Sociodemographic Data Used for Identifying Potentially Highly Exposed Populations

SOCIODEMOGRAPHIC DATA USED FOR IDENTIFYING POTENTIALLY HIGHLY EXPOSED POPULATIONS

National Center for Environmental Assessment-W Office of Research and Development
U.S. Environmental Protection Agency Washington, DC 20460

DISCLAIMER

This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

PREFACE

The National Center for Environmental Assessment (NCEA) has prepared this document to assist scientists and concerned communities in identifying subsets of the general population who might experience more frequent contact with and greater exposures to environmental contaminants. Furthermore, this document provides demographic data to help users determine the number of people in these potentially highly exposed subsets of the general population.

The 1994 Executive Order on Federal Actions to Address Environmental Justice in Minority Population and Low-Income Populations emphasized the importance of protecting minority and low-income communities from disproportionate environmental hazards and effects. In addition to low-income and minority populations, other populations categorized by age, gender, and location, to name a few, are candidates for potentially increased exposures depending on the given scenario. This document was initiated because previous efforts focused predominantly on factors, data, and scenarios based on national averages for the general population. To provide protection to highly exposed populations, risk and exposure assessments must consider relevant and more accurate data that pertain to these populations.

The current document results from revisions and narrowing of content scope from several NCEA draft documents, including Exposure Factors for Specific Demographic and Ethnic Subgroups (March 1995), which presented exposure data that were found to correlate significantly with ethnicity. Significant portions of that document were incorporated into the revised Exposure Factors Handbook that was published in the Fall of 1997. Remaining materials became the basis for the draft document Identifying Susceptible Populations (March 1996), which provided information to help assessors identify and enumerate populations potentially at risk for increased exposures and at risk due to heightened biological sensitivities to environmental contaminants. The above draft documents were reviewed by staff members from the U.S. Environmental Protection Agency who offered comments that have led to the current document, Sociodemographic Data Used for Identifying Potentially Highly Exposed Populations. The major difference between this draft and previous drafts is that biologically

FOREWORD

The National Center for Environmental Assessment (NCEA) of the U.S. Environmental Protection Agency's Office of Research and Development (ORD) has five main functions: (1) providing risk assessment research, methods, and guidelines; (2) performing health and ecological assessments; (3) developing, maintaining, and transferring risk assessment information and training; (4) helping ORD set research priorities; and (5) developing and maintaining resource support systems for NCEA. The activities under each of these functions are supported by and respond to the needs of the various program offices. In relation to the first function, NCEA sponsors projects aimed at developing or refining techniques used in exposure assessments.

This document is being published as a companion to the Exposure Factors Handbook. Due to unique activity patterns, preferences, practices, and biological differences, various segments of the population may experience exposures different from those of the general population, and these exposures, in many cases, may be greater. It is necessary for risk or exposure assessors characterizing a diverse population to identify and enumerate certain groups within the general population who are at risk for greater contaminant exposures or exhibit a heightened sensitivity to particular chemicals. This document provides information, where possible, for addressing these populations.

Michael A. Callahan, Director
National Center for Environmental Assessment Washington Office

sensitive data are not addressed and the scope has been expanded to include additional categories of highly exposed populations in addition to ethnicity.

The data and population subsets presented are not intended to be comprehensive or prescriptive. This document does not include all possible populations and does not include guidance for identifying and enumerating all populations under every circumstance. The inclusion of a specific population in this document is not intended to imply that the specific population addressed is more likely than the general population to experience potentially high exposures to a given contaminant. Likewise, the reader should not conclude that all members of a population included in the text will necessarily experience greater exposures to a given contaminant.

This document addresses potential exposure to a single contaminant, source, or stressor. To address the areas, multiple and cumulative risks is not within the scope of this document. The guidelines on EPA's risk assessment approach are shifting towards greater consideration for multiple endpoints, sources, pathway and routes of exposure, and all the environmental media, etc. EPA's Science Policy Council has developed a document entitled, "Guidance on Cumulative Risk Assessment, Part 1. Planning and Scoping." This document is available on EPA's web site at the following address: http://www.epa.gov/ORD/spc/cumrisk2.htm. The document can be downloaded using Adobe Acrobat software, which is available at no cost from Adobe. The Adobe Internet address is: http://www.adobe.com.

AUTHORS, CONTRIBUTORS, AND REVIEWERS

The National Center for Environmental Assessment (NCEA) was responsible for the preparation of this handbook. The original document was prepared by Versar, Inc., under EPA Contract No. 68-D3-0013, Work Assignment No. 2-31. Revisions, updates, and additional preparation were provided by Versar, Inc., under EPA Contract No. 68-D5-0051, Work Assignment Nos. 3-24 and 97V-9. Amy Amina Wilkins, NCEA-Washington Office, served as the EPA work assignment manager for each effort, providing overall direction and coordination of the production effort as well as technical assistance and guidance and as a contributing author.

AUTHORS

Patricia Wood
Maggie Wilson
Aderonke Adenuga
Susan Anderson
Linda Phillips
Versar, Inc.
Springfield, VA

CONTRIBUTERS

A. Amina Wilkins
Exposure Analysis and Characterization Group, National Center for Environmental Assessment, U.S. EPA
John Schaum
Exposure Analysis and Characterization Group, National Center for Environmental Assessment, U.S. EPA

INTERNAL REVIEWERS

Jerry Blondell

Office of Poliution Prevention and Toxics (OPPT), Office of Pesticide Programs, U.S. EPA
Mark DowOPPT, Office of Pesticide Programs, U.S. EPA
Loren Hall
OPPT, Office of Policy Planning and Evaluation, U.S. EPA
Marty Halper
Office of Environmental Equity, U.S. EPA
Karen Hammerstrom
NCEA, Intermediate Office, U.S. EPA
Ed Ohanian
Office of Water, Office of Science and Technology, U.S. EPA
Susan Perlin
NCEA, Exposure Analysis and Risk Characterization Group, U.S. EPA
James Walker
NCEA, Effects Identification and Characterization Group, U.S. EPA
Chieh Wu
NCEA, Exposure Analysis and Risk Characterization Group, U.S. EPA
EXTERNAL REVIEWERS
Mary English
University of Tennessee
Jean GrassmanNational Institute of Environmental Health Sciences (NIEHS)
Cynthia Harris
College of Pharmacy, Florida A\&M University
Brian Kaplan
Agency for Toxic Substances and Disease Registry (ATSDR)
Laura Montgomery
Office of Analysis and Epidemiology, Center for Disease Control (CDC)

Andrew McBride
Connecticut Department of Health
Olivia Carter-Pokras
Office of Minority Health, U.S. Department of Human and Health Services (DHHS)
Ken Sexton
School of Public Health, University of Minnesota

CONTENTS

1. INTRODUCTION 1-1
1.1. TERMINOLOGY USED TO DEFINE CONCEPTS RELATING TO EXPOSURE 1-3
1.1.1. Exposure 1-3
1.1.2. High End, Upper End, Exposure Distribution 1-3
1.1.3. Susceptibility, Highly Exposed, Biologically Sensitive 1-4
1.2. IDENTIFYING THE POTENTIALLY HIGHLY EXPOSED POPULATION 1-5
1.2.1. Chemical(s) of Concern 1-6
1.2.2. Age 1-6
1.2.3. Gender 1-7
1.2.4. Lifestyle, Behavior, and Social Structure 1-8
1.2.5. Personal Health 1-9
1.3. ENUMERATION OF VARIOUS HIGHLY EXPOSED POPULATIONS 1-10
1.3.1. Framework of Methods 1-11
1.3.2. Contact With Chemicals in the Ambient Environment (All Media) 1-12
1.3.3. Chemical Contact Resulting From Disposal Activities 1-12
1.3.4. Chemical Contact in Occupational Setting 1-12
1.3.5. Ingestion of Chemicals in Foods 1-12
1.3.6. Contact With Contaminants in Consumer Products 1-13
1.3.7. Ingestion of Chemicals in Drinking Water 1-13
1.4. HOW TO USE THIS DOCUMENT 1-13
1.4.1. Examples of Exposure Scenarios 1-14
1.4.2. Identifying Potentially Highly Exposed Population on the Basis of Exposure Pathway 1-14
1.4.3. Identifying Potentially Highly Exposed Population on the Basis of Chemical/Contaminant 1-14
1.5. DOCUMENT ORGANIZATION 1-15
1.6. REFERENCES 1-18
2. SOCIODEMOGRAPHIC CHARACTERISTICS OF THE GENERAL U.S. POPULATION 2-1
2.1. RESIDENT POPULATION BY GENDER AND AGE 2-2
2.2. RESIDENT POPULATION BY RACE 2-2
2.3. RESIDENT POPULATION BY AGE, RACE, AND HISPANIC ORIGIN 2-3
2.4. RESIDENT POPULATION BY GEOGRAPHIC REGION 2-3
2.5 SOCIAL AND ECONOMIC CHARACTERISTICS OF THE GENERAL U.S. POPULATION 2-4
2.6. RESIDENT POPULATION BY HOUSEHOLD 2-5

CONTENTS (continued)

2.7. URBAN AND RURAL U.S. POPULATION BY REGION, DIVISION, AND STATE 2-5
2.8. RESIDENT POPULATION WITH WORK DISABILITIES 2-6
2.9. NATIVE AND FOREIGN-BORN RESIDENT POPULATIONS 2-6
2.10. RESIDENT POPULATION ON ACTIVE DUTY IN THE MILITARY 2-6
2.11. RESIDENT INSTITUTIONALIZED POPULATIONS AND THOSE LIVING IN GROUP QUARTERS 2-6
2.12. TRENDS IN SOCIODEMOGRAPHIC CHARACTERISTICS OF THE GENERAL U.S. POPULATION 2-7
2.12.1. Trends in Gender and Age Characteristics of the General U.S. Population 2-7
2.12.2. Trends in Demographics of Race and Ethnic Characteristics of the General U.S. Population 2-7
2.12.3. Trends in Regional Distribution of the General U.S. Population 2-8
2.12.4. Trends in Demographics of Social and Economic Characteristics of the General U.S. Population 2-8
2.12.5. Trends in Demographics of Distribution by Households of the General U.S. Population 2-9
2.12.6. Trends in Demographics of Urban and Rural U.S. Population 2-10
2.12.7. Trends in Demographics of Resident Population With Disabilities 2-10
2.12.8. Trends in Demographics of Native and Foreign-Born Resident Populations $2-10$
2.12.9. Trends in Demographics of Resident Population on Active Duty in the Military 2-10
2.12.10. Trends in Demographics of Resident Populations Living in Institutions and Group Quarters 2-11
2.13. REFERENCES 2-12
3. LOCATION OF RESIDENCE AS A FACTOR LEADING TO HIGHLY EXPOSED POPULATIONS 3-1
3.1. POPULATIONS LIVING NEAR WASTE MANAGEMENT FACILITIES 3-1
3.1.1. ATSDR Biennial Report to Congress 1991 and 1992 (ATSDR, 1996) 3-3
3.1.2. Distribution of Industrial Air Emissions by Income and Race in the United States: An Approach Using the Toxics Release Inventory (Perlin et al., 1995) 3-3
3.2. POPULATIONS LIVING IN THE INNER CITIES OF LARGE METROPOLITAN AREAS 3-4
3.3. POPULATIONS LIVING IN URBAN AREAS 3-5
3.4. POPULATIONS LIVING IN COASTAL AREAS 3-5

CONTENTS (continued)

3.5. POPULATIONS LIVING ON NATIVE AMERICAN RESERVATIONS OR TRUST LANDS 3-6
3.6. POPULATIONS LIVING NEAR MAJOR HIGHWAYS 3-6
3.7. REFERENCES 3-8
4. RESIDENTIAL FACTORS AFFECTING EXPOSURE 4-1
4.1. POPULATIONS IN HOMES WITH DIFFERENT CHARACTERISTICS 4-1
4.1.1. American Housing Survey for the United States in 1993 (U.S. Bureau of the Census, 1993); Statistical Abstract of the United States (U.S. Bureau of the Census, 1997) 4-1
4.1.2. Screening Young Children for Lead Poisoning (CDC, 1997) 4-2
4.1.3. National Human Activity Pattern Survey (NHAPS) (Tsang and Klepeis, 1996) 4-2
4.2. POPULATIONS WHO USE PESTICIDES AND CHEMICALS FOR LAWN/ GARDEN AND POOL/SPA MANTENANCE 4-3
4.2.1. National Home and Garden Pesticide Use Survey (Whitmore et al., 1992) 4-4
4.2.2. 1993 Pool and Spa Market Study (National Spa and Pool Institute, 1993) 4-5
4.3. REFERENCES 4-6
5. BUILDINGS OTHER THAN RESIDENCES 5-1
5.1. POPULATIONS IN SCHOOLS/COLLEGES 5-1
5.2. POPULATIONS IN DAY CARE CENTERS 5-3
5.3. POPULATIONS IN HOSPITALS 5-3
5.4. POPULATIONS IN NURSING HOMES 5-3
5.5. REFERENCES 5-5
6. OTHER ACTIVITIES INCLUDING SUBSISTENCE, FISHING, RECREATION, AND HOBBIES 6-1
6.1. FISHING AND HUNTING 6-1
6.2. HOME GARDENING 6-3
6.3. DO-IT-YOURSELFERS 6-4
6.4. HOBBYISTS 6-5
6.5. EXERCISE/SPORT ACTIVITIES 6-5
6.6. REFERENCES 6-6

CONTENTS (continued)

7. ACTIVITIES (OCCUPATIONAL) 7-1
7.1. POPULATION EMPLOYED 7-1
7.2. POPULATIONS EMPLOYED IN DETAILED INDUSTRIAL AND OCCUPATIONAL CATEGORIES 7-3
7.3. POPULATIONS IN PUBLIC BUILDINGS 7-3
7.4. OCCUPATIONAL STUDIES ADDRESSING MINORITY POPULATIONS 7-3
7.5. REFERENCES 7-6
8. BEHAVIORAL AND/OR CULTURAL PRACTICES 8-1
8.1. ACTIVITY PATTERNS 8-1
8.1.1. National Human Activity Pattern Survey (NHAPS) (Tsang and Klepeis, 1996) 8-1
8.1.2. Time Spent in Activities, Locations, and Microenvironments: A California-National Comparison (Robinson and Thomas, 1991) 8-2
8.2. PICA STUDIES 8-2
8.2.1. Reported Incidence of Pica Among Migrant Families (Bruhn and Pangborn, 1971) 8-3
8.2.2. Geophagia in Rural Mississippi: Environmental and Cultural Contexts and Nutritional Implications (Vermeer and Frate, 1979) 8-4
8.3. SMOKING, DRUG USE, AND ALCOHOL CONSUMPTION 8-5
8.3.1. Results From the National School-Based 1991 Youth Risk Behavior Survey and Progress Toward Achieving Related Health Objectives for the Nation (Kann et al., 1993) 8-5
8.3.2. Cigarette Smoking and Cessation Behaviors Among Urban Blacks and Whites (Hahn et al., 1990) 8-6
8.3.3. Sociodemographic Characteristics of Cigarette Smoking Initiation in the United States (Escobedo et al., 1990) 8-7
8.3.4. Statistical Abstract of the United States (U.S. Bureau of the Census, 1995) 8-8
8.3.5. Trends in Indian Health (U.S. Department of Health and Human Services, 1993) 8-9
8.4. CULTURAL USE OF MERCURY 8-9
8.5. REFERENCES 8-11

CONTENTS (continued)

9. DRINKING WATER AND FOOD 9-1
9.1. POPULATION CONSUMING DRINKING WATER BY SOURCE OF WATER SUPPLY 9-1
9.2. POPULATION USING BOTTLED WATER 9-1
9.3. POPULATION BREASTFEEDING 9-2
9.4. POPULATION CONSUMING SELECTED FOODS/FOOD GROUPS 9-3
9.5. REFERENCES 9-5
10. SOCIOECONOMICS 10-1
10.1. POVERTY THRESHOLD ESTIMATES 10-1
10.2. INCOME LEVEL 10-1
10.2.1. Digest of Education Statistics (U.S. Department of Education, 1995) 10-1
10.2.2. March Current Population Survey (U.S. Bureau of the Census, 1995b) 10-2
10.2.3. Trends in Indian Health (U.S. Department of Health and Human Services, 1993) $10-2$
10.2.4. Inner-City Asthma--The Epidemiology of an Emerging U.S. Public Health Concern (Weiss et al, 1992) $10-2$
10.2.5. Nutrition Intakes of Individuals from Food-Insufficient Households in the United States (Rose and Oliveira, 1997) 10-3
10.3. HOMELESS POPULATION 10-3
10.4. REFERENCES 10-5
11. ELECTRONIC AND OTHER DATA SOURCES 11-1
11.1. U.S. ENVIRONMENTAL PROTECTION AGENCY 11-1
11.2. U.S. DEPARTMENT OF COMMERCE 11-2
11.2.1. U.S. Bureau of the Census 11-2
11.3. U.S. DEPARTMENT OF LABOR 11-3
11.3.1. Bureau of Labor Statistics 11-3
11.3.2. Occupational Safety and Health Administration 11-3
11.4. U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES 11-3
11.4.1. Centers for Disease Control and Prevention 11-4
11.4.2. Agency for Toxic Substances and Disease Registry (ATSDR) 11-4
11.4.3. National Center for Health Statistics (NCHS) 11-4
11.4.4. National Institutes of Health (NIH) 11-4
11.4.5. Substance Abuse and Mental Health Services Administration (SAMHSA) 11-5
11.5. ENVIRONMENTAL DEFENSE FUND (EDF) 11-5
11.6. STATE ENVIRONMENTAL PROTECTION AGENCIES 11-5
11.7. ENCYCLOPEDIA OF ASSOCIATIONS 11-5
APPENDIX I. U.S. Census Bureau Internet Information I-1
APPENDIX II. U.S. Department of Labor Internet Information II-1
APPENDIX III. U.S. Department of Health and Human Services ATSDR Internet Information III-1

LIST OF TABLES

Table 1-1. Populations Potentially at Risk of Exposure to Specific Chemical(s) of Concern 1-24
Table 1-2. Identifying Potentially Highly Exposed Populations on the Basis of Exposure Pathway 1-27
Table 1-3. Identifying Potentially Highly Exposed Populations on the Basis of Hazardous Substance 1-28
Table 2-1. Resident Population by Gender and Age: 1994 2-13
Table 2-2. Resident Population by Race, Hispanic Origin Status, and Percent Distribution: 1980 to 1994 2-15
Table 2-3. Resident U.S. Population by Age, Race, and Hispanic Origin: 1980 to 1994 2-16
Table 2-4. Resident U.S. Population by Region, Race, and Hispanic Origin: 1990 2-17
Table 2-5. Social and Economic Characteristics of the White and Black Populations: 1980 to 1994 2-18
Table 2-6. Social and Economic Characteristics of the American Indian Population: 1990 2-19
Table 2-7. Social and Economic Characteristics of the Asian and Pacific Islander Population: 1990 and 1994 2-21
Table 2-8. Social and Economic Characteristics of the Hispanic Population: 1993 2-22
Table 2-9. Resident Population by Households and by State: 1980 to 1994 2-23
Table 2-10. Family and Nonfamily Households by Race, Hispanic Origin, and Type: 1970 to 1994 2-24
Table 2-11. Urban and Rural Population, 1960 to 1990, and by State, 1990 2-25

LIST OF TABLES (continued)

Table 2-12. Disability Status of Persons 21-64 Years Old: 1991-1994 2-26
Table 2-13. Native and Foreign-Born Population by Place of Birth: 1920 to 1990 2-27
Table 2-14. Active Duty Personnel by Service and Year: 1950 to 1993 2-28
Table 2-15. Populations in Institutions and Other Group Quarters by Type of Group Quarters and State: 1990 2-29
Table 2-16. Populations in Jail by Race and Detention Status: 1978 to 1994 2-30
Table 2-17. Populations in Federal and State Prisons: 1970 to 1993 2-31
Table 2-18. Trends in Ratio of Males to Females by Age Group, 1950 to 1994, and Projections, 2000 and 2025 2-32
Table 2-19. Trends in Resident Population by Race, 1980 to 1995, and Projections to 2050 2-33
Table 2-20. Trends in Resident Population by Region and Division: 1960 to 1994 2-34
Table 2-21. Trends in Percent Distribution of Total U.S. Population Residing in Urban and Rural Areas: 1960 to 1990 2-35
Table 2-22. Trends in Numbers of Public Aid Recipients and Average Monthly Cash Payments Under Supplemental Security Income (SSI) and Public Assistance: 1980 to 1993 2-36
Table 2-23. Trends in Numbers of Public Aid Recipients as Percent of Total U.S. Population by State: 1990 to 1993 2-37
Table 2-24. Trends in Immigration Rates: 1901 to 1993 2-38
Table 2-25. Trends in Percent Distribution of Active Duty Personnel by Year: 1950 to 1993 2-39
Table 3-1. Hazardous Waste Sites on the National Priority List by State: 1994 3-10
Table 3-2. Sources of Data Used in Major Studies Concerning Populations Living Near Hazardous Waste Sites 3-11

LIST OF TABLES (continued)

Table 3-3. Distribution of TRI Facilities and Racial/Ethnic Populations Among EPA Regions in 1990 3-13
Table 3-4. Number and Population of Metropolitan Areas by Population Size-Class in 1990: 1980 to 1990 3-14
Table 3-5. Metropolitan and Nonmetropolitan Population by States: 1980 to 1992 3-15
Table 3-6. Resident Urban and Rural U.S. Population, 1960 to 1990, and by State 3-16
Table 3-7. U.S. Population Living in Coastal Counties: 1960 to 1994 3-17
Table 3-8. Populations Living on Selected Reservations and Trust Lands and American Indian Tribes with 10,000 or More Persons: 1990 3-18
Table 3-9. Highway Mileage--Functional Systems and Urban/Rural: 1993 3-20
Table 3-10. Motor Vehicle Registrations, 1990 to 1993, Vehicle Miles of Travel, 1993, and Drivers Licenses, 1993, by State 3-21
Table 4-1. Household Composition--Occupied Units 4-7
Table 4-2. Income Characteristics--Occupied Units 4-11
Table 4-3. Introductory Characteristics--All Housing Units 4-14
Table 4-4. Fuels--All Housing Units 4-15
Table 4-5. Housing Units - Characteristics, by Tenure and Region 4-16
Table 4-6. Percentage of U.S. Housing Built Before 1950 and from 1970-1979 by State 4-19
Table 4-7. Percentage of Respondents with Attached Garages or Carports 4-20
Table 4-8. Selected Characteristics of Households in the Target Population 4-21
Table 4-9. Number of Households That Used Pest Control Services and Received Written Precautions in the Previous Year 4-22

LIST OF TABLES (continued)

Table 4-10. Households Reporting Major Pest Problems or Problems Treated by a Household Member 4-23
Table 4-11. Number of Households with at Least One Pesticide Product Stored Insecurely by Type of Pesticide for Households with Children Under 5 Years of Age 4-24
Table 4-12. Estimated Thousands of Households Using Pesticides by Type of Pesticide and Site of Application 4-25
Table 4-13. Estimated Percentage of Households Using Pesticides by Type of Pesticide and Site of Application 4-26
Table 4-14. Residential Pool Ownership in the Continental United States 4-27
Table 4-15. Residential Spa Ownership in the Continental United States 4-28
Table 5-1. Estimated Number of Participants in Elementary and Secondary Education and in Higher Education: Fall 1995 5-6
Table 5-2. Enrollment in Educational Institutions by Level and Control of Institution: Fall 1980 to Fall 2000 5-7
Table 5-3. Enrollment in Educational Institutions by Level and Control of Institution: 1869-70 to Fall 2005 5-8
Table 5-4. Enrollment in Public Elementary and Secondary Schools by Race or Ethnicity and State: Fall 1986 and Fall 1993 5-10
Table 5-5. Enrollment of 3-, 4-, and 5-Year-Old Children in Preprimary Programs by Level and Control of Program and by Attendance Status: October 1965 to October 1994 5-12
Table 5-6. Students That Attend Schools with Unsatisfactory Environmental Conditions 5-14
Table 5-7. Students That Attended Schools with Less-Than-Adequate Physical Conditions 5-15

LIST OF TABLES (continued)

Table 5-8. Estimated Percent of Schools and Number of Students Attending Schools with Unsatisfactory Environmental Conditions by Community Type 5-16
Table 5-9. Estimated Percent of Schools and Number of Students Attending Schools with Unsatisfactory Environmental Conditions by Geographic Region 5-17
Table 5-10. Estimated Percent of Schools and Number of Students Attending Schools with Inadequate Building Features by Community Type 5-18
Table 5-11. Estimated Percent of Schools and Number of Students Attending Schools with Inadequate Building Features by Geographic Region 5-19
Table 5-12. Percentage of Preschool Children Attending Center-Based Programs by Child and Family Characteristic: 1991 $5-20$
Table 5-13. Hospital Utilization Rates: 1970 to 1993 5-21
Table 5-14. Community Hospitals: 1993 5-22
Table 5-15. Persons Receiving Care in Nursing Homes: 1980 and 1990 5-24
Table 5-16. Nursing Home Population by Region, Division, and State: 1980 and 1990 5-25
Table 6-1. Anglers, Hunters, and Trips, by Type of Fishing and Hunting: 1991 6-7
Table 6-2. Anglers, Trips, and Days of Fishing by Type of Fishing: 1991 6-8
Table 6-3. Freshwater Anglers and Days of Fishing by Type of Fish: 1991 6-9
Table 6-4. Great Lakes Anglers and Days of Fishing by Type of Fish: 1991 6-10
Table 6-5. Saltwater Anglers and Days of Fishing by Type of Fish: 1991 6-11
Table 6-6. Hunters, Trips, and Days of Hunting by Type of Hunting: 1991 6-12
Table 6-7. Big Game Hunters and Days of Hunting by Type of Game: 1991 6-13

LIST OF TABLES (continued)

Table 6-8. Small Game Hunters and Days of Hunting by Type of Game: 1991 6-14
Table 6-9. Migratory Bird Hunters and Days of Hunting by Type of Game: 1991 6-15
Table 6-10. Hunters of Other Animals and Days of Hunting by Type of Game: 1991 6-16
Table 6-11. Demographic Characteristics of Anglers and Hunters 6-17
Table 6-12. Demographic Characteristics of Anglers by Type of Fishing 6-19
Table 6-13. Demographic Characteristics of Hunters by Type of Hunting 6-21
Table 6-14. Demographic Characteristics of Anglers and Hunters 6 to 15 Years Old: 1990 6-23
Table 6-15. Demographic Estimates for Anglers and Hunters 6 to 15 Years Old by State of Residence in 1990 6-24
Table 6-16. Vegetable Gardening by Demographic Factors: 1986 6-26
Table 6-17. Characteristics of Households With a Vegetable Garden: 1976 to 1986 6-27
Table 6-18. Percentage of Gardening Households Growing Different Vegetables: 1986 6-28
Table 6-19. U.S. Household Participation in Lawn and Garden Activities: 1989 to 1993 6-29
Table 6-20. Participation in Gardening: 1992 6-30
Table 6-21. DIY Home Improvement and Repair Projects Undertaken Within the Past 12 Months 6-31
Table 6-22. Participation in Various Home Improvement/Repair: 1992 6-32
Table 6-23. Estimated Populations Involved in Various Hobbies 6-33
Table 6-24. Participation in Selected Sports Activities: 1993 $6-37$

LIST OF TABLES (continued)

Table 7-1. Employment Status of the Civilian Noninstitutional Population by Sex, Age, Race, and Hispanic Origin 7-7
Table 7-2. Employment Status of the Civilians of Mexican, Puerto Rican, and Cuban Origin by Sex and Age 7-9
Table 7-3. Employed White, Black, and Hispanic-Origin Workers by Sex, Occupation, Class of Worker, and Full- or Part-Time Status 7-10
Table 7-4. Employed Civilians of Mexican, Puerto Rican, and Cuban Origin by Selected Social and Economic Categories 7-11
Table 7-5. Employed Persons in Agriculture and Nonagricultural Industries by Age, Sex, and Class of Worker 7-12
Table 7-6. Employed Persons by Industry, Sex, Race, and Occupation: 1994 7-13
Table 7-7. Employed Persons by Detailed Industry, Sex, Race, and Hispanic Origin: 1994 7-15
Table 7-8. Inventory of Commercial Office Space for the Largest Metropolitan Areas: 1994 7-20
Table 7-9. Commercial Office Buildings--Selected Characteristics: 1992 7-21
Table 8-1. Percentage of Respondents Participating in Various Activities and Spending Time in Various Locations and Microenvironments During the 24 -hour Day Included in the Diary 8-13
Table 8-2. Incidence of Pica Reported by Wives of Migrant Workers of Mexican and "Anglo" Heritage 8-15
Table 8-3. Incidence of Geophagia Practice by Surveyed Population in Holmes County, Mississippi 8-16
Table 8-4. Percentage of 1991 Youth Risk Behavior Survey Respondents Reporting High Health Risk Behavior by Ethnic Group 8-17
Table 8-5. Percentage of 1991 Youth Risk Behavior Survey Respondents Reporting High Health Risk Dietary Behavior and Physical Activity by Sex, Grade, and Ethnic Group 8-18

LIST OF TABLES (continued)

Table 8-6. Age-Adjusted Prevalence of Cigarette Smoking Among Black and White Men and Women Aged 35 to 74 Years by Percents (Minnesota Heart Survey) 8-19
Table 8-7. Age- and Education-Specific Prevalence of Current Cigarette Smoking Among Black and White Men and Women (Minnesota Heart Survey) 8-20
Table 8-8. Current Smokers' Smoking Cessation Behaviors in Percents (Minnesota Heart Survey) 8-21
Table 8-9. Rates of Smoking Initiation by Sex, Age at Smoking Onset, and Race/Ethnicity 8-22
Table 8-10. Rates of Smoking Initiation by Age at Smoking Onset, Race/Ethnicity, and Educational Attainment 8-23
Table 8-11. Use of Selected Drugs by Age of User: 1993 8-24
Table 8-12. Alcoholism Mortality Rates for American Indians and Alaska Natives by Age and Sex 8-26
Table 8-13. Drug-Related Mortality Rates for American Indians and Alaska Natives by Age and Sex 8-27
Table 9-1. Population Served by Public Water Systems (PWS) in the United States: 1994 9-6
Table 9-2. Population Served by Public Water Systems (PWS) in the United States: 1993 9-7
Table 9-3. Number of Respondents Who Obtained Water From Public and Private Water Sources for General Household Use 9-8
Table 9-4. Number of Respondents Who Use Bottled Water for Drinking Water in the Home 9-10
Table 9-5. Percentage of Mothers Breastfeeding Newborn Infants in the Hospital and Infants at 5 or 6 Months of Age in the United States in 1989 by Ethnic Background and Selected Demographic Variables 9-12

LIST OF TABLES (continued)

Table 10-1. Preliminary Estimate of Poverty Threshold (Yearly Income of Household in Dollars): 1995 10-6
Table 10-2. Household Income and Poverty Rates by State: 1990 and 1993 10-7
Table 10-3. Poverty Status of Persons, Families, and Children Under 18 by Race/Ethnicity: 1959 to 1993 10-8
Table 10-4. Persons Living in Poverty by Sex: 1966 to 1994 10-9
Table 10-5. Selected Economic Profiles for the United States, 1990 Census 10-10
Table 10-6. Characteristics of Individuals from Food-Sufficient and Food-Insufficient Household: Continuing Survey of Food Intake by Individuals (CSFII), 1989 Through 1991 $10-11$
Table 10-7. Mean Nutrient Intakes Expressed as a Percentage of the Recommended Daily Allowances of Individual from Food-Sufficient and Food-Insufficient Household: Continuing Survey of Food Intake by Individuals (CSFII), 1989 Through 1991 10-12
Table 10-8. Composition of the Homeless Population (Percentage) $10-13$
Table 10-9. Population, Poverty, and Unemployment Data for Survey Cities 10-14
Table 11-1. State Environmental Protection Agencies 11-6

LIST OF FIGURES

Figure 1-1. Risk Assessment Paradigm 1-22
Figure 1-2. Methodological Approach for Identification and Evaluation of Populations Potentially at Greater Risk 1-23
Figure 1-3. The Three-stage Framework for Identifying, Enumerating, and Characterizing Populations Exposed to Chemical Substances 1-26
Figure 2-1. Projected Age Distribution of the U.S. Population: 1987, 2000, 2010, and 2030 2-14
Figure 2-2. Native American Populations Residing in EPA Regions by State: 1995 2-20
Figure 3-1. Indian Health Service Population: Area Offices and Populations Administered by Each Office 3-19
Figure 4-1. Percentage of Occupied and Vacant Housing Units 4-17
Figure 4-2. Selected Features of Occupied Homes: 1993 4-18
Figure 6-1. Participation in the 10 Most Popular Sports Activities by Sex: 1993 6-39
Figure 6-2. Participation in Various Activities by Percentage of the Population 18 Years Old and Older: 1992 6-40

1. INTRODUCTION

The U.S. Environmental Protection Agency (EPA) is charged with protecting human health from adverse effects resulting from exposure to contaminants in the environment. EPA estimates risk to human health by conducting risk assessments, as illustrated in Figure 1-1. An important step in risk assessment is exposure assessment (U.S. EPA, 1992a). The process of exposure assessment involves (1) identification of potential exposure pathways, (2) quantification of chemical intakes/potential doses, and (3) identification/estimation of the exposed population (U.S. EPA, 1992a). This document addresses the third component of an exposure assessment, estimation of the magnitude of the exposed population. It does not address the duration or degree to which a population is exposed to a contaminant(s) of concern. Duration and degree of exposure and other aspects of exposure assessment are presented in Exposure Factors Handbook (1997).

A primary goal of risk assessment is to develop a distribution of the range of exposures/risks occurring in the exposed population. In the past, some risk assessments did not characterize the subsets of the exposed population with higher than average exposures/risks. Individual populations can experience greater risk than the general population through higher than average exposure and/or higher than average biological sensitivity. An important limitation in the scope of this document is that it addresses populations who are potentially at greater risk due to high exposure, but not populations with greater risks due to biological sensitivity.

The data and population subsets presented are not intended to be comprehensive or prescriptive. This document does not include all possible populations and does not include guidance for identifying and enumerating all populations under every circumstance. The inclusion of a specific population in this document is not intended to imply that all members of a specific population addressed are more likely than the general population to experience potentially high exposures to a given contaminant.

The specific goals of this document are to (1) help assessors identify potentially highly exposed populations and (2) help assessors estimate the size of these populations. It provides information on the number of individuals or the percent of the general population associated with
dietary preferences, cultural practices, geographic location and setting (i.e., urban vs. rural), and other activities that target populations and individuals as possibly highly exposed candidates. The literature summaries provided are not all-inclusive, but are meant to provide the reader with a general overview of population data reported in recent literature. In most cases, data are from government publications, peer-reviewed literature, and trade associations. Data are presented as they appear in the original studies/reports. No attempt was made to verify or assess the quality of the data beyond what is described in the published reports. Within the constraint of presenting the original material as accurately as possible, terminologies used to describe areas such as racial populations and study results are those presented by the study authors.

The Exposure Factors Handbook was first published in 1989 (U.S. EPA, 1989a). The revised handbook was published in 1997. This document is intended to be used in conjunction with the revised Exposure Factors Handbook (U.S. EPA, 1997). The handbook provides statistical data on human characteristics and behaviors used in assessing exposure (e.g., ingestion rates of foods, activity duration and frequency, soil ingestion rates, body weight, skin surface area), addressing the second component of the exposure assessment process mentioned above. It focuses primarily on exposure factors pertaining to the general population but also presents, where possible, data specific to various age, gender, racial or ethnic, and occupational subgroups. The procedure for using these two documents in combination is as follows:

- An assessor will use this document to help determine if potentially highly exposed populations may exist in the area of interest and to estimate the size of such groups.
- Once the suspected potentially highly exposed populations are identified, the assessor can then use the Exposure Factors Handbook (U.S. EPA, 1997) to select intake and other exposure factor values specific to the groups identified above. These exposure factor values would be combined with site-specific information on environmental concentrations of contaminants to estimate exposure levels.

Other related documents that assessors may find helpful for identifying and evaluating highly exposed populations include, but are not limited to, the following: Methods for Enumerating and Characterizing Populations Exposed to Chemical Substances (U.S. EPA, 1985); Populations of

Potential Concern in Chemical Exposure and Risk Assessment (U.S. EPA, 1989b); and Risk Assessment Guidance for Superfund, Volume 1 (U.S. EPA, 1989c).

Although multitudes of anecdotal and circumstantial evidence suggest that a particular subgroup may be more susceptible than other members within the general population, very little direct evidence exists of what the actual exposures and risk levels are for specific chemicals or physical agents in the environment. Therefore, the data presented in this document for various subgroupings do not imply or necessitate that all or any members of a given group are highly exposed. The data contained in this document should be used as a tool to alert the assessor to subgroups that may potentially experience greater exposures than the general population. The data also should be used to help the assessor determine the number of individuals who potentially may be subjected to increased exposures. When possible, assessors are encouraged to collect site-specific data to help confirm if any groups are experiencing high exposures.

1.1. TERMINOLOGY USED TO DEFINE CONCEPTS RELATING TO EXPOSURE

1.1.1. Exposure

The Guidelines for Exposure Assessment define exposure as "the contact of an organism with a chemical or physical agent" (U.S. EPA, 1992a). The document further defines exposure as "contact of a chemical, physical, or biological agent with the outer boundary of an organism." Exposure is quantified as the concentration of the agent in the medium in contact integrated over the time duration of that contact (U.S. EPA, 1992a).

1.1.2. High End, Upper End, Exposure Distribution

A goal of many exposure assessments is to estimate the complete range of exposures occurring in the exposed population and number of people at each exposure level. This concept can be illustrated graphically by a distribution curve showing numbers of people exposed at various levels. Note: persons in the high end of the health risk distribution are not necessarily the same individuals as those in the high end of the exposure distribution (U.S. EPA, 1992a). Individuals represented within what is known as the "upper end" or "high-end" of an exposure distribution are referred to as highly exposed individuals. A high-end exposure estimate is
defined in the Guidelines for Exposure Assessment as "a plausible estimate of individual exposure or dose for those persons at the upper end of an exposure or dose distribution, conceptually above the 90 th percentile, but not higher than the individual in the population who has the highest exposure" (U.S. EPA, 1992a).

1.1.3. Susceptibility, Highly Exposed, Biologically Sensitive
 Definitions for "susceptibility," "highly exposed," and "sensitivity" vary according to

 various professions. For example, toxicologists refer to individuals who respond to the lowest concentrations of a given toxicant as "susceptible" (Hattis et al., 1987). Genetic epidemiologists define susceptible individuals as those who become ill (Khoury et al., 1989). EPA has used the term "susceptible" to refer to both highly exposed and biologically sensitive individuals. An informal survey conducted within EPA showed that many investigators considered susceptible populations to be either sensitive or highly exposed (Grassman, 1995). However, the terms "highly exposed" and "sensitive" are quite different and are not used interchangeably in this document. For example, if a population showing heightened sensitivities towards a particular toxic agent experiences little contact with that agent, the overall risk in this instance could be very low. Conversely, a population with sensitivities similar to those of the general population can be at greater risk if it experiences greater contact with toxic agents.Individuals are "highly exposed" on the basis of their activities, preferences, and behavior patterns that differ from those established for the general population. For example, high exposure could relate to food choices, frequency of foods consumed, cultural practices, geographic location, residential setting (urban vs. rural), occupation, education, socioeconomic status, proximity to hazardous facilities, and activity patterns. These parameters may vary according to seasonal aspects, age, and other factors.

A "sensitive" individual is one who shows an adverse effect to a toxic agent at lower doses than the general population or who shows more severe or more frequent adverse effects after exposure to similar amounts of a toxic agent as the general population. For example, the fetus is more sensitive to many chemicals than older individuals. Biological sensitivity may
result from age (Calabrese, 1986), gender (Calabrese, 1985), genetics (Omenn, 1984), deficiencies relating to diet and health, or other factors (Rios et al., 1993; Calabrese, 1986).

Figure 1-2 presents the Methodological Approach for Identification and Evaluation of Populations Potentially at Greater Risk. The figure illustrates that populations are potentially at greater risk when they are "more exposed" or "more susceptible" (Sexton et al., 1993). The scope of this document, however, does not include identifying biologically sensitive populations or determining one's susceptibility (or sensitivity) to a chemical. Rather, it examines how activities or behaviors can subject particular segments of the population to greater exposures and more frequent contact with environmental contaminants.

1.2. IDENTIFYING THE POTENTIALLY HIGHLY EXPOSED POPULATION

As discussed previously, one objective of this document is to help assessors identify potentially highly exposed populations. This section summarizes the types of information presented that address this issue. Although the topic is beyond the scope of this document, some discussion is included on how these factors relate to biological sensitivity. These discussions are included as important related issues that assessors can pursue from other sources. Assessors are reminded that if an individual (or population) is exposed to environmental compounds, it does not necessarily result in that individual (or population) being highly exposed relative to the general population.

The fact that data for a particular subgroup are presented does not mean that all members within that subgroup are highly exposed or that such exposure constitutes a high risk. Also, this document does not include all possible groupings of susceptible populations. Direct cause-andeffect relationships are not being claimed; rather, information is presented that has the potential for demonstration of correlations between exposure and the incidence and severity of symptomatic effects. Some of the important factors for identifying potentially highly exposed populations are chemicals of concern, age, gender, and lifestyle. Therefore, these areas are addressed in the following sections of this document.

1.2.1. Chemical(s) of Concern

Identification and characterization of specific chemicals of concern are necessary steps in identifying and enumerating populations with high-end exposures. For example, a chemical classified as a pesticide would prompt assessors to consider populations working in an agriculturally related occupation or people who participate in gardening as possible candidates for receiving higher exposures to pesticides (further discussed in Sections 1.2.3 and 7.4). Because of its prevalence in the environment, lead is another chemical of concern that can be associated with various conditions and groups. For example, older houses often have lead-based paints (Sutton et al., 1995; Barltrop, 1965) (Section 4.1 and Table 4-3). Soils near roadways (Romieu et al., 1995) (Section 3.6) tend to have elevated lead levels from the previous use of lead in gasoline. Not only is lead a chemical to which children are biologically more sensitive than adults, but it is also a chemical that children are more likely to be exposed to because of the prevalence of certain activities in children (ILSI, 1992) such as pica. Pica is defined as the intentional ingestion of nonfood items (Bruhn and Pangborn, 1971; Vermeer and Frate, 1979; NRC, 1993). Children exhibiting pica may experience exposures to lead from ingestion of paint chips and lead-contaminated soils. Thus, children are a population who should be recognized as having possibly higher exposures to lead and other chemicals from ingestion. Additional examples of populations potentially more exposed to specific environmental agents than the general population are presented in Table 1-1. This table is not intended to be comprehensive. Rather, it is presented to show possible examples of chemical-specific population exposures.

1.2.2. Age

The age of the population should be considered when estimating exposure. For example, nursing infants could potentially have more exposure (per unit body weight) to some lipophilic contaminants than the general population through ingestion of breastmilk containing these contaminants. Lipophilic compounds such as pesticides and dioxins have commonly been identified in human milk (NAS, 1991; NRC, 1993). The levels of these compounds in human milk vary with duration of lactation, number of children nursed, and the weight of the nursing mother (NAS, 1991).

Young children may have an increased potential for exposure to soil contaminants as a result of pica and mouthing behaviors. The relatively higher ratio of surface area to body weight of fetuses, neonates, and children, as compared to adults, may result in children being exposed to higher concentrations of chemical per unit body weight than adults (Wester and Maibach, 1982).

Age also can be used to identify biologically sensitive individuals. The effect of age sensitivity to contaminant exposure will vary with the substance (Calabrese, 1986). For example, although sensitivity to skin irritants generally decreases with age, renal function also decreases with age, thereby increasing sensitivity to chemicals that affect kidneys (Calabrese, 1986). Thus, children tend to be more resistant than adults to the harmful effects of renal toxicants (Calabrese, 1986). In addition, adults more than 50 years old generally have a decreased capacity to detoxify and/or excrete some chemical substances, and also exhibit a functional decline in the immune system (Calabrese, 1986). The fetus, in comparison to older individuals, is more sensitive to many chemicals. For example, the developing nervous system of the fetus or neonate has increased susceptibility to the neurotoxic effects of lead (ATSDR, 1992). In addition, children at various stages of development are also more sensitive to exposure to chemicals because of the immaturity of their enzyme detoxification and immune systems (Calabrese, 1986; Lorenz and Kleinman, 1988; NRC, 1993; Gladkte and Heimann, 1975).

Age demographics for the general U.S. population are presented in Section 2. Agerelated activities are discussed in Sections 8 and 9.

1.2.3. Gender

Gender-related behavior and activity patterns also can increase an individual's exposure to toxic agents (Behrman et al., 1987). For example, during pregnancy some women may have increased food consumption because of increased nutritional need and thus can have increased exposure to any toxic contaminant present on or in a food sources. Additionally, pica is practiced by some women during pregnancy and most often involves the consumption of dirt or clay (Neuhauser, 1994). These substances may be contaminated with chemical/toxic compounds.

Gender-related economic factors, specifically those related to living in low-income households, can increase an individual's potential exposure to toxic agents (NRC, 1993;

Starfield, 1982; Mitchell and Dawson, 1973; Starfield and Budetti, 1985; CDHS, 1991). Data presented in Table 10-4 of this document show that for each year studied (1966-1994), a greater percentage of women than men live in poverty (U.S. Bureau of the Census, 1995).

Participation in certain occupations can also increase an individual's exposure to toxic agents. For example, men comprise between 75% and 80% of workers in the farming industry (U.S. DOL, 1994); therefore, they may be exposed more frequently than women to agricultural pesticides. Women comprise more than 90% of workers in the cleaning industry (U.S. DOL, 1994); therefore, women have the potential for more frequent exposure than men to chemicals contained in cleaning products. Occupational data by gender are presented in Section 7 of this document.

Although sex-linked differences in sensitivities to toxic chemicals have not been investigated extensively, the gender differences observed for several toxic substances have been attributed to such factors as differential gastrointestinal absorption (Adrian et al., 1986), plasma protein binding (Rane et al., 1971; Morselli et al., 1980; Morselli, 1989), biliary excretion (Lorenz and Kleinman, 1988; NRC, 1993), tissue distribution (NRC, 1993; Morselli, 1980), and enzymatic bioactivation/detoxification activities (NRC, 1993; Greengard, 1977). With regard to a sensitive population, neither sex universally can be labeled more sensitive or less sensitive to all substances. However, because of the physiological changes (e.g., a marked increase in the requirement for calcium and iron, hormonal alterations, respiratory disease susceptibility) that occur during pregnancy, pregnant women may be predisposed to the toxic effects of such chemicals as beryllium, lead, manganese, and organophosphate insecticides (Romero et al., 1989; Neuhauser, 1994).

1.2.4. Lifestyle, Behavior, and Social Structure

The fact that exposure to a pollutant may be determined, in part, by the behavior of the receptor (i.e., human) is a basic principle of exposure assessment. The risk potential is increased by a behavior that may not place a person in direct contact with a particular pollutant, but nevertheless makes them more susceptible to the pollutant's effects when exposure to that pollutant does occurs. For example, smoking enhances the toxicity of other chemicals by
restricting airway conductance or making it more difficult to clear volatiles from the lungs (Klaassen et al., 1996). Excessive consumption of alcohol appears to interfere with the detoxification enzyme system of the liver (Klaassen et al., 1996).

Another example of increased risk due to behavioral practices is the use of metallic mercury for medicinal and religious practices in Caribbean and Hispanic populations. Mercury sprinkled on the floor or carpet could result in potentially increased exposure (dermal, inhalation, and ingestion) to mercury for these specific populations (Wendroff, 1990).

Other activities that may lead to individuals having potentially greater than average exposure to pollutants include breastfeeding, normal outdoor play for children, gardening and the consumption of homegrown foods, dirt biking, fishing, and hunting. The potentially highly exposed populations may include groups defined by ethnic origin, race, geographic region of residence, income level, or other demographic factors. Exposure/risk among these populations may differ from that of the general population as a result of behavioral or cultural factors (i.e., ethnic-related activities/traditions, geographic/regional behaviors, or social activities that may contribute to higher risk such as smoking or alcohol or drug use).

1.2.5. Personal Health

An individual's personal health can affect the extent to which they experience adverse effects upon exposure to environmental pollutants. Elements of personal health such as nutritional status, disease history, body weight, body fat, preexisting medical conditions, or genetic predispositions can exacerbate health consequences for individuals exposed to any environmental contaminant. For example, a person with asthma may experience respiratory problems after exposure to a respiratory irritant. This exposure could lead to a potentially lifethreatening asthma attack, while a person not afflicted with asthma could experience only minor reactions (Calabrese, 1978). The authors note that issues related to personal health are of potential concern for the exposure/risk assessor; however, addressing potentially susceptible or highly exposed populations based on health concerns is beyond the scope of this document. The reader is referred to the following reference sources for information available on this subject: Calabrese, 1978; Kuczmarski, 1994; CDC, 1994; Montgomery and Carter-Pokras, 1993; Otten et
al., 1990; Rios et al., 1993; U.S. Bureau of the Census, 1995; and Weiss et al., 1992. Full citations are presented in Section 1.6. It should be noted that the references mentioned above are not intended to be all-inclusive, but are presented as examples of available sources addressing health concerns.

1.3. ENUMERATION OF VARIOUS HIGHLY EXPOSED POPULATIONS

A major difficulty encountered in the preparation of exposure assessments is the enumeration and characterization of specific populations exposed to chemical substances. The EPA Office of Toxic Substances 1985 document Methods for Enumerating and Characterizing Populations Exposed to Chemical Substances (U.S. EPA, 1985) presents methods and supporting information for enumerating and characterizing populations exposed to chemical substances in each of several exposure categories. Risk assessors should refer to this document for guidance in enumerating populations where site-specific data are not available. The categories of exposed populations addressed are as follows:

- Populations exposed to chemical substances in the ambient environment (all media);
- Populations exposed to chemical substances in the occupational environment;
- Populations exposed to chemical substances via the ingestion of foods;
- Populations exposed to chemical substances via the use of consumer products; and
- Populations exposed to chemical substances via the ingestion of drinking water.

All printed census information is available for purchase through the Government Printing Office (GPO). Other forms of information such as computer tapes, microfiches, maps, and technical documentation can be obtained from the U.S. Department of Commerce, Bureau of the Census.

The Census of Population is the major source for the size, distribution, and demographic characteristics of a geographically defined population. These include detailed characteristics
such as age, sex, enumeration of various ethnic groups, and characterization of socioeconomic data.

Not all the population data required to assess highly exposed populations can be obtained from census data. For example, enumeration of populations who are potentially sensitive to contaminant exposure on the basis of personal health factors (preexisting diseases, allergies, or genetic predispositions) cannot be ascertained from census data. These data can sometimes be obtained from local government sources, health agencies, or references from medical journals. (See Table 11-1 for sources of local data.) Likewise, for enumeration of populations with highrisk behavior patterns, such as subsistence fishers, assessors may turn to surveys, State government agencies, or ethnographic field techniques (interviews, oral histories, etc.).

1.3.1. Framework of Methods

The framework for enumerating and characterizing exposed populations is the same for each population of interest and is comprised of three stages (U.S. EPA, 1985):

1. The identification of the exposed population.
2. The enumeration of the exposed population.
3. The characterization of the exposed population according to age, sex, and other demographics.

Figure $1-3$ is a flow diagram of the three-stage framework. The first stage involves determining the site locations of the chemical/pollutant of concern from various sources in the environment. The people living at or near these locations can be identified via mapping techniques, site visits, aerial photographs, etc. These tools also can be used to estimate the number of people exposed to various chemicals in the environment. As an example, contaminant concentration isopleths can be plotted on a population density map, and the number of people within a given area of equal chemical concentration can be determined. The final step is to examine the exposed populations to determine the highly exposed populations. The application of this process to specific exposure scenarios is discussed as follows.

1.3.2. Contact With Chemicals in the Ambient Environment (All Media)

Populations potentially exposed to a chemical substance in the ambient environment can be identified through an evaluation of the substance's sources, its behavior in the environment, location of the source, and applicable monitoring data. Populations may be further defined by their participation in specific activities (i.e., occupation, exercise, hobbies, etc.) leading to exposure, and by demographics (age and gender).

1.3.3. Chemical Contact Resulting From Disposal Activities

Exposures resulting from disposal and transportation-related spills of chemical substances are types of exposures occurring in the ambient environment (all media). Populations exposed to chemical substances in these categories are identified either by geographic location or by occupation if site-specific data are not available.

1.3.4. Chemical Contact in Occupational Setting

The enumeration of occupationally exposed populations relies on the direct utilization and combination of numerous databases. This information is largely the result of efforts by the Federal Government (e.g., National Institute for Occupational Safety and Health [NIOSH] and Occupational Safety and Health Administration [OSHA]) to monitor employment and worker practices. The age and sex of a worker can affect physiological parameters that determine exposure (e.g., breathing rate, skin surface area) in the work environment. In addition, detailed exposure assessments may require that populations be described by age and sex distributions.

1.3.5. Ingestion of Chemicals in Foods

Foods and food products have geographic distributions and processing patterns that fluctuate depending on seasonal demand, availability, and personal preference. The population exposed to contaminants found in various foods and other products can be enumerated using information on the size of the consuming population in conjunction with information on the amount of food contamination. One approach for determining the size of the consuming
population is to divide the total amount of food consumed (for a particular food category or subset that is contaminated) by the average per-person or per-household ingestion rate.

1.3.6. Contact With Contaminants in Consumer Products

The identification and enumeration of populations exposed to chemical substances via the use of consumer products necessitates a listing of all products containing the chemical in question. The data needed to compile such a list can be derived from the materials balance for the chemical of concern and through literature searches. Other data sources are governmental agencies (e.g., Consumer Product Safety Commission [CPSC], industry fact sheets, and product labels). The potentially exposed population may be estimated using sources such as consumer product use surveys, which indicate what fraction of the total population uses a particular product or the characteristics of the population that uses the product (i.e., gender or age). Also, exposed population estimates may be made by using total number of products sold divided by the average number of products used per household. The age and sex of the exposed consumers affect the physiological parameters that determine exposure; they also identify sensitive populations. Detailed exposure assessments may require that populations be described by age and sex distribution.

1.3.7. Ingestion of Chemicals in Drinking Water

Identification of populations exposed to chemical substances via the ingestion of drinking water involves examining the sources of the chemical substance. Enumeration involves the use of local information or various computerized databases that contain information on drinking water, such as the sources of the raw water supply, intake locations, treatment methods, and populations served.

1.4. HOW TO USE THIS DOCUMENT

This document was prepared to assist risk assessors and other scientists in identifying subsets of the general population who might experience more frequent contact with, and greater exposures to, environmental contaminants than the general population. The first example
presents a theoretical description of how to use this document. The two scenarios presented at the end of this section illustrate how the tables and figures in this document can be used in conjunction with the Exposure Factors Handbook to characterize potentially highly exposed populations. These examples are not intended to be a complete analysis, but are for illustrative purposes only. Reference tables other than ones provided in the example scenarios may be appropriate, as determined by the assessor.

1.4.1. Examples of Exposure Scenarios

The information presented in this section explains how to use this document. The second example is less detailed and only refers the reader to specific tables for analysis.

1.4.2. Identifying Potentially Highly Exposed Population on the Basis of Exposure Pathway

Table 1-2 presents examples of identifying potentially highly exposed population based on exposure pathway. The sample exposure pathways presented are included as examples only, and are not presented as being the most likely pathways by which populations may be exposed.

1.4.3. Identifying Potentially Highly Exposed Population on the Basis of Chemical/Contaminant

Table 1-3 presents examples of identifying potentially highly exposed population based on chemical or contaminant of concern. The 15 contaminants listed in the table are taken from the 1997 Agency for Toxic Substances and Disease Registry (ATSDR)/EPA's Priority List of Hazardous Substances: 1997. The information is from the ATSDR web site, available at the following Internet address: http://atsdrl.atsdr.cdc.gov:8080/cxcx3.html. The contaminants presented are included as examples only, and are not presented as being the most hazardous chemicals to which populations may be exposed.

1.5. DOCUMENT ORGANIZATION

This document presents a summary of various factors influencing risk for highly exposed populations. In addition, data sources are explored that can assist exposure/risk assessors in enumerating these highly exposed or susceptible populations.

- Section 2 presents characteristics of the general U.S. population, including sociodemographic, socioeconomic, and health-based factors.
- Section 3 provides population data based on the effects of location of residence.
- Section 4 provides population data based on residential factors.
- Section 5 provides population data based on time in nonresidential buildings.
- Section 6 presents population data for selected recreational activities.
- Section 7 presents occupational population data.
- Section 8 examines cultural and behavioral factors.
- Section 9 provides population data for drinking water and certain food groups.
- Section 10 evaluates population data associated with socioeconomic factors, such as living in poverty.
- Section 11 provides information on accessing information on the Internet useful for identifying potentially highly exposed populations, as well as providing a listing of State environmental protection agencies and a reference source for trade organizations.

Example 1 - Tetrachloroethylene Contamination at a Superfund Site

The Problem:

A Superfund site has caused tetrachloroethylene (also known as perchloroethene) to enter groundwater used as a drinking water source for a community of 10,000 people in Ohio. The risk assessor is interested in knowing if anyone in the affected area may be highly exposed to this chemical.

Identifying the Highly Exposed Populations:

The assessor determines that elevated exposures could occur in two ways:

- High ingestion rates of contaminated water, and
- High background exposures due to activities other than drinking water.

High Ingestion Rate of Contaminated Water:

Using the exposure pathway paradigm in Table 1-2, the assessor identifies three potentially highly exposed populations associated with water consumption: athletes, residents of hot climates, and outdoor workers in hot climates. The groups associated with hot climates will not be of concern, because Ohio has a moderate climate. Athletes may be a concern; using Chapter 6 and Figures $6-1$ and $6-2$, the assessor learns that approximately 50% of the adult population on a national basis are involved in some form of exercise. Table 1-2 also references the assessor to Table 3-30 in the Exposure Factors Handbook, which recommends assuming 6 liters per day (L/day) water consumption for active adults in temperate climates. Clearly, not all of these people exercise aerobically on a regular basis. However, this high percentage suggests that it is reasonable to assume that at least some members of a population of 10,000 will engage in such activities. Therefore, the assessor concludes that some members of the exposed population could have elevated exposures as a result of high water consumption and uses the 6 L/day value to estimate this level of exposure. The nationwide statistics in this document are not adequate for making quantitative estimates of how many people are exposed at this level. Additional sources of information, however, are referenced in Section 11.

High Background Exposures:

The possibility of high background exposures is investigated using Table 1-3. The assessor looks up tetrachloroethylene in this table and sees that a number of people may have elevated background exposures to this chemical (e.g., home repairers or remodelers, house cleaners, painters, and workers at dry cleaning establishments). The assessor then refers to Tables 6-22 through 6-24, 7-7, and Appendix 7B in this document to establish the potentially bigh background exposed population. Table 6-22 indicates that 48% of people were involved in home improvement/repair during the last 12 months. Table 6-23 indicates that 13 million people paint as a hobby (or X\% of population), etc. Accordingly, a high percentage of this population could have elevated background exposures. Tables 5-23 (recommended inhalation rates - select rate based on specific activity level) and 16-13 through 16-18, 16-22, and 16-23 (duration and frequency data of exposure or product use for some categories) from the Exposure Factors Handbook can be used. For example, from Table 5-23, one can assume a mean inhalation rate of 1.0 cubic meters per hour ($\mathrm{m}^{3} / \mathrm{hr}$) for a house cleaner who cleans spots on walls or doors based on short-term, light activities. The total exposed time for using specific house cleaning products (all-purpose cleaners) is 64 hours/year (Table 16-16). The duration of performing a specific task (clean spots on walls or doors) is 50 minutes/event (Table 16-15), and the mean frequency for performing this task is 6 times/month. Other tables may be appropriate as determined by the assessor.

Example 2-Unspecified Soil Contamination in a Residential Community

The Problem:

A residential community is under development in Virginia. For the past 100 years, the land to be developed has been agricultural. Heavy use of pesticides in the past has led to concerns of soil contamination. The risk assessor is interested in knowing whether any subset of the future residents may have high exposures to the soil contaminants.

Identifying the Highly Exposed Populations by Exposure Pathway:

The assessor postulates that elevated exposures to soil contaminants could occur in three ways:

- Inhalation of particulates,
- Dermal contact with soil, and
- Ingestion of soil.

Increased Dermal Contact and Inhalation of Particulates:

Using Table 1-2, the assessor identifies four potentially highly exposed populations associated with dermal contact with soil: children playing outdoors, gardeners, people engaged in sporting activities (e.g., baseball, softball, golf, football, and soccer), and outdoor workers who may have increased contact with soil (e.g., termite inspectors, highway repairmen, cable repairmen, construction workers, farmers, and nursery workers). These same populations would have elevated exposures via inhalation of suspended soil particles. To characterize the potentially highly exposed groups, the assessor can then use Table 7-7, Appendix 7B, Tables 6-16 and 6-24, and Figure 6-1 in this docurnent. Relevant information in Exposure Factors Handbook can be found in Tables 6-2 through 6-8, 6-14, 6-15, 6-16 (exposed skin surface area), and 6-12 (soil adherence value). Duration and/or frequency values for some categories may be obtained from Tables 15-92, 15-93, 15-107, 15-108, and 15-176.

Ingestion of Soil:

Using Table $1-2$, the assessor identifies children playing outdoors, pregnant women, migrant workers, and participants in outdoor activities (e.g., gardening, golf, baseball, football, hiking, and camping) as populations who may be highly exposed as a result of soil ingestion. Turning again to Table 1-2, the assessor can use Tables 2-1, 8-2, 8-3, 6-16, 6-19, and 6-24 in this document and Tables 4-11, 4-15, 4-16, 4-22, 15-85, and 4-23 and Section 4.5 for soil ingestion in Exposure Factors Handbook as tools to characterize the potentially highly exposed groups. Other tables may be appropriate as determined by the assessor.

1.6. REFERENCES

Adrian, TE; Smith, HA; Calvert, SA; Aynsley-Green, A; Bloom, SR. (1986) Elevated plasma peptide YY in human neonates and infants. Pediatr Res 20:1225-1227.

Agency for Toxic Substances and Disease Registry (ATSDR). (1992) Analysis Paper: Impact of lead-contaminated soil on public health. U.S. Department of Human and Health Services. Atlanta, GA. Agency for Toxic Substances and Disease Registry.

Barltrop, D. (1965) The relationship between some parameters employed in the diagnosis of lead poisoning in childhood with a special reference to the excretion of delta-aminolaevulinic acid. Thesis: University of London.

Behrman, RE; Vaughan, VC; Nelson, WE. (1987) Nelson textbook of pediatrics, 13th ed. Philadelphia: W.B. Saunders Co., pp. 6-33.

Bruhn, CM; Pangborn, RM. (1971) Reported incidence of pica among migrant families. J Am Diet Assoc 58:417-420.

Calabrese, EJ. (1978) Pollutants and high risk groups. New York: John Wiley and Sons, Inc.
Calabrese, EJ. (1985) Toxic susceptibility: male/female differences. New York: John Wiley and Sons, Inc.

Calabrese, EJ. (1986) Age and susceptibility to toxic substances. New York: John Wiley and Sons, Inc.

California Department of Health Services (CDHS). (1991) McFarland child health screening project: 1989. Environmental Epidemiology and Toxicology Branch, California Department of Health Services, Emeryville, CA.

Centers for Disease Control and Prevention (CDC). (1994) Health objectives for the nation: prevalence of overweight among adolescents in the United States, 1988-91. Morbidity and Mortality Weekly Report, November 11, 1994, pp. 818-821. U.S. Public Health Service, U.S. Department of Health and Human Services, Center for Disease Control and Prevention.

Gladtke, E.; Heimann, G. (1975) The rate of development of elimination functions in kidney and liver of young infants. In: Morselli, PL, Garattini, S; Sereni, F. eds. Basic and therapeutic aspects of perinatal pharmacology. New York: Raven Press, pp. 393-403.

Grassman, J. (1995) Incorporation of information on susceptible population into risk assessments (Draft) pp. 1-20.

Greengard, O. (1977) Enzymic differentiation of human liver: comparison with the rat model. Pediatr Res 11:669-676.

Hattis, D; Erdreich, L; Ballew, M. (1987) Human variability in susceptibility to toxic chemicals, a preliminary analysis of pharmacokinetics data from normal volunteers. Risk Anal 7:415.

International Life Sciences Institute (ILSI). (1992) Similarities and differences between children and adults: implications for risk assessment. Washington, DC: International Life Sciences Institute.

Khoury, MJ; Flanders, D; Greenland, S; Adams, MJ. (1989) On the measurement of susceptibility in epidemiol studies. Am J Epidemiol 129:183-190.

Klaassen, CD; Amdur, MO; Doull, J. eds. (1996) Casarett and Doull's toxicology: the basic science of poisons, 5th ed. New York: McGraw-Hill.

Kuczmarski, J. (1994) Increasing prevalence of overweight among U.S. adults. JAMA 22(3):205-211.

Lorenz, JM; Kleinman, LI. (1988) Ontogeny of the kidney. In: Tsang, RC; Nichols, BL, eds. Nutrition during infancy. St. Louis, MO: C.V. Mosby, pp. 58-85.

Mitchell, R; Dawson, B. (1973) Educational and social characteristics of children with asthma. Arch Dis Child 48:467-471.

Montgomery, LE; Carter-Pokras, O. (1993) Health status by social class and/or minority status: implications for environmental equity research. Toxicol Ind Health 9(5):729-773.

Morselli, PL. (1989) Clinical pharmacology of the perinatal period and early infancy. Clin Pharmacokinet 17:13-28.

Morselli, PL; Franco-Morselli, R; Bossi, L. (1980) Clinical pharmacokinetics in newborns and Infants: age-related differences and therapeutic implications. Clin Pharmacokinet 5:485-527.

National Academy of Science (NAS). (1991) Infant outcomes. In: Nutrition during lactation. Washington, DC: National Academy Press.

National Research Council (NRC). (1993) Pesticides in the diets of infants and children. Washington, DC: National Academy Press.

Neuhauser, MLS. (1994) Nutrition during pregnancy and lactation. In: Mahan, KL; and EscottStump, S.; eds. Food, nutrition and diet therapy. 9th ed. Philadelphia, PA: WB Saunders Company.

Omenn, GS. (1984) Risk assessment, pharmacogenetics, and ecogenetics. In: Omenn, GS; Gelboin, HV, eds. Banbury Report: genetic variability in responses to chemical exposures. Cold Spring Harbor Laboratory, pp. 3-13.

Otten, MW; Teutsch, SM; Williamson, DF; Marks, JS. (1990) The effect of known risk factors on the excess mortality of black adults in the United States. JAMA 263(6):845-850.

Rane, A; Lunde, PKM; Jalling, B; Yaffe, SJ; Sjoqvist, F. (1971) Plasma protein binding of diphenylhydantoin in normal and hyperbilirubenemic infants. Pediatr Pharmacol Ther 78:877882.

Rios, R; Poje, GV; Detels, R. (1993) Susceptibility to environmental pollutants among minorities. Toxicol Ind Health 9(5):797-820.

Romero, P; Bamett, PG; Midtting, JE. (1989) Congenital anomalies associated with maternal exposure to oxydemeton-methyl. Environ Res 50(2):256-261.

Romicu, I; Carreon, T; Lopez, L; Palazuelos, E; Rios, C; Manuel, Y; Hernandez-Avila, M. (1995) Environmental urban lead exposure and blood lead levels in children of Mexico City. Centro Panamericano de Ecologia Humana y Salud, Organizacion. Panamericana de la Salud, Mexico City, Mexico. Environ Health Perspect 103(11):1036-1040.

Sexton, K; Olden, K; Johnson, BL. (1993) Environmental justice: the central role of research in establishing a credible scientific foundation for informed decision making. Toxicol Ind Health 9(5):685-727.

Starfield, B. (1982) Family income, ill-health, and medical care of U.S. children. J Public Health Policy 3:244-259.

Starfield, B; Budetti, PP. (1985) Child health status and risk factors. Health Serv Res 19:817886.

Sutton, PM; Athanasoulis, M; Flessel, P; Guirguis, G; Haan, M; Schlag, R; Goldman, LR. (1995) Lead levels in the household environment of children in three high-risk communities in California. Environ Res 68(1):45-57.
U.S. Bureau of the Census. (1995) Statistical abstract of the United States: 115 th ed. U.S. Department of Commerce, Bureau of the Census, Washington, DC.
U.S. Department of Labor (U.S. DOL). (1994) Revisions in the current population survey effective January 1994. Employment and earnings. Washington, DC: U.S. Department of Labor, Bureau of Labor Statistics.
U.S. Environmental Protection Agency. (1985) Methods for assessing exposure to chemical substances, vol. 4. Methods for enumerating and characterizing populations exposed to chemical substances. Office of Toxic Substances, Washington, DC. EPA/560/5-85-004.
U.S. Environmental Protection Agency. (1989a) Exposure factors handbook. National Center for Environmental Assessment, Office of Research and Development, Washington, DC. EPA/600/P-95/002Bc.
U.S. Environmental Protection Agency. (1989b) Populations of potential concern in chemical exposure and risk assessment. Office of Health and Environmental Assessment. Washington, DC. Environmental Criteria and Assessment Office, Research Triangle Park, NC.
U.S. Environmental Protection Agency. (1989c) Risk assessment guidance for Superfund, Vol.

1. Human health evaluation manual (part A). Prepared by the Office of Health and

Environmental Assessment, Environmental Criteria Assessment Office, Research Triangle Park, NC, for the Office of Emergency and Remedial Response, Office of Solid Waste and Emergency Response, Washington, DC. EPA/540/1-89/002.
U.S. Environmental Protection Agency. (1992a) Guidelines for exposure assessment. Federal Register 57(104):22888-22896.
U.S. Environmental Protection Agency. (1992b) A citizen's guide to radon. Office of Air and Radiation, U.S. Environmental Protection Agency, Washington, DC.
U.S. Environmental Protection Agency. (1997) Exposure factors handbook. National Center for Environmental Assessment, Office of Research and Development, Washington, DC. EPA/600/P-95/002Fa,b,c.

Vermeer, DE; Frate, DA. (1979) Geophagia in rural Mississippi: environmental and cultural contexts and nutritional implications. Am Clin Nutr 32:2129-2135.

Weiss, KB; Gergen, PJ; Crain EF. (1992) Inner-city asthma-the epidemiology of an emerging U.S. public health concern. Chest 101(6):362S-371S.

Wendroff, AP. (1990) Domestic mercury pollution. (Scientific letter of correspondence to the editor). Nature 347:623.

Wester, RC; Maibach, HI. (1982) Percutaneous absorption: neonate compared to the adult. pp. 3-15 in Banbury Report No. 11: Environmental factors in human growth and development. Hunt, VR; Smith, MK; Worth, D., eds. New York: Cold Spring Harbor Laboratory.

Figure 1-1. Risk Assessment Paradigm

Source: U.S. EPA, 1992.

Figure 1-2. Methodological Approach for Identification and Evaluation of Subpopulations Potentially at Greater Risk

Source: Sexton et al., 1993

Table 1-1. Populations Potentially at Risk of Exposure to Specific Chemical(s) of Concern

Population/Activities
 Chemical(s) of Potential Concern

Infant and Child Activities Infant breastfeeding

Normal outdoor play

Dirt biking

Adult Activities

Household activities:
Gardening

Auto care

Home repair/remodeling

BHC-beta, BHC-gamma (lindane), cadmium, carbon disulfide, chlordane, DDD, DDE, DDT, 1,4-dichlorobenzene, dichloromethane, dieldrin, dioxin, heptachlor, heptachlor epoxide, hexachlorobenzene, lead, mercury, tetrachloroethene, PCBs

Highly to moderately adsorptive substances (e.g., asbestos, beryllium, copper, lead, mercury, silver, thallium, zinc)

Highly to moderately adsorptive substances (e.g., asbestos, beryllium, copper, lead, mercury, silver, thallium, zinc)

Arsenic, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, cadmium, chrysene, coal tars, creosote, dibenzo(a,h)anthracene, dieldrin, dioxin, heptachlor, lead, selenium

Ammonia, benzene, dichlorodifluoromethane, dichloromethane, nitrobenzene, 1,1,1-trichloroethane, trichlorofluoromethane, zinc

Ammonia, arsenic, bis(2-chloroethyl)ether, bis(chloromethly)ether, coal tars, cresol, dichlorodifluoromethane, dichloromethane, diethyl phthalate, dimethyl phthalate, di-n-butyl phthalate, lead, mercury, methyl ethyl ketone, methyl isobutyl ketone, pentachlorophenol, tetrachloroethene, toluene, xylene, zinc

Sports:

Hunting (deer and waterfowl)
Deer: pesticides
Waterfowl: substances with high to moderate bioaccumulation potential
Fishing
Any substance with high to moderate bioaccumulation potential
Target shooting
Lead

Hobbies:

Arts and crafts Ammonia, benzene, bis(2-ethylhexyi)phthalate, chloroethene, creosote, dichloromethane, diethyl phthalate, dimethyl phthalate, di-n-butyl phthalate, lead, mercury, methyl ethyl ketone, methyl isobutyl ketone, phenol, 1,1,1-trichloroethane, 2,4,6-trichlorophenol, toluene, zinc

Film developing Ammonia, cyanide, dichlorodifluoromethane, 1,1,1-trichloroethane, trichloroethene, trichlorofluoromethane, toluene, xylene

Furniture refinishing Benzene, bis(2-ethylhexyl)phthalate, dichloromethane, diethyl phthalate, dimethyl phthalate, di-n-butyl phthalate, methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene

Table 1-1. Populations Potentially at Risk of Exposure to Specific Chemical(s) of Concern (continued)

Population/Activities	Chemical(s) of Potential Concern
Occupations	
Agricultural workers	Pesticides
Blacksmiths	Cyanide, PAHs
Chimney sweeps	Coal tars
Commuters	Particulates, carbon monoxide, benzene, formaldehyde, criteria pollutants
Domestics/housecleaning	Ammonia, anthracene, bis(2-chloroethyl)ether, di-n-butyl phthalate, 1,4dioxane, ethylene oxide, mercury, phenol, styrene, tetrahydrofuran, tetrachloroethene, toluene, trichloroethane, xylene, zinc
Electrical equipment repair	PCBs
Exterminators	Pesticides
Firefighters	Cyanide
Jewelers	Lead, nickel
Laboratory technicians	Acrolein, arsenic, asbestos, bis(chloromethyl)ether, benzidine, benzoic acid, chloroethene, chloromethane, 2,4-dinitrophenol, 1,4-dioxane, mercury, pyrene, silver, trichloroethene, trichloromethane
Painters/paint store employees	Benzene, dichloromethane, nickel, tetrachloroethene, toluene, trichloromethane
Road pavers and roofers	Coal tars, PAHs
Service station attendants	Benzene, lead
Welders	Chromium, nickel
Adult Risk-associated Behavior	
Alcohol consumption	Lead, trichloroethene, trichloromethane, pesticides, PCBs
Smoking/environmental tobacco smoke	Asbestos, benzene, beryllium, cadmium, chrysene, cyanide, lead, nickel, trichloroethene, PAHs
Substance abuse	Pesticides, PCBs
Residential (housing characteristics)	
Basements	Radon
Kerosene heat	Carbon monoxide, nitrous oxide
Inner city location	Lead, cockroach antigen, benzene, criteria pollutants
Private wells	Pesticides, metals, solvents, mocrobials

Source: U.S. EPA, 1989c; U.S. EPA, 1992.

1 IDENTIFICATION OF EXPOSED POPULATIONS

- Evaluate chemical/physical properties
- Identify sources \& releases
- Evaluate transport and transformation
- Gather monitoring data in order to identify
- Media and exposure route
- Exposure scenarios (i.e., ambient, occupational, consumer, food, drinking water)
- Microenvironments and activities

2 ENUMERATION OF EXPOSED POPULATIONS

Data sources and enumeration methods are used to determine numbers of populations exposed to chemical substances in:

- The ambient environment
- The occupational environment
- Food
- Drinking water
- Consumer products

3 CHARACTERIZATION OF EXPOSED POPULATIONS

Data sources are used to obtain demographic characteristics of exposed populations, e.g., age, sex). Data sources include:

- Geographic or activity-specific data
- Generic data

Figure 1-3. The Three-Stage Framework for Identifying, Enumerating, and Characterizing Populations Exposed to Chemical Substances

Source: U.S. EPA, 1992b.

Table 1-2. Identifying Potentially Highly Exposed Populations on the Basis of Exposure Pathway

Exposure Pathway	Potentially Highly Exposed Population	Tables on Sociodemographics from this Document	Tables on Factor Values from EFH
Water Ingestion			3-30
	Athletes	6-24	3-27, 3-30
	Residents of Hot Climates	2-4	
	Outdoor Activities in Hot Climates		3-27, 3-28
	Recreational Participants in Hot Climates/Weather	6-24	
Soil Ingestion			4-23
	Children	2-1	4-15, 4-22
	Pregnant Women	8-2	Section 4.5
	Migrant Workers	$8-3$	
	Outdoor Activities (e.g., sports, work, gardening)	$\begin{gathered} 6-24 \\ 6-16,6-19 \end{gathered}$	4-11, 4-15, 4-16, 15-85
Inhalation			5-23
	Athletes	6-24	
	Children	2-1	5-25
	Outdoor Sports Participants (e.g., baseball, softball, football, soccer)	6-24	5-26, 5-27, 15-85
	High Activity Level Workers (e.g., farmers)	7-1, 7-3, 7-6, 7-7, Appendix 7B, 7C	
Dermal Contact with Soil			6-14, 6-16
	Children	2-1	6-12, 15-108
	Home Gardeners	6-16	15-92
	Outdoor Sports Participants (e.g., golf, baseball, football, soccer, hiking, camping, running/jogging, softball)	6-24 Figure 1	6-2, 6-8, 15-85, 15-93
	Outdoor Occupations (e.g., pesticide applicators, landscapers, highway repairers, farmers, construction workers)	7-5, 7-6, 7-7, Appendix 7B	15-107
Fish Ingestion			10-81 thru 10-85
	Fishers Eskimos Native Americans	$\begin{gathered} 6-1,6-3 \\ 2-4,2-10 \\ 2-4,2-10 \end{gathered}$	
Dermal Contact with Water			6-14, 6-16
	Fishers, occupational and recreational Aquatic Sportsmen (e.g., swimmers, boaters, water skiers, jet skiers)	$\begin{gathered} 7-6,7-7 \\ 6-24 \end{gathered}$	$\begin{gathered} 6-2 \text { thru 6-8, 10-83, 10-84 } \\ 6-14,6-16,15-176 \end{gathered}$

Table 1-3. Identifying Potentially Highly Exposed Populations on the Basis of Hazardous Substance (Hazardous Substances from 1997 EPAVATSDR Priority List of Hazardous Substances)

Table 1-3. Identifying Potentially Highly Exposed Populations on the Basis of Hazardous Substance (Hazardous Substances from 1997 EPA/ATSDR Priority List of Hazardous Substances) (continued)

Hazardous Substance	Potentially Highly Exposed Population ${ }^{\text {a }}$	Relevant Tables in this Document	Relevant Tables in Exposure Factors Handbook
Benzene (Other names: benzol, carbon oil, coal tar naphtha, cyclohexatriene, phenyl hydride, pyrobenzole)	Activities: Arts and crafts hobbyists	6-23	16-26
	Occupations: Gasoline storage personnel, shipment and retail operations workers, chemical manufacturers, plastics and rubber manufacturers, shoe manufacturers, printers, petroleum refinery personnel, workers in recovery plants for coke oven by-products, artists, house cleaners, gasoline workers	$7-3,7-4,7-7,$ Appendix 7B, 7C	16-23, 16-28
	Behavior Patterns: Smokers	8-6, 8-7	15-141
Polychlorinated Biphenyls (PCBs), including Arochlor 1254 and 1260	Activities: Hunters Fishers	$\begin{gathered} 6-6,6-7 \\ 6-2 \end{gathered}$	$\begin{gathered} 11-6 \\ 10-83,10-84,10-85 \end{gathered}$
	Occupations or Hobbies: Electricians, electric cable repairpersons, electroplators, emergency response workers, firefighters, hazardous waste haulers or site repair workers, maintenance cleaners, metal finishers, pavers and roofers, pipefitters/plumbers, timber products manufacturers, transformer/capacitor repairers, and personnel involved in waste oil processing	$7-3,7-4,7-7,$ Appendix 7B, 7C	
Cadmium	Activities: Jewelery hobbyists	6-23	
	Occupations: Alloy makers, aluminum solder makers, ammunition makers, auto mechanics, battery makers, bearing makers, braziers and solderers, cable and trolley wire makers, cadmium platers, cadmium vapor lamp makers, pottery makers, copper-cadmium alloy makers, electrical condenser makers, electroplaters, engravers, farm workers, glass makers, incandescent lamp makers, jewelers, lithographers, lithopone makers, mining and refining workers, paint makers, paint sprayers, pesticide makers, pharmaceutical workers, photoelectric cell makers, pigment makers, plastic products makers, metal sculptors, solder makers, textile printers and cadmium alloy and cadmium-plate welders	$7-3,7-4,7-7,$ Appendix 7B, 7C	-141
	Behavioral Patterns: Smokers	8-6, 8-7	

Table 1-3. Identifying Potentially Highly Exposed Populations on the Basis of Hazardous Substance (Hazardous Substances from 1997 EPA/ATSDR Priority List of Hazardous Substances) (continued)

Table 1-3. Identifying Potentially Highly Exposed Populations on the Basis of Hazardous Substance (Hazardous Substances from 1997 EPA/ATSDR Priority List of Hazardous Substances) (continued)

Hazardous Substance	Potentially Highly Exposed Population ${ }^{\text {a }}$	Relevant Tables in this Document	Relevant Tables in Exposure Factors Handbook
Chromium (hexavalent)	Activities:		
	Living on landfill derived from chromium-containing soil Children playing outdoors (esp. near roadways or contaminated landfill)	2-1	15-25, 15-59, 15-60, 6-14
	Occupations:		
	Welding of alloys and steel, chrome electroplating, paints and pigments manufacture, chemical manufacture, industrial cooling towers using chromate chemicals as rust inhibitors, chrome alloy production, textile manufacturing, photoengraving, copier servicing, leather tanning, and airborne emissions from incineration facilities	$7-3,7-4,7-7$ Appendix 7B, 7C	
Hexachlorobutadiene (Other names: HCBD, perchlorobutadiene, Dolen-Pur)	Occupations:		
	Manufacturers of rubber compounds and lubricants, and manufacturers of chemicals such as tetrachloroethylene, trichloroethylene and carbon tetrachloride.	7-7	
Chlordane, including aldrin, dieldrin, and hepachlor	Activities:		
	Living in homes previously treated for termite infestation		16-31, 16-32
	Eating food prepared from plants grown on chlordanetreated fields and the fat of meat or milk from animals that		
(Trade names: Velsicol-1068, Octachlor, Chlorkil, Ortho-chlor, Dowchlor, Gold Crest C- 100, Topiclor 20)	eat grass from chlordane-treated fields		
	Occupations:		
	Chlordane pesticide manufacture for export, or chlordane cleanup workers (Chlordane has been banned from commercial use in the U.S)	$7-3,7-4,7-7$ Appendix 7B, 7C	$5-23,6-2,6-3,6-4,6-5$
Tetrachloroethylene (Other names: tetrachloroethene)	Activities:		
	House repairers or remodelers	6-23	
	Use of spot removers, or exposure to recently dry-cleaned fabrics		
	Possible well water contamination		
	Auto repair	6-23	
	Hobbyists using paint removers and wood cleaners	6-23	
	Occupations:		
	Dry-cleaning workers, machinists, plastic extruders, and electronic assemblers, or workers manufacturing consumer products containing tetrachlorethylene, house cleaners, painters	$7-3,7-4,7-7,$ Appendix 7B, 7C	

a Potential highly exposed populations may include these groups, but are not limited to these groupings.
Source: \quad Adapted from Agency for Toxic Substances and Disease Registry, Case Studies in Environmental Medicine (1990-1993).

