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ABSTRACT

This document is concerned with the development of
linear regression techniques for interpolation of air pollutant
concentrations over an area and, using these techniques, the
construction of a computer program for determining the
optimum location of air pollution observing stations. The
general interpolation problem is surveyed in the first
chapter and the advantages of using linear regression formulas
as interpolation formulas are discussed. Special emphasis is
placed on the case in which the observations contain errors
of observation or effects of limited range of influence.
Since the use of linear regression methods depends on know-
ledge of the two-point correlation function for pollutant
concentration measures, the construction of correlation co-
efficient functions from synthetic data is taken up, together
with methods for interpolation of this information. Con=-
siderable attention is given to the estimation of residual
variances or the effects of limited range of influence. It
is pointed out that certain aspects of Factor Analysis can
be used for this purpose. These methods are extended to
a continuous formulation of the problem in integral equation
form and it is shown that the lack of accuracy in the strictly
mathematical process of solution of the integral equation tends
to be more important than the statistical significance of
the data unless the residual variances are removed. If this
is done, then the tests for accuracy and statistical significance

are reconciled.

The computer program depends heavily on this last point.
It appears to work well when the residual variances are care-
fully handled. Many of the difficulties encountered in this
program were traced to this source so that users of this program
should be aware of this in constructing the input materials.
The reader's attention is directed to Chapter IV where this

is discussed in detail.
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PREFACE

The spatial distribution of air quality over an urban
area represents a statistically random field of pollutant
concentration since, even in principle, it is not possible
to specify its structure in a deterministic fashion, but
only in terms of various statistical properties. The space-
and time-variability of air quality thus present difficult
guestions that are very inadequately and simplistically
analyzed at the present time, and of which a fundamental
understanding is still lacking. The accuracy of any analysis
that utilizes air gquality data evidentally depends on the
intrinsic accuracy of the data and the density of the sampling
network at which the data are available, since based on
the latter values, it will normally be necessary to interpolate
values for intermediate locations. An analysis of the criteria
for objective selection, i.e., that does not involve personal
or subjective judgment, of the optimum sampling network does
not exist at the present time and is urgently needed. An
"optimum network" is here meant in the sense of a network
that is free from redundant observations, namely, data that
could be derived with "sufficient accuracy" by some specified
interpolation procedures from the given sampling network.
Similar decisions are required in establishing meteorological
observation networks and in this case have received a great
deal of attention that is reported in an extensive modern
literature. It is now required to develop and extend the
appropriate statistical methodology so that it will be directly
applicable to the selection of air quality sampling networks,
and having due regard to both the cost and informational
content of the network. At the time the present study was
initiated this appeared to be of particular importance in
view of the then forthcoming EPA Regional Air Pollution
Study which required the establishment of both a large air
quality sampling network and also an extensive meteorological

network.
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Very early in the research described in this report
the exceptional subtleties and sophisticated difficulties of
the optimization problem became apparent, and an unexpectedly
large number of unforseen statistical, mathematical and com-
putational problems were uncovered. Several different approaches,
even involving variations of the logical structure of the
problem, were explored by the contractor in a highly innovative
fashion. Because of time limitations it was finally decided
to specialize the problem and to study in some detail a one-
step-at-a~time add-on method of locating sampling stations. For
this it is assumed to start with that there are a few existing
observation points, or at least a few points at which obser-
vations will be made based on prior considerations. On the
basis of this starting network of observation points, a pro-
cedure is then developed to determine the location where the
statistical error of estimate, using a simple linear-type
interpolation formula in terms of the observed network con-
centration values, would be largest. This point would then
be accepted as a best location for a new observation point,
and the process repeated in an iterative fashion until the

required number of station locations had been determined.

Unfortunately, a fully operational and purely objective
computerized program was not achieved within the scope of
the present contract. However, in support of further study
of the problem, it is considered very desirable to make
readily available a complete account of the present research.
This is now offered in the hopes of it becoming a major
contribution towards future resolution of an exceptionally
difficult and subtle problem that continues to be of major

importance in defining the spatial distribution of air quality.

Research Triangle Park, Kenneth L. Calder
North Carolina Chief Scientist
December 1975 Meteorology & Assessment Division

Environmental Sciences Research Lab.
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CHAPTER T
INTERPOLATION OF POLLUTANT CONCENTRATIONS

The relationships between the correlation function of
pollutant concentrations at two points and the spacing of
observation points are discussed in the first two sections.
The first section is devoted to a simple analysis of the error
of interpolation using standard interpolation methods. This
serves to introduce some of the basic ideas involved. The
next section is devoted to the use of a linear regression as
an optimum interpolation formula. Several important aspects
of the problem are covered, particularly the role of errors
and small scale effects. The use of the linear regression as
an interpolation formula is intimately connected with the idea
of a Wiener Filter (Wiener, 1949) for both smoothing and

interpolation.

A. Interpolation Between Observation Points

The pollutant concentration is observed at a network of
points Pi and has values X5 at these points. The total field
of pollutant concentration is depicted by drawing contours of
equal concentration values which are determined by the observed
values. Usually, the values are sketched "by eye". To make
the procedure quantitative for analysis purposes, it is neces-
sary to specify a particular procedure used to determing the
interpolated pollution field. This is done by specifying an
interpolation formula that is used to describe the process.
Examples of such formulas are given in Abramowitz & Stegun,
1964, p. 882. Linear interpolation between two points:

£(x +ph) = (1-p)f_ _ + pf

e} 1,0



Three point formula (plane fitted to the data)

f({x +ph +gk) = —--
oTPh,y tak) (1-p q)fo’O + pfl,o + qfo,l

Four point formula (hyperbolic paraboloid fitted to the data)

f(x_+ph,y_+qk) = (1- - -
otPh, ¥ +gk) = (1-p) (1 DI, o+ pPA-OL;

+ q(l—p)fo’1 + qul’l

Six point formula (general quadratic fit)

f(Xo+Ph'yo+qk) = EQ(Q‘l)/zij,_l + [p(p—l)/2]f_1 o

s

2

2
+ (1 + pqg -p~ -gq )fo’o + [p(p - 2q + 1)/2]f1,O

+ laCa - 2p + 1)/2]f, | + pafy 4

b

In the above formulas fa b represents the concentration
’

of the pollutant at the point with coordinates x=a,y=b,
with the point (xo,yo) taken as (0,0). The points (x,¥y)

are on a rectangular grid spaced h and k units apart in the
x and y directions respectively. The parameters (p,q) are
usually confined to the range (0,1l), but not necessarily

so0 depending on the formula.

The efficiency of the interpolation formula may be
evaluated by estimating the error that would occur. We use
the simple linear interpolation formula as an example to
keep the arithmetic within bounds and because it illustrates
the essential features of the problem, The mean square
difference between the actual value and the interpolated

value may be written as

E° = (y-(1-p)Xo—-Dxy )®
where the over-bar indicates a suitable average value.




. Expanding this, and assuming that the mean field has been
removed so that Xg: X
then,

17 and y are departures from the mean,

£ = y° - 2(1-p)X,y - 2p %X ¥ + (1-p)2x,° + 2p(l-p)X,% + peXx°,

To further simplify the situation, assume that the concentration
variances at P, where y is measured (the interpolated coordinate)
and at PO where X is measured and P1 where X, is measured are
all the same. We denote this common variance by the symbol

g®. Then note that

|

0'21'(5772{0)

»
[e]
«

i

|

y = a?r(y,x,)

&

XpX; = 021(X, ,%; )

where r(a,b) is the ordinary correlation coefficient relating
concentrations at the points A and B, where a and b are measured,
‘ respectively. Then

EF=202[1 - p + p? = (L-p)r(y,x,) - pr(y,x1) + p(l-p)r(x.x: )]

The correlation coefficients not only relate the measured
concentrations, but are also functions of the relative locations

at which the concentrations are measured. Thus, we write

I

r(y,x,) = r(ph]
r(y,x;) = r{(1 - p)h]

r(xo,xl) = r(h]

where h is the appropriate scale factor, the distance between
the points Po and Pl. (p is a dimensionless parameter that is

zero at P0 and 1 at Pl') Then the mean square error of the

interpolated value is E2, It is readily seen that at p = O,
r{ph] = 1, and E2 = 0 and that at p = 1, r[(1 - p)h] = 1 so



that again E2 = 0; that is, the interpolation error is zero

at the two data points, which is as it should be.

The important feature of the above relation is that the
mean square error of interpolation depends on the correlation
coefficients as functions of the spacing between data points,
r[h], and of the distance of the interpolated point from the

data points, r(ph] and r[(l-p)h].

Consider now a particular example of a correlation
coefficient which is 1 at zero distance and reduces linearly to
0 at a distance {,and we assume that £ is larger than h, the

distance between Po and Pl. Then

r[h] = 1-h/2
rlph] = 1-ph/¢
r((1-p)h] = 1-(1~p)h/ 2

The mean square error of the interpolated value may then
be written as

E? = 20°p(1-p)h/2

It is readily seen that the error of the interpolated value

is a maximum at p = % and has the value there of E2 = o2h/24.
Under these conditions, we have an explicit expression that
can be used to determine the spacing of the observation points.
Thus, if we specify the maximum allowable mean square error

of interpolation,'EE} then the distance between data points
may not exceed the value h = 2£(E?/52).

The value of £ may be thought of as a "range of influence"
of the correlation coefficient. The larger the value of 4,
the farther apart the observation points may be spaced. The
spacing also depends on the inherent variability of the data
through the term 02, The more highly variable the data the ‘




closer the observation points to achieve the same maximum mean
square error of interpolation.

Other analytical expressions may be used for the
correlation coefficient and the location of the point of
maximum error may be found. It is readily shown that the
point of maximum mean square error is at p = % and that the
mean square error of interpolation will be given by

E® = 2¢° 1~ (1/4)[1-r(h)] - r(h/2)} .

This expression makes it possible to compute the spacing
between observation points that must not be exceeded when a
mean square error of interpolation is specified and the
correlation coefficient function is known.

The more complicated interpolation formulas for a two
dimensional array of points lead to vastly more complicated
arithmetic, but do not change the essential ideas brought
out by the above elementary analysis. The main idea is that
the mean square error of interpolation depends on the structure
of the correlation coefficient as a function of the distance
separating the points at which the pollutant concentration is
measured. When this structure is known, the spacing of the
observation point to achieve a given mean square interpolation

error may be specified.



B. Linear Regression As An Interpolation Formula

This section is devoted to an elementary derivation of
the linear regression estimate of pollutant concentration at a
point P based on observed pollutant concentrations at a network
of points Pi’ i=1, =---, n, It is initially assumed that the
values of pollutant concentration at P are observed. The point
of view is then reversed and the regression equation is considered
from the point of view of an interpolation formula which is used
to estimate the pollutant concentration at P when it is not

observed there,

1. Derivation of the Basic Relations

Let Y be the pollutant concentration at P and let Xi be
the pollutant concentrations at points Pi, where the Pi are a
network of n observation points, i =1, -~-, n. To simplify
the situation we consider the standardized variables (departure
from the mean divided by the standard deviation)

S T N

and we consider the relation
Y = byx;+ === + b x_ (1)

where 9 is the estimate of y given the values x;, --=- X, -

The least squares procedure for determining the coefficients bi

leads to the set of equations

(y%1) = b (%,2) + === + bn (anl)
T === (2)
(yxn) = bl(x1xn) + o—— bn (xnz)

where the bar over the symbol indicates a mean value and
where y is assumed to be a measured value at P. Since

the variables are normalized, these are correlation coefficients.




It will be convenient to write these equations also in the

standard form

bya,, + -—— + bnaln

ba  + --— + b a
ni n“nn

I

&

€n

(2a)

and we note that the matrix of coefficients is symmetric,

aij ajio

The solution for the bi's may be written in the long

form using Cramer's rule

!(;f_.) ] (Xlxz), T, (;;;)’

!

. %), () , -, (¥x2),
i =
(x,%), === -

(x %), (xnx2), -—, (yxn),

and alse in the form (Kenney and Keeping,

bi =j£ g:j al'j

— R
""",(X]_Xn) (Xl): - (Xlxn)
= -

@ | @, -,

éfith column,

1951)

(3a)

where gj = (y xj), and the term a’J is the element from the

inverse of the matrix of coefficient (aij).

This follows

immediately from (3) by expanding the determinant in the

numerator in terms of the sum of the products of the elements

in the i'th column and the cofactors of this column. The

ratio of the cofactor of the element of the i'th row of the

j'th column to the value of the determinant yields the element

a'l of the inverse (Turnbull, 1960). The solution for

finding y may then be written as

y o) x CL gjai‘j) =
1 3

Zgj(

J

Z xiaij)

1

(4)

(3)



The important point to be considered now is that the ‘

correlation coefficients (y xi) = gi (and also the correlation
coefficients (xixj) = aij) are functions of the locations of

the point P and the point P, (or of the points P, and Pj)'

Since the points Pi are fixed, we focus our attention on
the point P and write

. = g.(P,P,
g4 gJ(,J)

Then (4) may be expressed as

. 137 - i)
y Eilxit);gjw,pj)a ] §gj<P’Pj)[§Xia 1 (42)

Thus, (4a) may be considered as an interpolation formula since

the location of the point P at which § is estimated appears
explicitly in the correlation coefficient gj(P,Pj). If we
know the functional form of the correlation coefficients as

dependent on coordinates, then (4a) may be looked on as deter-

mining § from a linear combination of the observed concen-
tration X5 with coefficients which depend on the location of P,
or it may be considered as a linear combination of correlation
coefficients, functions of the location P where the concen-
tration § is estimated, weighted by factors that depend on

the observed concentrations at the points Pi'




2. Interpretation of Results

The results of the simple linear regression for pollutant
concentration § at a variable point P in terms of observed
pollutant concentrations x; at a fixed network of points Pi
are discussed below. The point of view in this discussion
is that the linear regression is a particular realization of
a "Wiener filter"” for the interpolation and smoothing of ob-
served information on pollutant concentrations (Wiener, 1949).
The elaborate mathematical apparatus of N. Wiener's original
treatment is abandoned in favor of a more general point of
view sO that more general results are obtained (at least in
a limited sense). We discuss several particular situations
that illustrate the kind of results that can be obtained.

a) The point P at a point of Pi

If the point P at which concentrations y are measured
coincides with a point of the observing network, say Pk, and
if the data on y is identical with the values of Xy at Pk’ it
is readily seen that §§; ='§;§; and that, from (3) b, = 1,
and b, = 0 if j # k. (In the first case the kth column of the
numergtor in (3) is exactly that of the denominator; in the
second the kth column of the numerator is exactly the same as
the jth column and hence the determinant has the value zero.) In
this case y = X is the result of the use of the regression,

which is precisely what it should be.



b) Continuous Correlation Coefficient

Consider the case in which the correlation coefficients
gj(P,Pj) are continuous functions of P and for which g‘j - 1 for
P - P:. A one dimensional schematic of this situation is shown

J
in Fig. I-la. The use of the interpolation

14

=]

(P - Pj)

Fig. I-la. Schematic illustration of the Correlation Coefficient
gj(P,Pj) as a function of (P-Pj)-

formula (4) or (4a) leads to a smooth interpolation of the data
at the points which lie between the data points Pi and the
interpolated values lie on a surface that passes through the

data values X, . This is shown schematically in the Fig. l-b for

a one dimensional situation.

X

| P2 _
1 x2\1/ 3 Y4 Xg

Fig. I-1b. Schematic illustration of the interpolation between

data points for correlation coefficients that are continuous.
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. c) Extremely Discontinuous Correlation Coefficient

The correlation coefficient as a function of the location
of P with respect to Pj as in gj(P,Pj) must be a continuous
function of P-Pj, except that it may have a jump discontinuity
at the origin P—Pﬁ = 0. An extreme case is that in which

gj(P,Pj) = 1 when P = Pj and is equal to zero if P # Pj’ This is

illustrated in Fig. I-2a. The resulting interpolation for

.t

0 P - P,
J

Fig. I-2a. Schematic illustration of the extreme discontinuity
. possible for a correlation coefficient in which it has the
value 1 at P-Pj=0 and has the value 0 at P--Pj # 0.

this kind of a correlation coefficient is illustrated in Fig. I-2b.
The interpolated values are zero between the data points, but

at the data point the observed data values are obtained.

Fig. I-2b. Schematic of the interpolation between data points

. when the correlation coefficient is that illustrated in Fig. I-2a.
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d) Discontinuous Correlation Coefficient

When measured values are subject to independent, random
errors, the correlation coefficient has a (small) jump discon-
tinuity at the P = Pﬁ which is dependent on the relative values
of the standard deviation of the quantity being measured and

the standard deviation of the random errors. Such a correlation

coefficient is illustrated in Fig. I-3a.

O B
0 P—"P. —

Fig. I-3a. Schematic illustration of a correlation coefficient

function that arises when there are errors in measurement.

The use of such correlation coefficients in (4) or (4a) results
in an interpolation which smooths the data between observation

points as shown in Fig. I-3b.

™
\\ 0
X X
1 X
Pz/ 3 ’ P5
P lxz P3 P4 l\XS

Fig. I-3b. Schematic showing the smoothing of interpolated

values when the correlation coefficient has a small discontinuity
as in Fig. I-3a.
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e) Range of Influence

The "range of influence'" of a correlation coefficient
is of importance in the discussion of observation network density.
This is loosely defined as the distance P - Pj over which the
correlation coefficient is significantly different from zero.
A correlation coefficient with limited range of influence is

illustrated in Fig. 4a. When the data points are spread out

1

0 P - Py

Fig. I-4a. Schematic of a correlation coefficient with a limited

"range of influence".

so that no one is within the ''range of influence" of another,
the interpolation formula (4) and (4a) leads to results illustrated

in Fig. I-4b. It is immediately apparent that for an adequate

Fig. I-4b. Schematic of interpolation when data poihtéférérso

sparsely located that one is not within the "range of influence”

of another.

network of observation points, the distance between points
must be small enough that one or more data points must be within
the "range of influence" of some other data point.

13



f) Small Scale Effects

In dealing with atmospheric problems, the influence
of small scale effects must be adequately accounted for (or
adequately smoothed out). These show up as a small hump on

the correlation coefficient peaking it sharply upward at
P - Pj = 0 as illustrated in Fig. I-5a.

0

—
0 P - P,
J
Fig. I-5a. Schematic illustration of a correlation coefficient

showing both large and small scale effects.

The effect on the interpolation formula (4) or (4a) is shown
in Fig. I-5b.

g
\&
w
o
9

"

X
W P, P, 5
X2

Fig. I-5b. Schematic illustration showing the results of small

scale effects on the interpolation of data.
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g)

The

Summary

implications of the above illustrative examples for

the determination of observation network density are immediate.

The first
should be
"range of

result is

result is that the network of observation points
sufficiently dense that each data point is within the
influence" of another data point. The second important

that the effects of errors and small scale effects

must be carefully determined and the interpolation formula used

in such a way that there is adequate filtering of these effects

in interpolating the results of observations.

15



3. Error of Interpolated Values

The mean square error of the interpolated values may be
written at once from the results of the least squares
estimation (interpolation) formulas (1), (2), (2a), (3), and

(3a). The expression for the mean square error is

E® = y® - (byg, + === + b g ) (5)
- RS-
E® = y® - Z blgl (53)
i
and using (3a) for the value of the bi's, one obtains
R = y2 - © ¥ g.atdg, (5b)
ij * J

The expression (5b) gives the mean square error E° in
terms of the mean square deviation of pollutant concentration

at the point P, y°, the correlation coefficient involving con-

centration at the point P and the measurement points Pi’

gi(P,Pi), and constants involving the geometry of the measure-
ment points a’J. The value of the mean square deviation, y2,

is readily estimated from the field of observation point values
2

x;. Since we have used the normalized form, the values of xi

are all 1 and the value of y® would be taken as 1 also.

The expression (5b) may be written to show the dependence
of E® on the location of the point P, by displaying this
dependence in the correlation coefficients 847 gj

oy - 5 L ij
E°(P) =y § § g;(P,P,)a gj(P,Pj) (5¢)

16



The mean square error of interpolation for pollutant
concentration is illustrated schematically for a one-dimensional
example in Fig. I-6 (assuming a continuous correlation coefficient

function as in Fib. I-1b or Fig. I-5b).

E2

O —

Fig. I-6. Schematic illustration of the mean square error of

interpolated values for a one-dimensional case.

a) Implicaticuns for Measurement Locations

The implications of the above for determining the location

of additional measurement points is reasonably obvious. We

assume that it is desired to find the location of a few more
observation points to improve the observation network. On the
basis of (5c) one may easily compute the field of values of E
as a function of the location of an interpolation point P. The
point where E2 (P) is a maximum is the point where there is the
greatest error in interpolated values, This could then be a
point where an observation of pollutant concentrations could

contribute the most information to the augmented network systems.

There are many practical considerations that must be
taken into account in the location of observation points. These
may be readily accounted for in the computation procedures. One
may, for example, prescribe in advance the location of many

"feasible" observation points and compute the mean square errors

17



of interpolation at these '"feasible" points. The '"feasible" points.
at which the mean square error of interpolation is largest
would then be candidates for the augmented set of additional

observation points.

Note that the selection of additional observation points
is a step-wise procedure. One locates the first additional
observation point where the mean square error of interpolation
is maximum (a "feasible" point). This point is then added to
the network so that there are now n+l points considered and the
computation of—f‘.5 is redone on the basis of the augmented network.
The maximum of E® is found for this augmented case and a second
(feasible) observation point located. The network now contains

n+2 points and E? is computed on this basis, etc., etc.

(Note: This kind of iterative procedure can be shown
to lead to a solution that is not necessarily optimum in the
general case, but it is a very practical approach and the ‘

results are usually not far from an optimum.)
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CHAPTER II
DETAILED FORMULATION OF THE PROBLEM

The problem of determining an optimum network of air
pollution observation sites consists, first of all, of
determining what particular characteristics of the pollution
field are of primary interest, how the data are to be used
to obtain an estimate of these characteristics, and then to
specify what it is that is to be optimized and with what
restrictions this optimum is to be obtained. An extensive
monograph might be written in the exploration of the various
aspects of the problems involved in the items that have been
enumerated above. Rather than go into all of this detail,
we will short-cut these considerations and set down some

rather simplified ground rules that will be followed.

A. Area Covered

In order to formulate the problem of specifying the
optimum location of air pollution observation stations it
is necessary to start by defining the specific area over
which the pollution is to be observed. This is sufficiently
obvious that it scarcely needs any explanation. If one is
to optimize the location of air pollution stations in the
area of Dirty City, they need to be located in the vicinity
of Dirty City and not in Clean County, because Clean County
is not the area with which we are concerned. In fact, one
must be even more specific and define exactly what constitutes
"in the area of Dirty City"”. This involves specifying a size,
shape, and location. It may be, for example, that Dirty
City is a compact area of more or less uniform diameter in
any direction with this area centered approximately at the
City Hall. In such a case, an adequate specification might
well consist of the statement that the area to be covered

is a circular area centered at the Dirty City City Hall
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with a radius of 23 km (say). This implies that one is

to optimize the location of air pollution observation stations
throughout this particular circular area. It may well be

that one is also interested in air pollution measurements

at distances farther than 23 km from City Hall, but these
locations will not be a part of this particular air pollution

station location problem.

B. Observation Collection

It is assumed that the data collected from the air
pollution measuring sites will be measured simultaneously
at all locations. The term simultaneous is used somewhat
loosely and depends to some extent on the nature of the
measurements to be used. If, for example, one is concerned
with one~hour integrated air pollutant concentrations, the
averaging should be done over the same clock hour at all sites;
but a difference of five minutes or so between stations for
the beginning and ending of this one hour integration period
is relatively unimportant. In other words, the differences
in time of beginning and ending of the totalizing interval
are a relatively small fraction of this interval itself. 1If
the averaging is considered on a 24 hour basis, then the
exact beginning and ending of the averaging interval at each
location can be correspondingly relaxed. On the other hand,
if observation data at the different locations are taken at
different clock hours, then it may well be that a comparison

between stations is meaningless.
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C. Source Locations, Types, Rates

It is assumed that the locations, types and emission
rates of the pollution sources are known or at least can be
estimated with reasonable accuracy. The basic reason for this
is the fact that it is completely impossible to even approach
the problem of the intelligent location of pollution obser-
vation sites without this kind of information. If one were
interested in pollution at only one point, then obviously
one locates a measuring site at this point. When the problem
is to locate a network of measuring points, then the guestion
immediately arises concerning the relation of pollution
measurements at the several points with each other. If two
(or more) pollution measurements essentially duplicate each
other, then one is unnecessary (or at least of much less
value). On the other hand, if measurements at two locations
are completely unrelated to each other, then obviously
additional measurements are desirable between them. The
locations, types and emission rates of the sources involved
are quantities which determine how the measurements at related
points are going to be related, or unrelated, to each other.
A more exact specification of the relationship between the
pollution measurements at different locations is discussed

at some length in Section G below.

D. Meteorological Conditions

The meteorological conditions that prevail over the
area concerned are responsible for determining how the
pollutants are carried from their source locations to other
points and whether they tend to be concentrated near the
ground or carried high into the atmosphere. The principal
factors concerned here are the winds in the lower atmosphere
and the stability (or unstability) of the lower layers of the

atmosphere. These conditions need to be carefully specified
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and should adequately describe the conditions over the area
concerned. If in the area concerned the wind has a strongly
predominant direction, it would seem reasonable to locate
pollution observation points down-wind from the more important
pollution sources. Since stable conditions tend to hold
pollutants near the ground, it would seem reasonable to locate
observation points in the down~wind direction from the important
sources where this wind direction is that which prevails

when the air is stable. Consequently, the meteorological
conditions need to be specified as the frequency of occurrence
of various classes dependent on wind direction, wind speed,
and stability.

E. Type of Pollution Measurements

The type of pollution measurements to be made is another
factor contributing to the optimum location of pollution
measuring locations. If hourly average concentrations are
of primary interest, it would appear necessary to have more
closely located observation points than if, say, 24 hour

average concentrations are considered the more important.

F. Interpolation/Extrapolation Methods

The method that is used to interpolate data between
observation points is critical for the formulation of the
optimization technique for site locations. There is an
almost limitless number of techniques that may be used. The
method of interpolation used in this study consists of using
a linear estimate of the pollution concentration based on
the concentrations at the points where the concentrations
are observed and for which the correlation coefficient
function or covariance function is known (or at least can
be approximated with reasonable accuracy). Various aspects

of this process were discussed in Chapter I with illustrations
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in the case of a one-dimensional field (to simplify the
figures). This provides a highly flexible procedure that can

be adapted to a wide variety of different situations.

The interpolation/extrapolation method then consists
of estimating a measure of pollutant concentration at a point
(¢,n) in the region to be covered, say §=Y(£,n), from a linear
combination of observations, Xi = X(gi,ni) made at observation
points Pi with coordinates (Ei,n.). The formula for this

i
estimate is

; = bO + lel = -+ ann (1)
(where it assumed that there are n observation points). The
coefficients bi’ i=0,1, ---, n, will be determined later.

The numbers that describe the pollution concentration vary
over several orders of magnitude and are by no means normally
distributed, the logarithm of the pollutant concentration is
actually used as the measure of concentration. The logarithm
of concentrations is more nearly normally distributed (i.e.,
the pollution concentrations tend to be distributed in a

log=-normal way).

It is assumed that reasonably accurate estimates of

the mean concentration measure are known. These will be
denoted by Y, —l' -—— in so that one may use the departures
from the mean, y = ¥Y-Y, X, = Xl—Xl, ==y X, T Xn—Xn with
the result that

y = blxl + —~——— + bnxn (2)
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The coefficient bo that appeared in (1) is determined from

k<>
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(3)

after the coefficients bl’ -, bn have been determined.
(Actually, the problem at hand does not require that any

of the coefficients be computed explicitly; the technique
used is more clearly described if they are included at this
point.) If one had an observation point at the point P,
coordinates (£,n), where ; (or ;) is being estimated, the
observed value would be Y (or y). If we assume that

actual values vy, xl, -—, xn are observed in an ensemble

of situations that have been defined by the conditions of

Sections C and D above, then the coefficients b ---, b

1’ n

would be determined from the normal equations

(xly) = bl(xlxl) + ——— + bn(xlxn)

_— (4)

——

(xnyn) = bl(xnxl) + -—=—= 4+ bn(xnxn)

where (§I§;) is the covariance of the concentration measure
at the points Pi and Pj and (xiy) is that for the points

Pi and P. The normal equations (4) are obtained by requiring
that the square of difference between the concentration
measure and the estimate from equation (2) summed over

the ensemble of situations, be a minimum in terms of the
coefficients bl' -——-, bn. (See standard texts on this

subject, for example Kenney and Keeping, 1951.)
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If we let aij = (Xixj) and g; = (xiy), then equations

(4) may be written as

These equations may be solved for the coefficients bl’ —-—,

bn’ the formal solution being expressed as

bl = zaljgjr ilj=ll ===, n (6)
J

The mean square error of estimate is given by the
expression

'—2 __'—'K'_Q’

e” = (y-y)
where y is the expression (2). This may be expressed in
the form

2 _ .2

e” = (y7) - Zbigi (7)

i

(Kenney and Keeping, 1951, or other suitable text). When

the expression (6) for the bi's is substituted into (7),

the result is

e? = (v%) - Z):giaijgj. (8)
ij

In (7) and (8) the term (y2) is the variance of the pollution

concentration measure at the point P.

(Digression. The dquantities y, Xy above have been

expressed in terms of departures from the mean as per the

expressions in the text between equations (1) and (2).
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The gquantities (y2) and (Xixi) are the variances of the con-

centration measures at the various points concerned. 1In
terms of standard deviations, o and o5 y2=02, T§Z§;T$oi2.
These may be used to convert the concentration measures to
standardized form (Y-Y)/o, (Xi-ii)/ci, and the argument
remains unchanged with the exception that in (7) and (8)

the value 1 _is substituted for (yz) and the error of estimate

e2 becomes e2/02.)

The role of the coordinates of the points concerned in
the preceding relations is important, but is concealed in
the notation. The covariahces that appear in the normal
equations (4) and subsequently are functions of the locations
of the points for which the index number appears as a sub-

script with the exception of the point P for which no sub-

script appears. Thus a.. = x.,x. = aij(Pi,Pj) or

ij i73
= alj(&llnl;gjln]) while gl = le g%(Pl,P) or = gl(gl,ni;gln). .
3, are exceptions to

The elements of the inverse matrix, a

this. 1In the process of matrix inversion, all of the elements
of the matrix are involved so that each element of the inverse,
aij, involves all of the points Pl’ -, Pn, but not the

point P at which the concentration measure is being estimated.
This point appears only in the terms 9; = gi(Pi,P). If one
substitutes the expression (6) for bi into the equation for
the estimated concentration measure, (2), the result is

y = in(zaljgj)
t T (9)
= 1]
—in(Za 94 @4/P))
1 ]
where in the second line the location of the point P at

which v is estimated is explicitly shown. If the covariance
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function gi(Pj'P)' as a function of the points Pi and P,

is known or can be estimated reasonably well, it may be
interpreted as an interpolation formula for ; based on

a linear combination of the observed concentration measures,
X at the points Pi' The expression in parenthesis gives
the "weight" of each observed measure, Xi0 in terms of the
location of the point P with respect to the other points,
Pi' i=l1, ---, n. This is quite analogous to the standard
two-dimensional interpolation formulas as for example those

shown in Section A of Chapter I.

One may also note that if in (9) the point P is the same
as the point Pk’ then gj(Pj,P) becomes gj(Pj,Pk). Now
by virtue of its definition [preceding equation (5)] this

is only another way of writing ajk' that is

gj(Pj,Pk) = (xjxk) = ajk'
The summation in parenthesis in equation (9) then reduces

to

ii, -
Lattag, = Sy

where 6ik =0 if 1 # k and = 1 if i = k. This means that

the expression (9), when summed on index i, ignores all of

the observed values at other points and assigns to the point

P (=Pk) the estimate §=xk, i.e., the value observed. Note,
however, that the covariance function gk(Pk,P) is not
necessarily centinuous at the point Pk' so that as P approaches
P, the value y need not approach Xy . The details of this

k
situation were discussed in Chapter I.
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G. Optimization Method

The expression for the mean square error of estimate
given by equation (8) forms the basis of the optimization
method that will be used. The development of this relation
was based on the assumption that the covariance of the con-
centration measEfffgnts between any two points, Pi and Pj’
was knownf.aij—xixj, so that the elements of the inverse
matrix, alj, could be found. It was also assumed that the
covariance function for concentration measure between an
observation point, Pi' and any other point, P, in the area
concerned was also known or at least could be reasonably well
estimated. (The details of how these assumptions are realized
are discussed in Chapter III.} The equation (8) then permits
one to compute the error of estimate using (9) as an inter-

polation formula for any arbitrary location of the point P.

One may say that the selection of the n observation

points P - Pn has been chosen in an optimal manner

'
if the l;rgest mean square error of estimate, e2, at any
point P not an observation point has been reduced to a satis-
factory level. There are many ways in which such an optimi-
zation procedure can be carried out. The one adopted here

is a one-step-at—-a-time add-on method. It is presumed to
start with that there are a few existing observation points
or at least a few points at which observations will be made
based on prior considerations. On the basis of this given
starting network of observation points, the equation (8)

is used to locate the point at which the error of estimate

is largest. This point is then accepted as a best location
for a new observation point. This point is then added to

the list of observation points that are used to determine the

error of estimate from eguation (8). The process is then
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repeated; the location of the point of maximum mean square
error is found, a new observation point is located, etc.
The iterations of this process are terminated when the largest

mean square error of estimate has been reduced to an acceptable
level.
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CHAPTER III
THE CORRELATION OF POLLUTANT CONCENTRATION BETWEEN POINTS

In order to implement equation (8) of Chapter II for
use in estimating the mean square estimate, it is necessary
to know the correlation coefficient for pollutant concen-
tration measures between observation points and between an
observation point and an arbitrary point in the area of
interest. The use of actual data from past measurements of
pollution concentrations is desirable, but, in dealing with
an area over which observations have not been made, it is
not possible to follow such a procedure. Consequently,
the correlation coefficients for pollution concentrations
were determined by using a model to generate synthetic data
and the correlation coefficients were computed from the

synthetic data.

A. The Model Used to Generate Synthetic¢ Data
The model that was used to generate the synthetic

data on which the correlation coefficients were based was
a simple Gaussian Plume model described by equation (3.2),
page 6, of Turner (1970) as follows

_ 2 2
X{x,y,0,H) = (Q/ﬂoyozu)exp{l/2{(y/cy) +(H/0_) "] (1)

where (x,y) are coordinates of the point at which the con-
centration X (x,y,0,H) is calculated (x is measured down-wind
from the source, y is measured cross-wind from the down-wind
axis), Q is the source strength, H is the source (stack)

height, u is the wind speed, Oy’ o, are dispersion coefficients.
The dispersion coefficients, oy, o s were computed from the

formulas developed by Eimutis and Konicek (1972).
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The wind conditions were computed on the basis of a
double circularly normal density function. This is expressed

as
f(u,0)ududs = [klfl(ure;wl,¢l,01)+k2f2(u,e;w2,¢2,02)]udude

where kl,k2 represent the proportion of the time the wind

is in the state described by fl(u,e;---) and fz(u,e;-——)
respectively and kl+k2=l. The functions fl(u,e;———),
f2(u,6;—--), are the circularly normal bivariate density

functions with parameters as shown after the semicolon, but
expressed in terms of wind speed, u, and direction, 6, instead
of in terms of rectangular wind components. Thus

lexp{—o_z[u2+w2—2uwcos(6-¢)]}

£(u,0;w,¢,0)=(102)"
where u is the wind speed, 6 is the wind direction, w is the
mean resultant wind speed, ¢ is the mean resultant wind
direction, and o is the vector standard deviation. (See
Brooks, et al, 1946, or Brooks, et al, 1950.) A single
circularly normal density function for wind at St. Louis
is inadequate since there are two distinct modes of the
over-all wind density. One of these is at wl=7.90, ¢l=198.5°,
l=6’5’ kl=0.4 while the other is at w2=9.00, ¢2=325°,
02=6.50, k2=0.6. Stability class 4 was used throughout
(Turner, 1970).

6]

The use of the probability density function for wind
enables one to use far fewer parameters to describe the
wind direction and velocity frequency tables. For 16

direction categories and 9 speed categories, a total of 144
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entries are required. In this case of a bimodal density
function, only 8 parameters are needed while the speed and
direction categories may be divided into arbitrarily small

intervals.

