Research and Development

EPA/600/SR-93/032 April 1993



# **Project Summary**

Determination of Volatile Organic Compounds in Soils Using Equilibrium Headspace Analysis and Capillary Column Gas Chromatography/Mass Spectrometry—Evaluation of the Tekmar 7000 HA Analyzer

Pedro Flores and Thomas A. Bellar

**Existing methods for determination** of volatile organic compounds (VOCs) in soil matrices using the purge and trap technique with gas chromatography/mass spectrometry (GC/MS) have several problems, which include preserving sample integrity from collection to analysis and efficiently extracting a broad spectrum of VOCs from the soil matrix. This investigation was undertaken using the Tekmar 7000 headspace autosampler to evaluate its ability to resolve these problems. The objective of this study was to optimize analytical conditions and then to study the efficiency of the headspace technique to extract VOCs from soils. Variations of sample preparation procedures were studied, and method analytes were identified and measured using internal standard calibration GC/MS. Using these data, relative standard deviations and percent recoveries are reported for 59 analytes in four different types of soil matrices: sand, clay, garden soil, and hazardous waste landfill soil. The most accurate and precise results are obtained with sand. Method detection limits (MDLs), ranging from 0.2 to 7.9 μg/kg, were calculated for all analytes, using results of replicate analyses of sand, the matrix that had the least matrix effect. It is concluded that the 7000-HA headspace analyzer can be used to determine VOCs in soils.

This Project Summary was developed by EPA's Environmental Monitoring Systems Laboratory, Cincinnati, OH, to announce key findings of the research project that is fully documented in a separate report of the same title (see Project report ordering information at back).

#### Introduction

An accurate and precise procedure is needed to effectively remove volatile organic compounds (VOCs) from soils for identification and measurement using gas chromatography/mass spectrometry (GC/ MS). Ten years ago, the number of VOCs that could be determined by GC/MS was limited by packed column GC technology. The least volatile compounds included toluene and ethyl benzene. Currently, with capillary column capabilities, the scope of VOCs in aqueous samples has been expanded for a single column analysis to include non-polar compounds with boiling points ranging from -30°C to >220°C. Heated purge and trap methodology has also been applied to soil samples using capillary column technology.1 The results illustrated that many compounds curretly determined in water matrices can be included in the list of compounds determined in soil matrices. However, the method was subjected to matrix effects. particularly for those compounds with high boiling points.

In this work, we evaluated the capability of the Tekmar 7000 Headspace Autosampler (7000-HA) to effectively introduce VOCs partitioned from soil matrices into a fused silica capillary column using the static headspace technique. The integral features of the procedure evaluated include sample fortification, different 7000-HA extraction parameters for a wide variety of volatile compounds, and the quantitative capabilities of the method using different soil matrices and different internal standards.

The 7000-HA was chosen for evaluation because of its potential to include the VOCs contained in the headspace of the sample collection vials and extract VOCs from a soil into the gas volume above the sample, as well as its ability to permit analysis with a minimal amount of sample preparation. The analytes used for the evaluation and their characteristic ions are listed in Table 1. The results of this evaluation are discussed in the following sections of this report.

### **Experimental Approach**

Each sample was prepared by adding 5.0 g of a soil matrix to a 20-mL 7000-HA crimp-seal glass headspace vial. In rapid succession, each soil sample was fortified with the target analytes in methanol, the matrix modifier solution (MMS) was added, and the vial was sealed. The purpose of the matrix modifier solution was to increase the efficiency of the headspace analysis by providing a salting-out effect and to minimize dehydrohalogenation reactions through pH adjustment.2 The vials were placed in the autosampler carousel and maintained at room temperature. Approximately 1 h prior to analysis, the individual vials were moved to a heating zone and allowed to equilibrate for 50 min at 85°C. The sample was then mixed by mechanical vibration for 8 min while the temperature was maintained at 85°C. The autosampler then raised the vial causing a stationary needle to puncture the septum and pressurize the vial with helium at 7.5 psi. The vial was allowed to pressure equilibrate for a 0.10 min to ensure complete mixing of the pressurization gas with the vial headspace. The pressurized headspace was then vented through a 2mL sample loop to the atmosphere for 15 sec. In this manner, a representative volume of headspace was isolated within the loop. Finally the carrier gas, at a flow rate of 9.5 mL/min, backflushed the sample loop, sweeping the sample through the heated transfer line into the GC/MS system for separation, identification, and measurement of the method analytes.

