Lo

United States Office of Research and EPA/600/R-97/099

Environmental Protection Development September 1907
Agency Washington DC 20460

Michigan Soil Vapor
Extraction Remediation
(MISER) Model

A Computer Program to
Model Soil Vapor

Extraction and Bioventing of
Organic Chemicals in
Unsaturated Geological
Material

EPA/600/R-97/099
September 1997

MICHIGAN SOIL VAPOR EXTRACTION

REMEDIATION (MISER) MODEL:
A COMPUTER PROGRAM TO MODEL SOIL VAPOR EXTRACTION AND
BIOVENTING OF ORGANIC CHEMICALS IN
UNSATURATED GEOLOGICAL MATERIAL

by

Linda M. Abriola, John Lang, and Klaus Rathfelder
Department of Civil and Environmental Engineering
The University of Michigan
Ann Arbor, Michigan 48109

Cooperative Agreement CR-822017

Project Officer

Jong Soo Cho
Subsurface Protection and Remediation Division
National Risk Management Research Laboratory
Ada, Oklahoma 74820

NATIONAL RISK MANAGEMENT RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
CINCINNATI, OH 45268

@ Printed on Recycled Paper

DISCLAIMER

The U.S. Environmental Protection Agency through its Office of Research and Development partially
funded and collaborated in the research described here under assistance agreement number CR-822017 to the
University of Michigan. It has been subjected to the Agency's peer and administrative review and has been
approved for publication as an EPA document. Mention of trade names or commercial products does not
endorsement or recommendation for use.

When available, the soft ware in this document is supplied on an "as-is" basis without guarantee or
warranty of any kind, express or implied. Neither the United States Government (United States Environmental
Protection Agency, Robert S. Kerr Environmental Research Center), the University of Michigan, nor any of
the authors accept any liability resulting from use of this software.

FOREWORD

The U.S. Environmental Protection Agency is charged by Congress with protecting the Nation's land,
air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate
and implement actions leading to a compatible balance between activities and the ability of natural systems
to support and nurture life. To meet these mandates, EPA's research program is providing data and technical
support for solving environmental problems today and building a science knowledge base necessary to manage
our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce
environmental risks in the future.

The National Risk Management Research Laboratory is the Agency's center for investigation of
technological and management approaches for reducing risks from threats to human health and the
environment. The focus of the Laboratory's research program is on methods for the prevention and control
of pollution to air, land, water, and subsurface resources; protection of water quality in public water systems;
remediation of contaminated sites and ground water; and prevention and control of indoor air pollution. The
goal of this research effort is to catalyze development and implementation of innovative, cost-effective
environmental technologies; develop scientific and engineering information needed by EPA to support
regulatory and policy decisions; and provide technical support and information transfer to ensure effective
implementation of environmental regulations and strategies. ‘

Soil vapor extraction (SVE) and bioventing (BV) are effective and widely used in-situ remediation
techniques for unsaturated soils contaminated with organic compounds, primarily petroleum hydrocarbons.
Despite the effectiveness and flexibility of SVE and BV technologies, the efficiency and degree of success of
those systems is controlled by a combination .of physical, chemical, and biological factors. The dynamics of
those interrelated processes is often incompletely understood, and consequently the performance and efficiency
of specific SEE/BV systems is generally difficult to predict. This report describes the development of a
numerical model for the simulation of physical, chemical, and biological interactions occurring in SVE and
BV systems. The model can be used as a research tool for studying and elucidating dynamics in SVE and BV
systems. ‘

Li ‘ZL- v o/:r(_ b //ﬂ“é /

Clinton W. Hall, Director

Subsurface Protection and Remediation Division
National Risk Management Research Laboratory

iii

ABSTRACT

This report describes the formulation, numerical development, and use of a multiphase,
multicomponent, biodegradation model designed to simulate physical, chemical, and biological interactions
occurring primarily in field scale soil vapor extraction (SVE) and bioventing (BV) systems. The model is
entitled the Michigan Soil Vapor Extraction Remediation Model, or MISER. MISER solves the governing
flow and transport equations in two space dimensions - either a cross sectional x-z domain, or an
axisymmetrical r-z domain for simulating radial flow to a single well. A standard Galerkin finite element
approach with linear triangular elements is employed. The coupled nonlinear equations are solved using a
modular, set-iterative solution algorithm. In this approach the sets of flow, transport, and biodegradation
equations are decoupled within the simulator and solved separately. The set-iterative approach substantially
reduces the size of solution matrices and provides increased flexibility. Features of the model include: the
ability to simulate multiphase flow, including water table coning; the simulation of multicomponent transport
processes, incorporating fate-limited interphase exchange in processes of volatilization and dissolution of an
entrapped organic liquid, interphase exchange between the mobile gas and aqueous phases, sorption, and
biophase update; and the simulation of multicomponent biodegradation kinetics and microbial population
dynamics.

This report is divided into 6 sections. Section 1 provides an overview of SVE and BV systems and
a review of existing models. Section 2 presents the conceptual formulation of MISER and the associated
mathematical representation for flow, transport and biotransformation processes. Section 3 describes the
numerical solution approach and Section 4 presents the results of model verification analyses. Description and
usage of the model is provided in Section 5, and example SVE and BV simulations are described in Section

6.

This report was submitted in fulfillment of CR-822017 by the University of Michigan under the partial
sponsorship of the U.S. Environmental Protection Agency. This report covers a period from September 1993
to March 1996 and work was completed as of March 1996.

iv

CONTENTS

DISCLAIMER , ii
FOREWORD | i
ABSTRACT ‘ | iv
LIST OF FIGURES | X
LIST OF TABLES | xiii
LIST OF ABBREVIATIONS AND SYMBOLS XV
1 INTRODUCTION 1
1.1 OVERVIEW AND PURPOSE........ e e e e e 1
1.2 BACKGROUND AND LITERATUREREVIEW 2
1.2.1 Limits of Applicability it 2
1.2.2 Rate Limited Mass Transfer. oo, 3
1.2.3 Biodegradation Rates BRI 3
1.2.4 Temperature........... '. e et e 4
125 PreviousModels. i e 5
1.3 MODELFEATURESttt ittt it ii i ... 6
2 MODEL FORMULATION AND THEORETICAL DEVELOPMENT 8
| 2.1 CONCEPTUALMODEL............ e e e ... 8
2.2 PHASE MASS BALANCE EQUATIONSI 11
2.3 COMPONENT MASS BALANCEEQUATIONS, 13
2.4 INTERPHASE MASS TRANSFERovirereininrnnanannenennn. 15
2.4.1 Equilibﬁum Partitioning P 15

2.4.2 Rate Limited Interphase Mass Transfer 17

2.43 Biotransformations oo e e e e e e e e 19

2.5 CONSTITUTIVERELATIONS ettt e 21

2.5.1 CapillaryPressureo 21

2.5.2 Relative Permeabilityo 23

2.53 Gasphasedensityo 23

2.54 LiquidPhaseDensity 23

2.5.5 GasphaseVviscosity 24

2.5.6 AqueousPhase Viscosityo oo 24

2.5.7 Hydrodynamic Dispersiono 24

2.5.8 Matrix Compressibility o oo oo 25

3 NUMERICAL DEVELOPMENT 26

3.1 FINITEELEMENTAPPROACH i iv ettt ‘. . 26

3.2 SOLUTION OF THE PHASE MASS BALANCE EQUATIONS 28

3.2.1 Pressure Based Formulation oo e 28

3.2.2 Trial Functions and Weighted Residual eqiations 29

3.2.3 Capacity Coefficientso 31

3.3 MATERIALPROPERTIES ittt et et e 31

3.4 VELOCITY BQUATIONS o\ ot oeee e e LR

3.5 COMPONENT MASS BALANCE EQUATIONS 34

3.5.1 Weighted Residual Equations in Cartesian Coordinates 35

3.52 MassExchange Terms« o v o v i b i e e e e 38

3.6 BIOLOGICALREACTIONS e e e e e 39

3.7 NAPLSATURATION oottt it e e e e e e e e e 40

3.8 AXISYMMETRIC COORDINATES oottt e e e 40

39 TIMEDISCRETIZATION o i vt it e e e e e e e e e 41

3.10 TIMESTEPCONTROL i e e e e 41

3.11 BOUNDARY CONDITIONS ittt e e e e et e e e s 42
3.11.1 Phase Mass Balance Boundary Conditions 42 |

vi

3.11.2 Component Mass Balance Boundary Conditions, 43

3113 ExtractionWells 44
3.11.4 Treatmentof Injection Wells 45
3.12 ITERATION SCHEME e e 46
313 SOLVER o e 46
4 MODEL VERIFICATION ‘ , 49
4.1 MATERIAL BALANCE CALCULATiON e e 49
4.1.1 Phase Material Balance . . . R I I 49
4.1.2 Component Material Balance e 50
4.1.3 Calculation of Mass Balance Error. 50
4.2 VERIFICATION OF THE PHASE MASS BALANCE SOLUTIONS 52
4.2.1 Comparison with One Dimensional Richards Equation 52
4.2.2 Comparison with Two Dimensional Richards Equation 54
4.2.3 Comparison with Quasi Analytical Solutions for Unsteady Radial Flow of Gas . . . 57
4.3 VERIFICATION OF THE COMPONENT MASS BALANCE SOLUTIONS 60
4.3.1 Comparison with One Dimensional Analytical Solutions 60
4.3.2 Comparison with Two Dimensionai Analytical Solutions 61
4.3.3 Verification of Biokinetiqs 62
4.3.4 Verification of Interphase Exchange e e 64

4.4 VERIFICATION OF THE COUPLED PHASE AND COMPONENT MASS BALANCE
SOLUTIONS e e e e e e e 65
§ PROGRAM DESCRIPTION AND SIMULATION SETUP 68
5.1 CODEDESCRIPTION e i i e 68
5.2 PROGRAMMODULES e e e 68
5.3 ARRAY DIMENSIONS AND PROGRAM VARIABLES e 68
5.4 DESCRIPTION OF INPUT FILES ANDINPUTDATAo oo v ... 69
5.4.1 DataBlock A — Input/Output Files and Control Options 69
5.4.2 Data Block B — General Model Control Options A 69
5.4.3 Data Block C — Time Step and Iteration Control Parameters 69

vii

5.4.4 DataBlock D — Grid Information and Control Options
5.4.5 DataBlock E — Component Chemical Properties

5.4.6 Data Block F — Mass Transfer Coefficients

5.4.7 Data Block G — Material Property Block Information
5.4.8 Data Block H - Sorption Parameter Data

5.4.9 Data Block I - Biological Parameter Data

5.4.10 Data Block J — Phase Parameter Data

5.4.11 Data Block K — Temperature Parameter Data

5.4.12 Data Block L — Output Control Parameters

5.4.13 Data Block M — Restart Identifier

5.4.14 Data Block N — Initial Pressure Conditions

5.4.15 Data Block O - Velocity Computation

5.4.16 Data Block P — Organic Liquid Saturation and Composition
5.4.17 Data Block Q — Oxygen and Nutrient Initial Conditions
5.4.18 Data Block R — Boundary Conditions

5.4.19 Data Block S — Extraction/Injection Well Conditions

5.4.20 Data Block T — Velocity Boundary Conditions
DESCRIPTION OF OUTPUT FILES

5.5.1 Main Output File - ‘Outpre.out’

5.5.2 Convergence History and Runtime Information Output File - ‘Outpre.cnv’
5.5.3 Error Message Output File - ‘Outpre.err’

5.5.4 Mass Balance Output File - ‘Outpre.mb’

5.5.5 Contour Plot Output File - ‘Outpre.con’

5.5.6 Time Series Plot Output File - ‘Outpre.plt’

5.5.7 Restart Output File - ‘Outpre.rst’

6 DEMONSTRATION OF MISER
6.1 SOIL VAPOR EXTRACTION
6.2 BIOVENTING
6.3 FIELD SCALE BIOVENTING

A ELEMENT MATRICES FOR THE SIMULTANEOUS SOLUTION OF THE PHASE MASS
BALANCE EQUATIONS _ §i

B ELEMENT MATRICES FOR THE SOLUTION OF DARCY’S LAW EQUATION

C ELEMENT MATRICES FOR THE SEQUENTIAL SOLUTION OF THE COMPONENT
MOLE BALANCE EQUATIONS

D ELEMENT MATRICES FOR THE SOLUTION OF THE ORGANIC PHASE MASS BAL-

ANCE EQUATION 12¢
E Description of Major Variables : ‘ 133
F EXAMPLE MAKE FILE | 139
G EXAMPLE DATA FILES 140
H SOURCE CODE LISTING : 151

REFERENCES 230

1.1
2.1
2.2
3.1
3.2
33
4.1
4.2

4.3

4.4
45

4.6

4.7

4.8

4.9

4.10

4.11

4.12

LIST OF FIGURES

Basic SVE/BV system configuration. 0000 2
Conceptual model of the soil system composition. 9
Conceptual model of interphase mass transfer pathways. 10

Triangular element in global and transformed coordinates (after Lapidus and Pinder, 1982). 27
Variable representationin MISER. o000, 32
Representation of an extraction well in the discretized domain. 44
Computational grid used for the numerical solution of the one dimensional Richards equation. 53

Comparison of numerical and analytical solutions for the one dimensional Richards equation.
Simulation time = 6 hours; convergence tolerance = 1 X 1074, .. 54

Domain configuration used in two dimensional (2D) flow simulations for comparison to
SWMS 2D, . . . e e e e e e e e 55

Numerical grid used in two dimensional flow simulations for comparison to SWMS_2D. . . 56

Simulated volumetric moisture content in the homogeneous domain at time 12 hrs (MISER

=solid line; SWMS 2D =dashedline). 56
Simulated volumetric moisture content in the layered domain at time 6 hrs (MISER = solid
line; SWMS 2D =dashedline). i it 57
Simulated volumetric moisture content in the layered domain at time 12 hrs (MISER = solid
line; SWMS 2D =dashed line). i i e e e e e e e 57
Domain configuration used in two dimensional flow simulations for comparison to quasi
analytical solutions forradial gasflow. o oo 58
Comparison of quasi analytical and numerical solutions for two dimensional radial gas flow
inauniformsoil withk =1 x 1071m?, .. 59

Comparison of quasi analytical and numerical solutions for one dimensional radial gas flow
inauniformsoil withk =1 x 107¥m? oL 59

Computational grid used for the numerical solution of the one dimensional transport equation
with and withoutadvection. L s 60

Comparison of MISER with the one dimensional analytical solution for diffusion driven
transport. L e 61

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

6.1

6.2

6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10

6.11

Comparison of MISER with the one dimensional Ogata and Banks analytical solution for
transport with dispersion and constant advection. 61

Comparison of MISER (solid lines) with a two dimensional analytical transport solution
(dashed lines) at 4000 sec. Contours of normalized concentration are from left to right: 0.8,
0.6,0.4,0.2,0.1,and 0.01. 62

Comparison of MISER (solid lines) with a 2D analytical transport solution including first
order decay (dashed lines) at 4000 sec. Contours of normahzed concentration are from left
toright: 0.8, 0.6, 0.4, 0201and001 B e e 63

Comparison of substrate proﬁles along a one dimensional column by MISER (lines) and a
one dimensional numerical solution (discrete points) for biodegradation by Moltz et al, [1986]. 64

Comparison of MISER (solid lines) with a two dimensional analytical solution including
linear equilibrium sorption (dashed lines) at 4000 sec. Contours of normalized concentration
are from left to right: 0.8,0.6,04,0.2,0.1,and0.01. 65

Comparison of MISER (lines) with a one dimensional column experiment (discrete points) -
for multicomponent organic liquid (benzene, TCE, toluene) volatilization under equilibrium
conditions. Ce e I S 65

Comparison of predicted solute concentrations at time 6 hrs (MISER = solid line; SWMS_2D
=dashedline)., 66

Comparison of predicted solute concentrations at time 12 hrs (MISER =solid line; SWMS_2D
=dashedline)., 67

Problem depiction used in example simulations. Contours show the initial organic liquid
distribution. The contour interval is 0.005 with levels increasing inward. 105

Predicted organic liquid saturation distribution in SVE simulations with intermediate mass

transfer rates. The contour interval is 0.005 with levels increasing inward. 107
Toluene sorbed (ppm) at 20 and 100days. 107
Toluene removal versus time. e e e e e e e e 108
Predicted organic liquid saturation (%) at selected times in the example BV simulation. . . . 109

Predicted biomass distribution (g/l x 1073) at selected times in the example BV simulation. 109
Simulation domain used in the field scale bioventing demonstration simulation. 110
Initial conditions used for the field scale bioventing demonstration simulation. 113

Predicted organic liquid distributions at specified times for the field scale bioventing demon-
stration simulation. L. L 114

Predicted benzene substrate distributions at specified times for the field scale bioventing
demonstration simulation. e e e e e 115

Predicted biomass distributions at specified times for the field scale bioventing demonstration
simulation. L L 116

xi

6.12 Predicted oxygen distributions at specified times for the field scale bioventing demonstration
SIMUIAtION. . . v v v v e e e e e e e e e e e e e e e 117

xii

3.1
32
33
4.1

42
4.3

5.1
52
53
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

LIST OF TABLES

Summary of mass transfer expressions.,

Summary of lumped mass exchange and bioreaction coefficients. 7

Summary of numerical scheme in MISER. \

Comparison of global mass balance errors from numerical solutions of the one dimensional
Richards equationattime 6hrs.,

Soil properties used in two dimensional flow simulations for comparison to SWMS_2D.

Soil properties used in two dimensional flow simulations for comparison to quasi-analytical
solutions forradial gasflow.

Description of input and output files. B
Input Data in Block A — Input/Output Files and Control Options.
Input Data in Block B — General Model Control Options.
Input Data Block C — Time Step and Iteration Control Information.
Input Data Block D — Grid Information and Control Options Information.
Input Data Block E — Component Chemical Properties. e e e
Input Data Block F — Mass Transfer Coefficients.
Input Data Block G — Material Property Block Information.
Input Data Block H — Sorption ParameterData.
Input Data Block I — Biological Parameter Data. e e
Input Data Block J — Phase ParameterData.
Input Data Block K —- Temperature Parameter Data.
Input Data Block L — Output Control parameters.

Input Data Block M —Restart Identifier.

xiii

.58

5.19
5.20
5.21
5.22
5.23
6.1
6.2
6.3
6.4
6.5

6.6

Input Data Block P — Organic Liquid Saturation and Composition. 99
Input Data Block Q — Oxygen and Nutrient Initial Conditions. 100
Input Data Block R —Boundary Conditions. 101
Input Data Block S — Extraction/Injection Well Conditions. 103
Input Data Block T — Velocity Boundary Conditions. 104
Soil properties used in example SVE and BV simulations. 106
Mass transfer coefficients used to simulate an SVEsystem. 106
Biotransformation parameters used in an example BV simulation. 109
Soil parameters used in the field scale bioventing demonstration simulation. 111

Fluid properties used in the field scale bioventing demonstration simulation. All values are
for 200G, . . . e e e e e e e e e e e 111

Mass exchange and biokinetic parameters used in the field scale bioventing demonstration
simulation. o e e e e e e 112

Xiv

LIST OF ABBREVI;&TIONS AND SYMBOLS

aup specific contact area between the « and 8 phases E;ﬂc interphase mass transfer rate of component c¢

(L1 ‘ to phase « from phase B per pore volume
A general mass matrix ' [ML3T-1]
A¢ area of a triangular element [L?] ‘ S, F general RHS vectors |
A, cross-sectional area associated with node i [L2] | Fer use coefficient of component ¢ with substrate

d dation [—
A; subarea of a triangular element [L?] egradation []

il i bon fraction [~
b Klinkenberg parameter [ML~17T2] Joc - soil organic carbon fraction [-]

Fp, boundary flux in material mass balance calculation

B general stiffness matrix ’ (ML-3T-1]
Bi23 material balance error measures [%] o F, exchange flux in material mass balance calculation
B, netmole biological transformation rate in phase o [ML-3T-1]
. ~3mp—1
per medium volume [mole L™77]. ‘ F, . source/sink in material mass balance calculation
B,, mole biological transformation rate of component . IML73TY
‘ : . —3r—1 :
¢ in phase o per medium volume [mole L™T~]. F, rate of change in material mass storage for balance .
B} netmass biological transformation rate in phase o calculation [ML™3T1]
~3 et
per volume of phase o [ML™T"]. F, biological reaction rate in material mass balance
B mass biological transformation rate of component calculation [ML™3T-1]
¢ in phase & per volume of phase o [ML—>T"]. 'F—ac lumped RHS mass transfer coefficient for compo-
Co, mass concentration of component ¢ in phase o nent ¢ in phase o [mole L—371]
[ML™3] g gravitational acceleration vector [L 7 ~2]
Cp capacity coefficient BS,,/ P [M7'LTH gx horizontal component of g [LT~?]
Dgc hydrodynamic dispersion tensor of component ¢ g, vertical component of g [LT 2]

in phase o [L2T 1]
D2 binary molecular diffusion coefficient of compo-
nent ¢ in phase o [L27™1]

G, « phase compressibility factor [-]

=

¢, €quivalent gas phase head [L]

: I, component ¢ inhibition function []
E general RHS vector Lnax.min biomass inhibition functions [-]

E; net interphase mole transfer rate to phase « from
all contiguous phases per pore volume [mole P i
L-3T1 J,, mass flux of component ¢ in phase « by kinematic

dispersion [ML2T 1]

I; saturation inhibition function [~}

E,. netinterphase mole transferrate to phase « of com-]
ponent ¢ from all contiguous phases per pore vol- | J. mass flux of component ¢ in phase & by molecular
ume [mole L3771} diffusion [ML~2T~1].
E,p, interphase mole transfer rate of component ¢ to k intrinsic permeability tensor [L.2]
phase « from phase g per pore volume [mole | x, biomass decay rate [T~!]
—3T 1] L

k, effective gas phase permeability [L?%]
E} net interphase mass transfer rate to phase «

from all contiguous phases per pore volume i .
[ML-3T-1 k.o relative permeability of phase o [-]

Ey net interphase mass transfer rate of component ¢ | Ks half saturation constant for substrate / [-]
to phase « from all contiguous phases per pore ko, overall mass transfer coefficient for component ¢
volume [ML-3T-1] controlled by phase o [LT "]

k; maximum substrate / use rate [mole M~171]

XV

koo

Kg.

sac

gas phase permeability at a high pressure; equiva-
lent to the liquid permeability [L?]

Henry's Law constant
[ML-'T-2]

organic carbon - normalized partition coefficient
(ML~

Freundlich parameter for component ¢ [L3M 1]

for component ¢

lumped mass transfer coefficient for component ¢
between the controlling phase « and phase 8 [T]

equilibrium partition coefficient for component ¢
in phase « based on phase 8 [-]

lumped LHS mass transfer and biological reaction
coefficient for component ¢ in phase & [T 1]

differential operator on u
local coordinate at node j

thickness of stagnant boundary layer in the con-
tacting o phase [L]

van Genuchten parameter [—]

molecular weight of phase o [M mole™!]
molecular weight of component ¢ [M mole™!]
unit normal vector

total number of nodes in the solution domain; van
Genuchten parameter [—]; Freundlich parameter

-]
number of nodes in an element
number of elements in the solution domain

linear basis or shape function for triangular ele-
ments

capillary pressure [ML~!T~2]

partial pressure of component ¢ [ML~1T-2]
pressure of the nonwetting phase [ML~1T—2]
vapor pressure of component ¢ [ML~1T~2]
pressure of the wetting phase [ML~1T2]
pressure of phase o [ML™'T~?]

specific discharge of phase & [LT 1]
general RHS vector

total discharge of phase o« [L3T 1]

radial spatial coordinate [L]

retardation factor for component ¢ {-]

radial element centroid coordinate [L]
internal source/sinks of phase « [T~1]
normalized aqueous phase saturation [-]
residual aqueous phase saturation [
saturation of phase « {~]

t time [T]
T temperature [°K]
u general dependent variable
it trial function of u '
V. pore velocity of phase o [LT]
W; weighting function
x horizontal spatial coordinate [L]
x;jf’ component ¢ aqueous phase solubility as a mole
fraction [-]
xMe% inhibitory mole fraction of component c{-]
x™n" minimum detectable mole fraction of component
cl-]
x4, mole fraction of component ¢ in phase o [-]
xag. mole fraction of component ¢ in phase « in equi-
librium with phase 8 [-]
x2 mole fraction of component ¢ in contacting phase
« at the boundary [-]
X ‘biomass [ML™3]
X max.min Maximum and minimumn biomass [ML ™3]
Y; biomass yield coefficient for substrate / degrada-
tion [M mole™1]
z vertical spatial coordinate [L]
e van Genuchten parameter [LT2M ']
. o coefficient of the linear basis function N;
ap,r longitudinal L and transverse T dispersivities [L]
B:; x-direction derivative of the linear basis function
Ni [24740 -]
Yo, activity coefficient of component ¢ in phase « [-]
y; z-direction derivative of the linear basis function
Ni [-]; 242 8%]
I" . computational boundary of domain
Su Kronecker delta
€f convergence criteria for mobile phase balance
equations [-]
€; convergence criteria for immobile component bai—
ance equations [—]
€n convergence criteria for mobile component bal-
ance equations [~]
€, convergence criteria for NAPL saturation [~]
& residual
A« mobility of phase o« [M~'L3T]
T dynamic viscosity (M L‘IT"]
lo, nonlinear Monod-type rate coefficient o [mole

Xvi

L7371

pgo mass density of the uncontaminated gas phase
[ML3)
p; bulk solid phase mass density [M L~3]
Po molar density of phase o [mole 73]
P mass density of phase o [ML™3]
Po element average phase mass density [M L~3]
Ty tortuosity of phase o []
¢ porosity [-]
" ®. gas phase viscosity parameter [-]
6 variable time weighting factor [-]
wy, adsorbed mass of component ¢ per mass of soil [-]
2 computational domain
subscripts
a aqueous phase
A nutrient
b biophase
¢ component
g gas phase
i,j nodes
k direction
I degradable substrate; direction
L longitudinal direction
N3 nitrogen
o organic phase
O, oxygen
r radial direction
s solid phase
t total

T transverse direction
x horizontal direction
w water
z vertical direction
o, B phase (aqueous, gas, organic, solid)
vy components of the organic liquid
superscripts
d kinematic dispersion
e element
h hydrodynamic dispersion
k iteration counter
L mass lumped
m ‘molecular diffusion
o initial time, conditions in contacting fluid, uncon-
taminated gas phase
time
% mass based variable
abbreviations
BV bioventing
LEA local equilibrium assumption
LHS left hand side
RHS right hand side
SS simultaneous solution method
SVE soil vapor extraction

Xvii

Section 1

INTRODUCTION

1.1 OVERVIEW AND PURPOSE

The migration and fate of nonaqueous phase liquid (NAPL) organic contaminants in the subsurface has
been the subject of intensive investigation in the past few years. It is now generally recognized that the
prevalence of NAPLs at contaminated sites is a significant impediment to aquifer restoration [Mackay and
Cherry, 1989]. As a NAPL migrates through a porous formation a portion of the organic liquid is retained
within the pores due to the action of capillary forces. Residual NAPL can vary from 5-40% of the pore
volume, or on a volume basis, from 3-5 I/m? in permeable soils up to 30-50 I/m? in low permeable soils
[Schwille, 1984; Hoag and Marley, 1986; Wilson et al., 1990]. These entrapped residuals cannot be
mobilized by simple hydraulic flushing, and thus due to the low aqueous solubility of the NAPLSs, the
residuals may serve as long term sources of groundwater contamination. Conventional pump and treat
remediation technologies have proven to be an ineffective and costly approach to aquifer restoration when
NAPLs are present [Mackay and Cherry, 1989; Haley et al., 1991; National Research Council, 1994].

Based upon the limitations of conventional pump and treat methods, considerable effort is currently
focused on the development of alternative remediation technologies. Soil vapor extraction (SVE) is an
alternative remediation approach which targets the removal of volatile organic contaminants (VOCs) from
the unsaturated zone. SVE involves the generation of advective vapor fluxes through the pores of the
contaminated soil to induce transfer of VOCs to the air stream. Air flow is established by pumping from a
system of vadose zone wells through which contaminant vapors are collected and transported above ground
where they are treated if required, and discharged to the atmosphere (Figure 1.1). Since its development in
the late 70’s and early 80’s [Texas Research Institute, 1980, 1984; Thornton and Wootan, 1982; Marley and
Hoag, 1984; Crow et al., 1985, 1987] SVE applications have become widespread, with SVE now
comprising up to 18% of selected remedies at Superfund sites [Travis and Macinnis, 1992]. The popularity
of SVE technologies stems from their proven effectiveness for removing large quantities of VOCs from the
soil, their cost competitiveness, and their relatively simple nonintrusive implementation. Numerous articles
and reports document and describe SVE applications [e.g. Hutzler et al., 1989; Downey and Elliott, 1990;
Gerbasi and Menoli, 1994; McCann et al., 1994]. ' ‘

The ability of SVE systems to enrich the unsaturated zone with oxygen and stimulate indigenous
microorganisms to biodegrade organic contaminants was recognized in early feasibility studies [Thornton
and Wootan, 1982; Texas Research Institute, 1984]. Enhanced biodegradation in the unsaturated zone was
subsequently evaluated in laboratory treatability studies [Hinchee and Arthur, 1991; Kampbell and Wilson,
1991] and in monitored field applications [Miller, 1990; Hinchee et al., 1991; Dupont et al., 1991]. These
studies helped spawn the development of engineered systems referred to as bioventing (BV) (Figure 1.1).
BV is similar to SVE in that remediation is facilitated by advective vapor fluxes established through vadose
zone wells. BV, however, differs fundamentally from SVE in that it designed to maximize soil remediation
by in situ biodegradation and to minimize contaminant volatilization and above ground recovery [Dupont,

SVE System BV System

<

Figure 1.1: Basic SVE/BV system configuration.

1993; Hinchee, 1994]. BV is now recognized to be a highly effective and cost-competitive remediation
alternative [Miller et al., 1994] especially when treatment of off-gas is required [Reisinger et al., 1994]

Because of the complexity of the processes influencing the performance of SVE/BV technologies,
design and operation guidelines are frequently qualitative in nature based on experience or simple design
rules [Hutzler et al., 1989; Dupont, 1993; Johnson et al., 1990, 1995]. Mathematical models are recognized
as powerful tools that can be used to integrate and quantify the interaction of physical, chemical, and
biological processes occurring in field scale SVE/BV systems. In addition to predicting potential mass
removal, mathematical models can be used to explore alternative system designs and to investigate factors
limiting successful remediation. This report describes the development of a comprehensive SVE/BV
simulator, entitled the Michigan Soil Vapor Extraction Remediation Model, or MISER.

1.2 BACKGROUND AND LITERATURE REVIEW

1.2.1 Limits of Applicability

Reviews of SVE technologies indicate success of SVE is strongly correlated with contaminant volatility
and the ability to generate advective gas fluxes through the contaminated soil [Hutzler et al., 1989; U.S.
EPA, 1991; Pedersen and Curtis, 1991; Johnson et al., 1995; Rathfelder et al., 1995]. SVE has been
effectively applied for the removal or mass reduction of a wide variety of halogenated and nonhalogenated
volatile and semivolatile organic compounds. It is not considered effective for organic compounds of low
volatility, inorganic compounds, polychlorinated biphenyls (PCB), dioxins, organic pesticides, cyanides,
and corrosives [U.S. EPA, 1991]. SVE is generally most effective in uniform soils with good conductivity,
low moisture content, and low organic carbon content [Fine and Yaron, 1993]. Soils with low air
permeability are more difficult to remediate [U.S. EPA, 1991], although applications in low permeability,
fractured media have been reported [Agrelot et al., 1985; Gibson et al., 1993].

Reviews of BV design and applications [Thomas and Ward, 1992; Dupont, 1993; Miller et al., 1994;
Litchfield, 1993; Hinchee, 1994] indicate BV is most applicable for the removal of petroleum
hydrocarbons. Chlorinated organic compounds have not been considered appropriate for BV due to their
resistance to direct biodegradation, however, potential exists that these compounds can be cooxidized

during microbial growth on other hydrocarbons [English and Loehr; 1991; Speitel and Alley, 1991; Barbee,
1994; Wilson, 1994; Fuller et al., 1995]. In contrast to SVE, BV is not constrained by contaminant
volatility and is therefore applicable to contaminants with moderate to low volatility [Hinchee, 1994].
Moreover, biodegradation rates are slower than volatilization processes for many hydrocarbons, and
therefore BV may be well suited for application during the periods of long term, low level removal
efficiency observed in traditional SVE systems. Consequently, integrated systems have been designed
which employ SVE for rapid VOC recovery during early stages, followed by low cost, long term BV
operations [Dupont et al., 1991; Nelson et al., 1994].

1.2.2 Rate Limited Mass Transfer

SVE systems characteristically exhibit large initial VOC recovery rates followed by a rapid drop in exhaust
VOC concentrations and long term, low level removal efficiency [Crow et al., 1987; DiGiulio, 1992; Travis
and Macinnis, 1992; McClellan and Gilham, 1992]. Diminished removal efficiency is attributed to several
mechanisms which decrease the rate of VOC mass transfer to the mobile gas stream. Lighter, more volatile
contaminant fractions are preferentially removed, leaving the heavier, less volatile components and
decreasing remediation efficiency [Hoag et al., 1984; Fine and Yaron, 1993]. Secondly, removal efficiency
decreases due to preferential removal of contaminants that are most accessible to the advective gas stream,
leaving behind contaminants that have poor accessibility to the gas stream due to occlusion in
intraaggregate or intraparticle regions [Brusseau, 1991; Gierke et al., 1992], or due to flow by passing of
zones of low permeability [Kearl et al., 1991; Ho and Udell, 1992]. Diffusion controlled, rate limited
interphase mass transfer, including processes of volatilization, dissolution, sorption and biotransformation,
are also a potentially critical factor affecting removal efficiency [Brusseau, 1992; Armstrong et al, 1993,
1994; Wilkins et al., 1995].

Several studies indicate the rate of NAPL volatilization can be adequately modeled with the assumption
of instantaneous local equilibrium [Hoag et al., 1984; Baehr et al., 1989; Berndtson and Bunge, 1991,
Bloes et al., 1992; Hayden et al., 1994; Ho et al., 1994]. Other studies, however, have shown the rate of
NAPL volatilization to be limited, even in relatively homogeneous materials, at high pore velocities
[Rainwater et al., 1989; Kearl et al., 1991; Hoffman et al., 1993; Wilkins et al., 1995], or low constituent
mole fractions [Hayden et al., 1994]. Hoffinan et al. [1993] and Wilkins et al. [1995] found that measured
effective mass transfer coefficients in sandy media could be well correlated with dimensionless parameters
incorporating the vapor flux and mean grain size. Laboratory and field studies have also documented rate
limited interphase mass transfer of VOCs between the soil water and mobile gas phases [Cho and Jaffe,
1990; Berndtson and Bunge, 1991; Gierke ét al., 1992; McClellan and Gilham, 1992], and between the
water and organic liquid phases [Powers et al., 1991, 1992, 1994]. Rate limited sorption/desorption on soil
particles also plays an important role in the transport and retention of VOCs [Brusseau and Rao, 1989;
Weber et al., 1991], and may limit bioavailability of organic substrates [Pignatello and Xing, 1996]. Recent
experimental studies suggest that unsaturated zone sorption is more complex than that in the saturated zone,
due to the presence of gas-liquid interfaces [Pennell et al., 1992].

1.2.3 Biodegradation Rates

Biodegradation rates in field BV systems have been assessed by the measurement of: carbon dioxide
production [Hinchee and Arthur, 1991; Huesemann and Moore, 1994; van Eyk, 1994]; hydrocarbon

consumption rates [Kampbell and Wilson, 1991]; and oxygen consumption [Baehr et al., 1991; Ong et al.,
1991; Hinchee, 1994; Huesemann and Moore, 1994]. Oxygen consumption is generally considered a more
reliable measure of biodegradation and is typically measured by in situ respirometry tests [Hinchee, 1994].

Biodegradation rates in unsaturated soils have been observed in field and laboratory studies to be linked
to the soil moisture content. The reason for this linkage is poorly understood. Results from laboratory
studies generally show that higher rates of biotransformation occur at higher levels of soil moisture content
[Fan and Scow, 1993] and that this dependence may be compound specific [Holman and Tsang, 1995].
Moisture addition in field BV applications has similarly produced an increase in degradation rates [Hinchee
and Arthur, 1991; Zwick et al., 1995]. At other sites, moisture addition has been found to reduce
degradation rates due to the constriction of air permeability and the resulting decrease in oxygen transport
[Miller et al., 1994] or was reported to have no affect on biodegradation rates [Miller, 1990].

Enhanced biodegradation rates have also been observed in laboratory experiments following nutrient
additions (e.g. nitrogen or phosphorus) indicating that nutrient limitations can constrain biodegradation rates
[Hinchee and Arthur, 1991; Dupont, 1993; Baker et al., 1994; Fuller et al., 1995; Breedveld et al., 1995].
Nutrient addition in field applications is typically accomplished by water flooding [Nelson et al., 1994;
Norris et al., 1994]. However, it is not clear whether there is substantial enhancement of biodegradation
after nutrient addition in field studies [Miller, 1990; Miller et al., 1994; Leeson et al., 1995], partly because
it is difficult to separate the effects of nutrient addition from moisture addition [Dupont et al., 1991].

Inhibition of biodegradation at high concentrations of inorganic nutrients [Baker et al., 1994] or high
concentrations of organic substrates [Speitel and Alley, 1991; Huesemann and Moore, 1994; Mu and Scow,
1994] has been observed in laboratory studies. The significance of inhibition in field operations, however,
has received limited attention. One study noted the possibility of observed substrate inhibition at low flow
rates [Moore et al., 1995]. Thus inhibitory effects, if important, could be strongly linked to system
operation and design.

Degradation rates in field conditions depend not only on the metabolic properties of the microbes, but
also on the availability of substrates to the microorganisms. A host of laboratory and theoretical studies
provide substantial evidence that diffusion controlled desorption of organic substrates can control the
overall rate of biodegradation [Molz et al., 1986; Scow and Alexander, 1992; Scow and Hutson, 1992;
Novak et al., 1993; Scow, 1993]. Thus, relatively slow rate limited desorption processes can in effect
control bioremediation of subsurface systems [Mueller et al., 1989; Rijnaarts et al., 1990]. Exposure time
and aging of the spill enhance the resistance to desorption and biodegradation [Novak et al., 1993;
Pignatello and Xing, 1996; Fuller et al., 1995]. Consequently, modeling of biodegradation processes
requires an accurate understanding and representation of sorption kinetics [Scow and Hutson, 1992;
Pignatello and Xing, 1996].

1.24 Temperature

Subsurface temperature is an important environmental variable in SVE remediation processes. The
efficiency of SVE remediation is strongly linked to the vapor pressures of the target compounds with a
suggested lower limit on vapor pressure of approximately 1000 Pa [Pedersen and Curtis, 1991; Johnson et
al., 1990]. Vapor pressures of organic compounds increase by a factor of approximately 3 or 4 with every
10°C rise in temperature. Experimental evidence also suggests that vapor sorption is inversely proportional
to temperature [Goss, 1992]. Methods to increase SVE efficiency by increasing the subsurface temperature

have been attempted by heating and injectiovn of ambient air [Sittler et al., 1993] or by methods of steam
injection [Falta et al., 1992; Wilson and Clarke, 1992]. Several other novel approaches which integrate
SVE with methods for soil heating have been considered [Dowrney and Elliott, 19901.

The effect of subsurface temperature on the design and operation of BV remediation efforts has
received little attention [Sayles et al., 1993, 1995]. 1t is generally accepted that soil temperatures at most
sites are within the limits for microbial growth [Litchfield, 1993]. In Alaska, where soil temperatures are as
low as 1°C, respiration rates comparable to those in temperate and subtropical regions were observed
during summer months [Ong et al., 1994; Kellems et al., 1994]. The observed rates dropped slightly during
the winter months with less effect noted at sites with either active or passive soil warming.

1.2.5 Previous Models

A number of mathematical models have been presented in the literature for the description of the SVE
process. These vary greatly in level of complexity and in the processes included. The simplest models are
analytical solutions for gas flow, intended to aid in the analysis of pneumatic pump tests and the design of
SVE applications [Massmann, 1989; Johnson et al., 1990; McWhorter, 1990; Baehr and Hult, 1991; Cho
and DiGiulia, 1992; Massmann and Madden, 1994; Beckett and Huntley, 1994; Baehr et al., 1995].
Numerical models of gas phase advection have also been developed for analysis of SVE systems [Welzy et
al., 1991; Croise and Kaleris, 1992; Edwards and Jones, 1994] and BV systems [Mohr and Merz, 1995].
Because only the gas phase flow field is considered in this group of models, they are not capable of
describing contaminant partitioning and migration, nor are they suitable when water movement is
important. These models are generally applicable for screening purposes and simple design analyses.

A more complex group of models are those which combine constituent transport and steady state gas
phase flow. Although transport processes are considered in this group of models, their applicability is
restricted by assumptions on the flow field, partitioning mechanism, or domain configuration. They are, in
general, not adequate for comprehensive simulation of field scale SVE/BV system, but are suitable for
behavior assessment and screening purposes. The simplest models in this group couple steady state flow
fields with analytical transport models [Roy and Griffin, 1991; Zaidel and Russo, 1993]. Other models
incorporate steady state flow fields and the numerical solution of transport equations [Massmann and
Farrier, 1992; Johnson et al., 1990; Wilson et al., 1988]. The model by Wilson et al. [1988] is extended in
a series of papers to explore: the effects of impermeable caps, permeability and evaporative cooling
[Gannon and Wilson, 1989]; anisotropic pefmeability [Mutch and Wilson, 1990]; variable permeability and
soil moisture content [Gomez-Lahoz et al., 1991]; system geometry [Rodriguez-Maroto et al., 1991]; and
spatially variant permeability [Roberts and Wilson, 1993]. Other modifications to this model have enabled
the consideration of: rate limited mass transfer from fractured bedrock [Wilson, 1990] or areas of low
permeability [Rodriguez-Maroto and Wilson, 1991; Osejo and Wilson, 1991]; Raoult’s Law behavior of
organic contaminant mixtures [Kayano and Wilson, 1992]; and departures from Darcy’s Law [Clarke et al.,
1993]. Other models coupling steady state flow fields and numerical transport solutions have been extended
to include complexities introduced by soil heterogeneities [Baehr et al., 1989; Benson et al., 1993; Joss,
1993].

Several numerical models incorporating transient single phase gas flow and constituent transport have
been developed. Two dimensional finite element models with transport of a single volatile organic species
have been developed [Metcalf and Farquhar, 1987; Stephanotos, 1988]. More complex one dimensional
models encompassing single phase gas flow have been developed for analysis of nonequilibrium interphase

exchange [Brusseau, 1991; Armstrong et al., 1994] and multicomponent, nonisothermal conditions
[Lingineni and Dhir, 1992]. A one dimensional model developed by Gierke et al. [1990] includes both
mobile gas and mobile aqueous phases. A two dimensional numerical model incorporating transient single
phase gas flow and multi component compositional transport was developed by Rathfelder et al. [1991].
Nonequilibrium mass transfer was also explored.

Few models have appeared in the literature which can simulate multiphase flow, including gas and
aqueous phase advection, multicomponent transport, and interphase mass exchange [Abriola, 1984, 1988;
Abriola and Pinder, 1985]; . A two phase (air-water) two dimensional finite element simulator was
presented by Stephamatos [1988] for the transport of a single volatile organic species. Baehr et al. [1989]
presented a one dimensional multicomponent transport model which could predict vapor flux in a three
phase (air-NAPL-water) system. Both of these models assumed equilibrium mass transfer between phases.
Several more advanced models incorporate the effects of rate limited interphase mass exchange [Reeves
and Abriola, 1988, 1994; Sleep and Sykes, 1989; Falta et al., 1989], however, these models have not been
extensively applied to SVE. Additionally, none of these models incorporates biotransformations of
contaminants.

Existing models capable of simulating bioremediation processes have focused primarily on
transformations and transport in the saturated zone [e.g. Chiang et al., 1989]. For saturated transport
models which incorporate microbial growth and transport and uptake of contaminants, nutrients, and
electron acceptors, two general approaches have been used to represent microbial activity. In the first
approach kinetic expressions describing the microbial consumption of a component are incorporated
directly into the transport equation as a macroscopic sink term [e.g. Sykes etal., 1982; Borden and Bedient,
1986; Frind et al., 1990; Sleep and Sykes, 1991]. Here the bulk phase concentration of a component
controls microbial consumption. In the second approach, the potential for diffusion limited transport to the
biophase is accounted for by employing a macroscopic Fick’s Law expression to represent the sink term
[Molz et al., 1986; Widdowson et al., 1988; Baveye and Valocchi, 1989; Kinzelbach et al., 1991, Chen et al.,
1992]. Of the models presented above, only Chen et al., [1992] includes interphase mass transfer and
transport within the gas phase. However, in this model, equilibrium interphase partitioning is assumed,
residual NAPL is not considered, and transport in the gas phase is by diffusion only. The model of Sleep
and Sykes {1991] includes advective flow of three fluid phases, however, no mass transfer limitations are
considered, including mass transfer to the biophase.

1.3 MODEL FEATURES

A review of the relevant literature indicates that SVE/BV performance is influenced by a variety of
interrelated and spatially dependent physical, chemical, and biological processes. It points to the need for a
flexible simulator which can accommodate multiphase multicomponent transport and potential mass
transfer limitations. Such a model must link microbial degradation with a microbial population and
availability of substrates, electron acceptor, and nutrients.

The overall objective of this project is the development of a comprehensive numerical model for the
simulation of multiphase flow, compositional transport, and biodegradation processes, occurring primarily
in SVE and BV systems. Features in MISER include:

» the simulation of both cross sectional x-z and axisymmetric r-z domains;

e the ability to simulate the simultaneous flow of aqueous and gas phases resulting from natural and
induced processes, such as: applied stresses at vadose zone extraction/injection wells, natural and
artificial moisture infiltration, and density driven gas phase advection;

e the simulation of multicomponent transport processes including multicomponent organic substrates, an
electron acceptor, and a limiting nutrient;

o the incorporation of rate limited interphase exchange including processes of volatilization, dissolution,
sorption, and biophase uptake; and

e the simulation of multicomponent biodegradation kinetics and microbial population dynamics.

While MISER has the capability to consider both the unsaturated and saturated zones, it is not designed
to simulate remediation processes primarily directed at the saturated zone such as pump and treat or air
sparging. MISER is also not capable of simulating organic liquid migration nor is hysteresis considered in
the movement of the gas and aqueous phases. MISER is designed to simulate aerobic microbial processes
by a single population which can metabolize multiple substrates.

Section 2

MODEL FORMULATION AND THEORETICAL
DEVELOPMENT

2.1 CONCEPTUAL MODEL

The following conceptual model is formulated and used as the framework for development of MISER.

Three fluid phases are modeled: (1) an entrapped organic liquid; (2) a mobile gas phase; and (3) a
mobile aqueous phase. Because the organic liquid is assumed to be immobile, only the chemical and
physical processes affecting the disappearance of the entrapped organic are modeled in this approach. The
initial spatial distribution and composition of residual organic liquid are user defined inputs. The gas and
aqueous phases are considered mobile and can flow simultaneously in response to applied stresses at
extraction/injection wells, and to density gradients arising from spatial variation in phase composition.

A compositional modeling approach is employed. The transport and transformation of the following
chemical species are modeled: the components comprising the organic liquid contaminant; one electron
acceptor (oxygen); nitrogen (the major component of air); water (including water vapor); and one limiting
nutrient (e.g. ammonia). A schematic of the conceptualized composition of the soil system is shown in
Figure 2.1.

The organic liquid contaminant is considered as a mixture of Y components. Partitioning of gas and
aqueous phase constituents into the organic liquid is assumed negligible. The composition of the organic
liquid can vary in space and time due to mass exchange into adjacent phases. The components of the
organic liquid may dissolve into the aqueous phase, but are assumed to be sparingly soluble. This
assumption is valid for a wide variety of organic components at typical environmental conditions
[Schwarzenbach et al., 1993]. Oxygen and the limiting nutrient may also partition into the aqueous phase.
Based upon available laboratory information, it is assumed that the microbes can metabolize only from the
aqueous phase. To account for possible rate limited uptake by the microbes, the biophase is envisioned as a
subset of the aqueous phase as depicted in Figure 2.1. The gas phase is assumed to be comprised of
nitrogen and oxygen (i.e. the two major components of air), water vapor, the volatile components of the
entrapped organic liquid , and the limiting nutrient. Water vapor is included so that drying effects caused by
the application of SV, can be predicted. Although carbon dioxide has been monitored as an indicator of
biological activity [Dupont et al., 1991], this component is not modeled due to the complex geochemical
considerations which impact the concentration of carbon dioxide in a soil systems. Sorption to the solid
phase is limited to components of the organic liquid.

Mass transfer expressions are incorporated into the model to simulate rate limited mass exchange
between phases. These expressions are used to model volatilization and dissolution of the entrapped
organic liquid, mass exchange between the aqueous and gas phases, rate limited sorption, and rate limited
transport to the biophase. This modeling approach is schematically illustrated in Figure 2.2.

gas phase

nitrogen ‘
oxygen : -
water vapor organic phase (NAPL)
NAPL components :
limiting nutrient NAPL components

M DA S

diffusion

solid phase attached agueous phase
NAPL components micro-colonies , water
water ‘ NAPL components
organic substrates oxygen
oxygen limiting nutrient

limiting nutrient

Figure 2.1: Conceptual model of the soil system composition.

The conceptual distribution of fluids in the soil system is shown in Figure 2.1 and is based on following
assumptions: water is the preferential wetting fluid; gas is always the non-wetting fluid; and the organic
liquid has intermediate wettability [Mercer and Cohen, 1990; Wilson, 1992]. Complete drying of the
aqueous phase is not considered. Thus, the soil grains remain in continuous contact with the aqueous
phase. Correspondingly, solid phase sorption occurs only through the aqueous phase. Adsorption from the
vapor phase, which can be significant in dry systems [Pennell et al., 1992], is neglected.

Quantification of the biotransformation processes follows the conceptual approach of Chenr et al.
[1992]. Biodegradation is assumed to occur only within the aqueous phase by an indigenous, spatially
homogeneous, mixed microbial population which is present as attached microcolonies. Monod-type kinetic
expressions are used to model biophase utilization of substrates, electron acceptor, and limiting nutrient, as
well as growth of the microbial population. Under zero substrate conditions, the microbes are not permitted
to die off completely, but are maintained at a minimum concentration representative of the background

9

Phase Interrelationships

oxygen, limiting
nutrient, biomass organic components

° °
Biophase ® Solid Phase

UPTAKE SORPTION

organic components ,
water, oxygen, limiting
nutrient

Aqueous Phase

DISSOLUTION

VOLATILIZATION / DISSOLUTION

Gas Phase

organic components ,
oxygen, nitrogen,
limiting nutrient

organic components

VOLATILIZATION

Figure 2.2: Conceptual model of interphase mass transfer pathways.

microorganism populations that are found in nearly all vadose zone environments. It is further assumed that
biomass growth does not affect soil permeability and that there is no biomass transport. These two
assumptions are consistent with the dominant influence of gas phase mobility during SVE and BV
remediation, as well as the generally low mobility of the aqueous phase in the vadose zone. Due to the large
number of required microbial transformation parameters, the number of biodegradable components is

limited to three. A detailed discussion of many of the concepts mentioned above can be found in Brock et
al. [1984].

10

Interphase partitioning and biological degradation processes are strongly temperature dependent. The
prediction of transient temperature effects requires the solution of an energy balance equation, which
substantially increases model complexity and computational requirements. To limit model complexity and
computational requirements, temperature dependence is incorporated in the SVE simulator by the
specification of a known (steady state) spatial distribution of temperature. This nonuniform temperature
distribution is allowed to be a function of depth only.

2.2 PHASE MASS BALANCE EQUATIONS

Description of multiphase fluid movement is based on the numerical solution of phase mass balance
expressions (i.e., flow equations). A general mass balance equation for a fluid phase, o, which is composed
of multiple components, ¢, is expressed as {Abriola, 1989],

3 .
57 (#0%Sa)+v (#05S:Va) =D D Eug, + D Bi + PR @1
c B c
where:

o =g,a,o,s,b denotes the phases comprising the porous medium (g=gas, a=aqueous, 0=NAPL;
s=solid; b=biophase);

¢ denotes components of the phase «;
¢ is the matrix porosity [-];
pe is the mass density of phase o [M L3
Se is the saturation of phase o [-];
V. is the pore velocity of the phase o [LT~!1;

;9 is the rate of interphase mass transfer of component ¢ to the ¢-phase from the 8
phase, per unit pore volume; [ML™3T1]; '

B} is the net rate of biological transformation of component ¢ in the phase ¢ per unit
aquifer volume [ML~3T~1]; and

Ry are the internal source/sinks of phase oo — volume of « phase produced per unit
aquifer volume per unit time [T 1.

The fluid saturations in (2.1) are subject to the constraint,

Sa+S,+8g=1 (22)

Note that Sp is neglected in 2.2. This is a consequence of the assumption that biomass growth does not
affect the flow field. For mass balance purposes Sy, is included in S,,.

The phase velocity is typically evaluated with an extended form of Darcy’s Law which accounts for the
simultaneous flow of more than one fluid [Abriola, 1989],

ky .
%=¢&Vﬁ?%iqv&—@m=ﬁxﬂva—%w (2.3)
o

where:

1

is the specific discharge of phase o [LT1];
is the intrinsic permeability tensor of the medium [L2];

is the relative permeability of the « phase [-];
Ue is the o phase dynamic viscosity [M LT ~1];
Py is the o phase pressitre [ML~1T~2];
g s the gravitational acceleration vector [LT ~2]; and

Ag = k%: is the mobility tensor of phase o [M~1L3T].

Darcy’s Law is applicable when average water and gas velocities are within an accepted laminar flow
range. For groundwater flow the upper range of validity is generally not violated except for possibly near
wells [Bear, 1972]. Similarly, gas fluxes generated in SVE systems ate known to diminish rapidly at short
distances from the extraction well and are generally within the upper range for laminar flow [Cho and

DiGiulio, 1992; Beckett and Huntley, 1994]. Gas phase velocities are therefore also assumed to be within
the upper range of validity, or that deviations are localized near the extraction well.

The lower range of validity of Darcy’s Law becomes significant for gas flow when the mean free path
approaches the diameter of the pores resulting in a gas slippage which increases the effective gas
conductivity. Klinkenberg [1941] observed that gas permeability decreases with increasing pressure until it
approaches the liquid permeability. Slip flow, which is also known as the Klinkenberg effect in porous
media, is most significant at low air pressure in fine textured material [Corey, 1986]. Comprehensive error
analyses have been conducted by several researchers [Massmann, 1989; McWhorter, 1990; Baehr and Hult,
1991] and all have found that the Klinkenberg effect is significant only in fine sands and silts at low
pressures. However, a Klinkenberg correction factor which accounts for the pressure influence on gas
permeability is included in MISER for two reasons: first SVE systems are being increasingly applied in
fine textured materials; and secondly implementation of the correction is relatively simple with minimal
effect on overall computational requirements. The correction factor has the form,

ks = keo (1 + %) @4

g

where:

is the effective gas phase permeability [L?];

is the gas phase permeability at a high pressure and is equivalent to the liquid permeability
[L?]; and

is a parameter of the porous medium referred to as the Klinkenberg parameter [M L~! T2
An empirical relation for b was developed by Heid et al. [1950],
b = (3.98 x 107%)k; 2 (2.5)

where b is in atmospheres and ko is in cm?. This correlation is based on experimental measurements of air
permeability in consolidated soils of 11 synthetic cores and 164 natural cores from various oil fields in the

12

United States. Abu-El-Sha’r [1993] measured air permeability in a variety of unconsolidated soils and
compared them with predicted values from (2.5). He found that measured values of » from unconsolidated
soils were generally within the envelope containing the measurements of Heid et al. [1950], with the
exception of an Ottawa sand which was slightly greater than the upper limits. This finding is consistent
with an analysis by Baehr and Hult [1991]. These researchers conclude that the correlation of Heid et al.
[1950] may underestimate b for some unconsolidated soils, but in general can be used to approximate the
Klinkenberg effect over a range of soil types.

Substituting Darcy’s Law (2.3) into (2.1), the aqueous and gas phase mass balance equations are
expressed as,

5 | !» |
57 (9035:) = V- [00Aa (VPy — 039)] = 6E; + PjRa @ =a,g (2.6)

where Ej =37 > ¢ Elp . Here it has also been assumed that biodegradation of the organic components
has no appreciable effect on the aqueous flow field. These constituents comprise a small fraction of the
aqueous phase mass and the rate of their biodegradation is comparatively slow.

Changes in the NAPL saturation result solely from interphase mass transfer processes because the
NAPL is assumed to be immobile and there are no internal sources and sinks of organic liquid. The NAPL
mass balance equation is thus expressed as,

d * _ *
37 ($Po50) = PE; 2.7)

Changes in the solid phase bulk density due to sorption and desorption are considered negligible and
ignored. Also, the biophase volume is considered constant with the same properties as the aqueous phase.
Therefore, phase mass balances are not required for the solid and biophases.

2.3 COMPONENT MASS BALANCE EQUATIONS

A general mass balance equation of component ¢ within phase o (i.e. transport equation) is expressed as,
a3 ‘
357 @5Ca) + V- 980 (CaVa+ J5 +T2) = ¢ ; Els + B} 2.8)

where:

Co, is the mass concentration of component ¢ in phase o [M L73];

J gc is the mass flux of component ¢ in phase « by kinematic dispersion [M L~27~1]; and

Jy. is the mass flux of component ¢ in phase o by molecular diffusion [M L~2T~1].

The dispersive and diffusive mass fluxes are typically combined and expressed in a Fickian form, e. g.

Je +J% =-Dh ve,, 2.9)

13

where Dgc is the hydrodynamic dispersion tensor of component c in phase « [L2T~!]. The validity of the
Fickian approach for gas transport in the subsurface was rigorously studied by Fen [1993] through
comparisons with a dusty gas model. The latter model is considered to be more general because it
integrates a number of flux mechanisms for multicomponent gas transport which are not captured in the
Fickian approach. Fen [1993] found the Fickian approach is generally valid when advection is the
dominant mass flux mechanism. In systems where diffusive fluxes are significant the Fickian approach
coupled with the flow equations was found to inaccurately represent induced pressure gradients due to
nonequimolar effects. Errors were found to be reduced when the mass balance equations were expressed in
molar form, and when the organic contaminants were of low volatility or their molecular weights were
similar to the ambient gases.

Dispersive and diffusive mass fluxes are evaluated in MISER with the Fickian approach expressed by
(2.9). This approach is used for several reasons. The Fickian approach is simpler and more expedient to use
because the dusty gas model is conceptually complex and numerically difficult to implement. Secondly,
advective fluxes of equal magnitude to diffusive fluxes are obtained from very small pressure gradients
[Thorstenson and Pollock, 1989]. Thus, advection dominance can be reasonably expected throughout a
majority of the domain during SVE/BV operations in typical systems. Diffusive fluxes are expected to
become significant only at large distances from the extraction/injection wells, in tight formations, or during
shut down periods.

To reduce possible errors in the modeling of nonequimolar fluxes in regions of diffusion dominance,
the component mass balance equations are converted to molar form [Fen, 1993]. Mass concentration may
be expanded as,

Co, = PaMcxq, (2.10)

where py is the phase molar density [mole L~3]. Substituting (2.9) and (2.10) into (2.8), and defining
McEy, =3 g ;ﬂc and M:By, =3 g B;ﬂc’ the general molar based transport equation is expressed as,

d
§(¢Sdpaxac) 4+ V. Sy (pozxacva - paD?,Canc) =¢Ey + B, (2.11)
where:

Xyc 1S the mole fraction of component c¢ in phase o [-];

E,. is the net rate of moles of component ¢ transferred to the o phase from all contiguous
phases per unit pore volume [mole L~3T~1]; and
By, is the net rate of biological transformation of moles of component ¢ in phase o per unit

aquifer volume [mole L=3T~1].

The component mole fractions in (2.11) are subject to the constraint,

Z X, =1 (2.12)
Five equations of the form (2.11) are developed for each component — one for each fluid phase, one for the
solid phase, and one for the biophase. '

Constituents of the gas and aqueous phases are subject to transport by advective and dispersive
processes. Constituents of the aqueous phase may also be subject to biotransformation when a separate

14

biophase is not considered. The constituent mass balance equations for these phases are expressed as,

?
5 ($Sepexe) + V- 65 (Pexs. Vg — 0g D8 Vg) = $E, c=v,w, 02, A .132)

5 ‘
§(¢Sapaxac) +V- ¢S, (paxacva - PaDgL.anJ = ¢Eac + Bac c=y,07,A (2.13b)

where the denoted components are: y = organic liquid constituents; w = water or water vapor; Oy =
oxygen; A = nutrient. Note that constituent mass balance equations are not needed for nitrogen (N>) in the
gas phase and water in the aqueous phase due to use of the mole fraction constraint (2.12).

Constituents in the organic phase, solid phase, and biophase are not subject to transport by advection. It
is further assumed that diffusion in these phases is negligible. Diffusion in the organic liquid is restricted by
the assumed disconnected nature of entrapped residuals. In the solid phase, surface diffusion of sorbed
components is considered negligible. The transport equations for the organic and solid phases are then
given by:

0

5;(¢Sopoxoc) = ¢Eoc c=Yy (2.14)
d [pyws, .

— 2S0C == Es‘ = .
BB, =y (2.15)

where wy, is the sorbed mass of component ¢ per mass of soil, and p; is the bulk solid phase mass density.
Diffusion is similarly neglected in the biophase because the constituent distribution is assumed to be
dominated by exchange with the aqueous phase and by biotransformation. Due to difficulties in calculating
the molar density of subsurface microorganisms, the biophase density is assumed to be equal to the aqueous
phase molar density. The transport equation for the biophase is,

]
5;(¢pr51be) = @Ep, + By, c=vy,02, A (2.16)

where Sy, is the biophase saturation. Since aqueous flow is assumed to be unaffected by biomass growth, S,
is considered constant, representing the fraction of pore volume suitable to microbial growth. Itis evaluated
by, '
X
Sb — mz:(
S e

where X max [M L™3] is the maximum biomass concentration.

(2.17)

2.4 INTERPHASE MASS TRANSFER

2.4.1 Equilibrium Partitioning

In the absence of phase partitioning rate data the local equilibrium assumption (LEA) has been employed in
SVE models to simplify the description of phase partitioning. The LEA enables the use of partition
coefficients to relate constituent phase concentrations. These partitioning coefficients are typically
developed under the assumption of ideal fluid behavior. Detailed developments of the partition coefficients
are found in: Lyman et al. [1982]; Baehr [19841; and Schwarzenbach et al. [1993].

15

Equilibrium partitioning between the organic and gas phases is expressed with Raoult’s Law, which
states, o

Pgl.‘ = Yo %o, PVc . (218)
where: ’
Pg, is the partial pressure of the component ¢ [M L1772,
Yoo is the activity coefficient of component ¢ in the organic phase [-]; and
Py, is the vapor pressure of component ¢ as a pure substance [M L~1T—2].

The activity coefficient is a relative measure of nonideal behavior due to interactions of dissimilar
molecules. Ideal behavior of the organic phase (i.e. y,, = 1) can be readily assumed for pure NAPLs and
many common mixtures of hydrocarbons which are composed of chemically similar components (g.g.
gasoline and petroleum hydrocarbons) [Baehr, 1984; Schwarzenbach et al., 1993; Adenekan et al., 1993].
The component vapor pressure in (2.18) also depends on the curvature of the fluid surface, however, the
influence of capillarity has been shown to be negligible in ordinary soils of gravel, sand, and silt [Baehr,
1984]. The partial pressure of component ¢ may be expressed with the ideal gas law,

Py, = pgxg RT 2.19)
With the foregoing assumptions and employing (2.19), Raoult’s Law is expressed as,

Xo, Py,
pgxgc = RT

(2.20)
This equation is rearranged to obtain an expression of the organic-gas equilibrium partition coefficient K f;oc,

x(.‘ PC
K, ==
¢ X, PgRT

(2.21)

Dissolution of organic constituents in the aqueous phase is also assumed to occur under ideal fluid
behavior. This assumption is valid for many common hydrophobic organic compounds which have small
aqueous solubility such that their activity coefficients are constant over the range of possible concentrations
(roughly zero to 1000 ppm) [Schwarzenbach et al., 1993; Adenekan et al., 1993]. Equilibrium
aqueous-organic partitioning is then expressed by,
= Zoe _ s (2.22)

ac
X0,

[
Kaoc -
where K, is the aqueous-organic equilibrium partition coefficient, and x$% is the aqueous phase solubility
limit for component ¢ expressed as a mole fraction. Implicit in the assumption that activity coefficients are
constant is that co-solvents have negligible influence on the activity coefficients and dissolution capacity.
This assumption is well supported for slightly soluble organic compounds [Schwarzenbach et al., 1993].

The aqueous-gas equilibrium partition coefficient is obtained by combining (2.21) and (2.22),

X K
K %= e (2.23)
agc Xge Kgoc o)

16

which can be expanded as,
PV‘ .
Py = (25) xa, 2.24)
xac

Equation (2.24) is a statement of Henry’s Law where Ky = P,/ xsol is the Henry’s Law constant. There is
substantial evidence that K g is unaffected by solute-solute interactions for slightly, or even, moderately
soluble organic compounds [Schwarzenbach et al., 1993].

Equilibrium sorption capacity is commonly related to the aqueous concentration by a Freundlich
isotherm [Weber et al., 1991],

= K¢, (ca)" (2.25)

where:

Kg,. is the aqueous/solidvequilibrium partition coefficient [(mass adsorbed / mass soil) / (mass
solute / volume solution)]” [(L3M~1)")]; and

n is an empirically derived constant [-].

In the case where n = 1, a retardation factor may be defined as,

os K,
14 < 2.26
(5) 2.26)

where r, is then inserted directly into (2.11) for the aqueous phase,

. ,
—(¢7cSapa%xa,) + V- $Sa (Puxa,Va — paDE Vs,) = ¢E,, + Bs, (2:27)
ot

Sorption is assumed to be both linear and at equilibrium when using retardation for a given component, c.
Retardation can be considered for all the components of the aqueous phase.

In the absence of measured data, K, ‘can be estimated from commonly used correlations with the soil
organic content [Lyman, 1982],

w
K, = EZ—C = Koc foc | (2.28)
where:
Koc is the organic carbon - normalized partition coefficient (mass sorbed / (inass orgamc

carbon) / (mass) / volume solution); and

Joc is the fraction of organic carbon in the soil [-].

Additionally, n = 1 is assumed when this correlation is used.

2.4.2 Rate Limited Interphase Mass Transfer

Nonequilibrium interphase mass transfer processes are often represented by the dual resistance model
[Weber and DiGiano, 1996]. This model assumes: (1) mass transfer is controlled by the rate of diffusion on
each side of the interface, and (2) no resistance is encountered at the interface. The diffusional resistance on

17

one side of the interface is frequently considered dominant such that the mass transfer rate can be described
with an overall mass transfer coefficient [Weber and DiGiano, 1996]. Generally, use of overall mass
transfer coefficients are strictly applicable for the measured system only and should be extended to other
systems with caution.

The rate of organic phase volatilization is assumed to be controlled by gas phase rgsistance and is
evaluated with a linear driving force expression [Weber and DiGiano, 1996],

Ego, = PgKgo, (%50, = %2.) (229)
where:

Kgo, is the lumped gas-organic mass transfer coefficient [T!]; and
xgoc is the gas phase mole fraction of component ¢ in equilibrium with the organic phase mole
fraction of component ¢ [-].

The lumped mass transfer coefficient is a function of the fluid saturation, phase velocity, and properties of
the porous media. It can be expressed as,

Kgo, = kg ago (2.30)
where:
kg, is the overall mass transfer coefficient based on gas phase control (moles transferred /
(time)(interfacial contact area)(Apgx)) [LT~; and
ago is the gas phase specific contact area with the organic phase (gas-organic interfacial contact

area / pore volume) [L™!].

The linear driving force model is completed by relating the equilibrium gas phase mole fraction of
component ¢ in (2.29) with the corresponding organic phase mole fraction concentration by (2.21),

Ego, = PgKgo, (Ko, %o, = %s.) @31)

A similar linear driving force model is used for the rate of nonequilibrium organic phase dissolution. In
this case, the mass transfer resistance is assumed to be contained within the aqueous phase. Equation (2.22)
completes the expression by relating the equilibrium aqueous phase mole fraction of component ¢ to the
corresponding organic phase mole fraction,

Eao, = paKao, (Ko %o, — Xa,) (2.32)

Mass transfer across the aqueous-gas interface is commonly assumed to be controlled by resistance in
the aqueous phase. This assumption is generally valid for sparingly soluble organic compounds, however,
gas phase resistance becomes more significant for moderately soluble compounds [Munz and Roberts,
1984; Roberts et al., 1985]. The aqueous/gas transfer term is expressed as,

Eag, = paKag, (Kig 5. = %a.) (233)

18

Here the equilibrium aqueous phase mole ffaction of component c is related to the corresponding gas phase
mole fraction with (2.23).

The rate of mass transfer between the aqueous and solid phases is also assumed to be controlled by
resistance in the aqueous phase,

East. = Pa Kasc (xaesc - -xac) , (2.34)

where x; is the aqueous phase mole fraction in equilibrium with the solid phase loading as computed by
(2.25).

Rate limited mass transfer into the biophase is assumed to occur through an immobile liquid film
adjacent to the biomass. Diffusional mass transfer resistance into the biophase can be represented with,

Egb, = paKab, (X, — Xa,) (2.35)

where K, is a lumped biophase/aqueous phase mass exchange coefficient for component c.

2.4.3 Biotransformations

The biodegradation module of MISER can model up to six spatially heterogeneous variables; three
biodegradable organic substrates (contaminants), oxygen as the electron acceptor, a limiting nutrient, and
the biomass. Monod-type Kinetics are used to describe the microbial consumption and growth processes.
This approach assumes that the conversion of contaminant into biomass is not instantaneous. Additionally,
microbial activity may be limited by the diffusional mass transfer resistance described with (2.35) above. In
this approach biotransformation is coupled to the aqueous phase component balance equations (2.13b), by
the exchange term Egp,.

No mass transfer resistance internal to the biophase is considered due to a lack of information and the
difficulty in determining the additional parameters needed to represent such processes. The biophase mole
fraction profiles of the contaminants, oxygen and the limiting nutrient are therefore assumed to be uniform
within the biophase. This assumption is based on two concepts. First, that microbial populations in the
subsurface are generally low and hence that microcolonies can be modeled as fully penetrated biofilms.
Secondly, that microbial kinetics within the biofilm are fast relative to the time scales of the physical
processes in bioventing and thus biophase concentration profiles can be considered to be at “pseudo-steady
state” during a time step. By assuming a uniform concentration within the biophase (i.e. a fully penetrated
biofilm or a quasi steady state consumption of the substrate /) the mass transfer expression (2.35) can be
related to biophase utilization by a Monod-type kinetics expression [Williamson and McCarty, 1976] as,

a X, Xb X,
§(¢>pr4be) = ¢Ep, — dle(b) (02) (ba > L1p,141s (2.36)

Ksl + Xby KSOZ + xb02 KSA + Xby
where:
F, is the use coefficient of component ¢ with substrate [degradation [(mole ¢)(mass [)~!],
F, = M.~! when ¢ = I. Note that F,; is input in units of gm ¢/gm [and is converted
internally; ‘

k; is the maximum specific substrate utilization rate of substrate / [(mass [)(biomass 7)™1];

X is the active biomass concentration [M L™3] expressed on a media volume basis;

19 -

K, is the half-saturation coefficient of component ! [(mole /)(mole biophase)~!]. Note that
K, is input in units of gm //liter and is converted internally;

I is a substrate inhibition function described below [—];
Io, is an oxygen inhibition function described below [-];
14 is a nutrient inhibition function described below [-]; and

Is is a saturation inhibition function described below [-].

When ¢ = O; or A, the Monod expression on the right hand side of (2.36) must be summed over all the
substrates, [. Equations of the form (2.36) comprise a system of coupled nonlinear equations.

A second approach used to model biodegradation is to assume that constituents in the aqueous and
biophases are in equilibrium. The biotransformation sinks are then directly inserted into the aqueous phase
component balance equations (2.13b) using,

Xa Xao, Xaa ‘
Bpe = —Faki X L1p,141 2.37)
“ ; (KS, +xa,> <Ks02 +xa02> <KSA +xaA> 2fATS

Because the organic substrates may potentially have inhibitory effects on biodegradation at high
concentrations [Speitel and Alley, 1991; Huesemann and Moore, 1994; Mu and Scow, 1994], equations
(2.36) and (2.37) are modified to include inhibition kinetics. The following expressions for inhibition are

currently used, _
x;nlll xl
I = (1 -5) p (2.38)

where x}"' " represents the minimum detectable mole fraction of / (currently 1 ppb on a mass basis) and
xj"* is the inhibitory mole fraction of substrate / . In the presence of several substrates, inhibition may be a
function of the total substrate mole fraction. In this case, x; in (2.38) is the sum of all the substrate mole
fractions. xJ"" remains the same and x/"** can have different values for each substrate. Equation (2.38) is
also used to represent nutrient inhibition by replacing [with A and setting xﬁ"" =0.

