Biota of Freshwater Ecosystems

Identification Manual No. 11

FRESHWATER UNIONACEAN CLAMS (MOLLUSCA:PELECYPODA) OF NORTH AMERICA

by

J. B. Burch

Museum and Department of Zoology
The University of Michigan
Ann Arbor, Michigan 48104
for the
ENVIRONMENTAL PROTECTION AGENCY

```
Project # 18050 ELD
Contract # 14-12-894
```


March 1973

EPA Review Notice

This report has been reviewed by the Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the EPA, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

WATER POLLUTION CONTROL RESEARCH SERIES

The Water Pollution Control Research Series describes the results and progress in the control and abatement of pollution in our Nation's waters. They provide a central source of information on the research, development, and demonstration activities in the water research program of the Environmental Protection Agency, through inhouse research and grants and contracts with Federal, State, and local agencies, research institutions, and industrial organizations.

Inquiries pertaining to Water Pollution Control Research Reports should be directed to the Chief, Publications Branch (Water), Research Information Division, R\&̧M, Environmental Protection Agency, Washington, D.C. 20460.
"Freshwater Unionacean Clams (Mollusca: Pelecypoda) of North America" is the eleventh of a series of identification manuals for selected taxa of invertebrates occurring in freshwater systems. These documents, prepared by the Oceanography and Limnology Program, Smithsonian Institution for the Environmental Protection Agency, will contribute toward improving the quality of the data upon which environmental decisions are based.

Additional manuals will include but not necessarily be limited to, freshwater representatives of the following groups: dryopoid beetles, branchiuran crustaceans (Argulus), amphipod crustaceans (Gammaridae), isopod crustaceans (Asellidae), decapod crustaceans (Astacidae), leeches (Hirudinea), polychaete worms (Polychaeta), freshwater nematodes (Nematoda), freshwater planarians (Turbellaria), and freshwater clams (Sphaeriacea).

Abstract

Bivalved mollusks of the superfamily Unionacea (Order Schizodonta) are represented in North America by three families, 46 genera, and, as treated in this key, 221 species. The primitive Margaritiferidae are represented by two genera and four species, the Amblemidae by eight genera and 25 species, and the very large family Unionidae by 36 genera and 192 species. Systematics are not well worked out in many groups, which makes a definitive listing of species somewhat arbitrary at this time. The present key in most instances reflects a conservative approach to the lower taxa and, although it omits many nominal species of doubtful validity, the key nevertheless represents most of the biological species.

Characters of soft anatomy are used to separate the families, subfamilies and, in a few cases, genera. Species are separated by shell characters. The main feature of this publication is an illustrated taxonomic key using both soft anatomy and shell characters for the identification of the North American Unionacea.

CONTENTS

Section Page
I Introduction 1
Identification 5
II Species List and Ranges 11
III Key to Families of North American Unionacea 25
Key to Species of Margaritiferidae 26
Key to Species of Amblemidae 29
Key to Subfamilies of Unionidae 44
Key to Species of Pleurobeminae 45
Key to Species of Popenaidinae 70
Key to Species of Anodontinae 72
Key to Species of Lampsilinae 93
IV Acknowledgements 155
V References 157
VI Glossary 163
VII Index to Scientific Names 171
1 Shell terminology 4
2 Shell terminology 5
3 Shell shapes 6
4 Beak sculpture 7
5 Animal, external view 7
6 Mantle margins of freshwater mussels 8
7 Gills of gravid female mussels 9
8 CumberZandia monodonta 26
9 Margaritifera hembeli 27
10 M. margaritifera, M. falcata 28
11 Gonidia angulata 29
12 Quadrula intermedia 30
13 Tritogonia vermucosa, Quadmula cylindrica 31
14 Elliptoideus sloatianus 32
15 Quincuncina infurcata, Q. burkei 33
16 Megalonaias giganteus 34
17 Amblema neislerii 35
18 A. perplicata, A. costata 36
19 Plectomerus dombeyanus 37
20 Quadrula metanerra, Q. quadmila 38
21 Q. nodulata, Q. pustulosa 39
22 Q. archeri, Q. aurea 40
23 Fusconaia flava undata 41
24 F. ebenus, F. subrotunda 41
25 F. cor, F. succissa 42
26 Median sulcus on right valves 42
27 F. cuneolus, F. flava flava 43
28 Gills in the Unionidae 44
29 Cyclonaias tuberculata 45
30 Plethobasus cooperionus, P. cyphus 46
31 Uniomemus tetralasmus 47
32 Hemistena lata 46
33 Pleurobema (Lexingtonia collina) 49
34 P. (L.) dolabeZzoides 50
35 P. (L.) masoni 51
36 P. cordatum pyramidatum 52
37 P. marshalli, P. altum 53
38 P. cordatum cordatum 53
39 P. showalterii, P. altum 54
40 P. clavam, P. curtum 55
41 P. decisum, P. chattanogaense 56
42 P. cordatum pouperculum, P. cordatum coccineum, P. oviforme, P. verum, P. irrasum, P. nux, P. perovatum, P. reczusum 57
43 Outlines of shells of Pleurobema 58
44 Outlines of shells of Pleurobema 59
45 Elliptio (Canthyria) spinosa 60
46 E. shepardiana 60
47 E. crassidens crassidens, E. crassidens downiei 61
48 Shells of ElZiptio in end view 62

FIGURES - continued

49
ElZiptio dilatata, E. fraterma 62
50 E. nigella, E. arctata 63
51 E. Zanceolata, E. chipolaensis 64
52 E. complanata, E. icterina 65
53 E. jayensis, E. hopetonensis 66
54 E. chipolaensis, E. jayense 67
55 E. congaraea 68
56 E. waccomowensis 69
57 E. dariensis 69
58 Cyrtonaias berZandierii 70
59 Popenaias popei, P. buckleyi 71
60 Anodonta suborbiculata 72
61 A. imbecizlus 73
62 A. peggae, A. couperiana 73
63 A. gibbosa, S. grandis corpulenta 74
64 A. grandis arandis 75
65 A. kennerlyi 75
66 Beak sculpture; Strophitus undulatus 76
67 Anodontoides femssacianus, Anodonta grandis simpsoniana 76
68 Anodonta implicata, A. cataracta 77
69 A. dejecta 78
70 A. wahlomentensis, A. califomiensis 78
71 A. beringiana 79
72 A. oregonensis 80
73 Alasmidonta varicosa, Anodontoides radiatus 80
74 Alasmidonta marginata, A. raveneliana 81
75 Simpsoniconcha ombigua, Strophitus subvexa 82
76 Arcidens confragosus 83
77 Arkansia wheeleri 84
78 Alasmidonta (Pegias) fabula 85
79 A. arcula 85
80 A. calceolus 86
81 A. wrightiana, A. triangulata 87
82 A. heterodon 88
83 A. undulata 89
84 Lasmigona complanata, L. costata 90
85 L. holstonia L. compressa 91
86 L. subviridis 92
87 Ptychobranchus subtentum 93
88 P. foremanianum, P. fasciolare 94
89 P. greeni, P. occidentalis 95
90 Obliquaria reflexa 96
91 Cyprogenia alberti, C. irrorata 97
92 Dromus dromus 98
93 Lemiox caelata 99
94 Medionidus meglomerae, M. penicillatus 100
95 M. conradicus, M. acutissimus 101
96 Glebula rotundata 102
97 Ellipsaria lineolata 103
98 Camunculina parva, C. pulZa 104
99 Lampsilis anodontoides 105
100 L. subangulata, L. jonesi 106
101 Ligumia nasuta, L. recta 107
102 Obovaria retusa, 0. olivaria 108
103 O. subrotunda 108
104 O. rotulata, O. unicolor 109
105 O. jacksoniana 110
106 Dysnomia 111
107 D. flexuosa 111
108 D. Zewissi 112
109 D. stewardsoni 113
110 D. torulosa 114
111 D. triquetra 115
112 D. brevidens 116
113 D. metastriata 117
114 D. Zenior 118
115 D. penita 119
116 D. haysiana 120
117 D. suzcata 121
118 D. turgiduza 122
119 D. archaeformis 123
120 D. biemarinata 124
121 D. propinqua 125
122 D. personata 125
123 D. copsaeformis 127
124 D. florentina 128
125 Truncilla tmuncata 129
126 T. macrodon, T. donaciformis 130
127 Lompsilis dolabraeformis 130
128 L. excavata, L. ovata ovata 131
129 L. perpasta 132
130 L. binominata, L. splendida 132
131 Leptodea 133
132 L. Leptodon, L. amphichaena 134
133 L. fragilis, L. Zaevissima 135
134 Proptera alata 136
135 Inflated shell; Beak sculpture 136
136 P. capax, P. purpurata 137
137 Actinonaias pectorosa, A. ellipsiformis 138
138 A. carinata carinata, A. carinata gibba 139
139 Mantle margins of Villosa, Lompsilis and Camnculina 140
140 Villosa iris, V. vibex 141
141 V. Lienosa, V. constricta, V. trabalis 142
142 Lampsilis anodontoides, L. subongulata 143
143 L. splendida, L. jonesi 144
144 L. streckeri 144
145 L. altilis, L. bracteata 145
146 L. australis, L. radiata siliquoidea 146
147 L. hydiona, L. radiata radiata 147
148 Lompsilis dolabraeformis 148
149 L. excavata, L. ovata ovata 148
150 L. orbiculata, L. straminea 149
151 Lompsilis umbos 150
152 L. ovata ventricosa, L. fasciola 150
153 L. cariosa, L. perpasta 152
154 L. binominata, L. ochracea 153

SECTION I

INTRODUCTION

The richest unionacean fauna (freshwater mussels) in the world is found in North America and has been the subject of much species-naming since the time of C. S. Rafinesque in the early 19 th century. However, indepth studies of these animals have been few, and investigations mainly have centered around faunal distributions and nomenclature. (A notable exception is the work of A. E. Ortmann.) Therefore, while distributions are rather well known for most of the nominal species, systematic relationships at all levels within the North Amexican Unionacea are rather poorly understood. For that reason, systematics of our freshwater mussels have been the subject of considerable controversy in the past and at present, with much of the controversy still unresolved. Nevertheless, the taxonomy of unionacean clams of a few geographic regions has been rather thoroughly studied recently (e.g., see Johnson, 1970, 1972; Clarke, 1973), and those publications have been especially helpful in preparing the present key. But producing a finite, unified key for identification of freshwater mussels for all of North America is very difficult at this time. In spite of this, however, one may construct a workable key to the traditionally recognized taxa which probably represent most of the species. A more precise key must await further study, although it is improbable that many of our freshwater mussels will ever be adequately studied because of their extinction by pollution and the past and present destruction of their natural habitats by stream canalization and impoundments made by hydroelectric and other dams.

The Unionacea of North America (north of Mexico) as described in this publication consist of 221 species, grouped into 46 genera and 3 families. The systematic arrangement of the higher categories (i.e., the families and subfamilies) follows Heard and Guckert (1970) and reflects an interpretation of phylogenetic relationships based on reproductive features of the animals, rather than on shell characters. Such an organization rests largely on the highly regarded anatomical studies of A. E. Ortmann (see references), which are widely known and considered important by recent malacologists, but previous to Heard and Guckert's publication were either not used or interpreted only superficially. Following these latter authors, it seems logical "that a system based on aspects of reproduction, with parallelism in the shell features, more accurately reflects natural, evolutionary affinities than does a system which reverses the emphasis [i.e., one that is based only or mainly on shell characters]." But, to follow such a natural system with a group which shows parallel development of shell characters in several different major phylogenetic lines, means that a key to shells alone is extremely difficult to construct. For that reason, if one only has shells to be identified (without the soft parts), it may be necessary to try the specimens with the several individual keys of the different families (or in the case of the Unionidae, with the 4 subfamilies). Although such a procedure may require a little more time, nevertheless it should cause only a minor inconvenience.

Below is a list of the families，subfamilies and genera according to the taxonomic scheme used in this key．（The genera under each subfamily are arranged alphabetically．In the Lampsilinae（Unionidae），the genera are first arranged according to the marsupial characteristics of the gills， then alphabetically．）

MARGARITIFERIDAE	MARGARITIFERINAE	Margaritifera
	CUMBERLANDINAE	Cumberlandia
AMblemidae	ambleminae	AmbZema ELIiptoideus Fusconaia Plectomerus Quadruia Quincuncina Tritogonia
	GONIDEINAE	Gonidea
	MEGALONAIADINAE	Megalonaias
UNIONIDAE	Pleurobeminae	Cyctonaias ELII隹完 Hemistena Plethobasus Pleurobema Uniomerus
	POPENAIADINAE	Cyrtonaias Popenaias
	ANODONTINAE	Alasmidonta Anodonta Anodontoides Arcidens Arkansia Lasmigona Simpsoniconcha Strophitus
	LAMPSILINAE（hete	Actinonaias Caminculina Dysnomia ELlipsaria Glebuてa Lampsilis Lemiox Leptodea Ligumia Medionidus Obovaria

LAMPSILINAE (continued) Proptera
Truncizla
villosa

(mesogenae) Cyprogenia Obliquaria
(eschatigenae) Dromus
(ptychogenae) Ptychobranchus

Fig. 1- Morphology of a freshwater mussel shell (Cyctonaias tuberculata) illustrating shell terminology: a- exterior of right valve; b- interior of left valve.

IDENTIFICATION

Characters of the shell of unionacean clams (freshwater mussels) are especially important in species recognition and often for generic placement. The shell consists of two halves or "valves" held together at the dorsal margin by a tough elastic ligament. The two valves are basically mirror images of each other and are articulated just below the ligament at the dorsal margin by a hinge, which in most cases is furnished with interlocking "teeth" (Fig. 1). These teeth or lamellae are projections in one valve which fit into corresponding depressions at the same point in the opposing valve (Fig. 2) and function in stabilizing the two valves against shearing forces. Those teeth immediately below or anterior to the beaks or umbos (the raised part of the dorsal margin of each valve) are called "pseudocardinal teeth", and those teeth posterior to the beaks are called "lateral teeth". The pseudocardinal teeth are usually short and jagged, and the lateral teeth are usually long and lamellar. In a few of the freshwater mussels (e.g., species of Anodonta), the hinge teeth are completely lacking, and in others (e.g., Strophitus) they are only rudimentary. In general, characteristics of the hinge teeth are rather uniform within each genus, and often differ from one genus to another. Therefore, in the taxonomic keys in the sections to follow, the hinge teeth are illustrated for at least one species of each genus.

Fig. 2- Articulation of hinge teeth as seen by a ventral view through the gaping valves (CycZonaias tubercuZata). (Modified from Clarke, 1973)

The overall shape of the shell, as well as the shape or degree of development of particular regions of the shell, are widely used in identification. Related characters are those of shell dimensions, such as the ratio of length to height and the relative width. The more common shell shapes are shown in Figure 3. However, among the many species of freshwater clams are found various shapes intermediate to those shown here, and some common, wide-ranging species are rather polymorphic in shell shape.

Fig. 3- Shell shapes: a- rhomboidal; b- triangular; c- round; dquadrate; e- oval; f- oval; g- elliptical; h- posterior ridge convex, i.e., bowed upward; i- posterior ridge concave, i.e., bowed downward.

On the exterior of the shell, the presence or absence of pustules or corrugations, the fine sculpture of the beaks (Fig. 4), the degree of development of the posterior ridge and posterior slope, and the color and glossiness of the periostracum are characters frequently used in classification. Characters of the inner surface of the valves useful in identification are color of the nacre, relative depth of the beak cavity, and especially characteristics of the hinge teeth.

Characters of the soft anatomy are important in classification, but are significant almostentirely at taxonomic levels above the species, i.e., subgenera (occasionally), genera, subfamilies and families. Of special importance is the basic structure and characteristics of the gills as they relate to the marsupial function in females (e.g., see Fig. 7). Color of the gills (in the living condition) is also sometimes significant. Characters of the posterior siphonal area can distinguish the

Fig. 4- Beak sculpture: a- concentric; b-double-looped; c-major ridges relatively fine; d- major ridges relatively coarse; Scale $=1 \mathrm{~mm}$.

Fig. 5- Animal, with right valve and right mantle lobe folded back, exposing the foot, labial palp and demibranchs of the right gill.

Fig. 6- Mantle margins of freshwater mussels: a- Margaritifera margaritifera; b- Amblema costata.

Margaritiferidae from the other two North American unionacean families (Fig. 6), and peculiarities of the mantle margin around the incurrent opening will distinguish such genera as Camunculina, Lampsilis and Villosa (see Fig. 139).

Fig. 7- Cross sections of gravid female mussels (shell removed): a- all four demibranchs swollen and serving as marsupia (Amblema costata - Amblemidae) ; b- only outer two demibranchs swollen and serving as marsupia (ElZiptio - Unionidae).
(Modified from Heard, 1968)

SPECIES LIST AND RANGES

Family MARGARITIFERIDAE
Subfamily MARGARITIFERINAE
Genus Margaritifera Schumacher, 1817
Margaritifera falcata (Gould, 1850). Pacific drainage in western North America from Alaska to New Mexico.
Margaritifera hembeli (Conrad, 1838). Escambia River system in Alabama and in a tributary to Bayou Cocdrie, Louisiana.
Margaritifera margaritifera (Linnaeus, 1758). Widespread from Pennsylvania north to Newfoundland and Labrador in eastern North America.

Subfamily CUMBERLANDINAE
Genus Cumberlandia
CumbeŕZandia monodonta (Say, 1829). Cumberland and Tennessee River systems; Ohio, Illinois, Indiana and ?Nebraska.

Family AMBLEMIDAE
Subfamily AMBLEMINAE
Genus AmbZema Ortmann, 1912
Amblema costata Rafinesque, 1820. Mississippi drainage from western New York to Minnesota, eastern Kansas and Texas. Alabama River drainage, the St. Lawrence drainage, Red River of the North, Saskatchewan River and Lake Winnipeg.
Amblema neislemi Lea, 1858. Apalachicola River system; Flint River, Georgia.
Amblema perplicata (Conrad, 1841). Gulf drainage rivers from central Texas to the Yellow River of Florida and north from Texas to river systems in Arkansas and Mississippi.

Genus Elliptoideus Frierson, 1927
Elliptoideus sloatianus (Lea, 1840). Apalachicola and Ochlockonee River systems.

Genus Fusconaia Simpson, 1900
Fusconaia cor (Conrad, 1834). Alabama River system and the Flint River, Georgia.
Fusconaia cuneolus (Lea, 1840). Tennessee River system.

Fusconaia ebenus (Lea, 1831). Mississippi drainage generally and the Alabama and Tombigbee Rivers.
Fusconaia flava flava (Rafinesque, 1820). In the Ohio-Mississippi River systems from Arkansas and Tennessee to North Dakota and Pennsylvania. Present in the Great Lakes system from Wisconsin to central New York and southern Ontario.
Fusconaia flava undata (Barnes, 1823). All of the Mississippi drainage; Coosa River in Alabama; Michigan and the upper St. Lawrence drainage.
Fusconaia subrotunda (Lea, 1831). Ohio, Cumberland and Tennessee River systems.
Fusconaia succissa (Lea, 1852). Choctawhatchee, Yellow and Escambia River systems (Florida west to Alabama).

Genus Plectomerus Conrad, 1853
Plectomerus dombeyanus (Valenciennes, 1833). Gulf drainage rivers and streams from Alabama River to eastern Texas and north in the Mississippi systems to northwest Tennessee.

Genus Quadrula Rafinesque, 1820
Quadrula archeri Frierson, 1905. Tallapoosa River, Alabama.
Quadrula aurea (Lea, 1859). Texas.
Quadrula cylindrica (Say, 1817). Ohio, Cumberland and Tennessee River systems west to Nebraska and south to Arkansas.
Quadrula intermedia (Conrad, 1836). Tennessee River system.
Quadrula metanevra Rafinesque 1820. Northern portion of the Mississippi drainage south to the Tennessee and Arkansas Rivers.
Quadrula nodulata (Say, 1834). All of the Ohio, Cumberland and Tennessee River systems; Mississippi; Mississippi drainages from southeastern Minnesota to Louisiana, west to southeastern Kansas and northeastern Texas.
Quadrula pustulosa (Lea, 1831). Mississippi drainage, Michigan and Lake Erie.
Quadmula quadmula (Rafinesque, 1820). Most tributaries of the Mississippi River, Great Lakes drainage, Alabama River system and some streams of eastern and central Texas.

