

U.S. ENVIRONMENTAL PROTECTION AGENCY

WATER POLLUTION CONTROL RESEARCH SERIES

The Water Pollution Control Research Series describes results and progress in the control and abatement of prince in our Nation's waters. They provide a central source information on the research, development and demonstrate activities in the Environmental Protection Agency, through inhouse research and grants and contracts with Federal State, and local agencies, research institutions, and industrial organizations.

Inquiries pertaining to Water Pollution Control Research Reports should be directed to the Chief, Publications (Water), Research Information Division, R&M, Environment Protection Agency, Washington, D.C. 20460.

AIRPHOTO ANALYSIS OF OCEAN OUTFALL DISPERSION

Ъу

Oregon State University
Fred J. Burgess, Principal Investigator
Dean, School of Engineering
Wesley P. James, Research Associate
Corvallis, Oregon 97331

for the

ENVIRONMENTAL PROTECTION AGENCY

Program No. 16070 ENS June, 1971

Environmental Protection Agency Library, Region V 1 North Wacker Drive Chicago, Illinois 60606

EPA Review Notice

This report has been reviewed by the Water Quality Office, EPA, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of this office, nor does mention of commercial products constitute endorsement for use.

ENVIRONMENTAL PROTECTION AGENCY

ABSTRACT

Aerial photography was taken of the ocean outfall waste plume at Newport, Oregon, during the summers of 1968, 1969, and the period extending from September 1970 through May 1971. Computerized techniques to analyze the photos were developed by combining the principles of photogrammetry and photo interpretation. This remote sensing system involving multispectral photography was utilized to yield waste concentrations, water currents and diffusion coefficients.

Conventional boat sampling of the waste field was conducted concurrently with the photography during the 1968 and 1969 field seasons. The waste concentrations determined by the two methods were compared by matching ground coordinates. The correlation coefficient for the comparison ranged from 0.85 to 0.95. The photographic technique is more comprehensive than conventional boat sampling and permits waste concentrations to be measured throughout the plume in one instant. Discrepancies between concentrations determined by boat sampling and concentrations determined from aerial photography appear to be due primarily to changing and shifting of the waste field during the two hour boat sampling period.

Procedures were developed to evaluate proposed ocean outfall sites by using dye drops from an airplane. Diffusion coefficients and water current velocities were determined from aerial photography. A minimum of two photographic flights over the area were required to show the transport and spread of the dye patches.

When the hydrography of the receiving water allowed the formation of a surface plume, the water current velocity was found to be the dominant factor in the resulting plume pattern. The steady state form of the Fickian diffusion equation with a unidirectional transport velocity was not applicable to the majority of the observations. The equation for a line source in a uniform stream provided the x and y velocity components for a two-dimensional diffusion model with the losses to the lower layers being considered by including a decay coefficient. The second model was found to be more applicable to the diffusion process.

Characteristic airphoto pattern elements are given for visual interpretation of the photography. Wind velocity, sea state, current velocity, wave height and diffusion coefficients can be estimated from the aerial photography.

Key Words: Ocean outfall, aerial photography, remote sensing, marine disposal, diffusion, water currents.

CONTENTS

Section		Page
I	Conclusions	1
II	Recommendations	3
III	Introduction	5
IV	Background	7
v	Rationale	13
VI	Diffusion Studies	43
VII	Sampling Procedures	47
VIII	Dye Patch Studies	55
IX	Data Processing	59
X	Sampling Results	77
XI	Discussion of the Results	153
XII	Summary	175
XIII	Acknowledgments	179
XIV	References	181
xv	Publications	185
XVI	Appendices	187

FIGURES

		Page
1.	Camera filtered to absorption band of rhodamine WT dye.	8
2.	Camera filtered to fluorescence band of rhodamine WT dye.	8
3.	Infrared black and white photo of algal bloom in a lake.	11
4.	Infrared black and white photo of a waste plume.	11
5.	Spectral distribution of radiant energy.	14
6.	Direct sunlight and skylight on a horizontal plane.	17
7.	Sunlight reflection from a sloping water surface.	18
8.	Light penetration into the sea.	19
9.	Typical attenuation coefficients.	21
10.	Volume scattering function.	22
11.	Variation in the scattering angle.	23
12.	Effect of contaminant on the scattering function.	24
13.	Light from the sea.	26
14.	Depth of light return from the sea.	28
15.	Typical spectral signature.	31
16.	Geometry of exposure calculation.	32
17.	Typical characteristic curve of an aerial positive film.	34
18.	Spectral response curves.	37
19.	Aerial view of Newport area.	48
20.	Sketch of the Newport outfall.	49
21.	Multiple camera unit.	53
22.	Dye patch on July 7, 1969.	56
23.	Data processing flow diagram.	60

		Page
24.	Waste concentrations from boat sampling on August 12, 1969.	61
25.	Surface water temperature on August 12, 1969.	61
26.	Water temperature profiles on August 12, 1969.	62
27.	Flow diagram for photographic processing.	64
28.	Symbolic plots from two flights August 16, 1968.	67
29.	Isoconcentration plot, flight on August 16, 1968.	67
30.	Digitizing aerial film.	73
31.	Scanning densitometer.	73
32.	Infrared black and white photo on July 7, 1969.	79
33.	Plume on July 8, 1969 at 15:21 from 4000 feet.	79
34.	Temperature profiles July 7 and 8, 1969.	80
35.	Plume July 8, 1969 at 15:56 from 4000 feet.	81
36.	Plot of residuals - 1968.	86
37.	Plot of residuals - 1969.	87
38.	Comparison of boat and photo values on August 8, 1968.	88
39.	Comparison of boat and photo values on August 16, 1968.	89
40.	Comparison of boat and photo values July 8, 1969.	90
41.	Comparison of boat and photo values August 12, 1969.	91
42.	Chart of the outfall area at Newport, Oregon.	99
43.	Aerial photo of outfall area on September 9, 1970 from 8000 feet at 14:30.	100
44.	Data for September 9, 1970.	101
45.	Aerial photo of outfall area on September 23, 1970 from 8000 feet at 15:30.	102
46.	Data for September 23 1970.	103

		Page
47.	Aerial photo of outfall area on September 30, 1970 from 5000 feet at 14:54.	104
48.	Data for September 30, 1970.	105
49.	Aerial photo of outfall area on October 7, 1970 from 3000 feet at 14:32.	106
50.	Data for October 7, 1970.	107
51.	Aerial photo of outfall area on October 12, 1970 from 4000 feet at 14:10.	108
52.	Data for October 12, 1970.	109
53.	Aerial photo of outfallarea December 21, 1970 from 6000 feet at 13:15.	110
54.	Data for December 21, 1970.	111
55.	Aerial photo of outfall area on December 23, 1970 from 3000 feet at 11:25.	112
56.	Data for December 23, 1970.	113
57.	Aerial photo of outfall area on December 31, 1970 from 3000 feet at 12:10.	114
58.	Data for December 31, 1970.	115
59.	Aerial photo of outfall area on January 2, 1971 from 4000 feet at 11:40.	116
60.	Data for January 2, 1971.	117
61.	Aerial photo of outfall area on February 6, 1971 from 6000 feet at 11:55.	118
62.	Data for February 6, 1971 AM.	119
63.	Aerial photo of outfall area on February 6, 1971 from 4000 feet at 14:18.	120
64.	Data for February 6, 1971 PM.	121
65.	Aerial photo of outfall area on March 16, 1971 from 4250 feet at 12:20.	122

		Page
66.	Data for March 16, 1971.	123
67.	Aerial photo of outfall area on March 17, 1971 from 4000 feet at 14:25.	124
68.	Data for March 17, 1971.	125
69.	Aerial photo of outfall area on March 18, 1971 from 8000 feet at 11:42.	126
70.	Data for March 18, 1971.	127
71.	Aerial photo of outfall area on March 19, 1971 from 8000 feet at 11:27.	128
72.	Data for March 19, 1971 AM.	129
73.	Aerial photo of outfall area on March 19, 1971 from 6000 feet at 13:50.	130
74.	Data for March 19, 1971 PM.	131
75.	Aerial photo of outfall area on March 24, 1971 from 6000 feet at 16:00.	132
76.	Data for March 24, 1971.	133
77.	Aerial photo of outfall area on April 12, 1971 from 6000 feet at 14:45.	134
78.	Data for April 12, 1971.	135
79.	Aerial photo of outfall area on April 15, 1971 from 4000 feet at 14:07.	136
80.	Data for April 15, 1971.	137
81.	Aerial photo of outfall area on April 21, 1971 from 4000 feet at 13:46.	138
82.	Data for April 21, 1971.	139
83.	Aerial photo of outfall area on April 26, 1971 from 6000 feet at 14:20	140
84.	Data for April 26, 1971.	141
85.	Aerial photo of outfall area on May 7, 1971 from 4000 feet at 15:13.	142

		<u>Page</u>
86.	Data for May 7, 1971.	143
87.	Aerial photo of outfall area on May 10, 1971 from 4000 feet at 16:10.	144
88.	Data for May 10, 1971.	145
89.	Aerial photo of outfall area on May 13, 1971 from 6000 feet at 14:10.	146
90.	Data for May 13, 1971.	147
91.	Aerial photo of outfall area on May 14, 1971 from 4000 feet at 14:48.	148
92.	Data for May 14, 1971.	149
93.	Photos of sea conditions.	150
94.	Plume patterns for a unidirectional transport velocity.	154
95.	Isoconcentration plot, August 8, 1968.	155
96.	Geometry for a line source in a uniform stream.	158
97.	Plots of a source in a uniform stream.	160
98.	Potential flow solutions for a line source.	161
99.	Isoconcentration plots from diffusion model.	163
100.	Typical diurnal thermoclines.	165
101.	Development of current velocity profile.	166
102.	Mottled photo pattern from surface waves.	173

TABLES

<u>No</u> .		Page
1	Preliminary diffusion coefficients, flight 1, August 16, 1968.	70
2	Nonsteady-state diffusion coefficients, August 16, 1968.	71
3.	1968-1969 sampling summary for Newport.	78
4.	Summary of the 1968 vertical aerial photography.	83
5.	Summary of the 1969 oblique aerial photography.	84
6.	Wind scales and sea descriptions.	151
7.	Summary of the 1970-71 data.	152
8.	Preliminary diffusion coefficients, flight 2, August 8, 1968.	157
9.	Sea state due primarily to wind.	168
10.	Sea state due primarily to swell.	169
11.	Sea state due to wind and swell.	170
12.	Conditions in fully developed seas.	172

SECTION I

CONCLUSIONS

- 1. Aerial photography provides an effective method for a comprehensive analysis of the dispersion of wastes that are discharged into the ocean.
- 2. Aerial photographs showing the transport and spread of dye patches will provide detailed design information for evaluating proposed ocean outfall sites throughout the year.
- 3. Characteristic airphoto pattern elements can be utilized to estimate wind velocity, sea state, water current velocities and diffusion coefficients in the nearshore areas.
- 4. In addition to being technically feasible, aerial photography has been shown to be an economically feasible method for acquiring ocean outfall design data prior to discharge.
- 5. The surface water current is a dominant factor in the resulting plume pattern. The currents were primarily generated by the wind with tide playing a minor role.
- 6. A two dimensional Fickian diffusion model was usually adequate to explain the resulting plume pattern. The surface spreading of the waste field was considered in the model by including the equations for a line source in a uniform stream while vertical diffusion was considered by including a decay coefficient.
- 7. There was no indication that the diffusion coefficients varied to the 4/3 power of the scale.

SECTION II

RECOMMENDATIONS

- 1. It is recommended that aerial photography be used to obtain information for evaluation of requests for waste discharge permits that involve ocean outfalls.
- 2. It is recommended that aerial photography be used in establishing surveillance programs and in conducting surveillance programs on operating waste discharge outfalls.
- 3. It is recommended that future studies be conducted to establish the importance of both the vertical diffusion coefficient and the vertical stability on the waste disposal process. Such a study should include continuous recording of wind, water current profiles for several locations, and wave profiles in order to better understand the response of the sea to the wind forces. The effect of the scale of the turbulence on the rate of diffusion needs additional study.
- 4. It is also recommended that a critical analysis of actual field conditions versus the original design predictions be made for the several ocean outfalls in Oregon and at Eureka, California. Such a study will indicate areas of design deficiencies and will improve the technology of ocean outfall disposal.

SECTION III

INTRODUCTION

The objective of this research is to develop a remote sensing tool for the evaluation of dispersion of wastes from existing or proposed ocean outfalls. Photogrammetric and photo interpretation methods are used to determine dispersion patterns, diffusion coefficients, waste concentrations and nearshore currents. This study is unique in that the aerial photography is not only used to determine the position of points and the size of objects as in normal photogrammetry, but the photograph is also used as an energy sensor. The amount of light reflected from an object is recorded by the photograph as the film density of the image. The light scattered from within the sea is measured from the film with a photo densitometer and can be related to certain water quality parameters.

An ocean outfall is a pipeline that is used for discharging waste into the ocean. The pipeline extends into the receiving body of water and usually terminates with a diffuser section where the flow is divided into a number of small jets.

The discharging jets of waste are subjected to momentum forces and to a buoyant force which is proportional to the density difference between the effluent and the receiving water. As the jet of liquid rises towards the surface, it mixes with the ambient fluid and both its momentum and buoyance per unit volume decrease. The mixing causes a waste field to be formed either at the surface or submerged below the sea surface depending on the hydrography of the site and initial dilution.

If there is little density stratification in the receiving water, the effluent, being less dense than sea water, will rise to the surface to form a surface waste field. After the initial dilution due to jet diffusion, the waste is transported from the site by current action and continues to mix and spread by natural turbulence in the receiving body.

The conventional method of studying the waste field from an outfall has been by boat sampling with the tracer technique. The use of this method for water quality studies has been enhanced by the development of highly sensitive instruments and new dye tracers during the past several years.

The use of radioactive tracers has been limited by handling problems and misunderstanding by the public. The use of fluorescent dyes as tracers avoids these objections and gives satisfactory results in most quality studies. Fluorescein dye has been used for the past 50 years but has the disadvantage of a high photochemical decay rate (Wilson, 1968). Rhodamine B has a low decay rate but tends to adhere to suspended particles. This may result in a low recovery of the dye.

Rhodamine WT and pontacyl pink dyes both have low sorptive tendency, but the pontacyl pink is about four times as expensive as the rhodamine WT solution.

The general procedure for tracing waste discharged from an existing outfall is to meter the dye tracer into the pipeline. Complete mixing of the tracer and waste is required. By knowing the tracer injection rate and the waste discharge rate, the tracer concentration within the pipeline can be determined. This mixture passes through the diffusers and forms the waste field. Tracer concentrations in the waste plume are measured by sampling from a boat. The waste concentration at any point in the waste field can then be computed from the samples on the basis of the dye concentration.

Ocean outfall sewers for the disposal of waste along the Pacific Northwest coastline are, in general, located on the relatively shallow coastal shelf which is subjected to heavy seas. Sampling from a boat in these areas is dangerous at all times and impossible much of the time due to rough water. The use of aerial photography and photogrammetric methods presents a possible method for overcoming this difficulty. From two to eight hours of continuous sampling from a boat is required to adequately define the waste field in the vicinity of an ocean outfall. The waste field is usually shifting thus making a comprehensive study nearly impossible by conventional methods. aerial photographic technique presents a method where concentrations throughout the waste field can be measured in one instant. Consideration of these factors suggest that photogrammetry can be a most useful tool for water quality investigations. Prior to this time the use of aerial photography for water quality studies has been limited to identifying pollution sources, but has not been used for making quantitative measurements from the photographs.

The field work was conducted at the Georgia-Pacific Kraft pulp mill outfall at Newport because of its convenient location. This site provided an additional advantage since the natural color of the waste effluent was visible on aerial photography. However, the results of this study are not limited to Kraft pulp mill outfalls. If the effluent from an outfall has the same light scattering and light absorption properties as the receiving water, dye can be added to the effluent to distinguish the waste field from the receiving body of water. The natural color characteristics of the Kraft pulp waste will vary with time while the addition of dye to a colorless waste will give greater control over the test.

In order to obtain design information at proposed outfall locations, aerial photography is taken of dye patches. The dye markers are dropped from the aircraft at selected locations in the waste disposal area. Current velocities and diffusion coefficients are determined from the change in position and size of the dye patches between two photographic flights over the proposed site.

SECTION IV

BACKGROUND

Both the color of the waste and the amount of light scattered from below the water surface can be recorded on aerial photography. black and white film used today for aerial photography is panchromatic film which is sensitive to the $400-700^{1}$ nm region of the spec-By using lens filters on the camera, the exposure can be limited to a selected region of the spectrum. Generally the filmfilter combination is sketched to give maximum contrast between the object and background. For example, when aerial photography is taken of a rhodamine WT dye patch in the ocean, high contrast can be obtained by either filtering the camera to the band of maximum light absorption of the dye or filtering the camera to the maximum fluorescence of the dye as shown in figures 1 and 2. For the first case, on a positive black and white print, the sea would appear light in tone while the dye patch would appear dark. However, if the camera is filtered to maximum fluorescence, the dye patch would be light in tone while the sea would appear dark.

Blue light with a wave length of about 480 nm has the greatest penetration in the deep ocean waters. In the turbid coastal waters the greatest penetration occurs at about 530 nm (Jerlov, 1968). As the composition, size or concentration of particles in the water vary, the band of greatest penetration and color of the sea may also change. Photography can, under certain conditions, be used to distinguish water masses, to delineate current patterns, to identify upwelled water along the coast and to track river plumes in the ocean.

Color photography divides the visible spectrum into three bands. The composition of the light is recorded as blue, green, and red colors on a positive transparency or print. For many applications of aerial photography the three bands are adequate. However, the color film has been designed to reproduce a natural land scene which is visually similar to the original view. The film may not give the best results possible if it is used for other than its designed purpose. Strandberg (1966, 1967) of Itek Data Analysis Center has published numerous examples of color photographs for water quality analysis. In these examples it was possible to detect the sources of pollution; however, no attempt was made to measure pollution concentration.

Color infrared film is sometimes called false color film. The blue, green and red colors on the photograph result from exposures to the green, red and infrared bands of the spectrum, respectively (Fritz, 1967). Besides military uses, the film has been used extensively in the detection of disease and insect pests in forest and agriculture

¹Nanometers, 10⁻⁹ meters

Figure 1. Camera filtered to absorption band of rhodamine WT dye.

Figure 2. Camera filtered to fluorescence band of rhodamine WT dye.

crops (American. . ., 1960). It also has been used advantageously in geological and soils interpretation. When using this film a yellow filter is needed to eliminate the blue light, thereby reducing the degrading effect of haze. As skylight reflection on the water surface is also predominantly blue, infrared color photography of underwater details will appear clearer than with ordinary color photography. Generally, the infrared layer on the film is underexposed when photographing a water body.

Narrow band filters permit the selection of the region of the spectrum that has minimum interference and maximum subject contrast. Interference filters have several advantages over absorption filters including high peak transmittance and sharp cutoffs. However, the peak wave length of an interference filter is a function of the angle of incidence of the radiation impinging on the filter. If it is desired to record essentially the same band or region of the spectrum on the edges of the frame as in the center of the picture, interference filters can only be used with cameras having a narrow angle field of view. The color characteristics of waste from the Kraft pulp process vary causing the optimum film-filter combinations required to study the effluent plume to change. The same film-narrow band filter combinations used to study one waste can probably not be used to study a plume of a different waste or to study fluorescent dye concentrations in a dye patch.

Multiband camera systems have been developed by several organizations (Yost and Wenderoth, 1967; Molineux, 1965). This system has a number of film-filter combinations to take simultaneous photographs in several regions in the spectrum. This method not only allows the selection of several film-filter combinations for optimum results, but permits the proper exposure of each spectral band. For an example, on a normal color photograph of the sea, the blue sensitive layer is generally over exposed while the red sensitive is generally under exposed. A multiband camera system would allow the proper exposure of each band.

In research at the Allen Hancock Foundation it was found that high optical absorbance of millipore-filtered water to light at a wavelength of 230 nm is related to the concentration of sewage. In their study (Allen. . ., 1964), the ultraviolet absorbance was suggested as a possible method of tracing the sewage field by direct sampling without using a tracer. A film sensitive to the ultraviolet region of the spectrum might be used to trace the sewage field. However, the ultraviolet is also the region of maximum atmospheric interference.

Infrared film is sensitive to both the blue and infrared regions of the spectrum. It is, therefore, necessary to use lens filters in order to limit the exposure to the infrared region. Infrared photography will record energy in the 700-900 nm region. At normal temperatures the energy in this region is predominantly reflected energy, not emitted energy, and is not related to temperature. Due to

the high attenuation of water in the infrared band, water surfaces on an infrared black and white photograph will normally appear black. The high contrast between the water and land is used to advantage when mapping the water line of a body of water. Algae have high reflectance in this band and infrared photography is used to monitor blooms. The photo in figure 3 shows the aerial distribution of the algal bloom in the lake. Concentration and total mass can be estimated from the photography. An infrared photo of the waste field from an ocean outfall is shown in figure 4. When taking black and white photographs of water, the exposure is about two stops greater than ordinary land detail. As a result, the shore in figure 3 and the four boats in figure 4 are overexposed.

Objects at normal temperature radiate thermal infrared rays at a wave length greater than can be recorded on ordinary infrared film. Suitable equipment is now available for measuring surface water temperatures by remote sensing. Infrared scanning of 4.5 - 5.5 micron wavelength has been used successfully by the U.S. Geological Survey to locate fresh water springs in Hawaii (Fisher, Davis, and Sousa, 1966). In this study the sea water temperature averaged 73.5 degrees F while the fresh water temperature was between 60 and 70 degrees F. Scanning in the 8-14 micron wavelength would be most suitable for water surface temperatures as this is the region of maximum radiation and the region relatively free of reflected sunlight interference. It is expected that temperature differences of 0.2 degrees C can be detected by scanning in this region (Ory, 1965). The temperature of the waste may provide a suitable tracer for a thermal effluent discharge. For cooler industrial wastes the use of heat as a tracer is unlikely since the thermal resolution of the scanning equipment is about the same magnitude as the expected maximum difference in temperature within the waste field. In the ocean, vertical thermal stratification will exist under certain conditions. Warm wastes discharged from the diffuser of an ocean outfall will mix with the colder subsurface water and by the time the mixture reaches the surface, the resulting plume temperature may be greater than, less than, or equal to the surrounding ocean temperature.

Surface currents have been measured successfully with aerial photography by a number of investigators. The Coast and Geodetic Survey has been using aerial photography to measure surface tidal currents for more than ten years (Keller, 1963). Waldichuk (1966) found long strips of buoyant paper provided an economical target for surface current measurement as long as the sea was not so rough that the paper would buckle and twist. A study by the Water Pollution Research Board of England (1964) indicated that drift cards released over the outlet of an ocean outfall did not in general follow the sewage field but were deflected by the wind; however, drift poles and surface floats with drogues at about five feet did follow the waste plume.

Romanousky (1966), from the Center for Oceanographic Research and Studies in Paris, has studied diffusion of wastewaters by photographing

Figure 3. Infrared black and white photo of algal bloom in a lake.

Figure 4. Infrared black and white photo of a waste plume.

dye releases from a balloon. Fresh water with rhodamine B or fluorescein dye added was pumped through a pipe to the bottom of the sea. The fresh water discharge rose to the surface where it spread under the influence of surface mixing and was then photographed. Ichiye and Plutchak (1966) of Columbia University have taken aerial photographs of rhodamine B dye patches and have found that the dye concentrations measured by a shipborne Turner fluorometer correlated very well with densitometer readings on the aerial negative.

Scherz (1967) at the University of Wisconsin has conducted work on pollution detection with aerial photography. In this work, aerial photographs were taken of various pollution sources using different film-filter combinations and the optimum film-filter was selected by visual observation. Cornell Aeronautical Laboratory (Neumaier et al., 1967) under project Aqua-Map has conducted studies on the reflectance of various polluted waters using test panels submerged below the water surface. Both laboratory studies with reflection spectrometer and field surveys with aerial cameras have been conducted. Their study indicated that industrial waste effluents can in some cases be identified photographically.

SECTION V

RATIONALE

Photographic films used in aerial photography are sensitive to the visible and near visible light. The main source of this light is the sun. Both the amount and composition of the light scattered from within the water are utilized in the study to determine the waste concentration in the effluent plume. The amount of light is recorded as the film density of the photographic image while the composition of the scattered light is determined from the film-filter combinations If the light scattering or light absorpused for the photography. tion properties of a waste are a function of the wave length of light, the ratio of the light return in the band of maximum absorption is a sensitive indicator of the waste concentration. However, if the waste is either black or white, the difference in the light returned in two bands divided by the sum will provide a sensitive indicator of the waste concentration. By using the ratio of light returned, the relationship between the film densities and the waste or dye concentration will be simplified as shown in the following sections.

Sun Energy

Energy from the sun passes through the atmosphere to the sea. Upon reaching the water surface, the radiation is either reflected or transmitted through this interface. The refracted light is transmitted, scattered, or absorbed in the sea. Some of the scattered light is directed upwards and passes through the sea-air interface. A part of the light emerging from the sea reaches the aerial camera and exposes the photographic film.

The upper limit of the atmosphere receives energy at an average rate of about 0.135 watts per square cm perpendicular to the radiation. This value fluctuates about $\pm 5\%$ during a yearly period due to the eccentricity of the earth's orbit about the sun. The extraterrestrial energy spectrum of the sun's radiation is shown in figure 5 (Hutchinson, 1957).

The normal spectrum of solar radiation that reaches the sea surface is also shown in figure 5. Solar radiation, when passing through the atmosphere, is reduced by scattering and absorption. The amount of radiation received at the earth's surface $(H)^2$ can be estimated by

$$H = H_0 \exp(-KL) \tag{1}$$

where K is the attenuation coefficient which varies with wave length, ${\rm H}_{_{\rm O}}$ is the incoming radiation at the outer atmosphere and L is the

 $[\]frac{2}{2}$ Terms in this chapter are defined where first used. Definition of these terms are also listed in Appendix A.

Figure 5. Spectral distribution of radiant energy.

light path length (Elterman and Toolin, 1965).

Absorption of light depends on the composition of the air, mainly water vapor, carbon dioxide and ozone, and the wave length of light. It can be seen in figure 5, that there are several zones of selective absorption. The ultraviolet part of the sun's radiation with a wave length of 290 nm or less is completely cut off by the atmospheric ozone layer and oxygen before it reaches the earth's surface. In the near infrared region (0.7 to 5 microns), the selective absorption is primarily due to water vapor and carbon dioxide (Holter, 1967).

The attenuation depends not only on the turbidity in the atmosphere but also on the length of path through the atmosphere. The length of the light path varies approximately as the secant of the zenith angle (i). Hence, the zenith angle (i) is involved in reducing illumination in two ways. First, the intensity on a horizontal surface is $\cos(i)$ times the intensity on a plane normal to the radiation. Second, the path traversed by radiation through the atmosphere is greater for large angles than for the small angles. The irradiance on a horizontal plane at sea surface is

$$H_{s} = H_{o} \cos(i) \exp(-Asec(i))$$
 (2)

where A is the extinction optical thickness and includes Rayleigh attenuation, aerosol attenuation, and ozone absorption for a standard atmosphere (Elterman and Toolin, 1965).

In clean, dry, air, molecular scattering is of primary importance. The scattering of very small particles of molecular dimensions is inversely proportional to the fourth power of the wavelength (Jensen, 1968) and, therefore, affects the shorter wavelengths more than the longer wavelengths. This is the reason most black and white aerial photography is taken with the minus-blue filter. As the particle sizes in the atmosphere increase, the wavelength of maximum scatter becomes less selective and extends into the green, yellow, etc., regions of the spectrum. Hence, the color of the sky changes toward cloud white as the particles increase from molecular to aerosol size. As a result, aerial photography taken under turbid atmospheric conditions requires filtering out of more of the spectrum, including green and possibly yellow light to produce a noticeable effect (Tarkington, 1966). Photographs taken in the near infrared wavelengths are better able to penetrate haze.

Light Reflection

Since the reflected light from the water surface will not contribute information on the material in the water, it should be reduced to a minimum. The incident light includes both direct sunlight and diffused skylight. The reflection of direct sunlight will be partially polarized and can be reduced from exposing the film by the proper

orientation of a polarized filter. On a cloudless day, the skylight will be predominantly blue and the surface reflection of diffused light can be reduced with a minus blue filter. Figure 6 shows the effect of the sun's altitude on the irradiance of skylight and direct sunlight (Jones and Condit, 1948).

The height of the sun above the horizon is critical for vertical aerial photography of a water surface. The maximum height determines the amount of reflected light reaching the film while the minimum height determines light penetration into the sea. If the sea surface were calm, a single mirror-like reflection of the sun would appear. As the sea surface is generally not smooth, the zenith angle of the sun must be greater than half the angular coverage of the camera to avoid photographing the sun spot glare. The width of the glitter pattern about the sun's reflection is an indication of the maximum slope of the sea surface. Cox and Munk (1955) have studied roughness of the sea surface by analyzing photographs of the sun's glitter. As shown in figure 7, a sloping water surface will require that the minimum zenith angle of the sun be at least half the angular coverage of the aerial camera plus twice the water surface slope if vertical photography is to be free of sun's glare. The slope of waves can vary from 0° to over 90° for breaking waves. It is, therefore, necessary to select a reasonable value of slope which will eliminate most of the sun spot glare for the expected sea conditions during photography. Studies (Cox and Munk, 1954) have indicated that for a 3-knot wind the maximum slope is about 15° and about 25° for an 18-knot wind. For photographing underwater objects Faas (1960) suggests that the slope 18.50 be used. This would indicate that the sun's zenith angle at the time of photography be at least 37° plus half the angular coverage of the aerial camera, if the sun's glitter is to be avoided on vertical photography. An alternate solution is to mount the camera to take oblique photography.

The light reaching the water surface is either reflected from or refracted through the air-sea interface. As shown in figure 8, the incident light (H_s) is divided into that which penetrates the sea (H_s) and that which is reflected from the interface. If i is the angle of incidence of the incoming radiation and j is the angle of refraction, then $\sin(i)/\sin(j)$ is equal to the index of refraction for water or about 4/3. The reflectivity of an optically flat water surface is theoretically obtained for unpolarized light from Fresnel's law (Jerlov, 1968) which gives the ratio (p_a) of reflected energy to incoming radiation and is

$$P_{a} = \frac{1}{2} \left[\frac{\tan^{2}(i-j)}{\tan^{2}(i+j)} + \frac{\sin^{2}(i-j)}{\sin^{2}(i+j)} \right]$$
(3)

where the terms inside the brackets are for the components of light parallels and perpendicular to the plane of incidence. A plot of the percent reflectivity for angles of incidence from 0 to 90 degrees is

Figure 6. Direct sunlight and skylight on a horizontal plane.

Figure 7. Sunlight reflection from a sloping water surface.

Figure 8. Light penetration into the sea.

shown in figure 8. It can be seen that the reflectivity increases rapidly when the angle of incidence exceeds 60 degrees. The irradiance (H $_{\rm M}$) below the sea surface and normal to the beam is

$$H_{w} = (1 - p_{a}) H_{s} \operatorname{sec}(j)$$
 (4)

Light Attenuation in the Sea

The radiation that penetrates the surface of the sea is progressively diminished by extinction as it travels through the water. The attenuation of light is caused by scattering and absorption. By applying Lambert's and Beer's laws for monochromatic light the intensity $\rm H_Z$ at some depth z below the sea surface is given by

$$H_{z} = H_{w} \exp(-Cz \sec(j))$$
 (5)

$$C = a + bW ag{6}$$

where C is the attenuation coefficient for sea water and waste, 'a' is the sea water attenuation coefficient, b is the waste absorption coefficient and W is the waste concentration. The attenuation coefficients for sea water and Kraft pulp waste are shown in figure 9. Minimum attenuation of sea water occurs at about 540 nm while the minimum for the waste is about 700 nm.

Light Scattering in the Sea

The attenuation coefficients of both sea water and the waste can be divided into attenuation due to absorption and attenuation due to scattering. The scattering of light in a turbid medium is caused by reflection and diffraction light rays by small particles of suspended matter and colloidal solutions. As in the atmosphere, if the size of the particles is small compared to the wavelength of light, then the intensity of the scattering light is inversely proportional to the wavelength to the nth power. The exponent n decreases with increasing particle size from the value of four for pure water to approaching zero for coarse suspended matter (Jensen, 1968). Thus for solutions with small particles, the blue light has the maximum scatter, while for solutions with larger particles all colors are scattered about the same amount.

By definition of the volume scattering function $\beta(\alpha)$, the scattered light intensity (dJ) from an incremental volume dV is

$$dJ = H_{Z} \beta(\alpha) dV$$
 (7)

where α is the angle between the incident beam and the scattered light.

Figure 10 shows the variation in the volume scattering function for both sea water and pure water (Jerlov, 1964). It can be seen that the curve

Figure 9. Typical attenuation coefficients.

Figure 10. Volume scattering function.

for pure water is symmetrical with a minimum at α equal to 90 degrees. The scattering function for sea water varies greatly with α .

The variation of the scattering angle (α) on an aerial photograph is shown in figure 11. The angle between the incoming direct light in the sea and the scattered light reaching the camera changes with position; hence, the intensity of scattered light from below the sea surface will also vary. For a vertical photograph taken with a 6-inch aerial camera when the sun's zenith angle is 55 degrees, the angle " α " would vary from about 110 degrees to 170 degrees.

Figure 12 is a plot of data taken from work by Tyler and Richardson (1958). In this study a nephelometer was used to measure the radiant intensity scattered from a volume for various scattering angles (α) . A

Figure 11. Variation in the scattering angle.

Figure 12. Effect of contaminant on the scattering function.

contaminant of skim milk was added at various concentrations. The light scattering for the various solutions is directly related to concentration of the contaminant.

For scattering by large particles, the intensity of the scattered light is proportional to the particle surface area that is exposed to the incident beam (Jerlov, 1968). If the particle size is uniform, then the intensity of the scattered light is proportional to the waste concentration. In the upper plot in figure 12 the volume scattering function is shown as a linear function of the waste concentration. From the lower plot in figure 12, it can be seen that the function $\beta(\alpha)$ can be approximated by

$$\beta(\alpha) = \beta_0(\alpha) (1 + K'W)$$
 (8)

where β (α) is the volume scattering function of the sea water, K' is a constant for a particular waste and W is the waste concentration.

As shown in figure 13, if R is the distance from the volume element (dV) to the point where the scattered light strikes the surface and $d\Omega$ is the solid angle formed at the surface by dV, then

$$dV = R^2 d\Omega dR \tag{9}$$

In addition, the emerging ray of scattered light from the incremental volume will be augmented by diffused light of almost uniform intensity in all directions. As the intensity of the light which is scattered for the second time, will be approximately three orders of magnitude less than that of the direct lighting, the addition of the rescattered light to the emerging ray will not be considered. The intensity of the emerging ray dJ will be reduced by the absorption and scattering of the water and particles. From the inverse square law, the irradiance from the scattering volume incident on a normal plane to the beam at the surface is

$$dH_{a} \approx \frac{dJ}{R^{2}} \exp(-CR) \tag{10}$$

By combining equations and integrating, the irradiance at the surface is

$$H_{a} = \frac{H_{o}\beta_{o}(\alpha) \cos(i) (1 - pa) \exp(-A \sec(i))d\Omega}{\cos(i_{2}) \cos(j)}$$

$$\int (1 + K'W) \exp(-(a+bW)(\sec(j) + \sec(i_{2}))z) dz (11)$$

If the waste concentration is a known function of the depth (z), then equation 11 can be integrated numerically. However, if the waste field forms a relatively stable layer at the surface and the waste concentra-

Figure 13. Light from the sea.

tion is approximately uniform throughout the depth of this layer, then equation 11 can be integrated directly.

If the waste concentration is not a function of depth and $\exp(-(a + bW) z(\sec(j) + \sec(i_2))$ approaches zero, equation 11 reduces to

$$H_{a} = \frac{(1 + K'W) \operatorname{Ho\beta}_{O}(\alpha) \operatorname{cos}(\mathbf{i})(1 - \operatorname{pa}) \exp(-A \operatorname{sec}(\mathbf{i})) d\Omega}{(a+bW) \operatorname{cos}(\mathbf{i}_{2}) \operatorname{cos}(\mathbf{j})(\operatorname{sec}(\mathbf{i}_{2}) + \operatorname{sec}(\mathbf{j}))}$$
(12)

Evaluation of $\exp(-\text{Cz}(\sec(j) + \sec(i_2)))$ is shown in figure 12 for the green, red, and infrared regions of the spectrum. The expression was evaluated for values of the angles j and i_2 other than those listed in figure 14; however, the expression was relatively insensitive to changes in these angles. Average values of attenuation coefficients were selected from figure 9. It can be seen from the upper plot in figure 14 that 90% of the light returned in the infrared region is from the upper half meter of water. In the red and green bands the depth above which 90% of the light is returned is a function of the waste concentration. From the lower plot in figure 14, it can be seen that in the open sea 50% of the light in the red and green bands is returned from the upper two and four meters, respectively.

Radiance from the Sea

From equation 12 the radiance (Nw) from the scattering volume below the sea surface is

$$Nw = \frac{H_a}{d\Omega} \tag{13}$$

The light spreads into a larger solid angle when passing through the sea-air interface (Jerlov, 1968) and the radiance in air is

$$Na = \frac{Nw}{p^2} (1 - pw) \tag{14}$$

where n is the refractive index of water and pw is the reflectivity of light at the interface.

In addition to the upward radiance from the sea, the light reaching the photographic sensor includes skylight reflection, direct sunlight reflection and path radiance intensity. Reflectance of skylight from a rough sea surface can be approximated by a Lambert reflector while the direct sunlight is reflected specularly. Skylight radiance reflected from the surface is given by

$$N sky = ps \frac{H sky}{\pi}$$
 (15)

Figure 14. Depth of light return from the sea.

where ps is reflectivity of the skylight and was found by Burt (1953) to be approximately 0.066. The skylight irradiance (Hsky) is a function of solar altitude, atmospheric scattering and wave length of light. Path radiance intensity is a function of the length of sight ray, angle between sight and sun rays, atmospheric condition and wave length. For a clear atmosphere, skylight irradiance will be due predominantly to Rayleigh scattering and will have greatest influence on the shorter wave lengths. The reflection of direct sunlight is mathematically easier to estimate in magnitude by Fresnel's equations but its direction is difficult to predict without knowing the surface configuration of the sea. Since the Fresnel's equations are nearly independent of wave length, the magnitude of direct sunlight reflection will be proportional to each other in spectral bands of the sensor.

If N is the radiance from the sea surface and the path radiance is neglected then the radiance at the sensor is

$$Nc = N \exp(-E \sec(j_2))$$
 (16)

where E is the extinction optical thickness for the attenuation by the atmosphere from the sea to the camera. E is, therefore, a function of flying height and wave length. N includes the skylight reflection (N sky), direct sunlight reflection (Nd), and upward radiance from the sea and the waste (Na) or

$$N = Nsky + Nd + Na$$
 (17)

By combining equations 12, 13, 14, 15, and 17 the radiance N is equal to

$$N = ps \frac{Hsky}{\pi} + Nd +$$

$$\frac{(1 - pw)(1 + K'W)\beta_{o}(\alpha) \text{ Ho } \exp(-A \sec(i)) \cos(i)(1 - pa)}{n^{2} (a + bW) \cos(j) \cos(i_{2})(\sec(i_{2}) + \sec(j))}$$
(18)

The first term on the right is the skylight reflection, the second term is direct sunlight reflection and the last term is the uplighting from the sea (Na).

Equation 18 can be expanded by writing the equation for each of the spectral bands. The subscripts g and r refer to the bands of maximum absorption and scatter, respectively.

$$N_{g} = K_{4}p_{s} \frac{H \text{ sky}}{\pi} + K_{5}N_{d} + K_{6}Y \left(\exp(-A_{g} \text{ sec(i)})\right) \frac{(1 + K_{g}'W)}{a_{g} + b_{g}W} \beta_{o}(\alpha)$$
 (19)

$$N_{r} = K_{7}p_{s} \frac{H_{sky}}{\pi} + K_{8}N_{d} + K_{9}Y \left(\exp(-A_{r} \sec(i))\right) \frac{(1 + K_{r}'W)}{a_{r} + b_{r}W} \beta_{o}(\alpha)$$
 (20)

A typical spectral signature of both the open sea and the waste field is shown in figure 15. The effect of skylight, direct sunlight, and waste on the spectral signature is shown in the figure. Whenever possible direct sunlight reflection from the water surface should be avoided as it will cause interference with the data processing. Hence, the second term on the right of the three equations is zero. As skylight is predominantly blue

$$K_4 \sim 0$$
, $K_7 \sim 0$

Rewriting equations 19 and 20

$$N_g = K_6 Y \frac{(1 + K'W)}{a_g + b_g W} \exp(-A_g \sec(i))$$
 (21)

$$N_r = K_9 Y \frac{(1 + K_r^{\dagger}W)}{a_r + b_r W} \exp(-A_r \sec(i))$$
 (22)

Where Y is a constant for the two bands at a point on the photograph and is equal to

$$Y = \frac{H_0(1 - pw)(1 - pa) \cos(i)\beta_0(\alpha)}{n^2 \cos(j) \cos(i_2)(\sec(i_2) + \sec(j))}$$
 (23)

The Y term can be eliminated by taking the ratio (Rp) of the radiance in the two bands

$$R_{p} = K_{10} \frac{1 + K_{r}^{'}W}{1 + K_{g}^{'}W} \frac{a_{g} + b_{g}^{W}}{a_{r} + b_{r}^{W}} \exp(-(A_{r} - A_{g}) \operatorname{sec}(i))$$
 (24)

where K_{10} is a constant.

 $\frac{1+\,K\,!\,W}{1+\,K\,!\,W}$ is the scattering coefficient ratio and shows the effect of

scattering on the composition of the scattered light. As the particle size is relatively large compared to the wavelength of light, the scattered light is of nearly the same composition as the incident light. Therefore, this term is approximately equal to one.

Figure 15. Typical spectral signature.

The term $\frac{a_g + b_g W}{a_r + b_r W}$ represents the change in light composition due to the selective absorption of the waste and the sea water.

 $\exp(-(A_r - A_g) \sec(i))$ is the atmospheric attenuation ratio and shows the effect of the sun's altitude on the incident light composition.

From equation 24, the ratio at the sea surface (Rph) is

Rph = Rp exp((A_r - A_g) sec(i)) =
$$K_{10} \frac{a_g + b_g W}{a_r + b_r W}$$
 (25)

Photographic Measurement of Light

The aerial photograph is a light detector and can be used to measure the light return from objects. As shown in figure 16, j_2 is the angle between the ray to the camera and the vertical. If the angle between

Figure 16. Geometry of exposure calculation.

the ray and the camera axis is represented by c, then by geometry

$$dA = dA' \left[\frac{Zo}{f}\right]^2 \left[\frac{\cos(c)}{\cos(j_2)}\right]^3$$
 (26)

where dA is the area on the sea surface included in the densitometer aperture area dA' on the photographic film, Zo is the flying height and f is the focal length of the camera. The solid angle subtended by the lens of diameter D is

$$d\Omega = \frac{\pi}{4} \left[\frac{D \cos(j_2)}{Zo} \right]^2 \cos(c)$$
 (27)

The radiant flux (dp') collected by the camera lens is

$$dp' = N_c dA cos(j_2) d\Omega$$
 (28)

The irradiance of the film image is

$$H' = \frac{dp'}{dA'} = K_{12} \frac{TR N_c \cos^4(c)}{(FNO)^2}$$
 (29)

where $\rm K_{12}$ is a constant, FNO is the relative aperture of the lens (f/D), $^{\rm TR}$ is the lens transmittance and N $_{\rm C}$ is the object radiance at the camera.

The photographic exposure (EX) is the product of image irradiance (H') or the rate at which energy is incident upon a unit area of the film and the time (TIM) during which it acts. The equation

$$EX = H' \times TIM \tag{30}$$

indicates that there are many combinations of H' and TIM that will give the same exposure. This is known as the Reciprocity Law and is correct for normal aerial photography where extremes in exposure times are not employed.

The density of a film is defined as the common logarithm of the reciprocal of the transmittance or the logarithm of the ratio of incident light on the film and the transmitted light through the film. The relationship between film density and exposure is shown by the characteristic curves of a film. The curve is a plot of log exposure against film density for a particular development. A typical characteristic curve is shown in figure 17 (American..., 1968).

The characteristic curve can be divided in three parts; the lower part of the curve AB which is concaved upward is known as the toe, the

Figure 17. Typical characteristic curve of an aerial positive film.

the straight line portion of the curve BC, and the top part of the curve CD which is concaved downward and is known as the shoulder region. The toe of the characteristic curve approaches a horizontal line at some value of density greater than zero. This value represents the density of the base of the film.

The slope of the straight line portion of the characteristic curve is known as the film gamma. The greater the gamma the greater the contrast or the greater the difference in densities on a given photograph. The gamma is a characteristic of the film but varies within limits with different development time. The speed or exposure index of the film is indicated by the horizontal position of the characteristic curve along the exposure axis.

If the exposure of the film is on the straight line portion of the D or E curve, then the film density can be expressed by

$$D(x, y) = M + G \ln (EX)$$
 (31)

D(x, y) is the film density at the point on the photo with film coordinates x and y, M is a constant representing the film speed, G is the gamma or contrast of the film and EX is the exposure.

Combining equations 30 and 31 and solving for the image irradiance

$$H' = \frac{K_{13}}{TIM} \exp((D(x,y) - M)/G)$$
 (32)

The radiance from the sea as measured at the camera station is determined from equations 29 and 32

$$N_{c} = \frac{K_{14} (FNO)^{2} \exp((D(x, y) - M)/G)}{(TIM) (TR) \cos^{4}(c)}$$
(33)

By including the atmospheric attenuation, but neglecting light path radiance in the atmosphere, the radiance at the sea surface (N) is equal to

$$N = \frac{K_{15} (FNO)^{2}}{(TIM) (TR) \cos^{4}(c)} \exp(D(x,y)/G + E \sec(j_{2}))$$
(34)

where the term $\exp(-M/G)$ has been included in the constant (K₁₅). The factor $\exp(\text{E sec}(j_2))$ compensates for the atmospheric attenuation of the light from the sea surface to the camera. Writing equation 34 for two spectral bands:

$$N_g = \frac{K_{17}(FNO)^2 \exp(D_g(x,y)/G_g + E_g \sec(j_2))}{(TIM)(TR_g) \cos^4(c)}$$
 (35)

$$N_{r} = \frac{K_{18}(FNO)^{2} \exp(D_{r}(x,y)/G_{r} + E_{r} \sec(j_{2}))}{(TIM)(TR_{r}) \cos^{4}(c)}$$
(36)

The ratio (R) of the radiance in the two bands is obtained by dividing equation $36\ \mathrm{by}\ 35$

$$R_{p} = \frac{N_{r}}{N_{g}} = K_{19} \exp((D_{r}(x,y)/G_{r} - D_{g}(x,y))/G_{g} + (E_{r} - E_{g}) \sec(j_{2}))$$
 (37)

For the color films used on this project the gamma (G) was nearly the same in the spectral bands. As in equation 25, the value of Rph is

defined as

$$Rph = R_{p} \exp(A_{r} - A_{g}) \sec(i)$$

$$= K_{19} \exp((D_{r}(x,y)/G_{r} - D_{g}(x,y))/G_{g} + (E_{r} - E_{g}) \sec(j_{2})$$

$$+ (A_{r} - A_{g}) \sec(i))$$
(38)

where angle i is the angle of incidence for the direct sunlight and A and Ag are the extinction optical thickness of a standard atmosphere for the maximum absorption and scatter bands respectively.

If Rpho is the ratio of the radiance from the sea for the two bands where no waste is present and this value is adjusted for the atmospheric attenuation as in equation 38, Rpho can be estimated by the following regression model for any point on the photograph.

$$Rpho = B_0 + B_1 SUNR + \varepsilon$$
 (39)

In this equation B_0 and B_1 are regression coefficients to be determined by a least squares fit of the model to the data points outside the waste field. SUNR is the angle between the ray from the sea to the camera station and the direct sunlight reflected from a horizontal surface.

The ratio anomaly (RA) is defined as

$$RA = Rph - Rpho$$
 (40)

and is the variation in the ratio of two bands of light returned from within the sea due to the presence of waste. The value of the ratio anomaly is determined from equations 38 and 39.

Waste Concentrations from Aerial Photography

The relationship between the photographic value RA and the concentration W can be developed from equation 25 as

$$RA = K_{10} \left[\frac{(a_r b_g - a_g b_r)W}{a_r (a_r + b_r W)} \right]$$
 (41)

Evaluation of the term in the brackets of equation 41 is shown in figure 18. The relationship between the photographic value RA and the waste concentration is a function of the sea water attenuation coefficients and the waste absorption coefficients. Average values of these coefficients were selected from figure 9. The upper curve in figure 18 is for the ratio of red to green radiance. For comparison

$$f(a,b) = \frac{(arb_g - agb_r)W}{a_r^2 + arb_rW}$$

Curve No.	Band Subscripts		Evaluated For
	ŗ	g	green at 550nm
1	red	grēen	red at 650 nm
2	infrared	green	infrared at 750nm
3	infrared	red	

Figure 18. Spectral response curves.

two other curves were included. The lower curve is for the ratio of infrared to red and the center curve is for the ratio of infrared to green. While the ratio of red to green radiance is the most sensitive to changes in waste concentration, it is also the ratio with the greatest interference to skylight reflection and light path radiance.

Curves such as those shown in figure 18 are useful in predicting the response of different film-filter combinations for measuring waste concentrations; however, interference must be considered. If the two regions of the spectrum are measured with two cameras, the camera settings can be adjusted for optimum exposure in each band. By using high contrast developer and/or film, the sensitivity of the film density to the waste concentration can be increased.

From equation 41 the waste concentration can be expressed as

$$W = C_1 (RA) + C_2 (RA)^2 + \dots$$
 (42)

where C_1 and C_2 are coefficients. A stepwise regression analysis of this model has shown that only the first two terms are significant.

The F level to enter the first term ranges between 500 to 1000 while the F level to enter the second term generally ranges from 1 to 5.

Photographic Orientation

Photographic orientation is accomplished by a non-linear solution to the collinearity condition equations (Keller and Tewinkel, 1966). Corrections are generally not required for atmospheric refraction, earth curvature, film shrinkage or lens distortion. The relationship between photo coordinates and ground coordinates is

$$\begin{bmatrix} x_p - x_0 \\ y_p - y_0 \\ - f \end{bmatrix} = K[RM] \begin{bmatrix} X_p - Y_c \\ Y_p - Y_c \\ Z_p - Z_c \end{bmatrix}$$

$$(43)$$

where x and y are photo coordinates of image point p, f is the camera focal length, x and y are photo coordinates of the principal point, K is a scale factor, the X, Y, and Z subscripted p and c refer to ground coordinates of the object and camera station respectively, RM is the rotational matrix. The matrix is defined as

$$[RM] = \begin{bmatrix} m11 & m12 & m13 \\ m21 & m22 & m23 \\ m31 & m32 & m33 \end{bmatrix}$$
(44)

where

$$\begin{array}{l} m11 = \cos(\phi) & \cos(K_{a}) \\ m12 = \cos(W_{o}) & \sin(K_{a}) + \sin(W_{o}) & \sin(\phi) & \cos(K_{a}) \\ m13 = \sin(W_{o}) & \sin(K_{a}) - \cos(W_{o}) & \sin(\phi) & \cos(K_{a}) \\ m21 = -\cos(\phi) & \sin(K_{o}) \\ m22 = \cos(W_{o}) & \cos(K_{a}) - \sin(W_{o}) & \sin(\phi) & \sin(K_{a}) \\ m23 = \sin(W_{o}) & \cos(K_{a}) + \cos(W_{o}) & \sin(\phi) & \sin(K_{a}) \\ m31 = \sin(\phi) \\ m32 = \sin(W_{o}) & \cos(\phi) \\ m33 = \cos(W_{o}) & \cos(\phi) \end{array}$$

The three parameters W_0 , ϕ and K_a are the photographic rotations about the X, Y and Z axis, respectively.

The collinearity equations are obtained by dividing the first and second rows of equation 43 by the third row hereby eliminating the scale factor.

$$\frac{x_{p} - x_{o}}{-f} = \frac{m11 (x_{p} - x_{c}) + m12 (y_{p} - y_{c}) + m13 (z_{p} - z_{c})}{m31 (x_{p} - x_{c}) + m32 (y_{p} - y_{c}) + m33 (z_{p} - z_{c})}$$
(45)

$$\frac{y_p - y_o}{-f} = \frac{m21 (X_p - X_c) + m22 (Y_p - Y_c) + m23 (Z_p - Z_c)}{m31 (X_p - X_c) + m32 (Y_p - Y_c) + m33 (Z_p - Z_c)}$$
(46)

These equations insure that the camera station, image and object lie on a straight line. For each point two collinearity equations can be written. As there are six unknowns $(X_c, Y_c, Z_c, W_o, \phi \text{ and } K_a)$ a minimum of three noncollinear control points are required for their solution. However, a least squares solution permits the use of an unlimited number of control points.

Solution to the equations is obtained based on a set of initial approximations which are adjusted iteratively until the adjustments become small. The collinearity equations are linearized by the Taylor series with the expansion terminated at the first derivative.

When the initial approximations of B_{i} are close to the actual

parameters values (B)

$$f(B) = F(B_{j}) + \sum_{i=1}^{6} \frac{\partial f(B)}{\partial B_{i}} \Delta B_{i}$$
 (47)

Letting $Y = f(B) - f(B_{i})$ (48)

$$Z_{i} = \frac{\partial f(B)}{\partial B_{i}}$$
 for $B = B_{j}$ (49)

then

$$Y = \sum_{i=1}^{6} Z_i \Delta B_i + \varepsilon$$

which is a linear form of the collinearity equations. The least squares solution in matrix notation is

$$B = [Z^{T}Z]^{-1} Z^{T}Y$$
 (50)

The initial approximations of the parameters (B_{i}) are replaced by

$$B_{j+1} = B_j + \Delta B_j \tag{51}$$

This iterative process is continued until the solution converges, that is, until all ΔB 's are less than some prespecified amount. In this space resection problem no test is made on the linear adjustments but solution is terminated when the angular adjustments are less than about two seconds of arc.

By knowing the photo orientation, it is possible to determine the position vectors for any point on the photograph. The position vector (\overline{X}) based on the state plane coordinate system axis is related to the photographic vector (\overline{X}_D) by the equation

$$\bar{X} = [RM]^{-1} \bar{X}_{p}$$
 (52)

The ground coordinate of any point on the photograph can be computed from the unit position vector and the camera station coordinate determined from the photographic orientation.

In order to compute the required angle between this position vector and the light rays, the sun's position must be determined. The altitude (h) and azimuth (Az) from true north of the sun are determined from

$$sin(h) = sin(L) sin(D) + cos(L) cos(D) cos(t)$$
 (53)

$$Tan(Az) = sin(t)/(cos(L) tan(D) - sin(L) cos(t))$$
 (54)

where

L = latitude

D = declination of the sun

t = hour angle of the sun

The vector representation of the light ray from the sun is

$$\bar{X}_{s} = \cos(h) \sin(AZ)i + \cos(h) \cos(AZ)j - \sin(h)k$$
 (55)

AZ represents the azimuth of the sun from grid north and differs from the azimuth from true north by the state plane coordinate mapping angle. The position vector as defined by equation 52 and the sun ray vector as defined by equation 55 are based on the same coordinate system.

SECTION VI

DIFFUSION STUDIES

Numerous investigators have employed solutions to the diffusion equations for the estimation of waste concentrations in the waste plume that occurs at an outfall location. If the scale of the current eddies is much smaller than the dimensions of the waste field, then the Fickian form of diffusion equation can be applied. The basic equation is:

$$\frac{\partial W}{\partial T} = \frac{\partial}{\partial Y} \left(D_{y} \frac{\partial W}{\partial Y} \right) + \frac{\partial}{\partial X} \left(D_{x} \frac{\partial W}{\partial X} \right) + \frac{\partial}{\partial Z} \left(D_{z} \frac{\partial W}{\partial Z} \right) - \left[\frac{\partial}{\partial Y} \left(V_{y} W \right) + \frac{\partial}{\partial X} \left(V_{x} W \right) + \frac{\partial}{\partial Z} \left(V_{z} W \right) \right] + S$$
(56)

where V is velocity, W is waste concentration, D is eddy diffusivity. The first three terms on the right are the diffusion terms, the next three are convection terms and S represents the sources and sinks.

Solutions to the equations have required various assumptions such as steady state condition, no vertical or longitudinal mixing and unidirectional transport velocity in the x direction. With these assumptions, the equation becomes:

$$V_{x} \frac{\partial W}{\partial X} = \frac{\partial}{\partial Y} \left(D_{y} \frac{\partial W}{\partial Y} \right) + aW$$
 (57)

Where "a" is a first order decay constant and "aW" represents a sink or loss in the system.