Microbial activity is assumed to be restricted by a threshold oxygen concentration below which aerobic
metabolism ceases. This effect is modeled with an inhibition function of the form,

xmin
Io, = <1 —~ &> (2.39)
X0,

where x'o"i" is the oxygen mole fraction below which aerobic metabolism ceases.

Microbial activity in unsaturated systems may also depend on moisture content [Fan and Scow, 1993;
Holman and Tsang, 1995]. Insufficient data, however, are available to accurately predict such effects. As a
preliminary means to investigate the importance of saturation dependency, an untested saturation inhibition
function is incorporated in MISER,

S, — S, .
Is = <0.1 + o.9u) (2.40)
1 - Sra

where S, is the residual agueous saturation. Here, metabolic activity is allowed to decrease one order of
magnitude as the aqueous phase goes from fully saturated (S, = 1) to residual saturation (S = S,,).

20

Both the equilibrium and nonequilibrium descriptions of biotransformation discussed above require
additional expressions describing the growth and decay of the attached biomass. Here, an ordinary
differential equation based on Monod kinetics is used,

ax Xp, Xbo Xb
— = Yik ! 2 A LiTo, Ial5] — Kglyin 1 X 2.41
dt [Z 1K] (Ksl +Xb,> (Ksoz +xb02> <KsA'+be L0 LALS Lmax dimin ()

where:

Yy is the biomass yield coefficient for the metabolism of substrate / [(biomass)(mole {)~!].
Note that ¥; is input in units of (biomass)(gm /)~! and is converted internally;
Ky is the microorganism decay coefficient [T!];
Lnux is a function which prevents the biomass from exceeding a maximum concentration given
by,
X v
Imax = 1 — ; (2.42)
:) max
Xonax is the maximum allowable biomass concentration
Lin is a function which maintains a minimum concentration reflecting the indigenous

population present in uncontaminated subsurface environments,

) X
Inin = (1 — "””) ;and (2.43)
X
Xmin is the background or indigenous concentration of biomass.

The detachment or sloughing of the attached biofilm is not considered in this equation due to a lack of
information regarding the necessary parameters to model this process.

2.5 CONSTITUTIVE RELATIONS

2.5.1 Capillary Pressure

Capillary pressure is defined as, '
P.=P,, — Py, (2.44)

where P,,, and P, are the phase pressure in the non-wetting and wetting fluids, respectively. In soil
systems containing only two fluid phases (e.g. gas and aqueous), capillary pressure data is routinely
measured and related to fluid saturation. A common fitting function for such two phase gas-aqueous
capillary retention data was developed by van Genuchten [1980],

Se=[1+ @P)"]™ (2.45)

where:

21

Sa= %ﬂ:—.g;ﬂ- is the normalized aqueous saturation [-];

Syq is the residual aqueous saturation [-];

g, fitting variable [LT2M~']; and

n,m=1-1/n are additional fitting variables [-].

Here, the wetting fluid is the aqueous phase and gas phase is the nonwetting fluid.

In contrast to two phase systems, capillary pressure behavior in a porous medium containing three fluid
phases (gas, aqueous, and organic) is difficult to measure. Consequently, three phase behavior is typically
estimated from two phase capillary pressure data. A parametric model developed by Parker et al. [1987] is
frequently used to estimate three phase capillary pressure. This model assumes the aqueous phase is the
preferential wetting fluid, gas is the nonwetting fluid, and the organic phase refains intermediate wettability
and completely separates the gas and aqueous phases. Thus, gas-aqueous interfaces do not occur in the
three phase system. Under such conditions the two phase organic-aqueous relation is assumed to control
the aqueous phase saturation, and the two phase gas-organic relation is assumed to control the total liquid
saturation regardless of the proportion of aqueous and organic liquids. Extensions of the three phase
estimation model have been developed for hysteretic behavior and capillary entrapment of organic liquid
and gas [Kaluarachchi and Parker, 1992]. ‘

The parametric model described above is mathematically expedient, but requires the explicit evaluation
of an organic liquid pressure. Tracking the pressure of an organic liquid which is assumed to be at
immobile residual saturation is a difficult prospect that is complicated by limitations of the three phase
parameteric model. The parametric model predicts organic liquid entrapment by the water phase, but not by
the gas phase. Thus, evaluation of the residual organic liquid pressure is uncertain in a system containing
residual water, and can only be exacerbated by the effects of volatilization from the organic phase . The
parametric model also predicts a discontinuity in capillary pressure due to the appearance and
disappearance of the organic phase which can potentially lead to numerical difficulties. Lastly, the
assumption that the organic phase completely partitions the gas and aqueous phases may be invalid for
nonspreading organic liquids [McBride et al., 1992; Wilson, 1992], leading to further difficulties in the
tracking of organic liquid pressures.

Due to the conceptual difficulty of tracking the pressure of an organic liquid which is assumed to be at
immobile residual saturation, MISER assumes that all capillary behavior is independent of the organic
liquid pressure. The aqueous phase saturation is related to the two phase gas-aqueous capillary pressure
data (2.45), regardless of the proportion of aqueous and organic phase, or the spreading characteristic of the
organic phase. Hysteretic behavior in this relation is also neglected. Under this assumption of effects of air
entrapment on fluid distribution is neglected. While these effects may be significant under some conditions,
neglecting hysteretic behavior due to air entrapment should not pose a significant limitation in modeling
field scale SVE/BYV systems due the typically large uncertainty in quantifying distributed capillary and
relative permeability parameters.

With the assumptions described above, eq. (2.45) is used to determine aqueous saturation from
predicted gas and aqueous pressures. Subsequently, gas phase saturation is calculated from (2.2). In the
case when the total liquid saturation is greater than one, then S, is set to zeroand S, =1 — §,.

2.5.2 Relative Permeability

Relative permeability expressions for the three phase system are obtained from the model of Parker et al.
[1987]. This model employs correlations developed by Mualem [1976] to relate effective permeability with
Fc(S) data. The functional forms for the aqueous and gas phases are,

kro = S22 — (1 — SY/mymy2 (2.462)

—\1/2 — 2m
krg = (1 _ St) (1 ~5/ ’”) | (2.46b)
where S; = S, + S,. Because the organic phase is assumed immobile throughout SVE operations,

ko =0 . (2.47)

As discussed above, hysteretic behavior in the relative permeability relations due to gas entrapment is
neglected.

2.5.3 Gas phase density

At common environmental conditions (0-50 °C, ~ 1 atm.), the gas phase molar density can be accurately
estimated with the ideal gas law [Lyman, 1982],

P,
pg = ﬁ (2.48)
The gas phase mass density is then given by,
oF = Le > xg M, (2.49)
¢ RT \&7%

2.5.4 Liquid Phase Density

Compressibility of the aqueous and organic phases'is considered negligible for environmental pressures
expected during typical venting operations. Liquid density is computed as a function of composition and
temperature. :

The molar density of liquid mixtures at constant temperature and pressure is estimated with Amagat’s

Law [Reid et al., 1977], 1

= M,
ZC Xae (E"C)

where p} is the mass density of pure component c at the mixture temperature [M L ~3]. Amagat’s Law
assumes the volumes of the mixture components are additive. This assumption is valid for mixtures of
similar components which are at low to moderate pressures and temperatures not close to the critical point
of the mixture. These conditions are readily met for common organic contaminants in typical
environmental settings.

Pa (2.50)

23

2.5.5 Gas phase viscosity

Gas viscosity is independent of pressures at the relatively low pressure encountered in environmental
settings (below 10 atmospheres) [Welty et al., 1984]. Under these conditions the gas phase mixture viscosity
can be estimated as a function of composition using the semi-empirical formula [Reid et al., 1977],

Xg.He
=3 gte (2.512)
zc: > %gj ®Pej

[e/ Py M VA
i 81 + M;/ M)

where u. and pj are the viscosity of components ¢ and j in the pure state at the system temperature.

(2.51b)

2.5.6 Aqueous Phase Viscosity

The aqueous phase viscosity is assumed to be independent of composition and pressure. For steady state
temperature conditions the aqueous phase viscosity is constant in time.

2.5.7 Hydrodynamic Dispersion

Dispersive fluxes are assumed to be significant in the mobile aqueous and gas phases only; diffusion within
the immobile NAPL and biophase is neglected, as is surface diffusion within the solid phase. A traditional
groundwater modeling approach is used in applying Fick’s Law to evaluate combined processes of
mechanical dispersion and molecular diffusion. For an isotropic medium the dispersion tensor is evaluated
by [Bear, 1972],

#SuD},, = rlaaldu + (o — ey BT + 9S,ru DY Sur @52)
o

where:

o and at are the coefficients of longitudinal and transverse dispersivity [L];

oy Gor are components of the & phase Darcy velocity in the longitudinal and transverse directions
(LT~
oLt is the Kronecker delta;
Dg is the binary molecular diffusion coefficient for component c in phase o [L2T~']; and

Ty is the porous medium tortuosity factor in phase o -1

The tortuosity factor is computed as a function of the fluid content using the relationship of Millington
and Quirk [1961],

_ (@S

24

2.5.8 Matrix Compressibility

Changes in the soil porosity are assumed to be negligible under pressure changes induced in typical
SVE/BV systems. Thus,
¢

55 = (2.54)

25

Section 3

NUMERICAL DEVELOPMENT

The mathematical model of SVE/BV processes developed in the preceding section consists of a number
of coupled nonlinear partial differential equations. A numerical solution of these equations is developed
using the Galerkin finite element method. This approach is well suited for the simulation of SVE/BV
scenarios and has advantages over other methods in the ability to accurately represent boundary conditions
and source/sinks, as well as flexible discretization of irregular and heterogeneous domains. The governing
equations are solved in two space dimensions; either a cross sectional x-z domain, or an axisymmetrical r-z
domain. This section describes details of the numerical algorithm implemented in MISER.

3.1 FINITE ELEMENT APPROACH

The Galerkin finite element method has been widely used to solve groundwater flow and transport
equations. Detailed descriptions of this method are found in several reference texts [Strang and Fix, 1973;
Lapidus and Pinder, 1982; Huyakorn and Pinder, 1983; Zienkiewicz and Taylor, 1991].

The finite element method is based on a weighted residual technique to approximate the solution, u, of
the general differential equation represented by,

L(w) —‘f =0 3.1)

The solution domain, €2, is first discretized into a network of elements which are connected at discrete
nodal points. Within each element the dependent variable u is approximated by a trial function #,

wxi=y Nij(x,2ujt) 7 (3.2)
j=1 | :

where N; are the basis functions; u ; are values of the dependent variables at nodes of the element, and n¢ is
the number of nodes in the element. Substituting # into (3.1) results in an error or residual. This residual is
weighted and integrated over the domain, €2, developing the weighted residual equations as,

fg (L(&) — f) Wid2 =0 o (3.3)

where W; is an arbitrary weighting function. In the Galerkin finite element method the weighting functions
are chosen to be the basis functions. Combining (3.2) and (3.3) leads to a system of » simultaneous
equations which are solved for the all the unknowns, u;, at the n nodes in Q.

Application of the Galerkin finite element method in MISER employs triangular elements for spatial
discretization and linear basis functions. Triangular elements are advantageous for the discretization of
irregular and heterogeneous domains. They also simplify the evaluation of integrals in the weighted

26

Vi
AVAVAVA
SWAVAVAVAVANS

X S Ly=1 Ly=1

Figure 3.1: Triangular element in global and transformed coordinates (after Lapidus and Pinder, 1982).

residual equation by the use of local area coordinates. Figure 3.1 shows an arbitrary triangular element in a
two-dimensional Cartesian domain and the transformed element in local area coordinates.

Linear basis functions for triaﬁgular elements may be developed in global coordinates as [Lapidus and
Pinder, 1982; Huyakorn and Pinder, 1983],

Nj = 2Ae (@) + Bix + vjz) j=1,3 (3.4)
where,
@ =x2y3—Xx3y2; Bi=y2—¥3 Vi=x3—x
Q2 =X3Y1 —X1¥3; PBa=Y3—Yy1; V2=2X —X3 (3.5)
A3 =xX1y2—X2y1; B3=Yy1—Y23 Y3=x3—2x]
and,
1 Xy 21)
A% = 3 det| 1 xp "z | = area of the triangle , 3.6)
1 x3 z3

Transformation from the global coordinates (x;,z;) to the local area coordinates (L j) is obtained by,

A;
Lj=-L

o 3.7

where the subarea A is defined by the point of interest within a given element and the element vertices
(Figure 3.1). Since A; + Ay + A3 = A then Ly + L, 4+ L3 = 1.0, and it can be shown that the local
coordinate variables L ; are equivalent to the basis function N; [Lapidus and Pinder, 1982; Huyakorn and

- Pinder, 1983]. The advantage of using the local area coordinates is that simple integration formulas have
been developed for linear basis functions [Lapidus and Pinder, 1982},

m1!m2!m3!
’ (m1 +mo +m3 +2)!

/Q LpmLdg = (3.8)

27

where Q¢ is the domain occupied by element e. Differentiation of the basis function yields,
aN; _oLj _ Bj
0x = ox - 2A¢
ON; _3L; _ v

3z 0z 2A°

(3.9a)

(3.9b)

After transformation to local area coordinates the weighted residual equation (3.3) can be expressed as,

Ne
Z/Q, (L@) — f)NidQ® =0 (3.10)
e=1 .)

where N°¢ is the number of elements in 2.

3.2 SOLUTION OF THE PHASE MASS BALANCE EQUATIONS

The aqueous and gas phase flow equations (2.6) are solved by the simultaneous solution (SS) method [Aziz
and Settari, 1979]. In this approach fluid pressures are selected as the primary dependent variable, and the
flow equations are solved simultaneously for P, and P,. Saturations are subsequently updated from
capillary pressure-saturation relations (2.45).

3.2.1 Pressure Based Formulation

The simultaneous solution scheme is developed by first recasting the flow equations in terms of the primary
pressure variables. The time derivatives in (2.6) are expanded as,

0 d 3 S
2 (onsa) = ps 30 4 95,2 a=ag @3.11)

The first term on the right hand side (RHS) is the change in mass storage due to matrix compressibility,
which is assumed to be negligible.

The middle term represents the temporal change in phase density. Density of the aqueous phase is
assumed to depend on composition only. Moreover, the temporal change of this term is assumed to have a
minor influence on the aqueous flow field such that it can be lagged by a single time step and moved to the
RHS. The density of the gas phase, however, depends on composition and pressure. The temporal change
of gas density may be expanded as, .

ap& . [M Pg] 55 Mg 3P, P, 0Mg
& 83t L RT 8RT ot RT ot

Similar to the aqueous phase, changes in the gas phase density due to temporal changes in composition (i.e.
the last term in (3.12)) are assumed to be small such that they can be lagged by a time step.

+pSp =L (3.12)

The last term on the RHS of (3.11) accounts for change in phase mass storage due to change in fluid
saturation. This term is expanded in terms of capillary pressure, obtaining,

« 05 «05q AP N oP, 9P,
¢ o Pa T

¢°‘8t ¢°‘8P at

—_— 3.13
ot at ()

28

where C,,, = 85,/3 P, is the capacity coefﬁcient. Note Cp, = Cp, = 35,/0P, = —03S, /3 P..

The pressure based aqueous and gas flow equations are developed in two dimensional coordinates by
substituting (3.12) and (3.13) into (2.6), dividing through by p?, and expanding the spatial derivatives,

9P, 3P\ O ap, 3 P,
c B P L | P Y
¢ ”(ot ot) ax [e (% p“g">] 9z [ez (3z p“gz)]

1 0P, apr 1 9P, opy
A — a _ 3 1 y
ey (PZ ax gx) ax Qe (,0; 37 8z 9z (3.14a)
¢ (# a0}) ‘
=—|Ef —§,—=4 R
px\ ¢ or)"

090 5 g (s OPr)

RTp, ot ar ot
d P, 0 oP,
—— AL — p* —— A &)] :
% [gex (ax pgg")] 9z [(5z i
1P, ap; 1 9P, ap;
—Aa 8 __,. VT8 _)“ g .
Exx (,o;’," dx gx) ax (p;“ az gz) a9z (3.14b)

¢ (« SgPg oM,)
=—|E R
Jo gA RT a1)T
where g, and g, are components of the gravitational acceleration vector. Division by the phase density is
performed to simplify the specification of boundary conditions.

3.2.2 Trial Functions and Weighted Residual Equations

Standard trial functions are employed for the primary variable, P,, and for secondary variables pJ, Ey, and

)"(!5
) 3
Po(x,y,1) Y Py, ())N;(x,) (3.15a)
j=1
o 73 L v)
palx, ¥, 1) = Y o5 (ONj(x,) (3.15b)
= ‘
: 3
Ej(x,y,0) =) Ex(t)N;(x,y) (3.15¢)
j=1
3
Ma(X, ¥, 8) 2 D ha ()N (x, y) (3.15d)
j=1

Based on the work of Abriola and Rathfelder [1993] and Rathfelder and Abriola [19941, nontraditional
finite element approaches are used in defining trial functions involving products of dependent variables and
coefficients. In this work it was found that computational efficiency and material balance properties are

29

enhanced when products are expanded collectively with a single basis function. The following trial
functions for the terms in (3.14) are defined,

S, 8P e 3, Sg 9P,
S 3P ¢ 5~ Sy P (3.162)
RTpg 3t ~ R % pg,T; 01
9P, 3P, 3 P, 3Py
, _%7ai\ . 1
¢c,,(5) g (y)N, (3.16b)
1 3P 3 A"xxx 3 aN; 3
Aot (“: - -8x> = |3 —N; ZPa 5 | 78 | 20 he N (3.160)
Py 9% =1 Pg = ,
O rn o e L
;;Ea gty 'p—*Ea, N; (3.16d)
(4 J=1 \"a;
S, 3o 3, [Sa; 90z
oF ot ; Pk, 8t J
S Py My _ gﬁi: Se; Pe; 0Mg; \ (3.166)
PsRT 3t R =\ pT; ot J

where ¢°€ is the porosity in element e.

Substituting the trial functions (3.15) and (3.16) into (3.14) and applying Galerkin’s method and
Green’s theorem leads to the weak form of the weighted residual equations. For the aqueous and gas

phases, respectively, the weak form is expressed as,

LA aP, aP,,
elc (8 al) N:I N,
cz__;l/n{d’ [Pi\ ot ae) 1

IN; aN; N AN;

M (a5 = sy) G+, s (P gt = i)

Mgy aN; aN;
—.[*jN (Pal a) gxkaXXN}paj ale

Pa;
Aag; aN; IN;:
—_ = . ,_/_ — . ES J A e
[p:j Nj (Paj 3z) gz)‘azszj Paj_““‘az N; ¢ dQ (3.17a)
ON;
_Z/ A,,“ij Py 8 pa gxN; +)»azszj Py —— 5 pa g N;) nNdr,
N, *
< 1 Sa; 905,
—E* N;——L—LN; + R, N;} N;dQ°
+2¥f¢efszelp2j ac; = Py, 0t j o Ray Ny Vi

N¢ P, aP,. 8P
8 8 g aj
Z/ { [RTj:og aszf—C”f< T atI>Nj]N"
aN; aN; AN aN;
FAge, Nj (Pg,--gj—p;jngj) on T hewy Vi (Pg, o p;‘,gzNj)a—Z'

30

g AN ‘ aN;
— IN —Jy _ gy
|: p;l N] (ng 9x) gXA’gxxjN] pgj Ix N

- I: p*j Nj (ng azj) - gzkgzzj ijl a / —N; dQe (3.17b)
g;
‘Ne aN - aNj .)
= Zlfre Mg, Nj | Pg;—— P ,Ogjng' + Age Nj Pg,-a—z - nggzNj)}nNidF
o
1 qbeSg P, BMg
¢ —E:N;— S8 8N LR Ndsze
+;=;¢ /sze {pgj & Py RT; 8t i+ RN

where the summation convention is used for the repeated subscript j, I‘é is the domain boundary of domain
associated with element ¢, and 7 is an outward unit normal vector.

Performing the integration over each element and assembling the resulting equations yields a global
system of time dependent ordinary differential equations with nonlinear coefficients,

w8 gy Py = 1)+ (B) + () (3.18)

where { P} is the vector of pressures at all nodes and is ordered with alternating aqueous and gas pressures,
[A] is the mass matrix, [B] is the stiffness matrix, and {F}, {E}, and {Q} are the RHS matrices. MISER
also includes an option to lump the mass matrix. Detailed development of the element matrices is given in
Appendix A.

3.2.3 Capacity Coefficients

Treatment of the capacity coefficient is based on the work of Abriola and Rathfelder [1993] who
investigated mass balance accuracy in two-phase flow problems. They showed that finite element solution
with the SS scheme is mass conservative when the accumulation term is approximated with the
nontraditional trial function in (3.16b) and the capacity coefficient is evaluated with the standard chord
slope approximation,
. Cp. B S‘Ilci,’t+l 4 Sctz,-

= la TP (3.19)
PZ;,[—!—I +P(f,

where k is an iteration counter. Cp, is set to a dummy minimum value (1 % 1077) at the first iteration
(k = 1), and additionally if the calculated value of C), is less than the minimum value.

3.3 MATERIAL PROPERTIES

The representation of heterogeneous soil properties is essential for accurate representation of field
processes. Discontinuities in soil properties produce discontinuities in dependent variables such as
saturation, mobility, and mass exchange. Since these parameters influence transport and degradation
processes, the method used to represent discontinuous material properties can influence simulation results
and interpretation. Discontinuities are typically handled by averaging adjacent, but different material
propetties [Voss, 1984; Simunek et al., 1994]. This can introduce a smearing or dispersion effect that

31

Element Properties

porosity
permeability)
soil density Domain Properties
organic carbon mass transfer coefficients (input)
dispersivity biological parameters
tortuosity retardation:
Freundlich parameters Klinkenberg parameter
van Genuchten parameters aqueous viscosity
element average velocity
media 2 media 4
, — S
Stacked Nodal Properiies 8 Nodal Properties
saturation b ;?refssu;e
interphase exchange (computed) S mob?or?e?slgns
mobility % density
W gas viscosity

nodal Darcy velocity

Figure 3.2: Variable representation in MISER.

necessitates grid refinement for the accurate representation of interfaces. Such refinement, however, may
not always be possible for the simulation of large and/or strongly heterogeneous domains. MISER
incorporates a unique data structure for the representation of discontinuous properties at soil interfaces.
MISER maintains and numerically tracks discontinuous variables at material property interfaces, including:
saturation, mobility, and interphase exchange. These variables are termed ‘stacked nodal variables’ (Figure
3.2) because multiple values can exist at a single node. A maximum of four material property blocks may
be contiguous at a given node.

Other variables are treated as either continuous nodal properties (material independent), element
constant variables (material dependent), or domain properties (spatially invariant). Figure 3.2 identifies
variables in each group.

3.4 VELOCITY EQUATIONS

MISER includes two optional approaches for evaluating aqueous and gas phase specific discharges from
Darcy’s Law (2.3). The first approach generates element wise constant fluxes by solving (2.3) directly,

e e 2 aN; *e
Tow = N | 20 Poy 577 — P3°8: (3.20a)
j=1
e e 2 aNj xe
qa'.". = _)"dzz Z[P‘xj az - Ioot 8z (320b)
]=

where:

32

9, isthe element constant specific discharge of phase « in the x direction [LT1;

gy, is the element constant specific discharge of phase « in the z direction [LT~];

Al is the element averaged mobility of phase « in the x direction [M~1L3T7;

Cxx

Ag is the element averaged mobility of phase « in the z direction [M~1L3T1; and

zz

P is the element averaged phase mass density [M L3].

The element averaged mobilities are computed from,

3 .
A =3 3 (3.21)

Averaging of the phase density is done in a manner that is consistent with the spatial variability of the
pressure term [Voss, 1984],
Z 1 P N
Py = —’T“’—— (3:22)
Y=l 5y

The second option is the calculation of nodal specific fluxes by solving Darcy’s Law (2.3) with the finite
element method. This approach eliminates discontinuities in the velocity field that are present when using
element average velocities. The use of a continuous nodal velocity field has been shown to yield significant
improvements in mass balance for the transport equation [Yeh, 1981]. After substituting the trial functions
and applying Galerkin’s method to (2.3), the weighted residual equations for the aqueous phase are,

aN;
Z / Ga,, NjN:dQ° = Z f M, N (™ —p;jng,) N;dQe (3.23a)

AN, :
}: f Ga,, NjN:d2* = Z f Mg, N (Pa, o ,oa]gzN]> N;dQe (3.23b)

where the summation convention is used for the repeated subscript j.

For the gas phase, a modified version of (2.3) is used which is expressed in terms of the equivalent head
[Mendoza and Frind, 1990]. The weighted residual equations for the gas phase are,

Ne . N¢ . aN; P;j .
;LquxijNidQ =-2 fg haw PN | ey = | o = 1) Ny | Nid@ (3.240)
Ne Ne ' aN p*

N e __ __ * . e ﬁ _ . . e
e§=1: /Q g, NjNidQ* = ; fQ , Mg P08 N [hgj » o 1) N; | N:dQ | (3.24b)

where the summation convention is used for the repeated subscript j, pz. is the mass density of the
uncontaminated gas phase, and the equivalent head &, is defined by,

hyy =~
& = zj (3.25)
pg"g .

Additionally, nodal gas phase velocity is set to zero when the gas phase saturation is less than a user
specified value, currently set at 5%.

33

3.5 COMPONENT MASS BALANCE EQUATIONS

The transport equations are solved in sequence [Reeves, 1993; Reeves and Abriola, 1994]. They are first
modified to eliminate the divergence of velocity which is not defined when using a linear interpolation
space to approximate the pressure field.

The general form of the component balance equation from Section 2, eq. (2.11) in molar form is,
a
o7 BSapura) + V- 850 (pu¥e. Ve = paDL,V %a,) = $Ea, + Ba, (3.26)

The first two terms in (3.26) are expanded using the chain rule,

d d
xac‘a_t'(‘ﬁsupa) + ¢Sapa5;(xac) + xacv(‘bsapav&) + ¢SapaVor V (x:x) -
V- (¢S20a D8V %o,) = $Ee, + Be, (3.27)

Equation (3.26) is next summed over all the components ¢ in phase o and multiplied by x,,,

e 80052 + 30V - B0Sa V) = o, (PEe+ Bo) (3.28)

Substituting (3.28) into (3.27), the divergence in velocity term is eliminated, obtaining,

3
¢Sapdé7(xa°) + ¢SapuVer V(xac) —- V- (‘l’SaPaDch xac)
= @Ey, + By, — Xo, (PEe + Ba) (3.29)

The nonequilibrium mass exchange terms are evaluated with the linear driving force expressions
described in the preceding chapter. These expressions have the general form,

Eop, = puKap, (K5 %5, — %o, © (3.30)

where Egyg_ is the rate of moles of component ¢ transferred to the a-phase from the 8 phase per pore volume,
and K¢ . is the equilibrium phase partitioning coefficient for the o phase in contact with the g phase.

The nonlinear biotransformation reaction terms, By, , are developed in detail in Section 3.6. Presently
these terms are represented by,
By, = to Xa, (3.31)

where uq_ represents a Monod-type nonlinear reaction coefficient [mole L3711,

The foregoing expressions are used to develop a general form of the transport equation. Substituting
(3.30) and (3.31) into (3.29) and rearranging, the general form of the transport equation is,

]
¢ Sabus-(xa) + GSapaVir Viza) = V- (#Supa Dl V %o
+Xa, (¢p¢x Z Kuog, +PEq + By — Mac) ' 3.32)
B

= +¢py Z Kdﬂchﬂcxﬂc —¢ Z rpKpa, (Kzacxdc - xﬂc)
B B

34

J

¢
1]

Note that the last term on the right hand side of (3.32) reflects those mass transfer terms for which the mass
transfer resistance is assumed to be present in the B phase. In (3.32) the coefficients included in the mass
exchange terms reflect which phase controls the equilibrium partitioning and nonequilibrium mass
exchange. To simplify notation and to facilitate the development of general finite element equations, the
following lumped coefficients are defined, :

Koo = 800 Y Kap, + $Ex + Ba — ta, (3.33a)
7

Foo=bpay Kap Kop %5, — & 05Kpa, (Kg»acxac - x,gc) (3.33b)
g B
These terms contain the mass exchange and bioreaction information and may be different for each phase

and component. Tables 3.1 and 3.2 summarize the phase and component dependencies of these lumped
coefficients. Substituting (3.33) into (3.32), the final form of the general transport equation in molar form is,

h) _ .
PSa o7 (Xa,) + PSapa Ve Vixg) + V- ¢Sa,0aD2 V xo,) + %0, Ko, = Fo, oa=g,qa (3.34)
at ‘ <

Equation (3.34) is used to model transport of component c in the two mobile phases. The transport
equation for the immobile phases (organic, solid, biophase) is derived directly from (3.34) by neglecting the
advective and dispersive terms, obtaining,

ad _ —
qﬁSapaa(xac) + x4, Ko, =Fy, a=o0,5b (3.35)

Note that for the solid phase, the principal variable is the mass loading, wy,, the bulk solid phase mass
density, oy, is used on the LHS in place of ¢s, 0y, and the RHS lumped coefficient is also expressed on a
mass basis.

3.5.1 Weighted Residual Equations in Cartesian Coordinates

The primary dependent variables in (3.34) are the component mole fractions. These variables are expanded
with standard weighting functions developed in Section 3.1. The nontraditional approaches described in
Section 3.2.2 are used in defining trial functions involving products of dependent variables and coefficients
such as Sy Py, fac, and _Fac. Expressing (3.34) in a two dimensional Cartesian coordinates and substituting
the weighting functions, the weighted residual equation for the (3.34) using element average velocities is,

ENe 0%, AN; . 8N;
(4 j J
pan ,/Qe {¢6Sajpaij { ‘atl Nj+ V‘;\‘xdcj e + V(jzxacj 32
9 he AN, he aN;
i 9 SuMs (D, 50y G+ P e,)

d e ON; e oON;
o [¢esa,-pa,-Nj (Diicux T D, X ’)] (336

3z e ax gy 7 82

N ,
+ xdci?a‘j Nj NJ} Nidss* = Z} v/S;e chj NjMdQe
e—

35

| Component | Phase pair Mass exchange expression

organic gas-organic Egoy = pg K go, (K f,(,yx(,y — Xg,)
aqueous-gas Eagy = pq4 Kagy(K;’gyxgy - Xg,)
agueous-organic Ego, = Pa Ka,,y (K joyx(,y — xay)
aqueous-solid Eus, = Pa Kas, (K;Syxsy — xay)
aqueous-biophase Eub, = paKab, (Xb, — Xa,)
all others Eqg, =0

water aqueous-gas Ego, = pgKga, (K §a,,,xaw — Xg,)
all others Eyp, =0

oxygen aqueous-gas Eago2 = ,oaKagoZ(Kjgozxzﬁ,o2 — %ao,)
aqueous-biophase Eabg, = PaKabo, (x;,o2 - anZ)
all others wBo, =

nutrient aqueous-gas Eugy = PaKag,(Kig, Xgs — Xay)
aqueous-biophase Eupy = paKuby Kby — Xa,)
all others Eup, =0

Table 3.1: Summary of mass transfer expressions.

After applying Green’s Theorem the weak form of the weighted residual equation (3.36) is,

‘ 0Xq. . aN; ON; .
c j J
A ["’es""“"""N"[g i+ Varo T+ Ve, T3 | e Koy NiNy p Nid 7
Nt’
aN; e IN; dN;
e | bt J h J i e
+ez=:l fm {¢ Sa; 0a; N [D“‘“xu‘f ox D"‘szxa"i 9z]} dx as:

Ne
e . he oYy h j oy e
+ez='}/$ze {d, Saj ey s [D“‘ux"“i dx + Dy, X 9z :l} 9z ds (3.37)
N¢ _ Ne . aNJ
= N € e R
= ?;1 fn Fo, NiN:dQ* + ; fr) {¢ Sa; Pa;Nj [Daimxaq ~7
aN; AN; IN;
h* (4 '3
+ D“‘"x%i az] + Dgfu e _5?] + Dgcux“ff azj]} nidr*
When retardation is considered in the aqueous phase, the time derivative term in (3.37) becomes,
. 8xacj
¢ rcSajpuij——at N; (3.38)

Retardation may be considered for any component of the aqueous phase. When retardation is included,
nonequilibrium mass exchange to the solid phase is not allowed for any aqueous phase component.

36

Phase Component | Lumped Mass Exchange and Bioreaction Terms
organic organic T{—OY v = ¢E,
Fo,, = _¢any - ¢Egoy
Aqueous | organic —Ifay = - ¢E; + B, + dp, (Ka,,y + Kagy + Kgp, + Kas,,)
—HMa, ,
Fo, = &pa (Ka,,y K&y, %o, + Kag, K&y Xg, + Kab, %,
K., K;’syxsy) | |
0, —anz = ¢E;+ B; + ¢pa (Kago‘2 + Kaboz) = Hag,
F ap, = Dpa (Kag02 Kggozxgo2 + Kabosz02>
water K., = ¢E,
E_ ay = —¢Egaw
nutrient K, = @¢E,+ B, + ¢pa (KagA + KabA.) — Hay
Foy = ¢pa (KagA KﬁgAng + KabsXb,
Gas organic K, = ¢Eg+é¢pK 20,
ng = ¢pg Kg,,y K;oyxor - ¢>Eagy
water Koo = OEz+¢pgKga,
Fo, = ¢05Kga, Kz, %a,
02 __K_gOz = ¢Eg
Eg 0, = —PEq 0y
nutrient Kq = ¢E;
Fgp = —0E,
Solid organic _I—(—:y = 0
=t 3
F sy = —¢E:s,,
Biophase | organic 7_5;,7 = —up,
‘ vy | Fb, = —PEw,
oxygen | Ky, = —ibpo,
_Ii b02 = _¢Eab02
nutrient Kp, = —up,
‘ F ba = —¢Eab,q
Table 3.2: Sumfhary of lumfed mass exchange and bioreaction coefficients.
Equation (3.37) applies to the mobile aqueous and gas phases. The weighted residual equations for the
immobile phases are developed from (3.37) by dropping the advective and dispersive terms. For the organic
phase the weak form of the weighted residual equation is,

e am, W
Z/s;e {¢eSojpoij—at—J-Nj +:,,K0(:j ijocj Nj] N;dQ¢ = Z/;ze F,,cj NjNidQe (3.39)
e=1 ; e=1

A similar equation can be developed for the solid p'hase.vNote that since mass exchange is assumed to be

37

negligible compared to the mass of the solid phase, £] =0,

N dws, — N¢ —
Z/ [p;‘ LN;+X, Njo,. N,-} N;d$¥ = Zf F, NjN:dQe (3.40)
e=17 ot “ ! ey R
Here, w;, is the mass fraction of component ¢ in the solid phase and pj is the solid phase bulk density. The
mass exchange terms for aqueous-solid interphase mass fransfer are also written on a mass basis. When
sorption is modeled as a retardation process for a given organic component (3.40) is not solved. When the
transport of only one organic component is being considered, MISER has the capability to treat sorption as
a two compartment rate limited process. Both compartments can have different Freundlich parameters and
mass transfer coefficients. Typically this is used to simulate sorption where one compartment has fast
kinetics and is considered to follow equilibrium or near-equilibrium partitioning and the other compartment
is substantially rate limited. When using this option the solid mass is divided into two fractions, one for
each set of kinetics. ’

The weighted residual equation for the biophase is expressed as,

Nt 0Xp,, — ' Moo=
Z-/;z I¢€Sb}paijTINj +xbcj Kbchij} NidQe = Z./;z FbchjNidQe (3.41)
e=l1 < v e=1 ¢ .

Note that aqueous phase molar density is used for the biophase. Also, S;, is fixed to the volume occupied by
the maximum allowable biomass which is calculated by assuming that the biomass and aqueous phase
density are equivalent. This implies that Ep = 0 and that B, = 0.

3.5.2 Mass Exchange Terms

Nonequilibrium mass exchange is modeled with the linear driving force expression (3.30). The controlling
phase for each component is designated based on the relative volatility or solubility of the component in the
gas or aqueous phases. For gas-aqueous phase mass exchange of the organic components, oxygen, and the
limiting nutrient, the aqueous phase is the controlling phase. Mass exchange of water between the gas and
aqueous phases is controlled by the gas phase. Similarly, the aqueous phase is assumed to control sorption
rates and aqueous-biophase interactions. For exchange with the organic phase, the adjacent phase will
always be the controlling. Table 3.1 summarizes the mass exchange expressions for all components.

The exchange terms presented in Table 3.1 are subject to the following restrictions:

1. Numerical difficulties are experienced when the mass transfer coefficients are larger than required to
approximate equilibrium partitioning. To diminish the effect of these difficulties, the mass transfer
coefficients are adjusted downward when they exceed the following nodal criterion derived from an
analytic solution for one dimension transport with advection and nonequilibrium exchange [Wilkins

et al., 1995], v -
target
Kop, < ——22L 1, (1 - T) (3.42)

T V245 Xge
where gy, is the effective specific discharge at the node taken as the greater of the advective or

diffusive flux over the element, A¢ . is the area of the largest element of which the given node is a

larget \ | P .
member of, and (1 - l‘g‘,———) is the minimum deviation from equilibrium allowed. Note that this

38

restriction applies to a single element. Over several elements a much closer approach to equilibrium
is possible with MISER: (see Section 4,3.4).

2. When the organic phase is present in a given element, organic mass exchange is not considered
between the aqueous and gas phases, the aqueous and solid phases, or between the aqueous and
biophase. : .

3. Exchange into the gas phase fhém the organic phase is not allowed when the gas phase saturation
falls below a specified value, (currently 0.05)..

4. The exchange terms for organic phase volatilization are ‘adjusted downward when the predicted
exchanged component mass for an element is greater than the organic phase component mass present
in the element. The exchange terms are reduced by the ratio of the total component mass present in
the element to the original predxcted component exchange mass.

5. Mass is not allowed to partltlon from the aqueous or gas phases into the organic phase when only one
organic component is present.

6. Oxygen mass transfer from the aqueous phase to the blophase is allowed only when the aqueous
phase oxygen mole fraction is positive.

7. Nutrient mass transfer from the aqueous phase to the blophase is only allowed when the aqueous
phase nutrient mole fraction is positive. 1

3.6 BIOLOGICAL REACTIONS

Biological activity is described with Monod-type kinetic expressions. As shown in Table 3.2 these
expressions can be inserted directly into the aqueous phase component transport equations or into a
separate biophase component transport equations When mass transfer rate limitations to the biomass are to
be considered. The nonlinear rate coefficient ., takes three forms as follows, one form for the degradation
of organic substrates, one for the utilization of oxygen, and the last for the utilization of nutrient,

1 xo[g X
=k X 2 4 1o, 141 3.43a
. : (Ksl +xoq> <Ksoz +xoz02> <KsA +xaA> 1700418 ()
1 Xo ' .
Fo,ikiX 4 Lo, T4l 3.43b
Kag, = Z 01ki (Kv,+xa1) (KS02+x0102> (KsA'i‘xaA) tlo,Ials ()
» Xao 1
Fatki X 2 Li1o,1s1 3.43¢
Z Atk <Kw+xm> (Ksoz+xaoz) (KsA_'_qu) tlo,Ials ()

Biomass growth, maintenance, and decay is governed by an ordinary differential equation,

o, = <Z (Yl“’dlxallmax),_ Kdlmin) X (3.44)
T

In order to reduce negative mole fractions in either the biophase transport equations when considering a
separate biophase, or in the aqueous phase transport equations when they have the bioreaction term inserted

39

directly, the size of the bioreaction term is limited in some cases. If the calculated bioreaction term over the
course of the current time step will consume more of the component to which it applies than is available,
the bioreaction term is reduced by the ratio of available component mass to projected required component

mass. The available component mass is defined as the mass of component present in the appropriate phase
plus the projected amount of component to be delivered to the appropriate phase through interphase mass
exchange. Other affected bioreaction terms are also reduced. For instance, if a organic component reaction
rate is reduced, that component’s contribution to oxygen and nutrient usage, as well as to biomass
production, must be accounted for. A reduction in oxygen or nutrient reaction rate affects all the organic
components and biomass production. In addition, Monod terms are zero when the corresponding
component is below a preselected minimum detectable value, currently set to 1 ppb by mass.

3.7 NAPL SATURATION

The numerical formulation is completed with an expression describing the change in organic phase
saturation. Since the organic phase is assumed to be immobile, changes in organic saturation result solely
from interphase mass transfer as indicated in (2.7). Expanding the time derivative term of this equation and
substituting the summation over the phase exchange terms as previously defined gives,

8,00 AP

@S, + ¢p; a1

= ¢E* (3.45)

Because the organic phase is assumed to be mcompressxble, o 1s strictly a function of composition.
Furthermore, since the organic phase saturation is updated after convergence of the phase compositions, the
density derivative term is known and can be moved to the right hand side along with the exchange terms,

9, 0
0=¢E* ¢S Io()

b0) = (3.46)

The weighted residual equation for (3.46) is then developed as,

e=l

Nt
fg. {¢’p,,,N, Y j} N;dQe = Z;fqb [E* = So;Nj—.* 86 N,} N;dQe (3.47)
e=

The solution of (3.47) is obtained by mass lumping the left hand side. When the organic phase consists of
only one component, the resulting finite element equation is explicit in organic phase saturation since the
density derivative term is zero. When more than one organic phase component is present, (3.47) is solved
iteratively because the organic phase saturation appears on both sides of the equation. Additionally, the
organic phase saturation is never allowed to fall below zero.

3.8 AXISYMMETRIC COORDINATES

An axisymmetric coordinate system (r-z) is simulated by multiplying the element matrices by [Huyakorn
and Pinder, 1983],

21
Fe = 5 (ri+r2+r3) for (r-z) (3.48)

40

where r; is the radial coordinate of node i.- The horizontal coordinate x is then taken to represent the radial
distance r. When simulating a cross sectional (x-z) domain, 7, is set to unity,

Fo=1 for (x-z) (3.49)

3.9 TIME DISCRETIZATION

Consider the following generic finite element equation,
o {u)
at

A standard finite difference approach is used to discretize the time derivative in all the finite element
equations developed above [Huyakorn and Pinder, 1983],

[A]

+ [B]{u} = {F} (3.50)

3 {u} _ {u}k+1,t+1 - {u}t ‘
at At |

where k is an iteration counter; At is the time step; and the superscript ¢ + 1 represents the f + At time
level. A variable time weighting factor, 8, is included in MISER and is defined as,

(3.51)

e U e (L 1 I (3.52)

where 6 = 1 is used for fully implicit time stepping and & = 1/2 is used for Crank-Nicholson time
stepping. Substituting (3.51) and (3.52) into (3.50) yields,

1 kit _ [L | kit+1
[E[AH@[B]}{»:} ¥ —[41— 6)[31]{u}’+{F}’ (3.53)

To reduce potential errors due to limited computer precision, the dependent variable is expressed as a
difference over the time step, Au’t!,

{u}k+l,t+1 — {u}t —}-V{ALl}k—H’H—l (354)

and substituting (3.54) into (3.53) yields,
1 . ‘
[ZE[A] + e[B]] (A1 = B () 4 (FYor (3.55)

Equation (3.55) is not used for the caiculati,on of the velocities when (3.23) and (3.24) are solved. In this
case difference equation (3.53) is employed.

3.10 TIME STEP CONTROL

The time discretization starts with a prescribed’t'im,e step size. This time step is adjusted automatically in
accordance with the following set of rules:.

1.. The time step size cannot be smaller than a prescribed minimi’im value.

41

2. The time step size cannot be larger than a prescribed maximum value.

3. During a given time step, if the number of iterations required for convergence of the flow equations
and for convergence of the transport equations is less than prescribed numbers, the time step is
increased by multiplying the current time step by a prescribed constant (> 1). Different values of the
prescribed number of iterations may be specified for the flow and transport equations.

4, During a given time step, if convergence of the flow equations or of the transport equations is not
attained within a specified maximum number of iterations, the time step is decreased by multiplying
the current time step by a constant (< 1). Different values of the maximum number of iterations may
be specified for the flow and transport equations. If convergence is repeatedly not attained, the
simulation will terminate when a minimum time step size is reached.

5. Solution of the flow equations may be skipped for a specified number of time steps. The transport
equations are always solved on every time step. Adjustment of the time step size proceeds as
described above, however, the use of small multipliers for increasing the time step size is advised
(< 1.1).

3.11 BOUNDARY CONDITIONS

3.11.1 Phase Mass Balance Boundary Conditions
Boundary conditions must be specified for the aqueous and gas phase mass balance equations as either
constant specified pressure (type I) or constant specified flux (type ID).

Constant pressure conditions may be specified at any node in the computation domain. This condition
is implemented by modifying the appropriate row in the global matrix equation (3.18) to,

APEH =0 (3.56)
where i is the node at which constant pressure conditions are specified.

Specified boundary fluxes are introduced through the source/sink terms. The flow across a boundary
segment of element e is represented by the surface integrals on the RHS of (3.17) and is expressed as,

(4 NL’ A !
O == [daVidT* = =) g0 " (3.57)
e=1YTI° e=1

where ¢, is the boundary flux [LT ~!] of phase « at the boundary node i and Q, is the total discharge at
node i [L3T~']. No flow boundaries (g, = 0) are the natural finite element boundary condition. The
boundary flux is assumed to be uniform over the cross sectional area, A,;, associated with the boundary
node i. This cross sectional area depends on the coordinate system and thus the specified flow must
properly reflect the cross sectional area.

Due to compressibility effects the specified volumetric flux of the gas phase is referenced to free
surface conditions (fs) conditions which are assumed to 1 atmosphere of pressure at 20 °C. The free surface

42

conditions are related to the reservoir conditions (rc) by a compressibility factor, G, [-], which is evaluated
from the ideal gas law (2.49),

o (P, T,
Qg = Qg Go = Qg | 222 (3.58)
PgrchS

3.11.2 Component Mass Balance Boundary Conditions

Boundary conditions are required for the gas and aqueous phase component balance equations. These may
be spemﬁed as either: constant specified mole fraction (type I); spec1ﬁed diffusional flux (type II),

L dx Dm
h ¢ c
0%, i = D5 (s,) 659

where Ly is the thickness of the stagnant boundary layer in the contactmg « phase fluid and x¢_is the
specified value of the component mole fraction in the contacting fluid; or mixed (type III) where the
composition of an incoming fluid is specified along a boundary sectlon

“nj —|—qajnjxur = qajnjx g (3.60)

When the boundary is impermeable or water flow is directed out of the domain, (3.60) reduces to (3.59).
Eqs. (3.59) and (3.60) are expressed at all nodes to which a given boundary condition applies.

Constant mole fraction boundary conditions may be specified at any node in the computational domain.
This condition is implemented by modlfymg the appropriate row in the global matrix equation (3.55) to,

Ax é':l =0 (3.61)
where / is the node at which constant mole fraction conditions are specified.

Zero diffusive flux type II boundaries are the natural finite element boundary condition for the transport

equation, i.e.,
0xq,

“c i 3x;

¢

-n; =0 . , ,‘ ‘, (3.62)
This boundary condition corresponds to setting the surface 1ntegral term on the RHS of (3 37) to 0. This
condition is used to represent those boundaries where advective transport is directed outward and there is
no mole fraction gradient at the boundary. Since the NAPL, solid, and biophase component transport
equations do not consider advective or diffusive flux no additional specification of boundary conditions is
required beyond the natural condition. This is also true for the NAPL saturation equation.

Nonzero type IT and type III boundary fluxes are introduced through the surface integral on the RHS of
(3.37). For type III boundaries, (3.60) becomes,

i . Oxg,.
Z/r: {¢edepajD2cjj o . Nij] Nin;dTl = Qu;1jXe, — Qajnjxgc (3.63)
e=1 ¢ J

The first term on the RHS of (3.63) represents the advective flux and is inserted into the matrix [B'] in
(3.55). The second term is the total material flux and is added to the vector {F} in (3.55). The boundary
flux is evaluated in two ways. When the flow equations are solved, the boundary flux calculated for the

43

well screen
interval

Figure 3.3: Representation of an extraction well in the discretized domain.

phase material balance calculation, or imposed as a boundary condition for the flow equations is used to
evaluate Q. Otherwise the boundary flux is evaluated using the Darcy flux in the following fashion. The
boundary flux is assumed to be uniform over the cross sectional area, Ay;, associated with the boundary
node . The cross sectional area depends on the coordinate system and is evaluated by,

Ay, =1 for (x-z) (3.64a)

Ay, =277l for (r-z) (3.64b)

Here [; = %(1,,1 + 1) is the length of the boundary segment associated with node i and [, and [, are the
lengths of the boundary segments of elements el and e2 which are connected at node i. The average radius
of the boundary segment associated withnode i is7; = %(r,‘_ 1 +2ri +rix1). Here ri—y, ri, and r; 4 are the
radii of the three nodes spanning el and 2. Nonzero type II boundaries are treated in the same manner as .
nonzero type III boundaries with the RHS of (3.63) being replaced by the RHS of (3.59) after evaluation of
the surface integral.

3.11.3 Extraction Wells

MISER incorporates the option to simulate radial flow to an extraction well positioned in the center of
axisymmetric (r-z) domains. Consider the problem of simulating an extraction well along the left boundary
of the domain shown in Figure 3.3. The well screen spans & elements and k + 1 nodes, and is assumed to be
parallel to the z-coordinate.

Vadose zone extraction wells operate in regions of variable saturation and therefore typically remove
both aqueous and gas phases during operation. MISER requires the specification of the total combined
(aqueous and gas) extraction rate and then apportions the flow of each phase at each node along the well

- screen. The flow of each phase is apportioned along the well screen by [Aziz and Settari, 1979],

e=1 ;E%An [Aaj (VPaj - p;ngZ) + Agj (Vng — p;ngz)]

Ot (3.65)

where Qy;, is the specified combined discharge at free surface conditions, and j denotes the nodes along
the well screen in element e. The cross sectional area associated with each node along the well screen is
computed by, ' ‘

Ay = 2w ryenl; (3.66)

- where ryen is the radius of the well, [; = %(le L+ lez)l is the vertical length of well segment associated with
node i, and /.1 and /,; are the lengths of the element el and 2 which are connected at node ;. Here it is
assumed that well is paralle] with the z-coordinate.

Further simplification is made by assuming that the potential gradient for each phase is the same in all
layers. The flows may then be apportioned solely by mobility,

k Ay GyAg,,
Qo = Z |: X 2 — } Qi (3.67)
e=1 Ze:l Zj:l ij (kaxj +)"ng)

where the aqueous compressibility is set to 1, and the gas phase compressibility is computed from (3.58).
This ‘transmissibility allocation’ method is generally valid when variation in permeability along the well is
small. However, the method “may give erroneous results in the case of large vertical heterogeneity and
especially when non-communicating layers exist” [Aziz and Settari, 1979]. '

The appropriate boundary condition for the transport equations at an extraction well is type II with zero
diffusive flux. ‘ ‘

3.11.4 Treatment of Injection Wells

Presently MISER is configured to consider the injection of gas phase only. Thus, under injection conditions
the specified total discharge, Qy,, is comprised solely of gas phase which is similarly apportioned along
the well screen by the transmissibility allocation methods, using,

E [AuBgh,
04 = a8 O, (3.68)

In the case when the denominator in (3.68) is zero (i.e. injection below the water table), then Oyt 18
distributed uniformly over the well screen.

The appropriate boundary condition for the transport equations at an injection well is type III which
specifies the composition of the incoming fluid.

45

3.12 ITERATION SCHEME

An iteration scheme is necessary to update secondary variables that are functions of the primary solution
variables. A Picard iteration approach is employed in MISER [Huyakorn and Pinder, 1983]. This approach
is implemented by simply lagging the secondary variables and iterating within a time step until a
convergence criterion is satisfied.

A telative maximum differential is used to test convergence. For the flow equations convergence is
established by the change in pressure, evaluated by,

max; | P¥+! — pk|
< 3.69
max; |Pk+1| — ¢ : (3.69)

where ¢ is the convergence tolerance for solution of the flow equations.

Mole fractions, x4, are used to control convergence of the transport equations. The transport equations
for the gas, aqueous, organic, solid and biophases are solved sequentially until convergence is achieved for
each equation. Two values of the convergence criteria are used, one for the gas and aqueous phase transport
equations, €,,, and one for the immobile phase transport equations, €;. Convergence is measured by,

k+1

max |xacj o

max, <k ;'Tl l €y OT €; 3.70)
J

For the solid phase, convergence is measured using solid phase mass loadings, w;,, otherwise the
expression is the same as (3.70).

After convergence has been obtained for all the transport equations (3.47) is solved for the organic
phase saturations. An iterative solution is not required if the organic phase is composed of only a single
component. When more than one organic phase component is present, convergence is measured using the
organic phase saturations, '

max; IS’;JTH — Sfjl

<€

3.71)

were €, is the convergence criterion for the organic phase saturation. When a nodal organic phase mole
fraction falls below a user specified value (currently 10~3), convergence is not measured for that nodal mole
fraction. :

Table 3.3 summarizes the numerical iteration scheme employed in MISER.

3.13 SOLVER

The nonlinear discretized flow and gas and aqueous phase transport equations are solved using the Harwell
Sparse Matrix Package [Duff, 1979]. The specific flux equations are solved directly when calculating
element fluxes. When calculating nodal velocities the Harwell package is used, unless the mass matrix is
lumped. In that case, the specific fluxes are solved for directly. The NAPL and solid phase transport
equations can also be solved using the Harwell Sparse Matrix Package. The NAPL and solid phase

46

Numerical Solution Scheme

Sequence | Description Section Reference
Problem Setup
1. Read input files and initialize variables as needed. 54
2. Calculate element areas. 3.1
3. Calculate initial mass in domain. 4.1
Begin Iteration Over Time
4. Update phase molecular and mass densities. 253and2.54
Solve Flow Equations
5. Update gas phase viscosity. 2.5.5
6. Begin iterative solution of flow equations. 3.2
6a. Update capacity coefficients and mobilities. 323,252
6b. Update well terms. 3.11.3,3.114
6¢. Solve flow equations after imposing boundary conditions. | 3.11.1
6d. Update gas and aqueous phase saturations. 2.5.1
6e. Update gas phase mole and mass density. 253
of. Check convergence. Iterate to 6. if not converged. 3.12
7. Update boundary fluxes for material balance and 4.1.1
transport equation boundary conditions
8. Update phase material balance. 4.1
Solve Transport Equations
9. Update velocity field. 34
10. Update bioreaction terms and biomass. 3.6
Only when a separate biophase is not present.
11. Begin iterative solution of transport equations. 3.5
11a. Update biophase mole fractions and biomass. 3.6
Only when a separate biophase is present.
11b. Update phase molecular and mass densities. 2.53and2.54
11c. Update mass exchange terms. & 35 .
11d. Update dispersion coefficients. 257
11e. Solve gas and aqueous phase transport 35.1and 3.11.2
equations after imposing boundary conditions.
11f. Solve organic phase transport equations. 35.1
11g. Solve solid phase transport equations. 351
11h. Solve organic phase saturation equation. 3.7
11i. Update gas and aqueous saturations
if the flow equations are not included.
11j. Check convergence. Iterate to 11. if not converged. 3.12
Increment to Next Time Level
12. Update component material balance. 4.1.2
13. Print output if desired.
14. Adjust time step if indicated and proceed to next time level. | 3.10

Table 3.3: Summary of numerical scheme in MISER.

47

transport equations only have the time derivative term on the Ieft hand side and are solved directly when
mass lumped. In contrast, when considering a separate biophase, the biophase transport equations have
exchange and bioreaction terms on the left hand side and hénce are not diagotial after mass lumping. Thus, .
the biophase transport equations a¢ always solved using the Hatwell package: The NAPL saturation
equation is always mass lumped and solved directly.

48

Section 4

MODEL VERIFICATION

4.1 MATERIAL BALANCE CALCULATION

A material balance calculation is included as an option in MISER. This option calculates a mass balance
error as a measure of the material balance in the numerical solution of the flow and transport equations. The
mass balance error is calculated over the entire computational region £2.

4.1.1 Phase Material Balance

Mass balance error in solutions to the flow equations is obtained by integrating (2.6) over €2 and applying
the divergence theorem,

3
/Q = ($p3Sa) d2+ /F [02Aa (V Py — pigV2)] - ndl — /Q PEEASQ — fg RedQ=0 (41)

where I" is the boundary of .

If the numerical solution is substituted into (4.1) then the mass balance residual of phase o may be
calculated by, '

¢y = Fy, + Fy, + F,, + F,, | " 4.2)
where,

F, = [2 (60250 da~ S~ [& WALl _ p¥ St) NidQ 4.3
= J 5 @SR Y | (TS - RS, M (432)
Fy, = / [0 A (V Py — p2gV2)] - ndT" (4.3b)

. r
NE
F, =— / PEQ~ -3 / ¢°EX N;dS (4.3¢)
Q —1/Q '

F, = — fQ RedQ ~ — ; ey Qes (4.3d)

Here mass lumping is employed to evaluate the volume integrals. The boundary integrals are evaluated by
back substitution of the predicted pressures into the finite element equations [Huyakorn and Pinder, 1983].

49

4.1.2 Component Material Balance

Mass balance error in solutions to the transport equations is obtained by integrating (2.11) over 2, applying
the divergence theorem, and substituting uq, x,, for By,. The resulting equation is summed over the phases
giving,

[v s o h '
Mc; fﬂ P (PO SaTcXa,) dS2 — Mcg fr ;(¢paSuDdcijV x,,c) -ndl
—M.) / fho X, d2 = 0 (4.4)
= JQ

where M, is the component molecular weight. Retardation (r, # 1) is included only when o = @ and
nonequilibrium sorption is not considered.

If the numerical solution is substituted into (4.4) then the component residual for the entire domain may
be calculated by,
gc=Fs, + Fp, + F, | 4.5)

where,

d
F, =M, Zf v (¢paSarcxac) dQ~
o Jo 0t

Ne¢ e
MDY fg %; (p;;"lS&j'lrcx;'c'xfl — P, S rcx;,Ci) N;dQ (4.62)
o e=1
Fpo=M.— Y fr (({)paSa D v %o,) -mdl forT; = Typel (4.6b)
o
N1t I
NMeY Y poy Qi Xa, Ni for I'; = Type II
o [=]
Ny
~MY Y / Po; Q4 x5 N; for I'; = Type 11T
a j=1Y7Y !
N¢)
FI"vc =—M. Z j;z o, xotcids2 ~—M, Z Zﬂlac’. xac‘. N; (4.6c)
o o e=1

The type I boundary integrals are evaluated by back substitution of the predicted mole fractions into the
finite element equations [Huyakorn and Pinder, 1983]. When r, s 1, the change in component mass
determined with (4.6a) includes the change in sorbed mass.

4.1.3 Calculation of Mass Balance Error

The accuracy of the numerical scheme is evaluated by three measures of mass balance error. The first two
are relative errors, and the third represents an absolute error. The expressions used to calculate these errors

50

. are respectively,

Eq At '
By =100 | — Tl | (4.72)

quef 2080 NidS2

[&al
= 100 4.7b
<max[(|Fbav| T+ |Fra|),fpsau> “.7)
Fy, + F, +F,,

By = 100(ba F"“) (4.7¢)

A Sy i
BA" = 100 — (4.7d)

MCZZqS‘—’/ S0 x0 Nd©
At —_ 100 < ISCI > (4_73)
2 max [(| Fp,| + |Fp.]) , | F,]
F
BY =100 (1— Fb—+—“—> , @79
Fy,

where the denominators in (4.7a) and (4.7d) are the mass storages of phase & and component ¢ respectively
at the start of the simulation. By, By, By3, B, Ber,and Bz are set to zero if the denominator is zero.

The error measures above represent the percentage mass balance error over a single time step.
Cumulative mass balance errors are also computed using, '

ZsaAt

=100 | — (4.82)
Z¢e/ p*OSO N:dS
At
B!, =100 (4.8b)
= I:(At + * " > , N]
At
> (Fy, + Fo, + F,,) At
By =100]1— |4 4.8¢
o3 ‘ > Fy At (4.8¢)
At
ZscAt
B!, =100 (4.8d)

f pa xoc. N,'dSZ

51

Z e At
At

B, =100 : (4.8¢)
max [(3 Fp At + Y Fu At) D Fi At }
At At At
Z (Fbc + Fﬂc) At
Bl,=100]1— |4 4.8
c3 > F, At (4.80)
At

4.2 VERIFICATION OF THE PHASE MASS BALANCE SOLUTIONS

4.2.1 Comparison with One Dimensional Richards Equation

Numerical solutions of the flow equations were compared with analytical solutions of the Richards
equation. This equation describes the movement of a constant density aqueous phase in variably saturated
media under the assumption that the gas phase does not impede the liquid migration; i.e. the gas pressure is
static. Thus, comparisons with solutions of Richards equation provides verification for the solution of the
aqueous flow equation only, even though both aqueous and gas flow equations are solved.

The one dimensional vertical form of Richards equation is expressed as,

39S, 8 [kkrg (aPa .)}
| e — =0 4.9
¢ o 3z [o \ a2 Pa8 4.9)

Semi-analytical solutions of (4.9) developed by Philip [1969] were compared to MISER. The test problem
considered is for vertical moisture infiltration under constant surface ponding into a soil with an initial
moisture content close to residual. Conditions of the test problem were obtained from Celia et al., [1990].
The asymptotic characteristic of the capacity coefficient in the region of residual water saturation creates
computational difficulties for numerical simulators. Therefore, this test problem provides a rigorous test of
MISER for typical moisture infiltration conditions in the unsaturated zone. The hydraulic properties of the
test problem are, :
1- Sra
Syg=—
[1+ (@FPe,)" 1"
n—1 n1—my2
ko = {1—(aP,)" " '[1+ (@P,)"T™} @.11)
[1+ (aPe,,)12
where ¢ = 0.368; Syq = 0.2772; n = 2; m = 0.5; @ = 3.415 x 10* Pa~!; and k = 9.43435 x 1072 m”.
The initial and boundary conditions are:

+ Sra (4.10)

Py(x,z,t =0)=—1000cm = —98071 Pa Py(x,z,t =0) =0Pa (S, = 0.299)
Pa(x,z=0,t) = —=75cm = —7355.325Pa Py(x,z=0,t) =0Pa (S, = 0.544)
Py(x,z=L,t) = —1000cm = —98071 Pa Py(x,z=L,t) =0Pa (S, = 0.299)
OPy(x =0,2,8)/3x =0 Pg(x =0,2,t)/0x =0

d0P;(x =4cm,z,t)/ox =0 dPg(x =4cm,z,t)/0x =0

52

4
6 8

11 13

40 cm
- W
91 93
96 98
2cm 99, 1o

101 102 103

——pe

2cm

Figure 4.1: Computational grid used for the numerical solution of the one dimensional Richards equation.

Numerical simulation of the moisture infiltration problem was obtained on a symmetric¢ “union jack”
grid consisting of 160 elements and 103 nodes (Figure 4.1). Nodes were uniformly spaced in the x and z
directions at 2 cm. The gas phase was simulated with three components: nitrogen, oxygen, and water.
Since transport equations were not solved, the gas phase composition was fixed, with a mass density of 1.24
g/1. To reduce the effect of gas pressure transients on aqueous migration, the vapor viscosity of the three
components were reduced to an artificially small value of 1 x 1077 Pa-s. The aqueous phase was simulated
as pure water.

Figure 4.2 compares the predicted and analytical solutions at time 6 hrs. Close agreement was
generally obtained for pressure and saturation distributions. Pronounced oscillations at the toe of the sharp
front are evident in the pressure distribution when the consistent form of the mass matrix is used. The
oscillations are eliminated when the mass matrix is lumped. This behavior is consistent with that
commonly observed in the numerical solution of Richards equation [Milly, 1985; Celia et al., 1990;
Rathfelder and Abriola, 1994]. The magnitude of oscillations increases as C, = d5S,/d P, approaches zero
(i.e. as S, approaches S,,), and the effect of the oscillations can be to severely limit computational
efficiency and numerical accuracy. Therefore, mass lumping is frequently recommended to eliminate
oscillatory behavior [Milly, 1985; Celia et al., 1990;], at the expense of some loss in numerical accuracy
[Huyakorn and Pinder, 1983; Zienkiewicz and Taylor, 1991].

Global mass balance errors at varying convergence tolerances are listed in Table 4.1. Small mass
balance errors further confirm the accuracy of the numerical solutions. Mass balance errors increase
slightly with increasing convergence tolerance.

No grid effects were observed in that all solutions were identical along nodes in the horizontal plane.
Furthermore, identical solutions were obtained when the vertical direction was numerically reversed (i.e.
the grid was rotated by 90 degrees and gravity components were set to g,=0 and g,=9.81 m/s?).
Collectively these results indicate MISER is correctly solving the aqueous phase mass balance equation in
cartesian coordinates.

53

pressure distribution

saturation distribution

J L) T T
B analytical solution
10k — o -lumped mass matrix
. ---43--- consistent mass matrix
= 151
e
£ 20
a
8 25}
(TR D
30}
35 }-
1 1 1

T T T 1 T

analytical solution &
| — e -lumped mass matrix

---&--- consistent mass matrix

1

40
-1200 -1000 -800 -600 -400

aqueous pressure (cm)

03 035 04 045

aqueous saturation

0 0.25 05 0.55

-200

Figure 4.2: Comparison of numerical and analytical solutions for the one dimensional Richards equation.
Simulation time = 6 hours; convergence tolerance = 1 X 1074,

convergence Imass residual

tolerance matrix &q (kg) B}, (%) B}, (%)

1.0 x 1072 consistent 2.66 x 10™* 3.00 x 10~ 5.77 x 1072
1.0 x 1072 lumped 176 x 107* 198 x 1073 3.81 x 1072
1.0 x 1073 consistent —4.64 x 1075 521 x 107* 1.00 x 1072
1.0x 1073 lumped —4.58x 1076 5.14x 107> 9.93 x 10~
1.0 x 10~* consistent 5.35x 1077 6.02x 1076 1.16 x 10™*
1.0x 1074 Iumped —5.70x107% 6.41x 1075 1.23 x 1073

Table 4.1: Comparison of global mass balance errors from numerical solutions of the one dimensional
Richards equation at time 6 hrs.

4.2.2 Comparison with Two Dimensional Richards Equation

The capability of MISER to simulate a two dimensional variably saturated axisymmetric flow was tested by
comparison to numerical solutions of the two dimensional Richards equation obtained from the SWMS_2D
model [Simunek et al., 1994]. The scenario under consideration is described as example problem 4 [Section
7.4, Simunek et al., 1994] and involves moisture infiltration from a single-ring infiltrometer. The
axisymmetric domain is shown in Figure 4.3 and the associated soil properties are listed in Table 4.2. The
radius of the ring infiltrometer is 20 cm.

SWMS._2D numerically solves the two dimensional Richards equation using the Galerkin-type linear
finite element scheme. For comparisons presented herein, SWMS_2D was run using quadrilateral elements.
The grid, shown in Figure 4.4, consists of 342 elements and 380 nodes; it is identical to that described in
the users manual [Section 7.4, Simunek et al., 1994]. No flow conditions were prescribed along all
boundaries, except at the five nodes along the top left boundary where constant pressure conditions were

54

0
0.70
40 0.77
g
E 0.84
.g.; 80 0.91
120 0.98
130
L] L J
0 radius (cm) 125 0 radius (cm) 125

‘ Figure 4.3: Domain configuration used in two dimensional (2D) flow simulations for comparison to
SWMS_2D.

Parameter Layer 1 Layer 2

) 0.399 0.339

ky =k, (m?) 3.9598x10"13 6.0327x10~13
S 2.51x10™* © 2.95%x10~*

n 1.376 1.603

a (1/Pa) 1.77x10~* 1.42x1074

Table 4.2: Soil properties used in two dimensional flow simulations for comparison to SWMS_2D.

specified (P, = 1 atm; S,, = 1).

The two dimensional moisture infiltration problem was simulated with MISER using the same nodal
structure as in'Figure 4.4. Each quadrilateral element was subdivided into two triangular elements resulting
in 684 elements and 380 nodes. Boundary conditions for the gas phase were specified as first type, constant
atmospheric gas pressure along the entire top boundary and no flow conditions on remaining boundaries.
Other specifications required to conform to assumptions inherent in Richards equation were identical to
those used in the one-dimensional comparisons: the transport equations were not solved; the gas phase
composition was fixed; and the vapor viscosity was set to an artificially small value to eliminate effects of
gas pressure transients on aqueous migration.

Intermodel comparisons were initially made for a homogeneous problem, employing the soil properties
for layer 1 over the entire domain. Very close agreement was obtained in numerical predictions of moisture
content, as demonstrated by near indistinguishable contour lines shown in Figure 4.5. Mass balance
computations from MISER were on the order of 1076 and 10~3% for the relative and absolute error
measures, respectively, at a convergence tolerance of 1073, Collectively, these results indicate MISER is
correctly solving the aqueous phase flow equation in a two dimensional axisymmetric domain.

The second comparison was for the layered domain shown in Figure 4.3. Results shown in Figures 4.6
and 4.7 show very close agreement in the upper layer and moderate discrepancies near the region of the soil
interface (depth = 40 cm). These discrepancies are attributed to differences in the way that discontinuities

55

constant head nodes
O M I 1

401

80—

depth (cm)

120
130

T

]
0 radius (cm) 125

Figure 4.4: Numerical grid used in two dimensional flow simulations for comparison to SWMS_2D.

0.0 ; J Lk
0.38
0.2 —/ 0.28
0,36
04 _‘_/// 0.30
0.32

E 064
£
%
8 <0.34
0.8
- 0.36
1.0 4 0.38
1.2
T T T T T T T T I T T T Ty rrrrT
0.0 0.2 0.5 0.8 1.0 12
radius (m)

Figure 4.5: Simulated volumetric moisture content in the homogeneous domain at time 12 hrs (MISER =
solid line; SWMS_2D = dashed line).

at the material property interface are treated in the two numerical models. In MISER, discontinuities are
preserved numerically by tracking separate nodal material property parameters and saturation values within
contiguous elements spanning the interface. Moisture profiles from MISER exhibit a sharp contrast at the
interface (depth = 40 cm). In SWMS_2D, the nodal material property parameters are averaged. Moisture
profiles from SWMS_2D exhibit a sharp contrast at depth of approximately 45 cm, or approximately the
distance of one-half element below interface. Despite discrepancies near the interface, moisture profiles in
Figure 4.7 show good agreement at depth below the interface.

56

0.0 T
0.2 - 0,36 0.28
/"’/;4':!
03450
g e
A= 0
Efic=z==2I2g0gn 080z zzTxm-o oo
0.5+
£ o6
£ 0.28
2 07
o
08+ 0.30
0.9 A
10 0.32
1.1 -
1.2 1
1'3 Tt 1T 1T vyTITTr i T Ty ery e
0.00 0.25 0.50 0.75 1.00 1.25
radius (m)

vFigure 4.6: Simulated volumetric moisture content in the layered domain at time 6 hrs (MISER = solid line;
SWMS_2D = dashed line).

0.0
0.1 4
024
0.3
0.4 1

0.5 -
0.6

0.38]

depth (m)

0.7 4
0.8
0.9 4
1.0 -
1.1 5
1.2 4

1.3 T T 1 T r7YJ1rr1rrrrrrrrr

TT I 11 "
0.00 O.éS . 0.50 0.75 1.00 1.25
radius (m)

Figure 4.7: Simulated volumetric moisture content in the layered doméin at time 12 hrs (MISER = solid line;
SWMS_2D = dashed line). y

4.2.3 Comparison with Quasi Analytical Solutions for Unsteady Radial Flow of Gas

The capability of MISER to simulate axisymmetric flow of gas to vadose zone extraction or injection wells
was tested by comparison to quasi analytical solutions developed by McWhorter [1994]. The quasi
analytical solutions represent unsteady one dimensional radial gas flow and account for nonlinearities
stemming from pressure dependent density (compressibility) and permeability (Klinkenberg effect). To
conform with conditions of the analytical solution, MISER was used to simulate confined radial gas flow to

57

Q no flow bounda

e . . . O . . e N YO, W S " . .

| constant atm
4 pressure

uniform soil conditions

R R R S A A A A A B N e A A A e R

> l‘we" =0.25m

> Mmax

Figure 4.8: Domain configuration used in two dimensional flow simulations for comparison to quasi analytical
solutions for radial gas flow.