Genus Quincuncina Ortmann, 1922
Quincuncina burkei (Walker, 1922). Choctawhatchee River system.
Quincuncina infuricata (Conrad, 1834). Suwannee River west to the Apalachicola River system.

Genus Tritogonia Agassiz, 1852
Tritogonia verrucosa (Rafinesque, 1820). Generally in the Mississippi drainage and in Gulf draining streams from the Alabama River system west to central Texas.

Genus Gonidea Conrad, 1857
Gonidea angulata (Lea, 1838). Central California north to British Columbia and east to Idaho.

Subfamily MEGALONAIADINAE

Genus Megalonaias Utterback, 1915
Megalonaias giganteus (Barnes, 1823). Throughout the Mississippi River system and the Tombigbee River of Alabama.

Family UNIONIDAE
Subfamily PLEUROBEMINAE
Genus CycZonaias Pilsbry, 1922
CycZonaias tuberculata (Rafinesque, 1820). Throughout the Mississippi drainage, Lake St. Clair drainage and Lake Erie and in the Ohio River drainage.

Genus Elliptio Rafinesque, 1820
Subgenus EZてiptio s.s.
Elliptio arctata (Conrad, 1834). Alabama-Coosa, Escambia and Apalachicola River systems. Savannah River system of South Carolina, Catawba River and lower Cape Fear River system of North Carolina.
Elliptio crassidens crassidens (Lamarck, 1819). Generally in the Mississippi drainage, the Alabama-Coosa River system and the Amite River of Louisiana east to the St. Marys River system of Florida.
ElZiptio crassidens downiei (Lea, 1858). Satilla River system of Georgia.
ElZiptio chipoZaensis (Walker, 1905). Chipola River, Florida.
Elliptio complanata (Lightfoot, 1786). Apalachicola River system, Altamaha River system of Georgia north to St. Lawrence River system of Canada and in the Interior Basin west to Lake Superior and parts of the Hudson Bay drainage.
Elliptio congaraea (Lea, 1831). Ogeechee River system of Georgia north to the Cape Fear River system of North Carolina.
Elliptio dariensis (Lea, 1842). St. Johns River system and peninsular Florida and in the Altamaha River system of Georgia.
Elliptio dilatata (Rafinesque, 1820). Entire Mississippi drainage, St. Lawrence system, Alabama River system southeast into Florida and southwest to Guadalupe River, Texas.
Elliptio fraterna (Lea, 1852). Choctawhatchee River system of Florida, the upper Chattahoochee River, Georgia and the upper Savannah

River system of South Carolina.
ElZiptio hopetonensis (Lea, 1838). Lower Altamaha River system of Georgia.
Elliptio icterina (Conrad, 1834). Escambia River system to the St. Marys River system of Georgia, peninsular Florida and the Altamaha River system of Georgia north to the White Oak River, North Carolina.
Elliptio jayensis (Lea, 1838). Suwannee River system, St. Marks River system and peninsular Florida.
Elliptio lanceolata (Lea, 1820). Discontinuous in the Escambia River system east to the Apalachicola River system, Satilla River system of Georgia and in Altamaha River system of Georgia north to the Juanita River of the Susquehanna River system of Pennsylvania.
ElZiptio nigeZIa (Lea, 1852). Apalachicola River system.
ELZiptio shepardiana (Lea, 1834). Altamaha River system of Georgia.
Elliptio waccamowensis (Lea, 1863). Waccamenaw River system of North Carolina.

Subgenus Canthyria Swainson 1840
Elliptio (Canthyria) spinosa (Lea, 1836). Altamaha River system of Georgia.

Genus Hemistena Rafinesque, 1820
Hemistena Zata (Rafinesque, 1820). Ohio, Cumberland and Tennessee River systems.

Genus Plethobasus Simpson, 1900
Plethobasus cooperianus (Lea, 1834). Ohio, Cumberland and Tennessee River systems.
Plethobasus cyphus (Rafinesque, 1820). Ohio, Cumberland and Tennessee River systems and the Mississippi River system west to Iowa and north to Minnesota.

Genus Pleurobema Rafinesque, 1820
Subgenus Pleurobema s.s.
Pleurobema aldrichianum Goodrich, 1931. Conasauga River, Tennessee. Pleurobema altum (Conrad, 1854). Alabama River system. Pleurobema comabile (Lea, 1865). Butler, Taylor Co., Georgia.
Pleurobema avallana Simpson, 1900. Cahaba River, Alabama.
Pleurobema bulbosum (Lea, 1857). Ocmulgee and Flint Rivers of Georgia. Pleurobema chattanogaense (Lea, 1858). Alabama River system. Pleurobema clava (Lamarck, 1819). Ohio, Cumberland and Tennessee River systems; Maumee Basin; Iowa City, Iowa; St. Peter's River, Minnesota and Nebraska.
Pleurobema coradatum coccineum (Conrad, 1836). Upper Mississippi River
from southwestern New York to Kansas and Iowa, north to Wisconsin, south to Alabama and in the St. Lawrence River drainage.
pleurobema cordatum cordation (Rafinesque, 1820). Ohio, Cumberland and Tennessee River systems, Illinois west to the Mississippi River and at Claiborne, Alabama.
Pleurobema corciatum pauperculum (Simpson, 1900). Lake Erie, Lake St. Clair and the Niagara River.
Pleurobema cordatum pyramidatum (Lea, 1834). Upper Mississippi River drainage from western Pennsylvania, north to upper Wisconsin, west to Kansas and Nebraska and south to Arkansas.
Pleurobema curtum (Lea, 1859). Tombigbee River, Mississippi.
Pleurobema decisum (Lea, 1831). Alabama and Tombigbee River systems.
Pleurobema favosum (Lea, 1856). Alabama River system.
Pleurobema flavidulum (Lea, 1861). Tombigbee River, Mississippi.
Pleurobema furvum (Conrad, 1834). Black Warrior River, Alabama.
Pleurobema haglexi Frierson, 1900. North and Black Warrior Rivers of Alabama.
Pleurobema hanleyanum (Lea, 1852). Coosa River drainage of Georgia and Alabama.
Pleurobema harperi (Wright, 1899). A1tamaha and Flint Rivers of Georgia and the Suwannee River of Florida.
Pleurobema irrasum (Lea, 1861). Coosa River system.
Pleurobema johannis (Lea, 1859). Alabama River system.
Pleurobema marshalli Frierson, 1927. Tombigbee River, Alabama.
Pleurobema meredithii (Lea, 1858). Tennessee River system and the Black
Warrior River, Alabama.
Pleurobema modicum (Lea, 1857). Chattahoochee River of Georgia.
Pleurobema murrayense (Lea, 1868). Coosa River system.
Pleurobema nucleopsis (Conrad, 1849). Coosa River system.
Pleurobema nux Lea, 1852. Alabama River system.
Pleurobema oviforme (Conrad, 1834). Tennessee.
Pleurobema perovatum (Conrad, 1834). Prairie Creek, Marengo Co., Alabama and small stream in Greene Co., Alabama.
Pleurobema pyriforme (Lea, 1857). Suwannee River west to the Apalachi-:
cola River system.
Pleurobema reclusum (Wright, 1898). Ochlockonee River, Florida.
Pleurobema mibellum (Conrad, 1834). Black Warrior and Cahawba Rivers of Alabama.
Pleurobema showalterii (Lea, 1860). Coosa River, Alabama.
Pleurobema simulans (Lea, 1871). Black Warrior and Cahawba River of Alabama and Pine Barren Creek, Escambia Co., Florida.
Pleurobema stabile (Lea, 1861). Coosa River, Alabama.
Pleurobema striatum (Lea, 1840). Chattahoochee River of Georgia.
Pleurobema strodeanum (Wright, 1898). Choctawhatchee and Escambia Rivers of Florida and southern Alabama,
Pleurobema tombigbeanum Frierson, 1908. Tombigbee and Alabama Rivers.
Pleurobema troschelianum (Lea, 1852). Alabama River system.
Pleurobema verum (Lea, 1860). Black Warrior and Cahawba Rivers of Alabama.

Pleurobema (Lexingtonia) collina (Conrad, 1837). James River system of Virginia and the Tar River of the Pamlico River system of North Carolina.
Pleurobema (Lexingtonia) dolabelloides (Lea, 1840). Tennessee River drainage.
Pleurobema (Lexingtonia) masoni (Conrad, 1834). Ogeechee River system of Georgia north to the James River system of Virginia.

Genus Uniomerus Conrad, 1853
Uniomerus tetralasmus (Say, 1831). Mississippi drainage north to the Ohio River. Alabama-Coosa River system and the Apalachicolan region east to the Suwannee River and peninsular Florida. Altamaha River system north to Chowan River system of North Carolina.

Subfamily POPENAIADINAE
Genus Popenaias Frierson, 1927
Popenaias buckleyi (Lea, 1843). Peninsular Florida. Popenaias popei (Lea, 1857). Southern Texas and northeast Mexico.

Genus Cyrtonaias Crosse \& Fischer, 1893
Cyrtonaias berlandierii (Lea). Southern Texas.
Subfamily ANODONTINAE
Genus Alasmidonta Say, 1818
Subgenus Alasmidonta s.s.
Alasmidonta arcula (Lea, 1836). Altamaha River system, Georgia.
Alasmidonta calceolus (Lea, 1830). Upper Mississippi drainage; Ohio, Cumberland, and Tennessee Rivers; Lower and Middle St. Lawrence system.
Alasmidonta heterodon (Lea, 1830). Atlantic draining rivers. Petitcadiac River system, New Brunswick, Canada south to the Neuse River system, North Carolina.
Alasmidonta marginata Say, 1819. In the Upper Mississippi drainage, the Ohio, Cumberland and Tennessee River systems, Michigan and the Upper St. Lawrence drainage.
Alasmidonta radiatus (Conrad, 1834). Small streams in southern Alabama.
Alasmidonta raveneliana (Lea, 1834). Tennessee and Cumberland River systems.
Alasmidonta triangulata (Lea, 1858). Apalachicola River system: Flint, Chattahoochee, Ogeechee and Savannah River drainages in Georgia; Apalachicola and Chipola drainages in Florida; Cooper-Santee River system in South Carolina.

Alasmidonta undulata (Say, 1817). Lower St. Lawrence drainage south to North Carolina.
Alasmidonta varicosa (Lamarck, 1819). Lower St. Lawrence drainage and Atlantic draining streams south to South Carolina.
Alasmidonta wrightiana (Walker, 1901). Restricted to the Ochlockonee River, Florida.

Subgenus Pegias Simpson, 1900
Alasmidonta (Pegias) fabula (Lea, 1836). Cumberland and Tennessee River systems.

Genus Anodonta Lamarck, 1799
Anodonta beringiana Middendorff, 1851. Kamchatka, Alaska.
Anodonta californiensis Lea, 1852. Rivers in California east to Utah and Arizona.
Anodonta cataracta Say, 1817. Alabama-Coosa River system; Choctawhatchee and upper Apalachicola River systems. Atlantic drainage: Altamaha River system of Georgia north to the St. Lawrence River system of Canada and westward to Michigan.
Andonta couperiana Lea, 1842. Apalachicola, Ochlockonee and St. Marys River systems. Peninsular Florida and the Atlantic draining Altamaha River of Georgia north to the Cape Fear River system of North Carolina.
Anodonta dejecta Lewis, 1875. Southeastern California and northwestern Mexico; Arizona.
Andonta gibbosa Say, 1824. Altamaha River system of Georgia.
Anodonta grandis corpulenta Cooper, 1834. Missouri River and the Upper Mississippi Drainage east to Indiana.
Anodonta grandis grandis Say, 1829. Throughout Mississippi-Missouri River drainage, the St. Lawrence drainage and Canadian Interior Basin from western Ontario to Alberta and in the Gulf drainages of Louisiana and Texas.
Anodonta grandis simpsoniana Lea, 1861. Hudson Bay drainage areas of Quebec, Ontario, northern Manitoba, Saskatchewan and Alberta and from the Arctic drainage area of northern Alberta and Northwest Territories in the Mackenzie River system north to the Mackenzie River Delta.
Anodonta implicata Say, 1829. St. Lawrence drainage north to New Brunswick and Nova Scotia, Canada and south to the Potomac River in Maryland.
Anodonta Kennerlyi Lea, 1860. Oregon to British Columbia, Canada.
Anodonta oregonensis Lea, 1838. Washington, Oregon, northern California and eastward to the Great Salt Lake.
Anodonta peggyae Johnson, 1965. Withlacoochee and Hillsborough River systems of peninsular Florida. Choctawhatchee River system east to the Suwannee River system.
Anodonta suborbiculata Say, 1931. Mississippi drainage in Nebraska, Iowa, Illinois and south to Louisiana.

Anodonta wahlametensis Lea, 1838. Wahlamat River near the Columbia River junction.

Genus Anodontoides Simpson, 1898
Anodontoides ferussacianus (Lea, 1834). Ohio-Mississippi River system. St. Lawrence River system and the Great Lakes, the Ottawa River, the Albany River and areas drained by the Nelson River.
Anodontoides radiatus (Conrad, 1834). Alabama-Coosa River system, Escambia River system and the Apalachicola River system.

Genus Arcidens Simpson, 1900
Arcidens confragosus (Say, 1829). In the Mississippi River drainage from southern Ohio west to eastern Kansas, north to southern Wisconsin and south to eastern Texas and into Louisiana.

Genus Arkansia Ortmann \& Walker, 1912
Arkansia wheeleri Ortmann \& Walker, 1912. Ouachita River, Arkansas and Arkansas River in Oklahoma.

Genus Lasmigona Rafinesque, 1831
Lasmigona complanata (Barnes, 1823). Upper Mississippi River drainage southwest to Arkansas, the Ohio River system, upper St. Lawrence system north to the Mackenzie River.
Lasmigona compressa (Lea, 1829). Interior Basin, Hudson Bay, Canada, the Upper Mississippi, Ohio and St. Lawrence River systems extending from Saskatchewan to Nebraska and eastward to Vermont and north on the Atlantic Slope to the Hudson River.
Lasmigona costata (Rafinesque, 1820). Generally in Mississippi River drainage, generally the St. Lawrence River system, Hudson Bay drainage in the Red and Winnipeg River systems and in the Tombigbee River of Mississippi.
Lasmigona subviridis (Conrad, 1835). New and Greenbrier Rivers, Virginia and West Virginia. Upper Savannah River system of South Carolina north to the Hudson River system and westward through Mohawk River, Erie Canal to the Genesee River of New York.

Genus Simpsoniconcha Frierson, 1914
Simpsoniconcha ambiqua (Say, 1825). Ohio River system extending south to Arkansas, west to Iowa, north to Michigan and east to Tennessee.

Genus Strophitus Rafinesque, 1820
Strophitus subvexus (Conrad, 1834). Alabama-Coosa and Apalachicola River systems.

Strophitus undalatus (Say, 1817). Mississippi and Ohio River drainages, ranging from central Texas to Lake Winnipeg, Canada. Atlantic drainage, upper Savannah River tributary of South Carolina north to the St. Lawrence River system.

Subfamily LAMPSILINAE
Genus Actinonaias Crosse \& Fischer, 1893
Actinonaias carinata carinata (Barnes, 1823). Ohio-Mississippi River drainage, St. Lawrence drainage in tributaries from Lake Michigan drainage; to Lake Ontario, New York and Minnesota to Arkansas.
Actinonaias carinata gibba (Simpson, 1900). Ohio River and southward.
Actinonaias ellipsiformis (Conrad, 1836). Upper Mississippi Valley, western New York and southern Michigan.
Actinonaias pectorosa (Conrad, 1834). Tennessee and Cumberland River systems.

Genus Carunculina Simpson, 1898
Carunculina parva (Barnes, 1823). Throughout Mississippi drainage from western New York to Minnesota and south to Texas, Arkansas and Florida. On the Atlantic Slope it occurs in Black Creek, northern Florida.
Carunculina pulla (Conrad, 1838). Altamaha River of Georgia north to the Neuse River system of North Carolina.

Genus Dysnomia Agassiz, 1832
Dysnomia arcaeformis (Lea, 1831). Tennessee and Cumberland River systems. Dysnomia biemarginata (Lea, 1857). Tennessee River drainage.
Dysnomia brevidens (Lea, 1834). Tennessee River drainage.
Dysnomia capsaeformis (Lea, 1834). Tennessee River drainage.
Dysnomia flexuos α (Rafinesque, 1820). Ohio River drainage.
Dysnomia florentina (Lea, 1857). Tennessee River drainage and the Cumberland River.
Dysnomia haysiana (Lea, 1833). Tennessee and Cumberland River drainage.
Dysnomia lenior (Lea, 1840). Stones River, Tennessee and Paint Rock River in Alabama.
Dysnomia Zewisii (Walker, 1910). Holston and Clinch Rivers of Tennessee and Cumberland River in Kentucky.
Dysnomia metastriata (Conrad, 1840). Black Warrior River and Woodville, Alabama.
Dysnomia penita (Conrad, 1834). Lower Alabama and Tombigbee River drainage.
Dysnomia personata (Say, 1829). Ohio River drainage.
Dysnomia propinqua (Lea, 1857). Tennessee and Cumberland River drainage. Dysnomia stewardsoni (Lea, 1852). Tennessee River.
Dysnomia sulcata (Lea, 1830). Ohio River drainage.
Dysnomia tomilosa (Rafinesque, 1820). Ohio River drainage and into Michigan.

Dysnomia triquetra (Rafinesque, 1820). Ohio River drainage, western New York to southern Ontario west to Wisconsin, Iowa and eastern Ne braska to Oklahoma and east to West Virginia, Tennessee and northern Alabama.
Dysnomia turgidula (Lea, 1858). Cumberland River, Alabama.
Genus ElZipsaria Rafinesque, 1820
Ellipsaria ZineoZata (Rafinesque, 1820). Mississippi River drainage south into Arkansas, west into eastern Iowa and Kansas and Texas and in the Tombigbee and Alabama River systems.

Genus Glebula Conrad, 1853
Glebula rotundata (Lamarck, 1819). Eastern Texas east to the AlabamaCoosa, Escambia and Apalachicola River systems.

Genus Lampsizis Rafinesque, 1820
Lompsilis altilis (Conrad, 1834). Alabama River drainage.
Lampsilis anodontoides (Lea, 1834). All of the Mississippi drainage north to eastern South Dakota. All of the Gulf drainage from Withlacoochee River, Florida west to the Rio Grande and into Mexico.
Lampsilis australis Simpson, 1900. Choctawhatchee and Escambia River systems.
Lampsilis binominata (Simpson, 1900). Chattahoochee and Flint Rivers of Georgia (upper Apalachicola River system).
Lampsilis bracteata (Gould, 1855). Llanos, Guadalupe and Colorado Rivers of Texas.
Lampsilis cariosa (Say, 1817). Atlantic drainage from Georgia to the lower St. Lawrence system.
Lampsizis doZabraeformis (Lea, 1838). Altamaha River system of Georgia.
Lampsilis excavata Lea, 1857. Extends from the Escambia River system of Alabama and western Florida to the Pearl River of Mississippi.
Lampsizis fasciola Rafinesque, 1820. Scattered in the Great Lakes and their drainages.
Lampsilis hydiana (Lea, 1838). Eastern Texas, Oklahoma, Arkansas and east to Alabama.
Lampsilis jonesi van der Schalie, 1934. In the Choctawhatchee River system of Alabama and Florida.
Lampsilis ochracea (Say, 1817). Atlantic drainage from Nova Scotia south to the Savannah River system of Georgia.
Lampsilis orbiculata (Hildreth, 1828). Ohio and Cumberland Rivers west to the Mississippi River.
Lampsizis ovata ovata (Say, 1817). Interior Basin, Ohio and Mississippi drainages, St. Lawrence drainage, Hudson Bay drainage and introduced into the Potomac River system in Maryland.
Lampsilis ovata ventricosa (Barnes, 1823). All of the Mississippi drainage, the St. Lawrence system and the Hudson Bay drainages.