Investigators such as Pearson (1955-1967), Brooks (1960) and others have reported solutions to the diffusion equation for various conditions. Pearson points out that for point and line sources, steady unidirectional current, uniform mixing of the waste over a depth, d and continuous uniform flow from the source, solutions to the diffusion equation in terms of the minimum dilution, $S_{\rm om}$, along the centerline axis of the waste sea water plume are as follows:

Point Source

$$S_{\text{om}} = \frac{2.35 \text{ d } \sqrt{D_y V_x X}}{Q}$$
 (58)

where S_{om} is the minimum dilution along axis of waste plume at distance X from source; D_y is the assumed diffusivity, ft^2/sec ; X is the distance from source, feet; V_x is the average velocity of water mass, ft/sec; Q is the waste discharge, MGD; and d is the assumed mixing depth, ft.

Including the decay function for bacterial dieaway for disappearance, and expressing the waste concentration in terms of coliform concentration, the above expression becomes:

$$MPN = \frac{0.425 \text{ QC}_{0}}{d\sqrt{D_{v}V_{x}X} \exp(aXV_{x})}$$
(59)

where MPN is the most probable number of organisms per ml on plume centerline at X; $C_{\rm O}$ is the concentration of organisms in waste, MPN/ml; and a is the bacterial dieaway (decay) constant, \sec^{-1} .

Line Source

$$S_{om} = \frac{0.622 \text{ V}_{x} \text{bd}}{Q \text{ erf } [(b/4) \sqrt{V_{x}/D_{y}}X]}$$
 (60)

where b is equal to the width of diffuser source, feet and

MPN =
$$\frac{1.55 \text{ Q C}_{o} \text{ erf } [(b/4) \sqrt{V_{x}/D_{y}X}]}{b \text{ d V}_{x} \text{ exp } (aX/V_{x})}$$
 (61)

Pearson (1967) further points out that: "The above equations assume a constant eddy diffusivity; correspondingly, the value of D_y employed must be representative of the overall or average scale of the diffusion phenomenon.

Brooks has reported a solution to the diffusion equation with a variable coefficient of diffusivity. It is assumed that the diffusivity coefficient, D, varies as the four-thirds power of the scale of the diffusion phenomenon, D $\cong \alpha \ 1^{4/3}$, where α is a constant. Brooks' equation for a line source is as follows:

$$C_{\rm m} = C_{\rm o} e^{-at} \text{ erf } \left[\frac{3/2}{(1 + 2BX/(3b))^3 - 1} \right]^{1/2}$$
 (62)

Where:

 C_{o} = initial coliform concentration

 $\mathbf{C}_{\mathbf{m}}$ = maximum coliform concentration at time, t

$$t = time of travel = \frac{X}{V_X}$$

$$B = \frac{12D_y}{V_x b}$$

a = decay constant

 $D_{y} = \text{eddy diffusivity at source } (X = 0)$

b = initial width of sewage field

Considering the foregoing solutions to the diffusion equation, the four characteristics of the receiving waters which have the major effect on waste concentration are the following:

- 1. V, average current speed
- 2. D_v , eddy diffusivity
- 3. d, average mixing depth
- 4. a, decay or dieaway constant of pollutant

The Allen Hancock Foundation conducted an investigation on the dilution and dispersion of a waste field in the sea (1965). In their study rhodamine B dye was introduced as slugs from a point source, continuous plume from a point source and continuous plume from a volume source. Dye concentration was measured with a Turner fluorometer. The mathematical models used for analysis of data were statistical models based on Gaussian distribution. The basic three-dimensional model for the dye slug was

$$W(x,y,z,t) = \frac{M}{\pi\sqrt{2\pi} \left[\bar{\sigma}_{x}^{2}\bar{\sigma}_{y}^{2}\bar{\sigma}_{z}^{2}\right]^{1/2}} \exp - \left[\frac{x^{2}}{2\bar{\sigma}_{x}^{2}} + \frac{y^{2}}{2\bar{\sigma}_{y}^{2}} + \frac{z^{2}}{2\bar{\sigma}_{z}^{2}}\right]$$
(63)

where W is the average concentration of a point X, Y, Z, and time t, M is the amount of dye initially discharged from an instantaneous point source and $\bar{\sigma}_x^2$, $\bar{\sigma}_z^2$, $\bar{\sigma}_z^2$ are the average values of the variances of the concentration distribution.

One of the two dimensional models used describe a continuous plume from point source neglecting diffusion in the direction of motion was

$$W(x,y,z) = \frac{Q}{\pi(\bar{\sigma}_y^2 \bar{\sigma}_z^2)^{1/2} V_x} = \exp - \left[\frac{Y^2}{2\bar{\sigma}_y^2} + \frac{z^2}{2\bar{\sigma}_z^2} \right]$$
(64)

where Q is the continuous steady rate of discharge of material, $V_{\rm X}$ is the mean current velocity. The variances are a function of diffusion time or distance from the source, i.e., by making the substitution t = $\rm X/V_{\rm X}$ the variances can be expressed approximately as functions of distance.

For volume source the basic equation was

$$= \frac{2Q}{\pi V_{x} \left[2\overline{\sigma}_{y}^{2} + \overline{\sigma}_{y}^{2}(0)\right]^{1/2} \left[2\overline{\sigma}_{z}^{2} + \overline{\sigma}_{z}^{2}(0)\right]^{1/2}}$$

$$\exp - \left[\frac{Y^{2}}{2\overline{\sigma}_{y}^{2} + \overline{\sigma}_{y}^{2}(0)} + \frac{Z^{2}}{2\overline{\sigma}_{z}^{2} + \overline{\sigma}_{z}^{2}(0)}\right]$$
(65)

where $\bar{\sigma}^2$ (0) is the variance of the initial waste concentration distribution.

Several of the conclusions of this investigation are listed below.

- The rate of vertical diffusion can contribute significantly to the overall diffusion process at wind speeds greater than eight knots and/or low water column stability.
- 2. The rate of longitudinal and lateral diffusion appeared to be influenced by wind speed but not by water column stability.
- 3. The "4/3 law" relating the lateral coefficient of eddy diffusion as a function of average eddy scale did not hold in the particular oceanic areas studied.

Vertical mixing does occur in the waste field as well as horizontal mixing. As indicated by Wiegel (1964), vertical mixing is difficult to study in the laboratory because of limitations of tank size. In these studies the wind drags the surface water to the down wind end of the tank producing a hydraulic head which causes a flow in the opposite direction.

Laboratory studies have indicated that wind drag on the water surface produces very little mixing. However, when wind generated waves appear, extremely rapid mixing occurs as wind waves are rotational in the generating area. On the other hand, there is some indication that swell is not important to the mixing process as it is apparently nearly irrotational (Wiegel, 1964).

Masch (1961) conducted a wave study in a wave tank and developed the following relationship for the coefficient of eddy diffusivity:

$$D_{v} = 0.0038 \text{ (Vs + Qw)}^{3.2}$$

where Vs is the surface current and Qw is the water particle orbit speed (Qw = H/T, H = significant wave height and T = average wave period.

SECTION VII

SAMPLING PROCEDURES

In order to achieve the goals of this research project, the Kraft pulp mill outfall at Newport, Oregon was selected as the study site. The Georgia-Pacific pulp and paper plant at Toledo produces about 900 tons of pulp per day. Waste from the process is pumped through an eightmile pipeline to the outfall at Newport. Flow rates vary from six to twelve million gallons per day. The aerial photograph of the Newport-Toledo area shown in figure 19 was taken looking east with the ocean in the foreground. The location of the outfall in this figure was sketched on the photo and is shown in white. The 21-inch diameter outfall was rebuilt and extended to 3500 ft. offshore in 1965. The outfall terminates with a wye diffuser in about 40 feet of water at low tide. A sketch of the outfall is shown in figure 20. Thirteen outlet ports are located at 20-foot intervals on each leg of the wye section. The three-inch diameter ports discharge horizontally into The ports are oriented so that they discharge alternately on opposite sides of the header.

Three different field procedures were used on the project. During the 1968 and 1969 field seasons, work was carried out by conducting simultaneous studies of the waste plumes by aerial photographic methods and by conventional boat sampling. Concentrations in the plume were determined by metering rhodamine WT tracer into the pipeline and measuring the tracer concentration in the waste field with a fluorometer aboard the survey boat.

During the first field season, two fluorometers were used to sample from one foot and five feet below the water surface. Since there was no significant difference in the concentration at these two depths, only one fluorometer was used during the following field season. A ten-foot sampling probe for the fluorometer intake was constructed for the 1969 field season. Sample intake ports were located along the length of a sampling probe mounted on the side of the boat. The probe was designed to hang vertically at five knots. By a sliding valve arrangement in the body of the probe, the sampling depth could be selected from one to ten feet below the water surface. Boat sampling was discontinued during the 1970-71 field season and field work continued throughout the fall, winter, and spring when boat operations were impossible due to rough sea conditions most of the time.

Vertical aerial photography was taken with a single camera by a commercial aerial photography firm during the 1968 field season. As the firm was located approximately 100 miles from the study area, scheduling of the photography was difficult. After the 1968 field season, the project purchased three aerial cameras and the photography was taken with the cameras mounted obliquely in a rented four-passenger aircraft.

Figure 19. Aerial view of Newport area.

Figure 20. Sketch of the Newport outfall.

Shore Control

Accurate control for positioning the boat and orientation of the photography was essential. Concentrations computed from the photographs are compared to those measured by sampling from the boat. Since the comparison requires matching of ground coordinates, an accurate control network was established, thus eliminating the possibility of discrepancies in concentration being due to error in positioning.

Shore control for boat location and photograph orientation was provided by a ten-mile tellurometer traverse between two USC & GS triangulation stations. The traverse extended from a triangulation station on the south to station Yaquina Head Lighthouse on the North. Six traverse stations were established and marked with three quarter-inch steel rods 30 inches long. Horizontal angles were measured with a Wild T-3 theodolite. Initially the distances were to be measured with a geodimeter but due to poor visibility, a tellurometer was used. As the tellurometer measures slope distance, the station elevations were determined by reciprocal vertical angles. The established stations were marked with white cloth for photo identification.

Buoy Control

During the 1968 field season vertical, color photography was taken by a commercial aerial mapping firm. Photography was taken at scales of 1:6,000 and 1:12,000 using precise mapping cameras. In addition to the shore control, control buoys were required in the water for photographic orientation of the low altitude photography. The buoys were positioned so that each photo would contain a minimum of three control points for photographic orientation. Control buoys were four-foot square plywood floats three inches deep attached to 500 lb concrete anchors. The floats were constructed of a two-inch thick sheet of polyurthene between two sheets of half-inch plywood. To hold the float together a metal flashing was fastened around the edge and an eye bolt was placed through the center of the float. The mooring line was attached to the eye bolt. This line consisted of a ten-foot length of half-inch chain attached to each end of a half-inch polyprophylene rope. A swivel was placed between the top section of chain and the rope. The weight of the chain added stability to the anchoring system. In addition, the top 10-foot section of chain prevented vandalism by boaters. The scope of the mooring line was made as short as possible to minimize movement of the float about the anchor yet long enough to prevent movement of the anchor during normal summer months. The mooring line was made equal to the depth of water at MLLW plus 20 feet. Summer storms did take out three of the nearshore buoys which were set in less than 20 feet of water.

The small scale photography taken during the 1968 field season was intended to be used for buoy location by analytical strip bridging. However, it was found more convenient to triangulate the position of

the buoys from the shore stations.

The oblique camera mounting used after the first field season reduced the requirement for horizontal control in the water. The large camera photographs included the horizon and two horizontal control points could be identified on shore. In addition, one buoy was desired near the outfall to provide a strong fix for the photographic orientation. During the 1969 field season, two temporary buoys were set near the outfall on each day that field work was conducted. The buoy floats were four feet square, two inches thick polyurthene board which were fiberglassed and painted orange. The 60-lb anchors were adequate to hold the floats in position for the sea conditions encountered during the field work. Since boat operations were stopped during the 1970-71 field season, control buoys were not used during this period and photo control was provided by identification of at least three shore stations on the photography.

Water Currents

During the 1968 field season, the survey boat would set two four foot square floats with drogues attached to measure the water currents. The drogues extended from one half foot below the water surface to five feet and were constructed of herculite material fitted over a conduit frame to form a cross banner 4-1/2 ft in length and in width. A ten pound weight was attached to the lower end of the drogue. The positions of the current floats were determined from the aerial photography. In addition, during the 1969 field season 500 ml of 20% rhodamine WT dye in a plastic bag were dropped from the aircraft. The change in location and size of the resulting dye patch provided information on both the current velocity and the diffusion coefficients. When boat sampling was discontinued after the 1969 field season, floats with drogues attached were no longer used but dye markers were used to determine water currents and diffusion coefficients.

Continuous Boat Sampling

Cooperative arrangements were made with Georgia-Pacific Corporation to maintain a nearly constant waste discharge rate while field work was in progress. In addition, they provided the project with a dye tracer injection station installed on their outfall line near the beach. The station was equipped with a tap to the pipeline for injecting the tracer. A positive displacement pump was employed for continuous tracer injection into the pipeline. Pressure in the pipeline at the station varied from zero at low tide to about five psi at high tide for the pipeline flow rates encountered during the study.

Measurement of waste concentrations in the ocean was accomplished by metering a dye tracer, rhodamine WT 20% solution, into the outfall pipeline on shore to produce a dye concentration of about one part per million in the effluent at the point of discharge. Dye concentrations

in the waste plume were measured with a Turner III Fluorometer aboard the survey boat. The fluorometer was equipped with a flow through sample cell and continuous readings were recorded with a chart recorder. The sample was drawn through the instrument with a pump on the discharge side of the fluorometer. By knowing the tracer injection rate and the effluent flow rate, the waste concentration was calculated from the measured tracer concentration. In order to eliminate the effect of temperature on the tracer fluorescence the instruments were standardized in the field.

While continuous sampling was underway, the fluorometer operator would mark each position, record position number, indicate any fluorometer scale change and any sampling depth change on the chart record. The boat's position was determined at one-minute intervals by triangulation. Simultaneous horizontal angles were measured from two shore stations with Wild T-2 Theodolites. The radio operator aboard the boat would signal the theodolite operators when the position was to be taken.

Aerial Photography

One of the primary problems encountered in processing the 1968 vertical photography was the direct sunlight reflection from the water surface. Photography after 1968 was taken with an oblique camera mounting to avoid the sun spot. Prior to the 1969 field season, three cameras were purchased and mounted in the baggage compartment of a small high wing aircraft. This eliminated the need for advance scheduling of commercial aerial photography and allowed flexible planning of the changing weather and sea conditions. The camera package shown in figure 21 consisted of a K-17 mapping camera and two 70 mm cameras. Multiple cameras allowed the selection of optimum film, filter and exposure combinations for several photographic bands. The mapping camera, because of its large angular coverage, permitted photographic orientation of the two smaller cameras. Films from the two 70 mm cameras were used for detailed analyses and measurements of the waste field. Polarizing filters on the 70 mm cameras reduced the skylight reflection from the water surface.

The cameras were synchronized to take simultaneous pictures with a timing device consisting of a capacitor in parallel with a variable resistor. The cameras were lined up end to end without their magazines and the variable resistor was adjusted until a light could be seen through the cameras when the shutters were activated at 1/100 of a second.

When the aerial photography was taken with a single vertical mapping camera, normal color film was used. Both Ektachrome 8442 film and Anscochrome D200 film were tested. There was no significant difference in the results of the two films. When aerial photography was taken with the three camera unit, generally the K-17 was loaded with black and white film, type 2402, with a Wratten 25A filter, while one 70 mm

Figure 21. Multiple camera unit.

Aerial cameras

Hasselblad camera was loaded with normal color film, type 2448, and the second Hasselblad camera was loaded with infrared black and white film, type 5424. Because of the variable light scattering and absorbing characteristics of the pulp mill effluent, a broad band photographic system was used.

The photographic film was developed by project personnel in accordance with the film manufacturer's directions. The aerial film from the mapping camera was 9-1/2 inches wide and 100 ft long, and was processed with a Morse B-5 rewind processor while the 70 mm film was processed with a Nikor reel and tank processor.

SECTION VIII

DYE PATCH STUDIES

During the 1969 field season, several dye drops were made from the aircraft. The three pictures shown in figure 22 were taken July 7, 1969 using panchromatic film type 8401 with a Wratten 25A filter. While this is not the best film-filter combination for observing the dye patch, the change in shape of the dye patch can be seen. The dye was dropped at 12:19 and the first photo was taken at 12:25 from 3000 ft at which time the size of the dye field was 160 ft by 40 ft. The photo in figure 22b was taken at 13:13 from 4000 ft. After 54 minutes from the time the dye was dropped, the dye patch had grown to approximately 70 ft wide and an overall curved length of 1000 ft. The light reflection in 22b could have been reduced with a polarizing filter. The photo in figure 22c was taken an hour and a half later at 14:43 from 5000 ft. The dye field at this time is 2100 ft long and 1300 ft wide.

The example given in figure 22 was an extreme example of elongation, curvature and striation of a dye patch. The wind was downward and to the right in the pictures at 5 to 12 knots with a swell height of 4 to 6 ft and a water current velocity of 0.4 ft/sec. Most dye patches observed have been elongated in a direction nearly parallel to that of the water flow. Striations and curvature of the dye patch are common. However, in most experiments the overall shape of the patch resembles an ellipse.

The elongation of the dye patch in the direction of flow suggests dispersion due to a vertical velocity gradient can, at times, be an important consideration. The upper layers of water are first influenced by a change in wind velocity or direction and vertical velocity gradients would be expected. Wind waves and swell both have specific orientation that suggest diffusion will occur at different rates in a horizontal plane.

The basic diffusion equation given as equation 56 is reduced to a two dimensional model.

$$\frac{\partial W}{\partial t} = D_{\mathbf{y}} \frac{\partial^2 W}{\partial \mathbf{y}^2} + D_{\mathbf{x}} \frac{\partial^2 W}{\partial \mathbf{x}^2} + aW$$
 (67)

A solution is

$$W(x, y, t) = W_{max} \exp - \left[\frac{x^2}{2\sigma_x^2} + \frac{y^2}{2\sigma_y^2} \right]$$
 (68)

where the coordinate axis is assumed to move with the dye patch. In

a At 12:25 from 3000 ft

At 13:13 from 4000 ft

c At 14:43 from 5000 ft

Figure 22. Dye patch on July 7, 1969.

the equation W represents the dye concentration, X and Y are the coordinates from the centroid of the dye patch parallel and transverse to the direction of flow, D and Dy are the longitudinal and lateral diffusion coefficients, "a" is a first order decay coefficient which includes the loss to the lower layers due to vertical diffusion and σ_{x}^{2} and σ_{y}^{2} represent the variances in the X and Y directions. The relationship between the change in variance and the diffusion coefficient is given by

$$D = \frac{1}{2} \frac{\Delta \sigma^2}{\Delta t} \tag{69}$$

The diffusion coefficient is equal to one half the change in variance $(\Delta \sigma^2)$ divided by the time interval (Δt) .

Dividing equation 68 by the maximum concentration at the centroid (W_{\max}) , taking the log of each side and multiplying by 2 the equation becomes

$$\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_x^2} = 2 \ln \left[\frac{W_{\text{max}}}{W} \right]$$
 (70)

by letting

$$a^2 = 2\sigma_x^2 \ln \left[\frac{W_{\text{max}}}{W} \right] \tag{71}$$

$$b^2 = 2\sigma_x^2 \ln \left[\frac{\overline{W}_{max}}{\overline{W}} \right]$$
 (72)

equation 70 reduces to that of an ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\tag{73}$$

where a and b are the major and minor semi axis of an ellipse fitted to a line of equal concentration about the dye patch. Since the edge of the dye patch is generally characterized by relatively steep concentration gradients, the visible boundary of the patch was assumed to have a concentration of W $\max/2$. With this assumption equations 71 and 72 reduce to

$$\sigma_{\rm x}^2 = 0.72 a_{\rm e}^2$$
 (74)

$$\sigma_{y}^{2} = 0.72 b_{e}^{2}$$
 (75)

By using equation 69, 74 and 75 the diffusion coefficients are related to the change in size of the dye patch between photographic flights over the area. Since the dye patches seldom form a perfect ellipse, the major and minor semi axes of the edge of the patch (a_e and b_e) can not be measured directly from the aerial photography. The procedures employed in determining diffusion coefficients from the aerial photography are given in Section IX on Data Processing.

SECTION IX

DATA PROCESSING

The general scheme for processing the boat and photographic data during both the 1968 and 1969 field seasons is shown in figure 23. Data processing included reduction of shore angles to state plane coordinates, conversion of fluorometer strip chart records to waste concentrations and reduction of photographic information. A comparison was made between the waste concentrations determined by boat sampling with those determined from aerial photography by matching ground coordinates.

During the 1970-71 field season only aerial photography required processing. Aerial film taken during this period was not digitized using the densitometer. The processing techniques were modified to achieve the research objective of the original proposal, which was to develop a remote sensing tool for the evaluation of dispersion of wastes from existing or proposed ocean outfalls. Since the 1968 and 1969 field seasons were concerned with existing outfall sites, the final year of the project was concerned with the development of simplified procedures for proposed outfall sites.

1968-1969 Boat Data

Angles from the shore stations to the photo control buoys and the boat were reduced to state plane coordinates. Boat positions were indexed by time for matching with waste concentration. Since theodolite sightings were made on the boat's mast, a correction was applied to determine the position of the fluorometer intake ports.

The fluorometer records were processed by 1) a least squares fit to the standardization data, 2) a shift of the index on the fluorometer reading to account for the time delay for the sample to pass from the intake port to the fluorometer, 3) reduction of the fluorometer reading to concentration of tracer and concentration of effluent, and 4) interpolating the ground coordinates from the processed shore control data.

Waste concentrations determined by boat sampling were displayed on a three dimensional plot. Figure 24 is a typical display of the boat sampling data where the grid represents the X and Y state plane coordinates and the Z axis represents the waste concentration in milliliters/liter. The waste concentration is represented by the length of a line drawn parallel to the z-axis. The state plane coordinate position of any sample point can be scaled from the grid to the base of the vertical line. The solid line on the plot is the boat's track. The plume in the plot extends upward and to the right.

The surface water temperature was also recorded along the boat's track and displayed on a three dimensional plot as shown in figure 25.

Figure 23. Data processing flow diagram.

AIRPHOTO ANALYSIS OF OCEAN OUTFALL DISPERSION

PLOT OF WASTE CONCENTRATIONS ML/L FROM BOAT

Figure 24. Waste concentrations from boat sampling on August 12, 1969.

Figure 25. Surface water temperature on August 12, 1969.

In order to be able to show a smaller temperature variation, the values plotted in figure 25 were the surface temperatures minus nine degrees. The outfall in figures 24 and 25 is located near coordinates 1069400E, 375600N where the waste concentration is a maximum and the surface water temperature is a minimum. The temperature of the waste while in the pipeline is about $40^{\circ}C$. The waste discharged from the outfall ports mixes by jet diffusion with the colder subsurface water and the resulting mixture at the surface in this case was colder than the surrounding sea water.

A temperature profile taken over the outfall and one taken north of the waste field on August 12, 1969 are shown in figure 26. The temperature of the water near the bottom is 7.5° C while that near the surface over the outfall is 8.4° C and north of the waste field is 10° C.

Figure 26. Water temperature profiles on August 12, 1969.

A detailed description including the computer program for processing the boat sampling data is given in Appendix C of the Water Pollution Control Research Series, 12040EBY on "Aerial Photographic Tracing of Pulp Mill Effluent in Marine Waters" by Burgess and James. Detailed description of the three dimensional plotting program was given in Appendix D of the "First Annual Progress Report" on this project (Burgess and James, 1969).

1968 Photographic Data

During the 1968 field season, color aerial photography was taken with a single vertical aerial mapping camera. The photographic film was converted to digital data with a McBeth model TD-102 photo densitometer. The densitometer can measure the density of the three layers of the color photo. Wratten filters numbers 92, 93, and 94 are utilized to measure the red, green and blue film densities, respectively. The aerial film holder was attached to an x - y coordinatograph which measured the photo coordinates to \pm 0.001 inches. At the same time, the film densities were measured with a digital voltmeter. Both the voltmeter and coordinatograph were connected to a digitizer which in turn was connected to a card punch. One card was required for each point and contained the photo identification number, point number, x and y coordinates and the film densities for the three spectral bands of the color photo. The position of each data point was selected manually. The three film densities on each card were measured at the same point on the photograph.

A generalized flow diagram of the photographic data processing is shown in figure 27. The photographic analysis phase of the data processing began with the photographic orientation which was accomplished by a non-linear least square solution to the collinearity condition equations. After the last photograph has been oriented, the water currents are computed. The sun altitude and azimuth are computed for the first photograph of each flight.

The photographic variable that was the most sensitive to changes in waste concentration was the ratio of red to green light reflected from the waste field. This ratio, adjusted for atmospheric attenuation and for light scattered from the sea water, was related to the waste concentration by a least squares fit of the boat sampling data. The comparison was made by matching ground coordinates at 60-foot intervals along the boat's path. Utilizing this regression equation waste concentrations were computed throughout the waste field.

Film densities and photo coordinates were measured with the photo densitometer for points outside both the w^ste field and the area of direct sunlight reflections. The data from these points were used to determine the regression coefficients for the model

$$ATR = A_0 + A_1 (j_2) + A_2 (j_2)^2 + \varepsilon$$
 (76)

Figure 27. Flow diagram for photographic processing.

where ϵ is the error term, j₂ is the angle between the ray to the camera and the vertical, and the A's are the regression coefficients. ATR is determined for each point from

$$ATR = \frac{(TIM) \cos^{4}(c)}{(FNO)^{2} \exp(D_{h}(x,y)/G)}$$
(77)

TIM is the photographic exposure time, c is the angle between the camera axis and the ray, FNO is the f-number setting on the camera, $D_b(x,y)$ is the blue film density as measured with the densitometer and G is the film gamma. The film gamma for the three spectral bands of the color photo was determined from sensometric curves made by Kodak and GAF for the film used on the project. The gamma to the base 10 was taken as -3.0 for the Ektachrome 8442 film and -2.4 for the anscochrome D200 film.

In the expression for the ratio $(R_{\rm pho})$, the values of the coefficients were determined from the following method in place of that given by equation 39

$$R_{pho} = B_0 + B_1 \text{ (SUNR)} + B_2 \text{ (N}_b) + \varepsilon$$
 (78)

The regression coefficients were determined by a least squares fit of data from selected points outside the waste field. $N_{\mbox{\scriptsize b}}$ is the radiance in the blue band as determined from

$$N_{b} = \frac{ATR (FNO)^{2} \exp(D_{b}(x,y)/G)}{(TIM) \cos^{4}(c)}$$
 (79)

SUNR is the angle between the ray to the camera and the reflected direct sunlight. For the model 78 the value of R $_{\rm pho}$ was determined from

$$R_{pho} = \exp[(D_r(x,y) - D_g(x,y))/G + (E_r - E_g)\sec(j_2) + (A_r - A_g)\sec(i)]$$
(80)

where D(x,y) is the film density, E is the atmospheric attenuation from the sea surface to the camera, j_2 is the angle between the ray to the camera and the vertical axis, A is the atmospheric attenuation for a standard atmosphere and i is the angle of incidence for the direct sunlight. The subscripts r and g refer to the red and green bands, respectively. Atmospheric attenuation coefficients were determined from the Handbook of Geophysics and Space Environments for a standard atmosphere. The following coefficients and equations were used

$$A_r = 0.252$$

$$A_g = 0.331$$
 $E_r - E_g = 0.024 \ln (H + 1)$ (81)

where H is the camera station altitude in kilometers. After the coefficients in model 78 were computed, the ratio anomaly (RA) for any point on the photograph, excluding kelp and shallow nearshore areas, was determined from

$$RA = R_{ph} - R_{pho}$$
 (82)

where $\mathbf{R}_{\mbox{\footnotesize{pho}}}$ was estimated from the regression equation

$$R_{\text{pho}} = {}^{\Lambda}_{0} + {}^{\Lambda}_{1} (SUNR) + {}^{\Lambda}_{2} (N_{b})$$
(83)

and $R_{\mbox{\scriptsize ph}}$ was determined from

$$R_{ph} = \exp[(D_r(x,y) - D_g(x,y))/G + (E_r - E_g) \sec(j_2) + (A_r - A_g) \sec(i)]$$
(84)

The ratio anomaly (RA) was computed for each data point on the aerial photo. The values were stored in a 120 by 60 array. The index on the array indicated the ground coordinates for each element of the array. Each element represented a 60-foot square area on the sea. After all the film density measurements were converted to RA values and stored in the array, missing values were interpolated from adjacent points.

Concentrations determined from the fluorometers aboard the boat were read into the computer program. Boat concentrations were interpolated at 60-foot intervals along the fluorometer track line. These values were matched by ground coordinates with the RA values in the array. A least square regression analysis was made on the data with the model

$$W = C_1(RA) + C_2(RA)^2 + \varepsilon$$
 (85)

where W is the waste concentration in milliliters per liter and \mathbf{C}_1 and \mathbf{C}_2 are regression coefficients.

The array was oriented so that the x-axis was along the center line of plume. Values of the waste concentration were computed from the above equation and stored in the array in place of the RA values. Waste concentrations were displayed as a symbolic plot on the line printer. In figure 28 are two plots from photographs taken August 16. The symbols on the plot represent different ranges in concentration and were selected so that the density of the plot increases with the concentration. The movement or change in shape of the waste field can be seen during the 22-minute period between the flights. The area of the waste field within each concentration range is determined by continuing the number of times each symbol is used to make the symbolic

Figure 29. Isoconcentration plot, flight on August 16, 1968.

Figure 28. Symbolic plots from two flights August 16, 1968.

plot.

The most visually useful form of displaying the photographic waste concentrations is the isoconcentration plot. This plot is similar to a topographic map with the elevation being replaced with the concentration. Figure 29 is a computer printout by this technique of the concentrations shown in the left plot of figure 28. The outfall is located at the top of the plot and the plume extends downward. The plume is 500 to 1000 ft wide and about 7000 ft long.

Steady state diffusion coefficients were determined for a steady state model with unidirectional transport velocity in the X direction. By neglecting the loss to the lower layers and assuming the diffusion in the Y direction was not a function of Y, the basic diffusion equation becomes

$$V_{x} \frac{\partial W}{\partial X} = D_{y} \frac{\partial^{2} W}{\partial y^{2}}$$
 (86)

where X is the distance along the centerline of the plume, Y is the distance right or left of the plume center line, $V_{\rm X}$ is the velocity along the plume center line, W is the waste concentration, and $D_{\rm y}$ is the diffusion coefficient. A solution to equation is

$$W = \frac{K}{2(\pi D_{y}t)^{1/2}} \exp \left[-Y^{2}/rtD_{y}\right]$$
 (87)

For computational purposes this equation can be reduced to

$$W = W_0 \exp \left[-Y^2/2\sigma_y^2\right]$$
 (88)

where W_0 is the concentration at the center line of the plume and σ^2_y is variance of normal curve. The diffusion coefficient is equal to one half the change in variance divided by the time interval or

$$D_{y} = \frac{1}{2} \frac{\Delta \sigma^{2}}{\Delta t}$$
 (89)

In the computer program, the variance was computed every 300 feet along the center line of the plume. The change in time for this steady state model was equal to the distance between sections in feet divided by the velocity in feet per second. The velocity was determined photogrammetrically from the current floats or dye patches.

The variance (σ^2) can be estimated for a normal distribution from the sample variance $(S^2{}_y)$. The concentration (W) is equivalent to the frequency of occurrence in the computations. The sample variance is

$$S_{y}^{2} = \frac{\Sigma W(Y - \overline{Y})^{2}}{N}$$
 (90)

where \overline{Y} is the mean distance from the origin and

$$N = \sum_{i=1}^{n} W_{i} \tag{91}$$

In computational form, equation 90 is

$$s_{y}^{2} = \frac{1}{N} \left[\sum_{i=1}^{n} w_{i} Y_{i}^{2} - \frac{\left(\sum_{i=1}^{n} w_{i} Y_{i}\right)^{2}}{N} \right]$$
 (92)

From equation 92 an estimate of the variance can be made for any section across the plume. Equation 89 was used to determine the diffusion coefficient.

Nonsteady-state diffusion coefficients were determined from two flights over the area using equation 89. In this equation for the non-steady state

$$\Delta \sigma_{\mathbf{i}}^2 = \sigma_{1,\mathbf{i}}^2 - \sigma_{2,\mathbf{i}+c}^2 \tag{93}$$

where the subscripts 1 and 2 refer to the flight numbers, i refers to the section number across the plume in flight one and i+c is the section number in flight two adjusted for the movement of the waste field between flights. In solving equation 89 for the nonsteady-state case, Δt is the time difference between the flights.

The preliminary diffusion coefficients based on the steady state model are shown in table 1. The coefficients are determined from the change in variance along each flight at 300 ft intervals. Assuming a uniform concentration with depth, a vertical thickness of the waste field can be estimated. The columns listed in table 1 are 1) section number where each section represents 60 ft along the axis of the plume, 2) width of the waste field, 3) the estimated average depth of the waste field, 4) the estimate of the standard deviation of Y, 5) the maximum centerline concentration for a normal distribution, 6) and 7) the ground X and Y coordinates of the centerline of the plume, 8) the diffusion coefficient between each fifth section of the plume, and 9) the average diffusion coefficient from the head of the plume. Also shown in the tables are the flow rate, current velocity, sun azimuth from the south, sun altitude, and area within each concentration range.

Nonsteady-state diffusion coefficients are shown in table 2. The coefficients were determined from the change in variance between two photographic flights over the outfall area. Convection of the field was considered in making the comparison.

A detailed description of the computer program used to process the vertical color photography is given in Appendix B.

Section	Width	Eff. Depth	Sigma Y	Coefficient	State Plane	State Plane Coordinates	Diffusion Coel	Diffusion Coefficient Ft ² /sec
	Ŧ	Ŧ	Ŧ	PPT	×	>	Fifth Sec.	Average
13	099	3.0	1.541E 02	3.491E 01	1069872	376281	7.922E 00	7.992E 00
18	780	2.4	1.811E 02	3.695E 01	1070009	376549	6.352E 00	7.137E 00
23	1020	2.1	2.156E 02	3.515E 01	1070033	376863	9.565E 00	7.946E 00
28	1080	1.9	2.419E 02	3.458E 01	1070128	377148	8.441E 00	8.070E 00
33	1320	2.1	2.473E 02	3.007E 01	1070284	377409	1.827E 00	6.821E 00
38	840	2.9	1.685E 02	3.249E 01	1070516	377639	-2.292E 01	1.864E 00
43	840	3.7	1.602E 02	2.700E 01	1070662	377903	·1.900E 00	1.327E 00
48	840	3.5	1.696E 02	2.664E 01	1070703	378210	2.158E 00	1.431E 00
53	720	4.5	1.429E 02	2.459E 01	1070778	378503	-5.838E 00	6.230E-01
28	1200	4.0	2.338E 02	1.718E 01	1070783	378825	2.398E 01	2.959E 00
63	1140	3.5	2.604E 02	1.772E 01	1070808	379138	9.181E 00	3.524E 00
89	1020	3.4	2.394E 02	1.957E 01	1070886	379430	-7.349E 00	2.618E 00
73	1200	2.8	2.645E 02	2.142E 01	1071094	379670	8.883E 00	3.100E 00
78	1260	3.0	2.657E 02	1.979E 01	1071285	379916	4.818E-01	2.910E 00
83	096	5.7	2.194E 02	1.275E 01	1071227	380263	-1.573E 01	1.667E 00
88	099	7.3	1.314E 02	1.655E 01	1071232	380584	-2.159E 01	2.134E-01
93	720	9.9	1.389E 02	1.738E 01	1071337	380865	1.410E 00	2.838E-01
86	009	6.7	1.220E 02	1.960E 01	1071489	381127	-3.086E 00	9.654E-02
103	009	9.9	1.235E 02	1.955E 01	1071614	381400	2.587E-01	1.051E-01
108	780	5.8	1.453E 02	1.892E 01	1071700	381689	4.105E 00	3.051E-01
113	780	6.1	1.662E 02	1.582E 01	1071876	381942	4,554E 00	5.074E-01
	Flow R	Flow Rate 16.8 CFS				Area Within Each Concentration Range	oncentration Range	
	Sun Az	Sun Az. from S. 1.013 R	Rad.			Range ml/i	Area Sq Ft	
	Curreni	Current Velocity ,42 FPS	Sc			0- 2	5.580E 05	
	Sun Ali	Sun Altitude .790 Rad.				2. 4	3.924E 04	
						4- 6	3.672E 05	
						6-10	9.468E 05	
						10-15	1.199E 06	
						15-20	1.188E 06	
						20-25	5.400E 05	
						GT25	6.948E 05	

Table 2. Nonsteady-state diffusion coefficients, August 16, 1968.

Section	Width	Diffusion Coefficients
No.	Feet	Ft ² /sec
13	660	10.1
18	780	4.8
23	1020	2.5
28	1080	1.9
33	1320	1.2
38	840	13.5
43	840	7.5
48	840	0.2
53	720	13.6
58	1200	38.0
63	1140	24.9
68	1020	12.6
73	1200	9.0
78	1260	8.9
83	960	9.0
88	660	10.3
93	720	11.6
98	600	16.6
103	600	13.2
108	780	7.6

1969 Photographic Data

During the 1969 field season, the aerial photography was taken with two 70 mm Hasselblad cameras and a K-17 mapping camera. The large photos from the mapping camera were used for photographic orientation of the smaller cameras. Detailed analysis of the waste field was accomplished from the 70 mm photos.

The aerial film was digitized in the photogrammetry laboratory as shown in figure 30. The densitometer is located on the Kelsh plotter table. The film density is measured as voltage output from the densitometer with a digital voltmeter. The BCD digital voltmeter logic is transmitted through a logic converter to the Autotrol digital recorder. Output from the digitizer is recorded on computer cards by a card punch.

The densitometer and scanning table shown in figure 31 is processing a 70 mm picture. About all that can be seen of the densitometer is the white meter near the center of the figure. The scanning table is designed to handle film up to $9\ 1/2$ inches wide and 250 feet long.

The film is loaded on the reel on the left of the scanning table and the take up reel is on the right. The arm that extends from the meter on the densitometer out over the scanning table contains the filters and the photomultiplier tube. A light source is located below the film. The amount of light that is transmitted through the film is measured by the photomultiplier tube and converted to D. C. voltage.

When digitizing aerial film, the scanning table continuously moves back and forth. The scan limits are marked on the photograph with a black tape or the dark border around the picture. The densitometer senses the end of the scan when its voltage output exceeds 750 volts. At the end of the scan, the scanning table stops and the film is advanced one scan by the take up reel on the table. The direction of the scan is reversed and the scanning table moves in the opposite direction.

The Y axis of the coordinatograph is attached to the scanning table. While scanning, the film density and Y photo coordinates are recorded at a selected interval along the scan. The X coordinate is computed from the scan number.

The operator shown in figure 29 is able to accomplish three processing steps at one time. While the densitometer is digitizing one photo, the operator is usually scanning the line printer listing of a previous photograph searching for illegal characters. At the same time, he can operate the teletype which preliminarily processes the data from another photograph with the computer using program EDIT. This program reduces the voltage output from the densitometer to film densities, rejects extreme values of densities, interpolates photo coordinates and displays the difference in film densities between adjacent bands on the line printer. Output from this program is stored on magnetic tape waiting final processing using program REMOTE. The basic details of this program are essentially the same as those for a single color photograph except that up to ten photographic bands or channels can be processed at one time. Program listings of EDIT and REMOTE are given in Appendix C.

1970-71 Photographic Data

Field procedures and processing techniques were revised to include estimating diffusion coefficients from dye patch studies. Field work was conducted during the fall, winter, and spring. Boat sampling was not attempted due to rough sea conditions which generally prevail during this period. More specifically, the aims of this phase of the investigation were to develop a remote sensing tool for the evaluation of waste dispersion from proposed ocean outfalls and to develop a set of characteristic airphoto pattern elements for estimating diffusion coefficients.

Aerial film taken during this period was not digitized with the densitometer but photo coordinates were measured with the x-y coordintograph about both the waste field and dye patch. The area of the waste field

Figure 30. Digitizing aerial film.

was computed from the photo coordinates about the plume. In addition, the water current velocity and direction and diffusion coefficients were determined from the dye patch photo coordinates.

The outline of the dye patch was digitized with the x and y coordinatograph along with sufficient ground control for photographic orientation. Photo coordinates about the dye patch were converted to state plane coordinates of the centroid and moments of inertia were computed from the following equations.

$$A = \frac{1}{2} \qquad \sum_{i=1}^{n} X_{i} (Y_{i-1} - Y_{i+1})$$
 (94)

$$\bar{X} = \frac{\sum_{i} \bar{X}_{i} \Delta A_{i}}{A}$$
 (95)

$$\overline{Y} = \frac{\sum \overline{Y}_{i} \Delta A_{i}}{A}$$
 (96)

$$I_{\mathbf{x}} = \sum_{i} X_{i}^{2} \Delta A_{i}$$
 (97)

$$I_{v} = \sum_{i} Y_{i}^{2} \Delta A_{i}$$
 (98)

$$I_{xy} = \sum_{i} X_{i} Y_{i} \Delta A_{i}$$
 (99)

Care must be taken when programming these equations to avoid roundoff error as state plane coordinates are typically six to seven digit numbers.

The rotation angle (α) of the axis to obtain the principal axis is given by

Tan
$$(2\alpha) = \frac{2I_{xy}}{I_{x} - I_{y}}$$
 (100)

The maximum and minimum moments of inertia about the principal axis are computed from

$$I_{\text{max}} = \frac{I_{x} - I_{y}}{2} + \left[\left(\frac{I_{x} - I_{y}}{2} \right) + I_{xy}^{2} \right]^{1/2}$$
 (101)

$$I_{\min} = \frac{I_{x} - I_{y}}{2} - \left[\left(\frac{I_{x} - I_{y}}{2} \right) + I_{xy}^{2} \right]^{1/2}$$
 (102)

The irregular shaped dye patch is replaced with an ellipse that has the same horizontal area. In addition, the ratio of I_{max} to I_{min} are the same for the ellipse as for the dye patch. The principal moments of inertia for an ellipse are given by

$$I_{\text{max}} = \frac{\pi b_{\text{e}} a_{\text{e}}^3}{4} \tag{103}$$

$$I_{\min} = \frac{\pi a \stackrel{3}{e} \stackrel{6}{e}}{4} \tag{104}$$

where a and b_e are the major and minor semi axes of an equivalent ellipse. If the ratio (IR) of I_{max} to I_{min} remain the same for both the dye patch and the ellipse, the ratio of variances are also the same (equations 74 and 75).

IR =
$$\frac{I_{\text{max}}}{I_{\text{min}}} = \frac{a_{\text{e}}^2}{b_{\text{e}}^2} = \frac{\sigma_{\text{x}}^2}{\sigma_{\text{y}}^2}$$
 (105)

After computing the area (A) and the ratio of principal moments of inertia (IR) for the dye patch, the semi axes of the equivalent ellipse are determined from

$$a_{\rm e}^2 = \frac{A}{\pi} (IR)^{-1/2}$$
 (106)

$$b_{e}^{2} = \frac{A}{\pi} (IR)^{1/2}$$
 (107)

Equations 74 and 75 are utilized in determining the variances. Diffusion coefficients are determined from the change in variance between two photographic flights as given by equation 69.

Details of the computer program used for this phase of the study are given in Appendix D. In addition to the dye patch analysis, the program prepares the input coordinates for a plotting program. The outline of the waste field, current velocity vector, along with a state plane coordinate grid and displayed on a CRT plotter and a polaroid picture is taken of the face of the tube for a record of the results.

SECTION X

SAMPLING RESULTS

1968-1969 Data

Detailed descriptions of the 1968-1969 boat sampling and aerial photography acquisition and processing were given by Burgess and James (August 1970). A summary of the results is given in table 3. Field work was conducted in late June, July, August and early September. Fourteen sampling runs were made during this period. For eight of the fourteen sampling runs, the waste field from the cean outfall was at the sea surface. A submerged plume occurred during the remaining six sampling runs.

When the plume was submerged, both the swell height and the wind velocity were significantly less at a 90 percent confidence level than when the plume formed at the surface. On July 7 and 8, 1969, the sea and weather conditions were very nearly the same, yet on July 7, the plume submerged and on July 8 the plume was at the surface.

On both days the wind was from the north and a foam streak extended southward from the outfall for approximately 1.3 miles. The infrared black and white photo in figure 32 shows the foam streak on July 7, 1969. The photo was taken in a northwest direction with the shore in the foreground and the foam extending southward from the outfall.

The aerial photograph of the plume on July 8, 1969 in figure 33 was taken from 4000 ft with the camera tilted 45 degrees from vertical toward the east. The shore is off the upper edge of the photo and the foam streak extends south from the outfall. The direction from the outfall that the foam travels is not necessarily the same as that of the waste plume and in this case the plume is to the right of the foam.

Temperature profiles taken upstream of the outfall for July 7 and 8 are shown in figure 34. On the first day when the plume was submerged, the temperature profile did not show a definite thermocline but the temperature decreased with depth at a decreasing rate. On the second day a thermocline existed at about four feet below the surface. The wind on the 7th increased from 5 mph at 8:00 to 12 mph at 20:00. On July 8th the wind was stronger and increased from 6 mph at 8:00 to 15 mph at 15:00.

Both steady state and nonsteady state diffusion coefficients were computed when possible for each sampling run. Of the eight days that a surface plume occurred, a one dimensional diffusion model was applicable to the plume pattern on only three days. A two dimensional model was necessary to describe the plume when the current velocity was low. When the velocity was greater than 0.4 ft/sec, a one dimensional diffusion model was adequate.

Table 3. 1968-1969 sampling summary for Newport.

	Remarks				Foggv	No photography	Foggy))		Raining	Plume submerged	Plume submerged	Plume submerged	DI	Plume submerged	Plume submerged	Plume submerged	•	Foggy	Foggv	3	Foggy		Foggy
	Dif.	Coef.	ft2/sec	ပ	-	IJ	;	11.	ပ		-		-	i		!		14.	:	-	ပ		ပ	
IME	Current	Vel.	ft/sec	0.26	-	i	1	0.42		-	0.0	!	0.0	•		90.0	0.4	0.5		:	0.1	-	0.2	
PLUME	Max.	Concen.	mI/L	15	-	21		23	20	:		;		10	1	:	:	10	-	1	10	:	10	
	Length	Ŧ.		4600	1	3400		7000	7500	1		:		3000	1		į	2200	-	:	4000	i	2000	
	-	Area <u>¤</u>	Acres	100	-		:	142	-	:	0	0	0	:	0	0	വ	93			127		39	
Effluent	Flow	Rate	gpm	5,550	-	7,600		7,550	7,400		7,450	8,950	6,750	6,750	8,100	8,100	000'6	000,6			8,300		8,400	!
Wind	Velocity	шbh		10-20		5-10		10-15	0-2	-	0	0-2	0-2	15-20	5-10	4-5	5-12	6-15	•	:	3-5	:	2	1
>	Dir.			NE		SW		SW	ΝS		į	ш	ш	Š	z	Š	z	z	ļ		≥	į	ΝS	
Wave	Height	ť		4		4-6		8-9	8-10	-	1-2	1-2	1-2	4-6	1-2	2-4	4-6	4-6			2-3		4	
Tide a	Range	Ŧ.		10.2	-	0.9		6.3	8.1	-	6.8	6.8	6.5	6.5	11.5	11.3	6.4	7.7	!	-	8.4	:	7.2	
	Date			89-8-8	8-10-68	8-14-68	8-15-68	8-16-68	8-21-68	8-22-68	9-10-68	9-11-68	9-12-68 <u>ệ</u>	$9-12-68^{\perp}$	6-30-69	7-1-69	2-7-69	7-8-69	7-21-69	7-22-69	8-12-69	8-13-69	69-8-6	69-6-6

Maximum difference between adjacent high and low tides during the day.

Area within the plume with concentrations greater than 2 ml/L. One dimension model was not applicable.

Vertical photography not processed because of sunlight reflection.

a.m.

Figure 32. Infrared black and white photo on July 7, 1969.

Figure 33. Plume on July 8, 1969 at 15:21 from 4000 feet.

TEMPERATURE IN DEGREES C

Figure 34. Temperature profiles July 7 and 8, 1969.

On August 16, 1968, the current velocity was 0.42 ft/sec and the waste field was long and narrow as the plume was generally about 600 ft wide; however, there were several locations along the plume that were up to 1200 ft wide. As a result of the nonuniform shape along the axis of the plume, the application of the steady state model to the data resulted in nearly half of the diffusion coefficients being negative. Diffusion coefficients determined from the change in concentrations between flights resulted in all positive values and the average nonsteady diffusion coefficient is listed in table 3 for August 16, 1968.

On July 8, 1969, the current velocity was 0.5 ft/sec and the steady state diffusion coefficient was listed. The nonsteady state model was not applicable. After the first flight, the width of the plume decreased due to horizontal density stratification. In figure 35 dark upwelled water can be seen below the plume. Measurements with the temperature probe indicated that this water was approximately two degrees C warmer than the inshore water. The upwelled water appears to have moved over the plume with limited mixing between masses.

Figure 35. Plume July 8, 1969 at 15:56 from 4000 feet.

The plume was submerged on the morning of September 12, 1968. Weather and sea conditions were calm until 14:00 when a 15-20 mph wind began blowing. The waste field came to the surface and formed a long narrow plume which could have been described with a one dimensional diffusion model. The vertical aerial photography was taken with a sixinch focal length camera at 16:30. Interference caused by sunlight reflection on the choppy water surface made the photography impossible to process.

As listed in the original proposal, the first year of the study was divided into two phases:

- 1) Photographing the plume and current floats and
- 2) Photographing dye slugs introduced into the pipeline.

On August 22, 1968, one-gallon dye slugs were injected into the pipeline at 15-minute intervals using compressed air. It was raining on this day and no photography was taken. However, individual dye slugs were not observed from the boat. On September 10, 1968, the time interval was increased to one hour. Because of density stratification, the waste field and dye slugs were submerged. There was no wind on this day and the swell height was one to two ft. The dye slugs and waste field were visible on the aerial photography below the sea surface. The dye slugs did not move away from the outfall in discrete patches as planned, but accumulated about the outfall area. dye patches first appeared about the outfall they were doughnut shaped. Two-gallon dye slugs were introduced into the pipeline at one hour intervals on September 11, 1969; however, the aerial photography was cancelled due to cloudy skys. The plume was submerged but the individual boils over the outfall could be seen from the boat. Dye concentrations were detectable visually and with the fluorometers only directly over the outfall.

Had aerial photography been obtained of the dye patches under ideal conditions, it would have been difficult to process. Considering a nonsteady state dye patch within a nearly steady state waste field, the amount of dye, waste and sea water could occur in various combinations which would be impossible to distinguish by measuring the light return with the three broad bands of color photography. At a minimum, four individual narrow pass bands would have been required to obtain meaningful results. This phase of the study was replaced by dye slugs dropped from the airplane away from the waste field.

Summaries of the aerial photography for the 1968 and 1969 field seasons are shown in tables 4 and 5, respectively. The date, flight time, altitude, camera, and type of film are listed in the table.

As listed in the original proposal, water samples were collected during the first year of the study and tested for BOD, COD, PBI, dissolved oxygen and dye tracer concentration. The dissolved oxygen content of

Table 4. Summary of the 1968 vertical aerial photography.

		Phot	Photography		Bo	Boat-Photo ^a	u		Boat	
Date	Time PDT	Altitude (Ft.)	Camera	Film	MSE _{bp}	d.f.	MSE _b MSE _{bp}	MSE <mark>b</mark>	d.f.	Sampling PDT
8-8-68	17:09 17:20 17:30 17:41 17:50	8250 4125 4125 4125 8250	8-1/4" Zeiss RMKA	Ektachrome 8442 	5.3 7.3 7.3	172 195 142	2.3	2	m	16:06- 18:09
8-16-68	15:51 16:00 16:13 16:21	8250 4125 4125 8250	8-1/4" Zeiss RMKA	Ektachrome 8442 	38. 31.	178 156 187	2.4 3.0 2.3	92.	4	14:25- 16:53
8-21-68	10:13 10:21 10:36 10:44	3500 1750 1750 3500	3-1/2" Wild RC-9	Ansco D200 				22.	ശ	12:10- 13:41
9-10-68	10:10 10:25 10:35	5625 11250 5625	11-1/4" K-17	Ansco D200						10:30- 12:06
9-10-68	15:56 16:11 16:21	5625 11250 5625	11-1/4" K-17	Ansco D200						16:15- 17:42
9-12-68	10:12 10:30 10:43	5625 11250 5625	11.1/4" K-17	Ansco D200						9:25- 10:49
9-12-68	16:31 16:46 16:54	3000	6" Zeiss RMKA	Ektachrome MS Aerographic				28.	9	15:49- 17:11
a. Statist	ic from a con	nparison bet	ween boat data	Statistic from a comparison between boat data and photo results.						

Statistic from a comparison between boat data and photo results.
 Statistic from a comparison within boat data.

Table 5. Summary of the 1969 oblique aerial photography.

	ing	d (0	4 ~	9.0
	Sampling PDT	15:10 16:16	12:44- 13:47	11:18
Boat	•	1		
	d.f.	5	4	
	MSEd	11.1	14.9	w
щ	MSE _b MSE _{bp}	2.8	5.3 5.3	
oto ^C	d.f.	147 130	124 193	110 181 70
Boat-Photo ^C	MSE _{bp}	4.0 2.9	2.2 3.5 3.5	7.3
	НВ-2 <u>Б</u>	5424 5424 5424	8442 8442	8443 8443 8443
۸۲	Film HB-1 <u>b</u>	8401 8443	5424 5424 5424	5424 5424 5424
Photography	K-17ª	8442 8442	5425 5425 5425	2402 2402 2402
ď.	Altitude (ft.)	3000	4000 6000	3000
	Time PDT	15:15 15:21 15:56	12:52 13:01	11:21 11:38 14:44
	Date	7-8-69	8-12-69	69-8-6

Mapping camera with 6-inch focal length lens.

70 mm Hasselblad camera with 150 mm focal length lens.

Statistic from a comparison between boat data and photo results.

Statistic from a comparison within boat data.

No cross lines for the boat sampling.

the water samples were consistently at or near saturation. However, the standard error in conducting the BOD, COD, and PBI tests were about the same magnitude as the test results and the chemical sampling phase of the study was discontinued after the first season.

Originally, nine surface floats with drogues attached at various depths were planned to be set in the receiving water prior to the aerial photography for determining the water currents. Because of the time required to set and retrieve the floats, only three floats were set after the first two sampling runs.

For each day that waste concentrations were computed from both the densitometer measurements taken on the aerial photography and the fluorometer records from the boat sampling, a comparison was made of the concentrations determined by the two methods by matching the ground coordinates. The mean square residuals for this comparison are listed under the column heading of Boat-Photo. Points for the comparison were selected at 60-ft along the boat's track. Only points inside the waste field were used in the comparison. On August 12, 1969, foam from the waste covered the water surface near the outfall and this area was deleted from the comparison.

Plots of the residuals for flight 1 on August 8, 1968, and flight 2 on August 16, 1968, are given in figure 36. In figure 37 are two plots of residuals for the second flights on July 8, 1969, and August 12, 1969. In general, maximum residuals occurred near median concentration values. Plots showing both the concentrations determined from the aerial photography and those measured by boat sampling are given in figures 39 through 41. The X axis of the plot represents distance along the boat's track when inside the waste field. The distance in feet would be equal to the position number times 60. The correlation coefficient between the two methods ranged from 0.85 to 0.95.

Continuous boat sampling of the waste field was conducted while the survey vessel was underway. Where the boat sampling lines crossed, concentrations were measured twice at one point within a relatively short period of time. Continuous boat sampling was generally conducted over a period of about one hour. A measure of the repeatability of the concentrations determined by boat sampling is given by the mean square residual for these observations as listed in tables 4 and 5 under the column heading — MSE_{b} .

The F statistic listed in the tables can be used to test for a significant difference in the residuals computed between the boat and photo data and within the boat data. Using a 95 percent confidence level, the F statistic would have to be greater than 2.5 to indicate that the residual within the boat data is significantly greater than the residual between the boat sampling and the photo values.

Figure 37. Plot of residuals - 1969

Figure 38. Comparison of boat and photo values on August 8, 1968.

Photos taken at 16:00

Comparison of boat and photo values on August 16, 1968. Figure 39.

Figure 40. Comparison of boat and photo values July 8, 1969.

