			Tons of Concentrated Ore Processed
3-03-005-13	- Roasting: Fugitive Emissions	2.6	1.4	1.0		0.0		•••	Tons of Concentrated Ore Processed
3-03-005-14	- Reverberatory Furnace: Fugitive Emissions	0.4	0.17	4.0		0.0	•••		Tons of Concentrated Ore Processed
3-03-005-15	- Converter: Fugitive Emissions	4.4	2.6	130.0		0.0		••••	Tons of Concentrated Ore Processed
3-03-005-16	- Anode Refining Furnace: Fugitive Emissions	0.5	0.46	0.1		0.0			Tons of Concentrated Ore Processed
3-03-005-17	- Slag Cleaning	8.0	7.7	6.0		0.0			Tons of Concentrated

.

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Primarv	Copper Smelting	- 3331								
	Furnace: Fugitive Emissions								Ore Processed	
3-03-005-18	- Converter Slag Return: Fugitive Emissions	•••		0.1		0.0			Tons of Concentrat Ore Processed	ed
3-03-005-19	- Unpaved Road Traffic: Fugitive Emissions					•••			Vehicle-Miles Travelled	
3-03-005-21	- Noranda Reactor					0.0	•••		Tons of Concentrat Ore Processed	ed
3-03-005-22	- Slag Cleaning Furnace	10.0	9.6	7.5	•••	0.0	•••		Tons of Concentrat Ore Processed	ed
3-03-005-23	- Reverberatory Furnace W/ Converter	50.0	13.5	320.0		0.0			Tons of Concentrat Ore Processed	ed
3-03-005-25	- Fluid Bed Roaster W/ Reverb. Furnace and Converter	55.0	29.2	360.0		0.0			Tons of Concentrat Ore Processed	ed
3-03-005-26	- Concentrate Dryer W/ Elect. Furn., Cleaning Furn. & Convertor	10.0	4.8	1.0		0.0			Tons of Concentrat Ore Processed	ed
3-03-005-27	- Concentrate Dryer W/ Flash Furnace and Converter	10.0	4.8	1.0		0.0		<b></b>	Tons of Concentrat Ore Processed	ed
3-03-005-28			•••			0.0			Tons of Concentrat Ore Processed	ed
3-03-005-29	- Multiple Hearth Roaster w/ Reverb. Furnace + Converter	45.0	23.8	280.0		•••			Tons of Concentrat Ore Processed	ed
3-03-005-30	- Fluid Bed Roaster W/ Electric Furnace & Converter	55.0	29.2	600.0					Tons of Concentrat Ore Processed	ed
3-03-005-31		50.0	13.5	180.0					Tons of Concentrat Ore Processed	ed

SCC Proce Name			SOx	NOx	VOC	CO	LEAD	UNITS NOTE
	Lbs/Un	hit Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	
Primary Copper	Smeltina - 3331							
3-03-005-32 - Reverberat		13.5	160.0					Tons of Concentrated
	ter Fluid	13.5	100.0					Ore Processed
Bed Roaste								one modessed
3-03-005-33 - Electric I		58.0	240.0					Tons of Concentrated
after Con		50.0	240.0					Ore Processed
Dryer	entrate							ore ribeessed
3-03-005-34 - Flash Furr	nace after 140.0	83.0	820.0					Tons of Concentrated
Concentral		05.0	020.0					Ore Processed
3-03-005-35 - Electric I	•	58.0	90.0					Tons of Concentrated
after Flui			,0.0					Ore Processed
Roaster	iu beu							ore reoccased
3-03-005-99 - Other Not	Classified XXX	ххх	xxx	xxx	xxx	xxx	xxx	Tons of Concentrated
3-03-003-99 - Other Not		^^^	~~~	~~~	~~~	~~~	~~~	Ore Processed
								ore processed
Ferroalloy - Oper	n Furnace - 3313	3						
3-03-006-01 - 50% FeSi:		44.0	0.07	<b>0.1</b>	4.5		0.29	Tons Produced
Smelting	Furnace			-				
3-03-006-02 - 75% FeSi:		199.0	0.07	0.1	4.5			Tons Produced
Smelting	Furnace							
3-03-006-03 - 90% FeSi:		355.0	0.07	0.1	4.5			Tons Produced
Smelting	Furnace							
3-03-006-04 - Silicon M		750.0	0.07	0.1	72.0		0.0031	Tons Produced
Electic S								
Furnace								
3-03-006-05 - Silicoman	aganese: 192.0	177.0	0.07	0.1	4.5		0.57	Tons Produced
Electric	-		••••					
Furnace	, and the second s							
3-03-006-06 - 80% Ferro	nanganese	24.0						Tons Produced
3-03-006-07 - 80% Ferro	•	143.0						Tons Produced
3-03-006-10 - Ore Scree				0.0	0.0			Tons Processed
3-03-006-11 - Ore Dryer					0.004			Tons Processed
3-03-006-13 - Raw Mater	ial Storage				0.0			Tons Processed
3-03-006-14 - Raw Mater	•				0.0			Tons Processed
Transfer								
3-03-006-15 - Ferromana	danese:				16.0			Tons Produced
	34.10001							

· ·

•

. •

ъ.,

SCC	Process Name	PART	PM10	SOx	NOx	VOC		LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Ferroallo	y - Open Furnace	3313						·		
<u>i on ouno</u>	Blast Furnace	0010								
3-03-006-16	- Ferrosilicon: Blast					16.0			Tons Produced	
	Furnace									
3-03-006-17	- Cast House				•••	2.8			Tons Produced	
3-03-006-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Produced	
Forroallo	v - Semi-Covered	d Eurnace	3313							
	- Ferromanaganese:	12.0	7.56	0.02	0.1	1.4		0.11	Tons Produced	
3-03-007-01	Electric Arc Furnace	12.0	1.50	0.02	0.1			0.11	Tons Produced	
3-03-007-02	- Electric Arc						•••		Tons Produced	
	Furnace: Other									
	Alloys/Specify									
3-03-007-03	- Ferrochromium:					8.2			Tons Produced	
	Electric Arc Furnace									
3-03-007-04	- Ferrochromium				#	8.2			Tons Produced	
	Silicon: Electric									
	Arc Furnace									
Iron Proc	duction - Blast Fu	rnaces - 3	31 <u>2</u>							
	- Ore Charging	110.0 (c)	41.8	0.0	0.0	0.0	1750.0 (c	0.091	Tons Iron Produc	ced
3-03-008-02	- Agglomerate Charging	40.0 (c)	15.2	0.0	0.0	0.0	0.0	0.033	Tons Iron Produc	ced
Iron Prov	duction - Blast Fu	urnaca Slad	7 - 3312							
	- Loader: Hi-Silt	0.026 (c)	<u>j - 3312</u>	0.0	0.0	0.0	0.0		Tana Olan Taana	frand
	- Loader: Hi-Silt - Loader: Low-Silt	0.028 (c)		0.0	0.0	0.0	0.0		Tons Slag Trans Tons Slag Trans	
	- Slag Crushing and	0.0000 (C)		0.0	0.0	0.0			Tons Processed	lerreu
3-03-008-08	Sizing			0.0	0.0	0.0			Tons Processed	
3-03-008-09	- Slag Removal and			0.0	0.0	0.0			Tons Processed	
	Dumping									
Iron Dro	duction Sintarin	a 2210								
	duction - Sinterin	<u>y - 3312</u>							Trans Breakingd	
3-03-008-11	- Raw Mat. St'kpiles, Coke Breeze,		•••			4.8			Tons Produced	
	Limestone, Ore Fines									
3-03-008-12	- Raw Material					0.0			Tons Produced	
5 05 000 NE	Transfer/Handling					2				

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTE
Iron Prod	luction - Sinterind	r - 3312							
3-03-008-13 -		11.1	1.67	2.5 (c)	0.3	1.4 (c)	44.0		Tons Produced
3-03-008-14 -	Discharge End	6.8	1.02	0.0	0.0	0.0			Tons Produced
3-03-008-15 -	Sinter Breaker					0.0		•••	Tons Produced
3-03-008-16 -	Hot Screening			0.0	0.0	0.0			Tons Produced
3-03-008-17 -	Cooler	3.0 (c)	0.45	0.14	0.0	0.0			Tons Produced
3-03-008-18 -	Cold Screening			0.0	0.0	0.0			Tons Produced
	Sinter Process (Combined Code includes 15, 16,17,18)	0.8 (c)	0.12			0.05			Tons Produced
3-03-008-20 -	Sinter Converor: Transfer Station	0.17 (c)	0.013	0.0	0.0	0.0	0.0		Tons Sinter Transferred
	luction - Blast Fu		<u>312</u>						Tura One Transformed
3-03-008-21 -	Unload Ore, Pellets, Limestone, into Blast Furn.	0.0024 (c)		0.0	0.0	0.0	0.0	•••	Tons Ore Transferred
3-03-008-22 -	Raw Mat'l Stkpl: Ore, Pellets, Limestone, Coke, Sinter					4.8			Tons Processed
3-03-008-23 -	Charge Materials:					0.0			Tons Processed
3-03-008-24 -	Blast Heating Stoves					0.01			Tons Processed
3-03-008-25	Cast House	0.6	0.31	3.0	0.03	2.8			Tons Processed
3-03-008-26	Blast Furnace Slips	87.0	33.0			0.0			Number of Slips
3-03-008-27	Lump Ore Unloading	0.0003 (c)		0.0	0.0	0.0	0.0		Tons Ore Transferred
Iron Proc	I Fugitive Emiss	sions: Roa	ds - 3312						
	- Unpaved Roads: LDV	1.8	1.0	0.0	0.0	0.0	0.0		Vehicle-Miles Traveled
3-03-008-32	- Unpaved Roads: MDV	7.3	4.1	0.0	0.0	0.0	0.0		Vehicle-Miles Traveled
3-03-008-33	- Unpaved Roads: HDV	14.0	7.6	0.0	0.0	0.0	0.0		Vehicle-Miles Traveled

. . . .

•• ••

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Iron Pro	d Fugitive Emiss	sions: Ro	ads - 3312							
	<ul> <li>Paved Roads: All</li> </ul>	0.78	0.44	0.0	0.0	0.0	0.0		Vehicle-Miles	
3-03-008-34	Vehicle Types	0.70	0.14	0.0	0.0				Traveled	
Iron Pro	d Miscellaneou	s Matl. Ha	ndIng - 33	12						
3-03-008-41	- Flue Dust Unloading	•••		••••					Tons Material	
									Transferred	
3-03-008-42	- Blended Ore					•			Tons Material	
	Unloading						•		Transferred	
Steel Pro	oduction - 3312									
3-03-009-01	- Open Hearth Furnace:	21.1	17.5	1.4		0.17		0.14	Tons Produced	
	Stack									
3-03-009-04	- Electric Arc	11.3	6.55	0.7	0.1	0.35	18.0	0.22	Tons Produced	
	Furnace: Alloy Steel (Stack)									
3-03-009-06	- Charging: Electric					0.001			Tons Produced	
	Arc Furnace									
3-03-009-07	- Tapping: Electric					0.002			Tons Produced	
	Arc Furnace									
3-03-009-08	- Electric Arc	50.0	29.0	0.7	0.1	0.35	18.0	•••	Tons Produced	
	Furnace: Carbon									
	Steel (Stack)									
3-03-009-10				0.0	0.0	0.0	•••		Tons Produced	
3-03-009-11	- Soaking Pits			0.0	0.0	0.02			Tons Produced	
3-03-009-12	-			0.0	0.0	0.0	• • •		Tons Produced	
3-03-009-13	- Basic Oxygen	28.5	13.1	•••	0.08	0.001	139.0	0.2	Tons Produced	
	Furnace: Open Hood-									
	Stack									
3-03-009-14	- Basic Oxygen	28.5	13.1			0.001	139.0	0.2	Tons Produced	
	Furnace: Closed									
	Hood-Stack									
3-03-009-15	- Hot Metal (Iron)	0.19	0.09			0.001		•••	Tons Produced	
	Transfer to									
	Steelmaking Furnace									
3-03-009-16	- Charging: BOF	0.6	0.3		•••	0.001	•••		Tons Produced	

SCC Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS N	IOTES
Steel Production - 3312									
3-03-009-17 - Tapping: BOF	0.92	0.4		0.02	0.002			Tons Produced	
3-03-009-18 - Charging: Open Hearth			••••	•••	0.001			Tons Produced	
3-03-009-19 - Tapping: Open Hearth					0.002			Tons Produced	
3-03-009-20 - Hot Metal Desulfurization		0.22	•					Tons Processed	
3-03-009-21 - Teeming (Unleaded Steel)	0.07	0.03		••••	0.002	•••		Tons Produced	
3-03-009-22 - Continuous Casting				0.05	0.0			Tons Produced	
3-03-009-23 - Steel Furnace Slag Tapping and Dumping			•••		0.002			Tons Produced	
3-03-009-24 - Steel Furnace Slag Processing			0.0	0.0	0.0	•••		Tons Produced	
3-03-009-25 - Teeming (Leaded Steel)	0.81	0.36			0.002			Tons Produced	
3-03-009-31 - Hot Rolling					0.08			Tons Produced	
3-03-009-32 - Scarfing	0.1	0.1	0.0	0.0	0.0			Tons Produced	
3-03-009-33 - Reheat Furnaces		•••	0.8	0.8	0.01			Tons Produced	
3-03-009-34 - Heat Treating Furnaces: Annealing				0.1	0.004	•		Tons Produced	
3-03-009-35 - Cold Rolling					0.56			Tons Produced	
3-03-009-36 - Coating: Tin, Zinc, etc.				1.9	0.07			Tons Produced	
3-03-009-98 - Other Not Classified	i							Each	
3-03-009-99 - Other Not Classified		XXX	XXX	XXX	XXX	XXX	XXX	Tons Produced	
Lead Production - 3339									
3-03-010-01 - Sintering: Single Stream	106.5	104.4	275.0		0.0		105.0	Tons of Concentrated Ore Processed	
3-03-010-02 - Blast Furnace Operation	180.5	160.6	22.5		0.0		35.0	Tons of Concentrated Ore Processed	
3 03-010-03 - Dross Reverberatory Furnace	20.0	19.6	0.0		0.0		2.9	Tons of Concentrated Ore Processed	
3-03-010-04 - Ore Crushing	2.0	1.7	0.0	0.0	0.0	0.0	0.3	Tons of Ore Crushed	
3-03-010-05 - Materials Handling	5.0	4.25	0.0	0.0	0.0			Tons of Lead Product	

· · ·

.. .,

	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD	UNITS NOTES
Lood Dro									
Leau Pro	<u>duction - 3339</u>								
	(Includes 11, 12,								
/	13, 04, 14)	247 0	101 0	550.0		• •			Tons of Concentrated
3-03-010-06 -	Sintering: Dual	213.0	181.0	550.0		0.0			Ore Processed
7 07 010 07	Stream Feed End					0.0			Tons of Concentrated
3-03-010-07 -	Sintering: Dual					0.0			Ore Processed
7-07-010-08 -	Stream Discharge End Slag Fume Furnace	4.6	1.29	2.9		0.0			Tons of Lead Product
	Lead Drossing	0.48	0.47	0.01	12.8	0.03			Tons of Lead Product
	Raw Material	1.0	0.85	0.0	0.0	0.0	•		Tons Processed
3-03-010-10 -	Crushing and Grinding	1.0	0.05	0.0	0.0	0.0			
3-03-010-11 -	Raw Material	0.4 (c)	0.34	0.0	0.0	0.0			Tons of Raw Material
	Unloading								
3-03-010-12 -	Raw Material Storage	0.3 (c)	0.26	0.0	0.0	0.0			Tons of Raw Material
	Piles								
3-03-010-13 -	Raw Material	0.5	0.43	0.0	0.0	0.0			Tons of Raw Material
	Material Transfer								
3-03-010-14 -	Sintering Charge	2.26	1.9			0.0			Tons of Raw Material
	Mixing								
3-03-010-15 -	Sinter Crushing/	1.5	0.12	0.0	0.0	0.0			Tons of Sinter
	Screening								
3-03-010-16 -	Sinter Transfer	0.2	0.015	0.0	0.0	0.0			Tons of Sinter
3-03-010-17 -	- Sinter Fines Return	9.0	4.8			0.0			Tons of Sinter
	Handling								
3-03-010-18 -	- Blast Furnace	•••			•	0.0			Tons of Lead Product
	Charging								
3-03-010-19 -	- Blast Furnace	0.16	0.07			0.0			Tons of Lead Product
	Tapping (Metal and								
	Slag)								
3-03-010-20 -	- Blast Furnace Lead	0.93	0.93			0.0			Tons of Lead Product
	Pouring								
3-03-010-21 -	- Blast Furnace Slag	0.47	0.13			0.0			Tons of Lead Product
	Pouring								
3-03-010-22 -	<ul> <li>Lead Refining/</li> </ul>	1.8	1.76	0.0	0.0	0.0			Tons of Lead Product
/	Silver Retort								
3-03-010-23 -	- Lead Casting	0.87	0.85		•••	0.0			Tons of Lead Product

Name         Lbs/Unit         Lbs/Unit <th< th=""><th>SCC</th><th>Process</th><th>PART</th><th>PM10</th><th>SOx</th><th>NOx</th><th>VOC</th><th>CO</th><th>LEAD</th><th>UNITS NOTE</th></th<>	SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS NOTE
10-010-24 - Reverberatory or Kettle Softening       3.0       2.94        0.0        Tons of Lead Product         003-010-25 - Sinter Machine       0.68 (c)       0.67        0.0        Tons of Sinter         1-03-010-25 - Sinter Machine       0.68 (c)       0.67        0.0        Tons of Sinter         1-03-010-25 - Sinter Machine       0.01 (c)       0.0008         0.0        Tons of Sinter         1-03-010-99 - Other Not Classified       XXX       XXX       XXX       XXX       XXX       XXX       XXX       Tons of Concentrated         0-03-011-01 - Mining: General        0.0       0.0       0.0       0.0        Hundreds of Tons         6:03-011-02 - Milling: General         0.0       0.0       0.0       0.0        Mundreds of Tons         6:03-011-99 - Other Not Classified       XXX		Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	
-03-010-24 - Reverberatory or Kettle Softening       3.0       2.94        0.0        Tons of Lead Product         -03-010-25 - Sinter Machine       0.68 (c)       0.67        0.0        Tons of Sinter         -03-010-25 - Sinter Machine       0.01 (c)       0.0008         0.0        Tons of Sinter         -03-010-26 - Sinter Machine       0.01 (c)       0.0008         0.0         Tons of Sinter         -03-010-26 - Sinter Not Classified       XXX       XXX <td< td=""><td>Lead Proc</td><td>luction - 3339</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Lead Proc	luction - 3339								
0.0 010 L broken mainter       0.00 (c)       0.01 (c)       0.00 (c)       0.01 (c)       0.0008         Tons of Sinter         -03-010-99 - 0ther Not Classified       XXX		•	3.0	2.94		•••	0.0		•	Tons of Lead Product
-03-010-99 - Other Not Classified       XXX       XXX       XXX       XXX       XXX       XXX       XXX       XXX       XXX       Tons of Concentrated Ore Processed         AOlybedenum Ore Mining - 1061         0.0       0.0       0.0       0.0        Hundreds of Tons Mined         -03-011-02 - Milling: General         0.0       0.0       0.0       0.0        Hundreds of Tons Mined         -03-011-02 - Milling: General         0.0       0.0       0.0       0.0        Hundreds of Tons Produced         -03-011-99 - Other Not Classified       XXX			0.68 (c)	0.67			0.0		•••	Tons of Sinter
Molybedenum Ore Mining - 1061         1-03-011-01 - Mining: General        0.0       0.0       0.0       0.0        Mundreds of Tons         1-03-011-02 - Milling: General         0.0       0.0       0.0       0.0        Mundreds of Tons         1-03-011-02 - Milling: General         0.0       0.0       0.0       0.0        Mundreds of Tons         1-03-011-99 - Other Not Classified       XXX       XXX       XXX       XXX       XXX       XXX       XXX       XXX       XXX       Mundreds of Tons         1-03-012-09 - Other Not Classified       XXX       XXX       XXX       XXX       XXX       XXX       XXX       XXX       Mundreds of Tons         1-03-012-01 - Chlorination         0.0       0.0        Tons Produced         1-03-012-02 - Drying Titanium Sand       0.5       0.43         0.004        Tons of Ore Processed         0-03-012-99 - Other Not Classified       XXX       XXX <td>-03-010-26 -</td> <td>Sinter Dump Area</td> <td>0.01 (c)</td> <td>0.0008</td> <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td>Tons of Sinter</td>	-03-010-26 -	Sinter Dump Area	0.01 (c)	0.0008			0.0			Tons of Sinter
-03-011-01 - Mining: General         0.0       0.0       0.0       0.0        Hundreds of Tons Mined         -03-011-02 - Milling: General         0.0       0.0       0.0       0.0        Hundreds of Tons Produced         -03-011-99 - Other Not Classified       XXX       XXX       XXX       XXX       XXX       XXX       XXX       Hundreds of Tons Produced         -03-011-99 - Other Not Classified       XXX       XXX       XXX       XXX       XXX       XXX       XXX       Hundreds of Tons Produced         -03-012-01 - Chlorination         0.0       0.0       0.0         Tons Produced         -03-012-02 - Drying Titanium Sand       0.5       0.43         0.004         Tons of Ore Processed         0-03 -012-99 - Other Not Classified       XXX       XXX       XXX       XXX       XXX       XXX       XXX       Tons of Ore Processed         Gold Processing - 1041, 3341, 3339         0.0       0.0       0.0        Tons of Ore Processed         6-03-014-01 - Ore Grinding         0.0       0.0       0.0	-03-010-99 - 1	Other Not Classified	xxx	ХХХ	XXX	XXX	XXX	XXX	XXX	
Indextrement       Indextrement <td< td=""><td>Molybede</td><td><u>num Ore Mininc</u></td><td><u>1- 1061 - r</u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Molybede	<u>num Ore Mininc</u>	<u>1- 1061 - r</u>							
1-03-011-99 - Other Not Classified       XXX	5-03-011-01 - 1	Mining: General			0.0	0.0	0.0	0.0		
Titanium Processing - 3339, 3369, 3356, 3364       Produced         (-03-012-01 - Chlorination 0.0       0.0       0.0       0.0       Tons Product         (-03-012-02 - Drying Titanium Sand 0.5       0.43       0.004       Tons of Ore Processed         0re (Cyclone Exit)       0re (Cyclone Exit)       0.004       Tons of Ore Processed         (-03-012-99 - Other Not Classified XXX XXX XXX XXX XXX XXX XXX XXX Tons Processed       0.0       0.0       0.0       Tons of Ore Processed         Gold Processing - 1041, 3341, 3339       0.0       0.0       0.0       0.0       Tons of Ore Processed         5-03-013-01 - General       0.0       0.0       0.0       0.0       Tons of Ore Processed         5-03-014-02 - Reduction Kiln       0.0       0.0       0.0       Tons processed         5-03-014-03 - Dryers/Calciners       0.0       0.42       0.04       Tons Processed         5-03-014-03 - Dryers/Calciners       0.0       0.42       0.04       Tons Processed         5-03-014-09 - Other Not Classified XXX XXX XXX       XXX XXX XXX XXX XXX XXX XXX Tons Processed       Tons Processed         5-03-014-99 - Other Not Classified XXX XXX XXX XXX XXX XXX XXX XXX XXX X	-03-011-02 -	Milling: General			0.0	0.0	0.0	0.0	••••	
-03-012-01 - Chlorination         0.0       0.0       0.0         Tons Product         -03-012-02 - Drying Titanium Sand       0.5       0.43         0.004         Tons of Ore Processed         0-03-012-09 - Other Not Classified       XXX       XXX       XXX       XXX       XXX       XXX       XXX       Tons of Ore Processed         3-03-012-99 - Other Not Classified       XXX       XXX       XXX       XXX       XXX       XXX       XXX       Tons of Ore Processed         3-03-012-99 - Other Not Classified       XXX       XXX       XXX       XXX       XXX       XXX       XXX       Tons of Ore Processed         3-03-012-99 - Other Not Classified         0.0       0.0       0.0        Tons of Ore Processed         3-03-013-01 - General         0.0       0.0       0.0        Tons of Ore Processed         3-03-014-01 - Ore Grinding         0.0       0.42       0.04        Tons Processed         3-03-014-02 - Reduction Kiln         0.0       0.42       0.04        Tons Processed	-03-011-99 - 0	Other Not Classified	XXX	ххх	XXX	XXX	XXX	XXX	XXX	
IndicationInternationInternationInternationInternationInternationInternationInternationI-03-012-02 - Drying Titanium Sand0.50.430.004InternationGold Processing - 1041, 3341, 33393-03-013-01 - General0.00.00.00.0Barium Ore Processing - 32953-03-014-01 - Ore Grinding0.00.00.0Tons of Ore Processed3-03-014-02 - Reduction Kitn0.00.00.0Tons Processed3-03-014-03 - Dryers/Calciners0.00.420.04Tons Processed3-03-014-99 - Other Not ClassifiedXXXXXXXXXXXXXXXXXXXXXXXX3-03-014-99 - Other Not ClassifiedXXXXXXXXXXXXXXXXXXXXXXXX3-03-014-99 - Other Not ClassifiedXXXXXXXXXXXXXXXXXXXXXXXXXXX3-03-014-99 - Other Not ClassifiedXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX <td< td=""><td><u>Titanium F</u></td><td>Processing - 333</td><td><u>39, 3369, 3</u></td><td><u>3356, 336</u></td><td><u>4</u></td><td></td><td></td><td></td><td></td><td></td></td<>	<u>Titanium F</u>	Processing - 333	<u>39, 3369, 3</u>	<u>3356, 336</u>	<u>4</u>					
Ore (Cyclone Exit)       Ore (Cyclone Exit)         3-03-012-99 - Other Not Classified       XXX       XXX       XXX       XXX       XXX       XXX       XXX       Tons Processed         Gold Processing - 1041, 3341, 3339         0.0       0.0       0.0       0.0        Tons of Ore Processed         Barium Ore Processing - 3295         0.0       0.0       0.0        Tons Processed         5-03-014-01 - Ore Grinding         0.0       0.0       0.0        Tons Processed         5-03-014-02 - Reduction Kiln         0.0       0.42       0.04         Tons Processed         5-03-014-02 - Reduction Kiln         0.0       0.42       0.04         Tons Processed         5-03-014-03 - Dryers/Calciners         0.004         Tons Processed         5-03-014-99 - Other Not Classified       XXX       XXX       XXX       XXX       XXX       XXX       Tons Processed         5-03-014-99 - Other Not Classified       XXX       XXX       XXX       XXX       XXX       XXX <td< td=""><td></td><td></td><td></td><td></td><td>0.0</td><td>0.0</td><td></td><td></td><td></td><td></td></td<>					0.0	0.0				
Gold Processing - 1041, 3341, 3339         (-03-013-01 - General         0.0       0.0       0.0       0.0        Tons of Dre Processed         Barium Ore Processing - 3295         (-03-014-01 - Ore Grinding         0.0       0.0       0.0        Tons of Dre Processed         (-03-014-01 - Ore Grinding         0.0       0.0       0.0         Tons Processed         (-03-014-02 - Reduction Kiln         0.0       0.42       0.04         Tons Processed         (-03-014-03 - Dryers/Calciners          0.004         Tons Processed         (-03-014-99 - Other Not Classified       XXX       XXX       XXX       XXX       XXX       XXX       XXX       Tons Processed         (-03-023-01 - Primary Crushing       0.2       0.1       0.0       0.0         Tons Pellets Produced         (-03-023-02 - Fines Crushing       79.8       67.8       0.0       0.0         Tons Pellets Produced			0.5	0.43		•••	0.004		•••	Tons of Ore Processed
3-03-013-01 - General         0.0       0.0       0.0       0.0        Tons of Ore Processed         Barium Ore Processing - 3295        0.0       0.0       0.0       0.0        Tons of Ore Processed         3-03-014-01 - Ore Grinding         0.0       0.0       0.0        Tons Processed         3-03-014-02 - Reduction Kiln         0.0       0.42       0.04        Tons Processed         3-03-014-03 - Dryers/Calciners         0.0       0.42       0.04        Tons Processed         3-03-014-09 - Other Not Classified       XXX       XXX       XXX       XXX       XXX       XXX       Tons Processed         3-03-023-01 - Primary Crushing       0.2       0.1       0.0       0.0       0.0         Tons Pellets Produced         3-03-023-02 - Fines Crushing       79.8       67.8       0.0       0.0       0.0         Tons Pellets Produced	5-03-012-99 -	Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed
Barium Ore Processing - 3295         3-03-014-01 - Ore Grinding        0.0       0.0       0.0        Tons Processed         3-03-014-02 - Reduction Kiln         0.0       0.42       0.04        Tons Processed         3-03-014-03 - Dryers/Calciners         0.0       0.42       0.04        Tons Processed         3-03-014-03 - Dryers/Calciners         0.004         Tons Processed         3-03-014-99 - Other Not Classified       XXX       XXX       XXX       XXX       XXX       Tons Processed         Taconite Iron Ore Processing - 1011         0.0       0.0         Tons Pellets Produced         3-03-023-01 - Primary Crushing       0.2       0.1       0.0       0.0       0.0         Tons Pellets Produced         3-03-023-02 - Fines Crushing       79.8       67.8       0.0       0.0         Tons Pellets Produced			<u>3341, 3339</u>							
3-03-014-01 - Ore Grinding         0.0       0.0       0.0         Tons Processed         3-03-014-02 - Reduction Kiln         0.0       0.42       0.04         Tons Processed         3-03-014-03 - Dryers/Calciners         0.004         Tons Processed         3-03-014-99 - Other Not Classified       XXX       XXX       XXX       XXX       XXX       XXX       Tons Processed         3-03-014-99 - Other Not Classified       XXX       XXX       XXX       XXX       XXX       Tons Processed         3-03-023-01 - Primary Crushing       0.2       0.1       0.0       0.0       0.0         Tons Pellets Produced         3-03-023-02 - Fines Crushing       79.8       67.8       0.0       0.0       0.0         Tons Pellets Produced					0.0	0.0	0.0	0.0		tons of Ure Processed
3-03-014-02 - Reduction Kiln         0.0       0.42       0.04        Tons Processed         3-03-014-03 - Dryers/Calciners         0.0       0.42       0.04        Tons Processed         3-03-014-03 - Dryers/Calciners          0.004         Tons Processed         3-03-014-99 - Other Not Classified       XXX       XXX       XXX       XXX       XXX       XXX       Tons Processed         3-03-014-99 - Other Not Classified       XXX       XXX       XXX       XXX       XXX       XXX       Tons Processed         5-03-014-99 - Other Not Classified       XXX       XXX       XXX       XXX       XXX       XXX       Tons Processed         5-03-023-01 - Primary Crushing       0.2       0.1       0.0       0.0       0.0         Tons Pellets Produced         3-03-023-02 - Fines Crushing       79.8       67.8       0.0       0.0       0.0         Tons Pellets Produced			<u>3295</u>							
3-03-014-03 - Dryers/Calciners         0.004        Tons Processed         3-03-014-99 - Other Not Classified       XXX       XXX       XXX       XXX       XXX       XXX       Tons Processed         Taconite Iron Ore Processing - 1011         0.00       0.0         Tons Processed         3-03-023-01 - Primary Crushing       0.2       0.1       0.0       0.0       0.0         Tons Pellets Produced         3-03-023-02 - Fines Crushing       79.8       67.8       0.0       0.0       0.0         Tons Pellets Produced		-								
3-03-014-03       Differs/Catchiers       The Processing         3-03-014-99       - Other Not Classified       XXX       XXX       XXX       XXX       XXX       XXX       Tons Processed         Taconite Iron Ore Processing       - 1011       - 0.1       0.0       0.0       0.0         Tons Pellets Produced         3-03-023-02       - Fines Crushing       79.8       67.8       0.0       0.0       0.0         Tons Pellets Produced										
Taconite Iron Ore Processing - 1011G-03-023-01 - Primary Crushing0.20.10.00.0G-03-023-02 - Fines Crushing79.867.80.00.00.00.00.00.00.00.00.00.00.00.00.00.00.10.00.20.10.30.00.30.00.40.00.50.00.60.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.00.70.0 <td></td>										
-03-023-01 - Primary Crushing         0.2         0.1         0.0         0.0         0.0           Tons Pellets Produced           -03-023-02 - Fines Crushing         79.8         67.8         0.0         0.0         0.0           Tons Pellets Produced					XXX	XXX	***	***	***	Ions Processed
-03-023-02 - Fines Crushing 79.8 67.8 0.0 0.0 0.0 Tons Pellets Produced										
		•								
5-05-023-03 - Ore Screening 0.05 0.0 0.0 0.0 Tons Pellets Produced		-								
	5-05-023-03 -	Ore Screening		0.05	0.0	0.0	0.0			IONS PELLETS PRODUCED

SCC	Process Name	PART	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Taconite	Iron Ore Process	sing - 101	<u>1</u>							
8-03-023-04	- Ore Transfer	0.1	0.085	0.0	0.0	0.0	•••		Tons Pellets F	Produced
8-03-023-05	- Ore Storage			0.0	0.0	0.0			Tons Pellets F	Produced
8-03-023-06	- Dry Grinding/Milling			0.0	0.0	0.0			Tons Pellets F	Produced
	- Bentonite Storage	0.04	0.03	0.0	0.0	0.0			Tons Pellets F	Produced
	- Bentonite Blending	0.22	0.19	0.0	0.0	0.0			Tons Pellets F	roduced
3-03-023-09	- Traveling Grate Feed	0.64	0.54	0.0	0.0	0.0			Tons Pellets F	Produced
	- Traveling Grate	1.32	0.7	0.0	0.0	0.0			Tons Pellets F	Produced
	Discharge									
3-03-023-11	- Chip Regrinding	•••		0.0	0.0	0.0			Tons Pellets F	Produced
	- Indurating Furnace:	29.2	24.8	0.06	1.6	0.004			Tons Pellets A	Produced
00 020 12	Gas Fired									
3-03-023-13	- Indurating Furnace:	29.2	24.8	0.13	0.2	0.003			Tons Pellets I	Produced
	Oil Fired									
3-03-023-14	- Indurating Furnace:	29.2	24.8	0.65	0.04	0.0002			Tons Pellets F	Produced
5 05 025 14	Coal Fired									
3-03-023-15	- Pellet Cooler			0.0	0.0	0.0			Tons Pellets I	Produced
	- Pellet Transfer	3.4		0.0	0.0	0.0			Tons Pellets F	Produced
	- Haul Road: Rock	11.0	6.2	0.0	0.0	0.0	0.0		Vehicle-Miles	
									Traveled	
3-03-023-22	- Haul Road: Taconite	9.3	5.2	0.0	0.0	0.0	0.0		Vehicle-Miles	
									Traveled	
Metal Mi	ining - General Pr	ocesses ·	1011.10	99 (n)						
	- Primary Crushing:	0.5	0.05	0.0	0.0	0.0			Tons of Ore P	rocessed
5-05-024-01	Low Moisture Ore					••••				
7-07-02/-02	- Secondary Crushing:	1.2	0.1	0.0	0.0	0.0			Tons of Ore P	rocessed
3-03-024-02	Low Moisture Ore		•••		••••	••••				
7 07 02/ 07	- Tertiary Crushing:	2.7	0.16	0.0	0.0	0.0			Tons of Ore P	rocessed
3-03-024-03	Low Moisture Ore	2.1	0.10	0.0	0.0	0.0				0003300
	- Material Handling:	0.12	0.06	0.0	0.0	0.0			Tons of Ore P	hessed
3-03-024-04	•••••••••••••••••••••••••••••••••••••••	0.12	0.00	0.0	0.0	0.0				0000300
	Low Moisture Ore	0.02	0.000	0.0	0.0	0.0			Tons of Ore P	record
5-03-024-05	- Primary Crushing:	0.02	0.009	0.0	0.0	0.0			Tons of Ure P	locessed
	High Moisture Ore		0.00			• •				
3-03-024-06	- Secondary Crushing:	0.05	0.02	0.0	0.0	0.0			Tons of Ore P	rocessed
	Kigh Moisture Ore									

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTES
Metal Mir	ning - General F	Processes	- 1011 10	<b>29</b> (a)					
	Tertiary Crushing: High Moisture Ore	0.06	0.02	0.0	0.0	0.0			Tons of Ore Processed
5-03-024-08 -	Material Handling: High Moisture Ore	0.01	0.005	0.0	0.0	0.0			Tons of Ore Processed
-03-024-09 -	Dry Grinding w/ Air Conveying	28.8	20.2	0.0	0.0	0.0			Tons of Ore Processed
-03-024-10 -	Dry Grinding w/o Air Conveying	2.4	2.35	0.0	0.0	0.0		••••	Tons of Ore Processed
8-03-024-11 -	Ore Drying	(p) 19.7	12.0	0.0	1.6	0.004			Tons of Ore Processed
	<u>duction - 3339</u>								
-03-030-02 -	Multiple Hearth Roaster	227.0		1100.0		0.0			Tons of Concentrated Ore Processed
-03-030-03 -	Sinter Strand	90.0		0.65	•	0.0		38.0	Tons of Concentrated Ore Processed
-03-030-05 -	Vertical Retort/ Electrothermal Furnace	100.0		1.13	•••	0.0		4.5	Tons of Concentrated Ore Processed
-03-030-06 -	Electrolytic Processor	3.0	••••		0.0	0.0			Tons of Concentrated Ore Processed
-03-030-07 -	Flash Roaster	2000.0		404.4	•	0.0			Tons of Concentrated Ore Processed
-03-030-08 -	Fluid Bed Roaster	2167.0		223.5		0.0	<b>-</b>		Tons of Concentrated Ore Processed
5-03-030-09 -	Raw Material Handling and Transfer	4.0	3.4	0.0	0.0	0.0	0.0	0.13	Tons Raw Material Processed
5-03-030-10 -	Sinter Breaking and Cooling	1.5	1.3	0.0	0.0	0.0	0.0		Tons Sinter Processed
8-03-030-11 -	Zinc Casting	2.5	2.1	0.0	0.0	0.0	0.0		Tons Zinc Produced
	Raw Material Unloading	0.4	0.23	0.0	0.0	0.0	0.0	0.13	Tons Raw Material Processed
-03-030-14 -	Crushing/Screening			0.0	0.0	0.0	0.0		Tons of Concentrated Ore Processed
-03-030-15	Zinc Melting			0.0	0.0	0.0	0.0		Tons Processed

. . . .

. .

	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD	UNITS NOTES
			LUS/UM			LDS/Unit	LDS/Unit		
7inc Pro	<u>duction - 3339</u>								
-03-030-16			•	0.0	0.0	0.0	0.0		Tons Processed
Fuaitive	Emissions1000	). 3300							
	- Specify in Comments	••••						0.00001	Tons Product
-03-888-02	Field - Specify in Comments								Tons Product
	Field								
03-888-03	- Specify in Comments Field								Tons Product
-03-888-04	• •								Tons Product
03-888-05	Field - Specify in Comments								Tons Product
	Field								
Primarv	Metal Production	n: Other No	ot Classifie	d - 1000	. 3300				
	- Other Not Classified	XXX	XXX	xxx	XXX	ххх	XXX	XXX	Tons Produced
RIMAR	Y METAL PRODU	<u> ICTION - F</u>	UEL FIRE	D EQUIP	<u>MENT</u>				
rocess	Heaters - 1000.	3300							
	- Distillate Oil (No.			143.6 S	20.0	0.2			1000 Gallons Burned
	2) Pasidual Oil								Tooo dectoris builled
07 000 03				159 4 0	<b>FF</b> 0	0.38			
				158.6 S 0.6	55.0 140.0	0.28			1000 Gallons Burned
	- Natural Gas				55.0 140.0	0.28 2.8			
-03-900-03		 							1000 Gallons Burned Million Cubic Feet Burned Million Cubic Feet
-03-900-03 -03-900-04	- Natural Gas - Process Gas		•	0.6	140.0	2.8			1000 Gallons Burned Million Cubic Feet Burned
-03-900-03 -03-900-04 ncinera	- Natural Gas - Process Gas <u>tOrs - 1000, 3300</u>			0.6 950.0 S	140.0	2.8 2.8			1000 Gallons Burned Million Cubic Feet Burned Million Cubic Feet Burned
-03-900-03 -03-900-04 ncinera	- Natural Gas - Process Gas <u>tOrS - 1000, 3300</u> - Distillate Oil (No.		•	0.6	140.0	2.8			1000 Gallons Burned Million Cubic Feet Burned Million Cubic Feet
-03-900-03 -03-900-04 <u>ncinerai</u> -03-900-11	- Natural Gas - Process Gas <u>tOrs - 1000, 3300</u>			0.6 950.0 S	140.0 140.0	2.8 2.8			1000 Gallons Burned Million Cubic Feet Burned Million Cubic Feet Burned
-03-900-03 -03-900-04 <u>ncineraa</u> -03-900-11 -03-900-12	- Natural Gas - Process Gas <u>tOrs - 1000, 3300</u> - Distillate Oil (No. 2)			0.6 950.0 s	140.0 140.0	2.8 2.8 0.4		 	1000 Gallons Burned Million Cubic Feet Burned Million Cubic Feet Burned 1000 Gallons Burned
5-03-900-04 <u>ncinera</u> 5-03-900-11 5-03-900-12 5-03-900-13	- Natural Gas - Process Gas <u>tors - 1000, 3300</u> - Distillate Oil (No. 2) - Residual Oil		···· ····	0.6 950.0 s	140.0 140.0	2.8 2.8 0.4 0.56	 	 	1000 Gallons Burned Million Cubic Feet Burned Million Cubic Feet Burned 1000 Gallons Burned

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Incinera	tors - 1000, 3300								Burned	
	<u>1000, 3300</u> - Distillate Oil (No. 2)								1000 Gal. Burned	
3-03-900-22	- Residual Oil								1000 Gal. Burned	
3-03-900-23	- Natural Gas					5.6			Million Cubic Fee	t
3-03-900-24	- Process Gas					5.6		•••	Burned Million Cubic Fee Burned	t

## **SECONDARY METAL PRODUCTION - MAJOR GROUPS 33 & 34**

Secondary Aluminum Production - 3341, 3353, 3354, 3355, 3363, 3365

Lot 001 01 Sugarian Furnage	14.5	13.3	3.5	0.6	2.4	<u> </u>		Tons Produced
3-04-001-01 - Sweating Furnace								
5-04-001-02 - Smelting Furnace/	1.9	1.7	2.5	1.7	2.5			Tons of Metal
Crucible	. –							Produced
5-04-001-03 - Smelting Furnace/	4.3	2.6	0.9	0.76	0.2			Tons of Metal
Reverberatory								Produced
-04-001-04 - Fluxing:	1000.0	532.0	0.0	0.0	0.0	0.0		Tons of Chlorine Used
Chlorination								
5-04-001-05 - Fluxing:			0.0	0.0	0.0			Tons of Metal
Fluoridation								Produced
5-04-001-06 - Degassing			0.0	0.0	0.0	0.0		Tons of Metal
								Produced
5-04-001-07 - Hot Dross Processing	0.22	0.2	0.0	0.0	0.0	0.0		Tons of Metal
······	••==							Produced
-04-001-08 - Crushing/Screening			0.0	0.0	0.0	0.0		Tons of Metal
								Produced
-04-001-09 - Burning/Drying			3.0	0.5	32.0			Tons of Metal
berning/brying			510		5210			Produced
5-04-001-10 - Foil Rolling					1.3	0.0		Tons Product
-					2.4	0.0	•	Tons Produced
5-04-001-11 - Foil Converting		•••				0.0		
3-04-001-12 - Annealing Furnace			0.0	1.5	0.004			Tons of Metal
								Produced

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Seconda	ary Aluminum Pro	duction -	3341 335	3.3354	3355.3	363 336	35			
	<ul> <li>Slab Furnace</li> </ul>			0.0	1.5	0.004	<u></u>		Tons of Metal	
				••••		•••••			Produced	
3-04-001-14	- Pouring/Casting			0.02	0.01	0.14			Tons of Metal	Charged
	- Can Manufacture				0.7	300.0	0.0		Tons Produced	
3-04-001-50	<ul> <li>Rolling/Drawing</li> </ul>				0.7	0.09	0.0		Tons Produced	
	/Extruding									
3-04-001-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Produced	
Seconda	ary Copper Produ	uction - 33	41. 3364.	3366						
	- Scrap Dryer (Rotary)	275.0	253.0	1.5	18.0	0.004			Tons of Charge	
	- Wire Burning:	275.0	253.0	12.8	1.7	0.6			Tons of Charge	
	Incinerator									
3-04-002-09	- Sweating Furnace	15.0	13.8			0.12			Tons of Charge	
3-04-002-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Produced	
Seconda	arv Copper Produ	iction - Ci	inolas - 33	41 3364	4. 3369					
	- Charge w/ Scrap	0.0003	0.00027			0.18			Tons of Charge	
5 04 002 10	Copper	0.0005	0100027			0.10			Tons of charge	
3-04-002-11	- Charge w/ Insulated	230.0	211.6			447.0			Tons of Coke-f	rée
	Copper Wire		2						Charge	
3-04-002-12	- Charge w/ Scrap	70.0	64.4			0.18			Tons of Charge	
	Copper and Brass								fond of ond ge	
Second	ary Copper Produ	iction - Re	verherato	n, Furna	CA - 334	1 3364	3360			
	- Charge w/ Copper	5.1	5.1	<u>y i uma</u>		<u>5.2</u>			Tama of Change	
	- Charge w/ Brass and	36.0	21.2		0.08	5.2			Tons of Charge Tons of Charge	
3-04-002-13	Bronze	30.0	21.2		0.08	5.2			Tons of Charge	
Second	ary Copper Produ	iction - Re	tany Euroa	000 - 334	1 3361	3360				
		300.0	177.0	100- 004						
3-04-002-17	- Charge w/ Brass and Bronze	300.0	177.0		0.6	2.4			Tons of Charge	
Soconde	ary Copper Produ	intion - Cr	ucible & P	ot Euroo	00 224	1 2261	2260			
					00-004		, 3309			
5-04-002-19	- Charge w/ Brass and	21.0	12.4	0.5		6.7			Tons of Charge	
	Bronze									

