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ABSTRACT

The authors evaluate the use of bottom~dwelling animals in water
pollutiocn abatement programs. How and why the bottom-dwelling fauna
exhibit pollution-induced changes and the factors involved in data
coliection, interpretation, and evaluation are discussed. A bibliographv
on the theory and applied use of bottom-dwelling animals in pollution
evaluation is included.






THE ROLE OF BOTTOM-DWELLING ACROFAUNA
IN WATER POLLUTION INVESTIGATIONS*

INTRODUCTION

Water pollution evaluation is complicated, but basically it is a
measure of pollution's impact on the environment routinely accomplished
through biological, chemical, physical, and engineering determinations.

Poiluting materials may trunsmit disease organisms, create
nuisances, and adversely affect water supplies, recreation, and biclogi~
cal resources, as well as the acsthetic qualities of water. Rarely does
polluticn affect one of these n.dependent of the others.

Biology plays a prominent role in all stages of water pollution
abatement: (1) assessing damages, (2) determining the cause of
damages, and ‘3) solving the problem. A biological survey can deter-
mine the eftects ot pollution and can aid in idertifying the source and in
establishing the sperific cause. Solucior of the problem is the definitive
act and involves the removal or rs uction of the damaging agents so that
multiple water «ic« s are not curtatie.. Biology can and must contribute
to the solution by assessing how - . _h of the causative agent needs to be
eliminated to reduce the damages to an acceptable level.

Complete biological analyses of the aquatic environment involves
an interpretative study of the physical and chemical environmental
relationships among man, bacteria, fungi, algae, invertebrates, fishes,
and wildlife.

BOTTOM-DWELLING FAUNA

Bottom-dwelling fauna are animals that live directly in association
with the bottom of a waterway (Figure 1). They may crawl on, burrow in,
or attach themselves to the bottom. Macroorganisms are usually defined
as those organisms that will be retained by a No. 30 sieve.t In essence,
the organisms retained by the sieve are those that are visible to the un-
aided eye.

+Originally presented July 14, 1964, at Syracuse University before the North Atlantic
Treaty Organization-Syracuse University International Advanced Study Institute on
*’Modern Concepts in Water Supply and Pollution Control.””

tA No. 30 U.S. Standard Sieve has openings of 0.0232 inch (0.59 millimeter) and is
formed from wire 0.0114 to 0.0165 inch (0.29 to 0.42 millimeter), in diameter.



. Stonefly nymph (Plecoptera)
. Mayfly naiad (Ephemeroptera)
. Hellgrammite or Dobsonfly larvae

. Caddisfly larvae (Trichoptera)
. Black fly larvae (Simuliidae)
. Scud {(Amphipoda)

. Fingernail clam (Sphaeriidoe)

. Damselfly nymph (Zygoptera)

Dragonfly nymph (Anisoptera)

Bloodworm or midge fly larvae
(Tendipedidae)

Leech (Hirundinea)

Sludgeworm {Tubificidae)

Sewage fly larvoe (Psychoda)

Rat-tailed maggot (Tubifera-Eristalis)

(Corydalidae)

Aquatic sow bug (Isopoda)
Snail ( Gastropoda)

VOZE Ao

Figure 1. Representative bottom-dwelling macroanimals.
(Drawings from Geckler, J., K.M. Mackenthun, and W.M. Ingram, 1963.
Glossary of Commonly Used Biological and Related Terms in Water

and Waste WWater Control. DHEW, Public Health Service, Cincinnati, Ohio,
Pub. No. 999-WP-2.)

BOTTOM-DWELLING



Bottom-dwelling organisms have inherent qualities that make their
use in pollution surveys advantageous: a pronounced response to pollu-
tion, a sufficiently long life cycle to prevent a response to intermittent
relief from pollution, and either a means of locomotion that prohibits ex-
tended rapid migrations or a sessile-attached mode of life that reduces
the influence of neighboring water conditions on the organisms. Because
of these qualities, bottom-dwelling organisms reflect conditions at the
sampling point for an extended period of time.

