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RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and appiication of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:

1. Environmental Health Effects Research

Environmental Protection Technology

Ecological Research

Environmental Monitoring

Socioeconomic Environmental Studies

Scientific and Technica! Assessment Reports (STAR)
Interagency Energy-Environment Research and Development
“Special” Reports

Miscellaneous Reports

This report has been assigned to the ENVIRONMENTAL MONITORING series.
This series describes research conducted to develop new or improved methods
and instrumentation for the identification and quantification of environmental
poliutants at the lowest conceivably signtficant concentrations. It also includes
studies to determine the ambient concentrations of poliutants in the environment
and/or the variance of pollutants as a function of time or meteorological factors.
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This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.



DISCLAIMER

This report has been reviewed by the Environmental Monitoring and
Support Laboratory-Las Vegas, U. S. Environmental Protection Agency, and
approved for publication. Mention of trade names or commercial products
does not constitute endorsement or recommendation for use.
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FOREWORD

Protection of the environment requires effective regulatory actions
which are based on sound technical and scientific information. This informa-
tion must include the guantitative description and linking of pollutant
sources, transport mechanisms, interactions, and resulting effects on man and
his environment. Because of the complexities involved, assessment of
specific pollutants in the environment requires a total systems approach
which transcends the media of air, water, and land. The Environmental
Monitoring and Support Laboratory-lLas Vegas contributes to the formation and
enhancement of a sound integrated monitoring data base through multidiscipli-
nary, multimedia programs designed to:

develop and optimize systems and strategies for moni-
toring pollutants and their impact on the environment

demonstrate new monitoring systems and technologies by
applying them to fulfill special monitoring needs of
the Agency's operating programs

This report presents the results of a study directed at determining the
extent of pollutant transport, specifically oxidant, into and through the
EPA Region I area. The results of this study could provide a basis for
modifying the transportation control plans for the Boston metropolitan area
particularly since they demonstrate that the origin of the photochemical
pollution resides in areas upwind of that city. As this study demonstrates
the phenomenon of oxidant transport, that mechanism should be considered by
policymakers and investigators in other geographical areas. Further details
concerning this subject can be obtained by contacting the Air Quality Branch,
Monitoring Operations Division, Environmental Monitoring & Support

Laboratory~-Las Vegas.

George B. Morgan

Acting Director
Environmental Monitoring and Support Laboratory
Las Vegas
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INTRODUCTION

The transport of oxidant and oxidant precursors over short and long-
range distances has gained more attention as Air Quality Control Regions
implement strategies to control photochemical pollution within their mandated
areas. Policy makers have promoted studies which investigate the transport
of oxidant and oxidant precursors in such areas as the Midwest (Johnston
et al., 1974; Decker et al., 1975), South Coast Basin of California
(Blumenthal et al., 1973), the Northeast (Cleveland et al., 1976), and the
heavily industrialized areas of the East (Coffey and Stasiuk, 1975). The
promulgation of a Transportation Control Plan for the Boston metropolitan
area elicited an urgent need to investigate the possibility of oxidant
and oxidant precursors transport from the metropolitan New York - New Jersey
area into Southern New England. Subsequently, Region I of the U.S. Environ-
mental Protection Agency (EPA) sought to conduct an extensive monitoring
effort directed at determining the extent of pollutant transport into and
through Region I. Emission reductions in the areas accountable for the
origin of the photochemical pollution problem in Region I can have extensive
economic implications.

The field project involved research teams from Washington State Uni-
versity (WSU), Battelle Memorial Institute (BMI), EPA~Research Triangle Park
(RTP), EPA-Region I, and EPA-Las Vegas {(LV). WSU conducted airborne monitor-
ing of ozone primarily through eastern New York and western Connecticut, as
well as operated ground stations monitoring ozone and ozone precursors. BMI
had a similar approach, primarily in eastern Connecticut and in Massa-
chusetts. EPA-RTP operated a hydrocarbon analytical lab for samples
collected throughout the area during the study. EPA-Region I administered
the overall project and provided cross-calibration audits of those groups
involved, including the various State agencies. EPA-LV involvement is
discussed below.

