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1. INTRODUCTION

In a related paper, Cromwell et al. (1992) addresses the many analytical
complexities and uncertainties that EPA decision-makers are facing in their efforts to
delineate, measure, and balance the cost and health implications of regulatory alternatives
being considered to control the levels of disinfection by-products in public drinking water
supplies. To assist the agency's decision-makers in grappling with these complexities and
uncertainties, the EPA's Office of Ground Water and Drinking Water has undertaken an
effort to model how the water supply industry may respond to possible rules, and how
those responses may affect human health risk with respect both to the toxicity of the
disinfection by-product chemicals and to the incidence of waterborne disease due to
microbiological contaminants. The model is referred to as DBPRAM - the Disinfection
By-Product Regulatory Analysis Model.

The DBPRAM has three main components. The first component involves the
creation of sets of simulated water supplies that are intended to be representative of the
range of conditions (and combinations of conditions) currently encountered by public water
supplies with respect to certain raw water quality and water treatment characteristics. The
raw water and water treatment characteristics described are those that both influence by-
product formation potential and constrain alternatives available for modifying existing water
treatment practices to meet regulatory goals. This paper is concerned primarily with
presenting and discussing the methods, underlying data, assumptions, limitations, and
results for this first part of the DBPRAM model.

DCLe = s iedq

The "output” from the first component of the model (namely the sets of simulated
public water supplies) constitutes the "input” to the second component of the model,
wherein compliance choices are simulated for these water supplies to meet alternative DBP
regulatory constraints. At the heart of this second component of the DBPRAM is the water
treatment plant (WTP) model. The WTP model is designed to simultaneously calculate the
concentration of disinfection by-products formed and disinfection levels achieved in a water
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supply with specified raw water quality and existing water treatment characteristics. The
WTP model is also designed to ensure that the water supply meets disinfection constraints
set by the Surface Water Treatment Rule, taste and odor constraints, and corrosion control
constraints set by the lead rule. The formation equations and operational aspects of the
WTP model have been described in detail by Harrington et al. (1991).

Gelderloos et al. (1992) describes the specific application of the WTP model to
simulate compliance choices as part of the DBPRAM. In the WTP part of the DBPRAM,
each of the simulated public water supplies is evaluated to determine whether it meets all of
the established constraints, including those being considered for the by-products (i.e.,
meeting target MCLs). If the DBP goals are not met, the WTP model allows for a
sequential evaluation of water treatment modifications to determine the least cost approach
to meeting all of the desired by-product, disinfection, and other water treatment constraints.

The third main component of the DBPRAM involves an aggregate risk assessment
based on the predicted levels of disinfection by-products and microbiological organisms in
the distribution systems of the simulated water supplies following the treatment selected in
the second part of the model. This risk assessment focuses on the estimation of annual
cancer cases associated with ingestion of certain trihalomethane and haloacetic acid by-
products, and on both endemic and outbreak cases of giardiasis for the various regulatory
alternatives under consideration.

Again, this paper focuses on the first of the three components of the overall
DBPRAM model. The remainder of this paper has two main parts. The first part provides
a discussion of the general methodology and assumptions used to create the simulated
water supplies. The second part provides specific information on the data used and results
obtained for each of the raw water quality and water treatment characteristics simulated.

2. GENERAL METHODOLOGY AND ASSUMPTIONS

For the DBPRAM modeling effort, the universe of public water supplies has been
stratified into several groups based on size, water source, and existing treatment
characteristics. First, there has been a distinction made between large and small water
systems on the basis of the size of the population served. Those serving 10,000 or more
people are designated as large systems; those serving fewer than 10,000 are considered
small. To date the DBPRAM modeling effort has focused on the large systems. These
large systems have been further stratified into six major groups reflecting water source and
certain existing treatment conditions. As shown in Exhibit 1, the six strata are:

Ground water without disinfection;

Ground water with disinfection and softening;

Ground water with disinfection, but without softening;
Surface water without filtration;

Surface water with filtration and softening; and
Surface water with filtration, but without softening.
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Exhibit 1. Stratification of Large PWSs for
the DBPRAM

The stratification of large public water supplies into these six groups primarily
reflects the different treatment process characteristics inherent to each, and the influence of
those processes on by-product formation. It also reflects differences in the distributions of
some of the raw water quality characteristics among these strata, differences that in part
account for the different kinds of treatment used.

To date, the WTP model has been developed to an operational level only for one of
these six treatment strata, namely the filtered surface water systems without softening,
which are subsequently referred to here as the "SNS" systems. The DBPRAM modeling
effort conducted thus far has, therefore, been limited to the consideration of this SNS
group, and Section 3 of this paper, which addresses specific results of the raw water and
treatment parameter simulation modeling, deals only with this SNS group. This strata
represents water treated and distributed to approximately 103 million people.

For input to the WTP component of the model, 100 simulated SNS water supplies
were created using Monte Carlo simulation techniques. Each of the 100 simulated supplies
is defined by a unique set of values for eleven raw water quality variables and five water
treatment characteristic variables assigned through the simulation procedure. These sixteen
variables are identified in Exhibit 2.

As noted previously, the WTP model provides for the calculation of disinfection
by-product levels at various points in the treatment and distribution systems. More
specifically, the WTP model is used to estimate the concentrations of four trihalomethanes
and five haloacetic acid by-products.
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The key by-product concentration that is calculated in the WTP portion of the model
is total trihalomethanes (TTHM), using the following equation developed by Amy, Chadik
and Chowdhury (1987):

TTHM = 0.00309[(TOCYUV - 25)]*“*(CL)**® (1)*** (T)"* (pH - 2.6)*"*(Br + 1)*

where TTHM is in umole/L, TOC is the total organic carbon in mg/L, UV-254 is the
absorbance of ultraviolet light at 254 nm wavelength (in cm-t), Cly is the chlorine dose in
mg/L, tis the reaction time in hours, T is the temperature in degrees centigrade, and Br is
the bromide concentration in mg/L. The estimation of the proportion of TTHMs that is
made up by each of the four individual THMs (i.e., chloroform, bromodichloromethane,
dibromochloromethane, and bromoform) is based on a set of similar equations. As
indicated by Gelderloos et al. (1992), the WTP model currently uses the specific THM
formation equations only to estimate the relative proportions of each present. Those
proportions are then combined with the TTHM value from the above formation equation to
arrive at estimates for the concentrations of the individual species.