Parameter Case 1 Case 2

) 0.33 0.33 :
ky =k, (m?) 1x10~1 1x10~1
Srw 0.12 0.12

n 7.0 7.0

o (1/Pa) 0.002 0.002

b (atm) 0.0 0.316

Table 4.3: Soil properties used in two dimensional flow simulations for comparison to quasi-analytical
solutions for radial gas flow.

a fully penetrating extraction/injection well (Figure 4.8). All soil properties were homogeneous (Table 4.3),
with water present at the immobile residual level. Properties of nitrogen gas were used to represent the gas
phase in both the numerical and analytical solutions.

Comparisons were made for varying conditions of gas injection and extraction using two values of
intrinsic permeability. The first case involves a relatively conductive soil under conditions in which slip
flow phenomena are negligible. For this problem the domain was discretized into 505 nodes (5 vertical by
101 horizontal) and 800 elements. Nodal spacing was uniform in the vertical direction and nonuniform in
the radial direction, evaluating nodal coordinates from [Aziz and Settari, 1979],

Tl _ (’mHX)I/(N*” (4.12)

ri T'well

where #n = 101 is the number of nodes in the radial direction, and rp,, = 1000 m is the radial coordinate of
the right boundary. Comparisons of predicted pressure distributions are shown in Figure 4.9 for a extraction
rate of 10 scfm and an injection rate of 1 scfm. Close agreement between MISER and the quasi analytical
solutions is observed, indicating MISER is correctly solving the axisymmetric gas phase flow equation with
specified well conditions. Figure 4.9 also shows an extensive radius of influence, indicating that accurate
representation of the flow field requires a large grid structure under conditions of confined gas flow in a
conductive soil.

The ability to simulate slip flow phenomena based on the Klinkenberg correction factor (2.4) was
examined in a second problem involving extraction from a less conductive soil. For this problem the
domain was discretized into 1005 nodes (5 vertical by 201 horizontal) and 1600 elements, using a uniform

58

Q =-10 scfm Q=1 scfm

1 1.01,

0.98 ¢ 1.008 Analytical Solution
= 4 ‘ --@--MISER, t=1 hr
w { 3 —
b 0.96 Analytical Solution . 1.006.8 Tre-s m:zsﬁ : = 1Od:y
= i _ --a-- = ays
2 0.94 § --@-- MISER, t=1 hr 1.004.8
g [--o--MISER, t=1 day N

0.92 . --a--MISER, t=10 days 1.002.00 &

0.9 4 T T T T . T T T T
200 400 600 800 1000 100 200 300 400 500
radius (m) radius (m)

Figure 4.9: Comparison of quasi analytical and numerical solutions for two dimensional radial gas flow in a
uniform soil with k = 1 x 1071 m2,

time = 10 days time = 30 days

o
o0

E
& 0.6
% Analytical Solution Analytical Solution
® 0.4 e 04 .
g - -@--MISER, with slip flow - -@- - MISER, with slip flow

0.2 --e--MISER, no slip flow 0.2 - -6 --MISER, no slip flow

0 7 T+ T T 1t T 7T 0 L A P
5 10 15 5 10 15
radius (m) radius (m)

Figure 4.10: Comparison of quasi analytical and numencal solutions for one dimensional radial gas flow in
a uniform soil with k = 1 x 10~14 m2.

nodal spacing in the vertical direction and (4.12) to compute radial coordinates with 7maz = 200 m. The
Klinkenberg parameter (b) was evaluated from (2.5). Comparisons of predicted pressure distributions are
shown in Figure 4.10 for a constant extraction rate of 0.08 scfm. Close agreement between MISER and the

quasi-analytical solutions is observed, indicating MISER is correctly accounting for slip flow phenomena
using the Klinkenberg correction factor.

59

4 6
7 [}
10cm
—Ar W
585 57
58 60
0.5¢cm
61 62 63
0.5 cm

Figure 4.11: Computational grid used for the numerical solution of the one dimensional transport equation
with and without advection.

4.3 VERIFICATION OF THE COMPONENT MASS BALANCE
SOLUTIONS

4.3.1 Comparison with One Dimensional Analytical Solutions

The first set of model verifications for the transport section of MISER are comparisons with analytical
solutions of the one dimensional transport equation with and without advection. In all the simulations
discussed in this section, the flow portion of MISER was not operating. Additionally, the component
parameters were normalized for the comparisons with analytical solutions and S, = 1. These comparisons
were used to verify the ability of MISER to simultaneously simulate transport of multiple components in
two mobile phases. The first analytical solution was of nonadvective transport with constant dispersion
coefficients. The second analytical solution included constant advection [Ogata and Banks, 1961]. Figure
4.11 shows the “herringbone” grid with 63 nodes and 80 elements used for both of these comparisons.
Minor grid effects were observed in that the nodal concentrations were not identical across the axis
perpendicular to the direction of flow. Similar simulations performed using the “union jack” grid did not
show these effects. Both vertical and horizontal orientations were tested for both mobile phases and for two
components in each phase. In all cases, Ax = 0.5cm, Az =0.5cm, Az = 5 sec, D = 0.0003 cm? sec™!,
and the convergence criteria was 10~8. The component boundary conditions for the analytic solutions were
first type with a value of C = 1.0 at x = 0 cm and second type with a zero solute gradient at x = oo.
Initially the solute concentration was 0.0 throughout the domain. For the numerical solutions, the domain
was large enough so that the second type boundary condition was not violated. For the comparison with the
Ogata and Banks solution, v = 0.0002 cm sec™!. As Figures 4.12 and 4.13 show, MISER and the analytic
solutions closely match at ¢ = 4000 sec. The numerical simulations shown are for oxygen in the aqueous
phase, however good matches were obtained when an additional component was added or when similar
simulations were performed in the aqueous phase.

60

One dimension diffusive transport

analytical solution
—=— numerical solution

5 0.8 _

=i

=]

[=]

3 _

g

° D = 0.0003 cm%sec

§ t = 4000 sec]

S

E

=}

‘:: -
Ex n]
6 8 10

distance (cm)

Figure 4.12: Comparison of MISER with the one dimensional analytical solution for diffusion driven trans-
port.

Advective-dispersive transport

§ 0.8 |- Ogata-Banks solution]
§ [—=—— numerical solution 1
= 2 3
g os |]
8 [D=0.0003 cm¥sec
3 3 v=0.0002 cm/sec 1
% 0.4 }) =4000 sec ' .y
E .
o 3
= 02t]
0 1 L {
] 2 v 4 6 . 8 10

distance (cm)

Figure 4.13: Comparison of MISER with the one dimensional Ogata and Banks analytical solution for
transport with dispersion and constant advection.

4.3.2 Comparison with Two Dimensional Analytical Solutions

Numerical solutions obtained from MISER were next compared with solutions from a two dimensional
analytical groundwater mass transport model [Cleary and Ungs, 1978]. The analytical solution used
allowed for dispersion and advection in both the x and z directions, as well as first order decay of the solute.
These comparisons demonstrate the ability of MISER to correctly solve the transport equation in two
dimensions. A “herringbone” grid was used for these simulations with 441 nodes and 800 elements. The

61

0.000

0.025

0.050 _D

depth (m)

0.075 -]

0.100 ll_,llIIlll'llIll'Il’ll

0.000 0.025 0.050 0.075 0.10
horizontal distance (m)

Figure 4.14: Comparison of MISER (solid lines) with a two dimensional analytical transport solution (dashed
lines) at 4000 sec. Contours of normalized concentration are from left to right: 0.8, 0.6, 0.4, 0.2, 0.1, and
0.01.

i
¥

grid was square with 21 nodes on each side. In all cases, Ax = Az = 5.0 cm, At = 5 sec,

Dy = D, = 0.0003 cm? sec™!, v, = v, = 0.0002 cm sec™! (where v, is positive upwards), and the
convergence criteria was 10~8. The solute boundary condition for both the analytic and numeric solutions
was first type with a Gaussian distribution along x = 0 cm, centered at z = 5 cm with x = 1.0 atz = 5 cm
and a standard deviation of 1.0. At the other three boundaries the solute concentration gradient was
assumed to be zero (second type boundary) at oo for the analytic solution. For the numerical solutions, the
domain was made large enough so that the second type boundary condition was not violated. The initial
solute concentration was 0.0 throughout the domain at ¢ = 0.0 for both the analytical and numerical
solutions. The close agreement of the analytical and numerical solutions at ¢ = 4000 sec in Figure 4.14
verifies the ability of MISER to correctly solve the transport equation in two dimensions.

4.3.3 Verification of Biokinetics

The ability of MISER to simulate Monod-type biological growth and decay was verified in two ways. First
comparisons were made with the two dimensional analytical solution discussed in Section 4.3.2. The
domain, parameters, boundary conditions, and initial conditions for the analytical solution were the same
with the addition of first order solute decay of k = 0.001 sec™!. MISER was then used to simulate first
order decay by setting the half saturation constant of the degradable solute equal to 1 032 and the maximum
solute use rate equal to 10%° resulting in a first order decay rate of 0.001 sec™! as in the analytic solution.
Otherwise, the grid and parameters were the same as for the previous simulation. MISER required that
oxygen be present in the aqueous phase in order for the biodegradation routines to function properly, but by
setting the oxygen use coefficient equal to zero, any effects of oxygen limitation were eliminated from this
simulation. MISER also allows the biomass concentration to remain constant for the course of a simulation
eliminating any effect of biomass growth. Both oxygen and biomass were set to an initial concentration of

62

0.000

0.025 -

0.050 -:}

depth (m)

0-100llll||l|ll|llll|llll

0.000 0.025 0.050 0.075 0.100
horizontal distance (m)

Figure 4.15: Comparison of MISER (solid lines) with a 2D analytical transport solution including first order
decay (dashed lines) at 4000 sec. Contours of normalized concentration are from left to right: 0.8, 0.6, 0.4,
0.2,0.1, and 0.01.

1.0 throughout the domain with first type boundary conditions for oxygen at x = 0.0 cm of 1.0. By using
these values for oxygen and biomass, any dependency of the solution from MISER on these terms was
eliminated. For this simulation a separate biophase was not considered and the reaction terms were directly
inserted into the aqueous phase transport equations. The close agreement of the analytical and numerical
solutions at ¢ = 4000 sec shown in Figure 4.15 indjcates that the Monod terms are being calculated and
inserted into the appropriate transport equation correctly.

A comparison was also made to the model developed by Moltz et al., [1986] for simulating microbial
growth-degradation processes in porous media where the microorganisms are primarily present in
microcolonies. Modifications were made to MISER to account for the significant differences in the way
Moltz, el al., [1986] handled oxygen usage. Their model also assumed that the transport of substrate and
electron acceptor from the pore fluid to the microcolonies may be dominated by an adjacent diffusion layer
resistance. This concept can be incorporated in MISER by the inclusion of a separate biophase with rate
limited mass transfer. However, for this comparison MISER was operated with the bioreaction terms
inserted directly into the aqueous phase transport equation (i.e., no mass transfer resistance) due to the
differences in the way mass transfer resistance is handled in the two models. The comparison presented in
Figure 4.16 is with Figure 8 from Moltz et al., [1986] and the interested reader is referred to their paper for
all pertinent biokinetic and media parameters. A “herringbone” grid similar to Figure 4.11 was used for
these simulations with 303 nodes and 400 elements. The grid was quasi one dimensional with 3 nodes in
one dimension and 101 nodes in the other dimension. In all cases, Ax = Az = 1.0 cm, the maximum
At = 0.1 day, and the convergence criteria was 1078, Given the differences between the two models the
comparison at 4 days presented in Figure 4.16 is reasonable and indicates that MISER is incorporating
nonlinear Monod-type biokinetics into the bioreaction terms.

63

Substrate concentration (ma/l)

Figure 4.16: Comparison of substrate profiles along a one dimensional column by MISER (lines) and a one
dimensional numerical solution (discrete points) for biodegradation by Moltz et al, [1986].

»»»»»»

Next the ability of MISER to simulate linear equilibrium sorption was tested. Comparisons were made with
the two dimensional analytical solution discussed in Section 4.3.2. The coefficients of the analytical
solution were modified to incorporate a solute retardation factor of 2.0. This was done by setting

D, = D, = 0.00015 cm? sec~! and v, = v, = 0.0001 cm sec™ . All the other parameters for the analytical
solution remained the same. For MISER, the parameters and domain configuration discussed in Section
4.3.2 were used with the addition of the sorption parameters K s = 1.0 and m = 1.0. The mass exchange
coefficient was set to 0.01 sec™! which was large enough to simulate equilibrium sorption processes using
the nonequilibrium formulation. The other parameters remained the same as in the previous simulations.
As can be seen in Figure 4.17, good comparisons were obtained between MISER and the analytical
solution. The slight differences between the two solutions at the 0.01 contour is consistent with a slight
deviation from equilibrium for MISER. This comparison demonstrates the capability of MISER to simulate
equilibrium exchange processes between mobile and immobile phases. When a retardation factor of 2.0
was incorporated directly into MISER, the match with the analytical solution was nearly exact (not shown).

Finally, MISER was compared with a one dimensional multicomponent organic liquid volatilization
column experiment by Bloes et al., [1989]. In this experiment benzene, TCE, and toluene were vented from
a column of glass beads by passing dry nitrogen gas through the column at a constant flow rate. No aqueous
phase was present and the NAPL was at an immobile residual saturation. A analysis of the experimental
results revealed that at the experimental flow rate, the mole fractions of the organic compounds in the gas
phase were approximately at equilibrium with the organic liquid for the duration of the experiment. For this
comparison, MISER was operated with only the gas and organic liquid phases present. All the pertinent
parameters are available in Bloes et al., [1989] and Rathfelder et al., [1991]. A “union jack” grid similar to
Figure 4.9 was used for these simulations with 271 nodes and 480 elements. The grid was quasi one
dimensional with 31 nodes in the x direction and 5 in the z direction. Ax = Az = 1.0 cm, At = 600 sec,
vy = 0.108745 cm sec™!, and the convergence criteria was 10~8. The mass transfer coefficients were set to
the arbitrarily large value of 500 sec™! and eq. (3.42) was used to limit the mass transfer coefficients to a
value sufficient to approximate equilibrium conditions. Figure 4.18 indicates that MISER can simulate
equilibrium multicomponent organic liquid volatilization validating the representation of interphase
exchange between a mobile and an immobile phase, this time for three components.

64

0.000
0.025

0.050

depth (m)

0.075 -

0'100 l LN B O | I L S L] I LI LI I LB

0.000 0.025 0.050 0.075 0.100
horizontal distance (m)

Figure 4.17: Comparison of MISER (solid lines) with a two dimensional analytical solution including linear

equilibrium sorption (dashed lines) at 4000 sec. Contours of normalized concentration are from left to ri ght:
0.8,0.6,0.4,0.2, 0.1, and 0.01.

BT Tg T g T T T T '
LJEJ EPDGEDDD g M o Benzens
E Ao TCE
o Toluene 1
benzene - model -]
————— tce - model |
......... toluene - model |

Vapor Concentration (mg/)

Time (hr)

Figure 4.18: Comparison of MISER (lines) with a one dimensional column experiment (discrete points) for
multicomponent organic liquid (benzene, TCE, toluene) volatilization under equilibrium conditions.

4.4 VERIFICATION OF THE COUPLED PHASE AND COMPONENT
MASS BALANCE SOLUTIONS

In order for the coupled flow and transport portions of MISER to represent transport processes, the phase
pressures must be correctly translated into specific fluxes. Verification of this procedure was done by using
the domain from Section 4.3.1 and running the coupled flow and transport sections of MISER with first
type pressure boundary conditions of 1.001 atm at x = 0.0 cm and 1.0 atm at x = 10.0 cm. Otherwise the

65

o2 oh

radius {m) |

Figure 4.19: Comparison of predicted solute concentrations at time 6 hrs (MISER = solid line; SWMS_2D
= dashed line).

parameter set remained the same as in Section 4.3.1. The specific fluxes generated by MISER were nearly
identical to specific fluxes calculated using,

AP,
- % Ax

Go, (4.13)

This was done in both directions.

Tests on the coupled flow equations and transport were also conducted by intermodel comparison with
SWMS_2D model [Simunek et al., 1994]. The flow domain was identical to that described in Section 4.2.2.
Water introduced through the ring-infiltrometer contains a solute at the solubility limit. This condition was
simulated with type I (constant concentration) boundary conditions on the aqueous solute. No sorption was

considered in these comparisons. Additional transport parameters are given in Section 7.4 of Simunek et
al., [1994].

Figures 4.19 and 4.20 compare predicted solute distributions from MISER and SWMS_2D. Similar
results were obtained with MISER using either element average or nodal velocity computations. Results
show that MISER predicts a slightly more disperse solute front away from the boundaries. There is,
however, relatively good agreement in the location of the center of mass of the solute front (C=0.5), and the
overall agreement is considered reasonably good, given the differences in the type of elements and material
property discretization used by the two models.

depth {m)

radius {m) ’

Figure 4.20: Comparison of predicted solute concentrations at time 12 hrs (MISER = solid line; SWMS;ZD
= dashed line).

67

Section 5

PROGRAM DESCRIPTION AND SIMULATION SETUP

5.1 CODE DESCRIPTION

MISER is structured in a top down modular format for clarity, to aid in logic tracing, and to simplify code
modification. The modular format also enables the code to be easily programmed to run in different modes
such as: (1) flow solutions only; (2) transport solutions only using a steady state flow field; (3) transport
and biodegradation solutions using a steady state flow field; and (4) full coupling of the transient flow,
transport, and biodegradation equations. The code is liberally annotated with comment lines.

MISER is developed in the FORTRAN 77 programming language with a few standard enhancements
such as ‘include’ and ‘Do-EndDo’ statements. Due to the large number of equations:-being solved and the
complexity of the solution algorithm, the code is intended to be used on work station platforms or main
frame computers. The code has been tested with, and should normally be run using double-precision real
variables.

52 PROGRAM MODULES

MISER is comprised of 25 program modules: 1 main program, 23 subroutine files, and 1 include file. Table
5.1 provides a short description of the program modules.

To implement MISER, all program modules must be compiled and linked into an executable code. A
sample make file to compile MISER on an IBM RS6000 workstation is given in Appendix F.

5.3 ARRAY DIMENSIONS AND PROGRAM VARIABLES

Named common blocks are used to dimension all global arrays and to pass information between program
modules. The variable dimensions of all global arrays are defined with parameter statements in a single
‘include’ file (dimen.inc). Most array dimensions are calculated from a combination of only a few
parameter variables, such as: the maximum number of nodes; maximum number of elements; maximum
number of components; and maximum number of material property blocks. In this way the dimensions of
most array variables can be easily adjusted by modifying only a few parameter variables in a single
program unit. These parameters should be set greater than or equal to the conditions of the problem to be
simulated. The major user defined parameter variables in ‘dimen.inc’ are listed in Table 5.2. Other
parameters in ‘dimen.inc’ include physical constants, constants related to numerical performance, and
control variables. The entire code must be compiled each time changes are made in ‘dimen.inc’.

68

A description of major program variables is given in Appendix E

5.4 DESCRIPTION OF INPUT FILES AND INPUT DATA

Table 5.3 describes all input and output files that can potentially be used in a single simulation run. A given
simulation may not generate every listed output file depending upon user specifications. Only those files
that are required on the basis of user specifications are opened.

The user supplied input data is contained in the first two input files. The first input file is named
‘miser.d1’. ‘Miser.d1’ must be located in the same directory as the executable code. The name and path of
the second input file (designated as D2 in this documentation) is defined in data block A of *miser.d1’.
Similarly, a prefix name and path for all output files is defined in data block A of ‘miser.d1’.

The input data in ‘miser.d1’ and D2 are organized into blocks identified by letters A-T. File ‘miser.d1’
contains data blocks A-L, and file D2 contains data blocks M-T. Depending on the problem conditions, all
data blocks may not be required for each simulation. The data blocks are further subdivided into fields that
are separated by comment lines designated by a ‘# in column 1. An indefinite number of comment lines
can be added between fields, however, there must be at least one. The input data are read using list directed
formatting (free format). '

The following sections provide a description of all input data and the organization of the data blocks.
Examples of input data files are shown in Appendix G.

5.4.1 Data Block A — Input/Output Files and Control Options

Input data in block A defines the names and paths of all input and output files used in a particular
simulation. Several optional output files may be generated (Table 5.3) with specified control switches
defined in block A. Table 5.4 describes all input data required in block A.

542 Data Block B — General Model Control Options

Data block B contains a number of control switches used to specify general model options, such as: the
type of computational domain; the inclusion or exclusion of flow, transport, and biotransformation
processes; and numerical solution control parameters. Table 5.5 describes all data contained in block B.

5.4.3 Data Block C — Time Step and Iteration Control Parameters

Data block C contains parameters that affect time step control, including parameters used for empirical
time step adjustment described in Section 3.10. Table 5.6 describes all data contained in block C.

5.4.4 DataBlock D — Grid Information and Control Optidns

Data block D contains the grid and element information. Input data in this block are described in Table 5.7.

69

MISER employs triangular elements to discretize the solution domain. The nodal incidence list for
each element begins at an arbitrary node and proceeds counterclockwise if the vertical coordinate is
positive downwards, or clockwise if the vertical coordinate is positive upwards. The minimum material
property block size is a quadrilateral containing two elements in the case of a herringbone grid or four
clements in the case of a union jack grid (i.e. a single triangular element cannot be designated with unique
material property information).

User options are provided to either input all nodal coordinates and elements indices, or generate a
regular grid on a rectangular solution domain. Two types of grids can be generated: a symmetric union jack
arid (e.g. Figure 4.1), or a herring bone grid (e.g. Figure 4.11). Material properties in a generated grid are
restricted to horizontal alignments (soil layers).

5.4.5 Data Block E — Component Chemical Properties

%

Data block E defines the chemical property information for all organic constituents, water, oxygen,
nitrogen, and an optional single limiting nutrient. The ordering of components is important. The organic
components are input first. Subsequently the water, oxygen, nitrogen are defined followed by the nutrient if
present. Each component is identified with a component number starting with 1 for the first organic
component and proceeding in the order that they are input. The organic components, oxygen and nutrient
can be restricted from partitioning into the gas or aqueous phases by specifying negative values for the
vapor pressure and solubility, respectively. Table 5.8 describes all data in block E. Input values required in
this data block are widely available [c.f. Dean (Ed.), 1985].

5.4.6 Data Block F — Mass Transfer Coefficients

Data block F defines the lumped mass transfer coefficients for all the components. The organic liquid mass
transfer coefficients are input first on a line followed by the minimum allowed deviation (See equation
(3.42) from equilibrium for the organic liquid components on a second line. These two lines are repeated
for water, oxygen, nitrogen, and nutrient if present. Note that exchange coefficients for nitrogen are entered
even though nitrogen does not exchange between phases. Table 5.9 describes all data in block F. The user is
referred to several recent studies which have developed correlations for mass transfer coefficients as an
initial point for setting values appropriate for the desired scenarios [c.f. Wilkins et al., 1995; Powers et al.,
1991, 1992, 1994; Cho and Jaffe, 1990]

5.4.7 Data Block G — Material Property Block Information

Soil property information and dispersion parameters are defined in data block G, and described in Table
5.10. Input values required in this data block are widely available [c.f. Freeze and Cherry, 1979].

5.4.8 Data Block H - Sorption Parameter Data

Sorption parameter data are specified in block H and are described in Table 5.11.

70

Sorption can be modeled as either a rate limited or equilibrium process. If rate limited sorption is
modeled, then the solid phase transport equations must be solved as designated by the control switch
letrl(25) defined in block B, field 2. Under rate limited conditions, sorption can be modeled with either a
single compartment or two compartment model. The two compartment model, however, is restricted to the
case of a homogeneous soil domain and a single component organic liquid. Additionally, the aqueous-solid
exchange coefficients must be nonzero for all organic liquid components. A positive value indicates
sorption is modeled for that organic component. A negative value indicates no sorption is considered for
that organic component and therefore the solid phase transport equation is not solved for the corresponding
component.

Equilibrium sorption processes are modeled by the inclusion of retardation factors. Equilibrium
sorption can only be considered in the absence of nonequilibrium sorptive processes. However, any
component of the aqueous phase can be modeled with retardation. To implement the use of retardation
factors the control switch Ictrl(25) must be set to .false., indicating that the solid phase transport equations
are not solved. Sorption isotherm data is widely available in the literature [c.f. Weber et al., 1988, 1991,
1992].

5.4.9 Data Block I — Biological Parameter Data

Biological parameter data are specified in block I and are described in Table 5.12. This data block is read
only if the biotransformation equations are solved, as indicated by the control switch lctrl(3) deﬁned in
block B, field 2. Otherwise the entire block is omitted.

Five options are available to model biokinetics. Option 1 is standard Monod kinetics. Option 2 is
Monod kinetics with substrate inhibition. Inhibition is modeled with hyperbolic functions that impede
microbial metabolism when substrate or nutrient concentrations are greater than specified threshold limits.
Inhibition can also be applied to the electron acceptor, in which case inhibition occurs when the oxygen
concentration is below the specified threshold limit. Option 3 is Monod kinetics with lumped substrate
inhibition. Under this option lumping only applies to the degradable substrates; nutrient and oxygen are
handled as in option 2. Option 4 is Monod kinetics with saturation dependency Option 5 is Monod kinetics
- with saturation dependency and substrate inhibition. Inhibition is handled as in option 2. The user is
referred to several recent studies as a aid to determining the appropriate parameters required by this data
block [c.f. Sleep and Sykes, 1991; Chen et al., 1992; Fuller et al., 1995; Chen, 1996].

5.4.10 Data Block J — Phase Parameter Data

Phase parameter data are specified in block J and are described in Table 5.13. On output, the composition
of each phase is identified. Phase parameter data can be found in standard reference texts [c.f. Dean (Ed.),
1985].

5.4.11 DataBlock K - TemperaturerParameter Data

Temperature parameter data are specified in block K and are described in Table 5.14.

Steady state temperature distributions can be specified as either uniform or nonuniform with depth. The

71

latter option can be used only for rectangular domains, and requires input not only for the depth dependent
temperature distribution, but additionally requires the temperature dependencies of the following 6
parameters: vapor pressure, vapor viscosity, Henry’s Law constant, aqueous solybility, maximum substrate
utilization rate, and biomass decay rate. Values for the first 5 temperature dependencies are required for all
components present in a given simulation (Note: values may be required for components to which a given
parameter does not apply, i.e. maximum substrate utilization rate for nitrogen. These values are ignored
subsequent to the input section). Values for the temperature dependent parameters are input for each node
along the vertical boundary. Intermediate values are linearly interpolated for the nodes at the center of
“union jack” grids. The user is referred to Dean (Ed.) [1985] for a description of the temperature
dependencies for the first 4 parameters input in this section. Biological parameter temperature
dependencies are typically estimated with the van’t Hoff- Arrhenius equation [c.f. Atlas and Bartha, 1987,
Chen et al., 1992].

5.4.12 Data Block L. — Output Control Parameters

This data block contains control parameters for the three major output files: ‘outpre.out’, ‘outpre.con’, and

‘outpre.plt’, where ‘outpre’ is the user specified path and file name from data block A, field 2. The user can
specify output variables for printing in the main output file, for printing in a contour plot format, or for
printing as a time series output. A complete description of the input required in this data block is described
in Table 5.15.

5.4.13 Data Block M — Restart Identifier

This data block contains two logical variables; (lctrl(26)) which is set to .true. if initial conditions (pressure,
saturation, and phase composition) are to be read from the restart file and (lctrl(32)) which is set to .true. if
the run is a continuation of a previous run and .false. if the run is a new run using the previous run as initial
conditions. If (lctrl(26)) is .true. data block M also contains the path and name of the file containing the
restart information.

File D2 is read regardless of whether the restart option is used. However, when the restart option is
specified, initial conditions read from D2 are ignored and superseded by those read from the restart file.
Boundary conditions for either case are read from D2.

5.4.14 Data Block N — Initial Pressure Conditions

Initial pressure conditions are specified in block N as described in Table 5.17. Initial pressure conditions at
all nodes can either be input or computed. Computed pressures are assumed to be in hydrostatic
equilibrium, referenced to atmospheric pressure at ground surface for the gas phase, and referenced to the
gas phase pressure at the water table for the aqueous phase. The presence of organic components in the gas
and aqueous phases is ignored in computing the hydrostatic pressure distributions.

72

5.4.15 Data Block O — Velocity Computation

This data block provides information indicating the method used to compute aqueous and gas phase
velocity. Table 5.18 describes all data inputs in block O.

User options are provided to compute nodal velocities from the pressure distribution using a finite
element solution of Darcy’s Law. Alternatively element velocities may be computed directly from Darcy’s
Law using element averages of the nodal mobilities and densities.

Velocity distributions can be unsteady (flow equations are solved) or assumed to be at steady state. This
is controlled by variable Ictrl(1) in block B, field 1 (Table 5.5), which indicates if the flow equations are
solved. The velocity field is assumed to be at steady state if flow equations are not solved. A steady state
velocity field can either be input directly, or computed from an input pressure field.

5.4.16 Data Block P - Organic Liquid Saturation and Composition

Data block P contains the initial quantities for the immobile organic liquid saturation distribution and
composition (component mole fractions). All organic liquid saturations and component mole fractions are
input on a element basis and converted to nodal quantities by averaging adjacent elemental values.
Averaging is not performed across boundaries between different material property blocks. This results in
multiple values of NAPL saturation at boundary nodes between different material property blocks.
Components of the organic liquid are partitioned at equilibrium into the gas, aqueous, solid, and biophases
when present. The mass of the organic liquid is not conserved during this process (i.e. organic mass is
generated). This is only done at nodes where organic liquid is present and can lead to sharp discontinuities
in the composition of the contacting phases. The use of smooth initial conditions such as those resulting
from a restart file generated by a diffusion driven problem is recommended. Table 5.19 describes all data
inputs in block P.

5.4.17 Data Block Q — Oxygen and Nutrient Initial Conditions

Initial conditions for oxygen and nuttient are defined in data block Q and described in Table 5.20. Fields
1-3 are for the gas phase, and fields 4-6 are for the aqueous phase. The initial conditions of the biophase
components are identical to those of the aqueous phase. Initial conditions are required only when oxygen is
present in the phase; i.e. if oxygen is omitted from the gas phase and/or the aqueous phase, then no data is
read for the corresponding phase (oxygen can be omitted from the gas and aqueous phases by assigning
negative inputs to the oxygen vapor pressure and solubility, respectively, in block E). No data is read for
nutrient if it is absent (Ictrl(9) = .false.). The biodegradation equations must be solved (letrl(3) = .true.) in
order for nutrient to be present. When water is present in the gas phase the initial conditions are specified
with a relative humidity of 100%.

5.4.18 Data Block R - Boundary Conditions

Boundary conditions for the flow and transport equations are defined in data block R and described in Table
5.21.

73

Boundary conditions on the flow field can be either constant pressure or constant flux (Section 3.11.1).
Boundary conditions at nodes not explicitly specified in data block R are treated as second type with no
flow across the boundary. Boundary conditions arising at an injection/extraction well discussed below are
also implemented through flux source/sink terms (Section 3.11.3).

Boundary conditions for the gas and aquéous phase component transport equations include specified
concentration, specified diffusive flux, or mixed third type conditions. Boundaty conditions at nodes not
explicitly specified in data block R are treated as second type with no concentration gradient across the
boundary. No boundary information is required for the immobile phases. Sections 3.11.2 and 3.1 1.3
discuss the transport equation boundary and associated specifications with extraction/injection wells.

5.4.19 Data Block S — Extraction/Injection Well Conditions

An extraction/injection can be defined in an r-z rectangular domain. Data block S contains input data
defining the well conditions (see Table 5.22). The well is positioned along the left vertical boundary; the
nodal coordinates along the left boundary must be equivalent to the specified well radius. A constant
injection/extraction rate is defined for the duration of the simulation (variable pumping rates require the use
of the restart option). The well screen is defined by specifying the minimum and maximum node numbers
along the well screen.

5.4.20 Data Block T - Velocity Boundary Conditions

Data block T contains input data defining the velocity boundary conditions (see Table 5.23). Boundary
conditions for the gas and aqueous velocities must be specified when the velocities are calculated using the
finite element method (Ictrl(18) = .true.). When a boundary is specified as impervious, the velocities
normal to that boundary are zero. The boundary specification is the same for both the gas and aqueous
phases. The domain boundary is divided into 4 sections; top, bottom, left side, and right side. Each section
may be entirely impervious. The top boundary may also be partially impervious (i.e. a partial cap may
exist). The left boundary is adjusted for the presence of a well.

5.5 DESCRIPTION OF OUTPUT FILES

Table 5.3 describes all the output files that can potentially be used in a single simulation run. A given
simulation may not generate every listed output file depending upon user specifications. Only those files
that are required on the basis of user specifications are opened. The following sections provide a
description of the output files.

5.5.1 Main Output File - ‘Outpre.out’

The main output file, ‘Outpre.out’, is always generated and is written to device 21. ‘Outpre’ contains both
the file name and path, and is specified in data block A, Field 1. ‘Outpre.out’ contains the input parameters
and selected output variables. The user may elect not to print out the entire set of grid information (see Data

74

Block D, Field 1) and the initial conditions (see Data Block L., Field I) in order to reduce output file size.
The selected output parameters are printed at user specified intervals (see Data Block A, Field 8). The
selected output variables are specified in Data Block L, Field 2. Selection of the individual components in a

phase is done with the global component numbers used to specify the component properties in Data Block
E. '

5.5.2 Convergence History and Runtime Information Output File - ‘Outpre.cnv’

The convergence history and runtime information output file is optional. This output can be directed to the
screen by setting the ipt(28) = 6 (Data Block A, Field 3), to ‘outpre.out’ by setting ipt(28) = 21, to
‘outpre.cnv’ by setting ipt(28) = 23, or not generated by setting ipt(28) = 0. Convergence hi‘story and
runtime information output consists of iteration information from the various routines, maximum element
Peclet and Courant numbers for both the gas and aqueous phases (set Ictcl(4) = .true.; Data Block B, Field
7), time step information, and error messages from the solver.

5.5.3 Error Message Output File - ‘Outpre.err’

Error message output consists of messages from the input error message file, (specified in Data block A,
Field 2) and relates primarily to error checking of input values. The error message output file is optional.
This output can be directed to the screen by setting ipt(29) = 6 (Data Block A, Field 3), to ‘outpre.out’ by
setting ipt(29) = 21, to ‘outpre.err’ by setting ipt(29) = 22, or not generated by setting ipt(29) = 0.

5.5.4 Mass Balance Output File - ‘Outpre.mb’

The mass balance output file is optional and is generated when lprnt(6) = .true. (Data Block A, Field 5).
When generated, mass balance output is always written to the file, ‘outpre.mb’ (device 25). The mass
balance outptit is printed at user specified intervals (see Data Block A, Field 5). Mass balance output is
available in two forms, referred to as report form (Ipmt(27) = .true.; Data Block A, Field 5), and in multiple
files as time series form (Ipmt(27) = .false.; Data Block A, Field 5).

The report form mass balance contains self explanatory headings and contains both phase and
component mass balances. The boundary, reaction, and source fluxes are also reported, along with separate
values for the boundary fluxes at the surface and at the extraction well. Three types of mass balance errors
are also reported (see Section 4.1). A maximum of nine components are allowed when generating report
form mass balance output.

The time series form mass balance also contains self explanatory headings at the beginning of the -
generated output file(s). ‘Outpre.mb’ only contains the phase mass balance information. Only the first type
mass balance error is reported (see Section 4.1) and surface flux is not reported in ‘outpre.mb’. An
additional output file is generated for each of the components present. These additional files are named
‘outpre.mb#’ (device 28+#) where # is the global component number as defined in data block E. A
maximum of ten components are allowed when generating time series form mass balance output. In the
files, ‘outpre.mb#’, the surface flux is reported in place of the first type mass balance error. All time series
mass balance output files are formatted: e11.5,11e11.4.

75

5.5.5 Contour Plot Output File - ‘Outpre.con’

The contour plot output file is optional and is generated when Iprnt(23) = .true. (Data Block A, Field 4).
When generated, contour plot output is written to the file ‘outpre.con’ (device 26). The contour plot output
is printed at the same intervals specified for the main output file (see Data Block A, Field 8). The selected
contour variables are specified in Data Block L, Field 2 and may be different than the output variables
selected for the main output file, ‘outpre.out’. Selection of the individual components in a phase is done
with the global component numbers used to specify the component properties in Data Block E. The contour
plot file contains self explanatory headings at the beginning of each group of contour variables. Each group
of nodal contour variables has the nodal x (or r) location in the first column and the nodal z location in the
second column. For element contour variables the corresponding locations are for the element centroids. -
All contour plot output files are formatted: 8e15.8.

5.5.6 Time Series Plot Output File - ‘Outpre.plt’

The time series plot output file is optional and is generated when Iprnt(15) = .true. (Data Block A, Field 6).
When generated, time series plot output is always written to the file, ’outpre.plt’ (device 27). The time
series plot output is printed at user specified intervals (see Data Block A, Field 6). The selected time series
plot variables are specified in Data Block L, Field 3 (gas phase) and 4 (aqueous phase). Time series
plotting is only available for components of the gas and aqueous phases. Specification of time series plot
output requires both the global component numbers used to specify the component properties in Data Block
E and a node number. A given component may be specified at several locations in a phase. A maximum of
six components can be specified for the combined gas and aqueous phases. The time series plot file does
not contain headings. All time series plot output files are formatted: 7e11.8. The first column contains the
current simulation time in seconds, subsequent columns contain the component mole fractions at the
specified locations in order of their appearance in Data Block L, Field 3 and 4.

5.5.7 Restart Output File - ‘Outpre.rst’

The restart output file is optional and is generated when Ipmt(5) = .true. (Data Block A, Field 7). When
generated, the restart file is always written to the file, ‘outpre.rst’ (device 28). The restart file is printed at
the same intervals specified for the main output file (see Data Block A, Field 8). At each print time the
restart file is rewound and restart information is printed over restart output from the previous print time.
Thus ‘outpre.rst’ contains only restart information corresponding to the latest output time. To use a restart
file, rename ’outpre.rst’ to the name specified in Data Block M, Field 2.

76

Table 5.1: MISER program modules.

Routine

Type

Description

atri.f
beflux.f
bio.f
cbal.f
commnt.f
dimen.inc
disper.f
error.f
flow.f
grid.f
har.f

inputl.f

input2.f

miser.f
mobil.f
molewt.f

mpex.f

napls.f

subroutine
subroutine
subroutine ’
subroutine
subroutine
include file
subroutine
subroutine
subroutine
subroutine
subroutine

subroutine

subroutine

main program

subroutine

subroutine

subroutine

subroutine

Evaluates the area and radial centroid of all elements. Performs minor
error checking on grid geometry.

Computes gas and aqueous phase fluxes at prescribed pressure and source
nodes.

Computes the biological reaction terms using Monod kinetics. Solves the
biophase transport equations when a separate biophase is considered.
Computes global and time step mass balance errors for the aqueous and
gas phases, and for all components in all phases.

Determines comment lines in the input data files and positions the file
pointer to the next input data field.

Included in most MISER routines, this program unit is used to define
parameter variables for array dimensions.

Computes the phase dependent portion of the tortuosity coefficient and
the dispersion tensor.

Reads and writes error message from the error message file. Terminates
execution if the error is designated as fatal.

Solves the mobile aqueous and gas phase mass balance equations using
the simultaneously solution method for a single time step.

Generates a union jack or herring bone grid for a rectangular solution
domain.

Contains the subroutines comprising the Harwell sparse matrix package
for linear system solutions.

Reads the input and output file names and opens appropriate file units.
Reads input data for: model control options; time step and iteration con-
trol information; grid information; component chemical properties; mass
exchange information; material property block data; sorption parameters;
biological parameters; temperature data; and output control parameters.
Creates pointers and performs basic error checking on input data.

Reads the initial and boundary conditions and performs basic error check-
ing of input data. Reads restart information.

Performs primary controls of simulation: initiates the read of all input
data; loops over all time steps; controls cycling between calls to appro-
priate routines for solution of the flow and transport equations; controls
time step size; and controls calls to output routines.

Evaluates capacity coefficients, and aqueous and gas phase mobility terms
in stacked storage.

Updates the gas, aqueous, and organic liquid phase molecular weight,
phase molar density, and phase mass density, based on composition, tem-
perature and pressure. ‘

Computes the mole and mass exchange terms for the flow and transport
routines.

Updates the immobile organic liquid saturation using the finite element
solution of the organic liquid phase mass balance equation.

77

Table 5.1 (continued).

Routine

Type

Description

naplx.f

prat.f
satw.f
solid.f
tlhs.f

trans.f

vel.f

subroutine

subroutine
subroutine
subroutine
subroutine

subroutine

subroutine

Updates the immobile organic liquid component mole fractions using the
finite element solution of the component molar balance equation for the
organic liquid phase.

Writes current values of selected variables to the main output, contour
plot, or time series plot files.

Computes water and gas saturation at all nodes based on current values
of nodal capillary pressure.

Updates the solid phase mass loadings usmg the finite element solution
of the component mass balance equation for the solid phase.

Assembles the finite element matrices for the two dimensional component
mole balance equations. *

Controls the sequential solution of the component molar balance equa-
tions for all components in all phases. The solution order is: the organic
components, water, oxygen and nutrient. For each component the solu-
tion order is: biophase; gas phase, aqueous phase, organic liquid phase;
and solid phase.

Computes the mobile phase specific discharge. This routine is not called
when constant velocity simulations are being run.

78

Table 5.2: Selected parameter variables defined in the include file ‘dimen.inc.’

Type Variable Description

integer nnmx Maximum number of nodes.

integer nelmx Maximum number of elements.

integer nmblk Maximum number of material property blocks.

integer nxmax Maximum number of horizontal blocks in a generated grid.

integer nzmax Maximum number of vertical blocks in a generated grid.

integer ncmpb Maximum number of biomass populations, Currently restricted to one.

integer ncmpo Maximum number of organic components.

integer ncmp Maximum number of components; 3(a1ways) + ncmpb + ncmpo + 1(f nutrient is
present).

integer nnstk Maximum number of nodal variables in stacked storage. Currently computed as
1.05*nnmx.

integer nsolve Maximum number of unknowns in the linear system. Currently set to 2*nnmx.

integer icnl Maximum number of nonzero entries in the coefficient matrix.

integer irnl Maximum number of nonzero entries in the coefficient matrix.

real stwmin ~ Minimum difference between the specified residual aqueous phase saturation and
the computed aqueous phase saturation. Currently set to 10716,

real sgtest Minimum value of gas phase saturation for which a transport equation is written.
Currently set to 0.05.

real u Solver parameter. Currently set to 0.1.

integer mtype . Solver parameter. Currently set to 1.

real xmino Minimum mole fraction for convergence testing in the routine naplx.f. Currently
set to 1073,

real xround Minimum mole fraction for convergence testing. Currently set to 10716,

real smino Minimum sustainable organic liquid saturation. Currently set to 10~16.

79

Table 5.3: Description of input and output files.

File name input/output Unit Description

miser.dl input 11 Contains user supplied input data for the model control options,
grid information, and the physical, chemical, and biological
parameters. '

D2* input 13 Contains user supplied input data defining the initial and bound-
ary conditions.

miser.error input 14 Data file containing error and warning messages.

restart.filet input 28 A restart input file, Contains restart information necessary to

either continue a terminated run or to use results from a previous
simulation as the initial conditions for a new run. This file is a
renamed copy of ‘outpre.rst” generated as output

outpref.out output 21 Main output file containing: a listing of most input variables; a
description of boundary and initial conditions; simulation results
for specified variables at selected times.

outpre.cnv output 23 Listing of convergence history and runtime performance.

outpre.err output 22 Listing of runtime generated error and warning messages.

outpre.mb output 25 Listing of runtime generated global mass balance calculations.

outpre.con output 24 A contour plot data file. Lists values of selected variables at.
specified times together with their nodal coordinates in a column
format.

outpre.plt output 26 A time series plot data file. Lists values of selected variables for
each time step.

outpre.rst output 27 A restart output file generated at the end of the simulation. Con-

tains restart information necessary to either continue a termi-
nated run or to use results from a previous simulation as the
initial conditions for a new run.

* input file name is a user defined input variable and can contain path information
T ‘restart.file’ for the input restart file is a user defined input variable and can contain path information
¥ prefix "outpre’ for all output file names is a user defined input variable and can contain path information

80

Table 5.4: Input Data in Block A — Input/Output Files and Control Options.

Record Type Variable Description

Field I - Input files:

1 char*20 infile(2) Path and name of file D2 containing the initial and boundary conditions
(must be in single quotes).

2 char*20 infile(3) Path and name of error message file (must be in single quotes). Normally the

file is named ‘miser.error’ and is located in the directory with the executable
code. ‘

Field 2 - Prefix name of all output files:

1 char*16 outpre

Path and prefix name for all output files (must be in single quotes); e.g. if
outpre is defined as ‘vent’, then the main output file is named ‘vent.out’.

Field 3 - Output unit numbers for error and performance information:

1 integer ipt(29)

2 integer

ipt(28)

Field 4 - Contour plot file:

1 logical letrl(23)
Field 5 - Mass Balance Output:
1 logical Iprnt(6)
2 logical Iprnt(25)
3 logical Iprnt(27)
4 integer ipt(83)
real t(27)

Field 6 - Time series output file:

1 logical letrl(15)

The unit number of the output file to which error messages should be directed:
0 = do not print error messages; 6 =screen; 21 = main output file; or 22 =
error message file. The file ‘outpre.err’ is opened when unit number 22 is
specified. ‘

The unit number of the output file to which runtime performance information
should be directed: 0 = do not print performance information; 6 = screen;
21 = main output file; or 23 = convergence history file. The file ‘outpre.cnv’
is opened when unit number 23 is specified.

Set the switch to .true. to open the contour plot output data file ‘outpre.con’.

v

Set the switch to .true. if material balance information should be computed
and printed in the output file ‘outpre.mb’.

This record begins on a new line ard is required only if lprnt(6) is .true.
Set this switch to .true. if the print interval for material balance output is set
by the number of iterations. Otherwise set the switch to .false. if the print
interval is a constant time interval.

This record is required only if lprnt(6) is .true. Set this switch to .true. if
the material balance output is in report form, otherwise the output will be in
multiple files in time series form.

This record begins on a new line and is required only if Iprnt(6) is .true. Enter
the number of iterations if Iprnt(25) = .true., or the time interval if Iprnt(25)
= .faise. (s).

Switch is set to .true. to open the time series plot output data file ‘outpre.plt’.

81

Table 5.4 (continued).

Record Type Variable

Description

2 logical Iprnt(26)

3 logical Iprnt(28)

4 integer ipt(84)
real t(28)

Field 7 - Restart file:

This record begins on a new line and is required only if Ictrl(15) is .true. Set
this switchi to .true. if the print interval for timie seriés outpuf is set by the
number of iterations. Otherwise set the switch to .false. if the print interval is
a constant time interval.

This record is required only if letrl(15) is .true. A logical switch indicating
the concentration units in the time series output: set to .true. for mole fraction;
otherwise set to .false. for mass concentration.

This record begins on a new line and is required only if Ictrl(15) is .true. Enter
the number of iterations if lprnt(26) = .true., ot the time interval if Iprnt(26) =
false. (s).

Switch is set to .true. to open and print restart data to the file ‘outpre.rst’.

Field 8 - Uniform print interval to the main output file:

1 logical fetrl(5)

1 logical lprnt(0)

2 integer ipt(25)
real t(12)

Set this switch to .true. if the print interval for MISER output to the main
output file ‘outpre.out’ is set by the number of iterations. Otherwise set the
switch to .false. indicating the print interval is a constant time interval.

This record begins on a new line. Enter the number of iterations if Iprnt(0) =
.true., or the time interval if lprnt(25) = .false. (s).

82

Table 5.5: Input Data in Block B — General Model Control Options.

Record Type Variable Description

Field I - Coordinate system:

1 integer ipt(27) Variable designating the coordinate system: 0 = cross-sectional (x-z); 1 =
axisymmetric (r-z).

2 real t(21) Horizontal component of the gravity vector (m / s%).

3 real t(22) . Vertical component of the gravity vector (m / s2).

Field 2 - Equation solution options: '

1 logical letrl(1) Switch is set to .true. if the aqueous and gas phase mass balance equations are
to be solved.

2 logical lctrl(2) Switchis set to .true. if the component mass balance equations are to be solved.

3 logical lctrl(24) Switch is set to .true. if the NAPL phase mass balance equations are to be
solved. Set to .false. if NAPL is absent.

4 logical letrl(25) Switchis setto .true. if the solid phase mass balance equations are to be solved.
Set to .false. if equilibrium sorption or no sorption is considered .

5 logical Ictrl(3) Switch is set to .true. if the biotransformation equations are to be solved. Set

to .false. if biotransformations are not considered.

Field 3 - Mass lumping options:

1 logical Ictrl(7) Switch is set to .true. for mass matrix lumping in the solution of the phase
mass balance equations.
2 logical Ictrl(8) Switch is set to .true. for mass matrix lumping in the solution of the component

mass balance equations.

Field 4 - Flow solution skipping:

1 integer ipt(85) Number of time steps to be skipped between solutions of the phase phase mass
balance equations. For example if the flow equations are to be solved every
other time step, then a skipping factor of 1 is specified.

Field 5 - Not currently used:

Field 6 - é?oupling between flow and transport:
1 logical lctri(14) Switch is set to .true. if mass exchange terms should be included in the solution
of the flow equations.

Field 7 - Element dimensionless numbers:
1 logical lctrl(4) Switch is set to .true. if element dimensionless numbers should be calculated
for the transport solution.

83

Table 5.6: Input Data Block C — Time Step and Iteration Control Information.

Record Type Variable Description

Field 1 - Simulation time frame: ¢

1 real t(1) Initial simulation time (s). B

2 real ¥(2) Final simulation time (s). k

Field 2 - Time weighting:

1 real t(10) Time weighting parameter: 0 = explicit; 1 = implicit; 0.5 = Crank-Nicolson.

Field 3 - Number of time steps:

1 integer ipt(30) Maximum number of time steps.

Field 4 - Convergence tolerance: l

1 real t(13) Convergence tolerance in the solution of thé phase mass balance equations.

2 real t(14) Convergence tolerance in the solution of the component mass balance equa-
tions for the mobile phases (aqueous and gas).

3 real t(15) Convergence tolerance in the solution of the organic phase saturation
equations.

4 real t(16) Convergence tolerance in the solution of the component mass balance equa-

tions for the immobile phases.

Field 5 - Time step range:

1 real t(3) Initial time step (s).

2 real t(4) Minimum time step (s).

3 real t(5) Maximum time step (s).

Field 6 - Iterations for convergence:

1 integer ipt(31) Maximum number of iterations for convergence of the phase mass balance
equations. :

2 integer ipt(32) Maximum number of iterations for convergence of the component balance
equations.

3 integer ipt(33) Maximum number of iterations for convergence of the organic phase saturation
equations.

Field 7 - Iterations for time step amplification:

1 integer ipt(34) Number of iterations in the solution of the phase mass balance equations below
which time step amplification is permissible. Must be less than the maximum
number of iterations - ipt(31).

2 integer ipt(35) Number of iterations in the solution of the component mass balance equations
below which time step amplification is permissible. Must be less than the
maximum number of iterations - ipt(32).

Field 8 - Time step multiplications factors:
1 real t(6) Empirical time step amplification factor. Must be greater than or equal to one.
2 integer t(7) Empirical time step reduction factor. Must be less than or equal to one.

84

Table 5.7: Input Data Block D — Grid Information and Control Options Information.

Record Type Variable Description

Field 1 - Output grid geometry:

1 logical lprnt(1) Set switch to .true. to output all grid geometry to the main output file.

Field 2 - Grid specification options:

1 integer igrid Integer variable indicating if a grid should be generated: 0 = input all element

numbers and nodal coordinates; 1 = generate a union jack grid; 2 = generate
herring bone grid.

Field 3 - Number of blocks in the generated grid (required only if igrid > 0):

1 integer nx Number of blocks in the horizontal direction of the generated grid.

2 integer ny Number of blocks in the vertical direction of the generated grid.

Field 4 - Horizontal Block spacing in the generated grid (required only if igrid > 0):

1 logical 1del Set to .true. if the horizontal spacing is uniform.

2 real XZero Horizontal coordinate of the left boundary. This should be equal to the well
radius in an axial symmetric domain.

3 real delx Starting on a new line, enter the horizontal spacings (m) from left to right.

Provide a single value if Idel = .true., otherwise provide nx values. If a single
negative value is provided then the nodal spacing is calculated from eq. (4.12).

Field 5 - Vertical Block spacing in generated grid (required only if igrid > 0):

1 logical Idel Set to .true. if the vertical spacing is uniform.
2 real Zzero Vertical coordinate of the top boundary.
3 real delz Starting on a new line, enter of the vertical spacings (m) from top to bottom.

Provide a single value if 1del = .true., otherwise provide nz values.

Field 6 - Material property blocks in the generated grid (required only if igrid > 0):

1 integer ipt(26) Number of horizontally aligned material property blocks in the generated grid.

2 integer imblk Required if the ipt(26) > 1. Starting on a new line enter nz integer values
corresponding to the material block number of each vertical spacing from top
to bottom.

Field 7 - Grid dimensions (required only if igrid = 0):

1 integer ipt(Q) Number of nodes in the grid.
2 integer ipt(1) Number of elements in the grid.
3 integer ipt(26) Number of material property blocks in the grid.

Field 8 - Nodal incidence list (required only if igrid = 0):

1 integer iel element number.

2 integer nodal(3*iel-2) Global node number of node 1.

3 integer nodal(3*iel-1) Global node number of node 2.

4 integer nodal(3*iel) Global node number of node 3.

5 integer matel(iel) Material block number of element iel. Only required if ipt(26) # 1.

Field 8 is repeated for all elements, with data for each element beginning on
a new line. The elements do not need to be listed in sequential order.

Field 9 - Nodal coordinates (required only if igrid = 0):

1 integer ind Node number.
2 real xnode(ind) x~-coordinate (horizontal) of node ind (m).
3 real znode(ind) z-coordinate (vertical) of node ind (m).

Field 9 is repeated for all nodes, with data for each node beginning on a new
line. The nodes do not need to be listed in sequential order.

85

Table 5.8: Input Data Block E — Component Chemical Properties.

Record Type Variable Description

Field 1 - Number of NAPL components:
1 integer ipt(15) Enter the number of organic liquid phase components.

Field 2 - NAPL component chemical properties (required only if ipt(15) > 0):

integer ic Component number - must range between 1 and ipt(15).

char*10 cnamef(ic) Component name ~ must be enter in single quotes.

real cmw(ic) Component molecular weight (g / mole).

real cvp(ic) Component vapor pressure (atm). A negative value indicates this component
in involatile and is excluded from the gas phase composition.

real cvvis(ic) Component vapor viscosity (cPoise).

real cden(ic) Component liquid density (g/ 1).

real cmdif(2*ic-1) Component gas diffusivity (cm?/ s).

real cmdif(2*ic) Component aqueous diffusivity (cm?/s).

real chen(ic) Component Henry’s Law constant (atm 1/ g). Not currently used.

real casol(ic) Component aqueous solubility (g/1). A negative value indicates this compo-
nent in insoluble and is excluded from the aqueous phase composition.
Field 2 is repeated for all components in the organic liquid phase. Data for
each component must begin on a new line.

Field 3 - Chemical property data for water;, oxygen, and nitrogen:
1-10 - - Provide the same 10 data inputs described in field 2 above for water, oxygen,
and nitrogen. The input order and component numbers are fixed: water =

ipt(15)+1; oxygen = ipt(15)+2; and nitrogen = ipt(15)+3.
Field -4 - Nutrient inclusion:
1 logical letrl(9) Set to .true. if a nutrient is to be modeled.

Field 5 - Nutrient chemical properties (required only if lctrl(9) = .true.):
1-10 - - Provide the same 10 data inputs described in field 2 for the nutrient component.
The component number for nutrient must equal ipt(15)+4.

Table 5.9: Input Data Block F — Mass Transfer Coefficients.

Record Type

Variable

Description

Field 1 - Interphase mass exchange coefficients and minimum deviations from equilibrium:

1 integer
2 real
3 real
4 real
5 real
6 real
7 integer
8 real
9 real
10 real
11 real
12 real

ic
kex(5*ic-4)
kex(5*ic-3)
kex(5*ic-2)
kex(5*ic-1)
kex(5*ic)
ic

kmax(5*ic-4)
kmax(5*ic-3)
kmax(5%ic-2)
kmax(5*ic-1)
kmax(5*ic)

Component number as defined in data block E.

Aqueous/gas mass exchange coefficient (sec™!).

Aqueous/NAPL mass exchange coefficient (sec™!).

Gas/NAPL mass exchange coefficient (sec™1).

Aqueous/biophase mass exchange coefficient (sec™!).

Aqueous/solid mass exchange coefficient (sec™).

Component number as defined in data block E. This record must start on a
new line. - :

Aqueous/gas minimum deviation from equilibrium.

Aqueous/NAPL minimum deviation from equilibrium.

Gas/NAPL minimum deviation from equilibrium.

Aqueous/biophase minimum deviation from equilibrium.

Aqueous/solid minimum deviation from equilibrium.

Field 1 is repeated for all components. Data for each component must be
separated by at least one comment line. When a component aqueous-solid
mass transfer coefficient is defined to be zero, that component is not present
in the solid phase. A negative value of the aqueous-solid mass exchange
coefficient indicates that the Freundlich Ky = f,c * Kinput where foc is

defined in bfoc and X input is defined in bok.

87

Table 5.10: Input Data Block G — Material Property Block Information.

Record Type Variable Description

Field 1 - Soil physical properties:

1 integer iblk Material property block number - must range between 1 and ipt(26).
2 real bphi(iblk) Porosity (-).

3 real bpermh(iblk) Horizontal component of intrinsic permeability (m?).

4 real bpermv(iblk) Vertical component of intrinsic permeability (m?).

5 real bsden(iblk) Bulk soil density (g / cm?).

6 real bfoc(iblk) Solid phase organic carbon fraction.

Field 1 is repeated for all material property blocks. Data for each'block must
start on a new line.

Field 2 - Water retention parameters:

1 integer iblk Material property block number - must range between 1 and ipt(26).

2 real bsrw(iblk) Residual water saturation (-).

3 real bvgn(iblk) ‘n’ parameter of the van Genuchten fitting function for air/water retention data.

4 real bvga(iblk) ‘o’ parameter of the van Genuchten fitting function for air/water retention data
(Pa~h).

Field 2 is repeated for all material property blocks. Data for each block must
start on a new line.

Field 3 - Dispersion parameters:

1 integer iblk Material property block number -~ must range between 1 and ipt(26).
2 real bdisl(ibik) Longitudinal dispersivity (m).

3 real bdist(iblk) Transverse dispersivity (m).
: Field 3 is repeated for all material property blocks. Data for each block must
start on a new line. ‘ :

Field 4 - Dispersion tensor computation:

1 logical lctrl(21) Set to .true. if the dispersion tensor should be calculated as a function of the
dispersivities and velocity distribution. Enter .false. if a constant dispersion
tensor is to be input.

Field 4 - Dispersion tensor (required only if lctrl(21) = .false.):

1 integer ic Component number as defined in data block E.

2 real d(8*ic-7) D!, - dispersion coefficient of component ic in the gas phase (m?/s).

3 real d(8*ic-6) Dh - dispersion coefficient of component ic in the gas phase (m?/s).

4 real d(8*ic-5) Dh - dispersion coefficient of component ic in the gas phase (m?/s).

5 real d(8*ic-4) D*“y dispersion coefficient of component ic in the gas phase (m?/s).

6 integer ic Component number as defined in data block E. This record must start on a
new line.

7 real d(8%ic-7) Dh - dispersion coefficient of component ic in the aqueous phase (m*/s).

8 real d(8*ic-6) - dispersion coefficient of component ic in the aqueous phase (m?/s).

9 real d(8*ic-5) Dh - dispersion coefficient of component ic in the aqueous phase (m?/s).

10 real d(8*ic-4) Dh - dispersion coefficient of component ic in the aqueous phase (m?/s).

Fleld 4 is repeated for all components. Data for each component must be
separated by at least one comment line.

88

Table 5.11: Input Data Block H — Sorption Parameter Data.

Record Type Variable Description

Field 1 - Sorption Model (required if lctrl(25) = .true.):

1 logical lctrl(19) Set to .true. if a two compartment sorption model is used (can only be used
under conditions of a homogeneous soil domain and a single component or-
ganic liquid). Set to .false. if sorption is modeled with a single compartment

model.

Field 2 - Two compartment sorption parameters (required if lctrl(25) = .true. and lctrl(19) = .true.):

1 real xbok Multiplier to convert the slow compartment value of & ; defined in bok to the
fast compartment value.,

2 real xbom Multiplier to convert the slow compartment value of defined in bom to the
fast compartment value.

3 real xkex Multiplier to convert the slow compartment value of of the exchange coefficient
to the fast compartment value.

4 real xden Mass fraction of solid phase in the fast compartment.

Field 3 - Sorption parameters (required if lctrl(25) = .true.):

1 integer iblk Material property block number - must range between 1 and ipt(26). ,

2 real bok(see text) Freundlich isotherm & ; parameter for each organic component in order from

1 to the number of components (enter ipt(15) values). Units are ug / g solid,
with aqueous concentration in mg / 1. Index number is (iblk-1)*ipt(15)+ic.

3 integer iblk Material property block number - must range between 1 and ipt(26). This
record must start on a new line.

4 real bom(see text) Freundlich isotherm n parameter for each organic component in order from 1
to the number of components (enter ipt(15) values). Index number is (iblk-
D*ipt(15)-+ic.

Field 3 is repeated for all material property blocks. Data for each block must
start on a new line, '

Field 4 - Include retardation factors (required if lctrl(25) = .false.):

1 logical Iretrd Set to .true. if retardation factors should be used.
Field 5 - Retardation factors (required if lctrl(25) = .false. and Iretrd = .true.):
1 integer ic Component number - must range between 1 and ipt(15)+3 if no nutrient is
) . present, or between 1 and ipt(15)+4 if nutrient is present.
2 real krtd(ic) Retardation factor. :
Field 5 is repeated for all components with data for each component beginning
on a line.

89

Table . 12 Input Data Block I Blologlcal i’arameter Data

T

Record Type Vanable Description

Field I - Number of bzoc{egradable substrates
1 iteger ipt(17) Spemfy the nilfibetr of blo“&egradaBle Stibstrates. Mhst Be 1688 than ‘or equal
t6 thie nuimber of components iit thie drganic 11qu1d (1pt(15))

Field 2 - Biodegradation control switches:

1 logical letrl(17) Set to .true. if a steady state biomass is to be modeled, otherwise set to .false.
if the biomass is time dependent.

2 logical lctrl(16) Set to .true. if biotransformations are modeled as a sink term in the aqueous
transport equations; otherW1se set to false. ifa separate rate limited blophase
is modeled.

Field 3 - Growth kmetzcs optzons

1 integer Ipt(39) Variable mdlcatlﬁg the e of growth kitigtics: 1% stafidard’ Mon'dd Kinetics; 2
= Monod kinetics with substrate inhibition; 3 = Mondd kinetics with lumped
substrate inhibition; 4 = Monod kinetics with saturation dependency; 5 =
Monod kinetics with saturation dependency and substrate inhibition.

Field 4 - Monod parameters:

1 integer ic Component number as definied in block E.

2 real fuse(ic,1) Electron acceptor use coefficient (mole O, / mole substrate).

3 real fuse(ic,2) Nutrient use coefficient (mole nutrient / mole substrate).

4 real umax(ic) Maximum substrate use rate (g substrate / g biomass / sec).

5 real khalf(ic) Half saturation constant (g substrate / 1).

6 real xyield(ic) Yield coefficient (g biomass / g substrate).

7 real kinhib(ic) Inhibition constant (unitless) expressed as a fraction of the aqueous solubility.

Constant multiplies the sum of all substrate aqueous solubilities for type 3
growth kinetics.

Field 4 is repeated for all degradable substrates, for oxygen, and additionally
for nutrient, if present (i.e. field 4 is repeated 1pt(17)+1 times if no nutrient is
present, and ipt(17)+2 times if nutrient is present). Data for each component
must start on a new line.

Field 5 - Decay and biomass range coefficients:

1 real kd Decay coefficient (sec™!).

2 real xbmin Minimum biomass (g biomass / 1 media).

3 real xbmax Maximum biomass (g biomass / 1 media).

4 real xinit Initial uniform biomass (g biomass / 1 media).

5 real t(11) Delay period for initiation of bioreactions (sec).

90

Table 5.13: Input Data Block J — Phase Parameter Data.

Record Type Variable Description

Field 1 - Water phase viscosity:

1 real wvis Water phase viscosity (cPoise).
Field 2 - Gas phase slip flow parameters:
1 logical lctrl(20)

Set to .true. if gas phase slip flow is simulated with the Klinkenberg model.

2 real b Klinkenberg parameter (atm). Set the value to zero if Ictrl(20) = .false.

91

Table 5.14: Input Data Block K — Temperature Parameter Data.

Record Type Variable Description

Field 1 - Temperature distribution:
1 logical Ictrl(10) Set to .true. if the steady state temperature distribytion is upiform, or set to
false. if the temperature distribntjon is depth dependent.

Field 2 - Uniform temperature (required only if lctri(10) = .true.):

I real ctemp Specify the uniform temperature (°C).

Field 3 - Nonuniform temperature distribution (required if lctrl(10) = .false.):
1 real depthnd Depth (m) .

2 real tnode Temperature at the depth = depthnd (°C).

Field 3 is repeated for all vertical nodes along the boundary starting at the
surface, downward (ny+1 values). Data for each node begins a new line.

Field 4 - Temperature dependent vapor pressure (required if Ictrl(10) = false.):
1 real dtemp Temperature dependent vapor pressure (atm). Provide ny+1 values, one for
each node in the vertical direction.

Field 5 - Ténzﬁerature dependent vapor viscosity (required if lctri(10) = .false.):
1 real dtemp Temperature dependent vapor viscosity (cPoise). Provide ny+1 values, one
for each node in the vertical direction.

Field 6 - Temperature dependent Henry’s Law constant (required if lctrl(10) = false.):
1 real dtemp Temperature dependent Henry’s Law constant (atm 1/ g). Provide ny-+1 values,
one for each node in the vertical direction.

Field 7 - Temperature dependent aqueous solubility (required if lctrl(10) = false.):
1 real dtemp Temperature dependent aqueous solubility (g / 1). Provide ny+1 values, one
for each node in the vertical direction. ‘

Field 8 - Temperature dependent maximum substrate use rate (required if lctrl(10) = false.):

1 real dtemp Temperature dependent maximum substrate use rate (g substrate / g biomass .
/ sec). Provide ny+1 values, one for each node in the vertical direction.
Fields 4-8 are repeated for all components in the order established in block
B: organic liquid components, water, .oxygen, nitrogen, nutrient. Data for
each component property begins on a new line, separated from the previous
information by at least one comment line.

Field 9 - Temperature dependent biomass decay rate (required if lctrl(10) = .false.):
1 real dtemp Temperature dependent biomass decay rate (sec™!). Provide ny+1 values, one
for each node in the vertical direction.

92

Table 5.15: Input Data Block L — Output Control parameters.

Record Type - - Variable Description

Field 1 - Print initial conditions:

1 logical Ipmt(3) = Set to .true. if the initial conditions should be printed to the main output file.

Field 2 - Print switches for selected variables:

la logical Iprnt(8) Phase concentrations in the main output file are reported in mole fractions

' (-true.) or mass concentration (.false.).

1b logical lcon(1) Phase concentrations in the contour plot file are reported in mole fractions
(.true.) or mass concentration (.false.).

2a logical lprnt(9) Print nodal gas phase pressure to the main output file. This record starts on a
new line.

2b logical lcon(2) Print nodal gas phase pressure to the contour plot file. .

3a logical lprnt(10) Print nodal aqueous phase pressure to the main output file. This record starts
on a new line.

3b logical lcon(3) Print nodal aqueous phase pressure to the contour plot file.

4a logical lprnt(11) Print nodal gas/aqueous capillary pressure to the main output file. This record
starts on a new line.

4b logical lcon(4) Print nodal gas/aqueous capillary pressure to the contour plot file.

5a logical lprnt(12) Print nodal gas phase density to the main output file. This record starts on a
new line.

5b logical lcon(5) Print nodal gas phase density to the contour plot file.

6a logical lprnt(13) Print nodal aqueous phase density to the main output file. This record starts
on a new line. '

6b logical lcon(6) Print nodal aqueous phase density to the contour plot file.

Ta logical Iprnt(14) Print nodal NAPL phase density to the main output file. This record starts on
anew line.

7b logical lcon(7) Print nodal NAPL phase density to the contour plot file.

8a logical lprnt(15) Print nodal gas phase component concentrations to the main output file. This
record starts on a new line. ‘

8b logical lcon(8) Print nodal gas phase component concentrations to the contour plot file.

8 integer ipt(69) The number of gas phase components to be outputted. This sub-record is

required only if Iprnt or Icon is .true. in 8a or 8b above. This sub-record starts
on a new line.

8d integer icp Enter ipt(69) component numbers of the corresponding components to be
outputted. This sub-record is required only if Iprnt or Icon is .true. in 8a or 8b
above. ‘
9a logical Iprnt(16) Print nodal aqueous phase component concentrations to the main output file.
: This record starts on a new line.
9 logical ~ lcon(9) Print nodal aqueous phase component concentrations to the contour plot file.
9 integer ipt(70) The number of aqueous phase components to be outputted. This sub-record is

required only if Iprnt or Icon is .true. in 9a or 9b above. This sub-record starts
on a new line.

9d integer icp Enter ipt(70) component numbers of the corresponding components to be
outputted. This sub-record is required only if Iprnt or lcon is .true. in 9a or 9b
above.

93

Table 5.15 (continued).

Record Type Variable Description

10a logical lprint(17) Print riodal organic liquid component concentratxons to the main output file.
This recotd starts on 4 tlew line.

10b logical lcon(10) Print nodal organic liquid component concenttations to the contour plot file.

10c integer ipt(71) The number of organic liquid components to be outputted. This sub-record
is required only if Iprnt or Icon is .true. in 10a or 10b above. This sub-record
starts on a new line.

10d integer icp Enter ipt(71) component numbers of the corresponding components to be
outputted. This sub-record is required only if lprnt or Icon is .true. in 10a or
10b above. o

lla logical Iprnt(18) Print nodal solid phase component loadings to the main output file. This
record starts on a new lifie.

11b logical lcon(11) Prisit nodal solid phase component ioadings to the contour plot file.

llc integer ipt(72) The number of solid phase component loadings to be outputted. This sub-
record is required only if lprnt or Icon is .true. in 11a or 11b above. This
sub-record starts on a new line.

11d integer icp Enter ipt(72) component numbers of the corresponding components to be
outputted. This sub-record is required only if lprnt or lcon is .true. in 1la or
11b above.

12a logical lprnt(19) Print nodal biophase component concentrations to the main output file. This
record starts on a new line.

12b logical Icon(12) Print nodal biophase component concentrations to the contour plot file.

12¢ integer ipt(73) The number of biophase component concentrations to be outputted. This sub-
record is required only if Iprnt or lcon is .true. in 12a or 12b above. This
sub-record starts on a new line.

12d integer icp Enter ipt(73) component numbers of the corresponding components to be
outputted. This sub-record is required only if Iprnt or lcon is .true. in 12a or
12b above.

13a logical Iprnt(29) Print total organic soil concentration to the main output file. This record starts
on a new line.

13b logical lcon(18) Print total organic soil concentration to the contour plot file.

14a logical Iprnt(20) Print nodal gas phase saturation to the main output file. This record starts on
a new line.

14b logical lcon(13) Print nodal gas phase saturation to the contour plot file.

15a logical lprnt(21) Print nodal aqueous phase saturation to the main output file. This record starts
on a new line.

15b logical lcon(14) Print nodal aqueous phase saturation to the contour plot file.

16a logical lprnt(22) Print nodal NAPL saturation to the main output file. This record starts on a
new line.

16b logical lcon(15) Print nodal NAPL saturation to the contour plot file.

17a logical Iprnt(23) Print gas phase velocity to the main output file. This record starts on a new
line.

17b logical lcon(16) Print gas phase velocity to the contour plot file.

18a logical Iprnt(24) Print aqueous phase velocity to the main output file. This record starts on a
new line.

18b logical 1lcon(17) Print aqueous phase velocity to the contour plot file.

94

Table 5.15 (continued).

Record Type Variable Description

Field 3 - Gas Phase time series plot switches:

1 logical Iplt(1) Set to .true. if the time series plot files should be generated for gas phase
components.

2 integer ipt(81) Iflplt = .true. then starting a new line, enter the number of gas phase compo-

. nents to be reported in the time series plot file.

3a integer icp If Iplt = .true. enter the global component number and the nodal location for
which time series data should be outputted.

3b integer icp If Iplt = .true. enter the nodal location for which time series data should be
outputted.