2. SOCIODEMOGRAPHIC CHARACTERISTICS OF THE GENERAL U.S. POPULATION

This section presents sociodemographic characteristics of the U.S. population that may be useful when assessing highly exposed populations. Characteristics included are gender, age, race, ethnicity, geographic location, economic factors, and institutionalized populations. Some data are included in more than one section because these data may be useful for more than one type of assessment. Relevant terms (e.g., race) are defined when available in the sections where they are presented. Definitions of relevant terms are presented as they appear in the cited reference to avoid misrepresentations.

Much of the data in this section are adapted or derived from the 1995 U.S. Bureau of the Census, Statistical Abstract of the United States. It is a standard summary of statistics on the social, political, and economic organizations of the United States. Sources of the information presented include Federal statistical bureaus and other organizations that collect and provide statistics as a principal activity, government regulatory agencies, private research, trade associations, health associations, etc. (U.S. Bureau of the Census, 1995; 1997). Statistics presented were obtained and tabulated by various means: (1) complete enumeration or census, (2) samples, (3) extraction from records kept for administrative or regulatory purposes, and (4) through interviews or mail explicitly for statistical purposes (U.S. Bureau of the Census, 1995; 1997). The following statistical abstract data presented are based on census data collected from the decennial Census of the Population, a monthly population survey, a program of population estimates and projections, and a number of other periodic characteristics. The U.S. Constitution requires that the U.S. Bureau of the Census collect data every 10 years (U.S. Bureau of the Census, 1995). These decennial censuses provide data for many socioeconomic reports on the status of the general U.S. population.
U.S. Census Bureau data are accessible on the World Wide Web via the Internet. The Bureau's home page (Internet address: www.census.gov) contains information on the kinds of data available and instructions on how to conduct data searches, extract data, and download data files. Information available includes summaries from the most recent census in database format and search tools such as Map Stats and US Gazetteer, which generate census data profiles of specific U.S. locations. Another option available is the Tiger Mapping Service, which allows the generation of national-scale, street-level maps from publicly available data. Questions on the U.S. Census Bureau's home page can be sent to webmaster@census.gov (U.S. Census Bureau

Home Page, Dec. 23, 1996). Section 11 contains information on how to access U.S. Government data on the Internet.

2.1. RESIDENT POPULATION BY GENDER AND AGE

The gender and age distribution of the population in question should be determined to identify populations with potentially high exposures. Table 2-1 presents the U.S. general population by gender and age for the year 1994 (U.S. Bureau of the Census, 1995). Figure 2-1 illustrates the population distribution of the U.S. general population by age and gender for the years 1987, 2000, 2010, and 2030 (Spencer, 1989). Gender- and age-related factors resulting from varying behavior and activity patterns are discussed in Sections 1.2.2 and 1.2.3 of this document.

Gender- and age-related factors can increase exposure to toxic agents. For example, children often exhibit behavior and activity patterns that are different from adults, which may potentially increase their exposure to environmental agents. Infants have a greater surface area to body weight ratio than adults (Calabrese, 1986); thus, infants potentially may be at greater risk from environmental contaminants via dermal exposure. Also, children spend time in outdoor play or structured activities. As a result, they can have higher exposure to contaminants found in the soils on playgrounds, parks and other outdoor recreational areas, and residential yards. In addition, children and infants tend to put objects into their mouths; these objects may contain chemical components or include soil particles containing chemical contaminants, which might increase their risk of exposure to contaminants by ingestion. Infants have faster respiratory rates than adults, resulting in potentially increased risk from contaminants via inhalation. Also, individuals who spend most of their time in an indoor environment (e.g., elderly residents of nursing homes) may experience higher exposures to indoor air contaminants.

2.2. RESIDENT POPULATION BY RACE

The racial composition of a population in question should be determined to ascertain if exposure to certain environmental contaminants may be different for that group based on race or ethnicity. For example, certain cultural practices (e.g., use of mercury for spiritual purposes) are more common in some ethnic groups than in others. The Bureau of the Census is directed by the U.S. Office of Management and Budget, under Statistical Policy Directive No. 15, to collect and publish statistics of the general population by race (U.S. Bureau of the Census, 1995). Common racial classifications include American Indian, Alaska Native, Asian or Pacific Islander, black,
and white. The concept of race that the U.S. Bureau of the Census uses reflects selfidentification by survey respondents and is not intended to reflect any biological or anthropological definitions. Respondents who do not identify (themselves) with a specific racial group on the questionnaire are included in the "other race" category. Hispanic is defined, by directive, as an ethnicity, not a race (U.S. Bureau of the Census, 1995). A self-identification question is used in the census questionnaire to identify Hispanic origin, and Hispanic persons may be of any race (U.S. Bureau of the Census, 1995). Persons classified as Hispanic include those who reported their race as Mexican-American, Chicano, Mexican, Puerto Rican, Cuban, Central or South American (Spanish countries), or other Hispanic origin (U.S. Bureau of the Census, 1995). Table 2-2 presents total numbers and percent distribution of the general population by racial categories not of Hispanic origin (white; black; American Indian, Eskimo, Aleutian; and Asiaṇ and Pacific Islander) and persons of Hispanic origin for years 1980, 1985, 1990, and 1994.

2.3. RESIDENT POPULATION BY AGE, RACE, AND HISPANIC ORIGIN

Table 2-3 presents the resident general U.S. population by age, race, and Hispanic origin from 1980 to 1994. Race and Hispanic origin are defined in Section 2.2.

2.4. RESIDENT POPULATION BY GEOGRAPHIC REGION

The risk assessor may be concerned with the geographic location of the population of concern. Examples of geographic factors that may be relevant for determining exposure of populations include amount of time spent outdoors and length of growing season (potentially greater in areas of warmer climates), and amount of time spent indoors exposed to indoor air contaminants (potentially greater in colder climate areas). The Bureau of the Census subdivides the United States into four geographic regions of Northeast, Midwest, South, and West. These regions are further divided into divisions containing different States. The regions, divisions, and their corresponding States (using standard U.S. Postal Service abbreviations for States) are shown below. Table 2-4 presents the resident general population by these geographic regions, race, and Hispanic origin, for the year 1990.

Region	Division and Abbreviation	States
Northeast	New England (NE) Middle Atlantic (MA)	CT, ME, MA, NH, RI, VT NJ, NY, PA
Midwest	East North Central (ENC) West North Central (WNC)	$\mathrm{IL}, \mathrm{IN}, \mathrm{MI}, \mathrm{OH}, \mathrm{WI}$ IA, KS, MN, MO, NE, ND, SD
South	South Atlantic (SA) East South Central (ESC) West South Central (WSC)	DE, DC, FL, GA, MD, NC, SC, VA, WV AL, KY, MS, TN AR, LA, OK, TX
West	Mountain (M) Pacific (P)	AZ, CO, ID, MT, NV, NM, UT, WY AK, CA, HI, OR, WA

2.5. SOCIAL AND ECONOMIC CHARACTERISTICS OF THE GENERAL U.S. POPULATION

Socioeconomic characteristics of a population may affect exposure to certain environmental contaminants. Living in poverty could potentially contribute to increased exposure. For example, populations living in older housing units, and especially those with limited funds available for regular repairs and maintenance, may have lead-based paint and inadequate ventilation systems; both may contribute to increased risk for exposure to environmental contaminants. Various socioeconomic data were available from the U.S. Bureau of the Census (1995) describing the general population. For convenience and consistency, these data are presented by racial categories as provided in the reference cited. Table 2-5 presents sociocconomic data for U.S. white and black populations, and Table $2-6$ presents socioeconomic data for the American Indian population. Figure 2-2 presents the Native American populations in thousands residing in the 10 EPA regions by State for 1995. Table 2-7 presents sociocconomic data for the Asian and Pacific Islander population, and Table 2-8 presents socioeconomic data for the Hispanic population.

2.6. RESIDENT POPULATION BY HOUSEHOLD

Many risk assessments are based on exposure to individuals or groups of individuals living in a household or residence. For example, an assessor may wish to determine the percentage of households in a given area with young children who spend time outdoors playing. These children may subsequently be exposed to soil contaminants resulting from deposition of airborne particulates.

A household is described by the U.S. Bureau of the Census as composed of all persons who occupy a housing unit (a house, apartment, etc.) that constitutes separate living quarters (U.S. Bureau of the Census, 1995). A household includes related family members and all the unrelated persons (lodgers, foster children, employees, etc.) who share a housing unit. A family is defined by the Census Bureau as a group of two or more persons related by birth, marriage, or adoption and residing together in a household (U.S. Bureau of the Census, 1995). Table 2-9 presents the numbers (in thousands) of household units in regions, divisions, and States from 1980 to 1994. Table $2-10$ presents the numbers (in thousands) of family and nonfamily households by race, Hispanic origin, and type.

2.7. URBAN AND RURAL U.S. POPULATION BY REGION, DIVISION, AND STATE

A risk assessor may wish to enumerate the population residing specifically in urban or rural areas of a State or in a metropolitan area. For example, a risk assessor considering the population exposed to a pesticide as a result of application for agricultural use would choose an appropriate percentage of the nearby rural population. Likewise, living in a rural area that is known to have certain contaminants in its water supply (i.e., groundwater) also can increase risk. Living in urban areas with increased vehicle traffic and the resulting increase in air pollution from auto exhaust can increase risk to certain air contaminants, such as benzene.

The U.S. Bureau of the Census defines urban populations as persons living in incorporated or unincorporated cities or towns of 2,500 or more inhabitants or in urbanized areas defined as adjacent densely settled surrounding areas with a minimum of 50,000 persons (U.S. Bureau of the Census, 1995). Populations not classified as urban are classified as rural (U.S. Bureau of the Census, 1995). Table 2-11 presents the total populations of each region, division, and State, as well as the numbers and percent distribution of urban and rural populations by region, division, and State. The composition of the regions and divisions is provided in Section 2.4.

2.8. RESIDENT POPULATION WITH WORK DISABILITIES

The U.S. Bureau of the Census (1995) considers a disability to be reduced ability to perform tasks one would normally do at a certain stage in life. Table 2-12 presents numbers of disabled persons, ages 21-64 years old, for the total population and by percent employed for 1991, 1993, and 1994.

2.9. NATIVE AND FOREIGN-BORN RESIDENT POPULATIONS

Table 2-13 presents the numbers of persons in the general population who were born in the United States and those born in foreign countries. Data are presented for years 1920 to 1990. These data are presented as an additional population characterization.

2.10. RESIDENT POPULATION ON ACTIVE DUTY IN THE MILITARY

Table 2-14 presents the numbers of individuals serving on active duty in the armed forces, by service, for the years 1950 to 1993. Services included are Army, Navy, Marine Corps, Air Force, and Coast Guard. This population is included not necessarily because they are potentially highly exposed, but as another characterization breakdown of the general population. If an exposure is related to the population of a specific military organization due to some jobrelated activity, the population potentially exposed can be enumerated. For example, if a contaminant in the insulation (such as asbestos) of a ship is a potential problem, Navy and Coast Guard personnel could potentially have greater exposures than the general population.

2.11. RESIDENT INSTITUTIONALIZED POPULATIONS AND THOSE LIVING IN GROUP QUARTERS

The U.S. Bureau of the Census (1995) classifies a person as living in group quarters if that person is not living in a household. Household is defined in Section 2.6. Persons living in group quarters include those who are institutionalized (e.g., under care or custody in juvenile facilities, jails, correctional centers, or hospitals, or residents in college dormitories, rooming houses, military barracks, etc.). Data pertaining to these specific populations may be useful when a potential exposure is limited to a selected microenvironment. For example, patients in a hospital potentially could be exposed through the dermal or inhalation pathways to chemicals used for sterilization procedures, such as antiseptics in hospital rooms or as sterilization agents for bed linens. Table 2-15 presents numbers for the general population living in institutions by type of group quarters (nursing homes, college dormitories), region, and State. Note: because
group quarters include military barracks, there may be some overlap with data presented in Section 2.10. Table 2-16 presents numbers of the general population living in jails by race and detention status for the years 1978 to 1994. Table 2-17 presents numbers of the general population living in Federal and State prisons for the years 1970 to 1993.

2.12. TRENDS IN SOCIODEMOGRAPHIC CHARACTERISTICS OF THE GENERAL U.S. POPULATION

Population trends are useful if an assessor is estimating an exposed population across time. For example, if the risk for increased exposure is specific to a specific population (e.g., race, gender) the estimated exposed population may be determined in some instances up to 1995 and projected for the years from 2000 to 2050, in increments of 10 years.

2.12.1. Trends in Gender and Age Characteristics of the General U.S. Population

Table 2-18 shows trends in the ratio of males to females for all age groups from 1950, with projections for 2025 (U.S. Bureau of the Census, 1995). Data indicate that there are slightly more males than females under the age of 14 years. Between ages 14 to 24 years, the numbers of males to females are nearly equal; however, after the age of 24 years, the ratio of males to females shows a fairly consistent decrease. The ratio of males to females is lowest at age 65 years and over. The average male-to-female ratio (for all ages) has dropped slightly from 98.6 in 1950 to 95.4 in 1994, and is projected to increase slightly to 96.3 by 2025.

2.12.2. Trends in Demographics of Race and Ethnic Characteristics of the General U.S. Population

Trends in demographics of race/ethnicity are presented in Table 2-19. The percent distribution is provided for the resident population by race from 1980 to 1995, with projections to 2050. Data in this table are adapted from Table 19 in Statistical Abstract of the United States, 1995 (U.S. Bureau of the Census, 1995). These data indicate an increase in the general population for persons of Hispanic origin since 1980. The percent distribution (of the total distribution of 100 percent) for the Hispanic origin population was 6.54 percent in 1980 and increased to a projected distribution of 22.46 percent for the year 2050.

2.12.3. Trends in Regional Distribution of the General U.S. Population

Table 2-20 presents changes in location of primary residence of the general population. Data in this table are adapted from Table 30 in Statistical Abstract of the United States, 1995 (U.S. Bureau of the Census, 1995). Census data indicate that percentage increases in population from 1960 to 1994 were highest in the West and South regions. The greatest population decreases occurred in the Midwest and Northeast regions.

2.12.4. Trends in Demographics of Social and Economic Characteristics of the General U.S. Population

Tables 2-5 through 2-8, discussed previously in Section 2.5, indicate changes in the socioeconomic characteristics of the general population. The trends from these tables are summarized as follows:

- White population in 1994, relative to 1980 (Table 2-5):
- Total population increased by 12.5%;
- Number of high school graduates dropped by 3\%;
- Number of college graduates increased by 5%;
- Number employed increased by 3.5%;
- Relative to 1980 , the median income rose by $\$ 2,000$ in 1990 , then dropped to $\$ 600$ below the 1980 value by 1994;
- Number of persons below the poverty level increased by 3.2%; and
- Consistent family types and housing tenure.
- Black population in 1994, relative to 1980 (Table 2-5):
- Total population increased by 27%;
- Number of high school graduates increased by 5.4\%;
- Number of college graduates increased by 11.3\%;
- Number employed increased by 3.9%;
- Number of families headed by women increased by 7.6\%;
- Relative to 1980 , the median income rose by $\$ 949$ in 1990 , then dropped to $\$ 1,053$ below the 1980 value by 1994; and
- Number of persons below the poverty level increased by 2%.
- American Indian population (Table 2-6): Data from past years were not readily available; therefore, trends could not be evaluated. Data on socioeconomic status of the American Indian population should be available from the Bureau of Indian Affairs in Washington, DC.
- Asian and Pacific Islander population in 1994, relative to 1990 (Table 2-7):
- Total population increased by 11.5%;
- Number of high school graduates decreased by 1.7\%;
- Number of college graduates decreased by 1.3%;
- Number employed decreased by 2.6\%;
- Relative to 1990 , the median income dropped by $\$ 2565$;
- Number of persons below the poverty level increased by 1.2%; and
- Consistent family types and housing tenure.
- Hispanic population data trend summary (Note: All tables by number listed for the Hispanic population as data sources are the table numbers presented in the Statistical Abstract of the United States [U.S. Bureau of the Census, 1995]):
- Total population increased by 83% from 1980 to 1995 (data from Table 19);
- Number of high school graduates increased by 9.3\% from 1980 to 1994 (data from Table 238);
- Number of college graduates increased by 1.5% from 1980 to 1994 (data from Table 238);
- Number employed increased by 2.1% from 1980 to 1994 (data from Table 627);
- Relative to 1980 , the median income dropped by $\$ 1,082$ by 1993 (data from Table 723);
- Percentage of persons below the poverty level increased by 8.8% from 1979 to 1993 (data from Table 744); and
- Homeowner-occupied housing increased by 46\% from 1980 to 1990 (data from Table 1226).

2.12.5. Trends in Demographics of Distribution by Households of the General U.S. Population

Table 2-9, shown in Section 2.6, presents percent change in numbers of households by State. Trends generally parallel those of regional distribution of the general population, in that the greatest increases occurred in the West and South regions, with slight increases in the North and Midwest regions. Table 2-9 also indicates that the number of persons per household nationwide has dropped slightly, from 2.75 persons in 1980 to 2.64 persons in 1994.

2.12.6. Trends in Demographics of Urban and Rural U.S. Population

Table 2-21 indicates that, since 1960, the percent of the general U.S. population residing in urban areas has increased. The population percentage residing in rural areas has decreased.

2.12.7. Trends in Demographics of Resident Population With Disabilities

Trends for persons with disabilities may be inferred from economic data containing the number of persons receiving public assistance. The assumption is that persons with disabilities often are not able to work to fully support themselves. Table 2-22 presents numbers of persons receiving public assistance in the United States from 1980 to 1993. Table 2-23 in this document is a summary of data presented in table number 611 in the 1995 U.S. Bureau of the Census Statistical Abstract of the United States, and it indicates that the percentage of persons receiving public assistance increased from 6.5% in 1990 to 7.7% in 1993.

2.12.8. Trends in Demographics of Native and Foreign-Born Resident Populations

Table 2-13, Section 2.9, indicates that the percentage of the general U.S. population born in foreign countries has decreased over the past 70 years from 13.2% in 1920 to 7.9% in 1990. Immigration rates from 1901 to 1993 are presented in Table 2-24 (U.S. Bureau of the Census, 1995). These data show that the rate of immigration was 10.4% between 1901 and 1910 , dropped to 0.7% between 1941 and 1950 , and since that time has risen to a current rate of 4.8%. The U.S. Bureau of the Census defines immigrants as aliens admitted for legal permanent residence in the United States (U.S. Bureau of the Census, 1995). The category "immigrant" includes persons who may have entered the United States as nonimmigrants or refugees but who subsequently changed status to permanent resident.

2.12.9. Trends in Demographics of Resident Population on Active Duty in the Military

Table 2-25 presents the numbers and percent distribution of the general U.S. population on active duty in the military. Data for this table were adapted from the U.S. Bureau of the Census, 1995. These data indicate that the percent of the general population serving in the military was approximately 0.9% in 1950 , increased to about 1.6% between 1955 and 1970 , then dropped to approximately 0.8% from 1975 to 1993.

2.12.10. Trends in Demographics of Resident Populations Living in Institutions and Group Quarters

Trends for persons residing in group quarters (college dormitories, rooming houses, etc.) could not be evaluated because data from past years are not readily available. Trends in numbers of persons living in institutions (e.g., under care or custody in juvenile facilities, jails, correctional centers, or hospitals) are summarized as follows (note: numbers of total U.S. population are from Table 2 in the U.S. Bureau of the Census, 1995):

- The number of persons in jails has increased since 1978 (Table 348, U.S. Bureau of the Census, 1995), from 158,394 persons (0.07% of total population) in 1978 to 490,442 persons (0.19% of total population) in 1994.
- The rate (per 100,000 persons of the general population) of persons in Federal and State prisons (Table 2-17) has increased from 96.7 in 1970 to 352.9 in 1993.

2.13. REFERENCES

Calabrese, E.J. (1986) Age and susceptibility to toxic substances. New York: John Wiley and Sons, Inc.

Day, JC. (1996) Population projections of the United States by age, sex, race, and Hispanic origin: 1995 to 2050. U.S. Department of Commerce, Bureau of the Census, Current Population Reports, series P-25, no. 1130. Washington, DC: U.S. Government Printing Office.

Spencer, G. (1989) Projections of the population of the United States, by age, sex, and race: 1988 to 2080. U.S. Department of Commerce, Bureau of the Census, Current Population Reports, series P-29, no. 1018. Washington, DC: U.S. Government Printing Office.
U.S. Bureau of the Census. (1995) Statistical abstract of the United States: 115 th ed. U.S. Department of Commerce, Bureau of the Census, Washington, DC.
U.S. Bureau of the Census. (1997) Statistical abstract of the United States: 117 th ed. U.S. Department of Commerce, Bureau of the Census, Washington, DC.

Table 2-1. Resident Population by Gender and Age: 1994 [In thousands, except as indicated. As of July 1.]

Age	Total	Male	Female	Age	Total	Male	Female
Total	260,341	127,076	133,265				
				43 yrs	3,716	1,825	1,891
Median age	34.0	32.9	35.2	44 yrs	3,825	1,897	1,927
Under 5 yrs	19,727	10,094	9.633	45.49 yrs	16,679	8,181	8,498
$<1 \mathrm{yr}$	3,870	1,981	1,889	45 yrs	3,659	1.801	1,858
1 yrs	3,878	1,985	1,893	46 yrs	3,550	1.743	1,807
2 yrs	3.956	2,023	1,933	47 yrs	3,843	1,886	1,957
3 yrs	3,990	2,041	1,949	48 yrs	2,652	1.292	1,360
4 yrs	4,032	2,064	1,968	49 yrs	2,974	1.458	1,517
5-9 yrs	18,859	9,657	9,201	50-54 yrs	13,191	6,410	6,781
5 yrs	3,884	1,989	1,894	50 yrs	2,890	1,409	1,481
6 yrs	3,792	1,940	1,852	51 yrs	2,931	1,430	1,502
7 yrs	3,747	1,917	1,830	52 yrs	2,549	1,238	1,312
8 yrs	3,595	1,841	1,754	53 yrs	2,440	1.182	1,258
9 yrs	3,841	1,969	1,872	54 yrs	2,381	1,152	1,229
$10-14 \mathrm{yrs}$	18,753	9,602	9,150	55-59 yrs	10,936	5,244	5,692
10 yrs	3,744	1,920	1,824	55 yrs	2,283	1,099	1,184
11 yrs	3,770	1.931	1,840	56 yrs	2,281	1,095	1,185
12 yrs	3.768	1.927	1,841	57 yrs	2,178	1,043	1,134
13 yrs	3.722	1,903	1,818	58 yrs	2,021	966	1,055
14 yrs	3,748	1,921	1,828	59 yrs	2,173	1,041	1,132
15-19 yrs	17,616	9,036	8,580	60-64 yrs	10,082	4.740	5,342
15 yrs	3,602	1,848	1,754	60 yrs	1,981	934	1,046
16 yrs	3,515	1,808	1,707	61 yrs	1,953	923	1,030
17 yrs	3,562	1,836	1.727	62 yrs	1,965	921	1,044
18 yrs	3,349	1,714	1,635	63 yrs	2,065	971	1,094
19 yrs	3,588	1,831	1,757	64 yrs	2,118	990	1.128
20-24 yrs	18,326	9,311	9,015	65-69 yrs	9,970	4.500	5,471
20 yrs	3,480	1,776	1,704	65 yrs	2,059	948	1,111
21 yrs	3.492	1.782	1,710	66 yrs	2,071	948	1,124
22 yrs	3,605	1,835	1,770	67 yrs	2,003	905	1,098
23 yrs	3,839	1,943	1,897	68 yrs	1,897	845	1,052
24 yrs	3,910	1,976	1,934	69 yrs	1,940	854	1,086
25-29 yrs	19,177	9,619	9,558	70-74 yrs	8.741	3,790	4,951
25 yrs	3,756	1,894	1,862	70 yrs	1,875	824	1,051
26 yrs	3,680	1,846	1,834	71 yrs	1,801	786	1,015
27 yrs	3,778	1,894	1.884	72 yrs	1,811	791	1,020
28 yrs	3,674	1,837	1,837	73 yrs	1,695	729	966
29 yrs	4,289	2,147	2,142	74 yrs	1,559	659	899
30-34 yrs	22,177	11,058	11,119	75-79 yrs	6,574	2,655	3,919
30 yrs	4,354	2,173	2,181	75 yrs	1,473	614	859
31 yrs	4,332	2,160	2.172	76 yrs	1,369	563	806
32 yrs	4,431	2,209	2,222	77 yrs	1,294	524	770
33 yrs	4.433	2,201	2,232	78 yrs	1,254	496	758
34 yrs	4,626	2,315	2,311	79 yrs	1.184	459	725
35-39 yrs	21,961	10,920	11,040	$80-84 \mathrm{yrs}$	4,351	1,550	2,801
35 yrs	4,523	2.253	2,270	80 yrs	1,048	393	655
36 yrs	4,439	2,208	2,231	81 yrs	966	352	614
37 yrs	4.472	2,223	2,248	82 yrs	855	306	549
38 yrs	4,055	2,007	2,048	83 yrs	784	268	516
39 yrs	4,472	2,229	2,243	84 yrs	699	232	467
40-44 yrs	19,699	9,728	9,970	85-89 yrs	2,274	686	1.588
40 yrs	4,223	2,090	2,133	90-94 yrs	948	235	713
41 yrs	4,013	1,979	2,033	95-99 yrs	249	50	199
42 yrs	3,922	1,936	1,986	$>100 \mathrm{yrs}$	50	9	41

Source: U.S. Bureau of the Census, 1995.

Figure 2-1. Projected Age Distribution of the U.S. Population: 1987, 2000, 2010, and 2030

Source: Spencer, 1989.

Table 2-2. Resident Population by Race, Hispanic Origin Status, and Percent Distribution: 1980 to 1994 [In thousands]

Year	Total	Percent Distribution	Not of Hispanic Origin								Hispanic Origin ${ }^{\text {8 }}$	Percent Distribution
			White	Percent Distribution	Black	Percent Distribution	American Indian, Eskimo, Aleut	Percent Distribution	Asian, Pacific Islander	Percent Distribution		
1980	227,225	100.0	181,140	79.7	26,215	11.5	1,336	0.6	3,665	1.6	14,869	6.6
1985	237,924	100.0	184,945	77.7	27,738	11.7	1,558	0.7	5,315	2.2	18,368	7.7
1990	249,402	100.0	188,601	75.6	29,374	11.8	1,802	0.7	7,076	2.9	22,549	9.0
1994	260,341	100.0	192,727	74.0	31.192	12.0	1,907	0.7	8,438	3.2	26,077	10.1

${ }^{-}$Persons of Hispanic origin may be of any race.
Source: U.S. Bureau of the Census, 1995.

Table 2-3. Resident Population by Age, Race, and Hispanic Origin: 1980 to 1994
IIn thousands, oxcopt peroent. As of Aprth, excopt 1994 as of July. Hispanto parions may be of any reco.]

Year and sox	Tot려, B Y Y	$<5 \mathrm{yrs}$	5.8 yrs	10-14 Yrs	$15 \cdot 19 \mathrm{yrs}$	$\begin{gathered} 20-24 \\ \mathrm{y} \mathrm{tB} \end{gathered}$	$\begin{gathered} 25-29 \\ y \mathrm{rz} \end{gathered}$	$\begin{gathered} 30-34 \\ \text { yre } \end{gathered}$	$\begin{gathered} 35-38 \\ \text { yrs } \end{gathered}$	$\begin{gathered} 40-44 \\ y r= \end{gathered}$	$\begin{gathered} 45-48 \\ y r z \end{gathered}$	$\begin{gathered} 50-54 \\ y r s \end{gathered}$	$\begin{gathered} 55-59 \\ y \cdot 50 \end{gathered}$	$\begin{gathered} 60.64 \\ \mathrm{yr} \end{gathered}$	$\begin{gathered} 65.74 \\ y r s \end{gathered}$	$\begin{gathered} 75-84 \\ y T B \end{gathered}$	$\begin{aligned} & 86 \text { yri } \\ & \text { and } \\ & \text { older } \end{aligned}$
Hispante ortain																	
1980	14,609	1.063	1,537	1,475	1,808	1,588	1,376	1,129	854	712	622	564	454	321	457	203	49
1990 ${ }^{\text { }}$	22,354	2,487	2,178	1,989	2,085	2,320	2,337	2,045	1,842	1,278	936	750	833	550	715	340	81
1994	28,077	3,096	2,527	2,355	2,198	2,338	2,483	2,460	2,080	1,632	1,230	913	738	816	904	405	122
Male	13,219	1,583	1.292	1,202	1,128	1,245	1,334	1,291	1,058	818	603	438	348	285	398	155	40
Femalo	12,857	1,513	1.235	1,163	1,070	1,083	1.149	1,168	1,002	814	627	475	380	332	508	250	82
Non-Hispanic whita																	
1980	180,908	11,842	12,282	13,703	16,168	10,574	15,358	14,091	\$1,315	9,437	9.104	9,824	8,863	8,775	13,014	6,863	2,014
1990*	188,306	12,721	12,516	11,854	12,450	13,524	15,508	16,331	15,162	13,839	10,971	9,057	8,548	8,872	15,511	8,787	2,675
1994	192,727	12,764	12,707	12,783	12,033	12,592	13,338	16,058	18,371	15,038	13,130	10,522	8,760	8,208	15,797	9,534	3,094
Malo	94,091	6,549	8,525	6,569	6,193	6,390	6,680	8,042	8,206	7,508	0,514	5.172	4,254	3,910	7,049.	3,682	847
Female	88,638	8,215	6,183	8,214	5,840	8,202	8,857	8,014	8,165	7,529	6,615	5,350	4,507	4,298	8,748	5,852	2,247
Black																	
1980	28,142	2,399	2,455	2,635	2,944	2,889	2,292	1,865	1,438	1.233	1,127	1,114	1,024	801	$\cdot 1,327$	682	157
1990 ${ }^{\text {a }}$	29,275	2.798	2,598	2,525	2,605	2,528	2,850	2,601	2,265	1,811	1,362	1,138	1,008	945	1,465	758	219
1994	31,192	2,945	2,791	2,733	2,610	2.539	2,475	2,893	2,608	2,210	1,669	1,287	1.089	960	1,554	797	280
Mala	14,748	1,492	1,415	1,385	1,322	1.248	1,175	1,255	1,215	1,020	759	577	488	408	646	288	75
Fomale	18,444	1,453	1,378	1,348	1,289	1,293	1,301	1,438	1,393	1,190	810	710	801	541	908	509	185
Am. Indion, Esklmo, Alaut																	
1980	1,328	138	135	145	158	138	118	100	79	66	55	49	43	32	48	20	8
1990°	1,796	185	179	170	185	151	180	158	138	117	90	72	58	48	68	31	9
1994	1.907	179	188	195	188	159	149	159	150	133	107	82	84	51	75	37	13
Male	938	91	98	99	84	81	75	78	73	64	51	39	30	24	34	15	4
1980	3,583	308	311	285	294	332	378	376	279	221	182	158	131	98	138	00	14
1990*	8,988	588	586	522	581	812	873	700	840	545	384	297	240	210	287	116	27
1994	8,438	743	646	689	809	697	731	809	772	887	544	387	304	257	381	152	32
Male	4,080	380	330	347	309	348	354	391	388	318	253	184	143	112	163	68	13
Female	4,358	363	316	339	300	349	377	418	404	389	292	204	181	145	218	88	20
1994, Parcont																	
Hispanic origin	100.0	11.9	9.7	9.0	8.4	9.0	9.5	8.4	7.9	8.3	4.7	3.5	2.8	2.4	3.5	1.8	0.5
Non-Hispanic																	
White	100.0	6.6	6.8	6.8	8.2	6.5	6.9	8.3	8.5	7.8	6.8	5.5	4.5	4.3	8.2	4.9	1.6
Black	100.0	9.4	8.8	8.8	8.4	8.1	7.9	8.6	8.4	7.1	5.4	4.1	3.4	3.0	5.0	2.6	0.8
Am. Indian, Eskimo, Aleut	100.0	9.4	9.8	10.2	8.7	8.4	78	8.3	7.9	8.9	5.6	4.3	3.4	2.7	2.9	2.0	0.7
Asian, Pacific Islander	100.0	8.8	7.7	8.1	7.2	8.3	8.7	9.6	9.1	8.1	6.5	4.8	3.6	3.0	4.5	1.8	0.4

- The April 1,1990 , cansus count $(248,718,291)$ includes count resolution corrections processed through March 1994 and does not include adjustments for census coverage errors,

Source: U.S. Bureau of the Census, 1995.

Table 2-4. Resident U.S. Population by Region, Race, and Hispanic Origin: 1990
[As of April1. For composition of regions, see text section 2.4.]

Race and Hispanic Origin	Population (1,000)					Percent Distribution				
	United States	Northeast	Mid-west	South	West	United States	Northeast	Mid-west	South	West
Total	248,710	50,809	59,669	85,446	52,786	100.0	20.4	24.0	34.4	21.2
White	199,686	42,069	52,018	65,582	40,017	100.0	21.1	26.0	32.8	20.0
Black	29,986	5,613	5,716	15,829	2,828	100.0	18.7	19.1	52.8	9.4
Am. Indian,	1,959	125	338	563	933	100.0	6.4	17.2	28.7	47.6
Eskimo, Aleut										
Indian										
Eskimo	57	2	2	3	51	100.0	2.9	3.5	4.9	88.8
Aleut	24	2	2	3	17	100.0	8.1	8.1	11.5	72.3
Asian or Pacific	7,274	1,335	768	1,122	4,048	100.0	18.4	10.6	15.4	55.7
Islander										
Chinese	1,645	445	133	204	863	100.0	27.0	8.1	12.4	52.4
Filipino	1,407	143	113	159	991	100.0	10.2	8.1	11.3	70.5
Japanese	848	74	63	67	643	100.0	8.8	7.5	7.9	75.9
Asian Indian	815	285	146	196	189	100.0	35.0	17.9	24.0	23.1
Korean	799	182	109	153	355	100.0	22.8	13.7	19.2	44.4
Vietnamese	615	61	52	169	334	100.0	9.8	8.5	27.4	54.3
Laotian	149	16	28	29	76	100.0	10.7	18.6	19.6	51.0
Cambodian	147	30	13	19	85	100.0	20.5	8.8	13.1	57.7
Thai	91	12	13	24	43	100.0	12.9	14.2	26.0	46.8
Hmong	90	2	37	2	50	100.0	1.9	41.3	1.8	55.0
Pakistani	81	28	15	22	17	100.0	34.3	18.9	26.5	20.4
Hawaiian	211	4	6	12	189	100.0	2.0	2.6	5.8	89.6
Samoan	63	2	2	4	55	100.0	2.4	3.6	6.4	87.6
Guamanian	49	4	3	8	34	100.0	7.3	6.4	16.8	69.5
Other A/P	263	49	34	54	126	100.0	18.6	12.9	20.5	48.0
Islander										
Other Races	9,805	1,667	829	2,350	4,960	100.0	17.0	8.5	24.0	50.6
Hispanic Origin a	22,354	3,754	1,727	6,767	10,106	100.0	16.8	7.7	30.3	45.2
Mexican	13,496	175	1,153	4,344	7,824	100.0	1.3	8.5	32.2	58.0
Puerto	2,728	1,872	258	406	192	100.0	68.6	9.4	14.9	7.0
Rican										
Cuban	1,044	184	37	735	88	100.0	17.6	3.5	70.5	8.5
Other	5,086	1,524	279	1,282	2,002	100.0	30.0	5.5	25.2	39.4
Hispanic										
Not of Hispanic	226,356	47,055	57,942	78,679	42,680	100.0	20.8	25.6	34.8	18.9
Origin										

a Persons of Hispanic origin may be of any race.
Source: U.S. Bureau of the Census, 1995.

Table 2-5. Social and Economic Characteristics of the White and Black Populations: 1980 to 1994
(As of March. Excludes mambors of Armed Forcas except those living off post or with their families on post. Data for 1990 are based on 1980 conaus population controls; 1994 data are based on 1990 census population controls. Based on Current Population Survey.]

Charactoristic	Number (1,000)						Percent Distribution			
	White				Black		White		Black	
	1980	1990	1994	1980	1990	1994	1980	1994	1980	1994
Total parsons	197,905	206,983	215,221	26,033	30,392	33,040	100.0	100.0	100.0	100.0
Under 5 yre oid	13,307	15,161	16,055	2,444	2,932	3,357	6.9	7.5	9.4	10.2
5-14 yre old	28,828	28,405	30,391	5,190	5,546	6,183	15.0	14.1	19.9	18.7
15-44 yru ofd	88,570	96,656	97,917	12,247	14,680	15,907	46.2	45.5	47.0	48.1
45-64 yre otd	39,302	40,282	43,278	4,112	4,766	5,082	20.5	20.1	15.8	15.4
65 yre old and oider	21,898	26,479	27,580	2,040	2,487	2,510	11.4	12.8	7.8	7.6
Educatiorral attainmant										
Porsore 25 yre old and older	114,763	134.687	139,760	12,927	16,751	18,103	100.0	100.0	100.0	100.0
Elamontary: 0-8 yra	18,739	14,131	11,796	3,559	2,701	1.860	16.3	8.4	27.5	10.3
High school: 1-3 yrs	15,064	14,080	13,340'	2,748	2,969	3,048	13.1	9.54	21.3	$16.8{ }^{\circ}$
4 yrs	43,149	52,449	48,236 ${ }^{\text {b }}$	3,980	6,239	6,549 ${ }^{\text {b }}$	37.6	$34.5{ }^{\text {b }}$	30.8	$36.2{ }^{\text {b }}$
Colloga: 1 - 3 yre	17,350	24,350	34,331 ${ }^{\text {e }}$	1.618	2,952	4,310 ${ }^{\circ}$	15.1	$24.6{ }^{\text {c }}$	12.5	$23.8{ }^{\text {c }}$
	20,460	29,677	32,057 ${ }^{\text {d }}$	1,024	1,890	2,337 ${ }^{\text {d }}$	17.8	$22.9{ }^{\text {d }}$	7.9	$12.9{ }^{\text {d }}$
Labor foroe status"										
Cluillane 16 yri old and ofder	146,122	160,415	165,555	17.824	21,300	22.879	100.0	100.0	100.0	100.0
Civilian labor forco	93,600	107.177	111,082	10,865	13,493	14,502	64.1	67.1	61.0	63.4
Employod	87,715	102,087	105,190	9,313	11,966	12,835	60.0	63.5	52.2	56.1
Unomployed	5,884	5,091	5,892	1,553	1,527	1,666	4.0	3.6	8.7	7.3
Unemployment rate ${ }^{\text {f }}$	6.3	4.7	5.3	14.3	11.3	11.5	x.	X	\times	X
Family iypo										
Total famities	52,243	56,590	57,870	6,184	7,470	7,989	100.0	100.0	100.0	100.0
With own childron ${ }^{\text {a }}$	26,474	26,718	2,624	3,810	4,378	4,794	50.7	47.7	61.8	60.0
Marriod couplo	44,751	46,981	47,443	3,433	3,750	3,714	85.7	82.0	55.5	46.5
With own childron ${ }^{\text {a }}$	22,415	21,579	21,874	1,927	1.972	1,925	42.9	37.8	31.2	24.1
Famale head of housohold, no apouse presont	6,052	7,306	8,130	2,495	3,275	3,825	11.6	14.0	40.3	47.9
With own childron ${ }^{\text {d }}$	3,558	4,199	4,742	1,793	2,232	2,630	6.8	8.2	29.0	32.9
Male head of housohold, no spouse prosent	1.441	2,303	2,297	256	446	450	2.8	4.0	4.1	5.6
With own ahildran ${ }^{\text {a }}$	500	939	1,008	99	173	238	1.0	1.7	1.6	3.0
Family income in previous year in constant (1993) dokare										
Total famities	52,243	56,590	57,870	6,184	7,470	7,989	100.0	100.0	100.0	100.0
Less then \$5,000	908	1,188	1,432	405	665	856	1.7	2.5	6.5	10.7
\$5,000-\$9,988	2,110	2,264	2,765	872	964	1,205	4.0	4.8	14.1	15.1
\$10,000-\$14,999	3,097	3,339	3,818	787	896	911	5.9	6.6	12.7	11.4
\$15,000-\$24,999	7,906	7.923	8,756	1,326	1,389	1.485	15.1	15.1	21.4	18.6
\$25,000 - \$34,999	7,963	8,262	8,719	871	1,031	1,093	15.2	15.1	14.1	13.7
\$35,000-\$49,999	12,244	11,318	10,865	972	1,091	1,035	23.4	18.8	15.7 .	13.0
\$50,000 or moro	18,015	22,295	21,515	952	1,434	1.404	34.5	37.2	$15.3{ }^{\circ}$	17.6
Madian income (dol.)	39.911	41,922	39,308	22,601	23,550	21,548	X	\times	\times	X
Familios bolow povorty levelh	3,581	4,409	5,452	1,722	2,077	2,499	6.9	9.4	27.8	31.3
Parsone bolow povarty levor	17.214	20,785	26,226	8,050	9.302	10,877	9.0	12.2	31.0	33.1
Housing tonura										
Total oceuplad units	70,766	80,163	82,387	8,586	10,486	11,281	100.0	100.0	100.0	100.0
Ownor-occupied	49.913	54,094	55,879	4,173	4.445	4,791	70.5	67.8	48.6	42.5
Rentar-accupied	19,581	24,685	24,955	4,257	5.862	6,268	27.7	30.3	49.6	55.6
No cush ront	1.272	1,384	1,553	156	178	222	1.8	1.9	1.8	2.0

NA = Not availablo.

$X=$ Not applicablo.

- Reprasents thoso who completed ninth to twalfth grade, but have no high school diploma.
- High school graduate.
- Somo college or associate dagroe.
- Bacholor's or advanced degrae.
- Data baginning 1994 not directly comparable with earlier years.
- Totel unemployment as percent of civilian labor force.
- Childran undar 18 yoars oid.
h Families and unreiatod individuals are classifiod as being above or below the poverty level using the poverty index originated at the Social Security Administration in 1964 and rovised by Foderal Interagency Committeos in 1969 and 1980.
Sourca: U.S. Bureau of the Census, 1995.

Table 2-6. Social and Economic Characteristics of the American Indian Population: 1990
[As of April 1. Based on a sample and subject to sampling variability.]

Characteristic	American Indian, totala	Cherokee	Navajo	Sioux ${ }^{\text {b }}$	Chippewa	Choctaw	Pueblo	Apache	troquais ${ }^{\text {c }}$	Lumbee
Total persons	1,937,391	369,035	225,298	107,327	105,888	86,231	55,330	53,330	52,567	50,888
Percent under 5 yrs old	9.7	6.3	13.6	12.3	10.3	8.2	10.3	10.2	8.1	8.3
Percent 18 yrs old and older	65.8	73.3	57.7	80.0	64.0	68.8	64.2	84.7	71.1	68.2
Percent 65 yrs old and older	5.9	7.2	4.6	4.4	4.7	8.0	5.8	3.4	6.7	5.8
Educational sttainment										
Persons 25 yrs ald and older	1,040,955	229,231	100,594	51,014	54,804	49,128	28,597	27,717	30,882	27,343
Percent high school graduates or higher	65.8	68.2	51.0	89.7	69.7	70.3	71.5	63.8	71.9	51.8
Percent bachelor's degree or higher	9.4	11.1	4.5	8.9	8.2	13.3	7.3	8.9	11.3	9.4
Family type										
Percent distribution										
Married coupla	65.8	73.1	61.1	54.2	58.4	75.2	61.2	68.9	67.5	68.5
Femate head of household, no spouse present	28.2	20.8	28.6	36.0	33.1	20.0	29.2	24.7	25.5	23.9
Male head of household, rio spouse present	8.0	6.1	10.3	9.8	8.5	4.8	9.6	8.4	7.0	7.6
Income in 1989	.									
Median income (dol.)	21,619	24,907	13,940	16,525	20,248	24,467	19,845	19,690	27,025	23,934
Median household (dol.)	19,900	21,822	12,817	15.811	18,801	21,840	19,097	18,484	23,480	21,708
Per capita (dol.)	8,284	10,409	4,788	8,508	7.777	9,463	6,679	7.271	10.588	8,625
Families below poverty leval ${ }^{\text {d }}$	122,237	19,100	21.204	8,939	7.814	4,347	3,691	3,913	2.249	2,554
Percent below poverty leval	27.2	19.4	47.3	39.4	31.2	19.9	31.2	31.8	17.3	20.2
Persons below poverty level ${ }^{\text {d }}$	585,273	79.271	107,528	46,658	35,231	19,453	17,981	19,246	10.253	10,988
Percent below poverty level	31.2	22.0	48.8	44.4	34.3	23.0	33.2	37.5	20.1	22.1

a Includes other Americen Indian tribes not shown separately.
b Any entry with the spelling "Siouan" was miscoded to Sioux in North Caroline.
c Reporting and/or processing problems have affected data for this tribe.

- Families and unrelated individuals are classifiad as being above or below the poverty level using the poverty index originated at the Social Security Administration in 1964 and revised by Federal Intaragency Committees in 1969 and 1980.

Source: U.S. Bureau of the Census, 1995.

Figure 2-2. Native American Populations Residing in EPA Regions by State: 1995 [In thousands].

Source: U.S. Bureau of the Census, 1995.

Table 2-7. Social and Economic Characteristics of the Asian and Pacific Islander Population:
1990 and 1994
[As of March. Excludes members of Armed Forces except those living off post or with their families on post. Data for 1990 are based on 1980 census population controls; 1994 data are based on 1990 census population controls.]

Characteristic	Number (1,000)		Percent Distribution	
	1990	1994	1990	1994
Total persons	6,679	7.444	100.0	100.0
Under 5 yrs old	602	584	9.0	7.8
5-14 yrs old	1,112	1,165	16.6	15.7
15-44 yrs old	3,345	3,838	50.1	51.6
45-64 yrs old	1.155	1,355	17.3	18.2
65 yrs old and older	465	503	7.0	6.8
Educational attainment				
Persons 25 yrs old and older	3,961	4,545	100.0	100.0
Elementary: 0-8 yrs	543	444	13.7	9.8
High school: 1 - 3 yrs	234	$248{ }^{\text {a }}$	5.9	$5.5{ }^{\text {a }}$
4 yrs	1,038	$1.115^{\text {b }}$	26.2	$24.5{ }^{\text {b }}$
College: 1-3 yrs	568	$866^{\text {c }}$	14.3	$19.1{ }^{\text {c }}$
4 yrs or more	1,578	$1,872^{\text {d }}$	39.9	$41.2^{\text {d }}$
Labor force status ${ }^{*}$				
Civilians 16 yrs old and older	4,849	5,562	100.0	100.0
Civilian labor force	3.216	3,540	66.3	63.7
Employed	3,079	3,310	63.5	59.5
Unemployed	136	230	2.8	4.1
Unemployment rate ${ }^{\text {f }}$	4.2	6.5	\times	\times
Not in labor force	1,634	2,022	33.7	36.3
Family type				
Total families	1,531	1,737	100.0	100.0
Married couple	1,256	1,426	82.1	82.1
Female head of household, no spouse present	188	232	12.3	13.1
Male head of household, no spouse present Family income in previous year in constant	86	79	5.6	4.6
(1993) dollars				
Total families	1,531	1.737	100.0	100.0
Less than \$5,000	NA	72	NA	4.2
\$5,000-\$9,999	NA	107	NA	6.1
\$10,000-\$14,999	NA	114	NA	6.6
\$15,000-\$24,999	NA	220	NA	12.7
\$25,000-\$34,999	NA	195	NA	11.3
\$35,000-\$49,999	NA	243	NA	14.0
\$50,000 or more	NA	784	NA	45.2
Median income	47,021	44,456	X	X
Families below poverty level	182	235	11.9	13.5
Persons below poverty level Housing tenure	939	1,134	14.1	15.3
Total occupied units	1,988	2,233	100.0	100.0
Owner-occupied	977	1.154	49.1	51.7
Renter-occupied	982	1,055	49.4	47.2
No cash rent	30	25	1.5	1.1

NA $=$ Not available.
$X=$ Not applicable.
${ }^{\text {a }}$ Represents those who completed 9 to 12 grade, but have no high school diploma.
${ }^{b}$ High school graduate.
${ }^{6}$ Some college or associate degree.
${ }^{\text {d }}$ Bachelor's or advanced degree.
${ }^{-}$Data beginning 1994 not directly comparable with earlier years.
${ }^{1}$ Total unemployment as percent of civilian labor force.
Source: U.S. Bureau of the Census, 1995.

Table 2-8. Social and Economic Characteristics of the Hispanic Population: 1993
[As of March, except labor force status, annual average. Excludes Armed Forces members except those living off post or with families on post.]

Number $(1,000) \quad$ Percent Distribution

Charactaristic

	His- panic, total	Mexican	Puer- to Rican	Cuban	Centrall South Àmerican	Other His- panic	His- panic, total	Mexican	Puerto Rican	Cuban	Central/ South American	Oiher His- panic
Totel persons	22.762	14,628	2,402	1,071	3,052	1,598	100.0	100.0	100.0	100.0	100.0	100.0
Under 5 yrs old	2.523	1.787	251	49	304	133	11.1	12.2	10.4	4.6	10.0	8.3
5-14 yra ofd	4,207	2,939	496	86	461	226	18.5	20.1	20.6	7.9	15.1	14.1
16.44yme cid	11.529	7,447	1,162	429	1,732	759	50.7	60.9	48.4	40.1	56.7	47.5
48. 84 yra ofd	3,271	1,844	355	291	438	344	14.4	12.6	14.8	27.2	14.3	21.5
08 yre ofd and older Educationd atta	1,222	612	138	218	119	135	5.4	4.2	5.7	20.3	3.9	8.4
Persons 25 yre ofd	12,100	7,188	1,280	818	1.776	1,029	100.0	100.0	100.0	100.0	100.0	100.0
and older High school greduate	8,424	3,324	766	508	1.117	709	53.1	46.2	59.8	62.1	62.9	68.9
or highter Bachelor's degrea or	1,090	428	103	135	269	155	9.0	5.9	8.0	16.5	15.1	15.1
hegher Labor force status"												
Civitane 16 yrs ofd	15,753	9,693	1,676	927	NA	NA	100.0	100.0	100.0	100.0	NA	NA
and ofder Clutitan labor force	10,377	6,499	950	554	NA	NA	85.9	67.0	56.7	59.8	NA	NA
Employed	9,272	5,805	828	511	NA	NA	58.9	59.9	49.4	55.1	NA	NA
Unamplcyad	1,104	693	122	43	NA	NA	7.0	7.1	7.3	4.6	NA	NA
Unemployment ratic	10.8	10.7	12.8	7.8	NA	NA	x	X	X	X	NA	NA
Not in labor force Famiy type	5,377	3.194	725	373	NA	NA	34.1	33.0	43.3	40.2	NA	NA
Total fammies	5.318	3,210	653	309	751	395	100.0	100.0	100.0	100.0	100.0	100.0
Marriod couplo	3,674	2,320	349	235	510	261	69.1	72.3	53.4	76.1	67.9	66.0
Fernale hasd of	1.238	622	284	56	186	110	23.3	19.4	40.5	18.2	24.7	27.7
houretiotd, no												
spouse present Malo head of	407	269	40	18	56	25	7.7	8.4	6.2	5.7	7.4	6.3
mousehoid, no												
spouse prasant Famaly Income												
Tota farnifes	6,318	3,210	653	309	751	395	100.0	100.0	100.0	100.0	100.0	100
Less than \$5,000	320	178	60	14	45	23	6.0	5.5	9.2	4.5	6.0	5.8
\$5,000 - \$9,999	820	338	123	23	85	50	11.7	10.5	18.8	7.4	11.3	12.7
\$10,000-\$14,999	671	423	70	29	116	32	12.6	13.2	10.7	9.4	15.4	8.1
415,000-124,899	1,162	740	140	61	142	71	21.7	23.1	21.4	19.7	18.9	18.0
\$25,000 - \$34,999	865	550	89	47	124	53	16.3	17.1	13.6	15.2	16.5	13.4
435,000 - 49,999	802	503	77	50	104	66	15.1	15.7	11.8	16.2	13.8	16.7
\$60,000 or mora	889	478	96	85	133	98	16.7	14.9	14.7	27.5	17.7	24.8
Madian income (dot.)	23,912	23,714	20,301	31,015	23,649	28,562	X	x	X	\times	\times	\times
Famities below	1,395	847	212	47	203	86	26.2	26.4	32.5	15.4	27.0	21.7
povery levers Persons bolow	6,655	4,404	874	194	815	368	29.3	30.1	36.5	18.1	26.7	23.1
poverty levad ${ }^{0}$ Housing tenure												
Tosel occupled undis	6,626	3,889	841	405	937	574	100.0	100.0	100.0	100.0	100.0	100.0
Owner-occuplod	2,654	1,708	197	215	239	294	40.0	44.2	23.4	53.0	25.6	51.2
Renteroceupled	3,973	2,160	644	191	697	280	60.0	55.8	76.6	47.2	74.4	48.8

NA - Not evaliabie.
$X=$ Nor appficable.

* Gource: U.S. Bureau of Labor Statistics, Employment and Earnings, Jan. 1994.
- Total unemployment as porcont of civilian labor force.
- Fambies and unrolated individuals are classified as being above or below the poverty level using the poverty index originated at the Social Security Administration in 1864 and rovisod by Foderal Interagency Committees in 1969 and 1980.

Note: Medsan income is median of yearly total income.
Source: U.S. Bureau of the Census, 1995.

Tabie 2-9. Resident Population by Households and by State: 1980 to 1994
IPrior to 1991. as of April 1 ; after 1991, as of July 1. Minus sign (-) indicates decrease. Division names presented in text section 2.4.]

REGION, DIVISION, AND STATE	NUMBER $(1,000)$							PERCENT CHANGE		PERSONS PER HOUSEHOLD		
						199						
	1980	1990	1991	1992	1993	Total	Householder 65 yrs. and over	$\begin{gathered} 1980- \\ 90 \end{gathered}$	$\begin{gathered} 1990- \\ 94 \end{gathered}$	1980	1990	1994
U.S.	80,390	91,946	93,183	94,652	95,335	95,946	20,876	14.4	4.4	2.75	2.63	2.64
Northeast . .	17,471	18,873	18,964	19,092	19,067	19,045	4,506	8.0	0.9	2.74	2.61	2.62
N.E.	4,362	4,943	4,961	4,987	4,980	4,980	1,142	13.3	0.8	2.74	2.58	2.58
ME	395	465	471	474	4,985	4,474	,108	17.7	2.0	2.75	2.56	2.54
NH	323	411	413	417	419	424	83	27.1	3.0	2.75	2.62	2.61
	178	211	214	217	219	220	44	18.1	4.6	2.75	2.57	2.54
	2.033	2.247	2,250	2,263	2,262	2,265	528	10.5	0.8	2.72	2.58	2.57
RI	339 1.094	+378	379 1	+380	2,377	. 374	96	11.6	-1.1	2.70	2.55	2.57
	1.094	1.230	1,234	1,235	1,228	1,222	283	12.5	-0.7	2.76	2.59	2.60
	13,109	13,930	14,003	14,106	14,087	14,065	3,364	6.3	1.0	2.74	2.62	2.64
NY	6,340	6,639	6,662	6,703	6,689	6,669	1.494	4.7	0.4	2.70	2.63	2.64
NJ	2.549 4.220	2,795	2,812 4.529	2,839	2,839	2,845	. 659	9.7	1.8	2.84	2.70	2.72
	4,220	4,496	4,529	4,564	4,559	4,551	1,211	6.5	1.2	2.74	2.57	2.57
Midwest	20,859	22,317	22,543	22,818	22,893	22,937	5,156	7.0	2.8	2.75	2.60	2.61
E.N.C	14,654	15,597	15,776	15,970	16,021	16,051	3,539	6.4	2.9	2.78	2.63	2.62
OH	3.834	4.088	4,135	4,181	4,189	4.190	949	6.6	2.5	2.76	2.59	2.59
IN	1,927	2.065	2,102	2.133	2,149	2,161	470	7.2	4.6	2.77	2.61	2.59
Mil	4,045 3,195	4,202	4.243	4,291	4,301	4.308	936	3.9	2.5	2.76	2.65	2.66
M1	3.195 1.652	3.419 1.822	3,454	3,496	3,498	3.502	754	7.0	2.4	2.84	2.66	2.65
	1,652	1.822	1,842	1,869	1,883	1.890	430	10.3	3.7	2.77	2.61	2.62
W.N.C	6,205	6,720	6,767	6,848	6,872	6,886	1,617	8.3	2.5	2.68	2.55	2.57
MN.	1.445	1.648	1,667	1,689	1,702	1,711	, 362	14.0	3.8	2.74	2.58	2.60
1 A .	1,053	1,064	1,069	1,083	1,084	1,082	277	1.1	1.6	2.68	2.52	2.52
MO.	1,793	1,961	1.976	1,996	2,002	2,008	478	9.4	2.4	2.67	2.53	2.56
ND	228	241	240	242	242	241	60	5.8	0.2	2.75	2.55	2.54
SD	243	259	260	263	264	265	68	6.8	2.1	2.74	2.59	2.63
NE	571	602	606	614	614	614	147	5.4	2.0	2.66	2.54	2.56
KS	872	945	948	961	964	966	225	8.3	2.2	2.62	2.53	2.56
South	26,486	31,821	32,376	32,976	33,342	33,713	7,325	20.1	5.9	2.77	2.61	2.62
	13,160	16,502	16,826	17,149	17,331	17,530	3,970	25.4	6.2	2.73	2.56	2.58
DE.	207 1.461	+247	, 253	, 258	17,262	+264	- 56	19.5	6.8	2.79	2.61	2.59
MD.	1,461	1.749	1,778	1,807	1.818	1,831	344	19.7	4.7	2.82	2.67	2.67
DC.	+ 253	250	+247	245	-242	, 237	51	-1.4	-5.2	2.40	2.26	2.24
VA	1.863	2.292	2,333	2,384	2,413	2,439	453	23.0	6.4	2.77	2.61	2.60
WV	686	689	. 696	703	2,705	2,705	188	0.3	2.4	2.79	2.55	2.53
NC	2.043	2.517	2.566	2.608	2,641	2,679	566	23.2	6.4	2.78	2.54	2.55
SC	1.030	1.258	1,292	1,313	1,325	1,337	280	22.1	6.3	2.93	2.68	2.66
GA	1.872 3.744	2.366	2.425	2.488	2.531	2,581	451	26.4	9.1	2.84	2.66	2.67
FL	3,744	5,135	5,236	5,341	5,393	5,456	1,581	37.1	6.3	2.55	2.46	2.50
E.S.C	5,051	5,652	5,743	5,832	5,886	5,938	1,328	11.9	5.1	2.83	2.62	2.61
KY	1,263	1.380	1,398	1,418	1,431	1,440	321	9.2	4.3	2.82	2.60	2.59
TN	1,619 1,342	1.854	1,887	1,921	1,942	1,966	424	14.5	6.0	2.77	2.56	2.57
AL	1,342	1.507	1,533	1.558	1,573	1,583	363	12.3	5.1	2.84	2.62	2.61
MS	827	911	925	934	941	. 949	221	10.2	4.2	2.97	2.75	2.74
W.S.C	8,276	9,667	9,807	9,996	10,124	10,245	2,027	16.8	6.0	2.80	2.69	2.71
AR.	816	+891	8989	+910	919	-927	235	9.2	4.0	2.74	2.57	2.58
LA	1,412	1.499	1.514	1.534	1,538	1,543	321	6.2	2.9	2.91	2.74	2.72
OK	1,119 4.929	1,206	1,211	1,229	1,234	1,236	288	7.8	2.5	2.62	2.53	2.56
TX	4,929	6.071	6.183	6,322	6,433	6,539	1.184	23.2	7.7	2.82	2.73	2.75
West.	15,574	18,935	19,300	19,765	20,033	20,251	3,889	21.6	6.9	2.71	2.72	2.74
Mountain .	3,986	5,033	5,151	5,303	5,433	5,574	1,092	26.3	10.7	2.79	2.65	2.68
MT	284	306	309	315 384	321	325	73	7.9	6.1	2.70	2.53	2.56
$\begin{aligned} & \text { ID } \\ & \text { WY. } \end{aligned}$	324 166	361 169	372 170	384 174	395 176	405	84	11.3	12.2	2.85	2.73	2.75
CO.	166	169	170	174	176	178	34	1.9	5.3	2.78	2.63	2.62
CM.	1.061 441	1.282	1,306 553	1,348	1,386	1.417	234	20.8	10.5	2.65	2.51	2.52
NM.	441 957	$\begin{array}{r}543 \\ 1.369 \\ \hline\end{array}$	$\begin{array}{r}553 \\ 1.390 \\ \hline\end{array}$	568 1.429	$\begin{array}{r}577 \\ \hline 1461\end{array}$	587 1.503	116	22.9	8.1	2.90	2.74	2.77
UT	449	1,369 537	1.390 553	1,429 571	1.461 585	1.503 599	340 107	43.0 19.8	9.8 11.6	2.79 3.20	2.62 3.15	2.66 3.13
NV	304	466	496	516	532	560	102	53.2	20.1	2.59	2.53	2.56
Pacific	11,587	13,902	14,149	14,462	14,600	14,677	2,798	20.0	5.6	2.68	2.74	2.77
WA.	1,541	1,872	1.922	1,977	2,018	2,042	391	21.5	9.1	2.61	2.53	2.56
OR	992 8.630	1,103	1,130	1,156	1,178	1,195	267	11.3	8.3	2.60	2.52	2.53
CA	8.630 131	10.381 189	10.536	10,752	10,821	10,850	2,042	20.3	4.5	2.68	2.79	2.83
AK	131	189	194	202	206	208	17	43.7	10.3	2.93	2.80	2.81
HI	294	356	367	375	378	381	81	21.2	7.1	3.15	3.01	2.99

Source: U.S. Bureau of the Census, 1995.

Table 2-10. Family and Nonfamily Households by Race, Hispanic Origin, and Type: 1970 to 1994
[As of March, except as noted]

$N A=$ Not available.

Includes other races not shown separately.
${ }_{3}^{2}$ Hispanic persons may be of any race. 1970 data as of April.
${ }^{3}$ No spouse present.

- 1980 data as of April and are from 1980 Census of Population.

Source: U.S. Bureau of the Census, 1995.

Table 2-11. Urban and Rural Population, 1960 to 1990, and by State, 1990 [In thousands, except percent. As of April 1. Resident population.]

REGION, DIVISION. and state	Total	URBAN		Rural	$\begin{aligned} & \text { REGION } \\ & \text { DIVISION, } \\ & \text { AND STATE } \end{aligned}$	Total	URBAN		Rural
		Number	Percent				Number	Percent	
1960	179,323	125.269	69.9	54,054	MD	4,781	3.888	81.3	893
1970	1203,212	149.647	73.6	53,565	DC	607	607	100.0	
1980	${ }^{2} 226,546$	167.051	73.7	59,495	VA	6.187	4,293	69.4	1,894
1990, total	248,710	187,053	75.2	61,656	WV	1,793	648	36.1	1,145
Northeast. . . .	50,809	40,092	78.9	10,717	NC	6,629	3.338	50.4	3,291
N.E	13,207	9,829	74.4	3,378	SC	3,487	1,905	54.6	1.581
ME	1,228	548	44.6	680	GA	6,478	4.097	63.2	2.381
NH	1,109	566	51.0	544	FL	12.938	10,967	84.8	1.971
VT	563	181	32.2	382	E.S.C	15,176	8,531	56.2	6,646
MA	6,016	5,070	84.3	947	KY	3.685	1,910	51.8	1,775
RI.	1,003	863	86.0	140	TN	4.877	2.970	60.9	1.907
CT	3,287	2.602	79.1	686	AL	4.041	2.440	60.4	1.601
M.A	37,602	30,263	80.5	7,340	MS	2.573	1.211	47.1	1.362
NY	17,990	15,164	84.3	2,826	W.S.C	26,703	19,894	74.5	6,808
NJ	7,730	6.910	89.4	820	AR	2,351	1,258	53.5	1,093
PA	11,882	8.188	68.9	3,693	LA	4.220	2,872	68.1	1.348
Midwest.	59,669	42,774	71.7	16,894	OK	3.146	2,130	67.7	1,015
E.N.C	42,009	31,074	74.0	10,935	TX	16,987	13,635	80.3	3,352
OH	10,847	8.039	74.1	2,808	West .	52,786	45,531	86.3	7,255
IN.	5,544	3.598	64.9	1,946	Mauntain	13,659	10,881	79.7	2,777
1 L	11.431	9.669	84.6	1,762	MT	799	420	52.5	379
M1.	9,295	6.556	70.5	2,739	ID.	1.007	578	57.4	429
WI	4,892	3,212	65.7	1,680	WY	454	295	65.0	159
W.N.C.	17,660	11,700	66.3	5,959	CO	3,294	2,716	82.4	579
MN	4,375	3,056	69.9	1,319	NM	1,515	1.106	73.0	409
IA.	2,777	1,683	60.6	1,094	AZ	3.665	3,207	87.5	458
MO	5,117	3.516	68.7	1,601	UT	1.723	1.499	87.0	224
ND	639	340	53.3	298	NV	1.202	1,061	88.3	140
SD	696	348	50.0	348	Pacific	39,127	34,650	88.6	4,477
NE	1,578	1,044	66.1	534	WA	4.867	3,718	76.4	1,149
KS	2,478	1.713	69.1	765	OR	2.842	2,003	70.5	839
South	85,446	58,656	68.6	26,790	CA	29.760	27.571	92.6	2,189
S.A	43,567	30,231	69.4	13,336	AK	550	371	67.5	179
DE	666	487	73.0	180	HI	1.108	986	89.0	122

- Represents zero.
a The revised 1970 resident population count is $203,302,031$, which incorporates changes due to errors found after tabulations were completed.
b Total population count has been revised since the 1980 census publications to 226,542,203.
Source: U.S. Bureau of the Census, 1995.

Table 2-12. Disability Status of Persons 21-64 Years Old: 1991 to 1994

Disability Status	1991		1993		1994	
	Number $(1,000)$	Percent Employed	Number $(1,000)$	Percent Employed	Number $(1,000)$	Percent Employed
Porsons 21 to 64 years old, total	144,075	75.1	148,244	75.1	149,369	76.2
With no disability	116,641	80.5	119,414	80.6	119,960	82.1
With a disability	27,434	52.0	28,830	52.4	29,409	52.3
Sovara	12,494	23.3	13,819	25.0	14,219	26.1
Not savara	14,940	76.0	15,011	77.7	15,190	76.9
With a functional limitation	18,012	48.6	19,400	49.7	17,797	48.6
Savere	6,352	27.6	7,232	29.7	6,841	32.2
With difficulty--						
Saeing words and letters	4,567	45.5	5,155	45.5	4,002	43.7
Hearing normal conversation	5,222	63.7	5,650	65.4	4,489	64.4
Lifting and carrying	7,548	32.1	8,149	34.5	8,026	34.8
Climbing stairs	7,803	30.1	8,584	31.6	8,517	33.9
Walking three city blocks	7,672	31.5	8,600	31.9	8,697	33.5
With an ADL' limitation	3,313	25.3	3,820	26.8	3,640	27.2
With an $1 A D L^{2}$ limitation	4,811	22.9	5,375	25.4	5,434	27.1
Neods personal assistanc with and ADL or IADL	3,704	21.2	4,021	23.1	4,065	24.6
Usas a wheelchair	495	18.4	582	20.9	685	22.0
Does not use a wheelchair but uses a cane,crutches, or a walker	1,484	25.2	1,841	29.2	1,609	27.5

ADL's are activities of daily living and include getting around inside the home, getting in or out of a bed or chair, taking a bath or shower, dressing, eating, and using the toilet.
2 IADL's aro instrumental activities of daily living and include going outside the home, keepingtrack of money and bills, preparing meals, doing light housework, and using the telephone.

Note: For period September through December of year shown. Covers civilian noninstitutional population and members of the Armed Forces living off post or with their families on post.

Sourco: U.S. Bureau of Census, 1997.

Table 2-13. Native and Foreign-Born Population by Place of Birth: 1920 to 1990 [In thousands, except percent. Beginning 1950, data are based on a sample from the census.]

YEAR	Total population	NATIVE POPULATION						FOREIGN BORN	
		Total	Bom in State of residence	Bom in other States	State of birth not reported	Born in outlying areas	Bom abroad or at sea of American parents	Number	Percent of total population
1920	105,711	91,790	71,071	20,274	314	38	93	13.921	13.2
1930	122,775	108,571	82,678	25,388	238	136	131	14,204	11.6
1940	131,669	120,074	92,610	26,906	280	157	122	11,595	8.8
1950	150,216	139,869	102,788	35,284	1.370	330	96	10,347	6.9
1960	178,467	168,806	118,802	44,264	4.526	817	397	9,661	5.4
1970	203,194	193,454	131,296	51,659	8,882	873	744	9,740	4.8
1980	226,546	212,466	144.871	65.452	(NA)	1.088	1.055	14,080	6.2
1990	248,710	228,943	153,685	72,011	(NA)	1.382	1,864	19,767	7.9

NA $=$ Not available.
11920 to 1950, includes Alaska and Hawaii. Includes Puerto Rico.
Source: U.S. Bureau of the Census, 1995.

Table 2-14. Active Duty Personnol oy Service and Year: 1950101993
IIn thousands. As of end of fiscal year; includes National Guard, Resarve, and Retived regular personnol on axtended or continuous active duty. Other officer candidates ara included under enlisted personnel.]

Year	Total ${ }^{\text {a }}$	ARAM			HAYY ${ }^{\text {a }}$			HARINE CORPS			AR FORCE			COAST GUARD		
		Total ${ }^{1}$	Olticers	Enisted	Total ${ }^{\prime}$	Oficers	Enistiod	Toia ${ }^{\circ}$	Offlears	Entsied	Total ${ }^{\circ}$	Olficers	Encisted	Total ${ }^{\text {- }}$	Offeess	Entistod
1950	1,459	593	73	519	381	45	333	74	7	87	411	37	354	NO	ND	ND
1955	2,935	1,109	122	988	881	75	583	205	18	187	980	137	823	ND	ND	ND
1980	2,475	873	101	770	817	70	545	171	18	154	818	130	683	No	ND	ND
1965	2,654	969	112	855	670	78	588	190	17	173	825	132	680	ND	ND	ND
1970	3,085	1,323	167	1,153	891	81	808	280	25	235	791	130	657	38.3	5.5	31.5
1975	2.128	784	103	878	535	66	466	196	19	177	613	105	503	37.9	5.6	29.9
1980	2.051	777	99	674	527	63	460	188	18	170	558	98	456	40.2	6.4	32.0
1985	2,151	781	110	667	571	71	495	198	20	178	602	108	489	39.3	6.7	31.0
1990	2,044	732	104	624	579	72	503	197	20	177	535	100	431	37.8	6.8	29.1
1993	1.705	572	88	480	510	66	439	178	18	160	444	84	356	40.1	7.6	30.6

ND = No data listed.
a Beginning 1980, excludes Navy Reserve personnel on active duty for Training and Administration of Reserves (TARS). From 1969, the full-time Guard and Reserve.

- Includes cadets.
c Prior to 1980, includes Navy Reserve personnel on active duty for TARS.

Table 2-15. Populations in Institutions and Other Group Quarters by Type of Group Quarters and State: 1990 [As of April 1]

REGION. DIVISION. AND STATE	Group quarters population, total	institutionalized PERSONS		College dormitories	REGION, DIVISION, and state	Group quarters populatotal ${ }^{\text {tion }}$	INSTITUTIONALIZEDPERSONS		College dormito ries
		Total ${ }^{2}$	Nursing homes				Total ${ }^{2}$	Nursing homes	
U.S.	6,697,744	3,334,018	1,772,032	1,953,558	$\begin{aligned} & \mathrm{DC} \\ & \text { VA } \end{aligned}$	$\begin{array}{r} 41,717 \\ 209,300 \end{array}$	$\begin{aligned} & 14,070 \\ & 84,292 \end{aligned}$	$\begin{array}{r} 7,008 \\ 37,762 \end{array}$	$\begin{aligned} & 16,126 \\ & 61,943 \end{aligned}$
Northeas	1,510,088	713,335	399,329	540,689	WV	36,911	19.469	12,591	15,083
N.E	4445,031	179,333	119,646	198,866	NC	224.470	83.400	47,014	71,266
ME	37,169	14,136	9,855	14,118	SC	116,543	44,134	18,228	35,488
NH	32,151	11,466	8,202	17,025	GA	173.633	87.266	36,549	39,723
VT	21,642	6,161	4,809	13,435	FL	307,461	173.637	80,298	42,972
MA	214,307	84,345	55,662	100,487	E.S.C	392,424	194,314	102,900	131,846
R1	38,595	14,801	10,156	18,898	KY	101,176	47,609	27,874	30.600
	101,167	48,424	30,962	34,903	TN	129,129	65,389	35,192	43,683
M.A	1,065,057	534,002	279,683	341,823	AL	92,402	51.583	24,031	28,859
NY	545,265	267.122	126,175	165,925	MS	69.717	29,733	15,803	28.704
NJ	171,368	92,670	47,054	43,711	w.s.c	658,034	373,982	184,552	161,646
PA	348,424	174,210	106,454	132,187	$\begin{aligned} & A R \\ & L A \end{aligned}$	$\begin{array}{r} 58,332 \\ 112,578 \end{array}$	$\begin{aligned} & 34,223 \\ & 67,276 \end{aligned}$	$\begin{aligned} & 21,800 \\ & 32,072 \end{aligned}$	$\begin{aligned} & 16,775 \\ & 27,990 \end{aligned}$
Midwes	1,598,620	852,419	544,650	557,270	OK	93,677	51,211	29,666	24,924
E.N.C	1,055,689	568,050	346,243	369,009	TX	393,447	221.272	101,005	91,957
OH	261,451	152,331	93.769	88,785					
IN	161,992	81,686	50,845	70,873	West .	1,294,616	622,278	269,671	239,808
12.	286,956	149,842	93,662	86,777	Mountain	297,687	144,834	65,842	77,782
MI	211.692	112.903	57,622	73,093	MT	23,747	11.125	7,764	6,195
WI	133,598	71,288	50,345	49,481	ID.	21.490	10,478	6,318	6,676
W.N.C	542,931	284,369	198,407	188,261	WY	10.240	5.434	2,679	3,414
MN	117,621	63,279	47,051	39,280	CO	79,472	35,976	18,506	22,749
1 A	99.520	47,841	36,455	43,093	NM	28,807	14,024	6,276	8,333
MO	145,397	80,854	52,060	44,033	AZ	80.683	41.508	14,472	18,459
ND	24.234	10,574	8,159	10,377	UT	29.048	12.739	6,222	10.156
SD	25.841	13.305	9,356	9,306	NV	24,200	13,550	3,605	1,800
NE	47.553	25,620	19,171	16,692	Pacific	996,929	477,444	203,829	162,026
KS	82.765	42,896	26,155	25,480	WA	$\begin{array}{r} 120,531 \\ 66,205 \end{array}$	55.313 33.378	32,840 18,200	27.908 18.970
South	2,294,420	1,145,986	558,382	615,791	CA	751.860	376.374	148,362	108,880
S.A	1,243,962	577,690	270,930	322,299	AK	20.701	4.574	1.202	1.310
DE	20.071	8.662	4.596	8,806		37.632	7,805	3,225	4.958

${ }_{2}$ a includes persons in other types of group quarters not shown separately.
${ }^{2}$ includes other institutionalized persons not shown separately.
Source: U.S. Bureau of the Census, 1995.

Table 2-16. Populations in Jail by Race and Detention Status: 1978 to 1994
[Exchudes Foderal and State prisons or other correctional institutions; institutions exclusivaly for juveniles; State-operated jails in Alaska, Connecticut, Delaware, Hawall, Rhode Island, and Vormont; and other facilities that ratain persons for less than 48 hours. As of June 30 . For 1978 and 1988, data based on National Jax Consus; for other yeers, basod on sample survey and subject to sampling variebility.)

CHARACTERISTIC	1978	1985	1988	1989	1990	1991	1992	1993	1994
Total hmatas"	158,394	256,615	343,569	395,553	405,320	426,479	444.584	459,804	490.442
Tota U.S. population (in thous ands) ${ }^{\text {b }}$	222,585	238,466	245,021	247,342	249,911	252,643	255,407	258,120	260,651
Percont of total U.S. population	0.070	0.100	0.140	0.145	0.162	0.169	0.174	0.178	0.188
Male	148,839	235,909	313,158	356,050	368,002	386,865	403,768	415,700	441,219
Famalo	9,555	19,077	30,411	37,253	37,318	39,614	40,816	44,100	49,223
White ${ }^{\text {c }}$	89,418	151,403	166,302	201,732	186,989	190,333	191,362	239,500	255,800
Black ${ }^{\text {c }}$	65,104	102,646	141,979	185,910	174,335	187,618	195,156	214,100	227,000
Other races ${ }^{\text {c }}$	3,872	2,566	3,932	7,911	5,321	5,391	5,831	6,200	7,600
Hispanic ${ }^{\text {d }}$	16,349	35,926	51,455	55,377	57,449	60,129	62,961	69,200	75,500
Non-Hieparic	142,045	220,689	292,114	340,176	347,871	368,350	381,623	390,600	414,942
Adute ${ }^{\text {a }}$	156,783	254,986	341,893	393,303	403,019	424,129	441,781	455,500	NA
Awaiting arralomment or trisl	77.453	127,059	175,669	204,291	207,358	217,671	223,840	228,900	NA
Convictod	75,438	123,409	166,224	189,012	195,661	206,458	217,940	226,600	NA
Juvenite'	1,611	1,629	1,676	2,250	2,301	2,350	2,804	4,300	NA

NA = Not availabio.

* For 1985, 1989-1994, includes juvenllas not shown separately by sex, and for 1988 and 1990-1994 includes 31,356; 38,675; 43,138; 52,235; 66,249; and 90,058 persons, respectivoly, of unknown race not shown separately.
-

Source: Tabie 2, U.S. Buroau of the Census, 1995.
c For 1993 and 1994, date are estimated and rounded to nearest 100.
Hispenic persons may be of any race. Data for 1993 and 1994 are estimated and rounded to nearest 100.

- Includas inmates not clasylifed by conviction status.

IJuvonices are parsons whose ago makos them initially subjoct to juvenile court authority although they are sometimes tried as adults in criminal court. In 1993, included juverites who wore triod as adulte. in 1994, Includes all persons under age 18.

Source: Adapted from U.S. Bureau of the Census, 1995.

Table 2-17. Populations in Federal and State Prisons: 1970 to 1993

YEAR	PRESENT AT END OF YEAR						RECEIVED FROM COURTS					
	All institutions		Federal		State		Ali institutions		Federal		State	
	Number	Rate ${ }^{1}$										
$\begin{aligned} & 1970 \\ & .1975 \end{aligned}$	196,429 240,593	96.7 113.3	20,038 24,131	9.8 11.4	176,391 216,462	86.8 102.0	79,351 129,573	39.1 61.0	12,047 16,770	5.9	$\begin{array}{r} 67,304 \\ 112,803 \end{array}$	$\begin{aligned} & 33.1 \\ & 53.1 \end{aligned}$
1980	315,974	139.2	20,611	9.1	295,363	130.1	142,122	62.7	10,907	4.8	131,215	57.9
1985	480.568	216.5	32,695	13.6	447,873	187.6	198.499	82.7	15,368	6.4	183,131	76.3
1986	522,084	230.4	36,531	15.0	485,553	201.4	219,382	91.0	16,067	7.0	203,315	84.0
1987	560,812	229.0	39,523	16.0	521,289	214.2	241,887	99.0	16,260	7.0	225,627	92.0
1988	603,732	244.0	42,738	17.0	560,994	227.0	261,242	106.0	15,932	6.4	245,310	99.3
1989	680,907	274.3	47,168	19.0	633,739	255.3	316,215	127.4	18,388	7.4	297,827	120.0
1990	739,980	295.0	50,403	20.1	689,577	274.9	(NA)	(NA)	(NA)	(NA)	323,069	128.8
1991	789,610	309.6	56,696	22.2	732,914	287.3	(NA)	(NA)	(NA)	(NA)	317,237	124.4
1992	846.277	331.8	65,706	25.8	780,571	306.0	(NA)	(NA)	(NA)	(NA)	334.301	130.3
1993	910,080	352.9	74,399	28.8	835,681	324.0	341.722	132.5	23,653	9.2	318.069	123.3

Source: U.S. Bureau of the Census, 1995.

Table 2-18. Trends in Ratio of Malos to Fomates by Age Group, 1950 to 1994, and Projections,
2000 and 2025
[Number of malas per 100 femates. Total resident population.]

Age (in yoars)	$\begin{gathered} 1950 \\ \text { (Apr. 1) } \end{gathered}$	$\begin{gathered} 1980 \\ \text { (Apr. 1) } \end{gathered}$	1970 (Apr. 1)	1980 (Apr. 1)	$\begin{aligned} & 1990^{2} \\ & \left(A_{p r} .1\right) \end{aligned}$	1994 (Juty 1)	Projections	
							2000	2025
							(Juty 1)	(Juty 1)
All ages	98.6	97.1	94.8	94.5	95.1	95.4	95.7	96.3
Under 14 yrs	103.7	103.4	103.9	104.6	104.9	104.9	105.2	105.4
14 to 24 yrs	98.2	98.7	98.7	101.9	104.6	104.4	104.4	104.7
25 to 44 yrs	96.4	95.7	95.6	97.4	98.9	99.1	99.1	98.6
45 to 64 yrs	100.1	95.7	91.6	90.7	92.5	93.4	94.1	94.2
65 yrs and older	89.6	82.8	72.1	67.6	67.2	68.5	70.5	82.0

a The April 1, 1990, census count ($248,718,291$) includes count resolution corrections processed through March 1994 and does not include adjustments for census coverage errors. Note: Ratios presented in this table are the value out of 100 .

Source: U.S. Bureau of the Census, 1995.

Table 2-19. Trends in Resident Population by Race, 1980 to 1995, and Projections to 2050
[In thousands, except as indicated. These data are consistent with the 1980 and 1990 decennial enumerations and have been modified from the official census counts.
Middle series ${ }^{\text {a }}$ projections are included.l

a Middle series refers to projections using the middle range of fertility and mortality rates, e.g. lifetime births per 1,000 women $=1,800$; life expectancy at birth $=81.2$ years (Day, 1996).

Source: U.S. Bureau of the Census, 1995; Day, 1996.

Table 2-20. Trends in Resident Population by Region and Division: 1960 to 1994[For composition of divisions, see text section 2.4.1

Region	Division	Percent Distribution						
		1960	1970	1980	1985	1990	1994	Change in \% Distribution
Northeast	Now England	5.9	5.8	5.5	5.4	5.3	5.1	-0.8
	Middle Atlantic	19.1	18.3	16.2	15.6	15.1	14.6	-4.5
Midwest	East North Central	20.2	19.8	18.4	17.4	16.9	16.6	-3.6
	West North Central	8.6	8.0	7.6	7.3	7.1	7.0	-1.6
South	South Atlantic	14.5	15.1	16.3	16.9	17.5	17.8	+3.3
	East South Central	6.7	6.3	6.5	6.3	- 6.1	6.1	-0.6
	West South Central	9.5	9.5	10.5	11.0	10.7	10.9	+1.4
West	Mountain	3.8	4.1	5.0	5.4	5.5	5.8	+2.0
	Pacific	11.8	13.1	14.0	14.7	15.7	16.0	+4.2

Source: U.S. Bureau of the Census, 1995.