Also as indicated by Gelderloos et al. (1992), the concentrations of the individual
haloacetic acids (HAAs) are determined from statistical correlations between THMs and
HAAs s developed by Haas (in Patania, 1991).

As can be seen from the above formation equation, only five of the sixteen variables
included in the simulated water system data sets are incorporated explicitly in the TTHM
formation equation. These are: UV-254, TOC, Temperature, pH and Bromide. (The time
variable, t, is related to the water treatment variable of Distribution Residence Time.) The
remaining water quality and water treatment variables are incorporated into separate sets of
equations based upon the specific treatment being modeled for that water supply as well as
the other regulatory and treatment constraints to be met as noted previously. Those
treatment-related equations result in sequential changes in the values for the primary THM
formation equation variables at various points in the treatment process, characterizing the
dynamics of by-product levels observed through the treatment plant and distribution system
of a water supply.

As discussed in more detail in sections 3.1 to 3.16 below, certain of the water
quality and water treatment parameters were treated as independent variables, while others
were treated as dependent variables. For the independent variables, values were selected
randomly using Monte Carlo procedures, and those values were not affected by the values
for any other variable. For dependent variables, the value estimated was dependent upon
the value obtained for some other variable in the data set. Exhibit 2 indicates which
variables were treated as independent and which as dependent, noting the other variable
upon which values for the latter were based.

The following sections provide a general discussion of the sources of information
used to support creation of the data sets (2.1), the methods used to obtain values in each
data set for the independent variables (2.2), and the methods used to obtain values in each
data set for the dependent variables (2.3).

2.1 Information Sources Used
The primary source of data used to create the simulated set of SNS water supplies

was the Water Industry Data Base (WIDB). The Water Industry Data Base was initiated
through a joint effort by the American Water Works Association (AWWA) and the



American Water Works Association Research Foundation (AWWARF). The main
functions of WIDB are to support the AWWA and others in assessing the impacts of
regulatory and legislative efforts, to assist AWWAREF in focusing its research activities,
and to support educational endeavors of AWWA and other interested parties.

The data collection effort for the WIDB was conducted in 1989-1990.
Questionnaires were sent to all of the approximately 600 public water systems serving over
50,000 people. The response rate was better than 80 percent, resulting in data in the WIDB
for approximately 500 systems. The questionnaire was aimed at obtaining information on a
wide spectrum of financial, administrative, and operational characteristics of these supplies.
Included among the fields of information sought in this questionnaire were several on raw
water quality and existing water treatment practices.

It was recognized at the earliest stages of the DBPRAM modeling effort that WIDB
would likely be relied upon heavily as a source of information, especially for the large
surface water systems. This reflected the fact that, in comparison with the few other
sources of information available, the WIDB contains data for a substantial portion of these
supplies from across the nation for most of the variables of interest.

Depending upon the particular variable, the WIDB typically provided data for 200
to 300 SNS systems, . For the SNS group, the WIDB served as the source of data for all
of the water quality and water treatment variables with four exceptions: ammonia,
bromide, UV-254, and caicium hardness. The data sources used for these four variables
are described below.

The ammonia data for the SNS group was obtained from the 1991 AWWARF
Disinfection Survey (DS). The 1991 Disinfection Survey was conducted by the
Disinfection Committee of the AWWARF's Water Quality Division. The 1991 survey is a
follow-up survey to a similar disinfection survey conducted by AWWAREF in 1978. The
primary purpose of the survey was to document current water industry practices regarding
disinfecdon. In the 1991 Disinfection Survey, 283 utilities responded to questions
concerning current disinfection practices and relevant water quality characteristics. (Note:
Although the DS data were used only for ammonia in the simulation analysis, some data are
provided in DS for all of the other water quality parameters as well, with the exceptions of
bromide and UV-254.)

Bromide data for the SNS group was obtained from the James M. Montgomery
(JMM) case studies. The JMM study was a cooperative effort between the Association of
Metropolitan Water Agencies (AMWA) and the US EPA to study the formation and control
of disinfection by-products (DBPs) in drinking water systems. The study was performed
by the Metropolitan Water District of Southern California and James M. Montgomery,
Consulting Engineers, Inc. The two-year study (1988-1989) focused on the identification
of DBPs as a function of source water quality, water treatment process selection and
operation, and disinfection processes and chemicals. Thirty-five utilities were sampled in
the study.

UV-254 data for the SNS group was based on information provided by the
Technical Services Division (TSD) of EPA's Office of Ground Water and Drinking Water.
TSD conducted two DPB field studies between 1987 and 1989 on 53 water utilities. The
information collected in these studies addressed disinfection processes, other water
treatment processes, and influent and effluent water quality parameters.



The information source used for estimating the relationship between calcium
hardness and total hardness was a draft version of the recently completed lime softening
survey sponsored by the AWWA.



2.2 Methodology for Obtaining Data Values for Independent Variables

As noted previously, most of the variables included in the data sets for the 100
simulated SNS water supplies were treated as independent variables. That is, the values
assigned to those variables were not affected by the value for any other variable. The
procedures used to obtain the values for the independent variables in each data set involved
two basic steps:

1. Select a probability density function (PDF) to characterize the distribution of
those data;

2. Use that PDF and the Monte Carlo procedures to obtain the 100 random
values for that variable.

2.2.1 Selection of a Probability Density Function

There was an a priori determination made that the distribution of the independent
variables would be described by either a normal or lognormal probability density function
(PDF). Probability density functions other than the normal and lognormal could have been
evaluated for each variable within each strata, and the decision to limit consideration only to
those two forms was made largely to simplify the analysis. This limitation is considered
reasonable, however, given the types of data being evaluated. The normal PDF and the
lognormal PDF are both frequently used to describe the distributions of environmental
measurements such as those included here for the raw water quality parameters.