SUMMARY OF EPA-LV INVOLVEMENT

The participation of the Air Quality Branch (MOA) of the Monitoring
Operations Division (MOD) of the Environmental Monitoring and Support
Laboratory at Las Vegas, Nevada (EMSL-LV), was twofold. A staff meteorolo-
gist with MOA was responsible for the day-to-day coordination of the various
airborne monitoring teams, including the EMSL-LV team. A report of
meteorological data covering the period of the study was also compiled. In
addition, the EMSL-LV field team gathered extensive air quality data
utilizing the Long Range Air Monitoring Aircraft (LORAMA); these data are



reported here in final form. The purpose of this report is to document all
phases of the EMSL-LV participation in the Northeast Oxidant Transport Study
and to present all data collected by LORAMA during the NOTS. The data are
presented graphically for ease in noting trends; no interpretation of the
data is provided. Hydrocarbon samples were analyzed by EPA-RTP and results
are not presented herein.

MONITORING SYSTEM DESCRIPTION

INSTRUMENT LAYOUT

Since the completion of participation in NOTS, a number of changes have
been made on the LORAMA system. However, this section describes the system
as it existed during the summer of 1975. Table I lists the instruments
installed on board. Ambient air data were collected primarily for ozone (O3)
and nitric oxide (NO); no data were collected on nitrogen dioxide (NOj).

An air-handling system was installed in the aircraft, a Monarch B-26,
which operated as an air monitoring platform. A probe which admits ram air
into an integrating nephelometer consisted of a cylindrical aluminum tube,
3.5 centimeters (cm) in diameter. This tube extends about 0.9 meter {(m) in
front of the nose of the aircraft and allows air to flow into the instrument,
which was located in the nose of the ship. The air then flowed on through an
exhaust manifold and exited at the rear of the aircraft.

The hygrometer, designed specifically for aircraft use, responds to air
let in through a small probe extending through the skin of the aircraft on
the underside of the nose.

The temperature probe consisted of an integrated circuit projecting from
the underside of the nose of the aircraft forward about 0.3 m. The probe was
encased in a small cylindrical tube with an opening at the forward end.

The pressure transducer was mounted freely hanging inside the nose of
the aircraft. This transducer was not attached to a static line since the
air in the nose of the aircraft remains static during flight.

The remaining equipment was mounted in standard racks in the cabin of
the aircraft. An S-shaped cylindrical aluminum probe, 3.5 cm in diameter,
and internally coated with Kynar (a relatively inert plastic compound), was
mounted on the roof of the cabin extending about 45 cm into undisturbed
ambient air. Sample air entered the probe due to ram pressure. This air
flowed through a manifold system and exited through the exhaust manifold.
Each of the air quality instruments in the cabin continuously drew sample
air from the inlet manifold for analysis. BAir for sample bags was also
drawn from this manifold. The operation was conducted remotely from the
rear of the cabin.
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SYSTEM DESIGN RATIONALE

There are a number of variables which affect the validity of data
collected from airborne platforms. Among these are the reliability of
instrument calibration, lag and response times of each instrument, statis-
tical considerations of the size of the sample, chemical reactions of pol-
lutants within the sampling system, and the response of each instrument to
the stressful environment of an unpressurized aircraft (stresses such as
vibration and temperature and pressure changes).

The gquality of instrument calibration is limited by the accuracy of the
calibration standard and the precision of the calibration procedure. The
requisite details of the quality assurance program are discussed in a sub-
sequent section of this rpeort.