Lampsilis perpasta (Lea, 1861). Coosa River of Alabama and the Swamp Creek, Georgia.
Lampsilis radiata radiata (Gmelin, 1792). St. Lawrence drainage, Manitoba, Atlantic Slope south to South Carolina.
Lampsilis radiata siliquoidea (Barnes, 1823). All of the Mississippi valley and all of Canada east of the Rocky Mountains.
Lompsilis splendida (Lea, 1838). Altamaha River system of Georgia north to the Cooper-Santee River system of South Carolina.
Lampsilis straminea (Conrad, 1834). Southern Alabama and southern Mississippi.
Lampsilis streckeri Frierson, 1927. Little Red River, Arkansas and in Travis Co., Texas.
Lampsilis subangulata (Lea, 1840). Ochlockonee River of Georgia west to the Choctawhatchee River of Alabama.

Genus Lemiox Rafinesque, 1831
Lemiox caelata (Conrad, 1834). Tennessee River drainage.
Genus Leptodea Rafinesque, 1820
Leptodea amphichaena Frierson, 1898. Saline River, Texas.
Leptodea fragilis (Rafinesque, 1820). All of the Mississippi drainage. New York to Kansas and south to Texas, Mississippi and Alabama, north to Wisconsin and Minnesota. In the St. Lawrence River drainage and the Hudson River.
Leptodea Zaevissima (Lea, 1830). Entire Mississippi drainage from New York to Minnesota and south to eastern Texas and Louisiana.
Leptodea leptodon (Rafinesque, 1820). Upper Mississippi River drainage south to the Tennessee River; Buffalo, New York; southern Michigan and the Souris River, Manitoba.

Genus Ligumia

Ligumia nasuta (Say, 1817). James River of Virginia north to the St. Lawrence River system, west to Lake Erie, Ohio and Michigan.
Ligumia recta (Lamarck, 1819). Throughout Mississippi drainage; Alabama River drainage, north to Minnesota and Manitoba and the St. Lawrence system.

Genus Medionidus Simpson, 1900
Medionidus acutissimus (Lea, 1831). Alabama River system.
Medionidus conradicus (Lea, 1834). Tennessee River drainage and the Alabama River system.
Medionidus maglameriae van der Schalie, 1939. Tombigbee River.
Medionidus penicillatus (Lea, 1857). From the Suwannee River of Florida west to the Chipola River, Alabama.

Obovaria jacksoniana Frierson, 1912. Pearl and Yalabusha Rivers of Mississippi.
Obovaria olivaria (Rafinesque, 1820). Western Pennsylvania and New York to Missouri, Iowa and Kansas, south to Alabama and Arkansas and north to Minnesota, Michigan, Ontario and Quebec.
Obovaria retusa (Lamarck, 1819). Ohio, Cumberland and Tennessee River systems.
Obovaria rotulata (Wright, 1899). Escambia River, Florida.
Obovaria subrotunda (Rafinesque, 1820). Ohio, Tennessee and Cumberland River systems, southeastern Louisiana and the Tombigbee drainage, north to Michigan and the St. Lawrence drainage.
Obovaria unicolor (Lea, 1845). Gulf flowing streams of Mississippi and Alabama.

Genus Proptera Rafinesque, 1819
Proptera alata (Say, 1817). Throughout the Mississippi drainage south to Arkansas; Tennessee and northern Alabama in the St. Lawrence drainage and in parts of the Red River of the North and Winnipeg River.
Proptera capax (Green, 1832). Lower Ohio River drainage south to St. Francis River in Arkansas and north to eastern Iowa.
Proptera purpurata (Lamarck, 1819). Eastern Texas north to Kansas and southern Missouri, western Tennessee to the Alabama River drainage.

Genus Truncilla Rafinesque, 1819
Truncilla donaciformis (Lea, 1828). Generally in the Mississippi drainage from western Pennsylvania to eastern Kansas, north to Minnesota and south to eastern Texas and east to Louisiana and Alabama.
Truncilla macrodon (Lea, 1859). Eastern Texas northward into Oklahoma.
Truncilla truncata Rafinesque, 1820. Throughout the Mississippi River drainage from western Pennsylvania to Michigan and Minnesota, south to Iowa, eastern Kansas and Texas, northern Alabama and Tennessee.

Genus Villosa Frierson, 1927
Villosa concestator (Lea, 1857). North Carolina to Louisiana and Texas. Villosa constricta (Conrad, 1838). James River system of Virginia south to the Catawba River, North Carolina.
Villosa delumbis (Conrad, 1834). Altamaha River system of Georgia north to the Neuse River system of North Carolina.
Villosa fabalis (Lea, 1831). Ohio River drainage and the Rouge River in Michigan.
Villosa iris (Lea, 1830). St. Lawrence River system in the Lake Huron t Lake Ontario drainages and in Ohio, Tennessee and upper Mississipp: River systems.
Villosa lienosa (Conrad, 1834). Alabama-Coosa River system to the Apal chicolan region; in the lower Mississippi River drainage north to
the lower Ohio and Wabash Rivers and east to southwest Georgia and peninsular Florida.
Villosa nebulosa (Conrad, 1834). Cumberland and Tennessee River systems, Green River of Kentucky, the Tombigbee and Alabama River systems and at Columbus, Georgia and Wolfville, North Carolina.
Villosa ortmanni (Walker, 1925). Green and Barren Rivers and probably other streamsin Kentucky.
Villosa picta (Conrad, 1834). Tennessee and Duck Rivers and the upper Cumberland Basin.
Villosa propria (Lea, 1865). Found in Walker Co., Georgia and the Clinch River of Virginia.
Villosa trabalis (Conrad, 1834). In streams of the upper Cumberland Basin and in the Clinch River of Virginia.
Villosa vanuxemensis (Lea, 1838). Cumberland and Tennessee River systems and headwaters of the Coosa River.
Villosa vibex (Conrad, 1834). Alabama-Coosa River system and Apalachicolan region. The Pearl River system of Mississippi east to the Suwannee River system of Florida. Altamaha River system of Georgia north to the Cape Fear River system of North Carolina.
Villosa villosa (Wright, 1898). Apalachicola River system east to the St. Marys River system of Georgia and in peninsular Florida.

Genus Cyprogenia Agassiz, 1852
Cyprogenia aberti (Conrad, 1850). Southeastern Kansas, southern Missouri, eastern Oklahoma and Arkansas.
Cyprogenia irrorata (Lea, 1830). Ohio, Cumberland and Tennessee River systems.

Genus Obliquaria Rafinesque, 1820
Obliquaria reflexa Rafinesque, 1820. Entire Mississippi drainage from western Pennsylvania north into Ontario, Canada, southwest to eastern Kansas and Oklahoma and east into Georgia.

Genus Dromus Simpson, 1900
Dromus dromus (Lea, 1834). Tennessee and Cumberland River systems.
Genus Ptychobranchus Simpson, 1900
Ptychobranchus fasciolare (Rafinesque, 1820). Ohio, Tennessee. and Cumberland River systems, lower Michigan, Kansas, Arkansas, Oklahoma and Louisiana.
Ptychobranchus foremanianum (Lea, 1842) Coosa River, Alabama.
Ptychobranchus greeni (Conrad, 1834). Black Warrior River, Alabama.
Ptychobranchus occidentalis (Conrad, 1836). Current and Little Red Rivers, Arkansas.
Ptychobranchus subtentum (Say, 1825). Tennessee and Cumberland River systems.

KEYS TO THE FAMILIES OF NORTH AMERICAN UNIONACEA

The key below for separating the three families of North American Unionacea (Margaritiferidae, Amblemidae and Unionidae) is based on characters of the animal following Heard and Guckert (1970), rather than on characters of the shell. As these authors point out, as well as others before them, such features of the soft anatomy seem more liable to accurately reflect natural, evolutionary taxonomic units than does a system based on the shell. Inasmuch as many specimens for identification will consist of only shells, it may be necessary initially to do some scanning of pictures, or to actually try identification of the specimens with the keys to each of the three families. However, since the Margaritiferidae are represented by only several species, this reduces the preliminary keying procedure to essentially only two families, the Amblemidae (with eight genera) and the very large Unionidae (with 36 genera).

1 Posterior mantle margins not united dorsally to form separate anal opening; posterior medial mantle margins not thickened or exhibiting any tendency toward forming distinct siphons (Fig. 6a): MARGARITIFERIDAE (page 26)
Posterior mantle margin forming one or more separate openings (supra-anal openings) dorsally; mantle border area thickened at point between branchial (incurrent) opening and anal (excurrent) opening, indicating tendency to form distinct siphons (Fig. 6b)2

2(1) All 4 demibranchs serve as marsupia, i.e., appear swollen in gravid females (Fig. 7a): AMBLEMIDAE (page 29)
Only the 2 outer demibranchs serve as marsupia and appear swollen in the gravid female condition (Fig. 7b):

UNIONIDAE (page 44)

Shell thin and fragile, narrow dorsoventrally; pseudocardinal teeth greatly reduced, that of right valve pointed, nearly picklike (Fig. 8): Cumberlandia monodonta Shell more sturdy, deeper dorsoventrally; pseudocardinal teeth broad, well-developed. Genus Margaritifera

a

Fig. 8- Cumbertandia monodonta: a- right valve; bhinge plate of right valve (arrow points to pseudocardinal tooth) ; c- hinge of left valve. Scale $=1 \mathrm{~cm}$.

3(2) East of the Continental Divide; nacre white, except in headwaters of Missouri, where specimens have purple nacre; pseudocardinal teeth of left valve have well-developed anterior and posterior cusps, although they occasionally may be unequal in size; sexes separate (Fig. 10a):

Margaritifera margaritifera
Pacific drainage; nacre typically or usually purple, sometimes salmon or pink, rarely white; pseudocardinal teeth of left valve with anterior cusp usually very much reduced in size or obsolete; hermaphroditic. (Fig. 10b)

Margaritifera falcata

Fig. 9- Margaritifera hembeli: right valve. Scale $=1 \mathrm{~cm}$.

Fig. 10- Margaritifera: a- M. margaritifera, right valve and hinge plate of left valve; b-M. falcata. Scale $=1 \mathrm{~cm}$

Hinge teeth well-developed
Hinge teeth lacking, Restricted to Pacific Coast drainage (Fig. 11):

Fig. ll- Gonidia anguzata: right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

2(1) Shel1 surface with distinct corrugations on posterior $\quad 3$ Shell surface without distinct corrugations on posterior slope 12

3(2) Shell surface with distinct pustules, usually covering a
considerable area 4
Shell surface without distinct pustules 6
4(3) Shell round or roundly-oval (Fig. 12): Quadmula intermedia
She11 elongate, rhomboidal 5

5(4) Posterior ridge well-developed; shell without diagonal row of large pustules; nacre purple or purplish-pink (Fig. 13a): Tritogonia verrucosa Posterior ridge low; shell with diagonal row of large pustules anterior and ventral to posterior ridge; nacre white (Fig. 13b):

Quadrula cylindrica
6(3) Shell elongate, rhomboidal, with truncate posterior end; nacre purple, especially in lower half of shell. Confined to the Ochlockonee and Apalachicola River systems in Georgia and Florida (Fig. 14): Elliptoideus sloatianus
Shell elongate, oval or round; nacre white 7

Fig. 12- Quadmula intermedia: right valve. Scale $=1 \mathrm{~cm}$.

Fig. 13a- Tritogonia vermucosa, right valve and hinge plate of left valve; b- Quadrula cylindrica, right valve. Scale $=1 \mathrm{~cm}$.

Shell large (often up to 13 cm in length and sometimes 18 cm), corrugations heavy

8 (7) Shell nearly as high as long, truncately oval in outline (Fig. 15a): Shell elongate (Fig. 15b):

Quincuncina infurcata Quincuncina burkei

Fig. 14- ElZiptoideus sloationus: right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

Fig. 15- Quincuncina: a- Q. infurcata, right valve and hinge plate of left valve; $b-Q$. burkei, right valves. Scale $=1 \mathrm{~cm}$.

Shell sculpture not extending anterior to beaks. Genus Amblema
$10(9)$ Large, equal-sized, parallel undulations extended across posterior ridge; shell very inflated (Fig. 17):

Amblema neislerii
Large, but not necessarily equal-sized undulations fan out from beak to shell margins; undulations on posterior ridge more or less follow ridge, rather than crossing it; shell moderately inflated or flattened

Fig. 16- Megalonaias giganteus: right valve of a rather young adult, and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

Fig. 17- AmbZema neislerii: right valve, hinge plate of left valve and outline of medial cross-section. Scale $=1 \mathrm{~cm}$.
$11(10)$ Shell round or roundly-oval, moderately inflated, its
ventral margin typically rounded (Fig. 18a): Amblema perplicata Shell elongated, typically flattened, sometimes moderately inflated; ventral margin of shell typically nearly straight and more or less parallel to dorsal margin (Fig. 18b) :

Amblema costata

Fig. 18- Amblema: a-A. perplicata, right valve; b-A. costata, right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.
$12(2)$ She11 rhomboidal, with raised and relatively sharp posteriorridge (Fig. 19):
Shell round, oval or triangular 13
13(12) Shell surface pustulose. Genus quadrula in part 14
Shell surface smooth Genus Fusconaia 21
14 (13) Shell twice as long as high (Fig. 13b): Quadrula cylindrica Shell less than twice as long as high 15
15(14) Shell with green chevron-shaped markings 16
Shell lacking chevron-shaped color markings 17

16(15) Shell moderately inflated; posterior ridge high and usually having 3-5 very large swellings or raised pustules (Fig. 20a):

Quadrula metanevra Shell compressed; posterior ridge low and rounded and with pustules similar to those found on other parts of shell (Fig. 12):

Quadrula intermedia

Fig. 19- Plectomemus dombeyonus: right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.
17 (15) Shell with median sulcus on surface which extends from umbo to ventral margin; shell usually moderately to heavily pustulose, but pustules occasionally may be lacking (Fig. 20b):
quadrula quadmiza
Shell lacking median sulcus on disc and umbonal region; shell with or without pustules18

18(17) Umbonal region highly inflated, with beak extending well
above hinge plate; commonly pustulose 19
Umbonal region only slightly inflated; beak does not extend noticeably above hinge plate; commonly lacking pustules 20

Fig. 20- Quadmila: a- Q. metonevra, right valve; b- Q. quadmila, right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

19 (18) Pustules on disc arranged in 2 divergent rows; shell without green rays on umbonal region (Fig. 21a): Quadrula nodulata Pustules on disc more evenly scattered over shell surface; umbonal region commonly with wide green ray (Fig. 21b): Quadmila pustuZosa

20(18) Shell nearly circular in outline; shell nearly as high as long (Fig. 22a) : Quadrula archeri Shell rectangular to broadly elliptical in outline; shell clearly longer than high (Fig. 22b)

Quadmila aurea

Fig. 21- Quadmila, right valves: a- Q. nodulata; b- Q. pustulosa. Scale $=1 \mathrm{~cm}$.

21 (13) Beaks very high; the umbonal region extremely inflated, continuing full, high and round onto disc below the umbo22

Beaks not especially high; umbonal region not extremely inflated24

22 (21) Posterior ridge angular (Fig. 23):

Posterior ridge angular and smooth

Fig. 22- Quadmula, right valves: a- Q. archeri; b- Q. aurea. Scale = 1 cm .

$23(22)$ Disc inflated from umbo down to ventral margin of shell (Fig. 24a):

Fusconaia ebenus
Disc inflated only on
upper half of shell
valve (Fig. 24b):
Fusconaia subrotunda
$24(21)$ Shell as high as long, or
very nearly so 25
Shell length exceeds
height 26

Fig. 23- Fusconaia flava undata: right valve. Scale $=1 \mathrm{~cm}$.

Fig. 24- Fusconaia, right valves: a-F. ebenus; b- F. subrotunda. Scale. $=1 \mathrm{~cm}$.

25(24) Shell with median sulcus; shell typically with many dark green rays (Fig. 25a): Fusconaia cor
Median sulcus absent; shell without color rays (Fig. 25b):
Fusconaia succissa

Fig. 25- Fusconaia, right valves: a- F. cor; b- F. succissa. Scale $=$ 1 cm .

Fig. 26- Median su1cus on right valves: a- sulcus extending
up onto umbonal region; b- sulcus not extending into sulcus region.

26(24) Shell's posterior slope from posterior ridge to dorsalposterior margin, short and steep; shell with median sulcus
Shell's posterior slope long and gently descending; shell without median sulcus (Fig. 25b):

Fusconaia succissa
27 (26) Wide shallow median sulcus on disc extends up onto umbonal region (Fig. 26a), giving umbonal region flattened appearance (Fig. 27a):

Fusconaia cuneolus
Wide shallow median sulcus of disc does not extend into umbonal region (Fig. 26b), leaving umbonal region with full round appearance (Fig. 27b):

Fusconaia flava flava

Fig. 27- Fusconaia: a- F. cuneolus, right valve; b- F. flava flava, right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

In gills of gravid females, secondary septa which are more or less perpendicular to primary septa (except in Strophitus) divide each water tube into 3 tubes (Fig. 28a) (glochidia contained only in middle tube of each set); glochidia with hooks:

ANODONTINAE (page 72)
In gills septa and water tubes undivided; glochidia without hooks (except in Proptera, which has axehead-shaped glochidia)

2(1) Marsupium filling entire outer pair of gills, forming smooth pads (Fig. 28b); shell not sexually dimorphic
Marsupium confined to restricted regions of outer demibranchs (Fig. 28c,d,e,f) ; marsupia not forming smooth pads but marked externally by sulci; shell generally exhibiting sexual dimorphism:

LAMPSILINAE (page 93)
3 (2) Animals bradytictic, i.e., long-term breeders, retaining developing glochidial larvae in their gills except in Nearctic summer: POPENAIADINAE (page 70)
Animals tachytictic, i.e., short-term breeders, carrying glochidia in their gills only during Nearctic summer:PLEUROBEMINAE (page 45)

Fig. 28 - Marsupial gills in gravid female unionid clams: a- cross-section of gill of Lasmigona (glochidia shown in only one main water tube); bElZiptio dilatata; c-Ptychobranchus fasciolare (ptychogenae); d- Obliquaria reflexa (mesogenae); e- Dromus dromus (eschatigenae); f-Lampsilis fasciola (heterogenae). $f=$ foot; id = inner demibranch; $1 \mathrm{~m}=$ left mantle lobe; $1 \mathrm{~b}=$ labial palp; mwt = main water tube; od $=$ outer demibranch; $P=p l a c e n t a ; ~ p s$ $=$ primary septum; $\mathrm{rm}=$ right mantle lobe, folded back to expose gills; ss = secondary septum; swt $=$ secondary water tube.

Shell surface sculptured with pustules
Shell surface without pustules
$2(1)$ Shell rounded in shape; nacre purple (Fig. 29):
Cyclonaias tuberculata
Shell irregularly oval in shape; nacre white, sometimes with slight pinkish tinge. Genus Plethobasus

Fig. 29- Cyclonaias tuberculata: right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

3(2) Pustules over entire posterior half of shell surface (Fig. 30a)

Plethobasus cooperianus
Pustules arranged in central median row, absent from anterior and posterior shell surface (Fig. 30b): Plethobasus cyphyus

Fig. 30- Plethobasus: a- P. cooperianus; right valve; b- P. cyphyus, right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

4(1) Pseudocardinal teeth rather poorly developed to obsolete... 5
Pseudocardinal teeth well developed 6
$5(4) \quad$ Pseudocardinal teeth present, although poorly developed (Fig. 31): Uniomerus tetralasmus Pseudocardinal teeth rudimentary or absent (Fig. 32):

Hemistena lata

Fig. 31- Uniomerus tetralasmus: right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.
6(4) Shell generally high, triangular, high-oval, roundly oval, or occasionally elliptical; beaks generally high and generally arched forward; nacre white or occcasionally pinkish. Genus Pleurobema
Shell elongate, rhomboidal (or if low-triangular, broadly elliptical, or somewhat oval, nacre purple); beaks low, not arched; nacre purple (usually), pink or iridescent. Genus Elliptio 22
$7(6) \quad$ Placentae in gravid females deep orange or red. Subgenus Lexingtonia 8
Placentae in gravid females grayish-white to pale brown. Subgenus Pleurobema s.s. 11
8 (7) Shell with spines on posterior ridge and slope (Fig. 33a)
Pleurobema (Lexingtonia) collina
Shell without spines 9

Fig. 32- Hemistena lata: right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

Fig. 33- Pleurobema (Lexingtonia) collina: adorsal view of both valves (anterior end to right) of a specimen with spines (after Boss and Clench, 1967); b- right valve of a specimen without spines. Scale $=1 \mathrm{~cm}$.