Parameters studied were

- Precision of the Tekmar 7000 Headspace Autosampler
- Selection of the Matrix-Modified Solution
- Verification of the Fortifying Procedure
- Assessment of Analyte Recoveries Using the Matrix Modifying Solution
- Analyte Recoveries From Various Soil Matrices
- Analyte Recoveries From Various Soil Matrices Using Internal Standard Calibration
- Different Headspace Volume Recovery

#### **Results and Discussion**

Replicate analyses of fortified samples showed the headspace analyzer to be reproducible for all 59 analytes tested in aqueous matrices. Only one relative standard deviation (RSD) was in excess of 13 percent. The RSDs were comparable to those obtained using standard purge and trap technology. Results from experiments to evaluate the use of a matrix-modified solution to increase the recovery of the analytes from a solid matrix showed that a saturated solution of sodium sulfate was the most suitable. Replicate analytes of fortified soils showed this solution produced the highest recoveries of most compounds and the lowest relative standard deviations.

Analyte recoveries from various types of soils were studied using both the external standard and the internal standard calibration approaches. Four soils were selected: sand, clay, garden soil, and a subsurface soil sample collected near a hazardous waste landfill. Table 1 summaries the results showing the relative percent recovery obtained from each matrix. These relative percent recoveries were obtained by dividing the peak areas from each analyte by the respective peak areas in a control sample, and multiplying by 100. High ratios are indicative of high récoveries. These data indicate that matrix effects are evident when analyzing certain types of soils.

Figure 1 illustrates recoveries obtained for representative compounds from the analyte list when the headspace volume in the sample vials was varied. Errors are introduced into the analytical results if the headspace volume is not held constant in every vial. This is especially true for the less volatile compounds.

## Conclusions and Recommendations

The following conclusions were made from evaluation of study results.

- 1. The accuracy and precision of the 7000-HA were acceptable when used to determine VOCs in water, the matrix-modifying solution (MMS), and sand. The 7000-HA produced somewhat lower recoveries from other tested soil matrices. However, these lower recoveries were not due to inefficient headspace analysis, but to stronger adsorption capacity of soil. This is the matrix effect. The results obtained with the 7000-HA are equivalent or better than current methodology for volatiles in soil.
- The matrix fortifying procedure was found to be reproducible for all the compounds evaluated.
- Comparing recoveries obtained in the different experiments for different matrices, indicated a definite matrix effect.
- 4. In an attempt to correct for the matrix effect, seven internal standards were evaluated. Results suggest that the use of one internal standard improved data quality but did not completely overcome the matrix effect problem. Adding additional internal standards with chemical and physical properties similar to those of the problem compounds helped resolve this problem.
- The less volatile compounds, such as trichlorobenzenes, did not appear to be good candidates for accurate measurement using the headspace technique with a single internal standard.
- Headspace volume had a definite effect on the sensitivity of the method. When headspace volume is decreased, sensitivity increases. This effect is greater as the volatility of the compound decreases.
- The amount of the matrix-modifying solution added to the matrix had little effect on analyte recovery. The percent difference between experiments was within the experimental error.
- 8. This work pointed out the definite need to develop a mechanism to collect an exact predetermined sample size and establish the hermetic seal in the field. Until this is done, this method cannot be used to its fullest potential.

