EXPOSURE FACTORS HANDBOOK

Update to Exposure Factors Handbook EPA/600/8-89/043 - May 1989

NOTICE

THIS DOCUMENT IS A PRELIMINARY DRAFT. It has not been formally released by the U.S. Environmental Protection Agency and should not at this stage be construed to represent Agency policy. It is being circulated for comments on its technical accuracy and policy implications.

DISCLAIMER

This document is an external draft for review purposes only and does not constitute U.S. Environmental Protection Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

TABLE OF CONTENTS

Page No.

1. INTRODUCTION 1-1
1.1. BACKGROUND 1-1
1.2. GENERAL EQUATION FOR CALCULATING DOSE 1-3
1.3. ORGANIZATION 1-7
1.4. REFERENCES FOR CHAPTER 1 1-9
2. INGESTION ROUTE 2-1
2.1. DOSE EQUATION FOR INGESTION 2-1
2.2. DRINKING WATER CONSUMPTION 2-2
2.2.1. Background 2-2
2.2.2. Key General Population Studies 2-4
2.2.3. Other Relevant General Population Studies 2-15
2.2.4. Pregnant and Lactating Women 2-29
2.2.5. High Activity Levels/Hot Climates 2-33
2.2.6. Recommendations 2-37
2.3. CONSUMPTION OF FRUITS AND VEGETABLES 2-44
2.3.1. Background 2-44
2.3.2. Intake Studies 2-45
2.3.2.1. U.S. Department of Agriculture Nationwide Food Consumption Survey 2-45
2.3.2.2. Key Intake Studies Based on the USDA NFCS 2-46
2.3.2.3. Relevant Intake Studies 2-65
2.3.2.4. Conversion Between As Consumed and Dry Weight Intake Rates 2-112
2.3.2.5. Below Ground, Above Ground, Exposed, and Protected 2-118
2.3.3. Recommendations 2-118
2.4. CONSUMPTION OF MEAT, POULTRY, AND DAIRY PRODUCTS 2-123
2.4.1 Intake Studies 2-123
2.4.1.1. U.S. Department of Agriculture Nationwide Foad Consumption Survey 2-123
2.4.1.2. Key Intake Studies Based on the USDA NFCS 2-124
2.4.1.3. Relevant Intake Studies 2-148
2.4.2. Fat Content of Meat and Dairy Products 2-159
2.4.3. Conversion Between As Consumed and Dry Weight Intake Rates 2-167
2.4.4. Recommendations 2-167

TABLE OF CONTENTS (continued)

Page No.

2.5. BREAST MILK INTAKE 2-171
2.5.1. Background 2-171
2.5.2. Key Studies on Breast Milk Intake 2-172
2.5.3. Other Relevant Studies on Breast Milk Intake 2-179
2.5.4. Key Studies on Lipid Content and Fat Intake from Breast Milk 2-183
2.5.5. Other Factors 2-188
2.5.6. Recommendations 2-195
2.6. INTAKE OF FISH AND SHELLFISH 2-200
2.6.1. Background 2-200
2.6.2. Key General Population Studies 2-202
2.6.3. Other Relevant General Population Studies 2-220
2.6.4. Key Recreational (Marine Fish Studies) 2-228
2.6.5. Other Relevant Recreational Marine Studies 2-242
2.6.6. Key Freshwater Recreational Studies 2-248
2.6.7. Other Relevant Freshwater Recreational Studies 2-269
2.6.8. Native American Freshwater Studies 2-277
2.6.9. Recommendations 2-285
2.7. INTAKE RATES FOR VARIOUS HOMEPRODUCED FOOD ITEMS 2-300
2.7.1. BACKGROUND 2-300
2.7.2. METHODS 2-300
2.7.3. RESULTS 2-308
2.7.4. ADVANTAGES AND LIMITATIONS 2-309
2.7.5. RECOMMENDATIONS 2-310
2.8. SOIL INGESTION AND PICA 2-378
2.8.1. Background 2-378
2.8.2. Key Studies on Soil Intake Among Children 2-378
2.8.3. Other Relevant Studies on Soil Intake Among Children 2-393
2.8.4. Soil Intake Among Adults 2-398
2.8.5. Prevalence of Pica 2-402
2.8.6. Deliberate Soil Ingestion Among Children 2-404
2.8.7. Recommendations 2-406
2.9 REFERENCES FOR CHAPTER 2 2-413
3. INHALATION ROUTE 3-1
3.1. EXPOSURE EQUATION FOR INHALATION 3-1

TABLE OF CONTENTS (continued)

Page No.
3.2. INHALATION RATE 3-1
3.2.1. Background 3-1
3.2.2. Key Inhalation Rate Studies 3-3
3.2.3. Other Relevant Inhalation Rate Studies 3-27
3.2.4. Recommendations 3-40
3.3. REFERENCES FOR CHAPTER 3 3-49
4. DERMAL ROUTE 4-1
4.1. EQUATION FOR DERMAL DOSE 4-1
4.2. SURFACE AREA 4-4
4.2.1. Background 4-4
4.2.2. Measurement Techniques 4-4
4.2.3. Key Surface Area Studies 4-5
4.2.4. Other Relevant Surface Area Studies 4-16
4.2.5. Application of Body Surface Area Data 4-22
4.3. DERMAL ADHERENCE OF SOIL 4-24
4.3.1. Background 4-24
4.3.2. Key Dermal Adherence of Soil Studies 4-24
4.3.3. Other Relevant Dermal Adherence of Soil Studies 4-29
4.3.4. Advantages and Limitations of the Soil Adherence Studies 4-31
4.4. RECOMMENDATIONS 4-31
4.5. REFERENCES FOR CHAPTER 4 4-36
5. OTHER FACTORS FOR EXPOSURE CALCULATIONS 5-1
5.1. LIFETIME 5-1
5.2. BODY WEIGHT STUDIES 5-1
5.2.1. Key Body Weight Studies 5-3
5.2.2. Other Relevant Body Weight Studies 5-10
5.2.3. Recommendations 5-13
5.3. ACTIVITY PATTERNS 5-14
5.3.1. Key Activity Pattern Studies 5-14
5.3.2. Other Relevant Activity Pattern Studies 5-62
5.4. POPULATION MOBILITY 5-68
5.4.1. Background 5-68
5.4.2. Population Mobility Studies 5-68
5.5 REFERENCES FOR CHAPTER 5 5-83

TABLE OF CONTENTS (continued)

Page No.
6. CONSUMER PRODUCTS 6-1
6.1. BACKGROUND 6-1
6.2. CONSUMER PRODUCTS STUDIES 6-2
6.3. RECOMMENDATIONS 6-20
6.4. REFERENCES FOR CHAPTER 6 6-22
7. REFERENCE RESIDENCE 7-1
7.1 INTRODUCTION 7-1
7.2 INDOOR VOLUMES 7-3
7.2.1 Volumes of Residences 7-3
7.2.2 Room Volumes and Surface Areas 7-4
7.3 AIRFLOWS 7-10
7.3.1 Background 7-10
7.3.2 Air Exchange 7-11
7.3.3 Interzonal Airflows 7-14
7.3.4 Variability Within Zones 7-18
7.4 WATER SUPPLY AND USE 7-20
7.4.1 Background 7-20
7.4.2 Water Use 7-21
7.5 REFERENCES FOR CHAPTER 7 7-23
8. ANALYSIS OF UNCERTAINTIES 8-1
8.1. TYPES OF UNCERTAINTY 8-1
8.1.1. Scenario Uncertainty 8-2
8.1.2. Parameter Uncertainty 8-3
8.1.3. Model Uncertainty 8-6
8.2. PRESENTATION OF UNCERTAINTY ANALYSIS RESULTS 8-8
8.3. REFERENCES FOR CHAPTER 8 8-10

LIST OF TABLES

Page No.

Table 2-1. Average Total Tapwater Intake Rate by Sex, Age, and Geographic Area 2-5
Table 2-2. Frequency Distribution of Total Tapwater Intake Rates 2-6
Table 2-3. Daily Total Tapwater Intake Distribution by Age Group (Approx. 0.20 L Increments, Both Sexes, Combined Seasons) 2-8
Table 2-4. Average Daily Total Tapwater Intake by Age and Season (L/day) 2-9
Table 2-5. Average Daily Total Tapwater Intake as a Function of Physical Activity at Work and in spare Time (16 Years and Older, Combined Seasons, L/day) 2-11
Table 2-6. Average Daily Tapwater Intake Apportioned Among Various Beverages (Both Sexes, by Age, Combined Seasons, L/day) 2-12
Table 2-7. Total Tapwater Intake ($\mathrm{m} /$ /day) for Both Sexes Combined 2-13
Table 2-8. Total Fluid Intake (ml/day) for Both Sexes Combined 2-14
Table 2-9. Total Tapwater Intake (as Percent of Total Water Intake) by Broad Age Category 2-16
Table 2-10. General Dietary Sources of Total Fluid by Broad Age Category 2-17
Table 2-11. Summary Statistics for Best-Fit Lognormal Distributions for Water Intake Rates 2-18
Table 2-12. Estimated Quantiles and Means for Total Tapwater Intake Rates ($\mathrm{mL} /$ day) 2-19
Table 2-13. Estimated Quantiles and Means for Total Fluid Intake Rates (mL/day) 2-20
Table 2-14. Average Daily Fluid Intake Rate by Age Group from the Total Diet Study 2-22
Table 2-15. Assumed Tapwater Content of Beverages 2-24

LIST OF TABLES (continued)

Page No.

Table 2-16. Intake of Total Liquid, Total Tapwater, and Various Beverages (L/day) 2-25
Table 2-17. Summary of Total Liquid and Total Tapwater Intake for Males and Females (L/day) 2-27
Table 2-18. Mean and Standard Error for the Daily Intake of Beverages and Tapwater by Age 2-28
Table 2-19. Measured Fluid Intakes (mL/day) 2-30
Table 2-20. Total Fluid Intake of Women 15-49 Years Old 2-31
Table 2-21. Total Tapwater Intake of Women 15-49 Years Old 3-32
Table 2-22. Total Fluid (mL/Day) Derived from Various Dietary Sources by Women Aged 15-49 Years 2-34
Table 2-23. Water Intake at Various Activity Levels (L/hr) 2-35
Table 2-24. Planning Factors for Individual Tapwater Consumption 2-38
Table 2-25. Drinking Water Intake Surveys 2-39
Table 2-26. Quantity ("as consumed") of Fruits and Vegetables Consumed and the Percentage of Individuals Using These Foods in 3 Days 2-47
Table 2-27. Mean Per Capita Intake Rates for Fruits and Vegetables Based on All Sex/Age/Demographic Subgroups 2-51
Table 2-28. Mean Total Fruit Intake in a Day by Sex and Age (1977-1978) 2-60
Table 2-29. Mean Total Fruit Intake in a Day by Sex and Age (1987-1988) 2-61
Table 2-30. Mean Total Vegetable Intake in a Day by Sex and Age (1977-1978) 2-62

LIST OF TABLES (continued)

Page No.
Table 2-31. Mean Total Vegetable Intake in a Day by Sex and Age (1987-1988) 2-63
Table 2-32. Intake of Total Fruits (g/kg-day) - All Regions Combined 2-66
Table 2-33. Intake of Total Fruits (g/kg-day) - Northeast Region 2-67
Table 2-34. Intake of Total Fruits (g/kg-day) - Midwest Region 2-68
Table 2-35. Intake of Total Fruits (g/kg-day) - South Region 2-69
Table 2-36. Intake of Total Fruits (g/kg-day) - West Region 2-70
Table 2-37. Intake of Total Vegetables (g/kg-day) - All Regions Combined 2-71
Table 2-38. Intake of Total Vegetables (g/kg-day) - Northeast Region 2-72
Table 2-39. Intake of Total Vegetables (g/kg-day) - Midwest Region 2-73
Table 2-40. Intake of Total Vegetables (g/kg-day) - South Region 2-74
Table 2-41. Intake of Total Vegetables (g/kg-day) - West Region 2-75
Table 2-42. Intake of Total Apples (g/kg-day) 2-76
Table 2-43. Intake of Total Peaches (g/kg-day) 2-77
Table 2-44. Intake of Total Pears (g/kg-day) 2-78
Table 2-45. Intake of Total Strawberries (g/kg-day) 2-79
Table 2-46. Intake of Total Other Berries (g/kg-day) 2-80
Table 2-47. Intake of Total Asparagus (g / kg-day) 2-81
Table 2-48. Intake of Total Beets (g/kg-day) 2-82
Table 2-49. Intake of Total Broccoli (g/kg-day) 2-83

LIST OF TABLES (continued)

Page No.

Table 2-50. Intake of Total Cabbage (g/kg-day) 2-84
Table 2-51. Intake of Total Carrots (g / kg-day) 2-85
Table 2-52. Intake of Total Corn (g/kg-day) 2-86
Table 2-53. Intake of Total Cucumbers (g/kg-day) 2-87
Table 2-54. Intake of Total Lettuce (g / kg-day) 2-88
Table 2-55. Intake of Total Lima Beans (g/kg-day) 2-89
Table 2-56. Intake of Total 0 kra (g / kg-day) 2-90
Table 2-57. Intake of Total Onions (g / kg-day) 2-91
Table 2-58. Intake of Total Peas (g / kg-day) 2-92
Table 2-59. Intake of Total Peppers (g / kg-day) 2-93
Table 2-60. Intake of Total Pumpkin (g/kg-day) 2-94
Table 2-61. Intake of Total Snap Beans (g/kg-day) 2-95
Table 2-62. Intake of Total Tomatoes (g / kg-day) 2-96
Table 2-63. Intake of Total White Potatoes (g/kg-day) 2-97
Table 2-64. Intake of Total Exposed Vegetables (g/kg-day) 2-98
Table 2-65. Intake ot Total Protected Vegetables (g/kg-day) 2-99
Table 2-66. Intake of Total Root Vegetables (g / kg-day) 2-100
Table 2-67. Intake of Total Exposed Fruits (g/kg-day) 2-101
Table 2-68. Intake of Total Protected Fruits (g/kg-day) 2-102

LIST OF TABLES (continued)

Page No.
Table 2-69. Intake of Total Dark Green Vegetables (g/kg-day) 2-103
Table 2-70. Intake of Total Deep Yellow Vegetables (g/kg-day) 2-104
Table 2-71. Intake of Total Other Vegetables (g/kg-day) 2-105
Table 2-72. Intake of Total Citrus Fruits (g/kg-day) 2-106
Table 2-73. Intake of Total Other Fruit (g/kg-day) 2-107
Table 2-74. Mean and Standard Error for the Per Capita Daily Intake of Food Class and Subclass by Region (grams "as consumed") 2-108
Table 2-75. Mean and Standard Error for the Daily Intake of Food Subclasses Per Capita by Age (grams "as consumed") 2-109
Table 2-76. Consumption of Foods (g dry weight/day) for Different Age Groups and Estimated Lifetime Average Daily Food Intakes for a US Citizen Calculated from the FDA Diet Data (averaged across sex) 2-111
Table 2-77. Mean Daily Intake of Foods (Grams) Based on the Nutrition Canada Dietary Survey 2-113
Table 2-78. Mean Moisture Content of Selected Fruits, Vegetables, and Grains Expressed As Percentages of Edible Portions 2-114
Table 2-79. Percentages of Total Fruits and Vegetables Consumed that are Grown Below or Above Ground (Consumers Only) 2-119
Table 2-80. Percentages of Total Fruits and Vegetables Consumed that are Grown Below or Above Ground (Per Capita) 2-120
Table 2-81. Summary of Fruit and Vegetable Intake Studies 2-122
Table 2-82. Quantity ("as consumed") of Meat, Poultry, and Dairy Products Consumed and the Fercentage of Individuls Using These Foods in 3 Days 2-125

LIST OF TABLES (continued)

Page No.
Table 2-83. Mean Per Capita Intake Rates for Meat, Poultry, and Dairy Products Based on All Sex/Age/Demographic Subgroups 2-127
Table 2-84. Mean Meat Intakes per Individual in a Day by Sex and Age (g/day) 2-130
Table 2-85. Mean Dairy Product Intakes per Individual in a Day, by Sex and Age (g/day) 2-131
Table 2-86. Intake of Total Meats (g/kg-day) - All Regions Combined 2-133
Table 2-87. Intake of Total Meats (g/kg-day) - Northeast Region 2-134
Table 2-88. Intake of Total Meats (g/kg-day) - Midwest Region 2-135
Table 2-89. Intake of Total Meats (g/kg-day) - South Region 2-136
Table 2-90. Intake of Total Meats (g/kg-day) - West Region 2-137
Table 2-91. Intake of Total Dairy (g/kg-day) - All Regions Combined 2-138
Table 2-92. Intake of Total Dairy (g/kg-day) - Northeast Region 2-139
Table 2-93. Intake of Total Dairy (g/kg-day) - Midwest Region 2-140
Table 2-94. Intake of Total Dairy (g/kg-day) - South Region 2-141
Table 2-95. Intake of Total Dairy (g/kg-day) - West Region 2-142
Table 2-96. Intake of Total Beef (g/kg-day) 2-143
Table 2-97. Intake of Total Game (g/kg-day) 2-144
Table 2-98. Intake of Total Pork (g/kg-day) 2-145
Table 2-99. Intake of Total Poultry (g/kg-day) 2-146
Table 2-100. Intake of Total Eggs (g/kg-day) 2-147

```
                                    DRAFT
DO NOT QUOTE OR
    CITE
```


LIST OF TABLES (continued)

Page No.

Table 2-101. Mean and Standard Error for the Dietary Intake of Food Sub Classes per Capita by Age (grams "as consumed") 2-149
Table 2-102. Mean and Standard Error for the Daily Intake of Food Class and Sub Class Region (grams "as consumed") 2-150
Table 2-103. Consumption of Meat, Poultry, and Dairy Products for Different Age Groups (averaged across sex), and Estimated Lifetime Average Intakes for 70 Kg Adult Citizens Calculated from the FDA Diet Data 2-151
Table 2-104. Per Capita Consumption of Meat and Poultry in 1991 2-153
Table 2-105. Per Capita Consumption (g/day) of Dairy Products in 1991 2-155
Table 2-106. Adult Mean Daily Intake of Meat and Poultry Grouped by Region and Gender 2-158
Table 2-107. Amount of Meat Consumed by Adults Grouped by Frequency of Eatings 2-160
Table 2-108. Percentage Lipid Fat Content and Mean Moisture Content (Expressed as Percentages of 100 Grams of Edible Portions) of Selected Meat and Dairy Products 2-161
Table 2-109. Fat Content of Meat Products 1-164
Table 2-110. Fat Intake, Contribution of Various Food Groups to Fat Intake, and Percentage of the Population in Various Meat Eater Groups of the U.S. Population 2-166
Table 2-111. Mean Total Daily Dietary Fat Intake (g/day) Grouped by Age and Gender 2-168
Table 2-112. Summary of Meat, Poultry, and Dairy Intake Studies 2-169
Table 2-113. Daily Intakes of Breast Milk 2-173

LIST OF TABLES (continued)

Page No.

Table 2-114. Breast Milk Intake Among Exclusively Breast-fed Infants During the First 4 Months of Life 2-175
Table 2-115. Breast Milk Intake 2-177
Table 2-116. Breast Milk Intake for Infants Aged 1 to 6 Months 2-178
Table 2-117. Breast Milk Intake Estimated by the DARLING Study 2-180
Table 2-118. Milk Intake for Bottle- and Breast-fed Infants by Age Group 2-181
Table 2-119. Milk Intake for Boys and Girls 2-182
Table 2-120. Intake of Breast Milk and Formula 2-184
Table 2-121. Lipid Content of Human Milk and Estimated Lipid Intake among Exclusively Breast-fed Infants 2-186
Table 2-122. Predicted Lipid Intakes for Breast-fed Infants Under 12 Months of Age 2-187
Table 2-123. Total Energy Intake 2-289
Table 2-124. Energy Intake from Human Milk 2-191
Table 2-125. Number of Meals Per Day 2-193
Table 2-126. Percentage of Mothers Breast-feeding Newborn Infants in the Hospital and Infants at 5 or 6 Months of Age in the United States in 1989, by Ethnic Background and Selected Demographic Variables 2-194
Table 2-127. Breast Milk Intake Studies 2-196
Table 2-128. Breast Milk Intake Rates Derived From Key Studies 2-198
Table 2-129. Total Fish Consumption by Demographic Variables 2-204

LIST OF TABLES (continued)

Page No.

Table 2-130. Average and 95th Percentile of Fish Consumption (g/day) by Sex and Age 2-206
Table 2-131. Percent Distribution of Total Fish Consumption for Females by Age 2-207
Table 2-132. Percent Distribution of Total Fish Consumption for Males by Age 2-208
Table 2-133. Average Fish Consumption (g/day) for Females 2-209
Table 2-134. 95th Percentile of Fish Consumption (g/day) for Females 2-210
Table 2-135. Average Fish Consumption (g/day) for Males 2-211
Table 2-136. 95th Percentile of Fish Consumption (g/day) for Males 2-212
Table 2-137. Mean Total Fish Consumption by Species 2-213
Table 2-138. Fish Consumption Estimates From the Market Facts Survey 2-214
Table 2-139. Consumption of Fish and Shellfish (g/day as consumed) 2-216
Table 2-140. Mean Fish and Shellfish Intake in a Day, by Sex and Age 2-219
Table 2-141. Intake of Total Fish and Shellfish (g/kg-day) - All Regions Combined 2-221
Table 2-142. Intake of Total Fish and Shellfish (g/kg-day) - Northeast Region 2-222
Table 2-143. Intake of Total Fish and Shellfish (g/kg-day) - Midwest Region 2-223
Table 2-144. Intake of Total Fish and Shellfish (g/kg-day) - South Region 2-224

LIST OF TABLES (continued)

Page No

Table 2-145. Intake of Total Fish and Shellfish (g/kg-day) - West Region 2-225
Table 2-146. Best Fits of Lognormal Distributions Using the NonLinear Optimization (NLO) 2-227
Table 2-147. Cumulative Distribution of Total Fish/Shellfish Consumption by Sport Fishermen in the Metropolitan Los Angeles Area 2-229
Table 2-148. Description of Consumption Patterns for Primary Fish Kept by Sport Fishermen ($\mathrm{n}=1059$) 2-231
Table 2-149. Median Intake Rates Based on Demographic Data of Sport Fishermen and Their Family/Living Group 2-232
Table 2-150. Commencement Bay Ethnic Makeup of Fishermen Surveyed by Season 2-234
Table 2-151. Total Weight of Catch in the Commencement Bay, Washington Grouped by Species 2-235
Table 2-152. Percent of Fishing Frequency During the Summer and Fall Seasons in Commencement Bay, Washington 2-236
Table 2-153. Percentile and Mean Intake Rates for Non-Commercial Anglers in Commencement Bay (Individual Responses) 2-238
Table 2-154. Percentile and Mean Consumption Rates for Non-Commercial Anglers in Commencement Bay (Group Responses) 2-239
Table 2-155. Distribution of Seafood Consumption Rates of All Fish by Ethnic and Income Groups of Santa Monica Bay Anglers 2-241
Table 2-156. Selected Percentile Consumption Estimates (g/d) for the Survey and Total Angler Populations Based on the Reanalysis of the Puffer and Pierce Data 2-244

```
                                    DRAFT
DO NOT QUOTE OR
    CITE
```


LIST OF TABLES (continued)

Page No.
Table 2-157. Estimated Species-Specific Consumption Rates of San Diego Bay Anglers 2-246
Table 2-158. Intake Rates of San Diego Anglers by Ethnicity 2-247
Table 2-159. Percentile Rankings and Mean Consumption Rates for Michigan Sport Anglers Fish Consumption Survey 2-250
Table 2-160. Percentile and Mean Intake Rates of Anglers Fishing on the Lower Tittabawassee River, Michigan 2-251
Table 2-161. Percentile and Mean Intake Rates for all Fish Meals Consumed by New York State Anglers 2-253
Table 2-162. Percentile and Mean Consumption Rates for New York Anglers Who Caught Fish From Lake Erie 2-254
Table 2-163. Percentile Rankings and Mean Consumption Rates for New York Anglers Who Caught Fish From Lake Ontario 2-255
Table 2-164. Rankings and Mean Consumption Rates for Lake Ontario Anglers 2-257
Table 2-165. Percentile and Mean Intake Rates for Wisconsin Sport Anglers 2-258
Table 2-166. Calculated Fish Consumption Rates Using Raw Data From All Five Surveys 2-260
Table 2-167. Summary of Fish Consumption Surveys 2-261
Table 2-168. Average Fish Consumption (g/person-day) by Race for Michigan Sport Anglers 2-265
Table 2-169. Average Fish Consumption (g/person-day) by Age Groups for Michigan Sport Anglers 2-266
Table 2-170. Average Fish Consumption (g/person-day) by Age and Race for Michigan Sports Anglers 2-267

LIST OF TABLES (continued)

Page No.
Table 2-171. Summary of Original and Adjusted Seasonal Consumption Rate Averages 2-270
Table 2-172. Analysis of Fish Consumption by Ethnic Groups for "All Waters" (grams/day) 2-272
Table 2-173. Total Consumption of Freshwater Fish Caught by All Survey Respondents During the 1990 Season 2-273
Table 2-174. Estimates of Fish Intake Rates of Licensed Sport Anglers in Maine During the 1989-1990 Ice Fishing or 1990 Open-Water Seasons 2-275
Table 2-175. Intake rates of Sport-Anglers in Maine Based on How Fish Was Shared Among Household Members 2-276
Table 2-176. Number of Grams Per Day of Fish Consumed by All Adult Respondents (Consumers and Non-consumers) Combined - Throughout the Year 2-279
Table 2-177. Number of Grams Per Day of Fish Consumed by Adult Fish Consumers Only 2-280
Table 2-178. Children's Fish Consumption Rates - Throughout Year 2-281
Table 2-179. Fish Intake Throughout the Year by Sex, Age, and Location by All Adult Respondents 2-282
Table 2-180. Summary of Fish Intake Studies 2-286
Table 2-181. Percent Moisture and Fat Content for Selected Species 2-294
Table 2-182. 1986 Vegetable Gardening by Demographic Factors 2-301
Table 2-183. Percentage of Gardening Households Growing Different Vegetables in 1986 2-302
Table 2-184. Sub-option Codes and Definitions 2-306

LIST OF TABLES (continued)

Page No.

Table 2-185. Weighted and Unweighted Number of Observations for NFCS Data Used in the Analysis of Food Intake 2-311
Table 2-186. Intake of Homegrown Fruits (g/kg-day) - All Regions Combined 2-312
Table 2-187. Intake of Homegrown Fruits (g/kg-day) - Northeast Region 2-313
Table 2-188. Intake of Homegrown Fruits (g / kg-day) - Midwest Region 2-314
Table 2-189. Intake of Homegrown Fruits (g/kg-day) - South Region 2-315
Table 2-190. Intake of Homegrown Fruits (g/kg-day) - West Region 2-316
Table 2-191. Intake of Homegrown Vegetables (g / kg-day) - All Regions Combined 2-317
Table 2-192. Intake of Homegrown Vegetables (g / kg-day) - Northeast Region 2-318
Table 2-193. Intake of Homegrown Vegetables (g/kg-day) - Midwest Region 2-319
Table 2-194. Intake of Homegrown Vegetables (g/kg-day) - South Region 2-320
Table 2-195. Intake of Homegrown Vegetables (g / kg-day) - West Region 2-321
Table 2-196. Intake of Homeprocluced Meats (g/kg-day) - All Regions Combined 2-322
Table 2-197. Intake of Homeproluced Meats (g/kg-day) - Northeast Region 2-323
Table 2-198. Intake of Homeprocluced Meats (g/kg-day) - Midwest Region 2-324
Table 2-199. Intake of Homeproduced Meats (g/kg-day) - South Region 2-325
Table 2-200. Intake of Homeproduced Meats (g/kg-day) - West Region 2-326
Table 2-201. Intake of Homeproduced Dairy (g/kg-day) - All Regions Combined 2-327
Table 2-202. Intake of Homeproduced Dairy (g/kg-day) - Northeast Region 2-328

LIST OF TABLES (continued)

Page No.

Table 2-203. Intake of Homeproduced Dairy (g/kg-day) - Midwest Region 2-329
Table 2-204. Intake of Homeproduced Dairy (g/kg-day) - South Region 2-330
Table 2-205. Intake of Homeproduced Dairy (g/kg-day) - West Region 2-331
Table 2-206. Intake of Home Caught Fish and Shellfish (g/kg-day) - All Regions Combined : 2-332
Table 2-207. Intake of Home Caught Fish and Shellfish (g/kg-day) - Northeast Region 2-333
Table 2-208. Intake of Home Caught Fish and Shellfish (g/kg-day) - Midwest Region 2-334
Table 2-209. Intake of Home Caught Fish and Shellfish (g/kg-day) - South Region 2-335
Table 2-210. Intake of Home Caught Fish and Shellfish (g/kg-day) - West Region 2-336
Table 2-212. Intake of Homegrown Apples (g/kg-day) 2-337
Table 2-213. Intake of Homegrown Peaches (g/kg-day) 2-338
Table 2-214. Intake of Homegrown Pears (g/kg-day) 2-339
Table 2-215. Intake of Homegrown Strawberries (g/kg-day) 2-340
Table 2-216. Intake of Homegrown Other Berries (g/kg-day) 2-341
Table 2-217. Intake of Homegrown Asparagus (g/kg-day) 2-342
Table 2-218. Intake of Homegrown Beets (g/kg-day) 2-343
Table 2-219. Intake of Homegrown Broccoli (g/kg-day) 2-344
Table 2-220. Intake of Homegrown Cabbage (g/kg-day) 2-345

LIST OF TABLES (continued)

```
DRAFT

\section*{Page No.}
Table 2-221. Intake of Homegrown Carrots (g/kg-day) ..... 2-346
Table 2-222. Intake of Homegrown Corn (g/kg-day) ..... 2-347
Table 2-223 Intake of Homegrown Cucumbers (g/kg-day) ..... 2-348
Table 2-224. Intake of Homegrown Lettuce (g/kg-day) ..... 2-349
Table 2-225. Intake of Homegrown Lima Beans (g/kg-day) ..... 2-350
Table 2-226. Intake of Homegrown Okra (g/kg-day) ..... 2-351
Table 2-227. Intake of Homegrown Onions (g/kg-day) ..... 2-352
Table 2-228. Intake of Homegrown Peas (g/kg-day) ..... 2-353
Table 2-229. Intake of Homegrown Peppers (g/kg-day) ..... 2-354
Table 2-230. Intake of Homegrown Pumpkin (g/kg-day) ..... 2-355
Table 2-231. Intake of Homegrown Snap Beans (g/kg-day) ..... 2-356
Table 2-232. Intake of Homegrown Tomatoes (g/kg-day) ..... 2-357
Table 2-233. Intake of Homegrown White Potatoes (g/kg-day) ..... 2-358
Table 2-234. Intake of Homeproduced Beef (g/kg-day) ..... 2-359
Table 2-235. Intake of Homecaught Game (g/kg-day) ..... 2-360
Table 2-236. Intake of Homeproduced Pork (g/kg-day) ..... 2-361
Table 2-237. Intake of Homeproduced Poultry (g/kg-day) ..... 2-362
Table 2-238. Intake of Homeproduced Eggs (g/kg-day) ..... 2-363
Table 2-239. Intake of Homegrown Exposed Vegetables (g/kg-day) ..... 2-364

\author{
Page No.
}
Table 2-240. Intake of Homegrown Protected Vegetables (g/kg-day) ..... 2-365
Table 2-241. Intake of Homegrown Root Vegetables ( \(\mathrm{g} / \mathrm{kg}\)-day) ..... 2-366
Table 2-242. Intake of Homegrown Exposed Fruits (g/kg-day) ..... 2-367
Table 2-243. Intake of Homegrown Protected Fruits (g/kg-day) ..... 2-368
Table 2-244. Intake of Homegrown Dark Green Vegetables (g/kg-day) ..... 2-369
Table 2-245. Intake of Homegrown Deep Yellow Vegetables ( \(\mathrm{g} / \mathrm{kg}\)-day) ..... 2-370
Table 2-246. Intake of Homegrown Other Vegetables (g/kg-day) ..... 2-371
Table 2-247. Intake of Homegrown Citrus Fruits ( \(\mathrm{g} / \mathrm{kg}\)-day) ..... 2-372
Table 2-248. Intake of Homegrown Other Fruit (g/kg-day) ..... 2-373
Table 2-249. Mean Fraction of Food Intake That is Homeproduced ..... 2-374
Table 2-250. Estimated Daily Soil Ingestion Based on Aluminum, Silicon, and Titanium Concentrations ..... 2-381
Table 2-251. Calculated Soil Ingestion by Nursery School Children ..... 2-383
Table 2-252. Calculated Soil Ingestion by Hospitalized, Bedridden Children ..... 2-384
Table 2-253. Geometric Mean (GM) and Standard Deviation (GSD) LTM Values for Children at Daycare Centers and Campgrounds ..... 2-386
Table 2-254. Estimated Geometric Mean LTM Values of Children Attending Day-Care Centers According to Age, Weather Category, and Sampling Period ..... 2-387
Table 2-255. Average Daily Soil Ingestion Values Based on Aluminum, Silicon, and Titanium as Tracer Elements ..... 2-390

\section*{LIST OF TABLES (continued)}Page No.
Table 2-256. Mean and Standard Deviation Percentage Recovery of Eight Tracer Elements ..... 2-392
Table 2-257. Soil and Dust Ingestion Estimates for Children Aged 1-4 Years ..... 2-394
Table 2-258. Estimated Soil Ingestion Rate Summary Statistics and Parameters for Distributions Using Binder et al. (1986) Data with Actual Fecal Weights ..... 2-395
Table 2-259. Estimates of Soil Ingestion for Children ..... 2-399
Table 2-260. Estimates of Soil Ingestion for Adults ..... 2-401
Table 2-261. Adult Daily Soil Ingestion Estimates by Week and Tracer Element After Subtracting Food and Capsule Ingestion, Based on Median Amherst Soil Concentrations: Means and Medians Over Subjects (mg) ..... 2-403
Table 2-262. Daily Soil Ingestion Estimation in a Soil-Pica Child by Tracer and by Week (mg/day) ..... 2-405
Table 2-263. Soil Intake Studies ..... 2-407
Table 3-1. Comparisons of Estimated Basal Metabolic Rates (BMR) with Average Food-energy Intakes for Individuals Sampled in the 1977-78 NFCS (USDA 1984) ..... 3-4
Table 3-2. Daily Inhalation Rates Calculated from Food-Energy Intakes ..... 3-6
Table 3-3. Daily Inhalation Rates Obtained from the Ratios Of Total Energy Expenditure to Basal Metabolic Rate (BMR) ..... 3-8
Table 3-4. Daily Inhalation Rates Based on Time-Activity Survey ..... 3-10
Table 3-5. Inhalation Rates for Short-Term Exposures ..... 3-11
Table 3-6. Protocols for Self-Monitoring of Activities Grouped by Subiect Panels ..... 3-14

\section*{LIST OF TABLES (continued)}

\author{
Page No.
}
Table 3-7. Subject Panel Inhalation Rates (IR) by Mean IR, Upper Percentiles, and Self-Estimated Breathing Rates ..... 3-15
Table 3-8. Distributions of Individual and Group Heartrate and Inhalation/ Ventilation Rate for Outdoor Workers ..... 3-17
Table 3-9. Individual Mean Inhalation Rate ( \(\mathrm{m}^{3} / \mathrm{hr}\) ) by Self-Estimated Breathing Rate or Job Activity Category for Outdoor Workers ..... 3-19
Table 3-10. Distribution of HR and Predicted IR, by Location and Self-Estimated Breathing Rate for Elementary (EL) and High School (HS) Students ..... 3-21
Table 3-11. Average Hours Spent per Day in a Given Location and Activity Level by Elementary (EL) and High School (HS) Students ..... 3-22
Table 3-12. Distribution Patterns of Daily Inhalation Rates for Elementary (EL) and High School Students (HS) Grouped by Activity Level ..... 3-23
Table 3-13. Summary of Average Inhalation Rates \(\left(\mathrm{m}^{3} / \mathrm{hr}\right)\) by Age Group and Activity Levels for Laboratory Protocols ..... 3-25
Table 3-14. Summary of Average Inhalation Rates ( \(\mathrm{m}^{3} / \mathrm{hr}\) ) by Age Group and Activity Levels in Field Protocols ..... 3-26
Table 3-15. Distribution Pattern of Predicted VR and EVR (Equivalent Ventilation Rate) for Outdoor Workers ..... 3-31
Table 3-16. Distribution Pattern of Inhalation Rate by Location and Activity Type for Outdoor Workers ..... 3-32
Table 3-17. Actual Inhalation Rates (VE) Measured at Four Ventilation Levels ..... 3-34
Table 3-18. Subject Estimation of Ventilation Range ..... 3-37
Table 3-19. Activity Pattern Data Aggregated for Three Microenvironments by Activity Level for all Age Groups ..... 3-38

\section*{LIST OF TABLES (continued)}
```

DRAFT DO NOT QUOTE OR CITE

```

Page No.
Table 3-20. Summary of Daily Inhalation Rates Grouped by Age and Activity level in a Microenvironment ..... 3-40
Table 3-21. Daily Inhalation Rates Estimated From Daily Activities for a Reference Man ..... 3-41
Table 3-22. Summary of Inhalation Rate Studies ..... 3-42
Table 4-1. Summary of Equation Parameters for Calculating Adult Body Surface Area ..... 4-7
Table 4-2. \(\quad\) Surface Area of Adult Males in Square Meters ..... 4-8
Table 4-3. \(\quad\) Surface Area of Adult Females in Square Meters ..... 4-9
Table 4-4. \(\quad\) Surface Area by Body Part for Adults ( \(\mathrm{m}^{2}\) ) ..... 4-10
Table 4-5. Percentage of Total Fody Surface Area by Part for Adults ..... 4-11
Table 4-6. Total Body Surface Area of Male Children in Square Meters ..... 4-13
Table 4-7. Total Body Surface Area of Female Children in Square Meters ..... 4-14
Table 4-8. Percentage of Total Fody Surface Area by Part for Children ..... 4-15
Table 4-9. Descriptive Statistics for SA/BW Ratios ( \(\mathrm{m}^{2} / \mathrm{kg}\) ) ..... 4-17
Table 4-10. Statistical Results for Total Body Surface Area Distributions ..... 4-20
Table 4-11. Skin Coverage with Soil by Body Part and Activity ..... 4-28
Table 4-12. Mean Soil Adherence by Activity and Body Region ..... 4-30
Table 4-13. Surface Area Studies ..... 4-32
Table 4-14. Soil Adherence Values ..... 4-33

LIST OF TABLES (continued)

Page No.
Table 5-1. Expectation of Life at Birth, 1970 to 1992, and Projections, 1995 to 2010 ..... 5-2
Table 5-2. Body Weights of Adults (kilograms) ..... 5-4
Table 5-3. Body Weights of Children (kilograms) ..... 5-5
Table 5-4. Weight in Kilograms for Males 18-74 Years of Age-Number Examined, Mean, Standard Deviation, and Selected Percentiles, by Race and Age: United States, 1976-1980 ..... 5-6
Table 5-5. Weight in Kilograms for Females 18-74 Years of Age--Number Examined, Mean, Standard Deviation, and Selected Percentiles, by Race and Age: United States, 1976-1980 ..... 5-7
Table 5-6. Weight in Kilograms for Males 6 Months-19 Years of Age- Number Examined, Mean, Standard Deviation, and Selecied Percentiles, by Sex and Age: United States, 1976-1980 ..... 5-8
Table 5-7. Weight in Kilograms for Females 6 Months-19 Years of Age- Number Examined, Mean, Standard Deviation, and Selected Percentiles, by Sex and Age: United States, 1976-1980 ..... 5-9
Table 5-8. Statistics for Probability Plot Regression Analyses; Female's Body Weights 6 Months to 20 Years of Age ..... 5-11
Table 5-9. Statistics for Probability Plot Regression Analyses; Male's Body Weights 6 Months to 20 Years of Age ..... 5-12
Table 5-10. Differences in Time Use (hours/week) Grouped by Sex, Employment Status, and Marital Status for the Surveys Conducted in 1965 and 1975 ..... 5-16
Table 5-11. Time Use (hours/weel)² Differences by Age for the Surveys Conducted in 1965 and 1975 ..... 5-18
Table 5-12. Time Use (hours/week) \({ }^{2}\) Differences by Education for the Surveys Conducted in 1965 and 1975 ..... 5-19

\section*{LIST OF TABLES (continued)}Page No
Table 5-13. Time Use (hours/week) Differences by Race for the Surveys Conducted in 1965 and 1975 ..... 5-20
Table 5-14. Mean Time Spent (Minutes) Performing Major Activities Grouped by Age, Sex and Type of Day ..... 5-25
Table 5-15. Mean Time Spent in Major Activities Grouped by Type of Day for Five Different Age Groups ..... 5-26
Table 5-16. Mean Time Spent (hours/week) in 10 Major Activity Categories Grouped by Regions ..... 5-28
Table 5-17. Total Mean Time Spent (mins/day) in Ten Major Activity Categories Grouped by Type of Day ..... 5-29
Table 5-18. Mean Time Spent (mins/day) in 10 Major Activity Categories During Four Waves of Interviews ..... 5-31
Table 5-19. Mean Time Spent (hours/week) in 10 Major Activity Categories grouped by Gender ..... 5-32
Table 5-20. Occupational Tenure of Employed Individuals by Age and Sex ..... 5-34
Table 5-21. Occupational Tenure for Employed Individuals Grouped by Sex and Race ..... 5-35
Table 5-22. Occupational Tenure for Employed Individuals Grouped by Sex and Employment Status ..... 5-36
Table 5-23. Occupational Tenure of Employed Individuals Grouped by Major Occupational Groups and Age ..... 5-37
Table 5-24. Voluntary Occupational Mobility Rates for Workers Age 16 and Older ..... 5-39

LIST OF TABLES (continued)

Page No.
Table 5-25. Mean Time Spent in 10 Major Activity Cateogries Grouped by Total Sample and Gender for the CARB and National Studies (Age 18-64) ..... 5-42
Table 5-26. Total Mean Time Spent at 3 Major Locations Grouped by Total Sample and Gender for the CARB and National Study (Ages 18-64) ..... 5-43
Table 5-27. Mean Time Spent at Three Locations for both CARB and National Studies (Ages 12 and Older) ..... 5-44
Table 5-28. Mean Time Spent (mins/Day) in Various Microenvironments Grouped by Total Population and Gender (12 years and over) in the National CARB Data ..... 5-46
Table 5-29. Mean Time Spent (mins/day) in Various Microenvironments by Type of Day (Sample Population Ages 12 and Older) ..... 5-47
Table 5-30. Mean Time Spent (mins/day) in Various Microenvironments by Age Groups ..... 5-49
Table 5-31. Mean Time Children Spent in 10 Major Activity Categories for all Respondents ..... 5-52
Table 5-32. Mean Time Children Spent in 10 Major Activity Categories Grouped by Age and Gender ..... 5-53
Table 5-33. Mean Time Children Spent in 10 Major Activity Categories Grouped by Seasons and Regions ..... 5-54
Table 5-34. Mean Time Children Spent in Six Major Locations Categories for All Respondents ..... 5-56
Table 5-35. Mean Time Children Spent in Six Location Categories Grouped by Age and Gender ..... 5-57
Table 5-36. Mean Time Children Spent in Six Location Categories Grouped by Season and Region ..... 5-58

\section*{LIST OF TABLES (continued)}

\section*{Page No.}
Table 5-37. Mean Time Children Spent in Proximity to Three Potential Exposures Grouped by All Respondents, Age, and Gender ..... 5-59
Table 5-38. Range of Recommended Defaults for Dermal Exposure Factors ..... 5-61
Table 5-39. Cumulative Frequency Distribution of Average Shower Duration for 2,500 Households ..... 5-63
Table 5-40. Summary of Mean Time-Activity Patterns Over a 24 -Hour Period ..... 5-65
Table 5-41. Percent Responses of Children's "Play" (activities) Locations in Maryvale, Arizona ..... 5-67
Table 5-42. Summary of Residence Time of Recent Home Buyers ..... 5-71
Table 5-43. Tenure in Previous Home (Percentage Distribution) ..... 5-72
Table 5-44. Number of Miles Moved (Percentage Distribution) ..... 5-73
Table 5-45. Values and Their Standard Errors for Average Total Residence Time, T, for Each Group in Survey ..... 5-74
Table 5-46. Total Residence Time, t (years), Corresponding to Selected Values of \(R(t)^{2}\) by Housing Category ..... 5-75
Table 5-47. Residence Time of Owner/Renter Occupied Units ..... 5-77
Table 5-48. Percent of Householders Living in Houses for Specified Ranges of Time ..... 5-78
Table 5-49. Descriptive Statistics for Residential Occupancy Period ..... 5-80
Table 5-50. Descriptive Statistics for Both Genders by Current Age ..... 5-81
Table 6-1. Frequency of Use For Household Solvent Products ..... 6-3
Table 6-2. Exposure Time of Use For Household Solvent Products ..... 6-5
Table 6-3. Amount of Products Used For Household Solvent Products ..... 6-7
Table 6-4. Time Exposed After Duration of Use For Household Solvent Products ..... 6-9
Table 6-5. Total Exposure Time of Performing Task and Product Type Used by Task For Household Cleaning Products ..... 6-12
Table 6-6. Percentile Rankings for Total Exposure Time in Performing Task ..... 6-14
Table 6-7. Mean Percentile Rankings for Frequency of Use in Performing Household Tasks ..... 6-15
Table 6-8. Mean and Percentile Rankings for Exposure Time Per Event of Performing Household Tasks ..... 6-16
Table 6-9. Total Exposure Time for Ten Product Groups Most Frequently Used For Household Cleaning ..... 6-17
Table 6-10. Total Exposure Time of Painting Activity of Interior Painters (hrs) ..... 6-18
Table 6-11. Exposure Time of Interior Painting Activity/Occasion (hrs) and Frequency of Occasions Spent Painting Per Year ..... 6-19
Table 6-12. Amount of Paint Used by Interior Painters ..... 6-20
Table 7-1. Average Estimated Volumes of U.S. Residences ..... 7-5
Table 7-2. Residential Volumes in Relation to Household Size and Year of Construction ..... 7-6
Table 7-3. Room Volumes and Surface Areas From Energy Conservation and Indoor Air Quality Research Houses ..... 7-7
Table 7-4. Examples of Products and Materials Associated with Floor and Wall Surfaces in Residences ..... 7-9


\section*{LIST OF TABLES (continued)}

\section*{Page No}

Table 7-5. \(\quad\) Summary Statistics for Air Exchange Rates (Air Changes Per
 Hour-ACH), by Region ..... 7-13
Table 7-6. In-house Water Use Rates (ged), by Study and Type of Use ..... 7-22

\section*{LIST OF FIGURES}

Page No.
Figure 4-1. SA/BW Distributions for Infants, Adults, and All Ages Combined . . . 4-18
Figure 4-2. Surface Area Frequency Distribution: Men and Women . . . . . . . . 4-21
Figure 7-1. Elements of Residential Exposure . . . . . . . . . . . . . . . . . . . . . . . 7-2
Figure 7-2. Residential Configurations (after Rector and Koontz 1993) . . . . . . . 7-15
Figure 7-3. Airflows for Multiple-zone Systems . . . . . . . . . . . . . . . . . . . . . 7-16
Figure 7-4. Characteristic Volumes and Airflow Rates for Two-zone Situations . 7-19

\section*{PREFACE}

The National Center for Environmental Assessment has prepared this handbook to address factors commonly used in exposure assessments. This handbook was first published in 1989 in response to requests from many EPA program and regional offices for additional guidance on how to select values for exposure factors.

Several events have sparked the efforts to revise the Exposure Factors Handbook. First, since its publication in 1989, new data have become available. Second, the Risk Assessment Council issued a memorandum titled "Guidance on Risk Characterization for Risk Managers and Risk Assessors" dated February 26, 1992 which emphasized the use of multiple descriptors of risk (i.e., central tendency, high end of individual risk, population risk, important subpopulations). Third, EPA published the final Guidelines for Exposure Assessment.

As part of the efforts to revise the handbook, the EPA Risk Assessment Forum sponsored a two-day peer involvement workshop which was conducted during the summer of 1993. The workshop was attended by 57 scientists from academia, consulting, private industry, the states, and other federal agencies. The purpose of the workshop was to identify new data sources, discuss adequacy of the data and the feasibility of developing statistical distributions and establish priorities.

As a result of the workshop, two new chapters have been added to the handbook. These chapters are: consumer products use and the reference residence. This document also provides a summary of the available data on consumption of drinking water; consumption of fruits, vegetables, beef, dairy products, and fish, soil ingestion; inhalation rates; skin surface area; lifetime; activity patterns; and body weight.

\section*{AUTHORS, CONTRIBUTORS, AND REVIEWERS}

The National Center for Environmental Assessment (NCEA) was responsible for the preparation of this handbook. The original document was prepared by Versar Inc. under EPA Contract No. 68-02-4254, Work Assignment No. 189. John Schaum, NCEA-Washington Office, served as the EPA Work Assignment Manager, providing overall direction and coordination of the production effort as well as technical assistance and guidance. Revisions, updates, and additional preparation were provided by Versar Inc. under Contract Numbers 68-D0-0101 and 68-D3-0013. Russell Kinerson and Greg Kew have served as EPA Work Assignment Managers during previous efforts of the update process. Jackie Moya served as Work Assignment Mnager for the current updated version, providing overall direction, technical assistance, and as contributing author.

\section*{AUTHORS}

\author{
Patricia Wood \\ Linda Phillips \\ Aderonke Adenuga \\ Nica Mostaghim \\ Teri Schaeffer \\ Mike Koontz \\ Harry Rector \\ Wes Kleene
}

\footnotetext{
Exposure Assessment Division
Versar Inc.
Springfield, VA
}

\section*{REVIEWERS}

The following individuals at the U.S. Environmental Protection Agency have reviewed an earlier draft of this document and provided valuable comments:

\author{
Elizabeth Bryan \\ Science Policy Council \\ Janine Dinan \\ Office of Solid Waste and Emergency Response \\ Karen Hammerstrom \\ Office of Research and Development \\ James J. Konz \\ Office of Solid Waste and Emergency REsponse \\ Sue Norton \\ Office of Research and Development \\ Mary Pace \\ Office of Research and Development \\ James Ryan \\ Office of Research and Development \\ John Schaum \\ Office of Research and Development \\ Anne Sergeant \\ Office of Research and Development \\ Paul White \\ Office of Research and Development
}

\section*{1. INTRODUCTION}

\subsection*{1.1. BACKGROUND}

The Exposure Factors Handbook is intended to serve as a support document to EPA's Guidelines for Exposure Assessment (U.S. EPA, 1992) by providing data on standard factors that may be needed to calculate human exposure to toxic chemicals. The Guidelines were developed to promote consistency among the various exposure assessment activities that are carried out by the various EPA program offices. This handbook should assist in this goal by providing a consistent framework to calculate dose.

The handbook is organized by grouping the factors into those needed for each specific route of exposure (i.e., ingestion, inhalation, or dermal), or those needed for more than one route. Finally, procedures for analyzing uncertainty in exposure assessments are presented.

The Exposure Factors Handbook is an extension of earlier efforts towards standardizing the Agency's exposure assessment calculations sponsored by the Exposure Assessment Group, Office of Health and Environmental Assessment, Office of Research and Development. U.S. EPA (1985) presents detailed information on body weight, body surface area, and respiration rate in the report "Development of Statistical Distributions or Ranges of Standard Factors Used in Exposure Assessments." The results of this earlier study are incorporated into this handbook.

This handbook is the update of an earlier version prepared in 1989. Revisions, updates, and additional information are reflected through, but not limited to, the following areas:
- addition of drinking water rates for children;
- changes in soil ingestion rates for children;
- addition of soil ingestion rates for adults;
- addition of tapwater consumption for adults and children;
- addition of mean daily intake of food class and subclass by region, age and per capita rates;
- addition of mean moisture content of selected fruits, vegetables, grains, fish, meat and dairy products;
- addition of food intake by class in dry weight per day;
- update of homegrown food intake;
- expansion of data in the dermal chapter;
- update of fish intake data;
- expansion of data for time spent at residence;
- update of body weight data;
- update of population mobility data;
- addition of new data for average time spent in different locations and various microenvironments;
- addition of data for occupational mobility;
- addition of breast milk ingestion;
- addition of consumer product use; and
- reference residence factors.

The 1989 Exposure Factors Handbook was divided into two parts: Part I which provided the equations and data on factors used in assessing exposure by ingestion, inhalation, and dermal routes; and Part II which demonstrated how to apply the standard factor statistics summarized in Part I to specific exposure scenarios. During the workshop held in 1993, panelists were provided with several options for revising Part II of the handbook. These options were:
- present methods (i.e., equations) but no values for assessing exposures;
- list examples of exposure scenarios
- list exposure scenarios that represent current exposure assessment methods with default values; and
- eliminate Part II.

About half of the participants recommended eliminating Part II of the handbook. One of the major concerns with Part II was that the values used in the standard scenarios may become default values and that this will discourage risk assessors from accounting for the uniqueness of site-specific situations. Therefore, this revised version of the handbook does not include standard scenarios. However, the methods and equations have been included in the relevant parts of the document. A separate guidance document and a series of technical support documents that illustrate the process for constructing risk descriptors are currently under development.

This handbook is a compilation of available data from a variety of different studies. With very few exceptions, the data presented in this handbook are the analyses done by the authors of the studies or papers. No additional analyses of the raw data were conducted by the authors of this Handbook. The studies (e.g., surveys, papers, etc.) discussed in this Handbook to define a particular factor were grouped into Key Studies and Other Relevant Studies depending on the adequacy of the data and its applicability to the exposure factor being evaluated. The recommended values for each exposure factor are based on the results of the Key Studies. The strengths and limitations of each study are discussed to provide the reader with a better understanding of the uncertainties associated with the values derived from each one of these studies. For some exposure factors, data are so limited that studies could not be grouped into Key or Relevant. In those cases, the recommended values for the exposure factor are based on the data available.

Since the studies included in this Handbook varied in terms of their objectives, design, scope, presentation of results, etc., the level of detail and the statistics discussed in this Handbook for each study may vary from study to study. For example, some authors used geometric means to present their results, while others used means or distributions. To the extent possible, every effort was made to present discussions and results in a consistent manner.

Terms that have been used to describe racial populations may include a number of different terminologies for the same population. However, to avoid misreporting results of the studies, the classifications reported in this Handbook are ones as reported in the original reference source.

Some of the steps for performing an exposure assessment are (1) determining the pathway of exposure, (2) identifying the environmental media which transports the contaminant, (3) determining the contaminant concentration, (4) determining the exposure time, frequency, and duration, and (5) identifying the exposed population. Many of the issues related to characterizing exposure from selected exposure pathways have been addressed in a number of existing EPA guidance documents include, but not limited to are the following:
- Guidelines for Exposure Assessment (U.S. EPA 1992a);
- Dermal Exposure Assessment: Principles and Applications (U.S. EPA 1992b);
- Guidance for Dermal Exposure Assessment (U.S. EPA 1992c);
- Methodology for Assessing Health Risks Associated with Indirect Exposure to Combustor Emissions (U.S. EPA, 1990);
- Risk Assessment Guidance for Superfund (U.S. EPA, 1989);
- Estimating Exposures to 2,3,7,8-TCDD (U.S. EPA, 1988a);
- Superfund Exposure Assessment Manual (U.S. EPA, 1988b);
- Selection Criteria for Models Used in Exposure Assessments (U.S. EPA 1988c);
- Selection Criteria for Mathematical Models Used in Exposure Assessments (U.S. EPA 1987);
- Standard Scenarios for Estimating Exposure to Chemical Substances During Use of Consumer Products (U.S. EPA 1986);
- Pesticide Assessment Guidelines, Subdivisions K and U (U.S. EPA, 1984, 1986); and
- Methods for Assessing Exposure to Chemical Substances (U.S. EPA, 1983).

These documents serve as valuable information resources to assist in the assessment of exposure. The reader is encouraged to refer to them for a more detailed discussion.

\subsection*{1.2. GENERAL EQUATION FOR CALCULATING DOSE}

The definition of exposure as used in the Guidelines (U.S. EPA, 1992) is "condition of a chemical contacting the outer boundary of a human." This means contact with the visible exterior of a person such as the skin, and openings such as the mouth, nostrils, and lesions. The amount of chemical ingested, inhaled, or in material applied to the skin is called potential dose. Starting with a general integral equation for exposure (U.S. EPA 1992), several dose equations can be derived depending upon boundary assumptions. One of the more useful of these derived equations is the Average Daily Dose (ADD). The ADD, which is used for many noncancer effects, averages the total dose over the period of dosing. The ADD can be calculated by averaging the potential dose ( \(\mathrm{D}_{\mathrm{po}}\) ) over body weight and an averaging time.
\[
\begin{equation*}
\mathrm{ADD}_{\text {pot }}=[\text { Total Dose }] /[\text { Body Weight } \times \text { Averaging Time }] \tag{1-1}
\end{equation*}
\]

For effects such as cancer, where the biological response is usually described in terms of lifetime probabilities, even though exposure does not occur over the entire lifetime, doses are often presented as lifetime average daily doses (LADDs). The LADD takes the form of the equation \(1-1\) with lifetime replacing averaging time. The LADD is a very common term used in carcinogen risk where linear non-threshold models are employed.

The total dose can be expanded as follows:

\section*{(1-2) Total Dose \(=\) Contaminant Concentration x Intake Rate x Exposure Duration}

Contaminant concentration is the concentration of the contaminant in the medium (air, food, soil, etc.) contacting the body and has units of mass/volume or mass/mass.

The intake rate refers to the rates of inhalation, ingestion, and dermal contact depending on the route of exposure. For ingestion, the intake rate is simply the amount of food containing the contaminant of interest that an individual ingests during some specific time period (units of mass/time). Much of this handbook is devoted to standard rates of ingestion for some broad classes of food. For inhalation, the intake rate is the rate at which
contaminated air is inhaled. Factors that affect dermal exposure are the amount of material that comes into contact with the skin, and the rate at which the contaminant is absorbed.

The exposure duration is the length of time that contaminant contact lasts. The time a person lives in an area, frequency of bathing, time spent indoors vs. outdoors, etc. all affect the exposure duration. The Activity Patterns Section (Section 5.3) gives some examples of population behavior patterns, which may be useful for estimating exposure durations to be used in the exposure calculations.

When the above parameter values remain constant over time, they are substituted directly into the dose equation. When they change with time, a summation approach is needed to calculate dose. In either case, the exposure duration is the length of time exposure occurs at the concentration and intake rate specified by the other parameters in the equation.

Dose can be expressed as a total amount (with units of mass, e.g., mg) or as an dose rate in terms of mass/time (e.g., mg/day), or as a rate normalized to body mass (e.g., with units of mg of chemical per kg of body weight per day ( \(\mathrm{mg} / \mathrm{kg}\)-day)). The LADD is usually expressed in terms of \(\mathrm{mg} / \mathrm{kg}\)-day or other mass/mass-time units.

In using the LADD, the upper-bound cancer risk is estimated by adjusting the exposure to account for absorption into the body and multiplying by the slope factor of the dose-response function. Since the slope factor is derived on the basis of administered dose, the dose should be expressed on a comparable basis. If the absorption from the medium used in the animal studies is the same as that occurring in the human exposure scenario, no adjustment is needed.

The lifetime value used in the above equation is the period of time over which the dose is averaged. For carcinogens, this should represent the average life expectancy of the exposed population. For dose estimates to be used for assessments other than carcinogenic risk, different averaging periods are frequently used. For acute exposures, the administered doses are usually averaged over a day or single event. For chronic noncancer effects, the time period used is the actual period of exposure. The objective in selecting the averaging time is to express the dose in a way which makes it comparable to the dose-response relationship used in conjunction with the dose estimate to calculate risk.

The body weight used to calculate the potential dose in the above equation should reflect the average weight of the exposed population during the time when the exposure actually occurs. If the exposure occurs continuously throughout an individual's life or only during the adult ages, using an adult average weight of 70 kg should provide sufficient accuracy. However, when the exposure is limited to childhood, the weight representing those ages should be used. Body weight is covered in more detail in the section on other factors needed for exposure calculations in Section 5.

Some of the parameters used in estimating exposure (primarily concentrations) are exclusively site specific, and therefore default recommendations could not be used.

Note that only the average body weight value is recommended under the set of values for the parameter ranges. Since the body weight appears in the denominator of the dose equation, a smaller value would lead to larger doses. This would make the combination of values used in the high-end estimate less likely, since the combination of low body weight and high consumption (or inhalation) rates is not likely to occur.

Similarly, only the average lifetime value is recommended under the set of values for the parameter ranges. Use of a short lifetime estimate in the high-end estimate scenario could be unlikely in conjunction with a long exposure duration assumption. Additionally, certain lifetime assumptions are made in derivation of the cancer potency factor. Sorting out how to maintain consistency between the dose and potency values while adjusting lifetime over a relatively narrow range implies more precision than is appropriate in risk assessment.

The link between the intake rate value and the exposure duration value is a common source of confusion in defining exposure scenarios. It is important to define the duration estimate so that it is consistent with the intake rate:
- The intake rate can be based on an individual event, such as 100 g of fish eaten per meal. The duration should be based on the number of events or, in this case, meals.
- The intake rate can also be based on a long-term average, such as \(10 \mathrm{~g} / \mathrm{day}\). In this case the duration should be based on the total time interval over which the exposure occurs.

The objective is to define the terms so that when multiplied together they give the appropriate estimate of mass of contaminant contacted. This can be accomplished by basing the contact rate on either a long-term average (chronic exposure) or an event (acute exposure) basis, as long as the duration value is selected appropriately. Consider the case in which a person eats a \(100-\mathrm{g}\) fish meal every 10 days (long-term average is \(10 \mathrm{~g} /\) day) for 40 years:
\((100 \mathrm{~g} / \mathrm{meal})(\mathrm{mea} / 10\) days) ( 365 days \(/\) year) \((40\) years \()=146,000 \mathrm{~g}\)
( \(10 \mathrm{~g} /\) day) ( 365 days/year) \((40\) years \()=146,000 \mathrm{~g}\)
Thus, a duration of either 36.5 meals/year or 365 days/year could be used as long as it is matched with the appropriate intake rate.

Normally, exposure scenarios such as those presented in this document are used to estimate individual risks. If the scenario is considered representative of a population, then the population risk is estimated by multiplying the individual risk by the population size. Note that exposure duration less than an individual's lifetime were typically recommended. In these cases, the population risk must be computed using the total population exposed over a 70 -year period. For example, if the exposure duration is assumed to last 10 years for an individual, the exposed population over 70 years could be 7 people since a different person could be exposed during each 10 -year period.

\subsection*{1.3. ORGANIZATION}

The handbook is organized as follows:
Chapter 2 Provides factors for estimating human exposure to toxic compounds through ingestion of contaminated water, food and soil.

Chapter 3 Provides factors for estimating exposure as a result of inhalation of vapor and particulates.

Chapter 4 Presents factors for estimating dermal exposure to environmental contaminants that come in contact with the skin.

Chapter 5 Provides additional factors which are not presented in Chapters 2, 3,, and 4 , but are necessary to calculate exposure from ingestion, inhalation and dermal exposure routes.

\title{
DRAFT \\ DO NOT QUOTE OR \\ Chapter 6 Presents data on consumer product use. CITE
}

Chapter 7 Presents factors used in estimating residential exposures.
Chapter 8 Presents an analysis of uncertainty and discusses methods that can be used to evaluate and present the uncertainty associated with exposure scenario estimates.

\subsection*{1.4. REFERENCES FOR CHAPTER 1}
U.S. EPA. (1983-1989) Methods for assessing exposure to chemical substances. Volumes 1-13. Washington, DC: Office of Toxic Substances, Exposure Evaluation Division.
U.S. EPA. (1984a) Pesticide assessment guidelines subdivision K , exposure: reentry protection. Office of Pesticide Programs, Washington, DC. EPA/540/9-48/001. Available from NTIS, Springfield, VA; PB-85-120962.
U.S. EPA. (1985) Development of statistical distributions or ranges of standard factors used in exposure assessments. Washington, DC: Office of Health and Environmental Assessment. EPA No. 600/8-85-010. Available from: NTIS, Springfield, VA. PB85-242667.
U.S. EPA. (1986) Standard scenarios for estimating exposure to chemical substances during use of consumer products. Volumes I and II. Washington, DC: Office of Toxic Substance, Exposure Evaluation Division.
U.S. EPA. (1986) Pesticide assessment guidelines subdivision U, applicator exposure monitoring. Office of Pesticide Programs, Washington, DC. EPA/540/9-87/127. Available from NTIS, Springfield, VA; PB-85-133286.
U.S. EPA. (1987) Selection criteria for mathematical models used in exposure assessments: surface water models. Exposure Assessment Group, Office of Health and Environmental Assessment, Washington, DC. WPA/600/8-87/042. Available from NTIS, Springfield, VA; PB-88-139928/AS.
U.S. EPA. (1988a) Estimating exposure to 2,3,7,8-TCDD. Office of Health and Environmental Assessment, Washington, DC. EPA/600/6-88/00SA. Available from NTIS, Springfield, VA; PB-88-231196/AS.
U.S. EPA. (1988b) Superfund exposure assessment manual. Office of Emergency and Remedial Response, Washington, DC. EPA/540/1-88/001. Available from NTIS, Springfield, VA; PB-89-135859.
U.S. EPA. (1988c) Selection criteria for mathematical models used in exposure assessments: groundwater models. Exposure Assessment Group, Office of Health and Environmental Assessment, Washington, DC. EPA/600/8-88/075. Available from NTIS, Springfield, VA; PB-88-248752/AS.

\section*{2. INGESTION ROUTE}

Contaminated water, food, and soil are potential sources of human exposure to toxic compounds that may be ingested. The potential dose of a toxic compound resulting from ingestion is a function of consumption rate, contaminant concentration, and exposure duration. This chapter focuses on consumption rates of broad classes of food including water, fruits and vegetables, beef, dairy products, and fish.

Nondietary soil ingestion is also a potential exposure route of toxic compounds. A variety of studies have been conducted to estimate soil consumption rates. The results of these studies are also summarized in this chapter, and may be used by the assessor to estimate exposure to contaminants based on soil ingestion.

\subsection*{2.1. DOSE EQUATION FOR INGESTION}

The general \(\mathrm{ADD}_{\mathrm{POT}}\) (average daily potential dose) equation for ingestion exposure on a per-unit-body weight basis is:
\[
\begin{equation*}
\mathrm{ADD}_{\mathrm{POT}}=[\mathrm{C} \times \mathrm{IR} \times \mathrm{DF} \times \mathrm{ED}] /[\mathrm{BW} \times \mathrm{AT}] \tag{Eqn.2-1}
\end{equation*}
\]
where:
\(\mathrm{ADD}_{\mathrm{POT}}=\) average daily potential dose (mg/kg-day);
C \(\quad=\) contaminant concentration in each medium ( \(\mathrm{mg} / \mathrm{L}\) or \(\mathrm{mg} / \mathrm{g}\) );
\(\mathrm{IR} \quad=\) intake rate (L/day or g/day);
\(\mathrm{DF} \quad=\) diet fraction;
\(\mathrm{ED} \quad=\) exposure duration (days);
BW \(\quad=\) body weight ( kg ); and
AT \(\quad=\) averaging time (days) for noncarcinogenic effects AT \(=\mathrm{ED}\), and for carcinogenic effects AT \(=70\) years or 25,550 days.

Intake rate refers to the quantity of material consumed per unit time. It is preferable that intake rates be determined for the population of interest. However, in the absence of such data, they can be estimated from generic rates which are derived from relevant regional studies or national consumption surveys. The contaminant concentration refers to the concentration in food or whatever is being ingested. It is determined by analyzing samples
from the contaminated source. The diet fraction is the fraction of material consumed from the contaminated source. Exposure duration refers to the time an individual ingests material (i.e., food, water, soil) from a contaminated source. Total exposure by ingestion is calculated by summing exposure from specific sources (i.e., drinking water, fruits, vegetables, meat, soil, etc.).

For assessments where lifetime averaging is appropriate (such as when evaluating chemicals with chronic, cancer endpoints), averaging time is replaced by lifetime (LT \(=70\) years x 365 days/yr), and the ADD becomes the Lifetime Average Daily Dose (LADD). Similar assumptions apply as for the ADD calculations.

\subsection*{2.2. DRINKING WATER CONSUMPTION}

\subsection*{2.2.1. Background}

Drinking water is a potential source of human exposure to toxic substances.
Contamination of drinking water may occur, for example, by percolation of toxics through the soil to ground water that is used as a source of drinking water, by runoff or discharge to surface water that is used as a source of drinking water, intentional or unintentional addition of substances to treat water (e.g., chlorination), and leaching of materials from plumbing systems (e.g., lead). Estimating the magnitude of the potential dose of toxics from drinking water requires information on the quantity of water consumed. The purpose of this section is to describe key published studies that provide information on drinking water consumption (Section 2.2.2) and to provide recommendations of consumption rate values that should be used in exposure assessments (Section 2.2.6).

Currently, the U.S. EPA uses the quantity of 2 L per day for adults and 1 L per day for infants (individuals of 10 kg body mass or less) as default drinking water intake rates (U.S. EPA, 1980). These rates include drinking water consumed in the form of juices and other beverages containing tapwater (e.g., coffee). The National Academy of Sciences (NAS, 1977) estimated that daily consumption of water may vary with levels of physical activity and fluctuations in temperature and humidity. It is reasonable to assume that some
individuals in physically-demanding occupations or living in warmer regions may exceed this level of water intake.

Numerous studies have generated data on drinking water intake rates. In general, these sources support EPA's use of \(2 \mathrm{~L} /\) day for adults and \(1 \mathrm{~L} /\) day for children as upperpercentile tapwater intake rates. Many of the studies have reported fluid intake rates for both total fluids and tapwater. Total fluid intake is defined as consumption of all types of fluids including tapwater, milk, soft drinks, alcoholic beverages, and water intrinsic to purchased foods. Total tapwater is defined as food and beverages that are prepared or reconstituted with tapwater (i.e., coffee, tea, frozen juices, soups, etc.). Data for both consumption categories are presented in the sections that follow. However, for the purposes of exposure assessments involving source-specific contaminated drinking water, intake rates based on total tapwater are more representative of source-specific tapwater intake. Given the assumption that purchased foods and beverages are widely distributed and less likely to contain source-specific water, the use of total fluid intake rates may overestimate the potential exposure to toxic substances present only in local water supplies.

All studies on drinking water intake that are currently available are based on shortterm survey data. Although short-term data may be suitable for obtaining mean intake values that are representative of both short- and long-term consumption patterns, upper-percentile values may be different for short-ierm and long-term data because more variability generally occurs in short-term surveys. It should also be noted that most drinking water surveys currently available are based on recall. This may be a source of uncertainty in the estimated intake rates because of the subjective nature of this type of survey technique.

The available studies on drinking water consumption are summarized in the following sections. They have been classified as either key studies or other relevant studies based on the applicability of their survey designs to exposure assessment needs. Recommended intake rates are based on the results of key studies, but other relevant studies are also presented to provide the reader with added perspective on the current state-of-knowledge pertaining to drinking water intake.

\subsection*{2.2.2. Key General Population Studies}

Cantor et al. - National Cancer Institute Study - The National Cancer Institute (NCI), in a population-based, case control study investigating the possible relationship between bladder cancer and drinking water, interviewed approximately 8,000 adult white individuals, 21-84 years of age ( 2,805 cases and 5,258 controls), using a standardized questionnaire (Cantor et al., 1987). The individuals interviewed were asked to recall the level of intake of tapwater and other beverages in a typical week during the winter prior to the interview. Total beverage intake was divided into the following two components: (1) beverages derived from tapwater; and (2) beverages from other sources. Tapwater used in cooking foods and in ice cubes was apparently not considered. Participants also supplied information on the primary source of the water consumed (i.e., private well, community supply, bottled water, etc.). The control population was randomly selected from the general population to match bladder cancer cases in terms of age, sex, and geographic location of residence. Although the control population was not entirely representative of the U.S. population as a whole, it was used in estimating water intake rates. The fluid intake rates for the bladder cancer cases were not used because their participation in the study was based on selection factors that could bias the intake estimates for the general population. Based on responses from 5,258 white controls ( 3,892 males; 1,366 females), average intake rates for a "typical" week were compiled by sex, age group, and geographic region. These rates are listed in Table 2-1. The average total fluid intake rate was \(2.01 \mathrm{~L} /\) day for men of which 70 percent ( \(1.4 \mathrm{~L} /\) day \()\) was derived from tapwater, and \(1.72 \mathrm{~L} /\) day for women of which 79 percent ( \(1.35 \mathrm{~L} /\) day) was derived from tapwater. The overall average adult total tapwater intake rate was \(1.39 \mathrm{~L} /\) day. Frequency distribution data reported by Cantor et al. (1987) for total tapwater intake are presented in Table 2-2. These data suggest a 50 th percentile value of approximately 1.3 L/day and an upper percentile value of approximately 2.0 L /day (this value is between 82 nd and 100th percentile, based on Table 2-2; the 95th percentile intake rate was not reported by Cantor et al. 1987). These values represent the usual level of intake for this population of adults.

A limitation associated with this data set is that the population surveyed was not representative of the general U.S. population. Also, the data are based on recall of behavior

Table 2-1. Average Total Tapwater Intake Rate by Sex, Age, and Geographic Area
\begin{tabular}{|c|c|c|}
\hline Group/Subgroup & Number of Respondents & Average Total Tapwater Intake, \({ }^{\text {a, }}{ }^{\text {b }}\) L/day \\
\hline Total group & 5,258 & 1.39 \\
\hline \multicolumn{3}{|l|}{Sex} \\
\hline Males & 3,892 & 1.40 \\
\hline Females & 1,366 & 1.35 \\
\hline \multicolumn{3}{|l|}{Age, years} \\
\hline 21-44 & 291 & 1.30 \\
\hline 45-64 & 1,991 & 1.48 \\
\hline 65-84 & 2,976 & 1.33 \\
\hline \multicolumn{3}{|l|}{Geographic area} \\
\hline Atlanta & 207 & 1.39 \\
\hline Connecticut & 844 & 1.37 \\
\hline Detroit & 429 & 1.33 \\
\hline Iowa & 743 & 1.61 \\
\hline New Jersey & 1,542 & 1.27 \\
\hline New Mexico & 165 & 1.49 \\
\hline New Orleans & 112 & 1.61 \\
\hline Seattle & 316 & 1.44 \\
\hline San Francisco & 621 & 1.36 \\
\hline Utah & 279 & 1.35 \\
\hline
\end{tabular}
a Standard deviations not reported in Cantor et al. (1987).
b Total tapwater defined as all water and beverages derived from tapwater.
Source: Cantor et al., 1987.

Table 2-2. Frequency Distribution of Total Tapwater Intake Rates \({ }^{\mathrm{a}}\)
\begin{tabular}{lcc}
\hline Consumption & & \\
Rate (L/day) & Frequency \(^{\mathrm{b}}\) (\%) & \begin{tabular}{l} 
Cumulative \\
Frequency (\%)
\end{tabular} \\
\hline & & \\
50.80 & 20.6 & 20.6 \\
\(0.81-1.12\) & 21.3 & 41.9 \\
\(1.13-1.44\) & 20.5 & 62.4 \\
\(1.45-1.95\) & 19.5 & 81.9 \\
\(\geq 1.96\) & 18.1 & 100.0
\end{tabular}
- Represents consumption of tapwater and beverages derived from tapwater in a "typical" winter week.
b Extracted from Table 3 in Cantor et al. (1987).
Source: Cantor, et al., 1987.
from a previous time period. This may somewhat degrade response accuracy. Other limitations are that the time period surveyed was 1 week in the winter when water intake rates may be somewhat lower than at other times of the year (i.e., summer). Finally, the relatively short-term nature of the survey make extrapolation to long-term consumption patterns difficult.

Canada Department of Health and Welfare - Tapwater Consumption in Canada - In a study conducted by the Canadian Department of Health and Welfare, approximately 1,000 individuals were surveyed to determine the per capita total tapwater intake rates for various age/sex groups during winter and summer seasons (Canadian Ministry of National Health and Welfare, 1981). Intake rate was also evaluated as a function of physical activity. A representative sample of the Canadian population was surveyed based on the 1971 Canadian census format. Participants monitored water intake for a 2-day period (1 weekday, and 1 weekend day) in both the summer and winter during 1977 and 1978. The amount of tapwater consumed was estimated based on the respondents' identification of the type and size of beverage container used, compared to standard sized vessels. The survey questionnaires included a pictorial guide to help participants in classifying the sizes of the vessels. For example, a small glass of water was assumed to be equivalent to 4.0 ounces of water, and a large glass was assumed to contain 9.0 ounces of water. The study also accounted for water derived from ice cubes and popsicles, and water in soups, infant formula, and juices. The survey did not attempt to differentiate between tapwater consumed at home and tapwater consumed away from home. The survey also did not attempt to estimate intake rates for fluids other than tapwater. Consequently, no intake rates for total fluids were reported.

For adults (over 18 years old) only, the average total tapwater intake rate was 1.49 \(\mathrm{L} /\) day, and the 90 th percentile rate was \(2.50 \mathrm{~L} /\) day. Daily consumption distribution patterns for various age groups are presented in Table 2-3. Intake rates for specific age groups and seasons are presented in Table 2-4. Based on the daily total tapwater intake rates for all ages and seasons combined, the average rate was \(1.34 \mathrm{~L} /\) day, and the 90 th percentile rate was 2.36 L/day. Average daily total tapwater intake rates based on the level of physical activity

Table 2-3. Daily Total Tapwater Intake Distribution by Age Group (Approx. 0.20 L Increments, Both Sexes, Combined Seasons)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Amount Consumed \({ }^{\text {a }}\) L/day} & \multicolumn{6}{|c|}{Age Group} \\
\hline & \multicolumn{2}{|c|}{5 and Under} & \multicolumn{2}{|c|}{6-17} & \multicolumn{2}{|c|}{18 and Over} \\
\hline & \% & Number & \% & Number & \% & Number \\
\hline 0.00-0.21 & 11.1 & 9 & 2.8 & 7 & 0.5 & 3 \\
\hline 0.22-0.43 & 17.3 & 14 & 10.0 & 25 & 1.9 & 12 \\
\hline 0.44-0.65 & 24.8 & 20 & 13.2 & 33 & 5.9 & 38 \\
\hline 0.66-0.86 & 9.9 & 8 & 13.6 & 34 & 8.5 & 54 \\
\hline 0.87-1.07 & 11.1 & 9 & 14.4 & 36 & 13.1 & 84 \\
\hline 1.08-1.29 & 11.1 & 9 & 14.8 & 37 & 14.8 & 94 \\
\hline 1.30-1.50 & 4.9 & 4 & 9.6 & 24 & 15.3 & 98 \\
\hline 1.51-1.71 & 6.2 & 5 & 6.8 & 17 & 12.1 & 77 \\
\hline i.72-1.93 & 1.2 & 1 & 2.4 & 6 & 6.9 & 44 \\
\hline 1.94-2.14 & 1.2 & 1 & 1.2 & 3 & 5.6 & 36 \\
\hline 2.15-2.36 & 1.2 & 1 & 4.0 & 10 & 3.4 & 22 \\
\hline 2.37-2.57 & - & 0 & 0.4 & 1 & 3.1 & 20 \\
\hline 2.58-2.79 & - & 0 & 2.4 & 6 & 2.7 & 17 \\
\hline 2.80-3.00 & - & 0 & 2.4 & 6 & 1.4 & 9 \\
\hline 3.01-3.21 & - & 0 & 0.4 & 1 & 1.1 & 7 \\
\hline 3.22-3.43 & - & 0 & - & 0 & 0.9 & 6 \\
\hline 3.44-3.64 & - & 0 & - & 0 & 0.8 & 5 \\
\hline 3.65-3.86 & - & 0 & - & 0 & - & 0 \\
\hline \(>3.86\) & - & 0 & 1.6 & 4 & 2.0 & 13 \\
\hline TOTAL & 100.0 & 81 & 100.0 & 250 & 100.0 & 639 \\
\hline
\end{tabular}
a Includes tapwater and foods and beverages derived from tapwater.
Source: Canadian Ministry of National Health and Welfare, 1981.

Table 2-4. Average Daily Total Tapwater Intake by Age and Season (L/day) \({ }^{\text {a }}\)
\begin{tabular}{llllllll}
\hline & \multicolumn{7}{c}{ Age (years) } \\
\cline { 3 - 8 } & \(<3\) & \(3-5\) & \(6-17\) & \(18-34\) & \(35-54\) & \(\leq 55\) & All Ages \\
\hline & & & & & & & \\
Average & & & & & & & \\
Summer & 0.57 & 0.86 & 1.14 & 1.33 & 1.52 & 1.53 & 1.31 \\
Winter & 0.66 & 0.88 & 1.13 & 1.42 & 1.59 & 1.62 & 1.37 \\
Summer/Winter & 0.61 & 0.87 & 1.14 & 1.38 & 1.55 & 1.57 & 1.34 \\
90th Percentile & & & & & & & \\
Summer/Winter & 1.50 & 1.50 & 2.21 & 2.57 & 2.57 & 2.29 & 2.36 \\
\hline
\end{tabular}
a Includes tapwater and foods and beverages derived from tapwater.
Source: Canadian Ministry of National Health and Welfare, 1981.
of the survey participants are presented in Table 2-5. The amounts of tapwater consumed that are derived from various foods and beverages are presented in Table 2-6.

These data provide useful information on the seasonal variability of total tapwater intake. The survey also included data for some tapwater-containing items not covered by other studies (i.e., ice cubes, popsicles, and infant formula) and may, therefore, be more representative of total tapwater consumption than some other less comprehensive surveys. However, the estimated intake rates were based on identification of standard vessel sizes. The accuracy of this type of survey data is not known. This study estimated tapwater intake rates in Canada which may not be representative of tapwater intake rates in the United States. In addition, certain age groups were under represented. These data were also based on a short-term survey and may not be entirely representative of long-term consumption patterns.

Ershow and Cantor - Total Water and Tapwater Intake - Ershow and Cantor (1989) estimated water intake rates based on data collected by the USDA 1977-1978 Nationwide Food Consumption Survey (NFCS). Daily intake of tapwater and total water was calculated for various age groups for males, females, and both sexes combined. Tapwater was defined as "all water from the household tap consumed directly as a beverage or used to prepare foods and beverages." Total water was defined as tapwater plus "water intrinsic to foods and beverages" (i.e., water contained in purchased food and beverages). Daily total tapwater intake rates by age group are presented in Table 2-7. These data indicate that total tapwater intake for adults (ages 20-64) ranges from approximately 0.15 to \(3.78 \mathrm{~L} /\) day with a mean intake rate of \(1.37 \mathrm{~L} /\) day. Total tapwater intake for children (ages 1-10) ranges from approximately 0.06 to 1.95 with a mean intake rate of \(0.74 \mathrm{~L} /\) day. The 90 th percentile rate is \(2.27 \mathrm{~L} /\) day for adults (ages 20-64) and \(1.29 \mathrm{~L} /\) day for children (ages 1-10). Table 2-8 depicts the daily intake rates for total fluids by age. The mean intake rate for total fluids is 2.24 L/day for adults (ages 20-64) and \(1.56 \mathrm{~L} /\) day for children (ages \(1-10\) ). The 90th percentile rates are \(3.32 \mathrm{~L} /\) day and \(2.24 \mathrm{~L} /\) day for adults and children, respectively. Total tapwater intake rates, as defined by this study, should be more representative of the rates of source-specific water consumed and should be used in assessing exposure to contaminants in local drinking water supplies. Ershow and Cantor (1989) also reported total tapwater intake

Table 2-5. Average Daily Total Tapwater Intake as a Function of Physical Activity at Work and in Spare Time (16 Years and Older, Combined Seasons, L/day)
\begin{tabular}{llllc}
\hline & \multicolumn{2}{c}{ Work } & \multicolumn{2}{c}{ Spare Time } \\
\cline { 3 - 5 } \begin{tabular}{lll} 
Activity \\
Level \(^{\mathrm{a}}\)
\end{tabular} & \begin{tabular}{l} 
Consumption \\
L/day
\end{tabular} & \begin{tabular}{l} 
Number of \\
Respondents
\end{tabular} & \begin{tabular}{l} 
Consumption \\
L/day
\end{tabular} & \begin{tabular}{l} 
Number of \\
Respondents
\end{tabular} \\
\hline Extremely Active & 1.72 & 99 & 1.57 & 52 \\
Very Active & 1.47 & 244 & 1.51 & 151 \\
Somewhat Active & 1.47 & 217 & 1.44 & 302 \\
Not Very Active & 1.27 & 67 & 1.52 & 131 \\
Not At All Active & 1.30 & 16 & 1.35 & 26 \\
Did Not State & 1.30 & 45 & 1.31 & 26 \\
TOTAL & & 688 & & 688
\end{tabular}
a The levels of physical activity listed here were not defined any further by the survey report, and categorization of activity level by survey participants is assumed to be subjective.
b Includes tapwater and foods and beverages derived from tapwater.
Source: Canadian Ministry of National Health and Welfare, 1981.

Table 2-6. Average Daily Tapwater Intake Apportioned Among Various Beverages (Both Sexes, by Age, Combined Seasons, L/day) \({ }^{2}\)
\begin{tabular}{lcccccc} 
& \multicolumn{6}{c}{ Age Group } \\
& Under 3 & \(3-5\) & \(6-17\) & \(18-34\) & \(35-54\) & 55 and Over \\
& & & & & & \\
\\
& & & & & & \\
Total in Group & 34 & 0.31 & 0.42 & 0.39 & 0.38 & 153 \\
Water & 0.14 & 0.01 & 0.01 & 0.02 & 0.04 & 0.03 \\
Ice/Mix & \(*\) & 0.01 & 0.05 & 0.21 & 0.31 & 0.02 \\
Tea & 0.01 & \(*\) & 0.06 & 0.37 & 0.50 & 0.42 \\
Coffee & 0.21 & 0.34 & 0.34 & 0.20 & 0.14 & 0.42 \\
"Other Type of Drink" & 0.21 & 0.08 & 0.12 & 0.05 & 0.04 & 0.11 \\
Reconstituted Milk & 0.10 & 0.08 & 0.07 & 0.06 & 0.08 & 0.11 \\
Soup & 0.04 & \(*\) & 0.02 & 0.04 & 0.07 & 0.03 \\
Homemade Beer/Wine & \(*\) & 0.03 & 0.03 & 0.01 & \(*\) & \(*\) \\
Homemade Popsicles & 0.01 & \(*\) & \(*\) & \(*\) & \(*\) & \(*\) \\
Baby Formula, etc. & 0.09 & & & & & \\
\hline
\end{tabular}
a Includes tapwater and foods and beverages derived from tapwater.
* Less than \(0.01 \mathrm{~L} /\) day

Source: Canadian Ministry of National Health and Welfare, 1981.

a Total tapwater is defined as "all water from the household tap consumed directly as a beverage or used to prepare foods and beverages."
* Value not reported due to insufficient number of observations.

Source: Ershow and Cantor, 1989.


Table 2-8. Total Fluid Intake (ml/day) for Both Sexes Combineda

a Total fluid is defined as tapwater plus "water intrinsic to foods and beverages."
* Value not reported due to insufficient number of observations.

Source: Ershow and Cantor, 1989.
as percentages of total fluid intake, and the percentages of total fluids derived from food, drinking water, and beverages for each age group. These data are reported in Tables 2-9 and 2-10.

These data were based on the USDA NFCS which is a large geographically and seasonally balanced survey of a representative sample of the U.S. population. However, it should be noted that the data are based on short-term recall. These factors introduce an unknown degree of uncertainty into the estimation of standard intake rates for the population.

Roseberry and Burmaster - Lognormal Distributions for Water Intake - Roseberry and Burmaster (1992) fit lognormal distributions to the water intake data reported by Ershow and Cantor (1989) and estimated population-wide distributions for total fluid and total tapwater intake based on proportions of the population in each age group. The mean was estimated as the zero intercept, and the standard deviation was estimated as the slope of the best fit line for the natural logarithm of the intake rates plotted against their corresponding z -scores (Roseberry and Burmaster, 1992). Least squares techniques were used to estimate the best fit straight lines for the transformed data. Summary statistics for the best-fit lognormal distribution are presented in Table 2-11. Tables 2-12 and 2-13 present the estimated quantiles and arithmetic averages for total tapwater and total fluid intake rates reported by Roseberry and Burmaster (1992). The mean total tapwater intake rates for the two adult populations (age 20-65 years, and 65+ years) were estimated to be 1.27 and \(1.34 \mathrm{~L} /\) day.

These intake rates are based on the data originally presented by Ershow and Cantor (1989). Consequently, the same advantages and disadvantages associated with the Ershow and Cantor (1989) apply to this data set.

\subsection*{2.2.3. Other Relevant General Population Studies}

National Academy of Sciences-Drinking Water and Health - NAS (1977) calculated the average per capita water (liquid) consumption per day to be 1.63 L . This figure was based on a survey of the following literature sources: Evans (1941); Bourne and Kidder (1953); Walker et al. (1957); Wolf (1958); Guyton (1968); McNall and Schlegel (1968); Randall (1973); NAS (1974); and Pike and Brown (1975). Although the calculated average intake volume was 1.63 L per day, NAS (1977) adopted a larger volume ( 2 L per day) to represent

Table 2-9. Total Tapwater Intake (as Percent of Total Water Intake) by Broad Age Categorya,b
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Age (yr)} & \multirow[t]{2}{*}{Mean} & \multicolumn{9}{|c|}{Percentile Distribution} \\
\hline & & 1 & 5 & 10 & 25 & 50 & 75 & 90 & 95 & 99 \\
\hline <1 & 26 & 0 & 0 & 0 & 12 & 22 & 37 & 55 & 62 & 82 \\
\hline 1-10 & 45 & 6 & 19 & 24 & 34 & 45 & 57 & 67 & 72 & 81 \\
\hline 11-19 & 47 & 6 & 18 & 24 & 35 & 47 & 59 & 69 & 74 & 83 \\
\hline 20-64 & 59 & 12 & 27 & 35 & 49 & 61 & 72 & 79 & 83 & 90 \\
\hline 65+ & 65 & 25 & 41 & 47 & 58 & 67 & 74 & 81 & 84 & 90 \\
\hline
\end{tabular}
- Does not include pregnant women, lactating women, or breast-fed children.
b Total tapwater is defined as "all water from the household tap consumer directly as a beverage or used to prepare foods and beverages."
\(0=\) Less than 0.5 percent.
Source: Ershow and Cantor, 1989.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Age (yr)} & \multirow[b]{3}{*}{Source} & \multicolumn{8}{|c|}{mL day} & \multicolumn{8}{|c|}{\% of Total mUday} \\
\hline & & & Standard & & & Distri & & & & \multicolumn{3}{|c|}{Standard} & \multicolumn{4}{|l|}{Percentile Distribution} & \multirow[b]{2}{*}{99} \\
\hline & & Mean \({ }^{\text {b }}\) & Deviation & 5 & 25 & 50 & 75 & 95 & 99 & Mean & Deviation & 5 & 25 & 50 & 75 & 95 & \\
\hline \multirow[t]{3}{*}{\(<1\)} & Food \({ }^{\text {c }}\) & 250 & 198 & 0 & 72 & 236 & 371 & 633 & 843 & 21 & 16 & 0 & 8 & 21 & 32 & 50 & 60 \\
\hline & Drinking Water & 197 & 186 & 0 & 0 & 240 & 240 & 480 & 880 & 16 & 14 & 0 & 0 & 17 & 24 & 39 & 60 \\
\hline & Other Beverages & 701 & 235 & 333 & 558 & 693 & 839 & 1085 & 1332 & 63 & 19 & 33 & 51 & 63 & 76 & 97 & 100 \\
\hline \multirow{4}{*}{1-10} & All Sources & 1148 & 332 & 631 & 920 & 1120 & 1339 & 1727 & 2060 & 100 & & & & & & & \\
\hline & Food \({ }^{\text {c }}\) & 409 & 175 & 175 & 283 & 384 & 506 & 727 & 924 & 27 & 10 & 13 & 20 & 26 & 33 & 44 & 53 \\
\hline & Drinking Water & 505 & 354 & 0 & 240 & 480 & 720 & 1200 & 1600 & 30 & 16 & 0 & 20 & 30 & 41 & 56 & 68 \\
\hline & Other Beverages & 645 & 247 & 283 & 483 & 630 & 784 & 1083 & 1372 & 43 & 14 & 21 & 33 & 42 & 52 & 66 & 77 \\
\hline \multirow{4}{*}{11-19} & All Sources & 1559 & 507 & 838 & 1210 & 1497 & 1843 & 2507 & 3013 & 100 & & & & & & & \\
\hline & Food \({ }^{\text {c }}\) & 515 & 230 & 204 & 349 & 487 & 638 & 933 & 1197 & 27 & 10 & 12 & 20 & 26 & 33 & 44 & 54 \\
\hline & Drinking Water & 664 & 483 & 0 & 320 & 560 & 880 & 1600 & 2160 & 31 & 17 & 0 & 20 & 31 & 42 & 60 & 73 \\
\hline & Other Beverages & 809 & 382 & 289 & 566 & 756 & 984 & 1490 & 2105 & 42 & 15 & 18 & 32 & 41 & 51 & 67 & 78 \\
\hline \multirow{3}{*}{20-64} & All Sources & 1989 & 719 & 1025 & 1489 & 1874 & 2369 & 3336 & 4251 & 100 & & & & & & & \\
\hline & Food \({ }^{\text {c }}\) & 545 & 239 & 223 & 375 & 509 & 678 & 992 & 1254 & 26 & 10 & 11 & 18 & 24 & 32 & 44 & 55 \\
\hline & Drinking Water & 674 & 555 & 0 & 320 & 560 & 960 & 1760 & 2560 & 28 & 17 & 0 & 16 & 28 & 40 & 59 & 71 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& N \\
& 1 \\
& H
\end{aligned}
\]} & Other Beverages & 1024 & 539 & 358 & 668 & 925 & 1267 & 2001 & 2912 & 46 & 17 & 20 & 35 & 46 & 57 & 75 & 84 \\
\hline & All Sources & 2243 & 839 & 1133 & 1665 & 2109 & 2663 & 3793 & 5081 & 100 & & & & & & & \\
\hline \multirow[t]{3}{*}{\(65+\)} & Food \({ }^{\text {c }}\) & 575 & 243 & 238 & 406 & 542 & 711 & 1028 & 1273 & 27 & 10 & 12 & 20 & 26 & 33 & 45 & 54 \\
\hline & Drinking Water & 776 & 554 & 0 & 400 & 720 & 1040 & 1920 & 2400 & 33 & 17 & 0 & 22 & 33 & 45 & 61 & 74 \\
\hline & Other Beverages & 849 & 381 & 310 & 604 & 807 & 1032 & 1523 & 2037 & 40 & 15 & 16 & 30 & 39 & 49 & 66 & 78 \\
\hline \multirow{5}{*}{All} & All Sources & 2190 & 728 & 1196 & 1700 & 2109 & 2616 & 3482 & 4370 & 100 & & & & & & & \\
\hline & Food \({ }^{\text {c }}\) & 517 & 236 & 201 & 351 & 483 & 647 & 955 & 1220 & 26 & 10 & 12 & 19 & 25 & 32 & 44 & 54 \\
\hline & Drinking Water & 651 & 520 & 0 & 240 & 560 & 880 & 1600 & 2400 & 30 & 17 & 0 & 17 & 29 & 41 & 59 & 71 \\
\hline & Other Beverages & 904 & 481 & 318 & 596 & 811 & 1110 & 1774 & 2612 & 44 & 16 & 19 & 33 & 44 & 55 & 73 & 83 \\
\hline & All Sources & 2072 & 803 & 1012 & 1511 & 1950 & 2485 & 3550 & 4655 & 100 & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
Does not include pregnant women, lactating women, or breast-fed children.
Individual values may not add to totals due to rounding.
Food category includes soups.
\(0=\) Less than \(0.5 \mathrm{~g} /\) day or 0.5 percent.
}

Source: Ershow and Cantor, 1989.

Table 2-11. Summary Statistics for Best-Fit Lognormal Distributions for Water Intake Rates \({ }^{\text {a }}\)
\begin{tabular}{llll}
\hline \multicolumn{1}{c}{ Group } & \multicolumn{3}{c}{\begin{tabular}{c} 
ln Total Fluid \\
Intake Rate \\
\(\sigma\)
\end{tabular}} \\
\hline \(0<\) age \(<1\) & \(\mu\) & \(\mathbf{R}^{2}\) \\
\(1 \leq\) age \(<11\) & 6.979 & 0.291 & 0.996 \\
\(11 \leq\) age <20 & 7.182 & 0.340 & 0.953 \\
\(20 \leq\) age <65 & 7.490 & 0.347 & 0.966 \\
\(65 \leq\) age & 7.563 & 0.400 & 0.977 \\
All ages & 7.583 & 0.360 & 0.988 \\
Simulated balanced population & 7.487 & 0.405 & 0.984 \\
\hline & 7.492 & 0.407 & 1.000 \\
\hline & & & \\
\hline
\end{tabular}

2 These values were used in the following equations to estimate the quantiles and averages for total tapwater and total fluid intake shown in Tables 2-12 and 2-13.
97.5 percentile intake rate \(=\exp [\mu+(1.96 \cdot \sigma)]\)

75 percentile intake rate \(=\exp [\mu+(0.6745 \cdot \sigma)]\)
50 percentile intake rate \(=\exp [\mu]\)
25 percentile intake rate \(=\exp [\mu-(0.6745 \cdot \sigma)]\)
2.5 percentile intake rate \(=\exp [\mu-(1.96 \cdot \sigma)]\)

Mean intake rate \(\left.-\exp \left[\mu+0.5 \cdot \sigma^{2}\right)\right]\)
Source: Roseberry and Burmaster, 1992.

Table 2-12. Estimated Quantiles and Means for Total Tapwater Intake Rates (mL/day)
\begin{tabular}{lrrrrrr} 
& \multicolumn{5}{c}{ Percentile } & \begin{tabular}{c} 
Arithmetic \\
\multicolumn{1}{c}{ Group }
\end{tabular} \\
\cline { 2 - 6 } Average
\end{tabular}
a Total tapwater is defined as "all water from the household tap consumed directly as a beverage or used to prepare foods and beverages."

Source: Roseberry and Burmaster, 1992.

Table 2-13. Estimated Quantiles and Means for Total Fluid Intake Rates (mL/day)a
\begin{tabular}{lrrrrrl}
\hline & \multicolumn{5}{c}{ Percentile } & \\
\cline { 2 - 6 } \multicolumn{1}{c}{ Group } & 2.5 & 25 & 50 & 75 & 97.5 & Mean \\
\hline \(0<\) age \(<1\) & 607 & 882 & 1,074 & 1,307 & 1,900 & 1,120 \\
\(1 \leq\) age \(<11\) & 676 & 1,046 & 1,316 & 1,655 & 2,562 & 1,394 \\
\(11 \leq\) age \(<20\) & 907 & 1,417 & 1,790 & 2,262 & 3,534 & 1,901 \\
\(20 \leq\) age \(<65\) & 879 & 1,470 & 1,926 & 2,522 & 4,218 & 2,086 \\
\(65 \leq\) age & 970 & 1,541 & 1,965 & 2,504 & 3,978 & 2,096 \\
All NFCS & 807 & 1,358 & 1,785 & 2,345 & 3,947 & 1,937 \\
\begin{tabular}{l} 
Simulated \\
Balanced \\
Population
\end{tabular} & 808 & 1,363 & 1,794 & 2,360 & 3,983 & 1,949
\end{tabular}
a Total fluid is defined as tapwater plus "water intrinsic to foods and beverages."
Source: Roseberry and Burmaster, 1992.
the intake of the majority of water consumers. This value is relatively consistent with the total tapwater intakes rate estimated from the key studies presented previously. However, the use of the term "liquid" was not clearly defined in this study, and it is not known whether the populations surveyed are representative of the adult U.S. population. Consequently, the results of this study are of limited use in recommending total tapwater intake rates.

Pennington - Total Diet Study - Based on data from the U.S. Food and Drug Administration's (FDA's) Total Diet Study, Pennington (1983) reported average intake rates for various foods and beverages for five age groups of the population. The Total Diet Study is conducted annually to monitor the nutrient and contaminant content of the U.S. food supply and to evaluate trends in consumption. Representative diets were developed based on 24-hour recall and 2-day diary data from the 1977-1978 U.S. Department of Agriculture (USDA) Nationwide Food Consumption Survey (NFCS) and 24-hour recall data from the Second National Health and Nutrition Examination Survey (NHANES II). The number of participants in NFCS and NHANES II was approximately 30,000 and 20,000 , respectively. The diets were developed to "approximate 90 percent or more of the weight of the foods usually consumed" (Pennington, 1983). For the purposes of this report, the consumption rates for the food categories defined by Pennington (1983) were used to calculate total fluid and total tapwater intake rates for five age groups. Total tapwater includes tapwater, tea, coffee, soft drinks, and soups and frozen juices that are reconstituted with tap water. Reconstituted soups were assumed to be composed of 50 percent tapwater, and juices were assumed to contain 75 percent tapwater. Total fluids include total tapwater in addition to milk, ready-to-use infant formula, milk-based soups, carbonated soft drinks, alcoholic beverages, and canned fruit juices. These intake rates are presented in Table 2-14. Based on the average intake rates for total tapwater for the two adult age groups, 1.04 and \(1.26 \mathrm{~L} /\) day, the average adult intake rate is about \(1.15 \mathrm{~L} /\) day. These rates should be more representative of the amount of source-specific water consumed than are total fluid intake rates. Because intake rates estimated by Pennington (1983) are based on the USDA NFCS, the same limitations associated with the Ershow and Cantor (1989) data apply to these data.

Table 2-14. Average Daily Fluid Intake Rate by Age Group from the Total Diet Study
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{Average Daily Consumption Rate (L/day)} \\
\hline Age Group & Total Fluids \({ }^{*}\) & Total Tapwater \({ }^{\text {b }}\) \\
\hline 6-11 months & 0.80 & 0.20 \\
\hline 2 years & 0.99 & 0.50 \\
\hline 14-16 years & 1.47 & 0.72 \\
\hline 25-30 years & 1.76 & 1.04 \\
\hline 60-65 years & 1.63 & 1.26 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
- Includes milk, "ready-to-use" formula, milk-based soup, carbonated soda, alcoholic beverages, canned juices, water, coffee, tea, reconstituted juices, and reconstituted soups. Does not include reconstituted infant formula. \\
b Includes water, coffee, tea, reconstituted juices, and reconstituted soups.
\end{tabular}}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{Source: Derived from Pennington, 1983.} \\
\hline
\end{tabular}
```