Position Numbers at 60-ft. Intervals

20

Comparison of boat and photo values August 12, 1969.

1970-1971 Data

The data acquired during the 1970-1971 field season are summarized on the following pages. The results of each sampling run are tabulated on two pages. On the left page is a contact print of the outfall area taken with the K-17 mapping camera using panchromatic, type 2402 film with a 25A wratten filter. The oblique photographs were taken with the axis of the camera oriented approximately 50 degrees from the vertical. The general orientation of the photographs can be visualized from the shoreline which extends almost due north and south along this section of the coast. A chart of the outfall area is shown in figure 42.

Depending upon the characteristics of the effluent, the location of the waste field is not always evident in these photographs. If the light scattering of the waste in the red band is high, the plume can be distinguished from the bluish-green background of sea water. However, when the seas are rough suspended sands and silts in the sea water can make the identification of the plume difficult in the red band. When the waste appears black instead of brown, the greatest contrast between the plume and the sea occurs around 500 nm. In this band the light return from the sea water is high while the light scattered in the plume is low.

The plot shown on the right page for a sampling run was made by photographing the CRT of the Tektronix T-4002 graphs display terminal. A state plane coordinate grid is drawn and labeled at 1000-ft intervals. The outline of the waste field is shown on the plot as a solid line. Foam from the effluent is indicated with x's on the plot. The area of the plume is computed in acres and displayed at the top of the plot.

When possible, the water current velocity is computed from the dye patch and the vector drawn on the plot at a scale of 1.0 ft/sec to 1000 ft. The position of the centroid of the dye patch during the first flight over the outfall area is shown on the plot at the tail of the velocity vector. The apparent position of the boil over the outfall is also shown on the plot as a triangle. The position of the outfall as determined from the 1968-1969 data and shown in figure is 1069400E, 375800N.

The wind velocity and direction were listed at the two-hour interval below the tekplot photo for the day of the observation and the previous day. Wind data were obtained from the continuously recording anemometer located on the south jetty. If this station was not in operation or for some other reason the data were not usable, manually recorded weather from the Newport station was plotted at 3 hr intervals. According to the Weather Bureau, the wind velocity at this station is less than that which would be recorded at the south jetty but the wind directions agree closely.

Tidal information is given on the data sheet below the wind vector

plot. Pacific Standard Time of day was used for both the wind and tide plots during the period October 25 through April 25. The tidal information was obtained from the Coast and Geodetic Survey tide tables.

Factors which influence the size of wind waves include the wind velocity, wind duration and the fetch. For a given outfall location, the fetch will vary with the direction of the wind. The effect of wind velocity on the condition of the sea is shown in figure 93. The photos show the condition of a developed sea for wind velocities of 15, 20, 25, 30, 40 and 50 kts, respectively. Energy from the wind is transferred to sea as transport velocity energy and turbulent energy. Descriptions of the sea for various wind scales are listed in table 6.

A summary of the 1970-71 data is given in table 7. Effluent discharge rates were not available for December 21 and 23, 1970. During the sampling period the current velocity ranged from 0.1 to 1.4 ft/sec while the area of the waste field ranged from 7 to 464 acres. The diffusion coefficients listed in the table were determined from the dye patch studies. The predicted tide stage at the time of the aerial photography is listed in column eight. In the last column of table 7 is the sea state which was estimated from the aerial photography with the aid of both the descriptions listed in table 6 and the photos of the sea state in figure 93. Detailed descriptions of the observations by dates follows.

The plume on September 9 was one of the largest observed with an area of 275 acres from an effluent discharge rate of 5850 gpm. A current velocity of 0.3 ft/sec was measured near the outfall. The tide was at 4 ft at the time the photo was taken and rising with a maximum of 7.5 ft reached 4 hours later. It can be seen in figure 43 that some foam is visible forming a striated pattern extending southeasterly toward the jetty. The current vector is shown in a southwesterly direction to the north in the afternoon. The waste plume extended northeast from the outfall at the time of the photography. The photo has a mottled tone with scattered whitecaps throughout the area. No definite linear pattern is present due to the wave crests aligned perpendicular to the wind. The diffusion coefficient parallel to the current vector was $12.9 \, \mathrm{ft^2/sec}$ and $0.4 \, \mathrm{ft^2/sec}$ perpendicular to the current.

On September 23, the plume was small with foam streaks originating from the boil over the outfall as shown in figure 45. The foam runs southward due to the prevailing northerly winds while the plume extends northward. The winds on the previous day were 20 kts from the southwest. The area of the waste field was 28 acres and the diffusion coefficients were $3.2 \, \mathrm{ft^2/sec}$ and $0.1 \, \mathrm{ft^2/sec}$ in the x and y directions, respectively. The current velocity was small (0.1 ft/sec), while the tide was 4 ft and rising with a maximum of 6.5 ft 4 hours later. The dye patch can be seen in figure 45 approximately 2000 ft southwest of the outfall. A light haze covers the nearshore area.

A very distinct plume pattern was observed on September 30. The width of the plume increases at a decreasing rate downstream from the outfall. The current velocity was 0.7 ft/sec which is higher than average. The area of the plume was 128 acres with an effluent discharge rate of 6950 gpm. Diffusion coefficients were 7.5 ft 2 /sec and 0.1 ft 2 /sec in the x and y directions. Although the wind was approximately 10 kts from the north only a small amount of foam was present. The tide was at 4 ft and decreasing with the minimum being reached 3 hours after the photos were taken. The photo in figure 47 shows the plume as a light area with two thin foam streaks parallel to the shore extending to the right. A few whitecaps can be seen in the photo. The sea has a finely mottled pattern with a definite linear trend normal to the shore due to the wind waves.

On October 7, the plume was one of the smallest observed despite the fact that the effluent flow rate was 7450 gpm. The plume is difficult to see in figure 49 but two small foam streaks can be seen extending southeast from the outfall. The area of the waste field was only 9 acres. At the time of the photo, the stage of the tide was 6.5 ft and rising. The peak was reached about an hour and a half after the flight. The dye patch can be seen in the lower right of figure 49.

A lake-like plume pattern with an area of 89 acres was observed on October 12. The waste discharge rate was 7650 gpm and the sea was choppy. The wind was from the north at 10-15 kts. The current velocity was not measured since only one flight was made over the outfall area. The tide was at 2.5 ft and decreasing, reaching a low of 0.5 ft two hours after the flight. The plume is visible in figure 51 as a lighter patch in the center of the picture just above the dye patch. The swell breaking on the reef can be seen in the lower right of figure 51. The sea has a mottled pattern with a number of whitecaps visible. There is a slight linear trend to the mottled pattern caused by the wind generated waves in the E-W direction.

On December 21, the plume was small and extended offshore from the outfall. Wind from the southwest at 40 kts generated large swell prior to the photography. Breakers can be seen all along the reef in figure 53. The tide stage was at low water. The winds changed and were 10-15 kts from the east for 24 hours before the current velocity was measured at 2.0 ft/sec to the west. The sea has a mottled pattern with a few whitecaps. The swell can be seen peaking throughout the area between the shore and the reef. The Coast Guard recorded a swell of ten ft at the mouth of the Yaquina River. Diffusion coefficients of 7.3 ft 2 /sec and 1.9 ft 2 /sec were measured for the x and y directions respectively.

The waste field on December 23 tended to lake about the outfall with an area of 26 acres. A current velocity of 1.1 ft/sec was measured inshore from the outfall. Diffusion coefficients were 5.1 ft 2 /sec in the x direction and 0.7 ft 2 /sec in the y direction. The sea was calm with

a slight northeasterly breeze. The tide was at 4 ft and falling to one ft 3-1/2 hours later. A long streak of foam extended from the outfall area to the northwest and can be seen in figure 55.

As can be seen in figure 57, the sea was extremely rough on December 31. Although the effluent discharge rate was 8700 gpm, the plume was not visible. While the wind was relatively calm, the swell height was eight feet from the Coast Guard records. The waves were breaking from the outer reef to the beach. A current velocity of 1.4 ft/sec was measured as were diffusion coefficients of 6.9 ft 2 /sec and 0.6 ft 2 /sec in the x and y directions. The plot from the Tektronix scope shows only the current vector extending from the position of the dye patch. The tide was at 7.5 ft and reached a maximum of 8 ft about one hour after the flight was taken.

A lake-like waste field was observed on January 2 with an area of 36 acres. The effluent flow rate was 6950 gpm. Diffusion coefficients were 1.7 ft 2 /sec and 0.5 ft 2 /sec in the x and y directions. The area near and to the north of the outfall is covered with foam as can be seen in figure 59. The lighter water near shore was caused by the turbulence from the large swell suspending the sand. Wind waves oriented NE-SW can be seen in the upper left. The tide was at 3 ft at the time the photo was taken and reached a peak of 7 ft approximately 3 hours later.

During the morning of the 6th of February, the plume was observed heading toward the north with an area of 193 acres. The current velocity near the outfall was 0.3 ft/sec. The effluent flow rate was 6450 gpm and diffusion coefficients in the area were 3.6 ft 2 /sec and 0.1 ft 2 /sec in the x and y directions. The wind had been from the east but was beginning to shift towards the northeast at the time of the photography. The tide stage was 0.5 ft and falling, reaching a minimum of 0.0 ft four hours later. The photo in figure 61 shows foam originating at the boil over the outfall and trailing off toward the northwest. The plume is the lighter area north of the outfall. A few whitecaps are present in the nearshore area but the sea surface when viewed from about 30 degrees from the vertical appears uniform in tone.

In the afternoon of the 6th of February, the plume had shifted approximately 180 degrees from the direction observed in the morning and was headed toward the south. The area of the waste field remained approximately the same as in the morning. The winds had shifted from easterly to northwesterly, and the long foam streak formed a U-shaped pattern, open to the northeast as can be seen in figure 63. The sea was relatively calm, and the tide was at 1.5 ft and nearly reached the minimum of 0.0 ft at 16:00.

The plume on March 16 was small, measuring 22 acres, and extended southward from the outfall. The sea was rough, as the photo in figure 65 shows, and the winds were approximately 20 knots out of the north.

The tide was at a stage of 4 ft and rising to a maximum of 6 ft three hours after the flight. The plume can be seen in figure 65 as the dark area near the lower center of the photo. Extensive whitecaps can be seen everywhere. The photo has a mottled pattern with turbid water near shore and in the shallow area between the outfall and the north jetty. The crests of the wind-generated waves show a linear pattern and the swell can be seen peaking outside the surf zone.

The plume on March 17 tended to lake about the outfall with a leg extending towards the southeast. As can be seen in figure 67, a foam streak extends southward from the outfall, apparently driven by the 15 kt wind from the north. The plume can be seen in figure 67 as the dark area surrounding the boil. Suspended silts and sands in the nearshore area give the water a lighter tone. The sea appears rough with numerous whitecaps in the area. There is a definite linear trend caused by the wind generated waves and the photo has a mottled pattern. A current velocity of 0.3 ft/sec toward the southeast was measured north of the outfall. The tide stage was 5 ft and about 1 hour before high tide.

The area of the plume observed on March 18 was 111 acres with a current velocity of 0.7 ft/sec driving the plume to the south. The effluent flow rate was 5950 gpm and diffusion coefficients of 0.4 ft 2 / sec in the x and y directions were measured near the plume. The winds were shifting from northeasterly to northwesterly at the time the photo in figure 69 was taken and the tide was at low water. The lighter water near the shore is caused by sand being suspended by the turbulent action of the large waves. This turbulent action continues to suspend material to a depth of 35 ft near the north end of the reef. Waves are breaking on the reef near the outfall.

The lake-like plume in the morning of March 19 measured 73 acres and diffusion coefficients near the plume were determined to be $1.2\,\mathrm{ft}^2/\mathrm{sec}$ in the x direction and $0.4\,\mathrm{ft}^2/\mathrm{sec}$ in the y direction. The current velocity was $0.3\,\mathrm{ft/sec}$ in a generally westward direction. The winds were shifting from the northeast to the northwest at the time the observations were made and the tide was at $1\,\mathrm{ft}$. The light water near the shore in figure 71 is caused by sand suspended in the water. The plume extended both onshore and offshore from the outfall. The sea has a mottled pattern with a few whitecaps visible. Waves were breaking on the reef both north and south of the outfall. Swell crests can be seen in the upper left of the photo and near shore. The turbid water along the coast both north and south of Yaquina Head shows a confused circulation pattern.

In the afternoon of March 19, the plume had begun to spread to the south, apparently due to the shifting of the wind from easterly to northerly. The tide had passed the minimum and was at 1 ft and rising. The photo in figure 73 shows the plume as the dark area extending both offshore and onshore. The photo was taken from 6000 ft at 13:50 and,

when compared with figure 71, shows the change which occurred. The swell had decreased and the wind had increased from morning and a number of whitecaps can be seen. The refraction wave pattern in the lower right of the photo was caused by a sunken barge on the reef. Photos of the outfall area on both March 18th and 19th showed very turbid water along the coast. Neither the swell height nor wind velocities during these days were particularly large. A heavy rain storm began March 9 and ended March 15. Turbid fresh water runoff from this storm may have caused these conditions in the nearshore coastal waters.

The plume on March 24 was somewhat elongated, extended southwest and covered an area of 58 acres. The current velocity north of the outfall was 0.3 ft/sec and diffusion coefficients were 1.2 ft²/sec in the x direction and 0.0 in they direction. The wind had been blowing 15-25 kts and generated rough seas as can be seen in figure 75. The waves were breaking on the reef just offshore from the outfall located near the lower center of figure 75. A few whitecaps can be seen near the outfall. The tide was at low water when the photography was taken.

The plume on April 12 was the smallest observed, measuring only 7 acres and extended toward the northwest from the outfall, driven by a current of 0.4 ft/sec. While the wind was 10-15 kts from the east, the sea was calm as the photo in figure 77 shows. The light spot in the center of the photo is the dye patch from which diffusion coefficients of $8.07~\rm ft^2/sec$ and $0.19~\rm ft^2/sec$ were measured. The tide was at 5.5 ft and falling.

The plume on April 15 extended towards the southwest while a foam streak can be seen looping back toward shore in figure 79. The area of the plume was 68 acres with an effluent flow rate of 7700 gpm. The tide is at 4.5 ft and flooding. The wind had been from the east but had changed to the northwest at the time of the observations. The light area in figure 79 extending from shore to the foam streak appears to be a tide rip. Numerous whitecaps are visible and the sea has a mottled tone. A breaker is visible on the reef offshore from the outfall.

The plume on April 21 was long and narrow and extended northward approximately 13,000 ft. The effluent discharge rate was 5850 gpm and the area of the plume was 166 acres. Some foam appears to be generated in the waste by the 10 kt wind with foam streaks extending northeast near the upper left of figure 81. An eddy or a tide rip appears northeast of the outfall and may be the cause of the curved plume pattern. The current velocity was 0.5 ft/sec near the outfall while the x and y diffusion coefficients were only 0.3 and 0.02 ft 2 /sec, respectively. The observations were made at low tide and the wind was from the southwest.

The largest plume observed during the 1970-71 season was 464 acres on

April 26. The current velocity was 0.3 ft/sec towards the north. The boil over the outfall can be seen near the lower right of figure 83. The plume is the light area extending upwards and to the left from the outfall. The effluent discharge rate was 5800 gpm and diffusion coefficients were 14.0 and 0.2 ft²/sec in the x and y directions, respectively. The elongated dye patch can be seen in the photo just south of the boil. The photo of the sea appears to have a slightly mottled pattern with a few whitecaps present. The wind velocity was only ten knots at the time of the photography. Coast Guard records indicate that the swell was 2-4 ft.

Only one photographic flight was taken over the outfall on May 7 before the area was covered with fog. The fog can be seen on the left in figure 85. The plume was narrow and extended northward from the outfall. A foam streak can be seen along the nearshore edge of the plume. The light spot near the head of the plume is the dye patch. The observation was made during a falling tide when the wind was from the southwest 10-15 kts and the effluent discharge rate was 6350 gpm.

On May 10th, the plume covered an area of 71 acres. The head of the plume formed a sharp point as can be seen near the left of figure 87. The plume extends to the right or south. The current velocity of 0.7 ft/sec was measured near the tail of the plume. Diffusion coefficients from the dye patch in the x and y directions were 2.8 and 0.1 ft 2 /sec, respectively. A few whitecaps are present near the outfall.

The long plume observed on May 13 extended nearly 9000 ft in a north-easterly direction and covered an area of 197 acres. The flow rate was 6050 gpm on this day. The plume can be seen in figure 89 as a light area with the head of the plume near the right. The photo was taken from 6000 ft at 14:10 and the tide at this time was 4.5 ft and rising toward a peak of 5.5 at 16:00. Numerous whitecaps can be seen in the sea with a finely mottled photo pattern.

The plume on May 14 extended from the outfall toward the west for approximately 2000 ft and then headed southward for a distance of 3500 ft. The area covered by the plume was 112 acres, and the velocity was 0.3 ft/sec in a southwestward direction. The flow rate of the effluent was 5800 gpm and diffusion coefficients were computed to be 2.4 ft 2 /sec in the x direction and 0.1 ft 2 /sec in the y direction. The photo in figure 91 was taken from 4000 ft at 14:48 and shows the plume as a large spot with light tone in the darker surrounding water. The tide at this time was at a stage of 5 ft and rising.

Figure 42. Chart of the outfall area at Newport, Oregon.

Figure 43. Aerial photo of outfall area on September 9, 1970 from 800 feet at 14:30.

Figure 44. Data for September 9, 1970.

Figure 45. Aerial photo of outfall area on September 23, 1970 from 8000 feet at 15:30.

Figure 46. Data for September 23, 1970.

Figure 47. Aerial photo of outfall area on September 30, 1970 from 5000 feet at 14:54.

Figure 48. Data for September 30, 1970.

Figure 49. Aerial photo of outfall area on October 7, 1970 from 3000 feet at 14:32.

Figure 50. Data for October 7, 1970.

Figure 51. Aerial photo of outfall area on October 12, 1970 from 4000 feet at 14:10.

Figure 52. Data for October 12, 1970.

Figure 53. Aerial photo of outfall area December 21, 1970 from 6000 feet at 13:15.

Figure 54. Data for December 21, 1970.

Figure 55. Aerial photo of the outfall area on December 23, 1970 from 3000 feet at 11:25.

Figure 56. Data for December 23, 1970.

Figure 57. Aerial photo of outfall area on December 31, 1970 from 3000 feet at 12:10.

Figure 58. Data for December 31, 1970.

Figure 59. Aerial photo of outfall area on January 2, 1971 from $4000\ \text{feet}$ at 11:40.

Figure 60. Data for January 2, 1971.

Figure 61. Aerial photo of outfall area on February 6, 1971 from 6000 feet at 11:55.

Figure 62. Data for February 6, 1971 AM.

Figure 63. Aerial photo of outfall area on February 6, 1971 from 4000 feet at 14:18.

Figure 64. Data for February 6, 1971 PM.

Figure 65. Aerial photo of outfall area on March 16, 1971 from 4250 feet at 12:20.

Figure 66. Data for March 16, 1971.

Figure 67. Aerial photo of outfall area on March 17, 1971 from 4000 feet at 14:25.

Figure 68. Data for March 17, 1971.

Figure 69. Aerial photo of outfall area on March 18, 1971 from 8000 feet at 11:42.

Figure 70. Data for March 18, 1971.

Figure 71. Aerial photo of outfall area on March 19, 1971 from 8000 feet at 11:27.

Figure 72. Data for March 19, 1971 AM.

Figure 73. Aerial photo of outfall area on March 19, 1971 from 6000 feet at 13:50.

Figure 74. Data for March 19, 1971 PM.

Figure 75. Aerial photo of outfall area on March 24, 1971 from 6000 feet at 16:00.

1000-ft grid

Figure 76. Data for March 24, 1971.

Figure 77. Aerial photo of outfall area on April 12, 1971 from 6000 feet at 14:45.

Z >

Figure 78. Data for April 12, 1971.

Figure 79. Aerial photo of outfall area on April 15, 1971 from 4000 feet at 14:07.

7

Figure 80. Data for April 15, 1971.

Figure 81. Aerial photo of outfall area on April 21, 1971 from 4000 feet at 13:46.

Figure 82. Data for April 21, 1971.

Figure 83. Aerial photo of outfall area on April 26, 1971 from 6000 feet at 14:20.

Flow = 5800 gpm V_x = 0.3 fps Area = 464 Ac Dx = 13.90 ft 2 /sec Dy = 0.19 ft 2 /sec — current vector x foam Δ outfall

1000-ft grid

Figure 84. Data for April 26, 1971.

Figure 85. Aerial photo of outfall area on May 7, 1971 from 4000 feet at 15:13.

Figure 86. Data for May 7, 1971.

Figure 87. Aerial photo of outfall area on May 10, 1971 from 4000 feet at 16:10.

Figure 88. Data for May 10, 1971.

Figure 89. Aerial photo of outfall area on May 13, 1971 from 6000 feet at 14:10.

\searrow \searrow \longrightarrow

Figure 90. Data for May 13, 1971.

Figure 91. Aerial photo of outfall area on May 14, 1971 from 4000 feet at 14:48.

Figure 92. Data for May 14, 1971.

Figure 93. Photos of sea conditions (from Neumann & Pierson, Jr., 1966).

Table 6. Wind scales and sea descriptions (after Bascom 1964).

Beaufort Scales	Wind Velocity Knots	Description	Wave Heights feet	State of Sea Code
1	1-3	Light air; ripples-no foam crests.	0	0
2	5	Light breeze; small wavelets, crests have glassy appearance and do not break.	0-1	1
3	10	Gentle breeze; large wave- lets, crests begin to break. Scattered whitecaps.	1-2	2
4	15	Moderate breeze; small waves becoming longer. Frequent whitecaps.	2-4	3
5	20	Fresh breeze; moderate waves taking a more pro- nounced long form; mainly whitecaps, some spray.	4-8	4
6	25	Strong breeze; large waves begin to form extensive whitecaps everywhere, some spray.	8-13	5
7	30	Moderate gale; sea heaps up and white foam from breaking waves begins to be blown in streaks along the direc- tion of the wind.	13-16	5-1/2
8	40	Fresh gale; edges of crests break into spindrift. The foam is blown in well-marked streaks along the direction of the wind.	16-20	6
10	50	Whole gale. The surface of the sea takes on a white appearance. The rolling of the sea becomes heavy.	20-30	7

Table 7. Summary of the 1970-71 data.

Date	Effluent Flow, gpm	Time Between Flights Seconds	Current Velocity, ft/sec	Plume Area, Acres	Diffusion D _X ft ² /sec	Coefficients Dy ft ² /sec	Tide ht - ft + flood - ebb	State of Sea Code
9-9-70	5850	1920	0.3	275	12.9	0.4	4 +	4
9-23-70	5900	1500	0.1	28	3.2	0.1	4 +	2
9-30-70	6950	780	0.74	128	7.5	0.1	4 -	3
10-7-70	7450			9			6.5+	2
10-12-7	7650		••	89			2.5-	3
12-21-7	70	1200	2.0	18	7.3	1.9	2.5-	3
12-23-7	0	540	1.1	26	5.1	0.7	4 -	2
12-31-7	0 8700	360	1.4	******	7.9	0.6	7.5+	5
1-2-71	6950	600	0.6	36	1.7	0.5	3 +	2
2-6-71 a	am 6450	720	0.3	193	3.6	0.0	5 -	2
ا 2-6-71	om 6450			200			1.5-	2
3-16-71	5750			22			4 +	5
3-17-71	5600	2100	0.3	126	5.1	1.0	5 +	4
3-18-7	5950	1920	0.7	111	0.4	0.3	0.5+	2
3-19-71	am 4500	900	0.3	73	1.2	0.4	1 -	2
3-19-71	pm 4500			83			1 +	2
3-24-71	7850	1500	.0.3	58	1.2	0.0	0 +	3
4-12-7	1 7700	2040	0.4	7	8.1	0.2	5.5-	2
4-15-7°	7700			68			4.5+	3
4-21-7	1 5850	1020	0.5	166	0.3	0.0	0.5-	2
4-26-7	1 5800	1980	0.3	464	13.9	0.2	6.5-	3
5-7-71	6350			34			2.5-	3
5-10-7	1 5975	1680	0.7	71	2.8	0.1	4 -	3
5-13-7	1 6050	**		197		*****	4.5+	4
5-14-7	1 5800	1980	0.3	112	2.4	0.1	5 +	3

SECTION XI

DISCUSSION OF RESULTS

During the 1968 and 1969 field seasons, field work was conducted during the summer. Since boat work was required in the nearshore area, data acquisition was limited to periods of relatively calm seas when the swell seldom exceeded five ft and the current velocity was generally less than 0.5 ft/sec. Boat work was discontinued during the 1970-1971 season and field work was conducted during the fall, winter and spring when rough sea conditions prevailed and current velocities greater than 0.5 ft/sec were common.

One Dimensional Diffusion Model

As a result of the various plume patterns observed over the period of the project, the Fickian diffusion model with a unidirectional transport velocity appears to provide a reasonably accurate description of the surface transport and dilution process when the current velocity in the receiving water is high. A sketch showing the steady state plume patterns expected from a line source with a unidirectional velocity is given in figure 94. If the diffusion coefficient (D_{ν}) is constant, the widths of the plume should increase with the distance downstream from the outfall at a decreasing rate or the sides of the plume should be concaved inward. The center sketch in figure 94 shows the plume shape for a diffusion coefficient that increases linearly with the scale. For this model the sides of the plume are straight. If, however, the diffusion coefficient varies to a larger power of the scale such as the 4/3 power, the plume width should increase at an increasing rate or the sides of the plume should be concaved outward.

Sinusoidal oscillations along the length of the plume will cause the width to increase faster than normal. From the dye patch studies, the diffusion coefficient in the x-direction was generally several times greater than that in the y-direction or normal to the flow. In a steady state plume, the longitudinal diffusion coefficient is not effective in reducing the waste concentration because of the small change in concentration gradients in the x-direction. Oscillations along the length of the plume will cause the width of the plume to increase at a faster rate than would normally be expected from the magnitude of the lateral diffusion coefficient. A curved plume pattern will create large changes in the concentration gradient in the x-direction and the longitudinal diffusion coefficient will become effective in reducing the waste concentration.

A diffusion model with a unidirectional transport velocity is not applicable to the plume pattern when the current velocity in the receiving water is low. Figure 95 is an isoconcentration plot of the waste field on August 8, 1968. The outfall is located near the upper

Figure 94. Plume patterns for a unidirectional transport velocity.

Figure 95. Isoconcentration plot, August 8, 1968.

center of the plot and the plume extends downward. The plume is 2400 ft wide and 3000 ft long. Concentrations shown on the plot are in The diffusion coefficients computed from the one dimensional model are listed in table 8 for August 8, 1968. It can be seen that the diffusion coefficients computed from the change in variance between each fifth section along the axis of the plume are extremely high at the head of the plume with a few negative values toward the tail of the plume. While the sea was choppy, the initial spreading of the waste field was not due to diffusion but rather to the surface spreading of a source in a uniform stream. The average initial dilution over the outfall was about 1:100. The sea water, when combined with an effluent discharge rate of 12.4 cfs, would create a source with a strength of 1240 cfs over the outfall near the surface and a sink of nearly equal strength below the surface. The subsurface sink in general draws water upstream from the outfall similar to the draw down on a well in an aquifier, while the surface source discharges its water downstream. The vertical jet from the diffuser section of the outfall provides the connection for the transfer between the sink and source and supplies the energy necessary to lift the dense subsurface water from the bottom to the sea surface.

Potential Flow

Figure 96 shows a line source of strength α in a uniform flowing stream. The velocity of the uniform flow is U and

$$\alpha = \frac{Q \text{ (DIL)}}{b \text{ (DEP) } 2\pi} \tag{108}$$

Where Q is the effluent discharge rate in cfs, DIL is the dilution over the outfall, b is the length of the diffuser section and DEP is the average depth of the waste field. The potential flow is given by

$$\Omega = \phi + i \psi$$

$$= -UZ + \int_{-b/2}^{b/2} \ln (iZ-y') dy'$$
(109)

Where ϕ is the potential function, ψ is the stream function and

$$Z = x + iy \tag{110}$$

Equation 109 can be reduced to

$$\psi = -UZ + \alpha(iZ + b/2 ln (iZ + b/2)$$
(111)
- \alpha(iZ-b/2) ln (iZ-b/2)

Ft Ft Ft PPT X Y Fifth Sec. 11 1007 9.6 3.160E 02 6.221E 00 1069767 375748 4.145E 01 16 1429 3.5 4.215E 02 1.273E 01 1069428 375611 3.372E 01 21 2059 3.3 5.252E 02 1.090E 01 1069277 375351 4.250E 01 26 2475 3.3 6.169E 02 9.309E 00 1069136 375084 4.539E 01 36 2784 4.4 7.147E 02 6.028E 00 1069031 37495 5.078E 01 41 3091 6.5 6.748E 02 4.315E 00 1068904 374162 2.406E 01 46 3080 9.4 6.461E 02 3.104E 00 1068904 374162 2.406E 01 51 2207 14.2 6.958E 02 1.915E 1068407 373769 2.886E 01 5urrent Velocity .26 FPS 5 7 6.958E 02 1.915E 106804 2.4	Section Width Eff. Depth Sigma Y Coefficie	Width	Eff. Depth	Sigma Y	Coefficient	State Plane	State Plane Coordinates	Diffusion Coe	Diffusion Coefficient Ft ² /sec
1007 9.6 3.160E 02 6.221E 00 1069767 1429 3.5 4.215E 02 1.273E 01 1069428 2059 3.3 5.252E 02 1.090E 01 1069277 2475 3.3 6.169E 02 9.309E 00 1069136 2613 3.5 7.055E 02 7.634E 00 1069031 2784 4.4 7.147E 02 6.028E 00 1068938 3091 6.5 6.748E 02 4.315E 00 1068904 3080 9.4 6.461E 02 3.104E 00 1068785 2207 14.2 6.958E 02 1.915E 1068407 Flow Rate 12.4 CFS Sun Altitude .567 Rad.		Ft	Ft	Ft	PPT	×	>	Fifth Sec.	Average
1429 3.5 4.215E 02 1.273E 01 1069428 2059 3.3 5.252E 02 1.090E 01 1069277 2475 3.3 6.169E 02 9.309E 00 1069136 2613 3.5 7.055E 02 7.634E 00 1069031 2784 4.4 7.147E 02 6.028E 00 1068938 3091 6.5 6.748E 02 4.315E 00 1068904 3080 9.4 6.461E 02 3.104E 00 1068785 2207 14.2 6.958E 02 1.915E 1068407 Flow Rate 12.4 CFS Sun Az. from S. 1.398 Rad. Current Velocity .26 FPS Sun Altitude .567 Rad.	=	1007	9.6	3.160E 02	6.221E 00	1069767	375748	4.145E 01	4.145E 01
2059 3.3 5.252E 02 1.090E 01 1069277 2475 3.3 6.169E 02 9.309E 00 1069136 2613 3.5 7.055E 02 7.634E 00 1069031 2784 4.4 7.147E 02 6.028E 00 1068938 3091 6.5 6.748E 02 4.315E 00 1068904 3080 9.4 6.461E 02 3.104E 00 1068785 2207 14.2 6.958E 02 1.915E 1068407 Flow Rate 12.4 CFS Sun Az. from S. 1.398 Rad. Current Velocity .26 FPS Sun Altitude .567 Rad.	16	1429	3.5	4.215E 02	1.273E 01	1069428	375611	3.372E 01	3.758E 01
2475 3.3 6.169E 02 9.309E 00 1069136 2613 3.5 7.055E 02 7.634E 00 1069031 2784 4.4 7.147E 02 6.028E 00 1068938 3091 6.5 6.748E 02 4.315E 00 1068904 3080 9.4 6.461E 02 3.104E 00 1068785 2207 14.2 6.958E 02 1.915E 1068407 Flow Rate 12.4 CFS Sun Az. from S. 1.398 Rad. Current Velocity .26 FPS Sun Altitude .567 Rad.	21	2059	3.3	5.252E 02	1.090E 01	1069277	375351	4.250E 01	3.922E 01
2613 3.5 7.055E 02 7.634E 00 1069031 2784 4.4 7.147E 02 6.028E 00 1068938 3091 6.5 6.748E 02 4.315E 00 1068938 3080 9.4 6.461E 02 3.104E 00 1068785 2207 14.2 6.958E 02 1.915E 1068407 Flow Rate 12.4 CFS Sun Az. from S. 1.398 Rad. Current Velocity .26 FPS Sun Altitude .567 Rad.	26	2475	3.3	6.169E 02	9.309E 00	1069136	375084	4.539E 01	4.076E 01
2784 4.4 7.147E 02 6.028E 00 1068938 3091 6.5 6.748E 02 4.315E 00 1068904 3080 9.4 6.461E 02 3.104E 00 1068785 2207 14.2 6.958E 02 1.915E 1068407 Flow Rate 12.4 CFS Sun Az. from S. 1.398 Rad. Current Velocity .26 FPS Sun Altitude .567 Rad.	31	2613	3.5	7.055E 02	7.634E 00	1069031	374795	5.078E 01	4.277E 01
3091 6.5 6.748E 02 4.315E 00 1068904 3080 9.4 6.461E 02 3.104E 00 1068785 2207 14.2 6.958E 02 1.915E 1068407 Flow Rate 12.4 CFS Sun Az. from S. 1.398 Rad. Current Velocity .26 FPS Sun Altitude .567 Rad.	36	2784	4.4	7.147E 02	6.028E 00	1068938	374497	5.677E 00	3.659E 01
3080 9.4 6.461E 02 3.104E 00 1068785 2207 14.2 6.958E 02 1.915E 1068407 Flow Rate 12.4 CFS Sun Az. from S. 1.398 Rad. Current Velocity .26 FPS Sun Altitude .567 Rad.	41	3091	6.5	6.748E 02	4.315E 00	1068904	374162	-2.406E 01	2.792E 01
2207 14.2 6.958E 02 1.915E 1068407 Flow Rate 12.4 CFS Sun Az. from S. 1.398 Rad. Current Velocity .26 FPS Sun Altitude .567 Rad.	46	3080	9.4	6.461E 02	3.104E 00	1068785	373881	-1.638E 01	2.238E 01
	51	2207	14.2	6.958E 02	1.915E	1068407	373769	2.886E 01	2.310E 01
		Flow Ra	te 12.4 CFS				Area Within Each Co	oncentration Range	
PS 0-2 2-4 4-6 6-10		Sun Az.	from S. 1.398 Ra	ad.			Range ml/I	Area Sq Ft	
2- 4 4- 6 6-10 10-15		Current	Velocity .26 FPS	"			0. 2	2.477E 06	
		Sun Alti	tude .567 Rad.				2- 4	1.616E 06	
7							4- 6	9.036E 05	
							6-10	1.613E 06	
							10-15	2.376E 05	

Line Source in a Uniform Stream

Figure 96. Geometry for a line source in a uniform stream.

from which the stream function is

$$\psi = -UY + \alpha [(Y + \frac{b}{2}) \theta_{1} - (Y - \frac{b}{2}) \theta_{2} - X \ln \frac{r_{1}}{r_{2}})]$$
 (112)

where

$$\tan \theta_1 = \frac{(Y + \frac{b}{2})}{X} \tag{113}$$

$$\tan \theta_2 = \frac{Y - \frac{b}{2}}{X} \tag{114}$$

The value of the stream function along the axis of the plume (y = 0)

is

$$\psi = \alpha b \pi \tag{115}$$

While the value of y when $\psi = 0$ and x approaches ∞ is

$$y = \frac{\alpha b \pi}{U}$$
 (116)

The values of the x and y velocity components are given by

$$v_{x} = \frac{\partial \psi}{\partial y} = -U + \alpha(\theta_{1} - \theta_{2})$$
 (117)

$$v_{y} = \frac{-\partial \psi}{\partial x} = \alpha \ln \left(\frac{r_{1}}{r_{2}}\right)$$
 (118)

Equation 112 was programmed to solve for the x and y coordinates of the streamlines. Two plots from the Tektronix plotter are shown in figure 97. The source strength for each plot is 300 cfs per ft of depth. A state plane coordinate grid is drawn and labeled at 1000-ft intervals. The outer streamline defines the plume boundary if the diffusion effluents were equal to zero. This plume can also be reproduced from the following modification of the diffusion model (equation 56).

$$\frac{\partial W}{\partial t} = -\left[\frac{\partial}{\partial Y} \left(V_{y}W\right) + \frac{\partial}{\partial X} \left(V_{x}W\right)\right] \tag{119}$$

where the x and y components of the velocity are determined from equations 117 and 118. The model given by equation 119 would be applicable when the sea is calm and the diffusion coefficients low.

On each plot in figure 97 the outer streamline has a value of zero while the centerline has a value of 150 as given by equation 115. The two plots are for line sources oriented perpendicular to a uniform stream of 0.1 and 0.5 ft/sec, respectively.

The four streamline sketches in figure 98 are for a line source of strength 300 cfs per ft of depth in a uniform stream of 0.0, 0.1, 0.3 and 0.5 ft/sec, respectively. The streamlines were traced from Tektronix plots such as those shown in figure 97. At zero current velocity, the waste field lakes or ponds about the outfall area. As shown in figure 98, the potential flow solution would give a downstream plume width of 3000 ft in a uniform stream of 0.1 ft/sec. As the current velocity increases, the plume width decreases to 1000 ft at 0.3 ft/sec and 600 ft at 0.5 ft/sec. The minimum width of the plume would be the length of the diffuser section.

When a waste water stream discharged from a submerged outfall spreads at the surface, the resulting drift flow plume pattern is influenced

Figure 97. Plots of a source in a uniform stream.

Ъ

Figure 98. Potential flow solutions for a line source.

by the ambient current velocity and the amount of residual buoyancy and momentum (if any) in the waste stream (Baumgartner and Trent, 1970). Rather accurate methods are available to calculate dilutions in the buoyant jet, neglecting the influence of ambient currents in this region. When density stratification occurs in the region surrounding the outfall, a plume can form without residual buoyancy and these dilution models can be used to determine the depth at which the lens first forms, whether or not portions of the plume rise to the surface (Baumgartner, Trent and Byram). This model offers a means for estimating the initial concentration and depth of the drift flow plume. The initial width and curvature of the surface plume can be estimated using a potential flow solution for a source in a uniform stream. For a single outfall port a point source would be used and for a multiport diffuser, a line source over the diffuser length can be used. In this way the relative influence of the ambient current, diffuser length and orientation can be evaluated.

Diffusion Model

In order to gain insight into the Fickian diffusion model and to determine the relative importance of the terms in the equation on the plume shape, a modified form of equation 56 was programmed so that the waste field could be simulated on the computer. For the computer model, the vertical diffusion coefficient (D_Z) and the velocity in the vertical direction (V_Z) in equation 56 were set equal to zero. In the resulting two-dimensional model the loss of waste to the lower layers due to vertical mixing was considered by substituting a decay term (-kW) for the sink term in equation 56. The resulting two-dimensional diffusion equation is:

$$\frac{\partial W}{\partial T} = \frac{\partial}{\partial Y} \left(D_{y} \frac{\partial W}{\partial Y} \right) + \frac{\partial}{\partial X} \left(D_{x} \frac{\partial W}{\partial X} \right)$$
$$- \left[\frac{\partial}{\partial Y} \left(V_{y} W \right) + \frac{\partial}{\partial X} \left(V_{x} W \right) \right] - kW \tag{120}$$

The initial condition for the model was that the concentrations throughout the waste field were zero. At the start of each incremental time period, the waste concentration for the elements in the array at the outfall were set equal to the concentration that resulted from the initial jet dilution. During each incremental time period the waste field is moved or convected in the array, diffused and decayed according to the model.

Two isoconcentration plots from this model are shown in figure 99. The outfall is located at the top of each plot and the plume extends downward. Current velocities for the two plots were 0.1 ft/sec and 0.5 ft/sec, respectively, while the diffusion coefficients were $D_y = D_x = 2$ ft²/sec. A source strength of 300 cfs/ft of depth was used to determine the current velocity components. The print out time was 90 minutes from the start of the effluent discharge, and the decay

Figure 99. Isoconcentration plots from diffusion model.

coefficient was 0.1 per hour.

<u>Temperature</u>

Vertical density stratification can cause the waste field to be formed below the sea surface. Of the 21 sampling runs conducted during the summers of 1968 and 1969, a surface plume was observed on eight days, the plume was submerged on six days and the waste field was not observed on seven days due to fog or rain. During these two summers a surface plume occurred for only 60% of the observations. Generally, the plume was not visible when the sea was calm. However, of the 25 observations conducted in the fall of 1970 and the winter and spring of 1971, the plume was not visible on only one day which was when the sea was extremely rough.

Changes in density can be caused by a variation in temperature and or salinity. Fresh water runoff from the coastal streams is at a minimum during the summer months and variations in temperature are generally the major cause of vertical density stratification in the nearshore area during the summer. Upwelling, which occurs during the summer, brings to the surface the more dense subsurface waterrich in nutrients. Upon reaching the surface, plankton begin growing. This suspended material reduces the transparency of the water and increases the sunlight absorption coefficient. Under relatively calm sea conditions, a thin surface layer of dark green water warms rapidly and can become lighter than the less saline subsurface water. During periods of upwelling, there is generally a narrow band of clear water between the land and the dark green offshore water. In addition to the seasonal variation in temperature there is also a diurnal variation. diurnal thermocline is especially prominent during calm summer days. The sketch in figure 100 shows the progressive variation in vertical temperature structure for various times of the day.

The absorption of solar radiation by the upper layers is readily apparent as the surface temperature increases to a late afternoon maximum and then decreases as the sun sets. Typical diurnal thermoclines may be as much as 30 feet deep and perhaps as much as 1° or 2° C in magnitude, though usually they are somewhat less. If a good breeze is blowing, the upper layers will become mixed, carrying the warm water to greater depths, having the effect of increasing the depth of the diurnal thermocline, but decreasing its magnitude, as the absorbed heat is spread out over a large volume of seawater.

Wind

Water currents in the nearshore area can be caused by a combination of factors including wind, tide, waves, and the general ocean circulation patterns. The importance of each of the several factors vary with both time and location. The topographic configuration of the shore, bathymetry of the area, pressure gradients and Coriolis forces will tend to

Figure 100. Typical diurnal thermoclines. (After Williams, Higginson & Rohrbough, 1968).

modify the flow pattern. Near the entrance to Yaquina Bay, there are large tidal currents while along the surf zone the wave height, beach slope and the angle the wave crests make with the beach are important considerations in estimating the longshore current. In the nearshore area of the outfall, wind appears to be the dominant factor in estimating water currents (Burgess and James, 1970 and Keene, 1971). The wind not only supplies energy for water transport but also energy in the form of turbulence.

The relationship between the wind and the water current velocity depends on the fetch, duration and magnitude of the wind as modified by the topography near the boundary of the sea. Diurnal variations in the coastal winds are common. An example of the effect of a shifting wind on the current velocity profile is given in figure 101. As the wind begins blowing, only the surface is affected. As the duration increases, the sea becomes turbulent and the energy is transferred deeper into the water. If the wind continues long enough in the same direction, the effect of the bottom drag may influence the velocity profile in the shallow areas. A reversal of the wind will affect the surface water first and will cause a change in the surface velocity vector. The surface waters can move in a direction opposite that of the subsurface water.

Figure 101. Development of current velocity profile.

Sea State

Wind provides turbulent energy for mixing of wastes discharged into the ocean. When the horizontal velocity changes with depth, vertical turbulence will transfer mass between layers and will cause a slug discharge of waste to spread faster along the direction of motion than normal to the current direction. From the dye patch studies, large longitudinal diffusion coefficients can be expected when the wind first starts blowing or it changes direction.

The observations of the waste field during the 1970-71 field season were divided into three categories depending on the apparent dominant form of turbulent energy. These classes were: 1) sea surface roughness caused primarily by the wind, 2) sea roughness due to heavy swell, and 3) the sea state influenced by both the wind and breakers in the area.

Table 9 lists the observations for which wind was the main cause of the sea state. These dates are listed in order of increasing sea turbulence as determined by a visual interpretation of the photos. For all except two observations, the dye patch was elongated parallel to the wind. On April 26 the dye patch was oriented parallel to the water current while on September 9 the dye patch was v-shaped with one leg oriented parallel to the water current and the other leg oriented parallel to the wind.

Diffusion coefficients ranged from 3.0 to $14~\rm ft^2/sec$ in the longitudinal direction and 0.0 to 1.0 in the transverse direction. The diffusion coefficient determined for a one dimensional model from the 1968-1969 data were 11 ft²/sec and 14 ft²/sec on August 16, 1968, and July 8, 1969, respectively. The state of the sea code for both of these days was 3. The wind was 10-15 kts on August 16 with 6-ft swell and 15-kt wind on July 8 with a choppy sea.

Table 10 shows the sea state when the turbulence is due mainly to heavy swell. The diffusion coefficients ranged from 1.2 to $8 \text{ ft}^2/\text{sec}$ in the longitudinal direction and 0.0 to 1.9 in the transverse directions for a sea state code ranging from 3 to 5.

Table 11 lists the sea state for turbulence due to both wind and swell. Diffusion coefficients were not determined for rough sea condition but only for a sea state of 2. The values of the longitudinal and transverse diffusion coefficients were more nearly equal to each other for this condition than for either of the conditions represented in tables 9 or 10.

The waves normally observed at sea are composed of two types. The swell is a long and relatively symmetrical wave form having a period greater than 10 seconds, generated by winds at some distance from the area, and in the nearshore area is oriented nearly parallel to the

Table 9. Sea state due primarily to wind.

Date	Figure no.		sion coef t ² /sec Dy	State (of sea	71 Remarks
April 12	77	8.1	0.2	2	Strong east wind in opposite direction to swell.
Oct. 7	49	-	-	2	Very lightly mottled photo pattern.
Dec. 23	55	5.1	0.7	2	A curved dye patch. Wind changed from E to NE.
Feb. 6 am	61	3.6	0.0	2	Lightly mottled photo tone. A few scattered whitecaps.
Feb. 6 pm	63	-	-	2	Lightly mottled photo tone with a few scattered white-caps.
Sept. 23	45	3.2	0.1	2	Finely mottled photo tone with scattered whitecaps.
May 10	87	2.8	0.1	3	Wind from the northwest at 15 kts for six hours. Scattered whitecaps with a mottled photo tone.
May 7	85	-	-	3	Wind changed from NW to SW at 25 kts. Finely mottled photo tone with scattered whitecaps.
May 14	91	2.4	0.1	3	Finely mottled photo pattern with scattered white-caps.
April 26	84	13.9	0.2	3	Finely mottled photo pattern with scattered whitecaps. Excessive longitudinal dispersion of dye patch ahead of main slug.
Sept. 30	47	7.5	0.1	3	Wind parallel to the x component for 4 hours. A mottled photo pattern with a linear trend normal to the wind direction and frequent whitecaps.

Table 9. Continued

Date	Figure	Diff Dx	fusion coef ft ² /sec Dy	State (of Sea	Remarks
May 13	89	-	-	4	Wind 30 kts from the SW for 6 hours. Coarsely mottled pattern with same linear trend parallel to the wind.
Sept. 9	43	12.9	0.4	4	Mottled photo tone with numerous whitecaps. Dye patch is v-shaped.
Mar. 17	67	5.1	1.0	4	High turbidity near shore. Wind changed direction 2 hours before. Strong linear trend due to wind waves. Numerous whitecaps. Wind from the NW 15 kts.

 $^{^{(1)}}$ see table 6.

Table 10. Sea state due primarily to swell.

Date	Figure no.		ion coef /sec Dy	State of Sea	(1 Remarks
March 21	75	1.2	0.0	3	Waves breaking on reef S of outfall. Lightly mottled photo pattern with scattered whitecaps.
Dec. 21	53	7.3	1.9	3	Waves breaking along reef. Mottled photo pattern with a few scattered whitecaps.
Dec. 31	57	7.9	0.6	5	Waves breaking everywhere.

 $^{^{(1)}}$ see table 6.

Table 11. Sea state due to wind and swell.

Date	Figure no.		ion coef /sec Dy	State of Sea	(1 Remarks
Mar. 18	69	0.4	0.3	2	Turbid nearshore water. Finely mottled photo tone a few whitecaps.
Mar. 19 am	71	1.2	0.4	2	Turbid nearshore water mot- tled photo tone.
Mar. 19 pm	73	-	-	2	Wind 15 kts from NW. Mot- tled photo tone with scat- tered whitecaps.
Jan. 2	59	1.7	0.5	2	Low wind velocity. Dye patch oriented normal to wind and parallel to direction of swell.
April 21	81	0.3	0.0	2	Wind 10 kts from the SW. Wind wave from both the NW and SW.
April 15	79	-	-	3	Frequent whitecaps. Finely mottled photo pattern. Wind 15 kts from NW.
Oct. 12	51	-	-	3	Finely mottled photo pat- tern with frequent white- caps. Wind 15 kts from NW.
Mar. 16	65	-	-	5	Wind 20 kts NW for two hours. Linear trend normal to wind. Coarsely mottled photo tone with whitecaps everywhere.

⁽¹ see table 6.

coast. The second wave type is the sea which is generated by the local winds, has a short wave period and a steep, unsymmetrical wave form.

As the wind begins flowing over the water surface, the sea changes from a mirror lake surface to a surface that includes a number of wave trains superimposed on each other. The length of each crest is short and both the wave length and height are irregular. If fetch is large enough and the wind continues long enough as listed in table 12, the significant wave height and peak energy period would be as listed in this table.

The wave forms appear on the aerial photography as a mottled pattern. The curved surfaces of the wave tend to concentrate the sunlight under the wave crest as shown in figure 102. The wave crests appear light while the trough appears dark on the photo, since the wind generated waves are unsymmetrical, the sea in general will appear rougher when viewed looking into the wind than when viewed down wind. This is also true of the oblique aerial photography.

As the wind velocity increases, the average wave length also becomes larger. On the aerial photos the photo pattern changes from a finely mottled tone to a coarse pattern. For a steady wind the mottling will generally show a linear trend normal to the wind direction. When the wind is blowing at 10 kts a few scattered whitecaps will begin appearing; as the wind increases to 15 kts there are frequent whitecaps and at 25 kts whitecaps are everywhere. When the wind exceeds about 25 kts, streaks parallel to the wind direction begin appearing.

Photographic Limitations

The photographic method of studying waste dispersion is subjected to interferences from several sources. Clear sky with the sun altitude above 25 degrees has given the best results. Clouds in the sky increase the water surface brightness and reduce the subsurface contrast. With the oblique camera mounting, the photography is taken to avoid the direct sunlight reflection. Polarizing filters reduce but do not eliminate the skylight reflection. Shadows from scattered clouds cause uneven lighting and will interfere with the quantitative data processing.

Kraft pulp mill effluent under certain conditions will foam when discharged into the sea. The white foam can cover areas of the plume and, where present, will prevent any photographic measurement of the waste concentration. Whitecaps and spray generated when wind velocities exceed about 15 kts can also interfere with the photographic techniques.

The natural color of the sea varies, with color gradients generally greatest perpendicular to the beach. Near the shore, turbulence in the surf zone entrains and suspends sand and silt particles. The width of this discoloration zone depends on the sea roughness and may extend

Table 12. Conditions in fully developed seas (from Bascom, 1964).

Wind velocity (kts)	Fetch (miles)	Duration (hours)	Wave (1 height (ft)	Wave (2 period (sec)
10	10	2.4	1.4	4
15	34	6.0	3.5	6
20	75	10.0	8.0	8
25	160	16.0	14.0	10
30	280	23.0	22.0	12
40	710	42.0	44.0	16
50	1420	69.0	78.0	20

⁽¹ Average of highest 1/3

several thousand feet offshore. During the summer months, dark green upwelled water may appear offshore. If the plume is completely surrounded by the green water, the upwelling does not interfere with the processing; however, often due to horizontal density stratification. the dark upwelled water will form the offshore boundary of the effluent plume. Computer processing of the photographic film requires that film densities be measured throughout the photographs. This processing step can either be done automatically or semi-automatically. When the photograph is digitized automatically, film densities and photo coordinates are measured on a selected grid pattern and a large volume of data is generated. The effect of the interferences listed above can be reduced but not eliminated by computer programming techniques. In the semi-automatic digitizing procedure, the location of points for digitizing is selected manually. This method results in fewer but better data points as areas on the photograph with interferences can be avoided in this step.

Aerial Photography

Aerial photography provides a comprehensive method of analyzing the dispersion of wastes from existing or proposed outfall sites and is not restricted to periods of calm seas. Field data for measuring concen-

 $^{^{(2}}$ Period where most of the energy is concentrated.

Figure 102. Mottled photo pattern from surface waves.

Surface

Sea

Uneven Lighting Under the

trations throughout the waste disposal area can be collected in a fraction of a second.

While the time required for gathering concentration data photogrammetrically is short, the computation of current velocities and diffusion coefficients require a minimum of two flights over the area. Generally photographic flights were made at 15-minute intervals. The time between flights need not be lost if several neighboring locations can be studied at the same time.

Boat sampling is hazardous in the nearshore area and is impossible during heavy seas. In order to adequately define a waste ordye field, a boat survey is conducted over an extended period of time. Since the tide, wind and currents are continuously changing, the survey does not represent a pattern at any one instant but is a composite pattern during the sampling period.

During the summer of 1969, aerial photographic surveys and conventional boat sampling surveys were conducted at the same time. The conventional survey was conducted over an eight to twelve hour period including travel time from the dock and required in addition to the boat operator, three people on the vessel to run equipment and two people on shore to locate the boat. The aerial survey team consisted of a pilot and photographer. Two 2-hour photographic flights were made, one in the morning and the second in the afternoon.

The cost of the aerial survey was essentially the same as the conventional survey. The fluorometer aboard the survey vessel cost the same as the three cameras aboard the airplane. The oblique camera mounting eliminated the need for establishing horizontal control markers in the water. A seaworthy boat and experienced operator cost about \$200 per day while an airplane and pilot cost about \$120 for four hours. The cost of the film and photographic processing range from \$30 to \$100 per day depending on the type of film.

Computerized techniques were developed for data processing of both the boat records and the aerial photography. Strip chart records from the boat instruments were digitized with the same equipment that was used to measure photographic coordinates. A densitometer would not be required for processing aerial photos from a dye patch study conducted for the purpose of acquiring design information at proposed outfall sites. The computer time for data processing would be nearly the same for the two survey methods.

The aerial survey is not limited by sea conditions, provides comprehensive information on the diffusion process and can be conducted fast with a minimum of personnel. It is a technically and economically feasible method for acquiring ocean outfall design data.

SECTION XII

SUMMARY

The objective of this research was to develop a remote sensing tool for the evaluation of dispersion of wastes from existing or proposed ocean outfalls. Photogrammetric and photo interpretation methods are used to determine dispersion patterns, diffusion coefficients, waste concentrations and nearshore currents. This study is unique in that the aerial photography is not only used to determine the position of points and the size of objects as in normal photogrammetry, but the photograph is also used as an energy sensor. The amount of light reflected from an object is recorded by the photograph as the film density of the image. The light scattered from within the sea is measured from the film with a photo densitometer and can be related to certain water quality parameters.

Ocean outfall sewers for the disposal of waste along the Pacific Northwest coastline are, in general, located on the relatively shallow coastal shelf which is subjected to heavy seas. Sampling from a boat in these areas is dangerous at all times and impossible much of the time due to rough water. The use of aerial photography and photogrammetric methods presents a possible method for overcoming this difficulty. From two to eight hours of continuous sampling from a boat is required to adequately define the waste field in the vicinity of an ocean outfall. The waste field is usually shifting thus making a comprehensive study nearly impossible by conventional methods. aerial photographic technique presents a method where concentrations throughout the waste field can be measured in one instant. Consideration of these factors suggest that photogrammetry can be a most useful tool for water quality investigations. Prior to this time the use of aerial photography for water quality studies has been limited to identifying pollution sources but has not been used for making quantitative measurements from the photographs.

In order to obtain design information at proposed outfall locations, aerial photography is taken of dye patches. The dye markers are dropped from the aircraft at selected locations in the waste disposal area. Current velocities and diffusion coefficients are determined from the change in position and size of the dye patches between two photographic flights over the proposed site.

The field work was conducted at the Georgia-Pacific Kraft pulp mill outfall at Newport because of its convenient location. This site provided an additional advantage since the natural color of the waste effluent was visible on aerial photography. However, the results of this study are not limited to Kraft pulp mill outfalls. If the effluent from an outfall has the same light scattering and light absorption properties as the receiving water, dye can be added to the effluent to distinguish the waste field from the receiving body of

water. The natural color characteristics of the Kraft pulp waste will vary with time while the addition of dye to a colorless waste will give greater control over the test.

Three different field procedures were used on the project. During the 1968 and 1969 field seasons, work was carried out by conducting simultaneous studies of the waste plumes by aerial photographic methods and by conventional boat sampling. Concentrations in the plume were determined by metering rhodamine WT tracer into the pipeline and measuring the tracer concentration in the waste field with a fluorometer aboard the survey boat.