Table 2-21. Trends in Percent Distribution of Total U.S. Population Residing in Urban and Rural Areas: 1960 to 1990

Place of	Percent Distribution of Total U.S. Population			
Residence	1960	1970	1980	1990
Urban $^{\text {a }}$	69.9	73.6	73.7	75.2
Rural $^{\mathbf{a}}$	30.1	27.4	27.3	24.8

a Definitions of urban and rural are provided in section 2.6.

Source: U.S. Bureau of the Census, 1995.

Table 2-22. Trends in Numbers of Public Aid Recipients and Average Monthly Cash Payments Under Supplemental Security Income (SSI) and Public Assistance: 1980 to 1993
[As of December, except as noted. Public assistance data for all years include Puerto Rico, Guam, and Virgin Islands; SSI data are for federally administered payments. Excludes payments made to suppliers of medical care.]

Prosram	Recipients (1,000)					Avg. Monthly Payments (dol.)				
	1980	1990	1991	1992	1993	1980	1990	1991	1992	1993
Ssi, total	4,142	4,817	6,118	5,566	5,984	168	299	321	358	345
Aged	1.808	1,454	1,465	1.471	1,475	128	213	221	227	237
Bind	78	84	85	85	85	213	342	351	362	359
Disablad	2,256	3,279	3,569	4,010	4,424	198	337	361	407	381
Ofd-ace esslatanco ${ }^{3}$	19	17	17	17	16	39	45	55	41	46
Ald to the bind ${ }^{\text {a }}$	z	2	2	2	z	36	42	58	37	40
Aid to pormanontly, totally	21	26	27	28	28	35	40	58	40	41
$\begin{aligned} & \text { diabied } \\ & \text { AFDC: }{ }^{\text {b }} \text { Famillas } \end{aligned}$	3,843	4,218	4,708	4,936	5,050	288	392	388	382	377
Recipionta ${ }^{\text {c }}$	11,101	12,159	13,489	14,035	14,257	100	136	135	134	133
Childen	7.599	8.208	9,104	9,471	9,598	NA	NA	NA	NA	NA
Gemeral assistanca casos	796	1,060	1,078	979	971	161	NA	NA	NA	NA

NA $=$ Not avallabto.
\mathbf{z} efower than 500.
"Avaraga monthly recipients und payments for the year.

- Aid to Famities with Dopendont Children program.

Inctudes the childien and one or both parents, or one caretaker relative other than a parent, in familias where the neads of such adults were considered in determining the amount of aesistance.

Source: U.S. Bureau of the Census, 1995.

Table 2-23. Trends in Numbers of Public Aid Recipients as Percent of Total U.S. Population by State: 1990 to 1993
[Total recipients as of June of Aid to Families with Dependent Children and Federal Supplemental Security Income as percent resident population. Based on resident population as of April 1 for 1990 and as of July 1 for 1993.]

Division and State	1990	1993	Division and State	1990	1993
Total in US	6.5	7.7			
New England	5.6	6.9	WV	8.9	9.6
ME	6.6	7.6	NC	5.6	7.3
NH	2.2	3.4	SC	5.8	6.8
VT	5.7	7.0	GA	7.1	8.4
MA	6.4	7.7	FL	4.6	7.0
RI	6.4	8.3	East South Central	7.9	9.1
CT	4.7	6.2	KY	7.9	9.5
Middle Atlantic	6.7	8.0	TN	7.2	9.4
NY	7.7	9.6	AL	6.5	7.0
NJ	5.3	6.1	MS	11.4	11.3
PA	6.0	7.0	West South Central	6.2	6.9
East North Central	7.0	7.8	AR	6.3	6.6
OH	7.3	8.3	LA	9.8	9.9
IN	3.9	5.1	OK	5.6	6.2
IL	7.1	7.9	TX	5.4	6.3
M1	8.6	9.3	Mountain	4.2	5.3
WI	6.6	6.7	MT	4.9	5.6
West North Central	4.8	5.5	ID	2.7	3.2
MN	4.9	5.5	WY	3.8	5.0
IA	4.7	4.9	CO	4.3	4.8
MO	5.8	6.9	NM	5.8	8.3
ND	3.6	4.2	AZ	4.7	6.5
SD	4.2	4.5	UT	3.3	3.7
NE	3.7	4.2	NV	2.9	3.7
KS	4.1	4.7	Pacific	8.4	10.0
South Atantic	5.4	7.0	WA	6.0	7.1
DE	4.4	5.3	OR	4.3	5.3
MD	5.1	5.9	CA	9.4	11.2
DC	10.9	15.0	AK	4.6	7.2
VA	3.9	4.8	HI	5.2	6.3

Source: U.S. Bureau of the Census, 1995.

Table 2-24. Trends in Immigration Rates: 1901 to 1993
In thousands, except rate. For fiscal years ending in year shown. For definition of immigrants see text section 2.9. Data represent immigrants admittod. Ratos based on U.S. Bureau of the Census estimates as of July 1 for resident population through 1929, and for total population thereafter (excluding Alaska and Hawaii prior to 1959).]

Period	Number of Immigrants $(1,000)$	Rate $^{\mathrm{a}}$
1901 to 1910	8,795	10.4
1911 to 1920	5,736	5.7
1921 to 1930	4,107	3.5
1931 to 1940	528	0.4
1941 to 1950	1,035	0.7
1951 to 1960	2,515	1.5
1961 to 1970	3,322	1.7
1971 to 1980	4,493	2.1
1981 to 1990	7,338	3.1
1991 to 1993	3,705	4.8

[^0]Source: U.S. Bureau of the Census, 1995.

Table 2-25. Trends in Percent Distribution of Active Duty Personnel by Year: 1950 to 1993
[In thousands]

	Total U.S. Population	U.S. Population on Active Duty	Percent Distribution
Year	152,271	1,459	0.958
1950	165,931	2,935	1.769
1955	180,671	2,475	1.370
1960	194,303	2,654	1.366
1965	205,052	3,065	1.495
1970	215,973	2,128	0.985
1975	227,726	2,051	0.900
1980	238,466	2,151	0.902
1985	249,911	2,044	0.818
1990	258,120	1,705	0.661

Source: Adapted from U.S. Bureau of the Census, 1995.

3. LOCATION OF RESIDENCE AS A FACTOR LEADING TO HIGHLY EXPOSED POPULATIONS

Some populations may experience greater potential exposures due to either the location or condition of their residence, or the ambient environment surrounding their residence. This chapter presents the issues that may effect populations living in or near:

- Waste management facilities,
- Inner cities,
- Urban areas,
- Coastal areas,
- Native American reservations or trust areas, and
- Major highways.

3.1. POPULATIONS LIVING NEAR WASTE MANAGEMENT FACILITIES

Populations residing or working near a variety of waste management facilities may experience exposures higher than those of the general population. Types of waste management facilities include solid waste disposal landfills, municipal waste incinerators, medical waste incinerators, and Superfund or Brownfields sites.

Exposure assessors are reminded that factors such as age, cumulative number of years an individual has lived in his or her residence, hours per day spent at one's residence, daily activities, and proximity to waste management facilities can influence the type, duration, and degree of contact with hazardous chemicals (ATSDR, 1996). Data quantifying populations living near waste management facilities may not be readily available; however, data can be generated on a case-by-case or site-specific basis. Information on solid waste landfills, municipal waste incinerators, medical waste incinerators, and other types of waste management facilities can be obtained from Envirofacts. (See Section 11 for a description.)

Information on hazardous waste sites may be obtained from EPA information gathered under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and its 1986 Superfund Amendments and Reauthorization Act (SARA). Especially useful is the Comprehensive Environmental Response, Compensation, and Liability Act Information System (CERCLIS) database that lists the approximately 40,000 hazardous waste sites to be screened by EPA for possible placement on the National Priorities List (NPL). The NPL lists inactive
hazardous waste sites eligible for federally funded cleanup. Data on the number of NPL sites per State in 1994 have been reported by the U.S. Bureau of the Census (1995) and are presented in Table 3-1. Information on locations of major industrial facilities (e.g., manufacturers/processors of steel, chemicals, concrete) is most readily available from trade associations concerned with the specific type of product. Estimates of emissions/releases of many hazardous pollutants to water, air, etc., are available from EPA-maintained databases, such as the Toxics Release Inventory (TRI). The Chemical Information System (CIS) contains information on specific chemical substances, including toxicological, carcinogenic, and environmental data. It also includes other EPA databases, such as ACQUIRE, CERCLIS, and RCRIS.

The U.S. Bureau of the Census is a major population database on size, distribution, and demographic characteristics of the Nation's population. These data can be used to help characterize populations near waste management facilities and other facilities that release chemicals into the environment. Population characteristics, such as sex, race, ethnicity, and household income can be determined from the census data. Population density within a selected proximity to a specific waste management facility can be estimated using the 1990 census data and tools such as a Geographic Information System (GIS). GIS maps can be produced that indicate the proximity of waste management facilities to nearby populations. Another source of demographic/economic information that can be used to characterize population groups are commercial marketing companies, which usually require a fee to provide information. For additional information sources in electronic format or on the Internet, please refer to information on accessing U.S. Bureau of the Census data in Section 11.

The following studies offer data that characterize the populations living near hazardous waste sites according to race/ethnicity and/or income. Some of the studies support the theory that hazardous waste sites are located in predominantly minority or low-income communities, while some do not. Table 3-2 provides a list of studies that evaluate populations living near hazardous waste sites. This table does not provide a complete listing of all sources available, but is presented to provide data sources with examples of various methodologies used to identify or quantify populations around hazardous waste sites. Most of the studies were developed or conducted to address issues of environmental justice. However, an assessor may find that the methodologies used may be useful for addressing population issues other than those related to environmental justice. It should be noted that studies that have been used to examine the residential proximity to a limited number of environmental hazards by race/ethnicity and socioeconomic status should be used with caution. The reader is directed to local, regional,

State, and/or Federal agencies maintaining the types of data needed for a site-specific study. No overall conclusion is presented in this document. Two key studies on this issue are described below in terms of their methodology, data source, conclusions, and limitations. The others are summarized in Table 3-2.

3.1.1. ATSDR Biennial Report to Congress 1991 and 1992 (ATSDR, 1996)

The National Research Council (NRC), using data from EPA, has estimated that approximately 41 million people live less than 4 miles from one or more of the Nation's 1,134 NPL sites. NRC also estimated that an average of 3,325 persons live within 1 mile of any given NPL site. The Agency for Toxic Substances and Disease Registry (ATSDR) conducted public health assessments in 1991 and 1992, and results showed that the number of people who are actually or potentially exposed to hazardous waste at a site can range from 0 to 735,000 people. The exposure of people living near hazardous waste sites can be affected by certain activities. For instance, activities such as children playing near the site and people eating fish and game animals exposed to site contaminants have been associated with an increased potential for exposure to certain contaminants. People living near hazardous waste sites are potentially exposed to multiple substances.

ATSDR, an agency of the U.S. Department of Health and Human Services (DHHS), provides information on effects of public health of hazardous substances in the environment. ATSDR data, documents, and toxicity information are accessible on the World Wide Web via the Internet. (See Section 11.)

3.1.2. Distribution of Industrial Air Emissions by Income and Race in the United States: An Approach Using the Toxics Release Inventory (Perlin et al., 1995)

This study examines several methodological approaches important in the planning and decision-making process relevant to facility emissions and their impact on health and risk to populations in the surrounding communities.

Perlin et al. (1995) conducted a national and regional comparison study to investigate the differences by ethnicity/race and household income using county-level air emissions of chemicals from certain industrial operations in the United States. This study made national and regional comparisons using emission estimates from the 1990 TRI , demographic data from the 1990 census, and 1990 income data from the Donnelley Marketing Information Services (DMIS). The 1990 census data (Public Law 94-171) were employed to enumerate the populations of all
U.S. counties by race and ethnicity. The races were categorized as white, black, Native American, Asian or Pacific Islander (A / P), and "other" races, while Hispanic was categorized as an ethnic group. The 1990 DMIS estimates were based on projections from the 1980 Census, adjusting the values whenever necessary using income data from the Internal Revenue Service and inflation data from the Consumer Price Index.

Table 3-3 presents the distribution of TRI facilities and racial/ethnic populations among EPA regions in 1990. Region 5 had the highest percentage of the Nation's white population (20\%); Region 4 had the highest percentage of the black population (30\%); Region 6 had the highest percentage of Native Americans (25\%); and Region 9 had the highest percentage of Asian and Pacific Islanders (50\%) and other races (44\%), as well as the highest percentage of the Hịspanic population (38\%).

Perlin et al. (1995) stressed that residing in a county, Zip Code, or census tract with one or more potential sources of pollution (e.g., hazardous waste site, chemical plant) or with aboveaverage pollutant emissions does not necessarily imply that residents are exposed to higher than average ambient concentrations of environmental agents. The study further states there may, in fact, be no direct relationship within a particular geographic unit of analysis between (1) the presence of potential sources and/or estimated contaminant releases to the environment and (2) actual ambient levels of pollution encountered by people living there (Perlin et al., 1995).

3.2. POPULATIONS LIVING IN THE INNER CITIES OF LARGE METROPOLITAN AREAS

The inner city is defined by researchers as the most densely populated, often older areas of a large metropolitan area, usually geographically located in the central part of the city. Tables 3-4 and 3-5 provide population data from the U.S. Bureau of the Census (1995) for large metropolitan areas nationwide. The population data are also available from the U.S. Bureau of the Census on the Internet. (See Section 11.) If more specific local data are needed, readers are referred to their State, local, and regional governmental agencies or to the U.S. Bureau of the Census population data for the specific study/assessment area. (See Section 11, Table 11-1.) Residing in the densely populated centers of metropolitan areas potentially may increase an individual's exposure to certain toxic agents. Residents of inner cities may have higher exposures to certain air pollutants that are more commonly found in large metropolitan areas. These problem air pollutants may include, for example, carbon monoxide and lead from automobile exhaust, ozone, particulates, and volatile organic compounds.

In addition, for economic reasons, the inner cities of large metropolitan areas may have a higher percentage of housing that generally is older and less well maintained. Individuals living in older homes (especially those in poor repair) may be more exposed to peeling paint, older and less efficient heating systems, lead water pipes, etc.

Inner cities, along with coastal, urban, rural, and Native American reservation or trust land areas, may each experience unique exposures related to the culture, resources, land use practices, or activities associated with that setting.

3.3. POPULATIONS LIVING IN URBAN AREAS

An urban area is defined by the U.S. Bureau of the Census as a place (city, town, village, borough, etc.) having more than 2,500 inhabitants, and an urbanized area is one or more places and the adjacent densely populated surrounding territory that together have a minimum population of 50,000 persons (U.S. Bureau of the Census, 1995). Any area not classified as urban is considered rural. If a specific contaminant is known to occur at higher levels in an urban environment (e.g., dioxins in air), these data can be used to obtain an estimation of the size of the urban population that potentially may be exposed. Table $3-6$ presents the urban and rural population of the United States from 1960 to 1990 by region, division, and State. Full descriptions of divisions and regions are provided in Section 2.4 of this report.

3.4. POPULATIONS LIVING IN COASTAL AREAS

Populations living in coastal areas are defined by the U.S. Bureau of the Census as persons living in counties or equivalent areas with at least 15% of their total land in a coastal drainage area (U.S. Bureau of the Census, 1995). Information on coastal drainage areas is obtained from the National Oceanic and Atmospheric Administration (NOAA). Total coastal land area in the United States is more than 3.5 million square miles (U.S. Bureau of the Census, 1995), with major coastal areas existing in the Atlantic, Gulf of Mexico, Great Lakes, and Pacific regions. Populations living very near or in coastal areas may experience higher exposures to contaminants in air and water resulting from industries typically located there, such as petroleum refineries, chemical manufacturing plants, and import/export facilities. Table 3-7 presents the population living in the coastal counties of the United States from 1960 to 1994, along with the total land area of the coastal regions.

3.5. POPULATIONS LIVING ON NATIVE AMERICAN RESERVATIONS OR TRUST LANDS

Based on 1990 census data, the U.S. Bureau of the Census (1995) reports that a total of more than 800,000 persons either live on reservations and trust lands with 5,000 or more residents, or identify themselves as members of a Native American Tribe with 10,000 or more members. Table 3-8 presents these data by Tribe. The total Native American population numbers include those not living on reservations or trust lands.

The Department of Health and Human Services (DHHS), through the Indian Health Service (IHS) of the Public Health Service, provides federally funded health services to Native Americans and Alaska Natives (U.S. DHHS, 1993). IHS estimates its service population by counting those individuals who have identified themselves in the previous official U.S. census as American Indian, Eskimo, or Aleut and reside on or near reservations or trust lands. IHS's estimates of current and projected service population numbers by area are provided in Figure 3-1. The IHS population, estimated at 1.33 million for 1994, increases at a rate of about 2.35% per year (U.S. DHHS, 1993).

As cited by IHS (U.S. DHHS, 1993), numerous factors contribute to increased risk for individuals living on Native American reservations or trust lands. Some factors increasing risk for this population are as follows:

- Lower median household income;
- High percentage living below the poverty level;
- Higher birth rate; and
- High mortality rate from tuberculosis, alcoholism, diabetes, accidents, homicide, suicide, and pneumonia and influenza.

3.6. POPULATIONS LIVING NEAR MAJOR HIGHWAYS

Data are not readily available on the numbers of individuals living near major (interstate) highways. The most likely sources of data are State and/or local transportation offices or regional/local governmental organizations. For instance, in the Washington, DC, metropolitan area, the Council of Governments (COG) suggested that population numbers of persons living in the DC area near major highways could be determined from information available at its information office. COG uses census data to determine population numbers of small geographic units (subdivisions of counties) within its jurisdiction, maps produced from these data, and maps indicating locations of major highways to determine the numbers of persons living in the DC
area near major highways. An assessor could use the same approach as COG to estimate the specific population of concern.

Data are available from the U.S. Bureau of the Census (1995) on highway mileage for interstates and other roadways by State. These data are presented in Table 3-9. Information is also available for motor vehicle registrations and vehicle miles of travel by State as shown in Table 3-10. If an average population per highway mile or vehicle mile can be estimated or assumed, a potential highly exposed population could be determined. Readers are again referred to their State, local, and regional governmental agencies.

3.7. REFERENCES

Anderton, DL; Anderson, AB; Oakes, JM; Fraser, MR. (1994) Environmental equity: the demographics of dumping. Demography 31(2):229-248. [Note: A partial summary version of these results appeared as Anderson et al., 1994, April. Evaluation review 18(2):123-140.

Agency for Toxic Substances and Disease Registry (ATSDR). (1996) Biennial report to Congress (1991 and 1992). Atlanta, GA: U.S. Department of Health and Human Services, Center for Disease Control and Prevention, Agency for Toxic Substance and Disease Registry. (Internet address: www.dhhs.gov).

Geschwind, SA; Stolwijk, JAJ; Bracken, M; Fitzgerald, E; Stark, A; Olsen, C; Melius, J. (1992) Risk of congenital malformations associated with proximity with hazardous waste sites. Am J Epidemiol 135(11):1197-1207.

Glickman, TS; Golding, D; Hersh, R. (1994) GIS-based environmental equity analysis. A case study of TRI facilities in the Pittsburgh area. Center for Risk Management, Resources for the Future. Washington, DC. [to be published in Wallace, WA; Beroggi, EG, eds. Computer supported risǩ management.]

Nieves, AL; Nieves, LA. (1992) Race, ethnicity, and noxious facilities: environmental racism re-examined. Authors from Argonne National Lab., Argonne, IL. Draft copy of submittal to Social Problems provided to Dr. C. DeRosa, ATSDR (cc: S. Perlin, EPA) in letter dated Oct. 2, 1992, from authors to DeRosa.

Perlin, SA; Setzer, RW; Creason, J; Sexton, K. (1995) Distribution of industrial air emissions by income and race in the United States: an approach using the Toxics Release Inventory. Environ Sci Technol 28(1):69-80.

Sosniak, WA; Kaye, WE; Gomez, TM. (1994) Data linkage to explore the risk of low birthweight associated with maternal proximity to hazardous waste sites from the national priorities list. Arch Environ Health 49(4):251-255.

Stockwell, JR; Sorensen, JW; Eckert, JW, Jr.; Carreras, EM. (1993) The U.S. EPA geographic information system for mapping environmental releases of Toxics Release Inventory (TRI) Chemicals. Risk Anal 13(2): 155-164.

United Church of Christ, Commission for Racial Justice. (1987) Toxic wastes and race in the United States: a national report on the racial and socioeconomic characteristics of communities with hazardous waste sites. New York; United Church of Christ Commission for Racial Justice and Public Data Access, Inc.
U.S. Bureau of the Census. (1995) Statistical abstract of the United States: 115 th ed. U.S. Department of Commerce, Bureau of the Census, Washington, DC.
U.S. Department of Energy. (1991) Environmental restoration and waste management five year plan, fiscal years 1992-1996, June 1990. (DOE/S-0078P).
U.S. Department of Health and Human Services. (1993) Trends in Indian health. U.S. Department of Health and Human Services Indian Health Service, Washington, DC.
U.S. General Accounting Office. (1983) Siting of hazardous waste landfills and their correlation with racial and economic status of surrounding communities. GAO/RCED-83-168. June 1, 1983. Washington, DC: U.S. General Accounting Office.

Zimmerman, R. (1993) Social equity and environmental risk. Risk Anal 13(6): 649-666.

Table 3-1. Hazardous Waste Sites on the National Priority List by State: 1994

State	Total Sites	Rank	Percent Distribution	Federal	$\begin{aligned} & \text { Non- } \\ & \text { Federal } \end{aligned}$
Total	1,296	NA	NA	160	1,136
United States	1,283	NA	100.0	158	1,125
Alabama	13	28	1.0	3	10
Alaska	8	42	0.6	6	2
Arizona	10	36	0.8	3	7
Arkansas	12	32	0.9	0	12
California	96	3	7.5	23	73
Colorado	18	22	1.4	3	15
Connecticut	16	25	1.2	1	15
Delaware	19	20	1.5	1	18
District of Columbia	0	NA	NA	0	0
Florida	58	6	4.5	5	53
Georgia	13	28	1.0	2	11
Hawaii	4	46	0.3	3	1
Idaho	10	37	0.8	2	8
Illinois	37	11	2.9	4	33
Indiana	33	12	2.6	0	33
lowa	19	20	1.5	1	18
Kansas	10	37	0.8	1	9
Kentucky	20	19	1.6	1	19
Louisiana	14	27	1.1	1	13
Maine	10	37	0.8	3	7
Maryland	13	28	1.0	4	9
Massachusetts	30	13	2.3	8	22
Michigan	77	5	6.0	1	76
Minnesota	41	8	3.2	3	38
Mississippi	5	45	0.4	0	5
Missouri	23	17	1.8	3	20
Montana	9	41	0.7	0	9
Nebraska	10	37	0.8	1	9
Nevada	1	50	0.1	0	1
New Hampshire	17	24	1.3	1	16
New Jersey	108	1	8.4	6	102
New Mexico	11	34	0.9	2	9
New York	85	4	6.6	4	81
North Carolina	23	17	1.8	2	21
North Dakota	2	49	0.2	0	2
Ohio	38	10	3.0	5	33
Oklahoma	11	35	0.9	1	10
Oregon	13	28	1.0	2	11
Pennsylvania	102	2	8.0	6	96
Rhode Island	12	32	0.9	2	10
South Carolina	26	15	2.0	2	24
South Dakota	4	46	0.3	1	3
Tennessee	18	22	1.4	4	14
Texas	30	13	2.3	4	26
Utah	16	25	1.2	4	12
Vermont	8	42	0.6	0	8
Virginia	25	16	1.9	6	19
Washington	56	7	4.4	20	36
West Virginia	6	44	0.5	2	4
Wisconsin	40	9	3.1	0	40
Wyoming	3	48	0.2	1	2
Other areas					
Guam	2	NA	NA	1	1
Puerto Rico	9	NA	NA	1	8
Virgin Islands	2	NA	NA	0	2

NA $=$ Not applicable.
Source: Adapted from U.S. Bureau of the Census, 1995.

Table 3-2. Sources of Data Used in Major Studies Concerning Populations Living Near Hazardous Waste Sites

Study ${ }^{\text {a }}$	Study Focus	Hazardous Waste Site ${ }^{\text {b }}$ Data Source	Population Data Source
Anderton et al., 1994 (study conducted at Univ. of Mass., sponsored by grant from Waste Management Institute)	Census tracts nationwide 454 privately owned/operated TSDFs in 48 contiguous States that opened before 1990, were operating in census tract during 1980, and still in operation at time of study. "Surrounding area" = 2.5 mile radius from center of tract.	Environmental Institute's 1992 "Environmental Services Directory"	Census data; census tract level (authors define tract as $\approx 4,000$ persons)
U.S. General Accounting Office, 1983	U.S. Congress requested local study of four hazardous waste facilities in EPA Region 4.	Four off-site landfills (not industrial facilities) in AL, NC, SC	Census data
Geschwind et al., 1992	Authors evaluated possible correlations between congenital malformations in newborns with mother's proximity to hazardous waste sites in NY State.	New York State's Hazardous Waste Site Inspection Program 917 waste sites in 62 counties of NY State	New York State Dept. of Health's Congenital Malformations Registry for 1983 and 1984, which listed 34,411 cases of congenital malformations
Glickman et al., 1994	Evaluates relationship between location of manufacturing facilities releasing air toxins with socioecon. char. of communities for both communities with and without these facilities in Allegheny Co., PA (including Pittsburgh).	U.S. EPA's Toxic Release Inventory (TRI), 1990 emissions data	Socioeconomic and demographic data: 1990 census
Nieves and Nieves, 1992 (Authors from Argonne National Lab., Argonne, IL)	Facility types include: manufacturers of chemicals, petroleum products, plastics, rubber; pulp mills; smelters; incinerators; chemical weapons; radioactive waste disposal.	Potential air poliutants - 1985 National Acid Precipitation Assessment Program Inventory Commercial haz. waste - EPA's NPL list. Chemical weapon site data-Rouse, 1988. Radioactive waste sites - DOE 1991 Annual Report	1980 U.S. census data - 1983 County and City Data Book (county-level data; 3,109 counties in contiguous U.S.)
Perlin et al., 1995 (Authors with U.S. EPA)	Concerns environmental justice studies, discusses issues to address to strengthen scientific foundation of data. Evaluates nationwide TRI releases, Census data, income data	U.S. EPA's TRI, 1990 emissions estimates	Demographic data: 1990 Census Economic data: Donnelley Marketing Information Services
Sosniak et al., I994 (Authors from ATSDR and CDC, Atlanta, GA)	Evaluates possible correlation between low birth weight and mother's proximity to NPL sites. Mothers residing $<1 \mathrm{mi}$ of NPL were considered "exposed." Authors concluded merging large population data bases with environmental data is not an efficient method of evaluating low birth weight risks.	U.S. EPA's NPL list, 1990 Lat/Long of NPL site determined using EPA's 1987 Geographic Data File	Nationwide survey - 1988 National Maternal and Infant Health Survey (funded by ATSDR, National Center for Health Statistics) Postal Zip Codes determined for 17,407 mothers

Table 3-2. Sources of Data Used in Major Studies Concerning Populations Living Near Hazardous Waste Sites (continued)

| Study ${ }^{\text {a }}$ | Study Focus | Hazardous Waste Site
 Data Source | Population Data Source |
| :--- | :--- | :--- | :--- | :--- |

Table 3-3. Distribution of TRI Facilities and Racial/Ethnic Populations a Among EPA Regions in 1990

	TRI Facilities ${ }^{\text {b }}$		Popula-tion	White		Black		Native American ${ }^{\text {a }}$		A/P Islander ${ }^{\text {e }}$		Other Races ${ }^{1}$		Hispanic ${ }^{9}$	
Region	Number	Percent ${ }^{\text {a }}$	Parcent ${ }^{\text {a }}$	$\begin{aligned} & \text { Number ' } \\ & (\times 1,000) \end{aligned}$	Percent ${ }^{\text {c }}$	Number ${ }^{1}$ $(x 1,000)$	Percent ${ }^{\text {c }}$	Number $(x 1,000)$	Percent ${ }^{\text {c }}$	$\begin{aligned} & \text { Number }{ }^{\prime} \\ & (\times 1,000) \end{aligned}$	Percent ${ }^{\text {c }}$	Number ' $(x 1,000)$	Percent ${ }^{\text {c }}$	$\begin{aligned} & \text { Number }{ }^{\prime} \\ & (\times 1,000) \end{aligned}$	Percent ${ }^{\text {c }}$
1	1,528	7.0	13,208	12,033	6.0	628	2.1	33	1.7	232	3.2	282	2.9	568	2.5
11	1,671	7.6	25,721	19,516	9.8	3,896	13.0	78	4.0	966	13.3	1,265	12.9	1,954	13.2
17	2,033	9.3	25,917	21,146	10.6	4,011	13.4	49	2.5	464	6.4	247	2.5	575	2.6
IV	4,286	19.6	44,708	34,814	17.4	8,979	30.0	179	9.1	389	5.4	347	3.5	1,886	8.4
v	5,843	26.7	46,384	39,894	10.0	4,912	16.4	200	10.2	651	8.9	727	7.4	1.492	6.7
VI	2,072	9.5	28,218	21,288	10.7	3,959	13.2	484	24.7	421	5.8	2,066	21.1	5,118	22.9
VII	1,356	6.2	11,950	10,881	5.5	797	2.7	62	3.1	111	1.5	99	1.0	225	1.0
VIII	444	1.0	7,604	6,931	3.5	157	0.5	186	9.5	107	1.5	223	2.3	557	2.5
IX	1,981	9.1	35,734	24,869	12.5	2,425	8.1	470	24.0	3,624	49.8	4,346	44.3	8,582	38.4
x	650	3.0	9.264	8,311	4.2	221	0.7	219	11.2	309	4.3	204	2.1	398	1.8
Total	21,864		248,708	199,683		29,985		1,960		7.274		9,806		22,355	
M/ $W{ }^{1}$						0.15		0.01		0.04		0.05		0.11	

- Racial/ethnic subpopulation category definitions and counts are from the 1990 census, Public Law 94-171.
- Total number of TRI facilities in the region and as a percent of the total number of U.S. TRI facilities. Total number of TRIs in the United States is 21,864 .
c Percent of the U.S. population of each racial/ethnic group that resides in the specified region.
- Native American includes Invits and Aleuts.
- A/P Islander is Asian and Pacific Islanders.

- Hispanics are counted separately as they are considered to be an ethnic population, not a race, and they are counted separately by the Census Bureau.

For each region, the total U.S. population of all races (white, black, Native American, Asian and Pacific Islander, and other races).
Total number of each racial/ethnic group residing in the specified region.
Ratio of minority to white population for the United States.

[^1]Table 3-4. Number and Population of Merropolitan Areas by Population Size-Class in 1990: 1980 to 1990

Level and Population		CMSAS and MSAs				MSAs and PMSAs*		
				Population in 1990		$\begin{gathered} \text { Number in } \\ 1990 \\ \hline \end{gathered}$	Population in 1990	
		$\begin{gathered} \text { Number in } \\ \quad 1990 \\ \hline \end{gathered}$	$\begin{gathered} \text { Population in } 1980 \\ \text { (mil.) } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { (mil.) } \end{aligned}$	$\begin{aligned} & \text { Percent in each } \\ & \text { class } \end{aligned}$		Total (mil.)	$\begin{gathered} \text { Percent in each } \\ \text { class } \end{gathered}$
	Total, all metropolitan areas	269	177.0	197.8	100	324	197.8	100
	Level A (1,000,000 or more)	40	118.7	132.9	67	51	118.7	60
	2,500,000 or more	15	84.3	94.1	48	13	58.2	29
	1,000,000 to 2,499,999	25	34.4	38.8	20	38	60.5	31
	Level B (250,000 to 999,999)	96	41.2	46.4	23	119	56.9	29
	500,000 to 999,999	33	21.4	24.3	12	41	29.4	15
	250,000 to 499,999	63	19.8	22.0	11	78	27.5	14
	Level C (100,000 to 249,999)	110	15.2	16.6	8	130	20.1	10
	Level D (less than 100,000)	23	1.9	2.0	1	24	2.1	1

${ }^{2}$ [As of April 1. Data exclude Puerto Rico. CMSA $=$ consolidated metropolitan statistical area. MSA $=$ metropolitan statistical area. PMSA $=$ primary metropolitan statistical area. Areas are as defined by the U.S. Office of Management and Budget, July 1, 1994.]

Source: U.S. Bureau of the Census, 1995.

Table 3-5. Metropolitan and Nonmetropolitan Population by States: 1980 to 1992
[As of April 1, except 1992, as of July. Metropolitan refers to 251 MSAs (metropolitan statistical areas) and 18 CMSAs (consolidated metropolitan statistical areas) es defined by the U.S. Office of Manegement and Budget, July 1, 1994.

Nonmetropolitan is the area outside metropoliten areas. Minus sign $(-)$ indicates decrease.]

REGION. DIVISION, AND STATE	METROPOLITAN POPULATION						NONMETROPOLITAN POPULATION					
	$\begin{gathered} \text { Total } \\ (1,000) \end{gathered}$			Percent change 1980-92	$\begin{aligned} & \text { Percent of } \\ & \text { State } \end{aligned}$		$\begin{gathered} \text { Total } \\ (1,000) \end{gathered}$			Percent change 1980-92	Percent ofState	
	1980	1990	1992		1980	1992	1980	1990	1992		1980	1992
U.S.	176,983	197,824	203,273	14.9	78.1	79.7	49,560	50,886	51,804	4.5	21.9	20.3
Northeast	44,047	45,455	45,698	3.7	89.6	89.4	5,090	5,354	5,423	6.5	10.4	10.6
N.E	10,470	11,127	11,095	6.0	84.8	84.1	1,878	2,080	2,101	11.8	15.2	15.9
ME	405	443	441	9.0	36.0	35.7	721	785	795	10.4	64.0	64.3
NH	535	659	662	23.8	58.1	59.4	386	450	453	17.4	41.9	40.6
VT	133	152	154	15.9	26.0	27.0	378	411	417	10.2	74.0	73.0
MA	5,530	5,788	5.763	4.2	96.4	96.2	207	229	230	11.2	3.6	3.8
R1	888	938	9337	5.8	93.5	93.6	61	65	64	5.1	6.5	6.4
MAT	2.982	3,148	3.138	5.2	96.0	95.7	126	140	141	12.1	4.0	4.3
M.A.	33,576	34,328	34,603	3.1	91.3	91.2	3,212	3,274	3,322	3.4	8.7	8.8
NY	16,144	16,515	16.613	2.9	91.9	91.7	1,414	1,475	1,497	5.9	8.1	8.3
NJ	7.365	7.730	7,820	6.2	100.0	100.0	(X)	(x)	(X)	(X)	(X)	(X)
PA	10.067	10,083	10.170	1.0	84.8	84.8	1,798	1.799	1,825	1.5	15.2	15.2
Midwest	42,557	43,691	44,522	4.6	72.3	73.4	16,310	15,978	16,117	-1.2	27.7	26.6
E.N.C.	33,031	33,391	33,976	2.9	79.2	79.5	8,652	8,618	8,743	1.1	20.8	20.5
OH	8.791	8,826	8,966	2.0	81.4	81.3	2,007	2,021	2,056	2.4	18.6	18.7
IN	3.885	3,962	4,052	4.3	70.8	71.6	1,605	1,582	1,606	(Z)	29.2	28.4
1 Mi	9,461	9,574	9.757	3.1	82.8	84.0	1,967	1.857	1,856	-5.6	17.2	16.0
M1	7.719 3.176	7.698	7.799	1.0	83.3	82.7	1,543	1.598	1,635	5.9	16.7	17.3
w.N.C	9,526	10,300	10,546	7.1 10.7	67.5 55.4	68.1 58.8	1,530 7,658	1.561 7,360	1.591 7.374	4.0 -3.7	32.5 44.6	31.9
MN.	2.674	3,011	3,096	15.8	65.6	69.3	1,402	1,364	7,374	-3.2	44.6 34.4	31.2
1 A .	1.198	1.200	1.228	2.5	41.1	43.8	1,716	1,577	1,575	-8.2	58.9	56.2
MO	3.314	3,491	3,543	6.9	67.4	68.3	1,603	1.626	1,647	2.8	32.6	31.7
ND	234	257	263	12.4	35.9	41.6	418	381	371	-11.4	64.1	58.4
SD	194	221	231	19.1	28.0	32.6	497	475	478	-3.9	72.0	67.4
NE	728	787	809	11.1	46.4	50.6	842	791	791	-6.0	53.6	49.4
$\xrightarrow{\text { KS }}$	1.184 53	1,333	1.374	16.1	50.1	54.6	1.180	1.145	1.141	-3.3	49.9	45.4
South	53,724	63,190	65,564	22.0	71.3	74.3	21,643	22,256	22,621	4.5	28.7	25.7
S.A.	28,226	34,294	35,599	26.1	76.4	78.9	8,732	9,273	9,493	8.7	23.6	21.1
DE	496	553	571	15.1	83.5	82.7	98	113	120	22.3	16.5	17.3
MD	3.920	4.439	4.563	16.4	93.0	92.8	297	343	354	19.1	7.0	7.2
DC	638	607	585	-8.3	100.0	100.0	(X)	(X)	(X)	(X	(X)	(X)
VA	3.966	4.773	4.954	24.9	74.2	77.5	1.381	1.414	1.440	4.3	25.8	22.5
WV	796	748	756	-5.0	40.8	41.8	1,155	1,045	1.053	-8.8	59.2	58.2
NC	3.749	4.376	4.535	21.0	63.8	66.3	2,131	2,253	2.301	8.0	36.2	33.7
SC	2.114	2.423 4.352	2.514 4.587	18.9 308	67.8	69.8 67	1,006 1.956	1.064 $\mathbf{2} 127$	1.089	8.2	32.2 35	33.2
FL	9.039	12,023	12.532	30.8 38.7	64.2 92.7	67.7 93.0	1.956 708	$\begin{array}{r}2,127 \\ \hline 915\end{array}$	$\begin{array}{r}2.186 \\ \hline 950\end{array}$	11.8 34.2	$\begin{array}{r}35.8 \\ 7 \\ \hline\end{array}$	32.3 70
E.S.C	8,147	8,662	8,916	$\begin{array}{r}38.4 \\ \hline\end{array}$	55.5	57.4	6,519	6,515	6,615	34.2	44.5	42.6
KY	1.735	1.780	1.820	4.9	47.4	48.5	1.925	1.906	1.934	0.5	52.6	51.5
TN	3.045	3.298	3.404	11.8	66.3	67.7	1.546	1.579	1.621	4.9	33.7	32.3
AL	2.560	2.710	2,788	8.9	65.7	67.4	1.334	1.331	1,349	1.1	34.3	32.6
MS.	806	874	904	12.2	32.0	34.6	1.715	1.699	1.711	-0.2	68.0	65.4
w.S.C	17,351	20.235	21.048	21.3	73.1	76.4	6,392	6,468	6,513	1.9	26.9	23.6
AR	963	1.040	1,071	11.7	42.1	44.7	1.323	1.311	1,323	(Z)	57.9	55.3
LA	3.125 1.724	3.160 1.870	3.210 1.927	2.7 117	74.3 570	75.0	1,082	1.060	1,069	-1.2	25.7	25.0
TX	11.724 11.539	1.870 14.166	1.927 14.840	11.7 28.6	57.0 81.1	60.1 83.9	1,301 2,686	1,276	1.278	-1.8	43.0	39.9
West.	36,655	45,487	47,490	29.6	84.9	86.1	6,516	7,299	7,643	17.3	15.1	13.9
Mountain	7,645	9,605	10,155	32.8	67.2	70.6	3,726	4,054	4,225	13.4	32.8	29.4
MT	189	191	197	4.6	24.0	24.0	598	608	625	4.5	76.0	76.0
ID	257	296	320	24.4	27.2	30.0	687	711	746	8.6	72.8	70.0
WY	141	134	138	-1.8	29.9	29.7	329	319	327	-0.7	70.1	70.3
CO	2,326	2.686	2.832	21.7	80.5	81.8	563	608	632	12.3	19.5	18.2
UT	1,128	1,336	1,403	43.3 24.4	837.3	84.7 77.5	453 33	$\begin{array}{r}559 \\ 387 \\ \hline\end{array}$	588	29.9	16.7	15.3
NV	666	1.014	1.134	70.3	83.2	84.8	135	188	203	22.5	16.8	15.2
Pacific.	29,010	35,882	37,335	28.7	91.2	91.6	2,790	3,245	3,418	22.5	8.8	8.4
WA.	3.366	4,036	4,270	26.8	81.5	83.0	766	830	873	14.0	18.5	17.0
OR	1.799	1.985	2.081	15.7	68.3	70.0	834	858	890	6.7	31.7	30.0
CA	22,907	28.799	29.875	30.4	96.8	96.7	760	961	1,021	34.3	3.2	3.3
AK	174	226 836	246	41.0	43.4	41.8	227	324	342	50.3	56.6	58.2
HI	763	836	863	13.2	79.0	74.7	202	272	293	44.8	21.0	25.3

X Not applicable. Z Less than 0.05 percent.
Source: U.S. Bureau of the Census, 1995.

Table 3-6. Resident Urban and Rural U.S. Population, 1960 to 1990, and by State
[in thousands. except percent. As of Aprii 1.]

Represents zero.
a The revised 1970 resident population count is $203,302,031$; which incorporates changes due to errors found after tabulations were completed.
Total population count has been revised since the 1980 census publications to $226,542,203$.
Source: U.S. Bureau of the Census, 1995.

Table 3-7. U.S. Population Living in Coastal Counties: 1960 to 1994

Year	Total Land Area	Total	Atlantic	Gulf of Mexico	Great Lakes	Pacific	Remainder of U.S.
Land area in 1990 Unit $=1,000$ sq. mi.	3,536	888	148	114	115	510	2,649
1960	179.3	94.5	44.5	8.4	23.7	17.9	84.8
1970	203.3	110.0	51.1	10.0	26.0	22.8	93.3
1980	226.5	119.8	53.7	13.1	26.0	27.0	106.7
1990	248.7	133.4	59.0	15.2	25.9	33.2	115.3
1994 (July)	260.3	138.5	60.7	16.3	26.4	35.1	121.8

Source: U.S. Bureau of the Census, 1995.

Table 3-8. Populations Living on Selected Reservations and Trust Lands and American Indian Tribes with 10,000 or More Persons:
iln thousands, except percent. As of April 1.1

a The Osage Reservation is coextensive with Osage County. Data shown for the reservation are for the entire reservation.
${ }^{b}$ Includes other American Indian Tribes, not shown separately.
c Any entry with the spelling "Siouan" was miscoded to Sioux in North Carolina.
${ }_{e}^{d}$ Reporting and/or processing problems have affected the data for this Tribe.

Source: U.S. Bureau of the Census, 1995.

Figure 3-1. Indian Health Service Population: Area Offices and Populations Administered by Each Office.

LEGEND
YS IHS Area Office
NOTE: Texas is administered by the Nashville,
Oklahoma City, and Albuquerque Area Offices

Source: U.S. DHHS, 1993.

Table 3-9. Highway Mileage--Functional Systems and Urban/Rural: 1993
[As of Dec. 31. For definition of urban, rural, see text section 2.4.]

STATE	- FUNCTIONAL SYSTEMS					Urban	Rural
	Total	Interstate	Other anterial	Collector	Local		
U.S	3,904,721	45,530	381,643	800,414	2,677,134	803,078	3,101,643
AL.	92,209	899	8.721	20,317	62.272	19,381	72.828
AK.	13,849	1.087	1,516	2,487	8,759	1,742	12,107
AZ.	55,763	1,189	4,813	8,974	40,787	16,340	39,423
	77,192	543	6,821	20,202	49,626	7,595	69.597
CA.	169,201	2,423	28,157	32,531	106,090	81,061	88,140
CO	78.721	954	8.286	16,286	53,195	12,903	65,818
CT.	20,357	343	2,969	3.145	13,900	11,543	8,814
DE.	5,544	41	620	938	3,945	1,869	3,675
	1,107	14	280	157	656	1,107	
FL	112,808	1,443	11,028	14,988	85,349	49,178	63,630
GA	110.879	1,243	13,109	23,084	73.443	26.274	84,605
H	4,106	1.24	. 666	749	2,647	1,799	2,307
	58,835	611	3,539	9,695	44,990	3,416	55.419
	136,965	2.051	13.967	21,220	99.727	35,181	101,784
IN	92.374	1.138	8,059	22,605	60.572	19,262	73,112
18	112,708	783	9,396	31.513	71.016	9,218	103.490
KS.	133,256	871	9,282	33,006	90,097	9,580	123,676
KY.	72,632	761	5.412	17.619	48,840	10,139	62.493
	59.599	871	5,331	12.524	40.873	13.766	45,833
	22,510	366	2,285	5.987	13,872	2,583	19,927
MD	29,313	482	3,778	4,980	20,073	13,671	15,642
	30,563	565	5,821	5,452	18.725	19.636	10,927
M	117,659	1,240	12,250	26.033	78.136	28,174	89,485
	129,959	914	12.408	29,321	87,316	14.886	115,073
MS	72,834	685	7,007	15,519	49,623	7.904	64,930
MO	121,787	1,178	9.514	25,099	85.996	16,150	105,637
MT	69,768	1,190	6,014	16,459	46.105	2,380	67.388
	92.702	481	7,888	20,737	63,596	5,054	87.648
NV.	45,778	545	2,784	+4,899	37,550	4.597	41.181
NH	14,938	224	1,596	2,702	10.416	2,869	12,069
NJ.	35,097	413			24,496	24.029	
	60,812	998	4,524	6,758	48.532	5,851	54,961
	111,882	1,500	14,207	20,820	75,355	39,293	72.589
NC	96,028	970	9,125	17.905	68.028	21,723	74,305
ND	86,727	571	5,872	18.784	61.500	1,818	84,909
OH	113.823		10,323	23,062	78,865	31,568	82,255
	112.467	929	7,995	25,357	78,186	12.794	99,673
	96,036	727	6,820	18,385	70.104	10.028	86,008
	117,038	1.588	13,708	19,646	82.096	32.616	84.422
	6,057	70	929	864	4,194	4,723	1,334
SC.		810	6,877	13,393	43.078	10,521	53,637
SD.	83,305	678	6,084	19,482	57.061	1,860	81.445
TN.	85,037	1,062	8.636	17.756	57.583	16.521	68.516
TX.	294,142	3,234	28.883	61,741	200.284	79.132	215,010
UT:	40,508	937	3,337	7,689	28.545	6,106	34,402
V V.	14.166	320	1,320	3,111	9,415	1,324	12,842
VA.	68.429	1.106	7.895	14.008	45.420	15,581	52.848
WA	79.428	763	7.574	16,778	54.313	17,218	62.210
W1	35,045	550	3.173	8.849	22.473	3.137	31.908
Wr	110.978	638	11,925	21.458.	76.957	15,591	95.387
Wr	37,642	914	3,667	10,604	22,457	2.386	35,256

- Represents zero.

Source: U.S. Bureau of the Census, 1995.

Table 3-10. Motor Vehicle Registrations, 1990 to 1993, Vehicle Miles of Travel, 1993, and Drivers Licenses, 1993, by State
IIn thousands, except as indicated. Motor vehicle registrations cover publicly, privately, and commercially owned vehicles. For uniformity, data havo been adjusted to a celender-year basis as registration yoars in States differ; figuros represent net numbers where possible, excluding ro-registrations and nonrosident registrations.]

STATE	AUTOMOBILES, TRUCKS, AND BUSES ${ }^{1}$					1993				
	1990	1991	1992	1993		Motorcycle registration (incl. official)	Public road and street mileage (1,000 mi.)	Vehicle miles of travel		Drivers licenses
				Total	Auto mobiles (incl. taxis)			$\begin{aligned} & \text { Total } \\ & \text { (bil. mi.) } \end{aligned}$	Per mile of road $(1,000)$	
U.S	188,798	188,136	190,362	194,063	146,314	3,978	3,905	2,297	588	173,149
AL.	3,744	3,484	3,304	3,390	2,136	40	92	47.3	513	3,009
AK.	477	471	, 486	489	2.310	12	14	47.9	283	3,438
AZ.	2,825	2.849	2.801	2,892	2,068	73	56	39.2	702	2,624
AR.	1,448	1.480	1,501	1,528	987	14	77	24.0	311	1,751
CA.	21,926	22,253	22,202	22,824	17,301	587	169	266.4	1,575	20,123
CO	3.155	3.045	2,915	3,032	2,254	88	79	32.7	416	2,591
CT.	2,623	2,589	2.569	2,594	2,456	37	20	27.0	1,326	2,180
DE.	526	534	545	555	429	10	6	6.9	1.244	506
DC	262	246	256	264	250	2		3.5	3.148	361
FL	10,950	9,980	10,232	10,170	8,072	189	113	120.5	1,068	10,762
GA	5,489	5,714	5,899	5,632	3,960	55	111	78.4	707	4,613
HI	771	785	774	763	659	24	4	8.1	1,966	734
ID	1,054	1.055	1.034	1,023	636	32	59	11.5	+195	770
	7,873	8.193	7.982	8.070	6,650	201	137	89.7	655	7.462
\underline{N}	4,366	4,414	4.516	4,670	3,414	96	92	60.5	655	3,791
14	2,632	2,668	2.706	2,738	1.948	149	113	25.1	223	1.899
KS.	2.012	1.879	1,921	1,922	1,264	53	133	24.1	181	1,774
KY.	2,909	2.942	2,983	2,629	1,713	32	73	39.6	545	2.469
LA.	2,995	3,046	3,094	3,166	2,010	35	60	36.4	610	2.577
	977	979	978	1,028	793	31	23	12.2	541	906
MD	3,607	3.630	3.689	3,560	2,957	41	29	43.3	1.478	3,274
MA	3,726	3,664	3.663	3,837	3,327	68	31	46.7	1,527	4.161
M1.	7.209	7.245	7,311	7.399	5,731	137	118	85.7	728	6,527
MN	3,508	3,273	3,484	3,716	2,906	126	130	42.2	325	2,637
MS	1,875	1,887	1.954	2.000	1.526	28	73	26.9	369	1,640
MO	3,905	3,950	4,004	4,066	2,858	57	122	54.8	450	3.472
MT	783 1.384	, 764	, 907	. 939	555	22	70	8.7	125	531
NV.	1,384	1,404	1,355	1.439	942	19	93	14.8	159	1.141
NH	946	906	894	959	743	36	15	11.6 10.3	254	876
NJ.	5,652	5,519	5;591	5,641	5,180	89	35	59.7	1.702	
NM	1,301	1,320	1,352	1,421	. 856	31	61	18.9	, 312	1,148
NY.	10.196	9,771	9,780	10.163	8.747	195	112	112.2	1,003	10,327
NC	5.162	5,216	5,307	5,365	3,841	64	96	69.5	724	4.725
ND	630	629	655	662	397	18	87	6.2	71	438
OH	8.410	8,685	9,030	9.279	7,483	233	114	97.0	852	7.635
OK	2,649	2.669	2.737	2,771	1.759	56	112	35.5	316	2,336
OR	2,445	2.507	2.583	2,624	2.001	61	96	28.4	295	2.373
PA.	7,971	8.038	8,179	8,282	6,599	172	117	90.7	775	8.055
RI	672	628	622	695	589	20	6	7.2	1,193	675
Sc.	2,521	2,471	2.601	2,684	1,997	34	64	36.1	563	2,431
SD.	704	702	720	808	485	26	83	7.4	89	, 507
TN.	4.444	4.542	4.645	4,964	3.989	84	85	52.1	613	3,543
TX.	12,800	12.697	12.767	13,118	8,881	144	294	167.6	570	11,876
UT.	1,206	1,230	1,252	1,335	840	23	41	17.1	421	1,190
VT.	462	447	465	483	362	17	14	6.0	422	431
VA.	4.938	5.022	5.239	5,408	4.126	62	68	64.2	938	4,580
WA	4,257	4.404	4.466	4.413	3.123	109	79	46.1	581	3,699
Wı	1,225	1,273	1,273	1,345	829	19	35	16.8	479	1,302
WY	3.815 528	3,685 469	1,735 483	3,815 558	2.460 283	197 12	111 38	49.2 6.8	443 180	3.502

${ }^{1}$ Excludies vehicles owned by military services.
Source: U.S. Bureau of the Census, 1995.

4. RESIDENTIAL FACTORS AFFECTING EXPOSURE

Many characteristics of a person's primary residence can contribute to increased exposures to environmental contaminants. This section presents population data for persons residing in homes that have varying characteristics, including the following: age of home; resident's tenure (renter, owner, etc.); housing type (public housing, multiple unit, single-family, mobile home, etc.); type of heating and cooking fuel used; presence of attached garage; use of chemicals for pest control, lawn care, etc.; and presence of recreational pools or spas. Data on these housing characteristics are useful for conducting indoor air risk assessments. For example, in areas with high levels of radon in the soils, build-up of radon gas may become a problem in homes with basements. For homes with attached garages, carbon monoxide from automobile exhaust may be an exposure concern. In addition, chemicals used for pest prevention can pose an indoor air exposure risk to persons living in the homes. Persons living in dilapidated, older housing (built prior to the 1978 lead-based paint ban) or persons renovating such a home may be at increased risk of exposure to lead by deteriorating lead-based paint and the dust it generates. The housing characteristics addressed in this section are presented as useful supplemental data for conducting many types of indoor air quality risk assessments. Other useful data may be found in U.S. EPA (1997), the Exposure Factors Handbook, Chapter 11.

4.1. POPULATIONS IN HOMES WITH DIFFERENT CHARACTERISTICS

This section presents population data on persons residing in homes with the varying characteristics listed above.

4.1.1. American Housing Survey for the United States in 1993 (U.S. Bureau of the Census, 1993); Statistical Abstract of the United States (U.S. Bureau of the Census, 1997)

 The U.S. Bureau of the Census conducted the American Housing Survey from July through December 1993. About 55,000 personal interviews were conducted nationally. Household information was obtained from occupants of the homes; landlords, rental agents, or knowledgeable neighbors provided information on vacant homes. Results obtained from thisnational survey are presented in Tables 4-1 through 4-4. Table 4-1 presents the household composition of occupied housing units. Table 4-2 presents the income characteristics of occupied units. Table 4-3 presents data on construction of housing units and location of units. Table 4-4 presents the number of housing units that use various types of fuels for cooking and heating, which may affect indoor air. Table 4-5 presents housing characteristics (e.g., basements, year built, heating equipment) by tenure and region. Figure 4-1 illustrates the percentage of housing units that are occupied and vacant. Figure 4-2 presents a variety of selected features of occupied housing units.

4.1.2. Screening Young Children for Lead Poisoning (CDC, 1997)

The guidance on childhood lead screening was developed by CDC in consultation with the Advisory Committee on Childhood Lead Poisoning Prevention. Lead-based paint in homes is the most important remaining source of lead exposure for U.S. children. Of all homes built in the United States before 1978, a large amount (83\%) still contain some lead-based paint (CDC, 1997). The older the house, the more likely it is to contain lead-based paint and to have a higher concentration of lead in the paint. Housing built before 1950 poses the greatest risk of exposure to children (CDC, 1997). Such housing is present in every State as shown in Table 4-6. The following Department of Housing and Urban Development (HUD) calculation is used to determine the number of affordable housing units that are likely to contain lead-based paint (HUD, 1990):
[(\# units <1940*0.88) + (\# units 1940-1960*0.92) + (\# units 1961-1980*0.76)].

4.1.3. National Human Activity Pattern Survey (NHAPS) (Tsang and Klepeis, 1996)

The National Human Activity Pattern Survey (NHAPS), conducted by EPA, is the largest and most current human activity pattern survey available (Tsang and Klepeis, 1996). Data for 9,386 respondents in the 48 contiguous States were collected via minute-by-minute 24 -hour diaries between October 1992 and September 1994. The survey collected information on duration and frequency of selected activities. Demographic information was collected for each respondent to allow for statistical summaries to be generated according to specific subgroups of
the U.S. population (e.g., by gender, age, race, employment status, census region, season). The participants' responses were weighted according to geographic, socioeconomic, time/season, and other demographic factors to ensure that results were representative of the U.S. population. The weighted sample matches the 1990 census population for each gender, age group, and census region. In addition, the day-of-week and seasonal responses are distributed equally.

NHAPS data on the time spent in selected activities and the corresponding population participating in these activities are presented in the Exposure Factors Handbook, Section 14, Tables 14-19 through 14-92. For example, data are included on the number of persons who spend time either running, walking, standing, or in a vehicle; time spent in indoor and outdoor parking lots and garages; and number of persons working in circumstances where one may come in contact with soil, such as gardening. The reader is referred to the Handbook for further information obtained from NHAPS. Advantages of the NHAPS data set are that it is representative of the U.S. population for all ages, genders, and races, and it has been adjusted to be balanced geographically, seasonally, and for day/time. Table 4-7 presents the percentage of the general population living in homes with attached garages. The advantage of NHAPS is that the data were collected for a large number of individuals and are representative of the U.S. general population.

4.2. POPULATIONS WHO USE PESTICIDES AND CHEMICALS FOR LAWN/GARDEN AND POOL/SPA MAINTENANCE

Section 4.2.1 presents the available information on populations using home and garden pesticides and chemicals for lawn/garden and pool/spa maintenance. This information is useful in estimating number of people receiving residential exposure to certain household chemicals, such as insecticides, rodenticides, and fungicides. Section 4.2 .2 presents data that can be used to estimate the number of people who might have residential exposure to chlorinated compounds used to treat and disinfect household pools and spas.

4.2.1. National Home and Garden Pesticide Use Survey (Whitmore et al., 1992)

The National Home and Garden Pesticide Use Survey (NHGPUS) was conducted for EPA during August and September 1990. The purpose was to collect data on the use of pesticides in and around homes in the United States. The study was designed as a national probability-based sample of households, with personal interviews conducted at the participants' residence. The target population in the survey was housing units in the conterminous United States occupied as primary residences (home where a person lives for half the year or more), excluding institutions, group quarters, military reservations, and Native American reservations (Whitmore et al., 1992). NHGPUS used the U.S. Bureau of the Census definition of a housing unit as a room or groups of rooms occupied or intended for occupancy as separate living quarters in which the occupants (1) live and eat separately from any other persons in the building and (2) have direct access from the outside of the building or through a common hall. A sample of 2,674 housing units was selected, and 2,447 housing units were eligible for the survey. Individuals representing a total of 2,078 housing units participated in the survey (a response rate of 84.9 percent) and provided information on frequency and types of pesticide use and where and how they were used. Because of the high response rate, the potential for nonresponse bias is low (Whitmore, et al., 1992). NHGPUS is based on a sample of 29 States and 60 counties. Tables 4 8, 4-9, and 4-10 present data collected in NHGPUS. An assessor can develop numerical estimates of potential exposed populations by multiplying the number of households presented in Tables 4-8 thru 4-12 by 2.65 persons/household as provided in the Bureau of Census (1997). Table 4-8 presents the selected characteristics of households in the target population, including urbanization, type of housing, private lawn and swimming pool present, and hot tub present. Table 4-9 presents the number of households that used pest control services and received written precautions in the year preceding the survey. Table 4-10 presents the number of households reporting major pest problems or experiencing pest problems that were treated by a household member in the previous year. Table 4-11 also presents number of households where pesticides were not stored securely and had children <5 years old living there. Table $4-12$ provides information on the number of households using pesticides by type of pesticide and site of
application. Table 4-13 presents estimated percentage of households using pesticides by type of pesticide and site of application.

4.2.2. 1993 Pool and Spa Market Study (National Spa and Pool Institute, 1993)

The National Spa and Pool Institute (NSPI) is a trade association that provides market data to its members. The statistical information provided by NSPI in Tables 4-14 and 4-15 is an overview and was extrapolated from the National Spa and Pool Institute Pool and Spa Market Study. This publication is available from NSPI Publications (703) 838-0083 for $\$ 250$.

The overview data are based on a household consumer survey. NSPI maintains a data base of households in selected U.S. geographic regions. Households were randomly selected, and the data were collected through mail surveys. From a total of 90,000 surveys mailed, 65,000 individuals responded: a response rate of 72%. Table 4-14 presents data for owners of residential pools, and Table 4-15 presents data for owners of residential spas. These data are presented by pool ownership. However, populations using pools/spas may be estimated conservatively by assuming one pool/spa per household and multiplying by the average number of persons per household using the U.S. Bureau of the Census data (2.65 persons/household in 1996) or by multiplying by number of persons per State, presented in Table 2-9.

4.3. REFERENCES

CDC. (1997) Screening young children for lead poisoning: Guidance for state and local health officials. Atlanta, GA: Centers for Disease Control and Prevention.

HUD. (1990) U.S. Department of Housing and Urban Development, Comprehensive work plan for the abatement of lead-based paint in privately-owned housing: a Report to Congress, Washington, D.C. December 7, 1990.

National Spa and Pool Institute. (1993) 1993 Pool and spa market study. National Spa and Pool Institute, Alexandria, VA. (703) 838-0083.

Tsang, AM; Klepeis, NE. (1996) Results tables from a detailed analysis of the National Human Activity Pattern Survey (NHAPS) response. Prepared by Lockhead Martin, for the U.S. Environmental Protection Agency, Washington, DC, under EPA Contract no. 68-W6-001 delivery order no. 13. Draft report.
U.S. Bureau of the Census. (1993) American Housing Survey for the United States in 1993. U.S. Dcpartment of Commerce, Bureau of the Census, Washington, DC. Doc. no. H150/93.
U.S. Bureau of the Census. (1997) Statistical abstracts of the United States. 117th ed. U.S. Department of Commerce, Bureau of the Census, Washington, DC.
U.S. EPA. (1997) Exposure factors handbook. U.S. Environmental Protection Agency, National Center for Environmental Assessment, Office of Research and Development, Washington, DC. EPA/600/P-95/002Fa,b,c.

Whitmore, RW; Kelly, JE; Reading, PL. (1992) National Home and Garden Pesticide Use Survey. Final report, volume 1. Prepared for the U.S. Environmental Protection Agency, Office of Pesticides and Toxic Substances, by Research Triangle Institute, Research Triangle Park, NC. Contract no. 68-WO-0032. Doc. no. RTI/5100/17-01F.

Table 4-1. Household Composition - Occupied Units
[Numbers in thousands. Consistent with the 1990 Census. ... means not applicable or sample too small. - means zero or rounds to zero.]

(continued on next page)

Table 4-1. Household Composition--Occupied Units (continued)

Table 4-1. Household Composition--Occupied Units (continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multirow{3}{*}{Characteristics} \& \multirow[b]{3}{*}{Totat occupied units} \& \multicolumn{2}{|l|}{Tenure} \& \multicolumn{4}{|c|}{Housing unt characterstucs} \& \multicolumn{5}{|c|}{Househotd cnaractenstes}

\hline \& \& \& \multirow[b]{2}{*}{Owner} \& \multirow[b]{2}{*}{Renter} \& \multirow[t]{2}{*}{New construction 4 yrs} \& \multirow[b]{2}{*}{Mobile homes} \& \multicolumn{2}{|l|}{Physical problems} \& \multirow[b]{2}{*}{Black} \& \multirow[b]{2}{*}{Hispanic} \& \multirow[b]{2}{*}{$$
\begin{aligned}
& \text { Elderly } \\
& (65+)
\end{aligned}
$$} \& \multirow[b]{2}{*}{Moved in past year} \& \multirow[b]{2}{*}{Below poverty Leval}

\hline \& \& \& \& \& \& \& Severe \& Moderate \& \& \& \& \&

\hline \& \multicolumn{13}{|l|}{Own Never Married Chidren Under 18 Years Old}

\hline 1 \& No own children under 18 years .-...-.-.-.-.-- \& 62445 \& 40455 \& 21990 \& 2734 \& 3649 \& 1277 \& 2626
1 \& $$
\begin{array}{ll}
6 & 717 \\
4 & 412
\end{array}
$$ \& $$
\begin{array}{ll}
3 & 243 \\
3 & 371
\end{array}
$$ \& 20305 \& $\begin{array}{ll}9 & 876 \\ 6826\end{array}$ \& 8014

\hline 2 \& With own children under 18 years-....-.-. \& 32279 \& 20797 \& 11482
3670 \& 2256 \& $\begin{array}{r}2006 \\ \hline 634 \\ \hline\end{array}$ \& 624
147 \& $\begin{array}{r}1599 \\ \hline 354 \\ \hline\end{array}$ \& $$
\begin{aligned}
4412 \\
950
\end{aligned}
$$ \& $$
\begin{array}{r}
3371 \\
862
\end{array}
$$ \& 133
16 \& \& 1535

\hline 3
4
4 \& \& 7833
4753
4 \& 4163
2422
1 \& 3670
2332 \& 704
427 \& 634
403 \& 88 \& 199 \& 572 \& 490 \& 13 \& 1560 \& 818

\hline 5 \& 2 --......... \& 2608 \& ${ }_{1} 1528$ \& 1080 \& 231 \& 198 \& 45 \& 139 \& 287 \& 290 \& 2 \& 690 \& 541

\hline \multirow[t]{2}{*}{6
7} \& \& \multirow[t]{2}{*}{17772} \& \multirow[t]{2}{*}{- 212} \& 258 \& 46 \& 33 \& 14 \& \multirow[t]{2}{*}{$\begin{array}{r}16 \\ 838 \\ \hline\end{array}$} \& \multirow[t]{2}{*}{91
2462} \& \multirow[t]{2}{*}{+ 82} \& \multirow[t]{2}{*}{110} \& \multirow[t]{2}{*}{$\begin{array}{r}155 \\ 2437 \\ \hline 1\end{array}$} \& 178
2667

\hline \& \& \& \& 5128 \& 1054 \& 957 \& 297 \& \& \& \& \& \& 2667
1

\hline 8 \& \& 8538 \& 5851 \& 2587 \& 460 \& 500 \& $\begin{array}{r}110 \\ 127 \\ \hline\end{array}$ \& $\begin{array}{r}384 \\ 267 \\ \hline\end{array}$ \& $\begin{array}{r}1338 \\ 770 \\ \hline\end{array}$ \& $\begin{array}{r}707 \\ 573 \\ \hline\end{array}$ \& 78
18 \& $\begin{array}{r}1138 \\ 917 \\ \hline\end{array}$ \& $\begin{array}{r}1153 \\ 908 \\ \hline\end{array}$

\hline 9
10 \& 2 3--.---- \& 6557 \& 4857 \& 1701 \& 445
148 \& 321
136 \& $\begin{array}{r}127 \\ 59 \\ \hline\end{array}$ \& $\begin{array}{r}267 \\ 187 \\ \hline\end{array}$ \& 770
354 \& 373
3 \& 13 \& 383 \& 605

\hline 11 \& Both age groups \& 28136 \& 4051 \& 2685 \& 499 \& 414 \& 181 \& 407 \& 999 \& 890 \& 7 \& 1384 \& 1574

\hline 12 \& 2 .-......... \& 3169 \& $\uparrow 951$ \& 1218 \& \& 202 \& 81 \& 125 \& 446 \& \multirow[t]{2}{*}{610} \& 5 \& 700 \& -494

\hline \multirow[t]{2}{*}{13} \& \multicolumn{3}{|l|}{\multirow[t]{3}{*}{}} \& 1467 \& 234 \& 213 \& 100 \& 282 \& 554 \& \& 2 \& 684 \& 1077

\hline \& \multicolumn{13}{|l|}{Persons Other Than Spouse or Children'}

\hline 14 \& With other relatives-- \& \& 15559 \& \multirow[t]{2}{*}{$\begin{array}{r}5 \\ 2539 \\ \hline\end{array}$} \& \multirow[t]{2}{*}{828
412} \& \multirow[t]{2}{*}{982
508} \& \multirow[t]{2}{*}{470} \& \multirow[t]{2}{*}{995} \& 3394 \& \multirow[t]{2}{*}{2117
1046} \& \multirow[t]{2}{*}{} \& \& 2992
1505

\hline 15 \& Single aduth ofispring 18 to 29-..........-- \& \& \& \& \& \& \& \& 1738 \& \& \& 827
101 \& 1505

\hline 16 \& \multirow[t]{2}{*}{Single adult otispring 30 years af age or over ---
Households with three generations} \& 3266 \& \multirow[t]{2}{*}{2735

1} \& \multirow[t]{2}{*}{531
684} \& \multirow[t]{2}{*}{63
71} \& \multirow[t]{2}{*}{108} \& \multirow[t]{2}{*}{69
60} \& \multirow[t]{2}{*}{149} \& \multirow[t]{2}{*}{511} \& \multirow[t]{2}{*}{326} \& \& \multirow[t]{2}{*}{} \&

\hline 17 \& \& 2189 \& \& \& \& \& \& \& \& \& 495 \& \& $233-486$

\hline 18
19 \& Households with 1 subtamily .-...........-.-.-...-- \& 2313
+1233 \& 1506 \& 806 \& 29 \& $\begin{array}{r}123 \\ \hline 9 \\ \hline\end{array}$ \& 84 \& 161 \& 561 \& 244 \& 120 \& \multirow[t]{2}{*}{168
108
108} \& \multirow[t]{2}{*}{372
165}

\hline 20 \& \& +974 \& 714 \& 260 \& 21 \& 21 \& 32 \& 50 \& 225 \& 142 \& 366 \& \&

\hline 21 \& \& 106 \& 86 \& 19 \& 9 \& 2 \& 7 \& 3 \& 5 \& 14 \& ${ }^{8}$ \& 108
15 \& \multirow[t]{2}{*}{$\begin{array}{r}13 \\ 13 \\ \hline\end{array}$}

\hline 22 \& Households with 2 or more sublamilies .-.......- \& 102 \& \multirow[t]{2}{*}{[$\begin{array}{r}66 \\ 4880\end{array}$} \& 35 \& \multirow[b]{2}{*}{374} \& 9 \& 7 \& 2 \& 25 \& 41 \& 17 \& \multirow[t]{2}{*}{1036} \&

\hline 23 \& Households with other types of relatives .-...----- \& 7156 \& \& 2376 \& \& 372 \& 198 \& 406 \& 1439 \& 934 \& 1375 \& \& 1207

\hline 24 \& \multirow[t]{2}{*}{| With non-relatives |
| :--- |
| Co-owners or co-renters. |} \& 7000 \& 2497 \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
4503 \\
2 \quad 226
\end{array}
$$

\]} \& \multirow[t]{2}{*}{| 318 |
| :--- |
| 103 |} \& \& \multirow[t]{2}{*}{146

38} \& \multirow[t]{2}{*}{480
160} \& \multirow[t]{2}{*}{799
253} \& \multirow[t]{2}{*}{684
237} \& 440
83 \& \multirow[t]{2}{*}{2631
1440
1} \& \multirow[t]{2}{*}{302}

\hline 25 \& \& 2739 \& \multirow[t]{2}{*}{513
1201} \& \& \& 105 \& \& \& \& \& $\begin{array}{r}83 \\ 158 \\ \hline 18\end{array}$ \& \&

\hline 26 \& \& 4385 \& \& $$
\begin{aligned}
& 2226 \\
& 3184
\end{aligned}
$$ \& 223 \& 231 \& 88

19 \& 308 \& 435 \& $$
\begin{aligned}
& 428 \\
& 104
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 158 \\
& 128
\end{aligned}
$$
\] \& + 242 \& \multirow[t]{3}{*}{219

223
296
94}

\hline 27 \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{$\begin{array}{r}1748 \\ \hline 606\end{array}$} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 942 \\
& 257
\end{aligned}
$$} \& 806 \& 87 \& \multirow[t]{2}{*}{143

57} \& \multirow[t]{2}{*}{$\begin{array}{r}39 \\ \mathbf{9} \\ \hline\end{array}$} \& \multirow[t]{2}{*}{134
45} \& 237 \& 193 \& 164 \& 440 \&

\hline 29 \& \& \& \& 349 \& 30 \& \& \& \& 67 \& 87 \& \& 213 \&

\hline 30 \& 2-person households, none zalated to each other \& 3957 \& 1342 \& 2616 \& 198 \& 253 \& 73 \& 236 \& 352 \& 230 \& 327 \& 1599 \& 356

\hline 31 \& 3-8 person households. none related to eath other \qquad \& 676 \& 129 \& 547 \& 30 \& 11 \& 11 \& 58 \& 56 \& 67 \& 28 \& 311 \& 120

\hline \& Years of School Completed by Householder \& \& \& \& \& \& \& \& \& \& \& \&

\hline 32 \& No senool years completed. \& 328 \& 140 \& 188 \& 7 \& 21 \& 24 \& 46 \& 46 \& 169 \& 134 \& 58 \& 177

\hline \& , Elementary: \& \& \& \& 108 \& 341 \& 190 \& 459 \& 884 \& 1224 \& 2037 \& 539 \& 1546

\hline 34 \& |less than 8 years \& 3759 \& 2565 \& 1194 \& 90 \& 329 \& 118 \& 217 \& 444 \& 313 \& 2348 \& 311 \& 987

\hline \& High School: \& \& \& \& \& \& \& \& \& \& \& \&

\hline 35
36 \& \& 9949
33751 \& 5601
21828 \& 4348
11923 \& 12505 \& 2623 \& 605 \& 1420 \& 4121 \& 2024 \& 6895 \& 5622 \& 4763

\hline \& Collage: \& \& \& \& \& \& \& \& \& \& \& \&

\hline 37 \& \& 18955 \& 12020 \& 6935 \& 1097 \& 880
433 \& 356
329 \& 720
603 \& 2175
1642 \& 1019
825 \& 2696
2987 \& 3729
4133 \& ${ }_{1}^{2} 348$

\hline $$
\begin{aligned}
& 38 \\
& 39
\end{aligned}
$$ \& 4 vears or more \& 23812

12.8 \& 16740
12.9 \& 7072
12.8 \& $\begin{array}{r}1882 \\ \\ \hline 14.1\end{array}$ \& 433
12.4 \& 12.6 \& 12.4 \& 12.6 \& 12.3 \& ${ }^{2} 12.3$ \& 13.0 \& 123

\hline \& Year Householder Moved Into Unit \& \& \& \& \& \& \& \& \& \& \& \&

\hline 40 \& 1990 to 1994 \& 38106 \& 15026 \& \& 4658 \& 2509 \& 731 \& 1923 \& 5227 \& 3632 \& 2927 \& 16102 \& 6581

\hline 41 \& 1985 to 1989 \& 19897 \& 14130 \& 5 767 \& 257 \& 1.454 \& 411 \& 757 \& 2079 \& 1324 \& 2812 \& \& 2503

\hline 42 \& \& 8833 \& 6920 \& 2013 \& 25 \& 671 \& 195 \& 397 \& 890 \& 525 \& 1906 \& \& ${ }^{1} 105$

\hline 43 \& \& 8385 \& 7326 \& 1059 \& 17 \& 509 \& 150 \& 293 \& 914 \& 423 \& 1989 \& \& 1061

\hline 44 \& \& 5739 \& 5144 \& 595 \& 21 \& 335 \& 106 \& 286 \& 782 \& 259 \& 3629 \& - \& 695

\hline 45 \& 1960 to 1969 \& 7244 \& 6661 \& 583 \& 6
5 \& $\begin{array}{r}139 \\ \hline 25 \\ \hline\end{array}$ \& 141 \& 139 \& 753
357 \& 136 \& 3299 \& - \& 505

\hline 46 \& \& | 4173 |
| :--- |
| 1510 | \& 3964

1406 \& 209
104 \& 5 \& 25 \& 93
36 \& 139
90 \& 117 \& $\begin{array}{r}136 \\ \\ \hline\end{array}$ \& 1375 \& - \& 242

\hline 47 \& \& 1510

737 \& $\begin{array}{r}1406 \\ \\ \hline 64\end{array}$ \& . 104 \& - \& 7 \& 37 \& 43 \& 49 \& 18 \& 665 \& \& 146

\hline 49 \& Modian........ \& 1988 \& 1984 \& $1990+$ \& $1990+$ \& 1989 \& 1987 \& 1989 \& 1989 \& $1890+$ \& 1973 \& $1980+$ \& 1989

\hline \& Household Moves and Formation in Last Year \& \& \& \& \& \& \& \& \& \& \& \&

\hline 50 \& Total with a move in last year-.- \& \& \& \& \& 1310 \& 337 \& 1046 \& 2634 \& 1975 \& 1272 \& 16102 \& 3715

\hline 51 \& Household all moved here from one unit .-........ \& 13118 \& 3929 \& 9190 \& 1506 \& 896 \& 225 \& 657 \& 1841 \& 1324 \& 855 \& 13118 \& 2704

\hline 52 \& Housenolder of previous unit did not move here \qquad \& 2729 \& 462 \& 2268 \& 159 \& 149 \& 69 \& 164 \& 551 \& + 276 \& 66 \& 2729 \& $\begin{array}{r}784 \\ \hline 836\end{array}$

\hline 53 \& Householder of previous unit moved here ----- \& 10029 \& 3374 \& 6655 \& 1307 \& 710 \& 147 \& 463 \& 1222 \& 1016 \& 765 \& 10029 \& 1836

\hline 54 \& Householder of previous unit not reparted....- \& 360 \& 93 \& 267 \& 40 \& 37 \& 9 \& 29 \& 67 \& 32 \& 24 \& 360 \& 85

\hline 55 \& Household moved here from two or more units - \& 2348 \& 436 \& 1913 \& 171 \& 131 \& 26 \& 120 \& 216 \& 231 \& 25 \& 2348 \& 355

\hline 56 \& No previous householder moved here- \& 617 \& 81 \& 536 \& 47 \& 61 \& 2 \& 26 \& 46 \& 55 \& 4 \& 617 \& 100

\hline 57 \& 1 previous nouseholder moved here-...-. \& 447 \& 58 \& 389 \& 21 \& 28 \& 14 \& 15 \& 48 \& 29 \& 5 \& 447 \& 54

\hline 58 \& 2 or more previous housoholders moved \& \& \& \& \& 32 \& 9 \& 56 \& 77 \& 124 \& 14 \& 1052 \& 142

\hline 59 \& \& \& 247
50 \& 806
182 \& 14 \& 10 \& $\frac{7}{7}$ \& 22 \& 44 \& 23 \& 2 \& 232 \& 60

\hline 60 \& Some atready here, rest moved in .-.-.-.-.-.-...-- \& 3990 \& 2310 \& 1680 \& 239 \& 283 \& 87 \& 267 \& 565 \& 419 \& 390 \& 602
159 \& 648

\hline 61 \& No previous householder moved here .-.-...- \& 1413 \& 750 \& 663 \& 49 \& 106 \& 38 \& 129 \& 240 \& 214 \& 105 \& 159 \& 261

\hline 62 \& 1 or more previous householders moved here \& \& \& 781 \& 161 \& 149 \& \& \& 224 \& 147 \& 234 \& 431 \&

\hline 63 \& Previous householder(s) not reported. \& 2032 \& 319 \& 226 \& 30 \& 29 \& 6 \& 52 \& 100 \& 58 \& 51 \& 12 \& 128

\hline 64 \& Number of previous units not reported .-.-.-....- \& 33 \& 9 \& 23 \& - \& - \& - \& 3 \& 13 \& 2 \& 2 \& 33 \&

\hline
\end{tabular}

'Figures may not add to total because more than one category may apply.
(continued on next page)

Table 4-1. Household Composition--Occupied Units (continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{2}{|l|}{in Prassas} \& \& \multicolumn{2}{|l|}{Untan} \& \multicolumn{4}{|c|}{Rurai} \& \multicolumn{4}{|c|}{Rogons} \& \\
\hline \(c o c u p l e d\)
unimis \& \[
\begin{gathered}
\text { Concrat } \\
\text { citee }
\end{gathered}
\] \& Suburts \& Ouside (P)MSAE \& Total \& Outside (P)MSAS \& rotal \& Suburbs \& Outsido (P)MSAs \& Farm \& Northeast \& Midwest \& South \& Werst \& \\
\hline 02445 \& 20457 \& 28244 \& 13743 \& \& \& \& \& \& \& \& \& \& \& \\
\hline 32278 \& \({ }^{9} 301\) \& 15016 \& 7083 \& \begin{tabular}{l}
461864 \\
\hline 284
\end{tabular} \& 5227
2514 \& 16249
9385 \& \begin{tabular}{l}
7614 \\
4754 \\
\hline
\end{tabular} \& 8516
4588 \& \({ }_{523} 9\) \& 12800
6106 \& 15081
7951 \& \({ }^{21} 12679\) \& 12887
6963 \& 2 \\
\hline 7833
4753 \& 2468
1 \& 3877

2
346 \& 1490 \& $\begin{array}{r}5830 \\ 3 \\ \hline\end{array}$ \& 621 \& 2003 \& 1117 \& 870 \& 82 \& 1529 \& 1946 \& 2698 \& 1660 \& 3

\hline 28008 \& 1800 \& 2346
1305 \& 920
500 \& 3579
1871 \& 402
189 \& 1174 \& 651
417 \& 517
312 \& 45
25 \& 907

538 \& 1105 \& | 1755 |
| :--- |
| 799 | \& 988

545 \& 4

\hline 2 \& 178 \& - 226 \& ${ }^{200}$ \& 1871 \& 189
30 \& $\begin{array}{r}737 \\ 92 \\ \hline\end{array}$ \& 417 \& 312 \& 25
12 \& 5388 84 \& 726
115 \& 799
144 \& 129
129 \& ${ }_{8}$

\hline 17710 \& 4813 \& 8706 \& 4191 \& 12235 \& 1409 \& 5476 \& 2659 \& 2783 \& 342 \& 3364 \& 4366 \& 6339 \& 3841 \& 7

\hline 8 \& 2507
1 \& 4
4
3
3 \& 1957 \& 5941 \& 650 \& 2597 \& 1269 \& 1306 \& 154 \& 1577 \& 2028 \& 3278 \& 1654 \& 8

\hline 6557

2015 \& 1800 \& | 3357 |
| :--- |
| 1275 |
| 10 | \& 1592 \& 4

4
1896 \& 519
239 \& 2102 \& $\begin{array}{r}1019 \\ \hline 371 \\ \hline\end{array}$ \& $\begin{array}{r}1072 \\ +404 \\ \hline 108\end{array}$ \& 123
65 \& 1310
476 \& 1.598
+742 \& 2277 \& 1375
612 \& -8080

\hline 6736 \& 2102 \& 3234 \& 1401 \& 4829 \& 485 \& 1907 \& 979 \& 916
918 \& 98
98 \& 1476 \& \& 2222 \& 1681 \& 11

\hline 3169 \& 1 818 \& 1603
+1831 \& 601
720 \& 2197
2832 \& 223 \& 972 \& 509 \& 458 \& 23 \& 568 \& 768 \& 1118 \& $\begin{array}{r}715 \\ \hline 96\end{array}$ \& 12
13

\hline \& \& \& \& \& 262 \& 935 \& 47 \& 450 \& 75 \& 646 \& 870 \& 1 \& 06 \&

\hline 208098 \& \& 10003 \& ${ }^{4} 128$ \& 15471 \& 1487 \& 5428 \& 2746 \& 2641 \& 331 \& 4589 \& 4548 \& 7372 \& 4389 \& 14

\hline 11452
3206 \& 3341
1003 \& 5783
1534 \& 2328 \& 8 306 \& 788 \& 3146 \& 1588 \& 1531 \& 196 \& 2656 \& 2736 \& 3831 \& 2229 \& 15

\hline 3 2100 \& 1083
018

0 \& | 1534 |
| :--- |
| 1042 |
| 15 | \& 648

330 \& $\begin{array}{r}2451 \\ > \\ \hline\end{array}$ \& \begin{tabular}{l}
225

138

\hline

 \& 815 \&

386

280

\hline
\end{tabular} \& 424 \& 64 \& 793

411
40 \& 637 \& 1201 \& +635 \& $1{ }^{16}$

\hline 2313 \& $0 \cdot 2$ \& ¢ 054 \& 376 \& 1838 \& 138
168 \& 4 \& 250
246 \& $\begin{array}{r}193 \\ 215 \\ \hline\end{array}$ \& 1088 \& 411

409 \& 402 \& | 825 |
| :--- |
| 906 | \& $\begin{array}{r}552 \\ 595 \\ \hline\end{array}$ \& 18

\hline 1233 \& 484 \& 532 \& 216 \& 977 \& 108 \& 256 \& 145 \& 109 \& 6 \& 174 \& 241 \& 520 \& 297 \& 19

\hline 974 \& 360 \& 470 \& 144 \& 792 \& 49 \& 183 \& 88 \& 95 \& 4 \& 208 \& 152 \& 356 \& 259 \& 20

\hline 106
102 \& 30 38 \& \& 16
13 \& 80
79 \& 4
8
8 \& $\begin{array}{r}25 \\ 23 \\ \hline\end{array}$ \& 14
18 \& 12
5 \& - \& 27
11
18 \& 10
16 \& 350
30
37 \& $\begin{array}{r}39 \\ 37 \\ \hline\end{array}$ \& 21
22
22

\hline $\cdots 7150$ \& 2649 \& 3209 \& 1298 \& 5453 \& 498 \& 1703 \& 885 \& 808 \& 93 \& 1395 \& 1370 \& 2716 \& 1676 \& 23

\hline 7000 \& 2031 \& 3095 \& 1074 \& \& 495 \& 1337 \& 733 \& 579 \& 35 \& 1299 \& 1630 \& 1974 \& 2097 \& 24

\hline 2739
4
485 \& 1202 \& 1182 \& 355 \& 2345 \& 204 \& 394 \& 233 \& 151 \& - \& 585 \& 633 \& 697 \& 844 \& 25

\hline 4 365 \& - 3080 \& $\begin{array}{r}1043 \\ 440 \\ \hline\end{array}$ \& 574 \& 3697 \& 320 \& 687
207 \& 418
120 \& 254 \& 16 \& 778 \& 990 \& 1214 \& 1403 \& 27

\hline 1748 \& 640 \& 761 \& 1848
346 \& 1 232 \& $\begin{array}{r}123 \\ 125 \\ \hline\end{array}$ \& 453 \& 120
222 \& 101
221 \& 15 \& 328 \& 433 \& 272
497
175 \& ${ }_{400}$ \& 28

\hline 008 \& 200 \& 287 \& 110 \& 457 \& 56 \& 149 \& 89 \& 54 \& 5 \& 69 \& 154 \& 175 \& 208 \& 29
30

\hline 3957 \& 1685 \& 1725 \& 566 \& 3261 \& 285 \& 697 \& 401 \& 282 \& 23 \& 731 \& 967 \& 1132 \& 1128 \&

\hline 678 \& 343 \& 263 \& 70 \& 609 \& 45 \& 67 \& 40 \& 24 \& 2 \& 153 \& 127 \& 180 \& 216 \&

\hline 328 \& 132 \& 103 \& 94 \& 259 \& 52 \& 69 \& 27 \& 42 \& 2 \& 40 \& 27 \& 163 \& 97 \& 32

\hline 4170

3759 \& | 1 |
| :--- |
| 1 |
| 1 |
| 041 | \& 1470

1328 \& 1174
1390 \& 2888 \& 372 \& 1283 \& 481 \& 802 \& 62 \& 644 \& 546 \& 2136 \& 844 \& 33

\hline \& \& \& \& \& 455 \& 1429 \& 487 \& 935 \& 146 \& 745 \& 1119 \& 1398 \& 497 \& 34

\hline ${ }^{0} 9849$ \& 3
9
9612 \& 3954

15990 \& | 2681 |
| :--- |
| 8548 | \& 6915

23 \& 898
3096 \& 3034
10391 \& 1284
4820 \& 1763
5502
5 \& 152
566 \& 2083
7065 \& 2414
9 \& 3910
11333 \& 1543
6110 \& 35
36

\hline \& $\begin{array}{r}6254 \\ 7839 \\ \hline 129\end{array}$ \& | 9 |
| ---: |
| 1298 |
| 1286 |
| 12.0 | \& $\begin{array}{r}3512 \\ 3447 \\ \hline 12.6\end{array}$ \& 14

18
18
929
12.9 \& 1400
1518
12.7 \& $\begin{array}{r}4544 \\ 4683 \\ \hline 12.7\end{array}$ \& 2399
2891
12.6 \& $\begin{array}{r}2112 \\ 1 \\ \hline 129 \\ \hline 125\end{array}$ \& 272
225
12.6 \& 3155
5174

12.8 \& $\begin{array}{r}4568 \\ 5114 \\ \hline 12.8\end{array}$ \& $\begin{array}{r}6252 \\ 7745 \\ \hline 12.8\end{array}$ \& 4980
5779
13.6 \& 37
38
39

\hline 38108 \& 13812 \& 17047 \& \& \& \& \& \& \& \& \& \& \& \&

\hline | 10897 |
| :--- |
| 897 | \& $\begin{array}{r}5813 \\ 2443 \\ \hline 143\end{array}$ \& 9801 \& 4282 \& 29649

14145 \& 3209

1492 \& \begin{tabular}{l}
8457

5752

\hline

 \&

4318

2937

\hline 1

 \&

4038

2771

\hline 1080

 \& 195 \&

6268

3829

\hline
\end{tabular} \& 8 852

4896 \& $\begin{array}{r}13793 \\ 6811 \\ \hline\end{array}$ \& | 9 |
| :--- |
| 4 |
| 4 |
| 181 |
| 161 | \& 41

\hline -8933 \& 2443
2283 \& $\begin{array}{r}4309 \\ 3 \\ 3 \\ 904 \\ \hline\end{array}$ \& 2101 \& 6048 \& 639 \& 2885 \& 1 406 \& 1462 \& 174 \& 2113 \& 2167 \& 3006 \& 1647 \& 42

\hline \$ 839 \& ${ }_{1} 264$ \& ${ }_{2} 754$ \& 2128
1522
1 \& 5611
3
3 \& 497 \& 2774

1
1895 \& 1279 \& 1490 \& 208 \& 1748
17274 \& 2131
1
1 \& 2846
2031
2031 \& 1661 \& 43

\hline \& \& 3322 \& 1750 \& 5318 \& 687 \& 1928 \& 863 \& 1063 \& 190 \& 1804 \& ; 881 \& 2434
248 \& 1125 \& 45

\hline 4173
1510 \& $\begin{array}{r}1852 \\ \\ \hline 12\end{array}$ \& 1896 \& 1015 \& 3079 \& $\begin{array}{r}634 \\ \hline 178\end{array}$ \& 1094 \& 406 \& -682 \& 130 \& 1145 \& 1072 \& $\begin{array}{r}2 \\ 1 \\ \\ \hline\end{array}$ \& 637 \& 46

\hline + 737 \& 175 \& $\begin{array}{r}572 \\ 205 \\ \hline\end{array}$ \& | 525 |
| :--- |
| 277 | \& | 988 |
| :--- |
| 409 |
| 008 | \& 178

72 \& | 521 |
| :--- |
| 328 | \& 175

124 \& | 347 |
| :--- |
| 204 | \& 71

68 \& 469
257 \& 396
198
198 \& 482
213 \& $\begin{array}{r}163 \\ 68 \\ \hline\end{array}$ \& 47

\hline 1848 \& 1985 \& 19 7 \& 1986 \& 1989 \& 1988 \& 1986 \& 1987 \& 1885 \& 1977 \& - 1986 \& 1987 \& 1988 \& 1989 \& 48

\hline 19490 \& \& 8457 \& 3696 \& \& \& \& \& \& \& \& \& \& \&

\hline 13110 \& 4922 \& 5629 \& 2567 \& 15404
10421 \& 1682
1220 \& 4086
2698 \& 2012
1315 \& 2014
1347 \& 94
49 \& 3019

1997 \& | 4 |
| :--- |
| 3 | \& 7181

4960 \& 4796
3115 \& 51

\hline $\bigcirc 729$ \& \& 1003 \& \& \& \& \& \& \& \& \& \& \& \& 52

\hline 10029 \& $\begin{array}{r}3612 \\ \hline 123\end{array}$ \& 4399 \& 1988 \& 78394 \& 905 \& 2196 \& $1{ }^{2088}$ \& 1084 \& 36 \& 1495 \& 26969 \& 3 819 \& 2424 \& 53

\hline 2360 \& 123 \& 148 \& 89 \& 288 \& 44 \& 271 \& 25 \& 45 \& 5 \& 32 \& ${ }_{91}$ \& 151 \& 28 \& 54

\hline 2348
617 \& - 989 \& 974
232 \& 376 \& 1935 \& 192 \& 413 \& 219 \& 184 \& 8 \& 327 \& 558 \& 802 \& 661 \& 55

\hline 447 \& 202 \& 163 \& 121

62 \& | 502 |
| :--- |
| 372 | \& \& 114

75 \& 56
45 \& 53
30 \& - \& 109
70 \& 139

126 \& | 214 |
| :--- |
| 134 | \& 154

117 \& 56
57

\hline \& \& \& \& \& \& \& \& \& - \& \& 126 \& \& \& 58

\hline 2032 \& 420 \& 467 \& $\begin{array}{r}157 \\ \\ 36 \\ \hline\end{array}$ \& 879 \& 77 \& 173 \& 88 \& 80 \& 6 \& 121 \& 242 \& 342 \& 348 \&

\hline 3990 \& 1394 \& 1850 \& $\begin{array}{r}36 \\ 746 \\ \hline\end{array}$ \& \& 15 \& 51 \& 30 \& 21 \& 3 \& 27 \& 51 \& 112 \& 43 \& 59

\hline 1413 \& 553 \& 835 \& | 725 |
| :--- |
| 28 | \& 3021

1
1 \& 267
110 \& 969
265 \& 475
146 \& 479
115 \& 37
9 \& 688
283 \& 880
298 \& $\begin{array}{r}1404 \\ 424 \\ \hline\end{array}$ \& $\begin{array}{r}1018 \\ 408 \\ \hline\end{array}$ \& 60
61

\hline 2032 \& 642 \& 979 \& \& \& \& \& \& \& \& \& \& \& \& 62

\hline - 315 \& 200 \& 235 \& 111 \& 1457
417 \& $\begin{array}{r}123 \\ 34 \\ \hline\end{array}$ \& 575
128 \& 277
52 \& 288
76 \& 16
12 \& 339 \& 444 \& 745 \& 503
107 \&

\hline 33 \& 22 \& \& 7 \& 26 \& 3 \& 7 \& 2 \& 76 \& 12 \& 7 \& 137 \& 235
15 \& 107
2 \& 63
64

\hline
\end{tabular}

Source: U.S. Bureau of the Census, 1993.