A wide variety of bottom-dwelling macroorganisms inhabit non-
polluted waters. Eacu occupies a niche in the benthic community, where
the adaptations of the species are most efficiently utilized in maintaining
life processes. Each is limited in numbers by availability of food supply,
intra- and interspecies competition, predation, and the stage of its life
cycle. Since all of these factors are affected by pollution, a biological
survey of the bottom-dwelling macrofauna is in fact an investigation into
the extent and degree of water pollution.

RESPONSES TO POLLUTION GENERALLY

SENSITIVITY

Moderate pollution reduces the number of species surviving in an
area by eliminating the most sensitive ones. As the concentration of a
given pollutant increases, additional species are eliminated in order of
sensitivity to the pollutant until only those species that can survive the
adverse conditions remain. Extreme pollution may eliminate all
organisms in the area.

Elimination of the more sensitive organisms by pollution reduces
competition among, and predation on, the surviving forms. The tolerant
survivors increase in numbers until checked by the amount of available
food and space.

TOLERANCE GROUPING

Flexibility must be maintained in the establishment of tolerance
lists based on the response of organisms to the environment because of
complex interrelationships among varying environmental conditions.
Some general tolerance patterns can be established. Stonefly nymphs,
mayfly naiads, hellgrammites, and caddisfly larvae represent a group-
ing that is quite sensitive to environmental changes. Black fly larvae,
scuds, sowbugs, snails, fingernail clams, dragonfly nymphs, damselfly
nymphs, and most kinds of midge larvae are intermediate in tolerance.
Sludgeworms, some kinds of midge larvae (bloodworms), and some
leeches are tolerant to comparatively heavy loads of organic pollutants.
Sewage mosquitoes and rat-tailed maggots are tolerant of anaerobic
environments (Figure 1).

MACROFAUNA 3



STRUCTURAL LIMITATIONS

The morphological structure of a species limits the type of envir-
onment it may occupy. Species with complex appendages and exposed,
complicated respiratory structures, such as stonefly nymphs, mayfly
nymphs, and caddisfly larvae, that are subjected to a constant deluge of
settleable particulate matter soon abandon the polluted area because of
the constant preening required to maintain mobility or respiratory
functions; otherwise, they are soon smothered. Species without compli-
cated external structures, such as bloodworms and sludgeworms, are
not so limited in adaptability. A slugdeworm, for exampie, car burrow
in a deluge of particulate organic matter and flourish on the abundance
of "manna." Morphology also determines the species that are found in
riffles, on vegetation, on the bottom of pools, or in bottom deposits.

RESPONSES TO SPECIFIC TYPES OF POLLUTION

ORGANIC, INORGANIC, SLUG

Organic materials constantly undergo decomposition; if this de-
composition proceeds rapidly enough to utilize all the oxygen available
at the sludge-water interface, the worm's life may be in danger. Anaer-
obic decomposition produces methane and hydrogen sulfide. In addition
to being toxic, these gases, because they are ebullient, produce an un-
stable substrate by stirring up the bottom and by blowing mats of sludge
to the surface. Such physical action is adverse to the worms and may
produce a drastic reduction in their numbers.

Wastes, such as heavy metal ions, some synthetic chemicals, and
hot water, do not provide food. Thus, although they eliminate the organ-
isms in order of increasing tolerance, they do not produce a large in-
crease in the number of surviving forms. They also hinder or eliminate
the organisms sensitive to the pollutant, and the pollutant provides no
benefit to the tolerant organisms except a reduction in predation and
interspecific competition.

Often the type, concentration, and quantity of waste are not unitorm;
any sudden or temporary change (commonly referred to as a '"'slug") may
have a detrimental effect on a stream. Figure 2 shows the effect of dura-
tion and concentration of a '""slug’ on the number of kinds of bottom
organisms. Two miles below the waste source (Figure 2, M~36) the
duration was short, but the concentration was high, and all bottom-~
dwelling animals were eliminated. At M-32 six miles downstream where
the duration was longer, but the concentration reduced, a lower mortal-
ity of kinds resulted. As the waste proceededfarther downstream the
concentration continued to diminish; but the still longer duration i csulted
in an increased percentage of mortality. Figure 3 shows the effect of
this waste on the dissolved oxygen concentration.