-

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Seconda	ry Copper Prod	uction - El	ectric Arc I	Furnace	- 3341.3	3364, 33	369			
	Charge w/ Copper	5.0	5.0			3.9			Tons of Charge	
	Charge w/ Brass and Bronze	11.0	6.5	0.03		0.0			Tons of Charge	
Seconda	ry Copper Prod	uction - El	ectric Indu	ction - 3	<u>341, 336</u>	<u>. 3369</u>	)			
3-04-002-23 -	Charge w/ Copper	7.0	7.0			0.0			Tons of Charge	
3-04-002-24 -	- Charge w/ Brass and Bronze	20.0	20.0	0.03		0.0			Tons of Charge	
Seconda	ry Copper Prod	luction - Fu	iqitive Emi	ssions - S	3341, 33	64, 336				
3-04-002-30				0.0	0.0	0.0			Tons of Charge	
3-04-002-31	Scrap Dryer	13.75	8.2	0.0	0.0	0.0			Tons of Charge	
3-04-002-32	Wire Incinerator	13.75	8.2	0.0	0.0	0.0			Tons of Charge	
3-04-002-33	- Sweating Furnace	0.75	0.45	0.0	0.0	0.0		•••	Tons of Charge	
Seconda	ry Copper Prod	uction- Fu	gitive Emis	sions - 3	341, 33	<u>64, 336</u>	9			
3-04-002-34	Cupola Furnace	3.66	2.2	0.0	0.0	0.0			Tons of Charge	
Seconda	ry Copper Prod	luction - Fu	igitive Emi	ssions	<u>3341, 33</u>	64, 336	<u>9</u>			
3-04-002-35	- Reverberatory Furnace	5.27	3.1	0.0	0.0	0.0			Tons of Charge	
3-04-002-36	- Rotary Furnace	4.43	2.6	0.0	0.0	0.0			Tons of Charge	
3-04-002-37	- Crucible Furnace	0.49	0.29	0.0	0.0	0.0			Tons of Charge	
3-04-002-38	- Electric Induction Furnace	0.14	0.08	0.0	0.0	0.0			Tons of Charge	
3-04-002-39	- Casting Operations	0.015	0.015					••••	Tons of Castings Produced	
Gray Iror	<u>n Foundries - 33</u>	21								
3-04-003-01		13.8	12.4	0.9	0.1	0.18	145.0	0.51	Tons of Metal Ch	-
3-04-003-02	<ul> <li>Reverberatory</li> <li>Furnace</li> </ul>	2.1	1.7	180.0	5.8	0.15	0.0	0.06	Tons of Metal Ch	arged
3-04-003-03	- Electric Induction Furnace	0.9	0.86	0.0	0.0	0.0	0.0	0.0425	Tons of Metal Ch	arged

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTE:
Grav Iroi	n Foundries - 332	1							
	- Electric Arc Furnace	12.7	11.4	0.25	0.32	0.18	19.0		Tons of Metal Charged
					1.0	0.1			Tons Processed
	- Annealing Operation	4.0	3.2			0.005			Tons of Metal
3-04-003-10 -	- Inoculation	4.0	5.2			0.005			Inoculated
7-0/-003-15	- Charge Handling	0.6	0.36	0.0	0.0	0.0			Tons of Metal Charged
	- Pouring/Casting	2.8	2.8	0.02	0.01	0.14			Tons of Metal Charged
	- Castings Cooling	1.4	1.4	0.0	0.0	0.0			Tons of Metal Charged
	- Casting Shakeout	3.2	2.24	0.0	0.0	1.2			Tons of Metal Charged
	- Casting Knock Out	5.2		0.0	0.0	1.2		<b>.</b>	Tons Sand Handled
	- Shakeout Machine			0.0	0.0	1.2			Tons Sand Handled
	- Grinding/Cleaning	17.0	1.7	0.0	0.0	0.0	0.0		Tons of Metal Charged
	- Casting Cleaning/			0.0	0.0	0.0			Tons Castings Cleaned
5-04-005-41	- Lasting Lleaning/ Tumblers			0.0	0.0	0.0			Tons castrings created
3-04-003-42	- Casting Cleaning/			0.0	0.0	0.0	•••		Tons Castings Cleaned
	Chippers								
3-04-003-50	- Sand Grinding / Handling	0.65 (c)	0.54	0.0	0.0	0.0	•••		Tons Sand Handled
3-04-003-51	- Core Ovens	2.71 (c)	2.22	0.32	0.5	0.0008			Tons Sand Handled
3-04-003-52	- Sand Grinding /	40.0	6.0	0.0	0.0	0.0			Tons of Metal Charged
	Handling								
3-04-003-53	- Core Ovens	3.6	0.9	0.32	0.5	0.0008			Tons of Metal Charged
3-04-003-54	- Core Ovens			0.33	0.5	0.0008			Gallons of Core Oil
									Used
3-04-003-55	- Sand Dryer			0.0	1.6	0.004			Tons Sand Handled
3-04-003-56				0.0	0.0	0.0			Tons Sand Handled
3-04-003-57	- Conveyors/Elevators	•		0.0	0.0	0.0			Tons Sand Handled
	- Sand Screens			0.0	0.0	0.0			Tons Sand Handled
	- Castings Finishing	0.01 (c)	0.0045	0.0	0.0	0.0			Tons of Metal Charged
	- Shell Core Machine			0.32	0.5	0.0008			Tons of Cores
									Produced
3-04-003-71	- Core Machines/Other			0.32	0.5	0.0008			Tons of Cores
									Produced
3-04-003-98	- Other Not Classified								Gallons
	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons of Metal Charged

e

SCC	Process Name	PART	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD	UNITS NOTES
		Lbs/Unit	LDS/Unit	LDS/Unit	LDS/Unit	LDS/Unit		Lbs/Unit	
Secondar	v Lead Production	on - 3341.	. 3364						
3-04-004-01 -		0.8	0.2	0.0	0.0	0.0	0.0	0.2	Tons of Metal Charged
3-04-004-02 -		323.0	193.8	80.0	0.3	0.0		34.0	Tons of Metal Charged
3-04-004-03 -		307.0	129.0	53.0	0.1	0.0	••••	44.0	Tons of Metal Charged
3-04-004-04 -	Rotary Sweating Furnace	70.0	64.0	••••		0.0		16.1	Tons of Metal Charged
3-04-004-05 -	Reverberatory Sweating Furnace	51.0	31.0			0.0		11.73	Tons of Metal Charged
3-04-004-06 -	Pot Furnace Heater: Distillate Oil			144.0 S	20.0	0.2			1000 Gallons Burned
3-04-004-07 -	Pot Furnace Heater: Natural Gas			0.6	140.0	2.8			Million Cubic Feet Burned
	Barton Process Reactor (Oxidation Kettle)	40.0	40.0	0.0	0.0	0.0	0.0	0.44	Tons Lead Oxide Produced
3-04-004-09 -	••••••	0.87	0.87	0.0	0.0	0.0	0.0	0.2	Tons of Lead Cast
	Battery Breaking	•••		0.0	0.0	0.0	0.0		Tons of Metal Charged
	Scrap Crushing			0.0	0.0	0.0	0.0		Tons of Metal Charged
3-04-004-12 -	Sweating Furnace: Fugitive Emissions	2.55	2.35			/ <b>0.0</b>		1.1	Tons of Metal Charged
3-04-004-13 -	Smelting Furnace: Fugitive Emissions	16.5	10.0		•••	0.0		2.1	Tons of Metal Charged
3-04-004-14 -	Kettle Refining: Fugitive Emissions	0.002	0.002			0.0		0.01	Tons of Metal Charged
3-04-004-99 -	Other Not Classified	XXX	XXX	XXX	XXX	XXX	ХХХ	0.0001	Tons Processed
Lead Batt	ery Manufacture	<u>- 3691</u>							
3-04-005-05 -	Overall Process	139.0	125.0	0.0	0.0	0.0	0.0	15.3	1000 Batteries Produced
3-04-005-06 -	Grid Casting	2.84	2.84	0.0	0.0	0.0	0.0	0.77	1000 Batteries Produced
3-04-005-07 -	Paste Mixing	3.92	3.92	0.0	0.0	0.0	0.0	2.49	1000 Batteries Produced
3-04-005-08 -	Lead Oxide Mill	0.11	0.08	0.0	0.0	0.0	0.0	0.11	1000 Batteries

٠

•

• •

• •

۰,

SCC	Process Name	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Lead Batt	ery Manufacture	- 3691								
	(Baghouse Outlet)								Produced	
3-04-005-09 -		84.0	84.0	0.0	0.0	0.0	0.0	10.6	1000 Batteries	
	Operation	••••							Produced	
	Lead Reclaiming	6.68	1.67	0.0	0.0	0.0	0.0	1.38	1000 Batteries	
	Furnace								Produced	
3-04-005-11 -	Small Parts Casting	0.19	0.19	0.0	0.0	0.0	0.0	0.1	1000 Batteries	
									Produced	
3-04-005-12 -	Formation	32.4	32.4	0.0	0.0	0.0	0.0		1000 Batteries	
									Produced	
3-04-005-13 -	Barton Process:			0.0	0.0	0.0			Tons Processed	
	Oxidation Kettle									
3-04-005-21 -	Overall Process			0.0	0.0	0.0			Tons Processed	
3-04-005-22 -	Grid Casting			0.0	0.0	0.0	••••		Tons Processed	
3-04-005-23 -	Paste Mixing			0.0	0.0	0.0			Tons Processed	
3-04-005-24 -	Lead Oxide Mill			0.0	0.0	0.0			Tons Processed	
	(Baghouse Outlet)									
3-04-005-25 -				0.0	0.0	0.0			Tons Processed	
	Operation			• •						
3-04-005-26 -	Lead Reclaiming			0.0	0.0	0.0			Tons Processed	
	Furnace									
• • • • • • •	Small Parts Casting			0.0	0.0	0.0		•••	Tons Processed	
3-04-005-28 -				0.0	0.0	0.0			Tons Processed	
3-04-005-29 -	Grid Cast/Paste Mix:		7.44						1000 Batteries	
	Combined Operation								Produced	
	Paste Mix/Lead		4.32						1000 Batteries	
	Charge: Combined								Produced	
	Operation									
3-04-005-99 -	Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed	
Magnesiu	ım - 3341									
3-04-006-01 -		4.0	3.7		2.5	2.4			Tons Processed	
• • • • • • • •	Other Not Classified	XXX	xxx	XXX	XXX	XXX	XXX	XXX	Tons Processed	
Steel Fou	ndries - 3324. 33	325								
	Electric Arc Furnace	<u>525</u> 13.0	6.3	0.25	0.2	0.35			Tons Metal Proce	eeed
	Open Hearth Furnace	11.0	9.4	0.25	0.01	0.35			Tons Metal Proce	
J-04-00/-02 -	open nearth runnace	11.0	7.4		0.01	0.17				33CU

	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS NOTE
	Name	Lbs/Unit							
Steel Fou	undries - 3324, 33	325							
	<ul> <li>Open Hearth Furnace</li> <li>W/ Oxygen Lance</li> </ul>	10.0	8.5		0.0	0.17			Tons Metal Processed
-04-007-04	- Heat Treating - Furnace			470.0	80.0	0.02			Tons Metal Processed
-04-007-05	- Electric Induction Furnace	0.1	0.09	0.0	0.0	0.0	0.0		Tons Metal Processed
6-04-007-06	- Sand Grinding / Kandling	0.65	0.54	0.0	0.0	0.0	•••		Tons Sand Processed
8-04-007-07	- Core Ovens	2.71	2.22	0.32	0.05	0.0008			Tons Sand Processed
-04-007-08	- Pouring/Casting	5.0 (c)	5.0	0.02	0.01	0.14			Tons Metal Processed
5-04-007-09	- Casting Shakeout	32.0 (c)	26.2		2.4	1.2	•••		Tons Metal Processed
8-04-007-10	- Casting Knock Out					1.2			Tons Sand Handled
-04-007-11	•	17.0 (c)	1.7	0.0	0.0	0.0			Tons Metal Processed
-04-007-12	- Charge Handling	0.6 (c)	0.36			0.0			Tons Metal Processed
	- Castings Cooling	10.0 (c)	10.0	0.0	. 0.0	0.0			Tons Metal Processed
	- Shakeout Machine					1.2			Tons Sand Handled
6-04-007-15	- Finishing	0.01 (c)	0.0045	0.4	87.0	1.1			Tons Metal Processed
-04-007-16	- Sand Grinding / Handling	40.0 (c)	6.0	0.0	0.0	0.0			Tons Metal Processed
8-04-007-17	- Core Ovens	1.1	0.9	0.32	0.05	0.0008			Tons Metal Processed
5-04-007-18	- Core Ovens			0.33	0.05	0.0008			Gallons of Core Oil Used
3-04-007-20	- Sand Dryer			0.0	1.6	0.004			Tons Sand Handled
6-04-007-21	•			0.0	0.0	0.0			Tons Sand Handled
5-04-007-22									Tons Sand Handled
	- Converyors/Elevators		•••	0.0	0.0	0.0			Tons Sand Handled
	- Sand Screens			0.0	0.0	0.0			Tons Sand Handled
8-04-007-25	- Casting Cleaning / Tumblers			0.0	0.0	0.0		•	Tons Castings Cleaned
8-04-007-26	- Casting Cleaning / Chippers			0.0	0.0	0.0			Tons Castings Cleaned
3-04-007-30	- Shell Core Machine			0.32	0.5	0.0008			Tons of Cores Produced
3-04-007-31	- Core Machines/Other			0.32	0.5	0.0008			Tons of Cores Produced

SCC Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Steel Foundries - 3324.	3325								
3-04-007-99 - Other Not Classifie		XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed	
Secondary Zinc Produc	tion - 3341								
3-04-008-01 - Retort Furnace	47.0	47.0			0.0			Tons Produced	
3-04-008-02 - Horizontal Muffle Furnace	45.0	45.0			2.4			Tons Produced	
3-04-008-03 - Pot Furnace	0.1	0.09	0.0	1.9	2.4			Tons Produced	
3-04-008-05 - Galvanizing Kettle	5.0	5.0	0.0	0.4	0.0	•••		Tons Zinc Used	
3-04-008-06 - Calcining Kiln	89.0	78.0	18.3		0.06			Tons Produced	
3-04-008-07 - Concentrate Dryer					0.004			Tons Processed	
3-04-008-09 - Rotary Sweat Furnac	e 18.0	16.6		0.2	2.4			Tons Produced	
3-04-008-10 - Muffle Sweat Furnac	e 21.4	19.7			2.4			Tons Produced	
3-04-008-11 - Electric Resistance Sweat Furnace	10.0	10.0			2.4			Tons Produced	
3-04-008-12 - Crushing/Screening	4.25	2.2	0.0	0.0	0.0			Tons	
of Zinc Residues				•				Residues/Skimming Processed	js
3-04-008-14 - Kettle-Sweat Furnac (Clean Metallic Scrap)	e 0.0	0.0			0.0		•••	Tons Produced	
3-04-008-18 - Reverberatory Sweat Furnace (Clean Metallic Scrap)	0.0	0.0			0.0			Tons Produced	
3-04-008-24 - Kettle-Sweat Furnac (General Metallic Scrap)	e 11.0	11.0			2.4			Tons Produced	
3-04-008-28 - Reverb. Sweat Furnace (General Metallic Scrap)	13.0	13.0			2.4			Tons Produced	
3-04-008-34 - Kettle-Sweat Furnac (Residual Metallic Scrap)	e 25.0	15.0			2.4			Tons Produced	
3-04-008-38 - Reverb. Sweat Furnace (Residual Metallic Scrap)	32.0	19.0			2.4			Tons Produced	

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS N	OTES
Second	ary Zinc Productic	on - 3341								
3-04-008-40						0.0			Tons Produced	
	- Scrap Melting: Crucible					2.5			Tons Produced	
3-04-008-42	- Scrap Melting: Reverberatory Furnace					5.2			Tons Produced	
3-04-008-43	- Scrap Melting: Electric Induction Furnace					0.18			Tons Produced	
3-04-008-51	- Retort and Muffle Distillation: Pouring	0.6	0.6			0.0			Tons Produced	
3-04-008-52	Performed Auffle Pistillation: Casting	0.3	0.3	•••		0.0			Tons Produced	
3-04-008-53	- Graphite Rod Distillation		0.0			0.0			Tons Produced	
3-04-008-54	<ul> <li>Retort Distillation</li> <li>/ Oxidation</li> </ul>	30.0	30.0	20.0	7.9	0.0			Tons of Zinc Oxide Produced	
3-04-008-55	<ul><li>Muffle Distillation</li><li>/ Oxidation</li></ul>	30.0	30.0	40.0	110.0	0.0		•••	Tons of Zinc Oxide Produced	
3-04-008-61	- Reverberatory Sweating	1.3	0.78			2.4			Tons Produced	
3-04-008-62	2 - Rotary Sweating	0.9	0.54			2.4			Tons Produced	
	5 - Muffle Sweating	1.07	0.64			2.4	•••		Tons Produced	
3-04-008-64	- Kettle (Pot) Sweating	0.56	0.34			2.4			Tons Produced	
3-04-008-65	5 - Electric Resistance Sweating	0.5	0.5			2.4			Tons Scrap Processed	
3-04-008-66	5 - Sodium Carbonate Leaching		•••	0.0	0.0	0.0			Tons Produced	
3-04-008-67	7 - Kettle (Pot) Melting Furnace	0.005	0.005			2.4			Tons Produced	
3-04-008-68	B - Crucible Melting Furnace	0.005	0.005			2,5	•••		Tons Produced	

• *

SCC Proce	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	<u></u>	
Seconda	ary Zinc Productic	on - 3341								
	- Reverberatory	0.005	0.005			5.2			Tons Produced	
, 04 000 07	Melting Furnace	0.005	0.000							
-04-008-70	- Electric Induction	0.005	0.005			0.18			Tons Produced	
	Melting Furnace									
5-04-008-71	- Alloying Retort					0.0			Tons Produced	
	Distillation									
3-04-008-72	- Retort and Muffle	2.36	2.36			0.0			Tons Produced	
	Distillation									
3-04-008-73	- Casting	0.015	0.015			0.0			Tons Produced	
5-04-008-74	- Graphite Rod		0.0			0.0			Tons Produced	
	Distillation									
3-04-008-75	- Retort Distillation	•••				0.0			Tons Produced	
	/Oxidation									
3-04-008-76	- Muffle Distillation					0.0			Tons Produced	
	/Oxidation									
3-04-008-77	- Retort Reduction					0.0			Tons Produced	
3-04-008-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed	
Mallaab	la Iran 2222									
	<u>le Iron - 3322</u>				• •				Tama of Natal C	
	- Annealing				0.6	0.1			Tons of Metal C	-
3-04-009-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons of Metal C	narged
Nickel P	roduction - 3341									
	- Flux Furnace			0.0	1.5	0.004			Tons Processed	
	- Mixing/Blending/			0.0	0.0	0.0			Tons Processed	
	Grinding/Screening									
3-04-010-04	- Heat Treat Furnace			0.0	1.5	0.004			Tons Processed	
	- Induction Furnace			0.03		0.0			Tons Processed	
	(Inlet Air)									
3-04-010-06	- Induction Furnace			0.03		0.0	•••		Tons Processed	
	(Under Vacuum)									
	- Electric Arc Furnace			57.3	0.003	0.1			Tons Processed	
3-04-010-07										
3-04-010-07	w/ Carbon Electrode									
-	<pre>w/ Carbon Electrode - Electric Arc Furnace</pre>	•••		0.25	0.32	0.18			Tons Processed	

~

	· · · · · · · · · · · · · · · · · · ·									
SCC	Process Name	PART Lbs/Unit	<b>PM10</b> Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Nickel P	roduction - 3341						<u> </u>			
	/Neutralizing									
3-04-010-11	- Finishing: Grinding			0.0	0.0	0.0			Tons Processed	
3-04-010-15	- Multiple Hearth								Tons Processed	
	Roaster									
3-04-010-16	- Converters								Tons Processed	
3-04-010-17	<ul> <li>Reverberatory</li> <li>Furnace</li> </ul>								Tons Processed	
3-04-010-18	- Electric Furnace								Tons Processed	
3-04-010-19	- Sinter Machine								Tons Processed	
3-04-010-61	<ul> <li>Roasting: Fugitive</li> <li>Emissions</li> </ul>								Tons Produced	
3-04-010-62	<ul> <li>Reverberatory</li> <li>Furnace: Fugitive</li> <li>Emissions</li> </ul>								Tons Produced	
3-04-010-63	- Converter: Fugitive Emissions								Tons Produced	
3-04-010-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed	
Furnace	Electrode Manufa	acture - 3	624							
	- Calcination					0.06			Tons Processed	
3-04-020-02	- Mixing			0.0	0.0	0.0	0.0		Tons Processed	
	- Pitch Treating			0.0	0.0	0.0			Tons Processed	
	- Bake Furnaces			1.6		1.0			Tons Processed	
	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	· XXX	Tons Processed	
Metal He	eat Treating - 339	8								
	- Furnace: General			0.0	4.0	0.1	•••		Tons Processed	

Tons Processed

Tons Processed

Gallons Used

Lead Cable Coating - 3357,	<u>3315</u>
3-04-040-01 - General	0.6

3-04-022-10 - Quench Bath

3-04-022-11 - Quenching

. '

۰,

## Miscellaneous Casting and Fabricating - 3300

- - -

- - -

0.0

---

- - -

---

---

0.36

0.0

---

---

280.0

---

- - -

---

- - -

- - -

---

---

---

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Miscella	neous Casting an	d Fabrica	tina - 3300	 )						
	- Wax Burnout Oven	XXX	XXX	<u> </u>	ХХХ	XXX	XXX	XXX	Tons Burned	
	- Other Not Classified								Tons Produced	
	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Each	
Fugitive	Emissions - 3300.	, 3400								
	- Specify in Comments Field							0.0001	Tons Product	
<b>3-04-888-</b> 02	- Specify in Comments							••••	Tons Product	
3-04-888-03	Field - Specify in Comments						<b></b>		Tons Product	
3-04-888-04									Tons Product	
3-04-888-05	Field - Specify in Comments Field								Tons Product	
Seconda	ary Metal Product	ion: Other	Not Class	sified - 3	300. 340	00				
	- Specify in Comments Field	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed	
SECONL	DARY METAL PRO	DUCTIO	<u>N - FUEL F</u>	IRED EC	UIPMEI	<u>VT</u>				
Process	Heaters - 3300, 3	3400								
	- Distillate Oil (No.			143.6 S	20.0	0.2			1000 Gallons Burn	ned
3-04-900-02	2) - Residual Oil			158.6 S	55.0	0.28			1000 Gallons Burn	ned
	- Natural Gas			0.6	140.0	2.8			Million Cubic Fee Burned	et
3-04-900-04	- Process Gas	•••		950.0 S	140.0	2.8			Million Cubic Fee Burned	et
Incinera	tors - <u>3300, 3400</u>									
	- Distillate Oil (No. 2)					0.4			1000 Gallons Burn	ned
	- Residual Oil					0.56			1000 Gallons Burr	a d

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTE
Incinera	tors - 3300, 3400	)							
	- Natural Gas	·				5.6			Million Cubic Feet Burned
3-04-900-14	- Process Gas					5.6			Million Cubic Feet Burned
Flares	<u>3300, 3400</u>								
3-04-900-21	- Distillate Oil (No. 2)	•••	•••						1000 Gal. Burned
3-04-900-22	- Residual Oil								1000 Gal. Burned
3-04-900-23	- Natural Gas				•	5.6			Million Cubic Feet Burned
3-04-900-24	- Process Gas					5.6			Million Cubic Feet Burned
Furnace	s - 3300, 3400								
3-04-900-31	- Distillate Oil								1000 Gallons Burned
3-04-900-32	- Residual Oil								1000 Gallons Burned
3-04-900-33	- Natural Gas		•••						Million Cubic Feet Burned
3-04-900-34	- Process Gas								Million Cubic Feet Burned

. .

## MINERAL PRODUCTS - MAJOR GROUPS 11, 12, 14, 28, 29, 32, & 44

Asphalt Roofing Manufac	ture - 2952	2					
3-05-001-01 - Asphalt Blowing:	7.2	6.8	0.0	0.0	1.46	0.27	 Tons Asphalt
Saturant							Processed
3-05-001-02 - Asphalt Blowing:	26.7	25.0	0.0	0.0	1.86	0.27	 Tons Asphalt
Coating							Processed
3-05-001-03 - Felt Saturation:	0.5	0.5	0.0	0.0	0.02	0.02	 Tons Asphalt Shingle
Dipping Only							
3-05-001-04 - Felt Saturation:	3.14	2.26	0.0	0.0	0.03	0.25	 Tons Asphalt Shingle
Dipping/Spraying							
3-05-001-10 - Blowing			0.0	0.0	0.09	•••	 Tons Saturated Felt

· ·

. .

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTES
Asnhalt F	Roofing Manufact	ure - 295	2			A W W Look -			
	- Dipping Only	<u>uic 2001</u>		0.0	0.0	0.02			Tons Saturated Felt
	- Spraying Only			0.0	0.0	0.01			Tons Saturated Felt
	- Dipping/Spraying			0.0	0.0	0.03			Tons Saturated Felt
	- Other Not Classified								Gallons
Asphaltic	Concrete - 2951	1							
	- Rotary Dryer:	- 45.0	6.1	0.073	0.036	0.028	0.038		Tons Produced
3-03-002-01	Conventional Plant	43.0	0.1	0.075	0.030	0.020	0.050		Tons Produced
7-05-002-02		0.2	0.03	0.09	0.03	0.0			Tons Produced
3-03-002-02	- Hot Elevators,	0.2	0.05	0.07	0.05	0.0			Tons Produced
	Screens, Bins and Mixer								
7 05 002 07	- Storage Piles	0.33	0.12			0.0			Tons Processed
	- Cold Aggregate	0.35	0.04	0.12	0.0	0.13			Tons Processed
3-03-002-04	Handling	0.1	0.04	0.12	0.0	0.15			Tons Frocessed
1-05-002-05	- Drum Dryer: Hot	4.9	1.1	0.0	0.0	0.0	0.0		Tons of Asphalt
3-03-002-03	Asphalt Plants	4.7		•••	•••		••••		Concrete
3-05-002-06	- Asphalt Heater:			0.6	140.0	2.8			Million Cubic Feet
J-0J-002-00	Natural Gas								Burned
3-05-002-07	- Asphalt Heater:			159.0 s	55.0	0.28			1000 Gallons Burned
J-0J-002-07	Residual Oil				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•••==			
3-05-002-08	- Asphalt Heater:			144.0 S	20.0	0.2			1000 Gallons Burned
J 0J 002 00	Distillate Oil								
3-05-002-09	- Asphalt Heater: L P								1000 Gallons Burned
3-03-002-09	G								looo dattons barned
3-05-002-11	-	1.7	0.36	0.073	0.036	0.028	0.038		Tons Produced
3-03-002-11	Conventional Plant,		0150	01015	01050	01020	01050		
	w/ Cyclone								
	w/ cyclone								
Brick Ma	nufacture - 3251								
	- Raw Material Drying	70.0	41.0	0.0	0.0	0.004			Tons of Raw Material
	- Raw Material	76.0	5.32	0.0	0.0	0.0	0.0		Tons of Raw Material
5 05 005 0E	Grinding								
3-05-003-03	- Storage of Raw	34.0	12.0	0.0	0.0	0.0	0.0		Tons of Raw Material
5 05 005 05	Materials	5.10							Stored
3-05-003-07						0.02			Tons of Raw Material
J=0J=003-07	Cateming	_				0.02			

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTES
Brick Ma	nufacture - 3251								
3-05-003-08		20.0	1.4	0.0	0.0	0.0	0.0		Tons of Raw Material
3-05-003-09	- Blending and Mixing			0.0	0.0	0.0	0.0		Tons of Raw Material
3-05-003-10	- Curing and Firing: Saw-Dust Fired Tunnel Kilns		0.2						Tons Produced
3-05-003-11	- Curing and Firing: Gas Fired Tunnel Kilns	0.02	0.01	0.0	0.18	0.03	0.06		Tons Produced
3-05-003-12	- Curing and Firing: Oil Fired Tunnel Kilns	0.6	0.32	4.0 S	1.1	0.07	0.12		Tons Brick Produced
3-05-003-13	- Curing and Firing: Coal Fired Tunnel Kilns	0.67 A	0.48 A	7.31 s	1.45	0.01	1.43		Tons Produced
3-05-003-14	- Curing and Firing: Gas Fired Periodic Kilns	0.065	0.034	0.0	0. <b>5</b>	0.01	0.15		Tons Produced
3-05-003-15	- Curing and Firing: Oil Fired Periodic Kilns	0.88	0.47	5.9 S	1.62	0.1	0.19		Tons Produced
3-05-003-16	- Curing and Firing: Coal Fired Periodic Kilns	18.84	10.0	12.13 S	2.35	0.02	2.39		Tons Produced
3-05-003-98	- Other Not Classified								Gallons
Calcium	Carbide - 2819								
	- Electric Furnace (Hoods and Main Stack)	24.0	22.0	3.0		0.0			Tons Produced
3-05-004-02	- Coke Dryer	2.0	1.0	3.0	0.2	0.0			Tons Produced
	<ul> <li>Furnace Room Vents</li> </ul>	26.0	24.0	0.0		0.0			Tons Produced
	- Tap Fume Vents			0.0		0.0		•••	Tons Produced
	<ul> <li>Primary/Secondary Crushing</li> </ul>			0.0	0.0	0.0			Tons Produced
3-05-004-06	- Circular Charging:			0.0	•••	0.0			Tons Produced

••

• •

	Process Name	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Vanie	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Calcium Ca	arbide - 2819									
	nveyor									
	her Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed	
Castable R	efractory - 3255	5								
	w Material Dryer	30.0	15.3	0.002	1.6	0.004			Tons Feed Materia	ι
-05-005-02 - Ra	w Material	120.0	61.2	0.0	0.0	0.0	0.0		Tons Feed Materia	ι
Cr	ushing/Processing									
-05-005-03 - El	ectric Arc Melt	50.0	46.0						Tons Feed Materia	ι
Fu	Irnace									
-05-005-04 - Cu	ring Oven	0.2	0.1	0.0	0.16	1.0			Tons Feed Materia	۱
-05-005-05 - Ma	olding and Shakeout	25.0	20.0	0.0	0.0	0.0005			Tons Feed Materia	۱
-05-005-98 - Ot	ther Not Classified								Gallons	
-05-005-99 - Ot	ther Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Feed Materia	ι
Cement Ma	anufacturing: Di	v Proces	s - 3241							
-05-006-06 - Ki		256.0	108.0	10.2	2.8	0.02		0.11	Tons Cement Produ	ceci
-05-006-07 - Ra	aw Material	0.2 (c)	0.1	0.0	<b>*</b> 0.0	0.0	0.0		Tons of Material Unloaded	
	nloading	10.00	• /	0.0			0.0		Tons In Pile	
	aw Material Piles	4.0 (c)	1.4	0.0	0.0 0.0	0.0 0.0	0.0		Tons Processed	
5-05-006-09 - Pr	•	0.5 (c)	0.26	0.0	0.0	0.0	0.0		Tons Processed	
	econdary Crushing	1.5 (c)	1.13						Tons Processed	
-05-006-11 - Sc	•			0.0	0.0	0.0	0.0		Tons Handled	
5-05-006-12 - Ra Tr	aw Material ransfer	0.3 (c)	0.15	0.0	0.0	0.0	0.0		ions Handled	
3-05-006-13 - Re		64.0	54.0	0.0	0.0	0.0	0.0	0.04	Tons Cement Produ	ced
نة 2-05-006-14 - C	rinding and Drying	9.2	0.8	0.0	0.0	0.0	0.0		Tons Cement Produ	read
		7.2		0.0	0.0	0.0	0.0		Tons Cement Produ	
6-05-006-15 - C				0.0	0.0	0.0	0.0		Tons Cement Produ	
	linker Transfer	96.0	82.0	0.0	0.0	0.0	0.0	0.04	Tons Cement Produ	
-05-006-17 - C		98.0	02.0	0.0	0.0	0.0	0.0		Tons Cement Produ	
6-05-006-18 - Co				0.0			0.0			-
5-05-006-19 - Ce		0.24 (c)	0.2		0.0	0.0			Tons Cement Produ	
	ther Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Cement Produ	icea
	anufacturing: W									
3-05-007-06 - K	ilns	228.0	58.0	10.2	2.8			0.1	Tons Cement Produ	ced

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS NOTE
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	
Cement l	Manufacturing: W	let Proces	s - 3241						
	Raw Material Unloading	0.2 (c)	0.1	0.0	0.0	0.0	0.0		Tons of Material Unloaded
3-05-007-08 -	Raw Material Piles	4.0 (c)	1.4	0.0	0.0	0.0	0.0		Tons In Pile
8-05-007-09 -	Primary Crushing	0.5 (c)	0.26	0.0	0.0	0.0	0.0		Tons Processed
3-05-007-10 -	- Secondary Crushing	1.5 (c)	1.13	0.0	0.0	0.0	0.0		Tons Processed
8-05-007-11 -	Screening			0.0	0.0	0.0	0.0		Tons Processed
3-05-007-12 -	· Raw Material Transfer	0.3 (c)	0.15	0.0	0.0	0.0	0.0		Tons Handled
3-05-007-14 -	Clinker Cooler		0.8	0.0	0.0	0.0	0.0		Tons Cement Produced
3-05-007-15 -	· Clinker Piles			0.0	0.0	0.0	0.0		Tons Cement Produced
3-05-007-16 -	Clinker Transfer			0.0	0.0	0.0	0.0		Tons Cement Produced
	Clinker Grinding	32.0	27.0	0.0	0.0	0.0	0.0	0.02	Tons Cement Produced
	Cement Silos			0.0	0.0	0.0	0.0		Tons Cement Produced
	Cement Load Out	0.24 (c)	0.2	0.0	0.0	0.0	0.0		Tons Cement Produced
8-05-007-99 -	Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Cement Produced
Ceramic	Clay Manufactur	e - 3261							
3-05-008-01 -	- Drying	70.0	35.7	2.4	1.6	0.004			Tons Input to Process
3-05-008-02 -	Grinding	76.0	64.6	7.4	2.3	0.0			Tons Input to Process
Ceramic	Clay Mfg 3261								
3-05-008-03 -	- Storage	34.0	29.0		0.0	0.0			Tons Input to Process
3-05-008-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Produced
Clay & Fl	v Ash Sintering -	<u>3295</u>							
3-05-009-01 -	- Fly Ash Sintering	110.0	68.0			1.4			Tons Finished Product
	- Clay/Coke Sintering	40.0	20.4			1.4			Tons Finished Product
3-05-009-03 -	- Natural Clay/ Shale Sintering	12.0	6.12			1.4			Tons Finished Product
<b>3</b> -05-009-04 ·	- Raw Clay/ Shale Crushing/ Screening	0.5 (c)	0.25	0.0	0.0	0.0	0.0		Tons Raw Material
3-05-009-05	- Raw Clay/ Shale Transfer/ Conveying	0.8 (c)	0.4	0.0	0.0	0.0	0.0		Tons Raw Material
3-05-009-06				0.0	0.0	0.0	0.0		Tons Raw Material

..

SCC Process	PART	PM10	SOx	NOx	VOC	СО	LEAD	UNITS	NOTES
Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Clay & Fly Ash Sinterin	a - 3295								
3-05-009-07 - Sintered Clay/Coke Product Crushing/		12.8	0.0	0.0	0.0	0.0		Tons Finished Prod	uct
Screening 3-05-009-08 - Sintered Clay/Shal Product Crushing/ Screening	e 12.0	10.2	0.0	0.0	0.0	0.0		Tons Finished Produ	uct
3-05-009-09 - Expanded Shale Clinker Cooling			0.0	0.0	0.0	0.0		Tons Finished Prod	uct
3-05-009-10 - Expanded Shale Storage			0.0	0.0	0.0	0.0		Tons Finished Prod	uct
3-05-009-15 - Rotary Kiln								Tons Clay Processed	t
3-05-009-16 - Dryer		62.6						Tons Clay Dried	
3-05-009-17 - Clay Reciprocating Grate Clinker Cool		0.18				•••		Tons Clay Processe	±
3-05-009-99 - Other Not Classifi	ied XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Finished Prod	uct
Coal Cleaning - Therm	al Dryer - 111	1, 1221,	1222 (r)						
3-05-010-01 - Fluidized Bed	12.0	6.0	0.43	0.17	0.1			Tons Coal Dried	
3-05-010-02 - Flash or Suspensio	on 10.0	5.0	0.42		0.1			Tons Coal Dried	
3-05-010-03 - Multilouvered	8.0	4.0			0.1			Tons Coal Dried	
3-05-010-04 - Rotary					0.1			Tons Coal Dried	
3-05-010-05 - Cascade					0.1			Tons Coal Dried	
3-05-010-06 - Continuous Carrier					0.1			Tons Coal Dried	
3-05-010-07 - Screen	•••	•••			0.1			Tons Coal Dried	
Coal Cleaning - Materi	ial Handling -	1111. 12	<u>21, 1222</u>	(r)					
3-05-010-08 - Unloading	0.02 (c)	0.01	0.0	0.0	0.0	0.0		Tons Shipped	
3-05-010-09 - Raw Coal Storage	0.02 (0)		0.0	0.0	0.0	0.0		Tons Shipped	
3-05-010-10 - Crushing	0.02 (c)	0.01	0.0	0.0	0.0	0.0		Tons Shipped	
3-05-010-10 - Coal Transfer	0.2 (c)	0.1	0.0	0.0	0.0	0.0		Tons Shipped	
3-05-010-12 - Screening	0.16 (c)	0.08	0.0	0.0	0.0	0.0		Tons Shipped	
3-05-010-13 - Air Tables			0.0	0.0	0.0	0.0		Tons Shipped	
3-05-010-14 - Cleaned Coal Store	age		0.0	0.0	0.0	0.0		Tons Shipped	
3-05-010-15 - Loading	0.1 (c)	0.05	0.0	0.0	0.0	0.0		Tons Shipped	
3-05-010-16 - Loading: Clean Co								Tons Shipped	

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Coal Cle	aning - Material H	- Handling -	1111 122	1 1222	(r)					
	- Secondary Crushing								Tons Shipped	
Surface I	Mining Operatior	ns - 1111.	1221 122	2 (1)						
	- Overburden Removal	0.45	<u> </u>	0.0	0.0	0.0	0.0		Tons Coal Mined	
	- Drilling/Blasting	0.0001		0.0	0.0	0.0	0.0		Tons Coal Mined	
8-05-010-23	•	0.1	0.05	0.0	0.0	0.0	0.0		Tons Coal Mined	
8-05-010-24	-	17.2		0.0	0.0	0.0	0.0		Vehicle-Miles	
					••••				Traveled	
8-05-010-30	- Topsoil Removal	0.05		0.0	0.0	0.0	0.0		Tons of Topsoil	
				••••					Removed	
8-05-010-31	- Scrapers: Travel	14.6		0.0	0.0	0.0	0.0		Vehicle-Miles by	
	Mode				••••				Scrapers	
8-05-010-32	- Topsoil Unloading	0.04		0.0	0.0	0.0	0.0		Tons of Topsoil	
	- Overburden	1.3	0.16	0.0	0.0	0.0	0.0		Holes Drilled	
	- Coal Seam: Drilling	0.22	0.028	0.0	0.0	0.0	0.0		Holes Drilled	
	- Blasting: Coal	32.7	•••	0.0	0.0	0.0	0.0		Blasts	
	Overburden	0.05		• •					Outria Vanda	
-05-010-36	- Dragline: Overburden	0.05		0.0	0.0	0.0	0.0		Cubic Yards Overburden Remove	
05 040 77	Removal	0.07	0.015			0.0	0.0		Tons Overburden	a
-05-010-37	- Truck Loading:	0.03	0.015	0.0	0.0	0.0	0.0		Loaded	
05 040 70	Overburden	0.07			0.0	0.0	0.0		Tons Coal Loaded	
	- Truck Loading: Coal	0.03		0.0			-			Usul
-05-010-39	- Hauling: Haul Trucks	17.2	*	0.0	0.0	0.0	0.0		Vehicle-Miles by	haul
		0.007		• •	• •	• •	• •		Trucks	
-05-010-40	- Truck Unloading: End	0.007		0.0	0.0	0.0	0.0		Tons Coal	
	Dump-Coal				• •		• •		<b>T</b>	
-05-010-41	- Truck Unloading:	0.066		0.0	0.0	0.0	0.0		Tons Coal	
05 040 /0	Bottom Dump-Coal	0.000	0.004				• •		Tara Ourshaudan	
0-05-010-42	- Truck Unloading: Bottom Dump- Overburden	0.002	0.001	0.0	0.0	0.0	0.0	•••	Tons Overburden	
5-05-010-43	- Open Storage Pile: Coal	47400.0	17060.0	0.0	0.0	0.0	0.0		Acres of Coal Sto Area	rage
-05-010-44	- Train Loading: Coal	0.028		0.0	0.0	0.0	0.0		Tons Coal Loaded	
4-05-010-45	- Bulldozing:	3.94		0.0	0.0	0.0	0.0		Bulldozer-Hours o	of

e 1 **a** 1

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	
Surface I	Mining Operation	s - 1111.	1221, 122	<u>2</u> (r)					
	Overburden								Operation
3-05-010-46 -	Bulldozing: Coal	49.4		0.0	0.0	0.0	0.0	••••	Bulldozer-Hours of Operation
3-05-010-47 -	- Grading	5.37		0.0	0.0	0.0	0.0		Vehicle-Miles by Graders
3-05-010-48 -	- Overburden Replacement	0.012	0.006	0.0	0.0	0.0	0.0		Tons Overburden
3-05-010-49 -	Wind Erosion: Exposed Areas	760.0	380.0	0.0	0.0	0.0	0.0	••••	Acres of Exposed Area
3-05-010-50 ·	Vehicle Traffic: Light/Medium Vehicles	2.79		0.0	0.0	0.0	0.0		Vehicle-Miles by Light/Medium Vehicles
3-05-010-90	- Haul Roads: General								Tons Coal
	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Shipped
Concrete	Batching - 3270	). 1771. 3	292						
	- General (Non- fugitive)	0.2	0.1	0.0	0.0	0.0			Cubic Yards of Concrete Produced
3-05-011-06	- Transfer: Sand/Aggregate to Elevated Bins	0.04	0.02	0.0	0.0	0.0	0.0		Tons Processed
3-05-011-07	- Cement Unloading: Storage Bins	0.24	0.12	0.0	0.0	0.0	0.0		Tons Processed
3-05-011-08	- Weight Hopper Loading of Cement Sand/Aggregate	0.02	0.01	0.0	0.0	0.0	0.0	•	Tons Processed
3-05-011-09	- Mixer Loading of Cement /Sand/Aggregate	0.04	0.02	0.0	0.0	0.0	0.0		Tons Processed
3-05-011-10	- Loading of Transit Mix Truck	0.02	0.01	0.0	0.0	0.0	0.0		Tons Processed
3-05-011-11	<ul> <li>Loading of Dry-Batch</li> <li>Truck</li> </ul>	0.04	0.02	0.0	0.0	0.0	0.0		Tons Processed
3-05-011-12	- Mixing: Wet			0.0	0.0	0.0			Cubic Yards of Concrete Produced
3-05-011-13	- Mixing: Dry			0.0	0.0	0.0			Cubic Yards of

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Concrete	e Batching - 3270	, 1771, 32	292							
	•								Concrete Produced	
3-05-011-14	- Transferring:			0.0	0.0	0.0			Cubic Yards of	
	Conveyors/Elevators								Concrete Produced	
3-05-011-15	- Storage: Bins/			0.0	0.0	0.0			Cubic Yards of	
	Hoppers								Concrete Produced	
8-05-011-20	<ul> <li>Asbestos/Cement Products</li> </ul>	0.2	0.1	0.0	0.0	0.0	0.0		Tons Produced	
3-05-011-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Produced	
Fiberala	ss Mfg Wool-Ty	be Fiber -	3296							
	- Regenerative Furnace	22.0	20.7	10.0	5.0	0.2	0.25		Tons Material	
	•								Processed	
3-05-012-02	- Recuperative Furnace	27.5	25.9	10.0	1.7	0.2	0,25		Tons Material	
	•	•							Processed	
3-05-012-03	- Electric Furnace	0.5	0.47	0.04	0.27	0.2	0.05		Tons Material	
									Processed	
3-05-012-04	- Forming: Rotary Spun	58.0			0.49	7.0			Tons Material	
									Processed	
3-05-012-05	- Curing Oven: Rotary	9.0	9.0		1.1	3.0	1.7		Tons Material	
	Spun								Processed	
3-05-012-06	- Cooling	1.3	1.3		0.3	0.04			Tons Material	
									Processed	
3-05-012-07	- Unit Melter Furnace	9.0	8.6	0.6	0.3	0.0	0.25		Tons Material	
									Processed	
3-05-012-08	- Forming: Flame	2.0				0.3			Tons Material	
	Atteunation								Processed	
3-05-012-09	- Curing: Flame	6.0	6.0		2.0	7.0	3.5		Tons Material	
	Atteunation								Processed	
Fibergla	ss Mfg Textile-T	vpe Fibel	r - 3229							
	- Regenerative Furnace	16.0	15.0	30.0	20.0	0.2	1.0		Tons Material	
									Processed	
3-05-012-12	- Recuperative Furnace	2.0	1.9	3.0	20.0	0.2	0.5		Tons Material	
									Processed	
3-05-012-13	- Unit Melter Furnace	6.0	5.7		20.0	0.0	0.9		Tons Material	
									Processed	