The normal distribution is the most frequently encountered PDF for describing the
random variability observed in populations and sample data, and often serves as a default
assumption. The normal distribution is recognizable as the symmetrical "bell-shaped
curve," in which the central value is described by the mean of the population and the
dispersion around that mean is described by the standard deviation.

The lognormal distribution is frequently used when measurement data suggest a
"right skewness" due to the observation of a number of high values in the data set. As
noted by Travis and Land (1990) the assumption that environmental data are lognormally
distributed is fairly universal Helsel (1990), discussing various distributions in the context
of trace substances in the environment, noted that the lognormal distribution can mimic the
shape of right-skewed data over much of the distribution even though the data are not truly
lognormally distributed. The lognormal distribution is closely related to the normal
distribution in that when the values for a lognormally distributed population are
transformed to their logarithms, those logarithmic values are normally distributed.

The selection of the normal or lognormal distribution to characterize the data for a
particular variable was made primarily through the use of a standard "goodness of fit" test
performed by SAS statistical software. The test statistic used, called the Shapiro-Wilk
statistic, provides a measure of the fit of a data set with the assumption that those data are a
sample taken from a normally distributed population. Both the original values and the log-
transformed values of the data available for each variable were tested, and generally the
form showing the best fit was selected to characterize that variable. It is important to note
that the "best" fit between the two distribution forms did not necessarily indicate a "good"
fit.

In some cases, other factors were also considered in selecting the distributional
form to use, and those are discussed later for the specific variables involved.



In addition to selecting the distributional form to be used for a particular variable, it
was also necessary to estmate the parameters defining that distribution. The specific shape
of either the normal or lognormal distribution is determined by two parameters usually
designated as p and o. The first of these parameters, u, describes the central tendency of
the values for that population. For a normally distributed population, p is the population
mean. Similarly, for a lognormally distributed population, p is the population mean of the
log-transformed values, referred to as the log mean.

The second parameter, o, describes the dispersion of the values for the population
about the central tendency. For a normally distributed population, ¢ is the population
standard deviation; for a lognormally distributed population, ¢ is the population standard
deviation of the log-transformed values, referred to as the log standard deviation.

There are two approaches frequently used to estimate these distributional
parameters: the maximum likelihood method and the regression method. It can be shown
that the maximum likelihood method for estimating the parameters of a normal distribution
from a sample of data reduces to the relatively straightforward computation of the sample
mean and sample standard deviation.! Largely because of time constraints, this was the
method used to estimate the distributional parameters for this analysis.

The second approach, the regression method, has been found to have advantages
over the maximum likelihood method to estimate distributional parameters for
environmental data (see, for example, Helsel and Gilliom, 1986). This issue is discussed
further in Section 4 and, as noted there, subsequent iterations of this modeling effort will
probably use the regression approach to estimate the distributional parameters.

2.2.2 Selection of Values for the Independent Variables

The Monte Carlo method for selecting values for an independent variable for each
of the 100 simulated water supplies is very similar to what would occur if one were to
conduct a random sampling of a population of actual supplies to obtain representative data
for those variables. The population in this case exists, however, in the form of the PDF
describing the distribution of values that variable may take on.

Functionally, the Monte Carlo procedure makes use of the "area under the curve" of
the PDF. By definition, the total area under the curve of any PDF has a value of 1. The
probability that a variable will have a value that falls within some specified range is
determined from the area under the curve between the bounds of that range.

A randomly selected number between 0 and 1 can be used to determine a value for
the variable being considered. Specifically, the random number is used to represent the
area under the curve from negative infinity to that point. Using that value and the inverse
of the standard normal distribution function, the corresponding "z-score” is determined.
Then, from that z-score, and the estimated parameters of the distribution, a value for the

variable is obtained using the relationship?:

1This is true when there are no censored (non-detect) values in the data, which was the case here.
2The symbols [1 and O refer to estimates of the distributional parameters to differentiate them from the
"true” values for those parameters, i and ¢, which are unknown.
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For example, if a variable is determined to be normally distributed with parameters

for that distribution of 4 = 10 and & = 3, a value could be obtained by choosing a
random number between 0 and 1 of, say, 0.7734. Using the inverse of the standard
normal distribution function, it is determined that the z-score associated with 0.7734 is
0.75. Then, using the relationship shown above and solving for x, the randomly selected
value for this variable would be 12.25.

In the case of the variables using the lognormal PDF, each "x" value is calculated in

terms of its logarithm, since /1 and & are in logarithmic form, which is then retransformed
by exponentiating to obtain the actual value input to the data set.

The actual process used to perform the Monte Carlo simulation procedure (i.e.,
selecting the random numbers and deriving the corresponding values for each variable) was
performed using SAS statistical software.

Using the Monte Carlo procedure to obtain a sufficiently large number of random
values for each independent variable, a simulated data set is created that is, generally,
representative of the underlying population distribution from which that data set has been
derived. Again, this is comparable to how physical sampling and analysis to obtain values
from actual water supplies would also provide a representative data set.

There is one important difference that exists between the statistical sampling of a
probability distribution via the Monte Carlo technique and the actual sampling of water
supplies for values. By their nature, the normal and lognormal distributions allow for the
probability, albeit usually very small, of extreme values that may not make physical sense
and would not be observed in the real world. For example, it may happen that the Monte
Carlo procedure results in the determination of a value for a water constituent that exceeds
its solubility, or for a value that is less than zero. To correct for these eventualities, it was
necessary to impose upper and lower bounds on the values that could be produced by the
simulation process. If a value was selected that exceeded those bounds, that value was
reassigned the value of the bound that it fell beyond.

2.3 Methodology for Obtaining Values for Dependent Variables

For several of the water quality and treatment parameters, it was recognized that the
values they take on in raw water or in actual water supplies, are not entirely random, but
are instead dependent upon or influenced by the value for another parameter. Where this
was expected to be the case, linear regression analyses were conducted to test the strength
of those correlations, and to provide a means to account for those relationships in the
overall simulation analysis. Generally, the following four linear relationships were

.examined between an assumed dependent variable "Y" and some other variable "X" it was
assumed to be dependent upon:

Y=a+bX
In(Y)=a+bX

Y =a+ bIn(X)
In(Y)=a+bIn(X)

10



where a and b are, respectively, the intercept and slope obtained from the linear regression
analysis. The slope and intercept are determined by the method of least squares, which
provides the line that results in the minimum value for the sum of the squares of the
individual deviations of the actual data points from that line.