There were 21 pollutant sources used to compute the
correlation coefficients. Their locations, strength and
stack height are listed in Table III-1. Correlation coefficients
between points were computed for a 9X9 point grid of locations
centered at the "arch" in St. Louls. The spacing between
points was 10 km. Thus an 81X81 matrix of correlation co-
efficients was obtained. (See Section D below for further detail

of the program.)

Since the logarithm of pollutant concentration rather
than concentration itself was to be used in computing the
correlation coefficients, a very small background pollutant
concentration was added in each case to avoid the difficulty

presented by taking the logarithm of zero.

B. Examples of the Correlation Coefficients

Some of the correlation coefficients obtained in the
way described in Section A are illustrated in Figures III-1
and IIT-2. The points of the grid were numbered serially
starting in the lower left corner with point no. 1 and num-
bering upward in each column. Thus the bottom row of points
are those numbered 1, 10, 19, 28, 37, 46, 55, 64, 73. The

top right corner is point 81. The arch is at location 41.

Actual correlation coefficients for observed 24 hr 302
concentrations were also computed using information from the

St. Louis 1964-1965 sulphur dioxide field data (Ruff, 1973a).
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(1)

(2)

(3)

TABLE III-1

SJURCE STRENGTH PARAMCETZRS

POINT

STRINGTH

e 3R0LE+T4
«1330c4¢23
o250 ¢02
o 730002
o532+ 03
s 48302 #03
« 36505403
e1730c+03
«55357 ¢4
e 24332404
«+90JE+D2
¢5900c¢02
«120d-4+903
«120324+22
1200+ 04
e1200c 430
21200403
«1203:423
«12002¢03
«1200-433

MINIMUM CONCENTRATION

XS
&9,
1690,
93.
43,
95,
95,
Qu,
33.
S0,

57

8-'-

800
75
106,
Tba
DT
gDo
102,
Be,
YT
115,

1. 0630

(A1

-20

YS
168,
14,
154.
1.8,
167
1"50
1e®,
1“*".
140,
130,
120,
11"0
150.
159,
149,
143,
149.
1.9,
139,
139,
129,

HS
183,
“8.,
71,
65,
‘68,
L3,
71.
9.
21,
108,
1C3,
100.
Bu,
10,
10,
10,
10.
10.
10.
10.
10,

The data were provided by EPA from the 1964-1965 St.
Louis Air Pollution Study.

Source strength and meteorology were assumed to be
independent.

XS, YS are the coordinates of the source locations in

grid units.

33

HS is the source height in meters.
strength is in units of grams per second.
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FIGURE III-1l. Unsmoothed Contours of Correlation
Coefficient Centered at Location 40
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FIGURE III-Z. Unsmoothed Contours of Correlation
‘ Coefficient Centered at Location 42
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The correlation coefficient contours from actual 802
measurements are shown in Figures III- 3 and III-4 for
locations No. 7 and 12 respectively. Location No. 7 has
coordinates X=18.2, Y=22.50 and is described as "Power pole
with transformer in front of 1914 Obear St., between 20th
and Blair". Location No. 12 has coordinates X=22.48,
Y=18.64 and is described as "Pole South of East Side Health
District, 628 N. 20th St., East St. Louis, supplies power

to building approximately 100' east of street". The scale
is shown on these figures in the lower right hand corner
since it is quite different from that of Figures III-1 and
III-2. On these charts, the entire area corresponds to

an area approximately 3 squares wide and 2 1/2 squares high
on the preceding charts. The station numbers and locations
for Figures III-3 and III-4 are shown in Figure IV-5, p. 92.

Figures III-1 and III-3 together with Figures III-2
and ITITI~-4 illustrate the large changes that occur in the
correlation coefficient contours when the location of the
point with which all other locations are being correlated
crosses the central part of the area in which the pollution

sources lie.

C. Interpolation of the Correlation Coefficients

The use of equation (8), Chapter II, to obtain the
mean square error of estimate of pollutant concentration
requires that the correlation coefficients be those between
selected observation points or between observation points
and an arbitrary point. The correlation coefficients
(synthetic) calculated are those for points on a 9X9 grid
with 10 km separation between rows/columns of points. To go

from the latter to the former requires that some kind of
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ST .LOUTS $02 POLLUTION STATISTICS
SYATION 7 CORRELAYION COFFFICTENT MATRIX

7 ..

FIGURE III-3. Observed Correlation Coefficient of 24 hr. 802
with that at Station No. 7. Similar to the Simulated
Correlation Coefficients in Figure III-1.
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FIGURE I1I-4. Observed Correlation Coefficient of 24 hr. SO
with that at Station No. 12. Similar to the Simulated
Correlation Coefficients in Figure III-2
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interpolation procedure be used. The method finally adopted
is based on the proper function/proper value representation

of the correlation coefficient matrix.

To illustrate what is involved in the interpolation
process, it is desired to obtain the correlation coefficient
r(xi,yi;xj,yj) where (xi,yi) are the coordinates of one
observation site, Pi’ and (xj,yj) are the coordinates of
another observation site, Pj' We have available correlation
coefficients between points on a 9X9 grid. Let these points
have coordinates (gm,nm), (gn,nn) so that the correlation
coefficients are functions r(gm,nm;gn,nn). One is then faced
with an interpolation procedure that involves four separate
coordinates. This in itself is a reasonably formidable task.
In view of the great irregularity of the correlation field,
as illustrated in Figures III-1 and III-2, the task is even

further complicated.

The proper function/proper value representation of the
correlation coefficient matrix reduces the problem to that
of performing two interpolations, each in a two-dimensional
field, in succession. It also has the advantage that a
certain amount of smoothing of the correlation coefficient
field is being done at the same time. The details of this
process are discussed in Chapter IV, so that only a brief
extract of the essentials is given here. The essence of
the situation is that the correlation coefficient matrix

with elements c__=x_x =r(£m,nm;£n,nn) may be represented in

mn “mn
the form
Co=E (B N7 & o) = 24,6, (E,n ) oy (€ ,n ) (2)
k
where, on the right hand side the summation over the index
k involves the proper values Xl,Az, -—, Ak’ -—-, Ap,
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all positive numbers and in decreasing order, Al>A2 -——>Ap,
and the proper functions ¢k(gm,nm), one for each of the

proper values. (These are also referred to as eigenfunctions
and eigenvalues, principal values and principal components,
empirical orthogonal functions, etc.) These are computed

at the points of the 9X9 grid over which the matrix of
synthetic correlation coefficients was obtained (81x81). Each
of these is dependent on only the two coordinates of a grid
point. Then to obtain the synthetic correlation coefficient
between observation sites aij=r(xi,yi;x.,yj) one simply

J

interpolates among the grid points to obtain each ¢k(xi,yi)

and each ¢k(xj,yj) and substitutes back in equation (2).
To obtain the factors 9ir 95 that appear in (8), Chapter II,

J
one notes that these are also correlation coefficients, but
involve an observation site (Xi’yi) and an arbitrary point
(x,y). The coordinates of the arbitrary point are simply

used to get an interpolated value of ¢k(x,y) for each k.

The summation in equation (2) does not necessarily
run from 1 to 81. The upper value, p, is much smaller than
81 and is discussed in detail in Chapter 1IV.

In view of the fact that even the proper functions are
somewhat irregular, quadratic interpolation based on six
points was used. The formula (25.2.67) from Abramowitz and
Stequn (1964), p. 882, was used:

f(x_+ph,y +qh)=[a(q-1) /21 £(0,1)+[p(p-1)/2]1£(-1,0)

+ (1+pg-p2-q2)£ (0,0) +[p (p-2q+1) /21 £(1,0)

+[{g(g-2p+1) /21£(0,)+pgf (1,1).
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(1.0) {1.1)
—e ’

(0.-1)¢- (0,1)
(0.0)| *

(-1.0)
(A) (B)

{C) (D)

FIGURE III-5

THE SIX POINT ARRAY FOR QUADRATIC INTERPOLATION (A} AND
THE THREE 90° ROTATIONS ABOUT (0,0). THE AREA OF BEST
INTERPOLATION IS INDICATED IN EACH.
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The arrangement of the points is shown in (a) of Figure III-5.
This formula gives the best results over the triangle bounded
by (0,0}, (1,0), and (0,1) (shaded in the figure). 1In order
to maintain this degree of interpolation accuracy, corres-
ponding formulae were written for the three 90° rotations of
this unsymmetrical array of points as shown in (b), (c),

and (d) of the figure. To carry out an interpolation, the
point (0,0) on the grid was located so that (x,y) fell within
or on the boundary of one of these triangles and the corres-

ponding interpolation formula was applied.

D. Generation of Synthetic Pollution Correlation Coefficients

The synthetic correlation coefficients for two-point
pollutant concentrations were generated by program PSCOV
which is reproduced on the pages following this discussion.

The pages following the program contain a print-out of the

input parameters that were used.

1. Main Program

The input parameters are read into the program in
lines 15 through 87. The wind selector, JW, was used (line 20)
to provide for wind information from either a frequency
function (JW=l) or from frequency tables (JW=2) and provided
a termination of the computation (JW=0). The subdivision
of wind directions and speeds, stability classes, and
inversion heights were read in on lines 29 through 35. The
parameters of the wind frequency function are read on lines
45 through 53 (option JW=7, that actually used). The provision
for the wind frequency tables is contained in lines 55
through 62. The ground coordinates of the locations at which

the correlation coefficients are to be computed are read
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on line 67. Pollution sources, strength, effective stack
height, and coordinates are read on line 82. A minimum
pollutant concentration was read on line 86. The purpose

of this was to provide a very small, but non-zero pollutant
concentration at all points in all situations so as to avoid
the possibility of an impossible logarithm of pollutant con-

centration which might occur in subsequent calculations.

The accumulation of data is initialized on line 90.
The data accumulation is carried out in a sequence of
nested DO-loops beginning on line 96 and ending on line 170.
Subroutines FREQF (line 112) and SIGMAS (line 152) are

called in this section and are discussed subsequently.

The statistical parameters are accumulated and reduced
in the section from lines 174 through line 190. The section
from line 190 to the end consists of output instructions.
Subroutine MAP]l is used to printout the correlation co-
efficients, covariances, and other parameters in a "map"
format so that contours of equal correlation coefficient (for

example) could be rapidly drawn.

2. Subroutines

a) Subroutine FREQF

The wind frequency function (probability density) is a
combination of circularly normal bivariate distributions

f(v,0) = klf(v,e;wl,§l,ol) + e.. + knf(v,e;wn,en,on)

in which kl + ... + k = 1, the k.'s being the fraction of
the total wind populatlon in the 1th category and the
parameters w 9. 4104 are the speed and direction of the
mean wind vectors and the vector standard deviation of wind

speed in the ith category. The probability density functions
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on the right differ only in the values assigned to the
parameters. Thus

2

f(v,6;w,0, )=(ﬂ02)-lexp{—o-2[v +WZ—ZVWCOS(G-§)]}

The common multiplier for all the density functions, wvdvdo,
is omitted in the above. It has been found that the most
complex wind distributions can be represented succinctly
and with reasonable accuracy in the above form. This saves

storage of extensive tables of observed frequency distributions.

b) Subroutine SIGMAS

This subroutine provides for the computation of the
"sigmas" that appear in the pollution concentration formula.
The data were taken from E.C. Eimutis and M.G. Konicek,
Derivations of Continuous Functions for the Lateral and

Vertical Atmospheric Dispersion Coefficients, Atmospheric

Environment, Pergamon Press, 1972, Vol. 6, pp. 859-863.

c) Subroutine MAP

This subroutine prints out on the standard page printer
the data input to it at the proper coordinates (as nearly
as the printer will allow). Since we are primarily interested
in correlation coefficients, the decimal point serves not
only to fix the magnitude of the quantity concerned, but

also as a "fix" for the point location.
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10

15

20

25

30

35

40

45

55

PROGRAM

pPscov

[ M N ]

OO0

10
1005

OO0O0O00

1010
1015
1116

OOOOOOOO

15
1016

20
1020

¥
™

¥

PROGRAM PSCOV(INPUT,JUTPUT,TAPE2)
COMPUTES MEANS,STD.DEV.ysCOV.,AND COR. OVER PCINTS FROM
UP TO 30 POINT SOURCE INPUTS.,

COMMON F(18,10,6)+X(100),Y(100),Q5(30),XS(30),
YS(30)+sHS(30),C3AR(100),CCOVI(5050),CHITL(100),CSIG(100),
CCOR(5050)

COMMON/FFF/INIE) , NK(694) yHBARIGy4) , TBAR( By 4) s HEIG(B,4)

»OIR(18),vEL(10),I0,1IV

GCOMNON/STAB/AL(6) ,ISTAB(B)

QIMENSION KNT(10) , ARRAY(100),ITYPE (4)

DINENSION XI(100),YI(100)

PI=3.1415926535

RAD=0.0174533

INPUT QUANTITIES
JW=WIND DATA SELECTOR, JW=0 FOR STOP,Ju=1 FOR FREQ. FUNCTION,
JW=2 FOR TABLES

READ 1005,.4M
FORMAT(I5)
IF(JHEQ.D) STOP

I0=NO.OF WINO DIRECTIONS, OIR(I)=DIRECTION TABLE, MAX=18
IV=NO.OF WIND SPEEDS, VEL(I)=SPEED TABLE, MAX=10

IST=NQ., OF STABILITY TYPES, ISTAB(I)=STABILITY TABLE,

AL (I} =INVERSION HEIGHT, MAX = 6, 0+ = NO INVERSION

READ 1010,I0,(DIR(I),I=1,ID)

READ 1040,IV,(VEL(I)I=1,IV)
FORMAT(IS/(8F8,2))

READ 1015,1IST

FORMATI(IS)

READ 1116, (ISTAB({IV,AL(I),I=1,IST)
FORMAT( 5(I5,F10.2))

GO TO (15425)4JH

READS FREQ. FUNCTION DATA

IW(I)y I=1,IST, NO. OF FREQ. FUNCTIONS FOR EACH+ STABILITY CASE
WK (I} =FRAGTION QUE TO ITH FUNCTIGON

WBAR(I)=MEAN SPEED FOR ITH FUNCTION

TBAR(I)=MEAN DIRECTION

WSIG(I)=VECTOR STOD.DEV.

READ 1016, (IW(I)sI=1,IST)
FORMAT (615)

00 20 I = 1,IST

I1=IW(I)

00 20 J=1,I1

READ 10204WK(I4J) ¢ WBAR(I o) 4 TBAR(I4J)4HSIGIT,4J)
CONT INUE

FORMAT (4F1042)

GO TO 35

READS FREQUENCY TABLES
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PROGRAM PsScCov

C F{IsJyK)=FREQUENCY TABLE ENTRIES

25 U0 30 I=1,IST
t0 30 J=1,1I0
&0 READ 1025,{F(J,KeI},yK=1,1IV)
30 CONTINUE
1025 FORMAT(8F10,.,0)

REAJDS GROUND COORDINATES

€5 IG=H0+ OF GROUND POINTSyX(I),Y(I)=COORCINATES

OO0

35 READ 10304IG,(XIC(I)sYI(I)yI=141G,9)
1030 FORMAT(IS/(2F10.0))
I1=0
70 00 36 I=1,1G,9
00 36 J=1,16,9
II=1II+1
X{ITy=XI(D)
36 Y(II)=YIJ)
75
READS SOURCE POINTS AND PARAMETERS
IS=NC. OF SOURCE POINTS
QS (I)=SOURCE STRENGTH
XS(I)y YS(I)=SQURCE COORDINATES

80 HS(I)=EFFECTIVE SOURCE HEIGHT

OOOO0OO0O0

READ 1040,IS,(QS(I)4XS{IVyYSLII4HS(I),I=1,IS)
1040 FORMAT(IS/{(4F10.0))

OO

85 CHIMIN=MINIMUM POLLUTANT CONCENTRATIONS
READ 1035,CHIMIN

1035 FORMATIELO.4)

C INITIALIZES STATISTICAL SUMS
990 00 50 1=1,5050
50 CBAR(IN=0,
SUMF=0.

LCOP ON STABILITY CLASSES

(2 X Ne!

95
00 115 I1=1,IST
IST3=ISTAB(I1)
ALL=AL(IY)

100 LOOP ON WIND OIRECTION

OO0

b0 115 12=1,10
AA={270.-DIR(I2))*RAD
CC=COS(AR)

105 SS=SIN(AA)

LCOP ON WIND SPEED

OO0

DG 115 I3=1,IvV
110 V=VEL{IZ)
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115

120

128

130

135

140

145

155

160

165

FROGRANM

(o NeoN el

OO OO0 OO0 OO0

OO

QOO0

F3CUV

55

60
65

95

100

105

GL TO (55,060) JwW

CatlL FREQF(I1,12,I3,FF)
GG TO 65

FF=F(I2,13,1I1)
IF(FF.£Q.04) Gu TO 115
SUMF=SUMF+FF

LCJP ON COORDINATES

INDIX=0
JC 110 I4=1,16
XX=X(Is)
Yy=y{(Iu)

ROTATcS YO WING COOROINATES

X1=XX*CC+YY*SS
Yi==XX*¥SS+YY*CC

LOOP ON SOURCES

SUM=CHIMIN
DO 100 I5=1,1IS
XXS=XS(I5)
YYS=zYS(I5)

ROTATES TO WIND COORDINATES

XS1=XXS*CC+YYS*SS
¥S1=~-XXS*SS+YYS*CC

RELATIVE WINC COORDINATES

XR1z=X1-XSt
YR1=Y1-¥S1

COMPUTES STRENGTH FROM EAGCH SOURCE

IF(XR1.6T.,0,) GO TO 95

CHI=0.

GO TO 160

CALL SIGMAS{I1,ISTBXR1,SIGYSIGZH)

GHI=QS(IS)/ (PI*SIGY*SIGZ*V)

CHI=CHI®EXP (=« 05% {(YR1*1000+/SIGY)**24+ (H*HS(ISI/SIGZ)I**2))
SUM=SUM+CHI

CHITL(IW)I=ALOGL10(SUM)

CHITL(IL)I=LOGE TOTAL CONCENTRAYICAN AT POINT I4 QJUE TO
STAB,s CLASS I1ly WIND OIR I2, WINO SPEED I3
NOW COMPILE STATISTICS

CBAR(I4)=CBAR(IL)+CHITL(IW)*FF

00 105 I6=1,14

INDEX=INDEX +1
CCOVIINDEX)=CCOV(INDEXI+CHITL(Iw)*CHITL(IO)I¥*FF
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173

175

180

185

190

135

200

210

215

220

PROGRAM

SO0

OO0

FSCOV

tNO LOOP ON COGROINATES
110 CONTINUE

END LOOP ON SPEESG, DIR., AND STASBILITY
115 CCNTINUE

PUTS STATISTICS IN STANDARD FORM AND UNITS

Iox=10
DO 120 I=1,1I16
C6AX(I)=CBAR(I)/SUMF
00 120 J4=1,1
IoX=I0Xx+1
120 CCOV(DOX)=CCOVIIDX)/SUMF=-C3ARIII*CBARI(Y)
ICX=0
00 130 I=1,16
00 130 J4=1,1
IOX=I0X+4
IF(JEQe1) CSIGUINI=SQRTICCOV(IDX))
130 CONTINUE
I0X=0
DO 140 I=1,I16
DO 140 Jd=1,1Y
IDX=I0X+1
160 CCORC(CIDX)=CCOVI(IDX)/(CSIG(IV*CSIC(U))

PRINT QUT OF INPUT DATA
PRINT 2000
2000 FORMAT (1H1)
PRINT 2005
2005 FORMAT(* INPUT DATA FOR POINT SOURCE STATISTICS*)
FRINT 2010,1D
2010 FORMAT(®*0WIND QOIRECTIUNS*,IS)
PRINT 2015,(0IR(I)»I=1,1ID)
2015 FORMAT(10F10.2)
PRINT 2020,1V
2020 FORMAT(*OWIND SPEEDS*,I5)
PRINT 2025, (VEL(I) I=1,1IV)
2025 FORMAT(10F10.2)
PRINT 2030, IST
2030 FORMAT(*OSTABILITY CLASSES*,I5)
PRINYT 2035, tISTAB(I),I=1,IST)
2035 FORMAT(EIS)
GO TO (200,210) JUW
200 PRINT 2040
2040 FORMAT(*OWINDS FROM CIRCULAR OISTRIBUTIONS®*/5X*STAB.*5X*FRAC=*
LOX*MEANYOX* MEANCUX*VECTOR* /SX*CLASS*BX*TION*EXYOIR*OX*VEL.*
22X*STD.DEV. *)
00 205 I=1,IST
I1=IW(I)
J0 205 J=1,11
PRINT 2045, ISTABUI) ¢WKI{I4J) 3 TBARII»J) 4HWBARII 4 J)HWSIGII,J)
205 CONTINUE
2045 FORMAT(I10,4F10.2)
GG TO 220
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225

230

235

240

245

250

255

260

2€5

270

275

PROGRAM

c
c
c

pPsSC
210
2050
2055
2060
2065
215

220
2070

225
2075

2080

230
2085

2090

2100

260
2105

2110

245

2115

v

PRINT 2050

FORMAT(®*OWINDS FROM FREQUENCY TABLES®)

D0 215 I=1,1ST

PRINT 2055, 1ISTA3(I)

FORMAT (*0STABILITY CLASS*,I5)

PRINT 2060, (VELUJ)»J=1,IV)
FORMAT(8X,10F8.2)

00 215 K=1,1ID

PRINT 20654DIRIK) 4 IFUJ4KsI)9Jd=1,1IV)
FORMAT(FB.2,10F8.,2/(8X,10F8,.2))

CONTINUE

PRINT 2070

FORNAT {*0GROUND COORODINATE PAIRS*/74L(SX*POINTS*Ix*X*IX*Y*) )
DO 225 I=1y1G44

I1=1 § 1I2=I+3

IF(I2.6E.16) I2=IG

PRINTY 207545 (JoX(J) 9 X{J)4J=11,12)

CONTINUE

FORMAT (L (I10,2F10.0))

PRINT 2080

FORMAT (*0SOURCE STRENGTH PARAMETERS®/4X*POINT*2X*STRENGTH*3X*XS*
18X*YS*EX*HS*)

0o 238 I=1,1IS

PRINT 2085+ I+QS{I)¢XS{IVoYSII)HS(T)
CONTINUE

FORMAT(I7y E13.4,3F10.0)

PRINT 2090,CHIMIN

FORMAT (*OMINIMUM CONCENTRATION =%*,1PE10.3)
PRINT 2000 .
PRINTS OUT RESULTS

PRINT 2100

FORMAT(* MEAN LOG10 CONCENTRATION BY GROUND POINTS*)
00 240 I=1,1G+8

I1=

12=1+7

IF1I2.GE.IG) I2=16

PRINTY 21054 (JsCBAR(J) 4u=11,12)
CONTINUE
FORMAT(B8(I3,1PEL12.4))

PRINT 2110

FORMAT (*0STD.0EVe OF LOG10 CONCENTRATION BY GROUND POINTS*)
00 245 I=1,1G,8

I1=I

12=1+7

IF‘I?.GE.IG) IZ%IG

PRINT 2105, (J,CSIGLJ)»J=11,12)
CONTINUE

60 TO 270

PRINT 2000

PRINT 2115
FORMAT(*O0COVARIANCE MATRIX*)
I0x=0

DO 250 I=1,1G
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280

285

290

295

300

305

310

315

320

325

330

FROGRAM

OO0

PSCOV

248
2119

250
2120

2125

263

2149
265
2150

27¢

300

0C 250 J=1,I1,8

Ji=J

J2=J47

IF(J2.GT.1) J2=I

K=0

00 248 JJ=J1,42

IOX=10X+1

Kz=K#]

KT IK)Y=JJ

ARRAY (K)=CCOV(IDX)

FRINT 2119, (KNT(KK) ¢KKk=1,4K)
FORMATI(5X+81(5X,110))

PRINT 2120,1I, ( ARRAY(KK) yKK=1,K)
FORMAT(I54+8(3X,1PE12.4))
PRINY 2000

PRINT 2125

FORMAT (*O0CORRELATION COEFFICIENT MATRIX*)

I0x=0

00 265 1I=1,16

00 265 J=1,1,10

Ji=J

J2=J+3

IF(J2.GE.I) J2=1

K=0

D0 263 JJ=J1,42

IOX=IDX*1

K=K+l

KNT(K) =JJd

ARRAY (K)=CCORIIOX)

PRINT 2149, (KNTI(KK) yKK=1,K)
FORMAT(5Xy10(5X,16))

PRINY 2150,1, (ARRAY (KK) g KK=1,K)
FORMAT(IS+10(5X%X,F6.3))

PLOT STATISTICS

ITYPE(1)=10HMEAN LOGLO
ITYPE(2)=10H CONCENTRA
ITYPE(3)=10HTION

ITYPE(4)=10H

CALL MAPL(IGyX,Y,C3AR,1,ITYPE)
ITYPE(1)=10HSTD.DEV, O
ITYPE(2)=10HF LOG10 CO
ITYPE(3)=10HNCENTRATE

CALL MAP1(IGsXsY»LSIG2,1ITYPE)
60 To 335
ITYPE(1)=10HCOVARIANCE
ITYPE(2)=10H MATRIX

IDX=§

DO 330 I=1,IG

K=1

00 330 J=1,1

IOX=IDXx+1

ARRAY (K)=CCOV(IDX)

K=K+l
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FPROGRAM PSCOV

IND=1IDX
INC=1
I1=T+1
D0 320 L=It,IG
335 ARRAY(K)=CCOV{IND#INC)
INO=IND+INC
INC=INC+1
320 n=K¢1
ENCODE(20,3000,ITYPE(Z)) X
340 3000 FORMAT(*LOCATION®*,13,9X)
CALL MAPL(IG.X,Y,ARRAY,2,ITYPE)
330 CONTINUE
335 ITYPEU(1)=10HCORR.COEFF
ITYPE(2)=10H, MATRIX
345 10x=0
00 3680 I=1,16
K=1
00 340 J=%,1
IDXzIDX+1t
350 ARRAY (K)=CCOR(IDX)
360 K=K+l
IND=IDX
INC=1
I1=1¢g
355 00 350 L=L1,16
ARRAY (K)=CCOR{IND+INC)
INO= IND+INC
INC=INC+1
350 K=K¢1
360 ENCODE(20,3000,ITYPE(I)) I
CALL MAP1UIGyX,Y,ARRAY,2,ITYPE)
360 CONTINUE
GO TO 10
END
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SUBROUTINE FREQF

SUBROUTINE FREQF(I1,12y13,FF)
COMMON/FFF/IW(8) yWK{Og4) yWBAR(H94) 3TBARIG, L) yHSIG(O,44)
. sDIR(18) ,VEL(10),ID, 1V
OATA RAD/.0174532325/
VIi=vELI{I3)
U1=0IR(I2)
IF(I2.EQel) 2,4
DD=(DIR(2)#+360,~-DIR(IDY)/360,
6L 70 10
b IF(I2.EQ.ID) 6,8
6 00=(0IR(11+360.~-DIR(CID~1))/360.
GG 10 10
8 O0D={DIR(I2#1)-0IR(I2-1))/360,
10 IFtI3.EQ.1) 12,14
12 DV=(VEL(1)+VEL(2))/2,
GO T0O 20
14 IF{I3.EQeIV)I16,18
16 DV=1.5%(VEL(IVI=-VEL(IV-1))
GG TO 20
18 OV={(VEL(I3+1)~VEL(I3~-42)/2,
20 J2=IW(I1}
SUM=0.
DO 22 J=1,42
SIGSQ= WSIG(I1,J)**2

N

W1=WBAR(I1,J)
Fz(V1%%24W1%%2-2, %Y 1*WL1*COS(RAD*DIR(I2)~RAD*TBAR(TIL1,4)))/SIGSA ‘
F=WK{I1,J)*DO¥0V*VLI*EXP(~-F)/SIGSQ
22 SUM=SUM#*F
FF=SUM
RE TURN
END
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SUBROUTINE

10
15

29

- 25

SIGMAS

1a
12

L

16
1

SUBROUTINE SIGMAS({I1,ISTB4XeSIGYSIGZyH)

OIMENSION A(6),A1(18),B1(18),C1(18)
COMMON/STAB/AL(6) 4 ISTAB (6}

DATA (A(I),1I=21,6)/43658,0,2751,0.2089,0,1471,0.1046,0.,0722/
DATA (AL(I)eI=1,18) /0.000249005540e113¢1426,6473,18.05,

A4 0.0015,0,028,0.,143,0.222,0,2%1,0.086,
. 06192+0¢156,0.116,0,079,0.063,0,053/
OATA (B1(I),I=1,18) /72,094,1.098,0.911,0,516,0.385,0,140,
A4 1¢94841.149,0.91490,725,0,678,0,740,
* 0:936,0.922,0.905,0.881,0,871,0,814/

OATA (C1(I) 4I=1418) /4946424090009 =1301=Jbey=48,6,
L4 ) 9,279303,0009=1e79~1:3,-0.35,
. 6*10,0/

Xx1000.%X

SIGY=A(ISTB)*(X*%08.9031)

IFIX.CT.1000.) 2,4

J=ISTH

60 TO 18

IF{XelTo100.) 648

JsIgTa+L2

60 1O 190

JeISTB#*6

IF(AL{TLY,GT.0,) 12,16 A
XL={ {0, 6T®ALIIL)=CLEJNI/ZAL(IV)* N (1 0/8B11J)02"2,
IFIX. 6T XL) 14,16

$167s0,86

H=0,

60 T0 18
SIGZ=AL(JI®(X®%31(J))+CL(J)
Hsi,

RETURN

END
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SUBROUTINE

OO0

OO0

MAP

10

15

20

30

100

1010

110
121
1011

122
10412

123
1013

124
1014

125
1015

126
1016

SUBROUTINE MAP (NP XY MATRIX,ISW, KIND)
COMMON/M/ARRAY (13,58) yLINE(100) 4NSPACE(100)
OIMENSION X(100),Y(100),MATRIX(200),KIND(L)
REAL MATRIX

GC TO (10,100) ISH

Do 15 I=1,58

GCc 15 J=1,13

ARRAY (J, I =10H

FIND PRINTER LOCATION OF X ANO Y COOROINATES

XMIN=X(1})

YMIN=Y (1)

YMAX=Y (1)

0CG 20 N=2,NP
XHIN=MINL (X {M) 4XMIN)
YMIN=MINL(Y(N) ,YMIN)
YMAX=MAXL1(Y(N),YMAX)
CONTINUE

YF=48./ (YMAX-YMNIN)
XF=80s/(YMAX=YMIN)

00 30 N=1,NP
NSPACE(N)={X{N)=XMIN)*XF¢1,
LINE(NI=(YMAX=Y{N))*YF+2,
CONTINUE

PUT MATRIX VALUES INTO PROPER PRINTER LOCATIGNS

00 200 I=1,NP

NWORD=NSPACE(I) /10
NCHAR=NSPACE(I)=NWORD*10

N=NWORO ¢2

L=LINELD)

IF (INCHAR.GT.0) GO TO 110
ENCODE(10,1010,ARRAY(N,L)) MATRIX(I)
FORMAT t1H*F 6. 3,3X)

GO TO 209

GO TO (1214122,12341244125,126,127,128,1293) NCFAR
ENCODE (10,1011,ARRAY(N,L)) MATRIX(I}
FORMAT(Xs3H*4Fb. 3,2X)

60 TO 200

ENCODE (10,1012,ARRAY(N,L)) NATRIX (I}
FORMAT(2X 4 1H®yF64 34 X)

GC TO 200

ENCODE(10,1013,ARRAY (NyL)) MATRIXLY)
FORMAT (3Xs1H®* ,FBe 3)

G0 70 2090

ENCODE (2051014, ARRAY(NyL)) MATRIX(I)
FORMAT(LUX41H*F643,9X)

GO TO 200

ENCOOE (20,1015, ARRAYIN,L)) MATRIX(I)
FORMAT (SXy1H¥*yF643,8X)

GO 70 200

ENGCODE(20,1016,ARRAY(N,L)) MATRIX(I)
FOURMAT (6Xy1H®*4F6.3,7X)
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wrs 'neosv

60

€5

70

75

85

(Input data on point source statistics is listed in Table III-1l,

P.

SUBRCUTINE

33)

MAP
127
1017

128
1018

129
1019
200
2002

210
2004

320

330

2006

60 To 200

ENCOODE(20,1017,ARRAYIN,L)) MATRIX(I)

FORMAT(7Xs 1H*F&, 3,6X)
GO TO 200

ENCODE(20,1018,ARRAY(NsL)) MATRIXI(I)

FORMAT(BXy1H*Fb,.3,5X)
GO TO 200

ENCODE(20,1019,ARRAY{NsL))

FORMAT(IX,1H* 3 FHe 3, 4X)
CONTINUE

WRITE(2,2002) KIND
FORMAT(*1%,4A10)

00 210 L=1,58

MATRIX (I}

WRITE(2,2004) (ARRAY (NyL) yN=1,13)

CONTINUE
FORMATI(X,13A10)
RETURN

ENTRY MAP1

II=0

1s=9

00 330 N=1.NP,9
I=IS

00 320 NN=t,9
II=I1+}
X(II)=MATRIX(I)
I=1+9

IS=IS-1

CONTINUE

PRINT 2002,KIND
PRINT 2006, (X(I),I=1,NP)
FORMAT(9F10,3//7/777)
RETURN

END
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CHAPTER 1V
THE ANALYSIS OF THE COVARIANCE MATRICES

In the use of the covariance function or correlation
coefficient function it is important to evaluate the part
that may be due to small scale effects and to random errors.
The problem is analogous to the problem in communication
theory in which a signal is observed in a noisy background.
In order to determine the signal, it is also required that
a considerable amount of information be available concerning

the nature of the noise.

The situation in general was described in qualitative
terms in Chapter I where the effect of a jump disccocntinuity
at zero distance or a part with small "range of influence"
on the statistical interpolation were discussed. Up to this
point the method of finding the magnitude of this discon-
tinuity at zero distance or the magnitude of the effects
with small "range of influence" have not been discussed.

They are the specific subject of this chapter.

A. Evaluation of the Effect of Errors of Measurement or of

Small Scale Phenomena

To evaluate the effect of errors of measurement or
of small scale phenomena, we carry further the procedures
that led to the mean square estimate of Chapter II, equation
(8). The expression for the estimate of pollution concentration,

A

y, at P was given in (9), Chapter II, as

y = Zx;( Yalgy) (1)
i j
where the xi's are the observed concentration measures on
a particular occasion, gj=(xjy) is the covariance of the

1]

concentration measures at Pj and P, a is an element (row

i, column j) of the inverse of the covariance matrix {aij},
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aij=(xixj)’ where aij is the covariance of concentration
measures at Pi and Pj' It was pointed out following
equation (9) of Chapter II that if we let P+Pk, an ob-

servation point, and assume that gj+a. at the same time,

jk
then Y7Xy i.e., the estimate at P approaches the observed

value at Pk when P approaches P

K*
We consider now the situation illustrated in Figures
I-3a, I-3b and Figures I-5a, I-5b. To express the ideas shown

there qualitatively we need an explicit formulation for the

covariances gj=gj(Pj,P). Thus, let

(1) (2)

. = . + .
95 T 95 95

(1)

where gj is the part of the covariance gj which describes

the overall variation of g. as a function of the location
(2)
of P with respect to Pj while gj is the part that represents

the amount of discontinuity in gj at Pj on the one hand or
the part of gj that has a limited "range of influence". The
expression "limited" also needs definition (or at least

needs to be made explicit). For our purposes, "limited range
of influence" will be taken to mean that at distances from

Pj to P that are of the order of magnitude of the spacing

between prospective observation sites the magnitude of
(2) (2)

gj is negligible (i.e., the presence of gj cannot be
distinguished from sampling variations). With this speci-

fication of "limited range of influence", the situation
(2)

is treated as though gj were simply the magnitude of the

jump discontinuity if g_(Pj,P) for P+Pj. Then we may write
J
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_ (1) (2)
gj(Perj) gj (lePj) + gj (leP-)

3
= q. (1)
gj(leP) gj (Per)l P%Pj
or
(2) o
g5 7 (P4,P) = 0 if PFP,
(2) _(2) .
gj (Pj,P) gj (Pj,Pj) if P Pj

Equation (1) then becomes

A L) l

y =2 %, (X% aljgj( Yy, P#P

i ]

Y = Xkl P=Pk
where Pk may be any one of the points Pj'

Consider now the element of the covariance matrix {aij}’
aij = (Xixj)' Note that these covariances are essentially
the same as those of gj = (xjy) except for the fact that the
wandering point P involved in gj = gj(Pj,P) is now restricted

to one of the observation sites. As long as the points Pi

and Pj at which the covariance aij = (xixj) is computed

are distinct, the values concerned are just those of

(1)
95

range of influence" is not involved. But throughout the

(Pj,Pi). The part of the covariance that had "limited

principal diagonal of {aij} one has i=j. For these elements
of the matrix {aij} both parts are involved. These elements

of the matrix will be written as

(1) (

where aii is what we have called 95 l)(Pi,Pi) above and

58




ei2 is what we have called gi(z)(Pi,Pi). (Note: the
quantity ei2 is not to be confused with the mean square
error of estimate, e2, without subscript, used in equation
(8), Chapter II.) The terms ei2 will be referred to as the
"residual variances". They are the quantities that must
be determined in order to separate the part gj(z) from gj.
The method used to determine the residual variances
is an important part of Factor Analysis. It is unfortunate
that in the physical sciences the importance of these residual
variances has been, until recently, neglected to a large
extent. At least a part of this is due to the fact that
physical scientists also tend to be instrument designers and
have felt that to recognize "errors of measurement" was to
cast doubt on the quality of their instruments. Factor
Analysis is traceable to the psychologist Carl Spearman
‘ (1904) and the recognition of the importance of the residual
variances originates with him also. As used by psychologists,
the covariances (or correlation coefficients) that make up
the matrix elements aij are those between "test i" and
"test j" when given to a group of subjects. The psychologists,
like the physical scientists, were hesitant to admit that
these tests involved "errors of measurement". They did,
however, recognize that each test had something about it
that was unique (belonged to it alone). Consequently what
we here call the residual variances were called by the

psychologists the "uniquenesses".