9 (8) Shell high, especially in adults; beaks prominent and arched forward; color rays on shell especially prominent (Fig. 34):

Pleurobema (Lexingtonia) dolabelloides
Shell more elongate; beaks less prominent and not noticeably arched forward; color rays, when present, not prominent

10(9) Periostracum smooth and yellowish, without color rays or with only slightest hint of some very narrow brownish rays (Fig. 33b): Pleurobema (Lexingtonia) collina. Periostracum rougher, satiny, due to fine periostracal growth ridges; brownish to dark olive-green with dark green or brown color rays (Fig. 35): Pleurobema (Lexingtonia) masoni

Fig. 34- Pleurobema (Lexingtonia) dolabelloides: right valves and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

Fig. 35- Pleurobema (Lexingtonia) masoni: right valves and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.
$11(8)$ Shell distinctly higher than long 12Shell height and width similar, or shell length exceedsheight14
12(11) Height of shell and prominence of beaks greatly accentuated; shell especially inflated in area below beaks (Fig. 36a); beak cavities relatively deep (Fig. 36b):
pleurobema cordatum pyramidatum Height of shell and beaks not as pronounced; beak cavities shallow 13
13(1) Shell nearly round to roundly oval (Fig. 37a):
Pleurobema marshalli
Shell triangularly oval (Fig. 37b): Pleurobema altum
14(11) Shell height and length nearly equal 15
Shell distinctly longer than high 17
15(14) Beak cavities very deep (Fig. 38): Pleurobema cordatum cordatron
Beak cavities shallow 16

a

Fig. 36- Pleurobema cordatum pyromidatum: a- anterior end showing both valves; b- right valve. Scale $=1 \mathrm{~cm}$.

Fig. 37- Pleurobema, right valves: a- P. marshalti; b- P. altum. Scale $=1 \mathrm{~cm}$.

Fig. 38- Pleurobema cordatum cordatum: right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

16(15) Shell brown, dark brown or green-brown, especially dark on disc below beaks (Fig. 39a): Pleurobema showalterii Shell tan or straw-yellow (Fig. 39b): Pleurobema altron

17(13) Shell strongly arched, beaks at extreme dorsal anterior end
Shell not strongly arched, beaks may be far anterior, but not at extreme dorsal anterior end

18(17) Shell with distinct lateral dorsoventral median sulcus (Fig. 40a):
Shell without a distinct lateral dorsoventral median sulcus

Fig. 39- Pleurobema, right valves: a- P. showalterii; b- P. altum. Scale $=1 \mathrm{~cm}$.

Fig. 40- Pleurobema, right valves: a-P. clava; b-P. curtum. Scale $=$ 1 cm .

20 (19) Beaks high and prominent; shell deeply but narrowly inflated just below the beaks (Fig. 41a): Pleurobema decisum Beaks lower, not as high and prominent; shell broadly inflated below beaks (Fig. 41b): Pleurobema chattanogaense

21 (17) Shell high, rounded, triangular or subtriangular (Fig. 42ad; 43):

Pleurobema ssp.
Shell lower, oval, ovate-triangular, elliptical or subrhomboidal (Fig. 42e-i; 44): Pleurobema ssp. (No thorough study has been made of the genus Pleurobema on a broad basis. The systematic status of many or most of the nominal species is unknown or confused. Therefore, a workable key at this time is impossible to construct. Figures 42,43 and 44 illustrate many of the named forms. Their distributions, as far as known, are given in the ${ }^{*}$ preceeding section "Species List and Ranges".)

Fig. 41- Pleurobema, right valves: a- P. decisum; b- P. chattanogaense. Scale $=1 \mathrm{~cm}$.

a

Fi.g. 42- Pleurobema, right valves: a- P. cordatum pauperculum; bP. cordatum coccineum; c- P. oviforme; d- P. verum; e,f- P. irrasum; g- P. nux; h-P. perovatum; i- P. reclusum. Scale $=1 \mathrm{~cm}$.

Fig. 43- Outlines of shells of various nominal species of Pleurobema which are high, rounded-triangular or subtriangular in outline. $S c a l e=1 \mathrm{~cm}$.

Fig. 44- Outlines of shells of various nominal species of Pleurobema which are low, oval, ovate-triangular, elliptical or subrhomboidal in outline. Scale $=1 \mathrm{~cm}$.

23 (22) Shell extremely elongate, length/height ratio 3.5 or greater (Fig. 46):
Shell enlongate (but length/height ratio less than 3) to relatively stubby24

24 (23) Shell subtriangular to subrhomboidal, rather heavy, generally relatively high, somewhat arched forward
Shell generally more elongate, elliptical to rhomboidal, of varying thickness (often thin) but not expecially heavy, usually no or little indication of being arched forward .
$25(24)$ Shell especially heavy (Fig. 47a): ELliptio crassidens crassidens
Shell lighter, usually more elongate, and with more anteriorly placed beaks. Restricted to Satilla River system of Georgia (Fig. 47b):

Elliptio crassidens downiei

Fig. 45- Elliptio (Canthyria) spinosa: right valve. Scale = 1 cm .

Fig. 46- ELITptio shepardiana: right valve. Scale $=1 \mathrm{~cm}$.

Fig. 47- Elliptio: a- E. crassidens erassidens, right valve and hinge plate of left valve; b- E. crassidens downiei, right valve. Scale $=1$ cm .
26(24) Shell flattened (Fig. 48a) 27
Shell inflated (Fig. 48b) 34
27 (26) Posterior ridge relatively close to dorsal margin and bowed upward (Fig. 49a) Elliptio dilatata Posterior ridge more median in position and nearly straight . 28

Fig. 48- Shells of ElZiptio in anterior end view: a- flattened shell; b- inflated shell.

$28(27)$ Posterior slope usually sculptured with wrinkles that radiate dorsally from posterior ridge (Fig. 49b): EZLiptio fratema Posterior slope usually without wrinkles 29

29(28) Shell considerably higher posteriorly than anteriorly.
Apalachicola River system of Florida, Alabama and Georgia.
(Fig. 50a): Elliptio nigelてa
Shell height nearly same in posterior and anterior regions .. 30

Fig. 50- Elziptio, right valves: a-E. nigeZza; b-E. arctata. Scale $=1 \mathrm{~cm}$.

30 (29) Shell arcuate, i.e., bowed upwards medially, with ventral margin curved concavely upward (Fig. 50b): ElZiptio arctata Shell not arcuate, ventral margin straight or convexly curved downward

31 (30) Shell lanceolate, i.e., especially elongated and usually pointed posteriorly near midline (Fig. 51a):Elliptio Zanceolata Shell rhomboidal to subelliptical

32 (31) Shell subelliptical, ventral margin curved downward. Apalachicola River system. (Fig. 51b): ElZiptio chipoZaensis Shell rhomboidal, ventral margin usually straight or only slightly curved

Fig. 51- Elliptio, right valves: a- E. Zanceolata; b- E. chipolaensis. Scale $=1 \mathrm{~cm}$.

33(32) Shell rather uniformly trapezoidal, disc flattened;
periostracum not usually shiny, often rayed, yellowish-
green to black (Johnson, 1970) (Fig. 52a): Elliptio complanata
Shell subrhomboidal, often somewhat pointed, very variable as
to shape and degree of inflation; periostracum usually
subshiny to shiny, often rayed, yellowish to brownish
(Johnson, 1970) (Fig. 52b):
34 (26) Shell elongate, subelliptical or lanceolate; length/height ratio nearly 2 or greater
Shell shorter, rhomboidal to sub-ovate; length/height ratio 1.75 or less

Fig. 52- Elliptio: a- E. complanata, right valve and hinge plate of left valve; b- E. icterina. Scale $=1 \mathrm{~cm}$.

35 (34) Shell generally dark and usually with numerous fine dark green rays. St. Marks and Suwannee River systems and peninsular Florida. (Fig. 53a; 54b): ElZiptio jayensis Shell greenish-yellow or olive (except very old specimens which are dark), often with greenish color rays, but not as numerous and fine as above. Atlantic slope, from Susquehanna River system of Pennsylvania to Satilla River system of Georgia; Apalachicolan region (Escambia River system, east to Apalachicola River system) (Fig. 5la):

Elliptio Zanceolata

Fig. 53- Elliptio, right valves: a-E. jayensis; b- E. hopetonensis. Scale $=1 \mathrm{~cm}$.

36 (34) Posterior end broadly and bluntly truncate; dorsal margin very long, joining posterior margin at an acute angle. Lower Altamaha River system only. (Fig. 53b):

ELIipito hopetonensis
Posterior end not broadly truncate; dorsal margin shortened, joining posterior margin at a wider angle 37

37 (36) Shell subovate to subelliptical 38
Shell rhomboidal, subrhomboidal, subtriangular or quadrate . 39
$38(37)$ Shell epidermis chestnut brown, without color rays. Apalachicola River system (Fig. 54a): Elliptio chipolaensis Shell epidermis dark or light green, or yellow-green, usually with numerous fine dark green rays. St. Marks and Suwannee River systems and peninsular Florida (Fig. 53a; 54b):

Elliptio jayense

Fig. 54- Elliptio, right valves: a- E. chipolaensis; b- E. jayensis. Scale $=1 \mathrm{~cm}$.

39 (37) Shell subtriangular or quadrate, moderately heavy. Southern Atlantic drainage, from Cape Fear River system of North Carolina to Ogeechee River system of Georgia. (Fig. 55):

Elliptio congaraea
Shell rhomboidal or subrhomboidal 40
40(39) Posterior ridge rounded or subangular. St. Marks and Suwannee River systems and peninsular Florida. (Fig. 53a; 54b): ElLiptio jayensis
Posterior ridge usually acutely angular 41
41 (40) Shell small, usually less than 6 cm in length. Restricted to Waccamaw River system of North Carolina. (Fig. 56):

Elliptio waccomowensis
Shell large, up to or exceeding 13 cm in length. Altamaha River system of Georgia and peninsular Florida. (Fig. 57):

Elliptio dariensis

Fig. 55- Elliptio congaraea: right valve. Scale $=$ 1 cm .

Fig. 56- Elてiptio
waccomowensis: right valve. Scale $=1 \mathrm{~cm}$.

Fig. 57- Elliptio dariensis: right valves. Scale $=1 \mathrm{~cm}$.

Shell elongate, length/height ratio 1.8 or greater. Genus Popenaias
Shell high, length/height ratio 1.4 or less: Genus Cyrtonaias (Fig. 58): Cyrtonaias berZandierii

2(1) Shell flattened; posterior slope broad and shallow; periostracum dull (Fig. 59a):

Popenaias popei
Shell inflated; posterior slope steep; periostracum glossy (Fig. 59b): Popenaias buckleyi

Fig. 58- Cyrtonaias berZandierii: right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

Fig. 59- Popenaias: a- P. popei; b- P. buckleyi, right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

1 Hinge entirely without teeth, or teeth very reduced with only pseudocardinal teeth present, and these represented only by small rudiment; shell thin, fragile2
Hinge teeth quite distinct, even though they may be rather poorly developed in some species; shell of moderate thickness, or if thin, not particularly fragile 30
2(1) Pseudocardinal teeth absent. Genus Anodonta, Anodontoides in part, Strophitus in part 3
Pseudocardinal teeth present, but rudimentary 24
3(2) Species east of Continental Divide 4
Species in Pacific Drainage 17
4(3) Umbos do not extend above dorsal margin 5
Umbos extend above dorsal margin 8

5(4) Shell very flat, high, nearly round in outline (Fig. 60):
Shell more elongate, not especially flattened, often quite inflated6
$6(5)$ She1l more elongate, length/height ratio approximately 2.0 (Fig. 61):
Shell higher, length/height ratio approximately 1.5 7

7 (6) Shell height greatest in posterior half; color pattern: strawyellow on blue-green background (Fig. 62a) Anodonta peggyae
Shell height greatest in median portion; color pattern: bluegreen on straw-yellow background (Fig. 62b) Anodonta couperiana

Fig. 60- Anodonta suborbiculata: right valve. Scale = 1 cm .

Fig. 61- Anodonta imbecillus: right valve. Scale $=1 \mathrm{~cm}$.

Fig. 62- Anodonta, right valves: a- A. peggae; b- A. couperiana. Scale $=1 \mathrm{~cm}$.

8 (4) She11 high, length/height ratio 1.6 or less 9
Shell elongate, length/height ratio greater than $1.6 \ldots . .$.
9(8) Shell strikingly inflated in posterior region of disc and posterior ridge, being inflated down to ventral shell margin; nacre usually iridescent or white (Fig. 63a):

Anodonta gibbosa
Shell more evenly inflated, not being noticeably more inflated in posterior region; nacre often coppery-pink or salmon pink (Fig. 63b):

Anodonta grandis corpulenta

Fig. 63- Anodonta, right valves: a- A. gibbosa; b- A. grandis corpulenta. Scale $=1 \mathrm{~cm}$.

10(8) Shell strikingly inflated in posterior region of disc and posterior ridge, being inflated down to ventral shell margin (Fig. 63a):
Shell more evenly inflated, not being noticeably more inflated in posterior region

11 (10) Beak sculpture double-looped and nodulous (Fig. 64):
Anodonta grandis grandis
Beak sculpture single- or double-looped, but not nodulous (i.e., each ridge of sculpture rather uniform in height).. 12

12 (11) Beak sculpture with 7-10 ridges. East of Continental Divide this species is known only from western Alberta, Canada (Fig. 65): Anodonta kennerlyi
Beak sculpture with $3-6$ ridges .. 13
13(12) Beak sculpture single-looped, or only faintly double-looped . 14 Beak sculpture double-looped, usually distinctly so 16

Fig. 64- Anodonta grandis grandis: right valve. Scale $=1 \mathrm{~cm}$.

Fig. 65- Anodonta kennerlyi: right valve. Scale $=1 \mathrm{~cm}$.

Fig. 66a- beak sculpture coarse; b- beak sculpture fine; c- Strophitus undulatus, right valve; d-S. unduZatus, hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

Fig. 67a- Anodontoides ferussacionus, right valve; b- Anodonta grandis simpsoniona, right valve. Scale $=1 \mathrm{~cm}$.

14(13) Major ridges of beak sculpture (Fig. 66a) relatively coarse (Fig. 66c):
Major ridges of beak sculpture relatively fine (Fig. 66b)... 15
15 (14) Ridges of beak sculpture are not parallel to concentric growth lines of beak, but cross them obliquely (Fig. 67a):

Anodontoides ferussacianus
Ridges of beak sculpture run parallel to concentric growth lines of beak; Hudson Bay drainage of Canada (Fig. 67b):

Anodonta grandis simpsoniana
16(13) Anterior ventral portion of shell below pallial line is noticeably thickened; nacre often coppery-pink to salmon pink (Fig. 68a): Anodonta implicata
Anterior ventral portion of shell below pallial line is not thickened; nacre white or iridescent, never pink (Fig. 68b): Anodonta cataracta

Fig. 68- Anodonta: a- A. implicata, right valve; b- A. cataracta, right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

Fig. 70- Anodonta, right valves: a- A. wahlometensis; b- A. californiensis. Scale $=1 \mathrm{~cm}$.
17(3) Height of posterior half of shell greater than height of anterior half 18
Height of posterior half of shell nearly equal to height of anterior half 20
18 (17) Shell length/height ratio is 2 or greater; shell nearly rhomboidal in outline (Fig. 69): Anodonta dejecta Shell length/height ratio is 1.5 or less; shell broadly ovate in outline 19
19 (18) Shell with high conspicuous wing (Fig. 70a):Anodonta wahlametensis Shell with wing of only moderate height (Fig. 70b):
Anodonta califormiensis
$20(17)$ Shell inflated only over anterior half of shell (Fig. 71):
Anodonta beringiana
Shell inflated over median and/or posterior portion 21
21 (20) Bars of beak sculpture uneven in height, making beak bumpy or tuberculose (Fig. 64): Anodonta grandis grandis
Bars of beak sculpture even in height 22
22 (21) Posterior end of she11 truncate (Fig. 69): Anodonta dejecta Posterior end of shell pointed .. 23

Fig. 71- Anodonta bemingiana: right valve. Scale $=1 \mathrm{~cm}$.

Fig. 73a- Alasmidonta varicosa, right valve; b- Anodontoides radiatus, right valve and hinge plate of right valve. Scale $=1 \mathrm{~cm}$.
$23(22)$ Shell narrowly elliptical, length/height ratio 2 , shell inflated primarily along posterior ridge (Fig. 65):

Anodonta kennerleyi
Shell typically less narrowly elliptical, length/height ratio usually less than 2 , shell inflated primarily over median portion (Fig. 72): Anodonta oregonensis

24(2) Pseudocardinal teeth very thin, blade-like 25
Pseudocardinal teeth tubercular 26
25 (24) She11 rhomboidal; posterior ridge prominent; posterior slope with rather fine corrugated sculpture (Fig. 73a):

Alasmidonta varicosa
She11 long-ovate; posterior ridge absent; anterior slope smooth (Fig. 73b): Anodontoides radiatus

26(24) Posterior slope with corrugated sculpture. Genus Alasmidonta 27
Posterior slope lacking corrugated sculpture 29

Fig. 74- Alasmidonta, right valves. a- A. marginata; b- A. raveneliana. Scale $=1 \mathrm{~cm}$.
$28(27)$ Shell surface relatively smooth, except for periodic rest marks; ventral margin of shell typically without broad, shallow indentation (Fig. 74b): Alasmidonta raveneliana
Shell surface with irregular undulations, giving it rough appearance; ventral margin of shell typically with broad, shallow indentation (Fig. 73a) Alasmidonta varicosa

29 (26) Shell elongate, length/height ratio about 2; posterior ridge low, rounded, hardly noticeable (Fig. 75a):

Simpsoniconcha ambigua
Shell less elongate, length/height ratio 1.6 or less; posterior ridge well developed (Fig. 75b): Strophitus subvexus

Fig. 75a- Simpsoniconcha ambigua, right valve and hinge plate of left valve; b-Strophitus subverus, right valve. Scale $=1 \mathrm{~cm}$.
$30(1)$ Shell with large corrugations on disc and posterior slope, or on both
Shell without large corrugations on either disc or posterior slope

31 (30) Tubercles of beak sculpture extending beyond beaks; pseudocardinal teeth compressed, laminate (Fig. 76):

Arcidens confragosus
Tubercles of beak sculpture restricted to first 3 or 4 mm of beaks; pseudocardinal teeth large and triangular, not compressed (Fig. 77): Arkansia wheeleri

Fig. 76- Arcidens confragosus: right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.
32 (30) Beak sculpture concentric (see Fig. 4). Genus AZasmidonta 33
Beak sculpture double-looped (see Fig. 4). Genus Lasmigona 43
33 (32) Posterior end broadly truncate, with truncate slope running anterioventrally; posterior end sometimes bifurcate at shell margin (Fig. 78): Alasmidonta (Pegias) fabula Posterior end rounded or pointed, or if truncate, truncate slope runs anteriodorsally. Subgenus AZasmidonta s.s..... 34
34 (33) Shell short and high, length/height ratio less than 1.5 35
Shell elongate, length/height ratio more than 1.5 38
35 (34) Shell very high; posterior slope extremely steep, at an
angle of nearly 90° to disc (Fig. 79): AZasmidonta arcula
Shell height lower; posterior slope not so steep 36

Fig. 77- Arkansia wheelemi: right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

Fig. 78- AZasmidonta (Pegias) fabuZa: right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

Fig. 79- Alasmidonta arcula: right valve. Scale $=1 \mathrm{~cm}$.