Table 4-2. Income Charactristics - Occupied Units

	Characteristics	Total$\substack{\text { coupied } \\ \text { units }}$	Tenume		Housing unit charactentstics				Household characteristics				
					New		Physical	problams					
			Owner	Renter	$\begin{array}{r} \text { struction } \\ 4 y r 8 \end{array}$	Mobile nomes	Severe	Moderate	Black	Hispanle	$\begin{aligned} & \text { Eiderty } \\ & (65+) \end{aligned}$	Moved in past year	$\begin{gathered} \text { pociorty } \\ \text { lovein } \end{gathered}$
1	Total......-	94724	61252	33472	4890	5655	1901	4225	11128	6814	20438	16102	13787
	Houmehold Income												
2		5497	2346	3151	${ }^{93}$	357	249	512		543	1154	1223	
3 4		8368	3970	5398		815	323	766	1889	882	44543	1758	5 6 1
4	\$10.000 to \$14,999	8642 7627	4 4 4 085	4138 3543	202 333	882	230 187	633 438	1308 +187	770		1686	1628
6	\$20.000 to \$24.999 -	7837	4352	3 3485	276	888	187 168	438 386	$\begin{array}{r}1 \\ \hline 87 \\ \hline 864 \\ \hline\end{array}$	708 709	2318 1964	1577	$\begin{array}{r}427 \\ 75 \\ \hline\end{array}$
7	\$25,000 to \$29,099 -	8863	5565	3298	382	506	154	333	898	589	2215	1544	25
8	\$30,000 10 \$34.989	6398	4096	2302	376	482	112	209	598	5818	2 1 1 152	15460	25
${ }^{8}$	\$35.000 to \$39,989	5521	3808	1713	360	365	73	176	528	386	788	821	-
10	\$40,000 to \$49,989	9 507	6936 5688 5	2571	690 475	407	121	282	776	565	937	1484	-
12	\$60.000 to \$79,989	8740	7310	1430	475 753	164	88	171	513	371	604	(881	
13	\$80.000 to \$899.999	4114	3625	489	358	48	53	60	196	162	252	-449	
14	\$100,000 to \$119,989.	2231	2027	203	204	2	12	29	69	64	167	253	
18		$\begin{array}{r} 3222 \\ 29734 \end{array}$	37244	20725			18980	51 17303		22776		25724	
17			3724	20725	4388	2004	18980	17303	18649	22776	17216	25724	6130
18	50 to 89 -	${ }_{8} 51804$	2200 3186	3404	$\begin{array}{r}87 \\ 205 \\ \hline\end{array}$	368	269	551	1661	654	707	1354	5604
19	100 to 149.	10033	- 219	4814	318	988	304	829			2624 3813	1888 1879	
20	150 to 199	8008	5301	3709	409	821	184	508	1203	802	2861		
	200 percent or more ...-.	81885	45346	16549	3970	2748	857	1703	4686	2975	10433	9468	\cdots
	Income of Familles and Primary Individuals												
22		5990	2450	3540	113	381	273	553					
23 24	\$5.000 to \$9,989	88870	4043 4650	5827 4454	232	887	340	832	1856	959	4539	2023	$\begin{array}{r}6028 \\ \hline 1540\end{array}$
24 25	(9104 7821	4650 4138	4454 3683	224 330	860 627	223 191	631 460	1328 1 121	818	3544	1847	1540
26	\$20.000 to \$24,989.	8011	4438	- 3672	330 278	687	191	460 388		709	2307	1685	409
27	\$25.000 to \$29.899	8853	5618	3335	405	487	154	328	8884	797 590	- 2956	1607	25
28	\$30,000 10 534.899	6328	4149	2178	399	471	111	181	583	396	1142	1082	
29 30	\$35.000 10 \$39.999	5403	3837 6897	1568 2507	363	343	13	150	500	3388	789	-852	
31	\$50,000 to \$59,899	9 6780	6887 5825	2207 1255	604 472	382 181	110 78	231 159	750	541 342	914 595	$\begin{array}{r}1307 \\ \hline 824\end{array}$	
32	\$80,000 to \$79,999 -	8218	7110	1106	731	148	90	177	410 104	328	578	918	
33 34	\$80,000 to \$99,999 $\mathbf{\$ 1 0 0 . 0 0 0}$ to $\$ 119.988$	3916 2147	3518 1 1	397	343 193	44	53	49	194	142	250	423	
35	\$120.000 or mers		1973 2904 989	178	303	11			117	$\begin{array}{r}59 \\ 84 \\ \hline\end{array}$		323	
36	Median....---.-	28687	36485	18957	42480	19347	17 \% 8	16043	17963	21552	17065	23227	5976
	Income Sources of Families and Primary Individuals												
	Wages and salaries .-..-----.-.-.-.-.-...-.--	69091	44342	24749	4206	3998							
$\begin{aligned} & 38 \\ & 39 \end{aligned}$	Wages and salaries were majority of income 2 or more people each earned over 20% of	61755	38985	22770	3878	3608	1044	2644	7055	4744	2529	12574	4107
		23264	17422	5842	1734	1278	359	783	2258	1867	692	3685	579
41		11548 28184	17 917827 2179	1921 6464	624	499 1828	209 608	368 +1092	2 433	$\begin{array}{r}409 \\ \hline 155\end{array}$	1686	1216	$\begin{array}{r}817 \\ 4404 \\ \hline\end{array}$
42	!nterest ---..-------.....	42332	34138	- 194	2560		597	${ }^{887}$	2846 1801		19571 12819	17416 4516	2483
43	Stock dividend (B)	16819	14276	2343	1167	384	222	321	541	343	4670	1688	602
45	Rental income With lodger	11493 4395	7614	3 3879	587	367	185	503	851	762	1974	2584	810
46	Wallare or SS	${ }_{5}^{4} 983$	1201	3188 4430	223 133	231	88 278	308	2435	428 773	158	${ }^{1} 887$	419 3922
47		4381	2410	${ }^{4} 951$	271	312	285 805	215 15	2027	773	953 115	1834 1028	$\begin{array}{r}3822 \\ \hline 963 \\ \hline\end{array}$
48	Other	13112	8226	4886	660	986	305	726	1573	1022	1621	2283	1817

(continued on r:ext page)

Table4-2. Income Characteristics - Occupied Units
[Rurybers in thowenda Consiatert whit the 1990 Cansus. ... mosns not applicable or sample too smat. - means zero or rounds to zero.]

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{2}{|l|}{in (P)MSAs} \& \multirow[b]{2}{*}{\begin{tabular}{l}
Outside \\
(P)MSAS
\end{tabular}} \& \multicolumn{2}{|c|}{Urban} \& \multicolumn{4}{|c|}{Rural} \& \multicolumn{4}{|c|}{Regions} \& \\
\hline \[
\begin{gathered}
\text { Total } \\
\text { occupied } \\
\text { units }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Central } \\
\& \text { citles }
\end{aligned}
\] \& Suburts \& \& Total \& \begin{tabular}{l}
Outside
P)MSAs \\
(P)MSAs
\end{tabular} \& Total \& Suburbs \& \begin{tabular}{l}
Outside
PYMSAs \\
(P)MSAs
\end{tabular} \& Farm \& Northeast \& Midwest \& South \& West \& \\
\hline 94724 \& 29838 \& 44060 \& 20826 \& 69090 \& 7741 \& 25633 \& 12368 \& 13085 \& 1423 \& 18906 \& 23031 \& 32936 \& 19850 \& 1 \\
\hline 5497 \& 2259 \& 1920 \& 1319 \& 4185 \& 557 \& 1313 \& 546 \& 762 \& 77 \& 1116 \& 1311 \& 2232 \& 838 \& 2 \\
\hline 9368 \& 3662 \& 3007 \& 2699 \& \({ }^{6} 943\) \& \(1 \begin{array}{r}128 \\ 954 \\ \hline\end{array}\) \& 2425 \& 843 \& 1571 \& 102 \& 1793 \& 2261 \& 3625 \& 1689 \& 3 \\
\hline \begin{tabular}{l}
8642 \\
7627 \\
\hline
\end{tabular} \& \(\begin{array}{r}3 \\ 3 \\ 2 \\ 264 \\ \hline\end{array}\) \& \(\begin{array}{r}3239 \\ \hline 2929 \\ \hline\end{array}\) \& 2393
2034
203 \& \begin{tabular}{l}
6266 \\
5503 \\
\hline
\end{tabular} \& \begin{tabular}{l}
954 \\
735 \\
\hline
\end{tabular} \& \begin{tabular}{l}
2376 \\
2125 \\
\hline 1
\end{tabular} \& 930
809 \& 1439
1899 \& 126
125 \& 1636
1316 \& 2094
1
1 \& \begin{tabular}{l}
3205 \\
2755 \\
\hline
\end{tabular} \& 1707
1575 \& 4 \\
\hline 7837 \& 2529 \& 3236 \& 2071
2051 \& 5627 \& 792 \& 2209 \& 893 \& 1279 \& 105 \& \({ }_{1} 1345\) \& 1972 \& \(\begin{array}{r}2 \\ 2 \\ \hline\end{array}\) \& \begin{tabular}{l}
1575 \\
\hline 1591 \\
\hline 151
\end{tabular} \& 5
6 \\
\hline 8863 \& 2726 \& 4084 \& 2053 \& 6460 \& 821 \& 2403 \& 1154 \& 1232 \& 188 \& 1832 \& 2130 \& 3091 \& 1809 \& 7 \\
\hline \(\begin{array}{r}6 \\ 5 \\ 598 \\ 598 \\ \hline\end{array}\) \& 1963
1599 \& 2907
29718 \& \begin{tabular}{l}
1527 \\
1504 \\
\hline 104
\end{tabular} \& 4666 \& 539 \& 1732 \& 729 \& 988
897 \& -973 \& 1140 \& 1567 \& \(\begin{array}{r}2347 \\ \hline 1856\end{array}\) \& 1343 \& 8 \\
\hline \begin{tabular}{l}
5521 \\
9507 \\
\hline 95
\end{tabular} \& 1599
2743 \& 2718
4854
4 \& 1204
1910 \& 3828
6811 \& \(\begin{array}{r}368 \\ 629 \\ \hline\end{array}\) \& 1692
2696 \& \(\begin{array}{r}845 \\ 1+394 \\ \hline\end{array}\) \& 837
1281 \& \begin{tabular}{l}
133 \\
127 \\
\hline
\end{tabular} \& 1055
1822
18 \& 1
2
2 42 \& \(\begin{array}{r}1866 \\ 3215 \\ \hline\end{array}\) \& 1181
2038
2038 \& +989 \\
\hline 7158 \& 1945 \& 3945 \& 1268 \& 5164 \& 417 \& 1994 \& 1113 \& 851 \& 81 \& 1517 \& 1860 \& 2236 \& 1545 \& 11 \\
\hline 8740 \& 2296 \& 5140 \& 1304 \& 6425 \& 460 \& 2314 \& 1459 \& 843 \& 110 \& 2004 \& 2071 \& 2616 \& 2049 \& 12 \\
\hline 4114
2231 \& 955
599 \& \begin{tabular}{l}
2710 \\
1 \\
1 \\
\hline
\end{tabular} \& 448
232 \& 3065
1
1 693 \& 151
88
88 \& \(\begin{array}{r}1049 \\ 538 \\ \hline\end{array}\) \& 742
391 \& 297
144 \& 56
41 \& \(\begin{array}{r}1024 \\ 563 \\ \hline 8\end{array}\) \& 862 \& 1211
673 \& 1017
563 \& 13
14 \\
\hline 3222 \& 888 \& 1972 \& 362 \& 2454 \& 102 \& 768 \& 491 \& 260 \& 56 \& 742 \& 638 \& 937 \& 906 \& 15 \\
\hline 29734 \& 26459 \& 36302 \& 24750 \& 29661 \& 23140 \& 29929 \& 36484 \& 25776 \& 29713 \& 31815 \& 29452 \& 27787 \& 32664 \& 16 \\
\hline 5604 \& 2451 \& 1897 \& 1256 \& 4384 \& 549 \& 1220 \& 511 \& 707 \& 83 \& 1112 \& 1389 \& 2190 \& 913 \& 17 \\
\hline 8183 \& \({ }^{3} 285\) \& 2589 \& 2309 \& 5975 \& 913 \& 2208 \& 797 \& 1396 \& 92 \& 1457 \& 1868 \& 3361 \& 1497 \& 18 \\
\hline 10
9
9 \& \begin{tabular}{l}
3363 \\
2797 \\
\hline 7
\end{tabular} \& 3761
3744
3 \& 2908
2469 \& 7175
6349 \& 1102
923 \& 2858
2660 \& \(\begin{array}{r}1040 \\ 1100 \\ \hline\end{array}\) \& 1807
1546 \& 170 \& 1724
1707 \& 1
2
2
179 \& \(\begin{array}{r}3773 \\ 3340 \\ \hline\end{array}\) \& 2127
1786
17 \& 19
20 \\
\hline 61895 \& 17942 \& 32069 \& 11884 \& 45208 \& 4255 \& 16687 \& 8920 \& 7629 \& 916 \& 12906 \& 15189 \& 20272 \& 13528 \& 21 \\
\hline 5990 \& 2457 \& 2123 \& 1411 \& 4603 \& 610 \& 1387 \& 582 \& 801 \& 79 \& 1196 \& 1422 \& 2395 \& 978 \& 22 \\
\hline 9870 \& 3931 \& 3156 \& 2782 \& 7363 \& 1165 \& 2507 \& 880 \& 1617 \& 103 \& 1834 \& 2413 \& 3774 \& 1848 \& 23 \\
\hline 9104 \& 3
2
2 730 \& \begin{tabular}{l}
3439 \\
3025 \\
\hline
\end{tabular} \& 2464 \& 6652
5656 \& 1006

742 \& 2452 \& 984 \& | 1 |
| :--- |
| +1458 |
| 1 |
| 184 | \& 126 \& 1705

1398 \& 2192
2

2 \& | 3347 |
| :--- |
| 2804 | \& 1860

1590 \& 24

\hline 8011 \& 2559 \& 3357 \& 2095 \& 5733 \& 791 \& 2278 \& 967 \& 1304 \& 105 \& 1410 \& 2029
2000 \& ${ }_{2}^{2} 931$ \& 1670 \& 25
26

\hline 8953 \& 2764 \& 4194 \& 1994 \& 6572 \& 787 \& 2381 \& 1152 \& 1207 \& 188 \& 1882 \& 2164 \& 3092 \& 1814 \& 27

\hline 6328 \& 1920 \& 2941 \& \& \& 505 \& 1738 \& 761 \& 963 \& 97 \& \& 1566 \& 2319 \& 1316 \& 28

\hline 5403 \& 1549 \& ${ }_{2}^{2} 703$ \& 1151 \& 3744 \& 342 \& 1659 \& $\begin{array}{r}838 \\ \hline\end{array}$ \& ${ }^{808}$ \& 136 \& 1043 \& 1386 \& 1825 \& 1148 \& 29

\hline 9104
6780 \& 2527

1810 \& | 4702 |
| :--- |
| 3738 | \& 1876

1
1

1832 \& | 6482 |
| :--- |
| 4848 | \& 613

399 \& 2622
1932
19 \& 1345
1071
1 \& 1263 \& ${ }_{81}^{122}$ \& 1779
1
1441 \& 23301
+1736
1 \& 3068 \& 1956 \& 30

\hline 8216 \& 2088 \& 4865 \& 1263 \& 5969 \& 449 \& 2247 \& 1420 \& 815 \& 81
113 \& \& 1 \& 2497 \& \& 31
32

\hline 3916 \& 911 \& 2564 \& 441 \& 2919 \& 146 \& 997 \& 691 \& 295 \& 59 \& 965 \& 842 \& 1160 \& 948 \& 33

\hline | 2147 |
| :--- |
| |
| 3 | \& 552

839 \& | 1358 |
| :--- |
| 1895 | \& 238

346 \& 1609

2
2 \& 86 \& 5338 \& 386 \& 152 \& 58 \& 552 \& 411 \& 652 \& 532 \& 34

\hline 28667 \& 25073 \& 34651 \& 24035 \& 28453 \& 22200 \& 29258 \& 35209 \& 25160 \& 29568 \& 30127 \& 28372 \& 26966 \& $\begin{array}{r}30628 \\ \hline 8\end{array}$ \& 36

\hline 69091 \& 21402 \& 33506 \& 14184 \& 50406 \& 5229 \& 18684 \& 9570 \& 8955 \& 915 \& 13365 \& 16744 \& 24180 \& 14803 \& 37

\hline 61755 \& 19329 \& 30186 \& 12240 \& 45354 \& 4563 \& 16400 \& 8577 \& 7677 \& 671 \& 11963 \& 14777 \& 21841 \& 13173 \& 38

\hline 23264
11548 \& 6248
2423 \& 12234
5430 \& 4782
3695 \& 16216
6608 \& 1574 \& 7048

4940 \& | 3794 |
| :--- |
| 2088 | \& 3208

2840
2 \& 253
+1074 \& 4545

1853 \& $\begin{array}{r}5 \\ \hline\end{array} 117$ \& \begin{tabular}{l}
8445

3884

\hline

 \&

4685

2694

\hline
\end{tabular} \&

\hline $\begin{array}{r}11548 \\ 28184 \\ \hline 181\end{array}$ \& | 2423 |
| :--- |
| 8140 | \& $\begin{array}{r}5430 \\ 12532 \\ \hline\end{array}$ \& | 3695 |
| :--- |
| 7512 | \& $\begin{array}{r}6608 \\ 20046 \\ \hline\end{array}$ \& $\begin{array}{r}855 \\ 2836 \\ \hline 1\end{array}$ \& | 4940 |
| :--- |
| 8138 | \& | 2088 |
| :--- |
| 3426 | \& 2840

4675
4 \& 1074
+519 \& 1853

5997 \& | 3117 |
| :--- |
| 6858 | \& 3884

9
979 \& 2694
5350 \& 40

\hline 42332 \& 11388 \& 22141 \& 8804 \& 30464 \& | 3165 |
| :--- |
| 1046 | \& 11868 \& 6146 \& 5639 \& 804 \& 9243 \& 11199 \& 12852 \& 9038 \& 42

\hline 16619 \& 4400 \& 9263 \& 2956 \& 12153 \& 1046 \& 4466 \& 2510 \& 1910 \& 289 \& 3603 \& 4268 \& 5115 \& 3633 \& 43

\hline 14
485
4 \& 3960

1868 \& \begin{tabular}{l}
5315

1943

\hline 108

 \& \& $\begin{array}{r}8646 \\ 3697 \\ \hline\end{array}$ \& $\begin{array}{r}890 \\ 320 \\ \hline\end{array}$ \& \& \& \& 18 \& $\begin{array}{r}2173 \\ \\ \hline 178\end{array}$ \& 2664 \&

3448

1214

\hline 1
\end{tabular} \& \& 44

\hline 5963 \& 2803 \& 1636 \& 1525 \& 4709 \& 681 \& 1254 \& 408 \& 843 \& 16 \& 1120 \& 1464 \& 2187 \& 1192 \& 46

\hline 4361
13112 \& 1299
4007 \& 2
6
6 \& 1
2
2 \& 3229
9516 \& 469
981 \& 1132
3596 \& 570
1806 \& 549
1758 \& 31
123 \& 740
2626 \& 1188
2952 \& 1673
4297 \& 761
3237 \& 478

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 42644 \& 15431 \& 15946 \& 11267 \& 31312 \& 4462 \& 11332 \& 4475 \& 6805 \& 587 \& 7890 \& 10462 \& 16009 \& 8282 \& 49

\hline 23377 \& 9435 \& 7832 \& 6110 \& 17508 \& 2542 \& 5868 \& 2277 \& 3568 \& 167 \& 4094 \& 4986 \& 9944 \& 4352 \& 50

\hline $\begin{array}{r}11713 \\ 3154 \\ \hline\end{array}$ \& 3715 \& 4634
1
1 \& ${ }^{3} 365$ \& 8316 \& 1292 \& 3398 \& $\begin{array}{r}1306 \\ \hline 395 \\ \hline\end{array}$ \& $\begin{array}{r}2073 \\ \hline 563 \\ \hline\end{array}$ \& 178 \& 2325 \& 3386 \& 3733 \& 2269 \& 51

\hline 3154
4400 \& 829
1452 \& 1493
1988 \& 832
960 \& 2197
3292 \& 269
359 \& 958
+108 \& 395
498 \& 563
601 \& 162
80 \& 6340 \& 956
+1133 \& 843
1490 \& 716
945 \& 52
53

\hline 42644 \& 15431 \& 15946 \& 11267 \& 31312 \& 4462 \& 11332 \& 4475 \& 6805 \& 587 \& 7890 \& 10462 \& 16009 \& 8282 \& 54

\hline 7360 \& 3476 \& \& \& 5 5784 \& \& \& \& 1024 \& 13 \& \& \& 2984 \& 1205 \& 55

\hline 32718
2565 \& 11092
863 \& 12760
1141 \& 8866
561 \& 23630
1898 \& $\begin{array}{r}3462 \\ \hline 184\end{array}$ \& 9089
667 \& $\begin{array}{r}3643 \\ 383 \\ \hline 28\end{array}$ \& 5404
$3 \pi 7$ \& 516
58 \& 6042
468 \& 8065
606 \& 12094
931 \& 6517
560 \& 56
57

\hline 28141 \& 12473 \& 11104 \& 4564 \& 23665 \& 2233 \& 4477 \& 2090 \& 2331 \& 190 \& 5690 \& 6093 \& 9473 \& 6886 \&

\hline 941 \& ${ }^{11} 786$ \& \& \& 932 \& \& \& \& \& \& 626 \& \& 47 \& 268 \& 59

\hline $\begin{array}{r}27183 \\ \hline 1786\end{array}$ \& 11676
560 \& 10943
761 \& 4564 \& 22720 \& 2233 \& 4463 \& 2077 \& $\begin{array}{r}2331 \\ \hline 348 \\ \hline\end{array}$ \& 190
74
18 \& 5060 \& 6086 \& 9424 \& 6614 \& 60

\hline 25344 \& 11102 \& 10152 \& 4091 \& 21492 \& 2117 \& 3852 \& 1825 \& 1974 \& 117 \& 4624 \& 5674 \& 8835 \& 6212 \& 62

\hline 53
17 \& \& 30

6 \& \& | 34 |
| :---: |
| 13 |
| |
| |
| |
| | \& \& 19

4 \& $\begin{array}{r}9 \\ 4 \\ \hline\end{array}$ \& - \& - \& 15
4 \& 9
6 \& 15
3 \& 13
4
4 \& 63
64

\hline 2235 \& 1283 \& 520 \& 432 \& 2022 \& 277 \& 212 \& \& \& \& 668 \& 538 \& 748 \& \&

\hline 1667 \& 791 \& 547 \& 329 \& 1522 \& 233 \& 144 \& 45 \& 96 \& 2 \& 363 \& 409 \& 534 \& 360 \& 66

\hline 568 \& 294 \& 152 \& 122 \& 510 \& 79 \& 58 \& 15 \& 43 \& - \& 211 \& 128 \& 131 \& 98 \& 67

\hline 555 \& 235 \& 184 \& 136 \& 472 \& 89 \& 84 \& 37 \& 47 \& - \& 149 \& 178 \& 109 \& 119 \& 68

\hline 306 \& 117 \& 116 \& 73 \& 232 \& 29 \& 74 \& 31 \& 43 \& 7 \& 74 \& 67 \& 101 \& 64 \& 69

\hline
\end{tabular}

Source: U.S. Bureau of the Census, 1993.

Table 4-3. Introductory Characteristics - All Housing Units

Creactorstcs	$\begin{gathered} \text { Tout } \\ \text { houstin } \\ \text { unils } \end{gathered}$	$\begin{gathered} \text { Soaa: } \\ \text { sonal } \end{gathered}$	Year-round												${ }_{\text {M }}^{\substack{\text { Mobile } \\ \text { homes }}}$
			Occupied				Vacant								
			Totas	Total	Owner	Renter	Total	$\underset{\text { Fort }}{\substack{\text { rent }}}$	Rental vacan- ey rate -	$\begin{gathered} \text { For } \\ \text { sole } \\ \text { onlly } \end{gathered}$	Rent ed or sold	$\begin{gathered} \text { Occal } \\ \substack{\text { Sional } \\ \text { Usa/ } \\ \text { URE }} \end{gathered}$	Other		
Total.	106811	3088	103522	94724	61252	33472	8799	2651	7.3	${ }^{889}$	882	2506	1870	5605	7072
Untig in structure															
1, Druched......-		$\begin{array}{r} 1808 \\ 114 \\ 127 \\ 76 \\ 102 \\ 107 \\ 93 \\ 663 \end{array}$				$\begin{aligned} & 8428 \\ & \begin{array}{l} 8 \\ 2 \\ \hline \end{array} 550 \\ & 4 \\ & 4 \\ & 40515 \\ & 3 \\ & \hline \end{aligned} 831$	3557	988 195 695	4.47.17.7	624705959	356 124 126	${ }^{1} 114$	1035	${ }^{3} 405$...
												${ }^{229}$			
Stio.							${ }^{1} 327$	- ${ }_{\text {368 }}^{368}$	8.110.010.0	11	79 56	${ }^{146}$	${ }^{60}$	267 267	\cdots
208040							565 554 754	(189	
									7.08.3	${ }^{18}$	4250	218302	226	776	7072
Cooperatlves and Condominiums															
cooperizter. condominima \qquad	($\begin{array}{r}872 \\ 4806\end{array}$	33 385	- 839	729 3621	419 2532	311 1069	${ }_{799} 109$	18 104	88.6	${ }_{92}^{20}$	7	54 453	71	12 407	57 18
Yasr Structure Builit															
1980					$\begin{array}{r} 3720 \\ 5 \\ \hline \end{array}$				$\begin{aligned} & 10.0 \\ & 7.4 .4 \\ & 7.9 \\ & 7.6 .6 \\ & \hline .9 .9 \\ & 7.1 \\ & 6.8 \\ & 6.6 \\ & 7.2 .4 \\ & 8.4 \\ & \hline . \end{aligned}$			121 291	$\begin{array}{r}39 \\ \hline 18 \\ \hline 10\end{array}$	${ }_{5}^{5134}$	748 89 979
10061014												${ }_{331}^{298}$			
1973 10101979													112		${ }^{1} 4485$
$190000^{10} 1969$												${ }_{2}^{297}$	${ }_{2}^{227}$		1169
1930 190												2165 165	${ }_{2}^{213}$		
${ }_{180}^{180} 10100^{1029}$												$\begin{array}{r}156 \\ 92 \\ \hline 9\end{array}$			${ }^{25}$
												+ ${ }^{219} 4$	346 1949	\cdots	1977
Sulmablity for Yoar-Round Usa?															
Dun end heated for yes.round usa \qquad Nor mported \qquad	$\begin{array}{r\|} 105550 \\ 973 \\ 87 \end{array}$	$\begin{gathered} 2028 \\ \\ \\ 973 \\ 97 \end{gathered}$	103522		\cdots	\cdots	8799	\cdots	$\stackrel{7.3}{\square}$	${ }^{889}$	882	2506		55	${ }^{6} 9$
Thee Stharhg															
	$\begin{array}{ll} 11 & 887 \\ & 71 \\ 75 \\ 75 \end{array}$	$\begin{aligned} & 3088 \\ & 3075 \end{aligned}$	$\begin{aligned} & 8799 \\ & 8738 \\ & 8750 \end{aligned}$	$=$	=	こ	$\begin{aligned} & 8799 \\ & 8790 \\ & 8738 \end{aligned}$	$\begin{aligned} & 2651 \\ & 2641 \\ & 2641 \end{aligned}$	$\begin{array}{r} 86.5 \\ 88.0 \\ 88.4 \end{array}$	$\begin{aligned} & 889 \\ & 885 \\ & 885 \end{aligned}$	${ }^{882}$	$\begin{aligned} & 2506 \\ & 2480 \end{aligned}$	$\begin{aligned} & 1870 \\ & 1863 \end{aligned}$	616614614	$14{ }^{2}$
Nornmepherex - ---											882				
Duration of Vacancy															
Vacant unis ---....		$\begin{gathered} 2632 \\ 696 \\ 893 \\ 398 \\ 298 \\ 103 \\ 332 \\ 318 \\ 387 \end{gathered}$	$\begin{aligned} & 7965 \\ & 1968 \\ & 1957 \\ & 1528 \\ & 1586 \\ & 686 \\ & 579 \\ & \hline 559 \\ & \hline 553 \\ & 772 \end{aligned}$	":$\cdots$$\cdots$$\cdots$$\cdots$$\cdots$		\cdots	$\begin{aligned} & 7965 \\ & 1968 \\ & 1527 \\ & 1526 \\ & 1586 \\ & 574 \\ & 575 \\ & 5 \\ & 559 \\ & 353 \\ & 724 \end{aligned}$	$\begin{gathered} 2651 \\ \begin{array}{c} 680 \\ 272 \\ 275 \\ 595 \\ 195 \\ 149 \\ 229 \\ 39 \\ 199 \end{array} \end{gathered}$		889 98 54 208 125 190 149 78 87		$\begin{aligned} & 1673 \\ & 446 \\ & 447 \\ & 268 \\ & 123 \\ & 180 \\ & 332 \\ & 310 \\ & 268 \end{aligned}$	$\begin{gathered} 1870 \\ 154 \\ 170 \\ 170 \\ 180 \\ 188 \\ 778 \\ 763 \\ 165 \end{gathered}$	552114928885851111211964545	13143205942921437322537172
2 \% yerer or mares....															
Last Used as a Parmanent Rosidence															
Vecant sesienal and UPE unks		$\begin{array}{r} 3088 \\ 30 \\ 10 \\ 33 \\ 19 \\ 50 \\ 550 \\ 1956 \\ \hline 158 \\ 108 \end{array}$	$\begin{array}{r} 833 \\ 35 \\ 310 \\ 268 \\ 32 \\ 25 \\ 203 \\ 239 \\ 217 \\ 27 \end{array}$	$\div \because$ \cdots \cdots \cdots \cdots \cdots \cdots		\cdots	$\begin{array}{r} 833 \\ 35 \\ 10 \\ 26 \\ 32 \\ 45 \\ 203 \\ 239 \\ 217 \\ 217 \\ 27 \end{array}$	$\cdots$$\cdots$$\cdots$$\cdots$$\cdots$$\cdots$$\cdots$$\cdots$	". \cdots		\cdots .	$\begin{array}{r} 833 \\ 35 \\ 10 \\ 26 \\ 32 \\ 45 \\ 203 \\ 239 \\ 217 \\ 27 \end{array}$		161 9 3 119 30	
1 monti up io 2 monata															
Metropolltan/ Nonmetropoitan Areas															
made morropotian statistisad arras. in cert:a ctacs		$\begin{array}{r} 1036 \\ 165 \\ 1871 \\ 2052 \end{array}$					$\begin{array}{cc} 6 & 359 \\ \hline & 3 \\ \hline & 137 \\ \hline & 221 \\ 2 & 440 \end{array}$		$\begin{aligned} & 7.4 \\ & 7.9 \\ & 6.7 \\ & 8.8 \end{aligned}$	$\begin{aligned} & 666 \\ & \hline 42 \\ & 2425 \\ & 223 \end{aligned}$	$\begin{aligned} & 718 \\ & 314 \\ & 940 \\ & 964 \\ & 164 \end{aligned}$	$\begin{array}{r} 1463 \\ 607 \\ 856 \\ 1043 \end{array}$	$\begin{array}{r} 1263 \\ 649 \\ 614 \\ 607 \end{array}$	4204490732971	
Reglons															
Northeast \qquad		$\begin{array}{r} 811 \\ .725 \\ +492 \\ \hline 460 \end{array}$	$\begin{aligned} & 20346 \\ & \left.\begin{array}{l} 24 \\ 3455 \\ 36794 \\ 21 \\ 29 \end{array}\right) \end{aligned}$			$\begin{array}{r} 7155 \\ 7415 \\ 7 \\ \hline 1096 \\ 7808 \end{array}$	$\begin{aligned} & 1440 \\ & 1724 \\ & 3857 \\ & 1777 \end{aligned}$		$\begin{aligned} & 6.3 \\ & 6.8 \\ & 6.8 \\ & 7.4 \end{aligned}$	$\begin{gathered} 153 \\ 176 \\ 374 \\ \hline 184 \\ \hline 180 \end{gathered}$	2104	${ }_{433}^{393}$	${ }_{3}^{255}$	${ }_{214}^{610}$	
													${ }_{9} 988$	+ $\begin{aligned} & 2368 \\ & 1 \\ & 412\end{aligned}$	
What --.....-..............											220	469	${ }^{268}$	1412	
Urbanked Areas															
moldo urbenceed aras.				57837			5026			494	539		967	2438	1427
	32 385			29 28 2806 060			3070 1956 1720		88.0	236 S58 15	312 237 27	575 4788			+380
Ousson uramued aras....	43256 12725	${ }_{2}^{298}$	42 483		27 7138 7	9169 4120 1	($\begin{aligned} & 3772 \\ & 1 \\ & 1 \\ & 134\end{aligned}$	-629	${ }_{7}^{6.3}$		343 136 136	1503 349	903 201	${ }^{3} 167$	5 585
Puxil.....................-.............-	30585	2313	28272	25633	20585	5049	2638	305	5.6	272	207	1154	701	2579	4992

${ }^{1}$ For mobile home, oldest category is 1939 or earlier.
2If occupied year-round, assumed to be suitable for year-round use.
Source: U.S. Bureau of Census, 1993. 4-14

Table 4-4. Fuels - All Housing Units

${ }^{1}$ Figures may not add to total because more than one category may apply to a unit.
Source: U.S. Bureau of the Census, 1993.

Table 4-5. Housing Units--Characteristics, by Tenure and Region
[In thousands of units, except as indicated.
As of Oct. 1. Based on the American Housing Survey]

I. Imited to multiunit structures. Includes some multi-unit mobile homes.

12 Limited to single-family units.
Source: U.S. Bureau of the Census, Current Housing Reports, series, HI 50/93, and H150/95 American Housing Survey in the United States

Occupied Housing Units

Figure 4-1. Percentage of occupied and vacant housing units.
Source: U.S. Bureau of the Census, 1993.

Figure 4-2. Selected Features of Occupied Homes: 1993 (Percent of Occupied Units)

Source: U.S. Bureau of the Census, 1993.

Table 4-6. Percentage of U.S. Housing Built Before 1950 and from 1970-1979 ${ }^{\text {b }}$, by State

State	Total Housing Units	Built Before ${ }^{\text {a }} 1950$ (\%)	Built ${ }^{\text {b }} 1970$ to 1979 (\%)
United States	102,263,678	26.9	21.8
Alabama	1,670,379	17.9	25.5
Alaska	232,608	7.0	32.7
Arizona	1,659,430	6.7	30.7
Arkansas	1,000,667	17.7	27.8
California	11,182,882	19.8	21.7
Colorado	1,477,349	18.3	28.9
Connecticut	1,320,850	35.0	15.7
Delaware	289,919	22.3	20.2
District of Columbia	278,489	55.7	8.4
Florida	6,100,262	7.7	29.3
Georgia	2,638,418	14.5	24.5
Hawaii	389,810	13.4	30.5
Idaho	413,327	24.4	32.4
Illinois	4,506,275	36.9	18.4
Indiana	2,246,046	33.7	20.2
lowa	1,143,669	42.9	20.2
Kansas	1,044,112	33.1	20.3
Kentucky	1,506,845	24.2	25.0
Louisiana	1,716,241	19.5	25.3
Maine	587,045	41.1	19.8
Maryland	1,891,917	25.1	19.6
Massachusetts	2,472,711	46.8	14.1
Michigan	3,847,926	31.9	20.4
Minnesota	1,848,45	31.7	22.1
Mississippi	1,010,423	16.6	27.5
Missouri	2,199,129	28.6	21.5
Montana	361,155	30.1	26.6
Nebraska	660,621	37.8	22.1
Nevada	518,858	6.0	30.5
New Hampshire	503,904	32.2	20.5
New Jersey	3,075,310	35.2	14.9
New Mexico	632,058	15.5	26.5
New York	7,226,891	47.1	11.9
North Carolina	2,818,193	17.6	24.3
North Dakota	276,340	30.8	26.6
Ohio	4,371,945	35.7	18.6
Oklahoma	1,406,499	21.2	25.4
Oregon	1,193,567	26.5	28.7
Pennsylvania	4,938,140	44.8	15.8
Rhode Island	414,572	43.7	14.7
South Carolina	1,424,155	15.4	26.3
South Dakota	292,436	36.7	24.6
Tennessee	2,026,067	18.8	24.8
Texas	7,008,999	14.4	25.9
Utah	598,388	21.3	28.1
Vermont	271,214	40.5	19.6
Virginia	2,496,334	19.3	23.6
Washington	2,032,378	24.6	24.6
West Virginia	781,295	34.6	22.8
Wisconsin	2,055,774	36.8	21.1
Wyoming	203,411	23.7	31.1

Sources: (a) CDC, 1997; (b) U.S. Bureau of the Census, 1997.

Table 4-7. Percentage of Respondents With Attached Garages or Carports

	$\begin{gathered} \mathrm{ALL} \\ \mathrm{~N} \end{gathered}$	ND Respondants		NO Respondants		YES Respondants		DK Respondants	
		N	\%	N	\%	N	\%	N	\%
Overall	9386	1933	20.6	3693	39.3	3669	39.1	91	1.0
Gendor									
	. 4	ND	ND	4	100.0	ND	ND	ND	ND
Male	4294	861	20.1	1671	38.9	1724	40.1	38	0.9
Female	5088	1072	21.1	2018	39.7	1945	38.2	53	1.0
Ago									
	187	35	18.7	76	40.6	46	24.6	30	16.0
1-4	499	99	19.8	193	38.7	204	40.9	3	0.6
5-11	703	91	12.9	308	43.8	303	43.1	1	0.1
12-17	589	51	8.7	257	43.6	281	47.7	ND	ND
- 18-64	6059	1399	23.1	2300	38.0	2322	38.3	38	0.6
>64	1349	258	19.1	559	41.4	513	38.0	19	1.4
Raco									
	126	17	13.5	47	37.3	18	14.3	44	34.9
White	7591	1381	18.2	3014	39.7	3162	41.7	34	0.4
Black	945	320	33.9	392	41.5	224	23.7	9	1.0
Asian	157	47	29.9	36	22.9	73	46.5	1	0.6
Some Other	182	52	28.6	67	36.8	60	33.0	3	1.6
Hispanic	385	116	30.1	137	35.6	132	34.3	ND	ND
"i' Hispanic									
	103	10	9.7	33	32.0	14	13.6	46	44.7
No	8531	1725	20.2	3383	39.7	3382	39.6	41	0.5
Yes	705	187	26.5	258	36.6	256	36.3	4	0.6
DK	47	11	23.4	19	40.4	17	36.2	ND	ND
Employment									
	1844	249	13.5	770	41.8	792	43.0	33	1.8
, Full Time	4096	933	22.8	1528	37.3	1613	39.4	22	0.5
Part Time	802	181	22.6	320	39.9	295	36.8	6	0.7
Not Employed	2644	570	21.6	1075	40.7	969	36.6	30	1.1
Education									
	1968	256	13.0	827	42.0	829	42.1	56	2.8
$<\mathrm{High}$ School	834	165	19.8	449	53.8	213	25.5	7	0.8
High School Grad.'	2612	541	20.7	1159	44.4	896	34.3	16	0.6
< Colliege	1801	438	24.3	596	33.1	760	42.2	7	0.4
College Grad.	1247	321	25.7	386	31.0	536	43.0	4	0.3
Post Grad.	924	212	22.9	276	29.9	435	47.1	1	0.1
Census Region									
Northeast	2075	590	28.4	863	41.6	603	29.1	19	0.9
Midwest	2102	372	17.7	865	41.2	846	40.2	19	0.9
South	3243	530	16.3	1376	42.4	1303	40.2	34	1.0
West	1966	441	22.4	589	30.0	917	46.6	19	1.0
Day of Week 10.0									
Weekday	6316	1290	20.4	2490	39.4	2476	39.2	60	0.9
Weekend	3070	643	20.9	1203	39.2	1193	38.9	31	1.0
Soason									
Winter	2524	504	20.0	986	39.1	1003	39.7	31	1.2
Spring	2438	487	20.0	977	40.1	953	39.1	21	0.9
Summer	2536	533	21.0	1004	39.6	973	38.4	26	1.0
Fall	1888	409	21.7	726	38.5	740	39.2	13	0.7
Asthma									
No	8629	1765	20.5	3416	39.6	3399	39.4	49	0.6
Yes	694	161	23.2	266	38.3	265	38.2	2	0.3
OK	63	7	11.1	11	17.5	5	7.9	40	63.5
Angina									
No	9061	1862	20.5	3566	39.4	3584	39.6	49	0.5
Yes	250	61	24.4	109	43.6	79	31.6	1	0.4
DK	75	10	13.3	18	24.0	6	8.0	41	54.7
Bronchitis / emphysema									
No	8882	1807	20.3	3516	39.6	3510	39.5	49	0.6
Yes	433	118	27.3	162	37.4	153	35.3	Nd	nd
DK	71	8	11.3	15	21.1	6	8.5	42	59.2

Note: $N D=$ Missing data; $D K=$ Don't know; \% = Row percentage; $N=$ Sample size
Source: Tsang and Klepeis, 1996.

Table 4-8. Selected Characteristics of Households in the Target Population

Population Characteristic	Estimated Thousands of Households	Estimated Percentage of All Households
All households	84,573	100.00
Urbanization ${ }^{\text {a }}$		
Urban	70,468	83.32
Rural	14,105	16.68
Type of dwelling		
Single-	63,335	74.89
family	21,237	25.11
Multi-family		
Have private lawn		
Yes	66,828	79.02
No	17,744	20.98
Have private swimming pool		
Yes	5,978	7.07
No	78,595	92.93
Have hot tub		
Yes	2,500	2.96
No	82,073	97.04
Grew edible fruit/nut trees or grape vines 18,421 21.78		
Yes	66,151	78.22
No		
Grew tomatoes, vegetables, berries, or melons in past year ${ }^{\text {b }}$		
Yes		
No	23,180	27.41
	61,392	72.59
Grew roses in the past year ${ }^{\text {b }}$		
Yes	27,150	32.10
No	57,423	67.90

a The interviewers were instructed to classify each residence as located in either an urban area or a rural area in their best judgment so that homes in suburban neighborhoods located adjacent to rural farmland would be coded as urban, while farm homes would be coded as rural.
b
Excluding any grown for sale.

Source: Whitmore et al., 1992.

Table 4-9. Number of Househoids That Used Pest Control Services and Received Written Precautions in the Previous Year

Type of Service/ Utilization/ Written Precautions	Estimated Thousands of Households	Estimated Percentage of Households
Commercial Lawn-Care Company Utilized ${ }^{\text {a }}$	8,003	12.07
Informed of Chemicals Used ${ }^{\text {c }}$	3,626	59.51
Informed of Safety Precautions ${ }^{\text {c }}$	3,746	50.42
Treatment for Fleas, Roaches, Ants Utilized ${ }^{\text {b }}$	16,557	19.58
Informed of Chemicals Used ${ }^{\text {c }}$	3,637	23.46
Informed of Safety Precautions ${ }^{\text {c }}$	3,216	20.67

[^2]Source: Whitmore et al., 1992.

Table 4-10. Households Reporting Major Pest Problems or Problems Treated by a Household Member

Pest Problem	Households Reporting Major Problem		Households Reporting Treated Problem		Most Frequently Treated Sites ${ }^{2}$ (in order of treatment frequency)
	Estimated Thousands of HH	Estimated Percentage of All HH	Estimated Thousands of HH	Estimated Percentage of All HH	
Microorganisms					
Mildew, moid, bacteria, virus	2,486	2.94	40,361	47.72	Bathroom; kitchen; living area; fabric
Plant diseases	1,826	2.16	8,356	9.88	Roses; ornamentals ${ }^{\text {; }}$ lawn; garden ${ }^{\text {c }}$
Insects and Related Pests					
Ants ${ }^{\text {d }}$	10,830	12.81	30,443	36.00	Kitchen; OOA; bathroom; OIA
Mosquitoes	6,884	8.14	24,056	28.44	Person; OOA; living area; kitchen
Cockroaches	8,320	9.84	20,687	24.46	Kitchen; bathroom; living area; OIA
Fleas	6,482	7.66	20,107	23.77	Cat, dog or kennel; living area; kitchen; bathroom
Flies, gnats, midges	4,961	5.87	17,448	20.63	Person; kitchen; OOA; living area
Bees, hornets, wasps	4,995	5.91	15,611	18.46	OOA; OIA; detached structures; living area
Spiders, crickets, pillbugs, milli/centipedes	5,105	6.04	13,177	15.58	OOA; OIA; kitchen; living area
Plant-chewing insects	3,468	4.10	11,858	14.02	Ornamentals ${ }^{\text {b }}$, garden ${ }^{\text {c }}$ roses; lawn
Plant-sucking insects and mites	2,994	3.54	11,730	13,87	Ornamentais ${ }^{\text {; }}$ roses; garden ${ }^{\text {; lawn }}$
Ticks, chiggers	1,659	1.96	9,542	11.28	Cat, dog or kennel; person; lawn; OOA
Fire ants	4,966	5.87	7,907	9.35	Lawn; OOA; kitchen; OIA
Mice, rats	2,571	3.04	7,388	8.74	Kitchen; OIA; bathroom; living area
Slugs, snails	2,076	2.45	5,100	6.03	Ornamentals ${ }^{\text {b }}$ lawn; OOA ${ }^{\text {a }}$; garden ${ }^{\text {e }}$
Plants					
Broadleaf weeds	3,692	4.37	12,345	14.60	Lawn; OOA; ornamentals ${ }^{\text {b }}$; garden ${ }^{\text {c }}$
Grass-like weeds	3,158	3.73	11,707	13.84	Lawn; OOA; ornamentals ${ }^{\text {b }}$; roses

Abbreviations: $\mathrm{HH}=$ households; $\mathrm{OOA}=$ other outside area (such as walls, driveway, patio, deck, fences, or roof, including air treated by fogging);
OIA = other inside area (such as attached garage, attic, basement, crawlspace, attached utility room or workshop).
a "Treated" or "not treated" refers to treatment by a household member; thus, pests treated only by a pest control service are reported as "not treated" in this table.

- Roses are the only ornamental identified separately.
c Food crops such as tomatoes and vegetables (excluding fruit or nut trees and grapes).
${ }^{d}$ Excluding fire ants, carpenter ants, and termites.
Source: Whitmore et al., 1992.

Table 4-11. Number of Households with at Least One Pesticide Product Stored Insecurely by Type of Pesticide for Households with Children under 5 Years of Age ${ }^{\text {B }}$

Type of Pesticide	At Least One Stored Insecurely		TOTAL	
	Estimated Thousands of HH	Estimated Percentage ${ }^{\text {b }}$ of HH	Estimated Thousands of HH	Estimated Percent ${ }^{\text {b }}$ of HH
All Types of Pesticides	6,078 ${ }^{\text {c }}$	46.88	12,965 ${ }^{\text {c }}$	100.00
Disinfectant	3,481	41.61	8,366	100.00
Fungicide	2,831	38.12	7,425	100.00
Insecticide	3,740	36.04	10,404	100.00
Molluscicide	$43^{\text {d }}$	$6.45{ }^{\text {d }}$	660	100.00
Rodenticide	$319^{\text {d }}$	40.65	786	100.00
Herbicide	617	21.18	2,912	100.00
Repellent	1,261	24.30	5,189	100.00

Abbreviations: $\mathrm{HH}=$ Households.

- For pesticide products (excluding those used exclusively for agricultural production, plant growth regulators, pool chemicals, and anti-fouling paints) in storage at residences in the target population at the time of the survey (Aug-Sept 1990).
- Conditional percentage, given that at least one product of the designated type was in storage.
c An individual pesticide product can be of more than one type (e.g., insecticide and fungicide). Therefore, the estimates for the individual types of pesticides sum to more than the total for all types of pesticides.
- Estimate has poor precision because of the small number of observations in this cell.

Sourco: Whitmore et al., 1992.

Table 4-12. Estimated Thousands of Households Using Pesticides by Type of Pesticide and Site of Application ${ }^{\text {a }}$

Type of Pesticide	Site of Application					
	Indoors	Lawn	Food Crops	Ornamental s	Others	All Sites
	Estimated Thousands of Households (Standard Error in Parentheses)					
Fungicide	$\begin{aligned} & 31,952^{b} \\ & (2,642) \end{aligned}$	$\begin{gathered} 980 \\ (270) \end{gathered}$	$\begin{gathered} 2,203 \\ (296) \end{gathered}$	$\begin{gathered} 4,361 \\ (613) \end{gathered}$	$\begin{gathered} 1,703 \\ (309) \end{gathered}$	$\begin{aligned} & 35,501 \\ & (2,606) \end{aligned}$
Insecticide	$\begin{aligned} & 41,597 \\ & (1,943) \end{aligned}$	$\begin{aligned} & 11,951 \\ & (1,067) \end{aligned}$	$\begin{gathered} 7,084 \\ (734) \end{gathered}$	$\begin{aligned} & 11,908 \\ & (1,033) \end{aligned}$	$\begin{gathered} 20,800 \\ (1,488) \end{gathered}$	$\begin{aligned} & 52,367 \\ & (2,383) \end{aligned}$
Molluscicide	$\begin{aligned} & 0^{c} \\ & (0) \end{aligned}$	$\begin{gathered} 1,098 \\ (388) \end{gathered}$	$\begin{gathered} 969 \\ (197) \end{gathered}$	$\begin{gathered} 2,373 \\ (365) \end{gathered}$	$\begin{gathered} 936 \\ (208) \end{gathered}$	$\begin{aligned} & 3,591 \\ & (438) \end{aligned}$
Rodenticide	$\begin{gathered} 2,936 \\ (488) \end{gathered}$	$\begin{gathered} 461 \\ (147) \end{gathered}$	$\begin{aligned} & 76^{d} \\ & (55) \end{aligned}$	$\begin{aligned} & 81^{d} \\ & (57) \end{aligned}$	$\begin{gathered} 454 \\ (136) \end{gathered}$	$\begin{aligned} & 3,488 \\ & (448) \end{aligned}$
Herbicide	$\begin{gathered} 1,199^{\circ} \\ (311) \end{gathered}$	$\begin{gathered} 9,598 \\ (1,083) \end{gathered}$	$\begin{gathered} 691 \\ (167) \end{gathered}$	$\begin{gathered} 1,719 \\ (324) \end{gathered}$	$\begin{gathered} 5,607 \\ (598) \end{gathered}$	$\begin{aligned} & 14,032 \\ & (1,265) \end{aligned}$
All the Above	$\begin{aligned} & 57,245 \\ & (2,538) \end{aligned}$	$\begin{aligned} & 17,882 \\ & (1,472) \end{aligned}$	$\begin{gathered} 8,048 \\ (722) \end{gathered}$	$\begin{aligned} & 13,464 \\ & (1,113) \end{aligned}$	$\begin{gathered} 24,054 \\ (1,600) \end{gathered}$	$\begin{aligned} & 64,250 \\ & (2,661) \end{aligned}$
Disinfectant	$\begin{aligned} & 40,039 \\ & (2,819) \end{aligned}$	$\begin{aligned} & 44^{d} \\ & (44) \end{aligned}$	0^{c} (0)	$\begin{aligned} & 150^{d} \\ & (116) \end{aligned}$	$\begin{gathered} 1,236 \\ (268) \end{gathered}$	$\begin{aligned} & 40,291 \\ & (2,853) \end{aligned}$
Repellent	$\begin{aligned} & 15,183 \\ & (1,087) \end{aligned}$	$\begin{gathered} 1,181 \\ (250) \end{gathered}$	$\begin{aligned} & 77^{d} \\ & (56) \end{aligned}$	$\begin{gathered} 514 \\ (153) \end{gathered}$	$\begin{gathered} 2,132 \\ (389) \end{gathered}$	$\begin{aligned} & 17,066 \\ & (1,179) \end{aligned}$
All Types of Pesticides	$\begin{aligned} & 63,716 \\ & (2,599) \\ & \hline \end{aligned}$	$\begin{aligned} & 18,432 \\ & (1,461) \\ & \hline \end{aligned}$	$\begin{array}{r} 8,086 \\ (716) \\ \hline \end{array}$	$\begin{aligned} & 13,662 \\ & (1,104) \\ & \hline \end{aligned}$	$\begin{gathered} 24,647 \\ (1,651) \\ \hline \end{gathered}$	$\begin{aligned} & 69,018 \\ & (2,732) \\ & \hline \end{aligned}$

a For pesticide products (excluding those used exclusively for agricultural production, plant growth regulators, pool chemicals, and anti-fouling paints) in storage at residences in the target population at the time of the survey (Aug-Sept 1990).
b Bleach, cleaning products, and humidifier products classified as fungicides in EPA's Master Product Label File.
c None reported in the survey.
d Estimate has poor precision (RSE $>50 \%$).
e Bleach, cleaning products, and humidifier products classified as algaecides in EPA's Master Product Lael File.

Source: Whitmore et al., 1992.

Table 4-13. Estimated Percentage of Households Using Pesticides by Type of Pesticide and Site of Application ${ }^{\text {a }}$

Type of Pesticide	Site of Application					
	Indoors	Lawn	Food Crops	Ornamental s	Others	All Sites
	Estimated Percentage of Households (Standard Error in Parentheses)					
Fungicide	$\begin{array}{r} 37.78^{b} \\ (2.97) \end{array}$	$\begin{gathered} 1.16 \\ (0.30) \end{gathered}$	$\begin{gathered} 2.61 \\ (0.35) \end{gathered}$	$\begin{gathered} 5.16 \\ (0.74) \end{gathered}$	$\begin{gathered} 2.01 \\ (0.39) \end{gathered}$	$\begin{aligned} & 41.98 \\ & (2.84) \end{aligned}$
Insecticide	$\begin{gathered} 49.19 \\ (1.74) \end{gathered}$	$\begin{aligned} & 14.13 \\ & (1.15) \end{aligned}$	$\begin{gathered} 8.38 \\ (0.79) \end{gathered}$	$\begin{aligned} & 14.08 \\ & (1.25) \end{aligned}$	$\begin{gathered} 24.59 \\ (1.71) \end{gathered}$	$\begin{aligned} & 61.92 \\ & (1.90) \end{aligned}$
Molluscicide	$\begin{gathered} 0.00^{c} \\ (0.00) \end{gathered}$	$\begin{gathered} 1.30 \\ (0.44) \end{gathered}$	$\begin{gathered} 1.15 \\ (0.23) \end{gathered}$	$\begin{gathered} 2.81 \\ (0.47) \end{gathered}$	$\begin{gathered} 1.11 \\ (0.26) \end{gathered}$	$\begin{aligned} & 4.25 \\ & (0.53) \end{aligned}$
Rodenticide	$\begin{gathered} 3.47 \\ (0.52) \end{gathered}$	$\begin{gathered} 0.54 \\ (0.18) \end{gathered}$	$\begin{gathered} 0.09^{d} \\ (0.07) \end{gathered}$	$\begin{gathered} 0.10^{d} \\ (0.07) \end{gathered}$	$\begin{gathered} 0.54 \\ (0.16) \end{gathered}$	$\begin{aligned} & 4.12 \\ & (0.51) \end{aligned}$
Herbicide	$\begin{array}{r} 1.42^{\mathrm{a}} \\ (0.38) \end{array}$	$\begin{aligned} & 11.35 \\ & (1.26) \end{aligned}$	$\begin{gathered} 0.82 \\ (0.20) \end{gathered}$	$\begin{gathered} 2.03 \\ (0.41) \end{gathered}$	$\begin{gathered} 6.63 \\ (0.75) \end{gathered}$	$\begin{aligned} & 16.59 \\ & (1.51) \end{aligned}$
All the Above	$\begin{aligned} & 67.69 \\ & (1.87) \end{aligned}$	$\begin{aligned} & 21.14 \\ & (1.63) \end{aligned}$	$\begin{gathered} 9.52 \\ (0.77) \end{gathered}$	$\begin{aligned} & 15.92 \\ & (1.37) \end{aligned}$	$\begin{gathered} 28.44 \\ (1.90) \end{gathered}$	$\begin{aligned} & 75.97 \\ & (1.51) \end{aligned}$
Disinfectant	$\begin{aligned} & 47.34 \\ & (3.11) \end{aligned}$	$\begin{gathered} 0.05^{d} \\ (0.05) \end{gathered}$	$\begin{gathered} 0.00^{c} \\ (0.00) \end{gathered}$	$\begin{gathered} 0.18^{\mathrm{d}} \\ (0.14) \end{gathered}$	$\begin{gathered} 1.46 \\ (0.33) \end{gathered}$	$\begin{aligned} & 47.64 \\ & (3.16) \end{aligned}$
Repellent	$\begin{aligned} & 17.95 \\ & (1.30) \end{aligned}$	$\begin{gathered} 1.40 \\ (0.31) \end{gathered}$	$\begin{gathered} 0.09^{d} \\ (0.07) \end{gathered}$	$\begin{gathered} 0.61 \\ (0.18) \end{gathered}$	$\begin{gathered} 2.52 \\ (0.47) \end{gathered}$	$\begin{aligned} & 20.18 \\ & (1.43) \end{aligned}$
All Types of Pesticides	$\begin{gathered} 75.34 \\ (1.72) \\ \hline \end{gathered}$	$\begin{aligned} & 21.79 \\ & (1.65) \\ & \hline \end{aligned}$	$\begin{gathered} 9.56 \\ (0.77) \\ \hline \end{gathered}$	$\begin{aligned} & 16.15 \\ & (1.35) \\ & \hline \end{aligned}$	$\begin{gathered} 29.14 \\ (1.98) \\ \hline \end{gathered}$	$\begin{aligned} & 81.61 \\ & (1.48) \\ & \hline \end{aligned}$

* For pesticide products (excluding those used exclusively for agricultural production, plant growth regulators, pool chemicals, and anti-fouling paints) in storage at residences in the target population at the time of the survey (Aug-Sept 1990).
b Bleach, cleaning products, and humidifier products classified as fungicides in EPA's Master Product Label' File.
c None reported in the survey.
d Estimate has poor precision (RSE $>50 \%$).
- Bleach, cleaning products, and humidifier products classified as algaecides in EPA's Master Product Lael File.

Source: Whitmore et al., 1992

Table 4-14. Residential Pool Ownership in the Continental United States

	In-ground	Above-ground	Total Owned
Pool Ownership, Continental U.S.	3.4 million	3.2 million	6.6 million
In-ground Pool Ownership. Top 10 States			
California	818,000	---	
Florida	640,000	---	
Texas	228,000	---	
Arizona	183,000	---	.
New York	170,000	--	
New Jersey	134,000	---	
Pennsylvania	103,000	---	
Massachusetts	82,000	---	
Ohio	76,000	---	
Georgia	71,000	--	
Above-ground Pool Ownership			
New York	---	468,000	
Pennsylvania	---	288,000	
California	---	229,000	
New Jersey	---	199,000	
Illinois	---	151,000	
Michigan	---	146,000	
Florida	---	145,000	
Massachusetts	---	139,000	
Ohio	---	133,000	
Texas	---	116,000	
Demographics			
Average Yearly Household Income	\$67,000	\$46,000	
Average Age: Male Head of Household	49 years	44 years	
Average Age: Female Head of Household	48 years	42 years	
Average Length of Ownership	10.4 years	7.0 years	

Source: National Spa and Pool Institute, 1993.

Table 4-15. Residential Spa Ownership in the Continental United States

Spa Ownership, Continental U.S.	Total Owned
Spa Ownership, Top 10 States	3.3 million
California	
Florida	$1,127,000$
Texas	293,000
Washington	270,000
Oregon	150,000
Arizona	91,000
Michigan	88,000
Pennsylvania	85,000
New York	77,000
Nevada	65,000
Damographics	63,000
Average Yearly Household Income	
Average Age: Male Head of Household	47 years
Average Age: Female Head of	45 years
Household	
44\% have children at home	
40\% are families/couples without	
children	

[^3]
5. BUILDINGS OTHER THAN RESIDENCES

Contaminants present inside buildings other than residences can pose a risk of exposure to persons occupying these buildings even for short periods of time. "Most people spend 90% or more of their time indoors (e.g., home, work, public, and commercial buildings), and some potentially suseptible subgroups, such as infants, the elderly, and the infirm, are inside virtually all the time" (Sexton et al., 1993). Examples of nonresidential buildings that potentially contain environmental pollutants are schools, colleges, day care centers, hospitals, and nursing homes. Populations in these types of buildings may be exposed to environmental pollutants from multiple sources. Contaminants found in these buildings may be the result of construction, operation, or the use of chemicals for regular maintenance or specific activities (e.g., laboratory work, sterilization) or the use of consumer products, combustion appliances, or from individuals smoking tobacco products. This section presents data enumerating populations found in nonresidential buildings who could potentially be exposed to environmental contaminants associated with these buildings. These data can be useful for conducting human health risk assessments for populations in these types of buildings.

5.1. POPULATIONS IN SCHOOLS/COLLEGES

The U.S. Department of Education regularly compiles statistics on numbers of persons in all types of educational situations, from kindergarten through graduate school (U.S. Department of Education, 1995). Data are collected by surveys and research conducted by both the Federal Government and the private sector. The most relevant data are presented in this section. Table 5-1 presents the estimated number of individuals participating in elementary, secondary, and higher education for the fall of 1995. Table 5-1 also presents the numbers of teachers, faculty, administrative, and support staff in these educational institutions. Table 5-2 presents the enrollment in all types of educational institutions from 1980, with projections to 2000.
Enrollment in public and private schools by decade from 1869 to 1950, and by year from 1964 to the present, with projections to 2005 is displayed in Table 5-3. Enrollment in public elementary and secondary schools by race/ethnicity and by State for 1986 and 1993 is presented in Table 5-4.

Table 5-5 presents the enrollment of 3-, 4-, and 5-year-old children in preprimary programs yearly from 1965 to 1994.

The Center for Disease Control and Prevention's Agency for Toxic Substance and Disease Registry (ATSDR) published a National Alert warning of the "increasing numbers of metallic mercury spills and contamination involving schoolchildren " (ATSDR, 1997). The ATSDR National Alert (1997) listed six instances since 1994 in which metallic mercury contamination and possible exposure to school children occurred. The instances, which required decontamination of students and school facilities, occurred when children from elementary to college age found metallic mercury and shared it with other students (ATSDR, 1997).

The U.S. General Accounting Office (GAO) conducted a national survey of public schools and associated districts to determine the extent to which America's 80,000 schools have the physical capacity to support 21 st century technology and education reform for all students (GAO, 1996). Questions in the survey addressed areas such as the physical condition of buildings and major building features, such as roofs, framing, floors, and foundations, and the status of environmental conditions, such as lighting, heating, and ventilation. These data are important because the physical and environmental conditions of buildings may contribute to higher exposures to pollutants. For example, inadequate ventilation could contribute to indoor air pollution, and chipped or peeling paint may potentially create exposures to lead in older, less maintained buildings. Questionnaires were sent to 9,956 sample schools in 5,459 associated districts in 50 States and the District of Columbia in May 1994. Of the 9,956 schools in the original sample, 393 were ineligible for the survey. The number of completed, usable school questionnaires returned was 7,478 , yielding a school response rate of 78 percent (GAO, 1996).

The results of the survey are presented in Tables 5-6 through 5-11. Table 5-6 and 5-7 provide the number of students who attend schools with unsatisfactory environmental and physical conditions, respectively. Tables 5-8 and 5-9 provide data for the percent of schools and number of students attending schools with unsatisfactory environmental conditions by community type (central city, urban fringe/large town and rural/small town) and geographic region (Northeast, Midwest, South, West). Tables 5-10 and 5-11 present the same type information for schools with inadequate building features.

5.2. POPULATIONS IN DAY CARE CENTERS

Young children may be at increased potential risk of exposure to contaminants present in nonresidential buildings due to behavioral factors common to young children. Young children are much more likely than older children or adults to put objects into their mouths, resulting in increased occurrence and/or duration of oral contact with objects in their environment. In addition, children, unlike adults, often will sit or lie on the floor, thus increasing their potential exposure to contaminants associated with floor coverings. This section presents data useful for estimating exposure to children in day care, nursery schools, and other prekindergarten programs. The U.S. Department of Education's 1995 Digest for Education Statistics provides data on numbers of children in day care, nursery schools, and other prekindergarten programs (U.S. Department of Education, 1995). The percentage of preschool children attending center-based programs (including nursery school, prekindergarten, and Head Start programs) in 1992 is presented in Table 5-12.

5.3. POPULATIONS IN HOSPITALS

Populations receiving care in hospitals may have an increased risk of exposure to certain chemicals commonly used for hospital care. In addition, these individuals have greater exposure to other individuals who potentially may contribute to airborne infections agents, such as tuberculosis. The U.S. Bureau of the Census collects data quantifying frequency and length of hospital stays in the United States. Table 5-13 presents data on hospital utilization rates by the age of patient and by region from 1970 to 1993. Table 5-14 presents summary data by State on community hospitals, including number of facilities, beds, patients admitted, occupancy rates, personnel, and outpatient visits.

5.4. POPULATIONS IN NURSING HOMES

Individuals in nursing homes could potentially have an increased risk of exposure to contaminants in their environment resulting from their compromised health status and from the likely presence of chemicals commonly found in medical institutions, such as sterilization chemicals and/or antiseptics. The U.S. Bureau of the Census collects data enumerating
populations in nursing homes. This section presents data useful for estimating the human health risk of exposures to contaminants for individuals in nursing homes. Table 5-15 presents the numbers of persons receiving care in nursing homes for 1980 and 1990, and Table 5-16 presents the nursing home population by region, division, and State for 1980 and 1990. The U.S. Bureau of the Census subdivides the United States into four regions (Northeast, Midwest, South, and West) and further subdivides each region into divisions. The composition by State of the regions and divisions is presented in Section 2.4 of this report.

5.5. REFERENCES

Agency for Toxic Substance and Disease Registry (ATSDR). (1997) National Alert: A Warning About Continuing Patterns of Metallic Mercury Exposure. Atlanta, GA: U.S. Department of Health and Human Services, Center for Disease Control and Prevention, Agency for Toxic Substance and Disease Registry. ATSDR Internet address:
http://atsdrl.atsdr.cdc.gov:8080/alerts/970626.html (Feb. 17, 1998).
Sexton, K.; Gong, H.; Bailar, J.C.; Ford, J.G.; Gold, D.R.; Lambert, W.E.; Utell, M.J. (1993) Air pollution health risks: do class and race matter? Toxicology and Industrial Health. Vol. 9, No. 5, p. 843.
U.S. Bureau of the Census. (1990) 1990 Census of the population Prepared from the Census Analysis System. U.S. Department of Commerce, Bureau of the Census, Washington, DC.
U.S. Bureau of the Census. (1995) Statistical abstract of the United States: 115th ed. U.S. Department of Commerce, Bureau of the Census, Washington, DC.
U.S. Bureau of the Census. (1997) Statistical abstract of the United States. 117 th ed. U.S. Department of Commerce, Bureau of the Census, Washington, DC.
U.S. Department of Education. (1995) Digest of education statistics 1995. U.S. Department of Education, National Center for Education Statistics, Washington, DC. Doc. no. NCES 95-029.
U.S. General Accounting Office (GAO). (1996) Report to congressional requesters. School facilities condition of America's schools. Washington, DC: U.S. General Accounting Office. GAO/HEHS-95-61.

Table 5-1. Estimated Number of Participants in Elementary and Secondary Education and in Higher Education: Fall 1995
[In millions]

Participants	All Levels (Elementary,	Elementary and Secondary Schools			Institutions of Higher Education		
	Higher Education)	Total	Public	Private	Total	Pubic	Private
Total	73.3	56.3	50.0	6.3	17.0	13.1	3.9
Enrollment ${ }^{\text {a }}$	65.1	50.7	45.0	5.7	14.4	11.3	3.1
Teachers and Facilty	3.8	3.0	2.6	0.4	$0.8{ }^{\text {b }}$	$0.6{ }^{\text {b }}$	$0.3{ }^{\text {b }}$
Other Professional, Administrative, and Support Staff	4.3	2.6	2.4	0.2	1.7	1.2	0.5

* Inciudes enroliments in local public school systems and in most private schools (religiously affiliated and nonsectarian). Excludes subcoliegiate deprartments of institutions of higher education, residential schools for exceptional children, and Federal schools. Elementary and secondary include mô'st kindergarten an'd some nursery school enrollment. Excludes preprimary enrollment in schools that do not offer first grade or above. Higher cducution comprises' full-time and part-time students enrolled in degree-credit and nondegree-credit programs in universities, other 4-year colleges, and 2-year colleges.
6 Includes full-time and part-time facility with the rank of instructor or above.
Note: The enrollment figures include all students in elementary and secondary schools and colleges and universities. However, the data for teacher and other staff in public and private elementary and secondary schools are reported in terms of full-time equivalents. The staff data for institutions of higher cducation include all full-time and part-time professional, administrative, and support personnel. Because of rounding, details may not add to totals.

Source: U.S. Department of Education, 1995.

Table 5-2. Enrollment in Educational Institutions by Level and Control of Institution: Fall 1980 to Fall 2000
[In thousands]

Level of instruction and type of control	Fall 1980	Fall 1985	Fall 1986	Fall 1987	Fall 1988	Fall 1.989	Fall 1990	Fall 1991	Fall 1992	Fall $1993{ }^{\text {a }}$	Fall 1994 ${ }^{\text {b }}$	Projected fall 1995	Projected fall 2000
All levels	58,305	57,226	57,709	58,254	58,485	59,436	60,267	61,605	62,677	63,253	63,939	65,148	69,924
Public	50,335	48,901	49,467	49,981	50,350	51,121	52,061	53,356	54,200	54,665	55,266	56,348	60,510
Private	7,971	8,325	8,242	8,273	8,135	8,316	8,206	8,248	8,477	8,588	8,673	8,800	9,414
Elementary and secondary education ${ }^{\text {c }}$	46,208	44,979	45,205	45,488	45,430	45,898	46,448	47,246	48,190	48,947	49,610	50,709	54,402
Public	40,877	39,422	39,753	40,008	40,189	40,543	41,217	42,047	42,816	43,476	44,034	45,037	48,323
Private	5,331	5,557	5,452 ${ }^{\circ}$	5,479	5,241	5,355	5,232	5,199	5,375	5,471	5,576	5,672	6,079
Grades K-8 ${ }^{\text {e }}$	31,639	31,229	31,536	32,165	32,537	33,314	33,973	34,580	35,292	35,795	36,048	36,698	39,152
Public	27,647	27,034	27,420	27,933	28,501	29,152	29,878	30,506	31,081	31.515	31,703	32,293	34,452
Private	3,992	4,195	4,116	4,232	4,036 ${ }^{\text {d }}$	4,162 ${ }^{\text {d }}$	4,095	4,074 ${ }^{\text {d }}$	4,212 ${ }^{\text {d }}$	4,280 ${ }^{\circ}$	4,345	4,405	4,700
Grades 9-12	14,570	13.750	13,669	13,323	12,893	12,583	12,475	12,666	12,898	13,152	13,563	14,011	15,250
Public	13,231	12,388	12,333	12,076	11,687	11,390	11,338	11,541	11,735	11,961	12,331	12,744	13,871
Private	1,339	1,362	1,336 ${ }^{\text {d }}$	1,247	1,206 ${ }^{\text {d }}$	1,193 ${ }^{\text {d }}$	1,137	1,125 ${ }^{\circ}$	1,163 ${ }^{\circ}$	1,191 ${ }^{\text {d }}$	1,232	1,267	1,379
Higher education ${ }^{\text {' }}$	12,097	12,247	12,504	12,767	13,055	13,539	13,819	14,359	14,486	14,306	14,329	14,439	15,522
Public	9,457	9,479	9,714	9,973	10,161	10,578	10,845	11,310	11,385	11,189	11,232	11,311	12,187
Undergraduate ${ }^{\mathrm{g}}$	8,442	8,477	8,661	8,919	9,103	9,488	9,710	10,148	10,216	10,012	10,005	10,089	10,907
First-professional	114	112	112	110	109	113	112	111	111	114	118	117	117
Graduate ${ }^{\text {n }}$	901	890	941	945	949	978	1,023	1,050	1,058	1,064	1,109	1,105	1,163
Private	2,640	2,768	1,790	2,793	2,894	2,961	2,974	3,049	3,102	3,117	3,097	3,128	3,335
Undergraduate ${ }^{\text {g }}$	2,033	2,120	2,137	2,128	2,213	2,255	2,250	2,291	2,320	2,312	2,296	2,330	2,504
First-professional	163	162	158	158	158	162	162	169	170	179	175	174	177
Graduate ${ }^{\text {n }}$	443	486	494	507	522	544	563	589	611	626	626	624	654

${ }^{0}$ Preliminary.