 DRAFT
 DO NOT QUOTE OR
CITE

```

Gillies and Paulin - New Zealand Study - Gillies and Paulin (1983) conducted a study to evaluate variability of mineral intake from drinking water. A study population of 109 adults ( 75 females; 34 males) ranging in age from 16 to 80 years (mean age \(=44\) years) in New Zealand was asked to collect duplicate samples of water consumed directly from the tap or used in beverage preparation during a 24-hour period. Participants were asked to collect the samples on a day when all of the water consumed would be from their own home. Individuals were selected based on their willingness to participate and their ability to comprehend the collection procedures. The mean total tapwater intake rate for this population was \(1.25( \pm 0.39) \mathrm{L} /\) day, and the 90 th percentile rate was \(1.90 \mathrm{~L} /\) day. The median total tapwater intake rate ( \(1.26 \mathrm{~L} /\) day \()\) was very similar to the mean intake rate (Gillies and Paulin, 1983). The reported range was 0.26 to 2.80 L day.

The advantage of these data are that they were generated using duplicate sampling techniques. Because this approach is more objective than recall methods, it may result in more accurate response. However, these data are based on a short-term survey that may not be representative of long-term behavior, and the population surveyed may not be representative of the U.S. population.

Hopkin and Ellis - Drinking Water Consumption in Great Britain - A study conducted in Great Britain over a 6-week period during September and October 1978, estimated the drinking water consumption rates of 3,564 individuals from 1,320 households in England, Scotland, and Wales (Hopkins and Ellis, 1980). The participants were selected randomly and were asked to complete a questionnaire and a diary indicating the type and quantity of beverages consumed over a 1 -week period. Total liquid intake included total tapwater taken at home and away from home; purchased alcoholic beverages; and nontapwater-based drinks. Total tapwater included water content of tea, coffee, and other hot water drinks; homemade alcoholic beverages; and tapwater consumed directly as a beverage. The assumed tapwater contents for these beverages are presented in Table 2-15. Based on responses from 3,564 participants, the mean intake rates and frequency distribution data for various beverage categories were estimated by Hopkin and Ellis (1980). These data are listed in Table 2-16. The mean per capita total liquid intake rate for all individuals surveyed was \(1.59 \mathrm{~L} /\) day, and the mean per capita total tapwater intake rate was \(0.95 \mathrm{~L} /\) day. Liquid intake rates were also

Table 2-15. Assumed Tapwater Content of Beverages
\begin{tabular}{lc}
\hline \multicolumn{1}{c}{ Beverage } & \% Tapwater \\
\hline Cold Water & 100 \\
Home-made Beer/Cider/Lager & 100 \\
Home-made Wine & 100 \\
Other Hot Water Drinks & 100 \\
Ground/Instant Coffee: & \\
Black & 100 \\
White & 80 \\
Half Milk & 50 \\
All Milk & 0 \\
Tea & 80 \\
Hot Milk & 0 \\
Cocoa/Other Hot Milk Drinks & 0 \\
Water-based Fruit Drink & 75 \\
Fizzy Drinks & 0 \\
Fruit Juice 1b & 0 \\
Fruit Juice 2b & 75 \\
Milk & 0 \\
Mineral Waterc & 0 \\
Bought cider/beer/lager & 0 \\
Bought Wine & 0 \\
\hline
\end{tabular}

2 Black - coffee with all water, milk not added; White - coffee with \(80 \%\) water, \(20 \%\) milk; Half Milk - coffee with \(50 \%\) water, \(50 \%\) milk; All Milk - coffee with all milk, water not added;
b Fruit juice: individuals were asked in the questionnaire if they consumed ready-made fruit juice (type 1 above), or the variety that is diluted (type 2);
c Information on volume of mineral water consumed was obtained only as "number of bottles per week." A bottle was estimated at 500 mL , and the volume was split so that \(2 / 7\) was assumed to be consumed on weekends, and 5/7 during the week.

Source: Hopkins and Ellis, 1980.

Table 2-16. Intake of Total Liquid, Total Tapwater, and Various Beverages (L/day)
\begin{tabular}{llllll|lll}
\hline & & & & & & & & Consumers Only
\end{tabular}

Source: Hopkin and Ellis, 1980.
estimated for males and females in various age groups. Table 2-17 summarizes the total liquid and total tapwater intake rates for 1,758 males and 1,800 females grouped into six age categories (Hopkin and Ellis, 1980). The mean total liquid intake rate reported for adults was \(1.79 \mathrm{~L} /\) day ( \(1.07 \mathrm{~L} /\) day for tapwater based drinks and \(0.72 \mathrm{~L} /\) day for non-tapwater based drinks).

The advantage of using these data is that the responses were not generated on a recall basis, but by recording daily intake in diaries. The latter approach may result in more accurate responses being generated. Also, the use of total liquid and total tapwater was well defined in this study. However, the relatively short-term nature of the survey make extrapolation to long-term consumption patterns difficult. Also, these data were based on the population of Great Britain and not the United States. Drinking patterns may differ among these populations as a result of varying weather conditions and other socio-economic factors.
U.S. EPA - Office of Radiation Programs - Using data collected by USDA in the 1977-78 NFCS, U.S. EPA (1984d) determined daily food and beverage intake levels by age to be used in assessing radionuclide intake through food consumption. Tapwater, waterbased drinks, and soups were identified subcategories of the total beverage category. Daily intake rates for tapwater, water-based drinks, soup, and total beverage are presented in Table 2-18. As seen in the table, mean tapwater intake for different adult age groups (age 20 and older) ranged from 0.62 to \(0.76 \mathrm{~L} /\) day, water-based drinks intake ranged from 0.34 to \(0.69 \mathrm{~L} /\) day, soup intake ranged from 0.03 to \(0.06 \mathrm{~L} /\) day, and mean total beverage intake levels ranged from 1.48 to \(1.73 \mathrm{~L} /\) day. Total tapwater intake rates were estimated by combining the average daily intakes of tapwater, water-based drinks, and soups for each age group. For adults (ages 20 and older), mean total tapwater intake rates range from 1.04 to 1.47 L/day, and for children (ages \(<1\) to 19 ), mean intake rates range from 0.19 to 0.90 L/day. These intake rates do not include reconstituted infant formula. The total tapwater intake rates, derived by combining data on tapwater, water-based drinks, and soup should be more representative of source-specific drinking water intake than the total beverage intake rates reported in this study. These intake rates are based on the same USDA NFCS data used in Ershow and Cantor (1989). Therefore, the data limitations discussed previously also apply to this study.

Table 2-17. Summary of Total Liquid and Total Tapwater Intake for Males and Females (L/day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Beverage} & \multirow[t]{2}{*}{Age Group} & \multicolumn{2}{|c|}{Number} & \multicolumn{2}{|c|}{Mean Intake} & \multicolumn{2}{|l|}{Approx. Std. Error of Mean} & \multicolumn{2}{|l|}{Approx 95\% Confidence Interval for Mean} & \multicolumn{2}{|l|}{10 and 90 Percentiles} \\
\hline & & Male & Female \\
\hline \multirow{6}{*}{Total Liquid Intake} & 1-4 & 88 & 75 & 0.853 & 0.888 & 0.0557 & 0.0660 & 0.742-0.964 & 0.756-1.020 & 0.38-1.51 & 0.39-1.48 \\
\hline & 5-11 & 249 & 201 & 0.986 & 0.902 & 0.0296 & 0.0306 & 0.917-1.045 & 0.841-0.963 & 0.54-1.48 & 0.51-1.39 \\
\hline & 12-17 & 180 & 169 & 1.401 & 1.198 & 0.0619 & 0.0429 & 1.277-1.525 & 1.112-1.284 & 0.75-2.27 & 0.65-1.74 \\
\hline & 18-30 & 333 & 350 & 2.184 & 1.547 & 0.0691 & 0.0392 & 2.046-2.322 & 1.469-1.625 & 1.12-3.49 & 0.93-2.30 \\
\hline & 31-54 & 512 & 551 & 2.112 & 1.601 & 0.0526 & 0.0215 & 2.007-2.217 & 1.558-1.694 & 1.15-3.27 & 0.95-2.36 \\
\hline & \(55+\) & 396 & 454 & 1.830 & 1.482 & 0.0498 & 0.0356 & 1.730-1.930 & 1.411-1.553 & 1.03-2.77 & 0.84-2.17 \\
\hline \multirow{6}{*}{\begin{tabular}{l}
Total \\
Tapwater Intake
\end{tabular}} & 1-4 & 88 & 75 & 0.477 & 0.464 & 0.0403 & 0.0453 & 0.396-0.558 & 0.373-0.555 & 0.17-0.85 & 0.15-0.89 \\
\hline & 5-11 & 249 & 201 & 0.550 & 0.533 & 0.0223 & 0.0239 & 0.505-0.595 & 0.485-0.581 & 0.22-0.90 & 0.22-0.93 \\
\hline & 12-17 & 180 & 169 & 0.805 & 0.725 & 0.0372 & 0.0328 & 0.731-0.8790 & 0.659-0.791 & 0.29-1.35 & 0.31-1.16 \\
\hline & 18-30 & 333 & 350 & 1.006 & 0.991 & 0.0363 & 0.0304 & 0.933-1.079 & 0.930-1.052 & 0.45-1.62 & 0.50-1.55 \\
\hline & 31-54 & 512 & 551 & 1.201 & 1.091 & 0.0309 & 0.0240 & 1.139-1.263 & 1.043-1.139 & 0.64-1.88 & 0.62-1.68 \\
\hline & 55+ & 396 & 454 & 1.133 & 1.027 & 0.0347 & 0.0273 & 1.064-1.202 & 0.972-1.082 & 0.62-1.72 & 0.54-1.57 \\
\hline
\end{tabular}

\footnotetext{
Source: Hopkin and Ellis, 1980.
}


Table 2-18. Mean and Standard Error for the Daily Intake of Beverages and Tapwater by Age
\begin{tabular}{|c|c|c|c|c|}
\hline Age & Tapwater Intake (mL) & \begin{tabular}{l}
Water-Based \\
Drinks (mL) \({ }^{\text {a }}\)
\end{tabular} & Soups & Total Beverage Intake \({ }^{\text {b }}\) (mL) \\
\hline All ages & \(662.5 \pm 9.9\) & \(457.1 \pm 6.7\) & \(45.9 \pm 1.2\) & \(1434.0 \pm 13.7\) \\
\hline Under 1 & \(170.7 \pm 64.5\) & \(8.3 \pm 43.7\) & \(10.1 \pm 7.9\) & \(307.0 \pm 89.2\) \\
\hline 1 to 4 & \(434.6 \pm 31.4\) & \(97.9 \pm 21.5\) & \(43.8 \pm 3.9\) & \(743.0 \pm 43.5\) \\
\hline 5 to 9 & \(521.0 \pm 26.4\) & \(116.5 \pm 18.0\) & \(36.6 \pm 3.2\) & \(861.0 \pm 36.5\) \\
\hline 10 to 14 & \(620.2 \pm 24.7\) & \(140.0 \pm 16.9\) & \(35.4 \pm 3.0\) & \(1025.0 \pm 34.2\) \\
\hline 15 to 19 & \(664.7 \pm 26.0\) & \(201.5 \pm 17.7\) & \(34.8 \pm 3.2\) & \(1241.0 \pm 35.9\) \\
\hline 20 to 24 & \(656.4 \pm 33.9\) & \(343.1 \pm 23.1\) & \(38.9 \pm 4.2\) & \(1484.0 \pm 46.9\) \\
\hline 25 to 29 & \(619.8 \pm 34.6\) & \(441.6 \pm 23.6\) & \(41.3 \pm 4.2\) & \(1531.0 \pm 48.0\) \\
\hline 30 to 39 & \(636.5 \pm 27.2\) & \(601.0 \pm 18.6\) & \(40.6 \pm 3.3\) & \(1642.0 \pm 37.7\) \\
\hline 40 to 59 & \(735.3 \pm 21.1\) & \(686.5 \pm 14.4\) & \(51.6 \pm 2.6\) & \(1732.0 \pm 29.3\) \\
\hline 60 and over & \(762.5 \pm 23.7\) & \(561.1 \pm 16.2\) & \(59.4 \pm 2.9\) & \(1547.0 \pm 32.8\) \\
\hline
\end{tabular}
: Includes water-based drinks such as coffee, etc. Reconstituted infant formula does not appear to be included in this group.
b Includes tapwater and water-based drinks such as coffee, tea, soups, and other drinks such as soft drinks, fruitades, and alcoholic drinks.
Source: U.S. EPA, 1984d.


International Commission on Radiological Protection - Reference Man - Data on fluid intake levels have also been summarized by the International Commission on Radiological Protection (ICRP) in the Report of the Task Group on Reference Man (ICRP, 1981). These intake levels for adults and children are summarized in Table 2-19. The amount of drinking water (tapwater and water-based drinks) consumed by adults ranged from about \(0.37 \mathrm{~L} /\) day to about 2.18 L/day under "normal" conditions. The levels for children ranged from 0.54 to \(0.79 \mathrm{~L} /\) day. Because the populations, survey design, and intake categories are not clearly defined, this study has limited usefulness in developing recommended intake rates for use in exposure assessment. It is reported here as a relevant study because the findings, although poorly defined, are consistent with the results of other studies.

\subsection*{2.2.4. Pregnant and Lactating Women}

Ershow et al., 1991 - Intake of Tapwater and Total Water by Pregnant and Lactating Women - Ershow et al. (1991) used data from the 1977-78 USDA NFCS to estimate total fluid and total tapwater intake among pregnant and lactating women (ages 15-49 years). Data for 188 pregnant women, 77 lactating women, and 6,201 nonpregnant, nonlactating control women were evaluated. The participants were interviewed based on 24 hour recall, and then asked to record a food diary for the next 2 days. "Tapwater" included tapwater consumed directly as a beverage and tapwater used to prepare food and tapwater-based beverages. "Total water" was defined as all water from tapwater and nontapwater sources, including water contained in food. Estimated total fluid and total tapwater intake rates for the three groups are presented in Tables 2-20 and 2-21, respectively. Lactating women had the highest mean total fluid intake rate ( \(2.24 \mathrm{~L} /\) day) compared with both pregnant women (2.08 L/day) and control women (1.94 L/day). Lactating women also had a higher mean total tapwater intake rate ( \(1.31 \mathrm{~L} /\) day) than pregnant women ( \(1.19 \mathrm{~L} /\) day) and control women (1.16 L/day). Ershow et al. (1991) also reported that rural women ( \(\mathrm{n}=1,885\) ) consumed more total water ( \(1.99 \mathrm{~L} /\) day) and tapwater ( \(1.24 \mathrm{~L} /\) day) than urban/suburban women ( \(\mathrm{n}=4,581,1.93\) and \(1.13 \mathrm{~L} /\) day, respectively). Total water and tapwater intake rates were lowest in the northeastern region of the United States (1.82 and \(1.03 \mathrm{~L} /\) day) and highest in the western region of the United States ( \(2.06 \mathrm{~L} /\) day and \(1.21 \mathrm{~L} /\) day). Mean intake per unit

Table 2-19. Measured Fluid Intakes (mL/day)
\begin{tabular}{lllll}
\hline Subject & Total Fluids & Milk & Tapwater & \begin{tabular}{c} 
Water-Based \\
Drinks \({ }^{\mathrm{a}}\)
\end{tabular} \\
\hline Adults ("normal" conditions) & \(1000-2400\) & \(120-450\) & \(45-730\) & \(320-1450\) \\
\begin{tabular}{ll} 
Adults (high environmental \\
temperature to \(32^{\circ} \mathrm{C}\) ) & \(2840-3410\)
\end{tabular} & & & \\
& \(3256 \pm\) & & & \\
Adults (moderately active) & 3700 & & & \\
Children (5-14 yr) & \(1000-1200\) & \(330-500\) & ca. 200 & ca. 380 \\
& \(1310-1670\) & \(540-650\) & & \(540-790\) \\
\hline
\end{tabular}
- Includes tea, coffee, soft drinks, beer, cider, wine, etc.
b "Normal" conditions refer to typical environmental temperature and activity levels.
Source: ICRP, 1981.

Table 2-20. Total Fluid Intake of Women 15-49 Years Old
\begin{tabular}{lccccccccc}
\hline & & & \multicolumn{7}{c}{ Percentile Distribution } \\
Reproductive Status \({ }^{2}\) & Mean & \begin{tabular}{c} 
Standard \\
Division
\end{tabular} & 5 & 10 & 25 & 50 & 75 & 90 & 95 \\
\hline mL/day & & & & & & & & & \\
Control & 1940 & 686 & 995 & 1172 & 1467 & 1835 & 2305 & 2831 & 3186 \\
Pregnant & 2076 & 743 & 1085 & 1236 & 1553 & 1928 & 2444 & 3028 & 3475 \\
Lactating & 2242 & 658 & 1185 & 1434 & 1833 & 2164 & 2658 & 3169 & 3353 \\
\hline mL/kg/day & & & & & & & & & \\
Control & 32.3 & 12.3 & 15.8 & 18.5 & 23.8 & 30.5 & 38.7 & 48.4 & 55.4 \\
Pregnant & 32.1 & 11.8 & 16.4 & 17.8 & 22.8 & 30.5 & 40.4 & 48.9 & 53.5 \\
Lactating & 37.0 & 11.6 & 19.6 & 21.8 & 28.4 & 35.1 & 45.0 & 53.7 & 59.2 \\
\hline
\end{tabular}
a Number of observations: nonpregnant, nonlactating controls ( \(n=6,201\) ); pregnant \((n=188)\); lactating \((n=77)\).
Source: Ershow et al., 1991.

Table 2-21. Total Tapwater Intake of Women 15-49 Years Old
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Reproductive Status \({ }^{2}\)} & \multirow[b]{2}{*}{Mean} & \multirow[b]{2}{*}{\begin{tabular}{l}
Standard \\
Deviation
\end{tabular}} & \multicolumn{7}{|c|}{Percentile Distribution} \\
\hline & & & 5 & 10 & 25 & 50 & 75 & 90 & 95 \\
\hline \multicolumn{10}{|l|}{mL/day} \\
\hline Control & 1157 & 635 & 310 & 453 & 709 & 1065 & 1503 & 1983 & 2310 \\
\hline Pregnant & 1189 & 699 & 274 & 419 & 713 & 1063 & 1501 & 2191 & 2424 \\
\hline Lactating & 1310 & 591 & 430 & 612 & 855 & 1330 & 1693 & 1945 & 2191 \\
\hline \multicolumn{10}{|l|}{mL/kg/day} \\
\hline Control & 19.1 & 10.8 & 5.2 & 7.5 & 11.7 & 17.3 & 24.4 & 33.1 & 39.1 \\
\hline Pregnant & 18.3 & 10.4 & 4.9 & 5.9 & 10.7 & 16.4 & 23.8 & 34.5 & 39.6 \\
\hline Lactating & 21.4 & 9.8 & 7.4 & 9.8 & 14.8 & 20.5 & 26.8 & 35.1 & 37.4 \\
\hline \multicolumn{10}{|l|}{Fraction of daily fluid intake that is tapwater (\%)} \\
\hline Control & 57.2 & 18.0 & 24.6 & 32.2 & 45.9 & 59.0 & 70.7 & 79.0 & 83.2 \\
\hline Pregnant & 54.1 & 18.2 & 21.2 & 27.9 & 42.9 & 54.8 & 67.6 & 76.6 & 83.2 \\
\hline Lactating & 57.0 & 15.8 & 27.4 & 38.0 & 49.5 & 58.1 & 65.9 & 76.4 & 80.5 \\
\hline
\end{tabular}

2 Number of observations: nonpregnant, nonlactating controls ( \(n=6,201\) ); pregnant ( \(n=188\) ); lactating ( \(n=77\) ).
Source: Ershow et al., 1991.

body weight was highest among lactating women for both total fluid and total tapwater intake. Total tapwater intake accounted for over 50 percent of mean total fluid in all three groups of women (Table 2-21). Drinking water accounted for the largest single proportion of the total fluid intake for control ( 30 percent), pregnant ( 34 percent), and lactating women (30 percent) (Table 2-22). All other beverages combined accounted for approximately 46 percent, 43 percent, and 45 percent of the total water intake for control, pregnant, and lactating women, respectively. Food accounted for the remaining portion of total water intake.

The same advantages and limitations associated with the Ershow and Cantor (1989) data also apply to these data sets (Section 2.2.2). A further advantage of this study is that it provides information on estimates of total water and tapwater intake rates for pregnant and lactating women. This topic has rarely been addressed in the literature.

\subsection*{2.2.5. High Activity Levels/Hot Climates}

McNall and Schlegel, 1968 - Practical Thermal Environmental Limits for Young Adult Males Working in Hot, Humid Environments - McNall and Schlegel (1968) conducted a study that evaluated the physiological tolerance of adult males working under varying degrees of physical activity. Subjects were required to pedal pedal-driven propeller fans for 8-hour work cycles under varying environmental conditions. Two groups of eight subjects each were used. Work rates were divided into three categories as follows: high activity level [ 0.15 horsepower ( hp ) per person], medium activity level ( 0.1 hp per person), and low activity level ( 0.05 hp per person). Evidence of physical stress (i.e., increased body temperature, blood pressure, etc.) was recorded, and individuals were eliminated from further testing if certain stress criteria were met. The amount of water consumed by the test subjects during the work cycles was also recorded. Water was provided to the individuals on request. The water intake rates obtained at the three different activity levels and the various environmental temperatures are presented in Table 2-23. The data presented are for test subjects with continuous data only (i.e., those test subjects who were not eliminated at any stage of the study as a result of stress conditions). Water intake was the highest at all activity levels when environmental temperatures were increased. The highest intake rate was

Table 2-22. Total Fluid (mL/Day) Derived from Various Dietary Sources by Women Aged 15-49 Years \({ }^{\text {a }}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Sources} & \multicolumn{3}{|r|}{Control Women} & \multicolumn{3}{|r|}{Pregnant Women} & \multicolumn{3}{|r|}{Lactating Women} \\
\hline & \multirow[b]{2}{*}{Mean \({ }^{\text {b }}\)} & \multicolumn{2}{|r|}{Percentile} & \multirow[b]{2}{*}{Mean \({ }^{\text {b }}\)} & \multicolumn{2}{|r|}{Percentile} & \multirow[b]{2}{*}{Mean \({ }^{\text {b }}\)} & \multicolumn{2}{|r|}{Percentile} \\
\hline & & 50 & 95 & & 50 & 95 & & 50 & 95 \\
\hline Drinking Water & 583 & 480 & 1440 & 695 & 640 & 1760 & 677 & 560 & 1600 \\
\hline Milk and Milk Drinks & 162 & 107 & 523 & 308 & 273 & 749 & 306 & 285 & 820 \\
\hline Other Dairy Products & 23 & 8 & 93 & 24 & 9 & 93 & 36 & 27 & 113 \\
\hline Meats, Poultry, Fish, Eggs & 126 & 114 & 263 & 121 & 104 & 252 & 133 & 117 & 256 \\
\hline Legumes, Nuts, and Seeds & 13 & 0 & 77 & 18 & 0 & 88 & 15 & 0 & 72 \\
\hline Grains and Grain Products & 90 & 65 & 257 & 98 & 69 & 246 & 119 & 82 & 387 \\
\hline Citrus and Noncitrus Fruit Juices & 57 & 0 & 234 & 69 & 0 & 280 & 64 & 0 & 219 \\
\hline Fruits, Potatoes, Vegetables, Tomatoes & 198 & 171 & 459 & 212 & 185 & 486 & 245 & 197 & 582 \\
\hline Fats, Oils, Dressings, Sugars, Sweets & 9 & 3 & 41 & 9 & 3 & 40 & 10 & 6 & 50 \\
\hline Tea & 148 & 0 & 630 & 132 & 0 & 617 & 253 & 77 & 848 \\
\hline Coffee and Coffee Substitutes & 291 & 159 & 1045 & 197 & 0 & 955 & 205 & 80 & 955 \\
\hline Carbonated Soft Drinks \({ }^{\text {c }}\) & 174 & 110 & 590 & 130 & 73 & 464 & 117 & 57 & 440 \\
\hline Noncarbonated Soft Drinks \({ }^{\text {c }}\) & 38 & 0 & 222 & 48 & 0 & 257 & 38 & 0 & 222 \\
\hline Beer & 17 & 0 & 110 & 7 & 0 & 0 & 17 & 0 & 147 \\
\hline Wine Spirits, Liqueurs, Mixed Drinks & 10 & 0 & 66 & 5 & 0 & 25 & 6 & 0 & 59 \\
\hline All Sources & 1940 & NA & NA & 2076 & NA & NA & 2242 & NA & NA \\
\hline
\end{tabular}
a Number of observations: nonpregnant, nonlactating controls ( \(n=6,201\) ); pregnant ( \(n=188\) ); lactating ( \(n=77\) ).
b Individual means may not add to all-sources total due to rounding.
c Includes regular, low-calorie, and noncalorie soft drinks.
NA: Not appropriate to sum the columns for the 50th and 95th percentiles of intake.
Source: Ershow et al., 1991.


Table 2-23. Water Intake at Various Activity Levels (L/hr) \({ }^{\text {a }}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Room Temperature \({ }^{\text {b }}\) ( \({ }^{\circ} \mathrm{F}\) ) & \multicolumn{6}{|c|}{Activity Level} \\
\hline & \multicolumn{2}{|l|}{\(\underline{\text { High }(0.15 ~ h p / m a n) ~}{ }^{\text {c }}\)} & \multicolumn{2}{|l|}{Medium ( \(0.10 \mathrm{hp} / \mathrm{man})^{\text {c }}\)} & \multicolumn{2}{|l|}{Low (0,05 hp/man) \({ }^{\text {c }}\)} \\
\hline & \[
\mathrm{No}^{\mathrm{d}}
\] & Intake & No. & Intake & No. & Intake \\
\hline 100 & - & -- & - & - & 15 & \[
\begin{aligned}
& 0.653 \\
& (0.75)
\end{aligned}
\] \\
\hline 95 & 18 & \[
\begin{aligned}
& 0.540 \\
& (0.31)
\end{aligned}
\] & 12 & \[
\begin{gathered}
0.345 \\
(0.59)
\end{gathered}
\] & 6 & \[
\begin{gathered}
0.50 \\
(0.3 i)
\end{gathered}
\] \\
\hline 90 & 7 & \[
\begin{aligned}
& 0.286 \\
& (0.26)
\end{aligned}
\] & 7 & \[
\begin{aligned}
& 0.385 \\
& (0.26)
\end{aligned}
\] & 16 & \[
\begin{gathered}
0.23 \\
(0.20)
\end{gathered}
\] \\
\hline 85 & 7 & \[
\begin{aligned}
& 0.218 \\
& (0.36)
\end{aligned}
\] & 16 & \[
\begin{aligned}
& 0.213 \\
& (0.20)
\end{aligned}
\] & -- & - \\
\hline 80 & 16 & \[
\begin{aligned}
& 0.222 \\
& (0.14)
\end{aligned}
\] & - & & -- & - \\
\hline
\end{tabular}
- Data expressed as mean intake with standard deviation in parentheses.
b Humidity \(=80\) percent; air velocity \(=60 \mathrm{ft} / \mathrm{min}\).
c The symbol "hp" refers to horsepower.
d Number of subjects with continuous data.
Source: McNall and Schlegel, 1968.

observed at the low activity level at \(100^{\circ} \mathrm{F}\) ( \(0.65 \mathrm{~L} /\) hour) however, there were no data for higher activity levels at \(100^{\circ} \mathrm{F}\). It should be noted that this study estimated intake on an hourly basis during various levels of physical activity. These hourly intake rates cannot be converted to daily intake rates by multiplying by 24 hours/day because they are only representative of intake during the specified activity levels and the intake rates for the rest of the day are not known. Therefore, comparison of intake rate values from this study cannot be made with values from the previously described studies on drinking water intake.

United States Army - Water Consumption Planning Factors Study - 'The U.S. Army has developed water consumption planning factors to enable them to transport an adequate amount of water to soldiers in the field under various conditions (U.S. Army, 1983). Both climate and activity levels were used to determine the appropriate water consumption needs. Consumption factors have been established for the following uses: (1) drinking, (2) heat treatment, (3) personal hygiene, (4) centralized hygiene, (5) food preparation, (6) laundry, (7) medical treatment, (8) vehicle and aircraft maintenance, (9) graves registration, and (10) construction. Only personal drinking water consumption factors are described here.

Drinking water consumption planning factors are based on the estimated amount of water needed to replace fluids lost by urination, perspiration, and respiration. It assumes that water lost to urinary output averages one quart/day ( \(0.9 \mathrm{~L} /\) day) and perspiration losses range from almost nothing in a controlled environment to 1.5 quarts/hour ( \(1.4 \mathrm{~L} /\) day) in a very hot climate where individuals are performing strenuous work. Water losses to respiration are typically very low except in extreme cold where water losses can range from 1 to 3 quarts/day ( 0.9 to \(2.8 \mathrm{~L} /\) day). This occurs when the humidity of inhaled air is near zero, but expired air is 98 percent saturated at body temperature (U.S. Army, 1983). Drinking water is defined by the U.S. Army (1983) as "all fluids consumed by individuals to satisfy body needs for internal water." This includes soups, hot and cold drinks, and tapwater.

Planning factors have been established for hot, temperate, and cold climates based on the following mixture of activities among the work force: 15 percent of the force performing light work, 65 percent of the force performing medium work, and 20 percent of the force performing heavy work. Hot climates are defined as tropical and arid areas where the
temperature is greater than \(80^{\circ} \mathrm{F}\). Temperate climates are defined as areas where the mean daily temperature ranges from \(32^{\circ} \mathrm{F}\) to \(80^{\circ} \mathrm{F}\). Cold regions are areas where the mean daily temperature is less than \(32^{\circ} \mathrm{F}\). Drinking water consumption factors for these three climates are presented in Table 2-24. These factors are based on research on individuals and small unit training exercises. The estimates are assumed to be conservative because they are rounded up to account for the subjective nature of the activity mix and minor water losses that are not considered (U.S. Army, 1983). The advantage of using these data is that they provide a conservative estimate of drinking water intake among individual performing at various levels of physical activity in hot, temperate, and cold climates. However, the planning factors described here are based on assumptions about water loss from urination, perspiration, and respiration, and are not based on survey data or actual measurements.

\subsection*{2.2.6. Recommendations}

The key studies described in this section were used in selecting recommended drinking water (tapwater) consumption rates for adults, children, and other subpopulations. Although different survey designs and populations were utilized by key and relevant studies described in this report, the mean and upper-percentile estimates reported in these studies appear to be relatively consistent. The general design of both key and relevant studies and their limitations are summarized in Table 2-25. It should be noted that studies that surveyed large representative samples of the population provide more reliable estimates of intake rates for the general population. Survey results based on recall may be somewhat biased because of the subjectivity involved. However, Cantor et al. (1987) noted that retrospective dietary assessments generally produce moderate correlations with "reference data from the past." Most of the surveys described here are based on short-term recall.
Table 2-24. Planning Factors for Individual Tapwater Consumption \begin{tabular}{c} 
DRAFT \\
DO NOT QUOTE OR \\
CITE
\end{tabular}
\begin{tabular}{ccc}
\hline Environmental Condition & \begin{tabular}{c} 
Recommended Planning \\
Factor (gal/day)
\end{tabular} & \begin{tabular}{c} 
Recommended Planning Factor \\
(L/day)
\end{tabular} \\
\hline Hot & \(3.0^{\circ}\) & 11.4 \\
Temperate & \(1.5^{\mathrm{d}}\) & 5.7 \\
Cold & \(2.0^{\circ}\) & 7.6 \\
\hline
\end{tabular}
* Based on a mix of activities among the work force as follows: \(15 \%\) light work; \(65 \%\) medium work; \(20 \%\) heavy work. These factors apply to the conventional battlefield where no nuclear, biological, or chemical weapons are used.
b Converted from gal/day to L/day.
- This assumes 1 quart/12-hour rest period/man for perspiration losses and 1 quart/day/man for urination plus 6 quarts/12-hours light work/man, 9 quarts/12-hours moderate work/man, and 12 quarts/12-hours heavy work/man.
d This assumes 1 quart/12-hour rest period/man for perspiration losses and 1 quart/day/man for urination plus 1 quart/12-hours light work/man, 3 quarts/12-hours moderate work/man, and 6 quarts/12-hours heavy work/man.
- This assumes 1 quart/12-hour rest period/man for perspiration losses, 1 quart/day/man for urination, and 2 quarts/day/man for respiration losses plus 1 quart/12-hours light work/man, 3 quarts/12-hours moderate work/man, and 6 quarts/6-hours heavy work/man.

Source: U.S. Army, 1983.

Table 2-25. Drinking Water Intake Surveys
\begin{tabular}{|c|c|c|c|c|c|}
\hline Study & Number of Individuals & Type of Water Consumed & Time Period/ Survey Type & Population Surveyed & Comments \\
\hline Canadian Ministry of National Health and Welfare, 1981 & 970 & Total tapwater consumption & Weekday and weekend day in both summer and winter; estimation based on sizes and types of containers used & All ages; Canada & Seasonal data; includes many tapwatercontaining items not commonly surveyed; possible bias because identification of vessel size used as survey techniques; short-term study \\
\hline Cantor et al., 1987 & 5,258 & Total tapwater; total fluid consumption & 1 week/usual intake in winter based on recall & Adults only; weighted toward older adults; U.S. population & Based on recall of behavior from previous winter; short-term data; population not representative of general U.S. population \\
\hline Ershow and Cantor, 1989 & Based on data from NFCS; approximately 30,000 individuals & Total tapwater; total fluid consumption & 3-day recall, diaries & All ages; large sample representative of U.S. population & Short-term recall data; seasonally balanced data \\
\hline Gillies and Paulin, 1983 & 109 & Total tapwater consumption & 24 hours; duplicate water samples collected & \begin{tabular}{l}
Adults only; \\
New Zealand
\end{tabular} & Based on short-term data \\
\hline Hopkin and Ellis, 1980 & 3,564 & Total tapwater, total liquid consumption & 1 week period, diaries & All ages; Great Britain & Short-term diary data \\
\hline ICRP, 1981 & Based on data from several sources & Water and waterbased drinks; milk; total fluids & NA \({ }^{\text {a }}\) & \(N^{\prime}{ }^{\mathbf{a}}\) & Survey design and intake categories not clearly defined \\
\hline McNall and Schlegel, 1968 & Based on 2 groups of 8 subjects each & Tapwater & 8-hour work cycle & Males between 17-25 years of age; small sample & Based on short-term data \\
\hline
\end{tabular}

Table 2-25. Drinking Water Intake Surveys (continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Study & Number of Individuals & Type of Water Consumed & Time Period/ Survey Type & Population Surveyed & Comments \\
\hline NAS 1977 & Calculated average based on several sources & Average per capita "liquid" consumption & \(N A^{\text {a }}\) & \(\mathrm{NA}^{\text {a }}\) & Total tapwater not reported; population and survey design not reported \\
\hline Pennington, 1983 & Based on NFCS and NHANES II; approximately 30,000 and 20,000 participants, respectively & Total tapwater; total fluid consumption & NFCS:24-hour recall on 2-day dairy; NHANES II:24-hour recall & NFCS: 1 month to 97 years; NHANES II:6 months to 74 years; representative samples of US population & Based on short-term recall data \\
\hline Rosenberry and Burmaster, 1992 & Based on data from Ershow and Cantor, 1987 & Total tapwater; total fluid consumption & 3-day recall, diaries & All ages; large sample representative of US population & Short-term recall data; seasonally balanced; suitable for Monte Carlo simulations \\
\hline U.S. Army, 1983 & NA & All fluids consumed to satisfy body needs for internal water; includes soups, hot and cold drinks and tapwater & NA & NA & Study designed to provide water consumption planning factors for various activities and field conditions; based on estimated amount of water required to account for losses from urination, perspiration, and respiration \\
\hline USEPA, 1984d & Based on NFCS; approximately 30,000 individuals & Tapwater; water based foods and beverages; soups; beverage consumption & 3-day recall, diaries & All ages; large sample representative of US population & Short-term recail data; seasonaily balanced \\
\hline a Not applicable. & & & & & \\
\hline
\end{tabular}

Adults - The total tapwater consumption rates for adults that have been reported in these surveys can be summarized as follows:

90th percentile

\section*{Mean_(L/day)}
1.63 (calculated)
\[
1.39
\]
\[
1.25
\]
\[
1.04 \text { ( } 25 \text { to } 30 \mathrm{yrs} \text { ) }
\]
\[
1.26 \text { ( } 60 \text { to } 65 \mathrm{yrs} \text { ) }
\]
\[
1.49
\]
1.04-1.47 (ages 20+)
1.37 ( 20 to 64 yrs )
1.46 ( \(65+\mathrm{yrs}\) )
1.27 ( 20 to 64 yrs)
1.34 ( \(65+\mathrm{yrs}\) )
(L/day)

Reference
NAS, 1977.
Cantor et al., 1987.
Gillies and Paulin, 1983.
Pennington, 1983.
Pennington, 1983.
Canadian Ministry of Health and Welfare, 1981. U.S. EPA, 1984d. Ershow and Cantor, 1989. Ershow and Cantor, 1989. Roseberry and Burmaster, 1992
Roseberry and Burmaster, 1992

The combined results of the studies discussed above suggest that the average adult drinking water intake rate is between 1.30 and \(1.40 \mathrm{~L} /\) day. Based on the key surveys that are most applicable to general population exposure assessments (i.e., Cantor et al., 1987; Ershow and Cantor, 1989), \(1.4 \mathrm{~L} /\) day is recommended as the average drinking water consumption rate. This average rate differs from the widely used default adult drinking water consumption rate of \(2.0 \mathrm{~L} /\) day. A \(2.0 \mathrm{~L} /\) day intake rate appears to represent the upper 80 th -90 th percentile of intake rates among the adult population. The higher value is supported by the 90 th percentile tapwater intake rate suggested by Ershow and Cantor (1989) which was \(2.27 \mathrm{~L} /\) day, and the 82nd percentile rate estimated by Cantor et al. (1987) which was \(1.96 \mathrm{~L} /\) day. Because these values are based on short-term data, a value of \(2.0 \mathrm{~L} /\) day is recommended as the upperpercentile drinking water consumption rate for adults for use in chronic exposure assessments. For acute assessments, the higher value should probably be used (i.e., 2.27 L/day). Alternatively, the lognormal distribution data (Tables 2-11 and 2-12) generated by Roseberry and Burmaster (1992) may be used.

Children - The intake rates for children reported by various studies on drinking water intake rates are summarized below.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Arithmetic \\
Average (I/day)
\end{tabular} & 90th percentile (L/day) & Reference \\
\hline 0.20 (6-11 months) & - & Pennington, 1983. \\
\hline 0.19 ( \(<1 \mathrm{yr}\) ) & - & U.S. EPA, 1984d. \\
\hline 0.30 ( \(<1 \mathrm{yr}\) ) & 0.65 & Ershow and Cantor, 1989. \\
\hline 0.32 ( \(<1 \mathrm{yr}\) ) & - & Roseberry and Burmaster, 1992. \\
\hline 0.50 (2 yrs) & - & Pennington, 1983. \\
\hline 0.61 (<3 yrs) & 1.50 & Canadian Ministry of National Health and Welfare, 1981. \\
\hline 0.58 (1-4 yrs) & - & U.S. EPA, 1984d. \\
\hline 0.87 (3-5 yrs) & 1.50 & Canadian Ministry of National Health and Welfare, 1981 \\
\hline 0.67 (5-9 yrs) & - & U.S. EPA, 1984d. \\
\hline 0.74 (1-10 yrs) & 1.29 & Ershow and Cantor, 1989. \\
\hline 0.70 (1-10 yrs) & - & Roseberry and Burmaster, 1992. \\
\hline 1.14 (6-17 yrs) & 2.21 & Canadian Ministry of National Health and Welfare, 1981. \\
\hline 0.80 (10-14 yrs) & - & U.S. EPA, 1984d. \\
\hline 0.72 (14-16 yrs) & - & Pennington, 1983. \\
\hline 0.90 (15-19 yrs) & - & U.S. EPA, 1984d. \\
\hline 0.97 (11-19 yrs) & 1.70 & Ershow and Cantor, 1989. \\
\hline 0.91 (11-19 yrs) & - & Roseberry and Burmaster, 1992. \\
\hline
\end{tabular}

For children less than 1 year old, 0.3 L /day appears to represent the average intake rate for water-based beverages, and 0.7 I /day appears to be an appropriate upper-percentile value for drinking water consumption. However, these values may not include water used to prepare powdered infant formula. Based on data from Ershow and Cantor (1989) and Roseberry and Burmaster (1992), the recommended average drinking water intake rate is \(0.7 \mathrm{~L} /\) day for ages 1-10 years, and the upper-percentile rate is 1.3 L /day. For older children (ages 11-19 years), the recommended average is \(1.0 \mathrm{~L} /\) day, and the upper-percentile value is \(1.7 \mathrm{~L} /\) day . Intake rates for specific percentiles of the distribution may be selected using the lognormal distribution data generated by Roseberry and Burmaster (1992) (Tables 2-11 and 2-12).

Pregnant and Lactating Women - Based on the data from Ershow and Cantor (1991) the recommended average drinking water intake rate for pregnant women is \(1.2 \mathrm{~L} /\) day, and
the upper-percentile value is 2.2 L /day. For lactating women, the recommended average drinking water intake rate is \(1.3 \mathrm{~L} /\) day, and the upper-percentile value is \(1.9 \mathrm{~L} /\) day .

High Activity/Hot Climates - Data intake rates for individuals performing strenuous activities under various environmental conditions are limited. However, the data presented by McNall and Schlegel (1968) and U.S. Army (1983) provide bounding intake values for these individuals. According to McNall and Schlegel (1968), hourly intake can range from 0.21 to 0.65 L /hour depending on the temperature and activity level. Intake among physically active individuals can range from \(6 \mathrm{~L} /\) day in temperate climates to \(11 \mathrm{~L} /\) day in hot climates (U.S. Army, 1983).

\subsection*{2.3. CONSUMPIION OF FRUITS AND VEGETABLES}
2.3.1. Background

The primary source of information on consumption rates of fruits and vegetables among the United States population is the U.S. Department of Agriculture's (USDA) Nationwide Food Consumption Survey (NFCS). Data from the NFCS have been used in various studies to generate consumer-only and per capita intake rates for both individual fruits and vegetables and total fruits and total vegetables. Consumer-only intake is defined as the quantity of fruits and vegetables consumed by individuals who ate these food items during the survey period. Per capita intake rates are generated by averaging consumer-only intakes over the entire population of users and non-users. In general, per capita intake rates are appropriate for use in exposure assessment for which average dose estimates for the general population are of interest because they represent both individuals who ate the foods during the survey period and individuals who may eat the food items at some time, but did not consume them during the survey period. Total fruit intake refers to the sum of all fruits consumed in a day including canned, dried, frozen, and fresh fruits. Likewise total vegetable intake refers to the sum of all vegetables consumed in a day including canned, dried, frozen, and fresh vegetables. For the purposes of this Handbook, the distinctions between fruits and vegetables are those commonly used, not the botanical definitions. For example, in this report, tomatoes are considered vegetables, although technically they are fruits.

Intake rates may be presented on either an as consumed or diy weight basis. As consumed intake rates (g/day) are based on the weight of the food in the form that it is consumed. In contrast, dry weight intake rates are based on the weight of the food consumed after the moisture content has been removed. In calculating exposures based on ingestion, the unit of weight used to measure intake should be consistent with those used in measuring the contaminant concentration in the produce.

Estimating source-specific exposures to toxic chemicals in fruits and vegetables may also require information on the percentage of fruits and vegetables grown above and below ground. The percentages of foods grown above and below ground will be useful when the concentrations of contaminants in foods are estimated from concentrations in soil, water, and air. For example, vegetables grown below ground may be more likely to be contaminated by soil pollutants, but
leafy above ground vegetables may be more likely to be contaminated by deposition of air pollutants on plant surfaces.

The purpose of this section is to provide: (1) intake data for individual fruits and vegetables, and total fruits and total vegetables; (2) data for converting between as consumed and dry weight intake rates; and (3) percentages of fruits and vegetables grown above and below ground. Values for these variables that are recommended for use in exposure assessment are also presented. Recommendations are based on average and upper-percentile intake among the general population of the U.S. Available data have been classified as being either a key or a relevant study based on the applicability of the data to exposure assessment needs. Recommendations are based on data from key studies, but relevant studies are also presented to provide the reader with added perspective on this topic. It should be noted that all of the key studies and many of the relevant studies are based on data from USDA's NFCS. The USDA NFCS is described below.

\subsection*{2.3.2. Intake Studies}

\subsection*{2.3.2.1. U.S. Department of Agriculture Nationwide Food Consumption Survey}

USDA conducts the NFCS approximately every 10 years. The three most recent NFCSs were conducted in 1965-66, 1977-78, and 1987-88. The purpose of these surveys was to "analyze the food consumption behavior and dietary status of Americans" (USDA, 1992). The survey uses a statistical sampling technique designed to ensure that all seasons, geographic regions of the U.S., and demographic and socioeconomic groups are represented. There are two components of the NFCS. The household component collects information over a 7-day period on the socioeconomic and demographic characteristics of households, and the types, value, and sources of foods consumed. The individual component collects information on food intakes of individuals within each household over a 3-day period (USDA, 1993).

The same basic survey design was used for the three most recent NFCSs, but the sample sizes and statistical classifications used were somewhat different (USDA, 1992). In 1965-66, 10,000 households were surveyed (USDA, 1972). The sample size increased to 15,000 households (over 36,000 individuals) in 1977-78, but decreased to 4,500 households in 1987-88 because of budgetary constraints and a low response rate ( 37 percent). Data from the 1977-78

NFCS are presented in this Handbook because the data have been published by USDA in various publications and reanalyzed by various EPA offices according to the food items/groups commonly used to assess exposure. Published one-day data from the 1987-88 NFCS and the results of a recently conducted EPA analysis of the 1987-88 NFCS data are also presented.

Individual daily intake rates and average user and per capita intake rates calculated from NFCS data are based on averages of reported individual intakes over one day or three consecutive days. Such short-term data are suitable for estimating average daily per capita intake rates representative of both short-term and long-term consumption. However, upper percentile individual intakes reported either as user intakes or per capita intakes are likely to be higher than the true long-term upper percentile daily average intakes because interindividual variability in a distribution will decrease with the length of time over which the factor is measured. The individual upper percentile intakes rates represent intakes by users of the products over the three-day survey period. Long-term estimates require that the average intake over three days is the same as the average intake over 365 days for each individual, that is, the product is consumed every day of the year, resulting in the long-term overestimate.

\subsection*{2.3.2.2. Key Intake Studies Based on the USDA NFCS}

Pao et al. (1982) - Foods Commonly Eaten by Individuals - Using data gathered in the 1977-78 USDA NFCS, Pao et al. (1982) calculated percentiles for the average quantities of individual fruit and vegetables consumed by members of the U.S. population who had consumed these fruits and vegetables over a 3-day period. The data were collected during NFCS home interviews of 37,874 respondents, who were asked to recall food intake for the day preceding the interview, and record food intake the day of the interview and the day after the interview. Pao et al. (1982) reported mean intake rates for consumers, standard deviations, intake rates for consumers at various percentiles, maximum amounts consumed, percentages of individuals using the food in the 3-day study, quantities consumed per eating occasion, and per capita intake rates. For example, as shown in Table 2-26, 74.4 percent of the individuals surveyed used white potatoes in three days, the mean daily intake rate for consumers was \(78 \mathrm{~g} /\) day and the average quantity consumed per eating occasion was 125 g . Per capita intake rates were calculated by multiplying the average intake rate for consumers by the fraction of individuals using the food


Trable 2-26. (coolinuced)

in 3 days. For white potatoes, the per capita intake rate was estimated to be 58 g/day ( \(78 \mathrm{~g} /\) day \(x 0.744\) ). The intake rates are presented on an as consumed ( \(\mathrm{g} /\) day) basis. The data presented in Table 2-26 are for all ages of the population, combined. If age-specific intake data are needed, refer to Pao et al. (1982).

Although Pao et al. (1982) reported distributions of intake rates for individual fruits and vegetables, these tabulated data cannot be used to derive a distribution of intake rates for total fruits and vegetables. Obtaining a frequency distribution for all fruits and vegetables by summing the distributions for individual fruits and vegetables is not appropriate because a person whose intake rate for tomatoes falls in the 90th percentile may not have a 90th percentile intalke rate of broccoli. Summing ingestion rates would also imply that all individuals consume all of the fruit and vegetables listed in Table 2-26. Consequently, these data should only be used in exposure assessments where the consumption of individual fruits and vegetables is of interest. Intake data for total fruits and total vegetables are presented later in this Section.

The advantages of using these data are that they were derived from the USDA NFCS and are representative of the U.S. population. This data set provides distributions for a number of commonly eaten fruits and vegetables, but the list of foods is limited and does not account for fruits and vegetables included in complex food dishes. Also, these data are based on short-term dietary recall and it's quite unlikely that they accurately reflect long-term consumption patterns.

The U.S. EPA's Dietary Risk Evaluation System (DRES) - USEPA, Office of Pesticide Programs - The U.S. EPA, Office of Pesticide Programs (OPP) uses the Dietary Risk Evaluation System (formerly the Tolerance Assessment System) to assess the dietary risk of pesticide use as part of the pesticide registration process. OPP sets tolerances for specific pesticides on raw agricultural commodities based on estimates of dietary risk. These estimates are calculated using pesticide residue data for the food item of concern and relevant consumption data. Intake rates are based primarily on the USDA 1977-1978 NFCS although intake rates for some food items are based on estimations from production volumes or other data (i.e., some items were assigned an arbitrary value of \(0.000001 \mathrm{~g} / \mathrm{kg}\)-day (Kariya, 1992). OPP has calculated per capita intake rates of individual fruits and vegetables for 22 subgroups (age, regional, and seasonal) of the population by determining the composition of NFCS food items and disaggregating complex food dishes into their component raw agricultural commodities (RACs) (White et al. 1983).

The DRES per capita, as consumed intake rates for all age/sex/demographic groups combined are presented in Table 2-27. These data are based on both consumers and non consumers of these food items. Data for specific subgroups of the population are not presented here, but are available through OPP via direct request. The data in Table 2-27 may be useful for estimating the risks of exposure associated with the consumption of individual fruits and vegetables. It should be noted that these data are indexed to the actual body weights of the survey respondents and are expressed in units of grams of food consumed per Kg bodyweight per day. Consequently, use of these data in calculating potential dose does not require the body weight factor in the denominator of the average daily dose (ADD) equation. It should also be noted that conversion of these intake rates into units of g/day by multiplying by a single average body weight is not appropriate because the DRES data base did not rely on a single body weight for all individuals. Instead, DRES used the body weights reported by each individual surveyed to estimate consumption in units of \(\mathrm{g} / \mathrm{kg}\)-day.

The advantages of using these data are that complex food dishes have been disaggregated to provide intake rates for a very large number of fruits and vegetables. These data are also based on the individual body weights of the respondents. Therefore, the use of these data in calculating exposure to toxic chemicals may provide more representative estimates of potential dose per unit body weight. However, because the data are based on NFCS short-term dietary recall the same limitations discussed previously for other NFCS data sets also apply here.

Food and Nutrient Intakes of Individuals in One Day in the U.S., USDA (1980, 1992b) USDA calculated mean intake rates for total fruits and total vegetables using NFCS data from 1977-78 and 1987-88 (USDA, 1980; USDA, 1992b). The mean total intake rates are presented in Tables 2-28 and 2-29 for fruits and Tables 2-30 and 2-31 for vegetables. These values are based on intake data for one day from the 1977-78 and 1987-88 USDA Nationwide Food Consumption Surveys, respectively. Data from both surveys are presented here to demonstrate that although the 1987-88 survey had fewer respondents, the mean per capita intake rates for all individuals are in good agreement with the earlier survey. Also, slightly different age classifications were used in the two surveys providing a wider range of age categories from which exposure assessors may select appropriate intake rates. Tables 2-28 through 2-31 include both per capita intake rates and intake rates for consumers-only for various ages of individuals.

Table 2-27. Mean Per Capita Intake Rates for Fruits and Vegetables Based on All Sex/Age/Demographic Subgroups
\begin{tabular}{lll}
\hline \multicolumn{1}{c}{ Raw Agricultural Commodity } & \begin{tabular}{c} 
Average Consumption \\
(Grams/Kg Body Weight-Day)
\end{tabular} & Standard Error \\
\hline Alfalfa Sprouts & 0.0001393 & 0.0000319 \\
Apples-Dried & 0.0002064 & 0.0000566 \\
Apples-Fresh & 0.4567290 & 0.0142203 \\
Apples-Juice & 0.2216490 & 0.0142069 \\
Apricots-Dried & 0.0004040 & 0.0001457 \\
Apricots-Fresh & 0.0336893 & 0.0022029 \\
Artichokes-Globe & 0.0032120 & 0.0007696 \\
Artichokes-Jerusalem & 0.0000010 & \(*\) \\
Asparagus & 0.0131098 & 0.0010290 \\
Avocados & 0.0125370 & 0.0020182 \\
Bamboo Shoots & 0.0001464 & 0.0000505 \\
Bananas-Dried & 0.0004489 & 0.0001232 \\
Bananas-Fresh & 0.2240382 & 0.0088206 \\
Bananas-Unspecified & 0.0032970 & 0.0004938 \\
Beans-Dry-Blackeye Peas (cowpeas) & 0.0024735 & 0.0005469 \\
Beans-Dry-Broad Beans (Mature Seed) & 0.0000000 & \(*\) \\
Beans-Dry-Garbanzo (Chick Pea) & 0.0005258 & 0.0001590 \\
Beans-Dry-Great Northern & 0.0000010 & \(*\) \\
Beans-Dry-Hyacinth (Mature Seeds) & 0.0000000 & \(*\) \\
Beans-Dry-Kidney & 0.0136313 & 0.0045628 \\
Beans-Dry-Lima & 0.0079892 & 0.0016493 \\
Beans-Dry-Navy (Pea) & 0.0374073 & 0.0023595 \\
Beans-Dry-Other & 0.0398251 & 0.0023773 \\
& & \\
\hline
\end{tabular}

Table 2-27 (continued)
\begin{tabular}{lcc}
\hline \multicolumn{1}{c}{ Raw Agricultural Commodity' } & \begin{tabular}{c} 
Average Consumption \\
(Grams/Kg Body Weight-Day)
\end{tabular} & Standard Error \\
\hline Beans-Dry-Pigeon Beans & 0.0000357 & 0.0000357 \\
Beans-Dry-Pinto & 0.0363498 & 0.0048479 \\
Beans-Succulent-Brosd Beans (Immature Seed) & 0.0000000 & \(*\) \\
Beans-Succulent-Green & 0.2000500 & 0.0062554 \\
Beans-Succulent-Hyacinth (Young Pods) & 0.0000000 & \(*\) \\
Beans-Succulent-Lima & 0.0256648 & 0.0021327 \\
Beans-Succulent-Other & 0.0263838 & 0.0042782 \\
Beans-Succulent-Yellow, Wax & 0.0054634 & 0.0009518 \\
Beans-Unspecified & 0.0052345 & 0.0012082 \\
Beets-Roots & 0.0216142 & 0.0014187 \\
Beets-Tops (Greens) & 0.0008287 & 0.0003755 \\
Bitter Melon & 0.0000232 & 0.0000233 \\
Blackberries & 0.0064268 & 0.0007316 \\
Blueberries & 0.0090474 & 0.0008951 \\
Boysenberries & 0.0007313 & 0.0006284 \\
Bread Nuts & 0.0000010 & \(*\) \\
Bread Fruit & 0.0000737 & 0.0000590 \\
Broccoli & 0.0491295 & 0.0032966 \\
Brussel Sprouts & 0.0068480 & 0.0009061 \\
Cabbage-Chinese/Celery, Inc. Bok Choy & 0.0045632 & 0.0020966 \\
Cabbage-Green and Red & 0.093640 & 0.0039046 \\
Cactus Pads & 0.0000010 & \(*\) \\
Cantaloupes & 0.0444220 & 0.0029515 \\
Carambola & 0.0000010 & \(*\) \\
& & \\
\hline
\end{tabular}
\begin{tabular}{lcc}
\hline \multicolumn{1}{c}{ Raw Agricultural Commodity' } & \begin{tabular}{c} 
Average Consumption \\
(Grams/Kg Body Weight-Day)
\end{tabular} & Standard Error \\
\hline Carob & 0.0000913 & 0.0000474 \\
Carrots & 0.1734794 & 0.0041640 \\
Casabas & 0.0007703 & 0.0003057 \\
Cassava (Yuca Blanca) & 0.0002095 & 0.00001574 \\
Cauliflower & 0.0158368 & 0.0011522 \\
Celery & 0.0609611 & 0.0014495 \\
Cherimoya & 0.0000010 & \(*\) \\
Cherries-Dried & 0.0000010 & \(*\) \\
Cherries-Fresh & 0.0321754 & 0.0024966 \\
Cherries-Juice & 0.0034080 & 0.0009078 \\
Chicory (French or Belgian Endive) & 0.0006707 & 0.0001465 \\
Chili Peppers & 0.0000000 & \(*\) \\
Chives & 0.0000193 & 0.0000070 \\
Citrus Citron & 0.0001573 & 0.0000324 \\
Coconut-Copra & 0.0012860 & 0.0000927 \\
Coconut-Fresh & 0.0001927 & 0.0000684 \\
Coconut-Water & 0.0000005 & 0.0000005 \\
Collards & 0.0188966 & 0.0032628 \\
Corn, Pop & 0.0067714 & 0.0003348 \\
Corm, Sweet & 0.2367071 & 0.0062226 \\
Crabapples & 0.0003740 & \(*\) \\
Cranberries & 0.0150137 & 0.0006153 \\
Cranberries-Juice & 0.0170794 & 0.0022223 \\
Crenshaws & 0.0000010 & \(*\) \\
& & 0 \\
\hline
\end{tabular}
\begin{tabular}{lcc}
\hline \multicolumn{1}{c}{ Raw Agricultural Commoditye } & \begin{tabular}{c} 
Average Consumption \\
(Grams/Kg Body Weight-Day)
\end{tabular} & Standard Error \\
\hline Cress, Upland & 0.0000010 & \(*\) \\
Cress, Garden, Field & 0.0000000 & \(*\) \\
Cucumbers & 0.0720821 & 0.0034389 \\
Currants & 0.0005462 & 0.0000892 \\
Dandelion & 0.0005039 & 0.0002225 \\
Dates & 0.0006662 & 0.0001498 \\
Dewberries & 0.0023430 & \(*\) \\
Eggplant & 0.0061858 & 0.0007645 \\
Elderberries & 0.0001364 & 0.0001365 \\
Endive, Curley and Escarole & 0.0011851 & 0.0001929 \\
Fennel & 0.0000000 & \(*\) \\
Figs & 0.0027847 & 0.0005254 \\
Garlic & 0.0007621 & 0.0000230 \\
Genip (Spanish Lime) & 0.0000010 & \(*\) \\
Ginkgo Nuts & 0.0000010 & \(*\) \\
Gooseberries & 0.0003953 & 0.0001341 \\
Grapefruit-Juice & 0.0773585 & 0.0053846 \\
Grapefruit-Pulp & 0.0684644 & 0.0032321 \\
Grapes-Fresh & 0.0437931 & 0.0023071 \\
Grapes-Juice & 0.0900960 & 0.0058627 \\
Grapes-Leaves & 0.0000119 & 0.0000887 \\
Grapes-Raisins & 0.0169730 & 0.0009221 \\
Groundeherries (Poha or Cape-Gooseberries) & 0.0000000 & \(*\) \\
Guava & 0.0000945 & 0.0000558 \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline \multicolumn{1}{c}{ Raw Agricultural Commodity" } & \begin{tabular}{c} 
Average Consumption \\
(Grams/Kg Body Weight-Day)
\end{tabular} & Standard Error \\
\hline Honeydew Melons & 0.0183628 & 0.0042879 \\
Huckleberries (Gaylussacia) & 0.0000010 & \(*\) \\
Juneberry & 0.0000010 & \(*\) \\
Kale & 0.0015036 & 0.0006070 \\
Kiwi & 0.0000191 & 0.0000191 \\
Kohlrabi & 0.0002357 & 0.0001028 \\
Kumquats & 0.0000798 & 0.0000574 \\
Lambsquarter & 0.0000481 & 0.0000481 \\
Leafy Oriental Vegetables & 0.0000010 & \(*\) \\
Leeks & 0.0000388 & 0.0000221 \\
Lemons-Juice & 0.0189564 & 0.0009004 \\
Lemons-Peel & 0.0002570 & 0.0001082 \\
Lemons-Pulp & 0.0002149 & 0.0000378 \\
Lemons-Unspecified & 0.0020695 & 0.0003048 \\
Lentiles-Split & 0.0000079 & 0.0000064 \\
Lentiles-Whole & 0.0012022 & 0.0002351 \\
Lettuce-Head Varieties & 0.2122803 & 0.0059226 \\
Lettuce-Leafy Varieties & 0.0044328 & 0.0003840 \\
Lettuce-Unspecified & 0.0092008 & 0.0004328 \\
Limes-Juice & 0.0032895 & 0.0005473 \\
Limes-Pulp & 0.0000941 & 0.0000344 \\
Limes-Unspecified & 0.0000010 & \(*\) \\
Loganberries & 0.0002040 & \(*\) \\
Logan Fruit & 0.0000010 & \(*\) \\
& & \(*\) \\
\hline
\end{tabular}
\begin{tabular}{llc}
\hline \multicolumn{1}{c}{ Raw Agricultural Commodity } & \begin{tabular}{c} 
Average Consumprion \\
(Grams/Kg Body Weight-Day)
\end{tabular} & Standard Error \\
\hline Loquats & 0.0000000 & \(*\) \\
Lychee-Dried & 0.0000010 & \(*\) \\
Lychees (Litchi) & 0.0000010 & \(*\) \\
Maney (Mammee Apple) & 0.0000010 & \(*\) \\
Mangoes & 0.0005539 & 0.0002121 \\
Mulberries & 0.0000010 & \(*\) \\
Mung Beans (Sprouts) & 0.0066521 & 0.0006462 \\
Mushrooms & 0.0213881 & 0.0009651 \\
Mustard Greens & 0.0145284 & 0.0024053 \\
Nectarines & 0.0129663 & 0.0013460 \\
Okra & 0.0146352 & 0.0017782 \\
Olives & 0.0031757 & 0.0002457 \\
Onions-Dehydrated or Dried & 0.0001192 & 0.0000456 \\
Onions-Dry-Bulb (Cipollini) & 0.1060612 & 0.0021564 \\
Onions-Green & 0.0019556 & 0.0001848 \\
Oranges-Juice & 1.0947265 & 0.0283937 \\
Oranges-Peel & 0.0001358 & 0.0000085 \\
Oranges-Pulp & 0.1503524 & 0.0092049 \\
Papayas-Dried & 0.0009598 & 0.0000520 \\
Papayas-Fresh & 0.0013389 & 0.0005055 \\
Papayas-Juice & 0.0030536 & 0.0012795 \\
Parsley Roots & 0.0000010 & \(*\) \\
Parsley & 0.0036679 & 0.0001459 \\
Parsnips & 0.0006974 & 0.0001746 \\
& & \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline \multicolumn{1}{c}{ Raw Agricultural Commodity } & \(\begin{array}{c}\text { Average Consumption } \\
\text { (Grams/Kg Body Weight-Day) }\end{array}\) & Standard Error
\end{tabular}\(]\) *
\begin{tabular}{|c|c|c|c|}
\hline Raw Agricultural Commodity & Average Consumption （Grams／Kg Rody Weight－Day） & Standurd Error & \\
\hline Potatoes（White）－Unspecified & 0.0000822 & 0.0000093 & \\
\hline Potatoes（White）－Peeled & 0.7842573 & 0.0184579 & \\
\hline Potatoes（White）－Dry & 0.0012994 & 0.0001896 & \\
\hline Potatoes（White）－Peel Only & 0.0000217 & 0.0000133 & \\
\hline Pumpkin & 0.0044182 & 0.0004354 & \\
\hline Quinces & 0.0001870 & ＊ & \\
\hline Radishes－Roots & 0.0015558 & 0.0001505 & \\
\hline Radishes－Tops & 0.0000000 & ＊ & \\
\hline Raspberries & 0.0028661 & 0.0005845 & \\
\hline Rhubarb & 0.0037685 & 0.0006588 & \\
\hline Rutabagas－Roots & 0.0027949 & 0.0009720 & \\
\hline Rutabagas－Tops & 0.0000000 & ＊ & \\
\hline Salsify（Oyster Plant） & 0.0000028 & 0.0000028 & \\
\hline Shallots & 0.0000000 & ．＊ & \\
\hline Soursop（Annona Muricata） & 0.0000010 & ＊ & \\
\hline Soybeans－Sprouted Seeds & 0.0000000 & ＊ & \\
\hline Spinach & 0.0435310 & 0.0030656 & \\
\hline Squash－Summer & 0.0316479 & 0.0022956 & \\
\hline Squash－Winter & 0.0324417 & 0.0026580 & \\
\hline Strawberries & 0.0347089 & 0.0020514 & 8 \\
\hline Sugar Apples（Sweetsop） & 0.0000010 & ＊ &  \\
\hline Sweetpotatoes（including Yams） & 0.0388326 & 0.0035926 & 日月 \\
\hline Swiss Chard & 0.0016915 & 0.0004642 & 曷気男 \\
\hline Tangelos & 0.0025555 & 0.0006668 & \[
\begin{aligned}
& \text { 010 } \\
& \text { O }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & Raw Agricultural Commodity* & Average Consumption (Grams/Kg Body Weight-Day) & Standard Error & \\
\hline & Tangerine-Juice & 0.0000839 & 0.0000567 & \\
\hline & Tangerines & 0.0088441 & 0.0010948 & \\
\hline & Tapioca & 0.0012199 & 0.0000951 & \\
\hline & Taro-Greens & 0.0000010 & * & \\
\hline & Taro-Root & 0.0000010 & * & \\
\hline & Tomatoes-Catsup & 0.0420320 & 0.0015878 & \\
\hline & Tomatoes-Juice & 0.0551351 & 0.0029515 & \\
\hline & Tomatoes-Paste & 0.0394767 & 0.0012512 & \\
\hline & Tomatoes-Puree & 0.17012311 & 0.0054679 & \\
\hline & Tomatoes-Whole & 0.4920164 & 0.0080927 & \\
\hline N & Towelgourd & 0.0000010 & * & \\
\hline © & Turnips-Roots & 0.0082392 & 0.0014045 & \\
\hline & Türnips-Tops & 0.0147111 & 0.0025845 & \\
\hline & Water Chestnuts & 0.0004060 & 0.0000682 & \\
\hline & Watercress & 0.0003553 & 0.0001564 & \\
\hline & Watermelon & 0.0765054 & 0.0068930 & \\
\hline & Yambean, Tuber & 0.0000422 & 0.0000402 & \\
\hline & Yautia, Tannier & 0.0000856 & 0.0000571 & \\
\hline & Youngberries & 0.0003570 & * & \\
\hline & \begin{tabular}{l}
* Not reported \\
- Consumed in any raw or prepared form \\
Source: DRES data base.
\end{tabular} & & &  \\
\hline
\end{tabular}

Table 2-28. Mean Total Fruit Intake in a Day by Sex and Age (1977-1978)
\begin{tabular}{|c|c|c|c|}
\hline Age (yr) & Per Capita Intake (g/day) & \begin{tabular}{l}
Percent of Population \\
Using Fruit in a Day
\end{tabular} & Intake (g/day) for Users Only \({ }^{\text {b }}\) \\
\hline \multicolumn{4}{|l|}{Males and Females} \\
\hline 1 and under & 169 & 86.8 & 196 \\
\hline 1-2 & 146 & 62.9 & 231 \\
\hline 3-5 & 134 & 56.1 & 239 \\
\hline 6-8 & 152 & 60.1 & 253 \\
\hline \multicolumn{4}{|l|}{Males} \\
\hline 9-11 & 133 & 50.5 & 263 \\
\hline 12-14 & 120 & 51.2 & 236 \\
\hline 15-18 & 147 & 47.0 & 313 \\
\hline 19-22 & 107 & 39.4 & 271 \\
\hline 23-34 & 141 & 46.4 & 305 \\
\hline 35-50 & 115 & 44.0 & 262 \\
\hline 51-64 & 171 & 62.4 & 275 \\
\hline 65-74 & 174 & 62.2 & 281 \\
\hline 75 and over & 186 & 62.6 & 197 \\
\hline \multicolumn{4}{|l|}{Females} \\
\hline 9-11 & 148 & 59.7 & 247 \\
\hline 12-14 & 120 & 48.7 & 247 \\
\hline 15-18 & 126 & 49.9 & 251 \\
\hline 19-22 & 133 & 48.0 & 278 \\
\hline 23-34 & 122 & 47.7 & 255 \\
\hline 35-50 & 133 & 52.8 & 252 \\
\hline 51-64 & 171 & 66.7 & 256 \\
\hline 65-74 & 179 & 69.3 & 259 \\
\hline 75 and over & 189 & 64.7 & 292 \\
\hline \multicolumn{4}{|l|}{Males and Fermales} \\
\hline All ages & 142 & 54.2 & 263 \\
\hline
\end{tabular}
- Based on USDA Nationwide Food Consumption Survey (1977-1978) data for one day.
b Intake for users only was calculated by dividing the per capita intake rate by the fraction of the population using fruit in a day.

Source: USDA, 1980.
\begin{tabular}{cccc} 
Age (yr) & Per Capita Intake (g/day) & \begin{tabular}{l} 
Percent of Population \\
Using Fruit in 1 Day
\end{tabular} & Intake (g/day) for Users \\
Only
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Males and Females} \\
\hline 5 and under & 157 & 59.2 & 265 \\
\hline \multicolumn{4}{|l|}{Males} \\
\hline 6-11 & 182 & 63.8 & 285 \\
\hline 12-19 & 158 & 49.4 & 320 \\
\hline 20 and over & 133 & 46.5 & 286 \\
\hline \multicolumn{4}{|l|}{Females} \\
\hline 6-11 & 154 & 58.3 & 264 \\
\hline 12-19 & 131 & 47.1 & 278 \\
\hline 20 and over & 140 & 52.7 & 266 \\
\hline \multicolumn{4}{|l|}{Males and Females} \\
\hline All Ages & 142 & 51.4 & 276 \\
\hline
\end{tabular}
a Based on USDA Nationwide Food Consumption Survey (1987-1988) data for one day.
b Intake for users only was calculated by dividing the per capita intake rate by the fraction of the population using fruits in a day:

Source: USDA, 1993.

Table 2-30. Mean Total Vegetable Intake in a Day by Sex and Age (1977-1978)
\begin{tabular}{|c|c|c|c|}
\hline Age (yr) & Per Capita Intake (g/day) & Percent of Population Using Vegetables in a Day & Intake (g/day) for Users Onily \({ }^{\text {b }}\) \\
\hline \multicolumn{4}{|l|}{Males and Females} \\
\hline 1 and under & 76 & 62.7 & 121 \\
\hline 1-2 & 91 & 78.0 & 116 \\
\hline 3-5 & 100 & 79.3 & 126 \\
\hline 6-8 & 136 & 84.3 & 161 \\
\hline \multicolumn{4}{|l|}{Males} \\
\hline 9-11 & 138 & 83.5 & 165 \\
\hline 12-14 & 184 & 84.5 & 217 \\
\hline 15-18 & 216 & 85.9 & 251 \\
\hline 19-22 & 226 & 84.7 & 267 \\
\hline 23-34 & 248 & 88.5 & 280 \\
\hline 35-50 & 261 & 86.8 & 300 \\
\hline 51-64 & 285 & 90.3 & 316 \\
\hline 65-74 & 265 & 88.5 & 300 \\
\hline 75 and over & 264 & 93.6 & 281 \\
\hline \multicolumn{4}{|l|}{Eemales} \\
\hline 9-11 & 139 & 83.7 & 166 \\
\hline 12-14 & 154 & 84.6 & 183 \\
\hline 15-18 & 178 & 83.8 & 212 \\
\hline 19-22 & 184 & 81.1 & 227 \\
\hline 23-34 & 187 & 84.7 & 221 \\
\hline 35-50 & 187 & 84.6 & 221 \\
\hline 51-64 & 229 & 89.8 & 255 \\
\hline 65-74 & 221 & 87.2 & 253 \\
\hline 75 \& over & 198 & 88.1 & 226 \\
\hline \multicolumn{4}{|l|}{Males and Females} \\
\hline All Ages & 201 & 85.6 & 235 \\
\hline
\end{tabular}
- Based on USDA Nationwide Food Consumption Survey (1977-1978) data for one day.
b Intake for users only was calculated by dividing the per capita intake rate by the fraction of the population using vegetables in a day.

Source: USDA, 1980.

Table 2-31. Mean Total Vegetable Intake in a Day by Sex and Age (1987-1988)
\begin{tabular}{|c|c|c|c|}
\hline Age (yr) & Per Capita Intake (g/day) & Percent of Population Using Vegetables in 1 Day & Intake (g/day) for Users Only \({ }^{b}\) \\
\hline \multicolumn{4}{|l|}{Males and Females} \\
\hline 5 and under & 81 & 74.0 & 109 \\
\hline \multicolumn{4}{|l|}{Males} \\
\hline 6-11 & 129 & 86.8 & 149 \\
\hline 12-19 & 173 & 85.2 & 203 \\
\hline 20 and over & 232 & 85.0 & 273 \\
\hline \multicolumn{4}{|l|}{Females} \\
\hline 6-11 & 129 & 80.6 & 160 \\
\hline 12-19 & 129 & 75.8 & 170 \\
\hline 20 and over & 183 & 82.9 & 221 \\
\hline \multicolumn{4}{|l|}{Males and Females} \\
\hline All Ages & 182 & 82.6 & 220 \\
\hline
\end{tabular}

\footnotetext{
2 Based on USDA Nationwide Food Consumption Survey (1987-1988) data for one day.
b Intake for users only was calculated by dividing the per capita intake rate by the fraction of the population using vegetables in a day.
}

Source: USDA, 1993.

Intake rates for consumers-only were calculated by dividing the per capita consumption rate by the fraction of the population using vegetables or fruits in a day. The average per capita vegetable intake rate is \(201 \mathrm{~g} /\) day based on the 1977-78 data (USDA, 1980) and \(182 \mathrm{~g} /\) day based on the 1987-88 data (USDA, 1992). For fruits the average per capita intake rate is \(142 \mathrm{~g} /\) day based on the two most recent USDA NFCSs (USDA, 1980; USDA, 1993).

The advantages of using these data are that they provide intake estimates for all fruits and all vegetables combined. Again, these estimates are based on short-term dietary data which provide valid estimates of the means of usual consumption.
U.S. EPA Analysis of 1987/88 USDA NFCS Data - EPA analyzed data from the 1987-88 USDA NFCS to generate distributions of intake rates for various fruit and vegetable items/groups. The fruit and vegetable items/groups selected for analysis included total fruits, total vegetables, selected individual food items; fruits and vegetables categorized as exposed, protected, and roots; and various USDA fruit and vegetable categories (i.e., dark green vegetables, deep yellow vegetables, other vegetables, citrus fruits, and other fruits). Food items/groups were identified in the NFCS data base according to NFCS-defined food codes. Appendix 2-A presents the codes used to determine the various food groups. Intake rates for these food items/groups represent intake of all forms of the product (i.e., homeproduced and commercially produced). The USDA data were adjusted by applying the sample weights calculated by USDA to the data set prior to analysis. These weights were designed to "adjust for survey nonresponse and other vagaries of the sample selection process" (USDA, 1987/88). Intake rates were indexed to the body weight of the survey respondent and reported in units of \(\mathrm{g} / \mathrm{kg}-\) day. The food analysis was accomplished using the SAS statistical programming system (SAS, 1990).

Distributions of intake rates were determined by apportioning the amount of food used by a household among family members based on average serving sizes for specified age groups of the population and the number of weekly meals consumed by each family member. A detailed description of the methodology used to generate distributions of homegrown intake is presented in Section 2.7 (Intake Rates for Various Homeproduced Food Items) of this Handbook. The same method was used to determine the intake rates of all forms (i.e., homeproduced and commercially prepared) of fruits and vegetables presented in this section.

Intake rates for various subcategories of the population within census regrons are presented in Tables 2-32 through 2-36 for total fruits and Tables 2-37 through 2-41 for total vegetables. Tables 2-42 through \(2-63\) present intake rates for individual fruit and vegetalle items/groups. Intake rates for exposed, protected, and root produce are presented in Tables 2-64 through 2-68, and intake rates based on the various USDA categories are presented in Tables 2-69 through 2-73. These distributions represent intake rates for consumers of the food item/group of interest. These data represent one-week average intake rates for family members from those surveyed households who reported eating the food item/group of interest during the survey period. The total number of individuals in the data set (i.e., both individuals who ate the food item and those who did not eat the food item during the survey period) are presented in Table 2-185 in Section 2.7.2. These total number of individuals surveyed may be used with the consumer only data presented here to calculate per capita intake rates for the survey population as shown in Section 2.7.2.

The advantages of these data are that they provide distributions for the various food items/groups. Also, the NFCS was designed to be representative of the U.S. population. However, these data are based on short-term dietary recall and may not accurately reflect longterm intake patterns. Additional advantages and limitations of this analysis are outlined in Section 2.7.4 of this Handbook.

\subsection*{2.3.2.3. Relevant Intake Studies}
U.S. EPA - Office of Radiation Programs - The U.S. EPA Office of Radiation Programs (ORP) has also used the USDA 1977-1978 NFCS to estimate daily food intake (U.S. EPA, 1984d; 1984e). ORP uses food consumption data to assess human intake of radionuclides in foods. The 1977-1978 NFCS data have been reorganized by ORP, and food items have been classified according to the characteristics of radionuclide transport. Data for selected agricultural products are presented in Table 2-74 and Table 2-75. These data represent per capita, as consumed intake rates for total, leafy, exposed, and protected produce as well as total grains, breads, and cereals. Exposed produce refers to products that can intercept atmospherically deposited materials (e.g., apples, pears, berries, etc.). The term protected refers to products that are protected from deposition from the atmosphere (e.g., citrus fruit, carrots, corn, etc.).

Table 2-32. Intake of Toul Fruits (e/kg-day) - All Regions Combined
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Popalition Group & \[
\begin{gathered}
\mathbf{H} \\
\mathbf{w n t a}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} \\
\text { unwid } \\
\hline
\end{gathered}
\] & Mena & SE & Po & 1 & PS & 119 & P2S & Pso & 779 & 50 & P9 & m & F190 \\
\hline Tous & 17340000 & 9125 & S.33E+80 & 6.1980 & 0.008+60 & 1.615-01 & 4.4SE.01 & 7,30-01 & 1.598+ & 3312400 & \(6378+\infty\) & 1.182+61 & 1.754 & \(3.738+01\) & 1408+02 \\
\hline \multicolumn{16}{|l|}{Ase} \\
\hline <01 & 2773000 & 152 & \(2858+81\) & 1958-02 & \(0.008+\infty\) & SEOEO1 & 1.958+80 & 2362400 & \(894+00\) & 1.638+91 & 3398401 & \(7.138+01\) & \(1.128+02\) & 1.46E+60 & 1.46E+02 \\
\hline 01.02 & \$565000 & 310 & 1.71E+01 & 6.98E-03 & 6.302-01 & 8568021 & 2.63E \(+\infty\) & 392E+00 & 7.848+00 & \(1.258+61\) & 2.148+61 & 3.73E+91 & 4638+01 & 2.18841 & 20\%\%+01 \\
\hline 03-05 & 7663000 & 134 & 1.15E+01 & 3.59003 & 0.008+00 & 5.678-01 & \(1.71 \mathrm{E}+\infty\) & 2,4E+ \({ }^{\text {cos }}\) & S.162+00 & 261E \(+\infty\) & 1.5setel & 2412+01 & \(3.178+91\) & \(4.268+61\) & 760etal \\
\hline 06-11 & 15035000 & 870 & \(6.64 \mathrm{E}+\infty\) & \(1558-13\) & \(0.008+\infty\) & 2.168 .01 & 8.62E-01 & \(137 \mathrm{E}+\infty\) & \(2.75 \mathrm{E}+80\) & 5.148+00 & 1.508+00 & 1308+01 & \(1.773+01\) & 3208+91 &  \\
\hline 12.19 & 18597000 & 1091 & \(4.138+00\) & 8.65-9 & \(0.008+00\) & 1.1580] & 4.08E-91 & 6.90801 & 1.59E+00 & \(3.12 \mathrm{E}+\infty\) & 5.298+00 & \(8538+00\) & \(1.238+01\) & \(1.588+01\) & \(2.46+01\) \\
\hline 20-30 & 5572000 & 276 & \(3.398+00\) & 3.21804 & \(0.008+\infty\) & \(1318-01\) & 336E02 & S64E01 & \(1.142+00\) & \(2308+\infty\) & \(4.218+00\) & 7028+00 & 9,678+80 & \(2098+81\) & \(4358+61\) \\
\hline 4049 & 52002000 & 2825 & \(4.678+\infty\) & \(7.11 \mathrm{E}-04\) & \(0.008+\infty\) & \(1.5 T E-91\) & 4SEE-01 & 7.5E01 & \(1.56 e+\infty\) & \(3.098+\infty\) & 5.628 \(+\infty\) & 9,608 +00 & 1,47E+01 & \(2938+01\) & \(6.888+01\) \\
\hline 70 & 14683000 & 75 & 3,35E+00 & 1328-03 & \(0.008+\infty\) & 225801 & 7.298 .01 & \(1.148+\infty\) & 2. 98 P \(+\infty\) & 4.138+00 & \(7.138+\infty\) & 1098401 & \(1368+01\) & 2528+01 & 5.ESE+01 \\
\hline \multicolumn{16}{|l|}{Sewons} \\
\hline Pal & 44075000 & 100 & 5.128+00 & 1.208-03 & \(0.008+\infty\) & 1.618 .01 & 478501 & 7.49E-01 & \(1.60 \mathrm{E}+\infty\) & \(3.15 E+\infty\) & 5.748+00 & \(1068+01\) & \(1.478+01\) & 3.14E+01 & \(1.468+02\) \\
\hline Spaing & 20081000 & 3629 & S. \(188+00\) & 1.098 .03 & \(0.008+\infty\) & 1.728-01 & 4.16801 & 7.121801 & \(1.538+00\) & \(3.158+60\) & \(6.188+00\) & \(1.158+01\) & \(1.698+01\) & \(3378+01\) & \(126+68\) \\
\hline Sumber & 41039000 & 1212 & \(7.058+\infty\) & \(1.678-03\) & \(0.008+\infty\) & 7.88E-02 & 3.598 .01 & 680 E 01 & 1.648+00 & \(3.942+\infty\) & \(7.918+\infty\) & 1598401 & \(239 \mathrm{E}+01\) & 4998+01 & \(1.338+02\) \\
\hline Writer & 4SE66000 & 278 & 4.192+00 & 8.008 .04 & 0.00E+00 & 1.91E-01 & 3.02E-01 & 8.268 .01 & \(1.62 \mathrm{E}+00\) & 3.29E+00 & \(6.168+\infty\) & 1.668+01 & 1.518+01 & 2618+61 & \(63088+61\) \\
\hline \multicolumn{16}{|l|}{Ubanization} \\
\hline Centrul City & 51747000 & 2030 & \(6.128+00\) & 1.488 .03 & 0.00E+00 & 1.618001 & 3.70.-01 & 7.03E-01 & \(1.618+00\) & 3.118+00 & 6.578+00 & 1298+01 & 1.978+01 & \(4.698+01\) & 1.408+02 \\
\hline Nonmetropoliton & 40950000 & 273 & \(4.678+00\) & \(9.608-04\) & \(0.008+\infty 0\) & \(1.578-01\) & 3.73-01 & 5.948001 & \(1318+\infty\) & \(2.908+00\) & 5. \(68.8+00\) & 1.03E+01 & \(1.518+01\) & \(3.218+91\) & \(7818+01\) \\
\hline Surburben & 11003000 & 4355 & 5.608+00 & 7.918-04 & \(0.008+\infty\) & 1.67E-01 & 5.53E-01 & 893 E .01 & 1.76E+00 & 3,468+00 & \(6.70 \mathrm{~B}+00\) & \(1.288+01\) & \(1.748+01\) & 3.68+01 & 1.218+63 \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Asinn & 2351000 & 107 & 9,88+00 & 1378-02 & \(2.658-01\) & 2.718001 & 6908.01 & \(3868-01\) & 1.498+00 & \(3.898+00\) & 8. 6 OB \(+\infty\) & 12mbtol & \(4.688+01\) & 1.488+02 & 1.4EE+E2 \\
\hline Black & 19137000 & 91 & \(6228+00\) & 2.80803 & \(0.00 \mathrm{E}+\infty\) & 1.198 .01 & 3.298-01 & 3.64E01 & \(1378+\infty\) & \(3.098+\infty\) & \(6.681+\infty\) & \(1.378+01\) & \(2008+01\) & 3568+01 & \(1.338+02\) \\
\hline Native Anverican & 1258000 & 75 & \(3.938+60\) & \(6.098-03\) & 2358001 & 2.518 .01 & \(3.168-01\) & 4248.01 & \(1.172+\infty\) & \(2.45 E+00\) & \(4.018+00\) & 6.588+00 & \(2.16 \mathrm{~B}+00\) & \(5.248+01\) & 524B+01 \\
\hline Otheonis & 405000 & 216 & 7.408 +00 & 7.698-03 & 1.168 .01 & 1,988-01 & \(5.868-01\) & \(2.138-12\) & \(1.79 \mathrm{E}+\infty\) & 133E+00 & 7.128+00 & \(134 \mathrm{E}+01\) & \(2.138+01\) & \(2.108+01\) & 1.408+62 \\
\hline White & 146675000 & 73 & \(5.348+\infty 0\) & 5.607-04 & \(0.00 \mathrm{~B}+50\) & \(1.63 \mathrm{E}-01\) & 4.708 .01 & 7.168-01 & \(1.62 \mathrm{E}+00\) & \(3.30 \mathrm{E}+00\) & \(6.3 .2 \mathrm{E}+\infty\) & 1.148101 & \(1.578+01\) & 3.48+01 & \(1268+62\) \\
\hline \multicolumn{16}{|l|}{Responec is Quertionnmis} \\
\hline Do you green? & 65118000 & 3574 & & & & 1.258-01 & S.5AE-01 & 28.028 .01 & \(1.76+\infty\) & 3.48E \(+\infty\) & 6.318+00 & 1.178401 & \(1.678+61\) & 3.478+01 & 7.408+01 \\
\hline Do you from? & 6887000 & 409 & \[
4.39 \mathrm{~B}+\infty
\] & \[
1.798-03
\] & \[
0.008+\infty 0
\] & 9.608 .02 & 2.918-01 & 3.30.01 & \(1218+00\) & \(2998+00\) & 5.468+00 & 1.068+01 & \(1.388+01\) & 1,908+01 & \(3.478+01\) \\
\hline
\end{tabular}
Table 2-33. Intake of Total Fruits (g/kg-day) - Northeast Region
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Group & \[
\underset{\substack{\mathbf{N} \\ \mathbf{w}^{2}+\mathrm{d}}}{ }
\] & \[
\begin{gathered}
\mathrm{N} \\
\text { unwgtd }
\end{gathered}
\] & Mear & SE & PO & P1 & PS & Pio & P25 & Pso & P15 & P90 & P9S & P99 & P100 \\
\hline Total & 39176000 & 1922 & 6.03B+00 & 1.35E-03 & 0.00E+00 & 2.48E-01 & \(6.218-01\) & 9.97E-01 & \(1.91 \mathrm{E}+00\) & 3.808 \(+\infty 0\) & \(7.208+00\) & 1.26E+01 & 187E+01 & 3.69E+01 & 1.668+02 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 536000 & 28 & \(4.088+01\) & S.088-02 & 0.008 +00 & 0,00E +00 & 1.008 +00 & 8.66E+00 & 1.44E+01 & \(2.568+01\) & 5838+01 & 7.13E+01 & 1.468+02 & \(1.468+02\) & 1.46E+02 \\
\hline 01.02 & 1053000 & SS & \(1.70 \mathrm{E}+01\) & 1.14E-02 & 3.41E+00 & 3.418+00 & \(4.288+00\) & \(6.41 \mathrm{E}+00\) & \(9.23 \mathrm{E}+\infty 0\) & \(1.52 \mathrm{E}+01\) & \(1.95 \mathrm{E}+01\) & 3.07E+01 & \(3.73 \mathrm{~B}+01\) & 8.23E+01 & \(8.23 \mathrm{E}+01\) \\
\hline 0308 & 1490000 & 92 & \(1.23 \mathrm{E}+01\) & \(6.328-03\) & \(8.10 \mathrm{E}-01\) & 1.32E+00 & 2.238+00 & 3.812+00 & \(632 \mathrm{E}+00\) & \(1.088+01\) & 1.65 +01 & 2.39E+01 & \(2958+01\) & 3.178+01 & \(3398+01\) \\
\hline 0611 & 347500 & 181 & 7.908 +00 & 2855 -03 & 1.59E-01 & 9.12E-01 & \(1.588+00\) & 191E+00 & \(4.07 \mathrm{E}+\infty 0\) & 6.468+00 & \(1.06 \mathrm{E}+01\) & 1.63E+01 & 1.938+01 & 2.5TE+01 & 2 cest 0 P \\
\hline 12-19 & 4294000 & 202 & \(4.978+00\) & 1.84E-03 & \(0.00 \mathrm{E}+00\) & 1.648 .01 & 5.338-01 & 8.13E-01 & \(2.20 \mathrm{E}+\infty 0\) & 3.998+00 & 691E +00 & 1.04E+01 & \(1.288+01\) & \(1.678+01\) & \(1875+01\) \\
\hline 20.39 & 11971000 & 569 & \(3.718+00\) & 1.16E-03 & \(0.00 \mathrm{~B}+00\) & 1.75E.01 & 5.058-01 & \(8.03 \mathrm{E}-01\) & \(1.48 \mathrm{E}+\infty 0\) & \(2.658+00\) & 4,65E+00 & 7.488+00 & \(1.00 \mathrm{~B}+01\) & \(2.148+01\) & \(3.828+01\) \\
\hline 4069 & 12661000 & 688 & \(5.228+00\) & 1.768-03 & \(6.448-02\) & 1.98E-01 & 5.718-01 & \(8865-01\) & \(1.63 \mathrm{E}+\infty\) & 3.31E \(+\infty 0\) & \(6.09 \mathrm{E}+\infty\) & 1:138+01 & \(1.78 \mathrm{~B}+01\) & 3.9E+01 & \(4.788+01\) \\
\hline \(70+\) & 3094000 & 167 & 5.078+00 & 1.908-03 & \(9.60 \mathrm{E}-02\) & 4.12E.01 & 8.008-01 & 1.28E+00 & \(2.518+00\) & \(4.188+00\) & \(6.78 \mathrm{~B}+0\) & \(1.01 \mathrm{E}+01\) & \(1.188+01\) & 1.61E401 & 2.28+01 \\
\hline \multicolumn{16}{|l|}{Sensors} \\
\hline Fall & 9159000 & 269 & 6.048+00 & 3.908-03 & \(0.008+00\) & \(6.448-02\) & 5.35E-91 & 7.785-01 & 1.19E +00 & 3.28E \(+\infty\) & 6598+00 & 1.148+01 & \(1878+01\) & 5.388+01 & 1.46E+02 \\
\hline Spring & 9946000 & 759 & \(5.90 \mathrm{E}+\infty\) & 2.498 .03 & \(0.008+00\) & 2.008-01 & 5.37E-01 & 1.12E +00 & \(1.92 \mathrm{E}+\infty 0\) & 3.808 E +00 & \(6918+\infty\) & 1.29B+01 & \(1.78 \mathrm{~B}+01\) & 3.66+01 & 1.24B+02 \\
\hline Summer & 8885000 & 259 & \(6.618+\infty\) & \(2.576-03\) & 1.98E-01 & \(3.14 \mathrm{E}-01\) & \(6.718-01\) & 995E-01 & \(2.00 \mathrm{E}+\infty\) & 4.13E+00 & 7.702+00 & \(1.588+01\) & \(2.318+01\) & 3.68+01 & \(4.788+01\) \\
\hline Winter & 11185000 & 635 & \(3.66 \mathrm{E}+\infty\) & 1.74E-03 & \(0.00 \mathrm{E}+00\) & 2.84-01 & 8.138-01 & 1.208+00 & \(2.12 \mathrm{~B}+\infty\) & 3.908+60 & 7.478 +00 & \(1.208 \mathrm{E}+01\) & \(1.71 \mathrm{E}+01\) & 2.57E+01 & \(6.238+01\) \\
\hline \multicolumn{16}{|l|}{Urbarization} \\
\hline Centrel City & \$926000 & 306 & \(2.048+\infty\) & 4.168-03 & 8s9e-02 & 2.258-01 & \(7003-01\) & \(1.19 \mathrm{~B}+00\) & 2308+00 & 4.62E+00 & \(8328+\infty\) & 187E+01 & \(2.45 E+01\) & S638401 & \(1.468+02\) \\
\hline Nonmetropolition & 5374000 & 357 & 3.998 +00 & 1.758-03 & \(0.008+00\) & \(9.608 \cdot 02\) & 4.438-01 & SEAE-01 & 1.15E+00 & \(2.848+00\) & \(5.218+\infty\) & 2.468+00 & 1.16E+01 & \(2078+01\) & 3.488+01 \\
\hline Surbuber & 24776000 & 1259 & 5.75E+00 & 1,48-03 & \(0.00 \mathrm{~B}+00\) & \(2.58 \mathrm{E}-01\) & 6918-01 & 1.12B+00 & \(1.928+00\) & 3.69E+60 & 7.20E \(+\infty\) & 1.208+01 & 1.678+01 & 3378+01 & \(1203+02\) \\
\hline \multicolumn{16}{|l|}{Rece} \\
\hline Arin & 333000 & 13 & \(1.458+01\) & 3.5PR-02 & \(1.148+00\) & 1.148+00 & 2.278+00 & \(2278+\infty\) & \(2.748+00\) & 1.098+01 & 1.218401 & 7.13E+01 & 7.138+01 & 7.138+01 & \(7.138+01\) \\
\hline Block & 3385000 & 123 & \(6.94 \mathrm{~B}+00\) & 4.208-03 & 3.14E-01 & 3.14E-01 & \(1.258+60\) & \(1.50 \mathrm{~B}+\infty\) & 25Ss +00 & \(4.168+00\) & \(8.248+\infty\) & 1378+01 & 2.158+01 & 3.68\% 01 & 6.238+01 \\
\hline Native Asmeican & 38000 & 4 & \(6.91 \mathrm{E}+00\) & \(255 E-2\) & \(3.458+00\) & 3.458+00 & 3. \(48+00\) & \(3.458+00\) & \(3.458+00\) & \(4.558+00\) & \(6.688+00\) & \(1.718+01\) & \(1.71 \mathrm{~B}+01\) & \(1.71 \mathrm{E}+\mathrm{O}\) & 1.71 +01 \\
\hline Otuent & 98700 & 48 & \(1.158+01\) & \(2.748-02\) & 1.068-01 & 1.98E-01 & 3218.01 & 7.308 .01 & \(1.78 \mathrm{E}+00\) & 3.90R+00 & 7.998+00 & \(2.13 \mathrm{E}+01\) & \(2.148+01\) & 1.46E+02 & 1.468+02 \\
\hline White & 3433000 & 174 & 5.7EE+00 & 1.188.03 & \(0.008+00\) & 2.18E-01 & 584801 & 9.20t-01 & 1.85E \(+\infty\) & 3.728+00 & 692E +00 & 1.2081801 & 1.768+01 & 3.9\%5+01 & \(1.218+02\) \\
\hline \multicolumn{16}{|l|}{Resporne to Questiorsme} \\
\hline Doycu grean? & 12303000 & 635 & 5.50E +00 & 1.906-03 & \(0.008+00\) & 2.498-01 & \(6.718-01\) & \(1.038+00\) & \(180 \mathrm{E}+00\) & 3.578+00 & 6.408 +10 & \(1.168+01\) & \(1.768+01\) & \(3038+01\) & 7.138401 \\
\hline Do you frul? & 735000 & 37 & 3.028+00 & 3.378-63 & \(9.608-02\) & \(9.608-01\) & 5.888-01 & 7.128-01 & \(120 \mathrm{~B}+\infty\) & 1.758+00 & 3.37E+00 & \(6.148+60\) & \(1.108+01\) & 1.238+01 & 1.258+41 \\
\hline
\end{tabular}

Table 2-34. Intake of Toual Fruiss (e/ke-day)-Midweat Refion
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Poprolution Crove & \[
\begin{gathered}
N \\
\sim \times N d
\end{gathered}
\] & \[
\begin{gathered}
8 \\
\hline \text { mand }
\end{gathered}
\] &  & 88 & \(\underline{0}\) & P & P & 110 & ps & PSO & 773 & P 0 & 5 & P & P109 \\
\hline Toml & 1022000 & 2399 & S.60E+00 & 1.578-03 & -005400 & 1.9801 & 3.18E01 & 6.298-91 & 1.452+00 & 3.12E+00 & 6028+60 & \(1.178+61\) & 1.758+41 & 406+41 & 1.488+62 \\
\hline \multicolumn{16}{|l|}{Ase} \\
\hline \(<01\) & 812000 & 4 & \(3.22 \mathrm{E}+01\) & 4.708-02 & Smedil & 580801 & \(1508+\infty\) & 1.998+00 & 9.783+60 & \(1.368+91\) & \(2808+01\) & 1.16E+61 & \(1338+00\) & 140 ctan & \(1.488+42\) \\
\hline 01.92 & 1712000 & 97 & \(1.93 E+01\) & 1.08-4 & 630201 & 630E01 & 1.03E+00 & 3.12E+00 & 6.698+ +0 & \(1.258+01\) & \(2 \mathrm{Cc}+\mathrm{COL}\) & \(4.638+91\) & 3S0E+01 & cesteral & 1098+41 \\
\hline 0305 & 2115000 & 13 & \(1.118+61\) & 6.658 .03 & 3.11801 & 3.488-01 & 127E+ \({ }^{\text {cos }}\) & 1,928+00 & \(4.638+00\) & \(7.62 \mathrm{E}+00\) & 1.40E+01 & 2702tal & \(3235+91\) & 42atal & 420+01 \\
\hline \(0 \leq 11\) & 3800000 & 211 & \(6.458+00\) & 3.45E-03 & 1.93E-91 & 2.098 .01 & 58TE-01 & \(1298+\infty\) & 282E+00 & \(4 \mathrm{HE}+\infty\) & 7.22E+00 & 1292+0! & \(2348+01\) & 3208+91 & c597+01 \\
\hline 12.19 & 5084000 & 28 & 3.89E \(+\infty\) & \(1.718-03\) & \(0.008+\infty\) & 1.15E-01 & \(2875-1\) & 450 EO 1 & \(1.278+00\) & 2.758+00 & S.11E+00 & \(8.488+\infty\) & 1.21E+01 & \(1508+01\) & \(2338+01\) \\
\hline 20-39 & 14002000 & 740 & \(3.308+00\) & 1.158 .03 & \(0.008+\infty 0\) & 1.468.01 & 295E-01 & 4.71 E-01 & \(1.098+00\) & \(2.18 E+\infty 0\) & 3.75E \(+\infty\) & \(6.738+60\) & 2.75E+0 & \(2368+01\) & cisetol \\
\hline 40-69 & 12097000 & 69 & \(4.18 \mathrm{E}+\infty\) & 1.488-03 & \(0.008+\infty\) & \(1.178-01\) & 3268-01 & 6.338-01 & \(1.35 \mathrm{E}+00\) & 2.81E+00 & S.12E+00 & 2.508 +00 & 1328+81 & \(2.188+01\) & 6.758+01 \\
\hline \(7{ }^{+}\) & 3050000 & 13 & 3.038+ \(+\infty\) & 2.258 .03 & 1.688-01 & 2 Sta & 8.11801 & 1.04E+00 & 2.19E+00 & \(4.278+\infty\) & 6.598+00 & \(9.468+00\) & 1248+01 & 18 恠+01 & 2528+01 \\
\hline \multicolumn{16}{|l|}{Sesuons} \\
\hline Flil & 13714000 & 43 & \(5.008+\infty\) & 2378-03 & \(0.008+\infty 0\) & \(1.61 \mathrm{E}-1\) & 4.50E-01 & 8.118-01 & \(1.678+60\) & 3.168+00 & 5.488+00 & 9818400 & 1398401 & 3318+01 & \(1.468+62\) \\
\hline Spring & 9452000 & 92 & \(4.672+\infty\) & 2.86-03 & \(0.008+\infty\) & 1.538 .01 & 281E-01 & \(5.568-01\) & 1.27E+00 & \(2.568+\infty\) & 5.41E \(+\infty\) & 1.058401 & \(1.538+01\) & \(2008+01\) & \(1.168+02\) \\
\hline Surmar & 9132000 & 33 & 9,368+00 & S.258-03 & 0.008+00 & 1.15601 & 2818-01 & 4868-01 & 1,768+00 & \(4.538+\infty\) & 9.0SE \(+\infty\) & \(2188+01\) & 3.602+01 & E6P8+01 & \(133 \mathrm{E}+62\) \\
\hline Wirder & 1052400 & 685 & 3,4E+ +00 & 1.11E-03 & 1.04E-01 & 1.91E01 & \(4.068-01\) & 6.198-01 & 1.22E+00 & \(2.508+\infty\) & S.4R2+00 & 8.228+00 & 1.218+01 & 2588+01 & 4.528+01 \\
\hline \multicolumn{16}{|l|}{Uthanisation} \\
\hline Cataicity & 16182000 & 635 & 6.768+ 60 & 3.99E-03 & \(0.008+\infty\) & 1.468 .01 & 2818-01 & \(4.628-01\) & 1318+00 & 3.088 \(+\infty\) & 6.30\% \(+\infty\) & \(1.283+01\) & \(2.708+01\) & 7.084+61 & 1.4AB+02 \\
\hline Nonmetropoititen & 12963000 & 963 & 4.228+00 & 1.405-03 & \(0.008+\infty\) & 1.498-01 & 3.06E-01 & 5.5sw-01 & \(1.338+00\) & \(2.838+\infty\) & \(5.24 \mathrm{E}+\infty\) & \(9.0088+10\) & \(130 \mathrm{E}+61\) & 2208+01 & 6.76E+01 \\
\hline Surturben & 13678000 & 01 & \(5.52 \mathrm{E}+\infty\) & 123E-03 & \(0.008+\infty\) & 1.978-1 & \(7.208-01\) & 9.988-01 & 1.73E+00 & 3.468+ +00 & \(6.34 \mathrm{E}+\infty 0\) & \(1.278+01\) & 1.71E+01 & \(3.478+01\) & \(7.068+61\) \\
\hline \multicolumn{16}{|l|}{Reos} \\
\hline Acim & 249000 & 37 & \(1.388+01\) & 3.168002 & 485 EOL & 4.868-01 & 8.488-01 & 8.668-01 & 1.228+00 & 3.748+00 & 795E +00 & 3318+61 & 4.698401 & 1.468+62 & 1.4E+02 \\
\hline Blact & 2572000 & 115 & \(1.198+01\) & 1.538-02 & \(0.008+\infty\) & \(0.00 \mathrm{~B}+00\) & 1.93E-01 & 287801 & 8278-01 & 3.568+00 & \(8.288 \mathrm{E}+00\) & \(3.178+01\) & 7.488+01 & \(1.388+62\) & \(1.338+68\) \\
\hline Native Ammican & 116000 & 6 & \(2.50 \mathrm{E}+00\) & 5318-83 & S.69e-01 & 369E-01 & 5.69E-01 & S6\%P01 & \(1.218+00\) & \(1.52 \mathrm{~B}+\infty\) & \(4.80 \mathrm{~B}+00\) & 4.068 +60 & \(4008+\infty\) & \(4808+00\) & \(4808+0\) \\
\hline Othend & 890000 & 33 & \(5.04 \mathrm{~B}+00\) & 4.5Re-03 & 750E-01 & 7508-01 & 1.248+00 & \(1.63 \mathrm{~B}+\infty\) & \(1.00 \mathrm{~B}+60\) & 3.5sE \(+\infty\) & \(7.128+00\) & \(1.028+01\) & \(1.208+01\) & 2.208+41 & \(2298+01\) \\
\hline Whim & 30095000 & 2208 & \(3.01 \mathrm{E}+00\) & 1.098 .03 & \(0.00 \mathrm{E}+\infty\) & 1.47E-01 & 3928001 & \(6.478-01\) & \(1.68 \mathrm{~B}+00\) & \(3.108+\infty\) & S.94E+ \({ }^{\text {co }}\) & \(1.078+41\) & \(1.508+01\) & 3.48+61 & 1.1eE+02 \\
\hline \multicolumn{16}{|l|}{Response to Quectionnite} \\
\hline Doyou traden? & 21223000 & 1204 & 5.208+00 & 1.408-08 & \(0.008+69\) & 1.39800 & 4.56E-01 & \(8.488-01\) & 1.cos+00 & 3.2088 +00 & \(6.09 \mathrm{E}+00\) & \(1.188+01\) & \(1.638+01\) & 3.47E+01 & \(7.098+01\) \\
\hline Do you frm? & 2514000 & 161 & 4.81E +00 & 3.07E-03 & 2.468-02 & 1.158-01 & \(27 \mathrm{E}-01\) & 3.032-01 & \(9.828-01\) & 3. \(50 \mathrm{E}+\infty 0\) & \(6.3 \mathrm{~K}+\infty\) & L.118+01 & 1.408+01 & \(2.48 \mathrm{E}+01\) & \(26 \% 8401\) \\
\hline
\end{tabular}

Table 2-35. Intake of Total Fruits (g/kg-day) - South Region


Table 2-36. Inake of Total Fruits (e/kg-day) - Wext Region


Table 2-37. Intake of Total Vegetablea (g/kg-day) - All Regions Combined
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Group & \[
\begin{gathered}
\mathrm{N} \\
\mathbf{w}
\end{gathered}
\] & \[
\underset{\substack{\mathrm{N} \\ \text { ungtd }}}{ }
\] & Mean & SE & Po & P1 & Ps & P10 & P2S & P50 & PTS & P90 & P99 & P99 & \(\mathrm{P100}\) \\
\hline Total & 183106000 & 9634 & 5.608 +00 & 5.13E-04 & 0.00E+ +0 & 2.01E-01 & 6.60 E .01 & 1.13E+00 & \(2188+00\) & 3938+60 & 670E+60 & 1.10E+01 & 1.54E+01 & \(3.228+01\) & 1.55E+02 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline < 01 & 2788000 & 155 & 3348+01 & \(1.658-02\) & 0.008+00 & 2.44E+00 & 4.54E+00 & \(1.058+01\) & \(1.64 \mathrm{E}+01\) & 23FE+01 & CSEP01 & 62EEOI & 8.26E+01 & \(1.558+02\) & \(1.598+02\) \\
\hline 01-02 & \$667000 & 318 & \(1.518+01\) & 3.19E-03 & 3.68E-01 & \(6.70 \mathrm{E}-01\) & 3.05E+00 & 4.41E+00 & 7.63E+00 & \(1298+01\) & \(1.935+01\) & 297E+01 & \(3.318+01\) & 5.03E+01 & \(1.318+02\) \\
\hline 0305 & 8030000 & 455 & 1.028+01 & 2.33E-03 & 0.00E+00 & 3.52E-01 & 2008+00 & 3.108+00 & 5338+00 & 8982+00 & 138201 & 1828401 & \(2.368+01\) & \(3.188+01\) & \(3668+01\) \\
\hline 0-11 & 16889000 & 926 & \(7.05 \mathrm{E}+00\) & \(1.27 \mathrm{E}-03\) & \(0.008+00\) & 3.89E-01 & 1.142+00 & \(2088+00\) & 3.398+00 & 3.742+00 & 9.2018+00 & 139E+01 & 1.288+01 & \(2348+01\) & 4 23E+01 \\
\hline 12-19 & 20158000 & 1070 & \(4.20 \mathrm{E}+00\) & 6.918-04 & \(0.00 \mathrm{E}+00\) & \(0.008+\infty\) & 7.62E-01 & \(1.138+00\) & 2.098+00 & 3.452+60 & 1.68R+10 & \(8.138+00\) & \(1.018+01\) & \(1.648+01\) & \(2.208+01\) \\
\hline 20-39 & 39356000 & 2060 & 3.598+00 & \(4.048-04\) & 0.00E+00 & \(1.27 \mathrm{E}-01\) & 4.638-01 & \(8.085-01\) & \(1.588+00\) & 285R +00 & \(4678+50\) & 7.15E+00 & \(9.168+60\) & 1.12E+01 & 3.73E+01 \\
\hline 4069 & 55361000 & 2975 & \(4.578+\infty\) & 3.c0E-04 & \(0.002+\infty 0\) & 232E-01 & 7.63E-01 & \(1.258+\infty\) & 2.27E+00 & 3958+00 & 689E400 & 9.9E+00 & \(1.168+01\) & \(1.958+01\) & 4 CsE +01 \\
\hline 0+ & 15257000 & 769 & \(5.31 \mathrm{E}+00\) & 923E-04 & \(0.00 \mathrm{E}+00\) & \(4.99 \mathrm{E}-1\) & 1.04E+00 & \(1.48 \mathrm{E}+00\) & 2.758+00 & 4528+00 & 7008 cos & 9.93E+60 & \(1.248+01\) & \(1.69 \mathrm{E}+01\) & 3.10E+01 \\
\hline \multicolumn{16}{|l|}{Semons} \\
\hline Fall & 4634000 & 1537 & 3.5AE \(+\infty\) & \(1.118-83\) & \(0.008+00\) & \(2.058-01\) & 6.508-01 & 1.062+00 & 2058 + +0 & \(3.08 \mathrm{~s}+60\) & \(6338+00\) & 1.078+01 & \(1.578+01\) & 3.488+01 & \(1.55{ }^{\text {c }}\) +02 \\
\hline Spring & 4772900 . & 385 & \(5.418+\infty\) & 9.512-4 & 0.00E+60 & 1.818.01 & 5.66E-01 & \(9.60 \pm 01\) & \(2.088+00\) & 3/388400 & \(6518+00\) & 1.078+01 & \(1.558+01\) & \(3.298+01\) & \(9.678+01\) \\
\hline Summer & 4394000 & 1390 & \(6.14 \mathrm{E}+\infty\) & \(1.118-03\) & \(0.00 \mathrm{E}+00\) & 9.16002 & 6.306-01 & \(1.22 \mathrm{E}+\infty\) & \(2.478+60\) & 4362+60 & 7.062+00 & \(1.188+01\) & \(150 \mathrm{E}+01\) & \(3.44 \mathrm{E}+01\) & \(1.168+02\) \\
\hline Winter & 47639000 & 2851 & 3.32E+00 & 9.198-04 & \(0.00 \mathrm{E}+00\) & 3.40E-01 & \(8.51 \mathrm{E}_{\text {-01 }}\) & \(1.342+00\) & \(2.20 \mathrm{E}+00\) & 3812+60 & 6412+00 & 1.09E+01 & \(1.388+01\) & \(2.97 \mathrm{E}+01\) & \(1.31{ }^{\text {e }}\) +02 \\
\hline \multicolumn{16}{|l|}{Uibarization} \\
\hline Central City & 9772000 & 2168 & 5.968+60 & 1.12E-M3 & 0.00E+60 & 1.2780 & S.sse: & 9500801 & \(1.558+50\) & 305eta & 053840 & 1.128+01 & 1.88E+01 & 3.9E+01 & \(1.558+02\) \\
\hline Normetropolitan & 43843000 & 2934 & 58683 +00 & 1.018-03 & \(0.00 \mathrm{E}+\infty\) & 2.468 .01 & 6.67R-01 & \(1.268+00\) & 2,08+60 & 420+60 & \(7308+60\) & 1.168+91 & \(1.578+01\) & \(2.938+01\) & \(1.98 \mathrm{E}+02\) \\
\hline surburban & 8481000 & 453 & 5368 + +00 & \(6160^{-4}\) & \(0.00 \mathrm{E}+\infty\) & 2.19E-01 & 7.99E-01 & \(1.20 \mathrm{E}+00\) & 2.112+60 & 3.18180 & \(6512+00\) & 1.062+01 & 1.44E+01 & \(3.118+01\) & \(9.638+01\) \\
\hline \multicolumn{16}{|l|}{Rece} \\
\hline Asting & 2413000 & 114 & \(1.058+01\) & 1.328-00 & 2.491-01 & 2.498-01 & \(7.728-01\) & 1.60R+00 & 2.628+00 & \(5218+60\) & 9,983+60 & 1.918+01 & \(2.998+01\) & \(1.558+08\) & 1.538+02 \\
\hline glack & 2107700 & 108 & \(5.928+00\) & 1.768 .03 & 0.00E +00 & \(0.008+\infty\) & \(7.008-01\) & \(1.16 \mathrm{E}+60\) & 2008+00 & 3858+60 &  & 1248+01 & 1.748+01 & 3.308+01 & \(1.168+02\) \\
\hline Native Americar & 1449000 & 0 & 1.058+01 & \(1.858-02\) & 4.62E-01 & 7.69E-01 & \(1.158+60\) & 1.41E+00 & \(2378+\infty\) & \(4351+60\) & \(8865+6\) & 1.4SE+01 & \(4.15 \mathrm{E}+01\) & \(1.31 \mathrm{E}+08\) & \(1.318+02\) \\
\hline Otreona & 4583000 & 23 & \(6.808+00\) & \(3.585-03\) & \(0.008+00\) & 1398-01 & 6548001 & 1212+00 & \(2518+\infty\) & \(4863+60\) & 1137400 & 1.52B+01 & \(1878+01\) & 3.7EE+01 & \(6.058+01\) \\
\hline White & 15304000 & 8115 & 5.398+00 & \(4.76 \mathrm{E}-4\) & \(0.00 \mathrm{E}+\infty\) & 2.198-01 & 6.518-01 & 1.132+00 & 2.18R+00 & 3s0etoc & 6STE+60 & 1.078+01 & \(1.40 \mathrm{~B}+01\) & \(2.938+01\) & \(1.16 \mathrm{E}+02\) \\
\hline \multicolumn{16}{|l|}{Rerporse to Questionteire} \\
\hline Do you gerden? & 6724700 & 3778 & 5. \(638+00\) & 6.928-04 & 0.008 + +0 & \(2708-01\) & \(8.638-01\) & \(1.31 \mathrm{E}+00\) & 2488+00 & \(4.198+60\) & \(6 \mathrm{ckr}+60\) & 1.108+01 & 1.48+01 & \(2538+01\) & \(8.2088+01\) \\
\hline Do you fun? & 732000 & 13 & \(6.30 \mathrm{~B}+00\) & 204E-03 & \(0.00 \mathrm{E}+00\) & 2.60E-01 & 939E-01 & \(1.30 \mathrm{E}+\infty\) & \(2868+60\) & 4918+60 & E.102100 & \(1.208+01\) & \(1.088+01\) & 2.49201 & \(4.58 \mathrm{E}+01\) \\
\hline
\end{tabular}

Table 2-38. Iruke of Toul Vogeubles (elkz-day) - Noribeza Region
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
\[
\begin{aligned}
& \text { Fopelitica } \\
& \text { Crowo }
\end{aligned}
\] \\
Grow
\end{tabular} & \[
\begin{gathered}
\mathrm{N} \\
\mathbf{w n} 4 \\
\hline
\end{gathered}
\] & \[
\stackrel{N}{N}
\] & Hax & SE & N & P & P & P10 & 123 & Pso & Prs & P90 & Ps & 9 & P100 \\
\hline Toted & 4330000 & 1\% & S. \(788+0\) & 9288-4 & \(0.008+\infty\) & 357801 & 2.028-91 & 1.248400 & 235E+00 & 4.198+00 & 6.735+00 & 1.108401 & \(1.58+01\) & 36GE+01 & 7.942+01 \\
\hline \multicolumn{16}{|l|}{Afe} \\
\hline <01 & 345000 & 29 & 3.64e+41 & 2028-20 & -.00E \(+\infty 0\) & \(0.008+60\) & 7.46+00 & \(1.198+01\) & \(2.278+01\) & 3.75x+01 & 4.79E+01 & 6.24E+ 01 & \(6.248+01\) & 7968+01 & 7.948+91 \\
\hline 01.02 & 107000 & 36 & \(1.372+81\) & 2.498 .83 & \(1.172+60\) & \(1.278+\infty\) & 2956+60 & \(4398+60\) & \(7.07 \mathrm{~T}+09\) & \(1.158+91\) & \(1208+01\) & 2478+01 & \(3258+01\) & 3.508+61 & 439E+61 \\
\hline 0305 & 1980000 & 2 & 1098+01 & \(6.098-43\) & 1.598+00 & 1. 5 SE+E0 & 2.488+60 & 321E+00 & 5.65E+00 & 9.72E+00 & \(1388+01\) & 236E+01 & \(2545+41\) & 3 \(208+01\) & 36EE41 \\
\hline 0 O. 11 & 3585000 & 18 & \(7.55 E+\infty\) & 2038-03 & 3.50E-91 & 7.72-01 & \(1348+\infty 0\) & \(2.12 \mathrm{E}+00\) & 3.67E \(+\infty\) & \(5808+0\) & 9.378+00 & \(1.58 \mathrm{C}+01\) & \(1858+01\) & 2875+01 & \(3.1038+41\) \\
\hline 12.19 & 4445000 & 210 & \(4.72 \mathrm{~F}+0\) & 1.6SE-3 & \(0.008+\infty\) & 354801 & 204801 & 1/3E+00 & \(2.2083+\infty\) & 3842+00 & 6. \(278+\infty\) & 9,3E+00 & 1.128+41 & 185E+01 & \(1.788+61\) \\
\hline 20.39 & 12438000 & S30 & 3.73E +00 & 9.588-4 & 0.00E \(+\infty\) & 1.58801 & 5.248.01 & 8.69E-01 & \(1.62 \mathrm{E}+\infty 0\) & 3038 +00 & 191E+09 & 7342+ +0 & 9.06E+00 & 1.22E+01 & \(3.78 \mathrm{P}+01\) \\
\hline 4059 & 13127000 & 64 & 5.01E \(+\infty\) & \(1.108-03\) & \(1.758-81\) & 4.638-1 & 128801 & \(1.25 \mathrm{E}+\infty\) & \(2.538+\infty\) & 4203+60 & \(6.318+60\) & \(9.762+\infty\) & \(1.228+01\) & \(1.938+01\) & 3,783+01 \\
\hline \(70+\) & 3640000 & 16 & 5.SE+ +0 & 120803 & 1.008-91 & 4S3E-01 & \(133 \mathrm{E}+00\) & \(1.908+00\) & \(3.02 \mathrm{E}+\infty\) & \(483 \mathrm{E}+00\) & 7.518+80 & 1.01E+01 & \(1.178+01\) & 1.48+01 & 3.108+41 \\
\hline \multicolumn{16}{|l|}{Sessons} \\
\hline Pral & 9219000 & 27 & 6.22E+00 & 2728-63 & 0.008+00 & 2.298 .01 & 8.07E-A1 & \(1.278+\infty\) & \(2.24 \mathrm{E}+00\) & \(4.48 \mathrm{E}+80\) & 6.468+00 & \(1.112+01\) & \(1.878+01\) & 5.318+01 & \(6.248+01\) \\
\hline Spring & 10295000 & 75 & \(5.158+00\) & 1.768003 & \(0.008+\infty 0\) & \(2.79 \mathrm{E}-1\) & 6.598-01 & \(1.072+00\) & \(2.12 \mathrm{~B}+\infty\) & 3808+60 & \(6.318+\infty\) & 9.968+00 & \(1.378+01\) & \(3.108+01\) & 7.948+01 \\
\hline Sumber & 9300000 & 271 & \(6.27{ }^{\text {c }}+00\) & 192E-03 & 1.5xe-01 & 4.52E.01 & \(6.778-01\) & \(1.07 \mathrm{E}+\infty\) & \(2.608+\infty\) & \(4.618+80\) & 8.41E+00 & \(1.15 \mathrm{E}+01\) & \(1.598+01\) & \(3708+01\) & \(4.528+01\) \\
\hline Winter & 11606000 & 635 & 5.432+00 & 1.548-03 & 0.008 \(+\infty\) & 4.63E-01 & \(9.508-01\) & 1. \(6 \mathrm{ED}+00\) & \(2.48 \mathrm{~B}+00\) & \(4.228+00\) & 6.44E+00 & \(1.072+01\) & \(1.358+01\) & \(3.638+01\) & 4.608+01 \\
\hline \multicolumn{16}{|l|}{Untmization} \\
\hline Contril \({ }^{\text {chy }}\) & 288000 & 317 & 6.908+00 & 260k-83 & 359E-01 & 4.52E-01 & 9078-01 & \(1388 \mathrm{C}+00\) & 2.48E \(+\infty\) & 4.46B +00 & 2.198+00 & 1.378+01 & \(2.12 \mathrm{P}+01\) & 4.68E+01 & \(6.058+01\) \\
\hline Normetropolitan & 507000 & 362 & 5. \(248+00\) & 2.138-63 & \(0.008+\infty\) & 3.38E-91 & 5.258,01 & \(1.27 \mathrm{E}+00\) & 2.73E+00 & \(4.478+\infty\) & 7.208+60 & 1.208+01 & \(1.608+01\) & 2.138+01 & \(4398+01\) \\
\hline Sunturban & 25677000 & 1301 & 5. 2 E E +00 & 1.13E-03 & \(0.008+\infty\) & 2768-01 & 8.0.001 & \(1.18 \mathrm{E}+00\) & \(2.248+00\) & \(4.03 \mathrm{~B}+00\) & \(6.418+\infty\) & 1.02E+01 & \(1.328+01\) & 3.228+01 & 7.948+01 \\
\hline \multicolumn{16}{|l|}{Reos} \\
\hline Asina & 333000 & 13 & \(1.188+01\) & 3.208-22 & 7.578-01 & 7.578 .01 & 757e-01 & 7.72-01 & 8.55801 & \(4.938+00\) & 9.288+60 & \(6.245+01\) & 6.248+01 & \(6.248+01\) & \(6.208+01\) \\
\hline Blact & 3505000 & 131 & 6.008+00 & 3.671503 & \(3.508-01\) & 5.00E-01 & \(1.138+\infty\) & 1.43E \(+\infty\) & \(2.20 \mathrm{~B}+00\) & 3.678+00 & \(6.318+\infty\) & \(1.318+01\) & \(1.228+01\) & \(3.188+01\) & 4.688+01 \\
\hline Nutive Americen & 38000 & 4 & \(5.178+00\) & 235808 & 1.488+ +0 & 1.CE+00 & 1.4B \(+\infty\) & 1.488+ +0 & \(1.488 \mathrm{E}+\infty\) & \(1.958+00\) & 7.718+00 & 1.4EE+01 & \(1.458+01\) & \(1.458+01\) & \(1.45 \mathrm{E}+01\) \\
\hline Otherin & 1012000 & 45 & \(1.028+01\) & 1.248-2 & 6.548-01 & \(6.54 \mathrm{E}-19\) & \(1.008+00\) & \(1.398+00\) & 4.138+ \(+\infty\) & \(6.558+\infty\) & 1.03E+01 & 1.878+01 & 3.798+01 & 6.058+01 & \(6.058+01\) \\
\hline Whis & 33447000 & 177 & 5.528+00 & 9.48804 & \(0.008+\infty\) & 3.4TE-01 & 7.508 .01 & \(1.23 \mathrm{E}+00\) & 2.33E+00 & \(4.18 B+\infty\) & 6.69E+00 & \(1.078+01\) & 1.468+01 & 3.218+01 & \(7.948+01\) \\
\hline Rerpomee to Questio & & & & & & & & & & & & & & & \\
\hline Do you gurdent & 12133000
80000 & \({ }_{6}^{60}\) & \(5.648+60\)
\(5.178+00\) & 1.778 .03
494203 & \(0.008+00\)
\(1.048-91\) & 3.668-01 & \[
0.078-01
\]
\[
438 \mathrm{~B}-01
\] & \begin{tabular}{l}
\(1.30 \mathrm{E}+00\) \\
\(9.108-01\)
\end{tabular} & \[
2.33 \mathrm{~B}+\infty 0
\] & \begin{tabular}{l}
\(4.228+00\) \\
\(4.248+\infty\)
\end{tabular} & \[
6.77 E+\infty 0
\]
\[
7 \$ 18+\infty
\] & \[
\begin{aligned}
& 1.07 E+01 \\
& \text { 1.0nR+01 }
\end{aligned}
\] & \begin{tabular}{l}
\(1.378+01\) \\
\(1.60 \mathrm{~B}+01\)
\end{tabular} & \[
\begin{aligned}
& 3.528+01 \\
& 2.138+01
\end{aligned}
\] & \begin{tabular}{l}
\(7948+01\) \\
\(2.138+01\)
\end{tabular} \\
\hline
\end{tabular}

Table 2-39. Intake of Total Vegetables ( \(\mathrm{g} / \mathrm{kg}\)-day) - Midwest Region

Table 2-40. Ineake of Total Vegotables (f/kg-day) - South Rezion
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Papulation } \\
& \text { Grousp }
\end{aligned}
\] & \[
\begin{gathered}
\mathbf{N} \\
\text { wnd } \\
\hline
\end{gathered}
\] & \[
\stackrel{N}{N}
\] & Hem & [ 5 & 0 & Pl & Ps & P10 & P1s & PS & m & P\% & ms & \% & 100 \\
\hline Toun & 6200000 & 330 & 5.702+00 & 2.76E-04 & \(0.008+\infty\) & 15TEA1 & 7.61801 & \(1208+\infty\) & 2238+00 & 4.098+00 & 6972+04 & \(1.108+01\) & \(1.588+01\) & 328ctal & \(1.318+62\) \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 263000 & 50 & 3.158+01 & 2658-02 & 2638+00 & 2038+00 & 3568+00 & 5.316+m & \(1.564+01\) & 2.248+01 & \(3.72 \mathrm{t}+11\) & \(6.428+91\) & \(8.268+01\) & \(1.168+02\) & \(1.168+82\) \\
\hline 01-2 & 177000 & 104 & \(1.858+01\) & 1398-02 & \(1.068+50\) & 1.228+00 & 3.683+00 & \(6.159+\infty\) & 8938+00 & 1.358+91 & \(2.298+41\) & 3298+41 & 1328401 & 1312+02 & 1.318+8 \\
\hline 0308 & 2520000 & 131 & \(1.018+01\) & 4.248 .03 & 3.528-01 & 3.320.81 & \(1.198+00\) & \(2031+\infty\) & \(405 E+\infty\) & 9.098+00 & 1.60E+91 & \(1.768+01\) & \(2137+01\) & \(3.125+01\) & 3368+61 \\
\hline \(0 \times 11\) & 5135000 & 231 & \(7.338+00\) & 2378.03 & \(0.008+\infty\) & \(0.008+50\) & 1.108+00 & 222P+00 & \(4.008+60\) & \(6.398+00\) & , \(2 \mathbf{2 8}+60\) & \(1.1085+91\) & \(1 \mathrm{CaE}+61\) & 2.458+01 & \(4238+41\) \\
\hline 12.19 & 6518000 & 362 & \(4.256+00\) & 1.148 .03 & \(0.008+\infty\) & \(0.008+50\) & 7.46-01 & \(1.272+\infty\) & 2.148+00 & \(3.678+60\) & \(5.608+60\) & 7.768+50 & 9808+60 & 1.521+ \({ }^{1 / 1}\) & 2.258+01 \\
\hline 20.39 & 20800000 & 1039 & \(3.748+00\) & \(6.608-04\) & \(0.008+\infty\) & 1.308 .01 & 5.108.01 & 2.5seol & \(1.698+00\) & 3. \(1.18+\infty\) & \(4508+00\) & 7.188+60 & 9,108+60 & LCBE+01 & 3.288+01 \\
\hline 400 & 19125000 & 108 & \(5.068+00\) & 9.272-4 & \(0.008+\infty 0\) & 220801 & 8808.01 & 1.28P+60 & 2385+60 & 4.048+00 & \(6.712+\infty\) & \(9818+0\) & \(1.165+61\) & 1.768+01 & ceretal \\
\hline \(70+\) & 5533000 & 28 & 5.318+00 & 1.52E-0] & \(0.00 \mathrm{E}+\infty\) & 7.04801 & \(1.018+60\) & \(1378+\infty\) & \(2.698+\infty\) & \(4.632+00\) & 7332+00 & 9336+00 & \(1.218+61\) & 1228+01 & 2.338+61 \\
\hline \multicolumn{16}{|l|}{Seasons} \\
\hline FM & 12565000 & 419 & \(5.488+00\) & \(1.518-03\) & 0.00E+ +0 & 2.648 .01 & 8.328-01 & \(1.168+\infty\) & \(2.138+60\) & \(4.088+60\) & 6.458+60 & 1.068+91 & 1.62+01 & \(2.358+91\) & \(6.468+01\) \\
\hline Sping & 16823000 & 1413 & 5.54E+00 & 1.598 .03 & \(0.002++0\) & 1.408-01 & S.668-01 & \(1.03 \mathrm{E}+\infty\) & \(2.12 \mathrm{E}+60\) & 3.918+60 & 6.722+00 & \(1.098+01\) & \(1.618+01\) & 3.38E+01 & 9.67R+91 \\
\hline Sommer & 17310000 & 57 & 5.928+00 & 181803 & \(0.008+\infty\) & 0.002+00 & 679801 & 1.26E+60 & \(2318+60\) & \(4.298+00\) & \(7.658+60\) & \(1.118+01\) & \(1.538+01\) & 3.138+01 & 1.168402 \\
\hline Wriner & 16103000 & 241 & 5.818+00 & \(1.888-03\) & \(0.008+\infty\) & 232E01 & SSIE-01 & 1.358+ +0 & \(2375+\infty\) & \(4.018+00\) & \(6938+\infty\) & 1.108+01 & 1.4E+61 & 3.198+01 & 1.318+2\% \\
\hline \multicolumn{16}{|l|}{Unterizion} \\
\hline Contuciciy & 16587000 & cos & 5.618+ +0 & 2.138-03 & 0.008+ 00 & \(0.008+\infty\) & 937E-01 & 981E-01 & \(1.948+\infty\) & 3.768+00 & 6.768+ +0 & 9P08+00 & \(1.548+01\) & \(3.788+91\) & \(1.318+62\) \\
\hline Nonnoctropolian & 185865000 & 117 & 6.288+ \({ }^{\text {a }}\) & 1.948 .03 & \(0.008+\infty\) & 2.208 .01 & 9878001 & \(1.63 \mathrm{E}+\infty 8\) & \(2768+\infty\) & \(4.718+00\) & 7928+00 & \(1.188+01\) & \(1.678+01\) & \(2.678+01\) & \(1.168+02\) \\
\hline Surterben & 27267000 & 143 & 5.358+00 & 1.128 .03 & \(0.008+\infty\) & 2.198 .01 & \(8.088-01\) & \(1.188+\infty\) & 2.128+00 & \(3.668+\infty\) & \(6.408+\infty\) & 1.05E+01 & 1.288+01 & 3.268+01 & \(5.808+01\) \\
\hline \multicolumn{16}{|l|}{Reco} \\
\hline Asmann & 654000 & 32 & \(9.738+\infty\) & 1.018.02 & \(1.688+\infty 0\) & \(1.668+60\) & \(1.688+60\) & 2.472+00 & 32385+00 & 1.218+60 & \(1.288+01\) & 2.208401 & 2973+01 & 29TE+01 & 2978+01 \\
\hline Black & 13059000 & 77 & \(9.178+\infty\) & \(1.5 S E-03\) & \(0.00 \mathrm{E}+60\) & \(0.008+60\) & 6, 86.01 & \(1.018+60\) & \(1.92 \mathrm{~B}+00\) & 3.718 \(\mathrm{C}+0 \mathrm{O}\) & 6.728+60 & \(1.058+01\) & 1.438+01 & 3.198+01 & \(6.448+01\) \\
\hline Nowive Amprican & 162500 & 8 & \(3.338+01\) & \(1.068-01\) & 2.238+60 & \(2.238+60\) & \(2.23 \mathrm{~B}+\infty\) & 2.238+00 & \(9.17 \mathrm{~T}+\infty\) & \(1.168+01\) & \(3.288+01\) & 1318+92 & \(1.318+62\) & 1.318+92 & 1.318+02 \\
\hline Otmena & 1545000 & 6 & 5.3C+ + O & 3.488-03 & 3.6T-01 & 7888.01 & 9.90801 & \(1328+60\) & \(23 \mathrm{BP}+00\) & \(4.171+\infty 0\) & 6.958+00 & 9.938+60 & \(1.578+1\) & \(2058+01\) & \(2.188+01\) \\
\hline Whis & 46940000 & 247 & 5.708+00 & 9.68E-04 & \(0.008+\infty\) & 2.198.01 & 8.068 .01 & 1.288+00 & \(2318+\infty\) & \(4.10 \mathrm{~B}+00\) & \(7.008+60\) & 1.098+01 & 1.528+01 & \(3.138+01\) & \(1.168+02\) \\
\hline \multicolumn{16}{|l|}{Respane to Questionnexice} \\
\hline Do you gerdent & 20100000 & 1120 & 6.418+ 60 & 1.415 .03 & \(0.008+\infty 0\) & 7.008.01 & \(1.288+60\) & \(1.808+\infty\) & \(3.038+\infty\) & \(4.968+\infty\) & 8.048+60 & \(1.188+64\) & \(1.578+01\) & 2078+01 & \(8.268+01\) \\
\hline Do you frm? & 2232000 & 130 & \(6.628+\infty\) & 3.45E-03 & \(0.008+60\) & 0.008+00 & 1.22B+00 & \(1.958+00\) & 3.528+60 & 5.2SB+00 & \(8.178+60\) & \(1.188+01\) & \(1.748+01\) & \(2048+01\) & 3.088+01 \\
\hline
\end{tabular}

Table 2-41. Intake of Total Vegetables ( \(\mathrm{g} / \mathrm{kg}\)-day) - West Region
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Group & \[
\begin{gathered}
\mathrm{N} \\
\text { wrtd }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} \\
\text { unwatd }
\end{gathered}
\] & Man & SE & PO & Pl & PS & P10 & P25 & PSO & P75 & P90 & P95 & P99 & P100 \\
\hline Total & 348803000 & 1790 & 5.54E+00 & \(1.08 \mathrm{E}-03\) & \(0.00 \mathrm{E}+00\) & 2.39E-01 & 7.76E-01 & 1.19E+00 & \(2.24 \mathrm{E}+\infty\) & 4.05E +00 & \(6.768+00\) & 1.12E+01 & 1.478+01 & 2.85E+01 & 1.292+02 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline <01 & 568800 & 32 & 3.13E+01 & 3.28E-02 & \(1.03 \mathrm{E}+01\) & \(1.03 \mathrm{E}+01\) & 1.158+01 & \(1.178+01\) & \(1.76 \mathrm{E}+01\) & 2.18E+01 & 3.8AE+01 & \(4.678+01\) & 7.998+01 & 1.298+62 & \(1.29 \mathrm{E}+02\) \\
\hline 01-02 & 1072000 & 58 & \(1.26 \mathrm{E}+01\) & \(8.075-03\) & S.60e-01 & \(5.608-01\) & 6.708-01 & \(4.548+00\) & 7.77E+00 & \(1.12 \mathrm{E}+01\) & \(1.488+01\) & \(2.178+01\) & 2.938+01 & \(4.158+01\) & \(4.208+01\) \\
\hline \(03-05\) & 1781000 & 94 & \(1.02 \mathrm{E}+01\) & \(4.08 \mathrm{E}-33\) & 4.14E-01 & 4.148-01 & 2.628+00 & \(4.05 \mathrm{E}+00\) & \(6.28 \mathrm{E}+00\) & \(8.91 \mathrm{E}+\infty 0\) & \(1.34 \mathrm{E}+1\) & \(1.628+01\) & \(1.958+01\) & \(2.658+01\) & \(2988+01\) \\
\hline 06-11 & 3510000 & 199 & 7.00E \(+\infty 0\) & \(2.58 \mathrm{E}-03\) & 2.398-01 & 4.308-01 & 1.258+00 & \(1.90 \mathrm{E}+00\) & \(4.11 \mathrm{E}+00\) & \(6.13 \mathrm{E}+00\) & 9.13E+00 & \(1.288+01\) & 1.578+01 & 2.10B+01 & \(3.488+01\) \\
\hline 12-19 & 3759000 & 192 & \(4.12 \mathrm{E}+\infty\) & 1.438-03 & 6.07E-02 & 2.998-01 & 7.99E-01 & \(1.20 \mathrm{E}+\infty\) & \(2.20 \mathrm{E}+00\) & 3.50E+00 & S.62E+00 & 7.988 \(+\infty\) & \(9.098+\infty\) & 1.418+01 & \(1.898+01\) \\
\hline 20-39 & 10504000 & 54 & \(3.51 \mathrm{E}+\infty\) & 8.85E-4 & \(0.008+00\) & 1.128-01 & 4.13E-01 & \(8.52 \mathrm{E}-11\) & \(1.508+00\) & \(2.228+00\) & \(4.588+00\) & \(7.178+00\) & \(1.018+01\) & \(1.478+01\) & \(1.998+01\) \\
\hline 40.69 & 10283000 & 534 & \(4.74 \mathrm{E}+00\) & \(1.18 \mathrm{E}-03\) & \(0.00 \mathrm{E}+\infty\) & 3.4TE-01 & \(9.29 E-01\) & \(1.45 \mathrm{E}+\infty\) & \(2368+00\) & \(3948+00\) & \(6.00 \mathrm{E}+00\) & \(8.888+00\) & \(1.158+01\) & \(2.038+01\) & \(4.148+01\) \\
\hline \(70+\) & 2920000 & 137 & 3. \(598 \mathrm{E}+00\) & \(2.218-03\) & \(3.25 \mathrm{E}-01\) & 4.19E-01 & \(1.03 \mathrm{E}+\infty 0\) & \(1.548+\infty\) & \(2.858+00\) & \(4.90 \mathrm{E}+00\) & \(6.89 \mathrm{E}+60\) & \(1.188+01\) & 1.468+01 & 1.69E+01 & \(1.918+02\) \\
\hline \multicolumn{16}{|l|}{Sersons} \\
\hline Flll & 10340000 & 356 & 5.568+00 & \(2.168-03\) & \(0.008+\infty\) & 1.74E-01 & \(8888-01\) & \(1.168+00\) & \(2.08 E+00\) & 3.81E+00 & \(6.278+00\) & \(1.138+01\) & \(1.578+01\) & 3.208+01 & 1996+01 \\
\hline Sppring & 7825000 & 603 & 5.48E+00 & \(2.155-03\) & \(0.00 \mathrm{E}+\infty 0\) & 1.86E-01 & 5.678-01 & \(9.478-01\) & \(200 \mathrm{E}+00\) & \(3.988+\infty\) & \(6.97 \mathrm{E}+00\) & \(1.088+01\) & \(1.578+01\) & \(2738+01\) & \(9.638+01\) \\
\hline Summar & 7639000 & 237 & 3.75E+00 & 1.63E-03 & \(9.16 \mathrm{R}-02\) & 2.42E-01 & \(7.72 \mathrm{E}-01\) & \(1.41 \mathrm{E}+00\) & \(2.568+00\) & \(4.66 \mathrm{E}+\infty\) & 7.58E+00 & \(1.178+01\) & \(1.388+01\) & 2038+01 & 3.4B+01 \\
\hline Winter & 8980000 & 53 & \(5.398 \mathrm{~B}+00\) & \(2.408-03\) & \(1.83 \mathrm{E}-01\) & 4.098-01 & 7.98E-01 & \(135 \mathrm{E}+\infty\) & \(2.16 \mathrm{E}+\infty 0\) & \(3.918+00\) & \(6.54 \mathrm{E}+00\) & \(1.068+01\) & 1.08+01 & \(2.98 \mathrm{E}+01\) & \(1.298+02\) \\
\hline \multicolumn{16}{|l|}{Urbarization} \\
\hline Cental City & 11747000 & 400 & \(4.93 \mathrm{E}+\infty\) & 1.418-03 & 6.07E-02 & 1.74E-01 & 5.678-01 & 1.4E +00 & 1.988+09 & \(3.709+00\) & 3960+00 & 9315+e9 & !.epent & 2298901 & \(4.138+8 t\) \\
\hline Nonmetropolition & 5812000 & 367 & 6.4EE +00 & 4.208-03 & \(0.008+00\) & 3.25E-01 & 1.008+00 & \(1.45 \mathrm{E}+00\) & 2.518+00 & \(4.348+00\) & \(1.248+\infty 0\) & \(1.138+01\) & \(1.588+01\) & \(4.678+01\) & \(1.298+62\) \\
\hline Surbarben & 1744000 & 90 & 3.658+00 & 1.32E-03 & \(0.008+00\) & 2.39E-01 & \(7.99 \mathrm{E}-01\) & \(1.178+\infty\) & \(2.388+00\) & \(4.218+\infty\) & \(6.978+\infty\) & \(1.168+01\) & 1.512+01 & 2098+01 & \(9.638+01\) \\
\hline \multicolumn{16}{|l|}{Rese} \\
\hline Asinn & S77000 & 32 & 6.10E+00 & 4378-03 & \(1.98 \mathrm{E}+00\) & \(1.958+\infty\) & \(2.118+60\) & \(2.71 \mathrm{E}+00\) & 3.65E+00 & 4.91E+00 & 6.938 +00 & \(1.148+01\) & 1.408+01 & 1.998+01 & 1.928+01 \\
\hline Black & 1697000 & 85 & \(5.218+00\) & 3.53E-03 & \(0.008+00\) & \(0.008+00\) & \(1.008+\infty\) & 1.59E+00 & \(2378+00\) & \(394 \mathrm{E}+60\) & 6.988+00 & \(1.03 \mathrm{E}+01\) & \(1.338+01\) & 2.018+01 & 3.23E+01 \\
\hline Native Americen & 1133000 & 72 & \(8.218 \mathrm{E}+00\) & \(1.508-02\) & 4.628.01 & \(4.628-01\) & 1.088 \({ }^{\text {coo }}\) & \(1.24 \mathrm{E}+00\) & \(2.228+00\) & \(43185+\infty\) & 8. 208 B+00 & \(1.288+01\) & \(1.68 \mathrm{P}+01\) & 1.28E+02 & \(1.258+02\) \\
\hline Otmona & 1160000 & 57 & \(4.818+00\) & 3.178-03 & \(0.00 \mathrm{E}+\infty 0\) & \(4.43 \mathrm{E-08}\) & 2.998-01 & 5.70E-01 & \(2.518+00\) & 4.108+ +0 & \(6.318+00\) & 9. \(698 \mathrm{~B}+00\) & \(1.218+01\) & \(1.488+01\) & \(1.468+01\) \\
\hline White & 30230000 & 154 & 5.47E+00 & 1.00803 & \(0.00 \mathrm{E}+\infty\) & 2.22E-01 & \(7.768-91\) & 1.18E+00 & \(2.198+00\) & 4.04E+00 & \(6.69 \mathrm{E}+\infty\) & 1.118+01 & \(1.518+01\) & \(2858+01\) & 9.638+01 \\
\hline \multicolumn{16}{|l|}{Responce to Questionncire} \\
\hline Do you gredert? & 12496000 & 651 & S.228 + +0 & 1.228-03 & 4.438-02 & 2.635-91 & \(9.338-01\) & \(1.33 \mathrm{E}+\infty\) & \(2.48 \mathrm{~B}+00\) & 4. \(1581+\infty\) & 6.408+00 & \(1.068+01\) & \(1.338+01\) & 2038+01 & 4688+01 \\
\hline Do you firm? & 1585000 & 90 & \(6.328+\infty\) & 4.088-03 & 4.41E-01 & \(9.588-01\) & 1.12E+00 & \(1.53 \mathrm{~B}+\infty\) & 3. \(4 \mathrm{BE}+\infty\) & 3.038 +00 & \(7.728+00\) & \(1.188+01\) & \(1.685+01\) & 2398+01 & 4.694+01 \\
\hline
\end{tabular}

Table 2-42. Iotake of Toual Apples (elkg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Popyintion Orow & \[
\begin{gathered}
\mathrm{N} \\
\mathbf{W}+\mathrm{ta}
\end{gathered}
\] & \[
\stackrel{N}{\mathbf{n}}
\] & Hena & ER & 1 & P1 & PS & \(P 10\) & 123 & 89 & 13 & 180 & Ps & P9 & P109 \\
\hline Tom & 11731000 & 609 & 1.79E+00 & 26SE-4 & 200e \(+\infty\) & 7580.12 & 13001 & 2008-01 & 5058-91 & 9.7neol & 2018+60 & 3408+00 & 5.958+00 & \(12 \mathrm{se}+4\) & 7822+01 \\
\hline \multicolumn{16}{|l|}{Ass} \\
\hline \(<01\) & 235000 & 131 & 858E+60 & 7.118-83 & 0.008+00 & 238841 & 208001 & 1.00E \(+\infty\) & 3.028+00 & \(5218+00\) & 1.128+01 & 1.7\% 2101 & \(2338+01\) & 7.006+41 & 7.28 Col \\
\hline 01.29 & 014000 & 10 & \(6.08+\infty\) & \(2786-13\) & 2780-1 & \(33 \times 8\) & 764801 & 1.182 & \(2312+00\) & \(418 \mathrm{E}+\infty\) & 7.27E+ 60 & \(12583+01\) & 1.588+01 & 269+01 & 3228401 \\
\hline 0305 & 608000 & 33 & \(3.908+\infty\) & 1598.43 & \(0.008+50\) & 1.76801 & 3.71E0 1 & 9188-9 & \(1.588+00\) & \(2 \mathrm{cre}+\infty\) & 5.838+60 & 7406+00 & 1.182+01 & \(2.158+01\) & 3173+01 \\
\hline \(0 \times 11\) & 1140000 & 631 & \(2288+00\) & \(6398+4\) & 2008+0 & 1.368 .81 & \(3.478-1\) & 5.68e-01 & 85801 & \(1.338+\infty\) & 2083+60 & 4778+ \({ }^{\text {a }}\) & 6.4.43+60 & 9,308+00 & \(2538+01\) \\
\hline 12.19 & 13007000 & 63 & \(1.22 \mathrm{E}+\infty\) & 3.758-4 & 2.08E+00 & 5.758-22 & 1Sceol & 2.33-01 & 4.60891 & 831801 & 1.178+ +0 & 2\%8+60 & 3.651+0 & 1.408+00 & \(1.118+01\) \\
\hline 2039 & 36594000 & 185 & \(1.112+00\) & 1.9\%8.4 & \(0.008+00\) & 716802 & 1SIEA1 & 218001 & 3.998-1 & 759801 & 1.20] +10 & 2386+ +0 & 3.218+60 & 5.28+00 & \(1.178+01\) \\
\hline 4-90 & 34505000 & 1858 & 1.25E+00 & 228 cos & \(0.008+60\) & 690802 & 1.74001 & 2.51801 & 4.618 .91 & 830801 & \(1.538+80\) & 2738+60 & 3887 + +0 & \(61.88+00\) & \(1858+1\) \\
\hline \% + & 927800 & 475 & 1.40E+00 & 4058.4 & 2038-62 & 1.68801 & 246801 & 3.458-01 & 5533-01 & \(1.008+60\) & \(180 \mathrm{E}+00\) & 3312+00 & \(3975+0\) & 7.148+00 & 18cetol \\
\hline \multicolumn{16}{|l|}{Seswoss} \\
\hline Fall & 32876000 & 1088 & 2.112+00 & \(6.488-4\) & 200\% 1 ¢ & 757E-02 & 20 EOP & 2958-01 & 5.51E-01 & \(1.168+\infty\) & 2288+00 & 4.288+00 & 6902+00 & \(1.638+01\) & \(7008+01\) \\
\hline sprice & 2657100 & 232 & 1.76+ +0 & 5838-94 & 0.00200 & 3.75E-02 & 1.698-01 & 2598-01 & 489801 & \(9.200-01\) & \(1888+\infty\) & 3.782+00 & 3.998+60 & \(1.158+01\) & 7.02E+01 \\
\hline Sumaner & 24030000 & 745 & \(1.69 \mathrm{E}+00\) & 140894 & \(2008+\infty\) & 6.578 .82 & 1.72-01 & 251801 & 5.04e-01 & \(9.158-01\) & 205E+00 & 3.838+60 & 5.50E + +0 & \(1.138+01\) & \(2208+01\) \\
\hline Wriser & 34484000 & 2053 & \(1.59 \mathrm{E}+\infty\) & 3ecrea & \(0.008+6\) & 278-2 & 120-01 & \(2508-01\) & 48E-01 & \(9.208-11\) & 181E+00 & 3.38+ 30 & \(5.108+\infty\) & \(1.058+01\) & 3.148+01 \\
\hline \multicolumn{16}{|l|}{Unterization} \\
\hline Crumel City & 36233000 & 1354 & 1.958+00 & 3.180,4 & 2008tan & 680 EDO & 1.5s8-01 & 2208001 & 5.028-01 & 9.698-01 & 2168+60 & 4538+00 & 6.41E+00 & \(1.588+01\) & \(7.028+01\) \\
\hline Nommetropolitm & 26277000 & 1761 & 1.57E+ +0 & 4.14894 & 2.008+00 & 7.288-2 & 1200801 & 2518-01 & 4.57B-01 & 9.22801 & 1208+60 & 3.398+00 & 4.97E+ \({ }^{\text {cos }}\) & 1.668+01 & \(2198+01\) \\
\hline Sutberben & 57161090 & 3098 & 1.81E \(+\infty\) & 4.07844 & \(0.60 \mathrm{e}+0\) & 2538-92 & 2108-01 & 283801 & 5318.01 & \(9.968-1\) & 2008+60 & 3818+00 & 5.772+60 & \(1.2085+01\) & \(7.008+01\) \\
\hline \multicolumn{16}{|l|}{Rece} \\
\hline Asinn & 1500000 & 74 & 4.53E+60 & 9.248.33 & 217801 & 217501 & 2068001 & 3.008-01 & 6.29E-01 & \(1.178+80\) & 3.3SE \(+\infty\) & 2754 \({ }^{\text {a }}\) & \(1.158+01\) & 7.008+01 & 7.008+01 \\
\hline Elack & 11725000 & 597 & 1.94E+0 & 56084 & 2.008+00 & 4948-28 & 1339801 & 2.198 .01 & 4.908-01 & 9.008-01 & 2.178+00 & \(4378+\infty\) & 7,41E+60 & 1.488+01 & 32018+01 \\
\hline Native Amesican & 201000 & 4 & \(1.06 \mathrm{E}+\infty\) & \(1.768-63\) & 1.517-01 & 1.548-11 & \(1.568-01\) & 2.63E-01 & 2908-01 & 474801 & 1.288+00 & \(1248+00\) & 3, \(518+\infty\) & 6.7E+00 & \(6.71 \mathrm{E}+00\) \\
\hline Obeona & 2791000 & 14 & 1.77E+60 & 1,0E-63 & 5.478-42 & 285cha & 2068-01 & 2.62E-01 & 5318-01 & 268501 & \(1.988+\infty\) & 3.738+ +0 & \(6.218+\infty\) & \(1.178+01\) & \(1.178+01\) \\
\hline Whit & 100912000 & 5346 & \(1.78 \mathrm{~B}+\infty\) & 2S18-4 & a.ens +0 & 7898002 & 166801 & 2.658 .01 & 3.068-01 & 9008-01 & 1.998+00 & 3.38b+00 & 3608 +6 & \(1.208+01\) & 1.028+01 \\
\hline \multicolumn{16}{|l|}{Regions} \\
\hline Midrust & 30141000 & 1657 & 111E+00 & 3.198-4 & 200R +00 & 6.158-62 & 1.718-91 & 2528-01 & 5.188-81 & 9.758-01 & 194E \(+\infty 0\) & 4.06B+00 & 6398+60 & \(1248+01\) & \(7.028+01\) \\
\hline Nartheut & 27337000 & 1360 & 201E+80 & 697E-4 & c.e08ter & 7438-28 & 205801 & 3.118-01 & 5.518-01 & 1.048+00 & 2008+00 & \(4338+00\) & 6.6212+60 & 1.208+01 & \(7.008+01\) \\
\hline south & 36623000 & 1958 & \(1.62 \mathrm{E}+00\) & 3.TEE-4 & 0.008+00 & 9.168-02 & 193E-01 & \(2.558-01\) & 4.67E.01 & 9200-01 & 1.838+00 & 3.608+ \(\times 0\) & 3.148+60 & \(1.018+01\) & 3.24B+61 \\
\hline Weat & 23570000 & 1332 & \(120 \mathrm{E}+00\) & 3.71E.44 & \(3.368-08\) & 8.78E-2 & 18IE0! & 253E-01 & 5.03E-01 & \(9.778-01\) & \(1.978+60\) & 389E+00 & 3.408+60 & 1.60E+01 & \(3.368+01\) \\
\hline \multicolumn{16}{|l|}{Response to Questionneire} \\
\hline Do you graten? & 45743000 & 2586 & \(1.738+00\) & \(4368-4\) & 0.008 +00 & 2.18-02 & 2008001 & \(2.64 \mathrm{E}-01\) & 5.02E-01 & 9.478-01 & 1.958+00 & 3.73E+00 & 3.672+60 & 1.128+02 & 7.008+01 \\
\hline Do youtinm? & 4825000 & 236 & \(1.288+00\) & 6.008 er & 0.008+00 & 5.578-02 & 1.74E-01 & \(2.488-01\) & 4.81E-01 & 2.618 .01 & 1.58E \(+\infty\) & 278E+00 & 3,708+00 & 7.14E+00 & \(1.03 \mathrm{~B}+01\) \\
\hline
\end{tabular}


Table 2-43. Intake of Total Peaches (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Poprulation Group & \[
\begin{gathered}
\mathrm{N} \\
\text { wghd }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} \\
\text { unwatd }
\end{gathered}
\] & Mean & SE & PO & P1 & PS & P10 & P2S & P50 & 875 & P90 & P93 & P99 & P100 \\
\hline Total & 33216000 & 1753 & \(1.01 \mathrm{E}+00\) & 274E-04 & 0.008 +00 & 3.508-02 & 9.45E-07 & 1.55E-01 & 3.08E-01 & 5.958-01 & \(1.19 \mathrm{E}+50\) & 2.22E+10 & 3.108+00 & 6.31E+00 & 3.128+01 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline < 01 & 1106000 & 60 & 1.56E+00 & 1.308-03 & \(0.00 \mathrm{E}+00\) & 5.648-02 & 1.82E-01 & \(2.58 \mathrm{E}-01\) & 3.72E-01 & \(1.18 \mathrm{E}+00\) & \(2.11 \mathrm{E}+60\) & 3.73E +00 & \(4.093 \mathrm{~B}+\infty 0\) & 3.88B \(+\infty\) & \(633 \mathrm{E}+00\) \\
\hline 01-02 & 1533000 & 8 & \(1.99 \mathrm{E}+00\) & 1.28E-03 & 6.73E-02 & 6.73E-02 & 2618-01 & 5.12E-01 & \(8.94 \mathrm{EP-01}\) & \(1.688+00\) & \(2.488+\infty 0\) & \(4.38 \mathrm{E}+00\) & \(6.178+00\) & 1.7B \(+\infty\) & \(8.258+00\) \\
\hline \(03-05\) & 1712000 & 90 & 1.70E \(+\infty 0\) & \(1.50 \mathrm{E}-03\) & 1.04E-01 & 1.04E-01 & 1.34801 & 3.75E-01 & \(6.10 \mathrm{E}-1\) & 1.41E+00 & \(2.048+\infty\) & \(3.03 \mathrm{E}+00\) & 3.988+00 & 8.53B \(+\infty\) & \(2.23 \mathrm{E}+01\) \\
\hline \(06-11\) & 2898000 & 159 & 1.40E +00 & 9.078 .04 & 5.808-02 & 6.658-02 & 1.215-01 & 3.04E-01 & \(5.23 \mathrm{E}-01\) & 9.04E-01 & \(1.548+00\) & \(3.19 \mathrm{E}+00\) & \(4358+\infty\) & 8.53B +00 & \(1.158+01\) \\
\hline 12-19 & 2947000 & 170 & 8.30E-01 & 5.58E-04 & 3.958-02 & 4.09E-02 & \(9.455-02\) & \(1.598-01\) & \(2.69 \mathrm{E}-01\) & 5.14E-01 & \(9.158-01\) & \(2.15 B+00\) & 3.348+00 & \(4.338+\infty\) & 4.33E+00 \\
\hline 20-39 & 940000 & 483 & S.4E-01 & 1.998-94 & 8.30-03 & 1.688-02 & 5.048-02 & \(8.54 \mathrm{E}-02\) & 1.808-01 & 3.648 .01 & 6.288 .01 & \(1.16 \mathrm{E}+00\) & \(1.818+00\) & \(2948+\infty\) & 5.78E+00 \\
\hline 4069 & 9653000 & 508 & 9.38E-01 & 3.79E-A & 0.008+00 & 5.88E-2 & 138E-01 & 1.83E-01 & 326E-01 & 5.98E-01 & 1.12E+00 & \(2.04 \mathrm{E}+00\) & \(2.658+\infty\) & 4.78 +00 & \(1.238+01\) \\
\hline \(70+\) & 397000 & 195 & 131E+00 & 157E-03 & 0.00E+00 & 1.27E-01 & 2.268-01 & 2.82E-01 & \(4.46 \mathrm{~B}-01\) & \(8.54 \mathrm{E}-01\) & 1.24E+00 & \(1.798+\infty\) & 2.598+ 100 & \(9.768+\infty\) & \(3.128+01\) \\
\hline \multicolumn{16}{|l|}{Seasons} \\
\hline Fall & 6087000 & 218 & 7948.01 & 3.38-94 & 1.15E-02 & 1808-02 & 6.95s-02 & 1305001 & \(2.8008-01\) & 4.898-01 & 1.008 +00 & \(1.718+00\) & \(2.588+\infty\) & \(4.998+00\) & \(8.588+00\) \\
\hline Spring & 7587000 & 73 & 8.07E01 & 4.418-4 & \(0.00 \mathrm{E}+\infty\) & 3.35102 & 9,91E-02 & 1.448001 & 2588-01 & \(4.99 \mathrm{E}-01\) & 8.29E01 & \(1.758+00\) & \(2.4888+\infty\) & \(6.19 \mathrm{~B}+\infty\) & \(2.23 E+01\) \\
\hline Summa & 13670000 & 428 & \(1.3 \mathrm{AE}+00\) & 5.718-04 & 1.68E-02 & 5.04E-02 & 1.40E-01 & 2.13E-01 & 4.168-01 & \(8.078-01\) & 1.52B+00 & \(291 \mathrm{E}+00\) & 3.90E \(+\infty 0\) & \(8.53 \mathrm{~B}+\infty\) & \(3.12 \mathrm{E}+01\) \\
\hline Winter & 887200 & 376 & 7.228 .01 & \(298 \mathrm{E}-04\) & \(0.00 \mathrm{E}+00\) & 1.88E-02 & 6.73E-02 & 1.04E-01 & \(2.30 \mathrm{E}-01\) & 4.59-01 & 9.748-01 & \(1.62 \mathrm{E}+00\) & \(2.15 \mathrm{E}+\infty\) & \(3.52 \mathrm{E}+00\) & \(5.318+00\) \\
\hline \multicolumn{16}{|l|}{Urbenization} \\
\hline Central City & 9001000 & 341 & 9.79E-01 & 3.98E-04 & 8.348 .03 & 188800 & 1.00k01 & 1.81E-01 & 3308-01 & \(6.218-01\) & \(1.23 \mathrm{~B}+\infty 0\) & \(2.048+00\) & 2918+00 & \(4.63 \mathrm{E}+00\) & \(1.238+91\) \\
\hline  & 3335000 & 547 & \(9.168-01\) & \(4.318-94\) & \(0.00 \mathrm{E}+\infty\) & 1.248-02 & \(9.13 \mathrm{E}-02\) & \(1.518-01\) & 298-01 & \(6.04 \mathrm{E}-01\) & 1.048+00 & 2.04B+00 & \(2808+\infty\) & \(6.308+00\) & \(2.238+01\) \\
\hline Surburben & 15882000 & \%s & \(1.078+00\) & \(4.758-04\) & 1.68E-02 & 3.778-02 & 9.1 TE-02 & 1.45E-01 & 2.958-01 & 5.748-01 & \(1.248+00\) & \(2.35+80\) & \(3518+\infty\) & 7.138+00 & 3.12B+01 \\
\hline \multicolumn{16}{|l|}{Rece} \\
\hline Black . & 3349000 & 163 & 9.298-01 & 5.348-04 & 3.35E-02 & 4.708-02 & 1.418-01 & \(1.60 \mathrm{E}-01\) & 2.84E-01 & \(6.128-01\) & 1.238+00 & 2.118 +00 & 2.808 2 +00 & 3.948+00 & \(6.518+\infty\) \\
\hline Netive Ammicican & 265000 & 13 & \(6.048-01\) & \(1.071-03\) & 1.998-01 & 1.49E-01 & 1.61801 & \(1.618-01\) & 3.59E-01 & 4.80E-01 & 5.24801 & \(2.13 \mathrm{E}+00\) & \(2.138+\infty\) & \(2.14 \mathrm{~B}+\infty\) & 2.148 \(+\infty\) \\
\hline Othand & 633000 & 31 & 9.568001 & \(1.21 \mathrm{E}-03\) & 2.25E.01 & \(2.258-01\) & 2.2580 .1 & \(2.528-01\) & 3878.01 & \(6.21 \mathrm{E}-01\) & 1.258+00 & 2,008 +00 & \(3.06 \mathrm{E}+\infty 0\) & 6.198+00 & \(6.19 \mathrm{~B}+00\) \\
\hline Whte & 25569000 & 1546 & 1.02E+00 & 3.07E-4 & 0.00E+00 & \(3.198-02\) & \(9.008-02\) & 1.488 .01 & 3.088-01 & 5.98E-01 & 1.19E+ +0 & 1212+00 & 3.198+00 & \(6.318 \mathrm{~B}+\infty\) & \(3.12 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Regions} \\
\hline Midwex & 7580000 & 49 & \(8.92 \mathrm{E}-01\) & 3.968-04 & 8348-03 & 4.828-08 & 1.00201 & 1.598-01 & 3338-01 & 5.74E-01 & 1.138+90 & 1.87R \(+\infty\) & 2.328+00 & \(4.338+\infty\) & \(2238+01\) \\
\hline Nasthent & 7881000 & 369 & 9.488-01 & 3818-4 & \(0.008+00\) & 1.688 .02 & 3.91802 & 1.588 .01 & 2888 El -1 & 5.618-01 & 1.16B+60 & \(2.558+\infty\) & \(3.738+60\) & \(4.528+\infty\) & \(8.25 E+\infty\) \\
\hline South & 9511000 & 522 & 1.048+00 & 7.02E-4 & \(0.008+00\) & 3.048-08 & 9.678-02 & 1.40E-01 & 287601 & \(6.068-01\) & 1.13E+60 & \(2.108+00\) & \(2.008+00\) & \(6.518+\infty\) & \(3.128+01\) \\
\hline Wext & 787400 & 33 & \(1.148+00\) & SSSE-4 & \(0.008+00\) & 1.88E-02 & 7.098-02 & 1.468.01 & 3.28501 & 6.29E-01 & \(1398+60\) & 2532+00 & 3,303+00 & \(9.788+00\) & \(1.238+91\) \\
\hline \multicolumn{16}{|l|}{Resporse to Questiornmire} \\
\hline Do you grdea? & 1495000 & 889 & \(1.028+00\) & \(3.698-04\) & \(3.528-02\) & 3.508002 & 1.048-01 & 1.668-01 & 3.148-01 & \(6.085-01\) & \(1.158+\infty\) & \(2.228+00\) & 3.138+00 & \(7.28 \mathrm{E}+\infty 0\) & \(223 \mathrm{E}+01\) \\
\hline Do you frum? & 189700 & 110 & \(1.378+00\) & 1.313-03 & 3.76-02 & 3.77 ED 2 & 6.69E-02 & 1.25E-01 & 3.21 -01 & 6.463-01 & 1.838+00 & 2908+00 & \(3.808+\infty\) & \(9.768+60\) & \(9.768+00\) \\
\hline
\end{tabular}

Table 2-44. Inake of Toual Poans (g/ke-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Popurition Group & \[
\begin{gathered}
\mathrm{N} \\
\mathbf{W} \mathbf{N} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} \\
\text { mandid }
\end{gathered}
\] & \(\underline{40}\) & 8E & M & P1 & Ps & Ple & P5 & P0 & 775 & Pin & P\% & 19 & P100 \\
\hline Total & 24120000 & 1233 & 23E01 & 4.608 -8 & -0098+ & 3.78800 & 985800 & 1ABAl & 288801 & SLESA & 983-40 & 1720+60 & 2398400 & 488+00 & 5.418+01 \\
\hline \multicolumn{16}{|l|}{Ast} \\
\hline \(<01\) & 1084009 & 53 & 3.278+00 & 9300-03 & 92SE-02 & 9888-0 & 155801 & 2608-81 & 360ed 1 & 98384 & 2036+m & 42\% \(2 \times 0\) & 3.708+09 & 3.118+01 & 3.41E+01 \\
\hline 01.02 & 1114000 & 65 & \(1.978+00\) & 1.608 .03 & \(2.48-01\) & 24 COP & 3.388011 & 6.01841 & 525801 & 151840 & 2303+40 & 3368+60 & 5.218+80 & 2.788+00 & \(8.748+60\) \\
\hline 03.05 & 1159000 & 62 & \(1.488+\infty\) & \(1.658-4\) & 1.018001 & 1.018 .81 & 1268-A1 & 191E01 & S.10801 & 131240 & 15046 & \(3 \mathrm{cys}+00\) & \(4.158+00\) & \(4858+00\) & \(5.398+00\) \\
\hline 06.11 & 185900 & 3 & \(1.078+\infty\) & \(6.28-04\) & 5338-02 & 5.30502 & \(1.088-11\) & 156801 & \(6.058+1\) & Rmeat & 1.203+0 & 2068+00 & \(2.088+\infty\) & 5. \(188+00\) & 5.10E+00 \\
\hline 12.19 & 2206000 & 109 & 6.078 .01 & 3.998-98 & 3.488-02 & 3.48e02 & 1.0780] & 1278-01 & \(2 \mathrm{me}-1\) & cesend & 7AEAI & 1388+60 & \(1208+\infty\) & 26E6+60 & 2NT+00 \\
\hline 20-39 & 7120000 & 344 & 5.40E-01 & 2.77808 & 1.988 .02 & 3.13502 & 5.598-62 & 9.678 .02 & \(1.778-11\) & 37\%801 & 646 Cl & 1.128+60 & \(1.198+\infty\) & \(3.188+00\) & \(4.4085+0\) \\
\hline 4069 & 7170000 & 361 & 6.118-01 & 185E-4 & \(0.008+00\) & 3.19808 & leasel & 1.33801 & \(3808+1\) & 1580\%1 & 78.641 & \(1.138+60\) & \(1.612+00\) & 2.08+00 & \(3.18 \mathrm{E}+10\) \\
\hline \(70+\) & 2397000 & 124 & 2.528-01 & 4.01E-08 & 1.208-01 & 1.20E.01 & 185E-4] & \(2378-01\) & 388501 & 736801 & 1039+40 & 1.712+60 & \(2.008+00\) & \(2888+00\) & 3.53E400 \\
\hline \multicolumn{16}{|l|}{Sesions} \\
\hline Foll & 711000 & 237 & \(1.158+\infty\) & 1.45E-03 & 202E-02 & 183E02 & 1.008-91 & 1.48E-01 & 20880il & S218-1 & 16E+40 & 1-68+00 & 3.142+00 & 2.748+00 & S.418+01 \\
\hline Spring & 4901000 & 09 & \(6.628-01\) & 352E-4 & 0.00E+00 & 3.808-02 & \(8.30 \mathrm{e}-2\) & 1.108-01 & 2.200001 & CABE-1 & 7.715+1 & 1A5E+00 & 2.208 +00 & \(4.238+00\) & \(7.04 \mathrm{E}+\infty 0\) \\
\hline Summer & 3525000 & 174 & 8.038-01 & 2.93204 & 2.61E-02 & 3.43E-02 & 1.19E-01 & \(1.588-01\) & 2:18-11 & cespel & 180\% & \(1808+80\) & \(2338+\infty\) & \(3.188+\infty\) & 3.628+00 \\
\hline Winter & 691000 & 373 & 7818-01 & 3.178 -4 & \(9.62 \mathrm{E}-03\) & 3.73E-02 & 985B-02 & 1.60801 & \(3.168-11\) & Serenti & 988-91 & 1,688+00 & 2.23E+00 & \(41028+00\) & \(6.208+\infty\) \\
\hline \multicolumn{16}{|l|}{Uhberization} \\
\hline Cantal Cixy & 8383000 & 333 & \(1.168+00\) & 1.27E-03 & 3.19E02 & 4.108-02 & 1.128 .81 & 1.628-01 & 3.37808 & 4SSEPA & 1228+60 & 1.968+60 & 2048+00 & 6.478+00 & 5.418+01 \\
\hline Nonmetropotitan & 4765000 & 297 & 6.688 .01 & 3.098-04 & \(0.008+00\) & 2.138-02 & 8.578 .02 & \(1.288-01\) & 200801 & 491E0] & Eximal & \(1.008+00\) & \(1.888+00\) & \(2808+00\) & 7.0AE +00 \\
\hline Sumbuber & 10977000 & 603 & 7.46E-01 & 248804 & 9.62E-03 & 3,488-02 & 9.085-02 & 1.37801 & 2568-01 & 473801 & 307801 & \(1.728+00\) & \(2.08 \mathrm{~B}+\infty\) & \(4.158+00\) & 6.208 +00 \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Asion & 535000 & 30 & \(1.2889+00\) & 1.618-03 & 2.39E-01 & 2.398 .01 & 3.14801 & 3558-01 & Csusel & 2918-01 & 1.089+60 & 4 Coctas & 4.298+00 & 5.29B+00 & 5.298+00 \\
\hline Bleck & 160000 & * & 9.59801 & \(7.358-94\) & 3.198,02 & 3.83E-02 & \(1.088-11\) & \(1.508-01\) & 384801 & 678801 & 135E+6 & \(1508+00\) & \(2 \mathrm{ASE}+\infty 0\) & 5.39E+00 & \(6.208+00\) \\
\hline Native Anmeicen & 79000 & 7 & \(2.278-01\) & S.lip-e4 & \(4.708-02\) & 408-02 & 4.708-02 & 4708.02 & \(1.208-1\) & 1828-01 & 25361 & 4.738 .81 & S.9ex-01 & S.MESO1 & 3 SeR -11 \\
\hline OthenNA & 565000 & 21 & \(4.488+\infty\) & 1.698 .02 & 1.91E-01 & 1.918-01 & 3.018-41 & 3.028-01 & \(6018-1\) & Reasal & 208180 & 8.74E+60 & S.A18+01 & S.41E+01 & S.412+01 \\
\hline White & 21300000 & 100 & \(7.465-91\) & \(1.678-04\) & 0.00E+00 & \(3.508-02\) & 9.158.02 & 1.388-01 & 2688.1 & Sens-el & 9318-01 & \(1688+6\) & \(2.30 \mathrm{E}+\infty\) & 3.758+00 & 7.088+0 \\
\hline \multicolumn{16}{|l|}{Regions} \\
\hline Midvest & 678300 & 378 & 791801 & 288.04 & 4.558-02 & 5.72B-22 & 1.258-41 & \(2.058-01\) & 3368-91 & S6IP-91 & 101840 & \(1008+0\) & 2.128+09 & 4298400 & 6,478+60 \\
\hline Northent & 5407000 & 27 & 1218+00 & 1.908 .08 & \(9.22 \mathrm{E}-03\) & \(4.088-02\) & 1.108801 & 1.48 el & 2.58801 & 4187801 & L018tem & 2228+60 & 2.618+00 & \(8.748+60\) & \(5.418+91\) \\
\hline Eouth & S71000 & 235 & 6818-01 & \(2.908-4\) & 1.96802 & 5.198-02 & 1.07E-AI & 1518-01 & \(2518-81\) & C9EPA & 813101 & \(1388+00\) & \(1.508+\infty\) & \(3.108+00\) & 7.048+60 \\
\hline Wat & 6157000 & 286 & 8.50841 & 3.75804 & \(0.008+\infty\) & 2138-02 & 4.esk-2 & 1.018-01 & 2.518 .01 & s21801 & 1.078+00 & 1807400 & 263E +00 & 4.978+00 & \(5.62 \mathrm{~B}+00\) \\
\hline \multicolumn{16}{|l|}{Respospen 10 Queationmine} \\
\hline Do you grima? & 10355000 & 54 & \(6968-01\) & \(2.298-04\) & 1 SuB-02 & 5.628-02 & 1.01R-01 & 1.46801 & 24801 & 4 ATEAL & 337E0n &  & \(2.178+00\) & 2.603 +00 & 3.16B+40 \\
\hline Do you frus? & 1197000 & 74 & 7.988-01 & 9.12 EPO & 1.968-02 & 1.908-08 & 4.258-92 & \(6.69 \%\) & 276001 & C7E8-1 & 984-01 & \(1.728+60\) & 2.768+00 & 5.168+00 & \$.168+00 \\
\hline
\end{tabular}

Table 2-45. Intake of Total Strawberries (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Grome & \[
\underset{\substack{\mathrm{N} \\ \hline}}{ }
\] & \[
\begin{gathered}
\mathrm{N} \\
\text { unwortd }
\end{gathered}
\] & Mean & SE & PO & Pl & PS & P10 & P25 & P50 & P73 & P90 & P93 & P99 & P100 \\
\hline Total & 17545000 & 1251 & 6.89E-01 & 2.198-04 & 0.00E+00 & 3.44E-02 & 9801-02 & 134E.01 & 2.378-01 & 4.61E-01 & 8.18 E 01 & 1.48+00 & 1802+00 & \(4.72 \mathrm{E}+00\) & 1.508 +01 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 153000 & 10 & 5.168-01 & 1.568-03 & 6.708-02 & 6.708-02 & 6.00-02 & 6.70E-02 & 1.30-01 & 357E-01 & 3.73E-01 & 1.08E +00 & 279E+00 & 279E+00 & \(279 \mathrm{E}+00\) \\
\hline 01-02 & 708000 & 46 & \(1.98 \mathrm{E}+00\) & 1.54E-03 & 3.97e-01 & 3.97E-01 & \(6.2 \mathrm{E}-\mathrm{Ol}\) & 7.04E-01 & \(1.148+0\) & 1.6EE +00 & \(2535+00\) & \(4.278+\infty\) & \(477 \mathrm{E}+00\) & 7.20R +00 & 1.208+00 \\
\hline 03-05 & 657000 & 51 & 1.74E+00 & 3.37E-03 & \(3.00 \mathrm{E}-01\) & 3.008-01 & 3.86E-01 & 5.15E-01 & 691E-01 & 903E-01 & 1.70E+00 & 3348+ 60 & \(6.058+00\) & \(1.56 \mathrm{E}+01\) & 1.668501 \\
\hline 06-11 & 1473000 & 124 & \(9.17 E-01\) & 7.96E-04 & \(6.078-02\) & \(9.178-02\) & 185E-01 & 287801 & 4.298-01 & 6.11E.01 & \(9.92 \mathrm{E}-1\) & \(1.60 \mathrm{E}+00\) & 2.13B+00 & \(5.112+00\) & 1.438+00 \\
\hline 12-19 & 1922000 & 139 & 5.03E-01 & 2.75E-04 & 3.44E-02 & \(8.178-02\) & 1.06\%-01 & 1.4E-01 & 2.508 .01 & 386E-01 & 6308.01 & \(1.072+00\) & \(1.34 \mathrm{~B}+00\) & \(1.668+\infty\) & \(1808+00\) \\
\hline 20-39 & 4370000 & 304 & 4.48 EPO & 2.668-04 & \(0.00 \mathrm{E}+00\) & 1.38E.02 & 7.88E-02 & 9.998-02 & 1.618-01 & 2608001 & 5988.01 & 9,57801 & \(1.158+00\) & 3.14E+00 & \(6.62 \mathrm{E}+00\) \\
\hline 40-69 & 6517000 & 463 & 5.888 .01 & \(2.888 \mathrm{EP4}\) & \(0.00 \mathrm{E}+00\) & \(3.44 \mathrm{E}-2\) & 1.03E-01 & 1.45E-01 & 277801 & 4.18E-01 & 72880.1 & \(1.30 \mathrm{E}+00\) & \(1.608+00\) & \(2.858+00\) & 1.018+01 \\
\hline \(70+\) & 1745000 & 113 & 7.988 .01 & 4.53804 & 2.70E-02 & 3.12E-02 & 1.398 .01 & 237501 & 4.OTE-01 & 6.12E-01 & \(8668-01\) & \(1.36 \mathrm{E}+00\) & 198E+00 & \(2 \mathrm{SB}+\infty\) & 5.49E+00 \\
\hline \multicolumn{16}{|l|}{Seesons} \\
\hline F4.1. & 931000 & 30 & 7.17801 & 5.398 .04 & \(0.008+\infty 0\) & \(0.00 \mathrm{E}+00\) & 1.47E-01 & 1.79E-01 & 3.15E-01 & 5.798 .01 & 1.00E+00 & \(1.478+00\) & 1.60E +00 & \(2.20 \mathrm{E}+00\) & \(2.208+00\) \\
\hline Sping & 10256900 & 925 & 7508001 & 3398.04 & 1.38E-02 & 4.908-02 & 1.098 .01 & 1.57E-01 & 2.58800 & 4TEE01 & 880501 & \(159 \mathrm{E}+00\) & \(204 \mathrm{E}+00\) & 5.01E +00 & 1.568+01 \\
\hline Surmer & 2285000 & 87 & 5.87801 & 3.738-4 & 3.98E-02 & 5.98E-02 & 1.13E.01 & 1.25E-01 & 2128.01 & 42FE01 & 7.008 - 01 & 1.098 \(+\infty\) & 1.70E \(+\infty 0\) & \(2.60 \mathrm{~B}+00\) & \(5.11 \mathrm{~B}^{+00}\) \\
\hline Winter & 3429000 & 200 & \(5.678-1\) & 3.4TE-04 & \(0.00 \mathrm{E}+00\) & 2.70E-02 & \(6.70 \mathrm{E}-12\) & 999E-02 & 18SE01 & 382E-01 & \(680 \mathrm{E}-91\) & \(1.208+00\) & \(1.85 \mathrm{E}+00\) & \(2.90 \mathrm{E}+00\) & \(4.776+\infty\) \\
\hline \multicolumn{16}{|l|}{Urberization} \\
\hline Central City & 423000 & 220 & 7.22E-01 & 4.78E-04 & 2.86P-02 & 4.15E-02 & 1.05E-01 & 1.508-01 & 245801 & 5.0ce-01 & 9.365-01 & 1.44E+60 & \(1.22 \mathrm{E}+00\) & \(2.605+00\) & \(1508+01\) \\
\hline Nonmetropotiten & 4074000 & 5\% & \(757 \mathrm{E}-01\) & 450804 & \(0.0027+00\) & 4.508 .02 & 6.65E-2 & 1.24808 & 2328.11 & cempa & ㅇnํํI & Lesg+ep & \(1.455+60\) & 5.01E+00 & \(1.015+01\) \\
\hline Surburben. & 8588000 & 601 & 6.308 .01 & 270 ed & \(0.00 \mathrm{E}+00\) & 3.018-22 & 995E-02 & 1.29E-01 & 2318-01 & 4.4E-01 & 7.218-01 & 1.308+60 & 1. \(12 \mathrm{BE}+\infty\) & \(4776+\infty\) & \(9.978+00\) \\
\hline \multicolumn{16}{|l|}{Rece.} \\
\hline Acim & 191000 & 13 & 2098 +00 & 1.008 .02 & 1.47E-01 & 1.47E-01 & 1.47E-01 & \(2.085-01\) & 3.198-01 & 6.00801 & 1.018+00 & 1.408+60 & \(1.508+01\) & \(1.568+01\) & \(1.568+01\) \\
\hline Bract & 1306000 & 4 & \(6.085-01\) & 7.118 .04 & \(0.008+\infty\) & \(3.48 \mathrm{e}-02\) & \(1.138-01\) & 1.488-01 & 2.00801 & \(3578-1\) & \(8.188-01\) & \(1.178+00\) & 1.598+00 & \(4.278+00\) & \(7.208+00\) \\
\hline Netive Amorican & 159000 & , & 1.9F\%01 & 3.28E-04 & 8.17E-02 & 8.178-02 & 8.178-02 & \(8.17 \mathrm{EP2}\) & 8.768-02 & 1.818-91 & 288801 & \(5.138-01\) & \(5.138-01\) & 5.138-01 & \(5.138-01\) \\
\hline Otheons & 488000 & 24 & 4.378 .01 & 7.08804 & \(2776-02\) & 2771802 & 9.959 .02 & \(1.13 \mathrm{E}-01\) & 1.39801 & 1.78 el & 4serep & 1.428+00 & 1.428+60 & \(1808+\infty\) & \(1858+00\) \\
\hline Whit & 15501000 & 1117 & \(6.918-01\) & 2028-04 & \(0.00 \mathrm{E}+00\) & 3.408-2 & \(9998-02\) & 1.428-01 & \(2.518-01\) & 4.30801 & 2208-91 & 1.488+60 & 129E+ +0 & \(4.20 \mathrm{E}+\infty\) & \(1.018+01\) \\
\hline \multicolumn{16}{|l|}{Repjons} \\
\hline Midwes & 5082000 & 376 & \(723 \mathrm{E}-1\) & 3.618 .04 & 244802 & 3.99E-22 & \(1.03 \mathrm{E}-01\) & 1.378-01 & 2288.01 & 4.208501 & 235801 & \(1.688+00\) & \(2008+00\) & \(5.118+\infty\) & 5.818+00 \\
\hline Northent & 4111000 & 272 & 6.96801 & 4.378-04 & \(0.008+\infty\) & 1.69E-2 & 1.118 .01 & 1,08R-01 & 250801 & 467801 & 208081 & \(1388+00\) & \(1.838+00\) & \(477 \mathrm{E}+00\) & 9,978+60 \\
\hline South & 4950000 & 357 & \(6.238-01\) & 2828.04 & \(0.008+\infty\) & 2:06802 & 9.6sp-02 & 1.306-01 & \(228 \mathrm{E}-1\) & 5.15 Pl & 729801 & \(1.248+60\) & 1.778+00 & \(2.908+\infty\) & \(7208+60\) \\
\hline Weat & 342000 & 246 & 7.228-01 & 731E-04 & 2708-02 & 7.038.02 & 8.768-02 & \(1.258-01\) & 2.28-01 & 446801 & 7018-81 & 1.418+00 & 1.998+ \({ }^{\text {co }}\) & \(4.208+00\) & \(1.587+01\) \\
\hline \multicolumn{16}{|l|}{Response to Quentionnine} \\
\hline Do you garden? & 7416000 & 54 & \(6.808-01\) & \(3578-04\) & \(0.008+\infty\) & 3.448-02 & 9.958 Em & 1.332-01 & 2.28801 & 4412-01 & 827801 & 1478t+0 & 1938+00 & 3.148+00 & \(1.508+01\) \\
\hline Do you fixim? & 881000 & 7 & 6.54B-01 & 9.278-04 & 0.00E+00 & 0.008+60 & 3.488-02 & 6.078-02 & \(1.788-01\) & 331801 & 721801 & L06E+60 & 2.88+00 & 3.398+00 & \(4.728+0\) \\
\hline
\end{tabular}

Table 2-46. Iotake of Total Other Berries (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Pepulition } \\
& \text { Croup }
\end{aligned}
\] & \[
\begin{gathered}
\text { N } \\
\text { wid }
\end{gathered}
\] & \[
\underset{\text { Nund }}{\text { Nund }}
\] & Men & 88 & PO & P1 & Ps & 110 & 125 & 180 & P1s & P\% & Ps & 1\% & Hos \\
\hline Tobl & 285000 & 411 & 436E-01 & 1.08808 & \(0.008+\infty\) & 0.008+00 & 328002 & 7.998-22 & 1.68801 & 3.12501 & 2.1841 & 9.02801 & 1.28\% \(+\infty\) & 2.218+00 & 4668+69 \\
\hline \multicolumn{16}{|l|}{Ase} \\
\hline \(<01\) & 185000 & , & \(0.008+\infty\) & 0.00E+09 & 0.COE +00 & 0.008 + +0 & 0.008+00 & \(0.00 \mathrm{E}+00\) & 0.008+60 & \(0.008+\infty\) & \(0.6051+00\) & \(0.008+\infty 0\) & 0.008 \(+\infty\) & \(0.008+\infty\) & \(0.608+\infty\) \\
\hline \(01-02\) & 20000 & 14 & \(1.018+\infty\) & \(1.488-93\) & 1.92E-01 & 1.928.01 & 1.928-01 & 238501 & 4.028-91 & \(1018+\infty\) & \(1.312+\infty 0\) & \(2.72 \mathrm{~F}+00\) & \(2.78+00\) & \(2728+\infty\) & 2728+40 \\
\hline 03-05 & 01000 & 20 & \%esb-01 & 9.47S-94 & \(0.008+00\) & \(0.005+\infty\) & \(0.008+\infty\) & 1.95B-01 & 4.128-01 & 2.778-91 & \(1.588+\infty\) & \(1.788+00\) & \(1.958+00\) & \(2.418+\infty\) & 2, \(12 \times+0\) \\
\hline 06.11 & 531000 & 33 & 363E-91 & 28854 & \(0.008+50\) & \(0.008+\infty\) & \(0.008+\infty\) & \(1.178-91\) & 2.628-91 & 3.46E-01 & 4.748 .01 & 6.518-01 & 6.518-91 & \(1.218+\infty\) & \(1208+60\) \\
\hline 12-19 & 62500 & 35 & 200801 & 2.508-04 & 3.24e-02 & 3.288 .02 & COST-02 & 7.29E-02 & \(1.588-01\) & 2.19801 & 3.48801 & 5.798-01 & 2.588-01 & \(1.208+\infty\) & \(1.208+40\) \\
\hline 20.39 & 2306000 & 109 & 3.53-91 & 1.71 E-94 & 194E-22 & 5.258002 & 1348-02 & 9148-22 & 1348.91 & 2928-91 & COEEP1 & 6.57E-01 & 2908-01 & \(1.188+\infty\) & \(1308+00\) \\
\hline 4069 & 3175000 & 160 & 4.57E-91 & 3.03E-04 & \(0.008+\infty\) & \(0.008+\infty\) & 3.618-02 & 7.698-22 & 1.718-01 & 3.248.01 & S.508-81 & 9285-01 & \(1.308+60\) & \(2.218+\infty\) & \(4.648+0\) \\
\hline \(70+\) & 700000 & 31 & 4.238-01 & 5.598-01 & \(0.008+00\) & 0.00E+60 & 3.57B-02 & S.3E-02 & 2308-01 & 3.458-01 & 408-01 & 5318-01 & 2.118-1 & 3.0\%8 \(+\infty\) & 3.0\%et+0 \\
\hline \multicolumn{16}{|l|}{Scemors} \\
\hline Frill & 212000 & 13 & \(4.265-01\) & 3.518-04 & \(0.008+\infty\) & \(0.008+00\) & 1.708-08 & 7298-02 & 1.358-01 & 3.428-01 & LHEP01 & 7.118-01 & 131E+00 & 1.728+00 & 4.648+60 \\
\hline Spring & 1517000 & 135 & 3.73E-01 & 2.78-04 & \(0.008+00\) & \(0.008+00\) & 4.083-02 & 5.5seon & 1.438-01 & 2838-01 & 4.58-01 & 2.11E-01 & \(1.208+\infty\) & \(1.688+00\) & 241E+00 \\
\hline Surniker & 2757000 & 8 & 436E-01 & 2:18-04 & \(0.00 \mathrm{E}+\infty\) & \(0.008+00\) & 1.218-02 & 8.52E-02 & 1.638-01 & 2.99B-01 & 4.83E-01 & \(1.018+00\) & \(1318+00\) & \(2.728+\infty\) & \(2.728+\infty\) \\
\hline Wintes & 1552000 & 107 & 3.13E-01 & 3.808-04 & \(0.00 \mathrm{E}+00\) & 0.008+00 & 7.298-68 & 1328-01 & 2.108-91 & 3.898-01 & \(6.678-11\) & \(1.058+\infty\) & \(1.30 \mathrm{E}+00\) & 3.098 \(+\infty\) & 3.058200 \\
\hline \multicolumn{16}{|l|}{Urbenication} \\
\hline Cental City & 1972000 & 70 & 3.498-01 & 2.488-94 & \(0.008+\infty\) & 0.00E+00 & 1.70802 & 494e-02 & 1.128-01 & 2.008-01 & 4.028-01 & 7.568-01 & 1.07E+00 & \(1.728+00\) & \(1.728+60\) \\
\hline Nonmetropouitan & 1920000 & 127 & 353E-01 & 3.58-94 & \(0.008+00\) & \(0.008+00\) & \(8.02 \mathrm{E}-02\) & 1.278-01 & 2318-01 & 3.608-01 & \(7.11 \mathrm{E}-01\) & \(1.29 \mathrm{~B}+00\) & \(1.638+00\) & \(2.218+\infty\) & \(2.418+60\) \\
\hline Surturben & 489000 & 212 & 4.29E-01 & 2.488 .04 & \(0.00 E+00\) & \(0.008+00\) & 3.238-02 & 7.74E-02 & \(1.638-01\) & 3.458-01 & S.0eE-01 & 7578-01 & \(1.068+\infty\) & \(2728+00\) & \(4.688+80\) \\
\hline \multicolumn{16}{|l|}{Reco} \\
\hline Asin & 110000 & 4 & 2.12E-02 & 2328-04 & \(0.008+\infty\) & 0.008 + +0 & 0.008 +00 & \(0.008+\infty\) & 0.008+ +0 & 7.698-02 & \(1.358-01\) & 1.958-01 & 1.958-01 & 1.558-01 & 1958-01 \\
\hline Black & 122000 & 5 & 3398-01 & 6.398-04 & 1.588-01 & \(1.588-01\) & \(1.588-01\) & 1.588-01 & 3.018-01 & 5.898-01 & 7.568-01 & 7568-01 & \(7.568-01\) & 7568-01 & 7.56-91 \\
\hline Other/NA & 30000 & 3 & 7.64B-01 & 3.018-03 & 3.30E-01 & 3.308-01 & 3.308-01 & 3.308-01 & 3.308-01 & 3.948-01 & \(1.458+00\) & 1.4TB+e0 & 1.408+60 & 1ASB + + & 1.4FR+ +0 \\
\hline White & 752000 & 397 & 4.41E-01 & 1.708-04 & \(0.008+\infty\) & \(0.00 \mathrm{~B}+\infty\) & 4.688-02 & 7.885-02 & 1.728-01 & 3.258-01 & 5.148 .01 & 9.258.01 & \(1.29 \mathrm{E}+00\) & \(2.218+\infty\) & 4.648+0 \\
\hline \multicolumn{16}{|l|}{Regions} \\
\hline Minweat & 3149000 & 156 & \(4638-01\) & 2.658-04 & \(0.008+\infty\) & 0.008 +00 & 1898-02 & 7.298-02 & 1.398-01 & 3.458-01 & 3.78-01 & \(1.018+00\) & 1. \(548+\infty\) & \(2218+\infty\) & 2.728+ +0 \\
\hline Northent & 1532000 & 81 & \(4.378-01\) & 3.908-94 & \(0.008+\infty\) & \(0.008+00\) & 5.258-02 & \(9.758-02\) & 1.618-01 & 2608-01 & S.128.01 & 1.068 +00 & \(1.318+80\) & 3.098 + + & 3.98+60 \\
\hline south & 1514000 & 79 & \(4178-01\) & 2.818-04 & \(0.008+\infty\) & \(0.008+\infty\) & 9.248 .02 & 1.208-01 & 1.968-01 & 3.318-01 & \(4 \mathrm{E28}-1\) & 2908-01 & 1.288+00 & 1.46E \(+\infty\) & \(2 A 18+40\) \\
\hline Wat & 1995000 & 93 & 4.218-01 & \(3.948-04\) & \(0.0085+\infty\) & \(0.008+\infty\) & 2248-02 & S.438-02 & \(1.718-01\) & 3.308-01 & \(5.148-01\) & 7.28801 & \(1.018+\infty\) & \(4.648+\infty\) & \(4.68+40\) \\
\hline \multicolumn{16}{|l|}{Resposes to Questionneire} \\
\hline Do you graden? & 4611000 & 239 & 4.46E-01 & 2.248-94 & \(0.008+\infty\) & \(0.008+\infty\) & 2.248 .002 & 7.178-02 & 1.358-01 & 3.06E-01 & 5.518-01 & \(1.018+\infty\) & 1.46B+00 & \(2.418+\infty\) & 3.098+40 \\
\hline Do you frup & 46000 & 38 & 3.12E-01 & 8.178-04 & \(0.008+\infty\) & \(0.008+\infty\) & 6938-02 & 7.17808 & 1.038-01 & 4.128-01 & 5358-01 & 1. \(\%\) \% \(+\infty\) & \(2.058+00\) & \(2.058+\infty\) & \(2.608+6\) \\
\hline
\end{tabular}

Table 2-47. Intake of Total Asparagus (g/kg-day)


Table 2-48. Thatake of Total Bects (ef \(/ \mathrm{E}-\)-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Popectation Grome & \[
\begin{gathered}
\mathrm{N} \\
\sim
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} \\
\text { unwrid }
\end{gathered}
\] & Hen & SE & N & Pl & P & 110 & 125 & Pso & MTs & P0 & H & 18 & F100 \\
\hline Tokl & 11640008 & 625 & 4.78.01 & 1372-8 & 1.906-83 & 2928-02 & 6.928-8 & 27800 & 126001 & 3615-91 & 6.018-01 & 1.018+60 & 138200 & 2388+09 & 4.088+ 0 \\
\hline \multicolumn{16}{|l|}{Ase} \\
\hline <11 & 145000 & 8 & \(1.158+\infty\) & 1.038-93 & 6.938-01 & 6.938-01 & 6938-01 & 6938-01 & 8.6TS-01 & \(1.118+00\) & 1.192+00 & \(1.688+\infty\) & 2.08+e0 & 2103+00 & 2.108+ \({ }^{\text {a }}\) \\
\hline 01-02 & 353000 & 23 & \(1.16 \mathrm{E}+\infty\) & 1.468 .03 & \(1.788-02\) & 1.788 .02 & 3938-01 & 3936-81 & 4S98-41 & 8398.01 & \(1328+00\) & 2.98+60 & 3018+60 & 4808+00 & \(4088+\infty\) \\
\hline 03-05 & \(3 \times 5000\) & 22 & \(1.278+\infty\) & \(1.178-83\) & 2.558-01 & 2.59501 & 2558-9! & \(4128-91\) & 6.108.01 & 1.09\%+00 & 2288+00 & \(2.18+00\) & 2,183+60 & 2978+00 & 2978+40 \\
\hline ©-11 & 204000 & 4 & \(6.728-01\) & 6.468 .01 & \(1.158-01\) & 1.158-01 & 1928.81 & 2.412-01 & 319801 & 5.18E-91 & 7.TE-01 & \(1.308+00\) & 1.738+00 & 3.748+00 & 3.748+50 \\
\hline 12.19 & 1880000 & 58 & 2798-01 & 1.508004 & 3.08E-02 & 3.058-02 & 2068.02 & 1.028-91 & 1338-01 & 2205-01 & 3.988 .81 & CMEA1 & 7.128-91 & 9.E8-01 & 9.9881 \\
\hline 20-39 & 2754000 & 14 & 324E01 & \(1.738-94\) & \(1508-03\) & 2.588 .08 & 5.608-02 & 6.988-0. & \(1.208-81\) & 2.00-91 & 4308-01 & 783801 & 278-91 & \(1.248+60\) & \(2.128+40\) \\
\hline 4069 & 4021000 & 238 & 3868-91 & 1.478-94 & \(1.205-02\) & 257E-02 & 7.378-02 & 278800 & 1.748 .01 & 206E-01 & 453E-01 & 2338-61 & 1.158+6 &  & \(1238+\infty\) \\
\hline 70+ & 170000 & 87 & \(6.12 \mathrm{E}-01\) & 295E-01 & 3.21E-02 & 3.21E-02 & 1.648-01 & 2.48.01 & 3.598-01 & 4968-01 & 2nE-01 & 1.328+00 & \(1 \mathrm{ASE}+6\) & 1.5\% 60 & \(1.598+\infty\) \\
\hline \multicolumn{16}{|l|}{Semons} \\
\hline Pall & 303000 & 105 & 5078-01 & 3028-04 & \(1208-02\) & 2.548-00 & S.008-02 & 6.948-02 & 1.64E0] & 3.648-01 & 3,76E-01 & \(1.248+00\) & 1.408+0 & 2.418+60 & 299E+60 \\
\hline Spring & 2737000 & 251 & 9.02B-01 & 281804 & 2928-02 & 6.418-02 & 2.25B-02 & 1.078-01 & 1818-01 & 3888-01 & \(6.648-01\) & 1.02E+00 & 1308+60 & \(2.118+0\) & \(4.08 \mathrm{E}+\infty\) \\
\hline sumber & 2973000 & 80 & 4.188301 & 1.998-94 & 287E02 & 4.258-02 & 6.81E-02 & 183E-02 & \(1.888-01\) & 3598-01 & 5.108-01 & 2.938-91 & 1.218+ +0 & \(159 \mathrm{~S}+0\) & \(1.73 \mathrm{~B}+6\) \\
\hline Winder & 291000 & 180 & 4.87-01 & 295E-08 & 1.908-03 & 1.788-02 & 7318-02 & 1.158-01 & 2058-01 & 3.498-01 & 6.248 .01 & 9.258.01 & \(1.328+80\) & 3.6\% \(8+0\) & 3.748+00 \\
\hline \multicolumn{16}{|l|}{Ubbenination} \\
\hline Cental Ciay & 3365000 & 138 & 4.748-01 & \(2.285-04\) & 3.48B-02 & 4.77e-08 & 8.258-02 & 1.358-01 & 2.298-01 & 3.61E-01 & 5.77B-01 & 9.098 .01 & 1.218+00 & 1.998 +00 & 3.69B+ \({ }^{\text {co }}\) \\
\hline Nonemetropolition & 2254000 & 156 & 5.158-01 & 3.248 .04 & 1.208-02 & \(1.268-08\) & 7.318-02 & 8818-02 & 1.998-01 & 3.898-01 & \(6.518-01\) & 1.038+60 & \(1.36+40\) & \(2818+40\) & 4.038+60 \\
\hline Surburben & 604400 & 338 & 4.678-01 & 1.978 & 1.90E-03 & 287E-02 & 6.09E-02 & 8.018-02 & 1.628-01 & 3.128-01 & 5823-01 & \(1.028+6\) & 1308+60 & 2418+40 & 3.748+00 \\
\hline \multicolumn{16}{|l|}{Rece} \\
\hline Asim & 88000 & 4 & 5.15000 & 5.438-94 & 1928-01 & 1.92E-01 & 1.92E-01 & 1.928-01 & 5.678-01 & 5.67E-01 & 6.238-01 & \(6.238-92\) & 623801 & 6238-11 & 6.238-01 \\
\hline Blact & 1012000 & 46 & 4.028-01 & 4.818-04 & 1.258-02 & 1.268-02 & 6.02E-02 & 7.97B-02 & \(1.248-01\) & \(2.68-01\) & 4808.01 & 2.38 .01 & \(1218+0\) & 3.748+00 & 3748+60 \\
\hline Nalive American & 98000 & 5 & 1.298-01 & \(1.608 \mathrm{~g}-4\) & 7378-02 & 7.37B-02 & 7.37E-02 & 7373-02 & 7378-02 & 1.178-01 & 1.062-01 & 2048.01 & 2040-01 & 2048-91 & 2048.01 \\
\hline Otheona & 15900 & 9 & 3.28E-01 & \(5.558 \mathrm{ea4}\) & \$.63E-02 & 5.638-02 & 5.63E-02 & 7.968-02 & 1.718-01 & 3.08E-01 & 3.338-01 & 651801 & 2.6801 & 213801 & 2.488 .81 \\
\hline White & 10311000 & 562 & 4.918-01 & 1.468 .04 & \(1.908-03\) & 3.04e-02 & 6.940.08 & 288002 & 1.98.01 & 3.68E-01 & \(6.118-01\) & 1.03F+00 & \(1.358+60\) & 2338+40 & \(4.008+80\) \\
\hline \multicolumn{16}{|l|}{Repions} \\
\hline Midmect & 2610000 & 162 & 494E-01 & 3.203-04 & 2988-02 & 4.128-02 & 6.488-02 & 8.808-02 & 1998-01 & 3.608-01 & 5508001 & \(1.038+0\) & 1.368+60 & 29\%8+0 & 3.098+40 \\
\hline Norticest & 3130000 & 156 & 4.008-01 & 2.228-94 & \(2.878-02\) & 4.258-02 & 6.943-93 & 1.208501 & \(2.238-01\) & 3.65E-A1 & 6.98 .01 & 988R-1 & \(1.338+0\) & 2108+6 & 2.418+40 \\
\hline South & 3711000 & 183 & 4.898-01 & 2758-94 & \(1.268-02\) & 2.548-02 & 7.468-02 & 9.408-60 & \(180 \mathrm{~B}-01\) & 3.5TE-01 & \(5.718-01\) & 9SEB-01 & \(1.388+0\) & 2ع83+60 & 40rs+60 \\
\hline Wut & 346000 & 125 & CASB-01 & 2618-04 & 1.908-03 & 1.78E-02 & 4.7TE-02 & 7.318-02 & 1.54E-01 & 2808-01 & 6.248.01 & 1.098+60 & \(1.328+00\) & 1.788+00 & 2.328+00 \\
\hline \multicolumn{16}{|l|}{Reaporse to Questionnire} \\
\hline Do you graten? & 5300000 & 307 & 497E-01 & 2285-04 & 2.218-02 & 3.068002 & 6.098-02 & 7.758-02 & 1808-91 & 3.60E-01 & 5.48-01 & 1.288+60 & 1.418+40 & 2978+40 & \(4.008+\infty\) \\
\hline Do you frm? & 385000 & 23 & 7468-01 & 1.36E-03 & 1.7E-01 & 1.728-01 & 1.818-01 & \(1.888-01\) & 285E-01 & 380E-01 & 88EME01 & \(2338+00\) & 25\% +6 & 2098+00 & 2998+00 \\
\hline
\end{tabular}
DRAFT
DO NOT QUOTE OR
CITE

Table 2-49. Intake of Total Broccoli (g/kg-day)

Table 2-50. Intake of Total Cabbuge (e/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Fopruintion Crous & \[
\underset{N}{N}
\] & \[
\stackrel{N}{\mathrm{~N}}
\] & K1.an & 8 & H & 1 & P & P10 & PS & 150 & ns & 180 & ps & P9 & P10 \\
\hline Total & 41256000 & 206 & \(1308+00\) & 201804 & 10acta & 33808 & 965802 & 1,75-91 & 396801 & 2.408-91 & 1.588+60 & 272400 & 3988+00 & 1598+ \({ }^{\text {c }}\) & 298101 \\
\hline \multicolumn{16}{|l|}{Ase} \\
\hline \(<01\) & 757000 & 0 & \(4 \leq 18+60\) & 6.128 .83 & 1.CNE+e & \(2008+60\) & 3.718.01 & 38E-01 & 939888 & 3.138+00 & 5318+60 & 1208+61 & 1228+01 & 2398+01 & 2980 +01 \\
\hline 01.02 & 1215000 & 65 & 278E+69 & 2.88 .03 & 316802 & 40860 & 1.54801 & 2.028-01 & R.178-1 & 1.318+ 6 & 3.108+00 & 7.096+00 & \(1.80{ }^{\text {col }}\) & 1.578+91 & 1.578+01 \\
\hline 0305 & 1507000 & 81 & \(3338+80\) & 2 men & cenent & 131E41 & 206801 & 4.45E-01 & 1.002+ +0 & 2020+00 & 3818+60 & 7.142+0 & 1.058+41 & 168901 & \(1.608+61\) \\
\hline \(0 \cdot 11\) & 3081000 & 206 & \(1.538+60\) & 7.778 -4 & cevete & S.75ed & 1208.01 & 2108.01 & 6.178 .01 & 1208+00 & \(2.108+\infty\) & 3.72+00 & 4.78+60 & 7918+60 & 7.918+ \({ }^{\text {co }}\) \\
\hline 12-19 & 041000 & 232 & 9.15801 & Asesel & 2.ceete & 2cuetto & 535802 & 1.198-01 & 3.458-91 & 7.17801 & 1.158+40 & 1.918+00 & 2838+0 & 3.908+ \({ }^{\text {co }}\) & 1.148+01 \\
\hline 20.39 & 1119000 & 502 & 8818-91 & 275884 & 2008t+0 & 1.78812 & 7.14802 & \(1.148-01\) & 2:18-01 & \(6.618-91\) & \(1.198+00\) & \(1.978+\infty\) & 2383+00 & 3008+60 & 1.658+01 \\
\hline 4-69 & 1476000 & 33 & \(1.178+\infty\) & 3788-4 & couste & 40484 & 1.148 .91 & 1.948-01 & 4138-01 & 2098-01 & 1.488+00 & 23st+0 & 3.578+00 & 7.50E+60 & \(1.178+01\) \\
\hline \% + & 433000 & 235 & \(1.208+60\) & 478584 & S.ecese & 9.19802 & 1.57801 & 2.10E-01 & 4.318-01 & 9338-01 & 1.1818+00 & 2SSE+C0 & \(324 E+60\) & 453E+60 & 6.258+00 \\
\hline \multicolumn{16}{|l|}{Sentons} \\
\hline Fill & 10320000 & 347 & \(1.328+\infty\) & S978-94 & 2008 +0 & 306e-02 & 9028-02 & \(1.348-01\) & 3.008-01 & 7.38.01 & 1.698+60 & 3.178+60 & 4.532+00 & 1.0NE+01 & \(1.608+01\) \\
\hline Epring & 8408000 & m & \(1.308+\infty\) & c.l03-4 & 2costeo & 388802 & 1398-01 & 2.09E-01 & 4.628-01 & 2748.01 & 1.098+60 & 206R+00 & 4.088 +00 & 2.93E+60 & \(2.238+01\) \\
\hline Summer & \(10168 \pm 00\) & 323 & \(1358+00\) & 4008-4 & cook +60 & 286E+50 & 8.59E02 & 1.72E-01 & 3.708-01 & \(1.088+\infty\) & \(1.758+60\) & 2.718+00 & 3.638+00 & 1.07E+01 & \(1.15 \mathrm{~B}+01\) \\
\hline Writer & 12960000 & 314 & \(1.208+0\) & 4aser & 0008+00 & 397802 & 1.03801 & 1.98E-01 & 4.218-01 & 8.2sen & 1.448+60 & 2S6E+00 & 3.452+00 & 7.668+60 & 2398+01 \\
\hline \multicolumn{16}{|l|}{Ubenization} \\
\hline Central City & 12371000 & 479 & \(1.638+00\) & 59\%8-94 & 1008+60 & 2008+80 & 878002 & 1.948.01 & 4.46E-01 & \(1.03 E+00\) & 1.918+60 & 3.608+00 & 5.198+00 & \(1.158+01\) & \(2.23 \mathrm{E}+01\) \\
\hline Normetropolitar & 10614000 & 752 & \(1.178+\infty\) & cerses & Cucetol & 4SOE.2 & 1.14801 & 1.74E-01 & \(3.78-01\) & 7.60 -01 & 1.488+60 & 2358+60 & \(3.218+\infty\) & 6.4B+0 & 2398+91 \\
\hline Suturben & 18871000 & 1035 & \(1.168+00\) & 3330-04 & 2008+00 & 38ce-d & \(1.03 \mathrm{E}-01\) & 1.718-01 & 3.768-01 & 7.588-01 & \(1378+00\) & \(2.368+\infty\) & \(3.538+00\) & \(8.51 \mathrm{~B}+9\) & 1.288+01 \\
\hline \multicolumn{16}{|l|}{Rese} \\
\hline Asinn & 1332000 & 63 & 2.6AB+00 & \(288 \mathrm{E}-3\) & 1398591 & 1388891 & 3.718.01 & 6.658-01 & 6.748-01 & 1.758+60 & 2948400 & 5.198+00 & 1.058+01 & \(2.148+01\) & 2.232+61 \\
\hline Bleck & 6565000 & 379 & \(1.008+00\) & 7.98804 & 0.coste & 1.002+010 & 1.24801 & 3.638-01 & 6.118-01 & \(1.35 \pm+00\) & \(2.218+6\) & 3.208+00 & \(6.128+00\) & 1.159+01 & \(1.608+01\) \\
\hline Native Ammicen & 330000 & 30 & 2288+ \({ }^{\text {co }}\) & 9.168 .43 & 215E-91 & 2.158 .01 & 231801 & 2.50E-01 & 3.478-01 & 7.798-01 & 1.648+60 & 3.258+60 & 2398+01 & 2358+01 & 2988+41 \\
\hline OtherNA & 1197000 & 45 & 1.258+e0 & 9.60804 & 108881 & 133 Eal & 3.488.01 & 3.7TE-01 & \(6.578-01\) & 9838-91 & 1.518+40 & 3.092+60 & 3.908+00 & 418E+60 & \(4.188+00\) \\
\hline White & 32037200 & 179 & 1.118+00 & 230804 & 0.002+60 & 3scech & 9.128-02 & 1.59\%-01 & 3.288-01 & 7.17801 & \(1378+0\) & 230B+60 & 3.38+60 & 760E +00 & \(1.17 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Regions} \\
\hline Midwent & 9785000 & 533 & 1,258+00 & \(6.738-4\) & 10c8+60 & 201808 & 2828-02 & 1.348-01 & 2718-01 & 6.548-91 & \(1.418+40\) & 2638+0 & 4038+00 & \(1.178+11\) & \(2288+01\) \\
\hline Northent & 8761000 & 413 & 1.28+ \({ }^{\text {c }}\) & CSCEM & 100840 & 1.788 & 208802 & 1.908-01 & 158801 & 8.568 .01 & \(1.518+40\) & 2828 \(+\infty\) & 4.268+ +0 & 7.008+40 & 1.008+91 \\
\hline South & 16338000 & 959 & 1.41E+60 & 3.74Be4 & Ceaste & 339802 & 1.218-01 & 2.188 .01 & \(5.218-01\) & 9938-01 & \(1.788+00\) & 286E+00 & 3.985+00 & 1918+60 & 1.288+01 \\
\hline Weat & 6775000 & 361 & \(1.12 \mathrm{E}+0^{0}\) & 6.48804 & 421E.42 & S.218.02 & 1.03801 & 1.46E-01 & 3.408-01 & \(6885-1\) & \(1.38+00\) & 2348+00 & 3528+ +0 & \(858+50\) & 2.38801 \\
\hline \multicolumn{16}{|l|}{Recporse to Quationarire} \\
\hline Do you greatan? & 1775000 & 1000 & 1.16E+60 & 330804 & 0.008+60 & 3 cosec & 960802 & 1.73E-01 & 3.668 -01 & 7948.01 & 1.488+60 & 2348+60 & 3.438+00 & 7.608+60 & \(1.008+01\) \\
\hline Do you furu? & 2151000 & 157 & 1.018+00 & 747804 & C00R +6 &  & 850-2 & 1.218-01 & 250E-01 & SEAED & \(1.488+60\) & 2358+00 & 2848+60 & \(6.388+0\) & 7.098+60 \\
\hline
\end{tabular}

DRAFT
DO NOT QUOTE OR
Table 2-51. Intake of Total Carrots (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Group & \[
\begin{gathered}
\mathrm{N} \\
\text { wed }
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{N} \\
\text { unw } \\
\hline
\end{gathered}
\] & Mean & SB & PO & P1 & PS & P10 & P2S & Pso & P75 & P90 & P99 & P9 & P100 \\
\hline Total & 80660000 & 4217 & 5.51E-01 & 1.16E-04 & 0.00E+00 & 2.47E-02 & 6.29E-02 & 9.58E-02 & 1.85E-01 & 3.27E-01 & 5.86e-01 & 1.108+00 & 1.53+ \(+\infty\) & 3.52E+00 & 3.248+01 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 1650000 & 86 & \(3.64 \mathrm{E}+\infty\) & 3.008-03 & 1.06E-01 & 1.00E-01 & 3.19E-01 & 8328-01 & 1.16E+00 & \(2.158+00\) & 4.458+60 & \(9.018+00\) & 1.24E+01 & 1.808+01 & 2.13E+01 \\
\hline \(01-02\) & 2885000 & 156 & \(1.83 \mathrm{E}+\infty\) & 1.82E-03 & 2.58E-02 & 2.588-02 & 2.728-01 & 4.24E-01 & 8.29E-01 & 1.32E+00 & 2.068+00 & 3.088+00 & 3.52E \(+\infty\) & 2.138+00 & \(3.248+01\) \\
\hline 03-05 & 3765000 & 202 & 9.15E-01 & 3.938-98 & \(0.00 \mathrm{E}+\infty\) & 1.218-02 & 1.38E-01 & 2.33E-01 & 4.5se-01 & 7.44-01 & 1.13B \(+\infty\) & \(1.73 \mathrm{E}+\infty\) & 2.23E \(+\infty\) & 4.098+00 & \(6.068+\infty\) \\
\hline 0 0-11 & 7755000 & 42 & 5.93E-01 & 1.79E-04 & \(0.008+00\) & 1.07E-02 & 1.218.01 & 1.80E-01 & \(2.808-01\) & 4.54801 & 7.508-01 & \(1.188+00\) & \(1.52 \mathrm{~B}+\infty\) & \(2488+00\) & \(3.888+\infty\) \\
\hline 12-19 & 8467000 & 458 & 3.13E-01 & \(1.03 \mathrm{E}-04\) & \(0.008+\infty\) & 4.71E-03 & 4.16E-02 & \(6.68 \mathrm{E}-02\) & 1.30E-01 & 2.278-01 & 3.988-01 & 6.19E-01 & 9.528-01 & 1.568+00 & \(2.848+\infty\) \\
\hline 20-39 & 23884000 & 1215 & 3.45E-01 & \(7.258-05\) & \(0.00 \mathrm{E}+\infty\) & 2.168-02 & 5.26E-02 & 7.16--2 & 1.38E-01 & 2.488-01 & 4.25E-01 & \(6.885-01\) & \(1.018+\infty\) & 1.098+00 & \(4.148+\infty\) \\
\hline 4069 & 25205000 & 1330 & 4.108-01 & 7.47E-05 & \(0.00 \mathrm{E}+00\) & 3.17E-02 & 7.53E-02 & 1.03E-01 & 1.80E-01 & 3.04E-01 & 5.05E-01 & 8.28-01 & 1.10E \(+\infty\) & \(191 \mathrm{~B}+00\) & \(4.338+00\) \\
\hline \(20+\) & 6938000 & 349 & 5.47E-01 & \(1.66 \mathrm{E}-\mathrm{eq}\) & 2.38E-02 & 6.12E-02 & 1.428-01 & 1.858-01 & 2.72E-01 & 4.268-01 & 6.35E-01 & \(1.14 \mathrm{E}+00\) & 1.438+00 & 2.278+00 & \(2.57 E+00\) \\
\hline \multicolumn{16}{|l|}{Sensans} \\
\hline Fill & 23304000 & T17 & 5.408-01 & 2348-08 & 0.008+00 & 258E-02 & 6.23E-02 & 9.09E-02 & 1.69E-01 & 3.08E-01 & S.30E-01 & 1.038+00 & 1.458+ 20 & 4.458+00 & \(1.208+01\) \\
\hline Spring & 17828000 & 1562 & 5.63E-01 & 2.238-04 & \(0.00 \mathrm{E}+\infty\) & 8.558-03 & 6.308-02 & 1.02E-01 & 1.93E-01 & 3.398-01 & 6.36E-01 & \(1.11 \mathrm{~B}+\infty\) & \(1.68 \mathrm{E}+00\) & 3.88E +00 & \(2.138+01\) \\
\hline Sumaner & 17618000 & 536 & 5.38E-01 & 1.608-04 & \(0.008+00\) & \(2.168-02\) & 6.81E-02 & 9.88E-02 & 1.95E-01 & 3.408-01 & 6.27E-01 & \(1.18 \mathrm{E}+00\) & \(1.57 E+\infty\) & 3.158+00 & \(7.248+00\) \\
\hline Wirter & 21910000 & 1322 & \(5.63 \mathrm{E}-01\) & 2.698-04 & \(0.00 \mathrm{E}+\infty\) & 3.168-02 & 6.21E-02 & 9.54E-02 & 1.83E-01 & 3.328-01 & 593E-01 & \(1.09 \mathrm{~B}+00\) & 1.65E +0 & 3.278+00 & 3.248+01 \\
\hline \multicolumn{16}{|l|}{Unbanization} \\
\hline Centrol City & 23211000 & 89 & 6.62E-01 & 3.98-04 & \(0.008+\infty\) & 1.108-02 & 6358-02 & 9.85E-02 & 1.818-01 & 3.268-01 & 6.52E-01 & 1.25B+00 & \(204 \mathrm{~B}+\infty\) & \(6.418+00\) & 3.24E+01 \\
\hline Nonmetroposion & 18190000 & 127 & 5.21E-01 & 1.98E-04 & \(0.008+\infty\) & \(2.79 \mathrm{E}-02\) & 5.93E-02 & 9.65E-02 & 1.90E-01 & 3.318-01 & 5.678.01 & 1.078+00 & 1.48E \(+\infty\) & \(2788+00\) & \(1.448+01\) \\
\hline Surturben & 39199000 & 2069 & 4.99E, 01 & 1.03E-04 & \(0.00 \mathrm{~B}+00\) & 3.2015 & 6.662- \(\sqrt{2}\) & 9.91E-02 & 1.83E-01 & 3.24E-01 & 5.058-01 & \(1.038+\cdots 0\) & 1.448420 & 2758+09 & 1.248+91 \\
\hline \multicolumn{16}{|l|}{Rese} \\
\hline Asim & 1466000 & 63 & 5.61E-01 & \(9.038-04\) & 3.088-92 & 3.088-02 & 5.41E-02 & 1.118-01 & 1.718-01 & 3.018-01 & 5.568-01 & 9.138-01 & \(1.718+\infty\) & \(7.168+00\) & \(7.168+00\) \\
\hline Binct & 4579000 & 215 & 3.398-01 & 5.07E-94 & \(0.00 \mathrm{~B}+00\) & 4.77R-03 & 1.168-02 & 5.92E-02 & \(1.228-01\) & 2.708-01 & \(5.408-01\) & \(1.248+\infty\) & \(2.138+\infty\) & 3.608+00 & \(1.48 \mathrm{~B}+01\) \\
\hline Native American & 701000 & 53 & \(1.4 \mathrm{~B}+\infty 0\) & 7.108-03 & 3.628-02 & 3.228-02 & 4.57E-02 & 5.568-02 & 1.318-01 & \(2.99 \mathrm{~B}-01\) & 5.448-01 & 2.4B+00 & 8. \(10 \mathrm{~B}+\infty\) & 3.248+01 & \(3.248+01\) \\
\hline Otheond & 2152000 & 197 & 5.05E-01 & 3.19E-04 & 3.29E-02 & 4.128-02 & 6.698-02 & 7.458-02 & 1.548-01 & 3.768-01 & 6.748-01 & 1.25B+ +0 & 1.58B \(+\infty\) & \(2.02 \mathrm{C}+00\) & \(2.578+\infty\) \\
\hline White & 7170000 & 377 & S.41E-01 & 1.03E-94 & \(0.00 \mathrm{E}+\infty\) & 2.958-02 & 6.818-02 & 9.88E-02 & 1.69E-01 & 3.328-01 & 5.858-01 & 1.098+00 & 1.538+00 & \(3.188+00\) & \(2.138+01\) \\
\hline \multicolumn{16}{|l|}{Regiona} \\
\hline Midweat & 18840000 & 1050 & 4838-01 & 1.0nE04 & \(0.008+\infty\) & 5.638-03 & 4.958-02 & \(8.008-02\) & 1.698-01 & 3.098-91 & 5.378-01 & 1.098+ \(+\infty\) & 1. \(2.28+\infty\) & 3.188+00 & \(2.138+01\) \\
\hline Northeest & 20455000 & 985 & 580B-01 & 187E-04 & \(0.00 \mathrm{E}+00\) & 3.808-02 & 1928-02 & 1.06E-91 & 2.058-1 & 3.768-01 & 6.188 .01 & 1.178+00 & 1.71E+60 & 3.618+00 & \(1.095+01\) \\
\hline 80uch & 22597000 & 1157 & 5.308-01 & 2.73E-04 & \(0.00 \mathrm{~B}+\infty\) & 3.208-02 & 6.75-02 & 9.718-02 & 185E01 & 3.03E-01 & 5.408-01 & 9918-01 & \(1.358+\infty\) & 3.158+00 & 3.20801 \\
\hline Went & 1850900 & 963 & \(6.15 \mathrm{E}-01\) & 2.69E-04 & 1.068-02 & 2.898-02 & 6.298-02 & 9.558-02 & 1.80E-01 & 3.41E-01 & 6.598-01 & 1.258+00 & \(1,948+\infty\) & \(4.00 \mathrm{E}+\infty\) & 1.808+01 \\
\hline \multicolumn{16}{|l|}{Reeponne to Questionsaina} \\
\hline Do you greden? & 35471000 & 128 & 4.49R-01 & 9.71E-05 & 0.008 \(+\infty\) & 1.88.02 & 6.35B-02 & 9.468-92 & 1.778-01 & 3.058-01 & 5.108-01 & 9.118 .01 & \(1.248+\infty\) & 2538+60 & 1.988+01 \\
\hline Do you frem? & 3815000 & 224 & 4.25E-01 & 2.75E04 & \(0.008+\infty\) & 2.098-02 & 5.368-02 & 9.138-02 & \(1.788-01\) & 2.858-01 & 5.018-01 & 2.068-01 & \(1.16 E+\infty\) & 2818+60 & 7.318+0 \\
\hline
\end{tabular}
Tabte 2-52. Intake of Total Cora (e/ky-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Popuintion Gope & \[
\begin{gathered}
\mathrm{N} \\
\text { wrd } \\
\hline
\end{gathered}
\] &  & Hen & 82 & P & P1 & PS & Pis & 125 & P30 & 17 & 88 & P\% & PH & P100 \\
\hline Total & 93616000 & 5086 & 20serel & 1.198.4 & 0.008+00 & 425-02 & 1.198-41 & 1.67801 & 278801 & cyld & ScIEOI & 1.78200 & 201E+00 & 5.782+00 & 2308+61 \\
\hline \multicolumn{16}{|l|}{Ase} \\
\hline <01 & 1671000 & 91 & \(473+60\) & 3.178-03 & \(2.188-11\) & 218001 & 490801 & 661891 & 1.738+00 & 330540 & 7302+60 & 1.118+01 & 1328+01 & 1978+91 & 2248+01 \\
\hline 01-02 & 3363000 & 199 & 1.02E+00 & 751804 & 1543-41 & 2058.01 & 3.198.81 & 45801 & 7.51 -11 & 120400 & 2136+0 & 3198000 & 4132+00 & 7899+00 & 8.97E+00 \\
\hline \(03-15\) & 4798000 & 23 & \(1.50 \mathrm{E}+\infty\) & 5.64E-94 & 6.198-02 & 1.108-01 & 3.25ed & 413801 & 695841 & 1.11840 & 15\%2000 & 29\%9+00 & \(3808+00\) & 602 +00 & \(7.278+0\) \\
\hline 06-11 & 10157000 & 570 & 1.04E+00 & 3.568-4 & \(0.002+\infty\) & 469E-2 & 3 308-al & 2.47301 & dicel & crati & 2114+00 & \(2078+60\) & \(3.138+60\) & \(5.798+00\) & \(1.188+61\) \\
\hline 12-19 & 11634000 & 631 & 6.73E-01 & \(2.03 \mathrm{E}-4\) & \(0.002+50\) & 220E-09 & 1.148-91 & 1.51E81 & 2ased & 4318-81 & 28.501 & \(148 \mathrm{C}+0\) &  & 3.578 +00 & 4TEP +1 \\
\hline 20-39 & 30817000 & 1600 & 5.748-01 & 1.03 E -4 & 0.00E+60 & 3.048 .02 & 9.71B-09 & \(1.48+1\) & 2.78-41 & 387801 & 7ment & \(1.208+00\) & \(1.678+\infty\) & 2168+00 & \(4.75+6\) \\
\hline 4069 & 25534000 & 1309 & \(7.018-91\) & 1.57E-4 & 0.00E+60 & 7.108-92 & 1328-01 & 1.078-91 & 261541 & 4 mb 01 & terel & \(1.488+00\) & \(2078+00\) & 3.582+00 & 8.22E +0 \\
\hline 70 & \$635000 & 255 & 8.05801 & 4018-04 & 391E02 & 479E-02 & 1.48E-91 & 238.01 & 3.61E-91 & 554581 & 98541 & \(1.48 \mathrm{t}+60\) & 220E+00 & 5. \(138+60\) & 9.23E+ \\
\hline \multicolumn{16}{|l|}{Sesions} \\
\hline Fall & 23727000 & 007 & 7378-01 & 2.16E-04 & 0.002+00 & S.15E-02 & 1.138-01 & 1528-01 & 2.58 .91 & 45801 & 200801 & 1.08+00 & 2.11E+00 & 5.6\% +00 & \(1.198+01\) \\
\hline Spring & 21579000 & 1944 & 8.418-01 & 2.518 .94 & 0.00E+00 & 7.148-02 & 1.418-01 & 184801 & 3.038-91 & 529501 & 9 ck & 1.768+00 & 2.45E+00 & \(4.778+\infty\) & \(2208+01\) \\
\hline suruma & 24003000 & 76 & 1.14E+60 & 2938-04 & 0.008+00 & 1.0SE-02 & \(1.158-01\) & 2.018.01 & 3.503-41 & 71.1801 & 130n+m & 2558+60 & 3.53E+60 & 1.898+00 & \(1.518+61\) \\
\hline Wroce & 2427000 & 1505 & \(6.618-01\) & 1.668-04 & 0.008 +00 & 6.20E-02 & 1.18E-01 & 1.580 .01 & 24801 & 407808 & 752081 & 1.408 \(+\infty 0\) & 2058+00 & 3.608+ +0 & 1.408+01 \\
\hline \multicolumn{16}{|l|}{Urbeniztion} \\
\hline Central Cry & 24866000 & 965 & \(8.79 \mathrm{E}-01\) & 2898-04 & 0.008+00 & 3.578-02 & 1.188-01 & 1.00808 & 278801 & 475891 & 939801 & 1.781+00 & 2718+00 & \(8.328+\infty\) & \(2.208+01\) \\
\hline Nonnetropoliten & 25359000 & 1734 & 2.028-01 & 237E-04 & \(0.008+60\) & 7268-02 & 1.198 .01 & 1.0\%801 & 2918-1 & \(5318-1\) & 9,928-81 & \(18 \mathrm{ER}+00\) & 3.04E+00 & \(6.688+\infty\) & \(1.48 \mathrm{E}+01\) \\
\hline Sumburben & 43381000 & 2367 & 7.928-01 & 1.408-04 & \(0.008+00\) & 4.79E-02 & 1.238-01 & 1.608-01 & 27881 & 40681 & 538881 & 1.72B+00 & 2.45E+ +0 & \(4.258+00\) & \(1.518+01\) \\
\hline \multicolumn{16}{|l|}{Rece} \\
\hline Asien & 889000 & 39 & \(1.478+\infty\) & 2.318-03 & 2.5se-01 & 2.5SE-01 & \(2098-01\) & \(3.218-01\) & 46802 & 935804 & 1.48+00 & 2458+60 & 2.508+00 & \(1.198+01\) & \(1.198+01\) \\
\hline Bleck & 10823000 & 576 & 9.93E-01 & \(3.998-04\) & \(0.00 \mathrm{~B}+\infty\) & 0.00E+00 & 1.238001 & \(1.788-91\) & 3.018-91 & 580801 & 113 & 2.083+00 & 3238+00 & \(7318+00\) & \(1.138+01\) \\
\hline Native American & 955000 & 4 & 6.46E-01 & \(1.048-103\) & 7.99E-02 & 7.92E-02 & 957E-02 & \(1.568-91\) & 234801 & 3.7881 & 738501 & \(1.008+00\) & \(1.738+\infty\) & \(7.308+00\) & 7.308+00 \\
\hline OthenNA & 2502000 & 124 & 9968-01 & \(6.25 \mathrm{E}-04\) & 1,41E-02 & 2508-02 & 1.168-01 & 1.508001 & 359801 & 5.75801 & L3aste & 2638+00 & 3.578+00 & \(4.638+\infty\) & \(4.63 \mathrm{E}+0\) \\
\hline White & 7847000 & 405 & \(8.158-01\) & 1.208-94 & \(0.008+60\) & 5.158-02 & 1.188 .01 & \(1.608-1\) & 274801 & 440801 & 928801 & 1090 & 2.578+00 & \(5.358+80\) & 22EE+01 \\
\hline \multicolumn{16}{|l|}{Resjoss} \\
\hline Midunt & 23795000 & 137 & 2.108-01 & \(2508-04\) & \(0.008+\infty\) & 6.748-02 & 1.198-01 & 1.628-81 & 260801 & 4 cres 1 & 858801 & 1.088 +00 & \(259 \mathrm{E}+00\) & 6.688+00 & \(2208+01\) \\
\hline Narthent & 20513000 & 1034 & 8.835-01 & \(2588-4\) & \(0.008+00\) & \(4095-02\) & \(1.12 \mathrm{E}-91\) & 1.563-01 & 265801 & COSEP1 & 1838+00 & \(18 \mathrm{CB}+00\) & 2098+00 & \(7.178+\infty\) & L. \(38 \mathrm{~B}+60\) \\
\hline 8004h & 32552000 & 1806 & \(8.348-01\) & \(1.888-4\) & \(0.008+\infty\) & 4.973-02 & 1308 -al & 1.208501 & \(31088-1\) & 53mal & 950ent & 1.708 +00 & \(2.408+00\) & \(4.208+\infty\) & \(1.518+01\) \\
\hline Weat & 16758000 & 34 & 3.698-01 & 2.818-4 & \(0.008+00\) & 4.328-02 & 1.058-01 & 1.568.01 & 2.0\%-81 & 490801 & 183800 & 1.788+00 & 2838+00 & 5.9. \({ }^{\text {+ }}\) +0 & \(1.518+01\) \\
\hline \multicolumn{16}{|l|}{Responme to Quentionneire} \\
\hline Do you purden? & 33143000 & 1907 & 7.508-01 & 1.838-4 & 0.008+00 & 5.658-02 & 1.008-01 & \(1.518-91\) & \(2.478-1\) & 414801 & 258801 & 1.53+ \({ }^{1}\) & 2.278+00 & 5.798+00 & \(1.518+01\) \\
\hline Do you frmot & 3807000 & 233 & 1.04E+60 & 8278-0 & 3.408-02 & \(3918-02\) & 5,658-02 & 1.28811 & 2.40801 & 471801 & 108500 & 2808+00 & 3.948+00 & 7.418+00 & 1.48+01 \\
\hline
\end{tabular}
DRAFT
DO NOT QUOTE OR
CITE

CITE

Table 2-53. Intake of Total Cucumbers (g/kg-day)

Table 2-54. Ionke of Toull Leturee (f/ks-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Pogeinbion } \\
& \text { Orowe }
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{N} \\
\mathbf{n} \text { d } \\
\hline
\end{gathered}
\] & \[
\stackrel{N}{N}
\] & Mear & SE & 10 & P1 & Ps & P10 & P2S & Pso & ms & Pso & P9s & Pn & 1100 \\
\hline Tooul & 108765000 & 57\% & 5.168 .01 & 4.178-30 & \(0.008+\infty\) & \(0.50 \times+\infty\) & 6.950 .02 & 1248.01 & 240801 & 4.008.01 & 6518.01 & 1.018+00 & 1.328+00 & 2.130+80 & S.4.4.00 \\
\hline \multicolumn{16}{|l|}{Ase} \\
\hline <01 & 1610000 & Es & 0.008+00 & \(0.008+\infty\) & 2008+00 & 0.00E + +0 & \(0.008+\infty 0\) & \(0.008+\infty\) & -1008+00 & \(0.008+60\) & 0.000 + +0 & \(0.008+\infty\) & \(0.008+\infty\) & \(0.008+\infty\) & \(0.008+\infty\) \\
\hline \(01-02\) & 3127000 & 174 & \(1.168+00\) & 4.028-9 & 2.91802 & 2918.02 & 3.47B-01 & \(4.258-01\) & 6.5Sb-1 & 991501 & \(1.53 \mathrm{E}+\infty\) & \(2.108+\infty\) & 2.508+00 & \(4.008+60\) & S. \(318+\infty\) \\
\hline 03-93 & 494000 & 27 & 7.778 .01 & 2.03e-4 & 2328.02 & \(5.068-22\) & 2.19801 & 3.228.01 & 4.70801 & 7.22801 & \(1.00 \mathrm{e}+\infty\) & \(1.48+50\) & \(1.598+\infty\) & \(2378+60\) & \(2.088+\infty\) \\
\hline 06.11 & 10171000 & 57 & 5.918 .01 & 1338-04 & 4.19202 & 6.19802 & 1.298-01 & 1298-01 & 3.19801 & S.O2B-91 & 7.438.01 & 1.1Ib \(+\infty\) & \(1.318+\infty\) & \(2.278+69\) & 3.008 \(+\infty 0\) \\
\hline 12-19 & 12205000 & 67 & 425801 & 8.c3s-05 & \(0.008+\infty 0\) & 8.148 .03 & 8.17802 & 1.24 e. 01 & 227801 & 3.485-91 & 3146801 & \(786 \mathrm{E}-01\) & \(1.078+\infty\) & 1. \(2.88+60\) & \(1888+\infty\) \\
\hline 20.39 & 33801000 & 176 & 4358.01 & \(6.13 \mathrm{E}-5\) & \(0.008+\infty\) & 1.578-02 & 7.648-02 & \(1.178-01\) & 209801 & 3.458 .01 & 5.16E.01 & 8398001 & 1.148+ +0 & \(1.758+\infty\) & \(4.038+\infty\) \\
\hline 4009 & 31240000 & 129 & StEE01 & 7338 -05 & \(0.00 \mathrm{E}+\infty\) & 3.608-02 & 9.63802 & 1298.01 & 2.458001 & 4.198 .81 & 6.4 TE. 1 & 1.008+60 & \(1.328+\infty 0\) & \(1.918+\infty\) & \(3.6818+\infty\) \\
\hline \(20+\) & cosscos & 40 & 5888-01 & 1.73E-4 & 107502 & 1.63E-2 & 6.65802 & 1.128-01 & 278 CO & 4.968-01 & 7.058-01 & \(1.178+\infty\) & 1.128+00 & \(1.968+\infty\) & 4.998 \(+\infty 0\) \\
\hline \multicolumn{16}{|l|}{Sestons} \\
\hline P. \({ }^{\text {a }}\) & 23774000 & 73 & 4798-01 & 7.67E-05 & \(0.008+\infty 0\) & \(0.008+00\) & 5306-12 & 1.058-01 & 2.27e-01 & \(4.12 \mathrm{E}-11\) & 6.20B-01 & 9.128.01 & \(1.128+\infty 0\) & 1258+60 & 3.013+00 \\
\hline Spoing & 28827000 & 248 & 5.37801 & Q.tieos & \(0.008+60\) & \(0.008+\infty 0\) & 8.21802 & 1.398.01 & 2548001 & 434801 & 7.018.01 & \(1.05 \mathrm{E}+60\) & \(1.318+\infty 0\) & 2.138+00 & 3.513+00 \\
\hline summer & 2837000 & 0 & 5.278 .01 & 8.94 EOS & \(0.008+60\) & \(0.008+00\) & 6.27E-22 & 1.068 .81 & 2358-01 & 3.938-01 & \(6.648-01\) & \(1.15 \mathrm{E}+60\) & \(1.418+60\) & 2.22B+00 & \(5.648+\infty\) \\
\hline Winter & 27580000 & 1609 & 5.138 .01 & 8. 24 -05 & \(0.008+60\) & \(0.008+\infty\) & 8.83E02 & 1.318-01 & 2378-01 & 4.03E-01 & 6.22E.01 & 1.03E+60 & \(1.328+\infty\) & \(2.198+60\) & \(4.588+\infty\) \\
\hline \multicolumn{16}{|l|}{Urbenimion} \\
\hline Contrul City & 30125000 & 1174 & 5.488-01 & 9.248005 & \(0.008+60\) & \(0.008+\infty\) & S8MB-02 & 1.168 .01 & 2.438 .01 & \(4.288 \mathrm{~B}-1\) & 7.018-01 & \(1.12 \mathrm{~B}+00\) & \(1.398+\infty\) & 2308+00 & \(3.648+00\) \\
\hline Nonimetropolition & 24219000 & 1666 & 4908-01 & 793E-03 & \(0.008+60\) & \(0.008+\infty\) & 598E02 & 1.208.01 & 2.46801 & \(4.055 \mathrm{E}-1\) & 6.228-01 & 9808001 & \(1.288+00\) & \(1.208+60\) & \(4.588+00\) \\
\hline Surturben & 5402500 & 2925 & 5.098 .01 & 5.SAESS & \(0.00 \mathrm{~B}+6\) & \(0.008+00\) & \(8.12 \mathrm{E} \cdot 2\) & 1.348-01 & 2378-01 & 4.028-01 & \(6.508-01\) & 1.03E+00 & \(1.328+\infty\) & 2028+00 & S.SIE+00 \\
\hline \multicolumn{16}{|l|}{Rese} \\
\hline Asim & 117800 & 51 & 5348.01 & 3.728-04 & \(0.008+\infty\) & \(0.008+\infty 0\) & \(4.158-02\) & 1.08-01 & 1.958-01 & 4.658 .01 & \(8.518-01\) & 1.228+60 & \(1.048+00\) & \(2.038+60\) & \(2.038+\infty\) \\
\hline Bleck & 9385000 & 4/s & 4653-01 & 1308.04 & \(0.008+60\) & \(0.008+\infty 0\) & 5.798-02 & 9.878 .01 & 1.95E-01 & 3.46E01 & 6.218 .01 & 9518.01 & \(1.308+00\) & \(1.82 \mathrm{E}+60\) & \(2008+\infty\) \\
\hline Native Americm & \$6700 & 4 & 4.038 .01 & 3.718 .4 & \(0.008+60\) & \(0.008+608\) & 5.2080 .02 & 9508.02 & 2.13E-1 & 3.01 B 01 & 4788.01 & 7.558 .01 & \(1.078+00\) & \(2.368+\infty\) & \(2.3 \times 8+\infty\) \\
\hline Othaonin & 3053000 & 141 & 6348.01 & 3.278-4 & \(0.008+60\) & \(0.00 \mathrm{E}+60\) & 1.388 .01 & 2068.01 & 3.35801 & 4.078 .01 & 7.87R-01 & 1.398 +00 & \(1.708+00\) & \(3.018+60\) & \(3.018+\infty\) \\
\hline Whis & 9418000 & 306 & 3.188.01 & 4.47E-05 & \(0.008+60\) & \(0.008+50\) & 7.088 .02 & 1.259 .01 & 2.638 .01 & 4.138 .01 & 6.56801 & \(1.058+60\) & \(1.338+00\) & \(2.138+60\) & 5.4. \(6+\infty\) \\
\hline \multicolumn{16}{|l|}{Repions} \\
\hline Miduwat & 2778000 & 1400 & <greot & 8.508 .05 & \(0.008+50\) & \(0.008+50\) & 4.938-02 & 1.058 .01 & 2348-01 & \(3.008-1\) & 6.44801 & 1.008+e0 & \(1.258+00\) & \(2138+60\) & S. \(318+00\) \\
\hline Northemet & 25935000 & 1265 & 557801 & \(9.788-58\) & \(0.008+\infty\) & \(0.008+00\) & 9.008 .02 & 1.408.01 & 2.658 .01 & 4.48801 & 6.68801 & \(1.128+\infty\) & \(1.03 \mathrm{~B}+00\) & \(2208+60\) & \(5.668+\infty\) \\
\hline south & 35211000 & 123 & 4.918.01 & 6.708-05 & 0.00E+60 & \(0.008+\infty\) & \(8.008-2\) & \(1318-01\) & 235801 & 3.97501 & 6.318 .01 & 9,508.01 & \(1.288+60\) & \(1.598+60\) & \(4.258+60\) \\
\hline Wat & 23881000 & 1250 & 5.288 .01 & 2.78EOS & \(0.008+60\) & \(0.008+\infty\) & 6.018-02 & 1.134-01 & 2.33801 & 4.11801 & 7.018.01 & \(1.118+\infty\) & \(1.378+00\) & 20IE+00 & \(4.058+\infty\) \\
\hline \multicolumn{16}{|l|}{Resporse to Questionsmire} \\
\hline Doyou grimat & 41358000 & 224 & 4.658 .01 & S.678.05 & \(0.008+\infty\) & \(0.008+\infty\) & 6.018 .02 & 1.108 .01 & 2288.01 & 3.608-01 & 3.956-01 & 9.218 .01 & \(1.178+00\) & 1.208+ +10 & \(4.558+60\) \\
\hline Do you furus & 4105000 & 251 & 4.998-01 & 1.5TB-4 & \(0.008+60\) & \(0.008+00\) & 4.498-02 & 1.29E.01 & 2.698.01 & 3.888 -01 & 5.71E.01 & 203R-01 & \(1.148+00\) & 1.468+60 & 2.418+00 \\
\hline
\end{tabular}

> DRAFT
> DO NOT QUOTE OR
> CITE

Table 2-55. Intake of Total Lima Beans (g/kg-day)


Table 2-56. Incake of Toul Okre (e/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Popederion Ones & \[
\begin{gathered}
\mathrm{N} \\
\mathbf{w n} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} \\
\end{gathered}
\] & Nena & SE & P1 & PI & Ps & P19 & Ps & Pso & P7S & 180 & pes & P9 & P100 \\
\hline Tod & 610000 & 271 & 4.00E-21 & 158804 & \(0.008+00\) & 0.002+ +0 & 5.038-12 & 2.6E02 & 1.4804 & 3.00801 & 497E-81 & 81801 & \(1.108+\infty\) & 1858+00 & 3278+00 \\
\hline \multicolumn{16}{|l|}{Ast} \\
\hline \(<01\) & 2000 & 4 & \(0.005+\infty\) & \(0.008+\infty\) & \(0.008+60\) & \(0.008+80\) & -008t00 & \(0.005+\infty\) & 0.008+ 00 & 0000+ +0 & \(0.008+69\) & \(0.008+\infty\) & \(0.008+19\) & 2003+80 & C.OES +00 \\
\hline 01-02 & 117000 & 4 & 4.7680 & 1.10803 & 1.025-01 & \(1.178-91\) & \(1.028-1\) & 1.023-01 & 3.07B-91 & 3078-91 & 1328-1 & \(1.158+00\) & \(1.188+\infty\) & 1.18 +100 & 1.158100 \\
\hline \(03-85\) & 360000 & 15 & 8 Pe-91 & \(1.38-03\) & 1.15E-01 & 1.158-01 & 1.18801 & 1.768001 & C.OSE-01 & 4.788-91 & 1.088+00 & \(1.39 \mathrm{P}+0\) & \(3278+00\) & \(3278+00\) & 3272 +00 \\
\hline 0 0-11 & 165000 & 30 & S.698-91 & \(6.560-94\) & 4.148-2 & 4.148-02 & S.03E-02 & 638802 & 1.10E-01 & 3,08-01 & 7A7B-01 & \(1.538+00\) & \(1.888+0\) & \(1888+\infty\) & \(1858+00\) \\
\hline 12-19 & 78900 & 33 & 420E01 & 3.528-04 & \(6.978-8\) & \(697 B-12\) & 2 coser 2 & 1.148-01 & 1.128-01 & 3.78801 & 5.pe-91 & 7.28501 & 121B+00 & \(1.338+60\) & \(1.388+00\) \\
\hline 20-39 & 1607000 & 6t & 3.778-01 & 1.92E04 & 2.69802 & 2.098-02 & 7288002 & 9998-02 & \(1.488-01\) & \(2.468-01\) & 4azeal & c.788-91 & 8.168 .4 & \(1.168+\infty\) & \(1.258+\infty\) \\
\hline 4269 & 2011000 & 100 & 3348-01 & 187E-4 & 1.248-02 & 1.24E-02 & 6298-02 & \(9.488-02\) & 1.4TE-01 & \(278 \mathrm{E}-01\) & 4268-A1 & 7.04eal & 1.028+60 & \(1.338+00\) & \(1.338+\infty 0\) \\
\hline \(70+\) & 401000 & 23 & 3778-01 & 378808 & 211E-02 & 211800 & 2.118-2 & 9.86 -02 & 1.748 .01 & 3.478-01 & 4.678-91 & 7.028-01 & \(1.028+00\) & 1.11E+00 & 1.112+00 \\
\hline \multicolumn{16}{|l|}{Scesoma} \\
\hline Fall & 988000 & 36 & \(3.508-91\) & 248504 & 9.658 .02 & \(9.658-62\) & 1.038-01 & 1.288-01 & 2.068 .01 & 2008-01 & 432801 & 3.62801 & 1.228+60 & \(1.148+00\) & \(1.148+00\) \\
\hline Spring & 117000 & 0 & 3.683-01 & 2.95E-0 & \(0.00 \mathrm{E}+00\) & \(0.00 \mathrm{E}+0\) & \(2.988-02\) & 7.098 .02 & 1.428-01 & \(2.685-01\) & 5.288 .01 & 8.28801 & \(1.118+\infty\) & \(139 \mathrm{C}+\infty\) & 13\% \(+\infty\) \\
\hline summer & 3295000 & 107 & 4.418-01 & \(2.53 \mathrm{E}-4\) & \(0.00 \mathrm{~B}+\infty\) & 1.248-02 & 5.03E-02 & 9.41 EPO & 1.508-01 & \(3.32 \mathrm{~B}-01\) & 5318-01 & 878801 & \(1.338+00\) & \(3278+\infty\) & \(3278+\infty\) \\
\hline Wistar & 68900 & 45 & 3318-01 & 3.538-04 & \(0.00 \mathrm{E}+00\) & \(0.00 \mathrm{~B}+\infty\) & 240802 & 4.148.02 & 1.158 .01 & 2.348 .01 & 4.55E-01 & 7.228-01 & 254801 & \(1.258+\infty\) & \(1258+\infty\) \\
\hline \multicolumn{16}{|l|}{Untarinition} \\
\hline Centril city & 2302000 & 7 & \(3.308-91\) & 1.738-04 & 0.008+ +0 & 0.008+00 & 2.118-20 & 7.09E-02 & 1.38801 & 2718-01 & 4.26E-01 & 7.228 .01 & 216801 & \(1.338+00\) & \(1338+\infty\) \\
\hline Nonnetropolitan & \[
203000
\] & 130 & \(3.808-01\) & 2208-04 & \(0.008+\infty\) & \(0.00 \mathrm{E}+\infty 0\) & 6.298-02 & \(9.118-12\) & \(1.488-01\) & \(2.688-01\) & \(4.678-01\) & 3.798-01 & \(1.218+\infty\) & \(1.538+00\) & \(1.538+\infty\) \\
\hline sturburten & \[
1403000
\] & \(\boldsymbol{*}\) & \(5.518-01\) & 4.80-04 & \(0.008+\infty\) & \(0.008+\infty\) & \(9.658-2\) & 1.18E-01 & 1.78-01 & 4.528-01 & S9semil & \(1.158+00\) & \(1.39+60\) & 3276+00 & 3.278+00 \\
\hline \multicolumn{16}{|l|}{Rece} \\
\hline Asien & 41000 & 1 & 1.448001 & \(0.008+\infty\) & 1.48301 & 1.48801 & 1.44E-01 & 1.408-01 & 1.488 .01 & \(1.448-01\) & 1.448-91 & 1.48-01 & 1.44801 & 1.488-01 & 1.46-01 \\
\hline Beack & 2189000 & 93 & 3.468-01 & \(210 \mathrm{e}-4\) & \(0.00 \mathrm{E}+\infty\) & \(0.008+\infty\) & 2118-02 & 697E-02 & 1.308 .01 & 246801 & 4608001 & 7.228-91 & 9928-91 & \(1.338+00\) & \(139 \mathrm{~F}+\infty\) \\
\hline Othens & 96090 & 6 & 6.98 EPO & \(1.088-03\) & 3898-01 & 3.99E-01 & 3.8E-01 & 3898-91 & \(4.218-01\) & 5,34E-01 & 1.038+00 & \(1.208+\infty\) & \(1.268+0\) & \(1.208+\infty\) & \(1268+00\) \\
\hline White & 3017000 & 17 & 4.25801 & 2.19804 & \(0.00 \mathrm{E}+\infty\) & \(0.008+\infty\) & 6.57E-02 & \(9.608-02\) & 1.7E.01 & \(3.20 \mathrm{E}-01\) & 3.238-01 & 8.828 .01 & \(1.208+6\) & \(188 \mathrm{R}+00\) & 3.17E+00 \\
\hline \multicolumn{16}{|l|}{Region} \\
\hline Miduct & 64900 & 24 & 2758-01 & 1.73E-04 & \(0.008+\infty\) & \(0.008+\infty\) & \(0.00 \mathrm{~B}+\infty\) & 8.448-02 & 1.68-01 & 2.968-01 & 3.27801 & 4.60E-01 & 5.478-91 & 5.708.01 & 5.708-01 \\
\hline Northear & 42800 & 19 & 4.088-01 & 6.078-04 & \(1.248-02\) & 1.248-02 & \(1.248-02\) & 1.248-02 & 1.458801 & 3.498-01 & 460 EDO & \(1.208+\infty\) & \(1.33 \mathrm{E}+00\) & \(1.338+00\) & \(1.388+00\) \\
\hline souch & 451500 & 207 & \(4.118-11\) & 1.98e-94 & \(0.008+\infty\) & \(0.008+60\) & 6.298-02 & 9.418-02 & 1.48-01 & \(2.228-01\) & S.281801 & 8.028-91 & \(1.208+80\) & \(1858+\infty\) & 3,378+00 \\
\hline Went & 55900 & 27 & C52E-01 & \(4.38 \mathrm{E}-4\) & 7.098.02 & 7.0\%802 & 1.258-02 & 2.688 .6 & 1.91E-01 & \(4.52 \mathrm{~B}-11\) & S.62801 & 1.148+60 & 1.14E+90 & \(1.383+00\) & \(13 \times 2\) \\
\hline \multicolumn{16}{|l|}{Reoporne lo Questiorsmire} \\
\hline Do you ymden? Do you furn? & \[
\begin{array}{r}
2706000 \\
251000
\end{array}
\] & \[
\begin{array}{r}
136 \\
18
\end{array}
\] & \begin{tabular}{l}
\(3.998-01\) \\
\(5.568-1\)
\end{tabular} & \[
\begin{aligned}
& 1.948-04 \\
& 6.208-04
\end{aligned}
\] & \[
\begin{aligned}
& 0.008+\infty \\
& 0.00 B+\infty
\end{aligned}
\] & \[
\begin{aligned}
& 0.008+\infty \\
& 0.008+\infty
\end{aligned}
\] & \[
\begin{aligned}
& 4.148-02 \\
& 0.00 B+\infty
\end{aligned}
\] & \[
\begin{aligned}
& 9.998-02 \\
& 1.9 \% \%-01
\end{aligned}
\] & \[
\begin{aligned}
& 1.478-01 \\
& 3.40 \mathrm{E}-01
\end{aligned}
\] & \[
\begin{aligned}
& 271 \mathrm{~B}-01 \\
& \mathrm{S.47B-01}
\end{aligned}
\] & \[
\begin{aligned}
& \text { 4.38B-01 } \\
& \text { 7.0RE-01 }
\end{aligned}
\] & \[
\begin{aligned}
& 7338-01 \\
& 1.158+49
\end{aligned}
\] & \(1.148+60\) \(1.208+60\) & \[
\begin{aligned}
& 1.53+\infty \\
& 1.208+\infty
\end{aligned}
\] & \[
\begin{aligned}
& 1.538+\infty 0 \\
& 1.208+\infty
\end{aligned}
\] \\
\hline
\end{tabular}

Table 2-57. Intake of Total Onions (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Group & \[
\begin{gathered}
\mathrm{N} \\
\mathbf{W} \mathbf{~ R t d}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} \\
\text { unwidd }
\end{gathered}
\] & Mean & SE & Po & Pl & PS & Pio & P2S & Pso & P75 & P90 & P95 & P99 & P100 \\
\hline Total & 101122000 & 5303 & 3.SIE-01 & 4.098-05 & \(0.00 \mathrm{E}+00\) & 3.62E-03 & 2.74E-02 & 5.218-02 & 1.128.01 & 2.28E-01 & 4.208-01 & 7.948.01 & 1.10E+00 & \(1.882+00\) & 7.33E+00 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline <01 & 1383000 & 73 & 1.13E-01 & 1.128-04 & 0.008+00 & 5.99E-03 & 8.86E-03 & 2.20E-02 & 3508.02 & 7378-02 & \(1.33 \mathrm{E}-01\) & 2.53E-01 & 324E01 & 5388-01 & \(1.188+00\) \\
\hline \(01-02\) & 3127000 & 17 & \(7.13 \mathrm{E}-01\) & 5.19E-04 & 0.00E+00 & 6.33E-03 & 4.47E-02 & 1.06E-01 & 2.03E-01 & \(4.28 \mathrm{E}-01\) & 8.33E-01 & 1.66E+00 & \(2.45 \mathrm{E}+00\) & \(4.23 \mathrm{E}+00\) & \(7.338+00\) \\
\hline 03-05 & 1230000 & 241 & 4.98E-01 & \(2.57 E-4\) & \(0.00 \mathrm{E}+00\) & 0.00E +00 & 5.46E-03 & 6.318002 & \(1.59 E-01\) & 3.158-01 & 6.99E-01 & \(1.18 \mathrm{E}+00\) & \(1.62 \mathrm{E}+00\) & \(2.528+00\) & \(3.018+00\) \\
\hline \(06-11\) & 8862000 & 46 & 3.66E-01 & \(1.23 \mathrm{E}-04\) & 2.65E-03 & \(4.62 \mathrm{E}-03\) & 3.74E-02 & 5.638-02 & 1.208-01 & \(2.58 \mathrm{E}-01\) & 4.63E.01 & 8.018 .01 & \(1.16 \mathrm{E}+00\) & \(180 \mathrm{E}+00\) & 268 680 \\
\hline 12-19 & 11927000 & 611 & 2.92 .01 & \(8.59 E-05\) & \(0.00 \mathrm{E}+\infty\) & 3.02E-03 & 2.93E-02 & \(4.67 \mathrm{~B}-28\) & \(9.47 \mathrm{E}-02\) & 2.06801 & 3.59E-01 & 7.02E-01 & \(9.12 \mathrm{E}-01\) & \(1.47 \mathrm{E}+00\) & \(1.50 \mathrm{~B}+00\) \\
\hline 20.39 & 30700000 & 1541 & 3208-01 & 6.55E-05 & \(0.00 \mathrm{E}+00\) & \(2.258-03\) & \(2.65 \mathrm{E}-02\) & 4.998 .02 & 1.05E-01 & \(2.098-01\) & \(3978-01\) & 7.468-01 & 9.978 .01 & \(1.768+60\) & \(4.298+00\) \\
\hline 4069 & 33168000 & 1783 & 3.39E-01 & 6.468 -05 & 0.008 +00 & 3.93E-03 & 2.43E-02 & S.13E-02 & 1.12E-01 & \(2.238-1\) & 4.23E-01 & 7318-01 & \(1.07 \mathrm{E}+00\) & \(1.918+00\) & 3.198+00 \\
\hline \(70+\) & 775000 & 386 & 4.12E-01 & \(1.68 \mathrm{E}-04\) & 3.88E-03 & 18 EE-02 & \(6.63 \mathrm{E}-02\) & 8.39E-02 & 1.52E-01 & 2.87E-01 & 4.73E-01 & \(2.80 \mathrm{E}-01\) & \(1.288 \mathrm{C}+00\) & \(2.688+00\) & \(3.695+\infty\) \\
\hline \multicolumn{16}{|l|}{Sesors} \\
\hline Fan & 26130000 & 857 & 3.39E-01 & 7.15E-05 & 0.00E+00 & \(0.00 \mathrm{E}+00\) & \(2.388-02\) & 4.45E-02 & 1.13E.01 & 2328-01 & 4.33E-01 & 7.998.01 & \(1.00 \mathrm{E}+\infty\) & \(1.868+00\) & \(3.118+00\) \\
\hline Spring & 23380000 & 2076 & \(3.608-01\) & 3358-05 & \(0.00 \mathrm{E}+60\) & 5342-03 & 3.26E-02 & 6.148-02 & 1.188.01 & \(2.318-01\) & 4.13E-01 & 794E-01 & \(1.178+00\) & \(1958+00\) & \(4.208+60\) \\
\hline Surmer & 24885000 & 702 & 397e-01 & \(9.278-05\) & \(0.00 \mathrm{E}+\infty\) & 4.601-03 & \(2.518-02\) & 5.33E-02 & 1.19E-01 & \(2.508-01\) & 5.158-01 & \(9.608-01\) & \(1.208+\infty 0\) & \(2.078+00\) & \(4.23 \mathrm{E}+00\) \\
\hline Woiter & 27127000 & 1608 & 3.11E-01 & 7.418-03 & \(0.00 \mathrm{E}+00\) & 4.22E-03 & \(2.74 \mathrm{E}-02\) & 5.218-02 & 1.02E-01 & 2.02E-01 & 3.78E-01 & 6.588-01 & 9.688 .01 & 1.79E+00 & \(7.338+00\) \\
\hline \multicolumn{16}{|l|}{Usbenization} \\
\hline Cantuiciiy & 3122 Sư0 & 1196 & \(3.538-01\) & 7.612-03 & 6.008+00 & 3.68E-03 & 2.5SE-02 & 3.418-02 & 1.138-01 & 225E-01 & 4.288 .01 & 8.408 .01 & 1.10E+00 & 1.778+00 & \(7.338+00\) \\
\hline Normetropoliten & 2398000 & 1596 & 3.208-01 & 7.228-05 & \(0.00 \mathrm{E}+\infty\) & 6.90E-03 & 3.74E-02 & 5.41E-02 & 1.058 .01 & 2.128-01 & 3.88E-01 & 7.18 B 01 & 9828.01 & \(1.808+00\) & \(3.688+00\) \\
\hline Surburben & 46394000 & 2521 & 3.648.01 & 6.23E-05 & \(0.008+\infty\) & 2.42-03 & 2328-02 & 5.048-02 & 1.158-01 & \(2.378-01\) & 4.468-01 & 7.888-01 & \(1.16 \mathrm{E}+00\) & 2.078+00 & \(4.20 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Reos} \\
\hline Asion. & 1891000 & 8 & \(5.485-01\) & 3.408-04 & 2.698-03 & 1.398-02 & 3.73E-02 & 1.208-01 & 2.22801 & 3948-01 & 6.898-0t & \(1.098+\infty\) & \(1.618+00\) & 2.52E+e0 & \(2788+00\) \\
\hline Black & 12219000 & 612 & 3.22E-01 & 9.908-05 & \(0.00 \mathrm{E}+00\) & 2.41E-03 & 2.63E-02 & 5.718-02 & 1.208-01 & \(2.29 \mathrm{E}-01\) & 3.838-01 & 6.65R-01 & 9.9E-01 & \(1208+00\) & 3308+00 \\
\hline Native Amecican & 669000 & 36 & \(7.288-01\) & \(1.688 \mathrm{EP3}\) & 3.228-02 & 3.82E-02 & 387E-02 & 5.738-02 & 6.698-02 & \(3.278-01\) & 6.938-01 & \(1.298+00\) & \(2308+00\) & 7338+00 & \(7308+00\) \\
\hline OtherNA & 3068000 & 146 & \(4.978-91\) & 3.328-9 & 4.63E-03 & 6.0518 .03 & 4.85E-02 & \(9.785-02\) & \(1.638-1\) & 3.04E-01 & 6.73R-01 & \(1.09 \mathrm{E}+00\) & \(1.41 \mathrm{E}+00\) & 3.5TE+00 & \(4.298+0\) \\
\hline Whise & 83275000 & 4121 & 3.28-01 & 4.27805 & \(0.008+60\) & 3.93E-03 & 2.65E-02 & 5.098-02 & 1.08E-01 & 2.228-01 & 4.188 .01 & \(780 \mathrm{~B}-01\) & \(1.098+00\) & 1848+00 & \(4218+00\) \\
\hline \multicolumn{16}{|l|}{Regionm} \\
\hline Midurat & 23607000 & 1203 & 2.008-01 & 6.548-03 & \(0.008+\infty\) & 4.751-03 & 2.28-02 & 4.228-02 & 8908002 & 1.008-01 & 3.818-01 & 6.058-01 & \(9.168-01\) & 1.47E+00 & 3.478+00 \\
\hline Nertwer & 23827000 & 118 & \(3.008-91\) & 8.63808 & \(0.008+\infty\) & \(284 \mathrm{E}-38\) & 3.45E-22 & 6.208-02 & \(1368-01\) & \(2.578-01\) & \(4.73 \mathrm{E}-01\) & 8.718 .01 & \(1.228+00\) & \(1.098+50\) & \(3518+60\) \\
\hline sounh & 37754000 & 1848 & 3.918-01 & 7.968-03 & \(0.008+\infty\) & 4.22E-03 & \(4.138-02\) & \(6.758-02\) & 1.328-01 & \(2.518-01\) & \(4.618-01\) & 8.818-01 & \(1.25 \mathrm{~F}+00\) & 2.07E +0 & 7338 +00 \\
\hline Went & 1093000 & 996 & 3.02E-01 & 8.468-03 & \(0.008+\infty\) & 2.228-03 & 1.458-2 & 3.618-02 & 2258-02 & 1.92E-01 & 3.83801 & 6.828-01 & 9.7 EEO & \(1808+60\) & 3.198+00 \\
\hline \multicolumn{16}{|l|}{Response to Questionmixe} \\
\hline Do you grater? & 40812000 & 221 & 3.208-01 & 9.72E-05 & \(0.008+\infty 0\) & 2528-03 & 2418-02 & 4.73802 & 1.038-01 & 2.138 .01 & 3.96E-01 & \(6988-01\) & 995E-01 & \(1248+0\) & 2.0\%8+00 \\
\hline Do you frm? & 4358000 & 252 & 3.318 .01 & 1.43E-4 & \(0.008+00\) & 0.008+00 & 4.178-02 & 3.73E-02 & 1.178-01 & 2.308.01 & \(4.618-01\) & 7.708-01 & 1.00E +00 & \(1.341+00\) & 1.4\%800 \\
\hline
\end{tabular}

Table 2-58. Inoukc of Total Pees (f/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Popriation Grave & \[
\begin{gathered}
\mathrm{N} \\
\text { widd }
\end{gathered}
\] & \[
\stackrel{N}{N}
\] & Man & S8 & P & Pl & PS & 110 & P2s & 180 & P73 & 89 & P9s & P9 & Plo \\
\hline Tous & 5985900 & 2380 & 9.178081 & 7.798-45 & \(0.008+00\) & 3.028-92 & 8228-02 & 1248-01 & 2.48802 & 3M881 & \(6.178-1\) & 1.043+00 & 1.208+00 & \(2918+\infty\) & 1538400 \\
\hline \multicolumn{16}{|l|}{Ase} \\
\hline <01 & 1210000 & 63 & 2.20E+00 & 1.778 .03 & 9.018-02 & 9.018-62 & 3.108-01 & 4798-91 & 991E01 & 1.66E 600 & 2.608+00 & 1488 \({ }^{2} 00\) & 730R100 & \(8338+00\) & \(8338+00\) \\
\hline 01.02 & 224000 & 125 & \(1.278+00\) & 6.598 .4 & 1.438-01 & 1.38-01 & 3.028-91 & 4.218-01 & 6.468 .01 & 9.580-01 & 1598+0 & \(2288+00\) & 3.672+ +0 & \(4058+14\) & 6008t0 \\
\hline c3-05 & 277000 & 160 & 8.58 .01 & 385E-4 & \(3.12 \mathrm{E}-02\) & 9,528-02 & 2.288 .01 & 2888.11 & 413801 & 6.498 .01 & 1.052+00 & \(1.748+00\) & 2115+00 & \(3.108+0\) & \(3.108+00\) \\
\hline 0611 & Steceos & 330 & 6.48 .01 & 2.09E-04 & 1238-02 & \(1238-01\) & 1.608-01 & 2.148 .41 & \(3.168-91\) & 4.998-01 & 7.61E-01 & \(1388+00\) & 1.6Et +0 & 283\% \({ }^{\text {com }}\) & 3843+0 \\
\hline 12-19 & 654000 & 361 & 3.78E-91 & 1308-94 & \(0.008+\infty\) & 1398-02 & 7.688-02 & 1.218-01 & 1.928-01 & 258SOI & 4348.01 & 7.118-81 & 1.09\% +00 & 2.018+00 & \(2.178+0\) \\
\hline 20-39 & 18501000 & 96 & 3.39E-01 & 8248005 & \(0.008+\infty 0\) & 2.598-28 & 700802 & \(9.58-92\) & 1.018-01 & 2.388 .01 & 4.218-01 & 7.10801 & 940801 & 1258+60 &  \\
\hline 4069 & 17564000 & 103 & 434E-01 & s.ceros & \(0.008+\infty\) & 3.006-02 & \(9.138-02\) & 1.208-01 & 1.538-01 & \(3178-01\) & 5.66-01 & 900801 & 1.118+60 & \(19 \mathrm{CR}+00\) & \(4858+00\) \\
\hline \(70+\) & 4652000 & 233 & 4.99E-01 & 1.668 ROH & 2.768-02 & 1.488-02 & 1.01E-01 & 1.472-01 & 2.518-01 & 3.978.01 & 6.41E-01 & \(1.088+00\) & 1.19\%+6 & 1.748+0 & 1502+00 \\
\hline \multicolumn{16}{|l|}{Sesams} \\
\hline Pd & 16731000 & 50 & 5.028-01 & \(1.588-94\) & \(0.008+\infty 0\) & 3.48-02 & 8.53802 & 1.098-01 & 1.938-01 & 3.878-01 & 5.763-01 & 1.028+00 & 1.4AE +00 & 2308+60 & \(8388+00\) \\
\hline Epring & 14127000 & 1284 & 4.98E-01 & 1.548-94 & \(0.008+\infty 0\) & 2.408-02 & \(8.008-02\) & \(1.208-01\) & \(2.038-01\) & 3328-01 & S.643-01 & \(1.038+\infty\) & \(1.408+\infty\) & \(2.938+00\) & 7.46E +00 \\
\hline Sxamer & 11651000 & 364 & \(6.02 \mathrm{E}-01\) & 1918-04 & \(0.008+\infty\) & 3.878-02 & \(1.088-01\) & 1.498-01 & \(2.398-01\) & 3878-01 & 7.318-01 & \(1.18 B+00\) & \(1.718+\infty\) & \(3.168+60\) & 7308+00 \\
\hline Wintar & 17340000 & 1100 & \(4.92 \mathrm{E}-01\) & 1.288 .04 & 1.16202 & 4.53E-02 & 8.728-02 & 1.238-01 & 1.908-01 & 3.318-01 & 5.93E-01 & 1.04C+00 & 1.418+00 & 258+00 & 6.C88 +00 \\
\hline \multicolumn{16}{|l|}{Uhbarization} \\
\hline Contal Cly & 16777000 & 663 & S.94E-01 & 1.980-04 & \(0.008+\infty\) & 2.590-02 & 6.038-02 & 1.078-01 & 1998-01 & 3.508-01 & 6.748-01 & 1328+00 & 1.948+ +0 & 3038+00 & \(8338+00\) \\
\hline Nornictropolitan & 14082000 & 1094 & S.41E-01 & 1.528-04 & \(0.008+\infty 0\) & 5.69E-02 & 1.108-01 & 1.548-01 & \(2.258-01\) & 3.698-01 & 6.508-01 & \(1.0888+\infty\) & 1. \(9 \mathrm{O}+90\) & 2002+60 & 6S08+00 \\
\hline Surturben & 28696000 & 1533 & 4.628-01 & 8.488-05 & \(0.008+\infty\) & 4.48E-O2 & 8.728-02 & 1.208-01 & 1.9ME-01 & 3.228-01 & 5.71E-01 & 9.408-01 & \(1.238+00\) & 2.338+00 & 6.08E +00 \\
\hline \multicolumn{16}{|l|}{Rape -} \\
\hline Asimen & 352000 & 20 & 3.408-01 & 5838-94 & 1.24E-01 & 1248-01 & 1.218 -01 & 1.338-01 & \(1.538-01\) & 1.918-01 & \(3948-01\) & \(1.058+00\) & \(1.308+00\) & 1.008+00 & 1.008+00 \\
\hline Brack & 7506000 & 40 & 6.828 .01 & 2818-04 & 2.398-02 & 439E-02 & 1.028-01 & 1.418-01 & \(2.538-01\) & 1.368-01 & 7948-01 & 1.4E +00 & 2008400 & 3938+60 & 7308+00 \\
\hline Native Aruction & 294000 & 20 & \(1.168+00\) & \(2.568-03\) & 7.94E-02 & 7948-02 & 1.998-01 & \(2.158-01\) & \(3.358-01\) & 6.298 .01 & 1.14E+40 & \(4.058+\infty\) & 4.938+60 & \(4985+\infty\) & \(4.58 \mathrm{E}+00\) \\
\hline OtheolNA & 1188000 & 58 & 533E-01 & 5.36-04 & 2.598-02 & 2.988-02 & 3.85E-02 & 3.698-02 & 1.418-01 & \(3.178-91\) & 6.COE-01 & \(1.39 \mathrm{~B}+00\) & 2338+60 & \(2368+00\) & 2388+00 \\
\hline Whit & 50514000 & 2752 & 4.908-01 & 7.88-0s & \(0.008+\infty\) & 3.628-02 & 8.4.E-02 & 1.218-01 & 2008-01 & 3.2\%8-91 & 5.76E-01 & 1.01E \(+\infty\) & 1.37E+90 & \(2668+00\) & 8.338+00 \\
\hline \multicolumn{16}{|l|}{Regions} \\
\hline Midwast & 13913000 & 830 & S.04E-01 & 1.576-4 & \(0.008+\infty\) & 3.008-02 & 9958-02 & 1.278-01 & \(2.038-91\) & \(3.098-01\) & 5.768-01 & \(1.128+\infty\) & \(1.538+60\) & 2.388+60 & 7308+60 \\
\hline Northent & 13570000 & 701 & 5.028-01 & 1.458-94 & \(0.008+\infty\) & 1.59R-02 & 7.06E-02 & 1.088-01 & \(1.888-01\) & 3.27E-01 & \(6.028-01\) & \(1.098+00\) & 1. \(\mathrm{Cl} \times 1+00\) & \(3048+64\) & \(4.678+00\) \\