The lag time of an instrument is defined as the time interval between a
step change in input concentration at the sampling system inlet to the first
observable corresponding change in the instrument output. If the sampling
system is defined as the aircraft-instrument combination, then the velocity
of the aircraft will have some influence on what the system sees and when it
responds. Since instantaneous data were recorded every 5 seconds, the
average air speed of 320 kilometers (km) per hour, flown by the B-26 aircraft
during NOTS, provided one data point approximately every 450 m. The effect
of the response time, the time interval between initial response and some
percentage of final response (e.g., 90 percent) after a step change in
input concentration, is minimized when monitoring air of uniform composition,
where strong pollution gradients do not exist. The data should be corrected
when very rapid changes in input concentration occur, such as when source
sampling. For the purpose of  the regional ambient monitoring performed by
our system, however, data have not been corrected for the effects of lag and
response time.

Ambient air quality standards and modeling routines are generally based
on data time-averaged over 1 hour or longer at a given location. Spatially
static monitors can provide this type of information quite readily. Mobile
monitors, such as airborne platforms, however, must provide averaged or
spatially integrated data. It is apparent that a close examination of
atmospheric variability is necessary before accepting the statistical vali-
dity of data taken from an airborne platform. The subject has been discussed
in the literature (Mage, 1975) and the reader is referred to that article for
a more in-depth discussion.

Air monitoring can be further complicated by the reactivity of species
being measured. For example, a given compound can react on the walls of the
system obviously biasing the sample. It is therefore necessary to take
precautions to ensure that the portions of the system with which the com-
pounds being measured come in contact are as chemically inert as possible.
To this end, the internal surfaces of the air inlet probes are coated with
Kynar, a relatively inert plastic compound.



Furthermore, reactive species can certianly react with one another; a good
example is the reaction of NO with O3. As lonc as these compounds exist at
typical ambient concentrations, an equilibrium exists between them. Once
they enter the confines of the monitoring system, the equilibrium is dis-
turbed. For example, in a dark manifold, NO and O3 will react according to
their rapid dark-phase chemistry, biasing the measurement of both species.
The error due to chemical interactions is strongly dependent on the residence
time of sample air in the manifold system. This error can be estimated
(Butcher and Ruff, 1971) by use of the appropriate rate constants. The
residence time of this inlet manifold is calculated to be less than 1 second,
while at typical ambient concentrations the reaction between NO and O3 should
take approximately 2 minutes to 99 percent completion; this obviates cor-
rection factors for this condition.

TEMPERATURE AND PRESSURE SENSITIVITY OF INSTRUMENTS

Since the B-26 aircraft is not pressurized, all equipment on board is
subject to changes in ambient temperature and pressure. To isolate the sen-
sitivity of each instrument to these factors, tests were conducted in an
environmental chamber in Las Vegas before the beginning of the oxidant study.
The following text will discuss only the Bendix ozone instrument and the TECO
oxides of nitrogen instrument, since neither temperature nor pressure is
expected to significantly affect the other instruments.

The Bendix ozone instrument showed an almost negligible effect from
changing temperature in these tests. The zero level was unaffected through-
out the range of 5° to 40° Celsius (C). The span varied up to 5 percent of
full scale throughout this range, however, in the range of measurement
covered by this report, approximately 15° to 30° C, it was practically
unchanged.

The Bendix ozone instrument demonstrated an effect from changing
altitude (pressure) in these tests. There was no demonstrable effect on the
zero level. However, the span decreased with increasing altitude. Using the
data obtained from these tests, a regression line was formulated
(r2 = 0.94) to relate instrument response to altitude; a correction factor
is determined in terms of a Normalized Pressure Response (NPR).

NPR(05) = (-1.037 x 107%) x (altitude in meters) + (0.9968)

Ozone concentration is corrected for pressure sensitivity by
dividing the Bendix output value by NPR(O3). It should be noted that the
change in signal was very similar to the expected theoretical output due to
changing air density.

The TECO instrument, which was tested only for response to NO, showed
some effect due to changing temperature in these tests. In the range 5° to
40° C, the zero level was noted to decrease for colder temperatures and
increase for warmer temperature, relative to room temperature. The span
was unaffected by changing temperature.



The TECO instrument, tested only for NO, also varied with changing
altitude. The zero level was not affected by changing altitude, but the
span decreased with increasing altitude. A regression analysis was also
performed on this data (r2 = 0.92).