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD	UNITS	NOTES
Fiberala	ss Mfg Textile-T	vpe Fiber	- 3229							
	- Forming Process	<u>1.0</u>				0.0			Tons Material	
									Processed	
3-05-012-15	- Curing Oven	1.2	1.2		2.6	0.0	1.5		Tons Material	
	-								Processed	
Fiberala	ss Mfg Raw Mat	terials Ha	ndlina - 32	29						
3-05-012-21	- Raw Material:	3.0	1.5	0.0	0.0	0.0	0.0		Tons Raw Material	
	Unloading/Conveying								Processed	
3-05-012-22	- Raw Material:	0.2	0.1	0.0	0.0	0.0	0.0		Tons Raw Material	
	Storage Bins								Processed	
3-05-012-23	- Raw Material:	0.6	0.3	0.0	0.0	0.0	0.0		Tons Raw Material	
	Mixing/Weighing								Processed	
3-05-012-24	- Raw Material:			0.0	0.0	0.0	0.0		Tons Raw Material	
	Crushing/Charging								Processed	
3-05-012-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Material	
									Processed	
Frit Man	<u>ufacture - 2899</u>									
3-05-013-01	- General	16.0	15.0			2.4			Tons Charged	
3-05-01 <b>3-99</b>	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Charged	
Glass M	anufacture - 3211	. 3221. 3	229							
	- Container Glass:	1.4	1.32	3.4	6.2	0.2	0.2		Tons of Glass	
	Melting Furnace								Produced	
3-05-014-03	- Flat Glass: Melting	2.0	1.9	3.0	8.0	0.1	0.1		Tons of Glass	
	Furnace								Produced	
3-05-014-04	- Pressed and Blown	17.4	16.5	5.6	8.5	0.3	0.2		Tons of Glass	
	Glass: Melting								Produced	
	Furnace									
3-05-014-06	- Container Glass:	0.0		0.0	0.0	8.7	0.0		Tons of Glass	
	Forming/Finishing								Produced	
3-05-014-07	- Flat Glass:	0.0		0.0	0.0	0.0	0.0		Tons of Glass	
	Forming/Finishing						• •		Produced	
3-05-014-08	- Pressed and Blown	0.0		0.0	0.0	9.0	0.0		Tons of Glass	
	Glass:								Produced	

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS NOTE
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	
Glass M	anufacture - 3211	. 3221. 32	29						
	Forming/Finishing	<u>, , .</u>	<u> </u>						
3-05-014-10	- Raw Material	0.0							Tons Processed
	Handling (All Types								
	of Glass)								
3-05-014-13				0.0	0.0	0.0	0.0		Tons Cullet Processed
	Crushing/Grinding								
3-05-014-14	- Ground Cullet			5.6	8.5	0.3			Tons Beaded Glass
	Beading Furnace								Produced
3-05-014-15	- Glass Etching w/			0.0	0.0	0.0			Gallons Etching
	Hydrofluoric Acid								Solution Consumed
	Solution								
-									
Gypsum	Manufacture - 32	275							
3-05-015-01	- Rotary Ore Dryer	40.0	18.0	0.0	1.6	0.004			Tons Product
3-05-015-02		2.6	2.2	0.0	0.0	0.0			Tons Product
	Grinder/Roller Mills								
3-05-015-04	- Conveying	0.7	0.15	0.0	•0.0	0.0	0.0		Tons Throughput
3-05-015-05	- Prmiary Crushing:	0.5 (c)	0.26	0.0	0.0	0.0	0.0		Tons Crude Gypsum
	Gypsum Ore								Processed
3-05-015-06	- Secondary Crushing:	1.5 (c)	1.13	0.0	0.0	0.0	0.0		Tons Crude Gypsum
	Gypsum Ore								Processed
3-05-015-07	- Screening: Gypsum			0.0	0.0	0.0	0.0		Tons Crude Gypsum
	Ore								Processed
3-05-015-08	- Stockpile: Gypsum			0.0	0.0	0.0	0.0		Tons Crude Gypsum
	Ore								Processed
3-05-015-09	- Storage Bins: Gypsum			0.0	0.0	0.0	0.0		Tons Crude Gypsum
	Ore								Processed
3-05-015-10	- Storage Bins:			0.0	0.0	0.0	0.0		Tons Product
	Landplaster								
3-05-015-11	- Continuous Kettle:	41.0	25.8		2.8	0.02			Tons Product
3	Calciner								
3-05-015-12	- Flash Calciner	37.0	14.1		2.8	0.02			Tons Product
3-05-015-13	- Impact Mill	100.0	85.0			0.02			Tons Product
3-05-015-14	- Storage Bins: Stucco			0.0	0.0	0.0	0.0		Tons Product
3-05-015-15	- Tube/Ball Mills		•••						Tons Product
3-05-015-16	- Mixers			0.0	0.0	0.0	0.0		Tons Product

• • , ,

• •

Process Name		PM10	SOx	NOx	<b>VOC</b>	CO		UNITS	NOTES
Manufacture - 32	275								
			0.0	0.0	0.0	0.0		Tons Product	
-								Tons Product	
-						•••			
	8.0	6.8	0.0	0.0	0.0	0.0			
	0.0	0.0	•••			••••		•	
End Sawing (12 Ft.)	5.0	4.25	0.0	0.0	0.0	0.0	•••	1000 Sq. Ft. Board	
nufacturo - 2274									
	0.5.(0)	0.26	0.0	0.0	0.0	0.0		Tops Limestons	
Primary Crushing	0.5 (0)	0.20	0.0	0.0	0.0	0.0			
Secondary Cruching	15(0)	1 13	0.0	0 0	0 0	0 0			
•	1.5 (0)	1.15	0.0	0.0	0.0	0.0			
• •	8.0	5.0	8 2	28	0 02				
•	0.0	5.0	0.2	-	0.02				
	350 0	42 0	5.1	2.8	0.06	2.0		Tops Lime Produced	
	330.0	4210	5.1	2.0		210			
	50.0	31.5		0.2	0.02			Tons Lime Produced	
	0.8 (c)	0.18	0.0	0.0		0.0			
	0.0 (0)	0110	••••	•••	••••				
	0.2 (c)	0.1	0.0	0.0	0.0	0.0		Tons Limestone	
	0.2 (0)	•••	••••	010	••••				
•	0.1	0.07	0.0	0.0	0.0	0.0			
•	•••	••••	••••	••••					
	4.0 (c)	1.32	0.0	0.0	0.0	0.0			
	40.0	25.2	0.0	0.0	0.0	0.0		Tons Lime Produced	
					0.0				
						•••		Produced	
- Lime Silos			0.0	0.0	0.0	0.0		Tons Lime Produced	
	0.25	0.12	0.0		0.0	0.0		Tons Lime Produced	
- Product Transfer and			0.0	0.0	0.0	0.0		Tons Lime Produced	
	Bagging Mixers/Conveyors Forming Line Drying Kiln End Sawing (8 Ft.) End Sawing (12 Ft.) <u>Pufacture - 3274</u> Primary Crushing Secondary Crushing /Screening Calcining: Vertical Kiln Calcining: Vertical Kiln Calcining: Rotary Kiln Calcining: Rotary Kiln Calcining: Rotary Kiln Fluidized Bed Kiln Raw Material Transfer and Conveying Raw Material Unloading Hydrator: Atmospheric Raw Material Storage Piles Prodcut Cooler Pressure Hydrator	Manufacture - 3275BaggingMixers/ConveyorsForming LineDrying KilnEnd Sawing (8 Ft.)8.0End Sawing (12 Ft.)5.0Mathematical State5.0Mathematical State8.0End Sawing (12 Ft.)5.0Mathematical State5.0Mathematical State8.0End Sawing (12 Ft.)5.0Mathematical State5.0Mathematical State8.0Kiln1.5 (c)/Screening1.5 (c)/Screening1.5 (c)Calcining: Vertical8.0Kiln50.0Calcining: Rotary350.0Kiln50.0Calcimatic Kiln50.0Fluidized Bed KilnRaw Material0.8 (c)Transfer and0.8 (c)ConveyingRaw MaterialRaw Material0.2 (c)Unloading4.0 (c)PilesProdcut CoolerProdcut Cooler40.0Pressure Hydrator0.1Lime SilosPacking/Shipping0.25	Manufacture - 3275         Bagging          Mixers/Conveyors          Forming Line          Drying Kiln          End Sawing (8 Ft.)       8.0       6.8         End Sawing (12 Ft.)       5.0       4.25         Primary Crushing       0.5 (c)       0.26         Secondary Crushing       1.5 (c)       1.13         /Screening       0.5 (c)       0.26         Secondary Crushing       1.5 (c)       1.13         /Screening       0.5 (c)       0.26         Secondary Crushing       1.5 (c)       1.13         /Screening       0.5 (c)       0.26         Secondary Crushing       1.5 (c)       1.13         /Screening       0.5 (c)       0.26         Secondary Crushing       1.5 (c)       1.13         /Screening       0.5 (c)       0.26         Kiln       Calcining: Rotary       350.0       42.0         Kiln       Calcimatic Kiln       50.0       31.5         Fluidized Bed Kiln         Raw Material       0.2 (c)       0.1         Unloading       Hydrator:       0.1       0.07       Atmospheric	Manufacture - 3275         Bagging         0.0         Hixers/Conveyors        0.0         Forming Line        0.0         Drying Kiln        0.0         End Sawing (8 Ft.)       8.0       6.8       0.0         End Sawing (12 Ft.)       5.0       4.25       0.0         Mitter - 3274       Primery Crushing       0.5 (c)       0.26       0.0         Secondary Crushing       1.5 (c)       1.13       0.0         /Screening       Calcining: Vertical       8.0       5.0       8.2         Kiln       Calcining: Rotary       350.0       42.0       5.1         Calcining: Rotary       350.0       42.0       5.1         Kiln       Calcimatic Kiln       50.0       31.5          Raw Material       0.8 (c)       0.18       0.0         Transfer and       Conveying           Raw Material       0.2 (c)       0.1       0.0         Hydrator:       0.1       0.07       0.0         Atmospheric            Raw Material Storage       4.0 (c)       1.32       0.0 </td <td>Manufacture - 3275           Bagging           0.0         0.0           Mixers/Conveyors          0.0         0.0           Forming Line           0.0         0.0           Drying Kiln           0.0         0.0           End Sawing (18 Ft.)         8.0         6.8         0.0         0.0           End Sawing (12 Ft.)         5.0         4.25         0.0         0.0           Primary Crushing         0.5 (c)         0.26         0.0         0.0           Secondary Crushing         1.5 (c)         1.13         0.0         0.0           // Screening               Calcining: Vertical         8.0         5.0         8.2         2.8           Kiln               Calcimatic Kiln         50.0         31.5          0.2           Fluidized Bed Kiln               Raw Material         0.2 (c)         0.1         0.0         0.0           Unloading          </td> <td>Manufacture - 3275           Bagging           0.0         0.0         0.0           Forming Line           0.0         0.0         0.0           Drying Kiln           0.0         0.0         0.02           Drying Kiln                 End Sawing (8 Ft.)         8.0         6.8         0.0         0.0         0.0         0.0           End Sawing (12 Ft.)         5.0         4.25         0.0         0.0         0.0           Primary Crushing         0.5 (c)         0.26         0.0         0.0         0.0           Secondary Crushing         1.5 (c)         1.13         0.0         0.0         0.0           // Screening         Calcining: Vertical         8.0         5.0         8.2         2.8         0.92           Kiln         Calcining: Rotary         350.0         42.0         5.1         2.8         0.06           Kiln         50.0         31.5           0.02         Rew Material         0.8 (c)         0.18         0.0         0.0         0.0</td> <td>Manufacture - 3275           Bagging           0.0         0.0         0.0         0.0           Mixers/Conveyors           0.0         0.0         0.0         0.0           Forming Line           0.0         0.0         0.0         0.0           Drying Kiln                 End Sawing (12 Ft.)         5.0         4.25         0.0         0.0         0.0         0.0           Duffacture - 3274                 Primery Crushing         0.5 (c)         0.26         0.0         0.0         0.0         0.0           // Screening          1.13         0.0         0.0         0.0         0.0           // Screening          1.13         0.0         0.0         0.0         0.0           // Screening           0.2           0.0             Calcining: Notary         350.0         42.0         5.1         2.8         0.02        </td> <td>Manufacture - 3275           Bagging           0.0         0.0         0.0         0.0            Forming Line          0.0         0.0         0.02         0.0            Forming Line          0.0         0.0         0.02         0.0            End Sawing (8 Ft.)         8.0         6.8         0.0         0.0         0.0         0.0            End Sawing (12 Ft.)         5.0         4.25         0.0         0.0         0.0             Primery Crushing         0.5 (c)         0.26         0.0         0.0         0.0             Secondary Crushing         1.5 (c)         1.13         0.0         0.0         0.0             Secondary Crushing         1.5 (c)         1.13         0.0         0.0         0.0             Secondary Crushing         1.5 (c)         1.13         0.0         0.0         0.0                  </td> <td>Manufacture - 3275           Bagsing           0.0         0.0         0.0         0.0          Tons Product           Forming Line          0.0         0.0         0.0         0.0          Tons Product           Drying Kiln              Tons Product           End Sawing (8 Ft.)         8.0         6.8         0.0         0.0         0.0         0.0          Tons Product           End Sawing (12 Ft.)         5.0         4.25         0.0         0.0         0.0         0.0          Tons Limestone           Primery Crushing         0.5 (c)         0.26         0.0         0.0         0.0          Tons Limestone           Processed           Tons Limestone         Processed         Processed           Calcining: Vertical         8.0         5.0         8.2         2.8         0.02          Tons Lime Produced           Kiln            Tons Lime Produced         Processed           Rew Material         0.2 (c)         0.18         0.0         0.00</td>	Manufacture - 3275           Bagging           0.0         0.0           Mixers/Conveyors          0.0         0.0           Forming Line           0.0         0.0           Drying Kiln           0.0         0.0           End Sawing (18 Ft.)         8.0         6.8         0.0         0.0           End Sawing (12 Ft.)         5.0         4.25         0.0         0.0           Primary Crushing         0.5 (c)         0.26         0.0         0.0           Secondary Crushing         1.5 (c)         1.13         0.0         0.0           // Screening               Calcining: Vertical         8.0         5.0         8.2         2.8           Kiln               Calcimatic Kiln         50.0         31.5          0.2           Fluidized Bed Kiln               Raw Material         0.2 (c)         0.1         0.0         0.0           Unloading	Manufacture - 3275           Bagging           0.0         0.0         0.0           Forming Line           0.0         0.0         0.0           Drying Kiln           0.0         0.0         0.02           Drying Kiln                 End Sawing (8 Ft.)         8.0         6.8         0.0         0.0         0.0         0.0           End Sawing (12 Ft.)         5.0         4.25         0.0         0.0         0.0           Primary Crushing         0.5 (c)         0.26         0.0         0.0         0.0           Secondary Crushing         1.5 (c)         1.13         0.0         0.0         0.0           // Screening         Calcining: Vertical         8.0         5.0         8.2         2.8         0.92           Kiln         Calcining: Rotary         350.0         42.0         5.1         2.8         0.06           Kiln         50.0         31.5           0.02         Rew Material         0.8 (c)         0.18         0.0         0.0         0.0	Manufacture - 3275           Bagging           0.0         0.0         0.0         0.0           Mixers/Conveyors           0.0         0.0         0.0         0.0           Forming Line           0.0         0.0         0.0         0.0           Drying Kiln                 End Sawing (12 Ft.)         5.0         4.25         0.0         0.0         0.0         0.0           Duffacture - 3274                 Primery Crushing         0.5 (c)         0.26         0.0         0.0         0.0         0.0           // Screening          1.13         0.0         0.0         0.0         0.0           // Screening          1.13         0.0         0.0         0.0         0.0           // Screening           0.2           0.0             Calcining: Notary         350.0         42.0         5.1         2.8         0.02	Manufacture - 3275           Bagging           0.0         0.0         0.0         0.0            Forming Line          0.0         0.0         0.02         0.0            Forming Line          0.0         0.0         0.02         0.0            End Sawing (8 Ft.)         8.0         6.8         0.0         0.0         0.0         0.0            End Sawing (12 Ft.)         5.0         4.25         0.0         0.0         0.0             Primery Crushing         0.5 (c)         0.26         0.0         0.0         0.0             Secondary Crushing         1.5 (c)         1.13         0.0         0.0         0.0             Secondary Crushing         1.5 (c)         1.13         0.0         0.0         0.0             Secondary Crushing         1.5 (c)         1.13         0.0         0.0         0.0	Manufacture - 3275           Bagsing           0.0         0.0         0.0         0.0          Tons Product           Forming Line          0.0         0.0         0.0         0.0          Tons Product           Drying Kiln              Tons Product           End Sawing (8 Ft.)         8.0         6.8         0.0         0.0         0.0         0.0          Tons Product           End Sawing (12 Ft.)         5.0         4.25         0.0         0.0         0.0         0.0          Tons Limestone           Primery Crushing         0.5 (c)         0.26         0.0         0.0         0.0          Tons Limestone           Processed           Tons Limestone         Processed         Processed           Calcining: Vertical         8.0         5.0         8.2         2.8         0.02          Tons Lime Produced           Kiln            Tons Lime Produced         Processed           Rew Material         0.2 (c)         0.18         0.0         0.00

• • •

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	
Lime Ma	nufacture - 3274								
	Conveying								
3-05-016-16 -	Primary Screening			0.0	0.0	0.0	0.0		Tons Limestone Processed
3-05-016-17 -	- Multiple Hearth Calciner		•••	8.2	2.8	0.02			Tons Lime Produced
Mineral V	<u> Vool - 3296</u>								
3-05-017-01 -		22.0	20.2	0.02	1.6	0.0			Tons Charged
	Reverberatory Furnace	5.0	4.6	0.0	0.0	0.0			Tons Charged
3-05-017-03 ·	Blow Chamber	17.0	15.6	0.0	0.0	0.9			Tons Charged
3-05-017-04 -	Curing Oven	4.0	3.8	0.0	0.16	1.0			Tons Charged
3-05-017-05 ·	- Cooler	2.0	1.9	0.0	0.0	0.04			Tons Charged
3-05-017-99 ·	• Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed
Perlite M	fg 3295								
	· Vertical Furnace	21.0		0.0	0.0	0.0			Tons Charged
3-05-018- <del>9</del> 9	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed
Phospha	<u>te Rock - 1475</u>								
3-05-019-01		5.7	4.7	0.0	1.6	0.004			Tons Phosphate Rock
3-05-019-02	- Grinding	1.5	0.93	0.0	0.0	0.0	0.0		Tons Phosphate Rock
3-05-019-03	- Transfer/Storage	2.0	1.0	0.0	0.0	0.0	0.0		Tons Phosphate Rock
3-05-019-04	- Open Storage	40.0	14.4	0.0	0.0	0.0	0.0		Tons Phosphate Rock
3-05-019-05	- Calcining	15.4	14.8						Tons Phosphate Rock
3-05-019-06	- Rotary Dryer		2.82						Tons Phosphate Rock Dried
3-05-019-07	- Ball Mill		0.45						Tons Phosphate Rock Milled
3-05-019-99	- Other Not Classified	ХХХ	XXX	XXX	xxx	XXX	ххх	ххх	Tons Processed
Stone Qu	uarrying/Proces	sing - 141	1, 1422, 14	423, 142	9, 1499				
		(s) 0.5	0.017	0.0	0.0	0.0	0.0		Tons Raw Material
	•	(s) 1.5	0.017	0.0	0.0	0.0	0.0		Tons Raw Material
3-05-020-03		(s) 6.0	3.1	0.0	0.0	0.0	0.0		Tons Raw Material

• •

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS I	NOTE
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Stone Q	uarrying/Processi	ing - 1411	, 1422, 14	123, 1429	9, 1499					
	/Screening									
-05-020-04	- Recrushing/Screening (s	.) 0.0	0.0	0 <b>.0</b>	0.0	0.0	0.0		Tons Processed	
-05-020-05	- Fines Mill (s	。) 0.0	0.0	0.0	0.0	0.0	0.0		Tons Processed	
-05-020-06	- Miscellaneous Operations: Screen /Convey/Handling	0.0	0.0	0.0	0.0	0.0	0.0		Tons Raw Material	
-05-020-07	- Open Storage	0.33	0.12	0.0	0.0	0.0	0.0		Tons Product Stored	
	- Cut Stone: General			0.0	0.0	0.0	0.0		Tons Processed	
-05-020-09	- Blasting: General	0.16 (c)		0.0	0.0	0.0	0.0		Tons Raw Material	
	- Drilling	•••	0.0001	0.0	0.0	0.0	0.0		Tons Raw Material	
-05-020-11	- Hauling	52.0		0.0	0.0	0.0	0.0		Vehicle-Miles	
-05-020-12	- Drying	35.0	5.0						Tons Stone Dried	
-05-020-13	- Bar Grizzlies	•••		0.0	0.0	0.0	0.0		Tons Processed	
05-020-14	- Shaker Screens	•••		0.0	0.0	0.0	0.0		Tons Processed	
05-020-15	- Vibrating Screens		•••	0.0	0.0	0.0	0.0		Tons Processed	
-05-020-16	- Revolving Screens			0.0	0.0	0.0	0.0		Tons Processed	
-05-020-20	- Drilling		0.0001	0.0	0.0	0.0	0.0		Feet Drilled	
	<u>ing - 1499</u>									
	- General			0.0	0.0	0.0	0.0		Tons Mined	
-05-021-02	- Granulation: Stack			0.002	1.6	0.004			Tons of Salt	
	Dryer								Granulated	
-05-021-03	- Filtration: Vacuum Filter		•••			0.0			Tons of Salt Produce	ed
05-021-04	- Crushing			0.0	0.0	0.0	•••		Tons of Salt Handle	d b
-05-021-05	- Screening			0.0	0.0	0.0	•••		Tons of Salt Handle	t
-05-021-06	- Conveying	•••	•••	0.0	0.0	0.0	•••		Tons of Salt Handle	d
Potash I	Production - 1474									
-05-022-01	- Mine: Grinding/Drying	•••		0.0	0.0	0.0	0.0		Tons Ore	
-05-022-99	- Other Not Classified	ХХХ	ххх	XXX	XXX	ХХХ	XXX	XXX	Tons Processed	
	sium Carbonate - 1	<u>459</u>								
-05-024-01	- Mine/Process:					0.0			Tons Product	
	General									

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Magnes	ium Carbonate - 1	459								
	- Other Not Classified	XXX	XXX	XXX	XXX	xxx	XXX	XXX	Tons Processed	
Sand/G	<u>ravel - 1442, 1446</u>	6								
	- Aggregate Storage	0.33	0.12	0.0	0.0	0.0	0.0		Tons Product	
	- Material Transfer and Conveying	0.029	0.0064	<b>0.</b> 0	0.0	0.0	0.0		Tons Product	
3-05-025-04	• -	52.0		0.0	0.0	0.0	0.0		Vehicle-Miles	
3-05-025-05	- Pile Forming: Stacker	0.13	0.06	0.0	0.0	0.0	0.0		Tons Product	
3-05-025-06	- Bulk Loading	0.02	0.0024	0.0	0.0	0.0	0.0		Tons Product	
3-05-025-07	- Storage Piles	3796.0	1367.0	0.0	0.0	0.0	0.0		Acres of Storage	Агеа
3-05-025-08	- Dryer			0.002	1.6	0.004			Tons Product	
3-05-025-09	- Cooler			0.0	0.0	0.0			Tons Product	
3-05-025-10	- Crushing			0.0	0.0	0.0			Tons Product	
3-05-0 <b>25</b> -11	- Screening		0.12	0.0	0.0	0.0	•		Tons Product	
Diatoma	cous Earth - 1499	9 <u>, 3295</u>								
3-05-026-01	- Handling			0.0	0.0	0.0	0.0		Tons Product	
3-05-026-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed	
Ceramic	Electric Parts - 3	<u>264</u>								
3-05-030-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed	
Asbesto	<u>s Mining - 1499</u>									
3-05-031-01	- Surface Blasting			0.0	0.0	0.0	0.0		Tons of Ore	
3-05-031-02	- Surface Drilling			0.0	0.0	0.0	0.0		Tons of Ore	
3-05-031-03	- Cobbing		••••	0.0	0.0	0.0	0.0		Tons of Ore	
3-05-031-04	- Loading			0.0	0.0	0.0	0.0		Tons of Ore	
3-05-031-05	- Convey/Haul Asbestos			0.0	0.0	0.0	0.0		Tons of Ore	
3-05-031-06	- Convey/Haul Waste			0.0	0.0	0.0	0.0		Tons of Ore	
3-05-031-07	- Unloading			0.0	0.0	0.0	0.0		Tons of Ore	
3-05-031-08	- Overburden Stripping			0.0	0.0	0.0	0.0		Tons Removed	
3-05-031-09	- Ventilation of			0.0	0.0	0.0	0.0		Tons of Ore	
	Process Operations									
	- Stockpiling			0.0	0.0	0.0	0.0		Tons of Ore	

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD	UNITS	NOTES
<u></u>								LDS/Unit	······································	·····
Achaota	Mining 1400									
	<u>s Mining - 1499</u>						• •			
	- Tailing Piles			0.0	0.0	0.0	0.0		Tons of Material	
3-05-031-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed	
Asbestos	<u>s Milling - 1499</u>									
3-05-032-01	- Crushing			0.0	0.0	0.0	0.0		Tons Processed	
3-05-032-02	- Drying								Tons Processed	
3-05-032-03	- Recrushing			0.0	0.0	0.0	0.0		Tons Processed	
3-05-032-04	- Screening			0.0	0.0	0.0	0.0	÷	Tons Processed	
3-05-032-05	- Fiberizing			0.0	0.0	0.0	0.0		Tons Processed	
3-05-032-06	- Bagging			0.0	0.0	0.0	0.0		Tons Processed	
3-05-032-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed	
Vermicul	<u>ite - 1499</u>									
3-05-033-01				0.47	0.08	0.0			Tons Product	
<u>Feldspar</u>			• •							
3-05-034-01			8.4						Tons Rock Milled	
3-05-034-02	- Dryer								Tons	
Pyrrhotit	<u>e - 1479</u>									
	- Fluid Bed Roaster		·						Tons Processed	
3-05-039-02	- Reduction Kiln							·	Tons Processed	
Minina 8	Quarrying of No	nmetallic	Minerals -	1400	•					
	- Open Pit Blasting			0.0	0.0	0.0	0.0		Hundreds of Tons	of.
5 05 040 01	open ric brasenig			0.0	0.0	0.0	0.0		Material	51
3-05-040-02	- Open Pit Drilling			0.0	0.0	0.0	0.0		Hundreds of Tons	of
3-03-040-05	open Fit Diffting			0.0	0.0	0.0	0.0		Material	51
3-05-040-03	- Open Pit Cobbing			0.0	0.0	0.0	0.0		Hundreds of Tons	of
3-03-040-03	open Fit coboing			0.0	0.0	0.0	0.0		Material	51
3-05-040-10	- Underground			0.0	0.0	0.0	0.0		Hundreds of Tons	of
0 05 040 10	Ventilation						0.0		Material	
3-05-040-20				0.0	0.0	0.0	0.0		Hundreds of Tons	of
5 05 040 20	Evallig			0.0	0.0		0.0		Material	
3-05-040-21	- Convey/Haul Material			0.0	0.0	0.0	0.0		Hundreds of Tons	of.
J-0J-040-21	Convey/nout material		-	0.0	0.0	0.0	0.0		numeus of tons	

SCC Proces Name	SS PART		SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD	UNITS NO	TES
		, 				LUS/UNIC			
<u>Mining &amp; Quarryii</u>	ng of Nonmetalli	<u>c Minerals</u>	<u>- 1400</u>						
7 05 0/0 00 0								Material	
3-05-040-22 - Convey/Haul	Waste		0.0	0.0	0.0	0.0		Hundreds of Tons of	
3-05-040-23 - Unloading			0.0	0.0	0.0	0.0		Material Hundreds of Tons of	
5 05-040-25 - Dirtolading			0.0	0.0	0.0	0.0		Material	
3-05-040-24 - Overburden	Stripping		0.0	0.0	0.0	0.0		Hundreds of Tons of	
			0.0	0.0	0.0			Material	
3-05-040-25 - Stockpiling	g		0.0	0.0	0.0	0.0		Hundreds of Tons of	
								Material	
3-05-040-30 - Primary Cru	usher		0.0	0.0	0.0	0.0		Hundreds of Tons of	
								Material	
3-05-040-31 ~ Secondary (	Crusher		0.0	0.0	0.0	0.0		Hundreds of Tons of	
								Material	
3-05-040-32 - Ore Concent	trator		0.0	0.0	0.0	0.0		Hundreds of Tons of	
								Material	
3-05-040-33 - Ore Dryer	•••							Hundreds of Tons of	
3-05-040-34 - Screening			0.0	0.0	0.0	0.0		Material Hundreds of Tons of	
J-0J-040-54 - Scieening			0.0	0.0	0.0	0.0		Material	
3-05-040-36 - Tailing Pil	es		0.0	0.0	0.0	0.0		Hundreds of Tons of	
			0.0	0.0	0.0	0.0		Material	
3-05-040-99 - Other Not (	Classified XXX	XXX	XXX	XXX	XXX	XXX	XXX	Hundreds of Tons of	
								Material	
<u> Mica - 1411, 142</u>	9								
3-05-090-01 - Rotary Drye	-							Tons	
3-05-090-02 - Fluid Energ								Tons	
Grinding									
• • • • • •									
<u> Sandspar - 1400</u>									
3-05-091-01 - Rotary Drye	er				•••	•••		Tons	
Bulk Materials Ele	evators - 4401								
3-05-100-01 - Unloading			0.0	0.0	0.0	0.0		Tons Processed	
3-05-100-02 - Loading			0.0	0.0	0.0	0.0		Tons Processed	
3-05-100-03 - Removal fro	om Bins		0.0	0.0	0.0	0.0		Tons Processed	

.

,

÷

• •

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC	CO Lbs/Unit	LEAD	UNITS	NOTES
		LDS/Unit				LDS/Unit				
Bulk Mai	erials Elevators -	4491								
3-05-100-04									Tons Processed	
3-05-100-05	• •			0.0	0.0	0.0	0.0		Tons Processed	
	- Elevator Legs			0.0	0.0	0.0	0.0		Tons Processed	
	(Headhouse)									
3-05-100-07	- Tripper (Gallery			0.0	0.0	0.0	0.0		Tons Processed	
	Belt)									
Bulk Ma	terials Conveyors	- 4491								
3-05-101-01	- Ammonium Sulfate	•		0.0	0.0	0.0	0.0		Tons Processed	
3-05-101-02	- Cement	•		0.0	0.0	0.0	0.0	•	Tons Processed	
3-05-101-03	- Coal			0.0	0.0	0.0	0.0		Tons Processed	
3-05-101-04	- Coke		•••	0.0	0.0	0.0	0.0		Tons Processed	
3-05-101-05	- Limestone			0.0	0.0	0.0	0.0		Tons Processed	
3-05-101-06	- Phosphate Rock	•		0.0	0.0	0.0	0.0		Tons Processed	
3-05-101-07	- Scrap Metal			0.0	0.0	0.0	0.0		Tons Processed	
3-05-101-08	- Sulfur	•••		0.0	0.0	0.0	0.0		Tons Processed	
3-05-101-96	- Chemical: Specify in Comments			0.0	0.0	0.0	0.0		Tons Processed	
3-05-101-97	- Fertilizer: Specify in Comments			0.0	0.0	0.0	0.0		Tons Processed	
3-05-101-98	- Mineral: Specify in Comments		•••	0.0	0.0	0.0	0.0	•••	Tons Processed	
3-05-101-99	- Other Not Classified	XXX	XXX	0.0	0.0	0.0	0.0	XXX	Tons Processed	
Bulk Ma	terials Storage Bil	ns - 4491								
3-05-102-01	- Ammonium Sulfate			0.0	0.0	0.0	0.0		Tons Processed	
3-05-102-02	- Cement		•••	0.0	0.0	0.0	0.0		Tons Processed	
3-05-102-03	- Coal		•	0.0	0.0	0.0	0.0		Tons Processed	
3-05-102-04	- Coke			0.0	0.0	0.0	0.0		Tons Processed	
-	- Limestone			0.0	0.0	0.0	0.0		Tons Processed	
3-05-102-06	- Phosphate Rock			0.0	0.0	0.0	0.0		Tons Processed	
	- Scrap Metal			0.0	0.0	0.0	0.0		Tons Processed	
3-05-102-08	-			0.0	0.0	0.0	0.0		Tons Processed	
	- Chemical: Specify in Comments			0.0	0.0	0.0	0.0		Tons Processed	

SCC	Process Name	PART	PM10	SOx	NOx	VOC Lbs/Unit	CO	LEAD Lbs/Unit	UNITS	NOTES
		Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	LDS/Unit	Lbs/Unit			
Bulk Ma	terials Storage Bil	ns - 4491								
	- Fertilizer: Specify			0.0	0.0	0.0	0.0		Tons Processed	
-05-102-98	- Mineral: Specify in Comments			0.0	0.0	0.0	0.0		Tons Processed	
-05-102-99	- Other Not Classified	XXX	XXX	0.0	0.0	0.0	0.0	XXX	Tons Processed	
Bulk Ma	terials Open Stoc	kpiles - 44	191							
	- Ammonium Sulfate			0.0	0.0	0.0	0.0		Tons Processed	
-05-103-02				0.0	0.0	0.0	0.0		Tons Processed	
-05-103-03	- Coal			0.0	0.0	0.0	0.0		Tons Processed	
-05-103-04	- Coke			0.0	0.0	0.0	0.0		Tons Processed	
-05-103-05	- Limestone			0.0	0.0	0.0	0.0		Tons Processed	
-05-103-06	- Phosphate Rock			0.0	0.0	0.0	0.0		Tons Processed	
	- Scrap Metal			0.0	0.0	0.0	0.0		Tons Processed	
-05-103-08	•			0.0	0.0	0.0	0.0		Tons Processed	
	- Chemical: Specify in Comments			0.0	0.0	0.0	0.0		Tons Processed	
-05-103-97	- Fertilizer: Specify			0.0	0.0	0.0	0.0		Tons Processed	
-05-103-98	in Comments - Mineral: Specify in			0.0	0.0	0.0	0.0		Tons Processed	
-05-103-99	Comments - Other Not Classified	XXX	XXX	0.0	0.0	0.0	0.0	xxx	Tons Processed	
Rulk Ma	terials Unloading	Operation	- AAQ1							
	- Ammonium Sulfate			0.0	0.0	0.0	0.0		Tons Processed	
-05-104-02				0.0	0.0	0.0	0.0		Tons Processed	
-05-104-03				0.0	0.0	0.0	0.0		Tons Processed	
-05-104-04				0.0	0.0	0.0	0.0		Tons Processed	
	- Limestone			0.0	0.0	0.0	0.0		Tons Processed	
	- Phosphate Rock			0.0	0.0	0.0	0.0		Tons Processed	
	- Scrap Metal			0.0	0.0	0.0	0.0		Tons Processed	
-05-104-08				0.0	0.0	0.0	0.0		Tons Processed	
	- Chemical: Specify in Comments			0.0	0.0	0.0	0.0		Tons Processed	
	- Fertilizer: Specify			0.0	0.0	0.0	0.0		Tons Processed	

• • •

SCC	Process Name		PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Bulk Mate	erials Unloading	Operatio	on - 4491					· · · · · · · · · · · · · · · · · · ·		
	in Comments									
3-05-104-98 -	Mineral: Specify in Comments			0.0	0.0	0.0	0.0		Tons Processed	
3-05-104-99 -	Other Not Classified	XXX	XXX	0.0	0.0	0.0	0.0	XXX	Tons Processed	
Bulk Mate	erials Loading Op	peration	- 4491							
	Ammonium Sulfate			0.0	0.0	0.0	0.0		Tons Processed	
3-05-105-02 -				0.0	0.0	0.0	0.0		Tons Processed	
3-05-105-03 -				0.0	0.0	0.0	0.0		Tons Processed	
3-05-105-04 -				0.0	0.0	0.0	0.0		Tons Processed	
3-05-105-05 -				0.0	0.0	0.0	0.0		Tons Processed	
3-05-105-06 -	Phosphate Rock			0.0	0.0	0.0	0.0		Tons Processed	
3-05-105-07 -	Scrap Metal			0.0	0.0	0.0	0.0		Tons Processed	
3-05-105-08 -	•			0.0	0.0	0.0	0.0		Tons Processed	
3-05-105-96 -	Chemical: Specify in Comments			0.0	0.0	0.0	0.0		Tons Processed	
3-05-105-97 -	Fertilizer: Specify in Comments			0.0	0.0	0.0	0.0		Tons Processed	
3-05-105-98 -	Mineral: Specify in Comments			0.0	0.0	0.0	0.0		Tons Processed	
3-05-105-99 -	Other Not Classified	XXX	xxx	0.0	0.0	0.0	0.0	XXX	Tons Processed	
Calcining	<b>1 -</b> 4491									
	Raw Material Handling				•	0.0			Tons Throughput	
3-05-150-02 -	General					0.0			Tons Throughput	
3-05-150-03 -	Grinding/Milling		•••			0.0	•••		Tons Throughput	
	Finished Product Handling	••••				0.0			Tons Throughput	
3-05-150-05 -						0.0			Tons Throughput	
Fugitive I	<u> Emissions - 1100</u>	, 1400, 2	2900, 4400							
	Specify in Comments Field					•			Tons Product	
3-05-888-02 -	Specify in Comments Field	•••							Tons Product	

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	<b>SOx</b> Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	<b>CO</b> Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Fugitive	Emissions - 1100	), 1400, 29	00, 4400							
	5 - Specify in Comments Field								Tons Product	
3-05-888-04	- Specify in Comments Field							•••	Tons Product	
3-05-888-05	<ul> <li>Specify in Comments</li> <li>Field</li> </ul>								Tons Product	
	Products: Other								Tour Drubut	
3-05-999-99	) - Specify in Comments Field	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Product	
MINERA	AL PRODUCTS - F	UEL FIRE	D EQUIPM	<u>IENT</u>						
Process	s Heaters - 1100,	1400, 2900	<u>0, 4400</u>							
3-05-900-01	l - Distillate Oil (No. 2)			143.6 S	20.0	0.2			1000 Gallons Bur	ned
3-05-900-02	2 - Residual Oil			158.6 S	55.0	0.28			1000 Gallons Bur	
3-05-900-03	5 - Natural Gas			0.6	140.0	2.8			Million Cubic Fe Burned	et
Incinera	ators - 1100, 1400	) <u>, 2900, 44</u>	<u>00</u>							
3-05-900-11	1 - Distillate Oil (No. 2)					0.4			1000 Gallons Bur	ned
3-05-900-12	2 - Residual Oil					0.56			1000 Gallons Bur	ned
	3 - Natural Gas					5.6			Million Cubic Fe Burned	et
<u>Flares -</u>	1100, 1400, 2900	<u>), 4400</u>								
3-05-900-23	3 - Natural Gas					5.6			Million Cubic Fe Burned	eet

• • •

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOT	TES
PETROL	EUM INDUSTRY	- MAJOR	GROUP	<b>29</b> (t)						
Process	Heaters - 2911									
3-06-001-03		12.0 S,(b)	7.4 S	158.6 S	55.0	0.3	5.0		1000 Gallons Burned	
3-06-001-04	- Gas Fired	3.0	3.0	950.0 S,(c)	140.0	2.8	35.0		Million Cubic Feet Burned	
3-06-001-05	- Natural Gas-Fir <del>e</del> d	3.0	3.0	0.6	140.0	2.8	35.0		Million Cubic Feet Burned	
3-06-001-06	- Process Gas-Fired	3.0	3.0	950.0 \$,(c)	140.0	2.8	35.0		Million Cubic Feet Burned	
3-06-001-07	- LPG Fired	0.27	0.27	86.5 S,(c)	12.8	0.26	3.2		1000 Gallons Burned	
3-06-001-08	- Landfill Gas-Fired		•••	•••		2.8			Million Cubic Feet Burned	
3-06-001-11	- Oil Fired (>100 MMBTU) Grade 6	13.0 S	9.6 S	159.3 S	67.0	0.76	5.0		1000 Gallons Burned	
	- Other Not Classified	XXX	<b>XXX</b>	XXX	XXX	XXX	XXX	XXX	Gallons Heated	
	talytic Cracking U - Fluid Catalytic Cracking Unit	<u>nits - 2911</u> 242.0	169.4	493.0	71.0	140.8	13700.0		1000 Barrels Fresh Feed	
3-06-002-02	- Catalyst Handling System					0.0			1000 Barrels Fresh Feed	
3-06-003-01	- Thermal Catalytic Cracking Unit	17.0	11.9	60.0	5.0	55.7	3800.0		1000 Barrels Fresh Feed	
	wn Systems - 2911 - Blowdown System w/ Vapor Recovery Sys.	0.0	0.0	26.9	18.9	0.8	4.3		1000 Barrels Refinery Feed	
3-06-004-02	w/ Flaring - Blowdown System w/o Controls	0.0	0.0	0.0	0.0	580.0	0.0		1000 Barrels Refinery Capacity	
	Emissions - 2911 - Process Drains and Wastewater	0.0	0.0	0.0	0.0	5.0	0.0		1000 Gallons Wastewater	

Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS NO	TES
Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Emissions - 2911			******		**************************************				
- Process Drains and	0.0	0.0	0.0	0.0	200.0	0.0		1000 Barrels Refinery	
Wastewater								Feed	
Separators									
	0.0	0.0	0.0	0.0	0.04	0.0	•••		
· •	0.0			0.0	0 77	0.0			
	0.0	0.0	0.0	0.0	0.77	0.0			
w/o separator									
Distillate Column	Condens	ors - 2911							
- Vacuum Distillation	0.0	0.0	0.0	0.0	50.0	0.0		1000 Barrels Vacuum	
Column Condensor								Feed	
- Vacuum Distillation	0.0	0.0	0.0	0.0	18.0	0.0		1000 Barrels Refinery	
Column Condensor								Feed	
Towers - 2011									
	0.0	0.0	0.0	0.0	6.0	0.0		Million Gallons	
oooting tokers	•••				••••			Cooling Water	
- Cooling Towers	0.0	0.0	0.0	0.0	10.0	0.0		1000 Barrels Refinery	
								Feed	
Emissions - 2011									
	•	0.0	0.0	0.0	16.3	0.0		1000 Barrels Refinery	
•	0.0	0.0	0.0	0,0		••••		Feed	
- Vessel Relief Valves	0.0	0.0	0.0	0.0	2.9	0.0		1000 Barrels Refinery	
								Feed	
- Pump Seals w/o	0.0	0.0	0.0	0.0	4.11	0.0		1000 Barrels Refinery	
Controls								Feed	
- Compressor Seals	0.0	0.0	0.0	0.0	3.7	0.0		-	
					40.0	• •			
•	0.0	0.0	0.0	0.0	10.0	0.0			
•								reed	
• •	0.0	0.0	0.0	0.0	4.11	0.0		1000 Barrels Refinery	
								Feed	
- Blind Changing	0.0	0.0	0.0	0.0	0.3	0.0		1000 Barrels Refinery	
	Name Emissions - 2911 Separators Process Drains and Wastewater Separators Wastewater Treatment W/o Separator Usstewater Treatment W/o Separator Distillate Column - Vacuum Distillation Column Condensor Vacuum Distillation Column Condensor Towers - 2911 - Cooling Towers - Cooling Towers - Cooling Towers Emissions - 2911 - Pipeline Valves and Flanges - Vessel Relief Valves - Pump Seals W/o Controls - Compressor Seals - Misc: Sampling/ Non- Asphalt Blowing /Purging/etc. - Pump Seals W/ Controls	NameLbs/UnitEmissions - 2911SeparatorsProcess Drains and0.0WastewaterSeparatorsWastewater Treatment0.0W/o SeparatorWastewater Treatment0.0W/o SeparatorWastewater Treatment0.0Wo SeparatorDistillate Column CondensorVacuum Distillation0.0Column CondensorVacuum Distillation0.0Column CondensorTowers - 2911- Cooling Towers0.0Cooling Towers0.0Emissions - 2911- Cooling Towers0.0Flanges- Vessel Relief Valves0.0Flanges0.0- Pump Seals w/o0.0Controls0.0- Misc: Sampling/ Non-0.0Asphalt Blowing /Purging/etc.0.0- Pump Seals w/0.0Controls0.0	NameLbs/UnitLbs/UnitEmissions - 2911SeparatorsProcess Drains and0.00.0WastewaterSeparatorsWastewater Treatment0.00.0w/o Separator0.00.0Wastewater Treatment0.00.0Wo Separator0.00.0Wastewater Treatment0.00.0Wastewater Treatment0.00.0Wastewater Treatment0.00.0Wastewater Treatment0.00.0Vacuum Distillation0.00.0Column Condensor0.00.0Vacuum Distillation0.00.0Column Condensor0.00.0Towers - 2911Cooling Towers0.00.0Cooling Towers0.00.0Emissions - 2911 Cooling Towers0.00.0- Pipeline Valves and0.00.0Flanges-0.00.0- Vessel Relief Valves0.00.0- Pump Seals w/o0.00.0- Misc: Sampling/ Non-0.00.0- Misc: Sampling/ Non-0.00.0- Pump Seals w/0.00.0- Pump Seals w/0.00.0- Pump Seals w/0.00.0- Pump Seals w/0.00.0- Pump Seals w/0.00.0	Name         Lbs/Unit         Lbs/Unit         Lbs/Unit         Lbs/Unit           Emissions - 2911         Separators         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	Name         Lbs/Unit         Lbs/Unit <th< td=""><td>Name         Lbs/Unit         <th< td=""><td>Name         Lbs/Unit         <th< td=""><td>Name         Lbs/Unit         <th< td=""><td>Name         Lbs/Unit         <th< td=""></th<></td></th<></td></th<></td></th<></td></th<>	Name         Lbs/Unit         Lbs/Unit <th< td=""><td>Name         Lbs/Unit         <th< td=""><td>Name         Lbs/Unit         <th< td=""><td>Name         Lbs/Unit         <th< td=""></th<></td></th<></td></th<></td></th<>	Name         Lbs/Unit         Lbs/Unit <th< td=""><td>Name         Lbs/Unit         <th< td=""><td>Name         Lbs/Unit         <th< td=""></th<></td></th<></td></th<>	Name         Lbs/Unit         Lbs/Unit <th< td=""><td>Name         Lbs/Unit         <th< td=""></th<></td></th<>	Name         Lbs/Unit         Lbs/Unit <th< td=""></th<>

.