The strength of the linear relationships developed were assessed primarily from the
12 (coefficient of determination) value for each regression, The r? value for a regression,
which lies between 0 and 1, provides an indication of the fraction of the overall variability
observed in the dependent value that can be explained by the relationship with the
independent variable. Thus, an r? value of 1 indicates a "perfect" correlation which
explains all of the variability, while an r2 value of 0.75 indicates that 75% of the variability
observed in the dependent variable can be explained by its correlation with the independent
vanable, wnh the remaining 25% being unexplained variability, usual referred to as the

"resid

In many applications using such linear regressions, it is common to simply use the
linear equation obtained to predict the value for the dependent variable associated with a
particular value for the independent variable. In the method used for this simulation
analysis, a different approach was used to reflect both the explained variability and the
residual, unexplained variability.

The measure of the "scatter" of the original data about the least squares regression
line obtained is referred to as the root mean square error or standard error of the estimate of
y on X (sy ). This value is determined as:

(y, —- y')z

n

s).x =

where y; refers to the observed values for the dependent variable corresponding to the
value for the independent variable, x;: y’ is the predicted value for that variable using x; and
the linear regression; and n is the number of data points used to perform the regression
analysis.

The root mean square error, sy 4, has properties similar to a standard deviation in
that if one were to construct pairs of parallel lines to the regression line of y on x at
respective vertical distances of sy x, 2sy x Or 3sy , from it, one would find (with
sufficiently large n values) appronmately 6§%, 95%, and 99.7% of the data points falling
within those lines, respectively.

The correlation procedures used here were as follows. Correlations were not
examined for all possible combinations of data, but only for those for which there was
some reason to expect a correlation to occur. The combinations considered were:

Alkalinity as a function of pH

UV-254 as a function of TOC

Minimum Temperature as a function of Average Temperature
Calcium Hardness as a function of Total Hardness

Alum Dose as a function of TOC

Lime Dose as a function of Alkalinity

11



First, the four linear regression forms were developed. The "best" correlation was
then selected using two main criteria. The first criterion used was the r2 value with, of
course, the preference given to the form having the value closest to 1. A second criterion
used was based on a test of normality of the residual variability using the aforementioned
Shapiro-Wilk statistic. The need to place some weight on having the residual fit a normal
distribution relates to the method used to incorporate that residual variability into the
selection of the values for the dependent variables, which is discussed below.

Once the particular linear equation form was selected, it was used to obtain a value
for the dependent variable from the value for the independent variable obtained for that
particular hypothetical water supply using a simulation process similar to that described
previously. First, the independent variable in these relationships were obtained using the
Monte Carlo procedure described above. That value for X was then used with the
regression equation to obtain an intermediate value for the dependent variable, Y. That
intermediate value for Y was treated as the p parameter of a normal distribution for which
the o parameter was estimated by the value of s, 4, obtained as explained above. The final
value selected for the dependent variable for that simulated water supply was then obtained
using that normal distribution, and the same Monte Carlo selection procedures described
previously for the independent variables. As in the case of the independent variables, it
was necessary to set lower and upper bounds on the values selected by this process to
reflect "real world" limits.

12



3. RESULTS FOR INDIVIDUAL VARIABLES

This section presents a brief summary of the specific data sources used,
assumptions employed, and other considerations involved in the selection of the values for
each of the water quality and treatment variables used to create the 100 simulated SNS
water supplies. Comparisons are also provided between the simulated data sets and the
underlying data on which they are based.

3.1 pH

The underlying data for obtaining the pH values was the WIDB. As indicated
below, the WIDB provided 302 data points for SNS systems, showing a range of 6.0 to
8.7, with comparable median and mean values of 7.7 and 7.8, respectively. pH values
were selected for the 100 simulated data sets using the Monte Carlo simulation procedure
based on an assumed normal distribution of values. Unlike most other variables for which
a goodness of fit test was done for both normal and lognormal distributions, pH was
assumed a priori to follow a normal distribution since it is already a log-transformed value.
(That is, pH is defined as —log;o(1/[H*]), where [H*] is the hydrogen ion concentration in
moles per liter.) The parameter estimates used for the distribution were the arithmetic mean
and standard deviation from the WIDB. Lower and upper bounds of 4.5 and 10,
respectively, were placed on the pH values selected for the 100 simulated supplies.

‘Summary Data for pH in SNS Systems
WwIDB Simulated Data Set
N Count 302 100
Minimum Value 6.0 6.1
Maximum Value 8.7 9.1
Median 7.7 7.5
Arithmetic Mean 7.8 7.6
Standard Deviation 0.55 0.53

Exhibit 3 provides a comparison of the cumulative distribution of the WIDB data,
the fitted cumulative distribution curve based on the parameter estimates made from the
WIDB data, and the cumulative distribution of the 100 simulated data points.

13
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3.2 Total Organic Carbon (TOC)

As shown below, the WIDB provided TOC data for 84 SNS systems, which were
used as the basis for generating the 100 TOC values for the simulated data set.

“Summary Data for TOC in SNS Systems
(Concentrations in mg/L)

N Count 84 100
Minimum Value 0.01 mg/L 0.39 mg/L
Maximum Value 25 mg/L 26 mg/LL
Median 3.59 mg/L 3.92 mg/L.
Arithmetic Mean 4.46 mg/LL 5.29 mg/L
Standard Deviation 3.27 mg/L 4.92 mg/L.
Log Mean 1.27 1.32
Log Standard Deviation 0.85 0.86
exp(Log Mean) 3.56 mg/L 3.73 mg/L

Based on the goodness of fit test performed, the lognormal distribution was
selected for the TOC data. The parameter estimates for the lognormal distribution were the
Log Mean and Log Standard Deviation from the WIDB data shown above. Lower and
upper bounds of 0.01 mg/L. and 30 mg/L. were established for the TOC values selected
through the Monte Carlo procedure for the 100 simulated data sets.