Based on "Early Estimates" surveys for public elementary and secondary schools.
${ }^{c}$ Includes enrollments in local public school systems and in most private schools (religiously affiliated and nonsectarian), but generally excludes pupils in subcollegiate departments of institutions of higher education, residential schools for exceptional children, and Federal schools. Excludes preprimary pupils in schools that do not offer first grade or above.
${ }^{d}$ Estimated.
${ }^{\text {e }}$ Includes kindergarten and some nursery school pupils.
Includes full-time and part-time students enrolled in degree-credit and nondegree-credit programs in universities and 2-year and 4 -year colleges.
${ }^{9}$ Includes unclassified students below the baccalaureate level.
Includes unclassified postbaccalaureate students.
Note: Higher education enrollment projections are based on the low and middle alternative projections published by the National Center for Education Statistics. Some data have not been revised from previously published figures.

Source: U.S. Department of Education, 1995.

Table 5-3. Enrollment in Educational Institutions by Level and Control of Institution: 1869-70 to Fall 2005 [In thousands]

Year	Total enrollment. all levels	Elomentary and secondary. total	Public eiementary and secondary schools			Pivate elementary and secondary schoolsa			Higher education ${ }^{\text {b }}$		
			Total	Kindargarten through grade 8	Grades 9 through 12	Total	Kindorgarten through grade 8	Grades 9 through 12	Total	Public	Private
1869-70	-	\cdots	6.872	6,792	80	-	-	--	52	\cdots	\cdots
1879-80	\cdots	--	9,868	9,757	110	\cdots	\cdots	--	116	-	-
1889-90	14,491	14,334	12.723	12,520	203	1,611	1,516	95	157	-	\cdots
1899-1900	17,092	16,855	15,503	14,984	519	1,352	1,241	111	238	\cdots	\cdots
1909-10	19,728	19,372	17,814	16,899	915	1,558	1,441	117	355	--	\cdots
1919-20	23,876	23,278	21,578	19,378	2,200	1,699	1,486	214	598	-	\cdots
1929-30	29,430	28,329	25,678	21,279	4,399	2,651	2,310	341	1,101	-	---
1939-40	29,539	28,045	25,434	18,832	6,601	2,611	2.153	458	1,494	797	698
1949-50	31,151	28,492	25,111	19,387	5,725	3.380	2,708	672	2,659	1,355	1,304
Fall 1959	44,497	40,857	35,182	26,911	8,271	5,675	4,640	1,035	3,640	2.181	1,459
Fall 1964	52,996	47.716	41.416	30,025	11,391	6,300 ${ }^{\text {c }}$	5,000 ${ }^{\text {c }}$	1,300	5,280	3,468	1,812
Fall 1965	54,394	48,473	42,173	30,563	11,610	6,300	4,900	1.400	5,921	3,970	1,951
Fall 1966	55,629	49,239	43,039	31,145	11,894	6,200 ${ }^{\text {c }}$	$4,800^{\text {c }}$	$1,400^{\text {c }}$	6,390	4,349	2.041
Fall 1967	56,803	49,891	43,891	31,641	12,250	6,000 ${ }^{\text {c }}$	$4,600^{\text {c }}$	1,400 ${ }^{\text {c }}$	6,912	4,816	2,096
Fall 1968	58,257	50,744	44,944	32,226	12,718	5,800	4,400	1,400	7,513	5.431	2,082
Fall 1969	59,055	51,050	45,550	32,513	13,037	5,500 ${ }^{\text {c }}$	$4,200^{\text {c }}$	1,300 ${ }^{\text {c }}$	8,005	5,897	2,108
Fall 1970	59,838	51,257	45,894	32,558	13,336	5,363	4,052	1,311	8,581	6,428	2,153
Fall 1971	60,220	51,271	46,071	32,318	13,753	5,200 ${ }^{\text {c }}$	3,900 ${ }^{\text {c }}$	1,300 ${ }^{\text {c }}$	8.949	6,804	2.144
Fall 1972	59,941	50,726	45,726	31,879	13,848	5,000 ${ }^{\text {c }}$	3,700 ${ }^{\text {c }}$	1,300 ${ }^{\text {c }}$	9,215	7.071	2.144
Fall 1973	60,047	50,445	45.445	31,401	14,044	5,000 ${ }^{\text {c }}$	3.700°	1,300 ${ }^{\text {c }}$	9,602	7.420	2.183
Fail 1974	60,297	50,073	45,073	30,971	14,103	5,000 ${ }^{\text {c }}$	3,700 ${ }^{\text {c }}$	1,300 ${ }^{\text {c }}$	10,224	7,989	2.235
Fall 1975	61,004	49,819	44.819	30,515	14.304	5,000 ${ }^{\text {c }}$	3,700 ${ }^{\text {c }}$	1,300 ${ }^{\text {c }}$	11,185	8,835	2,350
Fall 1976	60,490	49,478	44,311	29,997	14,314	5.167	3,825	1,342	11,012	8,653	2,359
Fall 1977	60,003	48,717	43,577	29,375	14,203	5,140	3,797	1,343	11,286	8,847	2.439
Fall 1978	58,897	47.637	42.551	28.463	14,088	5,086	3,732	1,353	11,260	8,786	2,474
Fall 1979	58,221	46,651	41,651	28,034	13,616	5.000°	$3.700^{\text {c }}$	1,300 ${ }^{\text {c }}$	11,570	9,037	2,533
Fall 1980	58,305	46,208	40,877	27,647	13,231	5,331	3,992	1,339	12,097	9,457	2,640
Fall 1981	57,916	45,544	40,044	27.280	12,764	5,500 ${ }^{\text {c }}$	4.100°	1,400 ${ }^{\text {c }}$	12,372	3,647	2,725
Fall 1982	57,591	45.166	39,566	27,161	12,405	5,600 ${ }^{\text {c }}$	$4,200^{\text {c }}$	$1,400^{\text {c }}$	12.426	9,696	2,730
Fall 1983	57,432	44,967	39,252	26,981	12,271	5.715	4.315	1,400	12,465	9,683	2,782
Fall 1984	57.150	44,908	39,208	26,905	12,304	5,700 ${ }^{\text {c }}$	$4.300^{\text {c }}$	1,400 ${ }^{\text {c }}$	12,242	9,477	2,765
Fall 1985	57,226	44,979	39,422	27,034	12,388	5,557	4,195	1,362	12,247	9,479	2,768

Table 5-3. Enrollment in Educational Institutions by Level and Control of Institution: 1869-70 to Fall 2005
fln thousandsl (continued)

Year	Total enrollment, all levels	Elementary and secondary, total	Public elementary and secondary schools			Private elementary and secondary schools ${ }^{\text {a }}$			Higher education ${ }^{\text {b }}$		
			Total	Kindergarten through grade 8	Grades 9 through 12	Total	Kindergarten through grade 8	Grades 9 through 12	Total	Public	Private
Fall 1986	57,709	45,205	39,753	27,420	12,333	5,452 ${ }^{\text {c }}$	$4,116^{\text {c }}$	$1.336{ }^{\text {c }}$	12,504	9,714	2,790
Fall 1987	58,254	45,488	40,008	27,933	12,076	5,479	4,232	1.247	12,767	9,973	2,793
Fall 1988	58,485	45,430	40,189	28,501	11,687	5,241	$4,036{ }^{\text {c }}$	1,206 ${ }^{\text {c }}$	13,055	10,161	2,894
Fall 1989	59,436	45,898	40,543	29,152	11,390	5,355	$4,162^{\text {c }}$	1,193 ${ }^{\text {c }}$	13,539	10,578	2,961
Fall 1990	60,267	46,448	41.217	29,878	11,338	5,232	4,095 ${ }^{\text {c }}$	$1.137^{\text {c }}$	13,819	10,845	2,974
Fall 1991	61,605	47,246	42,047	30,506	11,541	5,199	4,074 ${ }^{\text {c }}$	1,125 ${ }^{\text {c }}$	14,359	11,310	3,049
Fall 1992	62,677	48,190	42,816	31,081	11,735	5,375	$4,212^{\text {c }}$	$1.163{ }^{\text {c }}$	14,486	11,385	3,102
Fall $1993{ }^{\text {d }}$	63,253	48,947	43,476	31,515	11,961	5,471	$4,280^{\text {c }}$	$1,191{ }^{\text {c }}$	14,306	11,189	3,117
Fall 1994°	63,939	49,610	44,034	31,703	12,331	5,576	4,345	1,232	14,329	11,232	3,097
Fall 1995 ${ }^{\text {\% }}$	65.148	50,709	45.037	32,293	12,744	5,672	4,405	1,267	14,439	11,311	3,128
Fall $1996{ }^{\text {f }}$	66,371	51,745	45,960	32,863	13,097	5,785	4,483	1,302	14,626	11,476	3,151
Fall 1997	67,776	52,686	46.797	33,420	13,377	5,889	4,559	1,330	15,090	11,850	3,240
Fall $1998{ }^{\text {f }}$	68,559	53,367	47,403	33,825	13,578	5,964	4,614	1350	15,192	11,931	3,261
Fall $1999{ }^{\text {f }}$	69,289	53,937	47,911	34,133	13,778	6,026	4,656	1,370	15,352	12,055	3,297
Fall 2000^{\prime}	69,924	54.402	48,323	34,452	13,871	6,079	4,700	1,379	15,522	12,187	3,335
Fall $2001^{\text { }}$	70,472	54,807	48,684	34,681	14,003	6,123	4,731	1,392	15,665	12,296	3,369
Fall 2002^{\prime}	70,951	55,155	48,994	34,856	14,138	6,161	4,755	1,406	15,796	12,396	3,400
Fall 2003^{\prime}	71,261	55,413	49,225	34,963	14,262	6,188	4,770	1,418	15,848	12,435	3,413
Fall $2004{ }^{\text {f }}$	71,657	55,681	49,470	34,931	14,539	6,211	4,765	1,446	15,976	12,529	3,447
Fall 2005 ${ }^{\text { }}$	71,948	55,871	49,651	34,703	14,948	6,220	4,734	1486	16,077	12,607	3,470

${ }^{\text {a }}$ Beginning in fall 1980, data include estimates for an expanded universe of private schools. Therefore, these totals may differ from figures shown in other tables, and direct comparisons with earlier years should be avoided.
${ }^{6}$ Data for $1869-70$ through 1949-50 include resident degree-credit students enrolled at any time during the academic year. Beginning in 1959, data include all resident and extension students enrolled at the beginning of the fall term.
${ }^{\text {c }}$ Estimated.
d Preliminary data.
i Public elementary and secondary data are based on "Early Estimates" surveys. Other data are projected.
' Projected.
Note: Elementary and secondary enrollment includes pupils in local public school systems and in most private schools (religiously affiliated and nonsectarian), but generally excludes pupils in subcollegiate departments of institutions of higher education, residential schools for exceptional children, and Federal schools. Elementary enrollment includes some nursery school pupils. Higher education enrollment includes students in colleges, universities, professional schools, teachers colleges, and 2 -year colleges. Higher education enrollment projections are based on the low and middle alternative projections published by the National Center for Education Statistics. Some data have not been revised from previously published figures. Because of rounding, details may not add to totals.

Source: U.S. Department of Education, 1995.

Table 5-4. Enrollment in Public Elementary and Secondary Schools by Race or Ethnicity and State: Fall 1986 and Fall 1993

State or area	Parcent distribution, fall 1986					Percent distribution, fall 1993						
	Total	White ${ }^{\text {a }}$	Black ${ }^{\text {d }}$	Hispanic	Asian or Pacific Islander	American Indian/Alaska \qquad	Total	White ${ }^{\text {a }}$	Black ${ }^{\text {a }}$	Hispanic	Asian or Pacific Islandar	American Indian/Alaska \qquad
United States	100.0	70.4	16.1	9.9	2.8	0.8	100.0	$68.1{ }^{\text { }}$	18.6 ${ }^{+}$	$12.7{ }^{\text {d }}$	3.6*	$1.1{ }^{\circ}$
Alabama	100.0	62.0	37.0	0.1	0.4	0.5	100.0	62.4	35.8	0.4	0.6	0.8
Alaska	100.0	65.7	4.3	1.7	3.3	25.1	100.0	65.3	4.9	2.4	4.1	23.3
Arizona	100.0	62.2	4.0	26.4	1.3	6.1	100.0	59.7	4.2	27.6	1.6	6.9
Arkansas	100.0	74.7	24.2	0.4	0.6	0.2	100.0	74.1	24.1	0.9	0.7	0.3
Catifornia	100.0	53.7	9.0	27.5	9.1	0.7	100.0	42.3	8.7	37.0	11.2	0.8
Colorado	100.0	78.7	4.5	13.7	2.0	1.0	100.0	74.1	5.4	17.1	2.4	1.0
Connecticut	100.0	77.2	12.1	8.9	1.5	0.2	100.0	73.3	13.0	11.1	2.4	0.2
Delaware	100.0	68.3	27.7	2.5	1.4	0.2	100.0	66.2	28.5	3.4	1.7	0.2
District of Columbia	100.0	4.0	91.1	3.9	0.9	0.1	100.0	4.0	88.5	6.1	1.3	(9)
Florida	100.0	65.4	23.7	9.5	1.2	0.2	100.0	59.6	24.7	13.8	1.7	0.2
Georgia	100.0	60.7	37.9	0.6	0.8	19	100.0	59.9	37.0	1.5	1.4	0.2
Hawaii	100.0	23.5	2.3	2.2	71.7	0.3	100.0	23.7	2.6	5.0	68.4	0.3
Idaho	100.0	92.6	0.3	4.9	0.8	1.3	100.0	92.6	0.3	4.9	0.8	1.3
llinois	100.0	69.8	18.7	9.2	2.3	0.1	100.0	64.8	21.0	11.1	2.9	0.1
Indiana	100.0	88.7	9.0	1.7	0.5	0.1	100.0	85.9	11.1	2.1	0.8	0.2
lowa	100.0	94.6	3.0	0.9	1.2	0.3	100.0	93.4	3.1	1.6	1.5	0.4
Kansas	100.0	85.6	7.6	4.4	1.9	0.6	100.0	83.4	8.4	5.3	1.8	1.0
Kentucky	100.0 .	89.2	10.2	0.1	0.5	19	100.0	89.3	9.8	0.3	0.5	(9)
Louisiana	100.0	56.5	41.3	0.8	1.1	0.3	100.0	51.7	45.4	1.1	1.3	0.5
Maine	100.0	98.3	0.5	0.2	0.8	0.2	---	---	---	--	--	--
Maryland	100.0	59.7	35.3	1.7	3.1	0.2	100.0	58.9	34.2	2.9	3.7	0.3
Massachusetts	100.0	83.7	7.4	6.0	2.8	0.1	100.0	79.3	8.1	8.8	3.7	0.2
Michigan	100.0	76.4	19.8	1.8	1.2	0.8	100.0	78.1	17.1	2.4	1.4	1.0
Minnesota	100.0	93.9	2.1	0.9	1.7	1.5	100.0	88.8	4.2	1.7	3.5	1.9
Mississippi	100.0	43.9	55.5	0.1	0.4	0.1	100.0	47.9	50.9	0.3	0.5	0.4
Missouri	100.0	83.4	14.9	0.7	0.8	0.2	100.0	82.3	15.7	0.9	0.9	0.2
Montana	100.0	92.7	0.3	0.9	0.5	5.5	100.0	87.8	0.5	1.4	0.8	9.6
Nebraska	100.0	91.4	4.4	2.4	0.8	1.0	100.0	88.3	5.7	3.6	1.2	1.3
Nevada	100.0	77.4	9.6	7.5	3.2	2.3	100.0	70.5	9.2	14.3	4.0	2.0
New Hampshire	100.0	98.0	0.7	- 0.5	0.8	0.1	100.0	96.9	0.8	1.0	1.0	0.2
New Jersey	100.0	69.1	17.4	10.7	2.7	0.1	100.0	63.4	18.6	12.8	5.1	0.1
New Mexico	100.0	43.1	2.3	45.1	0.8	8.7	100.0	40.5	2.3	46.0	0.9	10.2

(continued on next page)

Table 5-4. Enrollment in Public Elementary and Secondary Schools by Race or Ethnicity and State: Fall 1986 and Fall 1993 (continued)

State or area	Percent distribution, fall 1986						Percent distribution, fall 1993					
	Total	White ${ }^{\text {a }}$	Black ${ }^{\text {a }}$	Hispanic	Asian or Pacific Islander	American Indian/Alaska Native	Total	White ${ }^{\text {a }}$	Black ${ }^{\text {a }}$	Hispanic	Asian or Pacific Islander	American Indian/Alaska Native
Ohio	100.0	83.1	15.0	1.0	0.7	0.1	100.0	82.7	14.9	1.3	1.0	0.1
Oklahoma	100.0	79.0	7.8	1.6	1.0	10.6	100.0	71.6	10.3	3.3	1.2	13.7
Oregon	100.0	89.8	2.2	3.9	2.4	1.7	100.0	86.6	2.4	5.8	3.1	2.0
Pennsylvania	100.0	84.4	12.6	1.8	1.2	0.1	100.0	81.1	13.8	3.3	1.7	0.1
Rhode Island	100.0	87.9	5.6	3.7	2.4	0.3	100.0	81.1	6.8	8.6	3.1	0.4
South Carolina	100.0	54.6	44.5	0.2	0.6	0.1	100.0	57.2	41.4	0.6	0.7	0.2
South Dakota	100.0	90.6	0.5	0.6	0.7	7.6	100.0	84.9	0.7	0.6	0.7	13.0
Tennessee	100.0	76.5	22.6	0.2	0.6	(9)	100.0	75.6	22.9	0.5	0.9	0.1
Texas	100.0	51.0	14.4	32.5	2.0	0.2	100.0	47.7	14.3	35.5	2.2	0.2
Utah	100.0	93.7	0.4	3.0	1.5	1.5	100.0	91.5	0.6	4.5	2.0	1.4
Vermont	100.0	98.4	0.3	0.2	0.6	0.6	100.0	97.5	0.7	0.3	0.9	0.6
Virginia	100.0	72.6	23.7	1.0	2.6	0.1	100.0	67.9	25.8	2.8	3.3	0.2
Washington	100.0	84.5	4.2	3.8	5.1	2.3	100.0	79.9	4.4	6.9	6.2	2.6
West Virginia	100.0	95.9	3.7	0.1	0.3	19	100.0	95.3	4.0	0.2	0.4	0.1
Wisconsin	100.0	86.6	8.9	1.9	1.7	1.0	100.0	84.3	9.1	2.9	2.4	1.3
Wyoming	100.0	90.7	0.9	5.9	0.6	1.9	100.0	89.4	1.0	6.2	0.7	2.7
Other areas												
American Samoa	-..	---	---	---	---	--	---	---	---	\cdots	---	---
Guam	-..	--	.-.	-.-	--	-..	100.0	9.1	1.9	0.6	88.4	0.1
Northern Marianas	...	---	---	---	---	---	100.0	1.1	(9)	19	98.9	(9)
Puerto Rico	--	--	---	\cdots	--	---	100.0	(9)	(9)	100.0	19	(9)
Virgin Islands	\cdots	---	\cdots	\cdots	---	---	100.0	1.0	85.4	13.2	0.5	(9)

- Data not available.
a Excludes persons of Hispanic origin.
- Includes estimate for nonresponding State.
c Less than 0.05%.
Note: The $1986-87$ data were derived from the 1986 Elementary and Secondary School Civil Rights sample survey of public school districts. Because of rounding, details may not add to totals.
Source: U.S. Department of Education, 1995.

Table 5-5. Enroflment of 3-, 4, and 5-Year-Old Children in Preprimary Programs by Level and Control of Program and by Attendance Status: October 1965 to October 1994
[in thousands]

Year and age	Total population, 3 to 5 years old	Enrollment by level and control						Enroliment by attendance		
			Percent enrolled	Nursery school		Kindergarten		Full-day	Part-day	Percent full-day
		Total		Public	Private	Public	Private			
Total, 3 to 5 years old										
1965	12,549	3,407	27.1	127	393	2,291	596	---	---	---
1970	10,949	4,104	37.5	332	762	2,498	511	698	3,405	17.0
1975	10,185	4,955	48.7	570	1,174	2,682	528	1,295	3,659	26.1
1980	9,284	4,878	52.5	628	1,353	2,438	459	1,551	3,327	31.8
1982	9,873	5,105	51.7	729	1,423	2,459	494	1,574	3,531	30.8
1983	10,254	5,384	52.5	809	1,538	2,416	623	1,686	3,700	31.3
1984	10,612	5,480	51.6	742	1,593	2,668	476	1,929	3,550	35.2
1985	10,733	5,865	54.6	846	1,631	2,847	541	2,144	3,722	36.6
1986	10,866	5,971	55.0	829	1,715	2,859	567	2,241	3,730	37.5
1987	10,872	5,931	54.6	819	1,736	2,842	534	2,090	3,841	35.2
1988	10,993	5,978	54.4	851	1,770	2,875	481	2,044	3,935	34.2
1989	11,039	6,026	54.6	930	1,894	2,704	497	2,238	3,789	37.1
1990	11.207	6,659	59.4	1.199	2,180	2,773	509	2,577	4,082	38.7
1991	11,370	6,334	55.7	996	1,828	2,967	543	2,408	3926	38.0
1992	11,545	6,402	55.5	1,073	1,783	2,995	550	2,410	3,992	37.6
1993	11,954	6,581	55.1	1,205	1,779	3,020	577	2,642	3,939	40.1
$1994{ }^{\text {a }}$	12,328	7,514	61.0	1,848	2,314	2,819	534	3,468	4,046	46.2
3 years old										
1965	4,149	203	4.9	41	153	5	4	---	\cdots	--
1970	3,516	454	12.9	110	322	12	10	142	312	31.3
1975	3.177	683	21.5	179	474	11	18	259	423	37.9
1980	3,143	857	27.3	221	604	16	17	321	536	37.5
1982	3,387	928	27.4	312	578	27	10	280	648	30.2
1983	3,574	1,004	28.1	314	631	21	39	357	648	35.5
1984	3,609	1,004	27.8	295	658	30	22	401	603	39.9
1985	3,594	1,035	28.8	278	679	52	26	350	685	33.8
1986	3,607	1,041	28.9	257	737	26	21	399	642	38.3
1987	3,569	1,022	28.6	264	703	24	31	378	644	37.0
1988	3,719	1,027	27.6	298	678	24	26	369	658	35.9
1989	3,713	1,005	27.1	277	707	3	18	390	615	38.8
1990	3,692	1,205	32.6	347	840	11	7	447	758	37.1
1991	3,811	1,074	28.2	313	702	38	22	388	687	36.1
1992	3,905	1,081	27.7	336	685	26	34	371	711	34.3
1993	4,053	1,097	27.1	369	687	20	20	426	670	38.9
$1994{ }^{\text {a }}$	4,081	1,385	33.9	469	887	19	9	670	715	48.4
4 years old										
1965	4,238	683	16.1	68	213	284	118	---	\cdots	--
1970	3,620	1,007	27.8	176	395	318	117	230	776	22.8
1975	3,499	1,418	40.5	332	644	313	129	411	1,008	29.0

(continued on next page)

Table 5-5. Enrollment of 3-, 4-, and 5-Year-Old Children in Preprimary Programs by Level and Control of Program and by Attendance Status: October 1965 to October 1994 (continued)
[In thousands]

	Year and age	Total population, 3 to 5 years old	Enrollment by level and control						Enrollment by attendance		
						chool	Kind	rten			Percent
			Total	enrolied	Public	Private	Public	Private	Full-day	Part-day	full-day
	- 1980	3,072	1,423	46.3	363	701	239	120	467	956	32.8
	1982	3,271	1,496	45.7	377	781	225	113	442	1,054	29.5
	1983	3,414	1,619	47.4	402	813	231	173	442	1,177	27.3
	1984	3,579	1,603	44.8	376	860	257	110	521	1,082	32.5
	1985	3,598	1,766	49.1	496	859	276	135	643	1,123	36.4
	1986	3,616	1,772	49.0	498	903	257	115	622	1,150	35.1
	1987	3,597	1,717	47.7	431	881	280	125	548	1,169	31.9
	1988	3,598	1,768	49.1	481	922	261	104	519	1,249	29.4
	1989	3,692	1,882	51.0	524	1,055	202	100	592	1,290	31.4
	1990	3,723	2,087	56.1	695	1,144	157	91	716	1,371	34.3
	1991	3,763	1,994	53.0	584	982	287	140	667	1,326	33.5
	1992	3,807	1,982	52.1	602	971	282	126	632	1,350	31.9
	1993	4,044	2,178	53.9	719	957	349	154	765	1,413	35.1
	$1994{ }^{\text {a }}$	4,202	2,532	60.3	1,020	1,232	198	82	1.095	1,438	43.2
	5 years old										
\cdots	1965	4,162	2,521	60.6	18	27	2,002	474	---	\cdots	\cdots
$\stackrel{1}{6}$	1970	3,814	2,643	69.3	45	45	2,168	384	326	2,317	12.3
ω	1975	3,509	2,854	81.3	59	57	2,358	381	625	2,228	21.9
	1980	3,069	2598	84.7	44	48	2,183	322	763	1,835	29.4
	1982	3,215	2,681	83.4	40	64	2,207	370	852	1,829	31.8
	1983	3,266	2,761	84.5	93	94	2,164	410	887	1,875	32.1
	1984	3,423	2,872	83.9	72	76	2,381	344	1,007	1,865	35.1
	1985	3,542	3,065	86.5	73	94	2,519	379	1,151	1,914	37.6
	1986	3,643	3,157	86.7	75	75	2576	432	1,220	1,937	38.6
	1987	3,706	3,192	86.1	124	152	2,538	378	1,163	2,028	36.4
	1988	3,676	3,184	86.6	72	170	2,590	351	1,155	2,028	36.3
	1989	3,633	3,139	86.4	129	132	2,499	378	1,255	1,883	40.0
	1990	3,792	3,367	88.8	157	196	2,604	411	1,414	1,953	42.0
	1991	3,796	3,267	86.0	100	143	2,642	382	1,354	1.913	41.4
	1992	3,832	3,339	87.1	135	127	2,688	390	1,408	1,931	42.2
	1993	3,857	3,306	85.7	116	136	2,651	403	1,451	1,856	43.9
	$1994{ }^{\text {a }}$	4,044	3,597	88.9	359	194	2,601	442	1,704	1,893	47.4

- Data not available.
a Data collected using revised procedures. May not be comparable with figures for earlier years.

Note: Data are based on sample surveys of the civilian noninstitutional population. Although cells with fewer than 75,000 children are subject to wide sampling variation, they are included in the table to permit various types of aggregations. Enrollment data for 5 -year-olds include only those students in preprimary programs. Because of rounding, details may not add to totals.

Source: U.S. Department of Education, 1995.

Table 5-6. Students That Attend Schools With Unsatisfactory Environmental Conditions ${ }^{\text {a }}$

Environmental Condition	Number of Schools	Number of Students Affected	Percent of Students Affected
Lighting	12,200	$6,682,000$	13
Heating	15,000	$7,888,000$	15
Ventilation	21,100	$11,559,000$	22
Indoor Air Quality	15,000	$8,353,000$	16
Acoustics for Noise Control 21,900	$11,044,000$	22	
Physical Security	18,900	$10,638,000$	21

2. Ranges for building feature condition were excellent, good, adequate, fair, poor, or replace. A building or building feature was considered in less-than-adequate condition if fair, poor, or replace was indicated.

- Percent calculated based on a total of 42-million students.

Source: GAO, 1996

Table 5-7. Students That Attend Schools With Less-Than-Adequate Physical Conditions ${ }^{\text {B }}$

Building Feature	Number of Schools	Estimate of Students Affected	Percent of Students Affected
Roofs	21,100	$11,916,000$	28
Framing, floors, foundations	13,900	$7,247,000$	17
Exterior walls, finishes, windows,	20,500	$11,524,000$	22
doors	18,600		20
Interior finishes, trims	23,100	$10,408,000$	24
Plumbing	28,100	$15,456,000$	30
Heating, ventilation air conditioning	20,500	$11,034,000$	21
Electrical power	19,500	$10,837,000$	21
Electrical lighting	14,500	$7,630,000$	15
Life safety codes			20

a Ranges for building feature condition were excellent, good, adequate, fair, poor, or replace. A building or building feature was considered in less-than-adequate condition if fair, poor, or replace was indicated.

B Percent calculated based on a total of 42-million students.

Source: GAO, 1996

Table 5-8. Estimated Percent of Schools and Number of Students Attending Schools With
Unsatisfactory Environmental Conditions by Community Type ${ }^{\text {a }}$

Environmental Condition	Central City	Urban Fringe/Large Town	Rural/Small Town
Lighting			
Percent of schools	20.4	17.3	11.4
Number of students (000s)	2,980 ${ }^{\circ}$	2,072 ${ }^{\text {b }}$	1,621 ${ }^{\text {a }}$
Heating			
Percent of schools	22.8	19.0	17.0
Number of students (000s)	3,185 ${ }^{\text {c }}$	2,249 ${ }^{\text {a }}$	2,440 ${ }^{\text {c }}$
Ventilation			
Percent of schools	31.5	28.2	23.6
Number of students (000s)	4,663	$3,502{ }^{\text {c }}$	3,380
Indoor Air Quality			
Percent of schools	22.5	19.0	17.2
Number of students (000s)	$3,441^{\text {a }}$	2,241 ${ }^{\text {8 }}$	2,482
Acoustics for Noise Control			
Percent of schools	31.6	26.3	26.8
Number of students (000s)	$4,250^{\text {c }}$	3,024 ${ }^{\text {a }}$	3,755
Energy Efficiency			
Percent of schools	46.1	40.3	38.6
Number of students (000s)	6;412	4,944	5,531
Physical' 'Security			
Percent of schools	26.5	22.8	23.5
Number of students (000s)	4,023 ${ }^{\text {c }}$	3,038 ${ }^{\text {a }}$	3,562 ${ }^{\text {c }}$
At Least One Unsatisfactory			
Environmental Condition			
Percent of schools	65.1	58.5	53.9
Number of students (000s)	9,400	7,322	8,007

- Sampling errors for estimates based on percent of schools are less than ± 4 percentage points. Sampling errors for estimates based on number of students are less than ± 11 percentage in most cases.
- A large central city (a central city of a Standard Metropolitan Statistical Area (SMSA)) with population greater than or equal to 400,000 or a population density greater than or equal to 6,000 per square mile) or a mid-size central city (a central city of an SMSA but not designated a large central city).

Urban fringe of a large or mid-size central city (a place within an SMSA of a large or mid-size central city and defined as urban by the Bureau of the Census) or a large town (a place not within an SMSA but with a population greater than or equal to 25,000 and defined as urban by the Bureau of the Census).

Rural area (a place with a population of less than 2,500 and defined as rural by the Bureau of the Census) or a small town (a place not within an SMSA, with a population of less than 25,000 , but greater than or equal to 2,500 , and defined as urban by the Bureau of the Census).

Source: GAO, 1996.

Table 5-9. Estimated Percent of Schools and Number of Students Attending Schools With Unsatisfactory Environmental Conditions by Geographic Region ${ }^{\text {a }}$

Environmental Condition	Northeast	Midwest	South	West
Lighting				
Percent of schools	13.8	12.8	13.7	23.8
Number of students (000s)		$1,456^{\text {b }}$	1,992 ${ }^{\text {c }}$	2,502 ${ }^{\text {c }}$
Heating				
Percent of schools	20.3	18.2	16.3	24.3
Number of students (000s)	1,327 ${ }^{\text {b }}$	1,878 ${ }^{\text {c }}$	2,360 ${ }^{\text {d }}$	2,322 ${ }^{\text {c }}$
Ventilation				
Percent of schools	31.4	27.8	20.9	32.3
Number of students (000s)	2,204 ${ }^{\text {c }}$	3,025	3,059	$3,270^{\text {c }}$
Indoor Air Quality				
Percent of schools	19.9	18.4	16.8	23.5
Number of students (000s)	$1.351^{\text {b }}$	2,057 ${ }^{\text {c }}$	2,486 ${ }^{\text {d }}$	2,458 ${ }^{\text {c }}$
Acoustics for Noise Control				
Percent of schools	29.6	29.3	24.4	30.9
Number of students (000s)	1,859 ${ }^{\text {c }}$	2.893	3,315	2,977 ${ }^{\text {c }}$
Energy Efficiency				
Percent of schools	37.0	38.7	40.3	49.5
Number of students (000s)	2,342 ${ }^{\text {c }}$	3,854	5,940	4,769
Physical Security 21.121 .2000				
Percent of schools	21.1	21.2	23.9	31.4
Number of students (000s)	1,519 ${ }^{\text {b }}$	2,216 ${ }^{\text {d }}$	3,524 ${ }^{\text {d }}$	3,378 ${ }^{\text {d }}$
At Least One Unsatisfactory				
Percent of schools	4,038	5,924	8,050	6,743
Number of students (000s)				

a Sampling errors for estimates based on percent of schools are less than ± 4 percentage points. Sampling errors for estimates based on number of students are less than ± 11 percentage in most cases.
${ }^{\text {日 }}$ Northeast Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, and Pennsylvania
Midwest Ohio, Indiana, Mlinois, Michigan, Wisconsin, Minnesota, Iowa, Missouri, North Dakota, South Dakota, Nebraska, and Kansas
Missouri North Dakota, South Dakota, Nebraska, and Kansas
South Delaware, Maryland, District of Columbia, Virginia, West Virginia, North Carolina, South Carolina, Georgia, Florida, Kentucky, Tennessee, Alabama, Mississippi, Arkansas, Louisiana, Oklahoma, and Texas
West Montana, Idaho, Wyoming, Colorado, New Mexico, Arizona, Utah, Nevada, Washington, Oregon, California, Alaska, and Hawaii

Source: GAO, 1996.

Table 5-10. Estimated Percent of Schools and Number of Students Attending Schools With Inadequate Building Features by Community Type ${ }^{\text {n }}$

Building Feature	Central City	Urban Fringe/Large Town	Rural/Small Town
Roofs			
Percent of schools	32.8	26.9	23.9
Number of students (000s)	4,907	$3,421^{\text {a }}$	3,575
Framing, Floors, and Foundations			
"*) Percent of schools	22.2	15.1	16.7
\because Number of students (000s)	3,207 ${ }^{\text {b }}$	1,868 ${ }^{\text {c }}$	2,160 ${ }^{\text {a }}$
Exterior Walls, Finishas,			
Windows, and Doors	34.3	24.8	22.4
Percent of schools	5,148	3,116 ${ }^{\text {a }}$	3,246 ${ }^{\text {a }}$
Number of students (000s)			
Interior Finishes			
Percent of schools	29.8	23.4	20.8
Number of students (000s)	4,604 ${ }^{\text {a }}$	2,959 ${ }^{\text {b }}$	2,833 ${ }^{\text {a }}$
Piumbing			
Percent of schools	34.2	27.0	28.6
Number of students (000s)	5,014	$3,274{ }^{\text {a }}$	3,952
HVAC			
Percent of schools	41.7	36.0	33.1
Number of students (0000 s)	6,022	4.516	4,900
Electrical Power			
Percent of schools	31.8	26.7	22.7
Number of students (000s)	4,626	$3,234{ }^{\text {a }}$	3,166
Electrical Lighting			
Percent of schools	29.4	26.3	21.7
Number of students (000s)	4,379 ${ }^{\circ}$	3,320 ${ }^{\text {a }}$	3,125 ${ }^{\text {b }}$
Life Safety Codes			
Percent of schools	21.9	20.0	16.4
Number of students (000s)	3,032 ${ }^{\text {b }}$	2,361 ${ }^{\text {b }}$	2,221 ${ }^{\text {a }}$
At Least One Inadequate Building			
Percent of schools	9.653	7,137	7,790
Number of students (000s)			

- Sampling errors for estimates based on percent of schools are less than ± 4 percentage points. Sampling errors for estimates based on number of students are less than ± 11 percentage in most cases.
- A iarge central city (a central city of a Standard Metropolitan Statistical Area (SMSA)) with population greater than oqual to 400,000 or a population density greater" than or equal to 6,000 per square mile) or a mid-size central city (a central city of an SMSA but not designated a large central city).

Urban fringe of a large or mid-size central city (a place within an SMSA of a large or mid-size central city and defined as urban by the Bureau of the Census) or a large town (a place not within an SMSA but with a population greater than or equal to $\mathbf{2 5 , 0 0 0}$ and defined as urban by the Bureau of the Census).

Rural area (a place with a population of less than 2,500 and defined as rural by the Bureau of the Census) or a small town (a piace not within an SMSA, with a population of less than 25,000 , but greater than or equal to 2,500 , and defined as urban by the Bureau of the Census).

Source: GAO, 1996.

Table 5-11. Estimated Percent of Schools and Number of Students Attending Schools With Inadequate Building Features by Geographic Region ${ }^{\text {a }}$

Building Feature	Northeast	Midwest	South	West
Roofs				
Percent of schools	28.3	23.3	26.2	33.8
Number of students (000s)	2,125 ${ }^{\text {a }}$	2,449 ${ }^{\text {b }}$	3,889	$3,453^{\text {b }}$
Framing, Floors, and Foundations				
Percent of schools	14.8	16.4	17.9	22.6
Number of students (000s)	1,038 ${ }^{\text {c }}$	1,531 ${ }^{\text {d }}$	2,352 ${ }^{\text {b }}$	2,327 ${ }^{\text {d }}$
interior Finishes				
Percent of schools	21.7	21.5	22.1	32.7
Number of students (000s)	1,584 ${ }^{\text {d }}$	2,153 ${ }^{\text {b }}$	3,126	3,544 ${ }^{\text {b }}$
Plumbing				
Percent of schools	25.5	30.3	27.5	36.4
Number of students (000s)	1,731 ${ }^{\text {d }}$	3,015	3,890	3,618 ${ }^{\text {b }}$
HVAC				
Percent of schools	35.6	38.0	32.7	40.7
Number of students (000s)	2,403 ${ }^{\text {b }}$	3,999	4,984	4,070
Electrical Power				
Percent of schools	22.2	28.9	22.9	31.8
Number of students (000s)	1,379 ${ }^{\text {d }}$	3,106	3,397	$3,151^{\text {b }}$
Electrical Lighting				
Percent of schools	18.6	24.6	22.9	35.0
Number of students (000s)	1,128 ${ }^{\text {d }}$	2,617 ${ }^{\text {b }}$	$3,393{ }^{\text {b }}$	3,699 ${ }^{\text {b }}$
Life Safety Codes				
Percent of schools	15.6	19.8	18.2	21.7
Number of students (000s)	$988{ }^{\text {c }}$	$2,012^{\circ}$	2,456 ${ }^{\text {b }}$	2,174 ${ }^{\text {d }}$
At Least One Unsatisfactory				
Percent of schools	58.6	56.9	53.0	64.0
Number of students (000s)	4,216	5,991	7.919	6,476

a Sampling errors for estimates based on percent of schools are less than ± 4 percentage points. Sampling errors for estimates based on number of students are less than ± 11 percentage in most cases.

B Northeast Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, and Pennsylvania
Midwest Ohio, Indiana, Illinois, Michigan, Wisconsin, Minnesota, lowa, Missouri, North Dakota, South Dakota, Nebraska, and Kansas
Missouri North Dakota, South Dakota, Nebraska, and Kansas
South Delaware, Maryland, District of Columbia, Virginia, West Virginia, North Carolina, South Carolina, Georgia, Florida, Kentucky, Tennessee, Alabama, Mississippi, Arkansas, Louisiana, Oklahoma, and Texas
West Montana, Idaho, Wyoming, Colorado, New Mexico, Arizona, Utah, Nevada, Washington, Oregon, California, Alaska, and Hawaii

Source: GAO, 1996.

Table 5-12. Percentage of Preschool Children Attending Center-Based Programs by Child and Family Characteristic: 1991

- Estimate suppressed because there were fewer than 30 respondents.
*) Number of children 3 to 6 years of age not enrolled in kindergarten or higher level programs.
Includes children enrolled in nursery school, prekindergarten, and Head Start.
- Calculated as of January 1, 1991.
* Highast level of schooling completed by either parent or guardian in the household or the only parent or guardian in the household.

Source: U.S. Department of Education, 1995.

Table 5-13. Hospital Utilization Rates: 1970 to 1993
[Represents estimates of inpatients discharged from noninstitutional, short-stay hospitals, exclusive of Federal hospitals. Excludes newborn infants. Based on sample data collected from the National Hospital Discharge Survey, a sample survey of hospital records of patients discharged in year shown; subject to sampling variability. For composition of regions, see text section 2.4.1

Selected Characteristic	Patients discharged $(1,000)$	Patients discharged per 1,000 persons ${ }^{\text {a }}$			Days of care per 1,000 persons			Average stay (days)		
		Total	Male	Femate	Total	Male	Femate	Total	Male	Female
Year										
1970	29,127	144	118	169	1,122	982	1,251	8.0	8.7	7.6
1980	37,832	168	139	194	1,217	1,068	1,356	7.3	7.7	7.0
1985	35,056	148	124	171	954	849	1,053	6.5	6.9	6.2
1986	34,256	143	121	164	913	817	1,003	6.4	6.8	6.1
1987	33,387	138	116	159	889	806	968	6.4	6.9	6.1
$1988{ }^{\text {b }}$	31,146	128	107	147	834	757	907	6.5	7.1	6.2
$1989{ }^{\text {b }}$	30,947	126	105	145	815	741	884	6.5	7.0	6.1
$1990{ }^{\text {b }}$	30,788	124	102	144	792	704	875	6.4	6.9	6.1
$1991{ }^{\text {b }}$	31,098	124	103	144	795	715	869	6.4	7.0	6.0
$1992{ }^{\text {b }}$	30,951	122	101	142	751	680	818	6.2	6.7	5.8
$1993{ }^{\text {b }}$	30,825	120	98	141	720	644	792	6.0	6.5	5.6
$1994{ }^{\text {b,c }}$	30,843	119	98	139	684	619	755	5.7	6.2	5.4
Age (in years)										
Under 1	710	181	206	156	1,155	1,265	1,041	6.4	6.1	6.7
1 to 4	654	41	46	37	163	169	157	3.9	3.7	4.3
5 to 14	777	21	22	20	108	110	105	5.1	5.1	5.2
15 to 24	3,088	87	37	138	309	204	416	3.5	5.5	3.0
25 to 34	4,655	113	53	171	446	313	575	4.0	5.9	3.4
35 to 44	3,457	85	72	99	431	424	438	5.1	5.9	4.4
45 to 64	6,283	127	132	123	785	831	742	6.2	6.3	6.1
65 to 74	4,890	262	284	245	1,927	2,033	1,844	7.4	7.2	7.5
75 and older	6,310	446	476	430	3,665	3,764	3,609	8.2	7.9	8.4
Region										
Northeast	6,965	136	119	152	952	876	1.023	7.0	7.4	6.7
Midwest	7,097	116	98	134	706	638	771	6.1	6.5	5.8
South	11,580	131	104	156	749	658	834	5.7	6.3	5.4
West	5,183	93	72	114	473	419	527	5.1	5.8	4.6

[^4]Source: U.S. Bureau of the Census, 1995; 1997.

Table 5-14. Community Hospitals ${ }^{\text {a }}$: 1993

Table 5-14. Community Hospitalsá: 1993 (continued)

Region, Division, and State	Number of Hospitals	$\begin{aligned} & \text { Beds } \\ & (1,000) \end{aligned}$	Patients Admitted $(1,000)$	Average Daily Census $(1,000)^{\text {b }}$	Occupancy Rate ${ }^{\text {c }}$	Personnel ${ }^{\text {d }}$	Outpatient Visits (mil.)
UNITED STATES	5,261	916.2	30,748.1	591.7	64.6	3,676.6	366.9
WEST	968	143.5	5,404.4	86.0	60.0	591.2	69.2
Mountain	350	42.1	1,430.7	24.4	57.9	166.1	18.3
Montana	52	4.2	97.5	2.7	64.2	11.9	1.2
Idaho	41	3.4	99.0	1.9	55.4	11.4	1.6
Wyoming	25	2.2	42.8	1.1	48.4	8.7	0.7
Colorado	72	10.3	340.0	6.0	58.6	42.2	4.7
New Mexico	37	4.1	151.1	2.2	54.0	18.5	2.5
Arizona	60	9.9	403.6	5.6	57.1	39.8	3.4
Utah	42	4.4	173.5	2.3	53.4	20.7	3.0
Nevada	21	3.7	123.0	2.5	67.8	12.8	1.2
Pacific	618	101.4	3,973.7	61.7	60.8	425.1	50.9
Washington	90	12.0	494.2	6.9	57.6	53.2	7.1
Oregon	63	7.4	293.2	4.1	54.7	33.1	4.6
California	429	77.7	3,052.2	47.6	61.2	320.5	36.7
Alaska	16	1.3	37.3	0.7	52.9	4.5	0.6
Hawaii	20	2.9	96.9	2.4	83.1	13.9	2.0

a Community hospitals are defined as non-Federal facilities providing short term (average stay length less than 30 days) general and special care, including obstetrics and gynecology; eye, ear, nose and throat; rehabilitation; etc., except psychiatric, tuberculosis, alcoholism, and chemical dependency. Excludes hospital units of institutions.
${ }^{\text {b }}$ Inpatients receiving treatment each day; excludes newborn.
c Ratio of average daily census to every 100 beds.
d Includes full-time equivalents of part-time personnel.
Source: U.S. Bureau of the Census, 1990.

Table 5-15. Persons Receiving Care in Nursing Homes: 1980 and 1990

Age (in years)		1980		1990		Percent change, 1980 to 1990	1990	
	\cdots	Number	Percent	Number	Percent		Male	Female
Total		1,426,371	100.0	1,772,032	100.0	24.2	493,609	1,278,423
Under 35		29,418	2.1	19,362	1.1	-34.2	11,880	7,482
35-44		20,764	1.5	27,303	1.5	31.5	16,178	11,125
45-54		42,857	3.0	40,903	2.3	-4.6	21,662	19,241
55-64								
65-74		238,962	16.8	244,676	13.8	2.4	97,873	146,803
75-79		219,571	15.4	245,972	13.9	12.0	75,542	170,430
80.84		286,679	20.1	361,330	20.4	26.0	88,362	272,968
85.89		276,251	19.4	378,612	21.4	37.1	135,268	603,517
90. 24		158,807	11.1	247,648	14.0	55.9	NA	NA
95 and older		52,688	3.7	112,525	6.4	113.6	NA	NA
Under 25		12,902	0.9	4,231	0.2	-67.2	2,399	1,832
Under 55		93,039	6.5	87,568	4.9	-5.9	49,720	37,848
Under 65		193,413	13.6	181,269	10.2	-6.3	96,564	84,705
65 years and oldcr		1,232,958	86.4	1,590763	89.8	29.0	397,045	1,193,718
85 years and older		487,746	34.2	738,785	41.7	51.5	135,268	603,517
Percentage of age groups								
Under 65		-	0.1	-	0.1	--	0.1	0.1
65-74		-	1.5	-	1.4	\cdots	1.2	1.4
75-84		-	6.6	--	6.1	--	4.4	7.1
85-89		-	17.6	--	18.6	--	16.1	27.7
90-94		-	29.1	--	33.1	-	NA	NA
95 sears and older		-	41.0	--	47.1	-	NA	NA
65 years and older		--	4.8	--	5.1	--	3.2	6.4
85 years and older		--	21.8	-	24.5	--	16.1	27.7
90 years and older		--	31.4	--	36.5	--	NA	N

- Not applicable, included in previous age group.

NA Nut available.

Nore In the 1990 decennial census, "nursing homes" include skilled-nursing facilities, intermediate-care facilitics, long-term care rooms in wards or buildings on the grounds of hospitals, or long-term care rooms/nursing wings in congregate housing facilities. Also included are nursing, convalescent, and rest homes, such as zoldiers', sailors', vetcrans', and fraternal or religious homes for the aged, with or without nursing care.

Source: U.S. Bureau of the Census, 1990.

Table 5-16. Nursing Home Population by Region, Division, and State: 1980 and 1990

Region, Divison, and State	Nursing Homes				
	1980	1990	$\begin{gathered} 1990 \text { Percent of } \\ \text { Population } \\ \hline \end{gathered}$	$\begin{gathered} \text { Change } 1980 \text { to } \\ 1990 \\ \hline \end{gathered}$	$\begin{gathered} \text { Percent change, } \\ 1980 \text { to } 1990 \\ \hline \end{gathered}$
UNITED STATES	1,426,371	1,772,032	0.7	345,661	24.2
NORTHEAST	327,319	399,329	0.8	72,010	22.0
New England	106,344	119,646	0.9	13,302	12.5
Maine	9,570	9,855	0.8	285	3.0
Vermont	4,354	4,809	0.9	455	10.5
New Hampshire	6,673	8,202	0.7	1,529	22.9
Massachusetts	49,728	55,662	0.9	5,934	11.9
Rhode Island	8,146	10,156	1.0	2,010	24.7
Connecticut	127,873	30,962	0.9	3,089	11.1
Middle Atlantic	220,975	279,683	0.7	58,708	26.6
New York	114,276	126,175	0.7	11,899	10.4
New Jersey	34,414	47,054	0.6	12,640	36.7
Pennsylvania	72,285	106,454	0.9	34,169	47.3
MIDWEST	472,568	544,650	0.9	72,082	15.3
East North Central	296,088	346,243	0.8	50,155	16.9
Ohio	71,479	93,769	0.9	22,290	31.2
Indiana	40,112	50,845	0.9	10,733	26.8
1llinois	80,410	93,662	0.8	13,252	16.5
Michigan	55,805	57,622	0.6	1,817	3.3
Wisconsin	48,282	50,345	1.0	2,063	4.3
West North Central	176,480	198,407	1.1	21,927	12.4
Minnesota	44,553	47,051	1.1	2,498	5.6
Iowa	36,217	36,455	1.3	238	0.7
Missouri	37,942	52,060	1.0	14,118	37.2
North Dakota	7,486	8,159	1.3	673	9.0
South Dakota	8,087	9,356	1.3	1,269	15.7
Nebraska	17,650	19,171	1.2	1,521	8.6
Kansas	24,545	26,155	1.1	1,610	6.6
SOUTH	396,554	558,382	0.7	161,828	40.8
South Atlantic	163,080	270,930	0.6	107,850	66.1
Delaware	2,771	4,596	0.7	1,825	65.9
Maryland	19,821	26,884	0.6	7,063	35.6
District of Columbia	2,866	7,008	1.2	4,142	144.5
Virginia	24,323	37,762	0.6	13,439	55.3
West Virginia	6,355	12,591	0.7	6,236	98.1
North Carolina	29,596	47,014	0.7	17,418	58.9
South Carolina	11,666	18,228	0.5	6,562	56.2
Georgia	29,376	36,549	0.6	7,173	24.4
Florida	36,306	80,298	0.6	43,992	121.2

Table 5-16. Nursing Home Population by Region, Division, and State: 1980 and 1990 (continued)

Region, Divison, and State	Nursing Homes				
	1980	1990	1990 Percent of Population	$\begin{gathered} \text { Change } 1980 \text { to } \\ 1990 \end{gathered}$	$\begin{gathered} \text { Percent change, } \\ 1980 \text { to } 1990 \\ \hline \end{gathered}$
East South Central	77,060	102,900	0.7	25,840	33.5
Kentucky	23,591	27,874	0.8	4,283	18.2
Tennessee	22,014	35,192	0.7	13,178	59.9
Alabama	18,702	24,031	0.6	5,329	28.5
Mississippi	12,753	15,803	0.6	3,050	23.9
West South Central	156,414	184,552	0.7	28,138	18.0
Arkansas	18,631	21,809	0.9	3,178	17.1
Louisiana	22,776	32,072	0.8	9,296	40.8
Oklahoma	25,732	29,666	0.9	3,934	15.3
Texas	89,275	101,005	0.6	11,730	13.1
WEST	229,930	269,671	0.5	39,741	17.3
Mountain	47,139	65,842	0.5	18,703	39.7
\#.] Montana	5,479	7,764	1.0	22,85	41.7
Idaho	5,084	6,318	0.6	1,234	24.3
- Wyoming	2,198	2,679	0.6	481	21.9
Colorado	16,109	18,506	0.6	2,397	14.9
". New Mexico	2,585	6,276	0.4	3,691	142.8
Arizona	8,424	14,472	0.4	6,048	71.8
- Utah	4,921	6,222	0.4	1,301	26.4
*. Nevada	2,339	3,605	0.3	1,266	54.1
\cdots Pacific	182,791	230,829	0.5	21,038	11.5
Washington	27,970	32,840	0.7	4,870	17.4
Oregon	16,052	18,200	0.6	2,148	13.4
\cdots California	134,756	148,362	0.5	13,606	10.1
Alaska	854	1,202	0.2	348	40.7
Hawaii	3,159	3,225	0.3	66	2.1

Source: U.S. Bureau of the Census, 1990.

6. OTHER ACTIVITIES INCLUDING SUBSISTENCE, FISHING, RECREATION, AND HOBBIES

Participation in certain types of activities can increase an individual's risk of exposure to environmental contaminants. Examples of these activities are subsistence fishing, hunting, gardening, recreation, or hobbies. Persons who fish and/or hunt for subsistence, cultural reasons, or recreation and then consume the animals caught could potentially be exposed to contaminants originally ingested by the animals. The habitat in which the animals lived is also important to consider when assessing contaminant exposure. Bottom-feeding fish (e.g., catfish) have greater exposure and higher body burdens of those contaminants found in sediments. Other common recreational activities, such as gardening, home maintenance/repair, hobbies, and crafts, also can result in increased exposure to environmental contaminants. Gardeners may have greater exposure to pesticides and other chemicals due to dermal contact with soil and treated plants. Depending on the task involved, persons active in home maintenance/repair, hobbies, and crafts can be exposed to many chemicals, including paints, varnishes, solvents, and adhesives. This section presents estimates of the general U.S. population participating in various recreational activities that may increase exposure to environmental contaminants.

It should be noted that participation in an activity in which food items can be obtained, such as hunting, fishing, or gardening, does not necessarily mean that the individual participating is consuming the food items. Intake rates are presented in the Exposure Factors Handbook for the following food groups: fruits and vegetables (Section 9); fish (Section 10); meat and dairy products (Section 11); grain products (Section 12); home produced foods (Section 13); and breast milk (Section 14).

6.1. FISHING AND HUNTING

The National Survey of Fishing, Hunting, and Wildlife-Associated Recreation (U.S. DOI and U.S. DOC, 1993) was designed to provide estimates of the numbers of U.S. residents who participated in recreational hunting and fishing and other forms of wildlife-related activities known as nonconsumptive use in all 50 States and the District of Columbia. The survey was
conducted in two phases by the U.S. Bureau of the Census for the Fish and Wildlife Service. In the first phase, a nationwide sample of 129,500 households was interviewed over the telephone between January and February 1991. Information on household members 6 years old and older who had fished, hunted, or engaged in a nonconsumptive wildlife-related activity in 1990 and who planned to engage in these activities in 1991 were obtained from the interviews. A national response rate of 95.2% was achieved from eligible households. The second phase of the survey consisted of three detailed interviews conducted quarterly from May 1991 to March 1992 with subsamples of anglers, hunters, and nonconsumptive use participants identified in the first phase. Respondents in this phase of the survey were 16 years old and older. The survey was designed to provide State-level fishing, hunting, and nonconsumptive activities for 23,179 anglers and hunters and 22,723 nonconsumptive use participants. Sportsmen were defined in the survey as those who fish and hunt, fish only, or hunt only. Anglers were defined as licensed or unlicensed sportsmen who fish only or fish and hunt. Hunters were defined as licensed and unlicensed sportsmen who hunt only or hunt and fish. Assessors should be aware that the possibility of undersampling exists with telephone surveys (e.g., households without a telephone will not be sampled). The survey revealed that 108.7 -million U.S. residents, 16 years old and older participated in some form of wildlife-related recreation activity in 1991. During that year, 35.6million people in the United States fished, 14.1 million hunted, and 76.1 -million had at least one type of nonconsumptive recreation activity involving wildlife as the primary purpose.

Results of the survey for persons 16 years and older are summarized in Tables 6-1 through 6-13. Table 6-1 shows the population estimates of anglers and hunters who participated in the survey, grouped by fishing and hunting activity and days of participation. Table 6-2 presents the angler population, grouped by fishing waterbody and days of fishing. Tables 6-3, 64, and 6-5 present freshwater angler, Great Lakes angler, and saltwater angler populations, grouped by types of fish caught and number of days fishing. Table $6-6$ presents population estimates for hunters, grouped by type of hunting (i.e., big game, small game, migratory bird, other animals) and by State of residence. Tables 6-7, 6-8, 6-9, and 6-10 present population estimates for hunters of big game, small game, migratory birds, and other animals, respectively, grouped by type of game. Table 6-11 presents demographic characteristics of anglers and
hunters, grouped by total population, sportsmen, those who fished only, those who hunted only, and those who fished and hunted. Table 6-12 presents demographic characteristics of anglers 16 years and older by type of fishing. Table 6-13 presents demographic characteristics of hunters 16 years old and older by type of hunting. Table 6-14 presents demographic characteristics (i.e., age, sex, race, household income, and geographic location) of anglers and hunters 6 to 15 years old, grouped by total population, sportsmen, and those who fished only, hunted only, and fished and hunted in 1990. Table 6-15 presents population estimates of anglers and hunters ages 6 to 15 years old by sportsman's State of residence in 1990. Readers are reminded that the data in these tables present participation rates, not actual consumption rates. Consumption rates can be found in the Exposure Factors Handbook for the following: fish (Section 10) and meats (Section 11).

It is possible to further estimate populations involved in these activities by combining demographic census data from Section 2 in this document with the information provided in the handbook tables. As an example, Table 6-12 (U.S. DOI and U.S. DOC, 1993) does not include the number of freshwater anglers residing in New England who are black; however, this can be estimated from the data presented. Table 6-12 indicates that $1,188,000$ freshwater anglers are in the New England Census geographic division. If that number is multiplied by the percentage of the population in that area who are black (5 percent) the resulting value of 59,400 provides an estimate of black freshwater anglers in New England.

6.2. HOME GARDENING

Ingestion of contaminated food is a potential pathway of human exposure to toxic chemicals. Local site contamination may lead consumers of home-produced food products to be at greater exposure risk. In addition, incomplete cleaning/preparation of produce may leave a residue of pesticides and other chemicals on the fruits and vegetables grown and prepared in private homes.

According to the Home and Garden Survey conducted by the National Gardening Association (1987), a total of 34-million (38\%) U.S. households participated in vegetable gardening in 1986. Table 6-16 contains demographic data on vegetable gardening in 1986 by region/section, community size, and household size. Table 6-17 presents characteristics of
households that had a vegetable garden. Table 6-18 contains information on the types of vegêtables grown by home gardeners in 1986. Tomatoes, peppers, onions, cucumbers, lettuce, beans, carrots, and corn are among the vegetables grown by the largest percentage of gardeners. As previously stated, readers are reminded that the data in these tables present participation rates, and not actual consumption rates. Consumption rates for home-produced foods can be found in the Exposure Factors Handbook, Section 13.

The U.S. Bureau of the Census (1995) collects data on various recreational and leisure time activities based on sample surveys from several sources. Statistics on U.S. household participation in lawn and garden activities from 1989 to 1993 are presented in Table 6-19. In $1990,80 \%$ of U.S. households engaged in lawn and garden activities, compared with 71% in 1993. Table 6-20 presents the percentage of the U.S. population who participated in gardening in 1992 grouped by gender, race, age, and education. As shown in Table 6-20, 55\% of the population participated in gardening in 1992. This represents an increase of 17% over the 1986 figures previously referenced.

6.3. DO-IT-YOURSELFERS

The Do-It-Yourselfers Research Institute (1983) conducted a study of the home improvement and repair do-it-yourselfers (DIY) market in September 1982. The study design provided a comprehensive profile of DIY consumers with particular emphasis on their shopping orientation, buying habits, and lifestyles. Telephone interviews were conducted with 2,000 consumers who were randomly selected throughout the United States. The survey determined that for $1982,73.5 \%$ of all U.S. households could be considered "do-it-yourselfers." DIY households were defined as households with the household members involved with home improvement and repair activities. The population data obtained were based on estimated 1982 census figures. Table 6-21 presents the population estimates of DIY home improvement and repair projects undertaken between September 1981 and September 1982.

The U.S. Bureau of the Census (1995) presents the percentage of the U.S. population who participated in home improvement/repair in 1992. Table 6-22, which presents the percentage of the population grouped by gender, age, race, and education, indicates that 48% of the population
participated in home improvement/repair during 1992. This represents a decrease of 25.5% over the 1982 figures previously referenced.

6.4. HOBBYISTS

Individuals participating in certain hobbies and crafts (e.g., model building) may have an increased risk of exposure to certain chemicals in the products they use. Typically, these products, which include solvents, adhesives, paints, and varnishes, may be used in greater volumes and frequencies by specific populations resulting in higher levels of exposure to chemicals found in the products (U.S. EPA, 1985). Table 6-23 lists the hobbies that could potentially increase an individual's exposure to chemicals and the population estimates associated with these hobbies.

6.5. EXERCISE/SPORT ACTIVITIES

Participation in exercise and sporting activities can influence one's exposure to environmental contaminants. People engaging in outdoor exercise may experience greater than expected exposures to air pollutants due to increased respiration rates. These athletes are also likely to have increased water consumption rates, thereby increasing exposure to drinking water contaminants. Also, participation in water sports such as swimming may lead to increased exposure to trihalomethanes (THMs) from the chlorination of swimming pools.

The U.S. Bureau of the Census (1995) gathered data from the National Sporting Goods Association on participation of the U.S. population in various recreational sports activities. Table 6-24 presents the total numbers of the U.S. population who participated in selected sports activities in 1993 grouped by gender, age, and household income. Figure 6-1 shows the percent of population 7 years old and older who participated in the 10 most popular sports activities grouped by gender in 1993. Figure 6-2 shows the percentage of the population 18 years and older participating in various activities in 1992 including exercise, playing sports, various outdoor activities, home improvement, and gardening.

6.6. REFERENCES

Do-It-Yourselfers Research Institute. (1983) The DIY consumer outlook--a psychographic segmentation. Indianapolis, IN: Do-It-Yourselfers Research Institute.

National Gardening Association. (1987) National gardening survey: 1986-1987. Burlington, VT: The National Gardening Association.

Simmons Market Research Bureau, Inc. (SMRB). (1983) 1983 Study of media and markets. Simmons Market Research Bureau, Inc. 420 Lexington Ave. New York, NY (212) 916-8900.

Simmons Market Research Bureau, Inc. (SMRB). (1992) 1992 Study of media and markets. Simmons Market Research Bureau, Inc. 420 Lexington Ave. New York, NY (212) 916-8900.
U.S. Bureau of the Census. (1995) Statistical abstract of the United States: 115 th ed. U.S. Department of Commerce, U.S. Bureau of the Census, Washington, DC.
U.S. Department of the Interior (U.S. DOI) and U.S. Department of Commerce (U.S. DOC). (1993). 1991 National survey of fishing, hunting, and wildlife-associated recreation. U.S. Department of the Interior, Fish and Wildlife Service, and U.S. Department of Commerce, Bureau of the Census, Washington, DC.
U.S. Environmental Protection Agency. (1985) Hobbyist exposure. Draft Report. Office of Toxic Substances, U.S. Environmental Protection Agency, Washington, DC.

Writers Market. (1985) Writers digest: boats. Cincinnati, OH pp. 1044.

Table 6-1. Anglers, Hunters, Days of Participation, and Trips, by Type of Fishing and Hunting: 1991 [Population 16 years old and older. Numbers in thousands.]

Type of Game	Participants		Days of Participation		Trips	
	Number	Percent	Number	Percent	Number	Percent
Total Sportsmen	39,979	100	747,135	100	668,327	100
Fishing						
Total, all fishing	35,578	100	511,329	100	453,951	100
Total, all freshwater	31,041	87	439,536	86	389,843	86
Freshwater, except Great	30,186	85	430,922	84	369,344	81
Lakes						
Great Lakes	2,552	7	25,335	5	20,499	5
Saltwater	8,885	25	74,696	15	64,108	14
Hunting						
Total, all hunting	14,063	100	235,806	100	214,375	100
Big game	10,745	76	128,411	54	104,224	49
Small game	7,642	54	77,132	33	72,487	34
Migratory birds	3,009	21	22,235	9	19,537	9
Other animals	1,411	10	19,340	8	18,127	8

Note: Detail does not add to total because of multiple responses.
These data represent activity patterns, which do not represent consumption rates. Consumption rates can be found in Exposure Factors Handbook, Sections 10 and 11.

Source: U.S. DOI and U.S. DOC, 1993.

Table 6-2. Anglers, Trips, and Days of Fishing, by Type of Fishing: 1991 [Population 16 years old and older. Numbers in thousands.]

Note: Detail for participants does not add to total because of multiple responses. Percent shown for anglers, trips and days of fishing are based on the respective "Total in U.S." rows. $X=$ Not applicable. These data represent activity patterns, which do not represent consumption rates. Consumption rates can be found in Exposure Factors Handbook, Section 10.

Source: U.S. DOI and U.S. DOC, 1993.

Table 6-3. Freshwater Anglers and Days of Fishing, by Type of Fish: 1991 [Population 16 years old and older. Numbers in thousands. Excludes Great Lakes fishing.]

Type of Fish	Anglers		Days of Fishing		Average Days per Angler
	Number	Percent	Number	Percent	
Total, all types of fish	30,186	100	430,922	100	14
Black bass (largemouth, smallmouth, etc.)	12,857	43	158,226	37	12
White bass, striped bass and striped bass hybrids	6,408	21	63,181	315	10
Panfish	10,149	34	102,184	24	10
Crappie	8,327	28	90,940	21	11
Catfish and bullheads	9,195	30	96,451	22	10
Walleye and sauger	3,278	11	37,302	9	11
Northern pike, pickerel, muskie and muskie hybrids	2,693	9	29,327	7	11
Trout	9,107	30	81,366	19	9
Salmon	989	3	8,548	2	9
Steelhead	493	2	4,025	1	8
Anything ${ }^{\text {a }}$	4,984	17	37,744	9	8
Other freshwater fish	2,550	8	21,452	5	8

Notes: Detail does not add to total because of multiple responses.
${ }^{\text {a }}$ Respondent identified "Anything". from a list of categories of fish.
These data represent activity patterns, which do not represent consumption rates. Consumption rates for some specie can be found in Exposure Factors Handbook, Section 10.

Source: U.S. DOI and U.S. DOC, 1993.

Table 6-4. Great Lakes Anglers and Days of Fishing, by Type of Fish: 1991 [Population 16 years old and older. Numbers in thousands.]

Type of Fish	Anglers		Days of Fishing		Average Days per Angler
	Number	Percent	Number	Percent	
Total, all types of fish	2,552	100	25,335	100	10
Black bass llargemouth, smallmouth, etc.)	526	21	4,369	17	8
Wallaye and sauger	1,028	40	9,489	37	9
Northern pike, pickerel, muskie, muskie hybrids	213	8	2,318	9	11
Perch	983	39	8,170	32	8
Salmon	721	28	4,622	18	6
Steelhead	289	11	2,444	10	8
Lake trout	482	19	2,980	12	6
Other 'trout	276	$11^{\prime \prime}$	2,280	9	8
Anything ${ }^{\text {a }}$	371	15	2,814	11	8
Other Great Lakes fish	314	12	2,086	8	7

Notos: Detall does not add to total because of multiple responses.

- Respondent identified "Anything" from a list of categories of fish. These data represent activity patterns, which do not represent consumption rates. Consumption rates for some specie can be found in Exposure Factors Handbook, Section 10.

Source: U.S. DOI and U.S. DOC, 1993.

Table 6-5. Saltwater Anglers and Days of Fishing, by Type of Fish: 1991 [Population 16 years old and older. Numbers in thousands.]

Type of Fish	Anglers		Days of Fishing		Average Days per Anglers
	Number	Percent	Number	Percent	
Total, all types of fish	8,885	100	74,696	100	8
Salmon	783	9	4,590	6	6
Striped bass	1,117	13	7,639	10	7
Flatfish, flounder, halibut	2,302	26	16,170	22	7
Bluefish	1,915	22	12,147	16	6
Lingcod, rockcod	683	8	3,220	4	5
Seatrout	1,314	15	12,618	17	10
Sturgeon	$75^{\text {a }}$	$1^{\text {a }}$	$531{ }^{\text {a }}$	$1^{\text {a }}$	$7^{\text {a }}$
Mackerel	881	10	5,488	7	6
Billfish (marlin, swordfish, sailfish, spearfish)	322	4	2,052	3	6
Anything ${ }^{\text {b }}$	2,831	32	17,861	24	6
Other saltwater fish	4,279	48	32,368	43	8

Notes: Detail does not add to total because of multiple responses.
${ }^{a}$ Estimate based on small sample size.
b Respondent identified "Anything" from a list of categories of fish.
These data represent activity patterns, which do not represent consumption rates. Consumption rates for some specie can be found in Exposure Factors Handbook, Section 10.

Source: U.S. DOI and U.S. DOC, 1993.

Table 6-6. Hunters, Trips, and Days of Hunting, by Type of Hunting: 1991 [Population 16 years old and older. Numbers in thousands.]

Hunters, Trips, and Days of Hunting	Total, All Hunting		Type of Hunting									
			Big Game									
			Small Game	Migratory Bird		Other Animals						
	Number	Per-			Number	Per-	Number	Per-	Number	Per-	Number	Per-
		cent										
Hunters												
Totai in U.S.	14,063	100	10,745	100	7,642	100	3,009	100	1,411	100		
In state of residence	13,370	95	10,167	95	7,215	94	2,861	95	1,321	94		
In other states	1,826	13	1,241	12	746	10	256	9	131	9		
Trips												
Total in U.S.	214,375	100	104,224	100	72,487	100	19,537	100	18,127	100		
1 Day trips	191,466	89	88,504	85	67,728	93	18,006	92	17,228	95		
$2{ }^{2}$ Day trips	22,909	11	15,720	15	4,759	7	1,531	8	899	5		
Days of hurting												
Total days in U.S.	235,806	100	128,411	100	77,132	100	22,235	100	19,340	100		
Days in state of residence	220,125	93	118,338	92	72,824	94	20,908	94	18,102	94		
Days in other states	15,681	7	10,072	8	4,308	6	1,327	6	1,237	6		
Avorage daye per hunter	17	x	12	X	10	X	7	X	14	x		

Notes: Detail does not add to total because of multiple responses. Percents shown for hunters, trips, and days of hunting are based on the representative "Total in U.S." rows. (X) Not applicable.
These data represent activity patterns, which do not represent consumption rates. Čonsumption rates can be found in Exposure Factors Handbook, Sections 10 and 11.

Source: U.S. DOI and U.S. DOC, 1993.

11 ! !
Table 6-7. Big Game Hunters and Days of Hunting, by Type of Game: 1991 [Population 16 years old and older. Numbers in thousands.]

	Hunters		Days of Hunting		Average Days
Type of Game	Number	Percent	Number	Percent	per Hunter
Total, all big game	10,745	100	128,411	100	12
Deer	10,277	96	112,853	88	11
Elk	682	6	5,048	4	7
Bear	368	3	2,882	2	8
Wild turkey	1,720	16	13,483	10	8
Other	404	4	3,235	3	8

Notes: Detail does not add to total because of multiple responses.
These data represent activity patterns, which do not represent consumption rates. Consumption rates for some game can be found in Exposure Factors Handbook, Section 11.

Source: U.S. DOI and U.S. DOC, 1993.

Table 6-8. Small Game Hunters and Days of Hunting, by Type of Game: 1991

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Notos: Dataß does not add to total because of multiple responses.
These data reprosent activity patterns, which do not represent consumption rates. Consumption rates for some game can be found in Exposura Factors Handbook, Section 11.

Source: U.S. DOI and U.S. DOC, 1993.

Table 6-9. Migratory Bird Hunters and Days of Hunting, by Type of Game: 1991 [Population 16 years old and older. Numbers in thousands.]

Type of Game	Hunters		Days of Hunting		Average Days
	Number	Percent	Number	Percent	per Hunter
Total, all migratory birds	3,009	100	22,235	100	7
Geese	882	29	6,584	30	7
Ducks	1,164	39	8,800	40	8
Doves	1,851	61	9,480	43	5
Other	259	9	1,667	7	6

Notes: Detail does not add to total because of multiple responses.
These data represent activity patterns, which do not represent consumption rates. Consumption rates for some game can be found in Exposure Factors Handbook, Section 11.

Source: U.S. DOI and U.S. DOC, 1993.

Table 6-10. Hunters of Other Animals and Days of Hunting, by Type of Game: 1991 [Population "7" 6 years old and older. Numbers in thousands.]

Type of Game	Hunters		Days of Hunting		Average Days per Hunter
	Number	Percent	Number	Percent	
Total, all other animals	1,411	100	19,340	100	14
Groundhog (woodchuck)	471	33	4,851	25	10
Raccoon	408	29	7,196	37	18
Fox	204	14	2,157	11	11
Coyote	427	30	4,482	23	10
Other	312	22	3,238	17	10

Notas: Detail does not add to total because of multiple responses.
These data represent activity patterns, which do not represent consumption rates. Consumption rates for some game can be found in Exposure Factors Handbook, Section 11.

Source: U.S. DOI and U.S. DOC, 1993.

Table 6-11. Demographic Characteristics of Anglers and Hunters
[Population 16 years old and older. Numbers in thousands.]

Characteristic	U.S. Population		Sportsmen			Fished Only			Hunted Only			Fished and Hunted		
	Number	Percent	Number	Percent who participated	Percent									
Total persons	189,964	100	39,979	21	100	25,916	14	100	4,402	2	100	9,662	5	100
Population density of residence														
Urban	138,191	73	24,378	18	61	17.747	13	68	2,010	1	46	4,621	3	48
Rural	51,773	27	15,602	30	39	8,169	16	32	2,392	5	54	5,040	10	52
Population size of residence					.									
MSA *	147,339	78	27,372	19	68	19,460	13	75	2,451	2	56	5,417	4	56
1,000,000 or more	81,346	43	12,515	15	31	9,444	12	36	988	1	22	2,084	3	22
250,000-999,999	45,601	24	9,667	21	24	6,755	15	26	863	2	20	2,048	4	21
50,000-249,999	20,392	11	5.146	25	13	3,261	16	13	601	3	14	1,285	6	13
Outside MSA	42,625	22	12,652	30	32	6,456	15	25	1,951	5	44	4,245	10	44
Census geographic division **														
New England	10,180	5	1,658	16	4	1,214	12	5	114	1	3	330	3	3
Middle Atlantic	29.216	15	4,508	15	11	2,763	9	11	638	2	14	1,108	4	11
East North Central	32,188	17	7.202	22	18	4,412	14	17	937	3	21	1,852	6	19
West North Central	13,504	7	4,143	31	10	2,434	18	9	496	4	11	1.213	9	13
South Atlantic	33,682	18	6,996	21	17	4.913	15	19	555	2	13	1.528	5	16
East South Central	11,667	6	2,984	26	7	1,705	15	7	349	3	8	930	8	10
West South Central	19,926	10	5,125	26	13	3,281	16	13	533	3	12	1,311	7	14
Mountain	10,092	5	2,488	25	6	1.419	14	5	409	4	9	660	7	7
Pacific	29,508	16	4,875	17	12	3,774	13	15	370	1	8	730	2	8
Age														
Total	189,964	100	39,979	21	100	25,916	14	100	4,402	2	100	9,662	5	100
16 to 17 yrs	6,530	3	1,669	26	4	1,007	15	4	188	3	4	474	7	5
18 to 24 yrs	23,023	12	5,246	23	13	3.229	14	12	652	3	15	1,364	6	14
25 to 34 yrs	42,931	23	11,046	26	28	7,115	17	27	1,117	3	25	2,813	7	29
35 to 44 yrs	38,341	20	9,553	25	24	6,185	16	24	969	3	22	2,399	6	25
45 to 54 yrs	27,021	14	5,658	21	14	3,585	13	14	764	3	17	1,309	5	14
55 to 64 yrs	21,085	11	3,682	17	9	2,505	12	10	411	2	9	765	4	8
65 yrs and older	31,032	16	3,127	10	8	2,290	7	9	300	1	7	537	2	6
Sex														
Male, total	90,369	48	29,705	33	74	16,710	18	64	3,995	4	81	9,000	10	93
16 to 17 yrs	3.385	2	1,348	40	3	715	21	3	175	5	4	457	13	5
18 to 24 yrs	11.365	6	3,865	34	10	2,023	18	8	587	5	13	1,255	11	13
25 to 34 yrs	20,791	11	8,023	39	20	4,413	21	17	990	5	22	2,620	13	24
35 to 44 yrs	18,590	10	7,050	38	18	3,938	21	15	877	5	20	2,234	12	23
45 to 54 yrs	13.289	7	4,222	32	11	2,297	17	9	708	5	16	1.216	9	13
55 to 64 yrs	9,933	5	2,834	29	7	1,732	17	7	382	4	9	720	7	7
65 yrs and older	13,017	7	2,365	18	6	1.592	12	6	274	2	6	498	4	5
Female, total	99,595	52	10,274	10	26	9,206	9	36	407	(Z)	9	661	1	7

(continued on next page)

Table 6-11. Demographic Characteristics of Anglers and Hunters (contifued) [Population 16 years old and older. Numbers in thousands.]

 columns show the percent of each column's participants who are described by the row heading (the percent of those who fished only, who lived in urban areas, etc.).

* Metropolitan Statistical Area
** States within each U.S. Census geographic region are listed in Section 2.4 of this document.
* * Estimate based on a small sample size.
--- Sample size too small to report data reliably.
(Z) Less than 0.5 percent.

These data represent activity patterns, which do not represent consumption rates. Consumption rates can be found in Exposure Factors Handbook, Section XX.
Source: U.S. DOI and U.S. DOC, 1993.

Table 6-12. Demographic Characteristics of Anglers by Type of Fishing
[Population 16 yoers old and oldor. Numbers in thousands.]

Table 6-12. Demographic Characteristics of Anglers by Type of Fishing (continued)
$=$
[Population 16 yaars old and older. Numbars in thousands.]

Note Percent who particpated shows the percent of each row's population who participated in the activity hamed by the column (the percent of those living in urban areas who fished in the Great Lakes, etc.). Percent columns show the percent of each column's participants who are described by the cow heading (the percent of those who fished in the Great Lakes who lived in urban areas. etc.). Estmate based on a small sample size.
Sample size too small to report data reliably.
(2) Less than 5 percent.

Source: U.S. DOI and U.S. DOC, 1993.

Table 6-13. Demographic Characteristics of Hunters by Type of Hunting
[Population 16 yoars old and older. Numbers in thousands.]

Table 6-13. Demographic Characteristics of Anglers and Hunters (continued)
[Population 16 years old and older. Numbers in thousands.]

Note: Percent who participated shows the percent of each row's population who participated in the activity named by the column (the percent of those living in urban areas who hunted big game, etc.). Percent columns show the percent of each column's participants who are described by the "'ow heading (the percent of big game hunters who lived in urban areas, etc.).

(Z) Less than .5 percent.

- Eslimate based on a small sample size

Source: U.S. DOI and U.S. DOC, 1993.

Table 6-14. Demographic Characteristics of Anglers and Hunters 6 to 15 Years Old: 1990
[Numbers in thousands.]

Table 6-14. Demographic Characteristics of Anglers and Hunters 6 to 15 Years Old: 1990 (continued) .-m".

Note Percont who participated shows the percent of each row's population who participated in the activity named by the column (the percent of those II IIIIII" tiving in uxban areas who fished only, etc.). Percent columns show the percent of each column's participants who are described by the row halding (the percent of those who fished only who tived in urban areas, etc.). Data reported are from screening interviews in which one adult household member responded for all household members 6 to 15 years old. The sereening interview required the respondent to recall 12 months worth of activity.

- Estmate based on a small sample size.
wo. Sample sze too small to report data reliably
(2) Less than 5 percent.

Source: U.S. DOI and U.S. DOC, 1993.

Table 6-15. Demographic Estimates for Anglers and Hunters 6 to 15 Years Oid by State of Residence in 1990 [Numbers in thousende.]

Sportsman's state of residence	Popula-tion	Fished or hunted		Fished only		Hunted only		Fished and hunted	
		Number	Percent of population	Number	Percent population	Number	Percent of population	Number	Percent of population
U.S., total	35.530	14.011	39	12.281	35	221	1	1.509	4
Alabama	621	274	44	220	35				
Alaska.	85	61	72	52	61	\ldots	\ldots	8	10
Arizona	543	188	35	171	31	\cdots	\ldots	-13	$\cdot 2$
Arkansas.	369	185	50	125	34	\ldots	.	58	16
California.	4,274	1,252	29	1.211	28	\cdots	\ldots	-37	$\cdot 1$
Colorado..	475	252	53	227	48	\ldots	\ldots	-20	$\bullet 4$
Connecticut	409	147	36	140	34	...	\ldots	$\cdot 6$	$\bullet 2$
Delaware. .	95	35	37	33	34	\cdots	\ldots	$\cdot 2$	$\cdot 2$
Florida.	1,591	595	37	556	35	\ldots	\ldots	-29	-2
Georgia	1,013	335	33	288	28	39	4
Hawaii .	157	50	32	48	30			-2	\cdots
Idaho.	181	105	58	84	47	\cdots	\cdots	16	9
Illinois	1,619	620	38	575	36	5	...	42	3
Indiana	824	390	47	328	40	\cdots	\cdots	60	7
lowa...	411	225	55	186	45	-	\cdots	35	8
Kansas ..	377	195	52	162	43	.		28	7
Kentucky.	545	264	48	207	38	$\stackrel{.}{8}$	\because	48	9
Louisiana	704	266	38	202	29	$\cdot 14$	$\cdot 2$	50	7
Maine....	171	90	53	77	45	-	...	12	7.
Maryland.	630	169	27	154	24	-11	$\cdot 2$
Massachusetts. .	706	249	35	238	34	..		$\bullet 11$	'2
Michigan....	1.354	587	43	514	38	\cdots	59	4
Minnesota.	644	394	61	334	52	\cdots	...	54	8
Mississippi	433	177	41	123	28	\cdots	\cdots	46	11
Missouri..	725	388	54	325	45	\cdots		58	8
Montana Nebraska	125	73	59	54	43	$\bullet 3$	$\bullet 3$	16	15
Nebraska	242	140	58	119	49	18	8
Nevada	162	53	33	47	29	$\cdot 4$	* 3
New Jersey	158	$\begin{array}{r}73 \\ 295 \\ \hline\end{array}$	47 30	-69	44 29	\cdots	...	* 3	-2
New Mexico..	257	92	36	77	30	$\cdot 4$	-2	$\bullet 11$	4
New York....	2.341	649	28	624	27	..,		$\cdot 23$	$\cdot 1$
North Carolina	903	330	37	273	30	\cdots		47	5
North Dakota.	101	64	63	51	50	\because	\because	11	11
Ohio.......	1.577	632	40	570	36	.	\ldots	58	4
Oklahoma.	477	231	48	206	43	24	5
Oregon	406	190	47	169	42	\ldots	\ldots	-15	-4
Pennsylvania ...	1.572	628	40	554	35	59	4
South Carolina.	125 536	44	35	-43	34		
South Dakota.						\cdots	\cdots		5
Tennessee...	111	63	57	53	48	*3	*3	$\bullet 7$	-6
Texas......	$\begin{array}{r}708 \\ 2.708 \\ \hline\end{array}$	279 1.008	39	229	32	46	6
Utah.	2.708 376	1.008	37	852	31	\cdots	..	144	5
Vermont	$\begin{array}{r} \\ 79 \\ \hline\end{array}$	165 47	44 59	$\begin{array}{r}142 \\ 38 \\ \hline\end{array}$	38 48	..	.	20	5
Virginia	804	328	41	299	48 37	\cdots	\ldots	7 .24	9
Washington	704	337	48	302	43	\cdots	\cdots	-24	$\stackrel{3}{4}$
West Virginia	262	119	45	76	29	\cdots	\cdots	31 35	4 13
Wisconsin.	714	416	58	341	48	66	9 9
Wyoming.	77	49	64	40	52	...	\ldots	8	11

Note: U.S. totals include responses from participants residing "in the District of Columbia, as described in the statistical" reliability appendix. Data reported on this tabie are from screening interviews in which one adult household member responded for household members 6 to 15 years old. The screening interviews required the respondent to recail 12 months worth of activity.