\hline south & 23355000 & 1294 & 3.508-01 & 1.328-04 & \(0.008+00\) & 6.038-02 & 1.06E-01 & 1.428-11 & \(2.31 \mathrm{E}-11\) & 3.93E-01 & 6.73E-01 & \(1.088+00\) & 1.462+ 60 & 2038+0 & \(8383+00\) \\
\hline Went & 5017000 & 46 & 4.568-11 & 2.078-94 & 1.168,02 & 3.37E-02 & \(6.648-02\) & 9.576-62 & 1.63-01 & 2818.01 & 4.808-01 & \(9.338-01\) & 1.008+00 & \(2{ }^{1} 38+40\) & 6.ecteco \\
\hline \multicolumn{16}{|l|}{Repponec to Quatiornairs} \\
\hline Do you gerden? & 23505000 & 1303 & 4.998-01 & 9.248-0s & \(0.008+60\) & 3.878-02 & c.95E.02 & 1.208-01 & 1.968-01 & 3.16801 & 5.408-01 & 9.018-01 & 1.198+60 & \(2301+00\) & \(4 \mathrm{cme}+60\) \\
\hline Do you fumb & 3106000 & 18 & \(4.248-01\) & 2503-04 & 3.008-02 & 3.488-02 & 1.018-01 & \(1.2088-01\) & 1.76E-01 & 2.518 .01 & 4.968-01 & 9.188001 & \(1.168+00\) & 2538+00 & \(3.518+60\) \\
\hline
\end{tabular}
\begin{tabular}{c} 
DRAFT \\
DO HOT QUOTE OR \\
CITE \\
\hline
\end{tabular}

Table 2-59. Intake of Total Peppers (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Group & \[
\begin{gathered}
\mathrm{N} \\
\text { widd }
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{N} \\
\text { untwidd }
\end{gathered}
\] & Mean & SE & Po & P1 & Ps & P10 & P2S & PSO & P75 & P9 & P93 & P99 & P100 \\
\hline Total & 4588000 & 2269 & 2.63E-01 & 4.87E-05 & 0.00E+00 & 0.00E+00 & 2.08-02 & 4.08E-02 & 8.02E-02 & 1.608-01 & 3.05E-01 & \(6.18 \mathrm{E}-01\) & 8.83E-1 & 1.59E+00 & 3.318 \(+\infty 0\) \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 439000 & 31 & 0.00E+00 & 0.008 +00 & \(0.00 \mathrm{E}+00\) & 0.008 +00 & 0.008 +00 & 0.008+00 & 0.00E+00 & 0.008+00 & \(0.00 \mathrm{E}+00\) & \(0.008+\infty\) & 0.008 +00 & \(0.00 \mathrm{E}+\infty 0\) & \(0.008+\infty\) \\
\hline 01.02 & 1270000 & 74 & \(6.35 E-01\) & 5.73E-04 & \(1.058-01\) & 1.07E-01 & 1.178-01 & \(1.288-01\) & \(2.258-01\) & 3.70E-01 & \(8.97 \mathrm{E}-01\) & \(1.218+\infty\) & 1.81E+00 & \(3.318+\infty\) & \(3.31 \mathrm{E}+\infty\) \\
\hline 0305 & 1762000 & 97 & 3.658-01 & 3.59E-04 & \(0.00 \mathrm{E}+00\) & \(0.008+00\) & \(9.70 \mathrm{E}-02\) & 1.49E-01 & \(2.258-01\) & \(4.598-01\) & \(6.98 \mathrm{E}-01\) & \(1.118+00\) & \(1.19 \mathrm{~B}+00\) & 264B+60 & \(264 \mathrm{+}+0\) \\
\hline 0611 & 3819000 & 212 & \(2.65 \mathrm{E}-11\) & \(1.598-4\) & \(0.00 \mathrm{~B}+\infty\) & 7.638-03 & 3.03E-02 & \(4.818-02\) & \(9.24 \mathrm{E}-02\) & \(1.75 \mathrm{E}-01\) & 3.08E-01 & 5.148 .01 & \(7.928-01\) & \(1.48 \mathrm{P}+00\) & \(2968+\infty\) \\
\hline 12.19 & 5093000 & 257 & 1.74E-01 & \(7.76 \mathrm{C}^{-05}\) & \(0.008+00\) & \(7.1088-03\) & 282E-02 & 3.44E-02 & \(6.50 \mathrm{E}-12\) & 1.13E-01 & 2098-01 & \(4.138-01\) & 5.301-01 & 7.148 .01 & \(1.20 \mathrm{E}+\infty\) \\
\hline 20-39 & 13041000 & 631 & \(2308-01\) & 7.70E-05 & \(0.00 \mathrm{E}+00\) & 8.085-03 & \(2588-02\) & 3.75E-02 & 7.148-02 & 1.14E-01 & \(2.53 \mathrm{E}-01\) & S.478-01 & 8.078-01 & \(1.278+\infty\) & \(2.288+\infty\) \\
\hline 4069 & 15580000 & 203 & \(2588-01\) & 7.988 -05 & \(0.00 \mathrm{E}+00\) & 1.59E-012 & \(3.27 \mathrm{E}-02\) & 4.52E-02 & \(8.248-02\) & 1.608-01 & 3.048 .01 & 5.465-01 & 8.468-91 & 1. \(2828+\infty\) & \(207 \mathrm{E}+\infty\) \\
\hline \(70+\) & 3576000 & 164 & 2T9E-01 & 1.47B-04 & \(9.228-03\) & 1.618-02 & 2488-02 & 3.708-02 & 1.07E-01 & 1.808-01 & 3.228-01 & 7378-01 & \(9.398-01\) & \(1.2015+\infty\) & \(1.54 \mathrm{P}+\infty\) \\
\hline \multicolumn{16}{|l|}{Sewone} \\
\hline Fall & 1044000 & 334 & \(2305-01\) & 8.498-05 & \(0.008+00\) & 0.008 +00 & 2718-02 & 3.678-02 & 7.988-02 & 1.608-01 & \(2.718-01\) & 5.038-01 & 8208.01 & 1.208+co & \(2648+\infty\) \\
\hline Spaine & 994000 & 852 & 2,138-01 & \(9.12 \mathrm{E}-3 \mathrm{~s}\) & \(0.008+00\) & \(0.00 \mathrm{~B}+\infty\) & 2988-02 & \(4.68 \mathrm{E}-02\) & 8.138-02 & 1.478-01 & 289E-01 & \(4.998-01\) & 7928-01 & 1.528+60 & \(2.178+\infty\) \\
\hline Summer & 11882000 & 374 & 3.218 .01 & \(1.108-4\) & \(0.008+\infty\) & \(6.638-03\) & 3.018-02 & 4.63E-02 & \(9.66 \mathrm{E}-02\) & 1.968-01 & 4.23E-01 & 790801 & \(1.00 \mathrm{E}+\infty\) & \(1.818+\infty\) & \(3.31 \mathrm{E}+\infty 0\) \\
\hline Wintar & 1210000 & 709 & 2.45E-01 & \(9.348-05\) & \(0.008+60\) & \(0.008+\infty\) & 2.32E-02 & 3.358-02 & 6.918-02 & 1.418-01 & \(2.868-91\) & 5.42E-01 & \(7.90 \mathrm{E}-01\) & 2148400 & \(2968+\infty\) \\
\hline \multicolumn{16}{|l|}{Untenization} \\
\hline Centril City & 11710000 & 452 & \(2718-01\) & 1.088-04 & 0.00E+00 & 0.008 +00 & 2018-02 & 3.338-02 & 7.308-02 & 1.538-01 & \(3.048-01\) & \(7.028-01\) & 9.008-01 & \(1.968+\infty\) & 3.318+00 \\
\hline Nonmetropolitan & 565000 & 576 & 2.08.01 & 1.00504 & \(0.00 \mathrm{E}+00\) & 0.00E +00 & 275E-02 & 3.906-02 & 8.148-02 & 1.588-01 & \(2838-01\) & 4.908-01 & \(68.818-01\) & 2148+00 &  \\
\hline surturten & 24125000 & 1289 & 2.678 .01 & 6.208-05 & \(0.008+\infty\) & \(6.358-03\) & 3.088-02 & \(4.43 \mathrm{E}-2\) & 8.52E-02 & 165801 & 3.168-01 & 6.208-01 & 2.998-01 & \(1.508+60\) & \(2908+\infty\) \\
\hline \multicolumn{16}{|l|}{Recos} \\
\hline Acim & 711000 & 37 & 2728.01 & 3.408-04 & \(0.008+00\) & \(0.008+00\) & 0.008+00 & \(0.008+00\) & 5.368-02 & \(2.018-01\) & 4.278-01 & 6.528-01 & \(1.088+\infty\) & 1.288+00 & \(1.238+00\) \\
\hline Beack & 3589000 & 178 & 2.23E-01 & \(1.638-4\) & \(0.008+00\) & \(0.008 \mathrm{~F}+00\) & 3.17E-02 & \(4.09 \mathrm{E}-02\) & 6.788-02 & 1.22E01 & 2.128-01 & 3.628-01 & \(8.078-01\) & \(1288+\infty\) & \(1.908+\infty\) \\
\hline Native Armaican & 19000 & 15 & 2978.01 & 7.138-04 & \(0.008+\infty\) & \(0.008+00\) & \(0.00 \mathrm{~B}+\infty\) & \(0.008+\infty\) & 1.245-01 & 1.66801 & 4.328-01 & S.108-01 & 1.208 +00 & \(1.2018+00\) & 1.208+ +00 \\
\hline Obeonk & 1418000 & 76 & 4.768 .01 & \(5.308-4\) & \(0.008+\infty\) & 1.228-02 & 1.43E-02 & 479E-02 & 1.168-01 & 2.168001 & 7.02E-01 & 1.058 +00 & \(1.608+90\) & 3318+00 & \(3.18+90\) \\
\hline Whe & 3064000 & 19\% & 2598-01 & \(4.958-8\) & \(0.0008+\infty\) & 7.08E-03 & 278E-02 & 4.14E-22 & \(8.178-12\) & 1.628-01 & 3.05E-01 & 3878-01 & 8 ces -1 & \(1.508+\infty\) & \(2968+00\) \\
\hline \multicolumn{16}{|l|}{Repions} \\
\hline Midurat & 9382000 & 453 & 2388.01 & 1.118804 & 0.008+00 & 0.008+00 & 2208-02 & 3.50E-02 & 6.468-02 & 1.112-01 & 20EEA & 5.118-01 & 7.928.01 & 1.528+00 & \(3318+\infty\) \\
\hline Northent & 12581000 & 63 & \(3.118-01\) & \(1.038-4\) & \(0.008+00\) & \(0.008+00\) & 3.92802 & \(5808 \mathrm{E}-2\) & 9.40-02 & 188.01 & 3.698-91 & 7.99801 & \(1.008+00\) & 21.18+60 & \(2908+00\) \\
\hline sorth & 1493000 & 79 & 2418.01 & \(7.50 \mathrm{Ec-3}\) & \(0.00 \mathrm{E}+\infty 0\) & 73.38 .03 & \(2588-02\) & 4.03E-22 & 8.138-02 & 1.50809 & 280801 & 5.206-01 & \(8.078-1\) & \(1.588+00\) & \(2.78 \times+0\) \\
\hline Wex & 0055000 & 42 & 2588-01 & 1.008-94 & \(0.008+60\) & \(0.00 \mathrm{E}+\infty\) & 257100 & 3.6TE-02 & 7.08-02 & 1.598-01 & 3.028-91 & \(6.188-91\) & 7938-01 & \(1.208+\infty 0\) & \(2 \mathrm{CBE}+\infty\) \\
\hline \multicolumn{16}{|l|}{Resporse to preationme} \\
\hline Do you gendear? & 19509000 & 1011 & 241801 & 6.478-05 & 0.008+00 & \(0.008+\infty\) & \(2858-02\) & 3998-02 & 7.53E-02 & \(1.568-01\) & & 5.198-81 & 7908.01 & \(1.468+60\) & 2008+00 \\
\hline Do gou frmor & 1752000 & 7 & 2668 -1 & 2788.04 & \(0.008+60\) & 1.07E-02 & \(270 \mathrm{E}-02\) & 3.908-02 & 7.11E-02 & 1668-01 & 3.188-01 & 3388-11 & 8.458-01 & 2.488+00 & \(208+00\) \\
\hline
\end{tabular}

Table 2-60. Intake of Toral Purmpin (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Fopritsion
Oroup & \[
\stackrel{N}{N}
\] & \[
\underset{N}{N}
\] & May & 88 & 10 & 1 & Ps & P10 & PS & PSo & Ps & Po & Ps & P98 & P1m \\
\hline Toul & 1206700 & 50 & 851801 & \(4.688+4\) & 3.418-03 & 5.258-03 & 6essen & 1.14E.81 & 2.568 .81 & S.4801 & 1.062 \(+\infty\) & 1.698+00 & 2.24E+ +0 & \(53088+60\) & \(2588+01\) \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline <01 & 525000 & 26 & \(2.338+\infty\) & 8.73803 & 623802 & 6.238-02 & 623E.2 & 1.46E-01 & 4963.1 & 7.198-01 & \(1.338+\infty\) & \(1.688+\infty\) & \(2588+91\) & 2548+01 & \(2.548+01\) \\
\hline OH-2 & 13700 & 22 & 9808.01 & 1.2803 & 2.12E-82 & 2.128-92 & 2.12-02 & \(2.098-01\) & 3.19801 & 6.89E-91 & \(1.218+\infty\) & 2.158+60 & \(4.02 \mathrm{C}+00\) & 4.028+00 & \(4.028+\infty\) \\
\hline 0305 & 615000 & 31 & \(1.48+\infty\) & 2048.03 & 4248.02 & 4.248 .02 & 4218.82 & 1.198-01 & 7.298.01 & \(1.618+00\) & 2.298+60 & \(4.488+60\) & \(5838+\infty\) & \(5.838+\infty\) & 5888+ +0 \\
\hline \(06-11\) & 1021050 & 4 & 6268.01 & 4neos & 5.25E03 & 5.258-23 &  & 5.228.02 & 2.54801 & 5.388 .01 & 9.288.91 & \(1.251+\infty\) & \(1.508+60\) & \(1.998+\infty\) & 1.998 +00 \\
\hline 12.19 & 955000 & 4 & 2.118 .01 & 1.57 EP & 3.418-03 & 3.418-03 & 4.038-83 & 5.138-03 & 1.128.01 & 18TE.01 & 2968.01 & 4 SzEOL & 5.948-01 & 6.658 .01 & 6.688 .4 \\
\hline 20.39 & 337000 & 1* & 6.778 .01 & 4978. & 1.96E-02 & 1.968 .02 & 6.168 .02 & 9.185 .02 & 1.99E-01 & 3.713-01 & 8.158-01 & \(1.52 \mathrm{E}+60\) & 260E+00 & 5.3E8+60 & \(5.388+\infty\) \\
\hline 4069 & 3558000 & 16 & 7.5SE-01 & 320004 & 2.06E-02 & 2835-02 & 1.768 .01 & 2.141201 & 3.48-01 & 5.418 .01 & \(1.068+60\) & \(1.672+\infty\) & 2.10E+ + O & \(3.178+\infty\) & 3.172+00 \\
\hline 0+ & 1458000 & 63 & 980E-01 & 2.labed & 1.09E.01 & 1.098.01 & 1.328-81 & 2090.01 & 4.218-01 & 6.318-01 & \(1.28 \mathrm{E}+60\) & \(183 \mathrm{P}+00\) & \(2.988+\infty\) & 7.008+00 & 7.608+ +0 \\
\hline \multicolumn{16}{|l|}{Sencons} \\
\hline P4 & 6851000 & 219 & 1.06E+00 & 8.19808 & 4818.02 & 685EM & 1.12 E .1 & 1.98-01 & 3.118-01 & 594801 & 1.228+00 & 2.018+60 & \(2.678+\infty\) & 5.208+60 & \(2.88+01\) \\
\hline Spring & 1454000 & 119 & \(5.20 \mathrm{E}-1\) & 5.41E-4 & 3.11203 & 3.41E-03 & 5.138-03 & 1.96R-02 & 8.738-2\% & 3.548 .01 & 6.628-01 & 1.108+60 & 1.45E+ \({ }^{\text {a }}\) & 3.238+60 & 3.238+80 \\
\hline Summor & 1072000 & 53 & 6.578-01 & 5.28E04 & 5.85E-02 & S.8SE-2 & 9.188.02 & 1.03E-01 & \(2.418-01\) & 5.048 .01 & 7.19E-01 & 1.7TE+60 & 1.79E+ \(+\infty\) & \(102 \mathrm{~B}+\infty\) & <ORE \(+\infty\) \\
\hline Wintar & 2650000 & 17 & 6.378.01 & ceseren & \(1.55 \mathrm{E}-02\) & 2.06E-02 & \(5.22 \mathrm{~B} \cdot 2\) & \(9.76 \mathrm{CDO}^{2}\) & 2.418-01 & \(4.33 \mathrm{~B}-11\) & 7.48-.01 & 1.298+00 & 1.00E+ +0 & \(4.488+\infty\) & 7.60E+ +0 \\
\hline \multicolumn{16}{|l|}{Untenisation} \\
\hline Comtal City & 343000 & 121 & 7.918-0: & S.148-94 & 3.118-03 & 3.41E-03 & 1.00802 & 6.07E.02 & 2.458 .01 & 4.638-91 & \(1.1188+\infty\) & \(1988+\infty\) & \(2.238+\infty\) & 5.838+60 & \(7.608+\infty 0\) \\
\hline Nonmetropolian & 2907000 & 166 & 7.60801 & S.24en & 4.818-02 & 6.85E-2 & 1.128 .91 & \(1.458-01\) & 2.758-01 & \(5.05 \mathrm{~S}-01\) & 8SSE-01 & \(1.528+\infty 0\) & \(2.988+60\) & 4.48 Cos & 5.678+00 \\
\hline Surturben & 5717000 & 253 & 9.308 .01 & 8.82804 & 1.65B-02 & 3888-02 & 8.73E-2 & 1.198 .01 & 2.4B-01 & 5.218-02 & 1.108+00 & 1.648+80 & \(2.158+\infty\) & \(5.388+60\) & \(2.488+01\) \\
\hline \multicolumn{16}{|l|}{Rese} \\
\hline Asion & 200000 & 11 & \(6.138+\infty 0\) & 2.00802 & 5.118 .01 & 5.118-01 & 5.338-01 & 5338.01 & 6.62B-01 & 1.258+00 & 5368+00 & 2.548+01 & \(2.548+01\) & \(2.583+01\) & \(2.548+01\) \\
\hline Black & 735000 & 35 & 5978.01 & 1.038 .03 & 3.418 .03 & 3.418 .03 & 4.035-03 & 5.138-03 & 2.12 ECO & 1.608.01 & 7.028-01 & \(1.578+60\) & \(3235+60\) & 7.608 + + & \(7.60 \mathrm{~B}+60\) \\
\hline Native Americem & 32000 & 4 & 5.908.01 & 1.988 .03 & 8.738-02 & 8.338-02 & 8.738-92 & 8.73E-2 2 & 8.73E-2 & 6.408 .01 & \(1.02 \mathrm{~B}+00\) & 1.028+60 & 1.028+60 & \(1.088+00\) & \(1.228+\infty\) \\
\hline Obeonia & 153000 & 6 & 6.35601 & 9.608.4 & 1.878-01 & 1.878-01 & 1.87B-11 & 1.873-01 & \(2.888-01\) & 6.128 .01 & \(1.1198+60\) & \(1.148+60\) & \(1.148+60\) & \(1.148+60\) & \(1.148+80\) \\
\hline Whis & 10838000 & 4 & 7.71--1 & 2.48 CH & 1.650.02 & 3.888-02 & \(9.338 \cdot 8\) & 1.278-01 & 2818-01 & \(5.158-01\) & \(1.003+60\) & 1.07B+60 & 2218+60 & \(4.028+00\) & 5.838 +00 \\
\hline \multicolumn{16}{|l|}{Regions} \\
\hline Midurax & 1209000 & 170 & 1.98.01 & 383804 & 3.418.03 & 4.038-03 & 2.128-02 & 1.128-01 & 2.628.01 & 5.33E-01 & \(1.088+60\) & \(1.738+60\) & \(2.158+60\) & \(4.488+\infty\) & \(5.288+00\) \\
\hline Northout & 3131000 & 146 & \(1.228+\infty\) & \(1.60 \mathrm{E}-43\) & 481802 & \(6.078-22\) & \(9.338-28\) & 1.148 .01 & 2.17801 & 3.998 .01 & \(8200 \mathrm{E}-01\) & \(1.838+\infty\) & \(2.608+60\) & \(2.548+01\) & \(2.518+91\) \\
\hline south & 2153000 & 121 & 7.57k-01 & 6.008-4 & \(2208-2\) & 5.448.92 & 9.188-2 & 1.198-01 & 3.028-01 & \(4.94 \mathrm{BrO1}\) & 9.218 .01 & 1. 28.60 & \(2.338+\infty 0\) & 3.673+00 & 7. \(6081+0\) \\
\hline Woat & 277000 & 103 & 9.148.01 & S.038-94 & 1.658-02 & \(1.658-02\) & 3.458-12 & 2.73E-2 & 3.168-01 & 6.57B-01 & 13/8 +60 & 1.718+60 & \(2048+\infty\) & \(4.028+60\) & 4.028+00 \\
\hline \multicolumn{16}{|l|}{Recpone to Questionmins} \\
\hline Do ycu gradent & 457000 & 306 & 9.60E01 & 7.00804 & 1.658-02 & 2.803-02 & \(1.168 \cdot 1\) & 1.615-01 & 3.138.01 & 5.51801 & 1.108 +60 & 1.738+60 & 2.678+co & \(5.838+\infty\) & \(2.548+01\) \\
\hline Do you finas? & 76000 & 36 & 5.618 .01 & 6.6EPM & \(1.658-02\) & \(1.658-02\) & 3.683-202 & s.nB-02 & 1.49E.01 & 4308.01 & 9.358-01 & \(1.248+80\) & 1.353+60 & 100B + + & 3.02B+0 \\
\hline
\end{tabular}

DRAFT
DO NOT QUOTE OR
CITE \(\qquad\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Group & \[
\begin{gathered}
\stackrel{N}{N} \\
\mathbf{w e d}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} \\
\text { ung tid }
\end{gathered}
\] & Mean & SE & P & P1 & PS & P10 & P25 & P50 & P75 & P90 & P99 & P99 & P100 \\
\hline Totel & 87569000 & 47\% & 7.26E-01 & 9.828-0s & \(0.00 \mathrm{E}+\infty\) & 3.28E-02 & 1.308.01 & 1.76E-01 & 2.82E-01 & 4.83E-01 & 8.418 .01 & 1.408+00 & 1978+00 & \(4.618+\infty 0\) & \(2.258+01\) \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline <01 & 1659000 & 87 & \(3.878+\infty\) & \(2.058-03\) & 3.68E-01 & 3.68E-01 & 4.858-01 & 8.57E-01 & 1.75E+00 & 3.43E \(+\infty 0\) & 524E+00 & 8.328+00 & \(8.928+00\) & 1.178+01 & \(1.178+01\) \\
\hline \(01-02\) & 2677000 & 162 & \(1.00 \mathrm{E}+00\) & 7.58E-04 & \(124 \mathrm{E}-01\) & 1.248 .01 & 3.80E-01 & 4.46E-01 & 7.318-01 & \(1.26 \mathrm{E}+\infty\) & \(1.908+\infty\) & 335E+ +0 & 4.408 +00 & S.86B+00 & 7.87E +00 \\
\hline 03-05 & 4295000 & 258 & \(1.258+00\) & \(4.648-04\) & \(0.00 \mathrm{E}+00\) & \(1.278-01\) & 2.988-01 & \(3.99 \mathrm{E}-1\) & \(6.588-01\) & \(9.948 \mathrm{~B}-1\) & \(1.53 \mathrm{E}+\infty 0\) & \(2.278+00\) & 3.018+00 & \(6.08 E+\infty 0\) & \(6.908+\infty\) \\
\hline \(06-11\) & 9116000 & 593 & \(7.70 \mathrm{E}-01\) & 2.098-04 & \(0.00 \mathrm{E}+\infty\) & 1.27E-01 & \(2.178-01\) & \(2.668-01\) & 3.76E-01 & \(6.008-01\) & 9368-01 & \(1.38 \mathrm{E}+60\) & \(1.878+00\) & 3.188 + +0 & 7.448+00 \\
\hline 12-19 & 1029000 & 599 & S.4E-01 & 1.508-04 & \(0.00 \mathrm{E}+\infty\) & 3.40E.02 & 1.29E-01 & 1.68B-01 & 2.551-01 & 4.108-01 & \(6.808-01\) & 1.128+00 & 1.348 +00 & 2.72E+00 & 7.51E+00 \\
\hline 20-39 & 25467000 & 1360 & S.17E-01 & 8.8x-0s & \(0.00 \mathrm{E}+\infty 0\) & 4.65E-02 & 1.07e-01 & 1.508-01 & 234801 & 3.85E-01 & 6.008-01 & 1.03E+60 & 1.4AB+00 & 2.05E+00 & 4.305+00 \\
\hline 40.69 & 25487000 & 1465 & \(6.01 E-91\) & 1.578-04 & \(0.008+00\) & 5.668-02 & 1.188-01 & 1.638-01 & 2.57E-01 & \(4.35 \mathrm{E}-01\) & 7.488-01 & \(1.188+60\) & \(1.538+00\) & \(2.658+00\) & \(2.258+01\) \\
\hline \(70+\) & 7564000 & 362 & \(7.60 \mathrm{E}-01\) & 2.718-04 & 1.08-02 & 5.658-02 & 1.708-01 & 2338-01 & 3.69E-01 & S.71E-01 & \(9.508-01\) & \(1.368+00\) & \(1.78 \mathrm{~B}+00\) & 3.08 +00 & \(9.968+\infty\) \\
\hline \multicolumn{16}{|l|}{Seasors} \\
\hline Fall & 2102000 & 33 & \(7.178-01\) & \(2.008-04\) & \(0.00 \mathrm{E}+00\) & 6.13E-02 & 1.14E-01 & 1.69E,01 & 2.748-01 & 4.638-01 & 8.018-01 & 1.008+00 & \(1.978+00\) & S.05E+00 & \(1.078+01\) \\
\hline Spring & 21041000 & 197 & 7.63E-01 & 2.498 e -4 & \(0.00 \mathrm{~B}+\infty\) & \(8.608-02\) & 1.418-01 & 1.878-01 & \(2.79 \mathrm{E}-01\) & 4.748-01 & \(8.50 \mathrm{~B}-01\) & 1.4E+60 & \(2.258+00\) & \(4.908+\infty\) & \(2.258+01\) \\
\hline Summer & 21178000 & 660 & 7.18E-01 & 1.888-04 & \(0.00 \mathrm{E}+00\) & \(0.00 \mathrm{E}+00\) & 1.178-01 & 1.608-01 & 2.76E-01 & S.00E-01 & \(8.648-01\) & 1.348+60 & \(1.83 \mathrm{E}+00\) & 4.878 \(+\infty\) & \(1.178+01\) \\
\hline Wirtar & 2364000 & 1457 & 7.07E-01 & 1.449-04 & \(0.00 \mathrm{~B}+00\) & 7.198-02 & 1.128-01 & 1.898-01 & 2.99E-01 & 4.938-01 & 8.33E-01 & 1.4982+00 & \(1.94 \mathrm{E}+00\) & 3.5NB+00 & \(8.928+\infty 0\) \\
\hline \multicolumn{16}{|l|}{Ustenimition} \\
\hline Cental City & 24057000 & 97 & 7.97E-01 & 2.088-04 & \(0.008+00\) & 1.468-02 & 1.22E.01 & 1.73E-01 & 2.858-01 & 4998-01 & \(8.768-01\) & 1.708+ +0 & 2388+00 & 5.408+00 & 9.658+00 \\
\hline 120 & 209010 & 193 & 1.729-91 & 1.5694 & 0.cceino & \(3.488-72\) & 1538-1 & \(2.058-01\) & 3.65E0i & 5.35E-01 & 6.938-01 & 1.5ictiol & 1.08100 & \(4.468+50\) & \(1.17 \mathrm{E}+01\) \\
\hline Surburben & 3971000 & 223 & \(6.52 \mathrm{E}-01\) & 1.308-04 & \(0.008+00\) & 6.54B-02 & 1.248-01 & \(1.60 \mathrm{E}-01\) & 2.718-01 & 4.50B-01 & 783E-01 & 1.28E+00 & 1.778+ +0 & \(3.458+\infty\) & \(2.258+01\) \\
\hline \multicolumn{16}{|l|}{Rece} \\
\hline Acim & 946000 & 48 & 9.798-01 & \(1.76-93\) & 7.048.02 & 7.648-22 & 1.538-01 & \(2.148-01\) & 4.02E-01 & 3.718-01 & 9.098-01 & \(1.328+\infty\) & 1.708+00 & 9.658+00 & \(9.558+00\) \\
\hline Black & 11310000 & 606 & \(9.248-01\) & 4.178 & \(0.008+00\) & 0.008 +00 & 1.228-01 & 1,968-01 & \(3.258-01\) & 6.138-01 & \(1.018+\infty\) & 1. \(20 \mathrm{E}+\infty 0\) & \(2.988+00\) & \(6.3518+\infty\) & \(2.258+01\) \\
\hline Netive Ammicara & 84000 & 54 & \(8.058-91\) & 1.008-3 & 1.99E-01 & \(1.69 \mathrm{E}-01\) & 2338-01 & 2.70E-01 & 3.608 .01 & S.82E-01 & \(7.651-01\) & 1.65E+00 & \(2.168+00\) & 5.64E+60 & \(5.618+60\) \\
\hline Otheona & 180000 & 92 & \(6.258-01\) & 4.50E-M & L.22E-03 & c9sbor & 1.548-01 & 193E-01 & 2.958-01 & 4.301-01 & \(6.718-01\) & 9.808-01 & \(2308+00\) & 3.508 \({ }^{\text {coo }}\) & 3.548+00 \\
\hline White & 7281000 & \(3 m 1\) & 6.948 .01 & 9.08.05 & \(0.008+00\) & 5.658-02 & 1.278-01 & 1.728-01 & 2758-01 & 4.618-01 & 8.288 .01 & \(1378+00\) & 1.928+00 & 4.128+00 & \(1.178+01\) \\
\hline \multicolumn{16}{|l|}{Regions} \\
\hline Midivent & 21935000 & 1311 & 7.508-01 & 2.098-04 & \(0.008+00\) & 3.008-02 & 1.298-01 & \(1.678-01\) & \(2.088-01\) & 4.708-01 & 8278001 & \(1.52 \mathrm{~B}+00\) & 2.218+00 & 5.408 +00 & 9.968 + +00 \\
\hline Northent & 17175000 & 89 & \(6.32 \mathrm{E}-1\) & 1.118-M & \(0.00 \mathrm{E}+00\) & 6.931-02 & 1.188-01 & 1.58E-01 & 2.628-01 & 4.32E-01 & 768801 & \(1.308+\infty 0\) & \(1.78 \mathrm{~B}+00\) & 3.43E+00 & 8. \(323+\infty\) \\
\hline Soun & 31758000 & 1813 & 7978-01 & 1.768 .04 & \(0.00 \mathrm{E}+00\) & 4.708-02 & 1.998-01 & \(2.058-01\) & \(3.258-01\) & 5.588-01 & 9.378-01 & \(1.528+\infty\) & \(2.01 \mathrm{E}+00\) & \(4468+00\) & \(2.288+01\) \\
\hline Weat & 15646000 & \(T 1\) & \(6.478-01\) & 2.098-04 & 0.00E +00 & 6.40E-02 & 1.258-01 & 1.708-01 & 2578-01 & \(4.338-01\) & 7.118-01 & \(1.258+00\) & 1.743+00 & \(481 \mathrm{E}+00\) & \(1.078+01\) \\
\hline \multicolumn{16}{|l|}{Response to Quationmire} \\
\hline Do you grama? & 35025000 & 2034 & 6.958-91 & 1.268-04 & \(0.00 \mathrm{~B}+\infty\) & 7.198-02 & 1.209-01 & 1.738-01 & 2.79E-01 & 4.828-01 & 230E-01 & 1.108 +00 & 1928+00 & \(4.018+00\) & 9.908 400 \\
\hline Do you frut & 4511000 & 279 & 7318-01 & 2868-04 & 5.65E-02 & 7.418-02 & 1.338-01 & 1.008-01 & 3.218-01 & 5.551-91 & 9318-01 & 1.008 +00 & 1.798+00 & 3.308+60 & 4.238+60 \\
\hline
\end{tabular}

DRAFT
DO NOT QUOTE OR
CITE
Table 2-62. Intake of Total Tomatoes (e/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Popolition } \\
& \text { Crove } \\
& \hline
\end{aligned}
\] & \[
\underset{\sim}{N}
\] & \[
\stackrel{N}{\mathbf{N}}
\] & Hen & E8 & \(p\) & 11 & \(p\) & Plo & P2S & Pso & Prs & 80 & pes & 9 & P100 \\
\hline Tad & 11873800 & ass & 9,038-91 & 1.19\%+ & \(0.008+\infty\) & C20802 & 1.03E01 & \(1.588-91\) & 2.73e-91 & S.18801 & \(1.404+\infty\) & 1005+00 & 288t+00 & 6298+00 & \(2883+01\) \\
\hline \multicolumn{16}{|l|}{Ase} \\
\hline <01 & 1258000 & \(\boldsymbol{*}\) & S. \(118+00\) & 3.151803 & \(0.008+\infty\) & 230801 & 7.50809 & 1.178+60 & 2.438+00 & \(4.178+\infty\) & 7.028+00 & \(1098+{ }^{\text {ch }}\) & \(1208+61\) & \(2 \mathrm{mbs}+01\) & \(2.885+1\) \\
\hline 0102 & 3504000 & 153 & \(2.28+\infty\) & 1.168 .93 & 2.35801 & 2.71801 & 4.15E-01 & 6.10801 & \(9.508-81\) & \(1.578+\infty\) & \(3.218+\infty\) & \(5 \mathrm{met}+\infty\) & \(7.258+\infty\) & \(1.78+01\) & 1328+91 \\
\hline 03-95 & 406500 & 233 & \(1.588+00\) & 65 TEPA & 1.SEP-81 & 1.57201 & 237801 & \(3.258+1\) & 6.00801 & \(1.118+\infty\) & 2.228+0 & \(3368+\infty\) & \(4.578+60\) & \(6.789+\infty\) & 9,208+00 \\
\hline 0611 & 11174000 & 133 & \(1.118+50\) & 3.238-0. & 3.20 ed & 8.30802 & 1.608 .01 & 2.148-91 & 3.53801 & 6.568 .91 & \(1218+\infty\) & \(2.172+\infty\) & \(3.068+50\) & \(6.35 \mathrm{l}+\infty\) & 9.148+80 \\
\hline 12.19 & 12035000 & \(\mathrm{cH}^{\text {ch }}\) & 5.56801 & 1.58 ech & \(0.008+\infty\) & 3.35E02 & \(7.908-28\) & 1.15801 & 2.05801 & 4.128 .01 & 6,75EP1 & \(1.128+50\) & \(1.618+\infty\) & \(2.088+60\) & \(7.238+\infty\) \\
\hline 20.30 & 36720050 & 12 H & 593801 & \(1.18 \mathrm{Ec} /{ }^{\text {a }}\) & \(0.008+\infty\) & 3.11802 & 7.558 .02 & 1.138 .01 & 2.08001 & 4.098 .81 & 7.29E-01 & 1.202+80 & 1.798+60 & 3.195+e0 & \(1.938+91\) \\
\hline 406 & 37855000 & 2033 & 2168.1 & 1.14E* & \(0.008+\infty\) & 3328-2 & 1.198 .01 & 1.768.01 & 2.928-01 & 5.668.01 & \(1.012+\infty\) & \(1.788+80\) & 2.408+ 20 & 4.108+60 & \(2.638+\infty\) \\
\hline 70+ & 9682000 & 4 & 9.75E-01 & 2.2esed & \(0.00 \mathrm{E}+\infty\) & 1.018.01 & 1.62 E .01 & 2368.01 & 4.198 .01 & 7.18801 & 121E \(+\infty\) & 1eseteo & \(2888+\infty\) & 4. \(138+60\) & \(6.088+00\) \\
\hline \multicolumn{16}{|l|}{Sesems} \\
\hline Pall & 27702000 & 921 & 9.08.01 & 229804 & \(0.008+\infty\) & 3.00802 & 1.078 .01 & 1.558 .01 & 2.758 .1 & 5.378 .1 & \(1.1118+\infty\) & \(2018+\infty\) & 3.948+60 & 6.398+00 & \(1.098+01\) \\
\hline Spring & 29323000 & 2534 & 758E0t & 2308.08 & 0.008+60 & 3.18E-22 & 9.028-02 & 1.36801 & 2.488 .01 & 4.81801 & 299801 & \(1.618+\infty\) & \(2.31 \mathrm{~B}+\infty\) & 5.268+60 & \(2.178+01\) \\
\hline Sumam & 37250900 & 1017 & 1.038+00 & 2.598 .04 & \(0.008+\infty\) & 4.208-02 & 1.188 .01 & 1.81E-01 & 3.288 .01 & 6.248 .01 & \(1.20 \mathrm{E}+\infty 0\) & \(2.178+\infty\) & \(3.288+00\) & 7.238+60 & \(2888+01\) \\
\hline Winte & 2900000 & 173 & 230801 & 2958-0/ & \(0.008+\infty\) & 4.998-2 & 9.08.02 & 1.398.01 & 2.608 .01 & 5.07801 & 9,638-91 & 1.728+80 & \(2.568+50\) & 5.328+00 & \(2038+01\) \\
\hline \multicolumn{16}{|l|}{Ubanication} \\
\hline Cuntelcity & 33885000 & 1309 & 2.78801 & \(2.185 \cdot 4\) & \(0.008+60\) & 4.908-02 & 8.82802 & 1.41E-01 & 2.59801 & S.07E-01 & \(1.018+\infty\) & 1.88+60 & \(2.208+\infty 0\) & \(7.258+\infty\) & \(2.03 \mathrm{~B}+01\) \\
\hline Norametropolitan & 28511000 & 158 & \(1.038+60\) & 2.08-04 & \(0.008+60\) & 4.SSE-22 & 1.188 .01 & 1.838-01 & 3.178 .01 & 6.14801 & \(1.228+\infty\) & 2.128+60 & 3.188+60 & \(6.788+60\) & \(2.888+01\) \\
\hline Surturben & 56332000 & 308 & 258801 & 1.928-04 & \(0.00 \mathrm{~B}+\infty\) & 3.148-2 & 1.038-01 & 1.508-01 & 2.608 .01 & \(5.23 \mathrm{E}-1\) & 9888-01 & 1.008+80 & \(259 \mathrm{~B}+00\) & 5. \(218+\infty\) & \(2.178+01\) \\
\hline \multicolumn{16}{|l|}{Rece} \\
\hline Asinn & 1851000 & 0 & 9.39801 & 1.088 .83 & 1.94802 & 1.948-02 & 9.358-22 & 1.4E8-01 & 2.238 .01 & S.02801 & 9.37801 & 2008+60 & 3.44B+60 & 9.998 +00 & 9.998+60 \\
\hline Breck & 10914000 & 56 & 6.968 .01 & \(3.058-4\) & \(0.008+\infty\) & 3.55802 & 6.822-02 & 1.168-01 & 2.20801 & 4.138 .01 & 7.758 .01 & \(1.418+60\) & \(2.148+00\) & 4.708+00 & \(1.988+01\) \\
\hline Newive Ammaican & 76780 & 5 & \(1.278+60\) & 3.608 .43 & \(4.63 \mathrm{~B}-27\) & 4.638 .02 & 6.408-92 & 1.00801 & 1.52-01 & 3.908-1 & 2318.01 & \(1268+60\) & 5.248+60 & \(2038+01\) & \(2.038+01\) \\
\hline Otmona & 3171000 & 154 & 780801 & 4838.4 & \(0.008+00\) & \(6.158-28\) & 1.208.01 & 1.94E01 & 2.59801 & 4.638 .01 & 9.14801 & 1.788+60 & \(2.918+60\) & \(4.718+60\) & \(5.458+00\) \\
\hline Whis & 103018000 & 5019 & 9.26801 & 1.308-64 & \(0.008+60\) & \(4.20 \mathrm{E}-28\) & 1.068 .91 & 1.618-01 & 28 EROL & \(5.63 \mathrm{~B}-1\) & 1.078+00 & \(1.938+60\) & 2.68B+60 & 6.398+60 & 2888501 \\
\hline \multicolumn{16}{|l|}{Repioss} \\
\hline Miswow & 27338000 & 153 & 1,088+00 & 2.75-4 & 0.008+60 & 3S5B-2 & 1.148 .81 & 1.978.01 & 2908-91 & 5.91801 & \(1.128+80\) & \(2.038+60\) & 3398+00 & 7.758+60 & \(1.938+01\) \\
\hline Norstent & 28353000 & 1370 & 2tieol & 2328-94 & \(0.008+\infty\) & 3.32808 & 1.078 .01 & \(1.558-01\) & 2.4801 & 5.4ET-1 & 1.008+00 & 1.298+60 & \(2.758+60\) & \(6.638+60\) & 1.208401 \\
\hline saun & 39807000 & 2120 & 2.4681 & 1.568 .04 & \(0.008+\infty\) & 3.39802 & 1.008.91 & 1.52E-01 & \(2.628-1\) & \(5.178-1\) & 9.908 .81 & 1.288+00 & 2358+ \(+\infty\) & 5.358 +00 & 2:88501 \\
\hline Wat & 23360000 & 122 & 9.128 .1 & 2.608.04 & \(0.008+\infty\) & \(4908-2\) & 931802 & 1.418-01 & 2098.01 & \(5.20 \mathrm{E}-1\) & 1.098 + +0 & \(1.978+\infty\) & \(291 \mathrm{~B}+\infty\) & 6. \(278+00\) & \(2.178+01\) \\
\hline \multicolumn{16}{|l|}{Repposme to Quectionmine} \\
\hline Doyou gement & 45579000 & 2541 & 9.098-01 & 1.338-04 & \(0.008+\infty\) & 4.99800 & 1.14801 & 1.22 P -1 & 3.068 .01 & 6.038 .01 & \(1.188+\infty\) & \(2.068+\infty\) & 2978+60 & \(6.258+\infty\) & \(2.178+01\) \\
\hline Doyou frm? & 5245000 & 313 & 9.9\%801 & 5.338-04 & \(0.00 \mathrm{~B}+\infty\) & 1.38 .02 & 1.07801 & 1.658 .01 & 2.68801 & 5.67801 & 1.28+ +00 & 2348+00 & 3.5SE+60 & \(6.828+\infty\) & 9.148+00 \\
\hline
\end{tabular}

Table 2-63. Intake of Total White Potatoes (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Group & \[
\begin{gathered}
\mathrm{N} \\
\text { wgtd }
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{N} \\
\text { unwisd }
\end{gathered}
\] & Meen & SE & Po & P1 & PS & \(P 10\) & P2S & P50 & P75 & P90 & P95 & P99 & P100 \\
\hline Toul & 151813000 & 8093 & 1.71E+00 & 1.72E04 & 0.00E \(+\infty\) & \(4.608-02\) & 1.58E-01 & \(2.518-01\) & 5.578-01 & \(1.12 \mathrm{~B}+00\) & 2.08E+00 & 3. \(888+\infty\) & 5.17E+00 & 1.008+01 & 5.238+91 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 2159000 & 121 & 7.21E+00 & 4.318-03 & 0.00E+00 & \(2.22 \mathrm{E}-1\) & 7.128-01 & \(1.118+00\) & 240E +00 & 6.01E+00 & 9.94E+00 & 1.688+01 & \(2.248+01\) & 1.898+01 & \(3.158+01\) \\
\hline \(01-12\) & 4681000 & 262 & \(4.61 \mathrm{E}+00\) & \(239 \mathrm{E}-03\) & 1.258 .01 & 2.13E-01 & 5.62E-01 & \(7.72 \mathrm{E}-01\) & 1.49E+00 & 3.418 +00 & 5.678+00 & 9.548+00 & 1.248+01 & 2318+01 & \(3.258+01\) \\
\hline 0305 & 7080000 & 397 & \(2908+00\) & \(8.53 \mathrm{E}-04\) & \(0.008+\infty 0\) & 1.10e-01 & 3.00E-01 & 5.05E-01 & \(1.088+00\) & \(2.39 \mathrm{~B}+00\) & 4.098+ \({ }^{\text {co }}\) & \(6.258+00\) & \(7.278+00\) & 9328+00 & 1.48E+01 \\
\hline \(0 \times 11\) & 14925000 & 838 & \(2.358+00\) & 5.47E-04 & \(0.00 \mathrm{E}+00\) & 1.29E-01 & \(2.69 \mathrm{E}-01\) & \(4.248-01\) & \(9.208-01\) & \(1.848+00\) & 3.03E \(+\infty 0\) & 4.78E \(2 \times 0\) & \(6.12 \mathrm{E}+60\) & 1.00E+01 & \(2.6038+01\) \\
\hline 12-19 & 18181000 & 956 & 1.41E+00 & 3.11E04 & \(0.008+00\) & 2.69E-02 & 1.57 -01 & 24SE-01 & 5.138-01 & \(1.08 \mathrm{E}+00\) & \(1.938+\infty\) & 2.93E \(+\infty 0\) & \(3.768+60\) & 5.90E+00 & 1.4IE+01 \\
\hline 20-39 & 4777000 & 2627 & \(1.23 E+00\) & 1.868-04 & 0.008+00 & 3.42E-02 & 1.19E-01 & 1.92E-01 & \(4.33 \mathrm{E}-01\) & 9.12E-01 & \(1.62 \mathrm{E}+\infty\) & 1.598 \(+\infty 0\) & \(3.258+00\) & \(6.238+\infty\) & \(1 \mathrm{MB+01}\) \\
\hline 40-6\% & 45523000 & 247 & 1.42E+00 & 218E-04 & \(0.008+60\) & 4.99 EO & 1.63E-01 & 250E-01 & \(5.558-01\) & \(1.028+00\) & \(1.81 \mathrm{E}+\infty 0\) & \(2.86 \mathrm{~B}+\infty\) & 389E+00 & 8.118+00 & \(1.538+01\) \\
\hline \(70+\) & 11787000 & 615 & 1.4E+00 & 3.91E-04 & 0.00E+60 & 5.33E-02 & 1.88E-01 & 268E.01 & 5.82E-01 & 1.07E+00 & 2.00E+00 & 2.86B \(+\infty\) & 3.928+00 & 7.14E+00 & \(1.088+01\) \\
\hline \multicolumn{16}{|l|}{Semons} \\
\hline P4il & 38567000 & 1291 & 1.64E+00 & 2.92E04 & \(0.008+00\) & 9.98E-02 & 1.72-01 & 2.608-01 & 5.358-01 & \(1.128+00\) & \(2.068 \mathrm{~B}+00\) & 3.418+60 & \(4.768+00\) & 9.328+00 & \(2.15 E+01\) \\
\hline Sprine & 36372000 & 3201 & 1.70E +00 & 3.22E-04 & 0.00E+00 & 4.46E-02 & 1.458-01 & 2308-01 & 3.308-01 & \(1.09 \mathrm{E}+00\) & 212E+00 & 3.99E+00 & 5.108+00 & \(1.038+01\) & \(2898+01\) \\
\hline 8 armaner & 36024000 & 1139 & \(1.22 \mathrm{E}+\infty\) & 3.90E-04 & \(0.008+60\) & \(2.59 \mathrm{E}-02\) & 1.58E-01 & 261E-01 & 5.748.01 & \(1.19 \mathrm{~B}+00\) & \(2.128+\infty\) & 3.87E+00 & 5.73E+00 & 1.08B+01 & \(3.158+01\) \\
\hline Winter & 40850000 & 2462 & \(1.6 \pi\) + +0 & 3.99E-94 & \(0.00 \mathrm{~B}+00\) & 3.28E-02 & 1.59E-01 & 2.588 .01 & 5.768 .01 & 1.10E+00 & 2.048+00 & 3. \(99 \mathrm{E}+\infty 0\) & 4.878+60 & 9.208+00 & 5.258+01 \\
\hline \multicolumn{16}{|l|}{Unterimion} \\
\hline Central City & 4028000 & 131 & \(1.688+00\) & 3.708-04 & 0.008+60 & 3.57B-2 & 1368-01 & 2.188-01 & 4.978 .01 & \(1.0588+00\) & 1.978+00 & 3.498+00 & 5.368+00 & 1.088+01 & 5.288+01 \\
\hline Nonsmetropolitan & 37654000 & 2552 & \(159 \mathrm{E}+00\) & 3.57804 & \(0.00 \mathrm{E}+10\) & 3.998-02 & \(2.088-01\) & \(3.358-01\) & 7.50E-01 & 1.128+00 & 2.6E+00 & \(4.048+\infty 0\) & 5.70E+60 & 9.998 +00 & 3.18801 \\
\hline Subturben & 70075000 & 380 & \(1.578+00\) & \(2188-04\) & 0.00E +00 & 5.52E-02 & 1.385-01 & 2508-01 & 5.24E-01 & 1.03E+00 & \(1.93 \mathrm{E}+00\) & \(3.258+\infty\) & \(4.668+\infty 0\) & 9.648+00 & \(2.318+01\) \\
\hline \multicolumn{16}{|l|}{Rese} \\
\hline Asim & 1802000 & 83 & \(1.76 \mathrm{E}+00\) & \(1.608-03\) & 6.55E-02 & 6.558-02 & 180801 & 1.978-01 & 4.608-01 & 9.998-01 & 150E +00 & \(4.288+60\) & 6.338+00 & 1.00E+01 & 1.008+01 \\
\hline \(\cdots\) Bink & 1677900 & 81 & \(1.668+00\) & 5.008-04 & \(0.008+\infty 0\) & 2558-02 & 1.368 .01 & 2258-01 & 5208.01 & \(1.05 \mathrm{E}+00\) & \(2.138+00\) & 3.988+00 & 5.338 +00 & 9.008 + +0 & \(2.218+01\) \\
\hline Native Amperion & 141000 & 0 & \(4.20 \mathrm{E}+00\) & 6.398-03 & \(9.70 \mathrm{E}-02\) & 2.25801 & 4.158-01 & 4.90E-01 & 7.87E-01 & 1.788+00 & 4.428+00 & 9,548+00 & 1318+01 & 3.258+01 & \(5238+01\) \\
\hline - OthenNa & 3385000 & 163 & \(2.50 \mathrm{~B}+\infty\) & 1.79E-03 & 9 EGEO & 2.20E-01 & 284Eal & 3.568-01 & 7.18E-01 & 1.488+00 & \(2.90 \mathrm{~B}+00\) & 5.903 \({ }^{\text {cos }}\) & \(1.088+01\) & 1.338+01 & 2318+6: \\
\hline - Whe & 123846000 & 003 & \(1.60 \mathrm{E}+00\) & 1.69E-4 & \(0.00 \mathrm{E}+00\) & 4.968-02 & 1.568-01 & \(2.518-01\) & 3.58E-01 & \(1.128+00\) & 2006 +00 & 3.488+00 & 4928+00 & 9.64E +60 & 3.15]+01 \\
\hline \(\cdots\) & & & & & & & & & & & & & & & \\
\hline \multicolumn{16}{|l|}{Repiors} \\
\hline Midunt & 39271000 & 2009 & 1.00E +00 & 3.008-94 & 0.008+ 00 & 3.518-02 & 1.358-01 & 2368-01 & 3.718-01 & 1.20E+00 & \(2.23 \mathrm{E}+00\) & 3.008 \(+\infty\) & 5.508+00 & \(1.018+01\) & \(2318+01\) \\
\hline Norftioast & 33411000 & 1693 & \(1.558+00\) & 3.168-94 & 0.008 + +0 & 4.23E-02 & 131801 & 2328-01 & 1808.01 & 9.66801 & 1.91E+60 & 3. \(608 \mathrm{~B}+00\) & \(4.768+\infty\) & 9.788+00 & \(1208+0 \mathrm{~L}\) \\
\hline South & 51373000 & 271 & \(1.758+00\) & 3.278-04 & 0.00E + + 0 & \(469 \mathrm{E}-28\) & 1.7E-01 & 2.8801 & 5.95E-01 & \(1.168+00\) & \(2.158+60\) & \(3.588+\infty 0\) & \(5.26 \mathrm{E}+00\) & 9.75E+00 & 5.226+01 \\
\hline Wot & 278\%000 & 148 & \(1.67 \mathrm{E}+00\) & 3.77E-4 & \(0.00 \mathrm{E}+60\) & 8.31E-02 & 1.888.01 & 2.02E-01 & 5.63E-01 & 1.13E+00 & 1.908 +00 & 3.408+60 & \(4.798+\infty\) & 1858+00 &  \\
\hline \multicolumn{16}{|l|}{Resposec to Questionmire} \\
\hline \(\therefore\) Do you grden? & 57153000 & 3235 & \(1.67 E+80\) & 2338-4 & 0.008 \(+\infty 0\) & 499E-02 & 1.758-01 & 287E-01 & 5.98E-01 & \(1.188+00\) & \(214 \mathrm{E}+60\) & 3. \(368+\infty 0\) & 4.631+60 & \(2825+60\) & \(2388+01\) \\
\hline Do you ferm? & 634000 & 416 & \(2168+\infty\) & \(7.98 \mathrm{E}-04\) & \(0.008+\infty\) & 1208-01 & 2298-01 & \(3.888-01\) & 2.798-91 & 1.77E+00 & \(280 \mathrm{E}+00\) & \(4.068+60\) & \(6.168+\infty\) & 1.008+01 & 1.9\%+01 \\
\hline
\end{tabular}

Table 2-64. Inctake of Total Exposed Vogetables (e/ke-day)


Table 2-65. Intake of Total Protected Vegetables (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Groun & \[
\begin{gathered}
\mathbf{N} \\
\mathbf{W g} \mathrm{g}^{2}
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{N} \\
\text { unwitd }
\end{gathered}
\] & Mean & SE & Po & P1 & PS & P10 & P25 & P50 & P75 & P90 & P98 & P99 & P100 \\
\hline Toued & 139885000 & 7455 & 1.20E+00 & 1.36E-04 & \(0.00 \mathrm{E}+\infty 0\) & 7.06E-02 & 1.52E-01 & 2.178 .01 & 4.00E-01 & 7.618-01 & 1.418+00 & 2568+00 & 3.538+00 & 7.14E+00 & 3.618+01 \\
\hline \multicolumn{16}{|l|}{Ase} \\
\hline <01 & 2315000 & 126 & \(6.58 \mathrm{E}+00\) & 4.15E-03 & \(3.008-01\) & 5.728-01 & 7.80E-01 & \(9.69 \mathrm{E}-01\) & 1.85E+00 & 5.298 +00 & 8.64E +00 & \(1.478+01\) & \(1.638+01\) & 3.618+01 & 3.61E+01 \\
\hline \(01-02\) & 4608000 & 261 & \(2.778+00\) & 1.04E-03 & 3.21 -01 & 3.708-0! & 5.47E-01 & 7.798-01 & 1.17E+00 & 2228+00 & \(3.538+\infty\) & 5.198+00 & 6.398+00 & 1.248+01 & \(1.608+01\) \\
\hline 03-05 & 6715000 & 383 & \(2.208+00\) & 6.96E-04 & 1.60E-01 & 2.198-01 & 3.70E-01 & S.91E-01 & \(1.03 \mathrm{E}+00\) & \(1.65 \mathrm{E}+00\) & 290E \(+\infty\) & \(4.578+00\) & 3.218+00 & 9.88E +00 & \(1.308+01\) \\
\hline 0611 & 13792000 & 73 & \(1.518+\infty\) & 4.05E-04 & \(0.00 \mathrm{E}+00\) & 4.69E-02 & 207E-01 & 3.18E-01 & 3.71E-01 & \(1.03 \mathrm{~B}+00\) & \(1.94 \mathrm{E}+\infty\) & 3.08E +00 & 4.03E+00 & 1.718+00 & 1.16E+01 \\
\hline 12-19 & 16218000 & 88 & 9.41E-01 & 2.20E-04 & \(0.00 \mathrm{E}+00\) & 4.44E-02 & 1.468-01 & 207E-01 & 3.60E-01 & \(6.72 \mathrm{E}-01\) & \(1208+00\) & 1.99E+00 & \(2.518+00\) & \(4.378+\infty\) & \(6.278+00\) \\
\hline 20.39 & 4065900 & 2260 & 8.518 .01 & \(1.33 \mathrm{E}-04\) & \(0.00 \mathrm{E}+00\) & 5.248-02 & \(1.28 \mathrm{E}-01\) & 1.788-01 & 3.20E-01 & \(5.835-01\) & 1.10E+00 & \(1.74 \mathrm{E}+00\) & \(2378+00\) & \(4.078+\infty\) & \(1.208+01\) \\
\hline 40-69 & 41024000 & 2205 & 9.788-01 & 1.508-04 & \(0.008+\infty\) & 7.008-02 & 1.5IE-01 & 203E-01 & 3.79E-91 & 7.028-01 & \(1.21 \mathrm{E}+00\) & 209E +00 & 2.783+00 & \(4.838+00\) & \(9968+00\) \\
\hline \(70+\) & 11145000 & 567 & \(1.03 \mathrm{~B}+00\) & 3.05E-04 & 7.11E-02 & 1.02E-01 & 1.76E-01 & 2.468-01 & 4.19E.01 & 7.14E-01 & 1.31E+00 & \(2.108+00\) & \(2.751+00\) & 5.00E+00 & \(9.23 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Semons} \\
\hline Fall & 36788000 & 1241 & \(1.238+00\) & \(3.100-04\) & 0.00E + +0 & 7.008-02 & 1.99E-01 & 2.128 .01 & 4.06E-01 & \(7.658-81\) & 1.4EE \(+\infty\) & \(2.368+00\) & \(3.578+00\) & 7.578+00 & \(3.618+01\) \\
\hline Spring & 32525000 & 2092 & \(1.148+00\) & 2358-94 & \(0.00 \mathrm{~B}+\infty 0\) & 8.86E-02 & 1.07E-01 & 2248-01 & 3.998-01 & \(7.558-01\) & \(1.348+00\) & \(2.38 \mathrm{E}+\infty 0\) & \(3.45 B+00\) & 6.308+00 & \(1.968+01\) \\
\hline Sumuner & 33611000 & 1002 & 1.47E +00 & 3.18E-04 & \(0.00 \mathrm{E}+\infty 0\) & 4.698.02 & 1 158-01 & \(2658-01\) & 4.8P-01 & \(9.69 \mathrm{E}-01\) & \(1.768+\infty\) & 3.06E+00 & \(4308+00\) & 9.238+00 & 2.628+01 \\
\hline Wintar & 36961000 & 2250 & 9.808-01 & 1.958-4 & \(0.00 \mathrm{E}+\infty\) & 6.73E-02 & 1.35E-01 & 1.85E-01 & 3.30E-01 & 6.148 .01 & \(1.16 \mathrm{E}+\infty\) & \(2.14 E+\infty\) & \(2988+00\) & 5.77E+00 & 1.318+01 \\
\hline \multicolumn{16}{|l|}{Unbeniztion} \\
\hline Cruncity & 499109 & 159 & 1.20+ & 2008.88 & C.Cos+cs & \(4.768-2\) & 1.398.91 & 2.228-91 & 35s901 & 6.575 81 & \(1.358+\infty\) & 2.288+28 & 3.958** & 1.6iniol & 2008+61 \\
\hline Normetropoliter & 35751000 & 2413 & \(1.328+00\) & 2.718-04 & \(0.00 \mathrm{E}+\infty\) & 7.398-92 & 1.598-01 & 2508.01 & 4.64 -01 & 8.418-01 & \(1.99 \mathrm{~B}+\infty\) & 2848+00 & \(4.008+00\) & 7.608+00 & \(2.288+01\) \\
\hline Surburben & 64033000 & 3074 & \(1.128+00\) & 1.768-04 & \(0.00 \mathrm{E}+\infty\) & 7.08E-02 & 1.50000 & 2.13E-01 & 3.902-01 & 7.49E-01 & \(1.38 \mathrm{E}+00\) & 2388+00 & 3.22E+00 & 5.88E+00 & \(3.618+01\) \\
\hline \multicolumn{16}{|l|}{Ruce} \\
\hline Asian & 1491000 & 9 & 2458+00 & 4.618 .03 & 133E-01 & \(13 \mathrm{Me-01}\) & 1838-01 & 2.698 .01 & 4.758 .01 & 1.198+00 & \(1.94 B+\infty\) & 4308+00 & 5.178+00 & 3.618+01 & \(3.618+01\) \\
\hline Bleck & 17703000 & \(\$ 1\) & \(1.388+\infty\) & 4.9E-0N & \(0.00 \mathrm{E}+\infty\) & 0.008+00 & \(1.438-1\) & 2.098 .01 & 3.22E-01 & \(2.168-01\) & \(1.588+\infty\) & \(2.768+00\) & 4386+00 & 1.048+01 & 2628+01 \\
\hline Netive Americen & 1774000 & \(\pi\) & \(1.008+\infty 0\) & 1.278 .03 & \(7.81 \mathrm{E}-08\) & 7.818.02 & 1.228-01 & \(1.98 \mathrm{E}-01\) & 3.65e-01 & \(6.20 \mathrm{E}-01\) & 980R-01 & \(1.93 \mathrm{E}+00\) & \(4.148+00\) & 2.998+00 & 2988 +0 \\
\hline OthenNA & 3518000 & 17 & \(1.788+00\) & 1.20e-03 & 3.79B-02 & 1.618-01 & 2.75E01 & 3.388-01 & 3.72E-1 & 1.138+00 & 2.018+00 & 3368+00 & 1218 +00 & 1.208+01 & 1.428+61 \\
\hline White & 115895000 & 624 & \(1.148+\infty\) & \(1.258-04\) & \(0.00 \mathrm{E}+00\) & 7.12E-02 & 1.52E-01 & \(2.16 \mathrm{E}-01\) & 3.97801 & 7.398-01 & 1.398+00 & 2488+00 & 3.43E+00 & 6.398+00 & \(2.28 \mathrm{P}+1\) \\
\hline \multicolumn{16}{|l|}{Regions} \\
\hline Midmat & 3372000 & 1939 & \(1.198+\infty\) & 2918-04 & 0.008 \(+\infty\) & 7.4E-02 & 1.578-01 & 2.138-01 & 3.28801 & 7.07801 & 1398+00 & 1908+60 & 3.048+00 & 7.248+00 & 2(98R+01 \\
\hline Noctheest & 30173000 & 1092 & 1.208+ +0 & 3.458-04 & \(0.00 \mathrm{~B}+\infty\) & 5.63B-02 & 1.48-01 & \(2.008-01\) & 3.72-01 & 1.058-01 & 1368+00 & 246E+00 & \(3.48 \mathrm{C}+\infty\) & 7.148+00 & \(3.618+01\) \\
\hline south & 50833000 & 274 & \(1.238+\infty\) & 2008-94 & \(0.008+00\) & 4,963-02 & \(1.538-1\) & 236E-01 & 4.468-01 & \(8.378-01\) & \(1.41 \mathrm{~B}+00\) & 2618+00 & \(3.578+00\) & 7.438+00 & 1.608+01 \\
\hline Went & 2516700 & 1208 & \(1.1583+\infty\) & \(2.855-04\) & 0.008+00 & 8.65E-92 & 1.418-01 & 2.04E01 & 3.68E-01 & 7.068-01 & \(1.13 \mathrm{~B}+00\) & \(2.50 \mathrm{E}+\infty\) & 3.368 \(+\infty 0\) & \(6.098+\infty\) & \(2.228+01\) \\
\hline \multicolumn{16}{|l|}{Recponse to Questionraine} \\
\hline Do you gerden? & 52713000 & 2975 & \(1.11 \mathrm{E}+00\) & 2138-04 & 0.00R +00 & 7.008-02 & 1.51801 & \(2.048-01\) & 3.738-01 & 7.128-01 & 1.338+00 & 2308 + + \({ }^{\text {c }}\) & 3.308+ +0 & 6. \(2788+00\) & \(3618+61\) \\
\hline Do you fam? & 5838000 & 331 & \(1.318+00\) & 6.02E,04 & 1.48-02 & 1.05E-01 & 1278-01 & \(285 E-01\) & 5.00E-01 & \(8.618-01\) & 1378+00 & 2.85B+00 & 4.078+00 & 7.4CB+00 & 1.238+01 \\
\hline
\end{tabular}

Table 2-66. Intake of Total Roor Vegetables (f/kz-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Pepintion Croun & \[
\begin{gathered}
\mathrm{N} \\
\mathrm{mad}
\end{gathered}
\] & \[
\stackrel{N}{N}
\] & H19 & 88 & p & P1 & PS & P10 & 125 & 88 & ms & 80 & Ps & P & 1700 \\
\hline Tomal & 170040000 & S04 & \(2.168+\infty\) & 2.19804 & \(0.005+60\) & 3228-2 & 120801 & 3.148*1 & 7,008-91 & 1.03E+00 & 2.33E+00 & 4.488+00 & 6338+00 & \(1308+01\) & 9358+01 \\
\hline \multicolumn{16}{|l|}{Ase} \\
\hline <01 & 2502000 & 14 & \(1.088+01\) & 9.698-00 & 2008 +00 & 258801 & 1.91E+ \({ }^{\text {cos }}\) & \(185 \mathrm{t}+0\) & \(3.485+00\) & 7.688+00 & \(1.508+01\) & \(2.658+81\) & \(3.058+01\) & 385E+01 & \(4.688+01\) \\
\hline 01.02 & 5105000 & 302 & \$58E+00 & \(3278-03\) & 7.01E-20 & 1.32 E 01 & 6.268 .01 & \(8208-01\) & \(2.088+00\) & 4123+60 & 7.338+00 & \(1.238+01\) & \(1.58 \mathrm{E}+91\) & \(2138+01\) & 938x+61 \\
\hline 0305 & 7154000 & 43 & \(3.738+\infty\) & \(1.01 \mathrm{E}-03\) & \(0.00 \mathrm{~B}+\infty\) & S34E-02 & 3.048-01 & 6.14 -01 & 1.678+00 & 30SE +6 & 5372+00 & \(7.672+\infty\) & 9.848+00 & \(1278+01\) & \(1.53 E+01\) \\
\hline C-11 & 1575400 & 45 & 205E +00 & 6.20E-04 & \(0.008+\infty\) & 137E01 & \(3.208-01\) & 6.01 E-01 & \(1.30 \mathrm{E}+00\) & \(2378+60\) & 3.958+00 & \(6.098+00\) & \(7.248+00\) & \(1.168+61\) & 2938+61 \\
\hline 12-19 & 19339000 & 192 & \(1.788+00\) & 3.49E-4 & \(0.008+\infty 0\) & 6.748 .02 & \(2.23 \mathrm{E}-01\) & 3.37801 & 7028-91 & \(1.352+\infty\) & \(2312+00\) & \(3.618+00\) & \(4398+60\) & \(6.688+60\) & 1.eEtel \\
\hline 20.39 & 54606000 & 279 & \(1.488+\infty\) & \(2008-4\) & \(0.008+\infty\) & 317502 & 1.280.01 & \(2.19 \mathrm{E}-01\) & 4.98-01 & \(1.078+\infty 0\) & \(1.93 \mathrm{E}+00\) & 3.02E +00 & 4.088+00 & \(6.78 \mathrm{~F}+0\) & \(18 \times 8+01\) \\
\hline 40-69 & 51391000 & \(27 \%\) & \(1.788+\infty\) & 2.41E-0 & \(0.008+\infty\) & 5.46802 & 1.908001 & 3.448-01 & 7.198-01 & \(1368+\infty\) & \(2.32 \mathrm{C}+00\) & 3.598+ +0 & \(4.788+00\) & 930E+60 & 1.58 P+01 \\
\hline T \({ }^{+}\) & 13999000 & 715 & \(1.938+\infty\) & \(438 \mathrm{BP4}\) & \(0.008+\infty\) & \(8.578-2\) & \(2.33 \mathrm{E}-01\) & 3.77E-01 & \(7.718-1\) & \(1.568+00\) & \(2.588+\infty\) & 3.778+00 & \(5388+00\) & 7.948+60 & 1.12E+01 \\
\hline \multicolumn{16}{|l|}{Scasors} \\
\hline Fa & 43605000 & 1451 & \(2.188+00\) & 4.088-04 & 0.00E+00 & S.3E-02 & 1.95E-01 & 3218-01 & \(7.108-01\) & \(1.508+00\) & \(2.69 \mathrm{~B}+\infty\) & 4.478+00 & 6.328+00 & \(1.328+01\) & 3.058+01 \\
\hline Spring & 41282800 & 3594 & 2118+00 & 4.13E-09 & \(0.008+\infty\) & 6.33E-02 & \(1.57 \mathrm{E}-01\) & 276E-01 & 6.53 E 01 & \(1.378+00\) & \(2.57 \mathrm{E}+00\) & \(4.385+00\) & \(6.578+60\) & \(1358+01\) & \(3888+01\) \\
\hline Smamer & 40761000 & 1278 & 2.228+00 & 4.58B-04 & \(0.008+\infty\) & 2.12E-02 & 1.54E-01 & \(2.668-01\) & \(6.668-1\) & \(1.458+\infty\) & \(2.688+\infty\) & 4.72B+60 & 6.738+60 & 132E+01 & \(4.68+01\) \\
\hline Writer & 45372000 & 272 & 2.128+00 & 4.COEP-4 & 0.00E+00 & \(8.398-02\) & 2.25E-01 & 3.678-01 & \(7508-01\) & 1.028+00 & \(2.572+\infty\) & \(4.368+00\) & 5.988+00 & \(1.238+01\) & \(9388+01\) \\
\hline \multicolumn{16}{|l|}{Unbentation} \\
\hline - Contal Cixy & 50638000 & 1993 & 2.200 +00 & 5.078-04 & \(0.008+60\) & 4.588-02 & 1.54E-01 & 2898-01 & 6.75E-01 & \(1.398+00\) & 2.888+00 & \(4.788+00\) & 6328+00 & \(1.568+01\) & \(9388+01\) \\
\hline Normettopolitan & 40881000 & 2754 & \(2.208+\infty\) & 4.31 EM & \(0.008+\infty\) & 7.148-02 & \(2.278-01\) & 3.88E-01 & 8.58E-01 & 1.73E+00 & 3.028 \(+\infty\) & \(4.818+00\) & \(6.838+80\) & \(1.308+01\) & \(4.068+01\) \\
\hline Sutbuten & 79371000 & 405 & \(2.008+\infty\) & 2618-04 & \(0.00 \mathrm{~B}+\infty\) & S.41E-22 & 109E-01 & 3.048 .01 & 6.5SR-01 & 1328+00 & \(2.458+\infty\) & \(4318+00\) & \(5.988+00\) & \(1.208+81\) & 3.7ET+01 \\
\hline \multicolumn{16}{|l|}{Rece} \\
\hline Asion & 2343000 & 112 & \(2588+00\) & \(2.718-03\) & 655B-02 & 1.50801 & 1.94E-01 & \(2508-01\) & 6.268-01 & \(1.358+00\) & \(2.588+\infty\) & 5.938+00 & 8.2088+00 & \(3.058+01\) & \(3.658+01\) \\
\hline Brack & 19240000 & 93 & \(2.068+\infty\) & \(6.158-04\) & \(0.00 \mathrm{~B}+\infty 0\) & \(3.548-02\) & 1.77801 & 3.128-01 & \(6.418-01\) & \(1.338+00\) & \(2.268+\infty\) & \(4.168+00\) & \(6.098+00\) & \(1.388+01\) & 208E+01 \\
\hline Native Ammican & 1495000 & 90 & 5.548+00 & 1.00E-02 & 1.028-01 & 1.90801 & 3.96801 & \(6.098-01\) & 9.72801 & \(2.078+00\) & 4.288+00 & 9.498+00 & 2.3 [8+01 & 9.398+01 & \(938 \mathrm{~F}+01\) \\
\hline Otamin & 0328000 & 205 & \(2.798+\infty\) & \(1.7 \pm{ }^{\text {P/03 }}\) & 5.148-03 & 1.478-02 & \(2318-01\) & 3.48E-91 & 7.96B-01 & 1.7TE+00 & \(3.288+\infty\) & 5 SRES +00 & \(1.048+01\) & 1.088+61 & \(2.758+01\) \\
\hline Whin & 143520000 & 764 & \(2.118+\infty\) & 2.118-04 & \(0.00 \mathrm{E}+00\) & S.AIE-2 & 1.e4EOI & 3.138-01 & 7.078-81 & 1.4E8+00 & \(2.638+\infty\) & \(4.40 \mathrm{E}+\infty\) & \(6.158+00\) & \(1.208+01\) & \(4.68 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Regios} \\
\hline Mitruat & 1040000 & 237 & \(2228+\infty\) & 4.208 .04 & \(0.008+00\) & \(4.708-02\) & 1548-91 & 2.93E-01 & \(6898-81\) & 1.408+00 & \(278 \mathrm{~F}+\infty\) & 4.738+00 & 6.308+00 & \(1.308+01\) & 3.058+01 \\
\hline Northent & 38141000 & 184 & 2.09\% +00 & 4.188 .04 & \(0.008+\infty 0\) & S.9E-02 & 2006-01 & 329801 & \(6.698-1\) & \(1.388+00\) & \(2.578+\infty\) & \(4.378+00\) & \(6.138+00\) & \(1.278+01\) & \(2818+01\) \\
\hline souch & 5759000 & 3108 & \(2.198+\infty\) & \(4.298-94\) & \(0.008+\infty\) & 540 BEO & \(2.048-01\) & 3.4E-01 & \(7.108-1\) & 1.47B+00 & \(2.63 \mathrm{~B}+\infty\) & \(4.488+00\) & \(6.388+60\) & \(1.388+01\) & \(9.388+01\) \\
\hline Wut & 32530000 & 1681 & \(2.108+\infty\) & 4.538 .04 & 0.00E \(+\infty\) & 5.308002 & 1.70E-01 & 297801 & 7.408-01 & 1.43E+00 & \(2.58 \mathrm{E}+00\) & \(4.308+80\) & \(6.038+00\) & \(1.178+01\) & 3.702+61 \\
\hline \multicolumn{16}{|l|}{Repponse to Quationmire} \\
\hline Do you gerden? & 6335000 & 358 & \(2.138+\infty\) & 2.58-04 & 0.008+60 & 6.908-22 & 2.080 .01 & 3.618-01 & 74E01 & \(1.508+00\) & \(2.708+\infty\) & \(4.398+00\) & 5.888+00 & \(1.168+01\) & 3.488+01 \\
\hline Do you frm? & 7198000 & 31 & \(2.658+\infty\) & \(9.418-04\) & \(0.00 \mathrm{~B}+\infty\) & 8.79E-2 & \(2.06 \mathrm{E}-1\) & 3.98E-01 & \(1.078+\infty\) & \(2.138+00\) & 3.668+00 & 4898+00 & \(7.388+00\) & \(1.178+01\) & \(3.028+01\) \\
\hline
\end{tabular}

Table 2-67. Intake of Total Exposed Fruits (g/kg-day)


Table 2-68. Intake of Toul Prolecied Pruiks (e/kg-day)


Table 2-69. Intake of Total Dark Green Vegetables (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Group & \[
\begin{gathered}
\hline \mathrm{N} \\
\text { wgtd } \\
\hline
\end{gathered}
\] & \[
\underset{\sim}{N}
\] & Mear & SE & PO & Pl & PS & P10 & P2S & Pso & P75 & P90 & P95 & P99 & P100 \\
\hline Total & 98161000 & s10s & \(8.008-01\) & 1.28E-04 & 0.00E+00 & 4.67E-03 & 4.72E-02 & 8.96-02 & 2.16E-01 & 4.748-01 & 9.02-01 & 1.73E+80 & 245B+00 & 3.572+00 & 3.57E+01 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 1450000 & 85 & 5.11E+00 & \(5.04 \mathrm{E}-03\) & 0.00E+00 & 1.05E-01 & 2938.01 & 4.468.01 & \(1.358+00\) & 2088+00 & \(6.418+\infty\) & \(123 \mathrm{E}+01\) & \(1.69 \mathrm{E}+01\) & 3.572+01 & 3.578+01 \\
\hline 01.02 & 2958000 & 165 & \(1.69 \mathrm{E}+00\) & \(9.68 \mathrm{E}-04\) & 7.78E-03 & 7.79E-03 & 1.258 .01 & 2208.01 & 3908-01 & \(1.288+00\) & \(2.178+00\) & 3.41E+00 & 5. \(678+00\) & 7.578+ +00 & 8.93E+00 \\
\hline 0305 & 4255000 & 231 & \(1.23 \mathrm{E}+00\) & 6.71E-04 & \(0.005+\infty 0\) & 0.00E+00 & 1.01E-01 & 1.288.01 & 4.98E-01 & \(7578-01\) & \(1.378+00\) & \(3.188+00\) & \(4.23 \mathrm{E}+00\) & \(6.278+\infty\) & 1.038+01 \\
\hline 06-11 & 8837000 & 490 & 8.47E-01 & 3.39E-04 & \(0.00 \mathrm{E}+\infty 0\) & 3.72E-03 & 5.668-02 & \(1.03 \mathrm{E}-1\) & 2.98-01 & 5.20001 & \(1.078+00\) & \(1.938+\infty\) & \(2.678+00\) & 3.20E+00 & \(6.888+\infty\) \\
\hline 12-19 & 10240000 & 512 & \(5.828-01\) & 2.07E-4 & \(0.00 \mathrm{~B}+\infty 0\) & \(2.46 \mathrm{E}-03\) & 3.76E-02 & 6.38E-02 & \(1.778-01\) & 387801 & 7.228-01 & \(1.21 \mathrm{E}+00\) & \(1.62 \mathrm{~F}+00\) & \(3.878+\infty\) & 5.108+00 \\
\hline 20-39 & 30025000 & 1472 & \(6.128-01\) & 1.378-04 & \(0.00 \mathrm{E}+\infty\) & 245E-03 & 3.62E-02 & 7.41E-02 & 1.75E-01 & 381E-01 & \(7.508-01\) & \(1.41 \mathrm{E}+00\) & \(1.97 E+\infty\) & \(3.658+\infty\) & \(7.378+\infty\) \\
\hline 40.69 & 31870000 & 1700 & 7.08E-01 & 1.428-04 & \(0.00 \mathrm{E}+\infty 0\) & \(1.13 \mathrm{E}-02\) & 5.588-02 & 9.56E-02 & 2218-01 & 4838.01 & 9.98901 & \(1.50 \mathrm{E}+00\) & \(2108+\infty\) & 4. \(178+00\) & 9.588 +00 \\
\hline \(70+\) & 8525000 & 420 & \(7.69 \mathrm{E}-01\) & 2.45E-04 & \(0.00 \mathrm{E}+00\) & 5.59E-03 & 4.73E-02 & 1.128.01 & 2518-01 & 5.71E.01 & \(1.058+00\) & \(1.74 \mathrm{E}+\infty\) & \(2.308+\infty\) & \(3.368+\infty\) & 5.068 +00 \\
\hline \multicolumn{16}{|l|}{Semors} \\
\hline Fall & 23036000 & 754 & 8.73E-01 & 3.668-04 & 0.00E \(+\infty 0\) & \(0.008+00\) & 3.9E-02 & \(7.258-02\) & 1.928-01 & 4388-01 & 9.29801 & 2002 +00 & \(2788+00\) & 6.888 +00 & 3.578+01 \\
\hline Spring & 23399000 & 2008 & 8.04801 & \(2.278-04\) & \(0.008+\infty\) & 1.198-02 & 6.33E-02 & \(1.018 \mathrm{E}-01\) & 2388-01 & 483E-01 & 9.418 .01 & \(1.73 \mathrm{E}+\infty\) & \(2.608+\infty\) & \(5.008+\infty 0\) & \(1.838+01\) \\
\hline Surruer & 23240000 & 754 & 7.98E-01 & 2.158-4 & \(0.008+\infty 0\) & 2.805-03 & 4.288-02 & 1.028-01 & 2.408 .01 & 5.378 .01 & \(9.608-11\) & \(1.62 \mathrm{E}+00\) & \(2408+\infty\) & 5.398+00 & \(1.238+01\) \\
\hline Winter & 27482000 & 1589 & \(738 \mathrm{E}-01\) & \(1.98 \mathrm{E}-4\) & \(0.008+\infty\) & 1.15E-2 & 4.96E-02 & 8.028-02 & 1.93E-01 & 4338-01 & 9.198 .01 & \(1.68 \mathrm{E}+00\) & \(2.278+\infty\) & 4.74E+00 & \(1.858+01\) \\
\hline \multicolumn{16}{|l|}{Uitanizations} \\
\hline Cerurel City & 29600000 & 1156 & 9.228-01 & \(2.538-04\) & \(0.00 \mathrm{P}+\infty\) & 1.018-08 & 5.168-02 & \(2988-02\) & \(2.438-91\) & S.718-0] & 1.198+m & \(22119+09\) & 1.478+09 &  & 1.208 +01 \\
\hline Nonmetropolitan & 19359000 & 1308 & \(6.108-01\) & \(2.19 \mathrm{E}-4\) & \(0.008+\infty\) & 2.048 .03 & \(3.62 \mathrm{E}-22\) & 7381802 & 1.79E-01 & \(3878-01\) & 7.588 .01 & \(1.27 \mathrm{E}+00\) & \(1878+\infty\) & 3.5sx+00 & \(2.34 \mathrm{~B}+01\) \\
\hline Surbubien & 4917000 & 263 & 7.678.01 & 1.83E-4 & \(0.008+\infty\) & \(6.20 \mathrm{E}-33\) & 5.188502 & 9818-02 & \(2.188-01\) & 4.698 .1 & 9.468 .81 & \(1.62 \mathrm{E}+\infty\) & \(2.328+\infty\) & 5.3.E +00 & \(3.578+01\) \\
\hline \multicolumn{16}{|l|}{Rece} \\
\hline Asion & 1476000 & 7 & 1.598 +00 & 2.588-03 & 6.628-03 & 6.628-03 & 3.05802 & 1.178 .01 & 3.7EE-01 & 797E-01 & 1.128+00 & 3.298+00 & \(6.728+\infty\) & 1.698+01 & \(1.288+01\) \\
\hline Blect & 12403000 & 614 & 1.14E+00 & \(4.53 \mathrm{E}-94\) & \(0.008+00\) & \(0.00 \mathrm{E}+00\) & 682802 & 1.40E-01 & 3.198-01 & 68JEO1 & \(13 \mathrm{BE}+\infty\) & \(2.383+00\) & 3.878+00 & \(6.888+\infty\) & \(2.388+01\) \\
\hline Native Americen & 495000 & 36 & \(6.53 \mathrm{E}-01\) & 1.70E-03 & 7.368-02 & 7.36E-08 & 811802 & 1.028-01 & 1.53E-01 & \(4.068-01\) & 6318.01 & \(9.488-01\) & \(22888+\infty\) & \(6.978+00\) & \(6.978+00\) \\
\hline OthenNA & 2165000 & 105 & 8.948-01 & 6.80E-04 & 3.348-02 & \(3.69 \mathrm{E}-1 / 2\) & 7.15E-02 & \(1.168-01\) & 2308-01 & \(59 \% 801\) & 1.10E+00 & \(2388+00\) & 3.108 \(+\infty\) & 5.348+00 & 5.3 (18 +00 \\
\hline White & 81562000 & 07 & 7.318.01 & \(1.268-4\) & \(0.008+00\) & 4.77803 & \(4.28 \mathrm{E}-2 \mathrm{2}\) & 2.08-02 & 2.02E-01 & 4.45E-01 & 276801 & \(1.598+00\) & \(22083+\infty\) & \(4.908+00\) & \(3.578+01\) \\
\hline \multicolumn{16}{|l|}{Reqions} \\
\hline Midurat & 20110000 & 1073 & 6.29801 & 2878-94 & \(0.008+\infty\) & \(4.678-03\) & 3.328-02 & 6.198-02 & 1608-01 & 3.60721 & 7.29801 & 1.128+00 & 2248+00 & 5. \(208+\infty\) & \(1.888+01\) \\
\hline Northesat & 21306000 & 1203 & 8.408-01 & 2.268 .04 & \(0.00 \mathrm{E}+\infty\) & 1.838-03 & 5.50E-02 & \(9.188-2\) & 2.258 .01 & 5.19841 & 1. \(\mathrm{CB}+\infty\) & \(1.768+00\) & \(2.48+00\) & 3.708+00 & \(123 \mathrm{E}+01\) \\
\hline 8outh & 33802000 & 1770 & 8.528-01 & \(2.538-94\) & \(0.00 \mathrm{E}+\infty 0\) & \(1.79 \mathrm{E}-02\) & 5.96E-02 & 1.13E-01 & 2.438-01 & \(5.338-11\) & 950 E -1 & \(1818+00\) & \(2588+00\) & 5.348+00 & \(3.578+01\) \\
\hline Wert & 1983500 & 1057 & 7.78E-01 & 2.118-94 & \(0.008+00\) & 3.598-03 & \(4.76 \mathrm{~B}-2\) & 3968-62 & \(2.128-01\) & 4.05801 & 957801 & 1.TEE+00 & \(2.448+00\) & 5.578+00 & 1.228+01 \\
\hline \multicolumn{16}{|l|}{Reeppone to Questionneire} \\
\hline Do you grean? & 33074000 & 2104 & \(7.158-01\) & 1.71804 & \(0.008+\infty\) & \(3.04 \mathrm{EP-03}\) & 3.768-02 & 7.20602 & 1872-01 & 416801 & 241801 & \(1.608+60\) & \(2208+00\) & \(4.008+\infty\) & \(18588+01\) \\
\hline Do you from? & 3732000 & 19 & 6.72801 & 3.946-04 & \(0.008+\infty\) & 4.678-03 & 2.618-02 & \(6.78 \mathrm{E}-202\) & 2.418-01 & 4.198 .81 & 2108-01 & 1.73E+00 & 206E 200 & 3.118+00 & 3.67E+00 \\
\hline
\end{tabular}
Table 2-70. Intake of Total Deep Yellow Vogetables (efkz-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Pogulibor } \\
& \text { Group }
\end{aligned}
\] & \[
\underset{\sim}{2}
\] & \[
\stackrel{N}{\mathrm{~N}}
\] & Nan & SE & m & Pl & Ps & M18 & PS & Pso & Ps & 180 & Ps & m & 110 \\
\hline Toul & ย ¢T3000 & 414 & 6378-1 & \(1.528 \times 4\) & 0.008+ \(+\infty\) & 278-8 & 7.078-2 & \(1.058-11\) & 203E08 & 3.6951 & 60044 & \(1288+00\) & 1912+00 & 1318+60 & 408+01 \\
\hline \multicolumn{16}{|l|}{Ape} \\
\hline \(<01\) & 176500 & 91 & \(4238+\infty\) & 5.15803 & 1.92-01 & 192801 & 496801 & 7.148-1 & \(1.138+\) +0 & 2.068+00 & S.23E +6 & 8.085+60 & 1418+91 & \(4528+91\) & \(4.202+01\) \\
\hline 01.62 & 301000 & 162 & \(1.488+\infty\) & 1.52863 & S24en & 6.408-42 & 2348.01 & 3.32-1 & 6.8x.-91 & \(1.108+\infty\) & \(1.988+60\) & 2.028+64 & \(4238+\infty\) & 7.08+68 & \(2.308+01\) \\
\hline 0305 & 405800 & 217 & \(1.088+\infty\) & 5.078.4 & \(0.008+\infty\) & \(1.14 \mathrm{E}-2\) & 1 1201 & 234801 & 4.67 -01 & 7.77801 & \(1288+6\) & \(2098+\infty\) & \(2.78+\infty\) & \(5.568+60\) & \(6.008+00\) \\
\hline C6. 11 & \(1075 \times 00\) & 43 & 6.388 .1 & 1.ccess & \(0.005+\infty 0\) & S32E88 & 122881 & 1.74-91 & 278501 & \(4428-1\) & 7.72841 & \(1.478+6\) & \(1.738+\infty\) & \(2.788+60\) & 3.7s +60 \\
\hline 12.19 & 2562000 & 47 & 3378-1 & 1.108 cos & \(0.008+\infty\) & 1.80808 & 4.768 & 6 ctex & 1335-01 & 2328-4 & 4.158-1 & 1.448-11 & \(1.18+\infty\) & \(1.288+60\) & 2.788+00 \\
\hline 20.39 & 2500000 & 1231 & 428 - 11 & 9878-5 & \(0.008+\infty\) & 2818-2 & 5.72E-8 & \(2368-21\) & 1.61801 & 278901 & 5878.1 & 2008-91 & 1.19\% \(+\infty\) & \(2.778+6\) & \(4.788+6\) \\
\hline 406 & 3509000 & 1393 & 4 ccel & 9.908-5 & \(0.008+\infty\) & 3218-02 & 199508 & 1.06e-1 & 19 ces & 3.288-11 & ssesal & 1.818+00 & \(1.388+\infty\) & 2.08+ 60 & 4.338+109 \\
\hline \(20+\) & 752000 & 376 & 7.05E-01 & 250804 & 2388.02 & \(6.888-2\) & 1598.01 & 2088.1 & 3.2SE-01 & 4.768-91 & 2528.9 & 1. \(038+\infty\) & \(19+8+00\) & \(3.48+6\) & \(7.008+\infty\) \\
\hline \multicolumn{16}{|l|}{Sesors} \\
\hline Fald & 2573000 & 47 & 7808.01 & \(4.2050 \cdot 4\) & 0.002+00 & 299208 & 7.12802 & 1.088-1 & 207E-A & 3.6501 & 7.73801 & \(1.608+\infty\) & \(2.158+\infty\) & 6.068+60 & \(4288+01\) \\
\hline Spring & 12 screco & 1618 & S.606-0] & 1.978-4 & \(0.008+60\) & 1978-02 & 7.418 Em & 1.060.91 & 2028-01 & 3.478-01 & 64s80] & 1.158+ \(+\infty\) & \(1.73 \mathrm{E}^{+\infty}\) & 3.758+60 & \(1838+01\) \\
\hline Sumar & 18252000 & 57 & 5.578 .1 & 1.538-A & \(0.008+\infty\) & 2.22E-2 & 7.00E-A & \(1.078+1\) & 2.118 .01 & 3.71E-01 & 6.988 .01 & \(1.198+\infty\) & \(1.738+\infty\) & \(28 \mathrm{CB}+\mathrm{CH}\) & 3.208+60 \\
\hline Wrider & 27715000 & 1368 & S918.01 & 2360.4 & \(0.000+\infty\) & 3.22E-22 & 6.99E-0 & 1.028-1 & 1.98 .81 & 3.6TE-01 & 6.50801 & \(1.168+\infty\) & 1.283+ +0 & 3 k ¢ + + & \(2.608+61\) \\
\hline \multicolumn{16}{|l|}{Urimaination} \\
\hline Central City & 2097000 & 23 & 7.138 .01 & 28 \%er & 0.008+ 0 & 2.488-02 & 6.90802 & 9.628-22 & 2.028 .01 & 3.738-1 & 7318.01 & 1.4FE+60 & 2278+00 & 5808+60 & \(2.609+91\) \\
\hline Nomactropositan & 12940000 & 1306 & 5.908 .01 & 202E-4 & \(0.008+\infty\) & 2768.02 & 6.708-02 & 1.168 .01 & 2.058 .01 & 3.598 .1 & 6.08-01 & \(1.235+\infty\) & 1.728 \(+\infty\) & \(4.388+60\) & \(1.418+01\) \\
\hline surbubion & 41141000 & 2159 & 6.13 E 01 & 2.478 .4 & \(0.00 \mathrm{E}+00\) & 3.618.02 & 7.15802 & 1.09E-01 & 202E-01 & 3.708-91 & 6.768 .01 & \(1.208+60\) & \(1.73 \mathrm{~B}^{+\infty}\) & 3.75E+60 & \(4.828+01\) \\
\hline \multicolumn{16}{|l|}{Rese} \\
\hline Asin & 155900 & 68 & \(180 \mathrm{~B}+\infty\) & 5868.03 & 3.158-02 & 3.188-08 & 6.62E-02 & 1.148-81 & 1.9601 & 3.378-01 & \(6.438-01\) & \(1.248+60\) & \(4.738+\infty\) & 4 428+01 & \(4.88 \mathrm{E}+01\) \\
\hline Brat & 1506000 & 230 & Sersol & Scose-4 & \(0.008+60\) & 1.138-02 & 380502 & 6.988-2 & 1.338-01 & 3.018-01 & 6.138-01 & \(1.258+\infty\) & 2228+ \(+\infty\) & 3372+60 & \(1.418+01\) \\
\hline Natus American & 71000 & 53 & \(1.678+\infty\) & 6.058-03 & 300E-02 & 3.808-92 & 4.628-2 & \(780 \mathrm{E}-2\) & 1338-01 & 250801 & 220801 & \(2908+00\) & 6.908+0) & 2.\%8+01 & \(2.668+01\) \\
\hline Obeani & 2174000 & 108 & 5.7 TEA 1 & 3.608-0 & 3,728-22 & \(4.168-28\) & 6.708-02 & \(7.03 \mathrm{E}-12\) & 1.57801 & 3.85801 & 6.748 .81 & \(1.258+60\) & \(1.568+\infty\) & \(2.208+60\) & \(2308+00\) \\
\hline Whit & 73830000 & 389 & 6.11E.01 & 986E-S & \(0.008+60\) & 3.53E-2 & 7.41E-22 & 1.098-91 & 2.08301 & 3.708.01 & \(6.938-81\) & \(1.2885+00\) & \(1.818+00\) & \(3.978+60\) & \(1.065+01\) \\
\hline \multicolumn{16}{|l|}{Repions} \\
\hline Micmax & 20575000 & 1116 & 5.0809 & 1.748 .04 & \(0.008+\infty\) & 1.185-2 & 5.60808 & 9.5se-0 & 1.98-01 & 3578-01 & 6.008 .81 & \(1.338+60\) & \(1.78{ }^{\text {P }}+00\) & \(3978+4\) & \(1.858+01\) \\
\hline Narthent & 21153000 & 1037 & 7.288 .1 & \(4698-4\) & \(0.008 \mathrm{~B}+00\) & 3.94E02 & 2378-22 & 1.248801 & \(2218-01\) & 4.208 .01 & 7.098 .01 & \(1.318+\infty\) & 2.108+m & \(4.85+5\) & \(4.82 \mathrm{E}+01\) \\
\hline Sounh & 23607000 & 1236 & 5.ceeor & 2 2080. & \(0.008+\infty\) & 3.65E-2 & 7.208.02 & 1.038-91 & 1.98801 & 3318.01 & 6.118-1 & 1.008 \(+\infty\) & \(1.888+\infty\) & 32685 +6 & \(2.704+01\) \\
\hline What & 1993900 & 1019 & \(6.798-11\) & 2,9804 & 1.28E2 & 3.200802 & 6.918 .02 & 1.02801 & 2048.01 & 3.E8E-01 & 18SE01 & 1.478 \(+\infty 0\) & \(2.008+00\) & \(4.038+50\) & 1.578+01 \\
\hline \multicolumn{16}{|l|}{Rexponet to Questionnire} \\
\hline Doyco preiken? & 37458000
410000 & 197
37 & \({ }_{4}^{6.135-91}\) & \(2705-54\)
\(2918-4\) & \(0.008+\infty\)
\(0.008+\infty\) & \(2.818-20\)
4318008 &  & 1.48-01 & 1.978-01 & 357801
3348001 & 6,99801 & \({ }_{1}^{1.238+60}\) & \(1.768+\infty\) & \[
\begin{aligned}
& 397 B+69 \\
& 3 y 8 R+69
\end{aligned}
\] & \(4.28 \mathrm{H}+\mathrm{Cl}\) \\
\hline Doyou mim? & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{c} 
DRAFT \\
DO NOT QUOTE OR \\
CITE \\
\hline
\end{tabular}

Table 2-71. Intake of Total Other Vegetables (g/kg-day)

Table 2-72. Intake of Total Citrus Frits ( \(/\) /kz-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Popuntion Crown & \[
\underset{\sim}{N}
\] & \[
\stackrel{N}{N}
\] & Man & 58 & Po & 11 & PS & 110 & 125 & 150 & Ps & 19 & P3 & \% & 100 \\
\hline Towl & 138174000 & 7205 & \(2348+\infty\) & 2.99E-H & \(0.00 E+\infty\) & 6.695-02 & 1.96801 & 3.21E-01 & 6.708-91 & 1398+00 & 2.73E+50 & 5ecteco & 1.488+ +0 & 1.50R+01 & \(9228+01\) \\
\hline \multicolumn{16}{|l|}{} \\
\hline <01 & 1924000 & 109 & \(1368+01\) & 1.098-02 & \(0.008+\infty\) & 1.088001 & 9.92E01 & 1248+00 & \(2.012+\infty\) & 4.352+00 & \(7.29 \mathrm{E}+00\) & \(1.148+11\) & \(1568+01\) & 2298+91 & \(3.082+81\) \\
\hline \(01-01\) & 1295000 & 241 & 5.58E +00 & 2.618003 & 1.298-01 & 1508001 & 7,03E01 & \(9.393-01\) & \(2.012+\infty\) & \(43009+\infty\) & 7.208 \(2 \times+\infty\) & SSSP \(+\infty\) & \(1328+01\) & \(12 \times T+01\) & \(5.178+01\) \\
\hline \(03-05\) & 5707000 & 337 & 4.258+00 & 1.908-03 & \(0.00 E+\infty\) & 2.62501 & 3.5SEOI & 7398-01 & 1.9E+00 & 3.002+00 & 5.48E+ & 5SEP+e0 & \(7388+\infty\) & \(140 \mathrm{E}+01\) & \(3.483+01\) \\
\hline 0-11 & 12357000 & 201 & \(2.748+\infty\) & c.3sb-a & \(0.00 E+00\) & 5248.02 & 3.41E-01 & \(5.12 \mathrm{E}-01\) & \(9 \mathrm{EV}-01\) & \(1.98 \mathrm{C}+\infty\) & 3,42E+00 & \(503+\infty\) & 7,08+m0 & & \\
\hline 12-19 & 15020000 & 815 & 200E+00 & S24E-04 & \(0.00 \mathrm{E}+\infty\) & \(9.698-02\) & 235801 & \(3.608-01\) & 7.14801 & \(1.50 \mathrm{E}+\infty\) & \(2.585+\infty\) & 433E+0) & \(6.16 E+\infty 0\) & \(1.088+01\) & \(20 \pi \underline{4}+1\) \\
\hline 20-39 & 41835000 & 2110 & \(1.588+\infty\) & \(2878-98\) & \(0.008+\infty\) & 352E-02 & \(1.57 E-1\) & 2378-01 & \(4008-91\) & 9808.01 & \(1.588+\infty\) & \(3538+\infty\) & \(5.818+\infty\) & 9,078+00 & \(2.085+61\) \\
\hline 40.69 & 2718000 & 2295 & 159E \(+\infty\) & 3.748-98 & \(0.00 \mathrm{E}+00\) & 6.918-02 & 1948-01 & 3.22801 & 6.88801 & \(1.302+\infty\) & \(248+\infty\) & 1218+60 & \(5.78+\infty\) & \(1238+01\) & \(3.758+01\) \\
\hline \(20+\) & 11716000 & 597 & 2.282+00 & 6.55E-a4 & \(0.00 \mathrm{E}+\infty 0\) & 1.12E-01 & 28TE-01 & 4.228-01 & 8.178 .01 & 1.74E+60 & 3.06E \(+\infty\) & 5328+00 & 7.478+60 & 9.608+00 & \(1.572+01\) \\
\hline \multicolumn{16}{|l|}{Sencons} \\
\hline Fill & 36200000 & 1192 & 2.248+00 & 6.33E-04 & \(0.008+\infty\) & 7918-02 & 2.00E01 & 2.828-01 & \(6.008-01\) & \(1.248+00\) & \(2.578+00\) & 4648+40 & 6.918+60 & L.49E+01 & 9238+01 \\
\hline Spring & 31894000 & 2508 & \(2.298+\infty\) & 3.390-04 & \(0.00 \mathrm{E}+00\) & 9.298-02 & 2.17801 & 3.408-01 & \(6.838-01\) & \(139 \mathrm{E}+\infty\) & \(2.778+00\) & \(4.958+\infty\) & \(7.178+\infty\) & \(1.488+01\) & 438+01 \\
\hline Surumer & 29376000 & 918 & \(2.018+\infty\) & 5.990-04 & \(0.00 \mathrm{E}+\infty\) & \(0.00 \mathrm{E}+\infty\) & 1.46B-01 & 2.718-01 & 5.798-01 & \(1.168+00\) & \(2.358+\infty\) & \(4.078+00\) & 6.508+60 & \(1508+01\) & \(2888+01\) \\
\hline Winter & 38690000 & 2257 & \(2.73 \mathrm{~B}+\infty\) & S.7TE-04 & \(0.00 \mathrm{~B}+00\) & 8.94B-02 & 2.11E-01 & 4.018-01 & \(8.138-01\) & \(1.738+\infty\) & \(3.272+\infty\) & 3.98E \(+\infty\) & \(8.548+\infty\) & \(1.648+01\) & S3.8+01 \\
\hline \multicolumn{16}{|l|}{Ustenimition} \\
\hline Central City & 4031000 & 1589 & 2668+60 & \(7.048-04\) & \(0.00 \mathrm{~B}+00\) & 4.698,02 & 1848001 & 3.228 .01 & \(7.058-01\) & 1388+00 & \(2.988+\infty\) & 3.608+00 & \(8.938+\infty\) & \(1288+01\) & ,22E+01 \\
\hline Nonmetropolitin & 30939000 & 2106 & \(2008+\infty\) & \(5.008-04\) & \(0.00 \mathrm{~B}+00\) & \(6.178-02\) & 1948-01 & 3.048-01 & 3.998-01 & \(1.278+\infty\) & \(2.59 \mathrm{E}+00\) & \(4338+\infty\) & \(6.418+\infty\) & \(1.258+0\) & \(5.308+01\) \\
\hline Surberben & 6774000 & 3508 & 2.298+00 & 3.798-04 & 0,00B +00 & \(8.88 \mathrm{~B}-02\) & 2.128-01 & 3308-01 & 7.008-01 & 1.378+60 & \(2.678+00\) & \(5.098+00\) & 1.438+00 & 1.438+01 & 5.178+01 \\
\hline \multicolumn{16}{|l|}{Rece} \\
\hline Asinn & 1788000 & 12 & 5.238+00 & 9.61E-03 & 1.668-01 & 2.228-01 & 3.19801 & 4.818-01 & 697E-01 & \(1.948+\infty\) & 5.048+00 & 9.078+60 & 1.4n8+01 & 9288+01 & 9.208tol \\
\hline Black & 16219000 & 23 & 2:118+00 & \(9.40 \mathrm{E}-04\) & \(0.00 \mathrm{~B}+\infty\) & \(0.008+\infty 0\) & \(2.148-01\) & 3.518-01 & 7.388 .01 & \(1.608+60\) & \(3.288+\infty\) & \(6.50 \mathrm{~B}+00\) & 9,38+00 & 1. \(\mathrm{COB}+01\) & 5.0estol \\
\hline Nuttre Ammican & 1057000 & 63 & \(3.068+\infty\) & 6.858-03 & 3.21E-01 & 3.218-01 & 5.078-01 & 6.07E-01 & 7948.01 & \(1.77 \mathrm{E}+\infty\) & 2608+00 & \(400 \mathrm{~B}+\infty 0\) & 1.06EOI & S. 3 dis+01 & S.untor \\
\hline Otheond & 3201000 & 162 & 231E+00 & 1.551003 & 1.01E-01 & \(1.18 \mathrm{~B}-01\) & \(182 \mathrm{E}-1\) & 3.01E-01 & 7.188 .01 & \(1.358+00\) & \(2.62 \mathrm{~B}+\infty 0\) & 5.898+ & 7ASR+00 & \(1308+01\) & \(12 \mathrm{mb}+01\) \\
\hline White & 113849000 & 6058 & \(2.23 \mathrm{E}+00\) & 280-04 & 0.00E+ +0 & 7.358-02 & 1.95E-01 & 3.138-01 & 6.548-01 & \(1.368+00\) & \(2.678+00\) & \(4803+00\) & 6.928+00 & \(1.508+01\) & \(5.178+01\) \\
\hline \multicolumn{10}{|l|}{Regions} & & & & & & \\
\hline Midwert & 33156000 & 1875 & 2.19B+00 & 7.388-04 & \(0.00 \mathrm{~B}+\infty\) & 5808-02 & 1.58801 & 2.308-01 & 5.578-01 & \(1.168+\infty\) & 2,008+60 & \(4518+\infty\) & & & 9.28 \({ }^{\text {cosen }}\) \\
\hline Narthent & 33700000 & 1076 & 2.56B+00 & 5.558-04 & \(0.00 \mathrm{E}+60\) & \(4.318-02\) & \(2.518-01\) & 4.403-01 & \(8.578-01\) & \(1.648+\infty\) & 3.12B+m & 5.528+00 & 7.70 \(\mathrm{E}+\infty\) & \(1.588+01\) & S.astor \\
\hline south & 4009000 & 2330 & \(2.285+\infty\) & 4.478-04 & \(0.00 \mathrm{E}+\infty\) & 7.598-02 & \(2218-01\) & 3.538-01 & 7.158 .01 & \(1.518+00\) & 2,983+00 & 5398+00 & 7.928+40 & \(1.52 \mathrm{~B}+01\) & 128E+01 \\
\hline Wart & 2249000 & 132 & \(2.148+\infty\) & \(7.058-01\) & \(0.00 \mathrm{E}+00\) & \(9.618-02\) & 1.95E-01 & 2.948-01 & 5.408-01 & 1.225 \(+\infty\) & \(2.3 \mathrm{~B}+\infty 0\) & 4548300 & \(6.738+0\) & 1.983+01 & c.3.3+01 \\
\hline \multicolumn{16}{|l|}{} \\
\hline Do you zerden? & 5246000 & 2056 & \(2.158+\infty\) & 4.108-04 & \(0.008+00\) & 7358-02 & 18501 & \(3.118-01\) & \(6.478-01\) & 1.208+00 & 2.082+00 & 3.78 + 00 & 5748800 & \(1.188+01\) & 1.908+11 \\
\hline Do you fum? & 540000 & 330 & \(1.69 \mathrm{~B}+40\) & \(9.758-04\) & \(0.00 \mathrm{~B}+00\) & \(9.648-02\) & 1.98-01 & 2.478-01 & 4.818 .01 & 8.79 E-01 & \(1.978+\infty\) & & & & \\
\hline
\end{tabular}

Table 2-73. Intake of Total Other Fruit (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Groun & \[
\begin{gathered}
\stackrel{N}{\mathbf{N}} \\
\mathbf{w g t d} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} \\
\text { unwgid }
\end{gathered}
\] & Meen & SE & P0 & P1. & PS & P10 & P25 & Pso & P75 & P90. & P99 & P99 & P100 \\
\hline Total & 159212000 & 8407 & 4.12E+00 & 580E-04 & 0.00E+00 & 1.02E.01 & 3.02E-01 & 4.96E-01 & 1.02E+00 & \(2.12 \mathrm{E}+00\) & 4.438+00 & B.96E+00 & 1.418+01 & \(3.328+01\) & \(1.588+02\) \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline <01 & 2670000 & 147 & 2.35E+01 & 1.85E-02 & \(0.008+\infty\) & S.33E-01 & 1.24E+00 & \(2.68 \mathrm{~B}+00\) & 6.958+00 & 1.22E+01 & \(2.50 \mathrm{~B}+01\) & 6.09E+01 & \(8.378+01\) & \(1.558+02\) & 15SR+02 \\
\hline 01-02 & 5228000 & 291 & 1.428+01 & \(6.25 E-03\) & \(6.33 \mathrm{E}-01\) & 8.908-01 & 1.58E+00 & 2.75R+00 & \(5.31 \mathrm{E}+\infty\) & \(9.37 \mathrm{E}+00\) & \(1.69 \mathrm{E}+01\) & 3.008+01 & \(4.238+01\) & \(7.818+01\) & 8.488+01 \\
\hline 0305 & 7395000 & 416 & 8.84E +00 & 3.30E-03 & \(0.00 \mathrm{E}+\infty\) & 1.79E-01 & 8.86E-01 & \(1.36 \mathrm{E}+00\) & 3.26E+00 & \(6.52 \mathrm{E}+\infty\) & \(1.10 \mathrm{E}+01\) & \(1.878+01\) & \(2.418+01\) & 3.608101 & 7.08S +01 \\
\hline 06011 & 14560000 & 816 & \(4.86 \mathrm{~L}+00\) & \(1.358-03\) & \(0.008+\infty\) & 2.00E-01 & \(6.008-01\) & \(9.25 E-01\) & 1.75 + +0 & 3.46E +00 & \(6.018+00\) & \(9.518+00\) & \(1.288+01\) & \(2818+01\) & \(4818+01\) \\
\hline 12-19 & 1745000 & 920 & \(2.618+00\) & \(6.74 \mathrm{E}-4\) & \(0.00 \mathrm{E}+00\) & 9.918-02 & \(2.69 \mathrm{E}-01\) & 4.7 E-01 & \(9.618-01\) & 1.708 +00 & \(3.118+00\) & 5.4TE \(+\infty\) & 2.41E+00 & 1.54E+01 & \(1898+01\) \\
\hline 20-39 & 50182000 & 2518 & \(2.418+\infty\) & 4.00E-04 & \(0.008+\infty\) & 7.508-02 & 233E-01 & 3.608-01 & 7.27E-01 & \(1.478+\infty\) & \(2.888+00\) & \(5.118+00\) & \(7.028+00\) & \(1.788+01\) & 4.398401 \\
\hline 4098 & 48009000 & 2595 & 3.37E+00 & 7.07E-04 & \(0.00 \mathrm{E}+\infty\) & 1.178 .01 & 3.198-01 & 3.07E-01 & 9.60E-01 & \(1.91 \mathrm{E}+00\) & \(3.818+00\) & \(6.918+00\) & 1.11E+91 & \(2.628+01\) & \(6.968+01\) \\
\hline \(70+\) & 13923000 & 204 & 3.94E +00 & 1.23E-03 & \(0.00 \mathrm{E}+00\) & 2328.01 & \(4.53 \mathrm{E}-01\) & \(8.40 \mathrm{E}-01\) & 1.418+00 & \(2.858+00\) & 4.748 +00 & \(7.65 \mathrm{E}+00\) & \(1.038+01\) & \(2.118+01\) & \(4.988+01\) \\
\hline \multicolumn{16}{|l|}{Sessons} \\
\hline Fall & 40574000 & 134 & 3.77e \(+\infty\) & 1.208-03 & 0.00E +00 & 7.50E-02 & 3.18E-01 & 5.07E-01 & 1.01E+00 & 1.93E+00 & 3.95E+00 & 7.34B+00 & 1.11E+01 & \(2.818+01\) & \(1.588+02\) \\
\hline Spring & 38627000 & 3367 & \(3.828+\infty\) & \(9.82 \mathrm{E}-4\) & \(0.00 \mathrm{E}+\infty\) & 1.33E-01 & \(2948-01\) & \(4.62 \mathrm{E}-01\) & \(1.00 \mathrm{~B}+\infty\) & \(2.078+00\) & \(4.228+00\) & \(8.32 \mathrm{E}+\infty 0\) & \(1.298+01\) & \(2898+01\) & \(1.328+02\) \\
\hline Surmmer & 37903000 & 1171 & \(6.168+\infty\) & \(1.608-03\) & \(0.00 \mathrm{E}+\infty\) & 4.488-92 & 3.41E-01 & 587E-01 & \(1.25 \mathrm{~F}+00\) & \(3.02 \mathrm{E}+00\) & \(6.558+\infty\) & \(1.47 \mathrm{E}+01\) & \(2.168+01\) & \(4.818+01\) & \(1.308+02\) \\
\hline Winter & 4108000 & 2519 & \(2898+00\) & 3.58E-04 & \(0.00 \mathrm{E}+\infty\) & 152E-01 & 2768.01 & \(4.468-01\) & \(899 \mathrm{E}-1\) & \(1.77 \mathrm{E}^{+00}\) & 3.448 +00 & \(6.318+00\) & 9.348+00 & 1.768+01 & \(4.785+01\) \\
\hline \multicolumn{16}{|l|}{Ufbenization} \\
\hline Central City & 46568000 & 1848 & \(4.628+\infty 0\) & 1398-03 & \(0.008+00\) & 9.94E-02 & 2618-01 & 4.668-01 & 9.83E-01 & \(2.108+00\) & 4.768+60 & 9.398+00 & \(1.6418+01\) & 3.908+01 & \(1.358+62\) \\
\hline Nonmetropotitan & 36528000 & 246 & \(3.448+00\) & \(9.11 \mathrm{E}-04\) & \(0.008+\infty\) & 1.398-01 & \(3.09 \mathrm{E}-1\) & \(4.78 \mathrm{~B}-01\) & 9,528.01 & \(1.918+00\) & 3.708 \(+\infty 0\) & \(799 \mathrm{E}+00\) & \(1.198+01\) & \(2918+01\) & \(8.378+01\) \\
\hline Surburben & 75856000 & 4101 & \(4.09 \mathrm{~B}+\infty\) & 7.398 .04 & \(0.00 \mathrm{E}+\infty\) & 1.178-01 & 3.18E-01 & 5.312-01 & \(1.068+\infty\) & 2.198+00 & \(4.518+\infty\) & 9.04B +00 & \(1.488+1\) & 3.028+01 & 132E+02 \\
\hline \multicolumn{16}{|l|}{Rese} \\
\hline Astion & 2281000 & 107 & \(6.24 \mathrm{~B}+00\) & \(9.278-03\) & 2.228-91 & 2.228-01 & \(2.768-01\) & 3.698-91 & 7.198-01 & 1.938+00 & 4301+00 & \(1.778+01\) & \(2518+01\) & \(8.008+01\) & \(2.028+01\) \\
\hline Black & 16003000 & 831 & \(4.758+\infty\) & 2.73E-03 & \(0.008+\infty\) & \(0.00 \mathrm{~B}+\infty\) & \(2.008-01\) & 3.82E-01 & 9.218 .01 & \(1.868+\infty\) & \(4.538+00\) & 9.923 +00 & \(1838+01\) & \(4.768+01\) & \(1.308+02\) \\
\hline Native Artacicar & 955000 & 35 & \(2.16 \mathrm{~F}+00\) & \(2.68 \mathrm{E}-03\) & 1358-01 & \(2.628-91\) & 3.02E-01 & \(4.138-1\) & 6.80801 & \(1.668+00\) & \(2398+\infty\) & \(2858+\infty\) & \(8.528 \mathrm{C}+\infty\) & 1.408+01 & 1.4E3+01 \\
\hline Otheond & 4040000 & 201 & \(6.418+00\) & \(8.55 E-03\) & 1.208-01 & \(2.508-01\) & 4.0ME-01 & 5.57801 & 9.778 .01 & \(2.30 \mathrm{E}+00\) & \(5318+00\) & \(1.151+01\) & \(1.228+01\) & \(8.118+01\) & 13SE+62 \\
\hline Whim & 135889000 & 711 & \(3.958+\infty\) & \(5.17 \mathrm{EP-4}\) & \(0.00 \mathrm{E}+00\) & 1.308-01 & 3.178 .01 & 5.088 .01 & 1.042+00 & \(2.15 \mathrm{E}+00\) & 4.22E+00 & \(281 \mathrm{E}+00\) & 1.39E+01 & 2.988+01 & 1318+68 \\
\hline \multicolumn{16}{|l|}{Repiore} \\
\hline Midereat & 39463000 & 203 & \(434 \mathrm{~B}+\infty 0\) & 1.778-03 & \(0.008+\infty\) & 1018-01 & 2.73E-01 & \(4.58 \mathrm{E}-18\) & \(9.858-01\) & 204B+00 & 4.378+00 & 9.128+ +00 & 1.418+01 & \(4.178+01\) & \(1308+08\) \\
\hline Nortbent & 36016000 & 1795 & \(4.25 \mathrm{E}+00\) & \(1.32 \mathrm{E}-03\) & \(0.00 \mathrm{~B}+00\) & 7.508-02 & 3.188-01 & 5.378 .1 & \(1.148+60\) & \(220 \mathrm{~B}+00\) & \(4.58+\infty\) & 9.12E+00 & 1.498+01 & 2.95101 & \(1.538+62\) \\
\hline Sounh & 51159000 & 278 & 3.72B+00 & 8.998804 & \(0.008+\infty\) & 9.43P-0 & 288E-01 & 4.708 .01 & \(9.238-01\) & \(1.91 \mathrm{E}+00\) & \(3.00 \mathrm{E}+00\) & 7.798+00 & \(1.24 \mathrm{E}+01\) & \(3368+01\) & \(8378+01\) \\
\hline Went & 32515000 & 1659 & \(4.34 \mathrm{E}+\infty 0\) & 1.07E-03 & \(0.008+\infty\) & 1.18-01 & 3.53E-01 & 3.62B-01 & 1.118+00 & 2.428+00 & \(5.008+\infty\) & \(9.70 \mathrm{E}+00\) & \(1.52 \mathrm{~B}+01\) & 2008+01 & 7118+01 \\
\hline \multicolumn{16}{|l|}{Reaposve to Queationnice} \\
\hline Do you gurden? & 61462000 & 3377 & \(3.918+\infty\) & 752E-4 & \(0.00 \mathrm{E}+\infty\) & 1.77-01 & 3.308-01 & 3.278-01 & \(1.078+\infty\) & \(2.158+\infty\) & \(4.308+\infty\) & 8.908 +00 & \(1.378+01\) & \(2958+01\) & 7398+01 \\
\hline Do you furm? & 6335000 & 374 & \(3.28 \mathrm{~B}+00\) & 1.67E-03 & \(0.008+\infty\) & 2.938-02 & 2618-01 & \(3.908-01\) & 8.94801 & 1.608+00 & 4.048+00 & 8. \(608+00\) & \(1.238+01\) & 2.328+01 & 292E+01 \\
\hline
\end{tabular}

Table 2-74. Mean and Standard Error for the Per Capita Daily Intake of Food Class and Subclass by Region (grams "as consumed")
\begin{tabular}{llllll}
\hline & & & & North \\
& US population & & Northeast & & South
\end{tabular}
- Produce belonging to this category include: cabbage, cauliflower, broccoli, celery, lettuce, and spinach.
- Produce belonging to this category include: apples, pears, berries, cucumber, squash, grapes, peaches, apricots, plums, prunes, string beans, pea pods, and tomatoes.
- Produce belonging to this category include: carrots, beets, turnips, parsnips, citrus fruits, sweet com, legumes (peas, beans, etc.), melons, onion, and potatocs.

Source: U.S. EPA, 1984 e.

Table 2-75. Mean and Standard Error for the Daily Intake of
Food Subclasses Per Capita by Age (grams "as consumed")
\begin{tabular}{llllllll}
\hline Age & \begin{tabular}{c} 
Leafy \\
produce
\end{tabular} & \begin{tabular}{c} 
Exposed \\
produce
\end{tabular} & \begin{tabular}{c} 
Protected \\
produce
\end{tabular} & \begin{tabular}{c} 
Other \\
produce
\end{tabular} & Breads & Cereal & \begin{tabular}{c} 
Other \\
Grains
\end{tabular} \\
\hline All Ages & \(39.2 \pm 0.8\) & \(86.0 \pm 1.5\) & \(150.4 \pm 2.3\) & \(7.0 \pm 0.3\) & \(147.3 \pm 1.4\) & \(29.9 \pm 1.3\) & \(22.9 \pm 1.7\) \\
\(<1\) & \(3.2 \pm 4.9\) & \(75.5 \pm 9.8\) & \(50.8 \pm 14.7\) & \(25.5 \pm 1.8\) & \(16.2 \pm 9.2\) & \(37.9 \pm 8.2\) & \(1.8 \pm 10.9\) \\
\(1-4\) & \(9.1 \pm 2.4\) & \(55.6 \pm 4.8\) & \(94.5 \pm 7.2\) & \(5.1 \pm 0.9\) & \(104.6 \pm 4.5\) & \(38.4 \pm 4.0\) & \(14.8 \pm 5.4\) \\
\(5-9\) & \(20.1 \pm 2.0\) & \(69.2 \pm 4.8\) & \(128.9 \pm 6.1\) & \(4.3 \pm 0.8\) & \(154.3 \pm 3.8\) & \(39.5 \pm 3.4\) & \(2.7 \pm 4.5\) \\
\(10-14\) & \(26.1 \pm 1.9\) & \(76.8 \pm 3.8\) & \(151.7 \pm 5.7\) & \(8.1 \pm 0.7\) & \(186.2 \pm 3.6\) & \(36.4 \pm 3.2\) & \(25.6 \pm 4.2\) \\
\(15-19\) & \(31.4 \pm 2.0\) & \(71.9 \pm 4.0\) & \(156.6 \pm 6.0\) & \(6.2 \pm 0.7\) & \(188.5 \pm 3.7\) & \(28.8 \pm 3.3\) & \(27.8 \pm 4.4\) \\
\(20-24\) & \(35.3 \pm 2.6\) & \(65.6 \pm 5.2\) & \(144.5 \pm 7.8\) & \(5.0 \pm 1.0\) & \(166.5 \pm 4.9\) & \(20.2 \pm 4.3\) & \(25.0 \pm 5.8\) \\
\(25-29\) & \(41.4 \pm 2.7\) & \(73.4 \pm 5.3\) & \(149.8 \pm 8.0\) & \(7.0 \pm 1.0\) & \(170.0 \pm 5.0\) & \(18.2 \pm 4.4\) & \(26.6 \pm 5.9\) \\
\(30-39\) & \(44.4 \pm 2.1\) & \(77.1 \pm 4.2\) & \(150.5 \pm 6.3\) & \(6.1 \pm 0.8\) & \(156.8 \pm 3.9\) & \(24.7 \pm 2.7\) & \(23.3 \pm 3.6\) \\
\(40-59\) & \(51.3 \pm 1.6\) & \(94.7 \pm 3.3\) & \(162.9 \pm 4.9\) & \(6.9 \pm 0.6\) & \(144.4 \pm 3.1\) & \(24.7 \pm 2.7\) & \(23.3 \pm 3.6\) \\
\(\geq 60\) & \(45.4 \pm 1.8\) & \(114.2 \pm 3.6\) & \(163.9 \pm 5.5\) & \(7.6 \pm 0.7\) & \(122.1 \pm 3.4\) & \(42.5 \pm 3.0\) & \(19.3 \pm 4.0\) \\
\hline
\end{tabular}
* Produce belonging to this category include: cabbage, cauliflower, broccoli, celery, lettuce, and spinach.
b Produce belonging to this category include: apples, pears, berries, cucumber, squash, grapes, peaches, apricots, plums, prunes, string beans, pea pods, and tomatoes.
Produce belonging to this category include: carrots, beets, turnips, parsnips, citrus fruits, sweet corn, legumes (peas, beans, etc.), melons, onion, and potatoes.

Source: U.S. EPA, 1984d.

Although the fruit and vegetable classifications used in the study are somewhat limited in number, they provide alternative food categories that may be useful to exposure assessors. Because this study was based on the USDA NFCS, the limitations discussed previously regarding short-term dietary recall data also apply to the intake rates reported here.
U.S. EPA - Office of Science and Technology - The U.S. EPA Office of Science and Technology (OST) within the Office of Water (formerly the Office of Water Regulations and Standards) used data from the FDA revision of the Total Diet Study Food Lists and Diets (Pennington, 1983) to calculate food intake rates. OST uses these consumption data in its risk assessment model for land application of municipal sludge. The FDA data used are based on the combined results of the USDA 1977-1978 NFCS and the second National Health and Nutrition Examination Survey (NHANES II), 1976-1980 (U.S. EPA, 1989). Because food items are listed as prepared complex foods in the FDA Total Diet Study, each item was broken down into its component parts so that the amount of raw commodities consumed could be determined. Table 2-76 presents intake rates of various fruit and vegetable categories for various age groups and estimated lifetime ingestion rates that have been derived by U.S. EPA. Note that these are per capita intake rates tabulated as grams dry weight/day. Therefore, these rates differ from those in the previous tables because Pao et al. (1982) and U.S. EPA (1984d, 1984e) report intake rates on an as consumed basis.

The EPA-OST analysis provides intake rates for additional food categories and estimates of lifetime average daily intake on a per capita basis. In contrast to the other analyses of USDA NFCS data, this study reports the data in terms of dry weight intake rates. Thus, conversion is not required when contaminants are required on a dry weight basis.

Canadian Department of National Health and Welfare Nutrition Canada Survey - The Nutrition Canada Survey was conducted between 1970 and 1972 to "(a) examine the mean consumption of selected food groups and their contribution to nutrient intakes of Canadians, (b) examine patterns of food consumption and nutrient intake at various times of the day, and (c) provide information on the changes in eating habits during pregnancy." (Canadian Department of National Health and Welfare, n.d.). The method used for collecting dietary intake data was 24-hour recall. The recall method relied on interview techniques in which the interviewee was asked to recall all foods and beverages consumed during the day preceding the interview. Intake

Table 2-76. Consumption of Foods (g dry weight/day) for Different Age Groups and Estimated Lifetime Average Daily Food Intakes for a US Citizen Calculated from the FDA Diet Data (averaged across sex)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{6}{|c|}{Age (in years)} & \multirow[t]{2}{*}{Estimated lifetime} \\
\hline & (0-1) & (1-5) & (6-13) & (14-19) & (20-44) & (45-70) & \\
\hline Wheat & 27.60 & 42.23 & 60.80 & 79.36 & 65.86 & 55.13 & 60.30 \\
\hline Corn & 4.00 & 15.35 & 19.28 & 23.21 & 17.83 & 14.82 & 17.01 \\
\hline Rice & 2.22 & 4.58 & 5.24 & 5.89 & 5.78 & 4.21 & 5.03 \\
\hline Oats & 3.73 & 2.65 & 2.27 & 1.89 & 1.32 & 2.00 & 1.85 \\
\hline Other Grain & 0.01 & 0.08 & 0.41 & 0.73 & 13.45 & 4.41 & 6.49 \\
\hline Total Grain & 37.56 & 64.82 & 87.58 & 110.34 & 90.59 & 76.17 & 84.19 \\
\hline Potatoes & 5.67 & 10.03 & 14.72 & 19.40 & 17.28 & 14.79 & 15.60 \\
\hline Leafy Veg. & 0.84 & 0.49 & 0.85 & 1.22 & 2.16 & 2.65 & 1.97 \\
\hline Legume Veg. & 3.81 & 4.56 & 6.51 & 8.45 & 9.81 & 9.50 & 8.75 \\
\hline Root Veg. & 3.04 & 0.67 & 1.20 & 1.73 & 1.77 & 1.64 & 1.60 \\
\hline Garden fruits & 0.66 & 1.67 & 2.57 & 3.47 & 4.75 & 4.86 & 4.15 \\
\hline Peanuts & 0.34 & 2.21 & 2.56 & 2.91 & 2.43 & 1.91 & 2.25 \\
\hline Mushrooms & 0.00 & 0.01 & 0.03 & 0.04 & 0.14 & 0.06 & 0.08 \\
\hline Veg. Oils & 27.62 & 17.69 & 27.54 & 37.04 & 37.20 & 27.84 & 31.24 \\
\hline
\end{tabular}
* The estimated lifetime dietary intakes were estimated by:
\[
\text { Erimatod lifecime }=\frac{\operatorname{IR}(0-1))+5 y m * \mathbb{R}(1-5)+8 \mathrm{ym} * \mathbb{R}(6-13)+6 \mathrm{ys} * \mathbb{R}(14-19)+25 \mathrm{ym} * \mathbb{R}(20-44)+25 \mathrm{yrz} * \mathbb{R}(45-7)}{70 \text { years }}
\]
where \(I R=\) the intake rate for a specific age group.
Source: U.S. EPA, 1989.
rates were reported for various age/sex groups of the population and for pregnant women (Table 2-77). The report does not specify whether the values represent per capita or consumeronly intake rates. However, they appear to be consistent with the as consumed intake rates for consumers-only reported by USDA \((1980,1992)\). It should be noted that these data are also based on short-term dietary recall and are based on the Canadian population.

\subsection*{2.3.2.4. Conversion Between As Consumed and Dry Weight Intake Rates}

As noted previously, intake rates may be reported in terms of units as consumed or units of dry weight. It is essential that exposure assessors be aware of this difference so that they may ensure consistency between the units used for intake rates and those used for concentration data (i.e., if the unit of food consumption is grams dry weight/day, then the unit for the amount of pollutant in the food should be grams dry weight). If necessary, as consumed intake rates may be converted to dry weight intake rates using the moisture content percentages presented in Table 2-78 and the following equation:
\[
\begin{equation*}
\mathbb{R}_{\mathrm{dw}}=\mathbb{R}_{\mathrm{ec}^{*}} *[(100-\mathrm{W}) / 100] \tag{Eqn.2-2}
\end{equation*}
\]
"Dry weight" intake rates may be converted to "as consumed" rates by using:
\[
\begin{equation*}
\mathbb{R}_{\mathrm{ac}}=\mathbb{R}_{\mathrm{dw}} /[(100-\mathrm{W}) / 100] \tag{Eqn.2-3}
\end{equation*}
\]
where:
\(\mathbf{I R}_{\mathrm{dw}} \quad=\) dry weight intake rate;
\(\mathbb{R}_{\text {ac }} \quad=\) as consumed intake rate; and
\(\mathbf{W} \quad=\) percent water content.

Table 2-77. Mean Daily Intake of Foods (Grams) Based on the Nutrition Canada Dietary Surveye
\begin{tabular}{|c|c|c|c|c|c|}
\hline Age (yrs) & Sample Size & Fruit and Fruit Products & Vegetables Not Including Potatoes & Potatoes & Nuts and Legumes \\
\hline \multicolumn{6}{|l|}{Males and Females} \\
\hline 1-4 & 1031 & 258 & 56 & 75 & 6 \\
\hline 5-11 & 1995 & 312 & 83 & 110 & 13 \\
\hline \multicolumn{6}{|l|}{Males} \\
\hline 12-19 & 1070 & 237 & 94 & 185 & 20 \\
\hline 20-39 & 999 & 244 & 155 & 189 & 15 \\
\hline 40-64 & 1222 & 194 & 134 & 131 & 15 \\
\hline \(65+\) & 881 & 165 & 118 & 124 & 8 \\
\hline \multicolumn{6}{|l|}{Females} \\
\hline 12-19 & 1162 & 237 & 97 & 115 & 15 \\
\hline 20-39 & 1347 & 204 & 134 & 99 & 8 \\
\hline 40-64 & 1500 & 239 & 136 & 79 & 10 \\
\hline \(65+\) & 818 & 208 & 103 & 80 & 5 \\
\hline \multicolumn{6}{|l|}{Pregnant Females} \\
\hline -- & 769 & 301 & 156 & 114 & 15 \\
\hline
\end{tabular}
- Report does not specify whether means were calculated per capita or for consumers only. The reported values are consistent with the as consumed intake rates for consumers only reported by USDA (1980).

Source: Canadian Department of National Health and Welfare, n.d.

Table 2-78. Mean Moisture Content of Selected Fruits, Vegetables, and Grains Expressed
As Percentages of Edible Portions
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Food} & \multicolumn{2}{|l|}{Moisture Content (Percent)} & \multirow[b]{2}{*}{Comments} \\
\hline & Raw & Cooked & \\
\hline \multicolumn{4}{|l|}{Eruit} \\
\hline Apples - dried & 31.76 & 84.13* & sulfured; *withoutadded sugar \\
\hline Apples - & 83.93* & 84.46** & *with skin; **without skin \\
\hline Apples - juice & & 87.93 & canned or bottled \\
\hline Applesauce & & 88.35* & *unsweetened \\
\hline Apricots & 86.35 & 86.62* & *canned juice pack with skin \\
\hline Apricots - dried & 31.09 & 85.56* & sulfured;*withoutadded sugar \\
\hline Bananes & 74.26 & & \\
\hline Blackberries & 85.64 & & \\
\hline Blueberries & 84.61 & 86.59* & *frozen unsweetened \\
\hline Boysenberries & 85.90 & & frozen unsweetened \\
\hline Cantaloupes - unspecified & 89.78 & & \\
\hline Casabas & 91.00 & & \\
\hline Cherries - sweet & 80.76 & 84.95* & *canned, juice pack \\
\hline Crabapples & 78.94 & & \\
\hline Cranberries & 86.54 & & \\
\hline Cranberries - juice cocktail & 85.00 & & bottled \\
\hline Currants (red \& white) & 83.95 & & \\
\hline Elderberries & 79.80 & & \\
\hline Grapefruit & 90.89 & & \\
\hline Grapefruit - juice & 90.00 & 90.10* & *canned unsweetened \\
\hline Grapefruit - unspecified & 90.89 & & pink, red, white \\
\hline Grapes - fresh & 81.30 & & American type (slip skin) \\
\hline Grapes - juice & 84.12 & & canned or bottled \\
\hline Grapes - raisins & 15.42 & & seedless' \\
\hline Honeydew melons & 89.66 & & \\
\hline Kiwi fruit & 83.05 & & \\
\hline Kumquats & 81.70 & & \\
\hline Lemons - juice & 90.73 & 92.46* & *canned or bottled \\
\hline Lemons - peel & 81.60 & & \\
\hline Lemons - pulp & 88.98 & & \\
\hline Limes - juice & 90.21 & 92.52* & *canned or bottled \\
\hline Limes - unspecified & 88.26 & & \\
\hline Loganberries & 84.61 & & \\
\hline Mulberries & 87.68 & & \\
\hline Nectarines & 86.28 & & \\
\hline Oranges - unspecified & 86.75 & & all varieties \\
\hline Pesches & 87.66 & 87.49* & *canned juice pack \\
\hline Pears - dried & 26.69 & 64.44* & sulfured; *withoutadded sugar \\
\hline Pears - fresh & 83.81 & 86.47* & *canned juice pack \\
\hline Pineapple & 86.50 & 83.51* & *canned juice pack \\
\hline Pineapple - juice & & 85.53 & canned \\
\hline Plums & 85.20 & & \\
\hline
\end{tabular}

Table 2-78. Mean Moisture Content of Selected Fruits, Vegetables, and Grains Expressed As Percentages of Edible Portions (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Food} & \multicolumn{2}{|l|}{Moisture Content (Percent)} & \multirow[b]{2}{*}{Comments} \\
\hline & Raw & Cooked & \\
\hline Quinces & 83.80 & & \\
\hline Raspberries & 86.57 & & \\
\hline Strawberries & 91.57 & 89.97* & *frozen unsweetened \\
\hline Tangerine - juice & 88.90 & 87.00* & *canned sweetened \\
\hline Tangerines & 87.60 & 89.51* & *canned juice pack \\
\hline Watermelon & 91.51 & & \\
\hline \multicolumn{4}{|l|}{Vegetables} \\
\hline Alfalfa sprouts & 91.14 & & \\
\hline Artichokes - globe \& French & 84.38 & 86.50 & boiled, drained \\
\hline Artichokes - Jerusalem & 78.01 & & \\
\hline Asparagus & 92.25 & 92.04 & boiled, drained \\
\hline Bamboo shoots & 91.00 & 95.92 & boiled, drained \\
\hline \multicolumn{4}{|l|}{Beans - dry} \\
\hline Beans - dry - blackeye peas (cowpeas) & 66.80 & 71.80 & boiled, drained \\
\hline Beans - dry - hyacinth (mature seeds) & 87.87 & 86.90 & boiled, drained \\
\hline Beans - dry - navy (pea) & 79.15 & 76.02 & boiled, drained \\
\hline Beans - dry - pinto & 81.30 & 93.39 & boiled, drained \\
\hline Beans - lima & 70.24 & 67.17 & boiled, drained \\
\hline Beans - snap - Italian - green - yellow & 90.27 & 89.22 & boiled, drained \\
\hline Beets & 87.32 & 90.90 & boiled, drained \\
\hline Beets - tops (greens) & 92.15 & 89.13 & boiled, drained \\
\hline Broccoli & 90.69 & 90.20 & boiled, drained \\
\hline Brussel sprouts & 86.00 & 87.32 & boiled, drained \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Cabbage - Chinese/celery, including bok choy \\
\(95.32 \quad 95.55\) \\
boiled, drained
\end{tabular}} \\
\hline Cabbage - red & 91.55 & 93.60 & boiled, drained \\
\hline Cabbage - savoy & 91.00 & 92.00 & boiled, drained \\
\hline Carrots & 87.79 & 87.38 & boiled, drained \\
\hline Cassava (yucca blanca) & 68.51 & & \\
\hline Cauliflower & 92.26 & 92.50 & boiled, drained \\
\hline Celeriac & 88.00 & 92.30 & boiled, drained \\
\hline Celery & 94.70 & 95.00 & boiled, drained \\
\hline Chili peppers & 87.74 & 92.50* & *canned solids \& liquid \\
\hline Chives & 92.00 & & \\
\hline Cole slaw & 81.50 & & \\
\hline Collards & 93.90 & 95.72 & boiled, drained \\
\hline Corn - sweet & 75.96 & 69.57 & boiled, drained \\
\hline Cress - garden - field & 89.40 & 92.50 & boiled, drained \\
\hline Cress - garden & 89.40 & 92.50 & boiled, drained \\
\hline Cucumbers & 96.05 & & \\
\hline Dandelion - greens & 85.60 & 89.80 & boiled, drained \\
\hline Eggplant & 91.93 & 91.77 & boiled, drained \\
\hline Endive & 93.79 & & \\
\hline Garlic & 58.58 & & \\
\hline
\end{tabular}

Table 2-78. Mean Moisture Content of Selected Fruits, Vegetables, and Grains Expressed As Percentages of Edible Portions (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Food} & \multicolumn{3}{|l|}{Moisture Content (Percent)} \\
\hline & Raw & Cooked & Comments \\
\hline Kale & 84.46 & 91.20 & boiled, drained \\
\hline Kohirabi & 91.00 & 90.30 & boiled, drained \\
\hline Lambsquarter & 84.30 & 88.90 & boiled, drained \\
\hline Leeks & 83.00 & 90.80 & boiled, drained \\
\hline Leatils - whole & 67.34 & 68.70 & stir-fried \\
\hline Lettuce - iceberg & 95.89 & & \\
\hline Letuce - romaine & 94.91 & & \\
\hline Mung beans (sprouts) & 90.40 & 93.39 & boiled, drained \\
\hline Mushrooms & 91.81 & 91.08 & boiled, drained \\
\hline Mustard greens & 90.80 & 94.46 & boiled, drained \\
\hline Okira & 89.58 & 89.91 & boiled, drained \\
\hline Onions & 90.82 & 92.24 & boiled, drained \\
\hline Onions - dehydrated or dried & 3.93 & & \\
\hline Parsley & 88.31 & & \\
\hline Parsley roots & 88.31 & & \\
\hline Parsnips & 79.53 & 77.72 & boiled, drained \\
\hline Peas (garden) - mature seeds - dry & 88.89 & 88.91 & boiled, drained \\
\hline Peppers - sweet - garden & 92.77 & 94.70 & boiled, drained \\
\hline Potatoes (white) - peeled & 78.96 & 75.42 & baked \\
\hline Potatoes (white) - whole & 83.29 & 71.20 & baked \\
\hline Pumpkin & 91.60 & 93.69 & boiled, drained \\
\hline Redishes - roots & 94.84 & & \\
\hline Rhubarb & 93.61 & 67.79 & frozen, cooked with added sugar \\
\hline Rutabagas - unspecified & 89.66 & 90.10 & boiled, drained \\
\hline Salsify (oyster plant) & 77.00 & 81.00 & boiled, drained \\
\hline Shallots & 79.80 & & \\
\hline Soybeans - sprouted seeds & 69.05 & 79.45 & steamed \\
\hline Spinach & 91.58 & 91.21 & boiled, drained \\
\hline Squash - summer & 93.68 & 93.70 & all varieties; boiled, drained \\
\hline Squash - winter & 88.71 & 89.01 & all varieties; baked \\
\hline Sweetpotatoes (including yams) & 72.84 & 71.85 & baked in skin \\
\hline Swiss chard & 92.66 & 92.65 & boiled, drained \\
\hline Tapioca - pearl & 10.99 & & dry \\
\hline Taro-greens & 85.66 & 92.15 & steamed \\
\hline Taro - root & 70.64 & 63.80 & \\
\hline Tomatoes - juice & & 93.90 & canned \\
\hline Tomatoes - pesto & & 74.06 & canned \\
\hline Tomatoes-pureo & & 87.26 & canned \\
\hline Tomatoes - raw & 93.95 & & \\
\hline Tomatoes - whole & 93.95 & 92.40 & boiled, drained \\
\hline Towelgourd & 93.85 & 84.29 & boiled, drained \\
\hline Turnips - roots & 91.87 & 93.60 & boiled, drained \\
\hline Turnipe - tops & 91.07 & 93.20 & boiled, drained \\
\hline Water chestnuts & 73.46 & & \\
\hline Yambean - tuber & 89.15 & 87.93 & boiled, drained \\
\hline
\end{tabular}

Table 2-78. Mean Moisture Content of Selected Fruits, Vegetables, and Grains Expressed As Percentages of Edible Portions (Continued)


Source: USDA, 1979-1986.

\subsection*{2.3.2.5. Below Ground, Above Ground, Exposed, and Protected}

For chemicals that contaminate fruits and vegetables via specific sources or media, it may be necessary to consider cultivation techniques and consumption patterns that affect the magnitude of exposure. Vegetables that are grown below ground may be contaminated by chemicals found in soil; airborne pollutants would be more likely to contaminate leafy or exposed vegetables grown above ground. Exposures may be limited for contaminants that are deposited on outer protective coverings (i.e., pods or rinds of fruits and vegetables that are removed before consumption).

Table 2-79 and 2-80 lists the percentages of fruits and vegetables that are grown above and below ground. These values were calculated using average daily intake rates for consumersonly from Pao et al. (1982) (Table 2-26) and average per capita intake rates from DRES (Table 2-27), respectively. It should be noted that the DRES data (Table 2-27) set includes a more comprehensive listing of fruits and vegetables than Pao et al. (1982) Table 2-26. Fruits and vegetables were categorized as (1) below ground; (2) above ground-exposed; and (3) above ground-protected, according to traditional or scientific definitions of the plant and on cultivation and food preparation information. Percentages were calculated for each category of fruits, vegetables, and fruits and vegetables combined by dividing the total intake rates for each category by the sum of the intakes for all categories combined. It should be noted that the Pao et al. (1982) data are based on consumers-only, but DRES data and U.S. EPA (1984e) data are per capita intake rates. Also, the DRES data set includes a more comprehensive listing of fruits and vegetables than Pao et al. (1982). This factor may account for the differences in percentages observed for above ground and below ground fruits and vegetables. The percentages from Tables 2-79 and 2-80 may be applied to the average total intake rates to estimate the intake rates for fruits and/or vegetables that are: (1) grown below ground; (2) grown above ground and are exposed; and (3) grown above ground and are protected.

\subsection*{2.3.3. Recommendations}

The key studies described in this section were used in selecting recommended fruit and vegetable intake rates for the general population and various subgroups of the United States population. These studies were all based on USDA NFCS data, but used different analytical

Table 2-79. Percentages of Total Fruits and Vegetables Consumed that are Grown Below or Above Ground (Consumers Only)
\begin{tabular}{cc} 
& \begin{tabular}{c} 
Calculated from data from \\
Pao et al. (1982)
\end{tabular} \\
\hline Vegetables \(^{2}\) \\
below ground & \\
above ground & \(22.6 \%\) \\
exposed & \(77.4 \%\) \\
protected & \(57.5 \%\) \\
Fruits & \(19.9 \%\) \\
below ground & \\
above ground & \(0 \%\) \\
exposed & \(100 \%\) \\
protected & \(47.1 \%\) \\
Fruits and Vegetables \({ }^{2}\) & \(52.9 \%\) \\
below ground & \\
above ground & \(10.5 \%\) \\
exposed & \(89.5 \%\) \\
protected & \(52.0 \%\) \\
\hline
\end{tabular}

2 Traditional definitions were used to categorize common fruits and vegetables. Unusual fruits and vegetables were categorized using scientific definitions.

Table 2-80. Percentages of Total Fruits and Vegetables Consumed that are Grown Below or Above Ground (Per Capita)

Calculated from data generated by OPP for the Dietary Risk Evaluation System (DRES), \({ }^{\text {,b }}\)

Vegetables \({ }^{\text {© }}\)
below ground \(\quad 38.1 \%\)
above ground
\(61.9 \%\)
exposed
46.8\%
protected
\(15.1 \%\)
Fruits \({ }^{\text {c }}\)
below ground \(0 \%\)
above ground \(\quad 100 \%\)
exposed \(42.3 \%\)
protected \(\quad 57.7 \%\)
Fruits and Vegetables
below ground \(\quad 20.7 \%\)
above ground \(\quad 79.3 \%\)
exposed \(34.5 \%\)
protected \(44.8 \%\)
* The DRES data set (Table 2-27) includes a more comprehensive listing of fruits and vegetables than Pao et al. (1982) (Table 2-26).
b Nuts, spices, grains, oils and sugars were not included in this analysis.
- Traditional definitions were used to categorize common fruits and vegetables. Unusual fruits and vegetables were categorized using scientific definitions.
methods for calculating intake, and/or evaluated different subpopulations or food groups. The general design of both key and relevant studies are summarized in Table 2-81. Based on the 1987/88 NFCS one-day per capita data, the recommended average fruit intake rate for the general population is 142 g/day and the recommended vegetable intake rate for the general population is \(182 \mathrm{~g} /\) day. Mean per capita intake rates for specific food items, on a g/kg-day basis, may be taken from Table 2-27. Mean and upper-percentile consumer only intake rates for total fruits, total vegetables, or various individual fruits and vegetables from the distribution data presented in Tables 2-32 through 2-73 may be used to represent intake for the general population and various subpopulations. Upper-percentile per capita rates may be calculated using the consumer only distribution data in Tables 2-32 through 2-73 and the survey size data presented in Section 2.7. Intake rates for the homeproduced form of these fruit and vegetable products are presented in Section 2.7.

The advantage of using the USDA NFCS data set is that it is the largest publicly available data source on food intake patterns in the United States. Data are available for a wide variety of fruit and vegetable products and are intended to be representative of the U.S. population. However, it should be noted that the data collected by USDA NFCS are based on short-term dietary recall and may not accurately reflect long-term intake patterns. This is particularly true for the tails of the distribution of intake.

Table 2-81. Summary of Fruit and Vegetable Intako Studies
\begin{tabular}{|c|c|c|c|c|}
\hline Study & Survey Population Used in Calculating Intako & Types of Data Used & Units & Food Items \\
\hline Pao et al., 1982 & Consumers only data provided; per capita intake calculated using fraction of individuals using the food & \begin{tabular}{l}
1977/78 NFCS \\
3-day individual intake data
\end{tabular} & g/day; as consumed & Intake rates for only a limited umber of products; intake rates for total fruits and vegetables not calculated \\
\hline EPA's DRES & Per capita (i.0., consumers and nonconsumers) & \begin{tabular}{l}
1977178 NFCS \\
3-day individual intake data
\end{tabular} & g/kg-day; as consumed & Intake for a wide variety of fruits and vegetables presented; complex food groups were disaggregated \\
\hline USDA, 1980; 1992 & Per capita and consumer only & \begin{tabular}{l}
1977/78 and 1987/88 NFCS \\
1-day individual intake data
\end{tabular} & g/day; as consumed & Total fruits and total vegetables \\
\hline EPA Analysis of 1987/88 USDA Data & Consumers only; per capita data can be calculated & 198'ㄱ/88 NFCS data; Based on amount of food consumed by a household over a 7 -day period; individual intake rates based on the estimated proportion of houschold food eaten by family members. & g/kg-day; as consumed & Major food groups; individual food items; exposed and protected fruits and vegetables; USDA food categories \\
\hline U.S. EPA/ORP, 1984d; 1984e & Per capita & 1971/78 NFCS Individual intake data & g/day; as consumed & Exposed, protected, and leafy produce \\
\hline U.S. EPA/OST, 1989 & Estimated lifetime dietary intake & Based on FDA Total Diet Study Food List which used 1971/78 NFCS data, and NHANES II data & g/day; dry weight & Various food groups; complex foods disaggregated \\
\hline Canadian Department of National Health and Welfare, n.d. & Consumers only? & 1970-72 survey based on 24 hour dietary recall & g/day; as consumed? & Fruit and fruit products, vegetables not including potatoes and nuts and legumes \\
\hline
\end{tabular}

\subsection*{2.4. CONSUMPTION OF MEAT, POULTRY, AND DAIRY PRODUCTS}

Consumption of meat, poultry, and dairy products is a potential pathway of exposure to toxic chemicals. These food sources can become contaminated if animals consume contaminated soil, water, or feed crops.

\subsection*{2.4.1. Intake Studies}

\subsection*{2.4.1.1. U.S. Department of Agriculture Nationwide Food Consumption Survey}

USDA conducts the NFCS approximately every 10 years. The three most recent NFCSs were conducted in 1965-66, 1977-78, and 1987-88. The purpose of these surveys was to "analyze the food consumption behavior and dietary status of Americans" (USDA, 1992). The survey uses a statistical sampling technique designed to ensure that all seasons, geographic regions of the U.S., and demographic and socioeconomic groups are represented. There are two components of the NFCS. The household component collects information over a 7-day period on the socioeconomic and demographic characteristics of households, and the types, value, and sources of foods consumed. The individual component collects information on food intakes of individuals within each household over a 3-day period (USDA, 1993).

The same basic survey design was used for the three most recent NFCSs, but the sample sizes and statistical classifications used were somewhat different (USDA, 1992). In 1965-66, 10,000 households were surveyed (USDA, 1972). The sample size increased to 15,000 households (over 36,000 individuais) in 1977-78, but decreased to 4,500 households in 1987-88 because of budgetary constraints and a low response rate ( 37 percent). Data from the 1977-78 NFCS are presented in this Handbook because the data have been published by USDA in various publications and reanalyzed by various EPA offices according to the food items/groups commonly used to assess exposure. Published one-day data from the 1987-88 NFCS and the results of a recently conducted EPA analysis of the 1987-88 data are also presented.

Individual daily intake rates and average user and per capita intake rates calculated from NFCS data are based on averages of reported intakes over either one day or three consecutive days. Such short-term data are suitable for estimating average daily per capita intake rates representative of both short-term and long-term consumption. However, upper percentile individual intakes reported either as user intakes or per capita intakes are likely to be higher than
the true long-term upper percentile daily average intakes because the results of short-term surveys are generally more variable than the results of long-term surveys. The individual upper percentile intakes rates represent intakes by users of the products over the three-day survey period. Long-term estimates require that the average intake over three days is the same as the average intake over 365 days for each individual, that is, the product is consumed every day of the year, resulting in the long-term overestimate.

\subsection*{2.4.1.2. Key Intake Studies Based on the USDA NFCS}

Pao et al. (1982) - Foods Commonly Eaten by Individuals - Using data gathered in the 1977-78 USDA NFCS, Pao et al. (1982) calculated percentiles for the average quantities of meat, poultry, and dairy products consumed by members of the U.S. population over a 3-day period. The calculations made by Pao et al. (1982) were based only on individuals who reported consuming meat, poultry, and dairy products (i.e., consumer's only) during the survey period. The data were collected during NFCS home interviews of 37,874 respondents, who were asked to recall food intake for the day preceding the interview, and record food intake the day of the interview and the day after the interview.

The intake rates are presented for individuals using food at least once in 3-days (survey period) on an as consumed (g/day) basis. Mean intake rates for consumers, standard deviations, intake rates for consumers at various percentiles, maximum amounts consumed, percentages of individuals using the food in the 3-day study, quantities consumed per eating occasion, and per capita estimates presented in Tables 2-82. Per capita intake rates were estimated by multiplying the average intake rate for consumers by the fraction of individuals using the food over the 3-day survey period.

Although Pao et al. (1982) reported distributions of intake rates for total meat (i.e., beef, pork, lamb, and veal) individual meat and poultry items and dairy products, these tabulated data cannot be used to derive a distribution of intake rates for total meat, poultry, and dairy products. Obtaining a frequency distribution for all meat, poultry, and dairy products by summing the distributions for these individual food items is not appropriate because a person whose intake rate for meat falls in the 90 th percentile may not have a 90 th percentile intake rate of poultry or dairy products. Summing ingestion rates would also imply that all individuals consume all

Table 2-82. Quantity ("as consumed") of Meat, Poultry, and Dairy Products Consumed and the Percentage of Individuls Using These Foods in 3 Days

of the meat, poultry, and dairy products listed in Table 2-82. Consequently, these data for individual food items should only be used in exposure assessments where the consumption of these individual food items is of interest.

The advantages of using these data are that they were derived from the USDA NFCS and are representative of the U.S. population. This data set provides distributions for a number of commonly eaten meat, poultry, and dairy products, but the list of foods is limited and does not account for meat, poultry, and dairy products included in complex food dishes. Also, these data are based on short-term dietary recall and may not accurately reflect long-term consumption patterns.

The U.S. EPA's Dietary Risk Evaluation System (DRES) - USEPA, Office of Pesticide Programs - The U.S. EPA, Office of Pesticide Programs (OPP) uses the Dietary Risk Evaluation System (formerly the Tolerance Assessment System) to assess the dietary risk of pesticide use as part of the pesticide registration process. OPP sets tolerances for specific pesticides on raw agricultural commodities based on estimates of dietary risk. These estimates are calculated using pesticide residue data for the food item of concern and relevant consumption data. Intake rates are based primarily on the USDA 1977-1978 NFCS although intake rates for some food items are based on estimations from production volumes or other data (i.e., some items were assigned an arbitrary value of 0.000001 g (kg/day) (Kariya, 1992). OPP has calculated per capita intake rates of various items of meat, poultry, and dairy products for 22 subgroups (age, regional, and seasonal) of the population by determining the composition of NFCS food items and disaggregating complex food dishes into their component raw agricultural commodities (RACs) (White et al. 1983).

The DRES per capita, as consumed intake rates for all age/sex/demographic groups combined are presented in Table 2-83. These data are based on both consumers and non consumers of these food items. Data for specific subgroups of the population are not presented in this section, but are available through OPP via direct request. The data in Table 2-83 may be useful for estimating the risks of exposure associated with the consumption of the various meat, poultry, and dairy products presented. It should be noted that these data are indexed to the actual body weights of the survey respondents and are expressed in units of grams of food consumed per kg bodyweight per day. Consequently, use of these data in calculating potential

Table 2-83. Mean Per Capita Intake Rates for Meat, Poultry, and Dairy Products Based on All Sex/Age/Demographic Subgroups
\begin{tabular}{|c|c|c|}
\hline Raw Agricultural Commodity & Average Consumption (Grams/kg Body Weight/Day) & Standard Error \\
\hline Milk-Non-Fat Solids & 0.9033354 & 0.0134468 \\
\hline Milk-Non-Fat Solids***Foodadd. & 0.9033354 & 0.0134468 \\
\hline Milk-Fat Solids & 0.4297199 & 0.0060264 \\
\hline Mill-Fat Solids***Foodadd. & 0.4297199 & 0.0060264 \\
\hline Milk Sugar (Lectose) & 0.0374270 & 0.0033996 \\
\hline Beef-Meat Byproducts & 0.0176621 & 0.0005652 \\
\hline Beef (Organ Meats) - Other & 0.0060345 & 0.0007012 \\
\hline Beef - Dried & 0.0025325 & 0.0004123 \\
\hline Beef (Boneless) - Fat (Beef Tallow) & 0.3720755 & 0.0048605 \\
\hline Beef (Organ Meats) - Kidney & 0.0004798 & 0.0003059 \\
\hline Beef (Organ Meats) - Liver & 0.0206980 & 0.0014002 \\
\hline Beef (Boneless) - Lean (w/o Removeable Fat) & 1.1619987 & 0.0159453 \\
\hline Goat-Meat Byproducts & 0.0000000 & * \\
\hline Goat (Organ Meats) - Other & 0.0000000 & * \\
\hline Goat (Boneless) - Fat & 0.0000397 & 0.0000238 \\
\hline Goat (Organ Meats) - Kidney & 0.0000000 & * \\
\hline Goat (Organ Meats) - Liver & 0.0000000 & * \\
\hline Goat (Boneless) - Lean (w/o Removeable Fat) & 0.0001891 & 0.0001139 \\
\hline Horse & 0.0000000 & * \\
\hline Rabbit & 0.0014207 & 0.00003544 \\
\hline Sheep - Meat Byproducts & 0.0000501 & 0.0000381 \\
\hline Sheep (Organ Meats) - Other & 0.0000109 & 0.0000197 \\
\hline Sheep (Boneless) - Fat & 0.0042966 & 0.0005956 \\
\hline Sheep (Organ Meats) - Kidney & 0.0000090 & 0.0000079 \\
\hline Sheep (Organ Meats) - Liver & 0.0000000 & * \\
\hline Sheep (Boneless) - Lean (w/o Removeable Fat) & 0.0124842 & 0.0015077 \\
\hline Pork - Meat Byproducts & 0.0250792 & 0.0022720 \\
\hline Pork (Organ Meats) - Other & 0.0038496 & 0.0003233 \\
\hline Pork (Boneless) - Fat (Including Lard) & 0.2082022 & 0.0032032 \\
\hline Pork (Organ Meats) - Ridney & 0.0000168 & 0.0000106 \\
\hline Pork (Organ Meats) - Liver & 0.0048194 & 0.0004288 \\
\hline
\end{tabular}

Tablo 2-83. Mean Per Capita Intake Rates for Meat, Poultry, and Dairy Products
\begin{tabular}{llc}
\hline \multicolumn{1}{c}{ Raw Agricultural Commoditya } & \begin{tabular}{c} 
Average Consumption \\
(Grams/kg Body Weight/Day)
\end{tabular} & Standard Error \\
\hline Pork (Boneless) - Lean (w/o Removeable Fat) & 0.3912467 & 0.0060683 \\
Meat, Game & 0.0063507 & 0.0010935 \\
Turkey - Byproducts & 0.0002358 & 0.0000339 \\
Turkey - Giblets (Liver) & 0.0000537 & 0.0000370 \\
Turkey - Flesh (w/o Skin, w/o Bones) & 0.0078728 & 0.0007933 \\
Turkey - Flesh (+ Skin, w/o Bones) & 0.0481655 & 0.0026028 \\
Turkey - Unspecified & 0.0000954 & 0.0000552 \\
Poultry, Other - Byproducts & 0.0000000 & \(*\) \\
Poultry, Other - Giblets (Liver) & 0.0002321 & 0.0001440 \\
Poultry, Other - Flesh (+ Skin, w/o Bones) & 0.0053882 & 0.0007590 \\
Eggs - Whole & 0.5645020 & 0.0076651 \\
Eggs - White Only & 0.0092044 & 0.0004441 \\
Eggs - Yolk Only & 0.0066323 & 0.0004295 \\
Chicken - Byproducts & 0.0000000 & \(*\) \\
Chicken - Giblets (Liver) & 0.0050626 & 0.0005727 \\
Chicken - Flesh (w/o Skin, w/o Bones) & 0.0601361 & 0.0021616 \\
Chicken - Flesh (+ Skin, w/o Bones) & 0.3793205 & 0.0104779 \\
\hline
\end{tabular}
- Consumed in any raw or prepared form.

Sourco: DRES database.
dose does not require the body weight factor in the denominator of the average daily dose (ADD) equation. It should also be noted that conversion of these intake rates into units of \(\mathrm{g} /\) day by multiplying by a single average body weight is not appropriate because the DRES data base did not rely on a single body weight for all individuals. Instead, DRES used the body weights reported by each individual surveyed to estimate consumption in units of \(\mathrm{g} / \mathrm{kg}\)-day.

The advantages of using these data are that complex food dishes have been disaggregated to provide intake rates for variety of meat, poultry, and dairy products. These data are also based on the individual body weights of the respondents. Therefore, the use of these data in calculating exposure to toxic chemicals may provide more representative estimates of potential dose per unit body weight. However, because the data are based on NFCS short-term dietary recall the same limitations discussed previously for other NFCS data sets also apply here.

Food and Nutrient Intakes of Individuals in One Day in the U.S., USDA (1992) - USDA (1992) calculated mean per capita intake rates for total meat, total poultry, and dairy products using NFCS data from 1987-88 (USDA, 1992). The mean intake rates for these food items are presented in Tables 2-84 and 2-85 grouped by age and sex. These values are based on intake data for one day for consumers and non-consumers from the 1987-88 USDA Nationwide Food Consumption Survey. Males 12 years and above had the highest total meat, poultry, and fish consumption rate, \(252 \mathrm{~g} / \mathrm{day}\) (Table 2-84). Males between the ages of \(6-11\) years had the largest consumption rate of total milk, \(439 \mathrm{~g} /\) day (Table 2-85). Males 20 years and above had the highest consumption rates of cheese and eggs, 17 and \(27 \mathrm{~g} /\) day, respectively (Table 2-85).

The advantages of using these data are that they provide intake estimates for all meat, poultry, and dairy products. The consumption estimates are based on short-term dietary data which may not reflect long-term consumption.
U.S. EPA Analysis of 1987/88 USDA NFCS Data - EPA analyzed data from the 1987-88 USDA NFCS to generate distributions of intake rates for various meat and dairy products. The meat and dairy products selected for analysis included total meats, total dairy, beef, game, pork, poultry, and eggs. Food items/groups were identified in the NFCS data base according to NFCS-defined food codes. Appendix 2-A presents the codes used to determine the various food groups. Intake rates for these food products represent intake of all forms of the product (i.e., homeproduced and commercially produced). The USDA data were adjusted by applying the

Table 2-84. Mean Meat Intakes per Individual in a Day by Sex and Age (g/day)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Total Meat, Poultry and Finh & Beef & Pork & Lamb, Veal, Game & Total Poultry & Chicken Only & \begin{tabular}{l}
Meat \\
Mixtured \({ }^{\text {b }}\)
\end{tabular} \\
\hline \multicolumn{8}{|l|}{Maler and Femalea} \\
\hline 5 and Under & 92 & 10 & 9 & <0.5 & 14 & 12 & 39 \\
\hline \multicolumn{8}{|l|}{Males} \\
\hline 6-11 & 156 & 22 & 14 & \(<0.5\) & 27 & 24 & 74 \\
\hline 12-19 & 252 & 38 & 17 & 1 & 27 & 20 & 142 \\
\hline 20 and over & 250 & 44 & 19 & 2 & 31 & 25 & 108 \\
\hline \multicolumn{8}{|l|}{Females} \\
\hline 6-11 & 151 & 26 & 9 & 1 & 20 & 17 & 74 \\
\hline 12-19 & 169 & 31 & 10 & <0.5 & 17 & 13 & 80 \\
\hline 20 and over & 170 & 29 & 12 & 1 & 24 & 18 & 73 \\
\hline All individuals & 193 & 32 & 14 & 1 & 26 & 20 & 86 \\
\hline
\end{tabular}
: Bued on USDA. Nationwide Food Consumption Survey (1987 to 1988) data for one day.
- Includes mixture containing meat, poultry, or fish as a main ingredient.

Source: USDA, 1992.

Table 2-85. Mean Dairy Product Intakes per Individual in a Day, by Sex and Age ( \(\left(\mathbb{L}\right.\) day) \({ }^{\text {a }}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Total Milk & Whole Milk & Lowrat/Skim Milk & Cheese & EP88 \\
\hline \multicolumn{6}{|l|}{Males and Females} \\
\hline 5 and under & 347 & 177 & 129 & 7 & 11 \\
\hline \multicolumn{6}{|l|}{Males} \\
\hline 6-11 & 439 & 224 & 159 & 10 & 17 \\
\hline 12-19 & 392 & 183 & 168 & 12 & 17 \\
\hline 20 and over & 202 & 88 & 94 & 17 & 27 \\
\hline \multicolumn{6}{|l|}{Females} \\
\hline 6-11 & 310 & 135 & 135 & 9 & 14 \\
\hline 12-19 & 260 & 124 & 114 & 12 & 18 \\
\hline 20 and over & 148 & 55 & 81 & 15 & 17 \\
\hline All individuals & 224 & 99 & 102 & 14 & 20 \\
\hline
\end{tabular}
- Based on USDA Nationwide Food Consumption Survey (1987 to 1988) data for one day.

Source: USDA, 1992.
sample weights calculated by USDA to the data set prior to analysis. These weights were designed to "adjust for survey nonresponse and other vagaries of the sample selection process" (USDA, 1987/88). Intake rates were indexed to the body weight of the survey respondent and reported in units of g/kg-day. The food analysis was accomplished using the SAS statistical programming system (SAS, 1990).

Distributions of intake rates were determined by apportioning the amount of food used by a household among family members based on average serving sizes for specified age groups of the population and the number of weekly meals consumed by each family member. A detailed description of the methodology used to generate distributions of homegrown intake is presented in Section 2.7 (Intake Rates for Various Homeproduced Food Items) of this Handbook. The same method was used to determine the intake rates of all forms of meat (i.e., homeproduced and commercially prepared) and dairy products presented in this section

Intake rates for various subcategories of the population within census regions are presented in Tables 2-86 through 2-90 for total meat and Tables 2-91 through 2-95 for total dairy. Tables 2-96 through 2-100 present intake rates for beef, game, pork, poultry, and eggs. These distributions represent intake rates for consumers of the food item/group of interest. These data represent one-week average intake rates for family members from those surveyed households who reported eating the food item/group of interest during the survey period. The total number of individuals in the data set (i.e., both individuals who ate the food item and those who did not eat the food item during the survey period) are presented in Table 2-185 in Section 2.7.2. These total number of individuals surveyed may be used with the consumer only data presented here to calculate per capita intake rates for the survey population as shown in Section 2.7.2.

The advantages of these data are that they provide distributions for the various food items/groups. Also, the NFCS was designed to be representative of the U.S. population. However, these data are based on short-term dietary recall and may not accurately reflect longterm intake patterns. Additional advantages and limitations of this analysis are outlined in Section 2.7.4 of this Handbook.

Table 2-86. Intake of Total Meats (g/kg-day) - All Regions Combined

QRast
DO NOT QUOTE OR
CITE

Tuble 2-87. Truke of Toul Meats (e/kg-day) - Northeax Resion



Table 2-88. Intake of Total Meats (g/kg-day) - Midweat Region


Table 2-89. Indike of Toul Mouts (g/ke-day)-Sourk Regioa
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Poppition } \\
& \text { Groxe }
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{N} \\
\mathbf{w n} \\
\hline
\end{gathered}
\] & \[
\xrightarrow[\text { Nund }]{ }
\] & Hean & EE & P & Pl & Ps & 110 & P3S & P0 & 173 & \% & P9 & P1 & 110 \\
\hline Tobl & 0374000 & 3386 & \(4875+\infty\) & 7,0884 & 0.008+ \(+\infty\) & 181801 & 618-01 & 1.08E+00 & 2018+00 & 3108+40 & 5.908+00 & 9.788+64 & 1.311+01 & 2008+91 & 1.058+en \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 885000 & 31 & \(2.588+1\) & 2168.08 & 6.22E-01 & 6228-81 & \(3518+60\) & 2.798+00 & 1.178+01 & 2224+61 & 3008+01 & 4.478+61 & \(7.158+01\) & 1.062+02 & 1.65\% +2 \\
\hline 01.02 & 1792000 & 105 & \(13.38+01\) & 9.098.03 & 248+60 & 2.458+ \(+\infty\) & 3.502+00 & 3. \(68 .+0\) & 6.738+m & 1.038+61 & 1.5SE+01 & 2578+01 & 3.098+01 & 9.218+01 & 9.214+61 \\
\hline \(03-05\) & 2543000 & 140 & 9.36E+00 & 330E-03 & 6.748 .11 & 6.768-41 & 2. 60 E \(+\infty\) & 3.4E8+60 & 5.508+00 & \(2518+00\) & 1.178+01 & 1.588+61 & 1.903+41 & 3328+01 & 3.672+01 \\
\hline 06.11 & 5217000 & 24 & 7,00E \(+\infty\) & 2.118 .03 & 0.002+00 & 0.00E+40 & \(1.71 \mathrm{E}+\infty\) & \(2.178+\infty\) & 369E+0 & S.S5E+60 & 9.328+00 & 137841 & \(1.508+41\) & 2238+01 & 3.683+41 \\
\hline 12-19 & 5720000 & 368 & 447E+ \({ }^{\text {cos }}\) & 1.16E-03 & \(0.008+\infty\) & \(0.002+\infty\) & 9368001 & \(1.30 \mathrm{~B}+\infty\) & 2388+60 & 3.7E+00 & \(6.138+60\) & \(2508+06\) & 9.908+ \({ }^{\text {c }}\) & \(1 \mathrm{AIE}+01\) & \(2.005+61\) \\
\hline 20-39 & 21289000 & 1050 & \(3 \mathrm{SRE}+\infty\) & \(6308+4\) & \(0.008+\infty\) & 2.198-11 & \(6218-01\) & 2.788-91 & \(1.578+00\) & 2mE+ 0 & 4.498+60 & \(7.118+\infty\) & 1888+60 & \(1.348+01\) & \(42 \mathrm{Ec}+01\) \\
\hline 4069 & 19391080 & 106 & 297E+00 & 7888-4 & \(0.00 \mathrm{E}+\infty\) & 1.618-41 & 3.718-01 & 2.98-01 & \(1.528+00\) & 3178+00 & 9.018+0 & 7.57E+ +0 & 9.9\%IR+0 & 18IE+01 & 3.603+91 \\
\hline \(70+\) & 5897000 & 288 & \(3.4 \mathrm{E}+\infty\) & 1.11E-3 & \(0.00 \mathrm{E}+00\) & 1.67E-A1 & 6368-01 & \(1.02 \mathrm{E}+\infty\) & 1.66E+00 & 208E+00 & 4508+00 & \(6.21 \mathrm{E}+\infty\) & 1.938+ +0 & 1.258+91 & 1.58801 \\
\hline \multicolumn{16}{|l|}{Seasons} \\
\hline Fall & 13118000 & 437 & 4785+m & 1.43£.03 & 0.00E+00 & 2.02E-01 & 6308-01 & 1.04E \(+\infty\) & 2078+00 & 3.388+00 & 58\% 8 +00 & 9818+ +0 & \(1.2885+01\) & 2538+01 & 7358+01 \\
\hline Spring & 16420000 & 1417 & 4.923+m & \(1.39 \mathrm{E}-33\) & 0.00E+00 & 1288-01 & 7398-01 & \(1.13 \mathrm{~B}+\infty\) & \(1.998+\infty\) & 3.48+00 & 3.7E+ +0 & 9.778+ +0 & \(1.398+01\) & 2.95+01 & 2908+01 \\
\hline Sumaza & 17467000 & 553 & \(478 \mathrm{E}+\infty\) & 1.188-03 & \(0.00 \mathrm{E}+00\) & \(0.008+\infty\) & 6ASE-01 & 1.01E+60 & \(1.668+00\) & 3.418+00 & 6.22E+00 & 1.01E+01 & 1.298+01 & \(2.288+01\) & 6.9EP+01 \\
\hline Winter & 16273000 & 98 & 4.95E \(+\infty\) & 1.618-03 & 0.008 + + & 2.47E-01 & 7.708-01 & \(1.12 \mathrm{E}+\infty\) & \(2.10 \mathrm{E}+00\) & 3.458+00 & 3.798+00 & 9.36E+00 & 1.298+01 & \(2.618+01\) & \(1.068+02\) \\
\hline \multicolumn{16}{|l|}{Unbenization} \\
\hline Cental City & 16960000 & 706 & 5.48R+00 & \(1.758-03\) & \(0.008+\infty\) & \(0.008+\infty\) & 6.178-01 & \(9.158-01\) & 1.208 +00 & 3.508+00 & 6.658+0 & 1.03E+01 & 1.418+01 & 3.67E+01 & 1.688+02 \\
\hline Nonmetropoliten & 18503000 & 1185 & 5.08E \(+\infty 0\) & 1.268-13 & \(0.008+\infty 0\) & 2908.01 & 8.798-01 & 1.308+ +0 & 2.27E+00 & 3.768+0 & 6.178+00 & 9.89\%+0 & 1.303+01 & \(2.288+01\) & \(2.903+01\) \\
\hline Surburten & 27415000 & 1465 & 4.398+00 & 2.12E.04 & \(0.00 \mathrm{E}+\infty 0\) & 1.888-01 & 6.33-01 & 1.00E+00 & 1.958+00 & 3.17E+00 & S.40E+00 & 206+ +0 & 1.198+01 & 2.298+01 & 5838+01 \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Asien & 654000 & 31 & \(6.758+\infty\) & 6.57E-03 & 4.468-01 & 4.468.01 & \(8.60 \mathrm{E}-01\) & \(1.218+\infty\) & 2.29B+00 & 5.638+00 & 9.7TE+00 & 1.438+01 & 1.938+01 & 1998+01 & \(1.958+01\) \\
\hline Blact & 13670000 & 770 & \(6.038+00\) & 1.908 .03 & \(0.008+00\) & \(0.008+00\) & 7.478-01 & \(1.26 \mathrm{E}+00\) & \(2.488+00\) & \(4.248+60\) & 7.198+60 & 1.158+01 & 1.5\%8+01 & 3.60E+01 & \(1.088+02\) \\
\hline Native Abreican & 162000 & 8 & \(2478+01\) & 7.248-02 & 3.128+00 & 3.128+60 & 3.128+0 & 3.12B+ \({ }^{\text {c }}\) & \(4.83 \mathrm{~B}+00\) & \(1.058+01\) & \(2.30 \mathrm{E}+01\) & 9.21E+01 & \(9.318+01\) & 9.318+01 & \(9.1218+01\) \\
\hline Obminh & 1545900 & 8 & \(5.138+00\) & 2448.03 & 4.768-01 & 8.348-91 & 1.23E+ +0 & \(1.368+\infty\) & 2.52B+00 & 4.578+00 & 5.228 \(+\infty\) & 9.52B+0 & 9.838+00 & \(1.328+01\) & \(1.398+01\) \\
\hline White & 47241000 & 2400 & \(4.48 \mathrm{P}+0\) & \(6.608-04\) & \(0.00 \mathrm{~B}+\infty\) & 2.02E-01 & 6.708-01 & \(1.03 \mathrm{E}+\infty\) & \(1.868+00\) & \(3.208+00\) & 5.468+00 & 287B+0 & \(1.308+01\) & \(2.188+01\) & \(7.158+01\) \\
\hline \multicolumn{16}{|l|}{Respones to Questionmise} \\
\hline Do you mine minelk & 2557000 & 160 & \(4748+60\) & 2728-03 & \(0.008+60\) & \(0.008+00\) & S.14E-01 & 2.208-01 & 2.238+ \({ }^{\text {com }}\) & 3.608+00 & 6.298+ +0 & 2068+00 & 1.208+01 & 159+01 & 4.478+01 \\
\hline Do you trup & 2232000 & 130 & \(4.838+00\) & 3.188-03 & \(0.00 \mathrm{E}+00\) & \(0.00 \mathrm{E}+00\) & 246E-01 & 8.578-01 & 2.288+00 & 3.838+00 & 3.93E+00 & 9.278+00 & 13\%801 & \(2508+01\) & \(3.088+01\) \\
\hline
\end{tabular}


Table 2-90. Intake of Total Meats (g/kg-day) - Weat Region
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Group & \[
\underset{\text { wrta }}{\mathrm{N}}
\] & \[
\begin{gathered}
\mathrm{N} \\
\text { unwisd }
\end{gathered}
\] & Man & SE & Po & 91 & PS & P10 & P2S & P30 & P75 & P90 & P93 & P99 & \(\because \times n\) \\
\hline Total & 34778000 & 1790 & \(4388+\infty\) & 98SE-A & \(0.008+\infty\) & 2.44-01 & 5.4AE.01 & 9.12E-01 & \(1.62 \mathrm{E}+00\) & 293E+00 & \(4.958+00\) & 243E+00 & 1.278+01 & 2848+01 & 7898+01 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline <01 & 568000 & 32 & \(2578+01\) & 247e-0 & 3.01E+60 & 3.01E+00 & 3.97E+00 & 4.158+00 & \(1.16 \mathrm{E}+01\) & \(2.30 \mathrm{E}+01\) & 3.398+01 & 5.228+01 & 6.098+01 & 7898+01 & 7.098+01 \\
\hline 01.02 & 1065000 & 8 & \(1.018+01\) & 7.146-03 & 681E-01 & 6.81 E-01 & \(1.28 \mathrm{E}+\infty\) & \(2.16 \mathrm{~B}+\infty\) & \(4.23 \mathrm{E}+00\) & \(9.18 \mathrm{E}+00\) & 1.418+01 & \(2058+01\) & 2.318+01 & 3578+01 & \(3.578+01\) \\
\hline 03.05 & 1785000 & 93 & 9.208+00 & 6.19603 & \(6.12 \mathrm{~B}-1\) & \(6.12 \mathrm{E}-01\) & \(2018+\infty\) & \(3.75 \mathrm{E}+\infty 0\) & \(4.94 \mathrm{E}+\infty\) & 7.51E \(+\infty\) & 1.118+01 & \(1.558+01\) & \(1.998+01\) & 5.918+01 & S918501 \\
\hline \(06-11\) & 3560000 & 200 & 5.75E+00 & 2,05-03 & 2.19801 & 2.74E.01 & \(1.288+\infty\) & 1.2008 \(+\infty 0\) & 293E+00 & 4.728+60 & 1.27E+60 & 9.318+00 & \(1.468+01\) & 2098+01 & 3238+01 \\
\hline 12.19 & 3780000 & 191 & 3.318+00 & 1.10808 & 2208.01 & 3.01E-01 & \(6.79 \mathrm{C}^{-01}\) & 1.118+00 & \(1.71 \mathrm{E}+00\) & \(2.878+\infty\) & \(4.238+60\) & 583E+00 & \(8.168+00\) & 9.97E+60 & \(1238+01\) \\
\hline 20-39 & 10898000 & 35 & 2906+00 & 9.68 CH & C.008 +00 & 4SAE-02 & \(4.39 \mathrm{~B}-01\) & \(6328-01\) & 1.23E+00 & \(2.16 E+\infty\) & 3.74E+60 & 5.818+00 & 2.078+00 & \(1.218+01\) & 3.518+01 \\
\hline 40.69 & 10095000 & 530 & 3SEB+00 & 1.08-63 & 9.78002 & 2.15800 & 5.57E-01 & 9.008-01 & \(1.58 E+\infty\) & \(2.538+\infty\) & \(4.298+00\) & 6318+60 & \(8.78+0\) & 124E+01 & 5.96+01 \\
\hline \(70+\) & 3023000 & 139 & 2818+00 & 1.16E.03 & 1.6480] & 2.17801 & \(4.59 \mathrm{E}-01\) & 6.73E-01 & 1.32E+00 & \(2.16 \mathrm{E}+00\) & 4.02E+60 & SSSe + +0 & 7.142+00 & \(9.12 \mathrm{E}+00\) & 9.128+60 \\
\hline \multicolumn{16}{|l|}{Sessons} \\
\hline Fill & 10581000 & 362 & \(4.748+00\) & 2098-43 & 1008 +60 & 4.SAES & 5.71E-01 & 9.248001 & \(1.568+\infty\) & 2.118+00 & 4988+00 & 9808 +60 & 1.558191 & \(3.238+01\) & 6.098+01 \\
\hline Spling & 7338000 & 66 & \(3984+00\) & 1.48E-63 & \(0.008+\infty\) & 298501 & 5818-01 & \(9.598-01\) & \(1.618+\infty\) & \(2.908+\infty\) & 4808+00 & \(7.748+\infty 0\) & 9.80E +60 & 2058+01 & 5808301 \\
\hline Summer & 7895000 & 233 & \(485 \mathrm{P}+90\) & 23804 & \(2918-91\) & 3.59-01 & 6.32E-1 & \(1.05 \mathrm{E}+\infty\) & \(1.79 \mathrm{~B}+00\) & 3.28E+00 & 5248+00 & 2603 \(+\infty\) & \(1.418+01\) & 3.518+01 & 5.918+01 \\
\hline Winter & 8874000 & 539 & 3182+00 & 1,098-83 & 1208.01 & 1.908-01 & 4.918-01 & 7.378-01 & \(1.478+\infty\) & 2.74E+00 & 4.588+00 & 73085 +00 & \(1.038+01\) & 1.778+01 & 7.898+01 \\
\hline \multicolumn{16}{|l|}{Uitarization} \\
\hline Cerum City & 11471600 & 46 & \(3 \mathrm{Cag}+60\) & 1528.03 & 454800 & \(1608-01\) & 4.768-01 & 6948-01 & 1.46E+ +0 & \(2.618+60\) & 4.988+00 & \(82023+\infty\) & \(1.218+01\) & \(2408+01\) & 5008+01 \\
\hline Normetropoiten & \$931000 & 373 & 5ces + +0 & 3.00803 & 164801 & 2.148-01 & 9.13801 & 1.238+00 & \(1.908+60\) & 3.498 +60 & \(3.603+\infty\) & 200R +60 & \(1.318+61\) & 5.078+01 & 789E401 \\
\hline Surburben & 17376000 & 9 & \(4308+00\) & \(1.36 \mathrm{E}-93\) & 2008+00 & \(2235-01\) & 5.531-01 & 9.40t-01 & 1.638+00 & 2948+00 & 4.978+60 & \(83 \times 5+\infty\) & \(1.278+01\) & 3.008+01 & 5.918+01 \\
\hline \multicolumn{16}{|l|}{Rece.} \\
\hline Asian & 577000 & 38 & 3.018+e0 & 38384 & 793801 & 7.938-01 & \({ }^{2} 2.168+\infty\) & \(2.168+\infty\) & 2798+00 & 4.408 \(+\infty\) & 6.108+00 & 9.798+00 & 1218+01 & 1.318+01 & \(1.318+01\) \\
\hline Bract & 1697000 & 85 & 6.138400 & 709\% 43 & Quceteo & 0.031+60 & 7.108-01 & \(1.06 \mathrm{~B}+\infty\) & \(1.948+\infty\) & 4.06E \(+\infty\) & 6.928+60 & 1338+01 & L.4TE 01 & 5.502+01 & 5968+01 \\
\hline Native American & 1133000 & 7 & 4.07 +00 & 92386 & 2.158 .81 & 2.15801 & 1.118+00 & \(1.678+\infty\) & 2748+00 & \(4.14 \mathrm{~B}+\infty\) & \(6.108+\infty\) & 8.502 \(+\infty 0\) & \(1.028+01\) & 789201 & 7858+01 \\
\hline Otheona & 1166000 & 60 & 4083+60 & 3228-43 & cmedeo & 2918-91 & 4.038-01 & 1,188+00 & 2.28E+00 & \(3.99 \mathrm{~B}+\infty\) & 6.938 + +0 & \(2608+\infty\) & \(1.2288+61\) & 1.028+01 & 1.623+01 \\
\hline White & 30205000 & 1301 & \(4.138+00\) & 980\%-4 & 20x +00 & \(2.148-1\) & 5338-01 & 8.378 .01 & \(1.568+\infty\) & 2.7B+ \({ }^{\text {co }}\) & 4.65R + +0 & 2188+00 & \(1.118+61\) & 2788+01 & 6.038+01 \\
\hline \multicolumn{16}{|l|}{Response to Questionmirs} \\
\hline Doyournice mimeth & 2574000 & 158 & 1943+00 & 3.18808 & S.918-01 & 6.254001 & 9.3 cr 01 & \(1.108+00\) & 1.18B+e0 & 3.338+00 & 3. \(608+60\) & 9.978+60 & \(1.48+01\) & 3138401 & Stertol \\
\hline Doyou ficm? & 1535000 & 9 & 4.448+60 & 3.508 .63 & S01E-81 & 7.418-81 & 1.138+00 & \(1.638+\infty\) & \(2.188+00\) & \(3.138+\infty\) & \(4.958+\infty\) & \(8.76+\infty\) & 1.208502 & \(1.778+61\) & \(4.018+01\) \\
\hline
\end{tabular}

Table 2-91. Inenke of Toul Deiry (elkg-day) - All Regions Combined
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Pogulesion } \\
& \text { Growe }
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{M} \\
\mathbf{N}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} \\
\text { neword }
\end{gathered}
\] & Men & 85 & P9 & Pl & PS & Pl & 13 & F90 & P75 & 19 & Fes & P9 & 10 \\
\hline Tose & 18577000 & 975 & 285E+00 & 1.04E-03 & \(0.008+00\) & 198801 & 2.02E-01 & \(1358+\infty\) & 261E+00 & 4008 +00 & 9.283+00 & 1.908+01 & 2038+91 & 6.788+0! & 2014+08 \\
\hline \multicolumn{16}{|l|}{Ase} \\
\hline <11 & 2114000 & 156 & \(6.76 E+01\) & 2998-02 & 0.002+00 & \(4.678+\infty\) & 1.512+01 & 1.8SE+01 & 3.23E+01 & 3.47E+01 & 8.638+01 & \(1338+62\) & 1.58846 & 2618402 & \(2618+68\) \\
\hline 01-22 & 5872000 & 320 & \(3.65 \mathrm{E}+01\) & 1.198-02 & \(1.238+00\) & \(1.10 \mathrm{E}+\infty\) & 9.07E+00 & \(1.208+01\) & \(1.908+01\) & 3.00E+01 & 4.708+01 & 6.328+01 & \(2105+01\) & 1.218+62 & \(2368+62\) \\
\hline 0305 & 0066000 & 450 & \(2.18 E+01\) & 4.61 E.03 & \(0.008+\infty\) & \(2.998+00\) & 5:128+60 & 20se \(+\infty\) & 1.21E+01 & \(1.128+01\) & \(2818+01\) & \(4.128+01\) & \(4.758+01\) & \(6218+01\) & \(783 \mathrm{E}+\mathrm{Al}\) \\
\hline 06-11 & 18574000 & 936 & 1.4E+01 & 2598-03 & \(0.008+00\) & \(6.52 \mathrm{E}-1\) & 274E+00 & 3998+ +0 & 7.388+00 & \(12 \times E+01\) & \(1.988+01\) & \(2.778+01\) & 3.463+61 & 4818+01 & \(1.088+12\) \\
\hline 12.19 & 29216000 & 103 & 215E+00 & 1.51E-03 & \(0.068+\infty\) & \(0.008+00\) & \(1.198+\infty\) & \(199 \mathrm{E}+\infty\) & 3.538+00 & \(6.38+\infty\) & \(1.098+61\) & 1.828+01 & \(2.068+01\) & \(2.38+01\) & \(7398+81\) \\
\hline 20-39 & 60781000 & 3024 & 5038+00 & 6eneas & \(0.008+\infty\) & 1.618-01 & 7308.01 & 1.19E+00 & \(2.148+00\) & 3.00E+ +0 & 6238+00 & 9298+00 & \(1.258+01\) & \(2.158+61\) & 9.68 Col \\
\hline 40-69 & 35955000 & 3003 & \(4912+\infty\) & 75SE-04 & \(0.008+\infty 0\) & 1.248 .01 & 6.04E-21 & 9.5E-01 & 206E +00 & 3. \(09 \mathrm{E}+\infty\) & \(6.018+\infty\) & 9,648+00 & 1238+01 & \(2308+61\) & 9315+01 \\
\hline \(70+\) & 15890000 & 70 & 5.05E+00 & 1.00E-03 & \(0.00 \mathrm{E}+00\) & 3.138-01 & \(933 \mathrm{E}-01\) & \(1.35 \mathrm{E}+\infty\) & 2.72E+00 & \(4.178+\infty\) & \(6.12 \mathrm{E}+00\) & 9328+00 & \(1.268+01\) & 1298+01 & 368501 \\
\hline \multicolumn{16}{|l|}{Sexen} \\
\hline Fall & 45980000 & 1558 & 9.23E+00 & 232E-43 & \(0.008+00\) & \(1.29 \mathrm{~B}-01\) & 7.008-01 & \(1.21 E+00\) & 247E+60 & \(470 \mathrm{E}+00\) & 9528+00 & 1.918+01 & \(3.188+01\) & 7.0.2B+01 & 2618+62 \\
\hline Sprise & 45636000 & 3920 & 2.75E +00 & 2285-03 & \(0.00 \mathrm{E}+00\) & 2308-01 & 7.65801 & \(1.3 \mathrm{E}+60\) & \(2.538+60\) & 469E+00 & \(9.068+00\) & \(1868+01\) & \(2778+61\) & 7.03E+01 & \(2.588+02\) \\
\hline Surminar & 4800000 & 1405 & 2.6se +00 & 1.928-03 & \(0.008+00\) & 1.098-01 & 8.798-01 & 1.47E \(+\infty\) & 2608+60 & \(4.758+\infty\) & 9.81E+00 & 1.958+01 & \(2.698+01\) & 6328+91 & \(2.128+02\) \\
\hline Winter & 4253000 & 2776 & E. T E \(+\infty\) & 1.78E-03 & \(0.00 \mathrm{E}+00\) & 3.32E-01 & 857E-0 & 1.4E \(+\infty\) & 2808+60 & 5.018+00 & 9.458+00 & 1228+01 & 3.028+01 & \(632 \mathrm{E}+01\) & 1.70E+02 \\
\hline \multicolumn{16}{|l|}{Urbenization} \\
\hline Centril City & 58640000 & 219 & 9348+00 & 2.188-03 & \(0.008+\infty\) & 1.248-01 & 6.908-01 & 1.27E+00 & \(2.418+\infty\) & 4.5TE \(+\infty\) & 9.378+00 & 2018+01 & \(3328+01\) & 8.178+01 & 2.118+02 \\
\hline Nonmectopoliten & 44861000 & 271 & 8. \(708+00\) & 1.94803 & \(0.008+\infty\) & \(2.798-01\) & C98E-01 & 1. \(408+00\) & 2.808 \(2 \times 0\) & 4.98E+00 & 9,538+00 & \(1.208+01\) & \(2768+01\) & 3.613+01 & \(2.128+68\) \\
\hline Surburben & 85611000 & 1991 & 8. \(628+00\) & 1.448-03 & \(0.008+\infty\) & \(2.418-01\) & \(8.158-01\) & 1.35E \(+\infty\) & \(2.67 \mathrm{~B}+\infty\) & 4.898+ \({ }^{\text {co }}\) & 9358+00 & 185E+01 & \(2788+01\) & 6.13E+01 & \(2.588+02\) \\
\hline \multicolumn{16}{|l|}{Rece} \\
\hline Asim & 2345000 & 110 & \(1.148+01\) & \(1.648-02\) & 6.518-02 & 6.518-02 & \(6.538-01\) & \(1.258+\infty\) & 2.418+60 & 4.408+60 & 8.798+60 & 2338+01 & \(4.308+01\) & 1298+02 & 1.928+08 \\
\hline Breck & 21173000 & 1091 & \(6.688+00\) & 2.778 .03 & \(0.00 \mathrm{E}+00\) & 0.00E+00 & \(4.018-01\) & 7.00E-01 & \(1.608+60\) & 3.338+00 & 6.6SE+00 & \(1.488+01\) & \(2178+01\) & \(6.578+01\) & 2088+62 \\
\hline Native American & 145000 & 90 & Ce883 +00 & 1.12E-02 & 1.408-01 & \(252 \mathrm{E}-01\) & 5.618-01 & 9 SOEPO1 & \(2.208+00\) & 3.288+ +0 & 180 +00 & 1.508+01 & 2857401 & 1.148+02 & \(1.148+02\) \\
\hline OthedNA & 4679000 & 231 & \(1.2585+01\) & 1.208-02 & \(0.008+\infty 0\) & \(2.228-01\) & \(1.308+00\) & 1.72 2 +0 & \(2.678+60\) & 4635+60 & \(1.508+01\) & 2618+01 & \(4308+61\) & \(8.178+01\) & 2018+62 \\
\hline White & 156067000 & 123 & 9.008+00 & 1.99E-63 & \(0.008+\infty\) & \(2.7 \mathrm{B-01}\) & 9.18801 & 1. \(48 \mathrm{~B}+\infty\) & \(2788+00\) & \(5.018+60\) & 9.718+00 & 1928+01 & 2948+01 & \(6.538+01\) & \(2558+62\) \\
\hline \multicolumn{16}{|l|}{Resporne to Questionnire} \\
\hline Do you nine animela? & 10075000 & 630 & 9.408+00 & \(4.24 \mathrm{E}-08\) & \(0.008+\infty\) & 2218.01 & 5.938-01 & \(1.238+00\) & 2.768+00 & 5.373+00 & \(1.108+01\) & 207E+01 & 3.128+01 & 3.738+01 & 2323+02 \\
\hline Do you farm? & 7325000 & 35 & 9,378+00 & 4.5TE-03 & \(0.008+\infty\) & 2988.01 & S. 288.01 & \(1.128+00\) & \(3.808+\infty\) & 5.278+60 & \(1.098+01\) & 2.148+01 & \(3.118+61\) & 5.73+01 & 1.20\% 202 \\
\hline
\end{tabular}
\(\underset{\sim}{\underset{\sim}{N}}\)


Table 2-92. Intake of Total Dairy (g/kg-day) - Northeast Region


Tuble 2-93. Trake of Toul Deiry (e/kg-day) - Midwert Region
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Popuintica Crowe. & \[
\begin{gathered}
\mathrm{N} \\
\mathbf{w n}
\end{gathered}
\] & N & Lena & 88 & F & PI & Ps & P10 & 125 & P\% & 7 & P9 & Pes & 1 pm & P10 \\
\hline Toted & 48817000 & 2587 & \(1.288+81\) & 230-03 & 1.WE+M & 258891 & 835801 & 1.472+00 & 3038+60 & 3508+00 & \(1.128+01\) & 2200+41 & 308481 & 2.ectel & 2.12R+62 \\
\hline \multicolumn{16}{|l|}{Ase} \\
\hline <01 & \$12000 & 4 & 738E+61 & 5.78508 & 6078+40 & 6.772+60 & 1968+01 & 2098+01 & 3008+01 & S.668801 & 1.146+62 & 1.338+02 & 192E+62 & 2128+62 & 2.128+42 \\
\hline 01-02 & 1730000 & 100 & 3.872+01 & 1.6850 & 4.61E+m & 28ce +00 & 1.19E+01 & \(1.378+01\) & 1928+01 & 3.428+01 & 4925+01 & 7.258+41 & 86301 & 1858+12 & \(1.168+02\) \\
\hline 03-05 & 2251000 & 133 & \(2328+01\) & 7958-03 & 298+60 & 4205200 & \(6388+60\) & \(9008+\infty\) & 1398+01 & \(2.168+61\) & 2978+01 & \(4208+11\) & 4.782+81 & 4792+61 & \(6.10 \mathrm{P}+1\) \\
\hline Q-11 & 4203000 & 263 & \(1.688+01\) & 5648-43 & \(1.128+{ }^{+1}\) & 20EE+0 & 2008+60 & 4,488+00 & 2.72E+60 & 1.4EP+01 & 2028+01 & \(2942+01\) & 3788+11 & 630E+61 & \(1080+6\) \\
\hline 12-19 & 5387000 & 305 & \(2058+\infty\) & \(2068-13\) & 4.0810 & \(0.008+40\) & 1.168+00 & \(2.118+00\) & 3918+60 & 7268 +00 & 1.258+61 & \(1.788+11\) & \(2.185+61\) & 203e+01 & \(3 \mathrm{cec}+01\) \\
\hline 20.39 & 15374000 & 14 & \(5.788+\infty\) & \(15 \% 80\) & 1008+6 & 324091 & \$ 6 E-01 & 1.28E+00 & 2. \(7 \mathrm{BE}+60\) & \(4.418+\infty\) & \(70.85+6\) & \(1.078+81\) & 1.488+01 & 2328+01 & 9.6e8+01 \\
\hline 406 & 12205000 & 72 & \(5.238+00\) & 1.512 .0 & 6eserom & 9.08-02 & S4AE01 & \(9.508-01\) & 2.158+00 & 3,48E+00 & \(6.838+0\) & \(1.078+01\) & 1378+01 & \(2088+01\) & 7,668+01 \\
\hline \(70+\) & 3165000 & 176 & \(4928+\infty\) & 2038.3 & 6 seren & 298501 & 6.568.01 & 1.75E+00 & 283E+60 & 1.05B+00 & 6.0\% \(+\infty\) & \(9.188+60\) & 1.02E+01 & 1.788+61 & \(2788+01\) \\
\hline \multicolumn{16}{|l|}{Sesison} \\
\hline FM & 14242000 & 40 & 993E +00 & 3973-43 & 0.00E+60 & 2548.01 & 7328-01 & 1.248+00 & 2.67E+00 & 5.47E+00 & 1.228+01 & 2318+01 & 3338+01 & 5.74E+01 & 1.928+02 \\
\hline Spring & 10501000 & 1023 & \(1.81 \mathrm{E}+01\) & \(4658-13\) & atee \(+\infty\) & \(2.48 \mathrm{E}-1\) & \(9.118-01\) & \(1.508+\infty\) & 3.018+00 & 5318+00 & 1.05E+01 & \(2128+01\) & 3.288+01 & 2. \(468+01\) & 1.798+62 \\
\hline Summer & 10013000 & 331 & \(1.18 \mathrm{E}+01\) & 6.14 ¢-93 & -0.08+6 & 1.72801 & \(7.100-01\) & \(1.618+00\) & \(3.06 E+00\) & \(3.518+00\) & 1.268+61 & \(2568+01\) & 4.408+01 & \(1.038+02\) & 2.12E+62 \\
\hline Writer & 10561000 & 73 & 938E \(+\infty\) & 3.77808 & 208002 & \(6.12 \mathrm{E}-1\) & 1.57E+00 & 1.69E+00 & 3.12B+00 & 5.68E+00 & 1.0ME+01 & 1.918+01 & 3.228+01 & \(5.748+61\) & 1.708+02 \\
\hline \multicolumn{16}{|l|}{Usberimation} \\
\hline Central City & 17277000 & 673 & \(1.118+01\) & 4298-03 & CLORte0 & 277801 & 604E-01 & \(1.36 E+\infty\) & 2.158+00 & 5.508+ +0 & \(1.178+01\) & 2588+01 & 3.998+01 & 2018+01 & 1.928+02 \\
\hline Normetropoliten & 14067000 & 104 & 1.03E+61 & 47183 & 658e-m & 4.468-01 & 1.198+00 & \(193 E+\infty\) & 3.398+00 & 5.668+00 & 1.118+01 & \(2.178+01\) & 3209+01 & \(7.988+01\) & \(2.128+02\) \\
\hline Surburben & 14523000 & 850 & 9.10E+60 & 3.108 .83 & \(0.008+00\) & 1.4801 & 6.488-01 & 1.2018+00 & \(3.03 \mathrm{E}+00\) & 3.308+00 & 1.078+91 & 1.978+01 & 287E+01 & 366E401 & \(1.308+62\) \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Asien & 735000 & 33 & \(2.008+01\) & 4398-62 & 4338-81 & 433801 & 4.332-01 & 3.928+00 & 4.378+00 & 6.118+60 & \(2.238+01\) & 3.998+0: & 233E+01 & 1928+62 & 1.92E+62 \\
\hline Benct & 2764000 & 124 & 1.128+01 & 1208020 & 1008+60 & 2.00E+00 & \(6.128-01\) & 8.128-01 & 1918+00 & 3.108+00 & 1.018+61 & \(2488+01\) & \(5.818+01\) & 1.21E+62 & \(1218+02\) \\
\hline Notive American & 116000 & ك & 7.73E + +0 & 6208-93 & 279 \(2 \times 0\) & 2730+00 & 2798+00 & 5. \(038+\infty\) & 5. \(388+00\) & 7808 +00 & 2.618+00 & \(1.088+11\) & 1.008+01 & 1.68+01 & 1.288+01 \\
\hline OtherNA & \$8000 & 33 & 1.488+01 & 15yent & 27801 & 2228-11 & 6858.01 & 1.66E \(+\infty 0\) & 3.408+60 & \(6.688+\infty\) & 2278+41 & 4.002+01 & 1.EEtel & 4903+61 & \(4588+01\) \\
\hline White & 4129000 & 237 & 290E +00 & 278.83 & 0.0020 & 2778-01 & 9.468-01 & 1.34E+00 & 3.068+0 & SSIB+00 & 1.108+01 & 2098+61 & \(3338+01\) & 7.448+01 & \(2.128+62\) \\
\hline \multicolumn{16}{|l|}{Repponce to Quertionnmire} \\
\hline Do you rive summer & 3742000 & 247 & 1.008+01 & \(6 \cos 98\) & 1.24801 & 320801 & 685E01 & \(1.258+\infty\) & 3.178+00 & 5818+00 & 1378+01 & \(2328+01\) & 3298+01 & 4.798+01 & \(1.188+6\) \\
\hline Do you firm? & 2681000 & 13 & \(1.085+81\) & 2.038-33 & 120801 & 3288801 & S62801 & \(1.258+\infty\) & 3.328+00 & \(4.068+00\) & 1.408+01 & \(2178+01\) & 3748+01 & 3.508+01 & \(1.168+08\) \\
\hline
\end{tabular}

Table 2-94. Intake of Total Dairy (g/kg-day) - South Region
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Group & \[
\begin{gathered}
\mathrm{N} \\
\mathrm{w} \text { wed }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} \\
\text { unnged }
\end{gathered}
\] & Meen & SE & Po & Pl. & P5 & P10 & P25 & P50 & P75 & P90 & P9s & P99 & P100 \\
\hline Total & 63389000 & 3353 & 7.10E+00 & 1.33E-03 & 0.008+00 & \(9.40 \mathrm{E}-02\) & 6.718-01 & 1.08E+00 & 2.19E+00 & 4.138+00 & 7.68B+00 & 1.46E+01 & 2.348+01 & \(5.478+01\) & \(1.108+02\) \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline < 01 & 889000 & 51 & \(5.01 \mathrm{t}+01\) & 3.61E-02 & 4.67E+00 & 4.67E+00 & \(9.12 \mathrm{E}+00\) & \(1.69 \mathrm{E}+01\) & \(1.938+01\) & 3.758+01 & 1.718+01 & 1.048+02 & 1.108+02 & 1.408+02 & 1. \(108+02\) \\
\hline 01-02 & 1792000 & 105 & 3.07E+01 & 1.5UE-02 & 1.918+00 & 1.9E + +0 & 7.078+00 & \(1.12 \mathrm{E}+01\) & 1.99E+01 & 2568+01 & \(4.208+01\) & \(5.358+01\) & 7.62E+01 & \(1.148+02\) & \(1.218+02\) \\
\hline 03.05 & 2505000 & 139 & \(1.91 \mathrm{E}+01\) & 8.27E-03 & 2.61 E-01 & 3.53E+00 & 5.57E+00 & \(7.468+00\) & 1.048+01 & 1.528+01 & 2.628+01 & \(3.608+01\) & 5.24E+01 & 5.868+61 & \(6.208+01\) \\
\hline 06.11 & 5180000 & 233 & \(1.16 \pm+01\) & \(4.144^{-03}\) & \(0.00 \mathrm{E}+00\) & 0.00E+00 & 2.402+00 & \(3.048+\infty\) & 5.318+00 & \(9.028+00\) & \(1.508+01\) & \(2.348+01\) & 209E+01 & \(4.938+01\) & 5.23E+01 \\
\hline 12-19 & 6625000 & 365 & \(6.158+\infty\) & 1.33E-03 & \(0.00 \mathrm{E}+00\) & \(0.008+00\) & \(8.358-01\) & 1. 60 E +00 & \(2.778+00\) & \(4.98 \mathrm{E}+00\) & \(8.148+00\) & 1.14B+01 & 1.88E+01 & \(2.128+01\) & \(4.12 \mathrm{E}+01\) \\
\hline 20.39 & 21457000 & 1058 & \(4.03 \mathrm{E}+00\) & 7.19E-04 & \(0.00 \mathrm{E}+00\) & 1.008-01 & \(6.285-01\) & 9.49E-01 & 1.82E+00 & 3.148+00 & \(5.128+00\) & \(8.27 \mathrm{~B}+\infty\) & \(1.09 \mathrm{E}+01\) & 1.578+01 & \(4798+01\) \\
\hline 40-69 & 19392000 & 1086 & 4.12E \(+\infty\) & 1.008-03 & \(0.00 \mathrm{~B}+00\) & 5.19E-02 & 5.03E-01 & 781E-01 & \(1.77 E+\infty\) & 3.498+00 & 9. \(178+00\) & \(8.94 \mathrm{E}+\infty 0\) & 1.14E+01 & \(2.258+01\) & \(4.508+01\) \\
\hline 70 & 5548000 & 258 & 5.308+00 & 1.99E-03 & \(0.00 \mathrm{E}+00\) & \(4.17 \mathrm{E}-01\) & \(9.10 \mathrm{E}-01\) & 1.158+00 & 2608+00 & \(4.358+00\) & \(6.578+\infty\) & 9.448+00 & 1.0E+01 & 3.14E+01 & \(3.685+01\) \\
\hline \multicolumn{16}{|l|}{Season} \\
\hline Fall & 13065000 & 435 & \(6.99 \mathrm{E}+00\) & 2.708-03 & S.19E-02 & \(1.298-01\) & 3.11E-01 & 1.048+00 & \(2.138+00\) & 4.158+00 & 7.648+00 & \(1.448+01\) & \(2.118+01\) & 5.748+01 & \(7.838+01\) \\
\hline Spring & 16502000 & 1416 & 6.96E \(+\infty\) & 274E-03 & \(0.00 \mathrm{E}+00\) & 4.438-02 & 6.15E-01 & 1.03E+00 & \(2.18 \mathrm{~B}+00\) & \(4.608+00\) & \(7.30 \mathrm{~B}+00\) & 1.428+01 & \(2.248+01\) & \(5.538+01\) & \(1.378+02\) \\
\hline Surmmer & 17504000 & 594 & \(6.62 \mathrm{E}+\infty 0\) & \(2178-03\) & \(0.00 \mathrm{E}+\infty\) & \(0.00 \mathrm{E}+00\) & 6.99E-01 & \(1.148+00\) & \(2.288+60\) & \(4.09 \mathrm{E}+00\) & \(7.96 \mathrm{~B}+\infty\) & 1.52B+01 & \(2348+01\) & 4.42B+01 & 1.408+02 \\
\hline Winter & 16318000 & 950 & 7.68E+00 & 2.958-03 & 0.008+00 & 2.72E-01 & 7.57E-91 & 1.198+60 & \(2.19 \mathrm{E}+00\) & \(4.318+00\) & \(7.99 \mathrm{~B}+00\) & 1.51E+01 & \(2.13 \mathrm{E}+01\) & 3.788+01 & \(1.148+102\) \\
\hline \multicolumn{16}{|l|}{Urberization} \\
\hline Centrel City & 16868000 & 203 & 7.04E +00 & 2.58-03 & \(0.00 \mathrm{E}+00\) & 0.00E+00 & 5.05E-01 & \(8.688-01\) & 1.918+00 & 3.748+00 & 7.148+00 & 1.98E+01 & 2.618+01 & 6.948+01 & \(1.148+93\) \\
\hline Normetropoliten & 18838000 & 1179 & \(6.98 \mathrm{E}+00\) & 2.268003 & \(0.00 \mathrm{~B}+\infty 0\) & \(1.948-01\) & 7.408-01 & 1.178+00 & 1.238+00 & \(4.188+00\) & \(7.758+00\) & \(1.478+01\) & \(2.34 \mathrm{E}+01\) & 4.508+01 & 1. 0 E 102 \\
\hline Surburben & 27683000 & 143 & 1.228+00 & 1.968-03 & \(0.00 \mathrm{E}+00\) & 1.76E-01 & 7.08E-01 & 1.20E+00 & 239E+00 & \(4338+00\) & 799E+00 & \(1.448+01\) & 2238+01 & 5.318+01 & 1,378+62 \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Asim & 654000 & 32 & 4.64E +00 & 5.402-03 & 6.538-01 & \(6.53 \mathrm{E}-01\) & 1.063+ +0 & 1.25E+00 & 2.13E+00 & 3.148+00 & 5.358+00 & \(8.91 \mathrm{~B}+00\) & 1.48E+01 & 2318+01 & \(2.318+01\) \\
\hline Buact & 13198000 & 750 & \(5.278+00\) & \(2.218-03\) & 0.006 + +0 & \(0.00 \mathrm{E}+00\) & 3.77E-01 & 6.588 .01 & \(1.358+00\) & \(2.508+00\) & SESE+00 & \(1.14 \mathrm{E}+01\) & \(1.388+01\) & 4.60E+01 & \(1.108+02\) \\
\hline Netive Ammerican & 162000 & 8 & \(2948+01\) & 9.068 .02 & 4108+00 & 4.10E+00 & 4.108+00 & \(4.10 \mathrm{E}+\infty\) & 4.998+00 & \(2.108+01\) & \(2.858+01\) & 1.148+02 & \(1.148+02\) & \(1.148+02\) & \(1.148+02\) \\
\hline OnanNA & 1545000 & \% & \(6.318+\infty\) & 6.618 .03 & 4.488-01 & \(6.71 \mathrm{E}-01\) & 1.302+00 & 1.718+00 & \(2.14 \mathrm{E}+00\) & \(3.378+00\) & 5.098 +00 & 1.308+01 & 2618+01 & \(4.208+01\) & \(4.085+01\) \\
\hline White & 4783000 & 249 & 7.598 +00 & 1.508-03 & \(0.008+\infty\) & 1.37E-01 & 7.888-91 & 1.358+00 & \(2.478+\infty\) & \(4.48+00\) & \(8.218+00\) & 1.52E+01 & 252E+01 & 5.618+01 & 1.08+02 \\
\hline \multicolumn{16}{|l|}{Repporse to Questionntire} \\
\hline Do you gise mitmels? & 2581000 & 161 & 7278+00 & 6.738-03 & \(0.008+\infty\) & 0.002+00 & 4.5er-01 & 2598001 & 22\% \(23+0\) & 4.368+00 & 2.598 +00 & 1.08tol & \(2.248+01\) & 6.578+01 & 1.148+62 \\
\hline Do you trin? & 2232000 & 130 & \(6.608+\infty\) & 7.0\%8-03 & \(0.008+00\) & 0.00E +00 & 4.178-01 & 6.0618 .01 & 2.198+60 & 3.95E+00 & 6.758+00 & 1.13E+01 & 2.438+01 & 8.4TE+01 & 2.478+01 \\
\hline
\end{tabular}
Table 2-95. Intake of Toul Dairy (e/ky-day) - Wex Regioa
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Popplatica Grow & Nond & \[
\begin{gathered}
\mathrm{N} \\
\text { Uningld }
\end{gathered}
\] & Mena & SE & Po & Pl & Ps & 110 & PS & P9 & P3 & 18 & Nes & \(y\) & 1100 \\
\hline Total & 35711000 & 182 & 9.77E+00 & 2.48-93 & 0.00E+ +0 & 2028-01 & 9.4B-01 & 131E+0 & 2.708+00 & s.1cete & \(1.158+01\) & 2252+ 1 & 3308401 & \(6.368+01\) & 2307+02 \\
\hline \multicolumn{16}{|l|}{Ase} \\
\hline \(<01\) & 540000 & 32 & 7.56etol & 6358-02 & 248201 & 2.208+01 & 2.28+01 & 2828+01 & \(3208+01\) & 5.478+01 & \(1.138+42\) & 1368+02 & 1.408 +02 & 2328+92 & 2728+62 \\
\hline 01-02 & 1000009 & 99 & 3.52E+01 & \(1858-02\) & 6.03E+00 & 6.038 +60 & 1.05E+01 & 1.528+01 & 2.128+01 & \(3.08 \mathrm{C}+01\) & 1332401 & 3038+01 & 7.52B+01 & \(1.008+42\) & \(1.008+02\) \\
\hline 03-05 & 1795000 & 95 & \(2488+01\) & 1.038-02 & 2028-01 & 202E-01 & 4538+00 & 2.208+60 & \(1.718+01\) & \(2208+01\) & \(3015+01\) & 4218+01 & 5.188+01 & 6.468+01 & 6.468+01 \\
\hline 06.11 & 3612000 & 204 & \(1.738+01\) & 5598-03 & \(4.718-01\) & 6.5SE01 & 2.78+ +0 & 4.72E+00 & 9.008 +00 & 1.5SE+0i & \(2.388+01\) & 3302+01 & \(3.978+01\) & 4.658+01 & 3448tol \\
\hline 12-19 & 3755000 & 193 & 8: 8 TE \(+\infty\) & 3358-03 & 261E-01 & 43IB-01 & \(1.57 E+00\) & 220E+00 & \(3898+\infty\) & 7.332+0 & L.18E+41 & \(1.008+01\) & 2.258+01 & \(2.988+01\) & \(4.858+01\) \\
\hline 20-39 & 11413000 & 562 & 5.4TE+00 & 1.34E03 & 0.00E+00 & \(0.00 E+\infty\) & 9688-01 & 1.40E+ +0 & 2.29E+00 & 4328+00 &  & 1.0SE+01 & \(1.3085+01\) & \(2.308+01\) & 7518+61 \\
\hline 40-69 & 10418000 & 512 & \(4.978+\infty\) & 1.128-03 & \(0.008+00\) & 3.31-01 & 7.058-01 & 1.188+00 & \(2.12 \mathrm{E}+\infty\) & 3.002+ +0 & \(6.588+\infty\) & 9.338+00 & \(1.128+01\) & \(2.378+01\) & \(4108+01\) \\
\hline 20+ & 307200 & 141 & \(4.73 \mathrm{E}+\infty\) & 2008-03 & 4.998-01 & 4.99E-01 & 9.33-01 & 1338+60 & \(2.568+\infty\) & 3100 +00 & 5532+00 & 9.86E+00 & \(1.258+01\) & 1.458+01 & \(2.548+61\) \\
\hline \multicolumn{16}{|l|}{Serson} \\
\hline FAl & \(10 \times 81000\) & 359 & \(1.118+01\) & 5.688-03 & 0.002+00 & 7.60E-02 & 9.6800 & 1.12E+00 & 2998+00 & 4.728+0 & \(1.198+91\) & 238E+01 & 3.798+01 & 1.258+62 & 1.488+02 \\
\hline Spring & 8133000 & 685 & 9848+00 & 5349-03 & \(0.00 \mathrm{E}+00\) & 5.71E-01 & 1.24E+ +0 & 1.792+ +0 & \(2808+00\) & 5. 8 \% \(8+00\) & \(1.988+01\) & \(2.198+01\) & \(2.838+01\) & 5.408+01 & \(2.32 \mathrm{E}+02\) \\
\hline Sumaner & 7905000 & 24 & \(2.918+\infty\) & 3.435-03 & \(0.00 \mathrm{E}+00\) & 5.05E-01 & 1.13E+60 & 1.20E +00 & 2808+00 & 5.38+00 & \(1.108+01\) & 2208+01 & 2928+01 & \(4.658+01\) & \(5.748+01\) \\
\hline Wirder & 9191000 & 540 & 2.948+00 & 3812-03 & 1.05E-01 & 2.71E-01 & 6608-01 & \(1.278+\infty\) & 2.998+00 & 19SE+00 & \(9.968+00\) & \(22.268+01\) & \(3.188+01\) & 9.618+01 & \(1.288+02\) \\
\hline \multicolumn{16}{|l|}{Urbanizaion} \\
\hline Centrul City & 11912000 & 45 & 9.678+ +0 & 4.22E-03 & 1.618-01 & 387E01 & 1.058+00 & 1.518+00 & \(2.63 \mathrm{E}+\infty\) & 4938+00 & \(1.018+01\) & 2258+01 & 3.308+01 & 6.468+01 & 1.588+02 \\
\hline Normetropolitan & 6035000 & 379 & \(9.738+\infty\) & 6.598.03 & 0.008+60 & 383E-01 & 8878-01 & 1.708+60 & 3.038+60 & 5.208+60 & \(1.088+01\) & 1.96E+01 & \(2.648+01\) & \(1.018+92\) & 1.483+02 \\
\hline Surburben & 17764000 & 964 & 9.858 + +0 & 3.25E03 & 0.008+00 & 1.628-01 & 9.4B-91 & 1.65E+00 & 2.688+60 & 5.208+60 & \(1.198+01\) & 2328+01 & 3.418+01 & 3.738+01 & \(2.328+02\) \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Asim & 57700 & 32 & 487E + +0 & 9.118003 & 6.518-02 & 6.518-02 & 7.60E-02 & 2.028-01 & 1.6E8+00 & 202B+00 & 436E+60 & 1.108+01 & 2.248+01 & 4.108+01 & \(4.108+01\) \\
\hline Blect & 1709000 & * & \(6.72 \mathrm{E}+00\) & 7288003 & 0.008+00 & \(0.00 \mathrm{~B}+\infty\) & 271E-01 & \(3978-91\) & \(1.688+00\) & 3038+60 & \(8.958+60\) & \(1.738+01\) & 2378+01 & \(6.32 \mathrm{~B}+01\) & \(6.328+01\) \\
\hline Native American & 1129000 & 72 & \(6.168+00\) & 9.88E-03 & 1.40E.01 & 2.578-01 & S.52B-01 & 6.618-91 & \(1.79 \mathrm{E}+00\) & 293E+60 & 6568+60 & 1.33+01 & \(1.988+01\) & 7.118+01 & 7.11E+01 \\
\hline OthenNA & 1192000 & 61 & \(1.238+01\) & 1.18E-02 & \(0.008+\infty\) & \(1.13 E+\infty\) & \(1.278+00\) & 1.708+ \({ }^{\text {c }}\) & \(2.588+\infty\) & 4.608+60 & 2003841 & 2.35E+01 & 4.308+01 & 5.748+01 & \(5.748+01\) \\
\hline White & 3119000 & 1571 & \(1.018+01\) & 2.678-03 & \(0.002+\infty\) & 4998.01 & \(1.068+60\) & \(1.618+\infty\) & \(2.908+00\) & 5.478+ +0 & 1.158 P +1 & 2308+01 & 3.318+01 & 6.468+01 & \(2.3218+02\) \\
\hline \multicolumn{16}{|l|}{Response to Questionnuire} \\
\hline Do your rine mimelt? & 2574000 & 152 & \(1.018+01\) & 1.108-02 & \(4318-01\) & 6.488-01 & 1.378+00 & 1.578+60 & 3.058+60 & 5.978+00 & 9838+60 & 1818+01 & 3.628+01 & 3.738+01 & 2.328+62 \\
\hline Doyou firu? & 1565000 & 90 & 1.178+01 & 1.138-02 & 4.768-01 & 6.37B-01 & 1.018+60 & \(1328+6\) & 4.188+60 & 7.77840 & \(1.538+01\) & 2768+01 & 3.088+01 & 5.738+01 & 1.298+02 \\
\hline
\end{tabular}

Table 2-96. Intake of Total Beef (g/kg-day)

Table 2-97. Ioake of Toal Game (elkz-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Tepperition Croce? & \[
\begin{gathered}
\mathrm{N} \\
\mathrm{w} 4
\end{gathered}
\] & \[
\underset{\text { Notat }}{N}
\] & Mas & 㐌 & N & 11 & Ps & P10 & 125 & PO & PTS & \(1 \times\) & Ps & m & P100 \\
\hline Tom & 1251000 & 77 & 738801 & 28 cosen & 0.002+ +0 & \(0.008+\infty\) & 1.91E-01 & 156801 & 276801 & 5.068-91 & 188081 & 1.548+60 & 2068 +80 & 3.788+00 & 278401 \\
\hline \multicolumn{16}{|l|}{Ase} \\
\hline \(<11\) & 28.000 & 15 & \(0.0089+\infty\) & \(0.009+00\) & 0.008+00 & 0.00E+60 & \(0.008+00\) & \(0.00 \mathrm{E}+\infty\) & \(0.00 \mathrm{~g}+00\) & -008tem & \(0.008+\infty\) & 2.008 + + & 0.008 +50 & 0.008 400 & 0.60] +100 \\
\hline 01-42 & 375100 & 25 & \(1.75 \mathrm{E}+00\) & 356003 & 130801 & 130EP01 & 3.518-01 & 44E01 & 6.758 .01 & 1.008+ 60 & 1.508 +00 & 3.788+00 & 3.73e+m & 1.138+01 & 1493+01 \\
\hline 03.85 & \(4 \times 1009\) & 31 & \(1288+\infty\) & 4.748-93 & 3.048-01 & 3.48801 & 3.738-01 & \(3.778-01\) & 5S88-01 & \(1.198+00\) & \(1.509+\infty\) & 3.08\% + + & 3.958+09 & 2778+01 & 2978401 \\
\hline 0 -11 & 1345000 & 0 & \(7.478-01\) & s.19804 & 3.868-02 & 4.728-92 & 1.208-01 & 2028-01 & 3.558-01 & Sm8-01 & 2928-91 & 1.72+ + ¢ & 1958+ +0 & 2898+60 & 2.50]+00 \\
\hline 12-19 & 1600000 & \(\times\) & 750801 & coseda & 9.14E-02 & 1.008-81 & \(1 \times 8 \mathrm{Ol}\) & 210801 & 295801 & 5.558-91 & 9.57E.01 & 1.578+00 & \(1.988+\infty\) & 3.138+00 & 3.13840 \\
\hline 20-39 & 3008000 & 217 & \(7.268-01\) & 3.478-04 & 3.578-08 & 1.09801 & 1.52E-01 & 1.968-01 & 3.108-01 & 5308-41 & 8ECE-01 & 1.578+00 & 1221+00 & 3588+00 & 568E+00 \\
\hline 4069 & 3780000 & 232 & 5.75\%-01 & 279E04 & \(0.008+\infty 0\) & 5.198-02 & \(1.118-01\) & 1.418-01 & 2.208-01 & 419E-01 & 7358-01 & 1.168+00 & 1.5E+ 5 & 3.198200 & 3.128+0 \\
\hline 70+ & 1085000 & 57 & \(6.11 \mathrm{E}-01\) & 5.16E-94 & 3,4808 & 3.4E-02 & 7.27R-02 & 1.28E01 & 2.338 .01 & \(5.008-11\) & 7.4681 & 1.228+ 0 & \(189+\infty\) & 3312+00 & \(3348+80\) \\
\hline \multicolumn{16}{|l|}{Sencors} \\
\hline Fill & 3285000 & 120 & 7.908-01 & 4.128-04 & \(0.008+\infty\) & \(0.00 \mathrm{E}+00\) & \(1.178-01\) & 1.58P-01 & 2728001 & 539801 & 1.02E+00 & 1.728+ +0 & 2308+00 & 3.198+e0 & 3.958+00 \\
\hline Spring & 3025000 & 290 & \(6.278-01\) & 3.11809 & \(0.008+00\) & 0.00E+00 & 1.008-91 & 1308-01 & 2578-01 & 4.568-11 & \(8.52 \mathrm{E}-01\) & \(1.34 B+00\) & \(1488+00\) & \(2.608+00\) & 5.70E \(+\infty 0\) \\
\hline samber & 2857000 & 93 & 5.998-01 & 3.17804 & \(0.00 \mathrm{~B}+60\) & 0.00E+00 & 7.27e-02 & 1.308 .01 & \(2378-01\) & 4.00801 & \(8.168-01\) & 1.068 +00 & \(1.12 E+00\) & 2948+00 & 3.3E \(+\infty 0\) \\
\hline Wriver & 3691000 & 254 & 88IE-01 & 8.30804 & 0.00E+00 & \(0.00 \mathrm{E}+\infty\) & \(1.248-01\) & 1.93E-01 & 3,38801 & 5378-01 & 9.442-01 & \(1.638+00\) & \(2.158+00\) & 4.598+ \({ }^{\text {co }}\) & \(2178+01\) \\
\hline \multicolumn{16}{|l|}{Urberization} \\
\hline Central City & 3367000 & 145 & 7.078-01 & 2.908-94 & 0.008+60 & \(0.008+\infty\) & \(0.008+00\) & 1.288-01 & \(2.948-01\) & 5838-01 & 9.268 .01 & 1.58E+00 & 1.63E+00 & 2608+00 & \(2.658+\infty\) \\
\hline Nonumetropotitan & 4711600 & 347 & 7818-01 & 6.748 .04 & \(0.008+40\) & \(0.008+\infty\) & \(9.468-02\) & 1.518-01 & 2.658 .01 & 4.618-41 & \(8.508-01\) & \(1.508+00\) & 2308+00 & \(4.998+00\) & \(2.278+01\) \\
\hline Euruaben & 403000 & 205 & 7.108-01 & 3.15E-04 & \(0.00 \mathrm{E}+\infty\) & 6.908-02 & 1.278-01 & 1.60E-01 & \(2768-01\) & 4.908-01 & \(8.338-01\) & 1.578+00 & \(2.12 \mathrm{E}+\infty\) & \(3.138+00\) & 5.208+60 \\
\hline \multicolumn{16}{|l|}{Reos} \\
\hline Asina & 192000 & 12 & 5.603-01 & 1.98-03 & \(0.008+\infty 0\) & 0.00E + +0 & \(0.008+\infty\) & 2.058 .01 & 2.78 BOL & 3.508-01 & 5.02E-01 & 1.728+00 & 2.608+00 & 2.608+00 & 2008+60 \\
\hline Blect & 2594000 & 154 & \(6.978-01\) & 3.768.04 & \(0.00 \mathrm{E}+00\) & -00E + +0 & 6.408-0.2 & 1.5\%8-01 & \(2.78-01\) & 5.058-91 & 9.218-01 & \(1.578+\infty\) & \(1.1038+00\) & \(2698+00\) & 5.708+60 \\
\hline OthenNA & 88000 & 24 & 6.75801 & 4.20804 & 1.340,01 & 1.34801 & 2.68-01 & 3.308-91 & 5.062-01 & 6.75E-91 & 2.16E-01 & \(2678-01\) & 880801 & \(2.48+00\) & 2me \(+\infty\) \\
\hline Win & 9111600 & 567 & \(7538-01\) & 3.718-04 & 0.00R+00 & \(0.00 \mathrm{E}+\infty 0\) & 1.018-91 & 1.008-01 & \(2.658-01\) & 4.908-81 & 2028-01 & \(1.578+\infty\) & 2.198+00 & 3.958+00 & 2.278+01 \\
\hline \multicolumn{16}{|l|}{Repions} \\
\hline Midruat & 314000 & 213 & \(7.228-01\) & 4.088-04 & 0.008+ 00 & 0.00E + +0 & 7.278-02 & 1.608.91 & 2818001 & 5.028-01 & 2928-01 & 1.518+00 & 2208+00 & 3.958+00 & 4.598 \(+\infty 0\) \\
\hline Northent & 2505000 & 131 & 2.788-01 & 1.188 .08 & 6.90E-02 & 1.01E-01 & 1.268 .41 & 1.778-01 & 2088.01 & \(4.768-11\) & 9.248.01 & 1. \(638+\infty\) & 2508+00 & 5888+00 & 2.278+01 \\
\hline South & 5480000 & 33 & 7.068-01 & \(2838-4\) & \(0.00 \mathrm{~B}+00\) & \(0.008+60\) & 5.198-02 & 1.4EE-01 & 2988-01 & 5.05E-91 & cemed & \(1.528+00\) & 1.958 + +0 & 3.19\%+00 & 5.708+00 \\
\hline Went & 1780000 & 0 & 6.578-01 & 3838-94 & 3.448-02 & 7098-02 & 1.39801 & 1.74E-01 & 2318-01 & \(56018-1\) & 2078-01 & 1.528+00 & \(1.788+00\) & 2.128+00 & 2.3\% \(2 \times 0\) \\
\hline Reeponse to Quextio Do you hant? & 3702000 & 230 & 9.05\% 101 & 4.168.04 & 0.00E+00 & 0.00E +00 & 5.06-02 & 188E-01 & 3.28-01 & \(6.408 / 81\) & 1.148+00 & 2008+00 & 2.88+00 & 3.198+00 & 4S5E+00 \\
\hline
\end{tabular}
Table 2－98．Intake of Total Pork（g／kg－day）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Group & \[
\begin{gathered}
\mathrm{N} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} \\
\text { wnwadd }
\end{gathered}
\] & Man & SE & po & P1 & Ps & P10 & P25 & P50 & P75 & P90 & P93 & P99 & P100 \\
\hline Total & 133902000 & 706 & \(1.258+\infty\) & 1．SEPO & \(0.004+\infty\) & 3．60E－02 & 1．10E－01 & 1．82E．01 & 3．698－01 & 7．87E．01 & 1538＋00 & 2．678＋00 & 3．758＋00 & 8．23E＋00 & 3．788＋01 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline ＜01 & 2090000 & 117 & \(4975+00\) & 3．88－03 & \(1.880^{01}\) & 1.088 .01 & \(4.11 \mathrm{E}-01\) & 6．94E－01 & \(1.73{ }^{\text {cos }}\) & 3．398＋00 & 6．998＋00 & \(1.058+01\) & \(1.188+01\) & 2238＋01 & 3．788＋01 \\
\hline \(01-2\) & 202000 & 232 & 287E＋00 & 1.368 .03 & 1.01201 & 157501 & \(3.21 \mathrm{E}-1\) & 4．39E－01 & \(1.018+00\) & 2138＋00 & \(3.508+\infty\) & 6．698＋00 & \(8.298+00\) & 1．288＋01 & \(1.588+01\) \\
\hline 0303 & 5936000 & 34 & \(2472+00\) & 1.06803 & 6s8ede & 1.238 .01 & 27 E．01 & 3．94E01 &  & \(1.712+00\) & \(3.008+00\) & \(5.38 \mathrm{E}+00\) & \(7.508+\infty\) & \(1.208+01\) & \(1.18+01\) \\
\hline O6－11 & 13155000 & 741 & \(1.748+00\) & 436 EPa & 294 eO & 6.21502 & 1．72．01 & 2．82E－01 & 5．96E．01 & \(1.33 \mathrm{~B}+00\) & \(2.208+\infty 0\) & 3．738＋00 & \(4.758+00\) & \(7.008+00\) & \(1378+01\) \\
\hline 12.19 & 16074000 & 81 & 1．112＋00 & 3．48809 & \(0.008+\infty\) & \(278-8\) & 120601 & \(1.88 \mathrm{E}-01\) & 3.768 .01 & 8.008 .01 & \(1.418+\infty\) & \(2338+00\) & \(2.985+00\) & 5．368＋00 & \(3.518+01\) \\
\hline \(20-39\) & 42143000 & 2175 & 921801 & 1．63P0 & \(0.008+\infty\) & 3．108－92 & 9．41E－02 & 1．46E－01 & 3．198．01 & 6242001 & \(1.178+\infty\) & \(1928+00\) & \(2608+\infty\) & \(4.838+\infty\) & \(1.089+01\) \\
\hline 4069 & 40115000 & 2217 & \(1.018+0\) & 218800 & ． \(.00 \mathrm{O}+\infty 0\) & 3．098002 & 1．00E．01 & 1．67E－01 & 3．32E－01 & \(7018-01\) & 1．273＋+10 & \(2008+00\) & \(3.078+\infty\) & 5．638＋00 & 3．088＋01 \\
\hline 20＋ & 1036000 & 523 & 953E01 & 278 Bat & 0．008＋+0 & 4.285 .62 & 1．09E－01 & 1．84E－01 & 3．21E．01 & 730E－01 & \(1.308+\infty\) & \(1588+00\) & 2525＋00 & \(4368+00\) & 9，988＋00 \\
\hline \multicolumn{16}{|l|}{Sencous} \\
\hline Fall & 35251000 & 1167 & \(1.33+20\) & 3．13004 & \(0.0008+\infty\) & 231802 & 9385－02 & 1．46E．01 & 3．23E－01 & 7.198 .01 & 1．128＋00 & 2618＋00 & 3．78B＋00 & 9578＋00 & \(2238+01\) \\
\hline Spring & 31965000 & 2806 & \(138 \mathrm{E}+00\) & 3．2E－94 & \(0.008+00\) & 3898－02 & 1.19 E 01 & 1．898．01 & 3．698．01 & 790801 & \(1.568+\infty\) & \(2568+00\) & \(4.1818+00\) & \(8.288+00\) & 3．788＋01 \\
\hline samma & 30725000 & 97 & \(1.288+00\) & 2 CAEOH & c． 0 e \(+\infty\) & 4835－02 & 121201 & 1．93E－01 & 4.13 E .01 & \(8378-01\) & \(1.568+\infty\) & \(2.471+00\) & 3．395＋00 & E． \(0663+00\) & \(1.588+01\) \\
\hline Winter & 35961000 & 219 & \(1.21 \mathrm{E}+00\) & 2858.4 & 2003＋60 & 4．108．02 & 1．22E－01 & 1．868－01 & 3．72E－01 & 7973－01 & \(1.571+\infty\) & \(2.683+00\) & \(3.638+00\) & \(6.508+00\) & \(1.685+01\) \\
\hline \multicolumn{16}{|l|}{Untenisation} \\
\hline Cental City & 38139000 & 1524 & 1．468＋6 & 3598．e4 & 2008＋60 & 3.338 .62 & \(1.085-01\) & 1．76E－01 & 3．82E－01 & 8538.01 & 1．071＋＋0 & \(3.108+00\) & \(4.008+00\) & \(1.08 \mathrm{P}+01\) & 3．788 +01 \\
\hline Nompetiopoliten & 33923000 & 2302 & \(1.21 \mathrm{~B}+00\) & 2278 en & \(0.008+\infty\) & 4985 & 1328.01 & 210E．01 & 3．89E．01 & \(82085-01\) &  & \(20081+00\) & 3．331＋00 & 6．763＋00 & 1．435＋01 \\
\hline Suturim & 6180000 & 3300 & \(1.148+\infty\) & 1878．4 & c．008 \(+\infty\) & 3306－62 & 1．04E－01 & 1．708．01 & 3．53E－01 & 7．268．01 & 1． 0 OP \(+\infty\) & \(2485+00\) & 3．338＋00 & \(6.538+00\) & 3573＋01 \\
\hline \multicolumn{16}{|l|}{Reot} \\
\hline Acian & 183000 & 87 & 197E＋00 & 278 ma & 6．41802 & 6．118－0 & 1.248 .91 & 2108.01 & 5．23E－01 & \(1.188+00\) & \(2238+00\) & 3918＋00 & 4．088＋00 & 1.681 & 320841 \\
\hline Bink & 17305000 & 80 & 2018 +0 & 59\％2 \({ }^{\text {ar }}\) & \(0.008+6\) & 5.17808 & 1．518－01 & 2.00801 & 5.718 .9 & \(1.218+00\) & \(2398+00\) & \(4488+00\) & \(7.008+60\) & \(1.218+01\) & \(2188+01\) \\
\hline Native Ammican & 1195000 & 7 & \(158 ⿴ ⿱ 冂 一 ⿱ 一 土\) & 139800 & 137B68 & 137808 & 178－01 & 2．208－01 & 6.118 .01 & 1．0083＋00 & 2308＋00 & \(3288+00\) & \(4.008+00\) & 7．998＋00 & 7．9\％8 +0 \\
\hline Obenin & 3693000 & 17 & 1603＋60 & 129803 & \(22 \times 868\) & somen & 188.01 & 200E－01 & S．61E．01 & 1．128＋00 & 1．738＋00 & 3198900 & \(4 \mathrm{mb}+00\) & \(2238+01\) & \(2258+01\) \\
\hline Whto & 109061000 & 596 & 1．118＋0 & 1338．4 & \(0.008+6\) & 33 cen & 1．048－91 & 1．78－01 & 3．928．91 & 7.198 .91 & \(1.378+60\) & \(2381+00\) & \(3.225+00\) & 4．48400 & 3．730＋1 \\
\hline \multicolumn{16}{|l|}{Resions} \\
\hline Noduat & 3346000 & 1950 & 12981＋0 & 3．6894 & \(0.0081+0\) & 2348．02 & 1.78 P －1 & 19TE01 & 3．728．01 & 7.908 .01 & \(1.548+\infty\) & \(2788+00\) & \(3 \mathrm{Sos}+60\) & \(2828+00\) & 3.78810 \\
\hline Norticent & 28585000 & 1450 & \(12.18+60\) & 3，4804 & \(0.008+6\) & 3008.6 & 1．09E－01 & 1．671－01 & 3.4801 & 7368.01 & \(1.528+00\) & \(2078+00\) & \(3008+60\) & 7．408＋00 & \(3578+1\) \\
\hline south & 47887000 & 2557 & \(1388+6\) & 22084 & c． \(0.08+\infty\) & 4．7840 & 1296－01 & 2.148 .01 & 4．298－01 & 9.018 .01 & \(1 \times 18+\infty\) & 209\％＋00 & \(4.193+6\) & \(8.008+\infty\) & \(1.508+01\) \\
\hline Wat & 2790000 & 129 & \(1038+6\) & 3118004 & 1138．20 & cestin & 8．74B－02 & 1318－01 & 2858.91 & 6208.81 & \(1218+90\) & \(2288+00\) & \(2538+60\) & 72885＋00 & \(2.138+11\) \\
\hline \multicolumn{16}{|l|}{Resporne to Pumbionsise} \\
\hline Doyou mine mimid & 72000 & 469 & \(1.108+60\) & 3718.4 & \(0008+60\) & 2738－6 & 1.208 .01 & 2088.01 & 3．6801 & 7838－01 & 1．468＋60 & \(2518+00\) & 3．198＋00 & \(4.318+\infty\) & \\
\hline Doyou tmar & 20000 & 31 & 1．138＋00 & 437804 & \(0.008+60\) & 45880 & 1．08801 & 2088.01 & 3.99801 & 8.308 .01 & 1．4．68＋80 & \(2578+00\) & \(3278+00\) & \(4838+0\) & S． \(018+\infty\) \\
\hline
\end{tabular}

> DRAFT DO NOT QUOTE OR －w：CITE

Table 2-99. Irouke of Toul Poukry (y/kg-day)



Table 2-100. Intake of Total Egge (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Populition Group & \[
\begin{gathered}
\mathrm{N} \\
\mathbf{w}_{3} 1 \mathrm{~d}
\end{gathered}
\] & \[
\frac{\mathrm{N}}{\text { ungrid }}
\] & Mena & SE & PO & 91 & PS & \(P 10\) & P25 & PSO & P75 & 990 & P95 & P90 & P100 \\
\hline Tasl & 163502000 & 8660 & 6.83E-01 & 6.83E-05 & \(0.00 \mathrm{E}+00\) & 3.07E-02 & 7.93E-02 & \(1.24 \mathrm{E}-01\) & 2.43E-01 & 4.45E-01 & 8.12E-01 & 1.4SE+00 & \(201 \mathrm{E}+00\) & \(397 \mathrm{~B}+00\) & 188E+01 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 2537000 & 139 & \(3.50 \mathrm{E}+00\) & 2.23E-03 & 1.42E-01 & \(1.42 \mathrm{E}-01\) & 3.758-01 & 6.41E-01 & 1.278+00 & \(2.62 \mathrm{E}+00\) & 4.208+00 & \(6.97 \mathrm{E}+00\) & \(9.62 \mathrm{E}+00\) & \(1888 \mathrm{~B}+01\) & \(1.888+01\) \\
\hline 01-02 & 5381000 & 301 & \(1.88 \mathrm{E}+00\) & 5.598-04 & 7.778-02 & \(1.69 \mathrm{E}-01\) & 3.74E-01 & 5.12E-01 & 9.91E-01 & \(1.65 \mathrm{E}+00\) & \(2.40 \mathrm{E}+00\) & \(3.56 \mathrm{E}+00\) & \(4.83 \mathrm{~B}+00\) & \(6.21 \mathrm{E}+00\) & 9.16E+00 \\
\hline 03-05 & 7629000 & 434 & \(1.41 \mathrm{E}+00\) & 3.52E-04 & \(0.00 \mathrm{E}+00\) & 1.908-01 & 3.13E-01 & 3.908-01 & \(6.86 \mathrm{E}-01\) & \(1.19 \mathrm{E}+00\) & \(188 \mathrm{~B}+00\) & \(2.78 \mathrm{~B}+00\) & \(3.46 \mathrm{E}+00\) & \(4.71 \mathrm{~B}+\infty 0\) & 5958 +00 \\
\hline 06-11 & 15507000 & 86 & 9.11E-01 & 1.73E-04 & \(0.00 \mathrm{E}+00\) & 7.42E-02 & 1.42E-01 & 2.30E-01 & 4.12E-01 & 7.45E-01 & \(1.21 \mathrm{E}+00\) & \(1.76 \mathrm{~B}+00\) & \(2.208+00\) & \(3.25 \mathrm{~B}+00\) & \(6.09 \mathrm{~B}+00\) \\
\hline 12-19 & 18624000 & 90 & \(5.36 \mathrm{E}-01\) & \(9.98 \mathrm{E}-05\) & \(0.00 \mathrm{E}+00\) & \(0.00 \mathrm{E}+00\) & 7.32E-02 & \(1.17 \mathrm{E}-01\) & \(2.51 \mathrm{E}-01\) & 4.31E-01 & \(7.08 \mathrm{E}-01\) & \(1.04 \mathrm{E}+00\) & \(1.39 \mathrm{E}+00\) & \(2.08 \mathrm{E}+00\) & \(3.94 \mathrm{E}+00\) \\
\hline 20-39 & 52017000 & 2631 & \(4.78 \mathrm{E}-01\) & \(6.71 \mathrm{E}-05\) & \(0.00 \mathrm{E}+00\) & \(3.15 \mathrm{E}-02\) & 6.608-02 & \(1.08 \mathrm{E}-01\) & 2.06E-01 & \(3.60 \mathrm{E}-01\) & 6.16E-01 & 9.13E-01 & \(1.25 \mathrm{~B}+00\) & \(2.14 \mathrm{~B}+\infty 0\) & \(9.18 \mathrm{E}+00\) \\
\hline 40-69 & 48381000 & 2619 & \(5.23 \mathrm{E}-01\) & 7.66E-05 & \(0.00 \mathrm{E}+00\) & \(2.50 \mathrm{E}-02\) & 6.86E-02 & 1.05E-01 & 2.108-01 & 3.708-01 & \(6.46 \mathrm{E}-01\) & 1.108+00 & \(1.46 \mathrm{~B}+00\) & \(2.88 \mathrm{~B}+00\) & \(5.71 \mathrm{E}+00\) \\
\hline \(70+\) & 13426000 & 679 & 5.71E-01 & 1.32E-04 & \(0.00 \mathrm{E}+00\) & 5808-02 & \(103 \mathrm{E}-01\) & 1.52E-01 & 2.508-01 & 4.17E-01 & 7.518-01 & \(1.15 \mathrm{E}+00\) & \(1.43 \mathrm{~B}+00\) & \(2.218+00\) & \(6.80 \mathrm{~B}+60\) \\
\hline \multicolumn{16}{|l|}{Seasods} \\
\hline Fall & 4290000 & 1407 & \(7.00 \mathrm{E}-01\) & \(1.59 \mathrm{E}-04\) & 0.00E+00 & 3.858-02 & 8.368-02 & 1.36E-01 & 2.50E-01 & 4.408-01 & 8.138-01 & \(1.46 \mathrm{E}+00\) & 204E +00 & \(3.79 \mathrm{~B}+00\) & 188E+01 \\
\hline Sprixp & 38908000 & 3412 & \(6.91 \mathrm{E}-01\) & 1.398-04 & \(0.00 \mathrm{E}+00\) & \(2.66 \mathrm{E}-02\) & 8.64E-02 & 1.33E-01 & 2. \(55 \mathrm{E}-01\) & 4.538-01 & \(8.018-01\) & \(1.10 \mathrm{E}+00\) & \(2018+00\) & \(4.13 \mathrm{~B}+00\) & \(1.74 \mathrm{~B}+01\) \\
\hline Summer & 39445000 & 1243 & \(6.84 \mathrm{E}-01\) & 1.298-04 & 0.00E +00 & 1.51E-02 & \(7.38 \mathrm{E}-02\) & 1.168-01 & 2.33E-01 & 4.48E-01 & 8.218-01 & \(1.51 \mathrm{E}+00\) & 2.01E +00 & \(4.16 \mathrm{~B}+00\) & \(9.62 \mathrm{~B}+\infty 0\) \\
\hline Wirter & 42859000 & 2988 & \(6.59 \mathrm{E}-01\) & 1.158-04 & \(0.00 \mathrm{E}+00\) & 3.508-02 & 7.73E-02 & \(1.23 \mathrm{E}-01\) & 2.35E-01 & \(4.35 \mathrm{E}-01\) & 8.06E-01 & \(1.39 \mathrm{E}+00\) & \(1.91 \mathrm{~B}+00\) & \(3.85 \mathrm{~B}+\infty 0\) & \(1.03 \mathrm{~B}+01\) \\
\hline \multicolumn{16}{|l|}{Urbaizatioa} \\
\hline Ceatral Cay & 48746000 & 1925 & 782E-01 & 1.66E-04 & 0.00E+00 & 3.29E-02 & 8.13E-02 & 1.208-01 & 2.478-01 & 4.72E-01 & 8.66E-01 & \(1.66 \mathrm{E}+00\) & 2.528+00 & \(5.04 \mathrm{E}+00\) & 188E+01 \\
\hline Noametropolian & 39556000 & 2659 & 6.89E-01 & 1.278-04 & \(0.00 \mathrm{E}+00\) & \(2.66 \mathrm{E}-02\) & 8.698-02 & 1.32E-01 & 2.608-01 & 4.66E-01 & 8.268-01 & \(1.45 \mathrm{C}+00\) & \(1.92 \mathrm{E}+00\) & \(387 \mathrm{~B}+00\) & \(1.74 \mathrm{~B}+01\) \\
\hline Surburbea & 75140000 & 4074 & \(6.17 \mathrm{~B}-01\) & 7.63E-05 & \(0.00 \mathrm{E}+00\) & \(3.16 \mathrm{~B}-02\) & \(760 \mathrm{~B}-02\) & 1.25E-01 & \(2.36 \mathrm{~B}-01\) & 4.188-01 & 7.608-01 & \(1.32 \mathrm{E}+00\) & \(182 \mathrm{E}+00\) & \(3.36 \mathrm{~B}+00\) & \(1.35 \mathrm{~B}+01\) \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Asian & 2152000 & 103 & \(1.34 \mathrm{E}+00\) & 1.65E-03 & 3.178-02 & 3.178-02 & 163E-01 & 2.35E-01 & 4.118-01 & \(6.94 \mathrm{E}-01\) & \(1.32 \mathrm{E}+00\) & \(2.75 \mathrm{E}+00\) & 4.08B +00 & \(186 \mathrm{E}+01\) & \(186 \mathrm{~B}+01\) \\
\hline Black & 20304000 & 1045 & 7.62B-01 & 2.19E-04 & 0.00E+00 & \(0.00 \mathrm{E}+00\) & 6.198-02 & 1.06E-01 & 2.38B-01 & 4.71E-01 & 8.848-01 & \(1.62 \mathrm{E}+00\) & 2.53E+00 & \(4.78 \mathrm{~B}+00\) & \(1.03 \mathrm{~B}+01\) \\
\hline Native American & 1499000 & 90 & 9.21E-01 & \(1.07 \mathrm{~B}-03\) & 4.17E-02 & 4.178-02 & 1.108-01 & 1.93E-01 & 3.72E-01 & 6.01E-01 & 8.478-01 & 1.59E+00 & \(328 \mathrm{E}+00\) & \(7.42 \mathrm{E}+00\) & \(7.12 \mathrm{E}+00\) \\
\hline Ot beriNA & 4395000 & 220 & 8.43E-01 & 8.77B-04 & \(0.00 \mathrm{E}+00\) & \(4.44 \mathrm{E}-02\) & 7848-02 & \(1.08 \mathrm{E}-01\) & \(2.24 \mathrm{E}-01\) & 4.33E-01 & \(8.09 \mathrm{E}-01\) & \(1.52 \mathrm{~B}+00\) & \(2.50 \mathrm{E}+00\) & \(4.95 \mathrm{E}+00\) & 188B+01 \\
\hline Whe & 135142000 & 7200 & \(6.53 \mathrm{~B}-01\) & \(6.35 \mathrm{E}-05\) & \(0.00 \mathrm{E}+00\) & 3.23E-02 & \(8.20 \mathrm{B-02}\) & 1.23E-01 & 2.12B-01 & \(4.36 \mathrm{E}-01\) & 7.93E-01 & \(1.40 \mathrm{~B}+00\) & 1.91E +00 & \(3.63 \mathrm{~B}+00\) & \(1.74 \mathrm{~B}+01\) \\
\hline \multicolumn{16}{|l|}{Regioas} \\
\hline Midwea & 39288000 & 2232 & 7.178-01 & 1.55E-04 & \(0.00 \mathrm{~B}+00\) & 3.15E-02 & 7.488-02 & 1.19E-01 & 2.36E-01 & 4.39E-01 & 8.348-01 & \(1.59 \mathrm{E}+00\) & \(2.14 \mathrm{E}+00\) & \(3.97 \mathrm{E}+00\) & 186B+01 \\
\hline Northesst & 36704000 & 1802 & 6.568-01 & 1.538-04 & \(0.00 \mathrm{E}+00\) & 3.168-02 & 7.708-02 & 1.158-01 & 2.398-01 & 4.16E-01 & 7818-01 & \(1.40 \mathrm{E}+00\) & \(2.018+00\) & \(3.87 \mathrm{~B}+00\) & \(188 \mathrm{BE}+01\) \\
\hline South & 56284000 & 3007 & \(6.63 \mathrm{~B}-01\) & 1.048-04 & \(0.00 \mathrm{E}+00\) & \(2.27 \mathrm{E}-02\) & \(7.958-02\) & 1.25E-01 & 2.408-01 & 4.52E-01 & 7938-01 & \(1.34 \mathrm{E}+00\) & \(1298 \mathrm{~B}+00\) & \(3.95 \mathrm{~B}+00\) & \(1.74 \mathrm{~B}+01\) \\
\hline West & 31166000 & 1617 & 7.11E-01 & 1.50E-04 & \(0.00 \mathrm{E}+00\) & 4.00E-02 & 9.08E-02 & 1.48E-01 & 2.65B-01 & 483E-01 & 8.51E-01 & \(1.50 \mathrm{E}+00\) & \(2.00 \mathrm{E}+00\) & \(4.38 \mathrm{E}+00\) & \(1.35 \mathrm{~B}+01\) \\
\hline \multicolumn{16}{|l|}{Response to Quexionaire} \\
\hline Do you raix a dimals? & 9260000 & 586 & 6.87E-01 & 2.58B-04 & \(0.00 \mathrm{E}+00\) & 4.158-02 & 7.198-02 & 1.48E-01 & 2.72B-01 & 4.848-01 & \(8.18 \mathrm{~B}-01\) & \(1.50 \mathrm{E}+00\) & \(1.93 \mathrm{BE}+00\) & \(3.04 \mathrm{~B}+00\) & \(1.35 \mathrm{~B}+01\) \\
\hline Do gou frm? & 6403000 & 380 & \(7.12 \mathrm{E}-01\) & 2.82B-04 & \(0.00 \mathrm{E}+00\) & 2.07E-02 & 7.718-02 & 1.47E-01 & 2.75B-01 & 5.408-01 & 8.428-01 & \(1.60 \mathrm{~B}+00\) & \(2.02 \mathrm{E}+00\) & \(280 \mathrm{~B}+00\) & \(9.16 \mathrm{~B}+00\) \\
\hline
\end{tabular}

\subsection*{2.4.1.3. Relevant Intake Studies}
U.S. EPA - Office of Radiation Programs - The U.S. EPA Office of Radiation Programs (ORP) has also used the USDA 1977-1978 NFCS to estimate daily food intake. ORP uses food consumption data to assess human intake of radionuclides in foods (U.S. EPA, 1984d; 1984e). The 1977-1978 NFCS data have been reorganized by ORP, and food items have been classified according to the characteristics of radionuclide transport. The mean dietary intake of food sub classes (milk, other dairy products, eggs, beef, pork, poultry, and other meat) per capita grouped by age for the U.S. population are presented in Table 2-101. The mean daily intake rates of meat, poultry, and dairy products for the U.S. population grouped by regions are presented in Table 2-102. Because this study was based on the USDA NFCS, the limitations and advantages associated with the USDA-NFCS data also apply to these data set.
U.S. EPA - Office of Science and Technology - The U.S. EPA Office of Science and Technology (OST) within the Office of Water (formerly the Office of Water Regulations and Standards) used data from the FDA revision of the Total Diet Study Food Lists and Diets (Pennington, 1983) to calculate food intake rates. OST uses these consumption data in its risk assessment model for land application of municipal sludge. The FDA data used are based on the combined results of the USDA 1977-1978 NFCS and the second National Health and Nutrition Examination Survey (NHANES II), 1976-1980 (U.S. EPA, 1989). Because food items are listed as prepared complex foods in the FDA Total Diet Study, each item was broken down into its component parts so that the amount of raw commodities consumed could be determined. Table 2-103 presents intake rates for meat, poultry, and dairy products for various age groups. Estimated lifetime ingestion rates derived by U.S. EPA (1989) are also presented in Table 2103. Note that these are per capita intake rates tabulated as grams dry weight/day. Therefore, these rates differ from those in the previous tables because Pao et al. (1982) and U.S. EPA (1984d, 1984e) report intake rates on an as consumed basis.

The EPA-OST analysis provides intake rates for additional food categories and estimates of lifetime average daily intake on a per capita basis. In contrast to the other analyses of USDA NFCS data, this study reports the data in terms of dry weight intake rates. Thus, conversion is not required when contaminants are provided on a dry weight basis.

\title{
DRAFT DO NOT QUOTE OR CITE
}

Table 2-101. Mean and Standard Error for the Dietary Intake of Food Sub Classes per Capita by Age (grams "as consumed")
\begin{tabular}{lccccccc}
\hline & \begin{tabular}{c} 
Fresh \\
Cows' \\
Milk
\end{tabular} & \begin{tabular}{c} 
Other \\
Dairy \\
Products
\end{tabular} & Eggs & Beef & Pork & Poultry & \begin{tabular}{c} 
Other \\
Meat
\end{tabular} \\
Age & \(253.5 \pm 4.9\) & \(55.1 \pm 1.2\) & \(26.9 \pm 0.5\) & \(87.6 \pm 1.1\) & \(28.2 \pm 0.6\) & \(31.3 \pm 0.8\) & \(25.1 \pm 0.4\) \\
\hline All Ages & \(272.0 \pm 31.9\) & \(296.7 \pm 7.6\) & \(4.9 \pm 3.2\) & \(18.4 \pm 7.4\) & \(5.8 \pm 3.6\) & \(18.4 \pm 4.9\) & \(2.6 \pm 2.8\) \\
\(<1\) & \(337.3 \pm 15.6\) & \(41.0 \pm 3.7\) & \(19.8 \pm 1.6\) & \(42.2 \pm 3.7\) & \(13.6 \pm 1.8\) & \(19.0 \pm 2.4\) & \(17.6 \pm 1.4\) \\
\(1-4\) & \(446.2 \pm 13.1\) & \(47.3 \pm 3.1\) & \(17.0 \pm 1.3\) & \(63.4 \pm 3.1\) & \(18.2 \pm 1.5\) & \(24.7 \pm 2.0\) & \(22.3 \pm 1.2\) \\
\(5-9\) & \(456.0 \pm 12.3\) & \(53.3 \pm 2.9\) & \(19.3 \pm 1.2\) & \(81.9 \pm 2.9\) & \(22.2 \pm 1.4\) & \(30.0 \pm 1.9\) & \(26.1 \pm 1.1\) \\
\(10-14\) & \(404.8 \pm 12.952 .9 \pm 3.1\) & \(24.8 \pm 1.3\) & \(99.5 \pm 3.0\) & \(29.5 \pm 1.5\) & \(33.0 \pm 2.0\) & \(27.6 \pm 1.1\) \\
\(15-19\) & \(264.3 \pm 16.444 .2 \pm 4.0\) & \(28.3 \pm 1.7\) & \(103.7 \pm 3.9\) & \(29.6 \pm 1.9\) & \(33.0 \pm 2.6\) & \(28.8 \pm 1.5\) \\
\(20-24\) & \(217.6 \pm 17.2\) & \(51.5 \pm 4.1\) & \(27.9 \pm 1.7\) & \(103.8 \pm 4.0\) & \(31.8 \pm 2.0\) & \(33.8 \pm 2.7\) & \(28.9 \pm 1.5\) \\
\(25-29\) & \(182.9 \pm 13.5\) & \(53.8 \pm 3.2\) & \(30.1 \pm 1.4\) & \(105.8 \pm 3.2\) & \(33.0 \pm 1.5\) & \(34.0 \pm 2.1\) & \(28.4 \pm 1.2\) \\
\(30-39\) & \(169.1 \pm 10.5\) & \(52.0 \pm 2.5\) & \(31.1 \pm 1.0\) & \(99.0 \pm 2.5\) & \(33.5 \pm 1.2\) & \(33.8 \pm 1.6\) & \(27.4 \pm 0.9\) \\
\(40-59\) & \(192.4 \pm 11.8\) & \(55.9 \pm 2.8\) & \(28.7 \pm 1.2\) & \(74.3 \pm 2.8\) & \(27.5 \pm 1.3\) & \(31.5 \pm 1.8\) & \(21.1 \pm 1.0\) \\
\(\geq 60\) & & & & & & &
\end{tabular}

Source: U.S. EPA, 1984d.

Table 2-102. Mean and Standard Error for the Daily Intake of Food Class and Sub Class Region (grams "as consumed")
\begin{tabular}{llllll}
\hline & US Population & Northeast & \begin{tabular}{c} 
North \\
Central
\end{tabular} & South & West \\
\hline Dairy Products CTotal) & \(308.6 \pm 5.3\) & \(318.6 \pm 10.4\) & \(336.1 \pm 10.0\) & \(253.6 \pm 8.4\) & \(348.1 \pm 12.3\) \\
Freah Cowr Milk & \(253.5 \pm 4.9\) & \(256.1 \pm 9.7\) & \(279.7 \pm 9.4\) & \(211.0 \pm 7.8\) & \(283.5 \pm 11.5\) \\
Other & \(55.1 \pm 1.2\) & \(62.5 \pm 2.3\) & \(56.5 \pm 2.2\) & \(42.6 \pm 1.9\) & \(64.6 \pm 2.7\) \\
Ega! & \(26.9 \pm 0.5\) & \(23.8 \pm 1.0\) & \(23.5 \pm 0.9\) & \(31.0 \pm 0.8\) & \(29.1 \pm 1.2\) \\
Meats_Cotal) & \(172.2 \pm 1.6\) & \(169.9 \pm 3.3\) & \(176.9 \pm 3.1\) & \(171.9 \pm 2.6\) & \(168.6 \pm 3.9\) \\
Beof and Veal & \(87.6 \pm 1.1\) & \(82.3 \pm 2.3\) & \(92.9 \pm 2.2\) & \(84.0 \pm 1.8\) & \(92.9 \pm 2.7\) \\
Pork & \(28.2 \pm 0.6\) & \(28.8 \pm 1.1\) & \(29.6 \pm 1.1\) & \(30.1 \pm 0.9\) & \(22.1 \pm 1.3\) \\
Poultry & \(31.3 \pm 0.8\) & \(31.7 \pm 1.5\) & \(26.6 \pm 1.4\) & \(36.5 \pm 1.2\) & \(28.9 \pm 1.8\) \\
Other & \(25.1 \pm 0.4\) & \(27.1 \pm 0.9\) & \(27.8 \pm 0.8\) & \(21.3 \pm 0.7\) & \(24.7 \pm 1.0\) \\
\hline
\end{tabular}

Source: U.S. EPA, 1984 e.

Table 2-103. Consumption of Meat, Poultry, and Dairy Products for Different Age Groups (averaged across sex), and Estimated Lifetime Average Intakes for 70 Kg Adult Citizens Calculated from the FDA Diet Data.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Product & \begin{tabular}{l}
Baby \\
(0-1 Yrs)
\end{tabular} & Toddler
(1-6 Yrs) & \[
\begin{aligned}
& \text { Child } \\
& \mathrm{g}-\mathrm{dry} \text { we } \\
& (6-14 \mathrm{Yrs}) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { Teen } \\
& \text { ight/day } \\
& \left(14-20 \mathrm{Y}_{18}\right)
\end{aligned}
\] & \[
\begin{gathered}
\text { Adult } \\
(20-45 \mathrm{Yrs})
\end{gathered}
\] & \[
\begin{aligned}
& \text { Old } \\
& (45-70 \mathrm{Yrs})
\end{aligned}
\] & Estimated Lifetime \({ }^{2}\) \\
\hline Beef & 3.99 & 9.66 & 15.64 & 21.62 & 23.28 & 18.34 & 19.25 \\
\hline Beef Liver & 0.17 & 0.24 & 0.30 & 0.36 & 1.08 & 1.2 & 0.89 \\
\hline Lamb & 0.14 & 0.08 & 0.06 & 0.05 & 0.30 & 0.21 & 0.20 \\
\hline Pork & 1.34 & 4.29 & 6.57 & 8.86 & 10.27 & 9.94 & 9.05 \\
\hline Poultry & 2.27 & 3.76 & 5.39 & 7.03 & 7.64 & 6.87 & 6.70 \\
\hline Dairy & 40.70 & 32.94 & 38.23 & 43.52 & 27.52 & 22.41 & 28.87 \\
\hline Eggs & 3.27 & 6.91 & 7.22 & 7.52 & 8.35 & 9.33 & 8.32 \\
\hline Beef Fat & 2.45 & 6.48 & 11.34 & 16.22 & 20.40 & 14.07 & 15.50 \\
\hline Beef Liver Fat & 0.05 & 0.07 & 0.08 & 0.10 & 0.29 & 0.33 & 0.25 \\
\hline Lamb Fat & 0.14 & 0.08 & 0.07 & 0.06 & 0.31 & 0.22 & 0.21 \\
\hline Dairy Fat & 38.99 & 16.48 & 20.46 & 24.43 & 18.97 & 14.51 & 18.13 \\
\hline Pork Fat & 2.01 & 8.19 & 10.47 & 12.75 & 14.48 & 13.04 & 12.73 \\
\hline Poultry Fat & 1.10 & 0.83 & 1.12 & 1.41 & 1.54 & 1.31 & 1.34 \\
\hline
\end{tabular}
- The estimated lifetime dietary intakes were estimated by:

70 years
where \(\mathbf{C R}=\) the consumption rate for a specific age group.
Source: U.S. EPA, 1989.

USDA, 1993-Food Consumption, Prices, and Expenditures, 1970-92- The USDA's Economic Research Service (ERS) calculates the amount of food available for human consumption in the United States annually. Supply and utilization balance sheets were generated. These were based on the flow of food items from production to end uses. Total available supply was estimated as the sum of production (i.e., some products were measured at the farm level or during processing), starting inventories, and imports (USDA, 1993). The availability of food for human use commonly termed as "food disappearance" was determined by subtracting exported foods, products used in industries, farm inputs (seed and feed) and end-of-the year inventories from the total available supply (USDA, 1993). USDA (1993) calculated the per capita food consumption by dividing the total food disappearance by the total U.S. population.

USDA (1993) estimated per capita consumption data for meat, poultry, and dairy products from 1970-1992 (1992 data are preliminary). In this section, the 1991 values, which are the most recent final data, are presented. The meat consumption data were reported as carcass weight, retail weight equivalent, and boneless weight equivalent. The poultry consumption data were reported as ready-to-cook (RTC) weight, retail weight, and boneless weight (USDA, 1993). USDA (1993) defined beef carcass weight as the chilled hanging carcass, which includes the kidney and attached internal fat (kidney, pelvic, and heart fat), excludes the skin, head feet, and unattached internal organs. The pork carcass weight includes the skin and feet but excludes the kidney and attached internal fat. Retail weight equivalents assumes all food were sold through retail foodstores, therefore, conversion factors (Table 2-104) were used to correct carcass or RTC to retail weight to account for trimming, shrinkage, or loss of meat and chicken at these retail outlets (USDA, 1993). Boneless equivalent values for meat (pork, veal, beef) and poultry excludes all bones but includes separable fat sold on retail cuts of red meat. Pet food was considered as an apparent source of food disappearance for poultry in boneless weight estimates, while pet food was excluded for beef, veal, and pork (USDA, 1993). Table 2-104 presents per capita consumption in 1991 for red meat (carcass weight, retail equivalent, and boneless trimmed equivalent) and poultry (RTC, retail equivalent for chicken only, and boneless trimmed equivalent). Per capita consumption estimates based on boneless weights appear to be the most appropriate data for use in exposure assessments, because boneless
\begin{tabular}{|c|c|c|c|c|}
\hline Food Item & Per Capita Consumption Carcass \({ }^{\text {b }}\) Weight \((\mathrm{g} / \mathrm{day})^{f}\) & Per Capita Consumption RTC \((\mathrm{g} / \text { day })^{f}\) & Per Capita Consumption Retail Cut Equivalent \({ }^{d}\) (g/day) \({ }^{f}\) & Per Capita Consumption Boneless Trimmed Equivalent (g/day)f \\
\hline \multicolumn{5}{|l|}{Red Meat} \\
\hline Beof & 118.3 & - & 82.8 & 78.4 \\
\hline Veal & 1.5 & - & 1.2 & 0.99 \\
\hline Pork & 8.0 & - & 62.1 & 58.3 \\
\hline Lamb and Mutton & 2.0 & - & 1.7 & 1.2 \\
\hline Total & 201.7 & - & 147.9 & 139.1 \\
\hline \multicolumn{5}{|l|}{Poultry} \\
\hline Young Chicken & -- & - & 78.3 & - \\
\hline Other Chicken & - & - & 1.7 & - \\
\hline Chicken & - & 91.3 & - & 54.5 \({ }^{\text {hil }}\) \\
\hline Turkey & -- & 22.2 & - & \(17.5{ }^{\text {b }}\) \\
\hline Total \({ }^{\text {a }}\) & - & 109.2 & 77.0 & 72.1 \\
\hline
\end{tabular}
2. Includes processed meats and poultry in a fresh basis; excludes shipments to U.S. territories; uses U.S. total population, July 1, and does not include residents of the U.S. territories.
b Beef-Carcass-Weight is the weight of the chilled hanging carcass, which includes the kidney and attached internal fat [kidney, pelvic, and heart fat (kph)] but not head, feet, and unattached internal organs. Definitions of carcass weight for other red meats differ slightly.
- RTC - ready-to-cook poultry weight is the entire dressed bird which includes bones, skin, fat, liver, heart, gizzard, and neck.
d Retail equivalents in 1991 were converted from carcass weight by multiplying by a factor of \(0.7,0.83,0.89\), and 0.776 for beef, veal, lamb, and pork, respectively; 0.877 was the factor used each for young chicken and other chicken.
- Boneless equivalent for red meat derived from carcass weight in 1991 by using conversion factors of \(0.663,0.685,0.658\) and 0.729 for beef, veal, lamb, and pork, respectively; \(0.597,0.597\) and 0.790 were the factors used for young chicken, other chicken, and turkey.
f. Original data was presented in lbs for one year, conversion to g/day were obtained by multiplying by a factor of 453.6 and dividing by 365 days.

ع Computed from unrounded data.
b Includes skin, neck, and giblets.
i Excludes amount of RTC chicken going to pet food as well as some water leakage that occurs when chicken is cut-up before packaging.
Source: USDA, 1993.

meats are more representative of what people would actually consume. Table 2-105 presents per capita consumption in 1991 for dairy products including eggs, milk, cheese, cream and sour cream.

One of the limitations of this study is that disappearance data do not account for losses from the food supply from waste spoilage or foods fed to pets. Thus, intake rates based on these data may overestimate daily consumption because they are based on the total quantity of marketable commodity utilized. It should also be noted that per capita estimates based on food disappearance is not a direct measure of actual consumption or quantity ingested, instead the data are used as indicators of changes in usage over time (USDA, 1993). An advantage of this study is that it provides per capita consumption rates for meat, poultry, and dairy products which are representative of long-term intake because disappearance data are generated annually. Daily per capita intake rates are generated by dividing annual consumption by 365 days/year.

National Live Stock and Meat Board, 1993 - Eating in America Today: A Dietary Pattern and Intake Report - The National Live Stock and Meat Board (1993) assessed the nutritional value of the current American diet based on two factors: (1) the composition of the foods consumed and (2) the amount of food consumed. Data used in this study were provided by MRCA Information Services, Inc. through MRCA's Nutritional Marketing Information Division. The survey conducted by MRCA consisted of 2,000 household panel of over 4,700 individuals. The survey sample was selected to be representative of the U.S. population. Information obtained from the survey by MRCA's Menu Census included food and beverage consumption over a period of 14 consecutive days. The head of the household recorded daily food and beverage consumption in-home and away-from-home in diaries for each household member. The survey period was from July 1, 1990 through June 30, 1991. This ensured that all days carried equal weights and provided a seasonally balanced data set. In addition, nutrient intake data calculated by the MCRA's Nutrient Intake Database (NID) (based on the 1987-88 USDA Food Intake Study) and information on food attitudes were also collected.

Table 2-106 presents the adult daily mean intake of meat and poultry grouped by region and gender. The adult population was defined as consumers ages 19 and above (National Live Stock and Meat Board, 1993). Beef consumption was high in all regions compared to other meats and poultry (Table 2-106). The average daily consumption of meat in the U.S. was 114.2

\title{
Table 2-105. Per Capita Consumption (g/day) of Dairy Products in 1991a DO NOT QUOTE OR
}

Food Item
Per Capita Consumption (g/day)

\section*{Eggs}
Farm Weight \({ }^{\text {b, }}\) ..... 37.8
Retail Weight \({ }^{c}, 0\) ..... 37.3
Fluid Milk and Cream ..... 289.7
Plain Whole Milk ..... 105.3
Lowfat Plain Milk (2\%) ..... 98.1
Lowfat Plain Milk (1\%) ..... 25.8
Skim Plain Milk ..... 29.7
Whole Flavored Milk and Drink ..... 3.4
Lowfat Flavored Milk and Drink ..... 8.5
Buttermilk (lowfat and skim) ..... 4.2
Half and Half Cream ..... 3.9
Light Cream ..... 0.4
Heavy Cream ..... 1.6
Sour Cream ..... 3.2
Eggnog ..... 0.5
Butter ..... 5.2
Cheese
American
Cheddar ..... 11.2
Other \({ }^{\text {d }}\) ..... 2.5
Italian
Provolone ..... 0.8
Romano ..... 0.2
Parmesan ..... 0.6
Mozzarella ..... 9.0
Ricotta ..... 1.0
Other ..... 0.07
Miscellaneous
Swiss \({ }^{\text {f }}\) ..... 1.5
DRAFT
DO NOT QUDTE
CITE

Table 2-105. Per Capita Consumption (g) of Dairy Products in 19914 (continued)
\begin{tabular}{|c|c|}
\hline Food Item & Per Capita Consumption (g/day) \\
\hline Brick & 0.07 \\
\hline Muenster & 0.5 \\
\hline Cream & 1.9 \\
\hline Neufchatel & 0.3 \\
\hline Blue \({ }^{\text {s }}\) & 0.2 \\
\hline Other & 1.2 \\
\hline \multicolumn{2}{|l|}{Processed Products} \\
\hline Cheese & 6.1 \\
\hline Foods and spreads & 4.7 \\
\hline Cheese Content & 8.5 \\
\hline Consumed as Natural & 22.6 \\
\hline Cottage Cheese (lowfat) & 1.6 \\
\hline \multicolumn{2}{|l|}{Erozen Dairy Products} \\
\hline Ice Cream & 20.3 \\
\hline Ice Milk & 9.2 \\
\hline Sherbet & 1.5 \\
\hline Other Frozen Products \({ }^{\text {b }}\) & 5.3 \\
\hline Total \({ }^{\text {c }}\) & 36.4 \\
\hline \multicolumn{2}{|l|}{Evaporated and Condensed Milk \({ }^{\text {i }}\)} \\
\hline Canned Whole Milk & 2.6 \\
\hline Bulk Whole Maik & 1.4 \\
\hline Bulk and Canned Skim Milk & 6.2 \\
\hline Total \({ }^{\text {e }}\) & 10.2 \\
\hline \multicolumn{2}{|l|}{Dry Milk Products \({ }^{\text {i }}\)} \\
\hline Dry Whole Milk & 0.5 \\
\hline Nonfat Dry Milk & 3.2 \\
\hline Dry Buttermilk & 0.3 \\
\hline Total \({ }^{\circ}\) & 4.0 \\
\hline Dried Whey & 4.5 \\
\hline
\end{tabular}

\title{
DRAFT \\ EO NOT QUOTE OR \\ Table 2-105. Per Capita Consumption (g) of Dairy Products in 1991" (continued)
}

Per Capita Consumption
(g/day) \({ }^{j}\)

\section*{All Diary Products}
USDA Donations ..... 17.1
Commercial Sales ..... 685.2
Total ..... 702.4

2 All per capita consumption figures use U.S. total populations, except fluid milk and cream data, which are based on U.S. residential population. For eggs, excludes shipments to U.S. territories, uses U.S. total population, July 1, which does not include U.S. territories.
b A dozen eggs converted at 1.57 pounds.
c The factor for converting farm weight to retail weight was 0.97 in 1960 and was increased 0.003 per year until 0.985 was reached in 1990.
d Includes Colby, washed curd, Monterey, and Jack.
- Computed from unrounded data.
f Includes imports of Gruyere and Enmenthaler.
\(g\) Includes Gorgonzola.
h Includes mellorine, frozen yogurt beginning 1981, and other nonstandardized frozen diary products.
i Includes quantities used in other dairy products.
j Original data were presented in lbs, conversions to g/day were calculated by multiplying by a factor of 453.6 and dividing by 365 days.

Source: USDA, 1993.

Table 2-106. Adult Mean Daily Intake of Meat and Poultry Grouped by Region and Gender'
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{Food Item} & \multicolumn{10}{|c|}{Mean Daily Intake (g/day)} \\
\hline & \multicolumn{10}{|c|}{Region} \\
\hline & \multicolumn{2}{|r|}{Pacific} & \multicolumn{2}{|r|}{Mountain} & \multicolumn{2}{|l|}{North Central} & \multicolumn{2}{|r|}{Northeast} & \multicolumn{2}{|r|}{South} \\
\hline & Male & Female \\
\hline Beef & 84.8 & 52.8 & 89.8 & 59.6 & 86.8 & 55.9 & 71.8 & 46.6 & 87.3 & 54.9 \\
\hline Pork & 18.6 & 12.6 & 23.7 & 16.8 & 26.5 & 18.8 & 22.4 & 15.9 & 24.4 & 17.2 \\
\hline Lamb & 1.3 & 1.2 & 0.5 & 0.3 & 0.4 & 0.4 & 1.3 & 1.0 & 0.5 & 0.3 \\
\hline Veal & 0.4 & 0.2 & 0.2 & 0.2 & 0.4 & 0.4 & 2.8 & 1.5 & 0.3 & 0.3 \\
\hline Variety & & & & & & & & & & \\
\hline Meats/Game & 11.1 & 7.9 & 9.1 & 7.4 & 11.9 & 8.0 & 8.1 & 6.3 & 9.4 & 7.8 \\
\hline \begin{tabular}{l}
Processed \\
Meats
\end{tabular} & 22.8 & 15.4 & 22.9 & 13.2 & 26.3 & 15.8 & 21.2 & 15.5 & 26.0 & 17.0 \\
\hline Poultry & 67.3 & 56.1 & 51.0 & 45.2 & 51.7 & 44.7 & 56.2 & 49.2 & 57.7 & 50.2 \\
\hline
\end{tabular}
a Adult population represents consumers ages 19 and above.
Sourco: National Livestock and Meat Board, 1993.
g/day which included beef ( \(57 \%\) ), veal ( \(0.5 \%\) ), lamb ( \(0.5 \%\) ), game/variety meats ( \(8 \%\) ), processed meats (18\%), and pork (16\%) (National Live Stock and Meat Board, 1993). Table 2-107 shows the amount of meat consumed by the adult population grouped as non meat eaters ( \(1 \%\) ), light meat eaters (30\%), medium meat eaters ( \(33 \%\) ), and heavy meat eaters ( \(36 \%\) ).

\subsection*{2.4.2. Fat Content of Meat and Dairy Products}

In some cases, the residue levels of contaminants in meat and dairy products are reported as the concentration of contaminant per gram of fat. When using these residue levels, the assessor should ensure consistency in the exposure assessment calculations by using consumption rates that are based on the amount of fat consumed for the meat or dairy product of interest. Alternately, residue levels for the "as consumed" portions of these products may be estimated by multiplying the levels based on fat by the fraction of fat per product as follows:
\[
\begin{equation*}
\frac{\text { residue level }}{g \text {-product }}=\frac{\text { residue level }}{g-f a t} \times \frac{g \text {-fat }}{g \text {-product }} \tag{Eqn.2-4}
\end{equation*}
\]