36(35) Posterior end flatly truncate; ventral margin of shell nearly straight; growth lines sharp, giving periostracum rough appearance (Fig. 80):

Alasmidonta calceolus
Posterior end pointed or rounded; ventral margin of shell rounded; periostracum may be irregular in places, but basically smooth

37(36) Posterior slope strongly and rather coarsely corrugated; beaks near center of shell (Fig. 81a): Alasmidonta wrightiana Posterior slope either without corrugations, or if they are present, they are minor and rather fine; beaks near forward end of shell (Fig. 81b): Alasmidonta triangulata

Fig. 80- Alasmidonta calceolus: right valve and hinge plates of left valve. Scale $=1 \mathrm{~cm}$.

Fig. 81- Alasmidonta: a-A. wrightiona; b-A. triangulata. Scale = 1 cm .

38(34) Right valve contains 2 lateral teeth (Fig. 82):
Alasmidonta heterodon Right valve contains only 1 lateral tooth, which is often rudimentary 39

39(38) Posterior ridge angular (Fig. 74a): Alasmidonta marginata Posterior ridge rounded .. 40

40(39) Pseudocardinal teeth well-developed; tooth surface typically rough, with ridges or bumps Pseudocardinal teeth rather rudimentary; tooth surface smooth42

41(40) Pseudocardinal teeth large; ridges on beak large and heavy; periostracum may be irregular in places, but basically smooth (Fig. 83): Alasmidonta undulata Pseudocardinal teeth relatively smaller; ridges on beak of moderate size; growth lines sharp, giving periostracum rough appearance (Fig. 80): Alasmidonta calceolus

Fig. 82- Alasmidonta heterodon: right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.
42 (40) Ventral margin of shell gently rounded convexly when viewed laterally; shell surface relatively smooth, except for periodic rest marks (Fig. 74b): Alasmidonta raveneZiana Ventral margin rounded concavely when viewed laterally; shell surface with irregular undulations, making surface rough (Fig. 73a): Alasmidonta varicosa
43(32) Posterior ridge with undulations; hinge teeth heavy and rough44Posterior ridge without undulations; hinge teeth smooth ormore delicate45

Fig. 83- Alasmidonta undulata: right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

44 (43) She11 roundly oval to nearly round, with prominent wing; undulations on posterior slope gentle, not coarse corrugation (Fig. 84a): Lasmigona complanata Shell elongate, without wing; posterior slope strongly corrugated (Fig. 84b): Lasmigona costata

45 (43) Shell roundly oval to nearly round (Fig. 84a):Lasmigona complanata Shell elongate

46

Fig. 84- Lasmigona: a- L. complanata, right valve and hinge plate of left valve; b- L. costata, right valve. Scale $=1 \mathrm{~cm}$.

Fig. 85- Lasmigona: a- L. holstonia, right valve; b- L. compressa, right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

47 (46) Major cusps of pseudocardinal teeth in left valve directly below or posterior of beaks (Fig. 85b): Lasmigona compressa Major cusps of pseudocardinal teeth in left valve anterior of beaks (Fig. 86):

Fig. 86- Lasmigona subviridis: right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

2(1) Posterior slope corrugated (Fig. 87): Ptychobranchus subtentum Posterior slope not corrugated 3

3(2) Green rays on shell wide, broken into rectangular spots 4
Green rays on shell of fine continuous lines 5 Ptychobranchus (The shells of this genus are elongated, flattened and with very low beaks which generally do not rise much above the hinge line. The shells are straw-yellow in color, with radiating green rays. Because of the coloring and general shape of their shells, species of Ptychobranchus can be confused with certain species of Actinonaias (e.g., A. ellipsiformis), but the lateral teeth in Ptychobranchus are shorter, directed downward, and are somewhat swollen posteriorly (see Fig. 88).)
Marsupium confined to either central or posterior part of outer gill demibranch (Fig. 28d,e,f)

Fig. 87- Ptychobranchus subtentum: right valve. Scale $=1 \mathrm{~cm}$.

Fig. 88- Ptychobranchus: a- P. foremanianum, right valve; b- P. fasciolare, right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

4(3) Color rays restricted mainly to upper half of shell; posterior ridge straight (Fig. 88a): Ptychobranchus foremanianum Color rays usually well represented on lower half of shell; posterior ridge arched upward (Fig. 88b).

Ptychobranchus fasciolare
5(3) Posterior ridge straight or bowed downward; posterior ridge on beak angular (Fig. 89a): Ptychobranchus greeni
Posterior ridge arched upward; posterior ridge on beak rounded (Fig 89b): Ptychobranchus occidentalis

6(1) Marsupium confined to central part of outer gill demibranch (Fig. 28d)

7
Marsupium confined to posterior part of outer gili demibranch (Fig. 28e,f)

9

Fig. 89- Ptychobranchus, right valves : a- P. greeni; b- P. occidentalis. Scale $=1 \mathrm{~cm}$.

7 (6) Shell with single median row of large tubercles (Fig. 90):
Obliquaria reflexa
Shell surface sculptured with numerous tubercles or nodules of varying sizes or with radiating wrinkles, but without single median row of large tubercles. Genus Cyprogenia.

8(7) Shell more triangular in outline, often with irregular swellings on disc and posterior slope, but lacking high round pustules (Fig. 91a):

Cyprogenia aberti
Shell nearly round in outline, sculptured with round, high pustules, usually abundant and distributed over nearly entire shell surface (Fig. 91b):

Cyprogenia imrorata

Fig. 90- Obliquaria reflexa: right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

Fig. 91- Cyprogenia: a-C. aberti, right valve; b-C. irrorata, right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

9(6) Marsupium confined to lower part of posterior outer gill demibranch (Figs 28e, 92):

Dromus dromus
Marsupium contained in both upper and lower halves of posterior part of gill demibranch (Fig. 28f) (characteristic of most of subfamily Lampsilinae, i.e. 15 genera)

Fig. 92- Dromus dromus: right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.
10 (9) Posterior slope transversely corrugated 11
Posterior slope smooth, or if corrugated, with radiating corrugations only15
$11(10)$ Shell relatively high; sculpture on posterior half of disc consisting of radiating grooves, which run to ventral. shell margin (Fig. 93):

Lemiox caelata
Shell elongate; not sculptured with radiating grooves.
Genus Medionidus

Fig. 93- Lemiox caelata: right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

12 (11) The posterior shell margin meets dorsal'margin at sharp angle, forming wing (Fig. 94a): Medionidus megZamerae She11 without wing .. 13

13 (12) Shell shorter, length/height ratio 1.8 or less; disc below umbo full and round (Fig. 94b): Medionidus penicillatus Shell longer, length/height ratio 2.0 or greater; disc below umbo flattened

Fig. 94- Medionidus: a- M. meglamerae, right valve; b- M. penicillatus, right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

14 (13) Rays on shell mostly continuous occurring on anterior third of shell as abundantly as on median and posterior portions; periostracum has satiny appearance due to closely spaced microscopic ridges (Fig. 95a):

Medionidus conradicus
Rays on shell broken mostly into streaks, blotches or chevron designs, typically less abundant on anterior third of shell; periostracum glossy (Fig. 95b): Medionidus acutissimus

Fig. 95- Medionidus, right valves: a- M. conradicus; b- M. acutissimus. Scale $=1 \mathrm{~cm}$.
$15(10)$ Posterior half of pseudocardinal teeth divided into series of parallel, vertical, rough, deeply divided lamellae (Fig. 96): Glebula Posterior half of pseudocardinal teeth may be rough, but they are not deeply lamellate

Fig. 96- Glebula rotundata: right valve, hinge plate of left valve and enlargement of pseudocardinal tooth in left valve. Scale $=1 \mathrm{~cm}$.

16(15) Shell high, arced, flattened; posterior transverse slope short, without trace of wing, and at 90° angle to disc; hinge teeth very large and heavy (Fig. 97):Ellipsaria lineolata Shells without above combination of characters; if shell is high it is generally not arced, and if so, it is inflated, not flattened, and has less acute posterior slope

Fig. 97- Ellipsaria lineolata: right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

Fig. 98- Caminculina: a- C. parva, right valve and hinge plate of left valve; $b-C$. pulla, right valves. Scale $=1 \mathrm{~cm}$.
17 (16) Females with well-developed caruncle on inner edge of each side of mantle in front of branchial opening (see Fig. 139c); adults small, usually less than 40 mm in length:
Genus Carunculina (Fig. 98)
(A number of nominal species have been placed in the genus
Carunculina. However, the systematics have not been well worked out, although Johnson (1967) has spent the most time analyzing Carunculina shell characters and their variation. He recognizes two species, C. parva (Barnes) and C. pulla (Conrad). According to Johnson, C. pulla is restricted to the Altamaha River system of Georgia north to the Neuse River system in North Carolina. Carmeulina is not found north of the Neuse River on the Atlantic slope. C. parva is a very variable species which is found throughout the Interior Basin, from western New York to Minnesota, to Texas, Arkansas and Florida (Johnson, 1967). It is found in the Atlantic drainage in northern Florida in Black Creek.)
Females lack caruncles on inner edge of each side of mantle in front of branchial opening; adults larger, usually more than 40 mm in length18
18 (17) Shell elongate, length/height ratio 2.0 or greater 19
Shell shorter, length/height ratio less than 2.0 23
19 (18) Posterior ridge high, near dorsal margin, and ending posteriorly in point above dorsoventral midline (Fig. 99):

Lampsilis anodontoides

Posterior ridge lower, further from dorsal margin, and ending posteriorly at or below dorsoventral midline

Fig. 99- Lampsilis anodontoides: right valve. Scale $=1 \mathrm{~cm}$.
$20(19)$ Posterior ridge concave (see Fig. 3), i.e. bowed downward (Fig. 100a): Lompsilis subangulata
Posterior ridge straight or slightly convex (see Fig. 3).... 21
21 (20) Posterior end of shell truncate (Fig. 100b): Lampsilis jonesi
Posterior end of shell bluntly pointed. Genus Ligumia..... 22
22 (21) Posterior ridge extends to posterior margin of shell, and is often angular near umbo; posterior slope typically concave; posterior margin meets dorsal margin at angle, forming low wing (Fig. 101a):

Ligumia nasuta
Posterior ridge indistinct near posterior margin of shell, and is broadly rounded near umbo; posterior slope usually not concave; without wing where posterior and dorsal margins meet (Fi.g. 101b):

Ligumia recta

Fig. 100- Lampsilis, right valves: a-L. subangulata; b-L. jonesi. Scale $=1 \mathrm{~cm}$.
$23(18)$ Shell round, or high-oval; teeth heavy. Genus Obovaria 24
Shell elongate or oval (if oval, teeth are not heavy) 30
24 (23) Beaks of shell high and arched strongly anteriorly 25
Beaks of shell lower and not strongly arched anteriorly 26

Fig. 101- Ligumia: a- L. nasuta, right valve and hinge plates of left valve; b- L. recta, right valve and hinge plates of left valves. Scale $=$ 1 cm .

Fig. 102- Obovaria, right valves: a- O. retusa; b-
o. olivaria. Scale $=1 \mathrm{~cm}$.

Fig. 103- Obovaria subrotunda: right valve and hinge plate of left valve. Scale = 1 cm .
$25(24)$ Nacre purple; typically rayless (Fig. 102a):
Nacre white; upper $1 / 3$ of shell with green rays Nacre white; upper $1 / 3$ of shell with green rays (Fig. 102b):
26(24) Beaks central, or nearly so 27
Beaks located anteriorly 29
27 (26) Periostracum light-colored, often with color rays, especially on disc (Fig. 103): Obovaria subrotunda Periostracum dark brown or black; color rays, if present, limited to posterior slope 28
28(27) Shell almost circular in outline. Distribution limited toEscambia River of Alabama and Florida (Fig. 104a):Obovaria rotuzataShell roundly elliptical or roundly ovate. Distributionlimited to the Alabama-Coosa River system (Fig. 104b):

Fig. 104- Obovaria, right valves: a- O. rotulata; b- O. unicolor. Scale $=1 \mathrm{~cm}$.

29 (26) Shell ovate, nearly as high as long (Fig. 102b): Obovaria olivaria Shell elliptical, clearly longer than high (Fig. 105):

Obovaria jacksoniana
30 (23) Shell showing strong sexual dimorphism. Genus Dysnomia 31 Shells of males and females only slightly sexually dimorphic, if at all.61

31 (30) Shell 3-pronged in outline (Fig. 106), strongly so in females, due to greatly protruding posterior and median ridges
Female shell not 3 -pronged in outline; although shells of males may be weakly 3 -pronged in 3 species (D. biemarginata, D. florintina and D. tomizosa)

32 (31) Median ridge greatly raised on at least half of disc, with large swelling just prior to rest period lines (Fig. 107):

Dysonomia flexuosa
Median ridge not particularly raised on disc, swellings before rest period lines are confined to protruding portion of shell which projects beyond normal ventral margin

Fig. 105- Obovaria jacksoniana: right valve. Scale $=1 \mathrm{~cm}$.

Fig. 106- Dysnomia: right valves showing 3pronged condition in female (left) and male (right).

Fig. 107- Dysnomia flexuosa, right valves: a- female; b- male; c- hing plate of left valve. Scale $=1 \mathrm{~cm}$.

Fig. 108- Dysnomia lewisii, right valves: a- female; b- male. Scale $=$ 1 cm .

33 (32) Rays inconspicuous on posterior ridge, typically obscured on that portion of median ridge which protrudes beyond normal ventral margin (Fig. 108): Dysnomia lewisii
Rays noticeable on posterior ridge, typically also on that portion of median ridge which protrudes beyond normal ventral margin (Fig. 109):

Dysnomia stewardsoni

Fig. 109- Dysnomia stewardsoni, right valves: a- female; b- male. Scale $=1 \mathrm{~cm}$.

Fig. 110- Dysnomia torulosa, right valves: a- female; b- male. Scale $=$ 1 cm .

34 (33) Median ridge present on shell as well as posterior ridge; with large swellings between rest period lines, making high round knobs along median ridge (Fig. 110):

Dysnomia torulosa
Median ridge either present or absent; knobs absent on disc35
$35(34)$ Rays discontinuous, especially on posterior ridge, giving shell spotted, streaked or chevroned appearance 36
Rays continuous 38
$36(35)$ Rays easily seen to be chevroned; posterior ridge very angular; posterior slope steep (Fig. 111): Dysnomia triquetra Rays not chevroned, or only minutely chevroned on small local areas; posterior ridge not angular; posterior slope not steep

Fig. 111- Dysnomia triquetra, right valves: a- female; b- male. Scale $=1 \mathrm{~cm}$.

37 (36) Rays typically conspicuous, appearing streaked on disc, but becoming dot-like on posterior ridge and posterior slope; disc immediately below umbo typically low and flattened; shell typically ovate-elliptical; length/height ratio 1.5 or greater (Fig. 112):

Dysnomia brevidens
Rays typically inconspicuous; disc immediately below umbo typically high and rounded; shell often short and high; length/height ratio 1.3 or less (Fig. 113):Dysnomia metastriata

Fig. 112- Dysnomia brevidens, right valves: a- female; b- male. Scale $=1 \mathrm{~cm}$.

38 (35) Shell usually with color rays primarily on posterior ridge and immediately adjacent areas, although immature shells may be rayed occasionally over median portion of valve as well

$39(38)$ Shell typically pale ashy-green; shell elongate-elliptical and small, rarely exceeding 3.75 cm in length (Fig. 114):

Dysnomia Zenior
Shell not pale ashy-green, but rather yellow, brown, green or olive40

Fig. 114- Dysnomia Zenior, right valves: a- female; b- male. Scale
$=1 \mathrm{~cm}$.

40 (39) Upper margin of shell very broad and humped; color rays on shell consisting of very fine, dark brown lines, arranged very close together; minute chevroned spots often occur between rays; posterior ridge occasionally furrowed along rays (Fig. 115)
Upper margin of shell narrower and not especially humped; color rays on shell are broader and spaced wider apart ..

Fig. 115- Dysnomia penita, right valves: a- female; b-male. Scale $=1 \mathrm{~cm}$.

41 (40) Posterior ridge usually furrowed; periostracum glossy;
nacre usually lavender-purple (Fig. 116):
Dysnomia haysiana
Posterior ridge not furrowed, or only rarely furrowed close to ventral margin on females; nacre usually white..42

Fig. 116- Dysnomia haysiana, right valves: a- female; b- male. Scale 1 cm .

42 (41) Periostracum very glossy; shell 2.5 cm in length or less
(Fig. 116): Dysnomia haysiana (juvenile)
Periostracum dull or with only low gloss
43 (42) Shell high and inflated, especially in male; marsupial extension on female shell is relatively narrow (Fig. 117): Dysnomia sulcata
Shell only slightly inflated; marsupial extension on female shell is relatively broad (Fig. 118): Dysnomia turgidula

Fig. 117- Dysnomia sulcata, right valves: a-female; b-male. Scale = 1 cm .

44(43) Shell greatly inflated; posterior ridge sharply angled; posterior slope very steep and often with 1 or 2 minor ridges. (Fig. 119):

Dysnomia archaeformis
Shell not greatly inflated; posterior ridge round (except
in D. biemarginata and some specimens of D. flexuosal.... 45

Fig. 118- Dysnomia turgidula, right valves: a- female; b-male. Scale
$=1 \mathrm{~cm}$.
45 (44) Median ridge high and with bumpy swellings just above growth rest lines 46
Median ridge low and smooth, or absent 50
46(45) Posterior ridge strongly biangulate 47
Posterior ridge not strongly biangulate. 48

Fig. 119- Dysnomia archaeformis, right valves: a-female; b- male. Scale $=1 \mathrm{~cm}$.

47 (46) Depression between median and posterior ridge on male wide; on females marsupial extension is narrow and centrally located (Fig. 107): Dysnomia
Depression between median and posterior ridge relatively narrow; on females marsupial extension is broad and located posteriorly (Fig. 120): Dysnomia biemarginata
$48(46)$ Posterior margin of shell long and curved, giving shell characteristic shape; beaks greatly displaced anteriorly (Fig. 121):

Dysnomia propinqua
Posterior margin of shell shorter and more acutely curved; beaks not greatly displaced anteriorly

Fig. 120- Dysnomia biemarginata, right valves: a- female; b-male. Scale $=1 \mathrm{~cm}$.

Fig. 12l- Dysnomia propinqua, right valves: a- female; b- male. Scale $=1 \mathrm{~cm}$.

Fig. 122- Dysnomia personata, right valves: a- female; b-male. Scale $=1 \mathrm{~cm}$.
49(48) Umbos flattened, due to extension of depression betweenposterior ridge and median ridge up onto umbo; shellrather evenly colored over entire surface; rays obscure(Fig. 107):Dysnomia flexuosa
Umbos round and full, depression between posterior andmedian ridge not extending up onto umbo. Shell oftenwith bright green rays (Fig. 110):Dysnomia torulosa
$50(45)$ Median ridge low and smooth or absent 51
Median ridge absent 54
51 (50) Umbos low and flattened due to depression between posterior and median ridges extend up onto umbo (Fig. 109):
Umbos round and full, depression between posterior and median ridges not extending up onto umbo 52
52 (51) Shell as high as long, or nearly so 53
Shell clearly longer than high (Fig. 110): Dysnomia tomilosa
53 (52) Umbos centrally placed, or nearly so (Fig. 122):Dysnomia personata Umbos anteriorly placed (Fig. 117): Dysnomia sulcata
54 (50) Shell as high as long, or nearly so 55
Shell clearly longer than high 56
55 (54) Umbos centrally placed, or nearly so (Fig. 122):Dysnomia personata Umbos anteriorly placed (Fig. 117): Dysnomia sulcata
56(54) Shell rayless, yellow and small (not exceeding 3 cm in length) (Fig. 113): Dysnomia metastriata (immature) Shell with rays 57
57(56) On left valve, interdentum clearly discernable as flat ledge of about 2 mm width; pseudocardinal and lateral teeth large and heavy; shell obscurely rayed (Fig. 108):

 Dusnomia lewisii

 On left valve interdentum inconspicuous; pseudocardinal and

 lateral teeth not large and heavy (except in \(D\). sulcata); Shell typically distinctly rayed with dark green, but occasionally obscurely rayed 58
 58(57) Beak greatly displaced anteriorly; nacre often purple or pink (although sometimes white); female shell with narrow marsupial extension (Fig. 117): Dysnomia sulcata
Beak not greatly displaced anteriorly; nacre typically white;female shell with broad marsupial extension59
Shell typically short and inflated 60

Fig. 123- Dysnomia copsaeformis, right valves: a-female; b-male. Scale $=1 \mathrm{~cm}$.
$61(31)$ Posterior ridge angular. Genera Truncilla, Lompsilis (in part)
Posterior ridge rounded or absent 70

Fig. 124- Dysnomia florentina, right valves: a-female; b-male. Scale $=1 \mathrm{~cm}$.