• '

• •

• •

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTES
Fugitive	Emissions - 2911		uget het werden einen			17 ¹ 1 ¹ 1			Feed
									reeu
Pipeline	Valves - 2911								
	- Pipeline Valves: Gas	0.0	0.0	0.0	0.0	516.84	0.0		Valves in Operation
	Streams								(Annual Basis)
3-06-008-12	- Pipeline Valves:	0.0	0.0	0.0	0.0	210.24	0.0		Valves in Operation
	Light Liquid/Gas								(Annual Basis)
	Stream				• •	/ 70	• •		
3-06-008-13	- Pipeline Valves:	0.0	0.0	0.0	0.0	4.38	0.0		Valves in Operation
	Heavy Liquid Stream		0.0	0.0	0.0	157.68	0.0		(Annual Basis) Valves in Operation
3-06-008-14	- Pipeline Valves:	0.0	0.0	0.0	0.0	137.00	0.0		(Annual Basis)
7 04 008 15	Hydrogen Streams - Open-ended Valves:	0.0	0.0	0.0	0.0	43.8	0.0		Valves in Operation
3-06-008-15	All Streams	0.0	0.0	0.0	0.0	4510	•••		(Annual Basis)
3-06 08-16	- Flanges: All Streams	0.0	0.0	0.0	0.0	4.9	0.0		Flanges in Operation
5 00 000 10		••••							(Annual Basis)
3-06-008-17	- Pump Seals: Light	Û.Û	0.0	0.0	Û.Û	2190.0	0.0		Seals in Operation
	Liquid/Gas Streams								(Annual Basis)
3-06-008-18	- Pump Seals: Heavy	0.0	0.0	0.0	0.0	402.96	0.0		Seals in Operation
	Liquid Streams								(Annual Basis)
3-06-008-19	- Compressor Seals:	0.0	0.0	0.0	0.0	12264.0	0.0		Seals in Operation
	Gas Streams								(Annual Basis)
3-06-008-20	- Compressor Seals:	0.0	0.0	0.0	0.0	963.6	0.0		Seals in Operation
	Heavy Liquid Streams				0.0	(17.5			(Annual Basis)
3-06-008-21	- Drains: All Streams	0.0	0.0	0.0	0.0	613.2	0.0		Drains in Operation (Annual Basis)
		0.0	0.0	0.0	0.0	3153.6	0.0		(Annual Basis) Valves in Operation
3-06-008-22	- Vessel Relief	0.0	0.0	0.0	0.0	3133.0	0.0		(Annual Basis)
	Valves: All Streams								
Flares -	2900								
	- Natural Gas					5.6			Million Cubic Feet
5 00 007 05									Burned
3-06-009-04	- Process Gas					5.6			Million Cubic Feet
									Burned
3-06-009-05	- Liquified Petroleum						•		1000 Gallons Burned
	Gas								

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTES
<u>Sludge</u>	<u>Converter - 2999</u>				·	0.2			Tons Processed
						0.2			tons riolessed
	Blowing - 2911 - Asphalt Blowing: General			0.0	0.0	60.0	0.0		Tons of Asphalt Produc <b>ed</b>
	- Fluid Coking Units: General	523.0 (c)	366.0	0.0	0.0	16.0			1000 Barrels Fresh Feed
<u>Petroleu</u> ³⁻⁰⁶⁻⁰¹⁴⁻⁰¹	<u>m Coke Calcining</u> - Coke Calciner	<u>- 2911</u> 		15.0	1.2	0.8			Tons Raw Coke Processed
	Burning - 2911 - Other Not Classified	xxx	xxx	xxx	xxx	xxx	XXX	ххх	Tons Bauxite Material Used
	<u>tOrs - 2911</u> - Distillate Oil (No. 2)					0.4			1000 Gallons Burned
3-06-099-02	- Residual Oil					0.56			1000 Gallons Burned
3-06-099-03	- Natural Gas				•••	5.6		•••	Million Cubic Feet Burned
3-06-099-04	- Process Gas					5.6		•••	Million Cubic Feet Burned
3-06-099-05	- Liquified Petroleum Gas			•					1000 Gallons Burned
Lube Oil 3-06-100-01	<u> I Refining - 2922</u> - ^{General}								1000 Barrels Lube Oil
	Emissions - 2900								

٠

,

1

.

3-06-888-01 - Specify in Comments --- -- --- --- --- --- 1000 Barrels Refinery Field Feed

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Fugitive	Emissions - 2900									
3-06-888-02	- Specify in Comments Field						•••	•••	1000 Barrels R Feed	efinery
3-06-888-03	- Specify in Comments Field								1000 Barrels R Feed	efinery
3-06- <b>888</b> -04	- Specify in Comments Field						••••		1000 Barrels R Feed	efinery
3-06-888-05	- Specify in Comments Field								1000 Barrels R Feed	efinery

## PULP & PAPER AND WOOD PRODUCTS - MAJOR GROUPS 24, 25, 26, & 27

## Sulfate (Kraft) Pulping - 2611, 2621, 2631

3-07-001-01 - Digestor Relief and Blow Tank: General	0.0	0.0	0.0	0.0	0.0	0.0	 Air-Dry Tons Unbleached Pulp
3-07-001-02 - Washer/Screens:	0.0	0.0	0.01	0.0	0.2	0.0	 Air-Dry Tons
General	• •						Unbleached Pulp
3-07-001-03 - Multi-Effect	0.0	0.0	0.01	0.0	0.0	0.0	 Air-Dry Tons
Evaporator: General	400.0		7 0		4 05		Unbleached Pulp
3-07-001-04 - Recovery Furnace /	180.0	168.0	7.0	1.0	1.95	11.0	 Air-Dry Tons
Direct Contact Evaporator							Unbleached Pulp
3-07-001-05 - Smelt Dissolving	7.0	6.2	0.2	2.9	0.16	0.0	 Air-Dry Tons
Tank: General							Unbleached Pulp
3-07-001-06 - Lime Kiln: General	56.0	9.4	0.3	1.0	0.25	0.1	 Air-Dry Tons
							Unbleached Pulp
3-07-001-07 - Turpentine	0.0	0.0	0.0	0.0	0.07	0.0	 Air-Dry Tons
Condensor: General							Unbleached Pulp
3-07-001-08 - Fluid Bed Calciner:	72.0 (c)	50.4	0.3	1.0	0.25		 Air-Dry Tons
General							Unbleached Pulp
3-07-001-09 - Liquor Oxidation			0.02	0.0	0.45	~	 Air-Dry Tons
Tower: General							Unbleached Pulp
3-07-001-10 - Recovery Furnace /	230.0	230.0	1.5	2.0	0.8	11.0	 Air-Dry Tons
Indirect Contact							Unbleached Pulp
Evaporator							

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Cultata (	Kraft) Dulping 26	211 0601	0601							
	Kraft) Pulping - 26									
3-07-001-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Air-Dry Tons Unbleached Pulp	
Sulfite Pl	ulping - 2611, 262	21, 2631								
3-07-002-03	- Digester/Blow Pit/Dump Tank: All Bases except Ca	0.0	0.0	40.0	0.0	0.0			Air-Dry Tons Unbleached Pulp	
3-07-002-11	- Digester/Blow Pit/Dump Tank: Calcium	0.0	0.0	67.0	0.0	0.0			Air-Dry Tons Unbleached Pulp	
3-07-002-12	- Digester/Blow Pit/Dump Tank: MgO	0.0	0.0	0.0	0.0	0.0			Air-Dry Tons Unbleached Pulp	
3-07-002-13	Pit/Dump Tank: MgO	0.0	0.0	0.2	0.0	0.0		'	Air-Dry Tons Unbleached Pulp	
3-07-002-14	<ul> <li>W/ Process Change</li> <li>Digester/Blow</li> <li>Pit/Dump Tank: NH3</li> <li>W/ Process Change</li> </ul>	0.0	0.0	0.4	0.0	0.0			Air-Dry Tons Unbleached Pulp	
3-07-002-15	· · · · · · · · · · · · · · · · · · ·	0.0	0.0	2.0	0.0	0.0			Air-Dry Tons Unbleached Pulp	
3-07-002-21	- Recovery System: MgO				0.0	3.5			Air-Dry Tons Unbleached Pulp	
3-07-002-22	- Recovery System: NH3				0.0	3.5			Air-Dry Tons Unbleached Pulp	
3-07-002-23	- Recovery System: Na				0.0	3.5			Air-Dry Tons Unbleached Pulp	
3-07-002-31	- Acid Plant: NH3				0.0	0.0			Air-Dry Tons Unbleached Pulp	
3-07-002-32	- Acid Plant: Na				0.0	0.0			Air-Dry Tons Unbleached Pulp	
3-07-002-33	- Acid Plant: Ca				0.0	0.0			Air-Dry Tons Unbleached Pulp	
3-07-002-34	- Knotters/Washers /	0.0	0.0	12.0	0.0	0.0			Air-Dry Tons	

•

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Łbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Sulfite P	ulping - 2611, 262	21. 2631	<i></i>							
	Screens/etc.								Unbleached Pulp	
Neutral	Sulfite Semichemi	ical Pulnir	na - 2611	2621 26	31					
	- Digester/Blow	<u></u>	<u></u>	0.2	0.0	0.0			Air-Dry Tons	
	Pit/Dump Tank:								Unbleached Pulp	
	General									
3-07-003-02	- Evaporator: General			0.01	0.0	0.0			Air-Dry Tons	
									Unbleached Pulp	
3-07-003-03	- Fluid Bed Reactor:				1.0	0.25			Air-Dry Tons	
	General								Unbleached Pulp	
3-07-003-04	- Sulfur Burner/			20.0	0.0	0.0			Air-Dry Tons	
	Absorbers: General								Unbleached Pulp	
Dulphon	rd Manufacture -	2611 262	1 2631 2	0103						
	- Paperboard: General	0.0	<u>. 1, 2001, 2</u> 0.0	<u>.430</u>		0.2			Tons Finished Prod	
	- Fiberboard: General	0.0	0.35			2.5			Tons Finished Prod	
			0.55			2.5				
<u>wood Pl</u>	<u>ressure Treating -</u>	<u>2491</u>			·					
3-07-005-01						0.0	•••		Tons of Wood Treat	ed
	- Other Not Classified								1000 Cubic Feet	
	- Other Not Classified						• • •		1000 Board Feet	
3-07-005-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons of Wood Treat	ed
Plvwood	/Particleboard O	perations	- 2435. 24	436. 2493	3					
	- General: Not	4.25	2.47			1.52			10*4 Sq. Ft. of 3/	8
	Classified								In. Plywood Produc	
3-07-007-02	- Sanding Operations			0.0	0.0	0.0	0.0		Tons Processed	
	- Particleboard Drying	0.6	0.35	0.0	0.0	0.0	0.0		Tons Processed	
3-07-007-04	- Waferboard Dryer	859.0	498.0	17.0	114.0	409.0			1000 Pounds	
	-								Wafers/Chips Dried	
3-07-007-05	- Hardboard: Coe Dryer			0.0	0.3	1.0			Tons of Dry Produc	
3-07-007-06	- Hardboard: Predryer			0.0	0.3	1.0			Tons of Dry Produc	t
3-07-007-07	- Hardboard: Pressing			0.0	0.0	1.45		•••	Tons of Dry Produc	t
3-07-007-08	- Hardboard: Tempering			0.0	0.0	0.0		•	Tons of Dry Produc	t
3-07-007-09	- Hardboard: Bake Oven			0.0	0.1	0.003			Tons Product	
3-07-007-11	- Fir-Sapwood-Steam	4.64	2.69	0.0		0.45			10*4 Sq. Ft. of 3/8	8

`

Lbs/Unit Dard Operation as 2.37 3.18 Dryer Veneer 4.14	· · · · · · · · · · · · · · · · · · ·	Lbs/Unit 436, 249 0.0 0.0 0.0	Lbs/Unit 3  	Lbs/Unit 7.53 1.3 0.19	Lbs/Unit	Lbs/Unit	In. Plywood Produced 10*4 Sq. Ft. of 3/8 In. Plywood Produced 10*4 Sq. Ft. of 3/8 In. Plywood Produced	
as 2.37 3.18 T Dryer	1.37 1.84	0.0		1.3			10*4 Sq. Ft. of 3/8 In. Plywood Produced 10*4 Sq. Ft. of 3/8	
3.18 Dryer	1.84	0.0		1.3			In. Plywood Produced 10*4 Sq. Ft. of 3/8	
Dryer								
Veneer 4.14	2.4	0.0		0 10				
				0.17			10*4 Sq. Ft. of 3/8 In. Plywood Produced	
lywood 3.7	2.15	0.0		2.94	•		10*4 Sq. Ft. of 3/8 In. Plywood Produced	
ND WOOD PR	ODUCTS -	MAJOR	GROU	<u>PS 24, 2</u>	25, 26 8	<u>k 27</u>		
			-					
	<u>ıs - 2435, 2</u> 	<u>436, 249</u> 	<u>3</u> 				10*4 Sq. Ft. of 3/8 In. Plywood Produced	
	<u>pard Operation</u>	<u>Dard Operations - 2435, 2</u>	Dard Operations - 2435, 2436, 249	Dard Operations - 2435, 2436, 2493	Dard Operations - 2435, 2436, 2493	Dard Operations - 2435, 2436, 2493	ired	pard Operations - 2435, 2436, 2493

# Plywood/Particleboard Operations - 2435, 2436, 2493

3-07-007-98 - Other Not Classified								1000 Board Feet
3-07-007-99 - Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed
Sawmill Operations - 2421	<u>, 2426, 2</u>	<u>429, 2411</u>						
3-07-008-01 - Log Debarking: General	0.02	0.011	0.0	0.0	0.0			Tons of Logs Processed
3-07-008-02 - Log Sawing: General	0.35	0.2	0.0		0.0			Tons of Logs Processed
3-07-008-03 - Sawdust Pile Handling: General	1.0	0.36	0.0		0.0	•		Tons of Sawdust
3-07-008-04 - Sawing: Cyclone Exhaust	2.25	0.9	0.0	0.0	0.0	0.0		SCFM Average Airflow
3-07-008-05 - Planning/Trimming: Cyclone Exhaust	2.25	0.9	0.0	0.0	0.0	0.0		SCFM Average Airflow
3-07-008-06 - Sanding: Cyclone	4.0	2.0	0.0	0.0	0.0	0.0	•••	SCFM Average Airflow

. .

ι.

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD	UNITS NOTES
			· · · · · · · · · · · · · · · · · · ·						······································
<u>Sawmill</u>	Operations - 242 Exhaust	<u>1, 2426, 2</u> ,	<u>429, 2411</u>						
3-07-008-07	- Sanderdust: Cyclone Exhaust	5.0	2.5	0.0	0.0	0.0	0.0		Hours of Operation
3-07-008-08	- Other Cyclones: Exhaust	2.0	0.8	0.0	0.0	0.0	0.0		Hours of Operation
3-07-008-96	- Other Not Classified								1000 Cubic Feet
3-07-008-97	- Other Not Classified								GALLONS
3-07-008-98	- Other Not Classified								1000 Board Feet
3-07-008-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed
Paper Co	oating and Glazin	na <b>-</b> 2671.	2672						
	<ul> <li>Extrusion Coating</li> </ul>	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Resin/Wax
	Line w/ Solvent Free								Consumed
	Resin/Wax								
Miscella	neous Paper Prod	ducts - 26	79						
	- Shredding Newspaper								Tons of Paper
5 61 615 61	for Insulation Mfg.								Shredded
3-07-013-99	- Other Not Classified	xxx	xxx	XXX	XXX	ххх	XXX	XXX	Tons Processed
Furniture	Manufacture - 2	500 (u)							
	- Other Not Classified			12.0					1000 Board Feet
	- Other Not Classified	xxx	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed
						~~~	000	~~~	1013 (10063364
	neous Woodwork								
3-07-030-01	- Wood Waste Storage	1.0	0.58	0.0	0.0	0.0	0.0		Tons of Woodwaste
	Bin Vent								
3-07-030-02	- Wood Waste Storage	2.0	1.2	0.0	0.0	0.0	0.0		Tons of Woodwaste
	Bin Loadout								
3-07-030-96	- Sanding/Planning								1000 Square Feet
-	Operations: Specify								
5-07-030-97	- Sanding/Planning								Each
7 07 030 00	Operations: Specify								
5-07-050-98	- Sanding/Planning	***					• • •		1000 Board Feet
7.07.070 ~~	Operations: Specify	~~~	VVV	WWW					Prove Pressonal
3-01-030-99	- Sanding/Planning	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Miscella	aneous Woodworl	king Opera	tions - 24	20, 2430	(u)					
	Operations: Specify									
Fugitive	Emissions - 2400) <u>, 2500, 26</u>	<u>00, 2700</u>							
3-07-888-01	- Specify in Comments Field								Tons Product	
3-07~888-02	- Specify in Comments Field							••••	Tons Product	
3-07-888- 03	- Specify in Comments Field				••••		•••		Tons Product	
3-07-888- 04	- Specify in Comments Field				•••				Tons Product	
3-07-888-05	- Specify in Comments Field								Tons Product	
3-07-888-98	- Specify in Comments Field				•				1000 Board Feet	
Pulp & P	Paper and Wood I	Products: (Other Not	Classifie	d - 2400). 2500.	2600.	2700		
	- Other Not Classified			***			•••	~~~~	1000 Board Feet Produced	
PULP &	PAPER AND WO	<u>OD PRODI</u>	JCTS - FU	EL FIREL	D EQUIF	<u>PMENT</u>				
Process	s Heaters - 2400, 2	2500. 2600	. 2700							
	- Distillate Oil (No. 2)			143.6 S	20.0	0.2			1000 Gallons Burr	ned
3-07-900-02	- Residual Oil		•••	158.6 S	55.0	0.28		•••	1000 Gallons Burn	
3-07-900-03	- Natural Gas			0.6	140.0	2.8		••••	Million Cubic Fee Burned	et
Incinera	ntors - 2400, 2500	. 2600. 270	00							
	- Distillate Oil (No. 2)	····				0.4		••••	1000 Gallons Burr	ned
3-07-900-12	- Residual Oil					0.56			1000 Gallons Burr	ned
3-07-900-13	- Natural Gas					5.6	•		Million Cubic Fee Burned	et

» '

, i , i ,

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Flares -	2400, 2500, 260	0, 2700								
3-07-900-21	- Distillate Oil (No. 2)							•••	1000 Gal. Burned	
3-07-900-22	- Residual Oil								1000 Gal. Burned	
3-07-900-23	- Natural Gas					5.6		•••	Million Cubic Fee Burned	t

RUBBER AND MISCELLANEOUS PLASTICS PRODUCTS - MAJOR GROUPS 30 & 75

Tire Manufacture - 3011 (v)								
3-08-001-01 - Undertread and					208.5 (c)			1000 Tires Produced
Sidewall Cementing						•		
3-08-001-02 - Bead Dipping					18.0 (c)			1000 Tires Produced
3-08-001-03 - Bead Swabbing					18.0		•••	1000 Tires Produced
3-08-001-04 - Tire Building					72.75 (c)			1000 Tires Produced
3-08-001-05 - Tread End Cementing	•••				33.0			1000 Tires Produced
3-08-001-06 - Green Tire Spraying					220.5 (c)			1000 Tires Produced
3-08-001-07 - Tire Curing					4.4 (c)			1000 Tires Produced
3-08-001-08 - Solvent Mixing	•••				130.0			Tons Solvent
3-08-001-09 - Solvent Storage					0.0			Tons Solvent
3-08-001-10 - Solvent Storage					0.0			1000 Gallon
								Throughput
3-08-001-20 - Undertread and					1800.0			Tons Solvent Used
Sidewall Cementing								
3-08-001-21 - Tread End Cementing					1800.0			Tons Solvent Used
3-08-001-22 - Bead Dipping					1800.0			Tons Solvent Used
3-08-001-23 - Green Tire Spraying					1840.0			Tons Solvent Used
3-08-001-97 - Other Not Classified							•••	Each
3-08-001-98 - Other Not Classified								Gallons
3-08-001-99 - Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Product
Tire Detreading 7524								
<u> Tire Retreading - 7534</u>				• •				
3-08-005-01 - Tire Buffing			0.0	0.0	600.0			1000 Tires Processed
Machines								

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Other F	abricated Plastics	Products	- 3021, 30) <u>52, 306</u>	1 <u>, 3069</u>					
3-08-006-99	Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Product	
Fabrica	ted Plastics Produ	ucts - 3080)							
	- Plastics Machining: Drilling/ Sanding/			0.0	0.0	13.0			Tons Processed	
3-08-007-02	Sawing/etc. 2 - Mould Release			0.0	0.0	0.0			Tons Product	
	- Solvent Consumption					640.0			Tons Solvent	
	- Adhesive Consumption					640.0			Tons Adhesive	
	- Wax Burnout Oven					0.0			Tons of Wax Bur	ned
Fiberala	ass Resin Product	ts - 3080								
3-08-007-20									Tons Produced	
3-08-007-21	- Gel Coat-Roll On					940.0			Tons Coating Ap	plied
3-08-007-22	2 - Gel Coat-Spray On					600.0			Tons Coating Ap	plied
3-08-007-23	- Resin-General-Roll	•••				500.0			Tons Coating Ap	plied
3-08-007-24	On - Resin-General-Spray On					220.0			Tons Coating Ap	plied
Fabrica	ted Plastics Produ	ucts - 3080)							
	Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Product	
	Foam Products - 3	<u>3000</u>							Tons Product	
3-08-008-02									Tons Product	
	5 - Bead Storage								Tons Stored	
	-									

. . .

RUBBER AND MISCELLANEOUS PLASTIC PRODUCTS - MAJOR GROUPS 30 & 75

Fabricated Plastic Products	<u>s - 3080</u>				
3-08-009-01 - Polystyren: General		 	 49.8	 	Tons of Resin
(Molding)					Consumed

. •

NOTES LEAD UNITS SCC Process Name SOx NOx VOC CO PART **PM10** Lbs/Unit Lbs/Unit Lbs/Unit Lbs/Unit Lbs/Unit Lbs/Unit Lbs/Unit

RUBBER AND MISCELLANEOUS PLASTICS PRODUCTS - MAJOR GROUPS 30 & 75

Process Heaters - 3000, 75	00							
3-08-900-01 - Distillate Oil (No. 2)		•••	143.6 S	20.0	0.2			1000 Gallons Burned
3-08-900-02 - Residual Oil			158.6 S	55.0	0.28			1000 Gallons Burned
3-08-900-03 - Natural Gas			0.6	140.0	2.8			Million Cubic Feet
								Burned
3-08-900-04 - Liquified Petroleum Gas (LPG)								1000 Gallons Burned
Incinerators - 3000, 7500								
3-08-900-11 - Distillate Oil (No.					0.4			1000 Gallons Burned
2)								
3-08-900-12 - Residual Oil					0.56			1000 Gallons Burned
3-08-900-13 - Natural Gas					5.6			Million Cubic Feet
								Burned
Eleren 2000 7500								
<u>Flares - 3000, 7500</u>					5.6			Million Cubic Feet
3-08-900-23 - Natural Gas				•••	2.0			Burned
1								burneu
Other Not Classified - 3000). 7500							
3-08-999-99 - Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed
	0.0.U.0.T.0							
FABRICATED METAL PR	ODUCIS	<u>- MAJU</u>	<u>R GROUI</u>	<u>-5 34 &</u>	<u>50</u>			
General Processes - 3400								
3-09-001-98 - Other Not Classified								Gallons
3-09-001-98 - Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed
3-09-001-99 - Other Not classified	<u>^</u> ^^	~~~	~~~	~~~	~~~	~~~	~~~	TONS PROCESSED
Abrasive Blasting of Metal	Parts - 34	00						
3-09-002-01 - General			0.0	0.0	0.0	0.0		Tons Abrasive
								Consumed

SCC Process Name	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
INdifie	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Abrasive Blasting of I	Motal Parts - 3	400							
3-09-002-02 - Sand Abrasive	<u></u>	<u>+00</u> 	0.0	0.0	0.0	0.0		Tons Abrasive	
			010			•••		Consumed	
3-09-002-03 - Slag Abrasive			0.0	0.0	0.0	0.0		Tons Abrasive	
								Consumed	
3-09-002-04 - Garnet Abrasive	•••		0.0	0.0	0.0	0.0		Tons Abrasive	
								Consumed	
3-09-002-05 - Steel Grit Abras	ive	•••	0.0	0.0	0.0	0.0		Tons Abrasive	
								Consumed	
3-09-002-06 - Walnut Shell			0.0	0.0	0.0	0.0		Tons Abrasive	
Abrasive								Consumed	
3-09-002-07 - Shotblast w/ Air			0.0	0.0	0.0	0.0		Tons Shot Consumed	
3-09-002-08 - Shotblast w/o Ai			0.0	0.0	0.0	0.0		Tons Shot Consumed	
3-09-002-98 - General								Linear Feet	
3-09-002-99 - General	XXX	XXX	0.0	0.0	0.0	0.0	XXX	Each	
Abrasive Cleaning of	Metal Parts - 3	3400		•					
3-09-003-01 - Brush Cleaning			0.0	0.0	0.0			Tons Abrasive	
•								Consumed	
3-09-003-02 - Tumble Cleaning			0.0	0.0	0.0			Tons Abrasive	
-								Consumed	
3-09-003-03 - Polishing			0.0	0.0	0.0	•••	•	Tons Abrasive	
								Consumed	
3-09-003-04 - Buffing			0.0	0.0	0.0			Tons Abrasive	
								Consumed	
Electroplating Opera	tiono 0171								
Electroplating Opera	<u>110/15 - 347 1</u>								
3-09-010-01 - General: Entire			0.0	0.009	0.026	•		Square Feet of	
Process								Product Plated	
3-09-010-97 - Other Not Classi						•		Tons Makeup	
3-09-010-98 - Other Not Classi	fied							Gallons	
Conversion Coating (of Metal Produ	ıcts - 3471							
3-09-011-01 - Alkaline Cleanir			0.0	0.3	0.0			Tons Processed	
Bath				v.J	0.0			Tons Trocessed	
3-09-011-02 - Acid Cleaning Ba	ath		0.6	13,0	0.0			Tons Processed	
s of oth or note atcalling be		1	0.0	13,0	0.0			1013 110063360	

• •

. '

.,

(n Coating of Me	tal Produc			Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	
	(Pickling)		<u>cts - 3471</u>						
3-09-011-03 - A	• • •								
	Anodizing Kettle			0.0	0.2	0.0			Tons Processed
	Rinsing/Finishing			0.0	8.0	100.0	•••		Tons Processed
3-09-011-99 - 0	Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Gallons
Chemical	Milling of Metal	Products	<u>- 3471</u>						
3-09-015-01 - M					160.0	0.0			Tons Processed
Metal Pipe	e Coating of Met	al Parts -	3479						
3-09-016-01 - 4						1000.0			Tons Pipe Processed
3-09-016-02 - P		•					•••		Tons Pipe Processed
3-09-016-03 - P									Tons Pipe Processed
	Coal Tar/Asphalt					0.0			Tons Coating Material
	Melting Kettle								Melted
3-09-016-05 - /	Asphalt Dipping					13.0			1000 Square Feet Pipe
						13.0			Processed 1000 Square Feet Pipe
3-09-016-06 - F	Pipe spinning				,	13.0			Processed
3-09-016-07 - F	Pipe Wrapping					13.0			1000 Square Feet Pipe
• • • • • • • •									Processed
Drum Clos	oning /Poolomat	ion _ 5095	•						
	aning/Reclamation Burning Furnace	0.035	0.02	0.002	1.5	0.002			Drums Burned
3-09-023-01 - 0	orum burning furnace	0.055	0.02	0.002	1.2	0.002			
Machininc	<u>g Operations - 34</u>	400, 5000							
	Sawing: Specify	* = =					•••		Tons Processed
	Material in Comments								
3-09-030-06 - 1	Honing: Specify								Tons Processed
1	Material in Comments								
Matal Dan	position Droppos	2400	5000						
	position Process	es - 3400,	5000		• •	7/0 0		~ -	
	Metallizing: Wire			0.0	0.0	340.0		0.5	Tons Sprayed Metal
	Atomization and								Consumed
	Spraying			0.0	0.0	0.0			Tons Sprayed Metal
	Thermal Spraying of Powdered Metal			0.0	0.0	0.0			Consumed
	Powdered metal								CONSUMER

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Metal De	eposition Process	es - 3400	5000							
	- Plasma Arc Spraying of Powdered Metal			0.0	0.0	130.0	••••		Tons Sprayed Metal Consumed	
5-09-040-30	- Tinning: Batch Process		2.8						Tons Tin Consumed	
Porcelai	<u>n Enamel/Cerami</u>	c Glaze S	praving - 3	3431						
3-09-060-01	- Spray Booth								Gallons Wet Mixed Slurry Sprayed	
3-09-060-99	- Spray Booth	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed	
	Emissions - 3400, - Specify in Comments Field	5000							Tons Product	
5-09-888-02	- Specify in Comments Field								Tons Product	
5-09-888-03	- Specify in Comments Field								Tons Product	
-09-888-04									Tons Product	
8-09-888-05	- Specify in Comments Field								Tons Product	
Process	Heaters - 3400, 5	000								
	- Distillate Oil (No. 2)			143.6 S	20.0	0.2			1000 Gallons Burne	ed
8-09-900-02	- Residual Oil			158.6 S	55.0	0.28			1000 Gallons Burne	ed
	- Natural Gas			0.6	140.0	2.8			Million Cubic Fee Burned	t
	tors - 3400, 5000					0.4			1000 Gallons Burn	ad .
	- Distillate Oil (No. 2)									
	- Residual Oil					0.56			1000 Gallons Burn	
3-09-900-13	- Natural Gas					5.6			Million Cubic Fee Burned	t

• •

SCC	Process Name	PART Lbs/Unit	PM16 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
	<u>3400, 5000</u>									
3-09-900-23	- Natural Gas	•••				5.6	•••		Million Cubic Feet Burned	
Other No	ot Classified - 340	0. 5000								
	- Other Not Classified								Thousand Pieces Processed	
3-09-999-98	- Other Not Classified								Million Pieces Processed	
3-09-999-99	- Other Not Classified	ххх	XXX	XXX	XXX	xxx	ххх	ххх	Tons Processed	
OIL ANI	O GAS PRODUC	TION - M	AJOR GR	<u>OUP 13</u>						
Crude O	il Production - 13	11								
	- Complete Well: Fugitive Emissions					396.0			Wells/Year in Operation	
3-10-001-02	- Miscellaneous Well: General					280.0			Wells/Year in Operation	
3-10-001-03	- Wells-Rod Pumps					455.0			Wells/Year in Operation	
3-10-001-04	- Crude Oil Sumps					9.0			Square Feet Sump Area/Year	
3-10-001-05	- Crude Oil Pits					9.0			Square Feet Sump	
3-10-001-99	- Processing Operations: Not Classified	XXX	xxx	XXX	ХХХ	xxx	ххх	ХХХ	Area/Year 1000 Barrels Produ	iced
Natural	Gas Production -	1311								
3-10-002-01	- Gas Sweeting: Amine Process	0.0	0.0	1685.0 S	0.0	0.0	0.0		Million Cubic Feet Sour Gas Processed	
3-10-002-02	- Gas Stripping Operations			310.0		6.0			Million Cubic Feet Gas Produced	of
3-10-002-03	- Compressors					6.0			Million Cubic Feet Gas Produced	of

•

SCC Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS NOTES
Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	
Natural Gas Production	- 1311							
3-10-002-04 - Wells					35.0			Million Cubic Feet of Gas Produced
3-10-002-05 - Flares					5.6	••••		Million Cubic Feet of Gas Produced
3-10-002-06 - Gas Lift					6.0			Million Cubic Feet of Gas Produced
3-10-002-07 - Valves: Fugitive Emissions								Million Cubic Feet of Gas Produced
3-10-002-99 - Other Not Classified	I XXX	XXX	ххх	ХХХ	XXX	XXX	XXX	Million Cubic Feet of Gas Produced
Process Heaters - 1300								
3-10-004-01 - Distillate Oil (No. 2)	2.0	1.0	143.6 S	20.0	0.2	5.0		1000 Gallons Burned
3-10-004-02 - Residual Oil	12.0 S,(c)	10.3 s	158.6 S	55.0	0.28	5.0		1000 Gallons Burned
3-10-004-03 - Crude Oil	12.0 S,(c)	10.3 S	158.6 S	55.0	0.28	5.0		1000 Gallons Burned
3-10-004-04 - Natural Gas	3.0	3.0	0.6	140.0	2.8	35.0		Million Cubic Feet Burned
3-10-004-05 - Process Gas	3.0	3.0	950.0 S,(c)	140.0	2.8	35.0		Million Cubic Feet Burned
Steam Generators - 130	<u>0</u>							
3-10-004-11 - Distillate Oil (No. 2)	2.0	1.0	143.6 S	20.0	0.2	5.0		1000 Gallons Burned
3-10-004-12 - Residual Oil	12.0 S	10.3 S	158.6 S	55.0	0.28	5.0		1000 Gallons Burned
3-10-004-13 - Crude Oil	12.0 S	10.3 S	158.6 S	55.0	0.28	5.0		1000 Gallons Burned
3-10-004-14 - Natural Gas	3.0	3.0	0.6	140.0	2.8	35.0		Million Cubic Feet Burned
3-10-004-15 - Process Gas	3.0	3.0	950.0 S,(c)	140.0	2.8	35.0		Million Cubic Feet Burned
Fugitive Emissions - 130								
3-10-888-01 - Specify in Comments Field			•••				•••	Process-Unit/Yr
3-10-888-02 - Specify in Comments				•••		•••		Process-Unit/Yr

۰ • ·

. .

٠.

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS N	OTES
Fugitive H	Emissions - 1300					, , , <u>,,,,,,</u>		<u></u>	······································	
i ugitive i	Field									
3-10-888-03 -	Specify in Comments								Process-Unit/Yr	
	Field								- ·· ·· ··	
3-10-888-04 -	Specify in Comments Field								Process-Unit/Yr	
3-10-888-05 -	Specify in Comments Field	•••							100 Barrel Feed Produced	
BUILDIN	IG CONSTRUCT	<u>ION - MA</u>	JOR GRO	<u>DUP 15</u>						
Construc	tion: Building Co	ntractors	- 1521, 15	522						
	Site Preparation:	74.3	20.0						Vehicle-Miles	
	Topsoil Removal								Travelled	
3-11-001-02 -	Site Preparation:	19.6	4.3						Vehicle-Miles	
	Earth Moving (Cut &								Travelled	
	Fill)									
3-11-001-03 -	Site Preparation:	43.1	10.0						Vehicle-Miles	
	Aggregate Hauling								Travelled	
	(on dirt)									
3-11-001-99	• Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Acres of Construction Activity	
Oceative	tion. Domolition	of Christe	1501	1500					·	
	tion: Demolition of		<u>ires - 1521</u>							
3-11-002-01	Mechanical or		0.000051						Sq. Ft. Demolished	
	Explosive								Floor Area	
	Dismemberment								Town of Hooks	
3-11-002-02	Mechanical or		0.0011				•••		Tons of Waste	
	Explosive								Material	
	Dismemberment		0.00007						Co Et Demolished	
5-11-002-03	- Debris Loading		0.00093		•••	•••		•••	Sq. Ft. Demolished Floor Area	
-	Babada Landina		0.058						Tons of Waste	
5-11-002-04	- Debris Loading		0.058						Material	
	on olde Truck		0.01						Sq. Ft. Demolished	
5-11-002-05	- On-Site Truck	•••	0.01			•••			Sq. Ft. Demotrshed Floor Area	
	Traffic								FLOOF AFEA	

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Constur	rction: Demolition	of Structu	res - 1521	. 1522						
	- On-Site Truck Traffic		4.5						Vehicle-Miles Travelled	
Constru	ction: Special Tra	de Contra	oct - 1521.	1522						
	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Acres of Constru Activity	iction .
MACHI	NERY, MISCELL	ANEOUS	- MAJOR	GROUP	35					
	aneous Machinery	<u>/ - 3500</u>								
3-12-999-99	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed	
ELECT	RICAL EQUIPME	NT - MAJ	OR GROU	<u>JP 76</u>						
<u>Electrica</u>	al Windings Recla	amation - 7	<u>7694</u>							
3-13-070-01	- Single Chamber Incinerator/Oven			2.5		950.0			Tons Charged	
3-13-070-02	- Multiple Chamber Incinerator/Oven			2.5	0.1	190.0			Tons Charged	
Process	<u> Heaters - 7600</u>									
	- Distillate Oil (No. 2)			143.6 S	20.0	0.2			1000 Gallons Bu	rned
3-13-900-02	? - Residual Oil			158.6 S	55.0	0.28			1000 Gallons Bu	rned
3-13-900-03	5 - Natural Gas			0.6	140.0	2.8			Million Cubic Fo Burned	eet
Other N	lot Classified - 76	00								
	- Other Not Classified	XXX	XXX	XXX	ХХХ	XXX	XXX	XXX	Tons Processed	

•

• '

. .

SCC NOTES Process Name PART **PM10** SOx VOC UNITS NOx CO LEAD Lbs/Unit Lbs/Unit Lbs/Unit Lbs/Unit Lbs/Unit Lbs/Unit Lbs/Unit

TRANSPORTATION EQUIPMENT - MAJOR GROUPS 37, 50, & 75

Automobiles/Truck Asser	nbly Opera	ations - 37	7 <u>11. 3713</u>					
3-14-009-01 - Solder Joint Grinding		•	0.0	0.0	0.0	0.0		Number of Vehicles Processed
Brake Shoe Debonding -	7539							
3-14-010-01 - Single Chamber			2.5		950.0			Tons Charged
Incinerator 3-14-010-02 - Multiple Chamber			2.5		190.0			Tons Charged
Incinerator			2.5		170.0			Tons charged
Auto Body Shredding - 50	103							
3-14-011-01 - Primary Metal			0.0	0.0	0.0			Tons of Scrap
Recovery Line								Processed
3-14-011-02 - Secondary Metal Recovery Line			0.0	0.0	0.0	*=*		Tons of Scrap Processed
Other Not Classified - 370	0. 5000. 7	500						
3-14-999-99 - Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	xxx	Tons Processed
PHOTOGRAPHIC EQUI	PMENT - N	<u>MAJOR G</u>	ROUP 3	<u>3</u>				
Photocopying Equipment	Mfq 386	<u> 51</u>						
3-15-010-01 - Resin					0.0	•		1000 Pounds Resin
Transfer/Storage 3-15-010-02 - Toner Classification					630.0			1000 Pounds Toner
3-15-010-03 - Toner (Carbon Black)				•••	0.0			1000 Pounds Toner
Grinding								

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit								

HEALTH SERVICES - MAJOR GROUP 80

Hospitals - 8062

, •

3-15-020-01 - Sterilization w/	 	 	2000.0	 	Tons Ethylene Oxide
Ethylene Oxide 3-15-020-02 - Sterilization	 	 		 	Consumed Tons Freon Consumed
w/Freon 3-15-020-03 - Sterilization w/	 	 		 	Tons Formaldehyde
Formaldehyde					Consumed

LEATHER AND LEATHER PRODUCTS - MAJOR GROUP 31

Other Not Classified - 3100

3-20-999-97 - Other Not Classified				·				1000 Square Feet
3-20-999-98 - Other Not Classified				•	19.0			Gallons
3-20-999-99 - Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed

TEXTILE PRODUCTS - MAJOR GROUPS 22 & 30

Miscellaneous General Fabric Operations - 2261, 2262, 2280, 2290

3-30-001-01 - Yarn Preparation / Bleaching		•••			0.0			Tons Processed
3-30-001-02 - Printing					284.0			Tons Processed
3-30-001-03 - Polyester Thread					0.0			Tons Processed
Production								
3-30-001-04 - Tenter Frames: Heat					0.47			Tons Processed
Setting								
3-30-001-05 - Carding			•••		0.0			Tons Processed
3-30-001-98 - Other Not Classified								1000 Feet
3-30-001-99 - Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed
Rubberized Fabric - 3069,	2241							
3-30-002-01 - Impregnation:								Tons Processed

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Rubberi	zed Fabric - 3069	. 2241			**					
	General									
3-30-002-11	- Impregnation		•••			120.0			Tons Coating A	pplied
3-30-002-12	- Wet Coating					1200.0			Tons Coating A	pplied
3-30-002-13	- Hot Melt Coating					120.0		•••	Tons Coating A	pplied
3-30-002-14	- Wet Coating Mixing					133.0			Tons Coating M	ixed
Other N	ot Classified - 306	69. 2241								
	- Other Not Classified								Tons Solvent C	onsumed
	- Other Not Classified								Gallons	
• • • • • • • •	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed	
Carpet	Operations - 2273	}								
	- Other Not Classified	xxx	XXX	XXX	XXX	XXX	XXX	XXX	Tons Processed	
Fabric F	- inishing - 2261, 2	262. 2269)							
	- Other Not Classified	XXX	- xxx	XXX	XXX	xxx	XXX	XXX	Tons Processed	
	- Other Not Classified	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Items Produced	
Fugitive	Emissions - 2200	3000			•					
	- Specify in Comments						•••		Process-Unit/Y	ear
5 50 500 0.	Field									
3-30-888-02			••••						Process-Unit/Y	ear
	Field									
3-30-888-03					·				Process-Unit/Y	ear
	Field									
3-30-888-04									Process-Unit/Y	еаг
	Field									
3-30-888-05									Process-Unit/Y	ear
	Field									

PRINTING AND PUBLISHING - TYPESETTING - MAJOR GROUP 27

Typesetting (Lead Remelt	<u>ing) - 2791</u>	-				
3-60-001-01 - Remelting (Lead	0.7	0.18	 	 	0.25	Tons Melted
Emissions Only)						

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
IN-PRC	OCESS FUEL US	<u>)</u> (w)								
Anthrac	ite Coal -									
3-90-001-89	- General	10.0 A		39.0 S	18.0	0.07	0.6		Tons Burned	
3-90-001-99) - General	0.0	0.0	0.0	0.0	0.0	0.0	XXX	Tons Burned	
Ritumin	ous Coal -									
	- Cement Kiln/Dryer	0.0	0.0	26.0 S	0.0	0.0	0.0		Tons Burned	
	5 - Lime Kiln	0.0	0.0	19.0 S	0.0	0.0	0.0		Tons Burned	
• • • •										
	<u>minous Coal -</u>									
3-90-002-88	3 - General	7.0 A		39.0 S	34.0	0.07	0.6		Tons Burned	
Ritumin	ous Coal -									
3-90-002-89		7.0 A		39.0 S	34.0	0.07	0.6		Tons Burned	
3-90-002-99		0.0	0.0	0.0	0.0	0.0	0.0	XXX	Tons Burned	
		••••								
<u>Lignite</u>	_									
3-90-003-89		6.3 A		30.0 S	14.0	0.07	0.6		Tons Burned	
3-90-003-99	9 - General	0.0	0.0	0.0	0.0	0.0	0.0	XXX	Tons Burned	
Residua	al Oil -									
	2 - Cement Kiln/Dryer	0.0	0.0	108.0 S	0.0	0.0	0.0		1000 Gallons	Burned
	3 - Lime Kiln	0.0	0.0	79.5 S	0.0	0.0	0.0		1000 Gallons	
3-90-004-89	9 - General	12.0 S		158.6 S	55.0	0.28	5.0		1000 Gallons	Burned
3-90-004-99	9 - General	0.0	0.0	0.0	0.0	0.0	0.0	XXX	1000 Gallons	Burned
Distillat		~ ~		00.0.0					1000 0-11	Duranad
	2 - Cement Kiln/Dryer 3 - Lime Kiln	0.0 0.0	0.0 0.0	98.0 S 72.0 S	0.0 0.0	0.0 0.0	0.0 0.0		1000 Gallons 1000 Gallons	
3-90-005-89		2.0	0.0	143.6 S	20.0	0.0	5.0		1000 Gallons	
3-90-005-98		0.0		0.0	0.0	0.0	0.0		1000 Gallons	
3-90-005-99		0.0	0.0	0.0	0.0	0.0	0.0	XXX	1000 Gallons	-

• •

1. S. M. 1. S. M.

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Natural	Gas -									
	- Cement Kiln/Dryer	0.0	0.0	0.0	0.0	0.0	0.0		Million Cubic Fe Burned	et
3-90-006-03	- Lime Kiln	0.0	0.0	0.0	0.0	0.0	0.0	•••	Million Cubic Fe Burned	et
3-90-006-89	- General	3.0	***	0.6	100.0	5.3	20.0		Million Cubic Fe	et
3-90-006-99	- General	0.0	0.0	0.0	0.0	0.0	0.0	XXX	Million Cubic Fe Burned	et
Process										
3-90-007-01	- Coke Oven or Blast Furnace	0.0	0.0	0.0	0.0	0.0	0.0		Million Cubic Fe Burned	et
3-90-007-02	- Coke Oven Gas	0.0	0.0	0.0	0.0	0.0	0.0		Million Cubic Fe Burned	et
3-90-007-88	- General	3.0		950.0 s	140-0	2.8	35.0		Hillion Cubic Fe	et
3-90-007-8 9	- Coke Oven Gas	6.2	•	680.0 S	80.0	1.2	18.4		Nillion Cubic Fe	et
3-90-007-97	'- General	0.0	0.0	0.0	0.0	0.0	0.0		Nillion Cubic Fe Burned	et
3-90-007-98	- General	0.0	0.0	0.0	0.0	0.0	0.0	•	Million Cubic Fe Burned	et
3-90-007-99	9 - General	0.0	0.0	0.0	0.0	0.0	0.0	XXX	Million Cubic Fo Burned	et
<u>Wood -</u> 3-90-008-89		7.0 A		38.0 s	14.0	0.07	0.6		Tons Burned	
<u>Coke -</u> 3-90-008-99	9 - General	0.0	0.0	0.0	0.0	0.0	0.0	ххх	Tons Burned	
<u>LPG -</u> 3-90-009-89	9 - General	7.2		0.15	0.68	1.4	4.0		Tons Burned	

.