NPR (NO) = (-4.315 x 107°) x (altitude in meters) + (0.9446)

NO concentration is corrected for pressure sensitivity by dividing the TECO
output value by NPR(NO). NO; was not measured during the project. This
variation of response with altitude is significantly different from the
theoretical change in air density with altitude, presumably due to the low-
pressure reaction chamber in the instrument. In applying these correction
factors to the O3 and NO data, it was assumed that the chamber test
conditions closely simulated the range of aircraft operational conditions.

DATA HANDLING

The elements of the data acquisition system are listed in Table II.
The signal voltages from each monitoring instrument were received, encoded
{abbreviated ASCII), and stored on magnetic tape (7-track, 200 bits per inch,
even parity) in 5-second increments, thus allowing ready accessibility for
subsequent processing. The four-channel strip chart recorder provided a
backup for the calculator-based storage and retrieval system. Figure 1
illustrates the availability of data during the study; the processing of the
data followed the flow illustrated in Figure 2, after the field team returned
to Las Vegas. The EMSL-LV field team now has the system capabilities for
data processing (Figure 2) within 24-hours of collection, i.e., while still
in the field. This is a great advantage for quality control considerations
and for rapid initiation of data interpretation. The capability that now
exists for final processing of the data corrects for zero and gain shifts (as
linear functions of time), and also relates the data to sea-levellpressure
(altitude). In preparation of this final report, an error in the preliminary
processing of the data was uncovered. The response of the 03 analyzer and
the NO analyzer, due to pressure sensitivity, was normalized to Las Vegas
altitude (610 m Mean Sea Level (MSL) or 705 millimeters mercury (mm Hg)
reference pressure) instead of sea-level altitude. This is a systematic
error in the previously reported data values, and the proper pressure cor-
rection (to sea=-level altitude) results in an approximate 7 percent increase
in the O3 data and in the NO data; i.e., the O3 and NO data accompanying the
preliminary draft of this report were low by 7 percent. The final data,
presented in this report, incorporate the corrections as discussed above.



TABLE II. DATA ACQUISITION SYSTEM

Item
Programmable Calculator
Multimeter

Scanner

Digital Clock

Magnetic Tape Recorder
Strip Chart Recorder

Printer

Model

HP 9830 A

HP 3490 A

HP 3495 A

HP 59309 A

Cipher 70

MFE 4M3CAHA Modified

HP 9866 A
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FIGURE 1. ON-SITE DATA TREATMENT.
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FIGURE 2. OFF-SITE DATA TREATMENT.




QUALITY CONTROL
QUALITY ASSURANCE PROGRAM

The validity of air quality data can be improved by the establishment
of a well-documented and well-executed quality control program. Such a pro-
gram must rely on accurate calibration standards and precise calibration
techniques. Such a program was developed by the EMSL-LV field team for the
successful participation of the LORAMA in the NOTS.

The accuracy of the ozone data was of primary importance. The liter-
ature was replete with difficulties with the Federal Register standard
reference calibration method, Neutral Buffered Potassium Iodide (NBKI) (Behl,
1972; Boyd et al., 1970; Hodgeson et al., 1971; Kopczysnki and Bufalini,
1971; Parry and Hern, 1973; Schmitz, 1973). Therefore, the quality control
program chose the Dasibi 1003-AAS ozone monitor, based on the absorption of
ultraviolet (uv) energy by ozone (an "absolute" measurement) to transfer
the ozone standard from the laboratory to the Bendix 8002 ozone field ana-
lyzer. Previous experience with the Dasibi showed it to be stable and quite
adequate for field work. Figure 3 shows the traceability of the ozone cali-
bration from laboratory standards to the field instrument.