62 (61) Shell flattened laterally; beak cavities shallow; color rays on shell with or without v-shaped markings, Genus Truncilla
Shell inflated; beak cavities deep; color rays present (without v-shaped markings) or absent. Genus Lompsilis (in part)
$63(62)$ Shell high, oval to subtriangular; posterior ridge sharp, distinct down to ventral margin of shell; posterior slope very short and very steep (Fig. 125): Truncilla truncata
Shell elongate, elliptical (juveniles sometimes oval); posterior ridge angular, but becoming round and fading out near ventral margin of shell

Fig. 125- Truncilla truncata: right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

Fig. 126- Tmuncilla, right valves: a-T. macrodon; b-T. donaciformis. Scale $=1 \mathrm{~cm}$.

Fig. 127- Lompsilis: a- L. dolabraeformis, right valve; b- shell inflated to ventral margin; c - shell inflated to upper half only. Scale $=1 \mathrm{~cm}$.

64 (63) Color rays on shell generally narrow; shell typically quite flattened; beak cavity generally very shallow (Fig. 126a): Truncilza macrodon
Color rays on shell generally broad; shell somewhat inflated; beak cavity shallow, but clearly discernable (Fig. 126b):

Truncilla donaciformis
65 (62) She 11 high, length/height ratio 1.4 or less 66
Shell more elongate, length/height ratio 1.5 or more 68
$66(65)$ Posterior end rounded (Fig. 127a)
Lompsilis dolabraeformis Posterior end pointed 67

67 (66) Shell inflated down to ventral margin (Fig. 127b; 128a):
Lampsilis excavata Shell well inflated in upper half, but not down to ventral margin (Fig. 127c; 128b):

Lompsilis ovata ovata

Fig. 128- Lampsilis, right valves: a-L. excavata; b- L. ovata ovata. Scale $=1 \mathrm{~cm}$.

Fig. 129- Lompsilis perpasta: right valve. Scale $=1 \mathrm{~cm}$.

Fig. 130- Lampsilis, right valves: a- L. binominata; b- L. splendida. Scale $=1 \mathrm{~cm}$.
68 (65) She11 without color rays; posterior ridge convex (Fig. 129): Shell with color rays; posterior ridge straight or concave .. 69
69(68) Shell with only a few narrow (but sharply defined) color rays (Fig. 130a): Lompsilis binominata Shell with many color rays (Fig. 130b): Lampsilis splendida
70 (61) Pseudocardinal teeth poorly developed. Genus Leptodea 71
Pseudocardinal teeth well developed 75
71 (70) Shell elongate (length/height ratio 1.5 or more), with poorly to only moderately developed wing 72 Shell higher (length/height ratio less than 1.5), with well developed wing 73

Fig. 131- Leptodea shells, anterior view: ashell very flattened; b- shell inflated.

Fig. 132- Leptodea, right valves: a- L. Leptodon; b- L. amphichaena. Scale $=1 \mathrm{~cm}$.

72 (71) Shell very flattened (Fig. 131a), with moderately developed wing (Fig. 132a): Leptodea Zeptodon Shell inflated (Fig. 131b); wing absent or at most low and poorly developed (Fig. 132b): Leptodea amphichaena

73 (72) Ground color of periostracum straw-yellow to grey or greybrown; nacre white on adults, silvery and iridescent on juveniles (Fig. 133a):

Leptodea fragilis
Ground color of periostracum greenish-grey; nacre copperypink on adults, silvery and iridescent on juveniles (Fig. 133b):

Leptodea Zaevissima

Fig. 133- Leptodea: a- L. fragizis, right valve and hinge plate of left valve; b-L. Zaevissima. Scale $=1 \mathrm{~cm}$.

Fig. 134- Proptera alata: right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

Fig. 135a- extremely inflated shell, anterior end view; b- fine beak sculpture (e.g., Proptera cap αx); c- coarse beak sculpture (e.g., Lampsilis ovata ventricosa). Scale $=1 \mathrm{~cm}$.

74 (70) Shell with well-developed wing (Fig. 134): Wing usually lacking, but if present is very low and poorly developed75

75 (74) Shell extremely inflated (Fig. 135a), with very fine beak sculpture (Fig. 135b, 136a): Proptera capax
Shell not extremely inflated (of if well inflated it has coarse beak sculpture (Fig. 135c))
$76(75)$ Shell large (up to 11.5 cm) and with purple nacre (Fig. 136b):
Proptera purpurata
Shell without purple nacre, nacre usually white, or if pinkish-purple, shell is small (less than 6 cm) 77

Fig. 136- Proptera, right valves: a-P. capax; b-P. purpurata. Scale $=1 \mathrm{~cm}$.

77 (76) Posterior mantle margin without papillate or ribbon-like projections. Genus Actinonaias
Posterior mantle margin area in front of branchial opening modified to form extensions, either papillate projections or ribbon-like flaps
$78(77)$ Color rays on shell faint, but interrupted periodically by dark blotches (Fig. 137a): Actinonaias pectorosa Color rays on shell more or less of continuous intensity ... 79

79(78) Periostracum rather dull, not glossy; shell elongate; posterior half of shell generally not higher than shell anterior to beaks (Fig. 137b): Actinonaias ellipsiformis
Periostracum glossy; shell higher; posterior half of shell higher than shell anterior to beaks

80(79) Shel1 more elongate, elliptical in outline (Fig. 138a):
Actinonaias carinata carinata
Shell less elongate, oval in outline (Fig. 138b):
Actinonaias carinata gibba

Fig. 137- Actinonaias, right valves: a- A. pectorosa; b- A. ellipsiformis. Scale $=1 \mathrm{~cm}$.

Fig. 138- Actinonaias: a- A. carinata carinata, right valve and hinge plate of left valve; b- A. carinata gibba. Scale $=1 \mathrm{~cm}$.

81 (79) Posterior mantle margins with long papillate projections (Fig. 139a). Genus Vizlosa ... (There are many nominal species that should be placed in the genus Vizlosa. However, how many of these represent distinct biological species and which are synonyms sent distinct biological species and which are synonyms
has not been adequately studied. According to Johnson (1970) it is not yet possible to tell how many species there are in Villosa. Therefore, the key below is only to species complexes.)
Posterior mantle margins with ribbon-like flaps (Fig. 139b). Genus Lampsilis Genus Lampsilis 85

a

b

c
Fig. 139- Posterior mantle margins: a- Vi乙losa, with long papillate projections; b-Lampsilis, with ribbonlike flaps; c-Cammeulina, with caruncles. (Modified from Heard, 1968).

82 (81) Shell with either wide or narrow, but more or less continuous, color rays
Shell with wide discontinuous color rays: Villosa iris complex (This group includes the species V. iris (Fig. 140a), V. ogeechensis, V. nebulosa and V. picta.)

83(82) Shell with broad color rays:
Villosa villosa complex (This group includes the species V. villosa, V. delumbis, V. picta and V. vibex (Fig. 140b).)

Shell with narrow color rays

Fig. 140- Villosa: a-V. iris, right valve and hinge plate of left valve; b-V. vibex, right valve. Scale $=1 \mathrm{~cm}$.

Fig. 141- Villosa, right valves: a- V. Zienosa; b-V. constricta; cV. trabalis. Scale $=1 \mathrm{~cm}$.
$84(83)$ Posterior end of shell truncate or very broadly rounded;
shell more or less rhomboidal in outline: V. fabalis complex
(This group includes the species V. fabilis, V. lienosa
(Fig. 141a) and V. propria.)
Posterior end of shell medially pointed; shell elliptical
in outline:
(This group includes the species Villosa vanuxemensis complex
concestator, V. constricemensis, V (Fig. 141b), V. ortmanni, and
V. trabalis (Fig. 14lc).)

86(85) Posterior ridge high, terminating in rather sharp point well above midline of shell (Fig. 142a): Lampsilis anodontoides Posterior ridge lower, terminating near midline of shell or lower87

87(86) Posterior ridge concave (Fig. 142b): Lampsilis subangulata Posterior ridge convex ... 88

Fig. 142- Lampsilis, right valves: a- L. cnodontoides; b- L. subanguZata. Scale $=1 \mathrm{~cm}$.

88(87) Posterior ridge decidedly angular (Fig. 143a): LompsiZis splendida Posterior rounded or only weakly angular 89

89 (88) Posterior ridge weakly angular; shell small, 5.5 cm or less
in length (Fig. 143b):
Lampsilis jonesi
Posterior ridge rounded, or, if weakly angular, adult shell
large, up to 11 cm or more in length

Fig. 143- Lompsilis, right valves: a- L. splendida; b- L. jonesi. Scale = 1 cm .

Fig. 144- Lompsizis streckeri, right valve. Scale $=1 \mathrm{~cm}$.

90 (89) Color rays on shell discontinuous, broken by many concentric non-pigmented areas (Fig. 144): Lompsilis streckeri Color rays on shell more or less continuous 91

91 (90) Shell of adults small, 7.5 cm or less in length; color rays on shell dark brown, green-brown or black; Alabama River drainage and several rivers in Texas92

Shell of adults large or small; color rays on shell some shade of green, often bright or light green, although they may be darker, with varying degrees of brown (species with brown rays are large, adults more than 10 cm in length)

92 (91) Shell elliptical, with pointed posterior end. Alabama River drainage. (Fig. 145a): Lampsilis altilis
Shell rhomboidal (usually oval in females), with broadly rounded posterior end. Llanos, Guadalupe and Colorado Rivers of Texas. (Fig. 145b): Lampsilis bracteata

Fig. 145- Lompsilis, right valves: a-L. altilis; b- L. bracteata. Scale $=1 \mathrm{~cm}$.

93 (91) Shell elliptical, with pointed posterior end; beaks located especially far anteriorly (Fig. 146a) Lampsilis australis
Shell rhomboidal (usually oval in females), with broadly rounded or truncate posterior end

94 (93) Color rays extend over entire shell; color rays usually many, conspicuous, and extend to ventral margin without becoming blurred or faded in color
Color rays nearly absent or limited to posterior slope, or they become faded or blurred before reaching ventral margin; females prominently swollen posteriorly (Fig. 146b) :

Lampsilis radiata siliquoidea

Fig. 146- Lompsilis: a- L. australis, right valve; b- L. radiata siliquoidea, right valve and hinge plate of left valve. Scale $=1 \mathrm{~cm}$.

95(94) Shells of females prominently swollen posterioventrally
Lampsitis hydiana
(Fig. 147a):

a

Lampsilis, right valves: $a-L$. hydiana; b - L. radiat Lampsilis, right valves:
ale $=1 \mathrm{~cm}$.

95 (94) Shells of females prominently swollen posterioventrally
(Fig. 147a):
Lompsilis hydiana
Shells of females not prominently swollen posterioventrally
(Fig. 147b):
Lampsilis radiata radiata

Fig. 147- Lampsilis, right valves: a- L. hydiana; b- L. radiata radiata. Scale $=1 \mathrm{~cm}$.

Fig. 149- Lampsilis, right valves: a- L. excavata; b-L. ovata ovata. Scale $=1 \mathrm{~cm}$.
$96(81)$ Posterior ridge sharply angular 97

Posterior ridge rounded or only very weakly angular 100
97 (96) Shell very high, with few or no color rays 98
Shell more elongate, with many color rays (Fig. 143a):
Lampsilis splendida

99 (98) Shell inflated down to ventral margin (Fig. 149a):
Lampsizis excavata
Shell well inflated in upper half, but not down to ventral margin (Fig. 149b):

Lampsilis ovata ovata

Fig. 150- Lampsilis, right valves: a- L. orbiculata; b- L. strominea. Scale $=1 \mathrm{~cm}$.

Fig. 152- Lampsilis, right valves: a-L. ovata ventricosa; b-L. fasciola. Scale $=1 \mathrm{~cm}$.
100 (96) Shell very thick and heavy, with large thick hinge teeth; median area of shell with series of spaced, parallel undulations; beaks high, broad and arched forward (Fig. 150a):
Lampsilis orbiculata
Shell not especially thick or heavy; hinge teeth prominent, but not especially large and thick; surface smooth or with slight, irregular undulations; beaks may be low or high, but not especially broad or arched forward 101
101 (100) Many of shell growth lines rather evenly raised, giving shell surface washboard-1ike appearance (Fig. 150b): Lampsilis straminea
Shell surface without washboard-1ike appearance 102
102(101) Shell with high protruding umbos (Fig. 151a) 103
Shell with lower umbos (Fig. 151b) 105
$103(102)$ Beak sculpture consisting of fine concentric ridges (Fig. 149a): Lampsilis excavata
Beak sculpture having heavy concentric ridges 104
104 (103) Color rays on shell absent or restricted to posterior slope (or sometimes also being present in the area of posterior ridge) (Fig. 152a): Lampsilis ovata ventricosa Color rays on shell not restricted to only posterior slope and posterior ridge regions. Known only from Altamaha River system (Fig. 148): Lompsilis dolabraeformis
105(102) Shell more or less evenly covered with color rays; beaks sculptured with small double-looped ridges (Fig. 152b):
Shell with very few or without color rays, or if many color rays present, beak sculpture consists of heavy concentric or wavy ridges106
106(105) Shell large, up to 12 cm or more in length, heavy; posterior ridge broadly rounded or absent; periostracum yellow, glossy, minor growth lines indistinct, generally without color rays, except occasionally on posterior slope and rarely on disc (Fig. 153a): Lampsilis cariosa
Shell smaller, generally less than 8 cm in length, heavy (L. perpasta) or light (L. binominata, L. ochracea); posterior ridge present and usually weakly angular; periostracum glossy (L. binominata, L. perpasta) or dull (L. ochracea), with (L. binominata, L. ochracea) or without (L. perpasta) color rays 107

Fig. 153- Lompsizis, right valves: a-L. cariosa; b- L. perpasta. Scale $=1 \mathrm{~cm}$.

107 (106) Shell relatively thick and heavy; posterior ridge convex; color rays absent (Fig. 153b): Lampsilis perpasta Shell relatively thin and light; posterior ridge concave; color rays generally present108
$108(107)$ Shell glossy; minor growth lines rather indistinct; color rays few and widely spaced; pseudocardinal teeth thick and directed downward (Fig. 154a):

Lampsilis binominata
Shell rather dull; minor growth lines distinct; color rays usually present and narrowly spaced, often only on posterior half of shell; pseudocardinal teeth lamellar and obliquely or nearly horizontal (Fig. 154b):

Lampsilis ochracea

Fig. 154- Lompsilis, right valves: a- L. binominata; b- L. ochracea. Scale $=1 \mathrm{~cm}$.

SECTION IV

ACKNOWLEDGEMENTS

I wish to thank Mr John L. Tottenham for preparing most of the illustrations, Ms P. A. Ayers for providing technical assistance, and Dr W. H. Heard for advice regarding some of the key anatomical characters.

The bibliography below is not intended to be complete, but to bring to the attention of the interested reader some of the more important publications dealing with North American freshwater mussels, as well as to provide a good cross-section of the workers who have published on unionid clams in the northern part of the Western Hemisphere. A complete bibliography of the Unionacea of North America would take many pages, and for those interested can be assembled from the references given in the works cited below.

Athearn, H. D. and A. H. Clarke, Jr. 1962. The freshwater mussels of Nova Scotia. National Museum of Canada Bulletin, No. 183:11-41.
Baker, Frank Collins. 1898. The Mollusca of the Chicago area. The Pelecypoda. The Chicago Academy of Sciences. Bulletin of the Natural History Survey, No. 3(1):1-103, p1s 1-27.
1922. The molluscan fauna of the Big Vermilion River, with special reference to its modification as a result of pollution by sewage and manufacturing wastes. Illinois BioZogical Monographs, 7(2):1126, pls 1-15.
1928. The fresh-water Mollusca of Wisconsin. Part II. Pelecypoda. Bulletin of the Wisconsin Geological and Natural History Survey, 70(2):i-vi+1-495, pls 29-105.
Baker, H. B. 1964. Some of Rafinesque's unionid names. Nautilus, 77: 140-142.
Boss, K. J. and W. J. Clench. 1967. Notes on Pleurobema collina (Conrad) from the James River, Virginia. Occasional Papers on MoZlusks, 3 (37):45-52.
Call, Richard Ellsworth. 1900. A descriptive illustrated catalogue of the Mollusca of Indiana. Twenty-fourth Annual Report of the Indiana Department of Geology and Natural Resources, 1899, pp. 3351017, pls 1-78.
Clark, H. Walton and Charles B. Wilson. 1912. The mussel fauna of the Maumee River. United States Bureau of Fisheries. Document, No. 757: 1-72.
Clarke, Arthur H. 1973. The freshwater molluscs of the Canadian Interior Basin. Malacologia, 13(1/2):1-509.
Clarke, Arthur H. and C1ifford 0. Berg. 1959. The freshwater mussels of central New York. Ithaca N.Y., Comell University, Agricultural Experimental Station, New York State College of Agriculture, Memoir, 367, 80 pp .
Clench, William J. and Ruth D. Turner. 1956. Freshwater mollusks of Alabama, Georgia, and Florida from the Escambia to the Suwannee River. Bulletin of the Florida State Museum: Biological Sciences, 1(3):97-239.
Coker, Robert E. 1914. Water-power development in relation to fishes and mussels of the Mississippi. Report of the United States Commissioner of Fisheries, Appendix 8, pp. 1-28, p1s 1-6.