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Wood -										
3-90-009-99	-	0.0	0.0	0.0	0.0	0.0	0.0	XXX	Tons Burned	
Liquified	d Petroleum Ga	s (LPG) -								
3-90-010-89		0.26	•••	86.5 S	8.8	0.47	1.8		1000 Gallons	Burned
3-90-010-99	9 - General	0.0	0.0	0.0	0.0	0.0	0.0	XXX	1000 Gallons	Burned
<u>Solid Wa</u> 3-90-012-99		0.0	0.0	0.0	0.0	0.0	0.0	xxx	Tons Burned	
Liquid V	Vaste -									
3-90-013-89	- General	19.0							1000 Gallons	Burned
3-90-013-99	- General	0.0	0.0	0.0	0.0	0.0	0.0	XXX	1000 Gallons	Burned
MISCE	LLANEOUS MA	NUFACTU	RING IND	USTRIE	<u>S - MAJ</u>	OR GR	OUP 3	<u>9</u>		

, .

Process Heaters - 3900						
3-99-900-01 - Distillate Oil (No. 2)	 ••••	143.6 S	20.0	0.2		 1000 Gallons Burned
3-99-900-02 - Residual Oil	 	158.6 S	55.0	0.28	*	 1000 Gallons Burned
3-99-900-03 - Natural Gas	 	0.6	140.0	2.8		 Million Cubic Feet Burned
3-99-900-04 - Process Gas	 	950.0 S	140.0	2.8		 Million Cubic Feet Burned
Incinerators - 3900						
3-99-900-11 - Distillate Oil (No. 2)	 			0.4		 1000 Gallons Burned
3-99-900-12 - Residual Oil	 			0.56		 1000 Gallons Burned
3-99-900-13 - Natural Gas	 			5.6		 Million Cubic Feet Burned
3-99-900-14 - Process Gas	 			5.6		 Million Cubic Feet Burned

•

•

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Flares - 3	900									
	Distillate Oil (No. 2)			•••				·	1000 Gal. Burned	
3-99-900-22 -	•								1000 Gal. Burned	
3-99-900-23 -	Natural Gas					5.6			Million Cubic Fee	:
									Burned	
3-99-900-24 -	Process Gas		•••			5.6			Million Cubic Fee	:
									Burned	
Miscellan	eous Industrial H	Processes	<u>- 3900</u>							
3-99-999-93 -	Other Not Classified								Parts Processed	
3-99-999-94 -	Other Not Classified								Pounds Processed	
3-99-999-95 -	Other Not Classified								Gallons	
3-99-999-96 -	Other Not Classified								1000 Gallons	
3-99-999-98 -	Other Not Classified								1000 Parts Produce	d

ORGANIC SOLVENT / PETROLEUM

PRODUCT EVAPORATION

(SICs: 25, 33-39, 75)

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
ORGAN	IC SOLVENT EV	APORAT	ION - DRY	CLEAN	ING - N	IAJOR (ROU	<u>P 72</u>		
Drv Clea	ning - 7215, 7216	6 7218								
	- Perchloroethylene	0.0	0.0	0.0	0.0	550.0	0.0		Tons Clothes	Cleaned
	- Stoddard (Petroleum Solvent)	0.0	0.0	0.0	0.0	560.0	0.0		Tons Clothes	Cleaned
-01-001-03	- Perchloroethylene	0.0	0.0	0.0	0.0	2000.0 (c)	0.0		Tons Solvent	Consumed
-01-001-04	- Stoddard (Petroleum Solvent)	0.0	0.0	0.0	0.0	2000.0 (c)	0.0		Tons Solvent	Consumed
-01-001-05	 Trichloro trifluoroethane (Freon) 	0.0	0.0	0.0	0.0	0.0	0.0		Tons Solvent	Consumed
-01-001-06	- Tri chloro trifluoroethane (Freon)	0.0	0.0	0.0	0.0	0.0	0.0		Tons Clothes	Cleaned
-01-001-98	- Other Not Classified	0.0		0.0	0.0		0.0		Tons Solvent	Consumed
ORGAN	IIC SOLVENT EV	APORAT	ION - DEC	GREASI	NG - MA	JOR GF	ROUPS	<u>S 25, 33</u>	<u>-39, & 75</u>	
Open-Ta	op Vapor Degreas	ina - 250	0. 3300. 3	900. 750	0					
	- Stoddard (Petroleum Solvent)	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Make-Up Used	Solvent
			• •	• •			~ ~		Tama Males Um	Column

. ·

Open-Top Vapor Degreasir	<u>ıq - 2500</u>) <u>, 3300, 39</u>	<u>00, 7500</u>					
4-01-002-01 - Stoddard (Petroleum	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Make-Up Solvent Used
Solvent) 4-01-002-02 - 1,1,1-Tri	0.0	0.0	0.0	0.0	0.0	0.0		Tons Make-Up Solvent
chloroethane (Methyl	••••							Used
Chloroform)								
4-01-002-03 - Perchloroethylene	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Make-Up Solvent Used
4-01-002-04 - Methylene Chloride	0.0	0.0	0.0	0.0	0.0	0.0		Tons Make-Up Solvent
								Used
4-01-002-05 - Trichloroethylene	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Make-Up Solvent
								Used
4-01-002-06 - Toluene	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Make-Up Solvent
			• •	• •				Used
4-01-002-07 - Tri chloro	0.0	0.0	0.0	0.0	0.0	0.0	•••	Tons Make-Up Solvent

. ,

SCC Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTES
Open-Top Vapor Degrea	asing - 2500), 3300, 39	900, 750	0		······································	<u>,</u>	
trifluoroethane								Used
(Freon) -01-002-08 - Chlorosolve	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Make-Up Solvent Used
-01-002-09 - Butyl Acetate					2000.0	••••		Tons Make-Up Solvent Used
-01-002-15 - Entire Unit	0.0	0.0	0.0	0.0	21000.0	0.0		Degreasing Units in Operation
-01-002-16 - Entire Unit	0.0	0.0	0.0	0.0	180.0	0.0		1000 Sq. Ft. Prod. Surface Area Degrease
-01-002-17 - Entire Unit	0.0	0.0	0.0	0.0	0.15	0.0		Sq. Ft. Surface Area X Hours Operated
-01-002-97 - Other Not Classified	0.0	0.0	0.0	0.0		0.0		Gallons Solvent Consumed
-01-002-99 - Other Not Classified	0.0	0.0	0.0	0.0	2000.0	0.0	XXX	Tons Make-Up Solvent Used
Conveyorized Vapor De	areasina - 2	2500. 3300	D. 3900. I	7500				
-01-002-21 - Stoddard (Petroleum Solvent)		0.0	0.0	0.0	2000.0	0.0		Tons Make-Up Solvent Used
-01-002-22 - 1,1,1-Tri chloroethane (Methy)	0.0 L	0.0	0.0	0.0	0.0	0.0		Tons Make-Up Solvent Used
Chioroform) -01-002-23 - Perchioroethylene	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Make-Up Solvent Used
4-01-002-24 - Methylene Chloride	0.0	0.0	0.0	0.0	0.0	0.0		Tons Make-Up Solvent Used
-01-002-25 - Trichloroethylene	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Make-Up Solvent Used
4-01-002-35 - Entire Unit: w/ Vaporized Solvent	0.0	0.0	0.0	0.0	52000.0	0.0		Degreasing Units in Operation
4-01-002-36 - Entire Unit: w/ Non boiling Solvent	- 0.0	0.0	0.0	0.0	104000.0	0.0		Degreasing Units in Operation
4-01-002-98 - Other Not Classified	d 0.0	0.0	0.0	0.0	2000.0	0.0		Tons Make-Up Solvent Used

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Degreas	ing Units - Gener	al - 2500.	3300, 390	0. 7500						
	- Stoddard (Petroleum Solvent)	0.0	0.0	0.0	0.0	7.2	0.0	•••	Gallons Solvent Consumed	
4-01-002-52	- 1,1,1-Tri chloroethane (Methyl Chloroform)	0.0	0.0	0.0	0.0	0.0	0.0		Gallons Solvent Consumed	
4-01-002-53	- Perchloroethylene	0.0	0.0	0.0	0.0	13.4	0.0		Gallons Solvent Consumed	
4-01-002-54	- Methylene Chloride	0.0	0.0	0.0	0.0	0.0	0.0	•••	Gallons Solvent Consumed	
4-01-002-55	- Trichloroethylene	0.0	0.0	0.0	0.0	12.1	0.0		Gallons Solvent Consumed	
4-01-002-56	- Toluene	0.0	0.0	0.0	0.0	7.2	0.0		Gallons Solvent Consumed	
4-01-002-57	- Tri chloro trifluoroethane (Freon)	0.0	0.0	0.0	0.0	0.0	0.0		Gallons Solvent Consumed	
4-01-002-58	- Tri chloro fluoromethane	0.0	0.0	0.0	0.0		0.0		Gallons Solvent Consumed	
4-01-002-59	- 1,1,1-Tri chloroethane (Methyl Chloroform)	0.0	0.0	0.0	0.0		0.0		Gallons Solvent Consumed	
4-01-002-95	- Other Not Classified								Gallons Solvent Consumed	
4-01-002-96	- Other Not Classified	0.0	0.0	0.0	0.0		0.0		Gallons Solvent Consumed	
Cold So	lvent Cleaning/St	ripping - 2	<u>2500, 330(</u>	<u>), 3900, 7</u>	7 <u>500</u>					
4-01-003-01		0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent Cons	umed
	- Methylene Chloride	0.0	0.0	0.0	0.0	0.0	0.0		Tons Solvent Cons	
	- Stoddard (Petroleum Solvent)	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent Cons	umed
	- Perchloroethylene	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent Cons	
4-01-003-05	- 1,1,1-Tri chloroethane (Methyl Chloroform)	0.0	0.0	0.0	0.0	0.0	0.0		Tons Solvent Cons	umed

, , ,

• •

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Cold Sol	lvent Cleaning/St	ripping - 2	500, 3300), 3900, 7	7500					
4-01-003-06	- Trichloroethylene	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent Co	onsumed
4-01-003-07	- Isopropyl Alcohol								Tons Solvent Co	onsumed
4-01-003-08	- MEK								Tons Solvent Co	onsumed
4-01-003-09	- Freon					•••	·		Tons Solvent Co	onsumed
4-01-003-10	- Acetone					2000.0			Tons Solvent Co	onsumed
4-01-003-35	- Entire Unit	0.0	0.0	0.0	0.0	660.0	0.0		Cold Cleaners Operation	in
4-01-003-36	- Entire Unit	0.0	0.0	0.0	0.0	96.0	0.0		1000 Sq. Ft. Pr Surface Area De	
4-01-003-98	- Other Not Classified						•••	•••	Gallons Solven Consumed	:
4-01-003-99	- Other Not Classified	0.0	XXX	0.0	0.0	2000.0	0.0	XXX	Tons Solvent Co	nsumed
Knit Fab	ric Scouring w/C	Chlorinated	1 Solv - 22	00						
4-01-004-01	- Perchloroethylene	0.0		0.0	0.0	2000.0	0.0		Tons Solvent Co	onsumed
4-01-004- 99	- Other Not Classified	0.0	XXX	0.0	• 0.0	2000.0	0.0	XXX	Tons Solvent Co	onsumed
<i>Fugitive</i>	Emissions - 2500	<u>, 3300, 39</u>	<u>00, 7500 (</u>	(d)						
4-01-888-01	- Specify in Comments Field	•••							Tons Product	
4-01-888-02	- Specify in Comments Field		•				•••		Tons Product	
4-01-888-03	- Specify in Comments Field		••••						Tons Product	
4-01-888-04	- Specify in Comments				••••		•	•••	Tons Product	
4-01-888-05	- Specify in Comments Field			•••					Tons Product	
4-01-888-98	• • • • • •								Gallons	

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD	UNITS	NOTES
			Los/Unit		LDS/Unit		LDS/Unit	LDS/Unit		
SURFA	CE COATING OF	PERATION	<u>NS - MAJO</u>	OR GRO	UPS 22	-37 (x)				
	_									
<u>Surface</u>	Coating Applicat	<u>ion - Gene</u>	<u>eral -</u>							
-02-001-01	- Paint: Solvent-Base			0.0	0.0	1120.0	0.0		Tons Coating Mix Applied	
-02-001-10	- Paint: Solvent-Base			0.0	0.0	5.6 (c)	0.0		Gallons of Coating	1
-02-002-01	- Paint: Water-Base			0.0	0.0	180.0 (c)	0.0		Tons Coating Mix Applied	
-02-002-10	- Paint: Water-Base			0.0	0.0	1.0 (c)	0.0		Gallons of Coating)
-02-003-01	 Varnish/Shellac: General 			0.0	0.0	1000.0	0.0		Tons Coating Mix Applied	
-02-003-10	 Varnish/Shellac: General 		•••	0.0	0.0	3.5 (c)	0.0		Gallons of Coating)
-02-004-01	- Lacquer: General			0.0	0.0	1540.0	0.0	•••	Tons Coating Mix Applied	
4-02-004-10	- Lacquer: General			0.0	0.0	6.5 (c)	0.0		Gallons of Coating	9
-02-005-01	- Enamel: General	0.0		0.0	0.0	840.0	0.0		Tons Coating Mix Applied	
4-02-005-10	- Enamel: General			0.0	0.0	3.8	0.0		Gallons of Coating	3
-02-006-01	- Primer: General			0.0	0.0	1320.0	0.0		Tons Coating Mix Applied	
-02-006-10	- Primer: General			0.0	0.0	6.6 (c)	0.0		Gallons of Coating	9
-02-007-01	- Adhesive Application: General			0.0	0.0	900.0	0.0		Tons Coating Mix Applied	
-02-007-06	 Adhesive: Solvent Mixing 	0.0		0.0	0.0	200.0	0.0		Tons Solvent Mixe	d
-02-007-07	- Adhesive: Solvent Storage	0.0		0.0	0.0	0.0	. 0.0		Tons Solvent Stor	ed
_	- Adhesive: General			0.0	0.0	4.4	0.0		Gallons of Coatin	9
<u>Coating</u> 4-02-008-01				5.0	54.0	800.0			Tons of Coating	
4-02-008-10	- General			1.0	13.0	42.0	•		Gallons of Coatin	9
4-02-008-98	- General					•••			1000 Feet	

•

•

,

SCC Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
Name	Lbs/Unit								
Thinning Solvents -									
4-02-009-01 - General: Specify in Comments	0.0	0.0	0.0	0.0	2000.0	0.0	•••	Tons Solvent	
4-02-009-02 - Acetone	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-03 - Butyl Acetate	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-04 - Butyl Alcohol	0.0	0.0	0.0	0.0	2000.0	0.0	-	Tons Solvent	
4-02-009-05 - Carbitol	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-06 - Cellosolve	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-07 - Cellosolve Acetate	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-08 - Dimethyl Formamide	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-09 - Ethyl Acetate	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-10 - Ethyl Alcohol	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-11 - Gasoline	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-12 - Isopropyl Alcohol	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-13 - Isopropyl Acetate	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-14 - Kerosene	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-15 - Lactol Spirits	0.0	Û.Û	Ũ.Ũ	0.0	2000.0	0.0		Tons Solvent	
4-02-009-16 - Methyl Acetate	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-17 - Methyl Alcohol	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-18 - Methyl Ethyl Ketone	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-19 - Methyl Isobutyl	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
Ketone									
4-02-009-20 - Mineral Spirits	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-21 - Naphtha	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-22 - Toluene	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-23 - Varsol	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-24 - Xylene	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-25 - Benzene	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-26 - Turpentine	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-27 - Hexylene Glycol	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-28 - Ethylene Oxide	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent	
4-02-009-28 - Ethytene Oxide 4-02-009-29 - 1,1,1-Tri	0.0				2000.0			Tons Solvent	
chloroethane (Methyl Chloroform)					2000.0				
4-02-009-30 - Methylene Chloride						••••		Tons Solvent	
4-02-009-30 - Methytene chtoride 4-02-009-31 - Perchloroethylene								Tons Solvent	
								Tons Souvenic	