During the first field season, two fluorometers were used to sample from one foot and five feet below the water surface. Since there was no significant difference in the concentration at these two depths, only one fluorometer was used during the following field season. A ten-foot sampling probe for the fluorometer intake was constructed for the 1969 field season. Boat sampling was discontinued during the 1970-71 field season and field work continued throughout the fall, winter, and spring when boat operations were impossible due to rough sea conditions most of the time.

Vertical color aerial photography was taken with a single camera by a commercial aerial photography firm during the 1968 field season. As the firm was located approximately 100 miles from the study area, scheduling of the photography was difficult. Photography was taken at scales of 1:6,000 and 1:12,000 using precise mapping cameras. The small scale photography was intended to be used for buoy location by analytical strip bridging. However, it was found more convenient to triangulate the position of the buoys from the shore stations.

As listed in the original proposal, the first year of the study was divided into two phases: 1) Photographing the plume and current floats and 2) Photographing dye slugs introduced into the pipeline. Aerial photography of the dye slugs was difficult to process. Considering a nonsteady state dye patch within a nearly steady state waste field, the amount of dye, waste and sea water could occur in various combinations which would be impossible to distinguish by measuring the light return with the three broad bands of color photography. At a minimum, four individual narrow pass bands would have been required to obtain meaningful results. This phase of the study was later replaced by dye slugs dropped from the airplane away from the waste field.

One of the primary problems encountered in processing the 1968 vertical photography was the direct sunlight reflection from the water surface. Photography after 1968 was taken with an oblique camera mounting to avoid the sun spot. Three cameras were purchased and mounted in the baggage compartment of a small high wing aircraft. The oblique camera mounting reduced the requirement for horizontal control in the water. The large camera photographs included the horizon and two horizontal

control points could be identified on shore. The mapping camera, because of its large angular coverage, permitted photographic orientation of the two smaller cameras. Films from the two 70 mm cameras were used for detailed analyses and measurements of the waste field. Polarizing filters on the 70 mm cameras reduced the skylight reflection from the water surface.

During the 1968-1969 field seasons, work was conducted in late June, July, August and early September. Fourteen sampling runs were made during this period. For eight of the fourteen sampling runs, the waste field from the ocean outfall was at the sea surface. A submerged plume occurred during the remaining six sampling runs. When the plume was submerged both the swell height and the wind velocity were significantly less at a 90 percent confidence level than when the plume formed at the surface. Both steady state and nonsteady state diffusion coefficients were computed when possible for each sampling run. Of the eight days that a surface plume occurred, a one dimensional diffusion model was applicable to the plume pattern on only three days. A two dimensional model was necessary to describe the plume when the current velocity was low. When the velocity was greater than 0.4 ft/sec, a one dimensional diffusion model was adequate.

For each day that waste concentrations were computed from both the densitometer measurements taken on the aerial photography and the fluorometer records from the boat sampling, a comparison was made of the concentrations determined by the two methods by matching the ground coordinates. The correlation coefficients for these comparisons ranged from 0.85 to 0.95. When the boat sampling was conducted, there were several locations where the sampling lines crossed and the concentrations were measured twice at one point. The mean square residual determined at these points was significantly greater than the mean square residual between the concentrations determined by boat sampling and aerial photography (generally at a 95% confidence level).

During the final year of the project, 25 field observations were conducted starting in September of 1970 and ending in May of 1971. Diffusion coefficients and water current velocities were computed from the transport and spread of a dye slug dropped from the airplane. Continuous wind records were available from anemometers located on the south jetty. Longitudinal diffusion coefficients determined from the dye patch study ranged from 0.3 to 13.9 while the transverse diffusion coefficients range from 0.0 to 1.9 ft 2 /sec. The dye patch was nearly always oriented parallel to the wind. When the wind velocity was low, the major axis of the elliptical dye patch would usually be oriented perpendicular to the swell crest.

Of the 25 observations conducted during the fall, winter and spring, the plume was not visible on only one day, covered less than 30 acres on seven days and less than 100 acres on 15 days. The size of the plume was not directly related to the state of the sea code, diffusion coefficients nor related to the effluent discharge rate within the

range covered by the study.

The water current velocities ranged from 0.1 to 2.0 ft/sec. The surface water current was found to be the dominant factor in the resulting plume pattern. By a visual comparison, the general direction of the current could be explained by the wind record for 12 of the 17 days that the current velocity was measured.

The Fickian diffusion equation with a unidirectional transport velocity was not applicable to the majority of the observations. A two dimensional model with losses of waste to the lower layers considered by using a decay coefficient was able to better explain the observed plume patterns. The x and y velocity components for this model were determined from the equation as for a line source in a uniform stream.

The characteristic airphoto pattern elements can be used to estimate state of the sea, wind velocity and diffusion coefficients. As the sea becomes rough, the finely mottled tone changes to a coarsely mottled pattern. The density of whitecaps increases with the wind speed and when the wind velocity exceeds 25 kts, streaks parallel to the direction of the wind begin appearing. Within the generating area of the wind curves, the waves are irregular and confused, they appear to have no particular period or common wave height, giving rise to a randomly mottled photo tone. As a dominant wave train develops, the photo pattern has a linear trend normal to the wave movement. With the wave length measured from the photos, the wave period and speed can be estimated using wave formulas.

SECTION XIII

ACKNOWLEDGMENTS

The writers wish to express their gratitude to the following: Messrs. T. Fenwick and P. O'Hara of the Georgia Pacific Corporation at Toledo, Oregon.

To members of the Pacific Northwest Water Laboratory, especially Messrs. D. Baumgartner, L. Bentsen, R. Callaway, W. Clotheir, W. DeBen, G. Dittsworth, R. Scott, and D. Trent for their guidance and assistance in collection of the data;

Captain R. Redmond and Messrs. D. McKeel, B. Danby and R. Ervin of Marine Science Center at Newport, Oregon, for their help with the boat operations;

Professors R. Schultz, M. Northcraft, D. Phillips and D. Bella of Oregon State University for their advice and assistance on the project;

Students J. Graham, L. Doester, B. Valentine, R. Spaw, D. Monroe, R. Scholl, W. Hart, T. Basgen, Ching-Lin Chang, M. Soderquist, R. Collier, R. Mann, P. Klampe, B. Barnes, G. Carman, J. Plasker, W. Halverson, A. Langdon, K. Cerotsky and W. Gilbert for their assistance in collection of data, construction of equipment and processing data; and

the Federal Water Quality Office for financial support of the project.

SECTION XIV

REFERENCES

Allen Hancock Foundation. 1964. An investigation on the fate of organic and inorganic wastes discharged into the marine environment and their effects on biological productivity. Los Angeles, University of Southern California. 118 p. (California State Water Quality Control Board Publication 29).

American Society of Photogrammetry. 1968. Manual of color aerial photography. Menasha, George Banta Company. 550 p.

American Society of Photogrammetry. 1960. Manual of photographic interpretation. Menasha, George Banta Company. 868 p.

Bascom, Willard. 1964. Waves and beaches. Garden City, Doubleday & Co. 267 p.

Baumgartner, D. J., W. P. James and G. L. O'Neal. 1969. A study of two ocean outfalls. National Council for Air and Stream Improvement Technical Bulletin No. 231. p 27-53.

Baumgartner, D. J. and D. S. Trent. 1970. Ocean outfall design, part I, literature review and theoretical development. USDI, FWQA, Pacific Northwest Water Laboratory, Corvallis, Oregon. April. 129 p.

Baumgartner, D. J., D. S. Trent and K. V. Byram. 1971. User's guide and documentation for outfall plume model. EPA, WQO, Pacific Northwest Water Laboratory, Corvallis, Oregon. Working Paper No. 80, May.

Brooks, Norman H. 1960. Diffusion of sewage effluent in an ocean current. Proceedings of the First International Conference on Waste Disposal in Marine Environment, London, Pergamon Press. p. 246-267.

Burgess, F. J. and W. P. James. 1970. An aerial photographic tracing of pulp mill effluent in marine waters. Federal Water Quality Office, EPA, Water Pollution Control Research Series 12040EBY, Grant WP-00524. 152 p.

Burt, Wayne V. 1953. A note on the reflection of diffusion radiation by the sea surface. Transactions, American Geophysical Union 34(2): 199-200.

Cox, C. and W. Munk. 1954. Measurement of the roughness of the sea surface from photographs of the sun's glitter. Journal of the Optical Society of America 44:838-850.

Cox, Charles and Walter Munk. 1955. Some problems in optical oceanography. Journal of Marine Research 14(1):63-78. Elterman, Louis and Robert B. Toolin. 1965. Atmospheric optics. In: Handbook of Geophysics and Space Environment, ed. by Shea L. Valley, Cambridge, Air Force Cambridge Research Laboratories. p 7.1-7.36.

Faas, V. A. 1960. The procurement of aerial photography of underwater objects. In: Manual of photographic Interpretation, American Society of Photogrammetry, Menasha, George Banta Company. p. 96.

Fisher, Davis, and Sousa. 1966. Fresh-water springs of Hawaii from infrared images. U.S. Geological Survey Hydrologic Investigations Atlas HA-218. Washington, D. C.

Fritz, N. L. 1967. Optimum methods for using infrared-sensitive color films. Photogrammetric Engineering 33:1128-1138.

Holter, Marvin R. 1967. Infrared and multispectral sensing. Bio-Science June. p. 376-383.

Hutchinson, G. E. 1957. A treatise on limnology. Vol. 1. New York, John Wiley and Sons, Inc. 1015 p.

Ichiye, T. and N. B. Plutchak. 1966. Photodensitometric measurements of dye concentration in the ocean. Limnology and Oceanography 2:364-370.

Jensen, Niels. 1968. Optical and photographic reconnaissance systems. New York, John Wiley and Sons, Inc., 211 p.

Jerlov, N. G. 1964. Optical classification of ocean water. In: Symposium on Physical Aspects of Light in the Sea, ed. J. E. Typer, Honolula, University of Hawaii Press. p. 45-49.

Jerlov, N. G. 1968. Optical oceanography. Amsterdam, Elseview Publishing Company. 194 p.

Jones, L. A. and H. R. Condit. 1948. Sunlight and skylight as determinants of photographic exposure. Optical Society of America 38:123-178.

Keller, Morton. 1963. Tidal current surveys by photogrammetric methods. U.S. Coast and Geodetic Survey, Technical Bulletin 22. 20 p.

Keller, M. and G. C. Tewinkel. 1966. Space resection in photogrammetry. U.S. Coast and Geodetic Survey Technical Bulletin 32. 10 p.

Keene, D. F. 1971. A physical oceanographic study of the nearshore zone at Newport, Oregon. M.S. thesis. Corvallis, Oregon State University.

Masch, F. D. 1961. Mixing and dispersive action of wind waves. Berkeley, University of California, IER Technical Report 138-6.

Molineux, C. E. 1965. Multiband spectral system for reconnaisance. Photogrammetric Engineering 31:131-143.

Neumann, G. and W. J. Pierson, Jr. 1966. Principles of physical oceanography. Prentice-Hall, Englewood Cliffs, N. J. 545 p.

Neumaier, G., F. Silvestro, H. Thung, and R. Frank. 1967. Project aqua-map development of aerial photography as an aid to water quality management. Buffalo, Cornell Aeronautical Laboratory, Inc. (Contract No. HC-9768 of the State of New York Conservation Department).

Ory, T. R. 1965. Line scanning reconnaissance systems in land utilization and terrain studies. In: Third symposium on remote sensing of environment. Ann Arbor, University of Michigan. p. 393-398.

Pearson, E. A. 1955. An investigation of the efficacy of submarine outfall disposal of sewage and sludge. California Waste Pollution Control Board Publication 14. 154 p.

Pearson, E. A., P. N. Storrs and R. E. Selleck. 1967. Some physical parameters and their significance in marine waste disposal. In: Pollution and Marine Ecology, ed. by F. J. Burgess and T. A. Olson, New York, Interscience. p. 297-315.

Romanovsky, V. 1966. Coastal currents. In: Proceedings of the Third International Conference on Advances in Water Pollution Research, Munich. Baltimore, Port City Press, Inc. Vol. 3, p. 290-292.

Scherz, James P. 1967. Aerial photographic techniques in pollution detection. Doctoral dissertation. Madison, University of Wisconsin. 82 numb. leaves. (Microfilm)

Strandberg, C. H. 1966. Water quality analysis. Photogrammetric Engineering 32 (2):234-248.

Strandberg, C. H. 1967. Aerial discovery manual. New York, John Wiley and Sons. $249~\mathrm{p}.$

Sverdrup, H. V., M. W. Johnson and R. H. Fleming. 1942. The oceans. New York, Prentice-Hall. 1087 p.

Swanson, L. W. 1964. Aerial photography and photogrammetry in the Coast and Geodetic Survey. Photogrammetric Engineering, 30(5):699-726.

Tarkington, Raife G. 1966. The photographic process. In: Manual of photogrammetry, 3d ed., Menasha, George Banta Company. p. 243-293.

Tyler, J. E. and W. H. Richardson. 1958. Nephelometer for volume scattering function in situ. Journal of the Optical Society of America 48(5):354-357.

Waldichuk, Michael. 1966. Currents from aerial photography in coastal pollution studies. Proceedings of the Third International Conference on Advances in Water Pollution Research, Munich. Baltimore, Port City Press, Inc. Vol. 3, p. 263-284.

Water Pollution Research Board. 1964. Coastal pollution. Report of the Director, Department of Scientific and Industrial Research, London. p. 136-142.

Wiegel, R. L. 1964. Oceanographical engineering. London, Prentice Hall International. 532 p.

Williams, J., J. J. Higginson and J. D. Rohdbough. 1968. Air and sea-the naval environment. Menasha, George Banta Company. 338 p.

Wilson, James F., Jr. 1968. Fluorometric procedures for dye tracing. U.S. Geological Survey, Chapter A12 of Book 3 (Applications of Hydraulics). 31 p.

Yost, E. F. and S. Wenderoth. 1967. Multispectral color aerial photography. Photogrammetric Engineering 33:1020-1033.

SECTION XV

PUBLICATIONS

- 1. Burgess, F. J. and W. P. James. 1970. Pulp mills take to the air to monitor ocean outfalls. Pulp and Paper, September.
- 2. James, W. P. and F. J. Burgess. 1969. The use of photogrammetry in predicting outfall diffusion. <u>National Council for Air and Stream Improvement Technical Bulletin No. 231</u>. p. 2-26.
- 3. James, W. P. and F. J. Burgess. 1970. Ocean outfall dispersion. Photogrammetric Engineering Journal 36(12):1241-1250.
- 4. James, W. P. and F. J. Burgess. 1971. Pulp mill outfall analysis by remote sensing techniques. <u>Journal of the Technical Association of the Pulp and Paper Industry</u>. 54(3):414-418.
- 5. James, W. P., F. J. Burgess and D. Baumgartner. 1971. An aerial photographic study of waste fields from three ocean outfalls.

 Offshore Technology Conference Proceedings, Houston, Texas; April 19-21. OTC paper 1374, PPI 483-I498.

SECTION XVI

APPENDICES

			Page
Α.	Definiti	ion of Terms	189
В.	Computer	Program for Processing Vertical Photography	193
	Figure		
	B-1	Flow diagram for computer program DIFFUSION	200
	B-2	Listing of program	204
	B-3	Listing of subroutines	216
	B-4	Sample input, LUN 1	222
	B - 5	Sample input LUNS 3 and 19	223
С.	Processi	ing 1969 Photographic Data	224
	Figure		
	C-1	Flow diagram for computer program EDIT	231
	C-2	Listing of program EDIT	233
	C-3	Sample input for program EDIT	241
	C-4	Sample output from program EDIT	242
	C-5	Flow diagram of program REMOTE	243
	C-6	Flow diagram of subroutine PROCESS	245
	C-7	Program listing for REMOTE	247
	C-8	Subroutines used with program REMOTE	260
	C-9	Sample input data for REMOTE	271
D.	Processi	ng of 1970-71 Photographic Data	272
	Figure		
	D-1	Flow diagram for computer program INSHORE	275
	D-2	Listing of program INSHORE	277
Ε.	Streamli	nes for a Source in a Uniform Flow	284
	Figure		
	E-1	Flow diagram of program FLOWNET	285
	E-2	Listing of program FLOWNET	286

APPENDIX A

DEFINITION OF TERMS

The following terms that were used in The Rationale are defined as follows:

A	is the extinction optical thickness for a standard atmosphere. When subscripted the subscripts b, g and r refer to the blue, green and red bands of the color photograph, respectively.
a	is the sea water attenuation coefficient per meter.
Az	is the azimuth of the sun from true north.
AZ	is the azimuth of the sun from grid north.
α	is the angle at the incremental scattering volume between incident and scattered beams.
Ъ	is the waste absorption coefficient in (Meter-ml/liter) $^{-1}$.
β(α)	is the volume scattering function per meter.
С	is the attenuation coefficient for the sea water and waste per meter.
С	is the angle between the ray to the camera and the camera axis.
D(xy)D(xy)	and $D_r(x,y)$ are the film densities measured at photo
$D_b(x,y), D_g(x,y)$	coordinates x andy for the blue, green and red bands, respectively.
dJ	
J	respectively. is the scattered light intensity from the incremental
dJ	respectively. is the scattered light intensity from the incremental scattering volume.
${ m d}{ m J}$	respectively. is the scattered light intensity from the incremental scattering volume. is the solid angle in steradians.

f	is the cameras focal length.
FNO	is the relative aperture of the lens.
G	is a constant representing film contrast.
Н	is the irradiance in watts per square centimeter.
Но	is the irradiance from the sun at the outer atmosphere normal to the ray.
H _s	is the irradiance on a horizontal plane from the sun at the sea surface.
H sky	is the irradiance from skylight at the sea surface.
Н _а	is the irradiance at the sea surface from the scattering volume.
H _w	is the irradiance from the sun on a plane normal to the ray below the water surface.
$^{ m H}{}_{ m Z}$	is the irradiance from the sun at a depth \boldsymbol{z} below the water surface.
Н'	is the irradiance of the film image.
i	is the angle of incidence of the direct sunlight at the water surface.
i ₂	is the angle of incidence of the scattered light at the water surface $\boldsymbol{\cdot}$
j	is the angle of refraction of the direct sunlight at the water surface.
j ₂	is the angle between the vertical and the object ray.
K	is a constant.
Ка	is the rotation angle about the Z camera axis.
М	is a constant representing film speed.
n	is the refractive index of water.
N	is the total radiance from the sea in watts per square centimeter-steradian.
N _a	is the radiance from the scattering volume above the

sea surface.

N _b , N _g and N _r	are the total radiance at the sea surface including reflected skylight, reflected direct sunlight and scattered light from within the sea for the blue, green and red bands of the photograph, respectively.
N _C	is radiance from the sea measured at the camera station.
$^{ m N}{ m d}$	is the radiance of direct sunlight reflection from the water surface.
N sky	is the skylight radiance reflected from the water surface.
N W	is the radiance from the scattering volume under the sea surface.
P _a	is the reflectivity of direct sunlight from the sea surface.
P_S	is the reflectivity of skylight from the water surface.
^{p}w	is the reflectivity of uplighting from the sea at the surface.
RA	is the variation in the ratio of red to green light returned from within the sea due to the waste.
RM	is photographic orientation matrix.
R _p	is the ratio of red to green radiance at the camera station.
R _{ph}	is the ratio of red to green radiance at the sea surface.
R _{pho}	is the estimated ratio of red to green radiance at the sea surface if there was no waste present.
SUNR	is the angle between the object ray and the direct sunlight reflection from a horizontal plane.
TIM	is the photographic exposure time in seconds.
TR	is the lens transmittance. When it is subscripted the subscripts b, g and r refer to the blue, green and red bands, respectively.

W	is the waste concentration in milliliters per liter.
Wo	is the rotation angle about the X axis of the camera.
Z	is the flying height in feet.
z	is the distance in meters below the water surface.
ф	is the rotation angle about the Y axis of the camera.

APPENDIX B

COMPUTER PROGRAM FOR PROCESSING VERTICAL PHOTOGRAPHY

Introduction

Included in this appendix are the program and subprogram listings and sample input data for processing of vertical photography. The program determines diffusion coefficients from two flights of aerial color photographs and was written for the CDC 3300 system in Fortran IV computer language. The unique feature of this system is the remote access to the computer by teletypes on a time sharing basis.

Input data for the program is either from a logical unit number (LUN) or from the teletype keyboard. The input statements include the standard READ statement, FFIN (1), or TTYIN(4H X =). The free form input (FFIN) will accept data in any format in columns 1 to 72 as long as the words are separated by at least one space. The number in parentheses with the call command is the input LUN. The teletype free form input command (TTYIN) allows the user to enter data from the teletype. The parameter in the TTYIN function must be a hollerith constant containing four characters. When the fortran statement is executed, the hollerith message is printed on the user's teletype. Only a single variable can be entered each time the function is executed.

Program Listing

Flow diagram for the program used to process the 1968 photographic data is shown in figure B-1. The numbers in parentheses on the diagram refer to the line numbers on the program listing shown in figure B-2. The main array was declared an integer to save storage space and is dimensioned 2, 120, 60. If the size of this array is changed, only lines 3, 30, 31, 539 and 540 in the main program will require modification.

All except two of the subroutines called in the main program are listed in figure B-3. These subroutines, date and time, return the time and date of computer processing. If they are not available, lines 26 through 29 of the main program should be erased. The following subroutines are included in the listing:

Rotate	-	Converts	3	state	plane	C001	rdinate	es	to	coordin	ates
		based or	1	system	orier	ıted	about	wa	iste	field.	

Sunlite - Determines sun altitude and azimuth.

Resect - Determines the orientation of near vertical photographs and was modified from USC & GS

program resection. Each time the subroutine is called, the camera station coordinates and orientation matrix are printed on LUN 2. Leastfit - Determines the least squares solution of the regression coefficients for a linear model to data with one independent and up to nine dependent variables. Each time the subroutine is executed, values of the regression coefficients, standard deviation, variance-covariance matrix, and Y, Y, and e for each observation are written on LUN 2. Matinv - Determines the inverse of a square matrix. Trncoord - Converts the photographic vector to a unit vector oriented with the state plane coordinate system. Grdcoord - Determines the ground coordinates of the unit vector. Angles - Determines the angles between the object ray and

Input Data

the vertical in air and under the water. Determines the angles between the sun ray and the object ray above and below the water surface.

Input data for the program are from five sources. These are the teletype, photo coordinates and film densities from LUN 1, ground control coordinates from LUN 3, general information from LUN 5 and waste concentration as measured by fluorometers with ground coordinates from LUN 19.

Teletype

The following information is to be typed on the teletype after the hollerith constant is printed during program execution.

No.	Hollerith Constant	Remarks
1.	IGO	Type in 1 if the photo values in the array are to be averaged and the maximum value printed on the teletype for each section across the waste field or 2 if this is not required.
2.	B1=	Coefficient for the linear term relating the photo value to waste concentration.
3.	B2 =	Coefficient for the squared term relating the photo value to waste concentration.

No.	Hollerith Constant	Remarks
4.	VEL=	Estimated velocity if there were no current floats.
5.		Repeat above items 1-3 for second flight.

Sample input from LUN 1 is shown in figure B-4. As the input on this LUN is mostly from the digitizer the Z value (densitometer voltage) is always recorded but is not always used in the computations. In the sample input there were two photos in the first flight (lines 1 through 359) and three in the second flight (lines 360 through 1336). In figure B-4, lines 1 through 33 and lines 360 through 398 are read with free form input while the other lines are read on a fixed format.

Description of the input data one LUN 1 follows

Item	Line No.	Remarks
1.	1	Camera focal length in mm for photo 1 of flight ${f 1.}$
2.	2	Photo number in flight (00001), number of photo control points on the photograph (0006) and the X, Y, Z photo coordinates of the principal point.
3.	3-4	Point identification number and the X, Y, Z values of control points. This series is repeated six times to input photo coordinates.
4.	5	0.0 to indicate end of current float coordinates (none in this example).
5.	6	Identification number and the X, Y, Z photo coordinates at the head of the plume and at a point along the plume. These points are used to orient the array about the plume.
6.	8-9	Eighteen film densities on the standard grey scale.
7.	10-15	Identification number and the X, Y, Z values

Item	Line No.	Remarks
		measured on the grey scale with the red filter in the densitometer. Only the voltage in the Z coordinate is used in computations.
8.	16-21	Same as lines 1015 except readings are with the green filter.
9.	22-27	Same as lines $10-15$ except readings are with the blue filter.
10.	28	Focal length in mm for photo number two of the first flight.
11.	29	Photo number, number of control points and X, Y, Z photo coordinates.
12.	30-31	Same as lines 2-4.
13.	33	0.0 to indicate end of current float coordinates (none in this case).
14.	34-70	Film densities for points outside the plume with one line being required for each point. The first number on each line is the photo number followed by the point number which is less than 200. The point number with the X, Y, Z values are repeated three times to input the red, green and blue film density voltages. The green film density voltage is the Z value of the center group while the blue or red can be in either the first or third group. The red film density voltage is always larger than the blue value.
15.	71–358	Same as lines 34-70 except the points are in the waste field and are numbered between 300 and 399.
16.	359	Blank card to indicate end of flight 1.
17.	360	Same as item 1 except for photo 1 of flight 2.
18.	361	Same as item 2.
19.	362-363	Same as item 3.

Item	Line No.	Remarks
20.	364	Same as item 4.
21.	366-367	Same as item 7.
22.	368-385	Same as items 8, 9 and 10.
23.	386	Same as item 1 except for photo 2 of flight 2.
24.	387	Same as item 2.
25.	388	Same as item 3.
26.	389-390	Point identification number (900 or greater) and X , Y , Z photo coordinates of current floats.
27.	392	Same as item 4.
28.	393	Same as item 1 except for photo 3 of flight 2.
29.	394	Same as item 2.
30.	395–396	Same as item 3.
31.	398	Same as item 4.
32.	399 - 4 5 8	Same as item 15.
33.	459-1335	Same as item 16.
34.	1336	Blank card to indicate end of input data.

Sample input from LUN 3 is shown in figure B-5. This LUN contains the ground coordinates of the photo control stations and some initial orientation parameters for the five photographs. On the lines containing four numbers, the numbers are the point identification number, and the X, Y, Z state plane coordinates for the photo control. The control data must be listed in the same sequence as the photo coordinates were listed on LUN 1. Lines in figure B-5 containing three numbers list the initial approximation of the camera station coordinates (X, Y, Z). The lines containing 0.0 and 1.0 list the sine and cosine values of the initial approximation of the photo azimuth.

19.

20.

LUN 5 contains the general information required for the program. The information is read with free form input and is described as follows:

No.	Description
1.	Number of flights to be processed.
2.	Time difference between flights in seconds.
3.	Effluent flow rate in gpm.
4.	Number of photos in flight 1.
5.	Time of day of first flight in hours.
6.	Time of day - minutes past even hour.
7.	Declination in degrees at 0 hr GCT.
8.	Declination - minutes over even degree.
9.	Change in declination in minutes per hour.
10.	Equation of time in minutes.
11.	Equation of time - seconds over even minute.
12.	Change in equation of time in seconds per hour.
13.	Longitude of exposure station in degrees.
14.	Latitude of exposure station in degrees.
15.	Reciprocal of exposure time.
16.	F - number of lens setting.
17.	Film gamma to base 10.
18.	Photo identification for symbolic plot.

If two flights are being processed, the following information is required:

Month for heading of symbolic plot.

Day for heading on symbolic plot.

- No. Description
- 21. Number of photos in second flight.
- 22. F number of lens setting.
- 23. Film gamma to base 10.
- 24. Photo identification for symbolic plot.
- 25. Day for heading on symbolic plot.
- 26. Month for heading on symbolic plot.

A partial listing of data on LUN 19 is also shown in figure B-5. Each line contains the position number, X, Y state plane coordinates of the boat, waste concentration in milliliters per liter and the sampling depth. A blank line is inserted after the data to indicate end of data.

Output from Program

Output from program DIFFUSION is on LUNS 2, 4 and 20. The output on LUN 2 includes the photo orientation matrix, current float coordinates, statistical information from subroutine LEASTFIT, symbolic plots, a plot of difference in concentration between flights and diffusion coefficients. The output on LUN 4 is used for more detailed statistical analyses of photo values ($R_{\rm ph}-R_{\rm pho}$) and boat concentrations and ground coordinates are read out on LUN 20.

Figure B-1. Flow diagram for computer program DIFFUSION.

Figure B-1. Flow diagram for computer program DIFFUSION.

Figure B-1. Flow diagram for computer program DIFFUSION.

Figure B-1. Flow diagram for computer program DIFFUSION.

```
PROGRAM DIFFUSION
                                                                                 00001
      DIMENSION C(20,3), XFTS(2,10,2), XT(3), XS(9), DEN(3), THI(3), B(9),
                                                                                 00002
     1 RATIO(2,120,60), XPG(2), CAMO(3,5,3), RAD(3), XAR(2,8),
                                                                                 00003
     2 DB(4,3)
                                                                                 00004
      COMMON X(10,200)
                                                                                 00005
      INTEGER RATIO + HARDWARE
                                                                                 00006
      IF (HARDWARE(2) .EQ. 1) GO TO 62
                                                                                 00007
      CALL EQUIP(2,5HFILE )
                                                                                 00208
      GO TO 63
                                                                                 00009
   62 REWIND 2
                                                                                 00010
   63 IF (HARDWARE(4) .EQ. 1) GO TO 64
                                                                                00011
      CALL EQUIP(4,5HFILE )
                                                                                 00012
      GO TO 65
                                                                                 00013
   64 REWIND 4
                                                                                 00014
   65 IF (HARDWARE(20) .EQ. 1) GO TO 66
                                                                                 00015
      CALL EQUIP(20,5HFILE )
                                                                                 00016
      GO TO 67
                                                                                00017
   66 REWIND 20
                                                                                 00018
   67 IF (HARDWARE(19) .EQ. 1) 68,1000
                                                                                 00019
   68 IF (HARDWARE(3) .EQ. 1) 69.1000
                                                                                 00020
   69 REWIND 3
                                                                                 00021
      IF (HARDWARE(1) .EQ. 1) 70:1300
                                                                                 00022
   70 REWIND 1
                                                                                00023
      IF (HARDWARE(5) .EQ. 1) 71,1000
                                                                                 00024
   71 REWIND 5
                                                                                00025
      CALL TIME(ETIME)
                                                                                00026
      CALL DATE (EDATE)
                                                                                 00027
      WRITE(02.56) EDATE.ETIME
                                                                                00028
   56 FORMAT(//////10x, A8, 30X, A8/////)
                                                                                00029
      NNX5=120
                                                                                00030
      NNYS=60
                                                                                00031
      YMIDY=30*NNYS
                                                                                00032
      NO. OF FLIGHTS OVER AREA, TIME DIFFERENCE BETWLEN
                                                                                00033
      FLIGHTS IN SECONDS. AND FLOW RATE OF EFFLUENT IN GPM
                                                                                00034
      IRUNM=FFIN(5)
                                                                                00035
      DTIM=FFIN(5)
                                                                                00036
      RATE=FFIN(5)
                                                                                00037
      RATE=RATE/(7.48*60.)
                                                                                00038
\overline{\phantom{a}}
      ZERO ARRAY
                                                                                00039
      DO 50 LX=1,NNXS
                                                                                00040
      DO 50 LY=1.NNYS
                                                                                 00041
      DO 50 K=1.2
                                                                                00042
      RATIO(K, LX, LY)=0
                                                                                00043
   50 CONTINUE
                                                                                00044
      DO 55 I=1.2
                                                                                00045
      DO 55 J=1,10
                                                                                 00046
      DO 55 K=1.2
                                                                                 00047
      XFTS(1,J,K)=0.
                                                                                 00048
   55 CONTINUE
                                                                                00049
      IRUN=1
                                                                                00050
   54 REWIND 19
                                                                                 00051
      NO OF PHOTOS IN THIS FLIGHT
                                                                                 00052
      IPMX=FFIN(5)
                                                                                00053
      IPHOT=1
                                                                                 00054
      WRITE (02,31)
                                                                                00055
      KFTS=1
                                                                                00056
      ORIENT PHOTO
                                                                                 00057
  100 CALL RESECT (FL, XP, YP, C)
                                                                                 00058
      CAMO(IPHOT.5.1)=XP/1000.
                                                                                00059
      CAMO(IPHOT,5,2)=YP/1000.
                                                                                 00060
      DO 105 J=1.3
                                                                                 00061
      CAMO(IPHCT,1.J)=C(1.J)
                                                                                 00062
  105 CONTINUE
                                                                                 00063
```

Figure B-2. Listing of program.

```
00064
      DO 106 J=2,4
                                                                                00065
      K=J+2
                                                                                00066
      DO 106 I=1.3
      CAMO(IPHOT,J,I)=C(K,I)
                                                                                00067
  106 CONTINUE
                                                                                00068
                                                                                00069
      J=1
  104 ITRA=FFIN(1)
                                                                                00070
      IF (ITRA-900) 108,107,107
                                                                                00071
  107 X(2,J) = (FFIN(1) - X^2)/1000.
                                                                                00072
      X(1,J) = (FFIN(1) - YP)/1000.
                                                                                00073
      BB=FFIN(1)
                                                                               00074
      CALL TRNCOORD (CAMO, XT, J, FL, IPHUT)
                                                                                00075
      CALL GRDCOORD(CAMO, XT, XPG, J, IPHOT)
                                                                                00076
      WRITE (02,34) ITRA, XPG(1), XPG(2)
                                                                                00077
   34 FORMAT (' FLOAT '.15.2F10.0)
                                                                                00078
      XFTS(IRUN, KFTS, 1) = XPG(1)
                                                                                00079
      XFTS(IRUN, <FTS, 2) = XPG(2)
                                                                                00080
                                                                                00081
      KETS=KETS+1
      GO TO 104
                                                                                00082
  108 GO TO (109,130), IRUN
                                                                                00083
  130 IF(IPMX-IPHOT) 131.131.109
                                                                                00084
                                                                               00085
  131 J=0
      DO 135 K=1.10
                                                                                00086
      DX=XFTS(1,K,1)-XFTS(2,K,1)
                                                                                00087
      DY=XFTS(1+K+2)-XFTS(2+K+2)
                                                                               00088
      DX=SQRT(DX*DX+DY*DY)
                                                                                00089
      IF (DX .LF. 100. .OR. DX .GT. 3000.) 135.133
                                                                                00090
  133 J=J+1
                                                                                00091
      MITANXG=(L.f)X
                                                                                00092
                                                                               00093
      WRITE (02,16) J,X(1,J)
   16 FORMAT( ' VELOCITY ', 15, 10X, F10, 2, ' FT PER SEC')
                                                                                00094
                                                                               00095
  135 CONTINUE
      K=J+1
                                                                               00096
      VFL=0.0
                                                                                00097
                                                                                00098
      GO TO (111,132),K
  132 DX=J
                                                                                00099
      DO 140 K=1.J
                                                                                00100
      VEL=VEL+X(1,K)
                                                                               00101
  140 CONTINUE
                                                                                00102
                                                                                00103
      VEL=VEL/DX
  111 IF (VEL-0.001) 142.142.143
                                                                                00104
  142 VEL=TTYIN(4HVEL=)
                                                                                00105
  143 LDFX=VFL*DTIM/60.+0.5
                                                                               00106
  109 GO TO (110,219), IPHOT
                                                                                00107
     COMPUTE ALTITUDE AND AZIMUTH OF THE SUN
                                                                                00108
  110 CALL SUNLITE (H, AZ, IRUN, DTIM)
                                                                               00109
      SAZ=AZ+3.14159
                                                                                00110
      IF (SAZ-6.28318) 114.114.112
                                                                                00111
  112 SAZ=SAZ-6.28318
                                                                                00112
  114 GO TO(115,116), IRUN
                                                                                00113
  116 ROT=-ROT
                                                                                00114
      XLOW=XORG
                                                                                00115
      YMID=YORG
                                                                                00116
      GO TO 211
                                                                                00117
C READ IN THE DIRECTION OF THE PLUME AND ORIENT RATIO ARRAY
                                                                               00118
C FIRST POINT DEFINES ZFRC ON GRID FOR PLUME
                                                                               00119
  115 DO 200 J=1.2
                                                                                00120
      ITRA=FFIN(1)
                                                                                00121
      X(2,J) = (FFIN(1)-XP)/1000.
                                                                               00122
      X(1,J) = (FFIN(1) - YP)/1000.
                                                                               00123
      BB=FFIN(1)
                                                                               00124
      CALL TRNCOORD(CAMO, XT, J, FL, IPHOT)
                                                                               00125
      CALL GRDCOORD(CAMO, XT, XPG, J, IPHOT)
                                                                               00126
```

Figure B-2. Listing of program (continued).

```
IF (J-1) 196,196,198
                                                                               00127
  196 XLOW=XPG(1)
                                                                               00128
      YMID=XPG(2)
                                                                               00129
  198 X(3,J)=XT(1)
                                                                               00130
     X(4*J)=XT(2)
                                                                               00131
  200 CONTINUE
                                                                               00132
      BOT=X(3,2)-X(3,1)
                                                                               00133
      TOP=X(4,2)-X(4,1)
                                                                               00134
      DIV=BOT/TOP
                                                                               00135
      ROT=ATANF(DIV)
                                                                              00136
      IF (TOP) 206.211.211
                                                                              00137
  206 ROT=ROT+3.14159
                                                                               00138
  211 SRUT=SINF(ROT)
                                                                              00139
      CROT=COSF(ROT)
                                                                              00140
      WRITE(02,2) RCT, XLOW, YMID
                                                                              00141
    00142
      SXF=-SINF(AZ)
                                                                              00143
      SYF =- COSF (AZ)
                                                                              00144
C
      EXPOSURE TIME *F/D * AND FILM SAMMA TO BASE 10
                                                                              00145
      ETIME=FFIN(5)
                                                                              00146
      FNUM=FFIN(5)
                                                                               00147
      GAM=FFIN(5)/2.30
                                                                              00148
      CEXP=ETIME*FNUM**2
                                                                              00149
       OPTICAL THICKNESS 3000 TO 10,000 FT
\mathcal{C}
                                                                              00150
      THI(1)=0.108+0.969*LOGF(C(1.3)/3280.)
                                                                              00151
      THI(2)=THI(1)*1.15
                                                                              00152
      THI(3)=THI(1)*1.4
                                                                              00153
      RAD(1) = EXPF(-0.252/SINF(H))
                                                                              00154
      RAD(2) = EXPF(-0.331/SINF(H))
                                                                              00155
      DTHI =-0.024*LOGF(C(1.3)/3280.+1)
                                                                              00156
      TENR=RAD(1)/RAD(2)
                                                                              00157
      RAD(3) = EXPF(-0.45/SINF(H))
                                                                              00158
      HI=3.14159/2.-H
                                                                              00159
      SINH=0.75*SINF(HI)
                                                                              00160
      COSH=SQRT(1.0-SINH**2)
                                                                              00161
      TANH=SINH/COSH
                                                                              00162
       ANGLE BETWEEN SUN RAY AND VERTICAL UNDER WATER
                                                                              00163
      HW=ATANE (TANH)
                                                                              00164
      WRITE (C2.3) HW
                                                                              00165
    3 FORMAT(' UNDERWATER SUN ANGLE = ' +F10+5)
                                                                              00166
      XS(1) = SINF(HW)*(-SXF)
                                                                              00167
      XS(2) = SINF(HW)*(-SYF)
                                                                              00168
      XS(3) = -COSF(HW)
                                                                              00169
      XS(4) = COSF(H)*(-SXF)
                                                                              00170
      XS(5) = COSF(H)*(-SYF)
                                                                              00171
      XS(6) = -SINF(H)
                                                                              00172
      XS(7) = -COSF(H)
                                                                              00173
      XS(8) = SINF(SAZ)
                                                                              00174
      X5(9) = COSF(SAZ)
                                                                              00175
      READ IN FILM DENSITIES FROM GREY SCALE
\overline{\phantom{a}}
                                                                              00176
      DO 215 J=1,18
                                                                              00177
      X(5,J) = FFIN(1)
                                                                               00178
      X(1,J)=1.0
                                                                              00179
  215 CONTINUE
                                                                              00180
      READ IN VOLTAGES RED GREEN AND BLUE
                                                                              00181
      DO 217 I=1.3
                                                                              00182
      DO 216 J=1.18
                                                                              00183
      ITRA=FFIN(1)
                                                                              00184
      ITRA=FFIN(1)
                                                                              00185
      ITRA=FFIN(1)
                                                                              00186
      X(2,J) = FFIN(1)/10.
                                                                              00187
      X(3,J)=X(2,J)*X(2,J)
                                                                              00188
      X(4,J)=X(3,J)*X(2,J)
                                                                              00189
```

Figure B-2. Listing of program (continued).

```
00190
216 CONTINUE
                                                                               00191
    N=5
                                                                               00192
    NO=18
    CALL LEASTFIT(N,NO,B)
                                                                               00193
                                                                               00194
    DB(1,I)=B(1)
                                                                               00195
    DB(2 \cdot 1) = B(2)
    DB(3+1)=B(3)
                                                                               00196
    DB(4,1)=P(4)
                                                                               00197
                                                                               00198
217 CONTINUE
219 IPHOT=IPHOT+1
                                                                               00199
    IF (IPHOT-IPMX) 100,100,218
                                                                               00200
218 .1=1
                                                                               00201
220 RFAD(01,35) IPHOT, ITRA, X(2,J), X(1,J), DEN1, DEN(2), DEN3
                                                                               00202
    IF (DEN1-DEN3) 222,222,224
                                                                               00203
                                                                               00204
222 DEN(3)=DEN1
                                                                               00205
    DFN(1)=DEN3
                                                                               00206
    GO TO 225
224 DEN(1)=DEN1
                                                                               00207
    DEN(3)=DEN3
                                                                               00208
                                                                               00209
225 DO 227 I=1.3
    DEN(I) = DB(1, I) + DB(2, I) * DEN(I) + DB(2, I) * DEN(I) * DEN(I)
                                                                               00210
   1 +DB(4,I)*DEN(I)**3
                                                                               00211
227 CONTINUE
                                                                               00212
    IF (DEN(1) .LE. 0.9 .OR. DEN(1) .GT. 3.25) 220,228
                                                                               00213
228 IF (DEN(2) .LE. 0.7 .OR. DEN(2) .GT. 3.25) 220,229
                                                                               00214
229 IF (DEN(3) •LE• 0•4 •OR• DEN(3) •GT• 3•25) 220•231
                                                                               00215
 35 FORMAT (15,14,2F6.3,F5.1,17X,F5.1,17X,F5.1)
                                                                               00216
231 X(1,J)=X(1,J)-CAMO(IPHOT,5,2)
                                                                               00217
    X(2,J) = X(2,J) - CAMO(IPHOT,5,1)
                                                                               00218
     ANGLE BETWEEN CAMERA AXIS AND RAY
                                                                               00219
    R = SQRT(X(1,J)**2+X(2,J)**2)
                                                                               00220
    CAM=ATANF(R/FL)
                                                                               00221
    CALL TRNCOORD(CAMU, XT, J, FL, IPHOT)
                                                                               00222
    CALL ANGLES (XT, XS, FL, J, CAN, CCA, TAB, SUNR)
                                                                               00223
    X(10,J)=SUNR
                                                                               00224
    X(5,J) = COSF(CAN)
                                                                               00225
    X(6,J) = DEN(1) - DEN(2)
                                                                               00226
    X(5,J) = EXPF(X(6,J)/GAM+(DTHI)/X(5,J))/TENR
                                                                               00227
    X(7,J)=EXPF(DEN(3)/GAM)*CEXP/COSF(CAM)**4
                                                                               00228
    X(8,J) = CAN
                                                                               00229
    J=J+1
                                                                               00230
    IF (ITRA-300) 220,230,230
                                                                               00231
230 INO=J-2
                                                                               00232
    K = 1
                                                                               00233
    DO 238 J=1,INO
                                                                               00234
    X(1,K)=1.0
                                                                               00235
    X(2,K)=X(8,J)
                                                                               00236
    X(3,K)=X(2,K)*X(2,K)
                                                                               00237
    X(4,K)=1.0/X(7,J)
                                                                               00238
    WRITE (02,44) X(1,K),X(2,K),X(3,K),X(4,K)
                                                                               00239
 44 FORMAT (4E11.3)
                                                                               00240
    K = K + 1
                                                                               00241
238 CONTINUE
                                                                               00242
    NO=K-1
                                                                               00243
    N = 4
                                                                               00244
    CALL LEASTFIT(N,NO,B)
                                                                               00245
    A1=B(1)
                                                                               00246
    A2=B(2)
                                                                               00247
    A3=B(3)
                                                                               00248
    DO 243 J=1,INO
                                                                               00249
    TRB=A1+A2*X(8,J)+A3*X(8,J)*X(8,J)
                                                                               00250
    X(1,J)=1.
                                                                               00251
    X(2,J)=X(10,J)
                                                                               00252
```

Figure B-2. Listing of program (continued).

```
X(3,J)=X(7,J)*TRE
                                                                                  00253
      X(4,J) = X(5,J)
                                                                                  002-4
      WRITE (02,43) X(1,J),X(2,J),X(3,J),X(4,J)
                                                                                  00253
   43 FORMAT (4E11.3)
                                                                                  00256
  243 CONTINUE
                                                                                  00257
      ۸=4
                                                                                  00258
      CMI=CM
                                                                                  00259
      CALL LEASTFIT (N,NO,B)
                                                                                  01260
      B1=B(1)
                                                                                  00251
      22=3(2)
                                                                                  00252
      e3=3(3)
                                                                                  00/63
      X L A 5 T = 3 • 0
                                                                                  00264
      J = 1
                                                                                  00265
  245 KFAD (01:35) IPHOT: ITRA: X(2:J): X(1:J): DEN1: DEN(2): DEN3
                                                                                  00266
      IF ([PHOT) 260,260,244
                                                                                  20267
  244 IF (DEN1-DEN3) 322,322,324
                                                                                  36500
  322 DEN(1)=DEN3
                                                                                  20269
      DEN(3)=DEN1
                                                                                  20270
      GO TO 325
                                                                                  00271
  324 DEN(1)=DEN1
                                                                                  00272
      DFN(3)=DFN3
                                                                                  00273
  325 DO 327 I=1.3
                                                                                  00274
      DEN(I) = DB(1,I) + DB(2,I) * DFN(I) + DB(3,I) * DEN(I) * DFN(I)
                                                                                  00275
                                                                                  00276
     1 +DB(4,I)*DEN(I)**3
  327 CONTINUE
                                                                                  00277
  IF (DEN(1) •LE• 0.9 •OR• DEN(1) •GT• 3.25) 245,328
328 IF (DEN(2) •LE• 3.7 •OR• DEN(2) •GT• 3.25) 245,329
                                                                                  00278
                                                                                  00279
  329 IF (DEN(3) .LE. 0.4 .OR. DEN(3) .GT. 3.25) 245.246
                                                                                  00280
  246 IF(X(1+J)-XLAST) 260+260+247
                                                                                  00281
  247 XLAST=X(1,J)
                                                                                  00282
      X(1,J)=X(1,J)-CAMO(IPHOT,5,2)
                                                                                  00283
      X(2,J)=X(2,J)-CAMO(IPHOT,5.1)
                                                                                  00284
      R = SQRT(X(1,J)**2+X(2,J)**2)
                                                                                  00285
      CAM=ATANF(R/FL)
                                                                                  00286
      CALL TRNCOORD(CAMO, XT, J, FL, IPHOT)
                                                                                  00287
      CALL GRDCOORD(CAMO, XT, XPG, J, IPHOT)
                                                                                  00288
      CALL ANGLES (XT.XS.FL.) CAN, CCA, TAB, SUNR)
                                                                                  00289
      CALL ROTATE (XPG, XLGN, YMID, CROT, SROT, J)
                                                                                  00290
      COSC=COSF(CAN)
                                                                                  00291
      YRRA=CFXP/COSF(CAM)**4
                                                                                  00292
      DEN(1) = EXPF((DEN(1) - DEN(2))/GAM+DTHI/COSC)
                                                                                  00293
                                                                                  00294
     1 /TENR
      DEN(3) = EXPF(DEN(3)/GAM) *YRRA
                                                                                  00295
      TRB=A1+A2*CAN+A3*CAN*CAN
                                                                                  00296
      BLUE=DEN(3)*TRB
                                                                                  00297
      X(10,J)=DEN(1)-B1-B2*SUNR-B3*BLUE
                                                                                  00298
      J=J+1
                                                                                  00299
      IF (J-200) 245,245,260
                                                                                  00300
C FILL IN ARRAY WITH PHOTO VALUES
                                                                                  00301
                                                                                  00302
C X AXIS ALONG THE CENTER LINE OF PLUME
  260 KK=J-1
                                                                                  00303
      DO 285 J=1,KK
                                                                                  00304
      LX=X(1,J)/60.+0.5
                                                                                  00305
      1F (LX .LE. 0 .OR. LX .GT. NNXS) 285,262
                                                                                  00306
  262 LY=(X(2,J)+YMIDY)/60.+0.5
                                                                                  00307
      IF (LY .LE. 0 .OR. LY .GT. NNYS) 285,264
                                                                                  00308
  264 RATIO(IRUN, LX, LY) = X(10, J) *1000.
                                                                                  00309
      IF (J-1) 280,280,267
                                                                                  00310
  267 DDEN=X(10,J)-X(10,J-1)
                                                                                   00311
                                                                                  00312
      DKX=LX-LLX
                                                                                  00313
      DKY=LY-LLY
                                                                                   00314
      XKX=ABSE(DKX)
      YKY=ABSF(DKY)
                                                                                  00315
```

Figure B-2. Listing of program (continued).

```
00316
    IF (XKX-YKY) 258,259,259
                                                                             00317
268 KY=YKY-1.
    YXY=VIG
                                                                             00318
                                                                             00319
    GO TO 270
                                                                             00320
269 KY≈XKX-1.
    DIV=XKX
                                                                             00321
                                                                             00322
270 IF (DIV-6.)272.272.280
                                                                             00323
272 DO 275 K=1.KY
                                                                             00324
    YYK = K
                                                                             00325
    DE=X(10,J-1)+DDEN*YYK/DIV
    KKX=LLX+YYK*DKX/DIV+0.5
                                                                             00326
                                                                              00327
    KKY=LLY+YYK*DKY/D1V+0.5
                                                                             00326
    RATIO(IRUN, KKX, KKY) = JE*1000.
                                                                             00329
275 CONTINUE
                                                                             01336
280 LLX=LX
                                                                             00351
    LLY=LY
285 CONTINUE
                                                                             00352
                                                                              00333
    J=1
    KK=KK+1
                                                                              22334
                                                                             00335
    IF (KK-200) 284,283,283
                                                                             00335
283 XLAST=0.0
                                                                             00337
    IF (IPHOT) 300,300,245
                                                                             00338
284 X(1,J)=X(1,KK)
                                                                             0003 -
    X(2,J) = X(2,KK)
                                                                             00345
    IF (IPHOT) 300,300,247
    INTERPOLATE MISSING VALUES IN ARRAY
                                                                             01341
                                                                             00342
300 KND=7
                                                                             00345
    KDN=5
                                                                             00344
301 NXS=NNXS-2
                                                                             00345
    NYS=NNYS-2
    DO 340 I=1.NNYS
                                                                             00346
    DO 340 J=1,NXS
                                                                             00347
                                                                             00348
    IF (RATIO(IRUN, J. I)) 330,340,330
330 IF (RATIU([RUN,J+1,I]) 340,332,340
                                                                             00349
332 DO 334 K=2,KND
                                                                             00350
    KJ=J+K
                                                                             00351
    IF (KJ-NNXS) 333,333,349
                                                                             00352
333 IF (RATIO(IRUN, KJ, I)) 336,334,236
                                                                             00353
                                                                             00354
334 CONTINUE
                                                                             00355
    GO TO 340
                                                                             00356
336 LJ=KJ-J-1
    DJ=KJ-J
                                                                             00357
    DIF=RATIO(IRUN,J,I)-RATIO(IRUN,KJ,I)
                                                                             00358
                                                                             00359
    DO 338 K=1,LJ
    AJ=K
                                                                             00360
                                                                             00361
    LLJ=J+K
    RATIO(IRUN,LEU,I)=RATIO(IRUN,J,I)-DIF*AJ/JJ
                                                                             00362
338 CONTINUE
                                                                             00363
                                                                             00364
340 CONTINUE
    DO 320 I=1 NNXS
                                                                             00365
    DO 320 J=1 NYS
                                                                             00366
    IF (RATIO(IRUN, 1, J)) 310, 320, 310
                                                                             00367
310 IF (RATIO(IRUN:1:J+1)) 320:312:320
                                                                             00368
312 DO 314 K=2,KDN
                                                                             00369
    KJ=J+K
                                                                             00370
    IF (KJ-NNYS) 313,313,320
                                                                             00371
313 IF (RATIO(IRUN, I, KJ)) 316, 314, 316
                                                                             00372
314 CONTINUE
                                                                             00373
                                                                             00374
    GO TO 320
316 LJ=KJ-J-1
                                                                             00375
    DJ=KJ-J
                                                                             00376
    DIF=RATIO(IRUN, I, J)-RATIO(IRUN, I, KJ)
                                                                             00377
    DO 318 K=1.LJ
                                                                             00378
```

Figure B-2. Listing of program (continued).

```
00379
    LLJ≈J+K
                                                                                00380
    RATIO(IRUN, I, LLJ) = RATIO(IRUN, I, J) - DIF*AJ/DJ
                                                                                00381
318 CONTINUE
                                                                                00382
320 CONTINUE
                                                                                00383
    IF (KND-6) 302,302,303
                                                                                00384
302 KND=10
                                                                                00385
    KDN≈6
                                                                                00386
    GO TO 301
                                                                                00387
AVERAGE VALUES IN ARRAY
                                                                                00388
303 WRITE(61,1)
                                                                                00389
  1 FORMAT ( ' TYPE IN 1 TO AVERAGE VALUES OR 2 IF NOT!)
                                                                                00390
    IGO=TTYIN(4HIGO=)
                                                                                00391
    GO TO (304,380) IGO
                                                                                00392
304 ITEST=1
                                                                                00393
    DO 370 I=1.NXS
                                                                                00394
    DO 360 J=2.NY5
                                                                                00395
    GO TO (362,364), ITEST
                                                                                00396
362 X(1,J)=(RATIO(IRUN,I,J)+RATIO(IRUN,I,J-1)+RATIO(IRUN,I,J+1)+
                                                                               00397
   1 RATIO(IRUN, I+1,J))/4
                                                                                00398
364 X(2,J)=(RATIO(IRUN,I,J)+RATIO(IRUN,I+1,J)+RATIO(IRUN,I+2,J)+
                                                                                00399
   1 RATIO(IRUN, I+1, J+1)+RATIO(IRUN, I+1, J-1))/5
                                                                                00400
360 CONTINUE
                                                                                00401
    ITEST=2
                                                                                00402
    C.O=XAMX
                                                                                00403
    DO 365 J=2.NYS
                                                                                00404
    RATIO(IRUN, I, J) = X(1, J)
                                                                                00405
    IF (XMAX-X(1,J)) 361,363,363
                                                                                00406
361 XMAX=X(1,J)
                                                                                00407
363 \times (1,J) = \times (2,J)
                                                                                00408
365 CONTINUE
                                                                                00409
    WRITE (61,39) XMAX
                                                                                00410
 39 FORMAT (E11.3)
                                                                                00411
370 CONTINUE
                                                                                00412
380 J=1
                                                                                00413
    READ (19,12) FIX,XL,YL,CONL
                                                                                00414
500 READ (19,12) FIX, XF, YF, CONF
                                                                                00415
    IF (FIX) 520,520,505
                                                                                00416
505 DDEN=CONF-CONL
                                                                                00417
    DKX = (XF - XL)
                                                                                00418
                                                                                00419
    DKY=(YF-YL)
    XKX=ABSF(DKX)/50.
                                                                                00420
    YKY=ABSF(DKY)/50.
                                                                                00421
                                                                                00422
    IF (XKX-YKY) 450,460,460
450 KY=YKY
                                                                                00423
    DIV=YKY
                                                                                00424
    GO TO 470
                                                                                00425
460 KY=XKX
                                                                                00426
    DIV=XKX
                                                                                00427
470 IF (DIV-8.) 472,472,490
                                                                                00428
472 DO 485 K=1,KY
                                                                                00429
                                                                                00430
     YYK = K
     CONC=CONL+DDEN*YYK/DIV
                                                                                00431
     IF (CONC-0.5) 490,490,475
                                                                                00432
475 XPG(1)=XL+DKX*YYK/DIV
                                                                                00433
    XPG(2) = YL + DKY * YYK/DIV
                                                                                00434
                                                                                00435
 12 FORMAT (F7.1,2F14.0,F10.1)
    CALL ROTATE(XPG,XLOW,YMID,CROT,SROT,J)
                                                                                00436
    LX=X(1,J)/60.+0.5
                                                                                00437
     IF (LX .LE. 0 .OR. LX .GT. NNXS) 490,512
                                                                                00438
                                                                                00439
512 LY=(X(2,J)+YMIDY)/60.+0.5
IF (LY .LE. 0 .OR. LY .GT. NNYS) 490,514
514 IF (RATIO(IRUN,LX,LY)) 516,490,516
                                                                                00440
                                                                                00441
```