Conrad, T. A. 1853. A synopsis of the family of naiades of North America, with notes, and a table of some of the genera of the family, according to their geographical distribution, and descriptions of genera and subgenera of the family. Proceedings of the Academy of Natural Sciences of Philadelphia, 6:243-269.
Cvancara, Alan M. 1970. Mussels (Unionidae) of the Red River Valley in North Dakota and Minnesota, U.S.A. Malacologia, 10(1):57-92.
Dall, William H. 1910. Land and freshwater mollusks of Alaska and adjoining regions. Harrimon Alaska Series of the Smithsonian Institution, $13, x i i+171 \mathrm{pp} ., \mathrm{pls} 1$ and 2.
Frierson, L. S. 1927. A classified and annotated check list of the North American naiades. Baylor University Press, Waco, Texas. 111 pp .
Fuller, Samuel L. H. 1971. A brief field guide to the fresh-water mussels (Mollusca: Bivalvia: Unionacea) of the Savannah River system. $A S B$ (Association of Southeasterm Biologists) Bulletin, 18(4):137-146.
Goodrich, Calvin. 1932. The Mollusca of Michigan. University of Michigan, Ann Arbor, University Museums, Michigan Handbook Series, No. 5,120 pp., 7 pls.
Goodrich, Calvin and Henry van der Schalie. 1944. A revision of the Mollusca of Indiana. American Midland Naturalist, 32(2):257-326.
Haas, F. 1969. Superfamilia Unionacea. Das Tierreich, Berlin, Lief. 88, $x+663 \mathrm{pp}$.
Hannibal, Harold. 1912. A synopsis of the Recent and Tertiary freshwater Mollusca of the California Province, based upon an ontogenetic classification. Proceedings of the Malacological Society of London, 10:112-211, pls 5-8.
Heard, William, H. 1968. Mollusca. In: Parrish, Fred K. (Ed.) Keys to Water Quality Indicative Organisms (Southeasterm United States). Federal Water Pollution Control Administration, U.S. Department of the Interior, pp. G1-26.
Heard, William H. and Richard H. Guckert. 1970. A re-evaluation of the Recent Unionacea (Pelecypoda) of North America. Malacologia, 10(2): 333-355.
Henderson, Junius. 1924. Mollusca of Colorado, Utah, Montana, Idaho and Wyoming. University of Colorado Studies, 13(2):65-223.
1929. The non-marine Mollusca of Oregon and Washington. University of Colorado Studies, 17:47-190.
1936. Mollusca of Colorado, Utah, Montana, Idaho, and Wyoming. Supplement. University of Colorado Studies, 23(2):81-145. 1936. The non-marine Mollusca of Oregon and Washington. Supplement. University of CoZorado Studies, 23(4):251-280.
Isely, F. B. 1925. The freshwater mussel fauna of eastern Ok1ahoma. University of Oklahoma Bulletin, new series, No. 322:43-118.
Johnson, Richard I. 1967a. Illustrations of all the mollusks described by Berlin Hart and Samuel Hart Wright. Occasional Popers on MoZlusks, 3:1-35.
1967b. Additions to the unionid fauna of the Gulf drainage of Alabama, Georgia and Florida (Mollusca: Bivalvia). Breviora, No. 270:1-21.
1969. Illustrations of Lamarck's types of North American Unionidae mostly in the Paris Museum. Nautilus, $83(2): 52-61$.

Johnson, Richard I. 1970. The systematics and zoogeography of the Unionidae (Mollusca:Bivalvia) of the southern Atlantic Slope region. Bulletin of the Museum of Comparative Zoology at Harvard University, 140(6):263-449.
1972. Illustrations of all the Mollusks described by Lorraine Screven Frierson. Occasional Papers on Mollusks, 3(41):]37-173.
La Rocque, Aurèle. 1967. Pleistocene Mollusca of Ohio. Bulletin of the Geological Survey of Ohio, 62:vii-xiv+113-356, pls 1-8.
Latchford, F. R. 1882. Notes on the Ottawa Unionidae. Transactions of the Ottowa Field Naturalist's Club, 3:48-57.
Lea, Issac. 1858. Descriptions of the embryonic forms of thirty-eight species of Unionidae. Journal of the Academy of Natural Sciences of Philadelphia, semies 2, 4:43-50. pl. 5.
_1863. Descriptions of the soft parts of one hundred and forty-three species and some embryonic forms of Unionidae of the United States. Journal of the Academy of Natural Sciences of Philadelphia, series 2, 5:401-456.
Marshall, William, B. 1890. Beaks of Unionidae inhabiting the vicinity of Albany, New York. Bulletin of the New York State Museum, 2:169-189.
Matteson, M. P. 1955. Studies on the natural history of the Unionidae. American Midland Naturalist, 53:126-145.
Meek, S. E. and H. Walton Clarke. 1912. The mussels of the Big Buffalo Fork of the White River, Arkansas. Report of the United States Commissioner of Fisheries for 1911, pp. 1-20.
Morrison, J. P. E. 1955. Family relationships in the North American freshwater mussels. American Malacological Union. Annual Report, 22:16-17.
Murray, Harold D. and A. Byron Leonard. 1962. Handbook of unionid mussels in Kansas. University of Konsas Museum of Natural History, Miscellaneous Publication, No. 28:1-84, pls 1-45.
Neel, Joe Kendall and William Ray Allen. 1964. The mussel fauna of the upper Cumberland Basin before its impoundment. Malacologia, l(3): 427-459.
Ortmann, A. E. 1911. A monograph of the naiades of Pennsylvania. Pts 1 and 2. Memoirs of the Carnegie Museum, 4:279-374.
___ 1913. The Alleghenian Divide and its influence upon the freshwater

- fauna. Proceedings of the American Philosophical Society, 52:287390.
___ 1919. A monograph on the naiades of Pennsylvania. Pt. 3. Systematic account of the genera and species. Memoirs of the Carnegie Museum, 8, xiv+384 pp.

1920. Correlation of shape and station in freshwater mussels.
——Proceedings of the American Philosophical Society, 19:269-312.
_1923-24. Notes on the anatomy and taxonomy of certain Lampsilinae from the Gulf drainage. Nautilus, 37:56-60, 99-104, 137-144.
Ortmann, A. E. and Bryant Walker. 1922. On the nomenclature of certain North American naiades. Occasional Papers of the Museum of Zoology, University of Michigan, No. 112:1-75.
Parmalee, Paul W. 1967. The freshwater mussels of Illinois. Illinois State Museum, PopuZar Science Series, 8, 108 pp.

Parodiz, J. J. 1967. Types of the North American Unionidae in the collection of the Carnegie Museum. Sterkiana, No. 28:21-30.
Rafinesque, C. S. 1819. Prodome de soixante-dix nouveaux genres d' animaux découverts dans l'intérieur des Etats-Unis d'Amérique, durant 1'année 1818. Journal de Physique, 88:417-429.
1820. Monographie des coquilles bivalves fluviatiles de la Riviere Ohio, contenant douze genres et soixante-huit espécies. Annales Générales des Sciences Physique, Bruxelles, 5(13):287-322, pls 8082.

Robertson, Imogene C. S. and C1ifford L. Blakeslee. 1948. The Mollusca of the Niagara Frontier region. Bulletin of the Buffato Society of Natural Sciences, 19(3):xi+191 pp.
Say, Thomas. 1817. Conchology. In: Nicholson, William, C. Samue1, A. Mitche11 and H. Ames. The First American Edition of the British Encyclopedia or Dictionary of Arts and Sciences, Comprising an Accurate and Popular View of the Present Improved State of Human Knowledge. Philadelphia, 2 (no pagination).
1830-34. American Conchology, or Descriptions of the ShelZs of North America, Illustrated by Colored Figures. New Harmony, Indiana. 68 colored plates with legends.
Simpson, C. T. 1900. Synopsis of the naiades, or pearly freshwater mussels. Proceedings of the United States National Museum, 22:5011044.
1914. A Descriptive Catalogue of the Naiades or Pearly Freshwater Mussels. Bryant Walker, Detroit, Michigan xi+1540 pp.
Stansbery, David H. 1970. Eastern freshwater mollusks. (I) The Mississippi and St. Lawrence River systems. MaZacologia, 10(1): 9-22.
Starrett, William C. 1971. A survey of the mussels (Unionacea) of the Illinois River: a polluted stream. IlZinois Natural History Survey BuZletin, 30(5):267-403.
Sterki, V. 1898. Some observations on the genital organs of Unionidae, with reference to classification. Nautilus, 12:18-21. 28-32.
Utterback, W. I. 1915-1916. The naiads of Missouri. American Midland Naturáaist, 4:41-53, 97-152, 182-204, 244-273 (1915); 311-327, 339354, 387-400, 432-464 (1916); pls 1-27.
Valentine, Barry Dean and David Honor Stansbery. 1971. An introduction to the naiads of the Lake Texoma region, Oklahoma, with notes on the Red River fauna (Mollusca:Unionidae). Sterkiana, No. 42:1-40.
van der Schalie, Henry. 1938. The naiad fauna of the Huron River, in southeastern Michigan. Miscellaneous Publications of the Museum of Zoology, University of Michigan, No. 40:1-83, pls 1-12. 1940. The naiad fauna of the Chipola River, in northwestern Florida. LZoydia, 3:191-208.
Walker, Bryant. 1910. The distribution of Margaritona margaritifera (Linn.) in North America. Proceedings of the Malacological Society of London, 9:126-145.
1917. The method of evolution in the Unionidae. Occasional Papers of the Museum of ZooZogy, University of Michigon, No. 45:1-10.

Walker, Bryant. 1918. A synopsis of the classification of the freshwater Mollusca of North America, north of Mexico, and a catalogue of the more recently described species, with notes. Miscellaneous Publications of the Museum of Zoology, University of Michigan, No. 6: 1-213.
Whiteaves, J. F. 1895. Notes on Recent Canadian Unionidae. Canadion Record of Science, 6(5):250-263.
Wilson, Charles B. and Ernest Danglade. 1914. The mussel fauna of central and northern Minnesota. United States Bureau of Fisheries, Document, No. 803, pp. 1-26.
Wilson, Charles B. and H. Walton Clarke. 1912. The mussel fauna of the Kankakee Basin. United States Bureau of Fisheries, Document, No. 758, pp. 1-52.

GLOSSARY

Alate - Having a "wing", i.e., a dorsal, thin, flat projection, as the extension of the posterior slope of some freshwater mussels.

Anal opening or siphon - The dorsal posterior opening or siphon located near the anus through which water leaves the mantle cavity of a mollusk such as a freshwater mussel. Through it are carried excretory products of the alimentary and renal systems. Also called the excurrent opening or siphon.

Angular - Having an angle or having the tendency to form an angle, in contrast to being round.

Anterior end - The shorter end of the shell (from the beaks) in freshwater mussels. The foot of the animal is directed toward this end.

Arched - In the form of an arch or curve; bending in a curved manner in a particular direction.

Beak - The raised part on the dorsal margin of each of the bivalved shell valves. The beaks are formed by the embryonic shell, around which the later shell develops distally in a concentric manner. Also called umbo (pl . umbos).

Beak cavity - The cavity on the inside of each valve of a mussel shell going into the beak. In some species the cavity is quite deep, in others it is so shallow as to be hardly more than a weak depression.

Beak sculpture - The natural surface markings, other than those of color, found on the beaks or umbos of mussel shells. Such markings are in some cases characteristically different in the various taxa, and thereby provide means of identification. They are sometimes considered important in indicating phylogenetic relations between genera and higher taxonomic groups.

Biangulate - Having two angles or corners.
Bifurcate - Divided into two branches.
Bivalve - A common or popular name referring to a member of the molluscan class Pelecypoda or Bivalvia. The name refers to the possession by the animal of two apposing plates or valves composed mainly of calcium carbonate which enclose and protect the soft body of the mollusk.

Bradytictic - Refers to mussels that are long-term breeders, i.e., that retain developing glochidial larvae in their gills throughout the year, except in the Nearctic summer.

Branchial opening or siphon - The ventral posterior opening or siphon through which water enters the mantle cavity of a mollusk such as a freshwater mussel. After entering the mantle cavity the water flows over and through the branchiae or gills, providing oxygen, and in filter-feeders such as freshwater mussels, bringing microorganisms that are trapped as food by the gill surface. Also called the incurrent opening or siphon.

Caruncle - A fleshy elevation or outgrowth; a characteristic protuberance on the inner edge of each side of the mantle in front of the branchial opening of members of the lampsiline genus Camunculina.

Chevron-shaped - Shaped like a wide-angled V, normally positioned or inverted.
$C l a m$ - A common or popular name for a bivalved mollusk of the class Pelecypoda or Bivalvia.

CoZor ray - A more or less straight band of color, continuous or discontinuous, contrasted to the ground color of the shell and radiating from the umbonal area distally toward or to the peripherial margins of the valve.

Concentric - Having the same center, e.g., the umbo, and expanding outward in parallel (i.e., equidistant) lines, as in the lines of growth of a mussel shell.

Compressed - Flattened or pressed together laterally, such as the appearance of some freshwater mussels.

Corrugated - Wrinkled by alternating ridges and furrows.
Cusp - The highest elevations of the lateral and pseudocardinal teeth.
Demibranch - One-half of one of the paired gills of a lamellibranch pelecypod; i.e., the two apposing rows of gill filaments on one side of the gill; a half-gill. A vertical cross-section of one of the paired lamellibranch gills is like a W pressed together. One-half of the W is the demibranch. This peculiar type of ctenidium found in lamellibranchs apparently evolved by the elongation of the gill filaments on each side of the gill axis, forming and inverted V, followed by the bending back on itself of each filament forming a W .

Disc - The middle, central or main portion of the exterior of the valve of a mussel as distinct from the posterior slope and other areas immediately adjacent to the marginal peripheries.

Double-looped - Being in the form of two adjacent semicircles, i.e., end to end with the openings oriented in the same direction. This is usually contrasted to single-looped, in which case there is only one semicircle. In regard to freshwater mussels, both terms refer to the sculpturing of the umbo or beak of the shell.

Elliptical - Having the form of an ellipse.
Elongate - Lengthened; extending length-wise; especially longer than high.

Excurrent opening or siphon - The dorsal posterior opening or siphon through which water leaves the mantle cavity of a mollusk such as a freshwater mussel. This opening or siphon is located near the anus and nephridopores, and so also serves as an exit for excretory products. Also called the anal opening or siphon.

Furrowed - Grooved or channelled.
Gizl (Branchia) - The platelike or filamentous outgrowth, usually located within the mantle cavity, serving as the respiratory organ of aquatic mollusks. In lamellibranch mollusks the gills are greatly enlarged, serving not only the function of respiratory gaseous exchange, but also in food gathering ("filter-feeding"). The basic structure of the molluscan gill is characteristic throughout the phylum and is referred to as a "ctenidium".

Gill filcoment - One of the leaflets of the gill.
Glochidium - The bivalved larva of freshwater mussels, generally parasitic on fish during this early stage in the life history.

Glossy - Smooth and shining; highly polished.
Gravid female - A female with marsupium filled with young embryos.
Ground color - The basic or background color of a shell, against which any additional color markings are contrasted.

Growth Zines - Minute lines on the outer shell surface indicating a minor rest period during growth. Not to be confused with the major "rest marks", caused by prolonged growth arrest (as during winter).

Hinge - The stabilizing lamellae (pseudocardinal and lateral teeth) in the dorsal part of each valve of a mussel shell. The opposing single lamella in one valve articulates with a pair of complementary lamellae in the opposing valve.

Hinge plate - That part of the dorsal margin of the shell between and including the pseudocardinal and lateral teeth.

Incurrent opening or siphon - The ventral posterior opening or siphon through which water enters the mantle cavity of a mollusk such as a freshwater mussel. Also called the branchial opening or siphon. Water flows through this opening to the gills or branchiae, where oxygen-carbon dioxide exchange occurs, and in filter-feeders such as freshwater mussels, where microorganisms are trapped as food.

Inflated - Swollen; expanded; distented.
Interdentum - The space on the hinge plate between the pseudocardinal and lateral teeth.

InterZomeZZar connections - Connections of tissue joining the two lamellae of a demibranch. Together with the interfilamental connections (and at right angles to them) they are responsible for the formation of ascending water tubes within the gill demibranch. Water enters the water tubes by ostia in the interfilamental connections and flows upward to the exhalent space at the top of the gill, and thence to the outside of the animal via the exhalant opening or siphon.

Iridescent - Prismatic coloration; exhibiting colors like the rainbow.
LamelZa - A small thin plate, blade or scalelike structure.
LomelZate (LomeZZar) - Formed in thin plates, composed of thin plates or covered with them.

Lamina - A thin layer, blade or platelike extension.
Laminate - Consisting of plates or layers, one over another.
Lateral teeth - The elongated lamellae on the posterior half of the hinge-plate.

Left valve - The shell half on the left side when the shell is placed with the hinge up and the anterior end forward.

Length/height ratio - The number or quotient obtained by dividing the greatest length of a clam shell by its greatest height. The more elongate the clam, the higher will be the quotient; the shorter and higher the shell, the lower will be the quotient.

Mantle - An extension of the dorsal body wall of mollusks as one or a pair of folds, which usually secretes a shell and encloses a mantle cavity, typically containing gills.

Mantle margin - The edge of the mantle or pallium, the characteristic soft outer fold of integument covering the body of mollusks. In gastropods, the mantle margin is adjacent to the shell aperture. In pelecypods, the mantle margin is adjacent to the distal edge of the shell. The mantle margin functions in shell deposition during new growth, and in pelecypods it also serves a sensory function.

Marsupial extension (on shell) - The bulge or ventral extension of the shell on some female unionacean clams caused by new shell material being laid down by the protruding mantle covering the swollen gravid gills during shell growth. The marsupial extension on females resulis in sexual dimorphism

Morsupium - The pouch used to contain young. In unionacean clams, internal spaces in the gills perform this service, and the type of modification of the gills to perform this protective function is important in higher classification within the superfamily.

Median ridge - A dorsoventral ridge on the shell running from the region of the umbos toward or to the ventral margin in some bivalves.

Mussel - A common or popular name for a bivalved mollusk of the class Pelecypoda or Bivalvia.

Nacre - The white or iridescent inner layer of shell in many mollusks, lying next to the mantle and often characteristically colored in many unionacean clams.

Nodule - A small knot, lump or irregularly shaped mass, such as the projections occurring on the shell surface of some freshwater mussels.

NoduZose (NoduZar, NoduZate) Having small knobs, nodules or projections.
Oblique - Slanting, as some ridges which are not parallel to the concentric growth lines.

Obsolete - Obscure; not distinct; very rudimentary.
Oval - In the shape of the longitudinal section of a hen's egg, i.e., oblong and curvilinear, with one end narrower than than the other.

PaZlial Zine - On the inside surface of a bivalved shell that line of attachment of the mantle to the shell, often marked by a depression or scar.

Papillate - Having many small papillae or bumps on the surface.
Parallel - Spaced the same relative distance apart throughout the length, even though the objects may be in the form of a curve, circle or spiral.

Periostracum - The thin proteinaceous external layer covering most mollusk shells.

Placentae - A name by which the branchial brood pouches (marsupia) of unionacean clams are sometimes called.

Posterior end - The longer end of the shell (from the beaks). This is the end containing the siphonal (inhalant and exhalant) openings through which water passes into and out of the mantle cavity. In most unionid clams, this is the end sticking above the substratum in which the animal is buried.

Posterior ridge - A ridge on the external surface of many mussel shells, extending from the umbos posteroventrally toward or to the shell margin. It is often used as a diagnostic character for species discrimination.

Posterior slope - The area on the external surface of a mussel shell between the posterior ridge and the dorsal margin of the shell.

Pseudocardinal teeth - The usually compact lamellae on the anterior part of the hinge plate.

Pustuze - A blisterlike prominence, such as the projections found on the shell surface of some freshwater mussels.

Pustulose (PustuZar, Pustulate) - Having prominences resembling blisters.
Radiating - Proceeding outwardly (as, for example, lines) from a central point, as color rays on a mussel shell.

Ray - A streak or linear mark. It may be continuous or interrupted at intervals.

Rest mark - A darker or thicker part of the shell characteristically formed during a major rest period in growth.

Rhomboidal - Having the shape of a rhomboid, i.e., quadrilateral with opposite sides and angles equal, but neither equilateral nor equiangular.

Right valve - The shell half on the right side when the shell is placed with the hinge up and the anterior end forward.

Rounded - Having a more or less evenly curved contour, in contrast to being angular.

Rudimentary - Vestigial; not or barely functional in one species as contrasted to being developed in others.

Sculpture - The natural surface markings, other than those of color, usually found on mussel shells, and often furnishing identifying marks for species recognition.

Septa - Partitions (formed by the interlamellar connections) separating spaces occurring between the two lamellae of a eulamellibranch demibranch.

Sexually dimorphic - Males and females of the same species being morphologically different. In unionacean clams sexual dimorphism is usually indicated by the marsupial extension on the shell. This extension is caused by new shell material being laid down by the protruding mantle covering the swollen gravid gills during shell growth.

Single-Zooped - Being in the form of one loop or semicircle, as contrasted to being double-looped, i.e., consisting on two semicircles facing the same direction and joined end-to-end. Refers to the condition of the ridges on the umbo or beak of a mussel shell.

Siphon - A tubular or siphonlike structure formed by the opposing posterior mantle margins in mussels; a pair are commonly present on bivalves, providing restricted incurrent and excurrent openings to the mantle cavity.