Table 1. Relative Analyte Recoveries for Four Matrices

| Analyte                     | MMS/Sand       |            |                      | MMS/Garden  |            |                      | MMS/Horizon-C |            | MMS/Clay             |             |            |                     |
|-----------------------------|----------------|------------|----------------------|-------------|------------|----------------------|---------------|------------|----------------------|-------------|------------|---------------------|
|                             | Avg<br>Area    | Rsd<br>(%) | Recov-<br>ery<br>(%) | Avg<br>Area | Rsd<br>(%) | Recov-<br>ery<br>(%) | Avg<br>Area   | Rsd<br>(%) | Recov-<br>ery<br>(%) | Avg<br>Area | Rsd<br>(%) | Recov<br>ery<br>(%) |
| Dichlorodifluoromethane     | 164            | 44         | 33                   | 161         | 20         | 33                   | 94            | 33         | 19                   | 753         | 18         | 39                  |
| Chloromethane               | 775            | 10         | 65                   | 402         | 37         | 34                   | 454           | 22         | 38                   | 885         | 4          | 35                  |
| Vinyl chloride              | 1656           | 9          | 67                   | 479         | 7          | 19                   | 1330          | 8          | 54                   | 1693        | 3          | 44                  |
| Bromomethane                | 148            | 42         | 89                   | 69          | 74         | 42                   | 53            | 12         | 32                   | 81          | 35         | 43                  |
| Chloroethane                | 600            | 6          | 65                   | 103         | 73         | 11                   | 476           | 34         | 52                   | 410         | 8          | 48                  |
| Trichlorofluoromethane      | 3761           | 6          | 71                   | 2195        | 1          | 42                   | 2969          | 3          | 56                   | 2310        | 4          | 42                  |
| 1,1-Dichloroethene          | 6259           | 7          | <i>78</i>            | 2840        | 4          | <i>35</i>            | 5027          | 2          | 62                   | 4377        | 9          | 47                  |
| Methylene chloride          | <i>7569</i>    | 1          | <i>85</i>            | 4330        | 2          | 49                   | 6107          | 5          | 67                   | 5151        | 9          | <i>65</i>           |
| trans-1,2-Dichloroethene    | 6001           | 6          | 81                   | 1718        | 9          | 23                   | 5188          | 6          | 70                   | 3703        | 9          | 48                  |
| 1,1-Dichloroethane          | 9273           | 5          | <i>87</i>            | 3058        | 13         | <i>37</i>            | 7318          | 4          | 69                   | 5390        | 13         | 54                  |
| 2,2-Dichloropropane         | 4237           | 12         | <i>73</i>            | 2749        | 24         | 48                   | 4298          | 4          | 74                   | `1863       | 18         | 40                  |
| cis-1,2-Dichloroethene      | <i>7051</i>    | 1          | <i>77</i>            | 1193        | 63         | 13                   | <i>5978</i>   | 3          | 66                   | 4208        | 13         | 54                  |
| Bromochloromethane          | 5472           | 3          | 94                   | 1175        | 15         | 20                   | 4421          | 4          | 76                   | 3373        | 14         | 67                  |
| Chloroform                  | <i>8387</i>    | 3          | 88                   | 3235        | 18         | 34                   | 6960          | 2          | 73                   | 4462        | 18         | 5 <b>5</b>          |
| 1,1,1-Trichloroethane       | <i>6531</i>    | 3          | 89                   | 3387        | 14         | 46                   | <i>5515</i>   | 5          | <i>75</i>            | 2957        | 21         | 47                  |
| 1,1-Dichloropropene         | 5909           | 3          | 84                   | 2052        | 12         | 29                   | 4805          | 5          | 68                   | 2853        | 21         | 46                  |
| Carbon tetrachloride        | <i>5549</i>    | 3          | <i>87</i>            | 2795        | 19         | 44                   | 4572          | 5          | 71                   | 2424        | 20         | 43                  |
| Benzene                     | 14743          | 3          | <i>87</i>            | 5308        | 7          | 31                   | 10710         | 3          | 63                   | 6658        | 16         | <i>59</i>           |
| 1,2-Dichloroethane          | 9184           | 3          | 89                   | 1739        | 20         | 17                   | 6381          | 3          | 62                   | 5236        | 16         | 82                  |
| Trichloroethylene           | 6296           | 4          | 81                   | 1885        | 14         | 24                   | 5046          | 4          | 65                   | 2664        | 22         | 47                  |
| 1,2-Dichloropropane         | 4802           | 8          | 90                   | 1740        | 15         | 33                   | 4000          | 5          | <i>75</i>            | 2629        | 24         | 57                  |
| Dibromomethane              | <i>3533</i>    | 1          | 98                   | 745         | 23         | 21                   | 2741          | 1          | <i>76</i>            | 1920        | 17         | 6 <b>8</b>          |
| Bromodichloromethane        | 7310           | 3          | <i>87</i>            | 2272        | 21         | 27                   | 5891          | 2          | 70                   | 3782        | 23         | 5 <b>9</b>          |
| Toluene                     | 19477          | 4          | 164                  | 6488        | 13         | 16                   | 12893         | 5          | 119                  | 6737        | 31         | 48                  |
| 1,1,2-Trichloroethane       | <i>3983</i>    | 4          | 100                  | 1107        | 27         | 28                   | 3145          | 4          | <i>79</i>            | 2025        | 24         | 64                  |
| Tetrachloroethylene         | <i>3833</i>    | 11         | 90                   | 1053        | 16         | 25                   | 2604          | 9          | 91                   | 946         | 37         | 32                  |
| 1,3-Dichloropropane         | 6476           | 7          | 89                   | 1098        | 31         | 15                   | 4793          | 6          | 66                   | 3527        | 23         | 6 <b>9</b>          |
| Dibromochloromethane        | <i>5574</i>    | 4          | 98                   | 1141        | 31         | 20                   | 4236          | 6          | 74                   | 2263        | 30         | 61                  |