Exhibit 4 provides a comparison of the cumulative distribution of the WIDB data,
the fitted cumulative lognormal distribution curve based on the parameter estimates made
from the WIDB data, and the cumulative distribution of the 100 simulated data points. It is
evident from Exhibit 4 that the derived lognormal distribution and the 100 simulated data
points do not appear to compare well with the underlying WIDB data. The relative
positions of these curves indicates that the derived distribution has a similar central value,
but that the variance about that central value is greater than is observed in the underlying
data. This results in obtaining more values in the simulated TOC data set that are further
from the center of the distribution than observed in the WIDB data. For example, the
derived distribution indicates that about 30% of the TOC values would fall below
approximately 2.5 mg/L, while the WIDB data suggest that only about 15% fall below that
value. Similarly at the high end, the derived distribution indicates that about 30% of the
TOC values will exceed approximately 6 mg/L, while the WIDB data suggest that only
about 20% exceed that value.

The difference between the WIDB data and the derived distributions for TOC
appears to be due the presence of two "extreme” values in the WIDB data (one each at the
low and high ends) that result in a higher standard deviation for the data than would be
computed without those data points. As discussed further in Section 4, the influence of
these data points on the shape of the derived TOC distribution would have been lessened
had the regression approach been used to estimate the distributional parameters.
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3.3 UV-254

Regression analyses were conducted to assess the relationship between raw water
TOC and UV-254, reasoning that as TOC increased, absorbance of UV-254 would also
increase. There was only a limited set of data, however, that provided both TOC and UV-
254 data for the same samples, namely 23 surface water data points from the JMM study.
As indicated in the preceding discussion of the methodology used to evaluate dependent
variables, four linear relationships were tested and compared on the basis of r2 values and
the Shapiro-Wilk statistic (W) testing the normality of the residual variability. Shown
below are the results of those tests:

UV-254=a+bTOC (r*=0.954;W = 0.969)
In(UV-254)=a+bTOC (r* =0.625;W =0.920)
UV-254=a+bIn(TOC) (r*=0.758;W =0.943)
In(UV-254)=a+bIn(TOC) (r* =0.791;W = 0.910)
Based on both the r? and the W statistic, the first of these four was used to

characterize the relationship between TOC and UV-254. The parameters obtained for this
relationship were:

Intercept (a): 0.03386
Slope (b): -0.03039
Root MSE: 0.03107

Exhibit 5 displays the original JMM data and the derived linear relationship.
Inciuded on Exhibit 5 are lines showing + root mean square error distances from the
regression line. Exhibit 6 shows the scatter of the 100 simulated SNS data points selected
against the obtained regression line. Lower and upper bounds of 0.01 and 1 cm"1 were
established for the UV-254 values selected for the simulated data set.
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Exhibit 6
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3.4 Bromide

The available data on the occurrence of bromide in raw water used for drinking
water is very limited. For the SNS systems, there were 18 data points available from the
JMM study, which were used as the basis for deriving the 100 simulated data points for
this analysis. Summary statistics for the JMM data and the 100 simulated data points are
presented below.

Summary Data for Bromide in SNS Systems
‘ (Concentrations in mg/L)
VMM i
N Count 18 100
Minimum Value 0.01 mg/L 0.0 mg/L
Maximum Value 3mg/L 5.0mg/L
Median 0.06 mg/L 0.08 mg/L
Arithmetic Mean 0.27 mg/L 0.33 mg/L
Standard Deviation 0.66 mg/L 0.83 mg/L
Log Mean -2.70 -2.58
Log Standard Deviation 1.56 1.69
exp(Log Mean) 0.067 mg/L 0.08 mg/L.

Based on the goodness of fit test performed, the lognormal distribution was
selected for bromide. The parameter estimates for this distribution were the Log Mean and
Log standard Deviation from the JMM data shown above. Lower and upper bounds of 0
and 5 mg/L were placed on the bromide values selected for the 100 simulated data points.

Exhibit 7 provides a comparison of the cumulative distribution of the JMM data, the
fitted cumulative lognormal distribution curve based on the parameter estimates obtained
from the JMM data, and the cumulative distribution of the 100 simulated bromide data
values. The fitted distribution and the JMM data compare well through most of the values,
showing a slight divergence only at the upper tail of the curve, which may reflect the
relatively small number of data points in the JMM data set.
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3.5 Average Temperature

The average temperature data (in °C) were based on the 285 SNS data points
provided in the WIDB, as summarized below.

Summary Data for Average Temperature in SNS Systems
(Concentrations in mg/L)
; WIiDB i

N Count 285 100
Minimum Value 5°C 49 oC
Maximum Value 26 °C 21 oC
Median 15°C 14.5 oC
Arithmetic Mean 15.1 oC 14.5 oC
Standard Deviation 4.2°C 3.7°C
Log Mean 2.67 3.68
Log Standard Deviation 0.299 2.64
exp(Log Mean) 14.4 oC 14.0 oC

Based on the goodness of fit test performed, the normal distribution was selected to
characterize the average temperature data. Exhibit 8 compares the cumulative frequency of
the WIDB data with the fitted normal distribution and the cumulative distribution of the 100
simulated data points. Lower and upper bounds of 0.5 and 30 °C were established for the
100 simulated data points.
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3.6 Minimum Temperature

It was assumed a priori that the Minimum Temperature of the influent raw water is
related to the Average Temperature. The four regression forms were tested, the resulting
statistics for which are shown below:

Min.Temp.=a+b Avg.Temp. (r*=0.453;W =0.967)
In(Min.Temp.)=a+bAvg.Temp. (r* =0.426;W =0.972)
Min.Temp.= a + bIn(Avg.Temp.) (r*=0.398;W =0.962)
In(Min.Temp.)=a+bIn(Avg.Temp.) (r*=0.398;W =0.964)
Although the r2 value was highest for the Min.Temp. vs. Avg.Temp., the Shapiro-
Wilk statistic for normality of the residual was higher for the In(Min.Temp.) vs.