4 BOTTOM-DWELLING



MUNICIPAL
Municipal waste contains solids originating as fecal materiai,
garbage, household wastes, and street washings that are often dispcsed

of through the sewerage system. Upon entering a waterway, these organic
materials sink to the bottom and form sludge beds, the extent of which

KEY

— = KINDS AFTER *SLUG" e

= CONTROL, NO CHANGE
M = MILES FROM RIVER MOUTH
M-42
/\ T

E = KINDS BEFORE ""SLUG™

P NN

GULF OF MEXICO

Figure 2. Comparison of effects of usual quantity of chemical wastes and slug of such
wastes on number of kinds of bottom-dwelling macrofauna

(East Pearl River, September 1962).
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depends upon hydrological factors that govern the rate of settling and
the depth of sludge deposition. A sludge bed covers the original stream
bottom of gravel, rubble, and soil with a substrate or "blanket" rich in
organic solids. The consequent reduction in types of niches and the
physical and chemical changes associated with organic decompositior
eliminate the more sensitive organisms. Figures 4 and 5 show the
changes in animal populations that resulted from the addition of munici-
pal organic wastes.

1 RIVER MILE

WASTE SOURCE 7

Figure 3. Drastic reduction in dissolved oxygen effected by addition of slug of waste
to stream (East Pearl River, September 1962),

sepf/Bw ‘NIDOAXO AIATOSSIC
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B. Sludge worms replace more sensitive species upon addition of organic solids.

Figure 4. Effect of addition of domestic organic solids to Chicago River (April 1961).

MACROFAUNA 7



:OQ_. _T_QGQ _OCOU 0‘_Or_w .._.IOZ 1:0 ‘_0>_m omUUEU wo &u:c._m r_toZ ut mv__Om u_cum._o mo uuotm m 0._:m_n.

\m.m,
Melaioiy sanos
0 STIVNS 3LYNOWING
STHYNS 3LVNOWINd b

SWOMA00T8

SW3OMQ0018 -W $3HD3 3T

3
N ERIURCEPN- P
$3HD33 2o, ™o
(005 A8 ONIQV3Y 371vDS ot
ATdILIAW) SWHOMIDANTS

LN3NT443 INVId ]
IN3WLVIHL 30VMIS

™06

Noot

SWa0m39an7s

1004 3¥VYNDS ¥3d SWSINVONO 40 YIGWNN

-DWELLING

BOTTOM



INDUSTRIAL

Industries that use animal or vegetable raw materials produre
wastes that may degrade the environment in a manner similar to that of

200 LITTLE QUINNESEC (UPSTREAM FROM MILL}

100

7001 STURGEON FALLS (DOWNSTREAM FROM MILL)

500

400 —

300

NUMBER PER SQUARE FOOT

200—

100 —

MISC. ORGANISMS
MAYFLIES
CADDISFLIES
SNAILS

SCUDS
FINGERNAIL CLAMS
MIDGES

SOWBUGS
SLUDGEWORMS

Figure 6. Effects of paper mill waste on bottom fauna. {Menominee River, Auqust 1963).

municipal organic solids. Paper mills discharging wood fiber (Figures
6 and 7), sugar-beet mills discharging beet pulp, and slaughterhouses
and rendering plants discharging animal wastes are examples of the type
of pollution sources that at the same time reduce the number of species
and increase the population of tolerant forms that are capable of utiliz-
ing the additional food.
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Wastes from chemical plants can also reduce the number of kinds
of organisms in a stream. Figure 2 shows such a reduction. The usual
pollutant involved was a "uniform' quantity of wastes from the proces-
sing of crude tall oil and crude sulfate turpentine to produce chemical
specialities. The exact chemical composition of the effluent is unknown.
A marked decrease in number of species resulting from this waste flow
was observable 2 miles downstream from the effluent. Six miles down-
stream, the number of species was equal to or exceeded the number up-
stream from the effluent.