Field 3a and 3b is repeated ipt(81) times.

Field 4 - Aqueous Phase time series plot switches:

1 logical Iplt(2) Set to .true. if the time series plot files should be generated for aqueous phase
components.

2 integer ipt(82) If Iplt = .true. then starting a new line, enter the number of agueous phase
components to be reported in the time series plot file.

3a integer icp If Iplt = .true. enter the global component number. and the nodal location for

: which time series data should be outputted. ’

3b integer icp If Iplt = .true. enter the nodal location for which time series data should be

outputted.

Field 3a and 3b is repeated ipt(82) times. A maximum of 6 components for
the combined gas and aqueous phases can be defined for time series output.

95

Table 5.16: Input Data Block M — Restart Identifier.

Record Type Variable Description

Field 1 - Restart control switches:

1 logical lctrl(26) Specify .true. if initial saturation and component information should be read
from the restart file ‘restart.file’, where the file path and name is defined in
field 2 of this data block.

2 logical Ictrl(32) Specify .true. if the run is a continuation of the previous run and .false. if the

run is a new run using the previous run as initial conditions.

Field 2 - Restart file identifier: (required only if lctrl(26)=.true.
1 char*20 infile(4) Path and name of restart input file (must be in single quotes). This file is a
renamed copy of ‘outpre.rst® generated as output. ‘

96

Table 5.17: Input Data Block N - Initial Pressure Conditions.

Record Type Variable Description

Field I - Initial pressure distribution:
1 integer ipt(75) Variable indicating how initial conditions are specified: 1 = compute hydro-
' static gas and aqueous phase distributions; 2 = input gas and aqueous pressures
for all nodes.

Field 2 - Water table depth (required only if ipt(75)=1): .

1 real wtdpth Water table depth (m).

Field 3 - Initial pressure: '

1 integer nd Node number. v '
2 real p(2*nd-1) Aqueous phase pressure at node nd (Pa gauge).

3 real p(2*nd) Gas phase pressure at node nd (Pa gauge).

_ Field 3 is repeated for all nodes with data for each node beginning on a new
line. The nodes do not need to be in sequential order. A uniform pressure
distribution can be specified by specifying a single line of data containing a
negative node number and the uniform aqueous and gas pressures.

97

Table 5.18: Input Data Block O — Velocity Computation.

Record Type Variable Description

Field 1 - Velocity computation method: ,

1 logical lctrl(18) Setto .true. if nodal velocities should be computed by solution of finite element
equations. Set to .false. if velocities should be computed as element averages,
orif a steady state velocity field is assumed (i.e. flow equations are not solved
- letrl(1) = .false.).

Field 2 - Steady state velocity distribution (required only if lctrl(1) = false.):

1 logical lcssv Set to .true. if the steady state velocity distribution should be calculated from
the pressure field by the method defined in field 1. Set to .false. to input
velocity values at all nodes.

Field 3 - Input velocity distribution (required only if lcssv = false.):

1 logical lcv Set to .true. if the user defined steady state velocity distribution has uniform
components. ‘

Field 4 - Uniform velocity components (required only if lcv = .true.):

1 real qex Horizontal component of the uniform steady state gas phase Darcy velocity
(m/s). .

2 real qgz Vertical component of the uniforri steady state gas phase Datey velocity (m
s).

3 real gax Horizontal component of the uniform steady state aqueous phase Darcy ve-
locity {m/ s).

4 real qaz Vertical component of the uniform steady state aqueous phase Darcy velocity
(m/ s).

Field 5 - Nonuniform velocity components (required only if lcv = .false.):

1 integer i Node or element nuritber.

2 real q@®) Horizontal component,of the steady state gas phase Darcy velocity (m / s) at
node or element i.

3 real q(pt(1)+i) Vertical component of the steady state gas phase Darcy velocity (m/s) at node
or element i.

4 real q(2*ipt(1)+i) Horizontal component of the steady state aqueous phase Darcy velocity (m /
s) at node or element i.

5 real q(3*ipt(1)+i) Vertical component of the steady state aqueous phase Darcy velocity (m / s)

at node or element i.
Field 5 is repeated for all nodes if Ictrl(18) = .true., or for all elements if
Ictrl(18) = .false. Data for each node or element must start on a new line.

98

Table 5.19: Input Data Block P — Organic Liquid Saturation and Composition.

Record Type Variable Description

Field 1 - Elements containing organic liquid saturation:
1 integer inoel Number of elements containing nonzero organic liquid saturation. A number
' less than zero indicates that the organic liquid saturation is uniform and con-
tained in all elements. A value of zero must be entered if the organic liquid
mass balance equations are not solved (lctrl(24)=.false.).

Field 2 - Uniform organic liquid saturation and composition (required only if inoel < 0):

1 real soel(1) Uniform organic liquid saturation for all elements;

2 real omfel(ic) Enter the organic liquid mole fraction of each organic component. There must
be ipt(15) mole fractions specified and they must sum to 1. Mole fractions
are entered in sequential order as defined in block E, field 2 (i.e. component
number 1 to ipt(15)).

Field 3 - Nonuniform organic liquid saturation and composition (required only if inoel > 0):

1 integer iel Element number.
2 real soel(iel) Organic liquid saturation in element iel.
3 real omfel(ic,iel) . Enter the organic liquid mole fraction of each organic component in element

iel. There must be ipt(15) mole fractions specified and they must sum to 1.
Mole fractions are entered in sequential order as defined in block E, field 2 .
(i.e. component number 1 to ipt(15)).

Field 3 is repeated for all elements with nonzero organic liquid saturation
(inoel elements). Data for each element must start on a new line.

99

Table 5.20: Input Data Block Q — Oxygen and Nutiient Initial Conditions.

Record Type Variable Description

Field 1 - Uniform gas phase conditions (required if oxygen is present in the gas phase):

1 logical funfx Set to .true. if the initial oxygen and hutiient (if preserit) paitial pressure
in the gas phase is uhiform. Othetwise sét to .false. for noniinifor initial
conditions. Skip this ifiput if oxygen is absent from the gas phase (i.e. the

oxygen partial pressure (cvp(ipt(15)+2)) is assigned a negative value).
Field 2 - Uniform oxygen and nutrient conditions in the gas phase (lunfx = .true.):
1 real Xog Initial uniform oxygen partial pressure (i.e. mole fraction) in the gas phase.
2 real xng Initial uniform nutrient partial pressure (i.e. mole fraction) in the, gas phase.
Not required if nutrient is absent (i.e. Ictrl(9) = .false.).

Field 3 - Nonuniform oxygen and nutrient conditions in the gas phase (lunfx = false.):

1 integer nd Node number.

2 real xmf(nd+go) Initial oxygen partial pressure (i.e. mole fraction) in the gas phase at node nd
{go is an internally defined pointer).

3 real xmf(nd+gn) Initial nutrient partial pressure (i.e. mole fraction) in the gas phase at node nd

(gn is an internally defined pointer). Not required if nutrient is absent (i.e.
letrl(9) = .false.).
Field 3 is repeated for all nodes. Data for each node must start on a new line.

Field 4 - Uniform aqueous phase conditions (required if Oy is present in the aqueous phase):

1 logical lunfx Set to .true. if the initial oxygen and nutrient (if present) concentrations in
the aqueous phase are uniform. Otherwise set to .false. for nonuniform initial
conditions. Skip this input if oxygen is absent from the aqueous phase (i.e.
the oxygen solubility (casol(ipt(15)+2)) is assigned a negative value). Note
that this variable is read twice in this data block.

Field 5 - Uniform oxygen and nutrient conditions in the aqueous phase (lunfx = .true.):

1 real Xog Initial uniform oxygen concentration (g /1) in the aqueous phase.

2 real Xng Initial uniform nutrient concentration (g/l) in the aqueous phase. Not required
if nutrient is absent (i.e. lctrl(9) = .false.).

Field 6 - Nonuniform oxygen and nutrient conditions in the aqueous phase (lunfx = false.):

1 integer nd Node number.

2 real xmf(nd+ao) Initial oxygen concentration (g/1) in the aqueous phase at node nd (ao is an
internally defined pointer).

3 real xmf(nd+an) Initial nutrient concentration (g/1) in the aqueous phase at node nd (ao is an
internally defined pointer). Not required if nutrient is absent (i.e. lctrl(9) =
false.).

Field 6 is repeated for all nodes. Data for each node must start on a new line.

100

Table 5.21: Input Data Block R — Boundary Conditions.

Record Type Variable Description

Field 1 - Constant gas pressure nodes equivalent to the initial pressure:

1 integer itypel Specify the number of nodes with a constant gas pressure equal to the initial
gas pressure.

2 integer ibc Beginning on a new line specify the node number of all nodes with a constant
gas pressure equal to the initial gas pressure. There must be a total of itypel
values.

Field 2 - Constant gas pressure nodes different from the initial pressure:

1 integer ipt(18) Specify the number of nodes with a constant gas pressure that is different
. from the initial gas pressure.
2 integer ibc Node number of a constant gas pressure node different from the initial gas
pressure at that node (required if ipt(18) > 0).
3 real p(2*ibc) Constant gas pressure at node ibc (Pa gauge).

Records 2 and 3 are repeated for all nodes, with data for each node starting
on a new line. There must be a total of ipt(18) lines.

Field 3 - Constant aqueous pressure nodes equivalent to the initial pressure:

1 integer itypel Specify the number of nodes with a constant aqueous pressure equal to the
initial aqueous pressure.
2 integer ibc Beginning on a new line specify the node number of all nodes with a constant

aqueous pressure equal to the initial aqueous pressure. There must be a total
of itypel values.

Field 4 - Constant aqueous pressure nodes different from the initial pressure:

1 integer ipt(19) Specify the number of nodes with a constant aqueous pressure that is different
from the initial aqueous pressure.

2 integer ibc Node number of a constant aqueous pressure node different from the initial
gas pressure at that node (required if ipt(19) > 0).

3 . real p(2¥ibc-1) Constant aqueous pressure at node ibc (Pa gauge).

Records 2 and 3 are repeated for all nodes, with data for each node starting
on a new line. There must be a total of ipt(18) lines.

Field 5 - Gas phase component boundary conditions:

1 integer ipt(20) Specify the number of nodes for which gas phase component boundary con-
ditions are specified. v

2 integer ibc Node number (required if ipt(20) > 0).

3 integer ibcxmf An integer variable indicating the boundary condition type (1, 2, or 3) for

all gas phase components at the node ibc: 1 = constant mole fraction; 2 =
constant diffusive flux; 3 = mixed type (contact with a known fluid).
4 &5 real bexmf For each component in the gas phase provide two values: 1) the partial
dfxmf pressure (i.e. mole fraction) of the component in the contacting fluid at node
ibc, and 2) the molecular diffusivity divided by a characteristic length, D, /L
(m/s). Each pair of values must be listed in sequential order corresponding to
the component numbers. Only components that are present in the gas phase
are listed; component boundary conditions are not read for components which
are excluded from the gas phase (i.e. negative vapor pressure).

101 '

Table 5.21 (continued).

Record Type Variable Description

Records 2-5 are repeated for all nodes for which gas phase component bound-
ary conditions are provided (ipt(20) nodes). Data for each node must start on
anew line.

Field 6 - Aqueous phase component boundary conditions:

i integer ipt(21) Specify the number of nodes for which aqueous phase component boundary
conditions are specified. :

2 integer ibc Node number (required if ipt(21) > 0). g

3 integer ibcxmf An integer variable indicafing the boundary condition type (1, 2, or'3) for all

aqueous phase components at the node ibc: 1 = constant mole fraction; 2 =
constant diffusive flux; 3 = mixed type (contact with a known fluid),
4&5 real . Dbexmf For each component in the agueous phase provide two values: 1) the con-
dfxmf centration of the component congentration in the contacting fluid at node ibc
(g/1), and 2) the molecular diffusivity divided by a characteristic length, D,,/L
(m/s). Bach pair of values must be listed in sequential order corresponding
to the component numbers. Only components that are present in the aqueous
phase are listed; component boundary conditions are not read for components
which are excluded from the aqueous phase (i.e. negative solubility).
Records 2-5 are repeated for all nodes for which aqueous phase component
boundary conditions are provided (ipt(21) nodes). Data for each node must
start on a new line. -

Field 7 - Gas phase boundary fluxes:

1 integer ipt(22) Specify the number of nodes for which a constant gas phase flux is to specified.
2 integer ibc Node number (required if ipt(22) > 0).
3 real source The constant gas phase flux referenced to atmospheric pressyre and the steady

temperature at the node (m>/s).
Records 2-3 are repeated for all nodes for which gas phase fluxes are provided
(ipt(22) nodes). Data for each node must start on a new line.

Field 8 - Aqueous phase boundary fluxes:

1 integer ipt(23) Specify the number of nodes for which a constant aqueous phase flux is to
specified.

2 integer ibc Node number (required if ipt(23) > 0).

3 real source The constant aqueous phase flux at the node (m® / s).

Records 2-3 are repeated for all nodes for which aqueous phase fluxes are
provided (ipt(23) nodes). Data for each node must start on a new line.

102

Table 5.22: Input Data Block S — Extraction/Injection Well Conditions.

Record Type Variable Description

Field I - Include extractionfinjection well: :
1 logical lctrl(12) Specify .true. if a extraction/injection well should be simulated in an axisym-
metric domain.

Field 2 - Extraction/injection rate: : ‘

1 real qwell - Enter the volumetric extraction (negative) or injection (positive) rate (scfm).

Field 3 - Well coordinates: ‘ '

1 real rwell Enter the well radius (m). This must equal the nodal coordinate along the left
vertical boundary. . .

2 integer i Minimum node number along the well screen.

3 integer jj Maximum node number along the well screen.

103

Table 5.23: Input Data Block T — Velocity Boundary Conditions.

Record Type Variable Description

Field 1 - Specify bottom boundary (required only if lctrl(18) = .true.):

1

logical lctrl(28) Specify .true. if the bottom boundary is impervious.

Field 2 - Specify right boundary (required only if lctrl(18) = .true.):

1

logical lctrl(29) Specify .true. if the right boundary is impervious.

Field 3 - Specify left boundary (required only if lctrl(18) = .true.):

1

logical Ictrl(30) Specify .true. if the left boundary is impervious (note: this boundary is ad-
justed for the presence of a well).

Field 4 - Specify top boundary (required only if lctrl(18) = .true.):

1

logical Ictrl(31) Specify .true. if the top boundary is impervious.

Field 5 - Specify the cap length (required only if lctri(31) = .true.):

I

real caplen Length of the impervious segment along the top boundary starting at the left
edge (m).

104

Section 6

DEMONSTRATION OF MISER

Three example simulations are presented to illustrate usage of the MISER model. The first two
examples present simulations of hypothetical SVE and BV scenarios in domains wherein the water table is
at a large depth and is therefore excluded from the simulation. The third example problem describes the
simulation of bioventing under more realistic field conditions. In this simulation the contaminants are
positioned close to the water table such that the capillary fringe and water table are included in the
simulation. Simulation results illustrate the influence of contaminant migration and partitioning into the
capillary fringe region on the simulated bioventing performance.

Hypothetical SVE and BV scenarios are simulated for a layered soil domain shown in Fig. 6.1. Input
files for the SVE simulation are included in Appendix G. The soil is a medium uniform sand, intersected
with a layer of slightly less permeable fine sand. The soil water is at residual levels throughout the domain.
All soil properties are listed in Table 6.1.

The organic liquid is pure toluene which is assumed to be present as an immobile residual. The initial
toluene mass is 239 kg with saturations ranging up to 3.5%. This initial distribution was generated with a
two dimensional multiphase flow simulator, M-VALOR [Abriola et al., 1992]. Initial toluene
concentrations in the aqueous and gas phases are assumed to be at equilibrium with the organic liquid when
present, and zero elsewhere. The constituent and transport properties used in the simulations may be found
in the input file listing given in Appendix G.

Numerical simulations of SVE and BV remediation were obtained on a radially symmetric r-z
rectangular solution domain (41.67 m by 4.5 m). No flow boundary conditions were specified along the top
boundary over the radius of the impermeable cap, along the left boundary above and below the well screen,

Q

«\4 - 10m .

medium sand]1 m

fine sand]1 m

S
3m :/// ‘

—_—

medium sand

———

Figure 6.1: Problem depiction used in example simulations. Contours show the initial organic liquid distri-
bution. The contour interval is 0.005 with levels increasing inward.

105

Parameter medium saiid fine sand

@ 0.35 0.33

ki (m?) 1x1071 6x10~!2
k, (m?) 8x10~12 4x10~12
Siiv 0.12 0.16

i 7.0 5.0

o (i/Pa) 0.002 0.0008

Table 6.1: Soil properties used in example SVE and BV simulations.

Mass Transfer Minimurm Element Deviation

Phase Pair Coefficient (I/sec) _Jroi Equilibtiom
organic-gas 5.0 x 10~ 0.1
aqueous-gas 50x 1073 0.1
aqueous-organic 5.0 x 104 0.1
aqueous-solid 5.0 x 1073 0.1

Table 6.2: Mass transfer coefficients used to simulate an SVE system.

and along the bottom boundary. Atmospheric pressure conditions were specified along the right boundary
and the portion of the ground surface open to the atmosphere. Both aqueous and gas phases are assumed to
be in hydrostatic equilibrium initially. Other problem dependent conditions are described below.

6.1 SOIL VAPOR EXTRACTION

Remediation of the contaminated soil by SVE was simulated by the numerical application of a constant
extraction rate of 100 cubic feet per minute (scfm). Biodegradation is not included in this simulation. The
solution domain is developed with a generated “herring bone” grid using uniform vertical spacings of 0.25
m and horizontal spacing ranging from 1 cm near the well to 5 m at the right boundary. The solution
domain is divided into 1116 elements and 608 nodes.

Mass transfer coefficients were selected to represent relatively fast organic liquid volatilization and
slower rates for desorption and aqueous/gas partitioning. These later processes are considered primary
factors controlling long term tailing processes frequently observed in SVE systems. Table 6.2 summarizes
the values of mass transfer coefficients used in this simulation.

Fig. 6.2 shows a progression of predicted organic liquid saturation profiles. The greatest rate of organic
liquid is in the surface and bottom layers where the initial organic liquid saturations are smallest and gas
phase velocities are comparatively large. The organic liquid persists in the middle layer due to the larger
initial organic liquid mass present and due to effects from flow bypassing of the lower permeability zone.
The pattern of organic liquid removal is generally radially inward since the greatest mass transfer occurs at
the outward edge of the organic liquid zone.

106

time = 1 day time = 3 days : time = 5 days

depth (m)
Y
N,

l)‘ VJ)‘
¥

radius (m) radius {m) 7 radius (m)

Figure 6.2: Predicted organic liquid saturation distribution in SVE simulations with intermediate mass
transfer rates. The contour interval is 0.005 with levels increasing inward.

time = 20 days time = 100 days
i 200 \15‘§ i \200 15 \\
00 100
14 \ 50 4 \x 50
2] _
34]

[
L

— T LR L LA B
o 1 2 3 40 1 2 3 4
radius (m) radius (m)

Figure 6.3: Toluene sorbed (ppm) at 20 and 100 days.

Fig. 6.2 shows that organic liquid is removed relatively quickly from the domain, in about 7 days.
However, toluene is retained on the solid phase and in the pore water throughout the simulation, due to low
solid-aqueous and aqueous-gas mass transfer rates. Comparison of the sorbed toluene mass at 20 and 100
days (Fig. 6.3) indicates that very little sorbed mass is removed during this period. Moreover, toluene mass
distributions plotted in Fig. 6.4 indicate that in this simulation the overall SVE efficiency is controlled by
the aqueous-solid desorption rate after the period of organic liquid removal.

6.2 BIOVENTING

Remediation of the contaminated soil by BV was simulated by the numerical application of a constant
injection rate of 1 cubic feet per minute (scfm) to supply oxygen and enhance biotransformation. Air

107

250 s T SR
= 200
£ .
e —— NAPL
@ 1so4f ----- well flux
= I sofbed
2
S 100+
=2
=
50
0 T T T T
) 0 20 30 40 50
time (day)

Figure 6.4: Toluene removal versus time.

injection produces outward radial movement of oxygen (electron acceptor), as well as for toluene
(substrate) due to volatilization from the organic liquid. Sorption is pot included in this simulation. The
solution domain is developed with a generated “herring bone” grid using uniform vertical spacings of 0.25
m and horizontal spacing ranging from 1 cm near the well to 2 m at the right boundary. The solution
domain is divided into 1404 elements and 660 nodes.

Because gas phase velocities are smaller in the BV system, the fluid-fluid mass transfer coefficients
used in this simulation were reduced one order of magnitude from those listed in Table 6.2. The resulting
progression of predicted organic liquid saturation profiles is shown in Fig. 6.5. Since the gas flow is radially
outward, organic liquid removal occurs from left to right in BV (injection) ift contrast with the right to left
progression observed in the SVE (extraction) results. Also note that the organic liquid persists substantially
longer in the BV system than in the SVE system due to diminished flow rate. Similar to the SVE results,
organic liquid persists in the lower portion of the lower permeability layer, where bypassing effects are
most pronounced.

Biotransformation processes in the BV scenario were simulated using the assumption of equilibrium
partitioning between the aqueous and biophases (i.e. bioreaction was modeled as a sink). The effect of
substrate inhibition was examined by setting the inhibitory threshold to 25% of the toluene aqueous
solubility. The presence of a limiting nutrient was not considered. Other biodegradation parameters
employed in this simulation are listed in Table 6.3.

Fig. 6.6 shows the predicted growth of biomass over the course of BV simulation. Due to substrate
inhibition, biomass growth is concentrated away from the NAPL contaminated core, developing a so-called
‘biofence.’ Once the ‘biofence’ has developed, the toluene is removed from the gas phase over a relatively
short distance, and there is little or no growth to the right of the ‘biofence’ due to an absence of substrate.
Biomass growth is also observed to fill in regions close to the well after organic liquid has been removed

and aqueous concentrations fall below the inhibitory threshold. The maximum oxygen depletion was on the
order of 10%.

108

time = 100 days

time = 20 days time = 60 days
14 - .
-y 1.'5 -4
o | i 1
/1.5\ /0.
4 ___——2.0 k 1.
=) 1D || @
— 0.1
4T J
4 _/ _ N
{ ! | ! 1 ! ! | ! 1 ! I | i I

0 1 2 3 4 0 1 2 3
radius (m) radius (m)

radius (m)

Parameter Value
Initial uniform biomass (g/1) 0.00162
Minimum biomass (g/1) 0.001
Maximum biomass (g/1) 0.1
Decay coefficient (1/sec) 1.157 x 1076
Oxygen Use coefficient (gm O2/gm toluene) 2.19
Maximum substrate use rate (gm/(gm cell sec)) 1.157 x 10~
Half saturation constant (gm toluene/l)

toluene 0.0174

oxygen 0.0001
Yield coefficient (gm cell/gm toluene) 0.50

6.3 FIELD SCALE BIOVENTING

Table 6.3: Biotransformation parameters used in an example BV simulation.

Figure 6.5: Predicted organic liquid saturation (%) at selected times in the example BV simulation.

A final example problem highlights a number of capabilities of MISER. In this problem a realistic initial
condition is set up in which contaminants from a organic liquid spill are allowed to migrate by diffusion

time = 20 days time = 60 days time = 100 days
0
- I 1 |1o] '
1 7] f 7 7] 1 1,1
2_- 1.2;.2? _: h __/\
3 S - ‘ , -

radius (m) radius (m)

0 10 20 30 40 0 10 20 30

40 ©

1 T
10 20 30

radius (m)

40

109
Figure 6.6: Predicted biomass distribution (g/1 x 1073) at selected times in the example BV simulation.

constant flux impermeable cap - constant pressure
\ | 10m 20 m ﬂo m 37.6m

k=1x 101 m?
2m
k=5x10"" m° _am
i -6
k=07x10"" m? K
_____________________________________ y ..__..-.._.._.._Bm
—-10m
— 12 m

142 m
no flow _/

Figure 6.7: Simulation domain used in the field scale bioventing demonstration simulation.

and density driven flow and then partition into the capillary fringe region. MISER is applied to a single
well, axisymmetric domain with three horizontally stratified soil layers as shown in Figure 6.7. Soil
properties are listed in Table 6.4 and are roughly based on those of the Borden aquifer. An immobile
residual organic liquid distribution is present above the water table as shown in Figure 6.7. For the purposes
of illustration this organic liquid distribution was developed by simulating the migration from a organic
liquid spill event using an immiscible flow simulator, M-VALOR [Abriola et al., 1992]. The initial organic
liquid distribution shown in Figure 6.7 is composed of a binary mixture of benzene and xylene. All
chemical properties are listed in Table 6.5.

To develop realistic initial conditions for the simulation of BV remediation, the MISER code was first
used to simulate the partitioning and migration of the organic liquid components over a 54 day
redistribution period during which time no stresses are applied at the well. To simulate this process the
domain was discretized into 2337 nodes and 4480 elements, with vertical discretization between nodes
ranging between 0.1 and 0.5 m, and horizontal discretization ranging between 0.05 - 2.0 m. Other transport
parameters used in the simulation are listed in Table 6.6 and boundary conditions are shown in Figure 6.7.
The resulting contaminant and biomass distributions are shown in Figure 6.8. These distributions illustrate
the outward migration of contaminants from the core organic liquid distribution. The migration pathway is
primarily volatilization of organic liquid constituents into the soil gas wherein they can readily migrate by
diffusion and density driven flow. As the organic constituents in the gas phase migrate radially outward
they simultaneously partition into the soil water and subsequently sorb to the soil particles. The increase in
organic substrate in the soil water results in buildup of the biomass and corresponding depletion of oxygen
as shown in the bottom two plots in Figure 6.8. There is no biomass growth within the NAPL contaminated

110

Soil 1 Soil 2 Soil 3

o* 0.33 0.33 0.33
k (m?) 1.0x 10711 50x107" 0.7x 101!
S*, 0.073 0.073 0.073
n* 3.97 3.97 3.97
ok, (Pa~1) 434 x 107 7.47 x 107* 2.79 x 104
benzene K r (mg/g)/(mg/ly* 1.16 x 1073 1.16 x 10~3 1.16 x 10~3
benzene Freundlich » 0.86 0.86 0.86
o-xylene K r (mg/g)/(mg/l)* 0.87 x 1073 0.87 x 10~3 0.87 x 10~3
o-xylene Freundlich n 1.07 1.07 1.07

* Demond and Roberts [1991]
* computed by Leverett scaling

Table 6.4: Soil parameters used in the field scale bioventing demonstration simulation.

Benzene o-Xylene Water Nitrogen Oxygen

Molecular weight (g/mole) 78.1 106.2 18.0 28.0 32.0
Density (g/)* 879.0 880.1 998.2 - -
Vapor pressure (atm)** 0.102 © 0.0092 0.0231 - -
Aqueous solubility (g/I)* ' 1.78 0.175 - - 0.009
Vapor viscosity (cPoise)™ 0.0075 0.007 0.0095 0.0174 0.02
Liquid viscosity (cPoise)* 0.649 0.809 1.002 - -
Vapor binary diffusion coeff. (cm?/s)*™ 0.088 0.062 0.245 - 0.2
Aqueous binary diffusion coeff, (cm?/s)T 9.0(-6) 7.2(-6) - - 2.7(-5)

* Riddick et al., [1986]
*% Perry and Chilton {1973]
i estimated using eq. 17-24 in Lyman et al., [1982]

Table 6.5: Fluid properties used in the field scale bioventing demonstration simulation. All values are for 20
°C. . :

region due to inhibition.

For comparison purposes bioventing processes were simulated using air injection rates of 1 and 10 cfm
and with the low and high growth parameters listed in table 6.6. Figures 6.9-6.12 show results with the low
injection rate, high growth conditions. The predicted organic liquid distributions at specified times are
presented in Figure 6.9. Results here show behavior similar to the previous example problem in that
organic liquid is removed radially outward from the injection well and the fastest rate of removal occurs in
the most permeable layer. The predicted aqueous phase substrate concentrations correspondingly decrease
radially outward over time as shown in Figure 6.10. Notice, however, that substrate located in the capillary
fringe region shows a persistence due to reduced access to the gas stream.

Predicted biomass distribution and corresponding aqueous phase oxygen concentrations are shown in
Figures 6.11 and 6.12, respectively. Due to the effects of substrate inhibition, the biomass distribution at

111

Mass transfer coefficients " diffusion prdbiefn BV simulation

gas-NAPL (1/day) 50 50
gas-aqueous (1/day) 1 1
NAPL-aqueous (1/day) 20 20
solid-aqueous (1/day) 10 1
Monod parainetefrs high set low set
maximum substrate utilization (1/d) 1 0.1
half saturation constant (mg/1) 0.5 0.5
decay coefficient (1/d) 0.1 0.01
minimum biomass (mg/1) 0.001 0.001
maximum biomass (mg/1) , 20 20

Table 6.6: Mass exchange and biokinetic parameters used it the field scale biovétitihg demonstration simu-
lation.

156 days is observed to be densést along the outside fringe of the organic liquid zone and near the well
screen where organic liquid has been completely removed. High oxygen depletion is observed in the
corresponding regions of high biomass growth. The predicted biomass concentrations increase
substantially between 156 and 256 days, maintaining high concentrations until the end of the simulation at
356 days. This is explained by the increased availability of oxygen as shown in Figure 6.12 resulting from
the decreased oxygen demand due to the reduction of substrate concentrations as shown in Figure 6.10.
Notice that oxygen remains depleted in the capillary fringe region due to the poor accessibility to the air
stream. Consequently there is limited biomass growth in this region resulting in the persistence of the
organic substrate.

112

NAPL saturation 10m Total organic concentration (ppm)

—10000
=006_: ''''''''''''''''' - :Q ——————————— b
0.04 0]01 5000
o -4m 1002300 -
©/AN _ 57/ ““““““““ _
____________________ Yoo 8m ‘,_/___--___-___v______
biomass concentration (mg/l) aqueous oxygen concentration (mg/l)

40 f.

167 T

T

T

Figure 6.8: Initial conditions used for the field scale bioventing demonstration simulation.

113

II‘LH HIMI
&7
|
| |
N
3
[ITTTITH T

.

B =]

=(OY - L H§He _

____________________) [T N ______________________V_______
NAPL saturation

Figure 6.9: Predicted organic liquid distributions at specified times for the field scale bioventing demonstration
simulation.

114

10m

[T

356 days

[IERENRRRRENN]

substrate concentration (mg/l)

Figure 6.10: Predicted benzene substrate distributions at specified times for the field scale bioventing demon-
stration simulation. ' '

115

ERARRENN
HEEERERERRNEI

256 days

TS
)

_
- \|

\

12

I1INRRERDRIE

RHAEELE
B

biomass concentration (mg/l)

Figure 6.11: Predicted biomass distributions at specified times for the field scale bioventing demonstration
simulation.

116

T
T IIITIETR

= ¢)
=/ O . G
=R NP B N N

oxygen concentration (mg/l)

Figure 6.12: Predicted oxygen distributions at specified times for the field scale bioventing demonstration
simulation.

117

Appendix A

ELEMENT MATRICES FOR THE SIMULTANEOUS
SOLUTION OF THE PHASE MASS BALANCE EQUATIONS

Integration of (3.17) gives to the element matrix equation,

3 {P}e

[AY —— +[BI*{P} = {F}* + {E}* +{QF A1)

where { P}¢ is the vector of alternating aqueous and gas pressures at the three nodes of the element,
e _ [pk+l pk+l pk+l pk+l pk+l pk+l
(P} = {Pal , Pll pk+l plil phel pl } (A.2)
where k is an iteration counter.

The consistent form of the mass matrix is developed from egs. (3.17a) and (3.17b). It may be expressed

as,
A A
Ay =] e 8 (A.3)
Y [Aga Agg:|
where,

Aaa =Z¢ef CpJN,NJdQ
Agg = Aga = Z(pe/ Cp;NiN;dQ.

A e,
Agg=2¢e/ { N; - C,,]]NNdQ
e=1 RTJ'OEJ

Evaluating the integrals, the element mass matrix [A]° in consistent form is,

2y —2dy Ay ~dey duy —da]
doy —da 2dy, —2d,, dyy —du
PeAcTe day —dy dyy —Qgy 2dg, —2dg,
12 _Zdtu 2dg1 "‘daz dgz '"da3 dgs
—~day dg —2dy, 2dg, —duy dy
—da, dgy —dy dg, —2du, 2dg,

[AY = (A4)

where,
.k
d aj — CI’]
k
8 Ck

dy, = ———)
8j Rijgj Pj

118

where A, is the area of element e.

It is often advocated to diagonalize the mass matrix [A] by the procedure of “mass lumping” in order to
reduce oscillatory behavior and improve computational stability [Celia et al., 1990; Abriola and Rathfelder,
1993]. Therefore an option is included in MISER for lumping of the mass matrix. The lumped mass matrix
is'developed by, :

AL AL
AL — 5. [ga a8 :I (A.5)
Y Y Aga Agg
N
AL = Z@f —Cp, N;idQ2,
e=1 2,
N,
AL =AL =Y ¢ f Cp,; NidS2
e=1 Q,
L e Sg;
AL = / i _c, \ndo
where §;; is the Kronecker delta. Evaluating the integrals, the lumped mass matrix is,
" 4d,, —4d, 0 0 0 0
0 0 4d,, —4dg, 0 0
L1e _ PeAcTe 0 0 0 0 4d,, —4d,,
[T ==53 ~4d, 4dy O 0O 0 0 (A.6)
0 4d,, 4d,, 0 0
| 0 0 0 0 —4d,, 4dg, |
The stiffness matrix developed from egs. (3.17a) and (3.17b) may be represented by,
L. — Baa Bag
Blj - [Bga ng (A7)
where, A
N,
£ oN; 3Nj oN; BN]'
pa=2], {Chae 1) G+ (e) o =
Mg N;\ .. ON; [Pay; dN;\ ., 8N;
(,;;j 1> (p“f ax) ' ax P 1J\Pai 57) Moz ¢
Byg =By =0
y ,
e oN; ON; dN; ON;
ngzgﬂze{(gxxij) _5—_8_)6—-'-(gzszj> 9z —52—_
Agre; dN;\ . dN; [Pg; dN;\ . 8N;
XX . * J N; J 2z N; (*_]) N_____.l_ ao
(p;,"j NJ) (ng dx) Y ox P, 1)\ Pei 3z '3z ¢

119

Evaluating the integrals in (A.7) yields,

_ bay, 0 b, O b'am 0 _‘.

ba21 0 bazz 0 b'azs 0 |

[B}e = __-Fe__ ba31 G .ba3z 0 ba33 0
‘ 12A, 0 by O bgl?, 0 bgm, ;
[O b‘g21 0 b822 O b‘323' -

L 0 bgy O bgy, O by

where,
by = Uay; — Way

Ug; = (Ak +)«k +)-k)lBlﬁj+(A’ +)~§Z +)»k)Vth

Bi (A 3,)
Wy = (Pal,Bl +/9a2/32+Pa3ﬂ3) e +Z—*L’ |+

ar J

ﬁ *k *k *k
4 (,Oa, i+ Py, V2 + Pa_,,)/s) (2 Pa,)

and B; and y; are defined in (3.5). Notice that uy;; = uq;-

The RHS matrix incorporating density gradient terms may be developed as,
F, |

Ne
Fum 35 . [oe (i) (0040) 22 4 () (65,
e=
8x (A'axx) ('oaj aalvj> N & (Alazzl Nj) (p:/ %) Ni } dQe

where,

Fom 2 [, o (o) (o 05) Gt e e) (05,040 5 -
e=1 e

gx (AgxxjN) (pg, aaNj> N; — g, ()»gzz N;) (ng aaN)Ni}dﬂe

Evaluating these integrals yields,

i 8x | ha.B1 — ta,) + 8z \ha, V1 — lay 1
8x \Pa P2 — lay,) + 82 \Ba, V2 — tay,
_ T | 8x(haBs—tay)+ & ha,v3 — ta,,
T 24| g he B1 —tg,) + 8z \ g V1 — Ig
8x \hg B2 —tg,,) + 8 (Ng, V2 — tg,,
8x \hg. B3 —tg,) + 82\ hg V3 — Iy,

120

(A.8)

(A9)

(A.10)

wherein,

k
hox = Pl (2}J< +ak o+ A§x3) + ok (Af;xl +205 + A§x3) +
/Oa3 (Ak +)LI‘;Xz + 2A§X3)

haz = p:‘lkf (Zkk + A'k + Ak) + '0:: ()"I‘;Zl + 2)\'1‘;12 + AIOC‘Q) +
A G Ak +2:8,)

‘ 3
k k k
toy = (02 B1 + P22 + PiBs) (k’éx,. +) x’g,xj)
j=l1
K ok #* k > k
tdZi = (pdl Y1 + paz V2 + pa3 V3))\‘azl. + Z)"azj
Jj=1

The RHS matrix incorporating compositional effects on density and interphase mass exchange is

represented by:
E ‘
Ei = [o } (A11)
g

E —%cﬁf ! > E; e, 304, NjN; } d
= A R VAR T A
N,
. 1 S, Pg; My,
= e j

pgj C,ﬂ‘

where,

Here it has been assumed that { E} can be evaluated with compositional information from the previous time
step. For the known composition, the terms 3, /9x,. are evaluated from the appropriate differentiation of
Amagat’s Law (2.50) or the Ideal Gas Law (2.49). The temporal change in mole fraction, dx,./8¢, and
interphase exchange terms, Eaﬂ , are also lagged by a single time step. Evaluating the integrals above,

yields,

Ad’eFe €a;

(B} = (A12)

and,

The RHS vector { Q)¢ represents the phase sources and sinks,

=] Qa
Qi —[O } (A.13)

where Qy, is the prescribed extraction or injection rate of phase o at node [L3/T] at the aquifer

temperature and pressure. Q, is negative for extraction. This vector is used to incorporate fluxes at
simulated injection or extraction wells.

122

Appendix B

ELEMENT MATRICES FOR THE SOLUTION OF DARCY’S
LAW EQUATION

The element matrix equation for the solution of the Darcy velocities is derived from (3.23) and (3.24).
For purposes of conciseness only the expansion of the aqueous phase equation (3.23) will be shown here,

[A) {go,}° = (F} (B.1a)
[A1 {ge, }° = {Fu)* (B.1b)

where {x4,}* and {x,}° are the vectors of x and z direction Darcy velocities at the three nodes of the
element e, ' ‘

{90,}° = {dar> 9ar> Qs), (B.22)
{90} = {901, 4ars 9}, (B.2b)

The [A]° matrix developed from eq. (3.23) may be expressed as,
Ajj =f N;N;dQ¢ B.3)
Qe ,

where in local coordinates the indices i and j can.equal 1, 2, or 3. This matrix is the same for both
directions, x, and z. In this development r can be substituted for x when the domain is axisymmetric. After
evaluation of the integrals, [A]¢ is,

ACFE
12

[A) =

[

11
21 (B.4)
1 2

Note that [A]¢ is constant for a given domain and need be factorized only once during a simulation.

The RHS vector from (3.23) where [is used to represent the directions, x or z is,
e dN; * e
Fy =— . Ay, Nj Pajw- — 05,81Nj) N;dQ (B.5)

Evaluating the integrals in B.5 yields,

LY

{Fo}* = {Ful%, + {Fa} (B.6)
a 4
where the pressure gradient term, { F, }j,a is,
AN\
7 2)‘11111 +)‘anz +)‘au3 Ze P, aj#
8N;
{Fal}Phae = —'2_2_ A'aul + 2)‘:1:12 +)‘-au3 Doe Pa,- =i B.7)

aN;
)‘au, +)‘auz + 2)‘0113 Ze P, j"zﬁL

123

and,

aN

g; (—P“i-a—;‘) Po,fy + Po o + Pa3ﬂ3 (B.8a)
~(p N

Z -,(Paqy) Pay1 + Payy2 + Foy V3 (B.8b)

The variables #; and ¥; are the Jogal coQ oordinate deriyatives of the basis functiens at node j in the x and z
directions, respg_ag:txvely

Finally the gravity term, {Fa,} is expressed as,

{Fa); = ' (B.9)
AF.g \16)'0111 + g?wmz T 2)‘!4113) Pay + (,ZA,QIQ + 2Agy, + 2&,:,1_1;3' Pay F | g_)»g,lg F 2hay, T Aay,) Pas
] - ‘ ’ {
6(; 2y, + 2hay, + Aay) Pay + \ 2hay, + Ohay, F 2Aay, | Par + ?)-‘9111 + 2Aay, + 22ay,) Pas

2hay, + Aoy, + 2Xay,) Pay Tt § Aoy, + 2hay, + 2}‘4113) Pay + (2}”4141 + 2Aqy, + 6Aay,) Pas

124

Appendix C

ELEMENT MATRICES FOR THE SEQUENTIAL
SOLUTION OF THE COMPONENT MOLE BALANCE
EQUATIONS

Integration of (3.36) gives the element matrix equation,

9 {xq ¢ e e
[A]e'—{;TC}—"F[B]e {%e.}° = {F} C.1)

where {xo,c }e is the vector of component mole fractions at the three nodes of the element e (1, 2, 3),
e T ’
{%a.}° = {xa1s Xay, Xa, } o (C.2)

The mass matrix is developed from eq. (3.37). It may be expressed as,

dxe,. ‘
Ajj = fﬂ ¢°Sa; Pa;ra, Nj—5= N NidQ (C.3)

where in local coordinates the indices i and j can equal 1, 2, or 3. Evaluating the integrals, the element

mass matrix [A]¢ is,

Py, AT a1y aiz a3

“0A; | W 92 a» Cc4
a3y azp as;

[A) =

where the individual elements of [A]¢ are defined as follows,

a11 = 38u; Pu; + Saz Poy + Sas Py (C.5a)

a12 = @31 = Su; Py + Sey Py + 0.550; Pas (C.5b)
13 = @31 = Say Puy + 0.550, 0 + Sty s (C.50)
a2 = Su, Pey + 38w, 005 + Sers Outs ‘ (C.5d)
@23 = G52 = 0.5, Py Sz Pty + Sy O (C.5¢)
a33 = Sy, Pa; + Sey Pty + 383 Purs (C.51)

An option is included in MISER for mass lumping of [A]¢ giving,

. e, peye | Qutan+ap 0 0 :
[AL] = ¢—;‘O£—At—- 0 a1 +ax + ax 0 (C.6)
0 ‘ 0 asi +as + as;

125

The stiffness matrix developed from egs. (3.36) may be expressed as,

aN; aN;

Bgi = / p(!c {qaxxdcj a . +qdzxacj a }NldQe (C.7)

e ON; aN;7 aN;

2 h j i
Bjj = fge ¢° {Sa,pajNJ [Dac e 5 L+ Do,m S] Bx + (C.9)

aN; aN;7 dN;
he 9N he J i e
[D tey Xete; 5 + D, *o, 32] 32 }dQ (C9)
B} = _/;Ze ¢* {7(_%] Nj%e,, N,-} N;dQ° (C.10)
Evaluating the integrals, the element stiffness matrix [B]° is,

[B]* = [Bl]e + [BZ]e + [33] (C.11)

where the terms [B1]°, [B2]°, and [B3] are defined as follows. First the advective portion of the stiffness
matrix can be expressed as,

. 7| bl b bis
[1] = | th b bl (C.12)
bii bl b
with the individual terms defined as,
b{] = {29011%2,“ + PorGay, T Pazo,, } B+ {2;00:1%1,,1 + Py oy, T PazGos, } 14! (C.132)
bl, = {Zpalqax, + poy gy, + Pogans} 2 {Zpalqa,,, + poqa, + Pa34ax3] V2 (C.13b)
bl; = {Zpa.qax, + PeyGey, + pa34ax3} B3+ {Zpalqax, + P qa,, + pa3an3} V3 (C.13¢)
by = | Pardiag, + 2Pereey + Pastlary | B1 + [e, + 2000, + Pl bn (C.13d)
by = [pmqm,,l + 200,90, + pag‘]otx3} B2+ {pa,qax, + 20e29ey, + Pa34az3} V2 (C.13e)
bzl’3 = {poqqa,l + 200,90, T Ptz Gery,] B3+ {palqaxl + 200,90, + Poz;‘]ozxsl V3 (C.13f)
by = {Poq%zx, + Payga, + 200390, } B+ {poqqul + Pay9ay, + 2Pw3qay, } Y1 (C.13g)
b:}xz = {pouqaxl + Perqe,, + 2pa3 9o,] B2+ [Pou%zx, + P 9a,, + Zchgqax3} V2 (C.13h)
by = {pa,qax, + 002 9a, + 20039,] B3+ {/oa,qu1 + ParGe,, + 2Pu3qay, } Y3 (C.131)
Next the dispersive portion of the stiffness matrix is, ‘
- b2, b%, b3
27¢ re{SaPa + Sez Por +Sapa} X 12 53
[B2] = mPn o —tetel | by b, b (C.14)

where the individual terms are defined as,

bl = b1 { D, 81+ DX |+ [DE_p1+ DI) (C.152)
B, = fo DI_pu+ DL 1} + 72 { D1+ DIy (C.15b)
b}y = ps {DI g1+ D |+ |DE i+ DX J/l} (C.15¢)
by = B DL, B2+ Dl o} + 0 {DE_pa+ DI)] (C.15d)
b = £2 | Dl po+ Dl va} + 12 { D, Br+ DI, 2} | (C.15¢)
by = 3 {DX_po+ DI o) +vs Do+ DX) (C.150)

bh = A [Df B+D 7’3} + 71 {DE_Bs + DI _ys} (C.15g)
b% = B2 { Dl B3+ Dl vs} +v2 {DE_Bs+ DE_ws) (C.15h)
b3 = B3 [DX_ps + Da%)/3} + 3 {DECU B3+ Di_ys} (C.15i)

Finally, the exchange and reaction portion of the stiffness matrix is defined as,

3 3 3
bll b12 b13

e ¢€A€7€
8] = b3, b3, b3, (C.16)

SR I P A
where the individual terms are defined as, |
b3 = 37?% + Ko, + Ko, (C.17a)
bl = b3 = Ke, + Ke, +0.5K,, (C.17b)
b}y = b3 =Ko, +0.5Ka,, + Ko, (C.17c)
b3 = Ka, +3Ka,, + Ko, (C.17d)
b3 = b3, = O.SKa + Ko, + Ko, (C.17e)
b3 =Ko, + Ko, +3Ka,, (C.17H

and the terms K, are defined in Table 3.2,

The RHS vector developed from integration of (3.36) is,

. . dN;
che = »/S;" ¢eF0tcj NjNidQe +./ {‘.beSolij!jN [Dgcxxxacf ax

e dN; e OaN;
+ Dgcxz'xdc'j azj +D2L'ux] + acz Cj "é‘?]']}andFe

127 :

The terms F, ; are defined in Table 3.2. Upon assembly of the global RHS vector, the boundary integral
terms sum to zero except at the domain boundaries (see Section 3.11.2). Evaluating the remaining portion
of the integral which contains the exchange and reaction term, Fy;, yields,

EF-"‘Q + _E—"‘Q + -_—F_"‘C3
Fa, +2Fa, + Fa, (C.18)
Faq + Fotcz + ZFU%

9° AT,

P ==1

The development above applies to the mobile phases o = g, a. A similar development starting with
(3.39) for the organic liquid and (3.41) for the biophase leads to the same terms presented above except that
(C.12) and (C.14) are both omitted.

Since significant differences exist for the solid phase development, only the mass matrix and RHS will
be shown below. Integrating (3.40), and assuming that the solid phase bulk density is constant yields for the
mass matrix,

wqeme | 2 11 ‘
A =247 | 1 o g (C.19)
12At
1 1 2
and for the RHS, _ . _
_ 2F, +F; +F
A M &8 5 L S I Ses
oy =22 | 7R 4 2
F, +Fs, +2F,,

128

Appendix D

ELEMENT MATRICES FOR THE SOLUTION OF THE
ORGANIC PHASE MASS BALANCE EQUATION

The governing matrix equation for the solution of the organic phase mass balance is derived from
equation (3.47). Integration of (3.47) gives the element matrix equation,

3{S.)°

[AY ot

{F}* ®.1)
where {S,}¢ is the vector of NAPL saturations at the three nodes of the element,

ASoY = {015 Sor» Ss }, | (D.2)

The mass matrix is developed from eq. (3.47). It may be expressed as,

35S,
A =er {¢ep;‘ij = Nj}N,-dQe (D.3)

where in local coordinates the indices { and j can equal 1, 2, or 3. Evaluating the integrals, the element
mass matrix [A]¢ is,
P AFe aiy di2 a3
- | az axn a; D.4
30AT 21 G a3 D.4)
asy as; asz

A =

where the individual elements of [A]® are defined as follows,

. au =3p; +p;, + 05, (D.5a)
ax = a1 = p, + p;, +0.50;, (D.5b)
a13 = a31 = p, +0.50,, + pj, (D.5¢)

axn = Py + 305, + 05, (D.5d)
ax = az = 0.50,, + p;, + P, (D.5e)
a3 = p; + 0, + 30, (D.5f)

[A] is then “mass lumped” to facilitate solution of the stacked NAPL saturation giving,

' ‘ 0
epepe | @11 +an+an 0
[AL]e = ¢30—At 0 a1 + ax + ax 0 (D.6)
0 0 as1 +aszz +ass

129

The RHS vector developed from integration of (3.47) is,
\ ‘ dof.)
Foic = f] E:ij - Soj—gt—J-Nj b N;dQ° ®o.7
_Qe | ’

where E;‘j is defined in Table 3.1. Evaluating (D.7) gives,

B apr dpX ap
* k “Fo * k “Fay * k SFo
2E; — ——L+E02) —1+E03 —So3"}’a;"

o1 ¢ T02 3t
PAT, 3p;, 3o, ap;
{F)*= 12 Ej — SﬁlTL +2E;, - Sﬁz# + E:3 - Sgs—ﬁl (D-8)

Ex — sk P g gk P ope ok Y
L “oy o1 at 02 - Moy ot " 03 ‘03 3t

This allows a direct solution for {S,}**! after assembly of the global matrices as,

sgjl = F;/A;i - (D.9)

where A;; 52 0 and { is iterated over the total number of stacked variables.

130

Integer Scalars
ia
nnhor

nnver

Real Scalars

caplen

kd
qwell

rwell
tmassQ
tmassl
trefqg
wtdpth
wvis

xbmax
xbmin
xbok
xbom
xden

xinit
xkex

Appendix E

Description of Major Variables

Number of nonzero entries in sparse
matrix.

Maximum number of nodes in the
horizontal direction in a generated grid.

Maximum number of nodes in the
vertical direction in a generated grid. 7

Klinkenberg parameter; Table 5.13:
Field 2.

Radius of impermeable cap on the
ground surface.

Decay coefficient; Table 5.12: Field 5.

Exfraction/injection rate; Table 5.22:
Field 2.

Well radius; Table 5.22: Field 3.

Initial total mass in domain.)
Current time step total mass in domain.
Reference temperature.

Depth to water table.

Water viscosity; Table 5.13: Field 1.

Maximum biomass; Table 5.12: Field
5.

Minimum biomass; Table 5.12: Field
5.

Two compartment K ; multiplier; Table
5.11: Field 3.

Two compartment m multiplier; Table
5.11: Field 3.

Two compartment density multiplier;
Table 5.11: Field 3.

Initial biomass; Table 5.12: Field 5.

Two compartment exchange coefficient
multiplier; Table 5.11: Field 3.

zwell Length of well screen.

Character Scalars

outpre Output file prefix; Table 5.4: Field 2.

Integer Arrays

ibc(nnmx) Nodal boundary condition locations;
Table 5.21: Field 1 (gas pressures), 2
(gas pressures), 3 (aqueous pressures),

. 4 (aqueous pressures), 5 (gas phase
components), 6 (aqueous phase
components), 7 (gas phase boundary
fluxes), and 8 (aqueous phase boundary

‘ fluxes).

ibcxmf(nmbc) Nodal component boundary condition
types; Table 5.21: Field 5 (gas phase
components) and 6 (aqueous phase
components). ‘

idepth(nnmx) Nodal depth reference.

icn(icnl) Sparse matrix column indices.
icp(0:50) Vector of control integers for
component identification.
ikeep(icnl,5) Solver work space.
ipt(0:90) Vector of control integers.
ipt(0) Number of elements; Table 5.7: Field
7.
ipt(1) - Number of nodes; Table 5.7: Field 7.
ipt(2) Number of stacked variables.
ipt(3) Number of components in the gas
phase.
ipt(4) . Number of components in the aqueous
phase.
“ipt(5) Number of components in the NAPL
phase.

131

ipt(6)
ip(7)
ipt(8)
ipt(9)
ipt(10)
ipt(11)

ipt(12)

ipt(13)

ipt(14)
ipt(15)
ipt(16)
ipt(17)
ipt(18)
ipt(19)

ipt(20)

ipt(21)

ipt(22)
ipt(23)
ipt(24)
ipu(25)
ipt(26)

ipt(27)

Number of components in the solid
phase.

Numbert of components in the bio
phase (includes biomass).

Start of gas phasé section in xmf
ordering.

Start of aqueous phase section in xmf
ordering.

Start of NAPL phase section in xmf
ordering.

Start of solid phase section in xmf
ordering.

Start of bio phase section in xmf
ordering.

Number of organic components in the
gas phase.

Numbet of organic components in the
aqueous phase.

Number of organic components in the
NAPL phase; Table 5.8: Field 1.

Number of organic components in the
solid phase.

Number of organic components in the
bio phase; Table 5.12: Field 1.

Number of nodes with constant gas
pressure; Table 5.21: Field 2.

Number of nodes with constant
aqueous pressure; Table 5.21: Field 4.

Number of nodes with gas phase
component boundary conditions; Table
5.21: Field 5.

Number of nodes with aqueous phase
component boundary conditions; Table
5.21: Field 6.

Number of nodes with constant gas
volumetric flux; Table 5.21: Field 7.

Number of nodes with constant
aqueous volumetric flux; Table 5.21:
Field 8.

Number of nodes along the well screen.

Print results every ipt(25) time steps if
Iprnt(0) is true; Table 5.4: Field 8.

Number of material property blocks;
Table 5.7: Field 6.

Integer variable denoting the type of
domain (ipt(27) = 0 - xz domain;
ipt(27) = 1 - rz domain); Table 5.5:
Field 1.

132

‘ipt(i28)v

ipt(29)
ipt(30)

ipt(3 1y

ipt(32)

ipt(33)

ipt(34)

ipt(35)

ipt(36)
ipt(37)
ipt(38)

ipt(39)

ipt(40)
ipt(41)
ipt(42)
ipt(43)
ipt(44)
ipt(45)
ipt(46)
ipt(47)
ipt(48)
ipt(49)
ipt(50)

Device designator for performance
output; Table 5.4: Field 3.

Device designator for error messages;
Table 5.4: Field 3.

Maximum number of time steps; Table
5.6: Field 3.

Maximum phase balarice iterations,
also used as the eriterfon for decreasing
dt in phase balance; Table 5.6: Field 6.
Maximum component balance
iterations, also used as the criterion for
decreasing dt in component balance
routines; Table 5.6: Field 6.
Maximum: NAPL sataration iterations;
Table 5.6: Field 6.

Maximurm: iumber of iterations in
phase balance for increasing dt; Table
5.6: Field 7.

Maximum number of iterations in
component balance routines for
increasing dt; Table 5.6: Field 7.

Flag from flow.f for time step
modification.

Flag from tran.f for time step
modification.

Flag from napls.f for time step
modification.

Integer flag determining the biokinetics
type (1 - standard monod kinetics; 2 -
monod kinetics with substrate
inhibition; 3 - monod kinetics with
lumped substrate inhibition; 4 - monod
kinetics with saturation dependency; 5
- monod kinetics with saturation

dependency and substrate inhibition);
Table 5.12: Field 3.

Constant - ipt(1) * 2.
Constant - ipt(1) * 3.
Constant - ipt(1) * 4.
Constant - ipt(1) * 5.
Constant ~ ipt(1) * 6.
Constant - ipt(1) * 7.
Constant - ipt(1) * 8.
Constant - ipt(1) * 9.
Constant - ipt(1) * 10.
Constant - ipt(2) * 2.
Constant - ipt(2) * 3.

ipt(51)
ipt(52)
ipt(53)
ipt(54)
ipt(55)
ipt(56)
ipt(57)
ipt(58)
ipt(59)
ipt(60)

ipt(61)
ipt(62)

ipt(63)
ipt(64)
ipt(65)
ipt(66)
ipt(67)
ipt(68)
ipt(69)

ipt(70)
ipt(71)
ipt(72)
ipt(73)
ipt(74)
ipt(75)
ipt(76)

ipt(77)
ipt(78)
ipt(79)
ipt(80)
ipt(81)

ipt(82)

Constant - ipt(2) * 4.

Constant - ipt(2) * 5.

Constant - ipt(2) * 6.

Constant - ipt(2) * 7.

Constant - ipt(2) * 8.

Constant - ipt(2) * 9.

Constant - ipt(2) * 10.

Constant - ipt(3) + ipt(4).

Constant - ipt(3) + ipt(4) + ipt(5).
Constant - ipt(3) +ipt(4) + ipt(5) +
ipt(6). A
Constant - ipt(3) + ipt(4) + ipt(5) +
ipt(6) + ipt(7).

Constant - ipt(18) + ipt(19) + ipt(20) +
ipt(21).

Constant - ipt(62) + ipt(22).

Constant - ipt(63) + ipt(23).

Number of components present.
Constant - ipt(65) * ipt(1).

Constant - ipt(0) * 2.

Constant - ipt(0) * 3.

Number of gas phase components in
output; Table 5.15: Field 2.

Number of aqueous phase components
in output; Table 5.15: Field 2.
Number of NAPL components in
output; Table 5.15: Field 2.

Number of solid phase components in
output; Table 5.15: Field 2.

Number of bio phase components in
output; Table 5.15: Field 2.

Constant - ipt(69) + ipt(70) + ipt(71) +
ipt(72) + ipt(73). 7
Initial condition type; Table 5.17: Field
1.

Restart input value of current time step
number.

Not Used.

"Not Used.

Not Used.
Current number of time steps.

Number of time series plot gas phase
components; Table 5.15: Field 3.

Number of time series plot aqueous
phase components; Table 5.15: Field 4.

ipt(83)

ipt(84)

ipt(85)
ipt(86)
. ipt(87)

ipt(88)

ipt(89)
irn(icnl)
iw(icnl,8)

matel(nelmx)
matpt(nn6)

nbdB(nxmax)
nbdL.(nzmax)

nbdR(nzmax)

nbdT(nxmax) -

nbw(0:2)
nelpt(nel3)
nodel(nel3)

nodept(nnmx)

Real Arrays

a(icnl)
aby12(nelmx)
aby30(nelmx)

amb(icnl)

area(nelmx)
bef(nn2)

133

Print mass balance every ipt(83) time
steps if lprnt(25) is true; Table 5.4:
Field 5.

Print time series every ipt(84) time
steps if Iprnt(26) is true; Table 5.4:
Field 6.

Compute flow field every ipt(85) time
steps; Table 5.5: Field 4.

Number of nodes in the vertical
direction.

Number of nodes in the horizontal
direction.

Pointer for temperature dependencies.
Constant - 5 * ipt(88).

Sparse matrix row indices.

Solver work space.

Element material blocks; Table 5.7:
Field 8.

Nodal material blocks.

Node numbers along the bottom
boundary of a generated rectangular
domain.

Node numbers along the left boundary
of a generated rectangular domain.

Node numbers along the right
boundary of a generated rectangular
domain.

Node numbers along the top boundary
of a generated rectangular domain.

Sparse matrix band widths.
Element stacking references.

Element connectivity vector; Table 5.7:
Field 8.

Nodal stacking references.

Global FEM matrix.
Element; rbar * area / 12.
Element; rbar * area / 30.

Global FEM matrix for phase mass
balance.

Element areas.

Nodal phase boundary fluxes.

bexmf(nmbc)

bdisl(nmblk)
bdist(nmblk)

beta(nel3)
bfoc(nmblk)

bok(nbcmp)
bom(nbcmp)
bpermh(nmblk)
bpermv(nmblk)

bphi(nmblk)
bsden(nmblk)

bvga(nmblk)

bvgm(nmblk)
bvgn(nmblk)

bsrw(nmblk)

cc(nnstk)
casol(ncmp)

cden(ncmp)

cex(nmf)

¢hen(nemp)

emassO(nempS)
cmass{ncmp35)

Nodal component boundary condition
in contacting fluid; Table 5.21: Field 5
(gas phase components) and 6
(aqueous phase components).

Block longitudinal dispersivities; Table
5.10: Field 3.

Block transverse dispersivities; Table
5.10: Field 3.

Nodal basis function x-derivatives.

Block organic carbon contents; Table
5.10: Field 1.

Block component Freundlich K ¢
parameters; Table 5.11: Field 2.

Block component Freundlich m
parameters; Table 5.11: Field 2.

Block horizontal intrinsic
permeability; Table 5.10: Field 1.
Block vertical intrinsic permeability;
Table 5.10: Field 1.
Block porosity; Table 5.10: Field 1.

Block bulk soil densities; Table 5.10:
Field 1.

Block van Genuchten o parameters;
Table 5.10: Field 2.

Block van Genuchten 1 — 1.

Block van Genuchten n parameters;
Table 5.10: Field 2.

Block residual aqueous phase
saturations; Table 5.10: Field 2.

Nodal capacity coefficients.

Component aqueous solubility; Table
5.8: Field 2 (organic components), 3
(water, oxygen, and nitrogen), and 4
(nutrient).
Component densities; Table 5.8: Field
2 (organic components), 3 (water,
oxygen, and nitrogen), and 4 (nutrient).
Nodal gas, aqueous, NAPL, solid, and
bio phase mole component left hand
side exchange terms.
Component Henry’s Law constants;
Table 5.8: Field 2 (organic
components), 3 (water, oxygen, and
nitrogen), and 4 (nutrient).
Component initial storages.

Component current time step storages.

cmdiff(ncmp?2)

cmf(ncmpp5)

cmw{(ncmp)

cphex(ncmpp5)
crsink(ncmpp5)

csflux(ncmpp5)
csink(nempp5)

cvp(ncmp)

cvvis(ncmp)

cwsink(ncmpp5)

d(nmd)
dden(nn6)

den(nn6)

| dent(nn6)

denO(nnmx)
dfxmf(nmbc)

dtemp(nzmax6)

first(ncmp)

134

Component gas and aqueous phase
molecular diffusivities; Table 5.8:
Field 2 (organic components), 3 (water,
oxygen, and nitrogen), and 4 (nutrient).
Phase and component cumulative total
boundary fluxes.
Component molecular weights; Table
5.8: Field 2 (organic components), 3
(water, oxygen, and nitrogen), and 4
(nutrient).

Phase and component cumulative
exchange fluxes.

Phase and component cumulative
reaction sinks.
Cumulative surface flux.

Phase and component cumulative
sinks.

Component vapor pressures; Table 5.8:
Field 2 (organic components), 3 (water,
oxygen, and nitrogen), and 4 (nutrient).
Component vapor viscosity; Table 5.8:
Field 2 (organic components), 3 (water,
oxygen, and nitrogen), and 4 (nutrient).
Phase and component cumulative
well sinks.
Element dispersivities; Table 5.10:
Field 3.
Nodal gas, aqueous, and NAPL phase
mole and mass density derivatives.
Nodal gas, aqueous, and NAPL phase
current time step mole and mass
densities.
Nodal gas, aqueous, and NAPL phase
previous time step mole and mass
densities.
Initial gas phase mass density.
Nodal component boundary diffusive
flux; Table 5.21: Field 5 (gas phase
components) and 6 (aqueous phase
components).

Depth temperature corrections; Table
5.14: Field 4 (component vapor
pressures), 5 (component vapor
viscosity), 6 (component Henry’s Law
constants), 7 (component aqueous
solubility), 8 (component maximum
substrate utilization rates), and 9
(biomass decay coefficients).
Boundary fluxes at nodes with constant
concentration conditions.

flux(ncmpp5)
fmb(icnl)

fuse(ncmp?2)

gama(nel3)

gamma(ncsqd)

kex(ncmp35)

khalf(ncmp)
kinhib(ncmp)

kmax(ncmp5)

krtd(ncmp)

p(nn3)
pex(nni0)

pmob(nnstkd)
pmw(nn3)
pmwt(nn3)
pmw0O(nnmx)

por(nelmx)
pt(nn3)

q(neld)

rbar(nelmx)

rhs(nsolve)

Phase and component boundary fluxes.

Global FEM right hand side vector for
phase mass balance. “

Oxygen and nutrient use factors; Table
5.12: Field 4.

Nodal basis function z-derivatives.

Nodal component coefficients for
vapor viscosity expression.

Component aqueous/gas,
aqueous/NAPL, gas/NAPL,
aqueous/biophase, and aqueous/solid
exchange coefficients; Table 5.9: Field
L

Component half saturation constants;
Table 5.12: Field 4.

Inhibition constants; Table 5.12: Field
4.

Component aqueous/gas,
aqueous/NAPL, gas/NAPL,
aqueous/biophase, and aqueous/solid.
minimum deviations from
equilibriums; Table 5.9: Field 1.

Component retardation factors; Table
5.11: Field 5.

Nodal gas phase, aqueous phase, and
capillary current time step pressures;
Table 5.17: Field 3.

Nodal gas, aqueous, NAPL, solid, and
bio phase mole and mass phase
exchange terms.

Nodal aqueous and gas phase x and z

_mobilities.

Nodal gas, aqueous, and NAPL current
time step phase molecular weights.

Nodal gas, aqueous, and NAPL
previous time step phase molecular
weights.

Initial gas phase molecular weights.
Element porosity.

Nodal gas phase, aqueous phase, and
capillary previous time step pressures.

Gas phase and aqueous phase specific
fluxes; Table 5.18 Field 4 (uniform) or
5 (nonuniform).

Element radial coordinates.
Global FEM right hand side vector.

rhsex(nmf)

rxn(nmf)
rxnp(nn2)
sat(nnstk3)
satk(nnstk2)
éatt(nnstk3)
sflux(ncmpp3) ,

source(nn2)

srw(nelmx)
strl(ncmpp5)

strO(ncmppS)
t(50)
t(1)

t(2)
t(3)
t(4)
t(5)
€(6)
€7)

()
#(9)
t(10)
®(11)
t(12)

t(13)

135

Nodal gas, aqueous, NAPL, solid, and
bio phase mole component right hand
side exchange terms.

Nodal aqueous and bio phase
component reaction terms.

Nodal aqueous and bio phase reaction
terms.

Nodal gas phase,aqueous phase, and
NAPL current time step saturations.

Nodal gas phase and aqueous phase
previous iteration saturations.

Nodal gas phase,aqueous phase, and
NAPL previous time step saturations.

Phase and component boundary fluxes
at ground surface.

Nodal phase boundary fluxes; Table
5.21 Field 7 (gas phase) and 8 (aqueous
phase).

Nodal aqueous phase residual
saturations.

Current time step phase and
component storages.

Initial phase and component storages.
Vector of real variables.

Initial time of simulation; Table 5.6:
Field 1.

Maximum or final time of simulation;
Table 5.6: Field 1.

Initial time step size; Table 5.6: Field
5.

i Minimum time step size; Table 5.6:

Field 5.

~ Maximum time step size; Table 5.6:

Field 5.

Time step multiplier for increases;
Table 5.6: Field 8.

Time step multiplier for decreases;
Table 5.6: Field 8.

" Current time step size.

Current simulation time.
Time weighting factor; Table 5.6: Field
2.

Delay period for initiation of
bioreaction; Table 5.12: Field 5.

- Print results at t(12) intervals if lprnt(0)

is false; Table 5.4: Field 8.
Convergence criterion for pressures;

. Table 5.6: Field 4.

(14)
t(15)
t(16)

«(17)
«(18)
¥(19)
1(20)
t(21)

1(22)
1(23)
1(24)
%(25)
(26)
t(27)
(28)

temp(nnmx)
tort(nelmx)
umax(ncmp)

vis(nnmx)

w(icnl)
xmf(nmf)

xmft(nmf)

knode(nnmx)
xyield(ncmp)

znode(nnmx)

Logical Arrays

Convergence criterion for mole
fractions; Table 5.6: Field 4.

Convergence criterion for NAPL
saturations; Table 5.6: Field 4.

Convergence criterion for immobile
phases; Table 5.6: Field 4.

Not used.
Not used.
Not used.
Not used.

Horizontal component of gravity
vector; Table 5.5: Field 1.

Vertical component of gravity vector;
Table 5.5: Field 1.

Maximum gas phase cell Peclet
number.

Maximum aqueous phase cell Peclet
number.

Maximum gas phase cell Courant
number.

Maximum aqueous phase cell Courant
number.

Print mass balance at t(27) intervals if
Iprnt(25) is false; Table 5.4: Field 5.
Print time series at t(28) intervals if
Iprnt(26) is false; Table 5.4: Field 6.
Nodal temperatures.

Element tortuosity factors.

Maximum substrate use rate; Table
5.12: Field 4.

Nodal gas phase viscosity.

Solver work space.

Nodal gas, aqueous, NAPL, solid, and
bio phase current time step mole
fractions.

Nodal gas, aqueous, NAPL, solid, and
bio phase previous time step mole
fractions.

Nodal x-coordinates; Table 5.7: Field
9.

Biomass yield coefficient; Table 5.12:
Field 4.

Nodal z-coordinates; Table 5.7: Field
9.

lcon(50)

Icon(1)
lcon(2)
Icon(3)
lcon(4)
Icon(5)
lcon(6)
Icon(7)
lcon(8)
lcon(9)
Icon(10)
lcon(11)
lcon(12)
lcon(13)
lcon(14)
lcon(15)
lcon(16)
lcon(17)
lcon(18)

letrl(50)
letsl(1)

letrl(2)

letrl(3)

136

Vector of logical switches to print
specified variables to the contour plot
file at specified print intervals.

Contour in molar form; Table 5.15:
Field 2.

Contour gas phase pressures; Table
5.15: Field 2.

Contour aqueous phase pressures;
Table 5.15: Field 2.

Contour gas/aqueous phase pressures;
Table 5.15: Field 2.

Contour gas phase mass and molar
density; Table 5.15: Field 2.

Contour aqueous phase mass and
molar density; Table 5.15: Field 2.

Contour NAPL phase mass and molar
density; Table 5.15: Field 2.

Contour gas phase mole fractions;
Table 5.15: Field 2.

Contour aqueous phase mole fractions;
Table 5.15: Field 2.

Contour NAPL phase mole fractions;
Table 5.15: Field 2.

Contour solid phase mole fractions;
Table 5.15: Field 2.

Contour bio-phase mole fractions;
Table 5.15: Field 2.

Contour gas phase saturation; Table
5.15: Field 2.

Contour aqueous phase saturation;
Table 5.15: Field 2.

Contour NAPL phase saturation; Table
5.15: Field 2.

Contour gas phase Darcy velocities;
Table 5.15: Field 2.

Contour aqueous phase Darcy
velocities; Table 5.15: Field 2.

Contour total organic soil
concentration; Table 5.15: Field 2.

Vector of logical control switches.

Solve transient phase balance; Table
5.5: Field 2.

Solve transient component balance;
Table 5.5: Field 2.

Include bioreactions; Table 5.5: Field
2.

letrl(4)
letrl(5)

letrl(6)
letrl(7)

letrl(8)
letrl(9)
letrl(10)

letrl(11)
letrl(12)

lotrl(13)
letrl(14)
letrl(15)
letrl(16)
letrl(17)
letrl(18)

letrl(19)

letrl(20)

letrl(21)

letrl(22)
letrl(23)

letrl(24)

letrl(25)
letrl(26)
1plt(20)

Iple(1)

Compute/print element dimensionless
numbers; Table 5.5; Field 7.

Generate a restart file; Table 5.4: Field
7.

Not used.

Mass lump flow equation; Table 5.5:
Field 3.

Mass lump transport equation; Table
5.5: Field 3.

Switch defining if nutrient is to be .
modeled; Table 5.8: Field 4.

Generate uniform temperature
distribution; Table 5.14: Field 1.

Not used.

True if an extraction is to be simulated;
Table 5.22: Field 1.

Make gas phase viscosity composition
dependent.

Couple flow and transport through
exchange; Table 5.5: Field 6.

Print time series output; Tablé 5.4
Field 6.

Include bioreaction in aqueous
transport; Table 5.12: Field 2.

Model biomass a steady state; Table
5.12: Field 2.

Use nodal Darcy velocities for
transport; Table 5.18: Field 1.

Use two compartment sorption model;
Table 5.11: Field 1.

Include Klinkénberg effect; Table 5.13:
Field 2. ‘

Calculate hydrodynamic dispersion; .
Table 5.10: Field 4.

Calculate density derivative terms.

Print contour plot data; Table 5.4:
Field 4.

NAPL is present in the domain; Table
5.5: Field 2.

Consider sorption; Table 5.5: Field 2.
Run is a restart; Table 5.16: Field 1.