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD	UNITS NOT
	Solvents - (y)								
-02-009-98 -	- General: Specify in Comments	0.0	0.0	0.0	0.0		0.0		Gailons Solvent
Coatina (Oven Heater - 🛪								
	- Natural Gas			0.6	140.0	2.8			Million Cubic Feet Burned
-02-010-02 -	- Distillate Oil			144.0 S	20.0	0.02			1000 Gallons Burned
	- Residual Oil			159.0 S	55.0	0.28			1000 Gallons Burned
-02-010-04 -	- Liquified Petroleum Gas (LPG)			86.5 S	9.0	0.5			1000 Gallons Burned
Fabric Co	oating - 2295 (v)								
	- Coating Operation			0.0	0.0	1600.0	0.0		Tons Solvent in
							• •		Coating
-02-011-03 -	- Coating Mixing			0.0	0.0	200.0	0.0		Tons Solvent in Coating
-02-011-04 -	- Coating Storage			0.0	0.0	0.0	0.0		Tons Solvent in
02-011-04	coaring storage			0.0	0.0	0.0	0.0		Coating
-02-011-05 -	- Equipment Cleanup			0.0	0.0	200.0	0.0		Tons Solvent in
									Coating
Fabric Pr	rinting - 2261, 22	62. 2269							
	- Fabric Printing:	\				284.0			Tons of Fabric
07 044 47	Roller	(7)				278000.0			Printing Lines
-02-011-12 -	- Fabric Printing: (Roller	(2)				2/0000.0			Frincing Lines
-02-011-13 -	- Fabric Printing:					46.0			Tons of Fabric
	Rotary Screen								
-02-011-14 -	- Fabric Printing:	(z)				62000.0			Printing Lines
	Rotary Screen								
-02-011-15 -	- Fabric Printing:					158.0			Tons of Fabric
	Flat Screen	N				(2000 0			
-02-011-16 -		(z)				62000.0			Printing Lines
-02-011-00	Flat Screen - Other Not Classified	xxx	xxx	0,0	0.0	2000.0	0.0	xxx	Tons Solvent in
		~~~	~~~	0,0	0.0	2000.0	0.0	~~~	TODS SOLVEIL III

5

:

,

.

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTE
Fabric P	rinting - 2261, 22	62, <u>2269</u> (	y)	<u> </u>					
									Coating
⁻ abric D	veing - 2200 w								
	- Dye Application:			0.0	0.0	196.0	0.0		Tons Dye Consumed
	General		•••	0.0	0.0		0.0		
-02-012-10	- Dye Application: General			0.0	0.0		0.0		Gallons Dye Consumed
Paper C	oating - 2671, 26	72							
	- Coating Operation			0.0	0.0	1400.0	0.0		Tons Solvent in
				• •		700 0			Coating
•02-013-03	- Coating Mixing			0.0	0.0	300.0	0.0		Tons Solvent in Coating
02-013-04	- Coating Storage			0.0	0.0	0.0	0.0		Tons Solvent in
									Coating
02-013-05	- Equipment Cleanup			0.0	0.0	300.0	0.0		Tons Solvent in
02-013-09	- Other Not Classified	xxx	xxx	0.0	0.0	2000.0	0.0	xxx	Coating Tons Solvent in
									Coating
Surface	Coating of Large	Appliance	es - 3630.	3650. 34	30. 358	0			
-02-014-01	- Prime Coating	····		0.0	0.0	900.0	0.0		Tons Solvent in
	Operation								Coating
02-014-02	- Cleaning /			0.0	0.0	0.0	0.0		Tons Solvent in
	Pretreatment								
02.01/.07				0.0	0 0	200 0	0 0		Coating Tona Solvent in
-02-014- <b>03</b>	- Coating Mixing			0.0	0.0	200.0	0.0		Tons Solvent in
				0.0 0.0	0.0 0.0	200.0 0.0	0.0 0.0		•
	- Coating Mixing			0.0	0.0	0.0	0.0		Tons Solvent in Coating
-02-014-04	- Coating Mixing	 							Tons Solvent in Coating Tons Solvent in Coating Tons Solvent in
·02-014-04 ·02-014-05	<ul> <li>Coating Mixing</li> <li>Coating Storage</li> <li>Equipment Cleanup</li> </ul>			0.0 0.0	0.0 0.0	0.0 200.0	0.0 0.0		Tons Solvent in Coating Tons Solvent in Coating Tons Solvent in Coating
02-014-04 02-014-05	<ul> <li>Coating Mixing</li> <li>Coating Storage</li> </ul>			0.0	0.0	0.0	0.0		Tons Solvent in Coating Tons Solvent in Coating Tons Solvent in
·02-014-04 ·02-014-05 ·02-014-06	<ul> <li>Coating Mixing</li> <li>Coating Storage</li> <li>Equipment Cleanup</li> </ul>			0.0 0.0	0.0 0.0	0.0 200.0	0.0 0.0		Tons Solvent in Coating Tons Solvent in Coating Tons Solvent in Coating Tons Solvent in

, / 1

),

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Surface	Coating of Large	Appliance	es - 3630,	3650, 34	30, 358	10				
	UU								Surface Area	Coated
4-02-014-33	- Prime Electrostatic			0.0	0.0	1.75	0.0		1000 Sq. Ft.	Product
	Spray								Surface Area	Coated
4-02-014-34	- Prime Flow Coat			0.0	0.0	1.65	0.0		1000 Sq. Ft.	Product
									Surface Area	Coated
4-02-014-35	- Prime Dip Coat			0.0	0.0	1.65	0.0		1000 Sq. Ft.	Product
									Surface Area	
4-02-014-36	- Prime Electro-			0.0	0.0	1.5	0.0		1000 Sq. Ft.	Product
	Deposition								Surface Area	Coated
4-02-014-37	- Top Air Spray			0.0	0.0	5.0	0.0		1000 Sq. Ft.	Product
									Surface Area	Coated
4-02-014-38	- Top Electrostatic			0.0	0.0	2.8	0.0		1000 Sq. Ft.	Product
	Spray								Surface Area	Coated
4-02-014-99	- Other Not Classified	XXX	XXX	0.0	0.0	2000.0	0.0	XXX	Tons Solvent	in
									Coating	
			-							
	<u>Wire Surface Coa</u>	ating - 335	<u>7, 3351</u>							
4-02-015-01	<ul> <li>Coating/Application</li> </ul>			0.0	0.0	1600.0	0.0		Tons Solvent	in
	/Curing								Coating	
4-02-015-02	- Cleaning/			0.0	0.0	0.0	0.0		Tons Solvent	in
	Pretreatment								Coating	
4-02-015-03	<ul> <li>Coating Mixing</li> </ul>			0.0	0.0	200.0	0.0	•••	Tons Solvent	in
									Coating	
4-02-015-04	- Coating Storage			0.0	0.0	0.0	0.0		Tons Solvent	in
									Coating	
4-02-015-05	- Equipment Cleanup			0.0	0.0	200.0	0.0		Tons Solvent	in
									Coating	
4-02-015-31	- Coating Line:			0.0	0.0	186000.0	0.0		Coating Line	S
	General									
4-02-015-99	- Other Not Classified	XXX	XXX	0.0	0.0	2000.0	0.0	XXX	Tons Solvent	in
									Coating	
0	<u> </u>	0.1.1.1.1.7								
	Coating of Autos	<u>s &amp; Light Ti</u>	<u>rucks - 37</u>							
4-02-016-01	- Prime	9.68	6.4	0.0	0.0	500.0	0.0		Tons Solvent	in
	Application/Electo-								Coating	
	Deposition/Dip									

• •

• •

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Surface (	Coating of Autos	& Light Tr	ucks - 377	71, 3713					• · · · · · · · · · · · · · · · · · · ·	
	/Spray	•								
4-02-016-02 ·	- Cleaning /	•••		0.0	0.0	0.0	0.0		Tons Solvent in	
	Pretreatment								Coating	
4-02-016-03	- Coating Mixing			0.0	0.0	200.0	0.0		Tons Solvent in	
									Coating	
4-02-016-04	<ul> <li>Coating Storage</li> </ul>			0.0	0.0	0.0	0.0		Tons Solvent in	
									Coating	
4-02-016-05 ·	- Equipment Cleanup			0.0	0.0	200.0	0.0	•••	Tons Solvent in	
									Coating	
4-02-016-06 ·	- Topcoat Operation			0.0	0.0	800.0	0.0		Tons Solvent in	
					• •	100.0			Coating	
4-02-016-19	- Prime Surfacing			0.0	0.0	100.0	0.0		Tons Solvent in	
1 02 044 20	Operation			0.0	0.0	200.0	0.0		Coating	
4-02-010-20	- Repair Topcoat Application Area			0.0	0.0	200.0	0.0		Tons Solvent in Coating	
	Application Area								Loating	
Surface (	Coating of Autom	obiles - 3	711							
	- Prime Coating:		<u></u>	0.0	0.0	14.54	0.0		Vehicles Produced	
	Solvent-Borne					-				
4-02-016-22	- Prime Coating:			0.0	0.0	0.45	0.0		Vehicles Produced	
	Electro-Deposition									
4-02-016-23	- Guide Coating:			0.0	0.0	4.16	0.0		Vehicles Produced	
	Solvent-Borne									
4-02-016-24	- Guide Coating:			0.0	0.0	1.5	0.0		Vehicles Produced	
	Water-Borne									
4-02-016-25	- Topcoat: Solvent-			0.0	0.0	30.8	0.0		Vehicles Produced	
	Borne									
4-02-016-26	- Topcoat: Water-Borne			0.0	0.0	4.95	0.0		Vehicles Produced	
Surface	Coating of Light	Trucks - 3	713							
	- Prime Coating:		<u></u>	0.0	0.0	42.39	0.0		Vehicles Produced	
4-02-010-27	Solvent-Borne			0.0	0.0	42.37	0.0		venicies Produced	
4-02-016-28	- Prime Coating:			0.0	0.0	0.58	0.0		Vehicles Produced	
	Electro-Deposition			0.0	0.0	0.20	0.0			
4-02-016-29	- Guide Coating:			0.0	0.0	14.04	0.0		Vehicles Produced	
	Solvent-Borne				0.0	11.11	0.0	- · -		
	Sector of the									

SCC	Process Name	PART Lbs/Unit	<b>PM10</b> Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	<b>CO</b> Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Surface (	Coating of Light 7	rucks - 3	713							
	- Guide Coating: Water-Borne			0.0	0.0	5.06	0.0		Vehicles Produced	
-02-016-31 -	- Topcoat: Solvent- Borne			0.0	0.0	34.0	0.0		Vehicles Produced	
-02-016-32 ·	Topcoat: Water-Borne			0.0	0.0	15.47	0.0		Vehicles Produced	
-02-016-99 -	Other Not Classified	XXX	XXX	0.0	0.0	2000.0	0.0	XXX	Tons Solvent in Coating	
	n Coating - 3411									
-02-017-02	- Cleaning / Pretreatment			0.0	0.0	0.0	0.0		Tons Solvent in Coating	
-02-017-03 -	<ul> <li>Coating Mixing</li> </ul>			0.0	0.0	200.0	0.0		Tons Solvent in Coating	
-02-017-04	- Coating Storage			0.0	0.0	0.0	0.0		Tons Solvent in Coating	
-02-017-05	- Equipment Cleanup			0.0	0.0	200.0	0.0		Tons Solvent in Coating	
-02-017-21 ·	- Two Piece and Exterior Base Coating			0.0	0.0	900.0	0.0		Tons Solvent in Coating	
-02-017-22	- Interior Spray Coating			0.0	0.0	400.0	0.0		Tons Solvent in Coating	
-02-017-23	<ul> <li>Sheet Base Coating (Interior)</li> </ul>			0.0	0.0	400.0	0.0		Tons Solvent in Coating	
-02-017-24	<ul> <li>Sheet Base Coating (Exterior)</li> </ul>			0.0	0.0	400.0	0.0		Tons Solvent in Coating	
-02-017-25	- Side Seam Spray Coating			0.0	0.0	100.0	0.0		Tons Solvent in Coating	
-02-017-26	- End Sealing Compound			0.0	0.0	100.0	0.0		Tons Solvent in Coating	
-02-017-27	- Lithography			0.0	0.0	2000.0	0.0		Tons Solvent in Coating	
-02-017-28	- Over Varnish	••••		0.0	0.0	200.0	0.0		Tons Solvent in Coating	
-02-017-31	- Three-piece Can			0.0	0.0	352000.0	0.0		Coating Lines	

.

.

1

Metal Can sh -02-017-32 - Th sh cc -02-017-33 - Th	Name <u>Coating - 3411</u> heet Basecoating hree-piece Can heet Lithographic oating Line hree-piece Beverage	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Sh 6-02-017-32 - Th Sh 6-02-017-33 - Th	heet Basecoating hree-piece Can heet Lithographic oating Line									
6-02-017-32 - Th Sh Cc 6-02-017-33 - Th	hree-piece Can heet Lithographic oating Line									
Sh Cc 6-02-017-33 - Th	heet Lithographic oating Line		_							
Cc 4-02-017-33 - Th	oating Line			0.0	0.0	11000.0	0.0		Coating Lines	
4-02-017-33 - Th										
	hree-piece Beverage									
				0.0	0.0	40000.0	0.0		Coating Lines	
	an-Side Seam Spray									
	oating					47/000 0	• •		• · · · · · ·	
	hree-piece Beverage			0.0	0.0	176000.0	0.0		Coating Lines	
	an Interior Body									
ېږ ۲۰ - 02-017-35	pray Coat			0.0	0.0	574000.0	0.0		Coating Lines	
	oating Line			0.0	0.0	374000.0	0.0		coating times	
	wo-piece Can End			0.0	0.0	30000.0	0.0		Coating Lines	
	ealing Compound			0.0	0.0	2000010			coaring rines	
	ther Not Classified	XXX	XXX	0.0	0.0	2000.0 (c)	0.0	XXX	Tons Solvent in	
									Coating	
	• • • • • • •				•				Ū	
<u>Metal Coil</u>	<u> Coating - 3353,</u>	<u>3354</u>								
4-02-018-01 - Pr	rime Coating			0.0	0.0	800.0	0.0		Tons Solvent in	
•	pplication								Coating	
4-02-018-03 - So	olvent Mixing			0.0	0.0	200.0	0.0		Tons Solvent in	
						_			Coating	
4-02-018-04 - Sc	olvent Storage	•	•••	0.0	0.0	0.0	0.0		Tons Solvent in	
									Coating	
-02-018-05 - Ec	quipment Cleanup			0.0	0.0	200.0	0.0		Tons Solvent in	
						800 A	0.0		Coating	
4-02-018-06 - Fi	inish Coating		•••	0.0	0.0	800.0	0.0		Tons Solvent in	
(-02-018-00 - 0	ther Not Classified	XXX	xxx	0.0	0.0	2000.0	0.0	XXX	Coating Tons Solvent in	
1-02-010-99 - 01	ther Not Classified	~~~	~~~	0.0	0.0	2000.0	0.0	~~~	Coating	
									coaring	
Wood Furn	iture Surface C	oatina - 2	511. 2512	. 2517. 2	521					
	oating Operation			0.0	0.0	2000.0 (c)	0.0		Tons Solvent in	
	<b>a</b> . F					(			Coating	
4-02-019-03 - Ca	oating Mixing		•••	0.0	0.0	200.0	0.0	• • •	Tons Solvent in	
									Coating	
									-	

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Nood Fu	ırniture Surface C	oatina - 2	511 2512	2517.2	521					
	- Coating Storage			0.0	0.0	0.0	0.0		Tons Solvent in Coating	ו
02-019-99	- Other Not Classified	xxx	xxx	0.0	0.0	2000.0	0.0	ххх	Tons Solvent in Coating	ו
/letal Fu	rniture Surface_C	oatina - 2	514, 2522							
	- Coating Operation			0.0	0.0	1600.0	0.0		Tons Solvent in Coating	ו
-02-020-02	- Cleaning / Pretreatment			0.0	0.0	0.0	0.0		Tons Solvent i Coating	ו
-02-020-03	- Coating Mixing			0.0	0.0	200.0	0.0		Tons Solvent i Coating	ו
02-020-04	- Coating Storage			0.0	0.0	0.0	0.0		Tons Solvent in Coating	n
-02-020-05	- Equipment Cleanup	•••		0.0	0.0	200.0	0.0		Tons Solvent in Coating	n
-02-020-31	- Single Spray Line: General			0.0	0.0	13.1	0.0		1000 Sq. Ft. P Surface Area C	
-02-020-32	- Spray Dip Line: General	•••		0.0	0.0	15.3	0.0		1000 Sq. Ft. P Surface Area C	
-02-020-33	- Spray High Solids Coating			0.0	0.0	3.9	0.0		1000 Sq. Ft. P Surface Area C	
-02-020-34	- Spray Water-Borne Coating			0.0	0.0	2.45	0.0		1000 Sq. Ft. P Surface Area C	
-02-020-99	- Other Not Classified	xxx	ххх	0.0	0.0	2000.0	0.0	XXX	Tons Solvent i Coating	n
Surface	Coating of Flatwo	od Produ	cts - 2435	2492 2	299				-	
	- Base Coat			0.0	0.0	1500.0	0.0		Tons Solvent i Coating	n
-02-021-03	- Coating Mixing			0.0	0.0	200.0	0.0		Tons Solvent i Coating	n
-02-021-04	- Coating Storage	•••		0.0	0.0	0.0	0.0		Tons Solvent i Coating	n
-02-021-05	- Equipment Cleanup			0.0	0.0	200.0	0.0		Tons Solvent i	n

•

.

• •

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Surface	Coating of Flatwo	od Produ	cts - 2435	2492.2	499					
									Coating	
4-02-021-06	- Topcoat			0.0	0.0	1500.0	0.0		Tons Solvent	in
									Coating	
4-02-021-07	- Filler			0.0	0.0	60.0	0.0		Tons Solvent	in
									Coating	
4-02-021-08	- Sealer			0.0	0.0	60.0	0.0		Tons Solvent	in
									Coating	
4-02-021-09	- Inks		•••	0.0	0.0	2000.0	0.0		Tons Solvent	in
									Coating	
4-02-021-31	- Water-Borne Coating			0.0	0.0	2.5	0.0		1000 Sq. Ft.	
									Surface Area	
4-02-021-32	- Solvent-Borne			0.0	0.0	16.5	0.0		1000 Sq. ft.	
	Coating								Surface Area	
4-02-021-33	- Ultraviolet Coating			0.0	0.0	0.8	0.0		1000 Sq. Ft.	
									Surface Area	
4-02-021-99	- Other Not Classified	XXX	XXX	0.0	0.0	2000.0	0.0	XXX	Tons Solvent	in
									Coating	
Surface	Coating of Plastic	Parte - 3	070							
	- Coating Operation	<u> </u>		0.0	0.0	1600.0	0.0		Toma Calvert	
4-02-022-01	- coating operation			0.0	0.0	1800.0	0.0		Tons Solvent Coating	IN
4-02-022-02	- Clossing (			0.0	0.0	0.0	0.0		Tons Solvent	:-
4-02-022-02	Pretreatment			0.0	0.0	0.0	0.0		Coating	in
1.02.022.07	- Coating Mixing			0.0	0.0	200.0	0.0		Tons Solvent	in
4-02-022-03				0.0	0.0	200.0	0.0		Coating	In
4-02-022-04	- Coating Storage			0.0	0.0	0.0	0.0		Tons Solvent	in
4-02-022-04	coaring storage			0.0	0.0	0.0	0.0		Coating	
4-02-022-05	- Equipment Cleanup			0.0	0.0	200.0	0.0		Tons Solvent	in
4 02 022 03	Equipacité déclarap			•••	••••	20010	••••		Coating	
4-02-022-99	- Other Not Classified	XXX	xxx	0.0	0.0	2000.0	0.0	XXX	Tons Solvent	in
				••••		200000	••••		Coating	
Surface	Coating of Large	Ships - 37	731							
	- Prime Coating			0.0	0.0	800.0	0.0		Tons Solvent	in
	Operation								Coating	
4-02-023-02	•			0.0	0.0	0.0	0.0		Tons Solvent	in
	•									

SCC	Process Name	Libro / Lineta		SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
Surface (	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
	Coating of Large	Ships - 37	731							
	Pretreatment								Coating	
-02-023-03 -	Coating Mixing			0.0	0.0	200.0	0.0		Tons Solvent in	
					••••				Coating	
-02-023-04 -	Coating Storage			0.0	0.0	0.0	0.0		Tons Solvent in	
									Coating	
-02-023-05 -	Equipment Cleanup			0.0	0.0	200.0	0.0		Tons Solvent in	
									Coating	
-02-023-06 -	Topcoat Operation			0.0	0.0	800.0	0.0		Tons Solvent in	
									Coating	
-02-023-99 -	Other Not Classified	XXX	XXX	0.0	0.0	2000.0	0.0	XXX	Tons Solvent in	
									Coating	
Surface (	Coating of Large .	Aircraft - 3	3721							
	Prime Coating			0.0	0.0	800.0	0.0		Tons Solvent in	
	Operation								Coating	
-02-024-02 -	Cleaning /			0.0	0.0	0.0	0.0		Tons Solvent in	
	Pretreatment								Coating	
-02-024-03 -	Coating Mixing			0.0	0.0	200.0	0.0		Tons Solvent in	
									Coating	
-02-024-04 -	Coating Storage			0.0	0.0	0.0	0.0		Tons Solvent in	
									Coating	
-02-024-05 -	Equipment Cleanup			0.0	0.0	200.0	0.0		Tons Solvent in	
									Coating	
-02-024-06 -	Topcoat Operation			0.0	0.0	800.0	0.0		Tons Solvent in	
									Coating	
-02-024-99 -	Other Not Classified	XXX	XXX	0.0	0.0	2000.0	0.0	XXX	Tons Solvent in	
									Coating	
	_									
Surface (	Coating of Misc. I	Metal Par	<u>tS - (</u> aa)							
	Coating Operation			0.0	0.0	1600.0	0.0		Tons Solvent in	
									Coating	
-02-025-02 -	- Cleaning /			0.0	0.0	0.0	0.0		Tons Solvent in	
	Pretreatment								Coating	
-02-025-03 -	- Coating Mixing			0.0	0.0	200.0	0.0		Tons Solvent in	
									Coating	
-02-025-04	- Coating Storage			0.0	0.0	0.0	0.0		Tons Solvent in	

• '

. .

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTES
Surface	Coating of Misc.	Metal Part	S - (aa)			······			
0411400			<u> </u>						Coating
4-02-025-05	- Equipment Cleanup			0.0	0.0	200.0	0.0		Tons Solvent in
									Coating
4-02-025-31	- Conveyor Single Flow			0.0	0.0	15.3	0.0		1000 Sq. Ft. Product
4 02 025 57									Surface Area Coated
4-02-025-32	- Conveyor Single Dip			0.0	0.0	15.3	0.0		1000 Sq. Ft. Product
4 02 025 52									Surface Area Coated
4-02-025-33	- Conveyor Single			0.0	0.0	27.5	0.0		1000 Sq. Ft. Product
	Spray								Surface Area Coated
4-02-025-34	- Conveyor Two Coat,			0.0	0.0	42.8	0.0		1000 Sq. Ft. Product
	Flow and Spray								Surface Area Coated
4-02-025-35	- Conveyor Two Coat,			0.0	0.0	42.8	0.0		1000 Sq. Ft. Product
	Dip and Spray								Surface Area Coated
4-02-025-36	- Conveyor Two Coat,		••••	0.0	0.0	55.0	0.0		1000 Sq. Ft. Product
	Spray								Surface Area Coated
4-02-025-37	- Manual Two Coat,		•••	0.0	0.0	54.8	0.0		1000 Sq. Ft. Product
	Spray and Air Dry								Surface Area Coated
4-02-025-99	- Other Not Classified	ХХХ	XXX	0.0	0.0	2000.0	0.0	XXX	Tons Solvent in
									Coating
Surface	Coating of Steel	Drums - 34	412						
	- Coating Operation					5.4			Gallons Paint
									Consumed
4-02-026-02	- Cleaning /					0.0			Gallons Paint
	Pretreatment								Consumed
4-02-026-03	- Coating Mixing					0.5			Gallons Paint
									Consumed
4-02-026-04	- Coating Storage		••••		•••	0.0			Gallons Paint
									Consumed
4-02-026-05	- Equipment Cleanup					0.5			Gallons Paint
									Consumed
4-02-026-06	- Interior Coating				•••	2.0			Gallons Paint
									Consumed
4-02-026-07	- Exterior Coating					2.0			Gallons Paint
	· · · · · · · · · · · · · · · · · · ·								Consumed
4-02-026-99	- Specify in Comments	XXX	XXX	XXX	ХХХ	XXX	XXX	XXX	Gallons Paint

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Surface	Coating of Steel	Drums - 34	12							· · · · · · · · · · · · · · · · · · ·
	Field								Consumed	
Surface	Coating - Fugitiv	e Emission	s -							
	- Specify in Comments Field								Tons Product	
4-02-888-02	- Specify in Comments Field								Tons Product	
4-02-888-03	- Specify in Comments Field								Tons Product	
4-02-888-04	- Specify in Comments Field								Tons Product	
4-02-888-05									Tons Product	
Incinerat	tor/Afterburner -									
	- Distillate Oil								1000 Gallons Burn	ed
	- Residual Oil								1000 Gallons Burn	ed
4-02-900-13	- Natural Gas								Million Cubic Fee Burned	t
Flares -										
4-02-900-23	- Natural Gas					5.6		•	Million Cubic Fee Burned	t
Surface	Coating - Miscel	laneous -								
	- Specify in Comments Field					•••			Tons Solvent in Coating	
4-02- <b>999-9</b> 6	- Specify in Comments Field	•••	•••	•	•••				Tons Solvent	
4-02-999-97	- Specify in Comments Field		•	0.0	0.0		0.0	•••	1000 Units Produc	ed
4-0 <b>2-999-98</b>				0.0	0.0		0.0		Gallons	

• •

• •

## SCC NOTES Process Name PART **PM10** SOx NOx VOC CO LEAD UNITS Lbs/Unit Lbs/Unit Lbs/Unit Lbs/Unit Lbs/Unit Lbs/Unit Lbs/Unit

## PETROLEUM PRODUCT STORAGE (REFINERIES OIL AND GAS FIELDS ONLY) - MAJOR GROUPS 13, & 29

1011

1001

Final Da (Tamba (07.000 DD) Tamb (01-a) 0011 0000

Fixed Roof Tanks (67,000	<u>BBL. Tani</u>	<u>(Size) - 2</u>	<u>911, 299</u> ,	2 <u>. 1311.</u>	<u>1321</u>			
4-03-010-01 - Gasoline RVP 13:	0.0	0.0	0.0	0.0	30.5	0.0		1000 Gallons Storage
Breathing Loss								Capacity
4-03-010-02 - Gasoline RVP 10:	0.0	0.0	0.0	0.0	23.5	0.0		1000 Gallons Storage
Breathing Loss								Capacity
4-03-010-03 - Gasoline RVP 7:	0.0	0.0	0.0	0.0	16.4	0.0		1000 Gallons Storage
Breathing Loss								Capacity
4-03-010-10 - Crude Oil RVP 5:	0.0	0.0	0.0	0.0	5.78	0.0	•••	1000 Gallons Storage
Breathing Loss								Capacity
4-03-010-13 - Jet Naphtha (JP-4):	0.0	0.0	0.0	0.0	8.8	0.0		1000 Gallons Storage
Breathing Loss								Capacity
4-03-010-16 - Jet Kerosene:	0.0	0.0	0.0	0.0	0.45	0.0		1000 Gallons Storage
Breathing Loss								Capacity
4-03-010-19 - Distillate Fuel #2:	0.0	0.0	0.0	0.0	0.39	0.0		1000 Gallons Storage
Breathing Loss								Capacity
4-03-010-97 - Specify Liquid:	0.0	0.0	0.0	0.0		0.0		1000 Gallons Storage
Breathing Loss								Capacity
-		k Sizo)	0011 000	10 1011	1001			
Fixed Roof Tanks(250,000								
Fixed Roof Tanks (250,000 4-03-010-04 - Gasoline RVP 13:	) <u>BBL. Tar</u> 0.0	<u>nk Size) - 2</u> 0.0	<u>2911, 299</u> 0.0	<u>92, 1311</u> 0.0	<u>, 1321</u> 22.5	0.0	<b>.</b>	1000 Gallons Storage
Fixed Roof Tanks (250,000 4-03-010-04 - Gasoline RVP 13: Breathing Loss	0.0	0.0	0.0	0.0	22.5	-		1000 Gallons Storage Capacity
Fixed Roof Tanks (250,000 4-03-010-04 - Gasoline RVP 13: Breathing Loss 4-03-010-05 - Gasoline RVP 10:						0.0 0.0		1000 Gallons Storage Capacity 1000 Gallons Storage
Fixed Roof Tanks (250,000 4-03-010-04 - Gasoline RVP 13: Breathing Loss 4-03-010-05 - Gasoline RVP 10: Breathing Loss	0.0 0.0	0.0	0.0 0.0	0.0 0.0	22.5 17.4	0.0		1000 Gallons Storage Capacity 1000 Gallons Storage Capacity
Fixed Roof Tanks (250,000 4-03-010-04 - Gasoline RVP 13: Breathing Loss 4-03-010-05 - Gasoline RVP 10: Breathing Loss 4-03-010-06 - Gasoline RVP 7:	0.0	0.0	0.0	0.0	22.5	-		1000 Gallons Storage Capacity 1000 Gallons Storage Capacity 1000 Gallons Storage
Fixed Roof Tanks (250,000 4-03-010-04 - Gasoline RVP 13: Breathing Loss 4-03-010-05 - Gasoline RVP 10: Breathing Loss 4-03-010-06 - Gasoline RVP 7: Breathing Loss	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	22.5 17.4 12.3	0.0		1000 Gallons Storage Capacity 1000 Gallons Storage Capacity
Fixed Roof Tanks (250,000 4-03-010-04 - Gasoline RVP 13: Breathing Loss 4-03-010-05 - Gasoline RVP 10: Breathing Loss 4-03-010-06 - Gasoline RVP 7: Breathing Loss 4-03-010-11 - Crude Oil RVP 5:	0.0 0.0	0.0	0.0 0.0	0.0 0.0	22.5 17.4	0.0		1000 Gallons Storage Capacity 1000 Gallons Storage Capacity 1000 Gallons Storage
Fixed Roof Tanks (250,000 4-03-010-04 - Gasoline RVP 13: Breathing Loss 4-03-010-05 - Gasoline RVP 10: Breathing Loss 4-03-010-06 - Gasoline RVP 7: Breathing Loss 4-03-010-11 - Crude Oil RVP 5: Breathing Loss	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	22.5 17.4 12.3 4.15	0.0 0.0 0.0	 	1000 Gallons Storage Capacity 1000 Gallons Storage Capacity 1000 Gallons Storage Capacity 1000 Gallons Storage Capacity
Fixed Roof Tanks (250,000 4-03-010-04 - Gasoline RVP 13: Breathing Loss 4-03-010-05 - Gasoline RVP 10: Breathing Loss 4-03-010-06 - Gasoline RVP 7: Breathing Loss 4-03-010-11 - Crude Oil RVP 5: Breathing Loss 4-03-010-14 - Jet Naphtha (JP-4):	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	22.5 17.4 12.3	0.0	 	1000 Gallons Storage Capacity 1000 Gallons Storage Capacity 1000 Gallons Storage Capacity 1000 Gallons Storage
Fixed Roof Tanks (250,000 4-03-010-04 - Gasoline RVP 13: Breathing Loss 4-03-010-05 - Gasoline RVP 10: Breathing Loss 4-03-010-06 - Gasoline RVP 7: Breathing Loss 4-03-010-11 - Crude Oil RVP 5: Breathing Loss	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	22.5 17.4 12.3 4.15 6.3	0.0 0.0 0.0 0.0	 	1000 Gallons Storage Capacity 1000 Gallons Storage Capacity 1000 Gallons Storage Capacity 1000 Gallons Storage Capacity 1000 Gallons Storage Capacity
Fixed Roof Tanks (250,000 4-03-010-04 - Gasoline RVP 13: Breathing Loss 4-03-010-05 - Gasoline RVP 10: Breathing Loss 4-03-010-06 - Gasoline RVP 7: Breathing Loss 4-03-010-11 - Crude Oil RVP 5: Breathing Loss 4-03-010-14 - Jet Naphtha (JP-4):	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	22.5 17.4 12.3 4.15	0.0 0.0 0.0	 	1000 Gallons Storage Capacity 1000 Gallons Storage Capacity 1000 Gallons Storage Capacity 1000 Gallons Storage Capacity 1000 Gallons Storage
Fixed Roof Tanks (250,000 4-03-010-04 - Gasoline RVP 13: Breathing Loss 4-03-010-05 - Gasoline RVP 10: Breathing Loss 4-03-010-06 - Gasoline RVP 7: Breathing Loss 4-03-010-11 - Crude Oil RVP 5: Breathing Loss 4-03-010-14 - Jet Naphtha (JP-4): Breathing Loss 4-03-010-17 - Jet Kerosene: Breathing Loss	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	22.5 17.4 12.3 4.15 6.3 0.3	0.0 0.0 0.0 0.0	  	1000 Gallons Storage Capacity 1000 Gallons Storage Capacity 1000 Gallons Storage Capacity 1000 Gallons Storage Capacity 1000 Gallons Storage Capacity
Fixed Roof Tanks (250,000 4-03-010-04 - Gasoline RVP 13: Breathing Loss 4-03-010-05 - Gasoline RVP 10: Breathing Loss 4-03-010-06 - Gasoline RVP 7: Breathing Loss 4-03-010-11 - Crude Oil RVP 5: Breathing Loss 4-03-010-14 - Jet Naphtha (JP-4): Breathing Loss 4-03-010-17 - Jet Kerosene:	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	22.5 17.4 12.3 4.15 6.3	0.0 0.0 0.0 0.0	  	1000 Gallons Storage Capacity 1000 Gallons Storage Capacity 1000 Gallons Storage Capacity 1000 Gallons Storage Capacity 1000 Gallons Storage Capacity 1000 Gallons Storage

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	
Fixed Ro	of Tanks(250,00	0 BBL. Tar	k Size) -	2911.29	92, 1311	, 1321			
	Breathing Loss					<u></u>			Capacity
4-03-010-98	Specify Liquid:	0.0	0.0	0.0	0.0		0.0		1000 Gallons Storage
	Breathing Loss		•••				••••		Capacity
Fixed Ro	of Tanks (Tank L	Dia Indene	ndent) - 2	911 299	2 1311	. 1321			
	- Gasoline RVP 13:	0.0	0.0	0.0	0.0	10.0	0.0		1000 Gallons
	Working Loss		010			1010			Throughput
4-03-010-08	Gasoline RVP 10:	0.0	0.0	0.0	0.0	8.2	0.0		1000 Gallons
	Working Loss	••••			••••	012			Throughput
4-03-010-09	Gasoline RVP 7:	0.0	0.0	0.0	0.0	5.7	0.0		1000 Gallons
	Working Loss	0.0	0.0		0.0	5.1	010		Throughput
4-03-010-12	· Crude Oil RVP 5:	0.0	0.0	0.0	0.0	2.47	0.0		1000 Gallons
	Working Loss		0.0		••••		••••		Throughput
4-03-010-15	Jet Naphtha (JP-4):	0.0	0.0	0.0	0.0	2.5	0.0		1000 Gallons
4 00 010 15	Working Loss	0.0	010	0.0	0.0	2.0	0.00		Throughput
4-03-010-18	- Jet Kerosene:	0.0	0.0	0.0	0.0	0.03	0.0		1000 Gallons
4 65 616 16	Working Loss	0.0	010		0.0	0.05	0.0		Throughput
4-03-010-21	· Distillate Fuel #2:	0.0	0.0	0.0	0.0	0.02	0.0		1000 Gallons
4 00 010 21	Working Loss					0102			Throughput
4-03-010-09	· Specify Liquid:	0.0	0.0	0.0	0.0	XXX	0.0	XXX	1000 Gallons
	Working Loss	0.0	0.0	0.0	0.0		010		Throughput
	-								in orghpor
<u>Float Roc</u>	of Tanks (67,000	<u>) BBI. Tank</u>	<u>Size) - 29</u>	<u>11, 2992</u>	<u>2, 1311, </u>	<u>1321</u>			
4-03-011-01	- Gasoline RVP 13:	0.0	0.0	0.0	0.0	18.2	0.0		1000 Gallons Storage
	Standing Loss								Capacity
4-03-011-02	Gasoline RVP 10:	0.0	0.0	0.0	0.0	13.4	0.0		1000 Gallons Storage
	Standing Loss								Capacity
4-03-011-03	- Gasoline RVP 7:	0.0	0.0	0.0	0.0	8.6	0.0		1000 Gallons Storage
	Standing Loss								Capacity
4-03-011-07	- Gasoline RVP13 /	0.0	0.0	0.0	0.0	0.0019	0.0		1000 Gallons
	RVP10/RVP7:								Throughput
	Withdrawal Loss								
4-03-011-09	- Crude Oil RVP 5:	0.0	0.0	0.0	0.0	1.76	0.0		1000 Gallons Storage
	Standing Loss								Capacity
4-03-011-11	- Jet Naphtha (JP-4):	0.0	0.0	0.0	0.0	3.5	0.0		1000 Gallons Storage
	Standing Loss								Capacity
	Standing Loss								Capacity

,

.

,

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Float Ro	of Tanks (67,000	RRI Tank	(Size) - 29	11 2992	1311	1321				
	- Jet Kerosene:	0.0	0.0	0.0	0.0	0.035	0.0		1000 Gallons	Storage
-00-011-15	Standing Loss	0.0	0.0	0.0	0.0	0.055	0.0		Capacity	Storage
-03-011-15	- Distillate Fuel #2:	0.0	0.0	0.0	0.0	0.026	0.0		1000 Gallons	Storage
-03-011-15	Standing Loss	0.0		0.0	•••	01020	0.0		Capacity	o tor ugt
-03-011-98	- Specify Liquid:	0.0	0.0	0.0	0.0		0.0		1000 Gallons	Storage
	Standing Loss			••••					Capacity	
Float Ro	of Tanks(250,000	) BBI. Tanı	k Size) - 29	911. 2992	2. 1311.	1321				
	- Gasoline RVP 13:	0.0	0.0	0.0	0.0	8.9	0.0		1000 Gallons	Storage
	Standing Loss								Capacity	
4-03-011-05	- Gasoline RVP 10:	0.0	0.0	0.0	0.0	6.5	0.0		1000 Gallons	Storage
	Standing Loss								Capacity	
4-03-011-06	- Gasoline RVP 7:	0.0	0.0	0.0	0.0	4.2	0.0		1000 Gallons	Storage
	Standing Loss								Capacity	
4-03-011-08	- Gesoline RVP13 /	0.0	0.0	0.0	0.0	0.001	0.0		1000 Gallons	
	RVP10/RVP7:								Throughput	
	Withdrawal Loss									
4-03-011-10	- Crude Oil RVP 5:	0.0	0.0	0.0	0.0	0.89	0.0		1000 Gallons	Storage
	Standing Loss								Capacity	
4-03-011-12	- Jet Naphtha (JP-4):	0.0	0.0	0.0	0.0	1.7	0.0		1000 Gallons	Storage
	Standing Loss								Capacity	
4-03-011-14	- Jet Kerosene:	0.0	0.0	0.0	0.0	0.017	0.0		1000 Gallons	Storage
	Standing Loss								Capacity	
4-03-011-16	- Distillate Fuel #2:	0.0	0.0	0.0	0.0	0.013	0.0		1000 Gallons	Storag <del>e</del>
	Standing Loss								Capacity	
4-03-011-99	<ul> <li>Specify Liquid:</li> </ul>	0.0	0.0	0.0	0.0	XXX	0.0	XXX	1000 Gallons	Storage
	Standing Loss								Capacity	
Floating	Roof Tanks (With	ndrawal Lo	<u>) - 2911 () - 2911</u>	<u>, 2992, 1</u>		21				
4-03-011-17	- Crude Oil RVP 5	0.0	0.0	0.0	0.0	0.007	0.0		1000 Gallons	
									Throughput	
4-03-011-18	- Jet Naphtha (JP-4)	0.0	0.0	0.0	0.0	0.056	0.0		1000 Gallons	
									Throughput	
4-03-011-19	- Jet Kerosene	0.0	0.0	0.0	0.0		0.0		1000 Gallons	
									Throughput	

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
loatina	Roof Tanks (With	drawal Lo	ss) - 2911	2992.1	311, 13	21				
	- Distillate Fuel #2	0.0	0.0	0.0	0.0	0.0002	0.0		1000 Gallons	
									Throughput	
-03-011-97	- Specify Liquid:	0.0	0.0	0.0	0.0		0.0		1000 Gallons	
	Withdrawal Loss								Throughput	
anks w	/ External Float R	oof - Prim	ary Seal -	2911, 29	92, 131	1. 1321				
	- Specify Liquid:	0.0	0.0	0.0	0.0		0.0		1000 Gallons	Storage
	Standing Loss								Capacity	
-03-011-31	- Gasoline: Standing	0.0	0.0	0.0	0.0	14.5	0.0		1000 Gallons	Storage
	Loss								Capacity	
-03-011-32	- Crude Oil: Standing	0.0	0.0	0.0	0.0	1.6	0.0		1000 Gallons	Storage
	Loss								Capacity	
-03-011-33	- Jet Naphtha (JP-4):	0.0	0.0	0.0	0.0	2.7	0.0		1000 Gallons	Storage
	Standing Loss								Capacity	
-03-011-34	<ul> <li>Jet Kerosene:</li> </ul>	0.0	0.0	0.0	0.0	0.3	0.0		1000 Gallons	Storage
	Standing Loss								Capacity	
-03-011-35	- Distillate Fuel #2:	0.0	0.0	0.0	0.0	0.2	0.0		1000 Gallons	Storage
	Standing Loss								Capacity	
anks w	/ External Float F	Roof - Seco	ondary Sea	a <i>l - 2911</i> ,	2992, 1	<u>1311, 13</u>	<u>321</u>			
-03-011-40	- Specify Liquid:	0.0	0.0	0.0	0.0		0.0		1000 Gallons	Storage
	Standing Loss								Capacity	
-03-011-41	- Gasoline: Standing	0.0	0.0	0.0	0.0	0.8	0.0		1000 Gallons	Storage
	Loss								Capacity	
-03-011-42	- Crude Oil: Standing	0.0	0.0	0.0	0.0	0.08	0.0	•••	1000 Gallons	Storage
	Loss								Capacity	
-03-011-43	- Jet Naphtha (JP-4):	0.0	0.0	0.0	0.0	0.1	0.0		1000 Gallons	Storage
	Standing Loss								Capacity	
-03-011-44	<ul> <li>Jet Kerosene:</li> </ul>	0.0	0.0	0.0	0.0	0.002	0.0		1000 Gallons	Storage
	Standing Loss								Capacity	
-03-011-45	- Distillate Fuel #2:	0.0	0.0	0.0	0.0	0.001	0.0		1000 Gallons	Storage
	Standing Loss								Capacity	
anks w	/Internal Floatin	a Roofs - 2	2911. 2992	2. 1311.	1321					

. .

• ,

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTES
Tanks w	/Internal Floating	a Roofs - 2	911 2992	. 1311.	1321				
TUTING W/	Standing Loss	9/100/0 2	011,2002		021				Capacity
4-03-011-51 -	- Gasoline: Standing Loss	0.0	0.0	0.0	0.0	0.18	0.0		1000 Gallons Storage Capacity
4-03-011-52 ·	- Crude Oil: Standing Loss	0.0	0.0	0.0	0.0	0.02	0.0		1000 Gallons Storage Capacity
4-03-011-53 -	- Jet Naphtha (JP-4): Standing Loss	0.0	0.0	0.0	0.0	0.03	0.0		1000 Gallons Storage Capacity
4-03-011-54 -	- Jet Kerosene: Standing Loss	0.0	0.0	0.0	0.0	0.02	0.0		1000 Gallons Storage Capacity
4-03-011-55 -	- Distillate Fuel #2: Standing Loss	0.0	0.0	0.0	0.0	0.02	0.0		1000 Gallons Storage Capacity
Variable	Vapor Space (10	0.500 BBI.	Capacity)	- 2911. 2	2992, 13	311, 132	21		
4-03-012-01	- Gasoline RVP 13: Filling Loss	0.0	0.0	0.0	0.0	9.6	0.0	•••	1000 Gallons Throughput
4-03-012-02 -	- Gasoline RVP 10: Filling Loss	0.0	0.0	0.0	0.0	7.7	0.0	•	1000 Gallons Throughput
4-03-012-03	- Gasoline RVP 7: Filling Loss	0.0	0.0	0.0	0.0	5.4	0.0	•	1000 Gallons Throughput
4-03-012-04	- Jet Naphtha (JP-4): Filling Loss	0.0	0.0	0.0	0.0	2.3	0.0		1000 Gallons Throughput
4-03-012-05	- Jet Kerosene: Filling Loss	0.0	0.0	0.0	0.0	0.025	0.0		1000 Gallons Throughput
4-03-012-06	- Distillate Fuel #2: Filling Loss	0.0	0.0	0.0	0.0	0.022	0.0		1000 Gallons Throughput
4-03-012-07	- Benzene: Filling Loss	0.0	0.0	0.0	0.0	0.003	0.0		1000 Gallons Throughput
4-03-012-99	<ul> <li>Specify Liquid:</li> <li>Filling Loss</li> </ul>	0.0	0.0	0.0	0.0	XXX	0.0	XXX	1000 Gallons Throughput
Fuaitive	Emissions - 130	0. 2900							
	- Specify in Comments Field								1000 Gallons Storage Capacity
4-03-888-02	- Specify in Comments Field								1000 Gallons Storage Capacity
4-03-888-03	- Specify in Comments		•••						1000 Gallons Storage

SCC	Process Name	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS NOTI
	name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	
Fugitive	Emissions - 1300	0. 2900							
	Field								Capacity
-03-888-04	- Specify in Comments								1000 Gallons Storage
	Field								Capacity
-03-888-05	- Specify in Comments					•••			1000 Gallons Storage
	Field								Capacity
BULK TI	ERMINALS/PLA	NTS - PE	TROLEUN	STORA	GE TA	NKS - N	IAJOR	GROU	PS 42, & 51
Eived Re	of Tanks (67,000	DRRI Car	acity = 51	71 1006	3				
	- Gasoline RVP 13:	0.0	0.0	<u>11,422(</u> 0.0	ر 0.0	30.5	0.0		1000 Gallons Storage
-04-001-01	Breathing Loss	0.0	0.0	0.0	0.0	30.5	0.0		Capacity
-04-001-02	- Gasoline RVP 10:	0.0	0.0	0.0	0.0	23.5	0.0		1000 Gallons Storage
	Breathing Loss								Capacity
-04-001-03	- Gasoline RVP 7:	0.0	0.0	0.0	0.0	16.4	0.0		1000 Gallons Storage
	Breathing Loss								Capacity
Floatina	Roof Tanks (67,0	DOD BBL (	Canacity) -	5171.42	26				
	- Gasoline RVP 13:	0.0	0.0	0.0	0.0	18.2	0.0		1000 Gallons Storage
	Standing Loss		••••				••••		Capacity
-04-001-11	- Gasoline RVP 10:	0.0	0.0	0.0	0.0	13.4	0.0		1000 Gallons Storage
	Standing Loss								Capacity
-04-001-12	- Gasoline RVP 7:	0.0	0.0	0.0	0.0	8.6	0.0		1000 Gallons Storage
	Standing Loss								Capacity
-04-001-16	- Gasoline RVP13 /	0.0	0.0	0.0	0.0	0.002	0.0		1000 Gallons
	RVP10/RVP7:								Throughput
	Withdrawal Loss								
Fixed Rc	of Tanks (67,000	D BBL. Car	oacity) - 51	171.4220	5				
	- Gasoline RVP 13:	0.0	0.0	0.0	0.0	30.5	0.0		1000 Gallons Storage
	Breathing Loss								Capacity
4-04-002-02	- Gasoline RVP 10:	0.0	0.0	0.0	0.0	23.5	0.0		1000 Gallons Storage
	Breathing Loss								Capacity
+-04-002-03	<ul> <li>Gasoline RVP 7:</li> <li>Breathing Loss</li> </ul>	0.0	0.0	0.0	0.0	15.0	0.0		1000 Gallons Storage Capacity
									<b>a</b>

. .

· ·

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS NOTE
,	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	
loatina	Roof Tanks (67	.000 BBL. (	Canacity) ·	- 5171, 4	226				
	- Gasoline RVP 13:	0.0	0.0	0.0	0.0	18.2	0.0		1000 Gallons Storage
-04-002-01	Standing Loss	0.0	0.0	0.0	010	1012	••••		Capacity
-04-002-08	- Gasoline RVP 10:	0.0	0.0	0.0	0.0	13.4	0.0		1000 Gallons Storage
04 002 00	Standing Loss								Capacity
-04-002-09	- Gasoline RVP 7:	0.0	0.0	0.0	0.0	8.6	0.0		1000 Gallons Storage
•••••	Standing Loss								Capacity
-04-002-10	- Gasoline RVP13 /	0.0	0.0	0.0	0.0	0.0019	0.0		1000 Gallons
	RVP10/RVP7:								Throughput
	Withdrawal Loss								
ixed Ro	oof Tanks (250,0	000 BBL. Ca	apacity) - :	<u>5171, 42</u>	<u>26</u>				
-04-001-04	- Gasoline RVP 13:	0.0	0.0	0.0	0.0	22.5	0.0		1000 Gallons Storage
	Breathing Loss								Capacity
-04-001-05	- Gasoline RVP 10:	0.0	0.0	0.0	0.0	17.4	0.0		1000 Gallons Storage
	Breathing Loss					-			Capacity
-04-001-06	- Gasoline RVP 7:	0.0	0.0	0.0	0.0	12.3	0.0		1000 Gallons Storage
	Breathing Loss		0	\ <b>_</b>	4000				Capacity
	Roof Tanks (25								
-04-001-13	- Gasoline RVP 13:	0.0	0.0	0.0	0.0	8.9	0.0		1000 Gallons Storage
	Standing Loss					/ <b>-</b>			Capacity
-04-001-14	- Gasoline RVP 10:	0.0	0.0	0.0	0.0	6.5	0.0		1000 Gallons Storage
	Standing Loss		• •				0.0		Capacity
4-04-001-15	- Gasoline RVP 7:	0.0	0.0	0.0	0.0	4.2	0.0		1000 Gallons Storage
	Standing Loss	0.0	• •	0.0		0.001	0.0		Capacity
-04-001-17	- Gasoline RVP13 /	0.0	0.0	0.0	0.0	0.001	0.0		1000 Gallons
	RVP10/RVP7:								Throughput
	Withdrawal Loss								
Fixed Re	oof Tanks (Tank	<u>Dia. Indepe</u>	<u>endent) - </u>	<u>5171, 42</u>					
	' - Gasoline RVP 13:	0.0	0.Ó	0.0	0.0	10.0	0.0		1000 Gallons
	Working Loss								Throughput
-04-001-08	- Gasoline RVP 10:	0.0	0.0	0.0	0.0	8.2	0.0		1000 Gallons
	Working Loss								Throughput
-04-001-09	- Gasoline RVP 7:	0.0	0.0	0.0	0.0	5.7	0.0		1000 Gallons

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD	UNITS	NOTES
<u></u>		····			· · · · · · · · · · · · · · · · · · ·					
Fixed Ro	<u>oof Tanks (Tank</u>	<u>(Dia. Indepe</u>	ndent) - 5	171, 422	<u>26</u>					
	Working Loss								Throughput	
Fixed Ro	oof Tanks (67,0	00 BBL. Car	acity) - 51	171. 4220	6					
	- Gasoline RVP 13:	0.0	0.0	0.0	0.0	10.0	0.0		1000 Gallons	
	Working Loss								Throughput	
4-04-002-05	- Gasoline RVP 10:	0.0	0.0	0.0	0.0	8.2	0.0		1000 Gallons	
	Working Loss								Throughput	
4-04-002-06	- Gasoline RVP 7:	0.0	0.0	0.0	0.0	5.7	0.0		1000 Gallons	
	Working Loss								Throughput	
Variable	Vapor Space (	10.500 BBI.	Capacity)	- 5171. 4	4226					
	- Gasoline RVP 13:	0.0	0.0	0.0	0.0	9.6	0.0		1000 Gallons	
	Filling Loss								Throughput	
4-04-001-19	- Gasoline RVP 10:	0.0	0.0	0.0	0.0	7.7	0.0		1000 Gallons	
	Filling Loss								Throughput	
4-04-001-20	- Gasoline RVP 7:	0.0	0.0	0.0	0.0	5.4	0.0		1000 Gallons	
	Filling Loss								Throughput	
4-04-002-11	- Gasoline RVP 13:	0.0	0.0	0.0	0.0	9.6	0.0		1000 Gallons	
	Filling Loss								Throughput	
4-04-002-12	- Gasoline RVP 10:	0.0	0.0	0.0	0.0	7.7	0.0		1000 Gallons	
	Filling Loss								Throughput	
4-04-002-13	- Gasoline RVP 7:	0.0	0.0	0.0	0.0	5.4	0.0		1000 Gallons	
	Filling Loss								Throughput	
Tank w	/ External Float	Roof - Prima	rv Seal - 5	171. 422	26					
	- Specify Liquid:				<u></u>				1000 Gallons St	orage
	Standing Loss								Capacity	o, uge
4-04-001-31	- Gasoline RVP 13:								1000 Gallons St	orage
	Standing Loss								Capacity	
Tankau	-	t Poof - Drim	on Soal	5171 10	226					
	// External Float		ary Sear -	5111,42					1000 0-11	
4-04-002-30	- Specify Liquid:				•••				1000 Gallons St	orage
4-04-002 74	Standing Loss - Gasoline RVP 13:								Capacity	
4-04-002-31		•••			•••			•••	1000 Gallons St	orage
	Standing Loss								Capacity	

•

•

•

SCC Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD	UNITS NOTES
Tank w/External Float Re	oof - Secol	ndarv Seal	- 5171.	4226				
-04-001-40 - Specify Liquid:								1000 Gallons Storage
Standing Loss								Capacity
-04-001-41 - Gasoline RVP 13: Standing Loss								1000 Gallons Storage Capacity
Tanks w/External Float F	Roof - Seco	ondary Sea	al - <u>51</u> 71	4226				
-04-002-40 - Specify Liquid:				•				1000 Gallons Storage
Standing Loss								Capacity
-04-002-41 - Gasoline RVP 13:								1000 Gallons Storage
Standing Loss								Capacity
<u> Miscellaneous Losses/L</u>	<u>eaks - 517</u>	<u>1, 4226</u>						
-04-001-51 - Valves, Flanges, and	0.0	0.0	0.0	0.0	0.3	0.0		1000 Gallons
Pumps								Transferred
-04-001-52 - Vapor Collection	0.0	0.0	0.0	0.0		0.0	•••	1000 Gallons
Losses								Transferred
-04-001-53 - Vapor Control Unit Losses	0.0	0.0	0.0	0.0	4.8	0.0		1000 Gallons
Losses -04-001-54 - Tank Truck Vapor	0.0	0.0	0.0	0.0		0.0		Transferred 1000 Gallons
Leaks	0.0	0.0	0.0	0.0	•••	0.0		Transferred
-04-002-50 - Loading Racks	0.0	0.0	0.0	0.0	0.7	0.0		1000 Gallons
	0.0	0.0		010	011	0.0		Transferred
-04-002-51 - Valves, Flanges, and	0.0	0.0	0.0	0.0	0.025	0.0		1000 Gallons
Pumps		••••				••••		Transferred
-04-002-54 - Tank Truck Vapor	0.0	0.0	0.0	0.0		0.0		1000 Gallons
Losses								Transferred
Tank w/ Internal Float Ro	of - Prima	rv Seal - 5	171 422	6				
4-04-001-60 - Specify Liquid:		<u>y ocur o</u>		<u> </u>				1000 Gallons Storage
Standing Loss				- · ·				Capacity
4-04-001-61 - Gasoline RVP 13:								Capacity
Standing Loss								
Tanks w/Internal Float R	Roof - Prima	ary Seal - S	5171, 42	26				
4-04-002-60 - Specify Liquid:								1000 Gallons Storage

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	
Tanks w	/ Internal Float	Roof - Prima	rv Seal - !	5171, 42	26				
10/1/0 11/	Standing Loss	<u></u>	1 0001 0	<u> </u>	<u> </u>				Capacity
4-04-002-61	- Gasoline RVP 13:								1000 Gallons Storage
	Standing Loss								Capacity
Tanks w	/ Internal Float	Roof - Secol	ndarv Sea	1 - 5171	4226				
	- Specify Liquid:		<u></u>						1000 Gallons Storage
4 04 001 10	Standing Loss								Capacity
4-04-001-71	- Gasoline RVP 13:								1000 Gallons Storage
	Standing Loss								Capacity
4-04-002-70	- Specify Liquid:								1000 Gallons Storage
	Standing Loss								Capacity