Factor Analysis, as such, is devoted to things quite
different from the determination of the residual variances.
These are rather incidental, but have an important bearing
on the prime objective in that subject. We confine our

attention to finding the residual variances alone and ignore
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all other aspects of Factor Analysis. The best treatment
that we have found is that of Lawley and Maxwell (1963) and
(1971) who treat the subject from the point of view of a
statistician and include discussions of the applicable

tests of significance. The ordinary texts on Factor Analysis
tend to emphasize the computational and interpretive aspects
of the subject and neglect the significance tests. For
example, Horst (1965) is a 730 page compendium of computing
programs and the associated mathematical manipulations which
does not mention a single test for significance. On the other
hand, adequate tests of significance only go back as far as
Bartlett (1951) and Lawley (1956). The methods used here
depend chiefly on Jgreskog (1962) and may also be found in
Lawley and Maxwell (1971) [but not in (1963)]. As far as

we have been able to determine, the treatment of the method
of finding the residual variances using the formulation of
the problem as an integral equation rather than as a matrix
equation has not appeared elsewhere except for a brief note
by the writer (Buell, 1972) which covers only a small part

of the work reported here.
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B. Determination of the Residual Variances

The discussion of Section A preceding leads us now
to consider the matrix A = {a.,. + e.26..}, where §..=0
ij i "ij ij
if i#j and =1 if i=j so that we may write

2
ajyte; v 412 ’ T 81y
A = A a,~te 2 - a
21 ' 22 72 ! ! 2n
a a -—=, a__+e 2
i “nl ! n2 ' " "nn n
and in which aijzaji’ i.e., the matrix A is symmetric.

The matrix A is also positive definite. To keep the notation
from becoming excessivly complex, the diagonal terms shown

(1)

as a,;; here were denoted by aj; in the previous section.
We note now that one may write the matrix A as a sum of two
matrices, A=C+D, where C is the matrix {aij} and D is the

diagonal matrix {ej2 }. The problem at hand consists of

8. .
finding the elements é% D and the diagonal elements of C
(i.e., the values of aii) so that their sum, a s + ei2 will
have the known value that appears on the diagonal of the
given (known) matrix A and such that all of the diagonal
elements of D are positive (or perhaps zero) and such that

the resulting matrix C will be positive definite.
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1. Representation of a Matrix in Terms of Proper Functions/

Proper Values

In this section some background material is intro-
duced which forms the basis on which the following sections
depend. We consider a symmetric positive definite matrix
B={bij}. It is well known that such a matrix may be written

in the form
B=0AO', d'= transpose of ¢ (2)

in which the matrix A is a diagonal matrix such that the
elements on the principal diagonal, Ki' are all positive

(or at least non-negative) real numbers. It is also further
specified that these be written in decreasing order of

magnitude:

Ay 2Ag2Ag2===>) >0

These are the proper values belonging to the matrix B.

(Also called eigenvalues, latent roots, characteristic roots,
etc.) The matrix B is assumed to have n rows and columns.
There are then n proper values, not necessarily all distinct.
The proper values are the solutions of the determinantal

equation
|[B-)I| = 0

where stands for the determinant and I is the nXn unit

matrix. This equation is a polynomial of degree n in A.

With each of the proper values, there is associated a
proper function (or proper vector) which appears in the

column of & that corresponds to the position of the associated
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proper value in A. Thus to Xi, there corresponds the
column vector col{¢li,¢2i, ———,¢ni} which stands in the
i'th column of ¢. (These are also called eigenvectors, latent
vectors, characteristic vectors, etc.) These are the solutions

of the homogeneocus equations

Ebjk¢ki = >\i¢ki j=l,--=-,n (3)
k
(It is also said that the matrices A, ¢, are the solutions

of the matrix equation B®=0¢A.)

The proper vectors or proper functions have the property
of being an orthonormal set of vectors. That is to say, they

are normalized,
0, < 2=1 i=1,---,n (4)
ki 14 ’ I
k

and they are orthogonal to each other

201040, i3, (5)
k
The original statement that the matrix B may be ex-
pressed in terms of its proper values and proper functions

is written in explicit summation notation as

byj = Lbixbsk: (e)
k

The decomposition of a matrix into its proper values/
proper vectors is an important aspect of matrix analysis,
of which we have presented only the bare essentials for a
particular case. See any standard text such as Bellman (1960),
Gantmacher (1960a), MacDuffee (1949), Perlis (1952),
Turnbull (1960), etc. for a general treatment. Not only
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is it important for the subject at hand, but has many
applications, particularly to oscillatory systems from simple
strings and mechanical systems (Gantmacher, 1960b) to nuclear
spectra (Mehta, 1967).

In the above, the terms proper vectors and proper
functions have been used interchangeably. This usage
is intentional and is to emphasize the fact that what is
termed a "vector" with n discrete "components" in this dis-
cussion will turn out to be a function on a continuum and
it just happens that our computing procedure is limited to
the direct computation of values of this function at only

n points.

2. Factor Analysis Methods

Modern factor analysis techniques provide methods for
finding the individual values of eiz, i=l, ---, n. Most
of the methods for finding these quantities (i.e., those that
are statistically sound) require the solution of the matrix

equation

(A-D) % = oA (7)
where D is the diagonal matrix with elements ei2 on the
principal diagonal and 0's elsewhere. All of D,A,d are to
be found while only A is given. Nearly all of the methods
concerned are iterative, and have the characteristic feature
that (with only a few exceptions) they converge very slowly
(and in some cases, some methods fail to converge at all)
(Lawley and Maxwell, 1963}).

The method used here is straight-forward and has given

results that appear to be satisfactory. It is that developed
by K.G. Joreskog (1962). The technique is as follows. It
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is assumed that the covariance matrix, A, may be written in

the form
A = 3Ad'+D (8)

where ¢' is the transpose of ¢ which in turn is the matrix

of proper functions of A-D, A is the diagonal matrix of proper
values, and D = {eizcij} is the diagonal matrix of residual
variances. The proper functions (or vectors) corresponding

to the proper values are ordered in the same way as the
associated proper values [col(¢li,¢2i, --—,¢ni) corresponding
to Ai]. The values of Ai' i=l, ---, n, are the roots of the

determinant equation
|A-D-AI] = O

where I is the n x n unit matrix. Now consider the matrix

A-D instead of the matrix A and assume that all of the diagonal
terms of D are identical, ei2 = e2, i=l,---,n. It is rather
easily shown that (a) the matrix A has proper values which

are those of A-D but increased by e2 and (b) the proper
functions of A are exactly those of A-D. Thus, if L
i=],--~-,n, are the proper values of A, and Ai’ i=l,~=--,n,

are those of A-D, then

(Anderson, 1958, p. 287, problem 7)

If, now, we were to find the proper values of A as

LR and if we had some way of determining that the
last n-k of these proper values were not significantly
different from each other, it would then seem reasonable that
we could lump these last n-k values into one batch with
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average valug_(uk+l, cens +un)/(n—k), take this value as the __
estimate of e“, and then consider the values of ul-ez,...,uk—e2
as proper values of the matrix A-D, which will then be of

rank k(<n) and will have only k proper functions, namely
col(¢li,...¢ni), i=1l,...,k, and the last n-k proper values,

Ki’ would be zeros. It just so happens that just such a

test as required above is available. 1Its specification is
deferred until later since it is used in a somewhat more general

sense than is required by the heuristic argument above.

Return now to the technique of Jgreskog (1962) in which
the elements of D={ei26ij} may differ from each other. It is
assumed that the matrix D is given by the expression D =
e[diag(A—l)]_l, where 6 is a scalar constant to be determined,
D is proportional to the diagonal matrix which is the inverse
of the diagonal of the inverse of the covariance matrix that
we started with. We reduce this notation to the form D=6A_l,
where A=diag(A-l) and (8) then becomes

A= (0Ad') + on”L, (9)

Since A is a covariance matrix, the elements of A will
all be positive, and if we take the positive square roots of
the elements of A and denote this diagonal matrix by Al/z,

it then follows that (9) may be written as

a1/ 2ant/2 o (a1 2012y (a2 2641 2) 0 4 61

or
2t/ 23012 oo 4o
where
c = ot/ 2512
1/2..1/2

AA

described in the heuristic argument preceding where the

The matrix A is then to be expressed in the form
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single scalar coefficient, 8, corresponds to the common
residual variance, ez, used there. To find the value of 6,
one finds the proper functions and values of the matrix

al/2ppY/2 o

(AL/2p0Y/ 2 px = paps

where A* is the required diagonal matrix of proper values
(properly ordered) and F* is the matrix with proper functions
appearing in the columns in the same order as the proper

values.

The test for the last n~k proper values being different
from each other is to the effect that the quantity Q is
approximately distributed as XZ’ where

*
k+1"

*

= LIy -
Q = N'{ log, (A K+1

----X*)+(n-k)log[(k +---+A*)/(n-k)]
n n
and

N' = N-k+[2(n-k)+1+2/(n-k)]
and the number of degrees of freedom for x2 is
d.f. = (n-k+2)/(n-k-1)/2.

(N+1 = number of observations on which A is based.) The
criterion operates in an inverse sense. If the value of

x2 for a given value of k (the number of proper values

accepted as being different from each other) is exceeded

then there is at least one more significant proper value that
should be included. 1If it is found that at a given significance
level, the number of significantly different proper values, k,

is adequate for the representation of the matrix Al/zAAl/z,
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then the value of 6 is taken as

*

B = (Ak+l

*
+ -—-= + xn)/(n—k),
the average of the last (n-k) proper values.

We have now succeeded in representing the matrix

Al/zAAl/2 in the form

2/ 2pp1/2 = p¥*p* (p

* *
where A, Fk

proper functions. The matrix A may then be written as

consist of only the first k proper values and

2

l, D=6A—l={ei

6..1 (10)

~ —1/2_ %  * =172 _*% | -
A= (A Fk)Ak(A Fk) + 0A i3

1/2_*
Fk has columns not orthogonal to

Since the matrix A~
each other, these are no longer proper functions of any matrix.
To obtain proper functions and values, it is necessary to
recompute values of the k proper values/functions from
scratch, only using as the matrix concerned the matrix
(A_l/zF;)A;(A_l/ZF;)'. There are, of course, only k non-zero
proper values and proper functions, Ak’ @k,*whish are usually
quite close to those already obtained for Ak' Fk (except

for a scale factor for the proper values).

To recapitulate, it was pointed out that the use of
equation (9) of Chapter II as an interpolation formula for
estimating the measure of pollutant concentration involves
two important items that are frequently overlooked. The
first is that the variance of the small scale effects, the

effects of limited range of influence, must be specified
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guantitatively. The Jgreskog (1963) representation of

the covariance matrix does this. The required values are
exactly those specified by (10). The second item is that

a method of interpolation was required that would preserve
the character of the matrix A as a covariance matrix. This
is provided when the first matrix expression on the right
of (10) is recomputed in terms of its proper functions, @k,
and corresponding proper values, Ak so that

@kAka + D . (11)

IR

A

In (11) note that the subscript k is not a summation index.

It is used to indicate that only the first k proper values

and functions are used. The matrices concerned have dimensions
. is (nxk), A, is (kxk), ¢, is (kxn), so that

]
QkAka is (nXn) as are A and D.

as follows: & k

It appears that the solution to the problems concerned
is at hand, but this is not necessarily the case. The Factor
Analysis method for finding the values (ez) is applicable
to quite general covariance matrices. We are concerned with
covariance matrices of a stochastic process on a continuum.
The Factor Analysis method is strongly dependent on the
value used for the number of statistically significant proper
values, k. The problem will next be considered using a con-
tinuum formulation. The effect on the evaluation of k is

found to be important.

In Sub-section 3, Integral Equation Methods, immediately
following, the problems involved in the solution of the
integral equation corresponding to (7) are considered. A
method for testing whether the solutions of this integral
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equation obtained by two (or more) only slightly different
procedures are consistent with each other is developed. The
section is strictly theoretical. The practical application
of the techniques of Sub-section 3 is made in Sub-section 4
to actual 802 measurements.

3. Integral Equation Methods

The factor analysis method for determining the values
of the residual variances fails to take into account the
fact that there are strong geometric relations connecting
the pollution concentration covariances at the various
points of the observing network. To bring this into the
picture, the problem is re-~stated in terms of a continuum of
values rather than in a totally discrete form that ignores
this situation. To illustrate, the values X5 xj that enter
into the covariances (xixj) can be (in the factor analysis
case frequently are) test scores from the i'th and the j'th
tests given to a batch of subjects. The i'th test might be
on arithmetic ability and the j'th test on manual dexterity.
If a third test is considered, say Xy for the score on the
k'th test, which is on social adaptiveness, it is silly to
place this in a strictly geometrical relation with respect

to the other two. On the other hand, when Xi’ X., X, are

7 k

pollution concentration at points Pi' P., Pk' we know all

about the strictly geometrical relationg between these
points, i.e., we can say that Pk is such and such a distance
from Pi and also from Pj and that Pi and Pj are so far from
each other and that the line joining them has a certain
direction. The natural generalization of the proper value/
function analysis of the covariance matrix is the integral
equation formulation for proper values and functions in a

continuum. Thus

Ao (%) =fK(x,x')¢>(x') ax’ (12)
R
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where A is a proper value, ¢(x) is the corresponding proper
function, and K(x,x') is the kernel, - the exact analogue of

the covariance matrix. The kernel, K(x,x') is precisely the
covariance of concentrations at the points x and x'. Note

that x in the above may be a multidimensional variable in
which case dx' is multidimensional and R is a region of the
same dimensions. We are concerned here with the two-dimen-
sional field of pollution concentrations. The kernel function,
K(x,x'), is now a positive definite symmetrical [K(x,x') =
K(x',x)] function of the location coordinates. The fact

that we are now working on a continuum is also reflected in
the fact that (12) has a denumerable infinity of solutions,

Ay,
values are considered as ordered

¢n(x), of proper values and functions. The proper

and the proper functions ¢n(x) are taken in the same order.

The standard method of solving (12) is to reduce the
problem to a matrix problem where the values x,x' are
specified on a network of points and the integral is replaced
by a quadrature formula. This approximation may be written

as

A (xy) = ZK(xi,xj)tb(xj)Aj (13)
3

where the factors Aj correspond to an element of area about
the point xj such that ZAj = R = area of the region of
integration (for a two dimensional network of points). If
the kernel function were given by an explicit formula, then
one could evaluate it at any number of point pairs X, and xj,
i,j=1, ..., n, and the number of points could be taken as

very large. The larger the number of points selected, the
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more accurate would be the estimate of the solution for a
proper value/function of some specific order, n. On the other
hand, one is faced with the fact that one can only obtain a
finite number of solutions when it is known in advance that
there are a denumerable infinity of such. Thus, for a fixed
number of points, X: i=l, ..., n, n fixed, there must always
be some point, say n*, beyond which the solutions depart

more and more from the theoretical or exact solution. When
one applies the technique to a kernel function that is known
only at point pairs from a fixed number of points and for
which the value of the kernel function is known only to within
a certain sampling error, other considerations limit the
accuracy of the solutions. One of these is the accuracy of
the values of the kernel function itself and another is the
choice of the quadrature factors, Aj’ and still a third is

the fact that K(x,x') may have a "jump discontinuity" along
x=x"' (or at least an effective "jump discontinuity" as far

as the observation station spacing is concerned). These
several points will be considered separately in the following
paragraphs. None of these points is trivial. Considered
from the integral equation point of view, the proper values/
functions obtained from the matrix equations by Factor Analysis
methods are simply approximations to a correct solution in
which several of the factors concerned have been overlooked
due to the over-simplification of the problem.

a) The Jump Discontinuity

The fact that there may be a jump discontinuity along
x=x' may be handled by the following integration technique.
Subtract from the equation (12) the identity

¢(x)./k(x,x')dx' =./~K(x,x')¢(x)dx'
R R
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to obtain

600 D= [Kex,x)ax'] = [Kex,x") [9(x") = (x) Jax" (14)
R R
The discontinuity of the kernel function in the integrand on
the right of (14) is no longer effective since the factor
[¢(x')~9p(x)] is zero on x=x'. It is still present in the
integral term on the left side. 1In this integral we use
quadrature factors that are dependent on x in addition to

x' in such a way that Bj(x)

=0 if x=xj. Quadrature formulas
using such factors are said to be of "open type". See
Abramowitz and Stegun (1964). If these quadrature factors

are indicated by ng) while those on the right are Aj’ then

J
the matrix equivalent of (14) may be written as

(x.), _ _
¢ (x4) [A- Zj;mxixj)sj i’ = JZ;K(xi,xj)[quxj) $(x;)1a5  (15)
Rearranging the terms of (15), one finds that

M (x;)= TR(xy,x;)0(xg)A5+ LROxy,x;)00x;) B0 -a51  (16)
J#i j#i
where neither summation contains the term i=j. This term
is missing from the first summation because regardless of A,
it would be canceled by the corresponding term of the second
summation; it is missing from the second to also account for
the fact that Béxi) = 0. The second term on the right is the
equivalent of substituting for K(xi,xj)Ai the expression
Kx;,x5)A5 = T Klxg,%5) [Bj(xi)
i#j
This is equivalent to using an interpolation formula to

-Aj]. (l6a)

obtain K(xi,xi) from values of K(xi,xj) that make no use

of X; = xj explicitly. One must have I ngi)=R and
J#1
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(x.) ‘I'

£ A.=R-A. so that I [B."i’-A.]=A., i.e., the sum of the
A T jEi 3 ot

weights given to each of the terms K(xi,xj) of (l6a) is just exactly
the weight ascribed to K(xi,xi) itself.

In order to obtain an explicit solution using the symmetric
positive definite matrix algorithms (which are much faster
than those for an unsymmetric matrix), this form may be made
symmetrical using the device described in the following

section.

* *
When the proper functions and values, ¢k(xi),kk, have been
found from (16), then a new kernel K*(xi,xj) can be constructed,
thus

* % %*
K* (Xilxj) = 2 )‘k¢k (xi) ¢k (xj)
k

and the amount of the jump discontinuity along X=X, may

J

be determined from

= = - *
Ji J(xi) K(xi,xi) K (xi,xi).

b) The Quadrature Factors

The unsymmetrical formulation for the matrix approximation
to the integral equation using a quadrature formula, (13),
may be made completely symmetric by multiplying both sides
by /_I. Thus (13) becomes

A[/X;¢(xi)] = {/XIK(xi,xj)/K;}[ /§;¢(xj)] (17)

If we let /Ai¢(xi) = G(Xi), then the values of e(xi), A are
proper functions/values corresponding to the weighted

74



covariance matrix {/AiK(xi,xj)/Aj}. Note that if we have
proper functions ek(xi) and el(xi) corresponding to proper

values Ak’xl’ these functions are orthonormal, i.e.,
1 if k=1
g:ek(xi)el(xi) = 8y Sx1 = 0 if k#1

If now we substitute the expressions for ek(xi), Gl(xi) in terms

of ¢k(xi), ¢l(xi), one obtains

Ly (xy) 0y ()85 = 8y
i
which corresponds to the orthonormality condition in integral

form which is satisfied by the proper functions belonging

to the integral equation (12),

[orxe ax = 8,

R
provided that the same quadrature factors are used to evaluate

this integral as were used to reduce the integral equation (12)

to matrix form as in (13) or (17).

The guadrature factors that are to be used in going
from (12) to (13) or (17) need to be very carefully considered.
First, even in the case of a single variable x, the choice
of quadrature factors is by no means unique. The standard
handbooks of mathematical formulae list the gquadrature factors
for the Trapezoid rule and Simpson's rule. The more complete
work, Abramowitz and Stegun (1964), lists eight additional
sets of quadrature factors, not to mention the open-type
formulae which would be used to obtain quadrature factors
like the ngi) of the preceding section. In the case of
these formulae an error term is listed which generally is

proportional to some derivative of the integrand evaluated
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in the interval of integration. This, at least, gives the
impression that if the integrand is sufficiently "smooth",
the higher the order of this derivative, the more exact the
guadrature formula. All of these formulae are for equally-

spaced abscissae, x -X,;=constant. When the abscissae are

i+l
not equally spaced, one must be prepared to go to the basic
relations from which such quadrature formulae are usually

derived to obtain adequate expressions.

The situation when the parameter of integration is
multidimensional is worse. Even the compendious Abramowitz
and Stegun (1964) list only one quadrature formula for
points located on a square grid and which are also on the
boundary of the area over which one is integrating. It is
usually mentioned that in dealing with a rectangular grid of
points, one may make a multiple application of the one
dimensional quadrature formulae. None of these cases describe

the situation at hand, which we now explore to some extent.

To obtain the experimental values of the kernel K(xi,xj)
we have a fixed number of points, Pi’ with coordinates (gi,ni)
that are arbitrarily located. We cannot increase the
number of points and we can do nothing about their location.
The domain of integration, R, is determined by this network
of points to a large extent, but not exactly. We may as
well simplify the problem as much as possible by specifying
that the boundary of R is a polygon obtained by connecting
the points on the perimeter of this area. Note that the
network of data points does not really define such a boundary
uniquely. We need to specify something like a "convex"
boundary before even the area of integration becomes uniquely
defined. We do not consider all of the ramifications of the
boundary selection any further since it would only make a

difficult situation more difficult.
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The ambiguity of the relation between the points, Pi' and
the domain of integration is illustrated by the simple
example of a re-entrant quadrilateral as shown in Figure IV-1.
In A, the four points are considered to be bounded by a simple
triangular region with the fourth point as an interior point
and the region divided into three non-overlapping triangles.
In B, the fourth point is considered to lie on the boundary
of a re-entrant quadrilateral which is subdivided into two

non-overlapping triangles.

Inside and on the boundary one has the points Pi‘ Now
subdivide the region into elementary triangles with a point
Pi at a vertex of each triangle. It is readily proved that
if P = total number of points, B = number of boundary points,
S = number of triangle sides, T = number of triangles, then

S = 3(P-1)-B
2(P-1)-B

The fact that the boundary is nct uniquely defined is reflected
in the fact that B (which is included in the total number
of points, P) is also a parameter that needs specification.

Consider now a single triangle that has for vertices
the points 1, 2, 3. 1In order to carry out the integration
of f(£,n) over this triangle when only the values fl,
f2, f3 at the vertices are known, it is reasonable to
consider a generalization (slight) of the trapezoid rule.
Let the function be approximated by a plane over this triangle.
It is easily shown that the integral over the triangle is

given by
[ EEmagan = (£14£,4£,) « (8/3) (17)
A

where A is the area of the triangle.
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(B)

FIGURE IV-1

THE AMBIGUITY OF THE RELATION FOR THE NUMBER
OF TRIANGLES AND SIDES DEPENDING ON BOUNDARY
POINT ASSIGNMENT
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Next consider the array of points that is subdivided
into non-overlapping triangles that completely cover the
region of integration. With each point, Pi’ there will be
one or more triangles with this point as a common vertex.
The integral of f£(£,n) over the entire region R may then be

approximated by the guadrature formula

R i
where i is the point index and A, is given by

A, = I E*Tk(i)]/x
where Tk(i) represents the area of*the k'th triangle that
has the point Pi as a vertex and i is the sum of all such.
The situation is amenable to a simple geometric con-
struction to visualize the areas thus associated with the
points P.. In an individual triangle, the lines joining
the vertices with the mid-point of the opposite side divide
the triangle into three gquadrilaterals each with the same
area. Thus, for the triangle 123, Figure IV-2, the points
A,B,C are the midpoints of the sides and lines Al, B2, C3
all meet at the point Q, the "center of gravity" of the
triangle. The quadrilaterals QB1lC, QC2A, QA3B each have
an area equal to 1/3 the area of the triangle 123.

When several triangles are put together to form a region

subdivided into triangles, the area associated with each point
is illustrated in Figure 1IV-3.
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FIGURE IV—2

THE THREE EQUAL AREA QUADRILATERALS, 1CQB ,
2AQC , AND 3BQA , RESULTING FROM JOINING THE
VERTICES WITH THE MID — POINTS OF THE OPPOSITE
SIDES OF THE TRIANGLE,
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FIGURE IV—3

AN AREA SUBDIVIDED INTO TRIANGLES DETERMINED
BY THE POINT LOCATIONS AND THE AREAS ASSIGNED TO
EACH POINT ON THE BASES OF THE QUADRILATERALS IN
EACH TRIANGLE ILLUSTRATED IN FIGUREIV—2,



The situation seems to be well under control at this
point, but now consider how we divide a very simple convex
quadrilateral into triangles. There are two choices of the
way in which this is done, as shown in Figure IV-4. It
is readily seen that the quadrature factors assigned to the
points 1,2,3,4 in these two cases are vastly different from
each other. When a region covered by many data points is
considered, the number of ways that it may be divided into
non-overlapping triangles becomes large, and each of these
methods of subdivision will be associated with a different
assignment of quadrature factors to the points. The problem
then resolves itself into the question of what is the best
way of subdividing the area covered by given points P, into
triangles so that the resulting quadrature formula will best
approximate the integral concerned.

As an example of the wide variety of quadrature factors,
consider a square with data points at (zh,th), (¢h,0), (0,z*h),
and (0,0). There are four sub-~squares and each can be divided
into two triangles in two ways. There are thus 16 possible
ways of dividing the area into non-overlapping triangles.

Each of these will give a different system of quadrature
factors based on the integration of a plane approximation over
the triangles. These are listed in the following table.

The guadrature factors in each case add to 24 so they are to
be multiplied by h2/6 where h is the spacing between points

to get the correct units.
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3
4
2
FIGURE IV—4

THE TWO WAYS THAT A CONVEX QUADRILATERAL MAY
BE DIVIDED INTO TWO TRIANGLES AND THE RESULTING
DIFFERENCE IN THE AREAS ASSIGNED TO EACH POINT.



Quadrature Factors for the 9 Points Covering a Square

Number 1 1 2 4 4 4 1 1
(Trap.) (Simp.)

Coordinates
(-h,+h) 1 2 1 1 1 1 3/2 2/3
(0,+h) 4 2 3 4 3 4 3 8/3
(+h,+h) 1 2 2 1 2 1 3/2 2/3
(=h,0) 4 2 3 3 3 3 8/3
(0,0) 4 8 6 6 7 5 32/3
(+h,0) 4 2 3 3 2 4 3 8/3
(-h,-h) 1 2 2 2 2 2 3/2 2/3
(0,~h) 4 2 3 2 2 3 3 8/3
(+h,-h) 1 2 1 2 2 1 3/2 2/3

The "number" row indicates the possible number of cases
of each type: 1 is associated with a symmetrical arrangement,
2 indicates that a 90° rotation gives another arrangement but
that a second rotation of 90° reproduces the original
arrangement; 4 indicates that the original is not reproduced
until the 4'th rotation through 90°.

The last two columns are symmetrical quadrature factors
for this point array that are derived from the double
application of the trapezoid rule and Simpson's rule respectively.
The quadrature factors for the trapezoid rule (applied
twice) are the average of those shown in the first two
columns.

In this example, there appears to be no good over-all
criteria for prefering one assignment of quadrature factors
over another. 1In the case of each square, the two possible
triangle subdivisions are symmetrical. One might prefer a
symmetrical arrangement as in the first two columns, but this

seems to be justified more on the basis of taste rather than
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a good substantiation of the better accuracy of the gquadrature
formula. When the points are not regularly arranged on a
grid, but are more or less at random, one might prefer a sub-
division into triangles that would favor a tendency toward
equilateral triangles over long, skinny triangles, but again
this appears to be justified more on the basis of taste than

mathematics.

The standard hyperbolic paraboloid interpolation scheme
(sometimes called double linear interpolation or iterated
linear interpolation) over convex quadrilaterals might be
used, but the same ambiguity on the resulting quadrature
factors still exists because of the many ways that the
observation net can be divided into convex quadrilaterals.
In this case, one may be stuck with a few triangles since
the quadrilateral subdivision need not "come out even".

c) The Product Integral Technique

If instead of interpolating the whole integrand on a
triangle to obtain the quadrature factors one interpolates
separately the two terms of the product, one obtains the

relation
I, 5‘/‘K(x.y:X'.Y')¢(X',y')dX'dY' =
A l 1-g

= 2AffK(x,y;p.q)d>(p,q)dpdq
where 0 O

$(p,@) = 97 + Plo,=¢;) + q(63-9;)

K(x,y:;p,q) = K, + p(KZ-Kl) + q(K3-K1)
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and in which ¢l’¢2’¢3 and Kl’ K2, K, are the values of the

3
proper function and the kernel function at the triangle

corners and A is the triangle area. The results of this

integration lead to

IA = (A/12)[¢l(2Kl+K2+K3)+¢2(Kl+2K +K3)+¢3(K1+K +2K3)]

2 2

which may be expressed in matrix/vector form as

) 2, 1, 1} ("1
I, = (A/12){K{,K,,K3} {i, i, 1 {¢2}
4 4 2 q)
3

where now one has a matrix of quadrature factors. Sum over
all of the triangles that cover the region of integration to

obtain the quadrature form for the integral equation as

Ab; = Zj)[§ KipPyyloy = %Kik[ ?Akjtbj] (18)

where ¢i=¢(xi,yi), Ki,k = K(xi,yi;xk,yk), and the elements
of the matrix of quadrature factors, {Aij} are defined as

Aii =(2/12)§E(Areas of A's with Pi as common vertex)

—_ [} : .
Aij —(l/lZ)ZE(Areas of A's with Pin as common side)

Write the above in matrix/vector form as
AP = KAQ

where ¢ is the column vector of proper values ¢(xi). Now
assume for the moment that A is a positive definite matrix.

(It is symmetric.) It will then have a square root which we

1/2 1/2

will denote as A . Multiply on each side by A to obtain
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X(Al/2¢) - (Al/zKAl/z)(Al/2¢).

1/

If, now, we let A 2¢=6, we have the relation

re = (al/%xal/2)g
which is the analogue of the relation (17) obtained when the
quadrature factors were simple scalars associated with each

point.

The solutions of the above matrix problem, ek(xi),xk,

are such that, as before,
Eek(xﬂel(xi) = Spq-

Then in terms of the values ¢k(xi), one has

2
O (%) = EI:nA::I!..I{I P i)
so that
60, (x)8; (x) = £ (X a2 x)) (T a% )
1 1 m n
= 1/2 ,1/2
R TICRINCRES R AR S
1/2 1/2

where, in the above, {A } stands for the elements of A ’

S
the square root matrix of the matrix A (not the square
roots of the elements of A). Since Al/2 is symmetric

(as was A) the summation on i in the above simply gives the

elements of A. Thus

.zek (%3101 (x3) = 3 ZApL 8 (%) 6y (%)
i m n
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This is the same result that would have been obtained had

we evaluated the "product integral" expression

f o (x)0y (x)ax = 8,

R
using the same individual interpolation formula for the
factors in the integrand that was used to evaluate the

product integral that appears in the initial integral equation.

The square root matrix of the matrix A is readily
obtained by recourse to the proper functions and values
of the matrix A. 1If the proper values/functions of A are
Wy wik so that M is the diagonal matrix of the uk's and
¥ the matrix of which wik are the column vectors, then
A = YMY'. Since for a symmetric positive definite matrix
the proper values are real and positive, then the proper values
have square roots (use the positive sign). Then the

l/ZW' 1/2

matrix ¥M , Wwhere M is the diagonal matrix of elements

ui/z on the principal diagonal and zeros elsewhere, is the
square root matrix of A, i.e., Al/2 = WMl/ZW'. Note that
al/2312 o ot/ 2y0y (qml/ 2y = ol 20t 2y o gt/ 201 2y
YMY' = A,

d) Test for the Accuracy of Solutions

In view of the fact that the quadrature factors for
the numerical solution of an homogeneous Fredholm integral
equation of the second kind are not well-defined gquantities,
a test of the validity of solutions seems to be in order.
The usual mathematical error estimates are unsatisfactory
for this since they all require more information than is
available from experimental data on the kernel function. A
test is available, however; namely a simple comparison of

the proper functions arising from two equally valid choices
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for the quadrature factors. Thus, let there be two choices
of quadrature factors, Ai and Bi‘ The corresponding
algebraic equations to be solved are

Ao (xy) VAL ] : (VALK (x; %) VAS] [VES0 ()]

M$ix;) VB ] ? [VB K (x;,%3) VB IVBy (x3)]

and let
# _
B (x5) = VA 6y (x;)
e;(xi) = /B¢y (x;)

be the proper functions at the points X and let A#, A;

be the corresponding proper values. Then consider the sum
of the squares of the differences of these solutions. If
the solutions are reasonably similar, this quantity should
be very close to zero. On expanding the square and summing
over the points Xy, one obtains

stod(x, )-00(x.)1%2 = SI65(x.)1%-2 3 6 (x.)0¥(x,) +
i k'"k ki i k'‘71i i k'‘ti/ "k Vi
316 (x;)12.
1

The first and last term on the right are each unity so that

si6 (x)-67 (x.)12 = 2[1- § 6 (x.) 67 (x,)]

. ki k'7i : ki kMLt

i i
The second term in brackets on the right is simply the
"correlation coefficient” for the point by point comparison
of the two solutions. (Each has unit second moment about
zero, but need not have a first moment of zero, although
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for proper functions of order greater than a small number

this is essentially the case. We compute the sum of products
as indicated ignoring the fact that the first moment may

not be zero. It is an immediate consequence of the Schwartz
inequality that the value of this sum of products lies between
+1 and ~1 so it "looks like" a correlation coefficient

anyway.)

The gquantity

* #
Cp = 200y (x4) 0y (%)
i

serves as a test parameter for the "self consistency" of the
two solutions ei(xi) and eﬁ(xi). If Ck is close to 1, it
may be said that the solutions are self consistent. If it
departs from 1 by a significant amount, then the solutions
are not self consistent. A better condition for self con-
sistency is much stronger than this. We have a sequence of
values Ck’ k=1, ..., n. It is expected that for k small,
the values of the test parameter will be close to one. If
at some value of k, say k*, the value of Ck* has decreased
abruptly compared to the previous values, then we can say
that not more than k*-1 solutions are self consistent. This
is regardless of whether or not the subsequent values of

Ck’ k>k*, may be close to 1. This is because in each
sequence of solutions every solution is orthogonal to all

previous solutions of the sequence.

One cannot say which of the solutions is incorrect if
Ck<l when the quadrature factors are equally valid. One
can only say that k*-1 solutions appear to be equally valid
and that any further solutions in the sequence are suspect.
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From the preceding, it 1is concluded that by formulating
the problem of matrix reduction (outlined in Sub-section 1
and treated from the Factor Analysis point of view in Sub-
section 2 as an Integral Equation) there are ambiguities of
technique that have an important bearing on the accuracy of
determining the proper functions. These ambiguities may be
used to test for self-consistent solutions. If the solutions
are self-consistent one can say nothing about their accuracy.
Accurate solutions must be self-consistent, but inaccurate
ones may be also. On the other hand, if a pair of solutions
are inconsistent, then one or the other or both must be
inaccurate. This has an important bearing on the value of k
determined from the Factor Analysis method (k = number of
statistically significant solutions to the matrix problem)
as outlined in Section 2. It seems reasonable that if there
are not more than k* solutions of the integral equation
formulation that can be reasonably accurate from a mathematical
point of view, then using more than k* solutions to the
matrix problem appears to be of doubtful value, even if the
appropriate statistical tests indicate that they are "statis-

tically" significant (k*<k).