Vector of logical switches to print
specified variables to the time series
file.

Generate time series output for the gas
phase; Table 5.15: Field 3.

1ple(2)

lprnt(0:30)

Iprnt(0) k
Iprnt(1)

Iprnt(2)
Iprnt(3)

Iprnt(4)
lprnt(5)
Iprnt(6)

Iprnt(7)
Iprnt(8)

Iprnt(9)

Iprat(10)

Iprnt(11) -

Iprnt(12)

Iprat(13) .

lprnt(14) .

Iprnt(15)

Iprnt(16)

" lprnt(17)

Iprnt(18)

Iprnt(19)

Iprat(20)

Iprnt(21)

Iprnt(22)

137

Generate time series output for the
aqueous phase; Table 5.15: Field 4.

Vector of logical switches to print
specified variables to the output file at
specified print intervals.

T=print at specified time steps, f=print
by time increment; Table 5.4: Field 8.

Print grid information; Table 5.7: Field
1.

Not used.

Print initial conditions; Table 5.15:
Field 1.

Not used.
Not used.

Compute and print mass balance
information; Table 5.4: Field 5.

Not used.

Print in molar form; Table 5.15: Field
2.

Print nodal gas phase pressure; Table
5.15: Field 2.

Print nodal aqueous phase pressure;
Table 5.15: Field 2.

Print nodal gas/aqueous capillary
pressure; Table 5.15: Field 2.

Print nodal gas phase mole and mass
density; Table 5.15: Field 2.

Print nodal aqueous phase mole and
mass density; Table 5.15: Field 2.
Print nodal NAPL mole and mass
density; Table 5.15: Field 2.

Print gas phase mole fractions; Table
5.15: Field 2.

Print aqueous phase mole fractions;
Table 5.15: Field 2.

Print NAPL phase mole fractions;
Table 5.15: Field 2.

Print solid phase mole fractions; Table
5.15: Field 2.

Print bio-phase mole fractions; Table
5.15: Field 2.

Print nodal gas phase saturation; Table
5.15: Field 2.

Print nodal aqueous phase saturation;
Table 5.15: Field 2.

Print nodal NAPL phase saturation;
Table 5.15: Field 2.

Iprat(23)
Iprnt(24)

Iprnt(25)

Iprat(26)

Iprnt(27)

Print gas phase Darcy velocities; Table
5.15: Field 2.

Print aqueous phase Darcy velocities;
Table 5.15: Field 2.

T=print mass balance at specified time
steps, f=print by time increment; Table
5.4: Field 5.

T=print time series at specified time
steps, f=print by time increment; Table
5.4: Field 6.

T=print material balance in report
form, f=print material balance in time
series form with multiple output files;
Table 5.4: Field 5.

138

lprnt(28) T=print time series file in mole
fractions, f=print time series file in
concentrations; Table 5.4: Field 6.
lprnt(29) T=print total organic soil
concentration; Table 5.4: Field 6.
Character Arrays
cname(ncmp) Component labels; Table 5.8: Field 2
(organic components), 3 (water,
oxygen, and nitrogen), and 4 (nutrient).
infile(4) Input file labels; Table 5.4: Field 1.
outfile(8+ncmp) Output file Jabels.

Appendix F
EXAMPLE MAKE FILE

Below is a sample make file for compiling MISER on an IBM6000 or Sun Sparc workstation platform.
In this example the source and object files are located in subdirectories called ‘src’ and ‘obj’, respectively.
The executable file is named ‘miser’ and is generated in the directory containing the makefile.

#
Define aliases for compilation and linking.
xl= 77 -05-0

x¢c=177-05-c -0

#

Define paths to source and object files.

ps = .fsre/

po = .Jobj/

#

Define an include file alias.

includes = $(ps)dimen.inc

Define an object files alias.

objects = $(pojatri's.o $(po)bcflux’s.o $(podbio’s.o\
$(po)cbal's.o $(po)commnt’s.o $(po)disper’s.o \
$(po)error's.o $(po)fiow's.o $(po)grid's.o \
$(po)har's.o $(po)input! s.o $(po)input2’s.o \
$(po)miser’s.o $(po)mobil's.o $(po)molewt’'s.o \
$(poympex’s.0 $(po)napls’s.o $(po)napix’'s.o \
$(po)prat’s.o $(po)satw’s.o $(po)solid's.o \
$(po)tlhs's.o $(po)trans’s.o $(po)vel's.o\

#

Link object files into an executable named *miser’.

miser: $(objects) $(includes)

$(x1) $@ $(objects)
C#

Define object file dependencies.
$(po)atri‘s.o; $(ps)atri.f $(includes)
$(xc) $@ $(ps)atri.f

$(po)beflux’s.o: $(ps)beflux.f $(includes)
$(xc) $@ $(ps)bcfiux.f

$(po)bio’s.o: $(ps)bio.f $(includes)
$(xc) $@ $(ps)bio.f ’
$(po)cbal's.o: $(ps)chal.f $(includes)
$(xc) $@ $(ps)cbal.f

$(po)commnt’s.o: $(ps)commnt.f $(includes)
$(xc) $@ $(ps)commnt.f
$(po)disper’s.o: $(ps)disper.f $(includes)

makemiser — to compile and link MISER code on Sun Sparc workstations.

$(xc) $@ $(ps)disper.f

$(po)error's.o: $(pserror.f $(includes)
$(xc) $@ $(ps)error.f

$(po)fiow's.0: $(ps)flow.f $(includes)
(xc)@ $(ps)fiow.f

$(po)grid's.o: $(ps)grid.f $(mcludes)
$(xc) $@ $(ps)grid.f

$(podhar's.o: $(ps)harf

$(xc) $@ $(ps)har.f

$(po)inputl‘s.o: $(ps)inputl.f $(includes)
$(xc) $@ $(ps)inputl.f

$(po)input2's.o: $(ps)input2.f $(includes)
$(xc) $@ $(ps)input2.f

$(po)miser's.o: $(ps)miser.f $(includes)
$(xc) $@ $(ps)miser.f

$(po)mobil's.o: $(ps)mobil.f $(includes)
$(xc) $@ $(ps)mobil.f

$(po)molewt’s.o: $(ps)molewt.f $(includes)
$(xc) $@ $(ps)molewt.f

$(po)mpex’s.o: $(ps)mpex.f $(includes)
$(xc) $@ $(ps)mpex.f

$(po)napls's.o: $(ps)napls.f $(includes)
$(xc) $@ $(ps)napls.f

$(po)naplx’s.o: $(ps)naplx.f $(includes)
$(xc) $@ $(ps)naplx.f

$(po)prnt's.o: $(ps)prnt.f $(includes)
$(xc) $@ $(ps)prat.f

$(po)satw’s.o: $(ps)satw.f $(includes)
$(xc) $@ $(ps)satw.f

$(po)solid's.o: $(ps)solid.f $(includes)
$(xc) $@ $(ps)solid.f

$(poltihs's.o: $(ps)tths.f $(includes)
$(xc) $@ $(ps)tihs.f

$(po)trans’s.o: $(ps)trans.f $(includes)
$(xc) $@ $(ps)trans.f

$S(po)vel's.o: $(ps)vel.f $(includes)
(xc)@ $(psyvel.f

139

Appendix G
EXAMPLE DATA FILES

Below are sample input files for the three example problems described in Section 6: example 1 is the
SVE problem; example 2 is the first BV problem; and example 3 is the field scale BV problem. Note that
data for example problems 2 and 3 are included as comment lines using the # in column 1.

The first input file should be named “riiser.d1’ and ldcated in the directory with the executable code.

‘This is the data file for inpiit] for exafhple 1 (SVE)

Data for examples 2 (BV) and 3 (field scale BV) are included.

Data ficlds can be separated by comment lines beginning with the *#
All data are input in free format.

#

L BLOCK A: INPUT/OUTPUT FILES AND OP-

TIONS =mzm===c=x
L)
Ficld 1 - Input files.
Specify the name of D2 and the error message file.
N The {ile name must be in single quotes.
]
for example 1, the datafile for input2 is located in the subdirectory
da
‘data/d2.examplel’ ’misererror’
for example 2, the datafile for input2 is located in the subdirectory
data
'dat/d2.example2’ 'miser.error’
for example 3, the datafile for input2 is located in the subdirectory
¥ data
"dat/d2.example3’ miser.error’

Ficld 2 - Prefix name for all output files.

¢.g. "oulpre.out’, outpre.err’, etc.

The prefix name must also be entered in single quotes.

N

for example 1, output is written to the tmp directory
*hmplexamplel®

for example 2, output is written to the tmp directory

¥ "hmplexample’

¥ for exammple 3, output is written to the tmp directory

"Amplexample3’

[

Field 3 - Output unit numbers for ecror and performance information.

Device numbers for:

(1) printing ceror and warning messages, and

(2) printing performance information.

0 = do not print information;

6 = screen:

21 = main output file (prefix.out);

22 = ervor message file (prefix.err) (only for error messages);

23 = convergence history file (prefix.cnv) (only for performance
output).

for examples 1, 2 and 3, print information to the screen

X G WX R XXX XX

Ficld 4 - Contour plot file.

Logical switch to open and print contour plot data to the file
*outpce.con’ (letrl(23) =t or f).

#

forexamples 1,2 and 3

t

¥

Field 5 - Mass balarice output file.

Enter either 1 ot 3 lines of data.

#1ine 1: A logical switch to open and Print mass balance results to
the file "outpre.mb’ (Iprnt(6) =t or f).

line 2: Only needed if pmt(6) above is true, otherwise disregard.

Enter a logical variable Iprnt(25) indicating if the print

interval is set by the numbet of time steps (true) or by a

eonstant time interval (false), Enter a logical variable

Iprnt(27) indicating if the material balance is in report

form (t) orin multiple files in time series form (f).

#line 3: Only needed if Iprnt(6) above is true, otherwise disregard.
Enter either the number of time steps ipt(83) or the uniform
print interval in seconds t(27).

#

for examples 1, 2 and 3, print the mass balance every 10 days

t

f f

8.64d5

#

Field 6 - Time series output file.

Enter either 1 or 3 three lines of data.

line 1: A logical switch to open and print time series results to

the file "outpre.plt’ (lctr}(15) =t or f).

line 2: Only needed if lctrl(15) above is true, otherwise disregard.

Enter a logical variable lprnt(26) indicating if the print
intervalis set by the number of time steps (true) or by a
i# constant time interval (false). Enter a second logical
switch Ipmt(26) indicating the coricentration units for
output (t=mole fraction, f=concentration).
line 3: Only needed if letrl(15) above is true, otherwise disregard.
Enter either the number of time steps ipt(84) or the uniform
print interval in seconds t(28).
#
for examples 1,2 and 3
f

- #

Field 7 - Restart file.

Open and print restart data to the file *outpre.rst’
(letrl(5) =t or f).

#

for examples 1, 2 and 3
t

Field 8 - Uniform print interval to the main output file.

Enter two lines:

(1) alogical variable indicating if the print interval is set

by the number of time steps (true) or by a constant time

interval (false);

(2) either the number of time steps ipt(25) or the uniform print
interval in seconds t(12).
#
#

for examples 1, 2 and 3, print the main output file every 20 days

1.7280d6

140

#

fms======—cmmmmz== TITLE CARDS ss==s=====mme——==

#

Define an unspecified number of title cards, including zero, if none

are desired. Title or comment cards are indicated with an *&’ symbol
#in column one. These can be placed anywhere in the main output file,
provided they are positioned in the input files between data fields.

#

&

&Sample data file for input 1: examples 1, 2, and 3.

&

&

#

#======= BLOCK B: GENERAL MODEL CONTROL OPTIONS =======
#

Field 1 - Coordinate system.

Specify: (1) an integer switch: O=cross-sectional (x-2);

1 = axial-symmetric (r-z);
(2) horizontal component of the gravitational constant
(m/s"2); .
(3) vertical component of the gravitational constant
(m/s*2); '
#
for examples 1,2 and 3
1 0.d0 9.81d0
#

Field 2 - Equation solution options.

Define 3 logical variables (t or f) indicating which balance equations
are to be solved:
(1) solve the phase balance egs;

(2) solve the component transport eqs;

(3) solve napl equations ’
(4) solve solid phase equations
(5) solve biophase equations
The flow equations can be solved without solving transport equations;
the transport eqs can be solved with an input steady state flow
distribution, option 2 must be true for options 3, 4, or 5 to be true;
for example 1

tttef
for example 2
#rtteft
for example 3

#rreet

#

Field 3 - Mass lumping options.

Define two logical variables indicating if lumping of the mass matrix
#is to be performed in the solution of the flow eqs and in the

solution of the transport equations.

#
for examples 1, 2 and 3

tt

#
Field 4 - Flow solution skipping option.
Read an integer parameter denoting the number of time steps to be
skipped between solving for the flow equations.

for examples 1, 2 and 3

0
#
Field 5 - not used
#
Field 6 - Coupling between flow and transport.
Enter a logical variable indicating if mass exchange terms
should be included in the solution of the flow equations.
#
for examples 1, 2 and 3

t
#
Field 7 - Element dimensionless numbers.
Enter a logical variable indicating if element dimensionless
numbers are to be calculated for the transport solution
#

for examples 1, 2 and 3
t

#

#======= BLOCK C: TIME STEP AND ITERATION CONTROL =======
#

Field 1 - Simulation time frame.

The initial (¢(1)) and final (t(2)) simulation time in seconds.
#

for examples 1, 2 and 3, run simulation for 100 days
0.d0 8.640d6
#
Field 2 - Time weighting.
Specify the time weighting parameter (t(10)): O=explicit; 1=implicit;
0.5 = Crank-Nicolson.
#
for examples 1, 2 and 3
1.d0
#
Field 3 - Maximum number of time steps (ipt((30)).
#

for examples 1, 2 and 3
100000000 '
#
Field 4 - Convergence tolerance.
Convergence tolerance in the solution of;
the phase balance eqs t(13); the component transport eqs t(14);
the bioreaction eqs. t(15); the immobile phase egs. t(16).
#
for examples 1, 2 and 3
1.d-5 1.d-8 1.d-8 1.d-8
#
Field 5 - Time step range.
Initial time step size (t(3)) in seconds; the minimum time step size
#t(4)); and the maximum time step size (t(5)).
4 g
for examples 1,2 and 3
1.d0 1.d-4 3.6d3
#
Field 6 - Maximum iterations for convergence.
Maximum number of iterations for convergence in the solution of:
the phase balance eqs ipt(31); the component transport egs
ipt(32); the bioreaction eqs. ipt(33) (ipt(33) currently not used).
#

#for examples 1, 2 and 3
15 30 30
#
Field 7 - Maximum iterations for time step amplification,
Maximum number of iterations for time step amplification in the
solution of: the phase balance solution ipt(34), and in the
solution of the transport eqs. ipt(35).
The minimum must be less than the maximum number of iterations.

#

for examples 1, 2 and 3
7 7

#

Field 8 - Time step multiplication factors.
Empirical time step amplification t(6) and reduction t(7) factors.
The time step is increased by a factor t(6) if the number of
iterations for convergence is less than the minimum; conversely the
step is reduced by the factor t(7) if the number of iterations for
convergence is greater than the maximum.
#
for examples 1, 2 and 3
1.05d0 0.75d0
#
#===== BLOCK D: GRID PARAMETERS AND OPTIONS =======

#

#Field 1 - Output grid geometry.

Enter a logical switch indicating if all grid information should be
printed to the main output file?

#

for examples 1, 2 and 3

f

#

Field 2 - Grid specification options.

Generate the grid for a rectangular homogeneous domain?
Enter an integer value: 0= don’t generate the grid, input all
element numbers and nodal coordinates.

1 = generate union jack grid.
2 = generate herring bone grid.
#

for examples 1, 2 and 3
2

#

141

Ficld 3 - Number of blocks.

1f a grid is (o be generated (igrid>0), then enter the number of
blocks in the horizontal {nx) and vertical (nz) directions,

¥ respectively, Skip if no grid is generated (igrid=0).

#

for example 1
3118
{or example 2
#39 18
for cxample 2
¥40 56
®
Fiekd 4 - Horizontal Block spacing in generated grid.
If a grid is to be generated (igrid>0), then enter:
first line - a Jogical variable indicating if the spacing is uniform,

¥ and the horizontal coordinate of the left boundary;

succeeding lines - horizomal spacing (one value if uniform, or nx
values if nonuniform). Units are assumed to be

meters.

Skip if no grid is generated (igrid=0).
#

for example |

f 0.2540

0.0140 0.0240 0.03d0

0.04d0 0.05d0 0.06d0 0.07d0 0,08d0 0.09d0 0.1d0 0.12d0 0.15d0 0.20d0
0.25d0 0.340 0.440 0.5d0 0.6d0 0.75d0 0.95d0 1.2d0 1.5d0 1.85d0
2.25d0 2.75d0 3,35d0 4.d0 4.75d0 5.d0 5.d0 5.d0

for example 2

#f 0.2540

#0.01d0 0.02d0 0.03d0 0.04d0 0.05d0 0.06d0 0.07d0 0.08d0 0.09d0 0.1d0
§0.12¢0 0.15d0 0.20¢0 0.25d0 0.3d0 0.4d0 0.5d0 0.6d0 0.75d0 0.95d0
#1240 1.5d0 1.85d0

#2440

#240 240 2.d0 240 2.d0 240 2.d0 2.d0 2d0 2.d0

#2400 240 2.d0 2.d0 2.d0

¥ foc example 3

#f 0.2500

#0.0535701 0.0650491 0.0789878 0.0959133 0.1164657
#0.1414220 0.1717259 0.2085235 0.2532059 0.3074629
#0.3733462 04533470 0.5504901 0.6684494 0.8116848
#0.9856129 1.d0 1.d0 1.d0 1.d0

#1.d0 1.d0 1.d0 1.d0 1.d0

4140 1.40 1.d0 1.d0 1.d0

1.2d0 1,440 1.640 1.840 2.d0

#2.40 240 2.d0 2.d0 2.d0

¥

Ficld 5 - Vertical Block spacing in generated grid.

¥ If a geid is to be generated (igrid>0), then enter:

first line - a logical variable indicating if the spacing is uniform,

] and the horizontal coordinate of the left boundary;

succeeding lines - horizontal spacing (one value if uniform, or nx
values if nonuniform). Units are assumed to be

¥ meters.

Skip if no grid is generated (igrid=0).

]

for cxample 1 and 2

t 0.d0

0.2540
for cxample 3
#f 040
#0.25d0 0.25d0 0.25d0 0.25d0
0.25d0 0.25d0 0.25d0 0.25d0
#0.25d0 0.25d0 0.25d0 0.25d0
0.2540 0.25d0 0.2540 0.25d0
#0.25d0 0.25d0 0.25d0 0.25d0

#0.25d0 0.25d0 0.25d0 0.25d0

0.25d0 0.25d0 0.25d0 0.25d0

0.2040 0.2040 0.1040 0.1040 0.10d0 0.1040 0.10d0 0.10d0
#0.1040 0.10¢0 0.1040 0.15d0 0.15d0 0.20d0 0.20d0

0.25¢0 0.25d0 0.25d0 0.2540
0.3040 0.40d0 0.5040 0.5040 0.50d0

0.5040 0.50:0 0.5040 0.50d0
#
Ficld 6 - Horizontally aligned material property blocks.
If a grid is to be generated (igrid>0), then enter an integer number
¥ of hocizontal material property blocks (ipt(26)).

If the number of blocks is greater than 1, then beginning on the
following line, enter the material block number for each vertical

spacing. There rhust be nz integer values in order from top to bottom.
Skip if no grid is generated (igrid=0).
#

for example 1 and 2
2

111122221111 111111
for example 3
#3
| #11111011
#22222222
#2222
#33333333
#33333333
#33333333
#33333333
#3333
#
Field 7 - Grid dimensions,
#1f a grid is to be input (igrid=0), then enter:
the number of elements (ipt(0)); the number of nodes (ipt(1)); and the
number of material property blocks (ipt(26)). '
Skip if the grid is generated (igrid>0).

#

Field 8 - Nodal incidence list.

If a grid is to be input (igrid=0), then enter the nodal incidence

list and the material property block number for each element.

The element node incidence list consists of the arbitrary global

element number followed by that element’s three global node numbers.
Each element has its own line. The element node numbers

start at an arbitrary node. If the z coordinate is positive

downwards proceed in the clockwise direction, otherwise proceed
#in the counterclockwise direction. If there is only one material

property block for the entire domain, the material property input
assignment for each element is omitted. The minimum material
property block is a two element quadrilateral.

Field 9 - Nodal coordinates
#1f a grid is to be input (igrid=0), then enter the nodal coordinates.
For each node enter 1 line of data giving: the node number; horizontal
coordinate; and the vertical coordinate. Units are assumed to be
meters. Skip if the grid is generated (igrid>0).
#
#======= BLOCK E: COMPONENT INFORMATION ======
#
Field 1 - Number of NAPL components.
Specify the number of components in the NAPL (ipt(15))
#
for example 1 and 2
1
for example 3
#2
#
Field 2 - NAPL component chemical properties.
For each NAPL component enter in order:
(1) component number
(2) component name (character variable in single quotes)
(3) component molecular weight (g/mole)
(4) component vapor pressure (atm)
(5) component vapor viscosity (cPoise)
(6) component liquid density (g/)
(7) component gas diffusivity (cm"2/s)
(8) component aqueous diffusivity (cm"2/s)
(9) component henry’s constant (atm 1/g)
(10) component aqueous solubility (g/1)
Data for each component must start on a new line.
Note: a component can be excluded from the gas phase or the aqueous
phase by entering a negative value for the vapor pressure or aqueous
solubility, respectively. Organic components should be entered in
order of volatility starting with the most volatile.
Skip this item if no NAPL components are specified (ipt(15)=0).
#
for example 1 and 2

EE I I

1’ toluene ’ 92.1340d0 2.940d-2 7.0d-3 867.0d0
8.5d-2 9.540d-6 5.70d-2 .5150d0

for example 3

#1 ' benzene ’ 78.10d0 0.102d0 7.5d-3 879.0d0
#8.8d-2 9.0d-6 5.70d-2 1.78d0

#2 ' xylene ’106.2d0 0.0092d0 7.0d-3 880.1d0

142

#6.2d-2 7.2d-6 5.70d-2 .175d0
#

Field 3 - Chemical property data for water, oxygen, and nitrogen.
Enter the 10 parameter values listed above. The ordering is assumed
to be: water , oxygen, and nitrogen.

The component number is always: water = ipt(15)}+1; oxygen = ipt(15)+2;
nitrogen = ipt(15)+3 :
Any of these components can be eliminated by specifying negative
values for both the vapor pressure and water solubility.

Note, if water is eliminated then there is no aqueous phase pressure
and the flow equations cannot be solved.

If nitrogen is eliminated, then there is no gas phase, (i.e. the vapor
pressure must be negative for all components). The nitrogen

solubility is a dummy input; it is not used in computations.

for example 1 .

2 ’water * 18.0d0 -2.310d-2 9.750d-3 998.0d0

.2450d0 0.0d0 0.0d0 1.0dO

3 "oxygen ' 32.0d0 -0.20d0 0.0192d0 998.0d0

8.5d-2 2.153d-5 0.0d0 -.009d0

4 ’ nitrogen ’ 28.02d0 1.0d0 0.0172d0 998.0d0

0.0d0 0.0d0 0.0d0 -1.0d0

for example 2

#2 ’water ' 18.0d0 -2.310d-2 9.750d-3 998.0d0
#.2450d0 0.0d0 0.0d0 1.0d0

#3 oxygen ’ 32,0d0 0.20d0 0.0192d0 998.0d0

#8.5d-2 2.153d-5 0.0d0 .009d0 :

#4 * nitrogen’ 28.02d0 1.0d0 0.0172d0 998.0d0

#0.0d0 0040 0.0d0 -1.0d0

for example 3

#3 “water ° 18.0d0 -0.0231d0 9.50d-3 998.2d0

#.2450d0 0.0d0 0.0d0 1.0d0

#4 *oxygen ° 32.0d0 0.20d0 0.02d0 998.0d0

#8.5d-2 2.153d-5 0.0d0 .009d0

#5 ' nitrogen’ 28.02d0 1.0d0 0.0174d0 998.0d0

#0.0d0 0.0d0 0.0d0 -1.0d0 .

#

Field 4 - Nutrient inclusion. .

Enter a logical variable indicating whether a nutrient component is
to be modeled.

#

for examples 1, 2 and 3

f

#

Field 5 - Nutrient Chemical Properties.

If a nutrient is modeled, then specify the 10 chemical

property parameters listed above.

The component number of nutrient is always = ipt(15)+4.

Skip this item if-no nutrient is modeled.

#

#

Field 1 - Interphase mass exchange coefficients.

Enter: (1) compofient number which is identical to the order entered
above; nitrogen = ipt(15)+3; nutrient=ipt(15)+4)

(2) aqueous/gas exchange coefficient (1/sec)

(3) aqueous/NAPL exchange coefficient (1/sec)

(4) gas/NAPL (1/sec)

(5) aqueous/biophase (1/sec)

(6) aqueous/solid (1/sec) .

Note: a zero value for aqueous/biophase mass exchange coefficient

indicates that the component does not partition between that phase

pair.

On a second line enter minimum deviations from equilibrium for each

exchange coefficient entered on the previous line. DO NOT ENTER A

VALUE LESS THAN 0.05D0.

Enter: (1) component number which is identical to the order entered
above; nitrogen = ipt(15)+3; nutrient=ipt(15)+4)

(2) aqueous/gas minimum deviations from equilibrium

(3) aqueous/NAPL minimum deviations from equilibrium

(4) gas/NAPL minimum deviations from equilibrium

(5) aqueous/biophase minimum deviations from equilibrium

(6) aqueous/solid minimum deviations from equilibrium

]

b o3k e G 3k 3 A

for example 1
toluene
1 5.0d-55.0d-4 5.0d-4 0.d0 5.d-5
1 0.1d0 0.1d0 0.1d0 0.1d00.1d0
water

2 0.d0 0.d0 0.dO0 0.d0 0.d0

2 0.1d0 0.1d0 0.1d0 0.1d0 0.1d0

oxygen

3 0.d0 0.d0 0.d0 0.d0 0.d0

3 0.1d0 0.1d0 0.1d0 0.1d00.1d0

nitrogen

4 0.d0 0.d0 0.d0 0.d0 0.d0

4 0.1d0 0.1d0 0.1d0 0.1d0 0.1d0

for example 2

toluene

#1 5.0d-6 5.0d-5 5.0d-5 0.d0 0.d0

#1 0.1d0 0.1d0 0.1d0 0.1d00.1d0

water

#2 0.d0 0.d0 0.d0 0.d0.0.d0

#2 0.1d0 0.1d0 0.1d0 0.1d0 0.1d0

oxygen

#3 5.0d-6 5.0d-5 5.0d-5 0.d0 0.d0

#3 0.1d0 0.1d0 0.1d0 0.1d00.1d0

nitrogen

#4 0.d0 0.d0 0.d0 0.d0 0.d0

#4 0.1d0 0.1d0 0.1d0 0.1d0 0.1d0
Nr‘example 3

benzene .
#1 1.157d-52.315d-4 5.787d-4 0.d0 1.1574d-5
#1 0.075d0 0.075d0 0.075d0 0.075d0 0.075d0
0-Xylene

#2 1.157d-52.315d-4 5.787d-4 0.d0 1.157d-5
#2 0.075d0 0.075d0 0.075d0 0.075d0 0.075d0
#water %

#30d0 /040 0d0 0.d0 0.dO

#3 0.075d0 0.075d0 0.075d0 0.075d0 0.075d0
oxygen

#4 1.157d-5 2.315d-4 5.787d-4 0.0 1.157d-5
#4 0,075d0 0.075d0 0.075d0 0.075d0 0.075d0
nitrogen

#50d0 0d0 040 0.d0 0.dO

#5 0.075d0 0.075d00.075d0 0.075d0 0.075d0
#

===== BLOCK G: MATERTAL PROPERTY BLOCK DATA =======

#
#Field 1 - Soil physical properties:
For each material property block specify:
(1) material block number;
(2) porosity;
(3) horizontal permeability (m"2);
(4) vertical permeability (m"2).
(5) bulk soil density (gm/cm"3)
(6) organic carbon content
Data for all blocks must be defined.
Data for each block begins on a new line
#
for example 1 and 2
1 033d0 1.d-11 0.8d-11 1.7d0 0.001d0
2 0.35d0 0.6d-11 0.4d-111.7d0 0.001d0
for example 3
#1 033d0 1.0d-11 '1.0d-11 1.7d0 0.001d0
#2 0.33d0 5.0d-11 5.0d-11 1.7d0 0.001d0
#3 0.33d0 0.7d-11 0.7d-11 1.7d0 0.001d0
#
Field 2 - Water retention parameters:
For each material property block specify:
(1) material block number;
(2)residual water saturation;
(3) van Genuchten n for air/water retention data;
(4 van Genuchten alpha for air/water retention data (1/Pa).
Data for all blocks must be defined.
Data for each block begins on a new line
#
for example 1 and 2
1 0.12d0 7.0d0 .002d0
2 0.16d0 5.0d0 .0008d0
for example 3
#1 0.073d0 3.97d0 . 4.34d-4
#2 0.073d0 3.97d0 7.47d-4
#3 0.073d0 3.97d0 2.79d-4
#
Field 3 - Dispersion parameters:
For each material property block specify:

B]

143

(1) material block number;

(2)longitudinal dispersivity (m);
(3) wansverse dispersivity (m);

¥

foc example 1 and 2

1 1.060 0.01d0

2 1.0d0 0.01d0
for example 3
#1 0540 0.01d0
42 0540 0.01d0
#3 0540 0.01d0
¥
¥ Ficld 4 - Dispersion tensor computation.
¥ Enter a logical variable (letrl{21)) indicating that the
hydrodynamic dispersion tensor should be calculated. Enter false if
a known and constant dispersion tensor is to be input.
N
forexamples 1,2 and 3

t

N

Field 5 - Dispersion tensor.

If lctrl(21) above is false then enter the hydrodynamic dispersion

tensor for each component present with two lines, the fiest line is

{or the gas phase and the second line is for the aqueous phase. The
fiest entry on each line is the component number.

¥

N
Ficld 1 - Sorption model (required if letri(25)=true):
Enter a logical variable (letrl(19)) indicating if sorption is
modeled as a one (false) or two (true) compartment process.
¥ Note: the two compartment model is currently limited to conditions of
& homogencous soil domain and a single component NAPL.
L]
for examples 1 and 3
£

“

Ficld 2 - Single compartment Freundlich sorption parameters

¥ (required if letel(25)=true):

For cach material property block enter two groups of data:

(1) the material block number, followed by the k parameter values
for cach organic component in order
from 1 to the number of components (micrograms/gram solid,
with aqueous concentration-in mg/)

(2) the material block number, followed by the n=1/m parameter
(dimensionless) values ordered in the same way.

EEXEXETRRE R

for example 1

I 7.72d0

1 0.54440

2 7.72d0

2 0.544d0

for example 3

#1 1.16d0 03640

#1 0.862d0 1.07d0

N2 11640 0.36d0

#2 0.862d0 1.07d0

3 11640 0.3640

%3 0.862d0 1.07d0

¥

¥ Field 3 - Two compartment sorption data:

¥ The two compartment model has a slow and a fast compartment.

Both compartments are modeled with the Freundlich equation.

Four parameters must be input:

(1) multiplicr to convert slow compartment kf parameter to the fast
compartment value;

{2) muktiplicr to convert slow compartment n=1/m parameter to the
compartment value;

(3) multiplicr to convert slow compartment mass transfer
coefficient to the fast compartment value;

(4) mass fraction of solid phase in the fast compartment.

Skip this item if the single compartment model is used

(lctrl(19)=falsc)

#

WX

Field 4 - Include retardation factor (required if letrl(25)=false).
Lnter a logical variable indicating if retardation factors are used.
L]

¥ for example 2

EE I R R]

#f

#

Field 5 - Retardation factors (required if Ictrl(25)=false and

lretrd=true)

For each component give the component number and the retardation
factor. Retardation factors must be entered for all components,

however }.0-implies no sorption.

#
====BLOCK k BIOLOGICAL PARAMETERS ====

#
| # Field I - Number of biodegradable substrates.
| # Specify the number of biodegradable substrates, ipt(17). The biophase

always contains oxygen and nutrient if present.
#

for example 2

#1

for example 3

#2

#

Field 2 - Biodegradation control switches.

| # Specify 2 logical variables indicating:
- # (1) if a steady state biomass is to used (value=true), or if a
- # transient biomass is to be modeled (value=false).

(2) if biodegradation: equations are modeled as a sink term
in.the aqueous transport equations (value=true),

separate biophase (value=false).

#

' #

| # otherwise their modeled as rate-limed exchange to a
#
#

for examples 2 and 3

#f t

#

Field:3 - Growth kinetics option,

Specify an integer value indicating the type of growth

kinetics: (ONLY OPTIONS 1 AND 2 AVAILABLE NOW)
1 =standard Monod kinetics

2 =Monod kinetics with substrate inhibition

3 =Monod kinetics with lumped substrate inhibition

4 =Monod kinetics with saturation dependency

and substrate inhibition

5=Monod kinetics with saturation dependency and

#

substrate inhibition
#
for examples 2 and 3
#2
#

Field 4 - Monod parameters:

For each component in the biophase provide the following information:

(1) component number as defined in block E.

(2) electron acceptor use coefficient (gm-02/gm-substrate)

(3) nutrient use coefficient (gm-nutrient/gm-substrate)

(4) maximum substrate use rate (gm-substrate/gm-biomass/sec)

(5) half saturation constant (gm-component/l)

(6) yield coefficient (gm-biomass/gm-substrate)

(7) inhibition constant (dimensionless) expressed as a fraction of
the aqueous solubility. For substrate and nutrient this
turns off metabolism when the concentration is above this
threshold concentration and for electron acceptor this
turns off metabolism when the concentration is below this
threshold concentration. In both cases hyperbolic functions
are used.

for example 2

toluene

#1 21940 1.5d0 1.157d-6 17.4d-3 0.5d0 0.25d0
oxygen

#3 21940 1.5d0 1.157d-6 0.1d-3 0.5d0 0.2d0
for example 3 (high set)

benzene

#1 2.19d0 0.d0 1.157d-5 0.5d-3 0.5d0 0.5d0
o-xylene

#2 2.19d0 0.d0 1.157d-5 0.5d-3 0.5d0 0.5d0
oxygen

#4 2.19d0 0.d0 1.157d-5 0.5d-3 0.5d0 0.5d0
#

Field 5 - Decay and biomass range coefficients.

Specify:

(1) the decay coefficient (sec)

(2) the minimum biomass (g/1)

144

(3) the maximum biomass (g/l)

(4) the initial uniform biomass (g/1)

(5) delay period for initiation of bioreaction (sec)
#

for example 2

#1.157407d-7 1.d-3 100.0d-3 1.62d-3 8.64d4

for example 3

#1.157407d-6 1.d-6 2d-2 1.4d-6 8.64d4

Field 1 - Water phase viscosity.
Specify the water phase viscosity (cPoise)
#

for examples 1 and 2
1.124d0
for example 3
#1.002d0
#
Field 2 - Gas phase slip flow parameters.
Specify:
(1) alogical variable indicating if the Klinkenberg
effect is to be modeled (value=true);
(2) the Klinkenberg parameter (atm). Set the parameter to zero
if the previous line is false.

for examples 1,2 and 3

f 0.do

#

== BLOCK K: TEMPERATURE PARAMETERS ======

Field 1 - Temperature distribution.
Specify a logical variable indicating if temperature
distribution is uniform (true).
#
for examples 1,2 and 3

t
#
Field 2 - Uniform temperature distribution.
If the temperature distribution is uniform, enter a single uniform
value (degree C); otherwise enter a temperature value for each node
along the vertical edge of the domain.
#
for examples 1, 2 and 3

20.d0
#
Field 3 - Nonuniform temperature distribution.
A vertical nonuniform temperature distribution can be defined only in
association with a generated rectangular grid.
Temperature values are needed for each vertical node along the
boundary starting at the surface, downward (ny+1 values).

For each node enter 1 line of data giving the:
1) vertical depth of node (for error checking)

2) temperature at the node (degree C)
#

Field 4 - Temperature dependent chemical properties.

Temperature dependent chemical properties are needed for each

component for the following 6 properties:
(1) component vapor pressure
(2) component vapor viscosity
(3) component Henry's law constant
(4) component aqueous solubility
(5) component maximum specific utilization rate
(6) biomass decay rate
For each of these properties give the temperature dependent value at
each of the ny+1 nodes along the vertical boundary.
Provide the information for all 6 properties for a given component and
then repeat for the next component.

Use the original component ordering as in the component information
section. After all the component values give the kd values.

#
Vapor pressure of component 1 at ny+1 nodes

L S S

Vapor viscosity of component 1 at ny+1 nodes
#
Henry’s law constant of component 1 at ny+1 nodes
#
aqueous solubility of component 1 at ny+1 nodes
#
maximum specific utilization rate of component 1 at ny+1 nodes
#
Repeat above for all NAPL components, then water, oxygen, nitrogen and
nutrient if present.)
After all components have been entered, provide ny+1 nodal values for
the Kd coefficient,
#
#===== BLOCK L: OUTPUT CONTROL PARAMETERS =====
#
Field 1 - Print initial conditions.
Enter a logical variable (LPRNT(3)) indicating if initial conditions
should be printed for selected variables.
#
for examples 1, 2 and 3

t
#
Field 2 - Print switches,
Read print switches for specified variables, the first switch for
each variable is for the printed output, the second switch for
each variable is for the contouring output: Use component numbers
#based established in block E above:
This input is currently set for minimal output. The user should
specify output of interest.

tf print/contour output in molar form

tf print/contour nodal gas phase pressure

tf print/contour nodal aqueous phase pressure

ff print/contour nodal gas/aqueous capillary pressure

ff print/contour nodal gas phase density

ff print/contour nodal aqueous phase density

ff print/contour nodal NAPL phase density

tf print/contour nodal gas phase components

11
tt print/contour nodal aqueous phase components
11

ff print/contour nodal NAPL phase components

ff print/contour nodal solid phase loadings

ff - print/contour nodal bio-phase components

tf print/contour element avg total organic soil mass fraction

tf print/contour nodal gas phase saturation

tf print/contour nodal aqueous phase saturation

tf print/contour nodal NAPL phase saturation

tf print/contour gas phase Darcy velocities

ff print/contour aqueous phase Darcy velocities
#
Field 3 - Gas phase time series plot switches.
line(l) - enter a logical variable indicating if time series plot

output files should be generated for gas phase

line(2) - If .true. enter the number of gas phase components;
followed by the global component number and the
associated node number for the location from which to
output.
#
#

£

A maximum of 6 components can be defined for the combined gas and
aqueous phase below.
f time series plot nodal gas phase components

Field 4 - Aqueous phase time series plot switches.
line(1) - enter a logical variable indicating if time series plot
output files should be generated for gas phase
line(2) - If .true. enter the number of gas phase components;
followed by the global component number and the
associated node number for the location from which to
output.
A maximum of 6 components can be defined for the combined gas and
aqueous phase below.
f time series plot nodal aqueous phase components

#
#
#
#
#
#
#
#
#
#

In this example the second input file is named “d2.examplel’ and is located in a subdirectory called

‘data.’

145

This is the data file for input2 for example 1 (SVE)

Data for examples 2 (BV) and 3 (ficld scale BV) are included.

Data ficld can be separated by comment lines beginning with the '#'
Al data are input in free format.

#

#zm====Block M: RESTART IDENTIFIER =======
Ficld 1 - restart control switches

1) indicates if this run is a restart (letrl(26));

2) indicates if the mass balance is to be reset (lctrl(32)).
L]

forexamples 1 and 2
ff
for example 3
#e f
#
¥ Fickl 2 - restart file identifier: only required if lctrl(26) = true
L} This file is a renamed copy of the file "outpre.rst’
]

N 'data/d3.cxamplel’
"data/d3.example2’
‘data/dd.cxample3’
#

#
#mm==z Block N: INITIAL PRESSURE CONDITIONS =====

]

Field 1 - Initial pressure distribution

Enter an infeger control variable (ipt(75)) indicating how the

initial pressure distribution is to be input:

1 = Comgpute initial pressure distribution assuming P'g =1 atm

£ and Pa is hydrostatic referenced to atmospheric pressure
L} at the water table. The water table is assumed to be flat
[and the z-axis is vertical.
¥ 2=Input gas and aqueous pressures at all nodes;
L]
¥ forexamples 1,2and 3
1
L]
L]

Field 2 - Depth to water table (m).
This variable is read only if ipt(75)=1
[]

for examples 1 and 2

40.40

for example 3

8.0d0

¥

¥ Field 3 - Initial Pressures.

Required only read if ipt(75)=2

For cach node enter one line of data giving:

(1) the node number; (2) the initial water pressure; and (3) the
M initinl air pressure. All pressures are gauge pressures in Pascals.
Nodes need not be in order. USE -NODE# FOR UNIFORM
]

Kzzz== BLOCK O: VELOCITY COMPUTATION APPROACH =====
N

¥ Field [- Velocity computation method.

Enter a logical variable indicating if nodal velocities should be

¥ computed (true), or if element average velocities are used (false).
L§

forexamples 1,2 and 3
t
¥
Field 2 - Steady state velocity distribution.
1f the flow field is transient (letrl(1) = .true.) then no other input
arc required in this block. If a steady state flow field is assumed
(i.e. letrl(1) = false.) then enter a logical variable indicating if
the velocity distribution should be computed from the pressure field
(true) or if the velocities are to be input (false).
Note: This input needed only if (lctrl(1)=false).
L

Ficld 3 - Input velocity distribution.

If the velocity distribution is SS the enter a logical variable (Icv)
indicating if the velocity components are unifrom (true) or

nonuniform (false).

Note: This input needed only if the flow field is not transient and
¥ peevious input=false,

#

M Ficld 4 - Uniform velocity components.

Required only if lev = true.

#1f the SS velocity components are uniform then enter

the components of the specific discharge (m/s) for:

(1) gas phase in the x-direction (horizontal)

(2) gas phase in the z-direction (vettical)

(3) aqueous phase in the x-direction (horizontal)

(4) aqueous phase in the z-direction (vertical)

#

Field 5 - Nonuniforin velocity components.

Required only if lev = false.

Otherwise if the velocity components are nonuniform, then for

each node or element (depending if nodal or element velocities are

used) provide one line of data giving the node or element number and
the 4 components listed above.

#

#=—== BLOCK P: INITIAL NAPL SATURATION AND COMPOSITION ====

#
#Field 1 - Elements containing NAPL saturation.
Enter the number of elements (inoel) containing NAPL.
A number less than zero indicates that a NAPL saturation is
uniform and contained in all elements
#
for examples I and 2
505
for example 3
#651

#

Field 2 - Uniform NAPL saturation and composition.

Enter:

(1) The uniform nodal NAPL saturation;

(2) NAPL mole fraction of each organic component.

There must be ipt(15) mole fractions specified.

Mole fractions are entered in sequential order (i.e. component
numbers 1 to ipt(15). The mole fractions must sum to 1.

E L R

Fleld 3 - Non uniform NAPL saturation and composition.

If inoel>0, then for each element containing NAPL provide the

following information:

(1) element number

(2) The uniform nodal NAPL saturation;

(3) NAPL mole fraction of each organic component.

There must be ipt(15) mole fractions specified.

Mole fractions are entered in sequential order (i.e. component
numbers 1 to ipt(15). The mole fractions must sum to 1.

L R

for examples 1 and 2 - this is a partial file.
1.531656E-02 .1000E+01
2 .562525E-02 .1000E+01

572 .566822E-09 .1000E+01
573 .566507E-09 .1000E+01
for example 3 - this is a partial file.
#1 0.326712E-01 0.5000E+00 0.5000E+00
#2 0.285502E-01 0.5000E+00 0.5000E+00
..
#2168 0.703352E-15 0.5000E+00 0.5000E+00
#2169 0.696703E-15 0.5000E+00 0.5000E:+00
#
#===== BLOCK Q: OXYGEN AND NUTRIENT INITIAL CONDI-
TIONS ======
#
Field 1 - Gas phase initial conditions.
Read a logical variable (lunfx) indicating if the gas phase initial
conditions for oxygen and/or nutrient are uniform.
Skip this input if oxygen is absent from the gas phase (i.e. the
oxygen vapor is assigned a negative value)
#

for examples 2 and 3

#t

#

Field 2 - Uniform gas phase conditions.

Enter the uniform gas phase initial conditions for oxygen and
nutrient.

Initial conditions are read as partial pressures (i.e. mole

fractions). Nutrient can only be present if oxygen is present.
(1) the uniform oxygen partial pressure in the gas phase

(2) the uniform nutrient partial pressure in the gas phase. This
item is omitted if nutrient is absent.

146

#

for examples 2 and 3

#0.20d0

#

Field 3 - Nonuniform gas phase initial conditions for oxygen and
nutrient,

If lunfx=F, then for each node enter:

(1) node number;

(2) the uniform oxygen partial pressure in the gas phase

(3) the uniform nutrient partial pressure in the gas phase

Nodes need not be in order.

#

Field 4 - Aqueous phase initial conditions.

Read a logical variable indicating if the aqueous phase mmal

conditions are uniform.)

Skip this input if oxygen is absent from the aqueous phase (i.e. the
oxygen aqueous solubility is assigned a negative value)

#

for examples 2 and 3

#t

#

Field 5 - Uniform aqueous phase conditions.
Read the aqueous phase initial conditions for oxygen and nutrient.

Inital conditions are read as concentrations (g/L). Nutrient

can only be present if oxygen is present.

If lunfx=T, then enter:

(1) the uniform oxygen concentration (g/L) in the aqueous phase

(2) the uniform nutrient concentration (g/L) in the aqueous phase
#

for examples 2 and 3

#0.0090d0

#

Nonuniform aqueous phase initial conditions for oxygen and nutrient.
If lunfx=F, then for each node enter:

(1) node number;

(2) the uniform oxygen concentration (g/L) in the aqueous phase

(3) the uniform nutrient concentration (g/L) in the aqueous phase

Nodes need not be in order.

#

#===== BLOCK R: BOUNDARY CONDITIONS
#

#Field I - Constant gas pressure nodes equivalent to the initial -
pressure,
(1) Enter the number of nodes with a constant gas pressure equal
to the initial gas pressure.
(2) If nonzero, then starting on a new line, specify the node
number of all such nodes.
#
for example 1
26
457 476 495 514 533 552 571 590 591 592 593 594 595 596 597 598
599 600 601 602 603 604 605 606 607 608)
#forexample2
#34
#742
#7743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
457 476 495 514 533 552 571 590 609 628 647 666 685 704723
for example 3

#76

#22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 82 123 164 205 246 287 328 369 410

451 492 533 574 615 656 697 738 779 820

861 902 943 984 1025 1066 1107 1148 1189 1230
#1271 1312 1353 1394 1435 1476 1517 1558 1599 1640
#1681 1722 1763 1804 1845 1886 1927 1968 2009 2050
#2091 2132 2173 2214 2255 2296 2337

#

Field 2 - Constant gas pressure nodes different from the initial

pressure.

(1) Enter the number of nodes with a constant gas pressure that is
different from the initial gas pressure.

(2) If nonzero, then for each such node provide one line of data
giving the node number and constant gas pressure (Pa gauge).

for examples 1, 2 and 3

3o B B W

Field 3 - Constant aqueous pressure nodes equivalent to the initial

pressure.

(1) Enter the number of nodes with a constant aqueous pressure

equal to the initial gas pressure,
‘# (2) If nonzero, then starting on a new line, specify the node

number of all such nodes.

#

for example 1

26

457 476 495 514 533'552 571 590 591 592 593 594 595 596 597 598

599 600 601 602 603,604 605 606 607 608

for example 2

#34

#742

#743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
#457 476 495 514 533 552 571 590 609 628 647 666 685 704 723

for example 3

#76

22
31
41
451
861
#1271
#1681
#2091
#
Field 4 - Constant aqueous pressure nodes different from the initial
pressure.
(1) Enter the number of nodes with a constant aqueous pressure

that is different from the initial gas pressure.

(2) If nonzero, then for each such node provide one line of data
giving the node number and constant aqueous pressure (Pa gauge)
#

23 24 25 26 27 28 29 30

32 33 34 35 36 37 38 39 40

82 123 164 205 246 287 328 369 410

492 533 574 615 656 697 738 779 820

902 943 984 1025 1066 1107 1148 1189 1230
1312 1353 1394 1435 1476 1517 1558 1599 1640
1722 1763 1804 1845 1886 1927 1968 2009 2050
2132 2173 2214 2255 2296 2337

for examples 1, 2 and 3
0

#

Field 5 - Gas phase component boundary conditions.

(1) Enter the number of nodes for which gas phase component
boundary conditions are specified.

(2) For each such node, starting on a new line

enter the following information:

(2a) the node number

(2b) an integer variable indicating the boundary condition
type for all gas phase components at the node.

1 = constant mole fraction
2 = specified diffusive flux
3 = mixed type (contact with a known fluid).

(2c) the boundary condition values for each component in the
gas phase. The values are listed in sequential order
corresponding to the component numbers. Only components
that are present in the gas phase are listed. Component
boundary conditions are not provided for components which
are excluded from the gas phase (i.e. negative vapor
pressure). Two values are needed for each boundary node
component. These values are used as needed to specify the
boundary condition.

1 = specified gas phase concentration (partial pressure)
in contacting fluid. The partial pressures must sum
to one (used for first type boundary).

2 =user supplied value of Dm/length.

B S R S - T I

for example 1

35

420.d0 0.d0 1.d0 0.d0
520.d00.d0 1.d0 0.d0

6 2 0.d0 0.d0 1.d0 0.d0
720.d0 0.d0 1.d0 0.d0
820.d00.d0 1.d0 0.d0
92 0.d0 0.d0 1.d0 0.d0
102 0.d0 0.d0 1.d0 0.d0
11 20.d0 0.d0 1.d0 0.d0
12 20.d0 0.d0 1.d0 0.d0
457 3 0.d0 0.d0 1.d0 0.d0
476 3 0.d0 0.d0 1.d0 0.d0
495 3 0.d0 0.d0 1.d0 0.d0
514 3 0.d0 0.d0 1.d0 0.d0
533 30.d0 0.d0 1.d0 0.d0

147

5523 0.d0 0.d0 1.d0 0.d0

571 3 0.d0 0.40 1.d0 0.d0

590 3 0.40 0.d0 1.d0 0.d0

591 30.d0 0.d0 1.d0 0.d0

592 3 0.d0 0.40 1.d0 0.d0

593 3 0.d0 0.d0 1.d0 0.d0

594 3 0.d0 0.d0 1.d0 0.0

595 3 0.d0 0.d0 1.d0 0.d0

5§96 3 0.d0 0.d0 1.d0 0.d0

597 3 0.40 0.40 1.¢0 0.d0

5983 0.d00.d0 1.d0 0.d0

599 3 0.d0 0.d0 1.d0 0.d0

600 3 0.d0 0.d0 1.d0 0.d0

601 3 0.d0 0.d0 1.d0 0.d0

602 3 0.d0 0.d0 1.d0 0.d0

603 3 0.40 0.d0 1.d0 0.d0

604 3 0.d0 0.0 1.d0 0.d0

605 3 0.d0 0.d0 1.d0 0.d0

6063 0.d0 0.d0 1.d0 0.d0

607 3 0.d0 0.d0 1.d0 0.d0

608 3 0.d0 0.0 1.d0 0.d0
forexample 2
LEY)
¥ 43 0.40 0.d0 0.2d0 0.d0 0.840 0.d0
#530.d0 0.0 0.2d0 0.d0 0.840 0.d0
63 0.d0 0.¢0 0.2d0 0.d0 0.840 0.0
#7 3 0.d0 0.d0 0.2d0 0.d0 0.840 0.d0
83 0.d0 0.d0 0.2d0 0.d0 0.840 0.d0
#9 3 0.d0 0.d0 0.2d0 0.d0 0.840 0.d0
10 3 0.¢0 0.40 0.2d0 0.40 0.8d40 0.d0
#11 30,40 0.d0 0.2d0 0.d0 0.8d0 0.d0
12 3 0.d0 0.d0 0.2d0 0.d0 0.840 0.d0
13 3 0,40 0.d0 0.2d0 0.0 0.8d0 0.d0
14 3 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0
15 3 0.d0 0.d0 0.2d0 0.40 0.8d0 0.d0
16 3 0.d0 0.d0 0.2d0 0.0 0.8d0 0.d0
742 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
743 2 0.d00.d0 0.40 0.d0 0.d0 0.d0
744 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
745 2 0.40 0.d0 0.d0 0.d0 0.d0 0.d0
746 2 0.d0 0.40 0.d0 0.d0 0.d0 0.d0
747 2 0.d0 0.40 0.40 0.d0 0.d0 0.d0
¥ 748 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#749 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
750 2 0.d0 0.40 0.d0 0.d0 0.d0 0.d0
#7512 0.d0 0.40 0.d0 0.d0 0.d0 0.d0
#7522 0.d0 0.d0 0.¢0 0.d0 0.d0 0.d0
753 2 0.d0 0.40 0.d0 0.0 0.d0 0.d0
#7542 0.40 0.d0 0.d0 0.d0 0.d0 0.d0
#7552 0.40 0.d0 0.0 0.d0 0.d0 0.d0
#4756 20.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#757 2 0.d00.d0 0.d0 0.d0 0.d0 0.d0
758 2 0.40 0.40 0.40 0.d0 0.40 0.d0
#759 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.0
¥ 760 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
457 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
476 2 0.40 0.d0 0.d0 0.d0 0.d0 0.d0
495 2 0.40 0.¢0 0.¢0 0.d0 0.d0 0.d0
514 2 0.40 0.d0 0.d0 0.¢0 0.¢0 0.d0
¥ 533 2 0.400.d0 0.d0 0.d0 0.d0 0.d0
#5522 0.d00.¢0 0.d0 0.d0 0.d0 0.d0
¥ 571 2 0.40 0.d0 0.40 0.d0 0.0 0.d0
590 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
609 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
628 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
647 2 0.40 0.d0 0.d0 0.d0 0.d0 0.d0
666 2 0.40 0.d0 0.d0 0.d0 0.d0 0.d0
685 2 0.40 0.40 0.d0 0.d0 0.d0 0.d0
704 2 0.d0 0.d0 0.40 0.d0 0.0 0.d0
723 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
for example 3
#33
#22 2 0.d00.d0 0.40 0.d0 0.2d0 0.d0 0.8d0 0.d0
#23 2 0.d00.d0 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0
#24 2 0.d00.40 0.d0 0.d0 0.2d0 0.d0 0.840 0.0
#25 2 0.d0 0.0 0.40 0.d0 0.2d0 0.d0 0.8d0 0.d0
#26 2 040 0.40 0.d0 0.0 0.2d0 0.d0 0.8d0 0.d0
#27 2 0.d00.40 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0

#28 2 0.d0 0.d0 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0
#29 2 0.d0 0.d0 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0
#30 2 0.d0 0.d0 0.d0 0.d0 0.2d0 0.d0 0.840 0.d0
#31 2 0.d0 0.d0 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.0
#32 2 0.d0 0.d0 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0

-#33 2 0.d0 0.d0 0.0 0.d0 0.2d0 0.d0 0.8d0 0.d0

#34 2 0.d00.d0 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0
#35 2 0.d0 0.d0 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0
#36 2 0.d0 0.d0 0.d0 0.d0 0.2d0 0,d0 0.840 0.d0
#37 2 0.d00.d0 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0
#38 2 0.d0 0.d0 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0
#39 2 0.d00.d0 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0
#40 2 0.d0 0.d0 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0
#41 2 0.d0 0.d0 0.d0 0.d0 0.2d0 0.d0 0.840 0.d0
#493 3 '0.d0 0.d0 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0
#5343 0.d0 0.d0 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0
#5753 0.d0 0.d0 0.d0 0.d0 0.2d0 0.d0 0.84d0 0.d0
#6163 0.d0 0.d0 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0
#6573 0.d0 0.d0 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0
#6983 0.d0 0.d0 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0
#7393 0.d0 0.d0 0.40 0.d0 0.2d0 0.d0 0.8d0 0.d0
#7803 0.d0 0.d0 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0
#8213 0.d0 0.d0 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0
#8623 0.d0 0.d0 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0
#903 3 0.d0 0.d0 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0
#9443 0.d00.d0 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0

#9853 0.d0 0.d0 0.d0 0.d0 0.2d0 0.d0 0.8d0 0.d0.

#

Field 6 - Aqueous phase component boundary conditions.
(1) Enter the number of nodes for which aqueous phase component

boundary conditions are specified.

(2) For each such node, starting on a new line
enter the following information:
(2a) the node number

1 = constant mole fraction
2 = specified diffusive flux

to specify the boundary condition.

o RS R R

2 = user supplied value of Dm/length.
Note: use value of 1.d0 for water
#
for example 1
35
420.d0 0.d0 0.d0 0.d0
520.d0 0.d0 0.d0 0.d0
62 0.d0 0.d0 0.d0 0.d0
7 20.400.d0 0.d0 0.d0
820.d00.40 0.d0 0.d0
92 0.d0 0.d0 0.d0 0.d0
10 2 0.d0 0.d0 0.d0 0.d0
11 2 0.d0 0.d0 0.d0 0.d0
12 2 0.d0 0.d0 0.d0 0.d0
457 3 0.d0 0.d0 1.d0 0.d0
476 3 0.d0 0.d0 1.d0 0.0
495 3 0.d0 0.d0 1.d0 0.d0
514 3 0.d0 0.d0 1.d0 0.d0
533 3 0.d0 0.d0 1.d0 0.d0
5523 0.d0 0.d0 1.d0 0.d0
571 30.d0 0.d0 1.d0 0.d0
590 3 0.d0 0.d0 1.d0 0.dO
591 3 0.d0 0.d0 1.40 0.d0
592 3 0.d0 0.d0 1.d0 0.d0
593 3 0.d0 0.d0 1.d0 0.d0
594 3 0.d0 0.d0 1.d0 0.d0
595 3 0.d0 0.d0 1.d0 0.d0
596 3 0.d0 0.d0 1.0 0.d0

148

3 = mixed type (contact with a known fluid).

(2c) the boundary condition values for each component in the
gas phase. The values are listed in sequential order
corresponding to the component numbers. Only components
that are present in the aqueous phase are listed.

Component boundary conditions are not provided for
componets which are excluded from the aqueous phase

(i.e. negative solubility).Two values are needed for each
boundary node component. These values are used as needed

= specified aqueous phase concentration (g/1)
in contacting fluid (used for first type boundary).

(2b) an integer variable indicating the boundary condition type
for all aqueous phase components at the node.

597 3 0.d0 0.d0 1.d0 0.d0
598 3 0.d0 0.d0 1.d0 0.d0
599 3 0.d0 0.d0 1.d0 0.d0
600 3 0.d0 0.d0 1.d0 0.d0
601 3 0.d0 0.d0 1.d0 0.0
602 3 0.d0 0.d0 1.d0 0.d0
603 3 0.d0 0.d0 1.d0 0.d0
604 3 0.d0 0.d0 1.d0 0.d0
605 3 0.d0 0.d0 1.d0 0.d0
606 3 0.d0 0.d0 1.d0 0.d0
607 3 0.d0 0.d0 1.d0 0.d0
608 3 0.d0 0.d0 1.d0 0.d0
for example 2
#47
#4 3 0.d0 0.d0 1.d0 0.d0 0.009d0 0.d0
35 3 0.d0 0.d0 1.d0 0.d0 0.009d0 0.d0
#6 3 0.d0 0.d0 1.d0 0.d0 0.009d0 0.d0
#°7 3 0.d0 0.d0 1.d0 0.d0 0.009d0 0.d0
#8 3 0.d0 0.d0 1.d0 0.d0 0.00940 0.d0
#93 0.d0 0.d0 1.d0 0.d0 0.009d0 0.d0
#10 3 0.d0 0.d0 1.d0 0.d0 0.009d0 0.d0
#11 3 0.d0 0.d0 1.d0 0.d0 0.009d0 0.d0
#12 3 0.d0 0.d0 1.d0 0.d0 0.009d0 0.d0
#13 3 0.d0 0.d0 1.d0 0.d0 0.009d0 0.d0
14 3 0.d0 0.d0 1.d0 0.d0 0.009d0 0.d0
#15 3 0.d0 0.d0 1.d0 0.d0 0.009d0 0.d0
#16 3 0.d0 0.d0 1.d0 0.d0 0.009d0 0.d0
742 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#743 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#7442 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#745 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
" #7462 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
747 2 0.d0 0.40 0.d0 0.d0 0.d0 0.d0
748 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#749 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#750 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#751 2 0.d0 0.d0 0.d0 0.40 0.d0 0.dO
#7522 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#7753 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#7754 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#755 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#7756 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
757 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#758 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#759 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#760 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#457 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#476 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
495 2 0,d0 0.d0 0.d0 0.d0 0.d0 0.d0
514 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#533 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#552 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#5712 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
590 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
609 2 0.d0 0.d0 0.d0 0.d0 0.40 0.d0
628 2 0.d0 0.d0 0.40 0.d0 0.d0 0.d0
#647 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#666 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
685 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#704 2 0.d0 0.d0 0.d0 0.d0 0.d0 0.d0
#723 20.d0 0.d0 0.d0 0.d0 0.d0 0.d0
for example 3
#33
#22 2 0.d0 0.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#23 2 0.d0 0.d00.d0 0.d0 1.d0 0.040 0.009d0 0.d0
#24 2 0.d00.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#25 2 0.d0 0.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#26 2 0.d0 0.d0 0.d0 0.d0 1.d0 0.040 0.00940 0.d0
#27 2 0.d00.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#28 2 0.d00.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#29 2 0.d0 0.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#30 2 0.d0 0.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#31 2 0.d00.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#32 2 0.d0 0.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#33 2 0.d00.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#34 2 0.d0 0.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#35 2 0.d0 0.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#36 2 0.d00.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0

#37 2 0.d0 0.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#38 2 0.d0 0.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#39 2 0.d0 0.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#40 2 0.d0 0.d0 0.d0 0.d0 1.d0 0.0d0 0.00940 0.d0
#41 2 0.d0 0.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#4933 0.d0 0.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#5343 0.d0 0.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#5753 0.d0 0.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#6163 0.d00.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#6573 0.d0 0.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#698 3 0.d0 0.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#7393 0.d0 0.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#7803 0.d00.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#2821 3 0.d0 0.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#8623 0.d0 0.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#903 3 0.d0 0.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#9443 0.d00.d0 0.d0 0.d0 1.40 0.0d0 0.009d0 0.40
#9853 0.d0 0.d0 0.d0 0.d0 1.d0 0.0d0 0.009d0 0.d0
#

Field 7 - Gas phase boundary flux.

Enter two lines of data:

(1) Enter the number of nodes with a constant gas phase volumetric

dt

flux.

(2) If nonzero, then for each such node provide one line of data
giving the node number and gas phase flux referenced to
atmospheric pressure and the steady temperature at the

#
#
#
injected node (m"3/s).
#
for examples 1, 2 and 3

0

#

Field 8 - Aqueous phase boundary flux.
Enter two lines of data:

(1) Enter the number of nodes with a constant aqueous phase

volumetric flux.

(2) If nonzero, then for each such node provide one line of data
giving the node number and aqueous phase flux (m"3/s).
#

for examples 1, 2 and 3
0

#

#====BLOCK S: EXTRACTION / INJECTION WELL ======
#

#Field 1 - Include an extraction / injection well.
Enter a logical variable (LCTRL(12)) indicating if an
extraction/injection well is to be simulated.
#
for examples 1, 2 and 3
t

for example 3, generation of initial condition
#1f
Field 2 - Extraction / injection rate.’

Enter the total volumetric extraction/injection rate (scfm). A
negative value indicates extraction, and a positive value indicates

injection. .
Required only if LCTRL(12)=F
#
for example 1
-100.d0
for examples 2 and 3
#1.0d0
for example 3, generation of initial condition
#0.0d0
#
#Field 3 - Well coordinates.
Specify: ’
(1) the well radius (m);

(2) two integers identifying the minimum and maximum node

numbers along the vertical well screen.

Note all nodes along the well screen must have a horizontal

coordinate equal to the well radius
Not required if LCTRL(12)=F
#
for example 1
0.25d0 412
for example 2
#0.25d0 4 16
for example 3

149

#0.25¢0 493985
#

fzzzex BLOCK R: VELOCITY BOUNDARY CONDITIONS ===

#

Field 1 - Bottom boundary of domain.

Enter a logical variable (LCTRL(28)) if the bottom boundary is
impervious.

N

forexamples 1,2 und 3
t

#

#Fcld2-RHS. boundar{‘ggdomain.

Enter a logical varinble (LCTRL(29)) if the R.H.S. boundary is
¥ impervious.

]

for examples 1, 2and 3
f

#

Field 3 - L.H.S. boundary of domutin.

Enter a logica! varidble (LCTRL(30)) if the L.H.S. boundary is
impervious. Note that this boundary will be adjusted in the

presenice of a well

#
for exainples 1,2 and 3
t

#

Figld 4 - Top boutiddty of domain, i

Efitet a logical vatiable (LCTRL{31)] i tii¢ top boundary is
ithpefviois.

#
£ exattiples 1, 2 afid 3
t

it cird31y 1s thue Fead the tefigth of tie cap, CAPLEN, The cap is
assumed g exterid frgr the well to the input valué.

Not required if LCTRL(1)=F

#

for examples 1 and 2
10.0d0

for example 3

#9.585d0

END OF DATA2

150

Appendix H
SOURCE CODE LISTING

Following is a source code listing of MISER. The main program is given first followed by all other
routines in alphabetical order. The Harwell sparse matrix package is excluded.

Main Routine - miser.f

MISER.f - Numerical model of two-dimensional multiphase,
multicomponent flow and transport. Designed
for soil vapor extraction (SVE) and bioventing
(BV) simulations. Nonequilibrium interphase
mass exchange and kinetic bioreaction terms are
included. Version 1.0 - nonadaptive.

Computational domain: xz, 1z

Project directed by: L.M. Abriola

Written by: L.R. Lang and K.M. Rathfelder
Version 1.0, January, 1997

Required Control Flags:

ipt(0) - number of elements

ipt(1) - number of nodes

ipt(2) - number of stacked variables

ipt(25) - print results every ipt(25) time steps if 1prnt(0)
is true

ipt(30) - maximum number of time steps

Control Flags computed internally in routine:

letrl(14) - logical variable controlling coupling of flow and
transport solutions
Ietrl(14) = .true. - exchange couples flow and
transport solutions
letrl(14) = .false. - flow and transport
solutions not coupled

[eXeXeRoNoReNoNolo e XeeieieNeio oo NeReReRoNeNeNe Koo e N eReNe Ro Koo o Ke!

program MISER

C— Include parameter and type declarations, common block definitions,
C— and dimension statements.
C
include *dimen.inc’
character*20 infile(4),outpre,outfile(8-+ncmp)
C
C— Declare and define common block variables,
C

common /cb2/ p(nn3)

common /cb2b/ pt(nn3)

common /cb3/ sat(nnstk3)

common /cb3b/ satt(nnstk3)
common /cb8/ vis(nnmx),pmw(nn3)
common /cb9/ xmf(nmf)

common /cb9b/ xmft(nmf)

common /cb10/ den(nn6)

common /cb10b/ dden(nn6),pmwt(nn3),dent(nn6)

common /cb11/ pex(nns10),rxnp(nn2)

common /cb62/ rxn(nmf),cex(nmfs)

common /cb62b/ rhsex(nmfs)

common /cb90/ infile,outpre,outfile

dimension pkeep(nnstk2)
C
C— Open input devices. The input and output devices are summarized
C— as follows: input; 11, file="infile(1)’ - input for INPUT1 £,

C— read from console input

C— 13, file="infile(2)’ - input for INPUT2.f,

C— read from ifile(1) by INPUTL.f

Cc— 14, file="infile(3)’ - input for ERRMESSAGE.f,
C— read from infile(1) by INPUTI.f

C— 28, file="infile(4)’ - input for restarts,

C— . read from infile(2) by INPUT2.f

C— output: 21, file="outpre.out’ - echo of input,’outpre’
C— read from infile(1) by INPUTL.f

C— 22, file="outpre.err’ - error messages,

C— *outpre’ read from infile(1) by INPUTI.f
C— 23, file="outpre.cnv’ - convergence data when
C— ipt(28) .gt. 0,

C— *outpre’ read from infile(1) by INPUTL.f
C— 24, file="outpre.con’ - plotting data

C— ‘outpre’ read from infile(1) by INPUT1.f
C— 25, file="outpre.mb’ - mass balance data,
C— *outpre’ read from infile(1) by INPUTL.f
C— 26, file="outpre.plt’ - time series plot,

C— *outpre’ read from infile(1) by INPUT1.f
C— 27, file="outpre.rst’ - restart data,

C— 'outpre’ read from infile(1) by INPUTL.f
Cc—

open (11,file="miser.d1’,status="unknown’)
infile(1)="miser.d1’
501 format (a)
c .
C— Read the input from main input file.
C
call INPUT1

C— Initialize vectors as needed.

Ikeep = .false.
do 1i=1,10*ipt(2)
1 pex() = zerQ
do 2 i = L(ipt(3)+ipt(4)+ipt(S)+ipt(6)+ipt(7)-1)*ipt(2)
cex(i) = zerQ
2 rhsex(i) = zer0
do3i=1,ipt(1)*3
dent(i+3*ipt(1)) = zer0

151 N

3 dden(i) =zer0
dod4i=1,ip(l)
pmwi(i) = pmw(i)
4 rxnfi) = zer0
if (not.dpent(0).and.(int(1(3)/A1(12)) .gt. 0)) then
ipm = grue.
clse
ipen = false.
end if
if (Ipent(6).and..not Iprat(25).and.(int(t(3)/t(27)).g1.0))
+ then '
Ipcbal = .true.
else
Ipcbal = false.
endif

C
C— Finish input with INPUT2.f.
C
call INPUT2
[od
C— Usc ATRLf ta compute clement areas.
o]

calt ATR]
c
C— Initialize the simulation time, time step, and time step number
C— if this run is not a restart. ’ '
c

if{.not.lctrl(26)) then
1(9) = zerQ | initialize the simulation time
1(8) =1(3) { initialize the time step
istart = 1
clse
istart =ipt(76) + 1
end if
[og
C— Initialize variables.
(o4
Iskip = .falsc.
ftskip=0
tskip = zetQ
do 33i = 1,ipt(49)
33 pkeep(i)szer0
ipt(36)=0
ipt(37)=0
ipt(38)=0
if¢.not.Jetrl(1)) ipt(36)=1
if{.not.letel(2)) ipt(37)=1
if(.not.letrl(24)) ipt(38)=1
[o4
C— Loop over maximum number of time steps.
Cc

if (ipt€29).ne.0) write (ipt(29),*) "Starting Computation Loop’
C— Perform initial mass balance calculation.

if¢.not.Jctrl(32).and.Ipmt(6))
+ call CBAL(O, true.,.true.,.true.,.true.)

C— Initial starting time.
[
¢ call TSYS(time0)
do 10 its = istart,ipt(30)
itskip = fiskip + 1

C— Save variables from previous time step: pressures, saturations,
C—— maole fractions, molecular weights.

[
do §i=1,3*ipi(1)
5 pt(i) = pdi)
do6i=1,3%p(2)
6 satt(i) = sat(i)

do 7 i = 1,ipt(1)*(ipt(3)1+ipt()+pt(Sipt(6)+ipt(7))
7 xmft({i) = xmf()
C
C— Solve the phase mass balance equations. This is not
C— needed when a steady-state flow/saturation field has been input.
C— When the component mass balance equations are also solved,
C— update the Darcy velocities.

(4
if(mod(itskip.ipt(85)+1).eq.0) thep
if(ipt(85).n¢.0) then '
tkeep = t(8)
1(8) = 1(8) + tskip
wl = y8)/skip
w2 =rone - wl
do44i=1,ipy49)
4 pex(ipr(52)+) = w1*pex(ipt(52)+) + w2*pkeep(d)
end If
end if
100 49)=19)+ (@) ! increment the current simulation time
if(mod(itskip,ipt(85)+1).eq.0) then
if(lctrl(14).and.its.eq.1) then
Ietrl(14) = false.
lkeep = .true.
end if
if (letrl(1)) then
if (Ictrl(2).and.its.gt.1) call MOLEWT
call FLOW (its,iter)
inter = |
if(ipt(36).1.0.and.ip(85).gt.0) thep
ipt(36) = 0
46 1(8) = 1(8)/2.0d0
if(1(8).1t.t(4)) then
write(ipt(28),500) t(4)
stop
end if
inter = 2*inter
do 471 = l,inter
if(i.gt.1) call CBAL(its, true.
+ ,false.,.false..i.eq.1)
47 if(ipt(36).ge.0) call FLOW(its,iter)
if(ipt(36).1t.0) goto 46
end if
f(ipt(36).ge.0) then
call CBAL(its, true.,.false.,.false.,inter.eq.1)
inter=1
end if
if(ikeep) then
letrl(14) = .true.
Ikeep = .false.
end if
if (letrl(2).and.ips(36).gt.0) then
call BCFLUX
call VEL
end if
end if
if(ipt(85).ne.0) t(8) = tkeep
else
write (ipt(29),*) ’Skipping Flow Computation’
tskip = tskip + t(8)
w1 = t(8)/tskip
w2 =rone - wl
do 661 =1, ipi(49)

66 if(.not.Iskip) pkeep(i) = w1*pex(ipt(52)+i) + w2*pkeep(i)
if(Iskip) Iskip = .false.
end if
C

C— Save the values of the density vectors after pressure effects

C— have been included for calculation of the compositional density
C— derivatives. Save the phase molecular weights before compositional
C— effects are included.