The resulting residue levels may then be used in conjunction with "as consumed" consumption rates such as those tabulated in Tables 2-82 through 2-107. The percentages of lipid fat in meat and dairy products have been reported in various publications. USDA's Agricultural Handbook Number 8 (USDA, 1979-1984) provides composition data for agricultural products. It includes a listing of the total saturated, monounsaturated, and polyunsaturated fats for various meat and dairy items. Table 2-108 presents the total fat content for selected meat and dairy products taken from Handbook Number 8. The total percent fat content is based on the sum of saturated, monounsaturated, and polyunsaturated fats.

The National Livestock and Meat Board (NLMB) (1993) used data from Agricultural Handbook Number 8 and consumption data to estimate the fat contribution to the U.S. diet. Total fat content in grams, based on a 3-ounce ( 85.05 g ) cooked serving size, was reported for several categories (retail composites) of meats. These data are presented in Table 2-109 along

Table 2-107. Amount of Meat Consumed by Adults Grouped by Frequency of Eatings
\begin{tabular}{lccccc}
\hline & \multicolumn{4}{c}{ Percent of Eaters } & \\
Frequency of Eatings & \begin{tabular}{c} 
Percent of \\
Total Eaters
\end{tabular} & Male & Female & \begin{tabular}{c} 
Total \\
Consumption \\
for 14 Days \\
(g)
\end{tabular} & \begin{tabular}{c} 
Median Daily \\
Intake \\
(g/day)
\end{tabular} \\
\hline Non-Meat Eaters & \(1 \%\) & 20 & 80 & None & None \\
Light Meat Eaters \({ }^{\text {b }}\) & \(30 \%\) & 27 & 73 & \(<1025\) & 54 \\
Modium Meat Eaters & \(33 \%\) & 39 & 61 & \(1025-1584\) & 93 \\
Heavy Meat \({ }^{\text {Eaters }}\) & \(36 \%\) & 73 & 27 & \(>1548\) & 144 \\
\hline
\end{tabular}
- A femalo who is employed and on a diet. She lives alone or in a small household (without children).
b Female who may or may not be on a diet. There are probably 2-4 people in her household but that number is not likely to include children.
- This person may be of either sex, might be on a diet, and probably lives in a household of 2-4 people, which may include children.
d Malo who is not on a diet and lives in a household of 2-4 individuals, which may include children.
- Adult population represents consumers ages 19 and above.

Source: National Livestock and Meat Board, 1993.

Table 2-108. Percentage Lipid Fat Content and Mean Moisture Content (Expresed as Percentagen of 100 Grams of Edible Portions) of Selected Meat and Dairy Productra
\begin{tabular}{|c|c|c|}
\hline Product & Fat Percentage & Comment \\
\hline \multicolumn{3}{|l|}{Meats} \\
\hline \multicolumn{3}{|l|}{Beef} \\
\hline Lean only & 6.16 & Raw \\
\hline & 9.91 & Cooked \\
\hline Lean and fat, \(1 / 4 \mathrm{in}\). fatt trim & 19.24 & Raw \\
\hline & 21.54 & Cooked \\
\hline \multicolumn{3}{|l|}{Brisket (point half)} \\
\hline Lean and fat & 29.32 & Raw \\
\hline \multicolumn{3}{|l|}{Brisket (flat half)} \\
\hline Lean and fat & 22.40 & Raw \\
\hline Lean only & 4.03 & Raw \\
\hline \multicolumn{3}{|l|}{Pork} \\
\hline Lean only & 5.88 & Raw \\
\hline & 9.66 & Cooked \\
\hline Lean and fat & 14.95 & Raw \\
\hline & 17.18 & Cooked \\
\hline Cured shoulder, blade roll, lean and fat & 20.02 & Unheated \\
\hline Cured ham, lean and fat & 12.07 & Center slice \\
\hline Cured ham, lean only & 7.57 & Raw, center, country style \\
\hline Sausage & 38.24 & Raw, fresh \\
\hline Ham & 4.55 & Cooked, extra lean (5\% fat) \\
\hline Ham & 9.55 & Cooked, (11\% fat) \\
\hline \multicolumn{3}{|l|}{Lamb} \\
\hline Lean & 5.25 & Raw \\
\hline & 9.52 & Cooked \\
\hline Lean and fat & 21.59 & Raw \\
\hline & 20.94 & Cooked \\
\hline \multicolumn{3}{|l|}{Veal} \\
\hline Lean & 2.87 & Raw \\
\hline & 6.58 & Cooked \\
\hline Lean and fat & 6.77 & Raw \\
\hline & 11.39 & Cooked \\
\hline \multicolumn{3}{|l|}{Rabbit} \\
\hline Composite of cuts & 5.55 & Raw \\
\hline & 8.05 & Cooked \\
\hline \multicolumn{3}{|l|}{Chicken} \\
\hline Meat only & 3.08 & Raw \\
\hline & 7.41 & Cooked \\
\hline Meat and skin & 15.06 & Raw \\
\hline & 13.60 & Cooked \\
\hline \multicolumn{3}{|l|}{Turicey 206} \\
\hline Meat only & 2.86 & Raw \\
\hline & 4.97 & Cooked \\
\hline Meat and skin & 8.02 & Raw \\
\hline & 9.73 & Cooked \\
\hline Ground & 6.66 & Raw \\
\hline
\end{tabular}

Table 2-108. Percentage Lipid Fat Content and Mean Moisture Content (Expressed Ms Percentages of 100 grams of Edible Portions)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Moisture Content Percent} \\
\hline \multicolumn{3}{|l|}{Meat} \\
\hline Bocf & 71.60 & Raw, composite, trimmed, retail cuts \\
\hline Beef liver & 68.99 & Raw \\
\hline Chicken (light meat) & 74.86 & Raw, without akin \\
\hline Chicken (dark meat) & 75.99 & Raw, without skin \\
\hline Duck - domestic & 73.77 & Raw \\
\hline Duck - wild & 75.51 & Raw \\
\hline Goose - domentic & 68.30 & Raw \\
\hline Ham - cured & 66.92 & Raw \\
\hline Horse & 72.63 & Raw, roasted \\
\hline & 63.98 & Cooked, roasted \\
\hline Lamb & 73.42 & Raw, composite, trimmed, retail cuts \\
\hline Land & 0.00 & Raw \\
\hline Pork & 70.00 & Raw \\
\hline Rabbit - domeatic & 72.81 & Raw, rousted \\
\hline & 69.11 & Cooked, roasted \\
\hline Turkey & 74.16 & Raw \\
\hline \multicolumn{3}{|l|}{Dsiry Producta} \\
\hline Egge & 74.57 & Raw \\
\hline Butter & 15.87 & Regular \\
\hline Choesc American panteurized & 39.16 & \\
\hline Cheddar & 36.75 & \\
\hline Swise & 37.21 & \\
\hline Parmeasn, hard & 29.16 & \\
\hline Parmeatn, grated & 17.66 & \\
\hline Cream, whipping, heavy & 57.71 & \\
\hline Cottage, lowfit & 79.31 & \\
\hline Colby & 38.20 & \\
\hline Blue & 42.41 & \\
\hline Cream & 53.75 & \\
\hline \multicolumn{3}{|l|}{Yogurt} \\
\hline Plain, Jowfit & 85.07 & \\
\hline Phain, with fat & 87.90 & Made from whole milk \\
\hline \multicolumn{3}{|l|}{Human milk - eatimated from USDA Survey} \\
\hline Human & 87.50 & Whole, mature, fluid \\
\hline Skim & 90.80 & \\
\hline Lownit & 90.80 & 1\% \\
\hline
\end{tabular}

\footnotetext{
- Baced on the lipid or water content in 100 grams, edible portion.
}

Source: USDA. Agricultural Handbook, No. 8, 1979-1986.

Table 2-108. Percentage Lipid Fat Content and Mean Moisture Content (Expressed as Percentages of 100 Grams of Edible Portions) of Selected Meat and Dairy Productsa
\begin{tabular}{|c|c|c|}
\hline Product & Fat Percentage & Comment \\
\hline \multicolumn{3}{|l|}{Dairy} \\
\hline \multicolumn{3}{|l|}{Milk} \\
\hline Whole & 3.16 & 3.3\% fat, raw or pasteurized \\
\hline Human & 4.17 & Whole, mature, fluid \\
\hline Lowfat (1\%) & 0.83 & Fluid \\
\hline Lowfat (2\%) & 1.83 & Fluid \\
\hline Skim & 0.17 & Fluid \\
\hline \multicolumn{3}{|l|}{Cream} \\
\hline Half and half & 18.32 & Table or coffee, fluid \\
\hline Medium & 23.71 & 25\% fat, fluid \\
\hline Heavy-whipping & 35.09 & Fluid \\
\hline Sour & 19.88 & Cultured \\
\hline Butter & 76.93 & Regular \\
\hline \multicolumn{3}{|l|}{Cheese} \\
\hline American & 29.63 & Pastcurized \\
\hline Cheddar & 31.42 & \\
\hline Swiss & 26.02 & \\
\hline Cream & 33.07 & \\
\hline Parmesan & 24.50; 28.46 & Hard; grated \\
\hline Cottage & 1.83 & Lowfat, 2\% fat \\
\hline Colby & 30.45 & \\
\hline Blue & 27.26 & \\
\hline Provolone & 25.24 & \\
\hline Mozzarella & 20.48 & \\
\hline Yogurt & 1.47 & Plain, lowfat \\
\hline Eggs & 8.35 & Chicken, whole raw, fresh or frozen \\
\hline
\end{tabular}

Table 2-109. Fat Content of Meat Products
\begin{tabular}{lcc}
\hline \begin{tabular}{l} 
Meat Product \\
\(3-0 z\) cooked serving \((85.05 \mathrm{~g})\)
\end{tabular} & \begin{tabular}{c} 
Total Fat \\
\((\mathrm{g})\)
\end{tabular} & \begin{tabular}{c} 
Percent Fat \\
Content (\%)
\end{tabular} \\
\hline Beef, retail composite, lean only & 8.4 & 9.9 \\
Pork, retail composite, lean only & 8.0 & 9.4 \\
Lamb, retail composite, lean only & 8.1 & 9.5 \\
Veal, retail composite, lean only & 5.6 & 6.6 \\
Broiler chicken, flesh only & 6.3 & 7.4 \\
Turkey, flesh only & 4.2 & 4.9 \\
\hline
\end{tabular}

Source: National Livestock and Meat Board, 1993.
with the corresponding percent fat content values for each product. NLMB (1993) also reported that 0.17 grams of fat are consumed per gram of meat (i.e., beef, pork, lamb, veal, game, processed meats, and variety meats) ( 17 percent) and 0.8 grams of fat are consumed per gram of poultry (8 percent).

The average total fat content of the U.S. diet was reported to be \(68.3 \mathrm{~g} /\) day. The meat group (meat, poultry, fish, dry beans, eggs, and nuts) was reported to contribute the most to the average total fat in the diet (41 percent) (NLMB, 1993). Meats (i.e., beef, pork, lamb, veal, game, processed meats, and variety meats) reportedly contributes less than 30 percent to the total fat of the average U.S. diet. The milk group contributes approximately 12 percent to the average total fat in the U.S. diet (NLMB, 1993). Fat intake rates and the contributions of the major food groups to fat intake for heavy, medium, and light meat eaters, and non meat eaters are presented in Table 2-110 (NLMB, 1993). NLMB (1993) also reported the average meat fat intake to be \(19.4 \mathrm{~g} /\) day, with beef contributing about 50 percent of the fat to the diet from all meats. Processed meats contributed 31 percent; pork contributed 14 percent; game and variety meats contributed 4 percent; and lamb and veal contributed 1 percent the average meat fat intake.

The Center for Disease Control (CDC) (1994) used data from NHANES III to calculate daily total food energy intake (TFEI), total dietary fat intake, and saturated fat intake for the U.S. population during 1988 to 1991. The sample population comprised 20,277 individuals ages 2 months and above, of which 14,001 respondents ( \(73 \%\) response rate) provided dietary information based on a 24 -hour recall. TFEI was defined as all nutrients (i.e., protein, fat, carbohydrate, and alcohol) derived from consumption of foods and beverages (excluding plain drinking water) measured in kilocalories (kcal)." Total dietary fat intake was defined as "all fat (i.e., saturated and unsaturated) derived from consumption of foods and beverages measured in grams."

CDC (1994) estimated and provided data on the mean daily TFEI and the mean percentages of TFEI from total dietary fat grouped by age and gender. The overall mean daily TFEI was \(2,095 \mathrm{kcal}\) for the total population and 34 percent (or 82 g ) of their TFEI was from total dietary fat (CDC, 1994). Based on this information, the mean daily fat intake was calculated for the various age groups and genders (see Appendix 2B for detailed calculation).

Table 2-110. Fat Intake, Contribution of Various Food Groups to Fat Intake, and Percentage of the Population in Various Meat Eater Groups of the U.S. Population
\begin{tabular}{lccccc}
\hline & \begin{tabular}{c} 
Total \\
Population
\end{tabular} & \begin{tabular}{c} 
Heavy Meat \\
Eaters
\end{tabular} & \begin{tabular}{c} 
Medium Meat \\
Eaters
\end{tabular} & \begin{tabular}{c} 
Light Meat \\
Eaters
\end{tabular} & \begin{tabular}{c} 
Non Meat \\
Eaters
\end{tabular} \\
\hline Average Fat Intake (g) & 68.3 & 84.5 & 62.5 & 53.5 & 32.3 \\
Percent of Population & 100 & 36 & 33 & 30 & 1 \\
Meat Group (\%) & 41 & 44 & 40 & 37 & 33 \\
Bread Group (\%) & 24 & 23 & 24 & 26 & 25 \\
Milk Group (\%) & 12 & 11 & 13 & 14 & 14 \\
Fruits (\%) & 1 & 1 & 1 & 1 & 1 \\
Vegetables (\%) & 9 & 9 & 9 & 9 & 11 \\
Fats/oil/sweets (\%) & 13 & 12 & 13 & 14 & 17 \\
\hline
\end{tabular}
- Meat Group includes meat, poultry, dry beans, eggs, and nuts.

Source: National Livestock and MeatBoard, 1993.

Table 2-111 presents the grams of fat per day obtained from the daily consumption of foods and beverages grouped by age and gender for the U.S. population.

\subsection*{2.4.3. Conversion Between As Consumed and Dry Weight Intake Rates}

As noted previously, intake rates may be reported in terms of units as consumed or units of dry weight. It is essential that exposure assessors be aware of this difference so that they may ensure consistency between the units used for intake rates and those used for concentration data (i.e., if the unit of food consumption is grams dry weight/day, then the unit for the amount of pollutant in the food should be grams dry weight). If necessary, as consumed intake rates may be converted to dry weight intake rates using the moisture content percentages of meat, poultry and dairy products presented in Table 2-108 and the following equation:
\[
\begin{equation*}
\mathbb{R}_{\mathrm{dw}}=\mathbb{R}_{\mathrm{ac}} *[(100-\mathrm{W}) / 100] \tag{Eqn.2-5}
\end{equation*}
\]
"Dry weight" intake rates may be converted to "as consumed" rates by using:
\[
\begin{equation*}
\mathbb{R}_{\mathrm{ac}}=\mathbb{R}_{\mathrm{dw}} /[(100-\mathrm{W}) / 100] \tag{Eqn:2-6}
\end{equation*}
\]
where:
\(\mathrm{IR}_{\mathrm{dw}} \quad=\) dry weight intake rate;
\(\mathrm{IR}_{\mathrm{ac}} \quad=\) as consumed intake rate; and
\(\mathrm{W} \quad=\) percent water content.

\subsection*{2.4.4. Recommendations}

The key studies described in this section were used in selecting recommended meat, poultry, and dairy product intake rates for the general population and various subgroups of the United States population. These studies were all based on USDA NFCS data, but used different analytical methods for calculating intake, and/or evaluated different subpopulations or food groups. The general design of both key and relevant studies are summarized in Table 2-112. Based on the 1987/88 NFCS one-day per capita data, the recommended average intake rates for

Table 2-111. Mean Total Daily Dietary Fat Intake (g/day) Grouped by Age and Gendera
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Age \\
(yrs)
\end{tabular}} & \multirow[b]{2}{*}{\(N\)} & \multirow[t]{2}{*}{\begin{tabular}{c} 
Total \\
\begin{tabular}{c} 
Mean Fat Intake \\
(g/day)
\end{tabular} \\
\hline
\end{tabular}} & \multicolumn{2}{|c|}{Males} & \multicolumn{2}{|c|}{Females} \\
\hline & & & N & Mean Fat Intake (g/day) & N & Mean Fat Intake (g/day) \\
\hline 2-11 (months) & 871 & 37.52 & 439 & 38.31 & 432 & 36.95 \\
\hline 1-2 & 1,231 & 49.96 & 601 & 51.74 & 630 & 48.33 \\
\hline 3-5 & 1,647 & 60.39 & 744 & 70.27 & 803 & 61.51 \\
\hline 6-11 & 1,745 & 74.17 & 868 & 79.45 & 877 & 68.95 \\
\hline 12-16 & 711 & 85.19 & 338 & 101.94 & 373 & 71.23 \\
\hline 16-19 & 785 & 100.50 & 308 & 123.23 & 397 & 77.46 \\
\hline 20-29 & 1,882 & 97.12 & 844 & 118.28 & 638 & 76.52 \\
\hline 30-39 & 1,628 & 93.84 & 736 & 114.28 & 791 & 74.06 \\
\hline 40-49 & 1,228 & 84.90 & 626 & 99.26 & 602 & 70.80 \\
\hline 50-59 & 929 & 79.29 & 473 & 96.11 & 456 & 63.32 \\
\hline 60-69 & 1,108 & 69.15 & 646 & 80.80 & 560 & 59.52 \\
\hline 70-79 & 851 & 61.44 & 444 & 73.35 & 407 & 53.34 \\
\hline \(\geq 80\) & 809 & 54.61 & 290 & 68.09 & 313 & 47.84 \\
\hline Total & 14,801 & 81.91 & 7,322 & 97.18 & 7,479 & 67.52 \\
\hline \(\geq 2\) & 13,314 & 82.77 & 6,594 & 98.74 & 8,720 & 68.06 \\
\hline
\end{tabular}

2 Total dietary fat intake includes all fat (i.e., saturated and unsaturated) derived from consumption of foods and beverages (excluding plain drinking water).
Source: Adapted from CDC, 1994.


Table 2-112. Summary of Meat, Poultry, and Dairy Intake Studies
\begin{tabular}{|c|c|c|c|c|}
\hline Study & Survey Population Used in Calculating Intake & Types of Data Used & Units & Food Items \\
\hline Pro et al., 1982 & Consumers only data provided; per capita intake calculated using fraction of individuals using the food & \begin{tabular}{l}
\(1977 / 78\) NFCS \\
3-day individual intake data
\end{tabular} & g/day; as consumed & Distributions of intake rates for meats, poultry, and diary products. \\
\hline EPA's DRES & Per capita (i.c., consumers and nonconsumers) & \begin{tabular}{l}
1977/78 NFCS \\
3-day individual intake data
\end{tabular} & g/kg-day; as consumed & Intake for a wide variety of meats, poultry, and dairy products presented; complex food groups were disaggregated \\
\hline USDA, 1992 & Per capite and congumer only grouped by aga and sex & 1977178 and 1987/88 NPCS 1-day individual intake data & g/dey; as consumed & Totel mont, porilty emd fish, total poultry, total milk, cheese and eggs. \\
\hline EPA Analysis of 1987/88 USDA Data & Consumers only; por capita data can be calculated & \begin{tabular}{l}
1987/88 NFCS data; \\
Based on amount of food consumed by a household over a 7-day period; individual intake rates based on the estimated proportion of household food caten by family members.
\end{tabular} & g/kg-day; as consumed & Distributions of intake rates for total meats and total dairy; individual food items; USDA food catogories \\
\hline U.S. EPA/ORP, 1984d; 1984e & Per capita & \begin{tabular}{l}
\(1977 / 78\) NFCS \\
Individual intake data
\end{tabular} & g/day; as consumed & Mean intake rates for total meats, total diary products, and individual food items. \\
\hline U.S. EPA/OST, 1989 & Estimated lifetimo dietary intake & Based on FDA Total Diet Study Food List which used \(1977 / 78\) NFCS data, and NHANES II data & g/day; dry weight & Various food groups; complex foods disaggregated \\
\hline USDA, 1993 & Per capita consumption based on "food disappearance" & Based on food supply and utilization data which were provided by National Agricultural Statistics Service (NASS), Customs Service reports, and trade associations. & g/day; as consumed & Intake rates of meats, poultry, and diary products; intake rates of individual food items. \\
\hline
\end{tabular}
the general population are 32 g/day for beef; \(14 \mathrm{~g} /\) day for pork; \(1 \mathrm{~g} /\) day for lamb, veal, and game; \(26 \mathrm{~g} /\) day for total poultry ( \(20 \mathrm{~g} /\) day for chicken only); and \(193 \mathrm{~g} / \mathrm{day}\) for total meat, poultry, and fish. Mean per capita intake rates for specific food items, on a g/kg-day basis, may be taken from Table 2-83. Mean and upper-percentile consumer only intake rates for total meat, total dairy, or beef, game, pork, poultry, and eggs from the distribution data presented in Tables 2-86 through 2-100 may be used to represent intake for the general population and various subpopulations. Upper-percentile per capita rates may be calculated using the consumer only distribution data presented in Tables 2-86 through 2-100 and the survey size data presented in Section 2.7.Intake rates for the homeproduced form of these food items/groups are presented in Section 2.7. Also, the data presented in Table 2-82 may be used to represent mean and upperpercentile consumer only and per capita intake rates for various items of meat, poultry, and dairy products. These data were estimated based on the USDA-NFCS data, however, intake rates were calculated over a 3-day period. In situations where there is paucity of information, the 3-day data may also be used for acute exposure assessments.

The advantage of using the USDA NFCS data set is that it is the largest publicly available data source on food intake patterns in the United States. Data are available for a wide variety of meat, poultry, and dairy products and are intended to be representative of the U.S. population. However, it should be noted that the data collected by USDA NFCS are based on short-term dietary recall and may not accurately reflect long-term intake patterns. This is particularly true for the tails of the distribution of intake.

\subsection*{2.5. BREAST MILK INTAKE}

\subsection*{2.5.1. Background}

Breast milk is a potential source of exposure to toxic substances among nursing infants. Some chemical compounds accumulate in fatty tissues and may be transferred to breast-fed infants in the lipid portion of breast milk. Because nursing infants obtain most (if not all) of their dietary intake from breast milk, they are especially vulnerable to exposures to these compounds. Estimating the magnitude of the potential dose to infants from breast milk requires information on the quantity of breast milk consumed per day and the duration (months) over which breast-feeding occurs. Information on the fat content of breast milk is also needed for estimating dose from breast milk residue concentrations that have been indexed to lipid content.

Several studies have generated data on breast milk intake. Typically, breast milk intake has been measured over a 24-hour period by weighing the infant before and after each feeding without changing its clothing (test weighing). The sum of the difference between the measured weights over the 24-hour period is assumed to be equivalent to the amount of breast milk consumed daily. Intakes measured using this procedure are often corrected for evaporative water losses (insensible water losses) between infant weighings (NAS, 1991). Neville et al. (1988) evaluated the validity of the tesi weight approach among bottle-fed infants by comparing the weights of milk taken from bottles with the differences between the infants' weights before and after feeding. When test weight data were corrected for insensible water loss, they were not significantly different from bottle weights. Conversions between weight and volume of breast milk consumed are made using the density of human milk (approximately \(1.03 \mathrm{~g} / \mathrm{mL}\) ) (NAS, 1991). Recently, techniques for measuring breast milk intake using stable isotopes have been developed. However, few data based on this new technique have been published (NAS, 1991).

Studies among nursing mothers in industrialized countries have shown that intakes among infants average approximately 750 to \(800 \mathrm{~g} /\) day ( 728 to \(777 \mathrm{~mL} /\) day) during the first 4 to 5 months of life with a range of 450 to \(1,200 \mathrm{~g} /\) day ( 437 to \(1,165 \mathrm{~mL} / \mathrm{day}\) ) (NAS, 1991). Similar intakes have also been reported for developing countries (NAS, 1991). Infant birth weight and nursing frequency have been shown to influence the rate of intake (NAS, 1991). Infants who are larger at birth and/or nurse more frequently have been shown to have higher intake rates.

Also, breast milk production among nursing mothers has been reported to be somewhat higher than the amount actually consumed by the infant (NAS, 1991).

The available studies on breast milk intake are summarized in the following sections. Studies on breast milk intake rates have been classified as either key studies or relevant studies based on their applicability to exposure assessment needs. Recommended intake rates are based on the results of key studies, but relevant studies are also presented to provide the reader with added perspective on the current state-of-knowledge pertaining to breast milk intake.

Relevant data on lipid content and fat intake, energy content and energy intake, breast-feeding duration and frequency, and the estimated percentage of the U.S. population that breast-feeds are also presented.

\subsection*{2.5.2. Key Studies on Breast Milk Intake}

Pao et al. - Milk Intakes and Feeding Patterns of Breast-fed Infants - Pao et al. (1980) conducted a study of 22 healthy breast-fed infants to estimate breast milk intake rates. Infants were categorized as completely breast-fed or partially breast-fed. Breast feeding mothers were recruited through LaLeche League groups. Except for one black infant, all other infants were from white middle-class families in southwestern Ohio. The goal of the study was to enroll infants as close to one month of age as possible and to obtain records near one, three, six, and nine months of age (Pao et al., 1980). However, not all mother/infant pairs participated at each time interval. Data were collected for these 22 infants using the test weighing method. Records were collected for three consecutive 24-hour periods at each test interval. The weight of breast milk was converted to volume by assuming a density of \(1.03 \mathrm{~g} / \mathrm{mL}\). Daily intake rates were calculated for each infant based on the mean of the three \(\mathbf{2 4}\)-hour periods. Mean daily breast milk intake rates for the infants surveyed at each time interval are presented in Table 2-113. For completely breast-fed infants, the mean intake rates were \(600 \mathrm{~mL} /\) day at 1 month of age and \(833 \mathrm{~mL} /\) day at 3 months of age. Partially breast-fed infants had mean intake rates of 485 \(\mathrm{mL} /\) day, 467 mL day, \(395 \mathrm{~mL} /\) day, and \(554 \mathrm{~mL} /\) day at \(1,3,6\), and 9 months of age, respectively. Pao et al. (1980) also noted that intake rates for boys in both groups was slightly higher than for girls.

Table 2-113. Daily Intakes of Breast Milk
\begin{tabular}{lccc}
\hline Age & \begin{tabular}{c} 
Number of \\
Infants Surveyed at \\
Each Time Period
\end{tabular} & \begin{tabular}{c} 
Mean Intake \\
( \(\mathrm{mL} /\) day)
\end{tabular} & \begin{tabular}{c} 
Range of \\
Daily Intake \\
(mL/day)
\end{tabular} \\
\hline \begin{tabular}{c} 
Completely Breast-fed \\
1 month
\end{tabular} & 11 & & \\
3 months & 2 & \(600 \pm 159\) & \(426-989\) \\
6 months & 1 & 833 & \(645-1,000\) \\
Partially Breast-fed & & 682 & \(616-786\) \\
1 month & 4 & \(485 \pm 79\) & \(398-655\) \\
3 months & 11 & \(467 \pm 100\) & \(242-698\) \\
6 months & 6 & \(395 \pm 175\) & \(147-684\) \\
9 months & 3 & \(<554\) & \(451-732\) \\
\hline
\end{tabular}
= Data expressed as mean \(\pm\) standard deviation.
Source: Pao et al., 1980.

The advantage of this study is that data for both exclusively and partially breast-fed infants were collected for multiple time periods. Also, data for individual infants were collected over 3 consecutive days to account for individual variability. However, the number of infants in the study was relatively small and may not be entirely representative of the U.S. population.

Butte et al. - Human Milk Intake and Growth in Exclusively Breast-fed Infants - Breast milk intake was studied in exclusively breast-fed infants during the first 4 months of life (Butte et al., 1984). Breastfeeding mothers were recruited through the Baylor Milk Bank Program in Texas. Forty-five mothers/infant pairs participated in the study. However, data for some time periods (i.e., \(1,2,3\), or 4 months) were missing for some mothers as a result of illness or other factors. The mothers were from the middle- to upper-socioeconomic stratum and had a mean age of \(28.0 \pm 3.1\) years. A total of 41 mothers were white, 2 were Hispanic, 1 was Asian, and 1 was West Indian. Infant growth progressed satisfactorily over the course of the study. The amount of milk ingested over a 24 -hour period was determined using the test weighing procedure. Test weighing occurred over a 24 -hour period for most participants, but intake among several infants was studied over longer periods ( 48 to 96 hours) to assess individual variation in intake. The study did not indicate whether the data were corrected for insensible water loss. Mean breast milk intake ranged from \(723 \mathrm{~g} /\) day ( \(702 \mathrm{~mL} / \mathrm{day}\) ) at 3 months to 751 \(\mathrm{g} /\) day ( \(729 \mathrm{~mL} /\) day) at 1 month, with an overall mean of \(733 \mathrm{~g} /\) day ( \(712 \mathrm{~mL} /\) day) for the entire study period (Table 2-114). Intakes were also calculated on the basis of body weight (Table 2-114). Based on the results of test weighings conducted over 48 to 96 hours, the mean variation in individual daily intake was estimated to be \(7.9 \pm 3.6\) percent.

The advantage of this study is that data for a larger number of exclusively breast-fed infants were collected than by Pao et al. (1980). However, data were collected over a shorter time period (i.e., 4 months compared to 6 months) and may not be representative of the U.S. population.

Neville et al., - Studies on Human Lactation - Neville et al. (1988) studied breast milk intake among 13 infants during the first year of life. The mothers were all multiparous, nonsmoking, Caucasian women of middle- to upper-socioeconomic status living in Denver, Colorado (Neville, et al., 1988). All women in the study practiced exclusive breast-feeding for at least 5 months. Solid foods were introduced at mean age of 7 months. Daily milk intake was

Table 2-114. Breast Milk Intake Among Exclusively Breast-fed Infants During the First 4 Months of Life
\begin{tabular}{|c|c|c|c|}
\hline Age (months) & Number of Infants & Breast Milk Intake" (g/day) & \[
\begin{aligned}
& \text { Breast Milk } \\
& \text { Intakene } \\
& (\mathrm{g} / \mathrm{kg} / \text { day })
\end{aligned}
\] \\
\hline 1 & 37 & \(751.0 \pm 130.0\) & \(159.0 \pm 24.0\) \\
\hline 2 & 40 & \(725.0 \pm 131.0\) & \(129.0 \pm 19.0\) \\
\hline 3 & 37 & \(723.0 \pm 114.0\) & \(117.0 \pm 20.0\) \\
\hline 4 & 41 & \(740.0 \pm 128.0\) & \(111.0 \pm 17.0\) \\
\hline
\end{tabular}
- Data expressed as mean \(\pm\) standard deviation.

Source: Butte et al., 1984.
estimated by the test weighing method with corrections for insensible weight loss. Data were collected daily from birth to 14 days, weekly from weeks 3 through 8, and monthly until the study period ended at 1 year after inception. The estimated breast milk intakes for this study are listed in Table 2-115. Mean breast milk intakes were \(770 \mathrm{~g} /\) day ( \(748 \mathrm{~mL} /\) day), \(734 \mathrm{~g} /\) day ( \(713 \mathrm{~mL} /\) day), \(766 \mathrm{~g} /\) day ( \(744 \mathrm{~mL} /\) day), and \(403 \mathrm{~g} /\) day ( \(391 \mathrm{~mL} /\) day) at \(1,3,6\), and 12 months of age, respectively.

In comparison to the previously described studies, Neville et al. (1988) collected data on numerous days over a relatively long time period ( 12 months). However, the intake rates presented in Table 2-115 are estimated based on intake during only a 24 -hour period. Consequently, these intake rates are based on short-term data that do not account for day-to-day variability among individual infants. Also, a smaller number of subjects was included than in the previous studies, and the population studied may not be representative of the U.S. population.

Dewey and Lonnerdal - Milk and Nutrient Intakes of Breast-fed Infants - Dewey and Lönnerdal (1983) monitored the dietary intake of 20 breast-fed infants between the ages of 1 and 6 months of age. Most of the infants in the study were exclusively breast-fed (five were given some formula, and several were given small amounts of solid foods after 3 months of age). According to Dewey and Lonnerdal (1983), the mothers were all well educated and recruited via Lamaze childbirth classes from the Davis area of California. Breast milk intake volume was estimated based on two 24-hour test weighings per month. Breast milk intake rates for the various age groups are presented in Table 2-116. Breast milk intake averaged 673, 782, and 896 \(\mathrm{mL} /\) day at 1,3 , and 6 months of age, respectively.

The advantage of this study is that it evaluated breast-fed infants for a period of 6 months based on two 24 -hour observations per infant per month. Corrections for insensible water loss were apparently not made. Also, results of this study may not be representative of U.S. populations.

Dewey et al. - The DARLING Study - The Davis Area Research on Lactation, Infant Nutrition and Growth (DARLING) study was conducted in 1986 to evaluate growth patterns, nutrient intake, morbidity, and activity levels in infants who were breast-fed for at least the first 12 months of life (Dewey et al., 1991a; 1991b). Seventy-three infants were included in the

Table 2-115. Breast Milk Intake
DRAFT
DO NOT QUOTE OR
CITE
\begin{tabular}{ccccc}
\hline \begin{tabular}{c} 
Age \\
(days)
\end{tabular} & \begin{tabular}{c} 
Number of \\
Infants
\end{tabular} & \begin{tabular}{c} 
Mean \\
(g/day)
\end{tabular} & \begin{tabular}{c} 
Standard \\
Deviation (g/day)
\end{tabular} & \begin{tabular}{c} 
Range \\
(g/day)
\end{tabular} \\
\hline 1 & 7 & 44 & 71 & \(-31-1499^{2}\) \\
2 & 10 & 182 & 86 & \(44-355\) \\
3 & 11 & 371 & 153 & \(209-688\) \\
4 & 11 & 451 & 176 & \(164-694\) \\
5 & 12 & 498 & 129 & \(323-736\) \\
6 & 10 & 508 & 167 & \(315-861\) \\
7 & 8 & 573 & 167 & \(406-842\) \\
8 & 9 & 581 & 159 & \(410-923\) \\
9 & 10 & 580 & 76 & \(470-720\) \\
10 & 10 & 589 & 132 & \(366-866\) \\
11 & 8 & 615 & 168 & \(398-934\) \\
14 & 10 & 653 & 154 & \(416-922\) \\
21 & 10 & 651 & 84 & \(554-786\) \\
28 & 13 & 770 & 179 & \(495-1144\) \\
35 & 12 & 668 & 117 & \(465-930\) \\
42 & 12 & 711 & 111 & \(554-896\) \\
49 & 10 & 709 & 115 & \(559-922\) \\
56 & 13 & 694 & 98 & \(556-859\) \\
90 & 12 & 734 & 114 & \(613-942\) \\
120 & 13 & 711 & 100 & \(570-847\) \\
150 & 13 & 838 & 134 & \(688-1173\) \\
180 & 13 & 766 & 121 & \(508-936\) \\
210 & 12 & 721 & 154 & \(486-963\) \\
240 & 10 & 622 & 210 & \(288-1002\) \\
270 & 12 & 618 & \(223-871\) \\
300 & 11 & 551 & 234 & \(129-894\) \\
330 & 9 & 554 & \(120-860\) \\
360 & 9 & 403 & \(65-770\) \\
\hline
\end{tabular}
a Negative value due to insensible water loss correction.
Source: Neville et al., 1988.

Table 2-116. Breast Milk Intake for Infants Aged 1 to 6 Months
\begin{tabular}{ccccc}
\hline Age (months) & \begin{tabular}{c} 
Number of \\
Infants
\end{tabular} & Mean (mL/day) & SD (mL/day) \({ }^{\text {a }}\) & Range (mL/day) \\
\hline 1 & 16 & 673 & 192 & \(341-1,003\) \\
2 & 19 & 756 & 170 & \(449-1,055\) \\
3 & 16 & 782 & 172 & \(492-1,053\) \\
4 & 13 & 810 & 142 & \(593-1,045\) \\
5 & 11 & 805 & 117 & \(554-1,045\) \\
6 & 11 & 896 & 122 & \(675-1,096\) \\
\hline
\end{tabular}

2 Standard deviation.
Source: Dewey and Lönnerdal, 1983.
study at 3 months. The number of infants included in the study at subsequent time intervals was somewhat lower as a result of attrition. All infants in the study were healthy and of normal gestational age and weight at birth, and did not consume solid foods until after the first 4 months of age. The mothers were highly educated and of "relatively high socioeconomic status" from the Davis area of California (Dewey et al., 1991a; 1991b). Breast milk intake was estimated by weighing the infants before and after each feeding and correcting for insensible water loss. Test weighings were conducted over a 4-day period every 3 months. The results of the study indicate that breast milk intake declines over the first 12 months of life. Mean breast milk intake was estimated to be \(812 \mathrm{~g} /\) day ( \(788 \mathrm{~mL} /\) day) at 3 months and \(448 \mathrm{~g} /\) day ( \(435 \mathrm{~mL} / \mathrm{day}\) ) at 12 months (Table 2-117). Based on the estimated intakes at 3 months of age, variability between individuals (coefficient of variation \((C V)=16.3\) percent) was higher than individual day-to-day variability (CV = 5.4 percent) for the infants in the study (Dewey et al., 1991a).

The advantages of this study are that data were collected over a relatively long-time (4 days) period at each test interval to account for day-to-day infant variability, and corrections for insensible water loss were made. However, the population studied may not be representative of the U.S. population.

\subsection*{2.5.3. Other Relevant Studies on Breast Milk Intake}

Hofvander et al. - The Amount of Milk Consumed by 1-3 Month Old Infants - Hofvander et al. (1982) compared milk intake among breast-fed and bottle-fed infants at ages 1,2 , and 3 months of age. Intake of breast milk and breast milk substitutes was tabulated for 25 Swedish infants in each age group. Daily intake among breast-fed infants was estimated using the test weighing method. Test weighings were conducted over a 24 -hour time period at each time interval. Daily milk intake among bottle-fed infants was estimated by measuring the volumetric differences in milk contained in bottles at the beginning and end of all feeding sessions in a 24hour period. The mean intake rates for bottle-fed infants were slightly higher than for breast-fed infants for all age groups (Table 2-118). Also, boys consumed breast milk or breast milk substitutes at a slightly higher rate than girls (Table 2-119). Breast milk intake was estimated to be \(656 \mathrm{~g} /\) day ( \(637 \mathrm{~mL} /\) day) at 1 month and \(776 \mathrm{~g} /\) day ( \(753 \mathrm{~mL} /\) day) at 3 months.

\begin{tabular}{cccc}
\hline Age (months) & \begin{tabular}{c} 
Number of \\
Infants
\end{tabular} & \begin{tabular}{c} 
Mean Intake \\
\((\mathrm{g} /\) day \()\)
\end{tabular} & \begin{tabular}{c} 
Standard Deviation \\
(g/day)
\end{tabular} \\
\hline 3 & 73 & 812 & 133 \\
6 & 60 & 769 & 171 \\
9 & 50 & 646 & 217 \\
12 & 42 & 448 & 251 \\
\hline
\end{tabular}

Source: Dewey et al. (1991b).

Table 2-118. Milk Intake for Bottle- and Breast-fed Infants by Age Group
\begin{tabular}{ccc}
\hline \begin{tabular}{c} 
Age \\
(months)
\end{tabular} & \begin{tabular}{c} 
Breast Milk Substitutes \\
Mean (g/day)
\end{tabular} & \begin{tabular}{c} 
Breast Milk \\
Mean \((\mathrm{g} / \text { day })^{a}\)
\end{tabular} \\
\hline 1 & 713 & 656 \\
& \((500-1,000)\) & \((360-860)\) \\
2 & 811 & 773 \\
& \((670-1,180)\) & \((575-985)\) \\
3 & 853 & 776 \\
& \((655-1,065)\) & \((600-930)\) \\
\hline
\end{tabular}
a Range given in parentheses.
Source: Hofvander et al., 1982.


Source: Hofvander et al., 1982.

This study was conducted among Swedish infants, but the results are similar to those summarized previously for U.S. studies. Insensible water losses were apparently not considered in this study, and only short-term data were collected.

Kohler et al. - Food Intake and Growth of Infants - Köhler et al. (1984) evaluated breast milk and formula intake among normal infants between the ages of 6 and 26 weeks. The study included 25 fully breast-fed and 34 formula-fed infants from suburban communities in Sweden. Intake among breast-fed infants was estimated using the test weighing method over a 48-hour test period. Intake among formula-fed infants was estimated by feeding infants from bottles with known volumes of formula and recording the amount consumed over a 48 -hour period. Table 2-120 presents the mean breast milk and formula intake rates for the infants studied. Data were collected for both cow's milk-based formula and soy-based formula. The results indicated that the daily intake for bottle-fed infants was greater than for breast-fed infants.

The advantages of this study are that it compares breast milk intake to formula intake and that test weightings were conducted over 2 consecutive days to account for variability in individual intake. Although the population studied was not representative of the U.S. population, similar intake rates were observed in the studies that were previously summarized.

Axelsson et al. - Protein and Energy Intake During Weaning - Axelsson et al. (1987) measured food consumption and energy intake in 30 healthy Swedish infants between the ages of 4 and 6 months. Both formula-fed and breast-fed infants were studied. All infants were fed supplemental foods (i.e., pureed fruits and vegetables after 4 months, and pureed meats and fish after 5 months). Milk intake among breast-fed infants was estimated by weighing the infants before and after each feeding over a 2 -day period at each sampling interval. Breast milk intake averaged \(765 \mathrm{~mL} /\) day at 4.5 months of age, and 715 mL day at 5.5 months of age.

This study is based on short-term data and may not be representative of the U.S. population. However, the intake rates estimated by this study are similar to those generated by the U.S. studies that were summarized previously.

\subsection*{2.5.4. Key Studies on Lipid Content and Fat Intake from Breast Milk}

Human milk contains over 200 constituents including various proteins, vitamins, carbohydrates, lipids, minerals, cells, and trace elements (NAS, 1991). The lipid content of

Table 2-120. Intake of Breast Milk and Formula
\begin{tabular}{ccccccccccc}
\hline & \multicolumn{4}{c}{ Breast Milk } & \multicolumn{4}{c}{ Cow's Formula } & \multicolumn{3}{c}{ Soy Formula } \\
\cline { 2 - 11 } \begin{tabular}{c} 
Age \\
\((\mathrm{wks})\)
\end{tabular} & N & \begin{tabular}{c} 
Mean \\
\((\mathrm{g} / \mathrm{d})\)
\end{tabular} & \begin{tabular}{c} 
SD \\
\((\mathrm{g} / \mathrm{d})\)
\end{tabular} & N & \begin{tabular}{c} 
Mean \\
\((\mathrm{g} / \mathrm{d})\)
\end{tabular} & \begin{tabular}{c} 
SD \\
\((\mathrm{g} / \mathrm{d})\)
\end{tabular} & N & \begin{tabular}{c} 
Mean \\
\((\mathrm{g} / \mathrm{d})\)
\end{tabular} & \begin{tabular}{c} 
SD \\
\((\mathrm{g} / \mathrm{d})\)
\end{tabular} \\
\hline 6 & 26 & 746 & 101 & 20 & 823 & 111 & 13 & 792 & 127 \\
14 & 21 & 726 & 143 & 19 & 921 & 95 & 13 & 942 & 78 \\
22 & 13 & 722 & 114 & 18 & 818 & 201 & 13 & 861 & 196 \\
26 & 12 & 689 & 120 & 18 & 722 & 209 & 12 & 776 & 159 \\
\hline
\end{tabular}

Source: Kohler et al., 1984.
breast milk varies according to the length of time that an infant nurses. Lipid content increases from the beginning to the end of a single nursing session (NAS, 1991). The lipid portion accounts for approximately 4 percent of human breast milk ( \(39 \pm 4.0 \mathrm{~g} / \mathrm{L}\) ) (NAS, 1991). This value is supported by various studies that evaluated lipid content from human breast milk. Several studies also estimated the quantity of lipid consumed by breast-feeding infants. These values are appropriate for use in conjunction with residue concentrations that are indexed to the fat portion of human breast milk.

Butte et al. - Human Milk Intake and Growth in Exclusively Breast-fed Infants - Butte et al., (1984) analyzed the lipid content of breast milk samples taken from women who participated in a study of breast milk intake among exclusively breast-fed infants. The study was conducted with over 40 women during a 4 -month period. The mean lipid content of breast milk at various infants ages is presented in Table 2-121. The overall lipid content for the 4-month study period was \(34.3 \pm 6.9 \mathrm{mg} / \mathrm{g}\) ( 3.4 percent). Butte et al. (1984) also calculated lipid intakes from \(24-\) hour breast milk intakes and the lipid content of the human milk samples. Lipid intake was estimated to range from \(23.6 \mathrm{~g} /\) day ( \(3.8 \mathrm{~g} / \mathrm{kg} /\) day) to \(28.0 \mathrm{~g} /\) day \((5.9 \mathrm{~g} / \mathrm{kg} /\) day \()\).

A relatively large group of women were included in this study. However, these women were selected primarily from middle- to upper-socioeconomic classes. Thus, data on breast milk lipid content from this study may not be entirely representative of breast milk lipid content among the U.S. population. Also, these estimates are based on short-term data.

Maxwell and Burmaster - Simulation Model for Estimating a Distribution of Lipid Intake Maxwell and Burmaster (1993) used a hypothetical population of 5,000 infants between birth and 1 year of age to simulate a distribution of daily lipid intake from breast milk. The hypothetical population represented both bottle-fed and breast-fed infants aged 1 to 365 days. A distribution of daily lipid intake was developed based on data in Dewey et al. (1991b) on breast milk intake for infants at \(3,6,9\), and 12 months and breast milk lipid content, and survey data in Ryan et al. (1991) on the percentage of breast-fed infants under the age of 12 months (i.e., approximately 22 percent). A model was used to simulate intake among 1,113 of the 5,000 infants that were expected to be breast-fed. The results of the model indicated that lipid intake among nursing infants under 12 months of age can be characterized by a normal distribution with a mean of \(26.8 \mathrm{~g} /\) day and a standard deviation of \(7.4 \mathrm{~g} /\) day (Table 2-122). The model assumes

Table 2-121. Lipid Content of Human Milk and Estimated Lipid Intake among Exciusively Breast-fed Infants
\begin{tabular}{lccccc}
\hline Age (months) & \begin{tabular}{c} 
Number \\
of \\
Observations
\end{tabular} & \begin{tabular}{c} 
Lipid \\
Content \\
\((\mathrm{mg} / \mathrm{g})^{\mathrm{a}}\)
\end{tabular} & \begin{tabular}{c} 
Lipid \\
Content \\
(percent) \(^{\mathrm{b}}\)
\end{tabular} & \begin{tabular}{c} 
Lipid \\
Intake \\
\((\mathrm{g} / \text { day })^{\mathrm{a}}\)
\end{tabular} & \begin{tabular}{c} 
Lipid \\
Intake \\
\((\mathrm{g} / \mathrm{kg} \text {-day })^{\mathrm{a}}\)
\end{tabular} \\
\hline 1 & 37 & \(36.2 \pm 7.5\) & 3.6 & \(28.0 \pm 8.5\) & \(5.9 \pm 1.7\) \\
2 & 40 & \(34.4 \pm 6.8\) & 3.4 & \(25.2 \pm 7.1\) & \(4.4 \pm 1.2\) \\
3 & 37 & \(32.2 \pm 7.8\) & 3.2 & \(23.6 \pm 7.2\) & \(3.8 \pm 1.2\) \\
4 & 41 & \(34.8 \pm 10.8\) & 3.5 & \(25.6 \pm 8.6\) & \(3.8 \pm 1.3\) \\
\hline
\end{tabular}

2 Data expressed as means \(\pm\) standard deviation.
b Percents calculated from lipid content reported in \(\mathrm{mg} / \mathrm{g}\).
Source: Butte, et al., 1984.

Table 2-122. Predicted Lipid Intakes for Breast-fed Infants Under 12 Months of Age
\begin{tabular}{lc}
\hline \multicolumn{1}{c}{ Statistic } & Value \\
\hline Number of Observations in Simulation & 1,113 \\
Minimum Lipid Intake & \(1.0 \mathrm{~g} / \mathrm{day}\) \\
Maximum Lipid Intake & \(51.5 \mathrm{~g} / \mathrm{day}\) \\
Arithmetic Mean Lipid Intake & \(26.8 \mathrm{~g} / \mathrm{day}\) \\
Standard Deviation Lipid Intake & \(7.4 \mathrm{~g} / \mathrm{day}\) \\
\hline
\end{tabular}

Source: Maxwell and Burmaster, 1993.
that nursing infants are completely breast-fed and does not account for infants who are breast-fed longer than 1 year. Based on data collected by Dewey et al. (1991b), Maxwell and Burmaster (1993) estimated the lipid content of breast milk to be \(36.7 \mathrm{~g} / \mathrm{L}\) at 3 months and \(40.2 \mathrm{~g} / \mathrm{L}\) at 12 months.

The advantage of this study is that it provides "snapshot" of daily lipid intake from breast milk for breast-fed infants. The estimated mean lipid intake rate represents the average daily intake for nursing infants under 12 months of age. These data are useful for performing exposure assessments when the age of the infant cannot be specified (i.e., 3 months or 6 months). Also, because intake rates are indexed to the lipid portion of the breast milk, they may be used in conjunction with residue concentrations indexed to fat content.

\subsection*{2.5.5. Other Factors}

Other factors associated with breast milk intake include: the energy intake from breast-feeding, the frequency of breast-feeding sessions per day, the duration of breast-feeding per event, the duration of breast-feeding during childhood, and the magnitude and nature of the population that breast-feeds.

Energy Intake and Energy Content of Breast Milk and Infant Formula - The Food and Agriculture Organization/World Health Organization (FAO/WHO) recommends infant energy intakes of \(116 \mathrm{kcal} / \mathrm{kg} /\) day for the first 3 months of life and \(99 \mathrm{kcal} / \mathrm{kg} /\) day between the ages of 3-6 months (Butte, et al., 1990). Similarly, the Food and Nutrition Board's Recommended Dietary Allowance (RDA) for energy intake is \(115 \mathrm{kcal} / \mathrm{kg} /\) day during the first 6 months of life (Montandon, et al., 1986; Butte, et al., 1984), and USDA's Nutrition Research Board recommends \(115 \mathrm{kcal} / \mathrm{kg} /\) day at birth and \(105 \mathrm{kcal} / \mathrm{kg} /\) day by the end of the first year (Butte et al., 1990). Several studies have estimated energy intakes among breast-feeding infants. However, Butte et al. (1984) observed energy intakes that were substantially less than the recommended values among healthy, well nourished, exclusively breast-fed infants (110 \(\pm 24\) \(\mathrm{kcal} / \mathrm{kg}\)-day at 1 month and \(71 \pm 17 \mathrm{kcal} / \mathrm{kg} /\) day at 4 months). In another study, Köhler et al. (1984) observed that energy intake for healthy breast-fed infants was lower than for healthy formula-fed infants (Table 2-123). According to Whitehead and Paul (1991), recent studies indicate that the energy intake from formula averages about \(90 \mathrm{kcal} / \mathrm{kg}\)-day and energy intake

Table 2-123. Total Energy Intake
\begin{tabular}{ccccccc}
\hline & \multicolumn{4}{c}{ Breast-fed } & \multicolumn{3}{c}{ Formula-fed } \\
\cline { 2 - 7 } \begin{tabular}{c} 
Age \\
(wks)
\end{tabular} & \begin{tabular}{c} 
Number of \\
Infants
\end{tabular} & \begin{tabular}{c} 
Mean \\
(kcal/day)
\end{tabular} & \begin{tabular}{c} 
SD \\
(kcal/day)
\end{tabular} & \begin{tabular}{c} 
Number of \\
Infants
\end{tabular} & \begin{tabular}{c} 
Mean \\
(kcal/day)
\end{tabular} & \begin{tabular}{c} 
SD \\
(kcal/day)
\end{tabular} \\
\hline 6 & 26 & 525 & 71 & 33 & 594 & 131 \\
14 & 21 & 595 & 100 & 32 & 715 & 108 \\
22 & 13 & 638 & 98 & 31 & 699 & 141 \\
26 & 12 & 663 & 85 & 30 & 695 & 124 \\
\hline
\end{tabular}

Source: Köhler et al., 1984.
from breast milk averages about \(85 \mathrm{kcal} / \mathrm{kg}\)-day. Based on several of these studies, Whitehead and Paul (1991) estimated the energy intake among exclusively breast-fed infants to be 114, 98, 92 , and \(86 \mathrm{kcal} / \mathrm{kg} /\) day at \(1,2,3\) and 4 months of age, respectively. Dewey and Lōnnerdal (1983) estimated the energy intake from breast milk to be 113, 105, 93, 93, 85 , and 89 \(\mathrm{kcal} / \mathrm{kg} /\) day ( \(509,564,556,596,593\), and \(658 \mathrm{kcal} /\) day ) for infants \(1,2,3,4,5\), and 6 months of age, respectively. Table 2-124 presents energy intakes estimated by Dewey et al. (1991b) in a subsequent study. Using an assumed energy content of \(65 \mathrm{kcal} / \mathrm{mL}\) for breast milk and measured breast milk intake rates, Axelsson et al. (1987) estimated energy intake among breastfed infants to be \(82.2 \pm 9.1 \mathrm{kcal} / \mathrm{kg} /\) day at 4 to 5 months of age and \(76.9 \pm 9.4 \mathrm{kcal} / \mathrm{kg} /\) day at 5 to 6 months of age. Energy intake among bottle-fed infants was slightly higher. Bottle-fed infants consuming formula with an energy content of \(72 \mathrm{kca} / \mathrm{mL}\) had energy intakes of \(104.3 \pm 12.4 \mathrm{kcal} / \mathrm{kg}\)-day at 4 to 5 months and \(97.3 \pm 11.1 \mathrm{kcal} / \mathrm{kg}\)-day at 5 to 6 months. Bottlefed infants consuming formula with an energy content of \(69 \mathrm{kcal} / \mathrm{mL}\) had energy intakes of \(95.6 \pm 13.2 \mathrm{kcal} / \mathrm{kg}\)-day at 4 to 5 months and \(92.6 \pm 15.0 \mathrm{kcal} / \mathrm{kg}\)-day at 5 to 6 months.

Prentice et al. (1988) estimated the energy requirements of 355 healthy children, ages 0 to 3 years of age, by using data on energy expenditure instead of energy intake. Data on measurements of energy expenditure using the doubly-labeled water method \({ }^{2} \mathrm{H}_{2}{ }^{18} \mathrm{O}\) from the published literature were used. This method measures total energy expenditure by following the disappearance of stable isotopes taken as an oral dose. The energy requirements estimated by Prentice et al. (1988) are 110, 95, 85, 83, 83, 84, and \(85 \mathrm{kcal} / \mathrm{kg}\)-day at \(1,3,6,9,12,24\), and 36 months, respectively.

Dewey and Lonnerdal (1983) estimated the energy content in human milk samples at 1 to 6 months post partum based on analyses of fat protein and lactose content. Mean energy content averaged 74 to \(79 \mathrm{kcal} / \mathrm{mL}\). Dewey et al (1991a) estimated that at 3 months the average energy content of breast milk is \(72.8 \pm 9.5 \mathrm{kcal} / \mathrm{mL}\). Whitehead and Paul (1991) and Axelsson et al. (1987) assumed a breast milk energy content of \(65 \mathrm{kcal} / \mathrm{mL}\) in their studies of the energy intake among breast-fed infants, and Kohler et al. (1984) estimated the energy contents of cow's milk-based and soy-based infant formulas to be \(67 \mathrm{kcal} / \mathrm{mL}\).

Frequency and Duration of Feeding - Hofvander et al. (1982) reported on the frequency of feeding among 25 bottle-fed and 25 breast-fed infants at ages 1,2 , and 3 months. The mean

Table 2-124. Energy Intake from Human Milk
\begin{tabular}{cccc}
\hline Age (months) & \begin{tabular}{c} 
Number of \\
Observations
\end{tabular} & \begin{tabular}{c} 
Energy Intake \\
kcal/day \({ }^{2}\)
\end{tabular} & \begin{tabular}{c} 
Energy Intake \\
kcal/kg/day \({ }^{2}\)
\end{tabular} \\
\hline 3 & 71 & 569 & 91.4 \\
\multirow{2}{*}{6} & 56 & \((86)\) & \((11.7)\) \\
\multirow{2}{*}{9} & 46 & 549 & 71.6 \\
& & \((120)\) & \((15.2)\) \\
\multirow{2}{*}{12} & 40 & 466 & 54.3 \\
& & \((152)\) & \((17.3)\) \\
\hline
\end{tabular}

2 Expressed as means with standard deviation in parentheses.
Source: Dewey et al., 1991b.
number of meals for these age groups was approximately 5 meals/day (Table 2-125). Neville et al. (1988) reported slightly higher mean feed frequencies. The mean number of meals per day for exclusively breast-fed infants was 7.3 at ages 2 to 5 months and 8.2 at ages 2 weeks to 1 month. Neville et al. (1988) reported that for infants between the ages of 1 -week and 5 months the average duration of a breast feeding session is \(16-18\) minutes.

Population of Nursing Infants and Duration of Breast-Feeding During Infancy According to NAS (1991), the percentage of breast-feeding women has changed dramatically over the years. Between 1936 and 1940, approximately 77 percent of infants were breast fed, but the incidence of breast-feeding fell to approximately 22 percent in 1972. The duration of breast-feeding also dropped from about 4 months in the early 1930s to 2 months in the late 1950s. After 1972, the incidence of breast-feeding began to rise again, reaching its peal at approximately 61 percent in 1982. The duration of breast-feeding also increased between 1972 and 1982. Approximately 10 percent of the mothers who initiated breast-feeding continued for at least 3 months in 1972; however, in 1984, 37 percent continued breast-feeding beyond 3 months. In 1989, breast-feeding was initiated among 52.2 percent of newborn infants, and 40 percent continued for 3 months or longer (NAS, 1991). Based on the data for 1989, only about 20 percent of infants were still breast fed by age 5 to 6 months (NAS, 1991). Data on the actual length of time that infants continue to breast-feed beyond 5 or 6 months are limited (NAS, 1991). However, Maxwell and Burmaster (1993) estimated that approximately 22 percent of infants under 1 year of age are breast-fed. This estimate is based on a reanalysis of survey data in Ryan et al. (1991) collected by Ross Laboratories (Maxwell and Burmaster, 1993). Studies have also indicated that breast-feeding practices may differ among ethnic and socioeconomic groups and among regions of the United States. The percentages of mothers who breast feed, based on ethnic background and demographic variables, are presented in Table 2-126 (NAS, 1991).

Information on differences in the quality and quantity of breast milk consumed based on ethnic or socioeconomic characteristics of the population is limited. Lonnnerdal et al. (1976) studied breast milk volume and composition (nitrogen, lactose, proteins) among underprivileged and privileged Ethiopian mothers. No significant differences were observed between the data for these two groups; and similar data for well-nourished Swedish mothers were observed.
Table 2-125. Number of Meals Per Day \begin{tabular}{c} 
DRAFT \\
DO NOT QUOTE OR \\
\hline CITE
\end{tabular}
\begin{tabular}{ccc} 
Age (months) & \begin{tabular}{c} 
Bottle-fed Infants \\
\(\left(\right.\) meals/day) \({ }^{2}\)
\end{tabular} & \begin{tabular}{c} 
Breast-fed \\
(meals/day) \(^{a}\)
\end{tabular} \\
\hline 1 & \(5.4(4-7)\) & \(5.8(5-7)\) \\
2 & \(4.8(4-6)\) & \(5.3(5-7)\) \\
3 & \(4.7(3-6)\) & \(5.1(4-8)\) \\
\hline
\end{tabular}
a Data expressed as mean with range in parentheses.
Source: Hofvander et al., 1982.

Table 2-126. Percentage of Mothers Breast-feeding Newborn Infants in the Hospital and Infants at 5 or 6 Months of Age in the United States in 1989, \({ }^{\text {a }}\) by Ethnic Background and Selected Demographic Variablesb
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Total & & White & & Black & & Hispanic \({ }^{\text {c }}\) & \\
\hline Category & Newborns & \[
5-6 \mathrm{Mo}
\]
Infants & Newborns & \[
\begin{aligned}
& 5-6 \mathrm{Mo} \\
& \text { Infants }
\end{aligned}
\] & Newborns & \begin{tabular}{l}
5-6 Mo \\
Infants
\end{tabular} & Newborns & \begin{tabular}{l}
\(5-6 \mathrm{Mo}\) \\
Infants
\end{tabular} \\
\hline All mothers & 52.2 & 19.6 & 58.5 & 22.7 & 23.0 & 7.0 & 48.4 & 15.0 \\
\hline \multicolumn{9}{|l|}{Parity} \\
\hline Primiparous & 52.6 & 16.6 & 58.3 & 18.9 & 23.1 & 5.9 & 49.9 & 13.2 \\
\hline Multiparous & 51.7 & 22.7 & 58.7 & 26.8 & 23.0 & 7.9 & 47.2 & 16.5 \\
\hline \multicolumn{9}{|l|}{Marital status 59.8} \\
\hline Married & 59.8 & 24.0 & 61.9 & 25.3 & 35.8 & 12.3 & 55.3 & 18.8 \\
\hline Unmarried & 30.8 & 7.7 & 40.3 & 9.8 & 17.2 & 4.6 & 37.5 & 8.6 \\
\hline \multicolumn{9}{|l|}{Maternal age} \\
\hline \(<20 \mathrm{yr}\) & 30.2 & 6.2 & 36.8 & 7.2 & 13.5 & 3.6 & 35.3 & 6.9 \\
\hline 20-24 yr & 45.2 & 12.7 & 50.8 & 14.5 & 19.4 & 4.7 & 46.9 & 12.6 \\
\hline 25-29 yr & 58.8 & 22.9 & 63.1 & 25.0 & 29.9 & 9.4 & 56.2 & 19.5 \\
\hline 30-34 yr & 65.5 & 31.4 & 70.1 & 34.8 & 35.4 & 13.6 & 57.6 & 23.4 \\
\hline \(\geq 35 \mathrm{yr}\) & 66.5 & 36.2 & 71.9 & 40.5 & 35.6 & 14.3 & 53.9 & 24.4 \\
\hline \multicolumn{9}{|l|}{Maternal education} \\
\hline No college & 42.1 & 13.4 & 48.3 & 15.6 & 17.6 & 5.5 & 42.6 & 12.2 \\
\hline College \({ }^{\text {d }}\) & 70.7 & 31.1 & 74.7 & 34.1 & 41.1 & 12.2 & 66.5 & 23.4 \\
\hline \multicolumn{9}{|l|}{Femily income} \\
\hline < 57,000 & 28.8 & 7.9 & 36.7 & 9.4 & 14.5 & 4.3 & 35.3 & 10.3 \\
\hline \$7,000-\$14,999 & 44.0 & 13.5 & 49.0 & 15.2 & 23.5 & 7.3 & 47.2 & 13.0 \\
\hline \$15,000-\$24,999 & 54.7 & 20.4 & 57.7 & 22.3 & 31.7 & 8.7 & 52.6 & 16.5 \\
\hline \(\geq \$ 25,000\) & 66.3 & 27.6 & 67.8 & 28.7 & 42.8 & 14.5 & 65.4 & 23.0 \\
\hline \multicolumn{9}{|l|}{Maternal employment} \\
\hline Full time & 50.8 & 10.2 & 54.8 & 10.8 & 30.6 & 6.9 & 50.4 & 9.5 \\
\hline Part time & 59.4 & 23.0 & 63.8 & 25.5 & 26.0 & 6.6 & 59.4 & 17.7 \\
\hline Not employed & 51.0 & 23.1 & 58.7 & 27.5 & 19.3 & 7.2 & 46.0 & 16.7 \\
\hline \multicolumn{9}{|l|}{U.S. census region} \\
\hline New England & 52.2 & 20.3 & 53.2 & 21.4 & 35.6 & 5.0 & 47.6 & 14.9 \\
\hline Middle Atlantic & 47.4 & 18.4 & 52.4 & 21.8 & 30.6 & 9.7 & 41.4 & 10.8 \\
\hline East North Central & 47.6 & 18.1 & 53.2 & 20.7 & 21.0 & 7.2 & 46.2 & 12.6 \\
\hline Weat North Central & 55.9 & 19.9 & 58.2 & 20.7 & 27.7 & 7.9 & 50.8 & 22.8 \\
\hline South Atlantic & 43.8 & 14.8 & 53.8 & 18.7 & 19.6 & 5.7 & 48.0 & 13.8 \\
\hline East South Central & 37.9 & 12.4 & 45.1 & 15.0 & 14.2 & 3.7 & 23.5 & 5.0 \\
\hline West South Central & 46.0 & 14.7 & 56.2 & 18.4 & 14.5 & 3.8 & 39.2 & 11.4 \\
\hline Mountain & 70.2 & 30.4 & 74.9 & 33.0 & 31.5 & 11.0 & 53.9 & 18.2 \\
\hline Pacific & 70.3 & 28.7 & 76.7 & 33.4 & 43.9 & 15.0 & 58.5 & 19.7 \\
\hline
\end{tabular}
a Mothers were surveyed when their infants were 6 months of age. They were asked to recall the method of feeding the infa when in the hospital, at age 1 week, at months 1 through 5 , and on the day preceding completion of the survey. Numbers the columns labeled "5-6 Mo Infants" are an average of the 5-month and previous day responses.
b Based on data from Ross Laboratories.
c Hispanic is not exclusive of white or black.
d College includes all women who reported completing at least 1 year of college.

> DO NOT QUOTE OR \(\therefore\) CITE

Lōnnerdal et al. (1976) stated that these results indicate that breast milk quality and quantity are not affected by maternal malnutrition. However, Brown et al. (1986a; 1986b) noted that the lactational capacity and energy concentration of marginally-nourished women in Bangladesh were "modestly less than in better nourished mothers." Breast milk intake rates for infants of marginally-nourished women in this study were \(690 \pm 122 \mathrm{~g} /\) day at 3 months, \(722 \pm 105 \mathrm{~g} / \mathrm{day}\) at 6 months, and \(719 \pm 119 \mathrm{~g} /\) day at 9 months of age (Brown et al., 1986a). Brown et al. (1986a) observed that breast milk from women with larger measurements of arm circumference and triceps skinfold thickness had higher concentrations of fat and energy than mothers with less body fat. Positive correlations between maternal weight and milk fat concentrations were also observed. These results suggest that milk composition may be affected by maternal nutritional status.

\subsection*{2.5.6. Recommendations}

The key studies described in this section were used in selecting recommended values for breast milk intake, fat content and fat intake, and other related factors. Although different survey designs, testing periods, and populations were utilized by the key and relevant studies to estimate intake, the mean and standard deviation estimates reported in these studies appear to be relatively consistent. The general design of both key and relevant studies and their limitations are summarized in Table 2-127. It should be noted that most of the intake studies cited in this report were based on the test weighing method. The validity of this method has been demonstrated by Neville et al. (1988). In addition, the population who participated in all the intake studies were well educated and with middle to upper socioeconomic status.

Breast milk intake - The breast milk intake rates for nursing infants that have been reported in the key studies described in this section are summarized in Table 2-128. Based on the combined results of these studies, \(730 \mathrm{~mL} /\) day appears to represent an average breast milk intake rate, and \(1,029 \mathrm{~mL} /\) day represents an upper-percentile intake rate (based on the mean plus 2 standard deviations) for infants between the ages of 1 and 6 months of age. This value is the mean of the average intakes at 1,3 , and 6 months from the key studies listed in Table 2-128. It is consistent with the average intake rate of 718 to 777 mL /day estimated by NAS (1991) for infants during the first 4 to 5 months of life. Intake among older infants is somewhat lower,

Table 2-127. Breast Milk Intake Studies


Table 2-127. Breast Milk Intake Studies (continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Study & Number of Individuals & Type of Feeding & Sampling Time and Interval & Population Studied & Comments \\
\hline Köhler et al., 1984 & 59 & 25 fully breast-fed and 34 formula-fed infants & Studied over 48 -hour periods at 6, 14, 22, and 26 weeks of age & Swedish infants & Estimated breast milk and formulk intake; no corrections for insensible water loss among breast-fed infants; estimated energy intake \\
\hline Maxwell and Burmastor, 1993 & 1,113 & Population of 1,113 breast-fed infants based on a hypothetical population of 5,000 breast-fed and bottlefed infunts & NA & NA & Simulated distribution of breast milk intake based on data from Dewey 1991a; estimated percent of breastfed infintst under \(\mathbf{i 2}\) montưns of age \\
\hline NAS, 1991 & NA & Breast-fed infants & NA & NA & Summarizes current stato-of-knowledge on breast milk volume, composition and breast-feeding populations \\
\hline Neville ot al., 1988 & 13 & Exclusively breastfed infants & Infants studied over 24-hour period at each sampling interval; numerous sampling intervals over first year of life & \begin{tabular}{l}
Nonsmoking \\
Caucasian \\
mothers; \\
middle- to \\
upper- \\
socioeconomic \\
status
\end{tabular} & Estimated breast milk intako and lipid intake; corrected for insensible water loss; estimated frequency and duration of feeding \\
\hline Pao et al., 1980 & 22 & Completely or partially breast-fed infents & Three consecutive days at 1, 3, 6, and 9 months & White middle class from southeastern Ohio & Estimated breast milk intake; did not correct for insensible water loss \\
\hline
\end{tabular}

Table 2-128. Breast Milk Intake Rates Derived From Key Studies
\begin{tabular}{|c|c|c|}
\hline Mean (mL/day) & \[
\begin{gathered}
\text { Upper Percentile } \\
\text { (mL/day) } \\
\text { (mean plus 2 standard } \\
\text { deviations) }
\end{gathered}
\] & Reference \\
\hline \multicolumn{3}{|l|}{1 Month} \\
\hline 600 & 918 & Pao et al., 1980 \\
\hline 729 & 987 & Butte et al., 1984 \\
\hline 747 & 1,095 & Neville et al., 1988 \\
\hline 673 & 1,057 & Dewey and Lönnerdal, 1983 \\
\hline \(\mathrm{ave}=687\) & 1,014 & \\
\hline \multicolumn{3}{|l|}{3 Months} \\
\hline 833 & - & Pao et al., 1980 \\
\hline 702 & 924 & Butte et al., 1984 \\
\hline 712 & 934 & Neville et al., 1988 \\
\hline 782 & 1,126 & Dewey and Loznnerdal, 1983 \\
\hline 788 & 1,046 & Dewey et al., 1991b \\
\hline ave \(=763\) & 1,008 & \\
\hline \multicolumn{3}{|l|}{6 Months} \\
\hline 682 & - & Pao et al., 1980 \\
\hline 744 & 978 & Neville et al., 1988 \\
\hline 896 & 1,140 & Dewey and Lonnerdal, 1983 \\
\hline 747 & 1,079 & Dewey et al., 1991b \\
\hline ave \(=739\) & 1,065 & \\
\hline 9 Months & & \\
\hline 600 & 1,027 & Neville et al., 1988 \\
\hline 627 & 1,049 & Dewey et al., 1991b \\
\hline ave \(=614\) & 1,038 & \\
\hline \multicolumn{3}{|l|}{12 Months} \\
\hline 391 & 877 & Neville et al., 1988 \\
\hline 435 & 923 & Dewey et al., 1991a; 1991b \\
\hline ave \(=413\) & 900 & \\
\hline 12-MONTH TIME WEIGHTED AVERAGE 678 & 1,022 & \\
\hline
\end{tabular}
averaging \(413 \mathrm{~mL} /\) day for 12 -month olds (Neville et al. 1988; Dewey et al. 1991; 1991b). When a time weighted average is calculated for the 12 -month period, average breast milk intake is approximately \(678 \mathrm{~mL} /\) day, and upper-percentile intake is approximately \(1,022 \mathrm{~mL} /\) day. Therefore, the recommended mean breast milk intake rate is \(730 \mathrm{~mL} /\) day for infants under 6 months of age and \(678 \mathrm{~mL} /\) day for infants under 1 year of age. The recommended upperpercentile breast milk intake rate is \(1,029 \mathrm{~mL} /\) day for infants under 6 months and \(1,022 \mathrm{~mL}\) /day at 12 months of age.

Lipid Content and Lipid Intake - Recommended lipid intake rates are based on data from Butte et al. (1984) and Maxwell and Burmaster (1993). Butte et al. (1984) estimated that average lipid intake ranges from \(23.6 \pm 7.2 \mathrm{~g} /\) day ( \(22.9 \pm 7.0 \mathrm{~mL} /\) day ) to \(28.0 \pm 8.5 \mathrm{~g} /\) day ( \(27.2 \pm 8.3 \mathrm{~mL} /\) day) between 1 and 4 months of age. These intake rates are consistent with those observed by Burmaster and Maxwell (1993) for infants under 1 year of age \([(26.8 \pm 7.4\) \(\mathrm{g} /\) day ( \(26.0 \pm 7.2 \mathrm{~mL} / \mathrm{day}\) )]. Therefore, the recommended breast milk lipid intake rate for infants under 1 year of age is \(26.0 \mathrm{~mL} /\) day and the upper-percentile value is \(40.4 \mathrm{~mL} /\) day (based on the mean plus 2 standard deviations). The recommended value for breast milk fat content is 4.0 percent based on data from NAS (1991) and Butte et al. (1984).

\subsection*{2.6. INTAKE OF FISH AND SHELLFISH}

\subsection*{2.6.1. Background}

Contaminated fish and shellfish are potential sources of human exposure to toxic chemicals. Pollutants are carried in the surface waters, but may also be stored and accumulated in the sediments as a result of complex physical and chemical processes. Consequently, fish and shellfish are exposed to these pollutants and may become sources of contaminated food.

Accurately estimating exposure to a toxic chemical among a population that consumes fish from a polluted water body requires an estimation of intake rates of the caught fish by both fishermen and their families. Commercially caught fish are marketed widely, making the prediction of an individual's consumption from a particular commercial source difficult. Since the catch of recreational and subsistence fishermen is not "diluted" in this way, these individuals and their families represent the population that is most vulnerable to exposure by intake of contaminated fish from a specific location.

This section focuses on the intake rates of fish and shellfish. The following sections address intake rates for the general population, recreational, and subsistence fishermen. Data are presented for intake rates for both marine and freshwater fish when available. The available studies have been classified as either key or relevant studies based on the applicability of their survey designs to exposure assessment needs. Recommended intake rates are based on the results of key studies, but other relevant studies are also presented to provide the reader with added perspective on the current state-of-knowledge pertaining to fish intake.

Survey data on fish consumption has been collected using a number of different approaches which need to be considered in interpreting the survey results. Generally, surveys are either "creel" studies in which fishermen are interviewed while fishing or broader population surveys using either mailed questionnaires or phone interviews. Both types of data can be useful for exposure assessment purposes, but somewhat different applications and interpretations are needed.

Creel studies address individuals actively involved in recreational or subsistence
fishing. In principle, a creel study can be thought of as a representative study of fishing effort, i.e., fishermen hours expended at a site. \({ }^{1}\) As such, the respondents will tend to be relatively frequent fishermen who contribute substantially to the overall fishing effort in the survey area. For example, in a day long survey at a site, there will be an opportunity to interview everyone who fish there daily, but only a small fraction of the fishermen who fish there only once each year.

In contrast, general population surveys sample people without respect to their activity (or lack thereof) in fishing. For example, a survey conducted by random digit dialing would yield a sample of all people who have phones, most of whom will not be active fishermen, i.e., the median frequency of recreational fishing in the general population will be zero. Similarly, a mail survey of licensed fishermen will include all people who have legal permission to fish (some of whorn may not be active fishermen). In some cases, the majority of licensed fishermen in a survey will fish only occasionally, e.g., the median fishing frequency would be very low. In such a case, the upper tail of the distribution (frequent fishermen) would contribute the majority of fishing effort.

Both creel and broadly-based population survey data can be applied in exposure assessments addressing fish consumption. For example, using creel survey data, individuals at or below the median fishing frequency can be thought of as contributing 50 percent to the overall fishing effort. Similarly, individuals at or above the 90th percentile fishing frequency would be those frequent fishermen who contributed 10 percent to the overall fishing effort. \({ }^{1}\)

\footnotetext{
\({ }^{1}\) Note that the interpretation of creel surveys as representing fishing effort in an area, while conceptually useful may not correspond with practice in all creel surveys. If creel data are to be used as a statistical representation of fishing effort in an area: (1) A survey approach would need to achieve similar likelihood that individuals fishing in different areas in the region would be sampled. (2) Temporal representativeness also must be achieved. (3) A specified protocol is needed for individuals encountered on multiple survey visits. If individuals are only surveyed once, as the number of survey periods increases, the survey data will begin to resemble a population survey of all individuals who ever fish and will not represent fishing effort. Finally, if the survey obtains data on the current catch of respondents, it should be recognized that additional fish may be caught before the end of the fishing session, and that that day's catch may not be typical of the fisherman's usual catch.
}

Data from a general population survey or a survey of all licensed fishermen, can be particularly useful in an assessment that seeks to estimate the number of individuals in a population having specified fishing frequency or fish consumption rates. Direct use of percentile data from population surveys can be misleading because, as noted above, infrequent fishermen can represent the majority of a surveyed population but may contribute only modestly to the overall fishing effort (and fish consumption). Population survey data categorized by fishing frequency can be a useful assessment tool, and this approach is utilized in some of the analyses presented in this handbook.

The U.S. EPA has prepared a review of and an evaluation of five different survey methods used for obtaining fish consumption data. They are:
- Recall-Telephone Survey;
- Recall-Mail Survey;
- Recall-Personal Interview;
- Diary; and
- Creel Census.

The reader is referred to U.S. EPA 1992-Consumption Surveys for Fish and Shellfish for more detail on these survey methods and their advantages and limitations.

\subsection*{2.6.2. Key General Population Studies}

Javitz - Seafood Consumption Analysis - Javitz (1980) investigated human fish consumption by evaluating the data in the balance sheets of the National Marine Fisheries Service (NMFS); 1965-1966 and 1977-1978 National Food Consumption Surveys (USDANFCS); 1969-1970 NMFS Market Facts Survey; and the Tuna Research Institute Survey (TRD) conducted by the National Purchase Diary (NPD). Of the 4 surveys, the most reliable data source was determined by Javitz to be the survey data funded by the TRI and conducted by NPD. Later, NMFS received permission from TRI to obtain the data. The TRI survey was conducted from September 1973 through August 1974. The sample included 6,980 families who were currently participating in a syndicated national purchase diary panel; 2,400 additional families where the head of household was female, and under 35 years old; and 210 additional Black families (Javitz, 1980). Of the 9,590 families in the total sample, 7,662 families ( 25,162 individuals) completed the questionnaire, a response rate of 80
percent. The survey questionnaire was designed to collect information for one month from each individual. The survey population was divided into 12 different sample segments and data were collected for each of the 12 months from a different sample segment.

The survey data included the date the fish meal was consumed, species of fish consumed, and how packaged (canned, frozen, fresh, dried, smoked) (Javitz, 1980). It also included whether fresh fish were recreationally or commercially caught, number of servings consumed by family and guest, amount of fish prepared, and the amount of fish not consumed. Additionally, meals eaten at home and away from home were also recorded. According to Javitz (1980), the amount of fish prepared was determined as follows: "For fresh fish, the weight was recorded in ounces and may have included the weight of the head and tail. For frozen fish, the weight was recorded in packaged ounces, and it was noted whether the fish was breaded or combined with other ingredients (e.g., TV dinners). For canned fish, the weight was recorded in packaged ounces and it was noted whether the fish was canned in water, oil, or with other ingredients (e.g., soups)."

Javitz (1980) calculated means and 95th percentiles of monthly fish consumption for fish consumers in the United States (assumed to be 94 percent of the population) using the data from the TRI survey. The overall mean intake rate was calculated at \(14.3 \mathrm{~g} /\) day and the 95th percentile intake rate at \(41.7 \mathrm{~g} /\) day (Javitz 1980). The calculated intake rates represent consumption patterns of the respondents who consumed fish in their one month survey. These survey respondents are estimated to represent, on a weighted basis, 94.0 percent of the U.S. population (Javitz, 1980). The sample was weighted to represent the U.S. population based on a number of census-defined controls (i.e., census region, household size, income, children, race, and age). The calculation of means, percentiles, and percentages was performed on a weighted basis with each person contributing to the mean in proportion to his/her assigned survey weight (Javitz, 1980).

The weighted mean and 95th percentile total fish intake rates calculated by Javitz (1980) are presented by demographic variables (race, sex, age, and census region) in Table 2-129. The method used to calculate these data is presented in Appendix 2C. The mean consumption of fish by Asian-American people is higher ( \(21 \mathrm{~g} / \mathrm{d}\) ) than that of other groups (Table 2-129). Other obvious differences in intake rates are those between gender
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Demographic category} & \multicolumn{2}{|r|}{Intake (a/person/day)} \\
\hline & Mean & 95th percentile \\
\hline \multicolumn{3}{|l|}{Race} \\
\hline Caucasian & 14.2 & 41.2 \\
\hline Black & 16.0 & 45.2 \\
\hline Oriental & 21.0 & 67.3 \\
\hline Other & 13.2 & 29.4 \\
\hline \multicolumn{3}{|l|}{Sex} \\
\hline Female & 13.2 & 38.4 \\
\hline Male & 15.6 & 44.8 \\
\hline \multicolumn{3}{|l|}{Age (years)} \\
\hline 0-9 & 6.2 & 16.5 \\
\hline 10-19 & 10.1 & 26.8 \\
\hline 20-29 & 14.5 & 38.3 \\
\hline 30-39 & 15.8 & 42.9 \\
\hline 40-49 & 17.4 & 48.1 \\
\hline 50-59 & 20.9 & 53.4 \\
\hline 60-69 & 21.7 & 55.4 \\
\hline 70+ & 13.3 & 39.8 \\
\hline \multicolumn{3}{|l|}{Census Region} \\
\hline New England & 16.3 & 46.5 \\
\hline Middle Atlantic & 16.2 & 47.8 \\
\hline East North Central & 12.9 & 36.9 \\
\hline West North Central & 12.0 & 35.2 \\
\hline South Atlantic & 15.2 & 44.1 \\
\hline East South Central & 13.0 & 38.4 \\
\hline West South Central & 14.4 & 43.6 \\
\hline Mountain & 12.1 & 32.1 \\
\hline Pacific & 14.2 & 39.6 \\
\hline
\end{tabular}
a The calculations in this table are based upon the respondents to the TRI Survey who consumed fish in the month of the survey. TRI estimates that these respondents represent, on a weighted basis, 94.0 percent of the population of U.S. residents (See Appendix 2B).

Source: Javitz, 1980.
and between age groups. While males eat ( \(15.6 \mathrm{~g} / \mathrm{d}\) ) slightly more fish than females (13.2 \(\mathrm{g} / \mathrm{d}\) ), and adults eat more fish than children, the corresponding difference in body weights would probably compensate for the different intake rates in exposure calculations (Javitz, 1980). There appeared to be no large differences in regional intake rates, although higher rates are shown in the New England and Middle Atlantic Census Regions (Javitz, 1980). The average and 95 th percentile intake rates by age and gender are presented in Table 2-130. Tables 2-131 and 2-132 present the distribution of fish consumption for females and males, respectively, by age. Data are presented by the percentage of females/males in an age bracket who consume, on average, a specified amount (grams) of fish per day. Tables 2-133 through Table 2-136 present estimates of average fish intake rates as mean and 95 th percentile for females and males by age, race, and census region. Table 2-137 presents mean total fish consumption by species.

Although Javitz (1980) concluded that the TRI data used were the most reliable data, he noted that the Market Facts Survey results were useful in estimating mean consumption. Market Facts Inc., under contract with NMFS, conducted a fish consumption survey starting in February 1969. A total of 1,586 households (4,864 participants) were selected at random from a large panel designed to parallel the U.S. census data with respect to population density, degree or urbanization, geographic region, household income and age. The head of the household completed a diary of fish purchases twice a month for 12 months. The fish diaries reported included purchases of fish products by item and weight, numbers of fish meals eaten away from home by item, and the number of meals consumed at home prepared from sport fish species. Data on fish consumption for each individual in the household were not obtained. Instead, individual consumption was estimated by dividing the total household consumption by the number of household members. Using these data, the average mean per capita intake was calculated to be \(16.8 \mathrm{~g} /\) day (Javitz, 1980). Higher intake rates were reported for Jews at \(33.9 \mathrm{~g} /\) day and for Blacks at \(28.7 \mathrm{~g} / \mathrm{day}\). These data are shown in Table 2-138. Limitations and advantages associated with the study of Javitz (1980) are inherent to the data of the TRI survey.

A limitation of the study is that the questionnaire was administered to one-twelfth of the sample during each of the 12 months of the survey. Therefore, the data are consumption

Table 2-130. Average and 95th Percentile of Fish Consumption (g/day) by Sex and Age \({ }^{\text {a }}\)
\begin{tabular}{llcc}
\hline & & \multicolumn{1}{c}{ Total Fish } \\
\hline & Age (years) & Mean & \\
Female & \(0-9\) & 6.1 & 95 th Percentile \\
& \(10-19\) & 9.0 & 17.3 \\
& \(20-19\) & 13.4 & 25.0 \\
& \(30-39\) & 14.9 & 44.5 \\
& \(40-49\) & 16.7 & 49.8 \\
& \(50-59\) & 19.5 & 50.1 \\
& \(60-69\) & 19.0 & 46.3 \\
Male & \(70+\) & 10.7 & 31.7 \\
& \(0-9\) & 6.3 & 15.8 \\
& \(10-19\) & 11.2 & 29.1 \\
& \(20-19\) & 16.1 & 43.7 \\
& \(30-39\) & 17.0 & 45.6 \\
& \(40-49\) & 18.2 & 57.7 \\
& \(50-59\) & 22.8 & 61.5 \\
& \(60-69\) & 15.4 & 45.7 \\
& \(70+\) & 14.3 & 41.7 \\
\hline
\end{tabular}

2 The calculations in this table are based upon the respondents to the TRI survey who consumed fish in the month of the survey. TRI estimates that these respondents represent, on a weighted basis, \(94.0 \%\) of the population of U.S. residents.

Source: Javitz, 1980.

Table 2-131. Percent Distribution of Total Fish Consumption for Females by Agea
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{11}{|c|}{Consumption Category (g/day)} \\
\hline & 0.0-5.0 & 5.1-10.0 & 10.1-15.0 & 15.1-20.0 & 20.1-25.0 & 25.1-30.0 & 30.1-37.5 & 37.6-47.5 & 47.6-60.0 & 60.1-122.5 & over 122.5 \\
\hline Age (yrs) & \multicolumn{11}{|c|}{Percentage} \\
\hline 0-9 & 55.5 & 26.8 & 11.0 & 3.7 & 1.0 & 1.1 & 0.7 & 0.3 & 0.0 & 0.0 & 0.0 \\
\hline 10-19 & 17.8 & 31.4 & 15.4 & 6.9 & 3.5 & 2.4 & 1.2 & 0.7 & 0.2 & 0.4 & 0.0 \\
\hline 20-29 & 28.1 & 26.1 & 20.4 & 11.8 & 6.7 & 3.5 & 4.4 & 2.2 & 0.9 & 0.9 & 0.0 \\
\hline 30-39 & 22.4 & 23.6 & 18.0 & 12.7 & 8.3 & 4.8 & 3.8 & 2.8 & 1.9 & 1.7 & 0.1 \\
\hline 40-49 & 17.5 & 21.9 & 20.7 & 13.2 & 9.3 & 4.5 & 4.6 & 2.8 & 3.4 & 2.1 & 0.2 \\
\hline 50-59 & 17.0 & 17.4 & 16.8 & 15.5 & 10.5 & 8.5 & 6.8 & 5.2 & 4.2 & 2.0 & 0.2 \\
\hline 60-69 & 11.5 & 16.9 & 20.6 & 15.9 & 9.1 & 9.2 & 6.0 & 6.1 & 2.4 & 2.1 & 0.2 \\
\hline 70+ & 41.9 & 22.1 & 12.3 & 9.7 & 5.2 & 2.9 & 2.6 & 1.2 & 0.8 & 1.2 & 0.1 \\
\hline Overall & 28.9 & 24.0 & 16.8 & 10.7 & 6.4 & 4.3 & 3.5 & 2.4 & 1.6 & 1.2 & 0.1 \\
\hline
\end{tabular}
a The percentage of females in an age bracket who consume, on average, a specified amount (grams) of fish per day.
The calculations in this table are based upon the respondents to the TRI survey who consumed fish in the month of the survey. TRI estimates that these respondents represent, on a weighted basis, \(94.0 \%\) of the population of U.S. residents.

Source: Javitz, 1980.

Table 2-132. Percent Distribution of Total Fish Consumption for Males by Age
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{11}{|c|}{Consumption Category (g/day)} \\
\hline & 0.0-5.0 & 5.1-10.0 & 10.1-15.0 & 15.1-20.0 & 20.1-25.0 & 25.1-30.0 & 30.1-37.5 & 37.6-47.5 & 47.6-60.0 & 60.1-122.5 & over 122.5 \\
\hline Age (yrs) & \multicolumn{11}{|c|}{Percentage} \\
\hline 0-9 & 52.1 & 30.1 & 11.9 & 3.1 & 1.2 & 0.6 & 0.7 & 0.1 & 0.2 & 0.1 & 0.0 \\
\hline 10-19 & 27.8 & 29.3 & 19.0 & 10.4 & 6.0 & 3.2 & 1.7 & 1.7 & 0.4 & 0.5 & 0.0 \\
\hline 20-29 & 16.7 & 22.9 & 19.6 & 14.5 & 8.8 & 6.2 & 4.4 & 3.1 & 1.9 & 1.9 & 0.1 \\
\hline 30-39 & 16.6 & 21.2 & 19.2 & 13.2 & 9.5 & 7.3 & 5.2 & 3.2 & 1.3 & 2.2 & 0.0 \\
\hline 40-49 & 11.9 & 22.3 & 18.6 & 14.7 & 8.4 & 8.5 & 5.3 & 5.2 & 3.3 & 1.7 & 0.1 \\
\hline 50-59 & 9.9 & 15.2 & 15.4 & 14.4 & 10.4 & 9.7 & 8.7 & 7.6 & 4.3 & 4.1 & 0.2 \\
\hline 60-69 & 7.4 & 15.0 & 15.6 & 12.8 & 11.4 & 8.5 & 9.9 & 8.3 & 5.5 & 5.5 & 0.1 \\
\hline 70+ & 24.5 & 21.7 & 15.7 & 9.9 & 9.8 & 5.3 & 5.4 & 3.1 & 1.7 & 2.8 & 0.1 \\
\hline Overall & 22.6 & 23.1 & 17.0 & 11.3 & 7.7 & 5.7 & 4.6 & 3.6 & 2.2 & 2.1 & 0.1 \\
\hline
\end{tabular}

2 The percentage of males in an age bracket who consume, on average, a specified amount (grams) of fish per day.
The calculations in this table are based upon the respondents to the TRI survey who consumed fish in the month of the survey. TRI estimates that these respondents represent, on a weighted basis, \(94.0 \%\) of the population of U.S. residents.

Source: Javitz, 1980.


Table 2－133．Average Fish Consumption（g／day）for Femalest
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Demographic Category & \multicolumn{9}{|c|}{Age（years）} \\
\hline & 0－9 & 10－19 & 20－29 & 30－39 & 40－49 & 50－59 & 60－69 & \(70+\) & \\
\hline \multicolumn{10}{|l|}{Race} \\
\hline Caucasian & 6.0 & 8.7 & 12.9 & 14.7 & 16.5 & 19.3 & 19.0 & 10.7 & \\
\hline Black & 8.5 & 10.9 & 20.7 & 16.5 & 20.5 & 24.4 & 19.5 & 12.9 & \\
\hline Oriental & 9.1 & 24.0 & 17.4 & 27.7 & 22.5 & 18.4 & 8.3 & － & \\
\hline Other & 8.4 & 11.7 & 14.2 & 26.3 & 10.9 & 22.5 & 17.3 & 6.8 & \\
\hline \multicolumn{10}{|l|}{Census Region} \\
\hline New England & 7.2 & 9.8 & 14.0 & 15.8 & 20.8 & 24.1 & 22.1 & 12.7 & \\
\hline Middle Atlantic & 6.2 & 10.0 & 14.0 & 17.3 & 18.7 & 21.7 & 22.9 & 11.2 & \\
\hline East North Central & 5.9 & 8.0 & 12.9 & 14.2 & 14.8 & 17.9 & 16.8 & 10.1 & \\
\hline West North Central & 5.0 & 7.5 & 12.0 & 13.5 & 13.8 & 16.8 & 17.2 & 8.9 & \\
\hline South Allantic & 6.2 & 9.0 & 14.1 & 14.4 & 18.9 & 21.3 & 18.8 & 11.4 & \\
\hline East South Central & 6.1 & 7.8 & 13.4 & 13.7 & 15.2 & 15.5 & 19.4 & 12.4 & \\
\hline West South Central & 6.4 & 11.2 & 13.3 & 16.7 & 17.6 & 17.6 & 16.8 & 11.7 & \\
\hline Mountain & 5.9 & 9.0 & 12.9 & 13.1 & 13.3 & 15.3 & 15.8 & 12.1 & \\
\hline Pacific & 6.4 & 8.7 & 13.5 & 13.6 & 15.2 & 20.3 & 18.5 & 9.2 & \\
\hline \multicolumn{10}{|l|}{Community Type} \\
\hline Outside Central City 250 K －500K & 5.2 & 8.6 & 12.1 & 14.0 & 20.5 & 14.8 & 17.0 & 8.9 & \\
\hline Central City \(250 \mathrm{~K}-500 \mathrm{~K}\) & 7.0 & 7.0 & 12.6 & 15.6 & 13.3 & 21.9 & 18.0 & 11.2 & \％ \\
\hline Rural，non－SMSA & 5.5 & 7.7 & 11.9 & 13.2 & 14.2 & 15.2 & 18.1 & 11.5 & \(x^{0}\) i \\
\hline Central City， 2 M or more & 9.0 & 11.7 & 17.5 & 17.0 & 21.7 & 26.7 & 22.7 & 11.1 & 7 \％ \\
\hline Outside Central City，2M or & 6.8 & 11.4 & 16.3 & 16.9 & 20.1 & 20.4 & 18.5 & 10.4 & \(\bigcirc^{\circ}{ }^{\text {H0 }}\) \\
\hline more & 6.8 & 9.3 & 13.5 & 17.0 & 16.8 & 24.6 & 23.7 & 12.1 & Ho \\
\hline Central City 1M－2M & 6.3 & 8.7 & 12.9 & 13.7 & 14.7 & 20.7 & 22.7 & 11.2 & 聞宁炣 \\
\hline Outside Central City 1M－2M & 6.2 & 9.6 & 13.3 & 17.4 & 14.8 & 20.3 & 18.3 & 9.8 & \({ }_{\text {¢ }}^{\text {¢ }}\) \\
\hline Central City 500K－1M & 6.2 & 9.2 & 13.2 & 14.3 & 18.6 & 20.0 & 18.9 & 9.9 & （－1 \\
\hline Outside Central City 500K－1M & 5.5 & 7.5 & 14.9 & 16.3 & 16.1 & 15.3 & 18.4 & 9.7 & 9 \\
\hline Central City 50K－250K & 3.8 & 5.2 & 12.7 & 12.8 & 11.0 & 16.9 & 15.8 & 9.8 & \\
\hline Outside Central City 50K－250K Other urban & 5.9 & 8.7 & 12.4 & 13.7 & 15.3 & 17.9 & 17.4 & 10.8 & \\
\hline
\end{tabular}

\footnotetext{
2 The calculations in this table are based upon the respondeats to the TRI survey who consumed fish in the month of the survey．TRI estimates that these respondents represent，on a weighted basis， \(94.0 \%\) of the population of U．S．residents．
}

\footnotetext{
Source：Javitz， 1980.
}

Table 2－134．95th Porcentile of Fish Conumption（e／day）for Females＇
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Demographic Calegory} & \multicolumn{9}{|c|}{Age（years）} \\
\hline & 0－9 & 10－19 & 20－29 & 30－39 & 40－49 & 50－59 & 6069 & 70＋ & \\
\hline \multicolumn{10}{|l|}{Race} \\
\hline Caucasian & 16.5 & 23.7 & 33.5 & 41.1 & 48.1 & 49.3 & 46.3 & 31.7 & \\
\hline Bleck & 23.4 & 29.2 & 55.6 & 44.4 & 53.3 & 55.1 & 38.5 & 24.9 & \\
\hline Oriental & 17.6 & 74.5 & 42.5 & 135.9 & 151.6 & 55.1 & 10.8 & － & \\
\hline Other & 19.6 & 35.9 & 56.7 & 119.6 & 24.6 & 26.5 & 17.3 & 15.4 & \\
\hline \multicolumn{10}{|l|}{Census Repion} \\
\hline New England & 18.9 & 23.5 & 31.3 & 40.2 & 46.8 & 55.9 & 60.3 & 30.8 & \\
\hline Middle Atlantic & 15.2 & 27.2 & 34.2 & 54.2 & 50.2 & 54.4 & 62.3 & 39.3 & \\
\hline East North Central & 21.5 & 20.9 & 34.1 & 42.2 & 46.6 & 49.4 & 38.7 & 30.2 & \\
\hline West North Central & 12.4 & 21.6 & 34.3 & 36.8 & 39.5 & 46.0 & 39.1 & 25.0 & \\
\hline South Atlantic & 15.8 & 23.7 & 36.0 & 39.7 & 52.6 & 52.4 & 42.6 & 32.9 & \\
\hline East South Central & 15.3 & 20.0 & 33.1 & 35.2 & 43.9 & 38.4 & 48.7 & 26.5 & \\
\hline West South Central & 16.8 & 31.9 & 31.6 & 48.4 & 54.9 & 44.5 & 46.3 & 40.2 & \\
\hline Mountain & 18.8 & 25.9 & 37.6 & 30.8 & 34.1 & 50.1 & 42.8 & 41.6 & \\
\hline Pacific & 18.4 & 20.7 & 38.4 & 31.6 & 46.5 & 46.0 & 46.2 & 23.9 & \\
\hline \multicolumn{10}{|l|}{Community Type} \\
\hline Outside Central City \(250 \mathrm{~K}-500 \mathrm{~K}\) & 13.5 & 23.1 & 31.9 & 28.1 & 89.1 & 36.4 & 41.8 & 25.1 & \\
\hline Central City \(250 \mathrm{~K}-500 \mathrm{~K}\) & 19.1 & 19.0 & 34.9 & 40.8 & 46.1 & 58.9 & 46.3 & 38.4 & ¢ \\
\hline Rural，non－SMSA & 14.5 & 21.9 & 30.4 & 41.8 & 38.8 & 39.7 & 48.9 & 35.4 & 56 \\
\hline Central City，2M or more & 30.8 & 34.3 & 50.6 & 42.2 & 54.5 & 64.2 & 52.9 & 54.1 &  \\
\hline Outside Central City，2M or & 17.5 & 31.3 & 41.8 & 48.6 & 61.5 & 50.3 & 46.1 & 33.6 & 皿号 \\
\hline more & 20.6 & 25.3 & 32.5 & 53.6 & 40.5 & 52.5 & 50.2 & 34.1 &  \\
\hline Central City 1M－2M & 17.6 & 21.1 & 37.6 & 37.2 & 34.9 & 46.0 & 42.7 & 34.2 & HOB \\
\hline Outside Central City 1M－2M & 15.4 & 26.2 & 32.9 & 48.4 & 35.3 & 50.0 & 44.6 & 24.4 & 号 \\
\hline Central City \(500 \mathrm{~K}-1 \mathrm{M}\) & 18.5 & 23.0 & 33.8 & 41.1 & 50.8 & 56.2 & 64.6 & 30.2 & \[
0
\] \\
\hline Outside Central City 500K－1M & 14.5 & 21.8 & 36.2 & 53.7 & 44.5 & 43.1 & 38.7 & 30.8 & T0 \\
\hline Central City 50K－250K & 12.3 & 14.6 & 25.9 & 28.7 & 34.1 & 33.1 & 38.4 & 31.7 & \\
\hline Outside Central City 50K－250K Other urban & 17.2 & 26.7 & 33.1 & 35.2 & 46.6 & 48.6 & 48.7 & 30.5 & \\
\hline
\end{tabular}

2 The calculations in this table are based upon the respondents to the TRI survey who consumed fish in the month of the survey．TRI eatimates that these respondents represent，on a weighted basis， \(94.0 \%\) of the population of U．S．residents．

Source：Javitz，1980．Javitz， 1980.

Table 2－135．Average Fish Consumption（g／day）for Males
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Demographic Category} & \multicolumn{9}{|c|}{Age（years）} \\
\hline & 0－9 & 10－19 & 20－29 & 30－39 & 40－49 & 50－59 & 60－69 & 70＋ & \\
\hline \multicolumn{10}{|l|}{Race} \\
\hline Caucasian & 6.1 & 11.1 & 15.8 & 16.9 & 17.9 & 22.7 & 24.3 & 15.8 & \\
\hline Black & 7.9 & 12.7 & 20.7 & 18.1 & 22.2 & 24.5 & 26.7 & 15.4 & \\
\hline Oriental & 13.8 & 12.9 & 17.0 & 24.8 & 34.6 & 24.6 & 46.3 & 20.8 & \\
\hline Other & 7.3 & 10.7 & 19.5 & 13.1 & 15.5 & 12.2 & 30.0 & 12.7 & \\
\hline \multicolumn{10}{|l|}{Census Region} \\
\hline New England & 6.3 & 13.7 & 18.6 & 17.4 & 19.9 & 27.3 & 32.7 & 17.4 & \\
\hline Middle Atlantic & 6.7 & 11.5 & 17.0 & 19.8 & 19.9 & 26.4 & 28.7 & 17.1 & \\
\hline East North Central & 6.3 & 10.1 & 14.2 & 14.7 & 15.1 & 20.3 & 21.6 & 16.0 & \\
\hline Wesi North Central & 5.0 & 9.7 & 13.3 & 12.2 & 15.2 & 22.1 & 20.4 & 13.3 & \\
\hline South Atlantic & 6.3 & 12.4 & 16.6 & 18.5 & 21.1 & 22.3 & 25.4 & 17.5 & \\
\hline East South Central & 7.1 & 8.2 & 16.0 & 14.7 & 15.2 & 17.3 & 23.7 & 14.9 & \\
\hline West South Central & 6.7 & 12.9 & 19.1 & 19.2 & 18.9 & 18.3 & 19.9 & 16.0 & \\
\hline Mountain & 5.3 & 11.4 & 14.4 & 15.4 & 15.4 & 18.5 & 17.3 & 13.3 & \\
\hline Pacific & 6.1 & 10.7 & 16.7 & 17.0 & 20.0 & 25.8 & 24.6 & 13.4 & \\
\hline \multicolumn{10}{|l|}{Community Type} \\
\hline Outside Central City \(250 \mathrm{~K}-500 \mathrm{~K}\) & 5.1 & 8.0 & 13.5 & 13.1 & 16.8 & 18.6 & 19.5 & 14.0 &  \\
\hline Central City 250K－500K & 6.1 & 12.0 & 13.7 & 18.9 & 15.4 & 23.5 & 27.6 & 15.3 & 느́ \\
\hline Rural，non－SMSA & 5.9 & 10.1 & 16.3 & 16.2 & 17.8 & 19.1 & 21.1 & 16.3 & の閶 \\
\hline Central City， 2 M or more & 8.4 & 11.9 & 18.3 & 20.2 & 19.2 & 28.9 & 32.1 & 18.6 &  \\
\hline Outside Central City， 2 M or more & 6.7 & 12.1 & 16.2 & 17.9 & 19.8 & 24.6 & 25.4 & 15.9 & 閶它枵 \\
\hline Central City 1M－2M & 7.7 & 12.6 & 16.8 & 19.3 & 19.7 & 22.8 & 22.9 & 18.2 & \({ }_{\substack{\text { ¢ }}}\) \\
\hline Outside Central City 1M－2M & 6.6 & 11.8 & 17.4 & 14.7 & 18.3 & 24.5 & 31.0 & 13.8 & （1） \\
\hline Central City \(500 \mathrm{~K}-1 \mathrm{M}\) & 5.8 & 12.8 & 15.6 & 18.1 & 19.2 & 24.2 & 22.6 & 15.7 & \(\bigcirc\) \\
\hline Outside Central City 500K－1M & 6.4 & 10.9 & 17.6 & 15.3 & 19.9 & 23.9 & 22.8 & 15.9 & \\
\hline Central City 50K－250K & 5.1 & 10.0 & 15.0 & 19.0 & 22.7 & 17.6 & 23.3 & 13.2 & \\
\hline Outside Central City 50K－250K & 5.6 & 9.7 & 12.2 & 13.2 & 11.9 & 17.4 & 20.6 & 14.3 & \\
\hline Other urban & 6.1 & 11.1 & 16.0 & 18.0 & 16.4 & 21.6 & 22.9 & 15.0 & \\
\hline
\end{tabular}
a The calculations in this table are based upon the respondents to the TRI survey who consumed fish in the month of the survey．TRI estimates that these respondents represent，on a weighted basis， 94．0\％of the population of U．S．residents．

Source：Javitz，1980．Javitz， 1980.

Table 2－136．95th Percentile of Fish Consumplion（f／day）for Males＇
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Demographio Category} & \multicolumn{9}{|c|}{Age（yeara）} \\
\hline & \(0-9\) & 10－19 & 20－29 & 30－39 & 40－49 & 50－59 & 60－69 & \(70+\) & \\
\hline \multicolumn{10}{|l|}{Rece} \\
\hline Caucasinn & 15.2 & 28.8 & 39.9 & 45.6 & 46.6 & 55.6 & 61.1 & 45.3 & \\
\hline Bleck & 25.1 & 33.2 & 57.0 & 40.6 & 50.6 & 63.3 & 63.0 & 47.8 & \\
\hline Oriental & 52.8 & 40.2 & 37.7 & 108.9 & 171.6 & 67.3 & 82.2 & 49.0 & \\
\hline Other & 17.4 & 29.2 & 86.4 & 31.4 & 16.8 & 28.1 & 30.0 & 20.7 & \\
\hline \multicolumn{10}{|l|}{Census Repion} \\
\hline New England & 12.7 & 41.2 & 55.9 & 47.6 & 54.6 & 57.8 & 75.3 & 60.2 & \\
\hline Middle Allantic & 18.0 & 30.1 & 55.0 & 55.4 & 49.0 & 63.3 & 81.4 & 50.9 & \\
\hline East North Central & 16.5 & 25.3 & 35.7 & 34.8 & 35.4 & 48.0 & 60.9 & 46.9 & \\
\hline West North Central & 12.6 & 23.7 & 37.3 & 32.6 & 35.6 & 59.9 & 57.1 & 37.1 & \\
\hline South Athntic & 15.4 & 29.6 & 37.8 & 48.2 & 57.6 & 58.4 & 59.7 & 44.6 & \\
\hline East South Central & 16.9 & 23.8 & 41.6 & 42.3 & 42.3 & 33.1 & 62.7 & 44.9 & \\
\hline Weat South Central & 21.3 & 39.2 & 50.7 & 48.6 & 52.0 & 54.1 & 57.3 & 45.2 & \\
\hline Mountain & 12.6 & 26.3 & 31.8 & 38.8 & 31.3 & 55.4 & 41.3 & 39.4 & \\
\hline Pacific & 14.9 & 26.0 & 42.7 & 39.3 & 49.4 & 60.1 & 56.4 & 45.7 & \\
\hline \multicolumn{10}{|l|}{Community Type} \\
\hline Outside Central City 250K－500K & 14.2 & 20.9 & 45.0 & 35.5 & 44.1 & 36.5 & 52.4 & 35.0 & 망 \\
\hline Central City 250K－500K & 14.9 & 36.6 & 28.2 & 38.0 & 39.4 & 59.5 & 53.2 & 39.4 & \\
\hline Rural，non－SMSA & 13.8 & 24.9 & 45.0 & 50.1 & 47.6 & 56.9 & 53.8 & 48.5 & 능 \\
\hline Central City， \(\mathbf{2 M}\) or more & 35.3 & 29.1 & 64.7 & 48.1 & 49.0 & 74.1 & 82.6 & 55.8 & \[
\mathrm{O}^{-3}
\] \\
\hline Outside Central City，2M or more & 14.9 & 31.2 & 41.9 & 54.2 & 54.4 & 65.3 & 72.9 & 44.6 & 붑 \({ }^{\text {¢ }}\) \\
\hline Central City 1M－2M & 25.1 & 31.3 & 41.5 & 53.3 & 48.5 & 52.1 & 57.6 & 42.2 & 岛旨呵 \\
\hline Outside Central City 1M－2M & 18.3 & 28.9 & 46.7 & 36.7 & 42.5 & 60.2 & 64.7 & 38.6 & 忒 \\
\hline Central City \(500 \mathrm{~K}-1 \mathrm{M}\) & 15.2 & 35.5 & 37.0 & 44.9 & 50.1 & 63.1 & 55.1 & 48.9 &  \\
\hline Outside Central City 500K－1M & 16.4 & 27.7 & 51.2 & 36.2 & 57.7 & 57.7 & 51.2 & 48.2 & 9 \\
\hline Central City 50K－250K & 10.9 & 43.6 & 35.3 & 50.8 & 55.5 & 50.7 & 55.5 & 56.4 & \\
\hline Outside Central City 50K－250K & 12.2 & 29.1 & 54.4 & 35.1 & 27.8 & 39.1 & 43.1 & 36.2 & \\
\hline Other Urban & 15.2 & 25.9 & 39.2 & 48.0 & 42.1 & 48.9 & 63.0 & 49.9 & \\
\hline
\end{tabular}
－The calculations in this table are based upon the respondents to the TRI survey who consumed fish in the month of the survey．TRI estimates that these respondents represent，on a weighted basis， 94．0\％of the population of U．S．residents．

Ssurce：Javity，1980．Javity， 1980.

Table 2-137. Mean Total Fish Consumption by Species \({ }^{\text {a }}\)
\begin{tabular}{|c|c|c|c|}
\hline Species & Mean consumption (g/day) & Species & Mean consumption (g/day) \\
\hline Not reported & 1.173 & Mullet \({ }^{\text {b }}\) & 0.029 \\
\hline Abalone & 0.014 & oysters \({ }^{\text {b }}\) & 0.291 \\
\hline Anchovies & 0.010 & Perch (Freshwater) \({ }^{\text {b }}\) & 0.062 \\
\hline Bass \({ }^{\text {b }}\) & 0.258 & Perch (Marine) & 0.773 \\
\hline Bluefish & 0.070 & Pike (Marine) \({ }^{\text {b }}\) & 0.154 \\
\hline Bluegills \({ }^{\text {b }}\) & 0.089 & Pollock & 0.266 \\
\hline Bonito \({ }^{\text {b }}\) & 0.035 & Pompano & 0.004 \\
\hline Buffalofish & 0.022 & Rockfish & 0.027 \\
\hline Butterfish & 0.010 & Sablefish & 0.002 \\
\hline Carp \({ }^{\text {b }}\) & 0.016 & Salmon \({ }^{\text {b }}\) & 0.533 \\
\hline Catfish (Freshwater) \({ }^{\text {b }}\) & 0.292 & Scallops \({ }^{\text {b }}\) & 0.127 \\
\hline Catfish (Marine) \({ }^{\text {b }}\) & 0.014 & Scup \({ }^{\text {b }}\) & 0.014 \\
\hline Clams \({ }^{\text {b }}\) & 0.442 & Sharks & 0.001 \\
\hline Cod & 0.407 & Shrimp \({ }^{\text {b }}\) & 1.464 \\
\hline Crab, King & 0.030 & Smelt \({ }^{\text {b }}\) & 0.057 \\
\hline Crab, other than King \({ }^{\text {b }}\) & 0.254 & Snapper & 0.146 \\
\hline Crappie \({ }^{\text {b }}\) & 0.076 & Snool \({ }^{\text {b }}\) & 0.005 \\
\hline Croaker \({ }^{\text {b }}\) & 0.028 & Spot \({ }^{\text {b }}\) & 0.046 \\
\hline Dolphin \({ }^{\text {b }}\) & 0.012 & Squid and Octopi & 0.016 \\
\hline Drums & 0.019 & Sunfish & 0.020 \\
\hline Flounders \({ }^{\text {b }}\) & 1.179 & Swordfish & 0.012 \\
\hline Groupers & 0.026 & Tilefish & 0.003 \\
\hline Haddock & 0.399 & Trout (Freshwater) \({ }^{\text {b }}\) & 0.294 \\
\hline Hake & 0.117 & Trout (Marine) \({ }^{\text {b }}\) & 0.070 \\
\hline Halibut \({ }^{\text {b }}\) & 0.170 & Tuna, light & 3.491 \\
\hline Herring & 0.224 & Tuna, White Albacore & 0.008 \\
\hline Kingfish & 0.009 & Whitefish \({ }^{\text {b }}\) & 0.141 \\
\hline Lobster (Northern) \({ }^{\text {b }}\) & 0.162 & Other finfish \({ }^{\text {b }}\) & 0.403 \\
\hline Lobster (Spiny) & 0.074 & Other shellfish \({ }^{\text {b }}\) & 0.013 \\
\hline Mackerel, Jack & 0.002 & & \\
\hline Mackerel, other than Jack & 0.172 & & \\
\hline
\end{tabular}

\footnotetext{
a The calculations in this table are based upon the respondents to the TRI survey who consumed during the month in which the survey was conducted. TRI estimates that these respondents represent, on a weighted basis, 94.0 percent of the population of U.S. residents.
b Designated as freshwater or estuarine species by Stephan (1980).
}

Source: Javitz, 1980. 1980.

Table 2-138. Fish Consumption Estimates From the Market Facts Survey
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{Mean Per Capita Consumption (g/day) \({ }^{\text {a }}\)} \\
\hline Demographic Characteristics & Freah and Frozen Finfinh & Canned Fish & Fresh and Frozen Shellish & Specialty Item: & Total Fish \\
\hline \multicolumn{6}{|l|}{Race} \\
\hline Bleak & 14.212 & 9.383 & 3.735 & 1.345 & 28.675 \\
\hline Whito & 4.909 & 6.422 & 2.153 & 1.770 & 15.254 \\
\hline Other & 4.907 & 6.524 & 7.214 & 1.381 & 20.026 \\
\hline Not Specified & 2.302 & 3.616 & 1.021 & 2.177 & 9.116 \\
\hline \multicolumn{6}{|l|}{Religion} \\
\hline Catholio & 4.952 & 6.567 & 2.728 & 1.999 & 16.246 \\
\hline Jowish & 12.547 & 12.539 & 2.774 & 6.040 & 33.899 \\
\hline Proteatant & 5.152 & 6.350 & 2.067 & 1.758 & 15.327 \\
\hline Other & 7.412 & 6.034 & 3.540 & 2.231 & 19.217 \\
\hline Not Spocifiod & 0.877 & 1.785 & 0.504 & 0.765 & 3.931 \\
\hline Total Per Capita & 6.12 & 6.61 & 2.26 & 1.77 & 16.76 \\
\hline
\end{tabular}
- Converted from Ib/year as reported in Javitz, 1980.

Sourco: Javitz, 1980.
patterns for one month for each individual in the sample segment and may not accurarety reflect long-term consumption patterns. Another limitation with the TRI data is that participants may not have reported all fish consumed during the month's survey period. In addition, the distinction between recreationally caught and purchased fish was not made in this study. An advantage of the TRI study is that it is one of the few diet studies where the data were collected over the entire year. Other advantages are that the survey dataset was large, geographically representative, and the response rate was good ( 80 percent).

Pao - Foods Commonly Eaten by Individuals - Pao et al. (1982) used consumption information obtained in the 1977-78 USDA Nationwide Food Consumption Survey (NFCS) to obtain frequency distributions for intake rates of various foods. The data were collected during home interviews in which the respondent was asked to recall food intake for the day of the interview, the day preceding, and the day after the interview. Therefore, if the food was eaten at least once in 3 days, the quantity consumed was recorded. Of 37,874 individuals with 3-day diet records, 24.5 percent had eaten fish and/or shellfish at least once in 3 days; 20.5 percent had eaten fish on only 1 of 3 days; 3.6 percent had eaten fish on only 2 or 3 days; and 0.4 percent had eaten fish on all 3 days (Pao et al., 1982).

The distribution for total consumption of fish and shellfish was calculated by Pao et al. (1982) using the 1977-78 USDA food consumption survey data and are presented in Table 2-139. The mean fish intake rate for persons who reported consuming fish at least once during the 3 -day recall period was estimated as \(48 \mathrm{~g} /\) day. The median value was reported as \(37 \mathrm{~g} /\) day and \(128 \mathrm{~g} /\) day for the 95 th percentile. These intake rates are more than twice those calculated by Javitz (1980) from the TRI data and the mean per capita intake from the Market Facts survey. The advantages of this study is that the data were derived from the USDA-NFCS and are representative of the U.S. population. A disadvantage is that these data are based on short-term dietary recall and may not accurately reflect long-term consumption patterns and may not be useful in evaluating distributions for fish intake. Also, these studies may not be representative of those recreational fishermen who consume larger amounts of fish than the general population.

USDA-Nationwide Food Consumption Survey 1987-88-The USDA conducted a survey in 1987-88 in 4,500 households (USDA, 1992b). Individuals were asked to recall

Table 2－139．Consumption of Fish and Shellish
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{14}{|c|}{Age Group} \\
\hline & & 1－2 & & 3－5 & & 6.8 & \multicolumn{4}{|c|}{9－14} & \multicolumn{4}{|c|}{15－18} \\
\hline & Male & and Female & Male & and Female & Male & and Female & \multicolumn{2}{|l|}{} & \multicolumn{2}{|r|}{Female} & \multicolumn{2}{|r|}{Male} & \multicolumn{2}{|r|}{Female} \\
\hline Percentiles & \multicolumn{2}{|r|}{1045＇} & \multicolumn{2}{|r|}{1，719} & \multicolumn{2}{|r|}{1，841 \({ }^{\text {\％}}\)} & \multicolumn{2}{|r|}{2，089 \({ }^{\text {a }}\)} & \multicolumn{2}{|r|}{2，158 \({ }^{\text {² }}\)} & \multicolumn{2}{|r|}{1，394 \({ }^{\text {² }}\)} & \multicolumn{2}{|r|}{1，473 \({ }^{\text {a }}\)} \\
\hline & Aveit day & Qty \({ }^{\circ}\) eating occassion & Avel day & Qty／ eating occausion & \begin{tabular}{l}
Avel \\
day
\end{tabular} & QtyI cating occassion & Avel day & Qty／ eating occassion & Avel day & Qty／ cating occassion & Avel day & Qtyl cating occassion & Avel day & Qtyl eating occassion \\
\hline 5 & 3 & 8 & 4 & 12 & 6 & 19 & 9 & 28 & 8 & 19 & 9 & 20 & 9 & 24 \\
\hline 25 & 9 & 28 & 13 & 36 & 19 & 40 & 19 & 56 & 19 & 45 & 27 & 57 & 19 & 56 \\
\hline 50 & 19 & 43 & 25 & 57 & 28 & 72 & 30 & 84 & 28 & 79 & 37 & 85 & 33 & 85 \\
\hline 75 & 28 & 58 & 37 & 85 & 38 & 112 & 47 & 113 & 38 & 112 & 57 & 142 & 57 & 130 \\
\hline 90 & 47 & 112 & 49 & 113 & 57 & 160 & 76 & 170 & 61 & 168 & 84 & 200 & 85 & 225 \\
\hline 95 & 56 & 125 & 57 & 170 & 75 & 170 & 96 & 255 & 82 & 206 & 113 & 252 & 112 & 270 \\
\hline 99 & 93 & 168 & 96 & 240 & 131 & 288 & 154 & 425 & 151 & 288 & 297 & 454 & 217 & 568 \\
\hline Mean （SD）\({ }^{d}\) & \begin{tabular}{l}
22 \\
（18）
\end{tabular} & \[
\begin{gathered}
52 \\
(38)
\end{gathered}
\] & \[
\begin{gathered}
27 \\
(19)
\end{gathered}
\] & \[
\begin{gathered}
70 \\
(51)
\end{gathered}
\] & \[
\begin{gathered}
32 \\
(24)
\end{gathered}
\] & \[
81
\]
(58) & \[
\begin{gathered}
40 \\
(31)
\end{gathered}
\] & \begin{tabular}{l}
101 \\
（78）
\end{tabular} & \[
\begin{gathered}
33 \\
(25)
\end{gathered}
\] & \[
\begin{gathered}
86 \\
(62)
\end{gathered}
\] & \[
\begin{array}{r}
46 \\
(45)
\end{array}
\] & \[
\begin{gathered}
417 \\
(115)
\end{gathered}
\] & \[
45
\]
(42) & \[
\begin{gathered}
111 \\
(102)
\end{gathered}
\] \\
\hline \％Consumers \({ }^{\text {a }}\) & & 17.3 & & 20.4 & & 22.5 & & 22.0 &  & 22.9 & & 21.1 & & 4.2 \\
\hline
\end{tabular}

Total Individuals \({ }^{\text {r }}\)
\begin{tabular}{|c|c|c|c|}
\hline Percentile & Average Per Day for Consumers （g／day as consumed） & Quantity Consumed Per Eating Occasion （grams） & \\
\hline 5 & 8 & 20 & \multirow[t]{2}{*}{\[
8
\]} \\
\hline 25 & 20 & 57 & \\
\hline 50 & 37 & 85 & 220 \\
\hline 75 & 57 & 152 & O\％ \\
\hline 90 & 94 & 227 & 105 \\
\hline 95 & 128 & 284 & 岛它號 \\
\hline 99 & 215 & 456 &  \\
\hline Mean（SD）\({ }^{\text {d }}\) & 48 （42） & 117 （98） & \\
\hline \multicolumn{4}{|r|}{\multirow[t]{2}{*}{（Continued）}} \\
\hline & & & \\
\hline
\end{tabular}
－Total number of individuals（weighted）in each age group with 3 －day diet record．
b Ave／day－average per day for consumers（g／day as consumed）who ate fish at least once in 3 days．
－Qty／eating occassion－quantity consumed per eating occassion（grams）．
d（SD）－standard deviation．
－Percentage of consumers using food at least once in \(\mathbf{3}\) days．
f Total number of individuals（weighted） 37,874 －includes only individuals（adults and children）with 3－day diet record
Source：Pao et al．， 1982.
foods eaten over the past 3 days. The survey response rate was 37 percent. The purpose of the survey was to "analyze the food consumption behavior and dietary status of Americans" (USDA, 1992). A statistical sampling design was used to ensure that all seasons, geographic regions of the U.S., demographics, and socioeconomic groups were represented.

The mean per capita intake rates and intake rates for consumers of fish and shellfish by gender and age are shown in Table 2-140. These data are based on the 1987-1988 USDA Nationwide Food Consumption Survey. Intake rates for consumers-only were calculated by dividing the per capita intake rate by the fraction of the population consuming fish and shellfish in one day.

An advantage of this study is that these USDA NFCS data is a large geographically and seasonally balanced survey of a representative sample of the U.S. population. However, the data are based on short-term recall (1 day) and may not necessarily reflect long-term consumption patterns. In addition, the survey response rate was low.
U.S. EPA Analysis of 1987/88 USDA NFCS Data - EPA analyzed data from the 1987-88 USDA NFCS to generate distributions of intake rates for fish and shellfish. Fish products were identified in the NFCS data base according to NFCS-defined food codes. Appendix 2-A presents the codes used to determine the various food groups. Intake rates for these fish and shellfish products represent intake of all forms of the product (i.e., homeproduced and commercially produced). The USDA data were adjusted by applying the sample weights calculated by USDA to the data set prior to analysis. These weights were designed to "adjust for survey nonresponse and other vagaries of the sample selection process" (USDA, 1987/88). Intake rates were indexed to the body weight of the survey respondent and reported in units of g/kg-day. The food analysis was accomplished using the SAS statistical programming system (SAS, 1990).

Distributions of intake rates were determined by apportioning the amount of fish and shellfish used by a household among family members based on average serving sizes for specified age groups of the population and the number of weekly meals consumed by each family member. A detailed description of the methodology used to generate distributions of homegrown intake is presented in Section 2.7 (Intake Rates for Various Homeproduced Food Items) of this Handbook. The same method was used to determine the intake rates of all

\section*{DRAFT}

DO NOT OUDTE OR CITE

Table 2-140. Mean Fish and Shellfish Intake in a Day, by Sex and Age
\begin{tabular}{clc} 
Per capita intake & \begin{tabular}{l} 
Percent of population \\
(g/day)
\end{tabular} & \begin{tabular}{c} 
Intake (g/day) \\
Consuming fish and
\end{tabular} \\
& Shellfish in 1 day & onlysumers \\
\hline
\end{tabular}

Males or Females
5 and under
4
6.0
67

Males
6-11
3
3.7
79

12-19
3
2.2

136
20 and over 15
15
10.9

138
Females
6-11
7
7.1
99
12-19
9
9.0
100
20 and over \(\quad 12\)
10.9
110
All individuals
11
9.4
117
- Based on USDA Nationwide Food Consumption Survey (1987 to 1988) data for one day.
b Intake for users only was calculated by dividing the per capita consumption rate by the fraction of the population using fish and shellfish in a day.

Source: USDA, 1992.
forms (i.e., homeproduced and commercially prepared) of fish and shellfish presented in this section.

Fish and shellfish intake rates for various subcategories of the population within census regions are presented in Tables 2-141 through 2-145. These distributions represent intake rates for consumers of fish and shellfish only. These data represent one-week average intake rates for family members from those surveyed households who reported eating the fish and shellfish during the survey period. The total number of individuals in the data set (i.e., both individuals who ate fish and shellfish and those who did not eat fish and shellfish during the survey period) are presented in Table 2-185 in Section 2.7.2. These total number of individuals surveyed may be used with the consumer only data presented here to calculate per capita fish and shellfish intake rates for the survey population as shown in Section 2.7.2.

The advantages of these data are that they provide distributions of fish and shellfish intake rates and the NFCS was designed to be representative of the U.S. population. However, these data are based on short-term dietary recall and may not accurately reflect long-term intake patterns. Additional advantages and limitations of this analysis are outlined in Section 2.7.4 of this Handbook.

\subsection*{2.6.3. Other Relevant General Population Studies}

Ruffle et al. - Lognormal Distributions for Fish Consumption by the General Population - Ruffle et al. (1994) developed a lognormal distribution to fit to data that were collected in the 1973-1974 TRI survey. The National Marine Fisheries Service (NMFS) obtained permission from TRI and analyzed data on the consumption of saltwater and freshwater finfish and shellfish from all sources in 10 regions of the U.S. (Ruffle et al. 1994). These data were previously analyzed and published by Rupp et al. (1980) for selected percentiles, averages, maximums and sample size (Ruffle et al., 1994).

The intake rates were calculated using three age groups: children (ages 1-11 years); teens (ages 12-18 years); and adults (ages 19-98 years). The data used are from a survey sample pool of 23,213 participants. One-twelfth of the sample pool received the survey during each of the 12 months. Each participant recorded their age and fish consumption patterns as number of meals and serving sizes for each type of fish eaten for one month.

Table 2-141. Intake of Total Fith and Shellfish (g/kg-day) - All Regions Combined

\begin{tabular}{c} 
DRAFT \\
DO NOT QUOTE OR \\
\(\therefore \quad\) CITE \\
\hline
\end{tabular}
Table 2-142. Intike of Toual Five and Sbellicish (fleg-day) - Northeax Regioa
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Pognimbion Grow & \[
\begin{gathered}
\mathrm{N} \\
\mathbf{W} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} \\
\\
\hline
\end{gathered}
\] & Heys & SE & PO & PI & PS & P10 & 125 & Pso & 175 & 7\% & Pes & 89 & P100 \\
\hline Total & 25237000 & 125 & 257801 & 228804 & \(0.008+\infty\) & 600802 & 1.068-01 & 1.508-11 & 28481 & 4.9AE-01 & 12RE+ \({ }^{\text {cos }}\) & 18SE \(+\infty\) & \(2.78+60\) & 5.108+6 & 1528+01 \\
\hline \multicolumn{16}{|l|}{Ase} \\
\hline \(<01\) & 220000 & 13 & 3.472+00 & 7.48-03 & 130801 & 7300-01 & 73 MeOl & 7.38 .01 & 1.248+60 & 122E+00 & 5.758+00 & 2esb \(+\infty\) & 1.078+01 & 1.97E+01 & 1.076401 \\
\hline 01.02 & 565000 & 31 & \(120 \mathrm{P}+\infty\) & 1.121-03 & 360E-01 & 3.68E01 & 3668-01 & \(6.138-01\) & 7.4EP-81 & 135E+00 & 2.652+00 & 3.728+00 & 3.728+00 & \(5.108+\infty\) & \(5.108+\infty\) \\
\hline 03-95 & 908000 & 99 & \(1.318+\infty\) & 1.27E-03 & 209E-01 & 2098.01 & 2.95801 & 3.528-01 & 5.238-01 & 2938-01 & 126\%+00 & 2008+00 & 4.198+00 & 4608+00 & \(4.658+\infty\) \\
\hline 06.11 & 211600 & 110 & \(1.13 \mathrm{C}+\infty\) & 731E-4 & 1.48801 & 1.52E01 & 2.06801 & 281801 & 4288-01 & 633E-01 & 1AIB+00 & 252E+00 & 3.8c8+ +0 & 4398+00 & \(4.61 E+\infty\) \\
\hline 12.19 & 2815000 & 139 & \(6868-01\) & 399E-4 & \(0.06 \mathrm{E}+\infty\) & 220802 & 1.148-01 & 1.638-01 & 234801 & 4248001 & 2.138-01 & 1.408+00 & 23\% 3 +00 & 3172+00 & \(3272+\infty\) \\
\hline 20-39 & 740000 & 351 & 5.00-01 & 2458-04 & \(0.008+\infty\) & 1.59E02 & 8.488-02 & 1.168-91 & 1928-01 & 3.638-01 & \(7658-01\) & \(1.308+\infty\) & 1.078 +00 & \(2.575+00\) & \(6.38+\infty\) \\
\hline 4069 & 8695000 & 43 & 9.20801 & 4.6SE-0. & 4.738-02 & 6.71E02 & 1.01E.01 & 1.45-01 & 3.05001 & 5.57E-01 & 1.05E+00 & \(1.098+00\) & 2.53e + + 0 & 5S6E+00 & \(1.528+01\) \\
\hline \(70+\) & 203000 & 107 & 8.198-01 & 3.3SE-4 & 102E-01 & 1.118-01 & 1.398-01 & 1.908-01 & 3.2SE-A & 5388-01 & 9.20E-01 & 1.848+00 & 2.7sE+60 & 4.5se+ +0 & 4.5813+00 \\
\hline \multicolumn{16}{|l|}{Sensons} \\
\hline F2II & 6056000 & 178 & \(1.018+\infty\) & \(6.618-04\) & 0.008+00 & 0.00E+00 & 9.408-08 & 1378-01 & 2.238-01 & \(4.788-01\) & 1.248+00 & 2.72E+00 & 3.698+00 & 6.148+00 & 1.528+01 \\
\hline Sprine & 6172000 & 45 & 7.573-01 & 3.018-04 & \(0.008+00\) & 3.81E-02 & 1.06E-01 & 1.508-01 & \(2848-01\) & 5.188-01 & 9.53E-01 & 1.588+00 & 2.198+00 & 4.09E+00 & 5.108+00 \\
\hline Sumbar & 5211000 & 145 & \(8828-61\) & 5.268-04 & 8.4IE-02 & 8.93B-02 & 1.41E-01 & 1.928-01 & 3.218-01 & 1598-01 & 8.748-01 & \(1.738+00\) & 3.178+00 & \(6.328+00\) & 280E+60 \\
\hline Winter & 758000 & 45 & 7.978-01 & 3.08E-94 & 4.15E-02 & 6.25E-02 & 1.018-01 & 1.4]B-01 & 2.ESEOI & 5.368-01 & 106E+00 & L. \(22 \mathrm{E}+00\) & 2388+60 & 3318+00 & 1.078+01 \\
\hline \multicolumn{16}{|l|}{Uibmiation} \\
\hline Centeal City & 5962000 & 202 & 1.278+00 & 6.668-94 & S328-02 & 9.41-02 & 1.69b-01 & 2.208-01 & 3.748-01 & 7.485-01 & 1.498+60 & 280E+00 & 4.338+00 & 6328+00 & 1.528+01 \\
\hline Normetropoliten & 3213000 & 235 & 588E-01 & 3.178-04 & 0.00E+00 & 2228-02 & 9378-02 & 1.208-01 & \(186 \mathrm{E}-01\) & 3.74E-01 & \(2.138-01\) & 1.418+00 & 1.628+00 & 2.408+00 & \(4.178+60\) \\
\hline surberben & 16062000 & 816 & 7.578-01 & 2.32E-94 & \(0.00 \mathrm{E}+00\) & S.8AE-92 & 1.00E-01 & 1.48 P 01 & 2.73E-01 & 4.83E-01 & 9.098-01 & \(1.618+00\) & 2248+00 & 5.068+00 & \(1.978+01\) \\
\hline \multicolumn{16}{|l|}{Rece} \\
\hline Asinn & 225000 & \(E\) & 1.498+ +0 & 9.098-08 & 6.488-01 & 6.488-91 & 6.48E-01 & \(6.48 \mathrm{~B}-01\) & 1.508+00 & 1.538+00 & 1.902+00 & 1.93E+00 & 1938+00 & \(1.938+00\) & 1.938 \(+\infty\) \\
\hline Black & 2069000 & \% & 1.302+00 & 7.458-04 & 1.518-01 & 1.51E-01 & 1.768-01 & 2.508-01 & 3.66B-01 & 1.0SE+00 & \(1.528+\infty 0\) & \(2.69 \mathrm{~B}+00\) & 3808+00 & 4358+00 & \(5.108+\infty\) \\
\hline Notive Amaricar & 30000 & 4 & 1.488 +60 & 7.608-03 & 3.608-01 & 3.668-91 & 3.668-01 & \(3.658-01\) & 3.688-01 & 484E-01 & 2.408 +00 & \(4.178+00\) & 4.178+00 & \(4.178+00\) & \(4.178+\infty\) \\
\hline Otheona & 411000 & 25 & \(109 \mathrm{~B}+\infty\) & 1.098 .03 & 3.218-01 & 3218-01 & 3.118001 & 3.218-01 & 3.478-01 & \(9.518-01\) & \(1.238+00\) & \(2.578+\infty\) & \(2.573+00\) & \(2.648+00\) & \(2.648+60\) \\
\hline White & 2204000 & 1140 & 2058-01 & 2.33-as & \(0.008+00\) & S.4E02 & 1.18E-01 & 1.228-01 & 2.628.01 & 4.79E-01 & 9.198-01 & 1.778+00 & 2368+00 & \(5.118+\infty\) & \(1.528+01\) \\
\hline Respone to Quetionncire Do you find & 419000 & 28 & 6.758-01 & <3seor & 0.008 +00 & 5.578-08 & 9.118-02 & 1.148-01 & 2338-01 & 424E-01 & 2473-01 & 1.478+60 & 1908+00 & \(2.628+00\) & \(1.078+01\) \\
\hline
\end{tabular}

Table 2-143. Intake of Total Fish and Shellfish ( \(\mathbf{g} / \mathrm{kg}\)-day) - Midweat Region
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Grows & \[
\begin{gathered}
\mathbf{N} \\
\mathbf{w g t d}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} \\
-\operatorname{mon} \mathrm{do}
\end{gathered}
\] & Mean & SE & Po & P1 & PS & PIO & P2S & Pso & P75 & P90 & pos & P99 & P100 \\
\hline Total & 22179000 & 1303 & \(8.068-01\) & 3.88E-4 & 0.00E +00 & 3.068-02 & 799E-02 & 1.07E-01 \({ }^{\text {- }}\) & 1.892-01 & 3.75E-01 & 7.36E-01 & \(1.608+00\) & \(2768+\infty\) & 7.118+00 & \(3.088+01\) \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 377000 & 23 & S.91E+00 & \(1.38 \mathrm{E}-02\) & 4.94E-02 & 4.94E-02 & \(2.20 \mathrm{E}-01\) & 7.99E-01 & 8.678 .01 & 293E+00 & 7.818+00 & \(1.55 E+01\) & \(3.088+01\) & \(3.088+01\) & \(3.018+01\) \\
\hline \(01-012\) & 1013000 & 59 & \(2.51 \mathrm{+}+0\) & 2.69E-03 & 2018.02 & \(2.018-02\) & 230801 & \(4.508-01\) & 7.268 .01 & 1.73E+00 & \(2.90 \mathrm{E}+\infty 0\) & \(6388+\infty\) & \(9.13 \mathrm{E}+00\) & \(1.108+01\) & \(1.10 \mathrm{E}+01\) \\
\hline \(03-5\) & 1374000 & 79 & \(1.068+\infty\) & \(1.02 \mathrm{E}-03\) & 1.08E-02 & \(1.088-92\) & 131E-OI & 2.57801 & 4.03E-0! & \(6.13 \mathrm{E}-01\) & 1.53E+00 & \(1.858+00\) & 3.13E+00 & \(6.908+\infty\) & 6.94E+00 \\
\hline c-11 & 2514000 & 156 & \(8.02 \mathrm{E}-1\) & 1.248-03 & 7598-03 & 3.77E-02 & 7.80E-02 & 1.318-01 & 1.97801 & 3.368-01 & \(6.408-01\) & \(1.48+\infty\) & \(3.308+\infty\) & 3.68E+00 & 2538+01 \\
\hline 12-19 & 2088000 & 133 & 3.928.01 & 3.27E-4 & 3.06E-02 & 3.068-02 & 6.71 ED 2 & 9.89E-02 & 1.53E-01 & 234E-01 & \(4.278-1\) & \(8.908-01\) & \(1.168+\infty\) & 3.9E +00 & \(4.298+60\) \\
\hline 20.39 & 7656000 & 427 & 5.198-01 & \(2.94 \mathrm{E}-04\) & \(0.008+\infty\) & 24E-02 & \(6.58 \mathrm{E}-02\) & 8.98E-02 & \(1.63 \mathrm{E}-01\) & \(2.98 E-01\) & 5.688-01 & \(1.06 \mathrm{E}+00\) & \(1.73 \mathrm{E}+00\) & 3.2AE+00 & \(9.088+00\) \\
\hline 4069 & 6055000 & 344 & \(6.698-01\) & 4.57 EOH & 3.158-02 & 4.878 .02 & \(7.75 \mathrm{Se-02}\) & \(1.10 \mathrm{~B}-01\) & 1.898-01 & \(3.81 \mathrm{E}-01\) & 6.97E-01 & 1.31E+00 & 2,028+00 & \(6.528+\infty 0\) & \(1.61 \mathrm{E}+01\) \\
\hline \(70+\) & 1052000 & 74 & 7.17801 & \(6.92 \mathrm{E}-4\) & 4.288-01 & 4.28E-02 & \(8.50 \mathrm{E}-02\) & 1.40E-01 & 2006-01 & 4.768-01 & \(1.00 \mathrm{~B}+60\) & \(1898+\infty\) & \(2.138+00\) & 2.928 \(+\infty\) & \(4028+80\) \\
\hline \multicolumn{16}{|l|}{Semens} \\
\hline Fall & 6027000 & 220 & 9.658 .01 & 1.06E-03 & 2.778-03 & 7.998-03 & 5.72802 & 989E-02 & 1.578-01 & \(2.988-01\) & 5.46-01 & \(1.738+00\) & 3.248+00 & 1.108+01 & \(3.088+81\) \\
\hline Epains & 5003000 & 525 & 6.668 .01 & \(7.41 \mathrm{EO4}\) & \(0.008+00\) & \(4.178-02\) & 7.11E-02 & 1.018 .01 & \(1.83 \mathrm{E}-01\) & 3.27E-01 & 6.108-01 & \(1.30 \mathrm{~B}+00\) & \(1.068+00\) & 5.108+00 & \(2531+01\) \\
\hline Suamma & 4691000 & 154 & \(8.50 \mathrm{E}-01\) & S.20E-4 & 4.18E-02 & 487202 & \(1.09 \mathrm{E}-01\) & \(1.43 \mathrm{E}-01\) & 2.408 .01 & 480E-01 & 8.948 .01 & 1.798+00 & 20\% +00 & \(6.388+00\) & \(7818+00\) \\
\hline Wirtar & 6055000 & 403 & 7308-01 & \(4.60 \mathrm{E}-04\) & \(3.068-02\) & 4.018-02 & 7,968-02 & \(1.008-01\) & 2,09E-01 & 386E-01 & 7.568 .01 & 1.708+00 & \(2.458+00\) & \(5.718+00\) & \(1318+01\) \\
\hline \multicolumn{16}{|l|}{Unbenization} \\
\hline Cortal City & 927800 & 370 & 1.05E+00 & 7.78E-4 & 3.008-002 & 6.528-02 & 9898-02 & 1308-01 & 2.308-01 & 4.4E-01 & 9.48-01 & \(2.178+\infty\) & 3.308+00 & 9.528+00 & 3.06B+01 \\
\hline Nosamerogitue & 680320 & 58 & 609891 & \(6.228-4\) & 271505 & 7.59\%8.03 & 4.382-02 & 7.588002 & 1.308-01 & 2806 -01 & 6.478 .01 & \(1.30 \mathrm{E}+\infty 0\) & \(2.13 \mathrm{E}+\infty 0\) & \(6.568+00\) & \(2538+01\) \\
\hline Surturten & 6455000 & 415 & 5.768 .01 & 3.99E-04 & \(0.00 \mathrm{E}+00\) & 4.308-02 & 7968-02 & 1.06E-01 & \(1.88 E .01\) & 3318-01 & \(6.20 \mathrm{E}-01\) & \(1.208+00\) & 1.70B +00 & \(4.93 \mathrm{E}+00\) & \(9.008+00\) \\
\hline \multicolumn{16}{|l|}{Rece} \\
\hline Aeima & 580000 & 37 & \(4.70 \mathrm{~B}+00\) & \(9.648-03\) & 257801 & 2.57801 & \(2.578-01\) & 3,578-01 & 3.75E-01 & \(1.358+\infty\) & 5.608 +00 & \(1.108+01\) & 3.008+01 & 3.648+01 & 3.08E+01 \\
\hline Brack & 174000 & 9 & 1.4B+00 & 1.601-03 & 1.408.01 & 1.008-01 & 2.01B-01 & \(2901-01\) & 3118-01 & \(6.608-01\) & 1.558+00 & \(3.308+\infty\) & 7118+00 & 9.138+60 & \(9.138+60\) \\
\hline Native Ampacen & 800 & 1 & 1.372+00 & \(0.008+60\) & \(1.378+\infty\) & \(1.378+00\) & \(1378+\infty\) & \(1.378+\infty\) & \(1.378+\infty\) & \(1.378+\infty\) & \(1.378+\infty\) & 1372+00 & \(1.372+\infty\) & \(1376+\infty\) & \(1.378+90\) \\
\hline Obeena & 165000 & 5 & \(13.36+00\) & 3.878-03 & 1.188.01 & 1.188 -1 & \(1.18 \mathrm{E}-11\) & \(1.188-01\) & \(275 E-01\) & 5.468 .01 & \(3908+\infty\) & 3,9018+ & 3.9EE \(+\infty\) & 3, \(868+\infty\) & \(3.008+60\) \\
\hline Whise & 19674000 & 1208 & \(6.19 \mathrm{E}-01\) & \(248-4\) & \(0.008+00\) & 3.002-02 & 7.218-02 & 1.01E-01 & \(1.758-01\) & 3.308-01 & 6.538-01 & \(1308+\infty\) & 1.95E +00 & 5. \(658+\infty\) & \(2.538+01\) \\
\hline Recporme to Queatio Doyou fill & concos & 40 & \(1.02 \mathrm{E}+00\) & 1.008-03 & \(0.008+00\) & 7.998-03 & 3.218-02 & 8.67E-02 & 1.578-01 & 3.208-01 & \(728 \mathrm{E}-01\) & \(1.988+\infty\) & 3.96B+e0 & \(1.318+01\) & 3003+01 \\
\hline
\end{tabular}


Table 2-144. Intake of Tous Find and Sballisin (efky-day) - South Region
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Peprimiar Grove & \[
\begin{gathered}
N \\
\times N X A
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} \\
\text { nnmud } \\
\hline
\end{gathered}
\] & Hean & 如 & 10 & Pl & PS & P10 & P2S & P30 & 173 & P & P9\% & 19 & 1100 \\
\hline Town & 3167000 & 167 & 988801 & 332884 & 0.008109 & 275802 & \(2158-2\) & 1.198-01 & 230601 & 4ersal & 1.05R+00 & 2168+00 & 3396+00 & 7898+0 & 4525+41 \\
\hline \multicolumn{16}{|l|}{Are} \\
\hline \(<01\) & 40800 & 23 & \(3380+\infty\) & 2.498-03 & 2.278-01 & 227301 & 2278-01 & 7.258-01 & \(1.458+\infty 0\) & 2162+m & 124E+00 & 4.788+00 & \(6.158+\infty\) & 126E +01 & 3.768+01 \\
\hline 1-02 & 919000 & 53 & 3.17E+00 & 6.218 .03 & 1.33801 & 1338-01 & 2628-91 & 3,528-01 & \(6.548-91\) & 1.358+00 & 5.1218+00 & \(6.33 \mathrm{E}+00\) & \(8.412+00\) & 3788401 & \(4.528+01\) \\
\hline \(03-85\) & 127600 & \(\Leftrightarrow\) & \(1878+60\) & 2.198003 & 1.248001 & 1.24801 & 2618-01 & 2.88 .01 & 590E-01 & 1.14E+60 & 2068+ \({ }^{\text {cos }}\) & 2568+60 & 7.07E \(+\infty\) & \(1.478+01\) & 1.473+61 \\
\hline \(\infty\) & 2619000 & 139 & 9.0681 & 6.52E-94 & \(0.000+\infty\) & \(0.006+\infty\) & 1.33E-02 & 1.41E-01 & 3.60 en & \(6.100-01\) & 1.97E + + & 1.93E \(+\infty\) & 3.198+60 & 5306+00 & 7.888+00 \\
\hline 12.19 & 3315000 & 174 & 7.08.81 & 6.368004 & \(0.008+\infty\) & \(0.008+00\) & 5.29E02 & 9,43E-02 & 1.6980 \({ }^{1}\) & 3 SIEOI & 7818-01 & \(1.748+00\) & \(2.208+00\) & 6.77e+e0 & 1.402+00 \\
\hline 20-39 & 9633000 & 41 & 7.48-41 & 350E04 & \(0.008+\infty\) & 3.98-02 & 7208-0 & 9.71E-02 & 187801 & 3.680-01 & tisent & 1.658+00 & \(2.588+\infty\) & 4.108+60 & \(1.368+01\) \\
\hline 4098 & 1045000 & 594 & 9.17881 & 46 E-at & \(0.008+01\) & 2208-02 & 1.185-02 & 1.18E-01 & 2.208-01 & 4.538-01 & 9938-91 & 1.99E+ & 3.288+00 & \(8.008+\infty\) & \(1.504+4\) \\
\hline N0+ & 2640000 & 137 & 9898-01 & sereat & \(0.00 \mathrm{E}+\infty\) & 268-02 & 1.20E-81 & L8EE-01 & \(3.178-01\) & 62E-01 & \(1258+00\) & \(1.778+\infty\) & \(2.698+00\) & \(1.198+01\) & \(1.198+01\) \\
\hline \multicolumn{16}{|l|}{Somons} \\
\hline FAL & 6796000 & 280 & 7.48B-1 & 3.898-04 & 2098-02 & 2408-02 & \(6.128-02\) & 9.118-02 & \(2.168-11\) & 4.28801 & 8318.01 & 1.588+60 & 2788+00 & 5.048+00 & 8.098+00 \\
\hline Spring & 2082000 & 67 & 1.178 +00 & 1.01E-03 & \(0.00 E+\infty\) & 4.008-02 & \(9.228-02\) & 1.258-01 & \(2.528-01\) & S.018-01 & \(1.088+\infty\) & \(2.258+00\) & \(3.638+60\) & \(1.38 \mathrm{E}+01\) & 4.52B+61 \\
\hline Sumana & 2635000 & 27 & 1.09E+00 & S.45E-04 & \(0.00 \mathrm{E}+00\) & \(0.008+00\) & 8.72E-02 & 1.27E-01 & 2308-01 & 5600-01 & 1318+60 & 2.5SE +00 & \(3.783+00\) & 6.94E \(+\infty\) & \(1.478+01\) \\
\hline Writar & \$165c00 & 485 & 8.948-91 & 4.988,94 & \(0.008+\infty\) & 1238-02 & 7.98-02 & 1.12E-01 & 2.268-01 & \(4.608-01\) & \(1.028+\infty\) & 1. \(681+00\) & 2948+00 & \(7.078+90\) & 1.04E+91 \\
\hline \multicolumn{16}{|l|}{Ustenizition} \\
\hline Centel City & 8755000 & 37 & \(1.258+00\) & 6.058-04 & \(0.008+\infty\) & \(0.008+00\) & 8.52B-02 & 1.208-91 & 2768.01 & 6.228-01 & 1.472+00 & 2948+00 & \(4808+00\) & 7898+00 & \(3.768+61\) \\
\hline Nonemetropolitan & 9030000 & 571 & \(1.038+80\) & 8.2n8-04 & \(0.008+\infty\) & 3EEM & 7.15002 & 1.0RE-01 & 1.938-01 & 4.338-01 & \(1.038+00\) & \(2.008+\infty\) & \(3.278+\infty\) & \(1.198+81\) & 4.528+41 \\
\hline Suriterbion & 13913000 & 71 & 786.01 & 3.118-04 & \(0.008+\infty\) & 2758-02 & 8.188-02 & 1308001 & 2318-01 & \(4.578-1\) & csse-01 & 1.608+ +0 & \(2.608+\infty\) & 6.41E \(+\infty\) & \(1.30 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Anin & \$14000 & 28 & \(1.578+60\) & \(1858-43\) & 2.208-01 & 2908-0] & 2.378-01 & 5.058-01 & 6.748-01 & 1.328+00 & 1.498+00 & 2.5AE+ +0 & S.228+00 & 3.228 \(+\infty 0\) & 5.228+00 \\
\hline Bnat & 7308000 & 416 & \(1.388+00\) & \(2.28-04\) & \(0.008+00\) & \(0.00 \mathrm{E}+00\) & 7.89E-02 & 1208001 & 3.118 .01 & 7318001 & \(1.578+\infty 0\) & 3.108+60 & 5.018+00 & 8.41E+00 & 3.768+91 \\
\hline Naive Ampeican & 111000 & 5 & 4.038+80 & 1.588-02 & \(2.778-01\) & 2.78 -01 & \(27 \mathrm{B-O}\) & 2.78 -01 & 6.488-91 & 1.57E+00 & \(6.278+\infty\) & 1.588+01 & \(1.588+01\) & \(1.588+01\) & \(1.508+01\) \\
\hline Otheona & 661000 & 36 & \(1.568+00\) & 2006-03 & 3.698-92 & 3.69E-92 & 1.17801 & \(2.258-01\) & \(2728-01\) & 7.408-01 & 2.218+00 & 3.878+00 & \(6.388+00\) & \(6.338+\infty\) & \(6338+\infty\) \\
\hline Whis & 23045000 & l185 & 2.198-01 & 3.408-4 & 0.008+00 & 4.18802 & 192B-2 & 1.148-01 & 2.108 .01 & 4.05E-01 & \(8.268-01\) & 1.658+00 & 2648+00 & \(7.058+\infty\) & \(4.588+01\) \\
\hline Rempone to Queatiornmice Do you tha? & 765000 & 415 & 1328+00 & \(1.05 \mathrm{E}-93\) & 0.008+00 & \(0.008+\infty\) & 6.348-02 & 995B-02 & 2.528-01 & SEES-01 & \(1.358+00\) & 3.198+00 & 4808+00 & 1.038+01 & 4.588+61 \\
\hline
\end{tabular}


Table 2-145. Intake of Total Fish and Shellifish (g/kg-day) - West Region
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Grous & \[
\begin{gathered}
\mathrm{N} \\
\text { widd }
\end{gathered}
\] & \[
\underset{\sim}{\mathrm{N}} \mathrm{n}
\] & Mean & SE & P0 & Pl & PS & P10 & P25 & P50 & P75 & P90 & P95 & P99 & P100 \\
\hline Total & 19233000 & 990 & 7.758 .01 & 3.268-04 & \(0.00 \mathrm{E}+\infty 0\) & 3.08E-02 & 8.33E-02 & 1.11E-01 & 2068-01 & \(4.28 \mathrm{E}-01\) & \(8.478-01\) & 1.60E+00 & \(2.20 \mathrm{E}+00\) & \(6.01 \mathrm{E}+00\) & \(2.59 \mathrm{E}+\mathrm{al}_{1}\) \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 303000 & 19 & \(1.888+00\) & \(2.72 \mathrm{E}-03\) & 2.128 .01 & 2.12E-01 & \(2.12 \mathrm{E}-01\) & 3.398-01 & 6.82E-01 & \(1.26 \mathrm{E}+\infty\) & \(3.668+\infty 0\) & \(5.176+00\) & \(5.17 \mathrm{E}+\infty\) & \(6.018+00\) & \(6.018+\infty\) \\
\hline 01.02 & 825000 & 4 & \(2118+00\) & 4.93E-03 & \(1.558-01\) & 1.558.01 & 2.71E-01 & 2.86E-01 & 4.82E-01 & 8.45E-01 & \(1.538+00\) & \(3.358+\infty\) & \(5.078+\infty\) & \(2.59 \mathrm{E}+01\) & \(259 \mathrm{E}+\mathrm{al}_{1}\) \\
\hline 0305 & 1002000 & 51 & \(9.008-01\) & 7.258 .04 & 8.78E-02 & 8.78E-02 & \(1.68 \mathrm{E}-01\) & 1.7TE-01 & 3.12E-01 & \(7.73 \mathrm{E}_{-01}\) & \(1.368+00\) & \(1.98 \mathrm{E}+00\) & \(2.128+\infty\) & 3.60z+00 & \(3.60 \mathrm{E}+00\) \\
\hline 06.11 & 1992000 & 111 & 7.15E-01 & 6.958 .04 & 2.25E-02 & \(1.168-01\) & \(1.49 \mathrm{E}-01\) & \(1.69 \mathrm{E}-01\) & 2.3E-01 & 4.96E-01 & 9.408-01 & \(1398+00\) & \(1.748+00\) & \(8.285+00\) & \(8.285+00\) \\
\hline 12-19 & 1946000 & 103 & 483E-01 & \(4.75 \mathrm{E}-04\) & 1.84E02 & 5.46E-02 & \(653 \mathrm{E}-02\) & 7.96E-02 & 132E-01 & \(2.73 \mathrm{E}^{-01}\) & 6.768.01 & \(1.948+\infty 0\) & \(1.578+00\) & \(1.828+00\) & 5.918+00 \\
\hline 20.39 & 6145000 & 309 & \(6.998-01\) & 5.108-04 & \(0.008+00\) & 2.03E-02 & 7.32E-02 & 9.898-02 & 1.62E-01 & 3.40E-01 & \(6.82 \mathrm{E}-01\) & \(1.348+80\) & \(2138+00\) & 93 (1800 & \(9.578+\infty\) \\
\hline 4069 & 5424000 & 28 & 7.24E-01 & 4 ASEPA & 3.088-02 & 3.51E-02 & \(9.21 \mathrm{E}-02\) & 1.24E-01 & 2258-01 & \(4.418-01\) & 8.518-01 & \(1.418+00\) & \(2.208+00\) & \(4.2885+00\) & 1.128+01 \\
\hline \(70+\) & 1536000 & 70 & 7.29E-01 & 6.59E-4 & \(1.148-02\) & 1.14E-02 & \(9.33 \mathrm{E}-2\) & 1.27E-01 & 2.22E-01 & 4.418-01 & \(9.88 \mathrm{E}-11\) & \(1.77 \mathrm{~B}+\infty\) & \(3.088+00\) & 3.73E \(+\infty\) & 3.738+00 \\
\hline \multicolumn{16}{|l|}{semors} \\
\hline Fall & 5370000 & 185 & 6.74E-01 & \(4808-04\) & \(0.008+\infty\) & 2.59E-02 & 5.86E-02 & 8.78E-02 & 1.498-01 & 3.38E-01 & \(8.008-01\) & \(1.60 \mathrm{E}+00\) & 2.03E +00 & 6.01E+00 & \(1.128+01\) \\
\hline Sprine & 4159000 & 385 & 8868.01 & \(8.25 \mathrm{E}-4\) & 1.14E-02 & 2.928-02 & \(9.758-02\) & 1.32E-01 & 243E-01 & 4.61 E.01 & \(9.288-01\) & \(1.538+\infty\) & 274E \(+\infty 0\) & 8.78E+00 & \(2.598+01\) \\
\hline Stumer & 415000 & 150 & 7.268-01 & \(4.718-04\) & 1.94E-02 & \(2.55 E-21\) & 1.00E-01 & 1.38E-01 & \(2.278-01\) & \(4.83 \mathrm{E}-01\) & 8.28E-01 & \(1.53 \mathrm{E}+00\) & 1.91E \(+\infty 0\) & 3.66E+00 & 9. \(578+00\) \\
\hline Winter & 455900 & 270 & 8388.01 & 8.178 -04 & 3.088-02 & 4.04E.02 & \(8.24 \mathrm{E}-2\) & 1.25E-01 & \(2.37 \mathrm{E}-01\) & \(4.55 \mathrm{E}-11\) & \(8.33 \mathrm{E}-1\) & \(1.75 E+\infty\) & \(2.958+\infty\) & 5.178+00 & \(2.48 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Urbenization} \\
\hline Centric City & 211000 & 285 & 8.008-01 & 3.878-04 & \(1.148-02\) & 3.518 .02 & 9.33E-02 & 1.278-01 & 2528-01 & 4.85E-01 & 9.788-01 & \(1.788+00\) & 2218+90 & \(4.258+00\) & \\
\hline  & 2030060 & 14 & 6.018 .01 & 6.858 .04 & 5.798-02 & 6.58E-02 & 7.968-02 & 9.968-02 & 1.99E-01 & \(3.48 \mathrm{E}-1\) & \(6.268-01\) & 1.298+00 & \(1.698+\infty\) & 6.018 + +00 & \(8.888+60\) \\
\hline surburben & 9885000 & 561 & 7.93E-91 & 5.458-4 & \(0.00 \mathrm{E}+00\) & 2.55E-02 & 7.58E-22 & 1.07E-01 & 191E01 & 3.978.01 & \(8.338-01\) & \(1.778+\infty\) & \(2.13 \mathrm{~B}+\infty 0\) & 8. \(2818+00\) & 2.998+01 \\
\hline \multicolumn{16}{|l|}{Rese} \\
\hline Asinn & 120000 & 36 & \(1.328+\infty 0\) & 1.908-03 & 2:18-01 & 281801 & 2.81801 & 4.418 .01 & 7.02E-01 & 9.94E-01 & 1.348+00 & 2678+00 & 3.608+ +0 & & \(7.118+00\) \\
\hline Bleck & 1104000 & 53 & 1.40E+60 & \(2158-93\) & \(0.008+00\) & \(0.00 \mathrm{~B}+00\) & \(9.068-02\) & 1.848-01 & 271801 & 3.98E-01 & \(1.378+00\) & \(3.658+\infty\) & 8.288+00 & \(9.578+\infty 0\) & 9.578+00 \\
\hline - Native Americen & 203000 & 13 & 1.97E-01 & \(3.64 \mathrm{EP4}\) & 3.798-02 & 5.798-02 & 3.79E-02 & 7.33E02 & \(8.068-02\) & 1.358-01 & 3.24E-01 & 3518-01 & 5.51801 & SS1E-01 & s.5IE-01 \\
\hline \(\cdots\) Oteona & 674000 & 36 & \(1.308+\infty\) & \(4.038-03\) & 1.328-02 & 732E-2 & 2758.1 & \(2.768-01\) & 4.94E-01 & 6.248-01 & 8.658-01 & 1. \(7 \mathrm{R}+{ }^{\text {coo }}\) & \(2788+00\) & 2.59+01 & \(2.588+01\) \\
\hline Whice & 16728000 & 62 & \(7.078-1\) & 2.6800 & 1.148-02 & 3.48E.02 & 8.33E-22 & \(1.085-01\), & 1.93E-01 & 4.04E-01 & \(8.20 \mathrm{E}-01\) & \(1.458+00\) & \(1.998+\infty\) & 4.3E+60 & 2.2.8+01 \\
\hline Responce io Quertio Do you tina? & 4719000 & 253 & 9.238-01 & 9318-0. & 1.848-02 & 2598-02 & \(6.678-02\) & 9378002 & \(1.77 \mathrm{~b}-01\) & 3.558-01 & \(8.908-01\) & \(1.85 \mathrm{E}+00\) & 3.9\% +00 & 9.57E+00 & \(208+01\) \\
\hline
\end{tabular}

The 12-month duration of the survey was designed to account for seasonal variation (Ruffle et al. 1994).

Ruffle et al. (1994) converted annual NMFS intake rates that were calculated by Rupp et al. (1980) into daily intake rates and modeled the summary statistics to determine the best fit lognormal distribution. Ruffle et al. (1994) used three methods (Non-linear Optimization, First Probability Plot, and Second Probability Plot) to fit lognormal distributions to 89 datasets of fish consumption from the NMFS Survey. Ruffle et al. (1994) determined that the best fit was obtained from the nonlinear optimization method (NLO). Therefore, only the results of the NLO analysis are presented (See Table 2-146). This table presents the optimal values for the mean \((\mu)\) and the standard deviation ( \(\sigma\) ) from the NLO method, including the minimum value of the objective function ( min SS). Also, Table 2-146 shows five relationships based on Daily Consumption Rate (DCR) DCR 50, DCR 90, DCR 99, \(\mathrm{DCR}_{\text {avg }}\), and \(\mathrm{DCR}_{\max }\) that were used to obtain values of \(\mu\) and \(\sigma\) from the lognormal fit by the NLO method. Ruffle et al. (1994) observed that the NLO predicted DCR 50, DCR \({ }_{\text {avg }}\) and \(\mathrm{DCR}_{\text {max }}\) were more accurate and less bias than other methods when the analysis was restricted to 77 data sets. Therefore, they concluded that the "results for 77 datasets fit by the "full information" NLO method with \(\min\) SS \(<30\) are well suited for risk assessment that focuses on the diet of people in the general population while the other 12 datasets may be appropriate for risk assessment when used with care and sensitivity analyses (Ruffle et al., 1994)." In addition, Ruffle et al. (1994) noted that there is an overall increase of about 25 percent in fish consumption since the survey was conducted. Therefore, adding 0.22 ( ln 1.25) to each of the \(\mu\) value obtained compensates for this increase in fish consumption in the U.S. (Ruffle et al., 1994).

Limitations and advantages of this study are those associated with the NMFS dataset used by Rupp et al. (1980). The NMFS data are from all sources (i.e., purchased, consumed in restaurants, gifts, etc.). The following limitations of the NMFS survey were noted by Ruffle et al: (1) the participants may not have reported all the fish that was consumed in the month and result in an underestimate of amount of fish consumed; (2) the participants may have over or-underestimated portion size; (3) the type of fish consumed may have been categorized improperly; (4) consumption of certain fish types on a long-term basis

Table 2-146. Best Fits of Lognormal Distributions Using the NonLinear Optimization (NLO) Method
\begin{tabular}{llll}
\hline & Adults & Teenagers & Children \\
\hline Shellfish & & & \\
\(\mu\) & 1.37 & -0.183 & 0.854 \\
\(\sigma\) & 0.858 & 1.092 & 0.730 \\
(min SS) & 27.57 & 1.19 & \\
Finfish (freshwater) & & & \\
\(\mu\) & 0.34 & 0.578 & 1.0 .559 \\
\(\sigma\) & 1.183 & 0.822 & 2.19 \\
(min SS) & 6.45 & 23.51 & \\
Finfish (saltwater) & & & 0.881 \\
\(\mu\) & 2.311 & 1.691 & 0.770 \\
\(\sigma\) & 0.72 & 0.830 & 4.31 \\
\hline
\end{tabular}

The following equations were may be used with the appropriate \(\mu\) and \(\sigma\) value to obtain an average Daily Consumption Rate (DCR) and percentiles of the DCR distribution. These values have been adjusted to account for a \(\mathbf{2 5 \%}\) increase in consumption since Rupp's data were collected.

DCR50 \(=\exp (\mu)\)
DCR90 \(=\exp [\mu+z(0.90) \cdot \sigma]\)
DCR99 \(=\exp [\mu+z(0.99) \cdot \sigma]\)
\(\mathrm{DCR}_{\mathrm{avg}}=\exp \left[\mu+0.5 \cdot \mathrm{o}^{2}\right]\)
Source: Ruffle et al. 1994
may have been underestimated; (5) the survey did not focus on the consumption patterns of sport anglers who catch and eat fish from particular waterbodies; and (6) because respondents reported on fish consumption for one month, a < 10 percent chance exist for capturing participants who eat fish only once per year. Despite these limitations, Ruffle et al. (1994) suggests that the data of Rupp are an excellent basis for Monte Carlo analyses.

An advantage associated with the NMFs data is that the data are large regional sample and the survey was designed to capture fish consumption patterns over 1 year (Ruffle et al. 1994). The data are representative of the general U.S. population; it includes a subset of the general population eating \(>150\) g/day (i.e., large amounts of fish) (Ruffle et al., 1994).

\subsection*{2.6.4. Key Recreational (Marine Fish Studies)}

\section*{Puffer et al. - Intake Rates of Potentially Hazardous Marine Fish Caught in the} Metropolitan Los Angeles Area - Puffer et al. (1981) conducted a creel survey with sport fishermen in the Los Angeles area in 1980. The survey was conducted at 12 sites in the harbor and coastal areas to evaluate intake rates of potentially hazardous marine fish and shellfish by local, non-professional fishermen. In addition, it was used to identify and estimate the size of population subgroups with large fish intake rates. The survey was conducted for the full 1980 calendar year, although inclement weather in January, February, and March limited the interview days. Each site was surveyed an average of three times per month, on different days, and at a different time of the day. The survey questionnaire was designed to collect information on demographic characteristics; fishing patterns; species, number, and weights of fish caught; and fish consumption patterns. Interviews were conducted with 1,059 anglers who had caught fish, and the anglers were interviewed only once during the entire survey period. Sport fishermen kept 67 to 89 percent of the finfish and 97 percent of the shellfish catch. The cumulative distribution of estimated total fish and shellfish consumption by surveyed sport anglers in the Los Angeles area is presented in Table 2-147. The median fish and shellfish intake rate was reported to be approximately \(37 \mathrm{~g} /\) day and the 90 th percentile intake rate was approximately \(225 \mathrm{~g} /\) day. Intake rates were calculated only for those fishermen who indicated that they eat the fish they catch. A mean value was not presented.

Table 2-147. Cumulative Distribution of Total Fish/Shellfish Consumption by Surveyed Sport Fishermen in the Metropolitan Los Angeles Area
Percentile \(\quad\)\begin{tabular}{c} 
Intake rate \({ }^{\mathbf{a}}\) \\
(g/person/day)
\end{tabular}
\begin{tabular}{rr}
5 & 2.3 \\
10 & 4.0 \\
20 & 8.3 \\
30 & 15.5 \\
40 & 23.9 \\
50 & 36.9 \\
60 & 53.2 \\
70 & 79.8 \\
80 & 120.8 \\
90 & 224.8 \\
95 & 338.8
\end{tabular}
* Based on total grams of edible fish regardless of species.

Source: Puffer et al. (1981).

Puffer estimated daily consumption (grams/day-person) for each species using the following equation:
\((\mathrm{K} \times \mathrm{N} \times \mathrm{W}) / \mathrm{E} \times(\mathrm{F} / 365)\)
(Eqn. 2-7)
where:
\(\mathrm{K}=\) edible proportion (by weight) of fish;
\(\mathrm{F}=\) frequency of fishing/year;
\(\mathrm{E}=\) number of fish eaters in family/living group;
\(\mathrm{W}=\) average weight of (grams) fish in catch; and
\(\mathrm{N}=\) number of fish in catch.

Assumptions associated with the calculation are: (1) Amount of fish and average weight of fish per catch is constant; (2) The frequency of fishing for each fisherman is constant throughout the year; (3) The number of family fish-eaters is constant (greater than zero), and the catch is shared evenly among family members; and (4) All of the catch is eaten, and 25 to 50 percent of the weight of the fish is edible (Puffer et al., 1981).

Data were obtained for successful fishermen. If fishermen who caught no fish were included, intake estimates would be somewhat lower. On the other hand, the survey assumed that the number of fish caught at the time of the interview was all that would be caught that day. If it were possible to interview fishermen at the conclusion of their fishing day, intake estimates could be potentially higher.

A description of consumption patterns for primary fish species kept, is presented in Table 2-148. Differences in the participation and intake rates of ethnic groups are shown in Table 2-149. Although Caucasians make up the largest percent of fishermen interviewed, the fish intake rate for Oriental/Samoan fishermen and their families is considerably higher than for other groups. Puffer et al. (1981) found similar median intake rates for seasons; 36.3 g/day for January through March, November and December; and 37.7 g/day for April through October.

It should be noted that in early Spring, fishing quarantines were imposed due to heavy sewage overflow (Puffer et al., 1981). An advantage to this study is that it provides direct information on fish consumption patterns for active fishermen in the Los Angeles coastal area.

Table 2-148. Dercription of Consumption Patterns for Primary Fish Kept by Sport Fishermen ( \(n=1059\) )
\begin{tabular}{llll} 
Species & \begin{tabular}{c} 
Percent of fishermen \\
who consume / give away
\end{tabular} & \begin{tabular}{c} 
\% of Fishermen \\
Who Caught
\end{tabular} \\
\hline White Croaker & \(82 \%\) & \(15 \%\) & \\
Pacific Mackerel & \(74 \%\) & \(15 \%\) & 34 \\
Pacific Bonito & \(77 \%\) & \(18 \%\) & 25 \\
Queenfish & \(79 \%\) & \(13 \%\) & 18 \\
Jacksmelt & \(78 \%\) & \(16 \%\) & 17 \\
Walleye Perch & \(83 \%\) & \(7 \%\) & 13 \\
Shiner Perch & \(67 \%\) & \(10 \%\) & 10 \\
Opaleye & \(87 \%\) & \(7 \%\) & 7 \\
Black Perch & \(89 \%\) & \(5 \%\) & 6 \\
Kelp Bass & \(78 \%\) & \(2 \%\) & 5 \\
California Halibut & \(86 \%\) & \(8 \%\) & 5 \\
Shellfish & & \(97 \%\) & \(0 \%\) \\
\hline
\end{tabular}
a Crab, mussels, lobster, abalone.

Source: Puffer et al., 1981.
Table 2-149. \begin{tabular}{l} 
Median Intake Rates Based on Demographic Data of Sport Fishermentand-Their \\
Family/Living Group
\end{tabular}
\begin{tabular}{ll} 
Percent & Median \\
of total & intake rates \\
interviewed & (g/person-day) \\
\hline
\end{tabular}

\section*{Ethnic Group}
\begin{tabular}{lll} 
Caucasian & 42 & 46.0
\end{tabular}

Black 24
24.2

Mexican-American 16
33.0

Oriental/Samoan 13
70.6

Other 5
-_

\section*{Age}
\(<17\)
11
27.2

18-40
52
32.5

41-65 28
39.0
\(>65\)
9
113.0
- Not reported.

Source: Puffer et al., 1981.

Pierce et al. - Commencement Bay Seafood Consumption Study - Pierce et ai. (1981) performed a local creel survey to examine seafood consumption patterns and demographics of sportfishermen in Commencement Bay, Washington. The objectives of the survey conducted by Pierce et al (1981) included determining (1) seafood consumption habits and demographics of noncommercial anglers catching seafood; (2) the extent to which resident fish/crustacea were used as food; and (3) the method of preparation of the fish/crustacea to be consumed. An additional objective was to develop a health risk model for fish/crustacea consumers in Commencement Bay using U.S. EPA data for toxicant edible tissues. The first half of this survey was conducted from early July to mid-September, 1980. The second half of the survey was conducted mid-September through most of November. The fishermen were interviewed along Commencement Bay waterways in Tacoma, Washington, for 5 days in the summer and 4 days in the fall. There were 304 interviews in the summer and 204 in the fall; the total number of unique fishermen was calculated at 3,391 . The interviews were conducted only with persons who had caught fish or shellfish. The anglers were interviewed only once during the survey period. Data were recorded for species; wet weight; size of the living group (family); place of residence; fishing frequency; planned uses of the fish; age; sex; and race (Pierce et al., 1981). A follow-up survey was conducted with survey participants with telephones to determine if fish caught had been eaten. The ethnic makeup of the fishermen surveyed by season is presented in Table 2-150. Table 2-151 contains catch data by species obtained from the survey. When comparing total weights between the specie of fish caught, the dominant species were Pacific Hake and Walleye Pollock (Table 2-151). Pierce et al. (1981) found that more than half of the fishermen caught and consumed fish weekly during both seasons (Table 2-152).

The U.S. EPA (1993) used data from Pierce et al. (1981) and calculated fish intake rates using the following equation (U.S. EPA, 1993):
fishing frequency \(x\) weight of catch per trip (lb) \(x\) edible portion \(x 454 \mathrm{~g} / \mathrm{lb}\)
Fish intake rate \(=\) no. of people per household 365 days
(Eqn. 2-8)

Table 2-150. Commencement Bay Ethnic Makeup of Fishermen Surveyed by Steason--....
Ethnic group Summer Fall
\begin{tabular}{lll} 
White & \(58.9 \%\) & \(\mathbf{6 0 . 8 \%}\) \\
Black & \(22.7 \%\) & \(15.2 \%\) \\
Oriental & \(15.5 \%\) & \(23.5 \%\) \\
Mexican & \(2.6 \%\) & \(0.5 \%\) \\
Indian & \(0.3 \%\) & \(0 \%\)
\end{tabular}

Source: Pierce et al., 1981.

Table 2-151. Total Weight of Catch in Commencement Bay, Washington Grouped by Species
\begin{tabular}{|c|c|c|}
\hline Species & Summer catch wt (kg) & Fall \({ }^{b}\) catch wt \((\mathrm{kg})^{c}\) \\
\hline Pacific Hake & 150.32 & 137.24 \\
\hline Walleye Pollock & 121.97 & 433.03 \\
\hline Pile Perch & 46.88 & 7.80 \\
\hline Pacific Cod & 38.53 & 42.34 \\
\hline Pacific Tomcod & 30.19 & 23.68 \\
\hline Rock Sole & 10.66 & 5.44 \\
\hline Striped Seaperch & 10.55 & 1.56 \\
\hline Speckled Sandab & 10.11 & 18.59 \\
\hline Brown Rockfish & 9.07 & 6.31 \\
\hline Sand Sole & 7.85 & 3.08 \\
\hline English Sole & 6.40 & 1.66 \\
\hline Big Skate & 5.44 & 4.31 \\
\hline Copper Rockfish & 3.11 & 6.12 \\
\hline Quillback Rockfish & 2.77 & 5.33 \\
\hline Black Rockfish & 2.72 & 23.50 \\
\hline Spiney Dogfish & 2.72 & 2.86 \\
\hline Starry Flounder & 2.29 & 3.67 \\
\hline White Spotted Greenling & 1.93 & 0.32 \\
\hline Shiner Perch & 1.59 & 9.90 \\
\hline Canary Rockfish & 1.59 & 4.85 \\
\hline Red Irish Lord & 1.13 & 1.84 \\
\hline Dover Sole & 1.11 & 1.45 \\
\hline Boccaccia Rockfish & 0.91 & 0.20 \\
\hline Flathead Sole & 0.70 & - \\
\hline Pacific Sandab & 0.54 & 4.76 \\
\hline Staghorn Sculpin & 0.48 & 1.81 \\
\hline Petrale Sole & 0.39 & 0.57 \\
\hline Butter Sole & 0.23 & - \\
\hline Red Stripe Rockfish & - & 1.11 \\
\hline Sablefish & - & 0.82 \\
\hline Cabazon & - & 0.68 \\
\hline Arrowtooth Flounder & - & 0.64 \\
\hline Kelp Greenling & - & 0.50 \\
\hline Buffalo Sculpin & - & 0.36 \\
\hline Blenny & 0.05 & 0.11 \\
\hline C-O & 0.14 & - \\
\hline
\end{tabular}

\footnotetext{
a Summer - July through September, survey was conducted over 5 days and it encompassed 4 survey areas (i.e., area \#1, \#2, \#3 and \#4).
b Fall - September through November, survey was conducted over 4 days, and it encompassed 5 survey areas (i.e., area \#1, \#2, \#3, \#4 and \#5).
c Original data (fishweight) were presented in lbs, conversions were made to kg by multiplying by a factor of 0.4536 .
}

Source: Pierce et al., 1981.

Table 2-152. Percent of Fishing Frequency During the Summer and Fall Seasons in Commencement Bay, Washington
\begin{tabular}{lccc}
\begin{tabular}{l} 
Fishing \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Frequency Percent \\
in the Summer
\end{tabular} & \begin{tabular}{c} 
Frequency \\
Percent in the \\
Fall \(^{\mathbf{b}}\)
\end{tabular} & \begin{tabular}{c} 
Frequency \\
Percent in the \\
Fall
\end{tabular} \\
\hline & & 8.3 & \\
Daily & 10.4 & 52.3 & 5.8 \\
Weekly & 50.3 & 15.9 & 51.0 \\
Monthly & 20.1 & 3.8 & 21.1 \\
Bimonthly & 6.7 & 6.1 & 4.2 \\
Biyearly & 4.4 & 13.6 & 6.3 \\
Yearly & 8.1 & & 11.6
\end{tabular}
a Summer - July through September, includes 5 survey days and 4 survey areas (i.e., area \#1, \#2, \#3 and "4)
b Fall - September through November, includes 4 survey days and 4 survey areas (i.e., area \#1, \#2, \#3 and \#4)
- Fall - September through November, includes 4 survey days described in footnote \({ }^{\text {b }}\) plus an additional survey area ( 5 survey areas) (i.e., area \#1, \#2, \#3, \#4 and \#5)

Source: Pierce et al., 1981.

The edible portion of fish consumed was assumed to be 50 percent. Most of the anglers surveyed consumed fish on a weekly basis, and consumed less than 10 g/day (U.S. EPA, 1993).

In the study conducted by Pierce et al. (1981) the fish intake rates obtained were 204 g/person-day in the summer and \(454 \mathrm{~g} /\) person-day in the fall (U.S. EPA, 1993). These values are much higher than the values obtained in this study. For this study, U.S. EPA (1993) converted the group responses of (Pierce et al. 1981) into individual responses as well. The mean intake rate calculated for anglers based on individual responses was 39.1 g/day (Table 2-153) and the intake rate of anglers based on group responses was \(46.9 \mathrm{~g} /\) day (Table 2-154). Fish intake rates for most respondents ranged between \(1-10 \mathrm{~g} / \mathrm{day}\) for the individual ( 42.5 percent) and group ( 30.4 percent) calculation with approximately 10 percent consuming more than 90 g/day (U.S. EPA, 1993).

An advantage of this survey is that the data do provide an indication of consumption patterns for that time period in the Commencement Bay area. However, the data may not reflect current consumption patterns, because fishing advisories were instituted due to local contamination.

\section*{Santa Monica Bay Restoration Project - Santa Monica Bay Seafood Consumption} Study - A study was conducted by the Santa Monica Bay Restoration project (1994) to investigate the demographic characteristics of recreational anglers who fish in Santa Monica Bay, California. Food consumption patterns and rates of these anglers were assessed, ethnic subgroups of the population that have high rates of fish consumption were identified, and the fish species caught and consumed at the highest rates by these anglers were determined. The study was conducted between September 1991 and August 1992 at 29 sites around the Santa Monica Bay. The sampling period included summer months (September 1991 and June August 1992), and fall, winter and spring months (October 1991 - May 1992). During the summer period, 12 surveys were conducted per month, and 6 surveys per month were conducted during the non-summer period. A stratified random approach was used to schedule and conduct the surveys. The survey design consisted of a creel census and questionnaires which were administered to anglers utilizing four different fishing modes: piers and jetties, private boats, party boats, or beaches and intertidal zones. Information

\section*{Table 2-153. Percentile and Mean Intake Rates for Non-Commercial Anglers in Commencement Bay (Individual Responses) \({ }^{\text {a }}\)}
\begin{tabular}{cc}
\hline Percentile & \begin{tabular}{c} 
Intake Rate \\
(g/day)
\end{tabular} \\
\hline 25th & 1.6 \\
50th & 9.7 \\
75th & 32.1 \\
90th & 78.4 \\
95th & 145.7 \\
98th & 283.8 \\
100th & \(1,543.6\) \\
Mean & 39.1 \\
\hline
\end{tabular}

2 Raw data are from Pierce et al. (1981).
Source: U.S. EPA, 1993.

Table 2-154. Percentile and Mean Consumption Rates for Non-Commercial Anglers in Commencement Bay (Group Responses) \({ }^{\text {a }}\)
\begin{tabular}{cc}
\hline Percentile & \begin{tabular}{c} 
Intake Rate \\
(g/day)
\end{tabular} \\
\hline 25th & 1.2 \\
50th & 12.2 \\
75th & 38.1 \\
90th & 132.0 \\
95th & 163.4 \\
98th & 267.5 \\
100th & \(2,139.3\) \\
Mean & 46.9 \\
\hline
\end{tabular}
- Raw data are from Pierce et al. 1981.

Source: U.S. EPA, 1993.
collected included number of anglers that fish at the Santa Monica Bay; demographic characteristics of anglers (i.e. ethnicity, age, gender); fishing site characteristics; different species of fish caught; fishing frequency; fishing seasons; and seafood consumption patterns of anglers.

One of the two methods used in estimating seafood consumption rates was based on the respondents estimates of fish meal sizes relative to a balsa wood fillet model. The fillet model assumes 150 g is for the fish meal size considered standard (Santa Monica Bay Restoration Project, 1994). The fish consumption rate was calculated by multiplying the estimated fish species meal size relative to the fillet model by the frequency of fish species consumption four weeks prior to the interview. Also, for anglers that caught fish, the number 1 was added to their frequency of fish consumption (Santa Monica Bay Restoration Project, 1994).

The results obtained from the estimates based on the fillet model by ethnicity and income groups for all fish consumed by Santa Monica Bay anglers are presented in Table 2-155. The median and mean consumption rate for Santa Monica Bay anglers was 21 g/day and \(50 \mathrm{~g} /\) day, respectively (Table 2-155). Table 2-155 also indicates that for the identifiable ethnic groups, median consumption rates were the highest for blacks, \(24 \mathrm{~g} /\) day, while Asians had the highest 90th percentile estimate of \(116 \mathrm{~g} / \mathrm{day}\). Anglers with annual household incomes less than \(\$ 5,000\) had the highest median consumption of \(32.1 \mathrm{~g} / \mathrm{day}\), and anglers with household annual income greater than \(\$ 50,000\) had the highest 90 th percentile estimate of \(128.6 \mathrm{~g} /\) day.

A limitation in the approach used to calculate fish consumption rate is that the frequency of fish consumption was based on recall. This may somewhat bias the results obtained. An advantage of this study is that the random sampling approach employed minimized sampling biases that may be created. Also the method used to estimate fish consumption rate accounted for all anglers who consumed fish whether or not the fish was caught at the time of interview. Another advantage is that the survey accounted for fishing seasons that occurred all year round.

Table 2-155. Distribution of Seafood Consumption Rates of All Fish by Ethnic and Income Groups of Santa Monica Bay Anglers
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Subgroup Population} & \multirow[b]{2}{*}{Number of Anglers} & \multicolumn{3}{|c|}{Consumption Rates (g/day)} \\
\hline & & Mean & 50th Percentile & 90th Percentile \\
\hline \multicolumn{5}{|l|}{Ethnicity} \\
\hline White & 217 & 58.1 & 21.4 & 112.5 \\
\hline Hispanic & 137 & 28.2 & 16.1 & 64.3 \\
\hline Biack & 57 & 48.6 & 24.1 & 85.7 \\
\hline Asian & 122 & 51.1 & 21.4 & 115.7 \\
\hline Other & 14 & 137.3 & 85.7 & 173.6 \\
\hline \multicolumn{5}{|l|}{Income} \\
\hline < \$5,000 & 20 & 42.1 & 32.1 & 64.3 \\
\hline \$5,000-\$10,000 & 27 & 40.5 & 21.4 & 48.2 \\
\hline \$10,000-\$25,000 & 90 & 40.4 & 21.4 & 80.4 \\
\hline \$25,000-\$50,000 & 149 & 46.9 & 21.4 & 113.0 \\
\hline \(>\mathbf{\$ 5 0 , 0 0 0}\) & 130 & 58.9 & 21.4 & 128.6 \\
\hline Total All Anglers & 555 & 49.6 & 21.4 & 107.1 \\
\hline
\end{tabular}

\footnotetext{
Source: Santa Monica Bay Restoration Project, 1994.
}


\subsection*{2.6.5. Other Relevant Recreational Marine Studies}

Price et al. - The Effect of Sampling Bias on Estimates of Angler Consumption Rates in Creel Surveys - Price et al. (1994) investigated the effect of sampling bias on estimates of fish consumption rates derived from the creel surveys of marine and estuarine anglers conducted by Puffer et al. (1981) and Pierce et al. (1981). A description of the original creel surveys conducted by Puffer et al. and Pierce et al. and the methodology employed to obtain fish consumption rates have been discussed earlier in this section. In their original surveys, Puffer et al. (1981) and Pierce et al. (1981) collected data on the size of fish caught, number of fish caught, angler's fishing frequency, and the number of individuals sharing the fish caught. Using these data, Puffer et al. (1981) estimated fish consumption rates for the individual anglers surveyed. However, Pierce et al. (1981) did not estimate fish consumption rates for the individual anglers (Price et al., 1994). In an effort to derive recommended rates for typical anglers, EPA calculated a distribution of fish consumption rates using the information obtained from the Pierce et al. (1981) survey (Price et al., 1994). Based on the arithmetic average of the median consumption rates from both surveys (i.e. Puffer et al., 1981, at 37 g/day; and EPA's estimate at \(23 \mathrm{~g} /\) day), EPA recommended a consumption rate of \(30 \mathrm{~g} /\) day for a typical angler. A value of \(140 \mathrm{~g} /\) day was recommended as the "worst-case" consumption rate (Price et al., 1994).

Price et al. (1994) reanalyzed both survey data by weighting the individual survey responses by the inverse of the angler's self-reported fishing frequency to produce a more accurate characterization of the total angler population. Price et al. (1994) re-estimated Pierce's data to obtain a distribution of consumption rates in the total angler population using the equation presented below:
\[
\begin{equation*}
T N_{A}=N_{A F} \times \frac{365}{F} \tag{Eqn.2-9}
\end{equation*}
\]
where:
\(\mathrm{TN}_{\mathbf{A}}=\) total number of anglers with a consumption rate of \(\mathbf{A}\)
\(\mathbf{N}_{\mathrm{AF}}=\) number of anglers with a consumption rate of A and fishing frequency F

Similarly, Price et al. (1994) re-estimated both Puffer and Pierce's data to obtain a distribution of fishing frequencies in the total angler population from the following equation:
\[
\begin{equation*}
T N_{F}=N_{F} \times \frac{365}{F} \tag{Eqn.2-10}
\end{equation*}
\]
where:
\(\mathrm{TN}_{\mathrm{F}}=\) total number of anglers with a fishing frequency F
\(\mathbf{N}_{\mathrm{F}} \quad=\) number of surveyed anglers with a fishing frequency F

Due to insufficient data, Price et al. (1994) used a different approach to estimate consumption rates from Puffer's survey. In this approach an average consumption rate per angling trip was calculated based on the anglers mean consumption rate and fishing frequency in the Puffer survey. This estimated average consumption rate per angling trip in conjunction with the distribution of fishing frequencies in the total angler population was used to develop a distribution of consumption rates.

Table 2-156 shows that the recalculated median consumption rate for the survey population in the Pierce et al. (1981) survey is \(19 \mathrm{~g} / \mathrm{day}\), and the median rate for the total angler population is \(1.0 \mathrm{~g} /\) day. In the Puffer et al. (1981) survey, the recalculated median consumption rate for the survey population is \(37 \mathrm{~g} /\) day and the median rate for the total angler population is \(2.9 \mathrm{~g} /\) day (Table 2-156). The average median consumption rate for the survey population is \(29 \mathrm{~g} /\) day and 2.0 g/day for the total angler population (Table 2-156). The results obtained indicate that the total angler population using a given waterbody have much lower fishing and consumption rates than the surveyed populations. Therefore, using intake estimates obtained from creel surveys provide a biased estimate of the total angler population's intake (Price et al., 1994).

A limitation of this study is that some of the raw data obtained for use by Price et al. were incomplete. Therefore, assumptions made to eliminate unusable data may have affected the results obtained in this study. An advantage of this study is that it supports the
- Table 2-156. Selected Percentile Consumption Estimates (g/d) for the Survey and Total Angler Populations Based on the Reanalysis of the Puffer and Pierce Data
\begin{tabular}{lcc}
\hline & 50th Percentile & 90th Percentile \\
\cline { 2 - 3 } \begin{tabular}{lcc} 
Puffer & 37 & 225 \\
Pierce & 19 & 155 \\
& & \\
Average & 28 & 190 \\
& & \\
Puffer & \(2.9^{\text {a }}\) & \(35^{\mathrm{b}}\) \\
Pierce & 1.0 & 13 \\
& & \\
Average & 2.0 & 24 \\
\hline
\end{tabular} \(\mathbf{l}\) \\
\hline
\end{tabular}

2 Estimated based on the average intake for the 0-90th percentile anglers.
b Estimated based on the average intake for the 91st -96th percentile anglers.
Source: Price et al., 1994.
limitations of using creel surveys (i.e., oversampling of frequent anglers, overestimation of consumption rates).

San Diego County - San Diego Bay Health Risk Study - The San Diego County Department of Health Services, Environmental Health Services, conducted a creel survey to investigate the potential human health risk from the consumption of fish caught from the San Diego Bay. Because of the potential health risk, the study was designed to determine the intake rates of fish caught from the Bay. Three hundred sixty-nine (369) anglers were interviewed over a one year period beginning October 1988 through October 1989 (San Diego County, 1990). Survey objectives were to identify the fish species most commonly caught in the Bay and the demographics of anglers that catch those fish; and characterize the fish consumption patterns of the anglers and others who may consume the fish (i.e., fishing frequency, fish meal size) (San Diego County, 1990). The anglers were interviewed at selected, but popular fishing locations such as piers and shorelines. The fish species were identified and the fish caught were weighed during the interview. The ratio of male anglers to female anglers was 10.5 to 1 . The average fishing frequency of Bay anglers was about 6.4 times per month. Most anglers fished from \(<1\) to 12 times per month. The most successful anglers fished more frequently.

Intake rates were calculated using the following equation (San Diego County, 1990):
\[
\begin{equation*}
\text { Intake Rate }=\frac{\text { (Fish Weight)(Edible Portion) }}{\text { (Number of Conswmers)(Fishing Frequency) }} \tag{Eqn.2-11}
\end{equation*}
\]

For this calculation, San Diego County (1990) assumed 30 percent of the total fish weight caught on the survey day to be edible. The cumulative fish intake rate was estimated at \(31.2 \mathrm{~g} /\) day for the total fish catch. Table 2-157 presents the species-specific average intake rates estimated from the survey data for four of the seven species targeted for the survey. To calculate the bay-wide average consumption rates of the species targeted, the individual rates were averaged, then adjusted to reflect the total population. Pacific Mackerel had the largest intake rate of \(11.5 \mathrm{~g} /\) day representing about 38.8 percent (largest) of total fish caught from the bay. Table 2-158 shows the intake rates obtained for specific

Table 2-157. Estimated Species-Specific Consumption Rates of San Diego Bay Anglers
\begin{tabular}{lcccc}
\hline \multicolumn{1}{c}{ Species } & \(\mathrm{N}^{\mathrm{a}}\) & \begin{tabular}{c} 
\% of \\
Total Catch
\end{tabular} & \begin{tabular}{c} 
Average Intake Rate \\
(grams/day)
\end{tabular} & \begin{tabular}{c} 
Upper \\
\(95 \%\) CI \(^{\mathrm{c}}\)
\end{tabular} \\
\hline Pacific mackerel & 24 & 38.8 & 11.5 & 59.3 \\
California lizardfish & 11 & 19.4 & 4.7 & 56.9 \\
Barred sand bass & 5 & 10.2 & 1.3 & 23.3 \\
Spotted sand bass & 10 & 4.2 & 0.5 & 14.1 \\
Overall & 59 & - & \(31.2^{\mathrm{b}}\) & 73.4 \\
\hline
\end{tabular}
a Number of angler interviews.
b Cumulative and species-specific consumption rates were estimated from angler survey dnta. A cumulative rate of \(31.2 \mathrm{~g} /\) day was determined for the total fish catch. Individual rates were determined for 4 of the 7 targeted species, becruse these 4 species accounted for 74 percent of the total catch (San Diego County, 1990).
c Cl - confidence of interval.

Sourco: San Diego County, 1990.

Table 2-158. Intake Rates of San Diego Anglers by Ethnicity
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ethnicity & \% of Total Anglers & No, of Interviews \({ }^{\text {a }}\) & \% of Total Consumers \({ }^{\text {b }}\) & Average Intake Rate (grams/day) \({ }^{c}\) & Lower and Upper 95\% Confidence Interval of the Mean \\
\hline Caucasian & 42.0 & 20 & 24.0 & 10.8 & 0, 25.6 \\
\hline Filipino & 20.1 & 26 & 32.6 & 49.5 & 6.3,92.7 \\
\hline Hispanic & 12.5 & 5 & 8.9 & 23.6 & 0,270.4 \\
\hline Asian \({ }^{\text {d }}\) & 11.1 & 4 & 25.6 & 81.9 & 0, 102.3 \\
\hline Black & 6.5 & \(\sim^{\text {f }}\) & 4.7 & NC5 & - \\
\hline Other \({ }^{\text {e }}\) & 7.8 & -f & 2.2 & NC & - \\
\hline Total Population & 100 & & 100 & 31.2 & \\
\hline
\end{tabular}
a It should be emphasized that limitations on sample size, especially for Hispanics and Asians, make comparison of these rates problematic (San Diego County, 1990).
b This distribution is based on sample size of 143 interviews, representing 490.5 potential consumers.
c These are average rates and a range of values exists for individuals within each group.
d Group includes Vietnamese, Laotian, Japanese, Cambodian, Korean and Thai.
e Group includes Indian, American Indian, Hawaiian, Polynesian, and Unidentified.
\(f\) No values were reported.
g NC - not calculated. Sample sizes for these groups were insufficient to allow calculations of consumption rates.
Source: San Diego County, 1990.
ethnic groups. The author notes that a comparison of intake rates by ethnic group may be difficult due to the limitations on sample size for Hispanics and Asians. In addition, the reported rates are average rates, and a range of values exists for individuals within each group (San Diego County, 1990).

A limitation associated with this study is the small sample size of anglers surveyed. Only 59 interviews (representing 195 potential consumers) were used to calculate the cumulative intake of 31.2 g/day for total fish catch from all species. Only 59 of the 369 interview questionnaires contained all the data necessary for calculating individual intake rates and subsets of this 59 used to calculate specie and ethnic consumption rates (San Diego County, 1990). This may somewhat bias the intake rate values reported. In addition, it was assumed that the fishing success rate on the interview day would be the same for future fishing trips. However, an advantage of this study is that on-site interviews were conducted which could minimize bias that would be associated with recall.

National Marine Fisheries Service - In 1985, the National Marine Fisheries Service (NMFS) collected national recreational catch data for coastal areas (NMFS, 1986a). Fishermen in the field were surveyed directly and households were surveyed by telephone. For the Atlantic and Gulf coasts, approximately 41,000 field interviews and 58,000 telephone interviews were conducted. For the Pacific coast, approximately 38,000 field interviews and 73,000 telephone interviews were conducted. Appendix 2D contains data on total catch size according to marine species, seasonal variations in catch size, and the number of sport fishermen in the Atlantic, Gulf, and Pacific Coast regions. Intake rates were not derived from these surveys.

\subsection*{2.6.6. Key Freshwater Recreational Studies}
U.S. EPA - Fish Intake Study - EPA (1993) calculated arithmetic mean fish intake rates using raw data from six fish consumption surveys conducted during the 1980s. Surveys with appropriate data needed to estimate fish intake rates for recreational anglers were used for this study (U.S. EPA, 1993). The calculated arithmetic mean fish intake rates ranged from 3.1 to \(24.2 \mathrm{~g} /\) day. Data from the five freshwater surveys were used to calculate fish intake rates for anglers and are summarized below.

The first dataset was from West et al. (1989) - "Michigan Sport Anglers Fish Consumption Survey." U.S. EPA. (1993) calculated eating frequencies and intake rate for self-caught fish using the raw data of West (1989) discussed earlier in this section. The eating frequencies were different for the 7-day and 1-year recall period for anglers who included the percentage of self-caught fish. For example, 269 anglers consumed fish once a week during the 7 -day recall period, while 92 anglers consumed fish weekly during the 1 year recall period (U.S. EPA, 1993). During the 7-day recall, 538 out of 1,062 anglers did not provide any information; 50.6 percent was believed to not eat fish (U.S. EPA, 1993). The estimated mean intake rate during the 7-day recall period for self-caught fish when zero responses (i.e. anglers that did not consume self-caught fish during this period) were not included was \(49.0 \mathrm{~g} /\) day and the 95 th percentile was \(105.8 \mathrm{~g} /\) day (Table 2-159). In comparison, when zero responses were included in the analysis, the mean intake rate for anglers during the 7 -day recall period was \(24.2 \mathrm{~g} /\) day and the 95 th percentile was \(94 \mathrm{~g} /\) day (U.S. EPA, 1993).
U.S. EPA (1993) noted that comparison of the eating frequencies between the 1 -year recall period data and the 7-day recall period data suggest that extrapolation of a short-term data to long-term data may result in inaccurate data results. A limitation of this reanalysis is that results based on 1-year recall were not presented.

The second dataset was from Smith and Enger (1988) - A Survey of Attitudes and Fish Consumption of Anglers on the Lower Tittabawassee River. Seven hundred and three (703) individuals participated in this survey, however, only 694 records were provided for this study. The creel survey was conducted from May 1 through August 31, 1987, through personal interviews with the participants along fishing sites. All responses were based on a 1 -year recall period. The survey was designed to obtain information such as sociodemographic factors, fishing practices, frequency of fish meals, and awareness of fish advisories. The calculated mean intake rate was \(6.5 \mathrm{~g} /\) day when zero responses (i.e., respondents that did not eat fish from the Tittabawassee River) were excluded from data analysis. U.S. EPA (1993) assumed 145 g to be the average meal size consumed by anglers (Table 2-160). This assumption is based on Pao (1982). Also, 85.4 percent of anglers surveyed consumed between a range of \(1-10 \mathrm{~g} /\) day of fish from this river (U.S. EPA., 1993).

Table 2-159. Percentile Rankings and Mean Consumption Rates for Michigan Sport Anglers Fish Consumption Survey \({ }^{\text {a }}\)
\begin{tabular}{cc}
\hline Percentile & \begin{tabular}{c} 
Intake Rate \\
(g/day)
\end{tabular} \\
\hline 25th & 32.6 \\
50th & 32.6 \\
75th & 65.1 \\
90th & 93.6 \\
95th & 105.8 \\
98th & 122.1 \\
100th & 223.9 \\
Mean & 49.0 \\
\hline
\end{tabular}

2 Responses of zero (angler did not eat any self-caught fish) for 7-day consumption period not included. Raw data are from West et al. 1989.

Source: U.S. EPA, 1993.

Table 2-160. Percentile and Mean Intake Rates of Anglers Fishing on the Lower Tittabawassee River, Michigana
\begin{tabular}{cc}
\hline Percentile & \begin{tabular}{c} 
Intake Rate \\
(g/day)
\end{tabular} \\
\hline 25th & 2.4 \\
50th & 2.4 \\
75th & 4.8 \\
90th & 20.7 \\
95th & 20.7 \\
98th & 39.7 \\
100th & 39.7 \\
Mean & 6.5 \\
\hline
\end{tabular}

2 Zero responses (Person who stated they did not eat fish from this river) were excluded. Raw data are from Smith and Enger (1988).

Source: U.S. EPA, 1993.

Smith and Enger (1988) did not calculate fish intake rates, but reported that 7 percent of the anglers consumed one or more meals per week (U.S. EPA, 1993). A limitation of the survey is that consumption rates may be a reflection of lower angler activity due to fishing ban.

The third data set was from Connelly et al. (1990) - New York Statewide Anglers Survey, 1988. The mail survey was conducted from January through March, 1989 and the survey was designed to obtain general information including sociodemographic factors, angler effort and interest in particular species, boating patterns related to fishing, angler preferences for various New York fishing programs, and angler awareness of and adherence to health advisories related to the consumption of fish (U.S. EPA, 1993). The survey was based on 1-year recall.

The mean intake rate for the anglers surveyed was calculated at \(18.0 \mathrm{~g} /\) day (Table 2-161). These values, however, represent fish consumption from all sources (i.e., fresh, marine, purchased, etc.) U.S. EPA (1993) used the responses from 4,573 respondents and assumed a meal size of 145 g for each angler in their calculation. The mean fish intake rate for those respondents who caught fish from Lake Erie ( 343 respondents) was \(4.8 \mathrm{~g} / \mathrm{day}\) when zero responses were excluded (Table 2-162). The mean intake rate for those respondents who fished at Lake Ontario ( 1,167 respondents) was \(3.3 \mathrm{~g} /\) day when zero responses were excluded (Table 2-163).

In comparison, Connelly et al. (1990) assumed a fish meal size of \(1 / 2\)-pound (approximately 229g) (U.S. EPA (1993). Hence, the mean intake rate obtained by Connelly et al. (1990) was \(27.6 \mathrm{~g} /\) day versus the \(18.0 \mathrm{~g} /\) day calculated by U.S. EPA, 1993. A limitation of this study is that results may be a reflection of fish advisories in place. For example, 76 percent of respondents indicated not eating the species listed in the advisory and following the guidelines for maximum fish meal consumption.

The fourth dataset was from Cox et al. (1990) - The results of the 1989 - Guide to Eating Ontario Sport Fish. The survey were designed to collect information for sociodemographic factors, fishing effort and locations, fish intake rates, meal sizes, and changes in fishing and fish consumption patterns due to health advisories (U.S. EPA, 1993). This survey was enclosed in the back of 100,000 of the 300,000 guides that were distributed

Table 2-161. Percentile and Mean Intake Rates for all Fish Meals Consumed by New York State Anglers \({ }^{\text {a }}\)
\begin{tabular}{cc}
\hline Percentile & \begin{tabular}{c} 
Intake Rate \\
(g/day)
\end{tabular} \\
\hline 25th & 7.9 \\
50th & 13.9 \\
75th & 20.7 \\
90th & 39.7 \\
95th & 43.78 \\
98th & 69.5 \\
100th & 396.9 \\
Mean & 18.0 \\
\hline
\end{tabular}

2 Raw data from Connelly et al. (1988).
Source: U.S. EPA, 1993.

Table 2-162. Percentile and Mean Consumption Rates for New York Anglers Who Caught Fish From Lake Erie \({ }^{2}\)
\begin{tabular}{cc}
\hline Percentile & \begin{tabular}{c} 
Intake Rate \\
(g/day)
\end{tabular} \\
\hline 25th & 0.8 \\
50th & 2.0 \\
75th & 4.8 \\
90th & 11.9 \\
95th & 19.9 \\
98th & 29.8 \\
100th & 119.2 \\
Mean & 4.8 \\
\hline
\end{tabular}
a Zero respondents not included. Raw data from Connelly et al. (1990).
Source: U.S. EPA, 1993.

Table 2-163. Percentile Rankings and Mean Consumption Rates for New York Anglers Who Caught Fish From Lake Ontario
\begin{tabular}{cc}
\hline Percentile & \begin{tabular}{c} 
Intake Rate \\
(g/day)
\end{tabular} \\
\hline 25th & 0.8 \\
50th & 2.0 \\
75th & 4.0 \\
90th & 7.9 \\
95th & 9.9 \\
98th & 15.9 \\
100th & 158.9 \\
Mean & 3.3 \\
\hline
\end{tabular}

2 Zero responses excluded. Raw data from Connelly (1990).
Source: U.S. EPA, 1993.
mainly to selected stores as well as some fishing license distributors. The survey was based on a 1-year recall. Only 913 individuals responded out of 100,000 questionnaires that were distributed (approximately 1 percent response rate). About 47 percent of these respondents ate fish either once a month or once every two weeks. Most of the anglers survey consumed less than \(20 \mathrm{~g} /\) day of fish (U.S. EPA, 1993).

Cox et al. (1990) assumed a fish meal size of 227 g for their intake rate estimation. Cox et al. (1990) calculated a mean fish intake rate of \(20.19 \mathrm{~g} /\) day (U.S. EPA, 1993). The mean fish intake rate calculated by U.S. EPA (1993) using actual meal size from the survey was \(19.2 \mathrm{~g} /\) day (Table 2-164).

The fifth dataset was from Fiore et al. (1989) - Sport Fish Consumption and Body Burden Levels of Chlorinated Hydrocarbons: A Study of Wisconsin Anglers. The survey was conducted to assess sociodemographic factors; sport fishing and fishing habits of anglers; evaluate the anglers comprehension of and compliance with the Wisconsin Fish Consumption Advisory; measure body burden levels of PCBs and DDE through analysis of blood serum samples; and examine the relationship between body burden levels and consumption of sportcaught fish (U.S. EPA, 1993). The survey was conducted during the summer of 1985 from a sample pool of 1,600 Wisconsin residents. Respondents from this sample comprised 801 individuals ( 50 percent response rate) 601 males and 200 females. Each participant had purchased fishing or sporting licenses within 10 counties adjacent to water bodies identified in the Wisconsin Fish Advisories (U.S. EPA, 1993).
U.S. EPA (1993) used the following equation used to calculate intake rate:
\[
\begin{equation*}
\text { Intake rate }=\frac{\text { meals }}{\text { year }} \times \frac{145 g}{\text { meal }} \times \frac{\text { year }}{365 d a y s} \tag{Eqn.2-12}
\end{equation*}
\]

A meal size of 145 g (based on Pao, 1982) was assumed for these calculations. Most respondents reported eating less than one sport-caught meal of fish per month. Approximately 70 percent of the anglers had consumption rates in the \(1-10 \mathrm{~g} /\) day range (U.S. EPA, 1993). U.S. EPA (1993) calculated mean intake rate of \(7.3 \mathrm{~g} /\) day for sport caught fish (Table 2-165).

Table 2-164. Rankings and Mean Consumption Rates for Lake Ontario Anglers \({ }^{2}\)
\begin{tabular}{cc}
\hline Percentile & \begin{tabular}{c} 
Intake Rate \\
(g/day)
\end{tabular} \\
\hline 25th & 1.9 \\
50th & 7.6 \\
75th & 17.7 \\
90th & 48.4 \\
95th & 72.7 \\
98th & 169.5 \\
100th & 254.3 \\
Mean & 19.2 \\
\hline
\end{tabular}
- Zero responses excluded. Raw data are from Cox et al., 1990.

Source: U.S. EPA, 1993.

Table 2-165. Percentile and Mean Intake Rates for Wisconsin Sport Anglers \({ }^{2}\)
\begin{tabular}{cc}
\hline Percentile & \begin{tabular}{c} 
Intake Rate \\
(g/day)
\end{tabular} \\
\hline 25th & 1.6 \\
50th & 4.0 \\
75th & 9.9 \\
90th & 19.9 \\
95th & 23.8 \\
98th & 39.7 \\
100th & 145.0 \\
Mean & 7.3 \\
\hline
\end{tabular}
a Raw data are from Fiore et al. 1989.
Source: U.S. EPA, 1993.

In the study conducted by Fiore et al. (1989) fish intake rates were not estmated, tul results from their survey showed that an average of 18 sport-caught and 24 other fish meals were consumed during the year. Fiore et al. (1989) assumed an average meal size of 227 g . The calculated mean daily sport-caught fish intake rate (based on the 227 g meal size) at 12.3 \(g\) (i.e. respondents that did not consume sport-caught fish were excluded), and the average daily intake for all fish meals was 26.1 g (U.S. EPA, 1993).
U.S. EPA (1993) calculated overall mean and percentile intake rates using the data from all five surveys. Estimated mean fish intake rates ranged from \(3.1 \mathrm{~g} /\) day to 24.2 g/day for consumers and non consumers combined (Table 2-166). These data are based on all responses (i.e., zero responses included). The estimated fish intake rates for consumers only ranged from \(3.3 \mathrm{~g} /\) day to \(49 \mathrm{~g} /\) day. Mean values are larger than the median values (50th percentile). The 100th percentile rates represent maximum intake values of any one individual in a survey (U.S. EPA, 1993).

A brief description of the surveys and their limitations are summarized in Table 2-167. Accurate assessments of fish intake rates are dependent on obtaining actual data for two variables; (1) actual number of meals consumed per period of time and (2) the best estimate of amount of fish tissue consumed per meal (U.S. EPA, 1993). The raw data obtained from the surveys conducted by West et al. (1989) and Cox et al. (1990) appeared to give the most reasonable estimates for fish tissue consumption because in these studies an attempt was made to identify the individual's estimated fish serving portion size (U.S. EPA, 1993).

The limitations associated with this study are based in part on the limitations associated with the 5 surveys. Methods used to estimate weights of the amount of fish eaten by the respondents were for the most part subjective. Consequently, the derivation of meal sizes may be somewhat inaccurate. In addition, adult males were the predominant anglers for each survey (U.S. EPA, 1993). Therefore, using these data for exposure assessments for women and children may be somewhat biased. Also, most of the survey data were based on recall and/or successful anglers only. An advantage of this study is that the intake rates were calculated using a large database. However, U.S. EPA cautions the reader that these are preliminary results and that comparisons "across the board" of the surveys are very difficult

Table 2-166. Calculated Fish Consumption Rates Using Raw Data From All Five Surveys
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \multicolumn{4}{|c|}{Percentile Rankings} \\
\hline Study & \[
\begin{gathered}
\text { Mean Intake } \\
\text { Rate }
\end{gathered}
\] & 50th & 90th & 95th & 100th \\
\hline \multicolumn{6}{|l|}{Consumers and Nonconsumers} \\
\hline West et al. (1989) \({ }^{2}\) & 24.2 & 0 & 65.1 & 93.6 & 223.9 \\
\hline Smith and Enger (1988) \({ }^{\text {a }}\) & 3.1 & 0 & 4.8 & 20.7 & 39.7 \\
\hline Connelly et al. (1990) \({ }^{\text {b }}\) & 18.0 & 13.9 & 39.7 & 43.7 & 396.9 \\
\hline Cox et al. (1990) \({ }^{\text {a }}\) & 19.2 & 7.6 & 48.4 & 72.7 & 254.3 \\
\hline Fiore et al. (1989) \({ }^{\text {b }}\) & 7.3 & 4.0 & 19.9 & 23.8 & 145.0 \\
\hline \multicolumn{6}{|l|}{Consumers Only} \\
\hline West et al. (1989) & 49 & 32.6 & 93.7 & 105.8 & 223.9 \\
\hline Smith and Enger (1988) & 6.5 & 2.4 & 10.7 & 20.7 & 39.7 \\
\hline Connelly et al. (1990) Lake Ontario & 3.3 & 2.0 & 7.9 & 9.9 & 158.9 \\
\hline Lake Erie & 4.8 & 2.0 & 11.9 & 19.9 & 119.2 \\
\hline
\end{tabular}
a All responses included for these calculations (i.e., consumers and nonconsumers.
b Based on total fish meals, not only sport-caught fish meals.
Source: U.S. EPA, 1993.

Table 2-167. Summary of Fish Consumption Surveys
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Study & No. Participants & Response Rate \({ }^{k}\) & Objective of Study & Time Period/Survey Type & Population Surveyed & Comments \\
\hline West at al. (1989) & 1,104 & 47.3\% & To obtain information that could be used to revise fish consumption adivisories by examining fish consumption & Jan-May '88; during the past 1 year and 7 days - data based on recall & Sport fishing license holders & Obtained eating frequency of fish meals and fish meal size data based on 7 -day recall and 1-yr recall \\
\hline Smith and Enger (1988) & 694 & 100\% & To determine fish consumption habits of anglers who fished on the lower Titabawassee River in Michigan & May 1-Aug 31 '87; Creel census & Recreational anglers & U.S. EPA assumed meal size of 145 g . Obtained information on frequency of self-caught fish meals; data based on 1 year recall. \\
\hline Connelly at al. (1990) & 10,314 & 62.4\% & To determine fishing efforts expenditures and Now York anglers attitudes and preference for fishing programs & Jan-Mar ' \(8 \boldsymbol{y}\); mail survey and telephone survey of nonrespondents & Resident and non-resident licensed sport fishermen & U.S. EPA assumed meal size of 145 g . Obtained information on total number of fish meals consumed and number of sport-caught fish meals from Lake Erie and Ontario. Data based on 1 year recall \\
\hline Cox et al. (1990) & 913 & <1\% & To determine fish consumption rates and changes in fishing and fish consumption patterns due to health advisories of Lake Ontario anglers & 1989; questionnaires distributed in "Guide" & Lake Ontario anglers & Obtained information on eating frequency of sport-caught fish meals; meal size; data based on 1-year recall \\
\hline Fiore et al. (1989) & 801 & 50\% & To assess the sport fishing and fish consumption habits of Wisconsin anglers & Summer '85; data collection & Sport fishing license holders & U.S. EPA assumed meal size of 145 g ; also, data based on recall; eating frequency of sport-caught fish meals \\
\hline
\end{tabular}

\footnotetext{
a Estimated success rates presented in the individual reports.
}

\section*{Source: U.S. EPA, 1993.}

at best, if not impossible. In addition, intake rates in certain areas are a reflection of fish advisories which are in place.

West et al. - Michigan Sport Anglers Fish Consumption Survey - West et al. (1989a) evaluated the fish consumption patterns among licensed sport fishermen in Michigan. A "stratified random sample" was drawn from the fish license records for the State of Michigan. The sample was stratified based on type of license and geographic residence (zip codes). Survey questionnaires were mailed to approximately 2,500 households, and the deliverable survey sample was 2,334 households. Only 1,104 households of the deliverable surveys responded, therefore, a final response rate of 47.3 percent. The survey was designed to gather information for fish consumption by species; average fish meal size; demographics of consumers; fish consumption by other household members; and consumption of fish from other sources (i.e., restaurant fish, purchased fish, gifts of fish). Additionally, to test for seasonal patterns of fishing and fish eating, survey respondents were asked information on the frequency of each pattern over the past year. The survey was based on a 7-day recall and was conducted from January through June 1988 (winter-spring season).

The meal size consumed was estimated by each respondent using a pictorial guide of about \(1 / 2\) pound ( 8 oz . or 227 g ) of different types of fish meals. West et al. (1989a) estimated the meal size at 10 ounces when the respondents reported eating "more" fish and 5 ounces when the respondents reported eating "less" fish. The calculated average fish intake rate for all respondents including all household members who eat fish was \(18.3 \mathrm{~g} /\) person-day for the January-June, 1988 period (winter-spring). These values represent fish consumption from all sources. The data are for all household members who ate fish, but also includes persons who eat fish, but did not eat fish in the seven-day recall survey period. Grams consumed per person over the 7-day period were divided by 7 to convert to grams/personday (West et al. 1989a).

In addition, West et al. (1989a) calculated estimates for the frequency of fishing and fish-eating based on 1-year recall data. Results showed that the frequency of fishing was significantly greater in the summer-fall (peak season) when compared to the winter-spring (off fishing-season) (West et al. 1989a). However, the frequency of fish consumption was
only somewhat greater in the summer-fall season than in the winter-spring season. In addition, West et al. (1989a), estimated the fish intake rates for both seasons by making conservative assumptions in converting the frequency of fish consumption ranges (based on 1-year recall) obtained for both seasons to point estimates (i.e., number of meals per 6 month period). Based on these assumptions, the estimated fish intake rate for the winter-spring season was \(19.4 \mathrm{~g} /\) day and \(21.2 \mathrm{~g} /\) day for the summer-fall season, the difference between both seasons was \(1.8 \mathrm{~g} /\) day. Because the estimated winter-spring rate ( \(19.4 \mathrm{~g} /\) day ) was close to the calculated winter-spring consumption rate ( \(18.3 \mathrm{~g} /\) day ), the summer-fall consumption estimate was considered to be somewhat reliable (West et al:, 1989a). Therefore, the 18.3 \(\mathrm{g} /\) day (winter-spring rate) was adjusted by adding the 1.8 g difference, giving an adjusted intake rate of \(20.1 \mathrm{~g} /\) person-day value for summer-fall. This value \((20.1 \mathrm{~g})\) was then averaged with the 18.3 g actual mean for winter-spring to get an adjusted yearly intake of \(19.2 \mathrm{~g} /\) day (West et al., 1989a).

There are several limitations with this study. The data obtained were based on 7-day and 1-year recall. Also, the sampling period for the 7-day recall was between January through June (winter-spring season) instead of the peak fishing period of July through December (summer-fall season). The frequency of fishing and fish consumption during the peak period were estimated based on the 1 -year recall data. The estimation of meal sizes by the respondents were based on more than or less than sizes shown in pictures, therefore subjective. These factors may affect the accuracy of the intake rates obtained in this study. Another limitation associated with this survey was the relatively low response ( 47.3 percent). This low response rate could impose some degree of non-return bias on the results obtained (West et al. 1989a). However, the data do represent fishing and fish-eating patterns for that area (Great Lakes) during that time period.

West et al. - Minority Anglers and Toxic Fish Consumption: Evidence From a StateWide Survey of Michigan - West et al. (1993) investigated fish consumption patterns by minority, elderly sport anglers, and members of their household that consume fish in the State of Michigan. The fish intake rates of these subgroups of population were determined using the data obtained from West et al. (1989a). The study (previously described) was a mail survey of a stratified sample ( 2,500 households) of Michigan licensed anglers. The
```