C. ANALYSIS OF ST. LOUIS 802 DATA
1. The Basic Data
The daily data on SO, concentrations received from the

2
EPA were analyzed by means of the proper function/value

method to determine the amount of the residual variances

(Ruff, 1973a, 1973b). The data cover 89 days in 1964-1965

and were for 40 locations shown in Figure IV-5. (The triangle
indicates the location of dual 2-~-hour and 24-hour samples).

Not all stations had records that permitted the assignment

of an 802 concentration value to each day. It was found

that if only those days were used in which data were available
from all stations, there were only 27 such. This meant that the
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covariance matrix would be of rank 27 instead of a more
desirable rank of 40 (see Appendix B). Inspection of the
data for missing days by stations revealed that there were a
large number of days on which data for only one or two
stations were missing. It was felt that it would be desirable
to "interpolate" data for the missing stations under such
circumstances. This would increase the validity of the data
as a whole without seriously degrading that for the single
station at which the interpolated data was inserted. The
result of this synthetic increase in the data base resulted
in an increase to 59 effective data days, which in turn

assured a full rank of 40 for the covariance matrix.

The area covered by the stations was divided into two
systems of non-overlapping triangles covering a region with
common exterior boundary in each case. The station coordinates
and the triangle assignments are listed in Tables IV-1 and
IV-2. 1t will be noted in Table I1IV-1 that though the areas
assigned to points are correlated, there are also some large
variations between the areas assigned to a given point, the
ratio in some instances being larger than 2:1. The arrange-
ments of the triangles are also shown in Figures IV-6 and
IV-7. The station coordinates are in grid units as in Ruff
(1973a). The areas assigned to the points in Table IV-1
are in square grid units and represent one third of the area
of the triangles which have the point concerned as a common

vertex as on page 79.

The triangle assignments were made in order to obtain
guadrature factors as outlined in Sections 1lb and lc. Only
the points shown in Figure IV-5 with coordinates given in
Table IV-1 at which covariance data are available are given
a priori. To obtain quadrature factors which are associated
with each of these points (that is, the areas that have been
tabulated in Table IV-1 under the columns headed 1 and 2
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Table IV-1. Station Coordinate and Area Assigments

Coordinates Area
Station
Index X Y s 1 2

1 19.42 20.86 1.77 3.20

2 20.16 20.06 2.00 1.15

3 18.66 19.16 1.50 2.89

4 20.24 22.36 3.53 3.50

5 17.72 20.14 3.35 1.76

6 21.18 21.20 2.48 3.16

7 18.12 22.50 4.70 5.04
8 20.76 19.20 3.89 2.46

9 16.22 21.16 3.65 4.96
10 20.48 17.88 1.53 3.60
11 16.52 18.92 3.22 3.40
12 22.48 18.64 1.59 4.52
13 18.04 17.76 5.68 4,48
14 22.32 16.64 8.63 4,87
15 16.32 24.12 11.14 10.85
16 20.42 25.20 9.87 7.77
17 14.14 21.46 9.19 7.29
18 21.02 23.84 3.88 3.94
19 14.16 20.26 4.97 6.39
20 22.44 20.64 6.50 2.83
21 14.96 18.04 4.80 6.20
22 24.14 19.78 3.62 5.24
23 16.88 15.88 4.48 6.34
24 20.24 15.80 3.42 4.77
25 18.50 28.42 4.20 6.10
26 18.88 14.92 5.90 3.88
27 15.42 27.88 6.01 3.46
28 22.30 26.86 0.90 2.38
29 13.78 25.06 2.47 4.59
30 23.26 25.04 3.20 2.44
31 11.14 23.64 5.08 3.61
32 24.76 23.22 5.71 5.43
33 10.34 20.34 4.01 4.71
34 27.10 19.98 5.96 3.56
35 10.68 17.18 5.10 4.97
36 26.04 17.06 3.14 5.15
37 13.96 16.06 3.51 3.09
38 23.54 14.52 4.70 4.70
39 14.74 14.32 3.75 1.77
40 16.64 13.04 2.71 3.57
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Table IV-2. Triangle Assignments

Triangle No. 2 No. 1 Triangle No. 2 No. 1
Index 1 2 3 1 2 3 Index 1 2 3 1 2
1 26 38 40 26 38 40 31 10 13 14 23 24
2 24 26 138 24 26 38 32 8§ 10 14 13 23
3 14 24 38 14 24 38 33 8§ 12 14 10 13
4 14 36 38 14 36 38 34 12 14 22 10 14
5 14 34 36 12 14 36 35 8§ 12 22 10 12
6 14 22 34 12 22 36 36 8 20 22 8 10
7 20 22 34 22 34 36 37 2 8 20 8 12
8 20 32 34 22 32 34 38 2 6 20 12 20
9 18 20 32 20 22 34 39 6 18 20 6 8
10 16 18 32 6 20 32 20 4 6 18 2 6
11 16 30 32 4 6 32 41 4 16 18 1 2
12 16 25 30 4 18 32 42 4 15 16 1 4
13 25 28 30 18 30 32 43 4 7 15 1 4
14 16 25 27 16 18 30 44 7 15 17 4 7
15 15 16 27 16 28 30 45 7 9 17 7 16
16 15 27 29 16 25 28 46 9 17 19 7 15
17 15 29 31 15 16 25 47 9 19 21 7 9
18 15 17 31 15 25 27 48 9 11 21 9 15
o 19 17 31 33 15 27 29 49 11 21 23 9 17
20 17 33 35 15 17 29 50 11 13 23 9 11
21 17 19 35 17 29 31 51 5 11 13 11 19
22 19 35 37 17 31 33 52 3 5 13 11 13
23 19 21 37 17 19 33 53 3 8 13 13 21
22 21 37 39 19 33 35 52 8 10 13 3 11
25 21 23 39 19 21 35 55 2 3 8 3 10
26 23 26 39 21 35 37 56 2 3 5 3 8
27 13 23 26 21 23 37 57 1 2 5 2 3
28 26 39 40 23 37 39 58 1 2 6 1 2
29 13 24 26 23 39 40 59 1 6 7 1 3
30 13 14 24 23 26 40 60 4 6 7 3 5
61 1 5 7 5 9
62 5 7 9 1 5
63 5 9 11 1 7
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since we are to compare two different ways of obtaining

the quadrature factors or areas} the entire region iIs covered
by non-overlapping triangles and to each point is assigned
the area equal to one third of the area of all triangles with
a vertex at this point. This covering of the region by
triangles is not unique, so we say that we make triangle
"assignment” or "assignments” since there is some freedom

of choice here. For the purpose at hand, only two such

"assignments" are made. Many others could have been made.

The areas, or guadrature factors, for each of the two
assignments of the triangle coverage {Table IV-1) that are
associated with each point are "correlated” in the sense that
if for one assignment of triangle coverage the guadrature
factor (or area) associated with a given point is small (large)
then for another assignment of triangle coverage it will
also tend to be small (or large}). In other words, if one were
to compute the product moment correlation coefficient for
the areas (quadrature factors) shown in columns 1 and 2
under Area in Table IV-1l, this correlation coefficient would
be positive and significantly different from zero. This is
simply due to the fact that, as shown in Figure IV-5, in some
areas of the region the points are more dense than in others.
The statement that the areas (or quadrature factors) are
correlated would be true for any two ways of covering the
area with non-overlapping triangles, not just the two that

happen to have been selected here.

2. Quadrature Factors and Technigues

In order to obtain a comparison between the proper
values/functions for the different area assignments (triangle
coverages) these were computed and compared using the "trap-
ezoid method" and the "product integral technique”. The

"trapezoid method" refers to the assignment of quadrature
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factors on the basis of fitting the entire integrand as a

plane over each triangle. The "product integral technique"”

refers to fitting each factor in the integrand separately as

a plane over each triangle.

With reference to the quadrature factors used in the
"trapezoid method", a search was made of the literature on
the subject. It was found that the texts Davis and Rabinowitz
(1967) and Stroud (1971) were devoted to more mathematical
aspects of the guadrature problem in several dimensions.
This was true also of papers found in the recent literature
such as Ewing (1941), Tyler (1953), Synge (1953), Mises (1954),
Thacher (1957), Hammer and Wymore (1957), Hammer and Stroud
(1958), Albrecht and Collatz (1958), Stroud (1960a and 1960b),
Ceschino and Letin (1972) to mention only a few. Even
Dixon (1973), a survey paper, did not list multidimensional
guadrature formulas that could be applied. Almost invariably
mathematical interest has been confined to quadrature formulas
wherein the function values are given at arrays of points
prescribed in advance. These are, of course, useless when
the data points are given in an essentially random manner. It
was found that Mises (1936) did give a formula that could be
applied to an arbitrarily given triangle. It is for this
reason that in Section 1lb the derivation of the quadrature
factors for the "trapezoid method" was developed in some
detail from "first principles" and the implications of the
use of such a formula (especially the ambiguity of the triangle
selections) were pointed out. We have not seen this kind of
treatment of the problem in any published work. (On the
other hand, it is so elementary that we feel sure that it
must have been treated before somewhere and that our search

has not been sufficiently exhaustive to find it.)
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With respect to the "product integral technique", it
was found after the method of Section 1lc had been developed
that a somewhat similar procedure had been developed by
Boland and Duris (1969 and 1971) and Boland (1972) but,
again, only for the case in which the function is evaluated
at a prescribed regular array of points in one dimension.
See also Beard (1947) for an earlier treatment, also in one
dimension. We have not found anything treating the case at

hand, arbitrarily preassigned points in two dimensions.

The proper values so obtained are shown in Figure 1IV-8
for the trapezoid method and Figure IV-9 for the product
integral method. Each figure shows the proper values for
each triangle assignment for index values 20-40, one by a
triangle and the other by a dot which appear one above the
other. For the index values 1-19 the differences were so
small that the points are scarcely distinguishable and
consequently only the dots are shown. The differences in
the assignments of the areas to each data point apparently
make little difference in the proper values obtained. On
the other hand, comparison between figures shows at once
that for index 5 through 40 the proper values obtained by
using the product integral method of evaluating the integral
yields proper values that are distinctly less than those
obtained by the trapezoid method. The first ten proper
values are compared in more detail in Table IV-3 in which
the ratio decreases somewhat irregularly from 0.9 at index 1
toc near 0.5 at index 5 and higher. This is discussed in

more detail on p. 104.
The "knee" in the curve of log proper value vs index at

index 5 or 6 represents an interesting phenomena which has

been noted by Craddock and Flintoff (1970) and investigated
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Table 1Iv-3. Comparison of the First Ten Proper Values by
. the Different Computing Methods

Proper Values

Product
Index Trapezoid Integral Ratio
1 6.28810 5.71721 0.90921
2 3.02629 2.49737 0.82522
3 2.23924 1.88175 0.84035
4 0.98689 0.68170 0.69075
5 0.57566 0.24709 0.42923
6 0.35671 0.18841 0.52819
7 0.32275 0.16377 0.50742
8 0.29378 0.16263 0.55358
9 0.26159 0.11669 0.44608
10 0.23855 0.11485 0.48145
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synthetically by Farmer (1971). Craddock and Flintoff
remark to the effect that this marks the point beyond which
the proper functions appear to be more or less random, but
they give no firm criteria on which they base their measure
of randomness. We will be able to provide a criterion that

seems to f£it the situation rather well.

In order to compare the proper functions obtained by
the two triangle subdivisions and the two quadrature techniques
the "self consistency” test parameter, Ck’ i.e., the corre-
lation of the proper functions for the methods being compared,
was computed. The values of lck[ as a function of index
number are illustrated in Figures IV-10 and 1IVv-11. The
absolute value is used since there is always a basic ambiguity
in the sign of the proper functions.* In Figure IV-10 it is
to be noted that the first significant drop in the self
consistency test parameter occurs after the 7'th index where

the quadrature by the trapezoid method is used and after the
6'th index where guadrature is by the product integral
method. These are one index higher than the knee in the
curves of log proper value against index. Although some of
the test parameter values are reasonably large for higher
values of the index, it does not seem prudent to admit
validity to the corresponding proper functions. Each proper
function is orthogonal to those of lower index and low
values of the self consistency criterion precede these

larger self consistency criterion values.

* The proper functions are the solutions of the integral
equation (12), page 70 (or of its algebraic counterpart
when formulated in discrete terms). This integral
equation is "homogeneous". It is readily seen that
if ¢(x) is a solution, then -¢(x) is also a solution. When
solved in discrete terms, a standard eigenvalue/eigenfunction
computation routine may be used. Whether one obtains ¢(x) or ‘
-¢(x) from such a computatlon routine is more or less a matter
of chance. Either one is valid.
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The self consistency criterion between the different
guadrature methods for the two triangle subdivisions is
illustrated in Figure IV-11. The situation seems to be
similar to that of the comparison between triangle subdivisions
of the preceding figure except that the first "break" in the
test parameter appears to occur following the fourth index.

It is to be noted that this is the point at which the ratio
of the proper values obtained took a very abrupt drop to

below 0.5 (and remained in the neighborhood of 0.5 thereafter).

The reasons for both the abrupt drop in the ratio of
proper values for the two different computing procedures
(trapezoid vs product-integral methods) and the drop in the
correlation between proper functions for these two computing
procedures lies in the fact that the product-integral technigue
is in effect a procedure which "smooths" the kernel function
as compared with the trapezoid method. Thus, from (13),
page 71, for the trapezoid method we have (slight obvious

change in notation)

‘o, = IK
j

AL
13 ]¢]

while from (18), page 86, for the product-integral technique

Ap, = X (ZK., A, .)¢.
i i Kk ik"kj’ "]

where Aj is defined on page 79 and A on page 86. In order

kj
that the relations above be equivalent, it needs to be shown
that

K..A

L KipByy = Kishy

k

*
where Aj and A are defined as above and K i3 is the required

kj
smoothed value. In other words, it will be necessary to

show that
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L A . = A.
k3T

*
so that K.lj will be the weighted average of the values
K.

ik*
demonstration in the abstract, we consider only a concrete

Rather than go through the details of a formal

example which illustrates what is involved. In the diagram
(no number) consider the point j and for the example we
take j=6. Let the triangle selection be such that the
triangles with 6 as the common vertex be (2,3,6), (3,8,6)
(8,9,6), (9,2,6).

Since Akj=0 unless k=j=6 or the edge PkPG is involved, there
367 Beer A

are only five values that are not zero; A26’ A 86"
A96 and these have the values as defined on page 86:

[(9,2,6) + (2,3,6)]/12

26

Ayo = [(2,3,6) + (3,8,6)]1/12

Ago = 20(2,3,6) + (3,8,6) + (8,9,6) + (9,2,6)]/12
Ag, = [(3,8,6) + (8,9,6)]12

Ag. = [(8,9,6) + (9,2,6)]1/12

where (i,j,k) indicates the area of the triangle with

vertices P., P.
1 J

from the specific triangle assignment concerned. Adding

’ Pk and (i,j,k) must be a legitimate triplet
these up, their total is

By tBy +AL A A, = [(2,3,6)+(3,8,6)+(8,9,6)+(2,2,6)1/3
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which is exactly the area (quadrature factor) A_ as specified

6
on page 79. This demonstrates the assertion in this particular

example. The general case is not difficult to handle.

The ordered ensemble A will start with reasonably large
*

values l Az, -—- but these will decrease rapidly. On the

’
other haid the ordered ensemble of proper valges, My will
generally not be nearly as large as those of ki to start,
but will decrease rather slowly (the nature of the decrease
will depend on the ratio of the number of observations to
the order of the matrix concerned). As a consequence, the
ordered proper values of the total matrix K iy Ai, will
approximate the values of Ai for small i, but will be
dominated by the proper values Wy for larger values of 1i.
The “change-over" point will be in the neighborhood of the
"knee" of the curve of log xi vs i as illustrated in Figures
IV-8 and IV-9 but cannot be exactly located there. The
effect of the "smoothing" property of the product-integral
technique is to drastically reduce the effect of the proper
values of the matrix of departure from the true covariances,
klj (i.e., all of the proper values u are reduced in size
by smoothing) while the effect on the true values A is much
smaller. The net effect is then to decrease the 51ze of the
larger computed total proper values, Ai, when the product-

integral technigque is used.

Now that the smoothing of the covariance kernel in
the product-integral technique is established, we proceed
to consider the effect that this would have on the proper
values and proper functions. Since we are dealing with an
empirically determined function, an important consideration
is the fact that every covariance value Kij is affected by
sampling variations and the values Kii (i.e., when i=j)

contaln the residual variances in addition to the variance
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of the true values. The next section is devoted to the .
method for accounting for residual variances, but they have

not been accounted for at this point. Thus, the matrix of
observed variances and covariances may be written as the sum

of two matrices Ki]=Kl] klj where K i3 are the variances

and covariances of the "true values" and kij are the departures
from the true values (which on the diagonal i=j may be quite

large). Now the proper values of the matrix K. J,‘say A
*
are associated with the proper values of the matrix K. i3 say Ai’

and the proper values of thi matrix k. iy say ui, but we cannot
write Ai AL +k where*k Ai' u; are all three ordered. We
can only wrlte Ai = Aa + Hy where Ai is ordered, Al>12>x3—-—kn
and the subscripts a and b fall in some order to suit the
situation. It will be generally true that the effect of

the residual variances and sampling variation on the proper
functions for the trapezoid method as compared with the
product-integral technique is of a somewhat different

character. These are dependent in a large measure on the

nature of the sampling variation displayed by kij at the
off-diagonal points, i#j. In the product-integral technique
these values are strongly smoothed while in the trapezoid
method they are not. As a consequence, one would expect
that there would be (after a certain undetermined index
value) a larger difference (smaller correlation) between
proper functions computed by the different quadrature
methods for the same triangle assignments than for different
triangle assignments for the same quadrature method. This

is, of course, what is being illustrated in Figures IV-10

and 1IV-11.

The conclusion to be drawn from the above comparison of
two quadrature methods for two apparently equally valid

triangle assignments is that there are certainly no more
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than 7 (or possibly 6) proper functions that are adequately
self-consistent and that if one wishes to take a more con-
servative attitude, this can be reduced to only 4.

3. Factor Analysis Methods

In the preceding section it was shown that both the
assignment of the triangle coverage of the region concerned
and the quadrature method used to evaluate the integral
had a strong effect on the self-consistency of the proper
functions computed. It was also pointed out there that at
least one reason for this was due to the effect of sampling
variation and the fact that the residual variances had not
been removed. Of these two, one may at least approximate
the residual variances and remove their effect by using
Factor Analysis methods. This approach is considered in this

section.

In order to obtain an estimate of the residual variances
contained in the St. Louis %Oz data, resort was made to the
abbreviated method due to Joreskog (1962). The method of
Jgreskog was modified in that, in order to keep the advantages
of the integral equation formulation of the problem, it was
applied after the equations were formulated in a symmetrical
matrix form. (That is, the covariance matrix was modified
by the proper quadrature factors for the trapezoid method;
the straight principal component formulafion based on "equal

guadrature factors for all points" was not used.)

The comparison of proper functions for the two methods
is shown in Figure IV-12. It is to be noted in this figure
that the covariance of proper functions for the two triangle
subdivisions is reasonably high up through the 8'th proper
function, after which it takes an abrupt dip. On the basis
of the argument that once this dip occurs, the proper
functions are essentially irrelevant due to the mathematical
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. (not statistical) ambiguities of the quadrature formula,
we can assert that there are not more than 8 significant
proper functions. This is indicated by the line A in Figure
Iv-12.

On the basis of the analysis of Jgreskog's method using
the 5% level, there are at least 13 significantly different
proper values. This is indicated by the line B in Figure 1IV-12.
It is to be noted that the drop in the correlation of the
values of the proper functions between 8 and 13 is apparently
transient in that the correlation between functions 12 and
13 is as high as that for those of index less than 8. It
would appear that the statistical test for significantly
different proper values is far less restrictive than the
test based on the ambiguity of the mathematical problem.
After the 13'th proper function has been passed, the cor-
responding proper functions are very poorly correlated,

. uniformly until the last one is reached.

The correlation of proper functions shown in Figure IV-12
corresponds to that of Figure IV-10 (the points indicated
by the dots) except for the fact that in the case of Figure
IV-12 the proper functions correspond to the weighted co-
variance matrix modified by multiplying ahead and behind by
the square root of the diagonal of the inverse of the weighted
covariance matrix as described on page 66. As shown there
(page 66 and following) this has the effect of making the
resulting "residual variances" (that appear on the diagonal
after modification) all equal. It is well known that if a
positive guantity is added to the diagonal of a symmetric
matrix, all of the proper values are increased by this amount
while the proper functions remain unchanged (Anderson, 1958).
Figure IV-12 then implies that after the Jgreskog modification
(as described on page 66) the effect of the two different
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triangle assignments is to effectively make all corresponding
(same index) proper functions after the 13'th essentially
uncorrelated, while those with index 13 or less are highly
correlated (the three exceptions are discussed later).

This, of course, is primarily due to sampling variations alone
since the effect of the residual variances has been made
uniform after the matrix modification. One is thence led

to conclude that the early "cut off" of the correlation
between corresponding proper functions shown in Figure IV-10
was due to the fact that the point to point variation of the

residual variances was a dominant factor.

To summarize the situation in different terms, the
computation of the proper functions and proper values without
removing the residual variances (more exactly, without
modifying the covariance matrix weighted by the guadrature
factors to give a uniform equivalent of the residual variances)
results in proper functions that become inconsistent (low
correlation of corresponding proper functions for different
weight factors of equal validity) at a very low index and for
which the consistency check (correlation) behaves in a very
irregular way (sometimes high, sometimes low) for the higher
index numbers. On the other hand, if the Jgreskog method is
used (wherein the weighted covariance matrix is modified to
obtain a uniform equivalent of the residual variances) then
the consistency check (correlation of proper functions for
different weight choices) clearly divides the proper functions
into two distinct groups; those with index lower than a certain
value (here, 13) that are rather uniformly self-consistent
(highly correlated for different weight choices), and those
with higher index value (here, 14 and above) that are uniformly
inconsistent (low correlation for different weight factor
choices). This is precisely the result that we had hoped

to achieve.
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The low values of correlation between proper functions at
index values 9, 10, 11 of Figure IV-12 are due to the fact
that the matrix method does not give self~consistent results
for the solution of the integral equation type problem when
different quadrature factors are used. In other words,
the modification of the original matrix by the gquadrature
factors has introduced considerations that are not accounted

for by the sole guestion of statistical significance.

It is to be noted that the Jgreskog test is based on
proper values alone while that of the correlation test is
based on the proper functions alone. On the other hand,
applications are all essentially based on the proper functions
themselves. As a consequence, it is necessary to consider
further the question of the application of the proper functions
9-13.

To see more clearly what is taking place in the con-
sistency check for different guadrature factors {(weights)
the elements near the principal diagonal of the matrix
= I 6* 6#
are tabulated in Table IV-4. 1In this table the central column

headed "same" contains the values Ci on the principal

diagonal while the column on the lefi headed "order" is the
value of i. The tabulated values are thence the correlation
of the proper functions of the same index but with different
but equally valid quadrature factors (weights). The diagonals
of the matrix Cij that border the principal diagonal appear

in the adjoining columns of Table IV-4. The values of ci,i+k
are listed under the columns headed by the values k=-3,-2,-1,
+1,+2,+3. The absolute values of the numbers in the column

"same" are those shown in Figure IV-12.
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Table IV-4. Correlation Between Proper Functions for Different ‘
Area Assignments. The central column indicates
proper functions of same order. Adjacent columns
are the correlations between proper functions of
different orders.

Order -3 ~2 -1 Same +1 +2 +3
1 -—— —-—— -—— .982 -.005 +.049 -.013
2 —-— - .002 .974 .010 -.061 .015
3 - -.050 .007 .974 -.007 +.031 -.009
4 .013 .062 .006 .967 .133 .014 -.072
5 .003 -.027 -.134 .935 -.016 .024 .229
6 .001 ~.025 .082 .928 .087 -.242 .139
7 . 045 .001 -.176 .858 -.212 .254 .223
8 -.189 .226 .308 .862 -.091 ~.128 -.041
9 .070 .050 -.017 -.671 .674*%  -_,092 -.191
10 177 -.103 -.297 -.193 .880%* .028 -.018
11 .200 -.585* -, 575*% - _391 .184 .024 -.026
12 .044 -.231 -.043 -.929 .060 .009 .030
13 -.054 .039 .074 . 965 .057 .025 .025
14 -.011 .015 -.002 -.098 .099 -.207 .534
15 -.038 .095 ~.824 .072 -.011 -.103 .068
16 -.021 -.002 -.040 -.292 -.199 .398 .047
17 .055 -.529 .007 -.338 .057 -.037 .062
18 -.011 ~.118 -.037 .163 -.027 -.162 .190
19 .114 -.061 -.445 -.004 . 341 -.018 .115
20 .075 .198 ~.367 .397 .445 .024 -.017

* See text for a discussion of these values.
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In Table IV-4 the large off-diagonal correlations for
proper functions 9, 10 and 11 are marked with an asterisk, *.
It is indicated that proper function 9 is highly correlated
with itself and 10, 10 with 11, and 11 with 10 and 9. 1In
other words, as the weights (quadrature factors) are changed
the proper functions 9, 10 and 11 shift about among themselves.
In more detail, if e;(xk)=e;, Gt(xk)=eﬁ are the i'th proper
functions for two different but equally valid quadrature

factor assignments, we have the approximate relations

# * *
69 ~ -0.6716, + 0.6746

9 10
e *
o~ +0.8806)
ot o 750
¥~ -0.5850, - 0.5756]

(The relations would be exact if all 40 proper functions

were listed on the right with appropriate coefficients from

* * *

the full table.) Thus ell shifts to 6#0 while 69 and 610
. # # . .

go into 69 and ell (via a rotation of about 135°). (aAll

of this is, of course, dependent on the relations between the
two quadrature factor selections and would be invalid for

any other pair of such quadrature factors.) Further information
on this phenomena is provided by the proper values of the
modified weighted covariance matrix which are illustrated

in Figure IV-13. It is seen there that proper values 9

and 10 are very nearly equal.

When two (or more) proper values of a matrix (symmetric,
positive definite) are equal, the proper functions cor-
responding to these are not both uniquely defined (Anderson,
1958). Apparently this pair of proper values are sufficiently
close to each other that the change in the quadrature factors

used was sufficient to show up this "near indeterminancy".
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Table IV-4 for order numbers 14-20 shows the small
correlations for Cii of Figure IV-12 in the column headed
"same", generally small correlations in the off-diagonal
positions, but a few scattered larger values but no apparent

pattern.

The residual variances depend strongly on the point
at which the number of significant proper values/functions
is terminated. These are shown in Table IV-5 for a termination
of 8 or 13 such. Only the values for one subdivision of
the area into non-overlapping triangles is shown since to
the number of digits shown 1in this table, the results of the
two subdivisions into triangles were identical. It is to be
noted that, since 802 concentrations are approximately log-
normally distributed, the variances are those of the logarithm
of the 802 concentration. The station-to-station variation

of the fraction of the residual variance compared with the .

total residual variance is to be noted. These are particularly
large at stations 2, 9, 10, and 30. It is presumed that

this is due to station instrumentation or instrument exposure
at these locations since these locations are not obviously
related to each other (i.e., other stations with relatively
small residual variances lie between each pair (see Figures
Iv-5, 6, 7).

The residual variance computed for station 9 clearly
indicates that all 13 of the proper functions are significant
in the case at hand. If only the first 8 proper functions
are used, the computed residual variance is larger than the

total variance, which is quite impossible.

It was pointed out above that the residual variance
at locations 2, 9, 10, 30 appear to be quite large. A remark

on the significance of the ratio of residual variance to
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Table IV-5. Total Variances, Residual Variance and the
. Fraction of the Total Variance for St. Louis
S0, Data at 40 Stations. The abbreviation P.V./F.
stands for proper values/functions. The number
preceding this abbreviation indicates the number
of P.V./F.'s used in computing the residual variances
shown. See text, p. 118.

8 P.V./F. 13 p.v./F.
Total Residual Residual
Station Variance Variance Fraction Variance Fraction

1 .0497 .0049 .10 .0026 .05
2 .0829 .0351 .42 .0183 .22
3 .0374 .0072 .19 .0037 .10
4 .0583 .0121 .21 .0063 .11
5 .0269 .0029 .11 .0015 .06
6 .0982 .0151 .15 .0079 .08
7 .0738 .0086 .12 .0045 .06
8 .0784 .0048 .06 .0025 .03
9 .0945 .1050 1.11 .0548 .58
10 .0376 .0208 .55 .0109 .29
11 .0295 .0026 .09 .0014 .05
12 .0758 .0028 .04 .0014 .02
13 .0352 .0049 .14 .0026 .07
‘ 14 .1118 .0229 .20 .0120 .11
15 .0976 .0114 J12 .0059 .06
16 .1938 .0184 .09 .0096 .05
17 .0269 .0060 .22 .0031 .12
18 .0532 .0051 .10 .0027 .05
19 .1155 .0341 .30 .0178 .15
20 .0567 .0090 .16 .0047 .08
21 .0778 .0040 .05 .0021 .03
22 .0684 .0074 .11 .0038 .06
23 .0854 .0087 .10 .0045 .05
24 .1468 .0159 .11 .0083 .06
25 .1527 .0139 .09 .0073 .05
26 .1183 .0071 .06 .0037 .03
27 .1352 .0070 .05 .0036 .03
28 .1765 .0378 .21 .0197 .11
29 .1195 .0047 .04 .0024 .02
30 .1067 .0752 .70 .0392 .36
31 .1100 L0111 .10 .0058 .05
32 .0743 .0129 .17 .0067 .09
33 .1299 .0186 .14 .0097 .07
34 .0976 .0126 .13 .0066 .07
35 .0861 .0222 .26 .0116 .13
36 .1051 .0141 .13 .0074 .07
37 .1114 .0059 .05 .0031 .03
38 .0570 .0126 .22 .0066 .12
. 39 .1016 .0126 .12 .0066 .06
40 .0428 .0125 .29 .0065 .15
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total variance may be appropriate at this point. The ratios

in the column headed fraction, F, are the values
2 2 2
F = or/(o + cr)

2 . . . 2 .
where Gr is the residual variance and ¢~ 1is the "true"
variance. The ratio of the residual to "true" variance is
given by

0?/02 = F/(1-F).

The ratio of the standard deviation of the residuals to the
"true" standard deviation is the square root of the above.

Some values are tabulated in Table IV-6.

Table IV-6. Ratio of Standard Deviation of Residuals (o_)
to the Standard Deviation of "True" Values
(o) as a Function of the Ratio of Residual
Variance to Total Variance (F)

F Or/O F Or/U
0.00 0.00 0.30 0.66
0.05 0.23 0.40 0.82
0.10 0.33 0.50 1.00
0.15 0.42 0.60 1.22
0.20 0.50 1.00 0

It is to be noted that in the case of the four locations
noted above all have a value of F in excess of 0.20 which
means that the standard deviation of the residuals is more
than 50% of the standard deviation of "true" values.

Table IV-5 lists 13 locations with F values of 0.10 or more
for which the standard deviation of residuals is more than
33% of the standard deviation of "true" values. These seem

to be rather large.
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The significance of the residuals should also be noted
here. In the type of analysis that has been made, the term
residual includes not only the errors of observation, but
also the ability of the station network to resclve small
scale effects. Thus, the size of the residuals is dependent
on the density of the pollutant concentration measurement

points.

It was pointed out earlier that the proper functions
were not comparable with each other for various triangle
subdivisions or quadrature techniques after a certain index
had been reached and that this index seemed to be associated
with the index at which a "knee" appeared in the plot of
log-proper value against index number. The proper values of
the matrix after being modified by multiplying ahead and
behind by the square root of the diagonal of the inverse
matrix, an essential feature of the Jgreskog technique, are
shown in Figure IV-13. The numerical values of the proper
values have been radically changed, but the shape of the
curve of the logarithm of the proper value against its index
remains about the same with the exception that the "knee"
has been removed and is replaced by a gradual change of

slope between index numbers 5 and 10.

In view of the preceding analysis, we would then conclude
that the criterion of Craddock and Flintoff (1970) and
Farmer (1971) is not really a measure of the significant
number of proper values/functions but is a phenomenon associated
with the fact that the residual variances have not been
adequately treated by a principal component analysis. The
Factor Analysis procedures used here give different results
that seem to be self consistent and which in addition provide
a quantitative estimate of the residual variances that were

hitherto ignored.
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Note that in Figures IV-10, IV-11] and IV-12 the
correlation of the 40'th proper function for different
quadrature methods (Figure IV-11l) and for different guadrature
factors (Figures IV-10 and IV-12) is extremely large and is
an isolated point in Figure IV-12. This is a mathematical
phenomena and has nothing to do with the fields involved.

As a matter of practical experience, the larger the index,

the more oscillatory the proper functions. This is strictly
true of what has been called an "oscillatory" matrix (Gant-
macher, 1960b). We have not found a proof for any other type
of matrices and one can in fact construct symmetric positive
definite matrices for which the opposite is true. We strongly
suspect that "oscillatory" matrices do not exhaust the class
of matrices with this property, but characterize a particular
class of matrices for which this property could be proved.
With the fact that experience indicates a highly oscillatory
behavior for the last proper function, we also suspect that
there is a tendency for these oscillations to either be in

or out of phase for matrices that are similar to each other,
as is the case for the matrices concerned here. This would
account for the high correlation observed for proper functions
No. 40.

D. Summary and Conclusions

In this chapter, the subject of the analysis of co-
variance matrices has been treated in some detail, since it
is of great importance in the analysis of data fields of
all kinds and in particular to the fields of pollution con-
centration data, especially in connection with the problem
of optimum observation station locations to which it is
applied in the computer program that is discussed in detail
in the final chapter. Section A was devoted to a general
look at the problem, Section B to a detailed discussion

of how to determine the residual variances and the number
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of significant proper values and proper functions required

to describe the statistical properties of the pollutant con-
centration field using Factor Analysis methods but modified
by the fact that one is dealing with a two dimensional field
and should use a basic integral equation formulation to
account for variable data density. The techniques developed
in Section B were applied to St. Louis SO, concentration data

2
in Section C.

As a result of the analysis in Section C, it was found
that the Factor Analysis technique as modified by the integral
equation formulation gave (1) a guantitative evaluation
of the number of significant proper values and proper functions
required to describe the pollution field, (2) a quantitative
evaluation of the residual variances in such detail that
unique values were assigned each observation location
separately (much more than a general estimate), (3) that the
method was consistent in spite of the fact that there are
mathematical ambiguities in the guadrature process (evaluation
of the integrals involved), and (4) that the self-consistency
of the solution from the mathematical point of view cor-
responded very closely to the tests for significance from
the statistical point of view. It was further concluded

that the Factor Analysis approach is a prime requisite for

the success of the analysis since when this approach is
disregarded the results tests for mathematical self-consistency
and for statistical significance are not completely compatible
with each other; and it was shown that this results from

ignoring the importance of the residual variances.
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PROGRAM BAST AND ITS SUBROUTINES

CHAPTER V

The program for an optimal location of pollution observation

points (BAST) and its twelve associated subroutines are described

in some detail in the following sections.
between these subroutines and the main program is shown in the
following table.

TABLE 1
THE RELATIONS BETWEEN PROGRAM BAST

AND ITS SEVERAL SUBROUTINES

The interrelations

The order in which they are discussed follows

SUBROUTINES
CALLED

PROGRAM

CALLING SUBROUTINE

BAST (A)

FMFP-

FUNB

4

FUNCT

5

ADDPT

6

TRIFIX

7

PORDR

CIRCUM
FMFP
FUNB
FUNCT
CORFUN
INT2D
MATINV

(B)
(C)
(D)
(E)
(F)
(G)
(H)

v

4
v
v/

l

~ X

~N N X

ADBPT
TRIFIX
PORDR
AR2
TRITST

(1)
(J)
(K)
(L)
(M)

i

~ N N X

that indicated by the letters in parentheses in the subroutines

called column, BAST itself being considered first.
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As shown in the table, the subroutines are divided into
two categories: those involved in computation of the station
location [(B) through (H)], and those involved with book-
keeping required to preserve, at all times, a satisfactory
subdivision of the area concerned into completely covering

but non-overlapping triangles [(I) through (M)].