C
if(mod(itskip,ipt(85)+1).eq.0) then
do 12 i=1,ipt(1)
12 pmwt(i) = pmw(i)
do 13 i=1,6*ipt(1)
13 dent(i) = den(i)
end if

C— Use TRANS.f to solve the component mass balance equations. This
C— is not needed when only the multiphase flow field is being
C— calculated.
C
if (lctrl(2).and.(ipt(36).ge.0))
+ call TRANS (its,ibconv)
C

152

C— Check for time step reduction in solution of flow or transport
C— egs. Adjust time step size and re-solve current time step.

if ((ipt(36).1t.0).0r.>ipt(37).1t.0).0r.(ipt(38).11.0)) then

if (1(8).le.t(4)) then ! If dt = dtmin, don’t reduce dt.
write (ipt(28),500) t(4) ! Print error and terminate.
stop

endif

t(9) = t(9)-t(8) ! Return simulation time to old value.

tskip = tskip-t(8) ! Reset cumulative time step

t(8) = t(8)*t(7) ! Decrease time step.

itskip = itskip - 1 ! Reset flow skipping counter

Iskip =.true.

if ((8).11.t(4)) t(8)=t(4) !If dt< dtmin, set dt=dtmin.

if (fetrl(1)) then ! Reset pressure and saturation values.
if(mod(itskip,ipt(85)+1).eq.0) then

do 151 = 1,3*ipt(1)

15 p(i) = pt(i)
end if
do 161 = 1,3*ipt(2)
16 sat(i) = satt(d)
call SATW
endif

if(lprn) 1prn = .false. ! don’t print after next iteration.
goto 100 ! Re-solve flow and transport with new time step.

endif
C
C— Reset skipping variables.
C
if(mod(itskip,ipt(85)+1).eq.0) then
tskip = zer0
do 77 i = 1, ipt(49)
77 pkeep(i) = zer0
end if
[}
C— Check for time step increase.
C

itsum = ipt(36)+ipt(37)+ipt(38)
101 if(itsum.ge.3) then
t(8) =t(8) * t(6) ! increase time step
if (1(8).gt.t(5)) t(8)=t(5) ! constrain time step to dtmax

endif
C
C— Always print at end of simulation.
if (1(9) .ge. t(2)) then
C— Determine execution time of simulation.
C
c call TSYS(tend)
c write(*,*) tend-time0
call prnf(its)
stop
endif
(o}
C— Perform mass balance calculation if desired.
C
if(prnt(6)) then
if(lprnt(25)) then

if(mod(its,ipt(83)) .eq. 0) Ipchal = .true.
call CBAL(its,.not.lctrl(1)
+ Jetrl(2),Ipcbal,.not.Ietrl(1))
Ipcbal = false.
else if(.not.Iprnt(25)) then
call CBAL(its,.not.Ictrl(1)

Subroutine - atri.f

+ Jetrl(2),Ipcbal,.not.Ietrl(1))
if(Ipcbal) then
t(8) =t(3) ! reset time step to previous value
Ipcbal = false.
end if
IfAnt((t(9)+(8))/t(27)).gt.int(t(9)/t(27))) then
Ipcbal = .true.
t(3) =t(8)
t(8) = 1(8) - (1(9) + ¢(8)
+ - Int(@+ENART* (2T
end if
if (1(9)+(8) .gt. t(2)) then 1Does time exceed tmax?
t(8) = t(2) - t(9) 'Reduce time step so time=tmax.
Ipcbal = .true.
end if
end if
end if
C
C— Output results at intermediate times.
C . .
if (Ipmnt(0)) then ! output results after *ipt(25)" time steps
if (mod(its,ipt(25)) .eq. 0) then
call prat (its)
endif
else ! output results after a time increment of *t(11)’
if (Iprn) then
call prnt (its)
t(8)=1t(3) ! reset time step to previous value
Iprn = false.
end if { check if print occurs at next time step
if (nt((E9)+t(8))/t(12)) .gt. int(t(9)/t(12))) then
if(Ipcbal) then
if((9)+t(8)-int((t(9)+(8))/t(12))*t(12).gt.zer0)
+ Ipcbal = false.
" else
1(3) = t(8)
end if .
Iprn = .true.
t(8)=t(8)-(1(9) + t(8) - int((H(9)+tB))/E(12))y*t(12))
endif
if (1(9)+(8) .gt. t{2)) then ! Does time exceed tmax?
t(8) = t(2) - t(9) ! Reduce time step so time=tmax.
Iprn = .true. -
endif
endif
C
C— Loop to next time step.
(e}
10 continue
C

C— Print the results and determine the execution time if the maximum

C— number of time steps is reached.
C
¢ call TSYS(tend)
¢ write(*,*) tend-timeQ
call prot(its)
stop
C
C— Formats:
500 format (/> Solution failed to converge'/
+ * at the minimum time step size =" £12.4)

502 format (/ "Maximum iterations of *,i4,” between solution of */

+ * flow and transport equations was exceeded’)
end

153

ATRLE - Subroutine which computes the area of each element.
These areas are used in the element matrices for both
the flow and trapsport equations. Nodes are numbered
counterclockwise in an element starting with an
arbitrary node when z is positive downwards. This
routine stops program execution if one or more of the
clement areas is less than zero. In this case, all
the element areas are printed out, as well as more
detailed information about the problem elements.

Required Control Flags:

ipt(27) - integer variable indicating type of domain
ipt(27) = 0 - xz domain
ipt(27) = 1 - rz domain
letrl(2) - logical variable controlling presence of transport
solution
fetrl{2) = true. - compute transport solution
1etrd(2) = false. - skip transport solutjon

a0NoONONONONNNNANOANNONONON

subroutine ATRI
include "dimep.inc’

0

C~~ Declare and define common block variables.

[of
common /cb1/ matel(nelmx),nodel(nel3),nodept(nnmx),nelpt(nel3),
+ matpt(nn6)
common fcble/ xnade(nnmx),znode(nnmx),rbar{nelmx),area(nelmx)
common /cble/ aby12(nelmx),aby30(nelmx)

C— Loop over the clements.
C
do 100 i=1,ipt(0)

C— Compute arcas by taking the standard area coordinate determinant,
C— but subtract row 1 from rows 2 and 3 before taking the determinant

Subroutine - beflux.f

BCFLUX.f - Subroutine which computes the boundary fluxes using
the flow solution,

Required Contro! Flags:
Tetrl(12) - logical vadable denoting presence of a well

letel(12) = .true. - well present
Ictrl{12) = .false, - well not present

aaAanaanNnNnon

subroutine BCFLUX

include 'dimen.inc’

common /fcb2/ p(nn3)

common /cb6e/ temp(nnmx)

common /cb30/ ibe{nnmx)

common /cb31/ source(nn2)

common /cb32/ bef(nn2)

common /cb42/ amb(icnl),fmb(nsolve)
c
C-— Initial variables.

do 1001 = 1, ipt(40)
100 bef(i) = zer0
C
C—-Compute gas phase boundary fluxes at all specified first type
C— boundary nodes.
Cc

C— (ie. area=des[L}/2).
C
i3=i*3
n3=nodel(i3)
n2=nodel(i3-1)
nl=podel(i3-2)
x1=xnode(nl)
x2=xnode(n2)
x3=xnode(n3)
zl=znode(n1)
z2=znode(n2)
z3=znode(n3)
area(i)=((x2-x1)*(z3-z1)-(x3-x1)*(22-21))/2.0d0
if (area(i).le.zer) Call ErrMessage (46,0,ipt(29))
100 continue ’
c
¢— Compute the radial centroid of each element for axisymetric
c—- coordinates. This is set to one if the xz coordinates are used.
c .
if (ipt(27) .eq. 0) then
do 151 i = 1,ip(0)
151 rbar(i) = rone
else
do 152 = L,ipt(0)
i3 = 3%(i-1)
152 rbar(i) = pthird * (xnode(nodel(i3+1)) +
+ xnode(nodel(i3+2)) + xnode(nodel(i3+3)))
endif
C
C— Compute terms needed in component balance solution.
C
if(lctrl(2)) then
do 150 i = 1,ipt(0)
aby12(i) = rbar(i)*area(i)/12.0d0
150 aby30(i) = rbar(i)*area(i)/30.0d0
end if
c
retumn
end

if (ipt(18) .gt. 0) then
do 300 jj = 1,ipt(18)
irowd2 = ibe(jj)
irow = 2 * irowd2 .
300 bef(irowd2) = fmb(irow)
endif
C
C— Compute aqueous phase boundary fluxes at all specified first type
C— boundary nodes.
C

if (ipt(19) .gt. 0) then
do 320 jj = 1,ipt(19)
Jij = ipt(18) +jj
irowd?2 = ibc(jjj)
irow = 2*jrowd2 - 1
irowd2 = irowd?2 + ipt(1)
320 bef(irowd?2) = fmb(irow)
endif
C
C— Compute gas phase boundary fluxes at all nodes with constant flux.
C

if (ipt(22) .gt. 0) then
ii = ipt(62)
do 3401 = 1,ipt(22)
igl =ibc(ii+i)
340 bef(igl) = source(i) * patm * temp(igl)
+ / ((patm + p(igl)) * tstd)
endif
C

154

C— Compute aqueous phase boundary fluxes at all nodes with constant
C—flux.
C
if (ipt(23) .gt. 0) then
il =ii +ipt(22)
do 350 =1,ipt(23)
ial =ipt(1) + ibc(ii+)
iii = ipt(22) + 1
350 bef(ial) = source(iii)
endif
C
C— Compute gas phase boundary fluxes at all well nodes.
C
if (lctrl(12)) then
ii = ipt(64)
jstrt =ipt(22) + ipt(23)
do 3601 = 1,ipt(24)

Subroutine - bio.f

BIO.f - Subroutine which computes the biological reaction
terms using Monod kinetics. Also update the biophase
mole fractions using the finite element method by
computing a mole balance if a biophase is considered.
The equations are solved sequentially at each node
until convergence. Only bioreactive components are
included in the biophase.

Arguments: iconv - integer flag for global convergence
ibconv - integer flag for bioreaction convergence

Required Control Flags:

t(15) - convergence criterion for bioreactions
ipt(39) - integer flag determining the kinetics type
1 - standard monod kinetics
2 - monod kinetics with substrate inhibition
3 - monod kinetics with lumped substrate
. inhibition
4 - monod kinetics with saturation dependency
5 - monod kinetics with saturation dependency
and substrate inhibition
letrl(8) - logical variable controling type of FEM
solution for transport
Ictrl(8)= .true. - use mass lumping
Ietrl(8) = .false. - full FEM solution
Ietrl(9) - logical variable denoting presence of nutrient ~
letrl(9) = .true. - nutrient considered
1ctri(9) = .false. - nutrient not considered
letrl(16) - logical variable denoting method of including
biological reaction
lctrl(16) = .true. - include bioreaction in
aqueous transport ’
Ictrl(16) = .false. - solve FEM solution for
rate limited biophase
Ictrl(17) - logical variable indication steady state biomass
letrl(17) = .true. - steady state biomass
lctrl(17) = false. - transient biomass

[eXeXeXeXeXoXeNoNoXoXeXeXoXoXeReXeNoReRoReReNoReXeReXeRoloRo e XoNeRo o Xe Ao RoReNe KoKy

subroutine BIO(iconv,ibcony)
include 'dimen.inc’
character*10 cname(ncmp)

C

C— Declare and define common block variables.
Cc

common /cbl/ matel(nelmx),nodel(nel3),nodept(nnmx),nelpt(nel3),
+ matpt(nn6)

common /cble/ aby12(nelmx),aby30(nelmx)

common /cb3/ sat(nnstk3)

igl = ibc(i+)
bef(igl) = source(jstrt+i) * patm * temp(igl)
+ / ((patm + p(igl)) * tstd)
C
C— Compute aqueous phase boundary fluxes at all well nodes when
C— operating in extraction mode.

if (qwell .1t. zerQ) then
ial =ipt(1) + ibc(ii+i)
jstrt2 = jstrt + ipt(24) +1i
bef(ial) = source(jstrt2)
end if
360 continue
endif
return
end

common /cb6b/ por(nelmx),srw(nnstk)
common /cb6d/ dtemp(nzmax6),idepth(nnmx)
common /cb7b/ cnw(nemp),cvp(ncmp),cden(ncmp),
+ chen{ncmp),casol(ncmp),cmdif(ncmp2)
common /cb8/ vis(nnmx),pmw(nn3)
common /cb9/ xmf(nmf)
common /cb9b/ xmft(nmf)
common /cb10/ den(nn6)
common /cb11/ pex(nns10),rxnp(nn2)
common /cb40/ a(icnl),rhs(nsolve),w(icnl)
common /cb41/ im(icnl),icn(icnl),iw(icnl,8),ikeep(icnl,5)
common /cb41b/ nbw(0:2),ia
common /cb60/ khalf(nemp),fuse(ncmp2),umax(ncmp),xyield(ncmp),
+ kinhib(ncmp)
common /cb62/ rxn(nmf),cex(nmfs)
common /cb62b/ rhsex(nmfs)
common /cb63/ kex(ncmp5),kmax(ncmp5)
common /cb64/ bok(nbemp),bom(nbemp), ketd(nemp)
common /cb91/ cname
C
C— Dimension local arrays.
C
dimension sum(3),xmonod(ncmp),xinhib(ncmp)
+ xtmin(ncmp)

C
C— Data the minimum detectable limit.
C
data dlimit / 1.0d-9 /
(o}

C— Set pointers: iptbe points to the start of the biophase section
C— inicp; ib points to the start of biophase phase storage; ibs
C— points to the start of biophase stacked storage.
C .

iptbc = ipt(60)

iptl =ipt(1)

ipt2 = ipt(2)

ig = ipt(3)
C
C— Set the biophase concentrations equal to the corresponding
C— aqueous phase concentrations when no mass transfer rate
C— is considered for aqueous/biophase interactions,

if(lctrl(16)) then
isum =0
do 2ia=1, ipt(4)
if(icp(ig+ia).eq.icp(iptbc+isum+1)) then
na =ipt(9) + iptl * (ja-1)
nb = ipt(12) + iptl * isum
isum=isum + 1
do3i=1,iptl
3 xmf(nb+) = xmf(na+i)
end if '

155

2 continue
end if
ibconv =0

C— Itcrate over the nodes to compute the reaction terms..
(o)
do 100i=1,iptl

C- Calculate the lumped organic substrate concentration and lumped
C solubility for inhibition.
o)

if(ipt(39).eq.3) then
subsum = zer)
solsum =2z¢r0
do 101 icb = L,ipt(17)
ic = fep(iptbc+ich)
if(ipt(39).cq.3) then
if(lctrl(10)) then
solsum = casol(ic) + solsum
clse
itmp = (ic-1)*ipt(89)+3*ipt(88)+-idepth(i)
solsum = casol{ic) + dtemp(itmp) + solsum
end if
end if
nbe = ipt(12) + (icb-1)*iptl +i
101 subsum = subsum + xmf(nbc)
end if
if(lctr1(10)) then
kdt=kd
clse
itmp = ipt(65)*ipt(89)+5*ipt(88 Hidepth(i)
kdt = kd + dtemp(itmp)
emd if
rxnp(i) = zer0
rxap(i+iptl) =zer0
[o4
C— Update the Monod expressions. xmonod(1) to xmonod(ipt(17)) are
C~ for the substrates, xmonod(ipt(17)+1) is for the electron
C— acceptor, and xmonod(ipt(17)+2) is for the nutrient when present.

do 105icb =1, ipy(7)-1

nbe = ipt(12) + (icb-1)*iptl +i

ic = jep(iptbctich)

xmonad(ich) = xmf{nbe) / (xmf(nbc)

+ + khalf(ic)/(cmw(icy*den(ipt1-+)))

[od
C— Include oxygen, nutrient, and substrate inhibition kinetics.
C— Acrobic metabolism Is turned off when oxygen is below a threshold
C— concentration. Metabolism is also turned off when the substrate
C-— or nutrient concentration is above a threshold concentration
C— Also include a substrate threshold.
C

M(ipt(39).nc.1) then

if(ip(39).cq.4.0r.ipt(39).¢q.5) then

C— Put a functional expression for saturation dependent inhibition
C— here.
o}
saterm
+ =0.10d0+0.90d0*(sat(i+ipt2)-srw(i))/(rone-srw(i))
clse
saterm =rone
end if
if(letel¢10)) then
casolt = casol(ic)
else
itmp = (ic-1)*ipl(89)+3*ipt(88)+idepth(i)
casolt = casol{ic) + dtemp(itmp)
end if
xinhib(ic) = casolt*kinhib(ic)
ifticb.ne.ipt(17)+1) then
inaple =ipt(15)
xtmin(ic) = (cmw(inaplc+1)/cmw(ic))*dlimit
if(ipt¢39).cq.3) then
if(lctrl(9).and icb.eq.ipt(7)-1) then
xmfnbe = xmf(nbc)
else
xmfnbe = subsum

xinhib(ic) = solsum*kinhib(ic)
end if
else
xmfiibe = xmf(nbc)
efid if
if(xmfnbe.gt.xinhib(ic)) then
xeff = xinhib(ic)
else if(xmfnbc.lt.xtmin(ic).and.(.hot.lctel(9).or.
+ (Ictrl(9).and.icb.ne.ipt(7)-1))) then
xeff = ktmin(ic)
élse
xeff = xmfnbe
end if
if(lctrl(9).and.(icb.eq.ipt(7)-1))
+ xtmin(ic) = zerQ
if(ipt(39).eq.2.0r.ipt(39).eq.3.0r.ipt(39).eq.5)
xmonod(icb) = xmonod(icb)
*(rone-(xeff/xinhib(ic)))
*(rone-(xtmin(ic)/xeff)) * saterm
else
if(xmf(nbe).lt.xinhib(ic)) then
xeff = xinhib{ic)
else
xeff = xinif(nbc)
end if
if((ipt(39).eq.2).or.(ipt(39).eq.3)
.or.(ipt(39).eq.5))
xmonod(icb) = xmonod(icb)
*(rone-(xinhib(ic)/xeff))
end if
end if
105 continue
C
C— Update the biomass before updating the biophase concentrations.
C— This form assumes all the organics are biodegradable. ibcx points
C— to the location in xmf of the nodal biomass value (Note: the
C— nodal biomass value is in mass concentration).
C

+ o+ o+

+ o+

sum(1) = zerQ
if(tetrl(9)) sum(2) = zer®
sum(3) = zer0
do 110 icb =1, ipt(17)
ic = icp(iptbe+ich)
if(lctrl(10)) then
umaxt = umax(ic)
else
itmp = (ic-1)*ipt(89)+4*ipt(88)+idepth(i)
umaxt = (umax(ic) + dtemp{itmp))
end if
sum(1) = sum(1) + fuse(ic)*umaxt*xmonod(icb)
if(Ictrl(9)) sum(2)= .
+ sum(2)+Huse(ic+ipt(65))*umaxt*xmonod(icb)
110 sum(3) = sum(3) + xyield(ic)*umaxt*xmonod(icb)
do 115 ich = ipt(17)+1, ipt(7)-1
115 sum(3) = sum(3)*xmonod(icb)
nbex = ipt(12) + ({pt(7)-1)*iptl +i
xmfold = xmf{nbcx)
C
C— Include inhibition terms for biomass. This term restricts the
C— biomass between a maximum and minimum level.
(o]
xterml = rone - (xmf(nbcx) / xbmax)
xterm?2 = rone - (xbmin / xmf(nbex))
dxmf = xmf(nbex) * t(8) * (sum(3)*xterm1-kdt*xterm2)

(s}
C— Limit bioreaction during initial startup period.
C
if (1(9).1t.1(1 1)) dxmf = (t(9)/t(11))*dxmf
xmf(nbex) = xmft(nbex) + dxmf
if(xmf(nbex).It.xbmin) xmf(nbex) = xbmin
[od
C— Use constant biomass if desired.
C
if(lctel(17)) xmf(nbex) = xinit
C
C— Update the oxygen/nutrient Monod term.
[}

if (lctri(9)) then

156

ibo = ipt(7) - 2
ibn=ipt(7) - 1
term = xmonod(ibo) * xmonod(ibn)
else
ibo = ipt(7) - 1
term = xmonod(ibo)
end if
C
C— Update the biophase oxygen and nutrient (if present) mole
C— fractions.
C
isum=0
do 120 icb = ipt(17)+1, ipt(7)-1
ic = icp(iptbc+ich)
isum =isum + 1
nacrx = icb*ipt(1) +i
nac = ipt(9) + nacrx
nbc = ipt(12) + (icb-1)*iptl +i
xmfold = xmf(nbc)
dxmf = xmf(nbcx) * sum(isum) * term / cmw(ic)
C
C— Limit bioreaction during initial startup period.
(4
if (¢(9).1t.t(11)) dxmf = (¢(9)/t(11))*dxmf

C— Update the bio-reaction term.
C
if(xmf(nbc).ne.zer0) then
rxn(nac) = ~-dxmf/xmf(nbc)
rxn(nbc) = -dxmf/xmf(nbc)
else
rxn(nac) = zerQ
rxn{nbc) = zerQ
end if
rxnp(@i) = rxnp(i) - dxmf
rxnp(i+ipt1) = rxnp(i+ipt1) - dxmf
120 continue

C
C— Update the biophase substrate mole fractions.
C
isum=0
do 125ia =1, ipt(14)
if(icp(ig+ia).eq.icp(iptbc+isum+1)) then
nac = ipt(9) +ipt(1) * (ja-1) +1i
nbe = ipt(12) + ipt(1) * isum + i
isum = isum + 1
ic = icp(iptbcHsurm)
if(letrl(10)) then
umaxt = umax(ic)
else
itmp = (ic-1)*ipt(89)+4*ipt(88)+idepth(i)
umaxt = (umax(ic) + dtemp(itmp))
end if
xmfold = xmf(nbc)
dxmf = umaxt*xmf(nbcx)*xmonod(isum)*term / cmw(ic)
C
C— Limit bioreaction during initial startup period.
C

if (19).1t.(11)) dxmf = (¢(9)/t(11))*dxmf

C— Update the bio-reaction term.

C
if(xmf(nbc).ne.zer0) then
rxn(nac) = -dxmf/xmf(nbc)
rxn(nbe) = -dxmf/xmf(nbc)
else
rxn(nac) = zerQ
rxn(nbc) = zer0
end if
rxnp(i) = rxnp(i) - dxmf
rxnp(i+iptl) = rxnp(i+iptl) - dxmf
end if
125 continue
100 continue
c
c— Check the size of the bioreaction term.
c
isumg =0

157

isuma=0
isumb =0
nbex = ipt(12) + iptl * (ipt(7)-1)
do 150 ic = 1,ipt(65)
if(ic.eq.icp(isumg+1)) isumg = isumg + 1
if(ic.eq.icp(ig+isuma+1)) isuma = isuma + 1
if(ic.eq.icp(iptbc+isumb+1)) isumb = isumb + 1
. if(ic.eq.icp(isumg).and.ic.eq.icp(ig+isuma)
+ .and.ic.eq.icp(iptbc+isumb)) then
nge = ipt(8) + iptl * (isumg-1)
nac = ipt(9) + ipt1 * (isuma-1)
nbe = ipt(12) + iptl * (isumb-1)
do 155iel = 1, ipt(0)
iel3 =iel*3
iell =iel3-2
iel2 = iel3-1
il = nodel(iell)
ils = nodept(il)+nelpt(iell)
i2 = nodel(iel2)
i2s = nodept(i2)+nelpt(iel2)
i3 = nodel(iel3)
i3s = nodept(i3 }+nelpt(iel2)
iflctrl(10)) then
cvpt = cvp(ic)
casolt = casol(ic)
else)
itemp = (ic-1)*ipt(89)
itemp2 = itemp + ipt(88)*2
itmp1 = itemp+idepth(il)
itmp2 = itemp-+idepth(i2)
itmp3 = itemp+idepth(i3)
itmp21 = itemp2+idepth(il)
itmp22 = itemp2-+idepth(i2)
itmp23 = itemp2-+idepth(i3)
cvpt = cvp(ic) + third*(dtemp(itmp1)

+ + dtemip(itmp2) + dtemp(itmp3))
casolt = casol(ic) + third*(dtemp(itmp21)
+ + dtemp(itmp22) + dtemp(itmp23))
end if

ngel =nge + il
nacl =nac+il
nbcl =nbe +il
nge2 =nge +i2
nac2 =nac +i2
nbe2 =nbce +i2
nge3 =nge + i3
nac3 = nac + i3
nbc3 = nbe +i3
denl = den(il+iptl)
den2 = den(i2+ipt1)
den3 = den(i3+ipt1)
keq = patm * casolt / cvpt
if(lctrl(16)) then
if(ic.le.ipt(16)) then
is = (ipt(3)y+ipt(4)+Hipt(5)+ic-1)*iptl
ism = (matel(iel)-1)*ipt(15)+ic
if(xmf(is+il).le.zerQ) then
efracl = zerQ
else
efracl = ((xmf(is+i1) / bok(ism)) ** bom(ism))
+ / (cmw(ic) * den(ipt1+il1) * 1.0d3)
end if
if(xmf(is+i2).le.zer0) then
efrac2 = zer0
else
efrac2 = ((xmf(is+i2) / bok(ism)) ** bom(ism))
+ / (cmw(ic) * den(ipt1+i2) * 1.0d3)
end if
if(xmf(is+i3).le.zer0) then
efrac3 = zerQ
else
efrac3 = ((xmf(is+i3) / bok(ism)) ** bom(ism))
+ / (cmw(ic) * den(ipt1+i3) * 1.0d3)
endif
extots = t(8) * por(iel) * kex(5*(ic-1)+5) *
(denl * (efracl-xmf(nac1)) +
den2 * (efrac2-xmf(nac2)) +
den3 * (efrac3-xmf(nac3)))

4+

+ 4+

R

4+ o+

4

157

155

clse
extots = zerl)
end if
xtot = poriel) * (
denl * saf(ils+ipt2) * xmf(nacl) +
den2 * sat(i2s+ipt2) * xmf(nac2) +
den3 * sat{i3s+ipt2) * xmf(nac3))
extot = {8) * por(iel) * kex(5*(ic-1)4+4) *
(denl * (keq*xmf(ngcl)-xmf(nacl)) +
den2 * (keq*xmf(nge2)-xmf(nac2)) +
dend * (keq*xmf(nge3)-xmf(nac3))) + extots
rxtot = 1(8) * (rxn{nacl)*xmf(nact) +
rxn{nac2)*xmf(nac2) + rxn(nac3)*xmf(nac3))
clse
sbl = xbmax / pmw(iptl+il)
$b2 = xbmax / pmw(ipt1-+i2)
sb3 = xbmax / pmw(ipt1+3)
xtot = xbmax * (
xmf(nbel) / pmw(iptl+il) +
xmf(nbe2) / pmw(ipt]-+i2) +
xmf(nbe3) / praw(ipt1 +i3))
cxtof = 1(8) * por(iel) * kex(S*(ic-1)+4) *
(dent * (xmf(nacl)-xmf(nbel)) +
den2 * (xmf(nac2)-xmf(nbc2)) +
den3 * xmf(nac3)-xmf(nbc3)))
rxtot = t(8) * (mxn(nbel)*xmf(nbel) +
rxn{nbc2)*xmf(nbe2) + rxn{nbe3)*xmf(nbe3))
endif
if(-rxtot.gt.xtot+extot) then
rxnp(il) = rxnp(il) - xn(nacl) * xmf(nbcl)
rxnp(i2) = rxnp(i2) - rxn(nac2) * xmf(nbc2)
rxnp(i3) = rxnp(i3) - rxn(nac3) * xmf(nbe3)
rxnp(il+iptl) = rxnp(il+iptl)
- rxn{nbcl) * xmf(nbcl)
rxnp{i2+ipt]) = rxnp(i2+iptl)
- rxn{nbc2) * xmf(nbc2)
rxnp(i3+iptl) = rxnp(i3-+iptl)
- rxn{nbe3) * xmf(nbc3)
xn({nacl) = zer0
xn{nac?) = zerd
xn(nac3) = zerd
if(isumb.gt.ipt(17)) then
do 156ii = 1, ipy(4)
nica = (ii-1)*iptl
rxn(nica+il) = zerQ
rxn(nica#i2) = zer0
rxn{nica+i3) = zer0
continue
do 157ii=1,ipl(7)
nicb = (fi-1)*iptl
rxn{nicb+il) = zer0
rxn{nicb+i2) = zet0
rxn(nicb+i3) = zer0
continue
end if
endif
continue

end if

150 continuc

C~— Return when no mass transfer rate limitation is considered for
C— aqueous/biophase interactions. '
C

if{lctel{16)) then

RETURN

end if

C

C— Now sequentially solve for the biophase mole fractions.
(o

" do 200 icbio = 1,ipt(?)-1

ipte = ipthe + icbio
fept = (ipte-1)*ipt1
iepts = (ipte-1)*ipt2
fc = icp{iptc)

C— Zcro the finite clement matrices.

do 210i = 1,iptl

ths(i) = zer0

nrow = (i-1y*nbw(1)

do 210j =1, nbw(1)
210 a(nrow+j) = zerd
C

©— Compute the loal finite element matrices.
c
do 220 i = 1,ipt(0)

c
C— Set the pointers fo the local nodes 11, 12, and I3. The
C— postscript s is for stacked local nodes, p is for phase, and
C— ¢ is for compenent. Compute constants.
(o}

ield =i*3

iell =iel3-2

iel2 = iel3-1

il =nodel(iell)

ils = nodept(il)+nelpt(iell)

ils =il

ilc=icpt+il

iles =icpts + ils

i2 = nodel(iel2)

i2s = nodept(i2)+nelpt(iel2)

25 =02

i2c =icpt +i2

i2cs =icpts +i2s

i3 = nodel(iel3)

i3s = nodept(i3)+nelpt(iel3)

i3s=i3

i3c =icpt +1i3

i3cs =icpts +13s
C
C— Compute the biomass "saturation”. This is based on the
C— maximum allowable biomass and uses water properties.
C

sb = xbmax / por(i)

sbl = sb / den(ipt(41)+il)

sb2 = sb / den(ipt(41)-+i2)

sb3 = sb / den(ipt(41)+i3)

term = aby30(@i)/t(8)

C
C— Compute the mass matrix in lumped form.
C
all =term*(sb1*3.0d0+sb2 +s5b3)
al2 = term*(sbl +sb2 + $b3/2.0d40)
al3=term*(sbl +5sb2/2.0d0+sb3)
a2l =al2
a22 = term*(sbl + sb2%3.040 + sb3)
a23 = term*(sb1/2.0d0 + sb2 +sb3)
a3l=al3
a32=2a23
a33=ferm*(sbl +sb2 +sb3*3.0d0)
if(lctrl(8)) then
all =all +al2+al3
al2 = zerQ
al3 = zer0
a22 =221 +a22 + a23
a2l = zerQ
a23 = zer0
a33 =a3l +a32+a33
a3l = zerQ
a32 = zer0
end if
C

C— Now compute the exchange matrix. First consider the terms
C— multiplied by the biophase mole fraction. These terms are the
C— phase mole exchange and the phase mole reaction.
c
pex1 = -rxn(ilc)
pex2 = -rxn(i2c)
pex3 = -rxn(i3c)
b1l = aby30@) * (pex1*3.0d0 + pex2 +pex3)
b12 = aby30(3) * (pex! +pex2 +pex3/2.0d0)
b13 = aby30(i) * (pex1 + pex2/2.0d0 + pex3)
b2l =512
b22 = aby30() * (pex1 +pex2*3.0d0 + pex3)
523 = aby30(i) * (pex1/2.0d0 + pex2 +pex3)
b31=b13

158

b32 =b23

b33 = aby30(i) * (pex] +pex2 + pex3*3.0d0)

C

C— Now compute the right hand side terms. These terms are the

C— component mole exchange and the component mole reaction.
Cc

rhsl = por(iy*rthsex(ilcs)

rhs2 = por(i)*rhsex(i2cs)

rhs3 = por(i)*rhsex(i3cs)

fl = aby12(i) * (2.0d0*ths1 + rhs2+ rhs3)

f2 =aby12@) * (rhsl +2.0d0*rths2+ rhs3)

f3=abyl2@) *(rhsl+ rhs2 + 2.0d0*rhs3)
C
C— Assemble global matrix and right hand side vector in banded form.
C

irowl = (i1-1)*nbw(1)

irow2 = (i2-1)*nbw(1)

irow3 = (i3-1)*nbw(1)

icolll = 1 + nbw(0)

icol12 =icolll + (i2 - i1)

icoll3 =icolll + (i3 - i1)

icol22 =icolll

icol21 =icol22 + (il - i2)

icol23 =icol22 + (i3 - i2)

icol33 =icolll

icol31 =icol33 + (il - i3)

icol32 =icol33 + (i2 - i3)

abll =all +¢(10)*b11

abl2 =al2 + t(10)*b12

abl3 =al3 +t(10)*b13

ab21 = a2l + ((10)*b21

ab22 = a22 + t(10)*b22

ab23 = a23 + t(10)*b23

ab31 =a31 + t(10)*b31

ab32 = a32 + 1(10)*b32

ab33 =a33 + t(10)*b33

a(irowl +icolll) = a(irowl + icol11) + ab11

a(irow1 + icol12) = a(irowl + icol12) + ab12

a(irow1 +icol13) = a(irow! + icol13) + ab13

a(irow2 + icol21) = a(irow2 + icol21) + ab21

a(irow2 + icol22) = a(irow2 + ic0l22) + ab22

a(irow2 + icol23) = a(irow2 + icol23) + ab23

a(irow3 + icol31) = a(irow3 + icol31) + ab31

a(irow3 + icol32) = a(irow3 + icol32) + ab32

a(irow3 + icol33) = a(irow3 + icol33) + ab33

ths(il) = rhs(il) + f1 - b11 * xmft(ilc)

+ - b12 * xmft(i2c) - b13 * xmft(i3c)
rhs(i2) = rhs(@i2) + 2 - b21 * xmft(ilc)
+ - b22 * xmft(i2c) - b23 * xmft(i3c)

rhs(i3) = rhs(i3) + f3 - b31 * xmft(ilc)

Subroutine - cbal.f

CBAL.f - Subroutine which computes the mole balance check for the
aqueous and gas phase components and phases.

Arguments: its - integer time step
Tbalp - compute the phase mass balance when true
Ibalc - compute the component mass balance when true
Ipcbal - print the mass balance information when true
Ifirst - indicates the first call during a time step

Required Control Flags:

letrl(1) - logical variable controlling presence of flow
solution
letrl(1) = .true. - compute flow solution
letrl(1) = .false. - skip flow solution
letrl(2) - logical variable controlling presence of transport
solution

aoaaooaQanaoOQQQOOn

+ - b32 * xmft(iZc) - b33 * xmft(i3c)
220 continue
C
C—- Collapse full matrix into sparse form used by Harwell. Also
C— scale array by dividing rows through by the diagonal value.
C
ia=0
do 230 irow = L,ipt(1)
nrow = (frow-1)*nbw(1)
aii =rone / a(nrow-+1+nbw(0))
rhs(irow) = rhs(irow) * aii
do 230 icol = I,nbw(1)
if (a(nrow-+icol) .ne. zer0) then
ja=ja+1
a(ia) = a(nrow+icol) * aii
irn(ia) = irow
icn(ia) = icol+irow-nbw(0)-1
endif
230 continue
C
C— Solve the linear system using Harwell routines.
C
call ma28ad(ipt(1),ia.a,icnl,irn,irnlicn,u,ikeep,iw,w,iflag)
if (iflag .It. 0) then
write (ipt(28),*) "iflag return from harwell is * iflag
write (ipt(28),*) *bio component is: ’, cname(ic)
end if
call ma28cd (ipt(1),a,icnl,icn,ikeep,ths,w,mtype)
C
C— Update the solution and determine the max norm of the updated
C— solution.
C
dxmf = zer0
xmfimax = xround
do 240 i = 1+iptc,ipt1+iptc
xmfold=xmf(i)
xmf(i) = xmft() + rhs(i-iptc)
. xmfmax = dmax 1(xmfnax,dabs(xmf(i)))
240 dxmf = dmax1(dxmf,dabs(xmf(i)-xmfold))
if(dxmf/xmfmax.gt.t(15)) ibconv = ibconv + 1
200 continue
C
C— Biological equation set is converged if each component equation
C— has converged (i.e. ibconv = 0).

if(ibconv.gt.0) iconv =iconv + 1
return
end

letri(2) = .true. - compute transport solution
letrl(2) = false. - skip transport solution
Ietrl(12) - logical variable denoting presence of a well
letrl(12) = .true. - well present
letrl(12) = false. - well not present
letrl(16) - logical variable denoting method of including
biological reaction
Ictri(16) = .true. - include bioreaction in
aqueous transport
Ictrl(16) = false. - solve FEM solution for
rate limited biophase

aaoaaooaannn

NENTS WHEN USING
C REPORT STYLE OUTPUT
C

subroutine CBAL (its,1balp,lbalc,Ipcbal,Ifirst)
include 'dimen.inc’
character*10 cname(ncmp)

159

C WARNING: THIS ROUTINE IS DIMENSIONED FOR 9 COMPO-

common /chl/ matel{nelmx),nodel(nel3),nodept(nnmx),neipt(nel3),
+ matpt(nn6)
common /cblef xnode(nnmx),znode(nnmx),rbar(nelmx),area(nelmx)
common /cb2/ p(nn3)
common /cb3/ sat(nnstk3)
common /cb6b/ por(nelmx),stw(nnstk)
common /cb6e/ temp(nnmx)
common /cb7b/ cmw(ncmp),cvp(nemp),cden(ncmp),
+ chen(nemp)casol(ncmp),emdif(ncmp2)
common /cb8/ vis(nmnx),pmw(nn3)
commeon /cb9/ xmf(nmf)
common /cb10/ den(nn6)
common /cb11/ pex(nns10),rxnp(nn2)
common /cb30/ ibc(nnmx)
common /cb32/ bef(nn2)
common /cb31/ source(nn2)
common /cb42/ amb(icnl),fmb(nsolve)
common /cb62/ rxn{nmf),cex(nmfs)
common /cb64/ bok(nbemp),bom(nbemp) krtd(ncmp)
common /cb64b/ bsden(nmblk)
common /cb84/ ibexmf(nmbc),bexmf(nmbe),dfxmf(nmbe)
common /cb85/ flux(nempp5),sfux(ncmpps),first(ncmp)
common /cb86/ strl(nempp5),strO(nemppS),cmf(nempp5),csink(nempp5)
+ cwsink(nempp5),csfux(nempp5),cmassl(ncmp5),cmassO(ncmpS)
+ ,cphex(nempp5),crsink(nemppS),tmass],tmass0
common /cb91/ cname
dimension str(nempp5),resid(nemppS),sink(ncmpp5),wsink(ncmpp5)
+ cmass{nemp5),phex(ncmpp5),perrl(ncmpp5),perr2(ncmpp5)
+ rsink(ncmppS)
[of
C~— Describe variables: str1(1-5) are the total mass storage of each
C— phase at t+1, ste1(6..) are the total mass storage of each
C— component at t+1; str(...) are the total mass storages at t;
C— su0{...) are the initial mass storages; residual(...) are the
C-— changes in phase and component mass not accounted for by sinks,
C— sources, phase exchange, etc.; cmf(...) are the cumulative total
C~ mass fluxes for the phases and components; sink(...) are the
C— total mass sinks for the phases and components; csink(...) are
C— the cumulative total mass sinks for the the phases and components;
C— wsink(...) are the total mass sinks at the well for the phases
C-— and components; cwsink(...) are the cumulative total mass sinks
C— at the well for the phases and components; sflux(...) are the
C total mass fluxes at the surface for the phases and components;
C— csflux(...) are the cumulative total mass fluxes at the surface
C— foc the phases and components; cmass1(...) are the mass storages
C— of cach component in each phase at t+1; crass(...) are the mass
C— storages of cach component in each phase at t; cmass0(...) are
C— the initial mass storages of each component in each phase;
C— rsink(...) are the total mass reation sinks for the phases
Cw— and components; crsink(...) are the cumulative total mass reaction
C— sinks for the phases and components

istop = ipt(65)

iptix3 =ipt(41)

IP2xs = ipt(52)
[of
C— Initialize mass storage vectors.

if(tfirst) then
if{its.ne.0) tmass = tmass1
tmassl = zerQ
tphex = zer0
bmass = zec0
(o4
C— Save previous mass storage.

do 10i =1, istop+5
if(letcl(1)) then
flux(i) = zer0
sflux(i) = zer0
end if
sink(i) = z¢er0
rsink(i) = zer0
wsink(i) = zerQ
resid{i) = zer0
phex(i) = zer0
if{its.ne.0) str(i) = stri(i)
10 stel(i) = zerQ

do 11i=1, istop*$S
if(its.ne.0) cmass(i) = cmass1(3)
11 cmassl(i) = zerQ
end if
C
C— First compute the mass storage of the phases.

o}

do 100 jel = 1,ipt(0)
n3 = (jel-1)*3
il =nodel(n3+1) !element node numbers
i2 = nodel(n3+2)
i3 = nodel(n3+3)
igl =il ! nodel gas phase storage locations
ig2=i2
ig3=i3
ial =ipt(I)+igl !nodel aqueous phase storage locations
ia2 = ipt(1)+ig2
ia3 = ipt(1)+ig3
inl = ipt(1)#+ial ! nodel napl phase storage locations
in2 =ipt(1)+ia2
in3 = ipt(1)+ia3
ndstkl = nodept(il) + nelpt(n3-+1) ! node position in stack
ndstk2 = nodept(i2) + nelpt(n3+2)
ndstk3 = nodept(i3) + nelpt(n3+3)
igls=ndstkl ! gas phase stacked node numbers
ig2s = ndstk2
ig3s = ndstk3
ials = ipt(2)+igls ! aqueous phase stacked node numbers
ia2s = ipt(2)+ig2s
ia3s = ipt(2)+ig3s
inls = ipt(2)-+als ! napl phase stacked node numbers
in2s = ipt(2)+ia2s
in3s = ipt(2)+ia3s
isls = ipt(2)+inls ! solid phase stacked node numbers
is2s = ipt(2)+in2s
is3s = ipt(2)+in3s
ibls = ipt(2)+isls ! bio phase stacked node numbers
ib2s = ipt(2)+is2s
ib3s = ipt(2)+is3s
xbio = rbar(jel) * area(jel) * third
x = xbio * por(jel)

C
C—- First the gas phase mass storage and exchange terms.
C

if(lbalp) then :
str1(1) =str1(1) + x *
+ den(iptlx3+igl) * sat(igls) +
+ den(ipt1x3+ig2) * sat(ig2s) +
+ den(ipt1x3+ig3) * sat(ig3s))
phex(1) = phex(1) + x * t(8) * (pex(ipt2x5+igls)
+ + pex(ipt2xS+ig2s) + pex(ipt2x5+ig3s))
C .
C— Now the aqueous phase mass storage and exchange terms.
C
stri(2) = strl1(2)+ x * (
+ den(ipt1x3+ial) * sat(ials) +
+ den(ipt1x3+ia2) * sat(ia2s) +
+ den(ipt1x3+ia3) * sat(ia3s))
phex(2) = phex(2) + x * t(8) * (pex(ipt2x5+ials)
+ + pex(ipt2x5-+ia2s) + pex(ipt2x5+ia3s))
C
C— Now the gas phase component mass storages.
C
end if
if(lbalc) then
do 151 = 1,ipt(3)
ic =icp(i)
igase = (i-1)*ipt(1)
cel = x * emw(ic) * (
den(igl) * sat(igls) * xmf(igasc+il) +
den(ig2) * sat(ig2s) * xmf(igasc+i2) +
den(ig3) * sat(ig3s) * xmf(igasc+i3))
cmass(ic) = cmass1(ic) + cel
str1(5+ic) = str1(5+ic) + cel
15 continue
C
C— Now the aqueous phase component mass storages.
C

+ + +

160

do 20 i = 1,ipt(4)
ipipt3 =1 + ipt(3)
ic = icp(ipipt3)
iaqe = (ipipt3-1)*ipt(1)
cel = krtd(ic) * x * cmw(ic) * (
den(ial) * sat(ials) * xmf(iaqc+il) +
den(ia2) * sat(ia2s) * xmf({iaqc+i2) +
den(ia3) * sat(ia3s) * xmf(iaqc-+3))
cmass 1 (istop+ic) = cmass1 (istop+ic) + cel
strl(S+ic) = str1(5+ic) + cel
20 continue
C
C— Now the napl phase mass storage and exchange terms.
C

+ 4+ +

if(ipt(5).gt.0) then
strl(3) = strl1(3) + x * (
+ den(ipt1x3+inl) * sat(inls) +
+ den(ipt1x3-+in2) * sat(in2s) +
+ den(ipt1x3+in3) * sat(in3s))
phex(3) = phex(3) + x * t(8) * (pex(ipt2xS+inls)
+ + pex(ipt2x5+in2s) + pex(ipt2x5+in3s))

C
C— Now the napl phase component mass storages. This form assumes
C— that all the organic components are present in the napl phase.

do 25 i = 1,ipt(5)
ipipt5 =i+ ipt(58)
ic = jcp(ipipt5)
inc = (ipipt5-1)*ipt(1)
cel = x * cw(ic) * (

+ den(inl) * sat(inls) * xmf(inc+il) +
+ den(in2) * sat(in2s) * xmf(incH2) +
+ den(in3) * sat(in3s) * xmf(inc+i3))

cmass1(2*istop+ic) = cmass1{2*istop+ic) + cel
str1(5+ic) = str1(5+ic) + cel
25 continue
end if
C
C— Now the solid phase mass balance and exchange terms.
C
if(ipt(6).gt.0) then
phex(4) = phex(4) + xbio * t(8) * (pex(ipt2x5+isls)
+ + pex(ipt2x5+is2s) + pex(ipt2x5+is3s))
C
C— Now the solid phase component mass balances.
s}

do 301 = Lipt(6)
ipipt5 =i + ipt(59)
ic = icp(ipipt5)
isc = (ipipt3-1)*ipt(1)
if(xbok.gt.zer0) then
if(i.eq.1) then
solden = (rone-xden)*bsden{matel(i))
else if(i.eq.2) then
isum = ipt(3)+ipt(4)+Hpt(5)
ic = icp(isum+i-1)
solden = xden*bsden(matel(i))

end if
cel = solden *
+ (xmf(isc-+il) + xmf(isc+i2) + xmf(isc+i3))
+ * xbio
else
cel = bsden(matel(jel)) *
+ (xmf(isc+il) + xmf(isc+i2) + xmf(isc+i3))
+ * xbio
end if

cmass 1 (3*istop-+ic) = cmass1(3*istop+ic) + cel
str1(5+ic) = strl(5+ic) + cel
str1(4) = stri(4) + cel
30 continue
end if
C
C~~- Now the biophase mass balance and reaction terms.
C— This assumes a constant biophase volume.
C
if(ipt(7).gt.0) then
do 351 = 1,ipt(7)-1
ipipt6 =i + ipt(60)

ic = icp(ipipt6)
ibioc = (ipipt6-1)*ipt(1)
C
C— First consider a separate biophase.
C
if (not.letrl(16)) then
str1(5) = str1(5) + xbio * xbmax * 3.0d0
phex(5) = phex(5) + xbio * t(8) * (pex(ipt2x5+ib1s)
+ + pex(ipt2x5+ib2s) + pex(ipt2x5+ib3s))
cel = xbio * cmw(ic) * (
+ xbmax/pmw(ial) * xmf(ibioc+i1) +
+ xbmax/pmw(ia2) * xmf(ibioc+i2) +
+ xbmax/pmw(ia3) * xmf(ibioc+i3))

C

C— Now the bio reaction mass sinks.

C

sel = xbio * cmw(ic) * (rxn(ibioc+il)

+ * xmf(ibioc+i1) + rxn(ibioc+i2)
+ * xmf(ibioc+i2) + rxn(ibioc+i3)
+ * xmf(ibioc+i3)) * t(8)

C

C

C— Now sum the bio reaction mass sinks into the mass balance.
C
cmass1(4¥istop+ic) = cmass1(4*istop+ic) + cel
rsink(5) = rsink(5) + sel
rsink(5+ic) = rsink(5+ic) + sel
str1(5) = str1(5) + cel
str1(5+ic) = str1(5+ic) + cel
C
C— Otherwise sum the bioreaction sinks when a separate biophase
C— is not considered. Use biophase reaction terms since they are
C— the same as the aqueous phase reaction terms.

C
else if (lctrl(16)) then
sel = xbio * ciw(ic) * (rxn(ibioc+il)
+ * xmf(ibioc+il) + rxn(ibioc+i2)
+ * xmf(ibioc+i2) + rxn(ibioc+i3)
+ * xmf(ibioc+i3)) * ¢(8)
C

C— Now sum the bio reaction mass sinks into the mass balance. When
C— a separate biophase is not considered the reaction terms are
C— used for the aqueous phase mass balance.

C
rsink(2) = rsink(2) + sel
rsink(5+ic) = rsink(5+ic) + sel
end if
35 continue
C

C— Now sum the biomass. Do not include the biomass in the phase mass.
o}
ibioc = ipt(12) + (ipt(7)-1) * ipt(1)
cel = xbio * (xmf(ibioc+1) + xmf(ibioc+i2) +
+ xmf(ibioc+i3))
bmass = bmass + cel
end if
end if
100 continue
C
C— Now initialize variables and return if this is the first call.
(e}
if (its .eq. 0) then
do 200 i = 1,5+istop
cphex(i) = zer)
csink(i) = zer0
cwsink(i) = zerQ
crsink(i) = zerQ
csflux(i) = zer0
emf(i) = zerQ
200 strO(i)=strl(i)
do 210 = 1,5*istop
210 cmass0(i) = cmass1(i)
tmass0 = zerQ
tesink = zer0
tewsink = zer0
tersink = zerQ
teflux = zer0
tephex = zer0

161

do220i=1,5
220 tmassO = tmassO + str0(i)
tmassl = tmass0
if(lprnt(27)) then
write (25,501) its,¢(9)
wtite(25,502) *Phase mass (kg) '
+ J{str0(i) i=1,5),imassO
do 2301ii = 1,istop
i=it+5
230 write(25,503) cname(ii)
+ [(cmassO(iii*istop-+it), iii=0,4),str0()
if(letrl(3)) write(25,503) cname(ii)
+ \2e50,z¢10,2e10,2er0,bmass,zer0
clse
write(25,504)
write(25,500) zer0,(str0(i),i=1,5),tmass0
+ 1zer0,zer0,2er0,zer0,zer0
do 2401 = 1,ipt(15)
write(28+1,505) cname(i)
240 write(28+1,500) zer0,(cmassO(ii*istop-+i),ii=0,4)
+ S$tr0(i+5),ze10,ze10,zec0,ze10,zer0
endif
do 2501 = 1, Ipt(65)
250 first(i) = zer0
return
end if
C
C— Now compute the boundary fluxes for the flow solution.
(o4

if (letri 1)) then
c
¢~ Compute gas phase boundary fluxes; i.e. all specified first type
¢~ nodes.
if (ipt(18) .gt. 0) then
do 300 jj = L,ipt(18)
irow =2 * ibc(jj)
nbc = irow/2
nbed = ipt(41) + nbe
deng = den{nbed)
(o4
C~— Compute gas phase component boundary flux at first type pressure
C— nodes. Note: the surface flux is included in the boundary flux.
(o4
pmwbe = zer0
do 310§ =1,ipt(3)
ic=icp(i)
jcxmf = (i-1)*ipt(1) + nbc
iftibexmi{nbc).cq.3) then
fkeep = den(nbce) * bef(nbe) * bexmf(icxmf)
+ * emw(ic) * ¢(8)
if(ibale) flux(ic+5) = fAux(ic+5) + fkeep
pmwbe = pmwbe + bexmf(icxmf) * cmw(ic)
else if{ibexmitnbe).cq.2) then
fkeep = den(nbe) * bef(nbe) * xmf(icxmf)
+ * cmw(ic) * 1(8)
if(Ibale) flux(ic+S) = flux(ic+5) + fkeep
clse if(ibcxmf(nbe).eq. 1) then
fkeep = first(icxmf)
if(ibalc) flux(ic+S) = flux(ic+5) + fkeep
end if
if(znode(nbe).cq.zer0.and.lbalc)
+ sflux(ic+5) = sflux(ic+5) + fkeep
310 continue
if(lctel(2).and.ibexmf(nbe).eq.3) deng = den(nbe) * pmwbe
300 if(lbalp) flux(1) = flux(1) + fmb(irow) * deng * ¢(8)
endif
C

C—- Compute aqueous phase boundary fluxes; i.e. all specified first
C— type nodes.
o4

if (ipt(19) .gt. 0) then
do 320 jj = Lip(19)

ipt18 =ipt(18)

nbe = ibe(ipt18+j)) + ipt(1)

irow = 2%ibe(ipt18+j) - 1
[of
C-— Compute aqueous phase component boundary flux at first type
C pressure nodes. Note: the surface flux is included in the

C— boundary flux.
C

if(lbalc) then
do 330i=1, ipt(4)
ipipt3 =i + ipt(3)
ic = icp(ipipt3)
icxmf = ipt(9) + (-1)*ipt(1) + ibc(ipt18+jj)
if(ibcxmf(nbc).eq.3) then
fkeep = den(nbc) * bef(abe) * bexmf(icxmf)
+ * emw(ic) * t(8)
fiux(ic+5) = flux(ic+5) + fkeep
else if(ibcxmi(nbc).eq.2) then
fkeep = den(nbc) * bef(nbe) * xmf(icxmf)
+ * cmw(ic) * 1(8)
if(fbalc) flux(ic+5) = flux(ic+5) + fkeep
else if(ibcxmf(nbc).eq.1) then
fkeep = first(icxmf)
if(Ibalc) flux(ic+5) = flux(ic+5) + fkeep

end if
if(znode(nbc-ipt(1)).eq.zer0)
+ sflux(ic+5) = sfiux(ic+5) + fkeep
330 continue
end if
if(lbalp) then

nbed = nbe + ipt(41)
flux(2) = flux(2) + fmb(irow) * den(nbcd)

+ *4(8)
end if
320 continue
end if

C
C— Compute gas phase sources and sinks at nodes with constant gas
C— flux.
C
if (ipt(22) .gt. 0) then
ii = ipt(62)
do 340 jj = 1,ipt(22)
nbc = ibe(ii+j)
nbed = ipt(41)+nbc
deng = den(nbcd)
C
C— Compute gas phase component boundary flux at constant flux
C~— nodes. Note: the surface flux is included in the boundary flux.
C
pmwbc = zer0
do345i=1,ipt(3)
ic = icp(i)
icxmf = (i-1)*ipt(1) + nbc
if(ibcxmf(nbc).eq.3) then
fkeep = den(nbc) * bef(nbe) * bexmf(icxmf)
+ * emw(ic) * t(8)
if(Ibalc) flux(ic+5) = flux(ic+3) + fkeep
pmwbe = pmwbc + bexmf(icxmf) * cmw(ic)
else if(ibcxmf(nbc).eq.2) then
fkeep = den(nbc) * bef(nbe) * xmf(icxmf)
+ * cmw(ic) * t(8)
if(balc) flux(ic+5) = flux(ic+5) + fkeep
else if(ibcxmf(nbc).eq.1) then
fkeep = first(icxmf)
if(Ibalc) flux(ic+5) = flux(ic+5) + fkeep

end if
if(znode(nbc).eq.0.d0.and.1balc)
+ sflux(ic+5) = sflux(ic+5) + fkeep
345 continue

if(ibcxmf(nbc).eq.3) deng = den(nbc) * pmwbc

340 if(Ibalp) sink(1) = sink(1) + deng * ¢(8) *

+ source(jj) * patm * temp(nbc)

+ /((patm + p(nbc)) * tstd)

endif

C
C— Compute aqueous phase sources and sinks at nodes with constant
C— aqueous flux.

C
if (ipt(23) .gt. O) then
ii =ii + ipt(22)
do 350 jj = 1,ipt(23)
nbe = ipt(1) + ibe(ii-+jj)
C

162

C— Compute aqueous phase component boundary flux at constant flux
C— nodes. Note: the surface flux is included in the boundary flux.
C
if(Ibalc) then
do 3551 = 1, ipt(4)
ipipt3 =i+ ipt(3)
ic = icp(ipipt3)
icxmf = ipt(9) + (i-1)*ipt(1) + ibe(jj+ii)
if(ibcxmf(nbc).eq.3) then
fkeep = den(nbc) * bef(nbe) * bexmf(icxmf)
+ * cmw(ic) * t(8)
flux@ic+5) = flux(ic+5) + fkeep
else if(ibcxmf(nbc).eq.2) then
fkeep = den(nbc) * bef(nbe) * xmf(icxmf)
+ * cmw(ic) * t(8)
flux(ic+5) = flux(ic+5) + fkeep
else if(ibcxmf(nbe).eq.1) then
fkeep = first(icxmf)
if(lbalc) flux(ic+5) = flux(ic+5) + fkeep

end if
if(znode(nbc-ipt(1)).eq.zer0)
+ sflux(ic+5) = sflux(ic+5) + fkeep
355 continue
end if
if(Ibalp) then

nbed = ipt(41)+nbe
ipt22 = ipt(22)
sink(2) = sink(2) + den(nbcd)

+ * source(ipt22+j) * #(8)
end if
350 continue
endif
C
C— Now compute the gas phase flux at the well.
C
if (Ictri(12)) then
ii = ipt(64)
jstrt = ipt(22) + ipt(23)
do 360 jj = 1,ipt(24)
nbc = ibe(i+jj)
nbed = ipt(41) + nbe
deng = den({nbcd)
C

C— Now compute the gas phase component flux at the well.
C
pmwbc = zerQ
do 365 i = 1,ipt(3)
ic = icp(i)
icxmf = (i-1)*ipt(1)+ibc(ii+jj)
if(ibexmf(nbc).eq.3) then
xmfbe = bexmf(icxmf)
pmwbc = pmwbc + bexmf(icxmf) * cmwi(ic)
fkeep = den(nbc) * bef(nbe) * xmfbe
+ * cmw(ic) * t(8)
- else if(ibcxmf(nbc).eq.2) then
fkeep = den(nbc) * bef(nbe) * xmf(icxmf)
+ * cmw(ic) * t(8)
flux(ic+5) = flux(ic+5) + fkeep
else if(ibcxmf(nbce).eq.1) then
fkeep = first(icxmf)
if(Ibalc) flux(ic+5) = flux(ic+5) + fkeep
else
xmfbe = xmf(icxmf)
end if '
if(Ibalc) wsink(5+ic) = wsink(5+ic) + fkeep
365 continue
if(ibexmf(nbc).eq.3) deng = den(nbc) * pmwbc
if(Ibalp) wsink(1) = wsink(1) + deng * t(8) *
+ source(jstrt+jj) * patm * temp(nbc)
+ 7 ((patm + p(nbc)) * tstd)
C
C— Now compute the aqueous phase fiux at the well when extracting.
C
if (qwell .1t. zerO) then
nbew = ipt(1) + nbc
C
C— Now compute the aqueous phase component flux at the well.
C

if(Ibalc) then
do 3701 = 1,ipt(4)
ipipt3 =1+ ipt(3)
ic = icp(ipipt3)
icxmf = ipt(9) + (i-1)*ipt(1) + nbc
fkeep = den(nbew) * bef(nbew) * xmf(icxmf)

+ * cmw(ic) * ¢(8)
wsink(5+ic) = wsink(5+ic) + fkeep
370 continue
end if
if(lbalp) then
nbewd = ipt(41)+nbew

ipt24 =ipt(24)
wsink(2) = wsink(2) + den(nbcwd)
+ * source(jstrt+ipt24+4j) * t(8)
end if
end if
360 continue
endif
end if
C
C— Sum the phase mass fluxes and sinks. Change the molar
C— component fluxes into mass form and account for the time
C— step. Also sum the cumulative mass component fluxes.
&
if(lbalp) then
csink(1) = csink(1) + sink(1)
csink(2) = csink(2) + sink(2)
cwsink(l) = cwsink(1) + wsink(1)
cwsink(2) = cwsink(2) + wsink(2)
tsink = sink(1) -+sink(2)
tesink = csink(1) + csink(2)
twsink = wsink(1) + wsink(2)
tewsink = cwsink(1) + cwsink(2)
cmf(1) = cmf(1) + flux(1)
cmf(2) = cmf(2) + flux(2)
tflux = flux(1) + flux(2)
tcflux = cmf(1) + cmf(2)
do379ic=1,2
tphex = tphex -+ phex(ic)
cphex(ic) = cphex(ic) + phex(ic)
tephex = tephex + phex(ic)
379 tmassl = tmass1 + strl(ic)
do 380 ic=3,5
tphex = tphex + phex(ic)
cphex(ic) = cphex(ic) + phex(ic)
tephex = tecphex + phex(ic)
380 tmass1 = tmassl + str(ic)
end if '
if(Ibalc) then
crsink(2) = crsink(2) + rsink(2)
csink(5) = csink(5) + sink(5)
tsink = tsink + sink(5)
tesink = tesink + csink(5)
crsink(5) = crsink(5) + rsink(5)
trsink = rsink(2) + rsink(5)
tersink = crsink(2) + crsink(5)
do 390 ic = 1, istop
csink(5+ic) = csink(5+ic) + sink(5+ic)
cwsink(5+ic) = cwsink(5+ic) + wsink(5+ic)
crsink(5+ic) = crsink(5+ic) + rsink(5+ic)
flux(5+ic) = flux(5+ic)
csflux(5+ic) = csflux(5+ic) + sflux(5+ic)
390 cmf(5+ic) = cmf(5+ic) + flux(5+ic)
end if
if(lpcbal) then
if(Iprnt(27)) then
C
C— Write the phase materjal balance report.
C
write (25,507) its,t(9)
write (25,502) "Phase mass (kg)’,
+ (stri(i),i=1,5),tmass1
write (25,508)
write (25,502) 'Delta storage (kg)’,
+ (str1(i)-str(i),i=1,5),tmass1-tmass
write (25,502) 'Boundary flux (kg)’,
+ (flux(i),i=1,5),tflux

163

405

407

write (25,502) "Sources (kg)',
(sink(i),i=1,5),tsink
write (25,502) *Well sources (kg)’,
(wsink(i)i=1,5)wsink
write (25,502) "Reactions (kg)',
(reink(i)i=1,5)trsink
write (25,502) 'Phase transfer (kg)',
(phex(@),i=1,5),tphex
dod00i=1,5
resid(i) = stel (i).- ste(i) - fux(i)
- wsink(i) - phex(i)
write (25,502) 'Residual (kg)’
J[resid(i),i=1,5),tmass1 - tmass
- tflux - twsink - tphex
dod405i=15
if(str0(i).gt.zer0) then
perrl(i) = 1.0d2*dabs(resid(i))/str0()
clse
perrl(i) = zer0
end if
continue
if(tmass0.gt.zerQ) then
write (25,502) *Time step errorl(%)',
(perr1(i)i=1,5), 1.0d2*dabs(tmass] - tmass
- tflux - twsink - tphex)/tmassQ
clse
write (25,502) "Time step errocl(%)’,
(perrl(i)i=1,5), zet
endif
do406i=1,5
term = dmax 1 (dabs(wsink(i))+dabs(flux(i))+dabs(phex(i)),
dabs(stel (i)-ste(i)))
if(term.ne.zer0) then
perrl(i) = 1.0d2*dabs(resid(i))/term
clse
perrl(i) = zerQ
end if
continuc
term = dmax 1 (dabs(twsink)+dabs(tflux)}+dabs(tphex),
dabs(tmass1-tmass))
if(term.ne.zer0) ther
tperel = 1.0d2*dabs(tmass] - tmass - tflux - twsink
- tphex)term

write (25,502) *Time step error2(%)’,
(perrl(i)i=1,5), tperrl
do407i=1,5
if(str1 (i)-str(i).ne.zer0) then
perrl (i) = 1.0d2*(rone-(dabs(wsink(i)y+flux(i)
+phex(i)) / (dabs(stel (i)-ste(i)))))
else
peeel(i) = zer0
end if
continue
if(tmass1-tmass.ne.zer0) then
tperel = 1.0d2*(rone-(dabs(twsink-+tflux-+tphex)
/ (dabs(tmass1-tmass))))
clse
tperrl = zer0
end il
write (25,502) "Time step eror3(%)’,
(perrl(i),i=1,5), tperrl
write (25,509)
write (25,502) 'Delta storage (kg)',
(stel(i)-ste0(i),i=1,5),tmass1-tmass0
write (25,502) 'Boundary flux (kg)’,
(emf(i),i=1,5),tcflux
write (25,502) *Sources kg,
(csink(i),i=1,5)tcsink
write (25,502) "Well sources (kg)',
(cwsink(i),i=1,5)tewsink
write (25,502) *Reactions (kg)",
(crsink(i),i=1,5)tersink
write (25,502) 'Phase transfer (kg)’,
(cphex(i),i=1,5),tcphex
do410i=1,5

410
+

+
+

[425

426

427

+

+
C

164

resid(i) = strl(i). - strO(i) - cmf(i)
- cwsink(i)- crsink(i) - cphex(i)
write (25,502)'Residual (kg)’

J(resid(i),i=1,5),tmass1 - tmass0.
- tewsink - teflux
do425i=1,5
if(str0(i).gt.zer0) then
p¢rr2(i)'= 1.0d2*dabs(resid(i))/strO()
else
perr2(i) = zer0.
end if
continue

if(tmass0.ne.zer0). then.
write (25,502) *Cumulative errl (%),
(perr2(i),i=1,5),dabs(tmassl - tmassO
- tewsink - tcflux - tephex)*1.0d2/tmassO
else
write (25,502) *Cumulative errl (%),
(pere2(3i),i=1,5),zer0
end if
do426i=1,5
term = dmax L(dabs(cwsink(i))+dabs(cm(i))
+dabs(cphex(i)),dabs(ste1 (i)-str0(i)))
if(term.ne.zer0):
then
perr2(i).= 1.0d2*dabs(resid(i))/term
else
perr2(i) = zexQ
end if
continue
term = dmag(1(dabs(tcwsink)_+dabs(tcﬂux)+dabs(tcphex),
dabs(tmasst - tmass0))
if(term.ne.zer0) then
tperr2 = 1.0d2*dabs(tmass1 - tmass0 - tewsink - teflux
- tephex)/term
else
tperr2 = zerQ
end if
write (25,502) "Cumulative err2 (%)’,
(perr2(i),i=1,5), tperr2
do427i=1,5
if(str1(i)-strO(i).ne.zer0) then
perr2(i) = 1.0d2*(rone-(dabs(cwsink(i)}+cmf(i)
+cphex(i)) / (dabs(strl(i)-str0(i)))
else
perr2(i) =zer0
end if
continue
if(tmass1 - tmassQ.ne.zer0) then
tperr2 = 1.0d2*(rone-(dabs(tcwsink-+tcflux-+tcphex)
/ (dabs(tmass1 - tmass0))))
else
tperr2 = zer0
end if
write (25,502) ‘Cumulative err3 (%),
(perr2(i),i=1,5), tperr2
if(lctrl(3)) write(25,502) *Biomass (kg)',
zer0,zer0,zer0,zer0,bmass,zer0

C— Write the component material balance report.

if(lctrl(2)) then

write (25,506) its,t(9),(cname(i),i=1,istop)

write (25,502) 'Gas Phase (kg)’,
(cmass1(i),i=1,istop)

write (25,502) * Aqueous Phase (kg)’,
(cmass1(istop+),i=1,istop)

write (25,502) '"NAPL (kg),
(cmass 1(2*istop+i),i=1,istop)

write (25,502) *Solid Phase (kg)’,
(cmass1(3*istop-+i),i=1,istop)

write (25,502) 'Biophase (kg)’,
(cmass1(4*istop+i),i=1,istop)

write (25,502) "Total (kg)',
(str1(5+1),i=1,istop)

write (25,508)

write (25,502) 'Delta storage (kg)’,
(str1(i+5)-ste(i+5),i=1,istop)

435

436

437

445

write (25,502) *Boundary flux (kg)y’,
(flux(i+5),i=1,istop)
write (25,502) *Surface flux (kg)’,
(sflux(i+5),i=1,istop)
write (25,502) 'Sources (kgy',
(sink(i+5),i=1,istop)
write (25,502) *Well sources (kg)’,
(wsink(i+5),i=1,istop)
write (25,502) "Reactions (kg)’,
(rsink(i+5),i=1,istop)
do 430 = 6,istop+5
resid(i) = str1(i) - str(i)
- wsink() - rsink(i) - flux(i)
write (25,502) *Residual (kg)’
J(resid(i+5),i=1,istop)
do 435 i = 6,istop+5
if(str0@).gt.zer0) then
perr1(i) = 1.0d2*dabs(resid(i))/str0()
else
perr1(i) = zer0
end if
continue
write (25,502) "Time step error1(%)’,
(perr1(i+5),i=1,istop)
do 436 i = 6,istop+5
term = dmax 1 (dabs(rsink(i))+dabs(wsink(i))
+dabs(flux(i)),dabs(str1(i)-str(i)))
if(term.ne.zer0) then
perrl(i) = 1.0d2*dabs(resid(i))/term
else
perrl(i).= zer0
end if
continue
write (25,502) "Time step error2(%)’,
(perrl(i+5),i=1,istop)
do 437 i = 6,istop+5
if(str1(i)-str(i).ne.zerQ) then
perrl(i) = 1.0d2*(rone-(dabs(rsink(i)+wsink(i)
+flux(i)) / (dabs(str1{i)-str(i)))))
else
perrl(i) = zer0
end if
continue
write (25,502) "Time step error3(%)’,
(perr1(i+5),i=1,istop)
write (25,509)
write (25,502) *Delta storage (kg)’,
(strl1(i+5)-strO@+5),i=1,istop)
write (25,502) 'Boundary flux (kg)’,
(cmfi(i+5),i=1,istop)
write (25,502) Surface flux (kg)’,
(csflux(i+5),i=1,istop)
write (25,502) *Sources (kg)’,
(csink(i+5),i=1,istop)
write (25,502) *Well sources (kg)’,
(cwsink(i+5),i=1,istop)
write (25,502) 'Reactions (kg)’,
(crsink(i+5),i=1,istop)
do 440 i = 6,istop+5
resid(i) = stel (i) - str0() -
cwsink() - crsink(i) - cmf(i)
write (25,502) 'Residual (kg)’
J(resid(i+5),i=1,istop)
do 445 i = 6,istop+5
if(strO(i).gt.zer0) then
perr2(i) = 1.0d2*dabs(resid(i))/str0(i)
else
perr2(i) = zerQ
end if
continue
write (25,502) 'Cumulative errl (%),
(perr2(i+5),i=1,istop)
do 446 | = 6,istop+5
term = dmax I{dabs(crsink(i))+dabs(cwsink(i))
+dabs(cmf(i)),dabs(str1 (1)-strO(i)))
if(term.ne.zerQ) then

perr2(i) = 1.0d2*dabs(resid(i))

+ Mterm
else
perr2(i) = zer0
end if
446 continue
write (25,502) 'Cumulative ers2 (%)’,
+ (perr2(i+5),i=1,istop)

do 447 i = 6,istop+5
if(crsink(i)+cwsink(i)+cmf(i).ne.zer0) then
perr2(i) = 1.0d2*(rone-(dabs(crsink(i)+cwsink(i)
+ “+emf(i))/{(dabs(str1(i)-str0(i)))))
else
perr2(i) = zerQ
end if
447 continue -
write (25,502) ’Cumulative err3 (%)’,
+ (perr2(i+5),i=1,istop)
end if
else

C— Write the time series style phase material balance.