4-04-002-71	- Gasoline RVP 13:								1000 Gallons Storage
	Standing Loss								Capacity
Oil Field	Storage of Cru	de Oil - 131	1						
	- Fixed Roof Tank:	0.0	0.0	0.0	0.0	28.0	0.0		1000 Gallons Storage
4-04-003-01	Breathing Loss	0.0	0.0		/	20.0	0.0		Capacity
4-04-003-02	- Fixed Roof Tank:	0.0	0.0	0.0	0.0	7.2	0.0		1000 Gallons
4 04 005 02	Working Loss	0.0	0.0	••••					Throughput
4-04-003-03	- Ext. Float Roof Tan	k 0.0	0.0	0.0	0.0	1.6	0.0		1000 Gallons Storage
4 04 005 05	w/ Pri. Seals:			••••					Capacity
	Standing Loss								
4-04-003-04	- Ext. Float Roof Tan	ik 0.0	0.0	0.0	0.0	0.08	0.0		1000 Gallons Storage
4 04 003 04	w/ Sec. Seals:			••••					Capacity
	Standing Loss								
4-04-003-05	- Internal Floating	0.0	0.0	0.0	0.0	0.02	0.0		1000 Gallons Storage
4 04 005 05	Roof Tank: Standing			••••					Capacity
	Loss	, ,							
Underar	ound Tanks - 5	171 4226							
	- Gasoline RVP 13:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons Storage
4 04 004 01	Breathing Loss	0.0	510	0.0					Capacity
4-04-004-02	- Gasoline RVP 13:	0.0	0.0	0.0	<b>0.</b> 0	14.7	0.0		1000 Gallons
	Working Loss	•••							Throughput
4-04-004-03	- Gasoline RVP 10:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons Storage
	Breathing Loss								Capacity

. .

, ,

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTE
Undergro	und Tanks - 517	71. <u>4226</u>							
-04-004-04 -	Gasoline RVP 10: Working Loss	0.0	0.0	0.0	0.0	11.9	0.0		1000 Gallons Throughput
4-04-004-05 -	Gasoline RVP 7: Breathing Loss	0.0	0.0	0.0	0.0	0.0	0.0	•••	1000 Gallons Storage Capacity
4-04-004-06 -	Gasoline RVP 7: Working Loss	0.0	0.0	0.0	0.0	8.3	0.0		1000 Gallons Throughput
4-04-004-07 -	Crude Oil RVP 5: Breathing Loss	0.0	0.0	0.0	0.0	0.0	0.0	•••	1000 Gallons Storage Capacity
4-04-004-08 -	Crude Oil RVP 5: Working Loss	0.0	0.0	0.0	0.0	4.9	<b>0.</b> 0	•••	1000 Gallons Throughput
4-04-004-09 -	Jet Naphtha (JP-4): Breathing Loss	0.0	0.0	0.0	0.0	0.0	0.0	•••	1000 Gallons Storage Capacity
4-04-004-10 -	Jet Naphtha (JP-4): Working Loss	0.0	0.0	0.0	0.0	3.6	0.0	•••	1000 Gallons Throughput
4-04-004-11 -	Jet Kerosene: Breathing Loss	0.0	0.0	0.0	0.0	0.0	0.0	•••	1000 Gallons Storage Capacity
4-04-004-12 -	Jet Kerosene: Working Loss	0.0	0.0	0.0	0.0	0.04	0.0		1000 Gallons Throughput
4-04-004-13 -	Distillate Fuel #2: Breathing Loss	0.0	0.0	0.0	0.0	0.0	0.0	••••	1000 Gallons Storage Capacity
4-04-004-14 -	Distillate Fuel #2: Working Loss	0.0	0.0	0.0	0.0	0.03	0.0		1000 Gallons Throughput
4-04-004-97 -	Specify Liquid: Breathing Loss	0.0	0.0	0.0	0.0		0.0	•••	1000 Gallons Storage Capacity
	Specify Liquid:	0.0	0.0	0.0	0.0		0.0		1000 Gallons Throughput

DIVEIS - 2100								
4-05-001-01 - Dryer: General	•••	0.0	150.0 S	32.0	2000.0 (c)			Tons Solvent in Ink
4-05-001-99 - Dryer: General	XXX	0.0	XXX	XXX	XXX	XXX	XXX	Gallons Ink

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTES
Printing - :	2751								
4-05-002-01 -		0.0	0.0	0.0	0.0	420.0	0.0	•••	Tons Ink
4-05-002-11 -	Letter Press: General - 2751	0.0	0.0	0.0	0.0	1200.0	0.0	•••	Tons Solvent in Ink
4-05-002-12 -	Letter Press: General - 2751	0.0	0.0	0.0	0.0	1.5	0.0	•••	Gallons Ink
4-05-003-01 -	Flexographic: General - 2751	0.0	0.0	0.0	0.0	1240.0	0.0		Tons Ink
4-05-003-11 -	Flexographic: General - 2751	0.0	0.0	0.0	0.0	1910.0	0.0		Tons Solvent in Ink
4-05-003-12 -	Flexographic: General - 2751	0.0	0.0	0.0	0.0	4.4	0.0		Gallons Ink
	Flexographic: Propyl Alcohol Cleanup		•			•••			Tons Solvent Consumed
4-05-004-01 -	Lithographic: General - 2752	0.0	0.0	0.0	0.0	350.0	0.0		Tons Ink
4-05-004-11 -	Lithographic: General - 2752	0.0	0.0	0.0	0.0	1000.0	0.0		Tons Solvent in Ink
	Lithographic: General - 2752	0.0	0.0	0.0	0.0	1.24	0.0		Gallons Ink
	Lithographic: Isopropyl Alcohol Cleanup		•••						T <b>ons S</b> olvent Used
	Flexographic: Propyl Alcohol Cleanup				•••				Tons Solvent Consumed
4-05-005-01 -	Gravure - 2754	0.0	0.0	0.0	0.0	1240.0	0.0		Tons Ink
4-05-005-11 -	Gravure - 2754	0.0	0.0	0.0	0.0	1910.0	0.0		Tons Solvent in Ink
4-05-005-12 -	Gravure - 2754	0.0	0.0	0.0	0.0	4.4	0.0		Gallons Ink
4-05-005-13 -	Gravure - 2754	0.0	0.0	0.0	0.0	12.4	0.0		Gallons Ink
4-05-005-14 -	Gravure: Cleanup Solvent General							•••	Tons Solvent Consumed
4-05-006-01 -	Ink Mixing: General	0.0	0.0	0.0	0.0	2000.0 (c)	0.0		Tons Solvent in Ink
4-05-007-01 -	Solvent Storage: General	0.0	0.0	0.0	0.0	2000.0 (c)	0.0		Tons Solvent Stored

· ·

• •

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTE
Ink Thin	ning Solvents - 27	51							
4-05-002-02		0.0	0.0	0.0	0.0	2000.0 (c)	0.0		Tons Solvent Added
4-05-002-03	- Mineral Spirits	0.0	0.0	0.0	0.0	2000.0 (c)	0.0		Tons Solvent Added
4-05-003-02	- Carbitol	0.0	0.0	0.0	0.0	2000.0 (c)	0.0		Tons Solvent Added
4-05-003-03	- Cellosolve	0.0	0.0	0.0	0.0	2000.0 (c)	0.0		Tons Solvent Added
4-05-003-04	- Ethyl Alcohol	0.0	0.0	0.0	0.0	2000.0 (c)	0.0		Tons Solvent Added
4-05-003-05	- Isopropyl Alcohol	0.0	0.0	0.0	0.0	2000.0 (c)	0.0		Tons Solvent Added
4-05-003-06	- N-Propyl Alcohol	0.0	0.0	0.0	0.0	2000.0 (c)	0.0		Tons Solvent Added
4-05-003-07	- Naphtha	0.0	0.0	0.0	0.0	2000.0 (c)	0.0		Tons Solvent Added
4-05-005-02	- Dimethylformamide	0.0	0.0	0.0	0.0	2000.0 (c)	0.0		Tons Solvent Added
4-05-005-03	- Ethyl Acetate	0.0	0.0	0.0	0.0	2000.0 (c)	0.0		Tons Solvent Added
4-05-005-06	- Methyl Ethyl Ketone	0.0	0.0	0.0	0.0	2000.0 (c)	0.0		Tons Solvent Added
4-05-005-07	- Methyl Isobutyl Ketone	0.0	0.0	0.0	0.0	2000.0 (c)	0.0	•••	Tons Solvent Added
4-05-005-10	- Toluene	0.0	0.0	0.0	0.0	2000.0 (c)	0.0		Tons Solvent Added
	- Other Not Classified	0.0	0.0	0.0	Û.Û		0.0		1000 Gallons Solvent
4-05-005-99	- Other Not Classified	0.0	0.0	0.0	0.0	2000.0 (c)	0.0	XXX	Tons Solvent Added
Fugitive	Emissions - 2700	(d)							
4-05-888-01	- Specify in Comments Field	•••							Process-Unit/Year
4-05-888-02	- Specify in Comments								Process-Unit/Year
4-05-888-03	Field - Specify in Comments								Process-Unit/Year
	Field								
4-05-888-04	<ul> <li>Specify in Comments</li> <li>Field</li> </ul>		•••				•••		Process-Unit/Year
4-05- <b>888</b> -05	- Specify in Comments Field				•••				Process-Unit/Year

## TRANSPORTATION AND MARKETING OF PETROLEUM PRODUCTS - MAJOR GROUPS 44, 45, & 51

Tank Cars and Trucks - Normal Service - 5169, 5171, 5172											
4-06-001-31 - Gasoline: Submerged Loading	0.0	0.0	0.0	0.0	5.0	0.0		1000 Gallons Transferred			

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
					<b>F 4 7 0</b>		<u></u>	<u> </u>		
	<u>rs and Trucks - N</u>									
4-06-001-32	- Crude Oil: Submerged Loading	0.0	0.0	0.0	0.0	2.8	0.0		1000 Gallons Transferred	
-06-001-33	- Jet Naphtha: Submerged Loading	0.0	0.0	0.0	0.0	1.5	0.0		1000 Gallons Transferred	
-06-001-34	- Kerosene: Submerged Loading	0.0	0.0	0.0	0.0	0.02	0.0		1000 Gallons Transferred	
4-06-001-35	- Distillate Oil:	0.0	0.0	0.0	0.0	0.01	0.0		1000 Gallons	
-06-001-36	Submerged Loading - Gasoline: Splash	0.0	0.0	0.0	0.0	12.0	0.0		Transferred 1000 Gallons	
-06-001-37	Loading - Crude Oil: Splash	0.0	0.0	0.0	0.0	6.6	0.0		Transferred 1000 Gallons	
-06-001-38	Loading - Jet Naphtha: Splash	0.0	0.0	0.0	0.0	4.0	0.0		Transferred 1000 G <del>a</del> llons	
-06-001-39	Loading - Kerosene: Splash	0.0	0.0	0.0	0.0	0.04	0.0		Transferred 1000 Gallons	
-06-001-40	Loading - Distillate Oil:	0.0	0.0	0.0	0.0	0.03	0.0		Transferred 1000 Gallons	
	Splash Loading								Transferred	
Tank Ca	<u>rs and Trucks - Ba</u>	alanced S	ervice - 5	169, 517	<u>1. 5172</u>					
	- Gasoline: Submerged Loading	0.0	0.0	0.0	0.0	8.0	0.0		1000 Gallons Transferred	
-06-001-42	- Crude Oil: Submerged Loading	0.0	0.0	0.0	0.0	4.7	0.0		1000 Gallons Transferred	
-06-001-43	- Jet Naphtha:	0.0	0.0	0.0	0.0	2.5	0.0		1000 Gallons Transferred	
-06-001-44	Submerged Loading - Gasoline: Splash	0.0	0.0	0.0	0.0	8.0	0.0		1000 Gallons	
-06-001-45	Loading - Crude Oil: Splash	0.0	0.0	0.0	0.0	4.7	0.0		Transferred 1000 Gallons	
-06-001-46	Loading - Jet Naphtha: Splash Loading	0.0	0.0	0.0	0.0	2.5	0.0		Transferred 1000 Gallons Transferred	
Tank Ca	rs and Trucks - C	lean Tank	s - 5169. 5	5171.512	72					
	- Gasoline: Submerged	0.0	0.0	0.0	0.0	4.0	0.0		1000 Gallons	

.

.

,

.

SCC	Process Name	PART Lbs/Unit	<b>PM10</b> Lbs/Unit	<b>SOx</b> Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Tank Cal	rs and Trucks - Cl	lean Tank	s - 5169, 5	5171, 517	72			- <u></u>		
	Loading				_				Transferred	
-06-001-48	- Crude Oil: Submerged	0.0	0.0	0.0	0.0	2.4	0.0		1000 Gallons	
	Loading								Transferred	
-06-001-49	- Jet Naphtha:	0.0	0.0	0.0	0.0	1.25	0.0		1000 Gallons	
	Submerged Loading								Transferred	
-06-001-60	- Kerosene: Submerged	0.0	0.0	0.0	0.0	0.02	0.0		1000 Gallons	
	Loading								Transferred	
-06-001-61	- Distillate Oil:	0.0	0.0	0.0	0.0	0.008	0.0		1000 Gallons	
	Submerged Loading								Transferred	
Tank Ca	rs and Trucks - <u>Tr</u>	ansit Loss	ses - 5169	5171 5	172					
	- Gasoline: Loaded w/	0.0	0.0	0.0	0.0	0.005	0.0		1000 Gallons	
	Fuel								Transferred	
-06-001-63	- Gasoline: Return w/	0.0	0.0	0.0	0.0	0.055	0.0		1000 Gallons	
	Vapor								Transferred	
Marine V	/essels - 4491									
and the second	- Gasoline: Ship	0.0	0.0	0.0	0.0	1.0	0.0		1000 Gallons	
00 002 01	Loading-Cleaned &		••••						Transferred	
	Vapor Free Tanks								in dilor ci r ed	
-06-002-32	- Gasoline: Ocean	0.0	0.0	0.0	0.0	1.3	0.0		1000 Gallons	
00 002 52	Barges Loading								Transferred	
-06-002-33	- Gasoline: Barge	0.0	0.0	0.0	0.0	1.2	0.0		1000 Gallons	
00 002 33	Loading-Cleaned &		•••						Transferred	
	Vapor Free Tanks								in anoteri ea	
-06-002-34	- Gasoline: Ship	0.0	0.0	0.0	0.0	1.6	0.0		1000 Gallons	
00 002 34	Loading - Ballasted	0.0	•••	•••			0.0		Transferred	
	Tank								in ansier rea	
-06-002-35	- Gasoline: Ocean	0.0	0.0	0.0	0.0	2.1	0.0		1000 Gallons	
00 002 33	Barges Loading -	0.0	0.0				0.0		Transferred	
	Ballasted Tank								i ansterreu	
-06-002-36	- Gasoline: Ship	0.0	0.0	0.0	0.0	2.4	0.0		1000 Gallons	
00 002 50	Loading - Uncleaned	010			0.0	2.7	0.0		Transferred	
	Tanks								i ansterreu	
-06-002-77	- Gasoline: Ocean	0.0	0.0	0.0	0.0	3.3	0.0		1000 Gallons	
-00-002-37		0.0	0.0	0.0	0.0	2.2	0.0		Transferred	
	Barges Loading -								ransterred	

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Marine V	'essels - 4491									<u> </u>
	Uncleaned Tanks									
4-06-002-38	- Gasoline: Barges Loading - Uncleaned	0.0	0.0	0.0	0.0	4.0	0.0		1000 Gallons Transferred	
	Tanks									
4-06-002-39	- Gasoline: Tanker Ship - Ballasted Tank Condition	0.0	0.0	0.0	0.0	1.4	0.0		1000 Gallons Transferred	
4-06-002-40	- Gasoline: Barge Loading - Average	0.0	0.0	0.0	0.0	4.0	0.0		1000 Gallons Transferred	
4-06-002-61	Tank Condition - Gasoline: Tanker	0.0	0.0	0.0	0.0	0.8	0.0		1000 Gallons Total	
4 00 002 41	Ship - Ballesting	0.0	0.0	0.0	0.0	0.8	0.0		Cargo Capacity	
4-06-002-42	- Gasoline: Transit	0.0	0.0	0.0	0.0	156.0	0.0		1000 Gallons	
	Loss								Transported	
4-06-002-43	- Crude Oil: Loading Tankers	0.0	0.0	0.0	0.0	0.68	0.0		1000 Gallons Transferred	
4-06-002-44	- Jet Fuel: Loading	0.0	0.0	0.0	0.0	0.5	0.0		1000 Gallons	
4-04-002-45	Tankers - Kerosene: Loading	0.0	0.0	0.0	0.0	0.005	0.0		Transferred 1000 Gallons	
4-00-002-43	Tankers	0.0	0.0	0.0	0.0	0.005	0.0		Transferred	
4-06-002-46	- Distillate Oil:	0.0	0.0	0.0	0.0	0.005	0.0		1000 Gallons	
	Loading Tankers								Transferred	
4-06-002-48	- Crude Oil: Loading	0.0	0.0	0.0	0.0	1.6	0.0		1000 Gallons	
	Barges								Transferred	
4-06-002-49	- Jet Fuel: Loading	0.0	0.0	0.0	0.0	1.2	0.0		1000 Gallons	
	Barges								Transferred	
4-06-002-50	- Kerosene: Loading	0.0	0.0	0.0	0.0	0.013	0.0		1000 Gallons	
	Barges								Transferred	
4-06-002-51	- Distillate Oil:	0.0	0.0	0.0	0.0	0.012	0.0		1000 Gallons	
	Loading Barges								Transferred	
4-06-002-53	<ul> <li>Crude Oil: Tanker</li> <li>Ballesting</li> </ul>	0.0	0.0	0.0	0.0	0.57	0.0		1000 Gallons Tota Cargo Capacity	
4-06-002-54	- Crude Oil: Transit	0.0	0.0	0.0	0.0	49.0	0.0		1000 Gallons	
	Loss		510	0.0	010				Transported	
4-06-002-55	- Jet Fuel: Transit	0.0	0.0	0.0	0.0	36.4	0.0		1000 Gallons	
	Loss								Transported	

• •

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Marino V	'essels - 4491									
	- Kerosene: Transit	0.0	0.0	0.0	0.0	0.26	0.0		1000 Gallons Transported	
4-06-002-57	Loss - Distillate Oil:	0.0	0.0	0.0	0.0	0.26	0.0		1000 Gallons	
4-06-002-59	Transit Loss - Tanker/Barge Cleaning	0.0	0.0	0.0	0.0		0.0		Transported 1000 Gallons Total Cargo Capacity	
Gasoline	Retail Operation	ns - Stage	I - 5541							
	- Splash Filling	0.0	0.0	0.0	0.0	11.5	0.0		1000 Gallons Transferred	
4-06-003-02	<ul> <li>Submerged Filling</li> <li>w/o Controls</li> </ul>	0.0	0.0	0.0	0.0	7.3	0.0		1000 Gallons Transferred	
4-06-003-06	- Balanced Submerged Filling	0.0	0.0	0.0	0.0	0.3	0.0		1000 Gallons Throughput	
4-06-003-07	•	0.0	0.0	0.0	0.0	1.0	0.0		1000 Gallons Throughput	
Fillina Ve	ehicle Gas Tanks	- Stage II	- 5541							
	- Vapor Loss w/o Controls	0.0	0.0	0.0	0.0	11.0	0.0		1000 Gallons Pumped	I
4-06-004-02	- Liquid Spill Loss w/o Controls	0.0	0.0	0.0	0.0	0.67	0.0		1000 Gallons Pumped	l
4-06-004-03	- Vapor Loss w/o Controls	0.0	0.0	0.0	0.0	0.9	0.0	•••	1000 Gallons Transferred	
Fuaitive	Emissions - 4400	). 4500. 51	100							
	- Specify in Comments Field								1000 Gallons Throughput	
4-06-888-02									Process-Unit/Year	
4-06-888-03	- Specify in Comments Field								Process-Unit/Year	
4-06-888-04	- Specify in Comments							••••	Process-Unit/Year	
4-06-888-05	Field - Specify in Comments						·		Process-Unit/Year	

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Fuaitive	Emissions - 4400	4500.51	00							
	Field	, , , , , , , , , , , , , , , , , , , ,								
ORGAN	IC CHEMICAL S	TORAGE					GROU	IPS 28	29 30 & 51	1
								1020,	<u>20,00,00</u>	<u>L</u>
Aaid Ank	wdridee 0000 r		5100							
	<u> 1907, 1980, 1980, 1980, 1987</u>									
-07-004-01	<ul> <li>Acetic Anhydrides: Breathing Loss</li> </ul>	0.0	0.0	0.0	0.0	1.1	0.0		1000 Gallons St Capacity	orage
-07-004-02	- Acetic Anhydrides:	0.0	0.0	0.0	0.0	0.13	0.0		1000 Gallons	
	Working Loss								Throughput	
-07-004-97	<ul> <li>Specify Anhydride:</li> </ul>	0.0	0.0	0.0	0.0		0.0		1000 Gallons St	orage
	Breathing Loss								Capacity	
-07-004-98	<ul> <li>Specify Anhydride:</li> </ul>	0.0	0.0	0.0	0.0		0.0		1000 Gallons	
	Working Loss								Throughput	
Alcohols	- 2800, 2900, 30	00, 5100								
-07-008-01	- N-Butyl Alcohol:	0.0	0.0	0.0 🖌	0.0	0.73	0.0		1000 Gallons St	orage
	Breathing Loss								Capacity	
-07-008-02	- N-Butyl Alcohol:	0.0	0.0	0.0	0.0	0.01	0.0		1000 Gallons	
	Working Loss								Throughput	
-07-008-03	- Sec-Butyl Alcohol:	0.0	0.0	0.0	0.0	2.2	0.0		1000 Gallons St	orage
	Breathing Loss								Capacity	
-07-008-04	- Sec-Butyl Alcohol:	0.0	0.0	0.0	0.0	0.32	0.0		1000 Gallons	
_	Working Loss		_						Throughput	
-07-008-05	- Tert-Butyl Alcohol:	0.0	0.0	0.0	0.0	3.6	0.0		1000 Gallons St	orage
	Breathing Loss								Capacity	
-07-008-06	- Tert-Butyl Alcohol:	0.0	0.0	0.0	0.0	0.76	0.0		1000 Gallons	
	Working Loss		• •			0.77			Throughput	
-07-008-07	- Cyclohexanol:	0.0	0.0	0.0	0.0	0.73	0.0		1000 Gallons St	orage
-07-008-09	Breathing Loss	0.0	0.0	0.0	0.0	0.046	0.0		Capacity 1000 Gallons	
-07-000-08	- Cyclohexanol: Working Loss	0.0	0.0	0.0	0.0	0.040	0.0		Throughput	
-07-008-00	- Ethyl Alcohol:	0.0	0.0	0.0	0.0	2.9	0.0		1000 Gallons St	orage
01 000-09	Breathing Loss	0.0	0.0	0.0	0.0	2.7	0.0	-	Capacity	Ul age
-07-008-10	- Ethyl Alcohol:	0.0	0.0	0.0	0.0	0.66	0.0		1000 Gallons	
51 000 10	Working Loss	0.0	0.0	0.0	0.0	0.00	0.0		Throughput	

· ·

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	<b>VOC</b> Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Alcohols	- 2800, 2900, 30	00.5100								
	- Isobutyl Alcohol: Breathing Loss	0.0	0.0	0.0	0.0	1.5	0.0		1000 Gallons Capacity	Storage
4-07-008-12	- Isobutyl Alcohol: Working Loss	0.0	0.0	0.0	0.0	0.17	0.0		1000 Gallons Throughput	
4-07-008-13	- Isopropyl Alcohol: Breathing Loss	0.0	0.0	0.0	0.0	3.6	0.0		1000 Gallons Capacity	Storage
4-07-008-14	- Isopropyl Alcohol: Working Loss	0.0	0.0	0.0	0.0	0.86	0.0		1000 Gallons Throughput	
4-07-008-15	- Methyl Alcohol: Breathing Loss	0.0	0.0	0.0	0.0	3.6	0.0		1000 Gallons Capacity	Storage
4-07-008-16	- Methyl Alcohol: Working Loss	0.0	0.0	0.0	0.0	1.07	0.0	•	1000 Gallons Throughput	
4-07-008-17	- N-Propyl Alcohol: Breathing Loss	0.0	0.0	0.0	0.0	1.8	0.0	•••	1000 Gallons Capacity	Storage
4-07-008-18	- N-Propyl Alcohel: Working Loss	0.0	0.0	0.0	û.Û	0.29	0.0	•••	1000 Gallons Throughput	
4-07-008-97	- Specify Alcohol: Breathing Loss	0.0	0.0	0.0	• 0.0	•••	0.0		1000 Gallons : Capacity	Storage
4-07-008-98	- Specify Alcohol: Working Loss	0.0	0.0	0.0	0.0		0.0		1000 Gallons Throughput	
Alkanes	(Paraffins) - 2800	) <u>, 2900, 3(</u>	<u>)00, 5100</u>							
4-07-016-01	- N-Decane: Breathing Loss	0.0	0.0	0.0	0.0	0.73	0.0		1000 Gallons Capacity	Storage
4-07-016-02	- N-Decane: Working Loss	0.0	0.0	0.0	0.0	0.04	0.0		1000 Gallons Throughput	
4-07-016-03	- N-Dodecane: Breathing Loss	0.0	0.0	0.0	0.0	0.15	0.0		1000 Gallons Capacity	Storage
4-07-016-04	- N-Dodecane: Working Loss	0.0	0.0	0.0	0.0	0.004	0.0		1000 Gallons Throughput	
4-07-016-05	- N-Heptane: Breathing Loss	0.0	0.0	0.0	0.0	5.8	0.0		1000 Gallons Capacity	Storage
4-07-016-06	- N-Heptane: Working Loss	0.0	0.0	0.0	0.0	1.3	0.0		1000 Gallons Throughput	
4-07-016-07	- Isopentane:	0.0	0.0	0.0	0.0		0.0		1000 Gallons	Storage

SCC	Process Name	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Alkanes (	<u> (Paraffins) - 2800</u>	, 2900, 30	000, 5100							
	Breathing Loss								Capacity	
- 07-016-08	Isopentane: Working	0.0	0.0	0.0	0.0		0.0		1000 Gallons	
	Loss								Throughput	
4-07-016-09 -	Pentadecane:	0.0	0.0	0.0	0.0	0.04	0.0		1000 Gallons Sto	rage
	Breathing Loss								Capacity	
-07-016-10 -	Pentadecane: Working	0.0	0.0	0.0	0.0	0.0008	0.0		1000 Gallons	
	Loss								Throughput	
4-07-016-11 -	Naphtha: Breathing	0.0	0.0	0.0	0.0	0.15	0.0		1000 Gallons Sto	orage
	Loss								Capacity	
+-07-016-12 -	Naphtha: Working	0.0	0.0	0.0	0.0	0.006	0.0		1000 Gallons	
	Loss				• •				Throughput	
4-07-016-13 -		0.0	0.0	0.0	0.0	0.15	0.0		1000 Gallons Sto	orage
	Distillate:								Capacity	
4-07-016-14 -	Breathing Loss	0.0				0.00/	• •		1000 0.11	
4-07-010-14 -	Distillate: Working	0.0	0.0	0.0	0.0	0.006	0.0		1000 Gallons	
	Loss								Throughput	
4-07-016-97 -	Specify Alkane:	0.0	0.0	0.0	0.0	••••	0.0		1000 Gallons Sto	7580e
	Breathing Loss	0.0	0.0	0.0	0.0		0.0		Capacity	n age
4-07-016-98 -	Specify Alkane:	0.0	0.0	0.0	0.0		0.0		1000 Gallons	
	Working Loss		•••		••••		••••		Throughput	
	-									
Alkenes (	(Olefins) - 2800.	2900, 300	0.5100							
	Dodecene: Breathing	0.0	0.0	0.0	0.0	0.15	0.0		1000 Gallons Sto	orage
	Loss								Capacity	-
4-07-020-02 -	Dodecene: Working	0.0	0.0	0.0	0.0	0.005	0.0		1000 Gallons	
	Loss								Throughput	
4-07-020-03 -	Heptenes-General:	0.0	0.0	0.0	0.0		0.0		1000 Gallons Sto	orage
	Breathing Loss								Capacity	
4-07-020-04 -	Heptenes-General:	0.0	0.0	0.0	0.0		0.0		1000 Gallons	
	Working Loss								Throughput	
4-07-020-97 -	Specify Olefin:	0.0	0.0	0.0	0.0		0.0	•••	1000 Gallons Sto	orage
	Breathing Loss								Capacity	
4-07-020-98 -	Specify Olefin:	0.0	0.0	0.0	0.0	•••	0.0	•••	1000 Gallons	
	Working Loss								Throughput	

.

٩

•

٠

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Uriit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTI
Amines -	2800, 2900, 300	0.5100						<u></u>	
	- Aniline: Breathing Loss	0.0	0.0	0.0	0.0	0.22	0.0		1000 Gallons Storage Capacity
4-07-032-02 -	- Aniline: Working Loss	0.0	0.0	0.0	0.0	0.13	0.0		1000 Gallons Throughput
4-07-032-03	- Ethanolamines: Breathing Loss	0.0	0.0	0.0	0.0	0.11	0.0		1000 Gallons Storage Capacity
4-07-032-04 ·	- Ethanolamines: Working Loss	0.0	0.0	0.0	0.0	0.004	0.0		1000 Gallons Throughput
4-07-032-05 ·	- Ethyleneamines: Breathing Loss	0.0	0.0	0.0	0.0	7.3	0.0		1000 Gallons Storage Capacity
4-07-032-06	- Ethyleneamines: Working Loss	0.0	0.0	0.0	0.0	2.5	0.0		1000 Gallons Throughput
4-07-032-97	- Specify Amine: Breathing Loss	0.0	0.0	0.0	0.0		0.0		1000 Gallons Storage Capacity
4-07-032-98	-	0.0	0.0	0.0	0.0		0.0		1000 Gallons Throughput
Aromatic	s - 2800, 2900, 3	000, 5100	2						
4-07-036-01	<ul> <li>Benzene: Breathing</li> <li>Loss</li> </ul>	0.0	0.0	0.0	0.0	8.0	0.0	•	1000 Gallons Storage Capacity
4-07-036-02	- Benzene: Working Loss	0.0	0.0	0.0	0.0	2.25	0.0		1000 Gallons Throughput
4-07-036-03	- Cresol: Breathing Loss	0.0	0.0	0.0	0.0	0.11	0.0		1000 Gallons Storage Capacity
4-07-036-04	- Cresol: Working Loss	0.0	0.0	0.0	0.0	0.005	0.0	•••	1000 Gallons Throughput
4-07-036-05	- Cumene: Breathing Loss	0.0	0.0	0.0	0.0	1.5	0.0	•••	1000 Gallons Storage Capacity
4-07-036-06	- Cumene: Working Loss	0.0	0.0	0.0	0.0	0.16	0.0		1000 Gallons Throughput
4-07-036-07	- Diisopropyl Benzene: Breathing Loss	0.0	0.0	0.0	0.0	0.03	0.0	•••	1000 Gallons Storage Capacity
4-07-036-08	- Diisopropyl Benzene: Working Loss	0.0	0.0	0.0	0.0	0.001	0.0		1000 Gallons Throughput
4-07-036-09	- Ethyl Benzene:	0.0	0.0	0.0	0.0	1.8	0.0		1000 Gallons Storage

SCC P	rocess	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	lame	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Aromatics -	2800. 2900.	3000, 5100								
	athing Loss								Capacity	
4-07-036-10 - Eth	-	0.0	0.0	0.0	0.0	0.27	0.0		1000 Gallons	
Wor	king Loss								Throughput	
4-07-036-11 - Met	-	0.0	0.0	0.0	0.0	0.73	0.0		1000 Gallons S	torage
Bre	athing Loss								Capacity	-
4-07-036-12 - Met	hyl Styrene:	0.0	0.0	0.0	0.0	0.05	0.0		1000 Gallons	
Wor	king Loss								Throughput	
4-07-036-13 - Sty	rene: Breathing	0.0	0.0	0.0	0.0	1.5	0.0		1000 Gallons S	itorage
Los	s								Capacity	
4-07-036-14 - Sty	rene: Working	0.0	0.0	0.0	0.0	0.17	0.0	•	1000 Gallons	
Los	-								Throughput	
4-07-036-15 - Tol	uene: Breathing	0.0	0.0	0.0	0.0	3.6	0.0		1000 Gallons S	itorage
Los	S								Capacity	
4-07-036-16 - Tol	uene: Working	0.0	0.0	0.0	0.0	0.66	0.0	•••	1000 Gallons	
Los	-								Throughput	
4-07-036-17 - m-X	ylene: Breathing	0.0	0.0	0.0	0.0	1.8	0.0	•••	1000 Gallons S	torage
Los									Capacity	
4-07-036-18 - m-X	•	0.0	0.0	0.0	0.0	0.23	0.0		1000 Gallons	
Los									Throughput	
4-07-036-19 - o-X	-	0.0	0.0	0.0	0.0	1.5	0.0		1000 Gallons S	itorage
Los									Capacity	
4-07-036-20 - o-X	•	0.0	0.0	0.0	0.0	0.18	0.0		1000 Gallons	
Los	-	• •			• •				Throughput	
4-07-036-21 - p-X	• -	0.0	0.0	0.0	0.0	1.8	0.0	•	1000 Gallons S	itorage
Los		• •	• •		• •		• •		Capacity	
4-07-036-22 - p-X		0.0	0.0	0.0	0.0	0.24	0.0		1000 Gallons	
Los	-		• •	• •	• •		• •		Throughput	
4-07-036-23 - Xyl	-	0.0	0.0	0.0	0.0	0.02	0.0		1000 Gallons S	itorage
	athing Loss	0.0	• •	• •	0.0	• /	• •	• • • •	Capacity	
4-07-036-24 - Xyl	•	0.0	0.0	0.0	0.0	1.4	0.0	***	1000 Gallons	
4-07-036-97 - Spe	king Loss	0.0	0.0	0.0	0.0		0.0	•	Throughput 1000 Gallons S	torea
	eathing Loss	0.0	0.0	0.0	0.0		0.0		Capacity	rui aye
4-07-036-98 - Spe	-	0.0	0.0	0.0	0.0		0.0	•••	1000 Gallons	
•	king Loss	0.0	0.0	0.0	0.0		0.0		Throughput	
WUI	KING LUSS								moughput	

.

.

•

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Carboxvi	<u>lic Acids - 2800, 1</u>	2900. 300	0.5100							
	- Acetic Acid:	0.0	0.0	0.0	0.0	1.5	0.0	*	1000 Gallons	Storage
4-07-040-02	Breathing Loss - Acetic Acid: Working	0.0	0.0	0.0	0.0	0.24	0.0		Capacity 1000 Gallons	
	Loss	• •		• •	• •				Throughput	-
4-0/-040-03	- Acrylic Acid: Breathing Loss	0.0	0.0	0.0	0.0	0.73	0.0		1000 Gallons Capacity	Storage
4-07-040-04	- Acrylic Acid:	0.0	0.0	0.0	0.0	0.64	0.0		1000 Gallons	
4-07-040-05	Working Loss - Adipic Acid (Soln):	0.0	0.0	0.0	0.0	0.0003	0.0		Throughput 1000 Gallons	Storage
4 07 040 05	Breathing Loss					010005	010		Capacity	o con age
4-07-040-06	- Adipic Acid (Soln): Working Loss	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
4-07-040-07	- Formic Acid:	0.0	0.0	0.0	0.0	2.6	0.0	<b>.</b>	Throughput 1000 Gallons	Storage
	Breathing Loss								Capacity	Ū
4-07-040-08	- Formic Acid: Working Loss	0.0	0.0	0.0	0.0	0.57	0.0		1000 Gallons Throughput	
4-07-040-09	- Propionic Acid:	0.0	0.0	0.0	0.0	0.73	0.0		1000 Gallons	Storage
	Breathing Loss								Capacity	
4-07-040-10	- Propionic Acid: Working Loss	0.0	0.0	0.0	0.0	0.06	0.0	••••	1000 Gallons Throughput	
4-07-040-97	- Specify Acid:	0.0	0.0	0.0	0.0		0.0		1000 Gallons	Storage
	Breathing Loss								Capacity	
4-07-040-98	- Specify Acid: Working Loss	0.0	0.0	0.0	0.0		0.0		1000 Gallons Throughput	
Esters - 2	2 <u>800. 2900. 3000</u>	5100								
	- Butyl Acetate:	0.0	0.0	0.0	0.0	2.2	0.0		1000 Gallons	Storage
	Breathing Loss								Capacity	
4-07-044-02	- Butyl Acetate: Working Loss	0.0	0.0	0.0	0.0	0.34	0.0		1000 Gallons Throughput	
4-07-044-03	- Butyl Acrylate:	0.0	0.0	0.0	0.0	1.57	0.0		1000 Gallons	Storage
	Breathing Loss								Capacity	-
4-07-044-04	- Butyl Acrylate:	0.0	0.0	0.0	0.0	0.2	0.0		1000 Gallons	
4-07-044-05	Working Loss - Ethyl Acetate:	0.0	0.0	0.0	0.0	8.4	0.0		Throughput 1000 Gallons	Storage

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit								
Esters -	2800, 2900, 3000	. 5100								
	Breathing Loss	<u> </u>							Capacity	
4-07-044-06	- Ethyl Acetate:	0.0	0.0	0.0	0.0	2.3	0.0		1000 Gallons	
	Working Loss								Throughput	
4-07-044-07	- Ethyl Acrylate:	0.0	0.0	0.0	0.0	5.1	0.0		1000 Gallons S	torage
	Breathing Loss								Capacity	
4-07-044-08	- Ethyl Acrylate:	0.0	0.0	0.0	0.0	1.1	0.0		1000 Gallons	
	Working Loss								Throughput	
4-07-044-09	- Isobutyl Acrylate:	0.0	0.0	0.0	0.0	0.31	0.0		1000 Gallons S	torage
	Breathing Loss								Capacity	
4-07-044-10	- Isobutyl Acrylate:	0.0	0.0	0.0	0.0	0.006	0.0		1000 Gallons	
	Working Loss								Throughput	
4-07-044-11	- Isopropyl Acetate:	0.0	0.0	0.0	0.0	7.3	0.0		1000 Gallons S	torage
	Breathing Loss								Capacity	
4-07-044-12	- Isopropyl Acetate:	0.0	0.0	0.0	0.0	1.8	0.0		1000 Gallons	
	Working Loss								Throughput	
4-07-044-13	- Methyl Acetate:	0.0	0.0	0.0	0.0	14.2	0.0		1000 Gallons S	torage
	Breathing Loss								Capacity	
4-07-044-14	- Methyl Acetate:	0.0	0.0	0.0	0.0	4.8	0.0		1000 Gallons	
	Working Loss								Throughput	
4-07-044-15	- Methyl Acrylate:	0.0	0.0	0.0	0.0	8.0	0.0		1000 Gallons S	itorage
	Breathing Loss								Capacity	
4-07-044-16	- Methyl Acrylate:	0.0	0.0	0.0	0.0	2.2	0.0	•••	1000 Gallons	
	Working Loss								Throughput	
4-07-044-17	- Methyl Methacrylate:	0.0	0.0	0.0	0.0	3.6	0.0		1000 Gallons S	Storage
	Breathing Loss								Capacity	
4-07-044-18	- Methyl Methacrylate:	0.0	0.0	0.0	0.0	0.7	0.0		1000 Gallons	
	Working Loss								Throughput	
4-07-044-19	- Vinyl Acetate:	0.0	0.0	0.0	0.0	9.1	0.0		1000 Gallons S	Storage
	Breathing Loss								Capacity	
4-07-044-20	- Vinyl Acetate:	0.0	0.0	0.0	0.0	2.7	0.0		1000 Gallons	
	Working Loss								Throughput	
4-07-044-21	- n-Propyl Acetate:					0.01			1000 Gallons S	Storage
	Breathing Loss								Capacity	
4-07-044-22	- n-Propyl Acetate:					1.1	•••		1000 Gallons	
	Working Loss								Throughput	
4-07-044-23	<ul> <li>i-Butyl-i-Butyrate:</li> </ul>					0.006			1000 Gallons S	Storage

1

•

.

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Esters -	2800, 2900, 3000	5100								
	Breathing Loss	10100							Capacity	
4-07-044-24	4 - i-Butyl-i-Butyrate:					0.27			1000 Gallons	
	Working Loss								Throughput	
4-07-044-97	7 - Specify Ester:	0.0	0.0	0.0	0.0		0.0		1000 Gallons St	orage
	Breathing Loss								Capacity	
4-07-044-98	B - Specify Ester:	0.0	0.0	0.0	0.0		0.0	<b>.</b>	1000 Gallons	
	Working Loss								Throughput	
Fthers -	2800, 2900, 3000	5100								
	1 - Methyl-tert-Butyl	0.0	0.0	0.0	0.0	0,07	0.0		1000 Gallons St	orage
	Ether: Breathing								Capacity	
	Loss								, ,	
4-07-048-02	2 - Methyl-tert-Butyl	0.0	0.0	0.0	0.0	9.2	0.0	•	1000 Gallons	
	Ether: Working Loss								Throughput	
4-07-048-97	7 - Specify Ether:	0.0	0.0	0.0	0.0		0.0		1000 Gallons St	orage
	Breathing Loss								Capacity	
4-07-048-98	B - Specify Ether:	0.0	0.0	0.0	0.0		0.0		1000 Gallons	
	Working Loss								Throughput	
Glvcol I	Ethers - 2800, 290	0, 3000, 5	5100							
	1 - Butyl Carbitol:	0.0	0.0	0.0	0.0	0.001	0.0		1000 Gallons St	orage
	Breathing Loss								Capacity	
4-07-052-02	2 - Butyl Carbitol:	0.0	• •						capacity	
			0.0	0.0	0.0	0.01	0.0		1000 Gallons	
	Working Loss		0.0	0.0	0.0	0.01	0.0			
4-07-052-0	Working Loss 3 - Butyl Cellosolve:	0.0	0.0	0.0	0.0 0.0	0.01 0.001	0.0 0.0		1000 Gallons	orage
4-07-052-0	-				0.0				1000 Gallons Throughput	orage
	3 - Butyl Cellosolve:								1000 Gallons Throughput 1000 Gallons St	orage
	3 - Butyl Cellosolve: Breathing Loss	0.0	0.0	0.0	0.0	0.001	0.0		1000 Gallons Throughput 1000 Gallons St Capacity	orage
4-07-05 <b>2</b> -0	<ul> <li>3 - Butyl Cellosolve:</li> <li>Breathing Loss</li> <li>4 - Butyl Cellosolve:</li> </ul>	0.0	0.0	0.0	0.0	0.001	0.0		1000 Gallons Throughput 1000 Gallons St Capacity 1000 Gallons	-
4-07-052-0	<ul> <li>3 - Butyl Cellosolve:</li> <li>Breathing Loss</li> <li>4 - Butyl Cellosolve:</li> <li>Working Loss</li> </ul>	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.001 0.03	0.0 0.0		1000 Gallons Throughput 1000 Gallons St Capacity 1000 Gallons Throughput	-
4-07-052-0 4-07-052-0	<ul> <li>3 - Butyl Cellosolve: Breathing Loss</li> <li>4 - Butyl Cellosolve: Working Loss</li> <li>5 - Carbitol: Breathing</li> </ul>	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.001 0.03	0.0 0.0		1000 Gallons Throughput 1000 Gallons St Capacity 1000 Gallons Throughput 1000 Gallons St Capacity 1000 Gallons	-
4-07-052-0 4-07-052-0	<ul> <li>3 - Butyl Cellosolve: Breathing Loss</li> <li>4 - Butyl Cellosolve: Working Loss</li> <li>5 - Carbitol: Breathing Loss</li> </ul>	0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.001 0.03 0.0005	0.0 0.0 0.0 0.0	 	1000 Gallons Throughput 1000 Gallons St Capacity 1000 Gallons Throughput 1000 Gallons St Capacity 1000 Gallons Throughput	orage
4-07-052-0 4-07-052-0 4-07-052-0	<ul> <li>3 - Butyl Cellosolve: Breathing Loss</li> <li>4 - Butyl Cellosolve: Working Loss</li> <li>5 - Carbitol: Breathing Loss</li> <li>6 - Carbitol: Working</li> </ul>	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.001 0.03 0.0005	0.0 0.0 0.0	 	1000 Gallons Throughput 1000 Gallons St Capacity 1000 Gallons Throughput 1000 Gallons St Capacity 1000 Gallons Throughput 1000 Gallons St	orage
4-07-052-0 4-07-052-0 4-07-052-0	<ul> <li>3 - Butyl Cellosolve: Breathing Loss</li> <li>4 - Butyl Cellosolve: Working Loss</li> <li>5 - Carbitol: Breathing Loss</li> <li>6 - Carbitol: Working Loss</li> </ul>	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.001 0.03 0.0005 0.006	0.0 0.0 0.0 0.0 0.0	 	1000 Gallons Throughput 1000 Gallons St Capacity 1000 Gallons Throughput 1000 Gallons St Capacity 1000 Gallons Throughput 1000 Gallons St Capacity	orage
4-07-052-0 4-07-052-0 4-07-052-0 4-07-052-0	<ul> <li>3 - Butyl Cellosolve: Breathing Loss</li> <li>4 - Butyl Cellosolve: Working Loss</li> <li>5 - Carbitol: Breathing Loss</li> <li>6 - Carbitol: Working Loss</li> <li>7 - Cellosolve:</li> </ul>	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.001 0.03 0.0005 0.006	0.0 0.0 0.0 0.0	 	1000 Gallons Throughput 1000 Gallons St Capacity 1000 Gallons Throughput 1000 Gallons St Capacity 1000 Gallons Throughput 1000 Gallons St	orage

SCC	Process	PART	PM10	SOx	NOx	VOC	СО	LEAD	UNITS	NOTES
	Name	Lbs/Unit								
Glycol E	thers - 2800, 2900	0 3000 5	100							
	- Diethylene Glycol:	0.0	0.0	0.0	0.0	0.003	0.0		1000 Gallons S	Storage
	Breathing Loss	0.0	0.0	0.0	•••				Capacity	
-07-052-10	- Diethylene Glycol:	0.0	0.0	0.0	0.0	. 0.0	0.0		1000 Gallons	
	Working Loss	010			••••				Throughput	
-07-052-11	- Methyl Carbitol:	0.0	0.0	0.0	0.0	0.0004	0.0		1000 Gallons S	Storage
	Breathing Loss	010	0.0	0.0	••••				Capacity	
4-07-052-12	- Methyl Carbitol:	0.0	0.0	0.0	0.0	0.006	0.0		1000 Gallons	
	Working Loss		••••	••••					Throughput	
4-07-052-13	- Methyl Cellosolve:	0.0	0.0	0.0	0.0	0.004	0.0		1000 Gallons S	Storage
	Breathing Loss		•••						Capacity	-
4-07-052-14	- Methyl Cellosolve:	0.0	0.0	0.0	0.0	0.22	0.0		1000 Gallons	
	Working Loss								Throughput	
4-07-052-15	- Polyethylene Glycol:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	Storage
	Breathing Loss								Capacity	-
4-07-052-16	- Polyethylene Glycol:	0.0	0.0	0.0	.00	0.0	0.0		1000 Gallons	
	Working Loss				•				Throughput	
4-07-052-17	- Triethylene Glycol:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	Storage
	Breathing Loss								Capacity	-
4-07-052-18	- Triethylene Glycol:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
	Working Loss								Throughput	
4-07-052-97	- Specify Glycol	0.0	0.0	0.0	0.0		0.0		1000 Gallons	Storage
	Ether: Breathing								Capacity	-
	Loss									
4-07-052-98	- Specify Glycol	0.0	0.0	0.0	0.0		0.0		1000 Gallons	
	Ether: Working Loss								Throughput	
	Ether: working Loss								•	
Glvcols	- 2800, 2900, 300	0.5100								
	- 1,4-Butanediol:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	Storage
	Breathing Loss								Capacity	
4-07-056-02	- 1,4-Butanediol:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
	Working Loss								Throughput	
4-07-056-03	- Ethylene Glycol:	0.0	0.0	0.0	0.0	0.036	0.0		1000 Gallons	Storage
	Breathing Loss								Capacity	-
4-07-056-04	- Ethylene Glycol:	0.0	0.0	0.0	0.0	0.02	0.0	• • •	1000 Gallons	
	Working Loss								Throughput	

٠

•

۰.

SCC	Process Name	PART Lbs/Unit	<b>PM10</b> Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Giveois -	2800, 2900, 300	0 5100								
	· Dipropylene Glycol:	0.0	0.0	0.0	0.0	0.0002	0.0		1000 Gallons	Storage
	Breathing Loss			••••					Capacity	
4-07-056-06 -	Dipropylene Glycol:	0.0	0.0	0.0	0.0	0.013	0.0		1000 Gallons	
	Working Loss								Throughput	
4-07-056-07 -	Glycerol: Breathing	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	Storage
	Loss								Capacity	
4-07-056-08 -	Glycerol: Working	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
	Loss								Throughput	
4-07-056-09 -	Propylene Glycol:	0.0	0.0	0.0	0.0	0.007	0.0		1000 Gallons	Storage
	Breathing Loss								Capacity	
4-07-056-10 -	Propylene Glycol:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
	Working Loss								Throughput	
4-07-056-97 -	Specify Glycol:	0.0	0.0	0.0	0.0		0.0		1000 Gallons	Storage
	Breathing Loss								Capacity	
4-07-056- <b>9</b> 8 -	Specify Glycol:	0.0	0.0	0.0	0.0		0.0		1000 Gallons	
	Working Loss								Throughput	
Helegen	atad Organica C	0000 0000	2000 F	100						
	ated Organics - 2				• 0.0	0.05	0.0			•••••
4-07-060-01 -	Benzyl Chloride:	0.0	0.0	0.0	0.0	0.05	0.0	•	1000 Gallons	Storage
	Breathing Loss	• •	• •	• •		0.002	0.0		Capacity	
4-07-060-02 -	Benzyl Chloride:	0.0	0.0	0.0	0.0	0.002	0.0		1000 Gallons	
	Working Loss	• •				• •	• •		Throughput	•••••
4-07-060-03 -	Caprolactum (Soln):	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	Storage
	Breathing Loss		• •		• •				Capacity	
4-07-060-04 -	- Caprolactum (Soln):	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
	Working Loss		• •	• •	• •	47.0	• •		Throughput	••••
4-07-060-05 -		0.0	0.0	0.0	0.0	17.9	0.0		1000 Gallons	Storage
	Tetrachloride:								Capacity	
	Breathing Loss	• •		• •	• •	5.2	0.0		1000 0-11-000	
4-07-060-06 -		0.0	0.0	0.0	0.0	5.2	0.0		1000 Gallons	
	Tetrachloride:								Throughput	
	Working Loss	0.0	0.0	0.0		2.5	0.0		1000 Callons	Storage
4-07-060-07 -	- Chlorobenzene:	0.0	0.0	0.0	0.0	2.5	0.0		1000 Gallons	storage
	Breathing Loss		0.0			0.36	0.0		Capacity 1000 Gallons	
4-07-060-08 -	<ul> <li>Chlorobenzene:</li> </ul>	0.0	0.0	0.0	0.0	0.36	0.0		TOUD GALLONS	

SCC F	Process Name	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS NOT
	vame	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	
Halogenate	d Organics -	2800, 2900	0, 3000, 5	100					
	rking Loss		<u>,</u>						Throughput
4-07-060-09 - 0-	•	0.0	0.0	0.0	0.0	0.73	0.0		1000 Gallons Storage
Br	eathing Loss								Capacity
4-07-060-10 - 0-0	Dichlorobenzene:	0.0	0.0	0.0	0.0	0.05	0.0		1000 Gallons
	rking Loss			•					Throughput
4-07-060-11 - p-	Dichlorobenzene:	0.0	0.0	0.0	0.0	0.73	0.0		1000 Gallons Storage
	eathing Loss								Capacity
4-07-060-12 - p-	Dichlorobenzene:	0.0	0.0	0.0	0.0	0.06	0.0		1000 Gallons
Wo	rking Loss								Throughput
4-07-060-13 - Ep	ichlorohydrin:	0.0	0.0	0.0	0.0	2.5	0.0		1000 Gallons Storage
Br	eathing Loss								Capacity
4-07-060-14 - Ep	ichlorohydrin:	0.0	0.0	0.0	0.0	0.4	0.0		1000 Gallons
Wo	orking Loss								Throughput
4-07-060-15 - Et	hylene Dibromide:	0.0	0.0	0.0	0.0	4.75	0.0		1000 Gallons Storage
Br	eathing Loss								Capacity
4-07-060-16 - Et	hylene Dibromide:	0.0	0.0	0.0	0.0	0.77	0.0		1000 Gallons
Wo	orking Loss								Throughput
4-07-060-17 - Et	hylene Dichloride:	0.0	0.0	0.0	0.0	8.8	0.0		1000 Gallons Storage
	eathing Loss								Capacity
	hylene Dichloride:	0.0	0.0	0.0	0.0	2.3	0.0	•••	1000 Gallons
	orking Loss								Throughput
	thylene Chloride:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons Storage
	eathing Loss								Capacity
	thylene Chloride:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons
	orking Loss								Throughput
	erchloroethylene:	0.0	0.0	0.0	0.0	5.1	0.0		1000 Gallons Storage
	eathing Loss								Capacity
	rchloroethylene:	· 0.0	0.0	0.0	0.0	0.84	0.0		1000 Gallons
	orking Loss								Throughput
	ichloroethylene:	0.0	0.0	0.0	0.0	4.4	0.0	+ • •	1000 Gallons Storage
	eathing Loss								Capacity
	ichloroethylene:	0.0	0.0	0.0	0.0	2.8	0.0		1000 Gallons
	orking Loss								Throughput
•	ecify Halogenated	0.0	0.0	0.0	0.0		0.0		1000 Gallons Storage
	ganic: Breathing								Capacity
Lo	98\$								

ъ

.

•

SCC	Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
	Name	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Halogen	ated Organics - 2	2800 2900	3000 5	100						
	- Specify Halogenated	0.0	0.0	0.0	0.0		0.0		1000 Gallons	
-01-000-78	Organic: Working	0.0	0.0	0.0	0.0		0.0		Throughput	
	Loss								Thi oughput	
socvana	ates - 2800, 2900	3000.51	00							
	- MDI: Breathing Loss	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	Storage
									Capacity	
-07-064-02	- MDI: Working Loss	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
	•								Throughput	
-07-064-03	- TDI: Breathing Loss	0.0	0.0	0.0	0.0	0.036	0.0		1000 Gallons	Storage
									Capacity	
-07-064-04	- TDI: Working Loss	0.0	0.0	0.0	0.0	0.0008	0.0		1000 Gallons	
									Throughput	
-07-064-97	- Specify Isocyanate:	0.0	0.0	0.0	0.0		0.0		1000 Gallons	Storage
	Breathing Loss								Capacity	
-07-064-98	<ul> <li>Specify Isocyanate:</li> </ul>	0.0	0.0	0.0	0.0		0.0		1000 Gallons	
	Working Loss								Throughput	
Ketones	- 2800, 2900, 30	<u>00, 5100</u>								
4-07-068-01	- Cyclohexanone:	0.0	0.0	0.0	0.0	1.8	0.0		1000 Gallons	Storage
	Breathing Loss								Capacity	
4-07-068-02	- Cyclohexanone:	0.0	0.0	0.0	0.0	0.2	0.0		1000 Gallons	
	Working Loss								Throughput	
4-07-068-13	- Methylamyl Ketone:		**-			0.0005			1000 Gallons	Storage
	Breathing Loss								Capacity	
4-07-068-14	- Methylamyl Ketone:				•••	0.008	•••		1000 Gallons	
	Working Loss								Throughput	
4-07-068-97	<ul> <li>Specify Ketone:</li> </ul>	0.0	0.0	0.0	0.0		0.0		1000 Gallons	Storage
	Breathing Loss								Capacity	
4-07-068-98	- Specify Ketone:	0.0	0.0	0.0	0.0		0.0		1000 Gallons	
	Working Loss								Throughput	
Nitriles -	2800, 2900, 300	<u>0, 5100</u>								
4-07-076-01	- Acrylonitrile:	0.0	0.0	0.0	0.0	6.2	0.0		1000 Gallons	Storage
4-01-010-01										

<b>e</b> <u>2900, 3000</u> trile: Loss Nitrile: g Loss Nitrile: Loss <u>dS - 2800, 2</u> zene: g Loss zene: Loss in Comments: g Loss	0.0 0.0 0.0	0.0	Lbs/Unit 0.0 0.0 0.0 0.0 0.0	Lbs/Unit 0.0 0.0 0.0 0.0	Lbs/Unit 1.8   0.36	Lbs/Unit 0.0 0.0 0.0 0.0	Lbs/Unit	1000 Gallons Throughput 1000 Gallons St Capacity 1000 Gallons Throughput 1000 Gallons St	-
trile: Loss Nitrile: g Loss Nitrile: Loss <u>dS - 2800, 2</u> zene: g Loss zene: Loss in Comments:	0.0 0.0 0.0 <u>2900, 30(</u> 0.0	0.0 0.0 0 <u>0, 5100</u> 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0		0.0 0.0		Throughput 1000 Gallons St Capacity 1000 Gallons Throughput 1000 Gallons St	-
trile: Loss Nitrile: g Loss Nitrile: Loss <u>dS - 2800, 2</u> zene: g Loss zene: Loss in Comments:	0.0 0.0 0.0 <u>2900, 30(</u> 0.0	0.0 0.0 0 <u>0, 5100</u> 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0		0.0 0.0		Throughput 1000 Gallons St Capacity 1000 Gallons Throughput 1000 Gallons St	-
Loss Nitrile: g Loss Nitrile: Loss <u>OS - 2800, 2</u> zene: g Loss zene: Loss in Comments:	0.0 0.0 <u>2900, 30(</u> 0.0 0.0	0.0 0.0 0 <u>0, 5100</u> 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0		0.0 0.0		Throughput 1000 Gallons St Capacity 1000 Gallons Throughput 1000 Gallons St	-
Nitrile: g Loss Nitrile: Loss <u>OS - 2800, 2</u> zene: g Loss zene: Loss in Comments:	0.0 <u>2900, 30(</u> 0.0 0.0	0.0 0 <u>0, 5100</u> 0.0 0.0	0.0	0.0		0.0		1000 Gallons St Capacity 1000 Gallons Throughput 1000 Gallons St	-