- Estimate based on a small sample size.
.. Sample size too small to report data reliably.
Source: U.S. DOI and U.S. DOC, 1993.

Table 6-16. Vegetable Gardening by Demographic Factors: 1986
\qquad

Demographic Factor	Percentage of total households that have gardens (\%)	Number of households (in millions)
Total	38	34
Sex of gardener		
Male	39	16.6
Female	37	17.0
Age of gardener (in years)		
18-29	31	7.7
30.49	39	12.4
50 and older	43	13.7
Household composition		
Single, separated, divorced, or widowed	54	8.5
Married, no children	45	11.9
Married, with children	44	13.2
Region/section ${ }^{\text {a }}$		
East Region	33	7.3
New England	37	1.9
Mid-Atlantic	32	5.4
Midwest Region	50	11.0
East Central	50	6.6
West Central	50	4.5
South Region	33	9.0
Deep South	44	3.1
Rest of South	29	5.9
West Region	37	6.2
,Rocky Mountain	53	2.3
Pacific	32	4.2
Size of Community		
City	26	6.2
Suburb	33	10.2
- Small town	32	3.4
Rural	61	14.0

* Composition of regions/sections was not provided by the NGA.

Source: National Gardening Association, 1987.

Table 6-17. Characteristics of Households With a Vegetable Garden: 1976 to 1986 [Percentage]

	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
Percent of US households with a vegetable garden	44	43	41	42	43	47	46	42	40	37	38
Number of households with a vegetable garden (in millions)	32	32	31	33	34	38	38	35	34	33	34
Garden size (square feet) ${ }^{\text {a }}$	560	770	620	595	663	547	600	505	440	300	325

Characteristic											
Age (in years)											
18-29	40	38	34	36	33	41	39	36	33	29	31
30-49	46	45	42	43	45	48	46	42	40	36	39
50 and older	45	46	46	46	48	51	50	46	46	44	43
Sex											
Male	52	44	42	43	44	48	49	44	40	38	39
Female	48	41	41	42	41	47	43	40	40	37	37
Race											
White	46	45	41	44	45	50	47	40	42	40	40
Nonwhite	32	39	40	30	28	32	37	28	31	20	27
Yearly income											
\$15,000 and over	48	48	49	48	48	52	50	45	42	40	40
\$10,000-14,999	43	43	37	41	40	44	41	43	46	37	35
\$7,000-9,999	42	41	32	38	37	49	41	43	33	30	38
\$4,000-6,999	43	39	37	30	37	37	39	28	35	25	34
Under \$ 4,000	32	35	34	25	31	28	36	34	27	28	42

a Median value; mean value for $1986=1,690$ square feet.
Source: National Gardening Association, 1987.

Table 6-18. Percentage of Gardening Households Growing Different Vegetables: 1986

[^5]Table 6-19. U.S. Household Participation in Lawn and Garden Activities: 1989 to 1993°

Activity	Percent Households Engaged in Activity				
	1989	1990	1991	1992	1993
Total	75	80	78	75	71
Lawn care	57	66	62	54	54
Indoor houseplants	37	43	42	34	31
Flower gardening	41	48	41	39	39
Insect control	29	39	35	27	24
Shrub care	29	38	32	27	28
Vegetable gardening	32	37	31	31	26
Tree care	23	31	27	20	21
Landscaping	22	31	26	22	24
Flower bulbs	23	31	26	23	22
Fruit trees	14	19	15	13	13
Container gardening	11	15	13	9	11
Raising transplants ${ }^{\mathrm{b}}$	11	15	12	8	10
Herb gardening	7	9	9	7	8
Growing berries	7	9	7	6	6
Ornamental	5	7	7	5	6
gardening					

a Based on national household sample survey conducted by the Gallup Organization. Subject to sampling variability. b Starting plants in advance of planting in ground.

Source: U.S. Bureau of the Census, 1995.

Table 6-20. Participation in Gardening: $1992^{\text {a }}$

* In percent, oxcept as indicated. Covers activities engaged in at least once in the prior 12 months.

Source: U.S. Bureau of the Census, 1995.

Table 6-21. DIY Home Improvement and Repair Projects Undertaken Within the Past 12 Months ${ }^{\text {a }}$

Project	Millions of Households	Percent of DIY Households
Painted the interior of the home	37.5	60.9
Applied weatherstripping or caulking	26.4	43.0
Painted the exterior of the home	20.3	32.9
Varnished or stained woodwork/furniture	19.8	32.2
Repaired electrical wiring or outlets	14.7	23.9
Replaced bathroom faucets	14.2	23.1
Hung wallpaper	14.1	22.9
Repaired or replaced toilet	12.8	20.8
Replaced kitchen faucets	12.7	20.6
Added insulation	12.0	19.5
Repaired drywall	10.5	17.0
Installed carpeting	10.2	16.6
Installed vinyl floor covering	9.3	15.1
Repaired or replaced roof	8.2	13,4
Installed a ceiling fan	8.2	13.4
Installed paneling	7.6	12.3
Did brick or masonry work	5.9	9.6
Installed a bathroom vanity	5.0	8.2
Installed ceiling tile	4.7	7.6
Installed a water heater	4.2	6.9
Installed ceramic tile	3.1	5.0
Installed a kitchen sink	2.9	4.7
Replaced kitchen cabinets	2.3	3.8
Installed exterior siding	2.3	3.7

a Between September 1981 and September 1982.
Source: DIYRI, 1983.

Table 6-22. Participation in Various Home Improvement/Repair: $1992^{\text {a }}$

- In percent, except as indicated. Covers activities engaged in at least once in the prior 12 months.

Source: U.S. Bureau of the Census, 1995.

Table 6-23. Estimated Populations Involved in Various Hobbies
Hobby . Number of People Remarks

1. Woodworking
A. People involved in a leisure woodworking project
B. People involved in furniture refinishing
C. Magazine subscribers ${ }^{\mathrm{a}}$ (Writers Market, 1985)

- Hands on
- Woodworker's Journal
- Popular Woodwork
- Workbench
D. Persons who own power tools (SMRB, 1983)
- Electric drill
- Electric router
- Gas chain saw
- Electric chain saw
- Portable electric circular saw
- Portable jig/sabre saw
- Stationary radial/arm saw
- Stationary bench/table circular saw
- Stationary jig/sabre saw
- Electric sander
- Portable workbench

2. Photography
A. People who develop their own photographs (SMRB 1983)
B. People participating in photography (SMRB, 1992)
C. Magazine subscribers ${ }^{\text {a }}$

- Darkroom Photography Magazine
- Darkroom Techniques
- Popular Photography
D. Kodak Consumer Department
13.3×10^{6}
(6.6\% of total U.S. population)
12.2×10^{6}

750,000
100,000
10,000
825,000
27.4×10^{6}
5.8×10^{6}
11.3×10^{6}
3.3×10^{6}
15.1×10^{6}
13.0×10^{6}
3.4×10^{6}
4.7×10^{6}
1.9×10^{6}
15.0×10^{6}
4.1×10^{6}
6.2×10^{6}
72.2×10^{6}
(11.5\% of total U.S. population)

100,000
40,000
925,000
1×10^{6}
2×10^{6}

SMRB does not indicate what percentage of this total are specifically involved in other specific woodworking projects.

All four magazines are specifically directed at active amateur woodworkers.

Router is best indicator of number of hobbyists.

Most will be developing black and white film.
Participated in last 12 months.

Subscribers are people interested in darkroom techniques.
Subscribers are advanced amateurs.
80% of photo hobbyists are estimated to do black and white developing and 20% color developing.

Table 6-23. Estimated Populations Involved in Various Hobbies (Continued)

Table 6-23. Estimated Populations Involved in Various Hobbies (Continued)

	Hobby	Number of People	Remarks
A.	People participating in model building/miniature projects (SMRB, 1992)	$4.9 \times 10^{6}(2.7 \%$ of total U.S. population)	
B.	People participating in model railroading (SMRB, 1992)	2.5×10^{6}	
c.	Magazine subscribers ${ }^{\text {a }}$ (Writers Market 1985)		
	- Railroad Model Craftsman	97,000	Most subscribers to railroad models thought to be collectors rather than builders.
	- Finescale Modeler	30,000	
	- Mainline Modeler	14,000	
	- Model Railroader	178,000	
D.	People who build model airplanes	300,000-400,000	Model Aircraft; these are functional models.
11.	Hunting and firearms		
	Persons who own guns (SMRB, 1983)		
	- Hunting rifle	24.4×10^{6}	
	- Shooting rifle	22.2×10^{6}	
	- Target gun	9.6×10^{6}	
	- Factory-loaded ammunition	18.9×10^{8}	
B.	Persons who have engaged in firearms-related hobby within the past year (SMRB, 1983)		
	- Hunting	12.6	
	- Target shooting	7.4	
c.	Magazine subscribers ${ }^{\text {a }}$		
	- American Hunter	150,000	
	- Guns \& Ammo	475,000	
	- Shotgun Soorts	105,000	
	- American Marksman	8,000	
	- American Shotgunner	120,000	
	- Guns Magazine	135,000	
12. A .	Leather Work		
	Magazine subscribers		
A.	- Make It with Leather	60,000	Subscribers are hobbyists who cut and carve leather (which has presumably already been treated and dyed) therefore, potentially exposed to tanning agents and dye.

Table 6-23. Estimated Populations Involved in Various Hobbies (Continued)

Table 6-24. Participation in Selected Sports Activities: $1993^{\text {a }}$

Activity	All Persons		Sex		Age								Yearly Household Income (\$)					
	Number	Rank	Male	Female	$\begin{gathered} 7-11 \\ \text { yrs } \end{gathered}$	$\begin{gathered} 12-17 \\ \mathrm{yrs} \end{gathered}$	$\begin{gathered} 18-24 \\ \mathrm{yrs} \end{gathered}$	$\begin{gathered} 25-34 \\ \text { yrs } \end{gathered}$	$\begin{gathered} 35-44 \\ \mathrm{yrs} \end{gathered}$	$\begin{gathered} 45-54 \\ \text { yrs } \end{gathered}$	$\begin{gathered} 55-64 \\ \text { yrs } \end{gathered}$	65 yrs and over	$\begin{aligned} & \text { Under } \\ & 15,000 \end{aligned}$	$\begin{gathered} 15,00 \\ 0 \\ 24,999 \\ \hline \end{gathered}$	$\begin{gathered} 25,00 \\ 0- \\ 34,999 \\ \hline \end{gathered}$	$\begin{gathered} 35,00 \\ 0- \\ 49,999 \\ \hline \end{gathered}$	$\begin{gathered} 50,00 \\ 0- \\ 74,999 \\ \hline \end{gathered}$	75,000 and over
Total	230,406	$(X)^{\circ}$	111,851	118,555	18,561	21,304	25,650	41,808	40,761	28,644	20,922	32,758	45,150	36,221	33;971	43,701	46,189	25,175
Number participated in																		
Aerobic exercising ${ }^{\text {c }}$	24,886	9	3,527	21,359	647	1,837	4,852	7,514	4,996	2,610	1,181	1,250	3,172	3,092	3,692	5,012	6,299	3,618
Backpacking ${ }^{\text {d }}$	9,229	24	6,196	3,033	779	1,280	1,501	2,477	2,067	850	170	104	1,424	1,291	1.207	1,817	2,174	1,316
Baseball	16,682	16	13,451	3,232	6,422	5,283	1,834	1,724	1,658	511	87	164	2,499	2,001	2,440	3.832	4,070	1,840
Basketball	29,631	8	21,332	8,299	5,751	9,361	5,305	4,766	3,257	857	146	189	4,163	3,750	4,935	6,254	6,963	3,566
Bicycle riding ${ }^{\text {c }}$	47,918	3	24,562	23,357	11,204	8,794	4,551	8,808	6,980	3,441	2,030	2,111	6,897	6,449	6,685	10,606	10.393	6.888
Bowling	41,305	6	20,714	20,591	3,890	5,039	7,222	9,484	7,625	3,919	1,716	2,410	6,684	6,207	6,487	8,498	9,084	4,346
Calisthenics ${ }^{\text {c }}$	10,800	21	4,571	6,230	1,132	2,024	1,508	1,824	1,712	1,099	657	844	2,698	1,202	1,422	2,319	2,540	1.619
Camping ${ }^{\text {e }}$	42,698	5	23,165	19,533	5,302	5,336	4,767	10,000	8,580	4,135	2,355	2,224	7,182	7,275	6,277	9,338	8,452	4,175
Exercise walking ${ }^{\text {c }}$	64,427	1	21,054	43,373	1,848	2,816	5,690	12,525	14,045	10,185	7.782	9,536	10,491	9,802	9,807	12,325	13,593	8,409
Exercising w. equipment ${ }^{\text {c }}$	34,900	7	16,901	17,999	425	3,025	6,595	9,105	7,065	4,257	2,217	2,210	3,915	3,948	4,639	7,305	9,412	5,681
Fishing-freshwater	45,333	4	30,449	14,885	4,623	4,945	4,946	9,913	9,561	5,044	3,156	3,146	8,891	7.190	7.158	9,470	9,251	3,373
Fishing-saltwater	12,079	20	8,337	3,743	938	882	1,358	2,276	2,593	1,603	1,251	1,178	2,182	2,002	1,344	2,286	2,833	1,432
Football	14,712	17	12,879	1,843	2,495	5,227	3,410	2,203	1,032	202	94	60	2,457	2,295	2,263	2,813	3,105	1,790
Golf	22,633	10	17,212	5,421	840	1,692	3,074	5.192	4,620	3,180	1,956	2,080	1,439	1,925	2,668	4,159	7,342	5,100
Hiking	19,462	13	10,741	8,721	1,851	2,439	2,224	4,604	4,358	1,873	1,035	1,078	2,717	2,964	2.884	3,530	4,314	3,052
Hunting w. firearms	18,455	14	16,303	2,152	$\checkmark 540$	1,695	2,575	4,658	4,282	2,380	1.311	1,014	3,234	2,814	3,555	3,939	3,473	1,40
Racquetball	5,407	25	4,161	1,246	162	550	1,704	1,590	936	380	71	15	705	597	595	1,197	1.592	722
Running/jogging ${ }^{\text {c }}$	20,283	12	11,429	8,854	1,727	4,008	4,088	4,393	3,489	1.566	680	331	2,795	2,364	2,506	4,047	5,104	3,468
Sking-alpine/downhill	10,495	22	6,462	4,033	453	1,549	2,766	2,807	1,698	921	230	70	552	734	930	1,763	3,365	3,150
Skiing-cross country	3,727	26	1,738	1,989	298	469	273	530	1.084	580	- 314	179	291	317	463	718	1,064	874

(continued on next page)

Table 6-24. Participation in Selected Sports Activities: 1993^{2} (continded)

Activity	All Persons		S8x		Aga								Yearty Household Income ($\$$)					
	Number	Rank	Mate	Femato	$\begin{gathered} 7-11 \\ y / 5 \end{gathered}$	$\begin{gathered} \text { 12-17 } \\ \mathrm{yrs} \end{gathered}$	$\begin{gathered} 18-24 \\ \text { Yrs } \end{gathered}$	$\begin{gathered} 25 \cdot 34 \\ \text { yrz } \end{gathered}$	$\begin{gathered} 35-44 \\ y 78 \end{gathered}$	$\begin{gathered} 45.54 \\ \text { yrs } \end{gathered}$	$\begin{gathered} 55-64 \\ y 78 \end{gathered}$	65 yrs and over	$\begin{aligned} & \text { Under } \\ & 15,000 \end{aligned}$	$\begin{gathered} 18,00 \\ 0 \\ 24,999 \\ \hline \end{gathered}$	$\begin{array}{r} 25,00 \\ 0 \\ 34,999 \\ \hline \end{array}$	$\begin{gathered} 35,00 \\ 0 \\ 49,999 \\ \hline \end{gathered}$	$\begin{array}{r} 50,00 \\ 0 \\ 74,999 \\ \hline \end{array}$	$\begin{gathered} 75.000 \\ \text { and } \\ \text { over } \\ \hline \end{gathered}$
Total	230,406	(x)	111.861	118,565	18,561	21,304	25,650	41,808	40,761	28,644	20,922	32,768	45,150	36,221	33,971	43,701	46,189	25,175
Soccer	10,273	23	6,509	3,764	4,543	3,063	889	839	626	254	51	9	1,247	925	1,126	2,387	2,927	1,861
Softball	17,943	15	10,426	7.517	2,886	3,817	3,101	4.446	2,813	532	191	157	2,173	2,335	2,758	3,789	4,530	2,358
Swimming ${ }^{\text {c }}$	61,353	2	27,713	33,640	10,507	10,874	7,860	11,293	10,075	4,941	2,756	3,047	8,545	7,936	8,817	13,054	14,284	8.717
Target shooting	12,804	19	10,195	2,609	746	1,640	2,057	3,288	2,723	1,345	546	459	2,086	1,916	2,175	2,877	2,283	1,468
Tennis	14,197	18	8,302	5,896	1,003	2,464	3,375	3,076	2,357	1,091	558	274	2,669	1,390	1,752	2,586	3,758	3,043
Volleyball	20,477	11	9,777	10,700	1,333	5,443	4,402	4,961	3,150	823	252	112	2,890	2,500	3,226	4,289	5,036	2,536

In thousands, except rank. For persons 7 years of age or older. Except as indicated, a participant plays a sport more than once in the year. Based on a sampling of 10,000 households.
${ }^{6}$ Not applicable.
c Participant engaged in activity at least six times in the year.
${ }^{d}$ Includes wilderness camping.
$\stackrel{i}{\infty}$ - Vacation/overnight.
Source: U.S. Bureau of the Census, 1995.

Percentage of the population 7 years old and older

Figure 6-1. Participation in the 10 Most Popular Sports Activities by Sex: 1993

Source: U.S. Bureau of the Census, 1995.

Participation in

Figure 6-2. Participation in Various Activities by Percentage of the Population 18 Years Old and Older: 1992

Source: U.S. Bureau of the Census, 1995.

7. ACTIVITIES (OCCUPATIONAL)

Working in certain occupations can increase an individual's risk of exposure to environmental contaminants. Some high-risk occupations are farm worker, factory and foundry worker, and mine worker. The U.S. Department of Labor's Bureau of Labor has documented the number of persons employed in a variety of occupations. Data presented in this section can be useful in evaluating an exposed population in a specified occupation or occupational category. The data also can be used to determine the time duration of exposures in certain categories of age, race, and sex and for the general population as well.
U.S. Department of Labor (DOL) data are accessible on the World Wide Web via the Internet. The Department's home page (Internet address: www.dol.gov) contains information on the kinds of data available and instructions on how to conduct data searches, extract data, and download data files in table format. Section 11 of this document contains information on how to locate U.S. Government data on the Internet.

All employment statistics generated by DOL are not accessible on the Internet. Some of these data are available in hardcopy format only. A copy of the table of contents from the Department's 1995 Employment and Earnings publication is presented in Appendix 7A at the end of this section to show examples of other data that are available. The Employment and Earnings document may be ordered by calling Superintendant of Documents at (202) 512-1800.

7.1. POPULATION EMPLOYED

DOL compiles statistics on the U.S. population by occupational categories. Tables presented in this section show population information by employment, annual average household data, and establishment data. Tables shown are presented as samples of the data compiled from household interviews and reports from employers and aggregated by DOL. More detailed data are provided in the publication. (See Appendix 7A.) The household interviews are obtained from the Current Population Survey, a sample survey of the population 16 years old and older, conducted each month. The household interview information is collected from about 60,000 households in 729 sample areas, which represent all counties and independent cities in the United

States with coverage in all 50 States, and the District of Columbia (U.S. DOL, 1995). The data collected are based on the activity or status reported for the calendar week, including the 12th of the month. A household consists of all persons who occupy a housing unit and have no other usual address. This includes related family members and all unrelated persons. A housing unit is regarded as a house, an apartment, a group of rooms, or a single room, when occupied or intended for occupancy as separate living quarters (U.S. DOL, 1995).

The establishment records are compiled each month from mail questionnaires and telephone interviews by the Bureau of Labor Statistics in cooperation with State agencies. These data are for the Nation, States, and metropolitan areas and represent 390,000 establishments employing more than 47 -million nonfarm wage and salary workers. The household and establishment data complement one another, with each providing different information.

Population characteristics are obtained from the household surveyed and detailed industrial classifications as best obtained from the establishment reports (U.S. DOL, 1995).

Table 7-1 presents employment status of the total general U.S. population for the civilian labor force. It also presents information on whether this population is employed in agriculture or in nonagricultural industries. Table $7-2$ presents employment data for persons of Mexican, Puerto Rican, and Cuban-origin by sex and age. Table 7-3 presents data for employed civilians by selected occupational categories for black, white, and Hispanic origin for years 1993 and 1994. Table 7-4 presents the same employment data as in Table 7-3 but for persons of Mexican, Puerto Rican, and Cuban origin. In Table 7-5, data are shown for persons employed in agriculture and nonagricultural industries by age and sex. Table 7-6 displays percent distribution of persons employed by six major occupational industry categories by race and sex.

The terms white, black, and other, used to describe a person's race, were taken directly from the primary source. Included in the "other" group are Native Americans (American Indians), Alaska Natives, and Asian and Pacific Islanders. Because of the relatively small sample size, data for other races were not published by DOL. Hispanic origin refers to persons who identify themselves as Mexican, Puerto Rican, Cuban, Central or South American, or of other Hispanic origin or descent. Persons of Hispanic origin may be of any race and thus were included in both white and black population groups.

7.2. POPULATIONS EMPLOYED IN DETAILED INDUSTRIAL AND OCCUPATIONAL CATEGORIES

DOL also has compiled statistics for employment in numerous detailed industrial and occupational categories. Table 7-7 presents employment data for selected detailed industrial categories by sex, race, and Hispanic origin. The percent of whites or male categories can be estimated using the data presented. Annual averages for household data by detailed occupation, sex, race, and Hispanic origin are shown in Appendix 7B at the end of this section. Employment data by major industry and manufacturing group are presented in Appendix 7C at the end of this section.

7.3. POPULATIONS IN PUBLIC BUILDINGS

Populations of persons in public buildings can be estimated based on data collected by the U.S. Bureau of the Census (1995) on numbers and characteristics of commercial office space in the United States. Table 7-8 presents information for the population utilizing commercial office space in the largest metropolitan areas in the United States. The inventory of square foot of area used also is shown. Table 7-9 presents information on the characteristics of commercial buildings ($>1,000 \mathrm{sq} \mathrm{ft}$) in the United States. These characteristics include total number of buildings, principal activity within the buildings, fuels used, and number of workers.

7.4. OCCUPATIONAL STUDIES ADDRESSING MINORITY POPULATIONS

Numerous researchers, including Rios et al. (1993) and Moses et al. (1993), have evaluated the effects of certain high-risk occupations on certain minorities. Rios et al. (1993) summarized the various factors increasing susceptibility to environmental exposure for minority populations using data from published documents. The factors summarized include genetic, occupational, developmental, disease, and social inequality. According to the authors, workers who may have an increased susceptibility to environmental exposures are coke oven workers in the steel industry, farm workers, and child laborers. The highest exposure to by-products from coke ovens is to the "topside" worker population on top of the oven (Rios et al., 1993).

The authors reported that although it has been estimated that there are $1.5-$ to 2.5 -million farm workers, the actual number may be as high as 4 -million persons, including dependents of hired farm workers and undocumented aliens. In the West, Midwest, and Southwest areas of the United States, migrant farm workers are predominantly young Hispanic men with families; on the East Coast, farm workers often are the inner-city poor and their families or males of Hispanic descent (Rios et al., 1993).

The prevalence of child labor (children under 18 years of age) has increased, with children working in farm fields wet with pesticides (Rios et al., 1993). This is cause for concern bscause "children are known to be more susceptible than adults to the adverse effects of environmental pollutants and toxins" (Rios et al., 1993). Another high-risk group is those who may be secondarily exposed to occupational pollutants brought home on clothing or other articles by members of their household who work in high-risk occupations. Examples of workers who bring home occupational pollutants are farm workers with pesticide-laden work clothing, construction workers with asbestos, and smelter workers with toxic metals. The number of people can further be defined by ethnicity and gender.

Moses et al. (1993) collected data from scientific literature on human exposure to pesticides. Exposure data summarized include the number and types of pesticide used, rates of exposure to pesticide, exposure of agricultural workers, and exposure of children.

Minorities comprise most of the farm workers in the United States. In 1990, DOL surveyed United States farm workers and found that two-thirds of the farm workers not born in the United States (U.S. DOL, 1995). The ethnic groups comprising the two-thirds of the Nation's farm workers, who were not born in the United States, are as follows: Mexican- 92%; other Latinos--4\%; Asian--3\%; and Caribbean--1\%. Of the remaining one-third of the Nation's farm workers, who were born in the United States, 40% are minorities: Latinos- 34%; African Americans- 5%; and other ethnic groups- -1%.

The authors noted that 25% of the summer-hire farm workers are children. This is a concern, because children are at higher risk from exposure to pesticides than are adults (Moses et al., 1993). This increased vuinerability is due to rapid growth rates and critically important sensitive developmental stages. Additional factors increasing a child's risk from exposure to
pesticides is a higher respiratory rate, greater exposed surface area, and greater fluid intake (relative to solid foods). Another possible route of exposure to pesticides for children is the indoor use of pesticides. When the authors calculated pesticide exposure within a child's breathing zone after the use of home foggers, they found pesticide exposure to the children far exceeded equivalent workplace standards for adults (Moses et al., 1993).

Friedman-Simenez (1989) noted that there is minority worker (black, Latino/Hispanic, Asian, Native American, and undocumented workers [most often Latino or Asian] overrepresentation in the more hazardous jobs, thereby leading to greater risk for occupational-related diseases. Included in the high-risk jobs (classified by the author) were (1) operators, fabricators, and laborers; (2) service occupation; (3) precision production, craft, and repair; and (4) farming, forestry, and fishing -- farm operators and managers, logging, other agricultural operations (Friedman-Simenez, 1989). The author noted that the evidence supporting his conclusion was not as rigorous or massive as most scientists would like, but the association between hazardous exposures and minority population is too consistent to be due to chance. For example, certain epidemics have been related to jobs such as coke oven workers, where the minority worker population on the topside (area of largest exposure) of the coke ovens is larger than for nonwhites (Friedman-Simenez, 1989).

7.5. REFERENCES

Friedman-Simenez, G. (1989) Occupational disease among minority workers. A common and preventable public health problem. J. AAOHN, Vol. 37, No. 2.

Moses, M; Johnson, ES; Anger, WK; Burse, VW; Horstman, SW; Jackson, RJ; Lewis, RG;
Maddy, KT; McConnell, R; Meggs, WJ; Zahm, SH (1993) Environmental equity and pesticide exposure. Toxicol Indus Health 9(5):913-959.

Rios, R; Poje, GV; Detels, R. (1993) Susceptibility to environmental pollutants among minorities. Toxicol Indus Health 9(5):797-820.
U.S. Bureau of the Census. (1995) Statistical abstract of the United States: 115 th ed. U.S. Department of Commerce, Bureau of the Census, Washington, DC.
U.S. Department of Labor (DOL). (1995) Employment and earnings, vol. 42 no. 1. U.S. Department of Labor, Bureau of Labor Statistics, Washington, DC.

Table 7-1. Employment Status of Civilian Noninstitutional Population ${ }^{\text {a }}$ by Sex, Age, Race, and Hispanic Origin [In thousands]

Employment status, sex, and age	Total		White		Black		Hispanic origin	
	1993	1994	1993	1994	1993	1994	1993	1994
TOTAL								
Civilian noninstitutional population	193,550	196,814	163,921	165,555	22,329	22,879	15,753	18,117
Civilian labor force	128,040	131,056	109,359	111,082	13,943	14,502	10,377	11,975
Percent of the population	66.2	66.6	66.7	67.1	62.4	63.4	65.9	66.1
Employed	119,306	123,060	102,812	105,190	12,146	12,835	9,272	10,788
Agriculture	3,074	3,409	2,864	3,162	142	136	467	560
Nonagricultural industries	116,232	119,651	99,948	102,027	12,004	12,699	8,805	10,227
Unemployed	8,734	7,996	6,547	5,892	1,796	1,666	1,104	1,187
Unemployment rate	6.8	6.1	6.0	5.3	12.9	11.5	10.6	9.9
Not in labor force	65,509	65,758	54,562	54,473	8,386	8,377	5,377	6,142
Men, 16 years and older								
Civilian noninstitutional population	92,620	94,355	79,080	80,059	10,078	10,258	7,825	9,104
Civilian labor force	69,633	70,817	60,150	60,727	6,911	7,089	6,256	7,210
Percent of the population	75.2	75.1	76.1	75.9	68.6	69.1	80.0	79.2
Employed	64,700	66,450	56,397	57,452	5,957	6,241	5,603	6,530
Agriculture	2,438	2,554	2,254	2,347	128	118	417	494
Nonagricultural industries	62,263	63,896	54,143	55,104	5,829	6,122	5,186	6,036
Unemployed	4,932	4,367	3,753	3,275	954	848	653	680
Unemployment rate	7.1	6.2	6.2	5.4	13.8	12.0	10.4	9.4
Not in labor force	22,987	23,538	18,929	19,332	3,167	3,169	1,569	1,894
Men, 20 years and older								
Civilian noninstitutional population	85,907	87,151	73,711	74,311	9,031	9,171	7,063	8,178
Civilian labor force	66,069	66,921	57,115	57,411	6,498	6,646	5,871	6,747
Percent of the population	76.9	76.8	77.5	77.3	72.0	72.5	83.1	82.5
Employed	61,865	63,294	53,897	54,676	5,710	5,964	5,318	6,189
Agriculture	2,263	2,351	2,091	2,151	120	115	394	466
Nonagricultural industries	59,602	60,943	51,806	52,525	5,590	5,849	4,924	5,722
Unemployed	4,204	3,627	3,218	2,735	789	682	553	558
Unemployment rate	6.4	5.4	5.6	4.8	12.1	10.3	9.4	8.3
Not in labor force	19,838	20,230	16,596	16,900	2,532	2,525	1,192	1,431
Women, 16 years and older								
Civilian noninstitutional population	100,930	102,460	84,841	85,496	12,251	12,621	7,928	9,014
Civilian labor force	58,407	60,239	49,208	50,356	7,031	7,413	4,120	4,765
Percent of the population	57.9	58.8	58.0	58.9	57.4	58.7	52.0	52.9
Employed	54,606	56,610	46,415	47,738	6,189	6,595	3,669	4,258
Agriculture	636	855	610	815	14	18	50	66
Nonagricultural industries	53,970	55,755	45,805	46,923	6,175	6,577	3,619	4,191
Unemployed	3,801	3,629	2,793	2,617	842	818	451	508
Unemployment rate	6.5	6.0	5.7	5.2	12.0	11.0	10.9	10.7
Not in labor force	42,522	42,221	35,633	35,141	5,220	5,208	3,808	4,248

Table 7-1. Employment Status of Civilian Noninstitutional Population ${ }^{\text {a }}$ by Sex, Age, Race, and Hispanic Origin (continued) [In thousands]

Employment status, sex, and age	Total		White		Black		Hispanic origin	
	1993	1994	1993	1994	1993	1994	1993	1994
"	4	,	${ }^{12}$		H1\%			
Women, 20 ycars and older								
Civilian noninstitutional population	94,388	95,467	79,631	79,980	11,200	11,496	7,176	8,122
Civilian labor foree	55,146	56,655	46,413	47,314	6,668	7,004	3,846	4,421
Percent of the population	58.4	59.3	58.3	59.2	59.5	60.9	53.6	54.4
Employed	51,912	53,606	44,028	45,116	5,962	6,320	3,467	3,989
Agriculture	599	809	574	772	13	17	46	61
Nonagricultural industries	51,313	52,796	43,454	44,344	5,949	6,303	3,422	3,928
${ }^{\text {an }}$, Unemployed	3,234	3,049 "	2,385	2,197	706	685	378	431
Unemployment rate	5.9	5.4	5.1.	4.6	10.6	9.8	9.8	9.8
" Not in labor force	39,242	38,813	33,218	32,666	4,532	4,492	3,300	3,701
Both sexes, 16 to 19 years old								
Civilian noninstitutional population	13,255	14,196	10,579	11,264	2,099	2,211	1,515	1,818
Civilian labor force	6,826	7,481	5,831	6,357	776	852	660	807
Percent of the population	51.5	52.7	55.1	56.4	37.0	38.5	43.6	44.4
Employed	5,530	6,161	4,887	5,398	474	552	487	609
Agriculture	212	249	199	239	9	1	28	32
Nonagricultural industries	5,317	5,912	4,689	5,158	466	547	459	577
Unemployed	1,296	1,320	943	960	302	300	173	198
Unemployment rate'	19.0	17.6	16.2	15.1	38.9	35.2	26.2	24.5
Not in labor force	6,429	6,715	4,748	4,907	1,323	1,360	855	1,010

2. Civilian noninstitutional population--persons 16 years of age and older residing in the 50 States and the District of Columbia who are not inmates of institutions (e.g., penal and mental facilities, homes of the aged) and not on active duty in the Armed Forces.

Note: Detail for the above race and Hispanic-origin groups will not sum to totals because data for the "other races" group are not presented and Hispanics are included in both white and black population groups. Data for 1994 are not directly comparable with data for 1993 and carlier years. For additional information, see "Revisions in the Current Population Survey Effective January 1994" In the February 1994 issue of Employment and Earnings.

Source: U.S. Department of Labor, 1995.

Table 7-2. Employment Status of Civilians of Mexican, Puerto Rican, and Cuban Origin by Sex and Age in thousands]

Employment status, sex, and age	Total Hi origin 1993	$z^{\text {anic }}$ 1994	Mexican 1993	$\begin{aligned} & \text { origin } \\ & 1994 \end{aligned}$	$\begin{array}{r} \text { Puerto Ric } \\ 1993 \end{array}$	origin 1994	$\begin{gathered} \text { Cuban } \\ 1993 \\ \hline \end{gathered}$	$\begin{aligned} & \text { gin } \\ & 1994 \\ & \hline \end{aligned}$
TOTAL								
Civilian noninstitutional population	15,753	18,117	9,693	11,174	1,676	1,854	927	1,002
Civilian labor force	10,377	11,975	6,493	7,567	950	1.026	554	604
Percent of the population	65.9	66.1	67.0	67.7	56.7	55.4	59.8	60.3
Employed	9,272	10,788	5,805	6,800	828	907	511	555
Agriculture	467	560	409	52	8	3	9	4
Nonagricultural industries	8,805	10,227	5,396	6.298	820	900	502	551
Unemployed	1,104	1,187	693	766	122	119	43	49
Unemployment rate	10.6	9.9	10.7	10.1	12,8	11.6	7.8	8.1
Not in labor force	5.377	6,142	3,194	3,608	725	828	373	398
Men, 16 years and older								
Civilian noninstitutional population	7,825	9,014	4,958	5,803	756	851	433	485
Civilian labor force	6,256	7.210	4,043	4,728	534	575	317	341
Percent of the population	80.0	79.2	81.5	81.5	70.6	67.6	73.3	70.3
Employed	5,603	6,530	3,628	4,277	457	512	293	314
Agriculture	417	494	363	440	7	2	7	4
Nonagricultural industries	5,186	6,036	3,266	3,837	449	506	285	310
Unemployed	653	680	414	450	77	63	25	27
Unemployment rate	10.4	9.4	10.2	9.5	14.4	11.0	7.8	7.9
Not in labor force	1,569	1,894	916	1.075	223	276	115	144
Men, 20 years and older								
Civilian noninstitutional population	7.063	8,178	4,456	5,196	663	744	415	459
Civilian labor force	5,871	6,747	3,774	4,391	495	539	308	331
Percent of the population	83.1	82.5	84.7	84.5	74.7	72.4	74.2	72.2
Employed	5,318	6,189	3,427	4,025	431	488	286	307
Agriculture	394	466	343	415	6	2	7	4
Nonagricultural industries	4,924	5,722	3,084	3,610	425	482	279	304
Unemployed	553	558	347	366	63	50	22	24
Unemployment rate	9.4	8.3	9.2	8.3	12.8	9.4	7.1	7.2
Not in labor force	1,192	1,432	683	805	168	206	107	128
Women, 16 years and older								
Civilian noninstitutional population	7.928	9,014	4,735	5,372	919	1,003	494	517
Civilian labor force	4,120	4,765	2,456	2,839	417	451	237	263
Percent of the population	52.0	52.9	51.9	52.9	45.3	44.9	47.9	50.9
Employed	3,669	4,258	2,177	2,523	372	395	218	241
Agriculture	50	66	46	62	1.	--	2	--
Nonagricultural industries	3,619	4,191	2,130	2,461	371	394	217	241
Unemployed	451	508	279	316	45	56	18	22
Unemployment rate	10.9	10.7	11.4	11.1	10.8	12.4	7.7	8.4
Women, 20 years and older 3,808 2, 2,538								
Civilian noninstitutional population	7,176	8,122	4,213	4,784	845	912	467	494
Civilian labor force	3,846	4,421	2,256	2,607	397	425	227	255
Percent of the population	53.6	54.4	53.5	54.5	47.0	46.6	48.5	51.6
Employed	3,467	3,989	2,028	2,344	359	376	211	235
Agricuiture	46	61	43	57	1	$\stackrel{-}{\square}$	1	--
Nonagricultural industries	3,422	3,928	1,985	2,286	358	376	210	235
Unemployed	378	431	228	263	38	49	16	19
Unemployment rate	9.8	9.8	10.1	10.1	9.6	11.4	6.9	7.6
Civilian noninstitutional population	1,515	1,818	1,024	1,195	169	198	44	49
Civilian labor force	660	807	469	569	59	63	20	18
Percent of the population	43.6	44.4	45.8	47.6	34.9	31.9	44.3	36.7
Employed	487	609	351	431	38	43	14	12
Agricuiture	28	32	23	29	1	--	1	--
Nonagricultural industries	459	577	327	402	37	43	13	12
Unemployed	173	198	119	137	21	20	6	${ }^{6}$
Unemployment rate	26.2	24.5	25.3	24.1	35.1	32.0	(6)	(3)
Not in labor force	855	1,010	555	626	110	135	25	31

a Includes persons of Central or South American origin and of other Hispanic origin, not shown separately.
Data are not shown where base is less than 35,000 .
Note: Data for 1994 are not directly comparable with data for 1993 and earlier years. For additional information, see "Revisions in the Current Population Survey Effective January 1994" in the February 1994 issue of Employment and Earnings.

Source: U.S. Department of Labor, 1995.

Table 7-3. Employed White, Black, and Hispanic-Origin Workers by Sex, Occupation, Class of Worker, and Fulil" or Part-Time Status

-- Data not available.
Note: Detail for the above race and Hispanic-origin groups will not sum to totals because data for the "other races" group are not presented and Hispanics are included in both white and black population groups. Data for 1994 are not directly comparable with data for 1993 and earlier years. For additional information, see "Revisions in the Current Population Survey Effective January 1994" in the February 1994 issue of Employment and Earnings.

Source: U.S. Department of Labor, 1995.

Table 7-4. Employed Civilians of Mexican, Puerto Rican, and Cuban Origin by Selected Social and Economic Categories
[ln thousands]

Category	Total Hispanic origin		Mexican origin		Puerto Rican origin		Cuban origin	
	1993	1994	1993	1994	1993	1994	1993	1994
SEX								
Total (all civilian workers)	9,272	10,788	5,805	6,800	828	907	511	555
Men	5,603	6,530	3,628	4,277	457	512	293	314
Women	3,669	4,258	2,177	2,523	372	395	218	241
OCCUPATION								
Managerial and professional specialty	1,306	1,517	666	787	158	177	128	141
Executive, administrative, and managerial	694	807	355	426	76	85	72	75
Professional specialty	613	709	311	361	83	92	56	67
Technical, sales, and administrative support	2,305	2,639	1,353	1.526	266	281	168	202
Technicians and related support	200	205	109	105	24	27	17	17
Sales occupations	836	1,010	489	574	78	81	63	83
Administrative support, including clerical	1,269	1,424	754	848	165	173	88	102
Service occupations	1.848	2,131	1.111	1,300	165	163	66	65
Private household	197	223	99	117	5	2	3	4
Protective service	142	167	79	88	28	32	8	14
Service, except private household and protective	1,508	1,741	932	1,095	132	126	56	48
Precision production, craft, and repair	1,226	1,407	838	944	81	92	52	59
Mechanics and repairers	347	363	220	225	30	32	17	28
Construction trades	473	569	333	392	21	28	23	16
Other precision production, craft, and repair	405	475	285	328	30	33	12	14
Operators, fabricators, and laborers	2,054	2,474	1,374	1,698	148	183	87	80
Machine operators, assemblers, and inspectors	1,024	1,151	664	795	77	81	35	26
Transportation and material moving occupations	431	511	274	314	36	49	33	33
Handlers, equipment cleaners, helpers, laborers	598	811	436	589	35	52	19	20
Construction laborers	110	164	82	130	3	6	3	2
Other handlers, equipment cleaners, helpers, laborers	489	647	354	459	31	47	16	17
Farming, forestry, and fishing CLASS OF WORKER	534	620	463	544	10	12	11	7
Agriculture								
Wage and salary workers	407	495	367	451	7	2	5	--
Self-employed workers	61	65	42	51	1	1	3	3
Unpaid family workers	--	--	--	--	--	--	--	--
Nonagricultural industries								
Wage and salary workers	8,310	9,681	5,129	5,980	789	860	457	501
Government	1,119	1,235	701	772	162	163	46	54
Private industries	7,191	8,446	4,428	5,208	627	698	411	447
Private households	225	248	119	130	6	3	3	4
Other industries	6,966	8,199	4,309	5,078	621	695	408	443
Self-employed workers	482	533	258	309	31	38	45	50
Unpaid family workers	12	13	9	9	1	1	-	--
FULL- AND PART-TIME STATUS								
Full-time workers	7.786	8,936	4,858	5,626	707	751	445	475
Part-time workers	1,487	1,852	947	1,174	121	156	66	80

a Includes persons of Central or South American origin and of other Hispanic origin, not shown separately.
-- Data not available.
Note: Data for 1994 are not directly comparable with data for 1993 and earlier years. For additional information, see "Revisions in the Current Population Survey Effective January 1994" in the February 1994 issue of Employment and Earnings.

Source: U.S. Department of Labor, 1995.

Table 7-5. Employed Persons in Agriculture and Nonagricultural Industries by Age, Sex, and Class of Worker: 1994 [In thousands]

-- Data not available.
Note: Data for 1994 are not directly comparable with data for 1993 and earlier years. For additional information, see "Revisions in the Current Population Survey Effective January 1994" in the February 1994 issue of Employment and Earnings.

Source: U.S. Department of Labor, 1995.

Table 7-6. Employed Persons by Industry, Sex, Race, and Occupation: 1994 IIn thousandsl

Industry and sax	Total employed	Managerial and professional specialty		Technical, sales, administrative support			Service		Precision production, craft, repair	Operators, fabricators, laborers			Farming, forestry, fishing
		Executive, admin-istrative, managerial	Professional specialtv	Technicians and related support	Sales	Administrative support, including clerical	Private household	Other service		Machine operators, assemblers, and inspectors	Trans-portation and material moving	Handlers, equipment cleaners, helpers, laborers	
TOTAL													
Agriculture	3,409	97	88	38	14	145	-	18	42	5	45	19	2,897
Mining	669	110	76	22	10	67	--	9	222	21	109	21	1
Construction	7,493	1,055	138	60	59	429	--	34	4,263	86	529	818	22
Manufacturing	20,157	2,588	1,814	611	745	2,093	--	290	3,803	6,298	744	1,082	89
Durable goods	11,792	1,555	1,170	412	310	1,146	-	152	2,622	3,415	416	514	80
Nondurable goods	8,365	1,033	644	200	435	946	--	138	1,181	2,883	328	569	9
Transportation and public utilities	8,692	1,065	486	329	248	2,337	--	246	1,270	120	2,049	528	15
Wholesale and retail trade	25,699	2,235	490	155	10,652	2,330	--	4,983	1,440	347	1,012	1,967	87
Wholesale trade	4,713	531	89	37	1,880	775	--	34	296	150	464	398	60
Retail trade	20,986	1,704	402	119	8,772	1,555	--	4,948	1,145	197	548	1,569	27
Finance, insurance, real estate	8.141	2,198	272	160	2,029	2,915	--	282	167	18	17	18	66
Services	42,986	5,649	13,319	2,274	1,032	6,864	817	8,654	2,071	825	567	493	421
Private households	976	4	8	1.	--	10	817	69	8	--	4	13	42
Other service industries	42,009	5,645	13,311	2,272	1031	6,855	--	8,584	2,063	825	464	480	380
Professional services	29,030	3,559	11,888	1,968	193	5,083	-	5,134	470	222	314	94	105
Public administration MEN	5,814	1,315	853	221	28	1,440	--	1,579	211	32	64	39	30
Agriculture	2,554	66	52	13	8	4	--	10	41	4	42	13	2,300
Mining	564	78	64	17	8	20	--	7	220	21	106	21	--
Construction	6,775	877	122	49	50	55	--	26	4,185	84	518	789	21
Manufacturing	13,686	1,824	1,401	471	484	678	-	212	3,158	3,877	699	799	84
Durable goods	8,688	1,139	990	334	225	399	--	119	2,178	2,409	397	420	77
Nondurable goods	4,998	685	411	137	259	279	--	94	980	1,468	302	378	7
Transportation and public utilities	6,223	690	375	262	139	967	--	120	1,182	99	1,895	480	15
Wholesale and retail trade	13,564	1,256	223	60	5,229	519	--	2,314	1,239	213	948	1,519	44
Wholesale trade	3,350	351	61	26	1,502	196	--	20	279	110	451	330	24
Retail trade	10,213	905	162	33	3,727	323	-	2,293	959	103	498	1.189	21
Finance, insurance, real estate	3,343	1,071	157	69	1,169	426	-	190	157	13	14	16	61
Services	16,425	2,735	5,402	764	443	907	30	2,652	1,867	464	373	411	377
Private households	105	2	1	--	--	3	30	10	7	--	2	12	38
Other service industries	16,320	2,733	5,401	764	443	904	--	2,642	1,859	464	371	399	340
Professional services	9,069	1,462	4,563	543	59	523	-	1,115	397	108	141	65	94
Administration WOMEN	3,317	702	489	151	14	347	--	1,279	193	25	58	34	26
Agriculture	855	30	36	25	6	140	--	8	-	--	3	6	597
Mining	105	32	12	5	--	47	--	2	2	--	--	--	- -
Construction	718	178	16	10	10	373	--	6	79	2	11	29	1
Manufacturing	6,471	764	413	140	261	1,415	--	78	645	2,421	46	284	4
Durabie goods	3,104	416	180	77	85	747	--	33	444	1,006	19	93	- 1
Nondurable goods	3,367	348	233	63	176	668	--	44	201	1,415	26	190	
Transportation and public utilities	2,469	375	111	67	108	1,370	-	126	87	21	154	48	--
Wholesale and retail trade	12,136	979	267	96	5,423	1,811	--	2,669	202	134	64	448	43
Wholesale trade	1.363	180	- 28	10	378	579	-	13	16	40	13	68	36
Retail trade	10,773	799	239	85	5,045	1,232	--	2,655	185	94	51	380	- 6
Finance, insurance, real	4,798	1,127	115	90	860	2,489	\cdots	92	10	5	2	1	15

Table 7-6. Employed Persons by Industry, Sex, Race, and Occupation: 1994 (continued) IIn thousands]

"14!		Managerial and professional spocialty		Technical, sales, administrative support			Service		Precision production, craft, repair	Operators, fabricators, laborers			Farming, forestry, fishing
	Total employilined	Executive, admin-istrative. managerial	Professional specialty	Technicians and related support	Sales	Admin- istrative support, includ- ing clerical	Private household	Öther sorvice		Machine operators, assemblers, and inspectors	Trans-portation and material moving	Handlers, equipment cleaners, elpers, laborers	
WOMEN (continued)													
Services	26,561	2,912	7,916	1,510	589	5,958	787	6,001	204	361	194	82	44
Pitivate households	871	1	7	1	-	7	787	59	..-	--*	2	-	1
Oflhor sorvico industries	25,689	2,912	7,910	1,509	$588{ }^{\circ}$	5,951	--	5,942	204	361	193	81	40
"'t' Profossional sorvices	19,961	2,097	7,325	1,425	135	4,560	-	4,020	73	114	172	29	11
Public admintstration WHITE	$2,497$	614	364	70	15	1,093	--	300	19	8	6	5	3
Agriculture	3,162	93	86	35	14	136	-	16	37	5	39	17	2,685
Minsino	626	106	70	21	10	61	-	9	209	21	99	18	1
Conatruction	6,810	1,000	123	56	58	400	-	20	3,900	79	470	679	19
Manufacturing	17.230	2,421	1,654	523	695	1,845	--	237	3,302	5,000	608	867	76
Durabie goods	10,253	1,463	1,067	354	294	1,023	-	122	2,300	2,791	342	429	68
Nondurable goods	6,977	958	588	169	401	822	-	115	1,002	2,209	267	438	8
Transportation and public utifities	7,168	943	429	290	212.	1,847	--	181	1,089	97	1,665	404	12
Wholesata and retail trade	22,370	1,977	445	139	9.439	2,080	--	4,149	1,313	289	852	1,613	73
Wholesale trede	4,226	498	75	33	1.751	696	--	25	271	122	387	321	47
Retall trado	18,144	1,479	370	107	7.688	1,383	--	4,124	1,042	167	465	1,292	26
Finarice, insuranco, real estate	7.100	1,953	239	139	1,893	2,428	-	214	139	13	14	16	53
Services	36,095	5,045	11,687	1,910	890	6,798	643	6,481	1,809	639	439	384	370
Pitvate househoids	761	4	5	-	-	9	643	41	6	--	4	11	38
Other service industries	35,333	5,041	11,682	1,910	888	5,790	--	6,440	1,804	639	435	373	333
"witit Professional services	24,396	3,164	10,413	1,653	164	4.271	--	3,766	397	169	240	73	86
Public adminlstration BLACK	4,629	1.067	706	188	24.	1,101	--	1,253	176	23	42	24	25
Agricultura	136	2	1	2	-	5	-	--	1	--	5	--	118
Mining	30	2	1	1	--	2	--	--	10	--	4	3	-
Construction	482	36	4	2	--	19	--	8	261	5	43	101	1
Manufacturing	2,032	92	60	49	33	169	--	43	332	954	117	173	10
Durable goods	1,003	49	29	27	10	75	--	28	. 202	448	63	65	9
Nondurable goods	1,029	43	30	22	23	94	--	17	130	506	53	108	-
Transportation and public utilities:	1,193	80	39	25	29	385	--	46	147	21	318	102	1
Wholesale and retail trade	2,174	128	22	7	802	159	--	531	76	40	131	272	- 7
Whotesale trado	305	12	8	1	61	46	--	7	14	18	67	62	6
Reiafl trado	1.869	116	13	5	741	113	--	523	62	21	64	210	--
Finance, Insuranca, roal estate	737	157	22	10	88	365	--	55	20	1	-	2	10
Servicas	5,095	415	1,051	255	101	814	136	1,786	165	135	108	93	35
Private houscholds'	171	-	2	-	--	1	136	26	1	--	--	--	-
Other service industries	4,924	415	1,049	254	101	813	- -	1,761	163	135	108	92	34
\%': Profossional sorvices	3.498	294	956	225	23	622	--	1.179	52	46	68	19	15
Pubtic administration	956	191	102	25	-	284	--	283	27	8	18	12	

- Includes protective service, not shown separately.
- ${ }^{2}$ Data not available.

Note: Data for 1994 are not directly comparable with data for 1993 and earlier years. For additional information, see "Revisions in the Current Population Survey Effective January 1994" in the February 1994 issue of Employment and Earnings.

Source: U.S. Department of Labor, 1995.

Table 7-7. Employed Persons by Detailed Industry, Sex, Race, and Hispanic Origin: 1994 [In thousands]

Industry		Percent of total		
	Total employed	Women	Black	Hispanic origin
TOTAL, 16 years and older	123,060	46.0	10.4	8.8
Agricuiture	3,409	25.1	4.0	16.4
Agricultural production, crops	1,011	23.4	4.2	25.4
Agricultural production, livestock	1,319	27.3	1.5	5.5
Veterinary services	164	69.6	3.4	0.9
Landscape and horticultural services	750	8.9	8.4	25.2
Agricultural services, n.e.c. ${ }^{\text {a }}$	165	47.7	3.1	24.0
Mining	669	15.7	4.5	5.5
Metal mining	61	10.0	0.9	10.8
Coal mining	116	5.6	6.8	0.1
Oil and gas extraction	387	21.3	3.7	6.6
Nonmetallic mining and quarrying, except fuel	106	9.7	6.1	4.3
Construction	7,493	9.6	6.4	10.5
Manufacturing	20,157	32.1	10.1	9.9
Durable goods	11,792	26.3	8.5	8.4
Lumber, wood products, except furniture	732	15.0	12.9	7.0
Logging	145	7.4	17.0	0.9
Sawmills, planing mills, millwork	386	16.2	12.7	7.7
Wood buildings and mobile homes	60	6.1	3.2	7.8
Miscellaneous wood products	141	21.3	11.4	10.5
Furniture and fixtures	662	30.2	9.1	12.0
Stone, clay, glass, concrete products	557	22.9	8.9	10.5
Glass and glass products	189	29.0	7.9	8.3
Cement, concrete, gypsum, plaster products	185	10.4	8.8	10.7
Structural clay, pottery, related products	83	30.4	7.8	19.3
Miscellaneous nonmetalic mineral and stone products	100	27.9	11.9	7.3
Metal industries	2,039	18.8	8.3	10.2
Primary metal industries	760	14.4	11.4	7.3
Blast furnaces, steel works, rolling, finishing mills	354	10.9	16.5	6.8
Iron and steel foundries	111	11.2	8.0	3.5
Primary aluminum industries	143	16.6	6.6	7.9
Other primary metal industries	152	23.0	6.3	9.0
Fabricated metal industries	1,279	21.4	6.4	12.0
Cutlery, hand tools, general hardware	110	30.4	5.6	9.4
Fabricated structural metal products	494	17.2	6.4	12.3
Screw machine products	55	19.5	8.0	8.3
Metal forging and stamping	146	27.1	4.0	8.1
Ordnance	59	33.1	5.3	1.2
Miscellaneous fabricated metal products (not specified)	416	20.5	7.3	14.9
Machinery and computing equipment	2,385	22.9	5.4	5.3
Engines and turbines	66	22.9	11.2	2.7
Farm machinery and equipment	114	21.8	7.7	1.9
Construction and material handling machines	235	13.5	2.2	2.2
Metal working machinery	295	17.5	3.5	3.6
Computers and related equipment	535	35.6	6.1	7.3
Electrical machinery, equipment, supplies	1,815	40.0	8.3	9.7
Household appliances	125	40.0	13.3	7.1
Radio, TV, communication equipment	412	37.8	7.5	7.3
Electrical machinery, equipment, supplies, n.e.c. ${ }^{2}$ (not specified)	1,278	40.7	8.1	10.7
Transportation equipment	2,256	21.2	11.9	5.8
Motor vehicles and motor vehicle equipment	1.212	22.4	14.1	5.0
Aircraft and parts	437	19.6	8.9	6.2
Ship and boat building and repairing	197	16.3	17.0	2.5

Table 7-7. Employed Persons by Detailed Industry, Sex, Race, and Hispanic Origin: 1994 (continued) [In thousands]

	Percent of total			
	Total employed	Women	Black	Hispanic origin
TOTAL. 16 years and oldor	123,060	46.0	10.4	8.8
Guided missiles, space vehicles, and parts	321	24.2	5.9	10.1
- Cycles and miscellaneous transportation equipment	57	17.7	2.3	11.6
Professional and photographic equipment, watches	690	37.8	6.3	9.6
**' Scientific and controlling instruments	213	30.3	4.9	6.8
\cdots Medical, dental, optical instruments and supplies	357	44.0	6.4	12.7
Photographic oquipment and supplies	111	29.9	8.2	4.9
Toys, amusements, sporting goods	169	46.1	4.8	16.9
Miscellanoous manufacturing industries (not specified)	489	39.8	6.4	14.0
Nondurable goods	8,365	4.02	12.3	12.1
Food and kindrod products	1,749	33.7	14.1	18.3
${ }^{\text {\% }}$. Meat products	475	35.8	20.8	25.0
Dairy products	161	25.3	5.1	11.9
Canned, frozen, preserved fruits and vegetables	220	43.0	9.7	24.9
Grain mill products	141	21.5	5.4	7.7
Bakery products	240	31.8	16.4	13.0
, Sugar and confectionery products	104	44.7	16.6	16.1
Bevarage industries	203	24.6	10.7	9.7
- Miscellaneous food and kindred products (not specified)	204	39.9	16.4	24.1
Tobacco manufacture	50	30.2	23.1	4.2
Textile mill products	643	47.1	25.1	6.6
${ }_{\text {dr }}$ Knitting mills	108	64.3	15.6	11.1
Carpets and rugs	67	37.2	35.4	6.3
Yarn, throad, fabric mills	403	46.0	27.4	4.7
Apparel and other finished textile products	1,009	71.4	15.2	21.4
A Apparol and occessories, except knits	834	73.6	14.3	23.1
Miscellaneous fabricated textile products	175	60.8	19.3	13.3
Paper and allied products	703	25.0	10.6	8.3
. ${ }^{\text {a }}$ Pulp, paper, paperboard mills	293	17.2	9.2	3.9
Miscollanoous paper and pulp products	194	35.8	9.2	7.4
- Paperboard containers and baxes	217	26.1	13.6	15.0
Printing, publishing, and allied products	1,848	42.1	6.8	7.6
Newspaper publishing and printing	504	43.3	5.9	5.8
Printing, publishing, allied industries, except newspapers	1,344	41.6	7.1	8.3
Chemicals and allied products	1,259	33.3	11.7	8.0
Plastics, synthetics, resins	154	26.3	8.7	15.5
Drugs	297	46.3	11.9	5.5
Soaps and cosmetics	190	47.6	20.0	12.0
Paints, varnishes, related products	70	22.4	11.9	14.2
Industrial and miscellaneous chemicals	499	24.5	8.9	5.1
Petroleum and coal products	175	23.5	9.7	10.1
$\stackrel{\square}{\square}$ Petroleum refining	151	24.0	9.0	10.8
Rubbor and miscellaneous plastics products	795	32.2	10.4	11.0
: Tires and inner tubees	79	12.6	5.2	0.6
ri: Other rubber products, plastics footwear, belting	158	31.3	10.9	8.8
${ }^{11 / 4}$ Miscelanaous plastics products	558	35.1	10.6	13.2
Leather and leather products	135	51.2	6.3	16.8
Footwear, except rubber and plastic	71	50.8	1.9	16.0
Transportation, communications, and other public utilities	8,692	28.4	13.7	7.8
Transportation	5,587	26.0	14.1	8.7
Rairoads	288	9.3	11.3	5.9
Bus sorvice and urban transit	560	30.0	25.7	8.8
Taxicab service	132	8.4	26.8	12.4
Trucking sorvice	2,184	15.2	10.8	8.2

Table 7-7. Employed Persons by Detailed Industry, Sex, Race, and Hispanic Origin: 1994 (continued) [In thousands]

Industry		Percent of total		
	Total employed	Women	Black	Hispanic origin
TOTAL, 16 years and older	123,060	46.0	10.4	8.8
Warehousing and storage	150	25.3	11.7	16.8
U.S. Postal Service	883	38.2	21.0	8.0
Water transportation	187	15.5	13.8	5.9
Air transportation	801	35.7	11.3	8.4
Services incidental to transportation	386	57.7	5.7	12.7
Communications	1,560	45.3	13.5	6.1
Radio and TV broadcasting and cable	397	42.0	9.7	6.5
Telephone communications	1,134	46.6	14.9	6.0
Utilities and sanitary services	1,545	20.0	12.5	6.2
Electric light and power	635	21.7	8.4	4.1
Gas and steam supply systems	183	22.2	13.2	9.3
Electric and gas, and other combinations	155	25.1	17.4	4.3
Water supply and irrigation	233	16.8	12.1	7.8
Sanitary services	329	15.3	16.9	8.2
Wholesale and retail trade	25,699	47.2	8.5	9.7.
Wholesale trade	4,713	28.9	6.5	9.2
Durable goods	2,499	27.2	5.0	7.7
Motor vehicles and equipment	226	26.0	3.3	9.9
Furniture and home furnishings	106	25.4	11.3	15.6
Lumber and construction materials	176	20.2	4.5	5.5
Professional and commercial equipment and supplies	396	35.1	6.0	6.2
Metals and minerals, except petroleum	74	25.8	5.3 .	7.9
Electrical goods	305	33.0	5.0	5.1
Hardware, plumbing, heating supplies	268	26.7	4.0	5.9
Machinery, equipment, and supplies	614	24.9	2.2	5.5
Scrap and waste materials	206	16.5	11.4	15.3
Miscellaneous wholesale trade, durable goods	129	33.2	5.6	9.7
Nondurable goods	2,214	30.8	8.1	10.9
Paper and paper products	122	40.1	4.9	8.1
Drugs, chemicals, and allied products	194	37.1	7.6	7.1
Apparel, fabrics, notions	124	45.0	8.9	17.0
Groceries and related products	867	25.7	10.6	13.5
Farm products-raw materials	89	24.6	1.0	5.6
Petroleum products	134	29.3	6.3	7.1
Alcoholic beverages	126	14.2	10.4	7.8
Farm supplies	151	29.5	5.9	5.8
Miscellaneous wholesale trade nondurable goods (not specified)	407	39.2	5.8	11.3
Retail trade	20,986	51.3	8.9	9.9
Lumber and building material retailing	551	26.4	6.5	5.7
Hardware stores	219	37.0	4.7	3.9
Retail nurseries and garden stores	110	34.3	2.5	8.3
Department stores	2,202	69.4	11.6	10.2
Variety stores	134	66.8	13.8	9.6
Miscellaneous general merchandise stores	138	59.9	11.7	12.2
Grocery stores	3,071	50.5	9.2	9.3
Retail bakeries	183	59.5	8.4	11.9
Food stores, n.e.c. ${ }^{\text {a }}$	206	47.8	7.3	13.1
Motor vehicle dealers	1,121	19.3	5.4	8.6
Auto and home supply stores	424	17.1	7.0	8.7
Gasoline service stations	374	32.1	6.8	9.3
Miscellaneous vehicle dealers	102	23.5	0.3	2.1
Apparel and accessory stores, except shoe	831	73.1	11.1	12.6

Table 7-7. Employed Persons by Detailed Industry, Sex, Race, and Hispanic Origin: 1994 (continued) IIn thousands]

ndustry	Total employed	Percent of total		
		Women	Black	Hispanic origin
TOTAL. 16 years and older	123,060	46.0	10.4	8.8
Shoe stores	154	61.5	20.4	11.4
Furniture and home furnishings stores	613	37.2	7.2	6.6
Household appliance stores	116	26.9	6.6	8.1
Redio, TV, and computer stores	388	30.4	7.2	7.6
Music stores	141	39.1	5.5	8.6
Eating and drinking places	6,333	53.2	11.0	12.8
Drug stores	559	64.1	6.9	5.5
Liquor stores	131	36.6	12.2	6.7
Sporting goods, bicycles, hobby stores	402	50.9	3.3	6.8
Book and stationery stores	233	52.8	8.1	6.0
Jowalry stores	169	59.0	3.5	9.4
Gift, novalty, souvenir shops	193	82.2	3.2	4.2
Sowing, needlework, piece goods stores	60	82.0	7.2	7.6
Catalog and mail order houses	168	69.1	8.0	5.0
Vending machine operators	85	30.9	5.0	8.5
Direct selling establishments	349	75.4	4.4	9.7
Fucl dealers	130	27.5	1.6	2.9
Ratail florists	186	72.7	3.5	6.3
Finance, insurance, real estate	8.141	58.9	9.1	6.7
Banking	1,959	70.3	11.8	7.6
Savings institutions, including credit unions	320	78.1	5.8	8.2
Credit agencles, n.e.c.'	545	64.3	10.7	7.2
Security, commodity brokerage, investment companies	737	38.7	6.7	3.7
Insurance	2,472	61.2	8.9	4.6
Real estate, including real estato insurance offices	2,108	48.6	7.6	8.9
Services	42,986	61.8	11.9	7.8
Private households	976	89.3	17.5	25.4
Other service industries	42,009	61.2	11.7	7.3
Business, automobile, repair services	7,304	36.3	11.2	10.0
9 Advartising	272	52.6	5.6	4.2
Hfy Sorvices to dwellings and other buildings'	849	49.2	16.4	20.3
${ }^{1} / 1$ Personnel supply services	804	61.3	20.5	6.7
*" Computer and data processing	1,017	34.5	7.1	3.8
Detective and protective services	477	17.6	24.0	10.6
\#\#imsiness services, n.e.c. ${ }^{\text {a }}$	1,645	51.5	8.2	7.6
- Automotive rental and leasing, without drivers	165	28.8	10.5	7.6
4- Automobile parking and carwashes	196	16.1	22.1	22.5
Automotive repair and related services	1,185	10.9	6.5	12.2
-1. Eloctrical repair shops	126	13.3	5.6	12.5
Miscellaneous repair services	569	15.7	5.5	10.6
Porsonnel services, except private household	3,363	63.2	12.5	12.3
Hotols and motels	1,328	54.7	16.1	17.8
"Lodging places, except hotels and motels [200]	136	56.2	5.1	0.7
Laundry, cleaning, and garment services	480	55.7	13.6	15.7
Beauty shops	863	89.4	9.8	7.4
${ }^{*}$ Barber shops	96	22.4	23.7	10.0
\therefore Funeral service and crematories	97	31.7	5.3	5.4
Entortainment and recreation services	2,134	42.6	8.4	7.9
\cdots - Theaters and motion pictures	539	39.6	8.7	8.0
$\ldots \mathrm{y}$. Videotape rental	141	58.0	4.7	8.2
- Bowling centers	53	43.4	1.7	7.6
* Miscollaneous entertainment and recreation services	1,402	42.2	8.9	7.9
Professional and related sorvices	29,030	68.8	12.0	6.0

Table 7-7. Employed Persons by Detailed Industry, Sex, Race, and Hispanic Origin: 1994 (continued) IIn thousands]

Industry		Percent of total		
	Total employed	Women	Black	Hispanic origin
TOTAL, 16 years and older	123,060	46.0	10.4	8.8
Hospitals	5,009	76.5	16.4	5.5
Health services, except hospitals	5,579	78.9	13.3	6.8
Offices and clinics of physicians	1,404	74.9	5.3	7.8
Offices and clinics of dentists	596	77.4	2.2	7.2
Offices and clinics of chiropractors	105	59.8	0.2	4.5
Offices and clinics of optometrists	71	65.0	0.6	7.4
Offices and clinics of health practitioners, n.e.c. ${ }^{\text {a }}$	117	69.6	6.5	2.8
Nursing and personal care facilities	1,692	84.7	23.2	5.9
Health services, n.e.c. ${ }^{\text {a }}$	1,593	79.5	16.9	7.3
Educational services	9,703	68.2	11.1	6.3
Elementary and secondary schools	6.447	74.6	11.8	7.1
Colleges and universities	2,743	52.3	9.7	4.7
Vocational schools	102	53.6	13.7	5.7
Libraries	196	84.2	12.1	3.6
Educational services, n.e.c. ${ }^{\text {a }}$	216	71.6	7.0	3.6
Social services	3,046	81.3	17.5	7.8
Job training and vocational rehabilitation services	241	51.9	15.2	4.2
Child day care services	902	95.8	16.8	6.1
Family child care homes	433	98.6	10.8	8.9
Residential care facilities, without nursing	442	73.0	18.4	9.7
Social services, n.e.c. ${ }^{\text {a }}$	1,027	71.7	21.2	9.0
Other professional services	5,694	46.3	5.6	4.4
Legal services	1,286	55.0	5.2	5.3
Museums, art galleries, zoos	99	60.1	9.0	3.3
Labor unions	69	44.1	6.5	3.8
Religious organizations	873	45.1	8.3	5.4
Membership organizations, n.e.c. ${ }^{\text {a }}$	363	63.3	11.3	4.1
Engineering, architectural, surveying services	795	21.7	3.0	4.6
Accounting, auditing, bookkeeping services	640	54.1	4.0	3.2
Research, development, testing services	639	41.3	5.5	3.1
Management and public relations services	659	43.4	5.2	4.2
Miscellaneous professional and related services	271	53.6	1.4	2.6
Forestry and fisheries	177	23.5	4.9	10.8
Forestry	112	30.1	6.2	12.8
Fishing, hunting, trapping	65	12.2	2.4	5.8
Public administration	5,814	43.0	16.4	5.8
Executive and legislative offices	150	61.4	9.6	3.1
General government, n.e.c. ${ }^{\text {a }}$	574	51.0	19.7	5.9
Justice, public order, safety	2,264	30.9	14.7	5.9
Public finance, taxation, monetary policy	420	60.7	14.5	5.3
Administration of human resources programs	761	67.5	23.2	6.8
Administration of environmental quality and housing programs	281	36.0	11.4	4.4
Administration of economic programs	613	44.3	14.9	6.0
National security and international affairs	751	36.3	18.0	6.0

${ }^{\text {a }}$ N.e.c. is an abbreviation for "not elsewhere classified" and designates broad categories of occupations that cannot be more specifically identified. Generally, data for occupations with fewer than 50,000 employed are not published separately but are included in the totals for the appropriate categories shown.

Note: Data for 1994 are not directly comparable with data for 1993 and earlier years. For additional information, see "Revisions in the Current Population Survey Effective January 1994" in the February 1994 issue of Employment and Earnings.

Source: U.S. Department of Labor, 1995.

Table 7-8. Inventory of Commercial Office Space for the Largest Metropolitan Areas: 1994 [As of December 31, except population as of July 1. Data based on responses from individuals knowledgeable in the local markets. Represents primarily the metropolitan areas as indicated, but in many cases may exclude outlying counties beyond the central portion.]

Motropolitan areas	Resident population, 1992 (1.000)	$\begin{gathered} \text { Inventory } \\ (1,000 \\ \text { sq. ft.) } \end{gathered}$	Metropolitan areas	Resident population, 1992 $(1,000)$	Inventory 11,000 sq. ft .)
Albany-Schonectady-Troy, NY MSA	872	13,043	Milwaukee-Waukesha, WI PMSA	1,450	24,724
Atlanta, GA MSA	3,143	98,145	Minneapolis-St. Paul, MN-WI MSA	2,618	46,308
Austin-San Marcos, TX MSA	901	19,999	Nashville, TN MSA	1,023	12,454
Baltimoro, MD PMSA	2,433	23,701	New Jersey-Central/Northern ${ }^{\text {b }}$	3,897	151,094
Birmingham, AL MSA	859	15,360	New Orleans, LA MSA	1,303	21,737
Boston, MA-NH PMASA	3,211	87,822	New York City, NY PSMA ${ }^{\text {c }}$	9,705	450,422
Buffalo-Niagra Falls, NY MSA	1,194	7,491	Nassau-Suffolk, NY PMSA	2,640	35,872
Charlotte, NC MSA	1,212	19,593	Norfolk-Virginia Beach-Newport News, VA MSA	1,497	16,434
Chicago, IL PMSA	7,561	147,637	Oakland, CA PMSA	2,148	42,337
Clncinnati, OH PMSA	1,560	21,887	Oklahoma City, OK MSA	984	15,460
Cleveland-Lorain-Elyria, OH PMSA	2,221	35,646	Orange County, CA PMSA	2,485	54,436
Columbus, OH MSA	1,394	25,155	Orlando, FL MSA	1,305	20,932
Dallas, TX PMSA	4,215	116,348	Philadelphia, PA PMSA ${ }^{\text {d }}$	4,944	82,888
Deyton, OH MSA	962	6,717	Phoenix, AZ MSA	2,330	22,907
Denvar, CO PMSA	1,715	55,207	Pittsburgh, PA MSA	2,406	28,463
Detrot, MI PMSA	4,308	55,651	Portland-Vancouver, OR PMSA	1,897	16,430
Fort Lauderdalo, FL PMSA	1,301	16,035	Providence, RI MSA	1,131	6,102
Fort Worth, TX PMSA	1,419	18,038	Raleigh-Durham-Chapel Hill, NC MSA	909	16,919
Frasno, CA MSA	805	11,875	Richmond-Petersburg, VA MSA	896	19,377
Grand Rapids-Muskegon-Holland, MI MSA	964	7,963	Sacramento-Yolo, CA MSA	1,563	25,993
Greansboro-Winston Salem-High Point, NC MSA'	1,078	21,707	St. Louis, MO MSA	2,519	38,842
Groenville-Spartanburg-Anderson, SC MSA	853	4,064	Salt Lake City-Ogden, UT MSA	1,128	10,647
Hartord. CT MSA	1,156	20,877	San Antonio, TX MSA	1,379	15,804
Honolulu, HI MSA	863	14,582	San Diego, CA MSA ${ }^{\text {a }}$	2,601	42,506
Houston, TX PSMA	3,530	111,802	San Francisco, CA PMSA	2,523	90,055
indianapolis, IN MSA	1,424	18,425	San Jose, CA PMSA	1,528	34,500
Jacksonville, FL MSA	953	19,272	Seattle, WA PMSA'	2,124	29,562
Kansas City, MO-KS MSA	1,617	34,226	Syracuse, NY MSA	752	8,195
Las Vegas, NV MSA	971	6,346	Tampa-St. Petersburg-Clearwater, FL MSA ${ }^{\text {g }}$	2,107	19,714
Los Angeles, CA PMSA	9,054	143,379	Tulsa, OK MSA	732	12,074
Louisville, KY MSA	968	13,730	Washington, DC-MD-VA-WV PMSA ${ }^{\text {h }}$	4,630	168,215
Momphis, TN MSA	1,034	18,408	West Palm Beach-Boca Raton, FL MSA	901	6,707
Miami, FL PMSA	2,008	21,941	Wichita, KS MSA	501	5,800

MSA = metropolitan statistical area.
PMSA = primary metropolitan statistical area.
Represents only the suburban portion of the metropolitan area.
Data are for area identified by source as New Jersey-Central/Northern with a market area of Bergen, Essex, Hudson, Morris, Passaic, Hunterdon, Mercer, Middelsex, Monmouth, Somerset, and Union Counties.
c Represents primarily Brooklyn, Manhattan, Queens, Rockland, and Westchester Counties.
Represents only the Pennsylvania portion of the metropolitan area.
a Represents only Bexar County.
Represents only the central business district portion of Seattle.
${ }_{\mathrm{h}}^{\mathrm{g}}$ Represents only Pinneallas and Hillsborough Counties.
h Excludes the Maryland portion of the metropolitan area and some outlying counties in Virginia.
Source: U.S. Bureau of the Census, 1995.

Table 7-9. Commercial Office Buildings-Selected Characteristics: 1992
[Excludes buildings 1,000 square feet or smaller. Building type based on predominant activity in which the occupants were engaged. Based on a sample survey of building representatives conducted between August and December 1992; therefore, subject to sampling variability.]

Characteristic	Number of buildings $(1,000)$	Characteristic	Number of buildings $(1,000)$
All buildings	4,806	Region	
		Northeast	771
		Midwest	1,202
Year constructed		South	1,963
1899 or before	169	West	870
1900 to 1919	255		
1920 to 1945	724	Fuels used alone or in combination	
- 1946 to 1959	880	Electricity	4,616
1960 to 1969	783	Natural gas	2,665
1970 to 1979	982	Fuel oil	559
1980 to 1989	884	Propane	337
1990 to 1992	128	District heat	95
		District chilled water	28
Principal activity within building		Any other	163
Public assembly ${ }^{\text {a }}$	644		
Education	301	Workers	
Food sales	130	Fewer than 5	2,718
Food service	260	5 to 9	895
Health care	63	10 to 19	561
Lodging	154	20 to 49	405
Mercantile/services	1,272	50 to 99	130
Office	749	100 to 249	64
Parking garage	24	250 or more	31
Public order and safety	60		
Warehouse	761	Weekly operating hours	
Other	69	39 or less	1,039
Vacant	319	40 to 48	1,278
		49 to 60	1,004
Government owned	599	61 to 84	645
Nongovernment owned	4,206	85 to 167	478
		168 (open continuously)	362

a Includes religious worship.
Note: Composition of regions is presented in section 2.4.
Source: U.S. Bureau of the Census, 1995.

APPENDIX 7A
EMPLOYMENT AND EARNINGS
TABLE OF CONTENTS

Employment and Earnings

Editors: Gloria Peterson Green, Eugene H. Becker
Editors' Note
With this issue, seasonally adjusted unemployment and other labor force series derived from the Current Population Survey (household survey) have been revised to reflect updated seasonal adjustment factors. Because of the survey changes introduced in January 1994, only seasonally adjusted data for 1994 have been revised. Revised current data appear in summary table A, tables A-1 through A-12, and D-1 through D-10.
The article appearing on page 10 discusses the effect of the revisions, describes the seasonal adjustment method, and includes the seasonal adjustment factors to be used to calculate the major labor force series for January-June 1995.
Annual averages for 1994 may differ slightly from the results that would be obtained by averaging the 12 published monthly estimates, because they reflect the use of a revised set of survey data for January that incorporates corrections to some minor editing problems in the original survey data for that month.