DRAFT
DO NOT QUOTE OR
CITE

```
respondent anglers consisted of 69 Blacks, 139 Native Americans, 3,339 Whites, and 123 other minorities including Hispanics, mixed, and others. The sampling period was January through June 1988 (winter-spring period). Participants were asked to recall consumption patterns over the past 7 days. Fish meal consumption information was gathered from all household members that eat fish.

The results obtained from these data indicated that the fish intake rate for minority sport-anglers was \(21.7 \mathrm{~g} /\) day (West et al. 1993). The fish intake rates calculated for different minority groups surveyed are presented in Table 2-168. Native American and Black sport-anglers had the highest fish intake rates of 24.3 and \(20.3 \mathrm{~g} /\) day, respectively (Table 2-168). The intake rates obtained for Black and Native American minorities are higher than the average fish intake rate ( \(18.3 \mathrm{~g} /\) day) determined for the general Michigan sportanglers, in West et al. (1989a).

Table 2-169 presents data for the Michigan sports anglers by age. The data show that the older sport-anglers ( 65 and above) had the highest intake rate of \(25.2 \mathrm{~g} /\) day. The anglers between the ages of \(51-65\) had the next highest intake rate of \(24.0 \mathrm{~g} /\) day. Differences in intake by age were determined by West et al. (1993) to be statistically significant.

West et al. (1993) analyzed the data obtained to show the effects of a joint multivariate analysis of race and age on fish intake rates. The results obtained and presented in Table 2-170 show that Black anglers 51-91 years and older had the highest intake rate of \(31.9 \mathrm{~g} / \mathrm{day}\). Native Americans within this same age category had the next highest intake rate of \(21.7 \mathrm{~g} /\) day. For Native American anglers, the highest intake rate ( \(30.6 \mathrm{~g} /\) person-day) was reported for persons between the ages of 31-50. The other minority groups (Hispanics, mixed, and other races) had the next highest rate in this age category. The data in Table 2-170 show the joint multivariate effects of race and age in an ANOVA. West et al. (1993), therefore, concluded that the interaction is not statistically significant but the main effects are (i.e., age and race).

Overall, the findings in this survey suggest that in Michigan, more fish is consumed by Native Americans ( \(24.3 \mathrm{~g} /\) person-day) than Blacks ( \(20.3 \mathrm{~g} /\) person-day), and both minority subgroups consume more fish than White sports anglers. However, the sample size is small

Table 2-168. Average Fish Consumption (g/person-day) by Race for Michigan Sport Anglers
\begin{tabular}{lccccc}
\hline \multicolumn{1}{c}{ Race } & N & \(\begin{array}{c}\text { Average Fish } \\
\text { Consumption } \\
\text { (g/person-day) }\end{array}\) & SD & \(\begin{array}{c}95 \% \text { Confidence } \\
\text { Interval }\end{array}\) & \(\begin{array}{c}\text { Maximum } \\
\text { (g/person-day) }\end{array}\) \\
\hline Vlack & 69 & 20.3 & 26.8 & \(13.9-26.8\) & 122.4 \\
(g/person-day)
\end{tabular}\(]\)
a Maximum value is the highest fish consumption (in grams/person/day) found for any individual in that age group. Few people in the same consume at this high level.
b Other includes Hispanic, mixed, and other.
c The confidence interval is a statistical measure of the probability of the population mean (as opposed to the sample mean) falling within these parameters.

Source: West et al., 1993.

Table 2-169. Average Fish Consumption (g/person-day) by Age Groups for Michigan Sport Anglers
\begin{tabular}{lccccc}
\hline \multicolumn{1}{c}{ Age } & N & \begin{tabular}{c} 
Average Fish \\
Consumption \\
(g/person/day)
\end{tabular} & SD & \begin{tabular}{c}
\(95 \%\) Confidence \\
Interval \\
(g/person-day)
\end{tabular} & \begin{tabular}{c} 
Maximum \\
Value \\
(g/person-day)
\end{tabular} \\
\hline \(0-10\) & 444 & 9.5 & 15.7 & 8.1 to 11.0 & 81.6 \\
\(11-20\) & 571 & 10.8 & 18.6 & 9.2 to 12.3 & 106.1 \\
\(21-30\) & 566 & 18.0 & 25.7 & 15.9 to 20.2 & 146.9 \\
\(31-40\) & 665 & 20.4 & 30.0 & 18.1 to 22.7 & 163.3 \\
\(41-50\) & 566 & 20.9 & 30.0 & 18.4 to 23.4 & 224.5 \\
\(51-65\) & 560 & 24.0 & 29.2 & 21.6 to 26.4 & 224.5 \\
Over 65 & 269 & 25.2 & 28.5 & 21.7 to 28.6 & 138.7 \\
Total & 3,641 & \(18.2^{\mathrm{a}}\) & 26.6 & 17.3 to 19.0 & 224.5 \\
\hline
\end{tabular}

2 The overall mean consumption is somewhat different (. 1 gram ) than the main figure reported in Table Fish-35, due to missing data for the age variable. Note that the confidence limits for the overall mean consumption is between 17.3 and 19.0 grams/person/day (West et al. 1993).
b The confidence interval is a statistical measure of the probability of the population mean (as opposed to the sample mean) falling within these parameters.

Source: West et al., 1993.

Table 2-170. Average Fish Consumption (g/person-day) by Age and Race for Michigan Sports Anglers
\left.\begin{tabular}{lccc}
\hline & \multicolumn{3}{c}{ Consumption Rate (g/person-day) } \\
Age
\end{tabular}\(\right]\)
a () = Subsample size.
b Includes Hispanic, mixed, and other.
Source: West et al., 1993.
and these differences between Black and Native American may not be significant. West et al. (1993) calculated intake rates based on race and income. Results showed that Black anglers with an income range between \(\$ 15,000-\$ 29,999\) had the highest fish intake rates ( \(30.5 \mathrm{~g} /\) person-day). The highest reported intake rate for Blacks (cities with population over 20,000 ) was \(23.9 \mathrm{~g} /\) person-day (West et al. 1993).

A limitation of this study is that the population sample size for the minority subgroups were small. This may affect the statistical data obtained. Other limitations and advantages associated with the data of West et al. (1989a) also apply, because the data used in this study were obtained from the survey of West et al. (1989a). These data were presented earlier in this section of the report.

West et al. - Michigan Sport Anglers Consumption Survey, Supplements I and II - A further investigation by West et al. (1989b) determined whether a non-response bias existed in the calculation of fish intake rates due to the low response rate ( 47.3 percent) experienced in the West et al. (1989a) survey. A stratified random sample was initially selected for the survey consisting of 1,260 households. Of these households, 580 households of respondents and 680 households of non-respondents were selected from the West et al. (1989a) mail survey. A follow-up phone survey was conducted, only 570 households could be reached by phone and 557 of these households granted complete phone interviews ( 44.2 percent of total survey sample). The phone survey was designed to obtain information on the frequency of fish meals (fish caught or bought in Michigan) consumed by the respondents of all household members. The participants were asked to recall their fish eating patterns over the previous seven days. The sampling was between January 1989 through June 1989. The phone survey results showed that 72.3 percent of the participants that did not respond to the original mailed survey did not eat fish. In comparison, 40.7 percent of participants who responded to the survey did not eat fish. Also, non-respondents to the mailed survey consumed less fish than those who responded, however, when the frequency of fish meals was greater than four meals over the seven-day recall period the converse was true.

Based on the results of the follow-up phone survey, West et al. (1986b) concluded that a non-response bias existed. West et al. (1989b) calculated an adjustment factor of 2.2 g/day. Based on these findings, West et al. (1989b) calculated an adjusted fish intake rate
for non-response bias for the winter-spring season to be \(16.1 \mathrm{~g} / \mathrm{day}\). The authors noted that the adjustment factor can only be used as a rough estimate for adjusting sub-groups intake rates: A summary of original and adjusted seasonal intake rate averages from the previous studies conducted by West et al. are presented in Table 2-171.

West et al. (1989b) investigated further by examining the stability of fish consumption data for the 1988 winter-spring season in comparison with data for the 1989 winter-spring season. The results indicated a decline in fish consumption from 1988 ( 58.6 percent) to 1989 (41.1 percent). The authors attributed the decline to three potential factors; (1) a real downward trend in fish consumption could have occurred; (2) more people responding to fish consumption advisories and media reports about toxics in fish; and (3) increased awareness by survey participants of risks associated with consumption of contaminated fish (West et al. 1989b).

\subsection*{2.6.7. Other Relevant Freshwater Recreational Studies \\ Chemrisk - Consumption of Freshwater Fish by Maine Anglers - Chemrisk (1991)} conducted a study to characterize the rates of freshwater fish consumption among Maine residents. Since the only dietary source of local freshwater fish is recreational fish, the anglers in Maine were chosen as the survey population. About 2,500 randomly selected anglers were surveyed by mail and resulted in a usable sample of 1,612 Maine anglers ( 70 percent response rate). The survey was designed to gather information on the consumption of fish caught by anglers from flowing (rivers and streams) and standing (lakes and ponds) water bodies. Respondents were asked to recall the frequency of fishing trips during the 1989-1990 ice-fishing season and the 1990 open water season, the number of fish species caught during both seasons, and estimate the number of fish consumed from 15 fish species. The respondents were also asked to describe the number, species, and average length of each sport-caught fish caught and consumed that had been gifts from other members of their households or other households. All anglers were defined as "licensed anglers who fished either during the 1989-1990 ice-fishing season or 1990 open-water season (consumers and non-consumers), and licensed anglers who did not fish but consumed freshwater fish caught in Maine during these seasons" (Chemrisk, 1991). River anglers were defined as "survey

Table 2-171. Summary of Original and Adjusted Seasonal Consumption Kate Averages
\begin{tabular}{lcc}
\hline \multicolumn{1}{c}{ Season } & \begin{tabular}{c} 
Original Consumption Rate \\
(g/day)
\end{tabular} & \begin{tabular}{c} 
Non-Response Adjusted \\
Consumption Rate \\
(g/day)
\end{tabular} \\
\hline Winter-Spring & 18.3 & 16.1 \\
Summer-Fall & 20.1 & 17.9 \\
Year-Round & 19.2 & 17.0 \\
\hline
\end{tabular}

Note: Figures for summer-fall and year-round are only rough estimates, based on the actual data that was gathered in the winter-spring season.

Source: West et al., 1989b.
respondents (consumers and non consumers) who indicated that they fished on rivers or streams during the 1990 open water season." Consuming anglers were defined as "those anglers who consumed freshwater fish obtained from Maine sources during the 1989-1990 ice fishing or 1990 open water fishing season" (Chemrisk, 1991).

Data for 1,369 anglers ( 85 percent of total responses) were used to calculate fish intake rates. Table 2-172 presents the intake rates by ethnic groups for all waters. The highest mean intake rates reported are for native Americans ( \(10 \mathrm{~g} / \mathrm{day}\) ) and French Canadian ( \(7.4 \mathrm{~g} /\) day) Because there was a low number of respondents for Hispanic, Asian/Pacific Islander, or African American ancestry, the sample was not large enough to calculate intake rates within these subgroups (Chemrisk, 1991). The consumption by species of freshwater fish caught is presented in Table 2-173. The largest consumption was salmon for ice fishing ( \(\sim 292,000\) grams); white perch ( 380,000 grams) for lakes and ponds; and Brooktrout ( 420,000 grams) for rivers and streams (Chemrisk, 1991). The median consumption rates for all anglers, all waters, was calculated at \(1.1 \mathrm{~g} /\) day and the arithmetic mean value at 5.0 g/day. The median value reported for consuming anglers, all waters, was \(2.0 \mathrm{~g} /\) day and the arithmetic mean, \(6.4 \mathrm{~g} /\) day. The percentile data for this study are presented in Ebert et al. (1993), presented to follow in this section. Chemrisk (1991) reported that the fish consumption estimates obtained from the survey were conservative because of assumptions made in the analysis. The assumptions included: a 40 percent estimate as the edible portion of land locked and Atlantic salmon; inclusion of the intended number of future fishing trips and; it was assumed that the average success and consumption rates for the individual angler during the trips already taken would continue through future trips (Chemrisk, 1991).

However, the data collected for this study was based on recall and self-reporting which may have resulted in a biased estimate. The social desirability of the sport and frequency of fishing are also bias contributing factors; successful anglers are among the highest consumers of freshwater fish (Chemrisk, 1991). Overreporting appears to be correlated with skill level and the importance of the activity to the individual; it is likely that the higher consumption rates may be substantially overstated (Chemrisk, 1991). Additionally, fish advisories are in place in these areas and may affect the rate of fish consumption among anglers. An advantage of this study is that it presents area-specific

Table 2-172. Analyais of Fish Consumption by Ethnic Groups for "All Waters" (grama/day)
\left.\begin{tabular}{lcccccc}
\hline & & \multicolumn{5}{c}{ Consuming Anglernb }
\end{tabular}\(\right]\)
a "All Waters" based on fish obtained from all lakes, ponds, atreams and rivers in Maine, from other household sources and from other non-housebold sources.
b "Consuming Anglers" refers to only those anglers who consumed freshwater fish obtained from Maine sources during the 19891990 ice fishing or 1990 open water fishing season.
- The average consumption per day by freshwater finh consumers in the household. Fish consumption rates under "All Waters" are based on reported consumption from all Maine sources, and eatimated consumption during 1990 after the survey was completed. Rates summarized under "Rivers and Streams" are based on reported conaumption from rivers and streams, estimuted consumption during 1990 after the survey was completed, and eatimated consumption from other household and nonbouschold sources altributable to rivers and streams.
d Calculated by rank without any assumption of atatistical distribution.
- Firh consumption rate recommended by EPA (1984) for use in eatablishing ambient water quality standardm.

\section*{Source: Chemrink, 1991.}

Table 2-173. Total Consumption of Freshwater Fish Caught by All Survey Respondents During the 1990 Season
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{2}{|c|}{Ice Fishing} & \multicolumn{2}{|r|}{Lakes and Ponds} & \multicolumn{2}{|l|}{Rivers and Streams} \\
\hline & Quantity Consumed ( \({ }^{(H)}\) & \begin{tabular}{l}
Grams ( \(\mathbf{x} 10^{3}\) ) \\
Consumed
\end{tabular} & Quantity Consumed ( \({ }^{(H)}\) & \begin{tabular}{l}
Grams ( \(\mathbf{x} 10^{3}\) ) \\
Consumed
\end{tabular} & Quantity Consumed ( \({ }^{(n)}\) & \begin{tabular}{l}
Grams ( \(\mathbf{x} 10^{3}\) ) \\
Consumed
\end{tabular} \\
\hline Landlocked salmon & 832 & 290 & 928 & 340 & 305 & 120 \\
\hline Atlantic salmon & 3 & 1.1 & 33 & 9.9 & 17 & 11 \\
\hline Togue (Lake trout) & 483 & 200 & 459 & 160 & 33 & 2.7 \\
\hline Brook trout & 1,309 & 100 & 3,294 & 210 & 10,185 & 420 \\
\hline Brown trout & 275 & 54 & 375 & 56 & 338 & 23 \\
\hline Yellow perch & 235 & 9.1 & 1,649 & 52 & 188 & 7.4 \\
\hline White perch & 2,544 & 160 & 6,540 & 380 & 3,013 & 180 \\
\hline Bass (smallmouth and largemouth) & 474 & 120 & 73 & 5.9 & 787 & 130 \\
\hline Pickerel & 1,091 & 180 & 553 & 91 & 303 & 45 \\
\hline Lake whitefish & 111 & 20 & 558 & 13 & 55 & 2.7 \\
\hline Hornpout (Catfish and bullheads) & 47 & 8.2 & 1,291 & 100 & 180 & 7.8 \\
\hline Bottom fish (Suckers, carp and sturgeon) & 50 & 81 & 62 & 22 & 100 & 6.7 \\
\hline Chub & 0 & 0 & 252 & 35 & 219 & 130 \\
\hline Smelt & 7,808 & 150 & 428 & 4.9 & 4,269 & 37 \\
\hline Other & 201 & 210 & 90 & 110 & 54 & 45 \\
\hline TOTALS & 15,463 & 1,583.4 & 16,587 & 1,590 & 20,046 & 1,168 \\
\hline Source: Chemrisk, 1991. & & & & & &  \\
\hline
\end{tabular}
consumption patterns. Also, the response rate from the mailed survey was considerably high which may have eliminated non-response bias.

Ebert et al. - Estimating Consumption of Fresh Water Fish Among Maine Anglers - A recent rulemaking process to set an ambient water quality standard for \(2,3,7,8\) -tetrachlorodibenzo-p-dioxin (TCDD) in Maine rivers required estimations of fish intake rates from the rivers that receive TCDD discharge (Ebert et al., 1993). Since there are no commercial freshwater fisheries in the State of Maine, individuals can only be exposed to TCDD present in these rivers by consuming sport-caught fish. Ebert et al. (1993) evaluated data from a statewide survey of licensed resident anglers in Maine. The survey data used were data previously collected by Chemrisk (1991) (previously described).

Ebert et al. (1993) analyzed the survey data and found that of the 1,612 survey respondents, 1,251 reported that they fished either during the 1989-1990 ice-fishing or 1990 open-water seasons. In addition, 118 anglers reported that they did not fish, but consumed fish caught by other anglers during these seasons. Consequently, the "all anglers" used in the data analysis consist of \(1,369(1,251+118)\) respondents ( 85 percent of total responses) (Ebert et al., 1993). The median and arithmetic mean fish intake rates for consuming anglers who caught fish in all waters (rivers, streams, lakes, and ponds) were \(2.0 \mathrm{~g} /\) day and \(6.4 \mathrm{~g} /\) day, respectively. The median and arithmetic intake rates for consuming anglers who caught fish in flowing waters were \(0.99 \mathrm{~g} /\) day and \(3.7 \mathrm{~g} /\) day, respectively (Table 2-174). The arithmetic means represent the 77th percentile and 88th percentile of the consumption distribution for all waters and flowing waters, respectively (Ebert et al., 1993).

All waters represent rivers, streams, ponds, and lakes, and flowing waters represent rivers and streams only. Table 2-175 presents the fish intake rates based on how fish were shared among household members. The data varies depending on the sharing pattern. The median fish intake rate increased by a factor of 2.5 based on the assumption that only anglers (no sharing) consumed fish caught in all water bodies relative to when all household members share and consume fish equally (Ebert et al., 1993).

The data used in this study was obtained from the survey conducted by Chemrisk (1991). Therefore, the same advantages and limitations associated with Chemrisk (1991), are applicable to this study.

Table 2-174. Estimates of Fish Intake Rates of Licensed Sport Anglers in Maine During the 1989-1990 Ice Fishing or 1990 Open-Water Seasons \({ }^{\text {a }}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Intake Rates (grams/day)} \\
\hline \multirow[t]{2}{*}{Percentile Rankings} & \multicolumn{2}{|c|}{All Waters \({ }^{\text {b }}\)} & \multicolumn{2}{|r|}{Rivers and Streams} \\
\hline & All Anglers \({ }^{\text {c }}\)
\[
(\mathbf{N}=1,369)
\] & \[
\begin{gathered}
\text { Consuming } \\
\text { Anglers }^{\text {d }} \\
(\mathrm{N}=1,053)
\end{gathered}
\] & River Anglers \({ }^{\text {© }}\)
\[
(N=741)
\] & \[
\begin{gathered}
\text { Consuming } \\
\text { Anglers } \\
(\mathrm{N}=464)
\end{gathered}
\] \\
\hline 50th (median) & 1.1 & 2.0 & 0.19 & 0.99 \\
\hline 66th & 2.6 & 4.0 & 0.71 & 1.8 \\
\hline 75th & 4.2 & 5.8 & 1.3 & 2.5 \\
\hline 90th & 11.0 & 13.0 & 3.7 & 6.1 \\
\hline 95th & 21.0 & 26.0 & 6.2 & 12.0 \\
\hline \multirow[t]{2}{*}{Arithmetic Mean \({ }^{\text {f }}\)} & 5.0 & 6.4 & 1.9 & 3.7 \\
\hline & [79] & [77] & [82] & [81] \\
\hline
\end{tabular}
2. Estimates are based on rank except for those of arithmetic mean.
b All waters based on fish obtained from all lakes, ponds, strams and rivers in Maine, from other household sources and from other non-household sources.
c Licensed anglers who fished during the seasons studied and did or did not consume freshwater fish, and licensed anglers who did not fish but ate freshwater fish caught in Maine during those seasons.
d Licensed anglers who consumed freshwater fish caught in Maine during the seasons studied.
c Those of the "all anglers" who fished on rivers or streams (consumers and nonconsumers).
f Values in brackets [] are percentiles at the mean consumption rates.
Source: Ebert et al., 1993.

Table 2-175. Intake rates of Sport-Anglers in Maine Based on How Fish Was Shared Among Household Members
\begin{tabular}{ccccccc}
\hline & \multicolumn{2}{c}{\begin{tabular}{c} 
All Household Consumers \\
Share
\end{tabular}} & \multicolumn{2}{c}{ Only Adults Share } & \multicolumn{2}{c}{\begin{tabular}{c} 
Anglers Only; No \\
Sharing
\end{tabular}} \\
\hline \begin{tabular}{c} 
Percentile \\
Rankings
\end{tabular} & All Waters & \begin{tabular}{c} 
Rivers \& \\
Streams
\end{tabular} & All Waters & \begin{tabular}{c} 
Rivers \& \\
Streams
\end{tabular} & All Waters & \begin{tabular}{c} 
Rivers \& \\
Streams
\end{tabular} \\
\hline 50th & 2.0 & 0.99 & 2.3 & 1.2 & 5.0 & 2.5 \\
66th & 4.0 & 1.8 & 4.4 & 2.0 & 9.1 & 4.1 \\
75th & 5.8 & 2.5 & 6.6 & 3.0 & 13 & 6.1 \\
90th & 13 & 6.1 & 16 & 6.5 & 32 & 14 \\
95th & 26 & 12 & 28 & 20 & 57 & 27 \\
Mean \(^{2}\) & 6.4 & 3.7 & 7.5 & 4.5 & 15 & 8.9 \\
& {\([77]\)} & {\([81]\)} & {\([78]\)} & {\([83]\)} & {\([78]\)} & [83] \\
\hline
\end{tabular}
2. Values in parentheses [ ] are percentiles at the mean intake rates.

Ebert et al., 1993.

\subsection*{2.6.8. Native American Freshwater Studies}

Columbia River Inter-Tribal Fish Commission (CRITFC) - A Fish Consumption Survey of the Umatilla, Nez Perce, Yakama, and Warm Springs Tribes of the Columbia River Basin CRIFTC (1994) conducted a fish consumption survey among four Columbia Basin River Indian tribes at different reservations during the fall and winter of 1991-1992. The survey was based a stratified random sampling design where respondents were selected from patient registration files at Indian Health Service. The survey respondents consisted of 513 tribal members, 18 years old and above. Information for 204 children, 5 years old and less was provided by the participating adult respondent. The overall response rate was 69 percent.

Information requested consisted of age group; 24 hour dietary recall; seasonal, annual, and daily intake rates; species and part(s) of fish consumed; preparation method; changes in patterns of consumption over the last 20 years, and during ceremonies and festivals; and breast feeding practices (CRITFC, 1994). Foam sponge food models were provided approximating four, eight, and twelve ounce fish fillets for use in estimating amount of fish consumed (CRIFTC, 1994). The fish consumption rates were determined for each respondent followed by calculation of the average and distribution of these individual rates. The mean consumption rates were estimated using respondents who were fish and-nonfish consumers. These estimates represent the entire tribal population (CRIFTC, 1994).

Results of the survey are the following:
- Gender of respondents: 57.9 percent female and 42.1 percent male;
- Age of respondents: 58.7 percent, 13-39 years; 31.4 percent, \(40-59\) years; and 9.9 percent \(60+\) years;
- Adults: consumed an average of 1.71 fish meals/week and had an average intake rate of 58.7 grams/day;
- Fish Consumers: consumed an average of 1.85 fish meals/week and had a mean intake rate of 63.2 grams/day;
- Intake by gender: males averaged 63 grams/day and females 56 grams/day;
- Intake by Age: ages 18-39 had average intake rates of 57.6 grams/day; ages \(40-\) 59 had average intake rates of \(55.8 \mathrm{grams} /\) day; and ages \(60+\) had average intake rates of 74.4 grams/day;
- Intake by Location: respondents living on a reservation consumed more fish than ones living off-reservation;
- Seasonal Intake: 42 percent consumed more fish April-July, 18 percent eat the same amount each month; for months identified as high consumption months, the average intake rate was 87.9 grams/day;
- Dietary Recall: 19 percent had eaten fish within the 24 hours preceding the survey and their intake rate was 61.8 grams/day; 81.3 percent had not eaten fish during this period and their intake rate was 57.9 grams/day;
- Nursing Mothers: consumed an average of 59.1 grams/day;
- Consumption by Species: 92 percent of respondents ate more salmon than any other species; and
- Children: consumed an average off 1.17 meals/week with an intake rate of 19.6 grams/day.

The data for grams of fish consumed per day for all adult respondents are presented in Table 2-176 and for consumers-only in Table 2-177. Fish intake rates for children are presented in Table 2-178. Fish intake rates by gender, age and location are presented in Table 2-179. Although the data were gathered from four different tribes, the results presented represent all four tribes as a single population (CRITFC, 1994). The sample sizes for each tribe was essentially the same size, however the population sizes of the tribes varied quite a bit. Therefore, the data were weighted based on the population size of each tribe. The larger tribes were given more weight. The majority of the data reported have been weighted so that they reflect the fish consumption patterns and habits of the overall population (CRITFC, 1994). Fish consumption patterns and habits of children were not weighted because of the small sample size for children (CRITFC, 1994).

The author noted several limitations with the survey:
- It is possible that the sample population had some health related bias that affected their diet;

Table 2-176. Number of Grams Per Day of Fish Consumed by All Adult Respondents (Consumers and Non-consumers) Combined - Throughout the Year


Source: CRITFC, 1994.pd < (95th) < 194 gpd

Table 2-177. Number of Grams Per Day of Fish Consumed by Adult Fish Consumers Only
\begin{tabular}{|c|c|c|c|}
\hline Number of Grams/Day & Weighted Cumulative Percent & Number of Grams/Day & Weighted Cumulative Percent \\
\hline <1.0 & 1.8\% & 72.9 & 79.8\% \\
\hline 1.6 & 1.9\% & 77.0 & 79.9\% \\
\hline 3.2 & 3.4\% & 81.0 & 82.1\% \\
\hline 4.1 & 3.9\% & 97.2 & 88.5\% \\
\hline 4.9 & 4.0\% & 130 & 91.6\% \\
\hline 6.5 & 6.0\% & 146 & 93.2\% \\
\hline 7.3 & 6.1\% & 162 & 94.0\% \\
\hline 8.1 & 6.9\% & 170 & 94.4\% \\
\hline 9.8 & 7.8\% & 194 & 97.0\% \\
\hline 12.2 & 8.2\% & 243 & 97.1\% \\
\hline 13.0 & 9.7\% & 259 & 97.2\% \\
\hline 16.2 & 16.8\% & 292 & 97.4\% \\
\hline 19.4 & 18.0\% & 324 & 98.2\% \\
\hline 20.2 & 18.2\% & 340 & 98.6\% \\
\hline 24.3 & 22.3\% & 389 & 98.9\% \\
\hline 29.2 & 22.5\% & 486 & 99.5\% \\
\hline 32.4 & 48.9\% & 648 & 99.7\% \\
\hline 38.9 & 49.2\% & 778 & 99.8\% \\
\hline 40.5 & 53.1\% & 972 & 100\% \\
\hline 48.6 & 65.1\% & & \\
\hline 64.8 & 79.1\% & & \\
\hline \begin{tabular}{l}
\[
N=464
\] \\
Weighted Mean \(=63.2\) \\
Weighted SW \(=3.84\) \\
90th Percentile: 97 gpd \\
95th Percentile: 170 gpd \\
99th Percentile \(=389 \mathrm{gp}\)
\end{tabular} & \begin{tabular}{l}
ams/day (gpd) \\
(90th) < 130 gpd \\
(95th) < 194 gpd
\end{tabular} & & \\
\hline
\end{tabular}

Source: CRITFC, 1994.


Table 2-179. Fish Intake Throughout the Year by Sex, Age, and Location by All Adult Respondents
\begin{tabular}{lclc}
\hline & N & \begin{tabular}{l} 
Weighted Mean \\
(grams/day)
\end{tabular} & Weighted SE \\
\hline Sex & & & \\
Female & 278 & 55.8 & 4.78 \\
Male & 222 & 62.6 & 5.60 \\
Total & 500 & 58.7 & 3.64 \\
& & & \\
Age & 287 & 57.6 & 4.87 \\
\(18-39\) & 155 & 55.8 & 4.88 \\
\(40-59\) & 58 & 74.4 & 15.3 \\
\(60 \&\) Older & 500 & 58.7 & 3.64 \\
Total & & & \\
& & & \\
Location & & & \\
On Reservation & 440 & 47.9 & 3.98 \\
Off Reservation & 60 & 500 & \\
Total & & & 3.64 \\
\hline
\end{tabular}

Source: CRITFC, 1994.
- It is possible that respondents living closer to the interview site were more willing to participate;
- More females were surveyed than males, although the intake rate for males was higher;
- The survey was conducted during the low fish consumption months and may have underestimated actual consumption;
- Rates of consumption are based on fish consumed from all sources (Columbia River and other sources);
- Some of the respondents provided the same information for their children as their own; and
- The percentage for non-consumers was very low and there is a possibility that overall fish intake rates for the whole population including non-consumers were overestimated.

Although the author has noted these limitations, this study does present information on fish consumption patterns and habits for the Native American subpopulation. It should be noted that the number of surveys that address subsistence subpopulations are very limited. Consumption patterns have also been affected by fish advisories and availability of fish.

Wolfe and Walker - Subsistence Economies in Alaska: Productivity, Geography, and Development Impacts - Wolfe and Walker (1987) analyzed a dataset from 98 communities for harvests of fish, land mammals, marine mammals, and other wild resources. The analysis was performed to evaluate the distribution and productivity of subsistence harvests in Alaska during the 1980s. Harvest levels were used as a measure of productivity. Wolfe and Walker (1987) defined harvest to represent: a single year's production from a complete seasonal round. The harvest levels were derived primarily from a compilation of data from subsistence studies conducted between 1980 to 1985 by various researchers in the Alaska Department of Fish and Game, Division of Subsistence. Additional information was gathered from 4 other research projects (Wolfe and Walker, 1987).

The harvests for most communities (94) were documented through detailed retrospective interviews with harvesters from a sample of households (Wolfe and Walker,
1987). Harvesters were asked to estimate the quantities of a particular species that were harvested and used by members of that household during the previous 12 -month period (Wolfe and Walker, 1987).

Since the data used in of the analysis were from 94 different datasets with differing units of measure, harvests were converted to a common unit, pounds dressed weight per capita per year. This conversion consisted of multiplying the harvests of household within each community by standard factors; converting total pounds to dressed weight; summing across households; and then dividing by the total number of members in that household over the previous 12-month sampling period (Wolfe and Walker, 1987). Dressed weight varies among households, but was considered approximately 70 to 75 percent of pound weight for fish and was that portion brought into the kitchen for use (Wolfe and Walker, 1987). It represents an estimate of the pounds of useable wild resources harvested during the study year by the sample households (Wolfe and Walker, 1987).

Harvests for the other four populations were developed from a statewide dataset gathered by the Alaska Department of Fish and Game Divisions of Game and Sports Fish. Urban sport fish harvest estimates were derived from a survey that was mailed to a randomly selected statewide sample of anglers (Wolfe and Walker, 1987). Sports fish harvests were disaggregated by urban residency and the dataset was analyzed by converting the harvests into pounds and dividing by the 1983 urban population (Wolfe and Walker, 1987).

For the overall analysis, each of the 98 communities were treated as a single unit of analysis and the entire group of communities was assumed to be a sample of all communities in Alaska (Wolfe and Walker, 1987). Each community was weighted the same, regardless of the size of the population (Wolfe and Walker, 1987). Total annual per capita harvests were calculated for each community. The harvest amounts varied between the communities and ranged from 5 to 1,239 pounds per capita per day ( \(6.2 \mathrm{~g} / \mathrm{day}\) to \(1,541 \mathrm{~g} / \mathrm{day}\) ). In most of the 98 communities analyzed, resource harvests for fish were greater than the other wildlife harvests categories (land mammal, marine mammal, and others). The author noted that although the group of communities is large, it represents an incomplete sample of all Alaska communities.

A limitation of this study is that the data were based on 1-year recall and mail survey. An advantage of the study is that it is one of the few studies that presents fish harvest patterns for a subsistence population. Another limitation is that the data are harvest data and must be converted to intake rates.

\subsection*{2.6.9. Recommendations}

The survey designs, data generated, and limitations/advantages of the studies described in this report are summarized and presented in Table 2-180. Fish consumption rates are recommended based on the survey results presented in the key studies described in the preceding sections. A large variation exists in the fish consumption rates obtained from these studies, and can be attributed to many factors including survey designs; type of waterbody (i.e., marine, estuarine, freshwater); characteristics of the survey population (i.e., general population, recreational anglers); and methods of data collection. Based on these study variations, it is not recommended to average data across the studies. The assessors should evaluate the individual study and select the mean or upper percentile value from the study that closely matches their needs. One should consider if the exposure being evaluated are long-term or short-term. In addition, regional, and seasonal variations should be considered. Recommendations for consumption rates were classified into the following categories:
- General Population - Per Capita;
- Recreational Marine Anglers;
- Recreational Freshwater Anglers; and
- Native American Freshwater Anglers.

For exposure assessment purposes, the selection of recommended fish consumption rates from these categories will depend on the exposure scenario being evaluated. It should be noted that the recommended rates are based on mean values which represent a typical intake or central tendency for fish consumers (i.e., low and high consumers); and the upper estimates (i.e., 90th-99th percentiles) represent the high end of fish consumers. However, in some of the key studies, mean consumption rates were not presented. The recommended fish

Table 2-180. Summary of Fish Insake Sudies
\begin{tabular}{|c|c|c|c|c|}
\hline Study & Population Surveyed & Survcy Time Period/Type & Dale Generated & Limitations/Advantages \\
\hline \multicolumn{5}{|l|}{General Population} \\
\hline Javitz 1980 & 25,162 individuals general population & Sept 1973-Aug. 1974 (1 year survey). Completed questionarires on date of meal consumption, species of fish, packaging type, amount of fish prepared, number of servings consumed, etc. & Mcan and distribution of fish consumption rates grouped by race, age, gender, census region, fish spocies, community type, and religion & High response rate (80\%); population was large and geographically representative; however, consumption rates representod one month date for each eample segment because quertionnaires were administered to \(1 / 12\) th of survey population during each month of the 1 year survey period. \\
\hline Pao et al., 1982 & 37,874 individuals general population & Home interviews based in 3-day dictary recall & Distribution of fish and shellfish consumption rates for consumers only & Population was large and geographically representative; data were based on short-erm dietary recall \\
\hline USDA 1987-88 & 4,500 houscholds - general population & Survey based on 3-day dictary recall & Mean intake rate per capita of fish and shellfish grouped by age and gender; mean intake rates for consumers only grouped by age and gender & Population was large geographically and scazonally balanced; data based on shortterm dietary recall \\
\hline Ruffe et al., 1994 & 23,213 participants gencral population & Data based on NMFS' 19731974 survey (1 year period) & Mcan and distributions of the daily consumption rates of shellish, freshwater finfish, and saltwater finfish for adults, toenagers, and children & Population was large geographically and seasonally balancod; over or under reporting of fish consumed and portion size by survey respondents \\
\hline National Marine Fisheriea Service, 1986a & Allantic and Guif Coasts 41,000 field interviews and 58,000 telephone interviews; Pacific Coast 38,000 field interviews and 73,000 telephone interviews & Field and telephone interviews were conducted for National recreational fishermen & Intake rates were not calculated; total catch size grouped by marine species, seasons, and number of fishermen for each coastal region were presented & Population was large geographically and seasonally balanced; no houseful data wns presentod for exposure assessment purposes \\
\hline Madeina and Penfield, 1985 & 39 panclists of etaff, frculty and atudents at the University of Tennessee & Questionnaires were completed by fish consumers only & Distribution of intake rates were not presented; froquency of fish consumption data were presented for the respondents & Population size was small and does not represent the general U.S. population; data basod on short-term recall \\
\hline
\end{tabular}

Table 2-180. Summary of Fish Intake Studies (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline Study & Population Surveyed & Survey Time Period/Type & Data Generated & Limitations/Advantages \\
\hline \multicolumn{5}{|l|}{Recreational-Marine Fish} \\
\hline Puffer et al., 1981 & 1,067 anglers in the Los Angeles area & Creel surveys conducted for the full 1980 calendar year & Distribution of fish and shellish intake rates for sport anglers (i.e., indicated eating the fish they caught) including their familiea/living groups grouped by age, ethnicity, and fish species were presented & Population was not representative of the U.S. population; assumptions made in the intake rate calculations may bias the results obtained; creel surveys tend to oversample frequent anglers \\
\hline Pierce at al., 1981 & 3,391 fishermen in Commencement Bay, Washington & July-November 1980; creel survey intervicwn conducted consisting of 5 summer days and 4 fall days & Total weight of catch grouped by species were presented for only anglers that caught fish; percent of fishing frequency was presented for the summer and fall; mean intaice rates calcuiated by the U.S. EPA (1993) were also presented for individual and group responsea & Population does not represent general U.S. population; intake rates eatimated were not seasonally balanced; fish advisorics were in place, this may have affected fish consumption pattems among anglers \\
\hline San Diego County, 1990 & 369 anglers in San Dicgo County, California & Oct. 1988-Oct. 1989; creel surveys were conductod over a 1-year period & Mean intake rates for San Diego Bay anglerz grouped by ethnicity and species were presented; cumulative fish intake rate of the anglers was also reported & Population does not represent general U.S. population; also population size was small and usable data from this sample size was low (59 out of 369 interviews); on-site interviews were conducted which may minimize recall bias \\
\hline Santa Monica Bay Restoration Project, 1994 & 555 anglert in Santa Monica Bay, Califomia & Survey design consisted of creel census and questionnaires administered to anglers; sampling period consisted of summer months (Sept. 1991 and June-Aug. 1992), fall, winter and spring months (Oct. 1991-May 1992) & Mean and distributions of fish consumplion rates grouped by ethnicity and income level were presented for Santa Monica Bay anglers & Population does not represent general U.S. population; frequency in fish consumption was based on recall; random sampling approach employed to conduct surveys may minimize sampling biases; survey accounted for all fishing seasons \\
\hline Price et al., 1994 & Based on Puffer et al. (1981) and Pience et al. (1981) creel surveys & Sce Puffer et al. (1981) and Pierce et al. (1981) above & Recalculated median consumption rates for the surveyed population and the total angler population & Raw data oblained were incomplete; therefore, assumptions were made which may affoet the reaults obtained; the findings of this study supports the limitations associated with creel surveys \\
\hline
\end{tabular}

Table 2-180. Summary of Fish Intake Sudies (continued)


Table 2-180. Summary of Fish Intake Studies (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline Study & Population Surveyed & Survey Time Period/Type & Data Generated & Limitations/Advantages \\
\hline Supplement II & 307 respondents & Comparison of data from Winter-Spring, 1988 (West at al., 1989a) and Winter-Spring 1989 data & Indicated a decline in fish consumption rate from 1988 to 1989 & Fish advisories in place; participation of respondents to mail survey may have increased awareness of risks associsted with fish consumption \\
\hline Chemrisk, 1991 & 1,612 Maine anglers & 1989-1990 ice fishing season and 1990 open water season; frequency of fishing trips and number of fish species caught were based on recall & Mean and distribution of fish consumption rates by ethnic groups; total consumption of freshwater fish caught by survey respondents & Does not represent general U.S. population; data bated on rocall and self-reporting; high response rate; area-specific consumption patterns \\
\hline Ebert et al., 1993 & 1,369 anglers & Survey data based on Chemrisk (1991) & Mean and distribution of intake rates for licensed sport anglers in Maine during ice-nishing or open water season grouped by all anglers (consumers and nonconsumers) and consuming anglers & Same limitations/advantagea with Chemriak (1991) apply to dataset \\
\hline \multicolumn{5}{|l|}{Subsistence Freshwater Studiss} \\
\hline Columbia River Intertribal Fish Commission (CRIFTC), 1994 & 513 tribal members; 18 years old and above; 204 children, 5 years old and less & Fall and Winter of 1991-1992; stratified random rampling approach; 24-hour dietary recall & Weighted mean intake rates grouped by all adult respondents (consumers and non-consumers), adult consumers only, age, gender, children (consumers and non-consumers) & Survey was conducted during low fish consumption seasons; respondeals provided same information for their children as their own; data was based on rocall; study provides consumption and habite for subsistence subpopulation group \\
\hline Wolfe and Walker, 1987 & Dataset based on 94 communities in Alaska by various rescarchera & Surveys conducted between 1980 to 1985; data based on 1year recall period & Range of total annual per capita harvests & Author noted that sample of Alaska communities were incomplete; deta based on 1-ycar recall; data provided are harveat data that must be converted to intake rates \\
\hline
\end{tabular}
a NFMS - National Marine Fisheries Services.
b Harvest was defined as a single years production of fish, land mammals, marine mammals, and other wild resources from a complete seasonal round.
intake rates based on means and upper-percentile values are presented accordingly:

\section*{General Population - Per Capita}
\begin{tabular}{ccl}
\hline \begin{tabular}{c} 
Arithmetic Mean \\
(g/day)
\end{tabular} & \begin{tabular}{c} 
Upper Percentile \\
(g/day)
\end{tabular} & Reference \\
\hline 17 & - & Javitz, 1980 (NMFS) \\
14 & 42 (95th percentile) & Javitz, 1980 (TRI) \\
11 & - & USDA, 1992 \\
12 & - & Pao, 1982 \\
\hline
\end{tabular}

The key studies (Javitz, 1980; USDA, 1992; Pao, 1982) provided per capita intake rates for numerous fish species from all waterbodies (i.e., marine, estuarine, freshwater) for the general population (consumer and non-consumers). The studies shown above support values of an average per capita intake for the general U.S. population ranging between 11-17 g/day. It is important to note that these values apply to consumption of fish from all sources (e.g., store-bought, canned, self caught, etc.). Javitz reported a 95th percentile value of 42 g/day based on the TRI data. Although the TRI survey focused on consumption patterns over the period of one month, it may not reflect the individual's usual long term consumption. However, the period of observation in the TRI survey (i.e., one month) is longer than the typical food consumption surveys (e.g., few days). It should be noted that the TRI results presented by Javitz are based on the 94 percent of the population consuming fish during the survey period. Distribution data are also available from Javitz, 1980 and are presented in Tables 2-131 and 2-132. In addition, Ruffle, 1994 developed a lognormal distribution to fit the TRI data. Parameters for this distribution are presented in Table 2-146.

General Population - Consumers-Only
\begin{tabular}{ccl}
\hline Arithmetic Mean (g/day) & Upper Percentile (g/day) & Reference \\
\hline 124 & 284 (95th percentile) & \\
117 & - & Pao et al., 1982 \\
& & USDA, 1992 \\
\hline
\end{tabular}

1 This value is the 95 th percentile serving size.

The studies presented above (Pao et al., 1982; USDA, 1992) are based on one day data and may be useful for acute exposure assessments. Although upper percentile estimates were not presented in these studies, these may be more appropriate for acute exposures.

\section*{Recreational Marine Anglers}
\begin{tabular}{lcl}
\hline Arithmetic Mean/Median (g/day) & Upper Percentile (g/day) & \multicolumn{1}{c}{ Reference } \\
\hline 37 (median) & 339 (95th percentile) & Puffer et al., 1981 \\
50 (mean); 21 (median) & 107 (90th percentile) & Santa Monica, 1994 \\
39 (mean) & 146 (95th percentile) & U.S. EPA, 1993 (Pierce) \\
\hline
\end{tabular}

The data presented above for recreational marine anglers are based on results from creel surveys. As discussed earlier, this survey methodology targets the population of active fishermen. The studies presented above suggest that for that population of active fishermen, a central estimate of consumption rate is in the range of \(37-50 \mathrm{~g} / \mathrm{day}\). Puffer presents a 95 th percentile value of \(339 \mathrm{~g} / \mathrm{day}\), which is much higher than the values presented in the other studies. The methodology used by Puffer, however, assumes that fishermen will catch the same amount of fish caught on the day of the interview other fishing trips. This methodology will tend to overestimate consumption rate. Therefore, considering the limitations of the data, \(100 \mathrm{~g} /\) day is a reasonable estimate of the 95 th percentile.

\section*{Recreational Freshwater Anglers}
\begin{tabular}{lcc}
\hline Arithmetic Mean (g/day) & Upper Percentile (g/day) & Reference \\
\hline 24 (West et al., 1989) & 94 (95th percentile) & U.S. EPA, 1993 \\
7 (Smith and Enger, 1988) & 21 (95th percentile) & U.S. EPA, 1993 \\
4 (Connelly et al., 1990) & 15 (95th percentile) & U.S. EPA, 1993 \\
19 (Cox et al., 1990) & 73 (95th percentile) & U.S. EPA, 1993 \\
7 (Fiore et al., 1989) & 24 (95th percentile) & U.S. EPA, 1993 \\
\hline
\end{tabular}

The data presented above, with the exception of Smith and Enger, are based on mail surveys. The data obtained from the Smith and Enger were from a creel survey conducted in
the lower Tittabawassee River. These data may be a reflection of the low angler activity due to the long history of industrial pollution, the resulting decrease in fishing population in the river, and the fishing ban. Focusing on the mail surveys, the studies summarized above suggest that the average intake rate for recreational freshwater anglers ranges between 4-24 g/day. Upper percentile values range from 15-94 g/day.

Based on the data presented above for recreational anglers (both marine and freshwater), it appears that consumption of recreational freshwater fish is less than consumption of marine fish. It is important to note that these differences may be a result of several factors. First, marine fish are generally more abundant than freshwater fish. Second, intake rates of freshwater fish may be a reflection of fish advisories. Third, the survey methodology used in the studies presented for recreational marine anglers (i.e., creel surveys) targets the population of active anglers resulting in higher estimates of fish consumption.

\section*{Native American Freshwater Anglers}
\begin{tabular}{ccc}
\hline Arithmetic Mean (g/day) & Upper Percentile (g/day) & \multicolumn{1}{c}{ Reference } \\
\hline 63 & 170 & CRIFTC, 1994 \\
305 & 913 & Wolfe and Walker, 1987 \\
\hline
\end{tabular}

Data for fish consumption rates for the native American population of freshwater anglers are very limited. However, based on the studies summarized above, the mean fish consumption rate for this subpopulation of freshwater anglers range between 63-305 g/day. The upper percentile estimate ranges between \(170-913 \mathrm{~g} /\) day. It is important to note that the values calculated from Wolfe and Walker may be used to represent a subsistence population. However, these values are based on harvest data and therefore may overestimate the actual amount consumed.

It should be noted that the average recommended fish consumption rates for the various categories (general population, recreational marine anglers, recreational freshwater anglers, and subsistence freshwater anglers) are based on available data in which many of the
surveys were site limited. Although, these rates are recommended in order to be applied to exposure assessments in any area with widespread contamination; the EPA has recommended that site or region specific consumption estimates be used wherever possible (Ebert et al., 1994). However, site specific information may not always be available. Therefore, representative consumption rates selected should be derived from studies consistent with the type of waterbody and target population being evaluated (Ebert et al., 1994). Hence the rates recommended in this report for the various categories are to be considered.

Other factors to consider when using the data include location, climate, season, and ethnicity of the angler or consumer population. In addition, other factors to be considered in exposure assessment studies in determining potential risk to a target population are the parts of fish consumed and the methods of preparation. For example, individuals who consume a greater portion of the fish internal organs may be at a greater health risk. Some studies have indicated that there is a significant decrease of contaminants in cooked fish when compared with raw fish (San Diego County, 1990). In addition, some contaminants have the affinity to accumulate more in certain tissues such as the fatty tissue as well as in certain internal organs.

In some cases, the residue levels of contaminants in fish are reported as the concentration of contaminant per gram of fat. When using these residue levels, the assessor should ensure consistency in the exposure assessment calculations by using consumption rates that are based on the amount of fat consumed for the fish species of interest. Alternately, residue levels for the "as consumed" portions of fish may be estimated by multiplying the levels based on fat by the fraction of fat per product as follows:
\[
\begin{equation*}
\text { residue level/g product }=\left[\frac{\text { residue level }}{g-\text { fat }}\right] \times\left[\frac{g-f a t}{g-\text { product }}\right] \tag{Eqn.2-13}
\end{equation*}
\]

The resulting residue levels may then be used in conjunction with "as consumed" consumption rates. Table 2-181 presents the total fat content for selected fish species.

Additionally, intake rates may be reported in terms of units as consumed or units of dry weight. It is essential that exposure assessors be aware of this difference so that they

Table 2-181. Percent Moisture and Fat Content for Selected Species* \(\begin{gathered}\text { DRAFT } \\ \text { DO NOT QUOTE OR } \\ \text { Nima CITE }\end{gathered}\)


Table 2-181. Percent Moisture and Fat Content for Selected Species (continued)
\begin{tabular}{|c|c|c|c|}
\hline Food & Moisture Content (\%) & Total Fat Content (\%) \({ }^{b}\) & Comments \\
\hline Herring, Atlantic \& Turbot, domestic species & 72.05 & 7.909 & Raw \\
\hline & 64.16 & 10.140 & Cooked, dry heat \\
\hline & 59.70 & 10.822 & Kippered \\
\hline & 55.22 & 16.007 & Pickled \\
\hline Herring, Pacific & 71.52 & 12.552 & Rew \\
\hline Mackerel, Atlantic & 63.55 & 9.076 & Raw \\
\hline & 53.27 & 15.482 & Cooked, dry heat \\
\hline Mackerel, Jack & 69.17 & 4.587 & Canned, drained solids \\
\hline Mackerel, King & 75.85 & 1.587 & Raw \\
\hline Mackerel, Pacific \& Jack & 70.15 & 6.816 & Canned, drained solids \\
\hline Mackerel, Spanish & 71.67 & 5.097 & Raw \\
\hline & 68.46 & 5.745 & Cooked, dry heat \\
\hline Monkfish & 83.24 & NA & Raw \\
\hline Mullet, Striped & 77.01 & 2.909 & Raw \\
\hline & 70.52 & 3.730 & Cooked, dry heat \\
\hline Ocean Perch, Atlantic & 78.70 & 1.296 & Raw \\
\hline & 72.69 & 1.661 & Cooked, dry heat \\
\hline Perch, Mixed species & 79.13 & 0.705 & Raw \\
\hline & 73.25 & 0.904 & Cooked, dry heat \\
\hline Pike, Northern & 78.92 & 0.477 & Raw \\
\hline & 72.97 & 0.611 & Cooked, dry heat \\
\hline Pike, Walleye & 79.31 & 0.990 & Raw \\
\hline Pollock, Alaska \& Walleye & 81.56 & 0.701 & Raw \\
\hline & 74.06 & 0.929 & Cooked, dry heat \\
\hline Pollock, Atlantic & 78.18 & 0.730 & Raw \\
\hline Rockfish, Pacific, mixed species & 79.26 & 1.182 & Raw (Mixed species) \\
\hline & 73.41 & 1.515 & Cooked, dry heat (mixed species) \\
\hline Roughy, Orange & 75.90 & 3.630 & Raw \\
\hline Salmon, Atlantic & 68.50 & 5.625 & Raw \\
\hline Salmon, Chinook & 73.17 & 9.061 & Raw \\
\hline & 72.00 & 3.947 & Smoked \\
\hline
\end{tabular}

Table 2-181. Percent Moisture and Fat Content for Selectod Species (continued) \begin{tabular}{c} 
DO NOT QUOTE OR \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Food & Moisture Content (\%) & Total Fat Content (\%) & Comments \\
\hline Salmon, Chum & 75.38 & 3.279 & Raw \\
\hline & 70.77 & 4.922 & Canned, drained solids with bone \\
\hline Salmon, Coho & 72.63 & 4.908 & Raw \\
\hline & 65.35 & 6.213 & Cooked, moist heat \\
\hline Salmon, Pink & 76.35 & 2.845 & Raw \\
\hline & 68.81 & 5.391 & Canned, solids with bone and liquid \\
\hline Salmon, Red \& Sockeye & 70.24 & 4.560 & Raw \\
\hline & 68.72 & 6.697 & Canned, drained solids with bone \\
\hline & 61.84 & 9.616 & Cooked, dry heat \\
\hline Sardine, Atlentic & 59.61 & 10.545 & Canned in oil, drained solids with bone \\
\hline Sardine, Pacific & 68.30 & 11.054 & Canned in tomato sauce, drained solids with bone \\
\hline Sea Bass, mixed species & 78.27 & 1.678 & Cooked, dry heat \\
\hline & 72.14 & 2.152 & Raw \\
\hline Seatrout, mixed species & 78.09 & 2.618 & Raw \\
\hline Shed, American & 68.19 & NA & Raw \\
\hline Shark, mixed speciea & 73.58 & 3.941 & Raw \\
\hline & 60.09 & 12.841 & Cooked, batter-dipped and fried \\
\hline Snapper, mixed species & 76.87 & 0.995 & Raw \\
\hline & 70.35 & 1.275 & Cooked, dry heat \\
\hline Sole, Spor & 75.95 & 3.870 & Raw \\
\hline Sturgeon, mixed species & 76.55 & 3.544 & Raw \\
\hline & 69.94 & 4.544 & Cooked, dry heat \\
\hline & 62.50 & 3.829 & Smoked \\
\hline Sucker, whito & 79.71 & 1.965 & Raw \\
\hline Sunfish, Pumpkinseed & 79.50 & 0.502 & Raw \\
\hline Swordfish & 75.62 & 3.564 & Raw \\
\hline & 68.75 & 4.569 & Cooked, dry heat \\
\hline Trout, mixed species & 71.42 & 5.901 & Raw \\
\hline Trout, Rainbow & 71.48 & 2.883 & Raw \\
\hline
\end{tabular}

Table 2-181. Perceat Moisture and Fat Content for Selected Species (continued)


Tablo 2-181. Percent Moisture and Fat Content for Selected Species (continued)
\begin{tabular}{|c|c|c|c|}
\hline Food & Moisture Content (\%) & Total Fat Content (\% \()^{b}\) & Comments \\
\hline & 77.28 & 0.926 & Cooked, moist heat \\
\hline Spiny Lobster, mixed species & 74.07 & 1.102 & Imitation made from surimi, raw \\
\hline Clam, mixed apecies & 81.82 & 0.456 & Raw \\
\hline & 63.64 & 0.912 & Canned, drained solids \\
\hline & 97.70 & NA & Canned, liquid \\
\hline & 61.55 & 10.098 & Cooked, breaded and fried \\
\hline & 63.64 & 0.912 & Cooked, moist heat \\
\hline Mussed, Blue & 80.58 & 1.538 & Raw \\
\hline & 61.15 & 3.076 & Cooked, moist heat \\
\hline Octopus, common & 80.25 & 0.628 & Raw \\
\hline Oyster, Estern & 85.14 & 1.620 & Raw \\
\hline & 85.14 & 1.620 & Canned (Solids and liquid based) raw \\
\hline & 64.72 & 11.212 & Cooked, breaded and fried \\
\hline & 70.28 & 3.240 & Cooked, moist heat \\
\hline Oyster, Pacific & 82.06 & 1.752 & Raw \\
\hline Scallop, mixed species & 78.57 & 0.377 & Raw \\
\hline & 58.44 & 10.023 & Cooked, breaded and fried \\
\hline & 73.82 & NA & Imitation, made from Surimi \\
\hline Squid & 78.55 & 0.989 & Raw \\
\hline & 64.54 & 6.763 & Cooked, fried \\
\hline
\end{tabular}
- Data are reported as is in the Handbook
- Total Fat Content - saturated, monosaturated and polyunsaturated NA \(=\) Not available

Sourco: U.S.D.A., 1979-1984 - U.S. Agricultural Handbook No. 8
may ensure consistency between the units used for intake rates and those used for concentration data (i.e., if the unit of food consumption is grams dry weight/day, then the unit for the amount of pollutant in the food should be grams dry weight). If necessary, as consumed intake rates may be converted to dry weight intake rates using the moisture content percentages of fish presented in Table 2-181 and the following equation:
\[
\begin{equation*}
\mathrm{IR}_{\mathrm{dw}}=\mathrm{IR}_{\mathrm{ac}}^{*}[(100-\mathrm{W}) / 100] \tag{Eqn.2-14}
\end{equation*}
\]
"Dry weight" intake rates may be converted to "as consumed" rates by using:
\[
\begin{equation*}
\mathrm{IR}_{\mathrm{ac}}=\mathrm{IR}_{\mathrm{dw}} /[(100-\mathrm{W}) / 100] \tag{Eqn.2-15}
\end{equation*}
\]
where:
\(\mathrm{IR}_{\mathrm{dw}}=\) dry weight intake rate;
\(\mathrm{IR}_{\mathrm{ac}}=\) as consumed intake rate; and
\(\mathrm{W} \quad=\) percent water content.
The moisture content (\%) and total fat content (\%) measured and/or calculated in various fish forms (i.e., raw, cooked, smoked, etc.) for selected fish species are presented in Table 2-181 based on data from USDÃ (1979-1984). The total percent fat content is based on the sum of saturated, monounsaturated, and polyunsaturated fat. The moisture content is based on the percent of water present.

\subsection*{2.7. INTAKE RATES FOR VARIOUS HOMEPRODUCED FOOD ITEMS}

\subsection*{2.7.1. Background}

Ingestion of contaminated foods is a potential pathway of exposure to toxic chemicals. Consumers of homeproduced food products may be of particular concern because exposure resulting from local site contamination may be higher for this subpopulation. According to a survey by the National Gardening Association (1987), a total of 34 million (or 38 percent) U.S. households participated in vegetable gardening in 1986. Table 2-182 contains demographic data on vegetable gardening in 1986 by region/section, community size, and household size. Table 2-183 contains information on the types of vegetables grown by home gardeners in 1986. Tomatoes, peppers, onions, cucumbers, lettuce, beans, carrots, and corn are among the vegetables grown by the largest percentage of gardeners. Homeproduced foods can become contaminated in a variety of ways. Ambient pollutants in the air may be deposited on plants, adsorbed or absorbed by the plants, or dissolved in rainfall or irrigation waters that contact the plants. Pollutants may also be adsorbed through plants roots from contaminated soil and water. Finally, the addition of pesticides, soil additives, and fertilizers to crops or gardens may result in contamination of food products. Meat and dairy products can become contaminated if animals consume contaminated soil, water, or feed crops. Intake rates for homeproduced food products are needed to assess exposure to local contaminants present in homegrown or home caught foods. Recently, EPA analyzed data from the U.S. Department of Agriculture's (USDA.) Nationwide Food Consumption Survey (NFCS) to generate distributions of intake rates for homeproduced foods. The methods used and the results of these analyses are presented below.

\subsection*{2.7.2. Methods}

NFCS data were used to generate intake rates for homeproduced foods. USDA conducts the NFCS every 10 years to analyze the food consumption behavior and dietary status of Americans (USDA, 1992). The most recent \({ }_{2}\) CS was conducted in 1987-88. The survey used a statistical sampling technique designed to ensure that all seasons, geographic regions of the 48 coterminous States in the U.S., and socioeconomic and demographic groups were represented (USDA, 1994). There were two components of the NFCS. The household component collected information over a seven-day period on the socioeconomic and demographic characteristics of

Table 2-182. 1986 Vegetable Gardening by Demographic Factors
\begin{tabular}{|c|c|c|}
\hline & Percentage of total households that have gardens (\%) & Number of households (million) \\
\hline Total & 38 & 34 \\
\hline \multicolumn{3}{|l|}{Region/section} \\
\hline \begin{tabular}{l}
East \\
New England Mid-Atlantic
\end{tabular} & \[
\begin{aligned}
& 33 \\
& 37 \\
& 32
\end{aligned}
\] & \[
\begin{aligned}
& 7.3 \\
& 1.9 \\
& 5.4
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Midwest \\
East Central West Central
\end{tabular} & \[
\begin{aligned}
& 50 \\
& 50 \\
& 50
\end{aligned}
\] & \[
\begin{array}{r}
11.0 \\
6.6 \\
4.5
\end{array}
\] \\
\hline \begin{tabular}{l}
South \\
Deep South \\
Rest of South
\end{tabular} & \[
\begin{aligned}
& 33 \\
& 44 \\
& 29
\end{aligned}
\] & \[
\begin{aligned}
& 9.0 \\
& 3.1 \\
& 5.9
\end{aligned}
\] \\
\hline West Rocky Mountain Pacific & \[
\begin{aligned}
& 37 \\
& 53 \\
& 32
\end{aligned}
\] & \[
\begin{aligned}
& 6.2 \\
& 2.3 \\
& 4.2
\end{aligned}
\] \\
\hline \multicolumn{3}{|l|}{Size of community} \\
\hline \begin{tabular}{l}
City \\
Suburb \\
Small town Rural
\end{tabular} & \[
\begin{aligned}
& 26 \\
& 33 \\
& 32 \\
& 61
\end{aligned}
\] & \[
\begin{array}{r}
6.2 \\
10.2 \\
3.4 \\
14.0
\end{array}
\] \\
\hline \multicolumn{3}{|l|}{Household size} \\
\hline Single, separated, divorced, widowed Married, no children Married, with children & \[
\begin{aligned}
& 54 \\
& 45 \\
& 44
\end{aligned}
\] & \[
\begin{array}{r}
8.5 \\
11.9 \\
13.2
\end{array}
\] \\
\hline
\end{tabular}

Source: National Gardening Association, 1987.

Table 2-183. Percentage of Gardening Households Growing Different Vegetables in 1986
\begin{tabular}{|c|c|}
\hline Vegetable & Percent \\
\hline Artichokes & 0.8 \\
\hline Asparagua & 8.2 \\
\hline Beant & 43.4 \\
\hline Beets & 20.6 \\
\hline Broccoli & 19.6 \\
\hline Brussel sprouts & 5.7 \\
\hline Cabbage & 29.6 \\
\hline Carrots & 34.9 \\
\hline Caulifower & 14.0 \\
\hline Celery & 5.4 \\
\hline Chard & 3.5 \\
\hline Com & 34.4 \\
\hline Cucumbers & 49.9 \\
\hline Dried peas & 2.5 \\
\hline Dry beans & 8.9 \\
\hline Eggplant & 13.0 \\
\hline Herbs & 9.8 \\
\hline Kale & 3.1 \\
\hline Kohlrabi & 3.0 \\
\hline Leeks & 1.2 \\
\hline Lettuce & 41.7 \\
\hline Melons & 21.9 \\
\hline Okra & 13.6 \\
\hline Onions & 50.3 \\
\hline Oriental vegetables & 2.1 \\
\hline Parsnips & 2.2 \\
\hline Peanuta & 1.9 \\
\hline Peas & 29.0 \\
\hline Peppers & 57.7 \\
\hline Potatoes & 25.5 \\
\hline Pumpkins & 10.2 \\
\hline Radishes & 30.7 \\
\hline Rhubarb & 12.2 \\
\hline Spinach & 10.2 \\
\hline Summer squash & 25.7 \\
\hline Sunflowers & 8.2 \\
\hline Sweet potatoes & 5.7 \\
\hline Tomato & 85.4 \\
\hline Tumips & 10.7 \\
\hline Winter squash & 11.1 \\
\hline
\end{tabular}

\footnotetext{
Source: National Gardening Associstion, 1987.
}
households, and the types, value, and sources of foods consumed by the household (USDA, 1994). The individual component collected information on food intakes of individuals within each household over a three-day period (USDA, 1993). The sample size for the 1987-88 survey was approximately 4,300 households (over 10,000 individuals). This is a decrease over the previous survey conducted in 1977-78 which sampled approximately 15,000 households (over 36,000 individuals) (USDA, 1994). The sample size was lower in the 1987-88 survey as a result of budgetary constraints and low response rate (i.e., 38 percent for the household survey and 31 percent for the individual survey) (USDA, 1993). However, NFCS data from 1987-88 were used to generate homegrown intake rates because they were the most recent data available and were believed to be more reflective of current eating patterns among the U.S. population. For the purposes of this study, homeproduced foods were defined as homegrown fruits and vegetables, meat and dairy products derived from consumer-raised livestock or game meat, and home caught fish. The food items/groups selected for analysis included major food groups (i.e., total fruits, total vegetables, total meats, total dairy, total fish and shellfish), individual food items for which \(>30\) households reported eating the homeproduced form of the item, fruits and vegetables categorized as exposed, protected, and roots, and various USDA fruit and vegetable subcategories (i.e., dark green vegetables, citrus fruits, etc.). Food items/groups were identified in the NFCS data base according to NFCS-defined food codes. Appendix 2-A presents the codes used to determine the various food groups. The food intake analysis was accomplished using the SAS statistical programming system (SAS, 1990).

The analytical method used to determine the daily homegrown intake of each food item/group was based on the quantity of food used in the household that was reported as homegrown, the number of meals eaten by each member of the household, and the average serving sizes for the food items/groups being evaluated. The USDA household data were used to determine (1) the amount of homegrown food used during a week by family members and guests and (2) the number of meals eaten by each household member. Average serving sizes for individuals in specified age groups of the population were calculated separately from the USDA individual intake survey data for each food item/group.

Homegrown household food usage was attributed to the family members only. The USDA household survey data contains information on the number of member and guest meals
consumed during the week. The portion of the household food item/group attributed to the family members was determined by multiplying the fraction of meals consumed by family members only by the reported household amount. The fraction of meals consumed by household members was determined by dividing the number of meals consumed in the household by the total number of meals eaten in the household (i.e., including meals eaten by household guests). The following equation was used to calculate the fraction of meals consumed by household members:
\[
\begin{equation*}
W_{f}=W_{T} \cdot\left[\frac{M E A L_{\text {memben }}}{M E A L_{\text {neal }}}\right] \tag{Eqn.2-16}
\end{equation*}
\]
where:
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{W}_{\mathrm{f}}\) & \(=\) & Amount of food item/group used by family members only (g/week); \\
\hline \(W_{T}\) & \(=\) & Amount of food item/group reported for the household (g/week); \\
\hline MEAL \({ }_{\text {sacuber }}\) & \(=\) & Number of household member meals; and \\
\hline \(\mathrm{MEAL}_{\text {roal }}\) & \(=\) & Total number of meals, including guest meals. \\
\hline
\end{tabular}

Age-specific serving sizes in grams/day were calculated based on the USDA individual survey data. The age categories used in the analysis included: <1 year; 1 to 2 years; 3 to 5 years; 6 to 11 years; 12 to 19 years; 20 to 39 years; 40 to 69 years; and over 70 years. These serving sizes were used during subsequent analysis to generate homegrown intake rates for household members. Assuming that the proportion of the household quantity of each homegrown food item/group was a function of the number of meals and the mean age-specific serving size for each family member, individual intakes were calculated for all members of the survey population. The following general equation was used for calculating homegrown intake for family members:
\[
\begin{equation*}
w_{i}=W_{f} \cdot\left[\frac{m_{1} q_{i}}{\sum_{i=1}^{n} m_{i} q_{i}}\right] \tag{Eqn.2-17}
\end{equation*}
\]
where:
\(w_{i} \quad=\quad\) Homegrown amount of food item/group attributed to member \(i\) during the week (g/week);
\(\mathbf{W}_{\mathrm{f}}=\) Total quantity of homegrown food item/group used by the family members (g/week);
\(m_{i}=\) Number of meals of household food consumed by member \(i\) during the week (meals/week); and
\(q_{i} \quad=\quad\) Serving size for an individual within the age and sex category of the member ( \(\mathrm{g} / \mathrm{meal}\) ).

Daily intake of a homegrown food item/group was determined by dividing the weekly value ( \(w_{i}\) ) by seven. The USDA data were adjusted by applying the sample weights calculated by USDA to the data set prior to analysis. The USDA sample weights were designed to "adjust for survey nonresponse and other vagaries of the sample selection process" (USDA, 1987-88). Also, the USDA weights are calculated "so that the weighted sample total equals the known population total, in thousands, for several characteristics thought to be correlated with eating behavior" (USDA, 1987-88). Intake rates were indexed to the body weight of the survey respondent and reported in units of \(\mathrm{g} / \mathrm{kg}\)-day. The results were then combined into a data set and homegrown mean intake values and quantile distributions were calculated using SAS. Both weighted and unweighted sample numbers were also tabulated for each data set.

Data for each of the major food groups were analyzed for the entire dataset and according to subcategories within each of the four census regions and for all regions combined. Subcategories included various age groups, urbanization categories, seasons, racial classifications, and responses to selected survey questions. Table 2-184 presents the codes, definitions, and a description of the data included in each of the subcategories.

Table 2-184. Sub-category Codes and Definitions

DRAFT
DO NOT QUOTE OR * CITE
\begin{tabular}{lll}
\hline \multicolumn{1}{c}{ Code } & \multicolumn{1}{c}{ Definition } & \multicolumn{1}{c}{ Description } \\
\hline & & \multicolumn{1}{c}{ Region }
\end{tabular}
- Alasks and Hawaii were not included.

Source: USDA 1987-88.

Seasonally/regionally adjusted values were also calculated for the major food groups to account for the impact of seasonal/regional variability on the intake of homegrown foods. To calculate a distribution of annual intake rates based on seasonal/regional intake, the per capita distribution of intake was determined within each region, for each season. First, seasonal intake raters at each percentile of the distribution for each region were averaged to calculate annual intake rates. This method assumes that a person's position in the distribution of homegrown intake is the same for all seasons. For example, a person at the pth percentile during one season is also assumed to be at the pth percentile during all other seasons. Next, the annual intake rates for each region were averaged to calculate the per capita seasonally/regionally-adjusted intake rates.

For individual food items for which 30 or more households reported usage of the homeproduced food, distributions were generated based on the following subcategories of the entire data set: age groups, urbanization categories, seasons, racial classifications, regions, and responses to the questionnaire. Intake rates were not calculated for food items/groups for which less than 30 households reported homeproduced usage because the number of observations may be inadequate for generating distributions that would be representative of that segment of consumers. Fruit and vegetables were also classified as exposed, protected, or roots, as shown in Appendix 2A of this document. Exposed foods are those that are grown above ground and are likely to be contaminated by pollutants deposited on surfaces that are eaten. Protected products are those that have outer protective coatings that are typically removed before consumption. Distributions of intake were tabulated for these food classes for the same subcategories listed above. Distributions were also tabulated for the following USDA food classifications: dark green vegetables, deep yellow vegetables, other vegetables, citrus fruits, and other fruits. Finally, the percentages of mean total intake of the food items/groups consumed within survey households that can be attributed to home production were tabulated. The percentage of intake that was homegrown was calculated as the ratio of total intake of the homegrown food item/group by the survey population to the total intake of all forms of the food by the survey population.

It should be noted that, except for the seasonally/regionally adjusted values, intake distributions were calculated for consumers of the homeproduced item/group of interest. These data represent one-week average intake rates for family members of those survey households
who reported eating the homeproduced food item/group of interest during the survey period. Seasonally/regionally adjusted intake rates for the major food groups were calculated on a per capita basis. The number of individuals consuming any form of the product (i.e., both homeproduced and commercially-produced) are presented in Tables 2-32 through 2-73 in Section 2.3, Tables 2-86 through 2-100 in Section 2.4, and Tables 2-141 through 2-145 in Section 2.6. The total number of individuals in the data set (i.e., both individuals who ate the food item and those who did not eat the food item during the survey period) were also tabulated. These data are presented in Table 2-185. It should be noted that the total unweighted number of observations in Table 2-185 is 9,852. This is somewhat lower than the number of observations reported by USDA because this study only used observations for family members for which age and body weight were specified. The intake data for consumers of homeproduced foods and the total number of individuals surveyed may be used to calculate per capita intake rates for the survey population as follows:

Assuming that \(\mathbf{w}_{\mathrm{p}}\) is the homegrown amount of food item/group at the \(\mathrm{p}^{\text {th }}\) percentile, \(\mathrm{N}_{\mathrm{H}}\) is the weighted number of households who are users of the homegrown food item, and \(\mathrm{N}_{\mathrm{A}}\) is the weighted number of all households surveyed; then, \(\left(\mathrm{N}_{\mathrm{A}}-\mathrm{N}_{\mathrm{H}}\right)\) is the weighted number of households who reported zero homegrown consumption. There are ( \(\mathrm{p} / 100\) ) \(X N_{H}\) households below the \(p^{\text {th }}\) percentile. Therefore, \(w_{p}\) is the
\[
\begin{equation*}
\frac{\left\lfloor\frac{p}{100} \times N_{B}\right\rceil+\left(N_{A}-N_{B}\right)}{N_{A}} \text { percentlle } \tag{Eqn.2-18}
\end{equation*}
\]
of the per capita distribution of homegrown food consumption.

\subsection*{2.7.3. Results}

Intake rates are presented in Tables 2-186 through 2-190 for total homeproduced fruits; Tables 2-191 through 2-195 for total homeproduced vegetables; Tables 2-196 through 2-200 for
total homeproduced meats; Tables 2-201 through 2-205 for homeproduced dairy products; and Tables 2-206 through 2-210 for home caught fish and shellfish. These tables are presented at the end of Section 2.7. The intake rates for the major food groups vary according to region, age, urbanization code, race, and response to survey questions. In general, intake rates of homeproduced foods are higher among populations in nonmetropolitan and suburban areas and lowest in central city areas. Results of the regional analyses indicate that intake of homegrown fruits and vegetables and meat and dairy products is generally highest for individuals in the Midwest and South and lowest for those in the Northeast regions of the United States. Intake rates for homecaught fish in the South was generally greater than the intake rate of consumers in the other regions. Homegrown intake varied according to the specific food item/group and region for the various racial subpopulations. Homegrown intake was generally higher among individuals who indicated that they operate a farm, grow their own vegetables, raise animals, and catch their own fish. The results of the seasonal analyses for all regions combined indicated that, in general, homegrown fruits and vegetables were eaten at a higher rate in summer, and home caught fish was consumed at a higher rate in spring. Seasonal intake varied based on individual regions. Seasonally/regionally-adjusted per capita intake rate distributions for the major food groups are presented in Table 2-211.

Tables 2-212 through 2-238 present distributions of intake for individual homeproduced food items for households that reported consuming the homegrown form of the food during the survey period. Distributions of intake rates and demographic data for the population consuming homegrown foods categorized as exposed fruits and vegetables, protected fruits and vegetables, and root vegetables are presented in Tables 2-239 through 2-243. Intake rates and demographic data for the population consuming the foods items in various USDA classifications are presented in Tables 2-244 through 2-248. Table 2-249 presents the percentage of household intake attributed to homeproduced forms of the food items/groups evaluated for households using the food items/groups during the survey period.

\subsection*{2.7.4. Advantages and Limitations}

The USDA NFCS data set is the largest publicly available source of information on food consumption habits in the United States. The advantages of using this data set are that it is
expected to be representative of the U.S. population and that it provides information on a wide variety of food groups. However, the data collected by the USDA NFCS are based on shortterm dietary recall and may not accurately reflect long-term intake patterns. This is particularly true for the tails of the distributions of homegrown intake. Also, the two survey components (i.e., household and individual) do not define food items/groups in a consistent manner. As a result, some biases may be introduced into analyses such as these because the two survey components are linked. The results of these data may also be biased by assumptions that are inherent to the analytical methods used to generate intake rates from the NFCS data. For example, the household data used are based on the amount of homeproduced food used during the survey week. This amount may not be the actual amount consumed. Factors for spoilage and waste are not incorporated into the data. The analytical method used may not capture highend consumers within a household because average serving sizes are used in the calculations to represent the proportion of homegrown food consumed by each household member. Therefore, individuals with serving sizes in the upper-percentile of the distribution who also reside in households where household consumption is high may not be well represented in the distribution of homegrown intake. Also, the analyses assume that all family members consume a portion of the homeproduced food used within the household. However, the homeproduced food may not be consumed by all family members and serving sizes may not be entirely representative of the portion of household foods consumed by all family members.

\subsection*{2.7.5. Recommendations}

The distribution data presented in this study may be used to assess exposure to contaminants in foods grown, raised, or caught at a specific site. The data presented here for consumers of homeproduced foods represents average daily intake rates of food items/groups over the seven-day survey period and does not account for variations in eating habits during the rest of the year. Thus, these data may not necessarily represent long-term intake patterns. For assessing exposure to contaminants in homeproduced foods among specific subpopulations, the assessor should refer to Tables 2-186 through 2-210. Intake rates for individual food items or classes of foods should be selected from Tables 2-212 through 2-248.

Table 2-185. Weighted and Unweighted Number of Observations for NFCS Data Used in Analysis of Ford Intake-_ CIE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{All Regions} & \multicolumn{2}{|l|}{Northeast} & \multicolumn{2}{|l|}{Midwest} & \multicolumn{2}{|l|}{South} & \multicolumn{2}{|l|}{West} \\
\hline & wgtd & unwgtd \\
\hline Total & 188019000 & 9852 & 41167000 & 2018 & 46395000 & 2592 & 64331000 & 3399 & 36066000 & 1841 \\
\hline \multicolumn{11}{|l|}{Age} \\
\hline \(<01\) & 2814000 & 156 & 545000 & 29 & 812000 & 44 & 889000 & 51 & 568000 & 32 \\
\hline 01-02 & 5699000 & 321 & 1070000 & 56 & 1757000 & 101 & 1792000 & 105 & 1080000 & 59 \\
\hline 03-05 & 8103000 & 461 & 1490000 & 92 & 2251000 & 133 & 2543000 & 140 & 1789000 & 95 \\
\hline 06-11 & 16711000 & 937 & 3589000 & 185 & 4263000 & 263 & 5217000 & 284 & 3612000 & 204 \\
\hline 12-19 & 20488000 & 1084 & 4445000 & 210 & 5490000 & 310 & 6720000 & 369 & 3833000 & 195 \\
\hline 20-39 & 61606000 & 3058 & 12699000 & 600 & 15627000 & 823 & 21786000 & 1070 & 11494000 & 565 \\
\hline 40-69 & 56718000 & 3039 & 13500000 & 670 & 13006000 & 740 & 19635000 & 1080 & 10577000 & 549 \\
\hline 70 + & 15880000 & 796 & 3829000 & 176 & 3189000 & 178 & 5749000 & 300 & 3113000 & 142 \\
\hline \multicolumn{11}{|l|}{Season} \\
\hline Fall & 47667000 & 1577 & 9386000 & 277 & 14399000 & 496 & 13186000 & 439 & 10696000 & 365 \\
\hline Spring & 46155000 & 3954 & 10538000 & 803 & 10657000 & 1026 & 16802000 & 1437 & 8158000 & 688 \\
\hline Summer & 45485000 & 1423 & 9460090 & 275 & 10227000 & 338 & 17752000 & 562 & 7986000 & 246 \\
\hline Winter & 48712000 & 2898 & 11783000 & 663 & 11112000 & 732 & 16591000 & 961 & 9226000 & 542 \\
\hline Urbanization & & & & & & & & & & \\
\hline Central City & 56352000 & 2217 & 9668000 & 332 & 17397000 & 681 & 17245000 & 715 & 12042000 & 489 \\
\hline Nonmetropolitan & 45023000 & 3001 & 5521000 & 369 & 14296000 & 1053 & 19100000 & 1197 & 6106000 & 382 \\
\hline Surburban & 86584000 & 4632 & 25978000 & 1317 & 14702000 & 858 & 27986000 & 1487 & 17918000 & 970 \\
\hline \multicolumn{11}{|l|}{Race} \\
\hline Asian & 2413000 & 114 & 333000 & 13 & 849000 & 37 & 654000 & 32 & 577000 & 32 \\
\hline Black & 21746000 & 1116 & 3542000 & 132 & 2794000 & 126 & 13701000 & 772 & 1709000 & 86 \\
\hline Native American & 1482000 & 91 & 38000 & 4 & 116000 & 6 & 162000 & 8 & 1166000 & 73 \\
\hline Other/NA & 4787000 & 235 & 1084000 & 51 & 966000 & 37 & 1545000 & 86 & 1192000 & 61 \\
\hline White & 157531000 & 8294 & 36170000 & 1818 & 41670000 & 2386 & 48269000 & 2501 & 31422000 & 1589 \\
\hline \multicolumn{11}{|l|}{Response to Questionnaire} \\
\hline Do you garden? & 68152000 & 3744 & 12501000 & 667 & 22348000 & 1272 & 20518000 & 1136 & 12725000 & 667 \\
\hline Do you raise animals? & 10097000 & 631 & 1178000 & 70 & 3742000 & 247 & 2603000 & 162 & 2574000 & 152 \\
\hline Doyou hunt? & 20216000 & 1148 & 3418000 & 194 & 6948000 & 411 & 6610000 & 366 & 3240000 & 177 \\
\hline Do you fish? & 39733000 & 2194 & 5950000 & 321 & 12621000 & 725 & 13595000 & 756 & 7567000 & 392 \\
\hline Do you farm? & 7329000 & 435 & 830000 & 42 & 2681000 & 173 & 2232000 & 130 & 1586000 & 90 \\
\hline
\end{tabular}

Source: USDA 1987-88.

Tablo 2-186. Inake of Homegtown Fruts (e/kg-day) - All Regions Combined



Table 2-187. Intake of Homegrown Fruils (g/kg-day) - Northeast Region
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\substack{\text { poratiom } \\ \text { crum }}\) & \({ }_{\text {wid }}^{\text {N }}\) & \({ }^{\text {Namd }}\) & Mes & \({ }_{\text {st }}\) & & & p & но & ps & po & Prs & mo & ms & po & \\
\hline Toal & \({ }_{12300}\) & & & & & & & & & & & & & & 115+00 \\
\hline  &  &  &  &  &  &  &  &  &  &  &  &  &  &  &  \\
\hline  & \(\mathfrak{c}\) & &  &  &  &  &  &  & \[
\begin{array}{ll} 
\\
\hline 100
\end{array}
\] &  &  &  &  &  & (ex \\
\hline  &  & ¢ &  &  &  & coick &  &  &  &  &  &  &  &  &  \\
\hline \({ }_{\text {Rutict }}\) & \(\underline{27 \times 0}\) & & 239-01 & -8 & 91E-m & M1E-m & se-m & IE-01 & IIE-0 & sse-0 & & \(1298+0\) & Cetam & 118 ta & \\
\hline  & \({ }_{\substack{\text { gex }}}^{\text {gism }}\) & \({ }_{4}\) &  &  &  &  &  &  &  & \({ }_{\text {Sateren }}^{\substack{\text { Saten }}}\) &  &  &  &  & \({ }_{\text {cose }}^{110}\) \\
\hline
\end{tabular}

Table 2-188. Iolake of Homogrowm Fruite (elk-day)-Midwex Rogion
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Poputaicon Grav & \[
\begin{array}{r}
\mathrm{N} \\
\text { mish } \\
\hline
\end{array}
\] & \[
\begin{gathered}
\mathrm{N} \\
\text { ungend }
\end{gathered}
\] & Men & SE & FO & P1 & PS & 810 & P25 & PSO & P15 & 180 & P95 & F99 & P100 \\
\hline Toul & 468500 & 308 & \(3018+\infty\) & 3328-03 & 257E-6 & 4A12-0 & 123-01 & 235E-01 & 4682-01 & 103E+00 & \(231 E+\infty\) & \(6.758+00\) & 1388+01 & \(53 \mathrm{E}+01\) & 6088+01 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline <01 & 53000 & 4 & \(254 \mathrm{E}+\infty 0\) & 4.33E-03 & 5.112-01 & 511E-01 & 511E-01 & 5.11E-01 & 2.12E+00 & 272E+00 & \(2.72 E+\infty\) & 4A7E +00 & 4A7E+00 & 4ATE+00 & \(4478+\infty\) \\
\hline 01-02 & 199000 & 12 & \(1.13 \mathrm{E}+01\) & 425E-0 & \(1.30 \mathrm{E}+00\) & \(130 \mathrm{E}+\infty\) & \(1308+00\) & \(137 \mathrm{E}+00\) & 1.72E+00 & 3.4EE+00 & \(109 \mathrm{e}+01\) & 606E+01 & \(606 E+01\) & 6068+01 & \(6068+01\) \\
\hline 03-05 & 214000 & 15 & 359E+00 & \(12 \mathrm{E}-\infty\) & 281E-01 & 281E-01 & 281E-01 & 3S2E-01 & 1.79E +00 & \(192 E+\infty\) & \(425 \mathrm{E}+00\) & \(533 \mathrm{E}+00\) & \(5338+00\) & 317E+01 & 317E+01 \\
\hline 06-11 & 265000 & 29 & \(2.12 \mathrm{E}+00\) & 538E-03 & 132E-01 & 1325-01 & 1.7E-01 & 191E-01 & \(400 \mathrm{E}-01\) & \(1.79 E+00\) & \(301 \mathrm{E}+00\) & \(347 \mathrm{E}+00\) & 4358+00 & \(160 \mathrm{E}+01\) & \(150 \mathrm{E}+01\) \\
\hline 12-19 & 401000 & 24 & \(2 \mathrm{ASE}+\infty\) & 4A9E-03 & 108E-01 & \(108 \mathrm{E}-01\) & 146E-01 & 3.78E-01 & 4.88E-01 & 764E-01 & \(253 \mathrm{E}+00\) & \(715 \mathrm{E}+00\) & \(83 \mathrm{E}+00\) & \(834 \mathrm{~B}+\infty\) & \(8348+00\) \\
\hline 20-39 & 1190000 & 74 & \(289 \mathrm{E}+00\) & 601E-03 & 560E-0 & \(722 \mathrm{E}-0\). & 9.73E-01 & \(128 E-01\) & 300E-01 & 537E-01 & \(168 \mathrm{E}+00\) & \(109 \mathrm{E}+01\) & 161E+01 & \(370 \mathrm{E}+01\) & 3.70e+01 \\
\hline 40-69 & 162700 & 104 & \(296 \mathrm{E}+\infty\) & \(5.73 \mathrm{E}-03\) & 257E-00 & 620E- 0 & \(101 \mathrm{E}-01\) & 267E-01 & 4.77E-01 & \(108 E+00\) & \(190 \mathrm{E}+00\) & \(443 \mathrm{E}+00\) & \(1398+01\) & \(533 \mathrm{E}+01\) & \(533 \mathrm{P}+01\) \\
\hline \% + & 734000 & 40 & \(150 \mathrm{E}+\infty 0\) & 248E-03 & 4.15E-@ & 4.15E-0 & 4A1E-6 & 389E-01 & 567E-01 & 8.78E-01 & \(1588+00\) & \(394 \mathrm{E}+00\) & 4A2E +00 & \(105 E+01\) & 105E+01 \\
\hline \multicolumn{16}{|l|}{Sesson} \\
\hline Pad & 1138000 & 43 & \(154 E+\infty\) & 1.15E-03 & 2.63E-01 & 2.63E-01 & 3.404E-01 & 4.74E-01 & 6.11E-01 & \(1.07 E+\infty\) & 192E+00 & 348E+00 & 43E +00 & 533E+00 & \(533 \mathrm{C}+00\) \\
\hline Spriog & 1154000 & 133 & \(169 \mathrm{E}+00\) & 2908-03 & 6A5E-02 & 8.890-02 & 2098-01 & 2.62E-01 & 423E-01 & 923E-01 & 1.72E+00 & 2898+00 & 4A7E +00 & 160E+01 & 317E+01 \\
\hline Summer & 1299000 & 4 & \(703 \mathrm{E}+00\) & 188E-0 & 626E-02 & 6.26E-02 & 918E-02 & \(12 \mathrm{E}-01\) & 428E-01 & \(155 E+00\) & \(834 \mathrm{E}+00\) & \(1.61 \mathrm{E}+01\) & 3.70E+01 & 600E+01 & 606E+01 \\
\hline Winter & 1092000 & 82 & \(1.18 \mathrm{E}+00\) & 1.56E-03 & 257E-02 & 2.57E-02 & 560E-02 & 146E-01 & 362E-01 & 609E-01 & \(142 \mathrm{E}+00\) & 261E+00 & 3.73E +00 & 109E+01 & 10\%E+01 \\
\hline \multicolumn{16}{|l|}{} \\
\hline Central City & 1058000 & 42 & \(1.84 \mathrm{E}+00\) & 248E-03 & 4.15E-02 & 4.15E-02 & 101E-01 & 2.63E-01 & 521E-01 & \(107 \mathrm{E}+00\) & \(1.90 \mathrm{E}+00\) & \(2.82 \mathrm{E}+00\) & 9.74E \(+\infty\) & 1098+01 & 1098+01 \\
\hline Nonmetropditan & 1920000 & 147 & 2.52E +00 & \(4.76 \mathrm{E}-03\) & 2.57E-02 & 560E-02 & 108E-01 & 146E-01 & 3968-01 & \(1.03 \mathrm{E}+00\) & \(207 \mathrm{E}+00\) & 4.43E +00 & \(684 \mathrm{E}+00\) & 533E+01 & \(533 \mathrm{E}+01\) \\
\hline Surburba & 1705000 & 113 & \(429 \mathrm{E}+00\) & 7.10E-03 & 6A5E-02 & \(9.18 \mathrm{E}-02\) & 204E-01 & 3.10E-01 & 4.81E-01 & \(764 \mathrm{E}-01\) & \(3.01 E+00\) & 1.39E+01 & 180E+01 & 606Et01 & 600E +01 \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline White & 4683000 & 302 & \(301 E+00\) & 332E-03 & 2.57E-02 & 4.41E-02 & 125E-01 & \(2.35 \mathrm{E}-01\) & 4.68E-01 & 103E+00 & \(231 E+00\) & 6.76E +00 & 139E+01 & \(5.33 \mathrm{E}+01\) & 600E+01 \\
\hline \multicolumn{16}{|l|}{Response to Questioxraire} \\
\hline Do you gardea? & 4060000 & 1 267 & \(327 \mathrm{E}+00\) & 380E-03 & 257E-02 & 4.41E-02 & \(101 \mathrm{E}-01\)
\(191 \mathrm{E}-01\) & \(204 \mathrm{E}-01\)
\(408 \mathrm{E}-01\) & \(4.48 E-01\)
\(1268+00\) & \(1078+00\)
\(1638+00\) & \(2.37 \mathrm{E}+00\)
\(389 \mathrm{E}+00\) & \(715 E+00\)
\(676 E+00\) & \(146 \mathrm{E}+01\) & 5.33E+01
1112 & 606E+01 \\
\hline Do youtam? & 694000 & 57 & \(2.59 \mathrm{E}+0\) & 2.73E-03 & 560E-02 & 560E-02 & 191E-01 & 408E-01 & \(126 \mathrm{E}+00\) & \(1.63 \mathrm{E}+00\) & \(389 \mathrm{E}+00\) & 6.76E +00 & \(8.34 \mathrm{E}+\infty\) & 11iE+01 & 111E+01 \\
\hline
\end{tabular}

Table 2-189. Intake of Homegrown Fruits (g/kg-day) - South Region
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Group & \[
\begin{gathered}
\mathrm{N} \\
\text { Wgtd }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} \\
\text { unugtd } \\
\hline
\end{gathered}
\] & Mean & SE & PO & P1 & PS & P10 & P25 & P50 & P75 & P90 & P95 & P99 & P100 \\
\hline Total & 4148000 & 208 & \(297 E+00\) & \(2.12 \mathrm{E}-03\) & 333E-02 & 112E-01 & \(2.42 \mathrm{E}-01\) & 3.55E-01 & 597E-01 & \(135 \mathrm{E}+00\) & \(3.01 E+00\) & \(8.18 \mathrm{E}+00\) & 1.41E+01 & \(238 \mathrm{E}+01\) & \(2.40 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 80000 & 5 & \(101 \mathrm{E}+01\) & 1.64E-02 & \(4.58 \mathrm{E}+00\) & \(1.43 \mathrm{E}+01\) & \(143 \mathrm{E}+01\) & \(1.43 \mathrm{E}+01\) & \(143 \mathrm{E}+01\) & \(1.43 \mathrm{E}+01\) & \(143 E+01\) \\
\hline 01-02 & 81000 & 5 & \(2.73 \mathrm{E}+00\) & \(7.75 \mathrm{E}-03\) & \(109 \mathrm{E}+00\) & \(109 \mathrm{E}+00\) & \(1.09 \mathrm{E}+00\) & \(109 \mathrm{E}+00\) & \(1.09 \mathrm{E}+00\) & \(1.64 \mathrm{E}+00\) & \(397 \mathrm{E}+00\) & \(7.82 \mathrm{E}+00\) & \(7.82 \mathrm{E}+00\) & \(782 \mathrm{E}+00\) & \(7.802+00\) \\
\hline 03-05 & 71000 & 4 & \(2.77 \mathrm{E}+00\) & \(6.63 \mathrm{E}-03\) & 8.84E-01 & \(8.84 \mathrm{E}-01\) & \(8.84 \mathrm{E}-01\) & \(8.84 \mathrm{E}-01\) & \(8.84 \mathrm{E}-01\) & \(2.56 E+00\) & \(4.46 \mathrm{E}+00\) & \(6.02 \mathrm{E}+00\) & \(6.02 \mathrm{E}+00\) & \(6.02 \mathrm{E}+00\) & \(600 \mathrm{E}+00\) \\
\hline 06-11 & 147000 & 8 & \(5.73 \mathrm{E}+00\) & 159E-02 & \(594 \mathrm{E}-01\) & \(5.94 \mathrm{E}-01\) & \(594 \mathrm{E}-01\) & \(5.94 \mathrm{E}-01\) & \(113 \mathrm{E}+00\) & \(1.31 \mathrm{E}+00\) & \(1.18 \mathrm{E}+01\) & \(1.58 \mathrm{E}+01\) & \(1.58 \mathrm{E}+01\) & \(158 \mathrm{E}+01\) & \(15 \mathrm{E}+01\) \\
\hline 12-19 & 270000 & 15 & \(720 \mathrm{E}-01\) & \(1.48 \mathrm{E}-03\) & \(1.12 \mathrm{E}-01\) & 1.12E-01 & \(155 \mathrm{E}-01\) & 267E-01 & \(3.55 \mathrm{E}-01\) & \(4.41 \mathrm{E}-01\) & \(6.18 \mathrm{E}-01\) & \(283 \mathrm{E}+00\) & \(2.83 \mathrm{E}+00\) & \(2835+00\) & \(2835+00\) \\
\hline 20-39 & 775000 & 31 & \(1.88 \mathrm{E}+00\) & 1.98E-03 & \(8.14 \mathrm{E}-02\) & \(814 \mathrm{E}-02\) & 1.56E-01 & \(2.84 \mathrm{E}-01\) & \(5.57 \mathrm{E}-01\) & \(131 \mathrm{E}+00\) & \(198 \mathrm{E}+00\) & \(491 \mathrm{E}+00\) & \(5.97 \mathrm{E}+00\) & \(6.10 \mathrm{E}+00\) & \(6.10 \mathrm{E}+00\) \\
\hline 40-69 & 1783000 & 93 & \(325 \mathrm{E}+00\) & 397E-03 & \(3.33 \mathrm{E}-02\) & \(1.32 \mathrm{E}-01\) & \(2.73 \mathrm{E}-01\) & 3.57E-01 & \(5.78 \mathrm{E}-01\) & \(120 \mathrm{E}+00\) & \(287 \mathrm{E}+00\) & \(104 \mathrm{E}+01\) & \(155 \mathrm{E}+01\) & \(2.40 \mathrm{E}+01\) & \(2.40 \mathrm{E}+01\) \\
\hline \(70+\) & 941000 & 49 & \(298 \mathrm{E}+00\) & \(329 \mathrm{E}-03\) & \(1.99 \mathrm{E}-01\) & 199E-01 & 3.77E-01 & 4.46E-01 & \(8.34 \mathrm{E}-01\) & \(1.82 \mathrm{E}+00\) & \(3.53 \mathrm{E}+00\) & \(8.18 \mathrm{E}+00\) & \(1.06 \mathrm{E}+01\) & \(1.53 \mathrm{E}+01\) & \(153 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Season} \\
\hline Fall & \(8 \% 6000\) & 29 & 199E +00 & 250E-03 & 3.92E-01 & 3.92E-01 & 427E-01 & 4.46E-01 & 6.50E-01 & \(1.13 \mathrm{E}+00\) & \(196 \mathrm{E}+00\) & 4.97E +00 & \(8.18 \mathrm{E}+00\) & \(106 \mathrm{E}+01\) & 106E+01 \\
\hline Spring & 620000 & 59 & \(205 E+00\) & \(2.49 \mathrm{E}-03\) & 155E-01 & 1.55E-01 & 2.82E-01 & 311E-01 & \(4.50 \mathrm{E}-01\) & \(1.06 E+00\) & \(4.09 \mathrm{E}+00\) & \(5.01 \mathrm{E}+00\) & \(6588+00\) & \(705 \mathrm{E}+00\) & \(7058+00\) \\
\hline Sumper & 1328000 & 46 & \(2.84 \mathrm{E}+00\) & 3.83E-03 & 8.14E-02 & \(8.14 \mathrm{E}-02\) & \(1.56 \mathrm{E}-01\) & 267E-01 & \(4.41 \mathrm{E}-01\) & \(1.31 \mathrm{E}+00\) & \(283 \mathrm{E}+00\) & \(6.10 \mathrm{E}+00\) & \(143 E+01\) & \(2.40 \mathrm{E}+01\) & 2.40E+01 \\
\hline Winter & 1304000 & 74 & \(421 \mathrm{E}+00\) & 4.91E-03 & 333E-02 & 112E-01 & \(2.36 \mathrm{E}-01\) & 382E-01 & 8.92E-01 & \(1.88 \mathrm{E}+00\) & 3.71E+00 & 1.41E+01 & \(197 \mathrm{E}+01\) & \(238 \mathrm{E}+01\) & \(2.38 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Urbanization} \\
\hline Central City & 1066000 & 39 & \(3.33 \mathrm{E}+00\) & 326E-03 & \(2.36 \mathrm{E}-01\) & \(2.36 \mathrm{E}-01\) & 392E-01 & \(4558 \mathrm{E}-01\) & \(8.34 \mathrm{E}-01\) & \(2.55 \mathrm{E}+00\) & \(4.77 \mathrm{E}+00\) & \(8.18 \mathrm{E}+00\) & \(106 \mathrm{E}+01\) & \(143 \mathrm{E}+01\) & \(1.43 \mathrm{E}+01\) \\
\hline Fonmetropditan & 1548000 & 89 & \(2.56 \mathrm{E}+00\) & 2.93E-03 & \(8.14 \mathrm{E}-02\) & \(8.14 \mathrm{E}-02\) & 267E-01 & 338E-01 & \(6.12 \mathrm{E}-01\) & \(1.40 \mathrm{E}+00\) & \(2.83 \mathrm{E}+00\) & \(5.97 \mathrm{E}+00\) & \(104 \mathrm{E}+01\) & \(2.40 \mathrm{E}+01\) & \(2{ }^{2} 0 \mathrm{EE}+01\) \\
\hline Surturban & 1534000 & 80 & \(3.14 \mathrm{E}+00\) & 435E-03 & 333E-02 & \(112 \mathrm{E}-01\) & 1.56E-01 & 2.84E-01 & \(508 \mathrm{E}-01\) & 1.10E+00 & \(229 \mathrm{E}+00\) & 1.18E+01 & \(155 \mathrm{E}+01\) & \(2388 \mathrm{E}+01\) & \(2.38 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Black & 332000 & 12 & \(105 \mathrm{E}+00\) & 1.11E-03 & 1322E-01 & \(1.32 \mathrm{E}-01\) & 132E-01 & 2.84E-01 & 608E-01 & \(820 \mathrm{E}-01\) & \(146 \mathrm{E}+00\) & \(229 \mathrm{E}+00\) & \(229 \mathrm{E}+00\) & \(229 \mathrm{c}+00\) & 229E+00 \\
\hline White & 3816000 & 19 & \(3.14 \mathrm{E}+00\) & 229E-03 & \(3.33 \mathrm{E}-02\) & 1.12E-01 & 2.42E-01 & \(355 \mathrm{E}-01\) & 597E-01 & \(1388 \mathrm{E}+00\) & \(337 \mathrm{E}+00\) & \(8.69 \mathrm{E}+00\) & 1.43E+01 & \(2388+01\) & \(2.005+01\) \\
\hline \multicolumn{16}{|l|}{Resporse to Questianraire} \\
\hline Do you garden? & 3469000 & 174 & \(2.82 \mathrm{E}+00\) & 208E-03 & 3.33E-02 & 156E-01 & 2.84E-01 & 3.84E-01 & \(6.50 \mathrm{E}-01\) & \(1.398+00\) & \(294 \mathrm{E}+00\) & \(6.10 \mathrm{E}+00\) & 1.41E+01 & \(2.11 \mathrm{E}+01\) & \(240 \mathrm{E}+01\) \\
\hline Do you fam? & 296000 & 16 & \(5.31 \mathrm{E}+00\) & 822E-03 & 357E-01 & 357E-01 & 3.78E-01 & 3.84E-01 & 287E +00 & 4.17E+00 & \(6.10 E+00\) & 1.18E+01 & 158E+01 & \(1.58 \mathrm{E}+01\) & 158E+01 \\
\hline
\end{tabular}

Tablo 2-190. Intiko of Homegrown Frulk (e/kg-day) - Wex Regioa
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Popubtion Grap & \[
\begin{gathered}
\mathrm{N} \\
\text { wrad }
\end{gathered}
\] &  & Mean & SE & H & P1 & P & P10 & P25 & PSO & 975 & 180 & P95 & 189 & P100 \\
\hline Towi & 457400 & 233 & \(2.62 \mathrm{E}+\infty\) & 2198-03 & 714E-02 & 150E-01 & 2.75E-01 & 3338-01 & 6.17E-01 & \(120 \mathrm{E}+00\) & \(242 \mathrm{E}+\infty\) & \(5398+\infty\) & 105E+01 & 2AFE+01 & 423C+01 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 52000 & 4 & 356E+00 & 7.12E-03 & \(1.78 E+\infty\) & 1.78C+00 & 1.78E+00 & 1.78E +00 & \(250 \mathrm{E}+00\) & \(250 E+\infty\) & 547E+00 & 5.77E+00 & 5.77E+00 & 5.77B+00 & 5.77E+00 \\
\hline \(01-\infty\) & 66000 & 5 & \(981 \mathrm{E}+00\) & 267E-00 & 9598-01 & 9598-01 & 959\%-01 & 959E-01 & 4A1E \(+\infty\) & \(952 \mathrm{E}+\infty 0\) & 1.93E+01 & 1938+01 & 193E+01 & \(193 \mathrm{E}+01\) & 193E+01 \\
\hline 03-05 & 200000 & 11 & \(6.13 \mathrm{E}+00\) & 2.83E-C & 7288-01 & 728E-01 & \(830 \mathrm{E}-01\) & 9.77E-01 & \(1.104 E+00\) & \(182 \mathrm{E}+00\) & \(232 \mathrm{E}+00\) & \(8918+00\) & \(483 \mathrm{E}+01\) & 4838+01 & 483E+01 \\
\hline 06-11 & 511000 & 31 & 4AIE \(+\infty\) & 991E-03 & 3.75E-01 & 3.75-01 & 483E-01 & \(532 \mathrm{E}-01\) & \(9.76 \mathrm{E}-01\) & \(1.61 \mathrm{E}+\infty 0\) & \(496 \mathrm{E}+00\) & \(7988+00\) & 2A9E +01 & \(3228+01\) & \(322 \mathrm{E}+01\) \\
\hline 12-19 & 325000 & 18 & \(319 \mathrm{E}+\infty\) & 738E-03 & 488E-01 & 488E-01 & \(488 \mathrm{EC-01}\) & \(5.75 \mathrm{E}-01\) & 7.10E-01 & \(153 \mathrm{E}+\infty 0\) & \(352 \mathrm{E}+\infty 0\) & 111E+01 & \(1.11 \mathrm{E}+01\) & 185E+01 & 125E+01 \\
\hline 20-39 & 946000 & 43 & \(1.19 \mathrm{e}+00\) & 1288-03 & \(167 \mathrm{E}-01\) & 1.83E-01 & 196E-01 & \(2.64 \mathrm{E}-01\) & 404E-01 & \(754 \mathrm{E}-01\) & \(154 \mathrm{E}+00\) & \(22 \mathrm{E}+00\) & \(296 \mathrm{E}+00\) & 801E +00 & \(804 \mathrm{E}+00\) \\
\hline 40-69 & 172000 & 90 & \(240 \mathrm{E}+\infty 0\) & 2.588-03 & \(1.50 \mathrm{E}-01\) & 1508-01 & \(2.75 \mathrm{E}-01\) & 2.91E-01 & 518E-01 & \(120 \mathrm{E}+00\) & \(234 \mathrm{E}+00\) & 581E+00 & \(109 \mathrm{C}+01\) & \(1308+01\) & \(1.818+01\) \\
\hline \(70+\) & 746000 & 31 & \(1.80 \mathrm{E}+\infty\) & 1908-03 & \(7.14 \mathrm{E}-\infty\) & 714E-02 & 100E-01 & 380E-01 & 7.33E-01 & \(9.71 \mathrm{E}-01\) & \(2615+\infty\) & \(500 \mathrm{E}+00\) & \(530 \mathrm{E}+\infty\) & \(539 \mathrm{C}+00\) & 539E+00 \\
\hline \multicolumn{16}{|l|}{Semsan} \\
\hline Fd & 843000 & 28 & \(147 \mathrm{E}+\infty\) & 14E-03 & 291E-01 & 2918-01 & 2918-01 & 2.95E-01 & 483E-01 & \(104 \mathrm{E}+\infty\) & \(2.15 \mathrm{E}+\infty\) & 299E+00 & 465E+00 & 5398+00 & 539E+00 \\
\hline Spriog & 837000 & 78 & \(13 \mathrm{E}+00\) & 153E-03 & \(167 \mathrm{E}-01\) & \(1.73 \mathrm{E}-01\) & \(198 \mathrm{E}-01\) & 2.51E-01 & \(510 \mathrm{E}-01\) & 9.81E-01 & \(161 \mathrm{E}+\infty 0\) & \(295 E+00\) & \(529 \mathrm{e}+00\) & \(6688+00\) & \(7 \mathrm{MEE}+00\) \\
\hline Sumper & 1398000 & 4 & \(247 \mathrm{E}+00\) & 265E-03 & \(186 \mathrm{E}-01\) & 1.86E-01 & 2.75E-01 & 4.04E-01 & 6.17E-01 & \(128 \mathrm{E}+\infty 0\) & \(314 \mathrm{E}+\infty 0\) & \(726 \mathrm{E}+00\) & \(1.09 \mathrm{E}+01\) & \(1.30 \mathrm{E}+01\) & \(1.30 \mathrm{E}+01\) \\
\hline Wrater & 1496000 & 83 & \(4.10 E+\infty\) & 589E-03 & 714E-02 & 714E-Q & 296E-01 & 333E-01 & \(7.74 \mathrm{E}-01\) & \(1.51 \mathrm{E}+\infty\) & \(3.74 \mathrm{E}+00\) & 1.11E+01 & 1.85 +01 & 483E+01 & 483¢+01 \\
\hline \multicolumn{16}{|l|}{Urbanization} \\
\hline Central City & 1494000 & 59 & \(199 E+\infty\) & 266E-03 & \(714 \mathrm{E}-02\) & 7.14E-02 & 2.35E-01 & 342E-01 & 526E-01 & \(8.63 \mathrm{E}-01\) & \(204 \mathrm{E}+\infty\) & \(463 \mathrm{E}+00\) & \(9.52 \mathrm{E}+00\) & \(193 \mathrm{E}+01\) & 193E+01 \\
\hline Nonometropdita & 474000 & 32 & \(224 \mathrm{E}+\infty 0\) & 431E-03 & 184E-01 & \(1.84 \mathrm{E}-01\) & 2.76E-01 & 4.21E-01 & 625E-01 & 768E-01 & \(2.64 \mathrm{E}+\infty 0\) & \(425 \mathrm{E}+00\) & \(109 \mathrm{E}+01\) & \(109 \mathrm{E}+01\) & 1098+01 \\
\hline Surturtan & 2606000 & 142 & \(304 \mathrm{E}+\infty\) & 3A1E-03 & 167E-01 & \(183 \mathrm{E}-01\) & 2.75E-01 & 3.14E-01 & 7.10E-01 & \(139 \mathrm{E}+00\) & \(314 \mathrm{E}+\infty\) & 581E +00 & 103E+01 & \(322 \mathrm{E}+01\) & 483E+01 \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Black & 118000 & 8 & \(4.16 \mathrm{E}+\infty 0\) & 200E-02 & 5.18E-01 & 5.18E-01 & 5.18E-01 & 5.18E-01 & 608E-01 & \(148 \mathrm{E}+00\) & \(153 E+\infty\) & 1.93E+01 & 193E+01 & \(193 \mathrm{E}+01\) & 1.938+01 \\
\hline Other/NA & 49000 & 2 & 5.51E-01 & 1518-03 & 404E-01 & 4.04E-01 & 4.04E-01 & 4.04E-01 & 404E-01 & 4.04E-01 & 404E-01 & 1.31E+00 & \(131 \mathrm{E}+00\) & \(131 \mathrm{E}+00\) & \(1.31 \mathrm{E}+00\) \\
\hline White & 4407000 & 223 & \(2.60 \mathrm{E}+00\) & 230E-03 & 7.14E-02 & 1.50E-01 & 2.75E-01 & 314E-01 & 625E-01 & \(120 \mathrm{E}+00\) & \(247 \mathrm{E}+\infty\) & 533E+00 & 103E +01 & 2A9E+01 & 483E+01 \\
\hline \multicolumn{16}{|l|}{Resporse to Questionmaire} \\
\hline Doyou gaden? & 4170000 & 207 & \(2.76 \mathrm{E}+\infty\) & 239E-03 & 714E-02 & \(1.00 \mathrm{E}-01\) & \(2.75 \mathrm{E}-01\) & 3.14E-01 & \(629 \mathrm{E}-01\) & \(120 \pm+00\) & \(2.54 \mathrm{E}+\infty 0\) & 5.81E+00 & \(1.09 \mathrm{~F}+01\) & 249E+01 & 4.83E+01 \\
\hline Doyou farm? & 795000 & 35 & \(185 \mathrm{E}+00\) & 1.72E-03 & \(2.75 \mathrm{E}-01\) & 2.75E-01 & 2.76E-01 & 598E-01 & 7.10E-01 & \(126 \mathrm{E}+\infty\) & \(250 \mathrm{E}+00\) & 4.63E+00 & \(500 \mathrm{E}+00\) & \(681 \mathrm{E}+10\) & 681E+C0 \\
\hline
\end{tabular}


Table 2-191. Intake of Homegrown Vegetables (g/kg-day) - All Regiona Combined
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Population Group & \[
\begin{gathered}
\mathbf{N} \\
\mathbf{w g h d}
\end{gathered}
\] & unwitd & Mean & SE & PO & P1 & P5 & P10 & P25 & P50 & P75 & P90 & P95 & P99 & P100 \\
\hline & Total & 34392000 & 1855 & \(208 \mathrm{E}+00\) & 4.97E-04 & \(0.00 E+00\) & 4.79E-03 & 1.10E-01 & 1.80E-01 & 4.47E-01 & \(1.11 \mathrm{E}+00\) & \(2.47 \mathrm{E}+00\) & \(520 \mathrm{E}+00\) & \(7.54 \mathrm{E}+00\) & \(1.55 \mathrm{E}+01\) & 2.70E+01 \\
\hline & \multicolumn{16}{|l|}{Age} \\
\hline & <01 & 466000 & 24 & \(740 \mathrm{E}+\infty 0\) & \(8.78 \mathrm{E}-03\) & 259E-01 & 2.59E-01 & 5.13E-01 & 722E-01 & 2.77E +00 & 5.85E +00 & \(9.75 \mathrm{E}+00\) & \(1.70 \mathrm{E}+01\) & 1.87E +01 & \(1.89 \mathrm{E}+01\) & \(189 \mathrm{E}+01\) \\
\hline & 01-0 & 951000 & 53 & \(520 \mathrm{E}+00\) & \(6.32 \mathrm{E}-03\) & 232E-02 & 2.32E-02 & 2.45E-01 & 3.82E-01 & \(123 \mathrm{E}+00\) & \(327 \mathrm{E}+00\) & \(583 \mathrm{E}+00\) & \(1.31 \mathrm{E}+01\) & \(1.96 \mathrm{E}+01\) & 2.70E+01 & 2.70E+01 \\
\hline & 03-05 & 1235000 & 76 & \(2.46 \mathrm{E}+00\) & 2.19E-03 & \(0.00 \mathrm{E}+00\) & \(0.00 \mathrm{E}+00\) & \(4.94 \mathrm{E}-02\) & 394E-01 & 7.13E-01 & \(125 \mathrm{E}+00\) & \(391 \mathrm{E}+00\) & \(635 \mathrm{E}+00\) & \(7.74 \mathrm{E}+00\) & \(106 \mathrm{E}+01\) & \(128 \mathrm{E}+01\) \\
\hline & 06-11 & 3024000 & 171 & \(202 \mathrm{E}+\infty 0\) & 191E-03 & \(0.00 \mathrm{E}+00\) & 595E-03 & \(1.00 \mathrm{E}-01\) & \(160 \mathrm{E}-01\) & 4.00E-01 & \(8.86 \mathrm{E}-01\) & \(221 E+00\) & \(464 \mathrm{E}+00\) & \(6.16 \mathrm{E}+00\) & \(1.76 \mathrm{E}+01\) & \(2.36 \mathrm{E}+01\) \\
\hline & 12-19 & 3293000 & 183 & \(1.48 \mathrm{E}+\infty 0\) & 101E-03 & \(000 \mathrm{E}+00\) & \(0.00 \mathrm{E}+00\) & \(6.46 \mathrm{E}-02\) & 1.45E-01 & 322E-01 & 809E-01 & \(183 \mathrm{E}+00\) & \(3.71 \mathrm{E}+\infty 0\) & \(6.03 \mathrm{E}+\infty 0\) & \(7.71 \mathrm{E}+00\) & \(904 \mathrm{E}+00\) \\
\hline & 20-39 & 8593000 & 437 & \(1.47 E+00\) & 684E-04 & \(1.48 \mathrm{E}-03\) & \(169 \mathrm{E}-02\) & 7.77E-02 & 1.57E-01 & 2.73E-01 & 761E-01 & \(191 \mathrm{E}+00\) & \(3.44 \mathrm{E}+00\) & \(4.92 \mathrm{E}+00\) & \(105 \mathrm{E}+01\) & \(206 \mathrm{E}+01\) \\
\hline & 40-69 & 12828000 & 700 & \(207 \mathrm{E}+\infty\) & 753E-04 & \(0.00 \mathrm{E}+00\) & 5.13E-03 & \(1.19 \mathrm{E}-01\) & 2.14E-01 & \(5.26 \mathrm{E}-01\) & \(1.18 \mathrm{E}+00\) & \(2.47 \mathrm{E}+00\) & \(5.12 \mathrm{E}+00\) & \(694 \mathrm{E}+00\) & \(1.49 \mathrm{E}+01\) & 2.29E+01 \\
\hline & \(70+\) & 4002000 & 211 & \(251 \mathrm{E}+00\) & 1.41E-03 & 423E-03 & 521E-03 & 1.51E-01 & 2.39E-01 & 581E-01 & \(137 \mathrm{E}+00\) & \(369 \mathrm{E}+00\) & \(6.35 \mathrm{E}+00\) & \(820 \mathrm{E}+00\) & \(1.25 \mathrm{E}+01\) & \(155 \mathrm{E}+01\) \\
\hline & \multicolumn{16}{|l|}{Seasons} \\
\hline & Fall & 11026000 & 394 & \(1.88 E+\infty\) & 767E-04 & 0.00E +00 & 498E-02 & 1.13E-01 & 1.80E-01 & 4.13E-01 & \(983 \mathrm{E}-01\) & \(2.11 \mathrm{E}+00\) & \(4.88 \mathrm{E}+\infty 0\) & \(694 \mathrm{E}+00\) & \(125 \mathrm{E}+01\) & 1.89E+01 \\
\hline & Spring & 6540000 & 601 & \(1.36 \mathrm{E}+\infty 0\) & \(727 \mathrm{E}-04\) & \(0.00 \mathrm{E}+00\) & 2.44E-03 & 4.47E-02 & 1.35E-01 & 321E-01 & \(704 \mathrm{E}-01\) & \(163 \mathrm{E}+00\) & \(3.37 \mathrm{E}+00\) & \(5.21 \mathrm{E}+\infty\) & \(8.35 \mathrm{E}+00\) & \(236 \mathrm{E}+01\) \\
\hline & Sramer & 11081000 & 375 & \(286 \mathrm{E}+00\) & \(1.12 \mathrm{E}-03\) & \(0.00 \mathrm{E}+00\) & \(6.93 \mathrm{E}-02\) & \(1.57 \mathrm{E}-01\) & \(224 \mathrm{E}-01\) & 7.12E-01 & \(162 \mathrm{E}+00\) & \(3.44 \mathrm{E}+00\) & \(6.99 \mathrm{E}+00\) & \(9.75 \mathrm{E}+\infty 0\) & \(1.87 \mathrm{E}+01\) & 2.70E+01 \\
\hline & Winter & 5745000 & 425 & 1.79E+00 & \(9.80 \mathrm{E}-04\) & \(0.00 \mathrm{E}+00\) & 3.73E-03 & 4.49E-02 & 156E-01 & 4.69E-01 & \(1.05 \mathrm{E}+00\) & \(2.27 \mathrm{E}+00\) & \(385 \mathrm{E}+00\) & \(6.01 \mathrm{E}+00\) & \(106 \mathrm{E}+01\) & 206E+01 \\
\hline & \multicolumn{16}{|l|}{Ustanizations} \\
\hline & Central City & 6183000 & 228 & \(1.40 \mathrm{E}+60\) & 7.47E-04 & \(000 \mathrm{E}+00\) & 101E-02 & 659E-02 & 1,50E-01 & & & & & & 9.96E+00 & \\
\hline & Nommetropolitan & 138081000 & 878 & \(2688+00\) & \(9.50 \mathrm{E}-04\) & \(0000 \mathrm{E}+00\) & 2.12E-02 & \(1.58 \mathrm{E}-01\) & \(2.58 \mathrm{E}-01\) & 599E-01 & \(1.45 \mathrm{E}+00\) & 327E+00 & \(6.35 \mathrm{E}+00\) & 933E 6700 & \(1.75 \mathrm{E}+01\) & \(2.70 \mathrm{E}+01\) \\
\hline & Surburban & 14341000 & 747 & \(1.8 E+00\) & \(658 \mathrm{E}-04\) & \(000 \mathrm{E}+00\) & 334E-03 & \(1.10 \mathrm{E}-01\) & 163E-01 & \(394 \mathrm{E}-01\) & \(963 \mathrm{E}-01\) & \(2.18 \mathrm{E}+00\) & \(4.32 \mathrm{E}+00\) & \(6.78 \mathrm{E}+00\) & \(125 \mathrm{E}+01\) & \(206 \mathrm{E}+01\) \\
\hline I & \multicolumn{16}{|l|}{Race} \\
\hline \(\because\) & Acian & 184000 & 8 & \(1.74 \mathrm{E}+\infty 0\) & 592E-03 & 428E-02 & 428E-02 & 4.66E- \(\sim\) & 1.71E-01 & 1.71E-01 & 5.66E-01 & 8.37E-01 & \(6.78 \mathrm{E}+00\) & 6.78E +00 & \(6.78 \mathrm{E}+00\) & \(6.78 \mathrm{E}+00\) \\
\hline \(\cdots\) & Black & 1872000 & 111 & \(1.78 \mathrm{E}+\infty\) & 1.79E-03 & \(0.00 \mathrm{E}+00\) & \(000 \mathrm{E}+00\) & 7.77E-02 & 1,39E-01 & 438E-01 & \(9.32 \mathrm{E}-01\) & \(2.06 \mathrm{E}+00\) & \(4.68 \mathrm{E}+00\) & 5.70E +00 & \(820 \mathrm{E}+00\) & \(1.89 \mathrm{E}+01\) \\
\hline & Native American & 28000 & 1 & 6.80E-01 & \(0.00 \mathrm{E}+00\) & \(6.80 \mathrm{E}-01\) & 6.80E-01 & \(6.80 \mathrm{E}-01\) & 6.80E-01 & 6.80E-01 & \(6.80 \mathrm{E}-01\) & \(6.80 \mathrm{E}-01\) & 6.80E-01 & 6.80E-01 & 6.80E-01 & 6.800 -01 \\
\hline & Other/NA & 331000 & 19 & \(3.31 \mathrm{E}+00\) & \(520 \mathrm{E}-03\) & 9.80E-03 & 9.80E-03 & 204E-01 & 2.69E-01 & 350E-01 & \(3.59 \mathrm{E}+00\) & \(6.03 \mathrm{E}+00\) & \(6.67 \mathrm{E}+00\) & \(9.04 \mathrm{E}+00\) & \(9.04 \mathrm{E}+00\) & \(9004+00\) \\
\hline & White & 31917000 & 1714 & \(2.10 \mathrm{E}+\infty\) & \(520 \mathrm{E}-04\) & \(0.00 \mathrm{E}+00\) & 734E-03 & 1.13E-01 & 1.84E-01 & 4.54E-01 & \(1.12 \mathrm{E}+00\) & \(2 \mathrm{ABE}+00\) & \(5.18 \mathrm{E}+00\) & \(768 \mathrm{E}+00\) & \(1.55 \mathrm{E}+01\) & 2.70E+01 \\
\hline & \multicolumn{16}{|l|}{Rexporue to Questiomaire} \\
\hline \(N\) & Do you garden? & 3017000 & 1643 & 2.12 +00 & 523E-04 & \(0.00 \mathrm{E}+00\) & 521E-03 & 1.11E-01 & \[
1.85 \mathrm{E}-01
\] & \[
484 \mathrm{E}-01
\] & \(1.18 \mathrm{E}+00\) & \(2.68 \mathrm{E}+00\) & \[
535 \mathrm{E}+00
\] & \(7.72 \mathrm{E}+00\) & \(1.55 \mathrm{E}+01\) & 236E+01 \\
\hline 山 & Do you fam? & 4319000 & 262 & \(329 \mathrm{E}+00\) & 195E-03 & 0.00E +00 & \(0.00 \mathrm{E}+00\) & 161E-01 & 2.9E-01 & 8.46E-01 & \(1.67 \mathrm{E}+00\) & \(3618+00\) & \(888 \mathrm{E}+00\) & \(1.18 \mathrm{E}+01\) & \(1.76 \mathrm{E}+01\) & 2.36E+01 \\
\hline
\end{tabular}


Table 2-192. Incake of Homegrown Veguablas (f/kg-day) - Northeax Region


Table 2-193. Intake of Homegrown Vegetables (g/kg-day) - Midweat Region
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Population } \\
& \text { Group }
\end{aligned}
\] & \(\stackrel{\text { N }}{\text { N }}\) & \[
\frac{\mathrm{N}}{\mathrm{~N}, \mathrm{~d}}
\] & Mean & SE & \(p\) & P1 & PS & P10 & P25 & P50 & P75 & P90 & P95 & P99 & P100 \\
\hline Total & 1216000 & 69 & \(226 E+00\) & 909E-04 & 0.00E +00 & 1.598-02 & 7.7TE-0 & 1.80E-01 & \(488 \mathrm{E}-01\) & 1115E+00 & 258E+00 & \(5.64 \mathrm{E}+00\) & \(7.74 \mathrm{E}+00\) & \(1.75 \mathrm{E}+01\) & \(2368+01\) \\
\hline Age & & & & & & & & & & & & & & & \\
\hline \({ }_{\substack{\text { con }}}^{\substack{0}}\) & 181000
43000 & \({ }_{26}^{11}\) & \(8.3 \mathrm{E}++0\)
\(5.7 \mathrm{E}+\infty\) & \({ }_{9}^{1.48 E-08}\) & \({ }_{232 \mathrm{E}-02}^{259 \mathrm{E}-01}\) & \({ }_{232 \mathrm{E}-02}^{259 \mathrm{E}}\) & \({ }_{1818}^{2598-01}\) & \({ }_{2}^{2} 255 \mathrm{E}-01\) & \({ }^{306 E}+00\) &  & \({ }_{1}^{13158+09}\) & \({ }_{1}^{1.56 E+01}\) & \({ }_{1}^{1.876 E+00}\) & \({ }_{23}^{187 E+01}\) & \({ }_{2}^{1.35 E+01}\) \\
\hline 03-05 & 581000 & 39 & 299e +00 & 3.73E-03 & 3, 3 AE-02 & \(384 \mathrm{E}-2.2\) & \(4.14 \mathrm{E}-01\) & 5.33E-01 & 7 SOEE 01 & \(156 E+00\) & \(4888+\infty\) & \(71.8 \mathrm{E}+00\) & \(72.46+00\) & \(128 \mathrm{E}+01\) & \(1288+01\) \\
\hline 06-11 & 1108800 & \({ }_{6}^{69}\) & 230E+00 & \({ }^{2312}\) & 2.12E-62 & 252E-02 & 139E-01 & \(150 \mathrm{E}-01\) & S03E-01 & \(115 \mathrm{E}+00\) & \(210 \mathrm{C}+\infty 0\) &  & \(8.12 \mathrm{E}+\infty\) &  & \({ }^{124 E E+01}\) \\
\hline - & \({ }^{1085000}\) & \({ }_{189}\) &  &  & 0, \(184 \mathrm{Et}-0.00\) & Cometo & 205e-0 & 143E-01 & 392E-01 & 937E-01 & \({ }_{225 E}\) & \({ }^{3.05 E E}+00\) & \({ }_{5} 5345+00\) & 9,96E+00 & 20EE +1 \\
\hline 40-69 & 1427400 & 245 & \(2.15 \mathrm{EE}+00\) & \(150 \mathrm{E}-03\) & \(513 \mathrm{E}-03\) & 1.1015 & \(139 \mathrm{E}-01\) & \(201 \mathrm{E}-01\) & \(497 \mathrm{E}-01\) & \(1.13 \mathrm{E}+00\) & \(233 \mathrm{E}+00\) & 5.19E+00 & \(699 \mathrm{E}+00\) & 1.75E+01 & \(229 \mathrm{E}+01\) \\
\hline \(0+\) & 99000 & 55 & \(2518+00\) & 2ABE-03 & 104E-01 & 1.04E-01 & \(151 \mathrm{E}-01\) & 302E-01 & 78.8 -01 & \(1.83 \mathrm{E}+00\) & \(3.94 \mathrm{E}+00\) & \(6.85 E+00\) & \(719 \mathrm{E}+00\) & \(1.168+01\) & \(1.16 \mathrm{E}+01\) \\
\hline Scamas & & & & & & & & & & & & & & & \\
\hline Fall & \({ }_{2048500}^{494000}\) & \({ }_{2}^{186}\) &  & \({ }_{1}^{1648-03}\) & \({ }_{2}^{2000 E+00}\) &  & \({ }_{\substack{\text { 6 }}}^{6.512 E-08}\) & \({ }_{2}^{12150 E-01}\) & 4.468 -01 & \({ }_{9,135 \mathrm{E}-01}^{103 \mathrm{E}+00}\) & \(2.10 \mathrm{E}+\infty\)
\(1.7 \mathrm{E}+\infty\) & \(527 \mathrm{l}+00\)
\(4.45 \mathrm{E}+00\) & \(688 \mathrm{E}++0\)
\(583 \mathrm{C}+00\) & \({ }_{1}^{123128+01}\) & \({ }_{2}^{133 E E+01}\) \\
\hline SMmmer & 3319000 & 115 & 338E +00 & \(228 \mathrm{E}-03\) & \(702 \mathrm{E}-02\) & \(105 \mathrm{E}-01\) & \(1522 \mathrm{E}-01\) & \(3302 \mathrm{E}-01\) & 8ATE-01 & 207E+00 & \(3945+00\) & \(7.72 \mathrm{E}+00\) & \(1.40 \mathrm{E}+01\) & \(196 E+01\) & \(2295+01\) \\
\hline Winter & 188500 & 158 & \(20 \mathrm{EE}+00\) & \(242 \mathrm{E}-03\) & 184E-03 & \(2.14 \mathrm{E}-03\) & 214E-02 & 6.59E-02 & 362E-01 & 8.77e-01 & \(2.13 \mathrm{E}+00\) & \(53.3 \mathrm{E}+00\) & \(783 \mathrm{E}+00\) & \(1.57 \mathrm{E}+01\) & \(2006+01\) \\
\hline UThamizuios & & & & & & & & & & & & & & & \\
\hline Canra City & 317000 & 113 & \(1365+\infty\) & 114E-03 & OOOE +00 & 000E+00 & 6.05E-02 & \(1.10 \mathrm{E}-01\) & \({ }^{245 E-01}\) & 713E-01 & \({ }^{157 E+00}\) & \(394 \mathrm{t}+00\) & \(5.50 \mathrm{~F}+00\) & 9.86E+00 & \(1.60 E+01\) \\
\hline Noometropditam & \({ }_{3}^{5340000}\) & 320 &  & \({ }_{1}^{1575-03}\) & ¢1.3E-03 & \({ }_{\text {212 }}^{212 \mathrm{E}-02}\) & \(\xrightarrow{1.13 E-01}\) & \({ }_{2}^{2621 E-01}\) & \({ }_{\text {che }}^{598 \mathrm{E}-01}\) & \(131 \mathrm{E}+60\)
\(1398+00\) & \({ }^{313 \mathrm{SE}+\infty}\) & 7.19E+00 & \({ }_{7}^{106 E}+000\) & \({ }_{\text {cose }}^{1.75 E+01}\) & \({ }_{2}^{236 E+01}\) \\
\hline Rese & & & & & & & & & & & & & & & \\
\hline Brask & 376000 & \({ }_{6}^{14}\) & \({ }_{\text {cose }}^{\text {851E-01 }}\) & \({ }_{9}^{11.88-03}\) &  & 2000E+00 & -0.00E+00 & \({ }_{1}^{7}\) & \({ }_{495 \mathrm{E}-01}^{139 \mathrm{E}}\) & \({ }_{\text {cke }}^{533 \mathrm{E}-01}\) & \({ }_{2}^{1.33 E+\infty}\) & \({ }_{5788 \mathrm{E}+0}^{1885}\) & \({ }^{190 E}+00\) & 1.70E+00 & \({ }_{2}^{1.90 E+\infty}\) \\
\hline Reprose to Quetio & & & & & & & & & & & & & & & \\
\hline Doyou garden? Doyou fam? & 1027200 140100 & \({ }_{104}^{63}\) & \[
\begin{aligned}
& 233 \mathrm{E}+\infty 0 \\
& 397 \mathrm{E}+\infty
\end{aligned}
\] & \[
\begin{aligned}
& 966 \mathrm{E}-00 \\
& 3.7 \mathrm{E}-03
\end{aligned}
\] & \[
\begin{gathered}
0.00 \mathrm{E}+00 \\
769 \mathrm{E}-02
\end{gathered}
\] & \[
\begin{aligned}
& 159 \mathrm{E}-02 \\
& 10 \mathrm{E}-01
\end{aligned}
\] & \(104 \mathrm{E}-01\) & \[
\begin{gathered}
1.76 \mathrm{E}-01 \mathrm{ED} \\
\hline 51 \mathrm{E},
\end{gathered}
\] & 803E-01
\(85-01\) & \({ }_{2}^{1.18 E E+00}\) & \({ }_{5}^{2.74 \mathrm{E}++00}\) & \(581 \mathrm{E}+00\) & 7.75E +00 & \({ }_{1}^{1.75 \mathrm{E}+01}\) & \({ }_{2}^{23.36 E+01}\) \\
\hline
\end{tabular}

Table 2-194. Inake of Homagrown Vegelables (g/kg-day) - South Region
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Popritation Group & \[
\underset{\substack{\mathrm{m}+\mathrm{dx}}}{\mathrm{~N}}
\] & \[
\begin{gathered}
N \\
\text { Lownd } \\
\hline
\end{gathered}
\] & Men & SE & PO & P1 & PS & P10 & P25 & PS0 & P75 & P90 & P9S & P99 & P100 \\
\hline Towl & 11254000 & 618 & \(219 \mathrm{E}+\infty\) & 893E-04 & \(0.002+\infty\) & 292E-Q & 160E-01 & 2A1E-01 & 563E-01 & \(12 \mathrm{E}+\infty\) & \(2096+\infty\) & 4.92E+00 & \(7 A 3 E+\infty\) & 1.00E+01 & 2.00E+01 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 158000 & 7 & \(755 E+\infty\) & 168E-02 & 722E-01 & 722E-01 & 722E-01 & 722E-01 & \(344 \mathrm{E}+\infty\) & \(3.77 E+\infty\) & 1.70E+01 & \(189 \mathrm{E}+01\) & 1898+01 & 1898+01 & \({ }^{1898}+01\) \\
\hline 01-08 & 340000 & 19 & \(551 \mathrm{E}+\infty\) & 112E-02 & 3, \(28 \mathrm{E}-01\) & 3228-01 & 388E-01 & \(7468 \mathrm{E}-01\) & \(1.80 \mathrm{E}+00\) & \(3.76 E+00\) & \(5.73 \mathrm{E}+00\) & \(768 \mathrm{E}+00\) & \(2.70 \mathrm{E}+01\) & 2.70E+01 & 2.70E+01 \\
\hline 03-05 & 358000 & 20 & \(2.54 \mathrm{E}+\infty\) & 279E-03 & \(3 \mathrm{ME}-01\) & 394E-01 & 5888-01 & 5888-01 & \(9338-01\) & \(2.79 \mathrm{E}+00\) & \(391 \mathrm{E}+00\) & \(4.85 \mathrm{E}+00\) & \(5.18 \mathrm{E}+00\) & \(5.18 \mathrm{E}+00\) & \(5.18 \mathrm{E}+00\) \\
\hline \(06-11\) & 922000 & 48 & \(255 E+\infty\) & 492E-03 & \(100 \mathrm{E}-01\) & \(1.11 \mathrm{E}-01\) & \(134 \mathrm{E}-01\) & 191E-01 & \(350 \mathrm{E}-01\) & \(846 \mathrm{E}-01\) & \(266 \mathrm{E}+00\) & \(5.99 \mathrm{E}+\infty\) & 1.76e+01 & 236E+01 & 236E+01 \\
\hline 12-19 & 1056000 & 61 & \(152 \mathrm{E}+\infty\) & 1A1E-03 & \(0.00 \mathrm{E}+00\) & \(0.00 \mathrm{E}+\infty\) & 1088-01 & 1.77E-01 & \(4.60 \mathrm{E}-01\) & \(1208+00\) & \(2.34 \mathrm{E}+00\) & \(3.71 \mathrm{E}+00\) & \(527 \mathrm{E}+00\) & \(6.14 E+\infty\) & \(6.14 \mathrm{E}+00\) \\
\hline 20-39 & 2661000 & 138 & \(1.63 \mathrm{E}+\infty\) & 136E-03 & 1A1E-02 & 346E-02 & 125-01 & 1.75E-01 & 390E-01 & 863E-01 & \(2.00 \mathrm{E}+00\) & \(3 \mathrm{~A} 9 \mathrm{E}+00\) & \(546 \mathrm{E}+\infty\) & 1.18E+01 & 1.18E+01 \\
\hline 40-69 & 4261000 & 238 & \(202 \mathrm{E}+\infty\) & 1.14E-03 & \(0.00 \mathrm{E}+00\) & 102E-02 & 1.12E-01 & \(2.74 \mathrm{E}-01\) & 6.78E-01 & \(1.30 E+00\) & \(2.40 \mathrm{E}+00\) & \(4.31 E+00\) & \(564 \mathrm{E}+\infty\) & 1.15E+01 & 1.55E+01 \\
\hline \(70+\) & 1490000 & 87 & 2.36E \(+\infty\) & 191E-03 & 508E-02 & \(508 \mathrm{E}-02\) & 233E-01 & 357E-01 & 6.35E-01 & \(129 \mathrm{E}+00\) & \(369 \mathrm{E}+00\) & \(4.92 \mathrm{E}+00\) & \(8.10 \mathrm{e}+\infty\) & 9.70E+00 & 9.70E +00 \\
\hline \multicolumn{16}{|l|}{Sesems} \\
\hline Fal & 2875000 & 101 & \(207 \mathrm{E}+\infty\) & 167E-03 & 959E-02 & 9.598-02 & 1.13E-01 & 191E-01 & 524E-01 & 1.14E+00 & 2.09E +00 & \(4.48 \mathrm{E}+00\) & \(602 \mathrm{E}+00\) & 1.55E+01 & \(189 \mathrm{E}+01\) \\
\hline Spring & 2056000 & 214 & \(1.55 \mathrm{E}+\infty\) & \(1.14 \mathrm{E}-03\) & 102E-0 & 1A1E-02 & 921E-02 & \(261 \mathrm{E}-01\) & 533E-01 & \(935 \mathrm{E}-01\) & 207E+00 & \(3.58 \mathrm{E}+00\) & \(4.81 \mathrm{E}+00\) & \(83.35+00\) & \(1.03 \mathrm{E}+01\) \\
\hline Sumwer & 4273000 & 151 & \(2.73 \mathrm{E}+\infty\) & 188E-03 & \(0000 \mathrm{E}+00\) & 110E-01 & 1.72E-01 & 250E-01 & 6.15E-01 & \(1.54 \mathrm{E}+00\) & \(3.15 \mathrm{E}+00\) & \(5.99 \mathrm{E}+00\) & \(9.70 \mathrm{E}+00\) & 236E+01 & 2.70E+01 \\
\hline Winter & 201000 & 152 & \(188 \mathrm{E}+\infty\) & 1.19E-03 & \(0000 \mathrm{E}+00\) & 303E-03 & 163E-01 & 353E-01 & 6A0E-01 & \(137 \mathrm{E}+00\) & \(2695+00\) & \(3.79 \mathrm{C}+\infty\) & \(5.35 \mathrm{E}+\infty\) & 7.47E+00 & \(836 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Ustanizatioss} \\
\hline Centra City & 1144000 & 45 & \(1.10 \mathrm{E}+\infty\) & 102E-03 & 102E-0 & 1.108-02 & 959E-02 & 1.50E-01 & 263E-01 & 6.15E-01 & \(137 \mathrm{E}+00\) & 2.79E +00 & 3.70E +00 & \(421 \mathrm{E}+00\) & 4.58E+00 \\
\hline Nonmetropolitan & 6565000 & 386 & \(2.78 \mathrm{E}+\infty\) & 1A1E-03 & \(0000+00\) & 508E-02 & 2238-01 & 350E-01 & 7.12E-01 & \(1.66 \mathrm{E}+00\) & \(331 \mathrm{E}+00\) & \(599 \mathrm{E}+00\) & \(950 \mathrm{E}+00\) & \(189 \mathrm{E}+01\) & 2.70e+01 \\
\hline Surburban & 3545000 & 187 & \(184 \mathrm{E}+\infty\) & 821E-04 & \(000 \mathrm{E}+00\) & \(0.00 \mathrm{E}+00\) & \(1.13 \mathrm{E}-01\) & 199E-01 & 3.96E-01 & 933E-01 & 1.72 +00 & \(361 \mathrm{E}+00\) & \(5.26 \mathrm{E}+00\) & \(820 \mathrm{E}+00\) & 820E +00 \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Aiza & 83000 & 3 & 4.71E-01 & 827E-04 & 1.71E-01 & 1.71E-01 & 1.71E-01 & 1.71E-01 & 1.71E-01 & 5.66E-01 & 566E-01 & 8.37E-01 & 8.37E-01 & 837E-01 & 8.37E-01 \\
\hline Blact & 1285000 & 82 & \(209 \mathrm{E}+00\) & 2A5E-03 & \(0.00 \mathrm{E}+00\) & 292E-02 & 199E-01 & 305E-01 & 4.60E-01 & 9.77E-01 & 221E+00 & \(526 \mathrm{E}+00\) & \(733 E+\infty\) & 1.89E+01 & 1.89E+01 \\
\hline Others N & 130000 & 10 & \(491 \mathrm{E}-01\) & 1.31E-03 & 204E-01 & \(2.04 \mathrm{E}-01\) & \(204 \mathrm{E}-01\) & 2.13E-01 & 269E-01 & \(3.50 \mathrm{E}-01\) & 3.82E-01 & \(762 \mathrm{E}-01\) & \(198 \mathrm{E}+00\) & \(1.98 \mathrm{E}+00\) & \(1.98 \mathrm{E}+00\) \\
\hline White & 9752000 & 523 & \(224 \mathrm{E}+\infty\) & 9.75E-04 & \(0.00 \mathrm{E}+00\) & 1AIE-0 & 160E-01 & 239E-01 & 5.93E-01 & \(129 \mathrm{E}+\infty\) & 281E +00 & \(492 \mathrm{E}+00\) & \(713 \mathrm{E}+00\) & 1.70E+01 & \(2.70 \mathrm{e}+01\) \\
\hline \multicolumn{16}{|l|}{Response to Questianaire} \\
\hline Do you garden? & 9477000 & 522 & \(227 E+\infty\) & 908E-04 & \(0.008+\infty\) & 3A6E-02 & 161E-01 & 262E-01 & 6.10E-01 & \(1.37 \mathrm{E}+00\) & \(302 \mathrm{E}+00\) & 5.18E +00 & \(7.43 \mathrm{E}+00\) & 1.55E+01 & 2.36E+01 \\
\hline Do youtam? & 1609000 & 91 & \(334 \mathrm{E}+\infty\) & 344E-03 & \(0.00 \mathrm{E}+\infty\) & 0.00E+00 & 1.32E-01 & 233E-01 & 103E+00 & 1.72E+00 & \(3.15 \mathrm{E}+\infty\) & \(9.66 \mathrm{E}+00\) & \(1.18 \mathrm{E}+01\) & 2.36E+01 & 236E+01 \\
\hline
\end{tabular}


Table 2-195. Intake of Homegrown Vegetablea (g/kg-day) - Weat Region


Table 2-196. Iotake of Homeproduced Meats (e/kg-day) - All Regions Combined
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Populajicn Grap & \[
\underset{\substack{N \\ \hline \\ \hline}}{ }
\] & \[
\underset{\sim}{N}
\] & Men & SE & PO & P1 & PS & P10 & P25 & P50 & 875 & P90 & P9S & P99 & P100 \\
\hline Toul & 9257000 & S* & \(221 E+00\) & 837E-04 & 181E-02 & 121E-01 & 237E-01 & 3.74E-01 & 660E-01 & \(139 \mathrm{E}+\infty\) & 289E+00 & 4.89E+ 0 & 6.78E+00 & \(140 E+01\) & 238E+01 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 204000 & 13 & \(716 \mathrm{E}+\infty\) & \(161 \mathrm{E}-08\) & \(424 \mathrm{E}-01\) & 424E-01 & 42EE-01 & \(424 \mathrm{E}-01\) & \(136 \mathrm{E}+00\) & 5.79E +00 & \(720 \mathrm{E}+00\) & \(223 E+01\) & 223E+01 & 232E +01 & 232E+01 \\
\hline 01-0 & 276000 & 27 & \(365 \times+\infty\) & 54E-03 & 3.5SE-01 & 3.85E-01 & 9A9E-01 & 949E-01 & \(1.19 E+00\) & \(2668+00\) & 4.72E +00 & \(8.688+\infty\) & \(100 \mathrm{E}+01\) & \(1.15 \mathrm{E}+01\) & 115E+01 \\
\hline 03-05 & 395000 & 26 & \(361 \mathrm{E}+\infty 0\) & 4.138-03 & \(8.01 \mathrm{E}-01\) & \(801 \mathrm{E}-01\) & \(801 \mathrm{E}-01\) & \(1.51 \mathrm{E}+00\) & \(2.17 \mathrm{E}+00\) & \(280 \mathrm{E}+00\) & \(3.72 \mathrm{E}+00\) & \(7.84 \mathrm{E}+00\) & \(9.138+00\) & \(130 \mathrm{E}+01\). & 130E+01 \\
\hline 06-11 & 1064000 & 65 & \(365 E+00\) & 352E-03 & \(311 \mathrm{E}-01\) & 3.72E-01 & 6.52E-01 & 721E-01 & \(1288+00\) & \(209 \mathrm{C}+00\) & 4.71E +00 & \(800 \mathrm{E}+00\) & \(140 \mathrm{E}+01\) & \(1538+01\) & 153E+01 \\
\hline 12-19 & 1272000 & 78 & 1.70E +00 & 131E-03 & 190E-01 & \(190 \mathrm{E}-01\) & 320E-01 & 4.70E-01 & 6235-01 & \(123 \mathrm{E}+00\) & \(235 \mathrm{E}+00\) & \(366 E+00\) & \(43 \mathrm{E}+00\) & \(6.78 \mathrm{E}+00\) & 7SIE +00 \\
\hline 20-39 & 2732000 & 158 & \(182 \mathrm{E}+00\) & \(117 \mathrm{E}-03\) & 121E-01 & \(123 \mathrm{E}-01\) & 1.5SE01 & 295E-01 & 528E-01 & \(1.11 \mathrm{E}+\infty\) & \(265 E+00\) & 4.52E +00 & \(6.23 \mathrm{E}+00\) & \(9.17 \mathrm{E}+00\) & 109E+01 \\
\hline 40-69 & 287200 & 179 & 1.72E +00 & 8.75E-04 & 1.81E-02 & 1.81E-0 & 2.12E-01 & 343E-01 & 581E-01 & \(117 \mathrm{E}+00\) & \(238 \mathrm{E}+00\) & \(367 \mathrm{E}+00\) & \(5.16 \mathrm{E}+00\) & \(590 \mathrm{E}+00\) & 7.46E+00 \\
\hline \(70+\) & 441000 & 28 & \(1.39 \mathrm{E}+\infty\) & 186E-03 & \(926 \mathrm{E}-02\) & \(926 \mathrm{E}-02\) & 926E-0 & 125E-01 & 5ATE-01 & \(1.01 \mathrm{E}+00\) & \(181 \mathrm{E}+00\) & \(2.80 \mathrm{E}+00\) & \(3.48 \mathrm{E}+00\) & \(741 \mathrm{E}+00\) & 7A1E+00 \\
\hline \multicolumn{16}{|l|}{Seasoms} \\
\hline Fall & 2852000 & 107 & \(1.57 \mathrm{E}+00\) & \(8.50 \mathrm{E}-04\) & 123E-01 & 123E-01 & 2.10E-01 & 352E-01 & 5218-01 & \(111 \mathrm{E}+00\) & \(227 \mathrm{E}+00\) & 3.19E+00 & 4A1E+00 & \(6.78 \mathrm{c}+00\) & 784E +00 \\
\hline Spring & 1726000 & 197 & \(237 \mathrm{E}+00\) & 162E-03 & 193E-01 & 2.44E-01 & \(320 \mathrm{E}-01\) & \(446 \mathrm{E}-01\) & \(7.76 \mathrm{E}-01\) & \(160 \mathrm{E}+00\) & \(3.48 \mathrm{E}+00\) & \(500 \mathrm{E}+00\) & \(6.67 \mathrm{E}+00\) & \(101 \mathrm{E}+01\) & 130E+01 \\
\hline Summer & 2368000 & 89 & \(3.10 \mathrm{E}+00\) & 234E-03 & 1.81E-02 & 181E-02 & 1.55E-01 & \(4.66 \mathrm{E}-01\) & 852E-01 & \(1.77 \mathrm{E}+\infty\) & 4.34E+00 & \(701 \mathrm{E}+00\) & 105E+01 & \(223 \mathrm{E}+01\) & \(223 \mathrm{E}+01\) \\
\hline Winter & 2311000 & 176 & \(198 \mathrm{E}+00\) & 152E-03 & 3.70E-02 & 1.35E-01 & 2.3TE-01 & 367E-01 & 6.48E-01 & \(133 \mathrm{E}+00\) & \(2.43 \mathrm{E}+00\) & \(3.6 \mathrm{E}+\infty\) & 6AOE +00 & \(109 \mathrm{E}+01\) & \(232 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Urbanizations} \\
\hline Central City & 736000 & 28 & \(1.15 \mathrm{E}+\infty\) & \(1.13 \mathrm{E}-03\) & 1.82E-01 & 1.22E-01 & 1.85E-01 & 2.10E-01 & 4.42E-01 & 721E-01 & \(1.58 \mathrm{E}+00\) & 269E +00 & 340E+00 & 364E +00 & \(364 \mathrm{E}+00\) \\
\hline Nonmetropolitan & 4932000 & 315 & \(2.70 \mathrm{E}+00\) & 1.41E-03 & \(9.26 \mathrm{E}-02\) & 123E-01 & \(2.63 \mathrm{E}-01\) & 406E-01 & 7.49E-01 & \(163 \mathrm{E}++0\) & \(3.41 \mathrm{E}+00\) & \(606 \mathrm{E}+00\) & 8.47E+00 & \(153 \mathrm{E}+01\) & 232E+01 \\
\hline Surburban & 3589000 & 226 & 1.77E +00 & \(8.18 \mathrm{E}-04\) & 181E-02 & 290E-02 & 2.87E-01 & 367E-01 & 680E-01 & \(133 \mathrm{E}+00\) & \(2.49 \mathrm{E}+00\) & \(366 \mathrm{E}+00\) & 4.71E+00 & \(720 \mathrm{E}+00\) & 101E+01 \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Biack & 128000 & 6 & 652E-01 & 194E-03 & 1.52E-01 & 1.52E-01 & 1.52E-01 & \(1.52 \mathrm{E}-01\) & 2.12E-01 & 390E-01 & 7.51E-01 & \(2.11 \mathrm{E}+00\) & 2.11E+00 & \(2.11 \mathrm{E}+00\) & \(2.11 \mathrm{E}+00\) \\
\hline Native American & 24000 & 3 & \(124 \mathrm{E}+00\) & 555E-03 & \(425 \mathrm{E}-01\) & \(425 \mathrm{E}-01\) & \(425 \mathrm{E}-01\) & \(425 \mathrm{E}-01\) & 425E-01 & \(8.70 \mathrm{E}-01\) & \(2.43 \mathrm{E}+00\) & \(2.43 \mathrm{E}+00\) & \(2.43 \mathrm{E}+00\) & \(2.43 \mathrm{E}+00\) & \(2 A 3 E+00\) \\
\hline Other NA & 110000 & 4 & 806E-01 & 8.73E-04 & 535E-01 & 535E-01 & 535E-01 & 5.35E-01 & 535E-01 & 658E-01 & 10 E +00 & \(107 E+\infty\) & \(1.49 \mathrm{E}+00\) & \(1.49 \mathrm{E}+\infty\) & \(1.49 \mathrm{E}+00\) \\
\hline White & 8995000 & 556 & \(220 \mathrm{E}+00\) & 857E-04 & 181E-02 & 926E-02 & 2.57E-01 & 3.86E-01 & 680E-01 & 1.41E+C0 & 291E+00 & \(5.00 \mathrm{E}+00\) & \(701 \mathrm{E}+00\) & \(1.40 \mathrm{E}+01\) & 232E+01 \\
\hline \multicolumn{16}{|l|}{Response to Questionnaire} \\
\hline Do you raise anim: & 5256000 & 343 & \(280 \mathrm{E}+00\) & 117E-03 & 135E-01 & 2.12E-01 & 3.86E-01 & 623E-01 & 103E+00 & \(194 \mathrm{E}+00\) & \(3.49 \mathrm{E}+00\) & \(590 \mathrm{E}+00\) & \(7.84 \mathrm{E}+00\) & \(1.40 \mathrm{E}+01\) & \(2.32 \mathrm{E}+01\) \\
\hline Do you fam? & 3842000 & 243 & \(286 \mathrm{E}+00\) & \(1.47 \mathrm{E}-03\) & 135E-01 & 19EE-01 & 4.45E-01 & 5.98E-01 & 894E-01 & \(184 \mathrm{E}+00\) & \(364 \mathrm{E}+00\) & 609E+00 & \(8.00 \mathrm{E}+00\) & \(1.40 \mathrm{E}+01\) & 232E+01 \\
\hline
\end{tabular}

Table 2-197. Intake of Homeproduced Meate (g/kg-day) - Northeast Region
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Population Group & \[
\underset{\substack{\mathrm{wg} \\ \text { wid }}}{\mathrm{N}}
\] & \[
\underset{\substack{\mathrm{N} \\ \text { ungtd }}}{ }
\] & Mean & SE & \(P 0\) & P1 & P5 & P10 & P25 & P50 & P75 & P90 & P95 & P99 & P100 \\
\hline & Total & 111300 & 52 & \(1.46 \mathrm{E}+00\) & 143E-03 & 292E-01 & 292E-01 & \(3.40 \mathrm{E}-01\) & 352E-01 & 644E-01 & 894E-01 & \(187 \mathrm{E}+\infty\) & \(268 \mathrm{E}+00\) & \(2.89 \mathrm{E}+00\) & \(1.09 \mathrm{E}+01\) & \(109 \mathrm{E}+01\) \\
\hline & \multicolumn{16}{|l|}{Age} \\
\hline & 01-02 & 30000 & 2 & \(190 \mathrm{E}+00\) & 4.27E-03 & \(1.11 \mathrm{E}+\infty 0\) & \(1.11 \mathrm{E}+00\) & \(1.11 \mathrm{E}+\infty\) & 1.11E+00 & \(1.11 \mathrm{E}+00\) & \(260 \mathrm{E}+00\) & \(2.60 \mathrm{E}+\infty 0\) & \(2.60 \mathrm{E}+00\) & \(260 \mathrm{E}+00\) & \(2.60 \mathrm{E}+00\) & \(2.60 \mathrm{E}+00\) \\
\hline & 03-05 & 58000 & 3 & \(2.10 \mathrm{E}+00\) & 3.15E-03 & \(8.07 \mathrm{E}-01\) & 807E-01 & 8.07E-01 & \(8.07 \mathrm{E}-01\) & \(234 \mathrm{E}+00\) & \(234 \mathrm{E}+00\) & \(2.82 \mathrm{E}+\infty 0\) & \(2.82 \mathrm{E}+00\) & \(282 \mathrm{E}+00\) & \(2.82 \mathrm{E}+00\) & \(2.82 \mathrm{E}+00\) \\
\hline & 06-11 & 85000 & 3 & \(1.47 \mathrm{E}+00\) & \(9.65 \mathrm{E}-04\) & \(1.11 \mathrm{E}+00\) & \(1.11 \mathrm{E}+00\) & 1.11E +00 & \(1.11 \mathrm{E}+00\) & \(111 \mathrm{E}+0\) & \(1.48 \mathrm{E}+00\) & \(1.80 \mathrm{E}+00\) \\
\hline & 12-19 & 149000 & 7 & \(1.37 \mathrm{E}+00\) & \(2.34 \mathrm{E}-03\) & \(4.70 \mathrm{E}-01\) & 4.70E-01 & \(4.70 \mathrm{E}-01\) & \(4.70 \mathrm{E}-01\) & \(7.70 \mathrm{E}-01\) & \(1.05 \mathrm{E}+00\) & \(2.18 \mathrm{E}+00\) & \(2.89 \mathrm{E}+\infty 0\) & \(2.89 \mathrm{E}+00\) & \(2.89 \mathrm{E}+00\) & \(2.89 \mathrm{E}+00\) \\
\hline & 20-39 & 456000 & 18 & \(1.42 \mathrm{E}+00\) & \(2.75 \mathrm{E}-03\) & \(292 \mathrm{E}-01\) & 2.92E-01 & \(3.14 \mathrm{E}-01\) & \(352 \mathrm{E}-01\) & 6.44E-01 & \(8.52 \mathrm{E}-01\) & \(1.62 \mathrm{E}+\infty 0\) & \(2.68 \mathrm{E}+00\) & \(2.93 \mathrm{E}+00\) & \(1.09 \mathrm{E}+01\) & \(1.08 \mathrm{E}+01\) \\
\hline & 40-69 & 319000 & 17 & \(1.44 \mathrm{E}+00\) & 2.71E-03 & 3.40E-01 & \(3.40 \mathrm{E}-01\) & \(3.40 \mathrm{E}-01\) & 3.43E-01 & 4.30E-01 & \(1.38 \mathrm{E}+00\) & \(1.87 \mathrm{E}+00\) & \(258 \mathrm{E}+00\) & \(361 \mathrm{E}+00\) & \(746 \mathrm{E}+00\) & 7.46E+00 \\
\hline & \(70+\) & 16000 & 2 & \(723 \mathrm{E}-01\) & 422E-04 & 6.70E-01 & 6.70E-01 & 6.70E-01 & 6.70E-01 & 6.70E-01 & 723E-01 & \(7.76 \mathrm{E}-01\) & \(7.76 \mathrm{E}-01\) & \(7.76 \mathrm{E}-01\) & 7.76E-01 & 7.76E-01 \\
\hline & \multicolumn{16}{|l|}{Seasors} \\
\hline & Fall & 569000 & 18 & \(1.30 \mathrm{E}+00\) & 1.14E-03 & 3.43E-01 & 3A3E-01 & 3.43E-01 & 3.52E-01 & \(6.44 \mathrm{E}-01\) & 865E-01 & 2.12E +00 & \(268 \mathrm{E}+00\) & \(2.89 \mathrm{E}+00\) & \(2.89 \mathrm{E}+00\) & 2.89E+00 \\
\hline & Spring & 66000 & 8 & 1.41E+00 & 427E-03 & 439E-01 & 4,39E-01 & \(4.39 \mathrm{E}-01\) & 4.39E-01 & \(6.88 \mathrm{E}-01\) & \(7.76 \mathrm{E}-01\) & \(2.58 \mathrm{E}+00\) & \(361 \mathrm{E}+00\) & \(3.61 \mathrm{E}+00\) & \(3.61 \mathrm{E}+00\) & \(361 \mathrm{E}+00\) \\
\hline & Sumber & 176000 & 6 & \(1.05 \mathrm{E}+00\) & 1.10E-03 & \(3.40 \mathrm{E}-01\) & \(3.40 \mathrm{E}-01\) & \(3.40 \mathrm{E}-01\) & \(3.40 \mathrm{E}-01\) & \(8.52 \mathrm{E}-01\) & \(965 \mathrm{E}-01\) & \(1.41 \mathrm{E}+00\) & \(1.80 \mathrm{E}+00\) & \(1.80 \mathrm{E}+00\) & \(180 \mathrm{E}+00\) & \(1.80 \mathrm{E}+00\) \\
\hline & Winter & 302000 & 20 & \(202 \mathrm{E}+00\) & 4.53E-03 & \(2.92 \mathrm{E}-01\) & \(292 \mathrm{E}-01\) & \(3.14 \mathrm{E}-01\) & 4.30E-01 & 6.19E-01 & \(1.11 \mathrm{E}+00\) & \(2.38 \mathrm{E}+00\) & \(293 \mathrm{E}+00\) & \(7.46 \mathrm{E}+00\) & 1.09E+01 & \(109 \mathrm{E}+01\) \\
\hline & \multicolumn{16}{|l|}{Urbanizations} \\
\hline & Normetropditan & 391000 & 17 & \(1.43 \mathrm{E}+00\) & 3.57E-03 & \(3.40 \mathrm{E}-01\) & 3.40E-01 & 3.40E-01 & 3.43E-01 & 6.44E-01 & \(7.70 \mathrm{E}-01\) & \(1.05 \mathrm{E}+\infty 0\) & \(1.80 \mathrm{E}+\infty 0\) & \(7.46 \mathrm{E}+00\) & \(1.09 \mathrm{E}+01\) & \(109 \mathrm{E}+01\) \\
\hline & Surburban & 72000 & 35 & \(1.49 \mathrm{E}+00\) & 1.07E-03 & 292E-01 & \(292 \mathrm{E}-01\) & \(3.52 \mathrm{E}-01\) & 4.30E-01 & 6.80E-01 & \(139 \mathrm{E}+00\) & \(2.34 \mathrm{E}+00\) & \(2.68 \mathrm{E}+00\) & \(2.89 \mathrm{E}+00\) & \(3.61 \mathrm{E}+00\) & \(3.61 E+00\) \\
\hline & \multicolumn{16}{|l|}{Race} \\
\hline & \multicolumn{16}{|l|}{Response to Questianaire} \\
\hline \(N\) & Do you raise animi & 509000 & 25 & 2.03E +00 & 2.70E-03 & 6.19E-01 & \[
6.19 \mathrm{E}-01
\] & \[
646 \mathrm{E}-01
\] & \[
6.46 \mathrm{E}-01
\] & \[
8.78 \mathrm{E}-01
\] & \[
1.62 \mathrm{E}+00
\] & \[
2.38 \mathrm{E}+00
\] & \(2.93 \mathrm{E}+00\) & \[
7.46 \mathrm{E}+\infty
\] & \(1.09 \mathrm{E}+01\) & \(109 \mathrm{E}+01\) \\
\hline \(\omega\) & Do you fram? & 373000 & 15 & \(200 \mathrm{E}+00\) & 358E-03 & 6.19E-01 & \[
6.19 \mathrm{E}-01
\] & \[
6.46 E-01
\] & \[
6.46 \mathrm{E}-01
\] & \[
8.78 \mathrm{E}-01
\] & \[
161 \mathrm{E}+00
\] & \[
2.12 \mathrm{E}+\infty
\] & \[
2.65 \mathrm{E}+00
\] & \[
7.46 \mathrm{E}+00
\] & 1.09E+01 & 109E+01 \\
\hline
\end{tabular}


Table 2-198. Intake of Homeproducod Meals (g/kg-day) - Midwex Region


Table 2-199. Intake of Homeproduced Meata (g/kg-day) - South Region
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\overline{\text { Population }}\) Group & N witd & \[
\begin{gathered}
N \\
\text { unugtd }
\end{gathered}
\] & Mean & SE & P & P1 & PS & P10 & P25 & P50 & P15 & P90 & P95 & P99 & P100 \\
\hline Tolal & 2355000 & 146 & \(224 \mathrm{E}+00\) & 153E-03 & \(1.81 \mathrm{E}-02\) & 181E-02 & 1.56E-01 & 297E-01 & 721E-01 & \(1.53 \mathrm{E}+\infty\) & \(307 E+\infty\) & 507E+00 & \(6.71 \mathrm{E}+\infty\) & \(140 \mathrm{E}+01\) & \(1.40 E+01\) \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 36000 & 3 & \(4.50 \mathrm{E}+00\) & 9.11E-03 & \(261 \mathrm{E}+00\) & \(261 \mathrm{E}+00\) & \(261 \mathrm{E}+00\) & \(2.61 \mathrm{E}+\infty\) & \(2.61 \mathrm{E}+\infty\) & \(5.43 \mathrm{E}+\infty 0\) & \(6.40 \mathrm{E}+\infty 0\) & \(6.40 \mathrm{E}+\infty 0\) & \(6.40 \mathrm{E}+\infty 0\) & \(640 \mathrm{E}+00\) & \(6.40 \mathrm{E}+00\) \\
\hline 01-02 & 19000 & 2 & \(2.41 \mathrm{E}+00\) & \(8.48 \mathrm{E}-03\) & \(104 \mathrm{E}+00\) & \(104 \mathrm{E}+00\) & \(104 \mathrm{E}+00\) & \(1.04 \mathrm{E}+\infty 0\) & \(1.04 \mathrm{E}+00\) & \(3.41 \mathrm{E}+00\) & \(3.41 \mathrm{E}+\infty 0\) & \(3.41 \mathrm{E}+\infty 0\) & \(3.41 \mathrm{E}+\infty 0\) & \(3.41 \mathrm{E}+00\) & \(3.41 \mathrm{E}+00\) \\
\hline 03-05 & 141000 & 9 & \(3.53 \mathrm{E}+00\) & \(560 \mathrm{E}-03\) & \(1.51 \mathrm{E}+00\) & \(1.51 \mathrm{E}+00\) & \(1.51 \mathrm{E}+00\) & \(187 \mathrm{E}+00\) & \(200 \mathrm{E}+00\) & \(292 \mathrm{E}+00\) & \(4.58 \mathrm{E}+\infty 0\) & \(7.84 \mathrm{E}+00\) & \(784 \mathrm{E}+00\) & \(7.84 \mathrm{E}+00\) & \(784 \mathrm{E}+00\) \\
\hline 06-11 & 216000 & 14 & \(433 \mathrm{E}+00\) & 101E-02 & \(5.63 \mathrm{E}-01\) & 563E-01 & 5.63E-01 & \(721 \mathrm{E}-01\) & \(128 \mathrm{E}+00\) & \(1.94 \mathrm{E}+00\) & \(7.32 \mathrm{E}+00\) & \(140 \mathrm{E}+01\) & \(140 \mathrm{E}+01\) & \(1.40 \mathrm{E}+01\) & \(140 \mathrm{E}+01\) \\
\hline 12-19 & 242000 & 21 & \(1.50 \mathrm{E}+00\) & 3.49E-03 & \(1.90 \mathrm{E}-01\) & \(1.90 \mathrm{E}-01\) & 190E-01 & \(1.90 \mathrm{E}-01\) & \(598 \mathrm{E}-01\) & \(7.77 \mathrm{E}-01\) & \(1.95 \mathrm{E}+\infty 0\) & \(307 \mathrm{E}+00\) & \(6.71 \mathrm{E}+\infty\) & 7S1E +00 & \(751 \mathrm{E}+00\) \\
\hline 20-39 & 636000 & 37 & \(2.30 \mathrm{E}+00\) & \(267 \mathrm{E}-03\) & \(123 \mathrm{E}-01\) & \(123 \mathrm{E}-01\) & \(1.56 \mathrm{E}-01\) & \(280 \mathrm{E}-01\) & \(6.13 \mathrm{E}-01\) & \(1.53 \mathrm{E}+00\) & \(3.79 \mathrm{E}+\infty 0\) & \(609 \mathrm{E}+00\) & \(6.23 \mathrm{E}+\infty 0\) & \(8.47 \mathrm{E}+\infty\) & \(8.47 \mathrm{E}+00\) \\
\hline 40-69 & 873000 & 49 & \(1.71 \mathrm{E}+\infty\) & \(155 \mathrm{E}-03\) & 1.81E-02 & 1.81E-0 & 290E-02 & 1.95E-01 & 584E-01 & \(127 E+\infty\) & 2.38E +00 & \(3.55 \mathrm{E}+00\) & \(507 \mathrm{E}+\infty\) & \(5.16 \mathrm{E}+\infty 0\) & \(5.16 \mathrm{E}+00\) \\
\hline \(70+\) & 192000 & 11 & \(1.67 \mathrm{E}+00\) & 204E-03 & \(263 \mathrm{E}-01\) & 263E-01 & 263E-01 & 5.4TE-01 & \(101 \mathrm{E}+00\) & \(1.40 \mathrm{E}+00\) & \(2.13 E+00\) & \(2.82 \mathrm{E}+\infty\) & \(3.71 \mathrm{E}+00\) & \(3.71 \mathrm{E}+00\) & \(3.71 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Seacoss} \\
\hline Fall & 758000 & 28 & \(1.81 \mathrm{E}+\infty\) & \(1.74 \mathrm{E}-03\) & 1238-01 & 123E-01 & 156E-01 & 190E-01 & 8.19E-01 & \(153 \mathrm{E}+00\) & 2.38E +00 & \(3.19 \mathrm{E}+00\) & \(4.41 \mathrm{E}+\infty\) & \(784 \mathrm{E}+00\) & \(784 \mathrm{E}+00\) \\
\hline Spring & 511000 & 53 & \(2.33 \mathrm{E}+\infty 0\) & \(2.71 \mathrm{E}-03\) & 193E-01 & 193E-01 & 297E-01 & \(4.99 \mathrm{E}-01\) & 752E-01 & \(1.80 \mathrm{E}+00\) & 2.82E+00 & \(5.16 \mathrm{E}+00\) & \(6.71 \mathrm{E}+00\) & \(751 \mathrm{E}+00\) & \(751 \mathrm{E}+00\) \\
\hline Summer & 522000 & 18 & \(326 \mathrm{E}+00\) & 502E-03 & 1.81E-02 & \(181 \mathrm{E}-0\) & 181E-02 & 290E-02 & 598E-01 & \(201 \mathrm{E}+00\) & \(507 \mathrm{E}+00\) & \(623 \mathrm{E}+00\) & \(105 \mathrm{E}+01\) & \(1.40 \mathrm{E}+01\) & \(140 \mathrm{E}+01\) \\
\hline Whate & 554000 & 47 & \(1.80 \mathrm{E}+00\) & 224E-03 & 3.70E-02 & \(3.70 \mathrm{E}-0\) & 197E-01 & 251E-01 & 710E-01 & \(1.40 \mathrm{E}+00\) & \(2.17 E+\infty\) & \(3.55 \mathrm{E}+00\) & 4.58E+00 & \(8.47 E+60\) & \(8.47 E+60\) \\
\hline \multicolumn{16}{|l|}{Urbasizations} \\
\hline Centra City & 40000 & 1 & \(4.60 \mathrm{E}-01\) & \(000 \mathrm{E}+00\) & 4,50E-01 & 460E-01 & 4.60E-01 & 460E-01 & 460E-01 & 4.60E-01 & 4.602-01 & 460E-01 & 4.60E-01 & 4.60E-01 & \(4.60 \mathrm{E}-01\) \\
\hline Noumetropditan & 1687000 & 97 & \(2.45 \mathrm{E}+00\) & \(197 \mathrm{E}-03\) & \(123 \mathrm{E}-01\) & \(123 \mathrm{E}-01\) & 190E-01 & 402E-01 & 7.77E-01 & \(161 \mathrm{E}+00\) & \(3.19 \mathrm{E}+00\) & \(609 \mathrm{E}+00\) & \(7.84 \mathrm{E}+00\) & 1.40E +01 & \(1.40 \mathrm{E}+01\) \\
\hline Surturban & 628000 & 48 & \(1.79 \mathrm{E}+00\) & 201E-03 & 181E-02 & 181E-02 & 290E-02 & 3.70E-02 & \(628 \mathrm{E}-01\) & \(1.40 \mathrm{E}+00\) & \(2.31 \mathrm{E}+00\) & \(4.56 \mathrm{E}+00\) & \(4.61 \mathrm{E}+00\) & \(6.40 \mathrm{E}+00\) & \(6.40 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Black & 44000 & 2 & \(1.43 \mathrm{E}+00\) & 323E-03 & 7.51E-01 & 751E-01 & 7.51E-01 & 7.51E-01 & 751E-01 & \(143 E+00\) & \(2.11 \mathrm{E}+00\) & \(2.11 \mathrm{E}+\infty 0\) & \(2.11 \mathrm{E}+00\) & \(2.11 \mathrm{E}+00\) & \(2.11 E+00\) \\
\hline White & 2311000 & 144 & \(226 \mathrm{E}+00\) & 155E-03 & 181E-02 & 181E-02 & 156E-01 & 280E-01 & 121E-01 & \(153 \mathrm{E}+00\) & \(307 \mathrm{E}+00\) & \(507 \mathrm{E}+00\) & \(6.71 \mathrm{E}+00\) & \(1.40 \mathrm{E}+01\) & \(1.40 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Rexponse to Questiomaire} \\
\hline Do you raise anima & 1222000 & 74 & \(3.16 \mathrm{E}+00\) & 246E-03 & 2.12E-01 & 263E-01 & 665E-01 & 8.35E-01 & \(134 \mathrm{E}+00\) & \(2.11 \mathrm{E}+00\) & \(3.79 \mathrm{E}+00\) & \(662 \mathrm{E}+00\) & \(8.47 \mathrm{E}+00\) & \(1.40 E+01\) & \(1.40 \mathrm{E}+01\) \\
\hline Do you fam? & 122800 & 7 & \(285 E+00\) & \(2.48 \mathrm{E}-03\) & 195E-01 & 195E-01 & 499E-01 & 5.98E-01 & \(101 \mathrm{E}+00\) & \(193 \mathrm{E}+00\) & \(348 \mathrm{E}+00\) & \(623 \mathrm{E}+00\) & \(8.47 \mathrm{E}+00\) & \(1.40 \mathrm{E}+01\) & \(1.40 \mathrm{E}+01\) \\
\hline
\end{tabular}


Tuble 2-200. Intake of Homoprodeced Meats (e/kg-day) - Wex Region
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Grous & \[
\underset{\substack{\mathrm{N} \\ \hline 10}}{ }
\] & \[
\xrightarrow{N}
\] & Men & SE & \(F 0\) & P1 & PS & P10 & 825 & PSO & P75 & Fso & P\% & P99 & P100 \\
\hline Toul & 1815000 & 105 & \(189 \mathrm{P}+\infty\) & 161E-03 & 13E-01 & 1528-01 & 225E-01 & 390E-01 & 658E-01 & \(142 E+\infty\) & \(269 E+\infty\) & \(368 E+00\) & 4.71E+00 & \(8.008+00\) & 2308+01 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 9000 & 1 & \(232 \mathrm{E}+01\) & 0.00E +00 & \(230 \mathrm{E}+01\) & 232E+01 & 232E+01 & 230E+01 & 232E+01 & 232E+01 & 232E+01 & 2338+01 & 233E+01 & \(232 \mathrm{E}+01\) & 230E+01 \\
\hline 01- \({ }_{\text {- }}\) & 37000 & 4 & \(3112+00\) & 552E-03 & \(2400+\infty\) & 240E +00 & 2A0E +00 & \(2.40 \mathrm{E}+00\) & 240E +00 & \(2585+\infty\) & \(2009 \mathrm{E}+00\) & \(457 \mathrm{E}+00\) & \(497 \mathrm{E}+00\) & 497E +00 & \(497 \mathrm{E}+0\) \\
\hline 03-05 & 43000 & 3 & \(3.67 \mathrm{E}+00\) & 6.79E-03 & \(1555+00\) & \(155 \mathrm{E}+00\) & \(155 \mathrm{E}+\infty 0\) & \(1.55 \mathrm{E}+00\) & \(3.72 \mathrm{E}+00\) & 3,72E \(+\infty 0\) & \(3.72 \mathrm{E}+00\) & \(567 \mathrm{E}+00\) & \(567 \mathrm{E}+00\) & \(551 \mathrm{E}+\infty\) & \(5678+\infty\) \\
\hline 06-11 & 284000 & 15 & \(321 \mathrm{E}+00\) & 3.71E-03 & 9.85E-01 & 986E-01 & 9.86E-01 & \(107 \mathrm{E}+00\) & \(155 \mathrm{E}+00\) & 291E +00 & 4.4.E \(+\infty\) & 4.71E+00 & \(800 \mathrm{E}+00\) & \(800 \mathrm{E}+00\) & \(8.00 \mathrm{E}+00\) \\
\hline 12-19 & 395000 & 20 & \(150 \mathrm{E}+00\) & \(1.58 \mathrm{E}-03\) & 3,15E-01 & 3158-01 & 367E-01 & 4.67E-01 & 658E-01 & \(1 \mathrm{ASE}+00\) & \(2.35 \mathrm{E}+00\) & \(2.89 ¢+00\) & \(360 \mathrm{E}+00\) & \(360 \mathrm{E}+00\) & \(366 \mathrm{E}+\infty\) \\
\hline 20-39 & 391000 & 24 & \(127 E+\infty\) & 249E-03 & \(152 \mathrm{E}-01\) & 152E-01 & \(1.22 \mathrm{E}-01\) & 18SE-01 & 391E-01 & 740E-01 & \(156 \mathrm{E}+\infty 0\) & \(2.71 \mathrm{E}+\infty\) & \(700 \mathrm{E}+\infty\) & \(70 \mathrm{me}+\infty\) & \(700 \mathrm{E}+\infty\) \\
\hline 40-69 & 568000 & 32 & \(132 \mathrm{E}+\infty 0\) & \(124 \mathrm{E}-03\) & 135E-01 & \(135 \mathrm{E}-01\) & \(2.12 \mathrm{E}-01\) & 299E-01 & 521E-01 & \(109 \mathrm{E}+\infty\) & \(1.77 \mathrm{E}+\infty\) & \(327 \mathrm{E}+00\) & \(3.30 \mathrm{E}+00\) & \(337 \mathrm{E}+\infty 0\) & \(337 \mathrm{E}+0\) \\
\hline \(70+\) & 84000 & 6 & \(190 \mathrm{E}+00\) & 709E-03 & 7808-01 & 7808-01 & 780E-01 & 7.80E-01 & 7808-01 & 982E-01 & \(142 \mathrm{E}+\infty\) & 7AIE +00 & \(741 \mathrm{E}+00\) & \(711 \mathrm{E}+\infty\) & 7A1E \(+\infty\) \\
\hline \multicolumn{16}{|l|}{Seascos} \\
\hline Fat & 264000 & 12 & 564E-01 & 597E-04 & 152E-01 & 152E-01 & 1.52E-01 & 2.12E-01 & 330E-01 & 521E-01 & 780E-01 & 986E-01 & \(103 \mathrm{E}+00\) & \(1038+\infty\) & \(103 \mathrm{E}+\infty\) \\
\hline Spriog & 208000 & 20 & \(186 \mathrm{E}+00\) & 222E-03 & 299E-01 & 299E-01 & \(425 \mathrm{E}-01\) & 8.70E-01 & \(122 \mathrm{E}+00\) & \(156 \mathrm{E}+00\) & \(2 \mathrm{~A} 3 \mathrm{E}+\infty\) & \(3488+00\) & \(420 \mathrm{E}+00\) & \(420 \mathrm{E}+00\) & \(420 \mathrm{E}+00\) \\
\hline Summer & 740000 & 27 & \(220 \mathrm{E}+00\) & \(1.92 \mathrm{E}-03\) & 185E-01 & 185E-01 & \(406 \mathrm{E}-01\) & \(5.35 \mathrm{E}-01\) & \(107 \mathrm{E}+60\) & \(1.69 \mathrm{E}+00\) & \(327 \mathrm{E}+\infty\) & \(4.44 \mathrm{E}+00\) & \(4.71 \mathrm{E}+00\) & \(800 \mathrm{E}+00\) & \(8.00 \mathrm{E}+00\) \\
\hline Winter & 602000 & 46 & \(2.11 \mathrm{E}+00\) & 398E-03 & 135E-01 & 135E-01 & 356E-01 & 428E-01 & 6.72E-01 & \(1.19 \mathrm{e}+00\) & \(235 \mathrm{E}+\infty\) & \(364 \mathrm{E}+00\) & \(702 \mathrm{E}+0\) & \(2.32 \mathrm{E}+01\) & \(2.32 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Ustanizatious} \\
\hline Centrad City & 236000 & 9 & \(130 \mathrm{E}+00\) & 234E-03 & 185E-01 & 185E-01 & 1.85E-01 & 185E-01 & 535E-01 & 785E-01 & \(2.35 \mathrm{E}+\infty\) & \(3.40 \mathrm{E}+00\) & \(364 \mathrm{E}+00\) & \(3.64 \mathrm{E}+\infty 0\) & \(3.64 \mathrm{E}+\infty 0\) \\
\hline Normetropdita & 377000 & 26 & \(2.10 \mathrm{E}+00\) & 5.28E-03 & \(3.30 \mathrm{E}-01\) & 330E-01 & 3,30E-01 & 406E-01 & \(6.72 \mathrm{E}-01\) & \(1.19 \mathrm{E}+60\) & \(1.77 \mathrm{E}+\infty\) & \(3.72 \mathrm{E}+\infty\) & \(497 \mathrm{E}+00\) & \(2.32 \mathrm{E}+01\) & \(2.32 \mathrm{E}+01\) \\
\hline Surburban & 120200 & 70 & 19SE +00 & 152E-03 & \(135 \mathrm{E}-01\) & 152E-01 & 225E-01 & 367E-01 & 780E-01 & \(152 \mathrm{E}+\infty\) & \(2.71 \mathrm{E}+\infty\) & \(420 \mathrm{E}+00\) & \(4.71 \mathrm{E}+60\) & \(8.00 \mathrm{E}+\infty\) & \(800 \mathrm{E}+\infty\) \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Bact & 84000 & 4 & 2ASE-01 & 304E-04 & 152E-01 & 152E-01 & 152E-01 & 152E-01 & 1.82E-01 & 2.18E-01 & 307E-01 & 3.90E-01 & 3.90E-01 & 390E-01 & 390E-01 \\
\hline Native American & 24000 & 3 & \(124 \mathrm{E}+00\) & 555E-03 & 4258-01 & 425E-01 & 425E-01 & \(425 \mathrm{E}-01\) & \(4.25 \mathrm{E}-01\) & \(8.70 \mathrm{E}-01\) & \(2.43 \mathrm{E}+00\) & \(2.43 E+00\) & \(2 \mathrm{~A} 3 \mathrm{E}+00\). & \(2.43 \mathrm{E}+\infty 0\) & \(2.43 \mathrm{E}+\infty 0\) \\
\hline Oher/NA & 110000 & 4 & \(806 \mathrm{E}-01\) & 8.73E-04 & \(53.3 \mathrm{E}-01\) & 5.35E-01 & 5.35E-01 & 535E-01 & 535E-01 & \(658 \mathrm{E}-01\) & \(107 E+\infty\) & \(1.07 \mathrm{E}+\infty 0\) & \(149 \mathrm{E}+00\) & \(149 \mathrm{E}+\infty 0\) & \(1.49 \mathrm{E}+\infty\) \\
\hline White & 1597000 & 94 & \(207 E+00\) & 1.78E-03 & 135E-01 & 1.5E-01 & \(330 \mathrm{E}-01\) & \(4.06 \mathrm{E}-01\) & 7.85E-01 & \(155 \mathrm{E}+\infty\) & \(2.70 \mathrm{E}+\infty\) & \(3.72 \mathrm{E}+00\) & \(497 \mathrm{E}+00\) & \(800 \mathrm{E}+00\) & 232E+01 \\
\hline \multicolumn{16}{|l|}{Response to Questiomaire} \\
\hline Doyour raise anima & 1360000 & 79 & \(2.12 \mathrm{E}+00\) & 202E-03 & 135E-01 & 152E-01 & 225E-01 & 390E-01 & 8.15E-01 & \(156 E+00\) & \(2.71 \mathrm{E}+\infty\) & \(420 \mathrm{E}+00\) & \(4.97 \mathrm{E}+\infty\) & \(8.00 \mathrm{E}+00\) & 232E+01 \\
\hline Doyou fam? & 758000 & 48 & 2A1E +00 & 3.39E-03 & 135E-01 & 13SE-01 & 330E-01 & 467E-01 & 7.85E-01 & \(155 \mathrm{E}+00\) & \(291 \mathrm{E}+\infty\) & \(4.71 \mathrm{E}+00\) & 702E+00 & \(2.32 \mathrm{E}+01\) & 232E+01 \\
\hline
\end{tabular}

Table 2-201. Intake of Homeproduced Dairy ( \(\mathbf{g} / \mathrm{kg}\)-day) - All Regions Combined
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Group & \[
\begin{gathered}
\mathrm{N} \\
\text { widd }
\end{gathered}
\] & \[
\stackrel{N}{\mathrm{~N}} \mathrm{H}
\] & Mean & SE & PO & P1 & P5 & P10 & P25 & P50 & P75 & P90 & P95 & P99 & P100 \\
\hline Total & 1409000 & 89 & \(1.40 \mathrm{E}+01\) & \(129 \mathrm{E}-02\) & 180E-01 & 1.80E-01 & 4.46E-01 & 508E-01 & \(318 \mathrm{E}+00\) & \(100 \mathrm{E}+01\) & 193E+01 & 3.42E+01 & 4A0E +01 & 726E+01 & \(111 E+0\) \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 20000 & 2 & 596E+01 & 752E-02 & 5.09E+01 & 5.09E+01 & 509E+01 & \(509 \mathrm{E}+01\) & 509E+01 & 509E+01 & 726E+01 & 726E+01 & 726E+01 & 726E+01 & \(726 \mathrm{E}+01\) \\
\hline 01-02 & 79000 & 6 & 402E+01 & \(108 \mathrm{E}-01\) & \(2.49 \mathrm{ta0}\) & \(2.49 \mathrm{E}+00\) & \(2.49 \mathrm{E}+00\) & 2A9E+00 & \(204 \mathrm{E}+01\) & 289E+01 & 468E+01 & 801E+01 & \(1.11 \mathrm{E}+02\) & \(1.11 \mathrm{E}+02\) & \(111 \mathrm{E}+0\) \\
\hline 03-05 & 57000 & 5 & \(10 \mathrm{E}+01\) & 3.71E-02 & \(1.82 \mathrm{E}+00\) & \(1.82 \mathrm{E}+00\) & \(1.82 \mathrm{E}+00\) & \(1.22 \mathrm{E}+00\) & \(2.71 \mathrm{E}+00\) & \(1.0 \mathrm{E}+01\) & 1.15E+01 & 281E+01 & \(281 \mathrm{E}+01\) & 281E+01 & \(281 \mathrm{E}+01\) \\
\hline 06-11 & 264000 & 16 & \(266 \mathrm{E}+01\) & 224E-02 & \(5.87 \mathrm{E}+00\) & \(5.87 \mathrm{E}+00\) & \(6.74 \mathrm{E}+00\) & \(118 \mathrm{E}+01\) & \(1.35 \mathrm{E}+01\) & \(314 \mathrm{E}+01\) & 3A9E+01 & 4.40E+01 & 4AOE +01 & \(4.40 \mathrm{E}+01\) & 4.40E+01 \\
\hline 12-19 & 84000 & 5 & \(167 \mathrm{E}+01\) & 2.78E-02 & \(2.80 \mathrm{E}-01\) & 2.80E-01 & \(280 \mathrm{E}-01\) & 280E-01 & \(1.67 \mathrm{E}+01\) & 1.50E+01 & 196E+01 & \(251 \mathrm{E}+01\) & 251E+01 & 251E+01 & \(251 \mathrm{E}+01\) \\
\hline 20-39 & 612000 & 36 & 7 AIE \(+\infty\) & 781E-03 & 205E-01 & 205E-01 & 396E-01 & 4A6E-01 & \(189 \mathrm{E}+00\) & 6.46E+00 & 121E+01 & 154E+01 & 195E+01 & 2.30E+01 & \(2.30 \mathrm{E}+01\) \\
\hline 40-69 & 216000 & 16 & \(786 \mathrm{E}+00\) & 696E-03 & 1.80E-01 & 1.80E-01 & \(1.80 \mathrm{E}-01\) & \(5.36 \mathrm{E}+00\) & \(6.13 \mathrm{E}+00\) & \(843 \mathrm{E}+00\) & \(914 \mathrm{E}+00\) & 121E+01 & \(129 \mathrm{E}+01\) & 160E+01 & \(160 \mathrm{E}+01\) \\
\hline \(70+\) & 77000 & 3 & \(1.82 \mathrm{E}+00\) & \(5.35 \mathrm{E}-03\) & 508E-01 & 508E-01 & \(508 \mathrm{E}-01\) & 508E-01 & 508E-01 & 9.58E-01 & 3.22E+00 & 382E+00 & \(3.82 \mathrm{E}+00\) & \(3.82 \mathrm{E}+00\) & \(382 \mathrm{E}+\infty\) \\
\hline \multicolumn{16}{|l|}{Seasons} \\
\hline Fall & 211000 & 7 & \(1.73 \mathrm{E}+01\) & 3.11E-02 & \(216 \mathrm{E}+00\) & \(216 \mathrm{E}+00\) & 2.16E +00 & \(2.16 \mathrm{E}+00\) & \(6.13 \mathrm{E}+00\) & 108E +01 & 314E+01 & 4.40E+01 & 4.40E+01 & 4.40E +01 & 4.40E+01 \\
\hline Spring & 253000 & 27 & 1.78E+01 & 4A1E-02 & 628E-01 & 6.28E-01 & 6.54E-01 & \(6.72 \mathrm{E}-01\) & \(506 \mathrm{E}+00\) & \(122 \mathrm{E}+01\) & 1.95E+01 & 509E+01 & 801E+01 & 1.11E+02 & \(1.11 \mathrm{E}+0\) \\
\hline Summer & 549000 & 22 & \(153 E+01\) & \(1.73 \mathrm{E}-02\) & \(4.46 \mathrm{E}-01\) & \(4.46 \mathrm{E}-01\) & 4.46E-01 & 508E-01 & \(536 \mathrm{E}+00\) & 1.10E+01 & 2.51E+01 & \(349 \mathrm{E}+01\) & \(367 \mathrm{E}+01\) & \(4.68 \mathrm{E}+01\) & \(468 \mathrm{E}+01\) \\
\hline Winter & 396000 & 33 & \(808 \mathrm{E}+00\) & 1.2E-02 & 1.80E-01 & 1.80E-01 & 205E-01 & \(280 \mathrm{E}-01\) & 730E-01 & \(5 A T E+00\) & 1.15E+01 & 198E +11 & 204E+01 & 726E+01 & \(726 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Urbanizations} \\
\hline Central City & 115000 & 7 & \(121 \mathrm{E}+00\) & 2.87E-03 & 180E-01 & 1.80E-01 & 1.80E-01 & \(1.80 \mathrm{E}-01\) & 203E-01 & 6.7E-01 & \(2.16 \mathrm{E}+00\) & \(2.16 \mathrm{E}+00\) & 2.71E+00 & 2.71E+00 & \(2.71 \mathrm{E}+\infty\) \\
\hline Nonmetropolitan & 988000 & 59 & \(168 \mathrm{E}+01\) & 163E-0 & 4.79E-01 & \(4.79 \mathrm{E}-01\) & \(9.58 \mathrm{E}-01\) & \(1.89 \mathrm{E}+00\) & \(6.74 \mathrm{E}+00\) & 108E 5 +01 & 2.04E+01 & 3.49E+01 & 4.40Et01 & \(8.01 \mathrm{E}+01\) & \(1.11 \mathrm{E}+02\) \\
\hline Surburban & 306000 & 23 & \(986 \mathrm{E}+00\) & 206E-02 & 3.96E-01 & 3.96E-01 & 3.96E-01 & 4A6E-01 & 5.71E-01 & \(5.36 \mathrm{E}+00\) & 1.31E+01 & 281E+01 & \(2.89 \mathrm{E}+01\) & \(5.09 \mathrm{E}+01\) & \(509 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Asian & 27000 & 3 & \(134 \mathrm{E}+00\) & 5.90E-03 & \(6.28 \mathrm{E}-01\) & 628E-01 & 628E-01 & \(6.28 \mathrm{E}-01\) & 6.28E-01 & 6.7n-01 & 2.71E+00 & \(2.71 \mathrm{E}+00\) & 2.71E+00 & 2.71E+00 & \(2.71 \mathrm{E}+\infty\) \\
\hline White & 1382000 & 86 & \(1 \mathrm{~A} 3 \mathrm{E}+0 \mathrm{l}\) & 131E-02 & 1.80E-01 & 1.80E-01 & 4.46E-01 & 508E-01 & \(3.82 \mathrm{E}+00\) & 103E+01 & 195E+01 & 3A2E+01 & 4.40E+01 & 8.01E+01 & \(1.11 \mathrm{E}+02\) \\
\hline \multicolumn{16}{|l|}{Response to Questiomnaire} \\
\hline Doyou raise anima & 1228000 & 80 & \(159 \mathrm{E}+01\) & \(1.40 \mathrm{E}-02\) & 1.80E-01 & 180E-01 & 3.96E-01 & \(1.89 \mathrm{E}+00\) & \(6.13 \mathrm{E}+00\) & 108E+01 & 1.96E+01 & 3A9E+01 & \(4.40 \mathrm{E}+01\) & \(8.01 \mathrm{E}+01\) & \(1.11 \mathrm{E}+02\) \\
\hline Do you fram? & 1020000 & 63 & 1.71E+01 & 1.56E-02 & 3.96E-01 & 3.96E-01 & 7.36E-01 & \(3.18 \mathrm{E}+00\) & \(906 \mathrm{E}+00\) & \(121 \mathrm{E}+01\) & 204E+01 & 3A9E+01 & 4A0E +01 & 8.01E+01 & \(1.11 \mathrm{E}+02\) \\
\hline
\end{tabular}

Table 2-202. Intuke of Homeprodeced Dairy (f/kz-day) - Nortbansk Region
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Gras & \[
\underset{\substack{\text { ngd } \\ \hline}}{ }
\] & \[
\stackrel{\mathrm{N}}{\substack{\text { nnand }}}
\] & Mean & SE & P & F1 & PS & P10 & P2S & P50 & 975 & P00 & P9 & 189 & P100 \\
\hline Town & 312000 & 16 & \(1.158+01\) & 165-C & 3000-02 & \(3508-01\) & 396E-01 & 5.71E-01 & \(6138+\infty\) & 100 t 01 & 131E+01 & 204E+01 & \(3 \mathrm{A2E}+01\) & \(302 \mathrm{E}+01\) & \(3 A 2 E+01\) \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline 01-0 & 19000 & 1 & 201E +01 & \(000 \mathrm{E}+\infty\) & 204E+01 & 204E+01 & 2ME+01 & 204E+01 & 201E+01 & 204E+01 & 204E+01 & 204E+01 & \(20 \mathrm{Ct}+01\) & 201E+01 & 204E+01 \\
\hline 03-05 & 19000 & 1 & \(1 \mathrm{CEE}+01\) & \(0.00 \mathrm{E}+\infty\) & \(10 \mathrm{CE}+01\) & \(100 \mathrm{E}+01\) & \(10 \mathrm{ct}+1\) & \(100 \mathrm{E}+01\) & \(10 \mathrm{EE}+01\) & \(108 \mathrm{E}+01\) & \(100 \mathrm{E}+01\) & \(100 \mathrm{E}+01\) & \(100 \mathrm{E}+01\) & \(102 \mathrm{E}+01\) & \(1.008+01\) \\
\hline 06-11 & 29000 & 1 & \(3 \mathrm{~A} 2 \mathrm{E}+01\) & \(0.00 \mathrm{E}+00\) & 3A2E+01 & 342E+01 & \(3 \mathrm{A2E}+01\) & 3A2E+01 & 3A2E+01 & 3A2E+01 & 3A2E +01 & 3A2E+01 & \(342 \mathrm{E}+01\) & \(342 \mathrm{E}+01\) & 3A2E+01 \\
\hline 12-19 & 29000 & 1 & \(1908+01\) & \(0.00 \mathrm{E}+\infty\) & 190E+01 & 190Et01 & 190E+01 & 190E+01 & \(150 \mathrm{E}+01\) & 1900 +01 & 190E+01 & \(190 \mathrm{E}+01\) & 190E+01 & 1908+01 & 1.90E+01 \\
\hline 20-39 & 141000 & 7 & 5999+00 & \(1258-08\) & 3.96E-01 & 398E-01 & 396E-01 & 398E-01 & 5.71E-01 & \(3.18 \mathrm{E}+00\) & \(106 E+01\) & \(1.06 \mathrm{E}+01\) & 131E+01 & \(131 \mathrm{E}+01\) & 131E+01 \\
\hline 40-69 & 75000 & 5 & \(813 E+00\) & 7AFE-03 & 613E+00 & \(6.138+00\) & \(6.13 E+00\) & 6.13E+00 & \(6.13 \mathrm{E}+00\) & \(9.12 \mathrm{E}+00\) & \(9.71 \mathrm{E}+00\) & 121E+01 & \(121 \mathrm{E}+01\) & 121E+01 & 121E+01 \\
\hline \multicolumn{16}{|l|}{Seascos} \\
\hline Fal & 48000 & 2 & \(792 \mathrm{E}+00\) & 8.16E-03 & \(613 E+00\) & 6.13E+00 & \(6.13 E+00\) & 6.13E+00 & \(6.13 \mathrm{E}+00\) & \(792 \mathrm{E}+00\) & 9.71E+00 & \(9.71 \mathrm{E}+00\) & 9.71E +00 & 9.71E+00 & 9.71E+00 \\
\hline Spring & 36000 & 4 & \(103 \mathrm{E}+01\) & 131E-02 & \(680 \mathrm{E}+00\) & \(680 \mathrm{C}+00\) & \(6809+00\) & 6800 + +0 & \(796 \mathrm{E}+00\) & 106E+01 & 126E+01 & \(131 \mathrm{E}+01\) & \(131 \mathrm{E}+01\) & \(131 \mathrm{E}+01\) & 131E+01 \\
\hline Sumber & 116000 & 4 & \(185 E+01\) & \(284 \mathrm{E}-02\) & \(103 \mathrm{E}+01\) & 103E+01 & \(103 \mathrm{E}+01\) & 1038+01 & \(194 \mathrm{E}+01\) & 148E+01 & \(266 \mathrm{E}+01\) & 3/2E+01 & 3A2E+01 & 3A2E +01 & 3A2E+01 \\
\hline Winter & 112000 & 6 & \(628 \mathrm{E}+00\) & 215E-02 & 396E-01 & 396E-01 & 396E-01 & 396E-01 & 5.71E-01 & \(318 \mathrm{E}+00\) & \(1.02 \mathrm{E}+01\) & 204E+01 & \(204 \mathrm{E}+01\) & 204E+01 & 204E+01 \\
\hline \multicolumn{16}{|l|}{} \\
\hline Nonmetropaitan & 240000 & 10 & \(134 \mathrm{E}+01\) & 1.91E-02 & \(223 \mathrm{E}+00\) & 223E+00 & 223E+00 & \(3.18 \mathrm{E}+00\) & \(6.13 \mathrm{E}+00\) & 103E+01 & 190E+01 & \(3.42 \mathrm{E}+01\) & 3A2E+01 & 3A2E+01 & 342E+01 \\
\hline Sxturban & 72000 & 6 & \(5.39 \mathrm{+}+0\) & 194E-02 & 396E-01 & 396E-01 & 396E-01 & 396E-01 & 4.84E-01 & 369E+00 & 100E+01 & 131E+01 & 1.31E+01 & 131E+01 & 131E+01 \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline White & 312000 & 16 & \(1.15 \mathrm{E}+01\) & 16SE-02 & 396E-01 & 396E-01 & 396E-01 & 5.71E-01 & 6.13E+00 & 102E+01 & 131E+01 & 204E+01 & 3A2E+01 & \(342 \mathrm{E}+01\) & 3A2E+01 \\
\hline \multicolumn{16}{|l|}{Reaposse to Questionaire} \\
\hline Do you raise animi & 312000 & 16 & \(1.15 \mathrm{E}+01\) & 16SE-Q & 396E-01 & 396E-01 & 3988-01 & 5.71E-01 & 6.13E+00 & 102E+01 & 131E+01 & 204E+01 & \(342 \mathrm{E}+01\) & 342E+01 & \(3 \mathrm{~A} 2 \mathrm{E}+01\) \\
\hline Do you fran? & 312000 & 16 & 1.15E+01 & 165E-0 & 396E-01 & 396E-01 & 396E-01 & 5.71E-01 & \(6.13 \mathrm{E}+00\) & 102E+01 & 131E+01 & 204E+01 & 3A2E+01 & 342E+01 & 3A2E+01 \\
\hline
\end{tabular}

Table 2-203. Intake of Homeproduced Dairy (g/kg-day) - Midwest Region

\begin{tabular}{c} 
DRAFT \\
DO NOT QUOTE OR \\
N \(\quad\) CITE \\
\hline
\end{tabular}

Table 2-204. Intake of Homeproduced Dalty (elkg-day) - South Region
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Popuxiaion } \\
& \text { Gर्000 }
\end{aligned}
\] & \(\xrightarrow{\text { Nadd }}\) & \(\frac{\mathrm{N}}{\text { Nomad }}\) & Mean & SE & 0 & \(P 1\) & PS & P10 & P25 & PSO & P75 & Peo & Pos & P99 & P 100 \\
\hline Total & 213000 & 17 & 101E+01 & 2288-02 & 4.789-01 & 4.79E-01 & 6288-01 & \(6.7 \mathrm{E}-01\) & \(1898+00\) & 5.8TE+00 & 98E+00 & 3198+01 & 3498+01 & 3498+01 & \(3 \mathrm{MEE}+01\) \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline - & \({ }_{2000}^{11000}\) & \(\frac{1}{3}\) & 2196+00 &  & 2,99E+00
\(182 \mathrm{E}+00\) & \(2195 E+\infty\)
\(185+00\) & \({ }_{1}^{2189 E++\infty}\) & \({ }_{102}^{2,98+\infty}\) & \(2198+\infty\)
\(18 \mathrm{C}+\infty\) & \({ }_{\text {2, }}^{219 \mathrm{E}+00}\) & \({ }_{2}^{21595+00}\) & \(2199+00\)
\(1158+01\) &  & \({ }_{\text {2, }}^{2159 E+00}\) & \(2199+00\)
\(115 E+01\) \\
\hline \({ }^{06-11}\) & 68900 & 4 & \(2185 \mathrm{C}+01\) & \(42 \mathrm{E}-\infty\) &  & \(5872+00\) & \(58 \mathrm{EE}+\infty\) & \(58.7 \mathrm{E}+00\) & 2615101 & \(2612+01\) & 3198E+01 & 31496+01 & 319\% +01 & \(31.98+01\) & 3199E+01 \\
\hline \({ }^{20-39}\) & 108500 & 8 & \(5208+00\) & \(1318-\infty\) & 4.3E-01 & \(4.39 \mathrm{E}-01\) & 4.39E-01 & 4.7SE-01 & \(6.72 \mathrm{E}-01\) & \(1888+0\) & \(9618+00\) & \(988 \mathrm{E}+00\) & 988E+00 & \(988 \mathrm{C}+0\) & \(988+00\) \\
\hline n+ & 27000 & 1 & 382E+00 & 000E+00 & \(3 \times 2 \mathrm{E}+00\) & 3822+00 & 3 S2E \(+\infty\) & \(3.82+\infty\) & \(382 \mathrm{C}+0\) & \(382 \mathrm{E}+0\) & \(38 \mathrm{E}+00\) & \(3282+00\) & 3882+00 & \(38.8+{ }^{\text {co }}\) & \(3.2 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Secenos} \\
\hline & \({ }_{13700}^{2700}\) & & 134E+00 & 5908-03 & & & & \({ }^{6288-01}\) & \({ }_{9688}^{628}+01\) & & \({ }_{26}^{2.718+00}\) & & 2.71E+00 & \(2.72 \mathrm{C}+0\) & \(2715+\infty\) \\
\hline Smmar & \({ }_{84000}^{131000}\) & 9 & \({ }_{3372 \mathrm{E}+00}^{1682}\) & 323E-02
\(113 \mathrm{E}-0\) & -3.73E+00 &  & - \(\begin{aligned} & 3.28 \mathrm{E}+\infty \\ & 4.75 \mathrm{e}-01\end{aligned}\) & 3.3.28E+00 & \(9545 \mathrm{E}+00\)
\(736 \mathrm{E}-01\) &  & 2615101
\(587 E+00\) & \(3498+01\)
\(6.44+00\) &  &  &  \\
\hline \multicolumn{15}{|l|}{Uritaizaicos} & \\
\hline & 27000 & 3 & 131E+00 & 5900-03 & 628E-01 & 628E-01 & 6288-01 & \(6238-01\) & 628E-01 & \(6.72 \mathrm{E}-01\) & 2.71E+00 & \(2.71 \mathrm{E}+\infty 0\) & \(2.71 \mathrm{E}+\infty\) & \(2.71 \mathrm{E}+00\) & 2.71E+00 \\
\hline Nommerropditan & 215000 & 14 & \(1.15 \mathrm{E}+01\) & 2468-02 & 4.79E-01 & \(4.79 \mathrm{E}-01\) & \(4.79 \mathrm{E}-01\) & 736E-01 & 2 A9E+00 & 9, \(6 E+00\) & 1.1.E+01 & 349E+01 & 319E +01 & \(3.98 \mathrm{E}+01\) & 319E+01 \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Asan & \({ }_{215000}^{2700}\) & \({ }_{14}^{3}\) & \(\underset{\substack{134 E+00}}{1.5 E+01}\) & 2.46E-02 & \({ }^{6288 E-01}\) & 6288-01
\(4.79 \mathrm{e}-01\) & \(623 \mathrm{E}-01\)
\(4.79 \mathrm{E}-01\) & \({ }_{736 \mathrm{E}-01}^{628 \mathrm{E}}\) &  & \({ }_{9}^{6.72 E-01}\) & \(2.718+00\)
\(118 \mathrm{E}+01\) &  & 2.71E+00 &  & \(2.71 \mathrm{E}+\infty\)
\(3 A 9 E+01\) \\
\hline \multicolumn{16}{|l|}{Respone lo Quesioma} \\
\hline Doyburase aima & & 14 & 1.15E+01 & \({ }^{2.468-02}\) & 4.79E-01 & \(4.78 \mathrm{E}-01\) & & 7368-01 & & & \(1.15 \mathrm{EE}+01\) & & 3M9E+01 & & \\
\hline Doyou fam? & 14800 & 8 & \(146 \mathrm{E}+01\) & 325E-O2 & 4.79E-01 & 4.7EE-01 & \(4.79 \mathrm{E}-01\) & 736E-01 & 219E+ +0 & 988E +00 & 261E+01 & 3499+01 & 3^9¢ +1 & 3199E+01 & 319E+01 \\
\hline
\end{tabular}

Table 2-205. Intake of Homeproduced Dairy (g/kg-day) - West Region
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Group & \[
\begin{gathered}
N \\
\text { wid } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{N} \\
\text { unngte }
\end{gathered}
\] & Mean & SE & PO & P1 & PS & P10 & P25 & P50 & P75 & P90 & P95 & P99 & P100 \\
\hline Total & 261000 & 20 & \(1.00 \mathrm{E}+01\) & \(2.41 \mathrm{E}-02\) & 180E-01 & 1.80E-01 & 1.80E-01 & 205E-01 & 508E-01 & \(6.10 \mathrm{E}+00\) & \(1.33 \mathrm{E}+01\) & \(281 \mathrm{E}+01\) & \(2.89 \mathrm{E}+01\) & 5.09E+01 & \(5.09 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 12000 & 1 & \(509 \mathrm{E}+01\) & \(0.00 \mathrm{E}+00\) & \(509 \mathrm{E}+01\) & \(509 \mathrm{E}+01\) & 5.09E+01 & \(509 \mathrm{E}+01\) & \(509 \mathrm{E}+01\) & \(509 \mathrm{E}+01\) & \(5.09 \mathrm{E}+01\) & 5.09E+01 & 509E+01 & 509E+01 & \(5.09 \mathrm{E}+01\) \\
\hline 01-02 & 12000 & 1 & \(289 \mathrm{E}+01\) & \(0.00 \mathrm{E}+00\) & \(2.89 \mathrm{E}+01\) & \(289 \mathrm{E}+01\) & \(2.89 \mathrm{E}+01\) & \(2.89 \mathrm{E}+01\) & 2.89E+01 & \(2.89 \mathrm{E}+01\) & \(2.89 \mathrm{E}+01\) \\
\hline 03-05 & 10000 & 1 & \(281 \mathrm{E}+01\) & \(0.00 \mathrm{E}+00\) & \(2.81 \mathrm{E}+01\) & \(2.81 \mathrm{E}+01\) & \(2.81 \mathrm{E}+01\) & 2.81E+01 & \(2.81 \mathrm{E}+01\) & \(2.81 \mathrm{E}+01\) & \(281 \mathrm{E}+01\) & \(2.81 \mathrm{EE}+01\) & \(2.81 \mathrm{E}+01\) & \(2.81 \mathrm{E}+01\) & \(2.81 \mathrm{E}+01\) \\
\hline 06-11 & 68000 & 6 & \(1.43 \mathrm{E}+01\) & 1.2TE-02 & \(107 \mathrm{E}+01\) & \(107 \mathrm{E}+01\) & \(1.07 \mathrm{E}+01\) & \(107 \mathrm{E}+01\) & 1.18E+01 & \(127 E+01\) & \(169 \mathrm{E}+01\) & \(201 \mathrm{E}+01\) & 201E+01 & 201E+01 & \(2.01 \mathrm{E}+01\) \\
\hline 12-19 & 15000 & 1 & 2.80E-01 & \(0.00 \mathrm{E}+00\) & \(2.80 \mathrm{E}-01\) & \(2.80 \mathrm{E}-01\) & \(2.80 \mathrm{E}-01\) & \(2.80 \mathrm{E}-01\) & 2.80E-01 & 280E-01 & \(2.80 \mathrm{E}-01\) & \(2.80 \mathrm{E}-01\) & 2.80E-01 & 2.80E-01 & 2.80E-01 \\
\hline 20-39 & 59000 & 5 & \(403 \mathrm{E}+00\) & \(9.44 \mathrm{E}-03\) & 205E-01 & 205E-01 & 2.05E-01 & 205E-01 & 2.05E-01 & 4.99E+00 & \(506 \mathrm{E}+00\) & \(6.46 \mathrm{E}+00\) & 646E+00 & \(6.46 \mathrm{E}+00\) & \(6.46 \mathrm{E}+00\) \\
\hline 40-69 & 35000 & 3 & \(364 \mathrm{E}+00\) & \(160 \mathrm{E}-02\) & \(180 \mathrm{E}-01\) & 1.80E-01 & \(1.80 \mathrm{E}-01\) & \(1.80 \mathrm{E}-01\) & 1.80E-01 & \(6.10 \mathrm{E}+00\) & \(6.37 \mathrm{E}+00\) & \(6.37 \mathrm{E}+00\) & \(637 \mathrm{E}+00\) & \(6.37 \mathrm{E}+00\) & \(6.37 \mathrm{E}+\infty\) \\
\hline 70 + & 50000 & 2 & 7.33E-01 & 101E-03 & 508E-01 & 508E-01 & 508E-01 & 508E-01 & 508E-01 & 733E-01 & 9.58E-01 & 9.58E-01 & 9.58E-01 & 958E-01 & 958E-01 \\
\hline \multicolumn{16}{|l|}{Seasons} \\
\hline Spring & 96000 & 8 & 1.88E+01 & \(4.58 \mathrm{E}-02\) & 494E+00 & \(494 \mathrm{E}+00\) & 494E+00 & 494E+00 & \(8.42 \mathrm{E}+00\) & 1.45E+01 & 2.45E+01 & 5.09E+01 & 509E+01 & 5.09E+01 & 509E+01 \\
\hline Summer & 50000 & 2 & \(733 \mathrm{E}-01\) & \(1.01 \mathrm{E}-03\) & 508E-01 & 508E-01 & \(5.08 \mathrm{E}-01\) & 508E-01 & 508E-01 & 733E-01 & 9.58E-01 & 9.58E-01 & 958E-01 & 9.58E-01 & 958E-01 \\
\hline Winter & 115000 & 10 & \(6.60 \mathrm{E}+00\) & 2.31E-02 & 1.80E-01 & 1.80E-01 & 1.80E-01 & 1.80E-01 & 205E-01 & \(6.10 \mathrm{E}+00\) & \(107 \mathrm{E}+01\) & 133E+01 & 2.81E+01 & 2.81E+01 & 281E+01 \\
\hline \multicolumn{16}{|l|}{Urtarizations} \\
\hline Central City & 45000 & 3 & \(2.22 \mathrm{E}-01\) & 201E-04 & 180E-01 & 1.80E-01 & 1.80E-01 & 1.80E-01 & 1.80E-01 & 205E-01 & 2.80E-01 & 2.80E-01 & 2.80E-01 & 280E-01 & 280E-01 \\
\hline Nonmetropolitan & 70000 & 4 & \(2.30 \mathrm{E}+00\) & 9.42E-03 & 508E-01 & 508E-01. & 508E-01 & 508E-01 & 508E-01 & 958E-01 & 6.10E+00 & \(6.37 \mathrm{E}+00\) & 6.37E+00 & \(6.37 \mathrm{E}+00\) & \(6.37 \mathrm{E}+00\) \\
\hline Surburban & 146000 & 13 & \(167 \mathrm{E}+01\) & 335E-02 & 494E+00 & 494E+00 & 494E+00 & \(4.99 \mathrm{E}+00\) & \(6.46 \mathrm{E}+00\) & 122E+01 & 201E +01 & \(2.89 \mathrm{E}+01\) & \(509 \mathrm{E}+01\) & \(5.09 \mathrm{E}+01\) & \(509 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline White & 261000 & 20 & \(100 \mathrm{E}+01\) & 2.41E-0 & 1.80E-01 & 180E-01 & 1.80E-01 & 205E-01 & 5.08E-01 & \(6.10 \mathrm{E}+00\) & 133E+01 & 2.81E+01 & 2.89E+01 & 509E+01 & 509E+01 \\
\hline \multicolumn{16}{|l|}{Response to Questiamaire} \\
\hline Doyourase animi & 211000 & 18 & \(122 \mathrm{E}+01\) & 2.77E-0 & 1.80E-01 & \(1.80 \mathrm{E}-01\) & 1.80E-01 & 2.05E-01 & \(4.94 \mathrm{E}+00\) & \(6.46 \mathrm{E}+00\) & \(169 \mathrm{E}+01\) & \(2.89 \mathrm{E}+01\) & 5.09E+01 & \(5.99 \mathrm{E}+01\) & 509E+01 \\
\hline Do you fam? & 70000 & 7 & \(109 \mathrm{E}+01\) & 285E-02 & 4.99E+00 & \(499 \mathrm{E}+00\) & 4.99E +00 & \(499 \mathrm{E}+00\) & \(6.10 \mathrm{E}+00\) & \(6.46 \mathrm{E}+00\) & \(133 \mathrm{E}+01\) & 2.81E+01 & 2.81E+01 & 2.81E+01 & 2.81E +01 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Fopatacto Group & \[
\mathrm{N}_{\text {veld }}
\] & \[
\frac{\mathrm{N}}{\text { unced }}
\] & 16 ma & SP & 10 & P1 & B & P10 & P25 & 850 & 175 & 120 & P9S & P99 & P100 \\
\hline Toul & 391400 & 23 & \(20 \mathrm{OE}+\infty\) & 189E-03 & 816E-0 & 911E-® & 195E-01 & 228E-01 & 431E-01 & 997E-01 & \(2.17 E+\infty\) & \(4688+\infty\) & \(7858+\infty\) & \(1585+01\) & 452E+01 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 26000 & 3 & 7.74E \(+\infty\) & 33E-0 & 229E+00 & 229 \(5+\infty\) & 2298+00 & \(229 \mathrm{E}+\infty\) & 229E+00 & 5.898+ \(+\infty\) & 15SE+01 & \(1558+01\) & 155E+01 & 155E+01 & \(155 E+01\) \\
\hline 01-08 & 82000 & 6 & \(1058+01\) & 538E-0 & 121E +00 & \(121 E+00\) & \(1212+00\) & 121E +00 & 121E \(+\infty 0\) & \(2.788+00\) & 561E+00 & \(3.73 \mathrm{E}+01\) & \(4528+01\) & 4.528+01 & 452E+01 \\
\hline 03-05 & 142000 & 11 & 2588+00 & 6882-03 & 563E-01- & \(563 \mathrm{E}-01\) & \(5.63 \mathrm{E}-01\) & 603E-01 & \(107 E+00\) & \(1.76 \mathrm{E}+00\) & \(230 \mathrm{E}+\infty 0\) & \(487 E+00\) & \(104 \mathrm{E}+01\) & 1048+01 & 104E+01 \\
\hline \(06-11\) & 382000 & 29 & \(2.78 \mathrm{E}+\infty\) & 731E-03 & 160E-01 & 160E-01 & \(18 \mathrm{EE}-01\) & 228E-01 & 5A7E-01 & \(1088+00\) & \(3.67 E+\infty\) & 70 SE +00 & 785E+00 & \(2538+01\) & 253E+01 \\
\hline 12-19 & 346000 & 21 & \(152 \mathrm{E}+\infty\) & 317E-03 & 1.55E-01 & 195E-01 & 195E-01 & 19SE-01 & 3.11E-01 & \(98 \mathrm{E}-01\) & 1.79E+00 & \(4688+00\) & \(6.67 \mathrm{E}+00\) & \(8.44 \mathrm{E}+00\) & \(844 \mathrm{E}+00\) \\
\hline 20-39 & 962000 & 59 & \(191 \mathrm{E}+\infty\) & 2.92E-03 & 816E-02 & 816E- \(\times\) & 9118-0 & 118E-01 & 4A3E-01 & 106E +00 & \(2.18 \mathrm{E}+\infty 0\) & \(4 \mathrm{AGE}+\infty\) & \(957 \mathrm{E}+00\) & \(130 \mathrm{E}+01\) & \(1.30 \mathrm{E}+01\) \\
\hline 40-69 & 157400 & 86 & \(1.79 \mathrm{e}+\infty\) & 192E-03 & 9ATE-C & 9A7E-0 & 2.108-01 & 2.75E-01 & 3ASE-01 & 985E-01 & \(199 \mathrm{C}+\infty\) & 413E+00 & \(656 \mathrm{E}+00\) & 1062+01 & \(1.51 \mathrm{E}+01\) \\
\hline \(70+\) & 450000 & 24 & \(122 \mathrm{E}+\infty\) & \(168 \mathrm{E}-03\) & 988E-@ & 988E-02 & \(2.33 \mathrm{E}-01\) & 233E-01 & 558E-01 & 761E-01 & \(1.56 \mathrm{E}+\infty 0\) & \(3.73 \mathrm{E}+\infty\) & 3.73E+00 & \(5.12 \mathrm{E}+00\) & \(512 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Seam} \\
\hline Fall & 1220000 & 45 & \(1312+\infty\) & 131E-03 & 184E-01 & \(124 \mathrm{E}-01\) & 196E-01 & \(2.10 \mathrm{E}-01\) & 318E-01 & 9.16E-01 & \(1.79 \mathrm{E}+00\) & 264E+00 & 3.73E+00 & \(656 \mathrm{E}+00\) & 656E+00 \\
\hline Spring & 1112000 & 114 & \(308 \mathrm{E}+\infty 0\) & 5,62E-03 & 988E-0 & 116E-01 & 308E-01 & \(3.40 \mathrm{E}-01\) & 559E-01 & \(127 \mathrm{E}+00\) & \(264 \mathrm{E}+\infty 0\) & \(6688+00\) & \(1088+01\) & 3.73E+01 & 4.52E+01 \\
\hline Sumber & 911000 & 29 & \(1.88 \mathrm{E}+00\) & \(2.39 \mathrm{E}-03\) & 8.16E-Q & 816E-02 & 9.11E-Q & 204E-01 & \(301 \mathrm{E}-01\) & 764E-01 & \(3.19 \mathrm{E}+00\) & \(413 \mathrm{E}+00\) & \(565 E+00\) & \(9578+00\) & \(957 E+00\) \\
\hline Winter & 671000 & 51 & \(205 \mathrm{E}+00\) & 321E-03 & 9ATE-C & 9A7E-02 & 1118-01 & \(160 \mathrm{E}-01\) & \(5.10 \mathrm{E}-01\) & \(106 \mathrm{E}+00\) & \(209 \mathrm{E}+00\) & \(5.89 \mathrm{E}+00\) & \(78 \mathrm{E}+00\) & 131E+01 & \(131 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Urbanization} \\
\hline Central City & 999000 & 46 & \(1.79 \mathrm{C}+00\) & 231E-03 & 9ATE-C & 947E-0 & 160E-01 & \(284 \mathrm{E}-01\) & 608E-01 & \(107 \mathrm{E}+00\) & \(185 \mathrm{E}+\infty 0\) & \(3.73 \mathrm{E}+00\) & \(9575+\infty\) & \(9.578+00\) & 1.55E+01 \\
\hline Normetropolitan & 1174000 & 94 & \(315 \mathrm{E}+00\) & 514E-03 & 988E-Q & 1.16E-01 & 3.10E-01 & \(362 \mathrm{E}-01\) & \(568 \mathrm{E}-01\) & \(188 \mathrm{E}+00\) & \(3.88 \mathrm{E}+00\) & \(6.52 \mathrm{E}+00\) & \(7838+00\) & 3.73E+01 & \(4.52 \mathrm{E}+01\) \\
\hline Surburban & 1741000 & 99 & \(150 \mathrm{E}+00\) & 1.74E-03 & \(8.16 E-\mathbb{R}\) & 8.16E-0 & 1.84E-01 & 201E-01 & \(2.86 \mathrm{E}-01\) & 587E-01 & \(138 \mathrm{E}+00\) & \(437 \mathrm{E}+00\) & \(705 \mathrm{E}+00\) & 108E+01 & 130E+01 \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Asian & 16000 & 2 & \(819 E+00\) & 5.78E-0 & 888E-01 & 8.82E-01 & 8.82E-01 & 8.82E-01 & 8.22E-01 & \(8.19 \mathrm{E}+00\) & 155E+01 & & & 1.5SE+01 & 1.55+01 \\
\hline Black & 593000 & 41 & \(1.81 \mathrm{E}+\infty 0\) & 3.11E-03 & 184E-01 & 184E-01 & 201E-01 & 2.86E-01 & 3.18E-01 & \(9.84 \mathrm{E}-01\) & \(2.17 E+\infty\) & \(468 \mathrm{E}+00\) & \(9558+\infty\) & \(957 \mathrm{t}+0\) & 9,57E \(+\infty 0\) \\
\hline Native American & 22000 & 3 & \(240 \mathrm{E}+\infty 0\) & 6.82E-03 & \(137 \mathrm{E}+00\) & \(2.19 \mathrm{E}+00\) & \(3.80 \mathrm{E}+00\) & \(3.80 \mathrm{E}+00\) & \(380 \mathrm{E}+\infty\) & \(3.80 \mathrm{E}+00\) & \(3.80 \mathrm{E}+00\) \\
\hline Other/NA & 55000 & 5 & \(280 \mathrm{E}+\infty 0\) & 5AEE-03 & 158E+00 & \(1.58 \mathrm{E}+00\) & \(1.58 \mathrm{E}+00\) & \(1.58 \mathrm{E}+00\) & \(1615+00\) & \(225 \mathrm{E}+00\) &  & \(487 \mathrm{E}+00\) & \(4.87 \mathrm{E}+\infty\) & \(487 \mathrm{E}+00\) & \(4.87 \mathrm{E}+00\) \\
\hline White & 3228000 & 188 & \(207 \mathrm{E}+00\) & 2.14E-03 & 8.16E-02 & 8.16E-02 & 160E-01 & \(227 \mathrm{E}-01\) & 393E-01 & 997E-01 & \(2.16 \mathrm{E}+\infty\) & \(4.99 \mathrm{+}+0\) & \(668 \mathrm{E}+00\) & 1.61E+01 & 4.52E+01 \\
\hline Resparse to Questi Do you fish? & ire 3553000 & 220 & \(222 \mathrm{E}+00\) & 203E-03 & 8.16E-0 & 816E-02 & 1.84E-01 & 227E-01 & 466E-01 & \(109 \%+00\) & \(223 E+00\) & \(561 \mathrm{E}+00\) & \(785 \mathrm{E}+00\) & 161E+01 & 4.52E+01 \\
\hline
\end{tabular}

Table 2-207. Intake of Home Caught Fith and Shellfinh (g/kg-day) - Northean Region



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Popuation Group & \[
\begin{gathered}
N \\
\text { Nextd } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} \\
\text { ungxid } \\
\hline
\end{gathered}
\] & Hemon & SE & FO & P1 & \(P\) & P10 & P25 & P90 & 875 & 190 & P95 & 199 & 8100 \\
\hline Totel & 111300 & 71 & \(2.13 E+\infty\) & 334E-03 & \(8.16 \mathrm{E}-02\) & 816E-Q & 1968-01 & 227E-01 & 4.71E-01 & \(1038+\infty\) & \(195 E+\infty\) & \(6.10 \mathrm{E}+00\) & 655E+00 & \(1618+01\) & 253E+01 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 18000 & 2 & \(10 \mathrm{EE}+01\) & 356E-02 & 589e+m & 5898+00 & 5899 +00 & 589E+00 & 589\% +00 & 589C+00 & \(155 \mathrm{E}+01\) & 155E+01 & 155E+01 & 155E+01 & 155E+01 \\
\hline 01-00 & 33000 & 2 & \(314 E+00\) & 297E-03 & \(2.78 \mathrm{E}+\infty\) & 278E+00 & 2.78E+00 & \(2788+00\) & \(2788+\infty\) & \(2785+00\) & 3SEE +00 & 3S8E +00 & \(396 \mathrm{E}+00\) & \(3968+00\) & \(3968+00\) \\
\hline 03-05 & 33000 & 3 & \(1.46 \mathrm{E}+\infty\) & 229E-03 & 603E-01 & 6.038-01 & 603E-01 & 603E-01 & \(1438+\infty\) & 1.\%E + +0 & \(1.76+\infty\) & \(1.76 \mathrm{E}+00\) & \(1.76 \mathrm{E}+00\) & \(1.76 \mathrm{E}+00\) & \(1.76 \mathrm{E}+00\) \\
\hline \(06-11\) & 65000 & 7 & \(6.79 \mathrm{E}+\infty\) & 351E-0 & 330E-01 & 330E-01 & 330E-01 & 330E-01 & 821E-01 & \(1008+00\) & \(131 \mathrm{E}+01\) & \(2.53 \mathrm{E}+01\) & \(253 \mathrm{E}+01\) & \(253 \mathrm{E}+01\) & 253E+01 \\
\hline 12-19 & 13000 & 1 & \(209 \mathrm{C}+00\) & \(0.00 E+00\) & \(209 \mathrm{E}+00\) & 209E +00 & \(209 \mathrm{E}+00\) & \(209 \mathrm{E}+00\) & \(2098+\infty\) & \(2096+\infty\) & 2095 +00 & \(209 \mathrm{E}+00\) & \(209 \mathrm{P}+00\) & \(209 \mathrm{E}+00\) & 2098 +00 \\
\hline 20-39 & 312000 & 20 & \(1.16 \mathrm{E}+\infty\) & 3.03E-03 & \(8.16 \mathrm{E}-\infty\) & \(816 \mathrm{E}-02\) & 8.16E-Q2 & \(8.16 \mathrm{E}-00\) & 196E-01 & 5018-01 & \(137 \mathrm{E}+00\) & \(2.16 \mathrm{E}+\infty\) & \(610 \mathrm{E}+00\) & \(783 \mathrm{E}+\infty 0\) & \(7835+00\) \\
\hline 40-69 & 505000 & 27 & \(2.13 \mathrm{E}+00\) & \(4 \mathrm{ME}-03\) & 227E-01 & 227E-01 & 227E-01 & 3.18E-01 & \(533 \mathrm{E}-01\) & \(107 \mathrm{E}+\infty\) & \(191 \mathrm{E}+00\) & \(6.52 \mathrm{E}+00\) & \(6.56 \mathrm{E}+00\) & \(161 \mathrm{E}+01\) & 161E+01 \\
\hline \(70+\) & 128000 & 9 & \(956 \mathrm{E}-01\) & \(200 \mathrm{E}-03\) & 284E-01 & 284E-01 & 2SEE-01 & 2848-01 & 284E-01 & 568E-01 & \(180 \mathrm{E}+00\) & \(2.13 \mathrm{E}+00\) & 226E +00 & \(226 \mathrm{E}+00\) & \(226 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Season} \\
\hline Fall & 362000 & 13 & \(195 E+\infty\) & 356e-03 & 196E-01 & 196E-01 & 196E-01 & 227E-01 & 3.188-01 & \(111 \mathrm{E}+\infty\) & 216E+00 & 652E+00 & 656E+00 & 656E+00 & 656E+00 \\
\hline Spring & 224000 & 27 & 3 ASE \(+\infty\) & 134E-02 & 1.16E-01 & 1.16E-01 & 118E-01 & 3.10E-01 & 4.87E-01 & 821E-01 & \(167 \mathrm{E}+00\) & \(155 \mathrm{E}+01\) & 161E+01 & 253E+01 & 253E+01 \\
\hline Surnoer & 264000 & 8 & \(1.00 \mathrm{E}+00\) & 3078-03 & \(8.16 \mathrm{E}-0\) & \(8.16 \mathrm{E}-\infty\) & 816E-02 & 816E-02 & 284E-01 & 466E-01 & \(568 \mathrm{E}-01\) & \(1288+00\) & \(5658+00\) & \(565 E+00\) & 565E+00 \\
\hline Winter & 263000 & 23 & \(2388+\infty\) & 498E-03 & 5.10E-01 & 5.10E-01 & 5.10e-01 & 5A8E-01 & \(103 \mathrm{E}+00\) & \(156 \mathrm{E}+00\) & \(2.13 \mathrm{E}+00\) & \(589 \mathrm{E}+\infty\) & \(6.10 \mathrm{E}+00\) & 131E+01 & \(131 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Urbanization} \\
\hline Central City & 190000 & 9 & \(143 \mathrm{E}+\infty\) & 6.84E-03 & 284E-01 & \(2.84 \mathrm{E}-01\) & 2.84E-01 & 284E-01 & 568E-01 & 6088-01 & \(128 \mathrm{E}+00\) & 169\% \(+\infty\) & \(1698+00\) & 155E+01 & 155E+01 \\
\hline Nocmeltropditao & 501000 & 40 & \(3.42 \mathrm{E}+\infty 0\) & 641E-03 & 1.16E-01 & 1.16E-01 & 330E-01 & 466E-01 & 533E-01 & 188EE +00 & \(515 \mathrm{EE}+00\) & \(656 \mathrm{E}+10\) & 1.31E+01 & \(253 \mathrm{E}+01\) & 253E+01 \\
\hline Surburba & 422000 & 22 & 903E-01 & \(130 \mathrm{E}-03\) & 8.16E-@ & \(8.16 \mathrm{E}-02\) & 8.16E-02 & 196E-01 & 301E-01 & 5488-01 & \(128 \mathrm{E}+00\) & \(209 \mathrm{E}+00\) & 2.78E+00 & \(3.73 \mathrm{E}+00\) & \(3.73 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Arinn & 16000 & 2 & 8.19E+00 & 5.78E-02 & 8.22E-01 & 8.82E-01 & 882E-01 & 8.82E-01 & 8.82E-01 & 819E+00 & \(155 \mathrm{E}+01\) & \(1.55 E+01\) & 155E+01 & 155E+01 & 155E+01 \\
\hline Native American & 8000 & 1 & \(137 \mathrm{E}+\infty\) & \(0.008+00\) & \(1.37 \mathrm{E}+00\) & \(137 \mathrm{E}+00\) & \(137 \mathrm{E}+00\) & 137E +00 & \(137 \mathrm{E}+\infty\) & \(137 \mathrm{E}+00\) & \(137 \mathrm{E}+\infty\) & \(137 \mathrm{E}+00\) & \(137 \mathrm{E}+00\) & \(137 E+\infty\) & \(1.37 E+\infty\) \\
\hline White & 1089000 & 68 & \(205 \mathrm{E}+00\) & 3238-03 & \(8.16 \mathrm{E}-\) C & 8.16E-02 & 1.18E-01 & \(227 \mathrm{E}-01\) & 460E-01 & \(1035+00\) & \(193 \mathrm{E}+\infty\) & \(5.89 \mathrm{E}+00\) & \(656 \mathrm{E}+00\) & 161E+01 & 253E+01 \\
\hline Response to Questio Do you fish? & 956000 & 60 & 235E +00 & 384E-03 & \(8.16 \mathrm{E}-02\) & 8.16E-02 & 1.18E-01 & 227E-01 & 466E-01 & 1.12E+00 & 216E+00 & \(6.52 \mathrm{E}+00\) & 656E +00 & 253E+01 & 253E+01 \\
\hline
\end{tabular}


Table 2-209. Intake of Home Caught Fish and Shelliash (f/kg-day)-South Region



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Fogulimion Grapp & \[
\underset{\text { veld }}{\mathrm{N}}
\] & N & Meng & SE & PO & Pl & P & \(\underline{210}\) & 125 & P50 & 775 & 190 & P\% & 899 & P100 \\
\hline Toun & 1007000 & 55 & \(1578+\infty\) & 105E-03 & 9840-@ & 160E-01 & 201E-01 & 2380-0 & 4A3E-01 & 838E-01 & 1.790+00 & \(3.758+\infty\) & \(567 \mathrm{E}+\infty\) & 957E+00 & 957E+60 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(01-\infty\) & 33000 & 2 & 2A1E+00 & 108E- & 1218+00 & \(121 \mathrm{E}+00\) & 121E+00 & \(121 E+00\) & \(121 \mathrm{E}+\infty\) & \(121 \mathrm{E}+\infty\) & 5612 \(+\infty 0\) & \(5618+\infty\) & 561E +00 & 561E+00 & 561E+00 \\
\hline 03-05 & 18000 & 1 & \(100 \mathrm{E}+\infty\) & \(0008+\infty\) & \(107 \mathrm{E}+\infty\) & \(10 \mathrm{Ec}+\infty\) & \(107 \mathrm{E}+00\) & \(107 \mathrm{E}+\infty\) & \(107 E+\infty\) & \(100 \mathrm{E}+\infty\) & \(107 \mathrm{E}+\infty\) & \(107 \mathrm{~L}+00\) & \(107 E+\infty\) & \(107 E+\infty\) & \(107 \mathrm{E}+\infty\) \\
\hline 06-11 & 135000 & 8 & 75SE-01 & 991E-04 & 184E-01 & 14E-01 & 1 H4E-01 & 124E-01 & SATE-01 & 6.08E-01 & 961E-01 & \(1098+\infty\) & \(158 \mathrm{E}+\infty\) & \(158 \mathrm{E}+\infty\) & \(1688+00\) \\
\hline 12-19 & 151000 & 7 & \(150 \mathrm{E}+00\) & 3208-03 & 201E-01 & \(201 \mathrm{E}-01\) & 201E-01 & \(201 \mathrm{E}-01\) & \(807 \mathrm{E}-01\) & 997E-01 & 1.79E+ +0 & \(4688+00\) & \(468+\infty\) & \(4.68 \mathrm{c}+00\) & \(4688+00\) \\
\hline 20-39 & 305000 & 16 & \(238 \mathrm{C}+00\) & 553E-03 & 160E-01 & 1.60E-01 & 3408-01 & 4ALE-01 & S9SE-01 & 7.12E-01 & \(185 \mathrm{C}+\infty\) & \(957 \mathrm{E}+\infty\) & \(957 E+\infty\) & \(9578+\infty\) & \(957 \mathrm{E}+00\) \\
\hline 40-69 & 275000 & 15 & 960E-01 & \(160 \mathrm{E}-03\) & 210E-01 & \(2.10 \mathrm{E}-01\) & 2.10E-01 & 2.10E-01 & 280E-01 & 433E-01 & 1 ASE \(+\infty\) & \(221 \mathrm{E}+00\) & \(269 \mathrm{E}+00\) & \(2008 \mathrm{E}+00\) & \(2.69 \mathrm{C}+00\) \\
\hline \(70+\) & 106000 & 6 & \(1.78 \mathrm{E}+00\) & 4.79E-03 & 9\&8E- & 988E-W & 988E-a & 2A2E-01 & 5.71E-01 & 757E-01 & \(3.73 \mathrm{E}+\infty\) & \(3.73 \mathrm{E}+\infty\) & \(3.73 \mathrm{E}+00\) & \(3.73 \mathrm{E}+\infty\) & \(3.738+00\) \\
\hline \multicolumn{16}{|l|}{Sesecn} \\
\hline Fail & 449000 & 17 & \(127 E+\infty\) & 151E-03 & 184E-01 & 1.84E-01 & 201E-01 & 2.10E-01 & 587E-01 & \(1.09 \mathrm{E}+00\) & \(185 \mathrm{E}+00\) & \(2218+00\) & \(3.738+00\) & \(3.73 \mathrm{E}+00\) & 3.73E+00 \\
\hline Spring & 336000 & 27 & \(1.35 \mathrm{E}+00\) & 264E-03 & 988E-6 & \(9888 \mathrm{E}-\mathbb{C}\) & 2.38E-01 & \(3.27 \mathrm{E}-01\) & 4A3E-01 & 608E-01 & \(168 \mathrm{E}+00\) & \(468 \mathrm{E}+00\) & \(5.61 \mathrm{E}+00\) & \(5.67 \mathrm{E}+\infty\) & \(5.67 E+00\) \\
\hline Sumer & 139000 & 4 & \(355 \mathrm{E}+00\) & 109\%-02 & 3A5E-01 & 3A5E-01 & 3A5E-01 & 3ASE-01 & 757E-01 & \(1 \mathrm{ASE}+00\) & 957E+00 & \(957 \mathrm{E}+00\) & \(957 \mathrm{E}+00\) & \(957 \mathrm{E}+00\) & \(957 \mathrm{E}+00\) \\
\hline Winter & 103000 & 7 & 9.78E-01 & 162E-03 & 160E-01 & 1.60E-01 & 160E-01 & 160E-01 & 5.71E-01 & \(1.00 \mathrm{E}+00\) & \(154 \mathrm{E}+\infty\) & \(1578+00\) & \(157 E+\infty\) & \(1.57 E+00\) & \(157 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Utbanization} \\
\hline Contral City & 528000 & 21 & \(203 \mathrm{C}+00\) & 3.31E-03 & 327E-01 & 327E-01 & 4.33E-01 & 529E-01 & 712E-01 & \(1 \mathrm{AFE}+00\) & \(185 \mathrm{E}+\infty\) & \(3.73 \mathrm{E}+00\) & \(957 \mathrm{E}+00\) & \(9578+00\) & 957E+00 \\
\hline Nommetropditan & 81000 & 9 & \(1088+00\) & 6.11E-03 & \(988 \mathrm{E}-02\) & 988E-02 & \(988 \mathrm{E}-02\) & 160E-01 & 160E-01 & 5.61E-01 & \(6.71 \mathrm{E}-01\) & \(5.67 \mathrm{E}+00\) & \(5.67 \mathrm{E}+00\) & \(567 \mathrm{E}+00\) & \(5.67 \mathrm{E}+00\) \\
\hline Surburban & 418000 & 25 & \(109 \mathrm{E}+00\) & 193E-03 & 184E-01 & 184E-01 & 201E-01 & \(210 \mathrm{E}-01\) & 308E-01 & 5.87E-01 & \(1.21 \mathrm{E}+0\) & 290E +00 & \(468 \mathrm{E}+00\) & 561E+00 & \(5.61 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Black & 165000 & 9 & \(3.73 \mathrm{E}+00\) & 922E-03 & 1.84E-01 & 1.84E-01 & 1.84E-01 & 201E-01 & 2.18E-01 & \(2.69 \mathrm{E}+00\) & 957E+00 & \(9578+00\) & 957E+00 & \(957 \mathrm{E}+00\) & 957E+00 \\
\hline White & 862000 & 46 & \(1.16 \mathrm{E}+00\) & 113E-03 & 9.88E-02 & 160E-01 & \(2.10 \mathrm{E}-01\) & 308E-01 & 5.29E-01 & 8.07E-01 & \(1.54 \mathrm{E}+00\) & 221E+00 & 3.73E+00 & \(567 \mathrm{E}+00\) & \(5.67 \mathrm{E}+00\) \\
\hline Response to Questi Do you fish? & 983000 & 53 & \(1.63 E+00\) & 206E-03 & 9.88E-018 & 160E-01 & 201E-01 & 2.18E-01 & 5ATE-01 & 9.64E-01 & 1.79E+00 & \(3.73 \mathrm{E}+00\) & 567E+00 & 957E +00 & 9.57E+00 \\
\hline
\end{tabular}

Table 2-211. Seasonally Adjusted Homegrown Per Capita Intake Rates (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Mean & P0 & & P1 & & P5 & & P10 & & P25 & & P50 & & P75 & P90 & P95 & P99 & P100 \\
\hline Total Pruits & 0.21462193 & & 0 & & 0 & & 0 & & 0 & & 0 & & 0 & 0 & 0.16173552 & 0.87817648 & 5.34938313 & 16.89300 \\
\hline Total Vegetables & 0.3657913 & & 0 & & 0 & & 0 & & 0 & & 0 & & 0 & 0.07337184 & 0.93010498 & 2.05988803 & 6.78436291 & 14.35318 \\
\hline Total Meats & 0.10911165 & & 0 & & 0 & & 0 & & 0 & & 0 & & 0 & 0 & 0 & 0.49178472 & 2.88187144 & 9.22850 \\
\hline Total Dairy & 0.10782335 & & 0 & & 0 & & 0 & & 0 & & 0 & & 0 & 0 & 0 & 0 & 1.87397677 & 30.07558 \\
\hline Total Fish & 0.03858881 & & 0 & & 0 & & 0 & & 0 & & 0 & & 0 & 0 & 0 & 0 & 0.95563983 & 8.76312 \\
\hline
\end{tabular}


TLble 2-212. Incake of Homegrown Apples (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Grovp & \[
\mathrm{N}_{\substack{\mathrm{x} \\ \hline 1 \mathrm{~d}}}
\] & \[
\begin{gathered}
\mathrm{N} \\
\text { ungeld }
\end{gathered}
\] & Men. & SE & PO & Pl & PS & P10 & P25 & PSO & P75 & P90 & P95 & P99 & P100 \\
\hline Todel & 5305000 & 27 & \(119 \mathrm{E}+0\) & SASE-04 & 5STE-02 & 83E-® & 2308-01 & 2SIE-01 & 450E-01 & 817E-01 & LATE +00 & \(2388+\infty\) & \(3 \times 0 E+\infty\) & 5A2E +00 & 101E+01 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline <01 & 70000 & 4 & 305E+00 & 236E-03 & 2.75E+00 & 2.75E +00 & \(2.75 \mathrm{E}+00\) & 2.75E+00 & 2.75E+00 & \(284 \mathrm{E}+\infty\) & 291E +00 & 4.77E+00 & 4.77E +00 & 4.77E +00 & 4.77E+00 \\
\hline 01-0 & 199000 & 12 & \(3.15 \mathrm{E}+\infty\) & 563E-03 & \(1.18 \mathrm{E}+\infty\) & \(118 \mathrm{E}+00\) & \(1.18 \mathrm{E}+00\) & \(1.18 E+00\) & \(147 \mathrm{E}+00\) & \(227 \mathrm{E}+00\) & \(292 \mathrm{E}+00\) & 5.57E+00 & 101E+01 & 101E +01 & 101E+01 \\
\hline 03-05 & 291000 & 16 & \(1.77 E+\infty\) & 127E-03 & \(8.81 \mathrm{E}-01\) & 88.51 & \(881 \mathrm{E}-01\) & 998E-01 & \(1.06 E+00\) & \(18.20+00\) & \(2276+00\) & \(268 \mathrm{E}+00\) & 269E +00 & \(3 A 8 E+00\) & \(348 E+00\) \\
\hline 06-11 & 402000 & 25 & \(128 E+00\) & 1.995-03 & 4.nE-01 & 4.72E-01 & 4.72E-01 & 563E-01 & \(780 \mathrm{E}-01\) & \(956 \mathrm{E}-01\) & \(129 \mathrm{E}+00\) & \(298 \mathrm{E}+00\) & \(4.00 \mathrm{E}+\infty 0\) & \(4006+00\) & \(400 \mathrm{E}+\infty\) \\
\hline 12-19 & 296000 & 12 & \(8.00 \mathrm{E}-01\) & 1238-03 & 1.188-01 & 1.18E-01 & 1.18E-01 & 1.18E-01 & 3.79E-01 & 425E-01 & \(1.19 \mathrm{E}+00\) & \(2.19 \mathrm{E}+00\) & \(219 E+00\) & \(2.19 \mathrm{E}+00\) & 219 E+00 \\
\hline 20-39 & 1268000 & 61 & 7958-01 & 7408-04 & 1.55E-01 & \(1.85 \mathrm{E}-01\) & 230E-01 & 250E-01 & 304E-01 & 600E-01 & \(92 \mathrm{E}-01\) & \(155 E+00\) & \(157 \mathrm{E}+00\) & 512E+00 & \(512 \mathrm{E}+00\) \\
\hline 40-69 & 171900 & 90 & 961E-01 & 989E-04 & 557E-02 & 557E-Q & 894E-@ & 2.55E-01 & \(3.98 \mathrm{E}-01\) & 648E-01 & \(108 E+00\) & \(159 \%+\infty\) & \(238 \mathrm{E}+00\) & \(9838+00\) & 983E+00 \\
\hline \(70+\) & 1061000 & 52 & \(145 E+00\) & 986E-04 & 199E-01 & 199E-01 & 260E-01 & 4,46E-01 & 627E-01 & \(1.18 \mathrm{E}+00\) & \(1.8 \mathrm{E}+0\) & \(3.40 \mathrm{E}+00\) & \(362 \mathrm{E}+\infty\) & \(420 \mathrm{E}+00\) & 420E+00 \\
\hline \multicolumn{16}{|l|}{Season} \\
\hline Fat & 1707000 & 60 & \(128 E+00\) & 734E-04 & 256E-01 & \(2.56 \mathrm{E}-01\) & \(2.95 \mathrm{E}-01\) & \(320 \mathrm{E}-01\) & 583E-01 & \(1.03 \mathrm{E}+\infty 0\) & \(1.66 \mathrm{E}+00\) & \(2.00 \mathrm{E}+00\) & \(310 \mathrm{E}+00\) & 425E+00 & 42SE +00 \\
\hline Spring & 639000 & 74 & 950E-01 & \(1.23 \mathrm{E}-03\) & 194E-01 & 1.94E-01 & 238E-01 & \(288 \mathrm{E}-01\) & 3.76E-01 & \(567 \mathrm{E}-01\) & \(1.10 \mathrm{E}+00\) & \(2000 \mathrm{E}+00\) & 2.78E +00 & \(5.878+00\) & \(587 \mathrm{E}+00\) \\
\hline Summar & 1935000 & 68 & 1.12E \(+\infty\) & 100E-03 & 5STE-02 & 5.57E-02 & 8.9E-02 & \(1.86 \mathrm{E}-01\) & 398E-01 & 6.92E-01 & \(111 \mathrm{E}+00\) & \(229 \mathrm{c}+00\) & \(298 \mathrm{E}+00\) & \(9.83 \mathrm{E}+00\) & \(983 \mathrm{E}+00\) \\
\hline Winter & 1025000 & 70 & \(130 \mathrm{E}+00\) & \(1.47 \mathrm{E}-03\) & 185E-01 & 185E-01 & 230E-01 & 323E-01 & 5.71E-01 & \(881 \mathrm{E}-01\) & \(1.59 \mathrm{E}+00\) & \(2.75 \mathrm{E}+00\) & \(310 \mathrm{E}+00\) & \(101 \mathrm{E}+01\) & 101E+01 \\
\hline \multicolumn{16}{|l|}{Urbanization} \\
\hline Cenura City & 912000 & 30 & \(124 \mathrm{E}+\infty 0\) & 149E-03 & 231E-01 & 231E-01 & 256E-01 & 392E-01 & 510E-01 & 9.17E-01 & \(1.59 \mathrm{E}+00\) & 2.19E+00 & 220E +00 & \(101 \mathrm{E}+01\) & \(101 \mathrm{E}+01\) \\
\hline Noometropoliza & 2118000 & 12 & \(127 E+\infty\) & 9.56E-04 & 5STE-02 & 5.57E-02 & 1.18E-01 & \(2 \mathrm{~A} 9 \mathrm{E}-01\) & 4.11E-01 & \(900 \mathrm{E}-01\) & \(1.55 \mathrm{E}+00\) & \(2.92 \mathrm{E}+00\) & \(3488+00\) & \(9.83 \mathrm{E}+00\) & 9.83E+00 \\
\hline Surburbas & 2276000 & 120 & \(109 \mathrm{E}+00\) & 6.65E-04 & 1.85E-01 & 186E-01 & 2.37E-01 & 291E-01 & 4.37E-01 & \(7.74 \mathrm{E}-01\) & \(129 \mathrm{E}+00\) & \(229 E+00\) & \(31.0 \mathrm{E}+00\) & \(5.42 \mathrm{E}+00\) & \(5 A 2 E+00\) \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Black & 84000 & 4 & \(188 \mathrm{E}+\infty 0\) & \(167 \mathrm{E}-03\) & 559E-01 & 5.59E-01 & 559E-01 & \(1.61 \mathrm{E}+00\) & 1.61E+00 & \(184 \mathrm{E}+00\) & \(2.29 \mathrm{E}+00\) & \(229 \mathrm{E}+00\) & \(229 \mathrm{E}+00\) & 229E+00 & 229E+00 \\
\hline White & 5222000 & 268 & \(1.18 \mathrm{E}+\infty\) & 5A9E-64 & 557E-02 & 8.34E-02 & 230E-01 & 2.79E-01 & 4.48E-01 & 7988-01 & \(141 E+00\) & \(2388+00\) & \(340 \mathrm{E}+00\) & \(542 \mathrm{E}+00\) & 101E+01 \\
\hline \multicolumn{16}{|l|}{Requa} \\
\hline Miduest & 2044000 & 123 & \(13.38+00\) & \(1.13 \mathrm{E}-03\) & 194E-01 & 216E-01 & 2.85E-01 & 304E-01 & 520E-01 & 923E-01 & \(1.6 \mathrm{EE}+00\) & \(269 \mathrm{E}+00\) & \(310 \mathrm{E}+00\) & \(983 \mathrm{E}+\infty 0\) & 101E+01 \\
\hline Northeast & 442000 & 18 & \(505 \mathrm{E}-01\) & \(5.14 \mathrm{E}-04\) & 834E-02 & 834E-02 & 8.34E-Q & \(8.94 \mathrm{E}-\Omega\) & 185E-01 & 4.58E-01 & 7.71E-01 & \(100 \mathrm{E}+00\) & \(100 \mathrm{E}+00\) & \(1.67 \mathrm{E}+00\) & \(167 \mathrm{E}+00\) \\
\hline Sounh & 1310000 & 65 & \(1.10 \mathrm{E}+00\) & \(7.52 \mathrm{E}-04\) & \(1.99 \mathrm{E}-01\) & 199E-01 & \(2.38 \mathrm{E}-01\) & \(3.01 \mathrm{E}-01\) & 4.39E-01 & \(917 \mathrm{E}-01\) & \(138 \mathrm{E}+00\) & \(190 \mathrm{E}+00\) & \(298 \mathrm{E}+00\) & 4.00E +00 & \(4.91 \mathrm{E}+\infty 0\) \\
\hline West & 1510000 & 66 & \(120 \mathrm{E}+00\) & \(8.51 \mathrm{E}-04\) & 5.57E-02 & 5.57E-02 & 186E-01 & 2.64E-01 & 4.72E-01 & \(789 \mathrm{E}-01\) & \(1.82 \mathrm{E}+00\) & \(2.75 \mathrm{E}+00\) & \(362 \mathrm{E}+00\) & \(4.25 E+\infty\) & 425E+00 \\
\hline \multicolumn{16}{|l|}{Resposse to Questionnaire} \\
\hline Do you gardent & 4707000 & 246 & \(121 E+00\) & 594E-04 & 5.5TE-00 & 127E-01 & 249E-01 & 295E-01 & 4.70E-01 & 8.17E-01 & \(1 A T E+00\) & \(2.38 \mathrm{E}+00\) & \(340 \mathrm{E}+00\) & 588E +00 & \(1.01 \mathrm{E}+01\) \\
\hline Do you farm? & 129900 & 68 & \(1.39 \mathrm{E}+00\) & \(9.48 \mathrm{E}-04\) & 5.57E-02 & 557E-02 & 357E-01 & \(536 \mathrm{E}-01\) & 703E-01 & \(9.56 \mathrm{E}-01\) & \(158 \mathrm{E}+00\) & \(299 \mathrm{E}+00\) & \(4.00 \mathrm{E}+00\) & \(4.91 \mathrm{E}+00\) & \(587 \mathrm{E}+00\) \\
\hline
\end{tabular}

Table 2-213. Intake of Homegrown Peaches (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Group & \[
\begin{gathered}
\mathbf{N} \\
\mathrm{wgrid}
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{N} \\
\text { unurgtd }
\end{gathered}
\] & Mean & SE & PO & P1 & PS & P10 & P25 & P50 & P75 & P90 & P95 & P99 & P100 \\
\hline Total & 2941000 & 193 & \(167 E+\infty\) & 138E-03 & \(3.52 \mathrm{E}-02\) & \(520 \mathrm{E}-02\) & 165E-01 & 225E-01 & 4.74E-01 & 8.97E-01 & \(188 \mathrm{E}+00\) & \(3.79 \mathrm{E}+00\) & \(6.36 \mathrm{E}+00\) & 123E+01 & \(233 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 20000 & 2 & \(269 \mathrm{E}+\infty 0\) & \(2.10 \mathrm{E}-02\) & 2.58E-01 & 258E-01 & 2.58E-01 & 258E-01 & \(2.588 \mathrm{E}-01\) & 258E-01 & \(633 \mathrm{E}+00\) & \(633 \mathrm{E}+00\) & \(633 \mathrm{E}+00\) & \(633 \mathrm{E}+00\) & \(633 E+00\) \\
\hline 01-02 & 103000 & 8 & \(240 \mathrm{E}+\infty 0\) & \(3.60 \mathrm{E}-03\) & \(2.30 \mathrm{E}-01\) & \(230 \mathrm{E}-01\) & 230E-01 & \(2.30 \mathrm{E}-01\) & \(139 \mathrm{E}+00\) & \(266 \mathrm{E}+00\) & \(322 \mathrm{E}+00\) & \(383 \mathrm{E}+00\) & \(3.86 \mathrm{E}+00\) & 3.86E+00 & \(386 \mathrm{E}+00\) \\
\hline 03-05 & 65000 & 6 & \(601 \mathrm{E}+00\) & 2A5E-02 & \(2.18 \mathrm{E}+00\) & \(2.18 \mathrm{E}+00\) & \(2.18 \mathrm{E}+00\) & \(2.18 \mathrm{E}+00\) & \(3.06 \mathrm{E}+00\) & \(3.56 \mathrm{E}+00\) & \(4.69 \mathrm{E}+00\) & \(2.23 \mathrm{E}+01\) & \(223 \mathrm{E}+01\) & \(223 E+01\) & \(223 \mathrm{E}+01\) \\
\hline 06-11 & 329000 & 26 & \(3.11 \mathrm{E}+00\) & 562E-03 & 9.75E-0 & 9.75E-02 & 101E-01 & \(1.40 \mathrm{E}-01\) & \(625 \mathrm{E}-01\) & \(1.13 \mathrm{E}+00\) & \(6.36 \mathrm{E}+00\) & \(8.53 \mathrm{E}+00\) & \(8.53 \mathrm{E}+00\) & 115E+01 & 115E+01 \\
\hline 12-19 & 177000 & 13 & \(1.60 \mathrm{E}+00\) & 333E-03 & 1.76E-01 & 1.76E-01 & \(356 \mathrm{E}-01\) & 361E-01 & 5.03E-01 & 895E-01 & 334E +00 & \(390 \mathrm{E}+00\) & \(390 \mathrm{E}+00\) & 390E +00 & 390E +00 \\
\hline 20-39 & 573000 & 35 & \(1.17 E+\infty\) & 136E-03 & 507E-02 & 507E-02 & 550E-02 & 225E-01 & \(4.74 \mathrm{E}-01\) & \(8.09 \mathrm{E}-01\) & \(1.30 \mathrm{E}+00\) & \(292 \mathrm{E}+00\) & \(2.99 \mathrm{E}+00\) & \(527 \mathrm{E}+00\) & \(5.27 \mathrm{E}+00\) \\
\hline 40-69 & 1076000 & 70 & \(1.53 \mathrm{E}+00\) & 229E-03 & 3.52E-02 & 5.87E-02 & \(1.90 \mathrm{E}-01\) & \(2.39 \mathrm{E}-01\) & \(5.56 \mathrm{E}-01\) & \(892 \mathrm{E}-01\) & \(1.61 \mathrm{E}+00\) & \(263 \mathrm{E}+00\) & 4A3E +00 & \(123 \mathrm{E}+01\) & \(123 \mathrm{E}+01\) \\
\hline \(70+\) & 598000 & 33 & \(1.01 E+\infty\) & \(146 \mathrm{E}-03\) & \(9.13 \mathrm{E}-02\) & \(9.13 \mathrm{E}-02\) & 1.38E-01 & 1.79E-01 & \(2.82 \mathrm{E}-01\) & \(822 \mathrm{E}-01\) & \(119 \mathrm{E}+00\) & \(160 \mathrm{E}+00\) & \(3.79 \mathrm{E}+00\) & 713E+00 & \(713 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Seasan} \\
\hline Fall & 485000 & 19 & 9.01E-01 & 123E-03 & 138E-01 & 138E-01 & 138E-01 & 1.79E-01 & 262E-01 & 6.43E-01 & \(119 \mathrm{E}+00\) & \(2.63 \mathrm{E}+00\) & \(2.63 \mathrm{E}+00\) & 306E +00 & 306E +00 \\
\hline Spring & 756000 & 91 & \(167 \mathrm{E}+00\) & 3,34E-03 & 500E-02 & \(507 \mathrm{E}-02\) & 5.87E-02 & 101E-01 & \(2.76 \mathrm{E}-01\) & \(7.74 \mathrm{E}-01\) & 1 ASE +00 & \(444 \mathrm{E}+00\) & 6.77E +00 & \(223 E+01\) & \(223 \mathrm{E}+01\) \\
\hline Sumpuer & 1081000 & 35 & \(226 \mathrm{E}+00\) & \(2.72 \mathrm{E}-03\) & \(165 \mathrm{E}-01\) & 165E-01 & 225E-01 & 361E-01 & \(567 \mathrm{E}-01\) & \(1.12 \mathrm{E}+00\) & \(2.99 \mathrm{E}+00\) & \(636 \mathrm{E}+00\) & \(8.53 \mathrm{E}+00\) & \(123 \mathrm{E}+01\) & \(123 \mathrm{E}+01\) \\
\hline Winter & 619000 & 48 & \(125 \mathrm{E}+00\) & 904E-04 & 3.52E-02 & \(3.52 \mathrm{E}-02\) & 239E-01 & 556E-01 & 7.79E-01 & \(1.04 \mathrm{E}+00\) & \(1.71 \mathrm{E}+00\) & \(235 \mathrm{E}+00\) & \(2.60 \mathrm{E}+00\) & 356E +00 & \(3.56 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Urbaization} \\
\hline Central City & 429000 & 12 & \(1.79 \mathrm{E}+00\) & 5.44E-03 & 1.38E-01 & 1.38E-01 & 138E-01 & 1.79E-01 & 2.59E-01 & 526E-01 & \(114 \mathrm{E}+00\) & 123E+01 & 1.23E+01 & 123E+01 & 123E+01 \\
\hline Notumetropditan & 1110000 & 99 & \(1.87 \mathrm{E}+00\) & 2.45E-03 & \(5.50 \mathrm{E}-02\) & 587E-02 & \(262 \mathrm{E}-01\) & 393E-01 & \(6.46 \mathrm{E}-01\) & \(1.02 \mathrm{E}+00\) & \(2.18 \mathrm{E}+00\) & \(3.86 \mathrm{E}+00\) & \(6.36 \mathrm{E}+00\) & \(1.15 \mathrm{E}+01\) & 223E+01 \\
\hline Surburban & 1402000 & 82 & \(147 \mathrm{E}+00\) & 134E-03 & 3.52E-02 & \(507 \mathrm{E}-02\) & \(1.40 \mathrm{E}-01\) & 2.04E-01 & 4.61E-01 & \(9.20 \mathrm{E}-01\) & \(1.87 \mathrm{E}+00\) & 3.79E +00 & \(4 \mathrm{~A} 3 \mathrm{E}+00\) & 737E+00 & 737E+00 \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Blact & 39000 & 1 & \(146 \mathrm{E}+00\) & 0.00E +00 & \(146 \mathrm{E}+00\) & \(1.46 \mathrm{E}+00\) & \(1.46 \mathrm{E}+00\) & \(146 \mathrm{E}+00\) & \(146 \mathrm{E}+00\) & \(1.46 \mathrm{E}+00\) & 146E+00 \\
\hline Other/NA & 41000 & 1 & \(2.25 \mathrm{E}-01\) & \(0.00 E+00\) & 225E-01 & 225E-01 & 225E-01 & 225E-01 & 2.25E-01 & 225E-01 & \(2.25 \mathrm{E}-01\) & \(2.25 \mathrm{E}-01\) & \(2.25 \mathrm{E}-01\) & 225E-01 & 225E-01 \\
\hline White & 2861000 & 191 & \(1.70 \mathrm{E}+00\) & 1A1E-03 & 3.52E-02 & 520E-02 & 165E-01 & 230E-01 & 5.03E-01 & 897E-01 & 196E+00 & \(3.79 \mathrm{E}+00\) & \(636 \mathrm{E}+00\) & 123E+01 & \(223 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Region} \\
\hline Midrest & 824000 & 75 & \(139 \mathrm{E}+00\) & 2.78E-03 & 6.79E-02 & 1.76E-01 & 2206-01 & 259E-01 & 460E-01 & \(7.40 \mathrm{E}-01\) & \(1.19 \mathrm{E}+00\) & \(306 \mathrm{E}+00\) & \(3.56 \mathrm{E}+00\) & 1.15E+01 & 223E+01 \\
\hline Northeast & 75000 & 5 & 2.72E+60 & 763E-03 & 204E-01 & 204E-01 & \(2.04 \mathrm{E}-01\) & \(2.04 \mathrm{E}-01\) & \(8.75 \mathrm{E}-01\) & \(3.79 \mathrm{E}+00\) & 3.79E+00 & \(713 \mathrm{E}+00\) & \(713 \mathrm{E}+00\) & \(713 \mathrm{E}+00\) & \(713 \mathrm{E}+00\) \\
\hline Sounh & 852000 & 51 & \(167 \mathrm{E}+\infty 0\) & 199E-03 & 3.52E-02 & \(350 \mathrm{E}-02\) & 1.38E~01 & \(1.79 \mathrm{E}-01\) & \(6.43 \mathrm{E}-01\) & \(102 \mathrm{E}+00\) & \(196 \mathrm{E}+00\) & \(3.83 \mathrm{E}+00\) & \(636 \mathrm{E}+00\) & \(8.53 \mathrm{E}+00\) & \(8.53 \mathrm{E}+10\) \\
\hline West & 1190000 & 62 & \(1.80 \mathrm{E}+00\) & 235E-03 & 507E-02 & 507E-02 & 1.40E-01 & 2.25E-01 & 468E-01 & 863E-01 & \(194 \mathrm{E}+00\) & \(4 A 3 E+00\) & \(737 \mathrm{E}+00\) & \(1.23 E+01\) & 123E+01 \\
\hline \multicolumn{16}{|l|}{Response to Questionnaire} \\
\hline Doyou garden? & 2660000 & 174 & \(1.75 E+\infty\) & 149E-03 & 3.52E-02 & \(520 \mathrm{E}-02\) & \(166 \mathrm{E}-01\) & 2.59E-01 & \(5.26 \mathrm{E}-01\) & \(925 \mathrm{E}-01\) & \(196 \mathrm{E}+00\) & \(3.79 \mathrm{E}+00\) & \(6.36 \mathrm{E}+00\) & \(123 E+01\) & 2.23E+01 \\
\hline Do you fam? & 769000 & 54 & \(1.56 \mathrm{E}+00\) & 209E-03 & 6.79E-02 & \(6.79 \mathrm{E}-02\) & 1.76E-01 & 226E-01 & 461E-01 & 902E-01 & \(202 \mathrm{E}+00\) & \(299 \mathrm{E}+00\). & \(6.36 \mathrm{E}+00\) & \(8.53 \mathrm{E}+00\) & \(8.53 \mathrm{E}+00\) \\
\hline
\end{tabular}

Tuble 2-214. Intice of Homegrowa Prart (e/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Popurition Grap &  & \[
\underset{\text { nemad }}{N}
\] & Mean & 58 & Po & Pl & P & P10 & P25 & PSo & P75 & P90 & P\% & P9 & P160 \\
\hline Toul & 151300 & 9 & 937E-01 & 7630-04 & 101E-01 & 101E-01 & 14E-01 & 2385-01 & 498E-01 & 6.2.28-01 & \(109 \mathrm{E}+0\) & \(1608+\infty\) & \(276 E+\infty\) & \(51.8+\infty\) & \(5168+\infty\) \\
\hline \multicolumn{16}{|l|}{Ase} \\
\hline 01-0 & 24000 & 3 & \(327 \mathrm{E}+\infty 0\) & 8ASE-03 & \(183 E+00\) & \(183 E+00\) & \(1858+\infty\) & \(123 \mathrm{E}+00\) & \(183 E+00\) & 254E+00 & 4.798 + +0 & 4.79E+00 & 4.79e +00 & 4.79E+00 & 4.79E \(+\infty\) \\
\hline 03-05 & 45000 & 3 & \(219 \mathrm{C}+00\) & 2595-03 & 1.15E+00 & \(1.15 \mathrm{E}+00\) & \(1.158+0\) & \(115 E+\infty\) & \(186 \mathrm{E}+00\) & 257E+00 & \(2.57 E+\infty\) & 257E \(+\infty\) & \(257 \mathrm{E}+00\) & 257E+00 & \(257 E+\infty\) \\
\hline 06-11 & 145000 & 10 & \(209 \%+00\) & \(4.748-13\) & 7198-01 & 719E-01 & 7.19E-01 & \(76 \mathrm{EE}-01\) & 8.138-01 & 109\%+00 & \(4.82 \mathrm{e}+00\) & \(5.168+\infty\) & \(5168+\infty\) & \(516 \mathrm{E}+00\) & \(516 \mathrm{C}+\infty\) \\
\hline 12-19 & 121000 & 7 & \(88 \mathrm{E}-01\) & \(24 \mathrm{EE}-03\) & 128E-01 & 18EE-01 & 18EE-01 & 1.8E-01 & \(4.72 \mathrm{E}-01\) & 497E-01 & \(864 \mathrm{E}-01\) & \(276 \mathrm{E}+00\) & \(2.768+\infty\) & \(2.76 \mathrm{E}+\infty\) & \(2.76 \mathrm{E}+\infty 0\) \\
\hline 20-39 & 365000 & 23 & 6.19E-01 & 510E-04 & 113E-01 & 113E-01 & 3188-01 & 3.79E-01 & 428E-01 & 503E-01 & 682E-01 & \(1228+\infty\) & \(124 \mathrm{E}+00\) & \(124 \mathrm{E}+00\) & \(124 \mathrm{E}+\infty\) \\
\hline 40-69 & 557000 & 33 & 657E-01 & 428E-04 & 101E-01 & \(101 \mathrm{E}-01\) & 1006-01 & 3.33E-01 & 423E-01 & 6A5E-01 & 922E-01 & \(1.10 \mathrm{E}+00\) & \(1.13 \mathrm{E}+\infty\) & \(151 \mathrm{E}+00\) & \(1512+\infty\) \\
\hline \(70+\) & 256000 & 15 & 934E-01 & 153E-03 & 18E-0, & 184E-01 & 184E-01 & 184E-01 & 238E-01 & 8A1E-01 & \(1.18 \mathrm{E}+00\) & \(156 \mathrm{E}+00\) & \(2888+00\) & \(2.88 \mathrm{E}+00\) & \(2888+00\) \\
\hline \multicolumn{16}{|l|}{Seasan} \\
\hline Fall & 308000 & 11 & \(104 \mathrm{E}+00\) & 154E-03 & 181E-01 & 1.81E-01 & 181E-01 & 184E-01 & 352E-01 & 729E-01 & \(133 \mathrm{E}+00\) & \(2.57 \mathrm{E}+\infty 0\) & \(2888+00\) & \(2888+00\) & \(288 \mathrm{E}+\infty\) \\
\hline Spring & 355000 & 39 & 687E-01 & \(827 E-04\) & 101E-01 & 101E-01 & 113E-01 & \(1.80 \mathrm{E}-01\) & 3388-01 & 6.00E-01 & 866E-01 & \(115 \mathrm{E}+00\) & \(1838+00\) & \(2.54 \mathrm{E}+00\) & \(254 \mathrm{E}+00\) \\
\hline Somorer & 474000 & 16 & \(622 \mathrm{E}-01\) & \(362 \mathrm{E}-04\) & 356E-01 & 356E-01 & 356E-01 & 389E-01 & 423E-01 & 503E-01 & 8.11E-01 & \(1098+00\) & \(1.18 \mathrm{E}+00\) & \(118 \mathrm{E}+00\) & \(118 \mathrm{E}+\infty\) \\
\hline Whiter & 376000 & 28 & \(1188+00\) & 2395-03 & 10\%E-01 & 108E-01 & 108E-01 & 3.79E-01 & 6ASE-01 & \(949 \mathrm{E}-01\) & \(1388+00\) & \(1.82 \mathrm{E}+00\) & \(516 E+00\) & \(516 \mathrm{E}+00\) & \(516 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Urbanization} \\
\hline Central City & 222000 & 11 & \(1618+00\) & 361E-03 & 1.4EE-01 & 184E-01 & 1.84E-01 & 184E-01 & 238E-01 & 9.84E-01 & \(276 \mathrm{E}+00\) & 4.20E 200 & \(5.16 \mathrm{E}+00\) & 516E+00 & \(5.16 \mathrm{E}+00\) \\
\hline Normetropditan & 634000 & 44 & 781E-01 & 710E-04 & \(3.33 \mathrm{E}-01\) & 3.33E-01 & 352E-01 & \(4.19 \mathrm{E}-01\) & 4.43E-01 & \(5.70 \mathrm{E}-01\) & \(8.13 \mathrm{E}-01\) & \(1.56 E+00\) & \(1.86 \mathrm{E}+00\) & 2888 +00 & 288E +00 \\
\hline Surturban & 657000 & 39 & \(850 \mathrm{E}-01\) & 898E-04 & 101E-01 & 101E-01 & 108E-01 & 1.82E-01 & 3.89E-01 & 729E-01 & 1.10e +00 & \(150 \mathrm{E}+00\) & \(257 \mathrm{E}+00\) & 4.79E +00 & \(4.79 \mathrm{C}+00\) \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Black & 51000 & 3 & 132E-01 & 158E-04 & 1010-01 & 101E-01 & 101E-01 & 101E-01 & 101E-01 & 113E-01 & 1.20E-01 & 1.82E-01 & 1.80E-01 & 182E-01 & 1.82E-01 \\
\hline White & 1462000 & 91 & 965E-01 & 7.79E-04 & 108E-01 & 108E-01 & 2.38E-01 & 352E-01 & 4.43E-01 & 701E-01 & 109E+00 & \(160 \mathrm{E}+00\) & \(288 \mathrm{E}+00\) & \(516 \mathrm{E}+00\) & \(51.6+00\) \\
\hline \multicolumn{16}{|l|}{Region} \\
\hline Midwes: & 688000 & 57 & 8.71E-01 & 864E-04 & \(222 \mathrm{E}-01\) & \(222 \mathrm{E}-01\) & 338E-01 & 3.76E-01 & 4.43E-01 & 6.45E-01 & \(104 \mathrm{E}+00\) & \(100 \mathrm{E}+00\) & \(257 \mathrm{E}+00\) & 4.79E+00 & 4.79E+00 \\
\hline Noctheast & 18000 & 2 & \(8.70 \mathrm{E}-01\) & 4.73E-03 & 235E-01 & 235E-01 & 2.35E-01 & 2.35E-01 & \(2.35 \mathrm{E}-01\) & 8.70E-01 & \(150 \mathrm{E}+00\) & \(1.50 \mathrm{E}+00\) & \(150 \mathrm{E}+00\) & 1508+00 & \(1.50 \mathrm{E}+00\) \\
\hline South & 377000
430000 & 13 & \(8.32 \mathrm{E}-01\)
\(1.14 \mathrm{E}+00\) & \(105 E-03\)
\(207 E-03\) & \(184 \mathrm{E}-01\)
\(101 \mathrm{E}-01\). & \(184 \mathrm{E}-01\)
\(101 \mathrm{E}-01\) & \(184 \mathrm{E}-01\)
\(108 \mathrm{E}=01\) & \(2.38 \mathrm{E}-01\)
\(1.13 \mathrm{E}-01\) & \(428 \mathrm{E}-01\)
\(350 \mathrm{E}-01\) & \(729 \mathrm{E}-01\)
\(752 \mathrm{E}-01\) & \(1.09 \mathrm{E}+00\)
\(1.13 \mathrm{E}+00\) & \(1.56 \mathrm{E}+\infty\)
\(2.76 \mathrm{E}+00\) & \(2.888+00\)
\(4.82 \mathrm{E}+\infty\) & \(288 \mathrm{E}+00\)
\(5.16 \mathrm{E}+0\) & \(2.88 \mathrm{E}+10\)
\(5.16 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Response to Questionnaire} \\
\hline Do you garden? & 1312000 & 85 & 9.45E-01 & \(8.40 \mathrm{E}-04\) & 101E-01 & 101E-01 & 1.82E-01 & 352E-01 & 4.31E-01 & 6.75E-01 & 1.09E+00 & 1.56E +00 & \(2.88 \mathrm{E}+\infty 0\) & \(516 E+00\) & \(516 \mathrm{E}+00\) \\
\hline Do you farm? & 528000 & 35 & \(109 \mathrm{~F}+00\) & 1.7E-03 & 108E-01 & 1.88E-01 & 222E-01 & \(3.76 \mathrm{E}-01\) & 428E-01 & 6.14E-01 & \(1.09 \mathrm{E}+00\) & \(276 \mathrm{E}+00\) & \(4.82 \mathrm{E}+00\) & 516E+00 & \(516 \mathrm{E}+00\) \\
\hline
\end{tabular}

\footnotetext{
Page 2-341 does not exist.
}

Table 2-215. Intake of Homegrown Strawberriea (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Population Group & \[
\underset{\mathbf{N}}{\mathrm{N}}
\] & \[
\underset{\text { unwitd }}{\mathrm{N}}
\] & Mean & SE & PO & P1 & P5 & P10 & P25 & P50 & P75 & P90 & P95 & P99 & P100 \\
\hline & Total & 2057000 & 139 & \(6.52 \mathrm{E}-01\) & 423E-04 & \(2.44 \mathrm{E}-02\) & 4.15E-02 & 8.16E-02 & 1.18E-01 & 2.5E-01 & 467E-01 & 820E-01 & \(1.47 E+00\) & 1.7E +00 & \(2.72 \mathrm{E}+00\) & \(483 E+00\) \\
\hline & \multicolumn{16}{|l|}{} \\
\hline & \(<01\) & 9000 & 1 & \(1.84 \mathrm{E}-01\) & \(000 \mathrm{E}+00\) & 184E-01 & 1.84E-01 & \(1.84 \mathrm{E}-01\) & 1.84E-01 & 1.84E-01 & 184E-01 & \(184 \mathrm{E}-01\) & 1.84E-01 & \(1.84 \mathrm{E}-01\) & 1.84E-01 & 184E-01 \\
\hline & 01-02 & 30000 & 2 & \(1.33 \mathrm{E}+00\) & \(2.74 \mathrm{E}-03\) & 704E-01 & 704E-01 & 704E-01 & 7.04E-01 & 7.04E-01 & \(169 \mathrm{E}+00\) & \(169 \mathrm{E}+00\) & \(1.69 \mathrm{E}+00\) & \(1.69 \mathrm{E}+00\) & \(1.69 \mathrm{E}+00\) & \(169 \mathrm{E}+00\) \\
\hline & 03-05 & 65000 & 6 & \(1.40 \mathrm{E}+00\) & 607E-03 & \(300 \mathrm{E}-01\) & \(300 \mathrm{E}-01\) & \(3000 \mathrm{E}-01\) & \(3.00 \mathrm{E}-01\) & 3.86E-01 & \(5.15 \mathrm{E}-01\) & \(297 E+\infty\) & \(483 \mathrm{E}+\infty 0\) & \(4.83 \mathrm{E}+00\) & \(4.83 \mathrm{E}+00\) & \(4.83 \mathrm{E}+00\) \\
\hline & 06-11 & 153000 & 15 & \(1.02 \mathrm{E}+00\) & \(187 \mathrm{E}-03\) & \(182 \mathrm{E}-01\) & 1.82E-01 & \(1.82 \mathrm{E}-01\) & \(2.46 \mathrm{E}-01\) & \(4.37 \mathrm{E}-01\) & 808E-01 & \(1.46 \mathrm{E}+00\) & \(2.43 \mathrm{E}+\infty 0\) & \(254 \mathrm{E}+00\) & \(2.54 \mathrm{E}+00\) & \(2.54 \mathrm{E}+00\) \\
\hline & 12-19 & 201000 & 11 & \(6.35 \mathrm{E}-01\) & 9.72E-04 & 892E-02 & 892E-02 & 8.92E-02 & 1.06E-01 & \(4.16 \mathrm{E}-01\) & \(569 \mathrm{E}-01\) & \(865 \mathrm{E}-01\) & \(1.33 E+00\) & \(1.33 \mathrm{E}+00\) & \(1.33 \mathrm{E}+00\) & \(133 \mathrm{E}+00\) \\
\hline & 20-39 & 316000 & 22 & 321E-01 & \(5.35 \mathrm{E}-04\) & \(792 \mathrm{E}-02\) & \(792 \mathrm{E}-02\) & 8.16E-02 & 10SE-01 & 118E-01 & \(205 \mathrm{E}-01\) & \(459 \mathrm{E}-01\) & \(8.20 \mathrm{E}-01\) & 9.73E-01 & \(1.56 \mathrm{E}+00\) & \(156 \mathrm{E}+00\) \\
\hline & 40-69 & 833000 & 55 & \(6.44 \mathrm{E}-01\) & 5.17E-04 & \(2.44 \mathrm{E}-02\) & \(2.44 \mathrm{E}-02\) & \(6.53 \mathrm{E}-02\) & \(1.75 \mathrm{E}-01\) & 3.55E-01 & 583E-01 & \(9.41 \mathrm{E}-01\) & \(1.42 \mathrm{E}+00\) & \(1.47 \mathrm{E}+00\) & \(2.37 \mathrm{E}+00\) & \(237 \mathrm{E}+\infty 0\) \\
\hline & \(70+\) & 449000 & 27 & \(6.36 \mathrm{E}-01\) & \(8.57 \mathrm{E}-04\) & \(4.15 \mathrm{E}-02\) & 4.15E-02 & \(4.41 \mathrm{E}-02\) & 864E-02 & 2.62E-01 & 469E-01 & 700E-01 & \(1.66 \mathrm{E}+00\) & \(189 \mathrm{C}+00\) & \(2.72 \mathrm{E}+00\) & \(2.72 \mathrm{E}+00\) \\
\hline , & \multicolumn{16}{|l|}{Season} \\
\hline : & Fall & 250000 & 8 & \(109 \mathrm{E}+00\) & 664E-04 & \(654 \mathrm{E}-01\) & 654E-01 & 6.54E-01 & 6.77E-01 & 8.12E-01 & \(100 \mathrm{E}+00\) & \(133 \mathrm{E}+\infty 0\) & \(1.47 E+00\) & \(1606 \mathrm{E}+00\) & \(166 \mathrm{E}+00\) & \(166 \mathrm{E}+00\) \\
\hline & Spring & 598000 & 66 & 830E-01 & \(109 \mathrm{E}-03\) & \(795 \mathrm{E}-02\) & \(792 \mathrm{E}-02\) & 8.92E-02 & 1.80E-01 & 2.75E-01 & \(469 \mathrm{E}-01\) & \(9.73 \mathrm{E}-01\) & \(193 \mathrm{E}+00\) & \(2.54 \mathrm{E}+00\) & 483E+00 & \(483 \mathrm{E}+00\) \\
\hline & Surmer & 388000 & 11 & 3.91E-01 & \(3.43 \mathrm{E}-04\) & 6.53E-02 & \(6.53 \mathrm{E}-02\) & \(6.53 \mathrm{E}-0 \Omega\) & \(6.53 \mathrm{E}-0\) & 125E-01 & \(428 \mathrm{E}-01\) & 597E-01 & \(621 \mathrm{E}-01\) & \(6.96 \mathrm{E}-01\) & \(6.96 \mathrm{E}-01\) & 6.96E-01 \\
\hline & Winter & 821000 & 54 & 5.13E-01 & \(530 \mathrm{E}-04\) & \(2.44 \mathrm{E}-02\) & \(2.44 \mathrm{E}-02\) & 4.41E-02 & 1.05E-01 & 2.07E-01 & 3.86E-01 & 601E-01 & \(12 \mathrm{E}+00\) & 146E+00 & \(2.37 \mathrm{E}+00\) & 237E+00 \\
\hline & \multicolumn{16}{|l|}{Urbanization} \\
\hline & Ceotral City & 505000 & 23 & 754E-01 & 827E-04 & \(4.15 \mathrm{E}-02\) & 4.15E-02 & 4.41E-02 & 892E-0 & 3.82E-01 & 4.88E-01 & \(1.33 \mathrm{E}+\infty 0\) & \(1.47 \mathrm{E}+00\) & 169E+00 & \(2.37 \mathrm{E}+00\) & 237E+00 \\
\hline & Noomerropditan & 664000 & 52 & \(6.18 \mathrm{E}-01\) & 929E-04 & \(2.44 \mathrm{E}-02\) & \(244 \mathrm{E}-02\) & \(6.53 \mathrm{E}-08\) & \(8.16 \mathrm{E}-02\) & 125E-01 & 385E-01 & \(8.14 \mathrm{E}-01\) & \(1.66 \mathrm{E}+00\) & \(2.16 \mathrm{E}+00\) & 4.83E+00 & \(483 \mathrm{E}+00\) \\
\hline & Sarbarba & 888000 & 64 & \(6.20 \mathrm{E}-01\) & \(500 \mathrm{E}-04\) & 792E-02 & \(792 \mathrm{E}-02\) & 1.81E-01 & 221E-01 & 3.45E-01 & 530E-01 & \(6.96 \mathrm{E}-01\) & \(12 \mathrm{E}+00\) & \(156 \mathrm{E}+00\) & \(2.97 \mathrm{E}+00\) & \(297 \mathrm{E}+00\) \\
\hline & \multicolumn{16}{|l|}{Race} \\
\hline & White & 2057000 & 139 & \(6.52 \mathrm{E}-01\) & 423E-04 & \(2.44 \mathrm{E}-02\) & 4.15E-02 & \(8.16 \mathrm{E}-02\) & 1.18E-01 & 2.55E-01 & 4.67E-01 & \(820 \mathrm{E}-01\) & \(1.47 E+00\) & 1.77E+00 & 2.72E +00 & \(483 \mathrm{E}+00\) \\
\hline & Region & . 12300 & & & & & & & & & & & & & & \\
\hline & Midrest & 1123000 & 76 & 6.85E-01 & 6.82E-04 & 2.44E-02 & \(2.44 \mathrm{E}-02\) & 6.53E-02 & \(8.16 \mathrm{E}-02\) & 1.82E-01 & 4.16E-01 & \(100 \mathrm{E}+\infty 0\) & \(166 \mathrm{E}+00\) & \(1.93 \mathrm{E}+00\) & \(2.97 \mathrm{E}+00\) & 4.83E +00 \\
\hline & Northeast & 382000 & 25 & \(6.35 \mathrm{E}-01\) & \(821 \mathrm{E}-04\) & \(8.92 \mathrm{E}-02\) & \(8.92 \mathrm{E}-02\) & \(1.59 \mathrm{E}-01\) & 1.82E-01 & 2.55E-01 & \(4.67 \mathrm{E}-01\) & \(8.65 \mathrm{E}-01\) & \(1.46 \mathrm{E}+\infty 0\) & \(1.83 \mathrm{E}+00\) & \(2.16 \mathrm{E}+00\) & \(2.16 \mathrm{E}+00\) \\
\hline & South & 333000 & 23 & \(6.508 \mathrm{E}-01\) & \(699 \mathrm{E}-04\) & \(1.33 \mathrm{E}-01\) & 133E-01 & 205E-01 & 3.77E-01 & 5.15E-01 & 621E-01 & \(6.96 \mathrm{E}-01\) & \(1.00 \mathrm{E}+00\) & \(100 \mathrm{E}+00\) & \(2.72 \mathrm{E}+00\) & \(2.72 \mathrm{E}+00\) \\
\hline & Wext & 219000 & 15 & 490E-01 & 522E-04 & \(864 \mathrm{E}-02\) & \(864 \mathrm{E}-12\) & 1.71E-01 & 180E-01 & 2.33E-01 & \(5.30 \mathrm{E}-01\) & 700E-01 & 8.12E-01 & \(8.12 \mathrm{E}-01\) & 9.71E-01 & 9.71E-01 \\
\hline & \multicolumn{16}{|l|}{Response to Questiomaire} \\
\hline \(\omega\) & Do you gandea? & 1843000 & 123 & \(6.3 \mathrm{E}-01\) & 4.48E-04 & \(2.44 \mathrm{E}-02\) & 415E-02 & 792E-02 & \(1.18 \mathrm{E}-01\) & 2.28E-01 & 4.53E-01 & \(820 \mathrm{E}-01\) & \(1.46 \mathrm{E}+00\) & 1.72E+00 & \(2.54 \mathrm{E}+00\) & 4.83E+00 \\
\hline N & Do you fim? & 87000 & 9 & 351E-01 & 596E-04 & \(133 \mathrm{E}-01\) & 133E-01 & 133E-01 & 1.33E-01 & 203E-01 & 2.83E-01 & \(5.15 \mathrm{E}-01\) & \(704 \mathrm{E}-01\) & 704E-01 & 7.04E-01 & 704E-01 \\
\hline
\end{tabular}

Table 2-216. Inate of Homegrown Obher Bertica (elkg-day)


Table 2-217. Intake of Homegrown Asparagus (g/kg-day)


Twble 2-218. Lnake of Homegrown Beols (f/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Fopulsom \\
Gravp
\end{tabular} & \[
\underset{\text { wid }}{N}
\] & \[
\underset{\text { Numad }}{N}
\] & Mem & 58 & RO & P1 & PS & P10 & P25 & PS & P75 & P90 & P9S & P99 & P100 \\
\hline Toul & 214000 & 125 & 5.12E-01 & 3.738-04 & 321E-02 & 321E-@ & 737E-02 & 109E-01 & 1880-01 & 397E-01 & 5.8TE-01 & 103E +00 & \(1358+\infty\) & \(38085+\infty\) & 4088+0 \\
\hline \multicolumn{16}{|l|}{Ase} \\
\hline 01-0 & 27000 & & \(381 \mathrm{E}+\infty\) & 107E-03 & \(369 \mathrm{e}+\infty\) & \(3699 \mathrm{E}+00\) & \(3685+00\) & 369E+00 & \(369 \mathrm{E}+00\) & \(369 \mathrm{E}+\infty\) & 4.08E +00 & 4088+00 & 4.08E+00 & 4088+00 & 4088+00 \\
\hline 03-05 & 51000 & 4 & \(184 \mathrm{E}+\infty\) & 4.888-03 & 4ATE-01 & 4ATE-01 & 4 ATE-01 & 4.47E-01 & 4ATE-01 & \(232 \mathrm{E}+00\) & 284E+00 & \(2978+00\) & \(297 \mathrm{E}+00\) & \(2978+00\) & \(2.978+00\) \\
\hline 06-11 & 167000 & 10 & 367E-01 & 230E-04 & 19E-01 & 192E-01 & 2398-01 & 2398-01 & 2658-01 & \(360 \mathrm{E}-01\) & 431E-01 & 5.18E-01 & \(5.18 \mathrm{E}-01\) & 5.18E-01 & 518E-01 \\
\hline 12-19 & 227000 & 13 & 381E-01 & 608E-04 & 806E-0 & 800E-02 & 806E-0 & \(1.11 \mathrm{E}-01\) & \(1.80 \mathrm{E}-01\) & \(273 \mathrm{E}-01\) & 5.7me-01 & 9198-01 & 9A9E-01 & 9A9E-01 & 9A9E-01 \\
\hline 20-39 & 383000 & 2 & 381E-01 & 4.74E-04 & 757E-02 & 7578-02 & 7STE-02 & \(122 \mathrm{E}-01\) & 143E-01 & 285E-01 & 5.56e-01 & 999E-01 & 9990-01 & \(1.12 \mathrm{E}+00\) & \(112 \mathrm{E}+00\) \\
\hline 40-69 & 951000 & 51 & 428E-01 & 3.18E-04 & 5008-02 & 500E-02 & 731E-02 & \(746 \mathrm{E}-02\) & 205E-01 & 397E-01 & 5A9P-01 & 925E-01 & \(1.15 E+00\) & \(110 \mathrm{E}+00\) & \(140 \mathrm{E}+\infty\) \\
\hline \(70+\) & 408000 & 23 & 5.80e-01 & 6.61E-04 & \(321 \mathrm{E}-02\) & 321E-02 & 321E-02 & \(4.76 \mathrm{E}-\infty\) & 2.71E-01 & 4A9E-01 & 909E-01 & 1.36E+00 & \(1.36 \mathrm{E}+\infty\) & \(1598+\infty\) & 159E+00 \\
\hline \multicolumn{16}{|l|}{Seasco} \\
\hline Pall & 562000 & 21 & 5A5E-01 & 5.72E-04 & 321E-@ & 321E-02 & 4.76E-02 & S00E-02 & 257E-01 & 356E-01 & 9A9E-01 & \(136 \mathrm{E}+00\) & \(1368+00\) & \(140 \mathrm{E}+00\) & \(140 \mathrm{E}+00\) \\
\hline Spring & 558000 & 55 & 4.70e-01 & \(8.98 \mathrm{E}-04\) & \(746 \mathrm{E}-02\) & \(7 \mathrm{AGE}-\mathbb{R}\) & 806E-02 & 109P-01 & 133E-01 & \(2.73 \mathrm{E}-01\) & 4ATE-01 & \(8.73 \mathrm{E}-01\) & \(1.598+00\) & 4088+00 & \(408 \mathrm{E}+00\) \\
\hline Summer & 676000 & 2 & 385E-01 & 2.59E-04 & 75TE-0 & \(7.57 \mathrm{E}-02\) & 120E-01 & 122E-01 & \(184 \mathrm{E}-01\) & \(397 \mathrm{E}-01\) & SA9E-01 & \(624 \mathrm{E}-01\) & 9098-01 & 9098-01 & 909E-01 \\
\hline Winter & 418000 & 27 & 730E-01 & 124E-03 & 731E-0 & 731E-02 & 731E-02 & 7.37E-0 & 280E-01 & \(520 \mathrm{E}-01\) & 828E-01 & 1.13E+00 & 232E+00 & \(369 \mathrm{E}+00\) & \(36 \%\) + +0 \\
\hline \multicolumn{16}{|l|}{Urbanization} \\
\hline Central City & 651000 & 27 & 5.18E-01 & 738E-04 & 1.11E-01 & 1.11E-01 & 135E-01 & 183E-01 & 257E-01 & 401E-01 & 5A9E-01 & 909E-01 & \(1.12 \mathrm{E}+00\) & \(3698 \mathrm{E}+00\) & \(369 \mathrm{E}+\infty\) \\
\hline Nommetropolita & 758000 & 51 & 5.77E-01 & 7A3E-04 & 500E-02 & 500E-00 & 7.312-02 & \(7.37 \mathrm{E}-02\) & 1.80E-01 & 3.86E-01 & 661E-01 & \(136 \mathrm{E}+00\) & \(140 \mathrm{E}+00\) & \(408 \mathrm{E}+00\) & \(408 \mathrm{E}+00\) \\
\hline Srrburba & 805000 & 47 & 445E-01 & 4A1E-04 & 321E-02 & 321E-02 & 4.76E-02 & \(806 \mathrm{E}-0\) & 1A3E-01 & 3.97E-01 & \(556 \mathrm{E}-01\) & \(9.25 \mathrm{E}-01\) & 9.99E-01 & 232E+00 & \(2.32 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Native American & 28000 & 1 & 73TE-02 & 0.00R +00 & 737E-02 & 737E-02 & 737E-Q & 737E-02 & 737E-02 & 737E-02 & 7.37E-02 & 7.37E-02 & 737E-0 & 737E-02 & 737E-02 \\
\hline White & 2186000 & 124 & 5.188-01 & 3.76E-04 & 321E-012 & 321E-02 & 7A6E-Q & 113E-01 & 205E-01 & 397E-01 & 587E-01 & 103E+00 & \(136 \mathrm{E}+00\) & 369E+00 & 408E+00 \\
\hline \multicolumn{16}{|l|}{Region} \\
\hline Midwest & 885000 & 53 & 6308-01 & 6.14E-04 & 500R-02 & 500E-02 & 1.13E-01 & \(183 \mathrm{E}-01\) & 3.15E-01 & 4.54E-01 & 909E-01 & 1.15E+00 & \(136 \mathrm{E}+00\) & 369E+00 & \(369 \mathrm{E}+00\) \\
\hline Northeast & 230000 & 13 & 4.81E-01 & \(8.54 \mathrm{E}-04\) & 82TE-02 & 827E-02 & 120E-01 & 120E-01 & 138E-01 & 3.97E-01 & 5.87E-01 & 9998-01 & \(1.32 \mathrm{E}+00\) & \(1.59 \mathrm{E}+00\) & \(1.59 \mathrm{E}+00\) \\
\hline South & 545000 & 31 & 451E-01 & \(8.85 \mathrm{E}-04\) & \(7.46 \mathrm{E}-02\) & \(746 \mathrm{E}-02\) & 757E-02 & 806E-02 & \(1.80 \mathrm{E}-01\) & \(264 \mathrm{E}-01\) & 484E-01 & 661E-01 & \(984 \mathrm{E}-01\) & 408E+00 & \(408 \mathrm{E}+00\) \\
\hline Wert & 554000 & 28 & 39\%E-01 & 551E-04 & 321E-02 & 321E-02 & 4.76E- \(\mathbb{R}\) & 731E-02 & 121E-01 & 286E-01 & 5A9E-01 & 624E-01 & 704E-01 & 232E+00 & 232E+00 \\
\hline \multicolumn{16}{|l|}{Respose to Quextiomaire} \\
\hline Do you garden? & 2107000 & 120 & 526E-01 & 389E-04 & 321E-02 & 321E-02 & 737E-02 & 9.56E-02 & 205E-01 & 401E-01 & 606E-01 & 103E +00 & \(136 \mathrm{E}+00\) & 369E+00 & 4.08E+00 \\
\hline Do you fam? & 229000 & 11 & 396E-01 & 484E-04 & 184E-01 & 184E-01 & 184E-01 & 1.84E-01 & 285E-01 & 286E-01 & 498E-01 & 520E-01 & 103E+00 & \(103 \mathrm{E}+00\) & 103E+00 \\
\hline
\end{tabular}


Table 2-219. Intake of Homegrown Broccoli (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Group & \[
\begin{gathered}
\mathrm{N} \\
\text { wid }
\end{gathered}
\] & \[
\underset{\text { nongtd }}{N}
\] & Mean & SE & PO & P1 & P5 & P10 & P25 & P50 & P75 & P90 & P95 & P99 & P100 \\
\hline Total & 1745000 & 80 & \(420 \mathrm{E}-01\) & 322E-04 & 4.50E-02 & 761E-02 & 824E-02 & 156E-01 & 196E-01 & 290E-01 & 4.59E-01 & 8.15E-01 & 9.74E-01 & 2A8E +00 & 302E+00 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline 03-05 & 13000 & 1 & \(424 \mathrm{E}-01\) & 0.00E +00 & 424E-01 & 424E-01 & 424E-01 & 424E-01 & 424E-01 & \(424 \mathrm{E}-01\) & \(4.24 \mathrm{E}-01\) & 424E-01 & 424E-01 & 424E-01 & 4.24E-01 \\
\hline 06 -11 & 187000 & 9 & \(427 \mathrm{E}-01\) & 5.48E-04 & 1.78E-01 & 1.78E-01 & 1.78E-01 & 1.78E-01 & 2.75E-01 & 403E-01 & 661E-01 & 886E-01 & 886E-01 & 8.86E-01 & 8.86E-01 \\
\hline 12-19 & 102000 & 4 & 625E-01 & 101E-03 & 1.75E-01 & \(1.75 \mathrm{E}-01\) & \(1.75 \mathrm{E}-01\) & 1.75E-01 & \(1.75 \mathrm{E}-01\) & 737E-01 & 9.74E-01 & \(9.74 \mathrm{E}-01\) & \(9.74 \mathrm{E}-01\) & \(9.74 \mathrm{E}-01\) & 9.74E-01 \\
\hline 20-39 & 486000 & 19 & 3.18E-01 & 334E-04 & 761E-02 & \(761 \mathrm{E}-02\) & 799E-02 & 7998-02 & \(1.72 \mathrm{E}-01\) & \(2.44 \mathrm{E}-01\) & \(3.99 \mathrm{E}-01\) & \(7.77 \mathrm{E}-01\) & \(9.19 \mathrm{E}-01\) & \(9.9 \mathrm{E}-01\) & 919E-01 \\
\hline 40-69 & 761000 & 37 & 4.12E-01 & 4.53E-04 & \(824 \mathrm{E}-02\) & \(824 \mathrm{E}-02\) & 106E-01 & \(164 \mathrm{E}-01\) & 222E-01 & 351E-01 & \(461 \mathrm{E}-01\) & \(6.14 \mathrm{E}-01\) & \(8.15 \mathrm{E}-01\) & \(302 \mathrm{E}+00\) & \(300 \mathrm{E}+00\) \\
\hline \(70+\) & 196000 & 10 & 594E-01 & 186E-03 & . \(4.50 \mathrm{E}-02\) & \(4.50 \mathrm{E}-02\) & 1.86E-01 & 1.86E-01 & \(203 \mathrm{E}-01\) & 2.31E-01 & 2.90E-01 & 2.48E+00 & 2.48E +00 & \(2 \mathrm{ABE}+00\) & 248E+00 \\
\hline \multicolumn{16}{|l|}{Season} \\
\hline Pall & 624000 & 20 & 2.87E-01 & 2.09E-04 & 799E-02 & 7.99E-02 & 799E-02 & 824E-02 & 1.75E-01 & 2.31E-01 & 3.79E-01 & 452E-01 & 529E-01 & 8.15E-01 & \(8.15 \mathrm{E}-01\) \\
\hline Spring & 258000 & 27 & \(5.43 \mathrm{E}-01\) & 121E-03 & 4.50E-0 & 4.50E-02 & \(1.54 \mathrm{E}-01\) & 1.70E-01 & \(265 \mathrm{E}-01\) & 3312E-01 & 589E-01 & \(125 \mathrm{E}+00\) & \(2.37 \mathrm{E}+00\) & \(302 \mathrm{E}+00\) & \(3.00 \mathrm{E}+00\) \\
\hline Simmer & 682000 & 22 & SO8E-01 & 5.96E-04 & 761E-02 & 7.61E-02 & 129E-01 & 1.78E-01 & \(2.15 \mathrm{E}-01\) & 3.99E-01 & \(6.61 \mathrm{E}-01\) & 886E-01 & \(9.74 \mathrm{E}-01\) & 248E+00 & \(2.48 \mathrm{E}+00\) \\
\hline Winter & 181000 & 11 & 3.75E-01 & 6.66E-04 & 100E-01 & \(1.06 \mathrm{E}-01\) & 106E-01 & 1.15E-01 & 223E-01 & 231E-01 & 4.40E-01 & 9.19E-01 & 9.19E-01 & 9.19E-01 & 9.19E-01 \\
\hline \multicolumn{16}{|l|}{} \\
\hline Central City & 165000 & 5 & 360E-01 & 721E-04 & 164E-01 & 164E-01 & 164E-01 & \(1664 \mathrm{E}-01\) & 1.86E-01 & 203E-01 & 2.88E-01 & 919E-01 & 9.19E-01 & \(9.19 \mathrm{E}-01\) & 9.19E-01 \\
\hline Nonmetropdita & 647000 & 34 & 423E-01 & 3.05E-04 & 4.50E-0 & 450E-02 & 129E-01 & 1.70E-01 & \(223 \mathrm{E}-01\) & \(3.69 \mathrm{E}-01\) & \(5.89 \mathrm{E}-01\) & 7.47E-0i & 8.86E-01 & \(9.74 \mathrm{E}-01\) & \(9.74 \mathrm{E}-01\) \\
\hline Surburban & 933000 & 41 & 429E-01 & 548E-04 & \(7.99 \mathrm{E}-02\) & 799E-02 & \(824 \mathrm{E}-02\) & 1.44E-01 & 2.13E-01 & \(2.44 \mathrm{E}-01\) & \(4.41 \mathrm{E}-01\) & 6.8AE-01 & \(2.35 \mathrm{E}+00\) & 2.48E+09 & \(30 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Oher/NA & 26000 & 1 & 3.09e-01 & 0.00E +00 & 309E-01 & 309E-01 & 309E-01 & 309E-01 & 309E-01 & 309E-01 & 3.09E-01 & 3.09E-01 & 309E-01 & 3.98E-01 & 309E-01 \\
\hline White & 171900 & 79 & 4.22E-01 & 3.26E-04 & 4.50E-02 & 761E-02 & \(824 \mathrm{E}-02\) & 1.56E-01 & 196E-01 & 288E-01 & 4.59E-01 & \(8.15 \mathrm{E}-01\) & 9.74E-61 & 248E +0 & \(302 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Region} \\
\hline Midneat & 792000 & 38 & \(263 \mathrm{E}-01\) & 4.06E-04 & \(761 \mathrm{E}-02\) & \(761 \mathrm{E}-02\) & 799E-02 & 824E-02 & \(1.75 \mathrm{E}-01\) & 2.13E-01 & 2.75E-01 & 3.44E-01 & 4.03E-01 & 302E +00 & 3ME +00 \\
\hline Northeast & 427000 & 19 & 530E-01 & 8.75E-04 & \(4.50 \mathrm{E}-02\) & 4.50E-02 & 144E-01 & 1.70E-01 & 223E-01 & \(3.99 \mathrm{E}-01\) & 4.59E-01 & \(8.15 \mathrm{E}-01\) & \(248 \mathrm{E}+00\) & \(2 \mathrm{ABE}+00\) & \(248 \mathrm{E}+00\) \\
\hline Soush & 373000 & 16 & 6.14E-01 & 4.00E-04 & \(2.23 \mathrm{E}-01\) & 223E-01 & 223E-01 & 362E-01 & 4.34E-01 & \(6.14 \mathrm{E}-01\) & 7.47E-01 & \(9.74 \mathrm{E}-01\) & \(9.74 \mathrm{E}-01\) & \(125 \mathrm{E}+00\) & \(125 \mathrm{E}+00\) \\
\hline Weat & 153000 & 7 & 4.55E-01 & 6.78E-04 & \(2.12 \mathrm{E}-01\) & 2.12E-01 & 231E-01 & 231E-01 & \(2.77 \mathrm{E}-01\) & 309E-01 & \(4.79 \mathrm{E}-01\) & 9.19E-01 & 919E-01 & 919E-01 & 9.19E-01 \\
\hline \multicolumn{16}{|l|}{Rexponse to Questiomaire} \\
\hline Do you garden? & 1729000
599000 & 78 & 4.22E-01 & 324E-04 & \(4.50 \mathrm{E}-02\) & 761E-02 & \(824 \mathrm{E}-02\) & 164E-01 & 1.96E-01 & 290E-01 & 4.59E-01 & 8.15E-01 & \(9.74 \mathrm{E}-01\) & 2A8E+00 & 302E +00 \\
\hline Do you fam? & 599000 & 29 & 466E-01 & 5.83E-04 & 4.50E-02 & 4.50E-02 & 7.51E-02 & \(154 \mathrm{E}-01\) & 1.95E-01 & 3.10E-01 & 6.61E-01 & 885E-01 & 9.74E-01 & \(302 \mathrm{E}+00\) & \(302 \mathrm{E}+00\) \\
\hline
\end{tabular}

Table 2-220. Intake of Homegrown Cabbage (e/rg-day)



Table 2-221. Intake of Homegrown Carrots (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Group & \[
\begin{gathered}
\mathrm{N} \\
\mathrm{wgtd}
\end{gathered}
\] & \[
\frac{N}{\text { lunwgta }}
\] & Mean & SE & PO & P1 & P5 & P10 & 925 & P50 & P75 & P90 & P95 & 899 & P100 \\
\hline Total & 4322000 & 193 & \(4.38 \mathrm{E}-01\) & 2.87E-04 & 390E-02 & \(4.12 \mathrm{E}-02\) & 6.35E-02 & \(923 \mathrm{E}-02\) & 1.79E-01 & \(328 \mathrm{E}-01\) & 5.25E-01 & 795E-01 & 108E +00 & \(221 \mathrm{E}+00\) & 7.79E+00 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline < 01 & 65000 & 3 & \(360 \mathrm{E}+00\) & 1.03E-02 & \(1.71 \mathrm{E}+00\) & \(7.79 \mathrm{E}+00\) \\
\hline 01-02 & 51000 & 4 & \(100 \mathrm{E}+00\) & 4.37E-03 & \(2.72 \mathrm{E}-01\) & \(2.72 \mathrm{E}-01\) & 2.72E-01 & \(2.72 \mathrm{E}-01\) & \(2.72 \mathrm{E}-01\) & 2.72E-01 & \(2.11 \mathrm{E}+00\) & 294E +00 & 294E+00 & \(2945+00\) & 294E+00 \\
\hline 03-05 & 53000 & 3 & 6.91E-01 & 8.12E-04 & 5.43E-01 & 5.43E-01 & 543E-01 & 5.43E-01 & \(5.43 \mathrm{E}-01\) & 707E-01 & \(7.07 \mathrm{E}-01\) & 105E +00 & 105E+00 & \(1.05 E+00\) & \(105 \mathrm{E}+00\) \\
\hline 06-11 & 299000 & 14 & 427E-01 & 6.20E-04 & 796E-02 & 796E-02 & 796E-02 & 1.79E-01 & \(1.94 \mathrm{E}-01\) & 285E-01 & 627E-01 & \(795 \mathrm{E}-01\) & \(1.10 \mathrm{E}+00\) & \(1.59 \mathrm{E}+00\) & \(1.59 \mathrm{E}+00\) \\
\hline 12-19 & 389000 & 17 & 282E-01 & 3.50E-04 & 6.15E-02 & 6.15E-02 & 6.15E-02 & 6.35E-02 & 6.81E-02 & 200E-01 & \(426 \mathrm{E}-01\) & 565E-01 & \(6.19 \mathrm{E}-01\) & \(1.01 \mathrm{E}+00\) & \(101 \mathrm{E}+00\) \\
\hline 20-39 & 1043000 & 46 & \(283 \mathrm{E}-01\) & 230E-04 & 4.47E-02 & 4.47E-02 & 502E-02 & \(800 \mathrm{E}-02\) & \(120 \mathrm{E}-01\) & 1.99E-01 & \(409 \mathrm{E}-01\) & \(564 \mathrm{E}-01\) & 756E-01 & \(1.19 \mathrm{E}+00\) & \(1.19 \mathrm{E}+00\) \\
\hline 40-69 & 1848000 & 82 & \(425 \mathrm{E}-01\) & 228E-04 & 390E-02 & 3.90E-02 & 6.74E-02 & 123E-01 & \(2.15 \mathrm{E}-01\) & 3.67E-01 & \(5.50 \mathrm{E}-01\) & \(7.76 \mathrm{E}-01\) & 1.01E +00 & \(1.53 \mathrm{E}+00\) & \(221 E+00\) \\
\hline \(70+\) & 574000 & 24 & 4.44E-01 & 3.55E-04 & \(739 \mathrm{E}-02\) & \(7.39 \mathrm{E}-02\) & \(1.79 \mathrm{E}-01\) & 196E-01 & \(2.60 \mathrm{E}-01\) & \(3.70 \mathrm{E}-01\) & \(5.39 \mathrm{E}-01\) & 964E-01 & 108E+00 & \(1.08 \mathrm{E}+00\) & \(108 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Season} \\
\hline Fall & 1810000 & 66 & 4.61E-01 & 590E-04 & 9.09E-02 & 909E-02 & \(1.10 \mathrm{E}-01\) & 120E-01 & \(1.99 \mathrm{E}-01^{\circ}\) & 308E-01 & 5.09E-01 & \(7.76 \mathrm{E}-01\) & \(108 \mathrm{E}+00\) & 1.71E+00 & 7.79E+00 \\
\hline Spring & 267000 & 28 & 5.55E-01 & 103E-03 & 1.39E-01 & \(1.39 \mathrm{E}-01\) & \(1.49 \mathrm{E}-01\) & 202E-01 & \(2.16 \mathrm{E}-01\) & 3.92E-01 & 6.09E-01 & 9.94E-01 & 2.11E+00 & 294E+00 & 294E +00 \\
\hline Summer & 1544000 & 49 & 3.88E-01 & \(2.22 \mathrm{E}-04\) & 4.12E-02 & 4.12E-02 & 502E-02 & 6.74E-02 & 164E-01 & \(3.76 \mathrm{E}-01\) & 5.13E-01 & \(8.40 \mathrm{E}-01\) & 964E-01 & \(1.19 \mathrm{E}+00\) & \(1.19 \mathrm{E}+00\) \\
\hline Winter & 701000 & 50 & 4.44E-01 & 6.29E-04 & 3.90E-02 & 390E-02 & \(434 \mathrm{E}-02\) & 6.35E-02 & \(1.56 \mathrm{E}-01\) & 225E-01 & \(6.40 \mathrm{E}-01\) & 10SE+00 & \(153 \mathrm{E}+00\) & 306E +00 & \(300 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Urbanization} \\
\hline Contra City & 963000 & 29 & 2.82E-01 & 2.12E-04 & 390E-02 & 3.90E-02 & 6.35E- 0 & 810E-02 & 163E-01 & \(2.09 \mathrm{E}-01\) & 385E-01 & 5.25E-01 & 5.88E-01 & 964E-01 & 964E-01 \\
\hline . Normetropolitan & 1675000 & 94 & \(5.18 \mathrm{E}-01\) & 6.73E-04 & \(4.12 \mathrm{E}-02\) & 4.12E-00 & \(5.36 \mathrm{E}-02\) & 6.81E-02 & \(2.00 \mathrm{E}-01\) & 328E-01 & 5.13E-01 & \(9.55 \mathrm{E}-01\) & \(1.19 \mathrm{E}+00\) & 7.79E+00 & 7.79E+00 \\
\hline Surburban & 1684000 & 70 & 4.48E-01 & \(2.59 \mathrm{E}-04\) & 6.74E-02 & 6.74E-02 & 909E-02 & 116E-01 & 202E-01 & 3.77E-01 & \(6.35 \mathrm{E}-01\) & 795E-01 & \(109 \mathrm{E}+00\) & 1.71E+00 & \(1.71 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Asian & 74000 & 2 & 9.13E-01 & 2.92E-03 & 120E-01 & \(120 \mathrm{E}-01\) & 1208-01 & \(120 \mathrm{E}-01\) & \(120 \mathrm{E}-01\) & 9.13E-01 & \(1.71 \mathrm{E}+\infty 0\) & 1.71E +00 & \(1.71 \mathrm{E}+00\) & 1.71E +00 & \(1.71 \mathrm{E}+00\) \\
\hline Black & 107000 & 7 & \(1.56 \mathrm{E}+00\) & 8.59E-03 & \(9.11 \mathrm{E}-02\) & \(9.11 \mathrm{E}-02\) & \(9.11 \mathrm{E}-02\) & 9.11E-02 & \(162 \mathrm{E}-01\) & \(2.54 \mathrm{E}-01\) & \(4.09 \mathrm{E}-01\) & \(7.79 \mathrm{E}+00\) & \(7.79 \mathrm{E}+00\) & \(7.79 \mathrm{E}+00\) & \(7.79 \mathrm{E}+00\) \\
\hline Other NA & 171000 & 6 & 1.13E-01 & \(2.88 \mathrm{E}-04\) & 4.12E-02 & 4.12E-02 & 4.12E-02 & 4.12E-02 & 5.36E-02 & \(6.15 \mathrm{E}-02\) & \(9.23 \mathrm{E}-02\) & \(3.92 \mathrm{E}-01\) & \(3.92 \mathrm{E}-01\) & \(3.92 \mathrm{E}-01\) & \(3.92 \mathrm{E}-01\) \\
\hline White & 3970000 & 178 & 4.13E-01 & 1.73E-04 & 390E-02 & \(434 \mathrm{E}-02\) & 796E-02 & 1.11E-01 & \(194 \mathrm{E}-01\) & 3.33E-01 & 527E-01 & 7.76E-01 & 101E+00 & \(1.59 \mathrm{E}+00\) & \(3.06 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Region} \\
\hline Miduest & 2001000 & 97 & 4.57E-01 & 2.78E-04 & 3.90E-02 & 3.90E-02 & 800E- \(\mathbb{R}\) & 137E-01 & \(200 \mathrm{E}-01\) & \(3.73 \mathrm{E}-01\) & 539E-01 & 9.55E-01 & \(110 \mathrm{E}+00\) & \(2.11 \mathrm{E}+00\) & 306E +00 \\
\hline Northeast & 735000 & 29 & 405E-01 & 5.52E-04 & \(4.12 \mathrm{E}-02\) & 4.12E-02 & \(5.36 \mathrm{E}-02\) & 6.15E-O2 & \(9.34 \mathrm{E}-02\) & \(1.49 \mathrm{E}-01\) & \(6.35 \mathrm{E}-01\) & \(109 \mathrm{E}+00\) & 1.71E+00 & \(221 \mathrm{E}+00\) & \(221 \mathrm{E}+00\) \\
\hline South & 378000 & 20 & 627E-01 & \(262 \mathrm{E}-03\) & 4.47E-02 & 4.47E-02 & \(4.47 \mathrm{E}-02\) & \(5.02 \mathrm{E}-02\) & \(1.49 \mathrm{E}-01\) & \(2.72 \mathrm{E}-01\) & \(409 \mathrm{E}-01\) & 500E-01 & \(994 \mathrm{E}-01\) & \(7.79 \mathrm{E}+00\) & \(7.79 \mathrm{E}+00\) \\
\hline West & 1208000 & 47 & 368E-01 & 202E-04 & 6.74E-02 & 6.74E-02 & \(9.11 \mathrm{E}-02\) & \(1.43 \mathrm{E}-01\) & 1.90E-01 & 3.33E-01 & \(4.59 \mathrm{E}-01\) & \(7.56 \mathrm{E}-01\) & 8.40E-01 & \(9.64 \mathrm{E}-01\) & \(9.64 \mathrm{E}-01\) \\
\hline \multicolumn{16}{|l|}{Response to Questiomaire} \\
\hline Do you garden?
Do you fam? & \[
\begin{array}{r}
4054000 \\
833000
\end{array}
\] & 182
40 & \[
\begin{aligned}
& 404 \mathrm{E}-01 \\
& 360 \mathrm{E}-01
\end{aligned}
\] & \[
\begin{aligned}
& 1.79 \mathrm{E}-04 \\
& 4.12 \mathrm{E}-04
\end{aligned}
\] & \[
\begin{aligned}
& 3.90 \mathrm{E}-02 \\
& 9.09 \mathrm{E}-02
\end{aligned}
\] & \[
\begin{aligned}
& 4.12 \mathrm{E}-02 \\
& 909 \mathrm{E}-02
\end{aligned}
\] & \[
\begin{aligned}
& 6.81 \mathrm{E}-02 \\
& 9.34 \mathrm{E}-02
\end{aligned}
\] & \[
\begin{aligned}
& 9.34 \mathrm{E}-02 \\
& 1.10 \mathrm{E}-01
\end{aligned}
\] & \[
\begin{aligned}
& 1.79 \mathrm{E}-01 \\
& 1.79 \mathrm{E}-01
\end{aligned}
\] & \[
\begin{aligned}
& 328 \mathrm{E}-01 \\
& 228 \mathrm{E}-01
\end{aligned}
\] & \[
\begin{aligned}
& 5.09 \mathrm{E}-01 \\
& 4.59 \mathrm{E}-01
\end{aligned}
\] & \[
\begin{aligned}
& 7.62 \mathrm{E}-01 \\
& 6.19 \mathrm{E}-01
\end{aligned}
\] & \[
\begin{aligned}
& 108 \mathrm{E}+00 \\
& 1.19 \mathrm{E}+00
\end{aligned}
\] & \[
\begin{aligned}
& 1.71 \mathrm{E}+00 \\
& 2.11 \mathrm{E}+00
\end{aligned}
\] & \[
\begin{aligned}
& 306 \mathrm{E}+00 \\
& 294 \mathrm{E}+00
\end{aligned}
\] \\
\hline
\end{tabular}

Table 2-222. Incake of Homegrown Com ( \(/ / \mathrm{kg}-\mathrm{day}\) )



Table 2-223 Intake of Homegrown Cucumbers (g/kg-day)


Table 2-224. Inake of Homegrowa Letweo (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Poputiacion Grap & \[
\underset{\substack{\text { modd }}}{N}
\] &  & Meng & SE & PO & P1 & PS & P10 & P25 & P50 & P75 & 990 & P95 & P9 & P100 \\
\hline Total & 1520000 & 80 & 387E-01 & 231E-04 & 0008+00 & 0,00E +00 & 4A9E-Q & 9A3E-02 & 1.70E-01 & 28EE-01 & 5ASE-01 & 835E-01 & \(103 \mathrm{E}+00\) & 105E+00 & \(1288+00\) \\
\hline \multicolumn{16}{|l|}{Ase} \\
\hline \(<01\) & 16000 & 1 & \(000 \mathrm{E}+\infty 0\) & \(0.006+00\) & 0008 +00 & 0008 +00 & \(00008+00\) & \(000 \mathrm{E}+00\) & \(0.00 \mathrm{E}+00\) & O.00E+00 & 0.00E +00 & \(0.00 \mathrm{E}+00\) & 0008 +00 & \(0.008+00\) & \(000 \mathrm{E}+\infty 0\) \\
\hline 01-C & 54000 & 4 & 5.838-01 & 596E-04 & 337E-01 & 337E-01 & 337E-01 & 377E-01 & 4.698-01 & 598E-01 & \(598 \mathrm{E}-01\) & \(8.36 \mathrm{E}-01\) & 836E-01 & \(836 \mathrm{E}-01\) & \(8368-01\) \\
\hline 03-05 & 25000 & 2 & 606E-01 & \(184 \mathrm{E}-03\) & 387E-01 & 387E-01 & 3.87E-01 & 387E-01 & 387E-01 & \(3.7 \mathrm{EE}-01\) & 994E-01 & 941E-01 & 991E-01 & 994E-01 & \(994 \mathrm{E}-01\) \\
\hline 06-11 & 173000 & 7 & 28E-01 & 4AE-04 & 4.9\%E-0 & 4ASE-Q & 4.49E-02 & 4.19E-Q & 493E-Q & 327E-01 & 406E-01 & 5A5E-01 & 5ASE-01 & 5ASE-01 & 5ASE-01 \\
\hline 12-19 & 71000 & 3 & \(264 \mathrm{E}-01\) & \(113 \mathrm{E}-03\) & 9A3E-W & 9A3E-Q & 9A3E-02 & 9A3E-6 & 9.43E-02 & \(9688-00\) & \(9688-00\) & \(798 \mathrm{E}-01\) & 798E-01 & 798E-01 & 7988-09 \\
\hline 20-39 & 379000 & 17 & 251E-01 & \(223 \mathrm{E}-04\) & 198E-00 & 1988-a & \(1.98 \mathrm{E}-00\) & 335E-02 & 201E-01 & 229E-01 & \(2.75 \mathrm{E}-01\) & 480E-01 & 5338-01 & 5388-01 & \(5388 \mathrm{E}-01\) \\
\hline 40-69 & 455000 & 26 & 484E-01 & 4ASE-04 & 1.15E-01 & \(1.15 \mathrm{E}-01\) & \(115 \mathrm{E}-01\) & 124E-01 & \(2.21 \mathrm{E}-01\) & 491E-01 & 684E-01 & 886E-01 & \(1.05 \mathrm{E}+00\) & \(128 \mathrm{E}+00\) & \(1288+00\) \\
\hline \(70+\) & 317000 & 20 & \(452 \mathrm{E}-01\) & 569E-04 & 504E-@ & 504E-02 & 6.71E-Q & 1.12E-01 & 223E-01 & 2.88E-01 & 568E-01 & \(103 \mathrm{E}+00\) & \(103 \mathrm{E}+00\) & 1038+00 & \(103 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Season} \\
\hline Fall & 214000 & 8 & 6.878-01 & 694E-04 & 1568-01 & 156E-01 & 156E-01 & 156E-01 & 460E-01 & 6.84E-01 & 103E +00 & \(1058+00\) & 1 105E +00 & 105E +00 & \(105 \mathrm{E}+00\) \\
\hline Spring & 352000 & 35 & 4.52E-01 & 4.84E-04 & 5.04E-Q & 504E-02 & 6.71E-00 & 124E-01 & 199E-01 & \(4.53 \mathrm{E}-01\) & 5.79E-01 & \(7988-01\) & 994E-01 & \(128 \mathrm{E}+00\) & \(128 \mathrm{E}+00\) \\
\hline Simmer & 856000 & 30 & \(3 \mathrm{mE}-01\) & \(2.35 \mathrm{E}-04\) & 198E-@ & 198E-02 & 3,35E-02 & 493E-02 & \(1.42 \mathrm{E}-01\) & 230E-01 & \(4.24 \mathrm{E}-01\) & 598E-01 & 8.14E-01 & \(88 \mathrm{EE}-01\) & 8.86E-01 \\
\hline Wrater & 98000 & 7 & 238E-01 & 506E-04 & \(0.00 E+00\) & \(000 \mathrm{E}+00\) & \(000 \mathrm{E}+00\) & 000E+00 & 127E-01 & 220E-01 & 387E-01 & 483E-01 & 4.83E-01 & 483E-01 & 4.83E-01 \\
\hline \multicolumn{16}{|l|}{Utranization} \\
\hline Central City & 268000 & 8 & 520E-01 & 5.808-04 & 201E-01 & 201E-01 & 201E-01 & 201E-01 & 2.84E-01 & 568E-01 & 9.42E-01 & \(103 \mathrm{E}+00\) & 103E+00 & \(103 \mathrm{E}+00\) & \(103 \mathrm{E}+00\) \\
\hline Noometropdits & 566000 & 36 & 3.67E-01 & 3.81E-04 & 1.98E-00 & 198E-02 & \(3.35 \mathrm{E}-02\) & 4.49E-00 & 123E-01 & \(2888 \mathrm{E}-01\) & 5ASE-01 & \(8.14 \mathrm{E}-01\) & \(8880 \mathrm{E}-01\) & \(128 \mathrm{E}+00\) & \(128 \mathrm{E}+00\) \\
\hline Surturtan & 686000 & 36 & 3A9E-01 & 3.13E-04 & 000E+00 & \(0.00 \mathrm{E}+00\) & 943E-01 & \(968 \mathrm{E}-02\) & 153E-01 & 230E-01 & 4.91E-01 & 767E-01 & \(994 \mathrm{E}-01\) & \(105 \mathrm{E}+00\) & \(105 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Arian & 9000 & 1 & 1.74E-01 & 0.00E+00 & 1.74E-01 & 1.74E-01 & 1.74E-01 & 1.74E-01 & \(1.74 \mathrm{E}-01\) & 1.74E-01 & 1.74E-01 & 1.74E-01 & 1.74E-01 & 1.74E-01 & \(1.74 \mathrm{E}-01\) \\
\hline Black & 51000 & 3 & \(590 \mathrm{E}-01\) & 654E-04 & 4.80E-01 & 480E-01 & 4.80E-01 & 4.80E-01 & 480E-01 & 491E-01 & 798E-01 & 798E-01 & 798E-01 & 798E-01 & 798E-01 \\
\hline OtherNA & 26000 & 1 & 494E-01 & 0.00E +00 & 4.94E-01 & 4.9EE-01 & \(4 \mathrm{ME}-01\) & \(494 \mathrm{E}-01\) & 494E-01 & 494E-01 & 494E-01 & \(4.94 \mathrm{E}-01\) & 4.94E-01 & \(494 \mathrm{E}-01\) & 4948-01 \\
\hline White & 143400 & 75 & 3.79E-01 & 2A1E-04 & \(0.00 \mathrm{E}+00\) & \(0.00 E+00\) & 4AEE-02 & 9A3E-02 & 156E-01 & 2.75E-01 & \(5.45 \mathrm{E}-01\) & 8.86E-01 & \(103 \mathrm{E}+00\) & \(105 E+00\) & \(128 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{} \\
\hline Midwest & 630000 & 33 & 383E-01 & 4.01E-04 & 1.98E-02 & 198E-@ & 335E-02 & 449E-02 & \(156 \mathrm{E}-01\) & 234E-01 & \(5688 \mathrm{E}-01\) & 942E-01 & \(103 \mathrm{E}+00\) & \(103 \mathrm{E}+00\) & \(103 E+00\) \\
\hline Northeart & 336000 & 16 & \(3.85 \mathrm{E}-01\) & 494E-04 & 9A3E-02 & 943E-00 & 9A3E-Q & 968E-02 & 142E-01 & 3.15E-01 & \(6258-01\) & 6.84E-01 & \(105 \mathrm{E}+00\) & \(105 \mathrm{E}+00\) & \(105 \mathrm{E}+\infty\) \\
\hline South & 305000 & 20 & \(3.52 \mathrm{E}-01\) & 4.65E-04 & \(000 \mathrm{E}+00\) & \(0.00 \mathrm{E}+00\) & \(0.00 \mathrm{E}+00\) & 127E-01 & \(164 \mathrm{E}-01\) & 2.75E-01 & \(4883 \mathrm{E}-01\) & 5.79E-01 & \(104 \mathrm{E}+00\) & \(128 \mathrm{E}+00\) & \(128 \mathrm{E}+00\) \\
\hline Wed & 249000 & 11 & 442E-01 & 4.13E-04 & 1.74E-01 & 1.74E-01 & 201E-01 & 201E-01 & 229E-01 & 4.80E-01 & 5.98E-01 & \(767 \mathrm{E}-01\) & 798E-01 & 798E-01 & 798E-01 \\
\hline \multicolumn{16}{|l|}{Responses to Questionmaire} \\
\hline Do you garden? & 1506000 & 78 & 390E-01 & \(232 \mathrm{E}-04\) & \(000 \mathrm{E}+00\) & \(000 \mathrm{E}+00\) & 4A9E-0 & \(943 \mathrm{E}-00\) & \(1.74 \mathrm{E}-01\) & 2.84E-01 & 5ASE-01 & \[
8.36 \mathrm{E}-01
\] &  & 105E+00 & \(128 \mathrm{E}+00\) \\
\hline Do you fam? & 304000 & 18 & 3.88E-01 & 6.05E-04 & 198E-@ & 198E-02 & 198E-02 & 335E-02 & 493E-02 & 2.75E-01 & 5ASE-01 & 8.86E-01 & \(1.04 E+0\) & \(128 \mathrm{E}+00\) & \(128 \mathrm{E}+00\) \\
\hline
\end{tabular}

Table 2-225. Intake of Homegrown Lima Beans (e/te-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Group & \[
\begin{gathered}
\mathbf{N} \\
\mathbf{w g l d}
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{N} \\
\text { ungritd }
\end{gathered}
\] & Mean & SE & PO & P1 & PS & P10 & P25 & P50 & P75 & P90 & P95 & P99 & P100 \\
\hline Total & 191700 & 109 & 4.53E-01 & 3.10E-04 & \(0.00 \mathrm{E}+\infty 0\) & \(0.00 \mathrm{E}+00\) & \(919 \mathrm{e}-02\) & 121E-01 & 188E-01 & 290E-01 & 5.45E-01 & \(9.90 \mathrm{E}-01\) & \(169 \mathrm{E}+00\) & \(1.86 \mathrm{E}+00\) & \(1.91 E+\infty\) \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 35000 & 2 & 000E +00 & \(0.00 E+00\) & 0.00E +00 & 0.00E +00 & \(0.00 \mathrm{E}+00\) & \(0.00 \mathrm{E}+00\) & \(000 \mathrm{E}+00\) & \(000 \mathrm{E}+00\) & \(0.00 \mathrm{E}+00\) & \(0.00 \mathrm{E}+00\) & 000E +00 & 0.00E +00 & \(0.00 \mathrm{E}+\infty\) \\
\hline 01-02 & 62000 & 3 & \(109 \mathrm{E}+00\) & 1.46E-03 & \(769 \mathrm{E}-01\) & 769E-01 & \(769 \mathrm{E}-01\) & 769E-01 & \(769 \mathrm{E}-01\) & 8.61E-01 & \(1.53 \mathrm{E}+00\) \\
\hline 03-05 & 35000 & 2 & \(1.15 E+00\) & \(1.58 \mathrm{E}-03\) & \(9.90 \mathrm{E}-01\) & 990E-01 & 990E-01 & \(9.90 \mathrm{E}-01\) & \(990 \mathrm{E}-01\) & 990E-01 & \(9.90 \mathrm{E}-01\) & \(1.69 \mathrm{E}+00\) & \(1608 \mathrm{E}+00\) & \(1.69 \mathrm{E}+00\) & \(169 \mathrm{E}+00\) \\
\hline 06-11 & 95000 & 7 & \(287 \mathrm{E}-01\) & 2.72E-04 & \(2007 \mathrm{E}-01\) & \(207 \mathrm{E}-01\) & \(2.07 \mathrm{E}-01\) & \(200 \mathrm{E}-01\) & \(207 \mathrm{E}-01\) & 239E-01 & 396E-01 & 4,09E-01 & \(432 \mathrm{E}-01\) & 4.32E-01 & \(432 \mathrm{E}-01\) \\
\hline 12-19 & 108000 & 6 & \(2.19 \mathrm{E}-01\) & 4.92E-04 & \(900 \mathrm{E}-02\) & 9.02E-00 & \(902 \mathrm{E}-02\) & \(902 \mathrm{E}-02\) & 9.43E-02 & 156E-01 & \(3.10 \mathrm{E}-01\) & \(524 \mathrm{E}-01\) & \(524 \mathrm{E}-01\) & 5.24E-01 & 5.24E-01 \\
\hline 20-39 & 464000 & 20 & 384E-01 & \(451 \mathrm{E}-04\) & 323E-02 & 323E-02 & \(108 \mathrm{E}-01\) & \(1.30 \mathrm{E}-01\) & 1.77E-01 & \(2.34 \mathrm{E}-01\) & 4.87E-01 & 937E-01 & \(1.10 \mathrm{E}+00\) & \(1.10 E+00\) & \(1.10 \mathrm{E}+00\) \\
\hline 40-69 & 757000 & 44 & 4.54E-01 & 4.80E-04 & \(9.19 \mathrm{E}-02\) & \(9.19 \mathrm{E}-02\) & \(106 \mathrm{E}-01\) & 121E-01 & 204E-01 & 2.93E-01 & \(560 \mathrm{E}-01\) & \(8.69 \mathrm{E}-01\) & \(1.71 \mathrm{E}+00\) & \(191 E+00\) & \(1.91 E+00\) \\
\hline \(70+\) & 361000 & 25 & 523E-01 & 8.77E-04 & 820E-02 & 820E-02 & 1.86E-01 & 188E-01 & 225E-01 & 286E-01 & 6.38E-01 & \(1.86 \mathrm{E}+00\) & \(1.86 \mathrm{E}+00\) & \(186 \mathrm{E}+00\) & \(186 \mathrm{E}+00\) \\
\hline Season & - & & & & & & & & & & & & & & \\
\hline Fall & 375000 & 14 & 3078-01 & 4.39E-04 & \(9.19 \mathrm{E}-02\) & \(9.19 \mathrm{E}-02\) & \(9.19 \mathrm{E}-12\) & \(1.06 \mathrm{E}-01\) & 186E-01 & 2.12E-01 & 3.57E-01 & 4.16E-01 & \(1.10 E+00\) & \(1.10 \mathrm{E}+00\) & \(1.10 \mathrm{E}+00\) \\
\hline Spring & 316000 & 39 & 4.19E-01 & 6.11E-04 & \(820 \mathrm{E}-02\) & \(820 \mathrm{E}-02\) & \(9.02 \mathrm{E}-02\) & 131E-01 & \(2.32 \mathrm{E}-01\) & \(3008 \mathrm{E}-01\) & 5.45E-01 & \({ }^{7} .48 \mathrm{E}-01\) & \(131 \mathrm{E}+00\) & \(1.91 \mathrm{E}+00\) & \(1.91 \mathrm{E}+00\) \\
\hline Summer & 883000 & 29 & 499E-01 & 555E-04 & 0.00E +00 & 0.00E +00 & \(9.43 \mathrm{E}-02\) & \(121 \mathrm{E}-01\) & 1.72E-01 & 290E-01 & 4.87E-01 & \(153 \mathrm{E}+00\) & \(1.7 \mathrm{E}+00\) & \(1.86 \mathrm{E}+00\) & \(1.86 \mathrm{E}+00\) \\
\hline Winter & 343000 & 27 & 527E-01 & 5.54E-04 & \(0.00 \mathrm{E}+00\) & 0.00E+00 & 323E-02 & 108E-01 & \(305 \mathrm{E}-01\) & 539E-01 & 758E-01 & 861E-01 & 8.69E-01 & 169E+00 & \(169 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Urbanization} \\
\hline Contral City & 204000 & 8 & 3298-01 & 202E-04 & 2.45E-01 & 2.45E-01 & 2.45E-01 & 2.45E-01 & \(285 \mathrm{E}-01\) & 299E-01 & 3.57E-01 & 3.57E-01 & 560E-01 & 609E-01 & 6.09E-01 \\
\hline Nommetropditan & 1075000 & 69 & 299E-01 & \(2.58 \mathrm{E}-04\) & \(000 \mathrm{E}+00\) & 323E-02 & \(9.43 \mathrm{E}-02\) & 121E-01 & 1.71E-01 & 2.12E-01 & \(320 \mathrm{E}-01\) & 4.87E-01 & 769E-01 & \(169 \mathrm{E}+10\) & \(1.91 E+00\) \\
\hline Surburba & 638000 & 32 & 753E-01 & 6.80E-04 & 000E +00 & \(0.00 \mathrm{E}+00\) & 820E-02 & \(9.19 \mathrm{E}-02\) & 320E-01 & \(6.78 \mathrm{E}-01\) & \(9.90 \mathrm{E}-01\) & 1.71E+00 & \(1.86 \mathrm{E}+00\) & \(1.86 \mathrm{E}+10\) & \(186 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Black & 213000 & 9 & \(102 \mathrm{E}+00\) & \(1.44 \mathrm{E}-03\) & 2.98E-01 & 2.98E-01 & 2.98E-01 & 298E-01 & \(2.99 \mathrm{E}-01\) & \(8.55 \mathrm{E}-01\) & \(1.71 \mathrm{E}+00\) & \(186 \mathrm{E}+00\) & \(1.86 \mathrm{E}+00\) & \(1.86 \mathrm{E}+00\) & \(186 E+00\) \\
\hline White & 170400 & 100 & 383E-01 & 2.50E-04 & \(000 \mathrm{E}+00\) & \(0.00 \mathrm{E}+00\) & 9.19E-02 & 108E-01 & 1.77E-01 & \(2.54 \mathrm{E}-01\) & 487E-01 & 861E-01 & 990E-01 & \(1.53 \mathrm{E}+00\) & \(1.91 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Region} \\
\hline Midzest & 588000 & 36 & 4.28E-01 & 4.83E-04 & 000E +00 & 0000 +00 & \(000 \mathrm{E}+00\) & 100E-01 & \(253 \mathrm{E}-01\) & 306E-01 & 4.15E-01 & 9.90E-01 & \(1.53 \mathrm{E}+00\) & \(1.69 \mathrm{E}+00\) & \(169 \%+00\) \\
\hline Northeast & 68000 & 6 & 333E-01 & 900E-04 & \(820 \mathrm{E}-\mathrm{O}\) & \(820 \mathrm{E}-02\) & 820E-02 & \(820 \mathrm{E}-02\) & 9.02E-02 & \(2.73 \mathrm{E}-01\) & 526E-01 & 7.09E-01 & \(709 \mathrm{E}-01\) & 709E-01 & 709E-01 \\
\hline South & 1261000 & 67 & 4.72E-01 & 409E-04 & 323E-02 & 323E-02 & 103E-01 & 130E-01 & \(1.77 \mathrm{E}-01\) & \(2.49 \mathrm{E}-01\) & \(6.34 \mathrm{E}-01\) & \(1.10 \mathrm{E}+00\) & \(1.71 \mathrm{E}+00\) & \(186 \mathrm{E}+00\) & \(191 E+00\) \\
\hline \multicolumn{16}{|l|}{Resporse to Questiomaire} \\
\hline Do you ganden? & 1610000 & 97 & 4.47E-01 & 349E-04 & 000E +00 & \(323 \mathrm{E}-02\) & 9.43E-0 & \(121 E-01\) & 1.77E-01 & 2.85E-01 & 5268-01 & 937E-01 & \(1.71 \mathrm{E}+00\) & 1.86E +00 & \(1.91 \mathrm{E}+00\) \\
\hline Do you fam? & 62000 & 6 & 3.07E-01 & 120E-03 & 323E-02 & 323E-02 & 323E-02 & 323E-02 & \(323 \mathrm{E}-02\) & 108E-01 & 7.48E-01 & 8.19E-01 & 8.19E-01 & \(8.19 \mathrm{E}-01\) & \(8.19 \mathrm{E}-01\) \\
\hline
\end{tabular}

Table 2-226. Intake of Homegrown Otra (8/kz-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Popuition Grap & \[
\begin{gathered}
\mathrm{N} \\
\text { werid }
\end{gathered}
\] & \[
\xrightarrow[\text { nownd }]{\mathrm{N}}
\] & Mean & SE & RO & P1 & PS & P10 & P25 & P50 & 875 & P90 & P95 & P9 & P100 \\
\hline Toul & 169600 & 82 & 391E-01 & 265E-04 & \(0.00 E+00\) & \(0.00 \mathrm{E}+00\) & 503E-Q & 959E-@ & 1ASE-01 & 299E-01 & 4588-01 & 781E-01 & \(121 \mathrm{E}+\infty\) & \(1.53 \mathrm{~F}+00\) & 1532+00 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 29000 & 1 & \(0008+00\) & \(0000 \mathrm{E}+00\) & \(000 \mathrm{E}+00\) & 000E +00 & 000E +00 & \(000 \mathrm{E}+00\) & \(000 \mathrm{E}+00\) & \(000 \mathrm{E}+00\) & 000E +00 & 000E+00 & \(0.00 \mathrm{E}+\infty 0\) & \(0.00 \mathrm{E}+00\) & 000E+00 \\
\hline 01-0 & 53000 & 2 & 6.168-01 & 227E-03 & \(100 \mathrm{E}-01\) & 1.00E-01 & \(10 \mathrm{E}-01\) & 1.02E-01 & \(102 \mathrm{E}-01\) & \(10 \mathrm{EE}-01\) & \(115 E+00\) & \(1.15 \mathrm{E}+00\) & \(1.158+\infty\) & \(115 \mathrm{E}+00\) & \(1.15 E+00\) \\
\hline 03-05 & 68000 & 3 & 2388-01 & \(765 \mathrm{E}-04\) & 115E-01 & 1.15E-01 & \(1.15 \mathrm{E}-01\) & \(1.15 \mathrm{E}-01\) & \(115 \mathrm{E}-01\) & 1.76E-01 & 1.76E-01 & 661E-01 & \(664 \mathrm{E}-01\) & 664E-01 & 664E-01 \\
\hline 06-11 & 218000 & 11 & 7238-01 & \(114 \mathrm{E}-03\) & 503E-0 & 503E-02 & 5038-0 & 503E-0 & 3688-01 & 553E-01 & \(153 \mathrm{E}+00\) & \(153 \mathrm{E}+00\) & \(1.53{ }^{\text {P }}+\infty\) & \(1.53 \mathrm{E}+00\) & \(153 \mathrm{E}+00\) \\
\hline 12-19 & 194000 & 9 & 493E-01 & 7.77E-04 & 950E-02 & \(960 \mathrm{E}-\infty\) & 950E-02 & \(1.15 \mathrm{E}-01\) & \(251 \mathrm{E}-01\) & 3.75E-01 & 600E-01 & \(121 \mathrm{E}+00\) & \(121 E+00\) & \(121 E+00\) & \(121 \mathrm{E}+00\) \\
\hline 20-39 & 417000 & 18 & 2.10E-01 & \(200 \mathrm{E}-04\) & 269E-02 & 269E-02 & 269E-0 & 8.48E-0 & 1.168-01 & \(148 E-01\) & \(28 \mathrm{EE}-01\) & 4388-01 & 4388-01 & 438E-01 & 438E-01 \\
\hline 40-69 & 587000 & 32 & 400E-01 & 349E-04 & 6.57E-02 & 6.57E-02 & 1.11E-01 & 13 EE -01 & 2A7E-01 & 307E-01 & 462E-01 & 781E-01 & \(114 \mathrm{E}+00\) & 114E+00 & \(114 \mathrm{E}+00\) \\
\hline \(70+\) & 130000 & 6 & 300E-01 & 258E-04 & 1.74E-01 & 1.74E-01 & \(1.74 \mathrm{E}-01\) & \(1.74 \mathrm{E}-01\) & \(2.27 \mathrm{E}-01\) & 3.13E-01 & 3A7E-01 & 4588-01 & 458E-01 & 458E-01 & 458E-01 \\
\hline \multicolumn{16}{|l|}{Season} \\
\hline Fal & 228000 & 9 & 450E-01 & 6A5E-04 & 183E-01 & 1.83E-01 & 1.83E-01 & 183E-01 & 247E-01 & 3.138-01 & 523E-01 & 114E+00 & \(1.14 \mathrm{E}+00\) & \(114 \mathrm{E}+00\) & \(114 \mathrm{E}+00\) \\
\hline Spring & 236000 & 24 & 387E-01 & 627E-04 & 298E-02 & 298E-00 & 4.58E-02 & 6.5TE-02 & 110E-01 & \(4.10 \mathrm{E}-01\) & 595E-01 & 781E-01 & 999E-01 & \(1078+00\) & \(107 \mathrm{E}+00\) \\
\hline Sprmer & 1144000 & 41 & 386E-01 & 3A4E-04 & \(000 \mathrm{E}+00\) & \(0.00 \mathrm{E}+00\) & 5038-0 & 959E-02 & 144E-01 & 299E-01 & 438E-01 & \(115 \mathrm{E}+00\) & \(153 E+00\) & \(153 \mathrm{E}+00\) & \(153 \mathrm{E}+00\) \\
\hline Winter & 88000 & 8 & 318E-01 & 4.85E-04 & 167E-01 & \(167 \mathrm{E}-01\) & 167E-01 & 227E-01 & 253E-01 & \(2.82 \mathrm{E}-01\) & 330E-01 & 661E-01 & 664E-01 & 661E-01 & 664E-01 \\
\hline \multicolumn{16}{|l|}{Urberization} \\
\hline Central City & 204000 & 6 & 252E-01 & 2.108-04 & 137E-01 & 1.37E-01 & 137E-01 & 137E-01 & 144E-01 & 298E-01 & 307E-01 & 3.75E-01 & 3.75E-01 & 3.75E-01 & 3.75E-01 \\
\hline Nonmetropolitan & 1043000 & 55 & 365E-01 & 362E-04 & \(0.00 \mathrm{E}+00\) & \(0.00 \mathrm{e}+00\) & \(269 \mathrm{E}-\infty\) & 8A8E-02 & \(148 \mathrm{E}-01\) & 257E-01 & 438E-01 & 781E-01 & \(153 \mathrm{E}+00\) & \(153 E+00\) & \(1.53 \mathrm{E}+00\) \\
\hline Surturbas & 449000 & 21 & 514E-01 & 4.76E-04 & 6.57E-02 & 6.5TE-02 & \(960 \mathrm{E}-0\) & 11E-01 & 313E-01 & 4.62E-01 & 600E-01 & \(1.14 \mathrm{E}+00\) & \(1.15 \mathrm{E}+00\) & \(115 \mathrm{E}+0\) & \(115 E+00\) \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Alian & 41000 & 1 & \(144 \mathrm{E}-01\) & 0,00E +00 & 14E-01 & \(1.44 \mathrm{E}-01\) & 14EE-01 & \(144 \mathrm{E}-01\) & 144E-01 & 1A4E-01 & 144E-01 & 144E-01 & 144E-01 & 144E-01 & 144E-01 \\
\hline Black & 236000 & 13 & \(222 \mathrm{E}-01\) & \(256 \mathrm{E}-04\) & 298E-0 & 298E-02 & 4.58E-0 & 503E-02 & \(1.16 \mathrm{E}-01\) & \(2.98 \mathrm{E}-01\) & 3.02E-01 & 4.38E-01 & 4.38E-01 & 4.38E-01 & 438E-01 \\
\hline White & 141900 & 68 & 420E-01 & 305E-04 & \(0.00 \mathrm{E}+00\) & 000E +00 & 6.5TE-0 & 960E-02 & \(1.76 \mathrm{E}-01\) & 330E-01 & 523E-01 & \(114 \mathrm{E}+00\) & \(121 \mathrm{E}+00\) & \(153 \mathrm{E}+00\) & \(153 E+\infty\) \\
\hline Requa & & & & & & & & & & & & & & & \\
\hline Miamest & 113000
143000 & 70 & 3,73E-01 & 2.73E-04 & 2988-01
\(000 E+00\) & 2.98E-01
\(0.00 E+00\) & 2988-01 & \(298 \mathrm{E}-01\)
\(848 \mathrm{E}-\infty\) & \(299 \mathrm{E}-01\)
\(144 \mathrm{E}-01\) & 3507E-01 & \(405 E-01\)
\(438 \mathrm{E}-01\) & \(5.40 \mathrm{E}-01\)
\(747 \mathrm{E}-01\) & \(5.70 \mathrm{E}-01\)
\(121 \mathrm{E}+00\) & \(5.70 \mathrm{E}-01\)
\(153 \mathrm{E}+00\) & \(5.70 \mathrm{E}-01\)
\(153 \mathrm{E}+00\) \\
\hline Wer & 140000 & 5 & 602E-01 & 8.79E-04 & 191E-01 & 191E-01 & 191E-01 & 191E-01 & 400E-01 & 523E-01 & 562E-01 & \(1.14 \mathrm{E}+00\) & \(1.14 \mathrm{E}+\infty\) & \(114 \mathrm{E}+00\) & \(114 \mathrm{E}+\infty\) \\
\hline \multicolumn{16}{|l|}{Rexponse to Questiomaire} \\
\hline Doyou garden? & 1564000 & 77 & 384E-01 & 284E-04 & 000E +00 & \(000 \mathrm{E}+00\) & 503E-0 & \(9.59 \mathrm{E}-02\) & \(1.48 \mathrm{E}-01\) & 298E-01 & 4.52E-01 & \(107 E+00\) & \(121 \mathrm{E}+00\) & \(1.53 E+00\) & \(1.53 E+00\) \\
\hline Do you fam? & 233000 & 14 & 584E-01 & 6.02E-04 & 226E-01 & 226E-01 & 220E-01 & 3.13E-01 & \(3.46 \mathrm{E}-01\) & 5.76E-01 & 704E-01 & \(115 E+00\) & \(1.15 \mathrm{E}+00\) & \(115 \mathrm{E}+00\) & \(115 E+00\) \\
\hline
\end{tabular}

Table 2-227. Intake of Homegrown Onions (g/kz-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Populatióo Group & \[
\begin{gathered}
\mathrm{N} \\
\mathrm{wgld}
\end{gathered}
\] & \[
\frac{\mathrm{N}}{\text { ungigtd }}
\] & Mean & SE & PO & P1 & P5 & P10 & P25 & P50 & P75 & P90 & P95 & P99 & P100 \\
\hline Total & 6718000 & 370 & 296E-01 & 139E-04 & 201E-03 & 368E-03 & 909E-03 & \(2.90 \mathrm{E}-02\) & 8.81E-02 & 206E-01 & 3.77E-01 & 6.09E-01 & 9.12E-01 & \(1.49 \mathrm{E}+00\) & \(311 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline <01 & 61000 & 3 & 793E-02 & 166E-04 & 3.70E-02 & \(3.70 \mathrm{E}-02\) & 3.70E-02 & 3.70E-02 & \(3.70 \mathrm{E}-02\) & 103E-01 & 124E-01 & 124E-02 & 124E-01 & 124E-01 & 124E-01 \\
\hline 01-02 & 291000 & 17 & 421E-01 & 5.57E-04 & 1.06E-01 & 106E-01 & 106E-01 & 1.81E-01 & 2.76E-01 & 353E-01 & \(5.09 \mathrm{E}-01\) & 8.18E-01 & 818E-01 & 1.77E+00 & \(1.77 \mathrm{E}+\infty\) \\
\hline 03-05 & 178000 & 9 & \(3 \mathrm{ARE}-01\) & \(633 \mathrm{E}-04\) & \(9.75 \mathrm{E}-02\) & 9.75E-02 & 9.75E-02 & 9.75E-02 & 168E-01 & \(2.46 \mathrm{E}-01\) & \(4.36 \mathrm{E}-01\) & 603E-01 & \(1.01 \mathrm{E}+00\) & \(105 \mathrm{E}+00\) & \(105 \mathrm{E}+00\) \\
\hline 06-11 & 530000 & 31 & 303E-01 & \(429 \mathrm{E}-04\) & 9.80E-03 & 9.80E-03 & \(108 \mathrm{E}-02\) & 2.76E-02 & 106E-01 & \(228 \mathrm{E}-01\) & \(3.83 \mathrm{E}-01\) & 609E-01 & \(1.368+00\) & \(136 \mathrm{EE}+\infty\) & \(136 \mathrm{E}+\infty\) \\
\hline 12-19 & 652000 & 37 & \(2.11 \mathrm{E}-01\) & \(2.75 \mathrm{E}-04\) & 5.14E-03 & \(5.14 \mathrm{E}-03\) & \(836 \mathrm{E}-03\) & \(858 \mathrm{E}-03\) & 597E-02 & \(142 \mathrm{E}-01\) & 255E-01 & \(5.74 \mathrm{E}-01\) & 759E-01 & \(9.12 \mathrm{E}-01\) & 912E-01 \\
\hline 20-39 & 1566000 & 78 & 2888 -01 & \(2.40 \mathrm{E}-04\) & \(9.05 \mathrm{E}-03\) & \(909 \mathrm{E}-03\) & \(3.80 \mathrm{E}-02\) & 5.80E-02 & \(9.40 \mathrm{E}-02\) & 191E-01 & \(3.04 \mathrm{E}-01\) & \(6388 \mathrm{E}-01\) & \(9.35 \mathrm{E}-01\) & \(1.49 \mathrm{E}+00\) & \(1.49 \mathrm{E}+\infty\) \\
\hline 40-69 & 2402000 & 143 & \(250 \mathrm{E}-01\) & 160E-04 & 201E-03 & 303E-03 & 459E-03 & \(1.11 \mathrm{E}-02\) & \(766 \mathrm{E}-02\) & 1.72E-01 & 358E-01 & 5.52E-01 & 690E-01 & \(111 \mathrm{E}+00\) & \(141 \mathrm{E}+\infty\) \\
\hline \(70+\) & 1038000 & 52 & 433E-01 & \(627 \mathrm{E}-04\) & 4.76E-03 & 4.76E-03 & \(6.68 \mathrm{E}-03\) & 268E-02 & 1.35E-01 & 2.86E-01 & 4.61E-01 & 563E-01 & 268E+00 & \(3.11 \mathrm{E}+00\) & \(311 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Season} \\
\hline Fall & 1557000 & 59 & 3.75E-01 & 426E-04 & 3.68E-03 & 3.68E-03 & \(2.55 \mathrm{E}-02\) & 5.80E-02 & 123E-01 & 2.55E-01 & \(436 \mathrm{E}-01\) & 6.03E-01 & 7.83E-01 & 3.11E+00 & 311E +00 \\
\hline Spring & 1434000 & 147 & 195E-01 & \(1.99 \mathrm{E}-04\) & \(201 \mathrm{E}-03\) & 2.01E-03 & \(5.47 \mathrm{E}-03\) & \(2688 \mathrm{E}-02\) & \(5.73 \mathrm{E}-02\) & \(106 \mathrm{E}-01\) & 259E-01 & \(426 \mathrm{E}-01\) & \(5.23 \mathrm{E}-01\) & \(1.41 \mathrm{E}+00\) & \(1.77 \mathrm{E}+00\) \\
\hline Sumber & 2891000 & 101 & 300E-01 & \(1.72 \mathrm{E}-04\) & \(8.36 \mathrm{E}-03\) & 8.58E-03 & 1.68E-02 & 422E-02 & 1.08E-01 & 228E-01 & \(3.76 \mathrm{E}-01\) & 690E-01 & 969E-01 & 1.49E+00 & \(149 \mathrm{E}+00\) \\
\hline Winter & 836000 & 63 & 2.88E-01 & 3.35E-04 & 3.03E-03 & 303E-03 & 4.59E-03 & 5.04E-03 & 306E-02 & 199E-01 & \(4.60 \mathrm{E}-01\) & 6.42E-01 & \(9.16 \mathrm{E}-01\) & \(1.36 \mathrm{E}+00\) & \(136 \mathrm{E}+\infty\) \\
\hline \multicolumn{16}{|l|}{Urbaization} \\
\hline Central City & 890000 & 37 & \(2.16 \mathrm{E}-01\) & 184E-04 & 4.76E-03 & 4.76E-03 & 1.00E-02 & 255E-02 & 6.60E-02 & 193E-01 & \(2.96 \mathrm{E}-01\) & \(5.18 \mathrm{E}-01\) & 563E-01 & \(5.63 \mathrm{E}-01\) & 563E-01 \\
\hline Nonmetropditan & 2944000 & 177 & \(324 \mathrm{E}-01\) & 100E-04 & 224E-03 & 8.12E-03 & \(3.14 \mathrm{E}-02\) & 6.75E-0 & 142E-01 & \(2.55 \mathrm{E}-01\) & 4.33E-01 & 6.30E-01 & \(9.12 \mathrm{E}-01\) & \(1.49 \mathrm{E}+00\) & 1.77E +00 \\
\hline Surturban & 2884000 & 156 & 292E-01 & \(2.72 \mathrm{E}-04\) & 201E-03 & 303E-03 & 520E-03 & 1.10E-02 & 5.85E-02 & \(1.30 \mathrm{E}-01\) & 356E-01 & \(635 \mathrm{E}-01\) & \(9.69 \mathrm{E}-01\) & \(3.11 \mathrm{E}+00\) & \(311 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Black & 253000 & 16 & 134E-01 & 3.12E-04 & 459E-03 & 4.59E-03. & 5.04E-03 & 9.43E-03 & 2.76E-02 & 7.09E-02 & \(1.49 \mathrm{E}-01\) & 267E-01 & 621E-01 & 621E-01 & 621E-01 \\
\hline Native American & 28000 & 1 & \(1.02 \mathrm{E}-01\) & \(0.00 \mathrm{E}+00\) & 192E-01 & 1.00E-01 & 1.02E-01 & \(1.02 \mathrm{E}-01\) & 1.12E-01 & 102E-01 & \(1.02 \mathrm{E}-01\) & 1.02E-01 & 102E-01 & 1.02E-01 & \(102 \mathrm{E}-01\) \\
\hline OtherNA & 171000 & 8 & 1.31E-01 & 144E-04 & \(5.14 \mathrm{E}-03\) & \(514 \mathrm{E}-03\) & \(706 \mathrm{E}-02\) & \(7.06 \mathrm{E}-02\) & 9.86E-02 & \(128 \mathrm{E}-01\) & \(1.59 \mathrm{E}-01\) & 192E-01 & 2.88E-01 & \(2.888 \mathrm{E}-01\) & \(288 \mathrm{E}-01\) \\
\hline White & 6266000 & 345 & 308E-01 & 1.47E-04 & 201E-03 & \(3.57 \mathrm{E}-03\) & 909E-03 & 306E-02 & \(9.16 \mathrm{E}-02\) & \(2.24 \mathrm{E}-01\) & 3.86E-01 & 6.18E-01 & 9.35E-01 & \(1.77 \mathrm{E}+00\) & \(3.11 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Region} \\
\hline Midwest & 2487000 & 143 & \(2.70 \mathrm{E}-01\) & 1.47E-04 & 368E-03 & 425E-03 & 4, \(20 \mathrm{E}-\mathbb{R}\) & 5.73E-02 & 100E-01 & 224E-01 & 3.43E-01 & 563E-01. & 724E-01 & \(1.34 \mathrm{E}+00\) & \(134 \mathrm{E}+00\) \\
\hline Noxtheast & 876000 & 52 & \(2.32 \mathrm{E}-01\) & 3,418-04 & 201E-03 & \(2.01 \mathrm{E}-03\) & 3.73E-03 & 8.36E-03 & 108E-02 & 108E-01 & 353E-01 & \(6.35 \mathrm{E}-01\) & \(105 \mathrm{E}+00\) & \(1.36 \mathrm{E}+10\) & \(1412+00\) \\
\hline - Sounh & 1919000 & 107 & 3.32E-01 & 2.19E-04 & 3.03E-03 & 4.79E-03 & 2.76E-02 & 3.70E-02 & 1.46E-01 & 2.51E-01 & 3.93E-01 & 690E-01 & \(1.88 \mathrm{E}+00\) & \(1.49 \mathrm{E}+00\) & \(1.77 E+00\) \\
\hline - Wers & 1436000 & 68 & \(3.32 \mathrm{E}-01\) & 4.74E-04 & 224E-0.3 & 3.57E-03 & 6.68E-03 & \(168 \mathrm{E}-02\) & 568E-02 & 152E-01 & 3.86E-01 & 5.49E-01 & 969E-01 & \(3.11 \mathrm{E}+00\) & \(311 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Resporse to Questionnaire} \\
\hline Do you ganden? & 6441000 & 356 & 300E-01 & 143E-04 & \(2.21 \mathrm{E}-03\) & \(3688 \mathrm{E}-03\) & \(9.09 \mathrm{E}-03\) & 306E-02 & 9.11E-02 & 2.13E-01 & 3.81E-01 & 6.09E-01 & 9.16E-01 & \(1.77 E+\infty\) & \(311 \mathrm{E}+00\) \\
\hline Doycu famm? & 1390000 & 81 & 3.75E-01 & 293E-04 & \(2.34 \mathrm{E}-02\) & \(300 \mathrm{E}-02\) & 4.04E-02 & 5.15E-02 & 1.11E-01 & 2.78E-01 & 5.15E-01 & 935E-01 & 1.11E+00 & \(1.49 \mathrm{E}+00\) & \(149 \mathrm{E}+00\) \\
\hline
\end{tabular}

Twble 2-228. Intako of Homegrown Pees (e/kg-day)



Table 2-229. Intake of Homegrowa Peppers (g/kg-day)


Table 2-230. Letuke of Homegrown Pumenkin (e/ke-day)


Table 2-231. Intake of Homegrown Snap Beans (g/kg-day)


Table 2-232. Lntike of Homegrowa Tomatoes (e/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Popolation Granp & \[
\begin{gathered}
N \\
\text { Nod }
\end{gathered}
\] & \[
\frac{\mathrm{N}}{\text { nonged }}
\] & Mean & SE & FO & P1 & P & P10 & P2S & PSO & P75 & PSO & P95 & F99 & P100 \\
\hline Total & 1673700 & 743 & 118 + +00 & 350E-04 & \(000 E+00\) & 757E-@ & 1.52E-01 & 234E-01 & 392E-01 & 7A3E-01 & \(14 \sigma E+\infty\) & \(250 E+00\) & \(354 \mathrm{E}+00\) & \(7268+00\) & 193E+01 \\
\hline \multicolumn{16}{|l|}{Age 10 521E+00 7000 03} \\
\hline \(<01\) & 229000 & 10 & \(521 \mathrm{E}+00\) & 701E-03 & 3A3E-01 & 343E-01 & 343E-01 & \(1.32 \mathrm{E}+00\) & \(1.76 \mathrm{E}+00\) & \(4.74 \mathrm{E}+00\) & \(6.87 \mathrm{E}+00\) & \(109 \mathrm{E}+01\) & 109E+01 & 109E+01 & 1.09E+01 \\
\hline 01-02 & 578000 & 26 & \(314 \mathrm{E}+00\) & 3588-03 & 726E-01 & 7268-01 & 85se-0i & \(93 \mathrm{EE}-01\) & \(1.23 \mathrm{E}+00\) & \(166 \mathrm{E}+00\) & \(400 \mathrm{E}+00\) & \(726 \mathrm{E}+00\) & \(107 \mathrm{E}+01\) & \(107 \mathrm{E}+01\) & 107E+01 \\
\hline 03-05 & 515000 & 26 & \(1.61 \mathrm{E}+00\) & \(188 \mathrm{E}-03\) & 496E-01 & 496E-01 & \(507 \mathrm{E}-01\) & 507E-01 & \(754 \mathrm{E}-01\) & \(125 \mathrm{E}+00\) & \(165 E+00\) & \(300 \mathrm{E}+00\) & \(625 \mathrm{E}+00\) & \(625 \mathrm{E}+00\) & \(625 \mathrm{E}+00\) \\
\hline 06-11 & 109360 & 51 & \(1.63 E+00\) & 183E-03 & 217E-01 & 2.17E-01 & 310E-01 & 392E-01 & 530e-01 & 755E-01 & \(166 \mathrm{E}+00\) & \(520 \mathrm{E}+00\) & 5.06+00 & \(9.14 \mathrm{E}+\infty\) & \(914 \mathrm{E}+00\) \\
\hline 12-19 & 1411000 & 61 & 7.15E-01 & \(560 \mathrm{R}-04\) & \(0.00 \mathrm{E}+00\) & \(0.00 \mathrm{E}+00\) & \(000 \mathrm{E}+00\) & 1.82E-01 & 268E-01 & 521E-01 & \(850 \mathrm{E}-01\) & \(167 \mathrm{E}+00\) & \(19 \mathrm{EE}+00\) & \(3398+00\) & 3392+00 \\
\hline 20-39 & 4169000 & 175 & \(8.54 \mathrm{E}-01\) & 665E-04 & \(634 \mathrm{E}-02\) & \(7.32 \mathrm{E}-02\) & 131E-01 & 1ATE-01 & \(2.51 \mathrm{E}-01\) & 5.15E-01 & \(100 \mathrm{E}+00\) & \(1.83 \mathrm{E}+00\) & \(2.10 \mathrm{e}+00\) & \(5.52 \mathrm{E}+00\) & 193E+01 \\
\hline 40-69 & 6758000 & 305 & \(1.05 E+\infty\) & 351E-04 & \(000 \mathrm{E}+00\) & \(1.13 \mathrm{E}-01\) & 1.73E-01 & 281E-01 & 3.97E-01 & 7408-01 & \(141 E+00\) & \(2.40 \mathrm{E}+00\) & \(305 \mathrm{E}+00\) & \(450 \mathrm{E}+00\) & \(5.00 \mathrm{e}+00\) \\
\hline \(70+\) & 198900 & 89 & \(1268+\infty\) & 628E-04 & 1.13E-01 & \(1.13 \mathrm{E}-01\) & 2368-01 & 2.98E-01 & 4.82E-01 & \(1.14 \mathrm{E}+00\) & \(1.77 \mathrm{E}+00\) & \(2.51 \mathrm{E}+00\) & 2998 +00 & \(367 \mathrm{E}+00\) & \(367 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Seasan} \\
\hline Fald & 5516000 & 201 & \(1.02 E+00\) & 5.16E-04 & 0,00E +00 & \(732 \mathrm{E}-\infty\) & 135E-01 & 223E-01 & 3A3E-01 & 595E-01 & \(134 \mathrm{E}+00\) & 224E +00 & \(287 \mathrm{E}+00\) & 625E+00 & 1 107E+01 \\
\hline Spring & 1264000 & 127 & 8.39E-01 & 627E-04 & 725E-02 & 136E-01 & \(1.89 \mathrm{E}-01\) & 2.39E-01 & 3.73E-01 & \(6.31 \mathrm{E}-01\) & \(1.11 \mathrm{E}+00\) & \(1.75 \mathrm{E}+00\) & \(2.00 \mathrm{E}+00\) & \(3.79 \mathrm{E}+00\) & \(528 \mathrm{E}+00\) \\
\hline Summer & 8122000 & 279 & \(130 \mathrm{E}+\infty 0\) & \(5.13 \mathrm{E}-04\) & \(000 \mathrm{E}+00\) & 105E-01 & 166E-01 & 2.36E-01 & 408E-01 & 803E-01 & \(155 \mathrm{E}+00\) & \(305 \mathrm{E}+00\) & 405E+00 & \(726 \mathrm{E}+00\) & \(1.09 \mathrm{E}+01\) \\
\hline Winter & 1835000 & 136 & \(1.37 E+00\) & \(1.52 \mathrm{E}-03\) & \(0.00 \mathrm{E}+00\) & 907E-02 & 207E-01 & 2.85E-01 & 4.97E-01 & 829E-01 & \(149 \mathrm{E}+00\) & \(2488+00\) & 3.38E+00 & \(829 \mathrm{E}+10\) & 193E+01 \\
\hline \multicolumn{16}{|l|}{Urbanization} \\
\hline Central City & 2680000 & 90 & \(1.10 \mathrm{E}+00\) & 733E-04 & \(0.00 \mathrm{E}+00\) & \(0.00 \mathrm{E}+00\) & 152E-01 & 225E-01 & 354E-01 & \(7.54 \mathrm{E}-01\) & \(151 \mathrm{E}+00\) & \(2.16 \mathrm{E}+00\) & 2.95E +00 & \(726 \mathrm{E}+00\) & \(829 \mathrm{E}+00\) \\
\hline Nommetropditan & 7389000 & 378 & \(126 \mathrm{E}+\infty 0\) & \(5.26 \mathrm{E}-04\) & \(000 \mathrm{E}+00\) & \(1.13 \mathrm{E}-01\) & \(2.16 \mathrm{E}-01\) & 2622E-01 & 423E-01 & \(762 \mathrm{E}-01\) & \(147 \mathrm{E}+00\) & 2.77E+00 & \(3.85 E+00\) & \(6.87 \mathrm{E}+00\) & \(1.07 \mathrm{E}+01\) \\
\hline Sriburban & 6668000 & 275 & \(1.13 E+00\) & 587E-04 & \(0.00 \mathrm{E}+00\) & 7.57E-0 & 135E-01 & 1.78E-01 & 3.70E-01 & \(6.68 \mathrm{E}-01\) & \(138 \mathrm{E}+00\) & 235E+00 & \(3.32 \mathrm{E}+00\) & 552E +00 & 193E+01 \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Aras & 115000 & 3 & 703E-01 & 2.15E-03 & 1ASE-01 & 1.45E-01 & 1ASE-01 & 145E-01 & 145E-01 & 253E-01 & \(1.76 \mathrm{E}+00\) \\
\hline Black & 743000 & 28 & \(6.14 \mathrm{E}-01\) & 528E-04 & \(0.00 \mathrm{E}+00\) & \(000 \mathrm{E}+00\) & \(000 \mathrm{E}+00\) & 732E-02 & 236E-01 & 507E-01 & 9.02E-01 & \(1.18 \mathrm{E}+00\) & \(155 \mathrm{E}+00\) & \(166 \mathrm{E}+00\) & \(1.66 \mathrm{E}+00\) \\
\hline Native American & 28000 & 1 & \(5.05 \mathrm{E}-01\) & \(0.00 \mathrm{E}+00\) & 5.05E-01 & \(5.05 \mathrm{E}-01\) & 505E-01 & 50SE-01 & \(505 \mathrm{E}-01\) & 505E-01 & 5.05E-01 & 505E-01 & 505E-01 & 505E-01 & 505E-01 \\
\hline OhersA & 193000 & 8 & \(5.19 \mathrm{E}-01\) & \(8.12 \mathrm{E}-04\) & \(248 \mathrm{E}-01\) & \(2.48 \mathrm{E}-01\) & \(2.48 \mathrm{E}-01\) & \(2.48 \mathrm{E}-01\) & \(2.73 \mathrm{E}-01\) & 3.50E-01 & \(525 \mathrm{E}-01\) & 1.11E+00 & 1ATE +00 & 1 ATE \(+\infty 0\) & 1 17E+00 \\
\hline White & 15658000 & 703 & \(122 \mathrm{E}+00\) & 3.71E-04 & \(000 \mathrm{E}+00\) & 105E-01 & 168E-01 & 2A1E-01 & 406E-01 & \(755 \mathrm{E}-01\) & \(1.49 \mathrm{E}+00\) & 255E+00 & \(359 \mathrm{E}+00\) & \(726 \mathrm{E}+\infty\) & 1.93E+01 \\
\hline \multicolumn{16}{|l|}{} \\
\hline Midnest & 6747000 & 322 & \(1.18 \mathrm{E}+\infty\) & \(6.16 \mathrm{E}-04\) & 000E+00 & 634E-02 & 1.45E-01 & 206E-01 & 362E-01 & 6.82E-01 & \(141 \mathrm{E}+00\) & 2.51E+00 & \(3.69 \mathrm{E}+00\) & \(6.87 \mathrm{E}+00\) & 1.93E+01 \\
\hline Northeast & 2480000 & 87 & \(1.17 E+\infty\) & \(9.70 \mathrm{E}-04\) & 757E-02 & 757E-02 & \(135 \mathrm{E}-01\) & 1.48E-01 & \(3.50 \mathrm{E}-01\) & \(751 \mathrm{E}-01\) & \(138 \mathrm{E}+\infty 0\) & \(2.44 \mathrm{E}+00\) & \(3.52 \mathrm{E}+00\) & \(1.09 \mathrm{E}+01\) & \(109 \mathrm{E}+01\) \\
\hline South & 4358000 & 202 & \(115 E+\infty\) & \(6.17 \mathrm{E}-04\) & \(0.00 \mathrm{E}+00\) & \(0.00 \mathrm{E}+00\) & \(207 \mathrm{E}-01\) & 253E-01 & 423E-01 & \(7 \mathrm{A6E}-01\) & \(1.43 \mathrm{E}+\infty\) & \(232 \mathrm{E}+00\) & 367E +00 & \(6.82 \mathrm{E}+00\) & \(9.14 \mathrm{E}+00\) \\
\hline Wers & 3152000 & 132 & \(123 \mathrm{E}+00\) & \(6.41 \mathrm{E}-04\) & 164E-01 & \(180 \mathrm{E}-01\) & \(2.39 \mathrm{E}-01\) & 2.84E-01 & 4.11E-01 & 765E-01 & \(1.84 \mathrm{E}+00\) & \(2.78 \mathrm{E}+00\) & \(308 \mathrm{E}+00\) & \(726 \mathrm{E}+00\) & \(726 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Response to Questionnaire} \\
\hline Do you garden? & 14791000 & 661 & \(121 E+00\) & 3.81E-04 & 000E+00 & 757E-02 & \(152 \mathrm{E}-01\) & \(234 \mathrm{E}-01\) & 406E-01 & 758E-01 & \(1.50 \mathrm{E}+00\) & 2.51E+00 & \(3.52 \mathrm{E}+00\) & \(726 \mathrm{E}+00\) & 1.93E+01 \\
\hline Do you fam? & 2269000 & 112 & \(1.42 \mathrm{E}+00\) & 1.11E-03 & 000E+00 & 000E +00 & \(1.80 \mathrm{E}-01\) & 226E-01 & 423E-01 & 766E-01 & \(1.86 \mathrm{E}+00\) & \(355 \mathrm{E}+00\) & 520E+00 & \(9.14 \mathrm{E}+00\) & \(914 \mathrm{E}+00\) \\
\hline
\end{tabular}


Table 2-233. Intake of Homegrown White Potatoes (g/kg-day)


Table 2-234. Intake of Hocseproducad Beef ( \(/\) /kg-day)

\begin{tabular}{|c|}
\hline  \\
\hline
\end{tabular}

Table 2-235. Intake of Homecaught Game ( \(\mathrm{g} / \mathrm{kg}\)-day)


Table 2-236. Inake of Homeproduced Porit (e/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Papromen Grote & \[
\begin{gathered}
N \\
\text { wrid }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} \\
\text { nentid }
\end{gathered}
\] & Meia & SB & PO & 11 & PS & 110 & 125 & 150 & 775 & P90 & ms & P99 & 1100 \\
\hline Total & 1732000 & 121 & \(123 \mathrm{~B}+00\) & 8.05B-04 & 926E-02 & 9268-02 & 1.40B-01 & 3.05E-01 & SAIE-01 & 8.9E-01 & \(1.718+\infty\) & \(2.73 \mathrm{~B}+\infty\) & \(3.378+00\) & \(4.938+00\) & \(7.418+\infty\) \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline 01-0 & 38000 & 5 & \(2.10 \mathrm{~B}+00\) & 4.178-03 & \(1.08 \mathrm{~B}+00\) & \(1.08 \mathrm{~B}+00\) & \(1.08 \mathrm{~B}+\infty 0\) & \(1.088+00\) & \(147 \mathrm{~B}+00\) & \(2.05 \mathrm{~B}+00\) & \(2.45 \mathrm{~B}+00\) & \(3.37 \mathrm{~B}+\infty 0\) & \(3.378+00\) & 3,378 +00 & 3.37E +00 \\
\hline 03-05 & 25000 & 3 & \(2.52 \mathrm{~B}+\infty\) & 5.718-03 & \(146 \mathrm{E}+00\) & \(1.46 \mathrm{E}+00\) & \(1.46 \mathrm{E}+00\) & \(1.46 \mathrm{E}+00\) & \(1.16 \mathrm{~B}+\infty\) & \(2698+\infty\) & \(3.68 \mathrm{~B}+00\) & \(368 \mathrm{~B}+\infty 0\) & \(3.608+00\) & \(3.68 \mathrm{~B}+00\) & \(368 \mathrm{E}+00\) \\
\hline 06-11 & 129000 & 11 & \(181 \mathrm{~B}+00\) & 3078-03 & 503E-01 & S03E-01 & 503E-01 & 5.89E-01 & 980R-01 & \(1.56 \mathrm{E}+00\) & \(2.738+00\) & \(328 \mathrm{~B}+00\) & \(3.738+00\) & \(3.73 \mathrm{~B}+00\) & \(3.73 \mathrm{E}+00\) \\
\hline 12-19 & 291000 & 20 & \(128 \mathrm{E}+00\) & 2018-03 & 3 3SE-01 & \(3.05 \mathrm{E}-01\) & 3238-01 & 3.378-01 & \(5.218-01\) & \(88.88-01\) & \(1.75 \mathrm{~B}+00\) & \(3.69 \mathrm{~B}+00\) & \(3.69 \mathrm{~B}+00\) & \(4.29 \mathrm{~B}+00\) & \(4.29 \mathrm{~B}+00\) \\
\hline 20-39 & 511000 & 32 & \(1.21 \mathrm{~B}+00\) & 1.43E-03 & 1.11E-01 & 1.118-01 & \(283 \mathrm{~B}-01\) & 4.098-01 & 5.528-01 & 7898-01 & \(1.438+\infty\) & \(2.90 \mathrm{~B}+\infty\) & \(3088+00\) & \(4.93 \mathrm{~B}+00\) & \(4.93 \mathrm{~B}+00\) \\
\hline 40- 9 & 557000 & 38 & \(1.02 \mathrm{E}+00\) & 9.518-04 & \(1.19 \mathrm{~B}-01\) & 1.198-01 & 1818-01 & 2.228-01 & 4 405B-01 & \(8.118-01\) & \(1.718+\infty\) & \(1.78 \mathrm{E}+\infty 0\) & \(2288+\infty\) & \(3.16 \mathrm{~B}+00\) & \(3.16 \mathrm{~B}+00\) \\
\hline 70 + & 180000 & 12 & \(1.04 \mathrm{E}+00\) & 368E-03 & 9.26E-02 & 926E-02 & 926E-02 & 926B-02 & 125B-01 & \(8.748-01\) & 9.668-01 & \(2.29 \mathrm{~B}+00\) & \(4.85 \mathrm{~B}+00\) & 71418+00 & \(7.41 \mathrm{~B}+00\) \\
\hline \multicolumn{16}{|l|}{Sexion} \\
\hline Fall & 362000 & 13 & \(1.41 \mathrm{E}+00\) & 1.528-03 & 4.09E-01 & 4.098-01 & 4.09E-01 & 5.668-01 & 6.468-01 & \(1.26 \mathrm{~B}+00\) & \(1.69 \mathrm{~B}+00\) & \(3.28 \mathrm{~B}+00\) & \(3.698+\infty\) & \(3.69 \mathrm{~B}+00\) & \(3.698+00\) \\
\hline Spring & 547000 & 59 & \(1.13 \mathrm{E}+00\) & 1.34B-03 & 1.118-01 & 1.118-01 & \(1.40 \mathrm{~B}-01\) & 2.22B-01 & 3.52B-01 & 8.96B-01 & \(1.50 \mathrm{O}+00\) & \(2.68 \mathrm{E}+00\) & \(3.688+00\) & \(4.29 \mathrm{~B}+00\) & \(4.29 \mathrm{E}+00\) \\
\hline Summer & 379000 & 15 & \(9.93 \mathrm{~B}-01\) & 1.138-03 & \(926 \mathrm{~B}-02\) & \(9.26 \mathrm{~B}-02\) & \(9.26 \mathrm{~B}-02\) & 1.25B-01 & \(5.24 \mathrm{~B}-01\) & 7.178-01 & \(1.71 \mathrm{~B}+00\) & \(1.78 \mathrm{~B}+00\) & \(2.44 \mathrm{~B}+00\) & \(2.44 \mathrm{~B}+00\) & \(2.44 \mathrm{E}+00\) \\
\hline Wiater & 444000 & 34 & \(1.40 \mathrm{~B}+00\) & \(2.09 \mathrm{~B}-03\) & \(126 \mathrm{~B}-01\) & 126B-01 & 2.58E-01 & 3.77E-01 & 5.03B-01 & 8.83B-01 & \(2218+00\) & \(3.08 \mathrm{E}+00\) & \(4.93 \mathrm{~B}+00\) & \(7.41 \mathrm{~B}+00\) & \(7.418+00\) \\
\hline \multicolumn{16}{|l|}{Urbaaizatioa} \\
\hline Ceatral City & 90000 & 2 & 8.718-01 & 1.098-03 & \(5.43 \mathrm{E}-01\) & 5.438-01 & 5.43E-01 & 5.438-01 & 5.43B-01 & 8.718-01 & \(1.20 \mathrm{~B}+00\) & \(1.20 \mathrm{E}+00\) & \(1.20 \mathrm{~B}+00\) & \(1.20 \mathrm{~B}+00\) & \(1.20 \mathrm{~B}+00\) \\
\hline Nonmetropolitas & 1178000 & 77 & \(1.39 \mathrm{E}+00\) & 1.068-03 & \(9.26 \mathrm{~B}-02\) & 9.268-02 & 2.158-01 & 4.058-01 & 6.178-01 & 9.66B-01 & \(1.758+00\) & \(3.16 \mathrm{~B}+00\) & \(3.69 \mathrm{~B}+00\) & \(4.93 \mathrm{~B}+00\) & \(7.418+00\) \\
\hline Surburban & 464000 & 42 & \(8.77 \mathrm{E}-01\) & \(1.14 \mathrm{E}-03\) & \(1.11 \mathrm{E}-01\) & 1.118-01 & \(1.19 \mathrm{E}-01\) & 1.818-01 & 3.318-01 & 5898-01 & \(1.10 \mathrm{~B}+00\) & \(2.28 \mathrm{E}+00\) & \(2.73 \mathrm{~B}+00\) & \(2.90 \mathrm{~B}+00\) & \(2.90 \mathrm{~B}+00\) \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Wbite & 1732000 & 121 & \(123 \mathrm{~B}+00\) & 805E-04 & \(926 \mathrm{E}-02\) & 926E-02 & 1.408-01 & 3.05B-01 & 5.418-01 & 8.968-01 & \(1.71 \mathrm{~B}+00\) & \(2.73 \mathrm{~B}+00\) & 3.378+00 & \(4.93 \mathrm{~B}+00\) & 7.418+00 \\
\hline \multicolumn{16}{|l|}{Region} \\
\hline Mideet & 844000 & 64 & \(1.06 \mathrm{E}+00\) & \(1.04 \mathrm{E}-03\) & 9.268-02 & 9.268-02 & \(1.198-01\) & \(2.136-01\) & 5.028-01 & 6.728-01 & \(1208+00\) & \(2.68 \mathrm{~B}+00\) & \(3.378+00\) & \(3.69 \mathrm{~B}+00\) & \\
\hline Northeat & 97000 & 5 & \(2.22 \mathrm{E}+00\) & 4.82E-03 & 6.468-01 & 6.468-01 & 6.468-01 & \(6.468 \mathrm{E}-01\) & 6.468-01 & \(2118+00\) & \(3.168+00\) & \(4.93 \mathrm{~B}+00\) & \(4.938+00\) & \(4.93 \mathrm{~B}+00\) & \(4.93 \mathrm{~B}+00\) \\
\hline South & 554000 & 32 & \(1.35 \mathrm{E}+00\) & \(1.11 \mathrm{E}-03\) & \(1.81 \mathrm{E}-01\) & \(181 \mathrm{E}-01\) & \(2.58 \mathrm{~B}-01\) & 3.378-01 & 8.118-01 & \(126 \mathrm{E}+00\) & \(1.75 \mathrm{~B}+00\) & \(2.44 \mathrm{~B}+00\) & \(3.08 \mathrm{~B}+00\) & \(4.29 \mathrm{E}+00\) & \(4.29 \mathrm{E}+00\) \\
\hline West & 237000 & 20 & \(1.15 \mathrm{E}+00\) & 284E-03 & 1.26B-01 & 126B-01 & 3.23E-01 & 3.77B-01 & 4.408-01 & \(729 \mathrm{~B}-01\) & \(1.10 \mathrm{~B}+00\) & \(1.75 \mathrm{E}+00\) & \(2.73 \mathrm{E}+00\) & \(7.418+00\) & \(7.41 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Resposse to Questionasire} \\
\hline Do you raise animals? Do you furm? & \[
\begin{aligned}
& 1428000 \\
& 1218000
\end{aligned}
\] & \[
\begin{array}{r}
100 \\
82
\end{array}
\] & \[
\begin{aligned}
& 1.34 \mathrm{E}+\infty \\
& 1.30 \mathrm{~B}+\infty
\end{aligned}
\] & \[
\begin{aligned}
& 8.25 \mathrm{E}-04 \\
& 9.14 \mathrm{E}-04
\end{aligned}
\] & \[
\begin{aligned}
& 1.26 \mathrm{~B}-01 \\
& 1.26 \mathrm{~B}-01
\end{aligned}
\] & \[
\begin{aligned}
& 1.40 \mathrm{~B}-01 \\
& 2.15 \mathrm{E}-01
\end{aligned}
\] & \[
\begin{aligned}
& 3.23 \mathrm{E}-01 \\
& 3.42 \mathrm{~B}-01
\end{aligned}
\] & \[
\begin{aligned}
& \text { 4.058-01 } \\
& 4.08 \mathrm{~B}-01
\end{aligned}
\] & \[
\begin{aligned}
& 589 \mathrm{E}-01 \\
& 585 \mathrm{E}-01
\end{aligned}
\] & \[
\begin{aligned}
& 9.668-01 \\
& 924 \mathrm{~B}-01
\end{aligned}
\] & \[
\begin{aligned}
& 1.75 \mathrm{E}+\infty \\
& 1.71 \mathrm{~B}+\infty
\end{aligned}
\] & \[
\begin{aligned}
& 2.90 \mathrm{~B}+00 \\
& 3.08 \mathrm{~B}+00
\end{aligned}
\] & \[
\begin{aligned}
& 3.37 \mathrm{~B}+00 \\
& 3.69 \mathrm{~B}+00
\end{aligned}
\] & \[
\begin{aligned}
& 4.29 \mathrm{~B}+00 \\
& 4.93 \mathrm{~B}+00
\end{aligned}
\] & \[
\begin{aligned}
& 4.93 \mathrm{E}+\infty 0 \\
& 4.93 \mathrm{E}+\infty 0
\end{aligned}
\] \\
\hline
\end{tabular}

Table 2-237. Intake of Homeproduced Poultry (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Population Group & \[
\begin{gathered}
\mathrm{N} \\
\text { wht }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{N} \\
\text { umgid }
\end{gathered}
\] & Mear & SE & PO & P1 & PS & P10 & P25 & PSO & P75 & P90 & P95 & P99 & P100 \\
\hline Total & 1816000 & 105 & \(1.57 \mathrm{E}+00\) & 8.72E-04 & \(1.73 \mathrm{E}-01\) & 1.95E-01 & 3.03E-01 & 4.18E-01 & 6.37E-01 & \(1.23 \mathrm{E}+00\) & \(2.19 \mathrm{~B}+00\) & \(3.17 \mathrm{E}+00\) & \(3.83 \mathrm{~B}+00\) & \(5.33 \mathrm{E}+00\) & \(6.17 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 34000 & 2 & \(2.44 \mathrm{E}+00\) & 1.49E-02 & 4.07E-01 & 4.07E-01 & 4.078-01 & 4.078-01 & 4.078-01 & 4.078-01 & 6.17E +00 & \(6.17 \mathrm{E}+00\) & \(6.17 \mathrm{E}+00\) & 6.178 +00 & 6.17B+00 \\
\hline 01-02 & 91000 & 8 & \(3.15 \mathrm{E}+00\) & \(2.62 \mathrm{E}-03\) & \(2.45 \mathrm{E}+00\) & \(2.45 \mathrm{~EB}+00\) & \(2.45 \mathrm{E}+00\) & 2.45E+00 & \(2.63 \mathrm{~B}+00\) & \(2.71 \mathrm{E}+00\) & \(3.47 \mathrm{E}+00\) & \(3.86 \mathrm{E}+00\) & \(5.33 \mathrm{E}+00\) & \(5.33 \mathrm{E}+00\) & \(5.33 \mathrm{~B}+00\) \\
\hline 03-05 & 70000 & 5 & \(3.01 \mathrm{~B}+00\) & 3.49E-03 & \(1.72 \mathrm{E}+00\) & 1.72E +00 & \(1.72 \mathrm{E}+00\) & \(1.72 \mathrm{E}+00\) & \(2.55 \mathrm{E}+00\) & \(2.95 \mathrm{~B}+00\) & \(3.06 \mathrm{E}+00\) & \(483 \mathrm{E}+00\) & \(4.83 \mathrm{~B}+00\) & \(4.83 \mathrm{E}+00\) & \(4.238+00\) \\
\hline 06-11 & 205000 & 12 & \(1.76 \mathrm{E}+00\) & 1.398-03 & 4.808-01 & \(4.80 \mathrm{E}-01\) & 5858-01 & 5858-01 & \(1.19 \mathrm{E}+00\) & \(2.10 \mathrm{E}+00\) & \(2.19 \mathrm{E}+00\) & \(2.29 \mathrm{E}+00\) & \(2.34 \mathrm{~B}+\infty 0\) & \(2.34 \mathrm{E}+00\) & \(2.348+00\) \\
\hline 12-19 & 194000 & 12 & \(1.18 \mathrm{E}+00\) & \(1.54 \mathrm{E}-03\) & 2.28E-01 & 228E-01 & 2.28E-01 & 4.18E-01 & \(6.07 \mathrm{E}-01\) & \(1.06 \mathrm{~B}+00\) & \(1.51 \mathrm{E}+00\) & \(2.23 \mathrm{E}+00\) & \(2.23 \mathrm{~B}+00\) & \(3.29 \mathrm{~B}+00\) & \(3.298+00\) \\
\hline 20-39 & 574000 & 33 & \(1.17 \mathrm{P}+00\) & 1.118-03 & \(1.73 \mathrm{E}-01\) & \(1.73 \mathrm{E}-01\) & 4.028-01 & 4.02E-01 & 5.578-01 & \(1.15 \mathrm{E}+00\) & \(1.37 \mathrm{E}+00\) & \(1.80 \mathrm{~B}+00\) & \(2.93 \mathrm{~B}+00\) & \(4.59 \mathrm{E}+00\) & \(4.598+00\) \\
\hline 40-69 & 568000 & 30 & \(1.518+00\) & 1.768-03 & \(1.95 \mathrm{E}-01\) & 1.95E-01 & 1.97e-01 & 3.038-01 & 4.91E-01 & 7.748-01 & \(2.69 \mathrm{E}+00\) & \(3.29 \mathrm{E}+00\) & \(4.60 \mathrm{~B}+00\) & \(5.15 \mathrm{E}+00\) & \(5.158+00\) \\
\hline \(70+\) & 80000 & 3 & \(189 \mathrm{~B}+00\) & 2.12E-04 & \(1.83 \mathrm{E}+00\) & \(183 \mathrm{E}+00\) & \(183 \mathrm{~B}+00\) & \(1.83 \mathrm{~B}+00\) & \(1.83 \mathrm{~B}+00\) & \(1.87 \mathrm{E}+00\) & \(1.97 \mathrm{E}+00\) & \(1.97 \mathrm{~B}+00\) & \(1.97 \mathrm{~B}+00\) & \(1.97 \mathrm{E}+00\) & \(1.978+00\) \\
\hline \multicolumn{16}{|l|}{Semod} \\
\hline Fall & 562000 & 23 & \(1.52 \mathrm{~B}+00\) & 1.128-03 & 4.07E-01 & 4.07E-01 & 4.18E-01 & 4.608-01 & 8.118-01 & \(1.39 \mathrm{E}+00\) & \(2.23 \mathrm{~B}+00\) & \(2.698+00\) & 3.17B+00 & \(3.17 \mathrm{~B}+00\) & \(3.17 \mathrm{~B}+00\) \\
\hline Spring & 374000 & 34 & \(187 \mathrm{E}+00\) & 2.66B-03 & 1.738-01 & 1.738-01 & 2.288-01 & 3.03E-01 & \(5.22 \mathrm{E}-01\) & \(1.388+00\) & \(3.29 \mathrm{~B}+00\) & \(4.60 \mathrm{~B}+00\) & \(5.15 \mathrm{~B}+00\) & \(5.33 \mathrm{~B}+00\) & \(5.338+00\) \\
\hline Summer & 312000 & 11 & \(1.36 \mathrm{E}+00\) & \(1.55 \mathrm{E}-03\) & 4.02E-01 & 4.02E-01 & 4.02E-01 & 4.02E-01 & 6.72E-01 & 8.808-01 & \(1.97 \mathrm{E}+00\) & \(2.19 \mathrm{E}+00\) & \(3.29 \mathrm{~B}+00\) & \(3.29 \mathrm{~B}+00\) & \(3.29 \mathrm{~B}+00\) \\
\hline Winter & 559000 & 37 & \(1.55 \mathrm{E}+00\). & 1.618-03 & 1.95E-01 & 1.95E-01 & 197E-01 & 4.33E-01 & 5.95E-01 & \(1.23 \mathrm{E}+00\) & \(2.18 \mathrm{E}+00\) & \(2.958+00\) & \(3.47 \mathrm{E}+00\) & \(6.17 \mathrm{~B}+00\) & 6.17E+00 \\
\hline \multicolumn{16}{|l|}{Urbanization} \\
\hline Central City & 230000 & 8 & \(1.04 \mathrm{~B}+00\) & \(1.37 \mathrm{E}-03\) & 4.608-01 & 4.60E-01 & 4.608-01 & 4.608-01 & 4.72E-01 & 5.95E-01 & \(1.44 \mathrm{E}+00\) & \(2.18 \mathrm{E}+00\) & \(2.34 \mathrm{E}+00\) & \(2.34 \mathrm{E}+00\) & \(2.348+00\) \\
\hline Nonmetropolian & 997000 & 56 & \(1.48 \mathrm{E}+00\) & 9.88E-04 & \(1.73 \mathrm{E}-01\) & 1.95E-01 & 2.82E-01 & \(4.07 \mathrm{E}-01\) & 6.72E-01 & 1.19E+00 & \(2.10 \mathrm{~B}+00\) & 3.17B+00 & \(3.29 \mathrm{~B}+00\) & \(3.86 \mathrm{~B}+00\) & \(5.33 \mathrm{~B}+00\) \\
\hline Surburbar & 580000 & 41 & \(1.94 \mathrm{E}+00\) & \(1.92 \mathrm{E}-03\) & \(2.28 \mathrm{E}-01\) & \(2.28 \mathrm{E}-01\) & \(2.67 \mathrm{E}-01\) & 4.33E-01 & \(6.24 \mathrm{E}-01\) & \(1.59 \mathrm{~B}+00\) & \(2.69 \mathrm{~B}+00\) & \(4.59 \mathrm{E}+00\) & \(4.83 \mathrm{~B}+00\) & \(6.17 \mathrm{E}+00\) & \(6.17 \mathrm{~B}+00\) \\
\hline \multicolumn{16}{|l|}{Rece} \\
\hline Black & 44000 & 2 & \(1.43 \mathrm{E}+00\) & 3.23E-03 & 7.51E-01 & 7.518-01 & 7.518-01 & 7.51E-01 & 7.518-01 & \(1.43 \mathrm{E}+00\) & \(2.11 \mathrm{E}+00\) & 2.11E+00 & 2.11E +00 & \(2.111 \mathrm{E}+00\) & \(2.118+00\) \\
\hline White & 1772000 & 103 & \(1.57 \mathrm{~B}+00\) & \(8.90 \mathrm{E}-04\) & \(1.73 \mathrm{E}-01\) & 1.95E-01 & \(3.03 \mathrm{E}-01\) & 4.188-01 & 6.24 Em 01 & \(1.23 \mathrm{~B}+00\) & \(2.19 \mathrm{E}+00\) & \(3.17 \mathrm{E}+00\) & \(3.86 \mathrm{E}+00\) & \(5.33 \mathrm{E}+00\) & \(6.17 \mathrm{E}+00\) \\
\hline \multicolumn{16}{|l|}{Region} \\
\hline Midwest & 765000 & 41 & \(1.60 \mathrm{E}+00\) & 1.028-03 & 4.07E 01 & 4.078-01 & \(4.18 \mathrm{E}-01\) & & & 1.39E +00 & \(2.19 \mathrm{E}+00\) & & & & \(5.338+00\) \\
\hline Northeat & 64000 & 4 & \(1.92 \mathrm{E}+00\) & 3.628-03 & \(7.09 \mathrm{E}-01\) & 7.098-01 & 7.09E-01 & \(7.09 \mathrm{~B}-01\) & \(1.04 \mathrm{E}+00\) & \(2.00 \mathrm{E}+00\) & \(2.79 \mathrm{E}+00\) & \(2.95 \mathrm{E}+00\) & \(2.95 \mathrm{~S}+00\) & \(2.95 \mathrm{~B}+00\) & \(2.958+00\) \\
\hline South & 654000 & 38 & \(1.67 \mathrm{E}+00\) & \(1.91 \mathrm{E}-03\) & \(1.73 \mathrm{E}-01\) & \(1.73 \mathrm{E}-01\) & 1.978-01 & 3.03E-01 & \(4.60 \mathrm{E}-01\) & 9.088-01 & \(2.118+00\) & \(4.59 \mathrm{E}+00\) & \(4.83 \mathrm{~B}+00\) & \(6.17 \mathrm{~B}+00\) & \(6.17 \mathrm{~B}+00\) \\
\hline Weat & 333000 & 22 & \(1.24 \mathrm{E}+00\) & 1.46E-03 & \(2.67 \mathrm{E}-01\) & 2.678-01 & 2.67E-01 & 4.27E-01 & \(5.60 \mathrm{E}-01\) & \(1.02 \mathrm{E}+00\) & \(1.89 \mathrm{E}+00\) & \(2.45 \mathrm{E}+00\) & \(2.93 \mathrm{E}+00\) & \(2.93 \mathrm{E}+00\) & \(2.93 \mathrm{~B}+00\) \\
\hline \multicolumn{16}{|l|}{Reaponse to Quentionsaire} \\
\hline Do you raise animals? Do you farm? & \[
\begin{array}{r}
1333000 \\
917000
\end{array}
\] & \[
\begin{aligned}
& 81 \\
& 59
\end{aligned}
\] & \[
\begin{aligned}
& 1.58 \mathrm{~B}+00 \\
& 1.54 \mathrm{E}+00
\end{aligned}
\] & \[
\begin{aligned}
& 9.21 \mathrm{E}-04 \\
& 1.44 \mathrm{E}-03
\end{aligned}
\] & \[
\begin{aligned}
& 1.73 \mathrm{E}-01 \\
& 1.73 \mathrm{E}-01
\end{aligned}
\] & \[
\begin{aligned}
& 2.28 \mathrm{~B}-01 \\
& 195 \mathrm{E}-01
\end{aligned}
\] & \[
\begin{aligned}
& 4.07 \mathrm{~B}-01 \\
& 2.28 \mathrm{E}-01
\end{aligned}
\] & \[
\begin{aligned}
& 4.72 \mathrm{E}-01 \\
& 3.03 \mathrm{E}-01
\end{aligned}
\] & \[
\begin{aligned}
& 7.09 \mathrm{~B}-01 \\
& \mathrm{cosp}-\mathrm{n}
\end{aligned}
\] & \[
\begin{aligned}
& 1.37 \mathrm{~B}+00 \\
& 1.06 \mathrm{E}+00
\end{aligned}
\] & \[
\begin{aligned}
& 2.19 \mathrm{~B}+00 \\
& 2.18 \mathrm{E}+00
\end{aligned}
\] & \[
\begin{aligned}
& 2.93 \mathrm{~B}+00 \\
& 3.47 \mathrm{E}+00
\end{aligned}
\] & \[
\begin{aligned}
& 3.29 \mathrm{E}+00 \\
& 4.83 \mathrm{E}+00
\end{aligned}
\] & \[
\begin{aligned}
& 5.33 \mathrm{E}+00 \\
& 6.17 \mathrm{~B}+00
\end{aligned}
\] & \[
\begin{aligned}
& 6.17 \mathrm{~B}+00 \\
& 6.17 \mathrm{~B}+00
\end{aligned}
\] \\
\hline
\end{tabular}

Teble 2-238. Incake of Homeproduced Egpa (elkz-day)


Table 2-239. Intake of Homegrown Exposed Vegetables (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Fipulation Goup & \[
\underset{\substack{N \\-w p a d d}}{ }
\] & \[
\underset{\text { Lnwatd }}{\mathrm{N}}
\] & Mean & SE & Po & P1 & P5 & P10 & P25 & P50 & P75 & P90 & P95 & P99 & P100 \\
\hline Total & 2876000 & 1511 & 152E+00 & 365E-04 & \(0.00 E+00\) & 323E-03 & \(9.15 E-02\) & 1.72E-01 & 3.95E-01 & \(8.60 \mathrm{E}-01\) & \(183 \mathrm{E}+00\) & 355E+00 & \(5.12 \mathrm{E}+00\) & 1.03+01 & \(206 E+01\) \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 334000 & 17 & 5.75E+00 & 719E-03 & \(29 \mathrm{EE}-01\) & 2.97E-01 & 297E-01 & 8.08E-01 & \(2.81 \mathrm{E}+00\) & \(429 \mathrm{~F}+00\) & \(1.03 \mathrm{E}+01\) & \(1.19 \mathrm{~F}+01\) & \(1228+01\) & 1.4F+01 & \(112 \mathrm{SE}+01\) \\
\hline 01-02 & 815000 & 43 & \(3.488+00\) & 3.7E-03 & 228E-02 & \(2288-02\) & 239E-01 & \(8.34 \mathrm{E}-01\) & \(120 \mathrm{E}+\infty 0\) & \(1.898+00\) & \(4235+\infty\) & \(10 \mathrm{ET}+01\) & 1.196+01 & \(121 \mathrm{E}+01\) & \(1212+01\) \\
\hline 03-05 & 1065000 & 62 & \(1.74 \mathrm{E}+00\) & \(1.688-03\) & \(0.00 \mathrm{E}+00\) & \(0.00 \mathrm{EE}+00\) & 72E-03 & \(4.8 \mathrm{EE}-02\) & 5.79E-01 & \(1.116+00\) & \(2.58 \mathrm{E}+\infty\) & 3.472+00 & \(5298+00\) & \({ }^{73 E}+{ }^{\text {c }}+00\) & \(8.8 \mathrm{SE}+00\) \\
\hline 06-11 & 2454000 & 134 & \(135 \mathrm{E}+00\) & \(130 \mathrm{E}-03\) & \(0.00 E+00\) & \(0.008+00\) & 4.44E-02 & \(9.42 \mathrm{E}-02\) & 3.12E-01 & \(6.45 \mathrm{E}-01\) & \(160 \mathrm{E}+\infty 0\) & 323E +00 & \(547 \mathrm{~T}+00\) & \(13 \mathrm{E}+01\). & \(13 \mathrm{E}+01\) \\
\hline 12-19 & 2611000 & 143 & 1.0 Ee +00 & 6.98 -04 & \(0.00 \mathrm{E}+00\) & \(0.00 \mathrm{E}+00\) & 292E-02 & 1.42E-01 & 3.04E-01 & 656E-01 & \(1.46 \mathrm{E}+\infty\) & \(23.38+00\) & \(3.78 \pm+00\) & 5.67 + +00 & \(56 \pi \mathrm{E}+00\) \\
\hline 20-39 & 6965000 & 348 & \(1.55+00\) & 5.75-04 & \(150 \mathrm{E}-03\) & \(820 \mathrm{E}-03\) & 6.5EE-02 & \(1.17 \mathrm{E}-01\) & 25E-01 & 559-01 & \(1268+\infty\) & \(23 \mathrm{E}+00\) & \(332 \mathrm{E}+00\) & \(7.58 \mathrm{+}+0\) & \(20 \mathrm{E}+01\) \\
\hline 40-69 & 10993000 & 579 & \(1.60 \mathrm{E}+00\) & 6.04E-04 & \(0.00 \mathrm{E}+00\) & 328E-03 & 1.41E-01 & \(2.44 \mathrm{E}-01\) & 4.798-01 & \(9.81 \mathrm{E}-01\) & \(1.92 \mathrm{t}+\infty\) & \(3.598+00\) & \(522 \mathrm{E}+00\) & \(8.95 \mathrm{C}+00\) & \(190 \mathrm{C}+01\) \\
\hline \(70+\) & 351200 & 185 & \(1.68 \mathrm{E}+00\) & 8.80E-04 & 42EE03 & 521E-03 & 151E-01 & \(2.38 \mathrm{E}-01\) & 522E-01 & \(1.1 \mathbf{E}+00\) & \(2388+\infty\) & \(408 \pm+00\) & \(4.98 \mathrm{E}+\infty\) & \(6.96 \mathrm{E}+00\) & 102 t 01 \\
\hline \multicolumn{16}{|l|}{Season} \\
\hline Fall & 8865000 & 314 & 131E+00 & 5.8E-04 & \(0.008+00\) & 52,E-02 & 111E-01 & 1.80E-01 & 33E-01 & 6.49E-01 & \(156 \mathrm{E}+\infty 0\) & \(3.13 \mathrm{E}+00\) & 4.4sE +00 & \(8.95 \mathrm{~F}+00\) & \(1238+01\) \\
\hline Spring & 4865000 & 487 & 1.14E+00 & 6.3E-04 & \(0.00 E+00\) & 23E-03 & 4,5E-02 & 1.53E-01 & 3338 -01 & 6.58 -01 & \(1358+\infty\) & \(2.76 \mathrm{E}+00\) & \(4.02 \mathrm{E}+00\) & \({ }_{7} 51 \mathrm{EL}+\infty 0\) & \(10 \mathrm{E}+01\) \\
\hline Summer & 10151000 & 348 & \(2.03 \mathrm{E}+00\) & 7.40E-04 & \(0.00 \mathrm{E}+00\) & 2.17E-03 & \(1.12 \mathrm{E}-01\) & 2.04E-01 & 6.07E-01 & \(130 \mathrm{E}+\infty\) & \(2.52 \mathrm{E}+\infty\) & \(4.32 \mathrm{E}+00\) & \(6.35{ }^{\text {c }}+00\) & \(12 \mathrm{E}+01\) & \(19 \mathrm{E}+01\) \\
\hline Whter & 4888000 & 362 & \(121 \mathrm{E}+00\) & 8.18E-04 & \(0.00 E+00\) & 42E-03 & 228E-02 & 135E-01 & 3.70E-01 & \(6.68 \mathbb{E}-01\) & \(142 \mathrm{E}+00\) & \(2.76 \pm+00\) & \(3698+\infty\) & \(8.86 \mathrm{t}+00\) & \(20 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Úrbanization} \\
\hline Central City & 4859000 & 173 & 1.11E+00 & 6.12E-04 & \(0.00 \mathrm{E}+\infty\) & 101E-02 & 6.4E-02 & 8.02E-02 & 2.83 -01 & 7.01E-01 & 1.4E+00 & 2.49E+00 & 329e +00 & 83.3 + +0 & 121E+01 \\
\hline Nonmaropolia & 1157000 & 711 & \(1.87 \mathrm{E}+\infty 0\) & 6.8E-04. & \(0.00 E+\infty\) & \(1.65 \mathrm{E}-02\) & 1.72E-01 & \(2.52 \mathrm{E}-01\) & 5.01E-01 & \(1.16 \mathrm{C}+\infty\) & \(2205+\infty\) & \(4.12 \mathrm{E}+\infty 0\) & \(6.10 \mathrm{E}+00\) & \(128 \mathrm{E}+01\) & \(19 \mathrm{E}+01\) \\
\hline Surturban & 12266000 & 625 & \(13 \mathrm{E}+00\) & \(5.00 \mathrm{E}-04\) & 0.00E+ +0 & 29E-03 & \(9688-02\) & 1.56E-01 & 355E-01 & 7.4E-01 & \(158+\infty\) & \(3222 \mathrm{E}+00\) & \(523 \mathrm{E}+00\) & \(8.61 \mathrm{E}+00\) & \(205 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Asian & 155000 & 7 & \(182 \mathrm{E}+00\) & 6.06E-03 & 423E-02 & 42E-02 & 42E-02 & 461E-02 & 559E-01 & 588E-01 & \(835 \mathrm{E}-01\) & 60.0 + +0 & 60, \({ }^{\text {c }}+00\) & \(600 \mathrm{E}+00\) & \(6.07 E+\infty\) \\
\hline Black & 1713000 & 100 & \(12 \mathrm{E}+\infty\) & 9.72E-04 & \(0.00 \pm+\infty\) & \(0.00 \mathrm{E}+00\) & 7.74E-02 & 141E-01 & 352E-01 & 893E-01 & \(1.51 \mathrm{E}+00\) & \(3.32 \mathrm{E}+\infty\) & 392E+00 & \(5.58+00\) & \(7198+\infty\) \\
\hline Naive American & 28000 & 1 & \(5.05 \mathrm{E}-01\) & \(0.00 \mathrm{E}+00\) & \(5.58 \mathrm{C}-01\) & 505E-01 & \(505 \mathrm{E}-01\) & 50 EE -01 & 5.03-01 & S0se-01 & SOSE-01 & \(503 \mathrm{E}-01\) & \(505 \mathrm{E}-01\) & \(508 \mathrm{E}-01\) & 5.03E-01 \\
\hline OherNA & 255000 & 15 & \(2878+00\) & 361E-03 & \(4.73 \mathrm{E}-03\) & 4.7E-03 & 2.14E-01 & 268E-01 & \(1.42 \mathrm{E}+\infty\) & 2928+00 & \(4.18 E+00\) & \(5.672+\infty\) & \(5.67 \mathrm{E}+00\) & \(56 \mathrm{ET}+00\) & \(5.67 \mathrm{E}+\infty\) \\
\hline White & 26551000 & 1386 & \(15 \mathbf{E}+\infty\) & 391E-04 & \(0.00 E+\infty\) & 4.6E-03 & \(9.74 \mathrm{E}-02\) & 1.77E-01 & 395E01 & 8.59 -01 & \(1.22 \mathrm{E}+00\) & \(3.48 \mathrm{E}+\infty\) & \(5.12 \mathrm{E}+00\) & \(10 \mathrm{E}+01\) & \(20 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Rejou} \\
\hline Midmes & 10460000 & 570 & 1.48E+ +0 & 6598-04 & \(0.008+\) +0 & 100E-02 & 7.14E-02 & 1.57E-01 & 3.88E-01 & 800E-01 & \(169 \mathrm{C}+00\) & 359世+00 & 4.67E +00 & 1.198+01 & \(2006+01\) \\
\hline N Northeas & 4055000 & 191 & \(1.65 \mathrm{E}+\infty\) & 1228-03 & \(0.008+00\) & \(23 \mathrm{EP-03}\) & 8.0 E-02 & \(1388-01\) & \(261 \mathrm{E}-01\) & \(66 \mathrm{E}-01\) & 1.78E+00 & \(5.5 \pm+\infty\) & \(68.8 \mathrm{E}+\infty 0\) & 12 TE +01 & \(14 \mathrm{SE}+01\) \\
\hline L South & 923000 & 503 & \(1.55 \mathrm{E}+00\) & 5.7EE-04 & \(0.00 \mathrm{E}+00\) & \(520 \mathrm{E}-02\) & 1.63 -01 & \(2.61 \mathrm{E}-01\) & \(5.18 \mathrm{E}-01\) & 9990-01 & \(1.92 \mathrm{E}+00\) & \(3.19 \mathrm{t}+00\) & 4.52E +00 & \(992 \mathrm{E}+00\) & \(13 \mathrm{E}+01\) \\
\hline 8 Wea & 5012000 & 245 & \(14 \mathrm{E}+00\) & 7.13E-04 & \(150 \mathrm{E}-03\) & 325E-03 & 2.18-02 & 1.4E-01 & 391E-01 & 76E-01 & \(2.15+\infty\) & \(3.45 E+\infty\) & 4. 8 E \(+\infty\) & \(7.51 \mathrm{E}+00\) & \(834 \mathrm{E}+\infty\) \\
\hline \multicolumn{16}{|l|}{Reponse to Questiomaire} \\
\hline Do you garden? & 25737000 & 1361 & 1.5 E \(+\infty\) & 3.998-04 & \(0.00 E+\infty\) & 325E-03 & 8.87E-02 & \(1.68 \mathrm{E}-01\) & \(4.13 \mathrm{E}-01\) & 8.8EE-01 & \(197 \mathrm{E}+\infty 0\) & \(3.6 \pm+\infty\) & SAEE +00 & 103E+01 & \(200 \mathrm{E}+01\) \\
\hline Do you farm? & 359800 & 207 & \(2.178+00\) & 122E-03 & \(0.00 \mathrm{E}+00\) & \(0.00 E+00\) & \(184 \mathrm{E}-01\) & 3.72E-01 & \(6.47 \mathrm{E}-01\) & \(1388+00\) & \(2.81 \mathrm{E}+00\) & \(6.01 \mathrm{E}+00\) & \(6.8 \mathbf{E}+00\) & \(10 \mathrm{E}+01\) & 13E+01 \\
\hline
\end{tabular}

Table 2-240. Intaice of Hoasegrown Prolocted Vegetables (e/ke-day)


Table 2-241. Intake of Homegrown Root Vegetables (e/kg-day)


Table 2-242. Intike of Homegrown Exposed Fruits (e/kz-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Fopulifin Goup &  & \[
\underset{\substack{\text { unwed }}}{\text { nen }}
\] & Men & SE & PO & P1 & P5 & P10 & P25 & P50 & P75 & P90 & P93 & P99 & P10 \\
\hline Tb (al & 1170000 & 679 & \(149 \mathrm{C}+00\) & 6.17E-04 & \(0.00 \mathrm{E}+00\) & 4AIE-02 & 137E-01 & 25E-01 & 4ABE-01 & 835-01 & 1.7E+00 & \(3.10+00\) & \(4.75+00\) & \(120 E+01\) & 3298+01 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 105000 & 8 & 319E+00 & 528E-03 & 5208-01 & 52E-01 & 5208-01 & \(1818+00\) & 213 +00 & \(2.76+00\) & 45E+ 500 & 557E+00 & 71E+00 & 71® +00 & \(7168+\infty\) \\
\hline 01-02 & 306000 & 19 & \(400 \mathrm{E}+\infty 0\) & 528E-03 & \(1.1 \mathrm{E}+\infty\) & \(1.18+\infty\) & \(118 \mathrm{E}+\infty\) & \(13 \mathrm{EE}+00\) & 1.70 +00 & \(3.63 \mathrm{E}+\infty 0\) & 5.A.E +100 & \(827 \mathrm{C}+00\) & \(1.13+01\) & 115E+01 & \(1.15 \mathrm{E}+01\) \\
\hline 03-05 & 470000 & 30 & \(250 \mathrm{E}+\infty\) & 6228-03 & \(000 \mathrm{E}+\infty\) & \(000 \mathrm{E}+00\) & \(0.00 \mathrm{E}+\infty\) & \(3.73 \mathrm{E}-01\) & \(1.018+00\) & \(1.80 \mathrm{E}+00\) & \(2.64 \mathrm{C}+00\) & \(511 \mathrm{E}+\infty\) & \(607 \mathrm{E}+00\) & \(325 \mathrm{E}+01\) & \(3258+01\) \\
\hline 06-11 & 915000 & 68 & \(2.528+\infty\) & 36SE-03 & \(000 \mathrm{E}+\infty\) & \(0.00 E+\infty\) & \(1.71 \mathrm{E}-01\) & 3.7E-01 & \(6.19 \mathrm{E}-01\) & \(1.11 \mathrm{E}+\infty\) & \(2.91 \mathrm{E}+00\) & \(6988+00\) & \(1.178+01\) & \(157 \mathrm{E}+01\) & 1598+01 \\
\hline 12-19 & 895000 & 50 & \(138+\infty\) & 1.54-03 & 8AEE-02 & \(8.46 \mathrm{E}-02\) & 12E-01 & 258E-01 & 4048-01 & 6098-01 & \(227 E+00\) & \(3 A 1 \mathrm{E}+\infty\) & \(4.78 \pm+\infty\) & \(598 \mathrm{E}+00\) & \(59 \times 8+00\) \\
\hline 20-39 & 2521000 & 139 & \(1058+\infty\) & 107E-03 & \(5.60 \mathrm{E}-02\) & 793E-02 & 130E-01 & 167E-01 & 304E-01 & 6.18E-01 & \(1008+00\) & \(2.008+00\) & \(3.58+\infty\) & \(129 \mathrm{c}+01\) & 1298+01 \\
\hline 40-69 & 4272000 & 247 & \(125+\infty\) & 839E-04 & 262E-02 & 6.AEE-02 & 16AE-01 & 254E-01 & 4.39-01 & 719E-01 & \(14 \mathrm{CE}+\infty\) & \(2.618+\infty\) & \(32 \mathrm{E}+00\) & \(130 \mathrm{C}+01\) & \(130 \mathrm{E}+01\) \\
\hline \(70+\) & 228500 & 118 & \(139 \mathrm{c}+0\) & \(838 \mathrm{E}-04\) & 415E-02 & 4A1E-02 & 20nE-01 & 2.82E-01 & 5.71E-01 & 95\%E-01 & \(160 E+0\) & \(3.73 \mathrm{E}+\infty\) & \(44^{2} \mathrm{E}+\infty 0\) & \(539 \mathrm{E}+00\) & \(713 \mathrm{E}+0\) \\
\hline \multicolumn{16}{|l|}{Season} \\
\hline Fal & 2877000 & 100 & \(137 \mathrm{E}+\infty\) & 6.86E-04 & 2.598-01 & 2598-01 & 291E-01 & 3A2E-01 & 5AEP-01 & \(1.03 \mathrm{E}+00\) & \(188 \mathrm{E}+\infty\) & \(288+\infty\) & \(425 \mathrm{E}+00\) & SAIE +00 & \(5 A 1 B+\infty\) \\
\hline Spring & 2460000 & 265 & 11 ASE \(+\infty\) & 1.57E-03 & 6AEE-02 & 891E-02 & 198E-01 & 254E-01 & 4328-01 & 8.56E-01 & \(16 \mathrm{EE}+00\) & \(29.18+\infty\) & 4.6RE+00 & \(82 \mathrm{E}+\infty\) & \(325 \mathrm{E}+01\) \\
\hline Summer & 3588000 & 122 & \(1.75 \mathrm{E}+00\) & 1.4EE-03 & \(0008+\infty\) & \(000 \mathrm{E}+00\) & 86EE-02 & 130E-01 & 3.898-01 & 6A1E-01 & \(1.76 E+\infty\) & \(420 \mathrm{e}+\infty\) & \(6.12 \mathrm{E}+\infty 0\) & \(130 \mathrm{E}+01\) & \(15 \mathrm{E}+01\) \\
\hline Witer & 283900 & 19 & \(1272+\infty\) & 8.72E-04 & 2.62E-02 & 418E-02 & 104E-01 & 2318-01 & 4.59-01 & 828E-01 & \(158+0\) & \(2.618+\infty\) & \(4.608+00\) & 8.1区 +00 & \(1.1 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Utbasizatiog} \\
\hline Contral City & 2558000 & 99 & \(1.3 \times 8+\infty\) & 1238-03 & 4.13E-02 & 4A1E-02 & 101E-01 & 2.59-01 & 4.46E-01 & 8.63E-01 & \(1.608+\infty\) & \(23.3 \mathrm{E}+00\) & \(288 \mathrm{P}+\infty\) & \(1308+01\) & \(1308+01\) \\
\hline Noomdropolita & 3891000 & 269 & \(1.78 \mathrm{t}+00\) & \(13 \mathrm{CL}-03\) & 268E-02 & 6AEE-02 & \(104 \mathrm{E}-01\) & 167E-01 & 4.18-01 & 9AEE-01 & \(19 ¢ 8+00\) & \(4078+00\) & \(59.9 \mathrm{E}+00\) & \(1.572+01\) & \(32 \mathrm{EE}+01\) \\
\hline Surbutai & 526000 & 309 & \(13 \times E+\infty\) & 6.85E-04 & 3ASE-02 & \(9.18-02\) & 207E-01 & 2.9E-01 & 4.69E-01 & 7.73E-01 & \(168 E+00\) & \(3.16 \mathrm{C}+00\) & \(4.65 \mathrm{E}+\infty\) & 7298+00 & 12\%+01 \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Back & 250000 & 12 & \(1118+00\) & 141E-03 & 138E-01 & 138E-01 & 138E-01 & 2.92E-01 & 5998-01 & \(1.18 \mathrm{E}+00\) & \(1.16 \mathbb{E}+00\) & 229e +00 & 2298+00 & 229P+00 & \(2298+00\) \\
\hline OherNA & 49000 & 2 & 5AE-01 & 144E-03 & 4.0AE-01 & 404E-01 & 40EE-01 & 4.04E-01 & 4.04E-01 & 4.04E-01 & 4048-01 & \(1278+\infty\) & \(1272+\infty\) & \(1275+00\) & \(12 \pi+\infty\) \\
\hline White & 11411000 & 663 & \(151 \mathrm{E}+00\) & 6.38-04 & 26\%E-02 & 649E-02 & 15E-01 & 259E-01 & 4.49E-01 & 8.56E-01 & \(1.72 \mathrm{E}+00\) & \(3.31 \mathrm{E}+\infty\) & 4.78+00 & \(1208+01\) & \(325+01\) \\
\hline \multicolumn{16}{|l|}{Region} \\
\hline Miduet & 4429000 & 293 & \(1.60 \mathrm{E}+00\) & 1.18E-03 & 268E-02 & 411E-02 & 12SE-01 & 223E-01 & 423E-01 & 8.78E-01 & \(1888+00\) & \(358+00\) & 4.788+00 & \(1208+01\) & 325E+01 \\
\hline Notheat & 1219000 & 69 & 75E-01 & \(8.85 \mathrm{EE}-04\) & \(8.08 \mathrm{E}-02\) & \(8.08 \mathrm{E}-02\) & 860E-02 & 165E-01 & 300E-01 & 4.74E-01 & \(784 \mathrm{E}-01\) & \(139 \mathrm{E}+00\) & \(28.88+00\) & \(5.21 \mathrm{E}+00\) & \(7.13 \mathrm{E}+00\) \\
\hline Soulh & 2533000 & 141 & \(15 \mathrm{EL}+00\) & 1.37E-03 & 3.4SE-02 & 793E-0 & 2332-01 & 3.01E-01 & 509E-01 & 916E-01 & \(16 \mathrm{E}+00\) & \(253 \mathrm{E}+\infty\) & \(59.98+00\) & \(157 E+01\) & \(1.572+01\) \\
\hline Wex & 353000 & 174 & \(1.60 \mathrm{E}+\infty\) & 100E-03 & 714E-02 & 100E-01 & \(24 \mathrm{EE}-01\) & 3.1\%E-01 & 5608-01 & 9.57E-01 & \(1972+00\) & \(3.72+\infty\) & \(5.008+00\) & \(13 \mathrm{EE}+01\) & \(1308+01\) \\
\hline \multicolumn{16}{|l|}{Repponse to Questionnaire} \\
\hline Do you gardan? & 10197000 & 596 & \(15 \mathrm{EP}+\infty\) & 697E-04 & 0000 +00 & 4.15-02 & 1588-01 & 2.58-01 & 4.4SE-01 & 8.78E-01 & \(1.738+00\) & \(3412+\infty\) & \(5008+00\) & 129E+01 & 325 +01 \\
\hline Do you from? & 191700 & 112 & \(232 \mathrm{E}+00\) & 191E-03 & 5.60E-02 & 721E-02 & 2.76E-01 & 3.71E-01 & 6.81E-01 & \(13 \times 8+\infty\) & \(314 \mathrm{C}+00\) & \(5008+\infty\) & \(6.128+00\) & \(1.57 \mathrm{E}+01\) & \(1572+01\) \\
\hline
\end{tabular}

Table 2-243. Intake of Homegrown Protected Fruita (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\overline{\text { Bpulation }}\) Group & \[
\underset{\substack{\text { widd }}}{N}
\] & \[
\underset{\substack{\text { conwatd }}}{ }
\] & Men & SE & P0 & P1 & PS & P10 & P25 & P50 & P75 & P90 & P95 & P99 & P10 \\
\hline & Total & 385500 & 173 & \(5.74 \mathrm{E}+00\) & 4.19E-03 & 1.12E-01 & 1.5EE-01 & 2.66E-01 & 33EE-01 & 93E-01 & 234E+00 & 7AEE+00 & \(1.60 \mathrm{E}+01\) & 197E+01 & 4.73E+01 & 5.3E+01 \\
\hline & \multicolumn{16}{|l|}{Age} \\
\hline & \(\bigcirc 01\) & 80000 & 3 & \(116 \mathrm{E}+01\) & 1.94E-02 & \(538 \mathrm{E}+00\) & \(538 \mathrm{E}+00\) & \(538 \mathrm{E}+00\) & \(5.38+\infty\) & \(5388 \mathrm{E}+00\) & \(1.60 \mathrm{E}+01\) & \(166 \mathrm{E}+01\) & 16E +01 & 16EE+01 & 1.60E+01 & \(166 \mathrm{E}+01\) \\
\hline & 01-02 & 79000 & 5 & \(2.43 \mathrm{E}+01\) & \(7388-02\) & 908E-01 & \(90.8 \mathrm{E}-01\) & \(9088-01\) & \(908 \mathrm{E}-01\) & \(923 E+\infty\) & 1.88E+01 & \(5.3 E+01\) & \(536 \mathrm{E}+01\) & \(536 \mathrm{E}+01\) & 536E+01 & \(53 \mathrm{SE}+01\) \\
\hline & 03-05 & 80000 & 4 & \(12 \mathrm{E}+01\) & \({ }^{618} 818-02\) & \(1.85 \mathrm{E}+00\) & \(188 \mathrm{E}+00\) & \(1.85 \mathrm{E}+00\) & \(1.86 \mathrm{E}+00\) & \(2.44 \mathrm{E}+00\) & \(2.44 \mathrm{E}+\infty 0\) & \(89 \mathrm{EE}+00\) & 4.73E+01 & 4.73E+01 & \(4.7 \mathrm{EE}+01\) & \(4.7 \mathrm{E}+01\) \\
\hline & 06-11 & 181000 & 9 & \(8.05 \mathrm{E}+00\) & 25EE-02 & 452E-01 & 452E-01 & 4.52E-01 & 4.52E-01 & \(76 \mathrm{E}-01\) & \(11 \pm E+\infty\) & \(160 \mathrm{E}+01\) & \(253 \mathrm{E}+01\) & \(328 \mathrm{c}+01\) & 328E+01 & 328E+01 \\
\hline & 12-19 & 37500 & 20 & \(296 \mathrm{E}+00\) & \(723 \mathrm{E}-03\) & 1.178-01 & 1.17E-01 & \(16 \mathrm{EE}-01\) & 283E-01 & \(3.9 \mathrm{E}-01\) & \(123 \mathrm{E}+\infty 0\) & \(284 \mathrm{E}+00\) & \(7.44 \mathrm{E}+\infty 0\) & \(1115 \mathrm{E}+01\) & \(1918+01\) & 1918+01 \\
\hline & 20-39 & 755000 & 29 & \(4.51 \mathrm{E}+00\) & \(6.72 \mathrm{E}-03\) & 1.81E-01 & 1.81E-01 & 362E-01 & \(4.87 \mathrm{E}-01\) & \(122 \mathrm{E}+00\) & \(1.88 \mathrm{E}+00\) & \(4.478+00\) & \(1.46 E+01\) & \(1.612+01\) & \(2 A 18+01\) & \(2.41 \mathrm{E}+01\) \\
\hline & 40-69 & 1785000 & 7 & \(5.65 \mathrm{E}+00\) & 582E-03 & 112E-01 & 112E-01 & \(2.44 \mathrm{E}-01\) & 287E-01 & \(6658 \mathrm{E}-01\) & \(222 \mathrm{E}+\infty 0\) & 936E+00 & \(15 \mathrm{E}+01\) & \(2.12 \mathrm{E}+01\) & \(4.13 \mathrm{E}+01\) & 4.12+01 \\
\hline & \(70+\) & 601000 & 26 & \(4.44 \mathrm{E}+00\) & 45SE-03 & \(26.2 \mathrm{E}-01\) & 262E-01 & \(262 \mathrm{E}-01\) & 28E-01 & \(1.95 \mathrm{E}+00\) & \(32 \mathrm{SE}+00\) & \(70 \mathrm{E}+00\) & \(897 \mathrm{C}+00\) & \(997 \mathrm{E}+00\) & \(1.58 \mathrm{E}+01\) & 15 EF+01 \\
\hline & \multicolumn{16}{|l|}{Seasm} \\
\hline & Fal & 394000 & 12 & \(2.46 \mathrm{E}+00\) & 450E-03 & 262E-01 & 252E-01 & \(2.62 \mathrm{E}-01\) & 2.8E-01 & \(450 \mathrm{E}-01\) & \(116 \mathrm{E}+00\) & \(4978+00\) & \(694 \mathrm{E}+00\) & \(8976+\infty\) & \(8.978+00\) & \(8.978+00\) \\
\hline & Spring & 497000 & 36 & \(208 \mathrm{E}+00\) & 2.2E-03 & 16EE-01 & \(1.60 E-01\) & \(18 \mathrm{SE-01}\) & \(25 \mathrm{EE}-01\) & \(3.78 \mathrm{E}-01\) & 122E \(+\infty\) & 408E +00 & 5.10E+C0 & \(6.58 \mathrm{E}+\infty 0\) & \(6.95+\infty 0\) & 6.75+00 \\
\hline & Summer & 1425000 & 47 & \(739 \mathrm{C}+00\) & \(833 \mathrm{E}-03\) & 1.12E-01 & 1122E-01 & \(266 \mathrm{E}^{\text {-01 }}\) & 393E-01 & \(125 E+\infty\) & \(3.06 E+00\) & \(1.03 \mathrm{E}+01\) & \(166 \mathrm{t}+01\) & \(2.41 \mathrm{E}+01\) & 536E+01 & \(5.36 \mathrm{E}+01\) \\
\hline & Winter & 1538000 & 78 & \(629 \mathrm{E}+00\) & 6AEE-03 & 117E-01 & \(1.50 \mathrm{E}-01\) & 302E-01 & 3.76E-01 & \(1.35 \mathrm{E}+00\) & \(265 \mathrm{E}+00\) & \(823 \mathrm{E}+00\) & \(1.78{ }^{\text {c }}\) +1 & \(2.12 \mathrm{E}+01\) & 4.7E+01 & 4.7E+01 \\
\hline & \multicolumn{16}{|l|}{Usbaization} \\
\hline & Central City & 1312000 & 50 & \(3.94 \mathrm{E}+00\) & 358E-03 & 150E-01 & 150E-01 & \(2.62 \mathrm{E}-01\) & 333-01 & 834E-01 & 301E+00 & 501E+00 & \(92 \mathrm{E}+\infty\) & 997E + C0 & 189E+01 & 1.88P+01 \\
\hline & Nonmetrpolian & 506000 & 19 & 604E+00 & 133E-02 & \(10 \mathrm{CE}+\infty\) & \(1.06 E+00\) & \(1006++0\) & \(118 \mathrm{E}+00\) & \(16 \mathrm{E}+00\) & \(23 \mathrm{E}+\infty\) & \(538 \mathrm{E}+00\) & \(1.07 \mathrm{E}+01\) & \(4.13 \mathrm{E}+01\) & \(4.13 \mathrm{E}+01\) & 4.13+01 \\
\hline & Surburtan & 203700 & 104 & \(6.8 \mathbf{E}+00\) & 6.0E-03 & 1.12E-01 & 1.12E-01 & 25E-01 & 292E-01 & \(594 \mathrm{E}-01\) & \(20.12+00\) & \(1.0 \mathrm{E}+01\) & \(1.79 \mathrm{C}+01\) & \(2385+01\) & \(536 \mathrm{E}+01\) & \(5.36+01\) \\
\hline & \multicolumn{16}{|l|}{Race} \\
\hline & Mack & 200000 & 8 & \(2.73 \mathrm{E}+00\) & 120E-02 & 450E-01 & 4.50E-01 & 4.50E-01 & 4.50E-01 & \(6.44 \mathrm{E}-01\) & \(8.18 \mathrm{E}-01\) & \(1.508+\infty\) & \(102 \mathrm{E}+01\) & 1.88E+01 & 1898+01 & 18E+01 \\
\hline & White & 3655000 & 165 & \(591 \mathrm{E}+00\) & 4.3E-03 & 112E-01 & 117E-01 & 262E-01 & 33E-01 & \(1.06 E+00\) & \(2.44 \mathrm{E}+00\) & 74EE + +0 & \(160 \mathrm{E}+01\) & 2.12E+01 & 4.73E+01 & 53E+01 \\
\hline \multirow[t]{8}{*}{N゙} & \multicolumn{16}{|l|}{Region} \\
\hline & Midwes & 657000 & 24 & 100E+01 & 157E-02 & 253E-01 & 253E-01 & \(2688-01\) & 2.8E-01 & \(118 \mathrm{E}+\infty\) & 74AE +00 & 1AGE+01 & \(2.41 \mathrm{E}+01\) & \(4.13 \mathrm{E}+01\) & 536E+01 & 53E+01 \\
\hline & Northeat & 105000 & 5 & \(2378+00\) & 9.9E-03 & 3.78E-01 & 3.78E-01 & \(3.78 \mathrm{E}-01\) & 3.78E-01 & 4.87E-01 & \(5.68 \mathrm{E}-01\) & 7ASE+00 & 7AEE +00 & 7ASE \(+\infty\) & 7AE \(+\infty\) & 74E+00 \\
\hline & South & 1805000 & 74 & 4.7TE +00 & 4.14E-03 & 112E-01 & \(1.60 \mathrm{E}-01\) & 36EE-01 & 4.5EE-01 & \(12 \mathrm{EE}+00\) & \(2.54 \mathrm{E}+\infty 0\) & \(511 \mathrm{E}+\infty 0\) & \(1.5 \mathrm{E}+01\) & \(1.6 \mathrm{EE}+01\) & 2385+01 & \(2 \mathrm{ACE}+01\) \\
\hline & Wes & 1288000 & 70 & \(4.85 \mathrm{E}+\infty\) & \(688 \mathrm{E}-03\) & 1.12E-01 & 1.12E-01 & \(1818-01\) & 2688-01 & 494E-01 & \(18 \mathrm{E}+{ }^{\text {c }}\) & \(534 \mathrm{E}+00\) & 123+01: & 188+01 & 4.7E+01 & 4.7E+01 \\
\hline & \multicolumn{16}{|l|}{Reponse to Questiomaire} \\
\hline & Do you garden? & 3360000 & 146 & \(5908+00\) & 459E-03 & 1.128-01 & 117E-01 & \(2.58 \mathrm{E}-01\) & 338-01 & \(116 \mathrm{C}+0\) & \(2 \mathrm{~A} 2 \mathrm{E}+00\) & 7.46E+00 & \(160 E+01\) & \(191 \mathrm{E}+01\) & 4.7E+01 & 536+01 \\
\hline & Do you farm? & 357000 & 14 & \(1418+00\) & 1.13E-03 & 112E-01 & 1.12E-01 & 1.122-01 & \(2.44 \mathrm{E}-01\) & 452E-01 & 131E+C0 & 228E+00 & \(234 \mathrm{C}+00\) & 320E+00 & \(3268+00\) & 326E+00 \\
\hline
\end{tabular}

Table 2-244. Ineake of Homegrown Dark Oreen Vegelables (e/ke-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
Mopataion \\
Group
\end{tabular} & \(\underset{\sim}{\text { Nuxd }}\) & \[
{ }^{\mathrm{N}} \mathrm{~N}
\] & Men & SE & po & P 1 & Ps & P10 & P25 & P50 & P75 & P30 & P95 & P98 & P100 \\
\hline & Tow & 885500 & 428 & 391E-01 & 208-04 & \(0.008+00\) & 201E-03 & 42E-03 & 10IE-02 & \(8 . \times 8\)-0 & \(2118-91\) & 438-01 & 9.19-01 & \(1288+00\) & 35E+00 & \(5888+00\) \\
\hline & \multicolumn{16}{|l|}{Abe} \\
\hline & \({ }_{01-02}^{201}\) & 58000
18000 & 8 &  & \({ }^{495 \mathrm{E}-03}\) & \(3.44 \mathrm{E}-01\)
2015 & \(3.4 E-01\)
\(2015-0.2\) & 3446-01 & 3 ME-01
\(16 \mathrm{E}-01\) & \({ }^{235 \mathrm{~S}}+000\) & - \(\begin{aligned} & 35 \mathrm{E}+00 \\ & 25 \mathrm{E}=01\end{aligned}\) & 353
\(34 \pm 00\)
\(34-01\) & \(33 \mathrm{E}+00\)
\(169+\infty\) & \(35 \mathrm{E}+00\)
\(16 E \pm+00\) & \(35 \mathrm{E}+00\)
\(168+00\) & \(35 \mathrm{Z}+00\)
\(16 \mathrm{E}+\infty\) \\
\hline & 03-02 & 225000 & 12 & 1.7EE-01 & 4.3E-a & O.00E+ +00 & O.OE +00 & OOCE +100 & -0.0E+00 & 656E-03 & 42TE02 & 223E00 & 5968 -01 & 63 \%-01 & 6328-01 & 6328.01 \\
\hline & O6-11 & 885000 & 39 & 30E-01 & \({ }^{3556 E-04}\) & 0.00E \(+\infty\) & 0.008 +00 & \({ }^{6348} \mathbf{4}-03\) & \(2228 \mathrm{E}-2\) & \(9 \mathrm{Sce}-20\) & \({ }^{1818 E-01}\) & 383E-01 & 99 96-01 & 10.0 E +00 & \(1285+00\) & \(1228+\infty\) \\
\hline & 12-19 & 628800 & 32 & \(4220 \mathrm{E}-01\) & 1 1006-03 & \(4.1528-03\) & 4928-03 & \(533 \mathrm{E}-03\) & 6SEE-03 & \(5622 \mathrm{e}-2\) & \(20 \mathrm{E}-01\) & 3,7E-01 & \(92 \mathrm{C}-01\) & \(15 ¢+00\) & \(48 \mathrm{Ca}+00\) & \(4.25 \mathrm{C}+00\) \\
\hline & 20-39 & 1976000 & 8 & 33¢-01 & 404E-04 & \(16 \mathbf{E x}-03\) & 221E-03 & 3.74 -03 \(^{\text {c }}\) & & 8.7e-02 & \(1.76 \mathrm{E}-01\) & 3.92-01 & 6.56 -01 & 9192-01 & \(2 \mathrm{SaC+}+0\) & \\
\hline & \({ }_{70+}^{40-69}\) & 371000
125500 & \({ }_{63}^{18}\) & 4 & \({ }_{51}^{2986-04}\) & \({ }_{2}^{0.88 E+00}\) & \({ }_{28}^{22 \mathrm{SE}-03}\) & \(367 x-03\)
\(42 \mathrm{E}-03\) & \({ }_{56 \pm}^{2500}\) &  & \({ }_{231 \mathrm{E}}^{23 \mathrm{E}-01}\) & \({ }_{4}^{468 \%-01}\) & 9.72e-01 & 12SE+00 & \(3296+00\)
\(3.4 .+00\) & \(5.885+00\)
3.45 Ca \\
\hline & \multicolumn{16}{|l|}{Seasm} \\
\hline & & 2683000 & 88 & \(4412-01\) & 42E-04 & 101E-02 & 101E-02 & \(4.46 E-02\) & 8.7E-02 & 14SE-01 & 233E-01 & 459-01 & \(79 \mathrm{EC-01}\) & 1.0x+00 & 3.8£+00 & \(42 \mathrm{~F}+00\) \\
\hline & \({ }_{\text {Spring }}\) & \({ }_{3}^{1231000}\) & 127 & \({ }_{\text {S }}^{5358}\)-01 & \({ }^{7966 E-04}\) & \(1.625-03\) & 16E-03 & 366E-03 & \(5.72 \mathrm{EE}-03\) & 1010 -01 & 3 305E-01 & \(5338-01\) & 128E+00 & \({ }^{2} 8.8 \mathrm{E}+00\) & \(4.89 \pm+00\) & \(58.85+00\) \\
\hline & Wrier & 1341000 & \({ }_{89}\) & \({ }_{\text {2 }}\) & 3.2.2-04 & \(0.00 \mathrm{E}+\infty\) & 20015 & \({ }_{397 \mathrm{E}}^{2}\) & - \(520 \mathrm{EL-03}\) & \({ }_{23 \mathrm{E}-02}\) & \({ }_{1512}\) & 3.72E-00 & 959\%-01 & \({ }_{1.17}^{1.2}+00\) & \({ }_{2006}\) & 2.1 \(\ddagger+0\) \\
\hline & \multicolumn{16}{|l|}{Urbaization} \\
\hline & Comral Ciy & 1298900 & 48 & \(2.568-01\) & 224E-04 &  & 28.4 -03 & 477E-03 & 1018-02 & 10ex-01 & 20.5 -01 & 324E-01 & 638501 & 91.2E-01 & 1.07E+00 & \(1.078+\infty\) \\
\hline & Noommapolita & 321900 & 167 & 3312-01 & \(2558-04\) & \(0.008+\infty\) & 221E-03 & 456E-03 & 1.72E-02 & 6.SEE-02 & \(1.72 \mathrm{E}-01\) & 4528-01 & 7528-01 & \(1.00 E+00\) & \(24 \mathrm{x}+00\) & \(5.828+00\) \\
\hline & Sarturba & 4278000 & 211 & 4.79E-01 & 36\%E-04 & 1.628 -03 & 228-03 & \(521 \mathrm{E}-03\) & \(213 \mathrm{E}-02\) & \(9238-0\) & 233E-01 & 4598 -01 & \(1138+0\) & \(21 \pm+00\) & \(3.8 \mathrm{Cl}+0\) & \(4.86 \mathrm{E}+00\) \\
\hline & \multicolumn{16}{|l|}{Race} \\
\hline & Asam & 14000 & 2 & 201E+00 & 558x-03 & \(4985-01\) & 4S2E-01 & 4928-01 & \(4928-01\) & \(4238-0\) & \(2018+00\) & 353 +00 & \(35 \mathrm{E}+00\) & \(353 \mathrm{E}+00\) & \(353+00\) & \(353 \mathrm{E}+00\) \\
\hline & Hack \({ }_{\text {Onem }}\) & \({ }_{34000}\) & 14 & \({ }_{23 \mathrm{R}}^{10 \mathrm{SE}+00}\) &  & -0.0E+00 & 0.0.0E+00 & \({ }_{4}^{1.00 E-015}\) & \({ }_{4}^{1125}\)-01 & \({ }_{\text {2 }}^{2 \text { 218 }}\)-01 0 & \({ }^{5} 5.52 \mathrm{E}-01\) & 1138+00 & 3298t+00 & 3.88E+00 & \begin{tabular}{l}
488 tan \\
308 O \\
\hline 0
\end{tabular} & \({ }_{\text {4, }}^{4.08 E+00}\) \\
\hline & White & 730300 & 373 & 321E-01 & 1.5EE-04 & 1528-03 & 22E-03 & 4.5E-03 & 101E-02 & \(7.73 \mathrm{E}-0\) & 199E-01 & 3.720-01 & 7.7¢-01 & \(1.0 \mathrm{E}+00\) & 23E+00 & \(5.82 \mathrm{C}+00\) \\
\hline \multirow[t]{4}{*}{\[
\underset{y}{\dot{y}}
\]} & \multicolumn{16}{|l|}{Regico} \\
\hline & Miduex & 2658800 & & \({ }^{2818}-01\) & & & & & & & & & & & & \\
\hline & Northea & 1554000 & 76 & 5.088 -01 & 6398-04 & \(1.682-03\) & 2178 -03 & \(28.8 \mathrm{E}-03\) & 42E-03 & 5682-02 & \({ }^{196 E-01}\) & \(4.98 \mathrm{E}-01\) & \(1238+\infty\) & \(1.93+00\) & \(35 \mathrm{x}+00\) & \(5.282+00\) \\
\hline & \({ }_{\text {S }}^{\text {Sueth }}\) & 2945000
162000 & 148
81 & 4.38 C
31800 & 3S9\%-04
\(5.112-04\) & -008+00 &  & 6.838-02 & \(92 \mathrm{E}-02\)
\(634 \mathrm{E}-03\) & \({ }_{3}^{1.5 S E-01}\) &  & \({ }^{6.485-01}\) & 9298E-01 & \({ }_{9228}^{128}+000\) & 3.88 tan
\(4.8 \mathrm{E}+00\) & 42 c
\(4.8 \mathrm{~F}+00\)
4 \\
\hline & \multicolumn{16}{|l|}{Repoose to Questiomaite} \\
\hline & Dosougardm? & & & & & & & & & & & & & & & \\
\hline & Do you frm? & 1450000 & 66 & 3.8EE-01 & \(4.18 \mathrm{E}-04\) & 0.00 E +00 & 1.62E-03 & 46E-03 & \(5.338-03\) & 6.68E-02 & 231E-01 & \(4.88 \mathrm{E}-01\) & 9,4E-01 & \(1238+00\) & 24EAE +0 & \(3.028+00\) \\
\hline
\end{tabular}

Table 2-245. Intake of Homegrowa Deep Yellow Vegetables (g/kg-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Populaion
Goup & N & \[
\underset{\substack{4 \\ \text { ungrg }}}{N}
\] & Mean & SE & PO & P1 & PS & P10 & P25 & PSO & P75 & P90 & P95 & P99 & P100 \\
\hline & Total & \(546 \times 00\) & 245 & \(6.45 \mathrm{E}-01\) & \(2.97 \mathrm{E}-04\) & 3.9E-02 & \(4.34 \mathrm{E}-02\) & 6.0E-02 & 126E-01 & 222E-01 & 4.17E-01 & 7.74E-01 & \(1.44 \mathrm{E}+\infty 0\) & \(2.05+00\) & \(2.6 \mathrm{E}+00\) & \(6.6 \mathrm{E}+00\) \\
\hline & \(\stackrel{\text { Age }}{ } \times 01\) & 97000 & 4 & 2.76E+00 & \(6.10 \mathrm{E}-03\) & \(1.37 \mathrm{E}+00\) & \(1.37 \mathrm{E}+00\) & \(1.35 \mathrm{E}+00\) & 1.3E+00 & \(1375+\infty\) & \(22 \mathrm{E}+00\) & 2.5E+00 & \(6.5 \mathrm{E}+00\) & \(66 \mathrm{E}+00\) & \(66 \mathbf{E}+00\) & \(66 \pm\) +00 \\
\hline & 01-02 & 124000 & 8 & \(1.48 \mathrm{E}+00\) & 2.41E-03 & \(2.1 \mathbf{E - 0 1}\) & \(213 \mathrm{E}-01\) & 2.1E-01 & \(2.15 \mathrm{E}-01\) & \(7.08 \mathrm{E}-01\) & \(16 \mathrm{E}+\infty\) & \(2.41 \mathrm{E}+\infty\) & \(2508+\infty\) & \(2.60 \mathrm{E}+\infty 0\) & \(2.61 \mathrm{E}+\infty\) & \(2608+00\) \\
\hline & 03-05 & 61000 & 4 & \(131 \mathrm{E}+00\) & \(5.62 \mathrm{E}-03\) & 5.15 -01 & \(513 \mathrm{E}-01\) & \(513 \mathrm{E}-01\) & \(5.13 \mathrm{E}-01\) & 5.33-01 & 662E-01 & \(1.42 \mathrm{E}+\infty\) & \(433 \mathrm{E}+00\) & \(4.37 \mathrm{E}+00\) & \(43 \mathrm{E}+00\) & \(4.37 \mathrm{E}+00\) \\
\hline & 06-11 & 382000 & 17 & 6.70e-01 & \(8.93 \mathrm{E}-04\) & \(7.74 \mathrm{E}-02\) & 7.74E-02 & \(7.74 \mathrm{E}-02\) & 1.9EE-01 & 332E-01 & \(4.78 \mathrm{E}-01\) & \(7.19 \mathrm{E}-01\) & \(1.6 \mathrm{E}+00\) & \(18 \mathrm{E}+\infty\) & \(22 \mathrm{E}+\infty\) & \(22 \mathrm{E}+00\) \\
\hline & 12-19 & 493000 & 21 & 4.73E-01 & 5.99E-04 & 6.05E-02 & 6.5E-02 & \(6.05 E-02\) & 629E-02 & 9.07E-02 & \(36 \mathrm{EE}-01\) & 7.75-01 & \(1.13 \mathrm{E}+00\) & \(1.44 \mathrm{C}+\infty 0\) & \(1.5 ⿷+00\) & \(1.58 \mathrm{E}+00\) \\
\hline & 20-39 & 1475000 & 63 & \(532 \mathrm{E}-01\) & 4.93E-04 & 4.85E-02 & 4.85E-2 & 5.5E-02 & \(1.15 \mathrm{E}-01\) & 1.60E-01 & 305E-01 & 511E-01 & \(122 \mathrm{E}+00\) & \(2.03 \mathrm{E}+\infty\) & \(2.6 \mathrm{ET}+\infty\) & \(2.672+00\) \\
\hline & 40-69 & 2074000 & 96 & 538-01 & 350E-04 & 3.90-02 & 3.9E-02 & \(922 \mathrm{E}-02\) & 14EE-01 & 221E-01 & 40E-01 & \(6.54 \mathrm{E}-01\) & 1.0se \(+\infty\) & \(13 \mathrm{E}+\infty 0\) & \(302 \mathrm{E}+00\) & \(302 \mathrm{E}+00\) \\
\hline & \(70+\) & 761000 & 32 & 7.81E-01 & 5.97E-04 & 7.64E-02 & \(764 \mathrm{E}-02\) & \(2.08-01\) & 2.7E-01 & 378E-01 & \(5.72 \mathrm{E}-01\) & \(124 \mathrm{E}+00\) & \(1.51 \mathrm{E}+00\) & \(199 .+0\) & \(1.95 \mathrm{~F}+00\) & 1.99e +00 \\
\hline & \multicolumn{16}{|l|}{Season} \\
\hline & Fall & 2664000 & 97 & 738E-01 & 4.94E-04 & 921E-02 & 921E-02 & 122E-01 & 1.4E-01 & 2.618-01 & 4.51E-01 & \(9.74 \mathrm{E}-01\) & 1.73 +00 & 223E+00 & 302E +00 & \(6.5 \pm+00\) \\
\hline & Spring & 315000 & 34 & \(564 \mathrm{E}-01\) & 7.82E-04 & 1.43E-01 & \(14 \mathrm{EE}-01\) & 1.4EE-01 & 1.98E-01 & 247E-01 & 4AEE-01 & \(6.45 \mathrm{E}-01\) & \(1.01 \mathrm{t}+00\) & \(112 \mathrm{EE}+00\) & \(2 \mathrm{AlE}+00\) & \(24.15+00\) \\
\hline & Summer & 1619000 & 52 & 50\%E-01 & 361E-04 & \(4.19 \mathrm{E}-02\) & \(4.16 \mathrm{E}-02\) & 549E-02 & \(6.48 \mathrm{E}-02\) & 2206 -01 & 4.10E-01 & \(6.35 \mathrm{E}-01\) & \(964 \mathrm{E}-01\) & \(1.67 \mathrm{E}+\infty\) & \(2.31 \mathrm{E}+00\) & \(2312+00\) \\
\hline & Wrier & 869000 & 62 & 6298-01 & 7.3504 & 39E-0 & 39E-C & 434E-02 & 629E-02 & 1.7E-01 & 352E-01 & 79E-01 & \(1.518+00\) & 223+00 & \(4.35 \mathrm{E}+00\) & \(435 \mathrm{E}+00\) \\
\hline & \multicolumn{16}{|l|}{Urbaization} \\
\hline & Contral City & 1308000 & 43 & 5.0 OE-01 & 4.06E-04 & 3.90-02 & 3.9E-02 & 6298-02 & 1AE-01 & \(2.13 \mathrm{E}-01\) & 388E-01 & 5.88E-01 & \(964 \mathrm{E}-01\) & \(1412+\infty\) & 2248+00 & 229E+00 \\
\hline & Noomatropolita & 2100000 & 118 & \(66 E E-01\) & 5.79E-04 & 4.16E-02 & \(4.16 \mathrm{E}-02\) & 5.5s-02 & \(907 \mathrm{E}-02\) & 220E-01 & \(3.70 \mathrm{E}-01\) & 8.65-01 & 1399+00 & \(2.12 \mathrm{E}+\infty 0\) & \(4.3 \mathrm{E}+00\) & \(6.6 \mathrm{E}+00\) \\
\hline & Surburta & 205000 & 84 & 707E-01 & 4.47E-04 & 6.4E-02 & \(6.48 \pm-02\) & \(922 \mathrm{E}-02\) & 120E-01 & 2.62E-01 & 42SE01 & \(9.74 \mathrm{E}-01\) & \(167 \mathrm{E}+\infty\) & \(203 \mathrm{E}+00\) & 2.6E+00 & \(265 \mathrm{E}+00\) \\
\hline & \multicolumn{16}{|l|}{Race} \\
\hline & Asian & 74000 & 2 & 753P-01 & 227E-03 & 135E-01 & 1.3E-01 & 1.3E-01 & 1.3E-01 & 138-01 & \(753 \mathrm{E}-01\) & \(1.37 \mathrm{E}+00\) & \(1.37 \mathrm{E}+\infty 0\) & \(1.37 \mathrm{E}+\infty\) & \(137 \mathrm{E}+00\) & \(1.378+00\) \\
\hline & Back & 129000 & 8 & \(12 \mathrm{E}+00\) & 6.05E-03 & 929E-02 & 929E-02 & 925E-02 & 929E-02 & 221E-01 & 438E-01 & 4.91E-01 & \(66 \mathrm{E}+\infty\) & \(6.5 \mathrm{E}+\infty\) & \(6.6 \mathrm{E}+00\) & \(66 \mathrm{E}+00\) \\
\hline & Ohe/NA & 171000 & 6 & \(1.1 \mathbf{E - 0 1}\) & 2.88 -04 & 4.16E-02 & 4.16E-02 & 4.19E-02 & \(4.16 \mathrm{E}-02\) & 5.5E-02 & 6.08E-02 & 907E-02 & 392E-01 & 392E-01 & 3.9E-01 & 392E-01 \\
\hline & White & 509300 & 229 & 6.45 -01 & \(2.71 \mathrm{E}-04\) & \(399 \mathrm{E}-02\) & 4.89-02 & \(921 \mathrm{E}-02\) & \(14 \mathrm{EE}-01\) & 2.418-01 & \(42 \mathrm{E}-01\) & \(796 \mathrm{E}-01\) & \(1.50 \mathrm{E}+00\) & \(2.03 \mathrm{E}+00\) & \(2.65 \mathrm{E}+00\) & \(4.38 \mathrm{E}+00\) \\
\hline \multirow{8}{*}{\[
\begin{gathered}
N \\
\mathbf{N}
\end{gathered}
\]} & Region & & & & & & & & & & & & & & & \\
\hline & Midres & 279000 & 128 & \(753 \mathrm{E}-01\) & 407E-04 & 399E-02 & 439E-02 & 1.32E-01 & 1.9x-01 & \(2.82 \mathrm{e}-01\) & 5.05E-01 & 9.5E-01 & \(1.33 \mathrm{E}+\infty\) & \(223 \mathrm{E}+\infty\) & 302E +00 & 437E +00 \\
\hline & Notheat & 735000 & 29 & 396E-01 & \(500 \mathrm{E}-04\) & \(4.16 \mathrm{E}-02\) & \(4.16 \mathrm{E}-02\) & 5.5se-02 & 605E-02 & \(922 \mathrm{E}-02\) & \(150 \mathrm{E}-01\) & \(635 \mathrm{E}-01\) & \(109 \mathrm{E}+\infty\) & \(137 \mathrm{E}+\infty\) & \(221 \mathrm{E}+\infty\) & \(221 \mathrm{E}+\infty\) \\
\hline & Sounh & 557000 & 30 & 5388-01 & \(1.52 \mathrm{E}-03\) & 4.85E-02 & 4.85-02 & 5.98-02 & 7.48-02 & \(220 \mathrm{E}-01\) & 3.08E01 & \(4.38 \mathrm{E}-01\) & \(7.74 \mathrm{E}-01\) & \(122 \mathrm{E}+\infty 0\) & \(6.6 \mathrm{E}+00\) & \(665 \mathrm{E}+00\) \\
\hline & Wex & 1383000 & 58 & 597E-01 & 4.58-04 & \(6.48 \mathrm{E}-02\) & \(64 \mathrm{E}-02\) & 12TE-01 & \(1.43 \mathrm{E}-01\) & 221E-01 & 4.00 -01 & 6.42E-01 & \(1.44 \mathrm{E}+\infty\) & 1.88. +00 & \(231 \mathrm{E}+00\) & \(23 \mathrm{3E}+00\) \\
\hline & \multicolumn{16}{|l|}{Repoose to Questiomaire} \\
\hline & Do you garden? & 517000 & 233 & 623E-01 & 263E-04 & 3.9E-02 & 4.19E-02 & 9.07E-02 & 132E-01 & 232E-01 & 419E-01 & \(7.50 E-01\) & \(1.42 \mathrm{E}+\infty\) & 1.998+00 & \(267 \mathrm{E}+00\) & \(4378+00\) \\
\hline & Do you farm? & 108800 & 51 & 600E-01 & 5.83E-04 & 921E-02 & 921E-02 & 922E-02 & 122E-01 & 194E-01 & 3.4EE-01 & \(9.45 \mathrm{E}-01\) & \(128 \mathrm{c}+\infty\) & \(1.7 \mathrm{E}+\infty\) & \(3008+00\) & 302E +00 \\
\hline
\end{tabular}

Table 2－246．Lentes of Hoomegrowa Other Vegetabion（f／kg－day）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { Kpulaz ion } \\
& \text { Group }
\end{aligned}
\] & \[
\underset{w_{y} \neq d}{N}
\] & \[
\underset{\substack{\text { Numpd } \\ \hline}}{ }
\] & Mem & SE & Fo & P1 & PS & P10 & P25 & Pso & 775 & P90 & Pss & 199 & P100 \\
\hline & Toud & 2520000 & 1437 & 138 +00 & 3．75E－at & \(0008+\infty\) & 946－03 & 108E－01 & \(1.768-01\) & 362E－01 & 7．7E－01 & \(168+\infty\) & \(3058+\infty\) & 4588＋00 & \(9988+0\) & 18E＋01 \\
\hline & \multicolumn{16}{|l|}{Age} \\
\hline & \(<01\) & 298000 & 16 & \(43 \mathrm{E}+00\) & 5508－03 & 1．118－01 & 1．118－01 & 653E－01 & 1．78E＋00 & \(221 \mathrm{E}+00\) & \(3538+\infty\) & 6．4AE \(+\infty\) & 109x＋01 & 1088＋01 & 1．10E＋01 & 1．10E +01 \\
\hline & 01－02 & 613000 & 38 & \(3 \mathrm{SaE}+00\) & 4940－03 & 192E－01 & 158E－01 & \(2.7 \mathrm{E}-01\) & 4，0EE－01 & \(10 \mathrm{EC}+\infty\) & \(2.61 \mathrm{E}+\infty\) & \(4.5 \mathrm{E}+\infty\) & 7．780＋00 & 1．138＋01 & \(1.80+01\) & \(18 E+01\) \\
\hline & 03－05 & 887000 & 59 & 21.8 ＋ 0 & 2188－03 & \(0.00 \mathrm{E}+\infty\) & \(0008+\infty\) & 228E－9 & \(3.7 \mathrm{E}-01\) & \(720 \mathrm{E}-01\) & \(1.37 E+\infty\) & \(316 \mathrm{E}+00\) & 4．AET＋00 & 59 Et＋0 & \(84 \mathrm{IE}+00\) & \(14 \mathrm{CE}+01\) \\
\hline & 06－11 & 2145000 & 134 & \(13 \mathrm{E}+\infty\) & 1098－03 & \(0008+\infty\) & \(0.008+\infty\) & 121E－01 & 193E－01 & 351E－01 & \(8008-01\) & \(1.61 \mathrm{E}+00\) & 3.06 ＋+0 & \(45 \mathrm{SE}+00\) & \(9.99+\infty\) & \(995+00\) \\
\hline & 12－19 & 2379000 & 141 & \(988 \mathrm{E}-01\) & 6598－04 & \(0.00 E+00\) & \(0.00 \mathrm{E}+\infty\) & \(5.76{ }^{\text {cos }}\) & 1．19E－01 & \(3.17 \mathrm{E}-01\) & 6AEE－01 & \(133 \mathrm{E}+00\) & \(205 \mathrm{C}+00\) & \(3.12 \mathrm{C}+00\) & 5AIE \(+\infty 0\) & \(5 \mathrm{ALE}+\infty\) \\
\hline & 20－39 & 6020000 & 328 & 9.30 Ea & \(4 A E-04\) & 2385－03 & 3198－0 & \(9378-02\) & 14E5－01 & \(2 A 3\)－01 & \(5.608-01\) & \(1.12 \mathrm{E}+00\) & 219\％+00 & 3.0 ＋\(+\infty\) & \(5.10 \mathrm{E}+\infty\) & \(7008+\infty\) \\
\hline & 40－69 & 9649000 & 547 & \(140 \mathrm{+} \times \infty\) & 658－04 & 197E－03 & 5．20E－03 & 1．118－01 & 18EE－01 & 398E－01 & 8AEE－01 & \(158+\infty\) & \(298 \mathrm{C}+00\) & \(4.508 \mathrm{E}+\infty 0\) & \(14 \mathrm{IE}+01\) & \(18 \mathrm{EP}+01\) \\
\hline & \(20+\) & 322000 & 174 & \(158+\infty\) & 10®6－03 & 5598－03 & 18E－Q & \(158 E-01\) & 238E－01 & 4．62E－01 & 948E－01 & \(191 \mathrm{E}+00\) & 3.4 ¢ \(+\infty\) & 5．798＋00 & 996E +00 & \(1.14 \mathrm{E}+01\) \\
\hline & \multicolumn{16}{|l|}{Season} \\
\hline & Fal & 6934000 & 253 & 1198＋00 & 521E－04 & 3198－6 & 498－a & 148E－01 & 186E－01 & 328E－01 & 716E－01 & \(1.48+00\) & \(2.74 \mathrm{C}+00\) & \(4008+00\) & 6．74E＋00 & 998E＋00 \\
\hline & Spring & 5407000 & 567 & \(119 \mathrm{E}+00\) & \(63 \mathrm{E}-04\) & \(0.008+\infty\) & 36EE－03 & 4．308－02 & 1．04E－01 & \(3.10 \mathrm{E}-01\) & 71．10E－01 & \(13 \mathrm{ge}+\infty\) & \(2.67 \mathrm{E}+\infty\) & \(421 \mathrm{E}+\infty\) & \(738 \mathrm{E}+00\) & \(14 \mathrm{CE}+01\) \\
\hline & Sumamer & 8854000 & 283 & 1．75E＋00 & \(8.54 \mathrm{C}-04\) & \(0.008+00\) & \(0.00 \mathrm{E}+10\) & 1．18E－01 & 1．81E－01 & 3．8E－01 & \(9.68 \mathrm{E}-01\) & \(1976+0\) & 4.15 ＋00 & \(6.14 \mathrm{E}+\infty 0\) & \(1 / G E+01\) & \(1848+01\) \\
\hline & Witer & 4426000 & 334 & 1．198＋00 & 6．3E－at & 308E－03 & 4．798－03 & 141E－01 & 231E－01 & \(4.08 \mathrm{E}-01\) & 73E－01 & 1Ag＋00 & \(2112+\infty\) & \(33 \mathrm{E}+\infty\) & \(700 \mathrm{E}+00\) & \(110 \mathrm{E}+01\) \\
\hline & \multicolumn{16}{|l|}{Urbaization} \\
\hline & CoutralCity & 4148000 & 161 & 960 －01 & 5．49\％－04 & 8398－03 & 3．508－a & 93xE－02 & 1．6E－01 & 324E－01 & 607e－01 & 123E＋00 & \(197 \mathrm{E}+00\) & \(3278+00\) & \(700 \mathrm{E}+00\) & 888E＋00 \\
\hline & Nonmempolita & 1072000 & 710 & 1.78 ＋+0 & 731E－04 & \(0.00 \mathrm{E}+\infty\) & 27Ex－a & 160E－01 & 226E－01 & 4．6EE－01 & \(1.018+\infty\) & 201E＋00 & \(4.05 \mathrm{E}+\infty\) & \(5.74 \mathrm{C}+\infty\) & 1A1E＋01 & \(1845+01\) \\
\hline & Sucturban & 10222000 & 564 & \(1148+\infty\) & 4A2E－04 & \(0008+\infty\) & 4．759－03 & 89玉－02 & 14EE－01 & 3．06E－01 & 6．47E－01 & 14AE＋00 & \(265 E+00\) & 3．7E +00 & \(6.81 \mathrm{E}+00\) & \(1.14{ }^{\text {c }}+01\) \\
\hline & \multicolumn{16}{|l|}{Race} \\
\hline & Asia & 110000 & 6 & \(2.79 \mathrm{e}-01\) & 6．71E－04 & 43EE02 & 4．36－02 & 4340－02 & 4．7E－02 & 168E－01 & \(2.16 \mathrm{E}-01\) & 298E－01 & \(8.3 \mathrm{E}-01\) & 8378－01 & 8370－01 & 8378－01 \\
\hline & Hack & 134000 & 84 & \(13 \mathrm{XE}+\infty\) & \(1346-03\) & 287E－Q & 4A1E－Q & 1．7世－01 & 206E－01 & 35ce－01 & 7．11E－01 & 14 E +00 & \(388 \pm+00\) & \(547 \mathrm{E}+\infty\) & \(621 \mathrm{E}+00\) & 7．72E＋00 \\
\hline & Native American & 28000 & 1 & 1.78 －01 & \(0.00 \pm+00\) & 1．76E－01 & 1．76E－01 & 1．76E－01 & 1．76E－01 & 1．7EE－01 & 1.76 －01 & 1．76E－01 & \(1.76 \in-01\) & \(1.7 ¢\)－01 & 1．76E－01 & 1．76E－01 \\
\hline & Oher／NA & 309000 & 17 & 22 Ce +00 & 3185－03 & 49E－03 & 498E－03 & 208E01 & 2．15E－01 & 354E－01 & \(2.13 \mathrm{E}+00\) & \(3.75+\infty\) & 398\％+00 & \(5412+00\) & 5．41E +00 & 5A1E＋C0 \\
\hline \multirow[t]{9}{*}{\[
\begin{gathered}
N \\
山 \\
山
\end{gathered}
\]} & White & 2336000 & 1327 & \(139 \mathrm{l}+00\) & 396E－04 & \(0008+00\) & 129－02 & \(1.10 \mathrm{E}-01\) & 1．79E－01 & 3．76E－01 & 793E－01 & \(165 \mathrm{R}+00\) & \(30 \times \mathrm{C}+00\) & 4A98＋00 & 996E＋00 & \(184 E+01\) \\
\hline & \multicolumn{16}{|l|}{Region} \\
\hline & Midwea & 8296000 & 522 & 1．4E＋00 & 734E－04 & 18E－02 & 3．18E－02 & 121E－01 & 19E－01 & \(3.66 \mathrm{E}-01\) & 729E－01 & 165 +00 & 303E \(+\infty\) & \(465 \pm+\infty\) & \(1.128+01\) & 184E＋01 \\
\hline & Nothear & 2914000 & 162 & \(1.3 E+\infty\) & 123E－03 & \(0.008+00\) & 197E－03 & 568－02 & 107E－01 & 2．44E－01 & 597E－01 & \(164 \mathrm{E}+00\) & 307E +00 & \(54 \mathrm{LE}+00\) & 120E＋01 & 141E＋01 \\
\hline & South & 9218000 & 518 & \(155 \mathrm{C}+0\) & 5．8E－04 & 000E＋00 & 1AIE－0 & 16E－01 & \(253 \mathrm{E}-01\) & \(4.8 \mathrm{x}-01\) & \(1.03 \mathrm{E}+00\) & \(1.76+\infty\) & \(337 \mathrm{~F}+00\) & \(4.70 \mathrm{E}+00\) & \(83 \mathrm{EE}+00\) & \(1818+01\) \\
\hline & Weas & 4733000 & 233 & \(10 \mathrm{E}+00\) & 691E－04 & 2258－03 & 1．11E－02 & 706E－02 & 1228－01 & 25E－01 & S．73E－01 & \(121 \mathrm{E}+00\) & \(2.41 \mathrm{E}+00\) & 3．73E＋00 & \(8.02 \mathrm{E}+00\) & \(1.14 \mathrm{E}+01\) \\
\hline & \multicolumn{16}{|l|}{Repponse to Questionnaire} \\
\hline & Do you garden？ & 22417000 & 1291 & 1．4E \(+\infty\) & 398E－04 & 0．0．E \(+\infty 0\) & 1118002 & 1．11E－01 & 1808－01 & 3．840－01 & \(8.18 \mathrm{E}-01\) & \(1.78 \mathrm{e}+\infty\) & \(328 \mathrm{E}+\infty 0\) & \(4.65 \mathrm{E}+00\) & 99EE＋00 & \\
\hline & Do you arm？ & 3868000 & 239 & \(195 E+00\) & 127E－03 & \(0.00 \mathrm{E}+00\) & \(1412-\infty\) & 136E－01 & 234E－01 & 520E－01 & 121E＋00 & 204E＋00 & \(532 \mathrm{E}+00\) & 700E＋00 & 1．46E＋01 & 1．59\％ \\
\hline
\end{tabular}

Table 2-247. Intake of Homegrown Citrus Fruits (g/kg-day)


1

Table 2-248. Intake of Homegrowa Other Fruix (elke-day)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Eopation Grap & \({ }_{\text {and }}^{1 N}\) & innap & Mem & SE & PO & P1 & PS & P10 & P2S & P00 & P75 & P90 & P95 & P99 & P100 \\
\hline Total & 12615000 & 206 & \(220 \mathrm{E}+\infty\) & 139E-03 & \(0008+00\) & 5A1E-@ & 1ATE-01 & 25SE-01 & 4608-01 & 906E-81 & 1918+C0 & 4598+00 & \(8.12 \mathrm{C}+00\) & 12¢8+01 & 6288+01 \\
\hline \multicolumn{16}{|l|}{Age} \\
\hline \(<01\) & 177000 & 10 & \(652 \mathrm{E}+00\) & 1298-0 & 5AE-01 & 5AEE-01 & \(1.808+\infty\) & 22EE +00 & \(2698+\infty\) & 498. \({ }^{\text {com }}\) & 7408+00 & 158+01 & \(158+01\) & \(158 \mathrm{C}+01\) & 15cetol \\
\hline 01-02 & 306000 & 19 & \(8.63 \mathrm{E}+\infty\) & 290E-02 & \(1.10 \mathrm{E}+00\) & \(1.10 \mathrm{E}+\infty\) & \(1.10 \mathrm{E}+00\) & \(135 \mathrm{E}+00\) & \(1.788+\infty\) & \(3 \mathrm{SxE}+\infty\) & \(539 \mathrm{C}+00\) & 1.18t+01 & \(6288+01\) & 620E+01 & \(6288+01\) \\
\hline 03-05 & 499000 & 31 & \(260 E+00\) & 599E-03 & \(0008+00\) & \(0.00 E+00\) & \(00 \times 8+\infty\) & 30EE-01 & \(108 \mathrm{t}+0\) & \(187 \mathrm{C}+\infty\) & \(2.7 \mathrm{E}+\infty\) & \(554 \mathrm{E}+00\) & \(63 \mathrm{E}+00\) & \(3328+01\) & \(3308+01\) \\
\hline \(06-11\) & 915000 & 68 & \(2608+\infty\) & 3.778-03 & \(0.00 \mathrm{E}+00\) & \(0.018+\infty\) & 1.778-01 & 384E-01 & 635E-01 & \(11 \mathrm{C}+00\) & 29se +00 & \(713 \mathrm{E}+00\) & 1212+01 & \(1582+01\) & 16E+01 \\
\hline 12-19 & 1021000 & 54 & \(1.62 \mathrm{E}+00\) & 201E-03 & 8.40-02 & 840E-02 & 120E-01 & 257E-01 & 3.868-01 & 609\%-01 & \(238 \mathrm{E}+00\) & \(397 E+00\) & \(6818+00\) & \(8.12 \mathrm{E}+00\) & 8.12E+00 \\
\hline 20-39 & 2761000 & 146 & \(185 \mathrm{E}+00\) & 2.70E-03 & 5A1E-02 & 794E-02 & 130E-01 & 1.80E-01 & 307E-01 & 6208-01 & \(135 \mathrm{E}+\infty\) & \(3.75 \mathrm{E}+00\) & \(6.64 \mathrm{C}+00\) & 3.7E+01 & 3.7E+01 \\
\hline 40-69 & 4610000 & 259 & \(2.05 \mathrm{E}+\infty 0\) & 2.31E-03 & 257E-02 & \(6.52 \mathrm{E}-02\) & 147E-01 & 25AE-01 & 4ACE-01 & 768E-01 & \(1.78 \mathrm{~B}+0\) & \(3.17 \mathrm{E}+00\) & \(9.77 E+\infty\) & 1848+01 & 5.33E+01 \\
\hline \(70+\) & 2325000 & 119 & \(166 \mathrm{E}+00\) & 1328-03 & 4.15E-02 & 4A1E-0 & 2078-01 & 356-01 & \(5.71 \mathrm{E}-01\) & \(107 \mathrm{E}+00\) & \(165 \mathrm{E}+\infty\) & \(4.06 E+00\) & \(521 \mathrm{E}+00\) & 1.17E+01 & 1.17E+01 \\
\hline \multicolumn{16}{|l|}{Seam} \\
\hline Fall & 2923000 & 102 & \(1398+\infty\) & 6.75E-04 & 259-01 & 259E-01 & 309E-01 & 3818-01 & 565E-01 & \(107 \mathrm{E}+00\) & \(188+\infty\) & 289E+00 & 4.06E+00 & 5398+00 & \(5.54 \mathrm{E}+00\) \\
\hline Spring & 2520000 & 268 & \(1.47 \mathrm{E}+00\) & 156E-03 & 653E-02 & 860E-0 & 198E-01 & 254E-01 & 425E-01 & 83E-01 & \(16 E+00\) & 285 +00 & 459. +00 & 820E+00 & 332E+01 \\
\hline Summar & 4322000 & 14 & 3.75E+00 & 3.77E-03 & \(0.00 \mathrm{E}+00\) & \(0.00 \mathrm{E}+00\) & 918E-02 & 1.47E-01 & 4.04E-01 & \(1008+00\) & \(3.12 \mathrm{E}+00\) & \(109 \mathrm{E}+01\) & \(154 \mathrm{C}+01\) & \(5.33 \mathrm{E}+01\) & 626E+01 \\
\hline Winter & 2839000 & 192 & 129E+00 & 891E-04 & 257E-02 & 415E-02 & 101E-01 & \(225 \mathrm{E}-01\) & 4.548-01 & 833E-01 & \(15 \mathrm{E}+00\) & 2.708+00 & \(4.79 \mathrm{~L}+00\) & \(8.06 E+00\) & 1.15 +01 \\
\hline \multicolumn{16}{|l|}{Urbanization} \\
\hline Contral City & 2681000 & 102 & \(1.79 \mathrm{C}+0\) & 1.77E-03 & 4.158-02 & 4.41E-02 & 166E-01 & 291E-01 & 5218-01 & 8.87E-01 & \(1608+\infty\) & \(2.61 \mathrm{E}+00\) & \(1048+01\) & 1.54E+01 & 154E+01 \\
\hline Nonmad mpolita & 4118000 & 278 & \(2.43 \mathrm{E}+00\) & 25E-03 & 257E-02 & 652E-02 & \(120 \mathrm{E}-01\) & \(23 \mathrm{EE}-01\) & \(450 \mathrm{E}-01\) & \(1138+00\) & \(2 A B E+\infty\) & \(460 \mathrm{E}+00\) & \(8.128+00\) & \(2.40 \mathrm{E}+01\) & \(5.33 \mathrm{E}+01\) \\
\hline Surburba & 5756000 & 324 & \(22 \mathrm{E}+\infty\) & 2298-03 & 3AE-02 & 12SE-01 & 199\%-01 & \(2.82 \mathrm{E}-01\) & 4AGE-01 & 764E-01 & \(181 \mathrm{E}+00\) & \(4.72 \mathrm{E}+00\) & \(761 \mathrm{E}+00\) & 1.84E+01 & 620E+01 \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Black & 250000 & 12 & \(1148+00\) & 1A1E-03 & 1ARE-01 & 140E-01 & 1ADE-01 & 291E-01 & 5998-01 & 1172+00 & \(1618+00\) & 229P+00 & \(2.29 \mathrm{E}+00\) & 229E +00 & 2298+00 \\
\hline OtherNA & 49000 & 2 & 5.44E-01 & 1AEE-03 & 404E-01 & 40AE-01 & 40AE-01 & 40AE-01 & 404E-01 & 40\%-01 & 40AE-01 & \(120 \mathrm{E}+00\) & \(12 \mathrm{E}+00\) & \(120 \mathrm{E}+00\) & \(126 \mathrm{E}+00\) \\
\hline White & 12256000 & 690 & \(224 \mathrm{E}+\infty\) & 1AEE-03 & 257E-02 & 696E-02 & 150E-01 & 259E-01 & 4.60E-01 & 9.1®E-01 & \(1998+00\) & 4.6E+00 & \(826 E+00\) & 1.84E+01 & \(626 \mathrm{E}+01\) \\
\hline \multicolumn{16}{|l|}{Region} \\
\hline Midorex & 4619000 & 298 & \(3.072+00\) & 34IE-03 & 25E-02 & 4.4E- 0 & 125E-01 & 235E-01 & 4.54E-01 & 1042+00 & \(2338+00\) & \(6.75 \mathrm{E}+00\) & \(1422+01\) & 533E+01 & 626E+01 \\
\hline Northeax & 1279000 & 72 & 932E-01 & \(16 \mathrm{EE}-03\) & 798E-02 & 798E-02 & 8.5E-02 & 162E-01 & 3.11E-01 & 4.78E-01 & 8.128-01 & \(129 \mathrm{e}+00\) & \(2.16+00\) & 1.17E+01 & \(1.17 \mathrm{E}+01\) \\
\hline South & 3004000 & 157 & 1998+00 & 1.87E-03 & 343E-02 & 794E-02 & 238E-01 & 2998-01 & 5AGE-01 & \(1.108+00\) & \(182 \mathrm{c}+\infty\) & 406E +00 & \(630 \mathrm{E}+00\) & \(1.62 \mathrm{E}+01\) & 2.408+01 \\
\hline Wex & 3653000 & 177 & \(1.76 \mathrm{C}+\infty\) & \(1.14 \mathrm{E}-03\) & 7.14E-02 & 100E-01 & 2.10E-01 & 2918-01 & 54AE-01 & \(9.71 \mathrm{E}-01\) & \(204 \mathrm{E}+00\) & 4.3E +00 & \(5.7 \mathrm{E}+00\) & 130E+01 & 130E+01 \\
\hline \multicolumn{16}{|l|}{Reponse to Questionnaire} \\
\hline Do you gardan? & 10925000 & 619 & \(2388+\infty\) & 1598-03 & \(0.008+00\) & 4.41E-02 & 158E-01 & 2.57E-01 & 4.748-01 & 994E-01 & 1.96E+00 & 494E +00 & \(104 \mathrm{E}+01\) & 1.84E+01 & 636E+01 \\
\hline Do you tarm? & 1917000 & 112 & \(2.57 \mathrm{E}+\infty\) & 203E-03 & 5.41E-02 & 6,90E-02 & 2.76E-01 & 361E-01 & 73E-01 & 15E+00 & \(3628+00\) & \(5808+00\) & \(800 E+00\) & 1.62E+01 & \(162 \mathrm{E}+01\) \\
\hline
\end{tabular}


All Regions
\begin{tabular}{llllll} 
Total & 0.041 & 0.070 & 0.024 & 0.012 & 0.095 \\
Central City & 0.027 & 0.027 & 0.003 & 0.000 & 0.053 \\
Nonmetropolitan & 0.052 & 0.144 & 0.064 & 0.043 & 0.219 \\
Surburban & 0.047 & 0.058 & 0.018 & 0.004 & 0.075 \\
Asian & 0.000 & 0.013 & 0.000 & 0.001 & 0.029 \\
Black & 0.007 & 0.027 & 0.001 & 0.000 & 0.063 \\
Native American & 0.000 & 0.001 & 0.003 & 0.000 & 0.095 \\
Other/NA & 0.001 & 0.034 & 0.003 & 0.000 & 0.060 \\
White & 0.049 & 0.081 & 0.031 & 0.014 & 0.110 \\
Do you garden? & 0.101 & 0.173 & & & \\
Do you raise animals? & & & 0.306 & 0.207 & \\
Do you farm? & 0.161 & 0.308 & 0.319 & 0.254 & \\
Do you fish? & & & & & 0.325
\end{tabular}

Midwest
\begin{tabular}{llllll} 
Total & 0.059 & 0.112 & 0.046 & 0.024 & 0.133 \\
Central City & 0.018 & 0.043 & 0.005 & 0.000 & 0.028 \\
Nonmetropolitan & 0.088 & 0.206 & 0.132 & 0.074 & 0.382 \\
Surburban & 0.097 & 0.116 & 0.029 & 0.001 & 0.103
\end{tabular}

Northeast
\begin{tabular}{llllll} 
Total & 0.005 & 0.038 & 0.009 & 0.010 & 0.008 \\
Central City & 0.000 & 0.006 & 0.000 & 0.000 & 0.000 \\
Nonmetropolitan & 0.004 & 0.076 & 0.025 & 0.062 & 0.035 \\
Surburban & 0.008 & 0.044 & 0.011 & 0.002 & 0.009
\end{tabular}

South
\begin{tabular}{llllll} 
Total & 0.042 & 0.069 & 0.017 & 0.006 & 0.126 \\
Central City & 0.045 & 0.014 & 0.000 & 0.000 & 0.041 \\
Nonmetropolitan & 0.046 & 0.156 & 0.043 & 0.019 & 0.197 \\
Surburban & 0.038 & 0.035 & 0.009 & 0.000 & 0.150 \\
& & & & & \\
West & & & & & \\
Total & 0.062 & 0.057 & 0.023 & 0.007 & 0.108 \\
Central City & 0.053 & 0.046 & 0.007 & 0.000 & 0.186 \\
Nonmetropolitan & 0.038 & 0.045 & 0.026 & 0.003 & 0.072 \\
Surburban & 0.073 & 0.067 & 0.031 & 0.014 & 0.057
\end{tabular}

Table 2-249. Mean Fraction of Food Intake That is Homeproduced (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Exposed Vegetables & Protected Vegetables & Rool Vegetables & Exposed Pruits & \begin{tabular}{l}
Prolected \\
Pruits
\end{tabular} & Dark Oreen Vegetables & Deep Yellow Vegelables & Other Vegelables & \begin{tabular}{l}
Citrus \\
Fruies
\end{tabular} & \begin{tabular}{l}
Other \\
Pruits
\end{tabular} \\
\hline Total & 0.095 & 0.069 & 0.043 & 0.050 & 0.037 & 0.044 & 0.065 & 0.069 & 0.038 & 0.042 \\
\hline \multicolumn{11}{|l|}{Urbanization} \\
\hline Central City & 0.037 & 0.027 & 0.016 & 0.030 & 0.026 & 0.012 & 0.038 & 0.026 & 0.035 & 0.022 \\
\hline Nonmetropolitan & 0.207 & 0.134 & 0.088 & 0.100 & 0.025 & 0.090 & 0.122 & 0.154 & 0.000 & 0.077 \\
\hline Surburban & 0.079 & 0.054 & 0.035 & 0.043 & 0.050 & 0.054 & 0.058 & 0.053 & 0.056 & 0.042 \\
\hline \multicolumn{11}{|l|}{Race} \\
\hline Asian & 0.018 & 0.001 & 0.008 & 0.000 & 0.000 & 0.063 & 0.020 & 0.002 & 0.000 & 0.000 \\
\hline Black & 0.037 & 0.029 & 0.012 & 0.008 & 0.007 & 0.053 & 0.056 & 0.026 & 0.012 & 0.004 \\
\hline Native American & 0.003 & 0.000 & 0.001 & 0.000 & 0.000 & 0.000 & 0.000 & 0.001 & 0.000 & 0.000 \\
\hline Other/NA & 0.058 & 0.004 & 0.028 & 0.002 & 0.000 & 0.004 & 0.017 & 0.040 & 0.000 & 0.001 \\
\hline White & 0.109 & 0.081 & 0.050 & 0.059 & 0.045 & 0.043 & 0.071 & 0.082 & 0.045 & 0.051 \\
\hline \multicolumn{11}{|l|}{Region} \\
\hline Midwest & 0.148 & 0.109 & 0.077 & 0.078 & 0.048 & 0.054 & 0.174 & 0.102 & 0.001 & 0.083 \\
\hline Northeast & 0.062 & 0.016 & 0.018 & 0.010 & 0.002 & 0.039 & 0.019 & 0.034 & 0.000 & 0.008 \\
\hline South & 0.091 & 0.077 & 0.042 & 0.040 & 0.044 & 0.049 & 0.022 & 0.077 & 0.060 & 0.031 \\
\hline West & 0.079 & 0.060 & 0.029 & 0.075 & 0.054 & 0.034 & 0.063 & 0.055 & 0.103 & 0.046 \\
\hline ' & & & & & & & & & & \\
\hline \multicolumn{11}{|l|}{Response to Questionnaire} \\
\hline Do you garden? & 0.233 & 0.178 & 0.106 & 0.116 & 0.094 & 0.120 & 0.140 & 0.180 & 0.087 & 0.107 \\
\hline Do you farm? & 0.420 & 0.394 & 0.173 & 0.328 & 0.030 & 0.220 & 0.328 & 0.368 & 0.005 & 0.227 \\
\hline
\end{tabular}

Table 2-249. Mean Fraction of Food Intake That is Homeproduced (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Apples & Peaches & Pears & Strawberties & Othe Barries & & Asparapus & Beets & Broccoli & Cabbage & Cantots & Corn & Cucumbers & Lettuce & LimaBears \\
\hline Total & 0.030 & 0.147 & 0.067 & 0.111 & 0.217 & & 0.063 & 0.203 & 0.015 & 0.038 & 0.043 & 0.078 & 0.148 & 0.010 & 0.121 \\
\hline \multicolumn{16}{|l|}{Urbanization} \\
\hline Central City & 0.017 & 0.087 & 0.038 & 0.107 & 0.228 & & 0.058 & 0.212 & 0.004 & 0.004 & 0.018 & 0.025 & 0.029 & 0.009 & 0.037 \\
\hline Nonmeropolitan & 0.066 & 0.272 & 0.155 & 0.133 & 0.282 & & 0.145 & 0.377 & 0.040 & 0.082 & 0.091 & 0.173 & 0.377 & 0.017 & 0.132 \\
\hline Sreburban & 0.024 & 0.121 & 0.068 & 0.101 & 0.175 & & 0.040 & 0.127 & 0.016 & 0.045 & 0.039 & 0.047 & 0.088 & 0.009 & 0.165 \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Amian & 0.000 & - & 0.000 & 0.000 & 0.000 & & 0.000 & 0.000 & 0.000 & 0.000 & 0.082 & 0.000 & 0.019 & 0.002 & 0.000 \\
\hline Black & 0.007 & 0.018 & 0.004 & 0.000 & 0.470 & & 0.000 & 0.000 & 0.000 & 0.001 & 0.068 & 0.019 & 0.060 & 0.007 & 0.103 \\
\hline Native American & 0.000 & 0.000 & 0.000 & 0.000 & - & & 0.000 & 0.172 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline OtherNA & 0.000 & 0.015 & 0.000 & 0.000 & 0.000 & & 0.000 & 0.000 & 0.008 & 0.065 & 0.018 & 0.000 & 0.531 & 0.007 & 0.000 \\
\hline White & 0.035 & 0.164 & 0.089 & 0.125 & 0.214 & & 0.071 & 0.224 & 0.018 & 0.056 & 0.042 & 0.093 & 0.155 & 0.011 & 0.135 \\
\hline \multicolumn{16}{|l|}{Region} \\
\hline Midwest & 0.052 & 0.164 & 0.112 & 0.209 & 0.231 & & 0.194 & 0.432 & 0.025 & 0.053 & 0.101 & 0.124 & 0.193 & 0.020 & 0.149 \\
\hline Noctheast & 0.004 & 0.027 & 0.002 & 0.085 & 0.205 & & 0.091 & 0.074 & 0.020 & 0.047 & 0.025 & 0.020 & 0.147 & 0.009 & 0.026 \\
\hline South & 0.008 & 0.143 & 0.080 & 0.072 & 0.177 & & 0.015 & 0.145 & 0.013 & 0.029 & 0.020 & 0.038 & 0.140 & 0.006 & 0.140 \\
\hline \(\therefore\) West & 0.043 & 0.238 & 0.093 & 0.044 & 0.233 & & 0.015 & 0.102 & 0.006 & 0.029 & 0.039 & 0.069 & 0.119 & 0.008 & 0.000 \\
\hline \multicolumn{16}{|l|}{Retporxe to Questionnaire} \\
\hline Do you garden? & 0.070 & 0.316 & 0.169 & 0.232 & 0.306 & & 0.125 & 0.420 & 0.043 & 0.099 & 0.103 & 0.220 & 0.349 & 0.031 & 0.258 \\
\hline Do you farm? & 0.292 & 0.461 & 0.606 & 0.057 & 0.548 & & 0.432 & 0.316 & 0.159 & 0.219 & 0.185 & 0.524 & 0.524 & 0.063 & 0.103 \\
\hline & Okr8 & Onions & Peas & Peppes & Pumpicin & Soap Beana & Tomatoes & Whic Potatoes & & Beef & Game & Pak & Poultry & Eggs & \\
\hline Total & 0.270 & 0.056 & 0.069 & 0.107 & 0.155 & 0.155 & 0.184 & 0.038 & & 0.038 & 0.276 & 0.013 & 0.011 & 0.014 & \\
\hline \multicolumn{16}{|l|}{-Urbanization} \\
\hline Central City & 0.068 & 0.017 & 0.033 & 0.067 & 0.130 & 0.066 & 0.100 & 0.009 & & 0.001 & 0.146 & 0.001 & 0.002 & 0.002 & \\
\hline Nonmetropolitan & 0.411 & 0.127 & 0.123 & 0.228 & 0.250 & 0.307 & 0.313 & 0.080 & & 0.107 & 0.323 & 0.040 & 0.026 & 0.029 & \\
\hline Surburban & 0.299 & 0.050 & 0.064 & 0.086 & 0.127 & 0.118 & 0.156 & 0.029 & & 0.026 & 0.316 & 0.006 & 0.011 & 0.014 & \\
\hline \multicolumn{16}{|l|}{Race} \\
\hline Asian & 1.000 & 0.000 & 0.042 & 0.042 & 0.000 & 0.007 & 0.046 & 0.000 & & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & \\
\hline Black & 0.069 & 0.009 & 0.047 & 0.039 & 0.022 & 0.046 & 0.060 & 0.007 & & 0.000 & 0.000 & 0.000 & 0.001 & 0.002 & \multirow[t]{14}{*}{} \\
\hline Native American & - & 0.006 & 0.000 & 0.000 & 0.000 & 0.000 & 0.015 & 0.000 & & 0.000 & & 0.000 & 0.000 & 0.000 & \\
\hline Other/NA & 0.000 & 0.015 & 0.045 & 0.000 & 0.000 & 0.029 & 0.040 & 0.034 & & 0.001 & 0.179 & 0.000 & 0.000 & 0.000 & \\
\hline White & 0.373 & 0.068 & 0.076 & 0.121 & 0.187 & 0.186 & 0.202 & 0.044 & & 0.048 & 0.359 & 0.017 & 0.014 & 0.017 & \\
\hline Region & & & & & & & & & & & & & & & \\
\hline Midwest & 0.224 & 0.098 & 0.058 & 0.188 & 0.357 & 0.243 & 0.291 & 0.065 & & 0.076 & 0.513 & 0.021 & 0.021 & 0.019 & \\
\hline Northeast & 0.000 & 0.022 & 0.021 & 0.067 & 0.002 & 0.052 & 0.117 & 0.016 & & 0.014 & 0.202 & 0.006 & 0.002 & 0.004 & \\
\hline South & 0.291 & 0.047 & 0.106 & 0.113 & 0.044 & 0.161 & 0.149 & 0.042 & & 0.022 & 0.199 & 0.012 & 0.012 & 0.012 & \\
\hline West & 0.333 & 0.083 & 0.051 & 0.082 & 0.181 & 0.108 & 0.182 & 0.013 & & 0.041 & 0.207 & 0.011 & 0.008 & 0.021 & \\
\hline Resporse to Ques tionnare & & & & & & & & & & & & . & & & \\
\hline Do you garden? & 0.618 & 0.148 & 0.193 & 0.246 & 0.230 & 0.384 & 0.398 & 0.090 & & & & & & & \\
\hline Do you raise abimals? & & & & & & & & & & 0.478 & & 0.239 & 0.151 & 0.214 & \\
\hline Do you tuant? & & & & & & & & & & & 0.729 & & & & \\
\hline Do you fam? & 0.821 & 0.361 & 0.308 & 0.564 & 0.824 & 0.623 & 0.616 & 0.134 & & 0.485 & & 0.242 & 0.156 & 0.146 & \\
\hline
\end{tabular}

\subsection*{2.8. SOIL INGESTION AND PICA}

\subsection*{2.8.1. Background}

The ingestion of soil is a potential source of human toxics exposure. The potential for exposure to contaminants via this source is greater for children because they are likely to ingest more soil than adults as a result of behavioral patterns present during childhood. Inadvertent soil ingestion among children may occur through the mouthing of objects or hands. Mouthing behavior is considered to be a normal phase of childhood development. Adults may also ingest soil or dust particles that adhere to food, cigarettes, or their hands. Deliberate soil ingestion is defined as pica and is considered to be relatively uncommon. Because normal inadvertent soil ingestion is more prevalent and data for individuals with pica behavior are limited, this section focuses primarily on normal soil ingestion that occurs as a result of mouthing or unintentional hand-to-mouth activity.

Several studies have been conducted to estimate the amount of soil ingested by children. Most of the early studies attempted to estimate the amount of soil ingested by measuring the amount of dirt present on children's hands and making generalizations based on behavior. More recently, soil intake studies have been conducted using a methodology that measures trace elements in feces and soil which are believed to be poorly absorbed in the gut. These measurements are used to estimate the amount of soil ingested over a specified time period. The available studies on soil intake are summarized in the following sections. Studies on soil intake among children have been classified as either key studies or relevant studies based on their applicability to exposure assessment needs. Recommended intake rates are based on the results of key studies, but relevant studies are also presented to provide the reader with added perspective on the current state-of-knowledge pertaining to soil intake. Information on soil ingestion among adults are presented based on available data from a limited number of studies. Relevant information on the prevalence of pica and intake among individuals exhibiting pica behavior are also presented.

\subsection*{2.8.2. Key Studies on Soil Intake Among Children}

Binder et al. - Estimating Soil Ingestion: Use of Tracer Elements in Estimating the Amount of Soil Ingested by Young Children - Binder et al. (1986) studied the ingestion of soil
among children 1 to 3 years of age who wore diapers using a tracer technique modified from a method previously used to measure soil ingestion among grazing animals. The children were studied during the summer of 1984 as part of a larger study of residents living near a lead smelter in East Helena, Montana. Soiled diapers were collected over a 3-day period from 65 children ( 42 males and 23 females), and composited samples of soil were obtained from the children's yards. Both excreta and soil samples were analyzed for aluminum, silicon, and titanium. These elements were found in soil but were thought to be poorly absorbed in the gut and to have been present in the diet only in limited quantities. This made them useful tracers for estimating soil intake. Excreta measurements were obtained for 59 of the children. Soil ingestion by each child was estimated based on each of the three tracer elements using a standard assumed fecal dry weight of \(15 \mathrm{~g} /\) day, and the following equation.
\[
\begin{equation*}
T_{i, e}=\frac{f_{i, e} x F_{i}}{S_{i, e}} \tag{Eqn.2-19}
\end{equation*}
\]
where:
\(T_{i, e}=\) estimated soil ingestion for child \(i\) based on element e (g/day);
\(\mathrm{f}_{\mathrm{i}, \mathrm{e}}=\) concentration of element e in fecal sample of child \(\mathrm{i}(\mathrm{mg} / \mathrm{g}) ;\)
\(\mathrm{F}_{\mathrm{i}}=\) fecal dry weight (g/day); and
\(\mathrm{S}_{\mathrm{i}, \mathrm{e}}=\) concentration of element e in child i's yard soil (mg/g).

The analysis conducted by Binder et al. (1986) assumed that: (1) the tracer elements were neither lost nor introduced during sample processing; (2) the soil ingested by children originates primarily from their own yards; and (3) that absorption of the tracer elements by children occurred in only small amounts. The study did not distinguish between ingestion of soil and housedust nor did it account for the presence of the tracer elements in ingested foods or medicines.

The arithmetic mean quantity of soil ingested by the children in the Binder et al. (1985) study was estimated to be \(181 \mathrm{mg} /\) day (range 25 to 1,324 ) based on the aluminum tracer; 184 \(\mathrm{mg} /\) day (range 31 to 799 ) based on the silicon tracer; and \(1,834 \mathrm{mg} /\) day (range 4 to 17,076 )
based on the titanium tracer (Table 2-250). The overall mean soil ingestion estimate based on the minimum of the three individual tracer estimates for each child was \(108 \mathrm{mg} /\) day (range 4 to 708). The 95th percentile values for aluminum, silicon, and titanium were \(584 \mathrm{mg} / \mathrm{day}, 578\) \(\mathrm{mg} /\) day, and \(9,590 \mathrm{mg} /\) day, respectively. The 95th percentile value based on the minimum of the three individual tracer estimates for each child was \(386 \mathrm{mg} /\) day.

The authors were not able to explain the difference between the results for titanium and for the other two elements, but speculated that unrecognized sources of titanium in the diet or in the laboratory processing of stool samples may have accounted for the increased levels. The frequency distribution graph of soil ingestion estimates based on titanium shows that a group of 21 children had particularly high titanium values (i.e., \(>1,000 \mathrm{mg} /\) day). The remainder of the children showed titanium ingestion estimates at lower levels, with a distribution more comparable to that of the other elements.

The advantages of this study are that a relatively large number of children were studied and tracer elements were used to estimate soil ingestion. However, the children studied may not be representative of the U.S. population and the study did not account for tracers ingested via foods or medicines. Also, the use of an assumed fecal weight instead of actual fecal weights may have biased the results of this study. Finally, because of the shori-term nature of the survey, soil intake estimates may not be entirely representative of long-term behavior, especially at the upper-end of the distribution of intake.

Clausing et al. - A Method for Estimating Soil Ingestion by Children - Clausing et al. (1987) conducted a soil ingestion study with Dutch children using a tracer element methodology similar to that of Binder et al. (1986). Aluminum, titanium, and acid-insoluble residue (AIR) contents were determined for fecal samples from children, aged 2 to 4 , attending a nursery school, and for samples of playground dirt at that school. Twenty-seven daily fecal samples were obtained over a 5-day period for the 18 children examined. Using the average soil concentrations present at the school, and assuming a standard fecal dry weight of \(10 \mathrm{~g} / \mathrm{day}\), Clausing et al. (1987) estimated soil ingestion for each tracer. Clausing et al. (1987) also collected eight daily fecal samples from six hospitalized, bedridden children. These children served as a control group, representing children who had very limited access to soil.

Table 2-250. Estimated Daily Soil Ingestion Based on Aluminum, Silicon, and Titanium
Concentrations
\begin{tabular}{lcccccc}
\hline \begin{tabular}{c} 
Estimation \\
Method
\end{tabular} & \begin{tabular}{c} 
Mean \\
(mg/day)
\end{tabular} & \begin{tabular}{c} 
Median \\
(mg/day)
\end{tabular} & \begin{tabular}{c} 
Standard \\
Deviation \\
(mg/day)
\end{tabular} & \begin{tabular}{c} 
Range \\
(mg/day)
\end{tabular} & \begin{tabular}{c} 
95th \\
Percentile \\
(mg/day)
\end{tabular} & \begin{tabular}{c} 
Geometric \\
Mean \\
(mg/day)
\end{tabular} \\
\hline Aluminum & 181 & 121 & 203 & \(25-1,324\) & 584 & 128 \\
Silicon & 184 & 136 & 175 & \(31-799\) & 578 & 130 \\
Titanium & 1,834 & 618 & 3,091 & \(4-17,076\) & 9,590 & 401 \\
Minimum & 108 & 88 & 121 & \(4-708\) & 386 & 65 \\
\hline
\end{tabular}

Source: Binder et al., 1986.

The average quantity of soil ingested by the school children in this study was as follows: \(230 \mathrm{mg} /\) day (range 23 to \(979 \mathrm{mg} /\) day) for aluminum; \(129 \mathrm{mg} /\) day (range 48 to \(362 \mathrm{mg} /\) day) for AIR; and \(1,430 \mathrm{mg} /\) day (range 64 to \(11,620 \mathrm{mg} /\) day) for titanium (Table 2-251). As in the Binder et al. (1986) study, a fraction of the children (6/19) showed titanium values well above \(1,000 \mathrm{mg} / \mathrm{day}\), with most of the remaining children showing substantially lower values. Based on the Limiting Tracer Method (LTM), mean soil intake was estimated to be \(105 \mathrm{mg} /\) day with a population standard deviation of \(67 \mathrm{mg} /\) day (range 23 to \(362 \mathrm{mg} /\) day). Use of the LTM assumed that "the maximum amount of soil ingested corresponded with the lowest estimate from the three tracers" (Clausing et al., 1987). Geometric mean soil intake was estimated to be 90 \(\mathrm{mg} /\) day. This assumes that the maximum amount of soil ingested cannot be higher than the lowest estimate for the individual tracers.

Mean soil intake for the hospitalized children was estimated to be \(56 \mathrm{mg} /\) day based on aluminum (Table 2-252). For titanium, three of the children had estimates well in excess of \(1,000 \mathrm{mg} / \mathrm{day}\), with the remaining three children in the range of 28 to \(58 \mathrm{mg} /\) day. Using the LTM method, the mean soil ingestion rate was estimated to be \(49 \mathrm{mg} /\) day with a population standard deviation of \(22 \mathrm{mg} /\) day (range 26 to \(84 \mathrm{mg} /\) day). The geometric mean soil intake rate was \(45 \mathrm{mg} /\) day. The data on hospitalized children suggest a major nonsoil source of titanium for some children, and may suggest a background nonsoil source of aluminum. However, conditions specific to hospitalization (e.g., medications) was not considered. AIR measurements were not reported for the hospitalized children. Assuming that the tracer-based soil ingestion rates observed in hospitalized children actually represent background tracer intake from dietary and other nonsoil sources, mean soil ingestion by nursery school children was estimated to be \(56 \mathrm{mg} /\) day, based on the LTM (i.e., \(105 \mathrm{mg} /\) day for nursery school children minus \(49 \mathrm{mg} /\) day for hospitalized children) (Clausing et al. 1987).

The advantages of this study are that Clausing et al. (1987) evaluated soil ingestion among two populations of children that had differences in access to soil, and corrected soil intake rates based on background estimates derived from the hospitalized group. However, a smaller number of children were used in this study than in the Binder et al. (1986) study and

Table 2-251. Calculated Soil Ingestion by Nursery School Children
DRAFT
DO NOT QUOTE OR
CITE
\begin{tabular}{|c|c|c|c|c|c|}
\hline Child & Sample Number & \begin{tabular}{l}
Soil Ingestion \\
as Calculated from Ti (mg/day)
\end{tabular} & Soil Ingestion as Calculated from Al (mg/day) & Soil Ingestion as Calculated from AIR (mg/day) & Limiting Tracer (mg/day) \\
\hline \multirow[t]{3}{*}{1} & L3 & 103 & 300 & 107 & 103 \\
\hline & L14 & 154 & 211 & 172 & 154 \\
\hline & L25 & 130 & 23 & - & 23 \\
\hline \multirow[t]{3}{*}{2} & 15 & 131 & - & 71 & 71 \\
\hline & L13 & 184 & 103 & 82 & 82 \\
\hline & L27 & 142 & 81 & 84 & 81 \\
\hline \multirow[t]{2}{*}{3} & L2 & 124 & 42 & 84 & 42 \\
\hline & L17 & 670 & 566 & 174 & 174 \\
\hline \multirow[t]{2}{*}{4} & L4 & 246 & 62 & 145 & 62 \\
\hline & L11 & 2,990 & 65 & 139 & 65 \\
\hline \multirow[t]{2}{*}{5} & L8 & 293 & - & 108 & 108 \\
\hline & L21 & 313 & - & 152 & 152 \\
\hline \multirow[t]{2}{*}{6} & L12 & 1,110 & 693 & 362 & 362 \\
\hline & L16 & 176 & - & 145 & 145 \\
\hline \multirow[t]{2}{*}{7} & L18 & 11,620 & - & 120 & 120 \\
\hline & L22 & 11,320 & 77 & - & 77 \\
\hline 8 & L1 & 3,060 & 82 & 96 & 82 \\
\hline 9 & L6 & 624 & 979 & 111 & 111 \\
\hline 10 & L7 & 600 & 200 & 124 & 124 \\
\hline 11 & L9 & 133 & - & 95 & 95 \\
\hline 12 & L10 & 354 & 195 & 106 & 106 \\
\hline 13 & L15 & 2,400 & - & 48 & 48 \\
\hline 14 & L19 & 124 & 71 & 93 & 71 \\
\hline 15 & L20 & 269 & 212 & 274 & 212 \\
\hline 16 & 123 & 1,130 & 51 & 84 & 51 \\
\hline 17 & L24 & 64 & 566 & - & 64 \\
\hline 18 & L26 & 184 & 56 & - & 56 \\
\hline Arithmetic Mean & & 1,431 & 232 & 129 & 105 \\
\hline
\end{tabular}

Source: Adapted from Clausing et al. 1987.

Table 2-252. Calculated Soil Ingestion by Hospitalized, Bedridden Children
\begin{tabular}{ccccc}
\hline Child & Sample & \begin{tabular}{c} 
Soil Ingestion as \\
Calculated from Ti \\
(mg/day)
\end{tabular} & \begin{tabular}{c} 
Soil Ingestion as \\
Calculated from Al \\
(mg/day)
\end{tabular} & \begin{tabular}{c} 
Limiting Tracer \\
(mg/day)
\end{tabular} \\
\hline 1 & G5 & 3,290 & 57 & 57 \\
2 & G6 & 4,790 & 71 & 71 \\
3 & G1 & 28 & 26 & 26 \\
& G2 & 6,570 & 94 & 84 \\
4 & G8 & 2,480 & 57 & 57 \\
5 & G3 & 28 & 77 & 28 \\
6 & G4 & 1,100 & 30 & 30 \\
G7 & 58 & 38 & 38 \\
\begin{tabular}{c} 
Arthmetic \\
Mean
\end{tabular} & & 2,293 & 56 & 49 \\
\hline
\end{tabular}

Source: Adapted from Clausing et al. 1987.
these children may not be representative of the U.S. population. Tracer elements in foods or medicines were not evaluated. Also, intake rates derived from this study may not be representative of soil intake over the long-term because of the short-term nature of the study.

Van Wijnen et al. - Estimated Soil Ingestion by Children - In a study by Van Wijnen et al. (1990), soil ingestion among Dutch children ranging in age from 1 to 5 years was evaluated using a tracer element methodology similar to that used by Clausing et al. (1987). Van Wijnen et al. (1990) measured three tracers (i.e., titanium, aluminum, and AIR) in soil and feces and estimated soil ingestion based on the LTM. An average daily feces weight of 15 g dry weight was assumed. A total of 292 children attending daycare centers were sampled during the first of two sampling periods and 187 children were sampled in the second sampling period; 162 of these children were sampled during both periods (i.e., at the beginning and near the end of the summer of 1986). A total of 78 children were sampled at campgrounds, and 15 hospitalized children were sampled. The mean values for these groups were: \(162 \mathrm{mg} /\) day for children in daycare centers, \(213 \mathrm{mg} /\) day for campers and \(93 \mathrm{mg} /\) day for hospitalized children. Van Wijnen et al. (1990) also reported geometric mean LTM values because soil intake rates were found to be skewed and the log transformed data were approximately normally distributed. Geometric mean LTM values were estimated to be \(111 \mathrm{mg} /\) day for children in daycare centers, \(174 \mathrm{mg} /\) day for children vacationing at campgrounds (Table 2-253) and \(74 \mathrm{mg} /\) day for hospitalized children ( \(70-120 \mathrm{mg} /\) day based on the 95 percent confidence limits of the mean); a \(5 \mathrm{mg} /\) day represents the midpoint. AIR was the limiting tracer in about 80 percent of the samples. Among children attending daycare centers, soil intake was also found to be higher when the weather was good (i.e., \(<2\) days/week precipitation) than when the weather was bad (i.e., \(>4\) days/week precipitation (Table 2-254). Van Wijnen et al. (1990) suggest that the mean LTM value for hospitalized infants represents background intake of tracers and should be used to correct the soil intake rates based on LTM values for other sampling groups. Using mean values, corrected soil intake rates were \(69 \mathrm{mg} /\) day ( \(162 \mathrm{mg} /\) day minus \(93 \mathrm{mg} /\) day) for daycare children and 120 \(\mathrm{mg} /\) day ( \(213 \mathrm{mg} /\) day minus \(93 \mathrm{mg} /\) day) for campers. Corrected geometric mean soil intake was estimated to range from 0 to \(90 \mathrm{mg} /\) day with a 90 th percentile value of \(190 \mathrm{mg} /\) day for the various age categories within the daycare group and 30 to \(200 \mathrm{mg} /\) day with a 90th percentile value of \(300 \mathrm{mg} /\) day for the various age categories within the camping group.

Table 2-253. Geometric Mean (GM) and Standard Deviation (GSD) LTM Values for Children at Daycare Centers and Campgrounds
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Age (yrs)} & \multirow[b]{2}{*}{Sex} & \multicolumn{3}{|c|}{Daycare Centers} & \multicolumn{3}{|c|}{Campgrounds} \\
\hline & & n & \begin{tabular}{l}
GM LTM \\
(mg/day)
\end{tabular} & GSD LTM (mg/day) & n & \begin{tabular}{l}
GM LTM \\
(mg/day)
\end{tabular} & GSD LTM (mg/day) \\
\hline \multirow[t]{2}{*}{\(<1\)} & Girls & 3 & 81 & 1.09 & - & - & - \\
\hline & Boys & 1 & 75 & - & - & - & - \\
\hline \multirow[t]{2}{*}{1-<2} & Girls & 20 & 124 & 1.87 & 3 & 207 & 1.99 \\
\hline & Boys & 17 & 114 & 1.47 & 5 & 312 & 2.58 \\
\hline \multirow[t]{2}{*}{2-<3} & Girls & 34 & 118 & 1.74 & 4 & 367 & 2.44 \\
\hline & Boys & 17 & 96 & 1.53 & 8 & 232 & 2.15 \\
\hline \multirow[t]{2}{*}{3-4} & Girls & 26 & 111 & 1.57 & 6 & 164 & 1.27 \\
\hline & Boys & 29 & 110 & 1.32 & 8 & 148 & 1.42 \\
\hline \multirow[t]{2}{*}{\(4-5\)} & Girls & 1 & 180 & - & 19 & 164 & 1.48 \\
\hline & Boys & 4 & 99 & 1.62 & 18 & 136 & 1.30 \\
\hline All girls & & 86 & 117 & 1.70 & 36 & 179 & 1.67 \\
\hline All boys & & 72 & 104 & 1.46 & 42 & 169 & 1.79 \\
\hline Total & & \(162^{2}\) & 111 & 1.60 & \(78^{\text {b }}\) & 174 & 1.73 \\
\hline
\end{tabular}
a Age and/or sex not registered for eight children.
b Age not registered for seven children.
Source: Adapted from Van Wijnen et al., 1990.
```