i Jud! Ty T

- )
kY

Figure 7. Heavy fibreboard formed in Connecticut River, October 1961, when discharge
from paper mills dried after water levels receded.
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In highly developed metropolitan areas, the pattern of stream pol-
lution is complicated by the addition of industrial nonorganic wastes and

both municipal and industrial organic solids. (See Figure 8). Samples
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from the Chicago River (miles 326.9 and 325.8) had a diverse fauna in
contrast to the downstream stations. This fauna is still not indicative of
water as clean as that found in a neighboring stream. Just above mile
324.3, a stream enters that is enriched with organic solids that settle
and form sludge that eliminates the more sensitive species and feeds a
larger population of sludgeworms. At the next two downstream stations,
a reduction in organic sclids and the accumulation of comparatively large
quantities of petroleum oils in the bottom substrate reduce surviving
tolerant sludgeworms. The addition of a relatively large volume of do-
mestic sewage effluent then dilutes the effects of these oils and feeds a
large population of sludgeworms at station 314.0. Farther downstream,
the stream periodically becomes septic with a resulting reduction in
numbers of sludgeworms at stations 307.9 and 291.1.

NATURAL (SILT)

Silt and other inert solids are also pollutants. Figure 9 shows the
amount of silt that can be carried by water. Inert silt provides no food
and may smother orgrind up more sensitive organisms. Figure 10 shows
the destructive effect of silt on the number of kinds of animals: a general
downstream reduction. The scouring and smothering effects were so
severe in this river that only one animal form was found at the last down-
stream station.

Foe ~1)

Figure 9. Settled water samples from Virgin River showing varying quantity of sift found
in suspension (August 1961).

DATA COLLECTION AND INTERPRETATION
The field sample collection is the basic element of a survey, and
it should be representative of the total environment.
SAMPLING
Qualitative sampling determines the variety of species from an

area. Samples may be taken by any method that will capture representa-
tives of the species present. Collections from such samplings indicate

12 BOTTOM-DWELLING



changes in the environment, but they generally do not accurately reflect
the degree of change. Mayflies, for example, may be reduced from 100 to
1 per square foot, whereas sludgeworms may increase from 1 to 14,000
per square foot. Qualitative data would indicate the presence of both
species, but might not necessarily delineate the change in predominance
from mayflies to sludgeworms.
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Figure 10. Effect of silt on number of kinds of bottom-dwelling macrofauna
(Virgin River, August 1961).

Quantative sampling is performed to observe changes in pre-
dominance. The most common quantitative sampling tools are the Peter-
sen and Ekman dredges and the Surber stream bottom or square-foot
sampler (Figure 11). Of these, the Petersen dredge samples the widest
variety of substrates. The Ekman dredge is limited to fine-textured and
soft substrates, such as silt and sludge. The Surber sampler is designed

MACROFAUNA 13



for sampling riffle areas; it requires moving water to transport the
dislodged organisms into its net and is limited to depths of 2 feet or
less.

The collected sample is screened with a standard sieve to concen-
trate the organisms; these are sorted from the retained material, and
the number of each species is determined. Data are then adjusted to
number per unit area, usually to the number per square foot of bottom
or occasionally to number per square meter. This adjustment standard-
izes the method of data expression.

A. PETERSEN DREDGF

C. SURBER STREAM-BOTTOM SAMPLER.

B. EKMAN DREDGF

Figure *1. Tools for collecting quantitative samples of bottom-dwelling macrofouna.
(Drawings from Geckler, J., K.M. Mackenthun, and W.M. Ingram, 1963.
Glossery of Commonly Used Riclogical and Related Terms 1n Water and Waste Water Control.
Dept. HEW, Public Hec!* Service, Cincinnati, Ohio, Pub. No. 999-WP 2.)

Independently, neit .. v jualitative nor quantitative data suffice for
thorough analyses of envirosrental conditions. A cursory examination
to detect damage may be maae with either method, but a ¢ombination of
the two gives a more precise determination. If a choice must be made,
quantitative sampling would be best because it incorporates a partial
qualitative sample.

EXTRAPOLATION
How can bottom-dwelling macrofauna data be- extrapolated to other

14 BOTTOM-DWELLING



environmental components? It must be borne in mind that a component of
the total environment is being sampled, If the sampled component exhi-
bits changes, then so must the other interdependent components of the en-
vironment. For example, a clean stream with a wide variety of desirable
bottom organisms would be expected to have a wide variety of desirable
fishes; if pollution reduces the number of bottom organisms, a comparable
reduction would be expected in the number of fishes. Moreover, it would
be logical to conclude that any factor that eliminates all bottom organisms
would probably eliminate many other aquatic forms of life.