Contents

Historical

$$
\begin{array}{ll}
\text { A-1. Employment status of the civilian soainstitutional population } 16 \text { years and over, } 1961 \text { to date } \ldots \ldots \ldots \text {......... } 16 \\
\text { A-2. Employment status of the civilian noninstitutional population } 16 \text { years and over by sex, } 1984 \text { to date....... } 17
\end{array}
$$

Seasonally Adjusted Data
Employment Status
A-3. Employment status of the civilian noninstitutioal popuiation by sex and age 18
A-4. Employment status of the civilian noninstitutional population by race, sex. age, and Hispanic origin 19
A-5. Employment and unemployed full-and part-ime workers by sex and age 21
Characterlatlcs of the Employed
A-6. Employed persons by marital starus, occupation, class of worker, and part-ime status 22
A-7. Employed persons by age and sex 23
Charactoristics of the Unemployed
A-8. Unermployed persons by age and sex 23
A-9. Unemployment rates by age and sex 24
A-10. Unemployment rates by occupation, industry, and selected demographic characteristics 25
A-11. Unemployed persons by reason for unemployment 26
A-12. "'Unemployed persons by duration of unemployment 26
Not Seasonally Adjusted Data
Employment Status
A-13. Employment status of the civilian noninstitutional population by age, sex, and race 27
A-14. Employment status of the civilian noniostitutional population by race, sex, and age 30
A-15. Employment status of the civilian noninstitational population 16 to 24 years of age by school enrollment, educational atrainment, sex, race, and Hispanic origin 31
A-16. Employed and unemployed full- and part-ime workers by age, sex, and race 33
Characteristics of the Employed
A-17. Enaployed persons by occupation, sex, and age 34
A-18. Employed persons by occupation, race, and sex 35
A-19. Employed persons by industry and occupation 36
A-20. Employed persons in agriculture and nonagricutural industrics by age, sex, and class of worker 37
A-21. Persons at work in agriculture and nonagricultural industries by hours of work 38
A-22. Persons at work 1 to 34 hours in all and nonagricultural industries by reason for working less than 35 hours and usual full- or part-time status 38
A-23. Persons at work in nonagricultural industries by class of worker and usual full- or part-time status 39
A-24. Persons at work in nonagricultural industries by age, sex, race, marital stanus, and usual full-or part-time status 40
A-25. Persons at work in nonfarm occupations by sex and usual full- or part-ime status 41
Characteristles of the Unemployed
A-26. Unemployed persons by marital stanus, race, age, and sex 42
A-27. Unemployed persons by occupation and sex 43
A-28. Unemployed persons by industry and sex 44
A-29. Unemployed persons by reason for unemployment, sex, age, and race 45
A-30. Unemployed persons by reason for unemployment, sex, age, and duration of unemployment 46
A-31. Unemployed persons, total and full-time workers, by duration of unemployment 46
A-32. Unemployed persons by age, sex, race, marital status, and duration of unemployment 47
A-33. Unemployed persons by occupation, industry, and duration of unemployment 48
Persons Not in' the Labor Force
A-34. Persons not in the labor force by desire and availability for work, age, and sex 48
Multiple Jobholders
A-35. Multiple jobholders by selected demographic and economic characteristics 49
Vietnam-ara Veterans and Nonveterans
A-36. Employment status of male Vietnam-era veterans and nonveterans by age 49

Monthly Establishment Data

Historical
Page
B-1. Employees on nonfarm payrolls by major industry, 1944 to date 50
B-2. Average hours and eamings of production or nonsupervisory workers on private nonfarm payrolls by major industry, 1964 to date 51
Seasonally Adjusted Data
Employment
National
B-3. Employees on nonfarm payrolls by major industry and selected component groups 54
B-4. Women employees on nonfarm payrolls by major industry and manufacturing group 56
B-5. Production or nonsupervisory workers on private nonfarm payrolls by major industry and manufacturing group 57
B-6. Diffusion indexes of employment change 58
States
B-7. Employees on nonfarm payrolls by State and major industry 59
Hours and Earnings
Natlonal
B-8. Average weekly hours of production or nonsupervisory workers on private nonfarm payrolls by major industry and manufacturing group 67
B-9. Indexes of aggregate weekly hours of production or nonsupervisory workers on private nonfarm payrolls by major industry and manufacturing group 68
B-i0. Hours of wage and salary workers on nonfarm payrolls by major industry 69
B-11. Average hourly and weekly earnings of production or nonsupervisory workers on private
nonfarm payrolls by major industry 70
Not Seasonally Adjusted Data
Employment
National
B-12. Employees on nonfarm payrolis by detailed industry 71
B-13. Women employees on nonfarm payrolls by major industry and manufacturing group 83
States and Areas
B-14. Employees on aonfarm payrolls in States and selected areas by major industry 84
Hours and Earnings
National
B-15. Average hours and eamings of production or nonsupervisory workers on private nonfarm payrolls by detailed industry 102
B-15a. Average hourly eamings in aircraft (SIC 3721) and guided missiles and space vehicles (SIC 3761) manufacturing 122
B-16. Average hourly earnings, excluding overtime, of production workers on manufacturing payrolls 123
B-17. Average hourly and weekly earnings of production or nonsupervisory workers on private
nonfarm payrolls by major industry, in curreat and constant (1982) dollars 124
States and Areas
B-18. Average hours and eamings of production workers on manufacturing payrolls in States and selected areas 125
Monthly Regional, State, and Area Labor Force Data
Seasonally Adjusted Data
C-1. Employment status of the civilian popuiation for census regions and divisions 129
C-2. Labor force status by State 131
Not Seasonally Adjusted Data
C-3. Labor force status by State and selected metropolitan areas 136
Seasonally Adjusted Data
Employment Status
D-1. Employment status of the civilian noninstitutional population by sex and age 141
D-2. Employment status of the civilian noninstinutional population by race, sex, age, and Hispanic origin 142
Characterlstles of the Employed
D-3. Employed and unemployed full- and part-ime workers by sex and age 144
D-4. Employed persons by marital stans, occupation, class of worker, and part-ime status 145
D-5. Employed persons by age and sex 146Hilil
Characteristles of the Unemployed
D-6. Uneroployed persons by age and sex 146
D-7. Uncraployment rates by age and sex 147
D-8. Uneraployment rates by occupation, industry, and selected demographic characteristics 148
D-9. Unemployed persons by reason for uneroployment 149
D-10. Unemployed persons by duration of unemployment 149
Not Seasonally Adjusted Data
Employment Status
D-11. Employment status of the civilian noninstitutional population by sex, age, race, and Hispanic origin 150
D-12. Employment status of the Mexican. Puerto Rican, and Cuban origin population by sex and age 151
Characteristlcs of the Employed
D-13. Employed white, black, and Hispanic-origin workers by sex, occupation, class of worker, and full-and part-time starus 152
D-14. Employed Mexican, Puerto Rican, and Cuban-origin workers by sex, oceupation, class of worker, and full- and part-time stams 153
D-15. Employed persons by age, sex, race, and Hispanic origin 154
Characteristics of the Unemployed
D-16. Unemployment rates by age, sex, race, and Hispanic origin 154
D-17. Unemployed persons by reason for unemployment, race, and Hispanic origin 155
D-18. Unemployed persons by duration of unemployment, race, and Hispanic origin 155
Weckly Earnings Data
D-19. Median weekly earnings of full-time wage and salary workers by selected characteristics 156
D-20. Median weekly earnings of part-time wage and salary workers by selected characteristies 157
D-21. Median weekly eamings of full-time wage and salary workers by occurpation and sex 158
Vatnam-era Veterans and Nonveterans Data
D-22. Employment status of male Vietnam-era veterans and noaveterans by age 159
D-23. Employment status of male Vietnam-era veterans and nonveterans by age, race, and Hispanic origin 159
Employment Status

1. Employment status of the civilian noninstitutional population, 1931 to date 162
Employment status of the civilian noninstitutional population 16 years and over by sex, 1962 to date 163
Employment status of the civilian noninstintional population by age, sex, and race 164
Employment status of the Hispanic-origin population by age and sex 167
Employment status of the civilian noninstiutional population by sex, age, race, and Hispanic origin 168
2. Employment status of the Mexican, Puerto Rican, and Cuban-origin population by sex and age 169
3. Employment status of the civilian noninstitutional population 16 to 24 years of age by school enrollment, educational attainrnent, sex, race, and Hispanic origin 170
4. Employed and unemployed full- and part-lime workers by age, sex, and race 172
Characteristics of the Employed
5. Employed persons by occupation, sex, and age 173
6. Employed persons by occupation, race, and sex 174
7. Employed persons by detailed occupation, sex, race, and Hispanic origin 175
8. Employed white, black, and Hispanic-origin workers by sex, occupation, class of worker. and full- or part-time status 181
9. Employed Mexican, Puerto Rican, and Cuban-origin workers by sex, occupation, class of worker, and full- or part-lime status 182
10. Employed persons in nonagricultural industries by age, sex, and race. 183
11. Employed persons in agriculture and nonagricultural industries by age, sex, and class of worker 184
12. Employed persons in nonagricultural industries by sex and class of worker 185
13. Employed persons by industry, sex, race, and occupation 186
14. Employed persons by detailed industry, sex, race, and Hispanic origin 188
15. Persons at work in agricultare and nonagricultural industries by hours of work 192
16. Persons at work 1 to 34 hours in all and nonagricultural industries by reason for working less than 35 hours and usual full- or par-time starus 192
17. Persons at work in nonagricultural industries by class of worker and usual full- or part-ime status 193
18. Persons at work in nonagricultural industries by sex, age, race, marital status, and usual full- or part-time status 194
19. Persons at work in nonfarm occupations by sex and usual fuil- or part-ime starus 195
Characteristics of the Unemployed
20. Unemployed persons by marital status, race, age, and sex 196
21. Unemployed persons by occupation and sex 197
22. Unemployed persons by industry and sex 198
23. Unemployed persons by reason for unemployment, sex, and age 199
24. Unemployed persons by reason for unemployment, race, and Hispanic origin 200
25. Unemployed persons by reason for unemployment, sex, age, and duration of unemployment 201
26. Unemployed total and full-time workers by duration of unemployment 201
27. Unemployed persons by selected demographic characteristics and duration of unemployment 202
28. Unemployed persons by occupation, industry, and duration of unemployment 203
29. Unemployed jobseckers by sex, age, race, and active jobsearch methods used 204
30. Unemployed jobseekers by sex, reason for unemployment, and active jobsearch methods used 205
Persons Not In the Labor Force
31. Persons not in the labor force by desire and availability for work, age, and sex 206
Multiple Jobholders
32. Multiple jobholders by selected demographic and economic characteristics 206
Weekly Earnings Data
33. Median weekly earnings of full-time wage and salary workers by selected characteristics 207
34. Median weekly eamings of part-time wage and salary workers by selected characteristics 208
35. Median weekly camings of full-time wage and salary workers by detailed occupation and sex 209

Annual Averages-Household Data-Continued

Page
Union Affllation Data
40. Union affiliation of employed wage and salary workers by selected characteristics 214
41. Median weekly earnings of full-tine wage and salary workers by union affliation and seloctod characteristics 215
42. Union affiliation of employed wage and salary workers by occupation and industry 216
43. Median weekly eamings of full-time wage and salary workers by union affliation, occupation, and industry 217
Employea Absences Data
44. Absences from work of employed full-ime wage and salary workers by age and sex 218
45. Absences from work of employed full-time wase and salary workers by oceupation and industry 219
Vietnam-era Veterans and Nonveterans Data
46. Employment status of male Viemam-era veterans and nonveterans by age 220
47. Employment status of male Vietnam-era veterans and nonveterans by age, race, and Hispanic origin 221
Annual Averages-Establishment Data
Employment-Natlonal
48. Employecs on nonfarm payrolls by major industry and selected component groups 222
49. Production or nonsupervisory workers on private nonfarm payrolls by major industry and manufacturing group 224
Hours and Earnings-National
50. Average hours and eamings of production or nonsupervisory workers on private nonfarm payrolls by major industry and manufacturing group 225

APPENDIX 7B

EMPLOYED PERSONS BY DETAILED OCCUPATION, SEX, RACE, AND HISPANIC ORIGIN

1t. Employed persons by detailed occupation, sex, race, and Hispanic origin

See foomotes at end of table.
11. Employed persons by detalled occupation, sex, race, and Hispanic origin-Continued

Occupation	1994			
	Total employed	Percent of total:		
		Wome	Black	Hispanic origin
Social, recreation, and rellquous workers 1,209	51.4	17.3	5.7
- Social woxker ...	667	69.3	24.0	7.0
Recreation workers ...	105	70.5	14.4	3.8
Clergy \qquad	371	11.1	8.7	3.2
	861	24.8	3.3	3.0
	821	24.6	3.3	3.1
Winters, ertists, entertainers, and athletes ..	2,011	47.8	5.3	5.3
Authorsen-.....................	112	53.3	2.8	2.9
Tectrucal writers ..	72	57.8	4.0	. 2
	548	55.3	3.4	5.8
Designers	164	31.8	10.2	6.1
Actort and directors ...	- 86	41.2	3.8	3.2
	. 225	50.5	4.6	5.2
" Photographers ..	148	28.4	4.6	5.1
	267	48.8	5.4	3.6
Eokorr and roporters.......	142	63.1	5.0	3.9
Autiviesn..	81	21.8	10.5	2.8
Tectrical, sates. and admunistrative support				
	37.306	64.3	9.7	7.1
Tectmians and related support	- 3,869	52.0	9.7	5.3
Heath technotogists and tectrikians	1,590	81.6	13.9	5.3
Cmucat laboratory technotogists and technicrans ..	- 341	77.2	13.9	4.4
Dendal hygenistsnn...	- 97	100.0	. 2	2.9
Radiologic :echricasns ...n..	- 154	74.1	8.1	7.6
Lioensed practical nurses ...	- 397	95.1	18.7	4.3
Engmeenng and related tectnologists and technicians ..	- $\begin{aligned} & 916 \\ & 396\end{aligned}$	19.5	7.4	6.2
Electrcal and alectronic tectnicrans ..	. 316	15.1	9.9	5.9
Dratung ccoupations ...	- 239	19.8	4.1	4.5
	- 68	7.8 3.7	1.5	3.8
Science rectwatns ...	266	36.7	9.5	4.3
Biological tochnicians \qquad	89	52.9	10.4	1.2
Cherrical technicans	77	25.5	8.8	6.6
Tectrucians, except health, engineering, and science ...	1,098	40.0	5.7	4.8
Arplant pinats and navgators 104	2.6	1.5	. 4
Computer programmersn..	- 549	29.3	6.0	3.5
Legal ascistints	262	79.9	5.4	9.4
Seles oceupetionsnnone...	14,817	49.1	7.1	6.8
Superviors and proprotors ..	. 4,443	37.5	5.3	5.8
Sales represontatives, tinence and business services ...	- 2,361	40.0	4.8	4.1
Insurance sales \qquad Res estate salas	. 601	35.1	5.9	4.1
	. 708	48.4	2.6	3.9
	. 391	29.9	4.2	2.9
Adverising and reisted sales 147	51.6	4.5	2.8
Sales occupations, other business services 515	38.4	7.0	5.8
Sates representatives, commodittes, except retail 1.476	23.3	2.8	4.2
Sates representatives, mining, manulacturing, and wholesalo ..	. 1,445	23.5	2.9	4.2
Ssles workers, retsin and personal sornces 6.440	66.1	10.3	9.1
Sates workers, motor vehicles and boats ..	. 284	6.4	6.3	7.9
Sales workers, apparet ...me...	. 442	80.8	10.0	11.1
Sties workers, stroes 110	67.9	21.3	10.2
Sales workors, furrtuxe and home furrishings ..	. 159	49.6	4.7	5.7
Sales morkers, rajio, television, hi-fi, and appliances ..	. 228	25.0	7.5	8.1
Sales workers, hardware and bunding supplies ..	. 253	19.8	4.8	5.4
Sales workers, parts 167	8.9	4.0	10.9
Sales workers. Other commodtues ..	. 1,379	70.8	7.2	7.8
Sates courter ciorks \qquad	. 209	65.4	8.6	6.2
Cethers 2.745	79.8	14.2	10.1
Stret end door-to-door sates workors ...	- 335	74.4	6.1	10.1
News vendors 130	38.8	3.1	6.7
Satestelated occupations 96	67.3	3.6	6.4
Demonstrators, promoters, and models	. 63	82.1	5.5	9.3
Admushative support occupations, includeng elerical	.. 18,620	78.9	11.8	7.6
Suporvsors. admur strative support 753	59.7	13.6	6.9
Supervisors. general othce 465	66.4	13.3	6.8
Supervisors. !mancial records processing	. 97	80.4	8.7	. 9
Supervisxs. disuritution, scherfuling, and adjusting clerks	.. 167	32.1	16.2	10.8
Computer equmperit oporators ..	550	60.7	14.1	6.9
Comoulor operators Secretanes, stenograpters, and typists 9.2				6.9
				6.7

11. Employed persons by detailed occupation, sex, race, and Hispanic origin-Continued

inumbers in thousands)	

See footnotes at end of table.

HOUSEHOLD DATA
ANNUAL AVERAGES
11. Employed persons by detailed occupation, sex, race, and Hispanic origin-Continued

Mbumbers in Inowisendsy

	1994			
	$\left\|\begin{array}{c} \text { Total } \\ \text { employed } \end{array}\right\|$	Percent of total:		
\therefore		Women	Black	Hispanic origin
Food couriter, tountain and related occupations ..	351	70.2	11.2	8.9
Kitchen workers, lood proparation ...	- 265	73.7	9.7	9.8
	. 433	47.6	12.8	21.8
	- 679	48.6	16.9	19.7
Heath service occupations...	2.157	87.9	26.4	8.9
Dental assistanks............	188	96.6	2.7	10.2
	. 333	78.1	25.6	7.8
Nurtung ades, orderlies, and attendants ..	. 1.636	86.8	29.3	8.9
Creanng and building service occupations ...	2.948	45.2	22.4	17.7
Supervisors	160	40.8	23.8	16.8
Maids and tho	680	83.3	27.9	20.2
Jamtors and clea	2.048	34.0	20.8	17.1
Past controt occupatuons	50	5.7	10.2	5.2
Personal service occupations ..	2.782	80.1	13.6	8.3
Supervisors	127	69.5	7.0	2.2
Batbers	98	21.8	27.6	10.3
Hairdressers and cosmetologists 753	90.6	10.3	8.0
	. 201	39.0	10.2	6.7
Public transportation attendants ..	- 104	81.1	13.9	5.7
Wellare service sides	81	84.8	29.6	15.2
Famiy chid care providers 428	98.7	10.8	9.0
Earty chidhood teachers' assistants ..	. 416	96.4	14.4	7.5
Precision production, cratt, and repair ...	-13,489	9.3	7.7	10.4
Mechisrics and repairars 4,419	4.5	7.9	8.2
	- 236	9.9	5.3	6.5
Mectunice and repairers, except supervisors ..	- 4.183	4.2	8.1	8.3
Vehicte 2 zo moble equipment mechanics and repairers 1.734	1.2	6.6	9.7
	. 864	1.0	6.8	11.4
Bus, truck, and stationary engine mechanics ...	- 306	4	9.1	6.6
Arcraft engine mechanics ..	. 129	4.6	6.3	7.0
Small engine repairers 52		2.9	6.8
Automobite body and related repairers ..	. 186	. 4	1.6	12.5
Heavy equpment mechanics 151	1.1	5.1	7.6
Industral mectinery repairers 561	3.2	9.6	7.0
	666	12.4	9.8	7.0
	- 160	7.4	11.1	10.3
Dula processing equipment repaivers \qquad Teleptione instathers and repairers \qquad	.. 163	18.0	7.6	3.6
	.. 191	16.8	9.9	7.5
	.. 277	. 5	5.7	7.3
	.. 923	5.8	9.0	7.7
Otice machine repairers Miltwights \qquad	... 61	2.1	2.4	2.0
	. 80	4.2	2.8	
Construction trades	5.008	2.2	6.5	11.4
Supenvisors	704	1.4	4.6	4.6
Constructicn trades, except supervisors 4.304	2.3	6.9	12.5
	... 190	. 6	15.0	16.7
Brckrmasons and stonemasons The setters, hard and soft	.. 56	3.0	3.6	11.1
Cappet installors 114	2.4	4.2	15.1
Capenters 1.265	1.0	4.6	9.9
	154	1.7	4.6	24.6
Electricians.	659	2.1	6.1	6.3
Eectncal power installers and repahers 116	1.8	13.1	6.9
Painters, construction and maintenance 543	63	7.5	17.7
Pxembers, pppefters, and steamftters 508	. 7	7.2	12.4
Concrete and terrazo linishers insulation workers	... 75	. 3	19.3	19.3
	... 64	2.5	13.0	15.7
Insulation workers Rocters	... 180		6.3	20.7
Exuscive octurations	142	1.0	5.9	8.5
Precasion production occupation	3.921	23.9	9.0	11.8
	1.254	18.8	8.8	9.8
Precrson motalworking	903	6.5	6.0	6.2
Tool and die makers ..	141	4.5	3.3	. 8
Macturnts m..	492	4.4	7.6	6.4
Precrous sknes and meals workers (iewelers) ..	56	23.6	. 8	22.2
	127	8.3	6.2	4.0
Precision woodworking occupations \qquad Cabmet makers and bench carpenters \qquad	... 132	10.8	7.1	- 6.6
	... 87	4.4	6.7	5.2
Precision lextite, apparei, and furnishings machine workers ..	. 214	54.5	8.9	20.4
Dressmakers ...	82	95.8	6.5	12.4
	61	24.3	7.6	24.6

See tootnotes at end of table.
11. Employed persons by detailed occupation, sex, race, and Hispanic origin-Continued
(Numbers in inousands)

See footnotes at end of table.

HOUSEHOLD DATA

ANNUAL AVERAGES

11. Employed persons by detalled occupation, sex, race, and Hispanic origin-Continued

NOTE: Generalty, data for occupations with fower than 50.000 employed are not published separately but are included in the totals for the appropriate categories shown. Data for 1994 are not directly
comparable with data for 1993 and eantier years. For additional information, see "Revisions in the Current Population Survey Effective January 1994" in the February 1994 issue of Employment and Eamings.

APPENDIX 7C
ESTABLISHMENT DATA: ANNUAL AVERAGES BY MAJOR INDUSTRY AND MANUFACTURING GROUP (NONFARM)
48. Employees on nonfarm payrolls by major industry and manufacturing group.
(In thousands)

Industry	1991	1992	1983	1994°
Total	108,256	108,604	110,525	113.423
Total private ...	89.854	89.959	91.708	94,382
Goods-producing	23.745	23.231	23,256	23,584
Mining	689	635	611	604
Metal mining ..	55.9	53.2	50.4	50.7
Coal mining	135.5	126.8	109.1	113.8
Oil and gas extraction.	392.9	352.6	350.8	338.8
Nonmetallic minerals, except fueis ..	104.5	101.8	100.8	101.0
Construction	4.650	4.492	4,642	4,916
General building contractors	1.140.4	1,076.8	1,110.8	1,166.9
Heavy construction, except building	726.6	711.2	707.5	720.8
Special trade contractors ..	2.783 .3	2,704.1	2,823.3	3,028.2
Manufacturing	18.406	18,104	18,003	18.064
Durable goods ...	10,569	10,277	10.172	10.267
Lumber and wood products ...	675.2	679.9	703.1	731.2
Furniture and fixtures	474.7	477.7	485.2	495.8
Stone, clay. and glass products	521.5	513.3	515.8	529.3
Primary metal industries \qquad Blast furnaces and basic steel	722.6	694.5	679.3	686.5
products	262.7	250.3	238.8	233.9
Fabricated metal products ..	1,355.1	1,329.1	1,332.5	1.366 .4
Industrial machinery and equipment	1.999.6	1.928.6	1,918.4	1.944.7
Electronic and other electrical equipment \qquad	1.591 .1	1,528.1	1.520.2	1,551.8
Transportation equipment ..	1,890.0	1,829.6	1.750 .2	1.728 .4
Motor vehicles and equipment	788.8	812.5	832.6	885.5
Aircraft and parts	669.2	611.7	541.8	479.0
instruments and related products	974.0	928.5	892.6	854.8
Miscellaneous manufacturing ..	365.5	367.6	374.6	378.1
Nondurable goods	7.837	7.827	7.831	7,797
Food and kindred products ..	1,666.9	1,662.5	1,675.6	1,667.2
Tobacco products...	49.0	47.5	42.8	39.3
Textile mill products	670.0	674.1	674.8	672:1
Apparel and other textile products.	1,006.0	1,007.2	984.6	954.4
Paper and allied products ..	687.9	690.3	689.4	684.0
Printing and publishing	1,535.6	1,506.5	1.513.1	1.528.7
Chemicals and allied products	1.075.9	1,084.1	1.078 .4	1.053 .7
Petroleum and coal products ..	160.0	157.6	151.3	148.2
Rubber and misc. plastics products..	861.9	877.6	903.8	934.6
Leather and leather products ..	123.7	119.9	117.5	114.5
Service-producing	84,511	85.373	87,269	89.839
Transportation and public utilities	5,762	5.721	5.787	5.842
Transportation	3.502	3.498	3,587	3,666
Rairoad transportation ..	262.0	254.3	249.9	244.9
Local and interurban passenger transit\|	354.1	361.4	374.1	387.4
Trucking and warehousing ..	1.606 .0	1.611 .2	1.684 .8	1.748 .7
Water transportation ..	183.6	173.3	166.6	166.3
Transportation by air ..	732.7	730.1	736.5	733.5
Pipelines, except natural gas ...	19.0	19.2	18.4	17.7
Transporation services ..	344.0	348.4	356.4	367.3
Communications and public utilities	2.260	2.223	2.201	2.176
Communications ...	1.298.8	1.268 .9	1.257 .3	1,255.2
Electric. gas, and santary services	961.2	954.0	943.0	920.5

See footnotes at end of table.
48. Employees on nonfarm payrolls by major industry and manufacturing group-Continued
(in thousands)

Industry	1991	1992	1993	1994°
Wholesale trade ...	6,081	5.997	5.958	6,059
Durabie goods ..	3,531	3,446	3,410	3.460
${ }_{3}$ Nondurable goods ...	2.550	2.552	2,549	2,598
Retall trade	19,284	19,356	19.717	20.303
Bunding matera's and garden supplies.	746.5	757.7	780.8	837.7
General merchandise stores ..	2.452 .8	2.451 .0	$2,460.6$	2.468 .1
Food stores	3,203.7	3,179.8	3,208.4	3,243.2
Aulomotive dealors and service stations \qquad	1,983.8	1,966.3	2,020.7	2,147.4
Apparet and accessory stores ..	1,150.6	1,130.9	1.147 .4	1,149.8
Furnture and home lurnishings stores	801.4	799.8	828.2	895.6
Eaing and drinking places ...	6,476.3	6,609.3	6,810.6	7.055 .0
Mrictrancous retail establishments	2,468.4	2.461 .4	2,460.0	2,506.5
Funance, Insurance, and reai estate.	6,646	6,602	6.712	6,789
Forance	3.187	3.160	3.217	3,254
-" Depository institutions	2,164.2	2,095.7	2,078.6	2.041 .5
Nondepository institutions	379.4	405.5	447.7	476.6
11. Security and commodity brokers.	419.6	440.1	467.6	503.0
${ }_{\text {lliw }}$.' Hotding and other investment aftices	223.6	219.0	223.0	233.3
- ${ }^{\text {a }}$ Insurance	2,161	2.152	2.181	2,182
Insurance cariers .-.	1,494.6	1,495.6	1,518.4	1.517 .0
- hasurance agonts, brokers, and service	666.3	656.6	662.1	664.5
Real estate ...	1.299	1.290	1.314	1.353
Services'	28,336	29,052	30.278	31.805
Agncutlural services ..	486.5	489.6	514.9	552.4
Horols and other lodsing piaces ...	1,589.4	1,576.4	1,590.6	1.606 .9
Personal services	1,111.5	1.116 .2	1.135 .9	1.137 .2
". Busuress services	5,086.2	5,315.3	5.784 .9	6,447.8
Persornd supply services ..	1.484 .5	t,629.3	1,924.3	2.340 .5
Auto repeir, services. and parking ...	881.8	881.3	943.9	1,043.4
Miscellaneous rapair services	341.0	347.0	362.2	380.4
- Molion pretures	410.9	400.9	415.4	482.8
Antisement and rocreation Services	1,122.2	1.188 .1	1,245.6	1,268.4
Heath services	8,182.9	8,490.0	8,766.6	9.031 .1
-.'. ${ }^{\text {- Hospitals }}$	3,655.1	3.749 .9	3.786 .8	3,789.5
Legal services...	911.9	913.5	928.2	942.5
Educational services	1,709.7	1.677 .6	1.686 .1	1,745.5
Social services	1,844.8	1,958.6	2,086.2	2,249.3
Museurns and bolanical and zoological gardens \qquad	69.1	72.7	75.5	79.1
Memborstup organizations ..	1,981.9	1.973 .0	2.031 .5	2.053 .7
Engmeering and management services	2.433 .4	2.470 .8	2,535.5	2.609 .9
Servacs. nec ..	39.9	41.3	40.8	40.5
Govemment	18,402	18.645	18.817	19.041
Federal.	2,966	2.969	2.915	2.870
State	4,355	4,408	4.484	4.553
Educalon	1.767.6	1,798.6	1,829.3	1,862.2
Other Staie government ..	2,587.2	2.609 .6	2.654 .8	2,691.0
U' Local ...	11.081	11,267	11.417	11.618
Educatom.	6.135.7	6.219 .5	6,347.7	6.474 .2
Other hocal government.	4.945.1	5.048.0	5.069 .5	5.143 .5

[^6]March 1993 benchmark levels." When "more recent benchmark data are introduced. all unadjusted data from April 1993 torward are subject to revision.

8. BEHAVIORAL AND/OR CULTURAL PRACTICES

The effects of lifestyle, personal behavioral, and/or cultural practices could be a source of contaminant exposure or could increase one's exposure to toxic environmental contaminants. Exposure to these contaminants due to either behavioral (e.g., smoking, alcohol consumption, drug use) or cultural practices may result in adverse health effects. The sections below summarize studies that provide population estimates of persons engaging in certain behavioral and/or cultural practices that are known to increase the risk of exposure to environmental contaminants.

8.1. ACTIVITY PATTERNS

This section presents population estimates on time activity patterns based on type of activity and presence in specific locations and microenvironments.

8.1.1. National Human Activity Pattern Survey (NHAPS) (Tsang and Klepeis, 1996)

The National Human Activity Pattern Survey (NHAPS) conducted by EPA, is the largest and most current human activity pattern survey available (Tsang and Klepeis, 1996). Data for 9,386 respondents in the 48 contiguous States were collected via minute-by-minute, 24-hour diaries between October 1992 and September 1994. The survey collected information on duration and frequency of selected activities. Demographic information was collected for each respondent to allow for statistical summaries to be generated according to specific subgroups of the U.S. population (e.g., by gender, age, race, employment status, census region, season). The participants' responses were weighted according to geographic, socioeconomic, time/season, and other demographic factors to ensure that results were representative of the U.S. population. The weighted sample matches the 1990 census population for each gender, age group, and census region. In addition, the day-of-week and seasonal responses are distributed equally.

NHAPS data on the time spent in selected activities and the corresponding population participating in these activities are presented in the Exposure Factors Handbook, Section 14, Tables 14-19 through 14-92. For example, data are included on the number of persons who
spend time either running, walking, standing, or in a vehicle; time spent in indoor and outdoor parking lots and garages; and number of persons working in circumstances where one may come in contact with soil, such as gardening. The reader is referred to the Handbook for further information obtained from NHAPS. Advantages of the NHAPS data set are that it is representative of the U.S. population for all ages, genders, and races, and it has been adjusted to be balanced geographically, seasonally, and for day/time.

8.1.2. Time Spent in Activities, Locations, and Microenvironments: A California- National Comparison (Robinson and Thomas, 1991)

Robinson and Thomas (1991) reviewed data from the 1987-88 California Air Resources Board (CARB) time activity study and compared that data set with data collected by a similar 1985 national study, "Americans' Use of Time." The CARB study sampled residents of the State of California. One adult 18 years old or older was randomly sampled in each household. In the 1985 national study, single-day diaries were collected from more than 5,000 respondents across the United States, who were 12 years old and older. To facilitate comparisons, Robinson and Thomas (1991) recorded data from the national study to be as comparable as possible to the CARB study, and they restricted comparative analyses to the 18 - to 64 -year-old age group in the two studies. The authors compared 10 major activity categories and three major locations from both the CARB and the 1985 national study and defined a set of 16 microenvironments based on the activity and location codes employed in both studies.

Table 8-1 shows the percentage of "doers" (i.e., those engaged in the specific activity the day the diary was compiled) who participated in 10 various activities, were present at 10 various locations, and were present in 16 various microenvironments.

8.2. PICA STUDIES

Pica is the ingestion of nonfood items (most commonly dirt) and can increase an individual's exposure to contaminants, especially if the material ingested is contaminated or has elevated levels of some elements (metals). Numerous articles have reported on the incidence of pica among various populations. However, most of these articles describe pica as the ingestion
of substances other than soil, including sand, clay, paint, plaster, hair, string, cloth, glass, matches, paper, feces, and various other items. These articles indicate that pica occurs in approximately one-half of all children between the ages of 1 and 3 years (Sayetta, 1986). The incidence of pica in children has been shown to differ for different populations, and the rate appears to be higher for black children than for white children. Danford (1982) reports that approximately 30% of black children aged 1 to 6 years are reported to have deliberate ingestion behavior, compared with 10 to 18% of white children in the same age group. Sex differences do not appear to influence the incidence rates (Kaplan and Sadock, 1985). Lourie et al. (1963) found a 50 to 60% pica rate among children in lower socioeconomic groups and a 30% pica rate among children from higher income families. Deliberate soil ingestion behavior appears to be more common in rural areas (Vermeer and Frate, 1979). A higher rate of pica also has been reported for pregnant women and individuals with poor nutritional status (Danford, 1982). In general, deliberate ingestion behavior is more frequent and more severe in mentally retarded children than in children in the general population (Behrman and Vaughan, 1983; Danford, 1982; Forfar and Arneil, 1984; Illingworth, 1983; Sayetta, 1986). Studies examining pica among populations are presented in this section.

8.2.1. Reported Incidence of Pica Among Migrant Families (Bruhn and Pangborn, 1971)

A review of literature indicates that pica has been observed among men, women, and children of all ages and races; however, reports show pica occurs most frequently among African Americans (Bruhn and Pangborn, 1971). Bruhn and Pangborn (1971) reported that pica was explained as a cultural trait of African Americans, and they cited other studies that found higher incidences of pica in pregnant African American women, compared with pregnant Caucasian women. The authors found that "pregnant women say they eat these substances [clay] because they simply crave them or because they will make the baby stronger, with a more suitable color, and without birthmarks" (Bruhn and Pangborn, 1971). To investigate the occurrence of pica in low-income families, the authors conducted food habit interviews in English and Spanish among 91 families in California from May through August 1969. The families were selected from three migrant labor camps operated by the Office of Economic Opportunity in Northern California,
and they included (1) 65 migrant agricultural families of Mexican descent, born in Texas or Mexico, and (2) 26 families of "Anglo" heritage, born in Texas, Arkansas, or Oklahoma. The interviews used questionnaires to ask the family spokesperson (usually the wife) to estimate the incidence of pica in these families. Table 8-2 presents results of the interviews. In the families of "Anglo" descent, 14 families (54\%) observed pica in children, with 11 cases observed in their own or a relative's child. Table 8-2 also shows that 19 and 7% of the respondents reported pica in pregnant and nonpregnant women, respectively. The families of Mexican descent reported 32, 38 , and 15% of pica incidences in children, pregnant women, and nonpregnant women, respectively. Pica in men was not reported by either group. The potential causes of pica were attributed to cultural, behavioral, and socioeconomic factors in the groups studied. The authors stated that apparently the urge for some women to eat clay and cornstarch represents a cultural practice passed down from generations and is an accepted behavior in their community (Bruhn and Pangborn, 1971).

8.2.2. Geophagia in Rural Mississippi: Environmental and Cultural Contexts and Nutritional Implications (Vermeer and Frate, 1979)

Vermeer and Frate (1979) investigated the environmental and cultural factors surrounding geophagia (deliberate consumption of earth/soil) in the black population in a rural county of Mississippi. Geophagia, the practice of eating earth, also referred to as pica, is known to have occurred since prehistoric times in all ethnic, social, and economic groups and was reported to occur most frequently in the rural South in both black and white populations. Early historical records indicate that geophagia was transferred primarily from Africa via slave trade into the New World (Vermeer and Frate, 1979). The authors reported that the custom continued when blacks migrated to the urban North, where laundry starch became a substitute for the clays commonly consumed.

The study was conducted in Holmes County, Mississippi, which at the time had a predominantly (71%) black population composed of rural small communities (200-500 people) where the social life centered on the church. Of the households sampled, females headed 41%. The survey questionnaires on geophagia were in three parts: the nutrition study, the perinatal
study, and the health utilization study. In the nutrition study, 500 black households were surveyed randomly, but geophagia questionnaires were administered to only 50 households (10\%) of the sampled population. Of these 50 households, 229 individuals (56 women, 33 men, 115 children, and 25 adolescents) were surveyed. In the perinatal study, geophagia information was obtained from 142 pregnant women. The health utilization survey sampled 200 households, of which 20 were given the geophagia questionnaires. In all three studies, geophagia was defined as the consumption of clay on a regular basis over a period of weeks (Vermeer and Frate, 1979).

The nutrition study results presented in Table 8-3 show neither male adults nor adolescents practiced geophagia, but 57% of the women and 16% of the children (under 13 years) practiced geophagia (Vermeer and Frate, 1979). The perinatal study revealed that 28% of pregnant and postpartum women practiced geophagia. An additional 19\% of respondents in this population group consumed other materials, mainly commercial products (e.g., laundry starch, dry powdered milk, and baking soda) (Vermeer and Frate, 1979).

8.3. SMOKING, DRUG USE, AND ALCOHOL CONSUMPTION

This section presents summaries of studies on behavioral and social practices, such as smoking, drug use, and alcohol consumption, which could potentially increase an individual's exposure to environmental contaminants.

8.3.1. Results From the National School-Based 1991 Youth Risk Behavior Survey and Progress Toward Achieving Related Health Objectives for the Nation (Kann et al., 1993)

The Centers for Disease Control and Prevention (CDC) developed the Youth Risk Behavior Surveillance System (YRBSS) as an ongoing project to evaluate priority high health risk behaviors among adolescents nationwide. Kann et al. (1993) presented partial results from that 1991 survey, which employed a three-stage cluster sample design that consisted of students in public, parochial, and other private schools in grades 9 through 12, in all 50 States and the District of Columbia. The questionnaires administered to the students collected information on priority health risk behaviors related to unintentional and intentional injury, tobacco use, alcohol
and other drug use, sexual behavior (i.e., unintended pregnancies and sexually transmitted diseases, including HIV infection), dietary behavior, and physical activity.

The survey sampled 13,568 students, of which data from 12,272 (90%) of the students were usable. Of the survey respondents, 14% were blacks, 9% were Hispanic, 70% were white, and 7% were from other ethnic groups. The data obtained from the survey were based on either a 30 -day or 12 -month recall. The percentages of white, black, and Hispanic youths who reported engaging in the specific high-risk behaviors during the survey period are presented in Table 8-4. A higher percentage of whites (15\%) frequently smoked cigarettes, compared with Hispanics (7%) and blacks (3%). Table $8-4$ also indicates that 54% of Hispanic, 53% of white, and 42% of black students consumed at least one drink of alcohol during the 30 days before the survey. Three percent of Hispanics, 2% of whites, and 1% of blacks used cocaine during the 30 days preceding the survey. Table 8-5 presents results in percentages of the dietary behavior and physical activity among the students grouped by gender, grade level, and race. A higher proportion of male students (15%) consumed five or more servings of fruits and vegetables than female students (10%).

8.3.2. Cigarette Smoking and Cessation Behaviors Among Urban Blacks and Whites (Hahn et al., 1990)

Hahn et al. (1990) studied smoking behavior among blacks and whites in a population-based sample of 2,626 residents aged 35 to 74 years in the Minneapolis-St. Paul area. Surveys of the general population conducted in this area were of two parts: the first series was conducted from 1980 to 1982, and the second series was initiated in December 1985. The second series of surveys conducted used a two-stage sample design and updated census information. Individuals in a cluster sample of households in the seven-county area were randomly selected. Home interviews were conducted in which information on health behaviors, attitudes, and knowledge were collected. Following the home interviews, survey clinics were conducted in neighborhood churches in which questionnaires were completed. These questionnaires provided physiological measurements related to risk factors.

Results from the survey are presented in Tables 8-6 through 8-8 (Hahn et al., 1990). Ratios in these tables are the presented value out of 100 percent. Table $8-6$ shows that more blacks (aged 35 to 74 years) were current smokers than whites in the same age group. Table 8-6 also shows that the ratio of former smokers to those who had ever smoked was greater for white men than for black men and greater for white women than for black women. Table 8-7 indicates that persons with educations beyond high school smoked less, regardless of their race or sex. Table 8-8 presents data on current smokers' smoking cessation behavior. Whites were more likely than blacks to attempt to quit smoking. Among men, whites were more likely than blacks to successfully quit smoking. More black men than white men planned to reduce the number of cigarettes smoked per day, and more white women than black women tried brands with low nicotine and tar. Hahn et al. (1990) concluded that important factors preventing smokers from quitting included the number of cigarettes smoked daily, lack of desire to cease smoking, and the physiological difficulty of quitting.

8.3.3. Sociodemographic Characteristics of Cigarette Smoking Initiation in the United

 States (Escobedo et al., 1990)Escobedo et al. (1990) estimated the age-specific incidence of cigarette smoking initiation by race/ethnicity, sex, and educational attainment by analyzing the smoking history data of young adults, aged 18 to 35 years, in the 1987 National Health Interview Survey (NHIS) and the 1982-1984 Hispanic Health and Nutrition Examination Survey (HHANES). Both NHIS and HHANES were based on personal interviews of households in the United States. Escobedo et al. (1990) noted that HHANES was not representative of the Hispanic population in the United States; however, the geographic areas surveyed included a substantial proportion of Hispanics. Data from 14,764 out of 44,123 individuals surveyed in NHIS and 3,123 out of 9,643 individuals surveyed in HHANES were employed in the analysis conducted by Escobedo et al. (1990).

The incidence of smoking initiation at a specific age was determined as being the number of individuals who had started smoking cigarettes at that age divided by the number of individuals who had not started smoking regularly before that age (Escobedo et al., 1990). The authors reported that from both surveys "ever smokers" were considered to be those respondents
who answered yes to the question, "Have you smoked at least 100 cigarettes in your entire life?" Among all race/ethnic groups, smoking initiation occurred at ages as young as 9 years of age, increased rapidly after 11 years of age, peaked at 17 to 19 years of age, and declined substantially after 19 years of age (Escobedo et al., 1990).

Escobedo et al. (1990) calculated age-specific smoking initiation rates by gender and educational attainment. Table 8-9 presents the smoking initiation rates (percent) by gender, age, and race/ethnicity. Of all men who started smoking at 18 years old or younger, Hispanic men had the highest smoking initiation rate, and black men had the lowest rate. Table 8-9 also shows that smoking initiation rates were similar among men who started smoking between the ages of 19 and 35 years, with black men showing the highest rate (22%). Among the females who started smoking at 18 years or younger, white and Puerto Rican American women had the highest initiation rate. Compared with men of both age groups, women had lower smoking initiation rafes in all race/ethnic groups. Table 8-10 summarizes the smoking initiation rates by age, race/ethnicity, and educational attainment. A comparison of respondents with more than a high school education to those who had less than high school education showed that respondents with less than high school education had higher smoking initiation rates for all age groups and all races and ethnic groups. Table 8-10 also shows that among all race/ethnic groups, initiation rates were highest during adolescence (12 to 18 years old) and lowest during childhood (11 years old and younger).

8.3.4. Statistical Abstract of the United States (U.S. Bureau of the Census, 1995)

The U.S. Bureau of the Census provides summary statistics on social, political, and economic characteristics of the U.S. population. Table 8-11 presents data on persons who used certain drugs in 1993 grouped by age of user, gender, race/ethnicity, and region. Table 8-11 also shows the users in 1993 of cigarettes, alcohol, marijuana, cocaine, smokeless tobacco, crack cocaine, inhalants, hallucinogens, stimulants, sedatives, tranquilizers, and analgesics.

8.3.5. Trends in Indian Health (U.S. Department of Health and Human Services, 1993)

The U.S. Public Health Service, through the Indian Health Service (IHS), provides health care to Native Americans and produces annual information on the health status of the people it serves. IHS population statistics are based on U.S. Bureau of the Census data and include American Indians, Eskimos, and Alaska Natives residing in or near reservations (U.S. DHHS, 1993). Mortality rates, by age and gender, resulting from alcoholism and drug-related incidents were collected for the IHS population and are presented in Tables 8-12 and 8-13. It should be noted that mortality rates cited in this section are indirect estimates of exposure. Mortality (as compared to incidence or prevalence) is influenced by other factors, such as general health and nutrition and access to medical care.

Table 8-12 indicates that mortality rates from alcohol consumption are much higher for Native Americans and Alaska Natives than for all other races in the United States for all age groups and both genders. Table 8-13 presents data on drug-related deaths and indicates that the rates are higher for Native Americans than for other races at ages 15 to 24 years. At ages 25 to 34 years, the rate of drug-related deaths for Native Americans is higher than the rate for whites. At ages 45 to 54 and 55 to 64 years, drug-related death rates are higher for Native Americans than for all other races in both genders, and at ages 65 to 74 and 75 to 84 years, the rate is lower for Native Americans than for all other races in both genders.

8.4. CULTURAL USE OF MERCURY

Another example of behavioral or cultural practices that could increase a population's exposure to toxic environmental contaminants is the cultural use of mercury for religious, medical, or cosmetic purposes (TDH, 1993). The Center for Disease Control and Prevention's Agency for Toxic Substance and Disease Registry (ATSDR) published a National Alert warning of the "continued pattern of metallic mercury exposure in persons using certain folk medicines or participating in certain ethnic or religious practices" (ATSDR, 1997). Mercury exposures may be potentially greater for populations of Caribbean and Hispanic/Latino descent, who use mercury for religious and/or medicinal purposes as well as in cosmetics (CDC, 1996). Sales persons working in botanicas stores that specialize primarily in selling religious items and herbs
used for preparing folk medicines and also for promoting good health estimated that Puerto Ricans, Dominicans, and 'other Hispanics' make up about 90% of mercury buyers and that more than two-thirds of buyers are women (Zayas and Ozuah, 1996).

These practices may present opportunities for increased exposures to a percentage of the adult Caribbean and Hispanic populations (Hispanic Health Council, 1993). Children may be subject to greater exposures from the practice of sprinkling mercury on the floor near children's beds to bring good luck, which could result in increased exposures to children who crawl and play on the floor (U.S. EPA, 1993).

Zayas and Ozuah (1996) identified 41 botanicas in Hispanic neighborhoods in Bronx, New York, and in 1995, researchers surveyed botanica workers on the cost, sale, uses, and purchasers of mercury.

From the Zayas and Ozuah (1996) report, Wendroff (1996) estimates that the 35 New York botanicas sell a total of 157 mercury capsules per day. Wendroff (1996) estimated that "annual sales totaling 47,000 [capsules] could result in 13,800 individual dwellings each having a dose of some 9 grams of mercury (the mean weight of a mercury capsule) sprinkled on their respective floors in the course of one year."

8.5. REFERENCES

Agency for Toxic Substance and Disease Registry (ATSDR). (1997) National alert: A warning about continuing patterns of metallic mercury exposure. Atlanta, GA: U.S. Department of Health and Human Services, Center for Disease Control and Prevention, Agency for Toxic Substance and Disease Registry. ATSDR Internet address:
http://atsdrl.atsdr.cdc.gov:8080/alerts/970626.html (Feb. 17, 1998).
Behrman, LE; Vaughan, VC, III. (1983) Textbook of pediatrics. Philadelphia: W.B. Saunders Company.

Bruhn, CM; Pangborn, RM. (1971) Reported incidence of pica among migrant families. J Am Dietit Assoc 58:417-420.

Center for Disease Control and Prevention (CDC). (1996) Mercury poisoning associated with beauty cream. May 17, 1996. Morbidity and Mortality Weekly Reports. U.S. Public Health Service, U.S. Department of Health and Human Services, Center for Disease Control and Prevention.

Danford, DC. (1982) Pica and nutrition. Ann Rev Nutr. 2:303-322.
Escobedo, LG; Anda, RF; Smith, PF; Remington, PL; Mast, EE. (1990) Sociodemographic characteristics of cigarette smoking initiation in the United States - implications for smoking prevention policy. JAMA 264(12):1550-1555.

Forfar, JO; Arneil, GC, eds. (1984) Textbook of pediatrics. 3rd ed. London: Churchill Livingstone.

Hahn, PL; Folsom, AR; Sprafka, JM; Norsted, SW. (1990) Cigarette smoking and cessation behaviors among urban blacks and whites. Public Health Rep 105(3):290-295.

Hispanic Health Council. (1993) Metallic mercury (azogue) and your health. Environmental Health Unit information booklet no. 1. Environmental Health Unit, Hispanic Health Council, Hartford, CT.

Illingworth, RS. (1983) The normal child. New York: Churchill Livingstone.
Kann, L; Warren, W; Collins, JL; Ross, J; Collins, B; Kolbe, LJ. (1993) Results from the national school-based 1991 Youth Risk Behavior Survey and progress toward achieving related health objectives for the nation. Publ Health Rep 108 (suppl.1):47-55.

Kaplan, HI; Sadock, BJ. (1985) Comprehensive textbook of psychiatry/IV. Baltimore: Williams and Wilkins.

Louric, RS; Layman, EM; Millican, FK. (1963) Why children eat things that are not food. Children 10:143-146.

Robinson, JP; Thomas, J. (1991) Time spent in activities, locations, and microenvironments: a California-national comparison. Prepared by Environmental Monitoring systems Laboratory, Las Vegas, NV, for the Exposure Assessment Research Division,, U.S. Environmental Protection Agency, Washington, DC, under EPA contract no. 68-01-7325.

Sayctta, R.B. (1986) Pica: an overview. American Family Physician. 33(5):181-185.
TDH. (1993) Mercury Poisoning Associated with Beauty Cream: Texas, New Mexico, and California, 1995-1996. The Texas Department of Health, New Mexico Department of Health (NMDH), and San Diego County Health Department (SDCHD). 1996

Tsang, AM; Klepeis, NE. (1996) Results tables from a detailed analysis of the National Human Activity Pattern survey (NHAPS) response. Prepared by Lockheed Martin for the U.S. Environmental Protection Agency, Washington, DC, under contract no. 8-W6-001, delivery order no. 13. Draft report.
U.S. Bureau of the Census. (1995) Statistical abstract of the United States: 115 th ed. U.S. Department of Commerce, Bureau of the Census, Washington, DC.
U.S. Department of Health and Human Services. (1993) Trends in Indian health. U.S. Department of Health and Human Services, Indian Health Service, Washington, DC.
U.S. Environmental Protection Agency. (1996) Exposure factors handbook. SAB Review Draft. August, 1996. Washington, DC: National Center for Environmental Assessment, Office of Research and Development. EPA/600/P-95/002Bc.
U.S. Environmental Protection Agency. (1993) RM2 assessment document for cultural uses of mercury. Office of Prevention, Pesticides and Toxic Substances, Washington, DC.

Vermeer, DE; Frate, DA. (1979) Geophagia in rural Mississippi: environmental and cultural contexts and nutritional implications. Am J Clin Nutr 32:2129-2135.

Wendroff, AP. (1996) June 11, 1996, letter to Amina Wilkins, U.S. Environmental Protection Agency, from A.P. Wendroff, Mercury Poisoning Project, 544 Eighth St., Brooklyn, NY 11215.

Zayas, L; Ozuah, P. (1996) Letter to the editor. Am J Public Health. 86(1):111.

Table 8-1. Percentage of Respondents Participating in Various Activities and Spending Time in Various Locations and Microenvironments During the 24-hour Day Included in the Diary

Code Description		Percentage of Survey Respondents Participating in Activities or Time in Various Places the Day the Diary Was Compiled		
		$\begin{gathered} \text { California }^{\mathrm{a}} \\ \mathrm{n}=1,762 \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { National } \\ n=5,358 \\ (\%) \end{array} \end{gathered}$	Relevance to Exposure ${ }^{\text {c }}$
Activity				
0	Travel	91	91	potential exposure to carbon monoxide and benzene
1	Sleep	100	100	potential exposure to carbon monoxide and benzene
2	Household work - family and personal care	95	100	potential exposure to carbon monoxide and benzene
3	Cook	49	61	potential exposure to smoke and gas from cooking
4	Eat	95	98	potential exposure to smoke and gas from cooking
5	Shopping/errands	49	49	potential exposure to smoke and gas from cooking
6	Work/study residences	49	52	potential exposure to smoke and gas from cooking
7	Leisure/communication - indoors (TV-resting-reading)	92	94	potential exposure to smoke and gas from cooking
8	Physical activities	24	23	highly elevated breathing rate
9	Cultural/social	54	71	highly elevated breathing rate
Locations				
0	Autoplaces (garage, auto repair...)	19	5	potential exposure to carbon monoxide and volatile organic compounds
1	Indoor residence/kitchen	77	87	potential exposure to smoke and gas
2	Indoor residence/other rooms	99	99	potential exposure to smoke and gas
3	Indoor offices and factories	40	47	potential exposure to various pollutants based on job
4	Indoor restaurant/bar	35	28	potential exposure to various pollutants based on job
5	Indoor other locations (not residence)	72	78	potential exposure to ambient pollutants
6	Outdoor/yard, outside of residence	30	41	potential exposure to ambient pollutants
7	Outdoor/other, parks	47	19	potential exposure to ambient pollutants
8	In locations with internal combustion	86	90	potential exposure to carbon monoxide and benzene
9	Other vehicles	4	1	potential exposure to carbon monoxide and benzene
Microenvironments ${ }^{\text {a }}$				
1	Auto places	19	5	
2	Restaurant/bar	35	28	
3	In vehicles with internal combustion	86	90	
4	In other vehicles	4	1	
5	Physical activity/outdoor	16	13	
6	Physical activity/indoor	10	11	
7	Work/study-residence	10	11	
8	Work/study-other places	41	46	
9	Cooking	49	61	
10	Other activities/kitchen	67	83	

Table 8-1. Percentage of Respondents Participating in Various Activities and Spending Time in Various Locations and Microenvironments During the 24 -hour Day Included in the Diary (continued)

Codo Description	Percentage of Survey Respondents Participating in Activities or Time in Various Places the Day the Diary Was Compiled		
	$\begin{gathered} \text { California }^{a} \\ \mathrm{n}=1,762 \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { National }{ }^{b} \\ n=5,358 \\ (\%) \end{array} \end{gathered}$	Relevance to Exposure ${ }^{\text {c }}$
11 Chores/child care	92	99	
12 Shopping/orrands	45	46	
13 Other/outdoor	59	47	
14 Social/cultural	47	62	
15 Leisure-eat/indoor	95	97	
16 Slecp/indoor	99	100	

a California Air Resources Board, 1987-88 study.
Americans' Use of Time, 1985 national study.
For exposure rolevance, see activity and locations section.
Source: Robinson and Thomas, 1991.

Table 8-2. Incidence of Pica Reported by Wives of Migrant Workers of Mexican and "Anglo" Heritage

Group Exhibiting Pica	Observation of Pica	Number Observing Pica in Own or in Relative's Families	
	Mexican Families		
Children	21	32	12
Pregnant Women	25	38	13
Nonpregnant Women	10	15	1
	"Anglo" Families		
Children	14	54	11
Pregnant Women	5	19	3
Nonpregnant Women	2	7	1

Source: Bruhn and Pangborn, 1971.

Table 8-3. Incidence of Geophagia Practice by Surveyed Population in Holmes Co., Mississippi ${ }^{\text {a }}$

Population	Total Number of Survey Population	Number of Geophagia Practitioners	Geophagia Practitioners Percentage
Women	56	32	57
Men	33	0	0
Children	115	18	16
Adolescents	25	0	0
Pregnant and Postpartum Women	142	40	28

a Data source: Nutrition and Perinatal Survey, Health Research Project.
Source: Vermeer and Frate, 1979.

Table 8-4. Percentage of 1991 Youth Risk Behavior Survey Respondents Reporting High Health Risk Behavior by Ethnic Group'

Behavior ${ }^{\text {b }}$	Ethnic Group			
	White	Black	Hispanic	Total
Physical fighting ${ }^{\text {e }}$	41.0 ± 2.6	50.6 ± 4.5	41.3 ± 4.8	42.5 ± 2.3
Weapon carrying ${ }^{\text {d }}$	25.1 ± 2.6	32.7 ± 3.1	25.8 ± 4.6	26.1 ± 2.1
Thought seriously about suicide	29.9 ± 1.9	22.2 ± 2.0	26.8 ± 3.7	29.0 ± 1.6
Made suicide plans	19.0 ± 1.8	14.8 ± 2.4	15.9 ± 2.5	18.6 ± 1.6
Attempted suicide	6.7 ± 1.2	6.6 ± 2.0	7.9 ± 1.8	7.3 ± 0.3
Suicide attempt required medical attention	1.6 ± 0.5	1.8 ± 0.8	1.7 ± 0.5	1.7 ± 0.3
Frequent cigaretre user	15.4 ± 2.5	3.1 ± 1.1	6.8 ± 1.6	12.7 ± 2.2
Smokeless tobacco use ${ }^{\text {d }}$	13.0 ± 2.1	2.1 ± 0.5	5.5 ± 2.8	10.5 ± 1.7
Current alcohol usel	52.9 ± 3.5	42.0 ± 4.8	54.3 ± 5.4	50.8 ± 3.4
Episodic heavy alcohol use ${ }^{\text {h }}$	34.9 ± 3.2	16.8 ± 3.8	32.2 ± 5.8	31.3 ± 3.3
Current marijuana use ${ }^{\text {i }}$	15.2 ± 2.8	13.5 ± 3.3	14.4 ± 4.8	14.7 ± 2.2
Current cocaine use'	1.7 ± 0.6	0.6 ± 0.3	3.1 ± 1.7	1.7 ± 0.5
Have had four or more sex partners	14.7 ± 1.7	43.1 ± 3.5	16.8 ± 3.3	18.7 ± 1.9
Currently sexually active	67.9 ± 2.3	72.9 ± 3.1	69.6 ± 3.8	69.3 ± 2.1

a All percentages are reported with the 95% confidence interval.
High health risk behavior exhibited within the 12 months preceding the survey.
c Participated in at least one fight.
Carried gun, knife, or club at least 1 day during the 30 days preceding the survey.
f Frequent user, smoking cigarettes on 20 or more of the 30 days preceding the survey.
Used chewing tobacco or snuff on 1 or more of the 30 days preceding the survey.
g Consumed at least one drink of alcohol during the 30 days preceding the survey.
h Consumed five or more drinks of alcohol during the 30 days preceding the survey.

- Used during the 30 days preceding the survey.

Has had intercourse during the 3 months preceding the survey.
Source: Kann et al., 1993.

Table 8-5. Percentage of 1991 Youth Risk Behavior Survey Respondents Reporting High Health Risk Dietary Behavior and Physical Activity by Sex, Grade, and Ethnic Group ${ }^{\text {a }}$

b All percentages are reported with 95% confidence intervals.
b Consumed during the day preceding the survey.
c Included walking or bicycling for at least 30 minutes during the day preceding the survey.
Source: Kann et al., 1993.

Table 8-6. Age-Adjusted Prevalence of Cigarette Smoking Among Black and White Men and Women Aged 35 to 74 Years by Percents (Minnesota Heart Survey)

Smoker Characteristic	Never Smoked	Former Smoker	Current Smoker	Ratio
Men $^{\text {b }}$				
Black	26	30	43	41
White	30	44	25	64
Black-White difference	-4	-14	18	-23
95% CL	$-9,1$	$-20,-8$	13,23	$-30,-16$
Women			33	35
Black	49	18	24	54
White	46	29	9	-19
Black-White difference	3	-11	4,14	$-26,-12$
95% CL	$-2,8$	$-16,-6$		

- Ratio of former smokers to those who ever smoked (value out of 100\%)
${ }^{6}$ N -459 Black; $N=76$ White
c $C L=$ confidence limits
${ }^{d} \mathrm{~N}=593$ Black; $\mathrm{N}=811$ White
NOTE: All values out of 100 percent.
Source: Hahn et al., 1990.

Table 8-7. Age- and Education-Specific Prevalence of Current Cigarette Smoking Among Black and White Men and Women (Minnesota Heart Survey)

Characteristic	Population							
	High School or Less				More Than High School			
	Men		Women		Men		Women	
	35-54 years	55-74 years	35-54 years	55-74 years	35-54 years	55-74 years	35-54 years	$55-74$ years
Black								
Percent	51	43	41	29	41	32	32	24
Number	138	105	184	154	147	69	176	68
White								
Percent	35	26	27	33	23	23	23	12
Numbar	138	119	205	166	371	135	332	108
Black.White Difference								
Porcent	16	17	14	- 4	18	9	9	12
95 Percent CL	4,28	5,29	5,23	-14,6	9,27	-4, 22	1,17	1,23

Note: $\mathrm{CL}=$ confidence limits.

Source: Hahn et al., 1990.

Table 8-8. Current Smokers' Smoking Cessation Behaviors in Percents (Minnesota Heart Survey)

	Behavior									
	Changes Attempted in Last Year					Changes Anticipated in Next Year				
	$\begin{aligned} & \text { Tried to reduce } \\ & \text { no. of } \\ & \text { cigarettes } \end{aligned}$	Tried brand with lower tar or nicotine	Tried to quit	Tried to quit and able to stay off cigarettes a weak or more	Quit completely	Try to quit	Reduce no. of cigarettes per day	Switch to brand with lower tar or nicotine	No change anticipated	Other
Men'										
Black	70	29	52	25	36	14	17	2	32	0
White	76	33	63	30	47	21	8	0	24	0
Women ${ }^{\text {® }}$										
Black	73	37	56	27	35	29	17	2	26	1
White	80	37	58	22	38	17	18	0	27	1

- $\mathrm{N}=197$ Black, $\mathrm{N}=195$ White
b N-195 Black, N-199 White
Note: Percents may not add to 100 because of rounding.
Source: Hahn et al., 1990.

Table 8-9. Rates of Smoking Initiation by Sex, Age at Smoking Onset, and Race/Ethnicity

\% Race/Ethnicity	Initiation Rate (\%)				Total
	Males		Females		
-	≤ 18 Years	19-35 Years	≤ 18 Years	19-35 Years	
White ${ }^{\text {em }}$ "'	39	15	38	14	47
Black	$30^{\text {b }}$	$22^{\text {b }}$	$24^{\text {c }}$	15	$40^{\text {d }}$
Mexican American	47^{6}	19	$21^{\text {c }}$	14	45
Cuban American	43	17	$28^{\text {c }}$	15	45
Puerto Rican American	$48^{\text {b }}$	12	$38^{\text {c }}$	17	51

* Initiation rate is defined as the percentage of persons who started to smoke in an age interval among persons who never smoked in that age interval.
- Initiation rate is significantly different from that among whites of the same sex and age interval.
- Initiation rate among women is significantly less than that among men of the same race/ethnicity and age interval.
- Initiation rate is significantly less than that among whites.

Source: Escobedo et al., 1990.

Table 8-10. Rates of Smoking Initiation by Age at Smoking Onset, Race/Ethnicity, and Educational Attainment

Race/Ethnicity and Age at Smoking Onset	Initiation Rate, \% ${ }^{\text {a }}$		
	\geq High School Education	< High School Education	Rate Ratio (95\%) Confidence Interval ${ }^{\text {b }}$
White			
≤ 11 years	1.4	6.6	$4.9(3.5,6.8)$
12-18 years	33.4	64.6	$1.9(1.8,2.0)$
19-35 years	14.4	15.9	1.1 (0.9, 1.4)
Black			
≤ 11 years	0.7	2.5	3.5 (1.5, 8.3)
12-18 years	22.3	41.1	$1.8(1.6,2.2)$
19-35 years	18.6	15.2	0.8 (0.6.1.2)
Hispanic			
≤ 11 years	2.0	2.5	1.3 (0.7, 2.2)
12-18 years	28.3	40.6	$1.4(1.2,1.7)$
19-35 years	14.0	19.3	$1.4(1.1,1.7)$

a Initiation rate is defined as the percentage of persons who started to smoke in an age interval among persons who never smoked in that age interval.
b Rate ratio is the initiation rate among persons with less than a high school education divided by the initiation rate among persons with a high school education or more.

Source: Escobedo et al., 1990.

Table 8-11. Use of Selected Drugs by Age of User: 1993
[Percent of Total Population]

Substarce and Aga Group	Total ${ }^{\text {a }}$	Sex		Race/E゙thnicity			Region			
		Male	Female	White ${ }^{\text {b }}$	Black ${ }^{\text {b }}$	Hispanic	Northeast	Midwest	South	West
CURRENT USERS										
Cigmrettes: Total	24.2	26.2	22.3	24.7	23.4	21.2	25.4	24.3	24.3	22.7
12.17 years	9.6	9.3	10.0	11.0	4.0	8.4	10.5	11.1	8.4	9.0
18.25 years	29.0	30.9	27.2	32.7	16.3	25.5	32.9	26.9	29.7	26.7
26.84 years	30.1	31.4	28.8	31.1	30.5	24.8	30.6	30.7	31.8	26.2
35 yeers and older	23.8	26.7	21.3	23.4	28.0	21.5	24.5	24.5	23.3	22.9
Atcohol: Total	49.6	57.4	42.5	52.7	37.6	45.6	54.1	48.6	44.9	54.2
12.17 years	18.0	18.3	17.7	19.2	13.1	17.5	20.4	19.5	15.4	18.1
18.25 years	59.3	64.5	54.3	65.3	45.0	49.9	61.0	61.2	55.6	62.4
26.34 years	62.8	70.1	55.7	66.3	54.5	56.0	65.0	64.7	58.9	64.6
36 years and older	48.8	59.1	39.9	51.5	35.5	47.1	54.7	47.0	42.8	55.1
Marljuena: Total	4.3	6.0	2.8	4.2	5.6	4.7	4.2	3.5	4.3	5.5
12.17 years	4.9	5.5	4.3	4.5	5.8	6.7	5.0	5.0	3.7	6.7
18.25 years	11.1	16.5	5.7	12.5	9.2	7.8	10.2	10.2	11.2	10.9
28.34 years	6.7	9.0	4.5	6.8	9.9	4.1	5.2	5.2	6.1	8.7
36 years and older	1.9	2.6	1.4	1.7	2.7	2.9	1.5	1.5	2.1	2.7
Cocaina: Total	0.6	0.9	0.4	0.5	1.3	1.1	0.7	0.5	0.6	0.8
12.17 years	0.4	0.4	0.4	0.3	0.3	1.0	0.2	0.3	0.4	0.6
18.25 years	1.5	1.7	1.4	1.6	1.3	2.1	1.9	0.5	1.5	2.3
26.34 years	1.0	1.6	0.4	0.9	1.8	1.1	1.3	0.8	0.9	1.0
36 years and older	0.4	0.6	0.2	0.2	1.4	0.7	0.3	0.5	0.3	0.4
	(${ }^{\prime \prime}$	"						110.0		\%
8mokeless tobacco: Total	2.9	5.9	0.2	3.5	1.5	1.1	2.2	3.0	3.9	2.0
12.17 years	2.0	3.9	-.. ${ }^{\text {c }}$	2.7	0.2	0.9	0.9	2.2	2.9	1.1
18.25 years	6.4	12.7	0.2	8.5	1.1	1.9	4.2	6.9	7.7	5.5
26.34 yaars	4.4	8.9	0.1	5.9	0.2	1.0	1.6	4.2	6.6	3.8
36 years and older	1.9	3.7	0.3	1.9	2.5	0.8	2.3	2.0	2.2	0.6
EVER USED										
Crack: Total	1.8	2.6	1.1	1.6	3.4	2.0	1.7	1.2	1.7	3.0
12.17 years	0.4	0.2	0.5	0.2	0.3	1.2	0.2	0.1	0.4	0.7
18.25 years	3.5	4.6	2.5	4.0	2.1	3.5	3.3	2.4	3.5	4.9
20.34 years	4.2	5.9	2.5	3.8	7.2	3.2	3.5	3.0	4.4	5.7
35 years and older	0.9	1.5	0.4	0.7	3.3	1.1	1.1	0.6	0.5	1.9
Inhalants: Toial	5.3	7.4	3.3	5.8	2.9	4.9	4.3	5.1	4.7	7.3
12.17 years	5.9	5.5	6.3	6.5	1.7	7.7	5.7	4.7	4.6	9.7
18.25 years	9.9	12.4	7.4	12.4	2.0	7.2	10.4	11.5	8.3	10.4
26.34 years	9.4	12.9	6.1	11.5	4.0	5.0	7.7	8.9	10.1	10.5
35 years and okder	2.8	4.7	1.1	2.8	3.1	3.0	1.9	2.9	2.1	4.8
Hallucinogens: Total	8.7	11.8	5.9	10.1	3.0	5.9	7.6	7.5	7.6	13.2
12.17 years	2.9	3.4	2.4	3.1	0.2	4.1	2.0	2.0	2.6	5.5
18.25 years	12.5	15.2	9.9	15.8	1.9	7.8	10.6	12.5	11.2	16.4
28.34 years	15.9	19.7	12.2	19.6	5.3	6.7	13.7	14.1	15.1	10.8
35 years and oldar	6.6	10.0	3.7	7.3	3.1	5.1	6.1	5.8	5.1	11.01
Stimulants: Toiar ${ }^{\text {d }}$	6.0	7.4	4.8	6.9	3.0	3.9	6.2	4.4	5.2	9.3
12.17 yesrs	2.1	2.0	2.2	2.5	0.2	2.2	0.9	2.1	2.0	3.1
18.25 years	6.4	7.2	5.7	8.0	1.3	4.4	4.9	5.3	4.6	11.8
26.34 years	10.5	12.1	8.9	12.7	3.2	5.8	7.8	9.7	9.0	16.1
36 yems and older	5.3	7.0	3.8	5.7	4.2	3.3	6.8	3.1	4.8	7.4
Sedatives: Total ${ }^{\text {d }}$	3.4	4.1	2.8	3.6	2.2	2.2	2.8	2.0	3.3	6.1
12.17 years	1.4	1.2	1.6	1.4	0.9	2.2	1.2	0.6	1.5	2.4
18.25 years	2.7	3.4	2.0	3.1	1.5	2.4	2.2	1.4	2.8	4.3
26.34 years	4.8	5.5	4.0	5.9	1.8	2.2	3.7	4.2	5.0	5.9
35 years and otdor	3.6	4.4	4.4	3.5	2.9	2.1	3.0	1.8	3.1	7.2

Table 8-11. Use of Selected Drugs, by Age of User: 1993 (continued) [Percent of Total Population]

Substance and Age Group	Total ${ }^{\text {a }}$	Sex		Race/Ethnicity			Region			
		Male	Female	White ${ }^{\text {b }}$	Black ${ }^{\text {b }}$	Hispanic	Northeast	Midwest	South	West
Tranquilizers: Total ${ }^{\text {d }}$	4.6	5.0	4.1	5.2	2.3	2.8	3.7	4.3	4.2	6.3
12.17 years	1.2	1.0	1.4	1.4	0.4	1.1	1.0	0.4	1.6	1.9
18-25 years	5.4	45.8	4.9	7.0	1.2	2.4	4.0	4.3	6.2	6.2
26-34 years	7.1	8.0	6.2	8.4	3.0	3.6	5.3	6.9	7.1	8.9
35 years and older	4.2	4.6	3.8	4.5	2.9	3.0	3.6	4.4	3.2	6.3
Analgesics: Total ${ }^{\text {d }}$	5.8	6.7	4.9	6.3	3.5	3.9	5.3	4.3	5.3	8.8
12-17 years	3.7	2.8	4.5	4.1	2.7	3.2	3.7	3.0	3.3	5.1
18.25 years	8.7	9.3	8.1	10.6	4.6	4.4	7.6	7.8	7.4	12.5
26.34 years	9.0	11.1	7.0	10.3	3.4	5.9	7.0	7.4	8.0	14.0
35 years and older	4.4	5.4	3.6	4.6	3.5	2.8	4.5	3.0	4.2	6.7

a Includes other races, not shown separately.
Son-Hispanic.
c Low precision; no estimate reported.
Nonmedical use; does not include over-the-counter drugs.
Source: Bureau of the Census, 1995.

Table 8-12. Alcoholism Mortality Rates for American Indians and Alaska Natives by Age and Sex ${ }^{\text {a }}$

Age Group	Both Sexes	Male	Female
Under 5 years	--	--	--
5-14 years	-	--	--
15-24 years	4.8	6.5	3.1
25-34 years	27.6	34.3	21.2
35-44 ycars	6.15	84.9	39.7
45-54 ycars	95.6	125.7	68.0
55-64 ycars	97.3	126.9	71.7
65-74 ycars	76.4	123.9	38.8
75-84 years	34.4	64.0	14.4
85 yearst	24.5	33.4	19.4
U.S. ALL RACES			
Under 5 years	0.0	0.0	0.0
$5-14$ ycars	0.0	0.0	--
15-24 years	0.3	0.5	0.1
25-34 years	2.7	3.9	1.6
35-44 years	10.1	15.6	4.7
45-54 jears	18.3	28.4	8.7
55-64 y ears	23.7	37.9	11.2
65-74 years	19.3	33.4	8.4
75-84 years	10.8	21.5	4.4
85 yearst	3.8	10.2	1.3
U.S. WHITE			
Under 5 years	0.0	--	0.0
5-14 years	0.0	0.0	--
15-24 years	0.3	0.5	0.1
25.34 years	2.0	3.0	1.1
35-44 years	7.5	11.8	3.3
$45-54$ ycars	14.7	22.9	6.8
55-64 years	21.4	34.1	10.0
65.74 years	18.2	31.7	7.9
75-84 years	10.1	20.3	4.2
85 yearst	3.6	9.8	1.1

* American Indians and Alaska natives, IHS service area, 1987-1989, and U.S. all races and white populations, 1988 (rate per 100,000 population).

Note: "-" Represents zero. 0.0 rounds to zero.
Source: U.S. DHHS, 1993.

Table 8-13. Drug-Related Mortality Rates for American Indians and Alaska Natives by Age and Sex ${ }^{\text {a }}$

Age Group	Both Sexes	Male	Female
Under 5 years	2.2	2.2	2.2
5-14 years	0.1	-	0.3
15-24 years	4.8	4.9	4.7
25-34 ycars	7.2	8.6	5.8
35-44 years	6.1	5.8	6.3
45-54 years	4.9	3.9	5.7
55-64 years	5.4	3.5	7.1
65-74 years	2.5	1.9	3.0
75-84 years	1.7	-	2.9
85 years+	-	-	-
U.S. ALL RACES			
Under 5 years	0.2	0.2	0.1
5-14 years	0.1	0.1	0.1
15-24 years	2.4	2.7	2.1
25-34 years	7.7	11.0	4.4
35-44 years	8.0	11.3	4.8
45-54 years	8.0	4.9	3.9
55-64 years	3.3	3.3	3.3
65-74 years	2.8	2.6	2.9
75-84 years	4.1	4.3	3.9
85 years+	6.0	6.6	5.8
U.S. WHITE			
Under 5 years	0.1	0.1	0.1
5-14 years	0.1	0.1	0.1
15-24 years	2.3	2.8	1.8
25-34 years	6.9	9.9	3.9
35-44 years	6.5	8.9	4.1
45-54 years	4.0	4.0	4.1
55-64 years	3.2	2.9	3.4
65-74 years	2.8	2.5	3.0
75-84 years	4.2	4.4	4.1
85 years+	6.0	6.8	5.7

- American Indians and Alaska natives, IHS service area, 1987-1989, and U.S. all races and white populations, 1988 (rate per 100,000 population).

Note: "-" Represents zero. 0.0 rounds to zero.
Source: U.S. DHHS, 1993.

9. DRINKING WATER AND FOOD

The ingestion of contaminated food and water is a potential source of human exposure to toxic compounds. This section focuses on the available data for populations consuming water from specific sources, populations who breastfeed, and populations who consume certain foods.

9.1. POPULATION CONSUMING DRINKING WATER BY SOURCE OF WATER SUPPLY

The consumption of contaminated drinking water is a potential source of exposure to toxic compounds. Contaminants may be present in drinking water before, during, and after treatment. The majority of public water systems treat their water as necessary to ensure that the water is safe to drink. Contaminants may differ depending on the source of water supply (i.e., surface water or groundwater).

EPA established a National Public Water Systems Supervision Program in 1974 under the authority of the Safe Drinking Water Act. Table 9-1 presents data for populations served from public water systems for 1994 (U.S. EPA, 1995). The table presents these data for the number of systems and the population served by community water systems, nontransient noncommunity water systems, and transient noncommunity water systems. The data also are presented by the source of water (i.e., ground or surface). Table 9-2 presents the same type of data for 1993 (U.S. EPA, 1994).

In 1994, a total of 186,822 water systems in 50 States, on Native American lands, and in U.S. territories were classified as public water systems. The largest percentage of the population is served by community water systems (Table 9-1).

9.2. POPULATION USING BOTTLED WATER

Through the National Human Activity Pattern Survey (NHAPS) (Tsang and Klepeis, 1996), information was collected for the general population on the duration and frequency of selected activities and the time spent in selected microenvironments via 24 -hour diaries. More than 9,000 individuals from 48 contiguous States participated in NHAPS. The survey was
conducted between October 1992 and September 1994. Participants were selected using a Ran'dom Digit Dial (RDD) method and Computer Assisted Telephone Interviewing (CATI). Individuals were interviewed to categorize their 24-hour routines (diaries) and/or answer followup exposure questions related to exposure events. The response rate was 63 percent, overall. Data were collected for a maximum of 91 different activities based on selected socioeconomic (gender, age, race, education, etc.) and geographic (census region, State, etc.) factors and time/season (day of week, month) and weighted to ensure that results were representative of the U.S. population. The weighted sample matches the 1990 U.S. census population for each gender, age group, census region, and the day-of-week and seasonal responses are equally distributed (Tsang and Klepeis, 1996). As part of the survey, data also were collected for the source of water used in the household and for the population in the survey who used bottled water for drinking water. These data are presented in Tables 9-3 and 9-4.

9.3. POPULATION BREASTFEEDING

Breast milk is a potential source of exposure to toxic chemicals among nursing infants. Some chemical compounds accumulate in fatty tissues and may be transferred to breastfed infants in the lipid portion of breast milk. In many cases, nursing infants obtain most of their dietary caloric and fluid intakes from breast milk, thus they have high risk of exposure to contaminants in breast milk. Information on the volume of breast milk consumed over a period of time is required to estimate the potential breast milk contaminant dose in infants. (See Exposure Factors Handbook (U.S. EPA, 1997), Section 14.) In addition, identification of the population who breastfeeds is needed. The available data for the percentage of the population who breastfeeds are presented below.

1. The National Academy of Sciences (NAS) Institute of Medicine reviewed the published literature to determine the incidence of breastfeeding in the United States by different dcmographic characteristics. Statistics on breastfeeding in the United States were obtained from a 1989 survey entitled, "Nutrition During Lactation" (NAS, 1991).

Results from the survey (NAS, 1991) indicated that 52.2% of women who delivered babies in 1989 breastfed their newborn infants. The NAS report also revealed that 19.6% of these infants were still breastfed at the age of 5 to 6 months. The data presented in Table 9-5 show the percentage of mothers who breastfeed among whites, blacks, and Hispanics grouped by marital status, education, maternal age, employment, family income, and U.S. regions. The data show that of the three racial/ethnic groups, more white mothers breastfed infants (58.5%), while the lowest percentage were black mothers (23%), followed by Hispanic mothers at 48.4%. According to the data in Table 9-5, breastfeeding of newborns and at 5 to 6 months is directly related to family income (i.e., the higher the income, the higher the rate of breastfeeding in all three ethnic groups). The highest percentage of mothers who breastfeed were found in the Mountain and Pacific regions for all racial/ethnic groups. A conservative estimate for the breastfed population could be developed by applying these percentages to the number of live births in a year, assuming all of the live births will have a lifespan of at least 1 year. This estimate would capture breast-fed infants up to 12 months. The Bureau of Census provide vital statistics data by year, race, and location (State, Region) in the yearly statistical abstracts publications. Breast milk ingestion rates are presented in Exposure Factors Handbook, Section 13.

9.4. POPULATION CONSUMING SELECTED FOODS/FOOD GROUPS

Ingestion of contaminated foods is a pathway of human exposure to toxic chemicals. Fruits and vegetables and grain products may become contaminated, for example, from deposition of ambient pollutants in the air, irrigation waters, soil additives, pesticides, and fertilizers. Fish and shellfish may become contaminated from pollutants in the surface waters and sediments. Meat, poultry, and dairy products can become contaminated if the animals are exposed to contaminated media such as soil, water, or feed crops.

EPA analyzed 3 years (1989, 1990, and 1991) of data from the U.S. Department of Agriculture's Continuing Survey of Food Intakes by Individuals to generate distributions of intake rates for various (1) fruit and vegetable items/groups; (2) grain products; (3) meat, poultry, and dairy products; and (4) fish and shellfish. As part of this analysis, the percentages of
populations consuming the various foods were estimated. These populations are presented with the corresponding intake tables in the Exposure Factors Handbook (U.S. EPA, 1997). A discussion of how the analyses were performed and the caveats also are presented in the handbook in their respective sections. Information on various food groups can be found in the Exposure Factors Handbook (U.S. EPA, 1997) as follows:

- Fruits and vegetables: Section 9, Tables 9-3 to 9-11;
- Fish and shellfish: Section 10, Tables 10-7 to 10-44;
- Meat, poultry, and dairy products: Section 11, Tables 11-1 to 11-4;
- Grain products, Chapter 12, Tables 12-1 to 12-10; and
- Homeproduced food items: Section 13, Tables 13-8 to 13-70.

9.5. REFERENCES

National Academy of Sciences (NAS). (1991) Nutrition during lactation. National Academy of Sciences Institute of Medicine. Washington, DC: National Academy Press.

Tsang, AM; Klepeis, NE. (1996) Results tables from a detailed analysis of the National Human Activity Patterns Survey (NHAPS) response. Prepared by Lockheed Martin, for the U.S. Environmental Protection Agency, Washington, DC, under EPA contract no. 68-W6-001, delivery order no. 13. Draft report.
U.S. Environmental Protection Agency. (1994) The national public water systems supervision program. The FY 1993 compliance report. The Office of Water, Washington, DC; EPA 812-R-94-001.
U.S. Environmental Protection Agency. (1995) The national public water systems supervision program. The FY 1994 compliance report. Office of Water, Washington, DC;
EPA 812-R-95-001.
U.S. Environmental Protection Agency. (1997) Exposure factors handbook. August 1997. Washington, DC: National Center for Environmental Assessment, Office of Research and Development. EPA/600/P-95/002Fabc.

Table 9-1. Population Served by Public Water Systems (PWS) in the United States: 1994

Source							
Systems	Surface Water		Ground Water		Total		Percent of Total PWS
CWS ${ }^{\text {²}}$							
No. of Systoms	10,625	(19\%)	46,122	(3\%)	56.747	(100\%)	30\%
Population Served	152,491,000	(63\%)	90,558,000	(37\%)	243,049,000	(100\%)	NA
NTNCWS ${ }^{\text {b }}$							
No. of Systems	766	(3\%)	22,873	(97\%)	23,639	(100\%)	13\%
Population Served	596,000	(10\%)	5,645,000	(90\%)	6,241,000	(100\%)	NA
TNCWS ${ }^{\text {c }}$							
No. of Systems	2,099	(2\%)	104,337	(98\%)	106,436	(100\%)	57\%
Popelation Sarved	900,000	(7\%)	12,709,000	(93\%)	13,609,000	(100\%)	NA
ALL PWS ${ }^{\text {d,a }}$							
No. of Systems	13,490	(7\%)	173,332	(93\%)	186,822	(100\%)	100\%

- CWS.-Community water systems - Provides drinking water primarily to residential areas; provides water to the same population year round.
b NTNCWS-Nontransient noncommunity water systems. A PWS that regularly serves at least 25 of the same people at least 6 months of the yeer; includes places such as schools, factories, and hospitals that have their own water supplies.
c TNCWS.-Transient noncommunity water systems. For transitory customers in nonresidential areas such as campgrounds, motels, and gas stations.
d Inciudes systems that obtain their drinking water from other PWS.
- Because an individual can be served by more than one category of PWS. the total population served bY all PWS is not cumulative and therefore cannot be determined.

Note: NA $=$ Not applicable.
$(\%)=$ Percent of total systems in that specific system category or percent of total population in a system category (i.e., $10,625 \mathrm{CWS}$ is 19% of 56,747 total systems and $152,491,000$ is 63% of total population sorvod (243,049,000 people) by CWS.

Source: U.S. EPA, 1995.

Table 9-2. Population Served by Public Water Systems (PWS) in the United States: 1993

Systems	Source				Total		Percent of Total PWS
	Surface Water		Ground Water				
CWS ${ }^{\text {a }}$							
No. of Systems	10,681	(19\%)	46,880	(81\%)	56,561	(100\%)	30\%
Population Served	148,686,000	(61\%)	93,995,000	(39\%)	242,679,000	(100\%)	NA
NTNCWS ${ }^{\text {b }}$							
No. of Systems	771	(3\%)	23,221	(97\%)	23,992	(100\%)	13\%
Population Served	625,000	(10\%)	5,690,000	(90\%)	6,315,000	(100\%)	NA
TNCWS ${ }^{\text {c }}$							
No. of Systems	2,228	(29\%)	104,488	198\%)	109,714	(100\%)	57\%*
Population Served	1,157,000	(7\%)	14.271,000	(93\%)	15,428,000	(100\%)	NA
ALL PWS ${ }^{\text {d,e }}$							
No. of Systems	13,678	(7\%)	173,589	(93\%)	191,267	(100\%)	100\%

a CWS Community water systems. Provides drinking water primarily to residential areas; provides water to the same population year round.
b NTNCWS-Nontransient noncommunity water systems. A PWS that regularly serves at least 25 of the same people at least 6 months of the year; includes places such as schools, factories, and hospitals that have their own water supplies.
c TNCWS-Transient noncommunity water systems. For transitory customers in nonresidential areas such as campgrounds, motels and gas stations.
d Includes systems that obtain their drinking water from other PWS.
e Because an individual can be served by more than one category of PWS, the total population served by all PWS is not cumulative and therefore cannot be determined.

Note: NA $=$ Not applicable.
(\%) = Percent of total systems in that specific system category or percent of total population in a system category (i.e., $10,681 \mathrm{CWS}$ is 19% of 56,561 total systems, and $148,686,000$ is 61% of total population served (242,679,000 people) by CWS.

Source: U.S. EPA, 1994.

Table 9-3. Number of Respondents Who Obtained Water From Public and Private Water Sources for General Household Use

	Total N	Public Water	Private Well	Other Source	DK
Overall	4663	3777	719	121	46
Gender					
Malo	2163	1747	338	62	16
Fomale	2498	2029	380	59	30
Refused	2	1	1	--	--
Age (years)					
..	84	73	7	4	-
1-4	263	211	38	12	2
5.11	348	285	52	6	5
12.17	326	251	68	5	2
18.64	2972	2411	461	71	29
> 64		670	546	93	23
Race / Ethniclty					
White	3774	2990	659	96	29
Black	463	410	29	14	10
Asian	77	72	2	2	1
Some other	96	85	7	2	2
Hispanic	193	172	13	5	3
Refused	60	48	9	2	1
Hispanic					
No	4244	3417	676	110	41
Yos	347	304	31	9	3
OK	26	18	6	1	1
Refused	46	38	6	1	1
Employment					
.-	926	738	157	22	9
Full time	2017	1641	304	56	16
Part time	379	315	53	7	4
Not Employad	1309	1057	200	35	17
Rofused	32	26	5	1	--
Education					
--	1021	812	174	26	9
High school	399	292	86	13	8
High school graduate	1253	981	228	21	12
<Collage	895	733	131	23	8
Colloge graduate	650	571	60	14	5
Postgraduate	445	388	40	13	4
Consus Region ${ }^{\text {a }}$					
Northwest	1048	822	187	31	8
Midwest	1036	822	179	20	15
South	1601	1273	276	38	14
West	978	860	77	32	9
Day of Weak					
Weakday	3156	2552	489	77	38
Weokand	1507	1225	230	44	8

Table 9-3. Number of Respondents Who Obtained Water From Public and Private Water Sources for General Household Use (continued)

	Total N	Public Water	Private Well	Other Source	DK
Season					
Winter	1264	983	224	42	15
Spring	1181	973	171	26	11
Summer	1275	1057	174	31	13
Falle	943	764	150	22	7
Asthma					
No	4287	3477	652	117	41
Yes	341	274	59	3	5
DK	35	26	8	1	--
Angina					
No	4500	3646	695	115	44
Yes	125	100	18	5	2
DK	38	31	6	1	-
Bronchitis / Emphysema					
No	4424	3582	683	115	44
Yes	203	167	30	4	2
DK	36	28	6	2	\cdots

a Composition of Census Regions is provided in Sec. 2.4.
Note: $\mathrm{N}=$ Number of respondents; $\mathrm{DK}=$ don't know; Refused $=$ respondent refused to answer; -- = missing data.

Source: Tsang and Klepeis, 1996.