Under the supervision of J. Hodgeson, EMSL-LV, the uv-absorption method
(Dasibi) was compared with the Federal Register NBKI method and with gas-
phase titration (GPT) of ozone with a National Bureau of Standards (NBS)
nitric oxide Standard Reference Material (SRM) which is maintained at Las
Vegas. The results of these comparison studies are summarized in equations
(1) and (2) in Table III (the numbers in parentheses in Figure 3 correspond
to equations in Table III, and frequent references will be made to both
Figure 3 and Table III in the following text). The Dasibi 1003-AAS was not
calibrated directly against the laboratory-based uv photometer; instead,
it was calibrated against a second, laboratory-based Dasibi (equation (4)),
that is routinely calibrated against the uv photometer (equation (3)).

Some confusion arose in the field by calibrating the Dasibi under Las
Vegas conditions without correcting to Standard Temperature and Pressure
(STP) conditions. This situation was rectified after completion of the
NOTS; equation (5) in Table III was used to correct the Dasibi readings made
in the field to STP-based values. Furthermore, some doubt was generated
during the study regarding the stability and accuracy of the Dasibi 1003-AAS.
However, laboratory calibration of the instrument performed upon return to
Las Vegas at the completion of the study indicated little variation from the
laboratory calibration performed in lLas Vegas prior to the study (compare
equation (6) with equation (7)).
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A Bendix 8851-X Dynamic Calibration System was utilized during the study
to generate calibration atmospheres of ozone for the Bendix 8002 ozone ana-
lyzer. The Dasibi instrument was used to measure the concentration of the
span gas and to check the quality of the zero air. The Bendix 8002 was cali-
brated before and after each day's flight, even though the stable performance
of this instrument did not require such a frequent calibration schedule.
Experience has shown it to be a good practice to calibrate frequently, espec~
ially when the instrument is subject to stressful aircraft environment, to
minimize spurious data. Zero level checks were also made on the air quality
instruments periodically during flight.

The ozone data reported for this study were scaled to an NBKI primary
calibration standard, at STP, using equation (11l) of Table III.

Figure 4 illustrates the various channels of intergroup ozone calibra-
tion carried out in Region I during the NOTS. Comparison data, in the form
of ground~based audit checks, performed by the EPA-Region I laboratory are
available from Region I. The three aircraft involved in the NOTS participa-
ted in a concomitant flight along a common path around the Boston metropoli-
tan area on the morning of Augqust 12, 1975. Analysis of variance of the
ozone data populations sampled by WSU, BMI, and EMSL-~LV infers that the
hypothesis that all three population means are equivalent must be rejected.
Further, this analysis indicates that at the 99 percent level of confidence,
the difference between the WSU population mean (ugmr) is not significant,
while the difference between the EMSL-LV population mean (ugpa) and both
Uwsy and upMI is significant. At the 99 percent level of confidence,

Uwsu = upMI = (HEPA + 6 ppb).

The 6 ppb offset represents 8 percent of pwysy and appears to indicate a
systematic bias in the EMSL-LV aircraft system since the other two sets of
data are directly comparable. A linear regression analysis comparing all
three sets of data yielded the following results:

[oi = o.934[oi + 10.844; r2 = 0.72

WSU EPA

E)J = 0.988[0; + 6.805; r? = 0.73
BMI EPA

EJ:] = o.956[o; + 2.067; r2 = 0.83
BMI WSU

A modified TECO 14B gas-phase chemiluminescent instrument was used to
measure NO only. No data were collected concerning NO3. A cylinder of NO
gas, bottled by Scott-Marrin, Inc., Riverside, California, was verified for
concentration at the EMSL-LV lab by comparison to an NBS NO cylinder (SRM).
The Scott-Marrin NO cylinder was taken into the field for calibration
purposes. Gas from this cylinder was diluted with purified air in the
Bendix Dynamic Calibration System, and zero level and one span level
(approximately 40 percent of full scale) were checked before and after
flight. Since none of the other instrumented aircraft measured NO regularly,
no comparison data are included in this report.
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Other instruments on board LORAMA, including the temperature sensor,
dewpoint sensor, and nephelometer, were found to be extremely stable and
calibration schedules were arranged accordingly.