Avg.Temp.; consequently this was the form chosen to describe the relationship between
these variables for the SNS systems. The parameters obtained for this relationship were:

Intercept (a): 0.9334
Slope (b): 0.1478
Root MSE: 0.6167

Exhibit 9 shows the WIDB data for Minimum and Average Temperature relative to
the derived relationship. Exhibit 10 similarly compares the 100 simulated data points to the
derived relationship. Lower and upper bounds of 0.1 and 30 °C were placed on the
simulated Minimum Temperature data points. Also, a constraint was used requiring that
the Minimum Temperature value selected be less than the corresponding Average
Temperature value.
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3.7 Total Hardness

As shown below, the WIDB provided 291 data points for total hardness in SNS
supplies. These were used as the basis for selecting the 100 data points for the simulated
SNS supplies.

Summary Data for Total Hardness in SNS Systems
(Concentrations in mg/L as CaCQO3 Equivalents)
WIDB Simulated Data Set

N Count 291 100
Minimum Value 7 mg/L 11.2 mg/LL
Maximum Value 551 mg/L 779 mg/L
Median 106 mg/L 71 mg/L
Arithmetic Mean 115 mg/L 122 mg/L
Standard Deviation 86 mg/L 158 mg/L
Log Mean 4.39 4.29
Log Standard Deviation 0.92 0.98
exp(Log Mean) 80.6 mg/L 72.7 mg/L

Based on the goodness of fit test, the lognormal distribution was selected to
describe the distribution of total hardness data for the simulated systems. The parameter
estimates used for this distribution were the Log Mean and Log Standard Deviation from
the WIDB data set shown above. Lower and bounds of 5 and 1,000 mg/L. were placed on
the total hardness values selected for the 100 simulated data points.

Exhibit 11 compares the cumulative distributions of the WIDB data set, the fitted
cumulative lognormal distribution derived from those data, and the cumulative distribution
of the 100 simulated data points. As shown there, the WIDB data and the fitted curve
diverge from one another through the middle portion of the distribution, with the computed
distribution favoring lower total hardness values.

3.8 Calcium Hardness

It was assumed a priori that calcium hardness values would be related to total
hardness. However, there were only limited data available providing both total hardness
and calcium hardness values for raw water samples. Using the limited information
provided in a preliminary version of the recently completed lime softening survey by
AWWA, its was estimated that typically calcium hardness contributes about 75% of total
hardness. Therefore, the calcium hardness values were obtained for the 100 simulated data
points simply by muitiplying the obtained total hardness value by 0.75.
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3.9 Turbidity

The turbidity values for the 100 simulated SNS data points were derived from a
lognormal distribution based on data from the WIDB. The summary statistics for the
WIDB data and the 100 simulated points are shown below.

Summary Data for Turbidity in SNS Systems
(Concentrations in NTU)
WIDB Simulated Data Set

N Count 300 100
Minimum Value 0.11 0.17
Maximum Value 170 121
Median 5.3 8.0
Arithmetic Mean 124 15.1
Standard Deviation 20.6 21.7
Log Mean 1.69 1.96
Log Standard Dewviation 1.33 1.32
exp(Log Mean) 5.4 7.1

Lower and upper bounds of 0.01 and 1,000 NTU were set for the 100 simulated
data points.

Exhibit 12 compares the cumulative distribution of the 300 WIDB data points, the
fitted cumulative lognormal distribution, and the cumulative distribution of the 100
simulated data points selected through the Monte Carlo simulation. As evidenced from this
exhibit, as well as from the summary data shown above, the underlying WIDB turbidity
data and the 100 simulated turbidity data points for the SNS systems are highly similar.
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3.10 Ammonia

The undcrl&ing ammonia data used for this analysis was 55 SNS samples from the
AWWA Disinfection Survey. Shown below are the summary statistics from that data set,
along with the statistics for the 100 simulated data points.

Summary Data for Ammonia in SNS Systems
(Concentrations in mg/L)
DS .
N Count 5§ 100
Minimum Value 0.01 mg/L 0.003 mg/LL
Maximum Value 3.2 mg/L 1.4 mg/L
Median 0.05 mg/L 0.05 mg/L
Arithmetic Mean 0.16 mg/L 0.11 mg/L
Standard Deviation 0.44 mg/L 0.17 mg/L
Log Mean -1.22 (Base 10) -1.23 (Base 10)
Log Standard Deviation 0.545 (Base 10) 0.465 (Base 10)
exp(Log Mean) 0.06 mg/L 0.06 mg/L

The analysis of the ammonia data from the Disinfection Survey was provided by
Dr. Charles Haas of Drexel University. His analysis to determine the best distributional fit
differed from that used for other data in that the log transformation for evaluating the
lognormal distribution used base 10 logs rather than natural logs used for other variables.
Also, the goodness of fit test used was the Kolmogorov-Smirnov test rather than the
Shapiro-Wilk test. Although these differences are unlikely to have affected the outcome of
this analysis, these inconsistencies will be corrected in future iterations.

The ammonia data were found to have a better fit to the lognormal distribution.

Lower and upper bounds of 0 and 4 mg/L were placed on the ammonia values obtained for
the 100 simulated systems.
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3.11 Alkalinity

It was assumed that alkalinity levels would be related to the pH. Regression
analyses were conducted for this relationship using 288 data points from the WIDB data
base having both pH and alkalinity data for SNS systems. Because pH is a log-
transformed value, only the following two relationships were tested:

Alkalinity=a+b pH (r* =0.591;W = 0.956)
In(Alkalinity)=a+bpH (r* =0.725;W = 0.983)
Based on both the r? and the W statistics, the second of these relationships was

selected to characterize the relationship between alkalinity and pH. The following
parameters were obtained for this regression:

Intercept (a): -6.56
Slope (b): 1.29917
Root MSE: 0.4659

Exhibit 13 shows the relationship between the underlying WIDB data and the
regression relationship derived from those data. Exhibit 14 shows the scatter of the 100
simulated data points relative to the regression line.
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Exhibit 14
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3.12 Distribution System Residence Time

The values for distribution system residence time for the 100 simulated SNS
systems were obtained from a lognormal distribution derived from data provided in WIDB.
Summary statistics for hose data, and the 100 simulated data points are provided below,

Summary Data for Distribution System Residence Time in SNS Systems
(Values in Days)
WIDB i
N Count 204 100
Minimum Value 0.0 0.24 days
Maximum Value 10 days 9.6 days
Median 1.5 days 1.5 days
Arithmetic Mean 1.8 days 1.8 days
Standard Deviation 1.4 days 1.4 days
Log Mean 0.381 0.358
Log Standard Deviation 0.719 0.659
exp(Log Mean) 1.46 days 1.43 days

Based on the goodness of fit test performed, the lognormal distribution was
selected, with the Log Mean and Log Standard Deviation from the WIDB data used as the
parameters for that distribution. Lower and upper bounds of 0.1 and 10 days were used
for the simulated data points obtained from this distribution.