C
if(tmass0.ne.zerQ) then
tperrl = dabs(tmass1 - tmass - tsink
+ - twsink - tflux)*1.0d2/tmass0
else .
tperrl = zerQ
end if
write(25,500) t(9)/3600.0d0/24.0d0,(str1(i),i=1,5)
+ Jitmass 1 tcflux,tesink, tewsink, tersink, tperrl
C
C— Wirite the time series style component material balance.
C
if(letrl(2)) then
do 455i=1,ipt(15)
455 write(28+i,500) t(9)/3600.040/24.0d0
+ ,(cmass1(ii*istop+),ii=0,4),str1(i+5),cmf(i+5)
+ ,csink(i+5),cwsink(i+5),crsink(i+5),csfluxi+5)
end if
end if
end if

do 450 i =1, ipt(65)

450 first(i) = zerQ
return

C

C— formats

500 format(ell.5,11e11.4)

501 format(/"** TIME STEP =,i6,5x,' SIMULATION TIME (s) =',e15.5/
+ "INITIAL REPORT",8x,'Gas’,8x,’ Aqueous’ 4x,"NAPL’,7x, Solid’
+ ,6x,’Biophase’,3x, Total’)

¢ 502 format(

¢ +’'al99e11.4)

502 format(
+'%,a,911.4)

503 format (
+7%,a10 [(kg) ’9ell4)

504 format ("Phase totals (kg); errors (%)’,/
+’ time (day) ’,Gas’,8x,’ Aqueous’ ,4x,’NAPL’,7x, Solid’,6x
+ ,’Biophase’,3x,' Total’,6x, Flux’,7x,’ Source’,5x,” Well’,7x,
+ 'Reaction’,3x,’Step err’)

505 format (al0,’totals (kg); errors (%)’,/
+’ time (day) ’,Gas’,8x,’ Aqueous’ 4x,"NAPL’,7x,’ Solid’,6x
+ ,'Biophase’,3x, Total’,6x,'Flux’,7x,’Source’,5x, Well’,7x,
+ "Reaction’,3x,”Surface’)

506 format(/’** TIME STEP =,i6,5x,’ SIMULATION TIME (s) =’,e15.5/
+ ’COMPONENT REPORT’ 6x,9a11)

507 format(/'** TIME STEP =’,i6,5x, SIMULATION TIME (s) =’,e15.5/
+ 'PHASE REPORT",10x,’ Gas’,8x,” Aqueous’ 4x,'NAPL’,7x,’Solid’
+ ,6x,’Biophase’,3x,’ Total’)

508 format(’Time step balance’)

509 format(’Cumulative balance’)

c
end

165

Subroutine - commnt.f

COMMNT.f - Subroutine which reads comment lines from *infrom’
and ignores lines starting with *#’ and prints to
*outto’ lines starting with "&’.

Argument list - infrom: integer; number of input device
ioutto: integer; number of output device

aonooononnnn

subroutine COMMNT (infrom,ioutto)
integer infrom,ioutto
character*80 echo

Include File - dimen.inc

DIMEN.inc - Declares array dimensions of common block variables.

oOoOnn

implicit real*8 (a-hk,0-x,2), logical (1), integer (i-j,m-n)
+ ,character*20 (y)

¢
¢ Define array dimensions:
nnmx = maximum number of nodes
nelmx = maximum number of elements
nmblk = maximum number of material property blocks
nxmax = maximum number of horizontal blocks in the generated grid
nzmax = maximum number of vertical blocks in the generated grid
nnstk = maximum number nodal variables in stacked storage
ncmpo = maximum number of organic components to be simulated
nempb = 1 if biodegradation is to be considered
nemp = maximum number of total components to be simulated

= 3(always) + ncmpb + ncmpo + 1(if nutrient is considered)
nemp2 = 2 x maximum number of total components to be simulated
nemp$ = 5 x maximum number of total components to be simulated
nsolve = maximum number of unknowns in the linear system

=nn2

fenl = number of nonzero entries in the coefficent matrix
iml = number of nonzero entries in the coefficent matrix
maxdima = maximum number of elements in matrix A in Ax=b
nmd = maximum number of dispersion coefficients
nmbc = maximum number of component boundary conditions

oGO0 OODOOGOOOOGONGAOGN

fnnstk = nomx-+nnmx/3,

parameter (nnmx = 2350, nelmx = 4500, nxmax = 100, nzmax = 100,
+ nmblk = 3, ncmpb =1, ncmpo = 2, ncmp = ncmpo+ncmpb+3,
+ neld = 3*nelmx,neld = 4*nelmx,
+ un2 = 2*nnmx, nn3 = 3*nnmx, nnd = 4*nnmx, nné = 6*nnmx,

Subroutine - disper.f

DISPER.f - Subroutine which computes the phase dependent
portion of the dispersion tensor and the tortuosity.

Arguments: iphase - integer scalar denoting the phase
gas phase: iphase=1
aqueous phase: iphase =2

Required Control Flags:

anoonNnnnnanan

1 read (infrom,50}) echo
if (echo(:1) .eq. '#') then
goto 1
else if(echo(:1) .eq. *&’) then
write(ioutto,501) echo(2:)
goto 1
endif
backspace infrom
501 format (a)
return
end

nnstk = nnmx*1.05,nns10 = 10*nnstk,
nnstk2 = 2*nnstk, nnstk3 = 3*nnstk,
nnstk4 = 4*nnstk, nnstk8 = 8*nnstk,
nemp2 = 2*ncmp,nemp5 = S*nemp, nbemp = nemp*nmblk,
nemppS = nemp+5, nesqd = nemp*acmp*nomx,
nzmax6 = 6*nzmax,nmd = 6*nelmx,nmbc = 2*ncmp*nnmx,
nmf = nnmx*(nemp+2*(ncmp- 1+ncmpo)),
nmfs = nnstk*(ncmp+2*(ncmp-1-+ncmpo)))
parameter (nsolve = nn2, icnl = 900000, irnl = 900000)
parameter (patm=101327.0d0,pi=3.14159265360d0,third=1.0d0/3.d0,
+ pthird=2.0d0*pi*third,tstd = 293.150d0
+ Jtabs = 273.150d0,zer0=0.0d0,rone=1.0d0)
C
C—R in (m"3 Pa) / (mole degree K)
parameter (r = 0.082060d0 * 101327.0d0 / 1000.0d0)
parameter (srwmin = 1.0d-16,sgtest = 0.050d0)
parameter (u=0.10d0, mtype=1)

R L

C
C— Parameter values to modify code
C
parameter (xmino=1.0d-3,xround=1.0d-16,smino=1.0d-16)

C— Include logical control variables
common /cbl/ 1ctrl(50),1prnt(0:30),1con(50),1plt(20)

: C— Include integer control variables

common /cbi/ ipt(0:90),icp(0:50)

C— Include real*8 scalars
common /cbs/ t(50),b,xkex,xden,xbom,xbok,wvis,kd,xinit,xbmin
+ ,xbmax,qwell rwell,zwell,trefqg,wtdpth,caplen

C Ictrl(18) - logical variable denoting type of g calculation
C Ictrl(18) = .true. - nodel FEM g

C Ictri(18) = .false. - element average q
C
C

subroutine DISPER(iphase)
include *dimen.inc’
C
C— Declare and define common block variables.
o)
common /cb1/ matel(nelmx),nodel(nel3),nodept(nnmx),nelpt(nel3),

166

+ matpt(nn6)
common /ch2¢/ q(nel4)
common /cb3/ sat(nnstk3)
common /cb6b/ por(nelmx),srw(nnstk)
common /cb70/ d(nmd),tort(nelmx),bdist(nmblk),bdisl(nmblk)
ipt2s = (iphase-1)*ipt(2)
iptl =ipt(1)
ipt0 = ipt(0)
C
C— Compute the tortuosity after Millington and Quirk (1961).
C— Averaged saturations are used since the dispersion tensor is an
C— element wise constant.
C
do 100 i= L,ipt(0)
iel3 =i*3
iell =iel3-2
iel2 = jel3-1
il = nodel(iell)
ils = nodept(il)+nelpt(iell)
ilps=ils+ipt2s
i2 = nodel(iel2)
i2s = nodept(i2)+nelpt(iel2)
i2ps =i2s + ipt2s
i3 = nodel(el3)
i3s = nodept(i3)+nelpt(iel3)
i3ps =i3s +ipt2s
satavg = third * (sat(il ps)+sat(i2ps)+sat(i3ps))
poravg = por(i)

C— -Millington and Quirk (1959).
tort(i) = ((poravg*satavg)**(third * 10.0d0)) / poravg**2
~— Millington and Quirk (1961) for variably saturated media.
tort(i) = ((poravg*satavg)**(third * 7.0d0)) / poravg**2
C— Calculate averaged q.

C
if (letrl(18)) then

Subroutine - error.f

ERRMESSAGE.f - Finds and prints error and warning messages
from the error file.
Warning if itype = 1; fatal error if itype = 0

aaanOon

subroutine ErrMessage (MessNum,itype,ierr)
implicit real*8 (a-hk,0-z), logical (1), integer (i-j,m-n)
character line*80
c
c—Find the specified error or warning in the error file.
rewind (14)
1 read (14,800) line
800 format (a)
If (line(:1) .eq. *#’) then
GoTo 1
Else
backspace 14
read (14,*) number,nlines
Endif

Subroutine - flow.f

iptq = (iphase-1)*ipt1*2
gx = dabs(third * (q(iptq+1)+q(iptq+i2)+q(iptq+i3)))
qz = dabs(third * (q(iptq+ipt1+i1)+q(iptq+ipt]1+i2)
+ +q(iptq+ipt1-+i3)))

else
iptq = i+(iphase-1)*ipt(67)
gx = dabs(qiptq))
qz = dabs(q(iptq+ipt0))

end if

qxz = dsqri(qx**2 + qz**2)

C— Convert q to velocity.

if(satavg.ge.sgtest) then
vxz = qxz/(poravg*satavg)
else
vxz = zerQ
end if
id = (iphase-1)*ipt(68)

C— Calculate dispersion.
C
if(dabs(qxz).gt.1.0d-15) then
idp3xi = id+3%i
imat = matel(i)
d(idp3xi-2) = bdist(imat)*vxz
+ + bdisl(imat)*(qx*qx)/(qxz*poravg*satavg)
d(idp3xi-1) = bdisl(imaty*dabs(qx*qz)/(qxz*poravg*satavg)
d(idp3xi) = bdist(imat)*vxz
+ + bdisl(imat)*(qz*qz)/(qxz*poravg*satavg)
else
idp3xi = id+3*j
d(idp3xi-2) = zex0
d(idp3xi-1) = zer0
d(idp3xi) = zer0
end if
100 continue
return
end

c— Print the error or warning to the screen and the error file if
c¢— opened.
X (number .eq. MessNum) then
write (err,*)
If (itype .eq. 1) then
write (ierr,*) **¥¥%* WARNING *3#sk*?
Else if (itype .eq. 0) then
write (ferr,*) **#¥** FATAL ERROR ##¥k
EndIf
Doi = 1,nlines
read (14,800) line
write (ierr,*) line(2:80)
EndDo
Else
GoTo 1
EndIf
c
c— If a fatal error then teminate execution.
If (itype .eq. 0) stop
return
end

167

FLOW.f - Subroutine which solves the phase balance equations.
Solution of the mobile aqueous and gaseous phases is
done simultaneously.

Required Control Flags:

1(13) - conyergence criterion for pressures
ipt(27) - integer variable indicating type of domain
ipt{27) =0 - xz domain
ipt(27) = 1 - rz domain
ipt(31) - maxjmum phase balance iterations, also used as the
criterion for decreasing dt in phase balance
ipt(34) - maximum number of iteriations in phase balance for
increasing dt
1ctrl{(7) - logical variable controlling type of FEM
solution for flow
letrl{7)= .true. - use mass lumping
letrl(7) = .false. - ful] FEM solution
letrl(12) - logical variable depoting presence of a well
letri{12) = .rue. - well present
letri{12) = .false. - well not present
letri(}3) - logical varinble denoting compositional dependence
of the gas phase viscosity)
letel(13) = .true. - gas phase viscosity is
dependent on composition
Tetrl(13) = .false. - gas phase viscosity is not
dependent on composition
letrl(14) - logical variable controlling coupling of fiow and
sransport solutions
lctrl(14) = true. - exchange couples flow and
transport solutions
Ietrl(14) = .false. - flow and transport
solutions not coupled

Control Flags computed internally in routine:

ipt(36) - flag specifying time step modification

0NN CNANNaNNNNNNNONKaOOOONONANANNNNONONON

subroutine FLOW (its,it)

include "dimen.ine’

common /cb1/ matel(nelmx),nodel(nel3),nodept(nnmx),nelpt(nel3),
+ matpt(nn6)

common /cblc/ xnode(nnmx),znode(nnmx),rbar(nelmx),area(nelmx)
common /cbld/ gama(nel3),beta(nel3)

common /cb2/ p(nn3)

common /cb2b/ pt(nn3)

commeon /cb3/ sat(nnstk3)

common /et satk(nnstk2),cc(anstk)

common AcbSa/ bphi(nmblk),bpermh(nmblk),bpermv(nmblk)
common /cb6! pmob(nnstkd)

common /cb6b! por(nelmx),srw(nnstk)

comman /cbbef temp(nnmx)

common /cb6d/ diemp(nzmax6),idepth(nnmx)

common /cb7/ cvvis(nemp),gamma(nesqd)

common /cb8/ vis(nnmx),pmw(nn3)

common /cb9/ xmf(nmf)

commeon /cb10/ den(nn6)

common fcb10b/ dden(nn6),pmwt(nn3),dent(nné)
common /cb11/ pex(nns10),rxnp(nn2)

commion /cb30/ ibe(nnmx)

common fcb31/ source(nn2)

common /cb40/ alicnl),rhs(nsolve),w(icnl)

common fcbd1/ imm(icnl),icn(icnl),iw(icnl,8),ikeep(icnl,5)
common /cb41b/ nbw(0:2),ia

common /cb42/ amb(icnl).fmb(nsolve)

C
C— Local arays.
dimension acl{36),bel(36),fel(6).nd(3),dn(3),c(11)
data isparge /0/

[
¢— Initialize current iterations saturations.
Doi=1,2%ipt(2)
satk(i) = sat(i)
EndDo

(73

c— Update gas phase viscosity.
If (Ictri(13)) then ! compute a mixture viscosity
Do node = 1,ipt(1) ‘
yis(node) = zer0
Do i = 1,ipt(3)
it = icp(i)
if(lctri(10)) then
cvvist = cyyis(ii)
else
cyvist = cvvis(ii)
+ + dtem;) (ipt(88)+(ii- l)*ipt_(S9)+idepth(node))
end if
i3 =(-1) *ipt(3) + (nQde-l)*ipt(S)*ipt(3)
sum = 0.0d0
Do j = Lipt(3)
Jj=iep()
sum = sum + xmf((jj-1)*ipt(1)+node) * gamma(i3+j)
EndDo
vis(node) = vis(node) + xmf((ii-1)*ipt(1)+node) *
+ cyvist / sum '
EndDo
vis(nade) = 1.0d0 / vis(node)
EndDo
EndIf
c
c— Loop over maximum number of iterations.
do 100 it = 1,ipt(31)

c
¢— Update chord slope approx for capacity coeffs and phase mobilities.
call mobil (it)
c
c¢— Update flaw distribution in the well bore.
if (letrl(12)) then
iptbe = ipt(18)+ipt(19)+ipt(20)+ipt(21)+ipt(22)+ipt(23)
sum = 0.0d0

do 601 = 1,ipt(24)-1
jel = ibc(iptbe+ipt(24)H) ! well screen element number
ndl = ibeiptbe+i) ! top node number in element
nd2 = ibe(iptbe+i+1) ! bottom node number in element
zel = (znode(nd2)-znode(nd1)) ! element vertical height
i3 = 3*(jel-1)
Do j=1,3 ! determine stacked nodel position

if (nd1 .eq. nodel(i3+j))

+ ndstkl = nodept(nd1) + nelpt(i3+j)
if (nd2 .eq. nodel(i3+§))
+ ndstk2 = nodept(nd2) -+ nelpt(i3-+j)
EndDo

sum = sum + zel * (pmob(ndstk1) + pmob(ndstk2))
if (qwell .It. 0.0d0) sum = sum + zel * (
+ pmob(2*ipt(2)+ndstkl) + pmob(2*ipt(2)+ndstk2)}
60 continye
if (ipt(27) .eq. 1) sum = sum * 2.0d0 * pi * rwell
if (sum .eq. 0.0d0) then

isparge = 1
else

sum = 1.0d0 / sum
endif

c
c— Allocate specific discharge along well screen.
ipt2 = ipt(22) + ipt(23)
nsrcwell = ipt(24)
if (qwell .1t. 0.0d0) nsrewell = nsrewell + ipt(24)
do 62 i = 1,nsrewell | zero specific discharges at well bore
source(ipt2+i) = 0.0d0
if (qwell .1t. 0.0d0) source(ipt2+ipt(24)+i) = 0.0d0
62 continue
do 63i= 1,ipt(24)-1 ! allocate specific discharge
jel = ibe(iptbe+ipt(24)+i) ! well screen element number
ndl = ibe(iptbc+i) ! top node number in element
nd2 = ibe(iptbe+i+1) ! bottom node number in efement
zel = znode(nd2) - znode(nd1)
if (ipt(27) .eq. 1) zel =zel * 2.0d0 * pi * rwell
i3 = 3*(jel-1)
do 64 j=1,3 ! determine stacked nodel position
if (nd1 .eq. nodel(i3-+j))

+ ndstkl = nodept(ndl) + nelpt(i3+j)
64 if (nd2 .eq. nodel(i3+j))
+ ndstk2 = nodept(nd2) + nelpt(i3+j)

168

if (isparge .eq. 0) then
source(ipt2-+i) = source(ipt2-+i) + zel * pmob(ndstk1) *

+ qwell * sum ! gas discharge at top node
source(ipt2+i+1) = source(ipt2+i+1) + zel *
+ pmob(ndstk2) * qwell * sum ! lower node gas discharge

else if (isparge .eq. 1) then
source(ipt2+i) = source(ipt2+i) +

+ zel*qwell/zwell/2.0d0
source(ipt2+i+1) = source(ipt2+i+1) +
+ zel*qwell/zwell/2.0d0
endif

if (qwell .It. 0.0d0) then
source(ipt2+ipt(24)+i) = source(ipt2+ipt(24)+) +

+ zel * pmob(2*ipt(2)+ndstk1) * qwell * sum
source(ipt2+ipt(24)3+i+1) = source(ipt2+ipt(24)+i+1) +
+ zel * pmob(2*ipt(2)+ndstk2) * qwell * sum
endif
63 continue
end if

[
c— Zero the local ’a’ and ’rhs’ vectors.
Do i = 1,2*ipt(1)*nbw(2)
a(i) = zerQ
EndDo
Doi=1,2*ipt(1)
rhs(i) = zer0
EndDo
c
c— Loop over the number of elements.
do 101 jel = 1,ipt(0)
i3 = (jel-1)*3
mblk = matel(jel)
ndl = nodel(i3+1) ! element node numbers
nd2 = nodel(i3+2)
nd3 = nodel(i3+3)
nd(1) = nodel(i3+1) ! element node numbers
nd(2) = nodel(i3+2)
nd(3) = nodel(i3+3)
ndstk] = nodept(nd1) + nelpt(i3+1) ! node position in stack
ndstk?2 = nodept(nd?2) + nelpt(i3+2)
ndstk3 = nodept(nd3) + nelpt(i3+3)
¢(9) = rbar(jel) / (12.0d0 * area(jel)) ! element constants
¢(10) = rbar(jel) * area(jel) * por(jel) / (t(8) * 12.040)
c(11) = rbar(jel) / 24.0d0

c
c— Compute the element mass matrix; either lumped or consistent.
if (lctrl(7)) then
Doi=1,36
ael(i) = zer0
EndDo

c(1) =-4.d0 * ¢(10) * cc(ndstkl)

c(3) =4.d0 * c(10) * sat(ndstkl)

ael() = c(1)

ael(4) =-c(1)

ael(7) =-c(1)

ael(10) = ¢(3) * (1.0d0 / (r*temp(nd1)*den(nd1))) + c(1)

c(1) = -4.d0 * ¢(10) * cc(ndstk2)

(3) = 4.d0 * c(10) * sat(ndstk2)

ael(14) =c(1)

ael(17) = -¢(1)

ael(20) = -c(1)

ael(23) = ¢(3) * (1.0d0 / (r*temp(nd2)*den(nd2))) + c(1)

c(1) =-4.d0 * c(10) * cc(ndstk3)

¢(3) = 4.d0 * c(10) * sat(ndstk3)

ael(27) =c(1)

ael(30) = -c(1)

ael(33) = -c(1)

ael(36) = c¢(3) * (1.0d0 / (r*temp(nd3)*den(nd3))) + c(1)
else

c(1) = -c(10) * ce(ndstkl)

e(3) = ¢(10) * sat(ndstkl)

ael(1) =2.0d0 * c(1)

ael(2) =c(1)

ael(3)=c(l)

ael(4) =-2.0d0 * (1)

ael(5) =-c(1)

ael(6) = -c(1)

ael(7) =-2.0d0 * ¢(1)

ael(8) =-c(1)
ael(9) = -c(1)
ael(11) = ¢(3) * (1.0d0 / (r*temp(nd1)*den(nd1))) + c(1)
ael(12) = ael(11)
ael(10) = 2.0d0 * ael(11)
¢(1) = -c(10) * cc(ndstk2)
¢(3) = c(10) * sat(ndstk2)
ael(13) =c(1)
ael(14) = 2.0d0 * ¢(1)
ael(15) =c(1)
ael(16) = -c(1)
ael(17) = -2.0d0 * e(1)
ael(18) = -c(1)
ael(19) = -c(1)
2el(20) = -2.0d0 * c(1)
ael(21) =-c(l)
2el(22) = ¢(3) * (1.0d0 / (r*temp(nd2)*den(nd2))) + c(1)
ael(23) =2.0d0 * ael(22)
ael(24) = ael(22)
c(1) =-c(10) * cc(ndstk3)
¢(3) = ¢(10) * sat(ndstk3)
ael(25) =c(1)
ael(26) =c(1)
ael(27) = 2.d0 * (1)
ael(28) = -c(1)
ael(29) =-c(1)
2el(30) =-2.d0 * c(1)
ael(31) =-c(1)
ael(32) = -c(1)
ael(33) =-2.d0 * c(1)
ael(34) = ¢(3) * (1.d0/ (r*temp(nd3)*den(nd3))) + c(1)
ael(35) = ael(34)
ael(36) = 2.d0 * ael(34)
endif
c
c— Compute the element stiffness matrix for the aqueous equation.
’ imbx1 = 2%ipt(2)+ndstk1
imbx2 = 2*ipt(2)+ndstk2
imbx3 = 2*ipt(2)+ndstk3
imbz1 = 3*ipt(2)+ndstk1
imbz2 = 3*ipt(2)+ndstk2
imbz3 = 3*ipt(2)+ndstk3)
¢(3) = pmob(imbz!) + pmob(imbz2) + pmob(imbz3)
c(4) = bpermh(mblk) * ¢(3) ! c(4)=sum of x mobilities
dn(1) = den(4*ipt(1)+nd1)
dn(2) = den(4*ipt(1)+nd2)
dn(3) = den(4*ipt(1)+nd3)
¢(5) = pmob(imbz1)/dn(1) + pmob(imbz2)/dn(2) +
+ pmob(imbz3)/dn(3)
¢(6) = bpermh(mblk) * ¢(5) ! c(6)=x mobil/density
c(7) = beta(i3+1)*dn(1) + beta(i3+2)*dn(2) +

+ beta(i3+3)*dn(3) ! c(7)=sum of density * beta
¢(8) = gama(i3+1)*dn(1) + gama(i3+2)*dn(2) +

+ gama(i3+3)*dn(3) ! ¢(8)=sum of density * gamma
c(1) =c(9) * (c(@)*beta(i3+1) - 0.250d0 *

+ (c(6)+pmob(imbx1)/dn(1)) * ¢(7))
c(2) = c(9) * (c(3y*gama(i3+1) - 0.250d0 *

+ (c(5)+pmob(imbz1)/dn(1)) * c(8))

bel(1) =betali3+1)*c(1) + gama(i3+1)*c(2)
bel(13) = beta(i3+2)*c(1) + gama(i3+2)*c(2)
bel(25) = beta(i3+3)*c(1) + gama(i3+3)*c(2)
c(1) =¢(9) * (c(4)*beta(i3+2) - 0.250d0 *

+ (c(6)+pmob(imbx2)/dn(2)) * ¢(7))
c(2) = c(9) * (c(3)*gama(i3+2) - 0.250d0 *
+ (c(5)y+pmob(imbz2)/dn(2)) * c(8))

bel(2) = beta(i3+1)*c(1) + gama(i3+1)*c(2)
bel(14) = beta@i3+2)*c(1) + gama(i3+2)*c(2)
bel(26) = beta(i3+3)*c(1) + gama(i3+3)*c(2)
c(1) = c(9) * (c(4)*beta(i3+3) - 0.250d0 *

+ * (c(6)+pmob(imbx3)/dn(3)) * c(7))
c(2) = c(9) * (c(3)*gama(i3+3) - 0.25040 *
+ (c(SHpmob(imbz3)/dn(3)) * c(8))

bel(3) =beta(i3-+1)*c(1) + gama(i3+1)*c(2)
bel(15) = beta(i3+2)*c(1) + gama(i3+2)*c(2)
bel(27) = beta(i3+3)*c(1) + gama(i3+3)*c(2)
c .
c— Compute the element rhs vector for the aqueous equation.
¢(2) = 4.d0 * (dn(1)*pmob(imbz1) + dn(2)*pmob(imbz2) +

169

4

dn(3)y*pmob(imbz3)) thaz
(1) = bpermh(mblk) * ¢(2) thax
fel(1) = (1(21) * (etal3+1)*c(1) -
(c(4)+pmob(imbx1))*e(7)) +
1(22) * (gama(i3+1)*c(2) -
(c(3)+pmob(imbz1))*e(8))) * c(11)
fel(2) = (1(21) * (beta(i3+2)*c(1) -
(c(4)+pmob(imbx2))*c(7)) +
1(22) * (gama(i3+2)*c(2) -
(o(3)+pmob(imbz2))*c(8))) * c(11)
fel(3) = (1(21) * (bera(i3+3)*c(1) -
(c(4)+pmob(imbx3))*c(7)) +
1(22) * (gama(i3+3)*c(2) -
(c(3y+pmob(imbz3))*c(8))) * c(11)

A EF

+ o+

[
¢ Include mass exchange terms for aqueous phase equation.
If (lewl(14)) then
ip12x6 = ipt(53)
iex1 = ipt2x6+ndstkl
jex2 = ipt2x6+ndstk2
iex3 = ipt2k6+ndstk3
o(1) = pex(iex1)/dn(l) + pex(iex2)/dn(2) +
+ pex(iex3)/dn(3)
2) =¢(10) * 1(8)
fel(1) =fel(1) + c(2) * (c(1) + pex(iex1)/dn(1))
fel(2) = fel(2) + c(2) * (c(1) + pex(iex2)/dn(2))
fel(3) = fel(3) + o(2) * (c(1) + pex(iex3)/dn(3))
EndIf
c

c—~ Include compositional effects on density in the aqueous RHS matrix.

If (lctri(22)) then
ipal = ipt(1)}+ndl
ipa2 =ipt(1)+nd2
ipa3 = ipt{1)}+nd3
isal = ipt(2)+ndstkl
isa2 = ipt(2)+ndstk2
isa3 = ipt(2)+ndstk3
cf1) = sat(isal)*dden(ipal)/dn(1) +
+ sat(isa2)*dden(ipa2)/dn(2) +
+ sat(isa3)*dden(ipa3)/dn(3)
e(2) = c(10) * 1(8)
fel{1) = fel(1) - o(2)*(c(1 }+sat(isal)*ddenipal)/dn(1))
fel(2) = fel(2) - c(2)*(c(1 ysat(isa2)*dden(ipa2)/dn(2))
fel(3) = fel(3) - o(2)*(c(1)+sat(isa3)*dden(ipa3)/dn(3))
Endif
c
¢— Compute the element stiffness matrix for the gas equation.
imbx1 = ndstkl
imbx2 = ndstk2
imbx3 = ndstk3
imbz1 = ipt(2)+ndstkl
imbz2 = ipt(2)+ndstk2
imbz3 = ipt(2)+ndstk3
o(3) = pmob(imbz!1) + pmob(imbz2) + pmob(imbz3)
c{4) = bpermh({mblk) * ¢(3) ! c(4)=sum of x mobilities
dn(1) = den(3*ipt(1 }+nd1)
dn(2) = den(3*ipt(1)+nd2)
dn(3) = den(3*ipt(1)+nd3)
¢(5) = pmob(imbz1)/dn(1) + pmob(imbz2)/dn(2) +
+ pmob{imbz3)/dn(3) ! c(5)=sum of z mobil/density
©(6) = bpermh(mblk) * ¢(5) ! ¢(6)=x mobil/density
of7) = beta(i3+1)*dn(1) + beta(i3+2)*dn(2) +
+ beta(i3+3)*dn(3) 1 ¢(7)=sum of density * beta
¢(8) = gama(i3+1)*dn(1) + gama(i3+2)*dn(2) +

+ gama(i3+3y*dn(3) 1 ¢(8)=sum of density * gamma

(1) = c(9) * (c(4)*beta(i3+1) - 0.250d0 *

+ (c(6)y+pmob(imbx1)/dn(1)) * c(7))
(2} = ¢(9) * (c(3)*gama(i3+1) - 0.250d0 *

+ (c(5)y+pmob(imbz1)/dn(1)) * c(8))
bel(10) = beta(i3+1)*c(1) + gama(i3+1)*c(2)
bel{22) = beta(i3+2)*c(1) + gama(i3+2)*c(2)
bel(34) = beta(i3+3)*c(1) + gama(i3+3)*c(2)
(1) = c(9) * (c(4)*beta(i3+2) - 0.250d0 *

+ (c(6)+pmob(imbx2)/dn(2)) * c(7))
©(2) = ¢(9) * (c(3)*gama(i3+2) - 0.250d0 *
+ (c(5)+pmob(imbz2)/dn(2)) * c(8))

bel(11) = beta(i3-+1)*c(1) + gama(i3+1)*c(2)
bel{23) = beta(i3+2)*c(1) + gama(i3+2)*c(2)

bel(35) = beta(i3+3)*c(1) + gama(i3+3)*c(2)
(1) = c(9) * ((4y*beta(i3+3) - 0.250d0 *

+ (c(6)+pmob(imbx3)/dn(3)) * c(7))
(2) = ¢(9) * (c(3)*gama(i3+3) --0.250d0 *
+ (c(5y+pmob(imbz3)/dn(3)) * ¢(8))

bel(12) = beta(i3%1)*c(1) + gama(i3+1)*c(2)

bel(24) = beta(i3+2)*c(1) + gama(i3+2)*c(2)

bel(36) = beta(i3+3)*c(1) + gama(i3+3)*c(2)
c

| c— Compiite the element ths vector for the gas equation.

€(2) =4.d0 * (dn(1)*pmob(imbz1) + dn(2)*pmob(imbz2) +
dn(3y*pmob(imbz3)) Thgz
¢(1) = bpermh(mblk) * ¢(2) I'hgx
fel(4) = (t(21) * (beta(i3+1)*c(1) -
(c(4)+pmob(imbx1)y*c(7)) +
t(22) * (gama(i3+1)*c(2) -
(c(3)+pmob(imbz1))*c(8))) * c(11)
fel(5) = (1(21) * (beta@i3+2)*c(1) -
(c(4)+pmob(imbx2))*c(7)) +
1(22) * (gama(i3+2)*c(2) -
(c(3)+pmob(imbz2))*c(8))) * c(11)
Tel(6) = (t(21) * (beta(i3+3)*c(1) -
{(c(@)+pmob(imbx3))*c(7)) +
£(22) * (gama(i3+3)*c(2) -
(c(3)+pmob(imbz3))*c(8))) * c(11)

A+ o+ +

R

c
c— Include mass exchange terms for gas phase equation.
If (Ictrl(14)) then
iex1 = 5*ipt(2)+ndstkl
iex2 = 5*ipt(2)+ndstk2
iex3 = 5*ipt(2)+ndstk3
c(1) = pex(iex1)/dn(1) +pex(iex2)/dn(2) -+
+ pex(iex3)/dn(3)
c(2) =c(10) * ¢(8)
fel(4) = fel(4) + c(2) * (c(1) + pex(iex1)/dn(1))
fel(5) = fel(5) + ¢(2) * (c(1) + pex(iex2)/dn(2))
fel(6) = fel(6) + c(2) * (c(1) + pex(iex3)/dn(3))
EndIf
c .
o— Include compositional effects on density in the gas RHS matrix.
If (Ietrl(22)) then
isgl = ndstkl
isg2 = ndstk2
isg3 = ndstk3
c(1) = sat(isg1)*p(nd1y*dden(nd1)/(dn(1)*r*temp(nd1)) +
+ sat(isg2)*p(nd2)*dden(nd2)/(dn(2y*r*temp(nd2)) +
+ sat(isg3)*p(nd3)*dden(nd3)/(dn(3)*r*temp(nd3))
o(2) = c(10) * 1(8)
fel(4) = fel(4) - c(2)*(c(1)+

+ sat(isg1)*p(nd1)*dden(nd1)/(dn(1)*r*temp(nd1)))
fel(5) =fel(5) - c(2)*(c(1)+
+ sat(isg2)y*p(nd2)*dden(nd2)/(dn(2)*r*temp(nd2)))
fel(6) = fel(6) - c(2)*(c(1)+
+ sat(isg3)*p(nd3)*dden(nd3)/(dn(3)*r*temp(nd3)))
EndIf

c

| c— Assemble local matrices in the global matrix for picard iteration.

c— The global *a’ matrix is in banded storage form by rows.
irowl =0
do20ik=1,2
do20i=1,3
irowl = irowl + 1
irowg = (nd(i)-1)*2 + ik
sum = 0.0d0
do21j=13
jeol = irowl + (-1)*12
sum = sum + bel(jcol) * pt(ipt(1)+nd()) +
+ bel(jcol+6) * pt(nd(j))
do 21 ikk=1,2
jeol = (nd(j)-1)*2 + ikk
node = irowl + ((j-1)*2+ikk-1)*6
nx = (irowg-1)*nbw(2) + jcol - irowg + nbw(l) +1
21 a(nx) = a(nx) + ael(node) + t(10)*bel(node)
20 rhs(irowg) = rhs(irowg) + fel(irowl) - sum
101 continue
c
c— Adjust rhs vector for nodes with constant volumetric flux.
ji = ipt(18)+ipt(19)+ipt(20)+ipt(21)

170

ii = jj+ipt(22)
If (ipt(23) .gt. 0) then ! nodes with constant aqueous flux
Do i =1,ipt(23)
irowg = 2*(ibc(ii+i)-1) + 1
rhs(irowg) = rhs(irowg) -+ source(ipt(22)+i)
EndDo
EndIf
If (ipt(22) .gt. 0) then
Do i = 1,ipt(22) 1 nodes with constant gas flux
irowg = 2*ibe(jj+i)
rhs(irowg) = ths(irowg) + source(i) * patm *
+ temp(ibe(jj-+i)) / ((patm + plibc(j+i))) * tstd)
EndDo
EndIf
c
c— Adjust rhs vector for flow at nodes along the well screen.
If (Ictrl(12)) then
iptbe = ipt(18)+ipt(19)+ipt(20)+ipt(21)+ipt(22)+ipt(23)
ii = ipt(22)+ipt(23)
ji =ii+ipt(24)
Doi = L,ipt(24)
irowg = 2*(ibc(iptbe+i)-1) + 1
if (qwell.1t.0.0d0) rhs(irowg) = rhs(irowg)+source(jj+i)
irowg = irowg + 1
rhs(irowg) = rhs(irowg) + source(ii-+i) * patm *
+ temp(ibc(iptbe+i)) / ((patm+
+ plibe(iptbe+i))) * tstd)
EndDo
EndIf
c
c— Save matrices for mass balance computation,
If (Iprnt(6).or.letrl(2)) then
Do i = 1,2*ipt(1)*nbw(2)
amb(i) = a(i)
EndDo
Do i = 1,2*ipt(1)
fmb(i) = rhs(i)
Enddo
EndIf
c
c— Adjust rows of global matrix for constant pressure conditions
If (ipt(18).gt.0) then ! Constant gas pressure nodes
Doi = 1,ipt(18)
ii = (2*ibc(i)-1)*nbw(2)
Do j = ii+1,ii+nbw(2)
a(j) =zer0
EndDo
a(ii+nbw(1)+1) = 1.0d0
rhs(2*ibe(i)) = zer0
EndDo -
Endif ‘
If (ipt(19).gt.0) then ! Constant aqueous pressure nodes
Doi = Lipt(19)
if = 2*(ibc(ipt(18)+)-1)*nbw(2)
Do j =ij+1,ii4+nbw(2)
a(j) = zer0
EndDo
a(ii+nbw(1)+1) =1.0d0 -
rhs(2*ibe(ipt(18)+i)-1) = zer0
EndDo
EndIf .
c
c— Collapse banded storage of linear system into sparse matrix form
c— used by Harwell. At the same time scale array by dividing rows
c— through by value on the main diagonal.
ia=0
nx=0
do 29 irow = 1,2*ipt(1)
aii = 1.0d0 / a@irow*nbw(2)-nbw(1))
rhs(irow) = rhs(irow) * aii
do 30j = 1,nbw(2)
nx=nx+1
if (a(nx) .ne. 0.0d0) then
iasia+1
a(ia) = a(nx) * aii
irn(ia) = irow
icn(ia) = nx - (frow-1)*nbw(2) + irow - nbw(1) - 1
endif

30 continue
29 continue
[

c¢— Solve linear system using Harwell.
call ma28ad (2*ipt(1),ia,a,icnl,imn,irnl,icn,u,
+ ikeep,iw,w,iflag)
if (iflag .It. 0)
+ write (ipt(28),*) *flow iflag return from harwell is *,iflag
call ma28cd (2*ipt(1),a,icnl,icn,ikeep,rths,w,mtype)
c
c— Transfer solutions to the pressure vectors. Calculate the capillary
c— pressure and the maximum relative differences.
pa = zer0
dpa = zerQ
pg =zer0
dpg = zer0
Doi=1,ipt(1) .
pkp1 = pt(ipt(1)+i) + rhs(2*i-1)
pa = dmax1 (pa, abs(pkp1))
dpa = dmax1 (dpa, abs(pkpl-p(ipt(1)+i)))
p(pt(1)+i) = pkpl
pkpl = pt(i) + ths(2*i) ! gas P at k+1 iteration
pg = dmax1 (pg, abs(pkp1))
dpg = dmax1 (dpg, abs(pkp1-p(i)))

p(i) = pkpl
p(2*ipt(1)+i) = p() - plipt(1)+)
EndDo
c
c— Update saturation and save previous iterate values.
call SATW
Do i =1,2%ipt(2)
satk(i) = sat(i)’
EndDo
c
c— Update gas phase mass and molar density as a function of pressure.
n3 =ipt(41)
Doi=1ipt(1) .
den(i) = (patm+p()) / (r*temp(i))
den(n3+i) = pmw(i) * den(i)
EndDo
c
c— Check convergence.
if (dpa/pa .le. t(13) .and. dpg/pg .le. {(13)) then
if (ipt(28).gt.0) write (ipt(28),200)
+ its,it,letrl(14),6(9),6(9)/86400.40,t(8)
If (it .le. ipt(34)) then ! update time step adj. flag
ipt(36) =1
. Else '
ipt(36) =0 -
EndIf
c

c— Compute fluxes for mass balance
if (Iprnt(6).or.Ictrl(2)) then
do 800 irow = 2,ipt(40),2
if (irow .le. nbw(1)) then
jstet = nbw(1) + 2 - irow
jend = nbw(2)
else if (irow .ge. ipt(40)-nbw(1)) then
jstrt=1 .
Jjend = nbw(2) - nbw(1) + 2*ipt(1) - irow
else
jstet=1
jend = nbw(2)
endif
sum = 0.d0
do 805 j = jstrt,jend
805 sum = sum + amb(nbw{(2)*(irow-1)+j)
+ * ths(irow-nbw(1)-1-+)
800 fmb(irow) = (sum-fmb(irow))
do 820 irow = 1,ipt(40)-1,2
if (irow .le. nbw(1)) then
jstrt =nbw(1) + 2 - irow
jend = nbw(2)
else if (irow .ge. ipt(40)-nbw(1)) then
jstrt=1
jend = nbw(2) - nbw(1) + ipt(40) - irow
else
jstrt=1

171

jend = nbw(2) ipt(36) =-1
endif If (ipt(28).gt.0) then
sum = 0.d0 write(ipt(28),*)’>>> Time step reduction in flow it>=",ipt(31)
do 825 j =jstrtjend write (ipt(28),500) its,t(9),t(8),it
825 sum = sum -+ amb(nbw(2)*(irow-1)+j) EndIf
+ * chs(irow-nbw(1)-1+j) c
820 frab{irow) = (sum - fmb(irow)) ¢— Formats.
eadif 200 format ("Flow sol converged at step =’,i6,
return + ' jterations =',i3,’ letrl(14) =*,13/
endif + ' Time (5,d) = ',2e12.4,
< + ' time step (s) = ',e10.4)
¢ Convergence not achieved. Iterate unless ipt(31) has been reached. 500 format (‘flow sol: t step=",id,’ time=",e10.4,” dt=",10.4,
100 continue + its =',i4)
¢ return
¢—- Max iterations exceeded; increment flag for time step reduction. end
it=itl

Subroutine - grid.f

[radpl =rad * rmult
C delx() = radpl - rad
C GRID.U - Subroutine which generates a union jack based rad = radpl
[subdivision of a rectangular grid. EndDo
[od On input this subroutine reads the number of rectangular else
C spaces in the x-direction (nx) and the z-direction (nz). backspace 11
[of The spacing can be uniform or nonuniform in each read (11,*) (delx(i),i=1,nx) ! nonuniform x spacing
C direction, endif
C Input logica! variables (Ix) and (Iz), if true, endif
C indicate if the spacing is uniform in the x and z Doi=1,nx
(o4 directions respectively. If (delx(i) .le. 0.0d0) Call ErrMessage (17,0,ipt(29))
[o4 If Ix or 1z are true, then a corresponding uniform EndDo
C spacing is input (udelx or udelz). c
[od If Ix or 1z are false, then nx anf nz values of the c— read vertical spacing
[of spacing is input. call commnt(11,21)
(o4 On output, Grid.f gives the number of nodes itp(1), the read (11,%) Idel,zzero ! is vertical spacing uniform
[of number of elements ipt(0), the nodel coordinates xnode if (idel) then
C and znode, and the element incidence list nodel. read (11,%) delz(1) ! uniform spacing in z-direction
(o] do1lj=2nz
C: 11 delz(j) = delz(1)
subroutine gridu else
include *dimen.ing’ read (11,*) (delz(j),j=1,nz) ! nonuniform z spacing
common /cbi/ matel(nelmx),nodel(nel3),nodept(nnmx),nelpt(nel3), endif
+ matpt(nnb) Doj=1,nz
common /cb1c/ xnode(nnmx),znode(nnmx),tbar(nelmx),area(nelmx) If (delz(j) .le. 0.0d0) Call ErrMessage (18,0,ipt(29))
common /eb95/ nbdL{nzmax),nbdR(nzmax),nbd T(nxmax),nbdB(nxmax), EndDo
+ nphor,nnver c
o c— Calculate the number of elements and nodes.
C— Dimension local arrays. ipt(0) =4 *nx *nz ! number of elements
[of ipt(1) = 2*nx*nz+ nx +nz+1 ! number of nodes
dimension delx(nxmax),delz{nzmax),imblk(nzmax) if (ipt(0) .gt. nelmx) Call ErrtMessage (19,0,ipt(29))
[if (ipt(1) .gt. nnmx) Call ErrtMessage (20,0,ipt(29))

nnhor=nx + 1
nnver =nz + 1

= read the number of rectangular spaces in the x and z directions
call commnt (11,21)
sead (11,*) nx,nz ¢
MBs) =nz+1 c— Read the number of horizontally aligned material property blocks,
IMB7)=nx+1 c— followed by the material block number for all vertical spacings.
il (nx.1e.0 .or. nx.gt.nxmax) call ErrMessage (15,0,ipt(29)) call commnt (11,21)

if (nz.1e.0 .or, nz.gt.nzmax) call EnMessage (16,0,ipt(29)) read (11,%) ipt(26)
< . If (ipt(26) .1t. 1) Then
o= read horizontal spacing: Call ErrMessage (24,0,ipt(29))
call commnt(11,21) Else If (ipt(26) .eq. 1) Then
read (11,*) Idel,xzero ! is horizontal spacing uniform Doi=1l,nz
if (Idel) then imblk@) =1
read {11,*) delx(l) !uniform spacing in x-direction EndDo
do10i=2nx Else
10 delx(i) = delx(1) Read (11,*) (imblk(i),i=1,nz)
else Doi=1nz
read (11,*) delx(l) if (imbik(i).it.1 .or. imblk(i).gt.ipt(26))
if (delx(1) Jt. 0.0d0) then !make unifrom grid linear in Inr. + Call ErrMessage (24,0,ipt(29))
rmult = (-delx(1)/xzero) ** (1.0d0/dble(nx)) EndDo
rad = xzero EndIf
Doi=1nx c

172

c— Assign nodel coordinates.Number nodes along the shortest dimension.
if (nx .le. nz) then ! number nodes horizontally
nd=1 :
Z = zzero
X = XZero
xnode(nd) = x
znode(nd) =z
do20i=1,nx
nd=nd+1
X =X ++ delx(i)
xnode(nd) =x
20 znode(nd) =z
do2lj=1nz
nd=nd+1
z = z + delz(§) * 0.50d0
X = xzero + delx(1) * 0.50d0
xnode(nd) =x
znode(nd) = z
if (nx .gt. 1) then
do22i=1nx-1
nd=nd+1
X = X + (delx(D)+delx(i+1)) * 0.50d0
xnode(nd) = x
22 znode(nd) =z
endif
nd=nd+1
X = XZero
z =z + delz(j) * 0.50d0
xnode(nd) = x
znode(nd) =z
do2li=1,nx
nd=nd+1
X =X + delx(@)
xnode(nd) = x
21 znode(nd) =z
else ! number nodes vertically
nd=1
Z = zzero
X = XZ€ro
xnode(nd) = x
znode(nd) =z
do30j=1,nz
nd=nd+1
z =z + delz(j)
xnode(nd) =x
30 znode(nd) =z
do3li=1nx
nd=nd+1
X =x + delx(i) * 0.50d0
z = zzero + delz(1) ¥ 0.50d0
xnode(nd) = x
znode(nd) =z
if (nz .gt. 1) then
do 32j = 1,nz-1
nd=nd+1
z = z + (delz(j)+delz(j+1)) * 0.50d0
xnode(nd) = x

32 znode(nd) =z
endif
nd=nd+1
x =x + delx(i) * 0.50d0
Z = zzero

xnode(nd) = x
znode(nd) =z
do31j=1nz
nd=nd+1
z =z + delz(j)
xnode(nd) = x
31 znode(nd) =z
endif

c
c— define the incidence lists

jel=0

i3=-3

if (nx .le. nz) then ! number elements horizontally

do40j=1,nz
do40i=1nx
ndul = (§-1)*2*nx+1) +i

" 40

173

ndur = ndul + 1
ndmd = ndur + nx
ndll = ndmd + nx
ndlr =ndll + 1
If (i.eq.1) then lidentify boundary nodes(left and right)
nbdL(j) = ndul
if (j.eq.nz) nbdL(j+1) = ndll
Else if (i.eq.nx) then
nbdR(j) = ndur
if (j.eq.nz) nbdR(j+1) = ndir
EndIf
If (j.eq.1) then lidentify boundary nodes(top and bottom)
nbdT({) = ndul
if (i.eq.nx) nbdT(i+1) = ndur
Else if (j.eq.nz) then
nbdB(j) = ndll
if (i.eq.nx) nbdB(i+1) = ndir
EndIf
jel=jel +1
i3=i3+3
nodel(i3+1) = ndul
nodel(i3+2) = ndur
nodel(i3+3) = ndmd
matel(jel) = imblk(j)
jel=jel +1
i3=i3+3
nodel(i3+1) = ndur
nodel(i3+2) = ndir
nodel(i3+3) = ndmd
matel(el) = imblk(j)
jel=jel+1
i3=i3+3
nodel(i3+1) = ndmd
nodel(i3+2) = ndir
nodel(i3+3) = ndll
matel(jel) = imblk(j)
jel=jel +1
i3=i3+3
nodel(i3+1) = ndul
nodel(i3+2) = ndmd
nodel(i3+3) = ndll
matel(jel) = imblk(j)
continne

else ! number elements vertically
do 50i=1,nx

do50j=1L,nz
ndul = (i-1)*(2*nz+1) + j
ndlf = ndul +'1
ndmd = ndll + nz
ndur = ndmd + nz
ndlr = ndur + 1
If (i.eq.1) then fidentify boundary nodes(left and right)
nbdL(j) = ndul
if (j.eq.nz) nbdL(j+1) = ndil
Else if (i.eq.nx) then
" nbdR(j) = ndur
if (j.eq.nz) nbdR(j+1) = ndlr
EndIf
If (j.eq.1) then !identify boundary nodes(top and bottom)
nbdT(i) = ndul
if (i.eq.nx) nbdT(i+1) = ndur
Else if (j.eq.nz) then
nbdB() = ndll
if (i.eq.nx) nbdB(i+1) = ndlr
EndIf
jel=jel+1
i3=i3+3
nodel(i3+1) = ndul
nodel{i3+2) = ndur
nodel(i3+3) = ndmd
matel(jel) = imblk(j)
jel=jel +1
i3=i3+3
nodel(i3+1) = ndur
nodel(i3+2) = ndlr
nodel(i3+3) = ndmd
matel(jel) = imblk()
jel=jel+ 1

13=i3+3
nodel(i3+1) = ndmd
nodel(i3+2) = pdir
podel(i343) = ndit
matel(jal) = imblk()
jel=jel +1
i3=i3+3
nodel(id+1) = ndul
nodelj3+2) = ndmd
nodel(i3+3) = ndit
matel(jel) = imblk()
50 continue

endif

returm

end

GRID.HB - Subroutine which generates a non-symetric triangular
grid system based subdivision of a rectangular grid
(Similar to the grid used by howard).

Og input this subgoutine reads the number of rectangular
spaces in the x-direction (nx) and the z-direction (nz).
The spacing can be uniform or ponuniform in each
direction.

Input logical varjables (1x) and (I2), if true,

indicate if the spacing is uniform in the x and z
directions respectively.

If Jx or Iz are true, then a corresponding uniform
spacing is input (udelx or udelz).

If Ix or Iz are false, then nx anf nz values of the
spacing is input.

On output, Grid.f gives the number of nodes itp(1), the
number of elements ipt(0), the nodel coordinates xnode
and znode, and the element incidence list nodel.

AaNGAANAGONANNNNONONO0

subroutine gridhb

include *dimen.ing’

common /cb1/ matel{nelmx),nodel(nel3),nodept(nnmx),nelpt(nei3),
+ matpt(nn6)

common /cblc/ xnode(nnmx),znode(nnmx),rbar(nelmx),area(nelmx)
common /cb95/ nbdL.(nzmax),nbdR (nzmax),nbdT(nxmax),nbdB(nxmax),

+ nnhor,nnver
c
C-— Dimcnsion local arrays.

dimension delx(nxmax),delz(nzmax),imblk(nzmax)

[
e~ read the number of rectangular spaces in the x and z directions
call commnt (11,21)
read (11,*) nx,nz
ipt(86)=nz + 1
ipt{87)=nx+1
if (nx.le.0 .or. nx.gt.nxmax) call ErrMessage (15,0,ipt(29))
if (nz.)c.0 .ot nz.gt.nzmax) call ErrMessage (16,0,ipt(29))
¢
c— read horizontal spacing:
call commnit (11,21)
read (11,*) Idel xzero ! is horizontal spacing uniform
if {Idel) then
read (11,*) delx(1) ! uniform spacing in x-direction
do 101 =2,nx
10 delx(i) = delx(1)
clse
read (11,*) delx(1)
if (delx(1) Jt. 0.0d0) then !make uniform grid linear inInr.
rmult = (-delx(1)/xzero) ** (1.0d0/dble(nx))
rad = xzero
Doi=I,nx
radpl =rad * rmult
delx(i) = radpl -rad -
rad = radpl
EndDo
clse
backspace 11
read (11,*) (delx(i),i=1,nx) ! nonuniform x spacing
endif
endif
Doi=lnx

If (delx(i) .Je.-0.0d0) Call ErrMessage (17,0,ipt(29))
EndDo)
c
c— read vertical spacing
call commnt (11,21)
read (11,*) Jdel,zzero ! s vertical spacing uniform
if (lde) then
read (11,%) delz(1) !upiform spacing in z-direction
dollj=1,nz
1§ delz(j) = delz(1)
else
read (11,*) (delz(j),j=1,nz) ! nonuniform z spacing in
endif
Doj=1nz
If (delz(j) .le. 0.0d0) Call ErrMessage (18,0,ipt(29))
EndDo
c
c— Calculate the number of elements and nodes.
ipt(0) =2 * nx * nz ! number of elements
ipt(1) = (nx+1) * (nz+1) ! number of nodes
if (ipt(0) .gt. nelmx) Call ErrMessage (19,0,ipt(29))
if (ipt(1) .gt. nnmx) Call ErtMessage (20,0,ipt(29))
nnhor =nx + 1
nover =nz 41

c
¢— Read the number of horizontally aligned material property blocks,
¢ followed by the material block number for all vertical spacings.
call commnt (11,21)
read (11,*) ipt(26)
If (ipt(26) .It. 1) Then
Call ErtMessage (24,0,ipt(29))
Else If (ipt(26) .eq. 1) Then
Doi=1nz
imblk@) =1
EndDo
Else
Read (11,*) (imblk(i),i=1,nz)
Doi=1,nz
if (imblki).It.1 .or. imblk(i).gt.ipt(26))
+ Call ErrMessage (24,0,ipt(29))
EndDo
Endlf
c
c— Assign nodel coordinates. Number nodes along the shortest
¢— dimension.
if (nx .le. nz) then ! number nodes horizontally
nd=1
Z = 22210
X = Xzero
xnode(nd) = x
znode(nd) =z
do20i=1nx
nd=nd+1
x = X + delx(i)
xnode(nd) =x
20 znode(nd) =z
do21j=1,nz
nd=nd+1
X = XZero
z =z + delz(j)
xnede(nd) = x
znode(nd) =z
do2li=1,nx
nd=nd +1
x = x + delx(i)
xnode(nd) = x
21 znode(nd) =z
else ! number nodes vertically
nd=1
2z =z2ero
X = XZ€ro
xnode(nd) = x
znode(nd) =z
do30j=1nz
nd=nd+1
z =z + delz(j)
xnode(nd) = x
30 znode(nd) =z

174

31

4

do3li=1Inx
nd=nd+1
X =X + delx(i)
z = zzero
xnode(nd) =x
znode(nd) =2
do3lj=1nz
nd=nd+1
z =z + delz(j)
xnode(nd) = x
znode(nd) =z
endif

c— define the incidence lists

jel=0
i3=.3"
if (nx .le. nz) then ! number elements horizontally
dod40j=1nz
if (2%(i/2) .eq. j) then
idir=1
else
idir =-1
endif
do40i=1,nx
ndul = G-1)*(nx+1) +i
ndur = ndul + 1
ndll = ndul + nx + 1
ndlr = ndll + 1
If (i.eq.1) then lidentify boundary nodes(left and right)
nbdL{j) = ndutl
if (j.eq.nz) nbdL(j+1) = ndll
Else if (i.eq.nx) then
nbdR(j) = ndur
if (j.eq.nz) nbdR(j+1) = ndir
EndIf
If (j.eq.1) then lidentify boundary nodes(top and bottom)
nbdT(i) = ndul
if (i.eq.nx) nbdT(i+1) = ndur
Else if (j.eq.nz) then
nbdB(i) = ndll
if (i.eq.nx) nbdB(i+1) = ndlr
EndIf
if (idir .It. 0) then
jel=jel+1
i3=i3+3
nodel(i3+1) = ndul
nodel(i3+2) = ndlr
nodel(i3+3) = ndil
matel(jel) = imblk(j)
jel=jel+1
i3=i3+3
nodel(i3+1) = ndul
nodel(i3+2) = ndur
nodel(i3+3) = ndIr
matel(jel) = imblk()
idir = -idir
else if (idir .gt. 0) then
jel=jel+1
i3=i3+3
nodel(i3+1) = ndul
nodel(i3+2) = ndur
nodel(i3+3) = ndll
matel(el) = imblk(G)
jel=jel+1
i3=i3+3
nodel(i3+1) = ndur

Subroutine - inputl.f

40

175

nodel(i3+2) = ndlr
nodel(i3+3) = ndil

- . matel(jel) = imbik()
idir = -idir

endif
continue

else ! number elements vertically
do 50i=1nx

if (2*(i/2) .eq. i) then
idir=1
else
idir=-1
endif
do50j=1nz
ndul = (i-1)*(nz+1) +j
ndll = ndul + 1
ndur =ndul + nz + 1
ndlr = ndur + 1
If (i.eq.1) then lidentify boundary nodes(left and right)
nbdL(j) = ndul
if (j.eq.nz) nbdL(j+1) = ndll
Else if (i.eq.nx) then
nbdR(j) = ndur
if (j.eq.nz) nbdR(j+1) = ndlr
EndIf
If (j.eq.1) then lidentify boundary nodes(top and bottom)
nbdT(i) = ndul
if (i.eq.nx) nbdT(i+1) = ndur
Else if (j.eq.nz) then
nbdB(i) = ndll
if (i.eq.nx) nbdB(i+1) = ndir
EndIf
if (idir .1t. 0) then
jel=jet+1
i3=i3+3.
nodel(i3+1) = ndul
nodel(i3+2) = ndur
nodel(i3+3) = ndlr
matel(jel) = imblk()
jel=jel+1
i3=i3+3
nodel(i3+1) = ndul
nodel(i3+2) = ndIr
nodel(i3+3) = ndll
matel(jel) = imblk()
idir = -idir
else if (idir .gt. 0) then
jel=jet+1
i3=i3+3.
nodel(i3+1) = ndul
nodel(i3+2) = ndur
nodel(i3+3) = ndll
matel(jel) = imblk(j)
jel=jel+1
i3=i3+3
nodel(i3+1) = ndur
nodel(i3+2) = ndir
nodel(i3+3) = ndil
matel(jel) = imblk()

idir = -idir
endif
50 continue
endif
return
end

INPUTL.f - main input routine. Reads model control information,
fluid and soil parameters, and grid information.

Contro! Flags conputed internally in routine:

Tetrl{13) - logical variable denoting compositional dependence
of the gas phase viscosity
letel{13) = .true. - gas phase viscosity is
dependent on composition
letrl{13) = .false. - gas phase viscosity is not
dependent on composition

aAnNanNNNNanNNNnnnn

subroutine INPUT1

include "dimen.ine’

character*20 infile(4),outpre,outfile(8+ncmp)

character*1Q cname(ncmp)

character*3 cmb(10)

common /cbl/ matel(nelmx),nodel(nel3),nodept(nnmx),nelpt(nel3),
+ maipt(nnb)

common /cble/ xnode(nnmx),znode(nnmx),rbar(nelmx),area(nelmx)

comman /cb1d/ gama(nel3),beta(nel3)

common /cb5a/ bphi(nmblk),bpermh(nmblk),bpermv(nmbik)

commeon /b5t bvgn(nmblk), bvga(nmblk),bvgm(nmblk),bsrw(nmblk)

commeon /cbS¢/ bfoc(nmblk)

common febéc/ temp(nnmx)

common /cb6d/ diemp(nzmax6),idepth(nnmx)
common fcb?/ cvvis(ncmp),gamma(nesqd)

common fcbTb/ cmw(ncmp),cvp(ncmp),cden{ncmp),
+ chen(ncmp),casel(ncmp),cmdif(ncmp?2)
commeon /cb8/ vis(nnmx),pmw(nn3)

common /cb41b/ nbw(0:2),ia

common /cb60/ khalf(nemp),fuse(nemp?2),umax(ncmp),xyield(nemp),

+ kinhib(ncmp)
common /cb63/ kex(ncmp5),kmax(ncmp5)
commion /cb64/ bok(nbemp),bom(nbemp),krtd(ncmp)
common /cb64b/ bsden(nmblk)
common /cb70/ d(nmd),tort(nelmx),bdist(nmblk),bdisl(nmblk)
common /cb90/ infile,outpre,outfile
common /cb91/ cname

common Acb95/ nbdL.(nzmax),nbdR (nzmax),nbd T (nxmax),nbdB(nxmax),

+ nnhor,nnver
C
C— Dimension local arrays.
C
dimension mp(4),zdepth(nzmax)

c
c===== READ INPUT/OUTPUT FILES AND OPTIONS ======
¢
¢~ Read the name of input file 2 (ICs and BCs) and open as unit 13;
c— define the error and warning message input data file as unit 14.
¢all commnt(i1,21)
read (11,*) infile(2),infile(3)
open (13,file=infile(2),status="unknown’)
open (14.file=infile(3),status="unknown’)
e
¢— Read the prefix name of all output files; determine output file
¢— pames: and open the main output file.
call commnt(11,21)
read (11,*) outpre
it = index(outpre,’ *)-1
outfile(t) = outpre(1:ii)/.out’ ! main output file
outfile{2) = outpre(1:ii)//".err” ! emor messages
outfile(3) = outpre(1:ii}/’.cnv’ ! performance output
outfile(4) = outpre(1:ii}/'.con’ ! contour data
outfile(S) = outpre(1:ii)/".mb’ ! mass balance checks
outfile(6) = outpre(l:ii)//’.plt’ ! time series plot data
outfile(7) = outpre(l:ii)//".rst” 1restart file
open (21, file=outfile(1),status="unknown’)
Cc
C— Read the device specifications for error messages and
C— performance output.
C— 0 is no output; 6 is the screen;
C— 21 is the .out file; 22 is the .err file (only for error messages)
C— , 23 is the .cnv file (only for performance output).
eall commnt(11,21)

read(11,*) ipt(29), ipt(28)

c
c— Open outfile(2) if ipt¢29) = 22, Error message/funtime information,
if (ipt(29) .eq. 22) then
open (22, file=outfile(2),status="unknown’)
else if (ipt(29) .eq. 6) then
outfife(2) = "To Screen ’
else if (ipt(29) .eq. 0) then
outfile(2) = 'None Opened
else if (ipt(29) .eq. 21) then
outfile(2) = outfile(l)
else
call ErtMessage (62,0,6)
endif

¢
c— Open outfile(3) if ipt(28) = 23. Performance and iteration output.
if (ipt(28) .eq. 23) then
open (23,file=outfile(3),status="unknown’)
else if (ipt(28) .eq. 6) then
outfile(3) = "To Screen ’
else if (ipt(28) .eq. 0) then
outfile(3) = 'None Opened !
else if (ipt(28) .eq. 21) then
outfile(3) = outfile(l)
else
call ErrMessage (61,0,ipt(29))
endif ’

c
c— Read a logical parameter indicating if contour plot data should be
c— printed to the file *outpre.con’. Open the file, if yes.
call commnt(11,21)
read (11,*) Ictrl(23).
if (Ictrl(23)) then
open (24, file=outfile(4),status="unknown’)
else
outfile(4) = *None Opened !
endif
c
¢— Read A logical parameter indicating if mass balance checks
c— should be computed and printed to the file *outpre.mb’. Open the
c— file, if yes.
call commnt(11,21)
read (11,%) lprnt(6)
if (Iprnt(6)) then
open (25, file=outfile(5),status="unknown’)
else
outfile(5) = 'No Mass Balance ’
endif
c
c— Read the uniform material balance print interval, either
c— by the number of time steps or a specified time increment. Also
c— read a logical variable controlling the type of material balance
c— output (report style if true).
if(Iprnt(6)) then
read(11,*) lprnt(25),1prnt(27)
if(Iprnt(25)) then
- read(11,*) ipt(83)
else
read(11,*) ¢(27)
end if
end if
c
o— Read a logical parameter indicating if time series plot data
c— should be printed to the file "outpre.plt’. Open the file, if yes.
call commnt(11,21)
read (11,*) letrl(15)
if (fetrl(15)) then
open (26, file=outfile(6),status="unknown’)
else
outfile(6) = 'None Opened ’
endif
c
c— Read the uniform time series print interval, either by
c— the number of time steps or a specified time increment. Also read
c— a logical variable controlling the form in which the component
c— information is outputted (t=mole fraction, f=concentration).
if(lctrl(15)) then
read(11,*) Iprnt(26),lprnt(28)

176

if(1prnt(26)) then
read(11,*) ipt(84)
else
read(11,%) t(28)
end if
end if
¢ .
c— Read a logical parameter indicating if restart data
¢~ should be printed to the file "outpre.rst’. Open the file.
call commat(11,21)
read (11,*) letrl(5)
if (Ictrl(5)) then
open (27 file=outfile(7),status="unknown’)
else
outfile(7) = *No Restart Available’
endif
c
c— Write to the main output file: banner, title cards, I/O file names.
write (21,500)
call commnt (11,21)
backspace 11
write (21,501) (infile(i),i=1,3),(outfilei),i=1,7)
[+3
c— Read and write the uniform print interval, either by the number of
c— time steps or a specified time increment.
call commnt(11,21)
read (11,*) Iprnt(0)
if (Iprot(0)) then
read (11,*) ipt(25)
write (21,529) ipt(25)
else
read (11,%) t(12)
write (21,530) ((12)
endif
¢
¢— Write the uniform material balance print interval and the type of
c— material balance.
if(Iprnt(6)) then
if(Iprnt(27)) then
write(21,553)
else
write(21,554)
end if
if(Jprnt(25)) then
write(21,549) ipt(83)
else
write(21,550) t(27)
end if
end if
c
c— Write the uniform time series print interval and the form in which
¢~ the component information is outputed (t=mole fraction,
c— f=concentration).
if(letrl(15)) then
if(Iprnt(28)) then
write(21,557)
else
write(21,558)
end if
if(lprnt(26)) then
write(21,551) ipt(84)
else
write(21,552) t(28)
end if
end if
c

c======= BLOCK B - GENERAL MODEL CONTROL OPTIONS =====

c

1f (ipt(29).ne.0) write (ipt(29),*)

'Reading Model Control information’

c
c— Read the coordinate system: O=xz; l=rz.
¢—- Read the horizontal and vertical gravity components,
¢c— Error check: ipt(27) (0-1)

call commnt(11,21)

read (11,%) ipt(27),t(21),4(22)

if (ipt(27).1t.0 .or. ipt(27).gt.1) call ErMessage (1,0,ipt(29))
c

c— Read a logical variables defining which balance equations are
c— solved:
c— letrl(1) => solve flow equations
¢— letrl(2) => solve transport equations
c— lIctrl(24) => solve napl equations
c— letrl(25) => solve solid phase equations
c— letrl(3) => solve biophase equations
call commnt(11,21)
read (11,*) letrl(1),lctrl(2),Ictrl(24), letrl(25),letrl(3)
if(Ictrl(2)) then
letrl(22) = .true.
else
Tetrl(22) = false.
end if
c
c— Error Check: letrl(24),Ictrl(25),Ictrl(3)=true only if lctrl(2)
c— = true.
if (Ictrl(24) .and. .not. Ictrl(2)) Call ExrMessage (76,0,ipt(29))
if (letrl(25) .and. .not. letrl(2)) Call ExrMessage (75,0,ipt(29))
if (Ietrl(3) .and. .not. letrl(2)) Call ErrMessage (42,0,ipt(29))
c
c— Read mass lumpmg options in the solution of the flow egs
c— (letrl(7)) and the transport egs (lctrl(8)).
call commnt(11,21)
read (11,%) letrl(7),lctrl(8) !
[
c— Read an integer parameter denoting the number of time steps to be
c— skipped between solving for the flow equations.
call commnt(11,21)
read (11,*) ipt(85)
c
¢~ Read in coupling term between flow and transport. letrl(14)
c-— indicates if mass exchange terms are to be mcluded in the
c— solution of the flow eqs.
call commat(11,21)
read (11,*) letrl(14)
if (fetrl(1) .and. .not. lctrl(2)) letrl(14)=false.
c
¢~ Lelnum indicates if element dimensionless numbers are to be
o calculated for the transport solution and written to ipt(28).
call commnt(11,21)
read (11,%) letrl(4)
c
c— Write the general model control information.
write (21,502) ipt(27),1(21),t(22),letrl(1),ipt(85),lctrl(2)
+ Jetrl(24),ketrd(25),letel(3), Jetrl(7), etel(8)
+ . Jletrl(14),Ictrl(4)

c
¢m==== TIME STEP/ITERATION CONTROL. OPTIONS =====
c

1f (ipt(29).ne.0) write (ipt(29),*)

"Reading Time Step/Iteration Control information’

c .
¢— Read the initial and final simulation time (sec).
c— Exror check: t(2)>t(1); t(1) and t(2) .ge. O.

call commnt(11,21)

read (11,%) t(1),t(2)

if (t(1).1t.zer0) call' ErrMessage (2,0,ipt(29))

if (t(1).ge.t(2)) call ErrMessage (3,0,ipt(29))
c
¢— Read the time weighting factor.
c— Error check: 0.ge.weight.le.1

call commnt(11,21)

read (11,%) t(10)

if (t(10).1t.zer0.or.t(10).gt.rone)

+ call EntMessage (13,0,ipt(29))
c
c¢— Read the maximum number of iterations.
c— Error check:ipt(30) .gt. 0.

call commnt(11,21)

read (11,%) ipt(30)

if (ipt(30).1e.0) call ErrtMessage (4,0,ipt(29))
c
¢— Read the convergence tolerance for the flow, transport, NAPL
¢— saturation and immobile transport egs.
¢c— Error check: tol>0.

call commnt(11,21)

read (11,%) t(13),6(14),4(15),t(16)

177

€ (1¢13).1¢.2e10 Lo, t(14).1t.2e00 .or. t(15).1t.zer0
+ .or ((16).1t.zec0) call ErrMessage (9,0,ipt(29))
c
¢-— Read the initial, minimum and maximum time step size (s).
¢ Ervor check: diminedimax; dtmin>0; dimin.le.dtinitial.le.dtmax
call commnt(11,21)
read (11,*) 1(3).44).4(5)
if (1{4).Je.zer0) calt ErrtMessage (5,0,ipt(29))
if {1{4)-81.(5)) call ErMessage (6,0,ipt(29))
if (U(3).1.14) .or. 1(3).gt4(5)) call ErMessage (7,0,ipt(29))

c
c— Read the maximum number of iterations for the flow, transport, NAPL
¢— saturation, and immobile eqs.

call commnt(11,21)

read (11,%) ipt(31),ipt(32),ipt(33)

[
= Read the minimum number of iterations for the flow, and transport
¢—cqs. Error check: itmin<itmax.,
call commat(11,21)
read (11,%) ipt(34),ipt(35)
if (ipt(34).gt.ipt(31) .ox. ipt(35).gt.ipt(32) .or.
+ ip35)gtipt(33)) call EmrMessage (8,0,ipt(29))
[
o Read the empirical time step amplification and reduction factors.
o= Error check: 1(6).g¢.15 t(7).Ie.1.
cali commnt(11,21)
read {11,*) (6),(7)
if (1{6).lt.rone) call EntMessage (10,0,ipt(29))
if (1(7).gt.rone) call ErrMessage (11,0,ipt(29))

¢

¢ Write the time step control information.
write (21,503) t(1),8(2),1(10),ipt(30),t(13),t(14),4(15),t(16),
+ U3NA5).Ipt(31),ipt(32),ipt(33),
+ ipt(34),ipt(35),HEM(T)

¢
¢— Initialize the time step.
W8y =1(3)
<
¢mememamazs GRID PARAMETERS AND OPTIONS s====s

il‘(xpt(Z‘)) ne0) write (ipt(29),*%)
*Reading Grid Parameters and Options’
[
¢— Read a logical vardable indicating if grid info should be printed
¢ to the main output file.
call commnt(11,21)
read (11,*) Iprat(1)
[
o— Generate the grid?
¢ 0=don't generate the grid;
¢ 1=generate a unjon jack grid;
¢ 2= generate a herring bone grid.
¢— Ervor check: igrid (0-2)
¢ Error check: number of nodes and elements.
Calf commnt(11,21)
Read (11,*) igrid
If (igrid.1.0 .or. igrid.gt.2) call ErrtMessage (14,0,ipt(29))
i€ (igrid .eq. 1) Then
if (ipt(29).ne.0) Write (ipt(29),*)
+ *Generating a uniform union jack grid’
Call gridu
Else If (igrid .cq. 2) Then
if (ipt(29).ne.0) Write (ipt(29),*)
+ *Generating a uniform herring bone grid’
Call gridhb
Endlf
[
o— Input the grid.
I {igrid .eq. 0) Then

[
¢— Read the number of elements, number of nodes, and the number of
¢=- material property blocks.
e~ Error check: number of nodes, elements, material property blocks.
Call commnt(11,21)
Read (1 1,*) ipt(0),ip1(1),ipt(26)
write (6,*) ipt(0),ipt(1),ipt(26)
if (ipt(0) .gt. nelmx) Call ErMessage (19,0,ipt(29))
if (ipt(1) .gt. nnmx) Call ErrMessage (20,0,ipt(29))

if (ipt(26) .gt. nmblk) Call ErrMessage (21,0,ipt(29))

C— Read the nodal incidence list and material property block
. C— for each element. The element node incidence list consists of
C— the arbitrary global element number followed by that element’s
- C— three global node numbers. Each element has its own line. The
' C— element node numbers start at an arbitrary node. If the z
C— coordinate is positive downwards proceed in the clockwise
C— direction, otherwise proceed in the counterclockwise direction.
' C— If there is only one material property block for the entire
' C— domain, the material property input assignment for each element
[C— may be ommited. The minimum material property block is a two
c— element quadralateral.
¢— Error check: node and material block numbers are within the
¢ defined range.
call commnt(11,21)
if (ipt(26).eq.1) then
do 1001 = 1,ipt(0)
read (11,*) ii,nodel(ii*3-2),nodel(ii*3-1),nodel(ii*3)
100 matel(ii) = 1
else
do 1101 = 1,ipt(0)
110 read (11,*)ii,nodel(ii*3-2),nodel(ii*3-1);nodel(ii*3)
+

matel(ii}
endif
Do 12011 = 1,ipt(0)
i3=3%

If (matel(i).1t.1 .or. matel(i).gt.ipt(26))

Call ExrtMessage (24,0,ipt(29))
If (nodel(i3-2).1t.1 .or. nodel(i3-2).gt.ipt(1) .or.
+ nodel(i3-1).1t.1 .or. nodel(i3-1).gt.ipt(1) .or.
+ nodel(i3).It.1 .or. nodel(i3).gt.ipt(1))
+ Call ExrtMessage (25,0,ipt(29))
0 continue

3

c
¢ Read the nodal coordinates.
call commnt(11,21)
do 130 i = Lipt(1)
130 read (11,*) j,xnode(j),znode(j)
EndIf
[¢]
| C— Compute the pointers for the nodal storage vectors. Multiple
C— entries are needed for each node whose contiguous elements have
- C- different material properties. Pressure is always continuous,
C— while as an example saturation is not when adjacent elements
C— have different saturation/pressure relationships. The number
C— of entries at a given node is equal to the number of different
C— contiguous material property sets. This routine is configured to
C— allow a maximum of four different material property sets to be
C— contiguous at a given node.
Cc

1f (ipt(29).ne.0) write (ipt(29),*)
*Computing pointers for stacked storage’
do 140 i=1,ipt(1)+1
nodept(i)=i
140 continue
do 150 i=1,4*ipt(1)
matpt(i)=0
150 continue
do 160 i=1,3*ipt(0)
nelpt(i)=0
160 continue
C
C— First, determine the number of different material property
C— sets that are contiguous at each node. Search the entire
C— node incidence list node by node, storing the material property
C— identifiers in the local array mp.
C
do 170 i=1,ipt(1)

C— Initialize local counters to zero before each element search.
C
i4max=0
do 175 j=1,4
mp(j)=0
175 continue
do 180 ii=1,ipt(0)
do 180i3=2,0,-1

178

C gama(i3+1) = xnode(nodel(i3+3)) - xnode(nodel(i3+2))
C—If the node incidence list for element ii contains node i, check gama(i3+2) = xnode(nodel(i3+1)) - xnode(nodel(i3+3))
C— if matel(ii) is contained in one of the four entries of mp for gama(i3+3) = xnode(nodel(i3+2)) - xnode(nodel(13+1))
C— node i. 200 continue
C c
if(nodel(3*ii-i3).eq.i) then ¢— Output basic grid information.
do 185i4=1,4 write (21,504) igrid,nelmx,ipt(0),nnmx,ipt(1).nmblk,ipt(26),nnstk,
C + ipt(2),nbw(1),nbw(2)
C— If matel(ii) is already an entry in mp, create the corresponding c
C— entry in nelpt and go to the next element. . c— Output the boundary nodes for the case when the grid is generated.
C If (igrid.ne.0) then
if(matel(ii).eq.mp(i4)) then . write (21,559)
nelpt(3*ii-i3)=id-1 write (21,560) ’Left boundary’,(nbdL(i),i=1,naver)
goto 180 write (21,560) *Right boundary’,(nbdR (i),i=1,nnver)
C write (21,560) *Top boundary’,(nbdT(i),i=1,nnhor)
C— Store a new value of matel(ii) in the first zero entry of mp. write (21,560) "Bottom boundary’,(nbdB(i),i=1,nnhor)
C— Keep track of the number of nonzero entries in mp for node i in EndIf
C—inisum. Create the corresponding entry in nelpt and continue on c
C— to the next element, c— Output nodel coordinates, and incidence list.
C If (lprnt(1)) Then:
else if(mp(i4).eq.0) then) If (ipt(27) .eq. 0) Then
mp(i4)=matel(ii) ' Write (21,505)
nelpt(3*ii-i3)=i4-1 Else
if(i4.gt.i4max+1) idmax=id-1 Write (21,506)
goto 180 EndIf
end if] Do 2101 = 1,ipt(1)
C ’ 210 Write (21,507) i,xnode(i),znode(i)
C— If all entries of mp for node i are nonzero and matel(ii) is Write (21,508)
C— not contained in mp, too many contiguous material properties Do 2201 = Lipt(0)
C— have been defined. Write an error message and stop. ’ i3=3%
(o} - 220 Write (21,509) i,nodel(i3-2),nodel(i3-1),nodel(i3),
if(i4.eq.4) then + matel(i),area(i)
write(ipt(29),*)’ ATTENTION: EXCESS MATERIAL’, EndIf '
+ ' PROPERTY at Node Number’,i c '
Call ErtMessage (22,0,ipt(29)) c— Generate grid based pointers.
end if ’ ipt(40) = ipt(1) * 2
185 continue) ipt@l)=ipt(1) * 3
end if ' ipt(42) =ipt(1) * 4
180 continue ipt(43) = ipt(1) * 5
c ipt(44) = ipt(1) * 6
C— Use i4max and mp to construct nodept and matpt. The value of ipt(45) = ipt(1) * 7
C— nodept for node i+1 is the value of nodept for node i plus the ipt(46) = ipt(1) * 8
C— number of stacked entries for node i (i4max). Matpt is the nonzero ipt@7)=ipt(1)* 9
C— values of mp in order. nodept has dimension itp(1)+1 to allow ipt(48) = ipt(1) * 10
C— for determination of the number of stacked variables at the last ipt(49) = ipt(2) * 2
C— global node. ipt(50) = ipt(2) * 3
nodept(i+1) = nodept(i)+i4max-+1) ipt(51) = ipt(2) * 4
do 170 i5=0,i4max ipt(52) = ipt(2) * 5
matpt(nodept(i)+i5)=mp(i5+1) ‘ ipt(53) =ipt(2)* 6
170 continue ’ ipt(54) = ipt(2) * 7
C ipt(55) = ipt(2) * 8
C— Define the dimension of stacked nodal storage. ipt(56) =ipt(2) * 9
¢~ Error check: number of nodal variables in stacked storage. ipt(57) = ipt(2) * 10
ipt(2) = nodept(ipt(1)+1)-1 ipt(67) = ipt(0) * 2
if (ipt(2) .gt. nnstk) Call ErrMessage (23,0,ipt(29)) ipt(68) = ipt(0) * 3
c c
¢— Determine the full bandwidth of the global matrix; one each for c======== COMPONENT CHEMICAL PROPERTIES =====
c— the transport solution and the flow solution. - c
nbw(0) =0 if (ipt(29).ne.0) write (ipt(29),*)
do 190 i = 1,ipt(0) + "Reading Component Chemical Properties’
i3 =(i-1)*3 c
190 nbw(0) = max(nbw(0), iabs(nodel(i3+2)-nodel(i3+1)), ¢— Read the number of organic components.