Table 9-4. Number of Respondents Who Use Bottled Water for Drinking Water in the Home

	Respondents						
	Total N	N	\%	N	\%	N	\%
Overall	4663	2650	56.8	2006	43.0	7	0.2
Gender	2	2	100.0	*	*	*	*
Male	2163	1241	57.4	918	42.4	4	,
Female	2498	1407	56.3	1088	43.6	3	-
Age (years) 84							
-	84	46	54.8	38	45.2	*	
1.4	263	126	47.9	137	52.1	*	-
$5 \cdot 11$	348	193	55.5	155	44.5	*	*
12-17	326	185	56.7	141	43.3	*	*
18-64	2972	1588	53.4	1380	46.4	4	0.1
>64	670	512	76.4*	155	23.1	3	0.4
Race / Ethnicity 00							
	60	29	48.3	31	51.7	*	*
White	3774	2259	59.9	1508	40.0	7	0.2
Black	463	186	40.2	277	59.8	-	*
Asian	77	39	50.6	38	49.4	*	*
Some other	96	45	46.9	51	53.1	*	.
Hispanic	193	92	47.7	101	52.3	*	*
Hispanic							
No	4244	2438	57.5	1798	42.4	7	0.2
Yes	348	171	49.1	177	50.9	,	*
DK	26	19	73.1	7	26.9	*	-
Employment 958							
Full Time	958	512 1062	53.4 52.7	446 952	46.6	3	0.1
Part Time	379	211	55.7	168	44.3	*	*
Not Employed	1309	865	66.1	440	33.6	4	0.3
Education							
High School	1021	552	54.1	469	45.9	*	*
High School	399	272	68.2	127	31.8	-	*
Graduate	1253	741	59.1	507	40.5	5	0.4
< College	895	485	54.2	409	45.7	1	0.1
"+' College Graduate	650	354	54.5	296	45.5	*	*
Postgraduate	445	246	55.3	198	44.5	1	0.2
Census Region							
*" Northeast	1048	563	53.7	483	46.1	2	0.2
Midwest	1036	654	63.1	381	36.8	1	0.1
South	1601	916	57.2	682	42.6	3	0.2
West	978	517	52.9	460	47.0	1	0.1
Day of Weak							
Weekday	3156	1775	56.2	1375	43.6	6	0.2
Weekend	1507	875	58.1	631	41.9	1	0.1
							ued)

Table 9-4. Number of Respondents Who Use Bottled Water for Drinking Water in the Home (continued)

	Total N	Respondents					
		N	\%	N	\%	N	\%
Overall	4663	2650	56.8	2006	43.0	7	0.2
Season							
Winter	1264	715	56.6	547	43.3	2	0.2
Spring	1181	671	56.8	508	43.0	2	0.2
Summer	1275	692	54.3	582	45.6	1	0.1
Fall	943	572	60.7	369	39.1	2	0.2
Asthma							
No	4287	2454	57.2	1826	42.6	7	0.2
Yes	341	180	52.8	161	47.2	*	*
DK	35	16	45.7	19	54.3	*	*
Angina							
No	4500	2542	56.5	1952	43.4	6	0.1
Yes	125	87	69.6	37	29.6	1	0.8
DK	38	21	55.3	17	44.7	*	*
Bronchitis / Emphysema							
Yes	4424	2518	56.9	1899	42.9	7	0.2
DK	203	113	55.7	90	44.3	*	*
	36	19	52.8	17	47.2	*	*

Note: $\mathrm{N}=$ Number of respondents; * = missing data; DK = don't know.
Source: Tsang and Klepeis, 1996.

Table 9-5. Percentage of Mothers Breast Feeding Newborn Infants in the Hospital and Infants at 5 or 6 Months of Age in the U.S. in 1989° by ".' Ethnic Background and Selected Demographic Variables ${ }^{\text {b }}$

Category	\%	Total		White		Black		Hispanic ${ }^{\text {c }}$	
		Newborns	$\begin{aligned} & \text { 5-6 Mo } \\ & \text { Infants } \end{aligned}$	Newborns	5-6 Mo infants	Newborns	5-6 Mo Infants	Newborns	$\begin{aligned} & 5-6 \mathrm{Mo} \\ & \text { Infants } \end{aligned}$
All mothors		52.2	19.6	58.5	22.7	23.0	7.0	48.4	15.0
Parity									
Primiparous		52.6	16.6	58.3	18.9	23.1	5.9	49.9	13.2
Mtuliparous		51.7	22.7	58.7	26.8	23.0	7.9	47.2	16.5
Martal status									
Marriod		59.8	24.0	61.9	25.3	35.8	12.3	55.3	18.8
Unmarried		30.8	7.7	40.3	9.8	17.2	4.6	37.5	8.6
Maternal age									
$<20 \mathrm{yr}$		30.2	6.2	36.8	7.2	13.5	3.6	35.3	6.9
20.24 yr		45.2	12.7	50.8	14.5	19.4	4.7	46.9	12.6
25.29 yr		58.8	22.9	63.1	25.0	29.9	9.4	56.2	19.5
30.34 yr		65.5	31.4	70.1	34.8	35.4	13.6	57.6	23.4
235 yr		66.5	36.2	71.9	40.5	35.6	14.3	53.9	24.4
Maternal aducation									
No college		42.1	13.4	48.3	15.6	17.6	5.5	42.6	12.2
Coltege*		70.7	31.1	74.7	34.1	41.1	12.2	66.5	23.4
Family incomo									
< $\$ 7.000$		28.8	7.9	36.7	9.4	14.5	4.3	35.3	10.3
\$7,000.\$14,999		44.0	13.5	49.0	15.2	23.5	7.3	47.2	13.0
\$16,000-\$24,999		54.7	20.4	57.7	22.3	31.7	8.7	52.6	16.5
2\$25,000		66.3	27.6	67.8	28.7	42.8	14.5	65.4	23.0
Maternai omployment									
Full tima		50.8	10.2	54.8	10.8	30.6	6.9	50.4	9.5
Part time		59.4	23.0	63.8	25.5	26.0	6.6	59.4	17.7
Not employod		51.0	23.1	58.7	27.5	19.3	7.2	46.0	16.7
U.S. Cansus Region ${ }^{\text {² }}$									
Now England		52.2	20.3	53.2	21.4	35.6	5.0	47.6	14.9
Midesle Atlantic		47.4	18.4	52.4	21.8	30.6	9.7	41.4	10.8
East North Central		47.6	18.1	53.2	20.7	21.0	7.2	46.2	12.6
Wost North Central		55.9	19.9	58.2	20.7	27.7	7.9	50.8	22.8
South Atlantlc		43.8	14.8	53.8	18.7	19.6	5.7	48.0	13.8
East South Central		37.9	12.4	45.1	15.0	14.2	3.7	23.5	5.0
West South Central		46.0	14.7	56.2	18.4	14.5	3.8	39.2	11.4
Mountain		70.2	30.4	74.9	33.0	31.5	11.0	53.9	18.2
Pacific		70.3	28.7	76.7	33.4	43.9	15.0	58.5	19.7

- Mothers were surveyed when their infants were 6 months of age. Mothers were asked to recall the method of feeding the infant when in the hospital, at age 1 week, at months 1 through 5 , and on the day preceding completion of the survey. Numbers in the columns labeled "5-6 Mo Infants" are an average of the 5-month and previous-day responses.
b Based on data from Ross Laboratories.
c Hispanic is not exclusive of white or black.
d College includes all women who reported completing at least 1 year of college.
- States within each census region are listed in text sec. 2.4.
ill|' i.

Source: NAS, 1991.

10. SOCIOECONOMICS

A variety of socioeconomic and demographic factors (such as income and poverty level) may be associated with increased exposure to environmental contaminants. A growing concern exists among physicians, researchers, and social scientists that people with low incomes and who reside in minority neighborhoods are more likely than other Americans to suffer adverse health effects from pollution and other environmental contaminants (Hearn, 1993). Other areas of concern for increased risk are hazardous occupations, unsatisfactory diets, and inadequate education.

10.1. POVERTY THRESHOLD ESTIMATES

The U.S. Bureau of the Census (1996) has estimated the poverty thresholds for 1995 in its publication, Preliminary Estimates of Poverty Thresholds in 1995. These data, presented in Table 10-1, are based on size of family unit and income. The Census Bureau data are accessible on the World Wide Web via the Internet. The U.S. Census Bureau's home page (Internet address: www.census.gov) contains information on the kinds of data available and instructions on how to conduct data searches, extract data, and download data files. Section 11 contains information on how to access U.S. Government data on the Internet.

10.2. INCOME LEVEL

Low income negatively affects many aspects of an individual's life, including housing, unemployment, diet, and access to education and medical care. The combined effects of living on a low income contribute to an increased risk of exposure to environmental pollutants. For a variety of reasons, often a greater percentage of minorities in the United States are living in poverty than are whites--the majority population.
U.S. Bureau of the Census data indicate that in 1990 the percentage of persons in the United States living below the poverty level (defined by the Census Bureau as $\$ 13,359$ per year in 1992 for a nonfarm family of four) was 13.5% for all races, 10.7% for whites, 31.9% for blacks, and 28.1% for Hispanics (U.S. Bureau of the Census, 1992).

10.2.1. Digest of Education Statistics (U.S. Department of Education, 1995)

The U.S. Department of Education (1995) presented information on poverty rates and income by State for 1990 and 1993. These data are based on the U.S. Bureau of the Census

Current Population Reports. Data for household income and poverty rates by State are presented in Table 10 -2 Poverty status of persons, families, and children under 18 , by race/ethnicity are presented in Table 10-3.

10.2.2. March Current Population Survey (U.S. Bureau of the Census, 1995b)

The U.S. Bureau of the Census (1995) characterized the poverty status of persons in the United States by gender. Data are presented for the years 1966 to 1994 in Table 10-4.

10.2.3. Trends in Indian Health (U.S. Department of Health and Human Services, 1993)

A more complete economic profile of ethnic groups in the United States, including level of education attained, rate of unemployment, household income, and percentage of age groups living below the poverty level, is presented in Table 10-5. This study was conducted to specifically evaluate the Native American and Alaska Native populations. However, data for other population subgroups were evaluated for comparison purposes. The data in Table 10-5 indicate that blacks, Hispanics, and Native Americans have a greater percentage of their populations living below the poverty level than do whites. Most significantly, for blacks, Hispanics, and Native Americans, approximately one-third to almost one-half of the total population under the age of 18 are living in poverty (U.S. DHHS, 1993). Table 10-5 also indicates that the percent of unemployed blacks, Hispanics, Native Americans, and Alaska Natives are significantly higher than the unemployment levels for whites and higher than for all races (U.S. DHHS, 1993).

10.2.4. Inner-City Asthma--The Epidemiology of an Emerging U.S. Public Health

 Concern (Weiss et al, 1992)Neiss et al. (1992) addressed the problems lower income groups often experience in obtaining consistent medical care. The authors suggest that this factor contributes to the increased severity of childhood asthma in inner-city children. Lower income inner-city residents often lack transportation needed to get to medical facilities, and once there, they may experience communication problems with the medical providers (Weiss et al., 1992). In addition, language barriers and lack of education can result in an inability to follow instructions necessary to ensure recovery from an illness or chronic medical condition (Weiss et al., 1992).

10.2.5. Nutrition Intakes of Individuals from Food-Insufficient Households in the United States (Rose and Oliveira, 1997)

Low income can affect the diet by limiting the selection of foods purchased. Recent efforts by the U.S. Department of Agriculture (USDA) and U.S. Department of Health and Human Services have focused on measuring the prevalence of hunger and food insecurity in the United States (Rose and Oliveira, 1997). The USDA analyzed the diets of preschoolers, adult women, and the elderly with 24-hour recall data from the 1989-1991 Continuing Survey of Food Intake by Individuals (CSFII). The study estimated the extent to which individuals in foodinsufficient households were likely to have low intakes of nutrients (Rose and Oliveira, 1997). Dietary intake is affected by factors that are social, cultural, and economic. The study considered variables such as race and ethnicity, household size, and the economic status of the household. Table 10-6 presents descriptive statistics on selected socioeconomic characteristics. It shows that household income and education level of the household head were lower for individuals from the food-insufficient households. Table 10-7 presents weighted means nutrient intakes for both household types expressed as a percentage of the recommended dietary allowance (RDA). .

10.3. HOMELESS POPULATION

According to the National Coalition for the Homeless (NCH) (1997), poverty and homelessness are inextricably linked. "Poor people are frequently unable to pay for housing, food, childcare, health care, and eduction. Often it is housing, which absorbs a high proportion of income, that must be dropped" ($\mathrm{NCH}, 1997$).

To measure homelessness with 100% accuracy is impossible (NCH, 1997). NCH (1997) reported the following estimates:

Year	Number of People	How Estimated
1988	$500,000-600,000$	People found in shelters, soup kitchens, and congregating in the street for 1 week
1996	$760,000 /$ night	Based on a projeted annual increase of 5% using the 1988 estimate
$1985-1990$	$4.95-9.32$ million/l-year	1990 national telephone survey with former homeless people

It appears, according to NCH (1997) "that 12 million of adult residents in the U.S. have been literally homeless at some point in their lives." Survey response rates and estimate errors were not provided in the fact sheet.

The U.S. Conference of Mayors (U.S. COM) (1997) surveyed 29 cities in the U.S. to assess the status of hunger and homelessness. The data were collected from November 1996 through October 1997. Percentages reported for survey questions do not include non-responses (U.S. COM, 1997). Results of the survey showed that substance abuse and lack of needed services led the list for cause of homelessness in the survey cities. Other causes (in order of frequency) were lack of affordable housing, mental illness and lack of needed services, low paying jobs, domestic violence, and changes and cuts in public assistance (U.S. COM, 1997). In the survey cities, people remain homeless an average of 5 months (U.S. COM, 1997). The composition of the homeless population in the survey cities is presented in Table 10-8, and the population, poverty, and unemployment data are presented in Table 10-9. A survey response rate was not provided.

10.4. REFERENCES

Hearn, W. (1993) Toxic toll--environmental hazards intensify the public health problems caused by poverty. Am Med News, February 15, 1993, p. 27.

National Coalition for the Homeless (NCH) (1997) How many people experience homelessness? Fact Sheet \#2. Washington, DC: National Coalition for the Homeless.

Rose, D.; Oliveira, V. (1997) Nutrient intakes of individuals from food-insufficient households in the United States. Am. J. Pub. Health. 87(12):1956-1961.
U.S. Bureau of the Census. (1992) Statistical abstract of the United States: 1992. 112th ed. Washington, DC: U.S. Department of Commerce, Bureau of the Census.
U.S. Bureau of the Census. (1995) March current population survey. Unpublished data. U.S. Department of Commerce, Bureau of the Census, Poverty Statistics Branch, Washington, DC.
U.S. Bureau of the Census. (1996) Preliminary estimates of poverty thresholds in 1995. Unpublished data. U.S. Department of Commerce, Bureau of the Census, Poverty Statistics Branch, Washington, DC.
U.S. Conference of Mayors (COM). (1997) A status report on hunger and homelessness in America's cities: 1997. Washington, DC: U.S. Conference of Mayors.
U.S. Department of Education. (1995) Digest of education statistics. U.S. Department of Education, Office of Education Research and Improvement, Washington, DC.
U.S. Department of Health and Human Services. (1993) Trends in Indian health. U.S. Department of Health an Human Services, Indian Health Service, Washington, DC.

Weiss, KB; Gergen, PJ; Crain, EF. (1992) Inner-city asthma--the epidemiology of an emerging U.S. public health concern. Chest 101(suppl-6):362S-371S.

Table 10-1. Preliminary Estimate of Poverty Threshold (Yearly Income of Household in Dollars): 1995

Size of Family Unit	Estimated Threshoid (in dollars)
1 person	$7,761.00$
Householder under 65 years	$7,929.00$
Householder 65 years and older	$7,309.00$
2 persons	$9,935.00$
Householder under 65 years	$10,259.00$
Householder 65 years and older	$9,221.00$
3 persons	$12,156.00$
4 persons	$15,570.00$
6 persons	
6 persons	
7 persons	
8 persons	
9 or more persons	

Source: U.S. Bureau of the Census, 1996.

Table 10-2. Household Income and Poverty Rates by State: 1990 and 1993

Stato	Median household income ${ }^{1}$		Percent of persons below the poverty livel										Poverty status of 5 - to 17-year-olds. 1993			
	$1990{ }^{2}$	1993										993				
			Total	$\begin{aligned} & \text { Under } \\ & 5 \\ & \text { years } \end{aligned}$	$\underset{\text { years }}{5}$	$\begin{gathered} 6 \text { to } \\ 11 \\ \text { years } \end{gathered}$	$\begin{aligned} & 12 \text { to } \\ & 17 \\ & \text { years } \end{aligned}$	$\begin{gathered} 18 \text { to } \\ 64 \\ \text { years } \end{gathered}$	$\begin{aligned} & 65 \text { to } \\ & 74 \\ & \text { years } \end{aligned}$	$\begin{gathered} 75 \\ \text { years } \\ \text { and } \\ \text { over } \end{gathered}$	Tocal	Standard error	Number in poverty		Percont in poverty	
													Number (in mour sands)	Stanoard error	Percont	Stancard error
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
United States	\$35,025	531,241	13.1	20.1	19.7	18.3	16.3	11.0	10.4	16.5	15.1	0.22	10,150	253	20.8	0.20
Alabama	27,498	25.082	18.3	26.1	25.8	24.3	22.3	14.6	19.2	31.1	17.4	1.94	156	34		
Alaska	48.254	42.931	9.0	13.6	10.6	10.9	9.8	7.9	6.4	10.6	9.1	1.34	15	34	20.5	1.72 1.14
Arizona	32.093	30.510	15.7	24.9	24.2	21.8	19.1	14.0	9.3	13.2	15.4	1.81	163	33	23.1	1.76
Arkansas	24.643	23.039	19.1	28.5	26.6	25.2	22.7	15.3	18.0	29.9	20.0	2.04	117	22	25.4	1.84
Calitomia	41.716	34,073	12.5	19.0	19.3	18.3	17.1	10.9	6.5	9.5	18.2	0.74	1.623	112	25.7	0.70
Colorado	35.123	34.488	11.7	17.9	16.5	15.3	12.5	10.3	8.5	15.1	9.9	1.59	70	22	11.3	1.40
Connecticut	48.618	39.516	6.8	11.7	11.9	11.2	8.9	5.3	5.6	9.7	8.5	1.65	82	25	14.9	1.75
Delaware	40.641	36.064	8.7	13.3	12.7	11.8	10.8	7.2	8.2	13.5	10.2	1.68	17	5	13.7	1.58
Distnct of Columbia	35,807	27.304	16.9	27.0	25.5	25.0	24.4	14.3	15.5	19.7	26.4	2.67	44	8	49.3	2.52
Flonda	32,027	28.550	12.7	20.3	20.1	18.8	16.8	11.0	9.0	13.5	17.8	0.94	666	61	26.9	0.91
Georgia	33.819	31.663	14.7	22.1	21.3	20.1	18.1	11.4	16.5	26.7	13.5	1.70	207	48	17.5	1.57
Hawaii	45,248	42.662	8.3	12.6	12.6	11.2	10.8	6.9	6.7	10.4	8.0	1.47	26	8	13.4	1.54
tdaho	29.433	31.010	13.3	19.6	18.9	15.9	13.3	12.0	8.7	15.6	13.1	1.57	38	8	14.2	1.35
Illinois	37.854	32.857	11.9	18.9	18.7	17.0	15.0	10.0	8.9	13.4	13.6	0.94	406	49	18.2	0.88
Indiana	33.558	29.475	10.7	16.8	15.8	14.1	11.8	9.1	8.7	14.0	12.2	1.74	123	37	10.8	1.37
lowa	30.565	28.663	11.5	17.5	15.4	14.1	11.7	10.3	8.1	15.3	10.3	1.54	61	17	11.1	1.32
Kansas	31.803	29.770	11.5	16.8	16.5	14.1	11.6	10.1	8.5	16.8	13.1	1.69	79	18	16.0	1.53
Kentuciky	26.259	24.376	19.0	27.9	26.5	24.6	22.4	16.2	17.5	25.3	20.4	2.09	177	34	25.7	1.89
Louisiana	25.578	26,312	23.6	33.4	33.0	31.1	29.7	19.6	20.5	30.1	26.4	2.37	376	54	39.4	2.18
Maine	32.459	27.438	10.8	15.7	15.9	14.0	11.5	8.9	11.0	18.3	15.4	1.89	47	10	17.7	1.66
Maryland	45.897	39.939	8.3	11.9	11.9	11.5	10.2	6.8	8.8	13.6	9.7	1.61	100	31	13.4	1.53
Massachusetts	43.061	37.064	8.9	14.5	14.8	13.8	11.0	7.3	7.3	12.6	10.7	0.86	159	22	16.4	0.86
Mıchigan	36.148	32.662	13.1	22.1	20.4	18.1	15.7	11.2	8.7	14.3	15.4	0.97	446	45	24.3	0.96
Minnesota	36.019	33.682	10.2	14.8	14.6	12.5	10.6	8.8	8.4	17.2	11.6	1.71	95	28	12.3	1.46
Mississippi	23.465	22,191	25.2	35.8	35.1	33.5	31.9	20.0	24.0	37.1	24.7	2.12	178	27	31.1	1.90
Missouri	30.720	28.682	13.3	20.4	19.2	17.8	15.1	11.1	11.3	19.7	16.1	1.97	205	45	20.4	1.80
Montana	26,788	26,470	16.1	24.3	23.0	20.3	17.1	14.7	9.9	16.6	14.9	1.77	25	6	14.5	1.45
Nebraska	30.317	31.008	11.1	17.3	15.4	13.4	10.8	9.7	8.6	16.8	10.3	1.48	47	11	13.5	1.38
Nevada	36.138	35.814	10.2	15.1	14.4	12.6	11.9	9.1	8.4	12.3	9.8	1.44	35	9	13.9	1.40
New Hampshire	42.335	37,964	6.4	8.5	8.7	7.3	6.2	5.4	7.7	13.9	9.9	1.76	28	9	13.8	1.69
Now Jersey	47.693	40.500	7.6	11.7	12.6	11.7	10.4	6.0	6.8	11.3	10.9	0.84	227	30	16.4	0.83
New Mexico	28.069	26.758	20.6	30.3	30.6	27.6	25.2	17.8	13.7	21.2	17.4	1.86	68	13	18.8	1.59
New York	38.415	31.697	13.0	20.6	21.2	19.6	17.0	11.0	10.0	14.7	16.4	0.76	773	62	24.6	0.73
North Carolina	31.052	28.820	13.0	19.2	18.5	17.2	15.3	10.1	15.7	25.9	14.4	0.92	196	25	17.8	0.84
North Dakota .	27.051	28,118	14.4	19.6	18.4	17.2	14.7	13.0	10.8	19.5	11.2	1.55	12	4	9.9	1.22
Onio	33.452	31.285	12.5	21.1	19.9	17.8	14.6	10.7	8.7	13.8	13.0	0.89	420	47	18.8	0.66
Oklanoma	27.475	26.260	16.7	25.3	23.4	21.7	18.5	14.2	13.5	24.1	19.9	2.00	168	30	23.5	1.77
Oregon	31.755	33.138	12.4	19.7	16.1	14.8	13.3	11.5	8.1	13.1	11.8	1.75	84	23	14.9	1.60
Pennsylvania	33.875	30.995	11.1	17.5	17.0	15.7	13.8	9.5	8.7	13.5	13.2	0.90	390	47	17.8	0.85
Rhode Island	37.501	33.509	9.6	16.3	16.1	13.8	11.0	7.6	8.9	15.6	11.2	1.84	33	9	20.3	1.96
South Carolina	30.597	26.053	15.4	22.8	21.8	21.2	19.1	12.0	17.3	26.5	18.7	1.79	177	30	26.7	1.70
Sourn Dakota	26.223	27.737	15.9	23.6	22.2	20.2	17.3	13.6	11.1	21.3	14.2	1.61	27	5	16.6	1.42
Tennessee	28,908	25.102	15.7	23.9	22.5	20.8	18.5	12.5	17.2	26.7	19.6	1.94	299	49	30.5	1.87
Texas	31.482	28.727	18.1	25.6	25.5	24.2	23.0	15.2	14.9	23.8	17.4	0.97	851	82	22.9	0.90
Utah	34.342	35.786	11.4	15.8	14.4	12.0	10.0	11.0	6.4	12.5	10.7	1.48	75	15	15.1	1.43
Vermont	34.717	31.065	9.9	13.5	13.7	12.5	9.8	8.5	9.7	16.3	10.0	1.70	15	4	14.2	1.65
Virginia	38.838	36.433	10.2	14.5	14.5	13.5	11.9	8.4	11.6	18.5	9.7	1.34	137	35	11.6	1.20
Washington	36.338	35.655	10.9	17.0	16.4	14.3	12.2	9.8	7.0	12.4	12.1	1.63	121	33	12.3	1.36
West Virginia	24.233	22.421	19.7	31.7	30.3	25.9	22.4	17.7	14.1	20.8	22.2	2.17	104	18	31.4	2.02
Wisconsin	34.309	31.766	10.7	17.7	16.4	15.0	11.9	9.2	6.6	12.6	12.6	1.60	155	35	15.0	1.47
Wyoming	31.576	29.442	11.9	18.3	16.2	14.1	11.2	10.8	8.4	14.3	13.3	2.02	12	4	11.4	1.58

' In 1993 doltars adjusted by the Consumer Pnca Index tor all urban consumers.
${ }^{2}$ Based on 1989 incomes collected in the 1990 Census. May difter trom data denvec
from the Current Podulation Survey

Source: U.S. Department of Education, 1995.

Table 10-3. Poverty Status of Persons, Families, and Children Under 18, by Race/Ethnicity: 1959 to 1993

a Porwors of mapance ongen may de of any race.

Table 10-4. Persons Living in Poverty by Sex: 1966 to $1994^{\text {a }}$ [In thousands]

				Male							Below Poverty			Female	
Year	All Persons	Total	Number	Percent ${ }^{\text {b }}$	Total	Number	Percent								
1994	261,616	127,838	16,316	12.8	133,778	21,744	16.3								
1993	259,278	126,668	16,900	13.3	132,610	22,365	16.9								
$1992^{\text {c }}$	256,549	125,288	16,222	12.9	131,261	21,792	16.6								
1992	253,969	123,873	15,700	12.7	130,096	21,180	16.3								
1991	251,179	122,418	15,082	12.3	128,761	20,626	16.0								
1990	248,644	121,073	14,211	11.7	127,571	19,373	15.2								
1989	245,992	119,704	13,366	11.2	126,188	18,162	14.4								
1988	243,530	118,399	13,599	11.5	125,131	18,146	14.5								
1987	240,890	117,123	14,029	12.0	123,767	18,518	15.0								
1986	238,554	115,915	13,721	11.8	122,640	18,649	15.2								
1985	236,594	114,970	14,140	12.3	121,624	18,923	15.6								
1984	233,816	113,391	14,537	12.8	120,425	19,163	15.9								
1983	231,612	112,280	15,182	13.5	119,332	20,084	16.8								
1982	229,412	111,175	14,842	13.4	118,237	19,556	16.5								
1981	227,157	110,010	13,360	12.1	117,147	18,462	15.8								
1980	225,027	108,990	12,207	11.2	116,037	17,065	14.7								
1979	217,848	105,542	10,535	10.0	112,306	14,810	13.2								
1978	215,656	104,480	10,017	9.6	111,175	14,480	13.0								
1977	213,867	103,629	10,340	10.0	110,238	14,381	13.0								
1976	212,303	102,955	10,373	10.1	109,348	14,603	13.4								
1975	210,864	102,211	10,908	10.7	108,652	14,970	13.8								
1974	209,343	101,523	10,313	10.2	107,743	13,881	12.9								
1973	207,621	100,694	9,642	9.6	106,898	13,316	12.5								
1972	206,004	99,804	10,190	10.2	106,168	14,258	13.4								
1971	204,554	99,232	10,708	10.8	105,298	14,841	14.1								
1970	202,489	98,228	10,879	11.1	104,248	14,632	14.0								
1969	199,848	96,802	10,292	10.6	103,037	13,978	13.6								
1968	197,618	95,681	10,793	11.3	101,919	14,578	14.3								
1967	195,677	94,796	11,813	12.5	100,861	15,951	15.8								
1966	193,389	93,718	12,225	13.0	99,637	16,265	16.3								

a Unpublished historical tables from the March Population Survey.
b Percent of 100.
${ }^{\text {c }}$ Revised to reflect changes in weighting and imputation procedures.
Note: Percentages presented in this table are the value out of 100.
Source: U.S. Bureau of the Census, 1995b.

Table 10-5. Selected Economic Profiles for the United States, 1990 Census

Characteristic	All Races	American Indian and Alaska Native	White	Black	Hispanic	Asian and Pacific Islander
Educational Attaimment (Persons 25 Years and Older):						
Porcont less than 9th grade	10.4	14.2	8.9	13.8	30.7	12.9
Percont 9th to 12 th grade, no diploma	14.4	20.6	13.1	23.2	19.5	9.5
Percent high school graduate or higher	75.2	65.3	77.9	63.1	49.8	77.5
Percent bachelor's degree or higher	20.3	8.9	21.5	11.4	9.2	36.6
Employmont Status by Sex (Persons 16 Years and Older):						
Percont unemployed, males	6.4	16.2	5.3	13.7	9.8	5.1
Percont unemployed, females	6.2	13.5	5.0	12.2	11.2	5.5
Median Housahold Income (1989)	\$30,056	\$19,865	\$31,435	\$19,758	\$24,156	\$36,784
Parcent Below the Poverty Leval by Age:						
All agos	13.1	31.7	9.8	29.5	25.3	14.1
Under 5 years	20.1	43.3	13.8	44.0	33.4	17.5
5 years	19.7	41.7	13.5	42.8	33.9	18.0
6 to 11 years	18.3	37.7	12.5	39.8	32.6	17.3
12 to 17 years	16.3	33.1	11.0	35.5	30.3	16.3
18 to 64 yoars	11.0	27.8	8.5	23.4	21.3	13.0
65 to 74 yoars	10.4	26.9	8.4	28.6	21.9	11.3
75 yours and older	16.5	33.2	14.6	37.3	27.8	13.5

Note: Data for Native Americans are for residents of the 33 reservation States.
Source: U.S. DHHS, 1993.

Table 10-6. Characteristics of Individuals from Food-Sufficient and Food-Insufficient Households: Continuing Survey of Food Intake by Individuals (CSFII), 1989 Through 1991

	Preschoolers (1-5 Years)		Women (19-50 Years)		Elderly ($65+$ Years)	
	Food Sufficient (n -1257)	\qquad	Food Sufficient (n -3578)	Food Insufficient ($\mathrm{n}=227$)	Food Sufficient (n -2179)	\qquad
Mean age, y	3.0	2.7	33.9	31.3	73.5	69.9
Mean household per capita income, $\$ 1000$	8.9	2.3	14.0	4.2	13.6	4.8
Mean household size, no. persons	4.4	5.1	3.4	4.2	2.0	2.0
Mean education, $y^{\text {a }}$	12.9	10.4	13.2	10.7	11.5	6.3
Single head of household, \%	16.8	45.3	25.5	46.9	40.1	54.4
Owns home, ${ }^{\text {a }}$ \%	59.1	24.3	60.7	25.4	84.0	40.5
Participates in food assistance program, \%	25.4	83.6	14.3	69.3	4.5	44.3
Non-Hispanic White	72.3	39.4	76.8	49.1	85.8	31.5
Non-Hispanic Black	14.1	36.6	11.7	29.0	9.4	50.1
Hispanic	9.4	13.8	8.5	16.8	3.4	9.9
Other	4.3	10.3	3.0	5.1	1.4	8.5
Urbanization, \%						
Central city	30.2	40.3	30.5	48.4	33.1	33.1
Suburb	48.0	37.4	49.7	35.0	40.2	28.5
Nonmetropolitan	21.7	22.3	19.8	16.6	26.7	38.4
Region, \%						
Northeast	19.5	17.6	21.0	29.4	20.6	20.8
South	34.3	27.7	33.7	25.5	39.1	59.5
West	21.5	26.1	19.3	19.9	21.2	11.5
Midwest	24.7	28.7	26.1	25.2	19.1	8.3

Note: Food insufficiency was indicated by the household respondent's report that there was sometimes or often not enough to eat. Estimates were calculated with CSFII-1989-1991 weights for the sample of individuals reporting 1 day of dietary intake.
${ }^{\text {a }}$ Refers to head of household.
Source: Rose and Oliveira, 1997.

Table 10-7. Mean Nutrient Intakes Expressed as a Percentage of the Recommended Dietary
Allowances of Individuals from Food-Sufficient and Food-Insufficient Households: Continuing Survey of Food Intake by Individuals (CSFII), 1989 Through 1991

Public Health Priority ${ }^{\text {a }}$	Nutrient	Preschoolers (1-5 Years), Mean (SE)		Women (19-50 Years), Mean (SE)		Elderly ($65+$ Years), Mean (SE)	
		Food Sufficient (n -1257)	Food Insufficient (n -123)	Food Sufficient (n -3578)	Food Insufficient ($\mathrm{n}=227$)	Food Sufficient (n -2179)	Food Insufficient (n -61)
Current	Food energy	92.1 (1.7)	80.8 (5.2)*	73.1 (0.9)	61.3 (3.7)*	77.0 (1.2)	58.3 (8.2)*
	Calcium	102.1 (2.5)	91.5 (7.9)	75.0 (1.3)	56.1 (3.5)*	82.9 (1.8)	56.8 (10.2)*
	Iron	104.3 (3.0)	86.6 (7.4)*	78.5 (1.4)	66.6 (6.3)	138.7 (3.9)	102.8 (17.7)
Potential	Protein	276.7 (5.4)	256.1 (19.6)	131.0 (1.7)	113.1 (6.8)*	118.4 (1.8)	99.2 (19.0)
	Vitamin A	171.9 (6.7)	142.0 (16.5)	104.1 (3.5)	82.2 (7.6) *	141.4 (6.3)	78.4 (17.4)*
	Vitamin E	72.2 (1.9)	70.8 (11.2)	85.4 (2.3)	62.5 (5.4)*	89.5 (4.1)	43.1 (7.6)*
	Vitamin C	202.2 (8.7)	166.2 (20.6)	137.6 (3.5)	95.4 (10.7)*	178.6 (6.6)	144.4 (40.0)
	Vitamin B_{6}	120.3 (2.8)	98.3 (9.1)*	85.8 (1.2)	73.3 (5.5)*	94.9 (2.0)	62.6 (11.3)*
	Folate	338.3 (8.7)	322.0 (32.6)	115.5 (2.3)	102.2 (9.0)	143.6 (4.0)	93.5 (18.1)*
	Phosphorus	123.3 (2.4)	110.1 (8.1)	119.1 (1.7)	97.2 (5.6)*	132.2 (2.2)	101.6 (20.2)
	Magnesium	199.4 (4.0)	172.1 (10.9)*	78.3 (1.1)	64.2 (3.6)*	81.9 (1.6)	61.7 (10.8)
	Zinc	71.4 (1.8)	63.0 (4.1)	74.7 (1.1)	66.2 (5.1)	78.4 (4.6)	53.9 (8.9)*
Not current	Thiamin	150.4 (2.6)	135.5 (9.9)	114.9 (1.8)	100.0 (8.7)	132.7 (3.0)	100.7 (19.0)
	Riboflavin	185.4 (3.7)	169.9 (13.6)	116.6 (1.9)	96.0 (6.7)*	134.2 (2.9)	89.8 (14.8)*
	Niacin	136.9 (2.4)	118.1 (10.8)	121.1 (1.6)	$103.3(7.4)^{*}$	139.9 (2.7)	99.6 (15.6)*

Note: Food insufficiency was indicated by the household respondent's report that there was sometimes or often not enough to eat.
Estimates were calculated with CSFII-1989-1991 weights for the sample of individuals reporting 1 day of dietary intake.
A Based on monitoring priority status for nutrients in the Third Report on Nutrition Monitoring in the United States.

* $\quad \mathrm{P}<.05$ (for difference in intake between food-sufficient and food-insufficient individuals).

Source: Rose and Oliveira, 1997.

Table 10-8. Composition of the Homeless Population (percentages)

City	Families	Men	Women	Youth	AfricanAmerican	White	Hispanic	Asian	Native American	Mentally III	Substance Abusers	Employed	Veterans	Single Parent Families	Family Members (Children)
Alexandria	43	45	12	0	79	17	3	0	0	27	77	24	15	86	59
Boston	31.1	56.76	11.25	. 9	42	38	13	2	2	${ }^{2}$.. ${ }^{\text {b }}$	-.¢	31	97	65
Charleston	33	67	--d		57	37	7	NA	NA	35	58	17	40	95	75
Chicago	39.3	42.6	17.9	NA	81.1	10	8.1	. 5	. 3	10.2	22.7	8.3	. 8	96.2	68.3
Cleveland	22	52	23	2	78	19	2	. 5	. 2	25	50	15	10	95	70
Denver	34	48	18	2	24	49	16	0	5	18	32	15	25	80	40
Detroit	26	53	17	4	85	10	3	1	1	33	75	19	29	91	19
Kansas City	72	13	15	>1	58	35	4	2	1	NA	NA	NA	NA	42	47
Los Angeles	20	50	25	5	50	NA	33	NA	NA	50	40	NA	25	80	71
Louisville	27	48	15	10	45	49	3	3	NA	NA	NA	NA	NA	81	63
Miami	28.2	56.1	15.7	NA	60.8	38.5	NA	. 1	. 6	18.77	36.2	2.3	9.2	79.9	64.5
Minneapolis	NA	NA	NA	NA	70	15	3	2	10	10	35	15	25	75	55
Nashville	5	82	12	1	43	51	5	>1	1	25	44	30	23	67	55
New Orleans	26	47	14	13	66	31	1	1	1	22	42	15	26	85	73
Norfaik	>24	64	12	0	94	5	>1	NA	NA	NA	NA	NA	NA	95	73
Philadelphia	66.4	23.6	10	NA	88.4	7.4	4	02	--	9	34.3	7.6	6.6	9.1	71.2
Phoenix	30	60	5	5	15	61	26	1	8	20-50	21-34	23	28	80	60
Portand	58	29	12	1	26	54	10	1	3	2	NA	NA	1	73	58
Salt Lake City	28	60	10	2	8	70	13	1	8	57	32	37	35	67	70
San Antonio	58.8	23.9	13.2	4.1	20.7	23.2	55.4	. 5	. 2	35	28	36	27	83	73
San Diego	26	61	8	5	40	38	18	1	3	33	40	40	35	80	60
San Francisco	25	55	15	5	47	31	13	5	4	43	52	8	40	73	87
Santa Monica	18	42	30	10	43	35	17	2	3	30	64	NA	30	78	15
St. Louis	52	30	18	NA	83	16	. 46	. 46	. 08	24	25	12	4	70	68
St. Paul	33	50	8	9	49.1	33.8	12.4	. 6	3.5	3.3	3.3	5.6	NA	46	46
Seatte	25	43	11	4	29	30	13	2	5	35	36	9	12	59	18
Trenton	77	11.5	11.5	NA	NA	NA	NA	NA	NA	30	85	>10	17	88	67

a 40\% of individuals, 10% of families
b 60% of individuals, 20% of families
c 23% of individuals, 20% of families
d included in families \%
Source: U.S. COM, 1997.

Table 10-9. Population, Poverty, and Unemployment Data for Survey Cities

Chy	1990 Population	1990 Poverty Rate Estimate (\%)	October 1996 Unemployment Rate (\%)	Öctober 1997 Unemployment Rate (\%)
Alexandria	111,183	7.1	3.8	2.9
Boston	574,283	18.7	4	3.7
Charleston	80,414	21.6	5.2	4.6
Charlotte	395,934	10.8	3.2	2.6
Chicago	2,783,726	21.6	6.6	5.7
Cleveland	505,616	28.7	9.7	8.5
Denver	467,610	17.1	4.4	3
Dotroit	1,027,974	32.4	8.3	6.6
Kansas City	435,146	15.3	8.6	6.9
Los Angeles	3,485,398	18.9	8.7	7
Louisvillo ""	269,063	22.6	5.4	4.4
Miami	358,548	31.2	10.5	9.8
Minneapolis	368,383	18.5	4.2	3.4
Nashvillo	488,374	13.4	3.3	3.4
New Orleans	$496,938$	31.6	7.7	6.5
Norfolk	261,229	19.3	6.6	5.9
Philadelphia	1,585,577	20.3	7.1	6.6
Plroenix	983,403	10.5	4.4	3
Portiand	437,319	14.5	2.7	2.9
Providence	160,728	23.0	6.3	6.6
St. Louis	396,685	24.6	7.2	6.7
St. Paul	272,235	16.7	4.3	3.3
Salt Lake City	159,936	16.4	3.3	3
San Antonio	935,933	22.6	4.3	4.3
San Diego	1,110,549	13.4	5.1	4.4
San Francisco	723,959	12.7	4.2	4.3
Santa Monica	86,905	9.4	5	4
Seattlo	516,259	12.4	5.7	3.6
Trenton	88,675	18.1	12	9.3

Source: U.S. COM, 1997.

11. ELECTRONIC AND OTHER DATA SOURCES

This section presents Internet data sources useful for identifying and enumerating populations who potentially may be at risk of exposure to chemicals/contaminants at a greater rate than the general population. The sources in this section are Federal Government departments and agencies; however, many other types of Internet sources are available to the assessor. Examples include State, local, and regional governments and organizations; trade associations; and advocacy groups. Readers of this document are encouraged to explore the Internet using any of the available search engines (e.g., Alta Vista, Yahoo, etc.) to locate additional Internet data sources.

It is assumed that the reader will have some familiarity with the use of the Internet. The information in this section is provided to assist the reader in easily and quickly locating data on the Internet and is not intended to be a comprehensive guide to using the Internet. For this reason, detailed directions are not provided. Many standard references exist to guide the reader in use of the Internet.

It should be noted that, like all Internet resources, this information is time sensitive. Internet information (home pages, etc.) is continually updated by the responsible organization. The content of information the reader is able to access may differ from the information contained in this section.

11.1. U.S. ENVIRONMENTAL PROTECTION AGENCY

The U.S. EPA's home page (http://www.epa.gov) provides access to many of the Agency's environmental databases. Examples of databases available include (but are not limited to) the Aerometric Information Retrieval System (AIRS), containing national air pollution data; and the Better Assessment Science Integrating Point and Nonpoint Sources (BASINS), integrating national watershed data and geographic information system (GIS) mapping capabilities. ENVIROFACTS (http://www.epa.gov/enviro) is an especially useful tool available on EPA's home page. ENVIROFACTS allows the user to integrate data from seven of EPA's major environmental databases with Census data using GIS capabilities to produce site-specific maps. The user can submit specific queries and reports can be generated. For example, maps can be produced with population density, percent minority, percent below poverty, and per capita income. LandView ${ }^{\top M}$ III is a CD-ROM publication that provides database abstracts from EPA, the U.S. Bureau of the Census, the U.S. Geological Survey, the Nuclear Regulatory Commission,
the U.S. Department of Transportation, and the Federal Emergency Management Agency (FEMA). These databases are presented in a geographic context on maps that contain jurisdictional boundaries (e.g., census tracts, block group, Indian lands); detailed networks of roads, rivers, and railroads; census block group and tract polygons; schools; hospitals; churches; cemeterics; airports; dams; environmental sites; and other landmark features. LandView software performs display, query, and analysis of maps and data. LandView III is available on CD-ROM from the Bureau of the Census (301-457-4107) or the Census Webpage: http://www.census.gov/geo/waw/tiger. The Chemical Information System is one of the world's largest sources of online chemical information. With more than 30 linked databases, CIS contains information on specific chemical substances, including toxicological and/or carcinogenic research data, hazardous materials handling information, regulatory information, spectroscopic data, pharmaceutical data, and environmental issues. CIS includes popular databases such as AQUIRE, the TSCA Inventory, CERCLIS, and RCRIS. Accessible worldwide via internationl communications networks, CIS has subscribers on five continents. For product information, see http://www.oxmol.com/prods/cis/or E-mail cissupport@oxmol.com.

11.2. U.S. DEPARTMENT OF COMMERCE

The home page of the Commerce Department (http://www.doc.gov) offers STAT-USA, which is a source of economic data. While data available through STAT-USA (hitp://www.statusa.gov) pertain to economic and financial factors, these kinds of data can be useful for identifying and enumerating populations in certain economic and financial categories.

11.2.1. U.S. Burcau of the Census

The U.S. Bureau of the Census is a subagency of the Department of Commerce. Many of the data presented in this document were collected by the Bureau of the Census. Its home page (htp://wws:census.gov) provides access to a wide range of demographic data. Data files may be downloaded directly from the Internet or through the interactive tools provided on the Census Bureau's Web site, and can be used to generate mapped data for a specific area or region. The Census Bureau's home page provides a connection to FEDSTATS (http://www.fedstats.gov), which offers access to more than 70 Federal statistical agencies. Examples of various data that are contained in FEDSTATS from different Federal agencies are shown below:

Topic	Data Source	Agency
Agriculture	Crops county data	National Agricultural Statistics
		Service
Demographic/	County profiles	Central Intelligence Agency
Economic	Demographic/economic state/county profiles	Bureau of the Census
	State data centers	
	Crime and justice	Bureau of the Census
Crime	Public school student, staff, and	Bureau of Justice Statistics
Education	Nrational Center for Education	
	Staunts by State	Statistics
Energy/Environment	State energy data	Energy Information Administration
Health	Atlas of the United States MortalityNational Center for Education Labor	Regional information

11.3. U.S. DEPARTMENT OF LABOR

The Department of Labor's (DOL) home page is located at hitp://www.dol.gov. Its home page offers connections to DOL subagencies that offer data and statistics, including the Bureau of Labor Statistics (BLS) and the Occupational Safety and Health Administration (OSHA).

11.3.1. Bureau of Labor Statistics

The Bureau of Labor Statistics' home page (http://stats.bls.gov) offers data on persons in the labor force, persons who are on nonfarm payrolls, and local area unemployment statistics. In addition, safety and health statistics are available organized by Standard Industrial Classification (SIC) codes.

11.3.2. Occupational Safety and Health Administration

The Occupational Safety and Health Administration (OSHA) is another DOL subagency. OSHA's home page (http://www.osha.gov) offers statistics and data searchable by type of working establishment, SIC code of establishment, workplace inspection, and workplace injury/illness.

11.4. U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

The home page of the Department of Health and Human Services (DHHS) (http://www.dhhs.gov) offers connections to its subagencies, which collect health-related data.

These include the Centers for Disease Control and Prevention (CDC), Agency for Toxic Substances and Disease Registry (ATSDR), National Center for Health Statistics (NCHS), Indian Health Services (IHS), National Institutes of Health (NIH), National Institute of Mental Health (NIMH), and Substance Abuse and Mental Health Service Administration (SAMHSA).

11.4.1. Centers for Disease Control and Prevention

The home page of the Centers for Disease Control and Prevention (CDC) (http://www.cdc.gov) has connections to CDC data and statistics. CDC's home page has a connection to the Morbidity and Mortality Weekly Report, which has health-related data.

11.4.2. Agency for Toxic Substances and Disease Registry (ATSDR)

The ATSDR's home page (http://atsdrl.atsdr.cdc.gov:8080/atsdrhome.html) presents the following ATSDR data sets and resources: ATSDR Science Corner, Toxicology and ToxFAQs, Iealth Assessments and Consultations, Health Education and Consultations, Urban Environmental Issues, and Special Initiatives and Projects (Child Health, Great Lakes, Mississippi Delta, and Minority Health).

11.4.3. National Center for Health Statistics (NCHS)

Another subagency of DHHS is the National Center for Health Statistics. The home page of the NCHS (http://www.cdc.gov/nchswww/index.htm) offers connections to statistics and data available through its Data Warehouse and FASTATS.
4

11.4.4. National Institutes of Health (NIH)

The NIH home page (http://www.nih.gov) offers health information such as CancerNet, AIDS information, and the Women's Health Initiative. Scientific resources also are available in the form of research training information and on-line library journals. NIH's home page offers connections to the home page of the National Institute of Mental Health
(http://wuw:nimh.nih.gov), which presents information on mental disorders and treatment.
Substance abuse statistics are available on the home page of the Substance Abuse and Mental Health Services Administration (SAMHSA) (http://www.samhsa.gov).

11.4.5. Substance Abuse and Mental Health Services Administration (SAMHSA)

Another subagency of DHHS is the Substance Abuse and Mental Health Services Administration. The National Clearinghouse for Alcohol and Drug Information (NCADI), a service of SAMHSA, hosts Prevention Online or PREVLINE (http://www.health.org). This site contains up-to-date and comprehensive information, facts, and statistics on substance abuse.

11.5. ENVIRONMENTAL DEFENSE FUND (EDF)

The EDF, an environmental special interest group, has an Internet service that allows anyone to enter a ZIP Code and see a map highlighting local sources of pollution, as well as Federal filings and contact information (http://www.scorecard.org).

11.6. STATE ENVIRONMENTAL PROTECTION AGENCIES

The State Environmental Protection Agencies may be a source of information when sitelimited data are not readily available. The addresses and telephone numbers for these agencies are presented in Table 11-1.

11.7. ENCYCLOPEDIA OF ASSOCIATIONS

The Encyclopedia of Associations is a guide to over 30,000 national and international organizations, including trade, business, and commercial; agricultural and commodity; legal, governmental, public administration, and military; scientific, engineering, and technical; educational; cultural; social welfare; health and medical; pubilc affairs; fraternal, foreign interest, nationality, and ethnic; religious; veterans', hereditary, and patriotic; hobby and avocational; athletic and sports; labor unions, associations, and federations; Chambers of Commerce and trade and tourism; Greek letter and related organizations; and fan clubs.

A supplemental guide is also available for more than 47,000 regional, State, and local nonprofit organizations in 50 States, the District of Columbia, and the U.S. territories of Guam, Puerto Rico, and the Virgin Islands.

This document can be found in the reference section of most libraries. It is published by Gale Research, New York.

Table 11-1. State Environmental Protection Agencies

Alabama
Conservation and Natural Resources
Department
P.O. Box 301450
Montgomery, AL 36130-1450
Phone: (800) 262-3151
Fax: (334) 242-1880
Environmental Management Department
1751 Cong. W.L. Dickinson Drive
P.O. Box 301463
Montgomery, AL 36130-1463
Phonc: (334) 271-7700
Fax: (334) 271-7950
Alaska
Environmental Conservation Department
410 Willoughby Avenue, Suite 105
Juncau, AK 99801-1795
Phone: (907) 465-5010
Fax: (907) 465-5097
TTY: (907) 465-5010
Natural Resources Department
3601 C Street, Suite 858
Anchorage, AK 99503
Phone: (907) 269-8400
Fax: (907) 269-8901
TTY: (907) 269-8411
Agriculture Revolving
Loan Fund: (907) 745-7200
Arizona
Environmental Quality Department
3033 N. Central Avenue
Phoenix, AZ 85012
Phone: (602) 207-2300
Fax: (602) 207-2218
TTY: (602) 207-4829

Alabama
Conservation and Natural Resources
Department
P.O. Box 301450

Montgomery, AL 36130-1450
Phone: (800) 262-3151
Fax: (334) 242-1880
Environmental Management Department
1751 Cong. W.L. Dickinson Drive
P.O. Box 301463

Montgomery, AL 36130-1463
Phone: (334) 271-7700
Fax: (334) 271-7950

Alaska

Environmental Conservation Department
410 Willoughby Avenue, Suite 105
Juncau, AK 99801-1795
Phone: (907) 465-5010
Fax: (907) 465-5097
TTY: (907) 465-5010
Natural Resources Department
3601 C Street, Suite 858
Anchorage, AK 99503
Phone: (907) 269-8400
Fax: (907) 269-8901
TTY: (907) 269-8411
Agriculture Revolving Loan Fund: (907) 745-7200

Arizona

Environmental Quality Department 3033 N. Central Avenue
Ploenix, AZ 85012
Phone: (602) 207-2300
Fax. (602) 207-2218
TTY: (602) 207-4829

Arkansas

Pollution Control and Ecology Department 8001 National Drive
P.O. Box 8913

Little Rock, AR 72219-8913
Phone: (501) 682-0744
Fax: (501) 682-0798

California

Environmental Protection Agency
555 Capitol Mall, Suite 525
Sacramento, CA 95814
Phone: (916) 445-3846
Fax: (916) 445-6401
Resources Agency
Resources Building, Suite 1311
1416 Ninth Street
Sacramento, CA 95814
Phone: (916) 653-5656
Fax: (916) 653-8102

Colorado

Natural Resources Department
1313 Sherman Street, Room 718
Denver, CO 80203
Phone: (303) 866-3311
Fax: (303) 866-2115
Public Health and Environment Department 4300 Cherry Creek Drive, South Denver, CO 80222
Phone: (303) 692-2000
Fax: (303) 782-0095
TTY: (303) 691-7700

Table 11-1. State Environmental Protection Agencies (continued)

Connecticut

Environmental Protection Department
79 Elm Street
Hartford, CT 06106
Phone: (860) 424-3000
Fax: (860) 424-4053

Delaware

Natural Resources and Environmental Control Department
89 Kings Highway
P.O. Box 1401

Dover, DE 19903-1401
Phone: (302) 739-4506
Fax: (302) 739-6242

District of Columbia

Environmental Regulation Administration
2100 Martin L. King Avenue SE
Washington, DC 20020
Phone: (202) 645-6617
Fax: (202) 645-6622

Florida

Environmental Protection Department
3900 Commonwealth Boulevard
Tallahassee, FL 32399-3000
Phone: (904) 488-1073
Fax: (904) 921-6227

Georgia

Natural Resources Department 205 Butler Street SE, Suite 1252 Atlanta, GA 30334
Phone: (404) 656-3500
Fax: (404) 656-0770

Hawaii

Land and Natural Resources Department
Kalanimoku Building
1151 Punchbowl Street
Honolulu, HI 96813
Phone: (808) 587-0406
Fax: (808) 587-0360

Idaho

Environmental Quality Division
450 W. State Street
P.O. Box 83720

Boise, ID 83720
Phone: (208) 373-0502
Fax: (208) 373-0417

Illinois

Environmental Protection Agency
P.O. Box 19276

Springfield, IL 62794
Phone: (217) 782-2829
Fax: (217) 782-9039
TTY: (217) 782-9143
Natural Resources Department
Lincoln Tower Plaza
524 S . Second Street
Springfield, IL 62701-1787
Phone: (217) 782-6302
Fax: (217) 785-3150
TTY: (217) 782-9175

Indiana

Environmental Management Department 105 S. Meridian Street
P.O. Box 6015

Indianapolis, IN 46206-6015
Phone: (317) 233-6894
Fax: (317) 232-5539
TTY: (317) 233-6087

Table 11-1. State Environmental Protection Agencies (continued)

Natural Resources Department
402 W. Washington Street
Indianapolis, IN 46204
Phone: (317) 232-4200
Fax: (317) 233-6811

Lowa

Natural Resources Department Wallace Building
Des Moines, IA 50319-0034
Phone: (515) 281-5145
Fax: (515) 281-6794
TTY: (515) 242-5967

Kansas

Health and Environment Department Landon State Office Building 900 S.W. Jackson Street
Topeka, KS 66612-1290
Phone: (913) 296-1500
Fax: (913) 296-6247

Kentucky

Natural Resources and Environmental Protection Cabinet
Capital Plaza Tower, 5th Floor
500 Mero Strect
Frankfort, KY 40601
Phone: (502) 564-5525
Fax: (502) 564-3354

Louisiana

Environmental Quality Department P.O. Box 82231

Baton Rouge, LA 70884-2231
Phone: (504) 765-0741
Fax: (504) 765-0045

Natural Resources Department
P.O. Box 94396

Baton Rouge, LA 70804-9396
Phone: (504) 342-4500
Fax: (504) 342-2707

Maine

Conservation Department
22 State House Station
Augusta, ME 04333-0022
Phone: (207) 287-2211
Fax: (207) 287-2400
TTY: (207) 287-2213
Environmental Protection Department
17 State House Station
Augusta, ME 04333-0017
Phone: (207) 287-7688
Fax: (207) 287-2814

Maryland

Natural Resources Department
Tawes State Office Building
Annapolis, MD 21401
Phone: (410) 974-3195
Fax: (410) 974-5206
TTY: (410) 974-3683
Environment Department
2500 Broening Highway
Baltimore, MD 21224
Phone: (410) 631-3000
Fax: (410)631-3888
TTY: (410) 631-3009

Massachusetts

Environmental Affairs Executive Office
100 Cambridge Street, Room 2000
Boston, MA 02202
Phone: (617) 727-9800
Fax: (617) 727-2754

Table 11-1. State Environmental Protection Agencies (continued)

Michigan

Environmental Quality Department P.O. Box 30473

Lansing, MI 48909-7973
Phone: (800) 662-9278
Fax: (517) 241-7401
Pollution Emergency Alerting System:
(800) 292-4706

Natural Resources Department
P.O. Box 30028

Lansing, MI 48909
Phone: (517) 373-1214
Fax: (517) 335-4242
TTY: (517) 335-4623

Minnesota

Natural Resources Department
500 Lafayette Road
St. Paul, MN 55155-4001
Phone: (612) 296-6157
Fax: (612) 296-3500
TTY: (612) 296-5484
Environmental Assistance Office
520 Lafayette Road, 2nd Floor
St. Paul, MN 55155-4100
Phone: (612) 296-3417
Fax: (612) 297-8709

Mississippi

Environmental Quality Department
P.O. Box 20305

Jackson, MS 39289-1305
Phone: (601) 961-5650
Fax: (601) 354-6965

Missouri

Natural Resources Department
P.O. Box 176

Jefferson City, MO 65102
Phone: (573) 751-3443
Fax: (573) 751-7627

Montana

Environmental Quality Department
P.O. Box 200901

Helena, MT 59620-0901
Phone: (406) 444-2442
Fax: (406) 444-1804
Natural Resources and Conservation
Department
1625 Eleventh Avenue
P.O. Box 201601

Helena, MT 59620-1601
Phone: (406) 444-2074
Fax: (406) 444-2684
TTY: (406) 444-2074

Nebraska

Environmental Quality Department
1200 N Street, Suite 400
P.O. Box 98922

Lincoln, NE 68509-8922
Phone: (402) 471-2186
Fax: (402) 471-2909

Nevada

Conservation and Natural Resources
Department
123 W. Nye Lane
Carson City, NV 89710
Phone: (702) 687-4360
Fax: (702) 687-6122

Table 11-1. State Environmental Protection Agencies (continued)

New Hampshire

Environmental Services Department
6 Hazen Drive
Concord, NH 03301
Phone: (603) 271-3503
Fax: (603) 271-2867
TTY: (800) 735-2964

New Jersey

Environmental Protection Department
401 E. State Street, CN 402
Trenton, NJ 08625-0402
Phonc: (609) 777-3373
Fax: (609) 292-7695

New Mexico

Environment Department
1190 St. Francis Drive
P.O. Box 26110

Santa Fe, NM 87502
Phone: (505) 827-2855
Fax: (505) 827-2836

Newy York

Environmental Conservation Department 50 Wolf Road
Albany, NY 12233
Phonc: (518) 457-5400
Fax: (518) 457-7744

North Carolina

Environment, Health and
Natural Resources Department
P.O. Box 27687

Ralcigl, NC 27611
Phone: (919) 733-4984
Fax: (919) 715-3060

North Dakota

Environmental Health Section
1200 Missouri Avenue
P.O. Box 5520

Bismarck, ND 58506-5520
Phone: (701) 328-5150
Fax: (701) 328-5200

Ohio

Natural Resources Department
Fountain Square
Columbus, OH 43224-1387
Phone: (614) 265-6565
Fax: (614) 261-9601
Environmental Protection Agency
1800 WaterMark Drive
P.O. Box 1049

Columbus, OH 43216-0149
Phone: (614) 644̂-3020
Fax: (614) 644-2329
TTY: (614) 644-2110

Oklahoma

Environmental Quality Department 1000 NE Tenth Street
Oklahoma City, OK 73117-1212
Phone: (405) 271-8056
Fax: (405) 271-8425
Complaints Hotline: (800) 522-0206

Oregon

Environmental Quality Department
811 S.W. Sixth Avenue
Portland, OR 97204-1390
Phone: (503) 229-5696
Fax: (503) 229-6124
TTY: (503) 229-6993

Table 11-1. State Environmental Protection Agencies (continued)

Pennsylvania

Environmental Protection Department

P.O. Box 2063

Harrisburg, PA 17105-2063
Phone: (717) 783-2300
Fax: (717) 783-8926
TTY: (800) 654-5984

Rhode Island

Environmental Management Department
235 Promenade Street, Suite 425
Providence, RI 02908
Phone: (401) 277-6800
Fax: (401) 277-6802
TTY: (401) 831-5508
24-Hour Hotline: (401) 277-3070

South Carolina

Health and Environmental Control Department 2600 Bull Street
Columbia, SC 29201
Phone: (803) 734-5000
Fax: (803) 734-4777
Natural Resources Department
Rembert C. Dennis Building
P.O. Box 176

Columbia, SC 29202
Phone: (803) 734-3888
Fax: (803) 734-6310

South Dakota

Environment and Natural Resources Department
Joe Foss Building
523 E. Capitol Avenue
Pierre, SD 5750I-3181
Phone: (605) 773-3151
Fax: (605) 773-6035

Tennessee

Environmental and Conservation Department Life \& Casualty Tower 401 Church Street, 21 st Floor
Nashville, TN 37243-0435
Phone: (615) 532-0109
Fax: (615) 532-0120

Texas

Natural Resource Conservation Commission 12100 Park 35 Circle
P.O. Box 13087

Austin, TX 78711-3087
Phone: (512) 239-1000
Fax: (512) 239-5533

Utah

Environmental Quality Department 168 N. 1950 West
Salt Lake City, UT 84116
Phone: (801) 536-4400
Fax: (801) 536-4480
TTY: (801) 536-4414
Natural Resources Department
1594 W North Temple, Suite 3710
Box 145610
Salt Lake City, UT 84116-5610
Phone: (801) 538-7200
Fax: (801) 538-7315
TTY: (80I) 538-7458

Vermont

Natural Resources Agency
State Complex
103 S. Main Street
Waterbury, VT 05671
Phone: (802) 241-3600
TTY: (800) 253-0191

Table 11-1. State Environmental Protection Agencies (continued)

Virginia

Natural Resources Secretariat 733 Ninth Street Office Building
Richmond, VA 23219
Phone: (804) 786-0044
Fax: (804) 371-8333
TTY: (804)-786-7765

Washington

Ecology Department
P.O. Box 47600

Olympia, WA 98504-7600
Phone: (360) 407-6000
Fax: (360) 407-6989
TTY: (360) 407-7155
Natural Resources Department
1111 Washington Street SE
P.O. Box 47000

Olympia, WA 98504-7001
Phone: (360) 902-1000
Fax: (360) 902-1775
TTY: (360) 902-1125

West Yirginia

Environment Bureau
10 McJunkin Road
Nitro, WV 25143-2506
Phone: (304) 759-0515
Fax: (304) 759-0526
TTY: (800) 637-5893

Wisconsin

Natural Resources Department
P.O. Box 7921

Madison, WI 53704
Phone: (608) 266-2621
Fax: (608) 267-3579
TTY: (608) 267-6897

Wyoming

Environmental Quality Department Herschler Building, 4th Floor 122 W. Twenty-Fifth Street
Cheyenne, WY 82002
Phone: (307) 777-7937
Fax: (307) 777-7682

Puerto Rico

Natural and Environmental Resources
Department
P.O. Box 9066600

San Juan, PR 00906-6600
Phone: (787) 723-3090
Fax: (787) 723-4255
Environmental Quality Board
P.O. Box 11488

San Juan, PR 00940-1119
Phone: (787) 723-6200
Fax: (787) 724-3270

APPENDIX I

U.S. Census Bureau

Internet Information

....."

NOTICE

The following describes examples of the various types of information available on the Census Bureau's website. It should be noted that, like all Internet resources, this information is time sensitive. Internet information (home pages, etc.) are continually updated by the responsible organization, in this case, the federal government's Department of Commerce. The information in this appendix is provided to assist the reader in easily and quickly obtaining data collected by the federal government and made available on the Internet. It is not intended to be a comprehensive guide to using the Internet. Many standard references exist to guide the reader in use of the Internet.

U.S. Census Bureau Home Page Description
 http://www.census.gov

Abstract

The Census Bureau Website provides tables, maps, raw data and publications pertaining to U.S. populations, businesses and geography. Information for various segments of the U.S. population include, but are limited, the following categories age, household and family types, income and poverty, travel to work, occupation, and school enrollment. Census statistics for unemployment, government, and manufacturing are included under the homepage's general heading of 'business'. Within the site's geographic section, users can access tools to create and view maps (i.e. Tiger, Gazetteer and LandView). This section also provides links for geographical information systems (GIS) resources. Also of interest on the Census homepage are links to minority data, and publication search tools such as FedStats http:///www.fedstats.gov/ which locates Census publications as well as documents published by other federal agencies.

insert printed home page graphic

Select hot button marked User Manual
http://www.census.gov/main/www/man_main.html
The User Manual presents a brief introduction to help users understand and use the Census Bureau's web site. It also lists the functioning "hot buttons" that may be selected to go to additional resources on their web site.

Select hot button marked Census Home
http://www.census.gov
Return to the Census Bureau's home page to select another function.

Select hot button marked Search
http://www.census.gov/main/www/srchtool.html
The reader may search the Census Bureau information by word, place, geographically, or search for Census Bureau staff members phone numbers and Email addresses.

Select hot button marked Census Home
http://www.census.gov
Return to the Census Bureau's home page to select another function.

The Census Bureau's web site offers the reader the use of Data Access Tools that can be used to access Census information. These include: Map Stats; Census Lookup; Tiger Map Server; US Gazetteer (to search by place name or Zip code); CD-ROM version of Census data; Ferret Data Extraction and Review Tool; and browsing all public directories and files.

Select hot button marked Census Home

Return to the Census Bureau's home page to select another function.

Select hot button marked Subjects A-Z
http://www.census.gov/main/www/subjects.html
Search Census Bureau data by a wide range of subject topics, including: agriculture, births, children, county profiles, economics, families, etc.

Select hot button marked Census Home http://www.census.gov
Return to the Census Bureau's home page to exit their web site.

APPENDIX II

U.S. Department of Labor Internet Information

NOTICE

The following information has been printed directly from the Internet. The Home Page of the organization is presented on the first page, followed by the "hot keys" to be selected in the order in while they were selected to produce this Appendix. Internet addresses are provided (in italics) so that the reader may access the same information. The sequence in which information was accessed for this appendix is offered as a suggestion, and the reader is encouraged to sequence the information in the way most useful to them.

It should be noted that, like all Internet resources, this information is time sensitive. Internet information (home pages, etc.) are continually updated by the responsible organization, in this case, the federal government's Department of Labor. The exact information, content, and appearance of information the reader is able to access may differ from the pages contained in this appendix. The information in this appendix is provided to assist the reader in easily and quickly obtaining data collected by the federal government and made available on the Internet. It is not intended to be a comprehensive guide to using the Internet. Many standard references exist to guide the reader in use of the Internet.

Dila Economy at a cilance Keyword Search of BLS Web Pages
Sulucis Prugrmis I Publications \& Research Papers / Regional Information
Aission, Management \& Jobs |Other Statistical Sites/What's New|Contact
Information

The Bureau of Labor Statistics is an agency within the U.S. Department of L.abor.
Frecdom of Information Act (FOIA) Requests
BLS Privacy and Security Statement

K-12 Educational Resources.

[^7][Accessibility Information]

Employment \& Unemployment \mid Prices \& Living Conditions | Compensation \& Working Conditions Productivity \& Technology | Employment Projections | International Programs | Other Surveys

Surveys \& Programs

Employment \& Unemployment

- Labor Force Statistics from the Current Population Survey
- Nonfarm Payroll Statistics from the Current Employment Statistics (National)
- Nonfarm Payroll Statistics from the Current Employment Statistics (State\&Area)
- Covered Employment and Wages
- Occupational Employment Statistics
- Local Area Unemployment Statistics
- National Longitudinal Surveys

Prices \& Living Conditions

- Consumer Price Indexes
- Producer Price Indexes
- International Price Indexes
- Consumer Expenditure Survey

Compensation \& Working Conditions

- Collective Bargaining Agreements
- Employee Benefits Survey
- Employment Cost Trends
- Occupational Compensation Survey
- Safety and Health Statistics
- National Compensation Survey (formerly COMP2000)

Productivity \& Technology

- Quarterly Labor Productivity
- Multifactor Productivity
- Industry Productivity
- Eereign Labor Statistics

Employment Projections

- Employment Projections

Other Surveys

- Emplover Provided Training

International Programs

- Forcign I ahor Statistics
- International Price Indexes
- International Training

BLS Home Page

Jo-Ann L. Yu
Bureau of Labor Statistics
luhstut.helndeskahls.sov
Last modified: October 26, 1998
URL: http://stats.bls.gov/proghome.htm

Select hot button marked Surveys \& Programs
http://www.bls.gov/proghome.htm

Select hot button marked Labor Force Statistics from the Current Population Survey
http://www.bls.gov/cpshome.htm

Select hot button marked BLS Home Page
http://www.bls.gov

Return to the Department of Labor's home page to exit their web site.

IIII:

APPENDIX III

U.S. Department of Health and Human Services ATSDR
 Internet Information

NOTICE

The following information has been printed directly from the Internet. The Home Page of the organization is presented on the first page, followed by the "hot keys" to be selected in the order in while they were selected to produce this Appendix. Internet addresses are provided (in italics) so that the reader may access the same information. The sequence in which information was accessed for this appendix is offered as a suggestion, and the reader is encouraged to sequence the information in the way most useful to them.

It should be noted that, like all Internet resources, this information is time sensitive. Internet information (home pages, etc.) are continually updated by the responsible organization, in this case, the federal government's Department of Health and Human Services. The exact information, content, and appearance of information the reader is able to access will differ from the pages contained in this appendix. The information in this appendix is provided to assist the reader in easily and quickly obtaining data collected by the federal government and made available on the Internet. It is not intended to be a comprehensive guide to using the Internet. Many standard references exist to guide the reader in use of the Internet.

[Text version]

Privacy Notice ~~Y2K Information
Last revised Wednesday, September 01, 1999
Comments/Suggestions to Wcbmaster

DEPARTMENT OF HEALTH \& HUMAN SERVIOES

HHS AGENCIES

Office of the Secretary (OS)
Administration for Children and Families (ACF)
Administration on Aging (AOA)
Agency for Health Care Policy and Research (AHCPR)
Agency for Toxic Substances and Disease Registry (ATSDR)
Centers for Disease Control and Prevention (CDC)
Food and Drug Administration (FDA)
Health Care Financing Administration (HCFA)
(MEDICARE and MEDICAID)
Health Resources and Services Administration (HRSA)
Indian Health Service (IHS)
National Institutes of Health (NIH)
Program Support Center (PSC)
Substance Abuse and Mental Health Services Administration (SAMHSA)
The Social Security Administration (SSA) became an independent agency on March 31, 1995.
[About HHS] [healthfinder \& Human Services Information] News \& Public Affairs] [Research, Policy \& Administration] What's New] [Employee Information] [Search] [Gateways] HHS Agencies on the lnternet]

Back to the HHS Home Page
Natınal Alerts
Health Advisories
Announcements
Aobs
Search Site
Browse Site
About ATSDR
Communities
Kids, Parents, Teachiners
ATSDR Newsletter
ATSDR Ombudsman
ToxFAQs
HazDat Database
Science Comer
Top 20 Hazardous
Substances

Public Health Assessments
Minimal Risk Levels (MRLs)
ATSDR Glossary

Sile Usage Statıstics

AtSDR

Agency for Toxic Substances and Disease Registry

What's New

The ATSDR Communities Web pages are now available. These new pages were designed to answer common questions and help you find the information you are looking for.

The paper Public Health Implications of Exposure to PCBs is now available on the ATSDR Web site.

The ATSDR Web site is now hosting the Environmental Health in the U.S. Public Health Service web pages which are sponsored by the Sanitarian Professional Advisory Committee (SPAC).

ATSDR's Minimal Risk Levels (MRLs) of hazardous substances has been updated.

The recently released ToxFAQ Sheet for Dioxins has been added to ATSDR's Web server.

Media Advisory: April 19, 1999 - ATSDR Updates its Toxicological Profile for Mercury.

The Draft Agenda for Public Health Activities for FY 1999 and FY 2000 at U.S. Department of Energy Sites has been released for public review and comment.

Industrial Chemicals and Terrorism is a paper that presents a 10 -step procedure to analyze, mitigate, and prevent public health hazards resulting from terrorism involving industrial chemicals.

Chemical Hazards During the Recent War in Croatia summarizes the many uses of chemicals as weapons in the recent conflict between Croatia and Yugoslavia.

ATSDR's Toxicological Profile Information Sheet is now available with current information on all of ATSDR's Toxicological Profile publications.

Public Health Concerns At Department of Energy Sites: Progress Report highlights the activities and accomplishments of ATSDR in addressing public health issues in the communities near Department of Energy hazardous waste sites. The document is also available as an Adobe Acrobat PDF File (929K).

You can sign up to receive a copy of ATSDR's Public Health Assessment for the Hanford nuclear site when it is released for public comment by filling out the online form.

Dioxin and Dioxin-Like Compounds in Soil, Part 1: ATSDR Interim Polic; Guideline has been adopted by ATSDR to assess the public health implications of dioxin and dioxin-like compounds in residential soils near or on hazardous waste sites.

The Proceedings of the PCB Expert Panel Workshop evaluates all pertinent information related to the public health implications of human exposure to PCBs .

The Toxicologic Hazard of Superfund Hazardous Waste Sites is a

The Toxicologic Hazard of Superfund Hazardous Waste Sites is a scientific analysis of the threat posed to public health by uncontrolled hazardous waste sites.

Contents

- ATSDR National Alerts
- ATSDR Public Health Advisories
- ATSDR Announcements
- \triangle TSDR Job Opportunities
- About ATSDR
- Fiscal Year 1999 Performance Plan
- Background and Congressional Mandates
- Organizational Structure
- Goals
- Statement of Values
- ATSDR Glossary of Terms
- EPA Glossary of Terms
- ATSDR/CDC FOIA (Freedom of Information Act) Office
- ATSDR Addresses and Phone Numbers
- ATSDR Contacts
- State Cooperative Agreement Staff
- ATSDR Datasets/Resources
- The HazDat Database
- Query and Search
- Contacts and References
- ATSDR Science Corner
- ATSDR Environmental Health Officer
- Toxicology - the Health Effects of Hazardous Substances
- ATSDR's Division of Toxicology
- Toxicological Profile Information Sheet New
- ToxFAQs
- The Toxicologic Hazard of Superfund Hazardous Waste Sites New!
- ATSDR/EPA Top 20 Hazardous Substances
- Minimal Risk Levels (MRLs) for Hazardous Substances
- 1997 CERCLA Priority List of Hazardous Substances
- 1997 Completed Exposure Pathway (CEP) Site Count Report
- Information Center Booknarks to Web Resources
- Public Health Implications of Exposure to PCBs
- Health Assessments and Consultations
- ATSDR Division of Health Assessment and Consultation
- Environmental Data Needed for Public Health Assessments
- Public Health Assessment Guidance Manual
- Public Health Assessments (Full Documents)
- Proceedings of the PCB Expert Panel Workshop
- Health Education and Communication
- Hazardous Substances \& Public Health (Newsletter) New!
- A Primer on Health Risk Communication Principles and Practices
- An Evaluation Primer on Health Risk Communication Programs and Outcomes
- Case Studies in Environmental Medicine (CME/CEU credit)
- Methyl Parathion Expert Panel Report
-

Health Studies

- Guidance for ATSDR Health Studies
- Flazardous Substances Emergency Events Surveillance (HSEES) - Annual Report 1995
- Hazardous Substances Emergency Events Surveillance (HSEES) - Annual Report 1996
- Urban Environmental Issues
- ATSDR Office of Urban Affairs
- Special Initiatives and Projects
- ATSDR Child Health Initiative
- ATSDR Great Lakes Human Health Effects Research Program
- ATSDR Mississippi Delta Project
- ATSDR Minority Health Program
- Reports, Policy, and Congressional Testimony
- ATSDR's Washington D.C. Office and Relevant Legislation
- Report to Congress: 1993-1995 (Executive Summary)
- Biennial Report to Congress: 1991-1992 (Executive Statement)
- Dioxin and Dioxin-Like Compounds in Soil, Part I: ATSDR Interim Policy Guideline New,
- ATSDR Cancer Policy Framework
- Congressional Testimony
- Software
m CLUSTER version 3.1 (Disease cluster analysis software)
- Related Organizations and Internet Resources (Government)
- U.S. Department of Health and Human Services
- HHS Environmental Health Policy Conmmittee
- Agency for Health Care Policy and Research
- Commissioned Corps / Surgeon General
- Sanitarian Professional Advisory Conumittee (SPAC)
- Centers for Disease Control and Prevention (CDC)
- National Institutes of Health (NIH)
- National Institute of Environmental Health Sciences (NIEHS)
- NIEHS Superfund Basic Research Program
- National Toxicology Program (NTP)
- 11.S. Emirommental Protection Agency (EPA)
- EPA Superfund Information
m EPA's Integrated Risk Information System (IRIS)
- National Environmental Respiratory Center (NERC)
- Other Internet Resources (See Disclaimer)
- ATSDR Information Center Bookmarks to Other Internet Resources
- The Association of Occupational and Environmental Clinics (A.O.E.C.)
- CIESIN (Consortium for International Earth Science Information Network)
- The Collegium Ramazzini
- Environmental Defense Fund's Chemical Scorecard for Communities
- International Joint Commission (US \& Canada) Health Professionals Task Force
- The Chemical Industry Home Page
- The Sierra Club
- State Public Interest Research Groups (PIRGs) Environmental Campaigns
- Environment and Nature (Yahoo! Web Guide)
- Environmental Health (Yahoo! Web Guide)
- \triangle TSDR WWW Server Usage Statistics

About ATSDR

The mission of the Agency for Toxic Substances and Disease Registry (ATSDR), as an agency of the U.S. Department of Health and Human Services, is to prevent exposure and adverse human health cffects and diminished quality of life associated with exposure to hazardous substances from waste sites, unplanned releases, and other sources of pollution present in the environment.

ATSDR is directed by congressional mandate to perform specific functions concerning the effect on public health of hazardous substances in the environment. These functions include public health assessments of waste sites, health consultations concerning specific hazardous substances, health surveillance and registries, response to emergency releases of hazardous substances, applied research in support of public health assessments, information development and dissemination, and education and training concerning hazardous substances.

ATSDR's mission and the goals of ATSDR are reflected within its organizational structure and its statement of values.

Definitions of words and phrases used by ATSDR can be found in the ATSDR Glossary of Terms.

ATSDR Addresses and Phone Numbers

Send mail to:
ATSDR
"Group Name"
1600 Clifton Rd., ("Mail Stop")
Atlanta, GA 30333

Group Name	Mail Stop	Telephone	Fax
Office of the Assistant Administrator	E28	(404) 639-0700	(404) 639-0744
Washington, D.C. Office	P13	(202) 690-7536	(202) 690-6985
Board of Scientific Counselors	E28	(404) 639-0708	(404) 639-0586
Office of Federal Programs	E28	(404) 639-0730	(404) 639-0759
Office of Policy and External Affairs	E60	(404) 639-0500	(404) 639-0522
Office of Program Operations and Management	E60	(404) 639-0550	(404) 639-0568
Office of Regional Operations	E42	(404) 639-6090	(404) 639-0740
Office of the Associate Administrator for Science	E28	(404) 639-0708	(404) 639-0586
Division of Health Assessment and Consultation	E32	(404) 639-0610	(404) 639-0654
Division of Health Education and Promotion	E33	(404) 639-6204	(404) 639-6207
Division of Health Studies	E31	(404) 639-6200	(404) 639-6220
Division of Toxicology	E29	(404) 639-6300	(404) 639-6315

ATSDR Contacts

- General Information
- The ATSDR Information Center / ATSDRIC@cdc.gov / 1-888-42-ATSDR or 1-888-422-8737
- Senior Management
- Amler, Robert W., M.D., Chief Medical Officer
- Bashor, Mark M., Ph.D., Associate Administrator for Federal Programs, Office of Federal Programs
- DeRosa. Christopher T., Ph.D., Director, Division of Toxicology
- Falk, Henry, M.D., M.P.H., Assistant Administrator
- Jones, Georgi A., Director, Office of Policy and External Affairs
- Harris, Barbara W., Director, Office of Program Operations and Management
- Lichtveld, Maureen, M.D., M.P.H., Director, Division of Health Education and Promotion
- Lybarger, Jeffrey A., M.D., M.S., Director, Division of Health Studies
- ḾcCumiskey, Peter J., Deputy Assistant Administrator
- Reyes, Juan J., M.P.A. Director, Office of Regional Operations
w-. - Spengler, Robert, Sc.D., Associate Administrator for Science
- Touch, Ralph J., Jr., Capt., Chief Environmental Health Officer
$=$ - Wargo, Andrea, Ph.D., Associate Administrator, Washington, D.C. Office
- Warren, Rucben C., D.D.S., Dr.P.H., Associate Administrator, Office of Urban Affairs
- Williams, Robert C., P.E., D.E.E., Director, Division of Health Assessment and Consultation
- ATSDR Employees
- Search the Department of Health and Human Services Employee Directory

MTSDR Web Site Usage Statistics

)enartment of Health and Human Services Home Page
For information, contact:
the .4TSDR Information Center / ATSDRIC@cdc.gov / Phone toll-free at 1-888-42-ATSDR or I-888-422-8737

W'cbmaster: 1fike Perry/mpl@cdc.gov
Last Update - August 25, 1999

From the U.S. Department of Health and Human Services' Home Page http://www.hhs.gov

Select hot button marked HHS Agencies

Information is available on HHS Agencies, including: Administration on Aging; Agency for Toxic Substances and Disease Registry; Centers for Disease Control and Prevention; Food and Drug Administration; Indian Health Service; National Institutes of Health; and Substance Abuse and Mental Health Services Administration.

Select hot button marked Agency for Toxic Substances and Disease Registry (ATSDR) http://atsdrl.atsdr.cdc.gov/atsdrhome.html

ATSDR data available include: the HazDat Database; Toxicology; Health Assessments and Consultations; Health Studies; Special Initiatives and Projects; CLUSTER 3.1 (disease cluster software); and related Internet resources.

Return to Health and Human Services Home Page to exit their web site.

[^0]: "Annual rato por 1,000 U.S. population. Rate computed by dividing sum of annual immigration totals for same number of years.

[^1]: Source: Perlin et al., 1995.

[^2]: - The inference population for lawn care services is the population of all households with a private lawn.
 b The inference population for treatment of fleas, roaches, or ants is the population of all private households.
 c Conditional percentages, given that the service was used.

[^3]: Source: National Spa and Pool Institute, 1993.

[^4]: ${ }^{\text {a }}$ Based on U.S. Bureau of the Census estimated civilian population as of July 1. Estimates for 1980-1990 do not reflect revisions based on the 1990 Census of the Population.
 ${ }^{\text {b }}$ Comparisons beginning in 1988 with data for earlier years should be made with caution as estimates of change may reflect improvements in the design rather than true changes in hospital use.
 c 1994 data based on Bureau of Census, 1997.

[^5]: Source: National Gardening Association,'" 1987.

[^6]: - Inctudes other mdustries. not shown separately.
 - = préaminary.

 NOTE. Estabishment survey estimates are currently projected from

[^7]: Jo-Ann L. Yu
 Burcall of Labor Statistics
 Luh.tut holnelesk'ä-hls.gov
 Last modified: August 25, 1999
 URL: http://stats.bls.gov/blshome.htm