Exhibit 15 provides a comparison of the cumulative distribution of the WIDB data,
the fitted cumulative distribution derived from those data, and the cumulative distribution of
the 100 simulated data points. As shown there, these data compare favorably. It should be
noted that the "step” appearance of the WIDB data points relative to the derived distribution
reflect the apparent tendency for some of those data to have been reported in whole day
values.
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3.13 Average Daily Flow

Average daily flow values for the simulated data set were based on a lognormal
distribution derived from 303 WIDB data points for SNS systems. Summary statistics for
those data and for the 100 simulated data points are presented below.

Summary Data for Average Daily Flow in SNS Systems
(Values in Millions of Gallons per Day)

N Count 303 100
Minimum Value 1.0 MGD 1 MGD
Maximum Value 654 MGD 602 MGD
Median 16.5 MGD 21.0 MGD
Arithmetic Mean 35.6 MGD 36.1 MGD
Standard Deviation 65.6 MGD 66.1 MGD
Log Mean 2.85 291
Log Standard Deviation 1.149 1.16
exp(Log Mean) 17.3 MGD 18.4 MGD

Upper and lower bounds of 1 and 1,000 MGD were established for the simulated
data set. Exhibit 16 provides a comparison of the cumulative distribution of the WIDB
data, the cumulative lognormal distribution derived from those data, and the cumulative
distribution of the 100 simulated data points. As shown there, the middle portion of the
fitted distribution diverges slightly from the WIDB data, with the fitted distribution
favoring slightly higher flow values, which are reflected in the simulated data set.
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3.14 Lime Dose

Lime dose values for the SNS systems were based on a normal distnbution derived
from 123 WIDB data points. The summary statistics for these 123 data points and the
simulated data points are presented below:

Summary Data for Lime Dose in SNS Systems
(Values in mg/L)
WIDB i

N Count 123 36
Minimum Value 0.05 mg/L 1.8 mg/L
Maximum Value 40 mg/L. 18.7 mg/LL
Median 10 mg/L. 11.1 mg/L
Arithmetic Mean 10.7 mg/L 10.4 mg/L
Standard Deviation 7.4 mg/L 5.0 mg/L
Log Mean 2.07 2.20
Log Standard Deviation 0.951 0.634
exp(Log Mean) 7.9 mg/L 9.0 mg/L

As indicated above, there were only 36 data points in the simulated data set for lime
dose for the SNS systems. This reflects the information derived from WIDB showing that
only 36% of the SNS systems use lime. Although lime dose values were selected for each
of the 100 simulated systems, a second step was carried out where 64 of those systems
were randomly selected, and the lime dose values for those were set to 0.

Exhibit 17 provides a comparison of the cumulative distribution of the 123 WIDB
data points, the cumulative normal distribution derived from those data, and the cumulative
distribution of the 36 non-zero simulated values. In the range of the distribution between
approximately the 40th and 90th percentiles, the fitted distribution shows higher values
than the underlying WIDB data.
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3.15 Alum Dose

The alum dose was assumed to be related to the influent TOC values, with the
expectation that higher alum doses would be observed in systems having higher influent
TOC levels. The relatdonship between alum dose and TOC was using 54 data points from
SNS systems in the WIDB. All four relatdonships were tested, the summary statistics for
which are shown below.

AlumDose =a+bTOC (r* =0.472;W = 0.969)
In(AlumDose)=a+bTOC (r* =0.322;W = 0.954)

AlumDose = a+ bIn(TOC) (r* =0.340;W =0.937)
In(AlumDose) = a+bIn(TOC) (r* =0.279;W = 0.956)

All of the r2 values were fairly poor, and although these and the Shapiro-Wilk
statistic for the AlumDose vs. TOC regressions had the best values, the final regression
form chosen for both the SNS group was In(AlumDose) vs. TOC. This deviation from the
established protocol was necessitated because the use of the AlumDose vs. TOC form,
owing to the overall poor fit, resulted in a substantial number of values selected that

exceeded the established lower and upper bounds for alum dose. These bound were 0.5
and 300 mg/L.

The parameters obtained for this regression were as follows:

Intercept (2): 1.646
Slope (b): 0.2521
Root MSE: 0.8143

Exhibit 18 provides a plot of the WIDB data against the selected regression line.
Exhibit 19 presents a similar plot for the 100 simulated data points.

It should be noted that in subsequent iterations of this analysis, it is intended that
the alum dose will be tested for its relationship with turbidity to determine whether itis a
better predictor of alum dose than TOC.

3.16 Prechlorination

The prechlorination treatment variable was a different form from the others. The
purpose of this variable was to indicate whether a particular system does or does not
practice prechlorination. Based on 313 SNS data points in the WIDB, it was determined
that 82% practice prechlorination. Therefore, 82 of the 100 simulated SNS systems were
selected randomly and designated as performing prechlorination.
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4. DISCUSSION

In the preceding sections we have described the assumptions and procedures used
to perform Monte Carlo simulations resulting in the creation of 100 simulated water
supplies that are subsequently used in a model to evaluate compliance choices to meet
regulatory options being considered for disinfection by-products. An obvious concern that
arises with respect to considering the validity of the approach being used is that of the
representativeness of the simulated data. That is, how well do these 100 simulated water
supplies represent the population of large, filtering, non-softening surface water supplies
with respect to the levels of the raw water quality parameters and the water treatment
characteristics used to describe them? The representativeness question can be broken into
several parts:

1. How representative are the underlying data set used of the real world
distribution of values for each variable?

2. How well do the probability density function developed from those data
represent the real world distributions?

3. How well does the simulated set of values reflect the probability density
functon from which it is obtained?

Most of the variables included in the simulated data set were based on 200 to 300
data points provided by the WIDB. This is a substantial number of data points, and
comprises a large proportion of the total number of these types of supplies in the nation. It
should be noted that the data in the WIDB was provided by the water supply, and was not
an independent sampling and analysis. Consequently, there were no uniform QA/QC
procedures applied to ensure that all of the data reported was of a comparable level of
reliability. Nevertheless, it is assumed that, overall, the WIDB data are reliable and provide
a reasonable representation of the SNS supplies.