DRAFT DO NOT QUOTE OR - CITE

```

Table 2-254. Estimated Geometric Mean LTM Values of Children Attending Day-Care Centers According to Age, Weather Category, and Sampling Period
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Weather Category} & \multirow[b]{2}{*}{Age (years)} & \multicolumn{2}{|l|}{First Sampling Period} & \multicolumn{2}{|l|}{Second Sampling Period} \\
\hline & & n & Estimated Geometric Mean LTM Value (mg/day) & n & Estimated Geometric Mean LTM Value (mg/day) \\
\hline Bad & <1 & 3 & 94 & 3 & 67 \\
\hline \multirow[t]{3}{*}{(>4 days/week precipitation)} & 1-<2 & 18 & 103 & 33 & 80 \\
\hline & 2-<3 & 33 & 109 & 48 & 91 \\
\hline & \(4-<5\) & 5 & 124 & 6 & 109 \\
\hline Reasonable & \(<1\) & & & 1 & 61 \\
\hline \multirow[t]{4}{*}{(2-3 days/week precipitation)} & \(1-<2\) & & & 10 & 96 \\
\hline & 2-<3 & & & 13 & 99 \\
\hline & 3-<4 & & & 19 & 94 \\
\hline & \(4<5\) & & & 1 & 61 \\
\hline Good & <1 & 4 & 102 & & \\
\hline \multirow[t]{4}{*}{(<2 days/week precipitation)} & 1-<2 & 42 & 229 & & \\
\hline & 2-<3 & 65 & 166 & & \\
\hline & 3-<4 & 67 & 138 & & \\
\hline & 4-<5 & 10 & 132 & & \\
\hline
\end{tabular}

Source: Van Wijnen et al., 1990.

The advantage of this study is that soil intake was estimated for three different populations of children; one expected to have high intake, one expected to have "typical" intake and one expected to have low or background-level intake. Van Wijnen et al. (1990) used the background tracer measurements to correct soil intake rates for the other two populations. Tracer concentrations in food and medicine were not evaluated. Also, the population of children studied was relatively large, but may not be representative of the U.S. population. This study was conducted over a relatively short time period. Thus, estimated intake rates may not reflect long-term patterns, especially at the high-end of the distribution. Another limitation of this study is that values were not reported element-by-element which would be the preferred way of reporting.

Davis et al. - Quantitative Estimates of Soil Ingestion in Normal Children Between the ages of 2 and 7 years: Population-Based Estimates Using Aluminum, Silicon, and Titanium as Soil Tracer Elements - Davis et al. (1990) also used a mass-balance/tracer technique to estimate soil ingestion among children. In this study, 104 children between the ages of 2 and 7 years were randomly selected from a three-city area in southeastern Washington State. The study was conducted over a seven day period, primarily during the summer. Daily soil ingestion was evaluated by collecting and analyzing soil and house dust samples, feces, urine, and duplicate food samples for aluminum, silicon, and titanium. In addition, information on dietary habits and demographics was collected in an attempt to identify behavioral and demographic characteristics that influence soil intake rates among children. The amount of soil ingested on a daily basis was estimated using the following equation:
\[
\begin{equation*}
S_{l, e}=\frac{\left(\left(\left(D W_{f}+D W_{p}\right) \times E_{f}\right)+2 E_{k}\right)-\left(D W_{p d} \times E_{f d}\right)}{E_{\text {sod }}} \tag{Eqn.2-20}
\end{equation*}
\]
where:
\(\mathrm{S}_{\mathrm{i}, \mathrm{e}}=\quad\) soil ingested for child i based on tracer \(\mathrm{e}(\mathrm{g})\);
\(\mathrm{DW}_{\mathrm{f}}=\quad\) feces dry weight (g);
\(\mathrm{DW}_{\mathrm{p}}=\quad\) feces dry weight on toilet paper (g);
\(\mathrm{E}_{\mathrm{f}}=\) tracer amount in feces ( \(\mu \mathrm{g} / \mathrm{g}\) );
\(\mathrm{E}_{\mathrm{u}}=\quad\) tracer amount in urine \((\mu \mathrm{g} / \mathrm{g}) ;\)
\(\mathrm{DW}_{\mathrm{fd}}=\quad\) food dry weight \((\mathrm{g}) ;\)
\(\mathrm{E}_{\mathrm{fd}}=\quad\) tracer amount in food \((\mu \mathrm{g} / \mathrm{g}) ;\) and
\(\mathrm{E}_{\text {mil }}=\quad\) tracer concentration in soil \((\mu \mathrm{g} / \mathrm{g})\).

The soil intake rates were corrected by adding the amount of tracer in vitamins and medications to the amount of tracer in food, and adjusting the food quantities, feces dry weights, and tracer concentrations in urine to account for missing samples.

Soil ingestion rates were highly variable, especially those based on titanium. Mean daily soil ingestion estimates were \(38.9 \mathrm{mg} /\) day for aluminum, \(82.4 \mathrm{mg} /\) day for silicon and 245.5 \(\mathrm{mg} /\) day for titanium (Table 2-255). Median values were \(25 \mathrm{mg} /\) day for aluminum, \(50 \mathrm{mg} /\) day for silicon, and \(81 \mathrm{mg} /\) day for titanium. Davis et al. (1990) also evaluated the extent to which differences in tracer concentrations in house dust and yard soil impacted estimated soil ingestion rates. The value used in the denominator of the mass balance equation was recalculated to represent a weighted average of the tracer concentration in yard soil and house dust based on the proportion of time the child spent indoors and outdoors. The adjusted mean soil/dust intake rates were \(64.5 \mathrm{mg} /\) day for aluminum, \(160.0 \mathrm{mg} /\) day for silicon, and \(268.4 \mathrm{mg} /\) day for titanium. Adjusted median soil/dust intake rates were: \(51.8 \mathrm{mg} /\) day for aluminum, \(112.4 \mathrm{mg} /\) day for silicon, and \(116.6 \mathrm{mg} /\) day for titanium. Davis et al. (1990) also observed that the following demographic characteristics were associated with high soil intake rates: male sex, non-white racial group, low income, operator/laborer as the principal occupation of the parent, and city of residence. However, none of these factors were predictive of soil intake rates when tested using multiple linear regression.

The advantages of the Davis et al. (1990) study are that soil intake rates were corrected based on the tracer content of foods and medicines and that a relatively large number of children were sampled. Also, demographic and behavioral information was collected for the survey group. However, although a relatively large sample population was surveyed, these children were all from a single area of the U.S. and may not be representative of the U.S. population as a whole. The study was conducted over a one-week period during the summer and may not be representative of long-term (i.e., annual) patterns of intake.

Table 2-255. Average Daily Soil Ingestion Values Based on Aluminum, Silicon, and Titanium as Tracer Elements \({ }^{\text {a }}\)
\begin{tabular}{lcccc}
\hline \multicolumn{1}{c}{ Element } & \begin{tabular}{c} 
Mean \\
\((\mathrm{mg} / \mathrm{d})\)
\end{tabular} & \begin{tabular}{c} 
Median \\
\((\mathrm{mg} / \mathrm{d})\)
\end{tabular} & \begin{tabular}{c} 
Standard Error \\
of the Mean \\
\((\mathrm{mg} / \mathrm{d})\)
\end{tabular} & \begin{tabular}{c} 
Range \\
\((\mathrm{mg} / \mathrm{d})\)
\end{tabular} \\
\hline Aluminum & 38.9 & 25.3 & 14.4 & 279.0 to 904.5 \\
Silicon & 82.4 & 59.4 & 12.2 & -404.0 to 534.6 \\
Titanium & 245.5 & 81.3 & 119.7 & \(-5,820.8\) to 6,182.2 \\
Minimum & 38.9 & 25.3 & 12.2 & \(-5,820.8\) \\
Maximum & 245.5 & 81.3 & 119.7 & \(6,182.2\) \\
\hline
\end{tabular}
- Excludes three children who did not provide any samples ( \(\mathrm{N}=101\) ).
b Negative values occurred as a result of correction for nonsoil sources of the tracer elements.
Source: Adapted from Davis et al., 1990.

Calabrese et al. - How Much Soil do Young Children Ingest: An Epidemiologic Study -
Calabrese et al. (1989) studied soil ingestion among children using the basic tracer design developed by Binder et al. (1986). However, in contrast to the Binder et al. (1987) study, eight tracer elements (i.e., aluminum, barium, manganese, silicon, titanium, vanadium, ytrium, and zirconium) were analyzed instead of only three (i.e., aluminum, silicon, and titanium). A total of 64 children between the ages of 1 and 4 years old were included in the study. These children were all selected from the greater Amherst, Massachusetts area and were predominantly from two-parent households where the parents were highly educated. The Calabrese et al. (1989) study was conducted over eight days during a two week period and included the use of a massbalance methodology in which duplicate samples of food, medicines, vitamins, and others were collected and analyzed on a daily basis, in addition to soil and dust samples collected from the child's home and play area. Fecal and urine samples were also collected and analyzed for tracer elements. Toothpaste, low in tracer content, was provided to all participants.

In order to validate the mass-balance methodology used to estimate soil ingestion rates among children and to determine which tracer elements provided the most reliable data on soil ingestion, known amounts of soil (i.e., 300 mg over three days and \(1,500 \mathrm{mg}\) over three days) containing eight tracers were administered to six adult volunteers (i.e., three males and three females). Soil samples and feces samples from these adults and duplicate food samples were analyzed for tracer elements to calculate recovery rates of tracer elements in soil. Based on the adult validation study, Calabrese et al. (1989) confirmed that the tracer methodology could adequately detect tracer elements in feces at levels expected to correspond with soil intake rates in children. Calabrese et al. (1989) also found that aluminum, silicon, and ytrium were the most reliable of the eight tracer elements analyzed. The standard deviation of recovery of these three tracers was the lowest and the percentage of recovery was closest to 100 percent (Calabrese, et al., 1989). The recovery of these three tracers ranged from 120 to 153 percent when 300 mg of soil had been ingested over a three-day period and from 88 to 94 percent when \(1,500 \mathrm{mg}\) soil had been ingested over a three-day period (Table 2-256).

Using the three most reliable tracer elements, the mean soil intake rate for children, adjusted to account for the amount of tracer found in food and medicines, was estimated to be \(153 \mathrm{mg} /\) day based on aluminum, \(154 \mathrm{mg} /\) day based on silicon, and \(85 \mathrm{mg} /\) day based on ytrium

Table 2-256. Mean and Standard Deviation Percentage Recovery of Eight Tracer Elements
\begin{tabular}{lrrrr}
\hline \multirow{2}{*}{300 mg Soil Ingested } & \multicolumn{2}{c}{1500 mg Soil Ingested } \\
Tracer Element & Mean & SD & Mean & SD \\
\hline Al & 152.8 & 107.5 & 93.5 & 15.5 \\
Ba & 2304.3 & 4533.0 & 149.8 & 69.5 \\
Mn & 1177.2 & 1341.0 & 248.3 & 183.6 \\
Si & 139.3 & 149.6 & 91.8 & 16.6 \\
Ti & 251.5 & 316.0 & 286.3 & 380.0 \\
V & 345.0 & 247.0 & 147.6 & 66.8 \\
Y & 120.5 & 42.4 & 87.5 & 12.6 \\
Zr & 80.6 & 43.7 & 54.6 & 33.4 \\
\hline
\end{tabular}

Source: Adapted from Calabrese et al., 1989.
(Table 2-257). Median intake rates were somewhat lower ( \(29 \mathrm{mg} /\) day for aluminum, \(40 \mathrm{mg} / \mathrm{day}\) for silicon, and \(9 \mathrm{mg} /\) day for ytrium). Upper-percentile (i.e., 95 th ) values were \(223 \mathrm{mg} /\) day for aluminum, \(276 \mathrm{mg} /\) day for silicon, and \(106 \mathrm{mg} /\) day for ytrium. Similar results were observed when soil and dust ingestion was combined (Table 2-257). Intake of soil and dust was estimated using a weighted average of tracer concentration in dust composite samples and in soil composite samples based on the time children spent at home and away from home, and indoors and outdoors. Calabrese et al. (1989) suggested that the use of titanium as a tracer in earlier studies that lacked food ingestion data may have significantly overestimated soil intake because of the high levels of titanium in food. Using the median values of aluminum and silicon, Calabrese et al. (1989) estimated the quantity of soil ingested daily to be \(29 \mathrm{mg} /\) day and \(40 \mathrm{mg} / \mathrm{day}\), respectively. It should be noted that soil ingestion for one child in the study ranged from approximately 10 to 14 grams/day during the second week of observation. Average soil ingestion for this child was 5 to \(7 \mathrm{mg} /\) day, based on the entire study period.

The advantages of this study are that intake rates were corrected for tracer concentrations in foods and medicines and that the methodology was validated using adults. Also, intake was observed over a longer time period in this study than in earlier studies and the number of tracers used was larger than for other studies. A relatively large population was studied, but they may not be entirely representative of the U.S. population because they were selected from a single location.

\subsection*{2.8.3. Other Relevant Studies on Soil Intake Among Children}

Thompson and Burmaster - Parametric Distributions for Soil Ingestion by Children Thompson and Burmaster (1991) developed parameterized distributions of soil ingestion rates for children based on a reanalysis of the data collected by Binder et al. (1986). In the original Binder et al. (1986) study, an assumed fecal weight of \(15 \mathrm{~g} /\) day was used. Thompson and Burmaster reestimated the soil ingestion rates from the Binder et al. (1986) study using the actual stool weights of the study participants instead of the assumed stool weights. Because the actual stool weights averaged only \(7.5 \mathrm{~g} /\) day, the soil ingestion estimates presented by Thompson and Burmaster (1991) are approximately one-half of those reported by Binder et al. (1986). Table 2-258 presents the distribution of estimated soil ingestion rates calculated by Thompson and Burmaster (1991) based on the three tracers elements (i.e., aluminum, silicon, and titanium),

Table 2-257. Soil and Dust Ingestion Estimates for Children Aged 1-4 Years
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Tracer Element} & \multirow[b]{2}{*}{N} & \multicolumn{5}{|c|}{Intake (mg/day) \({ }^{\text {a }}\)} \\
\hline & & Mean & Median & SD & \[
\begin{gathered}
\text { 95th } \\
\text { Percentile }
\end{gathered}
\] & Maximum \\
\hline \multicolumn{7}{|l|}{Aluminum} \\
\hline soil & 64 & 153 & 29 & 852 & 223 & 6,837 \\
\hline dust & 64 & 317 & 31 & 1,272 & 506 & 8,462 \\
\hline soil/dust combined & 64 & 154 & 30 & 629 & 478 & 4,929 \\
\hline \multicolumn{7}{|l|}{Silicon} \\
\hline soil & 64 & 154 & 40 & 693 & 276 & 5,549 \\
\hline dust & 64 & 964 & 49 & 6,848 & 692 & 54,870 \\
\hline soil/dust combined & 64 & 483 & 49 & 3,105 & 653 & 24,900 \\
\hline \multicolumn{7}{|l|}{Ytrium} \\
\hline soil & 62 & 85 & 9 & 890 & 106 & 6,736 \\
\hline dust & 64 & 62 & 15 & 687 & 169 & 5,096 \\
\hline soil/dust combined & 62 & 65 & 11 & 717 & 159 & 5,269 \\
\hline \multicolumn{7}{|l|}{Titanium} \\
\hline soil & 64 & 218 & 55 & 1,150 & 1,432 & 6,707 \\
\hline dust & 64 & 163 & 28 & 659 & 1,266 & 3,354 \\
\hline soil/dust combined & 64 & 170 & 30 & 691 & 1,059 & 3,597 \\
\hline
\end{tabular}

2 Corrected for Tracer Concentrations in Foods
Source: Adapted from Calabrese et al., 1989.

Table 2-258. Estimated Soil Ingestion Rate Summary Statistics and Parameters for Distributions Using Binder et al. (1986) Data with Actual Fecal Weights
\begin{tabular}{lrrrr}
\hline & \multicolumn{4}{c}{ Soil Intake (mg/day) } \\
\cline { 2 - 5 } Trace Element Basis & A1 & Si & Ti & AVE \(^{\mathbf{a}}\) \\
\hline Mean & 97 & 85 & 1,004 & 91 \\
Min & 11 & 10 & 1 & 13 \\
10th & 21 & 19 & 3 & 22 \\
20th & 33 & 23 & 22 & 34 \\
30th & 39 & 36 & 47 & 43 \\
40th & 43 & 52 & 172 & 49 \\
Med & 45 & 60 & 293 & 59 \\
60th & 55 & 65 & 475 & 69 \\
70th & 73 & 79 & 724 & 92 \\
80th & 104 & 106 & 1,071 & 100 \\
90th & 197 & 166 & 2,105 & 143 \\
Max & 1,201 & 642 & 14,061 & 921
\end{tabular}

Lognormal Distribution Parameters
\begin{tabular}{lrrrr} 
Median & 45 & 60 & - & 59 \\
Standard Deviation & 169 & 95 & - & 126 \\
Arithmetic Mean & 97 & 85 & - & 91
\end{tabular}

Underlying Normal Distribution Parameters
\begin{tabular}{lllll} 
Mean & 4.06 & 4.07 & - & 4.13 \\
Standard Deviation & 0.88 & 0.85 & - & 0.80 \\
\hline
\end{tabular}
\({ }^{2} \mathrm{AVE}=\) arithmetic average of soil ingestion based on aluminum and silicon.
Source: Thompson and Burmaster, 1991.
and on the arithmetic average of soil ingestion based on aluminum and silicon. The mean soil intake rates were \(97 \mathrm{mg} /\) day for aluminum, \(85 \mathrm{mg} /\) day for silicon, and \(1,004 \mathrm{mg} /\) day for titanium. The 90th percentile estimates were \(197 \mathrm{mg} /\) day for aluminum, \(166 \mathrm{mg} /\) day for silicon, and \(2,105 \mathrm{mg} /\) day for titanium. Based on the arithmetic average of aluminum and silicon for each child, mean soil intake was estimated to be \(91 \mathrm{mg} /\) day and 90 th percentile intake was estimated to be \(143 \mathrm{mg} /\) day.

Thompson and Burmaster (1991) tested the hypothesis that soil ingestion rates based on the adjusted Binder et al. (1986) data for aluminum, silicon and the average of these two tracers were lognormally distributed. The distribution of soil intake based on titanium was not tested for lognormality because titanium may be present in food in high concentrations and the Binder et al. (1986) study did not correct for food sources of titanium (Thompson and Burmaster, 1991). Although visual inspection of the distributions for aluminum, silicon, and the average of these tracers all indicated that they may be lognormally distributed, statistical tests indicated that only silicon and the average of the silicon and aluminum tracers were lognormally distributed. Soil intake rates based on aluminum were not lognormally distributed. Table Soil-9 also presents the lognormal distribution parameters and underlying normal distribution parameters (i.e., the natural logarithms of the data) for aluminum, silicon, and the average of these two tracers. According to the authors, "the parameters estimated from the underlying normal distribution are much more reliable and robust" (Thompson and Burmaster, 1991).

The advantages of this study are that it provides percentile data and defines the shape of soil intake distributions. However, the number of data points used to fit the distribution was limited. In addition, the study did not generate "new" data. Instead, it provided a reanalysis of previously-reported data using actual fecal weights. No corrections were made for tracer intake from food or medicine and the results may not be representative of long-term intake rates because the data were derived from a short-term study.

Lepow et al. - Role of Airborne Lead in Increased Body Burden of Lead in Hartford Children - Lepow et al. (1974) estimated ingestion of airborne lead fallout among urban children by: (1) analyzing surface dirt and dust samples from locations where children played; (2) measuring hand dirt by applying preweighed adhesive labels to the hands and weighing the amount of dirt that was removed; and (3) observing "mouthing" behavior over 3 to 6 hours of
normal play. Twenty-two children from an urban area of Connecticut were included in the study. Lepow et al. (1975) found that the mean weight of soil/dust on the hands was 11 mg . Assuming that a child would put fingers or other "dirty" objects into his mouth about 10 times a day ingesting 11 mg of dirt each time, Lepow et al. (1975) estimated that the daily soil ingestion rate would be about \(100 \mathrm{mg} /\) day. According to Lepow et al. (1975), the amount of hand dirt measured with this technique is probably an underestimate because dirt trapped in skin folds and creases was probably not removed by the adhesive label. Consequently, mean soil ingestion rates may be somewhat higher than the values estimated in this study.

Duggan and Williams - Lead in Dust in City Streets - Duggan and Williams (1977) assessed the risks associated with lead in street dust by analyzing street dust from areas in and around London for lead, and estimating the amount of hand dirt that a child might ingest. Duggan and Williams (1977) estimated the amount of dust that would be retained on the forefinger and thumb by removing a small amount of dust from a weighed amount, rubbing the forefinger and thumb together, and reweighing to determine the amount retained on the finger and thumb. The results of "a number of tests with several different people" indicated that the mean amount of dust retained on the finger and thumb was approximately 4 mg with a range of 2 to 7 mg (Duggan and Williams, 1977). Assuming that a child would suck his/her finger or thumb 10 times a day and that all of the dirt is removed each time and replaced with new dirt prior to subsequent mouthing behavior, Duggan and Williams (1977) estimated that 20 mg of dust would be ingested per day.

Day et al. - Lead in Urban Street Dust - Day et al. (1975) evaluated the contribution of incidental ingestion of lead-contaminated street dust and soil to children's total daily intake of lead by measuring the amount of lead in street dust and soil and estimating the amount of dirt ingested by children. The amount of soil that might be ingested was estimated by measuring the amount of dirt that was transferred to a "sticky sweet" during 30 minutes of play and assuming that a child might eat from 2 to 20 such sweets per day. Based on "a small number of direct measurements", Day et al. (1975) found that 5 to 50 mg of dirt from a child's hands may be transferred to a "sticky sweet" during 30 minutes of "normal playground activity. Assuming that all of the dirt is ingested with the 2 to 20 "sticky sweets." Day et al. (1975) estimated that intake of soil among children could range from 10 to \(1000 \mathrm{mg} /\) day.

Hawley et al. - Assessment of Health Risk from Exposure to Contaminated Soil - Using existing literature, Hawley (1985) developed scenarios for estimating exposure of young children, older children, and adults to contaminated soil. Annual soil ingestion rates were estimated based on assumed intake rates of soil and housedust for indoor and outdoor activities and assumptions about the duration and frequency of the activities. These soil ingestion rates were based on the assumption that the contaminated area is in a region having a winter season. Housedust was assumed to be comprised of 80 percent soil.

Outdoor exposure to contaminated soil among young children (i.e., 2.5 years old) was assumed to occur 5 days per week during only 6 months of the year (i.e., mid-April through mid-October). Children were assumed to ingest 250 mg soil/day while playing outdoors based on data presented in Lepow et al. (1974; 1975) and Roels et al. (1980). Indoor exposures among this population were based on the assumption that young children ingest 100 mg of housedust per day while spending all of their time indoors during the winter months, and 50 mg of housedust per day during the warmer months when only a portion of their time is spent indoors. Based on these assumptions, Hawley (1985) estimated that the annual average soil intake rate for young children is \(150 \mathrm{mg} /\) day (Table 2-259). Older children (i.e., 6 year olds) were assumed to ingest 50 mg of soil per day from an area equal to the area of the fingers on one hand while playing outdoors. This assumption was based on data from Lepow et al. (1975). Outdoor activities were assumed to occur each day over 5 months of the year (i.e., during May through October). These children were also assumed to ingest \(3 \mathrm{mg} /\) day of housedust from the indoor surfaces of the hands during indoor activities occurring over the entire year. Using these data, Hawley (1985) estimated the annual average soil intake rate for older children to be 23.4 mg/day (Table 2-259).

\subsection*{2.8.4. Soil Intake Among Adults}

Information on soil ingestion among adults is very limited. Hawley (1985) estimated soil ingestion among adults based on assumptions regarding activity patterns and corresponding ingestion amounts. Hawley (1985) assumed that adults ingest outdoor soil at a rate of 480 \(\mathrm{mg} /\) day while engaged in yardwork or other physical activity. These outdoor exposures were assumed to occur 2 days/week during 5 months of the year (i.e., May through October). The

Table 2-259. Estimates of Soil Ingestion for Children
\begin{tabular}{llcccc}
\hline \multicolumn{1}{c}{ Scenarios } & Media & \begin{tabular}{c} 
Exposure \\
(mg/day)
\end{tabular} & \begin{tabular}{c} 
Days/Year \\
Activity
\end{tabular} & \begin{tabular}{c} 
Fraction Soil \\
Content
\end{tabular} & \begin{tabular}{c} 
Annual \\
Average Soil \\
Intake \\
(mg/day)
\end{tabular} \\
\hline Young Child (2.5 Years Old) & & & & & \\
Outdoor Activities (Summer) & Soil & 250 & 130 & 1 & 90 \\
Indoor Activities (Summer) & Dust & 50 & 182 & 0.8 & 20 \\
Indoor Activities (Winter & Dust & 100 & 182 & 0.8 & \multicolumn{1}{c}{40} \\
TOTAL SOIL INTAKB & & & & & 150 \\
Older Child (6 Years Old) & & & & & \\
Outdoor Activities (Summer) & Soil & 50 & 152 & 1 & 21 \\
Indoor Activities (Year-Round) & Dust & 3 & 365 & 0.8 & 2.4 \\
TOTAL SOIL INTAKB & & & & & 23.4 \\
\hline
\end{tabular}

Source: Hawley, 1985.
ingestion estimate was based on the assumption that a \(50 \mu \mathrm{~m} /\) thick layer of soil is ingested from the inside surfaces of the thumb and fingers of one hand. Ingestion of indoor housedust was assumed to occur from typical living space activities such as eating and smoking, and work in attics or other uncleaned areas of the house. Hawley (1985) assumed that adults ingest an average of 0.56 mg housedust/day during typical living space activities and 110 mg housedust/day while working in attics. Attic work was assumed to occur 12 days/year. Hawley (1985) also assumed that soil comprises 80 percent of household dust. Based on these assumptions about soil intake and the frequency of indoor and outdoor activities, Hawley (1985) estimated the annual average soil intake rate for adults to be 60.5 mg /day (Table 2-260).

The soil intake value estimated by Hawley (1985) is consistent with adult soil intake rates suggested by other researchers. Calabrese et al. (1987) suggested that soil intake among adults ranges from 1 to \(100 \mathrm{mg} /\) day. According to Calabrese et al. (1987), these values "are conjectural and based on fractional estimates" of earlier Center for Disease Control (CDC) estimates. In a recently completed evaluation of the scientific literature concerning soil ingestion rates for children and adults (Krablin, 1989), Arco Coal Company suggested that \(10 \mathrm{mg} /\) day may be an appropriate value for adult soil ingestion. This value is based on "extrapolation from urine arsenic epidemiological studies and information on mouthing behavior and time activity patterns" (Krablin, 1989).

Calabrese et al. - Preliminary Adult Soil Ingestion Estimates: Results of a Pilot StudyCalabrese et al. (1990) studied six adults to evaluate the extent to which they ingest soil. This adult study was originally part of the children soil ingestion study conducted by Calabrese and was used to validate part of the analytical methodology used in the children study. The participants were six healthy adults, three males and three females, 25-41 years old. Each volunteer ingested one empty gelatin capsule at breakfast and one at dinner Monday, Tuesday, and Wednesday during the first week of the study. During the second week, they ingested 50 mg of sterilized soil within a gelatin capsule at breakfast and at dinner (a total of 100 mg of sterilized soil per day) for 3 days. For the third week, the participants ingested 250 mg of sterilized soil in a gelatin capsule at breakfast and at dinner (a total of 500 mg of soil per day) during the three days. Duplicate meal samples (food and beverage) were collected from the six adults. The sample included all foods ingested from breakfast Monday, through the evening

Table 2-260. Estimates of Soil Ingestion for Adults
\begin{tabular}{lccccc}
\hline \multicolumn{1}{c}{ Scenarios } & Media & \begin{tabular}{c} 
Exposure \\
(mg/day)
\end{tabular} & \begin{tabular}{c} 
Days/Year \\
Activity
\end{tabular} & \begin{tabular}{c} 
Fraction Soil \\
Content
\end{tabular} & \begin{tabular}{c} 
Annual \\
Average Soil \\
Intake \\
(mg/day)
\end{tabular} \\
\hline Adult & & & & & \\
Work in attic (year-round) & Dust & 110 & 12 & 0.8 & 3 \\
Living Space (year-round) & Dust & 0.56 & 365 & 0.8 & 0.5 \\
Outdoor Work (summer) & Soil & 480 & 43 & 1 & 57 \\
TOTAL SOIL INTAKE & & & & & 60.5 \\
\hline
\end{tabular}

Source: Hawley, 1985.
meal Wednesday during each of the 3 weeks. In addition, all medications and vitamins ingested by the adults were collected. Total excretory output were collected from Monday noon through Friday midnight over 3 consecutive weeks. Table 2-261 provides the mean and median values of soil ingestion for each element by week. Data obtained from the first week, when empty gelatin capsules were ingested, may be used to derive an estimate of soil intake by adults. The mean intake rates for the eight tracers are: Al, \(110 \mathrm{mg} ; \mathrm{Ba},-232 \mathrm{mg} ; \mathrm{Mn}, 330 \mathrm{mg} ; \mathrm{Si}, 30 \mathrm{mg}\); Ti, \(71 \mathrm{mg} ; \mathrm{V}, 1,288 \mathrm{mg} ; \mathbf{Y}, 63 \mathrm{mg}\); and \(\mathrm{Zr}, 134 \mathrm{mg}\).

The advantage of this study is that it provides quantitative estimates of soil ingestion by adults. The study also corrected for tracer concentrations in foods and medicines. However, a limitation of this study is that a limited number of subjects were studied. In addition, the subjects were only studied for one week before soil capsules were ingested.

\subsection*{2.8.5. Prevalence of Pica}

The scientific literature define pica as "the repeated eating of nonnutritive substances" (Feldman, 1986). For the purposes of this handbook, pica is defined as an deliberately high soil ingestion rate. Numerous articles have been published that report on the incidence of pica among various populations. However, most of these papers describe pica for substances other than soil including sand, clay, paint, plaster, hair, string, cloth, glass, matches, paper, feces, and various other items. These papers indicate that the pica occurs in approximately half of all children between the ages of 1 and 3 years (Sayetta, 1986). The incidence of deliberate ingestion behavior in children has been shown to differ for different subpopulations. The incidence rate appears to be higher for black children than for white children. Approximately 30 percent of black children aged 1 to 6 years are reported to have deliberate ingestion behavior, compared with 10 to 18 percent of white children in the same age group (Danford, 1982). There does not appear to be any sex differences in the incidence rates for males or females (Kaplan and Sadock, 1985). Lourie et al. (1963) states that the incidence of pica is higher among children in lower socioeconomic groups (i.e., 50 to 60 percent) than in higher income families (i.e., about 30 percent). Deliberate soil ingestion behavior appears to be more common in rural areas (Vermeer and Frate, 1979). A higher rate of pica has also been reported for pregnant women and individuals with poor nutritional status (Danford, 1982). In general,

Table 2-261. Adult Daily Soil Ingestion Estimates by Week and Tracer Element After Subtracting Food and Capsule Ingestion, Based on Median Amherst Soil Concentrations: Means and Medians Over Subjects (mg) \({ }^{\mathbf{a}}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Week & Al & Ba & Mn & Si & Ti & V & Y & Zr \\
\hline \multicolumn{9}{|l|}{Means} \\
\hline 1 & 110 & -2.32 & 330 & 30 & 71 & 1,288 & 63 & 134 \\
\hline 2 & 98 & 12,265 & 1,306 & 14 & 25 & 43 & 21 & 58 \\
\hline 3 & 28 & 201 & 790 & -23 & 896 & 532 & 67 & -74 \\
\hline \multicolumn{9}{|l|}{Medians} \\
\hline 1 & 60 & -71 & 388 & 31 & 102 & 1,192 & 44 & 124 \\
\hline 2 & 85 & 597 & 1,368 & 15 & 112 & 150 & 35 & 65 \\
\hline 3 & 66 & 386 & 831 & -27 & 156 & 047 & 60 & -144 \\
\hline
\end{tabular}

2 Data were converted to milligrams
N
Source: Calabrese et al., 1990
deliberate ingestion behavior is more frequent and more severe in mentally retarded children than in children in the general population (Behrman and Vaughan 1983, Danford 1982, Forfar and Arneil 1984, Illingworth 1983, Sayetta 1986).

It should be noted that the pica statistics cited above apply to the incidence of general pica and not soil pica. Information on the incidence of soil pica is limited, but it appears that soil pica is less common. A study by Vermeer and Frate (1979) showed that the incidence of geophagia (i.e., earth-eating) was about 16 percent among children from a rural black community in Mississippi. However, geophagia was described as a cultural practice among the community surveyed and may not be representative of the general population. Average daily consumption of soil was estimated to be \(50 \mathrm{~g} / \mathrm{day}\). Bruhn and Pangborn (1971) reported the incidence of pica for "dirt" to be 19 percent in children, 14 percent in pregnant women, and 3 percent in nonpregnant women. However, "dirt" was not clearly defined. The Bruhn and Pangborn (1971) study was conducted among 91 non-black, low income families of migrant agricultural workers in California. Based on the data from the five key tracer studies (Binder et al., 1986; Clausing et al., 1987; Van Wijnen et al., 1990; Davis et al., 1990; and Calabrese et al., 1989) only one child out of the more than 600 children involved in all of these studies ingested an amount of soil significantly greater than the range for other children. Although these studies did not include all populations and were representative of short-term ingestions only, it can be assumed that the incidence rate of deliberate soil ingestion behavior in the general population is low.

\subsection*{2.8.6. Deliberate Soil Ingestion Among Children}

Information on the amount of soil ingested by children with abnormal soil ingestion behavior is limited. However, some evidence suggests that a rate on the order of 5 to \(10 \mathrm{~g} /\) day may not be unreasonable. Calabrese et al. (1991) estimated that upper range soil ingestion values may range from approximately 5-7 grams/day. This estimate was based on observations of one pica child among the 64 children who participated in the study. In the study, a 3.5 -year old female exhibited extremely high soil ingestion behavior during one of the two weeks of observation. Intake ranged from \(74 \mathrm{mg} /\) day to \(2.2 \mathrm{~g} /\) day during the first week of observation and 10.1 to \(13.6 \mathrm{~g} /\) day during the second week of observation (Table 2-262). These results are

Table 2-262. Daily Soil Ingestion Estimation in a Soil-Pica Child by Tracer and by Week (mg/day)
\begin{tabular}{ccc}
\hline & Week 1 & Week 2 \\
Tracer & Estimated Soil Ingestion & Estimated Soil Ingestion \\
\hline \(\mathbf{A l}\) & 74 & 13,600 \\
Ba & 458 & 12,088 \\
Mn & 2,221 & 12,341 \\
Si & 142 & 10,955 \\
Ti & 1,543 & 11,870 \\
\(\mathbf{V}\) & 1,269 & 10,071 \\
\(\mathbf{Y}\) & 147 & 13,325 \\
Zr & 86 & 2,695 \\
\hline
\end{tabular}

Source: Calabrese et al., 1991
based on mass-balance analyses for seven (i.e., aluminum, barium, manganese, silicon, titanium, vanadium, and ytrium) of the eight tracer elements used. Intake rates based on zirconium was significantly lower but Calabrese et al. (1991) indicated that this may have "resulted from a limitation in the analytical protocol."

In conducting a risk assessment for TCDD, U.S. EPA (1984b) used \(5 \mathrm{~g} /\) day to represent the soil intake rate for pica children. The Centers for Disease Control (CDC) also investigated the potential for exposure to TCDD through the soil ingestion route. CDC used a value of 10 \(\mathrm{g} /\) day to represent the amount of soil that a child with deliberate soil ingestion behavior might ingest (Kimbrough et al., 1984). These values are consistent with those observed by Calabrese et al. (1991).

\subsection*{2.8.7. Recommendations}

The key studies described in this section were used to recommend values for soil intake among children. The key and relevant studies used different survey designs and study populations. These studies are summarized in Table 2-263. For example, in some of the studies food and nonfood sources of trace elements were considered, while other did not. In other studies, soil ingestion estimates were adjusted to account for the contribution of house dust to this estimate. Despite these differences, the mean and upper-percentile estimates reported for these studies are relatively consistent.

It is important, however, to understand the various uncertainties associated with these values. First, individuals were not studied for sufficient periods of time to get a good estimate of the usual intake. Therefore, the values presented in this section may not necessarily be representative of long term exposures. Second, the experimental error in measuring soil ingestion values for individual children is another source of uncertainty. For example, incomplete sample collection of both input (i.e., food and nonfood sources) and output (i.e., urine and feces) is a limitation for some of the studies conducted. In addition, an individual's soil ingestion value may be artificially high or low depending on the extent to which a mismatch between input and output occurs due to individual variation in the gastrointestinal transit time. Third, the degree to which the tracer elements used in these studies are absorbed in the human body is uncertain. Accuracy of the soil ingestion estimates depends on how good this

Table 2-263. Soil Intake Studies
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Study & Study Type & Number of Observations & Age & Population Studied & Comments & \\
\hline Binder et al., 1986 & Tracer study using aluminum, silicon, and titanium & 59 children & 1-3 years & Children living near lead smelter in Montana & Did not account for tracer in food and medicine; used assumed fecal weight of \(15 \mathrm{~g} / \mathrm{day}\); shortterm study conducted over 3 days & \\
\hline Calabrese et al., 1989 & Tracer - mass balance study using aluminum, barium, manganese, silicon, titanium, vanadium, ytrium, and zirconium & 64 Children & 1-4 years & Children from greater Amherst area of Massachusetts; highly-educated parents & Corrected for tracer in food and medicine; study conducted over two-week period; used adults to validate methods; one pica child in study group. & \\
\hline Calabrese et al., 1991 & Tracer - mass balance & 1 pica child & 3.5 years & 1 pica child from greater Amherst area of Massachusetts & Child was observed as part of the Calabrese et al., 1989 study. & \\
\hline Clausing et al., 1987 & Tracer study using aluminum, acid insoluble residue, and titanium & 18 nursery school children; 6 hospitalized children & 2-4 years & Dutch children & Did not account for tracer in food and medicines; used tracer-based intake rates for hospitalized children as background values; short-term study conducted over 5 days & \\
\hline & , & & & & &  \\
\hline
\end{tabular}

Table 2-263. Soil Intake Studies (continued)
\begin{tabular}{lllll}
\hline \multicolumn{1}{c|}{ Study } & \multicolumn{1}{c}{ Study Type } & \(\begin{array}{c}\text { Number of } \\
\text { Observations }\end{array}\) & Age & \(\begin{array}{c}\text { Population } \\
\text { Studied }\end{array}\) \\
\hline Davis et al., 1990 & \(\begin{array}{l}\text { Tracer - mass balance } \\
\text { study using aluminum } \\
\text { silicon and titanium }\end{array}\) & 104 children & 2-7 years & \(\begin{array}{l}\text { Children from 3- } \\
\text { city area in } \\
\text { Washington State }\end{array}\) \\
Day et al., 1977 & & \(\begin{array}{l}\text { Corrected for tracer in } \\
\text { food and medicine; short- } \\
\text { term study conducted } \\
\text { over seven-day period; } \\
\text { collected information on } \\
\text { demographic } \\
\text { characteristics affecting }\end{array}\) \\
soil intake.
\end{tabular}\(\}\)

Table 2-263. Soil Intake Studies (continued)
\begin{tabular}{llllll}
\hline \multicolumn{1}{c|}{ Study } & & Study Type & \begin{tabular}{c} 
Number of \\
Observations
\end{tabular} & Age & \begin{tabular}{c} 
Population \\
Studied
\end{tabular}
\end{tabular}

assumption is. Fourth, there is uncertainty with regard to the homogeneity of soil samples and the accuracy of parent's knowledge about their child's playing areas. Fifth, all the soil ingestion studies presented in this section with the exception of Calabrese et al. (1989) were conducted during the summer when soil contact is more likely.

Although the recommendations presented below are derived from studies which were mostly conducted in the summer, exposure during the winter months when the ground is frozen or snow covered should not be considered as zero. Exposure during these months, although may be lower than the summer months, would not be zero since some portion of the house dust comes from outdoor soil.

Soil Ingestion Among Children - Estimates of the amount of soil ingested by children are summarized below.

a \(\quad\) AIR \(=\) Acid Insoluble Residue
b Soil and dust combined
- Range reported

The mean values ranged from \(39 \mathrm{mg} /\) day to \(245.5 \mathrm{mg} /\) day with an average of \(165 \mathrm{mg} /\) day for soil ingestion and \(191 \mathrm{mg} /\) day for soil and dust ingestion. Results obtained using titanium as a tracer in the Binder and Clausing studies were not considered in the derivation of a
recommendation because these studies did not take into consideration other sources of the element in the diet which for titanium seems to be significant. Therefore, these values may overestimate the soil intake. One can note that this group of mean values is consistent with the \(200 \mathrm{mg} /\) day value that EPA programs have used as a conservative mean estimate. Taking into consideration that the highest values were seen with titanium, which may exhibit greater variability than the other tracers, and the fact that the Calabrese study included a pica child, 100 \(\mathrm{mg} /\) day appears to represent a central estimate of the mean for children under 6 years of age. However, since the children were studied for short periods of time and the prevalence of pica behavior is not known, excluding the pica child from the calculations may underestimate soil intake rates. It is plausible that many children may exhibit some pica behavior if studied for longer periods of time. Over the period of study, upper percentile values ranged from 106 \(\mathrm{mg} /\) day to \(1,432 \mathrm{mg} /\) day with an average of \(545 \mathrm{mg} /\) day for soil ingestion and \(587 \mathrm{mg} /\) day for soil and dust ingestion. However, since the period of study was short, these values are not estimates of usual intake.

Data on soil ingestion rates for children who deliberately ingest soil are also limited. However, an ingestion rate of 10-14 g/day may not be an unreasonable assumption for use in acute exposure assessments, based on the available information. It should be noted, however, that this value is based on only one pica child observed in the Calabrese et al. (1989) study.

Soil Ingestion Among Adults - For adults, data on soil ingestion are limited. The available data are presented below:
\begin{tabular}{lllcll} 
& Mean (mg/day) & \begin{tabular}{c} 
Upper Percentile \\
(mg/day)
\end{tabular} & References \\
\hline \multicolumn{1}{c}{Al} & Si & Ti & Y & & \\
\hline 110 & 30 & 71 & 63 & - & Calabreac \\
\(0.5-57^{\circ}\) & - & - & - & 480 & Hawley \\
\hline
\end{tabular}

\footnotetext{
2 Range reported
}

The average soil intake rate ranged from \(0.5 \mathrm{mg} /\) day to \(110 \mathrm{mg} /\) day. This set of values is consistent with the \(50 \mathrm{mg} /\) day value often used by the program offices to represent a mean soil
intake rate for adults. A value of \(480 \mathrm{mg} /\) day was estimated by Hawley for adults engaged in outdoor activities. However, this value should be used in conjunction with a short-term exposure frequency and duration since this value represents soil ingestion per event and not an annual average.

Adams, H.E.; Sutker, P.B. (1984) Comprehensive handbook of psychopathology. New York: Plenum Press.

Albin, J.B. (1977) The treatment of pica (scavenging) behavior in the retarded: A critical analysis of implications for research. Mental Retardation: August:14-17.

Anonymous. (1975) The problem of pica. Med. J. Aust. October 4:541-42.
Axelsson, I.; Borulf, S.; Righard, L.; Räihā, N. (1987) Protein and energy intake during weaning: effects and growth. Acta Paediatr. Scand. 76:321-327.

Barltrop, D. (1973) Sources and significance of environmental lead for children.Proceedings Int. Symp. Environ. Health Aspects of Lead. Luxembourg: Commission of European Communities. Center for Information and Documentation.

Behrman, L.E.; Vaughan, V.C., III. (1983) Textbook of Pediatrics. Philadelphia, PA: W.B. Saunders Company.

Beloian, A. (1982) Use of a food consumption model to estimate human contaminant intake. Environ. Monit. Assess. 2:115-127.

Bicknell, J. (1974) Lead poisoning in childhood. Update (England) 9(6):653-659.
Binder, S.; Sokal, D.; Maughan, D. (1986) Estimating soil ingestion: the use of tracer elements in estimating the amount of soil ingested by young children. Arch. Environ. Health. 41(6):341-345.

Bourne, G.H.; Kidder, G.W., eds. (1953) Biochemistry and physiology of nutrition. Vol 1. New York, NY: Academic Press.

Breidenstein, B.C. (1984) Contribution of red meat to the U.S. diet. National Livestock and Meat Board, Chicago, IL.

Brown, K.H.; Akhtar, N.A.; Robertson, A.D.; Ahmed, M.G. (1986a) Lactational capacity of marginally nourished mothers: relationships between maternal nutritional status and quantity and proximate composition of milk. Pediatrics. 78: 909-919.

Brown, K.H.; Robertson, A.D.; Akhtar, N.A. (1986b) Lactational capacity of marginally nourished mothers: infants' milk nutrient consumption and patterns of growth. Pediatrics. 78: 920-927.

Bryce-Smith, D. (1974) Lead adsorption in children. Phys. Bull. 25:178-181.
Butte, N.F.; Garza, C.; Smith, E.O.; Nichols, B.L. (1984) Human milk intake and growth in exclusively breast-fed infants. Journal of Pediatrics. 104:187-195.

Butte, N.F.; Wong, W.W.; Garza, C.; Klein, P.D. (1990) Adequacy of human milk for meeting energy requirements during early infancy. In: Atkinson, S.A.; Hanson, L.A.; Chandra, R.K., eds. Breastfeeding, nutrition, infection and infant growth in developed and emerging countries.. ARTS Biomedical Publ., Newfoundland, Canada.

Calabrese, E.J.; Kostecki, P.T.; Gilbert, C.E. (1987) How much soil do children eat? An emerging consideration for environmental health risk assessment. In press (Comments in Toxicology).

Calabrese, E.J.; Pastides, H.; Barnes, R.; Edwards, C.; Kostecki, P.T.; et al. (1989) How much soil do young children ingest: an epidemiologic study. In: Petroleum Contaminated Soils, Lewis Publishers, Chelsea, MI. pp. 363-397.

Calabrese, E.J.; Stanek, E.J.; Gilbert, C.E. (1990) Evidence of soil-pica behavior and quantification of soil ingested. Unpublished.

Canadian Department of National Health and Welfare, Bureau of National Sciences, Health Protection Branch, Department of National Health and Welfare. n.d. Food Consumption, Patterns Report: A report from Nutrition Canada

Canadian Ministry of National Health and Welfare (1981) Tapwater consumption in Canada. Document number 82-EHD-80. Public Affairs Directorate, Department of National Health and Welfare, Ottawa, Canada.

Cantor, K.P.; Hoover, R.; Hartge, P.; Mason, T.J.; Silverman, D.T.; et al. (1987) Bladder cancer, drinking water source, and tap water consumption: A case-control study. J. Natl. Cancer Inst. 79(6):1269-1279.

CDC. (1994) Dietary fat and total food-energy intake. Third National Health and Nutrition Examination Survey, Phase 1, 1988-91. Morbidity and Mortality Weekly Report, February 25, 1994: 43(7)118-125.

Charney, E.; Sayer, J.; Coulter, M. (1980) Increased lead absorption in inner city children: where does the lead come from? Pedia 65:226-231.

ChemRisk (1991) Consumption of freshwater fish by maine anglers. Portland, ME: ChemRisk.

Clausing, P.; Brunekreef, B.; Van Wijnen, J.H. (1987) A method for estimating soil ingestion by children. Int. Arch. Occup. Environ. Health (W. Germany) 59(1):73-82.

Columbia River Inter-Tribal Fish Commission (CRIFTC). (1994) A fish consumption survey of the Umatilla, Nez Perce, Yakama and Warm Springs tribes of the Columbia River Basin. Technical Report 94-3. Portland, OR: CRIFTC.

Connelly, N.A.; Brown, T.L.; Knuth, B.A. (1990) New York statewide angler survey 1988. New York State Department of Environmental Conservation, Bureau of Fisheries.

Cooper, M. (1957) Pica. Springfield, IL: Charles C. Thomas.
Cox, C.; Vaillancourt, A.; Johnson, A.F. (1990) The results of the 1989 "Guide to Eating Ontario Sport Fish" questionnaire. Ontario Ministry of the Environment, Toronto, Ontario.

Crosby, W.H. (1976) Pica. J. Am. Med. A. 235:2765.
Danford, D.C. (1982) Pica and nutrition. Annual Review of Nutrition. 2:303-322.
Davis, S.; Waller, P.; Buschbon, R.; Ballou, J.; White, P. (1990) Quantitative estimates of soil ingestion in normal children between the ages of 2 and 7 years: population based estimates using aluminum, silicon, and titanium as soil tracer elements. Arch. Environ. Hith. 45:112-122.

Day, J.P.; Hart, M.; Robinson, M.S. (1975) Lead in urban street dust. Nature 253:343-345.
Dewey, K.G.; Lönnerdal, B. (1983) Milk and nutrient intake of breast-fed infants from 1 to 6 months:relation to growth and fatness. Journal of Pediatric Gastroenterology and Nutrition. 2:497-506.

Dewey, K.G.; Heinig, J.; Nommsen, L.A.; Lōnnerdal, B. (1991a) Maternal versus infant factors related to breast milk intake and residual volume: the DARLING study. Pediatrics. 87:829-837.

Dewey, K.G.; Heinig, J.; Nommsen, L.A.; Lönnerdal, B. (1991b) Adequacy of energy intake among breast-fed infants in the DARLING study: relationships to growth velocity, morbidity, and activity levels. The Journal of Pediatrics. 119:538-547.

Duggan, M.J.; Williams, S. (1977) Lead in dust in city streets. Sci. Total Environ. 7:91-97.
Ebert, E.; Harrington, N.; Boyle, K.; Knight, J.; Keenan, R. (1993) Estimating consumption of freshwater fish among Maine anglers. North Am. J. Fisheries Management 13:737745.

Ershow, A.G.; Cantor, K.P. (1989) Total water and tapwater intake in the United States: population-based estimates of quantities and sources. Life Sciences Research Office, Federation of American Societies for Experimental Biology.

Ershow, A.G.; Brown, L.M.; Cantor, K.P. (1991) Intake of tapwater and total water by pregnant and lactating women. American Journal of Public Health. 81:328-334.

Evans, C.L., ed. (1941) Starling's principles of human physiology, 8th ed. Philadelphia, PA: Lea and Febiger.

Feldman, M.D. (1986) Pica: current perspectives. Psychosomatics (USA) 27(7):519-523.
Fiore, B.J.; Anderson, H.A.; Hanrahan, L.P.; Olsen, L.J.; Sonzogni, W.C. (1989) Sport fish consumption and body burden levels of chlorinated hydrocarbons: A study of Wisconsin anglers. Arch. Environ. Health 44:82-88.

Forfar, J.O.; Arneil, G.C., eds. (1984) Textbook of Paediatrics. 3rd ed. London: Churchill Livingstone.

Fries, G.F. (1987) Assessment of potential residues in foods derived from animals exposed to TCDD-contaminated soil. Chemosphere 16:2123-2128.

Gallacher, J.E.J.; Elwood, P.C.; Phillips, K.M.; Davies, B.E.; Jones, D.T. (1984) Relationship between pica and blood lead in areas of differing lead exposure. Arch. Dis. Child. 59:40-44.

Gillies, M.E.; Paulin, H.V. (1983) Variability of mineral intakes from drinking water: A possible explanation for the controversy over the relationship of water quality to cardiovascular disease. Int. J. Epid. 12(1):45-50.

Glickman, L.T.; Chaudry, I.U.; Costantino, J.; Clack, F.B.; Cypress, R.H.; et al. (1981) Pica patterns, toxocariasis, and elevated blood lead in children. Am. J. Trop. M. 30(1):77-80.

Guyton, A.C. (1968) Textbook of medical physiology, 3rd ed. Philadelphia, PA: W.B. Saunders Co.

Hawley, J.K. (1985) Assessment of health risk from exposure to contaminated soil. Risk Anal. 5:289-302.

Hofvander, Y.; Hagman, U.; Hillervik, C.; Sjolin, S. (1982) The amount of milk consumed by 1-3 months old breast- or bottle-fed infants. Acta Paediatr. Scand. 71:953-958.

Hopkins, S.M.; Ellis, J.C. (1980) Drinking water consumption in Great Britain: a survey of drinking habits with special reference to tap-water-based beverages. Technical Report 137, Water Research Centre, Wiltshire Great Britain.

ICRF. (1981) International Commission on Radiological Protection. Report of the task group on reference man. New York: Pergammon Press.

Illingworth, R.S. (1983) The normal child. New York: Churchill Livingstone.
Javitz, H. (1980) Seafood consumption data analysis. SRI International. Final report prepared for EPA Office of Water Regulations and Standards. EPA Contract 68-01-3887.

Kaplan, H.I.; Sadock, B.J. (1985) Comprehensive textbook of psychiatry/IV. Baltimore, MD: Williams and Wilkins.

Kariya, J. (1992) Memorandum to L. Phillips, Versar Inc. March 4, 1992.
Keith, L.; Braun, E.R.; Rosenberg, C. (1970) Pica: The unfinished story. Perspect. Biol. Med. Summer:626-632.

Kimbrough, R.; Falk, H.; Stemr, P.; Fries, G. (1984) Health implications of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) contamination of residential soil. J. Toxicol. Environ. Health 14:47-93.

Köhler, L.; Meeuwisse, G.; Mortensson, W. (1984) Food intake and growth of infants between six and twenty-six weeks of age on breast milk, cow's milk formula, and soy formula. Acta Paediatr. Scand. 73:40-48.

Krablin, R. (1989) [Letter to Jonathan Z. Cannon concerning soil ingestion rates]. Denver, CO: Arco Coal Co.; October 13.

Lepow, M.L.; Bruckman, L.; Robino, R.A.; Markowitz, S.; Gillette, M.; et al. (1974) Role of airborne lead in increased body burden of lead in Hartford children. Environ. Health Perspect. 6:99-101.

Lepow, M.L.; Bruckman, L.; Gillette, M.; Markowitz, S.; Robino, R.; et al. (1975) Investigations into sources of lead in the environment of urban children. Environ. Res. 10:415-426.

Levine, M.D.; Carey, W.B.; Crocker, A.C.; Gross, R.T. (1983) Developmental-behavioral pediatrics. Philadelphia, PA: W.B. Saunders Company.
```