DATA ANOMALIES/ABERRATIONS

Integrating Nephelometer

The integrating nephelometer is an instrument designed to indirectly
measure the loading of solid particulate matter in the atmosphere. Particles
in a given size range preferentially scatter visible light, altering the
visibility through that column of light. However, the instrument cannot
discriminate between various particle sizes or even particle composition.
Liquid aerosols in the form of moisture droplets, therefore, act as a posi-
tive interference to determining pollutant-related particle loading. The
instrument design calls for decreasing the relative humidity of the sample
air in order to correct for the interference of water droplets. The resi-
dence time in the inlet line with the designed optimum flow rate of 10 cubic
feet per minute (cfm) allows the installed heating element to accomplish this
purpose.

In actual application, the sample flow rate provided by ram air is more
than ten times faster than the optimum design, greatly reducing the residence
time in the instrument and the effectiveness of the heater. For this reason,
the scattering coefficient data reported are uncorrected for interference due
to moisture droplets.

Ozone and Relative Humidity

As a general trend, the aircraft data showed an association between
relative humidity and the indicated O3 concentrations. Two possible reasons
for this relationship are: (1) the moisture content of a parcel of air may
play a role in the chemistry of smog-forming reactions; or (2) this moisture
content may act as an interferent to the measurement method. (Naturally,
these factors are not necessarily mutually exclusive.)

The role of humidity in the complex sequence of photochemical smog for-
mation is, at best, confusing the contradictory. The literature offers no
definitive statements when taken as a whole (Altshuller and Bufalini, 1971;
Demerjian et al., 1974; Jeffries et al., 1975).

The possibility that moisture in the air interferes with the measurement
technique may be attributed to the particular method (device) being used, or
perhaps to the manner in which it is being used. The literature suggests
that an interference effect does exist (Higuchi et al., 1976). During the
study, an experiment was conducted to isolate the moisture effect relative to
the instrumental method. Two instruments, based on different techniques
(gas~-phase chemiluminescence and uv absorption), were installed in the
aircraft system and flown through areas of varying relative humidity. The
chemiluminescent instrument had a positive correlation with the uv absorption
instrument and with relative humidity, based on qualitative observations;
i.e., both instruments indicated increased O3 concentration in ambient air
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of increased relative humidity. Laboratory-based experiments are planned to
further test these instruments for the effects of relative humidity at
various dewpoints.

Nitric Oxide Data

Significant challenges have arisen regarding the quantitative and quali-
tative validity of the NO data collected by the LORAMA system during the
NOTS. The concentration levels of NO reported are relatively high, and one
might expect to see lower levels, e.g., below 10 parts per billion (ppb) for
the most part. 1In addition, considering the reactivity dynamics of the
constituents of photochemical smog, one anticipates an inverse qualitative
relationship between NO and O3; however, a majority of the observations
recorded in the LORAMA missions confound this expectation.

An easy solution to this dilemma is unduly complicated due to the dearth
of NOo data. The fact is that NO concentrations up to 40 ppb (the highest
recorded by LORAMA) are not unknown in the lower troposphere (Tebbens, 1968;
Air Quality Criteria for Nitrogen Oxides, 1970), although data reported
recently of NO aloft indicates concentrations near the limit of analytical
techniques (Breeding et al., 1976). It is well-known that the equilibrium
between NO, NO7, and O3 may exist at any level of concentration and the
following equality exists:

[03] [N} _ 9%Kg
021 K(03 + NO)

This equality is constant under equilibrium conditions of constant tempera-
ture and irradiation, but outdoor conditions are seldom, if ever, constant.
For example, if the O3 concentration increases, the NO concentration can in-
crease as long as the NO, concentration increases sufficiently to maintain
the equilibrium. This argument, of course, says nothing about non-equili-
brium conditions. (See Calvert (1976) for further discussion of the dynamic
atmospheric relationship between NO, NO2, and 03.)