Figure B-2. Listing of program (continued).

```
516 CONTINUE
                                                                                00442
    X(1,J)=RATIO(1RUN,LX,LY)
                                                                                00443
    X(2,J)=X(1,J)*X(1,J)
                                                                                00444
                                                                                00445
    X(3,J) = CONC
    WRITE (04,13) (X(I,J),I=1,3)
                                                                                00446
                                                                                30447
 13 FORMAT (7E11.3)
                                                                                00448
    J=J+1
                                                                                00449
    IF (J-200) 485,485,520
485 CONTINUE
                                                                                00450
                                                                                00451
490 XI = XF
                                                                                00452
    YL=YF
    CONL ≈ CONF
                                                                                00453
                                                                                00454
    GO TO 500
                                                                                00455
520 NO=J-1
    N=3
                                                                                00456
    CALL LEASTFIT(N,NO.B)
                                                                                00457
                                                                                00458
    WRITE (61,37) B(1),B(2)
 37 FORMAT ( ' 81',E11.3,'B2',E11.3)
                                                                                00459
    WRITE (02,42) XLOW, YMID, ROT
                                                                                00460
 42 FORMAT(1H1, 'XORG=', F8.0, 'YORG=', F7.0, 'ROTATION ANCLE=', F5.3)
                                                                                00461
    DO 540 I=1, NNXS, 20
                                                                                00462
 WRITE (02,31)
31 FORMAT (1H1)
                                                                                00463
                                                                                00464
    DO 540 J=1,NNYS
                                                                                00465
                                                                                00466
    KK = I + 19
    WRITE (02,30) (RATIO(IRUN,K,J),K=I,KK)
                                                                                00467
 30 FORMAT (2015)
                                                                                00468
                                                                                00469
540 CONTINUE
                                                                                00470
    ROT = - ROT
    SROT = - SINF (ROT)
                                                                                00471
                                                                                00472
    CROT=-COSF(ROT)
                                                                                00473
    XORG=XLOW
                                                                                00474
    YORG=YMID
                                                                                00475
    XLOW=0.0
    YMID=YMIDY
                                                                                00476
                                                                                00477
    CB=TTYIN(4HB1=)
                                                                                00478
    CA=TTYIN(4HB2= )
    XSUM=0.
                                                                                00479
                                                                                00480
    DO 522 J=1,NO
    XSUM=XSUM+(CB*X(1,J)+CA*X(2,J)-X(3,J))**2
                                                                                00481
                                                                                00462
522 CONTINUE
                                                                                00483
    XNO=NO
    XSUM=XSUM/XNO
                                                                                00484
                                                                                00485
    WRITE (61,38) XSUM,NO
 38 FORMAT( MEAN SQUARE ', E11.3, DF', I5)
                                                                                00486
    DO 530 I=1,NNXS
                                                                                00487
    DO 530 J=1, NNYS
                                                                                00488
                                                                                00489
    IF (RATIO(IRUN, I, J)) 524,530,524
524 AJ=J
                                                                                00490
                                                                                00491
    AI = I
                                                                                00492
    XPG(1) = AI * 60.
                                                                                00493
    XPG(2)=AJ*60.
    CALL ROTATE(XPG, XLOW, YMID, CROT, SROT, J)
                                                                                00494
                                                                                00495
    XPG(1) = X(1,J) + XORG
                                                                                00496
    XPG(2)=X(2,J)+YORG
    AXZ=RATIO(IRUN.I.J)
                                                                                00497
    AXZ=CB*AXZ+CA*AXZ*AXZ
                                                                                00498
    IF (AXZ-0.6) 530,537,537
                                                                                00439
537 WRITE(20,10) I, XPG(1), XPG(2), 4XZ
                                                                                00500
10 FORMAT(13.3F15.2)
                                                                                00501
    RATIO(IRUN, I, J) = AXZ*10.
                                                                                00502
530 CONTINUE
                                                                                00503
                                                                                00504
    J=1
```

Figure B-2. Listing of program (continued).

```
WRITE (20,14)
                                                                                 00505
 14 FORMAT (55X+13)
                                                                                 00506
    END FILE 20
                                                                                 00507
    WRITE (02,42) XORG, YORG, ROT
                                                                                 00508
    DO 542 I=1,NNXS,20
                                                                                 00509
    WRITE (02,31)
                                                                                 00510
    DO 542 J=1.NNYS
                                                                                 00511
    KK = I + 19
                                                                                 00512
    WRITE(02,30) (RATIO(IRUN, K, J), K=I, KK)
                                                                                 00513
542 CONTINUE
                                                                                 00514
    SUM=-ROT
                                                                                 00515
    IDENTIFICATION FOR SYMBOLIC PLUT. PHOTO NOS, DAY MONTH
                                                                                 00516
    DIF=FFIN(5)
                                                                                 00517
    EDATE=FFIN(5)
                                                                                 00518
    ETIME=FFIN(5)
                                                                                 00519
    DO 602 J=1,8
                                                                                 00520
    X(3,J)=0.0
                                                                                 00521
602 CONTINUE
                                                                                 00522
    WRITE (02.15) SUM.DIF.EDATE.ETIME
                                                                                 00523
 15 FORMAT(1H1,///42X'AIRPHOTO ANALYSIS OF OCEAN DUTFALL DISPERSION'
                                                                                 00524
   1 ///,45X, VOLUMETRIC WASTE CONCENTRATION ML PER L'//,55X, 2'SKETCH ON 60 - FT GRID'/,49X, DIRECTION OF PLUME ',F5.2,
                                                                                 00525
                                                                                 00526
   3 ! RADIANS!//35X + PHOTO NO - 1 + F4 - 0 + 30X + DATE + + F3 - 0 + 1 - 1 + F3 - 0 +
                                                                                00527
   41-681/1
                                                                                 00528
    WRITE (02,23)
                                                                                 00529
 23 FORMATI 35X, CONCENTRATION CODE IN ML/L!/,45X,
                                                                                 00530
   1') 0 - 2',15X,' 1 2 - 4'/,71X,'1'//,45X,
2'!! 4 - 6',15X,'LL 6 - 10'/,45X,'1',25X,*!
                                                                                 00531
                               6 - 101/,45X,111,25X,1LL1//,45X,
                                                                                 00532
         10 - 15',14X, 'RR 15 - 20'/, 45X, 'PP', 24X, 'RR'//, 45X,
   3 1 PP
                                                                                00533
   4 1 MM
           20 - 251,14X,1**
                               GT 25 +/,45X, MM+,24X, ***+////)
                                                                                 00534
   WRITE (02,45) XORG, YORG
                                                                                 00535
 45 FORMAT(60X, + X=+, F8.0, +E, Y=+, F7.0, +N+)
                                                                                 00536
    NYS=NNYS-10
                                                                                 00537
    IKS=NNYS/2
                                                                                 00538
    IEKS=IKS+29
                                                                                 00539
    IKS=IKS-29
                                                                                 00540
    DO 700 LX=2,NNXS
                                                                                 00541
    DO 690 LY=1.NNYS
                                                                                 00542
    AXZ=RATIO(1RUN, LX, LY)
                                                                                 00543
    AXZ=AXZ/10.
                                                                                 00544
    IF (AXZ-0.5) 510.610.605
                                                                                 00545
605 XL=AXZ/2.+1.
                                                                                 00546
                                                                                 00547
    IDO=XL
                                                                                 00548
    GO TO (620,630,640,660),IDO
610 X(1,LY)=8H
                                                                                 00549
    X(2,LY)=8H
                                                                                 00550
    GO TO 690
                                                                                 00551
620 X(1+LY)=8H )
                                                                                 00552
    X(2,LY)=8H
                                                                                 00553
    X(3,1)=X(3,1)+1.
                                                                                 00554
    GO TO 690
                                                                                 00555
630 X(1,LY)=8H1
                                                                                 00556
    X(2,LY)=8H I
                                                                                 00557
    X(3,2)=X(3,2)+1.
                                                                                 00558
                                                                                 00559
    GO TO 690
640 X(1,LY)=8HII
                                                                                 00560
                                                                                 00561
    X(2,LY)=8HI
                                                                                 00562
    X(3,3)=X(3,3)+1
    GO TO 690
                                                                                 00563
650 X(1,LY)=8HLL
                                                                                 00564
                                                                                 00565
    X(2 \cdot LY) = 8HLL
                                                                                 00566
    X(3,4)=X(3,4)+1.
    GC TC 690
                                                                                 00567
```

Figure B-2. Listing of program (continued).

```
660 IF (AXZ-10.) 650,650,670
670 XL=AXZ/5.-1.
                                                                                00568
                                                                                00569
                                                                                00570
    IDO=XL
    GO TO (675,680,685,688),100
                                                                                00571
                                                                                00572
675 X(1,LY)=8HPP
                                                                               00573
    X(2,LY)=8HPP
                                                                                00574
    X(3,5)=X(3,5)+1
                                                                               00575
    GC TC 690
                                                                               00576
680 X(1,LY)=8HRR
                                                                                00577
    X(2,LY)=8HRR
                                                                                00578
    X(3.6) = X(3.6) + 1.
                                                                                00579
    GO TO 690
                                                                                00580
685 X(1+LY)=8HMM
                                                                                00581
    X ( 2 . L Y ) = 8 HMM
                                                                                00582
    X(3,7)=X(3,7)+1.
    GC TO 690
                                                                                00583
                                                                                00584
688 X(1,LY)=8H**
    X(2,LY)=8H**
                                                                               00585
                                                                                00586
    X(3,8)=X(3,8)+1.
690 CONTINUE
                                                                                00587
                                                                               00588
    WRITE (02,24) (X(1,J),J=IKS,IEKS)
    WRITE (02,24) (X(2,J),J=IKS,IEKS)
                                                                               00589
 24 FORMAT (70A2)
                                                                                00590
                                                                               00291
700 CONTINUE
    DO 603 J=1,8
                                                                               00592
                                                                               00593
    XAR(IRUN,J)=X(3,J)*3600.
                                                                               00594
603 CONTINUE
    IRUN≈IRUN+1
                                                                               00595
    IF(IRUN-IRUNM) 54,54,593
                                                                               00596
593 AMASS=RATE*60./ABSF(VEL)
                                                                               00597
    DO 594 IRUN=1.IRUNM
                                                                               00598
    WRITE(02,18) IRUN
                                                                               00599
 18 FORMAT(1H1,47X, PRELIMINARY DIFFUSION COMPUTATIONS 1//,
                                                                               00600
   1 58X, 'FLIGHT NO.', 13, //19X,
                                                                               00601
   2' SECTION WIDTH EFF DEPTH SIGMA Y'
3 ' COEFFICIENT GROUND X GROUND Y
                                                                               00602
                                                  DIFFUSION COEF!/
                                                                               00603
   4 ,29X, 1FT1, 7X, 1FT1, 14X, 1FT1, 9X, 1PPT1, 7X, 1STATE PLANE 1
                                                                               00604
   5 , COORDINATES: , 3X , FT SG PER SEC!//)
                                                                               00605
    L = 1
                                                                               00606
    GO TO (550,5521, IRUN
                                                                               00607
                                                                                00608
550 LDF=9
    L00=7
                                                                                00609
    LDST=3
                                                                                00610
    GO TO 554
                                                                                00611
552 LDF=10
                                                                               00612
    LDD=8
                                                                                00613
    LDST=LDFX+3
                                                                                00614
554 NXS=NNXS-2
                                                                                00615
    DO 600 I=LDST.NXS.5
                                                                                00616
                                                                                00617
    DO 560 J=1,NNYS
    IF (RATIO(IRUN,I,J)) 560,560,570
                                                                               00618
560 CONTINUE
                                                                                00619
    GO TO 600
                                                                                00620
570 JST=J
                                                                                00621
    LNY=0
                                                                                00622
    DIV=0.0
                                                                                00623
    SUM=0.0
                                                                               00624
    DIF = 0 . 0
                                                                                00625
    DO 580 J=1,NNYS
                                                                               00626
                                                                               00627
    ACD=(RATIO(IRUN,I,J)+RATIO(IRUN,I-1,J)+RATIO(IRUN,I+1,J)+
                                                                               00628
   1 RATIO(IRUN, I-2, J)+RATIO(IRUN, I+2, J))/50
                                                                               00629
    SUM=SUM+ACD*AJ
                                                                                00630
```

Figure B-2. Listing of program (continued).

```
DI. = DIF+ACD
                                                                               00631
    LA*LA*GDA+VIG=VI(
                                                                               00632
    IF (RATIC(IRUN, I, J)) 580,580,575
                                                                               00633
575 LNY=LNY+1
                                                                               00634
580 CONTINUE
                                                                               00635
    XMEAN=SUM/DIF
                                                                               00636
    X(10.L)=DIV/DIF-XMEAN*XMEAN
                                                                               00637
    X(4,L) = LNY*60
                                                                               00638
    X(5,L)=AMASS/(DIF*3.6)
                                                                               00539
    X(6,L) = SQRT(X(10,L))
                                                                               00640
    X(7,L)=DIF*60./(2.51*X(6,L))
                                                                               00641
    XPC(1)=1*60
                                                                               00642
    XPG(2)=XMEAN
                                                                               00643
    .1 = 1
                                                                               00544
    CALL ROTATE(XPG, XLOW, YMID, CROT, SROT, J)
                                                                               00645
    X(8,L)=X(1,J)+XORG
                                                                               00646
    X(9,L)=X(2,J)+YORG
                                                                               00647
    IF (L-1) 585,585,590
                                                                               00648
585 DJ=0.
                                                                               00649
    GO TO 595
                                                                               00650
590 DJ=ABSF(VFL)*(X(10,L)-X(10,L-1))/600.
                                                                               00651
595 L1 = L + 150
                                                                               00652
   X(LDF,LL)=X(10,L)
                                                                               00653
    X(LDD,LL)=X(4,L)
                                                                               00654
    \forall RITE(02,17) I, X(4,1),X(5,1),X(6,1),X(7,1),X(8,1),X(8,1),DJ
                                                                               00655
17 FORMAT(19X,16,F9.0,F9.1,8X,2E11.3,2F13.0,E14.3)
                                                                               00656
   £=L+1
                                                                               00657
600 CONTINUE
                                                                               00658
    WRITE(02,26) RATE, VEL
                                                                               00659
 26 FCRMAT(///35x, FLOW RATE : F5.1, CFS: 17X,
                                                                               00660
  1 CURRENT VELOCIT(', F4.2, FPS://)
                                                                               00661
    WRITE(02,27) AZ,H
                                                                               00662
27 FORMAT (35X, 1 SUN AZ FM S. 1, F6.3, 1 RAD!
                                                                               00663
  1,17X, 'SUN ALTITUDE', F6.3, ' RAD')
                                                                               00664
    WRITE (02,40)
                                                                               00665
 40 FORMAT(47X, AREA WITHIN EACH CONCENTRATION RANGE!/,
                                                                               00666
   1 55X, 'RANGE', 13X, 'AREA'/, 55X, 'ML/L', 13X, 'SQ FT')
                                                                               00667
    WRITE (02,41) (XAR(IRUN,J),J=1,8)
                                                                               00668
41 FCRMAT(55X, 10 - 21, 8X, E11.3/, 55X, 12 - 41, 8X, E11.3/,
                                                                               00669
   1 55X, 14 - 61, 8X, Ell. 3/, 55X, 16 -101, 8X, Ell. 3/,
                                                                               00670
   2 55X, 10-151, 8X, E11.3/, 55X, 115-201, 8X, E11.3/,
                                                                               00671
   3 55X, 120-251, 8X, E11.3/, 55X, 1GT 251, 8X, E11.3)
                                                                               00672
594 CONTINUE
                                                                               00673
                                                                               00674
    AJ=0.C
    DIV=0.0
                                                                               00675
                                                                               00676
    SUM=0.0
    AXZ = 0 \bullet 0
                                                                               00677
    WRITE (02,31)
                                                                               00678
    NXS=NNXS-1
                                                                               00679
                                                                               00680
    DO 728 I=1,NXS
    DO 725 J=1,NNYS
                                                                               00681
    DKX=RATIO(2, I, J)-RATIO(1, I, J)
                                                                               00682
    IF (DKX) 722,724,722
                                                                               00683
                                                                               00684
722 DKX=DKX/10.
                                                                               00685
    AJ=AJ+1.
    DIV=DIV+DKX
                                                                               00686
    SUM=SUM+DKX*DKX
                                                                               00687
    AXZ=AXZ+ABSF(DKX)
                                                                               00688
                                                                               00689
724 RATIO(2,NNXS,J)=DKX
                                                                               00690
725 CONTINUE
    WRITE (02,49) (RATIO(2,NNX5,J),J=1,NNYS)
                                                                               00691
49 FORMAT(5X,6012/)
                                                                               00692
                                                                               00693
728 CONTINUE
```

Figure B-2. Listing of program (continued).

```
00694
     DKX=DIV/AJ
                                                                             00695
     DKY=SUM-DIV*DIV/AJ
                                                                             00696
     DKY=SQRT(DKY/(AJ-1.))
                                                                             00697
     AXZ=AXZ/AJ
                                                                             00698
     AJ=AJ-1.0
                                                                             00699
     WRITE (02,48) DKX,AXZ,DKY,AJ
  48 FORMAT(1H1.//// MEAN DIFFERENCE IN CONCENTRATION: ,F6.2,
                                                                             00700
    1/ ABSOLUTE MEAN DIFFERENCE + F6 - 2 - /
                                                                            00701
                                                                             00702
    2' STANDARD DEVIATION OF THE MEAN '. F6 . 2 . / ! DEGREES OF !
    3 ' FREEDOM ' , F6 . 0 )
                                                                             00703
                                                                             00704
     1 = 3
                                                                             00705
     WRITE (02,53)
   53 FORMAT (1H1+///20X+IN O N S T E A D Y S T A T E'
                                                                             00706
    1' DIFFUSION COEFFICIENTS!//
                                                                             00707
    2 ,23X, 'SECTION', 12X, 'WIDTH 1', 12X, 'WIDTH 2', 8X,
                                                                             00708
     3 'COEFFICIENTS'/)
                                                                             00709
     ∂I∨=0•
                                                                             00710
                                                                             00711
     SU'1=0.
     OTIM=DTIM*2.
                                                                             00712
                                                                             00713
     LXF=150
                                                                             00714
     LXL=150
 730 DJ=(X(10, LXF) + X(9, LXL))/DTIM
                                                                             00715
     WPITE (02,52) L,X(7,LXL),X(8,LXF),DJ
                                                                             00716
                                                                             00717
  52 FORMAT (23X+15,14X,F6.0,12X,F6.0,10X,F8.2)
     L=L+5
                                                                             00718
                                                                             00719
      SUM=SUM+DJ
                                                                             00720
     CIV=DIV+1.
     LXF=LXF+1
                                                                             00721
                                                                             00722
     LXL=LXL+1
                                                                             00723
     IF(LXF-LL) 730,730,740
                                                                             00724
 740 DIV=SUM/DIV
     WRITE (02,60) DIV
                                                                             00725
  60 FORMAT(23X, MEAN DIFFUSION COEFFICIENT + F10.2)
                                                                             00726
 T 101 STOP
                                                                             00727
     FND
                                                                             00728
. .
1.1
```

Figure B-2. Listing of program (continued).

```
SUBROUTINE ROTATE(XPG, XLON, YMID, CROT, SROT, J)
                                                                                 00001
      DIMENSION XPG(2)
                                                                                 00002
      COMMON X(10,200)
                                                                                 00003
      RGX=XPG(1)-XLOW
                                                                                 00004
      RGY=XPG(2)-YMID
                                                                                 00005
      X(I,J)=RGX*SROT+RGY*CRUT
                                                                                 00006
      X(2,J) = -RGX*CROT+RGY*SROT
                                                                                 00007
      RETURN
                                                                                 00008
      FND
                                                                                 00009
      SUBROUTINE SUNLITE (H, AZ, IRUN, DTIM)
                                                                                 00010
C
       COMPUTE THE ALTITUDE AND AZIMUTH OF THE SUN
                                                                                 00011
^{\circ}
       TIME IS PACIFIC DAYLIGHT TIME
                                                                                 00012
      GO TO (10,20), IRUN
                                                                                 00013
\overline{\phantom{a}}
      READ IN TIME OF DAY IN HRS AND MIN FOR FIRST FLIGHT
                                                                                 00014
   10 DPT=FFIN(5)
                                                                                 00015
      DP=FFIN(5)
                                                                                 00016
      DPT=DPT+DP/60.
                                                                                 00017
      READ IN DECLINATION OF SUN IN DEGREES (AA), AND MIN (B)
                                                                                 00018
      AND CHANGE IN MIN PER HOUR (CC) . EQUATION OF TIME
\overline{\phantom{a}}
                                                                                 00019
\subset
      IN MINUTES (DD), SECONDS (E), AND CHANGE PER HOUR (F)
                                                                                 00020
      LONGITUDE (WLON) AND LATITUDE (ALAT).
                                                                                 00021
      AA=FFIN(5)
                                                                                 00022
      B=FFIN(5)
                                                                                 00023
      CC=FFIN(5)
                                                                                 00024
      DD=FFIN(5)
                                                                                 00025
      E=FFIN(5)
                                                                                 00026
      F=FFIN(5)
                                                                                 00027
      WLON=FFIN(5)
                                                                                 00028
      ALAT=FFIN(5)
                                                                                 00029
      GO TO 30
                                                                                 00030
   20 DPT=DPT+DTIM/3600 •
                                                                                 00031
   30 GCT=DPT+7.
                                                                                 00032
      DEC=(AA+(B+CC*GCT)/60.)*3.14159/180.
                                                                                 00033
      EQT=(DD+(E+F*GCT)/60.)/60.
                                                                                 00034
      GHA = (GCT+EQT) *15.0-180.
                                                                                 00035
      TT=GHA-WLON
                                                                                 00036
      TT=TT*3.14159/180.
                                                                                 00037
      T = ABS(TT)
                                                                                 00038
      ALAT=ALAT*3.14159/180.
                                                                                 00039
      Z=SINF(T)/(COSF(ALAT)*TANF(DEC)-SINF(ALAT)*COSF(T))
                                                                                 00040
      AZ = ATANF(Z)
                                                                                 00041
      IF (TT) 120,120,123
                                                                                 00042
  120 IF (AZ) 121,121,122
                                                                                 00043
  121 AZ=2.*3.14159+AZ
                                                                                 00044
      GO TO 126
                                                                                 00045
  122 AZ=3.1359+AZ
                                                                                 00046
      GO TO 126
                                                                                 00047
  123 IF (AZ) 124,124,125
                                                                                 00048
  124 AZ = -AZ
                                                                                 00049
      GO TO 126
                                                                                 00050
  125 AZ=3.14159-AZ
                                                                                 00051
  126 CONTINUE
                                                                                 00052
      SINH=SINF(ALAT)*SINF(DEC)+COSF(ALAT)*COSF(DEC)*COSF(T)
                                                                                 00053
      COSH=SINF(T)*COSF(DEC)/SINF(AZ)
                                                                                 00054
      ALT=ABS(SINH/COSH)
                                                                                 00055
      HH=ATANF(ALT)
                                                                                 00056
      REF=((1.+25./60.)/60.)*3.14159/180.
                                                                                 00057
      H=HH+REF
                                                                                 00058
      WRITE (02,1) H, REF, AZ
                                                                                 00059
    1 FORMAT(11H SUN'S ALT. FIO.6.12H REFRACTION FIO.6.
                                                                                 00060
     1/16H AZIMUTH OF SUN •F10•6)
                                                                                 00061
      RETURN
                                                                                 00062
      END
                                                                                 00063
```

Figure B-3. Listing of subroutines.

```
SUBROUTINE RESECT (FL, XP, YP, C)
                                                                                  00064
      DIMENSION B(15,6),C(20,3),P(2,8),D(6,7)
                                                                                  00065
      PHOTO RESECTION PHASE
                                                                                  00066
      READ IN REFINED PLATE AND GROUND COURDS OF RESECTION POINTS
C
                                                                                  00067
                                                                                  00068
      IGO=1
      FL=FFIN(1)/25.4
                                                                                  00069
                                                                                  00070
\mathcal{C}
      FL IS FOCAL LENGTH
      IPLATE=FFIN(1)
                                                                                  00071
      IMAGE=FFIN(1)
                                                                                  00072
      XP=FFIN(1)
                                                                                  00073
      YP=FFIN(1)
                                                                                  00074
      BB=FFIN(1)
                                                                                  00075
      DO 10 I=1, IMAGE
                                                                                  00076
      B(I,1)=FFIN(1)
                                                                                  00077
      B(1,3) = (FFIN(1) - XP)/1000.
                                                                                  00078
      B(I,2) = (FFIN(1) - YP)/1000.
                                                                                  00079
      BB=FFIN(1)
                                                                                  00080
   10 CONTINUE
                                                                                  00081
      DO 15 I=1.IMAGE
                                                                                  00082
      BB=FFIN(3)
                                                                                  00083
      B(1.4)=FFIN(3)
                                                                                  00084
      B(I+5)=FFIN(3)
                                                                                  00085
                                                                                  00086
      B(I+6)=FFIN(3)
                                                                                  00087
   15 CONTINUE
      INITIAL APPROXIMATION OF CAMERA PARAMETERS
\mathcal{C}
                                                                                  00088
      C(1,1)=FFIN(3)
                                                                                  00089
      C(1,2)=FFIN(3)
                                                                                  00090
      C(1,3) = FFIN(3)
                                                                                  00091
      C(2,1)=FFIN(3)/57.2928
                                                                                  00092
      C(3,1)=COSF(C(2,1))
                                                                                  00093
      C(2,1)=SINF(C(2,1))
                                                                                  00094
      C(2,2)=FFIN(3)/57,2928
                                                                                  00095
      C(3,2)=COSF(C(2,2))
                                                                                  00096
      C(2,2)=SINF(C(2,2))
                                                                                  00097
                                                                                  00098
      C(2,3)=FFIN(3)/57.2928
      C(3,3) = COSF(C(2,3))
                                                                                  00099
      C(2,3) = SINF(C(2,3))
                                                                                  00100
      ORIENTATION FACTORS IN C ARRAY
                                                                                  00101
\subset
  610 C(4,1)=C(3,2)*C(3,3)
                                                                                  00102
      C(5,1) = -C(3,2) * C(2,3)
                                                                                  00103
      C(6,1)=C(2,2)
                                                                                  00104
      C(10,1) = -C(2,2) * C(3,3)
                                                                                  00105
      C(11,1)=C(2,2)*C(2,3)
                                                                                  00106
      C(12,1)=C(3,2)
                                                                                  00107
      C(10,2)=C(4,1)*C(2,1)
                                                                                  00108
      C(11,2)=C(5,1)*C(2,1)
                                                                                  00109
      C(12,2)=C(2,1)*C(2,2)
                                                                                  00110
      C(10,3) = -C(4,1)*C(3,1)
                                                                                  00111
      C(11,3) = -C(5,1) * C(3,1)
                                                                                  00112
      C(12,3) = -C(3,1) * C(2,2)
                                                                                  00113
      C(4,2)=C(3,1)*C(2,3)+C(12,2)*C(3,3)
                                                                                  00114
      C(5,2)=C(3,1)*C(3,3)-C(12,2)*C(2,3)
                                                                                  00115
      C(6,2) = -C(2,1) * C(3,2)
                                                                                  00116
      C(4,3) = C(2,1) * C(2,3) + C(10,1) * C(3,1)
                                                                                  00117
      C(5,3)=C(2,1)*C(3,3)+C(11,1)*C(3,1)
                                                                                  00118
      C(6,3)=C(3,1)*C(3,2)
                                                                                  00119
      DO 612 I=7,9
                                                                                  00120
      (I,1)=0.
                                                                                  00121
      C(I,2) = -C(I-3,3)
                                                                                  00122
      C(I,3) = C(I-3,2)
                                                                                  00123
                                                                                  00124
      C(13,I-6)=C(5,I-6)
                                                                                  00125
      C(14,I-6) = -C(4,I-6)
  612 C(15,I-6)=0.
                                                                                  00126
```

Figure B-3. Listing of subroutines (continued).

```
GO TO (613,763),IGO
                                                                            00127
    CLEAR NORMAL EQUATION D ARRAY TO ZERO
                                                                             00128
613 DO 614 I=1.6
                                                                             00129
    DO 614 J=1.7
                                                                             00130
614 D(1,J)=0.
                                                                             00131
    COMPUTE P TERMS FOR RESECTION PASS POINTS
                                                                            00132
    DO 618 NU=1+IMAGE
                                                                            00133
    DO 619 K=1.3
                                                                             00134
619 C(16,K)=B(NU,K+3)-C(1,K)
                                                                             00135
    K = 4
                                                                            00136
    DO 620 L=17.20
                                                                            00137
    DO 620 I=1.3
                                                                            00138
    C(L,I) = C(K,I) * C(16,I) + C(K,2) * C(16,2) + C(K,3) * C(16,3)
                                                                            00139
620 K=K+1
                                                                            00140
    DO 621 I=1.2
                                                                            00141
    DO 622 L=1.4
                                                                            00142
622 P(I,L)=(B(NU,[+1)*C(L+16,3)-(-FL)*C(L+16,I))/C(17,3)
                                                                            00143
    DO 623 L=5.7
                                                                            00144
623 P(I,L) = (-B(NU,I+1)*C(6,L-4)+(-FL)*C(I+3,L-4))*C(1,3)/C(17,3)
                                                                            00145
621 P(I,8)=-P(I,1)
                                                                            00146
    CONTRIBUTION TO NORMAL EQUATIONS
                                                                            00147
    DO 618 I=1,6
                                                                            00148
    DO 618 J=I,7
                                                                            00149
    DO 618 K=1,2
                                                                            00150
618 D(I,J)=D(I,J)+P(K,I+1)*P(K,J+1)
                                                                            00151
    FOREWARD SOLUTION
                                                                            00152
    DO 699 I=1,6
                                                                            00153
    SQR=SQRT(D(1,1))
                                                                            00154
    DO 698 J=I.7
                                                                            00155
698 D(I,J) = D(I,J) / SQR
                                                                            00156
   IF (I-6)697,696,696
                                                                            00157
697 IP1=I+1
                                                                            00158
    DO 699 L=IP1,6
                                                                             00159
    DO 699 J=L,7
                                                                            00160
699 D(L,J)=D(L,J)-D(I,L)*D(I,J)
                                                                            00161
   BACK SOLUTION
                                                                            00162
696 D(5,7)=D(6,7)/D(6,6)
                                                                            00163
    DO 691 I=1.5
                                                                            00164
    NMI = 6 - I
                                                                             00165
    NMIP1=NMI+1
                                                                            00166
    DO 690 J=NMIP1,6
                                                                            00167
690 D(NMI,7) = D(NMI,7) - D(J,7) * D(NMI,J)
                                                                            00168
691 D(NMI,7)=D(NMI,7)/D(NMI,NMI)
                                                                            00169
    DO 625 I=4.6
                                                                            00170
625 D(I,7)=D(I,7)*C(1,3)
                                                                            00171
    ADD LEAST SQUARES RESULTS TO CAMERA PARAMETERS IN C ARRAY
                                                                            00172
    DO 626 J=1,3
                                                                            00173
    C(1,J) = C(1,J) + D(J+3,7)
                                                                            00174
                                                                            00175
    C(4,J) = D(J,7)
    C(5,J) = SQRT(1.-C(4,J)*C(4,J))
                                                                            00176
    C(6,J)=C(2,J)*C(5,J)+C(3,J)*C(4,J)
                                                                             00177
    C(7,J)=C(3,J)*C(5,J)+C(2,J)*C(4,J)
                                                                            00178
    C(2,J)=C(6,J)
                                                                            00179
626 C(3,J)=C(7,J)
                                                                            00180
    TEST MAGNITUDE OF CORRECTIONS FOR ORIENTATION PARAMTERES
                                                                            00181
    DO 628 I=1,3
                                                                            00182
    IF (ABS(D(I,7))-.00001)628,628,610
                                                                            00183
628 CONTINUE
                                                                            00184
    IGO=2
                                                                            00185
    GO TO 610
                                                                             00186
   CAMERA PARAMETERS OUTPUT
                                                                            00187
763 WRITE(02,532)
                                                                             00188
    WRITE(02,527)
                                                                             00189
```

Figure B-3. Listing of subroutines (continued).

```
WRITE (02,528) IPLATE, (C(1,J),J=1,3)
                                                                                   00190
                                                                                   00191
      WRITE (02,529)
WRITE (02,528) IPLATE.(C(2,J),J=1,3)
                                                                                   00192
      WRITE (02,528) IPLATE, (C(3,J),J=1,3)
                                                                                   00193
      WRITE (C2,530) IPLATE
                                                                                   00194
      WRITE (02,533) ((C(I,J),J=1,3),I=4,6)
                                                                                   00195
                                                      YO
                                                                       201
                                                                                   00196
  527 FORMAT(/49H PLATE
                                      ΧO
                                                                                   00197
  528 FORMAT(17,3(2X,E14.7))
                                                                    KAPPA)
  529 FORMAT(/50H PLATE
                                    OMEGA
                                                     PHI
                                                                                   00198
  530 FORMAT (/30H ORIENTATION MATRIX FOR PLATE +17)
                                                                                   00199
  532 FORMAT(/50H ORIENTATION PARAMETER CORRECTION LIMIT IS 3.00001)
                                                                                   00200
  533 FORMAT (1X,3(2X,E14.7))
                                                                                   00201
                                                                                   00202
      RETURN
                                                                                   00203
      END
      SUBROUTINE LEASTFIT (N.NO.B)
                                                                                   00204
                                                                                   00205
      DIMENSION XX(10,10), XY(10), B(9), ZITX(10,1)
      COMMON X(10,200)
                                                                                   00206
      N=NO OF VARIABLES.NO=NO. OF DATA.B=COFF
                                                                                   00207
\mathsf{C}
                                                                                   00208
      KK = N-1
                                                                                   00209
      DO 15 J=1.KK
      XY(J)=0.
                                                                                   00210
                                                                                   00211
      DO 10 I=1,NO,1
      (I \in N)X \times (I \in U)X + (U)YX = (U)YX
                                                                                   00212
                                                                                   00213
   10 CONTINUE
   15 CONTINUE
                                                                                   00214
      DO 20 K=1 .KK
                                                                                   00215
                                                                                   00216
      DO 20 J=1.KK
      XX(J_*K)=0.
                                                                                   00217
      DO 20 I=1.NO
                                                                                   00218
                                                                                   00219
      XX(J_{\bullet}K) = XX(J_{\bullet}K) + X(J_{\bullet}I) * X(K_{\bullet}I)
   20 CONTINUE
                                                                                   00220
      CALL MATINY (XX, KK, ZITX, O, DETERM)
                                                                                   00221
                                                                                   00222
      DO 30 J=1,KK
      B(J)=0.
                                                                                   00223
                                                                                   00224
      DO 30 I=1.KK
      B(J) = B(J) + XX(J,I) * XY(I)
                                                                                   00225
   30 CONTINUE
                                                                                   00226
                                                                                   00227
      WRITE (02,1)
      WRITE (02,5) (B(J), J=1,KK)
                                                                                   00228
      YY=0.
                                                                                   00229
      DO 40 J=1.NO
                                                                                   00230
      (L,N)X*(L,N)X+YY=YY
                                                                                   00231
   40 CONTINUE
                                                                                   00232
      BXX=0.
                                                                                   00233
      DO 50 J=1.KK
                                                                                   00234
                                                                                   00235
      BXX = BXX + B(J) * XY(J)
   50 CONTINUE
                                                                                   00236
      IDF=NO-KK
                                                                                   00237
      RES=(YY-BXX)/IDF
                                                                                   00238
      WRITE (02,3) RES, IDF
                                                                                   00239
    1 FORMAT (32H LEAST SQ ESTIMATE OF PARAMETERS )
                                                                                   00240
    3 FORMAT (23H MEAN SQ OF RESIDUALS= ,E16.7,5X,4HDF= ,I3)
    4 FORMAT (28H VARIANCE-COVARIANCE MATRIX )
                                                                                   00242
    5 FORMAT (/4E15.5)
                                                                                   00243
      WRITE (02,4)
                                                                                   00244
      WRITE (02,5) ((XX(I,J),I=1,KK),J≈1,KK)
WRITE (02,7)
                                                                                   00245
                                                                                   00246
    7 FORMAT ( 1
                                           EST OF Y
                                                             Y-EST Y!)
                                                                                   00247
      DO 70 J=1.NO
                                                                                   00248
      ESTY=0.0
                                                                                   00249
      DO 60 K=1.KK
                                                                                   00250
      ESTY=ESTY+B(K)*X(K,J)
                                                                                   00251
   60 CONTINUE
                                                                                   00252
```

Figure B-3. Listing of subroutines (continued).

```
DIF=X(N,J)-ESTY
                                                                                00253
      WRITE (02,6) X(N,J), ESTY, DIF
                                                                                00254
    6 FORMAT (3F15.7)
                                                                                00255
   70 CONTINUE
                                                                                00256
      RETURN
                                                                                00257
      END
                                                                                00258
      SUBROUTINE MATINY (A, N, B, M, DETERM)
                                                                                00259
      MATRIX INVERSION WITH ACCOMPANYING SOLUTION OF LINEAR EQUATIONS
C
                                                                                00260
      DIMENSION IPIVOT(10), A(10,10), B(10,1), INDEX(10,2), PIVOT(10)
                                                                                00261
      DETERM=1.0
                                                                                00262
      DO 20 J=1.N
                                                                                00263
   20 IPIVOT(J)=0
                                                                                00264
      DO 550 I=1.N
                                                                                00265
      SEARCH FOR PIVOT ELEMENT
                                                                                00266
      AMAX=0.0
                                                                                00267
      DO 105 J=1.N
                                                                                00268
      IF (IPIVOT(J)-1) 60, 105, 60
                                                                                00269
   60 DO 100 K=1.N
                                                                                00270
      IF (IPIVOT(K)-1) 80, 100, 740
                                                                                00271
   80 IF (ABSF(AMAX)-ABSF(A(J,K))) 85, 100, 100
                                                                                00272
   85 IROW=J
                                                                                00273
      ICOLUM=K
                                                                                00274
      AMAX=A(J,K)
                                                                                00275
  100 CONTINUE
                                                                                00276
  105 CONTINUE
                                                                                00277
      IPIVOT(ICOLUM) = IPIVOT(ICOLUM) + 1
                                                                                00278
      INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL
                                                                                00279
      IF (IROW-ICOLUM) 140, 260, 140
                                                                                00280
  140 DETERM=-DETERM
                                                                                00281
      DO 200 L=1.N
                                                                                00282
      SWAP=A(IROW+L)
                                                                                00283
      A(IROW,L)=A(ICOLUM,L)
                                                                                00284
  200 A(ICOLUM, L) = SWAP
                                                                                00285
      IF(M) 260, 260, 210
                                                                                00286
  210 DO 250 L=1, M
                                                                                00287
      SWAP=B(IROW,L)
                                                                                00288
      B(IROW,L)=B(ICOLUM,L)
                                                                                00289
  250 B(ICOLUM,L)=SWAP
                                                                                00290
  260 INDEX(I,1)=IROW
                                                                                00291
      INDEX(I,2)=ICOLUM
                                                                                00292
      PIVOT(I) = A(ICOLUM, ICOLUM)
                                                                                00293
      DETERM=DETERM*PIVOT(I)
                                                                                00294
C
      DIVIDE PIVOT ROW BY PIVOT ELEMENT
                                                                                00295
      A(ICOLUM,ICOLUM)=1.0
                                                                                00296
      DO 350 L=1.N
                                                                                00297
  350 A(ICOLUM,L)=A(ICOLUM,L)/PIVOT(I)
                                                                                00298
      IF(M) 380, 380, 360
                                                                                00299
  360 DO 370 L≈1,M
                                                                                00300
  370 B(ICOLUM,L)=B(ICOLUM,L)/PIVOT(I)
                                                                                00301
      REDUCE NON-PIVOT ROWS
                                                                                00302
  380 DO 550 L1=1.N
                                                                                00303
      IF(L1-ICOLUM) 400, 550, 400
                                                                                00304
  400 T=A(L1,ICOLUM)
                                                                                00305
      A(L1, ICOLUM) = 0.0
                                                                                00306
      DO 450 L=1.N
                                                                                00307
  450 A(L1,L)=A(L1,L)-A(ICOLUM,L)*T
                                                                                00308
      IF(M) 550, 550, 460
                                                                                00309
  460 DO 500 L=1.M
                                                                                00310
  500 B(L1,L)=B(L1,L)-B(ICOLUM,L)*T
                                                                                00311
  550 CONTINUE
                                                                                00312
      INTERCHANGE COLUMNS
                                                                                00313
      DO 710 I=1,N
                                                                                00314
                                                                                00315
      L=N+1-I
```

Figure B-3. Listing of subroutines (continued).

```
IF (INDEX(L,1)-INDEX(L,2)) 630, 710, 630
                                                                                 00316
  630 JROW=INDEX(L+1)
                                                                                 00317
                                                                                 00318
      JCOLUM=INDEX(L+2)
      DO 705 K=1.N
                                                                                 00319
                                                                                 00320
      SWAP=A(K,JROW)
      A(K,JROW) = A(K,JCOLUM)
                                                                                 00321
      A(K, JCOLUM) = SWAP
                                                                                 00322
                                                                                 00323
  705 CONTINUE
  710 CONTINUE
                                                                                 00324
                                                                                 00325
  740 RETURN
      END
                                                                                 00326
      FUNCTION REFLECT (AI, AR)
                                                                                 00327
                                                                                 00328
      \Delta = \Delta I - \Delta R
                                                                                 00329
      B=AI+AR
      C=SINF(A)**2
                                                                                 00330
      D=SINF(B)**2
                                                                                 00331
                                                                                 00332
      E=TANF(A)**2
      F=TANF(B)**2
                                                                                 00333
                                                                                 00334
      REFLECT=ABS(A/B+C/D)/2.
      FND
                                                                                 00335
      SUBROUTINE TRNCOORD(CAMO, XT, J, FL, IPHOT)
                                                                                 00336
                                                                                 00337
      DIMENSION XT(3),CAMO(3,5,3)
      COMMON X(10,200)
                                                                                 00338
                                                                                 00339
      DO 10 K=1.3
   10 XT(K)=CAMO(IPHOT,2,K)*X(1,J)+CAMO(IPHOT,3,K)*X(2,J)+
                                                                                 00340
     1 CAMO(IPHOT,4,K)*(-FL)
                                                                                 00341
      XDIS=SQRT(XT(1)**2+XT(2)**2+XT(3)**2)
                                                                                 00342
                                                                                 00343
      DO 20 K=1.3
   20 XT(K)=XT(K)/XDIS
                                                                                 00344
                                                                                 00345
      RETURN
      FND
                                                                                 00346
      SUBROUTINE GRDCOORD (CAMO, XT, XPG, J, IPHOT)
                                                                                 00347
      DIMENSION CAMC(3,5,3),XT(3),XPG(2)
                                                                                 00348
      XPG(1) = CAMO(IPHOT • 1 • 1) - XT(1) * CAMO(IPHOT • 1 • 3) / XT(3)
                                                                                 00349
      XPG(2) = CAMO(IPHOT, 1, 2) - XT(2) * CAMO(IPHOT, 1, 3) / XT(3)
                                                                                 00350
      RETURN
                                                                                 00351
                                                                                 00352
      END
                                                                                 00353
      SUBROUTINE ANGLES(XT, XS, FL, J, CAN, CCA, TAB, SUNR)
      DIMENSION XT(3), XS(9)
                                                                                 00354
      DIV=SQRT(XT(1)**2+XT(2)**2)
                                                                                 00355
      CAN=ABSF(DIV/XT(3))
                                                                                 00356
       ANGLE BETWEEN RAY IN AIR AND VERTICAL
\mathcal{C}
                                                                                 00357
      CAN=ATANF (CAN)
                                                                                 00358
                                                                                 00359
      SINC=0.75*SINF(CAN)
      COSC=(1.0-SINC**2)**0.5
                                                                                 00360
      TANC=SINC/COSC
                                                                                 00361
      ANGLE BETWEEN RAY TO CAMERA AND VERTICAL UNDER WATER
(
                                                                                 00362
      CCA=ATANF(TANC)
                                                                                 00363
      FT=-DIV/TANC
      XDIS=SQRT(XT(1)**2+XT(2)**2+FT**2)
                                                                                 00365
      X1=XT(1)/XDIS
                                                                                 00366
      X2=XT(2)/XDIS
                                                                                 00367
      X3=FT/XDIS
                                                                                 00368
      COSB=X1*XS(1)+X2*XS(2)+X3*XS(3)
                                                                                 00369
      SINB=SQRT(1.0-COSB**2)
                                                                                 00370
      TANB=SINB/ABSF(COSB)
                                                                                 00371
      ANGLE BETWEEN SUN AND CAMERA RAYS UNDERWATER.
                                                                                 00372
      B=ATANF(TANB)
                                                                                 00373
      B=3.14159265-B
                                                                                 00374
      TAB=B-3.14159/2.
                                                                                 00375
      COSB = -XS(4) * XT(1) - XS(5) * XT(2) + XS(6) * XT(3)
                                                                                00376
      SINB=SQRT(1.0-COSB**2)
                                                                                 00377
      TANB = SINB/ABSE (COSB)
                                                                                 00378
      SUNR = ATANF (TANB)
                                                                                 00379
      IF (COSB) 260,261,261
                                                                                 00380
 260 SUNR=3.14159-SUNR
                                                                                 00381
  261 RETURN
                                                                                 00382
      END
                                                                                 00383
```

Figure B-3. Listing of subroutines (continued).

Figure B-4. Sample input, LUN 1.

376722 376377 376273 376631 375685 46.3 375685 46.1 375685 46.1 375685 374677 374644 373899 374686 3731999 372666 372666 372666 372666 372666 372666 372666 372666 372666 372666 372666 372667 372667 37267 37267 37267 37267 37267 37267 37267	
1070383 1070456 1070456 1070466 1070452 1070449 1070385 10703885 1070226 1070226 1070127 1070028 1070028 1070028 1070029 1070029	1070261 1070261 1070145 106993 1069866 1069781 1069682 1069682
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	113300 111400 111500 111600 111700 111800
7 1077096 374493 7 10772950 373906 5 1066334 378561 6 1077606 377145 8 107606 377145 8 1077606 377145 9 1077606 377145 1077606 377145 1077606 377145 1077606 377145 1077606 377145 1077606 377145 1077606 377145 1077606 377145 1077600 377145 1077600 376463 1077600 376463 1077600 376463 1077600 376463 1077600 376463 1077600 376463 1077600 376463 1077600 376463	1071274 378489 1070700 378490 0.0 1.0 1072024 381045 1077223 374652 1077223 374652 1077186 381593 1077186 381593

PARTIAL INPUT LUNIS

INPUT LUN 3

 99 306

9 9 4 9 5 5 9 7 6 9 6 6

APPENDIX C

PROCESSING 1969 PHOTOGRAPHIC DATA

A general description of the CDC 3300 Computer and special fortran input functions is given in the introduction of Appendix B.

Two main programs were used to process the photos taken in 1969. These were program EDIT, which used the raw data to find film density differences, and the program REMOTE, which used the differences generated by EDIT to find steady and non-steady state diffusion coefficients as well as providing data for symbolic and contour plots of waste concentrations.

Program EDIT

A flow diagram for program EDIT is shown in figure C-1. The numbers in parentheses on the diagram refer to the line numbers on the program listing shown in figure C-2.

The input for the program is arranged on three or four LUNS, depending on the number of photographic bands available for each exposure. Each band is on a separate input file. A sample of the coordinate and voltage data is shown in figure C-3. This example shows the beginning of a file of data, with the first three lines being standardization voltages. The format is as listed below.

Column	<u>Data</u>
1	Month photo taken
2–3	Day of month photo taken
4	Flight no. of day
5	Photo no. of flight
6	Blank
7–9	Event no. (see code below)
10	Blank
11-14	y-coordinate of photo
15-18	Voltage value from densitometer

The lines 6-18 are repeated six times across the card. The x coordinate is interpolated across the photo by knowing the number of scan lines and the total distance covered in the x-direction.

Event No.	Description
40~59	Initial red standardization.
60~79	Initial green standardization.
80-99	Initial blue standardization.
100-119	Initial gold standardization.
120-139	Final red standardization.
140-159	Final green standardization.
160-179	Final blue standardization.
180-199	Final gold standardization.
200-299	Normal red color.
300-399	Normal green color.
400-499	Normal blue color.
500-599	Infra-red red color.
600-699	Infra-red green color.
700-799	Infra-red blue color.
800-899	Infra-red black and white.
900-999	Panchromatic black and white.

In running the program, the maximum and minimum voltages must be typed in from the teletype. The program proceeds to read the data, checking to see that it does not read data for a new photo. While reading the input, the number of scan lines are counted and the standardization data is stored. When a new photo is reached, the program backspaces the input LUN to the beginning of the photo. Subroutine LEASTFIT is called, and a least squares adjustment is made of the densitometer voltages to the standard grey scale film densities.

The photo coordinates of the principal point and scan limits are read from LUN 8. The photo coordinate and corresponding voltage are read from the data LUN which was previously backspaced. The film density and x coordinate are computed for each sample point. This process is repeated until one photographic band is completed. The program then goes to the next input LUN, and repeats the process, until all film densities are computed for a single photograph.

The differences between film densities of adjacent photographic bands are found, and the extreme differences are rejected. The remaining differences are printed in an array, from which the general shape of the plume may be found by locating abrupt changes in film density. An example of the output is shown in figure C-4, where the non-zero entries in the array are the differences between film densities of adjacent bands for a particular photo.

The program checks to see if there is another photograph to be processed and if so, the overall process is repeated.

Program REMOTE

Program REMOTE is the second program used for processing the photographic data. A flow diagram of program REMOTE is shown in figure C-5. The numbers in parentheses correspond to the line numbers on the listing of the program in figure C-7. The subroutines are listed in figure C-8.

Differences in film densities from program EDIT are on LUNS 1, 2, or 3. The boat data is on LUN 4, general information on LUN 7, photo control coordinates on LUN 8, ground control on LUN 9, and initial orientation parameters on LUN 10. Sample input data is shown in figure C-9.

The program begins by orienting all of the photos. The current velocity and orientation of the plume are then computed. After finding the azimuth and altitude of the sun at the time the photographs were taken, sun ray vectors are computed. The waste concentrations as measured from the boat are read in, and concentration and array indices are computed at 60-ft intervals along the boat's track. These values are saved for later use on scratch LUN 5.

Subroutine PROCESS is called, which reads the photo identification, finds the atmospheric attenuation, and reads in the density difference between adjacent bands which was the output from program EDIT. Ground coordinates, array indices, light values and angles are computed, and the indices, angles, and light values written out. The equation for the light return which would be present in the open sea (Rpho) is determined. The differences between the open sea values and the values found by measuring the light return on the photograph for each sample point are computed and stored. A flow diagram of PROCESS is given in figure C-6. The subroutine then returns to the main program, which checks to see if the last band was processed. If not, the solution is repeated. When the last band is reached, the program compares the values of waste concentrations found by using various combinations of the photographic bands with those from the boat data. When a good combination is found, coefficients relating the light values to the waste concentrations are typed in, and the waste concentrations for the array are computed. The data generated is then used to form a symbolic plot (see figure 28), and can also be saved for making a

contour plot of waste concentrations (see figure 29). The diffusion coefficients for each flight are computed and when the last flight has been processed, the non-steady state diffusion coefficients are determined.

Input Data Description

The input data for program REMOTE is shown in figure C-9. The data displayed as LUN 7 is as follows:

Line	Description
1-2	Approximate difference in orientation between Hasselblads and K-17 in degrees.
3–5	Times of three flights in hours and minutes, P.D.T.
6	Effluent flow rate, gpm.
7–8	Declination of sun, degrees (line 8) and minutes (line 9).
10	Change of declination of sun, min- utes per hour.
11-12	Equation of time in minutes (line 11), seconds (line 12) and change in seconds per hour (line 13).
13	Longitude of outfall.
14	Latitude of outfall.
15	The difference between true north and grid north in degrees.
16-23	Each line contains the film gamma, film speed and optical thickness of the atmosphere for each of eight spectral bands.
24–26	Speed and aperture settings for K-17 for three flights.
27–29	Speed and aperture settings for Hasselblad l for three flights.

Line	<u>Description</u>
30-32	Speed and aperture settings for Hasselblad 2 for three flights.
33-40	Coefficients for determining atmospheric attenuation from the sea to the camera station.
41	Number indicating whether or not the antivignetting filter is on the K-17, $0 = yes$, $1 = no$.

The input for LUN 8 contains photo coordinates as measured by the coordinatograph and digitizer. The first five digits of each line are constant data, and represent:

Col.	<u>Data</u>
1	Month photo taken.
2-3	Day of month photo taken.
4	Flight number.
5	Photo number of flight.

After the constant data there are three groups of data on each line, each containing an event number, x-coordinate, y-coordinate, and four zeros where the voltage is normally recorded. The event number coding is as follows:

Event No.	Description
000	Principal point.
001-019	Ground control points (numbers must match those on LUN 9. See below).
020-029	Floats for computing the current velocity.
030-033	Scan limits on photograph.
034	Point near head of plume.
035	Point near tail of plume, which, together with 034 will give orientation of waste plume.

The ground coordinate data is prepared on LUN 9. Each point listed as control on LUN 8 must have ground coordinates on LUN 9. Reading across a line are the point number, the x and y state plane coordinates, and the approximate elevation above mean sea level.

LUN 10 contains the approximate orientation parameters for the camera station relative to the state plane coordinate system. Reading across the line are the photo number, the x and y coordinates, the flying height, and the rotation angles and the x, y, and z axis. These are used in subroutine RESECT as initial conditions for a non-linear least squares solution for the camera station position and orientation.

Subroutines for REMOTE

Subroutine	Description
Process	Computes array indices for particular ground coordinates, light values, and sun angles. It also determines the equation for light return from the open sea, and finds the difference between the light return measured and that which would be present if waste area were open sea.
Resect	Determines the orientation of ob- lique photographs and was modified from USC and GS program RESECTION. Each time the subroutine is called, the camera station coordinates and orientation matrix are printed on LUN 20.
Sunlight	Computes the altitude and azimuth of the sun. Time must be given as Pacific Daylight Time, and all pertinent information dealing with the equation of time must be read in. A value for the longitude and latitude of the area being considered is also necessary.
Trncoord	Converts the photographic vector to a unit vector based on the state plane coordinate system.
Zeroarry	Sets IPHOT, X or CAMO array to zero.
Orimat	Determines orientation matrix.

Subroutine <u>Description</u>

Interp Interpolates missing values in

IPHOT array.

Average Averages values in IPHOT array.

Cull Rejects extreme values in array.

Leastfit Determines the least squares solu-

tion of the regression coefficients for a linear model with one independent and up to nine dependent variables. (See lines 351-422 of EDIT listing and omit lines 393+2, 401+1,

401+2, 405-420).

Matinv Determines the inverse of a square

matrix (see lines 423-490 of EDIT

listing).

Figure C-1. Flow diagram for computer program EDIT.