+ iabs(nodel(i3+3)-nodel(i3+2)), . c— Error check: ipt(15) must be nonnegative.

+ iabs(nodel(i3+3)-nodel(i3+1))) c— Error check: If NAPL (lctrl(24)=t),sorption (lctr1(25)_t), or
nbw(1) =2 * nbw(0) + 1 . ' ’ c— biodegradation (lctrl(3)=t) is considered ipt(15)>0,
nbw(2) =2 * nbw(1l) + 1 call commnt (11,21)

c - read (11,*) ipt(15)
c— Compute elemental areas if (ipt(15) .It. 0) Call ErrMessage (26,0,ipt(29))
call ATRI if (ipt(15) .gt. ncmp) Call ErrMessage (43,0,ipt(29))
c if (ipt(15) .eq. 0 .and. Ictrl(24)) Call ErrMessage (80,0, ,ipt(29))
c— Compute beta and gamma coefficients for computation of integration if (ipt(15) .eq. 0 .and. lctrl(25)) Call EcrtMessage (87,0,ipt(29))
c— Also compute radial centroid of each element for axysymetric if (ipt(15) .q. 0 .and. lctrl(3)) Call ErrMessage (88,0,ipt(29))
¢— coordinates. This is set to one if the xz coordinates are used. c
do 200 i = 1,ipt(0) ¢— Read the organic component chemical properties.
i3 =3*(i-1)) c— Input units assumed: molecular weight (g/mole)
beta(i3+1) = znode(nodel(i3+2)) - znode(nodel(i3+3)) c— vapor pressure = atm
beta(i3+2) = znode(nodel(i3+3)) - znode(nodel(i3+1)) c— vapor viscosity = centipoise
beta(i3+3) = znode(nodel(i3+1)) - znode(nodel(i3+2)) c— liquid density = g/1

Com vapor diffusivity = cm"2/s

[liquid diffusivity = cm™2/s
G henry's constant = atm l/g
C— aqucous solubility = g/l
¢— Error check: values must be nonegative except vapor pressure
[and solubility.

calf commnt(t1,21)

1€ (ipt{15) .gt. 0) Then

D0230i = 1,ipK15)

read (11,*) ic,cname(ic),cmw(ic),cvp(ic),cvvis(ic)
+ \cdenic),cmdif(2*ic-1),cmdif(2*ic),chen(ic)
+ Jcasol(ic)
if tic .ne. i) Call EnMessage (44,0,ipt(29))
if (cw(ic).It.zer0) Call ErrMessage (89,0,ipt(29))
if (cvvis(ic).lt.zer0) Call ErrtMessage (90,0,ipt(29))
if' (cden(ic).lt.zer0) Call ErtMessage (91,0,ipt(29))
if (emdlif(2*ic-1).1t.ze10) Call EnMessage (92,0,ipt(29))
if (cmdif(2*ic).lt.zer0) Call ErrMessage (92,0,ipt(29))
if (chen(ic).lt.zer0) Call ErrMessage (93,0,ipt(29))
230 continue

[+ - -
c— If Ipent(27) is false, open an additional material balance output
o— file for cach component.
data emb(1),cmb(2),cmb(3),cmb(4),cmb(5),cmb(6),cmb(7),cmb(8)
+ .cmb(9),cmb(10)l'l ',’2'.'3','4',’5',’6’.'7',’8','9',' 10"/
iftncmp.gt.10) Call ExtMessage (126,0,ipt(29))
call commnt(11,21)
if(lpent(6).and. .not.Iprat(27)) then
ii = index(outpre,’ *)-1
do225i=1,ipt(15)
jit = index(cmbf(i),’ *)-1
outfile(8+i) = outpre(1:ii)/”.mb’ femb(i)(1:iii)
225 open (28+ifile=outfile(8+),status="unknown’)
write(21,555)
write(21,556) (cname(i), 28+, outfile(8+1),i=1,ipt(15))
end if
EndIf
[
e~ Read chemical property data for water, oxygen, and nitrogen
c— Emror check: values must be nonegative except vapor pressure
o— and solubility.
if (ipt{15)+3 .gt. ncmp) Call EcrMessage (43,0,ipt(29))
call commuat(l1,21)
Do 2401 = ipt(15)+1,ipt(15)+3 ,
read (11,*) ic,cname(i),cmw(i),cvp(i),cvvis(i),cden(i),
+ emdif(2*i-1),emdif(2*i),chen(i),casol (i)
if (ic .ne. i) Call ErrMessage (44,0,ipt(29))
if (craw(ic).lt.zer0) Call EnMessage (89,0,ipt(29))
if (evvis(ic).lt.zer0) Call EmMessage (90,0,ipt(29))
if (eden(ic).It.zer0) Call ErMessage (91,0,ipt(29))
if (cmdif(2%ic-1).)t.zer0) Call ErrMessage (92,0,ipt(29))
if (emdif{2*ic).It.zer0) Call ErrtMessage (92,0,ipt(29))
if (chen(ic).It.zer0) Call ExrMessage (93,0,ipt(29))
240 continue
[
¢— Etror check: oxygen must be present in the aqueous phase when
c— biodegradation is considered.
if (lctrl(3).and.casol(ipt(1 5)+2).1t.0.d0)
+ Call ExxMessage (79,0,ipt(29))
c
c— Nutrient information:
¢-— Read a logical variable indicating if a nutrient
¢—is to be modeled.
call commat{11,21)
read (11,*) letel(9)

[
¢~ Error check: letrl(3) = true for nutrient to be considered.
if (leted(9).and. not letrl(3)) Call ErrMessage (77,0,ipt(29))
<
¢~ If nutrient is modeled, then read the nutrient chemical properties.
¢ Etror check: values must be nonegative except vapor pressure.
istop = ipt(15) + 3
1f {lctc){9)) Then
istop =istop+ 1
if (istop .gt. ncmp) Call ErrMessage (43,0,ipt(29))
call commnt({11,21)
read (11,*) ic,cname(istop),cmw(istop),cvp(istop),
+ cvvis(istop),cden(istop),cmdif(2*istop-1),

+ cmdif(2*istop),chen(istop),casol(istop)
if (ic .ne. istop) Call ErrtMessage (44,0,ipt(29))
if (ic .ne. i) Call ExrMessage (44,0,ipt(29))
if (cmw(ic).It.zer0) Call ExrtMessage (89,0,ipt(29))
if (cvvis(ic).lt.zer0) Call ErtMessage (90,0,ipt(29))
if (cden(ic).it.zer0) Call ErrMessage (91,0,ipt(29))
if (cmdif(2*ic-1).lt.zer0) Call ErrtMessage (92,0,ipt(29))
if (cmdif(2*ic).lt.zes0) Call ErrMessage (92,0,ipt(29))
if (chen(ic).lt.zer0) Call ErrMessage (93,0,ipt(29))
c .
¢— Error check: caso}(nutrient) must be positive if lctrl(9) = true.
if (casol(istop).lt.zer0) Call ErrMessage (78,0,ipt(29))
EndIf
ipt(65) = istop
ipt(66) = istop * ipt(1)
c.
o~ Write component data,
Write (21,510) ipt(15)
Do 2501 = 1,istop
Write (21,511) cname(i),i,cmw(i),cvp(i),cvvis(),
+ cden(i),cmdif(2*i-1),cmdif(2*i),chen(i),casol(i)
250 continue
c
c— Adjust units.
c— Convert aqueous solubilities to mole ratios.
c— Convert all others to SI units.
cmwaq = cmw(ipt(15)+1)
do 260 i=1,istop
if(cvp(i).gt.rone) then
cvp(i) = chen(i) * casol(i)
else
cvp(i) = cvp(i) * patm ! vapor pressure = Pa
end if
casol(i) = casol(iy*cmwaq/(cmw(i)*cden(ipt(15)+1))
emw(i) = cmw() * 1.0d-3 ! molecular weight = kg/mole
cvvis@i) = cvvis(i) * 1.0d-3 ! viscosity =Pa s
cmdif(2*i-1) = cmdif(2*i-1) * 1.0d-4 ! diffusivity = m"2/s
cmdif(2*i) = cmdif(2*i) * 1.0d-4
260 chen(i) = chen(i) * patm ! henry’s constant = Pa m"3/kg
¢
cm===== MASS EXCHANGE INFORMATION =======

if (ipt(29).ne.0) write (ipt(29),*)

+ *Reading Mass Transfer Information’
C
C— Read the mass exchange coefficients for the various components
C— betweeen contiguous phases. If the mass exchange coefficient
C— for a given component and phase pair is zero, that component
C— does not partition between that phase pair. Exchange coefficients

C-—— and aqueous/solid.
C— Error Check: Component number must be between 1 and istop.
C
write (21,512)
do 270 i=1,istop
call commnt(11,21)
read (11,%) ic.kex(5*(ic-1)+1),kex(5*(ic-1)+2)
+ Jkex(5*(ic-1)+3),kex(5*(ic-1)+4) kex(5*(ic-1)+5)
read (11,%) ic,kmax(5*(ic-1)+1),kmax(5*(ic-1)+2)
+ kmax(5*(ic-1)+3),kmax(5*(ic-1)+4),kmax(5*(ic-1)+5)
if (ic.lt.1 .or. ic.gt.istop) Call ErrMessage (45,0,ipt(29))
270 write (21,513) cname(ic),kex(5*(ic-1)+1),kex(5%(ic-1)+2)
+ kex(5*(ic-1)+3),kex(5*(ic-1)+4) kex(5*(ic-1)+5)
write (21,582)
do 275 i=1,istop
write (21,513) cname(i),kmax (5*(i-1)+1),kmax(5*(i-1)+2)
+ Jmax(5*(i-1)+3),kmax(5%(i- 1)+4),kmax (5*(i-1)+5)
do275ii=1,5
275 if(kmax(5*(i- 1)+ii).1.0.050d0.or.kmax(5*(i- 1)+ii).gt.rone)
+ Call ErrMessage (134,0,ipt(29))
C
C— Create the pointer for phase compositions. First consider
C— the gas phase. Components are not included if their vapor
C— pressures are negative. ipt(3) is the number of components in
C— the gas phase and ipt(13) is the number of organic components in
C— the gas phase.
ipt(3)=0
ipt(13)=0

180

C— are ordered aqueous/gas, aqueous/NAPL, gas/NAPL, aqueous/biophase,

do 280 i=1,istop
if(cvp(i).ge.zer0) then
ipt(3)=ipt(3)+1
icp(ipt(3))=i
end if
if(i.eq.ipt(15)) ipt(13)=ipt(3)
280 continue
c
c— Error check: if present gas phase must contain nitrogen,
if (ipt(3).gt.0 .and. cvp(ipt(15)+3).1t.zer0)
+ Call ErMessage (69,0,ipt(29))
(e}
C— Next consider the aqueous phase. Components are not included if
C— their aqueous solubilies are negative. ipt(4) is the number of
C— components in the aqueous phase and ipt(14) is the number of
C— organic components in the aqueous phase.
ipt(4)=0
ipt(14)=0
do 290 i=1,istop
if(casol(i).ge.zer0) then
ipt(4)=ipt(4)+1
icpUpt(3)+ipt(d))=i
end if
if(i.eq.ipt(15)) ipt(14)=ipt(4)
290 continue
c
c— Error check: if present aqueous phase must contain water,
if (ipt(4).gt.0 .and. casol(ipt(15)+1).lt.zer0)
+ Call ErMessage (70,0,ipt(29))
C
C— Next consider the organic phase if letrl(24) = true. All organic
C— components are included in the NAPL when present.
ipt(5)=0
if(letrl(24)) then
ipt(5)=ipt(15)
do 300 i=1,ipt(5)
icp(ipt(3)+ipt(4)+i)=i
continue
EndIf
C .
C— Next consider the solid phase. Sorption is considered for all
C— organic component in the aqueous phase with nonzero aqueous/solid
C— exchange coefficients. ipt(6) is the number of components in the
C— solid phase. ipt(16) is the number of organic components in the
C— solid phase.
ipt(6)=0
ipt(16)=0
If (lctri(25)) Then
do 310 i=1,ipt(15)
if(kex(5%(i-1)+5).ne.zer0) then
ipt(6)=ipt(6)+1 '
icp(ipt(3)+ipt(4)+ipt(5)+)=i
end if
ifd.eq.ipt(15)) ipt(16)=ipt(6)
310 continue
EndIf
C
C— Define pointers:
C— ipt(8) - start of gas phase component section - 1
C— ipt(9) - start of aqueous phase component section - 1
C— ipt(10) - start of organic phase component section - 1
C— ipt(11) - start of solid phase component section - 1
C— ipt(12) - start of bio-phase component section - 1
ipt(8) =0
ipt(9) = ipt(8) + ipt(3)*ipt(1)
ipt(10) = ipt(9) + ipt(4)*ipt(1)
ipt(11) = ipt(10) + ipt(5)*ipt(1)
ipt(12) = ipt(11) + ipt(6)*ipt(1)
ipt(58) = ipt(3) + ipt(4)
ipt(59) = ipt(3) + ipt(4) + ipt(5)
ipt(60) = ipt(3) + ipt(4) + ipt(5) +ipt(6)

c
c======== MATERIAL PROPERTY BLOCK DATA s======
c

if (ipt(29).ne.0) write (ipt(29),*)

+ ’Reading Material Property Block Data’
c

c— Read soil physical properties:

¢— porosity (-); horizontal and vertical permeability (m**2);
¢~ bulk density (gm/1);

c— organic carbon fractional content(-)
c— Error Check: block number=(0,ipt(26)); porosity=(0,1);
c— - permeability>0; density>0; foc=(0,1);

call commnt (11,21)
Do 3401 = 1,ipt(26)
Read (11,*) ii,bphi(ii),bpermh(ii),bpermv(ii),bsdeni),
+ bfoc(ii)
If (ii.le.1 .or. ii.gt.ipt(26)) Call ErrMessage (27,0,ipt(29))
If (bphi(ii).lt.zer0 .or. bphi(ii).gt.rone)
+ Call ErfMessage (28,0,ipt(29))
If (bpermh(ii).lt.zer0 .or. bpermv(ii).It.zer0)
+ Call ExrMessage (29,0,ipt(29))
If (bsdengii).It.zer0) Call ErrMessage (30,0,ipt(29))
If (bfoc(ii).1t.zer0 .or. bfoc(ii).gt.rone)
+ Call EriMessage (31,0,ipt(29))
340 continue
c
c— Read the water retention parameters:
c— residual water saturation(-); van Genuchten n value;
c— van Genuchten alpha value
¢— Define the van Genuchten m value.
¢— Error Check: block number=(0,ipt(26)); residual saturation=(0,1 %
c— n value>0; alpha value>0.
call commnt (11,21)
Do 350 i = 1,ipt(26)
Read (11,*) ii,bsrw(ii),bvgn(ii),bvga(ii)
If (ii.It.1 .or. ii.gt.ipt(26)) Call ErrMessage (27,0,ipt(29))
If (bsrw(ii).lt.zer0Q .or. bsrw(ii).gt.rone)
+ Call ErrMessage (33,0,ipt(29))
If (bvgn(ii).lt.zer0) Call ErrMessage (34,0,ipt(29))
If (bvga(ii).It.zer0) Call ErrMessage (35,0,ipt(29))
bvgm(ii) = rone - rone / bvgn(ii)
350 continue

c
¢~ Read the dispersion parameters:
c— longitudinal and transverse dispersivity (m).

¢— Error Check: all parameters > 0.
call commnt (11,21)
Do 360 i = 1,ipt(26)
Read (11,*) ii,bdisl(ii),bdist(ii)
If (ii.lt.1 .or. ii.gt.ipt(26)) Call ErrMessage (27,0,ipt(29))
If (bdisl(ii).It.zer0 .or. bdist(ii).lt.zer0)
+ Call ErrMessage (36,0,ipt(29))
360 continue
c
c¢— Write the material properties for each block.
write (21,514)
Do 3701 = 1,ipt(26)
Write (21,515) 1,bphi(i),bpermh(i),bpermv(i),bsden(i),bfoc(i),
+ bsrw(i),bvgn(i),bvga(i),
+ bdisl(i),bdist(i)
370 continue

c
¢c===== DISPERSION TENSOR ======
c
c
o— Ifletrl(21) is true the hydrodynamic dispersion tensor is
c— computed internally for all components. If letrl(21) is false
c— read hydrodynamic dispersion tensor information directly. The
¢— hydrodynamic dispersion tensor is read for compound ic first
¢— for the gas phase and then for the aqueous phase on separate
c— lines. Hydrodynamic dispersion tensors must be entered for all
c— components present when lctrl(21) is false. Units (m**2/sec).
if (ipt(29).ne.0) write (ipt(29),%)
+ ’Reading Dispersion Parameters’
call commnt(11,21)
read (11,*) letrl(21)
write (21,580) Ictrl(21) .
call commnt(11,21)
if(.not.Ictri(21)) then
write (21,581)
do 3801 =1, istop
call commnt(11,21)
read (11,*) ic, d(8*ic-7),d(8*ic-6),d(8*ic-5),d(8*ic-4)
read (11,%) ic, d(8*ic-3),d(8*ic-2),d(8*ic-1),d(8*ic)
write (21,585) cname(ic),’gas *,d(8*ic-7),d(8*ic-6)

181

+ A(8%ic-5),d(8%ic-4)
280 write (21,585) cname(ic),’aqueous’,d(8*ic-3),d(8*ic-2)
+ Jd(8*ic-1),d(8*ic)
end if
c
¢~ Conversions:
¢— convert solid phase density from gm/cc media to gnv/L media;
¢ reset bidisl(i) as the difference between the longitudipal and
¢ teansverse dispersivity;
¢ redefine *bpermb’ gs an apisotropy factor: kh =kh /kv;
c— multiply matrix compressibility by a constant 1/2; determine if the
¢~- entire domain is incompressible.
Do 3901 = 1,ipt(26)
bsden(i) = bsden(i) * 1.0d3
bdisl(i) = bdisl(i)-bdist(i)
bpermh(i) = bpermh(i) / bpermv(i)
390 continue

<

¢
if (ipt(29).ne.0) write (ipt(29),*)
+ *Reading Sorption Parameters’
write(21,589)
c
¢~ Read data for rate limited sorption.
If (lctrd(25)) Thea

¢
c— Field 1 - Model type:
c— Read a logical variable indicating if a one or two compartment
c—sorption model is used.
¢— Error check: for two compartment case make sure ipt(26)=1 and
c—ipt(15)=1.
call commant (21,21)
read (11,%) letel(19)
if (lctrl(19).and.ipt(26).ne.1) Call ErMessage (38,0,ipt(29))
if (lctri(19).and.ipt(15).ne.1) Call ErMessage (38,0,ipt(29))
c
¢— Read two compartment model data:
¢~ The two compartment model has a slow and a fast compartment.
¢ Both compartments are modeled with the Freundlich equation.
¢=— Four parameters must be input:
c— (1)amultiplicr to copvert the slow compartment bok to
the fast compartment bok;
(2) a multiplier to convert the slow compartment bom to
the fast compartment bom;
(3) a multiplier to convert the slow compartment kex to
c=— the fast compartment kex;
c— (4) the fraction of solid phase density in the fast compartment.
o— Error Check: Kf and n=1/m > 0; slow/fast fraction = (0,1)
If (letrl(19)) Then
calt commat(11,21)
read (11,*) xbok, xbom, xkex, xden
if (xbok .It. zer0) Call ErrMessage (39,0,ipt(29))
if (xbom .1t. zer0) Call ErrMessage (40,0,ipt(29))
if (xden.lt.zer0 .or. xden.gt.rone)
+ Call ErrtMessage (41,0,ipt(29))
ipt(6) = ipt(6) + 1
ipt(16) =ipt(16) + 1
ipt(60) = ipt(60) + 1
ipt12) =ipt(12) + ipt(t)
iep(iptG H+ipHd) HptS)+HpUE)) =
+ icp(ipt(3)+ipt(4)+ipt(5)}+1)
EndIf

1171

<

¢~ Read sorption parameters data:

= Read for each material property block enter:

¢~ (1) the kf parameter values for each organic component in
C— order from 1 to the number of components:

e units (micro gm)(gm solid) with aqueous concentration
(e inmg/l;

¢— (2) the n parameter values order in the same way.

¢~ Error Check: Kfand n=1/m>0

do 401 j = 1,ipt(15)
if (bok(*ipt(15)+j) .1t zer0)

+ Call ErrMessage (39,0,ipt(29))
401 if (bom(i*ipt(15)+)) .It. zer0)
+ Call ErrMessage (40,0,ipt(29))

[

| c— Write rate-limited sorption parameters:

write (21,516) ! write sorption data
Do 410 j = 0,ipt(26)-1
wiite (21,517} j+1
write (21,518) {cname(j),bok(i*ipt(15)+j),cname(j),
+ bom(i*ipt(15)+),j=Lipt(15))
410 continue
If (letrl(19)) Then ! write two compartment data
write (21,519) xbok, xbom, xden, xkex
EndIf
o}
c— Conversions:
C— Convert units for sorption parameters, This assumes the input
C— values for Kf or Koc are mjcrograms/gram (with aqueous

| C— concentration in mg/l) and bom is 1/m (unitless).

C— The converted Kf or Koc is in grams organic / gram solid.
do 420 i =0,ipt(26)-1
do 420 = 1,ipt(15)
if(bok(i*ipt(15)+).ge.zer0) then
bok(i*ipt(15)+) = bok(i*ipt(15)+j) * 1.0d-6
bom(i*ipt(15)+j) = rone / bom(i*ipt(15)+j)
else if(bok(i*ipt(15)+j).It.zer0) then
bok(i*ipt(15)+) = -bok(i*ipt(15)+j)*1.0d-6*bfoc(i+1)
bom(i*ipt(15)+j) = rone
end if
420 confinue
C

C— Convert xbom to be consistent with bom.
if(lctrl(19)) xbom = rone/xbom
C
C— Initial the retardation factors to one when a separate solid
C—- phase is considered.
do 404i =1, istop
404 ketd(i) = rone
c
c— Read equilibrium sorption parameters (retardation factors).
Else
letrl(19) = false.
C
C— Read retardation factors if desired. Retardation factors
C— can only be used when nonequilibrium sorption is not
C— being considered. Retardation factors are input as
C— component number as input above and then the retardation
C— factor. Retardation can be considered for oxygen or nutrient.
[}
call commat(11,21)
read(11,*) Iretrd
call commnt(11,21)
if(.not.lretrd) then
write(21,590)
do 405i=1, istop
405 krtd(i) = rone
else
write(21,588)
do 406i = 1, istop
read(11,*) ic, krtd(ic)
write(21,574) cname(ic),krtd(ic)
if(krtd(ic).It.rone)
+ Call ErrMessage (128,1,ipt(29))
406 continue
end if
EndIf

¢— This block read only if biotranformation egs are solved.

call commnt(11,21) If (Ietrl(3)) Then
do 400 1 = 0,ipt(26)-1 if (ipt(29).ne.0) write (ipt(29),*)
read (11,*) ii,(bok((li-1)*ipt(15)+j),j=1ipt(15)) + ’Reading Biological Parameters’
vead (11,%) i, (bom((i-1)*ipt(15)+j),j=1,1pt(15)) c
400 continue ¢— Read an integer indicating the number of organic components in
do 401 i = 0,ipt(26)-1 c— the biophase. The biophase always contains oxygen and nutrient

182

c— if present.
¢— Error Check: lctrl(3) must be true if ipt(17)>0.
call commnt(11,21)
read (11,%) ipt(17)
if (.not.ictri(3) .and. ipt(17).gt.0)
+ Call ErrtMessage (81,0,ipt(29))
if (ipt(17) .gt. ipt(15)) Call ErrtMessage (130,1,ipt(29))

C— Biological parameters.
C— ipt(7) is the number of components in the bio-phase. The bio-phase
C— always includes oxygen and nutrient if present.
if(ipt(17).gt.0) then
if (letrl(9)) then
ipt(7)y=ipt(17)+2
icp(ipt(3)+ipt(4)+ipt(5)+ipt(6)+ipt(17)+2) = ipt(15) + 4
else
ipt(7) =ipt(17) + 1
end if .
icp(ipt(3)+ipt(4)+ipt(5)+ipt(6)+Hpt(17)+1) = ipt(15) + 2

c
c— Add the biomass as a component to the biophase.
c~ Initial cname with”biomass”.
ipt(7) =ipt(7) + 1
icp(ipt(3)+ipt(4)+ipt(5)+ipt(6)+ipt(7)) = istop+!
cname(istop+1) =’ biomass ’
else if(ipt(17).eq.0) then
ipt(7) = ipt(17)
end if
c
c— Generate pointer.
ipt(61) = ipt(3) + ipt(4) + ipt(5) + ipt(6) + ipt(7)
c
c— Read 2 logical biodegradation'control switches:
c— lctrl(17) indicates if a steady state biomass is to used;

c— lctrl(16) indicates biodegradation equations are modeled as a

c— sink term in the aqueous transport equations; otherwise their

¢~ modeled as rate-limited exchange to a separate biophase.
call commnt(11,21)

read (11,*) lctrl(17),letei(16)
c
c— Determine the type of kinetics.
c— 1 - standard monod kinetics
¢c— 2 - monod kinetics with substrate inhibition
¢— 3 - monod kinetics with lumped substrate inhibition
c— 4 - monod kinetics with saturation dependency
¢— 5 - monod kinetics with saturation dependency and
c— substrate inhibition
if(lctrl(3)) then

call commnt(11,21)

read (11,%) ipt(39)
c
¢— Error Check: Cusrent version restriction.

if (ipt(39).gt.2) call ErrMessage (68, 1,ipt(29))
c
¢~ Read Monod parameters for each component of the biophase:
c— (1) component number
¢— (2) electron acceptor use coefficient gm O2/gm substrate) -
c— (3) nutrient use coefficient (gm n/gm substrate)
¢— (4) maximum substrate use rate (gm substrate/gm biomass*sec)
¢— (5) half saturation constant (gm substrate/l)
¢c— (6) yield coefficient (gm biomass/gm substrate)
c— (7) inhibition constant (unitless) expressed as a fraction of
c— the aqueous solubility. For substrate and nutrient this

c— turns off metabolism when the concentration is above this
c— threshold concentration and for electron acceptor this

c— turns off metabolism when the concentration is below this
c— threshold concentration. In both cases hyperbolic

c— functions are used.

¢— Error Check: Component number must be defined; parameters values
- must be nonnegative.

ibpt = ipt(3)+ipt(4)+ipt(5)Hpt(6)

do 430 i=L,ipt(7)-1

call commnt(11,21)

read (11,*) ic,fuse(ic),
+ fuse(ic+istop),umax(ic),
+ khalf(ic),xyield(ic),
+ kinhib(ic)

icp(ibpt+) =ic

Cc

c

4

c

[

183

c
c— Read water phase parameters:
c— (1) water phase viscosity (cPoise)

c
c— Write phase parameters and compositions.

if (icp(ibpt+).1t.0 .or. icp(ibpt+i).gt.istop)

+ Call ErrtMessage (45,0,ipt(29))
if (fuse(ic).lt.zer0)

+ Call ErrtMessage (94,0,ipt(29))
if (fuse(ic+istop).lt.zer0)

+ Call ErrMessage (95,0,ipt(29))
if (umax(ic).lt.zer0)

+ Call ErrtMessage (96,0,ipt(29))
if (khalf(ic).lt.zer0)

+ Call ErrMessage (97,0,ipt(29))
if (xyield(ic).It.zer0)

+ Call ErrMessage (98,0,ipt{(29))
if (kinhib(ic).lt.zer0)

+ Call ErtMessage (99,0,ipt(29))

430 continue

¢— Read five more bio parameters:

c— (1) decay coefficient (1/sec)

¢— (2) minimum biomass (gm/l media)

c— (3) maximum biomass (gnv1 media)

¢— (4) initial uniform biomass (gm/l media)

¢— (5) delay period for initiation of bioreactions (sec)

c— Error Check: parameters must be nonnegative, initial biomass must
C— be between minimum and maximum biomass.

call commnt(11,21)

read (11,*) kd,xbmin,xbmax,xinit,t(11)

if (kd.lt.zer0) Call ErtMessage (99,0,ipt(29))
dod4li=1,ipt(17)

441 if (9.990d0*kd.gt.umax(i)) Call ErrtMessage (37,1,ipt(29))

if (xbmin.lt.zer0) Call ErrMessage (100,0,ipt(29))
if (xbmax.It.zer0) Call ExtMessage (101,0,ipt(29))
if (xinit.lt.zer0) Call EcrMessage (102,0,ipt(29))
if (t(11).1t.zer0) Call ErrMessage (103,0,ipt(29))
if (xinit.It.xbmin .or. xinit.gt.xbmax)

+ Call ErrtMessage (104,0,ipt(29))

c— Write biological parameters.

write (21,520) ipt(17),1etr}(17),lctrl(16),ipt(39),xinit
+ ,xbmin,xbmax kd,t(11)
Do 4401 = L,ipt(7)-1
write (21,521) cname(icp(ibpt+i)),fuse(icp(ibpt+i)),

+ fuse(icp(ibpt+i)+stop),umax(icp(ibpt-+)),
+ khalf(icp(ibpt+i)),xyield(icp(ibpt+i)),
+ kinhib(icp(ibpt+i))
440 continue
EndIf
c
c— Bio eqs are not solved. Set control switches.
Else
iptIh =0
ipt(M =0

letrl(16) = false.
ipt(61) = ipt(60)

. SEndIf

c=====PHASE PARAMETERS AND COMPOSITION ===<==

if (ipt(29).ne.0) write (ipt(29),*) 'Reading Phase Parameters’

call commnt(11,21)
read (11,%) wvis

¢— Determine if slip flow is modeled and read the Klinkenberg coeff

call commnt(11,21)
read (11,%) Ietrl(20),b

b=b* patm ! convert from atm to Pa

write(21,522) wvis,lctrl(20),b

write(21,523) Gas’, ipt(3)

If (ipt(3).gt.0) write(21,524) (cname(icp(i)),i=1,ipt(3))
write(21,523) * Aqueous’, ipt(4)

If (ipt(4).gt.0) write(21,524) (cname(icp(i-+pt(3))),i=1,ipt(4))
write(21,523) *Organic Liquid’, ipt(5)

If (ipt(5).gt.0) write(21,524)
+ (cname(icp(ipt(3)+ipt(4)+i)),i=1,ipt(5))

wrile(21,523) "Solid’, ipt(6)

lf (ipt(6).210) writé(21,524)
(cname(icp(ipt(3)+ipt(4)+ipt(5)+1)),i=1,ipt(6})

wmc(ZI ,523) *Microbial’, ipi(7)

TE Gipt(7).£0.0) write(21,524)

+ (ename(icp(ipt(3)Hpu@)HpS)HpUEH)),i=11pK7))

¢
o Convert viscosity frot cPoise to Pa-s
wvis = rone / (wvis * 1.0d-3)

&

L)

¢rm=z===== TEMPERATURE PARAMETERS ======

xf (Ipt(29).ne 0) wiite (ipt(29),%)
*Reading Temperature Parameters’
[
¢~ Read a logical variable indicating if the temp dist is uniform.
calf commnt(l1,21)
read (11,*) Yeul(10)
write (21,525) Ietrl(10)

C
C— Read and write the wniform temperature distribution in
€ ccntrigrade.
call commnt(11,21)
i Qetei(10)) thea
vead (11,*) ctemp
write (21,526) ctemp
do 450 i=1,ip(1)
[
c— Express temperatures in absolute.
temp(i}) = ctemp + tabs
450 continue

[

o~ Read nonuniform vertical temperature profile (one temperature for
c-- cach nade along the vertical boundary).

¢— Nonuniform temperature can only be defined in association with a
¢— generated rectangular grid. Error check on this.

clse

if (igrid .1t. 0) Call EnrMessage (132,0,ipt(29))
write (2[527)
do 460 i = 1,ipt(86)
read (11,*) depthnd, tnode
iftigrid.cq.1.and.tigt.1) tnodem = (node+tnode2)/2.040
tnode? = tnode
do 460 ii = 1,ipt(87)
if(igrid.cq.2) then
if(ipt(87).)e.ipt(86)) then
itnode =i + (i-1)*ipt(87)
else
itnode =i + (ii-1)*ipt(86)
end if
temp(itnode) = tnode
idepth(itnode) =i
if (depthnd .ne. znode(itnode))
+ Call ErrtMessage (133,0,ipt(29))
zdepth(i) = znode(itnode)
clseif(igrid.eq.1) then
if(ip1(87).1c.ipt(86)) then
itnode =i + (i-1)*(2*ipt(87)-1)
itnod2 = itnode - ipt(87) + 1
else
itnode =i + (ii-1)*(2*ipt(86)-1)
itnod?2 = itnode + ipt(86) - 1
end if
templitnode) = tnode
idepth{itnode) = 2%i-1
if (depthnd .ne. znode(itnode))

+ Calt ErtMessage (133,0,ipt(29))
zdepth(2*i-1) = znode(itnode)
if(i.gt.1.0rii.ltipt(87)) then

temp(itnod2) = tnodem
idepth(itnod2) = 2*i
zdepth(2*i-3) = (znode(itnode)+znode(itnod3))/2.0d0
end if
itnod3 = itnode
cad if
460 continue
c
e— Express temperatures in absolute.

470 ‘témp(i) ='temip(i) + 273.15080

‘Write (2‘1 ,528) (i, temip(@), i = 1,ipE(1Y)

Je

| c— Read vectors o’f tefriperdture dependent parameters Values are
| c—niceded for eich fiode atthe vertical boundsry starting at the
c— surface. Teéririediate villues are Tinearly interpdtated when the
c— unioh jack ‘gﬂd 15 selected. Valies ‘%ire fieeded for 'the first

c— five paramefers ‘bellow for'évery cottiporiettr. 'Give the five sets
c—foragiven contipotiént dnd then go fo ‘the next ‘compaiient. Use
o—fife original corffofienit'ordering s it the cortiponerit information
o— section. ‘After all the component valies: sgive the kd values.

c—

1 c— Temperature dependent parameters 4re as follows:

c— (1) component vapor pressure (atm)
c— (2) component vapor viscosity (cPoise)
c— (3) component Henry's law constant (atm l/gm)
{ e— (4) component aqueous solubility (gm/I)
c— (5) ‘comporient maximim ‘tilization rate
c— (& Substrdte 7 g biohuass sec)
c— 6) biowiass decay rate'(1/sec)
[
1 o—Reat ‘component vipor pressues.
if(ighideq.2) theh
1 ipt(88) =ipt(86)
else if(igridieq.) then
§pt(88) = 2*ipf(86)-1
endif
ipt(89) = 5 *ipt(88)
ii=0

¢— Loop ‘over ttie iumber of components.
do 477 ic = 1, istop
write(21,570) cname(ic)
c
c— Read component vapor pressure.
call commnt(11,21)
read(11,*) (dtemp(i+ii),i=1,ipt(86))
do 4711 = ipt(86),1,-1 ! Yead nodal vapor pressure
if(igrid.eq.2) then
dtemp(i+ii) = dtémp(i+iiy*pati - cvp(ic)
else if (igridieq.1) then
‘dtemip(2*i-1 +ii) = dtemp(i+iy*paitm - cvp(ic)
it 1) dtetnp(2%i-2+55)
+ -épatm*(dtemp(x)-i-uﬁl-dtemp(l-l+u))/2 0d0-cvp(ic)
end if
471 continue
if(igrid/eq.2) then
ii=ipt(86)+ii
else if (igrid.eq.1) then
ii = 2*ipt(86)-1+ii
endif
c .
¢— Read component vapor viscosity.
call commnt(11,21)
read(11,*) (dtemp(i+ii),i=1,ipt(86))
do 4721 = ipt(86),1,-1
if(igrid.eq.2) then
dtemp(i-+ii) = dtemp(i+ii)*1.0d-3 - cvvis(ic)
else if (igrid.eq.1) then
dtemp(2*i-1-+ii) = dtemp(i+ii)*1.0d-3 - cvvis(ic)
if(i.gt.1) dtemp(2*i-2+ii) = 1.0d-3*
+ (dtemp(i+iiy+dtemp(i-1+ii))/2.0d0 - cvvis(ic)
endif
472 continue
if(igrid.eq.2) then
1i=ipt(86)-+ii
else if (igrid.eq.1) then
if = 2*ipt(86)-1-+ii
endif
c N
¢— Read component Henry's law coefficients.
call commnt(11,21)
read(11,%) (dtemp(i+ii),i=1,ipt(86))
do 473 i = ipt(86),1,-1
if(igrid.eq.2) then
dtemp(i+ii) = patm*dtemp(i+ii) - chen(ic)’
else if (igrid.eq.1) then

184

dtemp(2*i-1-+ii) = patm*dtemp(i+ii) - chen(ic)
if(i.gt.1) dtemp(2*i-2+ii) = patm*

+ (dtemp(i-+i)+dtemp(i-1+ii))/2.0d0 - chen(ic)
end if
473 continue
if(igrid.eq.2) then

H=ipt(86)-+ii
else if (igrid.eq.1) then
ii = 2*ipt(86)-1-+ii
endif
c
¢— Read component aqueous solubilities.
call commnt(11,21)
read(11,*) (dtemp(i-+ii),i=1,ipt(86)) .
cmwaq = cmw(ipt(15)+1)/(cmw(ic)*cden(ipt(15)+1))
do 474 i = ipt(86),1,-1
if(igrid.eq.2) then
dtemp(i+ii) = cmwaq*dtemp(i-+i) - casol(ic)
else if (igrid.eq.1) then
dtemp(2*i-1-+ii) = cmwaq*dtemp(i+ii) - casol(ic)
if(i.gt.1) dtemp(2*i-2+ii) = cmwaq*
+ (dtemp(i-Hi)+dtemp(i-1+ii))/2.0d0 - casol(ic)
end if
474 continue
if(igrid.eq.2) then
ii=ipt(86)+ii
else if (igrid.eq.1) then
ii = 2*ipt(86)-1+ii
endif
c
¢— Read component maximum substrate utilization rate.
call commnt(11,21)
read(11,*) (dtemp(i+ii),i=1,ipt(86))
do 475 i = ipt(86),1,-1
if(igrid.eq.2) then
dtemp(i-+ii) = dtemp(i+ii) - umax(ic)
else if (igrid.eq.1) then
dtemp(2*i-1-ii) = dtemp(i-Hi) - umax(ic)
if(i.gt.1) dtemp(2*i-2+ii)
+ = (dtemp(i-+ii)+dtemp(i-1+ii))/2.0d0 - umax(ic)
endif
475 continue
if(igrid.eq.2) then
ii=ipt(86)-+i
else if (igrid.eq.1) then
ii = 2*ipt(86)-1-+ii
endif
do 477 ip = 1, ipt(86)
write(21,571) zdepth(ip)
+ (dtemp(ip+ipp*ipt(88)+(ic-1)*ipt(89)),ipp=0,4)
477 continue
c
¢— Read biomass decay rate.
call commnt(11,21)
write(21,572)
read(11,*) (dtemp(i+ii),i=1,ipt(86))
do 476 i = ipt(86),1,-1 '
if(igrid.eq.2) then
dtemp(i-+i) = dtemp(i-+ii) - kd
else if (igrid.eq.1) then
dtemp(2*i-1-+ii) = dtemp(i+ii) - kd
if(i.gt.1) dtemp(2*i-2+ii)
+ = (dtemp(i-+ii)+dtemp(i-1-+ii))/2.0d0 - kd
endif .
476 continue
write(21,573) (zdepth(ip),dtemp(ip+istop*ipt(89)),ip=1,ipt(86))
endif ‘
c

c— Compute the gamma factor for computing mixture vapor viscosities.

c— Initialize gas phase viscosity if it is a constant.
letrl(13) = .false, .
if (ipt(3) .gt. 1) then
letrl(13) = .true.
do 320 node = 1, ipt(1)
do 320 i = L,ipt(3)
ii =icp(®)
if(letrl(10)) then
_cvvist = cvvis(ii)

else
cyvist = cvvis(ii)
+ + dtemp(ipt(88)+(ii-1)*ipt(89)+idepth(node))
end if

i3 =(i-1) * ipt(3) + (node- 1)*ipt(3)*ipt(3)
do 320 j = Lipt(3)
ji=iep() -
if(lctrl(10)) then
cvvist2 = cvvis(jj)
else
cvvist2 = cvvis(jj)
+ + dtemp(ipt(88)+(jj-1 y*ipt(89)+idepth(node))
end if
gamma(i3+j) = ((rone + dsqrt{cvvist/cvvist2) *
+ (cmw(jj)/emw(ii))**0.250d0) ** 2) /
+ dsqrt(8.0d0 * (rone + (cmw(jj)femw(ii))))
320, continue
else ! vapor viscosity is a constant
do 330 i = L,ipt(1)
if(fctrl(10)) then
cvvist = cvvis(icp(1))
else)
cvvist = cvvis(icp(l))
+ + dtemp((icp(1)-1)*ipt(88)+idepthi(i))
end if
vis(i) = rone / cvvist
330 continue

endif
c
c======== QUTPUT CONTROL PARAMETERS ========
c
if (ipt(29).ne.0) write (ipt(29),*)
+ 'Reading Output Control Parameters’
c

c— Read a logical variable indicating if initial conditions
c— should be printed.

call commnt(11,21)

read (11,*) Iprnt(3)
c
c— Initial print counters.

ipt(69) = 0
ipt(70) =0
ipt(71) =0
ipt(72)=0
ipt(73) =0

c
c— Read and write print switches for specific variables:
call commnt(11,21)

iend = ipt(3) + ipt(4) + ipt(5) + ipt(6) + ipt(7)
do480i=1,7

480 read(11,*) Iprat(i+7),Icon(i)

read(11,*) Iprnt(15),lcon(8)
if(Ipmt(15).or.lcon(8))

+ read(11,*) ipt(69),(icp(iend+i),i=1,ipt(69))
read(11,*) Iprnt(16),Icon(9)
if(lprnt(16).or.1con(9))

+ read(11,%) ipt(70),(icp(iend+ipt(69)+i),i=1,ipt(70))
read(11,*) Iprnt(17),lcon(10)
if(lprnt(17).or.lcon(10))

+ read(11,*) ipt(71),(icp(iend+ipt(69)+ipt(70)+H),i=1,ipt(71))
read(11,*) Iprnt(18),lcon(11)
i(Iprnt(18).or.lcon(11)) read(11,*) ipt(72)

+ [(icp(iend+ipt(69)+pt(70)+ipt(71)+i),i=1,ipt(72))
read(11,*) Ipmt(19),lcon(12)
if(Ipmt(19).or.Icon(12)) read(11,¥) ipt(73)

+ ,(icp(iend+ipt(69)+ipt(70)+ipt(7 1)+ipt(72)+i),i=1,ipt(73))
read(11,*) 1prnt(29),lcon(18) ! element TPH cocnentration
do485i=13,17 ~

485 read(11,*) Iprnt(i+7),lcon(i)
c
¢— Setup pointers.
ipt(81)=0
ipt(82) =0
iend2 = ipt(69) + ipt(70) + ipt(71) + ipt(72) + ipt(73)
ipt(74) = iend2
call commnt(11,21)
read(11,*) Iplt(1) -
if(Iplt(1)) read(11,*) ipt(81),(icp(iend+2*iend2+i),i=1,2¥ipt(81))

185

call commnt{i1,21)

read(!1,*) Ipl(2)

if(iplt(2)) read(11,%) ipt(82)
+ (icp(icnd+2*+iend2+24ipt(81)+0),i=1,2%ipt(82))

¢~ Error check: time series plot is restricted to six components.
P81)1+Hpt(82).81.6) call ErrMessage (124,1,ipt(29))

c
¢~ Error check: only print out information for phases that are present.

if ((pent(9).or.Ipmt(1 1) or.lprmt(12).or.lpmt(15).or.lprnt(20)
+ .or.lpmt(23).or.con(2).or.lcon(4).or.lcon(5).or.lcon(8)
+ .or.Jcon{13)).and.ipt(3).eq.0)

+ call EcrMessage (71,1,ipt(29))

if ({lprnt(10).otpent(i 1).or.lprnt(13).or.lprnt(16).orlpmt(21)
+ .onlpmi(24).orlcon(3).or.lcon(4).or.lcon(6).or.icon(9)

+ .orlcon{14)).and.ipt(4).cq.0)
+ call ErMessage (72,1,ipt(29))

if ((Ipemt(14).or.lprmt(17).0r.lpmt(22).or.lcon(7).or.lcon(10)
+ .otlcon(15)).and.ipt(5).cq.0)
+ call EnMessage (107,1,ipt(29))

if (pent(18).and ipt(6).¢q.0) call ErrMessage (108,1,ipt(29))
if (Iprmt(19).and.ipt(7).cq.0) call EmrMessage (109,1,ipt(29))

c— Error check: only print out information for more components than
¢~ in a given phase.
if (ipt(69).gt.ipt(3).oript(81).gtipt(3))

if (ipt(69).gtdpt(3))

4+ call ErrMessage (110,1,ipt(29))

if (ipt(70).gtipt(4)

+ call EmMessage (111,1,ipt(29))

if (ipt(71).g8.ipt(5)) call EmMessage (112,1,ipt(29))

if (ipt(72).81.3pt(6)) call ErMessage (113,1,ipt(29))

if (ipt(73).gt.ip(7)) call ErrMessage (114,1,ipt(29))
write(21,531) (Iprnt(i),i=8,14)

write(21,532) Ipmt(15)

if(Iprnt(15)) write(21,545) (cname(icp(iend+)),i=1,ipt(69))
write{21,533) Iprat(16)

if(lprnt(16)) write(21,545)
+ (cname(icp(iend+ipt(69)+)),i=1,ipt(70))
write{21,534) Iprmt(17)

if(lpent{17)) write(21,545)
+ (cname(icp(iend4ipt(69)+ipt(70)+i)),i=1,ipt(71))
write(21,535) Iprat(18)

if(lpent(18)) write(21,545)
+ (cname(icp(iend+ipt(69)+ipt(70)+ipt(71 H+i)),i=1,ipt(72))
write(21,536) Iprat(19).lprnt(29)

i{(lpent(19)) write(21,545) (cname(
4+ lepfiend+ipt(69)+Hp(70)+ipt(71 HHpt(72)+i)),i=1.ipt(73))
write(21,537) (Iprat(i),i=20,24)

write{21,538) (lcon(i)i=1,7)

write(21,539) lcon(8)

if({lcon(8)) write(21,545) (crame(icp(iend+i)),i=1,ipt(69))
write(21,540) lcon(9)

if(lcon(9)) write(21,545)
+ (cname(icpfiend+ipt(69)+i)),i=1,ipt(70))
write(21,541) lcon{10)

if{lcon(10)) write(21,545)
+ (cname(icp(iend+ipt(69)+ipt(70)+i)),i=1,ipt(71))
write(21,542) Icon(11)

if(lcon(11)) write(21,545)
+ (cname{icp{iend+ipt(69)+ipt(70)}+ipt(71)+i)),i=1,ipt(72))
write(21,543) lcon(12),Icon(18)

iftlconf12)) write(21,545) (cname(
+ icp(iend+ipt(69)+ipt(70Mipt(T 1 HpI(72)+i)).i=1,ipt(73))
write(21,544) (Icon(1),i=13,17)

write(21,546) Iplt(1)

if(Ipl1)) then

do 4901 =1, 2*ipt(81),2

¢
¢~ Error check: node numbers for time series input must be within

o=~ domain.

iticp{iend+2*iend2+i+1).1t.0.oricp(iend+2*iend2+i+1)
+ gtipt(1)) call EcrMessage (125,1,ipt(29))
490 write(21,547) cname(icp(iend+2*iend2+i)),
+ icp(iend+2*iend2+i+1)
end if
write(21,548) Iplt(2)
i{lpit(2)) then

do 495 i = 1, 2%ipt(82),2
c
¢~ Error check: node mimbers for time seriés input must be within
c— domain.
if(icp(iend+2*iend2+2%ptB1)+i+1)Jt0
+ .or.icp(iend+2%iend2+2%ipt(81)++1).gt.ipt(1))
+ call ErrMessage (125,1,ipt(29))
495 write(21,547) cname(icp(iend¥2*iend2+2*ipt(81)+i))
+ Jicp(iend+2*iend2+2*ipt(81)H+1)
end if
jadd = 1
jadd2 =1
if(ipt(69).gt.0) then
ii=0
do 6001 = 1ipt(3)
if((icp(i).eq.icp(iend+iadd)).and.(ii le.ipt(69))) then
fi=ii+1
icp(iend+iend2+iadd) = (-1)*ipt(1)
iadd =iadd + 1
end if
600 continue
end if
if(ipt(81).gt.0) then
ii=0_
do 601 i = 1,ipt(3)
if((icp(i).ed.icp(iend+2*iend2+iadd2))
+ .and.(ii.le.ipt(81))) then

fi=ii+1
icp(iend+2*iend2-+iadd2+1)

+ = (i-1)*ipt(1y+cp(iend+2*iend2+iadd2+1)
iadd2 =jadd2+2

end if
601 continue
end if
if(ip1(70).gt.0) then
ii=0

do 605 i = 1+ipt(3),ipt(3)+ipt(4)
if((icp(i).eq.icp(iend+iadd)).and.
+ (Gi-ipt(3).1e.ipt(70))) then
fi=ii+1
icp(iend+iend2-+add) = (i-1)*ipt(1)
tadd =jadd + 1
end if
605 continue
end if
if(ipt(82).gt.0) then
ii=0
do 606 i = 1-+ipt(3),ipt(3)+ipt(4)
if((icp(i).eq.icp(iend+2*iend2+iadd2))

+ .and.(ii-ipt(3).le.ipt(82))) then
fi=ii+1
icp(iend+2*end2+iadd2+1) -

+ = (i-1)*ip((1)+icp(iend+2*iend2+iadd2+1)
iadd2 =iadd2 +2

end if
606 continue
end if
if(ipt(71).gt.0) then
ii=0

do 6101 = 1+ipt(3)-+ipt(4),ipt(3)+pt(4)+pt(5)
if((icp(i).eq.icp(iend+iadd)).and.
+ (ii-ipt(3)-ipt(4).1e.ipt(71))) then
fi=ii+1
icp(iend+iend2+iadd) = (i-1)*ipt(1)
iadd =iadd + 1
end if
610 continue
end if
if(ipt(72).gt.0) then
ii=0
do 615 i = 14+ipt(3)+ipt(4)+ipt(5),ipt(3)+ipt(4)+ipt(S}+ipt(6)
if((icp(i).eq.icp(iend+iadd)).and.
+ (ii-ipt(3)-ipt(4)-ipt(5).le.ipt(72))) then
fi=fi+1
icp(iend-+iend2+iadd) = (i-1)*ipt(1)
jadd =fadd + 1
end if
615 continue

186

end if
if(ipt(73).gt.0) then
ii=0
do 620 i = 1+ipt(3)+ipt(4)+ipt(5)+ipt(6) ,
+ ipt(3)Hpt(4)+ipt(5)+ipt(6)+ipt(7)
if((icp(i).eq.icp(iend+iadd)).and.
+ (ii-ipt(3)-ipt(4)-ipt(5)-ipt(6).le.ipt(73))) then
fi=ii+1
icp(iend-+iend2+iadd) = (i-1)*ipt(1}
iadd =jadd+ 1

end if
620 continue
end if

c
- ¢— Error check: contour ﬁle must be opened if any Icon is true.

do625i=1,17

625 if (Icon(i).and..not.Ictr}(23)) call ErrtMessage (106,0,ipt(29))

c

c— Error check: time series file must be opened if any Iplt is true.
do630i=1,2

630 if (Iplt(i).and..not.Ictrl(15)) call ErrMessage (123,0,ipt(29))
return

c
c— formats
500 format (T6C*)T+
MISER’/
+ l

+’ MiIchigan Soil vapor Extraction Remediation model’
+/
+’ Project directed by: L.M. Abriola’

+ I/

+' Written by: J.R. Lang and K.M. Rathfelder’
+/1

+’ Beta Version 1.0; May 1, 1996°

+//

+T76(*HT6(*+"))
501 format CINPUT AND OUTPUT FILES *,53(C’=")/
+’ Main input file; control and field data: (unit 11) = *,a20/
> Input file #2; ICs and BCs: (unit 13) =,a20/
Error and warning message input data: (unit 14) =’,a20/
Main output file: (unit 21) =*,a20/
Error messages: (unit 22) =,a20/
Performance Output: (unit 23) =,a20/
Contour plot data: (unit 24) = *,a20/
Material balance information: (unit 25) =,a20/
Time series plot data: (unit 26) = ’,a20/
Restart data: (unit 27) =’,a20)
format (/GENERAL MODEL CONTROL OPTIONS ’,46(’=")/
* Domain configuration (0=xz,1=1z): ipt27) ="i5/
* Gravitational constant (m/s*2)-horizontal:t(21) =’,e12.4/
’ Cravitational constant (m/s"2)-vertical: t(22) =’,e12.4/
* Solve transient phase balance: Ictrl(1) =",15/
* Skip ipt(85) time steps for phase blnce: ipt(85) =’,i5/
* Solve transient component balance: etrl(2) =",15/
- Solve NAPL equations: letrl(24) =15/

R

50

»N

Solve solid phase equations: letrl(25) =",15/
Solve biophase equations: fetrl(3) =",15/
Lump the phase balance mass matrix: letrl(7) =",15/
Lump the component balance mass matrix; letrl{8) = .15/
Include phase mass exchange in flow eqs: letrl(14) = ’,lS/
Calculate element dimensionless numbers: letrl(4) =’,15)
format (/"TIME STEP/ITERATION CONTROL OPTIONS * 40(’ 91
* Initial simulation time (sec): () = ,e12 4f
* Final simulation time (sec): t(2) =’el24/
* Time weighting factor: H10) =',el2.4/
* Maximum number of time steps: ipt(30) =',i12 /
* Convergence tolerance for pressure: t(13) =’el2.4/
* Convergence tolerance for concentration: t(14) =’,el2.4/
* Convergence tolerance for NAPL saturation:t(15) =,e12.4/
* Convergence tolerance for immobile phases:t(16) =’,el2.4/
* Initial time step: t(3) =’,el2.4/

L EE R R E R,

S+

50,

Minimum time step: t4) =’'el24/
Maximum time step: t(5) =’el24/
Maximum phase balance iterations: ipt(31) ='i5 /
Maximum component balance iterations: ipt(32) =',i5 /
Maximum NAPL saturation iterations: ipt(33) =,i5 /
Minimum phase balance iterations: ipt(34) ='i5 /
Minimum component balance iterations: ipt(35) =’i5 / -

R E R E R E R

+ ' Time step multiplier for amplification: t(6) ='e12.4/

+' Time step multiplier for reduction: (7) =’,e12.4)
504 format(/’GRID INFORMATION °,59(’=")/

+' Generate grid: igid =',i5 /

0 = don”t generate the grid;’/

1 = generate a union jack grid;’/

2 = generate a herring bone grid.”/
Maximum dimension for number of elements: nelmx =,i5 /
Actual number of elements: ipt(@® =',i5 /
Maximum dimension for number of nodes: nnmx ='3i5 /
Actual number of nodes: ipt(l) =’,i5 /
Maximum dimension for the number of */

material property blocks: nmblk =5 /
Number of material property blocks: ipt(26) =',i5 /
Maximum dimension for the number of */

nodal variables in stacked storg: nnstk =’i5 /
' Actual number of stacked nodal variables: ipt(2) =',i5 /
Full bandwidth of transpost matrix: nbw(l) =’,i5 /
Full bandwidth of flow matrix: . nbw(2) ='i5)
505 format(

+’ Nodal Coordinates in the cross-sectional (xz) domain:’/

+’ Node Number X-Location Z-Location’)
506 format(

+’ Nodal Coordinates in the radial-vertical (rz) domain:’/

+' Node Number R-Location Z-Location’)
507 format(6x,i5,9x,e14.5,6x,e14.5)
508 format(

+ ' Element Information:”/

+' Element Number Nodal Incidence List °,

+ 'Material Block Area (m"2)’)
509 format(6x,i5,12x,3i5,8x,i5,6x,e14.4)
510 format(/"COMPONENT CHEMICAL PROPERTY DATA ' 43('=")/

>
’
)
»
»
?
»
1
*
»
s
»
s
s

E I e R

+’ Number of organic components: ipt(15) =,i5)
511 format(

+’ Component chemical property data for: ’,al

+’ Component number:; ="i5/

+! Molecular weight (g/mole): =’el2.4/

+’ Vapor pressure (atm): =",el24/

+’ Vapor viscosity (cPoise): =’el24/

+’ Liquid density (g/1): =’,el2.4/

+’ Gas diffusivity (cm™2/s): =",el2.4/

+° Aqueous diffusivity (cm™2/s): ‘= ’,e12.4/

+’ Henry's Law constant (atm I/g): 'el2.4/
+° Aqueous solubility (g/1): e12 4)

512 format(/’MASS EXCHANGE COEFFICIENTS A490=")12x,
+’ Component Aqueous/gas Aqueous/NAPL Gas/NAPL
+," Bio/Aqueous Solid/Aqueous’)
513 format(2x,a10,5e12.4)
582 format(/'MINIMUM DEVIATION FROM EQUILIBRIUM *,41(’=")/2x,
+’ Component Aqueous/gas Aqueous/NAPL Gas/NAPL’
+,’ Bio/Aqueous Solid/Aqueous’)
514 format(/'MATERIAL BLOCK PROPERTY DATA ’ 47(’="))

515 format(

+’ Material Block Number: *,i5/

+° Porosity: =’el2.4/

+' Horizontal permeability (m"2): =",el2.4/

o+’ Vertical permeability (m"2): =",el2.4/

+’ Bulk soil density (gm/cm"3): =’el2.4/

+’ Organic carbon content: =’e12.4/

+’ Residual water saturation: =",el2.4/

+° van Genuchten n for air/water retention data: =’,e12.4/

+’ van Genuchten alpha value (1/Pa): =’el2.4/

+° longitudinal dispersivity (m): =",el2.4/

+’ transverse dispersivity (m): =',e12.4)

580 format(//HYDRODYNAMIC DISPERSION TENSOR INFORMA-

TION *,33¢=")/

+’ Compute hydrodynamic dispersion tensor: letrl(21) =,15)
581 format(

+ Input values of hydrodynamic dispersion:”/
+’ component phase’,7x,’d11°,9x,/d12",9x,'d21’,9x,’d22’)
585 format(al2,all4el2.4)
589 format(/"SORPTION PARAMETERS ’,56(’="))
516 format(
+’ Isotherm parameters’)
517 format(
+’ Material Block Number *,i5)
518 format('
+7 Kf (micrograms/gram-solid) for: *,al0,; =’,el2.4/

187

+" mparameter (unitless) for: 10, ='el2.4)
519 format(
+* Two Compmmcnt Model is in use’/

+' Slow to fast companmen(Kf multiplier: ="'el2.4/
+' Slow to fast compartment m ultiplier: =’el2.4/
+' Fast compartment fraction of solid phase: ="el12.4/

4+* Slow to fast compartment exchange multiplier: = ',e12.4)

588 format(,
+* Retardation is considered for the following components’)

590 format(

+* Socption is not considered for this simulation’)
574 format(

+°* Retardation factor for:’,al0) ='el2.4)
520 fonnm(l‘ BIOLOGICAL PARAMETERS ’,54('=")/

+* Number of dcgradable organic components: ipt(17) =",i5/

+ ' Steady state biomass is assumed: letrl(17) =15/

+' Biophase mass transfer is at equilibrium: lctrl(16) =15/

+" Degradation kinetics: ipt(39) =",i5/

+' | =standard Monod kinetics’/

+* 2 =Monod kinetics with substrate inhibition’/

+*' 3 =Monod kinctics with Iumped substrate inhibition’/

+* 4 =Monod kinetics with sattration dependency'/

+' 5=monod kinetics with saturation dependency and’/

+* substrate inhibition/ .
+* Initial uniform biomass (g/1): xinit . elZAI
+* Minimum biomass (g/l): xbmm ' e12.4/
+' Maximum biomass (g/1): xbmax =',e12.4/
+* Decay coefficient (1/sec): kd = ’,e12.4l
+"' Delay period for bioreaction (sec): t(11) =",e12.4)
521 form:n(
+' Component biological parameter data for: *af
+' Osygen Usc coefficient (gm O2/gm substrate): =",e12.4/
+* Nutrient Use coefficient (gm n/gm substrate): =’,e12.4/
+' Maximum substrate use rate (gm/(gm cell sec)): =",e12.4/
+" Half saturation constant (gm substrate/l): =",e12.4/
+" Yield coefficient (gm cell/gm substrate): =',el2.4/
+* Inhibition multiplier: =",el24)
522 forma(/'PHASE PARAMETERS AND COMPOSITION *,43(C=")/
+* Water phase viscosity (cPoise): wvis =’,el24/
+ ' Include Klinkenberg effect: letrl(20) = ',15/
+ Klinkenberg parameter (compute if b=<0)): b =",el2.4)

523 format(2x,a,’ Phase has *,i2,' components listed below ’)
524 format(6x,7210) .,
525 fonnm(l’TEMPERATURE DISTRIBUTION *,510=")/
+* Constant temperature distribution: letrl(10) =',15)
526 format(
+ ' Uniform temperature (degree C): ctemp =’,el2.4)
527 format(
+' Temperature distribution (node number; temperature)’)
528 format(4(i5,:",e11.5,1x))
570 format(/ Tcmpemturedependen(parameters for: *,al0f
4+ depth’,7x,’cvp’,10x, cvvis’,8x,'chen’,9x, casol’,8x,'umax’)
571 format(6(c12.5,1x))
572 format(/
+' Temperature dependent decay coefficient (depth; kd)’)
573 format{3(c12.5,"",e12.5,1x))

529 format (/'PRINTING INTERVAL VARIABLES’ ,48(=")
+* The print interval is set by time steps: ipt(25) =,i5)
530 format (I‘ PRINTING INTERVAL VARIABLES ’,48(’=’)/

4’ The print interval is set by time units: t(12) =',el2.4)
531 formu((PRINTING CONTROL VARIABLES’ 49(’ 9
+ ' Generate output for the selected items’
+' Qutput in molar form: Ipmt(8) ='15 /
+" Gas phase pressure: Ipmt9) ='15/
+' Aqueous phase pressure: Iprnt(10) =15 /
+' Gas/aqueous capillary pressure: Iprt(11)=",15 /
+' Gas phase density: lprnt(12)=",15 /
+* Aqueous phase density: Ipmt(13)=",15 /
4+’ NAPL density: lpent(14) =',15)
532 format (

+"* Gas phase components: Tprnt(15) =",15)

534 format (,

533 format ¢

+° Adueous phase components: Ipint(16) =",15)

+° NAPL components: Ipm(17)="15)
535 format C ..

4. Solid phase Toadings:
536 format(

i Blo-phase componems

Iprnt(i8) =15)

lprnt(19) = ,15 X
7 Tota‘l orgaiic soil concentration Tprnt(29) = 15)

537 format (

+° Gas phase saturatlon . Iprnf(20) = 15 1A
4+’ Aqueous phase satufation: . Iprnt(Zf) =15/
+’ NAPL saturation: Iprnt(22)=",15 /
+’ Gas phase Darcy velocity: Ipmnt(23) =",15 /

+' Aqueous phase Darcy velocity: Iprnt(24) =15)
538 format (' Generate contour files for the selected items * /

+’ Contour in molar form: Icon(l) =’,15/

-+’ Gas phase pressure , leon(2) =’ 15/

+’ {\queous phase pressure; lcon(3) = 15/

+' G aqueous capillary pressure: 1con(4) =15/

+° leon(5) .= 15/

i leon(6) =,15/

+' NAPL density: feon(7) =',15)
539 formal C., L.

.Gas phase components icon(8) =",15)

540 formt (

+° Aqueous phase components: Tcon(®) =,15)
541 format (

+’ NAPL componens: leon(10) =",15)
542 format (R)

+’ Solid phase loadings: Icon(11) =’,15)
543 formiat .

+’ Bro-phase components Ieon(12) =',15/
+* Total organic soil concentration lcon(18) =’,15)
544 format (

+’ Gas phase saturation: leon(13) =",15/

+’ Aqueous phase saturation: leon(14) =",15/
+' NAPL saturation: Icon(15) =",15/

+’ Gas phase Darcy velocity: lcon(16) =’,15/
+’ Aqueous phase Darcy velocity: Ieon(17) =7,15)

545 format (5x,7a10). — L
546 format(’ Generate timie series files for tt selected items * /
‘Gas phase comporents: Ipi(l) =,15)

547 format(.)

+' *al0, atr fi6de number’,i10)
548 format(_

4+’ Aqueous phase components: Iplt(2) =,15)
549 formiat

-+ * Mass balance print interval in time steps: ipt(83) =",i5)
550 format (

+’ Mass balance print iriterval is time units: t(27) =’,el2.4)
551 format(.

+* Time series prmt interval in timé steps rpt(84) ' i5)
552 format(

+ ' Time series print interval in time units: t(28) ='el2.4)
553 format (

+ " Material balance output in report form’)
554 format (

+ ' Material balance output in time series form’)
555 format (//OUTPUT FILES FOR COMPONENT MASS BALANCE’,37('="))
556 format(

+1al0,’ (unit’,i2,”) =",a20)
557