Even though biologists often speak of "pollution indicator' macro-
benthic organisms, the presence of these organisms is not a true indica-
tion of pollution. Most so-called "indicators' were present in the natural
environment long before man began to dump his wastes into the world's
waterways. Evolution has not produced species specifically adapted to
live in "sewers." The sludgeworm evolved and subsisted in areas (such
as an eddy behind a rock) where natural organics accumulated long before
man created a habitat where sludgeworms could flourish over many acres.
The extent and degree of pollution are better indicated by the absence or
reduced number of organisms associated with clean water.

FACTORS INVOLVED INDATA INTERPRETATION

Two very important factors in data evaluation are a thorough
knowledge of the conditions under which the data were collected and a
critical assessment of the reliability of the data's representation of the
situation. For example, in Figures 9 and 10 one interpretation of the data
could be that relatively poor watershed utilization by agriculture and
forestry causes the situation illustrated. This material is, however,
from a stream that flows through arid desert country; record flash floods
sweeping down barren desert arroyos had ""degraded" this stream with
silt and sand.

MINIMUM-MAXIMUM VALUES

The evaluation of physical and chemical data to determine their
effects on aquatic organisms is primarily dependent on maximum and
minimum observed values. The mean is useful only when the data are
relatively uniform. Figure 3 shows data that, if averaged, would indicate
that enough dissolved oxygen was present to support a desirable fauna,
but in fact, the short-term dissolved oxygen minimum would suffocate
those organisms that were not able to '"hold their breath' for the duration
of its-absence. The minimum or maximum values usually create the acute
conditions in the eavironment.

FOOD SUPPLY

A moderate quantity of microscopic food particles in the water can
produce large populations of black flies, biting midges, nonbiting midges,

MACROFAUNA 15



and mosquitoes. The amount of food required is that which will permit
a delicate adjustment in the biota. Enough organic food must be added to
suppress the more sensitive predators and competitors, but the quantity
and quality of waste cannot be such that they suppress moderately tol-
erant forms.

IDENTIFICATION

Precise identification of organisms to species requires a specialist
in limited taxonomic groups. Many of the inmature aquatic forms have
not been associated with the adult species. Therefore, one who is certain
of the genus but not the species should utilize the generic name, not a
potentially incorrect species name. The method of interpreting binlogical
data on the basis of numbers of kinds and numbers of organisms will
typically suffice. For example, Figures 2, 3, and 10 are based on identi-
fications to genera, family, and suborder respectively.

LAKE AND STREAM INFLUENCE

Physical characteristics of a body of water also affect animal
populations. Lakes or impounded bodies of water support different faunal
associations than do rivers. Major taxonomic groups of organisms are
present in both, but there is generally a change in species composition.
The number of kinds present in a lake may be less than that found in a
stream because c¢f a more uniform habitat. A lake is all pool, but a river
is composed of both pools and riffles. The nonflowing water of a lake
exhibits a more complete settling of particulate organic matter that
naturally supports a higher population of detritus consumers. For these
reasons, the bottom fauna of a lake or impoundment cannot be directly
compared with that of a flowing stream.

Nor can the fauna of a tributary rivulet be directly compared with
that found in its much larger receiving stream. As streams become
larger and the tlow slower, their physical characteristics become more
uniform and approach those of a lake. This is especially evident where
the water's velocity has been further reduced by the addition of dams and
locks for navigation. Therefore, the smaller streams may contain more
species than larger receiving streams.

CONCLUSION

The final step in treating a pollution problem, providing an answer,
involves persuading the polluter to eliminate or control the cause of
pollution. If persuasion is not successful, then findings must be presented
to the public and the alleged polluter at a conference, hearing, or, if nec-
essary, in formal litigation. In this confrontation the data accumulated
from the study of bottom-dwelling macrofauna as to degree and extent of
water pollution may prove determinative of the issue.

16 BOTTOM-DWELLING
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