 DRAFT
 DO NOT QUOTE OR
** CITE

```

Lönnerdal, B.; Forsum, E.; Gebre-Medhin, M.; Hambraes, L. (1976) Breastmitk composition in Ethiopian and Swedish mothers: lactose, nitrogen, and protein contents. The American Journal of Clinical Nutrition. 29:1134-1141.

Lourie, R.S.; Layman, E.M.; Millican, F.K. (1963) Why children eat things that are not food. Children 10:143-146.

Mace, F.C.; Knight, D. (1986) Functional analysis and treatment of severe pica. J. Appl. Behavior Anal. 19(4):411-416.

Mahaffey, K.R. (1981) Nutritional factors in lead poisoning. Nutr. Rev. 39(10):353-362.
Maxwell, N.I.; Burmaster, D.E. (1993) A simulation model to estimate a distribution of lipid intake from breast milk during the first year of life. Journal of Exposure Analysis and Environmental Epidemiology. 3:383-406.

Mayer, J. (1970) Nonfood eating and its risks. Postgrad. Med. September:309-310.
McAlpine, C.; Singh, N.H. (1986) Pica in institutionalized mentally retarded persons. J. Ment. Defic. Res. 30:171-178.

McNall, P.E.; Schlegel, J.C. (1968) Practical thermal environmental limits for young adult males working in hot, humid environments. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Transactions 74:225-235.

Montandon, C.M.; Wills, C.; Garza, C.; Smith, E.O.; Nichols, B.L. (1986) Formula intake of 1 - and 4 -month-old infants. Journal of Pediatric Gastroenterology and Nutrition. 5:434-438.

National Academy of Sciences (NAS). (1974) Recommended dietary allowances, 8th ed. Washington, DC: National Academy of Sciences-National Research Council.

National Academy of Sciences (NAS). (1977) Drinking water and health. Vol. 1. Washington, DC: National Academy of Sciences-National Research Council.

National Academy of Sciences (NAS). (1991) Nutrition during lactation. Washington, DC National Academy Press.

National Gardening Association. (1987) National gardening survey: 1986-1987. Burlington, Vermont: The National Gardening Association, Inc.

National Livestock and Meat Board. (1993) Eating in America today: A dietary pattern and intake report.
\begin{tabular}{c} 
DRAFT \\
DO NOT QUOTE OR \\
CITE \\
\hline
\end{tabular}

National Marine Fisheries Service (NMFS). (1986a) Fisheries of the United States, 1985. Current Fisheries Statistics No. 8368. U.S. Department of Commerce. National Oceanic and Atmospheric Administration.

National Marine Fisheries Service (NMFS). (1986b) National Marine Fisheries Service. Marine Recreational Fishery Statistics Survey, Atlantic and Gulf Coasts, 1985. Current Fisheries Statistics No. 8327. U.S. Department of Commerce, National Oceanic and Atmospheric Administration.

National Marine Fisheries Service (NMFS). (1986c) National Marine Fisheries Service. Marine Recreational Fishery Statistics Survey, Pacific Coast. Current Fisheries Statistics No. 8328. U.S. Department of Commerce, National Oceanic and Atmospheric Administration.

National Research Council. (1980) Lead in the human environment. National Research Council, Washington, D.C.

Neville, M.C.; Keller, R.; Seacat, J.; Lutes, V.; Neifert, M.; et al. (1988) Studies in human lactation: milk volumes in lactating women during the onset of lactation and full lactation. American Journal of Clinical Nutrition. 48:1375-1386.

Pao, E.M.; Hines, J.M.; Roche, A.F. (1980) Milk intakes and feeding patterns of breast-fed infants. Journal of the American Dietetic Association. 77:540-545.

Pao, E.M.; Fleming, K.H.; Guenther, P.M.; Mickle, S.J. (1982) Foods commonly eaten by individuals: amount per day and per eating occasion. U.S. Department of Agriculture. Home Economics Report No. 44.

Paustenbach, D.J.; Shu, H.P.; Murray, F.J. (1986) A critical examination of assumptions used in risk assessments of dioxin contaminated soil. Reg. Toxicol. Pharm. 6:284-307.

Pennington, J.A.T. (1983) Revision of the total diet study food list and diets. J. Am. Diet. Assoc. 82:166-173.

Pierce, R.S.; Noviello, D.T.; Rogers, S.H. (1981) Commencement Bay seafood consumption report. Preliminary report. Tacoma, WA: Tacoma-Pierce County Health Department.

Pike, R.L.; Brown, M. (1975) Minerals and water in nutrition--an integrated approach, 2nd ed. New York, NY: John Wiley.

Prentice, A.M.; Lucas, A.; Vasquez-Velasquez, L.; Davies, P.S.W.; Whitehead, R.G. (1988) Are current dietary guidelines for young children a prescription for overfeeding? Lancet. 1988:1066-1068.

Price, P.; Su, S.; Gray, M. (1994) The effects of sampling bias on estimates of angler consumption rates in creel surveys. Portland, ME: ChemRisk.

PTI Environmental Services, Inc. (1987) Guidance manual for assessing human health risks from chemically contaminated fish and shellfish. Prepared for U.S. Environmental Protection Agency, Office of Marine and Estuarine Protection, Washington, DC.

Pueschel, S.M.; Cullen, S.M.; Howard, R.B.; Cullinane, M.M. (1978) Pathogenetic considerations of pica in lead poisoning. Int. J. Psy. M. 8(1):13-24.

Puffer, H.W., Azen, S.P.; Duda, M.J.; Young, D.R. (1981) Consumption rates of potentially hazardous marine fish caught in the metropolitan Los Angeles area. EPA Grant \#R807 120010.

Puffer, H.W.; Azen, S.P.; Duda, M.J.; Young, D. (1982) Consumption rates of potentially hazardous marine fish caught in the metropolitan Los Angeles area. U.S. Environmental Protection Agency, Environmental Research Laboratory, Corvallis, OR. EPA 600/3-82070.

Randall, H.T. (1973) Water, electrolytes and acid base balance. In: Goodhart RS, Shils ME, eds. Modern nutrition in health and disease. Philadelphia, PA: Lea and Febiger.

Robischon, P. (1971) Pica practice and other hand-mouth behavior and children's developmental level. Nurs. Res. 20:4-16.

Roels, H.; Buchet, J.P.; Lauwerys, R.R. (1980) Exposure to lead by the oral and pulmonary route of children living in the vicinity of a primary lead smelter. Environ. Res. 22:81-94.

Roseberry, A.M., Burmaster, D.E. (1992) Lognormal distribution for water intake by children and adults. Risk Analysis 12:99-104.

Ruffle, B.; Burmaster, D.; Anderson, P.; Gordon, D. (1994) Lognormal distributions for fish consumption by the general U.S. population. Risk Analysis 14(4):395-404.

Rupp, E.; Miler, F.L.; Baes, C.F. III. (1980) Some results of recent surveys of fish and shellfish consumption by age and region of U.S. residents. Health Physics 39:165-175.

Ryan, A.S.; Rush, D.; Kreiger, F.W.; Lewandowski, G.E. (1991) Recent declines in breastfeeding in the United States, 1984-1989. Pediatrics 88:719-727.

SAS Institute, Inc. (1990) SAS Procedures Guide, Version 6, Third Edition, Cary, NC: SAS Institute Inc., 1990. 705 pp.

San Diego County. (1990) San Diego Bay health risk study, June 12, 1990. San Diego, CA: San Diego County Department of Health Services.

Santa Monica Bay Restoration Project. (1994) Santa Monica Bay Seafood Consumption Study. Final Report. Monterey Park, CA: Santa Monica Bay Restoration Project.

Sayetta, R.B. (1986) Pica: An overview. American Family Physician 33(5):181-185.
Sayre, J.W.; Charney, E.; Vostal, J.; Pless, B. (1974) House and hand dust as a potential source of childhood lead exposure. Am. J. Dis. Child. 127:167-170.

Smith, B.F.; Enger, E.D. (1988) A survey of attitudes and fish consumption of anglers on the Lower Tittabawassee River, Michigan. Michigan Department of Public Health, Center for Environmental Health Sciences, Lansing, MI.

Sports Fishing Institute. (1992) Compendium of sport fishing statistics. Washington, DC: Sport Fishing Institute. March Issue.

Thompson, K.M.; Burmaster, D.E. (1991) Parametric distributions for soil ingestion by children. Risk Analysis. 11:339-342.
U.S. Army. (1983) Water Consumption Planning Factors Study. Directorate of Combat Developments, United States Army Quartermaster School, Fort Lee, Virginia.

USDA. (1966) U.S. Department of Agriculture. Household Food Consumption Survey, 1965-1966. Report 12. Food Consumption of Households in the United States - Seasons and Year, 1965-1966.

USDA. (1972) U.S. Department of Agriculture. Food consumption: Households in the United States, Seasons and year 1965-1966.

USDA. (1979-1984) Agricultural Handbook No. 8.
USDA. (1980) U.S. Department of Agriculture. Food and nutrient intakes of individuals in one day in the United States, Spring 1977. Nationwide Food Consumption Survey 1977-1978. Preliminary Report No. 2.

USDA. (1983) U.S. Department of Agriculture. Food consumption: Households in the United States, Seasons and year 1977-1978.

USDA. (1987-88) Dataset: Nationwide Food Consumption Survey 1987/88 Household Food Use. United States Department of Agriculture 1987/88 NFCS Database.

USDA. (1992a) Changes in food consumption and expenditures in American households during the 1980's. U.S. Department of Agriculture. Washington, D.C. Statistical Bulletin No. 849.

USDA. (1992b) U.S. Department of Agriculture, Human Nutrition Information Service. Food and nutrient intakes by individuals in the United States, 1 day, 1987-88: Nationwide Food Consumption Survey 1987-88, NFCS Rpt. No. 87-I-1, in preparation.

USDA. (1993a) Food and nutrient intakes by individuals in the United States, 1 day, 1987-88. United States Department of Agriculture, Agricultural Research Service. Report No. 87-I-1.

USDA. (1993a) Food consumption prices and expenditures (1970-1992) U.S. Department of Agriculture, Economic Research Service. Statistical Bulletin, No. 867.

USDA. (1994) Food consumption and dietary levels of households in the United States, 198788. United States Department of Agriculture, Agricultural Research Service. Report No. 87-H-1.
U.S. EPA. (1980) U.S. Environmental Protection Agency. Water quality criteria documents; availability. Federal Register, (November 28) 45(231):79318-79379.
U.S. EPA. (1981) Risk assessment on (2,4,5-trichlorophenoxy) acetic acid (2,4,5-T), (2,4,5-trichlorophenoxy) propionic acid (silvex), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Washington, DC: Office of Health and Environmental Assessment, Carcinogen Assessment Group, EPA-600/6-81-003. NTIS PB81-234825.
U.S. EPA. (1984a) Air quality for lead. Vol II. Washington, DC: U.S. Environmental Protection Agency. EPA-600/8-83-028B.
U.S. EPA. (1984b) Risk analysis of TCDD contaminated soil. Washington, DC: U.S. Environmental Protection Agency, Office of Health and Environmental Assessment. EPA 600/8-84-031.
U.S. EPA. (1984c) Tolerance Assessment System: Crop to Food Map. (Data analyzed was compiled in the USDA Nationwide Food Consumption Survey, 1977-78) Washington, DC: U.S. Environmental Protection Agency, Office of Pesticide Programs.
U.S. EPA. (1984d) An estimation of the daily average food intake by age and sex for use in assessing the radionuclide intake of individuals in the general population. EPA-520/1-84-021.
U.S. EPA. (1984e) An estimation of the daily food intake based on data from the 1977-1978 USDA Nationwide Food Consumption Survey. Washington, DC: Office of Radiation Programs. EPA-520/1-84-015.
U.S. EPA. (1985) Development of statistical distributions or ranges of standard factors used in exposure assessments. Washington, DC: Office of Health and Environmental Assessment. EPA No. 600/8-85-010. Available from: NTIS, Springfield, VA. PB85-242667.
U.S. EPA. (1986) Methods for assessing exposure to chemical substances. Vol 8. Methods for assessing environmental pathways of food contamination. Washington, DC: U.S. Environmental Protection Agency, Office of Toxic Substances. EPA 560/5-85-008.
U.S. EPA. (1988) Guidance manual for assessing human health risks from chemicallycontaminated fish and shellfish. Washington, DC: Office of Water.
U.S. EPA. (1989a) Development of risk assessment methodologies for land application and distribution and marketing of municipal sludge. Washington, DC EPA 600/-89/001.
U.S. EPA. (1989b) Risk Assessment Guidance for Superfund: Volume 1, Human Health Evaluation Manual, Part A. Washington, DC: U.S. Environmental Protection Agency, Office of Emergency and Remedial Response.
U.S. EPA. (1992a) Guidance for using scenarios in exposure assessment, Washington, D.C. U.S. Environmental Protection Agency. Draft Report, September, 1992.
U.S. EPA. (1992b) Consumption surveys for fish and shellfish: a review and analysis of survey methods. U.S. Environmental Protection Agency, Office of Water. Washington, D.C. EPA 822/R-92-001. February 1992.
U.S. EPA. (1993) Fish intake study. Review Draft. Washington, D.C. U.S. Environmental Protection Agency, Office of Health and Environmental Assessment.

Van Wijnen, J.H.; Clausing, P.; Brunekreff, B. (1990) Estimated soil ingestion by children. Environ. Res. 51:147-162.

Vermeer, D.E.; Frate, D.A. (1979) Geophagia in rural Mississippi: environmental and cultural contexts and nutritional implications. Am. J. Clin. Nutr. 32:2129-2135.

Walker, B.S.; Boyd, W.C.; Asimov, I. (1957) Biochemistry and human metabolism, 2nd ed. Baltimore, MD: Williams \& Wilkins Co.

Walker, C.E.; Roberts, M.C. (1983) Handbook of clinical child psychology. New York: John Wiley \& Sons.

Walter, S.D.; Yankel, A.J.; von Lindern, I.H. (1980) Age-specific risk factors for lead absorption in children. Arch. Environ. Hlth. 35:53-58.

West, P.C.; Fly, M.J.; Marans, R.; Larkin, F. (1989a) Michigan sport anglers fish consumption survey. A report to the Michigan Toxic Substance Control Commission. Michigan Department of Management and Budget Contract No. 87-20141.

West, P.C.; Fly, M.J.; Marans, R.; Larkin, F. (1989b) Michigan sport anglers fish consumption survey, Supplement I: Non-response bias and consumption suppression effect adjustments and supplement II: test for stability of consumption rates over time. School of Natural Resources, University of Michigan, Ann Arbor.

West, P.; Fly, M.; Larkin, F.; Marans, R. (1993) Minority anglers and toxic fish consumption: evidence from a state-wide survey of Michigan. In: B. Bryant and P. Mohai (eds.) The Proceeding of the Michigan Conference on Race and the Incidence of Hazardous Waste. Ann Arbor, M: University of Michigan, School of Natural Resources.

White, S.B.; Peterson, B.; Clayton, C.A.; Duncan, D.P. (1983) Interim Report Number 1: The construction of a raw agricultural commodity consumption data base. Prepared by Research Triangle Institute for EPA Office of Pesticide Programs.

Whitehead, R.G.; Paul, A.A. (1991) Dietary energy needs from 6 to 12 months of age. In: Heird, W.C. ed., Nutritional Needs of the Six to Twelve Month Old Infant. New York, Raven Press Ltd. pp. 135-148.

Wolf, A.V. (1958) Body water. Sci. Am. 99:125.
Wolfe, R.J.; Walker, R.J. (1987) subsistence economics in Alaska: productivity, geography, and development impacts. Arctic Anthropology 24(2):56-81.

Ziai, M. (1983) Bedside pediatrics. Rochester, NY: Mohsen Ziai.

\section*{APPENDIX 2A}

\section*{Food Costs and Definitions Used in Analysis of 1987/88 USDA NFCS Data}

\section*{APPENDIX 2D}

National Marine Fisheries Service Recreational Fishing Data
\begin{tabular}{|c|c|c|}
\hline Food Product & Household Code/Definition & Individual Code \\
\hline \multicolumn{3}{|c|}{Mujor foon exoups} \\
\hline Total Fruits & \begin{tabular}{ll} 
50- & \begin{tabular}{c} 
Fresh Fruits \\
citrus \\
other vitamin-C rich \\
other fruits
\end{tabular} \\
512- & \begin{tabular}{l} 
Commercially Canned Fruits
\end{tabular} \\
\(522-\quad\)\begin{tabular}{l} 
Commercially Frozen Fruits
\end{tabular} \\
\(533-\) & Canned Fruit Juice \\
\(534-\) & Frozen Fruit Juice \\
\(535-\quad\) Aseptically Packed Fruit Juice \\
\(536-\quad\) Fresh Fruit Juice \\
\(542-\quad\) Dried Fruits \\
(includes baby foods)
\end{tabular} & ```
6- Fruits
    citrus fruits and juices
    dried fruits
    other fruits
    fruits/juices & nectar
    fruit/juices baby food
(includes baby foods)
``` \\
\hline \[
\begin{aligned}
& \text { Total } \\
& \text { Vegetables }
\end{aligned}
\] & \begin{tabular}{l}
48- Potatoes, Sweetpotatoes \\
49- Fresh Vegetables . dark green deep yellow tomatoes light green other \\
511- Comnercially Canned Vegetables \\
521- Commercially Frozen Vegetables \\
531- Canned Vegetable Juice \\
532- Frozen Vegetable Juice \\
537- Fresh Vegetable Juice \\
538- Aseptically Packed Vegetable Juice \\
541- Dried Vegetables \\
(does not include soups, sauces, gravies, mixtures, and ready-to-eat dinners; includes baby foods except mixtures/dinners)
\end{tabular} & \begin{tabular}{l}
7- Vegetables (all forms) \\
white potatoes \& PR starchy \\
dark green vegetables \\
deep yellow vegetables \\
tomatoes and tom. mixtures \\
other vegetables \\
veg. and mixtures/baby food \\
veg. with meat mixtures \\
(includes baby foods; mixtures, mostly vegetables)
\end{tabular} \\
\hline Total Meats & ```
44- Meat
 beef
 pork
 veal
 lamb
 mutton
 goat
 game
 lunch meat
 mixtures
451. Poultry
(does not include soups, sauces, gravies, mixtures,
and ready-to-eat dimners; includes baby foods except
mixtures)
``` & ```
    Meat, type not specified
    Beef
    Pork
    Lamb, veal, game, carcass meat
    Poultry
    Organ meats, sausages, lunchmeats, meat
    spreads
(excludes meat, poultry, and fish with non-meat items;
frozen plate meals: soups and gravies with meat,
poultry and fish base; and gelatin-based drinks;
includes baby foods)
``` \\
\hline Total Dairy & ```
40- Milk Equivalent
 fresh fluid milk
 processed milk
 cream and cream substitutes
 frozen desserts with milk
 cheese
 dairy-based dips
(does not include soups, sauces, gravies, mixtures,
and ready-to-eat dimners)
``` & \begin{tabular}{l}
1- Milk and Milk Products \\
milk and milk drinks \\
cream and cream substitutes \\
milk desserts, sauces, and gravies \\
cheeses \\
Sincludes regular fluid milk, human milk, imitation milk products, yogurt, milk-based meal replacements, and infant formulas)
\end{tabular} \\
\hline Total Fish & ```
452- Fish, Shellfish
    various species
    fresh, frozen, commercial, dried
(does not include soups, sauces, gravies, mixtures,
and ready-to-eat dimners)
``` & \begin{tabular}{l}
26- Fish, Shellfish \\
various species and forms \\
(excludes meat, poultry, and fish with non-meat items; frozen plate meals; soups and gravies with meat, poultry and fish base; and gelatin-based drinks)
\end{tabular} \\
\hline
\end{tabular}