Figure C-1. Flow diagram for computer program EDIT.

```
PROGRAM EDIT
                                                                              00001
                                                                              00002
    COMMON IPHOT (4,60,60), X(10,60), B(15,6), IVT(6), B(9)
                                                                              00003
    INTEGER HARDWARE
                                                                              00004
 10 ILUN=1
                                                                              00005
    DCOOR=0.07
    XPH=30.
                                                                              00006
                                                                              00007
    YPH=30.
                                                                              00008
    NXI=60
    NY I = 60
                                                                              00009
                                                                              00010
    KGO = 1
                                                                              00011
    DO 90 I=1.NXI
    DO 90 J=1.NYI
                                                                              00012
                                                                              00013
    DO 90 K=1.4
 90 IPHOT(K.1.J)=0
                                                                              00014
                                                                              00015
 95 NOL=0
                                                                              00016
    INO = 0
                                                                              00017
    NOS = 0
                                                                              00018
    VOL1=TTYIN(4HLVOL)
                                                                              00019
    VOL2=TTYIN(4HHVOL)
                                                                              00020
    L5=0
                                                                              00021
    K = 1
                                                                              00022
    KK=1
100 READ(ILUN,1) IMO, IDATE, IFLT, IPH, (IVT(I), X(10, I), X(9, I),
                                                                              00023
                                                                              00024
   11=1.61
                                                                              00025
  1 FORMAT ([1],[2,2]],X,6([3,F5.3,F4.1))
                                                                              00026
    IF (EOF(ILUN)) GO TO 1000
    IF (IVT(1).LT.200) GO TO 120
                                                                              00027
                                                                              00028
    IF (NOL.GE. 1) GO TO 111
    IPLATE = (IFLT-1) *10+IPH
                                                                              00029
                                                                              00030
    IDENT=IFLT*10+IPH
    IBAND=IVT(1)/100-1
                                                                              00031
                                                                              00032
    IF(IPLATE .GT. 30) GO TO 111
    XPH=TTYIN(4HPHX=1
                                                                              00033
    YPH=TTYIN(4HPHY=)
                                                                              00034
111 IF (X(10,2) •GT• X(10,1)) 112,114
                                                                              00035
                                                                              00036
112 L=1
    GO TO 116
                                                                              00037
                                                                               00038
114 L=2
                                                                              00039
116 NOL=NCL+1
    IF(LS-L) 118,100,118
                                                                              00040
118 NOS=NOS+1
                                                                              00041
                                                                              00042
    LS=L
    WRITE(61,21) LS,NOS,NOL
                                                                              00043
21 FORMAT(3[5)
                                                                              00044
                                                                              00045
    GO TO 100
120 IF(IVT(1).GT.119) GO TO 140
                                                                               00046
                                                                               00047
    DO 132 I=1.6
    IF (IVT(I) .EQ.0 ) GO TO 132
                                                                              00048
    X(1,K)=1.0
                                                                              00049
    X(2,K)=X(9,I)
                                                                              00050
    X(3,K)=X(9,I)*X(9,I)
                                                                              00051
    K = K + 1
                                                                              00052
132 CONTINUE
                                                                               00053
    GO TO 100
                                                                              00054
140 NOL=NOL+1
                                                                               00055
    JN0=JN0+1
                                                                               00056
    DO 142 I=1.6
                                                                               00057
    IF (IVT(I) •FQ• 0) GO TO 142
                                                                              00058
    X(5,KK)=X(9,1)
                                                                               00059
    KK=KK+1
                                                                              00060
    IF (KK-16) 142,142,145
                                                                              00061
142 CONTINUE
                                                                              00062
    GO TO 100
                                                                              00063
```

Figure C-2. Listing of program EDIT.

```
145 DO 150 I=1,NOL
                                                                                 00064
      BACKSPACE ILUN
                                                                                 00065
  150 CONTINUE
                                                                                 00066
      X(4,1)=0.0
                                                                                 00067
      X(4,2)=0.27
                                                                                 00068
      DO 160 I=3,16
                                                                                 00069
      X(4,I) = X(4,I-1) + 0.20
                                                                                 00070
  160 CONTINUE
                                                                                 00071
      N=4
                                                                                 00072
      NO=16
                                                                                 00073
      IF(K •GT• 16) 170,1000
                                                                                 00074
  170 CALL LEASTFIT(N, NO, BB, RES)
                                                                                 00075
      B(1,1) = BB(1)
                                                                                 00076
      B(1.2)=BB(2)
                                                                                 00077
      B(1.3)=BB(3)
                                                                                 00078
      IF(KK .GT. 16) 180.1000
                                                                                 00079
  180 DO 190 I=1.16
                                                                                 00080
      X(2,1)=X(5,1)
                                                                                 00081
      X(3,I) = X(2,I) * X(2,I)
                                                                                 00082
  190 CONTINUE
                                                                                 00083
      CALL LEASTFIT(N, NO, BB, RES)
                                                                                 00084
      B(2,1)=BB(1)
                                                                                 00085
      B(2,2)=BB(2)
                                                                                 00086
      B(2,3)=BB(3)
                                                                                 00087
      GO TO (195,250),KGO
                                                                                 00088
C FIND SCAN LIMITS AND PRINCIPLE PT
                                                                                 00089
  195 L=0
                                                                                 00090
      K ≈ 1
                                                                                 00091
      REWIND 8
                                                                                 00092
  200 READ(8+2) IFC+(IVT(I)+X(1+I)+X(2+I)+I=1+3)
                                                                                 00093
    2 FORMAT(3X,12,3(14,2F6.3,7X))
                                                                                 00094
      IF (EOF(8)) GO TO 1000
                                                                                 00095
      IF (IFC-IDENT) 200+210+200
                                                                                 00096
  210 DO 220 I=1.3
                                                                                 00097
      IF(IVT(I).EQ.O.AND.X(1,I).GT.O.1) GO TO 212
                                                                                 00098
      IF(IVT(I).GE.30.AND.IVT(I).LE.33) 216,220
                                                                                 00099
  212 XD=X(1,I)
                                                                                 00100
      YP=X(2,1)
                                                                                 10100
      K=2
                                                                                 00102
      GO TO 220
                                                                                 00103
  216 J=IVT(I)-19
                                                                                 00104
      B(J,1)=X(1,I)
                                                                                 00105
      B(J,2)=X(2,1)
                                                                                 00106
      L = L + 1
                                                                                 00107
  220 CONTINUE
                                                                                 00108
  IF(L •GE• 4) 230,200
230 GO TO (232,236),K
                                                                                 00109
                                                                                 00110
  232 SUM1=0.0
                                                                                 00111
      SUM2=0.0
                                                                                 00112
      DO 234 I=11,14
                                                                                 00113
      SUM1=SUM1+B(I+1)
                                                                                 00114
      SUM2 = SUM2 + B(I+2)
                                                                                 00115
  234 CONTINUE
                                                                                 00116
      XP=SUM1/4.
                                                                                 00117
      YP=SUM2/4.
                                                                                 00118
  236 DO 238 I=11:14
                                                                                 00119
      B(I,1)=B(I,1)-XP
                                                                                 00120
      B(I,2)=B(I,2)-YP
                                                                                 00121
                                                                                 00122
  238 CONTINUE
                                                                                 00123
  250 AJ=NOS-1
      XADD=0.0
                                                                                 00124
                                                                                 00125
      IF(IFLT.LE.3) GO TO 242
                                                                                 00126
      AJ=AJ+1
```

Figure C-2. Listing of program EDIT. (Continued)

```
00127
    XADD=DELX/2.0
242 DELX=(B(14.1)-B(11.1)+B(13.1)-R(12.1))/(AJ*2.)
                                                                               00128
    DELY1=(B(14,2)-B(11,2))/AJ
                                                                               00129
                                                                               00130
    DELY2=(B(13,2)-B(12,2))/AJ
                                                                               00131
    KNO=NOL-JNO
    WRITE(61,22) KNO, DELX, DELY1, DELY2
                                                                               00132
 22 FORMAT([10.3F10.3]
                                                                               00133
                                                                               00134
    K = O
    KK=C
                                                                               00135
    DC 400 IK=1.KNO
                                                                               00136
    JS=K+1
                                                                               00137
    JE≈K+6
                                                                               00138
    READ AND PROCESS ONE SCAN LINE AT A TIME
                                                                               00139
    READ(ILUN, 3) (X(10, I), X(0, I), I=J5, JE)
                                                                               00140
  3 FORMAT(6X,6(3X,F5.3,F4.1))
                                                                               00141
    IF(K .GT. 0) GO TO 280
                                                                               00142
    IF (X(10,1)-X(10,2)) 2/2,272,274
                                                                               00143
272 L=1
                                                                               00144
                                                                               00145
    GO TO 276
274 L=2
                                                                               00146
                                                                               00147
276 LS=L
    K = K + 6
                                                                               00148
    GO TO 400
                                                                               00149
280 IND=K+6
                                                                               00150
    JS=K+1
                                                                               00151
    DO 290 J=JS,IND
                                                                               00152
    IF(X(10,J-1)-X(10,J)) 282,284,286
                                                                               00153
28' L=1
                                                                               00154
    GO TO 288
                                                                               00155
284 GO TO (286,282),L
                                                                               00156
286 L=2
                                                                               00157
288 IF(LS .NE. L) GO TO 300
                                                                               00158
                                                                               00159
290 CONTINUE
    K=K+6
                                                                               00160
    GO TO 400
                                                                               00161
    PROCESS SCAN LINE
                                                                               00162
300 LS=L
                                                                               00163
    IST=J
                                                                               00164
    IF (J .LT. 12) GO TO 392
                                                                               00165
    AMOS=KK
                                                                               00166
    00167
    DENSITOMETER STD FOR LINE
                                                                               00168
    DG 310 I=1.3
                                                                               00169
    B(3,I) = s(1,I) + (B(2,I) - B(1,I)) *ANOS/AJ
                                                                               00170
310 CONTINUE
                                                                               00171
    BDIR=(X(10,3)-X(10,2))*100.
                                                                               00172
    IF (BDIR .LE. 0.) GO TO 330
PHCTO COORD OF START AND END OF SCAN
                                                                               00173
                                                                               00174
    XST=B(12,1)+DELX*ANOS+XADD
                                                                               00175
    YST=B(12,2)+DELY2*ANOS
                                                                               00176
    XED=B(11.1)+DELX*ANOS+XADD
                                                                               00177
    YED=B(11.2)+DELY1*ANOS
                                                                               00178
    JST=3
                                                                               001/9
    J=1ST-3
                                                                               00180
    KKA=2
                                                                               00181
    GO TO 340
                                                                               00182
330 XST=B(11.1)+DELX*ANUS+XADD
                                                                               00183
    YST=B(11,2)+DELY1*ANOS
                                                                               00184
    XED=B(12,1)+DELX*ANOS+XADD
                                                                               00185
    YED=#(12,2)+DCLY2*ANOS
                                                                               00186
    J 5 T = 3
                                                                               00187
    J=15T-3
                                                                               00188
    KKA = 1
                                                                               00189
```

Figure C-2. Listing of program EDIT. (Continued)

```
340 BJ=15T-1
                                                                              00190
    DELX3=(XED-XST)/BJ
                                                                              00191
    DELY3=(YED-YST 1/BJ
                                                                              00192
    IF (ABS(DELY3) .GT. 0.15) GO TO 392
                                                                              00193
    00 380 I=JST.J
                                                                              00194
    IF(ABS(X(9,1)-X(9,1+1)).GT.10..AND.ABS(X(9,1)-
                                                                              00195
   1x(9,I-1)).GT.10..AND.ABS(x(9,I+1)-x(9,I-1))
                                                                             00196
   2.LT.10.) GO TO 380
                                                                             00197
                                                                             00198
    IF(X(9,1).LT.VOL1.OR.X(9,1).GT.VOL2) GO TO 380
    \Delta \Delta J = I - 1
                                                                             00199
    44J=AAJ+0.5
                                                                              00200
    XP=XST+DELX3*1AJ
                                                                             00201
    YP = YST + (X(10, I) - X(10, 1))
                                                                              00202
    LX=XP/DCCOR+XPH+0.5
                                                                              00203
    LY=YP/DCOOR+YPH+0.5
                                                                             00204
    DEN=3(3,1)+B(3,2)*X(9,1)+B(3,3)*X(9,1)*X(9,1)
                                                                             00205
    IF(IBAND.GT.6) DEN=4.0-DEN
                                                                             00206
    IF(LX.LE.O.OR.LX.GT.NXI) GC TO 380
                                                                             00207
    IF(LY.LE.O.OR.LY.GT.NYI) GO TO 380
                                                                             00208
    IPHOT(ILUN, LX, LY) = DEN*100.
                                                                              00209
380 CONTINUE
                                                                             00210
392 K=0
                                                                             00211
    DO 395 J=IST . [ND
                                                                             00212
                                                                             00213
    K = K + 1
    X(10,K)=X(10,J)
                                                                             00214
    X(9,K)=X(9,J)
                                                                              00215
395 CONTINUE
                                                                             00216
400 CONTINUE
                                                                              00217
    DC 410 I=1.JNO
                                                                             00218
410 READ(ILUN:1) IMO
                                                                             00219
    B(7,ILUN)=IFLT
                                                                             00220
    B(8, ILUN) = IPLATE
                                                                             00221
    COABI=(AUII, P) 8
                                                                             00222
    KND=4
                                                                             00223
    KDN=4
                                                                             00224
    NXS=NXI-2
                                                                             00225
    NYS=NYI-2
                                                                             00226
    CALL INTERP(NXI, NYI, NXS, NYS, KND, KDN, ILUN)
                                                                             00227
    CALL CULL(NXI.NYI.ILUN)
                                                                             00228
    ILUN=ILUN+1
                                                                             00229
    IF (HARDWARE (ILUN) . EU. 1) GO TO 95
                                                                             00230
    IK=ILUN-2
                                                                             00231
    DO 500 I=1.NXI
                                                                             00232
    DO 500 J=1.NYI
                                                                             00233
    DO 500 K=1.1K
                                                                             00234
    IF(IPHOT(K,I,J).GT.O.AND.IPHOT(K+1.I,J).GT.O) 490,495
                                                                             00235
490 IPHOT(K,I,J)=IPHOT(K,I,J)-IPHOT(K+1,I,J)
                                                                             00236
    GO TO 500
                                                                             00237
495 IPHOT(K,I,J)=1
                                                                             00238
500 CONTINUE
                                                                              00239
    00 700 K=1.IK
                                                                              00240
    CALL CULL(NXI,NYI,K)
                                                                              00241
                                                                             00242
    IF(HARDWARE(LUNO).NE.1) CALL EQUIP(LUNO,5HFILE )
                                                                             00243
    WRITE(LUNO,60) IMO, IDATE, B(7,1), IPH, B(8,1), B(9,<), B(9,K+1)
                                                                             00244
   1 ,XPH,YPH,DCOOR
                                                                              00245
 60 FORMAT(215,F5.0,15,5F5.0,F5.3)
                                                                              00246
                                                                              00247
    1J=N×1/2
                                                                              00248
    DC 650 J=1.NYI
650 VRITE(LUNG.61) (IPHOT(k,I,J), [=1,IJ)
                                                                             00249
    IJ=[J+1
                                                                             00250
    DO 660 J=1.NYI
                                                                              00251
660 WRITE(LUNG, 61) (IPHOT(K, I, J), I=IJ, NXI)
                                                                             00252
```

Figure C-2. Listing of program EDIT. (Continued)

```
00253
  61 FORMAT (3014)
                                                                               00254
 700 CONTINUE
     GO TO 10
                                                                               00255
                                                                               00256
1000 STOP
                                                                               00257
     END
     FUNCTION STDDEV(SUM1.SUM2.AJ)
                                                                               00258
                                                                               00259
     STDDEV=SQRT((SUM2+SUM1*SUM1/AJ)/(AJ-1.))
                                                                               00260
     RETURN
                                                                               00261
     CMB
     SUBROUTINE INTERP(NXI, NYI, NXS, NYS, KND, KDN, KLUN)
                                                                               00262
     COMMON IPHOT(4,60,60),X(10,60),B(15,6),IVT(6),BB(9)
                                                                               00263
     DO 540 I=1.NYI
                                                                               00264
                                                                               00265
     DO 540 J=1.NXS
                                                                               00266
     IF (IPHOT(KLUN,J,1)) 530,540,530
 530 IF (IPHUT(KLUN+J+1+I)) 540+532+540
                                                                               00267
 532 DO 534 K=2.KND
                                                                               00268
                                                                               00269
     KJ=J+K
     IF (KJ-NXI) 533,533,540
                                                                               00270
 533 IF (IPHOT(KLUN, KJ, I)) 536,534,536
                                                                               00271
                                                                               00272
 534 CONTINUE
     GO TO 540
                                                                               00273
 536 LJ=KJ-J-1
                                                                               00274
                                                                               00275
     DJ=KJ-J
     DIF=IPHOT(KLUN,J,I)-IPHOT(KLUN,KJ,I)
                                                                               00276
                                                                               00277
     DO 538 K=1,LJ
                                                                               00278
     AJ=K
     LLJ=J+K
                                                                               00279
     IPHOT(KLUN, LLJ, I) = IPHOT(KLUN, J, I) - DIF * AJ/DJ
                                                                               00280
                                                                               00281
 538 CONTINUE
 540 CONTINUE
                                                                               00282
                                                                               00283
     DO 520 I=1,NXI
     DO 520 J=1,NYS
                                                                               00284
     IF (IPHOT(KLUN, I, J)) 510,520,510
                                                                               00285
 510 IF (IPHOT(KLUN,1,J+1)) 520,512,520
                                                                               00286
 512 DO 514 K=2,KDN
                                                                               00287
                                                                               00288
     KJ=J+K
     IF (KJ-NYI) 513,513,520
                                                                               00289
 513 IF ([PHOT(KLUN,1,KJ)) 516,514,516
                                                                               00290
 514 CONTINUÈ
                                                                               00291
     GO TO 520
                                                                               00292
                                                                               00293
 516 LJ=KJ-J-1
                                                                               00294
     D.J=K.J-J
     DIF=IPHOT(KLUN, I, J)-IPHOT(KLUN, I, KJ)
                                                                               00295
     00 518 K=1.LJ
                                                                               00296
                                                                               00297
     AJ=K
                                                                               00298
     LLJ=J+K
     IPHOT(KLUN, I, LLJ) = IPHOT(KLUN, I, J) - DIF*AJ/DJ
                                                                               00299
 518 CONTINUE
                                                                               00300
 520 CONTINUE
                                                                               00301
     RETURN
                                                                               00302
     FND
                                                                               00303
     SUBROUTINE AVERAGE(NXS, NYS, KLUN)
                                                                               00304
     COMMON IPHOT (4,60,60), X(10,60), B(15,6), IVT(6), 3B(9)
                                                                               00305
     ITEST=1
                                                                               00306
     DO 570 I=1.NXS
                                                                               00307
     DO 560 J=2.NYS
                                                                               00308
     GO TO (562,564), ITEST
                                                                               00309
 562 X(1.J)=(1PHOT(KLUN,I,J)+1PHOT(KLUN,I,J-1)+1PHOT(KLUN,I,J+1)+
                                                                               00310
    1 IPHOT(KLUN, I+1,J))/4
                                                                               00311
 564 X(2,J)=(1PHOT(KLUN,I,J)+IPHOT(KLUN,I+1,J)+IPHOT(KLUN,I+2,J)+
                                                                               00312
   1 IPHOT(KLUN, I+1, J+1)+IPHOT(KLUN, I+1, J-1))/5
                                                                               00313
 560 CONTINUE
                                                                               00314
     ITEST=2
                                                                               00315
```

Figure C-2. Listing of program EDIT. (Continued)

```
DC 565 J=2,NYS
                                                                                00316
    IPHOT(KLUN,I,J)=X(1,J)
                                                                                00317
    X(1 \cdot J) = X(2 \cdot J)
                                                                                00318
565 CONTINUE
                                                                                00319
570 CONTINUE
                                                                                00320
    RETURN
                                                                                00321
    FND
                                                                                00322
    SUBROUTINE CULL(NXI+NYI+KLUN)
                                                                                00323
    COMMON IPHOT(4,60,60),X(10,60),B(10,6),IVT(6),BB(9)
                                                                                00324
    BJ=9.
                                                                                00325
    IX = NXI - 2
                                                                                00326
    IY = NYI - 2
                                                                                00327
    DO 100 I=1.IX
                                                                                00328
    DO 100 J=1.IY
                                                                                00329
    SUM1=0.0
                                                                                00330
    SUM2=0.0
                                                                                00331
    DO 20 IK=1.3
                                                                                00332
    DO 20 JK=1,3
                                                                                00333
    IP= 1+1K-1
                                                                                00334
    JP=J+JK-1
                                                                                00335
    IF(IPHOT(KLUN, IP, JP)) 10,100,10
                                                                                00336
 10 AI=IPHOT(KLUN, IP, JP)
                                                                                00337
    SUM1=SUM1+AI
                                                                                00338
    SUM2=SUM2+AI*AI
                                                                                00339
 2C CONTINUE
                                                                                00340
    SUM2=STDDEV(SUM1,SUM2,BJ)
                                                                                00341
    AI=SUM1/BJ
                                                                                00342
    BI=IPHOT(KLUN, I+1, J+1)
                                                                                00343
    CI=(SUMI-BI)/(BJ-1.)
                                                                                00344
    SUM1 = A I - SUM2
                                                                                00345
    SUM2=AI+SUM2
                                                                                00346
    IF(BI.LT.SUM1.OR.BI.GT.SUM2) IPHOT(KLUN.I+1.J+1)=CI
                                                                                00347
100 CONTINUE
                                                                                00348
    RETURN
                                                                                00349
    END
                                                                                00350
    SUBROUTINE LEASTFIT (N.NO.BB.RES)
                                                                                00351
    COMMON 1PHOT (4,60,60),X(10,60),B(15,6),IVT(6)
                                                                                00352
    DIMENSION 38(3), XX(10,10), XY(10), ZITX(10,1)
                                                                                00353
    N=NO OF VARIABLES, NO=NO. OF DATA, B=COFF
                                                                                00354
14 KK=N-1
                                                                                00355
    DO 15 J=1,KK
                                                                                00356
    • 0 = ( L ) YX
                                                                                00357
    DO 10 I=1.NO.1
                                                                                00358
    (I, N)X*(I, U)X+(U)YX=(U)YX
                                                                                00359
 10 CONTINUE
                                                                                00360
 15 CONTINUE
                                                                                00361
    DO 20 K=1,KK
                                                                                00362
    DO 20 J=1.KK
                                                                                00363
    XX(J_{\bullet}K)=0.
                                                                                00364
    DO 20 I=1.NO
                                                                                00365
    XX(J,K)=XX(J,K)+X(J,I)*X(K,I)
                                                                                00366
 20 CONTINUE
                                                                                00367
    CALL MATINV (XX.KK.ZITX.O.DETERM)
                                                                                00368
    DO 30 J=1,KK
                                                                                00369
    88(J)=0.
                                                                                00370
    DO 30 I=1.KK
                                                                                00371
    BB(J) = Bo(J) + XX(J,I) + XY(I)
                                                                                00372
 30 CONTINUE
                                                                                00373
    WRITE (20+1)
                                                                                00374
    WRITE (20,5) (BB(J),J=1,KK)
                                                                                00375
                                                                                00376
    YY = 0
    DO 40 J=1.NO
                                                                                00377
    (t, N)X*(t, N)X+YY=YY
                                                                                00378
```

Figure C-2. Listing of program EDIT. (Continued)

```
00379
40 CONTINUE
                                                                             00380
    BXX = 0
                                                                             00381
   DO 50 J=1.KK
   BXX=BXX+BB(J)*XY(J)
                                                                             00382
                                                                             00383
50 CONTINUE
                                                                             00384
    IDF=NO-KK
                                                                             00385
   RES=(YY-BXX)/IDF
                                                                             00386
   WRITE (20.3) RES.IDF
 1 FORMAT (32H LEAST SO ESTIMATE OF PARAMETERS )
                                                                             00387
 3 FORMAT (23H MEAN SQ OF RESIDUALS= +E16.7.5X,4HDF= +131
                                                                             00388
 4 FORMAT (28H VARIANCE-COVARIANCE MATRIX )
                                                                             00389
 5 FORMAT (/4E15.5)
                                                                             00390
   WRITE (20.4)
WRITE (20.5) ((XX(I.J).I=1.KK).J=1.KK)
                                                                             00391
                                                                             00392
                                                                             00393
    WRITE (20,7)
                                                                             (001)
    WRITE (61,17)
17 FORMAT ( ! INDEX Y-EST Y !)
                                                                             (002)
 7 FORMAT ( *
                                      EST OF Y
                                                        Y-EST Y!)
                                                                             00394
                                                                             00395
   DO 70 J=1.NO
                                                                             00396
    ESTY=0.0
                                                                             00397
    DO 60 K=1.KK
                                                                             00398
    ESTY=ESTY+BB(K) *X(K,J)
                                                                             00349
60 CONTINUE
                                                                             00400
   DIF=X(N,J)-ESTY
    WRITE (20,6) X(N,J),ESTY,DIF
                                                                             00401
    WRITE (61,13) J,DIF
                                                                             (001)
13 FORMAT (16, F7.3)
                                                                             (002)
                                                                             00403
 6 FORMAT (3F15.7)
                                                                             00404
70 CONTINUE
   WRITE (61,8)
                                                                             00405
 8 FORMAT ( ARE THESE OK! TYPE IN 1 FOR YES, 2 FUR NO!)
                                                                             00406
                                                                             00407
    KTRY=TTYIN(4HTRY=)
   GO TO (100,80),KTRY
                                                                             00408
                                                                             00409
80 WRITE (61,9)
 9 FORMAT ( * WHAT IS THE INDEX OF THE X VALUE TO BE CHANGED( *)
                                                                             00410
    INDX=TTYIN(4HINDX)
                                                                             00411
                                                                             00413
   WRITE (61,11)
11 FORMAT ( * WHAT IS THE VALUE( *)
                                                                             00414
    X(2,INDX) = TYIN(4H X= )
                                                                             00415
                                                                             00416
    X(3,INDX)=X(2,INDX)*X(2,INDX)
                                                                             00417
    WRITE (61,12)
                                                                             00418
12 FORMAT ( ANYMORE CHANGES! 1 FOR YES, 2 FOR NO!)
                                                                             00419
    KTRY=TTYIN(4HTKY=)
                                                                             00420
    GO TO (80,14),KTRY
100 RETURN
                                                                             00421
                                                                             00422
    END
    SUBROUTINE MATINY (A+N+B+M+DETERM)
                                                                             00423
    MATRIX INVERSION WITH ACCOMPANYING SOLUTION OF LINEAR EQUATIONS
                                                                             00424
   DIMENSION (PIMOT(10), A(10,10), B(10,1), INDEX(10,2), PIMOT(10)
                                                                             00425
    DETERM=1.0
   DO 20 J=1.N
                                                                             00427
20 \text{ IPIVOT}(J) = 0
                                                                             00428
                                                                             00429
   DO 550 I=1.N
    SEARCH FOR PIVOT ELEMENT
                                                                             00430
    AMAX = 0 \cdot 0
                                                                             00431
    DO 105 J=1.N
                                                                             00432
   IF (IPIVOT(J)-1) 60, 105, 60
                                                                             00433
60 DO 100 K=1.N
                                                                             00434
    IF (IPIVOT(K)-1) 80 • 100 • 740
                                                                             00435
83 IF (ABSF(AMAX)-ABSF(A(J+K))) 85, 100, 103
                                                                             00436
                                                                             00437
85 IROW=J
    ICOLUM=K
                                                                             00438
    AMAX=A(J,K)
                                                                             00439
```

Figure C-2. Listing of program EDIT. (Continued)

```
100 CONTINUE
                                                                              00440
105 CONTINUE
                                                                              00441
    IPIVOT(ICOLUM) = [PIVOT(ICOLUM)+1
                                                                              00442
    INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL
                                                                              00443
    IF (IROW-ICOLUM) 140, 260, 140
                                                                              00444
140 DFTERM=-DETERM
                                                                              00445
    DO 200 L=1.N
                                                                              00446
    SWAP=A(IROW+L)
                                                                              00447
    A(IROW,L)=A(ICOLUM,L)
                                                                              00440
200 A(ICOLUM,L)=SWAP
                                                                              00449
    IF(M) 260, 260, 210
                                                                              00450
210 DO 250 L=1. M
                                                                              00451
    SWAP=B(IRUW.L)
                                                                             00452
    B(IkOw,L)=B(ICOLUM,L)
                                                                              00453
250 B(ICOLUM, L) = SWAP
                                                                              00454
260 INDEX([:1]=IROW
                                                                             00455
    INDEX(I,2)=1COLUM
                                                                              00456
    PIVOT(I) = A (ICULUM + ICOLUM)
                                                                              00457
    DETERM=DETERM*PIVOT(I)
                                                                              00458
    DIVIDE PIVOT ROW BY PIVOT ELEMENT
                                                                              00459
    A(ICOLUM, ICOLUM) = 1.0
                                                                              00460
    DO 350 L=1.N
                                                                             00461
350 A(ICOLUM,L)=A(ICOLUM,L)/PIVOT(I)
                                                                             00462
    IF(M) 380, 380, 360
                                                                              00463
360 DO 370 L=1.M
                                                                             00464
370 B(ICOLUM.L)=B(ICOLUM.L)/PIVOT(I)
                                                                              00465
    REDUCE NON-PIVOT POWS
                                                                              00466
380 DO 550 L1=1.N
                                                                             00467
    IF(L1-ICOLUM) 400, 550, 400
                                                                             00468
400 T=A(L1,ICOLUM)
                                                                              00469
    A(L1.ICOLUM)=0.0
                                                                             00470
    DO 450 L=1.N
                                                                             00471
450 A(L1,L)=A(L1,L)-A(ICOLUM,L)+T
                                                                              00472
    IF(M) 550, 550, 460
                                                                             00473
460 DO 500 L=1.M
                                                                              00474
500 B(L1,L)=B(L1,L)-B(ICOLUM,L)*T
                                                                             00475
550 CONTINUE
                                                                             00476
    INTERCHANGE COLUMNS
                                                                              00477
    DO 710 I=1.N
                                                                              00478
                                                                             00479
    L=N+1-I
    IF (INDEX(L,1)-INDEX(L,2)) 630, 710, 630
                                                                              00480
630 JROW=INDEX(L.1)
                                                                              00481
    JCOLUM=INDEX(L+2)
                                                                              00482
    DO 705 K=1.N
                                                                              00483
    SWAP=A(K, JROW)
                                                                              00404
    A(K,JROW) = A(K,JCOLUM)
                                                                              00485
    A(K, JCOLUM) = SWAP
                                                                              00486
705 CONTINUE
                                                                              00487
710 CONTINUE
                                                                              00488
740 RETURN
                                                                              00489
    END
                                                                              00490
```

Figure C-2. Listing of program EDIT. (Continued)

Figure C-3. Sample input for program EDIT.

Figure C-4. Sample output from program EDIT.

Figure C-5. Flow diagram of program REMOTE.

Figure C-5. Flow diagram of program REMOTE.

Figure C-6. Flow diagram of subroutine PROCESS.

Figure C-6. Flow diagram of subroutine PROCESS.

```
00001
      DEFINE DECLAR
      COMMON X(10,300), IPHOT(120,80), CAMO(90,6), C(20,3)
                                                                                   00002
      COMMON B(15,6),P(2,8),ANGHB(4),VOLL(2,8)
                                                                                   00003
                                                                                   00004
      END
                                                                                   00005
      DEFINE GROCOORD
      XG(1) = CAMO(IPLATE, 1) - CAMO(IPLATE, 3) *XT(1)/XT(3)
                                                                                   0.00.06
      XG(2) = CAMO(IPLATE, 2) - CAMO(IPLATE, 3) *XT(2) /XT(3)
                                                                                   00007
                                                                                   00008
      FND
                                                                                   00009
      PROGRAM REMOTE
                                                                                   00010
      INPUT LUNS ARE
       1. RED-GREEN FILM DENSITIES
                                                                                   00011
C
                                                                                   00012
        2. GREEN-BLUE FILM DENSITIES
С
       3. BLUE-GOLD FILM DENSITIES
                                                                                   00013
C
       4. BOAT CONCENTRATIONS AND COORDINATES
                                                                                   00014
                                                                                   00015
C
       7. GENERAL INFORMATION
С
       8. PHOTO COORD. FOR CONTROL, FLOATS, SCAN LIMITS
                                                                                   00016
С
           AND WASTE FIELD ORIENTATION
                                                                                   00017
       9. GROUND CONTROL COORDINATES
                                                                                   00018
       10 APPROXIMATE ORIENTATION PARAMETERS
                                                                                   00019
                                                                                   00020
      DIMENSION TIMFLT(3), IE(3), XT(3), XG(2), H(3), AZ(3),
     1 X1(3), Y1(3), IBD(8), BB(9)
                                                                                   0.0021
      INCLUDE DECLAR
                                                                                   00022
                                                                                   00023
       INTEGER HARDWARE
      IF ( ARDWARE (7) .EQ. 1) 90,1000
                                                                                   00024
                                                                                   00025
   90 REWIND 7
       IF (HARDWARE(20) .EQ. 1) 94,92
                                                                                   00026
   92 CALL EQUIP(20,5HFILE)
                                                                                   00027
   94 REWIND 20
                                                                                   00028
      FL=6.0
                                                                                   00029
                                                                                   00030
      NXX = 10
                                                                                   00031
      NYX=300
      NXI=TTYIN(4HNXI=)
                                                                                   00032
      NYI=TTYIN(4HNYI=)
                                                                                   00033
                                                                                   00034
      IFRA=90
      K0マ=ら
                                                                                   00035
      ZERO ARRAYS
C
                                                                                   00036
       CALL ZEROARRY (NXI, NYI, NXX, NYX, IFRA, KOR)
                                                                                   00037
       READ FROM LUN 7 HASSELBLAD ORIENTATION ANGLES, TIME
                                                                                   00038
       OF THREE FLIGHTS IN HOURS AND MIN AND EFFLUENT
С
                                                                                   00039
                                                                                   00040
С
       FLOW RATE IN GPM
                                                                                   00041
      DELOMG=FFIN(7)/57.2958
                                                                                   00042
      DELPHI=FFIN(7)/57.2958
      00 95 I=1,3,2
                                                                                   00043
                                                                                    00044
       ANGHR (I) = OFLOMG
   95 ANGH3(I+1)=DELPHI
                                                                                    00045
                                                                                    00046
      DO 133 I=1,3
  100 TIMFLT(I)=FFIN(7)+FFIN(7)/60.
                                                                                    00047
       RATE=FFIN(7)/(7.48+60.)
                                                                                    0.0048
       IF (HARDWARE(8) .NE. 1) GO TO 1000
                                                                                    00049
      IF (4ARDWARE(9) .NE. 1) GO TO 1000 IF (4ARDWARE(10) .NE. 1) GO TO 1000
                                                                                    00050
                                                                                    00051
С
       ORIENT ALL PHOTOS
                                                                                    00052
      CALL RESECT(FL, DELOMG, DELPHI)
CALL ZEROARRY(NXI, NYI, NXX, NYX, 1,0)
                                                                                    00053
                                                                                    0.0054
                                                                                    00055
       00 120 I=1,30
       IF (CAMO(I,3)-1.0) 120,120,110
                                                                                    00056
  110 00 123 J=1,3
                                                                                    00057
       CAMO(I+3J,J)=CAMO(I,J)
                                                                                    00058
       CAMO(I+60,J)=CAMO(I,J)
                                                                                   00059
                                                                                    00060
  120 CONTINUE
                                                                                    00061
       REWIND 8
```

Figure C-7. Program listing for REMOTE.

```
IG0=1
                                                                              00062
105 GO TO (122,124,126,300),IGO
                                                                              00063
122 KHBL=0
                                                                              00064
    KHBH=4
                                                                              00065
    GO TO 136
                                                                              00066
124 KHBL=3
                                                                              00067
    KH84=7
                                                                              00068
    GO TO 136
                                                                              00069
126 KH3L=6
                                                                              00070
    KHBH=10
                                                                              00071
    CHECK ONE CONTROL PT ON EACH CAMERA
                                                                              00072
136 XP=0.
                                                                              00073
    K=B
                                                                              00074
    J=0
                                                                              00075
    SUM1 = 0.0
                                                                              00076
    SUM2=0.0
                                                                              00077
140 READ(08,1) IFL, IPH, (IE(I), X1(I), Y1(I), I=1,3)
                                                                              00078
  1 FORMAT(3x,211,3(14,2F6.3,7X))
                                                                              00079
    IF (EOF(8)) GO TO 250
                                                                              00080
    IF (IFL.GT.KHBL.AND.IFL.LT.KHBH) 150,140
                                                                              00081
150 00 130 I=1,3
                                                                              00082
    IF (IE(I) .EQ. U .AND.X1(I) .GT. 0.1) GO TO 155
                                                                              00083
    IF (IE(I) .GE. 1 .ANO. IE(I) .LT. 20) 160,170
                                                                              00084
155 XG(1) = X1(I)
                                                                              00085
    XG(2) = Y1(I)
                                                                              00086
    K=1
                                                                              00087
    GO TO 180
                                                                              00088
160 IPTN=IE(I)
                                                                              00089
    XP=X1(I)
                                                                              00090
    YP=Y1(I)
                                                                              00091
    IF (K .EQ. 1) GO TO 190
                                                                              00092
    GO TO 180
                                                                              00093
170 GO TO (180,171,171),IGO
                                                                              00094
171 IF(IE(I) .GE. 30 .AND. IE(I) .LE. 33) 172,180
                                                                              00095
172 J=J+1
                                                                              00096
    SUM1=SUM1+X1(I)
                                                                              00097
    SUM2=SUM2+Y1(I)
                                                                              00098
    IF (J-4) 180,190,190
                                                                              00099
180 CONTINUE
                                                                              00100
    GO TO 140
                                                                              00101
190 IF (XP-0.01) 136,136,192
                                                                              00102
192 IPLATE=(IFL-1)*10+IPH
                                                                              00103
    CALL ORIMAT(IPLATE)
                                                                              00104
    GO TO (197,198,198),IGO
                                                                              00105
197 SU41=XG(1) *4.
                                                                              00106
    SUM2=XG(2) *4.
                                                                              00107
198 XP=SJM1/4.-XP
                                                                              00108
    YP=SJ42/4.-YP
                                                                              00109
    CALL TRNCOORD (YP, XP, FL, XT)
                                                                              00110
    INCLUDE GROCOORD
                                                                              00111
    REWIND 9
                                                                              00112
194 I=FF[N(9)
                                                                              00113
    IF (EOF(9)) GO TO 250
                                                                              00114
    XP=FFIN(9)
                                                                              00115
    YP=FFIN(9)
                                                                              00116
    ZP=FFIN(9)
                                                                              00117
    IF (IPIN-I) 194,196,194
                                                                              00118
                                                                              00119
196 0X=X2-XG(1)
    DY=Y>-XG(2)
                                                                              00120
    WRITE (20,2) IPTN, XG(1), XG(2)
                                                                              00121
    WRITE (20,3) I, XP, YP
                                                                              00122
    WRITE (20,4) IPLATE, DX, DY
                                                                              00123
```

Figure C-7. Program listing for REMOTE. (Continued)

```
2 FORMAT($\psi$ HB PT NO.$\psi$, I3,$\psi$ X=\psi$, F8.0,$\psi$ Y=\psi$, F8.0)
3 FORMAT($\psi$ GD PT NO.$\psi$, I3,$\psi$ X=\psi$, F8.0,$\psi$ Y=\psi$, F8.0)
                                                                                          00124
                                                                                          00125
    4 FORMAT(# PHOTO NO.#, 13,#
                                       DIFX=#.F5.0.# DIFY=#.F5.0)
                                                                                          00126
                                                                                          00127
       DIS=)IST(DX,DY)
       IF ()IS-2J.) 136,136,200
                                                                                          00128
                                                                                          00129
  200 GO TO (136,210,210),IGO
  210 J=0
                                                                                          00130
       K=60
                                                                                          0.01.31
       IF (IGO .EQ. 2) K=30
                                                                                          00132
                                                                                          00133
       K=IPLATE-K
  220 XG(1) = DY*SIN(CAMO(K,6)) + DX*COS(CAMO(K,6))
                                                                                          00134
       XG(2) = DY + COS(CAMO(K,6)) - DX + SIN(CAMO(K,6))
                                                                                          00135
                                                                                          0.0136
       IF (J .EQ. 1) GO TO 230
       DX=XT(1)
                                                                                          00137
       DY=XT(2)
                                                                                          00138
       X1(1) = XG(1)
                                                                                          00139
                                                                                          00140
       X1(2) = XG(2)
                                                                                          00141
       J=J+1
       GO TO 220
                                                                                          00142
  230 SUM1=XT(3)/DIST(XG(1).XT(3))
                                                                                          00143
                                                                                          00144
       SUM2=XT(3)/DIST(XG(2),XT(3))
                                                                                          00145
                                                                                          0 01 46
       IF (IGO .EQ. 2) K=1
       ANGH3(K+1) = ANGHB(K+1) - X1(1) *SUM1*SUM1/CAMO(IPLATE, 3)
                                                                                          60147
       ANGH3 (K) = ANGH8 (K) + X1 (2) * SUM1 * SUM2/CAMO (IPLATE, 3) /2.
                                                                                          00148
       WRITE(20,30) ANGHB(K), ANGHB(K+1)
                                                                                          00149
                                                                                          00150
   30 FORMAT(# DELOMG#,F7.3,/# DELPHI#,F7.3)
      GO TO 136
                                                                                          00151
                                                                                          00152
  250 IGO=IGO+1
       REWIND 8
                                                                                          00153
                                                                                          00154
       GO TO 105
                                                                                          0.0155
  300 FL=6.0
C COMPUTE CURRENTS AND ORIENTATION OF WASTE FIELD FROM K-17
                                                                                          00156
  305 READ (8,1) IFL, IPH, (IE(J), X1(J), Y1(J), J=1,3)
                                                                                          00157
                                                                                          00158
       IF (EDF(8)) GO TO 350
       IF (IFL .LE. 3) 310,305
                                                                                          00159
  310 IPLATE=(IFL-1)*10+IPH
                                                                                          00160
       00 340 I=1,3
                                                                                          00161
       IF (IE(I) .EQ. 0 .AND. X1(I) .GT. 0.1) GO TO 320 IF (IE(I) .LT. 30 .AND. IE(I) .GT. 19) GO TO 324
                                                                                          00162
                                                                                          00163
       IF (IE(I) .EQ. 34 ) GO TO 328
IF (IE(I) .EQ. 35 ) GO TO 332
                                                                                          00164
                                                                                          00165
       GO TO 340
                                                                                          0.0166
  320 I1=1
                                                                                          00167
                                                                                          00168
       12=2
       K=IPLATE
                                                                                          00169
       GO TO 338
                                                                                          00170
  324 I1=IE(I)
                                                                                          00171
                                                                                          00172
       T2=T1
       K≈IPLATE+30
                                                                                          00173
       GO TO 338
                                                                                          00174
  328 I1=3
                                                                                          00175
       12=4
                                                                                          00176
       K=IPLATE
                                                                                          00177
       GO TO 338
                                                                                          00178
  332 I1=5
                                                                                          00179
                                                                                          00180
       12=6
       K=IPLATE
                                                                                          00181
  338 IPHOT(IPLATE, I1) = X1(I) * 1000.
                                                                                          00182
       IPHOT(K, I2) = Y1(I) *1000.
                                                                                          00183
  340 CONTINUE
                                                                                          00184
       GO TO 305
                                                                                          0.0185
```

Figure C-7. Program listing for REMOTE. (Continued)

```
COMPUTE ORIENTATION OF WASTE FIELD
                                                                                  0.0186
350 DO 350 I=1,30
                                                                                  00187
    IF (IPHOT(1,3)) 360,360,352
                                                                                  00188
352 X1(1) = IPHOT(I,2) - IPHOT(I,4)
                                                                                 0.0189
    X1(2) = IPHOT(I,1) - IPHOT(I,3)
                                                                                  00190
    Y1(1) = IPHOT (I,2) - IPHOT (I,6)
                                                                                  00191
    Y1(2) = IPHOT(I,1) - IPHOT(I,5)
                                                                                  00192
    XP=X1(1)/1)30.
                                                                                  00193
    YP=X1(2)/13J0.
                                                                                  00194
    CALL ORIMAT(I)
                                                                                  00195
    CALL TRNCOORD(XP, YP, FL, XT)
                                                                                  00196
    IPLATE=I
                                                                                  00197
    INCLUTE GROCOORD
                                                                                  00198
    C(12,2)=xG(1)
                                                                                  00199
    C(12,3) = xG(2)
                                                                                  00200
    C (14, 2) =NYI+30
                                                                                  00201
    XP=Y1(1)/1300.
                                                                                  00202
    YP=Y1(2)/1J00.
                                                                                  00203
    CALL TRNCOORD (XP, YP, FL, XT)
                                                                                  00204
    INCLUDE GROCOGRO
                                                                                  00205
    XP=X3(1)-C(12,2)
                                                                                  00206
    YP=X3(2)-C(12,3)
                                                                                  00207
    ROT=ATANE (XP/YP)
                                                                                  00208
    IF (YP) 354,355,355
                                                                                  00209
354 ROT=ROT+3.14159
                                                                                  00210
355 C(13,2)=SINF(ROT)
                                                                                  00211
    C(13,3) = COSF(ROT)
                                                                                  00212
    WRITE(20,5) ROT,C(12,2),C(12,3)
                                                                                  00213
  5 FORMAT(≠1 ROTATION ANGLE≠,F10.3,≠
                                             RAD#/,
                                                                                  00214
   1 # ORIGIN X#,F10.0,/# ORIGIN Y#,F10.0)
                                                                                  00215
    GO TO 373
                                                                                  00216
360 CONTINUE
                                                                                  00217
                                                                                  00218
370 K=0
    00 333 I=1,30
                                                                                  00219
    00 333 J=20,29
                                                                                  00220
    IF (IPHOT(I,J)) 390,380,375
                                                                                  00221
375 XP=IP40T(I,2)-IPH0T(I+30,J)
                                                                                  00222
    YP=IPHOT(I,1)~IPHOT(I,J)
                                                                                  00223
    XP=XP/1J00.
                                                                                  00224
    YP=Y2/1030.
                                                                                  00225
                                                                                  00226
    K=I/1J+1
    IF (IPLATE .NE. I) CALL ORIMAT(I)
                                                                                  0.0227
    CALL TRNCOORD(XP, YP, FL, XT)
                                                                                  00228
                                                                                  00229
    IPLATE=I
    INCLUDE GROCOGRO
                                                                                  00230
    X(J-19,K) = XG(1)
                                                                                  00231
    X(J-19,K+3J) = XG(2)
                                                                                  00232
  WRITE (20,6) J,I,XG(1),XG(2)
6 FORMAT(# FLOAT#,I3,# PLATE#,I3,# X=#,F10.0,
                                                                                  00233
                                                                                  00234
   1 # Y=#,F10.0)
                                                                                  00235
380 CONTINUE
                                                                                  00236
    00 335 L=1,10
                                                                                  00237
    XP = X(L,1) - X(L,2)
                                                                                  00238
    YP=X(L,31)-X(L,32)
                                                                                  00239
                                                                                  00240
    X1(1) = DIST(XP, YP)
                                                                                  00241
    XP = X(L, 1) - X(L, 3)
    YP = X(L, 31) - X(L, 33)
                                                                                  00242
    X(L,L) = OIST(XP,YP)
                                                                                  00243
    XP = X(L, 2) - X(L, 3)
                                                                                  00244
                                                                                  00245
    YP=X(L,32)-X(L,33)
                                                                                  00246
    X(L,3) = DIST(XP,YP)
    X(L,?) = X1(1)
                                                                                  00247
```

Figure C-7. Program listing for REMOTE. (Continued)

```
385 CONTINUE
                                                                                   0.0248
                                                                                   00249
      COMPUTE AVERAGE CURRENT VELOCITY
                                                                                   0 0 2 5 0
      X1(1) = (TIMFLT(3) - TIMFLT(1)) * 3600.
                                                                                   00251
      X1(2) = (TIMFLT(2) - TIMFLT(1)) * 3600.
                                                                                   00252
      X1(3) = (TIMFLT(3) - TIMFLT(2)) + 3600.
                                                                                   00253
                                                                                   0.0254
      SUM1 = 0.0
                                                                                   00255
      SUM2 = 0 - 0
                                                                                   0.0256
      DIF=3.0
                                                                                   0.0257
      A I = 0 . 0
                                                                                   00258
      DO 398 L=1,10
                                                                                   0.0259
      00 39) I=1,3
      IF (X(L,I).LT.10..OR.X(L,I).GT.4000.) GO TO 390
                                                                                  0 0 2 6 0
                                                                                   00261
      J=J+1
                                                                                   0.0262
      VEL=X(L,I)/X1(I)
                                                                                   00263
      SUM1=SUM1+VEL
                                                                                   00264
      SUM2=SUM2+VEL*VEL
                                                                                   0.0265
      K = 1 + 19
                                                                                   00266
      WRITE(20,7) K,I,VEL
                                                                                   00267
    7 FORMAT(# FLOAT NO.#, 13,# I=#, 12,# VEL=#, F5.2, #FPS#)
                                                                                   00268
      IF (I .NE. 1) GO TO 390
                                                                                   00269
      AI=AI+1
                                                                                   00270
      DIF=DIF+VEL
                                                                                   00271
  390 CONTINUE
                                                                                   00272
      IF (J .EQ. 0) GO TO 394
                                                                                   0.0273
      A J=J
                                                                                   00274
      VEL=SUM1/AJ
                                                                                   00275
      IF (AJ .GT. 1.0) 392,400
  392 SUM2=STDDEV(SUM1, SUM2, AJ)
                                                                                   00276
                                                                                   00277
      WRITE(20,8) VEL,SUM2
    8 FORMAT( # MEAN VEL #, F5.2, # STD DEV #, F5.2)
                                                                                   00278
                                                                                   00279
      IF (4I .LE. 0.1) GO TO 400
                                                                                   00280
      VEL=DIF/AI
      GO TO 400
                                                                                   00281
                                                                                   00282
  394 VEL=TTYIN(4HVEL=)
      COMPUTE SUN ALTITUDE AND AZIMUTH
                                                                                   0.0283
C
  400 CALL SUNLITE (TIMFLT, H, AZ)
                                                                                   0.0284
      READ FROM LUN 7 VALUES OF FILM GAMMA, FILM SPEED, ATMOS
C
                                                                                   00285
                                                                                   00286
      OPTICAL THICKNESS FOR THE EIGHT SPECTRAL BANDS.
      00 420 J=4,11
                                                                                   00287
                                                                                   00288
      00 420 I=1,3
                                                                                   00289
      C(J,I) = FFIN(7)
  420 CONTINUE
                                                                                   00290
                                                                                   00291
      READ FROM 7 VALUES OF EXPOSURE TIME AND FNO
                                                                                   00292
      (NINE VALUES K-17 1,2,3;HB-1 4,5,6; HB-2 7,8,9)
                                                                                  00293
      00 430 J=12,20
      SUM1=FFIN(7)
                                                                                   0.0294
                                                                                   00295
      SUM2=FFIN(7)
                                                                                   00296
      C(J,1)=SUM1*SUM2*SUM2
                                                                                   00297
  430 CONTINUE
      READ FROM 7 COEFFS FOR DETERMINING ATMOS ATTEN FROM THE SEA TO THE CAMERA STATION
                                                                                   0.0298
                                                                                   00299
      00 440 I=1,8
                                                                                   0.0300
      DO 440 J=1,2
                                                                                   00301
      P(J,I) = FFIN(7)
                                                                                   00302
                                                                                   00303
  440 CONTINUE
      READ FROM 7 0 IF ANTIVIGNETTING FILTER ON K-17 1 IF NOT
                                                                                   00304
      B(15.6) = FFIN(7)
                                                                                   00305
С
       DETERMINE SUNLIGHT VECTORS
                                                                                   0.0306
      00 450 I=1,3
                                                                                   00307
      J=3+I
                                                                                   00306
      B(1,J) = SINF(H(I))
                                                                                   00309
```

Figure C-7. Program listing for REMOTE. (Continued)

```
B(2,J) = COSF(H(I))
                                                                                 00310
    B(13,J) = -SIN(AZ(I))
                                                                                 00311
    B(14,J) = -COSF(AZ(I))
                                                                                 00312
    B(3,J)=1.J/B(1,J)
                                                                                 00313
    B(4, J) = B(2, J) * B(13, J)
                                                                                 00314
    B(5,J)=B(2,J)*B(14,J)
                                                                                 0.0315
    B(6,J) = -B(1,J)
                                                                                 00316
    8(8,J)=8(2,J)/1.33
                                                                                 00317
    B(7, J) = SQRT(1.0-B(8, J)+B(8, J))
                                                                                00318
    B(9,J) = 1.0/B(7,J)
                                                                                06319
    B(10,J)=B(8,J)+B(13,J)
                                                                                00320
    B(11,J)=B(8,J)+B(14,J)
                                                                                00321
    B(12,J) = -B(7,J)
                                                                                00322
    SUM2=ATAN(B(8,J)/B(7,J))
                                                                                00323
    SUM1=1.5708-H(I)
                                                                                00324
    B(15, I) = REFLECT (SUM1, SUM2)
                                                                                00325
450 CONTINUE
                                                                                00326
    B(15,4)=1.33*1.33
                                                                                00327
    IF (HARDWARE(21).EQ. 1) 460,455
                                                                                00328
455 CALL EQUIP(21,5HFILE )
                                                                                00329
460 IF (HARDHARE(22) .EQ. 1) 464,462
                                                                                00330
462 CALL EQUIP(22,5HFILE )
                                                                                00331
464 IF ( ARDWARE (4) .EQ. 1) 470,1000
                                                                                00332
470 REWIND 4
                                                                                00333
    IF (HARDWARE(5) .EQ. 1) GO TO 480
                                                                                00334
    CALL EQUIP(5,5HFILE )
                                                                                00335
480 REWIND 5
                                                                                00336
    READ (4,9) FIX, XL, YL, CONL
                                                                                00337
500 READ(4,9) FIX,XF,YF,CONF
                                                                                00338
    IF (EOF(4)) GO TO 600
                                                                                00339
  9 FORMAT(F7.1,2F14.0,F10.1)
                                                                                00340
    IF (FIX-0.1) 500,500,505
                                                                                0.0341
505 DOEN=CONF-CONL
                                                                                00342
    DKX=XF-XL
                                                                                00343
    DKY=YF-YL
                                                                                00344
    XKX=DIST(DKX,DKY)/60.
                                                                                00345
    IF (XKX .GT. 0.5) GO TO 508
                                                                                00346
    XL=(XF+XL)/2.
                                                                                00347
    YL=(YF+YL)/2.0
                                                                                00348
    CONL=(CONF+CONL)/2.0
                                                                                00349
    GO TO 500
                                                                                00350
508 KX=XKX
                                                                                00351
    GO TO (510,520),KX
                                                                                00352
510 X(1,1) = (XL+XF)/2.
                                                                                00353
    X(1,2) = (YL + YF)/2.
                                                                                00354
    X(1,3) = (CONL+CONF)/2.
                                                                                00355
                                                                                0.0356
    K X = 1
    GO TO 530
                                                                                00357
                                                                                00358
520 DIV=KX
    IF(DIV-8.) 522,522,540
                                                                                00359
522 DO 524 K=1,KX
                                                                                0.0360
    YYK=<
                                                                                00361
    X(K,1)=XL+DKX*YYK/DIV
                                                                                00362
    X(K,2) = YL + DKY * YYK/DIV
                                                                                00363
    X(K,3)=CONL+DDEN*YYK/DIV
                                                                                00364
524 CONTINUE
                                                                                00365
530 00 540 K=1,KX
                                                                                0.0366
    X(K,1)=X(K,1)-C(12,2)
                                                                                00367
    X(K,2) = X(K,2) - C(12,3)
                                                                                00368
    XG(1) = X(K,1) + C(13,2) + X(K,2) + C(13,3)
                                                                                00369
    XG(2) = -X(K,1) + C(13,3) + X(K,2) + C(13,2)
                                                                                00370
    LX=X5(1)/60.+0.5
                                                                                00371
```