Sulcus - A groove, furrow or channel.
Supra-anal opening - A dorso-posterior opening in the fused right and left mantle margin in the anal region above the excurrent siphonal opening. Present in the Amblemidae and Unionidae, but absent in the Margaritiferidae.

Tachytictic - Refers to mussels that are short-term breeders, i.e., that carry glochidial larvae in their gills only during the Nearctic summer.

Teeth - The opposing lamellae on the hinge plates of bivalved mollusks which serve to stabilize the two valves against shearing forces. In the Unionacea the anterior lamellae are called pseudocardinal teeth and the posterior lamellae are called lateral teeth.

Transverse - In the same direction (i.e., parallel to) the growth lines in a mussel shell; at right angles to radiating lines, which originate at the beaks and run distally toward the shell periphery.

Truncate - Having the end cut off more or less squarely.
Tubercle - A nodule or small eminence, such as a solid elevation occurring on the shell surface of some freshwater mussels.

Tuberculate (Tuberculose, Tubercled, Tubercular) - Covered with tubercles or rounded knobs.

Umbo - The oldest part of the bivalved shell valve, formed by the embryonic shell and around which the later shell is laid down distally in a semi-concentric manner. The umbos can readily be identified as the raised parts on the dorsal margin of each of the shell valves. Also called "beak".

Undulation - A wavy form, resembling that of a wave or waves.

Unionacea (Unionoidea) - A superfamily of bivalved mollusks (class Pelecypoda or Bivalvia, subclass Lamellibranchia, order Schizodonta) living in freshwater and characterized by a schizodont hinge, the mantle divided into two almost entirely separate flaps, a hatchet-shaped foot and large leaflike gills behind the foot, which are used as marsupia to brood eggs and larval young.

Valve - The single undivided shell of non-pelecypod mollusks, or one of the opposing halves of the divided shell of a pelecypod mollusk. In bivalved mollusks the two shell halves are held together at one margin by an elastic ligament.

Wing - The dorsal, thin, flat extension of the posterior slope of some freshwater mussels.

Actinonaias, 2,19,138
_ carinata carinata, 19,138,139
__carinata gibba, 19,138,139
ellipsiformis, 19,138 pectorosa, 19,138
acutissimus, Medionidus, 21,101
alata, Proptera, 22,136,137
Alasmidonta, Alasmidonta, 16,84 (AZasmidonta), 2,16,81,84 arcuza, 16,84,85
calceolus, 16,86,88, heterodon, 16,88 marginata, 16,81,88 radiatus, 16,81 raveneliana, $16,81,82,89$ triangulata, 16,86,87 undulata, 17,88,89 varicosa, $17,80,81,82,89$ wrightiana, 17,86,87 (Pegias) fabula, 16,84,85 aZberti, Cyprogenia, 23,96,97 aldrichianum, Pleurobema, 14,59 altilis, Lampsilis, 20,145
altum, Pleurobema, 14,52,53,54
canabile, Pleurobema, 14,59
ambiqua, Simpsoniconcha, 18,82
Amblema, 2, 11 costata, 8,9,11,36
-_neisterii, $11,34,35$ perplicata, 11,36
$\overline{\text { Amblemidae, } 2,11,25}$
Ambleminae, 2,11
amphichaena, Leptodea, 21,134,135
anguZata, Gonidea, 13,29
Anodonta, 2,5,17,72
__beringiana, 17,79
califormiensis, $17,78,79$
cataracta, 17,77
-_ couperiana, 17,72,73
dejecta, 17,78,79
gibbosa, 17,74,75
grandis corpulenta, 17,74
grandis grondis, $17,75,79$ grandis simpsoniana, 17,76,77 imbecillus, 72,73
implicata, 17,77

Anodonta kennerlyi, 17,75,81
__oregonensis, $17,80,81$
__ peggyae, $17,72,73$
__suborbiculata, 17,72
wahlametensis, 18,78,79
Anodontinae, $2,16,44,72$
Anodontoides, 2,18,72
__ femssacianus, 18,76,77 radiatus, 18,80
anodontoides, Lompsilis, 20,105,143
arcaeformis, Dysnomia, 19,122,123
archeri, Quadrula, 12,39,40
Arcidens, 2,18
___confragosus, 18,83
aretata, Elliptio, 13,63,64
arcula, Alasmidonta, 16,84,85
Arkansia, 2,18 wheeleri, 18,83,84
वurea, Quadmila, 12,39,40
australis, Lampsilis, 20,146
avallana, Pleurobema, 14,59
beringiana, Anodonta, 17,79
berlandierii, Cyrtonaias, 16,70
biemarginata, Dysnomia, 19,110,124
binominata, Lampsilis, $20,132,133,151$, 153
bracteata, Lampsilis, 20,145
brevidens, Dysnomia, 19,116
buckleyi, Popenaias, 16,70,71
bulbosum, Pleurobema, 14,59
burkei, Quincuncina, 12,32,33
caelata, Lemiox, 21,99
calceolus, Alasmidonta, 16,86,88
califormiensis, Anodonta, 17,78,79
Canthyria, Elliptio, 14
capax, Proptera, 22,136,137
capsaeformis, Dysnomia, 19,127
carinata carinata, Actinonaias, 19, 138,139
gibba, Actinonaias, 19,138,139
cariosa, Lompsizis, 20,151,152
Camnculina, $2,6,19,105,140$ parva, 19,104
-_puZZa, 19,104,105
cataracta, Anodonta, 17,77
chattanogaense, Pleurobema, 14,56
chipoZaensis, ElZiptio, 13,64,67
clava, Pleurobema, 14,54,55
collina, Pleurobema (Lexingtonia), $16,48,49,50$
complanata, Elliptio, 13,65 Lasmigona, 18,90
compressa, Lasmigona, 18,91,92
concestator, Villosa, 22,143
confragosus, Arcidens, 18,83
congaraea, ELliptio, 13,68
conradicus, Medionidus, 21,101
constricta, Villosa, 22,142,143
cooperianus, Plethobasus, 14,46
cor, Fusconaia, 11,42
cordatum coccinew, Pleurobema, 14, 57,58
__ cordatum, Pleurobema, 16,52,53 pauperculum, Pleurobema, 15,57, 58 pyromidatum, Pleurobema, 15,52 costata, Amblema, 8,9,11,36 Lasmigona, 18,90
couperiana, Anodonta, 17,72,73
crassidens crassidens, Elliptio, $13,60,61$
downiei, Elliptio, 13,60,61
Cumbertandia, 2,11 monodonta, 11,26
Cumberlandinae, 2,11
cuneolus, Fusconaia, 11,43
curtum. Pleurobema, 15,55
CycZonaias, 2,13 tuberculata, 4,5,13,45
cylindrica, Quadmula, 12,30,31,37
cyphus, Plethobasus, 14,46
Cyprogenia, 2,23,96 alberti, 23,96,97
irrorata, 23,96,97
Cyrtonaias, 2,16,70 bertandierii, 16,70
dariensis, Elliptio, 13,68,69
decisum, Pleurobema, 15,56
dejecta, Anodonta, 17,78,99
delumbis, Villosa, 22,141
dilatata, Elliptio, 13,62
dolabelloides, Pleurobema (Lexingtonia), 16,50
dolabraeformis, Lompsilis, 20,130, $131,148,149,151$
dombeyanus, Plectomerus, 12,37
donaciformis, Truncizla, 22,130,131
dromus, Dromus, 23,98
Dromus, 2,23
__dromus, 23,98
Dysnomia, 2,19,110,111
__arcaeformis, 19,122,123

- biemarginata, 19,110,124
——brevidens, 19,116
capsaeformis, 19,127
flexuosa, 19,110,111,122,124,126
florentina, 19,110,123
haysiana, 19,120,121
lenior, 19,118
Zewisii, 19,112,112,126
metastriata, 19,116,117,126
penita, 19,119
personata, 19,125,126
propinqua, 19,124,125
stewardsoni, 19,113,126
sulcata, 19,121,126
toruzosa, 19, 110,114,115,126
triquetra, 20,115
turgiduza, 20,121,122,128
ebenus, Fusconaia, 12,41
Ellipsaria, 2,20
lineolata, 20,103
eliipsiformis, Actinonaias, 19,138
ElZiptio (Elliptio), 2,9,13,48,62 aretata, 13,63,64
__ crassidens crassidens, $13,60,61$ downiei, $13,60,61$
chipolaensis, $13,64,67$
__comp Zanata, 13,65
congaraea, 13,68
dariensis, 13,68,69
dilatata, 13,62
fraterna, 13,62,63
hopetonensis, $14,66,67$
icterina, 14,65
jayensis, $14,66,67,68$
_ ZanceoZata, 14,64,66
_nigella, 14,63
shepardizana, 14,60 waccamawensis, $14,68,69$
Eliiptio (Conthyria) spinosa, 14
Elliptio, Elliptio, 13,60
Elてiptoideus, 2,11 sloatianus, 11,30,32
excavata, Lompsilis, 20,131,148,149, 151
fabalis, Villosa, 22,143
fabuza, Alasmidonta (Pegias), 16,84, 85
falcata, Margaritifera, 11,27,28
fasciola, Lampsilis, 20,150,151
fasciolare, Ptychobranchus, 23,94
favosum, Pleurobema, 15,59
flava flava, Fusconaia, 12,43
undata, Fusconaia, 12,40
flavidulum, Pleurobema, 15,59
flexuosa, Dysnomia, 19,110,111,122, 124,126
florentina Dysnomia, 19,110,128
foremanianum, Ptychobronchus, 23, 94,95
fragilis, Leptodea, 21,135
fraterna, Elliptio, 13,62,63
furvum, Pleurobema, 15,59
Fusconaia, 2,11,37
__cor, 11,42
-_cuneolus, 11,43
ebenus, 12,41
-.flava flava, 12,43 undata, 12,40
irrorata, Cyprogenia, 23,96,97
jacksoniana, Obovaria, 22,110
jayensis, Elliptio, 14,66,67,68
johannis, Pleurobema, 15,59
jonesi, Lompsilis, 20,106,144
kennerlyi, Anodonta, 17,75,81
Zaevissima, Leptodea, 21,135
Lampsilinae, 2,19,44,93
Lampsilis, $2,6,20,128,129,140,150$
\qquad altilis, 20,145
anodontoides, 20,105,143
australis, 20,146
binominata, 20,132,133,151,153
bracteata, 20,145
cariosa, 20,151,152
dolabraeformis, $20,130,131,148$,
- 149, 151
__excavata, 20,131,148,149,151
fasciola, 20,150,151
-_hydiana, 20,147
jonesi, 20,106,144
ochracea, 20,151,153
orbiculata, 20,149,151
ovata ovata, $20,131,148,149$
ventricos $\alpha, 20,136,150,151$
perpasta, $21,132,133,151,152,153$
radiata radiata, 21,147 siliquoidea, 21,146 splendida, 21,132,133,144,149 strominea, 21,149,151 streckeri, $21,144,143$ subangulata, 21,106,143
Zanceolata, Elliptio, 14,64,66
Lasmigona, 2,18,84
__ complanata, 18,90
-_ compressa, $18,91,92$
___ costata, 18,90 holstonia, 91
subviridis, 18,92
$\overline{\text { Zata }}$, Hemistena, 14,47,48
Lemiox, 2,21 caelata, 21,99
Zenior, Dysnomia, 19,118
Leptodea, 2,21,133
— comphichaena, 21,134,135
- fragilis, 21,135
-Z Zaevissima, 21,135 leptodon, 21,134,135
Teptodon, Leptodea, 21,134,135
Zewisii, Dysnomia, 19,112,113,126
Lexingtonia, Pleurobema, 48

Iienosa, Villosa, 22,142,143
Ligumia, 2,21,106
nasuta, 21,106,107
recta, 21,106,107
Iineolata, Ellipsaria, 20,103
macrodon, Truncilla, $2,22,128,129$
Margaritifera, 2,11,26 falcata, 11,27,28
hemberi, 11,27
margaritifera, 8,11,27,28
margaritifera, Margaritifera, 8
Margaritiferidae, 2,11,23,26
Margaritiferinae, 2,11
marginata, Alasmidonta, 16,81,88
marshalli, Pleurobema, 15,52,53
masoni, Pleurobema (Lexingtonia), 16,50,51
mcglomeriae, Medionidus, 21,100
Medionidus, 2,21,99
acutissimus, 21,101
conradicus, 21,101
megZameriae, 21,100
penicillatus, 21,100
Mega1onaiadinae, 13
MegaZonaias, 2,13 giganteus, 13,34
$\overline{\text { meredithii, Pleurobema, 15,59 }}$
metanevra, Quadrula, 12,37,38
metastriata, Dysnomia, 19,116,117, 126
modicum, Pleurobema, 15,59
monodonta, Cumberiandia, 11,26
murrayense, Pleurobema, 15,59
nasuta, Ligumia, 21,106,107
nebulosa, Villosa, 23
neislerii, Amblema, 11,34,35
nige LZa, Elliptio, 14,63
noduZata, Quadmula, 12,39
nucleopsis, Pleurobema, 15,59
nux, Pleurobema, 15,59
Obliquaria, 2,23 reflexa, 23,96
Obovaria, 2,22,107
jacksoniona, 22,110
olivaria, 22,108,109,110
retusa, 22,108,109
rotulata, 22,109
subrotunda, 22,108,109
-unicolor, 22,109
occidentalis, Ptychobronchus, 23,95 ochracea, Lompsilis, 20,151,153
olivaria, Obovaria, $22,108,109,110$
orbiculata, Lampsilis, 20,149,151
oregonensis, Anodonta, 17,80,81
ortmanni, Villosa, 23,143
ovata ovata, Lampsilis, 20,131,148, 149
ventricosa, Lompsilis, 20,136,150, 151
oviforme, Pleurobema, 15,57,58
parva, Carunculina, 19,104
peciorosa, Actinonaias, 19,138
peggyae, Anodonta, 17,72,73
Pegias, Alasmidonta, 17
penicillatus, Medionidus, 21,100
penita, Dysnomia, 19,119
perovatum, Pleurobema, 15,57,59
perpasta, Lampsilis, 21,132,133,151,
152,153
pexplicata, Amblema, 11,36
personata, Dysnomia, 19,125,126
picta, Villosa, 23,141
Plectomerus, 2,12 dombeyanus, 12,37
Plethobasus, 2,14,45
_cooperionus, 14,46
cyphus, 14,46
Pleurobema, Pleurobema, 14,48
Pleurobema (Pleurobema), 2,14,48
__ aldrichianum, 14,59
altum, 14,52,53,54
amabile, 14,59
avallana, 14,59
bulbosum, 14,59
chattonogaense, 14,56
clava, 14,54,55
cordatum coccineum, 14,57,58 _ cordatum, 15,52,53 рсорегсиIum, 15,57,58

- pyramidatum, 15,52
curtum, 15,55
decisum, 15,56
favosum, 15,59
flavidulum, 15,59
furvum, 15,59
hagleri, 15,59
hanleyanum, 15,59
harperi, 15,59
irrasum, 15,57,59
johannis, 15,59
marshalli, 15,52,53
meredithii, 15,59

Pleurobema modicum, 15,59
_ murrayense, 15,59
__nucleopsis, 15,59
пих, 15,57,59
__ oviforme, $15,57,58$
__ perovatum, $15,57,59$
__pyriforme, 15,59
reclusum, 15,57,59
——mbeZlum, 15,58
_ showalterii, 15,54
-_simuZans, 15,59

- stabile, 15,59
- striatum, 15
-strodeanum, 15,58
- tombigbeanum, 15
- troschelianum, 15,59
verum, $15,57,58$
Pleurobema (Lexingtonia) collina, 16,48,49,50
\qquad doZabelzoides, 16,50 masoni, 16,50,51
P1eurobeminae, 2,13,44 popei, Popenaias, 16,70,71
Popenaiadinae, 2,16,44,70
Popenaias, 2,16,70
buckleyi, 16,70,71
popei, 16,70,71
propinqua, Dysnomia, 19,124,125
propria, Villosa, 23,143
Proptera, 2,22
alata, 22,136,137
сорах, 22,136,137
- purpurata, 22,137

Ptychobranchus, 2,23,93 fasciolare, 23,94
__ foremanianum, $23,94,95$
greeni, 23,95
occidentalis, 23,95
subtentum, 23,93
риъてa, Camunculina, 19,104,105
purpurata, Proptera, 22,137
pustuZosa, Quadmula, 12,39
pyriforme, Pleurobema, 15,59
Quadrula, 2,12,37
___archeri, 12,39,40
aurea, 12,39,40
cylindrica, $12,30,31,37$
intermedia, $12,29,30,37$
metonevra, 12,37,38
nodulata, 12,39
pustulosa, 12,39

Quadruza quadmiza, 12,38
quadrula, Quadmula, 12,38
Quincuncina, 2,12
burkei, 12,32,33
infuricata, 12,32,33
radiata radiata, Lampsilis, 21,147 siliquoidea, Lampsilis, 21,146
radiatus, Alasmidonta, 16,81
ravenelixna, Alasmidonta, 16,81,82, 89
reclusum, Pleurobema, $15,57,59$
recta, Ligumia, $21,106,107$
reflexa, Obliquaria, 23,96
retusa, Obovaria, 22,108,109
rotulata, Obovaria, 22,109
rotundata, Glebula, 20,102
mibellum, Pleurozema, 15,58
shepardiana, Elliptio, 14,60
showalterii, Pleurobema, 15,54
Simpsoniconcha, 2,18 ambiqua, 18,82
simulans, Pleurobema, 15,59
sloationus, Elliptoideus, 11,30,32
spinosa, Elliptio (Canthyria), 14
splendida, Lampsizis, 21,132,133, 144,149
stabile, Pleurobema, 15,59
stewardsoni, Dysnomia, 19,113,126
strominea, Lampsilis, 21,149,151
streckeri, Lampsilis,21,144,145
striatum, Pleurobema, 15
strodeanum, Pleurobema, 15,58
Strophitus, 2,5,18,72
__ subvexus, 18,82 undulatus, 19,76,77
subangulata, Lampsilis, $21,106,143$
suborbiculata, Anodonta, 17,72
subrotunda, Fusconaia, 12,41 Obovaria, 22,108,109
subtentum, Ptychobronchus, 23,93
subvexus, Strophitus, 18,82
subviridus, Lasmigona, 18,92
succissa, Fusconaia, 12,42,43
sulcata, Dysnomia, 19,121,126
tetralasmis, Uniomemis, 16,47
tombigbeanum, Pleurobema, 15
torulosa, Dysnomia, 19,110,114,115, 126
trabalis, Villosa, 23,143
triangulata, Alasmidonta, 16,86,87
triquetra, Dysnomia, 20,115

Tritogonia, 2,12 verrucosa, 12,30,31
troschelianum, Pleurobema, 15,59
truncata, Truncilla, 22,129
Truncilla, 2,22,128,129 donaciformis, $22,130,131$, macrodon, 22,130,131 truncata, 22,129
tuberculata, Cyclonaias, 4,5,13,45 turgidula, Dysnomia, 20,121,122,128 undurata, Alasmidonta, $17,88,89$ undulatus, Strophitus, 19,76,77 unicolor, Obovaria, 22,109
Uniomerus, 2,16 tetralasmus, 16,47
Unionidae, 2,13,25,44
vanuxemensis, Villosa, 23,143
varicosa, Alasmidonta, 17,80,81,82, 89
vermicosa, Tritogonia, 12,30,31
verum, Pleurobema, 15,57,58
vibex, Villosa, 23,141

Villosa, 2,6,22,140
concestator, 22,143 constricta, 22.142,143
detumbis, 22,141
fabalis, 22,143
iris, 22

- Iienosa, 22,142,143 nebulosa, 23
\qquad ortmanni, 23,143
\qquad picta, 23,141 propria, 23,143 trabalis, 23,142,143 vanuxemensis, 23,143
vibex, 23,141
villosa, 23,141
villosa, villosa, 23,141
waccomowensis, Eliiptio, 14,68,69 wahlometensis, Anodonta, 18,78,79 wheeleri, Arkansia, $18,83,84$
wrightiana, Alasmidonta, 17,86,87