A. PROGRAM BAST

This program is set up to accept NSTN coordinates
XS(I), YS(I), I=1, NSTN, of already located observation stations
of which NBDY of these form the convex boundary of the area
covered by these station locations (line 38). The index
numbers of the boundary stations are entered as IBDY(I), I=1,
NBDY, and should be in counterclockwise order around the
boundary but with any initial starting point (line 41). The
boundary of the area covered by the initial stations is a
convex polygon with the boundary stations at the vertices.
The area is convex in the sense that it must not have any
re-entrant corners. Put in a different way, if one traverses
the boundary in the counterclockwise direction, then at each
vertex, the line segment that forms the boundary is rotated
in a counterclockwise direction. (The mathematical statement
is that the area is convex if the line joining any pair of

points in the area lies entirely within the area.)

The area covered by the existing station location is
subdivided into non-overlapping triangles with stations
at the vertices (line 52). The boundary segments are sides
of some of these triangles. There are NTR such triangles.
The index numbers of their vertices are ITR(I,1l), ITR(I,2),
ITR(I,3), I=1, NTR, and these must be in counterclockwise

order about each triangle.




The entire region is interior to a circle with center
at (XC,¥C) and of radius R (line 56). Some of the stations
listed previously may lie on this circle. If this is the
case, their azimuth must be specified. The number of such
is NCIR and the point azimuth AZ(I), I=1l, NCIR is measured
counterclockwise (degrees) from East.

Additional information to be specified (line 81) are:
the number of additional stations to be located (NADD), the
percent reduction required between successive maximum errors
of estimate (PMIN), the expected absolute error of the
minimization subroutine (EPS), the maximum number of iterations
allowed for this subroutine (LIMIT), and a control for print-
out of details (IPRNT).

Since the program calls for computation of correlation
coefficients via their proper value/function representation
at a grid of points covering a square 80 km on a side, the
coordinates of the grid points (lines 87,88), the proper
values (line 93) proper functions (line 96), and standard
deviations for weight parameters (line 10l1) are required
inputs. The program, as it stands, is set up for 15 proper
values/functions on a 9x9 grid with 10 km spacing between
points. The weight parameter (line 10l1) corresponds to the
real statistical situation where expected standard deviations
of pollutant concentrations are used, but the weight parameter
may be arbitrary. The program assumes that it may be
differentiated using finite (1 km) differences with sufficient
accuracy.

If less than two existing stations are listed on the

circle that defines the region being considered, then two
such points are located on the circle (lines 114-135).
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The criterion for station location is to the effect
that a "best" location is at a point where the error of
estimate using a linear least sguares regression on sample
values at existing stations would be a maximum. Since such
errors of estimate are bounded between zero at an existing
station and the variance of pollution concentration, it is
reasonable to look for such maxima at locations distant from
existing stations. Consequently, candidate locations are
taken to be (a) at the center of gravity of the station
triangles or (b) midway on the circle between stations
located on the circular boundary (lines 135-173). Of the
errors of estimate found at these locations, the largest
three are selected and the neighborhood of each is searched
to find the value of the local maximum in its neighborhood.
These local maxima are then compared and the new station
location assigned at that point which has the largest local
maximum (lines 174-252). A bit of manipulation is required
(lines 253-275) to insure that new points on the circular

boundary do not wander outside the circle.

The total number of stations located (NSTN) is then
checked against the total number required (NSTOP) (line 287).
If this number has not been reached the process is repeated
by returning to line 135. If the required number has been
reached the remainder of the program (lines 290 through 322)
prints out the results and terminates. The final lines 323

through 345 are devoted to various diagnostics.

Note: The subroutine FMFP is a standard subroutine
that locates the minimum of a function of several variables.
The procedure described above involves locating a maximum.
To "trick" FMFP into thinking a maximum is a minimum, the
mean square error of estimate is given (internally) a negative
sign. Whenever the term minimum appears in subsequent des-

criptions it is to be understood in this sense.
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| READ INPUTS |

[ADD_BOUNDARY POINTS VIA CIRCUM ]

LOCATE C.G. S OF TRIANGLES

'

EET FUNCTION VALUES VIA FUNCT. |

[SELECT BOUNDARY POINTS |

[GET FUNCTION VALUES VIA FUNB1

FIND THREE SMALLEST FUNCTION VALUES

v

LGET LOCAL MIN. FOR EACH OF THESE VIA FMFﬂ

:

[PICK SMALLEST AS THE GLOBAL MIN.]

l

ADD THIS TO STATION LIST AS A

BEST LOCATION VIA ADDPT

YES NO —.

FIGURE V-1

ABBREVIATED FLOW CHART OF MAIN PROGRAM BAST
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PROGRAM 3AST( INPJUT, QUTPUT )

JETERMINES LOCATION OF PJINTS OF LARGEST ERRUR QF SSTIMATE FRCW
=X ISTING Nz=T AND LOCATES MNIW STATION THERE, PROCECURE ITERATED
UNTIL EITHER TCTAL NQOe OF STATIONS RLACHES PRESCRIALD SIZE GR
TIeL THE F-RCENT REDUCTIUN OF THZ MAX Z0FE IS 4ELOW PREISCRISED
AMJUNT
COMMON 7/ 3LK1 7 NSTN, NBJ3Y, NTR, XS(20y, YS(30), ITR{50,1)

+« XCy YC, Ry IBOY(20)
CCA40N /7 BLKZ 7 X0I(%8), YI(3)y PH(15,9,3), ALAM(15),y W(3,9)
CCHYON 7 BLK3 7 NCIR, AZ2(2D)
CUMMON / BLK4 / EST, EPS, LIMIT, IER, F
COMMON 7/ LINKS / ERR1, Xx0(60), DIFF(6D)
CudMON ¢ Q 7 IC, IQ

JIMENSION X(2), XT{(60),
YT(50), SAMFP{(60), ITRY(3), JTRY(3), STAMP(3), XMAXI3), YMAX(J),
FMAX{3), FM2(3), XA(3),y, YA(D), XTMP(3), YTMP(3)

JIMZHSION G(2)
BIMENSION TITLE(32)
cXTcRNAL FUNCT,y FUNSB
ODATA ((TITLE(I),I=4,32)=
10HPARAMETER 4,10HAL, FIRST L10HCOEFFICIEN,10HT
1 0HPARAMETEZR 410HA2, SECONCs10H COCFFICIE, 10HNT
1OHPARAMETER H10HA3, OJORIGING10H IN FIRST +10HTERM
10HPARAMETER ,10HA4s ORIGINs10H IN SECONL,10H TERM
{0HPARAMETER ,10HAS, FIRST ,10HSCALE FACT,10HOR
1 0HPARAMETER ,10HA®, SECUND,10H SCALE FAC,10HTOR
1 0HPARAMETER ,10HA7y THIRD L10HSCALE FACT,10MOR
10HPARAMETER ,10HAB, JORIENT,10HATION ANGL,10HE
JATA IC, IQ 7 1, 0 7/
CATA INPUT
NSTN=NUMBER CF LOCATICNS
XS(I)y YS(I})y I=1,NSTN, STATION CCOROINATES, KM FROM AR3. ORIGIN
NBOY = NUMBER OF BUUNDARY POINTS
THE BOUNDARY MUST 3E CONVEX, 3OUNCARY PQOINTS ARE NUMBEREGDC FROM
NSTN = NBOY ¢+ 1 TO NSTN AND ARE LISTED IN COUNTER CLOCKWISE QORDER
ALL OTHER STATIONS MUST LIE INSIDE ( NOT ON ) THE BOUNDARY 3uT
THE ARRANGEMENT OF INCEX NUMBERS IS IRRELEVANT
READ 1052, NSTNy ( XS(I), YStIV, I = 1, NSTN )
FCRIMAT (IS7(2F10.0))
LIST OF BOUNDARY POINT NUMBERS IN CC ORDER AROUND THE BOUNDARY.
READ 1053, NBDY, ( I3CY(I), I = 1, NBGCY )
FOIMAT (1615)
SUSJIVIQOE REGION INTQ TRIANGLES
NTR = NUMBER OF TRIANGLES
ITR{IWJ)y T = 14 NTRy J = 14 3, INDEX NUMBERS CF THE VERTICES
1, 24y 35 OF TRIANGLE NOs I THE NOS. 1y 2, 3, ARE TO BE IN CC
ORDER ARQUNDO E€ACH TRIANGLE. TRIANGLE SIDES THAT ARE ALSO SIDES
uF THE BOUNDARY MUST HAVE 1,2% 2y 33 CR 3y 1 IN THE QRODER IN
WHICH THESE FPOINTS APPEAR ON THE BOUNDARY. THE ENTIRE INTERIOQOR
OF THE AREA MUST 8c COVERED. TRIANGLES MUST NOT OVERLAP.
NUMBERING OF THE TRIANGLES IS NOT SIGNIFICANT.
REA] 1054y NTR, { ITR(Is1), ITR(I,2), ITR(I,3}, I = 1, NIR )
FORMAT (I5/7(31%))
THE QUTER CIRCLE, CENTER AT XCy YC, AND RADIUS R

-t e @ W 4 @ w e

130




€0

70

75

L]

85

90

100

105

110

PROGRAM

3AST

058

OO0 -

s XeNoNeoNeNeNsNoNeoNoNaNe N -
[~}
s
[~}

-
oW
o
N

OO0

(e XN oNe]

1055

1057
1058

2000
2002

2010

NCIR = NUMBEF OF PJINTS ON THE CIRCLE

READ 1058, XCy YCs Ry NCIR

FORMAT (3F10,0,1I5)

AZIMUTH OF POINTS ON THE CIRCLE

AZ(IY'y I = 1, NCIRy AZIMUTH IN DEGREES CC FROM EAST

THESE MUST BE BOUNJARY PJINTS APPEARING IN THE LISTS XS(I), YS(I).
NONE OF THE BOUNOARY FOINTS MAY LIE OUTSIOE OF THE GCIRCLc.

SCME OR ALL MAY LIE INSIOE. 1IF AtL LIE INSIDE THEN NCIR = 0.
THEY MUST APPEAR IN ORCER OF INCREASING AZIMUTH, 0 TO 350 CEGRZES.
IF { NCIR +LE. 0 ) GO TO 15

READ 1060, ( AZ{I)y I = 14 NCIR )

FORMAT ( 9F8,0)

DC 1 I =1, NCIR

AZ(I) = AZ(I) * 0174532932

MISCELLANEOUS OTHER INPUT PARAMETERS

NADD = NUMBER OF POINTS 70O AE AODED.

IF NCIR = 049 1, THEN 2 OR 1 POINTS MWILL BE ADDED ON THE CIRCLE
REGARDLESS OF NADD. IF THIS IS NOT THE STOPPING CRITERIGN, NAUD=0
PMIN = PERCENT REDUCTION 3ETWEEN SUCCESSIVE MAXIMUM ERRORS OF
ESTIMATE. NO POINTS WILL BE ADDEL AFTER PERCENT REDUCTICN GOES
BELOW THIS VALUE.

EPS = EXPECTED ABSOLUTE ERROR FOR SUBRPOUTINE FMFP

LIMIT = MAX. NO. OF ITERATIONS FQOR SUBROUTINE FMFP

SUGGESTED VALUES FOR EPS = .01, AND LINMIT =5

IPRNT = REQUEST FOR PRINTOUT OF DETAILS CF THE INPUT OTHER

THAN COORDINATES OF INITIAL STATIONS

READ 1062, NADG, PMIN, EP3, LINMIT, IPRAT

FORMAT (I5,F10.0+E£10.1,2I5)

TPI = 6.2831853

NSTOP = NSTN ¢ NADD

COORDINATES FOR THE CORRELATION COEFFICIENT

PARAMETERS XDtI), YDI(I}y I =1, 9

READ 1056, ( XO0(I), I 1, 9

REAJ 1056, ( YD(I)y I 1, 9

W oh

CORRELATION COEFFICIENT DATA INPUT IN TERNS OF
PROPER VALUES ANO PROFER FUNCTIONS

READ 1055, ( ALAMII)y I = 1, 15 )

FORMAT (8F10.0)

o2 1=1, 15

READ 1057y | ( PHII,JyK)y K = 19y 9y, J = 1, 9 )

FORMAT ( 16X 4c16+8/5E16.8/(4E1648/5E16481))

FORMAT (9F8.0)

WEIGHT FUNCTION TABLE FOR VALUES AT POINTS XD(I), YO (J)
003 4=1, 9

READ 10569 ( W(IyJ)y I =1, 9)

CONTINUE

QUTPUT OF THE INPUT STATIONS

FORMAT (1H1)

FORMAT (1HO)

PRINT 2000

PRINT 2010

FORMAT (5X,*A, COORDINATES OF INITIAL STATIONS*/SX,6HSERIAL,2X,
111HCOORDINATES/SX+6HNUMBER ySX9 LHX 95Xy 1HY)
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113

120

12¢

139

138

140

1e0

1€5

FRuGRAM

3AST

PRINY 2012, ( I, XS(I), ¥YS(I)y I = 1, NSTN )
2312 FORMAT (I104F7.1,F6,.1)

C HEAJING FOR RESULTS
FREF = 1,
IF { NCIR «GT. 1) GO TO 8
C ACOS ONE CR TWJ PUOINTS ON THe CIRCLE

Ie =1 3% IC = 2
GALL CIRCUM( XC, YCy Ry NCIR

PRINT 2018
2018 FURMAT (5Xs*Es COORDINATES OF CIRCLE FCINTS AJCED®)
C FRINTS COCROINATES AND SERIAL NUMEERS (OF POINTS ADDED ON CIRCLE

JC & I =1, NCIR
I1 = NSTN = NCIR + I
PRINT 2012, Ity XS(I1), YSI(I1)
€ CONTINUE
PRINT 2014
2014 FURMAT (5X,*Ce. COORDINATZS OF ADJED PUINTS AND SUPPLZIMENTARY pATA*
)
PRINT 2016
2016 FGRIMAT (5X,6HSERIAL2X,11HCOORDINATES 15X 46HE CF E£42X, 7THPERCENT 15X,
2+ 21HALTERNATIVES REJECTZD/S5X9BHNUMBER ¢S Xe 1HX, 5X41HY ;86X 4 6HBEFQREY2X,
2 THREDUCT s 95Xy 1HX 9 SXg LMY 3 wX 9 BHE OF Eo7XsLHX 35Xy 1HY 44Xy 6HE CF E)

ISPACE = @
c SAMPLES POINTS FOR ERRGORS OF ESTIMATE
c FIRST GETS POINTS AY €CG OF TRIANGLES
£€ST = -1,
8 JC 12 I = 1, NTR

SUML = SUM2 = 0.
00 10 J = t, 3

SUML = SUM1 + XS(ITR{(I.J})
10 SUM2 = SUM2 + YS(ITR(I.J4M)

X(1) = XT(I) = SuMtl / 3.

x{2) = YT(I) = SUM2 7 3.

10 =2 3 IC = 1

IF (I .8Q¢ 1 ) IQ =1

EST = «9 * F = ,1
CALL FUNCTC 24y Xy Fy G )

12 SAMPLI) = F

c SELECTS POINTS ON THe CIRCLE
GO0 14+ I = 1, NCIR
I1 =1 + 1

IF €t T +€0s NCIR ) Il = 1
ANG = { AZ(I) & AZ(IY) VY 7 2.
IF ¢ AZ(I1) LT. AZ(I) ) ANG = ANG + 3.1415926°%4
CALL FUNE( 1, ANG,y F, G )
It = NTR + I
XT(I1) = ANG
14 SAMP(I1) = F
NTOT = NTR #+ NCIR
PRINT 13, ( Iy ( ITR(IyJ)y J = 1,y 31y XT(I)y YT(I), SAMP(I),
v I = 14 NTR )
13 FORIMAT (LI5,2E15.6915X4215,6)
NTRL = NTR ¢ 1
00 304 I = NTR1, NTOT
X(1) = XC # R * COS( XT(I) )
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175

180
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200
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220

FROGRAM
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304

OO0 CO
[®3

16

18

20

230

23

X(2) = XC ¢ R * SIN( XTU(I) )

PRINT 11, I, X(1)y X(2)y XT(I), SAMP(I)

FORMAT (15,15X,4E1546)

PICKS QUT THE THREEZ SMALLEST SAMPLE VALUES AS A GUESS AT WHERE THE
MINIMUM IS, THEN TAKES THE LcAST CF THESE TO LCCATc A MINIMUM (
HCPEFULLY A GLOBAL MIN).

NOTE FUNCTION VALUES HAVE CHANGED SIGN SINCE FMFP GOES FOR MIN.
THUS WE END UP WITH A MAXIMUM WHEN SIGANS ARE REVERSED

IC =2 ¢§ 10 = 2

DO 24 J = 1, 3

SML = 1.

00 18 I = 1, NTOT

IF ( SAMP(I) LT, SML ) 16, 18

SML = SANPLI)

I1 =1

CONTINUE

ITRY(J) = It

STAMP(JY = SML

SAMP(TIL) = ¢,

IF ( T1 .LE, NTR ) 20, 22

X{1) = XT(I1)

X(2) = YT(It1)

TEMP. CARDS

XTMPLJ) = XT(I)

YTNPLJ) = YTII1)
XMAX (J) = XTMP(J)
YMAX(JY = YTMPLJ)

END TEMP, CARDS

CALL FMFP( FUNCT, 24 X, Fy Gy EST, EPS, LIMIT, IER, H )}
IF ( IER o.NE., 3 ) GO TO 230

IER = 0

X(1) = ATAN2( X{(2), X{(1) )

CALL FMFP( FUNB, 1y Xy Fy Gy EST, EPS, LIMIT, IER, H )
GO T0 25

CONTINUE

IF ( IER «NEs 0 ) GO TO 950

XMAX(J) = X(1)

YMAX(J) = X(2)

FMAX(J) = F

GO TO 24
X(1) = XT(IY1)
TEMP CARDS

XTNP(J) = XTUILN)

YTMP (J) = 99.9

END TEMP CARDS

CALL FMFP{ FUNBy 14 Xo Fy Gy EST, EPS, LIMIT, IER, H )
IF t IER +NE, 0 ) GO TO 950

ANG = X(1}

XMAX(JSY = XC ¢ R * COS{ ANG )

YMAX({J) = YC + R * SINU ANG )

FMAX(JY = F

CONTINUE

TEMP CARDS

PRINT OUT OF COMPARISON OF ESTINMATED AND FINAL FOR ALL 3 POINTS
0c 502 J =1, 3
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IF [ YTHPLJ) o
503 YTMP(J) = YC +
XTMP (J) = XC +
02 CONTINUVE
2235 PRINT 504y ( XTMF{J4), YTMF(J), STAMF(J)y J = 1, 3 )
O« FORMAT (3(2F10.542X4E12.5))
ENC TZMP CARDS
NOW ORUER THESE
2310 ¢ 30 Kk = 1, 3
SML = 1.
0C 283 J = t, 3
IF [ FMAX(J4) LT, SML ) 26, 28
26 SML = FMAXtJ)
235 Ji1 = J
28 CONTINUE
JIRY (K) = Jt
FM2(K) = SML
FMAX(J1) = 1.
240 30 CONTINUE
IF { F3EF +06Te 0, ) 32, 34
32 FER = 393,9
GO TO 38
34 PER =
245 3b DC 138

Qe 99.9 ) 503, 502
R * SINC XTMP (D) )
R * COSC xXTMP (Y)Y )

1=
<

CoOWw

FBEF -~ FM2(1) ) s FBEF
= 14 3
XA(J) XMAX({ JTRY{(J) )
YA(J) YMAXC JTRY(JY )
38 FM2UJ) = =FM2(D)
FReF = =FM21(1)
254Q G AGDS NEW PQINT TQ LIST
X0 = xXA(1)
Y0 = YAt1)
CALL ADDPT( Xx0, YO )
C AODS TO CIRCLE LISY IF NECESSARY
2585 OIST = SQRT( ( XU - XC }*+#2 ¢« ( ¥Q0 - YO Y¥*2 )
IF { DIST «GE£e ( R = 0s1 ) ) 40, 590
40 ANG = ATAN2( YO - YC, X0 - XC )
IF ¢ ANG oLTe Do ) ANG = TPI ¢+ ANG
2€0 It = T ¢« 1 % IF (T «€Qs¢ NCIR Y It = 1
IF ( AZ(T1) JLT. AZ(I) ) GO TO &2
IF € ANG «LT. AZTI1) ANDe ANG +GTe AZIUI) ) &b, &b
42 IF { ANG «GTe AZ(I) AND. ANG oLEs TPI ) GO TQ 46
IF { ANG «GEes 0. +ANDe ANG «LTs AZ{(I1) ) GO TO 46
2€5 L CONTINUE
PRINT 2017, ANG
2017 FORMAT (* FAILED TQO FIND NEW CIRCLE POINT FOR ANG = *, F10.5)

(1IN I S

GALL EXIT
46 IA = I1
279 I2 = NCIR - TI1 + 1

NCIR = NCIR + 1§
00 «8 I =1, I2
I1 = NCIR ¢+ 1 - I
IM = I1 - 1

275 43 AZ(T1)Y = AZ(IM)
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‘l’ 330
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AZ (IA) = ANG
50 CONTINUE
c PRINTS OQUT THE RESULTS QF THIS PASS
PRINT 2020, NSTN, XxAl1), YA(1), FM2(1), PER, ( XA(I), YA(I),
y FM2(I)y I =2, 3
2020 FURMAT 1T10+FB8e1,3F6e14211434FB.2,FBeloFbet E1143,F701,F041,E11.3)
ISPACE = ISPACE +
IF { ISPACE .EQs 5 ) 52, 54

52 ISPACE = 0
PRINT 2002
56 CONTINUE
c HAS THE NUMBER ASKED FOR BEEN REACHED
IF ( NSTN +GE. NSTOP ) GO YO 900
c TRY AGAIN
GO To 8
c PRINTS REST OF INPUTS
900 IF  IPRNT «NEe« 1 ) GO TO 999
PRINT 2000
PRINT 2024

PRINT 2028, € Jy ITRUJs1)y ITR{J42)y ITR(Js3I)y J = 14 NTR )
2024 FORMAT (8X,*INDEX NUMBERS OF TRIANGLE VERTICES*)
2026 FORMAT (8(1XeI231H13I3y1HyyI3e1HyoI391H/))
PRINT 2000
PRINT 2028
2028 FORMNAT (5X, *PARAMETERS OF THE EMPIRICAL CORRELATION COEFFICENTS*/
/8X,*COORDINATES OF THE DATA GIRD*)
PRINT 203D, { XD(I), I = 1,9 )
2030 FORMAT (* X 2,9(F8s241Hy))
PRINT 2032, YO(I)y I =1, 9}
2032 FORMAT (* X ¥,9(FB8s291Hy})
2038 FORMAT (1PIE12.4)
PRINT 20480
2040 FORMAT (®*WEIGHT FUNCTION ARRAY IN FORM QOF COORCINATE GRID*)
00 914 J = 1, 9
Ji = 10 - J
PRINT 2038, ( W(I.J1)y, I = &, 9 )
14 CONTINUE
PRINT 2000
PRINT 2042, XCs» YC, R
2042 FORMAT(* CUTER CIRCLE HAS CENTER AT X = ¥ ,F7,3,2X,* ¥ = *,F7,3,2X,
+* AND RAQIUS = *,F8.1)
PRINY 2002
PRINT 2044, NADD, PMIN, EPS, LIMIT
204é FORMAT (* NUMBER OF POINTS TO BE ADDED = *,I5/% PERCENT CHANGE OF
*MAXTMUM ERRQR OF ESTIMATE BETWEEN ITERATIONS = *4F7.3/
*e¢ CXPECTED ABSOLUTE ERROR FOR FMFF = *,E10.3/* MAXIMUM NUM3ER OF I
*TERATIONS OF FMFP = *,195)
GO TO 999
C CIAGNOSTICS FROM FMFP
950 Ni = NSTN + 1
IF { IER +EQe 1t ) 952, 954
952 PRINT 2050, N1, LIMIT
2050 FURMAT(* NG CONVERGENCE FOR POINT NOoe*3I13,2X4*IN*,I342X,
$*TTERATICONS®)
GO T0 900

o~ it
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95« IF { TER «€Q. 2 ) 956, 95138
Y50 PRINT 2082, tt, LIMIT
2052 FCORMAT (* NO MAXIMUM, POINT NQOs = *,1342X,* ITERATIONS = *,I3)
6C TO 960
958 PRINT 2054, N1, LIMIT
205« FORMATI(* ERRCORS IN GRADIENTs POINT NCe = *9I342Xe* ITERATIONS = *
19 13)
360 IF ( I1 +GTe NTR )} GO TQ 9b2
PRINT 2056, XT{TI1), YT(I1), STAMP(J), X(1), X(Z)y Fy G(L1), G(2)
2056 FORMAT (* INITIAL VALUES®*/2F10.5+E15.5/7% FINAL VALUES ANC GRADIENT*
*%,2F10.5,3E15.5) .
GL TO 23
362 PRINT 2058, XV{(I1), STAMP(J), X{1l)y F, G(1}
2058 FORMAT(* INITIAL VALUES*/F10.5,E15.5/% FINAL VALUES AND GRADIENT®/
/F10.5,2E15.5)
Gu TO 25
9939 sSTOP
END
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BAST Code Sample Problem

The input required for the BAST code is defined on the
following page. Reference to the main subprogram and to
the text is helpful for obtaining further detail. A sample
input case follows. The case consists of eight fixed stations,
the last four of which are boundary points, i.e., their
coordinates define the convex region containing the eight
stations (data card groups 1-3). A total of 10 triangles
cover the region defined by the eight stations (card

groups 4 and 5).

The region for which correlation coefficient data is
input, and to which additional stations are to be optimally
added, is defined by a circle centered at (0,0), with a
radius of 30 km (card 6). No input points on the circle
are indicated by card 6, so card 7 is not required. In
this event, the code will automatically define two points

on the perimeter of the circle.

Input card 8 specifies the number of stations to be
added, 17, plus program controls for the minimization routine
(FMFP) and printing option. Cards 9 and 10 contain the
standard set of coordinates for this problem, a 9 X 9 grid
with 10 km spacing in both the X and Y directions. Card
group 11 lists the proper values of the correlation coefficient
matrix, in monotonic decreasing order. The desired signif-
icance is obtained with the first 15 values. Card group 12
contains the proper function coefficients, at each point in
the 9 X 9 grid, corresponding to the 15 proper values.

Last, card group 13 is a 9 X 9 array of weight parameters
for the correlation coefficients. The normal situation of
equal weighting, all weights being 1.0, is input in this

case.
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A sample output follows the input. The fixed stations,
the stations added on the circle, and then the remaining
stations to be added are listed. For each added station
the three prospective coordinate pairs of maximum estimate
of error (E of E) are listed. The optimization procedures,
if successful, varies these coordinates in obtaining the
location for which the greatest reduction in estimate of
error can be achieved. Optionally, extensive mathematical

detail can also be output.
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CARD GROUYP SYMR)L DEFINITION FORMAT
NUMBER

1 NGTN NI4BER OF ¢TATIONc. MAXIM M 0OF 3¢ I3
2 XSy YS STATION COORDINATES (xM), FR0M ORIGIN, 2F10e0
OME COORDINATE PATR PER CaRDs NOTN Ca®D3.
3 N3DY NUMBER OF ROUNDARY POINTS, MAXIMUM 0F 20, 1615
12Dy TMDEX NJMAERS OF anOUNNDARY STATIONSe IM 2CW ORDER
4 NTR NUMBER OF TRIANGLFSs MAXIwuM 0oF 5¢ 13
5 ITR(T+J) STATION [NOLX NUMRERS Of TRIANGLE VERTICESe CCW 315

ORDER, ONF TRIANGLF 25R CaRDs NTR cARNS, I=TRIANGLE
NUMBERs J=19¢93 Fne TRIANGLE VERTICES

6 XxC» YC COORDINATES OF CEMTER OF CIRCLE CONTAINING REGION 3F}040,15
R PADIUS OF CUNTAININL CIRCLE
NCIw NUMBER OF PUINTS 0N THE CIRCLE
7 AZ AZIMUTH (DEL) CCw FROM EAQTe OF PDINTS _YING ON 9E8B W0
CTRCLEs TOTAL OF NCIR POINTS. SKIP THIS CaRD IF
N(\IR = 0.
8 NaDBD NUMBE® OF sTaTIONe TD WE aDDED 15sF10404E10614275
PMIN PERCENT PEDUCTION BETWEEN MAXIMUM FRRARS OF

ESTIMATE. O POINT> ADDED AFTER PRECENT EDUCTION
GNES RELOAN PMIN

ERS EXPECTED ABS0LUTE ERRNRs SUBRJUTINE FufF>
LIMIT MaXIMUM NJUMBER OF TTERATIONS IN SURROUTINE FMFP
IPRNY PRINT OPTION FLAG, s DUTPUT STATION CDORDINATES
ONLY. 1o DETAILED UIAGNOSTICS PRINTEN,
9 xn X-CODRDINATES FOR (CURRELATION cOEFFICIENT INPUT 9F8.0
10 YD Y-CORRIDNATES FOR CURRELATION COEFFICIENT INPUT 9F8,0

DATA,. CODE ASSUMFS 3 VAL JES oF XD ANyD YDs FOR A
9x9 GRID WITH 10 km SoACI\G BETWEEN onIyTS.

11 ALAM PROPER VALUES FOR CURRELATION COEFFICIENT DATA, 8F10.0
15 VAaLUES,

12 PH{IsJsK) COEFFICIENTS OF 15 PROPER FUNCTIONS, T = is 159 lgXe4tlg,R/
AT GRID POINTS SPECIFIED 3Y (XD*YD)s PARDIERIED FOR SFl16.8/
Xp VALUESs FOR FacH Yp VALUE ( LeEao (4£16,8/
({ PH(TsdsK)s K = 193 )y ) = 149 ) ). 5£16.8)

13 W WEIGHT FUNCTION TaRLE FOR POINTS (XDsYDy» 9F840
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P w ) A4 3 a it 1 NDJIT FXAMD | F

s CARD 1 [T N T T S AR AR T AR R R K IR UL S R R IR N I R R R

S
2

waaer CAPD SET 2 # & # # 8 & 3 3% % % % # @ ¥ & & # 4 po»ow B¢ o4 B R o4 # ¥ # H# w

0. e
-.5 uo"}
4,75 -2.S
‘.5 -4
‘0.5 -80
445 -£.5
3.5 Je
-22, Ted
sirapasr CARD 3 RS- BN T UL 2 B B BN B R R TR R RN IR R AR I N
4 5 6 7 2
sansr CARD 4 d b B BB oBon BB B @ RFoR B L B B oo R BB ¥ R B BB oa W
10
#oerd CARD GET 3 & # % & # » 3 3% & & # # % B & B o# F o o4 o R OH H X HoFo# o owopow
g 5 3
5 4 3
4 5 6
4 6 1
3 4 :
1 6 ¢
2 6 7
1 2 3
e 7 8
2 8 3
wapue CARD & LR A B I S R R K- EE R I R NS NE TR DN BN Y- BN JNE BEEC JEE- BEE - JNE BRI
0. 0- 30. 0
#unut CARD 8 0% 4 B o o RO R o o B B f B % B % # B 3 % % & ¥ o
17 .01 o1 = !
b#b%%CAQDSQ,i\»%%#“ﬁ&u*#&%###&*##%#&Q%#*#é*ﬁ#d%
~40. -3C. -<0, -10, 0. 10. 20. 30. 49.
'4'00 ‘3')0 '30. ’10' 0. 10. 200 30. 4y,

4 @ o % @ % o ¥ B W B ¥ o B
5.2606437 2,66160602 2.1955837
«321%326  ,2312%66 ,2123830Q

# % % % # & % BB i

1.2204544 1.1834R56
«1081351

L ROETR. . 3 CAQD SET \.19 % 4 ¥ i #H
28,90982992n.43335123 9.339251R2

« 7342799 5133393 3574174
wihwae CARD SET

128 & & & @ & o ¥ 2 & 8 % & % ¥ & ¥ & % o# & o & B ¥ # £ ¥ ¥ ¥

PROPER FuUNC., 1 2.134922265-0¢ 2,010231445-02 4.,52330557-02 9.5793B454r-02
7,82732549€-02 9,72490823z~u2 1,08749172--01 1.096384545-01 1.11606421--01
4.91206939€-03 ),%649R594-~0;¢ 3,084970936:-02 b6,792398353--02
9.71762¢28E-02 1,11502620=7~0) 1,13234070=-01 1,15293137¢-01 1.27428301--01

=1.,13289246FE-02 -1,30877176:-63 2,56043344:-02 6,20960851c-02
3,544B1463E-02  1,31071366c-ul  1,42071806z-01 1.411523255-01 1.39988929--51
-3,52873886E~02 -5,248556443--0¢ ~2,57480476:-03 2,5856R478F-02
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2.39534203E-02
-1,128%9460E-01
-4,40725114E-02
~1.53931315E~-n}
-1,19492211E-01
-1.,63982476E-0])
=-1,11993777E-0!
=~1.661T45T6E~-01
-3,32753081€E-02
~1.,57243352E~-0}
-8,98516291¢E~02
PROPER FUNC., @2
1,21418473€-0:
1.51106930£-01
1.30654144E-01
1,47567607€~-01
1.45989865F-01
1.51173858E-01
1,17485730E~01
1,25469179E~-01
2,26306189( =02
9.34450852E~-0¢
-2,58696663E~02
6,98924213€-02
-9,74253488g~¢2
3.33584700E~02
-1,50397206E~0]
4,44365101E-03
-1,13950357E~01
PROPER FUNC, 3
-6,27379823E~02
1.99934166E-01
-9,348158879E~02
1.97881192E-01
-6,55747051E~02
1.56034050E~01
-8,68863409E-02
6.5526265%9E~02
8.82847861E~02
«1.35174779E~92
3.27607091E-32
-5,10654671E-02
-1.11838666E-01
-1.05666130E£-01
-4,R8358662E-n2
-1.,42545836E-0]
-6,95013204E-02
PROPER FUNC, &
-2.056508]11E-91}
=7.41059496E-02
-1.73541871E~0!
1.83252732E-02
-1.11034185E-01
1.33484552E~-0]

1,462261947-41
~1,87511622c-v1
9,972090b65=uc
~1,68599575--01
2.5812366H7-93
~1,5937044175-01
-7.04099533¢7-u¢
=1 .AD497949c -yl
~3,45392130c-02
-1,53433349¢-01
-3,81570806--G2
1.339553985-v1
1'20“22259£-U1
1,52675177:-v1
1,139782427-01
1.,57509329;:-vl
9,80388)47c-ve
1,572585465 01
5.,14048116p-03
9,37120367¢-0¢
-7,75524176:-03
6,98945000c-0¢
-6,47530978;7-0¢
6,31941974c-0¢
-1,63026999--01
1.83596137c-02
-1,79858970c-901
~7.,85175733:--03
-1,568364984¢-01
1.62889284F-01
~1.36572510F-01
1.77069179r-01
«]1.54679696F=ul
1.8743934905-ul
-1.30100706£-91
1.,32088468F-01
2.13103161F-02
1.30054623F-02
8.,222819292F=U¢
~3,88702948r-02
4,856509527F-0¢2
-4,213058735=-U¢
-7,54070277c-.02
-1.18037865¢£-01
~2+1554R243F-02
«1,697753345-01
=1.04295290£~03
~1.68681911£-0]
~1439126975F~01
=1,374T74800F=-01
~1.08525098F=-01
-1.78430623F-02
«5,93995993F-02
1.,08637939F-u1l