| 1,2-Dibromoethane           | 4726           | 3          | 91                   | 717         | 24         | 14                   | 3904          | 1          | <i>75</i>            | 2058        | 24         | 69                  |
| Chlorobenzene               | 11075          | 4          | 83                   | 1208        | 28         | 9                    | 8006          | 11         | 60                   | 3460        | 38         | 43                  |
| 1,1,1,2-Tetrachlorethane    | 5317           | 1          | 92                   | 1043        | 23         | 18                   | <i>3796</i>   | 4          | 66                   | 1665        | 34         | 51                  |
| Ethyl benzene               | 26235          | 2          | <i>85</i>            | 4042        | 20         | 13                   | 19240         | 8          | 62                   | 5726        | 39         | 40                  |
| p-Xylene                    | 1 <i>7955</i>  | 5          | 103                  | 2634        | 18         | 15                   | 11383         | 19         | <i>65</i>            | 3102        | 30         | <i>33</i>           |
| o-Xylene                    | 22680          | 3          | 80                   | 4004        | 18         | 14                   | 19003         | 13         | 67                   | 4774        | 38         | <i>39</i>           |
| Styrene                     | 8348           | 7          | 48                   | 602         | <i>79</i>  | 3                    | 8362          | 19         | 48                   | 2006        | 33         | 24                  |
| Bromoform                   | 3362           | 8          | 89                   | 516         | 24         | 14                   | 2737          | 7          | 72                   | 1192        | 31         | 6 <b>3</b>          |
| Isopropylbenzene            | 9334           | 6          | <i>87</i>            | 2118        | 18         | 20                   | 6437          | 11         | 60                   | 1801        | 36         | 27                  |
| p-Bromofluorobenzene        | NI             | -          | -                    | NI          | -          | -                    | NI            | -          | -                    | NI          | -          | -                   |
| Bromobenzene                | 1 <i>75</i> 81 | 6          | 93                   | 1515        | 47         | 8                    | 12394         | 2          | 65                   | 4719        | <i>37</i>  | 42                  |
| 1,1,2,2-Tetrachloroethane   | 8022           | 3          | 95                   | 1902        | 22         | 22                   | 6126          | 4          | 72                   | 3583        | 32         | 57                  |
| 1,2,3-Trichloropropane      | 7490           | 16         | 80                   | 1377        | 53         | 15                   | 642           | 126        | 59                   | 4142        | 29         | 67                  |
| n-Propyl benzene            | 27107          | 6          | <i>87</i>            | 3577        | 21         | 9                    | 20731         | 18         | 53                   | 5033        | 44         | 25                  |
| 2-Chlorotoluene             | 24763          | 7          | <i>87</i>            | 1894        | 64         | 7                    | 16840         | 15         | 59                   | 4145        | 44         | 29                  |
| 4-Chlorotoluene             | 20877          | 1_         | 95                   | 1270        | 30         | 6                    | 12792         | 11         | 5448                 | 3508        | 44         | 25                  |
| tert-Butylbenzene           | 20987          | 7          | 95                   | 2887        | 24         | 13                   | 12863         | 22         | 58                   | 2811        | 43         | 21                  |
| 1,3,5-Trimethylbenzene      | 26847          | 9          | 90                   | 3231        | 13         |                      | 155410        | 16         | 52                   | 3494        | 42         | 20                  |
| sec-Butyl benzene           | 31773          | 5          | 94                   | 3434        | 18         | 10                   | 16769         | 22         | 48                   | 3188        | 43         | 17                  |
| 1,2-Dibromo-3-chloropropane | 4276           | 6          | 92                   | 554         | 64         | 12                   | 3231          | 6          | 70                   | 1684        | 40         | 62                  |
| 1,2,4-Trimethylbenzene      | 26210          | _          | 95                   | 4795        | 10         | 17                   | 16259         | 23         | 59                   | 4222        | 38         | <i>2</i> <b>5</b>   |
| 1,3-Dichlorobenzene         | 8182           | 6          | 80                   | 422         | 22         | 4                    | 5165          | 15         | 50                   | 1266        | 44         | 23                  |
| p-Isopropyl toluene         | 22003          | 5          | 86                   | 2163        | 21         | 8                    | 11430         | 18         | 45                   | 2287        | 41         | 18                  |
| 1,4-Dichlorobenzene         | 9024           | 4          | 91                   | 564         | 22         | 6                    | 5430          | 15         | <i>55</i>            | 1325        | 47         | 23                  |
| 1,2-Dichlorobenzene-d4      | NI             | -          | -                    | NI          | -          | -                    | NI            | -          | -                    | NI          | -          | -                   |
| 1,2-Dichlorobenzene         | 8181           | 16         | 86                   | 400         | 4          | 4                    | 5459          | 16         | <i>57</i>            | 1302        | 47         | 25                  |
| n-Butyl benzene             | 27107          | 6          | 87                   | 2073        | 24         | 7                    | 12660         | 23         | 41                   | 2667        | 42         | 16                  |
| 1,2,4-Trichlorobenzene      | 5253           | 5          | <i>75</i>            | <i>75</i>   | 47         | 1                    | 2687          | 24         | 38                   | 473         | 48         | 13                  |
| Hexachlorobutadiene         | 3885           | 6          | 87                   | 92          | 27         | 2                    | 1617          | 22         | 36                   | 176         | 59         | 9                   |
| Naphthalene                 | 16109          | 7          | 77                   | 1399        | 27         | 7                    | 8811          | 20         | 42                   | 2637        | 44         | 24                  |
| 1,2,3-Trichlorobenzene      | 4641           | 3          | 70                   | 88          | 53         | 1                    | 2653          | 24         | 40                   | 461         | 50         | 13                  |