g Loss Nitrile: Loss <u>dS - 2800, 2</u> zene: g Loss zene: Loss in Comments:	<u>2900, 30(</u> 0.0 0.0	0 <u>0, 5100</u> 0.0 0.0	0.0	0.0				Capacity 1000 Gallons Throughput 1000 Gallons St	-
Nitrile: Loss <u>dS - 2800, 2</u> zene: g Loss zene: Loss in Comments:	<u>2900, 30(</u> 0.0 0.0	0 <u>0, 5100</u> 0.0 0.0	0.0	0.0				Throughput 1000 Gailons St	orage
Loss <u>dS - 2800, 2</u> izene: g Loss izene: Loss in Comments:	0.0	0.0			0.36	0.0		1000 Gailons St	orage
zene: g Loss zene: Loss in Comments:	0.0	0.0			0.36	0.0			orage
zene: g Loss zene: Loss in Comments:	0.0	0.0			0.36	0.0			orage
zene: Loss in Comments:			0.0	0.0					
Loss in Comments:			0.0	0.0				Capacity	-
in Comments:	0.0			0.0	0.026	0.0		1000 Gallons	
	0.0							Throughput	
a Loss		0.0	0.0	0.0		0.0		1000 Gallons St	orage
5								Capacity	
in Comments:	0.0	0.0	0.0	0.0		0.0		1000 Gallons	
Loss								Throughput	
2900, 300	0 <u>, 5100</u>								
ol:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons St	orage
ng Loss								Capacity	
ol: Working	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
								Throughput	
Breathing	0.0	0.0	0.0	0.0	0.15	0.0		1000 Gallons St	orage
								Capacity	
Working Loss	0.0	0.0	0.0	0.0	0.006	0.0		1000 Gallons	
								Throughput	
Phenol:	0.0	0.0	0.0	0.0		0.0		1000 Gallons St	orage
•								•	
	0.0	0.0	0.0	0.0		0.0			
Loss								Throughput	
	000, 510	0							
<u> 2900, 3</u>	0.0	0.0	0.0	0.0	1.5	0.0		1000 Gallons St	orage
<u>)0, 2900, 3</u> lehyde:								Capacity	
		0.0	0.0	0.0	0.002	0.0		1000 Gallons	
ις F	g Loss Phenol: Loss 100, 2900, 3 Phyde: Loss	g Loss Phenol: 0.0 Loss 0 <u>0,2900,3000,510</u> Phyde: 0.0 Loss	g Loss Phenol: 0.0 0.0 Loss 0 <u>0,2900,3000,5100</u> Phyde: 0.0 0.0 Loss	g Loss Phenol: 0.0 0.0 0.0 Loss 00,2900,3000,5100 Phyde: 0.0 0.0 0.0 Loss	g Loss Phenol: 0.0 0.0 0.0 0.0 Loss 00, 2900, 3000, 5100 Phyde: 0.0 0.0 0.0 0.0 Loss	g Loss Phenol: 0.0 0.0 0.0 0.0 Loss 00, 2900, 3000, 5100 Phyde: 0.0 0.0 0.0 0.0 1.5 Loss	g Loss Phenol: 0.0 0.0 0.0 0.0 0.0 Loss 00, 2900, 3000, 5100 Phyde: 0.0 0.0 0.0 0.0 1.5 0.0 Loss	g Loss Phenol: 0.0 0.0 0.0 0.0 0.0 Loss DO, 2900, 3000, 5100 ehyde: 0.0 0.0 0.0 0.0 1.5 0.0 Loss	Capacity         Capacity         Chenol:       0.0       0.0       0.0        1000 Gallons         Coss       Coss       Throughput         OO, 2900, 3000, 5100        1000 Gallons         Shyde:       0.0       0.0       0.0       1.5       0.0        1000 Gallons St         Loss       Capacity

.

. .

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTES
Aldehvde	es - 2800, 2900, 3	3000. 510	0	·····					
	Withdrawal Loss		_						Throughput
4-07-172-07	- Formalin: Standing Loss	0.0	0.0	0.0	0.0	0.0004	0.0		1000 Gallons Storage Capacity
4-07-172-08	- Formalin: Withdrawal Loss	0.0	0.0	0.0	0.0	0.002	0.0	•••	1000 Gallons Throughput
4-07-172-09	- Isobutyraldehyde: Standing Loss	0.0	0.0	0.0	0.0	2.2	0.0		1000 Gallons Storag <del>e</del> Capacity
4-07-172-10	- Isobutyraldehyde: Withdrawal Loss	0.0	0.0	0.0	0.0	0.002	0.0		1000 Gallons Throughput
4-07-172-11	<ul> <li>Propionaldehyde:</li> <li>Standing Loss</li> </ul>	0.0	0.0	0.0	0.0	3.3	0.0	•	1000 Gallons Storage Capacity
4-07-172-12	- Propionaldehyde: Withdrawal Loss	0.0	0.0	0.0	0.0	0.002	0.0		1000 Gallons Throughput
4-07-172-97	- Specify Aldehyde: Standing Loss	0.0	0.0	0.0	0.0		0.0		1000 Gallons Storage Capacity
4-07-172-98	- Specify Aldehyde: Withdrawal Loss	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons Throughput
Alkanes	(Paraffins) - 2800	), 2900, 30	000. 5100						
	- Cyclohexane: Standing Loss	0.0	0.0	0.0	0.0	1.35	0.0		1000 Gallons Storage Capacity
4-07-176-02	- Cyclohexane: Withdrawal Loss	0.0	0.0	0.0	0.0	0.002	0.0		1000 Gallons Throughput
4-07-176-03	- n-Hexane: Standing Loss	0.0	0.0	0.0	0.0	2.2	0.0		1000 Gallons Storage Capacity
4-07-176-04	- n-Hexane: Withdrawal	0.0	0.0	0.0	0.0	0.002	0.0		1000 Gallons Throughput
4-07-176-05	<ul> <li>n-Pentane: Standing</li> <li>Loss</li> </ul>	0.0	0.0	0.0	0.0		0.0	•	1000 Gallons Storage Capacity
4-07-176-06	- n-Pentane: Withdrawal Loss	0.0	0.0	0.0	0.0		0.0		1000 Gallons Throughput
4-07-176-97	- Specify Alkane: Standing Loss	0.0	0.0	0.0	0.0		0.0	•••	1000 Gallons Storage Capacity
4-07-176-98	- Specify Alkane: Withdrawal Loss	0.0	0.0	0.0	0.0		0.0		1000 Gallons Throughput

SCC Process	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
Name	Lbs/Unit								
Alkenes (Olefins) - 2800,	2900 300	0 5100							
-07-180-01 - Isoprene: Standing	0.0	0.0	0.0	0.0		0.0		1000 Gallons S	torana
Loss	0.0	0.0	0.0	0.0		0.0		Capacity	torage
-07-180-02 - Isoprene: Withdrawal	0.0	0.0	0.0	0.0		0.0		1000 Gallons	
Loss	0.0	0.0	0.0	0.0		0.0		Throughput	
-07-180-03 - Methylallene:	0.0	0.0	0.0	0.0		0.0		1000 Gallons S	toraza
Standing Loss	0.0	0.0	0.0	0.0		0.0		Capacity	torage
-07-180-04 - Methylallene:	0.0	0.0	0.0	0.0		0.0		1000 Gallons	
Withdrawal Loss	0.0	0.0	0.0	0.0		0.0		Throughput	
-07-180-05 - 1-Pentene: Standing	0.0	0.0	0.0	0.0		0.0		1000 Gallons S	*****
Loss	0.0	0.0	0.0	0.0		0.0		Capacity	torage
-07-180-06 - 1-Pentene:	0.0	0.0	0.0	0.0		0.0		1000 Gallons	
Withdrawal Loss	0.0	0.0	0.0	0.0		0.0		Throughput	
-07-180-07 - Piperylene: Standing	0.0	0.0	0.0	0.0		0.0		• • •	
Loss	0.0	0.0	0.0	0.0		0.0		1000 Gallons S	torage
-07-180-08 - Piperylene:	0.0	0.0	0.0	0.0		0.0		Capacity 1000 Gallons	
Withdrawal Loss	0.0	0.0	0.0	0.0		0.0			
-07-180-09 - Cyclopentene:	0.0	0.0	0.0	0.0		0.0		Throughput	•
Standing Loss	0.0	0.0	0.0	0.0		0.0		1000 Gallons S	torage
-	0.0	0.0						Capacity	
-07-180-10 - Cyclopentene: Withdrawal Loss	0.0	0.0	0.0	0.0		0.0		1000 Gallons	
								Throughput	
-07-180-97 - Specify Olefin:	0.0	0.0	0.0	0.0		0.0		1000 Gallons S	storage
Standing Loss	• •							Capacity	
-07-180-98 - Specify Olefin:	0.0	0.0	0.0	0.0		0.0		1000 Gallons	
Withdrawal Loss								Throughput	
Ethers - 2800, 2900, 3000	), 5100								
-07-208-01 - Ethyl Ether:	0.0	0.0	0.0	0.0	7.2	0.0		1000 Gallons S	Storage
Standing Loss								Capacity	<b>U</b>
-07-208-02 - Ethyl Ether:	0.0	0.0	0.0	0.0	0.002	0.0		1000 Gallons	
Withdrawal Loss								Throughput	
-07-208-03 - Propylene Oxide:	0.0	0.0	0.0	0.0	5.5	0.0		1000 Gallons S	Storage
Standing Loss								Capacity	
-07-208-04 - Propylene Oxide:	0.0	0.0	0.0	0.0	0.002	0.0		1000 Gallons	
Withdrawal Loss								Throughput	
-07-208-97 - Specify Ether:	0.0	0.0	0.0	0.0		0.0		1000 Gallons S	Storage

213

• •

______

SCC	Process Name	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS	NOTES
		Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		
Ethers - 2	2800, 2900, 3000	. 5100								
	Standing Loss								Capacity	
4-07-208-98	- Specify Ether:	0.0	0.0	0.0	0.0		0.0		1000 Gallons	
	Withdrawal Loss								Throughput	
Halogen	ated Organics - 2	2800, 2900	), 3000, 5 ⁻	100						
4-07-220-01	- Carbon	0.0	0.0	0.0	0.0	2.9	0.0		1000 Gallons	Storage
	Tetrachloride:								Capacity	
	Standing Loss									
4-07-220-02		0.0	0.0	0.0	0.0	0.004	0.0		1000 Gallons	
	Tetrachloride:								Throughput	
	Withdrawal Loss		• •		• •					
4-07-220-03	- Chloroform: Standing	0.0	0.0	0.0	0.0	4.0	0.0		1000 Gallons	Storage
	Loss		0.0	0.0	0.0	0.004	0.0		Capacity	
4-07-220-04	- Chlorotorm: Withdrawal Loss	0.0	0.0	0.0	0.0	0.004	0.0		1000 Gallons Throughput	
4-07-220-05	- Ethylene Dichloride:	0.0	0.0	0.0	0.0	1.3	0.0		1000 Gallons	Storese
4-07-220-05	Standing Loss	0.0	0.0	0.0	0.0	1.5	0.0		Capacity	Storage
4-07-220- <b>06</b>	- Ethylene Dichloride:	0.0	0.0	0.0	0.0	0.003	0.0		1000 Gallons	
	Withdrawal Loss								Throughput	
4-07-220-07	- Methylene Chloride:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	Storage
	Standing Loss								Capacity	
4-07-220-08	- Methylene Chloride:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
	Withdrawal Loss								Throughput	
4-07-220-09	•••	0.0	0.0	0.0	0.0	1.5	0.0		1000 Gallons	Storage
	Trichlorethylene:								Capacity	
	Standing Loss									
4-07-220-10		0.0	0.0	0.0	0.0	0.004	0.0		1000 Gallons	•
	Trichlorethylene:								Throughput	
	Withdrawal Loss						• •			
4-07-220-97	- Specify Halogenated	0.0	0.0	0.0	0.0		0.0		1000 Gallons	Storage
4-07-220-98	VOC: Standing Loss	0.0	0.0	0.0	0.0		0.0		Capacity 1000 Gallons	
	VOC: Withdrawal Loss	0.0	0.0	0.0	0.0		0.0		Throughput	
Kotonoo	- 2800, 2900, 30	00 5100							- 1	
			0.0		• •		• •		1000	
4-07-228-01	- Acetone: Standing	0.0	0.0	0.0	0.0	2.2	0.0	•••	1000 Gallons	Storage

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD	UNITS NOTE
Kotonoo				203/0111					
<u>Ketones</u> ·	2800, 2900, 30	00,5100							
	Loss				• •	0.000	• •		Capacity 1000 Gallons
4-07-228-02 -	Acetone: Withdrawal	0.0	0.0	0.0	0.0	0.002	0.0		Throughput
4-07-228-03 -	Loss Methyl Ethyl Ketone:	0.0	0.0	0.0	0.0	1.1	0.0		1000 Gallons Storage
4-07-228-03	Standing Loss	0.0	0.0	0.0	0.0		0.0		Capacity
4-07-228-04	Methyl Ethyl Ketone:	0.0	0.0	0.0	0.0	0.002	0.0		1000 Gallons
4 07 220 04	Withdrawal Loss	0.0	0.0	0.0	0.0	0.002	0.0		Throughput
4-07-228-05 -	Methyl Isobutyl	0.0	0.0	0.0	0.0	0.29	0.0		1000 Gallons Storage
	Ketone: Standing	••••	010	••••	••••	0127			Capacity
	Loss								
4-07-228-06 -	Methyl Isobutyl	0.0	0.0	0.0	0.0	0.002	0.0		1000 Gallons
	Ketone: Withdrawal								Throughput
	Loss								
4-07-228-97 -	Specify Ketone:	0.0	0.0	0.0	0.0		0.0		1000 Gallons Storage
	Standing Loss								Capacity
4-07-228-98 -	Specify Ketone:	0.0	0.0	0.0	0.0		0.0		1000 Gallons
	Withdrawal Loss				•				Throughput
Mercapta	ans (Thiols) - 280	0. 2900. 3	3000. 5100	)					
	Ethyl Mercaptan:	0.0	0.0	0.0	0.0	5.8	0.0		1000 Gallons Storage
	Standing Loss	••••	••••		••••				Capacity
4-07-232-02 -	Ethyl Mercaptan:	0.0	0.0	0.0	0.0	0.002	0.0		1000 Gallons
	Withdrawal Loss								Throughput
4-07-232-97 -	Specify Mercaptan:	0.0	0.0	0.0	0.0		0.0		1000 Gallons Storage
	Standing Loss								Capacity
4-07-232-98 -	Specify Mercaptan:	0.0	0.0	0.0	0.0		0.0		1000 Gallons
	Withdrawal Loss								Throughput
Machuda	2000 2000	2000 510	0						
	<u>es - 2800, 2900, </u>								4000 - 11
4-07-812-01 -	Acetaldehyde:	0.0	0.0	0.0	0.0	16.1	0.0		1000 Gallons
/ 07 842 02	Withdrawal Loss Acrolein: Withdrawal	0.0	0.0	0.0	0.0	6.0	0.0		Throughput 1000 Gallons
4-07-812-02 -	Loss	0.0	0.0	0.0	0.0	8.0	0.0		Throughput
	2055								in oognput
Alkanes (	(Paraffins) - 2800	0, 2900, 30	00.5100						
	Ethane: Withdrawal	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons
		•••							

ì

.

.

\$-07-816-02 \$-07-816-03	Name (Paraffins) - 2800 Loss - Butane: Withdrawal Loss - Methane: Withdrawal Loss - Natural Gas: Withdrawal Loss - Propane: Withdrawal Loss	Lbs/Unit 0, <u>2900, 3(</u> 0.0 0.0 0.0 0.0	Lbs/Unit 200, 5100 0.0 0.0 0.0	Lbs/Unit 0.0 0.0 0.0	Lbs/Unit 0.0 0.0	Lbs/Unit	Lbs/Unit	Lbs/Unit	Throughput 1000 Gallons Throughput	
\$-07-816-02 \$-07-816-03	Loss Butane: Withdrawal Loss Methane: Withdrawal Loss Natural Gas: Withdrawal Loss - Propane: Withdrawal	0.0 0.0 0.0	0.0 0.0	0.0			0.0		1000 Gallons	
\$-07-816-02 \$-07-816-03	Loss Butane: Withdrawal Loss Methane: Withdrawal Loss Natural Gas: Withdrawal Loss - Propane: Withdrawal	0.0 0.0 0.0	0.0 0.0	0.0			0.0		1000 Gallons	
-07-816-03	Loss - Methane: Withdrawal Loss - Natural Gas: Withdrawal Loss - Propane: Withdrawal	0.0 0.0	0.0	0.0			0.0			
	- Methane: Withdrawal Loss - Natural Gas: Withdrawal Loss - Propane: Withdrawal	0.0			0.0				Throughput	
	Loss - Natural Gas: Withdrawal Loss - Propane: Withdrawal	0.0			0.0	~ ~				
-07-816-04	- Natural Gas: Withdrawal Loss - Propane: Withdrawal		0.0	0.0		0.0	0.0		1000 Gallons	
-07-816-04	Withdrawal Loss - Propane: Withdrawal		0.0	0 0					Throughput	
	- Propane: Withdrawal	0.0		0.0	0.0	0.0	0.0		1000 Gallons	
		0.0							Throughput	
4-07-816-05 ·	Loss		0.0	0.0	0.0	0.0	0.0		1000 Gallons	
									Throughput	
4-07-816-06 ·	- Isopentane:	0.0	0.0	0.0	0.0		0.0		1000 Gallons	
	Withdrawal Loss								Throughput	
4-07-816-07 ·	- n-Pentane:	0.0	0.0	0.0	0.0		0.0		1000 Gallons	
	Withdrawal Loss								Throughput	
4-07-816- <b>99</b>	- Specify Gas:	0.0	0.0	0.0	0.0	0.0	0.0	XXX	1000 Gallons	
	Withdrawal Loss								Throughput	
Alkenes	(Olefins) - 2800,	2900. 300	0.5100		•					
	- 1,3-Butadiene:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
	Withdrawal Loss								Throughput	
4-07-820-02	- 1-Butene: Withdrawal	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
	Loss								Throughput	
4-07-820-03	- 2-Butene: Withdrawal	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
	Loss								Throughput	
4-07-820-04	- Ethylene: Withdrawal	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
	Loss								Throughput	
4-07-820-05	- Isobutylene:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
	Withdrawal Loss								Throughput	
4-07-820-06	- Propylene:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
4 01 020 00	Withdrawal Loss								Throughput	
4-07-820-07	- Isoprene: Withdrawal	0.0	0.0	0.0	0.0	12.8	0.0		1000 Gallons	
	Loss								Throughput	
4-07-820-08	- Methylallene:	0.0	0.0	0.0	0.0	27.9	0.0		1000 Gallons	
	Withdrawal Loss								Throughput	
4-07-820-09	- 1-Pentene:	0.0	0.0	0.0	0.0	18.1	0.0		1000 Gallons	
	Withdrawal Loss								Throughput	
4-07-820-10	- Piperylene:	0.0	0.0	0.0	0.0	9.3	0.0		1000 Gallons	
	, per / terres	0.0					•••			

SCC	Process Name	PART	PM10	SOx	NOx	VOC	CO Lbs/Unit	LEAD	UNITS	NOTES
	·····	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit		Lbs/Unit		
<u>Alkenes</u>	<u>(Olefins) - 2800,</u>	<u>2900, 300</u>	<u>0, 5100</u>							
	Withdrawal Loss								Throughput	
4-07-820-11	- Cyclopentene:	0.0	0.0	0.0	0.0	10.4	0.0		1000 Gallons	
	Withdrawal Loss								Throughput	
4-07-820-99	- Specify Alkene:	0.0	0.0	0.0	0.0	XXX	0.0	XXX	1000 Gallons	
	Withdrawal Loss								Throughput	
Alkynes	(Acetylenes) - 28	00. 2900.	3000, 510	0						
	- Acetylene:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
	Withdrawal Loss								Throughput	
4-07-824-99	<ul> <li>Specify Alkyne:</li> </ul>	0.0	0.0	0.0	0.0	0.0	0.0	XXX	1000 Gallons	
	Withdrawal Loss								Throughput	
Amines -	- 2800, 2900, 300	0.5100								
	- Methylamine:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
	Withdrawal Loss								Throughput	
4-07-832-02	- Dimethylamine:	0.0	0,0	0.0	0.0	0.0	0.0		1000 Gallons	
	Withdrawal Loss								Throughput	
4-07-832-03	- Trimethyamine:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
	Withdrawal Loss								Throughput	
4-07-832-99	- Specify Amine:	0.0	0.0	0.0	0.0	0.0	0.0	XXX	1000 Gallons	
	Withdrawal Loss								Throughput	
Ethers -	2800, 2900, 3000	0.5100								
	- Ethylene Oxide:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
	Withdrawal Loss								Throughput	
4-07-848-99	- Specify Ether:	0.0	0.0	0.0	0.0	XXX	0.0	XXX	1000 Gallons	
	Withdrawal Loss								Throughput	
Halogen	ated Organics - 2	2800 290	0 3000 5	100						
	- Ethyl Chloride:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
	Withdrawal Loss			010	••••	0.0	•		Throughput	
4-07-860-02	- Methyl Chloride:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
	Withdrawal Loss								Throughput	
4-07-860-03	- Phosgene: Withdrawal	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
	Loss								Throughput	
4-07-860-04	- Vinyl Chloride:	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	

•

•

SCC Pro Nar	cess ne	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	<b>CO</b> Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Halogenated C	Draanics - 2	2800, 2900	. 3000. 51	100		<del>_</del>				
	wal Loss								Throughput	
4-07-860-99 - Specify	Halogenated	0.0	0.0	0.0	0.0	XXX	0.0	XXX	1000 Gallons	
VOC: W	thdrawal Loss								Throughput	
Isocyanates - 2	2800. 2900	. 3000. 51	00							
4-07-864-01 - Methyl		0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
•	wal Loss								Throughput	
4-07-864-99 - Specify	/ Isocyanate:	0.0	0.0	0.0	0.0	XXX	0.0	XXX	1000 Gallons	
•	awal Loss								Throughput	
Mercaptans (7	hiols) - 280	00. 2900. 3	3000. 5100	)						
4-07-872-01 - Methyl		0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons	
	awal Loss								Throughput	
4-07-872-99 - Specif	Mercaptan:	0.0	0.0	0.0	0.0	XXX	0.0	XXX	1000 Gallons	
•	awal Loss								Throughput	
Miscellaneous	- 2800, 29	00. 3000.	5100							
4-07-999-97 - Specif									1000 Gallons Sto	rage
	-								Capacity	
4-07-999-98 - Specif	y in Comments								1000 Gallons	
									Transferred	

# ORGANIC CHEMICAL TRANSPORTATION - MAJOR GROUPS 28, 29, 30, & 51

### Specify Liquid - 2800, 2900, 3000, 5100

4-08-999-95 - Cars/Trucks: Loading	•••		•••					1000 Gallons
Rack								Transferred
4-08-999-97 - Marine Vessels:				•••				1000 Gallons
Loading Rack								Transferred
4-08-999-99 - Loading Rack	0.0	XXX	0.0	0.0	XXX	0.0	XXX	1000 Gallons
								Transferred

#### Process Name Lbs/Unit Lbs/Unit Lbs/Unit Lbs/Unit Lbs/Unit Lbs/Unit Lbs/Unit

SOx

NOx

VOC

CO

NOTES

UNITS

LEAD

# **ORGANIC SOLVENT EVAPORATION - MISCELLANEOUS - MAJOR GROUPS 40, 47, & 76**

**PM10** 

PART

Solvent Extraction Process	ses - 4000	, 4700, 76	600					
4-90-001-01 - Petroleum Naphtha (Stoddard)	0.0	0.0	0.0	0.0	2000.0 (c)	0.0		Tons Solvent Consumed
4-90-001-02 - MEK	0.0	0.0	0.0	0.0	2000.0 (c)	0.0		Tons Solvent Consumed
4-90-001-03 - MIBK	0.0	0.0	0.0	0.0	2000.0 (c)	0.0		Tons Solvent Consumed
4-90-001-04 - Furfural	0.0	0.0	0.0	0.0	2000.0 (c)	0.0		Tons Solvent Consumed
4-90-001-05 - Trichloroethylene	0.0	0.0	0.0	0.0	2000.0 (c)	0.0		Tons Solvent Consumed
4-90-001-99 - Other Not Classified	0.0	0.0	0.0	0.0	2000.0 (c)	0.0	XXX	Tons Solvent Consumed
Waste Solvent Recovery O	perations	- 4000, 4	700, 7600					
4-90-002-01 - Storage Tank Vent	0.0	0.0	0.0	0.0	0.02	0.0		Tons Reclaimed
								Solvent
4-90-002-02 - Condenser Vent	0.0	0.0	0.0	0.0	3.3	0.0	•••	Tons Reclaimed
								Solvent
4-90-002-03 - Incinerator Stack	1.44				0.02			Tons Reclaimed
	0.0		0.0	0.0	0.0	• •		Solvent
4-90-002-04 - Solvent Spillage	0.0	0.0	0.0	0.0	0.2	0.0		Tons Reclaimed Solvent
4-90-002-05 - Solvent Loading	0.0	0.0	0.0	0.0	0.72	0.0		Tons Reclaimed
4-90-002-03 - Solvent Loading	0.0	0.0	0.0	0.0	0.72	0.0		Solvent
4-90-002-06 - Fugitive Leaks	0.0	0.0	0.0	0.0		0.0		Process-Unit/Year
4-90-002-00 - Fugilive Leaks 4-90-002-99 - Other Not Classified	0.0	0.0	0.0	0.0	XXX	0.0	XXX	Tons Reclaimed
	0.0	0.0	0.0	0.0	~~~	0.0	~~~	Solvent
Pail Car Cleaning 1740	1011 101	2						
Rail Car Cleaning - 4742, 4								
4-90-003-01 - Ethylene Glycol	0.0	0.0	0.0	0.0	0.0007	0.0		Tank Cars Cleaned
4-90-003-02 - Chlorobenzene	0.0	0.0	0.0	0.0	0.035	0.0		Tank Cars Cleaned
4-90-003-03 - o-Dichlorobenzene	0.0	0.0	0,0	0.0	0.166	0.0		Tank Cars Cleaned
4-90-003-04 - Cresote	0.0	0.0	0.0	0.0	5.18	0.0		Tank Cars Cleaned
4-90-003-99 - Other Not Classified	0.0	0.0	0.0	0.0	XXX	0.0	XXX	Tank Cars Cleaned
Tank Truck Cleaning - 400	0, 4700, 1	76 <u>00</u>						
4-90-004-01 - Acetone	0.0	0.0	0.0	0.0	0.68	0.0		Tank Trucks Cleaned

,

SCC

	ocess Ime	PART	PM10	SOx	NOx	VOC	CO	LEAD	UNITS NOTE
INC		Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	Lbs/Unit	
Tank Truck C	leaning - 10	00 1700	7600						
-90-004-02 - Perch		0.0	0.0	0.0	0.0	0.47	0.0		Tank Tauska Olaanad
-90-004-02 - Percr -90-004-03 - Methy		0.0	0.0	0.0	0.0	0.47	0.0		Tank Trucks Cleaned Tank Trucks Cleaned
-90-004-03 - Methy	•	0.0	0.0	0.0	0.0	0.012	0.0		Tank Trucks Cleaned
-90-004-05 - Propy		0.0	0.0	0.0	0.0	0.0	0.0	• • •	Tank Trucks Cleaned
-90-004-99 - Other		0.0	0.0	0.0	0.0	xxx	0.0	XXX	Tank Trucks Cleaned
Air Stripping	Tower - 400	0. 4700. 70	500						
-90-005-01 - Trict		0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent Stripped
-90-005-02 - Perch	•	0.0	0.0	0.0	0.0	2000.0	0.0		Tons Solvent Stripped
-90-005-03 - 1,1,1	•	0.0	0.0	0.0	0.0		0.0		Tons Solvent Stripped
	loroethane	• •							
-90-005-04 - Chlor		0.0	0.0	0.0	0.0		0.0		Tons Solvent Stripped
-90-005-99 - Speci Comme	=	XXX	XXX	XXX	XXX	XXX	XXX	XXX	Tons Solvent Stripped
ORGANIC SC	DLVENT EVA	PORATIOI	N - FUEL F	IRED EQ	UIPMEI	<u>VT</u>			
ncinerators -	4000. 4700.	. 7600							
-90-900-11 - Disti 2)		•••			•	0.4		•	1000 Gallons Burned
-90-900-12 - Resid	dual Oil					0.56			1000 Gallons Burned
-90-900-13 - Natur	al Gas					5.6			Million Cubic Feet
									Burned
Flares - 4000	, 4700, 7600								
-90-900-21 - Disti	illate Oil (No.	••••			•••	•••			1000 Gal. Burned
2) -90-900-22 - Resid	dual Oil		•••			<b>.</b>			1000 Gal. Burned
	al Gas		•			5.6			Million Cubic Feet
	a. auo								
									Burned
-90-900-23 - Natur		raanic Cor	nnound Fi	vanoratio	n - 4001	∩ ⊿7∩∩	7600		Burned
4-90-900-23 - Natur Miscellaneou 4-90-999-98 - Ident	is Volatile Or	g <u>anic Cor</u> 0.0	npound Ev	<u>/aporatic</u> 0.0	0 <u>n - 400(</u> 0.0	0 <u>, 4700,</u> 	<u>7600</u> 0.0		Burned Gallons Solvent

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
Miscella	neous Volatile Org	ganic Con	npound Ev	/aporatio	on - 4000	), 4700,	<u>7600</u>			
4-90-999-99	- Identify the Process and Solvent in Comments	0.0	0.0	0.0	0.0	2000.0 (c)	0.0	XXX	Tons Solvent Co	nsumed

•

· ·

# SOLID WASTE DISPOSAL

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS	NOTES
SOLID	WASTE DISPOSA	<u>AL</u>								
SOLID V	VASTE DISPOSAL	- GOVER	<u>NMENT</u>							
Municin	al Incineration - 4	953								
	- Starved Air: Multiple Chamber	1.9	1.4	1.7	4.4	1.5	3.4	0.12	Tons Burned	
5-01-001-02	- Mass Burn: Single Chamber	38.0	14.0	1.7	3.6	0.1	2.2	0.18	Tons Burned	
5-01-001 <b>-0</b> 3	- Refuse Derived Fuel	80.0	44.0	1.7	5.0		3.6	0.13	Tons Burned	
Open B	urnina Dump - 49	53								
	- General Refuse	16.0	16.0	1.0	6.0	30.0	85.0		Tons Burned	
	- Vegetation Only	17.0	38.0	0.0	4.0	19.0	140.0		Tons Burned	
l andfill	Dump - 4953									
	- Unpave Road Traffic		1.0						Cu. Yd. Waste X From Gate to Dum	
Other In	cineration - 4953									
	- Pathological	8.0	5.92	0.0	3.0	10.0	0.0		Tons Burned	
5-01-005-06	•	100.0	8.2	1.0	5.0	1.0	0.0	0.025	Tons Dry Sludge Burned	
5-01-005-07	- Conical Design (Tee Pee) Municipal Refuse	20.0	11.0	2.0	5.0	20.0	60.0		Tons Burned	
5-01-005-08		7.0	3.85	0.1	1.0	11.0	130.0		Tons Burned	
5-01-005-10	- Trench Burner: Wood	13.0	4.94	0.1	4.0	19.0			tons Burned	
	- Trench Burner: Tires	138.0	52.4			6.0	•••		Tons Burned	
5-01-005-12	- Trench Burner: Refuse	37.0	14.1	2.5		13.3			Tons Burned	
5-01-005-15	- Sludge: Multiple Hearth	80.0	8.2	20.0	11.0	1.7	60.0	0.1	Tons Dried Slud	ge
5-01-005-16	<ul> <li>Sludge: Fluidized</li> <li>Bed</li> </ul>		0.44	20.0				····	Tons Dried Slud	ge

.

•

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTES
Other Inc	cineration - 4953								
	- Sludge: Electric Infrared	20.0	6.0	20.0	8.6				Tons Dried Sludge
Fire Figh	<u>tina - 9224</u>								
5-01-006-01	- Structure: Jet Fuel					0.4			1000 Gallons Burned
5-01-006-02	- Structure: Distillate Oil					0.4	•••		1000 Gallons Burned
5-01-006-03	- Structure: Kerosene					0.4			1000 Gallons Burned
5-01-006-04	- Structure: Wood Pallets					19.0			Tons Burned
Sewage	Treatment - 4952								
	- Entire Plant	• •••				3.0			Million Gallons Wastewater
5-01-007-0 <u>2</u>	- Primary Settling Tank			• •		1.5			Million Gallons Wastewater
5-01-007-03	- Secondary Settling Tank					1.5			Million Gallons Wastewater
5-01-007-04	- Aeration Tank		••••			0.0			Million Gallons Wastewater
Auxillary	Fuel/No Emissio	ons - 4953							
	- Distillate Oil	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons Burned
	- Natural Gas	0.0	0.0	0.0	0.0	0.0	0.0	•••	Million Cubic Feet Burned
5-01-900-10	- Liquified Petroleum Gas (LPG)	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons Burned
SOLID V	VASTE DISPOSAL	<u>- COMM</u>	ERCIAL/II	<u>VSTITUTI</u>	<u>ONAL</u>				
Incinera	tion: General - 49	000							
	- Multiple Chamber	7.0	4.7	2.5	3.0	3.0	10.0		Tons Burned
	- Single Chamber	15.0	5.7	2.5	2.0	15.0	20.0		Tons Burned
5-02-001-03	- Controlled Air	1.4	1.04	1.5	10.0	0.0	0.0	•••	Tons Burned
F 03 004 0/	- Conical Design (Tee	20.0	11.0	2.0	5.0	20.0	60.0		Tons Burned

SCC Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS N	IOTES
Incineration: General - 4	900								
Pee) Municipal									
Refuse									
5-02-001-05 - Conical Design (Tee Pee) Wood Refuse	7.0	3.85	0.1	1.0	11.0	130.0		Tons Burned	
<u> Open Burning - 4900</u>									
5-02-002-01 - Wood	17.0	17.0	0.0	4.0	19.0	140.0	•••	Tons Burned	
5-02-002-02 - Refuse	16.0	16.0	1.0	6.0	30.0	85.0		Tons Burned	
Apartment Incineration -	4900								
5-02-003-01 - Flue Fed	30.0	11.4	0.5	3.0	15.0	20.0		Tons Burned	
5-02-003-02 - Flue Fed w/ Afterburner and Draft Controls	6.0	4.02	0.5	10.0	3.0	10.0		Tons Burned	
Incineration: Special Pur	mose - 400	0							
5-02-005-05 - Pathological	8.0	5.92	8.0 ,	3.0	3.0	0.0		Tons Burned	
5-02-005-06 - Sludge	100.0	8.2	1.0	5.0	1.0	0.0	0.025	Tons Dry Sludge Burned	
Landfill Dump - 4900									
5-02-006-01 - Waste Gas Flares					5.6			Million Cubic Feet Burned	
5-02-006-02 - Municipal: Fugitive Emissions					••••			Acres of Landfill	
<u> Asbestos Removal - 490</u>	0								
5-02-009-01 - General	<u>~</u>				0.0			Tons of Waste Remove	d
Auxillary Fuel/No Emissi	ons - 4900								
5-02-900-05 - Distillate Oil	0.0	0.0	0.0	0.0	0.0	0.0	•••	1000 Gallons Burned	
5-02-900-06 - Natural Gas	0.0	0.0	0.0	0.0	0.0	0.0		Million Cubic Feet Burned	
5-02-900-10 - Liquified Petroleum Gas (LPG)	0.0	0.0	0.0	0.0	0.0	0.0		1000 Gallons Burned	

•

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS N	OTES
SOLID V	VASTE DISPOSAL	- INDUST	<u>RIAL</u>							
Incinera	tion - 49 <u>00</u>									
	- Multiple Chamber	7.0	4.7	2.5	3.0	3.0	10.0		Tons Burned	
	- Single Chamber	15.0	5.7	2.5	2.0	15.0	20.0		Tons Burned	
	- Controlled Air	1.4	1.04	1.5	10.0	0.0	0.0		Tons Burned	
5-03-001-04	- Conical Design (Tee Pee) Municipal Refuse	20.0	11.0	2.0	5.0	20.0	60.0		Tons Burned	
5-03-001-05	- Conical Design (Tee Pee) Wood Refuse	7.0	3.85	0.1	1.0	11.0	130.0	•••	Tons Burned	
5-03-001-06	- Trench Burner: Wood	13.0	4.94	0.1	4.0	0.0	0.0		Tons Burned	
5-03-001-07	- Trench Burner: Tires	138.0	52.4			6.0			Tons Burned	
5-03-001-08	- Auto Body Componets	2.0	1.2	0.0	0.1	0.91	2.5		Cars Burned	
5-03-001-09	- Trench Burner:	37.0	14.1	2.5		13.3			Tons Burned	
	Refuse				,					
Open Bi	urning - <u>4900</u>									
	- Wood/Vegatation / Leaves	17.0	17.0	0.0	4.0	19.0	140.0		Tons Burned	
5-03-002-02	- Refuse	16.0	16.0	1.0	6.0	30.0	85.0		Tons Burned	
5-03-002-03	- Auto Body Componets	100.0	60.0	0.0	4.0	32.0	125.0		Tons Burned	
5-03-002-04	- Coal Refuse Piles	0.9	0.18	1.1	0.1	0.5	2.5		Cubic Yards of Pile	
5-03-002-05	- Rocket Propellant		•						Tons of Fuel Burned	
Incinera	<u>tion - 4900</u>									
5-03-005-01	- Hazardous Waste	0.3		0.13	0.14	0.3	0.5		Million Btu/Year Heat Input	
5-03-005-06	- Sludge	100.0	8.2	1.0	5.0	1.0	0.0	•••	Tons Dry Sludge Burned	
	<u>Dump - 4900</u>									
	- Waste Gas Flares	•••				5.6	•••		Million Cubic Feet Burned	
5-03-006-02	- Liquid Waste Disposal		•••	•••					Tons Liquid Waste Burned	

SCC	Process Name	PART Lbs/Unit	PM10 Lbs/Unit	SOx Lbs/Unit	NOx Lbs/Unit	VOC Lbs/Unit	CO Lbs/Unit	LEAD Lbs/Unit	UNITS NOTES
	Dump - 4900 Hazardous: Fugitive Emissions								Acres of Landfill
<u>Liquid W</u> 5-03-007-01	<u>aste - 4900</u> General					4.0			1000 Gallons Waste Burned
	nt, Storage, Dispe Surface Impoundment: Fugitive Emissions	osal Facili	<u>ties - 4900</u>					•	1000 Gallons Throughput
5-03-008-10	Waste Piles:								Acres of Storage Pile
5-03-008-20	Fugitive Emissions · Land Treatment: Fugitive Emissions				•				Acres
5-03-008-30	Containers: Fugitive Emissions				•				1000 Containers Stored
Asbestos	<u> Removal - 4900</u> General				•	0.0			Tons Waste Removed
Auxillary	Fuel/No Emissio	<u>ns - 4900</u>							
5-03-900-05	· Distillate Oil	0.0		0.0	0.0	0.0	0.0		1000 Gallons Burned
5-03-900-06	- Natural Gas	0.0	•	0.0	0.0	0.0	0.0		Million Cubic Feet Burned
5-03-900-10 ·	- Liquified Petroleum Gas (LPG)	0.0		0.0	0.0	0.0	0.0		1000 Gallons Burned

,

,

#### **EXPLANATORY NOTES: Individual SIC Groups or SCCs**

- (a) Both boiler capacities and fuel throughputs should be reported to AFS for all boilers. (p. 19, 21, 27)
- (b) This TSP emission factor is an approximation. Particulate emissions from residual oil combustion can be more accurately estimated from the equation lb/1000 gallon = 10S + 3. See AP-42, page 1.3-2. (p. 20 & 26)
- (c) The emission factor(s) is not from AP-42. The factor(s) is from other EPA documents, State data, or other miscellaneous sources. (p. 21, 23, 27, 32, 33, 34, 90, 94, 95, 98, 99, 106, 109, 119, 125, 126, 128, 140, 146, 176, 192, 193)
- (d) Based on a typical concentration of lead in Waste Oil of 0.04%. See AP-42, page 1.11-2. (pp. 21, 25, 27, 28, 168)
- (e) Manufacture of inorganic pigments is classified under SCC 3-01-035-**. (p. 40)
- (f) For molded and fabricated rubber and plastics products, see SCC 3-08-***-***, 3-30-002-**, and 4-02-002-**. (p. 41, 43, 44)
- (g) The particulate emission factor for the sulfuric acid contact process is an assumed average value, from a range of values given in AP-42, Table 5.17-2. (p. 46)
- (h) Also applies to the sulfur recovery plant at petroleum refineries and natural gas production fields. (p. 51)
- (i) See 3-01-301-** for other chlorobenzene process codes. (p. 59)
- (j) Grain processing and milling are included in SCCs 3-02-007-** thru 3-02-008-**.
   For grain elevators, see SCC 3-02-005-**, 3-02-006-**, and 3-02-031-**. (p. 79)
- (k) Units refer to amount of grain processed through each operation. If only the total amount of grain received or shipped is known, see AP-42, Table 6.4-2 for typical

ratios of tons processed to tons shipped or received. (p. 79, 80, 81, 87)

- (l) The particulate emission factor(s) applies to emissions at the inlet to the baghouse or other control device. Indicate the control device and efficiency to estimate properly the actual emissions. (p. 81, 82)
- (m) Codes 3-03-003-09, -10, and -11 represent individual operations within this SCC (3-03-003-07). (p. 90)
- (n) Apply for all metallic minerals, except as noted. Low moisture ore is defined as having less than 4 percent moisture content by weight for ore entering the primary crusher. High moisture ore has over 4 percent by weight. (p. 100, 101)
- (o) Emission factor(s) does not apply to bauxite ore.
- (p) Emission factor(s) does not apply to drying of titanium/zirconium sands. See SCC 3-03-012-** for titanium processing. (p. 101)
- (q) Particulate factors calculated from emission factors given in Table 7.9-2, Footnotes b-e.
- (r) These SCCs also apply to coal cleaning operations at power plants. (p. 120, 121)
- (s) Expressed as emission rate at point of release. For uncontrolled sources, to account for emissions that settle out within the plant, code a fictitious control device code for particulate of 006 (low efficiency gravitational collector), with appropriate control efficiency. See AP-42 for table of typical control efficiencies for gravitational settling.
- (t) Several processes that routinely occur in Major Group 29 can be found under other major groups. Specifically, note the following: (p. 135, 136)
  - waste of process gas and/or liquid fired boilers SCC 1-02-***-**.
  - internal combustion compressor engines SCC 2-02-***-**.
  - amine sweeting process SCC 3-10-002-**.
  - sulfur recovery process SCC 3-01-032-**.
  - sulfuric acid plant SCC 3-01-022-** or 3-01-023-**.

- (u) For Surface Coating Operations, see SCC 4-02-019-** and 4-02-021-**. (p. 144)
- (v) For tire retreading operations, see SCC 3-08-005-**. (p. 146)
- (w) For specific printing SCCs, see SCC 4-05-***-**. (p. 159)
- (x) In-process fuel codes must always be used in conjunction with the appropriate process code. (p. 169, 171)
- (y) These are general SCCs, applicable to all industrial categories. (p. 171, 172)
- (z) This SCC should be used only to provide rough estimates of emissions for cases when information on amount of fabric processed is not available.
- (aa) Includes Major Group 34 fabricated metal products, Major Group 35 small appliances, and other coating operations Major Group 33-39 not specified elsewhere. (p. 179)

/n	TECHNICAL R	EPORT DATA	- <b>1</b> - <b>1</b> - <b>1</b>	
1. REPORT NO.	lease read Instructions on the	ne reverse bejore comp	3. RECIPIENT'S ACC	ESSION NO
EPA-450/4-90-003	2.			
4. TITLE AND SUBTITLE	<u>,</u>	<u></u>	5. REPORT DATE	
"AIRS Facility Subsystem Sou			<u>March 1990</u>	N-1844-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
and Emission Factor Listing	for Criteria Air	• Pollutants"	6. PERFORMING OR	GANIZATION CODE
7.AUTHOR(S) National Air Data Branch, U.	S. EPA	<u></u>	8. PERFORMING OR	IGANIZATION REPORT NO.
Monitoring & Reports Branch,				
9. PERFORMING ORGANIZATION NAME AN U.S. Environmental Protectio			10. PROGRAM ELEN	MENT NO.
Office of Air and Radiation			11. CONTRACT/GRA	ANT NO.
Office of Air Quality Planni Research Triangle Park, Nort		1		
12. SPONSORING AGENCY NAME AND ADD			13. TYPE OF REPOR	T AND PERIOD COVERED
National Air Data Branch - U			Final - 1990	)-91
Mail Drop 14			14. SPONSORING A	GENCY CODE
Research Triangle Park, Nort	h Carolina 2771	1		
15. SUPPLEMENTARY NOTES		<u></u>		······
(919) 541-5582 or (FTS) 629-	5582			
16. ABSTRACT				
This publication contains em				
emissions from stationary po	int sources (suc	n as industr	iai piants) to	or six criteria
pollutants: PM ₁₀ , Sulfur Ox Carbon Monoxide and Lead. F	actors are group	ad by "source	o classificati	ion codes" which
are used by EPA to store and				
a unique process or function				
of air pollution emissions.				
estimated point source emiss	ions.	-		
1				
17.	KEY WORDS AND DO		s	·····
a. DESCRIPTORS		b.IDENTIFIERS/OP	-	c. COSATI Field/Group
Emission Factors, Emission E	stimates.			
Inventories, Air Pollutants,	Sulfur Oxides,			
Carbon Monoxide, Particulate	Matter, TSP,			
PM ₁₀ , VOCs, Lead, Point Sour	ces, SIC, SCC,			
AIRS, Facility Subsystem		1		
18. DISTRIBUTION STATEMENT		19. SECURITY CLA	SS (This Report)	21. NO. OF PAGES
		Unclassifie	ed	239
Release Unlimited		20. SECURITY CLA		22. PRICE
í		Unclassifie	ed	

EPA Form 2220-1 (Rev. 4-77) PREVIOUS EDITION IS OBSOLETE

# U.S. EPA National Air Data Branch

"Criteria Pollutant Source Classification Codes and Emission Factor Listing"

## EPA 450/4-90-003: PUBLICATION SURVEY & ORDER FORM

The National Air Data Branch is happy to provide you with the attached SCC/ Emission Factor listing. In order to help us serve you and meet your data needs better, please take a few moments to answer the following questions and return this form to the address indicated at the end of the questionnaire. If you have more detailed questions and comments please feel free to call us.

Please print or type:			
Organization Name:			
Your Name:			
:			
Address:			
:			
City: State	ZIP: Phone:		
	··		
QUESTIONS:			
QUESTIONS:	5 (a) In your state, who calculates the point source emissions that		
1. Is this document useful to you? YES() NO()	you report to EPA Regional Offices for entry into the National Emission Data System (NEDS)?		
2. Do you want to receive updates and revisions?	(b) Please indicate the rough percentages of the total reported		
YES, send to address given above. ( )	emissions that are estimated by each group shown below:		
YES, send to address which follows:( )	% estimated by OWNER/OPERATORS of sources _% estimated by CONTRACTORS hired by the state		
Name	% estimated by STATE Personnel in state regional offices		
Address	% estimated by STATE Personnel in central state office % estimated by OTHER: (please specify)		
City/ST/ZIP			
NO, do not send future updates. ()	6 If state personnel calculate the emissions noted above, what percent of the work is done by each of the following:		
3. Do you need to make additional distributions of this document?			
(Note: Our ability to send additional copies is not unlimited, but we will do the best we canORDER FORM ON BACK)	% prepared by a Central MAINFRAME COMPUTER % prepared by a PC or Programmable Desk CALCULATOR		
DUT WE WIN DO THE DEST WE CAT-ONDER FORM ON BACK )	% prepared by PAPER & PENCIL		
YES ( ) I need additional copies for:	% prepared by OTHER (please specify)		
NO ()	7. How many state personnel are involved in preparing emissions		
4. Do you prepare emissions inventories? YES () NO ()	inventories?		
If you answered YES, please CONTINUE TO NEXT COLUMN.	8. What emissions size cut-off do you use for calculating and		
If you answered NO, please use the envelope provided and return	storing point source emissions:		
this form to the address indicated at the bottom of the reverse			
side of this form	> 100 Tons		
	> 50 Tons > 10 Tons		
	None		
	Other (please specify)		
	MO		

Page Two:	
EPA 450/4-00-003- DI IBI II	CATION SURVEY & ORDER FORM
QUESTIONS: (continued)	11. OTHER COMMENTS:
<ol> <li>Do you calculate and store AREA-SOURCE Emissions?</li> <li>YES () NO</li> </ol>	
<ul> <li>10. Do you update your emissions data on a scheduled basis?</li> <li>() YES () NO</li> </ul>	
If "YES," please describe: (For example: "We update emissions when operating permits are renewed. Permits are renewed annually for sources that emit 1000 tons/year and every three years for smaller sources."	
THANK YOU for taking the time to answe have provided in this questionnaire will state emission inventories are prepared We'd be happy to talk to you at anytime improving emission inventories.	and how the EPA can help.
have provided in this questionnaire will state emission inventories are prepared We'd be happy to talk to you at anytime improving emission inventories. ORDER FORM: Please send item	help us to better understand how and how the EPA can help. about problems or suggestions for s checked below to address
have provided in this questionnaire will state emission inventories are prepared We'd be happy to talk to you at anytime improving emission inventories. ORDER FORM: Please send item	help us to better understand how and how the EPA can help. about problems or suggestions for
have provided in this questionnaire will state emission inventories are prepared We'd be happy to talk to you at anytime improving emission inventories. ORDER FORM: Please send item given on page one	help us to better understand how and how the EPA can help. about problems or suggestions for as checked below to address e of this questionnaire: pies of This Document
have provided in this questionnaire will state emission inventories are prepared We'd be happy to talk to you at anytime improving emission inventories. ORDER FORM: Please send item given on page one (Supply is limited, but we'll	help us to better understand how and how the EPA can help. about problems or suggestions for as checked below to address e of this questionnaire: pies of This Document
have provided in this questionnaire will state emission inventories are prepared We'd be happy to talk to you at anytime improving emission inventories. ORDER FORM: Please send item given on page one Additional Cop	help us to better understand how and how the EPA can help. about problems or suggestions for as checked below to address e of this questionnaire: pies of This Document I do the best we can.) on Magnetic Tape
have provided in this questionnaire will state emission inventories are prepared We'd be happy to talk to you at anytime improving emission inventories. ORDER FORM: Please send item given on page one (Supply is limited, but we'll Emission Factors	<pre>help us to better understand how and how the EPA can help. about problems or suggestions for es checked below to address e of this questionnaire: pies of This Document I do the best we can.) on Magnetic Tape hto NADB at the address below.)</pre>
have provided in this questionnaire will state emission inventories are prepared We'd be happy to talk to you at anytime improving emission inventories. ORDER FORM: Please send item given on page one (Supply is ilmited, but we'll Emission Factors (Please send a blank magnetic tape SCC/Emission Fact	<pre>help us to better understand how and how the EPA can help. about problems or suggestions for es checked below to address e of this questionnaire: pies of This Document I do the best we can.) on Magnetic Tape to NADB at the address below.) ctors PC Diskette of hard disk space and works best on PC/XT,</pre>
have provided in this questionnaire will state emission inventories are prepared We'd be happy to talk to you at anytime improving emission inventories. ORDER FORM: Please send item given on page one (Supply is ilmited, but we'll Emission Factors (Please send a blank magnetic tape SCC/Emission Factors (Requires 512K RAM, 4 Megabytes of	I help us to better understand how and how the EPA can help, about problems or suggestions for Is checked below to address e of this questionnaire: pies of This Document I do the best we can.) On Magnetic Tape I to NADB at the address below.) Ctors PC Diskette of hard disk space and works best on PC/XT, Cs. User-friendly menu system.)

·

. . .

.

.

. . .

.

,

•