The lack of NO, data renders the above argument academic for the pur-
poses of this report and necessarily constrains the possible approaches to
validating the NO data. It could, of course, be said that in light of the
foregoing arguments, the NO data are plausible. In support of this proposi-
tion, NO data were collected during three flights when the concentrations
were, for the most part, below 10 ppb. Since calibration methods were not
altered during the study, nor was the design of the air-handling system
changed, all data might then represent a cross section of real values. On
the other hand, the preponderance of the data appears to belie this argument;
the NO data show little diurnal concentration variation. Several alternative
explanations present themselves:

(1) It is possible the instrument was actually monitoring NO, plus NO.
A suggestion has been proffered which implied that the residence time in the
air-handling system might be sufficient for dissociation of NOy in the air
and that the NO thus produced biased the measurements of "real" NO. Upon
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further consideration, this arqument is specious. For one thing, the dis-
sociation of NO, is driven by light; since the manifold system is dark, the
equilibrium for the reaction would lie on the side on NOj. Furthermore, if
the residence time were relatively long, the subsequent reactions between NO
and 03 and NOy and O3 would have the overall effect of reducing the NO values.

(2) It is possible that although the calibration procedure was rigor-
ously followed, a systematic error was present. It has been suggested that
the zero air generator may not have cleaned the incoming air of NO as
thoroughly as expected. The result of such a situation would be a negative
offset., If such an error existed, it would be necessary to increase the data
by some amount to correct for this situation.

(3) It is possible there is a humidity interference in the measurement.
Qualitative examination of the data shows an apparent association between
dewpoint and NO, so that water vapor may be a positive interferent. This
possibility needs to be followed up by laboratory investigation. Higuchi
et al. (1976) found humidity to be negatively correlated with NO measured
or a similar instrument under controlled conditions.

AIR QUALITY DATA

In general, there were four types of flight patterns performed by the
LORAMA during the NOTS. These were: (1) broad area coverage; (2) long
range eastern seaboard; (3) urban plume characterization; and (4) circumcity.
The aircraft performed spiral descents at strategic points in all types of
patterns to determine the vertical profiles of all parameters. Non-spiral
flight consisted of horizontal flight along a predetermined path. The
altitude of O3 maximum as determined from the most recent vertical profile
most often served to dictate the altitude of horizontal flight. Most of
the flight hours were logged below 610 M MSL.

The final processed digital data have been reduced into analog (graph-
ical) representations, which are presented here in two forms. Each flight
is represented by a horizontal O3 distribution map. These maps illustrate
the flight pattern plus pertinent data: time during flight (Eastern Daylight
Time (EDT)), flight level in meters MSL, instantaneous O3 concentration in
ppb (volume of O3 per volume of air (v/v)) every two minutes (approximately
every 11 km), and location of spiral descents. In addition, vertical
profiles of all parameters for all spiral descents are presented. All data
are arranged by flight, beginning with flight #1 on August 9 and going
through flight #20 of August 28, 1975. Table IV summarizes the data to
follow.
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II..

TABLE IV. SUMMARY OF DATA PRESENTED

Horizontal O3 Distribution Maps

A.

B.

C.

Times are EDT
Altitudes are m above MSL

Locations marked every two minutes by "+" are determined by Collinsg-
40 Distance Measuring Equipment (DME) and are accurate to within
200 m

Instantaneous O3 concentrations in ppb, corrected for zero and span
drift and corrected to 760 mm Hg pressure (no correction for temp-
erature or lag or response time of the instrument)

Vertical Profiles of Parameters

A,

Parameters reported

1. 05 (ppb)
2. NO (ppb)

3. Outside ambient temperature (€C)

4. Dewpoint temperature (°C)

5. Relative humidity (percent)

6. Particulate light scattering coefficient (104 m—l)
Instantaneous O, and NO concentrations in ppb, corrected for zero
and span drift and corrected to 760 mm Hg

Temperatures are reported in ©C with no corrections applied
Relative humidity calculated from dewpoint and outside ambient
temperatures, based on appropriate equations in the Smithsonian

Meteorological Tables (1971)

Scattering coefficient reported without correction for high relative
humidity
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