1,62241569:-01
-R 8389433872
Ra17733193c--902
=1.64035302--01
8,87036067:-02
-1.+3135129:-01
9.23905133:-03
“146304732c=-01
4.27811924c-92
-1,523¢’082c-01
2453935571 e-02
1.3633R386:-01
1.01+13802:-01
1.46852656:-01
9.,50411805--02
1.74157948c-01
6.00147775¢-02
1.6914A8551:-0}
=2431734989c-02
3.204350627¢-02
~6,05951654c-02
2.78¢29525:-02
=1.19629619:-901
4,45736300r-02
-1,8622R9645:-01
-9,70309859:-03
~1.67616599c-01
“2.67778481=-02
=1.,56827710==-01
1.6438748035-01
-1478¢527325-01
1.157%20385-01
=1.R3441300%~01
1.278835687-01
=1.504276745-01
3.479562435~02
=2.42138136F-02
1.28710526£-01
=4 4,R59134395-02
4.798458435-03
3.17£05499:-02
~446439913375-02
=3.744779747_02
-1.18175254¢E=-91
44R2T641 24702
=1.653699455-01
7.35857366F=n2
-1.97910948E-01
-Re30775329F-02
~2.01802683F-01
=5.30190174E~02
=5.26221920F~02
3.,RR4827128:-02
1,22795588r01
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-De4uu47/A884r-02
1.57131973r-01
-l.a92§0796€-01
1,480736445-01
-1.350131785-01
1.09743374F-01
=-143R7514T4F-01
9.06452659¢-02
-1.40251636¢5-01
6,86277712¢~-02
1,37039247¢-01
8.,805631333p-02
1.5064686765-01
8,10998553¢-02
1.795797137-01
4,12175317¢-02
1.53953889¢-01}
~2,30572652¢-02
6,67139454p-03
~7,13182021¢~-02
~l.13676616F=-02
<1.1057R33%6¢-01
~9,¢5535914¢-03
~1.53746234¢-01
~7.07914914g=-02
~1.5889R005¢F~-01]
~5,40897611€-02
~1,57678765£=-01
B,73750232€-02
~1¢94920737€-01
Ce38448945FE-02
~1¢946498252E-01]
4.58400876E=02
~1.50566801E=-01
~8.66192340F-04
~5.567R1306F=02
1.65188643E=-01
-2+45316707E-03
4423319640E-02
3.50098277E-02
~1.244658%82E-01
8432360103£-02
~1.01812706E-01
1.13766332F-01
~1431775470€E-0]}
1.22166633E~01
~2431190148E=-01]
=3.79634778F=02
-2+13780038€-01
<1.01876163FE=-02
-4.877508715-02
8.818R4828F=02
1.75173792€-01

1,58256587c=-01
1,59515717c~01
1,42279105--01
1,22256099:--01
1,02960437--01
8,67620603--02
1,27161225c-01
8,22119071+=02
6,735264410--02
3,0931¢749c-0¢
-2,233864295c-02
-0,36194757-~02
=1,07124958:-01
-1,41199446c-01
-1,50469955¢-01
=1,56714116c-01
=7,645970275-03
~1+986580656¢.01
=1.92617138r=01
=1.470450648F-01
=7.05904300F-02
~1444805651c-0¢2
4.78872301F-02
1.05117086F.01
1.299856205-01
1435492323F-01
-2¢316451361F-01
=1.59459740F =02
3.57769469F-0¢2

1.11863306F-01



4.79127889L~9
1.61383467E-0"
5,0(50618¢c3E-ne
3.,63918369E-n2
-8,840932023L-n2
8.,3957468nE-n2
2.87043719E-n2
5,4336A953k -2
-1.09827667E-0.
~2.54435856F-03
-24,31335633E-91)
PRIPER FUNC., &5
2e9470556¢E~02
-4,96574543E-0,
5,71023814E-92
5.29383061E-02
2.46265909E~-02
1.04562477E-01
~2.,09007517E-9:
$.88108769E-p¢
-9.,8158579pE -0
~3,79425854E-0?
2.53804551E-0n}
-5,16735579t-02
1s074244)13E -
-6,49296552E~-n?
-5.39149076E-073
-1.24685118E-01
2.25288493E~-0n2
PROPER FUNC. €
2432072364E-01
-1,41854046E-01
1.34712190E-0;
~1.99458598E~0n1
-2.99350679E-0¢
~6,64851468E~02
4.66256801E-02
B8,67568695E-02
3.,4873488B9E-0
7.23906777E-02
1.050747358E=-0
4,03795814E-02
~-3.,644335972E-0¢
4.83501856E~-02
1.41463880E-90]
3,49335620RE-02
-3.55693¢620Ek-02
PROPER FunC., 7
1.02962321E-9:
-1.1500212¢0E-0:
4,55958905E-092
-1.36215949EL-0}
-9,29075845E-02
1.40761748E~0"

-4,190777¢25-0¢
S,PaH6337937 =02
1.125310%6r-01
1.191756907=ue
2.nS5R121H 1 Faie
3.4083,2003° ¢
4,a47520R127-0¢
1.526705075~a¢

-1.5329403R7F=0]

~3,4483328hF-02

~CeuhB64636T (]
~1.°88810165-]
1e1H800286A7 -]

-1e1723095097-131
1.,1642R17825 <1}
3,08242053r5-y¢
65.7179561R:-03
9.,2873777155<0¢
5.,009979865 =43
3.285553¢67-03
2.0915R137 -5}

~4,9642312%F-y2
3.042731105=-31

-4 ,(365251495-9¢
2e251/A237) 700

5 I596TTT 7=l

-1,07921240°=J1

~1,3012362871"]
3,1810694%05 -2

~24.705023325-02
1,64245175605-01
=2.68l104855F=¢
S5.018974007 -0¢
~1.524547345~-091
=1.265911347 =02

“ZeR3l40748F -t

~9,617505795~v 3
2436753005 =g
7.94972357--0¢

-4,070166715-0¢
14533765025 -2

-5,1507924955 =02
2.N695339)5-32
1e,055523037-0¢
i 4655565025 -02
7.28338007°~ue

~5.0705169p5=~3¢

-1.004274595 02
1,019)146448 <02

-4,3445539R87-0¢
1,37214912F=03

-1.,0351315%87-01
44,38192476F-i¢
Cei)NT625667 =131

2458751303202
347092475997 -02
14238566737 -9)
“5.F14371625 =02
-1.717316997 =01
~347320¢2978% =02
~7e7A9043u27 =02
-6, ,7R2TG2I0F~02
~le0aV777467 =01
-8 ,0R73658G95~¢2
=2.N24078237-01
=1.~Q9¢832577 =91
14A1P874017-01
~1l.260338267<(1
1.430319%25 29}
Ry0T7U7981R <2
~Fo ulllpT7927=p2
1474¢31039:~p1
=R H3ILTS60 =02
200373625701
1.06C900877 =02
le06cTRb435-n]
~2¢158774472: =02
1.97175426R87-y¢
~0,90280G347 02
=2.4469503677-02
LI U P
~8,62715933)7-52
116020330701
3.6469317257-02
4,797753R8F-02
S78U398Q9--(2
111974066202
=R ,Q72352707-=02
~4,7R TrTpGT<2
Ce0TE2RTIBTA()3
14161332547 =91
2etl€312627-91
3,5345230R7~01
=3.13282667F=-02
-1.253322125-01
~R,00903577F=-0¢
1053952737 =02
=144H8845987-03
-1.5888580%45=01
248R4191657-02
-1.08357975:~p1
44693546547 -02
~4.069847807-02
ce742858561:~02
=3.GR076201F=02
=1.094806115-01
4,R297G6528-.p2
1.RRE815984- 01
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16120575657 ~01
FeSGRTIGS0F =02
Bet 527037502
-0005960528:‘02
Ce(393P58I6F (2
~4.20HR13435-07
~leg3742)159F =02
-1.176310105-01
-2.04378117F-0Q2
=1.63434737-01
~1.160x4125-01
-lesa79455v=01
1809708825231
=3.¢r06A5277-02
le4a3p23387-0]
l1e0463I58545-01
~9,7A500433F=02
-1.579583095-02
~1le2%1377067=-01
D,73026055F-02
=2 B2 2TI2FE~(2
C€e060900577=-01
2.5688122735~y2
€+302691595-01
3.671C%4B45E=-02
bel2482R25-02
3.397777254-02
-4+ RASEG227T <2
le620027345-0]
1319517557-01
=1.930423487-02
1.425759737-¢1
-5.06651130F-02
~1403363937F-01
~7.829044805-02
3.32411052=-02
44332745335=-02
3.5659%7238F-01
1.331200885-01
9.032300765=02
2e057916615=-02
~5,8912R9]165-02
-9.,16775813¢-03
6.2541n2045-02
=-2e6]1305459F~02
=1e447040130F=02
1.396136375-03
1.218649217-01
-7.380543497=02
3.05759671F=-02
-6,673¥n785F-02
~1.205244175-01
4.00501930F-02
2.24656636F=-01

l.36565303~01
1.26642007--01
PeT4223055+=n¢
402394477 =0¢c
1.75831¢557=0>
=2,79367640=n¢
-4.4867¢1377-)2
L+722Y04357=91
74533920417-0¢
=1.09465773 =31
=le36188Y637-n1
=34833401507=-0¢
=3417293405~=-0¢
S.42]1384)2-~-93
3.07191213-=-02
l.271631547-01
2+3039¢2728r-n1l
~4.938702137=-9¢
=8,56B423297=92
“1.01727857--91
=D.659461154r-p3
4.548645187-0¢
4,84856476F-02
0,7564496075-02
B40487¢955r=02
0,85]158455-~02
lea6079962--01
~3,81331683:-02
=2,35471852r-02

€.58478857c-p2




~2.8279054 8-
=3.7392351%94k-02
3.126482205E-0.
P.,88434497L-02
8,18343205E-p2
1.2977n8359E~0!
1,97011792E-n;
1.,08734877E-9,
-1.91314695E-02
5,44856494E-(2
1.88395613cE-p2

PROPER FUNC,. 11

1.33987496E-¢]}
1.26697376E-n]
2.37635991E-91
1.48579748E-01
5.08409717E-02
3,18742356E-02
2.470134642E-02
5,10562273E-p
1.62651270E-01
-4,72893111E-02
2.27701383E-91
-1,28835119E-91
2.12842445E-9)
2.67074943E-02
~2,28151484E-92
3.,645244999E -9
3.70660780E-902

PROPER FUNC. 1z

3.,24804198E-02
5.10610381E-02
1.24250744E-q2
-1410554399E-9
1.03056976E=-01
3,16872594E-02
8.53692248E-02
5,16720501E-02
2.2086943pE-0]
8,45785730E-03
2.35151781E-9:
-1,02779290E-03
~2.25835953E-9:
-7,42315933E-02
4,23024553€E=-02
5,39579118E-02
2,584409]17E-02

PROPER FUNC, i3

-7.75100209E~02
-5,30325811E-02
-1.81153422E-01
-7,33847355E-02
-6,60T71824E-02

-2.1765933K7-y1
~5.,4086262T77 ¢
=3,79672770-5=3¢
-3.7R84242595 -yl
-7.390575]) 25 =Uc¢
Se544161580¢F=)¢
=3,27271 022" =U¢
5.,29714208° =013
-3.0913707k5 =22
3,365724797-y2
8,2568389RF-y¢
-6.A88332457-y¢
-1s1243Y0277-42
1.528061185 =41
©.023774297=uc
2.09975371c-01
~1ei0T2A5 T4 mye
=5,45943R}A0(¢
1 e5349386K7~yl
1.546473197 -yl
1.339955146°=-01
1,1466R737--91
-4 ,42]185237--032
1,2648549495-0}
7.584330877-yc
-1,589249642-u3
5,4104556A7=1)¢
=2,1TahT7T325<ls2
1.663602% 45 -yl
1.966200737 =02
-1.111738087-y¢
-1,589395237-u1
~2,158718397 i1
~14210625297~v1
-3,403297357~-u¢
2420493176501
-1,020856975-02
le0234783)5-ul
24375386125 -02
1.411717315 <01
1.11951373:7=-41l
~1.,H0641RG4T-0]
-2.1332721355-u4
9,610636217=014
1,0641210595-51
=5,0540460)5-d¢
1.21001596F-0¢
1439254164701
i61T70566497 =01
-~3,766844T8--02
7..07907865<0¢
-1.194362107-01

=2.419%341337=01
44359539407 -02
1.02074529: =01
2e1921630hm7 =y}
-1.440¢12117-01
-3,3731524027-0¢
-1.221561655-01
1.620381937-01
=1.R12307457=-0]
1.188433747=01
4,+73721125=-02
-1+35033g8Rz=p]
-2.77400548F-01
=5.,218074787-32
=5,061567525=02
2027264877202
3.58£0663217=-02
1.1R3333547-9]
=35.34i129307-02
1.0R0571677=-01
“1.1520R5697=0]
S,7979311R67-02
1e+71000417-02
1.962496027-01
~3,1220564R85=-02
-64,414242065-02
=4 46Q43131R=02
=5 ,57934482: =02
-4,8050264:7-03
-4,74D318375-p2
2.474707317-02
=1.80€077055-01
2+092812377-02
-9 ,,)74638RF =2
1.337146705-01
=1.052522017=01
~2ea70078147=01
=1.23351855F~-03
-4,677917035-02
~5,8Q0246680=-02
2.09%07670--02
-7.18872245:-02
=1.22U80644F-02
1.383558177-01
6.007431265-02
I,7£268525=-02
1.01159555F-91
16512844650}
1.740114337=01
1.,15674789r-0]
2.530864127F =02
1.24>551117-01
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Te24724579F 02
2.36722003F-02
1.198n06497-01
0451355672c-0¢
1.645374505~01
-l.042452250£~01
1.31312637F+01
~le642262505-01
~1.336%4434F-01
~1.464357435F =01
-8.761999455-02
“le&3634426F~-(]
-1.33852487E~02
~1e4014910%992~01
4.9666477567~03
~8.496211]1945~02
~442R0]13854F~02
~84050364836F~02
=Ce537520565~01
~%4373029015~03
=3.755220035~01
-%e01467295F=02
le4n81376787=01
5431904419702
le2RUbGhE54F =02
5.024h2214E-02
-T74306R6972F~02
5.1535928¢4F=~02
~Ceb67H81498]1F=0]
~1eRpps4ap295-02
2e6TORAS5ISFay]
=3.30801022F~02
J.80612335F-02
146422269425 =02
l.60152042F-01
-3.00225002E~02
-1¢344315525-01
4.260920315=-02
7.94556863F=02
8.66437358F-02
-1.08801646E-02
1.562701115-01
1.29292915¢-01
6436930130E-02
7.057116875=02
B8.30512828F-02
4¢110A1018E=-02
~04PGRIBGLUTFE=(2
440945549327-02
=3.43161800F-02
6.57158234E=02

1044426703501 =1.A079]125R7 =02 ~1464]14174RF=y] ~L4663730325-01

=i.411418127-n¢
2.08636033==p1
7.2485¢7367-0¢
1.3664267677=-0¢
=3,7645256707-0¢
£.255260065-01
-1+209207057-01
=7.474772635-02
=3,07121029--0¢
=-3.10698470=~0¢
9.269639685-n¢
1.0964264660--01
~4,62945766-=n¢
-=1.113626915-91
-7.15978853r-p2
~1.58706616c-01
1.59668501c-02
7.922090717-02
1.819¢7677-=-91
94603931927 =02
7.93575740r-0¢
-7.66805927c-02
-7.26753405F-02
2.20737965c-0¢
€.78192958x-0¢
~9,187725567-02
=2.536667645-02
-=3,73496478r =02

-4.496395237-02



«2433119862E-n.
8,6391n562E~-0¢
~2.63571796E-¢:
~1.09625299E-0}
-1.88591191E-91
-1.13790812E-9
5.83412213E~g.
-2.,44341837E-92
3,4158a729E-02
1.81450890E-0.
~].4440R245E~p;
PRIPER FJNC. *®
2.19293326E-9]
-1,01529704E-0,
7.6392285nE-02
4,06163171E-02
-1.76022413E-01
3,73390348E~-0¢
-2.65477550E-n1
-5,57878989E~-n2
1.86053399E-0
-2.92134157E-072
5.30631914E~-02
3,32088674E-p2
-1.,81341067E-01
1,09953570E-02
-4,30207760E~-02
3,40049886E-0n2
-1,36705281E-0,
PROPER FUNC. ©
-2.07738310E-0;
3.268699893E-0
-2.81299804E-02
-1414254¢261E~-0]
1.,60890183E-p3
3.98437119E-02
-2.49827805E-01
4.01506724E-02
-1.44157838E-¢]
-5,645049151E-03
1.3004%870E-01
1,77772293E~-03
-1.46916036E~-01
1.56630860E-02
1.36130580E~¢:
1.20347300E-03
-1.53732209€E-0]
PROPER FUNC. 10
-7.86148557E-02
1.46658645E~-¢2
3.,47263658E-02
~5,06995400E-07
4,81392726E-0¢
5.,24481046E-02

7,69706025F- )¢
~2,2432834%07-9¢
2.45789722257-:1
=2.,R79n18865 1,2
-3,551387487 441
~CeclIEIRI T -t
4,m26u8T1-4¢
2,0933u0295=12
-1,778680637-01
S.151121725-5¢
=2,152292875-41
~2.410397545-01
1.5721929¢7 =21
-1.637Y47537=ul
5.610Sp6l107-03
4,960576)47-9¢
=1,0900)4537=u1]
3.:30568057~0¢
-2,7071503%¢c~41
~3,05731488:-0¢
=1.100373467=,¢
5,480339560F =02
~1.5003823A7 =yl
5.n22510355 =02
~2.702440375 01
9.323706425 =0i¢
=1,148974225-2
1,492567737<u¢
7.266088465-92
2.120912317-01
=1,12879784c-01
9.052199697-u¢
5.908763785-u¢
~1 4287149197 =11
2.778206215=)4
B 197271405 ~-2¢
=1.49095311¢F~v1
5,163726375-u¢
~3.158932427-u¢
1.591822035 -3¢
1.2683R89”35 )¢
6,977182695=0¢
-8,757148857-)¢
6.46863539~y¢
-9,233267795 02
1.5270898]1c-ul
4,360439645-02
5,192453377-)¢
~5,6851678¢5-n2
24017970145 =02
4,08572277=-0¢
«7,708328377~4,3
7.357520607-0¢
7.7292113417 -2

~3.10V3Rab6"02
~0,'57447065 =02
R,617757697-0¢
5.401910115-02
~2.c4ci33R27-03
T.094251 767202
=74329453697-0¢
1.10023427-01
1168034367 =01
1R T560A7 <]
4426053504707
~2415033953Q5-p1
8,0R99%6237 =2
=1.15499999:.0]
~3,7947831467=02
142¢1332317°-91
-7,412198425-02
~2.0AB8933539:-n2
2.29711958z-¢2
~1.£49092317=-01
-l‘oov7aba7:-01
=7.12¢33G767=02
=2e41281(0597-02
~4,41020220°~-02
-1.3913223727=1
=3.3148720645-02
1.32¢153857=-p]
-6.21V15472-~02
2.C1357978-291
1.838797095-01
3.0]559057:-02
50571917295 =02
9.RR2327117-02
-1.745733955-9]}
-1.228874695-91
1.R241767R7 =01
,162528147 =02
t.361564207=02
1.203526137-91
-1.131313945-01}
2e150149207-01
~2.6973032375-92
1.929149115-03
193379237502
-R,594¢54705=02
9,640427384-02
1.897171137-01
5425445878502
1.6199024075-03
=2 Th435206-02
4.R635QR495-02
~5.764303557-02
=2¢029144307=03
1.08477750:-01
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-7.38502088z.02
=1.0%3747315-91
~9.0971545377-02
~4,6463P42735=02
3s7ATQRTHHI=y3
4434600RRB29-=02
7.737320875~02
le4421G041F=-01
leSKk2ag24r-01
DebBEHAKR39F N2
lenghraR437-0]
~1.5R2745557=-¢2
-1+4FRY34878F =02
2.613740565-072
=D48550a554F =02
CeB4R02754F =02
~1.007203795=02
~14169525587<-01
1,1%244430F-01
16154948507 ~01
3,3350K/5997-¢¢
=9487164237v-03
~4+579n47835-02
~1e(}79R24747-01
-3,59951171¢F~-02
=145701320R5=01
1434991554375 =02
-1.12170645¢=-01
3.03754T7465=02
€eB2095029F =02
le123946115-01
~54B895R295]1F-0p
2452506936502
~3,737605485=-02
~1.Re1429015-01
~3.z2019246E=-02
le102895322-01
-lclbgg:973F'0!
6¢55147)1885-02
~2455872632F-02
3.97955814¢£~-03
=1e75438527F=-01
-1.736970385~02
~4.8200593%4F-02
-1.036379365-01
-8.00150625F~03
Bel14907781F~02
~8¢5334R6935F£-03
44374R4475F =02
~5456640830195=-02
3,750540725-02
~83.00131994F~-03
-3.754300985=02
4.579614105=-02

=7.36717949-_)¢
~141578¢423- =01
~71.8576763%9--0¢
1495017073--0¢
T.81328057-=-0¢
8,28962¢407-0¢
16508622064-01
~4,2715%5p27-0¢
=7.92641030-~-02
=-7.69235880-=-02
71.59327438r-n¢
7.18429033c-n¢
=3.326085397-0¢
=24925(09549-=-02
=23,26872546r-02
=4,35972384r =02
-1+697830537=-01
1.166376555-01
71.350452345-03
~149038506645-01
8.,349995557-0¢
1443773961501
140435568601
=1.502806357c-p2
-1.29696080-=-01
~4,41473764r =02
~64101319867=0¢
4.7131¢c407c=p¢
€.719227747 =02

-4.,R36435257c-p2




-4,0559n052E-02"

-5,306125155-03
-6,07213021c-02
1,2018A58RE-9;
~=1.50699222E-01}
-1,32679503E-0:
-3,07613636E~02
5,27634538E-02
1,63238222c-0¢
-2,08352659¢F-02
83,18360227€-02
4,67046101E~02
PRIPER FUNC. L4
2,00¢13242g~02
5,28417312-02
-7,38812449g-02
5.81050621-03
~3,48997783-n2
-1,41158515E~¢2
3,33668940F-02
~1,664419629E-01
3,30006154g-02
-5,46608587g-02
~3,14438469F-92
7,03747368g-02
-1,13225561€=-01}
3,43947797E-03
1.,5621633R8E-02
-2,55055303E-02
=2.37234579E-n2
PROPER FUNC, 15
-1,75163969F-02
2,14161628E-0]
~5,28205997g-02
1,63966818€-01
3,35785569F-02
1.72608575g-0]
-5,70547759g-02
4,02182846£-02
-1,59908235¢-9:
-5,33178438¢g-0¢
1.,05015452g-02
3.16619165E-02
-2,147356746g-03
1.14704035g-02
7,58568479E-02
4,04554717€-02
-5,22785394=~-02

1131001017 =01
=2.756300909:-0¢
1,7288)38667 U1
1.3225155R7-01
4,669901737-02
1509787425 -yl
1.72212¢0857-041
9,36933798c ¢
1.30863037-~11
-1,020754b05-0u¢
1.37894068:-01
-4,75126062r~ue
1,37521337:.01
3,78337442-401
1,07317980=--~ul
7.,61043881--u¢
9,34¢89127--02
-9,81769533z-v¢
1,235513737-01
6.462223548c-02
-5,12862158c-02
=1.429819C04c-01
-1,46062995c-y1
-7,45787842:--u¢
-2.535696439c.02
-7,75720922z-06¢
-3,964374357=u¢
“,158924317-02
-4,571837545-0¢2
1.,28881)17n=-02
5,21964872c-02
2,12823579¢-ul
«2,K59488765-01
1.54016545: .01
-2.564356647-01
9.519139837-0¢
~1.,20308773--01
8,564459538--03
1,70372901:--91
-2,22630286:-91
-5,81248071:--92
6,13856509:-02
-4,164773335-u4
4,51422908--902
4,14370637:-03
-7,180015%1=-0¢
3,63465848F=0¢
-5,42871150:-92

-9,368230017=0¢
3,459339497202
=1.60U84127--01
9,F1075G47: 202
9.21329765--0¢
=2ehRT12RT305=-01
~2748771275-01
Te9nsT7317-=-02
=1.71725320:-01
T.36410670:-=-02
-1.,25751583:--0}
Q,4R+17994--03
1,23¢32483--01
1,754d90830--01
-2.32956640:-01
1,23037689:-01
-1.958513042-=-02
1,819Y375465-01
S.260621675=02
1.,2R238508c-01
1,79275259:--01
1,99650794:-01
2.241313R5;-01
-2,R82859856:=-02
1,6R9520185-03
=7,R08%40125-02
R,N1059213-=02
2.78995679r-02
8,077300367-02
=1.55241502:-02
=24109440967-01
2.024540827-02
1,46343069:-01
5,R64028RAR- =02
3.273009245-02
7.40708063--02
-1,76011352--01
3,530127245r-02
-8,97Y16020--02
4,56000935-.02
1,23019119:--01
9,20080344:-02
=1.61€993617-01
-3,23173323¢-02
-6,44912525--02
-4,95195973--02
=2.95259179--02
=4,73856483r-03
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~1.533028775~02
-0 RL)AD444F (2
=1.2R4488775-¢]
14127718597-0]
le0298¢g6477-0¢1
~2e45069420F=-01
“Ce3152447)F (¢
B3.250515525=02
€.96994~8937-07
1.802214245-01
-1.556629245-01
1,70284337F=-01
-2.99964937¢-0)
-9.2930QQ58;-02
-4,14549917:-02
=9,07752901r=02
-7.207102327-03
=2 725777457 -02
~4439745258F-02
15382955602
-1,71821853c-01
—6.858R?l77;—02
-1.350446235-01
1.228h407)5-02
3,9A621159:7-02
-3.998343005-02
3189640315 -03
~4.042R73185-02
1.02385462225-01
~-B4B45AR5728-02
5.223990357-02
~2€,37720429:=~0}
1.320383%2¢-~02
«3.113764375~01
5,34787910c=-02
«24134508643:~01
1.11511980--01
-1,72881538¢-01
-1.23126355r~02
-1,35820343F-02
1.712¢0229c-01
6.,60724495r-02
=5.91996233F~02
-6,336444631¢-03
3.5196#5630¢-02
-3,29H44789F-02
-24.85140529¢-02
64391482208c-03

-1.577683807=01
=3.1587¢9607-0¢
1.27557639c-91]
~8.35750956--02
~1.59499634c-91
~7,886470391=-0¢
~2,32165849:--n1
-1,90807610--01
~1,71256741--01
-8,81564734--02
-1.90309183--0¢
1,70975227:-02
-1.10639738--01
€.43128710c-0¢
1,02598476--01
3.96040558--02
1.812349125-03
=¢.50276224--02
7,80058348--0¢
1.,30892220¢-01
1,10039236-=01
%,02632256--0¢
8,59649248--02
€.53348780--0¢
-1,40607685--0¢

~4,60590409c-03



A R JHEE - S - T BT - SR - TR SN L - S - ST S S TR IR TR - T SR R L NN BT - TN - S SN - BENE - SR BN SN - BT -

awnd CADD SET

3t

l.,v
l.v
1.0
lou
l.v
1.4
1.V
iov
l.v

DO OO OODODOOO
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L N R

DO DS DD DD
e o s o o o o o o
e et et e et gt et gt ot

DO ODOCOO DD
e & & & o & o & o
et et et et ot ot et

ot et gttt pud et et

S COOCTC oD
e ® o & o o o o o
e R et R Rt ]

cCoooCcoCcocoo0o
® & o & o o ¢ o o
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DO OoOO0OOoOO O
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1.
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1.
1.
1.
i,
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A

So~ 180

RIVIR IET

-jl

C.

g5 -
NU?

)

C

T U & N

—

[3S Bl LA S H @ BE <VIRN RN GRS V]

S N

S e
Ut &

1~
17
13
13
20

21
22
23
2+
25

FOINT> Auuid

CINTS ANU SUPPLEMEINTARY

PERCINT

QRILUCT,

399,499
+53
.79
<30
o35

38
02
Ut
04

i1

.00
11
.00
02

cr oTATEs oF INITIAL STATIUN:
CIAC23ItaTIS
X Y
Cel ue
’05 %o;
“u, @ '205
‘-5 '“QD
“e = -3
wa ’205
3¢ 3.0
-22.0 e
<~ DI NATES OF TIRCLE
2440 -7.0
—29.C 7.6
ORCINETES UF ADSES @
L ZOCPJIrATES I OF F
~ ( Y 3EFIKE
-7s0 -23-0 -5585000
=28,9 ~15.1 02322407
7.6 2900 0“325'01
13,6 1141 ew812-01
“18e1 =23.9 e453--01
~12.% =~15.0 ewlivE-01
-9.,1 3.2 '“115'01
761 5.5 e 405E~-01
-11.9 2.7 «L052=-01
A, 3,2 »3992-01
-15.,1 25.9 «33982~01
-1.3 21'3 .3955-01
“Beb 12.% «33LE-01
-23,7 ! «38372-01
4¢8 =1446 1402-018

-2
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LATA

ALT<RNATIVES REJCTED

X Y
706 23.0
7.6 23,0

15.1 -25.9
-18,1 -23.9
-12.,83 -1%,0

9,1 3.2

7.1 e5
-11,9 2.7
’15.1 259
=151 25.9
«29.7 ~4e1
-13.0 1402
“2947 =441

846 =1+.9
-105 1*.3

£ oF £

0555:*03
«232E4430
u32:-01
«481c-01
«453c-01

«419c-01
e411e-01
vW605€-01
+4055-01
«399:c-41

+398¢c-01
¢«395E=71
«39wc-01
+3872-01
e140E-01

X
~3,.,8
15.1

~18.1
12.3
7.1

7.1
=15.1
7.5
Be0
‘2907

15.6
-29,7
8.6
15,6
=-Lel

Y
-1.0
-25.9
-23.9
-l
545

5.5
2549
'01
3,2
“hel

-1.8
9ol
1449
-1.8
23.7

g oF £

¢e5585+00
«232c+00
e+82t-01
v481t-01
0“53E’01

19E~-01
e+11t-01
«405E-01
J405c-01
«399c-01

«398E-01
+395E-01
e 394E-01
»3R7E-01L
o1l60t-01



B. Subroutine CIRCUM

Subroutine CIRCUM is used to locate points on the
circular boundary if not more than one is already located
there. If one point is already on the boundary the sub-
routine locates the second point on the boundary (line 35)
at the point of maximum residual error. The search is
started at a point opposite the point already located on the
boundary. If no point has been located on the boundary, the
"center of gravity" of the already located interior stations
is found. The first point is then located tentatively at
the point in which the line through the "center of gravity"
of already located points and the center of the circle meets
the circumference of the circular boundary. A minimum of
the residual variances is then sought from that starting

point.
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LOCATES C.G. OF ALL POINTS AVAILABLE

v

PICKS POINT ON BOUNDARY OPPOSITE THE C.G.

l

LOCATES LOCAL MINIMUM ON THE

BOUNDARY VIA FMFP ( FUNB )
ADDS TO LIST VIA ADDPT

!

LOCATES POINT ON BOUNDARY
OPPOSITE FIRST MINIMUM

:

LOCATES LOCAL MINIMUM
ON THE BOUNDARY VIA FMFP (FUNB)

l

ADDS TO LIST VIA ADDPT

FIGURE V-2

ABBREVIATED FLOW CHART FOR SUBROUTINE CIRCUM.
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10

15

20

25

30

35

L0

&5

*+0ZICr

€
c

10

14

16
18

CIRCuUM
SU3RJIUTINE CIRCUM( XCy YCy» Ry, I
LOCATES FOINTS ON THE CIRCUMFERENCE IF NOT MORz THAN Ond I3
ALRZADY THERE. ( XC, YC ) IS THE CIRCLE CENTER, =~ = RAQIUS
COMM0ON / BLX1 7/ WSTN, N3JY, NTR, XS(30), YS(30), ITR(50,3)
CuMH4ON 7/ BLK3 7 NCIR, AZ(20)
CCMMON 7/ 8LK&4 / £STy £FS, LIMITy IeR, F
COMYON 7 LINKS /7 ExR1, X0(e0d, OIFF(5Q)
CXTERNAL FUNB
JATA PI, 77T / 3,1+15927, 642331853 v/
IF ¢ 1 «8Q. 1) GO TO 20
FINZ CG OF POINTS AVAILABLE
ANJ = NSTN
SuUML = SuM2 = 0.
J0 10 I = 1, NSTN
SUML = SuMt & xS(I)
SUM2 = SUMZ + YSI(I)
XCG = SUML1 s ANO
YCG6 = SUM2 / ANO
JIST = SQRT( ( XCG = XC 1**2 + ( YCG - YC )**2 )
SELZCTS PCINT QPPOSITE CG OR WEST
IF ( DIST JLEs 1o ) 12, e
= XC = R
= YC

= XC = ( XCG = XC ) * R / DIST
= YC - ( YC6 - YC ) * R / DISY
NG = ATANZ2( Y-YC, X=XC )
CALL FMFP( FUNB, 1, ANG,s Fo. Ge« EST, EPS, LIMIT, IER, H )}
X = XC ¢ R * COS( ANG )
Y0 = YC ¢« R ®* SIN( ANG )
CALL ADQPT( X0, YO )
IF ( ANG oLTs 0e ) ANG = ANG ¢ TPI
NCIR = 1
AZ (1) = ANG
PUTS ANOTHER POINT ON CIRCLE
ANG = AZ (1) + PI
CALL FMFP({ FUNBy 1y ANGy F4 Gy EST, EP3y LIMIT,y IER, H )
IF ( ANG «GTs TPI )} ANG = ANG = TFI
AZ(2) = ANG
NCIR = 2
X0 = XC ¢ R * C0O0S{ ANG )
Y0 = YC # R * SINU ANG )
CALL ACOPT( X0, YO )
RETUYRN
zN?
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C. Subroutine FMFP
Subroutine FMFP is a "standard" method of finding the

minimum of a function of several independent variables and

was extracted from the IBM System/360 Scientific Subroutine

Package (360-CM-03X) Version III, Programmer's Manual. The

details of the minimization procedure are described in the
above and also in R. Fletcher and M.J.D. Powell, "A Rapidly
Convergent Descent Method of Minimization", Computer Journal,
Vol. 6, No. 2, 1963, pp. 163-168. The subroutine as

listed in the first reference above has been modified at

lines 195-200. 1In our application the standard FMFP

iterative procedure did not meet the convergence criterion.
A loop was added to check the magnitude of t—ochi/xi and if
it was found to be less than e for all i, then a branchout

of the iteration was made by transferring to statement 36.
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. FMFP

SUSRUUTINE FMFPIFUNCT gNy Xy FyGy EST9ePSLLIMITyIER,H)

SUAPLSE

TS FING A LOCAL MINIMUM QF A FUNCTION OF SZvERAL VARIABLES
3y THE METHGOD OF FLETCHER ANDO FOWELL

USAGE

CALL FMFP{FUNCT o NsXaF yGoEST L EPS,ZLTINMIT,IERH)

SESCRIPTION CF PARAMZTERS
FUNCT = USEZR-WRITTEN SU3ZROUTINE CCNCERNING THE FUNCTICON TC

EST
ZPS

LIMIT

IER

H

K& MARKS

I

1D

3F MINIMIZeOs IT MUST 3€ (F THE FQORM
SUEROUTINE FUNCT(N,ARG,VAL,GRAD)
AND MULT SERVE THE FOLLOWING PURPOSE
FORk EACH N=JIMENSIONAL ARGUMENT VECTOR ARG,
FUNCTION VALUZ AND GRADIENT VECTOR MUST 3E CCMPUTED
ANC,y, ON RETURN, STCRED IN VAL AND GRAD RISPeCTIVELY
NUMBER OF VARIA3LES
VECTOR OF DIMENSION N CONTAINING THE INITIAL
ARGUMENT WHERE THE ITERATION STARTS. ON RETURN,
X HOLOS THr ARGUMENT CCRRESPUNJING TO THE
COMPUTEC MINIMUM FUNCTION VALUE
- SINGLE VARIABLE CONTAINING THE MINIMUM FUNCTION
VALUE ON RETURN', I.E. F=F{X),
- VECTOR OF DIMENSION N CONTAINING THE GRADIENT
VECTOR CORRESPONDING TGO THE MINIMUM ON RETURN,
Tebse G=G(X)W
= IS AN ESTIMATE OF THE MINIMUM FUNGTION VALUE.
- TESTVALUE REPRZISENTING THE EXPECTED ABSOLUTE ERROR.
A REASCNABLE CHOICE IS 10**(-6), I.E.
SCMEWHAT GREATER THAN 10**{=-D), WHERE D IS THE
NUMBER OF SIGNFICANT CIGITS IN FLCATING POINT
REFRESENTATION.
MAXIMUM NUMBER OF ITERATICNS.
- ERRQOR FARAMETER
IER = 0 MEANS CONVERGENCE WAS OBTAINED
IER = 1 MEANS NO CONVERGENCE IN LIMIT ITERATIONS
IER =-1 MEANS EZRRORS IN GRAJIENT CALCULATIOCN
IER 2 MEANS LINEAR StEARCH TECHNIQUE INODICATES
IT IS LIKELY THAT THERE EXISYTS NG MINIMUM,
= WORKING STORAGE OF OIMENSION N*(Ne7)/2,