NI = not included

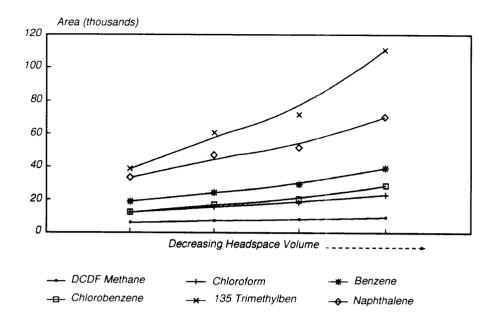



Figure 1. Effect of different headspace volumes on analyte recovery.

The linear dynamic range of this method extends from the MDL of each analyte to approximately 1000 x the MDL. Because vial contents cannot be diluted or subsampled after the vial is sealed without losing headspace, for high concentration samples multiple static headspace analysis techniques<sup>2</sup> should be investigated to complement the single headspace evaluations reported here. The 7000-HA has the capacity to perform this type of analysis, and further investigation is encouraged. Moreover, work must continue on developing multiple internal standard methods to correct for matrix effects in soil.

#### References

- G. Plemmons-Ruesink, USEPA, Development and Validation of a Sample Preparation Procedure for the Analysis of Organic Compounds in Soil and Solid Matrices: Evaluation of Dynatech PTA-30 W/S Autosampler, November 1990.
- B.V. Ioffe and A.G. Vitenberg, Headspace Analysis and Related Methods in Gas Chromatography, John Wiley and Sons, 1984.
- J.W. Eichelberger and W.L. Budde, U.S. EPA Method 524.2, Office of Research and Development, Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry. Revision 3.0, 1989.

P. Flores and T.A. Bellar (Mr. Bellar is retired) are with Environmental Monitoring Systems Laboratory, Cincinnati, OH 45268.

James W. Eichelberger is the EPA Project Officer (see below).

The complete report, entitled "Determination of Volatile Organic Compounds in Soils Using Equilibrium Headspace Analysis and Capillary Column Gas Chromatography/Mass Spectrometry," (Order No. PB93-155992; Cost: \$19.50; subject to change) will be available only from

National Technical Information Service

5285 Port Royal Road Springfield, VA 22161

Telephone: 703-487-4650

The EPA Project Officer can be contacted at Environmental Monitoring Systems Laboratory,

U.S. Environmental Protection Agency

Cincinnati, OH 45268.

**United States Environmental Protection Agency** Center for Environmental Research Information Cincinnati, OH 45268

Official Business Penalty for Private Use \$300

EPA/600/SR-93/032

**BULK RATE** POSTAGE & FEES PAID **EPA** PERMIT No. G-35