For some of the variables, the number of data points being relied upon to describe
the national distribution of values were, however, much lower than the 200 to 300 noted
above. Three of these variables are of particular concern: TOC, UV-254 and bromide.
The TOC analysis was based on 84 WIDB data points. While the range of values provided
by these 84 data points appear to be reasonably consistent with the levels of TOC expected
in the raw water for these types of supplies, it has been conjectured that these values may
have a slight upward bias in these data. Since TOC is not a water quality measure that is
normally required of water supplies, the limited number of systems that had the data
available to report on the WIDB questionairre may be systems that have a TOC-related
problem. The UV-254 relationship with TOC was based on a very small data set, 23
observations from the JMM study. The bromide data was based on only 18 data points
from the JMM study, and there is some concern that because the JMM data set was heavily
represented by California water systems, these data may have an upward bias. However,
this may not be that significant because the brominated THM with the highest potency
factor, bromodichloromethane, is the lest affected of all the brominated species, by bromide
levels. More relevant may be the predicted brominated HAAs when potency factors
become available for these compounds.

Another major concern is the data used to characterize prechlorination. Data from
the WIDB did not distinguish the precise point of prechlorination preceeding filtration. the
WTP model (described by Gelderloos et al,, 1992) assumed that all points of
prechlorination occurred prior to the rapid mix (that is 82% of the SNS systems applied
chlorine there). Since a significant number of systems are known to prechlorinate just prior
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to filtration, the WTP model assumption over-represents the status quo conditions for
predicting DBP formation resulting from prechlorination. Future model runs will attempt
to use more representative prechlorination data if it becomes available.

The WTP model assumption of 82% prechlorinating at the rapid mix probably more
closely represents industry practice prior to the 1979 TTHM regulation. If this is true, then
the WTP model can be crudely tested for its reliability for predicting treatment changes to
meet a TTHM standard of 100 pg/L with survey results indicating actual treatment changes
made by the industry to comply with the TTHM standard. This is discussed further in the
paper by Cromwell et al. (1992) and Gelderloos et al. (1992).

The particular concern about the representativeness of these three variables relates to
their critical role in predicting by-product levels. Referring back to the TTHM formation
equation presented in Section 2, all three of these variables are incorporated directly. An
upward bias in TOC, coupled with the dependency of UV-254 on those TOC values, could
result in an overestimate of TTHM formation. An upward bias in the bromide levels used
would not have a very large impact on the TTHM estimates, since the exponent for bromide
in the formation equation is very small (0.036). However, the bromide level does have a
significant effect on the distribution of the individual THM species, with higher bromide
levels favoring the more highly brominated species, which also have higher carcinogenicity
potency factors .

The question of the how well the probability distributions derived from the available
data correspond to the underlying data is also critical As noted previously, the selection of
the normal and lognormal distributions to describe the data was made a priori.. While these
distribution forms have been found to correspond well with environmental measurement
data across most of the range of those data, they are ultimately approximations of the true
distributions. Also, the procedures for estimating the parameters of those distributions can
affect the degree to which they correspond to the underlying data. As noted in Section 2,
the parameter estimates were made by simply using the mean and standard deviation (or log
mean and log standard deviation) of the underlying data. As also noted there, an alternative
approach using regression techniques has been found to provide better estimates of
distributional parameters for environmental data.

An example of the difference between these is shown in Exhibit 20 for TOC. This
exhibit provides a plot of the order statistics of the underlying WIDB data, a plot of the
distribution used in this analysis, and a plot of the distribution of TOC based on the
regression method for estimating the parameters. As can be seen there, the regression
method appears to provide a better fit to the underlying data than the method used here to
estimate the parameters. This is mainly due to the effect of the two extreme values
(especially the one extremely low value) on the estimation of the o parameter, which
corresponds to the slope of the lines presented in this exhibit. Using the current method,
these values have more weight in estimating this parameter than they do with the regression
method. (It is also reasonable to consider eliminating these extremes, which would further
improve the fit to the WIDB data.) In subsequent iterations of this analysis, the regression
method will be more fully explored for making the parameter estimates.
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Exhibit 20

Comparison of TOC Distributions to Underlying Data
Using Alternative Methods for Estimating Parameters

®  |nfluent TOC in WIDB

= = = = Maximum Likelihood
Method (currently used)

= Regression Method

Ln(TOC)

-25




The third question, that of the adequacy of 100 data points to represent the universe
of SNS water supplies, has two aspects to it. The first is the representativeness of those
data points with respect to any one individual parameter. It can be shown from basic
sampling theory that 100 samples are more than adequate to estimate the mean and variance
of a population. Generally, it can be shown that beyond approximately 30 samples for a
population the size of the SNS systems, there is minimal increase in the precision of the
estimates of the mean and variance by taking additional samples. A smaller sample size
will, however, tend to provide less reliable information about the extreme values (for
example, the 90th or 95th percentle value).

The second aspect of the question about the adequacy of the 100 simulated systems
relates to the representativeness of the combinations of values for all variables. As with the
representativeness of individual variables, the 100 simulated sets are expected to be
reasonably representative of the range of combined values in terms of their effect on TTHM
formation. It is expected, however, that the 100 simulated systems do not provide fully
representative information on the systems that may have simultaneously occurring extreme
values of several parameters that have a significant direct effect on by-product formation.
Subsequent iterations of this analysis will explore these questions in more detail for
inclusion in a more fully developed uncertainty assessment.
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