THE SUBROUNTINE NAME REFLACING THE DOUMMY ARGUMENT FUNCT
MUST 8E DCECLARED AS EXTERNAL IN THE CALLING PROGRAM,
IER IS SET 70 2 IF o STEPPING IN ONE OF THE COMPUTED
DIRECTIONS, THE FUNCTION WILL NZVER INCREASE WITHIN
A TOLERASLE RANGE OF ARGUMENT,

IER = 2 MAY OCCUR ALSO IF THE INTERVAL WHERE F
INCREASES IS SMALL AND THE INITIAL ARGUMENT WAS
RELATIVELY FAR AWAY FROM THE MINIMUM SUCH THAT THE
MINIMUM WAS OVERLEAPED. THIS IS QUE TO THE SEARCH
TECHNIQUE WHICH DOUBLES THE STEPSIZE UNTIL A POINT
IS FOUND WHERE THE FUNCTION INCREASES.,
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SU3FOUTINE FMFP

SUBROUTINES AND FUNCTION SU3PROGRAMS REQUIRED
FUNCT

t0 METHOD

THE METHOC IS GESCRIBREC IN THE FOLLOWING ARTICLE
Re FLETCHER AND MusJeDs POWELL, A RAPIC ODESCENT METHOD FuUR
MINIMIZATIGN,
CCMPUTER JUURNAL vOL«6y ISS. 2y 1963, PP.163-168,

€5

OOOOO0CO0O0O0O0O00

COMMON / LINKS / tRR1, X0(60), DIFF(HD)

OO0

70 OIMENSIONED DUMMY VARIABLES

DIMENSION HE1),x(1),G(1)

COMPUTE FUNCTION VALUE ANO GRACIENT VEGCTOR FOR INITIAL ARGUMENT
CALL FUNCT(NyX,F,G)
75

oo [N}

RESET ITERATION COUNTER AND GENERATE IDENTITY MATRIX
IER=0
KOUNT=0D
N2=N#¢N

80 NI=N2+¢N
' N31=N3el
1 K=N31
D0 « J=14N
H(X) =1,
85 NJ=N=J
IF(NJ)5 45,2
2 DO 3 L=1,NJ
KL=K¢L
3 HIKL)=0.
CLi] & K=KL+4

START ITERATION LOOP
5 KOUNT=KOUNT #¢1

00 o0

SAVE FUNCTION VALUE, ARGUMENTY VECTOR AND GRADIENT VECTOR
QLOF=F
00 9 J=z1,N
K=N&J
H{K)=G(J)
100 K=K¢N
H{K)=X(J)

S5

c DETERMINE DIRECTION VECTOR H
K= J#N3
105 T=0,
00 8 L=1,N
T=T=G(L)*H(K)
IF(L=J)b4,7,7
6 K=K #N=L

‘ 110 GO TO 8
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115

120

125

130

1L

145

150

1690

1€5

SUJBROUTINE

OO0

OO0 OO0

[N o NeNe]

OO0

OO0

FuFP

7
3
3

10

11

12

13
1
1¢

16

17

18

K=Kel
CUNTINUE
HOJY =T

CHECK WHETHER FUNCTION WILL DZICREASE STEPPIN ALCONG H.
pDY=13.
HNRM=0,
GNRM=0,

CALCULATE ODIRECTIONAL JERIVATIVE ANJ TESTVALUZS FOR DIRECTION
YECTOR H ANDO GRAQIENT VECTOR G

0C 10 J=14N

ANRM=HNRM#ABS (H(J))

GNRM=GNRM+AES (G(J))

DY=0Y+H{J) *G ()

REPEAT SEARCH IN DIRECTION OF STEEPZST DESCENT IF DIRECTIONAL
OERIVATIVE APPEARS TO B3f£ POSITIVE OR ZERO.
IF(0Y111,51,51

REPEAT 3EARCH Iiv DIRECTION OF STEEPEST DESCENT IF OIRECTION
VECTCOR H IS SMALL COMPARED TO GRAJICNT VECTOR G.
IF(HNRM/GNRM=EPS)51,51,12

SEARCH MINIMUM ALONG JIRECTION H

SEARCH ALONG H FOR POSITIVE DIRECTICNAL DERIVATIVE
FY=F
ALFA=2,.,*(EST=F)/DY
AM30A=1,

USE ESTIMATE FOR STEPSIZE ONLY IF IT IS POSITIvE AND LESS THAN
1. OTHERWISE TAKE 1. AS STEPSIZE

IF(ALFA)15,15,13

IF(ALFA=AMBDA) 14,15,15

AMBOA=ALFA

ALFA=0,

SAVE FUNCTION AND OERIVATIVE VALUES FOR OLD ARGUMENT
FX=FY
OX=3Y

STEP ARGUMENT ALONG H
po 17 I=1,N
X{IV=X{(I)+AMBODA*H(T)

COMFPUTE FUNCTION VALUE AND GRADIENT FOR NCW ARGUMENT
CALL FUNCT(NsX4F,4G)
FY=F

COMPUTE DIRECTIONAL DERIVATIVE DY FOR NEW ARGUMENT. TERMINATE
SEARCH, IF DY IS POSITIVE, IF QY IS ZERQ THE MINIMUM IS FOUND
DY:B.
00 18 I=14N
OY=0Y+G(I)*H(I)
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SUEROUTINE FMFP

IF(3Y)13,36,22

c
c TERMINATE SEARCH ALSO IF THE FUNCTION VALUE INDICATES THAT
C A MINIMUM HAS BEEN PASSED
179 19 IF(FY=FX)20,22,22
c
c REPCAT SEARCH AND DOUBLE STEPSIZE FOR FURTHER SEARCHES
20 AMBOA=AMBOA#ALFA
o ALFA=AMBDA
175 c END OF SEARCH LQOP
c
c TERMINATE IF THE CHANGE IN ARGUMENT GETS VERY LARGE
IF (HNRM®AMBDA-1,E10) 16,16, 21
c
180 c LINEAR SEARCH TECHNIQUE INDICATES THAT NO MINIMUM EXISTS
21 IER=2
RE TURN
c
c INTERPOLATE CUBICALLY IN THE INTERVAL DEFINED 3Y THE SEARCH
185 c ABOVE AND COMPUTE THE ARGUMENT X FOR WHICH THE INTERPOLATION
c PULYNOMIAL IS MINIMIZED

22 T=10,
23 IF(AMBDAI24+36,24
24 =3, (FX=FY)/7AM30A+0X+0Y
198 ALFA=AMAXL (ABS{(2),ABS(DX), ABS(DY))
ODALFA=72/ALFA
UALFA=DALFA*CALFA-DX/ALFA*QOY/ALFA
IF(DALFA)S1,425,25
25 W=ALFA®*SQRT (DALFA)
195 ALFA=(DY+WN=-Z)*AMBOA/ (DY +2,*W=0X)
XM = 0,
00 255 I = 1, N
XN = (T = ALFA ) * H(I) 7 X(I)
IF ( ABS( XN ) +6Te XM ) XM = ABS( XN )
200 255 CONTINUE
IF ( XM LT+ EPS ) GO TO 36
G0 26 I=t,N
26 X(I)=X(I)*(T-ALFA)*H(I)
205 TERMINATE, IF THE VALUE OF THE ACTUAL FUNCTION AT X IS LESS
THAN THE FUNCTION VALUES AT THE INTERVAL ENOS. CTHERWISE REDUCE
THE INTERVAL BY CHOOSING ONE END=-POINT EQUAL TO X AND REPEAT
THE INTERPOLATION. WHICH END-POINT IS CHOOSEN CEPENDS ON THE
VALUE OF THE FUNCTION ANO ITS GRAUIENT AT X

OOOOO0O0O0

210
CALL FUNCT (NeX+F,G)
IF(F-FXx)27,27,28
27 IF(F=-FY)36,36,28
28 OALFA=0,
215 D0 29 I=i,N
29 OALFA=CALFA+GIII*H(])
IF(DALFA)30,33,33
30 IF(F-FX)32,31,33
31 IF(OX=DALFA)32,36,32
220 32 FX=F
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230

235

240

245

250

255
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270

SUZRGUTINE

e NeNe!

[eNe]

OO0

FMFP.

33
34
3c

36

37

38

33

40

L1

62

43

Gl

45
Lb

Ox=JALFA
T=ALFA

AM30A=ALFA

GU TU 23

IF(FY=F)35, 360,35
IF(OY-DALFA)35,36,35
FY=F

DY=DALFA
AM3IDA=zAMBDA-ALFA

Go T0 22

COMPUTE DIFFERENCE VECTGORS GF ARGUMENT AND GRAOIENT FROM
THWO CONSECUTIVE ITERATIONS

DO 37 J=1,4N

K=N+J

HIKY=G(JI=H (K]

KEN+K

HIK)=X1JD)=H(K)

TERMINATE, IF FUNCTION HAS NOT DECREASED DURING LAST ITERATION
IF(OLOF-F+ZPS)51, 38,38

TEST LENGTH OF ARGUMENT DIFFERENCE VECTOR AND JIRECTION VECTOR
IF AT LEAST N ITERATIONS HAVE BEEN EXECUTED. TERMINATE, IF
BOTH ARE LESS THAN EPS

1ER=0

IF(KQUNT=N)L2,39,33

T=0.

Z=0'

20 +0 J=1QN

=N+ J

W=H{K)

K=K #N

T=T+ABS(H(K))

Z=72¢W*H (K)

IF(HNRM=EPSILL 41,42

IF(T=-EPS)5645€,42

TERMINATE. IF NUMBER OF ITERATIONS WOULD EXCEED LIMIT
IFIKOUNT=-LIMIT)&3,50,50

PREPARE UFDATING OF MATRIX H
ALFA=D.
DO &7 J=1,N
K=J+N3
W=l
OC 46 L=1,N
KL=N¢L
WzW+H(KL)I*H(K)
IFIL=-J)ebeuSy45
K=K #N=-L
GO TO U6
K=K+t
CONTINUE
KN+ J
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SUZFOUTINE FMFR

ALFAzALFA+W*H (X))
b7 H(J) =W

REPEAT SEAFCH IN DIRECTION CF STEEPEST DESCENT IF RESULTS
ARE NOT SATISFACTORY
IF(Z*ALFA)+8,1,48

OO0

280

oo

UFCATE MATRIX H

43 K=N31

285 00 «9 L=1,N
KL=N2+L
DO «9 J=L4N
NJ=N2+J
HIKIsHIK)IHHKLI*H (NS Z7Z-HILY *H UV /ALFA

290 49 Kz=K#1i

GO T0 5

ENDO OF ITERATION LOOP

OO0

NO CONVERGENCE AFTER LIMIT ITERATIOAS
295 50 IER=1
IF { GNRM - EPS ) 554 55, 56

c RESTORE OLD VALUES OF FUNCTION AND ARGUMENTS
51 00 52 J=1,N
300 K=N2+J
52 X(J)=H(K)
CALL FUNCT{NyX+F,G)

REFEAT SEARCH IN OIRECTION OF STEEFEST DESCENT IF OERIVATIVE
FAILS 70 BE SUFFICIENTLY SMALL
IF(GNRM=EPS)55455,53

305

oo (o NN el

TEST FOR REPEATED FAILJRE OF ITERATION
53 IFLIER)S6954,54
310 54 lER=-1
GO TO 1
55 LER=0
56 RETURN
END
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D. Subroutine FUNB

When a prospective minimum point reaches the boundary,
it is constrained to remain on the boundary. This requires
that the (x,y) coordinates be exchanged for an angle
coordinate, 6 (azimuth of the point concerned), and the
derivative with respect to & replaces the derivatives with
respect to x and y. This is done by FUNB which calls FUNCT
and modifies the derivatives from it so that they are directed

tangentially to the boundary.
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CHANGES POLAR COORDINATES
TO CARTESIAN COORDINATES

GETS FUNCTION AND GRADIENT FROM FUNCT

CHANGES GRADIENT IN CARTESIAN
COORDINATES TO GRADIENT IN AZIMUTH

FIGURE V-3

ABBREVIATED FLOW CHART FOR FUNB
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*DECK FUN3

C
C

A

SUARCUTINE FUNB( I, AN
TG CONVERT FUNCT( Ny X

CCMMON /7 BLKY1 7/ NSTN,
s XCy YC4, Ry IBUY(20)
COMMON /7 Q 7/ IC, IQ
OIMcNSION x(2), G(?),
X(1) = XC ¢ R * COS( A
X{2) = YC ¢ R * SIN(AN
CALL FUNCT( 24 X9 Fy4 G
G(1) = ~G2¢(1y * ( Xx(2)
RETURN
END
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E. Subroutine FUNCT
Subroutine FUNCT(N,X,F,G) is used by FMFP to get the

function value and its partial derivatives at the point X(I),

I=1, N, where N is the number of independent variables X(I)
that are the arguments of the function, F. The function

value is scalar and is returned in F. Its partial derivatives
with respect to X(I) are returned in the gradient vector

G(I), I=1, N.

The function value and its partial derivatives are
evaluated using the subroutine CORFUN (g.v.) from the proper
values/functions of the correlation coefficient at discrete
points and from the field of pollution concentration
variance W(I,J), I,J=1, 9, which is available in INT2D.
via COMMON/BLK2/.

The computation process is carried out on the following
basis. Let aij be the elements of the correlation coefficient
matrix for station locations i, j; let g5 be the correlation
coefficient of pollution concentration between stations i
and the point (xo,yo), the starting point for the minimization
procedure (or some point during the search for the minimum) ;
let 02 be the variance of pollution concentration at (xo,yo).
The least square error of estimate of pollution concentration
at (xo,yo) from linear regression already located stations i,

at (Xi’yi)’ is given by

F= e?= 02(1— PIEDS qiaquj) (1)
ij
which is the function value required. Its partial derivatives

are given by
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G(1) =2e/3x = 20(30/3x) (L - £ Sg,a° g )

i3

- 20% % 3 g;a) (3g,/3x%) (2)

i
G(2) = ae?/dy = 20(d0/0y) (1 - ¥ Tg.a* g )
i

- 2 29; al](ag /3y) (3)

i)
where alj are the elements of the inverse of the matrix

The correlation coefficient function obtained from
CORFUN is such that if c(x,y:&,n) represents the correlation
between pollution concentrations at (x,y) and (£,n), then
the limit for & » x, n > y is not 1, but a value somewhat
less than 1 (a jump discontinuity at £=x, n=y). This means

that the correlation function is represented in the form
C(x,yi&,n) = C*(x,y;&,n) + A(x,y)6(x,¥y;&,n) (4)

where C* (x,y:;%&,n) is the continuous part of the correlation
coefficient function, A(x,y) is the amount of the jump
discontinuity, §(x,y:;%,n) is the two-dimensional Dirac function
which is zero if x # £, v # n and is 1 at x = §, y = n. Thus,
the limit for E + x,n >y of C*¥(x,y;&,n) exists and is
C*(x,Y:ix,y) = C . In the limit sense C(x,y:&,n) ~ C but

the actual value of C(x,y:ix,y) is C + A(x,y). ThlS means
that in (1) the terms of 95 have thlS jump discontinuity

so that g; = g(xi,yi;xo,yo) - Co(xi’Zi) in the limit sense,
but should actually take the value Co(xiyi) + A(xiyi) when

X, = X5 Yo = Y- Thus, F(xo,yo) in the limit sense does

not approach zero when (xo,yo) approaches the location of

an already located pollution concentration observation
station.
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To force the function to zero in such circumstances
the following modified form of the error of estimate (1)

was used. Let Fg be the value computed from

Then
_ 2 _ 2
F=o0 (FO A/Fl)

will be zero when the point (xo,yo) approaches an already

located station.

In lines 17-38 the matrix {aij} is setzup and inverted.
The terms g; are computed in lines 39-45, ¢° is obtained on
line 48, the error variance on line 55 and the value of F
on line 62. 1If only the function value is required, IC = 1,
and the rest of the subroutine is skipped. When derivatives
are required, the derivative of the variance of pollution
concentration is computed in lines 69-76, the correlation
coefficient derivatives are then obtained (77-83) and the

remaining terms of the gradient vector are added (78-90).

When diagnostics have been returned by any of the sub-
routines, their sense is printed (lines 91-106). Since the
coordinates of already located stations remain fixed{.pro-
vision is made in IQ to hold the values of matrix {a*J} (IQ0 = 2)
during a given minimization, but to renew them (IQ = 1) when

a new minimization is started.
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GETS CORRELATION COEFFICIENTS FOR STATION PAIRS
TO FORM MATRIX OF COEFFICIENTS VIA CORFUN

'

GETS INVERSE OF MATRIX

v

GETS CORRELATION COEFFICIENTS FOR
NON—HOMOGENEOUS TERMS

'

FINDS ERROR OF ESTIMATE ( VALUE OF FUNCT }

NEED
DERIVATIVES —J
?

GETS CORRELATION
COEFFICIENT
DERIVATIVES VIA CORFUN

I

COMPUTES FUNCTION
DERIVATIVES

FIGURE V-4

ABBREVIATED FLOW CHART OF FUNCT.
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*DECK FUNCT

OOOOOOOO00O0

34

ao &

36

10

’

SUBROUTINE FUNCT( Ny Xo Fy G}

TO COMPUTE THE FUNCTIGON TO BE MINIMIZED

N = NOes OF VARTABLES IN ARGUMENTt N = 2

XUtI»e I = 19 No ARGUMENT

F = FUNCTION VALUE ( SCALAR )

G(Ily I = 1ty Ny, GRAQIENY OF FUNCTION

IC, CONTROL? 1 = GET F ONLY, 2 = GET F AND G(I)

I0 = CONTROL, 1 = 00 WHOLE THING, 2 = USE OLD APAM, AA, AINV.
SINGE BASIC STATION LGCATIQONS ARE NOT CHANGED.

NG PENALTY FUNCTION INVOLVED

COMMON / BLK1 / NSTN, NBDY, NTR, XS(30), YS{30), ITRI(SC,I)
y XCy YC, R, IBDY(20)
COMMON 7 Q ¢ IC, 1@
DIMENSION G(2), AINV(30,30), GG(30), OGOX(30), OGOY(30), AA(30,30)
DIMENSION X (1)
X0 = XxX(1)
Yo = xX(29
GETS CORRELATION COEFFICIENT ARRAYS
G0 71O ¢ 30, 32 ), IQ
00 6 1 = 1, NSTN

XM = XS{I}
YM = ¥YS(I)
00 & =1, 1
X1 = XS(J}
Y1 = vS(J)

CALL CORFUNI( XM, YM, Xi, Yi, COR, DCDX, DCDY, 1D )
IF € ID oNEe O ) GO TO 102

AA(I.+J) = COR

IF ¢ I «EQs J ) AA(IWJ) = 1,

CONTINUE

CONTINUE

FILLS OUT CORCOEF MATRIX AND GETS INVERSE, ETC.

DO 8 I = 1, NSTN

J1 = 1 ¢+ 1

g0 8 J = Ji, NSTN

AA(T Jd) = AALJ,T])

CALL MATINV( AA, AINVs NSTN, &0 )

GET NONHOMOGENEQUS TERMS

DO 36 I = L, NSTN

XM = XS(I)

YM = YS(I)

CALL CORFUN( XM, Y™, X0, Y0, COR, 0COX, OGDY, 10 )
IF  TI0 «NE« Q@ ) GO TO 102

GG(I) = COR

CALL INT2D( x0, YO, VAL, ID )

IF ( I0 «NEe 0 ) GU TO 104

vSQ = VAL * VAL

COMPUTES ERROR OF ESTIMATE AND ASSIGNS NEGATIVE SIGN SINCE
SUIRQUTINE FMFP GOES FOR MIN AND WE WANT MAX

SUM = 0.

DO 10 I = 1, NSTN

00 10 4 = 1, NSTN

SUM = SUM ¢ GG(I) * AINVII.J) * GG(J)
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75

¢0

Je

Ch

a5

103

10r5

110

TUROUT ING

11

500

22

C
200
C
102
1002

*

104
1004

¥

106

1006

r's

330

FUNCT

1. SUM
IF ( ERR LT,
CCONT INUE

CaLlL CORFUNI(
A 1. = COR
Fg SQART( ERR )

IF ( FO £Qe 8. ) F
IF ( F3 oNce 0. ) F -ySQ * ( FO - A /7 FQ
PRINT S00, ERR, CJO%y Ay FO, F
FLRIMAT (5X,*F0 = *,E13.5, * COR
) = *,E13.5,% F1 - FO *,£13.,5)
IF { IC +EQe 1 ) GO TO 200
_STIMATES DERIVATIVES USING
WEIGHT FUNCTION

X1 X0 + 1,
Y1 Yo + 1,
CALL INT20¢
IF { ID ohE,

SR

Jo ) GU TO 100

x0, Y0, x0, Y0, COR, OCLX, OCCY, I3 )

0o

)y #r2

=

*3213.5,* A *,213.5, * SQART(FO

1 UNIT INCREMENT ON THE

X1, Y0, VX, ID
0 )Y GG TO 104
CALL INT2CU( X0, Y1, VY, I0 )

IF ( IC «NEw O ) GO TO 13%

G(1) = =2, % VAL * ( vX = vAL ) *
6(2) “2. * VAL * ( vY - vAL ) *
uyC 22 I = 1, NSIN
XM XSt

YM YsStI)

CALL CORFuUNC XM,
IF ( ID oNEWs 8 )
CGOX(I) = agCCX
uGoY (I} ocoy
SuMt Sum2
C0 24 I 1, NSTN
00 24 J 1, NSTN
Syt SUML + GGULI)
SuM2 SUM2 + GG(I)
G(1) G(1) ¢+ 2. * v3QG * SuMmt

G(2} 6G12) + 2. * Vv3Q * SUM2

THESE GRADIENT COMPNENTS HAVE SIGN REVYERSEC TO CORRESPCOND TO F.
RETURN

DIAGNOSTICS °PRINT QUTS

FRINT 1002, ID
FORMAT (* COORZINATE
FUNCT*)

GO TO 30¢

PRINY 1004, ID
FORMAT (* COCRDINATE
£ FUNCT*)

GG To 300

CONTINUE

PRINT 1006, ERRy X0, YO

FORMAT (* INTERPOLATION ERR *,E1043,* FROM SU3RQUTINE FUNCT
*sF10.50% Y *4F10.3)

£RR = 0O,

GO To 1t

CALL EXIT

END

)

ERR
ERR

YN' XU, YO!
GO TO 102

COR, CCoXs DCOY, ID

0,

* AINV(IW *
* AINV(INJ) ¢

0GoX(J)
3GoY(J)

[ I TR 1]

*yI3,* OUT OF RANGE IN COSRFUN FROM SU3RCUTINE

*y I3, * OUT OF RANGE IN INT20 FROM SU3ROUTIN

v

AT X
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F. Subroutine CORFUN
Subroutine CORFUN is used to determine the correlation

coefficient relating pollution concentration at two arbitrary

points neither of which need be a point of the 9 x 9 grid.

The technique used is that of a quadratic interpolation pro-
cedure based on the description of the correlation function
in terms of its proper functions and values. If the proper
values are Xi' i=1l, ..., k, (A1>A2>...>Ak) and the proper
functions corresponding thereto are ¢i(x,y), then the correlation
function may be expressed in the form
k
K(x,y:E,m) = 5 A;6;(x,¥)¢; (E,n) (1)
i=1
where (x,y) and (&,n) are the points between which pollution
concentration is being correlated. The value of k is that
of the statistically significant proper values/functions.
The proper functions are known only at the points of a 9 x 9
square grid of points (10 km separation). The values of
¢(x,y) and ¢(&,n) are found by means of a simple bivariate

quadratic interpolation procedure.

Had the correlation coefficient function itself been
used, K(x,y;&,n) a four variable interpolation method would
be required and additional constraints imposed to preserve
the basic character of the correlation coefficient function
(such as having a value not exceeding +1 and a "horizontal"
tangent plane at any point x = &, y = n). The use of the
proper functions greatly simplifies the interpolation pro-
cedure and guarantees that the characteristics of the

correlation function are preserved.
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The interpolation algorithm is standard and is given by

M. Abramowitz and I.A. Stequn, Handbook of Mathematical Functions,

U.S. Government Printing Office, Washington, D.C., June 1964,
p. 882, formula 25.2.67. This requires six points for a
rectangular grid in the arrangement of Figure V-5. The

formula is

f(xytph,yy*tak) = qlq-1)f 0’_1/2+p (p-1) f_l’ 0/2+qu1, 1

2 2
+(1+pg-p"-q") £ G*p(P-2q+1) £, o/2+q(q-2p+l) £, /2
which has been rearranged into the form
£ (xy+ph,y +ak) = f0'0+(l/2Hp(f+l,0-f_l,0)+q(f0’+l—f0'_l) +

2 2
+p (f+1'0+f_l,0—2f0'0)+q (f0,+l+f0 l-ZfO,O)]

P

*Palfy o*fh1, 417841, 070,410
In the above, (h,k) are the lengths of the sides of the
rectangular grid, and £, ; are function values at the grid
14
points with units indicated by the subscript and scale factors
h for index i, k for index j. The values of p and g are

determined from p=(x—x0)/h, q=(y—y0)/k.

The arrangement of points in Figure V-5 provides for
values of p and g in the ranges 0<p<0.5, 0<g<0.5. For the
point (p,q) lying in the other quadrants of the rectangle
with corners (0,0), (+1,0), (+1,+1), (0,+1) are shown in
Figure V-6.
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i

| |

| |

(1.0 ® . —- ® (+1,0)
{0,0)
°
(0.-1)
FIGURE V-5

THE ARRANGEMENT OF DATA POINTS FOR 6-POINT QUADRATIC
INTERPOLATION. THE AREA OF MOST ACCEPTABLE VALUES OF

P AND Q ( 0<P<0.5 ) IS THE DOTTED SQUARE WITH { 0,0 ) AS
ITS LOWER LEFT CORNER.

(00 _ _l44-+1) (+1.42) o (012
l"—"l
| (A)] (+1,41) (0.41)
o L-— ° °* ——-9 ° [ - o
(0.0) (+1.0) (+2,0} (Q+1)|(B): (+1.42)  (-1.41) | | (+1.41)
—— L —|
° ° ] ° °
(+1.-1) (0,0) (#1.0) (0,0) (+1.0)
(A) (B) (c)
FIGURE V-6

EQUIVALENT ARRANGEMENTS OF DATA POINTS TO ACCOMMODATE
OTHER VALUES OF P, Q LYING CLOSE TO THE POINT ( XO,YO )
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The partial derivatives of the correlation coefficient

function are obtained by differentiating (1),

k

3K(x,Y:&,n) /08 = X Asds (x,y) [bei(i.n)/agl
i=1
k

0K (x,y:&,n)/9n = X Ai¢i(x,y)[8¢i(€,n)/8<§]
i=1

so that the result requires the differentiating of the proper
functions in terms of which the correlation function is
expressed. Since quadratic interpolation was used, the
formula for the interpolated derivatives comes immediately
from differentiation of the interpolation formula. Thus

3 (xy+ph,y *+ak) /3p= 0.5(f £

+1,0°E-1,0)tP(Ey otE 1 ¢72Eg, o)

+q (f £ £

0,0tt41,+1”

-f )r
+1,0 "0,+1 .

3f (xy+ph,yytak) /3g= 0.5(f £

0,+1 F0,-1) P (Eg otfyy 117F01, 070, +1)

+q (£ f -2f

0,+1%%0,-17%%0,0)

The input points at which the correlation function
values are required in CORFUN(XM,YM,X1,Y1,COR,DCDX,DCDY,ID)
are inserted as XM, YM and X1,Y1l corresponding to (x,y) and
({£,n) above. The function value is output as COR and the
derivatives as DCDX and DCDY. The diagnostic ID has the
value 0 if all is well. It takes on values +1 if XM is out
of range, +2 if YM is out of range, +3 if X1 is out of
range, and +4 if Y1 is out of range. The proper values and
proper functions are obtained from COMMON/BLK2/ as ALAM (K)
and PHI(K,I,J) and have been tabulated at the points with
coordinates XD(I), ¥YD(J). COMMON/Q/ contains a control
parameter IC such that if IC=1 the calculation of derivatives
is omitted and if IC=2 it is included. .
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*DECK CORFUN

e NeoNe]

™ O

10

12

13
16

18
22

24

26

28

30

SUBROUTINE CORFUN( XMy YM, X1, YL, COR, DCOX, DCDY, ID )

GETS CORRELATION FUNCTIONS AND DERIVATIVES WO X1, Y1 FROM TABLES

OF PROPER FUNCTIONS / VALUES.

IC = 0 FOR COORDINATES IN RANGEs ID oNEe 0y OUT OF RANGE
OIMENSION PH1(15), PHM(15), OPH1DX(15}, DPHL1DY(15)

COMMON / BLK2 /7 XD(9), YD(9), PH(15,949), ALAM(15), W(9,9}
CUMMON 7 Q 7 1IC, IQ

PH(L2sI,J) = L2TH PROPER FUNCTION AT X(I), Y (J)

ALAM(L2) = L2TH PROPER VALUE

DATA L2 7 15 ¢/

I =0

IF { XM JEQs X1 +ANDe YM +EQ. Y1 ) &, 6

COR = 1. 8 DCOX = 0. % OCDY = 0,

GO 10 100

ENTRY CORFUN1

XA = XM $ YA = YM $ K = 1

LOCATE LOWER LEFT CORNER OF SQUARE CONTAINING XA, YA

IF { XA LT, XDU(1) ) GO 7O 1%

DO 10 I = 2, 9

IF ¢ XA +LEe. XD(I) ) GO TO 12

CONTINUE

ID =1 ¢2 % (K-=-1)

GO TO 100

IF ( YA +LT. YOC(L) ) GO TO 14

DO 13 J =2, 9

IF { YA JLE. YO(J) ) GO TO 16

CONTINUE

ID=2+¢2°* (K=-=1)

G0 TO 100

IZ2=1-18%J42=4-1

INTERPOLATION ON PRQPER FUNCTIONS

PO= «1 ®* ( XA - XD(IZ2) )

Q0= +1 * ( YA - YD(J42Z) )

DO 34 L =1, L2

IF ( PO.LE. .5 ) 18, 20

IF ( QO0LLE. 5 ) 22, 24

IF ¢ QO0JLEs o5 ) 26, 28

ICASE = 4 S P = PO S8 Q@ = Q0

A = PH(L,I2,J2) § B = PHIL,IZ+14JZ) 3 C = PH(L,IZ=1,42)

D = PHIL o IZ4JZ¢1) $ E = PHIL IZ9Jd2Z2<1) 8 F = PHILIZ#41,JZ+1)
GO TO 30

ICASE = 3 3 P =P0 3 Q =1, - Q0

A 2 PHILsIZ¢JZ%1) 3 B = PHIL IZ+1,0Z¢1) 8§ C = FH(L IZ=1,JZ+1)
0 = PH{L9IZ24JdZ) 3 E = PHILIZ,JZ42) 3 F = PH(L,IZ41,42)
GO TQ 30

ICASE = 28 P =1. - PO 3 Q = Q0

A x PH(L,IZ41,J7) 3 8 = PH(L,IZyJZ) 3 C = PHIL,IZ+2,42)

D = PH({L I2#1,0241) $ E = PHILsIZ%1,02=-1) $ F = PHIL,IZyJZ+1)
60 TO0 39

ICASE = 4 3 P =1, - P03 Q =1, = Q0

A = PH({LI241,07¢1) 3 B = PHILsIZ4JZ+1) 8 C = PH{L,IZ+42,J2+1)
D = PHILsIZ#+1,J7) 3 E = PHIL JZ41,J2+2) $ F = FH(L,1Z,42)
IF ( K oNEse 1 ) PHMILY = PHIL)
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79

[

SUIRCUTINE

CLRFUN

32

34

3¢

338

+0

100

+

+

+

PHI(LY = A & & *
C =2 %4 ) +Q
IF { K «EQ¢ 1 ¥ 6
GG TO ( 34, 32 ),
SGNP = 1, § SGAAD
IF ( ICASE .2Q. 3
IF { ICASE .£0Q. 2
JPH1OX{L) = SGNP
Q* (A ¢+ F =~ 3
JEALIDY (L) = SG6HQ
F*® (A+F -3
CONTINUE
G0 TOo ( 364 38 ),
X = 2
XA = X1 3 YA = v1
GC T0 8
COR = 0, ¢ GCOX =

00 42 L = 1, L2

CCR = COR ¢ FHM({L
GO TO 42, &40 ),
JCOX = DCOCX + FHM
UCDY = DCDY + PHM
CONTINUE

RETURN

Eng

(P
*Q
J 70
IC
= 1.
2 0R
«OR

*

]
O oD e

~

0.

) =+
IC

)
L)
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* {3 ~C) *Q* {2 ) &P *F * (2+
* L C ¢ E =2, % A ))¢ P % Q> (A ¢F=3=11}
36

o ICASE LEQe & ) SGNG = =1,

o ICASZ oEQs & } SGHNFP = -1,

5 * . 3= C ) &P * (B + 0 =24 % A )+

) )

5 ¢ (LD~} +t Q= O ¢ £ =24 % A ) ¢+

1)

$ 0COY = 0.
ALAMIL) * PHI(L)

* ALAMILY * DPHLOXIL)
* ALAM(L) * CPHIOY(L)



G. Subroutine INT2D

This is a two-dimensional interpolation subroutine

using the standard formula

£ = £y,0"P(E1,07Fp,0) ¥ 2y, 17Fg, o) *PA(Ey o~Fg, 171,071, 1)

Four points f0,0’ fo,l’ fl,O’ £ at the corners of a

1,1
rectangle are used. The values p and g are given by

p = (Xa—xl)/(xz—xl), q = (ya-yl)/(yz-yl) where (xa,ya) is the
point at which the value of f is required and (xl,yl),
(xz,yl), (xl,yz), (x2,y2) are the coordinates at the corners
of the rectangle. The surface fitted to the data is a

hyperbolic paraboloid.