Figure C-7. Program listing for REMOTE. (Continued)

```
IF(LX .LE. 0 .OR. LX .GT. NXI) GO TO 540
                                                                               00372
                                                                               00373
    LY=(X3(2)+0(14,2))/60.+0.5
    IF (LY .LE. 0 .OR. LY .GT. NYI) GO TO 540 HRITE (5,10) LX,LY,X(K,3)
                                                                               00374
                                                                               00375
 10 FORMAT(214,F6.2)
                                                                                00376
                                                                                00377
540 CONTINUE
                                                                                00378
    XL=XC
                                                                               00379
    YL=YF
                                                                                00380
    CONL = CONF
                                                                                00381
    GO TO 500
600 JJFL=1
                                                                                00382
                                                                                00383
    KFLT=1
                                                                                00384
    END FILE 5
602 K=0
                                                                                00385
                                                                                00386
    ILUN=1
610 IF (HARDWARE(ILUN) .NE. 1) GO TO 630
                                                                                0.0387
                                                                                00388
    CALL ZEROARRY(NXI, NYI, 1, 0, 1, 0)
                                                                                00389
    FL=6.0
    IF (<FLT .GT. 3) FL=150./25.4
                                                                                00390
                                                                                00391
    CALL PROCESS(KFLT, JJFL, ILUN, FL, NXI, NYI)
                                                                                00392
    K=K+1
                                                                                00393
    WRITE(61,31) K, KFLT, ILUN
                                                                                00394
 31 FORMAT(3I10)
630 ILUN=ILUN+1
                                                                                00395
                                                                                00396
    KFLT=KFLT+3
                                                                                00397
    GO TO (610,610,610,640), ILUN
                                                                                00398
640 IF (K .EQ. 0) 642,644
                                                                                00399
642 L=1
                                                                                00400
    GO TO 901
644 K=0
                                                                                00401
                                                                                00402
    DO 653 I=1.8
                                                                                00403
    I3D(I)=0
                                                                                00404
    ILUN=I+30
    IF (HARDWARE(ILUN) .NE. 1) GO TO 660
                                                                                00405
    REWIND ILUN
                                                                                0.0406
                                                                                00407
    K = K + 1
    IBD(K) = ILUN
                                                                                00408
                                                                                00409
    J=1
655 READ(ILUN,11) X(K,J)
                                                                                00410
 11 FORMAT(F8.0)
                                                                                00411
                                                                                00412
    IF (EOF(ILUN)) GO TO 660
    J=J+1
                                                                                00413
    IF (J .LT. 300) 655,660
                                                                                00414
                                                                                00415
660 CONTINUE
    IF (< .LE. 0) GO TO 642
                                                                                0.0416
    N0=J-1
                                                                                00417
    K<=K
                                                                                00418
                                                                                0.0419
    ITRY=1
659 K=KK
                                                                                0.0420
    WRITE(61, 32)(IBD(I), I=1, K)
                                                                                00421
 32 FORMAT( # TYPE IN 1 IF YOU WANT TO USE A PRODUCT, 2 IF NOT #/,
                                                                                00422
   1# THE FOLLOWING BANDS ARE USED:#/,914)
                                                                                0 0423
                                                                                00424
    KKGO=TTYIN(4HRAT=)
    GO TO (651,563),KKGO
                                                                                00425
                                                                                00426
661 K=K+1
    WRITE(61,33)
                                                                                00427
 33 FORMAT(# TTYIN NO. OF THE TWO TERMS 1 3 ETC#)
                                                                                00428
    KTOP=TTYIN(4H1ST=)
                                                                                00429
                                                                                00430
    KBOT=TTYIN(4H2ND=)
                                                                                00431
    DO 652 J=1,NO
    X(K,J) = X(KTOP,J) * X(KBOT,J)
                                                                                0.0432
                                                                                00433
662 CONTINUE
```

Figure C-7. Program listing for REMOTE. (Continued)

```
663 WRITE(61,34) K
                                                                               00434
 34 FORMAT( # THERE ARE #, 13, # VARIABLES USED IN THE EQ #/,
                                                                               00435
  1 TTYIN 1 IF YOU WANT A SQUARED TERM 2 IF NOT >
                                                                               00436
    KIGO=TTYIN(4HSQU=)
                                                                               00437
    GO TO (664,666),KIGO
                                                                               0.0438
664 WRITE(61,35)
                                                                               00439
 35 FORMAT(# WHAT TERM IS TO BE SQUAREDA#)
                                                                               00440
    ISQU=TTYIN(4HSQU=)
                                                                               8 0441
    K=K+1
                                                                               00442
    K2=K
                                                                               00443
    00 665 J=1,NO
                                                                               00444
665 X(K,J)=X(ISQU,J)*X(ISQU,J)
                                                                               00445
666 K=K+1
                                                                               00446
    N=K
                                                                               00447
    GO TO (672,674), ITRY
                                                                               00448
672 REWIND 5
                                                                               00449
                                                                               00450
    00 657 J=1,NO
    READ(5,12)X(K,J)
                                                                               00451
 12 FORMAT(8x,F6.2)
                                                                               00452
667 CONTINUE
                                                                               00453
    K = 0
                                                                               00454
    NKN=4-1
                                                                               00455
    DO 678 J=1,NO
                                                                               00456
    00 676 I=1,NKN
                                                                               00457
    IF(A3S(X(I,J)).LT..001) GO TO 678
                                                                               00458
676 CONTINUE
                                                                               00459
    K=K+1
                                                                               00460
    DO 677 I=1,N
                                                                               00461
    X(I, <) = X(I, J)
                                                                               00462
677 CONTINUE
                                                                               00463
    X(9,K)=X(N,J)
                                                                               00464
678 CONTINUE
                                                                               00465
    N0=K
                                                                               00466
    GO TO 671
                                                                               00467
674 DO 675 J=1,NO
                                                                               00468
    X(N, J) = X(9, J)
                                                                               00469
675 CONTINUE
                                                                               00470
671 CALL LEASTFIT(N,NO, 8B, RES)
                                                                               00471
    KC0=1-1
                                                                               00472
    WRITE(61,37) (83(I),I=1,KCO)
                                                                               00473
    WRITE(61,36) RES
                                                                               00474
 36 FORMAT(* MEAN SQ*,F10.3,/* IS THIS OKA */, 1* ITYIN 1 FOR YES 2 FOR NO.*)
                                                                               8 8475
                                                                               0.0476
    IGO=ITYIN(4HIGO=)
                                                                               00477
    ITRY=2
                                                                               00478
    GO TO (668,659),IGO
                                                                               00479
668 CALL ZEROARRY(NXI,NYI,1,0,1,0)
                                                                               0.0480
    IF(HARDWARE(24).NE.1) CALL EQUIP(24,5HFILE)
                                                                               00481
    DO 659 J=1,NO
                                                                               00482
    WRITE (24,37) (X(I,J),I=1,N)
                                                                               0.0483
 37 FORMAT(9E11.3)
                                                                               00484
669 CONTINUE
                                                                               00485
    N=N-1
                                                                               0.0486
    END FILE 24
                                                                               00487
670 WRITE (61,40) N
                                                                               00488
 40 FORMAT( # TTYIN VALUES OF COEFFICIENTS #, 14, # REQUIRED #)
                                                                               00489
    DO 631 I=1,N
                                                                               00490
681 89(I) = TTYIN(4HCOEF)
                                                                               00491
    DO 63J I=1,KK
                                                                               00492
    ILJN=IBD(I)-20
                                                                               00493
    REWIND ILUN
                                                                               00494
                                                                               00495
680 CONTINUE
```

Figure C-7. Program listing for REMOTE. (Continued)

```
00496
    1 Y=0
                                                                                 00497
    LOWX=0
682 DO 694 I=1,KK
                                                                                 00498
    ILUN=IBD(I)-20
                                                                                 00499
    READ(ILUN, 13) (X(I, J), J=1, 20)
                                                                                 0.0500
 13 FORMAT(X.20F6.0)
                                                                                 00501
    IF (EOF(ILUN)) GO TO 700
                                                                                 00502
684 CONTINUE
                                                                                 00503
                                                                                 00504
    00 636 J=1,20
    IF(K<50.EQ.1) \times (KK+1,J)=\times (KTOP,J)*\times (KBOT,J)
                                                                                 00505
    IF(KIGO.EQ.1) X(K2,J)=X(ISQU,J)*X(ISQU,J)
                                                                                 0 05 06
686 CONTINUE
                                                                                 00507
                                                                                 0.0508
    LY=LY+1
    IF (LY .LE. NYI) GO TO 688
                                                                                 00509
    LOWX=LOWX+20
                                                                                 00510
                                                                                 0.0511
    L Y=1
688 DO 632 J=1,20
                                                                                 00512
                                                                                 00513
    SUM 1 = 0 - 0
    DO 63J I=1,N
                                                                                 00514
    IF (48S(X(I,J)) .LE. 0.001) GO TO 692
                                                                                 00515
    SUM1=SUM1+BB(I) *X(I,J)
                                                                                 00516
690 CONTINUE
                                                                                 00517
    LX=LOWX+J
                                                                                 00518
    IF (SUM1 .LT. 0. .OR. SUM1 .GT. 30.) SUM1=0.
                                                                                 00519
    IPHOT(LX,LY) = SUM1 * 10.
                                                                                 00520
692 CONTINUE
                                                                                 00521
    GO TO 682
                                                                                 0.0522
700 DO 732 J=1,8
                                                                                 00523
    X(3, J) = 0.0
                                                                                 00524
702 CONTINUE
                                                                                 00525
    K ND = 3
                                                                                 00526
    KON=5
                                                                                 00527
                                                                                 0.0528
    NXS=NXI-2
                                                                                 00529
    NYS=YYI-2
    CALL INTERP(NXI, NYI, NXS, NYS, KND, KDN)
                                                                                 0.0530
    CALL CULL(NXI,NYI)
                                                                                 00531
    CALL AVERAGE (NXS, NYS)
                                                                                 00532
    WRITE SYMBOLIC PLOT
                                                                                 00533
704 REWIND 8
                                                                                 00534
    READ(08,14) MO, IDATE
                                                                                 00535
 14 FORMAT(I1, I2)
                                                                                 00536
    WRITE (26,15) ROT, JJFL, MO, IDATE
                                                                                 00537
 15 FORMAT(1H1,///42x, #AIRPHOTO ANALYSIS OF OCEAN OUTFALL #
                                                                                 00538
   1, #DISPERSION#///, 45X, #VOLUMETRIC WASTE CONCENTRATION#
                                                                                 00539
   2, # IN ML/LITER#//,55X, #SKETCH ON 60 - FT GRID#/,49X,
                                                                                 0 05 4 0
   3#DIRECTION OF PLUME #,F5.2,# RADIANS#/,35%,
                                                                                 00541
   4 #FLIGHT NO. #, 14, 30X, #DATE #, 12, #/#, 12, #/69#)
                                                                                 0 05 42
    WRITE(20,16)
                                                                                 00543
 16 FORMAT( 48X, # CONCENTRATION CODE IN ML/L#/, 45X,
                                                                                 00544
   1 # )
            1 - 2 \neq 15 \times 14  2 - 4 \neq 1,45 \times 14,24 \times 14,45 \times 14
                                                                                 0 0545
                                  6 - 10#/,45X,#III#,24X,#LLL#//,45X,
   2#III
             4 - 6#,15X,#LLL
                                                                                 00546
   3 ≠ PPP
           10 - 15#,14X,#RRR
                                 15 - 20#/,45X,#PPP#,24X,#RRR#//,45X,
                                                                                 0.0547
   4 # M M M
            20 - 25#,14X,#**
                                   GT 25 #/,45X,#MHM#,24X,#***#///)
                                                                                 0.0548
    WRITE(20,17) C(12,2),C(12,3)
                                                                                 00549
 17 FORMAT(60X, #+ X=#, F8.0, #E, Y=#, F7.0, #N#)
                                                                                 00550
    NYS=NYI-10
                                                                                 0.0551
    IKS=YYI/2
                                                                                 00552
    IEKS=IKS+20
                                                                                 00553
    IKS=IKS-20
                                                                                 0.0554
    K 00 = 3
                                                                                 0 05 55
    DO 833 LX≈2,NXI
                                                                                 00556
    00 733 LY=1,NYI
                                                                                 00557
```

Figure C-7. Program listing for REMOTE. (Continued)

```
AXZ=IPHOT(LX,LY)
                                                                                 00558
    AXZ=AXZ/10.
                                                                                 0.0559
    IF (4XZ-1.0) 710,710,705
                                                                                 0 05 60
705 XL=AXZ/2.+1.
                                                                                 00561
    IDO=XL
                                                                                 00562
    GO TO (720,730,740,760),IDO
                                                                                 00563
710 X(1,LY)=8H
                                                                                 0.0564
    X(2,LY)=8H
                                                                                 00565
    GO TO 790
                                                                                 00566
720 X(1, LY) = 8H)
                                                                                 00567
    X(2,LY)=8H )
                                                                                 00568
    X(3,1)=X(3,1)+1.
                                                                                 00569
    GO TO 790
                                                                                 0 0570
730 X(1,LY)=8H1 1
                                                                                 00571
    X(2,LY) = 841
                                                                                 00572
    X(3,2) = X(3,2) + 1.
                                                                                 00573
    GO TO 793
                                                                                 00574
740 X(1,LY)=84III
                                                                                 0 05 75
    X(2,LY) = 8HIII
                                                                                 00576
    X(3,3) = X(3,3) + 1.
                                                                                 00577
    GO TO 790
                                                                                 0 05 78
750 X(1,LY)=8HLLL
                                                                                 00579
    X(2,LY) = 8HLLL
                                                                                 00580
    X(3,4)=X(3,4)+1.
                                                                                 00581
    GO TO 790
                                                                                 00582
760 IF (4XZ-13.) 750,750,770
                                                                                 00583
770 XL=AXZ/5.-1.
                                                                                 00584
    IDD=XL
                                                                                 00585
    GO TO (775,780,785,788),IDO
                                                                                 00586
775 X(1, Y) =8HPPP
                                                                                 00587
    X(2,LY) = 8HPPP
                                                                                 00588
    X(3,5)=X(3,5)+1.
                                                                                 00589
    GO TO 790
                                                                                 0.0590
780 X(1,LY) = 8HRRR
                                                                                 00591
    X(2,LY) = 8HRRR
                                                                                 0 05 92
    X(3,5) = X(3,6) + 1.
                                                                                 00593
    GO TO 790
                                                                                 00594
785 X(1,LY)=8HMMM
                                                                                 00595
    X(2,LY) = 8HMMM
                                                                                 00596
    X(3,7) = X(3,7) + 1.
                                                                                 00597
    GO TO 790
                                                                                 0.05 98
788 X(1,LY)=8H***
                                                                                 00599
    X(2,LY) = 8H***
                                                                                  0 0 6 0 0
    X(3,3) = X(3,8) + 1.
                                                                                 00601
790 CONTINUE
                                                                                 00602
    KC0=<C0+1
                                                                                 00603
    IF(KCO.NE.4) GO TO 795
                                                                                 00604
    WRITE(61,42)(X(1,J),J=1,NYI,3)
                                                                                 00605
 42 FORMAT(1X,30A1)
                                                                                 00606
    KC0=3
                                                                                 00607
795 WRITE (20,18) (X(1,J),J=IKS,IEKS)
WRITE (20,18) (X(2,J),J=IKS,IEKS)
                                                                                 0.06.08
                                                                                 00609
 18 FORMAT (1HW,50A3)
                                                                                 00610
800 CONTINUE
                                                                                 00611
    WRITE (61,43)
                                                                                 00612
 43 FORMAT(# ARE THE COEFFICIENTS OKA TTYIN 1-YES, 2-NO#)
                                                                                 00613
    KCD=TTYIN(4H GO=)
                                                                                 00614
    GO TO (802,670),KCO
                                                                                 00615
802 IF(HAROWARE(23).NE.1) CALL EQUIP(23,5HFILE)
                                                                                 00616
    WRITE(61,39)
                                                                                 00617
 39 FORMAT(# TTYIN 1 IF WANT DATA FOR CONTOUR PLOT 2 NO#)
                                                                                 00618
    JGO=TTYIN(4HPLOT)
                                                                                 00619
```

Figure C-7. Program listing for REMOTE. (Continued)

```
00620
      GO TO(701,704),JGO
  701 DO 733 I=1,NXI
                                                                                 00621
                                                                                 00622
      K=NXI-I+1
                                                                                  00623
      WRITE (23,28) (J,K,IPHOT(I,J),J=1,NYI)
   28 FORMAT(24(1514/))
                                                                                 00624
                                                                                 00625
  703 CONTINUE
      END FILE 23
                                                                                 00626
                                                                                 00627
      COMPUTE DIFFUSION COEFFICIENTS
C
                                                                                 00628
      DJKK=0.
                                                                                 00629
      SUM2 = 0.0
                                                                                  00630
      DO 810 J=1,8
      X(3,J) = X(3,J) + 3600.
                                                                                  00631
                                                                                  00632
  810 CONTINUE
                                                                                  00633
      AMASS=RATE+60./VEL
      GO TO (812,820,820), JJFL
                                                                                 00634
  812 DO 814 I=4,6
                                                                                  00635
                                                                                  00636
      DO 814 J=61,90
      CAMO(J, I) =0.0
                                                                                  00637
                                                                                  00638
  814 CONTINUE
                                                                                  00639
  820 WRITE(20,19) JJFL,MO,IDATE
   19 FORMAT(1H1,44X, *PRELIMINARY DIFFUSION COMPUTATIONS */
                                                                                  00640
     1,47x, #FLIGHT#, 13,12x, 12, #/#, 12, #/69#/,19X,
                                                                                  80641
     2# SEC. WIDTH EFF DEPTH SIGMA Y COEFFICIENT
                                                                                  00642
                     DIFF. COEFF. #/, 22X, #NO.
                                                                                  00643
     3 # X # , 3 X , # Y
                                                 FT≠,7X,
     4#FT#, 20x, #PPT#, 7x, #STATE PLANE COORD FT SQ/SEC#/)
                                                                                  00644
                                                                                  00645
      LOST=2.+(TIMFLT(JJFL)-TIMFLT(1))*VEL+0.5
                                                                                  00646
                                                                                  0.0647
      NXS=XXI-S
      DO 930 I=LOST, NXS, 5
                                                                                  00648
                                                                                  00649
      JST=1
                                                                                  0.0650
      LNY=)
                                                                                  00651
      DIV=J.0
                                                                                  00652
      SUM1 = 0.0
      DIF = 1.0
                                                                                 00653
      DO 830 J=JST,NYI
                                                                                  00654
      AJ=J*60
                                                                                  0 0655
      ACD=IPHOT(I,J)+IPHOT(I-1,J)+IPHOT(I-2,J)+IPHOT(I+1,J)+
                                                                                  00656
                                                                                  00657
     1 IPHOT(I+2,J)
      ACD=4CD/50.
                                                                                  00658
      IF(ACD.LT.1.) GO TO 880
                                                                                  00659
                                                                                  0.0660
      SUM1=SUM1+ACD*AJ
      DIF=DIF+ACD
                                                                                  00661
      DIV=DIV+ACD*AJ*AJ
                                                                                  00662
      IF(IPHOT(I,J).GT.9) LNY=LNY+1
                                                                                  00663
  880 CONTINUE
                                                                                  00664
      IF(DIF.LT.1.) 881,882
                                                                                  00665
  881 X(10,i)=0.0
                                                                                  00666
      X(5,L)=0.0
                                                                                  00667
      GO TO 895
                                                                                  00668
  882 XMEAN=SUM1/DIF
                                                                                  00669
      X(10,L)=DIV/DIF-XMEAN*XHEAN
                                                                                  00670
      X(4,L)=LNY*60
                                                                                  00671
      X(5,L) = AMASS/(DIF*3.6)
                                                                                  00672
      X(6,L)=SQRT(X(10,L))
                                                                                  00673
      X(7,L)=DIF+60./(2.51+X(6,L))
                                                                                  00674
      RGX=1 +60
                                                                                  00675
      RGY=XMEAN-C(14,2)
                                                                                  00676
                                                                                 00677
      XG(1) = +RGX + C(13,2) - RGY + C(13,3)
      XG(2) = +RGX + C(13,3) + RGY + C(13,2)
                                                                                 0.0678
      X(8,L) = XG(1) + C(12,2)
                                                                                  00679
      X(9,L) = XG(2) + C(12,3)
                                                                                 00680
      IF(L .EQ. 1) 885,890
                                                                                 00681
```

Figure C-7. Program listing for REMOTE. (Continued)

```
885 0J=0.0
                                                                                   00682
    GO TO 895
                                                                                   0.06.83
890 DJ=VEL*(X(10,L)-X(10,L-1))/600.
                                                                                   00684
895 CAMO(L+60,JJFL+3)=X(10,L)
                                                                                   00685
IF (X(5,L).GT.0. .AND.X(5,L).LT.20.)896,897
896 WRITE(20,20) I,(X(KK,L),KK=4,9),DJ
                                                                                   0.0686
                                                                                   0.0687
 20 FORMAT(19X, 16, F7.8, F9.1, 2E11.2, 4X, 2F9.0, E12.2)
                                                                                   00688
    SUM2=SUM2+DJ
                                                                                   00689
    DJKK=DJKK+1.
                                                                                   00690
897 L=L+1
                                                                                   00691
900 CONTINUE
                                                                                   00692
    SUM2=SUM2/DJKK
                                                                                   0.06.93
    WRITE(20,21) RATE, VEL, AZ (JJFL), H (JJFL), SUM2
                                                                                   00694
 21 FORMAT(//20x, #FLOW RATE#, F5.1, # CFS#/,
                                                                                   00695
   120X, #CURRENT VEL#, F5.1, # FPS#/, 20X, #SUN AZIMUTH#,
                                                                                   00696
   2F5.1, # RAD#/, 20X, #SUN ALTITUDE#, F5.1, # RAD#/,
                                                                                   00697
   320X, #AVE DIF COEF#, F5.1, # FT SQ/SEC#)
                                                                                   N N A Q A
    WRITE (20, 22)
                                                                                   00699
 22 FORMAT(1H1,56x, ≠AREA WITHIN EACH CONCENTRATION≠,
                                                                                   00700
   1# RANGE#/,65x, #RANGE#, 13x, #AREA#/,65x,
                                                                                   00701
   2#ML/L#,13X,#SQ FT#)
                                                                                   00702
    WRITE(20.23)(x(3,J),J=1.8)
                                                                                   00703
 23 FORMAT(65X, $\pm$0 - 2$,8X,E11.2/,65X,$\pm$2 - 4$,8X,E11.2/,
                                                                                   00704
   1 65X, \pm 4 - 6 \pm , 8X, E11.2/, 65X, \pm 6 -10 \pm , 8X, E11.2/,
                                                                                   00705
   2 65X, #10-15#, 8X, E11.2/, 65X, #15-20#, 8X, E11.2/,
                                                                                   00706
   3 65X, #20-25#, 8X, E11.2/, 65X, #GT 25#, 8X, E11.2)
                                                                                   00707
901 JJFL=JJFL+1
                                                                                   00708
    KFLT=JJFL
                                                                                   00709
    DO 910 I=11,18
                                                                                   00710
    IF (HARDWARE(I) .NE.1) GO TO 905
                                                                                   00711
                                                                                   00712
    CALL UNEQUIP(I)
                                                                                    00713
905 K=I+20
    IF (HARDWARE(K).NE.1) GO TO 910
                                                                                   00714
    CALL UNEQUIP(K)
                                                                                   00715
910 CONTINUE
                                                                                   80716
                                                                                   00717
    H(JJF(-1)=1-1
    GO TO(602,602,602,920), JJFL
                                                                                   00718
                                                                                   00719
920 WRITE (20,24)
 24 FORMAT(1H1,///20X, #N O N S T E A D Y S T A T E#,
1# D I F F U S I O N C O E F F I C I E N T S#//)
                                                                                   00720
                                                                                   00721
                                                                                   00722
    T = 1
                                                                                    00723
     KI=3
     KK=6
                                                                                   00724
                                                                                    00725
    K=2
                                                                                    00726
     NO=1
     L=H(1)
                                                                                    00727
                                                                                    00728
     IF (L .LT. H(2)) L=H(2)
     IF (L .LT. H(3)) L=H(3)
                                                                                    00729
926 DTIM=(TIMFLT(K)-TIMFLT(I)) +120.
                                                                                    00730
    DIV=0.
                                                                                    00731
                                                                                    00732
     SUM1=0.
     DO 930 J=1,L
                                                                                    00733
                                                                                    00734
     JK=J+60
     K.J=K+3
                                                                                    00735
                                                                                    00736
     KI=I+3
    IF(CAMO(JK,KJ) .LT.1. .AND. CAMO(JK,KI) .LT.1.)
                                                                                    00737
    1 GO TO 928
                                                                                    00738
                                                                                    0.0739
     X(NO, J) = (CAMO(JK, KJ) - CAMO(JK, KI))/DTIM
     SUM1=SUM1+X(NO.J)
                                                                                    00740
                                                                                    00741
     DIV=DIV+1.
                                                                                    00742
     X(N0+3,J)=1.0
                                                                                    00743
    60 TO 930
```

Figure C-7. Program listing for REMOTE. (Continued)

```
00744
 928 X(NO, J) = 0.
 930 CONTINUE
                                                                                             00745
                                                                                             00746
      X(NO+4,1) = SUM1/DIV
      GO TO (932,934,940),NO
                                                                                             00747
 932 NO=N0+1
                                                                                             00748
                                                                                             00749
      K=3
      I = 1
                                                                                             00750
                                                                                             00751
      GO TO 926
                                                                                             00752
 934 K=3
      I = 2
                                                                                             00753
      NO=NO+1
                                                                                             00754
                                                                                             00755
      GO TO 926
 940 WRITE(20,25) (TIMFLT(I), I=1,3), MO, IDATE
                                                                                             00756
  25 FORMAT(20X, #TIMES POT -- FLIGHT 1#, F6.1, 5X, 1#FLIGHT 2#, F6.1, 5X, #FLIGHT 3#, F6.1, 10X, I2, #/#, I2, 2#/69#/, 23X, #SECTION#, 10X, #FLIGHTS 1-2#, 10X,
                                                                                             00757
                                                                                             00758
                                                                                             00759
    3#FLIGHTS 1-3#,10X,#FLIGHTS 2-3#/)
                                                                                             00760
      DO 950 I=1,L
                                                                                             00761
      K=2+5*(I-1)
                                                                                             00762
                                                                                             00763
      WRITE(20,26) K, (X(J,I),J=1,NO)
  26 FORMAT (25X, 13, 3E22.2)
                                                                                             00764
 950 CONTINUE
                                                                                             00765
      WRITE(20,27) (X(I,1),I=5,7)
                                                                                             00766
  27 FORMAT(/23X, #MEANS#, 3E22.2)
                                                                                             00767
1000 STOP
                                                                                             00768
      END
                                                                                             00769
```

Figure C-7. Program listing for REMOTE. (Continued)

```
DEFINE DECLAR
                                                                               00001
    COMMON X(10,300), IPHOT(120,80), CAMO(90,6), C(20,3)
                                                                               00002
    COMMON B(15,6),P(2,8),ANGHB(4),VOLL(2,8)
                                                                               00003
    FND
                                                                               00004
    DEFINE GRDCOORD
                                                                               00005
    XG(1)=CAMO(IPLATE+1)-CAMO(IPLATE+3)*XT(1)/XT(3)
                                                                               00006
    XG(2)=CAMO(IPLATE,2)+CAMO(IPLATE,3)*XT(2)/XT(3)
    END
                                                                               00008
    SUBROUTINE PROCESS(KFLT, JFLT, ILUN, FL, NXI, NYI)
                                                                               00009
    DIMENSION [VT(6).3B(9).XT(3).XG(2)
                                                                               00010
    INCLUDE DECLAR
                                                                               00011
    INTEGER HARDWARE
                                                                               00012
    REWIND 21
                                                                               00013
    KG0=0
                                                                               00014
    ISEY1=TTYIN(4HSEY1)
                                                                               00015
    ISEY2=TTYIN(4HSEY2)
                                                                               00016
    ISFAX=TTYIN(4HSFAX)
                                                                               00017
    IPHX=TTYIN(4HPHOX)
                                                                               00018
 89 IPLATE=(KFLT-1)*10+1
                                                                               00019
    DENL = TTYIN (4HONL =)
                                                                               00020
    (=HMCH4)NIYTT=HM3C
                                                                               00021
    I = G M = I
                                                                               00022
    INK = 0
                                                                               00023
 95 READ(ILUN:1) IMO:IDATE:IFLT:IPH:IPLT2:IBD1:IBD2:
                                                                               00024
   1 XPH,YPH,DCOOR
                                                                               00025
  1 FORMAT(715,2F5.0,F5.3)
                                                                               00026
    IF(EOF(ILUN)) GO TO 1000
IF(KFLT.NE.IFLT) GO TO 1000
                                                                               00027
                                                                               00028
    IF(IPLATE-IPLT2) 100,200,150
                                                                               00029
100 BACKSPACE ILUN
                                                                               00030
101 IEND=3
                                                                               00031
    GO TO 400
                                                                               00032
150 IEND=2
                                                                               00033
    BACKSPACE ILUN
                                                                               00034
    GO TO 400
                                                                               00035
200 CALL ORIMAT(IPLATE)
                                                                               00036
    IBAND=IBD1
                                                                               00037
    SUM1=CAMO(IPLATE,3)/3280.
                                                                               00038
    ATN1=P(1, IBD1)+ALUG(SUM1+1.)+P(2, IBD1)*SUM1*SUM1
                                                                               00039
    ATN2=P(1,IBD2)+ALOG(SUM1+1.)+P(2,IBD2)*SUM1*SUM1
                                                                               00040
                                                                               00041
    ATN1 = ATN1 - ATN2
    ATN2=(C(IBD1+3,3)-C(IBD2+3,3))*B(3,JFLT+3)
                                                                               00042
    DO 210 I=1.60
                                                                               00043
                                                                               00044
    YP = I
210 X(9,I)=(XPH+0.5-YP)*DCOOR
                                                                               00045
                                                                               00046
    DO 300 J=1.120
    JK=J
                                                                               00047
    IST=1
                                                                               00048
    IND=30
                                                                               00049
    IF (J.LE.60) GO TO 220
                                                                               00050
    JK=J-60
                                                                               00051
                                                                               00052
    IST=31
                                                                               00053
    IND=60
220 READ(ILUN,2) (X(10,1), I=IST, IND)
                                                                               00054
  2 FORMAT (30F4.2)
                                                                               00055
                                                                               00056
    XP = JK
                                                                               00057
    XP = (YPH + 0.5 - XP) *DCOOR
                                                                               00058
    KG0=1
    IF(JK.EQ.ISEY1.OR.JK.EQ.ISEY2) KG0=2
                                                                               00059
    K = 0
                                                                               00060
                                                                               00061
    DO 300 I=IST , IND
    IF(X(10+1).LT.DENL.OR.X(10+1).GT.DENH) GO TO 300
                                                                               00062
    IF(<.EQ.O.AND.J.LT.60) GO TO 290
                                                                               00063
```

Figure C-8. Subroutines used with program REMOTE.

```
YP=X(9,1)
                                                                                00064
      CALL TRNCGORD(XP,YP,FL,XT)
                                                                                00065
      INCLUDE GROCOORD
                                                                                00066
      RGX=XG(1)-C(12,2)
                                                                                00067
      RGY=XG(2)-C(12.3)
                                                                                00068
      XG(1)=RGX*C(13.21+RGY*C(13.3)
                                                                                00069
      XG(2) = -RGX*C(13,3) + RGY*C(13,2)
                                                                                00070
                                                                                00071
      LX=XG(1)/60.+0.5
      IF(LX .LE. O .OR. LX .GT. NXI) GO TO 300
                                                                                00072
      LY=(XG(2)+C(14,2))/60.+0.5
                                                                                00073
      IF (LY .LE. O .OR. LY .GT. NYI) GO TO 300
                                                                                00074
      CAM=ATANF(SQRT(XP*XP+YP*YP)/FL)
                                                                                00075
C ANGLE BETWEEN RAY IN AIR AND VERTICAL
                                                                                00076
      DIV=SQRT(XT(1)*XT(1)+XT(2)*XT(2))
                                                                                00077
      CAN=ATAN(-DIV/XT(3))
                                                                                00078
ANGLE BETWEEN RAY AND VERTICAL UNDERWATE—
                                                                                00079
      SINC=0.75*SINF(CAN)
                                                                                00080
      COSC=SQRT(1.0-SINC*SINC)
                                                                                00081
C RAY VECTOR UNDERWATER
                                                                                00082
      FT=-DIV*COSC/SINC
                                                                                00083
      SINC = (XT(1)*B(10*JFLT+3)+XT(2)*B(11*JFLT+3)+FT*B(12*JFLT+3)
                                                                                00084
     1 )/1.34
                                                                                00085
      IF(SINC.GT.1.) SINC=1.
                                                                                00086
      FT=SQRT(1.0-SINC*SINC)
                                                                                00087
      TAB=ATAN(FT/SINC)
                                                                                00088
      CAN=1.0/COS(CAN)
                                                                                00089
      FT=X(10,1)/C(18D1+3,1)+ATN2+ATN1*CAN
                                                                                00090
      DENS=EXP(FT)*1000.
                                                                                00091
      IF(I.EQ.ISEAX.AND.IPH.EQ.IPHX) GO TO 250
                                                                                00092
      GO TO (260,250),KGO
                                                                                00093
  250 IF (INK.LT.300) INK=INK+1
                                                                                00094
      X(1,INK)=1.0
                                                                                00095
      X(2 \cdot INK) = CAM
                                                                                00096
      X(3,INK) = TAB
                                                                                00097
      X(4,INK)=CAN
                                                                                00098
                                                                                00099
      X(5,INK) = DENS
  260 WRITE(21,3)LX,LY,CAM,TAB,CAN,DENS
                                                                                00100
    3 FORMAT(215,5£11.3)
                                                                                00101
  290 K=K+1
                                                                                00102
  300 CONTINUE
                                                                                00103
      IPLATE = IPLATE+1
                                                                                00104
      GO TO 95
                                                                                00105
  400 IF(INK.EQ.O) GO TO 1100
                                                                                00106
      NO=INK
                                                                                00107
      N ≈ 5
                                                                                00108
      CALL LEASTFIT(N, NO, BB, RES)
                                                                                00109
      END FILE 21
                                                                                00110
      REWIND 21
                                                                                00111
  410 READ(21,3) LX,LY,CAM,TAB,CAN,DENS
                                                                                00112
      IF(EOF(21)) GO TO 500
IPHCT(LX,LY)=DENS-(BB(1)+BB(2)*CAM+BB(3)*TAB+Bb(4)
                                                                                00113
                                                                                00114
     1 *CAN)
                                                                                00115
      GO TO 410
                                                                                00116
  500 KND=4
                                                                                00117
      KDN = 4
                                                                                00118
      NXS = NXI - 2
                                                                                00119
      NYS=NYI-2
                                                                                00120
      CALL INTERP(NXI, NYI, NXS, NYS, KND, KDN)
                                                                                00121
      LUNO=IBAND+10
                                                                                00122
      IF (HARDWARE(LUNC).EQ. 1) GO TO 580
                                                                                00123
      CALL EQUIP(LUNO, 5HFILE )
                                                                                00124
  580 REWIND LUND
                                                                                00125
      DO 585 I=1.NXI.5
                                                                                00126
```

Figure C-8. Subroutines used with program REMOTE. (Continued)

```
I MAX = C
                                                                              00127
     00 583 J=1.NYI
                                                                              00128
     IF(ABS(IPHOT(!,J)).GT.ABS(IMAX)) IMAX=IPHOT(!,J)
                                                                              00129
 583 CONTINUE
                                                                              00130
     WRITE(61,10) IMAX
                                                                              00131
 585 CONTINUE
                                                                              00132
                                                                              00133
     DO 590 I=1.NXI.20
     DO 590 J=1.NYI
                                                                              00134
     KK=I+19
                                                                              00135
     WRITE(LUNO,8) (IPHOT(K,J),K=I,KK)
                                                                              00136
   d FORMAT(X,2016)
                                                                              00137
 590 CONTINUE
                                                                              00138
     END FILE LUNG
                                                                              00139
     LUNC=IBAND+30
                                                                              00140
     IF (HARDWARE(LUNO) .EQ. 1) GO TO 592
                                                                              00141
     CALL EGUIP(LUNO, 5HFILE )
                                                                              00142
 592 REWIND LUNG
                                                                              00143
     REWIND 5
                                                                              00144
 595 REAU(5,9) LX,LY
                                                                              00145
   9 FOR (214)
                                                                              00146
     IF (EOF(5)) GO TO 598
                                                                              00147
     WRITE(LUNG, 10) IPHOT(LK, LY)
                                                                              00148
                                                                              00149
 10 FORMAT(18)
     GO TO 595
                                                                              00150
 598 END FILE LUND
                                                                              00151
    GC TO (900,900,1100), IEND
                                                                              00152
 900 CALL ZERGARRY(NXI.NYI.1.0.1.0)
                                                                              00153
     REVIND 21
                                                                              00154
GO TO 89
1000 BACKSPACE ILUN
                                                                              00155
                                                                              00156
     If (<G0.5T. 0) GO TO 101
                                                                              00157
1100 RETURN
                                                                              00158
                                                                              00159
     END
```

Figure C-8. Subroutines used with program REMOTE. (Continued)

```
00001
      DEFINE DECLAR
      COMMON X(10,300), IPHOT(120,80), CAMO(90,6), C(20,3)
                                                                                  00002
      CCMMON B(15,6),P(2,8),ANGHB(4),VOLL(2,8)
                                                                                  00003
      END
                                                                                  00004
      DEFINE GROCOGRD
                                                                                  00005
      XG(1)=CAMO(IPLATE,1)-CAMO(IPLATE,3)*XT(1)/XT(3)
                                                                                  00006
      XG(2)=CAMO(IPLATE,2)-CAMO(IPLATE,3)*XT(2)/XT(3)
                                                                                  00007
                                                                                  00008
      SUBROUTINE RESECTIFL DELOMG , DELPHI)
                                                                                  00009
      DIMENSION D(6,7)
                                                                                  00010
      INCLUDE DECLAR
                                                                                  00011
                                                                                  00012
      TEND=1
      REWIND 8
                                                                                  00013
                                                                                  00014
    5 IGO=0
                                                                                  00015
      1 = 1
C READ PHOTO CONTROL COORDINATES
                                                                                  00016
   10 READ (08.1) IFL. IPH. (IPHOT(100.J), X(10.J), X(9.J), J=1.3)
                                                                                  00017
    1 FORMAT(3X,2I1,3(I4,2F6.3,7X))
                                                                                  00018
      IF (EOF(8)) 15,20
                                                                                  00019
   15 IEND=2
                                                                                  00020
                                                                                  00021
      GO TO 40
   20 IPLT=(IFL-1)*10+IPH
                                                                                  00022
                                                                                  00023
      IF (I-1) 21,21,23
   21 IPLATE=IPLT
                                                                                  00024
                                                                                  00025
   23 IF(IPLT-IPLATE) 24,25,24
                                                                                  00026
   24 BACKSPACE 8
      GO TO 40
                                                                                  00027
   25 DO 38 J=1.3
                                                                                  00028
      IF(IPHOT(100,J).EQ. 0 .AND. X(10,J).GT. 0.) GO TO 26
IF(IPHOT(100,J).GT. 0 .AND.IPHOT(100,J).LE.191GO TO 28
                                                                                  00029
                                                                                  00030
      IF(IPHOT(100,J).LE.33 .AND.IPHOT(100,J).GT.291G0 TO 30
                                                                                  00031
      GO TC 38
                                                                                  00032
   26 XP=X(10,J)
                                                                                  00033
      YP=X(9,J)
                                                                                  00034
      GO TO 38
                                                                                  00035
   28 B(I,1)=IPHOT(100,J)
                                                                                  00036
      B(I,2)=X(9,J)
                                                                                  00037
      P(I,3)=X(10,J)
                                                                                  00038
      I = I + 1
                                                                                  00039
      GO TO 38
                                                                                  00040
   30 K=IPHOT(100,J)-29
                                                                                  00041
                                                                                  00042
      X(1,K)=X(10,J)
      X(2,K)=X(9,J)
                                                                                  00043
   38 CONTINUE
                                                                                  00044
                                                                                  00045
      GO TO 10
   40 IMAGE= 1-1
                                                                                  00046
      IF (IMAGE-3) 1002,50,50
                                                                                  00047
   50 IF (IPLATE-30) 55,55,52
                                                                                  00048
   52 XP=(X(1,1)+X(1,2)+X(1,3)+X(1,4).)/4.
                                                                                  00049
      YP = (X(2,1)+X(2,2)+X(2,3)+X(2,4))/4.
                                                                                  00050
   55 DO 57 I=1. IMAGE
                                                                                  00051
      B(I,2) = YP - B(I,2)
                                                                                  00052
      B(I,3) = XP - B(I,3)
                                                                                  00053
   57 CONTINUE
                                                                                  00054
C READ GROUND CONTROL
                                                                                  00055
      DO 100 I=1, IMAGE
                                                                                  00056
                                                                                  00057
      REWIND 9
      K=B(I+1)
                                                                                  00058
   60 J=FFIN(9)
                                                                                  00059
      IF(EOF(9)) GO TO 1004
                                                                                  00060
      IF (K-J) 70,80,70
                                                                                  00061
   70 DO 75 J=1.3
                                                                                  00062
      TRASH=FFIN(9)
                                                                                  00063
```

Figure C-8. Subroutines used with program REMOTE. (Continued)

```
75 CONTINUE
GO TO 60
                                                                                00064
                                                                                 00065
   80 DO 90 J=4,6
                                                                                00066
      B(I, J) = FFIN(9)
                                                                                00067
   90 CONTINUE
                                                                                00068
  100 CONTINUE
                                                                                00069
C READ INITIAL RARAMETERS FOR CAMERA PHOTO NO., X,Y,Z IN FT
                                                                                00070
C AND OMEGA, PHI , KAPPA IN DEGREES
                                                                                00071
      REWIND 10
                                                                                00072
      K=(IPLATE-1)/30+1
                                                                                00073
      GO TO (102.104.106).K
                                                                                00074
  102 IPLT2=IPLATE
                                                                                00075
      DEL1=0.
                                                                                00076
      DEL2=0.
                                                                                00077
      GO TO 108
                                                                                00078
  104 IPLT2=IPLATE-30
                                                                                 00079
      DEL1=DELOMG
                                                                                00080
      DEL2=DELPHI
                                                                                00081
      GO TO 108
                                                                                 00082
  106 IPLT2=IPLATE-60
                                                                                 00083
      DEL1=DFLOMG
                                                                                 00084
      DEL2=DELPHI
                                                                                00085
  108 IPLT=FFIN(10)
                                                                                00086
      IF (EOF(10)) GO TO 1006
                                                                                00087
      IF (IPLT-IPLT2) 110,120,110
                                                                                00088
  110 DO 115 I=1.6
                                                                                00089
      TRASH=FFIN(10)
                                                                                00090
  115 CONTINUE
                                                                                00091
      GO TO 108
                                                                                00092
  120 DO 125 J=1,3
                                                                                00093
      C(1,J)=FFIN(10)
                                                                                00094
  125 CONTINUE
                                                                                00095
      C(2,1)=FFIN(10)/57.2958+DEL1
                                                                                00096
      C(2,2)=FFIN(10)/57.2958+DEL2
                                                                                00097
      C(2,3)=FFIN(10)/57.2958
                                                                                00098
      DO 130 I=1.3
                                                                                00099
      C(3,I) = COSF(C(2,I))
                                                                                00100
      C(2,I) = SINF(C(2,I))
                                                                                00101
  130 CONTINUE
                                                                                00102
      ORIENTATION FACTORS IN C ARRAY
                                                                                00103
  610 C(4,1)=C(3,2)*C(3,3)
                                                                                00104
      ((5,1)=-((3,2)*((2,3)
                                                                                00105
      C(6,1)=C(2,2)
                                                                                00106
      C(10,1) = -C(2,2) * C(3,3)
                                                                                00107
      C(11,1)=C(2,2)*C(2,3)
                                                                                00108
      ((12,1)=((3,2)
                                                                                00109
      C(10,2)=C(4,1)*C(2,1)
                                                                                00110
      ((11,2)=((5,1)*((2,1)
                                                                                00111
      C(12,2)=C(2,1)*C(2,2)
                                                                                00112
      C(10,3) = -C(4,1) * C(3,1)
                                                                                00113
      C(11,3) = -C(5,1) * C(3,1)
                                                                                00114
      C(12,3) = -C(3,1) * C(2,2)
                                                                                00115
      C(4,2)=C(3,1)*C(2,3)+C(12,2)*C(3,3)
                                                                                00116
      C(5,2)=C(3,1)*C(3,3)-C(12,2)*C(2,3)
                                                                                00117
      C(6,2) = -C(2,1)*C(3,2)
                                                                                00118
      C(4,3)=C(2,1)*C(2,3)+C(10,1)*C(3,1)
                                                                                00119
      C(5,3)=C(2,1)*C(3,3)+C(11,1)*C(3,1)
                                                                                00120
      C(6,3) = C(3,1) * C(3,2)
                                                                                00121
      DO 612 I=7.9
                                                                                00122
      C(I,1)=0.
                                                                                00123
      C(I,2) = -C(I-3,3)
                                                                                00124
      C(I,3)=C(I-3,2)
                                                                                00125
      C(13,I-6)=C(5,I-6)
                                                                                00126
```

Figure C-8. Subroutines used with program REMOTE. (Continued)

```
((14 \cdot I - 6) = -(4 \cdot I - 6)
                                                                             00127
                                                                             00128
612 C(15 \cdot I - 6) = 0
    GO TO (613,763),IGO
                                                                             00129
   CLEAR NORMAL EQUATION D ARRAY TO ZERO
                                                                             00130
613 DO 614 I=1.6
                                                                             00131
    DO 614 J=1,7
                                                                             00132
614 D(I,J)=0.
                                                                             00133
    COMPUTE P TERMS FOR RESECTION PASS POINTS
                                                                             00134
    DO 618 NU=1+IMAGE
                                                                             00135
    DO 619 K=1.3
                                                                             00136
619 C(16,K)=B(NU,K+3)-C(1,K)
                                                                             00137
    K=4
                                                                             00138
    JJ 620 L=17,20
                                                                             00139
    DO 620 I=1.3
                                                                             00140
    C(L,I)=C(K,1)*C(16,1)+C(K,2)*C(16,2)+C(K,3)*C(16,3)
                                                                             00141
620 K=K+1
                                                                             00142
                                                                             00143
    DO 621 I=1.2
    DO 622 L=1.4
                                                                             00144
622 P(I,L)=(B(NU,I+1)*C(L+16,3)~(-FL)*C(L+16,I))/C(17,3)
    DO 623 L=5.7
                                                                             00146
623 P(I_1,L) = (-B(NU_1,I_1)*C(6_1,L_4) + (-FL)*C(I_1,I_1,L_4))*C(I_1,I_1,I_4)
                                                                             00147
621 P(I,8) = -P(I,1)
                                                                             00148
    CONTRIBUTION TO NORMAL EQUATIONS
                                                                             00149
    DO 618 I=1,6
                                                                             00150
                                                                             00151
    DO 618 J=I,7
    DO 618 K=1.2
                                                                             00152
618 D(1,J)=D(1,J)+P(K,1+1)*P(K,J+1)
                                                                             00153
    FOREWARD SOLUTION
                                                                             00154
    DO 699 I=1.6
                                                                             00155
    SQR=SQRT(D(I,I))
                                                                             00156
   DO 698 J=I,7
                                                                             00157
698 D(I,J)=D(I,J)/SQR
                                                                             00158
    IF (1-6)697,696,696
                                                                             00159
697 IP1=I+1
                                                                             00160
    00 699 L=IP1.6
                                                                             00161
    DO 699 J=L,7
                                                                             00162
699 D(L,J)=D(L,J)-D(I,L)*D(I,J)
                                                                             00163
   BACK SOLUTION
                                                                             00164
696 D(6,7)=D(6,7)/D(6,6)
                                                                             00165
    DO 691 I=1,5
                                                                             00166
    NMI = 6 - I
                                                                             00167
    SMIPI=NMI+1
                                                                             00158
    DO 690 J=NMIP1 .6
                                                                             00169
690 D(NMI,7)=D(NMI,7)-D(J,7)*D(NMI,J)
                                                                             00170
691 D(NMI,7)=D(NMI,7)/D(NMI,NMI)
                                                                             00171
    DO 625 I=4,6
                                                                             00172
625 D(I,7)=D(I,7)*C(1,3)
                                                                             00173
    ADD LEAST SQUARES RESULTS TO CAMERA PARAMETERS IN C ARRAY
                                                                             00174
    DO 626 J=1,3
                                                                             00175
    C(1,J) = C(1,J) + D(J+3,7)
                                                                             00176
    C(4,J) = D(J,7)
                                                                             00177
    C(5,J) = SQRT(1.-C(4,J)*C(4,J))
                                                                             00178
    C(6,J) = C(2,J) * C(5,J) + C(3,J) * C(4,J)
                                                                             00179
    C(7,J)=C(3,J)*C(5,J)-C(2,J)*C(4,J)
                                                                             00180
    C(2,J)=C(6,J)
                                                                             00181
626 C(3,J)=C(7,J)
                                                                             00182
    TEST MAGNITUDE OF CORRECTIONS FOR ORIENTATION PARAMTERES
                                                                             00183
    DO 628 I=1,3
                                                                             00184
    IF (ABS(D(I.7))-.00001)628.628.610
                                                                             00185
628 CONTINUE
                                                                             00186
    I GO = 2
                                                                             00187
    GO TO 610
                                                                             00188
    CAMERA PARAMETERS OUTPUT
                                                                             00189
```

Figure C-8. Subroutines used with program REMOTE. (Continued)

```
763 WRITE(20,532)
WRITE(20,527)
                                                                                 00190
00131
     WRITE (20,528) IPLATE, (C(1,J),J=1,3)
                                                                                 00192
     WRITE (20,529)
WRITE (20,528) IPLATE, (C(2,J),J=1,3)
                                                                                 00193
                                                                                 00194
     WRITE (20,528) IPLATE, (C(3,J),J=1,3)
                                                                                 00195
     WRITE (20,530) IPLATE
WRITE (20,533) ((C(I,J),J=1,3),1=4,6)
                                                                                 00196
                                                                                 00137
 527 FORMAT(/49H PLATE XO
                                                                   Z \subset I
                                                                                 00170
 528 FURMAT(17,3(2X,E14.7))
                                                                                 00199
                                 OMEGA
 529 FORMAT(/50H PLATE
                                                  PHI
                                                                 KAPPAI
                                                                                 00200
 530 FORMAT(/30H DRIENTATION MATRIX FOR PLATE +17)
                                                                                 00201
 532 FORMAT(/50H URIENTATION PARAMETER CURRECTION LIMIT 13 0.00001)
                                                                                 00202
 533 FORMAT (1X,3(2X,F14.7))
                                                                                 20203
     DO 710 I=1;3
                                                                                 01204
                                                                                 30205
     CAMO(IPLATE.I) = C(1.I)
     TAN=ATANF(C(2,1)/C(3,1))
                                                                                 00206
                                                                                 00207
     IF (C(3,1)) 702,704,704
 702 TAN=3.14159+TAN
                                                                                 0050A
704 CAMO(IPLATE, I+3)=TAN
                                                                                 00209
 710 CONTINUE
                                                                                 00210
     GO TG (5,1100), IEND
                                                                                 00211
1002 WRITE(20.1003) IPLATE
                                                                                 00212
1003 FORMAT( ! INSUFFICIENT CONTROL, PLT 1, 16)
                                                                                 00213
    GO TO (5,1100), IEND
                                                                                 00214
1004 WRITE (20,1005) K
                                                                                 00215
1005 FORMAT( GRD CONTROL MISSING 16)
                                                                                 00215
                                                                                 00217
    GO TO (5,1100), IFNO
1006 WRITE (20,1007) IPLATE
1007 FORMAT(* INITIAL PARAMETERS NOT ON FILE***16)
                                                                                 00218
                                                                                 00219
                                                                                 00220
     GO TO(5,1100), IFNO
                                                                                 00221
1100 RETURN
                                                                                 00222
     FND
```

Figure C-8. Subroutines used with program REMOTE. (Continued)

```
SUBROUTINE SUNLITE (TIMELT . H . AZ)
                                                                               00001
      DIMENSION H(3), AZ(3), TIMELT(3)
                                                                               00002
       COMPUTE THE ALTITUDE AND AZIMUTH OF THE SUN
                                                                               00003
       TIME IS PACIFIC DAYLIGHT TIME
                                                                               00004
C
      READ IN DECLINATION OF SUN IN DEGREES (AA) AND MIN (B)
                                                                               00005
\subset
      AND CHANGE IN MIN PER HOUR (CC). EQUATION OF TIME
                                                                               00006
c
      IN MINUTES (DD), SECONDS (E), AND CHANGE PER HOUR (F)
                                                                               00007
      LONGITUDE (WLON) AND LATITUDE (ALAT).
                                                                               80000
      AA=FFIN(7)
                                                                               00009
      B=FFIN(7)
                                                                               00010
      CC=FFIN(7)
                                                                               00011
      DD=FFIN(7)
                                                                               00012
      F=FFIN(7)
                                                                               00013
      F=FFIN(7)
                                                                               00014
      WLON=FFIN(7)
                                                                               00015
      ALAT=FFIN(7)
                                                                               00016
      ALAT=ALAT*3.14159/180.
                                                                               00017
      APANG=FFIN(7)
                                                                               81000
      DO 200 I=1.3
                                                                               00019
      GCT=TIMFLT(I)+7.
                                                                               00020
      DEC=(AA+(B+CC*GCT)/60.)*3.14159/180.
                                                                               00021
      EQT = (DD+(E+F*GCT)/60.)/60.
                                                                               00022
      GHA=(GCT+EQT)*15.0-180.
                                                                               00023
      TT=GHA-WLON
                                                                               00024
      TT=TT#3.14159/180.
                                                                               00025
      T=ABS(TT)
                                                                               00026
      Z=SINF(T)/(COSF(ALAT)*TANF(DEC)~SINF(ALAT)*COSF(T))
                                                                               00027
      AZ(I) = ATANF(Z)
                                                                               00028
      IF (TT) 120,120,123
                                                                               00029
  120 IF (AZ(I)) 121,121,126
                                                                               00030
  121 AZ(I)=3.14159+AZ(I)
                                                                               00031
      GO TO 126
                                                                               00032
  123 IF (AZ(I)) 124,124,125
                                                                               00033
  124 AZ(I)=3.14159-AZ(I)
                                                                               00034
      GO TO 126
                                                                               00035
  125 \text{ AZ}(I) = 6 \cdot 28318 - \text{AZ}(I)
                                                                               00036
  126 CONTINUE
                                                                               00037
      SINH=SINF(ALAT)*SINF(DEC)+COSF(ALAT)*COSF(DEC)*COSF(T)
                                                                               00038
      COSH=SINF(T)*COSF(DEC)/SINF(AZ(I))
                                                                               00039
      ALT=ABS(SINH/COSH)
                                                                               00040
      HH=ATANF(ALT)
                                                                               00041
      REF=((1.+25./60.)/60.)*3.14159/180.
                                                                               00042
      H(I) = HH + RFF
                                                                               00043
      AZ(I)=AZ(I)-APANG/57.2958
                                                                               00044
  200 WRITE (20,1) 4(1), REF, AZ(1)
                                                                               00045
    1 FORMAT(11H SUN'S ALT. ,F10.6,12H REFRACTION ,F10.6,
                                                                               00046
     1/16H AZIMUTH OF SUN ,F10.6)
                                                                               00047
      RETURN
                                                                               00048
      FND
                                                                               00049
, ,
      DEFINE DECLAR
                                                                               00001
      COMMON X(10,300), IPHOT(120,80), CAMO( 0,6), C(20,3)
                                                                               00002
      COMMON B(15,6),P(2,8),ANGHB(4),VOLL(2,8)
                                                                               00003
                                                                               00004
      DEFINE GRDCOORD
                                                                               00005
      XG(1)=CAMO(IPLATE:1)-CAMO(IPLATE:3)*XT(1)/XT(3)
                                                                               00006
      XG(2)=CAMO(IPLATE,2)-CAMO(IPLATE,3)*XT(2)/XT(3)
                                                                               00007
                                                                               00008
```

Figure C-8. Subroutines used with program REMOTE. (Continued)

```
SUBROUTINE TRNCOGRD(XP,YP,FL,XT)
DIMENSION XT(3)
                                                                               000009
    INCLUDE DECLAR
                                                                               00011
    DO 10 K=1.3
                                                                               00012
    XT(K)=C(1*K)*XP+C(2*C)*YP+C(3*K)*(-FL)
                                                                               00013
 10 CONTINUE
                                                                               00014
    XDIS=SQRT(XT(])*XT(])+XT(2)*XT(2)+XT(3)*XT(3))
                                                                               00015
    DO 20 K=1.3
                                                                               00016
    XT(K) = XT(K)/XD1S
                                                                               00017
 20 CONTINUE
                                                                               00018
    RETURN
                                                                               00019
    END
                                                                               00020
    SUBROUTINE ZEROARRY(NXI, NYI, NXX, NYX, IFRA, KOR)
                                                                               00021
    INCLUDE DECLAR
                                                                               00022
    DO 100 I=1,NXI
                                                                               00023
    DO 100 J=1.NYI
                                                                               00024
    IPHOT(I,J)=0
                                                                               00025
100 CONTINUE
                                                                               00026
    DO 200 I=1.NXX
                                                                               00027
    DO 200 J=1.NYX
                                                                               00028
    X(I,J)=0.0
                                                                               00029
200 CONTINUE
                                                                               00030
    DO 300 I=1. IFRA
                                                                               00031
    DO 300 J=1,KOR
                                                                               00032
    CAMO(I,J)=0.0
                                                                               00033
300 CONTINUE
                                                                               00034
    RETURN
                                                                               00035
    END
                                                                               00036
    SUBROUTINE ORIMAT(IPLATE)
                                                                               00037
    INCLUDE DECLAR
                                                                               00038
    DIMENSION AC(3,3), BC(3,3)
                                                                               00039
    IF (IPLATE.GT. 30.AND.IPLATE.LE.60) GO TO 100
                                                                               00040
    IF (IPLATE.GT. 60.AND.IPLATE.LE.90) GG TO 200
                                                                               00041
    IGO=1
                                                                               00042
    K=IPLATE
                                                                               00043
    GO TO 300
                                                                               00044
100 IGO=2
                                                                               00045
    K=IPLATE-30
                                                                               00046
    GO TO 300
                                                                               00047
200 IGO=3
                                                                               00048
    K=IPLATE-60
                                                                               00049
300 SINW=SINF (CAMO(K,4))
                                                                               00050
    COSW=COSF(CAMO(K,4))
                                                                               00051
    SINP=SINF(CAMO(K.5))
                                                                               00052
    COSP=COSF(CAMO(K,5))
                                                                               00053
    SINK=SINF(CAMO(K,6))
                                                                               00054
    COSK=COSF(CAMO(K,6))
                                                                               00055
    C(1,1)=COSP*CO5K
                                                                               00056
    C(1,2)=COSW*SINK+SINW*SINP*COSK
                                                                               00057
    C(1,3)=SINW*SINK-COSW*SINP*COSK
                                                                               00058
    C(2,1) =- COSP*SINK
                                                                               00059
    C(2,2)=COSW*COSK-SINW*SINP*SINK
                                                                               00060
    C(2,3)=SINW*COSK+COSW*SINP*SINK
                                                                               00061
    C(3,1)=SINP
                                                                               00062
    C(3,2) = -SINW*COSP
                                                                               00063
    C(3,3) = COSW*COSP
                                                                               00064
    GO TO (1000,400,500,600),IGO
                                                                               00065
400 CAMO(90,4)=ANGHB(1)
                                                                               00066
    CAMO(90+5) = ANGHB(2)
                                                                               00067
                                                                               00068
    CAMO(90.6) = 0.0
410 DO 420 I=1,3
                                                                               00069
    DO 420 J=1.3
                                                                               00070
                                                                               00071
    \Delta C(I,J) = C(I,J)
```

Figure C-8. Subroutines used with program REMOTE. (Continued)

```
420 CONTINUE
                                                                               00072
                                                                               00073
     K=07
                                                                               00074
     IG0 = 4
     GO TO 300
                                                                               00075
 500 CAMC(90+4)=ANGHB(3)
                                                                               00076
                                                                               00077
     CAMO(90+5)=ANGmb(4)
     CAMO(90,6)=0.0
                                                                               00078
                                                                               00079
     30 TG 410
                                                                               00080
 500 00 620 I=1.3
     50 620 J=1.3
                                                                               00081
                                                                               00082
     BC([,J)=C([,J)
 SUNITAGO CS6
                                                                               00083
     DO 700 I=1.3
                                                                               00084
                                                                               00085
     00 700 J=1.3
     c(I,J)=0.
                                                                               00086
     DO 700 K=1.3
                                                                               00087
     C(I,J) = C(I,J) + AC(K,J) *BC(I,K)
                                                                               00088
 700 CONTINUE
                                                                               00089
1000 RETURN
                                                                               00090
                                                                               00091
     END
     FUNCTION DISTIXP, YP)
                                                                               00092
                                                                               00093
     DIST=SQRT(XP*XP+YP*YP)
     RETURN
                                                                               00094
                                                                               00095
     FUNCTION STUDEV(SUM1.SUM2.AJ)
                                                                               00096
                                                                               00097
     STODEV=SQRT((SUM2-SUM1*SUM1/AJ)/(AJ-1.))
     RETURN
                                                                               00098
                                                                               00099
                                                                               00100
     FUNCTION REFLECT(AI + AR)
     A = AI - AR
                                                                               00101
                                                                               00102
     R=AI+AR
                                                                               00103
     C=SINF(A)
                                                                               00104
     D=SINF(B)
                                                                               00105
     F=C/COSE(A)
     F=0/COSF(B)
                                                                               00106
     REFLECT=1.-((F*F)/(F*F)+(C*C)/(D*D))/2.0
                                                                               00107
     RETURN
                                                                               00108
     F \0
                                                                               00109
     SUBROUTINE INTERPINXI, NYI, NXS, NYS, KND, KDN)
                                                                               00110
     INCLUDE DECLAR
                                                                               00111
                                                                               00112
     DO 540 I=1,NYI
     DO 540 J=1,NXS
                                                                               00113
     IF (IPHOT(J,I)) 530,540,530
                                                                               00114
 530 IF (IPHOT(J+1,I)) 540,532,540
                                                                               00115
 532 DO 534 K=2,KND
                                                                               00116
     KJ=J+K
                                                                               00117
     IF (KJ-NXI) 533,533,540
                                                                               00118
 533 IF (IPHOT(KJ,I)) 536,534,536
                                                                               00119
 534 CONTINUE
                                                                               00120
                                                                               00121
     GO TO 540
 536 LJ=KJ-J-1
                                                                               00122
     DJ=KJ-J
                                                                               00123
     DIF=IPHCT(J,I)-:PHOT(KJ,I)
                                                                               00124
     DO 538 K=1.LJ
                                                                               00125
     AJ=K
                                                                               00126
     LLJ=J+K
                                                                               00127
     IPHOT(LLJ,I): IPHOT(J,I)-DIF*AJ/DJ
                                                                               00128
 538 CONTINUE
                                                                               00129
 540 CONTINUE
                                                                               00130
                                                                               00131
     DO 520 I=1.NXI
     00 520 J=1.NYS
                                                                               00132
     IF (IPHOT([,J)) 510,520,510
                                                                               00133
 510 IF (IPHOT(I,J+1)) 520,512,520
                                                                               00134
```

Figure C-8. Subroutines used with program REMOTE. (Continued)

```
512 DO F14 K=2,KDN
                                                                              00135
    KJ=J+K
                                                                              00136
    IF (KJ-NYI) 513,513,520
                                                                              00137
513 IF (IPHOT(I+KJ)) 216.5.4.516
                                                                              00138
514 CONTINUE
                                                                              00139
    GO TO 520
                                                                              00140
516 LJ=KJ-J-1
                                                                              00141
    DJ=KJ-J
                                                                              00142
    DIF=IPHOT(I,J)-IPHOT(I,KJ)
                                                                              00143
    00 518 K=1,LJ
                                                                              00144
    AJ=K
                                                                              00145
    11.1=1+K
                                                                              00146
    IPHOT(I,LLJ)=IPHOT(I,J)-DIF*AJ/DJ
                                                                              00147
518 CONTINUE
                                                                              00148
520 CONTINUE
                                                                              00149
    RETURN
                                                                              00150
    END
                                                                              00151
    SUBROUTINE AVERAGE (NXS + NYS)
                                                                              00152
    INCLUDE DECLAR
                                                                              00153
    ITEST=1
                                                                              00154
    DO 570 I=1.NXS
                                                                              00155
    DO 560 J=2,NYS
                                                                              00156
    GO TO (562,564), ITEST
                                                                              00157
562 X(1,J)=(IPHOT(I,J)+IPHOT(I,J-1)+IPHOT(I,J+1)+
                                                                              00158
   1 IPHOT(I+1,J))/4
                                                                             00159
564 X(2,J)=(IPHOT(I,J)+IPHOT(I+1,J)+IPHOT(I+2,J)+
                                                                              00160
   1 IPHOT(I+1,J+1)+IPHOT(I+1,J-1))/5
                                                                              00161
560 CONTINUE
                                                                              00162
    ITEST=2
                                                                              00163
    DO 565 J=2,NYS
                                                                              00164
    1PHOT(1,J)=X(1,J)
                                                                              00165
    X(1,J) = X(2,J)
                                                                              00166
565 CONTINUE
                                                                              00167
570 CONTINUE
                                                                              00168
    RETURN
                                                                              00169
    FND
                                                                              00170
    SUBROUTINE CULL(NXI, NYI)
                                                                              00171
    INCLUDE DECLAR
                                                                              00172
    BJ=9.
                                                                              00173
    IX = NXI - 2
                                                                              00174
    IY = NYI - 2
                                                                             00175
    DO 100 I=1.IX
                                                                              00176
    DO 100 J=1,IY
                                                                              00177
    SUM1=0.0
                                                                              00178
    SUM2 = 0 • 0
                                                                              00179
    DO 20 IK=1.3
                                                                              00180
    DO 20 JK=1.3
                                                                              00181
    IP=I+IK-1
                                                                              00182
    JP=J+JK-1
                                                                              00183
    AI=IPHOT(IP+JP)
                                                                              00184
    SUM1=SUM1+AI
                                                                              00185
    SUM2=SUM2+AI*AI
                                                                              00186
 20 CONTINUE
                                                                              00187
    SUM2=STDDEV(SUM1,SUM2,BJ)
                                                                              00188
    AI=SUM1/BJ
                                                                              00189
    BI=IPHOT([+1,J+1)
                                                                              00190
    CI=(SUM1-BI)/(BJ-1.)
                                                                              00191
    SUM1 = AI-SUM2
                                                                              00192
    SUM2=AI+SUM2
                                                                              00193
    IF(BI.LT.SUM1.OR.BI.GT.SUM2) IPHOT(I+1.J+1)=CI
                                                                             00194
100 CONTINUE
                                                                              00195
    RETURN
                                                                              00196
    END
                                                                              00197
```

Figure C-8. Subroutines used with program REMOTE. (Continued)

```
0000
                                                                                                                                                                                                                                                                                                       000000
                                                                                                          0000
                                                                                                          03598
01627
03514
03545
04672
07844
04776
03982
                                                            03482
01401
03928
                                                                                                                                 01635
05535
                                                                                   01903
03081
                                                                                                                                                                                      04930
04868
                                                                                                                                                                                                                                     04314
                                                                                                                                                 0552R
                                                                                                                                                                                                      00321
                                                                                                                                                                                                                                                                                                                      0000
                                                                                                                                                                                                                                                                                                       3000
3000
3000
3000
                                                            01224
                                                                                                          01440
01440
03419
                                                                                                                                                                                                                                     72516
74678
77451
              04011
                                                                                   02545
                              76401
74573
                                                                                                                                  ア・ロロト
                                                                                                                                         96500
                                                                                                                                                 72647
                                                                                                                                                                                               74640
                                                                                                                                                                                                                                                                                                     1066500 375800 3
1066500 375000 4
1066500 373500 4
1066500 375800 3
1066500 37500 3
                                                                                                                                 011
030
033
033
 0004
032
035
004
021
                                                              0004
0011
0004
011
                                                                                                          004
                                                                                                                                                                        031
                                                                                                                                                                                               033
                                                                                                                                                                                                      031
                                                             00000
                                                            014312
019312
019878
019878
019878
019878
019878
019878
019871
01987
01987
01987
01987
01987
01987
01987
01987
01987
01987
01987
01987
01987
01987
01987
04321
01241
02882
04044
04674
01699
                                                                                                                                                                                                                                                                                                       22222
                                                                                   05080
03227
028079
06071
000071
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
001785
00178
                                                                                                                                                                                                                                   03239
04649
02507
03901
02211
02660
03350
03825
02603
                                                            01595
03629
0391A
                                                             00012
00012
00012
00012
00012
00013
00013
00013
00013
00013
00013
 001
031
034
001
011
 013333
013333
001840
004882
013840
013841
013841
013841
013841
013841
013840
000844
000844
000844
000844
000844
000844
000844
000844
000844
000844
000844
000844
000844
                            005000
005000
005000
005000
005000
00500
00500
00500
00500
00500
00500
00500
00500
00500
00500
00500
00500
00500
00500
                                                                                                                                                                      03198
04639
04040
02434
04240
05225
02464
08023
                                                                                                                                        01126
00507
                                                                                                                                                               02661
                                                                                                                                                                                                    02423
                                                                                                                                                                                                                           04479
                                                                                                                                                        01488
                                                                                                                                                                                                                                           02504
02716
                                                                                                                                                                                                                     03241
                                                                                                                                                                                                                                                                                                             1069310 375760 0.0
1069540 373540 0.0
1072951 369571 130
1072949 373966 42
1073606 377145 75
 0
                                                                                                                                                                                                                                                                                                              -4001
                                                                                                       -51.6
-0.39
124.0667
      4 15 5 21 15 50 9000
                                                             31.63
```

Figure C-9. Sample input data for REMOTE.

APPENDIX D

PROCESSING OF 1970-71 PHOTOGRAPHIC DATA

A general description of the CDC 3300 Computer and special follran input functions is given in the introduction of Appendix B.

The program used for processing the data collected in 1970 and 1971 was program INSHORE. The program delineates the plume outline from coordinates measured from the aerial photography and determines the area of the waste field. The direction and velocity of the current and the unitusion coefficients are determined from the dye patch. In the process, state plane coordinates of the points around the plume were computed, and these were saved for later plotting on the Tektropix graphic-scope. See figure D-1 for a flow diagram of program INSHORE. The numbers in parentheses on the flow diagram correspond to line numbers on the program listing in figure D-2.

Program

RESECT2, a version of the subroutine RESECT used in processing the data in 1968 and 1969. After the orientation is completed, the coordinates of the points on the photograph are read in, and the state plane coordinates of each point are computed. As this is done, the data is sorted according to the event number so that it is known whether the point is a plume point, a point in the foam or kelp, a dye patch point, or a point representing the apparent position of the outfall.

If the point is on the plume, a code number is assigned to indicate that a continuous line is to be drawn from the previous point when the data is plotted. Therefore, IDO is set to equal 1. If the point is the first point, a line from the origin to that point is not desired, and IPEN = 0. For all other plume points, the line is required and IPEN = 1. When the last plume point is reached, the area of the plume is computed by calling subroutine SECPROP. The area is converted to acres, and is stored for later print out. As each point is assigned the proper code, the code and the coordinate are written on LUN 23.

The points indicating the foam, kelp, and the outfall are coded separately, and are also written out with their respective coordinates and codes.

The dye points are read, and as the last point is reached, section properties needed for the computation of diffusion coefficients are calculated. This is also done by subroutine SECPROP.

After the end of file has been reached on LUN 8, the time elapsed between flights is typed in. If there are two photos on file, the current velocity and direction are computed, using section properties of

the dye patch. A current vector is then generated, and the coordinates needed to plot the vector are written on LUN 23.

Diffusion coefficients are then computed and all of the general information is written on LUN 20.

Normally the data on LUN 23 is saved to be used as input for the plotting program. The data on LUN 20 is sent to the line printer and is used for reference purposes.

Input Description

The input on LUN 8 consists of photo coordinates, with the format being the same as in the previous year (see Appendix C, figure C-8). As shown below, the event number coding differs from that listed in Appendix C.

Event No.	Description
000	Principal point.
001-019	Ground control.
100-498	Plume points.
499	Last plume point (always).
500-599	Foam points.
600-699	Kelp points.
700-898	Dye patch points.
899	Last dye patch point (always).
999	Outfall.

It should be noted that the control point numbers must correspond to the ground control numbers on LUN 9.

Data on LUNS 8 and 9 are exactly the same as listed in Appendix C. The data on LUN 9 is ground control, listing the point number, the x and y coordinates and the elevation above mean sea level. LUN 10 contains the initial orientation parameters for the camera station, and are arranged as follows: photo number, x and y coordinates, state plane coordinates, flying height, omega, phi and kappa rotation angles in degrees.

Output Description

The major output is a listing of coordinates for each point which is

to be plotted, along with a title for the plot. This is all written on LUN 23, and saved for later plotting. General information such as orientation for the photo, dye patch centroids, date, area of plume, current velocity, and diffusion coefficients are written on LUN 20, and are not saved except as hard copy. The area of the plume and date are also written on the teletype so that the operator may have a check to see if the program is operating correctly.

Plotting of Data

The data is plotted using a program which utilizes the Tektronix T-4002 slope. A grid is drawn and the axes are labeled. The data is then plotted and the plot labeled. A polaroid photograph is taken of the plot for a permanent record. Examples of these plots are shown in Section X.

Figure D-1 Flow diagram for computer program INSHORE.

Figure D-1. Flow diagram for computer program INSHORE.

```
00001
    PROGRAM SHORE
    COMMON C(23,3), IP(3), XF(3), YF(3)
                                                                               20000
    DIMENSION XPL(230,2), XU(200,2), XT(3), DYE(15,2,6), VEL(15), AZI(15)
                                                                               00003
    I FI Tat
                                                                               60004
                                                                               0.0005
    I 40 = 1
    IFL43=1
                                                                               0.0006
    ICHECK=1
                                                                               66607
100 CALL RESECT2(FL,XP,YP)
                                                                               00008
11) READ(9,1) IPLATE, ([P(J),XF(J),YF(J),J=1,3)
                                                                               0.0009
                                                                               00010
  1 FORMAT(4X, I1, 3(I4, 2F6.3, 6X))
    IF(E)F(8)) GO TO 1000
                                                                               00611
    IF(I2(1).67.99) GO TO 10
                                                                               00012
                                                                               00013
    IF(XF(1).LT.U.031) GO TO 110
                                                                               00014
    BACKSPACE 8
    GO TO 100
                                                                               60015
 10 00 211 J=1,3
                                                                               00016
    IF(I > (J) .E2.0.AND.XF(J) .EQ.0.) GO TO 110
                                                                               80017
    1=43-4F(J)
                                                                               00018
    Y1=X3-XF(J)
                                                                               00019
                                                                               00020
    00 210 K=1,3
210 XT(K) = C(4,K) + X1 + C(5,K) + Y1 + C(6,K) + (-FL)
                                                                               60021
    XDIS=SQRT(XT(1)*XT(1)+XT(2)*XT(2)+XT(3)*XT(3))
                                                                               00022
    DO 220 K=1,3
                                                                               00023
223 XT(K) = XT(K) / XDIS
                                                                               00024
    XPG1=C(1,1)-XT(1)+C(1,3)/XT(3)
                                                                               06025
    XPG2=C(1,2)-XT(2)+C(1,3)/XT(3)
                                                                               00026
    IGD=[P(J)/100
                                                                               66027
    GO TO (23,23,23,23,30,40,50,50,60) IGO
                                                                               00028
                                                                               0.00.29
 20 XPL([10,1)=XPG1
    XPL([NO,2)=XPG2
                                                                               60030
    IPEN=1
                                                                               00031
    IF(140.EQ.1) IPEN=0
                                                                               0.0032
    100=1
                                                                               00033
    I+0/1=C/1
                                                                               00034
    IF(IP(J).NE.499) GO TO 3JC
                                                                               00035
    N=IN)-1
                                                                               00036
    CALL SECPROP(XPL, N, 15, 1, DYE)
                                                                               00037
    PAREA = DYE (15,1,3)
                                                                               00038
    AC=PAREA/43560.
                                                                               00039
                                                                               00040
    I NO≈ L
    GO TO 300
                                                                               00041
 30 I00=2
                                                                               00042
    IPEN=0
                                                                               60043
    SO TO 300
                                                                               00044
 43 IDD=3
                                                                               00045
    [ = P = ]
                                                                               00046
    GO TO 300
                                                                               00047
 50 XO(IFLAG, 1) = XPG1
                                                                               00048
    XD(IFLAG,2)=XPG2
                                                                               00049
    IFLA;=IFLAG+1
                                                                               00050
    IF(IP(J).NE.899) GO TO 200
                                                                               00051
    N=IFLAG-1
                                                                               00052
    IFLT=1
                                                                               00053
    IF(IPLATE.GT.5) IFLT=2
                                                                               00054
    IF(IFLT.NE.LFLT) ICHECK =1
                                                                               00055
    CALL SECPROP(XD,N,ICHECK,IFLT,DYE)
                                                                               00056
    LFLT=IFLT
                                                                               00057
    IFLA,=1
                                                                               00058
    ICHECK=ICHECK+1
                                                                               00059
    GO T) 200
                                                                               00060
 64 IPEN=3
                                                                               00061
```

Figure D-2. Listing of program INSHORE.

```
100=4
                                                                              00062
300 WRITE(23,2) IP(J), XPG1, XPG2, IPEN, IDO
                                                                              00063
  2 FORMAT(X, I5, 2F10.0, 2I5)
                                                                              00064
201 CONTINUE
                                                                              00065
    GO TO 113
                                                                              00066
1000 WRITE(61,3)
                                                                              00067
   3 FORMAT(* TIME ELAPSED IN MINUTES*)
                                                                              00068
     TIME=TTYIN(4HTIME)
                                                                              00069
     TIME=TIME+60.
                                                                              00070
     IGOUNT = ICHECK-1
                                                                              00071
     SUMVE = 0.0
                                                                              00072
     VELNO-0.0
                                                                              00073
     00 413 I=1, ICOUNT
                                                                              00074
     XDIST = (DYE(I, 2, 1) - DYE(I, 1, 1))
                                                                              00075
     YOIST=(DYE(I,2,2)-DYE(I,1,2))
                                                                              00076
     AZI(I)=ATAN(XDIST/YDIST)
                                                                              00077
     IF(Y)IST.LT.0.) AZI(I)=AZI(1)+3.14159
                                                                              00078
     IF(A!I(I).LT.G.) AZI(I)=AZI(I)+6.28318
                                                                              00079
     (TRICK+TRICK+TRICK) TRORETRICK
                                                                              00080
     IF(X)IST.GT.50.) GO TO 370
                                                                              00081
     VEL (I) = 0.0
                                                                              06082
     GO TO 393
                                                                              00083
370 IF(X)IST.LT.5000.) GO TO 380
                                                                              00084
     GO TO 495
                                                                              00085
 380 VEL(I)=XJIST/TIME
                                                                              00086
     CALL ARROW(VEL(I), DYE(I,1,1), DYE(I,1,2), AZI(I))
                                                                              00087
     SUMV == SUMV =+ VEL (I)
                                                                              0.0088
390 VELN)=VELNO+1.
                                                                              00089
400 CONTINUE
                                                                              00090
    REWI 10 8
                                                                              00091
     VELM=J.0
                                                                              00092
     IF(VELNO.GT.0.1) VELM=SUMVE/VELNO
                                                                              00093
     READ(8,4) MO, IDAY
                                                                              00094
   4 FORMAT(212)
                                                                              00095
     WRITE(61,5)
                                                                              00096
   5 FORMAT(* TYPE IN YEAR IN WHICH PHOTO WAS TAKEN*)
                                                                              00097
     IYR=TTYIN(4HYR= )
                                                                              00098
     WRITE(61,6)
                                                                              00099
   6 FORMAT(# PLUME DATA#)
                                                                              00100
     WRITE(20,6)
                                                                              00101
     WRITE(20,7) MO, IDAY, PAREA, AC
                                                                              00102
     WRITE(61,7) MO, IDAY, PAREA, AC
                                                                              00103
   7 FURMAT( # MONTH #, 14, / # DAY #, 16, / # AREA # , E11.3, # SQ. FT. #, /
                                                                              00104
    1# AREA#, F6.1, # ACRES#)
                                                                              00105
     IF(VELNO.GT.O.1) GO TO 410
                                                                              00106
     WRITE (23,8)AC,MO,IDAY,IYR
                                                                              00107
   & FORMAT(#
                      AREA OF PLUME#, F6.1,# ACRES#,20x,2(12,#/#),12)
                                                                              00108
     GO TO 423
                                                                              0 0 1 0 9
 410 WRITE(23,14)AC, VELM, MO, IDAY, IYR
                                                                              00110
                    AREA OF PLUME #, F6.1, # ACRES#,
 1+ FORMAT(#
                                                                              60111
   1# /ELOCITY#,F5.2,# FPS #, 2(12,#/#),12)
                                                                              00112
 420 END FILE 23
                                                                              0.0113
     WRITE(20,9)
                                                                              00114
   9 FORMAT(# DYE PATCH DATA#)
                                                                              00115
     WRITE(20,12)(I,(()YE(I,J,K),K=1,3),J=1,2),VEL(I),AZI(I),
                                                                              00116
    5I=1, ICOUNT)
                                                                              00117
  12 FORMAT(# NO#,12,/# XCENTROID-1#,F10.0,/# YCENTROID-1#,F10.0,/
                                                                              00118
    C# AREA-1#, F15.2, /# XCENTROID-2#, F10.0, /# YCENTROID-2#, F10.0, /
                                                                              00119
    C# AREA-2#,F15.2,/# VELOCITY#,F13.2,#FPS#,/# AZIMUTH#
                                                                              00120
    C#FRO1 NORTH#, F8.5, #RADIANS#)
                                                                              06121
     WRITE(20,13) TIME, VELM
                                                                              00122
  13 FORMAT(# TIME FOR VEL.#,F6.0,/# VELOCITY= #,F5.2)
                                                                              00123
```

Figure D-2. Listing of program INSHORE. (Continued)

```
00124
      DO 430 I=1, ICOUNT
      RATI )= SURT (DYE(I,1,4) / JYE(I,1,5))
                                                                                   0.01.25
      RAT2=DYE(I,1,3)/3.14159
                                                                                   00126
                                                                                   00127
      ASQ1=RAT2*RATIO
      3SQ1=RATZ/RATIO
                                                                                   00128
      RATIJ=SQRT(DYE(I,2,4)/DYE(I,2,5))
                                                                                   00129
      RATE=0YE(I,2,3)/3.14159
                                                                                   00130
      CITAS#STAS=SECA
                                                                                   00131
                                                                                   06132
      BSD2=RATZ/RATIO
      RT41=SQRT (ASQ1)
                                                                                   00133
                                                                                   00134
      RTA2=SURT (ASO2)
                                                                                   0 (135
      RTB1=SURT (BSQ1)
      RT32=SDRT (3502)
                                                                                   00136
      DIV=1.380*TIME#2.
                                                                                   00137
      VIGN(166A-SC2I)=XC
                                                                                   0.0138
      VIOV(1026-3501)/01V
                                                                                   00139
                                                                                   00140
  43J WRITE(25,15) DX,DY,RTA1,RTA2,RTB1,RTB2
   15 FORMAT(///# 0 I F F U S I O N S T U D Y#/
1# )X= #,F1J.2,# FT SQ / SEC#/
                                                                                   00141
                                                                                   00142
            JY= 4,F10.2,# FT SQ / SEC#/
                                                                                   0.01.43
     2 t
     3# 41=#,Fb.J,#, A2=#,F6.0,#, B1=#,F6.0,#, B2=#,F6.0)
                                                                                   00144
      END FILE 21
                                                                                   00145
      STOP
                                                                                   0.0146
                                                                                   00147
      E:40
      SUBROUTINE ARROW(SCAF, XDYE, YDYE, BZI)
                                                                                   0.0148
      COMMON/DATA/A
                                                                                   00149
      DIMENSION A(10,2)
                                                                                   00150
      DATA(((A(I,J),I=1,10),J=1,2)=J.,0.,30.,100.,30.,0.,-30.,
                                                                                   00151
     1-160.,-30.,0.,0.,1010.,900.,800.,900.,1000.,900.,800.,900.,
                                                                                   00152
                                                                                   00153
     21 19 3.)
      A 71 = - 321
                                                                                   00154
      S=SI ((AZI)
                                                                                   00155
                                                                                   00156
      C=30S(AZI)
                                                                                   00157
      I 70 = 5
      00 11 J=1,2
                                                                                   00158
      00 11 I=1,10
                                                                                   00159
   10 A(I, J) = A(I, J) * SCAF
                                                                                   00160
      IPFN= 3
                                                                                   00161
      00 21 I=1,10
                                                                                   0.0162
      Y=Y0YE+A(I,2)*C+A(I,1)*S
                                                                                   00163
      X=XDY=-A(1,2)*S+A(1,1)*C
                                                                                   00164
      IF(I.NE.1) IPEN=1
                                                                                   00165
   2J WRITE(23,1)X,Y, IPEN, IDO
                                                                                   00166
    1 FORMAT(6X,2F10.0,2I5)
                                                                                   00167
      RETURY
                                                                                   00168
      E ND
                                                                                   00169
      SUBROUTINE SECPROP(X,N,NO,IFLT,DYE)
                                                                                   00170
C....PROGRAMMED MARCH 1971
                                                                                   00171
C....X SY = COORDS OF POINTS DEFINING CLOCKWISE PATH AROUND
                                                                                   00172
C.....BOJNDARY, N=NUMBER OF POINTS, CLOSURE FROM PT N TO PT 1
                                                                                   0.0173
C....IS AUTOMÁTIC (PUINT 1 IS READ IN ONLY ONCE).
C....IGX,IGY,IGXY ARE ABOUT CENTROIDAL AXES PARALLEL TO X≤Y.
                                                                                   00174
                                                                                   00175
C....THETA IS CLOCKWISE ANGLE FROM X AXIS TO MAJOR PRINC AXIS.
                                                                                   0.01.76
      REAL IX, IY, IXY, IGX, IGY, IGXY, IMAX, IMIN
                                                                                   00177
      DIME (SION X(200,2), DYE(15,2,6)
                                                                                   00178
      XLOW=X(1,1)
                                                                                   00179
      YLOW= X(1,2)
                                                                                   00180
      00 11 I=1,N
                                                                                   00181
      X(I,1) = X(I,1) - XLOW
                                                                                   0.0182
      X(I, 2) = X(I, 2) - YLOW
                                                                                   00183
   10 CONTINUE
                                                                                   00184
      XI=X(N,1)
                                                                                   0.01.85
```

Figure D-2. Listing of program INSHORE. (Continued)

```
X4 = X(1,1)
                                                                                    0.0186
      X4SQ:XM*XM
                                                                                    00187
       T2X=XI+XM
                                                                                    01188
      Y [ = X ( N, 2 )
                                                                                    00189
       Y4=X(1,2)
                                                                                    00190
       YMSQ=YM*YM
                                                                                    00191
      T2Y=YI+YM
                                                                                    00192
       A=AXJAR=AYBAR=IX=IY=IXY=0.
                                                                                    00193
       00 3 I=1,N
                                                                                    0.0194
      IF(I.NE.N)GO TO 1
                                                                                    00195
       M=1
                                                                                    00196
      60 TO 2
                                                                                    0.0197
    1 M=I+1
                                                                                    0.01.98
    2 XL=XI
                                                                                    00199
       XI=X1
                                                                                    0.0200
      XM=X(M,1)
                                                                                    00201
C....XL=X(I-1), XI=X(I), XM=X(I+1), Y\neqS SIMILAR.
                                                                                    00202
      T1X=T2X
                                                                                    00203
       T2X=KI+XM
                                                                                     00204
      T 3X = ( 4- X I
                                                                                    6 C2 05
      XISQ=XMSQ
                                                                                    0.0206
       X:1SQ=XM*XM
      YL=YI
                                                                                    00208
       1. Y = 1 Y
                                                                                    00209
       Y 4= X (4, 2)
                                                                                    0.6210
      T1Y=T2Y
                                                                                    00211
       T2Y=YI+YM
                                                                                    00212
      T3Y=Y1-YI
                                                                                    0.0213
      VISQ=YMSQ
                                                                                    00214
       Y 45 Q= Y 4 * Y M
                                                                                    66215
      A = A + XI * (YL - YM)
                                                                                    00216
C....AJCJ MULATE 2*A, 6*A*X8AR, 12*IX, 72*IXY, ETC.
AXBA R=AXBAR-YI*(XL*T1X-XM*T2X)
                                                                                    00217
                                                                                    00218
       (YST*MY-Y117-YM*T2Y)
                                                                                    66219
      IX=I<+T3X*(YISQ+YMSQ)*T2Y
                                                                                    60220
       IY=IY-T3Y*(XISU+XMSQ)*T2X
                                                                                    00221
    3 IXY=[YY-T3Y*(18.*XISQ*T2Y+T3X*(T3X*T3Y+4.*(2.*XI+XM)*(YI+2.*YM)))
                                                                                    0.0222
      A=A*.5
                                                                                    00223
       AXBAR=AXBAR/6.
                                                                                    00224
      AYBAREAYBAR/6.
                                                                                    66225
      X3AR=AXBAR/A
                                                                                    00226
       YBAR = AYBAR/A
                                                                                    00227
      IX=I</12.
                                                                                    00228
      IY=IY/12.
                                                                                    00229
       IXY=[XY/72.
                                                                                    06230
C....TRANSFER TO CENTROIDAL AXES.
                                                                                    u ú2 31
      IGX=[X-AYBAR*YBAR
                                                                                    00232
       IGY=[Y-AXBAR*XBAR
                                                                                    0 62 3 3
       IGXY=IXY-AXBAR#YBAR
                                                                                    00234
       T1=([GX-IGY] * .5
                                                                                    6.0235
       T2=([GX+[GY)*.5
                                                                                    00236
      T3=SQRT(T1*T1+IGXY*IGXY)
                                                                                    00237
C....COMPUTE PRINC MOMENTS OF INERTIA AND ORIENTATION OF
                                                                                    00238
C....PRIND AXES.
                                                                                    0.0239
      IF(T?.LT.1.) T3=-T3
                                                                                    0.0240
       I 40 X = T2+T3
                                                                                    00241
       TMTN=T2+T3
                                                                                    0.0242
       THET1=28.6479*ATAN(IGXY/T1)
                                                                                    66243
       IF(T1.LT.D.)THETA=THETA+90.
                                                                                    00244
       DYE( 10, IFLT, 1) = XBAR+XLOW
                                                                                    00245
       DYE(10, IFLT, 2) = YBAR+YLOW
                                                                                    00246
       DYE(NO, IFLT, 3) = ABS(A)
                                                                                    00247
```

Figure D-2. Listing of program INSHORE. (Continued)

```
DYE(10, IFLT,4) = ABS(IMAX)
                                                                                    0.0248
      DYEL 40. IFLT, 51 = ABS(IMIN)
                                                                                    00249
                                                                                    0.0250
      DYE(10, IFLT,6) = THETA
      WRITE(20,6) IX, IY, IGX, IGY, IXY, IGXY, T1, T2, T3
                                                                                    00251
    F FORMAT(E13.4)
                                                                                    00252
                                                                                    00253
      WRITE(20,5) (NO, IFLT, I, JYE(NO, IFLT, I), I=1,6)
                                                                                    00254
    5 FORMAT(#
                   DYE(\pm, I2, I2, I2, \pm) = \pm, F18.2)
                                                                                    00255
      RETURN
                                                                                    00256
      END
      SUBRIUTINE RESECTS (FL, XP, YP)
                                                                                    00257
      COMMON C(2U,3), IP(3), XF(3), YF(3)
                                                                                     00258
                                                                                    00259
      BIME 1510N 8(15,6), P(2,8), D(6,7)
      INPUT LUNS ARE:
                                                                                    00260
                                                                                     00261
C
         8 PHOTO COORDINATES
        9 GROWN BONTROL
10 INITIAL ORIENTATION PARAMETERS
                                                                                     0.0262
С
                                                                                     00263
                                                                                    00264
С
      OUTPUT DATA ON LUN 28
      F =6.7
                                                                                     00265
      I30=1
                                                                                     60266
                                                                                     00267
      I = 1
      READ PHOTO CONTROL COORDINATES
                                                                                     00268
   10 READ(38,1) [PLATE, (IP(J), XF(J), YF(J), J=1,3)
                                                                                     00269
                                                                                     0.0270
    1 FURMAT(4X, I1, 3(I4, 2F6.3, 6X))
       TF (IP(1) .LT. 20) GO TO 25
                                                                                     00271
                                                                                     00272
       BALKOFACE B
                                                                                     00273
       GO TO 40
   25 DO 33 J=1.3
                                                                                     00274
       . ...... .... . .ANO. XF(J) .GT. 0.001) GO TO 26
                                                                                     00275
       IF(I2(J) .EQ. 0) GO TO 38
                                                                                     0.0276
                                                                                     00277
      GD TD 28
                                                                                     00278
       1 D= 1 = ( )
                                                                                     00279
       G) T) 38
                                                                                     06280
   11:41=14:11 RS
                                                                                     00281
       B(I,?)=YF(J)
                                                                                     00282
       B(I,3) = XF(J)
                                                                                     00283
                                                                                     00284
       I = I + 1
                                                                                     00285
   38 CONTINUE
   60 TO 10
40 IMAGE = I-1
                                                                                     00286
                                                                                     00287
                                                                                     00288
       IF(I 44GE.LT.3)GO TO 10J2
      DO 57 I=1, IMAGE
B(I, 2) = YP-B(I, 2)
                                                                                     00289
                                                                                     00290
                                                                                     00291
       B(I,3) = XP - B(I,3)
                                                                                     00292
   57 CONTINUE
C READ GROUND CONTROL
                                                                                     00293
       DO 133 I=1, IMAGE
                                                                                     00294
                                                                                     00295
       REWI 10 9
       K=3(I,1)
                                                                                     00296
   60 J=FFIN(9)
                                                                                     00297
       IF(E)F(9)) GO TO 1004
                                                                                     00298
       IF (<-J) 70,80,7J
                                                                                     00299
   70 00 75 J=1,3
                                                                                     00300
       TRASH=FFIN(9)
                                                                                     00301
   75 CONTINUE
                                                                                     00302
                                                                                     00303
       GO T) 60
   80 DO 91 J=4,6
                                                                                     00304
       B(I,J) = FFIN(9)
                                                                                     00305
   90 CONTINUE
                                                                                     0.0306
  103 CONTINUE
                                                                                     00307
C READ INITIAL RARAMETERS FOR CAMERA PHOTO NO., X,Y,Z IN FT
                                                                                     00308
C AND DYEGA, PHI , KAPPA IN DEGREES
                                                                                     0.6309
```

Figure D-2. Listing of program INSHORE. (Continued)

```
REWIND 10
                                                                                00310
                                                                                00311
108 IPLT=FFIN(10)
    IF (EOF(10)) 60 TO 1006
                                                                                00312
    IF (IPLT-IPLATE) 110,120,110
                                                                                00313
110 00 115 I=1,6
                                                                                00314
    TRASH=FFIN(10)
                                                                                00315
115 CONTINUE
                                                                                00316
    GO TO 108
                                                                                60317
120 DO 125 J=1,3
                                                                                00318
    C(1,J) = FFIN(19)
                                                                                00319
125 CONTINUE
                                                                                00320
    C(2,1) = FFIN(10)/57.2958
                                                                                00321
    C(2,2) = FFIN(10)/57.2958
                                                                                00322
    C(2,3)=FFIN(10)/57.2958
                                                                                00323
    00 130 I=1,3
C(3,I)=COSF(C(2,I))
                                                                                00324
                                                                                00325
    C(2,I) = SINF(C(2,I))
                                                                                00326
130 CONTINUE
                                                                                00327
    ORIENTATION FACTORS IN C ARRAY
                                                                                00328
610 C(4,1)=C(3,2)*C(3,3)
                                                                                00329
    C(5,1) = -C(3,2) + C(2,3)
                                                                                00330
    C(6,1)=C(2,2)
                                                                                00331
    C(13,1) = -C(2,2) * C(3,3)
                                                                                00332
    C(11,1)=C(2,2)*C(2,3)
                                                                                00333
    C(12,1)=C(3,2)
                                                                                00334
    C(10,2) = C(4,1) * C(2,1)
                                                                                00335
    C(11,2)=C(5,1)*C(2,1)
                                                                                0 0336
    C(12,2) = C(2,1) * C(2,2)
                                                                                00337
    C(10,3) = -C(4,1) + C(3,1)
                                                                                0.0338
    C(11,3) = -C(5,1) * C(3,1)
                                                                                00339
    C(12,3) = -C(3,1) *C(2,2)
                                                                                00340
    C(4,2)=C(3,1)*C(2,3)+C(12,2)*C(3,3)
                                                                                00341
    C(5,2)=C(3,1)*C(3,3)-C(12,2)*C(2,3)
                                                                                00342
    C(6,2) = -C(2,1) * C(3,2)
                                                                                00343
    C(4,3)=C(2,1)*C(2,3)+C(10,1)*C(3,1)
                                                                                0.0344
    C(5,3)=C(2,1)*C(3,3)+C(11,1)*C(3,1)
                                                                                00345
    C(6,3) = C(3,1) * C(3,2)
                                                                                00346
    DO 612 I=7,9
                                                                                00347
    C(I,1)=J.
                                                                                00348
    C(I,2) = -C(I-3,3)
                                                                                00349
    C(I,3)=C(I-3,2)
                                                                                0.0350
    C(13, I-6) = C(5, I-6)
                                                                                00351
    C(14, I-6) = -C(4, I-6)
                                                                                00352
612 C(15, I-6) =0.
                                                                                00353
    GO TO (613,763),IGO
                                                                                00354
    CLEAR NORMAL EQUATION J ARRAY TO ZERO
                                                                                00355
613 DO 614 I=1,6
                                                                                0.0356
    DO 614 J=I,7
                                                                                00357
614 D(I, J) = 0.
                                                                                00358
    COMPUTE P TERMS FOR RESECTION PASS POINTS
                                                                                00359
    00 618 NU=1, IMAGE
                                                                                0.0360
    00 619 K=1,3
                                                                                00361
619 C(16,K)=9(NU,K+3)-C(1,K)
                                                                                00362
                                                                                00363
    K=4
    DO 628 L=17,28
                                                                                00364
    DO 620 I=1,3
                                                                                00365
    C(L,I)=C(K,1)+C(15,1)+C(K,2)+C(16,2)+C(K,3)+C(16,3)
                                                                                0.0366
620 K=K+1
                                                                                00367
    00 6?1 I=1,2
                                                                                00368
                                                                                0.0369
    00 622 L=1,4
622 P(I,L) = (9(NU,I+1)*C(L+16,3)-(-FL)*C(L+16,I))/C(17,3)
                                                                                00370
    00 623 L=5.7
                                                                                00371
```

Figure D-2. Listing of program INSHORE. (Continued)

```
623 P(I, L) = (-B(NU, I+1) *C(6, L-4) + (-FL) *C(I+3, L-4)) *C(1,3)/C(17,3)
                                                                                    0.0372
  621 P(I,3) = -P(I,1)
                                                                                    00373
      CONTRIBUTION TO NORMAL EQUATIONS
                                                                                    00374
C
                                                                                    0.0375
      00 513 I=1,6
      00 513 J=I,7
00 613 K=1,2
                                                                                    00376
                                                                                    0.0377
  518 J(I,J)=D(I,J)+P(K,I+1)*P(K,J+1)
                                                                                    00378
      FURENARD SOLUTION
                                                                                    00379
      00 639 I=1,6
                                                                                    00380
      S 32=3 32T(0(1,1))
                                                                                    0.6381
      DO 633 J=I,7
                                                                                    00382
                                                                                    0.0383
  502\((, I) = D(I, J) / SOR
      IF (I-6)097,696,636
                                                                                    00384
  697 IP1=[+1
                                                                                    0.0385
      D0 639 L=IP1,6
                                                                                    0.0386
      00 639 J=L,7
                                                                                    0.0387
  699 O(L,J)=D(L,J)-D(I,L)*D(I,J)
                                                                                    00388
      BACK SOLUTION
                                                                                    0.0389
  696 D(5,7)=0(6,7)/D(6,6)
                                                                                    0.0390
                                                                                    00391
      0 ) 6 ) i I=1,5
      I - c = I Y V
                                                                                    0.0392
      NMIPL=NMI+1
                                                                                    00393
      0) 633 J=NYIP1,6
                                                                                    00394
  699 D(NMI,7)=D(NMI,7)-D(J,7)*D(NMI,J)
                                                                                    61395
  691 D(NMI,7)=D(NMI,7)/D(NMI,NMI)
                                                                                    00396
      0) n25 I=4,6
                                                                                    60397
  625 D(I,7)=D(I,7)*G(1,3)
                                                                                    6.0398
      AUD LEAST SQUARES RESULTS TO CAMERA PARAMETERS IN C ARRAY
                                                                                    00399
      00 626 J=1,3
                                                                                    0 64 6 0
      C(1,J) = C(1,J) + D(J+3,7)
                                                                                    00401
      C(4,J) = D(J,7)
                                                                                    00402
      C(5,J)=SQRT(1.-C(4,J)*3(4,J))
                                                                                    00403
      C(6, J) = C(2, J) *C(5, J) + C(3, J) *C(4, J)
                                                                                    06404
      \Im(7, J) = \Im(3, J) * \Im(5, J) - \Im(2, J) * \Im(4, J)
                                                                                    00405
       3(2,1)=0(6,1)
                                                                                    66406
  625 C(3, J) = C(7, J)
                                                                                    00407
      TEST MAGNITUDE OF CORRECTIONS FOR ORIENTATION PARAMTERES
                                                                                    00408
      37 528 I=1,3
                                                                                    00409
      IF (435()([,7))~.30JJ1)628,628,613
                                                                                    00410
  629 CONTINUE
                                                                                    0.0411
                                                                                    00412
      [30=2
      GJ TD 613
                                                                                    00413
      CAMERA PARAMETERS OUTPUT
                                                                                    00414
  763 WRITE(20,532)
                                                                                    00415
      WRITE(2J,527)
                                                                                    00416
      WRITE (23,528) IPLATE, (C(1,J),J=1,3)
                                                                                    00417
      WRITI (20,529)
WRITE (21,528) IPLATE,(C(2,J),J=1,3)
WRITE (21,528) IPLATE,(C(3,J),J=1,3)
                                                                                    00418
                                                                                    06419
                                                                                    00420
      MRITE (20,530) IPLATE
                                                                                    00421
      WRITE (21,533) ((C(I,J),J=1,3),I=4,6)
                                                                                    00422
  52/ FORMAT (/49H PLATE
                                                                        ZO)
                                                       YO
                                                                                    0.0423
                                       ΧO
  528 FURMAT(I7, 3(2X, £14.7))
                                                                                    0.0424
  529 FURMAT (75JH PLATE
                                                                      KAPPA)
                                    OMEGA
                                                                                    00425
  536 FORMAT(/30H ORIENTATION MATRIX FOR PLATE .IT)
                                                                                    00426
  532 FORMAT(/534 ORIENTATION PARAMETER CORRECTION LIMIT IS 0.00001)
                                                                                    00427
  533 FURMAT (1X,3(2X,E14.7))
                                                                                    00428
      GJ TJ 1110
                                                                                    00429
 1012 WRITE(20,1003) IPLATE
                                                                                    6.0430
 1003 FORMAT(# INSUFFICIENT CONTROL, PLT#, 16)
                                                                                    00431
      50 T) 1100
                                                                                    00432
 1034 WRITE (20,1505) K
                                                                                    66433
 1885 FORMAT(# 5RO CONTROL MISSING#,16)
                                                                                    00434
                                                                                    00435
      GO TO 1135
 1006 WRITE (20,1007) IPLATE
                                                                                    0.0436
 1037 FORMAT(# INITIAL PARAMETERS NOT ON FILE#, 16)
                                                                                    00437
      GO TO 1135
                                                                                    00438
                                                                                    00439
 1100 KETUKN
       FND
                                                                                    6.6440
```

Figure D-2. Listing of program INSHORE. (Continued)

APPENDIX E

Streamlines For A Source In A Uniform Flow

A general description of the CDC 3300 Computer and special fortran input functions is given in the introduction of Appendix B.

Program FLOWNET was used for generating the coordinates for plotting a flownet for a line source oriented perpendicular to a uniform stream. The program used the equation:

$$\psi = -UY + \alpha \left[(Y + \frac{b}{2}) \theta_{1} - (Y - \frac{b}{2}) \theta_{2} - X \ln \frac{r_{1}}{r_{2}} \right]$$

which was derived in Section XI as equation 112.

The variables in the equation correspond to those shown in figure 96.

A flow diagram for program FLOWNET is shown in figure E-1 and the numbers in parentheses correspond to line numbers in the program listing of figure E-2.

Program

Program FLOWNET requires that the velocity and azimuth from the north of the uniform flow, as well as the flow rate, estimated dilution over the outfall, the depth of the waste field and the length of the diffuser section be typed in. The maximum value of ψ is then computed and the y coordinate for a point 6000 ft downstream on the outermost streamline is determined. Using this as a starting point, the coordinates for successive points along one half of a stream line are computed by incrementing θ and checking the new y value against the estimated value of y. After one side of a streamline is generated, the coordinates are rotated and the mirror image is computed. These are written on LUN 2 and the process is repeated for the next streamline until three streamlines and the centerline are computed.

The data on LUN 2 is saved and used as input for a plotting program which utilizes the Tektronix T-4002 graphic-scope. Two examples of plots generated using program FLOWNET are shown in figure 97 (a and b) with uniform flow velocities of 0.1 and 0.5 ft/sec respectively.

Figure E-1. Flow diagram of program FLOWNET.

	Description of the Control	-
	PROGRAM FLOWNET	00001
1000	DIMENSION X (250), Y (250), IPEN (250)	00002
1000	K60=0	00003
	X.OUT=1069450.	00004
	Y-UT=37577C.	00005
	U=TTYTN(4HVEL=)	00006
	ROT=TTYTN(4HAZ=)	00007
	AMG=RCT-1.5*3.1416	0000R
	Q#TTYIN(4HCFS=)	00009
-	hil=TTYIN(4HDIL=)	00010
	DEPTHETTYIN (4HDEP=)	00011
	QnD=Q*DIL/DEPTH	00012
	WRITE(2.3) U.ODD	00013
3	FCRMAT(F10.2.F10.0)	00014
	ALEN=TTYIN(4HLEN=)	00015
	AI PHA=OPD/ALEN	00016
	ALENZ=ALENZ.	00017
	CgS1=COS (ANG)	00018
	SIN1=SIN(A ⁽¹⁾ 5)	00019
	CONST=ALPHA/(3.1415942.4(1)	00020
	HES1=000/2.	00021
	DPST=HPSI/3.	00055
	ACST=0.0	00023
	XHII=O.	00024
	XHI=9.	00025
	THEL=4.71	00026
15	X(1)=-6000+	00027
	I=1	00028
***	Y1=(+PSI+AF51)/II	00029
	BY=n.n	00030
	Y(I M=1.0 •	00031
25	YL=YÎ	00032
	K=0	00033
	IPEN(I)=1	00034
50	1F(f.6T.1) GO TO 60	00035
	BOT=ALFN2+Y1	00036
	THETR==ATAU(X(I)/HOT)	00037
	IF(901.61.0) THETH=3.14159+THETH	0003 _B
	IF(THETH.LT.O.) THETR=6.28318+THETB	00039
	60 TO 70	00040
60	X(I) =-SIN(THETH)/COS(THETP)	00041
,,	X(I) = X(I) * (YI + A(ENZ))	00042
70	BCT=ALEN2=Y1	00043
, , ,	THETA=ATAN(X(I)/BOT)	00044
	IF(ROT.LT.0.) THETA=THETA+3.14159	00045
	IF(THETA.LT.O.) THETA=THETA+6.28318	00046
	STNA=SIN (THETA)	00047
	SINR=SIL (THETR)	00048
	CONSTRARS (SIMB/SIMA)	00049
	CON3=THETA+THETA-3,14159	00050
	Y(I) = (-APSI/U+CONST*(ALEN2*CON3+X(I)*	00051
•	1 ALCG(CONSIZ)))/(1.+CONSI#(THETA-THETR))	00052
	YN]F=Y(I)-YU	00053
	IF (ARS(YDIF) .LT. YEIM) 60 TO 100	00054
	K=K+1	00055
	60 TC (90,91,92,92,92,110) K	00056
90	YST=Y1	00057
-	YST;=Y(1)	00058
	Y1=Y(1)	00059
	GC TO 50	00060
9.1	YND=Y1	00061
•	YN[)?=Y(I)	00065
	DTF1=YND2=YST1	00063
	DIF2=YNI)-YST	0009.3
	DIFR=YST-YST1	00065
	D1F4=YND-YD2	00066
	W11 44 1 WE LING	00000

Figure E-2. Listing of program FLOWNET.

	IF (ARS (DIF3) .LT. ARS (DIF4)) GO TO 97	0	0067
	YI=YND+DIF2#ABS(DIF4/(DIF3-DIF4))		0068
	60 10 50	Ö	0069
			0070
47	Yi=YST-DIF2*ABS(DIF3/(DIF3-DIF4))		
	GO TO 50	0(0071
00	YSTRYND	0	0072
4%			
	YST1=YND2	0	0073
	60 TO 91	O.	0074
100	IF(Y(I).GT.UAND.X(I).LT.2000.)	0(0075
110	THETR#THETB=0.05	04	0076
110			
	THELETHETA	00	0077
	IF(K.GT.5) GO TO 120	00	0078
	DASA (1-1)-AF	Dt	5079
120	Y[=Y(T=1)+DY	O.	0800
120			
	IF (THETA .GT. 1.6) GO TO 25	Di	0081
130	IPEN(1)=0	Ot	2800
(.10			
	K=[-]	0	0083
210	00 300 I=1+K	O i	0084
210	00 100 1-100		
	FACTL#X(I)*COSI	U	0085
	IF(x(1).G1.2000.) $IPFN(I)=0$	Of	0086
	• • • • • • • • • • • • • • • • • • • •		,
	IF(x(I).LT6000.) x(I)=-6000.	00	0087
	FACT2=Y(I) *SIN1	26	9800
	· . · · · · · · · · · · · · · · · · · ·		
	FACT3=-X(I)*SIN1	00	0089
	FACT4=Y(1)*COS1	00	0090
	XG1=XCUT+FACT1+FACT2	00	0091
	YG1=YCUT+FACT3+FACT4	0.0	2600
	X(I) =xOUT+FACT1-FACT2	00	0093
	Y(I)=YOUT+FACT3-FACT4	O	0094
	WPITF(2.1) XG1.YG1.IPFN(I)		0095
1	FORMAT (2F10+,15)	n n	0096
	CONTINUE		0097
2	FCRMAT(F5.0)	00	009a
•			
	IF (KGO.GT.G) GO TO 450		2099
	DC 400 I=1.K	O	0010
	WRITE(2.1)X(I).Y(I).TPEN(I)		0101
400	CONTINUE	00	2010
	APST = APST+UPST		0103
	IF(APSI-LT-HPSI-0.1) GC TC 15	00	0104
450	K60=K60+1	7/	0105
470			
	GC 10 (500,700,900).kGC	00	0106
EOO	X(1)=0.0	0/	0107
700			
	Y(1)=0.0	06	01 0 g
	K=7		0109
	DO 600 I=2,7	00	0110
	X(1) = X(1-1) - 1000	· · · · · · · · · · · · · · · · · · ·	0111
	Y(I)=0.0	00	2115
400	IPEN(I)=1		2113
nuu			
	IPEN(1)=0	DO	0114
	APS[=HPS]	nı	7115
	=		
	IPEN(K)=2	U	0116
	GO TO 210	ייי חו	0117
700	CONTINUE		0118
	WRITE(2,2) APSI	10	0119
	Y(1) =-ALEN2		0120
	Y(2) = ALENZ	01	OIZI
	Y(3) = Y(2)		0122
•	Y(4)=Y(1)	· · · · · · · · · · · · · · · · · · ·	0123
			0124
	X(1)=20.	_	
	X(2) ≠20.	້ ້ຳ	0125
	X(3)==20.		0126
	X(4)==20.		0127
		_	-
	K=4		0128
	GC TC 210	6	0129
_			
900	END FILE 2		0130
	65 TS 1000	0	Ō131
	STOP		0132
	END	ຶ່ດເ	0133
	En 7	ŭ	_ • - •

Figure E-2. Listing of program FLOWNET. (Continued)

1 V	Accession Number	2 Subject Field & Group	SELECTED WATER RESOURCES ABSTRACTS INPUT TRANSACTION FORM			
5	5 Organization Oregon State University, Corvallis, Oregon 97331					
6	AIRPHOTO ANALYSIS OF OCEAN OUTFALL DISPERSION					
10	Author(s) Burgess, Fred J. James, Wesley P.	10	o Designation O ENS, Federal Water Quality Office			
22	Water pollution Control Research Series 16070 ENS, WQO, EPA. June 1971. 102 figs, 12 tables, 47 ref. 312 p.					
23 Descriptors (Starred First) * Aerial photography/ *Waste water disposal/ *Oceans/ *Coasts/ * Remote sensing/ industrial waste/ sewage effluents/ outlets/ mixing/ diffusion/ currents (water).						
25	25 Identifiers (Starred First) *Ocean outfall/ *Marine disposal					
Aerial photography was taken of the ocean outfall waste plume at Newport, Oregon, during the summers of 1968, 1969, and the period extending from September, 1970 through May 1971. This remote sensing system involving multispectral photography was utilized to compute waste concentrations, water currents and diffusion coefficients in the outfall area. Conventional boat sampling of the waste field was conducted concurrently with the photography during the 1968 and 1969 field seasons. The waste concentrations determined by the two methods were compared by matching ground coordinates. The correlation coefficient for the comparison ranged from 0.85 to 0.95. The water current velocity was found to be the dominant factor in the surface plume pattern. The steady state form of the Fickian diffusion equation with a unidirectional transport velocity was not applicable to the majority of the observations. The equation for a line source in a uniform stream provided the x and y velocity components for a two-dimensional diffusion model with the losses to the lower layers being considered by including a decay coefficient. This second model was found to be more applicable to the diffusion process. Characteristic airphoto pattern elements are given for visual interpretation of the photography. Wind velocity, sea state, current velocity wave height and diffusion coefficients can be estimated from the aerial photography.						
	102 (REV JULY 1969)	Ore	gon State University			
WRS	IC	SEND, HITA COPT OF DO	U.S. DEPARTMENT OF THE INTERIOR WASHINGTON, D. C. 20240			