In the form INT2D(XA,YA,VAL,IDIOG) the coordinates
(xa,ya) are input as XA, YA, the result is output in
VAL. IDIOG=0 for successful interpolation, =1 for XA
outside the table range, =2 for YA outside the table range.
In this case the table, W(I,J), I,J=1,9, appears in the
COMMON statement. The quantity PH(15,9,9) of the COMMON

statement is not used in this subroutine.
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16

16

18

INT2D

SUBRQUTINE INT2D(XAaYA,VAL,IJIOG)

CUMMON / BLKZ2 7 X(3), v{3), PH{1S,9,9), ALAM{15), W(3,9)
INTERPULLATES VALUE OF W AT XA,YA, FROM VALUES GIVEN AT X,Y
N=9y IDIOG = DIAGNOSTIC, 0=0Ky 1=Xx OUT OF RANGE, 2= Y QU1 (F RANGE
ICTJG=0

J0 10 I=1,9

IF(XALT.X{(I)) GO TQ 1?2

CONTINUE

ICIOG=1

Gu TG 18

30 1« J=1,9

IF(YALLTWY(J)) GO TQ 18

CONTINUE

IDIAG=2

Gu TO 18

12=1 % J2=J

I1=I-¢ ¢ Ji=J=-1

P=(XA=X(I1))/7 (X(I2V=X(I1))}

Q=(YA=Y(JL M)/ (Y J2)=Y (UL D)

W2=W(I2,J1)

W3z=W(I1,J2)

We=W(I2,J2)

VALZWI#P* (HW2=Wi) 4+ Q*(WHI-WHL) +P*Q* I WL -W2=HWI+KL)

RETURN

END
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H. Subroutine MATINV

This is a standard subroutine for matrix inversion.
In MATINV(A,B,N,M) the matrix to be inverted is contained
in A and N gives the number of rows/columns of A. The inverse

of A is returned in B. Both A and B are listed in full
form.
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o

QOO

OO0

[oNeNe]

OO

6

€5
70

30

95
10¢
105

1190
115

MATINVY
SU3RCUTINE MATINV(Ay 4N,y ™M)
SIMINSION AC30,30),R(30430),IPTVATIGA},JFIJOT(+3),C(60)

INITIALIZATION

SC 18 I=ztyN
3C 10 J=1,N

T oo{lydd=AadI,

IPTYOT(TI)=D
JEIVUTLIN=0
3C 115 II=1,k

SEARCH FOR FIVUT ELEZMENT

FIvaT =10,

30 80 I=z1,N

IF(IPIVUT(IN NELD) GO TC 50
00 50 J=1,N

IF(SFIVOT(IY WNELDY GO TO 50
IF(AS(PIVLTILGT.ABS(BII,J)))Y GO T0O 50
PIVAT = B(I,J)

IROW=T

JCoL=J

CCONTINUE

CONTINUE

IFTIOT(IROWY=JCOL
JEIVUT(JCOLY=IROW

RePLACE PIVOT COLUMN WITH ROW MULTIPLIERS

Co 70 I:’.’N
X==3(I,JC0L)
IF(IROWeNESI) GO TOQO 70
X=1,

3{I,JCOLY=X/PIVOT

REJUCE NON PIVOT CulUMNS

00O 90 I=1,N

CtIy = B(IRQOW,I)

J0 115 J=1,N
IF{JCOL.EQ.JY GO To 115
0G 110 I=1,N
IF(IROW.EQ.T) GO TG 106
S{Isd) = BUI,JI+3(T,JCCLI*C(D
60 To 110
8(I,J)=8(I,J)/PIVOT
CONTINUE

CONTINUE

INTZRCHANGE ROWs AND COLUMHNS

J0 130 I=1,N
0C 120 X=1,N
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MATI
MAT L
MAT I
MATT
MATI
MATI
MATT
MATI
MATI
MATIL
MATT
MATT
MATI
MATI
MATI
MATI
MATI
MATI
MATI
MATI
MATI
MAT I
MATI
MATI
MATI
MATT
MATI
MATI
MATTI
MATI
MATI
MATI
MATI
MATI
MATI
MATI
MATI
MATT
MATI
MATT
MATI
MATI
MATI
MATI
MATI
MATT
MATI
MATI
MAT I
MATI
MATT
MATY

2Nn

30

+0

58

3]

70

30

30
120
111
120
138
140
151
160
173
150
1948
200
218
220
230
240
250
260
270
260
2990
300
210
320
330
340
3¢
300
370
3890
334
+00
410
420
+3a
bal
«20
460
L70
450
498
500
510
520
539



SUIRGUTINE

MATINY

140

150

L o= IPINOT ()
Ciky = B(I, L)
0C 130 K=1,N
3{I,k) = C(K)
0C 150 I=1,N
36 140 K=3,N
L = JPIVOT(K)
CikK) = B(L, 1)
3C 150 K=1,4N
BIK,I) = C(K)
Re TURN

END
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I. Subroutine ADDPT (X0,YO)

This subroutine adds the station location with co-

ordinates X0,¥YO0 to the station list and rearranges the list

so that it is in canonical form, i.e., the triangle assignments
include the new point and vertices of all triangles are in
counterclockwise order; if it is a new boundary point it is
listed as such and the number of boundary points incremented
and the counterclockwise ordering of the boundary points is

maintained.

The logic is somewhat involved and many exceptional
cases occur. The subroutine print-out contains many ex-
planatory comments on what is taking place. These should
be sufficient to unravel the situation. Extensive use is
made of subroutines AR2, TRITST, PORDR, and TRIFIX.

One of the basic ideas is to the effect that if XO,YO
is the point P and if I1, I2 and neighboring boundary points
listed in counterclockwise order, then the "area" of the
triangle formed by the ordered points P, I1l, IZ2 will be
"positive" (i.e., P, Il, I2 are in counterclockwise order
around a triangle) for all boundary point pairs Il, 12
(neighboring) if P lies inside the boundary, and will be
"negative" for at least some pair Il, I2 if P is outside
the boundary, and will be "zero" if P lies on Il, I2
(interior or exterior). If the point is clearly interior
to the boundary of the points already located, it is
required then to find the triangle of already located
points within which it lies (or on a side of which it 1lies).
One then subdivides this triangle. 1If the new point lies
outside the boundary of already located points, then additional
triangles are to be formed. The many exceptional cases
require careful handling since experience indicates that

they occur with distressing frequency.
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BOUNDARY (P)

TESTS POINT COORDINATES AGAINST EACH BOUNDARY (P)
SEGMENT VIA AR2 TO FIND IF INSIDE OR OUTSIDE THE

INSIDE

Y

OUTSIDE

IDENTIFY WHICH TRIANGLE CONTAINS

THE NEW POINT VIA TRITST

INSIDE ON SIDE

ADD NEW POINT AND TWO
NEW TRIANGLES TO THE LISTS

CHECK POINT ARRANGEMENTS
VIA PORDR

v

IMPROVE TRIANGLES
VIA TRIFIX

INFERIOR

1S INFE
SIDE INFERIOR OR BOUNDARY
ON BOUNDARY (P)

l

l

FIND OTHER TRIANGLE
WITH THIS SIDE COMMON

LOCATE ADJACENT
BOUNDARY (P) POINTS

'

Y

MAKE FOUR TRIANGLES
OUT OF THESE TWO

FINDS LEFT MOST AND RIGHT MOST
BOUNDARY (P) POINTS "SEEN" FROM
NEW POINT, THERE ARE K SUCH

'

FORMS K-1 NEW TRIANGLES

!

ADDS BOUNDARY POINT

ABBREVIATED FLOW CHART FOR ADDPT

FIGURE V-7
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REASSIGNS BOUNDARY (P)
POINTS AND ADDS ONE

!
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OUT OF ONE AND ADDS
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[oN e Ne]

13

1065

14

20

1470

-

AQJPT
SUARDUTINE ADDPTU X0, YO
ADDS POINY TO AN ARRAY IN STANDARD FORM SO THAT THE STANDARD FORM
IS PRESERVED AND CHECKS TRIANGLE ARRANGEMENTS
CHECKS TRIANGLE ARRANGEMENT SO IT IS +4G00Dy e
COMMON /7 BLK1 / NSTN, NBOYs NTRy XSE30%s YS{I0), ITR(S50,3)
s XCy» YCy, Ry IBDY(20?
INTEGER P
OIMENSION ISIGe20), P(2), IN(2D)
PUTS { X0, YO ) IN XSINSTN¢L1}, YS{NSTHN+)
N1 = NSIN ¢ 1
XS{Nt) = X0
YS{N1} = YO
CHECKS WHETHER ( X0, YO ) IS INSIOE OR QUTSIDE THE 30UNDARY
O 10 I = 1, NBOY
I1 =1 ¢ 1 %8 IF (I .EQs NBOY ) It = 1
CALL AR2(C IeOY(I), I30Y(I1), N1, A, ID }
IF ( I0 JLee 0 ) GO TO 5S4
CONTINUE
ALL VALUES OF ID ARE + S0 IS INSIDE. FIND WHICH TRIANGLE
00 12 1 = 1, NIR
J1 = TTR{(Iy1) 8§ J2 = ITR(IL2) % U3 = 1ITR(I,3)
CALL TRITST( X8, YO, Ji, J2, J3y ICy Ay Py, Q)
IF ( ID 6T« 0 ) GO TO 14
CONTINUE .
POINT IS HOT AN ABSOLUTE INTERIOR POINT. CHECK AGAIN YO SE£€ IF
IS ON AN INTERIOR B8OUNDARY
00 13 I = 1, NTR
Ji = ITR{I,1) % 42 = ITR(I,2} % 43 = ITRE(I,3)
CALL TRITST({ x0, Y0, Ji, J2, 43, 10y Ay, Py Q)
IF ¢ 10 +6Te =7 ) GO TO &
CONTINUE
PRINT 1065
FORMAT (% SEARCH FOR TRIANGLE DID NOYT CONMFIRM THAT NEW PCINY WAS A

*N INTERICR POINT*)

GO TO 126

It =1

IF ( ID «LE. 0O } GG TC 20

HAVE FOUND TRIANGLE WITH ( X0, Y8 )} AS INTERIOR POINT
ADO3S TWO MORE TRIANGLES

IA = ITR(IT,1) 8 I8 = ITR(IT,2) % IC = ITR(IT,I)
ITR(IT,3) = Nt

I = NTR ¢ 1

ITR(I441) = IB & ITRC(IG,2Y = IC § YITR{I&,3} = Ni

Ie = JTb + 1

ITR(I4,1) = IC § ITR(IG,2) = IA % ITRU(T&y3) = N1

JOB DONE. THWO TRIANGLES, ONE POINT, NO BDRY PTS ADDED
60 TO 12¢

NOW TAKE CARE OF EXCEPTIONAL CASES

IF ¢ ID LY. 0 ) GO 70 22

HAVE A DEGENERATE TRIANGLE

PRINT 1878, I, Ji, J2, 43

FORMAY (* TRIANGLE *,I5,* VERTICES®*,31I5,* IS A DEGENERATE®™)
GC TO 126 ’

THE POINT ( X0, Y8 ) IS ON A SIDE OF THE TRIANGLE
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SUGRJIUTINE  ACCFT

C FIN3 THE OTHER TRIANGLL WITH THIS SIOE ANU MAJc « OF 2.
22 Iy = -I0
(JO TO ( 2‘0; 289 37| 369 ‘009 ‘02 ’q ID
- Ia = J1 8 I8 = J3 5 IC = J2 § GO TC ua
€3 23 IA = J3 § I8 = J1 3 IC = J2 $ GO 7O uu
32 IA = 42 3 I8 = 41 3 IC = J3 3 GO TO a4
386 IA = J1 $ I8 = J2 % IC = U3 8§ GO TQ b4
“8 IA = J3 8 IR = J2 8 IC = J1 5 GO TO «4
«2 IA = 42 ¢ I8 = 43 § IC = J41
€5 G POINT ( X0, Y0 ) LIES ON SIOE TA, I8, FINC ANCTHER TRIANGLE WITH
C THIS SIDE
i 00 48 I = 1, NTR

IF ( I «€QGs IT ) GG TO 438
00 «€ J =1, 3
70 Ji = J + 1 8 IF ( J .EN 3 ) J1 =1
IF ¢ IA LEQ. ITR{I,J) AND. I3 JEQ. ITR(I,J1) )} GO TO 50
IF ¢ I8 «EQe ITR(I,J} ANJse IA +EG. ITR(I,J1} ) GO TO 50
4“6 CONTINUE ‘

8 CONTINUE
75 c THE TRIANGLE MUST HAVE SIDE IA, I8 ON THE B0UNDARY
G0 TO 85
0 J2 = J + 2 § IF t J2 +6Te 3 ) J2 = J2 - 3
IE = ITR(I,J2) % ITA =1
c NOW MAKES FOQUR OUT OF THWO
&0 ITRUITy1) = IC § ITR(IT,2) = IA 8 ITR(IT,3) = N1

ITR(ITA,1) = IA $ ITR(ITA,2y = IE $ ITR{ITA,3) = NI
N2 = NTR + 1§

ITRINZ2y1) = IB % ITRIN242) = IC 8§ ITRIN2,3) = N1
N2 = N2 + 1
RS ITRINZ,1) = IE 3 ITRIN2,2) = IB 3 ITR(MN2,3) = M
C JO3 DONE, TWO TRIANGLES, ONE PUINT, NO BORY PTS ADD:ZD
60 TO 120
C POINT IS QUTSIDE QR ON THE 30QUNDARY OR ON
C AN EXTENSION OF A 30UNGARY SIDE
g0 C CHECKS SIGN FOR ORUER QF POINTS I1, I2, N1
c THIS + IF CCy - IF CHM
S4 30 56 I = 1y NBDY
It = I ¢« 1 8% IF (I £Qs NBOY ) I1 =1
56 CALL AR2( IBDY(I), IBLY(I1), N1, A, ISIG(I) )
95 c +1 IF N1 DOES NOT ,4SEEes, SIDE It, I2, =1 IF IT DOES,
» 0 IF N1 LIES ON I1, I2 OR I1, I2 EXT&NDED
C CHECK FOR EXCEPTIONAL CASES
J0 58 I = 1, NBOY
IF ( ISIG(I) .NE« 0 ) GO TO 58
100 IM=1-11%IF (I EQs 1 ¥ IM = NBOY
IP =1 ¢#1 % IF (1 .EQs NBDY ) IP = 1
IF ( ( ISIGU(IM) «2Qe 1 ) +AND. ( ISIGUIP) .2Qs 1 ) ) GU TCO 90
GO 7O &0
58 CONTINUE
105 GO 70 62
60 ISIG(IY = 1
C CHECKS QUT LEFT AND RIGHT POINTS 4 4SEEN,, FRCM NEW PJIINT
€2 K =0
00O 66 I = &, N3DY
110 I1 = I +#1 % IF (I EQs NBOY ) I1 =1
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115

1239

125

130

135

140

145

150

1¢5

160

1c5

SU3ROUTINE

ADOPT

ol

€6

3

IF ( ISIGUI) £Q. ISIG(I1) ) 66, £

K = K ¢+ 1

Pk = 11

CUNTINUE

IF { ISIG(P(1) ) .EQ. -1 ) b8, 7C

It P11}

IR P(2)

50 10 72

It P12}

IR Pi{)

IL = FIRST POINT TO LEFT 44SEEN,, FRCM NEW POINT
R = LAST POINT TO RIGHT 4 4SEEN,s FROM NEW POINT
NUMBER OF POINTS ,43EZNys FRCM NEW POINT

IR - IL + 1

IF ( K «LTe 0 )} K = NBOY ¢ X

IF ( K «LEe 1) 7‘0, 76

I1 = I8DY(IL) § 12 = IBDYLIR)

PRINT 1075, It, I2, XD, YO

FORMAT (* LEFT AND RIGHT BOUNDARY POINTS*/2I5/%ARE SEEN FROM*/
2F10.5)

LT I I T I [}

I
K
K

GC To 126

THER: ARE K = 1 NEW TRIANGLES

IZ = K= 1 3 N2 = NTR

D0 78 I = 1, I2

N2 = N2 ¢ 1§

Jt = IL ¢ I - 1 8% If ( J1 .GT. NBDY ) J1 = J1 - NBDY
J2 = Ji + 1+ ¢ IF ( J2 .GT. N3OY ) J2 = J2 = NB(Y
ITRINZ2,1) = IBDY{J2)

ITRINZ,2) = IEDY(J1)

ITR(NZ+3) = N1t

REASSIGNS BOUNDARY POINTS

PUTS OLD BOUNDARY POIANTS IN HOLD

0O 82 I = 1,4 NBODY

IH(I) = IBOY(I)

ASSIGNS I = 1 TO NEW POINT

IBDY{1) = N1

I2 = NBDY ¢+ 3 - K

DO 34 I = 2y I2

It = IR ¢+ 1 - 2 % IF ( I1 GTe NOCY ) It = I1 - NBDY
IBOY(I) = IH(I1)

60 Tg 122

NEW POINT UN INTERIQR OF 3 O0UNDARY SEGMENT

CAStS WHERE SEGMeNT NOT SPECIFIED

00 86 I = 1, NBDY

It =T + 1 % IF (I «€Qe NBDY ) Il =1

IF ( IA .EQes IBOY(I) +AND. IB .EQe IBCY(I1) } GO TO 96
IF ( IB +EQe. ISDYU(I}) .AND. IA .EQ. IBGY(I1) ) GO TO 88
CONTINUE

PRINT 1080, X0, YO

FCRMAT (* FAILS TO LOCATE BOUNDARY SEGMENT CONTAINING FOINT®/
2F10.5)

GC 70 126

IA = I80Y(I) & IB = IBDY(I1) 3 GO TO 96
LOOKS FOR TRIANGLE ANO SU3DIVIDES
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SUSRJUTINE ADDPT

94 KZ = I8dv(IP)
. I1 = I - 1 ¢ IF ( I1 EQ. 0 ) It = 1
w1 = IBOY(I1)
BC 92 I = 1, NTR
1780 DO 32 4 = 1, 3
J1 = J v 1 8 IF { 4 £Q 3 ) Jt =

g2 CONTINUE

175 PRINT 1085, k1, k2
1035 FORMAT(* FAILS TO LOGATE TRIANGLE WITHK SEGMENT*/21I5/* ON EXTERIQK
*30UNDARY*)
GG TO 126
S4 J2 = J ¢ 2 3 IF L J2 6GTe 3 ) 42 = 42 - 3
180 IT =

I
IA ITRUITJd) 5 Id = ITR(UIT,J1) § IC = ITRCUIT,J2)
96 ITR{IT41) = IC 8 ITR(IT,2) = TIA 8 ITRUIT,3) = M1
IT = NTR ¢+ 1
ITR(ITe1) = I8 $ ITR(IT,2) = IC % ITR(IT,3) = NI
185 K = 2
GO TQ 8¢
120 NSTN = NSTN + 1
NTR = NTR + 2
GO TQ 124
130 122 NSTN = NSTN +
NTR = NTR ¢
NBDY = NBLCY
124 CALL PORDR
CALL TRIFIX
195 200 RETURN
126 PRINT 10930
10390 FORMAT (* ABCOVE DIAGNOSTICS FROM SUBROUTINE ADDPT*)
RETURN
END

+ X
W
1
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J. Subroutine TRIFIX

This subroutine readjusts the triangle assignments

to maintain a network of non-overlapping triangles with
observation points at their vertices to prevent the occurrence
of triangles of unnecessarily small area. It finds triangle
pairs with a common side. When such a pair is located, they
are combined into a quadrilateral. This quadrilateral may

be divided into two ways. The triangle subdivision is
prefered that has the shorter of the two diagonals of the

quadrilateral as the common side (Figure V-8).

The quadrilateral formed by two triangles with a common
side may be re-entrant. 1In this case the second diagonal
lies "outside" the quadrilateral and the subdivision is
accepted as is (line 36), see Figure V-9. The case is
identified by the fact that when the outside diagonal is
used, one of the triangle areas resulting is larger than

the sum of the areas of the original triangle pairs.

When the re-entrant gquadrilateral test fails but still
the area of the quadrilateral obtained by the second sub-
division exceeds that obtained by the first subdivision by
more than 0.01% a diagnostic is printed. This test is
required to account for the effect of roundoff errors in the

computer.
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FIGURE V-8

THE TWO POSSIBLE SUBDIVISIONS OF QUADRILATERAL ABCD INTO
TWO TRIANGLES. ON THE LEFT, THE SUBDIVISION ABC, ACD RESULTS
IN TRIANGLES WITH A LARGER COMMON SIDE AC WHILE THE
SUBDIVISION ABD.BCD ON THE RIGHT RESULTS IN A SMALLER
COMMON SIDE BD AND IS THEREFORE PREFERRED.

FIGURE V-9

THE REENTRANT QUADRILATERAL CASE. THE ORIGINAL TRIANGLES
ARE ABC AND ACD. THE SECOND DIAGONAL BD LIES " OUTSIDE "
THE QUADRILATERAL AND IS REJECTED.
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SUSRCUTINE TRIFIX
CHECKS THE TRIANGLE 3SUBDIVISION AND TRYS TO IMFROVE THE
TRIANGLE ARRANGEMENTS, FINDOS TRIANGLE PAIRS WITH COMMCON SIDE AND
TESTS THE JTAGONALS OF THE QUADRILATERAL TO ScE IF MORE NEARLY
EQUAL AREA SUBDIVISION IS POSSIBLE
COMMON 7 BLK1 / NSTN, NBDY, NTRs XS{30), ¥YS{30), ITR(50,3)
» XCy YC, R, I80Y(20)
DIMENSION X1(3), X2{(3), Y1(3), Y2(3)
I2 = NTR - 1

Kt =1 ¢+ 12

DO 20 X = X1, NTR

DC 16 J = 1, 3

J1 = J $J2 = J + 1 BIF ( J JEQe 3 42 =01

JA = ITRIILJ1) § J8 = ITR(I,J2)

00 te L = 1, 3

t1 = L $L2 =L + 1 3 IF (L EQe 3 ) L2 =1

LA = ITRIK,L1) 3 L = ITRI(K,L2)

IF ( ( JA JEQe LA ) +ANDe ( JB +EQGs LB ¥} ) 2,

ISWw = 1 % GO 70 8
IF € { JA +EQ. LB ) «AND. ( JB +EQ. LAY ) B, 16
ISW = 2

J3 = J2 ¢ 1 3 IF ¢ U3 «GT. 3y J3 =1

LI = L2 ¢ 1 3 IF { L3 «6Ts 3 ) L3I =1

JA = ITR(I,J1) ¢ JB = ITRII,42) & JC = ITRII,JU3N
LC = ITR(K.L3)

GU TO ¢ 11, 10 ), ISW

LA = ITR(K,L2) % LB = ITRIK,L1)
CALL AR2( JA, JB, J4C,» AL, ID1 )
CALL AR2( LA, LB, LCy A2, I02)
CALL AR2( 4B, JC, LC, A3, ID3
CALL ARZ2{ JC, JA, LC, A4, ID& )
AT = AL + A2

TESTS IF QUADRILATERAL REZNTRANT. IF IS CANNOT
OTHERWISE SIMPLY OIVIDE

IF ( ( A3 +GE. AT ) +OR. ( AL .GE. AT ) ) GO TC 20
8T = A3 + A4

IF ¢ ABS( BT ~ AT ) +LT., 0001 * AT ) GO TO 14

00 12 M =1, 3

X1{M4) = XS{ITR(I,M)) & YL (M)
X2(M) XS(ITR(K,M)) $ Y2(M)
CONTINUE

PRINT 1002y I, ¢ ITR(I,M)y X1(M), YiI(M)y, M = 1, 3 ) ,

Ky € ITRIKeM)y X2(M)y Y2(M)y M = 1, 3 )

FORMAT (* THESE TRIANGLES CANNOT BE */2(15,3(I5,2F10.5,5X1/))
PRINT 1001, JA,JByJC,A1,LAWL3,LC,A2,JB3JCsLC,A3+JCyJALLC,AU,AT,BT
FORMAT (3I34E12e%49313,£12¢493139E12e%443134,3E12.4)

GO TO 20

0SQ1 = ( XS(JA) ~ XS{JB) 1**2 + ( YS(JUA) = YS(JB) Y*¥*2

0SA2 = ( XSCJC) = XS{LC) ) *+#2 ¢ ( YSUJC) =~ YS(LC) )**2

IF ( DSQt +LEes DSQ2 ) GG TO 20

SUBJIVISION IMPROVED IF DIAGONALS EXCHANGED
ITR(I1) = JC 3 ITR(IL2) = £LC 3 ITR(I,L3) =L
ITRIKy1) = JC 3 ITRIK,2) = JA $§ ITRIK,.3) = L

YSUITR(I,M))
YSCITRIKy M)

B
c
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SUBKOUTINE TRIFIX

16 CONTINUE

20 CONTINUE
RETURN
END
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K. Subroutine PORDR
This subroutine checks the arrangement of the vertex

points for counterclockwise ordering and rearranges the

ordering if a clockwise ordering is found.
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*0ECK

c
C

PGROR

SUBROUTINE PQORIR

CHZCKS THE ARRANGEMENT QF POINTS ARGUND THZ TRIANGLES TO
ASSURE CGC ORCERING

COMMON 7/ BLKY1 7 NSTN, NB8DY, NTky XS5(30), YS(30), ITR(50,3)
O « I = 1, NTR

Jt = ITRUI,1) 3 42 = ITRtI,2) 3 J3 = ITRII,3)

CALL AR211 J1, J2s J43s A, IDIOG )

IF ( I0I0G +EQs 1 ) GO TO &

ITRUIL1Y = J2 § ITR(I,2) = Ui

CONTINUE

RETURN

END
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L. Subroutine AR2

This subroutine computes twice the area of the triangle
with vertices at the points with indices I,J,K and outputs
this as A with a diagnostic IDIOG which takes the value of
+1 if I,J,K in counterclockwise order about the triangle,

-1 if in clockwise order, and 0 if A=0.
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*0ECK AR2

SUSROUTINE AR2( I, Jsy ny A, IDIOG )

COMPUTES TWICE THE AREA OF THE TRIANGLE WITH STATIONS I, J, Kk A4S
VERTICES., RETURNS ASSCLUTE VALUE AT A AND SIGM IN I_ICG AS ¢1 QR
-1, IDIOG = 41 MEANS I, J, KX IN CC ORDER.

COMMUON / BLK1 7/ NSTN, NBDOY, NTR, XS(30), YS(30), ITR(50,3)

» » XCy YCy R, IBOY(20)

OO0

X1 = XS{I) 8 X2 = XS(J) § X3 = XS(K}

Y1 = ¥YS{I) ¢ Y2 = ¥YS(Y)Y % ¥Y3 = YS(K)

A= (X2 = X1 ) * { Y3 =~ YL ) -~ ( X3 - X1} * (Y2~ YL
ICIOG = SIGN( 1s,y A )

IF ¢ A «EQ. DO, ) IDIOG = 0.

A = ABSC A )

RETUKN

£N0
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M. Subroutine TRITST

This subroutine determines Lne location of the point
input, P, with cocrdinates X, ¥ wiihk respect to a triangle
with vertices at the points J1, 72, J3 where these are the
index numbers for the coordinates of an already lccated
observation point. The output consists of a diagnostic
(IDIOG), and twice the areas of the following triangles: A for
J1,32,33, p for J1i,pP,J3, Q for J1,J2,P. The diagnostic
indicates as follows:

IDIOG = 2 , J1,J32,33 in counterclockwisec ordef, (X,Y) inside
1 , """ " clockwise " " "
, " " " in straight line

-1,-2 , P lies on J1,J3

-3,-4 , " " " J1,32

-5,-6 , " " " Jz2,J3

-7,-8 , " is outside opposite J2

-9,-10 , " " " " J3

-11,-12, " " " " J1
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*DeCK TRITSTY

SUBROUTINE TRITST( X, Y, J1, 42y J3, IDIGG, A, P, Q)

C TESTS WHERE F(X,Y) LIES WO VERTICES Ji, J2, J3.
c ICIOG = EVEN, VERTICES IN CC OROER, = QDD FOR CW OFDER
c IDIOG = 0, VERTICES IN STRAIGHY LINE
C IDIOG = 1y 29 (XeY) INSIDE TRIANGLE? = =1, =2, ON J1l, J3: = -3,
C “4y ON J1y J2%? = =54 =64 ON 42, J3% = =7y -8, QUTSILCE CPPOSITE
c J23 = =9, ~-10, QUTSIOE OPPOSITE J3: = =~-11, =12, QUTSIDE CFF(CSITE
c J1§ A = 2 % AREA QOF J1J2J43, P = 2% AREA J1PJ3, Q = 2 * AREA J1J2P
COMMON / BLK1 / NSTNs NBOY, NTR, XS(30!, YS(30), ITR(50,3)
s 9 XCy YCy Ry IBDY(20)
K =10
X1 = XStEJ1) 3 X2 = X5(J2) & XI = XS(J3)
YL = YS4J1) $ Y2 = ¥YS¢J2) $ Y3 = ¥YS{JI
Al = X2 = X1 $ A2 = X3 - X1 $ A3 = X - X1
B1 = v2 - ¥4 § B2 = Y3 « Y1 §$ 83 =Y - Y1
A = AL * B2 ~ A2 ¥ 51
P = A3 *# B2 -~ B3 * A2
@ = AL ¥ B3 - 31 * A3
IF €t A) 24 12, &
2 K =1
A= =-A8P==-Pp3 Q= -0
4 IF ¢ P ) 20y 14y &
6 IF ¢ Q) 22, 16, 8
8 IF ( A - P -~ Q) 249 184 10
18 IDIOG = 2 = K
GG TO 286
12 IDIQG =
G0 TO 26
i4 IDIOG = =2 + K
IF ¢ Q LY. 0, ) GO TO 20
IF 1t Q «GV., A ) GO TO 24
GO TO 26
16 IBING = =& + K
IF ( P +GTe A ) GO TO 22
60 TO 26
18 IGI0OG = ~6 + K
GO T0 26
290 IDIOG = -8 + K
GO TO 26
22 IDIOG = =10 + K
GO TO 26
24 IDIOG = «~12 ¢ K
26 RETURN
END
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APPENDIX A

Conditions on an Empirical Formula for a Correlation
Coefficient

Before adopting the use of the proper function/proper
value expansion of the correlation coefficients as described
in Chapter III, it was felt that an empirical formula could
be developed that would represent the correlation coefficients
involved. This effort was unsuccessful. At least a part
of the reasons for this lie in the following analysis of the

structure of correlation coefficients or covariances.

An empirical formula to represent a correlation co-
efficient field may not be chosen in a perfectly arbitrary
way even though the expression leads to values that are con-
fined to the range (+1,-1) and has a maximum of +1 at zero
separaticn between the points concerned. There are several side
conditions that the functions must satisfy. They are stated
here in terms of only one independent variable to keep the
notation reasonably simple, but may be extended to two
or three independent variables with no difficulty. We
consider the correlation of a field property, p, at two
or at x and x+£. Thus the correlation

points, x, and x

1 27
coefficient concerned will be written as r(x2,xl), r{x+&,x),

or as r(f;x) all of which will be considered as equivalent.
The usual conditions that must be satisfied are:

1. The correlation coefficient takes on the value +1

when X=X, or at &€=0; i.e., r(xl,xl)=+l, r{x+0,x)=+1,

r(O;x)=+l? On the other hand it is not necessary that the
correlation coefficient be continuous at this point. It
may have a jump discontinuity here. In other words, it may
be that the limit, for §{-+0, may be less than +1,

lim r{&;x)=a, a<l.



2. The value of the correlation coefficient must be
within the range (+1,-1).

3. It must satisfy the symmetry condition r(xz,x1)=

r(xl,xz). This may also be expressed as r (x+£,x)=r(x,x+&)
and also as r(&;x)=r(-§;x+£). This condition is occasionally
overlooked.

4. It must be a positive definite (or at least a non-
negative definite) function. In the case of an homogeneous
field, this implies that its Fourier transform be positive

(or non-negative).

Elementary statistics texts do not usually discuss these
points in detail. The reader is referred to Cramer and Lead-
better (1967), Panchev (1971), and others. Slepian (1962) .
is particularly interesting though it deals principally with .

another subject. Levy (1965) is especially good.

In constructing an empirical formula for a correlation
coefficient, one is tempted to use an expression in the form
r(¢;x)=r(&;a(x),B(x),--~-) where a(x), B(x) are parameters
which in turn are functions of the location of the point x.

To understand what goes on, consider a simple series

expansion of the correlation coefficient function

r(g,x) = 1+A2(x)£2+A3(x)£3+ .o




. where Py has coordinate x and P, is‘ at x+&. The coefficient
A2(x) is negative. If we reverge the roles of Pl and P
then Pl will have coordinate (x+&)-~£ and P2 will be x+&
so that one has r(g,x)=r(-,x+£) for the equality r(P2,P1)=
r(Pl,Pz). Then one must have equality of the two series

2’

l+A2(x)£2+A3(x)£3+ R 1+A2(x+€)£2-A3(x+£)£3+ e

If the coefficients also have valid power series expansion
about x (or £=0), we expand coefficients on the right and

collect terms in ascending powers of & to obtain

2 3 4 _
l+A2€ +A3£ +A4£ =

_ 2 ! 3 " 4
= l+A2£ +(A2-A3)g +(A2/21—A3+A4)£

"t " ! 5
+ (B, /31-Rg/214A,~A)E7+ ...

®

Equating coefficients of like powers of & on each side, then

1
Ay = -Ay + A,

] "
= - {
A A4 A3 + A2/2.

' " n
= - — !
A A, + A A3/2! + A2 /3!

5 5 4

A, = A 5

6 6 A

+ AZ/Z! - A;'/3! + AI¥/4!

It is readily seen that these lead to a system of
equations for the coefficients of the odd order terms in
terms of the derivatives of the even ordered terms, and that



they give no information on the even order terms. If we

write

' mn
. (2n-1)
Aon-1 = 3By g T 3R 4 F .ot aAy

The coefficients a, are given by the system of equations

2al = 1/1!
al/2!+2a2 = 1/3!
a,/41+a,/21+2a, = 1/5!
al/6!+a2/4!+a3/2!+2a4 = 1/7}
a;/(2n-2)!+a,(2n-4) 1+ ... ta _q/21+a, = 1/(2n-1)!

which are easily solved recursively, the first few solutions
are al=l/2!, a2=-l/4!, a3=3/6!, a4=-l7/8!, a5=155/10!, etc.
The general expression for the solution is not immediately
obvious.




Q A stochastic field of property is said to be homogeneous
(in the extended sense) if its statistical parameters are
independent of the location of the point Pl {here, x) with
which the points P2 {here, x+£) are correlated. This means

that the correlation coefficient r{(£;x) is a function of &

alone, r(g), and {(of course) the standard deviations are

also constant.

The fact that the correlation coefficient for a non-
homogeneous process contains odd order terms in its series
expansion does not imply that a function form with odd order
terms necessarily represents a non~homogeneous process.

For example, nearly all simple empirical expressions for a
correlation coefficient are applicable only to an homogeneous
process. The very popular expression r=exp(-|&|/L), L =
scale parameter, can only apply to an homogeneous process.

'\ Thus, if we assume the contrary and let r(xz,x1)=exp(-lx2~xl]/L(xl)),

4 then r(xl,x2)=exp(—}xl-x2]/L(xz)), and since these correlation

coefficients are equal, it follows at once that L(xl)=L(x2)
which means that L is a constant and hence that the process

is homogeneous.
The same kind of analysis may be made for the two point
covariance functions. It is not necessary that the covariance

function have a maximum at the point P1=P2. In the case

of a one-dimensional function one may use
cov(Pz,Pl) = cov(g;x) = cov(x)+Cl(x)€+C2(x)£2 + ——-

and



2
cov(Pl,Pz) = cov(=&;x+&) = Co(x+£)—Cl(x+E)£+C2(x+g)£ + -—-- s

_ [} n 2 nt 3 IV 4
= C0+CO£+C0§ /2!+C0 £ /3!+C0 £ /41+ ...

1 53/3!+ .o

‘E(C1+CiE+CI£2/2!+C

+g2(c2+cég+c;g2/21+ ...)-53(C3+c; + s..) + ...

Now rearranging in terms of powers of ¢,

COV(P11P2) = C0+(C0_C1)€+(C;/2!-C;)52+(C8'/3!_CI/2£+C;_C3)

IV "i "
+ (C0 /4!—Cl /3!+C2/2!—C3

4
+C4)E + ...

Equating coefficients in the first and last of these expressions

since cov(P,,P,) = cov(P,,P,) one obtains the system of
2’71 1772 p
relations ‘
C0 = CO
]
Cl = —Cl+CO
L} ”
C2 = C2-C1+C0/2!
] ” mne
C3 = -C3+C2—Cl/2!+C0 /31!
[ ] 1] . nt . IV )
C4 = C4—C3+C2/2.-Cl /3.+CO /4!




which lead to expressions for the odd order terms as

2C, =C

1 0
11} " "
2C3 = CZ-C1/2!+C0 /3!
_ l_ n " _ IV ' V .
205 = c4 c3/2!+c3 /3! Cl /4.+C0/5.

This system of equations is the same as those obtained for
the terms in the expansion of the correlation coefficient

with the exception that one starts here with C., while before

1
one started with A3 and we have rather general values for
C0 and Cl while in the previous example Al=0 and for any
correlation coefficient A, =1.

0

The point of these exercises is to emphasize the fact
that care must be exercised in selecting an empirical formula
to represent a correlation coefficient function. Otherwise
one may have an expression that cannot represent a correlation
coefficient function. This is particarly the case when the

field concerned is not homogeneous.



APPENDIX B
NOTE ON THE RANK OF A COVARIANCE MATRIX

Let A be the covariance matrix and let X be a data
matrix in which the element xij is the departure from the
mean of the pollutant concentration at station i on day j.
Let there be n stations (i=l, =---, n) and d reporting days
(j=1, ---, d). Then the covariance matrix may be written

in the form
A = XX'/4, X' = transpose of X

so that the element aij is the mean sum of products

d
a.. = (I x'kxjk)/d'

ij k=1 *
and is the covariance of pollutant concentration at stations

i and j. The matrix A is nxn while X is nxd and X' is dxn.

It is a well known theorem that the rank of a matrix
cannot exceed the smaller of the number of rows and the
number of columns. Thus, the rank of X (and of X') is the
smaller of 4 and n. Also, the rank of a matrix product
is no greater than that of either factor (Perlis (1952),
Ex. 7, p. 58). (The division by the scalar, d, to obtain A

does not affect the rank.)

As a result, the rank of the covariance matrix A, which
is always nxn, cannot exceed the smaller of n and d. Thus,
if there are 40 locations, but only one day of observations,
the rank of A would be 1. 1If there are 27 days of observations,
the rank of A would not exceed 27. If there are 59 days
of observations, the rank of A would not exceed 40. If
there were 1241 days of observations, the rank of A would

not exceed 40.
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