Apperadix 2-A. Foods Codes and Definitions Used in Analyais of the 1987/88 USDA NFCS Data (continued)
\begin{tabular}{|c|c|c|}
\hline Food Procuct & Houschold Code/Definition & Individul Code \\
\hline \multicolumn{3}{|c|}{IMDIVIDUAL FOCOS} \\
\hline White Potatocs & \begin{tabular}{l}
4811- White Potatoes, fresh \\
4821- White Potatoes, commercially canned \\
4831- White Potatoss, comercially frozen \\
4841- White Potatoes, dehydrated \\
4851- White Potatoes, chips, sticks, salad \\
(does not include soups, sauces, gravies, mixtures, \\
and ready-to-eat dinners)
\end{tabular} & \begin{tabular}{l}
71- White Potatoes and PR Starchy Veg. baked, boiled, chips, sticks, creamed, scalloped, au gratin, fried, mashed, stuffed, puffs, saled, recipes, soups, Puerto Rican starchy vegetebles \\
(does not include vegetables soups; vegetable mixtures; or vegetable with meat mixtures)
\end{tabular} \\
\hline Peppers & \begin{tabular}{l}
4913- Green/Red Peppers, fresh \\
5111201 Sweet Green Peppers, commercially canned \\
5111202 Hot Chili Peppers, commercially canned \\
5211301 Sweet Green Peppers, commercially.frozen \\
5211302 Green Chili Peppers, commercially frozen \\
5211303 Red Chili Peppers, commercially frozen \\
5413112 Sweet Green Peppers, dry \\
5413113 Red Chili Peppers, dry \\
(does not include soups, sauces, gravies, mixtures, and reaty-to-eat dinners).
\end{tabular} & \begin{tabular}{l}
7512100 Pepper, hot chili, raw \\
7512200 Pepper, raw \\
7512210 Pepper, sweet green, raw \\
7512220 Pepper, sweet red, raw \\
7522600 Pepper, green, cooked, WS as to fat added \\
7522601 Pepper, green, cooked, fat not added \\
7522602 Pepper, green, cooked, fat added \\
7522604 Pepper, red, cooked, WS as to fat added \\
7522605 Pepper, red, cooked, fat not added \\
7522606 Pepper, red, cooked, fat added \\
7522609 pepper, hot, cooked, NS as to fat added \\
7522610 Pepper, hot, cooked, fat not added \\
7522611 Pepper, hot, cooked, fat added \\
7551101 Peppers, hot, sauce \\
7551102 Peppers, pickled \\
(does not include vegetable soups; vegetable mixtures; or vegetable uith meat mixtures)
\end{tabular} \\
\hline Onions & ```
4953- Onions, Garlic, fresh
 onions
 chives
 garlic
 leeks
5114908 Garlic Pulp, raw
5114915 Onions, commercially canned
5213722 Onions, commercially frozen
5213723 Onions with Sauce, commercially frozen
5413103 Chives, dried
5413105 Garlic Flakes, dried
5413110 Onion Flakes, dried
(does not include soups, sauces, gravies, mixtures,
and ready-to-eat dinners)
``` & \begin{tabular}{l}
7510950 chives, raw \\
7511150 Garlic, raw \\
7511250 Leak, raw \\
7511701 Onions, young green, raw \\
7511702 Onions, mature \\
7521550 Chives, dried \\
7521740 Garlic, cooked \\
7522100 Oniors, mature cooked, WS as to fat added \\
7522101 Onions, mature cooked, fat not added \\
7522102 Onions, mature cooked, fat added \\
7522103 Onions, pearl cooked \\
7522104 Onions, young green cooked, NS as to fat \\
7522105 Onions, young green cooked, fat not added \\
7522106 Onions, young green cooked, fat added \\
7522110 Onion, dehydrated \\
7541501 Onions, creamed \\
7541502 Onion rings \\
(does not include vegetable soups; vegetable mixtures; or vegetable with meat mixtures)
\end{tabular} \\
\hline Corn & \begin{tabular}{l}
4956- Corn, fresh \\
5114601 Yellow Corn, commercially canned \\
5114602 White Corn, commercially canned \\
5114603 Yellow Creaned Corn, commercially canned \\
5114604 White Creamed Corn, commercially canned \\
5114605 Corn on Cob, commercially canned \\
5114607 Hominy, canned \\
5115306 LOW Sodium Corn, commercially canned \\
5115307 Lou Sodiun Cr. Corn, commercially canned \\
5213501 Yellow Corn on Cob, commercially frozen \\
5213502 Yellow Corn off Cob, commercially frozen \\
5213503 Yell. Corn with Sauce, commercially frozen \\
5213504 Corn with other Yeg., commercially frozen \\
5213505 White Corn on Cob, commercially frozen \\
5213506 White Corn off Cob, commercially frozen \\
5213507 Wh. Corn with Sauce, commercially frozen \\
5413104 Corn, dried \\
5413106 Hominy, dry \\
5413603 Corn, instant baby food \\
(does not include soups, sauces, gravies, mixtures, and ready-to-eat dinners; includes baby food) \\
(un DRAFT \\
GO KOT QUOTE OR \\
- CITE
\end{tabular} & \begin{tabular}{l}
7510960 Corn, raw \\
7521600 Corn, cooked, MS as to color/fat added \\
7521601 Corn, cooked, NS as to color/fat not added \\
7521602 Corn, cooked, NS as to color/fat added \\
7521605 Corn, cooked, HS as to color/cream style \\
7521607 Corn, cooked, dried \\
7521610 Corn, cooked, yellow/NS as to fat added \\
7521611 Corn, cooked, yellow/fat not added \\
7521612 Corn, coioked, yellow/fat added \\
7521615 Corn, yellow, crean style \\
7521616 Corn, cooked, yell. \& Wh./NS as to fat \\
7521617 Corn, cooked, yell. \& wh./fat not added \\
7521618 Corn, cooked, yell. \& wh./fat added \\
7521619 Corn, yellow, cream style, fat added \\
7521620 Corn, cooked, white/HS as to fat added \\
7521621 Corn, cooked, white/fat not added \\
7521622 Corn, cooked, white/fat added \\
7521625 Corn, white, crean style \\
7521630 Corn, yellow, canned, low sodium, HS fat \\
7521631 Corn, yell., canned, low sod., fat not add \\
7521632 Corn, yell., canned, low sod., fat added \\
7521749 Hominy, cooked \\
752175- Hominy, cooked \\
7541101 Corn scalloped or pudding \\
7541102 Corn fritter \\
7541103 Corn with crean sauce \\
7550101 Corn relish \\
76405- Corn, baby \\
(does not include vegetable soups; vegetable mixtures; \\
or vegetable with meat mixtures; includes baby food)
\end{tabular} \\
\hline
\end{tabular}

Appeodix 2-A. Foods Codes and Definitions Used in Analywis of the 1987/88 USDA NFCS Data (continued)
\begin{tabular}{|c|c|c|}
\hline Food Proouct & Houssehold Codefinefinition & Individunl code \\
\hline Apples & \begin{tabular}{l}
5031- Apples, fresh \\
5122101 Applesauce with sugar, commercially canned \\
5122102 Applesauce without sugar, comm. camed \\
5122103 Apple Pie Filling, commercially canned \\
5122104 Apples, Applesauce, baby/jr., comm. canned \\
5122106 Apple Pie Filling, Low Cal., comm. canned \\
5223101 Apple slices, commercially frozen \\
5332101 Apple Juice, canned \\
5332102 Apple Juice, baby, corm. canned \\
5342201 Apple Juice, corm. frozen \\
5342202 Apple Juice, home frozen \\
5352101 Apple Juice, aseptically packed \\
5362101 Apple Juice, fresh \\
5423101 Apples, dried \\
(includes baby food; except mixtures)
\end{tabular} & \begin{tabular}{l}
6210110 Apples, dried, uncooked \\
6210115 Apples, dried, uncooked, low sodium \\
6210120 Apples, dried, cooked, WS as to sweetener \\
6210122 Apples, dried, cooked, unsweetened \\
6210123 Apples, dried, cooked, with sugar \\
6310100 Apples, raw \\
6310111 Applesauce, NS as to sweetener \\
6310112 Applesauce, unsweetened \\
6310113 Applesauce with sugar \\
6310114 Applesauce with low calorie sweetener \\
6310121 Apples, cooked or canned with syrup \\
6310131 Apple, baked NS as to sweetener \\
6310132 Apple, baked, unsweetened \\
6310133 Apple, baked with sugar \\
6310141 Apple rings, fried \\
6310142 Apple, pickled \\
6310150 Apple, fried \\
6340101 Apple, salad \\
6340106 Apple, candied \\
6410101 Apple cider \\
6410401 Apple juice \\
6410405 Apple Juice with vitamin C \\
6710200 Applesauce baby fd., NS as to str. or jr. \\
6710201 Applessuce baby food, strained \\
6710202 Applesauce baby food, junior \\
6720200 Apple juice, baby food \\
(includes baby food; except mixiures)
\end{tabular} \\
\hline Tomatoes & \begin{tabular}{l}
4931- Tomatoes, fresh \\
5113- Tomatoes, commercially canned \\
5115201 Tomatoes, low sodium, commercially canned \\
5115202 Tomato Sauce, low sodium, comm. canned \\
5115203 Tomato Paste, low sodium, comm. canned \\
5115204 Tomato Puree, low sodium, comm. canned \\
5319- Canned Tomato Juice and Tomato Mixtures \\
5321- Frozen Tomato Juice \\
5371- Fresh Tomato Juice \\
5381102 Tomato Juice, aseptically packed \\
5413115 Tomatoes; dry \\
5614- Tomato Soup \\
5624- Condensed Tomato Soup \\
5654- Dry Tomato Soup \\
(does not include mixtures, and ready-to-eat dinners)
\end{tabular} &  \\
\hline Snap Beans & \begin{tabular}{l}
4943- Snap or Wax Beans, fresh \\
5114401 Green or Snap Beans, commercially canned \\
5114402 Wax or Yellow Beans, commercially canned \\
5114403 Beans, baby/jr., commercially canned \\
5115302 Green Beans, low sodium, comm. canned \\
5115303 Yell. or Wax Beans, low sod., comm. canned \\
5213301 Snap. or Green Beans, corm. frozen \\
5213302 Snap or Green w/sauce, comm. frozen \\
5213303 Snap or Green Beans w/other veg., comm. fr. \\
5213304 Sp . or Gr. Beans w/other veg./sc., comm. fr. \\
5213305 Wax or Yell. Beans, comm. frozen \\
(does not include soups, mixtures, and ready-to-eat dinners; includes baby foods)
\end{tabular} & \begin{tabular}{l}
7510180 Beans, string, green, raw \\
7520498 Beans, string, cooked, NS color/fat added \\
7520499 Beans, string, cooked, NS color/no fat \\
7520500 Beans, string, cooked, NS color \& fat \\
7520501 Beans, string, cooked, green/HS fat \\
7520502 Beans, string, cooked, green/no fat \\
7520503 Beans, string, cooked, green/fat \\
7520511 Beans, str., canned, low sod., green/NS fat \\
7520512 Beans, str., canned, low sod.,green/no fat \\
7520513 Beans, str., canned, low sod.,green/fat \\
7520600 Beans, string, cooked, yellow/HS fat \\
7520601 Beans, string, cooked, yellow/no fat \\
7520602 Beans, string, cooked, yellow/fat \\
7540301 Beans, string, green, creamed \\
7540302 Beans, string, green, w/mushroom sauce \\
7540401 Beans, string, yellow, creamed \\
7550011 Beans, string, green, pickled \\
7640100 Beans, green, string, baby \\
7640101 Beans, green, string, baby, str. \\
7640102 Beans, green, string, baby, junior \\
7640103 Beans, green, string, baby, creamed \\
(does not include vegetable soups; vegetable mixtures; \\
or vegetable with meat mixtures; includes baby foods)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Food Procket & Mowchold Code/Definition & Individual Code \\
\hline Beef & \begin{tabular}{l}
441- Beef \\
(does not include soups, sauces, gravies, mixtures, and ready-to-eat dinners; includes baby foods except mixtures)
\end{tabular} & \begin{tabular}{l}
21- Beef \\
beef, nfs \\
beef steak \\
beef oxtails, neckbones, ribs \\
roasts, stew meat, corned, brisket, \\
sandwich steaks \\
ground beef, patties, meatballs \\
other beef items \\
beef buby food \\
(excludes meat, poultry, and fish with non-meat itens; \\
frozen plate meals; soups and gravies with meat, \\
poultry and fish base; and gelatin-based drinks; \\
includes baby food)
\end{tabular} \\
\hline Pork & \begin{tabular}{l}
442- Pork \\
(does not include soups, sauces, gravies, mixtures, and ready-to-eat dinners; includes baby foods except mixtures)
\end{tabular} & \begin{tabular}{l}
22- Pork \\
pork, nfs; ground dehydrated chops \\
steaks, cutlets ham \\
roasts \\
Canadian bacon \\
bacon, salt pork \\
other pork items \\
pork baby food \\
(excludes meat, poultry, and fish with non-meat items; frozen plate meals; soups and gravies with meat, poultry and fish base; and gelatin-based drinks; inctudes baby food)
\end{tabular} \\
\hline Game & \begin{tabular}{l}
445- Variety Meat, Game \\
(does not include soups, sauces, gravies, mixtures, and ready-to-eat dinners; includes baby foods except mixtures)
\end{tabular} & \begin{tabular}{l}
233- Game \\
(excludes meat, poultry, and fish with non-meat items; frozen plate meals; soups and gravies with meat, poultry and fish base; and gelatin-based drinks)
\end{tabular} \\
\hline Poultry & ```
451- Poultry
(does not include soups, sauces, gravies, mixtures,
and ready-to-ent dinmers; includes baby foods except
mixtures)
``` & ```
24- Poultry
 chicken
 turkey
 cuck
 other poultry
 poultry baby food
(excludes meat, poultry, and fish with non-meat items;
frozen plate meals; scups and gravies with meat,
poultry and fish base; and gelatin-based drinks;
includes baby food)
``` \\
\hline Eggs & 46- Eggs (fresh equivalent) fresh processed eggs, substitutes (does not include soups, sauces, gravies, mixtures, and reachy-to-eat dinners; includes baby foods except mixtures) &  \\
\hline Broccoli & \begin{tabular}{l}
4912- Freah Broccoli (and home canned/froz.) \\
5111203 Broccoli, comb. canned \\
52112- Cown. Frozen Broccoli \\
(does not include soups, sauces, gravies, mixtures, and ready-to-eat dinners; includes baby foods except mixtures)
\end{tabular} & \begin{tabular}{l}
722- Broccoli (all forms) \\
(does not include vegetable soups; vegetable mixtures; or vegetable with meat mixtures)
\end{tabular} \\
\hline Carrots & \begin{tabular}{l}
4921- Fresh Carrots (and home canned/froz.) \\
51121- Comm. Canned Carrots \\
5115101 Carrots, Lon Sodiun, Comm. Canned \\
52121- Corm. Frozen Carrots \\
5312103 Comi. Canned Carrot Juice \\
5372102 Carrot Juice Fresh \\
5413502 Carrots, Dried Baby Food \\
cdoes not include soups, sauces, gravies, mixtures, and ready-to-cat dinners; includes baby foods except mixtures)
\end{tabular} & \begin{tabular}{l}
7310- Carrots (all forms) \\
7311140 Carrots in Sauce \\
7311200 Carrot Chips \\
76201- Carrots, baby \\
(does not include vegetable soups; vegetable mixtures; or vegetable with meat mixtures; includes baby foods except mixtures)
\end{tabular} \\
\hline
\end{tabular}

Appendix 2-A. Foods Codes and Definitions Used in Analysis of the 1987/88 USDA NFCS Date (continued)
\begin{tabular}{|c|c|c|}
\hline Food Product & Houschold Code/perfinition & Individuel Code \\
\hline Pumpkin & \begin{tabular}{l}
4922- Fresh Pumpkin, Winter Squash (and home canned/froz.) \\
51122- Pumpkin/Squash, Baby or Junior, Corm. Canned \\
52122- Winter Squash, Comm. Frozen \\
5413504 Squash, Dried 8aby Food \\
(does not include soups, sauces, gravies, mixtures, and ready-to-eat dinners; includes baby foods except mixtures)
\end{tabular} & \begin{tabular}{l}
732- Pumpkin (all forms) \\
733- Winter squash (ell forms) \\
76205- Squash, baby \\
(does not include vegetable soups; vegetables mixtures; \\
or vegetable with meat mixtures; includes baby foods)
\end{tabular} \\
\hline Asparagus & \begin{tabular}{l}
4941- Fresh Asparagus (and home canned/froz.) \\
5114101 Comm. Canned Asparagus \\
5115301 Asparagus, Low Sodium, Comm. Canned. \\
52131- Comm. Frozen Asparagus \\
(does not include soups, sauces, gravies, mixtures, and ready-to-eat dinners; includes baby foods except mixtures)
\end{tabular} & \begin{tabular}{l}
7510080 Asparagus, raw \\
75202- Asparagus, cooked \\
7540101 Asparagus, creamed or with cheese \\
(does not include vegetable soups; vegetables mixtures, or vegetable with meat mixtures)
\end{tabular} \\
\hline Lima Beans & \begin{tabular}{l}
4942- Fresh Lime and Fava Beans (and home canned/froz.) \\
5114204 Conm. Canned Mature Lims Beans \\
5114301 Comm. Canned Green Lima Beans \\
5115304 Comm. Canned Low Sodium Limb Beans \\
52132- Conm. Frozen Lima Beans \\
54111- Dried Lime Beans \\
5411306 Dried Fava Beans \\
(does not include soups, sauces gravies, mixtures, and ready-to-eat dimers; includes baby foods except mixtures; does not include succotash)
\end{tabular} & ```
7510200 Lime Beans, raw
752040- Lima Beans, cooked
752041- Lima Beans, canned
75402- Lima Beans with sauce
(does not include vegetable soups; vegetable mixtures;
or vegetable with meat mixtures; does not include
succotash)
``` \\
\hline Cabbage & \begin{tabular}{l}
4944- Fresh Cabbage (and home canned/froz.) \\
4958601 sauerkraut, home canned or. pkgd \\
5114801 Sauerkraut, corm. canned \\
5114904 Comm. Canned Cabbage \\
5114905 Comm. Canned Cabbage (no sauce; incl. baby) \\
5115501 Sauerkraut, low sodiun., conm. canned \\
5312102 Sauerkraut Juice, comm. canned \\
(does not include soups, sauces, gravies, mixtures, and ready-to-eat dimers; includes baby foods exeept mixtures)
\end{tabular} & ```
7510300 Cabbage, raw
7510400 Cabbage, Chinese, raw
7510500 Cabbage, red, raw
7514100 Cabbage salad or coleslaw
7514130 Cabbage, Chinese, salad
75210- Chinese Cabbage, cooked
75211- Green Cabboge, cooked
75212- Red Cabbage, cooked
752130- Savoy Cabbage, cooked
75230- Saverkraut, cooked
7540701 Cabbage, creamed
755025- Cabbage, pickled or in relish
(does not include vegetable soups; vegetable mixtures;
or vegetable with meat mixtures)
``` \\
\hline Lettuce & \begin{tabular}{l}
4945- Fresh Lettuce, French Endive (and hone canned/froz.) \\
(does not include soups, sauces, gravies, mixtures, and ready-to-eat dinners; includes baby foods except mixtures)
\end{tabular} & \begin{tabular}{l}
75113- Lettuce, ган \\
75143- Lettuce salad with other veg. \\
7514410 Lettuce, wilted, with bacon dressing \\
7522005 Lettuce, cooked \\
(does not include vegetable soups; vegetable mixtures; or vegetable with meat mixtures)
\end{tabular} \\
\hline Okra & \begin{tabular}{l}
4946- Fresh Okra (and home carned/froz.) \\
5114914 Corm. Canned Okra. \\
5213720 Comm. Frozen Okra \\
5213721 Comm. Frozen Okra with Oth. Veg. \& Sauce (does not include soups, sauces, gravies, mixtures, and ready-to-eat dinners; includes baby foods except mixtures)
\end{tabular} & \begin{tabular}{l}
7522000 Okra, cooked, NS as to fat \\
7522001 Okra, cooked, fat not added \\
7522002 Okra, cooked, fat added \\
7522010 Lufta, cooked (Chinese Okra) \\
7541450 Okra, fried \\
7550700 Okra, pickled \\
(does not include vagetable soups; vegetable mixtures; \\
or vegetable with meat mixtures)
\end{tabular} \\
\hline Peas & \begin{tabular}{l}
4947- Fresh Peas (and home canned/froz.) \\
51947- Com Canned Peas (incl. baby) \\
5115310 Low Sodium Green or English Peas (canned) \\
5915314 Low Sod. Blackeye, Gr. or Imm. Peas (canned) \\
5114205 Blackeyed Peas, comm. canned \\
52134- Conm. Frozen Peas \\
5412- Dried Peas and Lentils \\
(does not include soups, sauces, gravies, mixtures, and ready-to-eat dinners; inciudes baby foods except mixtures)
\end{tabular} & \begin{tabular}{l}
7512000 Peas, green, raw. \\
7512775 Snowpeas, raw \\
75223- Peas, cowpeas, field or blackeye, cooked \\
75224- Peas, green, cooked \\
75225- Peas, pigeon, cooked \\
75231- Snowpeas, cooked \\
7541650 Pea salad \\
7541660 Pea salad with cheese \\
75417- Peas, with sauce or creamed \\
76409- Peas, baby \\
76411- Peas, creamed, baby \\
(does not include vegetable soups; vegetable mixtures; or vegetable with meat mixtures; includes baby foods except mixtures)
\end{tabular} \\
\hline
\end{tabular}

Appeodix 2-A. Foode Codos and Definitions Used in Anslysis of the 1987/88 USDA NFCS Date (continuad)
\begin{tabular}{|c|c|c|}
\hline Food Prootuct & Houschold Code/Definition & Irdividunal Code \\
\hline Cucumbers & 4952- Fresh Cucumbers (and home canned/froz.) (does not include soups, sauces, gravies, mixtures, and ready-to-ent dinners; includes baby foods except mixtures) & \begin{tabular}{l}
7511100 Cucuribers, гаw \\
75142- Cucumber salads \\
752167- Cucumbers, cooked \\
7550301 Cucumber pickles, dill \\
7550302 cucumber pickles, relfish \\
7550303 Cucumber pickles, sour \\
7550304 Cucurber pickles, sweet \\
7550305 Cucumber pickles, fresh \\
7550307 Cucumber, Kim Chee \\
7550311 Cucumber pickles, dill, reduced salt \\
7550314 Cucumber pickles, sweet, rectuced salt \\
(does not include vegetable soups; vegetable mixtures; \\
or vegatable with meat mixtures)
\end{tabular} \\
\hline Bects & \begin{tabular}{l}
4954- Fresh Beets (and home canned/froz.) \\
51145- Comm. Canned Beets (incl. baby) \\
5115305 Low Sodiun Beets (canned) \\
5213714 Corm. Frozen Beets \\
5312104 Beet Juice \\
(does not include soups, sauces, gravies, mixtures, and reacty-to-eat dinners; includes baby foods except mixtures)
\end{tabular} & ```
7510250 Beets, ram
752080- Beets, cooked
752081- Beets, canned
7540501 Beets, harvard
7550021 Beets, pickled
76403- Beets, baby
<does not include vegetable soups; vegetable mixtures;
or vegetable with meat mixtures; includes baby foods
except mixtures)
``` \\
\hline Strawberries & \begin{tabular}{l}
5022- Fresh Strawberries \\
5122801 Corm. Canned Strawberries with sugar \\
5122802 Corm. Canned Strawberries without sugar \\
5122803 Canned Stramberry Pie Filling \\
5222- Conm. Frozen Strawberries \\
sdoes not include ready-to-eat dinners; includes baby \\
foods except mixtures)
\end{tabular} & 6322- Strawberries 6413250 Stramberry Juice (includes baby food; except mixtures) \\
\hline Other Berries & \begin{tabular}{l}
5033- Fresh Berries Other than Strawberries \\
5122804 Comm. Canned Blackberries with sugar \\
5122805 Corm. Canned Blackberries without sugar \\
5122806 Comm. Canned Blueberries with sugar \\
5122807 Cormi. Canned Blueberries without sugar \\
5122808 Camed Blueberry Pie Filling \\
5122809 Conn. Canned Gooseberries with sugar \\
5122810 Conn. Canned Gooseberries without sugar \\
5122811 Comu. Canned Raspberries with sugar \\
5122812 Comm. Canned Raspberries without sugar \\
5122813 Cown. Canned Cranberry Sauce \\
5122815 Corm. Canned Cranberry-Orange Relish \\
52233- Conm. Frozen Berries (not strawberries) \\
5332404 Blackberry Juice (home and conm. canned) \\
5423114 Dried Berries (not strawberries) \\
(cdoes not include ready-to-eat dinners; includes baby \\
foods except mixtures)
\end{tabular} & \begin{tabular}{l}
6320- Other Berries \\
6321- Other Berries \\
6341101 Cranberry salad \\
6410460 Blackberry Juice \\
64105- Cranberry Juice \\
(includes baby food; except mixtures)
\end{tabular} \\
\hline Peaches & \begin{tabular}{l}
5036- Fresh Peaches \\
51224- Conni. Canned Peaches (incl. baby) \\
5223601 Corm. Frozen Peaches \\
5332405 Honve Canned Peach Juice \\
5423105 Dried Peaches (baby) \\
5423106 Dried Peaches \\
(does not include ready-to-eat dimers; includes baby \\
foods except mixtures)
\end{tabular} & \begin{tabular}{l}
62116- Dried Peaches \\
63135- Peaches \\
6412203 Peach Juice \\
6420501 Peach Hectar \\
67108- Peaches, boby \\
6711450 Peaches, dry, baby \\
(includes baby food; except mixtures)
\end{tabular} \\
\hline Pears & \begin{tabular}{l}
5037- Fresh Pears \\
51225- Comm. Canned Pears (incl. baby) \\
5332403 Comms. Canned Pear Juice, baby \\
5362204 Fresh Pear Juice \\
5423107 Dried Pears \\
(does not include ready-to-eat dinners; includes baby \\
foods except mixtures)
\end{tabular} & \begin{tabular}{l}
62119- Dried Pears \\
63137- Pears \\
6341201 Pear salad \\
6421501 Pear Nectr \\
67109- Pears, baby \\
6711455 Pears, dry, baby \\
(includes baby food; except mixtures)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Food Product & Houmehold code/befinition & Individual Code \\
\hline \multicolumn{3}{|c|}{EXPOSED/PROTECTED FRUITS/VEEETABLES, ROOT VEEETABLES} \\
\hline Exposed Fruits & \begin{tabular}{l}
5022- Strawberries, fresh \\
5023101 Acerola, fresh \\
5023401 Currants, fresh \\
5031- Apples/Applesauce, fresh \\
5033- Berries other than Strasberries, fresh \\
5034- Cherries, fresh \\
5036- Paaches, fresh \\
5037- Pears, fresh \\
50381- Apricots, Nectarines, Loquats, fresh \\
5038305 Dates, friesh \\
50384- Grapes, fresh \\
50386- Pluns, fresh \\
50387- Rhuberb, fresh \\
5038805 Persimmons, fresh \\
5038901 Sapote, fresh \\
51221- Apples/Applesauce, canned \\
51222- Apricots, canned \\
51223- Cherries, canned \\
51224- Peaches, canned \\
51225- Pears, canned \\
51228- Berries, camed \\
5122903 Grapes with sugar, canned \\
5122904 Grapes without sugar, canned \\
5122905 Plums with sugar, canned \\
5122906 Pluns without sugar, canned \\
5122907 Plums, canned, baby \\
5122911 Prunes, canned, baby \\
5122912 Prunes, with sugar, canned \\
5122913 Prunes, without sugar, canned \\
5122914 Raisin Pie filling \\
5222- Frozen Strawberries \\
52231- Apples Slices, frozen \\
52233- Berries, frozen \\
52234- Cherries, frozen \\
52236- Peaches, frozen \\
52239- Rhubarb, frozen \\
53321- Canned Apple Juice \\
53322- Canned Grape Juice \\
5332402 Camed Prune Juice \\
5332403 Canned Pear Juice \\
5332404 Canned Blackberry Juice \\
5332405 Canned Peach Juice \\
53421- Frozen Grape Juice \\
5342201 Frozen Apple Juice, conm. fr. \\
5342202 Frozen Apple Juice, honve fr. \\
5352101 Apple Juice, asep. packed \\
5352201 Grape Juice, asep. packed \\
5362101 Apple-Juice, fresh \\
5362202 Apricot Juice, fresh \\
5362203 Grape Juice, fresh \\
5362204 Pear Juice, fresh \\
5362205 Prune Juice, fresh \\
5421- Dried Prunes \\
5422- Raisins, Currants, dried \\
5423101 Dry Apples \\
5423102 Dry Apricots \\
5423103 Dates without pits \\
5423104 Dates with pits \\
5423105 Peaches, dry, baby \\
5423106 Peaches, dry \\
5423107 Pears, dry \\
5423114 serries, dry \\
5423115 Cherries, dry \\
(includes baby foods)
\end{tabular} & ```
62101- Apple, dried
62104- Apricot, dried
62108- Currents, dried
62110- Date, dried
62116- Peaches, dried
62119- Pears, dried
62121- Plun, dried
62122- Prune, dried
62125- Raisins
63101- Apples/applesauce
63102- Wi-apple
63103- Apricots
63111- Cherries, maraschino
63112- Acerola
63113-Cherries, sour
63115- Cherries, sweet
63117- Currants, raw
63123- Grapes
6312601 Juneberry
63131- Nectarine
63135. Peach
63137- Pear
63139- Persimmons
63143- Plun
63146- Quince
63147- Rhuberb/Sapodillo
632- Berries
64101- Apple Cider
64104- Apple Juice
64105- Cranberry Juice
64116- Grape Juice
64122- Peach Juice
64132- Prune/Strawberry Juice
6420101 Apricot Nectar
64205- Peach Nectar
64215- Pear Nectar
67102- Applesauce, baby
67108- Peaches, baby
67109- Pears, baby
6711450 Peaches, baby, dry
6 7 1 1 4 5 5 \text { Pears, baby, dry}
67202- Apple Juice, baby
6720380 White Grape Juice, baby
67212- Pear Juice, baby
(includes baby foods/juices except mixtures; excludes
fruit mixtures)
``` \\
\hline
\end{tabular}

Appendix 2-A. Foods Codea and Definitions Used in Analynis of the 1987/88 USDA NFCS Dalk (concinued)
\begin{tabular}{|c|c|c|}
\hline Food Proctret & Household Code/Definition & Individual Code \\
\hline Protected Fruits & \begin{tabular}{l}
501- Citrus Fruits, fresh \\
5021- Cantaloupe, fresh \\
5023201 Mangoes, fresh \\
5023301 Guava, fresh \\
5023601 Kiwi, fresh \\
5023701 Papayas, fresh \\
5023801 Passion Fruit, fresh \\
5032- Bananas, Plantains, fresh \\
5035- Melons other than Cantaloupe, fresh \\
50382- Avocados, frash \\
5038301 Figs, fresh \\
5038302 Figs, cooked \\
5038303 Figs, hathe canned \\
5038304 Figs, hone frozen \\
50385- Pineapple, fresh \\
5038801 Poregranates, fresh \\
5038902 Cherimoye, fresh \\
5038903 Jackfruit, fresh \\
5038904 breadfruit, fresh \\
5038905 ramarind, fresh \\
5038906 Carambola, fresh \\
5038907 Longan, fresh \\
5121- Citrus, canned \\
51226- Pineapple, canned \\
5122901 Figz with sugar, canned \\
5122902 Figs without sugar, canned \\
5122909 Bananas, canned, baby \\
5122910 Bananas and Pineapple, canned, baby \\
5122915 Litchis, canned \\
5122916 Hangos with sugar, canned \\
5122917 Hangos without sugar, canned \\
5122918 Manges, canned, baby \\
5122920 Guava with sugar, canned \\
5122921 Guava without sugar, canned \\
5122923 Papaya with sugar, canned \\
5122924 Papaya without sugar, canned \\
52232- Banamas, frozen \\
52235- Melon, frozen \\
52237- Pinespple, frozen \\
5331- Canned Citrus Juices \\
53323- Canned Pineapple Juice \\
5332408 Canned Papaya Juice \\
5332410 Canned Mango Juice \\
5332501 Canned Papaya Concentrate \\
5341- Frozen Citrus Juice \\
5342203 Frozen Pineapple Juice \\
5351. Citrus and Citrus Blend Juices, asep. packed \\
5352302 Pineapple Juice, asep. packed \\
5361. Fresh citrus and Citrus Blend Juices \\
5362206 Papeya Juice, fresh \\
5362207 Pineapple-Coconut Juice, fresh \\
5362208 Hango Juice, frash \\
5362209 pineapple Juice, fresh \\
5423103 Pineapple, dry \\
5423109 papaya, dry \\
5423110 Benanas, dry \\
5423111 Mangos, dry \\
5423117 Litchis, dry \\
5423118 Tamarind, dry \\
5423119 plantain, dry \\
(includes beby foods)
\end{tabular} & \begin{tabular}{l}
62107- Bananas, dried \\
62113- Figs, dried \\
62114- Lychees/Papayss, dried \\
62120- Pineapple, dried \\
62126- ramarind, dried \\
63105- Avocado, raw \\
63107- Bananas \\
63109- Cantaloupe, Carambola \\
63110- Cassaba Helon \\
63119- Figs \\
63121- Genip \\
63125- Guava/Jackfruit; raw \\
6312650 Kiмi \\
6312651 Lychee, raw \\
6312660 Lychee, cooked \\
63127- Honeydew \\
63129- Mango \\
63133- Papaya \\
63134- Passion Fruit \\
63141- Pineapple \\
63145- Pomegranate \\
63148- Sweetsop, Soursop, Tamarind \\
63149- Hatermelon \\
64120- Papaya Juice \\
64121- Passion Fruit Juice \\
64124- Pineapple Juice \\
64133- Watermelon Juice \\
6420150 Banana Hectar \\
64202- Cantaloupe Nectar \\
64203- Guava Nectar \\
64204- Mango Nectar \\
64210- Papaya Nectar \\
64213- Passion Fruit Nectar \\
64221- Soursop Nectar \\
6710503 Bananas, baby \\
6719500 Bananas, baby, dry \\
6720500 Orange Juice, baby \\
6721300 Pineapple Juice, baby \\
(includes baby foods/Juices except mixtures; excludes \\
fruit mixtures)
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Food Product & Mousehold Code/Definition & Individual Code \\
\hline \multirow[t]{42}{*}{Exposed Veg.} & 491- Fresh Dark Green Vegetables & 721- Dark Green Leafy Veg. \\
\hline & 493- Fresh Tomatoes & 722- Dark Green Nonleafy Veg. \\
\hline & 4941- Fresh Asparagus & 74- Tomatoes and Tomato Mixtures \\
\hline & 4943- Fresh Beans, Snap or Wax & 7510050 Alfalfa Sprouts \\
\hline & 4944- Fresh Cabbage & 7510075 Artichoke, Jerusalem, raw \\
\hline & 4945- Fresh Lettuce & 7510080 Asparagus, raw \\
\hline & 4946- Fresh Okre & 75101- Beans, sprouts and green, raw \\
\hline & 49481- Fresh Artichokes & 7510275 Brussel Sprouts, raw \\
\hline & 49483- Fresh Brussel Sprouts & 7510280 Buckwheat Sprouts, raw \\
\hline & 4951- Fresh Celery & 7510300 Cabbage, raw \\
\hline & 4952- Fresh Cucumbers & 7510400 Cabbage, Chinese, raw \\
\hline & 4955- Fresh Cauliflower & 7510500 Cabbage, Red, raw \\
\hline & 4958103 Fresh Kohlrabi & 7510700 Cauliflower, raw \\
\hline & 4958111 Fresh Jerusalem Artichokes & 7510900 celery, raw \\
\hline & 4958112 Fresh Mushrooms & 7510950 Chives, raw \\
\hline & 4958113 Mushrooms, home canned & 7511100 Cucumber, raw \\
\hline & 4958114 Mushrooms, home frozen & 7511120 Eggplant, raw \\
\hline & 4958118 Fresh Eggplant & 7511200 Kohtrabi, raw \\
\hline & 4958120 Eggplant, home frozen & 7511500 Mushrooms, raw \\
\hline & 4958200 Fresh Summer Squash & 7511900 Parsley \\
\hline & 4958201 Summer Squash, cooked & 7512100 Pepper, hot chili \\
\hline & 4958202 Summer Squash, home canned & \(75122-\mathrm{Peppers}\), rau \\
\hline & 4958203 Sumer Squash, home frozen
4958402 Fresh Bean Sprouts & 7512750 Seaweed, raw 7512775 Snowpeas, raw \\
\hline & 4958403 Fresh Alfalfa Sprouts & 75128- Summer Squash, raw \\
\hline & 4958504 Bamboo Shoots & 7513210 Cetery Juice \\
\hline & 4958506 Seaweed & 7514100 Cabbage or cole slaw \\
\hline & 4958508 Tree Fern, fresh & 7514130 Chinese Cabbage Salad \\
\hline & \begin{tabular}{l}
4958601 Sauerkraut \\
5111. Dark Green Vegetables (all are exposed)
\end{tabular} & 7514150 Celery with cheese 75142- Cucumber salads \\
\hline & 5113- Tomatoes: & 75143- Lettuce salads \\
\hline & 5114101 Asparagus, comm. canned & 7514410 Lettuce, wilted with bacon dressing \\
\hline & \(51144^{-}\)Beans, green, shap, yellow, comm. canned & 7514600 Greek salad \\
\hline & 5114704 Snow Peas, comm. Canned & 7514700 Spinach salad \\
\hline & 5114801 Sauerkraut, comm. canned & 7520600 Algae, dried \\
\hline & 5114901 Artichokes, comm. canned & 75201- Artichoke, cooked \\
\hline & 5114902 Bamboo Shoots, comm. Canned & 75202- Asparagus, cooked \\
\hline & 5114903 Bean Sprouts, comm. canned 5114904 Cabbage, comm. canned & 75203- Bamboo shoots, cooked 752049- Beans, string, cooked \\
\hline & 5114905 Cabbage, comm. canned, no sauce & 75205- Beans, green, cooked/canned \\
\hline & 5114906 Cauliflower, comm. canned, no sauce & 75206- Beans, yellow, cooked/canned \\
\hline & 5114907 Eggplant, comm. canned, no sauce & 75207- Bean Sprouts, cooked \\
\hline & 5114913 Mushrooms, comm. canned & 752085- Breadfruit \\
\hline & 5114914 Okra, comm. canned & 752090- Brussel Sprouts, cooked \\
\hline & 5114918 Seaweeds, comm. canned 5114920 Sumner Squash, conm. canned & \begin{tabular}{l}
75210- Cabbage, Chinese, cooked \\
75211- Cabbage, green, cooked
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Food Prochet & Household Code/Definition & Individunal Code \\
\hline Exposed Veg. (cont.) & \begin{tabular}{l}
5114923 Chinese or Celery Cabbage, comm. canned \\
51152- Tomatoes, canned, low sod. \\
5115301 Asparagus, canned, low sod. \\
5115302 Beans, Green, canred, lou sod. \\
5115303 Beans, Yellow, canned, low sod. \\
5115309 Mushroons, canned, low sod. \\
51154- Greens, camned, low sod. \\
5115501 Sauerkraut, low sodium \\
5211- Dark Gr. Veg., comis. frozen (all exp.) \\
52131- Asparagus, corm. froz. \\
52133- Beans, snap, green, yellow, comm. froz. \\
5213407 Peapods, conm froz. \\
5213408 Peapods, with sauce, comm froz. \\
5213409 Peapods, with other veg., comm froz. \\
5213701 Bruscel Sprouts, comm. froz. \\
5213702 日russel Sprouts, conm. froz. with cheese \\
5213703 Brussel Sprouts, comm. froz. With other vog. \\
5213705 Cauliflower, comm. froz. \\
5213706 Cauliflower, comm. froz. with sauce \\
5213707 Cauliflower, corm. froz. with other veg. \\
5213708 caul., comm. froz. With other veg. saluce \\
5213709 Summer Squash, comb. froz. \\
5213710 Sumer Squash, comm. froz. with other veg. \\
5213796 Eggplant, corri. froz. \\
5213718 Hushrooms with sauce, comm. froz. \\
5213719 Mushroome, comm. froz. \\
5213720 Okra, comm. froz. \\
5213721 okra, comm. froz., with sauce \\
5311- Canned Tomato Juice and Tomato Mixtures \\
5312102 Canned Sauerkraut Juice \\
5321- Frozen Tomato Juice \\
5371- Fresh Tometo Juice \\
5381102 Aseptically Packed Tomato Juice \\
5413109 Dry Algae \\
5413102 Dry Celery \\
5413103 Dry Chives \\
5413109 Dry Mushrooms \\
5413111 Dry Parsley \\
5413192 Dry Green Peppers \\
5413113 Dry Red Peppers \\
5413194 Dry Seaweed \\
5413115 Dry Tomatoes \\
(does not include soups, sauces, gravies, mixtures, and ready-to-eat dinners; includes baby foods except mixtures)
\end{tabular} & ```
75212- Cabbage, red, cooked
752130- Cabbage, savoy, cooked
75214- Cauliflower
75215- Celery, Chives, Christophine (chayote)
752167- Cucumber, cooked
752170- Eggplant, cooked
752171- Fern shoots
752172- Fern shoots
752173- Flowers of sesbanis, squash or lily
7521801 Kohlrabi, cooked
75219- Mushrooms, cooked
75220- Okra/lettuce, cooked
7522116 Pelm Hearts, cooked
7522121 Parsley, cooked
75226- Peppers, pimento, cooked
75230- Sauerkraut, cooked/canned
75231- Snompeas, cooked
75232. Seaweed
75233- Summer Squash
7540050 Artichokes, stuffed
7540101 Asparagus, creamed or with cheese
75403- Beans, green with sauce
75404- Beans, yellow with sauce
7540601 Brussel Sprouts, creaned
7540701 Cabbage, creamad
75409- Cauliflower, creamed
75410- Celery/Chiles, creaned
75412- Eggplant, fried, with sauce, etc.
75413-Kohlrabi, creaned
75414- Mushrooms, Okra, fried, stuffed, creaned
754180- Squash, baked, fried, creamed, etc.
754822 Christophine, creaned
7550011 Beans, pickled
7550051 celery, pickled
7550201 Cauliflower, pickled
755025- Cabbage, pickled
7550301 Cucumber pickles, dill
7550302 Cucunber pickles, relish
7550303 Cucunber pickles, sour
7550304 Cucumber pickles, sweet
7550305 Cucumber pickles, fresh
7550307 Cucumber, Kim Chee
7550308 Eggplant, pickled
7550311 Cucumber pickles, dill, reduced salt
7550314 Cucumber pickles, sweet, reduced salt
7550500 Mushrooms, pickled
7550700 0kra, pickled
75510- olives
7551101 Peppers, hot
7551102 Peppers,pickled
7551301 Seaweed, pickled
7553500 Zucchini, pickled
76102- Dark Green Veg., baby
76401- Beans, baby (excl. most soups & mixtures)
``` \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Food Product & Mousehold Code/Definition & Individual Code \\
\hline Protected Veg. & \begin{tabular}{l}
4922- Fresh Pumpkin, Winter Squash \\
4942- Fresh Lima Beans \\
4947- Fresh Peas \\
49482- Fresh Soy Beans \\
4956- Fresh Corn \\
4958303 Succotash, home canned \\
4958304 Succotash, home frozen \\
4958401 Fresh Cactus (prickly pear) \\
4958503 Burdock \\
4958505 Bitter Melon \\
4958507 Horseradish Tree Pods \\
51122- Comm. Canned Pumpkin and Squash (baby) \\
51142- Beans, comm. canned \\
51143- Beans, lima and soy, coms. canned \\
51146- Corn, comm. canned \\
5114701 Peas, green, comm. canned \\
5114702 Peas, baby, corm. canned \\
5114703 Peas, blackeye, comm. canned \\
5114705 Pigeon Peas, comm: canned \\
5114919 Succotash, comm. canned \\
5115304 Lima Beans, camed, low sod. \\
5115306 Corn, canned, low sod. \\
5115307 Creamed Corn, canned, low sod. \\
511531- Peas and Beans, canned, low sod. \\
52122- Winter Squash, comm. froz. \\
52132- Lima Beans, conm. froz. \\
5213401 Peas, gr., comm. froz. \\
5213402 Peas, gr., with sauce, comm. froz. \\
5213403 Peas, gr., with other veg., comm. froz. \\
5213404 Peas, gr., with other veg., comm. froz. \\
5213405 Peas, blackeye, corm froz. \\
5213406 Peas, blackeye, with sauce, comm froz. \\
52135- Corn, conm. froz. \\
5213712 Artichoke Hearts, comm. froz. \\
5213713 Baked Beans, corm. froz. \\
5213717 Kidney Beans, corm. froz. \\
5213724 Succotash, comm. froz. \\
5411- Dried Beans \\
5412- Dried Peas and Lentils \\
5413104 Dry Corn \\
5413106 Dry Hominy \\
5413504 Dry Squash, baby \\
5413603 Dry Creaned Corn, baby \\
(does not include soups, sauces, gravies, mixtures, and ready-to-eat dinners; includes baby foods except mixtures)
\end{tabular} & ```
732- Pumpkin
733- Winter Squash
7510200 Lima Beans, raw
7510550 Cactus, raw
7510960 Corn, raw
7512000 Peas, rau
7520070 Aloe vera juice
752040- Lima Beans, cooked
752041- Lima Beans, canned
7520829 Bitter Melon
752083- Bitter Melon, cooked
7520950 Burdock
752131- Cactus
752160- Corn, cooked
752161- Corn, yellow, cooked
752162- Corn, white, cooked
752163- Corn, canned
7521749 Hominy
752175- Hominy
75223- Peas, cowpeas, field or blackeye, cooked
75224- Peas, green, cooked
75225- Peas, pigeon, cooked
75301- Succotash
75402- Lima Beans with sauce
75411- Corn, scalloped, fritter, with cream
7541650 Pea salad
7541660 Pea salad with cheese
75417- Peas, with sauce or creamed
7550101 Corn relish
76205- Squash, yellow, baby
76405- Corn, baby
76409- Peas, baby
76411- Peas, creamed, baby
(does not include vegetable soups; vegetable mixtures;
or vegetable with meat mixtures)
``` \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Food Product & Matehold Code/Definition & Individual code \\
\hline Root Vegetables & \begin{tabular}{l}
48- \\
Potatoes, Sweetpotatoes \\
4921- Fresh Carrots \\
4953- Fresh Onions, Garlic \\
4954- Fresh Beets \\
4957- Fresh Turnips \\
4958101 Fresh Celeriac \\
4958102 Fresh Horseradish \\
4958104 Fresh Radishes, no greens \\
4958105 Redishes, home canned \\
4958106 Radishes, home frozen \\
4958107 Fresh Radishes, with greens \\
4958108 Fresh Salsify \\
4958109 Fresh Rutabagas \\
4958110 Rutabagas, home frozen \\
4958115 Fresh Parsnips \\
4958116 Parsnips, home canned \\
4958117 Parsnips, home frozen \\
4958502 Fresh Lotus Root \\
4958509 Ginger Root \\
4958510 Jicman, including yambean \\
51121- Carrots, comm. canned \\
51145- Beets, comm. canned \\
5114908 Garlic Pulp, corm. canned \\
5114910 Horseradish, comm. prep. \\
5114915 Onions, corm. canned \\
5114916 Rutabagas, corm. canned \\
5114917 Salsify, comm. canned \\
5114921 Yurnips, comm. canned \\
5114922 Water Chestmuts, comm. canned \\
51151- Carrots, camed, low sod. \\
5115305 Beets, canned, low sod. \\
5115502 Turnips, low sod. \\
52121- Carrots, corm. froz. \\
5213714 Beets, comm. froz. \\
5213722 onions, comm. froz. \\
5213723 Onions, comm. froz., with sauce \\
5213725 Turnips, comm. froz. \\
5312103 Canned Carrot Juice \\
5312104 Canned Beet Juice \\
5372102 Fresh Carrot Juice \\
5413105 Dry Garlic \\
5413110 Dry Onion \\
5413502 Dry Carrots, baby \\
5413503 Dry Sweet Potatoes, baby \\
(does not include soups, sauces, gravies, mixtures, and ready-to-eat dinners; includes baby foods except mixtures)
\end{tabular} & ```
71- White Potatoes and Puerto Rican St. Veg.
7310- Carrots
7311140 Carrots in sauce
7311200 Carrot chips
734- Sweetpotatoes
7510250 Beets, raw
7511150 Garlic, raw
7511180 Jicame (yambean), raw
7511250 Leeks, ган
75117- Onions, гам
7512500 Radish, raw
7512700 Rutabaga, гаи
7512900 Turnip, гаи
752080- Beets, cooked
752081- Beets, canned
7521362 Cassava
7521740 Garlic, cooked
7521771 Horseradish
7521850 Lotus root
752210- Onions, cooked
7522110 Onions, dehydrated
752220- Parsnips, cooked
75227- Radishes, cooked
75228- Rutabaga, cooked
75229- Salsify, cooked
75234- Turnip, cooked
75235- Water Chestruat
7540501 Beets, harvard
75415- Onions, creamed, fried
7541601 Parsnips, creamed
7541810 Turnips, creamed
7550021 Beets, pickled
7550309 Horseradish
7551201 Radishes, pickled
7553403 Turnip, pickled
76201- Carrots, baby
76209- Sweetpotatoes, baby
76403- Beets, baby
(does not include vegetable soups; vegetable mixtures;
or vegetable with meat mixtures)
``` \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Food Product & Mousehold Code/Depinition & Individual Code \\
\hline \multicolumn{3}{|c|}{USDA SUSCATEEDRIES} \\
\hline Dark Green Vegetables & \begin{tabular}{l}
491- Fresh Dark Green Vegetables \\
5111- Comm. Canned Dark Green Veg. \\
51154- Low Sodium Dark Green Veg. \\
5211- Comm. Frozen Dark Green Veg. \\
5413111 Dry Parsley \\
5413112 Dry Green Peppers \\
5413113 Dry Red Peppers \\
(does not include soups, sauces, gravies, mixtures, and ready-to-eat dinners; includes baby foods except mixtures/dinners; excludes vegetable juices and dried vegetables)
\end{tabular} & \begin{tabular}{l}
72- Dark Green Vegetables \\
all forms \\
leafy, nonleafy, dk. gr. veg. soups
\end{tabular} \\
\hline Deep Yellow Vegetables & \begin{tabular}{l}
492- Fresh Deep Yellow Vegetables \\
5112- Comm. Canned Deep Yellow Veg. \\
51151- Low Sodium Carrots \\
5212- Comm. Frozen Deep Yellow Veg. \\
5312103 Carrot Juice \\
54135- Dry Carrots, Squash, Sw. Potatoes \\
(does not include soups, sauces, gravies, mixtures, and ready-to-eat dinners; includes baby foods except. mixtures/dinners; excludes vegetable juices and dried vegetables)
\end{tabular} & 73- Deep Yellow Vegetables all forms carrots, pumpkin, squash, sweetpotatoes, dp. yell. veg. soups \\
\hline Other Vegetables & \begin{tabular}{l}
494- Fresh Light Green Vegetables \\
495- Fresh Other Vegetables \\
5114- Comm. Canned Other Veg. \\
51153- Low Sodium Other Veg. \\
51155- Low Sodium Other Veg. \\
5213- Comm. Frozen Other Veg. \\
5312102 Sauerkraut Juice \\
5312104 Beet Juice \\
5411- Dreid Beans \\
5412- Dried Peas, Lentils \\
541310- Dried Other Veg. \\
5413114 Dry Seaweed \\
5413603 Dry Cr. Corn, baby \\
(does not include soups, sauces, gravies, mixtures, and ready-to-eat dinners; includes baby foods except mixtures/dinners; excludes vegetable juices and dried vegetables)
\end{tabular} & 75- Other Vegetables all forms \\
\hline Citrus Fruits & & \begin{tabular}{l}
61- Citrus Fruits and Juices \\
6720500 Orange Juice, baby food \\
6720600 Orange-Apricot Juice, baby food 6720700 Orange-Pineapple Juice, baby food 6721100 Orange-Apple-Banana Juice, baby food (excludes dried fruits)
\end{tabular} \\
\hline Other Fruits & \begin{tabular}{l}
502- Fresh Other Vitanin C-Rich Fruits \\
503- Fresh Other Fruits \\
5122- Comm. Canned Fruits Other than Citrus \\
5222- Frozen Strawberries \\
5223- Frozen Other than Citr. or Vitamin C-Rich Fr. \\
5332- Canned Fruit Juice Other than Citrus \\
5342- Frozen Juices Other than Citrus \\
5352- Aseptically Packed Fruit Juice Other than Citr. \\
5362- Fresh Fruit Juice Other than Citrus \\
542- Dry Fruits \\
(includes baby foods; excludes dried fruits)
\end{tabular} & ```
 Dried Fruits
 Other Fruits
 Fruit Juices and Nectars Excluding Citrus
 Fruits, baby
 Apple Juice, baby
 Baby Juices
 Baby Juices
 Baby Juices
 Baby Juices
 Baby Fruits
 8sby Fruits
``` \\
\hline
\end{tabular}

\section*{APPENDIX 2B}

\section*{Sample Calculation of Mean Daily Fat Intake Based on CDC (1994) Data}

\title{
Sample Calculation of Mean Daily Fat Intake Based on CDC (1994) Data
}
\[
\begin{gathered}
0.34 \times 2,095 \text { kcal } x X=82 g \text {-fat } \\
\therefore X=0.115 \frac{g-f a t}{\text { kcal }}
\end{gathered}
\]
\(X\) is the conversion factor from kcal/day to \(g\)-fat/day. An example of obtaining the grams of fat from the daily TFEI ( \(1591 \mathrm{kcal} /\) day) for children ages 3-5 and their percent TFEI from total dietary fat (33\%) is as follows:
\[
1,591 \frac{k c a l}{d a y} \times 0.33 \times 0.12 \frac{g-f a t}{k c a l}=63 \frac{g-f a t}{d a y}
\]

Itsekh end Hiwiwon Examiartion Survery－Cendrusd
 nussing liufents end chidien or fos secalts coded ynallatite or lineomplofe．

Of lise 20,277 persons salacted for the survay， 17,487 （ \(86 \%\) ）were Inlervhemed，and 15，630（77\％）midetwan e stendsidlead pliysted exemtnalion．Of Nose exeminad \(14,001(95 \%)\) bad a complale end inlitifo 24 trout ditery iecell， 1 esulting ha an evoratl anslytic response sele of \(73 \%\) ．Dale wate walghtad to account for survay destign sud nontisponse．

A computierbased，antomated dialory inierviow end coding sysienn（5）was usad
 ceding 24 hour（mddright to midndgin）．Proxy respondents teported for lifents end clijdren anad 2 mondis－il yeeis and lop respondents who waie winable to eall iaproit 161.


 delly TFEl ivas ligitier for males ilian for fanneles trable 2，nege 1231．The oves ell inabn percenteges of TFEI daived lions tolel dietary lat and hom seluralad iat did not diller by sox ITable 2，page 123．


（Contirmad en page 123）



\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Ays graup } \\
& \text { Irrit }
\end{aligned}
\]} & \multicolumn{3}{|c|}{\(v^{\text {su }}\)} & \multicolumn{2}{|l|}{\％TFEI from lotsl flingrt} & \multicolumn{2}{|l|}{\％IFElfon namotadia} \\
\hline & ches & N0． & CSE \({ }^{\text {H }}\) & 81 & （19） & 8 & （SE） \\
\hline 2－11 masi & 178 & 118 & ［ 4 \％0．9］ & 31.2 & （10．3） & 15.4 & 180.11 \\
\hline 1－28 & 1.231 & 129 & （ 121.21 & 31.7 & （10．4） & 13.8 & （12．2） \\
\hline －．3－6 & 1，501 & 1681 & （120．5） & 33. & 110．3） & 12.0 & （10． 11 \\
\hline －11 & 1，745 & 1897 & 1125．0才 & 34.0 & （10．4） & 12.8 & （10．8） \\
\hline 12－16 & 111 & 2218 & （1） 4.4 & 33.4 & （180．0） & 12.2 & ［10．2］ \\
\hline 10－19 & 785 & 2833 & （185．2） & 34.6 & （10．4） & 12.4 & （10．2） \\
\hline 20－29 & 1，082 & 2484 & ［144．4］ & 34.0 & （13．4） & 12．E & （10．21 \\
\hline 30－39 & 1.520 & 2312 & （143．4） & 34.4 & ｜10．41 & 11.9 & ［10．1） \\
\hline 40－4） & 1.178 & 2194 & （144．6） & 34.4 & （18．5） & 11.6 & （20．2） \\
\hline 60－69 & 889 & 1981 & （134．7） & 34.7 & （10．4） & 11.8 & ｜10．1） \\
\hline 00－85 & 1，108 & 1122 & （138．） & 31.0 & （40．3） & 11.2 & （10．71 \\
\hline 70－79 & 051 & 1834 & （125．3） & 92.1 & \＄10．8） & 11.2 & （10．3） \\
\hline 200 & 108 & 1484 & ［ 127.41 & 32.0 & （10．3） & 11.0 & ｜10．2｜ \\
\hline Toted & 24，5et & 2085 & 420．et & 38. & 128．3！ & 12．0 & 110.81 \\
\hline 22 & 13，314 & 3193 & （128．4） & 13.8 & 10．23 & 18.9 & 120．11 \\
\hline
\end{tabular}


 bevorcaet，mowien for prins．
Stendend ever．


YoL 4 ／ 1 it． 1
121
Ifeekti and Nutikion Exeminetion Survors－Canernewd



 eduns slso decreased fom PHIANES H 10 NIIARNES ill \(19 \%\) ．
 averege of \(30 \%\) or lass and avasege salumiad fol Intale lo loss than ioy，of cetorles among peisons aged 22 years（basellas： \(36 \%\) of calories fiom fole）fal ond \(13 \%\) from
YABAE 2．Mean daify Iclat food enesgy lintake TTFEH and percentagas of TFEl kem
 and Nuititon Eneminalion Suryay，Miese 1，19ite－91
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { SaxiAge } \\
& \text { proup fris) } \\
& \hline
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Sempla } \\
\text { alse }
\end{gathered}
\]} & \multicolumn{2}{|l|}{Dolly TFEI} & \multicolumn{2}{|l|}{Y．TFEIfiom Iotal diolory fot} & \multicolumn{2}{|l|}{Y．TFEE fisem Baturatsilaf} \\
\hline & & P1o． & ISE \(]^{\prime}\) & \(Y\) & ［SE］ & Y & （SE） \\
\hline \multicolumn{8}{|l|}{Rinles} \\
\hline \(2-11\) mos & 435 & 803 & （1 13．3） & 38.8 & （10．4） & 15.1 & （12．2） \\
\hline 1－11 & 501 & 1339 & ［ 12 20．3） & 33.6 & （10．6） & 13.8 & （18．2） \\
\hline 3－6 & 744 & 1463 & （1） 88.51 & 32.8 & （10．4） & 11.8 & ［10．2］ \\
\hline 6－11 & 858 & 2038 & （ \(\pm\) 48．4） & 31.5 & （10．3） & 12.8 & （10．2） \\
\hline 12－15 & 330 & 2570 & ［1 76.91 & 31.1 & （10．0） & 12.4 & （10．1） \\
\hline 10－19 & 308 & 3097 & ［1119．4］ & －34．6 & ［10．7］ & 12.4 & （12．2） \\
\hline 20－29 & 844 & 3028 & it 61．6） & 34.6 & （ \(\mathbf{2}\) ） 51 & 12.0 & （12．2） \\
\hline 50－19 & 136 & 2172 & It（10．4） & 34.6 & 110．0） & 11.9 & （10．3） \\
\hline 40－49 & 628 & 2645 & （1）84．4） & 33.8 & （12．8） & 18.4 & 12.21 \\
\hline 60－59 & 473 & 2349 & （ \(1 \pm\) E1．5） & 36.3 & （10．8） & 11.8 & 40．2） \\
\hline 60－69 & 416 & 2110 & It 61.71 & 30.3 & （10．6） & 11.3 & （10． 3 \\
\hline 70－79 & 484 & 1897 & \｛ 39.1 \％ & 33.0 & （18．5） & 18．3 & （18．2） \\
\hline 200 & 298 & 1770 & L4 35．71 & 33.7 & （10．81 & 11.4 & 110．21 \\
\hline Tolal & 7322 & 2470 & （1）30．3\％ & 24.1 & （10．1） & 12.1 & （2a）1） \\
\hline 28 & 6594 & 2518 & （1 29．6） & 34.1 & （10．3） & 12.0 & （10．1） \\
\hline \multicolumn{8}{|l|}{Femutos} \\
\hline 2－11mos & 432 & 850 & （ 1 15．ch & 31.8 & 14．0． & 15.1 & ［18．2］ \\
\hline 1－21 & 130 & 1238 & （t 26．5） & 34.0 & （10．5） & 13.5 & （10．2） \\
\hline 3－8 & 803 & 1518 & （2） 23.81 & 33.1 & （12．4） & 12.8 & （10．2］ \\
\hline c－18 & 877 & 1763 & 31 21．03 & 34.2 & 10.54 & 12.7 & ［10．21 \\
\hline 12－15 & 313 & 1831 & （1）42．4） & 33.7 & （10．7） & 12.0 & （10．2） \\
\hline 10－19 & 397 & 1958 & （ 1 70．31 & 34.4 & 18.11 & 12.3 & 110.4 \\
\hline 20－29 & 038 & 1951 & （1 32．3） & 34.0 & （10．4） & 11.5 & （20．2） \\
\hline 30－38 & 791 & 1813 & it 37．0） & 34.2 & （18．4） & 11.8 & （10．2） \\
\hline 40－49 & 602 & 1764 & （ 1 35．1） & 34.8 & ［10．1］ & 11.8 & （10．2） \\
\hline 80．59 & 451 & 1629 & （ \(1 \pm 37.21\) & 33.1 & （10．0） & 114 & （18．2） \\
\hline 60－69 & 568 & 8578 & （t 3031 & 32.8 & （10．8） & 11.0 & 110．31 \\
\hline 70．78 & 407 & 1435 & It 28.68 & 32.3 & 118.11 & 30.6 & （10．4） \\
\hline 200 & 383 & 1329 & It 18.01 & 31.3 & 120．41 & 10.8 & 120.4 \\
\hline Telel & 7418 & 1732 & ［1 14.81 & 33.5 & 40．31 & 11.9 & 48．14 \\
\hline 22 & 0120 & 1751 & （1） 8501 & 13．4 & 110.3 & 188 & （10．11 \\
\hline
\end{tabular}




standerd ener．


Source：CDC， 1994.


\section*{APPENDIX 2C}

\section*{Method of Calculation Used by Javitz, 1980}

\section*{APPENDIX 2C}

\section*{METHOD OF CALCULATION USED BY JAVITZ, 1980: WEIGHTED MEANS AND PERCENTHLES}

The weighted mean of \(\mathbf{N}\) respondents from the survey having weights \(\mathrm{W}_{1}\),
\(W_{2}, \ldots . W_{n}\) and monthly fish consumption \(C_{1}, C_{2}, \ldots, C_{n}\) is computed as follows:
\[
\text { Mean consumption }=\sum_{i=1}^{N} \quad W_{i} \quad C_{i} / \sum_{i=1}^{N} W_{i}
\]

The weight \(W_{i}\) is the number of fish consumers represented by the ith survey respondent. The sum of all the weights represents the average number of U.S. fish consumers during the survey year.

The 95th percentile of fish consumption was also computed on a weighted basis; no assumptions about the data distribution were made. Using the same parameters described above, the intake rates of individuals in a subset can be ordered so that \(\mathrm{C}_{1} \leq \mathrm{C}_{2} \leq \ldots \leq\) \(\mathrm{C}_{\mathrm{n}}\). The 95th percentile of fish consumption for \(\mathbf{N}\) respondents is defined as the consumption of the \(j\) th individual such that:
\[
\sum_{i=1}^{j-1} w_{i}<(0.95) \sum_{i=1}^{N} W_{i}
\]

The sum of the weights of the individuals in the subset with consumption less than the \(j\) th person is less than 95 percent of the total weight of the subset.
\[
\sum_{i=1}^{j} w_{i} \geq(0.95) \sum_{i=1}^{N} w_{i}
\]

\section*{APPENDIX 2D}

\section*{National Marine Fisheries Service Recreational Fishing Data}

\section*{APPENDIX 2D}

\title{
NATIONAL MARINE FISHERIES SERVICE
} RECREATIONAL FISHING DATA

The National Marine Fisheries Service (NMFS) estimated recreational marine catch from intercept surveys of fishermen in the field and an independent telephone survey of households. In 1985, the marine recreational finfish catch in the United States, excluding fish caught in Alaska and Hawaii and Pacific Coast salmon, was an estimated 425 million fish weighing 717.3 million pounds (NMFS 1986a). The estimated number of marine recreational fishermen, which has been relatively stable over the last few years, is 17 million. The size of the population that consumes the national recreational marine catch has not been measured.

Recreational marine fish catch data from the Atlantic and Gulf Coasts for 1985 is presented by species and region in Table 2D-1 (NMFS 1986b). Catch quantities include catch brought ashore in whole form and available for identification during the interview; fish not available for identification and those released alive, discarded dead, filleted, or used for bait are excluded. Weights (including inedible portions) and lengths of the identified fish were measured. Of the approxinnately 114 million kilograms of fish caught on the Atlantic and Gulf Coasts, the smallest portion of the total catch was made in the North Atlantic. Over one half of the recreational marine catch occurred within 3 miles of the shore or in inland waterways. The data in Table 2D-2 demonstrate the effect of season and local climate on the size of recreational catch. Total catch weight for the Atlantic declines significantly from November throughout February, but the Gulf Coast catch rate remains fairly stable throughout the year. Estimated total numbers of sport fishermen by state and subregion are given in Table 2D-3. These totals may include fishermen who participate but take no fish home for consumption.

Similar data for the Pacific Coast are presented in Tables 2D-4 through 2D-6 (NMFS 1986c). Table 2D-4 shows that over 80 percent of the 12.7 million kg total Pacific Coast recreational catch (excluding Hawaii and Alaska) occurs along the California coast. As in he

Atlantic, the majority of the recreational marine catch is taken within 3 miles of the shore or from inland waterways. Table 2D-5 shows seasonal fluctuations in the recreational catch; May through October are the peak recreational fishing months for the Pacific Coast. The estimated total number of participants is given according to regions in Tr-1s 2D-6.

Table 2D-1. Eatimated Weight of Fish Caught (Cutch Type A) by Marine Recreational Fishermen by Spociea Group and Subregion
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Species Group} & North Atlantic ( \(1,000 \mathrm{~kg}\) ) & \begin{tabular}{l}
Mid \\
Atlantic
\[
(1,000 \mathrm{~kg})
\]
\end{tabular} & South Atlantic (1,000 kg) & Gulf
\[
(1,000 \mathrm{~kg})
\] & All Regions (1,000 kg) \\
\hline 01. & Sharks & - & 2,165 & 1,521 & 1,618 & 5,305 \\
\hline 02. & Sharks, Dogfish & -- & 126 & - & * & 148 \\
\hline 03. & Skates/Rays & - & - & - & - & 110 \\
\hline 04. & Ecls & 22 & 73 & * & - & 95 \\
\hline 05. & Herrings & 19 & 31 & - & - & 54 \\
\hline 06. & Freshwater Catiishes & * & 138 & - & - & 412 \\
\hline 07. & Saltwater Catfishes & * & * & 161 & 226 & 387 \\
\hline 08. & Toadfishes & - & 18 & - & - & 20 \\
\hline 09. & Atlentic Cod & 2,128 & 311 & * & * . & 2,439 \\
\hline 10. & Atlantic Tomeod & 22 & - & * & * & 22 \\
\hline 11. & Pollock & 94 & - & * & * & 128 \\
\hline 12. & Silver Hake & - & 21 & * & * & 23 \\
\hline 13. & Searobins & 22 & 70 & * & - & 92 \\
\hline 14. & Sculpins & -. & - & * & * & - \\
\hline 15. & White Perch & - & 82 & 14 & * & 104 \\
\hline 16. & Striped Bass & 169 & 149 & - & - & 332 \\
\hline 17. & Black Sea Bass & 9 & 1,084 & 1,125 & 843 & 3,061 \\
\hline 18. & Groupers & * & * & 947 & 2,881 & 3,827 \\
\hline 19. & Sea Basses & - & - & 29 & 17 & 47 \\
\hline 20. & Bluefish & 9,283 & 10,733 & 7,108 & 213 & 27,337 \\
\hline 21. & Jack Crevalle & * & * & 230 & 247 & 478 \\
\hline 22. & Blue Runner & * & * & 56 & 42 & 98 \\
\hline 23. & Greater Amberjack & * & * & 668 & 925 & 1,593 \\
\hline 24. & Florida Pompano & * & - & 81 & - & 93 \\
\hline 25. & Jacks & * & - & 67 & 257 & 325 \\
\hline 26. & Dolphins & * & - & 1,745 & 262 & 2,040 \\
\hline 27. & Gray Snapper & * & * & 347 & 369 & 716 \\
\hline 28. & Red Snapper & * & * & 803 & 1,865 & 2,667 \\
\hline 29. & Lene Snapper & * & * & 31 & 47 & 78 \\
\hline 30. & Vermilion Snapper & * & * & 138 & 54 & 192 \\
\hline 31. & Yellowtail Snapper & * & * & 36 & 197 & 232 \\
\hline 32. & Snappers & * & * & 74 & 68 & 142 \\
\hline 33. & Pigfish & * & 5 & 100 & 19 & 124 \\
\hline 34. & White Grunt & * & * & 43 & 605 & 648 \\
\hline 35. & Grunts & * & - & 95 & 149 & 245 \\
\hline 36. & Scup & 1,441 & 1,537 & - & * & 2,977 \\
\hline 37. & Pinefish & * & - & 86 & 46 & 132 \\
\hline 38. & Sheepshead & * & * & 413 & 1,088 & 1,501 \\
\hline 39. & Red Porgy & * & * & 107 & 126 & 233 \\
\hline 40. & Porgies & * & - & 89 & 66 & 156 \\
\hline 41. & Spotted Seatrout & * & - & 931 & 3,222 & 4,178 \\
\hline 42. & Weakfish & - : & 1,969 & 157 & * & 2,218 \\
\hline 43. & Sand Seatrout & * & * & * & 1,392 & 1,392 \\
\hline 44. & Silver Peach & * & * & 19 & 20 & 39 \\
\hline 45. & Spot & * & 1,248 & 1,222 & 4 & 2,473 \\
\hline 46. & Kingfishes & * & 17 & 485 & 298 & 800 \\
\hline 47. & Atlantic Croaker & * & 527 & 441 & 821 & 1,788 \\
\hline 48. & Bleck Drum & * & - & 295 & 785 & 1,311 \\
\hline 49. & Red Drum & * & * & 610 & 2,217 & 2,828 \\
\hline
\end{tabular}

Table 2D-1. Estimated Weight of Fish Caught (Catch Type A) by Marine Recreational Fishermen by Speciea Group and Subregion (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Species Group} & North Atlantic ( \(1,000 \mathrm{~kg}\) ) & \begin{tabular}{l}
Mid \\
Atlantic \\
(1,000 \(\mathbf{~ k g}\) )
\end{tabular} & South Atlantic (1,000 kg) & \[
\begin{aligned}
& \text { Gulf } \\
& (1,000 \mathrm{~kg})
\end{aligned}
\] & \[
\begin{aligned}
& \text { All Regions } \\
& (1,000 \mathrm{~kg})
\end{aligned}
\] & NOT QuDTE ( CITE \\
\hline 50. & Drums & * & - & 49 & 196 & 246 & \\
\hline 51. & Mullets & * & 7 & 130 & 196 & 333 & \\
\hline 52. & Barracudas & * & * & 230 & 240 & 470 & \\
\hline 53. & Tautog & 355 & 1,758 & - & * & 2,116 & \\
\hline 54. & Cunner & 11 & - & * & * & 15 & \\
\hline 55. & LitteTunny/ATLBonito & - & 208 & 506 & 321 & 1,062 & \\
\hline 56. & Atlantic Mackerel & 479 & 988 & * & * & 1,467 & \\
\hline 57. & King Mackerel & * & - & 4,571 & 684 & 5,258 & \\
\hline 58. & Spanish Mackerel & * & * & 425 & 528 & 953 & \\
\hline 59. & Tunss/Mackerels & - & 2,328 & 5,401 & 115 & 8,985 & \\
\hline 60. & Summer Flounder & 202 & 3,966 & 597 & * & 4,765 & \\
\hline 61. & Gulf Flounder & * & * & - & 240 & 245 & \\
\hline 62. & Southern Flounder & * & - & 210 & 734 & 948 & \\
\hline 63. & Winter Flounder & 2,380 & 5,837 & * & * & 8,217 & \\
\hline 64. & Flounders & - & 21 & - & 50 & 77 & \\
\hline 65. & Triggerfishes/Pilefishes & * & - & 165 & 203 & 379 & \\
\hline 66. & Puffers & - & 30 & 36 & - & 70 & \\
\hline 67. & Other Fishes & 108 & 282 & 1,180 & 1,130 & 2,701 & \\
\hline & TOTALS & 18,045 & 36,074 & 33,876 & 25,684 & 113,679 & \\
\hline
\end{tabular}
a Catch Type \(A\) is an eatimate of part of the total catch based on fish brought ashore in whole form, available for interviewer identification and conumeration, from which samples of lengthe and weights were obtained.
- As asterisk (*) denotes none reported.
- A dash denotes no information available.

Source: NMPS, 19866

Tablo 2D-2. Extimated Wcight of Fish Ceught (Catch Type A) by Marine Recreational Fishermen by Wave and Subregion January 1985 - December 1985

Dnin?
\begin{tabular}{|c|c|c|}
\hline Wave & Subregion & Weight \\
\hline \multirow[t]{3}{*}{\(\mathrm{Jan} / \mathrm{Feb}\)} & South Atlantic & 2,345 \\
\hline & Gulf & 4,355 \\
\hline & TOTAL & 6,700 \\
\hline \multirow[t]{5}{*}{Mar/Apr} & North Atlantic & 1,348 \\
\hline & Mid Athansic & 8,063 \\
\hline & South Atlantic & 9,884 \\
\hline & Gulf & 2.315 \\
\hline & TOTAL & 21,609 \\
\hline \multirow[t]{5}{*}{May/Jun} & North Atlantic & \\
\hline & Mid Atlantic & \[
9,339
\] \\
\hline & South Atlentic & 6,325 \\
\hline & Gulf & \[
5096
\] \\
\hline & TOTAL & 24,577 \\
\hline \multirow[t]{5}{*}{Jul/Aug} & North Atlantic & 4,928 \\
\hline & Mid Atlantic & 6,221 \\
\hline & South Atlantic & 4,002 \\
\hline & Gulf & \[
5,403
\] \\
\hline & TOTAL & \[
20,554
\] \\
\hline \multirow[t]{5}{*}{Sep/Oct} & North Atlentic & 7,516 \\
\hline & Mid Atlantic & 10,259 \\
\hline & South Atlantic & 8,731 \\
\hline & Gulf & 4,720 \\
\hline & TOTAL & 31,227 \\
\hline \multirow[t]{6}{*}{Nov/Doo} & North Athentic & 436 \\
\hline & Mid Atlentic & 2,193 \\
\hline & South Atlantic & 2,588 \\
\hline & Gulf & 3,795 \\
\hline & TOTAL & 9,012 \\
\hline & GRAND TOTAL & \(\overline{113,679}\) \\
\hline
\end{tabular}
a Catch Type A is an eatimate of part of the total catch based on fiah brought ashore in wholo form, availablo for interviewer identification and enumeration, from which aamples of lengthe and waights were obtained.

Source: NMFS, 1986b

Tabla 2D-3. Extimated Number of Participants in Marine Recreational Fiahing by State and Subregion Junuary 1989 - December 1989

DRAFT
DO NOT GUOTE OR \(\because\) CITE
\begin{tabular}{|c|c|c|c|c|c|}
\hline Subregion & Stato & \begin{tabular}{l}
Constal \\
Participante
\end{tabular} & NonConstal Participanta & Out of State \({ }^{1}\) & \begin{tabular}{l}
Total \\
Participants \({ }^{1}\)
\end{tabular} \\
\hline \multirow[t]{6}{*}{North Allentio} & Connecticut & 265 & * & 46 & 311 \\
\hline & Maine & 99 & 31 & 76 & 206 \\
\hline & Maxsechusetts & 428 & 59 & 147 & 634 \\
\hline & Now Hampahire & 73 & 13 & 86 & 172 \\
\hline & Rhodo Ialand & 93 & * & 105 & 198 \\
\hline & TOTALS & 957 & 104 & & \\
\hline \multirow[t]{6}{*}{Mid-lantic} & Delaware & 126 & * & 144 & 270 \\
\hline & Maryland & 417 & 24 & 261 & 701 \\
\hline & New Jersey & 340 & 12 & 233 & 585 \\
\hline & New York & 525 & 9 & 67 & 602 \\
\hline & Virginia & 407 & 65 & 151 & 623 \\
\hline & TOTALS & 1,815 & 110 & & \\
\hline \multirow[t]{5}{*}{South Atlantic} & Florida & 952 & 8 & 748 & 1,708 \\
\hline & Goorgia & 46 & 16 & 16 & 78 \\
\hline & N. Carolina & \[
254
\] & \[
269
\] & \[
458
\] & 980 \\
\hline & S. Carolina & 72 & 47 & 150 & 269 \\
\hline & TOTALS & 1,324 & 340 & & \\
\hline \multirow[t]{6}{*}{Gulf of Mexico} & Alabame & 64 & 54 & 74 & 192 \\
\hline & Florida & 923 & + & 1,321 & 2,244 \\
\hline & Louisiana & 309 & 46 & 46 & 400 \\
\hline & Misaisaippi & 61 & 21 & 56 & 138 \\
\hline & TOTALS & 1,357 & 120 & & \\
\hline & GRAND TOTALS & 5,453 & 675 & & \\
\hline
\end{tabular}

NOTE: An asterik (*) denotes no participation from this area.
1. Not additive across states. One person can be counted as "OUT OF STATE" for more than one state.

Source: NMFS, 1986b. "Marine Recreational Fishery Statistics Survey, Atlantic and Gulf Coasts, 1987-1989," National Marine Fisheries Service
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Species Group & \[
\begin{aligned}
& \text { Southern } \\
& \text { Califomia } \\
& (1,000 \mathrm{ky})
\end{aligned}
\] & Northers Califomain (1,000 kos) & \[
\begin{gathered}
\text { Oregoa } \\
(1,000 \mathrm{ka})
\end{gathered}
\] & \[
\begin{aligned}
& \text { Weschingion } \\
& (1,000 \mathrm{ky})
\end{aligned}
\] &  \\
\hline 01. & Spiny Dogfich & -b & - & \(\cdots\) & 7 & 57 \\
\hline 02. & Sharks, Other & 253 & - & - & * & 401 \\
\hline 03. & Sturgecas & - & \(\cdots\) & - & - & - \\
\hline 04. & Pacific Herring & * & 7 & - & 0 & 7 \\
\hline ©5. & Narthern Anchovy & - & - & - & * & -- \\
\hline \(\infty\). & Surf Smelt & - & 46 & 2 & 1 & 43 \\
\hline \(0 \%\). & Smelle, Other & - & - & - & - & - \\
\hline 08. & Preific Cod & * & - & - & 78 & 78 \\
\hline 09. & Pacific Tomeod & * & - & - & - & -- \\
\hline 10. & Walleye Pollock & * & * & * & 158 & 158 \\
\hline 11. & Precific Hake & - & 49 & - & - & 58 \\
\hline 12. & Silversides & * & - & - & * & 0 \\
\hline 13. & Jeckemelt & 40 & 7 & - & - & 47 \\
\hline 14. & Striped Bass & - & 58 & - & - & 62 \\
\hline 15. & Kelp Bans & 354 & * & * & * & 354 \\
\hline 16. & Spotted Send Base & 29 & * & - & * & 29 \\
\hline 17. & Barred Send Bass & 431 & * & * & - & 431 \\
\hline 18. & Sea Rascea, Other & - & - & - & & - \\
\hline 19. & Yellowtil & 179 & - & * & -* & 179 \\
\hline 20. & White Crocker & 78 & 142 & - & * & -- \\
\hline 21. & Califomin Corbina & - & - & * & - & - \\
\hline 22. & Quecafich & 14 & - & * & - & 14 \\
\hline 23. & Crockers, Other & 57 & - & - & * & 50 \\
\hline 24. & Opalcye & 21 & * & * & * & 21 \\
\hline 25. & Halfmoon & 10 & * & - & - & 10 \\
\hline 26. & Shiner Perch & - & 1 & - & - & 1 \\
\hline 27. & Striped Seaperch & - & 20 & 27 & - & 55 \\
\hline 28. & Bleck Perch & 12 & - & - & * & 15 \\
\hline 29. & Walleye Surfperch & 9 & 6 & - & - & 20 \\
\hline 30. & Silver Surferch & 10 & 9 & - & - & 20 \\
\hline 31. & White Seaperch & - & - & - & * & 10 \\
\hline 32. & Pile Perch & - & \(\overline{-}\) & 21 & 15 & 60 \\
\hline 33. & Roderil Surfperch & * & 29 & 34 & 53 & 116 \\
\hline 34. & Barred Surfperch & 75 & 24 & * & * & 99 \\
\hline 35. & Surfeercben, Other & 15 & 7 & - & - & 22 \\
\hline 36. & Pacific Barracude & 132 & - & * & * & 132 \\
\hline 37. & California Sheephend & 132 & - & * & \(\bullet\) & 132 \\
\hline 38. & Precific Bonito & 267 & - & * & - & 268 \\
\hline 39. & Cluwb Meckerel & 684 & 37 & - & * & 721 \\
\hline 40. & Tunas & 612 & 333 & - & * & 945 \\
\hline 41. & Brown Rockfinh & 89 & 121 & - & 21 & 231 \\
\hline 42. & Copper Rockfish & 140 & 134 & - & 78 & 355 \\
\hline 43. & Widow Rockfinh & 34 & 18 & \(\square\) & - & 54 \\
\hline 44. & Yellowtail Rockfich & 151 & 238 & 45 & - & 441 \\
\hline 45. & Chilipepper Rockfich & 203 & 159 & - & - & 362 \\
\hline 46. & Quillbeck Rockfinh & - & \% & - & 61 & 78 \\
\hline 47. & Black Rockfish & 34 & 430. & 354 & 219 & 1,037 \\
\hline 48. & Bure Rockfish & 138 & 258 & 43 & - & 451 \\
\hline 49. & Bocaccio & 298 & 64 & - & - & 360 \\
\hline 50. & Canary Rockfich & 33 & 129 & \(\stackrel{*}{*}\) & \(\bar{\square}\) & 229 \\
\hline
\end{tabular}

Tablo 2A-4. Entimwod Woight of Fich Cangbe (Cutch Type A) by Morim Rocromional Fishermea by Apeciou Group and Subregion Jmoury 1985 to December 1985 (Costinucd)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Spocies Croup & Southem California (1,000 kg) & Northern California (1,000 kg) & \[
\begin{gathered}
\text { Orogan } \\
(1,000 \mathrm{~kg})
\end{gathered}
\] & Walhingtoo
\[
(1,000 \mathrm{~kg})
\] & \[
\begin{array}{r}
\text { All } \\
\begin{array}{r}
\text { Regions } \\
(1,000 \mathrm{ka})
\end{array}
\end{array}
\] \\
\hline 51. & Groceposed Moctivim & 159 & 75 & * & * & 235 \\
\hline 52. & Oive Rocifich & 108 & 28 & * & * & 136 \\
\hline 53. & Oaphor Rockefich & 10 & 30 & * & - & 134 \\
\hline 54. & Califorin Scorpionfon & 63 & * & * & * & 63 \\
\hline 55. & Roctificen, Oftar & 601 & 280 & 47 & - & 952 \\
\hline 56. & Seblorinh & - & - & - & - & 34 \\
\hline 57. & Kolp Grocatiog & - & 28 & 18 & - & 64 \\
\hline 58. & Ibaycod & 128 & 760 & 175 & 162 & 1,225 \\
\hline 59. & Grocalings, Other & * & - & - & - & 10 \\
\hline 60. & Cuberoa & 29 & 39 & - & - & 106 \\
\hline 61. & sculpin, Other & - & - & - & - & 6 \\
\hline 62. & Smadebie & 11 & 39 & - & 16 & 65 \\
\hline 63. & Culiformin Hefitox & 227 & - & - & - & 252 \\
\hline 64. & rock Solo & - & - & - & 16 & 24 \\
\hline 65. & Surry Flounder & - & - & - & - & - \\
\hline 65. & Finefinboc, Othar & - & - & - & 87 & 106 \\
\hline 67. & Other Finh & 184 & 107 & 179 & = & 479 \\
\hline & totals & 6,248 & 4,064 & 1,069 & 1,364 & 12,745 \\
\hline
\end{tabular}
a Caich Typo A is a entimate of part of the total catch besed on fith brought athore in whole form,
 were obtrined.
b A dash deacter po informetion availeble.
c An matcrint (") denotel nooc reported.
d A yero (O) indicates leae then ose bousand.
- Thle apocion was sock arvoyed during this time period.

Sourco: NMPS, 1986c


2 Catch Type A is an estimate of part of the total catch based on fish brought ashore in whole form, available for interviewer identification and enumeration, from which samples of lengths and weights were obtained.

Source: NMFS, 1986c.

\section*{Table 2D-6. Estimated Number of Participants in Marine Recreational Fishing} by Subregion for the Pacific Coast January 1985 to December 1985
\begin{tabular}{|c|c|c|c|c|}
\hline Subregion & Constal participente (thousands) & Non-coumal participents (thoureanda) & \begin{tabular}{l}
Out of State \\
(c) \\
(thouennds)
\end{tabular} & \begin{tabular}{l}
Total \\
participenta \\
in trate (a) \\
(thousande)
\end{tabular} \\
\hline Southerm Californin & 994 & 50 & 344 & 1,389 \\
\hline Standard Error & 1,427 & 44 & 193 & 1,441 \\
\hline Northern Califomis & 624 & 101 & 62 & 787 \\
\hline Standard Error & 783 & 92 & 52 & 790 \\
\hline Oragon & 188 & 22 & 35 & 245 \\
\hline Standard Error & 234 & 18 & 35 & 237 \\
\hline Wakhington & 252 & 34 & 46 & 333 \\
\hline Standerd Error & 352 & 32 & 43 & 356 \\
\hline GRAND TOTALS. & 2,058 & 208 & & \\
\hline Standard Errors & 1,682 & 108 & & \\
\hline
\end{tabular}
(a) = Not additive across states. One person can be counted as "out of state" for more than one state.

Source: NMFS, 1986c.

\section*{3. INHALATION ROUTE}

Humans may be exposed to toxic chemicals by the inhalation route from various sources. Airborne chemicals may be inhaled in gaseous form as vapors, or as particulates. This chapter discusses factors associated with exposure via inhalation.

\subsection*{3.1. EXPOSURE EQUATION FOR INHALATION}

The general equation for calculating average daily dose (ADD) for inhalation exposure is:
\[
\begin{equation*}
\mathrm{ADD}=[[\mathrm{C} \times \mathbb{I} \times \mathrm{ED}] /[\mathrm{BW} \times \mathrm{AT}]] \tag{Eqn.3-1}
\end{equation*}
\]
where:
\begin{tabular}{|c|c|c|}
\hline ADD & = & average daily dose (mg/kg-day); \\
\hline C & = & contaminant concentration in air ( \(\mu \mathrm{g} / \mathrm{m}^{3}\) ); \\
\hline IR & = & inhalation rate ( \(\mathrm{m}^{3} / \mathrm{day}\) ); \\
\hline ED & = & exposure duration (days); \\
\hline BW & = & body weight (kg); and \\
\hline AT & = & averaging time (days), for non-carcinogenic effects AT = ED, for carcinogenic effects AT \(=70\) years or 25,550 days. \\
\hline
\end{tabular}

The average daily dose is the dose rate averaged over a pathway-specific period of exposure expressed as a daily dose on a per-unit-body-weight basis. The ADD is used for exposure to chemicals with non-carcinogenic non-chronic effects. For compounds with carcinogenic or chronic effects, the lifetime average daily dose (LADD) is used. The LADD is the dose rate averaged over a lifetime. The contaminant concentration refers to the concentration of the contaminant in inhaled air. Exposure duration refers to the time an individual is exposed at a particular location. The inhalation rate (expressed as cubic meters per hour) varies according to the exertion level and other factors.

\subsection*{3.2. INHALATION RATE}

\subsection*{3.2.1. Background}

The health risk associated with human exposure to airborne toxics is a function of concentration of air pollutants, duration of exposure, and inhalation rate ( \(\mathrm{m}^{3} / \mathrm{hr}\) ). Because the estimation for exposure or inhaled dose for a given air pollutant is dependent on
inhalation rates, several published studies that provide information on inhalation rates are presented in this section. An extensive review of literature indicates that inhalation rate commonly termed as ventilation rate (VR) or breathing rate is usually measured as minute volume, i.e. volume (liters) of air exhaled per minute \(\left(\mathrm{V}_{\mathrm{E}}\right)\). The volume of air exhaled \(\left(\mathrm{V}_{\mathrm{E}}\right)\) is the product of the number of respiratory cycles in a minute and the volume of air respired during each respiratory cycle (tidal volume, \(\mathbf{V}_{\mathbf{T}}\) ). Oxygen consumption, hence breathing rates are affected by numerous individual characteristics which include: age, gender, weight, health status, and levels of various activity patterns (running, walking, jogging etc.) (Layton, 1993). Ventilation rates (VR) are either measured directly using a spirometer and a collection system or indirectly from heart rate (HR) measurements. HR measurements obtained from Heart watches are usually correlated with VR in simple and multiple regression analysis.

In the Ozone Criteria Document prepared by the U.S. EPA's Environmental Criteria and Assessment Office, the EPA identified the collapsed range of activities and its corresponding VR as follows: light exercise ( \(\mathrm{V}_{\mathrm{E}}<23 \mathrm{~L} / \mathrm{min}\) or \(1.4 \mathrm{~m}^{3} / \mathrm{hr}\) ); moderate/medium exercise ( \(\mathrm{V}_{\mathrm{E}}=24-43 \mathrm{~L} / \mathrm{min}\) or \(1.4-2.6 \mathrm{~m}^{3} / \mathrm{hr}\) ); heavy exercise \(\left(\mathrm{V}_{\mathrm{E}}=2.6\right.\) \(3.8 \mathrm{~m}^{3} / \mathrm{hr}\) ); and very heavy exercise ( \(\mathrm{V}_{\mathrm{E}}>64 \mathrm{~L} / \mathrm{min}\) or \(3.8 \mathrm{~m}^{3} / \mathrm{hr}\) ), (CARB, 1993). Also, in the Ambient Water Quality Criteria documents (U.S. EPA, 1980) an average daily inhalation rate for a reference man was reported to be \(20 \mathrm{~m}^{3} / \mathrm{day}\). This value is widely used for exposure assessment studies.

The available studies on inhalation rates are summarized in the following sections. Inhalation rates are reported for outdoor workers/athletes, adults and children including infants performing various activities. The activity levels are categorized as resting, sedentary, light, moderate, and heavy. In most studies, the sample population kept diaries to record their physical activities, locations, and breathing rates. Ventilation rates were either measured, self-estimated or predicted from equations derived using VR-HR calibration relationships. These studies have been classified as key studies or other relevant studies based on the applicability of the data to exposure assessments. The recommended inhalation rate values are based on the results from key studies. Section 3.2.4 presents inhalation rate values recommended for use in exposure assessments for adults, children, and outdoor
workers/athletes. For each study, inhalation rates that were reported as minute volume in liters per minute have been converted to \(\mathrm{m}^{3} / \mathrm{hr}\).

\subsection*{3.2.2. Key Inhalation Rate Studies}

Layton - Metabolically Consistent Breathing Rates for use in Dose Assessments -
Layton (1993), presented a new method for estimating metabolically consistent inhalation rates for use in quantitative dose assessments of airborne radionuclides. Historically, the approach for estimating breathing rate of a specified time frame was to calculate a time-weighted-average of ventilation rates associated with physical activities of varying durations (Layton, 1993). However, in this study, breathing rates were calculated based on oxygen consumption associated with energy expenditures for short (hours) and long (weeks and months) periods of time. Layton (1993) used the following general equation in calculating energy-dependent inhalation rates:
\[
\begin{equation*}
V_{E}=E \times H \times V Q \tag{Eqn.3-2}
\end{equation*}
\]
where:
\begin{tabular}{|c|c|c|}
\hline \(V_{E}\) & & ventilation rate ( \(\mathrm{L} / \mathrm{min}\) or \(\mathrm{m}^{3} / \mathrm{hr}\) ); \\
\hline E & = & energy expenditure rate ( \(\mathrm{KJ} / \mathrm{min}\) or \(\mathrm{MJ} / \mathrm{hr}\) ); \\
\hline H & & volume of oxygen (at standard temperature and pressure, dry air) \\
\hline & & (STPD) consumed in the production of 1 KJ of energy expended (L/KJ or \(\mathrm{m}^{3} / \mathrm{MJ}\) ); and \\
\hline VQ & \(=\) & ventilatory equivalent (ratio of minute volume ( \(L / \mathrm{min}\) ) to oxygen uptake ( \(\mathrm{L} / \mathrm{min}\) ) ) unitless. \\
\hline
\end{tabular}

Three alternative approaches were used in estimating daily chronic (long term) inhalation rates for different age/gender cohorts of the U.S. population. In the first approach, inhalation rates were estimated by multiplying average daily food energy intakes for different age/gender cohorts, volume of oxygen ( H ), and ventilatory equivalent (VQ) as shown in the equation above. The average food energy intake data (Table 3-1) were obtained from the USDA 1977-78 Nationwide Food Consumption Survey (USDA-NFCS). In the USDA survey 14,035 households were randomly selected and food intake data were obtained from 30,770 individuals. The food energy intakes were adjusted upwards by a constant factor of 1.2 for all individuals 9 years and older (Layton, 1993). This factor compensated

Table 3-1. Comparimons of Estimated Baral Metabolic Rates (BMR) with Average Food-energy Intakes for Individuals Sampled in the 1977-78 NFCS (USDA 1984)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Cohort/Age \\
(y)
\end{tabular}} & \multirow[t]{2}{*}{Body Weight kg} & \multicolumn{2}{|c|}{BMR \({ }^{\text {a }}\)} & \multicolumn{2}{|l|}{Energy Intake (EFD)} & \multirow[t]{2}{*}{Ratio EFD/BMR} \\
\hline & & MJ d \({ }^{-16}\) & keal d \({ }^{\text {lo- }}\) & MJ d \({ }^{-1}\) & keal dor & \\
\hline \multicolumn{7}{|l|}{Crilldrex} \\
\hline Under 1 & 7.6 & 1.74 & 416 & 3.32 & 793 & 1.90 \\
\hline 1 to 2 & 13 & 3.08 & 734 & 5.07 & 1209 & 1.65 \\
\hline 3 to 5 & 18 & 3.69 & 881 & 6.14 & 1466 & 1.66 \\
\hline 6 to 8 & 26 & 4.41 & 1053 & 7.43 & 1774 & 1.68 \\
\hline \multicolumn{7}{|l|}{Males} \\
\hline 9 to 11 & 36 & 5.42 & 1293 & 8.55 & 2040 & 1.58 \\
\hline 12 to 14 & 50 & 6.45 & 1540 & 9.54 & 2276 & 1.48 \\
\hline 15 to 18 & 66 & 7.64 & 1823 & 10.8 & 2568 & 1.41 \\
\hline 19 to 22 & 74 & 7.56 & 1804 & 10.0 & 2395 & 1.33 \\
\hline 23 to 34 & 79 & 7.87 & 1879 & 10.1 & 2418 & 1.29 \\
\hline 35 to 50 & 82 & 7.59 & 1811 & 9.51 & 2270 & 1.25 \\
\hline 51 to 64 & 80 & 7.49 & 1788 & 9.04 & 2158 & 1.21 \\
\hline 65 to 74 & 76 & 6.18 & 1476 & 8.02 & 1913 & 1.30 \\
\hline \(75+\) & 71 & 5.94 & 1417 & 7.82 & 1866 & 1.32 \\
\hline \multicolumn{7}{|l|}{Females} \\
\hline 9 to 11 & 36 & 4.91 & 1173 & 7.75 & 1849 & 1.58 \\
\hline 12 to 14 & 49 & 5.64 & 1347 & 7.72 & 1842 & 1.37 \\
\hline 15 to 18 & 56 & 6.03 & 1440 & 7.32 & 1748 & 1.21 \\
\hline 19 to 22 & 59 & 5.69 & 1359 & 6.71 & 1601 & 1.18 \\
\hline 23 to 34 & 62 & 5.88 & 1403 & 6.72 & 1603 & 1.14 \\
\hline 35 to 50 & 66 & 5.78 & 1380 & 6.34 & 1514 & 1.10 \\
\hline 51 to 64 & 67 & 5.82 & 1388 & 6.40 & 1528 & 1.10 \\
\hline 65 to 74 & 66 & 5.26 & 1256 & 5.99 & 1430 & 1.14 \\
\hline \(75+\) & 62 & 5.11 & 1220 & 5.94 & 1417 & 1.16 \\
\hline
\end{tabular}

\footnotetext{
- Calculated from the appropriate age asd gender-based BMR equations given in Appendix Table 3A-1.
b MJ d \({ }^{-1}\) - mega joulea/day
- kcal d \(d^{-1}\) - kilo caloriea/day

Source: Layton, 1993.
}
for reported food bias in USDA-NFCS (Layton, 1993). The weighted average oxygen uptake of \(0.05 \mathrm{~L} \mathrm{O}_{2} / \mathrm{KJ}\) used in this study was calculated from data reported in the 1977-78 USDA-NFCS and the second National Health and Nutrition Examination Survey (NHANES II). The ventilatory equivalent (VQ) of 27 used was calculated as the geometric mean of VQ data that were obtained from several studies (Layton, 1993).

Table 3-2 presents the daily inhalation rate for each age/gender cohorts. The highest daily inhalation rates ( \(10 \mathrm{~m}^{3} /\) day ) were reported for children between the ages of \(6-8\) years, for males between \(15-18\) years ( \(17 \mathrm{~m}^{3} /\) day), and females between \(9-11\) years ( \(13 \mathrm{~m}^{3} / \mathrm{day}\) ). Estimated average lifetime inhalation rates for males and females \(14 \mathrm{~m}^{3} /\) day and \(10 \mathrm{~m}^{3} /\) day, respectively (Table 3-2). Inhalation rates were also calculated for active and inactive periods for the various age/gender cohorts.

The inhalation rate for inactive periods was estimated by multiplying the basal metabolic rate (BMR) times the oxygen uptake times the ventilatory equivalent (H) (VQ). BMR was defined as "the minimum amount of energy required to support basic cellular respiration while at rest and not actively digesting food" (Layton, 1993). The inhalation rate for active periods was calculated by multiplying the inactive inhalation rate by the ratio of the rate of energy expenditure during active hours to the estimated BMR. This ratio is presented as F in Table 3-2 (Layton, 1993). These data for active and inactive inhalation rates are also presented in Table 3-2. For children, inactive and active inhalation rates ranged between 2-6 and 6-13 \(\mathrm{m}^{3} /\) day, respectively. For adult males (19-64 years old), the average inactive and active inhalation rates were 10 and \(19 \mathrm{~m}^{3} /\) day, respectively. Also, the average inactive and active inhalation rates for adult females (19-64 years old) were 8 and 12 \(\mathrm{m}^{3} /\) day, respectively.

In the second approach, inhalation rates were calculated by multiplying the BMR of the population cohorts, A, which is the ratio of total daily energy expenditure to daily BMR, H, and VQ. The BMR data obtained from literature had been statistically analyzed and regression equations were developed to predict BMR from body weights of various age/gender cohorts (Layton, 1993). The statistical data used to develop the regression equations are presented in Appendix Table 3A-1. The data obtained from the second approach are presented in Table 3-3. Inhalation rates for children (6 months - 10 years)

Table 3-2. Daily Inhalation Rates Calculated from Food-Energy Intakes
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Cohort/Age} & \multirow[b]{2}{*}{\(L^{\text {d }}\)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Daily } \\
\text { Inhalation } \\
\text { Rate } \\
\left(\mathrm{m}^{3} / \text { day }\right) \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Sleep \\
(h)
\end{tabular}} & \multicolumn{2}{|l|}{MET \({ }^{\text {b }}\). Value} & Inhalatio \({ }_{\text {Inactive }}{ }^{\text {c }}\) & Rates Active \({ }^{\text {c }}\) \\
\hline & & & & \(A^{\text {e }}\) & F & ( \(\mathrm{m}^{3} / \mathrm{day}\) ) & ( \(\mathrm{m}^{3} / \mathrm{day}\) ) \\
\hline \multicolumn{8}{|l|}{Childrea} \\
\hline \(<1\) & 1 & 4.5 & 11 & 1.9 & 2.7 & 2.35 & 6.35 \\
\hline 1-2 & 2 & 6.8 & 11 & 1.6 & 2.2 & 4.16 & 9.15 \\
\hline 3-5 & 3 & 8.3 & 10 & 1.7 & 2.2 & 4.98 & 10.96 \\
\hline 6-8 & 3 & 10 & 10 & 1.7 & 2.2 & 5.95 & 13.09 \\
\hline \multicolumn{8}{|l|}{Males} \\
\hline 9-11 & 3 & 14 & 9 & 1.9 & 2.5 & 7.32 & 18.3 \\
\hline 12-14 & 3 & 15 & 9 & 1.8 & 2.2 & 8.71 & 19.16 \\
\hline 15-18 & 4 & 17 & 8 & 1.7 & 2.1 & 10.31 & 21.65 \\
\hline 19-22 & 4 & 16 & 8 & 1.6 & 1.9 & 10.21 & 19.4 \\
\hline 23-34 & 11 & 16 & 8 & 1.5 & 1.8 & 10.62 & 19.12 \\
\hline 35-50 & 16 & 15 & 8 & 1.5 & 1.8 & 10.25 & 18.45 \\
\hline 51-64 & 14 & 15 & 8 & 1.4 & 1.7 & 10.11 & 17.19 \\
\hline 65-74 & 10 & 13 & 8 & 1.6 & 1.8 & 8.34 & 15.01 \\
\hline 75+ & 1 & 13 & 8 & 1.6 & 1.9 & 8.02 & 15.24 \\
\hline Lifetime \({ }^{f}\) average & & 14 & & & & & \\
\hline \multicolumn{8}{|l|}{Females} \\
\hline 9-11 & 3 & 13 & 9 & 1.9 & 2.5 & 6.63 & 16.58 \\
\hline 12-14 & 3 & 12 & 9 & 1.6 & 2.0 & 7.61 & 15.20 \\
\hline 15-18 & 4 & 12 & 8 & 1.5 & 1.7 & 8.14 & 13.84 \\
\hline 19-22 & 4 & 11 & 8 & 1.4 & 1.6 & 7.68 & 12.29 \\
\hline 23-34 & 11 & 11 & 8 & 1.4 & 1.6 & 7.94 & 12.7 \\
\hline 35-50 & 16 & 10 & 8 & 1.3 & 1.5 & 7.80 & 11.7 \\
\hline 51-64 & 14 & 10 & 8 & 1.3 & 1.5 & 7.86 & 11.8 \\
\hline 65-74 & 10 & 9.7 & 8 & 1.4 & 1.5 & 7.10 & 10.65 \\
\hline 75+ & 1 & 2.6 & 8 & 1.4 & 1.6 & 6.90 & 11.04 \\
\hline Lifetime average & & 10 & & & & & \\
\hline
\end{tabular}

Table 3-2. (Continued)
a Daily inhalation rate was calculated by multiplying the EFD values (see Table 3-1) by \(\mathrm{H} \times \mathrm{VQ}\) for subjects under 9 years of age and by \(1.2 \times \mathrm{H} \times\) VQ for subjects 9 years of age and older (See text for explanation).
b MET \(=\) Metabolic equivalent
c Inhalation rate for inactive periods was calculated as \(B M R \times H \times V Q\) and for active periods by multiplying inactive inhalation rate by F (Table 3-2); BMR values are from Table 3-1.
d \(L\) is the number of years for each cohort.
c For individuals 9 years of age and older, A was calculated by multiplying the ratio for EFD/BMR (Table 3-1) by the factor 1.2 (see text for explanation).
f Lifetime average was calculated by multiplying individual inhalation rate by corresponding \(L\) values summing the products across cohorts and dividing the result by 75 , the total of the cohort age spans.

NOTE: \(\quad B M R=B a s a l\) metabolic rate (MJ/day) or (kg/hr)
\(\mathrm{EFD}=\) Food energy intake (MJ/day) or ( \(\mathrm{KCal} / \mathrm{sec}\) )
\(\mathrm{A}=\mathrm{EFD} / \mathrm{BMR}\) (unitless)
S \(\quad=\quad\) Number of hours spent sleeping each day (hrs)
F \(\quad=\quad(24 \mathrm{~A}-\mathrm{S}) /(24-\mathrm{S})\), ratio of the rate of energy expenditure during active hours to the estimated BMR (unitless)
\(\mathrm{H} \quad=\quad\) Oxygen uptake \(=0.05 \mathrm{LO}_{2} / \mathrm{KJ}\) or \(\mathrm{M}^{3} \mathrm{O}_{2} / \mathrm{MJ}\), calculate as the weighted average oxygen uptake factor from the 1977-78 NFCS and the second National Health and Nutrition Examination Survey (NHANESII)
VQ \(=\) Ventilation equivalent \(=27=\) geometric mean of VQs obtained from several studies (unitless)

Source: Adapted from Layton, 1993.

Table 3-3. Daily Inhalation Rates Obtained from the Ratios of Total Energy Expenditure to Basal Metabolic Rate (BMR)
\begin{tabular}{lcccccc}
\hline \begin{tabular}{c} 
Gender/Age \\
(yrs)
\end{tabular} & \begin{tabular}{c} 
Body \\
Weighta \\
\((\mathrm{kg})\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{BMR}^{\mathrm{b}}\) \\
\((\mathrm{MJ} /\) day \()\)
\end{tabular} & VQ & \(\mathrm{A}^{\mathrm{c}}\) & & \begin{tabular}{c}
\(\mathbf{H}\) \\
\(\left(\mathrm{m}^{3} \mathrm{O}_{2} / \mathrm{MJ}\right)\)
\end{tabular} \\
\hline Male & & & & & \begin{tabular}{c} 
Inhalation \\
Rate, \(\mathbf{V}_{\mathrm{G}}\) \\
\(\left(\mathrm{m}^{3} / \mathrm{day}\right)\)
\end{tabular} \\
\(0.5-<3\) & 14 & 3.4 & 27 & 1.6 & 0.05 & 7.3 \\
\(3-<10\) & 23 & 4.3 & 27 & 1.6 & 0.05 & 9.3 \\
\(10-<18\) & 53 & 6.7 & 27 & 1.7 & 0.05 & 15 \\
\(18-<30\) & 76 & 7.7 & 27 & 1.59 & 0.05 & 17 \\
\(30-<60\) & 80 & 7.5 & 27 & 1.59 & 0.05 & 16 \\
\(60+\) & 75 & 6.1 & 27 & 1.59 & 0.05 & 13 \\
Female & & & & & & \\
\(0.5-<3\) & 11 & 2.6 & 27 & 1.6 & 0.05 & 5.6 \\
\(3-<10\) & 23 & 4.0 & 27 & 1.6 & 0.05 & 8.6 \\
\(10-<18\) & 50 & 5.7 & 27 & 1.5 & 0.05 & 12 \\
\(18-<30\) & 62 & 5.9 & 27 & 1.38 & 0.05 & 11 \\
\(30-<60\) & 68 & 5.8 & 27 & 1.38 & 0.05 & 11 \\
\(60+\) & 67 & 5.3 & 27 & 1.38 & 0.05 & 9.9 \\
\hline
\end{tabular}
* Body weight was based on the average weights for age/gender cohorts in the U.S. population obtained from Najjar and Rowland (1987).
b The BMRs (basal metabolic rate) are calculated using the respective body weights and BMR equations (see Appendix Table 3A-1).
c The values of the BMR multiplier (EFD/BMR) for those 18 years and older were derived from the Basiotis et al. (1989) study: Male \(=1.59\), Female \(=1.38\). For males and females under 10 years old, the mean BMR multiplier used was 1.6. For males and females aged 10 to \(<18\) years, the mean values for A given in Table 3-2 for 12-14 years and 15-18 years, age brackets for males and females were used: male \(=1.7\) and female \(=1.5\).
d Inhalation rate \(=B M R \times A \times H \times V Q ; V Q=\) ventilation equivalent and \(H=\) oxygen uptake.
Source: Layton, 1993.
ranged from 7.3-9.3 \(\mathrm{m}^{3} /\) day and ages \(10-18\) was \(15 \mathrm{~m}^{3} /\) day, while adult femates \((18\) years and older) ranged from 9.9-11 \(\mathrm{m}^{3} /\) day and adult males ( 18 years and older) ranged from \(13-17 \mathrm{~m}^{3} /\) day. These rates are similar to the daily inhalation rates obtained using the first approach. Also, the inactive inhalation rates obtained from the first approach are lower than the inhalation rates obtained using the second approach. This may be attributed to the BMR multiplier employed in the second approach equation to calculate inhalation rates.

In the third approach, inhalation rates were calculated by multiplying estimated energy expenditures associated with different levels of physical activity engaged in over the course of an average day by VQ and H for each age/gender cohort. The energy expenditure associated with each level of activity was estimated by multiplying BMRs of each activity level by the metabolic equivalent (MET) and by the time spent per day performing each activity for each age/gender population. The data used in this approach were obtained from a time-activity survey. The survey sampled 2126 individuals ( 1,120 women and 1,006 men) ages 20-74 that were selected randomly from California communities. Table 3-4 presents the inhalation rates \(\left(V_{E}\right)\) in \(\mathrm{m}^{3} /\) day and \(\mathrm{m}^{3} / \mathrm{hr}\) obtained for adult males and females aged 20-74 years at five physical activity levels. The total daily inhalation rates ranged from 13-17 \(\mathrm{m}^{3} /\) day for adult males and \(11-15 \mathrm{~m}^{3} /\) day for adult females. The rates for adult females were higher when compared with the other two approaches. In all three approaches, the range of inhalation rates for adults were \(9.6-17 \mathrm{~m}^{3} /\) day, \(9.9-17 \mathrm{~m}^{3} /\) day, and \(13-17 \mathrm{~m}^{3} /\) day, respectively. Inhalation rates were also calculated for short-term exposures for various age/gender cohorts and five energy-expenditure categories (rest, sedentary, light, moderate, and heavy). BMRs were multiplied by the product of MET, H, and VQ. The data obtained for short term exposures are presented in Table 3-5.

A limitation of the third approach employed is that the survey provided information on physical activities which were based on recall. Another limitation in utilizing dietary surveys to estimate inhalation rates is that the diet of the population surveyed is only reflected for a particular period of time (1977-78). An advantage of this study is that the survey sample size was large and represents the general U.S. population. Another advantage of this study is that inhalation rates for different age cohorts were also presented. Also, the methodology used in estimating inhalation rates characterized the dependent relationship

Table 3-4. Daily Inhalation Rales Based on Time-Activity Survey


Activity Type
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{\[
\begin{aligned}
& \text { Gender/Age } \\
& \text { (yrs) }
\end{aligned}
\]} & \multirow[b]{4}{*}{Weight ( \(\mathrm{kg}^{\mathrm{g}}\) )} & \multirow[b]{4}{*}{\[
\begin{aligned}
& \mathrm{BMR}^{\mathrm{a}} \\
& (\mathrm{~kJ} / \mathrm{day})
\end{aligned}
\]} & \multicolumn{5}{|c|}{Activity Type} \\
\hline & & & Rest & Sedentary & Light & Moderate & Heavy \\
\hline & & & \multicolumn{5}{|c|}{MET (BMR Multiplier)} \\
\hline & & & 1 & 1.2 & \(2^{\text {b }}\) & \(4^{\text {c }}\) & \(10^{\text {d }}\) \\
\hline & & & \multicolumn{5}{|c|}{Inhalation Rate ( \(\left.\mathrm{m}^{3} / \mathrm{hr}\right)^{\mathbf{f}, \mathrm{g}}\)} \\
\hline \multicolumn{8}{|l|}{Male} \\
\hline 0.5-<3 & 14 & 3.40 & 0.19 & 0.23 & 0.38 & 0.78 & 1.92 \\
\hline 3-<10 & 23 & 4.30 & 0.24 & 0.29 & 0.49 & 0.96 & 2.40 \\
\hline 10-<18 & 53 & 6.70 & 0.38 & 0.45 & 0.78 & 1.50 & 3.78 \\
\hline 18-<30 & 76 & 7.70 & 0.43 & 0.52 & 0.84 & 1.74 & 4.32 \\
\hline \(30-<60\) & 80 & 7.50 & 0.42 & 0.50 & 0.84 & 1.68 & 4.20 \\
\hline \(60+\) & 75 & 6.10 & 0.34 & 0.41 & 0.66 & 1.38 & 3.42 \\
\hline \multicolumn{8}{|l|}{Female} \\
\hline 0.5-<3 & 11 & 2.60 & 0.14 & 0.17 & 0.29 & 0.60 & 1.44 \\
\hline 3-<10 & 23 & 4.00 & 0.23 & 0.27 & 0.45 & 0.90 & 2.28 \\
\hline 10-<18 & 50 & 5.70 & 0.32 & 0.38 & 0.66 & 1.26 & 3.18 \\
\hline \(18-<30\) & 62 & 5.90 & 0.33 & 0.40 & 0.66 & 1.32 & 3.30 \\
\hline \(30-<60\) & 68 & 5.80 & 0.32 & 0.39 & 0.66 & 1.32 & 3.24 \\
\hline \(60+\) & 67 & 5.30 & 0.30 & 0.36 & 0.59 & 1.20 & 3.00 \\
\hline
\end{tabular}
a The BMRs for the age/gender cohorts were calculated using the respective body weights and the EMR equations (Appendix Table 3A-1).
b Range of 1.5-2.5.
c Range of 3-5.
d Range of >5-20.
e Body weights were based on average weights for age/gender cohorts of the U.S. population given in Najjar and Rowland (1987).
f The inhalation rate was calculated by multiplying BMR (KJ/day) \(\times \mathrm{H}(0.05 \mathrm{~L} / \mathrm{KJ}) \times\) MET \(\times\) VQ (27) \(x(d / 1,440 \mathrm{~min})\)
g Original data were presented in \(\mathrm{L} / \mathrm{min}\). Conversion to \(\mathrm{m}^{3} / \mathrm{hr}\) was obtained as follows:
\[
\frac{60 \mathrm{~min}}{\mathrm{hr}} \times \frac{\mathrm{m}^{3}}{1000} \mathrm{~L} \times \frac{\mathrm{L}}{\min }
\]

Source: Layton, 1993.
between breathing and food ingestion. This approach increases the potential for more accurate results.

Linn et al. - Documentation of Activity Patterns in "High-Risk" Groups Exposed to Ozone in the Los Angeles Area - Linn et al. (1992) conducted a study that estimated the inhalation rates for "high-risk" subpopulation groups exposed to ozone \(\left(\mathrm{O}_{3}\right)\) in their daily activities in the Los Angeles area. The population surveyed consisted of seven subject panels: Panel 1: 20 healthy outdoor workers ( 15 males, 5 females, ages 19-50); Panel 2: 17 healthy elementary school students ( 5 males, 12 females, ages 10-12); Panel 3: 19 healthy high school students ( 7 males, 12 females, ages 13-17); Panel 4: 49 asthmatic adults (clinically mild, moderate, and severe, 15 males, 34 females, ages 18-50); Panel 5: 24 asthmatic adults from 2 neighborhoods of contrasting \(\mathrm{O}_{3}\) air quality ( 10 males, 14 females, ages 19-46); Panel 6: 13 young asthmatics (7 males, 6 females, ages 11-16); Panel 7: construction workers ( 7 males, ages 26-34).

Initially, a calibration test was conducted and was followed by a training session. Finally, a field study was conducted which involved subjects' collecting their own heart rate (HR) and diary data. The calibration exercise protocols varied for each panel subject: Panel 1 had laboratory treadmill exercise tests, indoor hall-way walking tests at different self-chosen speeds, and 2 outdoor tests each consisted of 1 hour cycles of rest, walking, and jogging; Panel 2 and 3 performed outdoor exercises that consisted each of 20 minute rest, slow walking, jogging, and fast walking; Panel 4 and 5 had treadmill and hallway tests; Panel 6 had laboratory tests on bicycles and treadmills; Panel 7 performed similar exercises as Panel 2 and 3, and also performed job-related tests including lifting and carrying a \(9-\mathrm{kg}\) pipe (Linn et al., 1992). During the calibration tests, ventilation rates (VR) and HR were measured simultaneously at each exercise level. A regression line was fed to the calibration data, HR and lognormal VR, and an equation was developed to predict VR from measured HR.

In the field study, each subject (except construction workers) recorded in diaries their daily activities, change in locations (indoors, outdoors, or in a vehicle), self-estimated their breathing rates during each activity/location, time spent at each activity/location. Healthy
subjects recorded their HR once every 60 seconds and asthmatic subjects recorded their diary information once every hour with a Heart watch. Construction workers dictated their diary information to a technician accompanying them on the job. Subjective breathing rates were defined as slow (walking at their normal pace); medium (faster than normal walking); and fast (running or similarly strenuous exercise). Table 3-6 presents the protocols for selfmonitoring of diary information for each subject panel.

Table 3-7 presents the mean VR, the 99th percentile VR, and the VR at each subjective activity level (slow, medium, fast). The mean and 99th percentile VRs were derived from the valid HR recordings excluding diary data. Each of the three activity levels were determined from diary data and HR recordings (Linn et al., 1992). The preliminary data for construction workers indicated that during a \(10-\mathrm{hr}\) work shift, their mean VR (1.5 \(\mathrm{m}^{3} / \mathrm{hr}\) ) exceeded the VRs of other subject panels (Table 3-7). Linn et al. (1992) reported that the diary data showed that most individuals expect construction workers spent most of their time (in a typical day) indoors at slow activity level. During outdoor activities, VRs were lower for asthmatics than for healthy subjects. During slow activity level, asthmatic subjects had higher VRs than healthy subjects (Linn et al., 1992). Also Linn et al. (1992), reported that in every panel, the predicted VR correlated significantly with the subjective estimates of activity levels.

According to Linn et al. (1992), "Calibration results may overestimate the predictive power of HR during actual field monitoring, because the wider variety of exercise in everyday activities may result in wider variation of the VR-HR relationship." Another limitation of this study is the small sample size of each subpopulation surveyed, therefore, this may not be representative the U.S. population. Also, in the course of this study, information on activity patterns were obtained, but the information was not presented. This information could be useful for exposure assessments. An advantage of these data set is that activities were recorded in a diary and not generated based on recall. Another advantage is that inhalation rates were presented for various subpopulations (i.e., healthy outdoor workers, asthmatics, healthy adults, and healthy children).

Table 3-6. Protocols for Self-Monitoring of Activities Grouped by Subject Panels
\begin{tabular}{|c|c|}
\hline Panel & Protocol \\
\hline Panel 1 - Healthy Outdoor Workers - 15 female, 5 male, age 19-50 & 3 days in 1 typical summer week (includes most active workday and most active day off); HR recordings and activity diary during waking hours. \\
\hline Panel 2 - Healthy Elementary School Students - 5 male, 12 female, age 10-12 & Saturday, Sunday and Monday (school day) in early autumn; HR recordings and activity diary during waking hours and during sleep. \\
\hline Panel 3 - Healthy High School Students - 7 male, 12 female, age 13-17 & Same as panel 2, however, no HR recordings during sleep for most subjects. \\
\hline Panel 4 - Adult Asthmatics, clinically mild, moderate, and severe - 15 male, 34 female, age 18-50 & 1 typical summer week, 1 typical winter week; hourly activity/health diary during waking hours; lung function tests 3 times daily; HR recordings during waking hours on at least 3 days (including most active work day and day off). \\
\hline Panel 5 - Adult Asthmatics from 2 neighborhoods of contrasting \(\mathrm{O}_{3}\) air quality - 10 male, 14 female, age 19-46 & Similar to panel 4, personal \(\mathrm{NO}_{2}\) and acid exposure monitoring included. (Panels 4 and 5 were studied in different years, and had 10 subjects in common). \\
\hline Panel 6 - Young Asthmatics - 7 male, 6 female, age 11-16 & Similar to Panel 4, summer monitoring for 2 successive weeks, including 2 controlled exposure studies with few or no observable respiratory effects. \\
\hline Panel 7 - Construction Workers - 7 male, age 26-34 & HR recordings and diary information during 1 typical summer work day. \\
\hline Source: Linn et al., 1992 & \\
\hline
\end{tabular}

Table 3-7. Subject Panel Inhalation Rates (IR) by Mean IR, Upper Percentiles, and Self-Estimated Breathing Rates
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Panel} & \multicolumn{5}{|c|}{Inhalation Rates ( \(\mathrm{m}^{3} / \mathrm{hr}\) )} \\
\hline & Mean & 99th Percentile & Slow & Medium \({ }^{\text {c }}\) & Fast \({ }^{\text {c }}\) \\
\hline \multicolumn{6}{|l|}{Healthy} \\
\hline 1 - Adults & 0.78 & 2.46 & 0.72 & 1.02 & 3.06 \\
\hline 2 - Elementary School Students & 0.90 & 1.98 & 0.84 & 0.96 & 1.14 \\
\hline 3 - High School Students & 0.84 & 2.22 & 0.78 & 1.14 & 1.62 \\
\hline 7 - Construction Workers \({ }^{\text {a }}\) & 1.50 & 4.26 & 1.26 & 1.50 & 1.68 \\
\hline \multicolumn{6}{|l|}{Asthmatics} \\
\hline 4-Adults & 1.02 & 1.92 & 1.02 & 1.68 & 2.46 \\
\hline 5 - Adults \({ }^{\text {b }}\) & 1.20 & 2.40 & 1.20 & 2.04 & 4.02 \\
\hline 6 - Elementary and High School Students & 1.20 & 2.40 & 1.20 & 1.20 & 1.50 \\
\hline
\end{tabular}
a Construction workers recorded only on 1 day, mostly during work, while others recorded on \(\geq 1\) work or school day and \(\geq\) 1 day off.
b Excluding subjects also in Panel 4
c Some subjects did not report medium and/or fast activity. Group means were calculated from individual means (i.e., give equal weight to each individual who recorded any time at the indicated activity level).

Source: Linn et al., 1992.


Linn et al. - Activity patterns in Ozone Exposed Construction Workers - Linn et al. (1993) estimated the inhalation rates of 19 construction workers before and during a typical work shift. The workers were employed at a hospital construction site in suburban Los Angeles. The study was conducted between mid-July and early November, 1991. During this period, ozone \(\left(\mathrm{O}_{3}\right)\) levels were typically high in Glendale, Los Angeles. Initially, each subject was calibrated with a 25 -minutes exercise test that included slow walking, fast walking, jogging, lifting, and carrying. All calibration tests were conducted in the mornings. Ventilation rates (VR) and heart rates (HR) were measured simultaneously during the test. The data were analyzed using the least squares regression to derive an equation for predicting VR at a given HR. Following the calibration tests and before beginning work, each subject recorded their change in activity (i.e. sitting/standing, walking, lifting/carrying, and "working at trade" - defined as tasks specific to the individual's job classification). Location, and self-estimated breathing rates ("slow" similar to slow walking, "medium" similar to fast walking, and "fast" similar to running) were also recorded in the diary. During work, an investigator recorded the diary information dictated by the subjects. HR was recorded minute by minute for each subject before work and during the entire work shift. Thus, VR ranges for each breathing rate and activity category were estimated from the HR recordings by employing the relationship between VR and HR obtained from the calibration tests.

A total of 182 hours of HR recordings were obtained during the survey from the 19 volunteers; 144 hours reflected actual working time according to diary records. The lowest actual working hours recorded was 6.6 hours and the highest recorded was 11.6 hours for a complete work shift (Linn et al., 1993). Summary statistics for HR and predicted VR distributions for each individual, the complete group of all individuals, and job or site defined groups are presented in Table 3-8. The data reflects all recordings before and during work, and at break times. For all subjects the mean HR was 93 beats/minute and the mean inhalation rate (IR) was \(1.68 \mathrm{~m}^{3} / \mathrm{hr}\) as shown in Table 3-8. In Table 3-8 for most subjects, the 1st and 99th percentiles of HR were outside of the calibration range (calibration ranges are presented in Appendix Table 3A-2). Therefore, corresponding IR percentiles were extrapolated using the calibration data (Table 3-8).

Table 3-8. Distributions of Individual and Group Heartrate and Inhalation/Ventilation Rate for Outdoor Workeri
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Subject No.} & \multirow[b]{2}{*}{Minutes Recorded} & \multicolumn{4}{|c|}{Heart Rate (HR) (beata/min)} & \multicolumn{4}{|c|}{Ventilation Rate (VR) ( \(\mathrm{m}^{3} / \mathrm{hr}\) )} \\
\hline & & Mean \(\pm\) SD & 1\% & 50\% & 99\% & Mean \(\pm\) SD & 1\% & 50\% & 99\% \\
\hline 1761 & 583 & \(88 \pm 13\) & 67 & 86 & 128 & \(1.5 \pm 0.72\) & 0.54 & 1.26 & 4.2 \\
\hline 1763 & 456 & \(94 \pm 13\) & 73 & 93 & 129 & \(1.32 \pm 0.66\) & 0.48 & 1.20 & 3.48 \\
\hline 1764 & 635 & \(69 \pm 10\) & 50 & 68 & 98 & \(1.56 \pm 0.72\) & 1.02 & 1.32 & 4.02 \\
\hline 1765 & 447 & \(91 \pm 23\) & 44 & 91 & 156 & \(1.80 \pm 0.96\) & 0.72 & 1.62 & 5.52 \\
\hline 1766 & 776 & \(83 \pm 9\) & 65 & 82 & 110 & \(1.14 \pm 0.48\) & 0.30 & 1.08 & 2.58 \\
\hline 1767 & 559 & \(78 \pm 21\) & 41 & 79 & 142 & \(1.08 \pm 0.48\) & 0.72 & 0.96 & 3.24 \\
\hline 1768 & 756 & \(74 \pm 14\) & 49 & 73 & 128 & \(1.08 \pm 0.48\) & 0.30 & 1.08 & 2.88 \\
\hline 1769 & 638 & \(100 \pm 21\) & 68 & 96 & 163 & \(2.58 \pm 1.38\) & 0.66 & 2.28 & 7.08 \\
\hline 1770 & 645 & \(88 \pm 17\) & 55 & 87 & 137 & \(1.62 \pm 0.66\) & 0.96 & 1.44 & 4.26 \\
\hline 1771 & 647 & \(110 \pm 17\) & 66 & 113 & 138 & \(1.62 \pm 0.78\) & 0.30 & 1.86 & 2.58 \\
\hline 1772 & 617 & \(109 \pm 16\) & 76 & 110 & 142 & \(2.58 \pm 0.96\) & 1.08 & 2.52 & 5.04 \\
\hline 1773 & 727 & \(100 \pm 17\) & 73 & 99 & 141 & \(1.44 \pm 0.66\) & 0.30 & 1.44 & 2.88 \\
\hline 1774 & 125 & \(95 \pm 19\) & 69 & 91 & 161 & \(1.56 \pm 0.54\) & 1.08 & 1.38 & 3.96 \\
\hline 1775 & 652 & \(99 \pm 16\) & 64 & 100 & 132 & \(1.74 \pm 1.02\) & 0.30 & 1.74 & 5.94 \\
\hline 1776 & 654 & \(96 \pm 16\) & 65 & 96 & 137 & \(1.74 \pm 0.66\) & 0.48 & 1.68 & 3.6 \\
\hline 1778 & 682 & \(101 \pm 16\) & 71 & 100 & 145 & \(2.16 \pm 0.96\) & 0.84 & 2.04 & 5.28 \\
\hline 1779 & 146 & \(111 \pm 13\) & 87 & 110 & 154 & \(2.58 \pm 0.66\) & 1.50 & 2.52 & 4.98 \\
\hline 1780 & 568 & \(88 \pm 10\) & 65 & 89 & 111 & \(1.62 \pm 0.36\) & 1.20 & 1.50 & 2.82 \\
\hline 1781 & 659 & \(85 \pm 12\) & 56 & 87 & 111 & \(1.38 \pm 0.42\) & 0.36 & 1.44 & 2.22 \\
\hline \multicolumn{10}{|l|}{Group and Subgroup Meansa} \\
\hline All Subjects & & \(93 \pm 15\) & 63 & 92 & 135 & \(1.68 \pm 0.72\) & 0.66 & 1.62 & 3.90 \\
\hline \multicolumn{2}{|l|}{General Laborers (GCW)} & \(86 \pm 15\) & 58 & 86 & 130 & \(1.44 \pm 0.66\) & 0.48 & 1.32 & 3.66 \\
\hline \multicolumn{2}{|l|}{Iron Workers (Im)} & \(96 \pm 14\) & 67 & 96 & 128 & \(1.62 \pm 0.66\) & 0.60 & 1.56 & 3.24 \\
\hline \multicolumn{2}{|l|}{Carpenters (Car)} & \(95 \pm 16\) & 65 & 94 & 139 & \(1.86 \pm 0.78\) & 0.78 & 1.74 & 4.14 \\
\hline \multicolumn{2}{|l|}{Office Site (Ofc)} & \(82 \pm 15\) & 56 & 82 & 127 & \(1.38 \pm 0.66\) & 0.60 & 1.20 & 3.72 \\
\hline \multicolumn{2}{|l|}{Hospital Site (Horp)} & \(98 \pm 16\) & 68 & 98 & 139 & \(1.86 \pm 0.78\) & 0.72 & 1.80 & 3.96 \\
\hline
\end{tabular}
a Each group or subgroup mean was calculated from individual means above, not from pooled data.
Source: Linn et al., 1993.

The data presented in Table 3-9 represents distribution patterns of IR for each subject, total subjects, and job or site defined subgroups by self-estimated breathing rates (slow, medium, fast) or by type of job activity. All data include working and non-working hours. The mean inhalation rates for most individuals showed statistically significant increases with higher self-estimated breathing rates or with increasingly strenuous job activity (Linn et al., 1993). Inhalation rates were higher in hospital site workers compared with office site workers (Table 3-9). However, hospital site workers reported a higher percentage of slow breathing time ( 31 percent) than the office site workers ( 20 percent), and a lower percentage of fast breathing time, 3 percent and 5 percent, respectively (Linn et al., 1993). Based on the subjects HR measurements and IR predictions, individuals whose work was objectively heavier than average tended to describe their work as lighter than average. Linn et al. (1993) attributed this observation to either a better physical conditioning in hardworking individuals and/or a "macho effect" (reluctance to admit the degree of exercise stress they felt).

A limitation associated with this study is the small sample size which may not be representative of construction worker subpopulation. Another limitation of this study is that calibration data were not obtained at extreme conditions (i.e., heat stress). Therefore, it was necessary to predict IR values outside the calibration range which may introduce an unknown uncertainty to the data set. Also, subjective self-estimated breathing rates may be another source of uncertainty in the inhalation rates estimated. An advantage of these data set is that activities were recorded in a diary and not generated based on recall. Another advantage is that this survey provides some values for a subpopulation of highly active individuals.

Spier et al. - Activity Patterns in Elementary and High School Students Exposed To Oxidant Pollution - Spier et al. (1992) investigated activity patterns of 17 elementary school students (10-12 years old) from the Seventh Day Adventist school and 19 high school students (13-17 years old) in suburban Los Angeles from late September to October (oxidant pollution season). Calibration tests were conducted in supervised outdoor exercise sessions. The exercise sessions consisted of 5 minutes for each: rest, slow walking, jogging, and fast walking. Heart rate (HR) and ventilation rate (VR) were measured during the last 2 minutes of each exercise. Individual VR and HR relationships were determined by fitting a

Table 3-9. Individual Mean Inhalation Rate \(\left(\mathrm{m}^{3} / \mathrm{hr}\right)\) by Self-Estimated Breathing Ratepg Job Achivity Category for Outdoor Workers

CITE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Subj. No.} & \multirow[b]{2}{*}{Site \({ }^{\text {a }}\)} & \multirow[b]{2}{*}{Job \({ }^{\text {b }}\)} & \multicolumn{3}{|r|}{\begin{tabular}{l}
Self-Estimated \\
Breathing Rate ( \(\mathrm{m}^{3} / \mathrm{hr}\) )
\end{tabular}} & \multicolumn{4}{|c|}{Job Activity Category ( \(\mathrm{m}^{3} / \mathrm{hr}\) )} \\
\hline & & & Slow & Med & Fast & Sit/Std & Walk & Carry & Trade \({ }^{\text {c }}\) \\
\hline 1761 & Ofc & GCW & 1.32 & 1.56 & \(1.68{ }^{\text {d }}\) & 1.32 & 1.62 & 2.46 & \(1.50{ }^{\text {d }}\) \\
\hline 1763 & Ofc & GCW & 1.20 & 1.56 & \(2.04{ }^{\text {d }}\) & 1.20 & 1.44 & 1.68 & \(1.74{ }^{\text {d }}\) \\
\hline 1764 & Off & Car & 1.44 & 1.62 & \(1.68{ }^{\text {d }}\) & 1.38 & 1.50 & 1.62 & \(1.62{ }^{\text {c }}\) \\
\hline 1765 & Ofc & GCW & 1.32 & 1.86 & \(1.68{ }^{\text {d }}\) & 1.50 & 1.68 & 1.86 & 1.86 \\
\hline 1766 & Ofc & Car & 0.96 & 1.20 & \(1.68{ }^{\text {d }}\) & 1.08 & 1.08 & 1.5 & \(1.26{ }^{\text {d }}\) \\
\hline 1767 & Ofe & Car & 1.08 & 1.08 & 1.38 & 0.96 & 1.08 & 1.26 & 1.08 \\
\hline 1768 & Ofc & GCW & 0.78 & 1.14 & \(1.32{ }^{\text {d }}\) & 0.96 & 1.14 & 1.26 & \(1.20^{\text {f }}\) \\
\hline 1769 & Hosp & Car & 2.10 & 3.06 & \(3.30{ }^{\text {d }}\) & 1.86 & 2.46 & 3.06 & \(2.94{ }^{\text {d }}\) \\
\hline 1770 & Hosp & Car & 1.38 & 1.98 & \(2.70{ }^{\text {d }}\) & 1.26 & 1.74 & 1.92 & \(1.92{ }^{\text {d }}\) \\
\hline 1771 & Hosp & Car & 1.02 & 1.92 & \(1.74{ }^{\text {d }}\) & 1.56 & 1.92 & 2.34 & \(1.86{ }^{\text {d }}\) \\
\hline 1772 & Hosp & Car & 2.34 & 2.82 & \(3.54{ }^{\text {d }}\) & 2.46 & 2.76 & 3.48 & \(3.06{ }^{\text {d }}\) \\
\hline 1773 & Hosp & Im & 1.26 & 1.74 & \(2.28{ }^{\text {d }}\) & 1.56 & 1.56 & 2.04 & \(1.92^{\text {d }}\) \\
\hline 1774 & Hosp & Car & 1.32 & 1.68 & --d & 1.98 & 1.92 & 1.92 & \(1.68{ }^{\text {d }}\) \\
\hline 1775 & Hosp & Irn & 1.32 & 2.10 & \(2.22^{\text {d }}\) & 1.68 & 1.92 & 2.22 & \(2.10^{\text {f }}\) \\
\hline 1776 & Hosp & Car & 1.38 & 1.98 & \(1.74{ }^{\text {d }}\) & 1.44 & 1.68 & 1.92 & \(1.98{ }^{\text {d }}\) \\
\hline 1778 & Hosp & Car & 1.86 & 2.52 & \(2.52^{\text {d }}\) & 2.10 & 2.64 & 3.42 & \(2.52^{\text {d }}\) \\
\hline 1779 & Hosp & Car & 2.40 & 2.64 & - & 2.64 & 2.64 & 2.40 & 2.64 \\
\hline 1780 & Hosp & Irn & 1.50 & 1.80 & \(1.86{ }^{\text {d }}\) & 1.62 & 1.74 & 1.74 & 1.74 \\
\hline 1781 & Hosp & Lab & 1.38 & 1.56 & \(1.74{ }^{\text {d }}\) & 1.26 & 1.44 & 1.44 & \(1.44{ }^{\text {e }}\) \\
\hline
\end{tabular}

Group and Subgroup Means
\begin{tabular}{llllllll} 
All Subjects & 1.44 & 1.86 & 2.04 & 1.56 & 1.80 & 2.10 & 1.92 \\
GCW/Laborers & 1.20 & 1.56 & 1.68 & 1.26 & 1.44 & 1.74 & 1.56 \\
Iron Workers & 1.38 & 1.86 & 2.10 & 1.62 & 1.74 & 1.98 & 1.92 \\
Carpenters & 1.62 & 2.04 & 2.28 & 1.62 & 1.92 & 2.28 & 2.04 \\
Office Site & 1.14 & 1.44 & 1.62 & 1.14 & 1.38 & 1.68 & 1.44 \\
Hospital Site & 1.62 & 2.16 & 2.40 & 1.80 & 2.04 & 2.34 & 2.16 \\
\hline
\end{tabular}
- Ofc - Office; Hosp - hospital building

GCW - general construction worker; Car - carpenter; Irn - ironworker; Lab - labororer
c Trade - "Working at Trade" (i.e., tasks specific to the individual's job classification)
d . Rate or category differences are significant, \(p<0.001\)
e Rates or category differences are significant, \(P<0.05\)
f Rate or category differences are significant, \(\mathrm{P}<0.01\)
regression line to HR values and lognormal VR values. Each subject recorded their daily activities change in location, and breathing rates in diaries for 3 consecutive days. Selfestimated breathing rates were recorded as slow (slow walking), medium (walking faster than normal), and fast (running). HR was recorded during the 3 days once per minute by wearing a Heart watch. VR values for each self-estimated breathing rate and activity type were estimated from the HR recordings by employing the VR and HR equation obtained from the calibration tests.

The data presented in Table 3-10 represents HR distribution patterns and corresponding predicted VR for each age group during hours spent awake. At the same selfreported activity levels for both age groups, inhalation rates were higher for outdoor activities than indoor activities. The total hours spent indoors by high school students ( 21.2 hours) were higher than for elementary school students ( 19.6 hours). The converse was true for outdoor activities; 2.7 hours for high school students, and 4.4 hours for elementary school students (Table 3-11). Based on the data presented in Tables 3-10 and 3-11, the average inhalation specific-activity rate for elementary (10-12 years) and high school (13-17 years) students were calculated. For elementary school students the average daily inhalation rates are \(15.8 \mathrm{~m}^{3} /\) day for light activities, \(4.62 \mathrm{~m}^{3} /\) day for moderate activities, and \(0.98 \mathrm{~m}^{3} /\) day for heavy activities. Also, for high school students the daily inhalation rate during light, moderate, and heavy activities are estimated at \(16.4 \mathrm{~m}^{3} / \mathrm{day}, 3.1 \mathrm{~m}^{3} /\) day, and \(0.54 \mathrm{~m}^{3} /\) day, respectively (Table 3-12).

A limitation of this study is the small sample size. It may not be representative of all children in these age groups. Another limitation is that associated with the accuracy of the self-estimated breathing rates reported by younger age groups. This may affect the validity of the data set generated. An advantage of this study is that data was generated from diary recordings and not based on recall. This approach appears to give more accurate estimates.

California Air Resources Board (CARB) - Measurement of Breathing Rate and Volume in Routinely Performed Daily Activities - The California Air Resources Board, CARB (1993), conducted research to accomplish two main objectives: (1) identification of mean and ranges of inhalation rates for various age/gender cohorts; and (2) derivation of simple linear and multiple regression equations used to predict inhalation rates through other measured

Table 3-10. Distribution of HR and Predicted IR, by Location and Self-Estimated IBeedidag Qumpor OR Elementary (EL) and High School (HS) Students
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Location/ Breathing Rate} & \multirow[b]{3}{*}{Students \({ }^{\text {a }}\)} & \multirow[b]{3}{*}{\[
\begin{gathered}
\text { \% of Recorded }{ }^{\text {b }} \\
\text { Time }
\end{gathered}
\]} & \multicolumn{4}{|c|}{Heart Rate, Beats/Min} \\
\hline & & & Arithmetic Mean \(\pm\) SD & \multicolumn{3}{|r|}{Percentile Rankings} \\
\hline & & & & 1st & 50th & 99.9th \\
\hline \multirow{2}{*}{In/slow} & EL & 49.6 & \(95 \pm 16\) & 61 & 95 & 166 \\
\hline & HS & 70.7 & \(86 \pm 17\) & 55 & 85 & 173 \\
\hline \multirow[b]{2}{*}{In/medium} & EL & 23.6 & \(98 \pm 17\) & 63 & 98 & 160 \\
\hline & HS & 10.9 & \(96 \pm 18\) & 61 & 93 & 174 \\
\hline \multirow{2}{*}{In/fast} & EL & 2.4 & \(105 \pm 32\) & 63 & 100 & 188 \\
\hline & HS & 1.4 & \(109 \pm 22\) & 71 & 105 & 187 \\
\hline \multirow{2}{*}{Out/slow} & EL & 8.9 & \(104 \pm 23\) & 60 & 102 & 132 \\
\hline & HS & 8.2 & \(98 \pm 18\) & 61 & 96 & 193 \\
\hline \multirow{2}{*}{Out/medium} & EL & 11.2 & \(115 \pm 21\) & 67 & 113 & 185 \\
\hline & HS & 7.4 & \(106 \pm 24\) & 66 & 103 & 198 \\
\hline \multirow{2}{*}{Out/fast} & EL & 4.3 & \(119 \pm 20\) & 81 & 118 & 188 \\
\hline & HS & 1.4 & \(115 \pm 31\) & 69 & 109 & 200 \\
\hline & & & \multicolumn{4}{|c|}{Inhalation Rates, \(\mathrm{m}^{3} / \mathrm{hr}\)} \\
\hline \multirow{2}{*}{In/slow} & EL & 49.6 & \(0.84 \pm 0.36\) & 0.18 & 0.78 & 2.34 \\
\hline & HS & 70.7 & \(0.78 \pm 0.36\) & 0.30 & 0.72 & 3.24 \\
\hline \multirow{2}{*}{In/medium} & EL & 23.6 & \(0.96 \pm 0.36\) & 0.24 & 0.84 & 2.58 \\
\hline & HS & 10.9 & \(0.96 \pm 0.42\) & 0.42 & 0.84 & 4.02 \\
\hline \multirow{2}{*}{In/fast} & EL & 2.4 & \(1.02 \pm 0.60\) & 0.24 & 0.84 & 3.42 \\
\hline & HS & 1.4 & \(1.26 \pm 0.66\) & 0.54 & 1.08 & \(6.84{ }^{\text {c }}\) \\
\hline \multirow{2}{*}{Out/slow} & EL & 8.9 & \(0.96 \pm 0.54\) & 0.36 & 0.78 & 4.32 \\
\hline & HS & 8.2 & \(0.96 \pm 0.48\) & 0.42 & 0.90 & 5.28 \\
\hline \multirow{2}{*}{Out/medium} & EL & 11.2 & \(1.08 \pm 0.48\) & 0.24 & 0.96 & 3.36 \\
\hline & HS & 7.4 & \(1.26 \pm 0.78\) & 0.48 & 1.08 & 5.70 \\
\hline \multirow{2}{*}{Out/fast} & EL & 4.3 & \(1.14 \pm 0.60\) & 0.48 & 0.96 & 3.60 \\
\hline & HS & 1.4 & \(1.44 \pm 1.08\) & 0.48 & 1.02 & 5.94 \\
\hline
\end{tabular}

\footnotetext{
a EL students were between 10-12 yrs old; HS students were between 13-17 yrs old.
b Recorded time averaged about \(23 / \mathrm{hr}\) per elementary student and \(33 / \mathrm{hr}\) per high school student, over \(72-\mathrm{hr}\). periods.
c Highest single value.
}

Source: Spier et al, 1992.

Table 3-11. Average Hours Spent per Day in a Given Location and Activity Level by Elementary (EL) and High School (HS) Sudents
\begin{tabular}{lcc}
\hline & \multicolumn{2}{c}{\begin{tabular}{c} 
Time (hrs/day) \\
Students
\end{tabular}} \\
\hline Indoor & EL \(^{\text {a }}\) & \\
Slow & & HS \(^{\text {b }}\) \\
Medium & 16.3 & \\
Fast & 2.9 & 19.5 \\
TOTAL & 0.4 & 1.5 \\
Outdoor & 19.6 & 0.2 \\
Slow & & 21.2 \\
Medium & 2.2 & 1.2 \\
Fast & 1.7 & 1.3 \\
TOTAL & 0.5 & 0.2 \\
\hline
\end{tabular}

2 EL students were between 10-12 years old
b HS students were between 13-17 years old
Source: Spier et al., 1992.

Table 3-12. Distribution Patterns of Daily Inhalation Rates for Elementary (EL) and High School Students (HS) Grouped by Activity Level
\begin{tabular}{llllll}
\hline Location & Activity Type & Students \({ }^{\text {b }}\) & \begin{tabular}{c} 
Average, IR \(^{\text {c }}\) \\
\(\left(\mathrm{m}^{3} /\right.\) day \()\)
\end{tabular} & & Percentile Rankings
\end{tabular}
a In this report, activity type presented in Table 3-7 was redefined as light activity for slow, moderate activity for medium and heavy activity for fast.
b EL students were between 10-12 years old; HS students were between 13-17 years old.
c Daily inhalation rate was calculated by multiplying the hours spent at each activity level (Table 3-8) by the corresponding inhlation rate (Table 3-7).
Source: Generated using data from Tables 3-8 and 3-9.

variables: heart rate (HR), breathing frequency ( \(f_{B}\) ), and oxygen consumption ( \(\mathrm{V}_{\mathrm{O} 2}\) ). The survey population consisted of 160 individuals (both genders) from California of various ages (6-77 years) and ethnicity (CARB, 1993). Further research was also conducted to validate empirically derived equations for children engaged in selected field and laboratory studies. The test subjects were 40 children from 6 to 12 years old. Twelve children (3-5 years) were subjects for pilot testing (CARB, 1993).

Resting protocols conducted in the laboratory consisted of phases ( 25 minutes each) of lying, sitting, and standing. They were categorized as resting and sedentary activities. Two active protocols including moderate (walking) and heavy (jogging/running) phases were performed on a treadmill over a progressive continuum of intensities made up of 6 minute intervals, at 3 speeds ranging from slow to moderately fast. All protocols involved measuring VR, HR, \(\mathrm{f}_{\mathrm{B}}\), and \(\mathrm{V}_{\mathrm{O2}}\). Measurements were taken in the last 5 minutes of each phase of the resting protocol ( 25 minutes), and the last 3 minutes of the 6 minutes intervals, at each speed designated in the active protocols.

In the field, all children completed spontaneous play protocols, while the older adolescent population (16-18 years) completed car driving and riding, car maintenance (males), and housework (females) protocols. All adults (19-60 years) and most or the senior (60-77 years) females completed housework, yardwork, and car driving and riding protocols. Adult and senior males only completed car driving and riding, yardwork, and mowing protocols. \(\mathrm{HR}, \mathrm{VR}\), and \(\mathrm{f}_{\mathrm{B}}\) were measured during each protocol and most protocols were conducted for 30 mins. All the active field protocols were conducted twice.

During all activities in either the laboratory or field protocols, inhalation rate (IR) for the children's group revealed no significant gender differences and those for the adult groups demonstrated gender differences. Therefore, IR data presented in Appendix Tables 3A-3 and 3A-4 were categorized as young children, children, adult female, and adult male by activity levels (resting, sedentary, light, moderate, and heavy). These categorized data for the laboratory protocols are shown in Table 3-13. Table 3-14 presents the mean inhalation rates by group and activity levels (light, sedentary, and moderate) in field protocols. A comparison of the data shown in Tables 3-13 and 3-14 suggest that during light and sedentary activities in laboratory and field protocols similar inhalation rates were obtained for adult

Table 3-13. Summary of Average Inhalation Rates ( \(\mathrm{m}^{3} / \mathrm{hr}\) ) by Age Group and Activity Levels for: Laboratory Protocols
\begin{tabular}{|c|c|c|c|c|c|}
\hline Age & Resting \({ }^{\text {a }}\) & Sedentary \({ }^{\text {b }}\) & Light \({ }^{\text {e }}\) & Moderate \({ }^{\text {d }}\) & Heavy \({ }^{\text {e }}\) \\
\hline Young Children \({ }^{\text {f }}\) & 0.37 & 0.40 & 0.65 & DNPE & DNP' \\
\hline Children \({ }^{\text {h }}\) & 0.45 & 0.47 & 0.95 & 1.74 & 2.23 \\
\hline Adult Females \({ }^{\text {i }}\) & 0.43 & 0.48 & 1.33 & 2.768 & \(2.96{ }^{\mathrm{j}}\) \\
\hline Adult Males \({ }^{\text {d }}\) & 0.54 & 0.60 & 1.45 & 1.93 & 3.63 \\
\hline
\end{tabular}
a Resting defined as lying (see Appendix Table 3A-3 for original data).
b Sedentary defined as sitting and standing (see Appendix Table 3A-3 for original data).
c Light defined as walking at speed level 1.5-3.0 mph (see Appendix Table 3A-3 for original data).
d Moderate defined as fast walking (3.3-4.0 mph) and slow running (3.5-4.0 mph) (see Appendix Table 3A-3 for original data).
- Heavy defined as fast running (4.5-6.0 mph) (see Appendix Table 3A-3 for original data).
\(f\) Young children (both genders) 3-5.9 yrs old.
g DNP. Group did not perform this protocol or N was too small for appropriate mean comparisons. All young children did not run.
h Children (both genders) 6-12.9 yrs old.
i Adult females defined as adolescent, young to middle aged, and older adult females.
j Older adults not included in mean value since they did not perform running protocols at particular speeds.
\(\mathbf{k}\) Adult males defined as adolescent, young to middle aged, and older adult males.

Source: • CARB, 1993.

Table 3-14. Summary of Average Inhalation Rates ( \(\mathrm{m}^{\mathbf{3}} / \mathrm{hr}\) ) by Age Group and Activity Levels in Field Protocols
\begin{tabular}{|c|c|c|c|c|}
\hline Activity Level & Young Children \({ }^{\text {a }}\) & Children \({ }^{\text {b }}\) & \begin{tabular}{l}
Adult \\
Females \({ }^{\text {c }}\)
\end{tabular} & Adult Males \({ }^{\text {d }}\) \\
\hline Light \({ }^{\text {P }}\) & DNP \({ }^{\text {c }}\) & DNP \({ }^{\text {e }}\) & \(1.10^{\circ}\) & \(1.40^{\circ}\) \\
\hline Sedentary* & DNP \({ }^{\text {e }}\) & DNP \({ }^{\text {c }}\) & 0.51 & 0.62 \\
\hline Moderate \({ }^{\text {b }}\) & 0.68 & 1.07 & DNP \({ }^{\text {e }}\) & \(1.78{ }^{\text {j }}\) \\
\hline
\end{tabular}
- Young children (both genders) \(=3-5.9\) yrs old.
b Children (both genders) \(=6-12.9\) yrs old.
- Adult females defined as adolescent, young to middle aged, and older adult females.
d Adult males defined as adolescent, young to middle aged, and older adult males.
- DNP. Group did not perform this protocol or N was too small for appropriate mean comparisons.
? Light activity was defined as car maintenance (males), housework (females), and yard work (females) (see Appendix Table 3A-4 for original data).
z Sedentary activity was defined as car driving and riding (both genders) (see Appendix Table 3A-4 for original data).
1 Moderate activity was defined as moving (males); wood working (males); yard work (males); and play (children). (see Appendix Table 3A-4 for original data).
i Older adults not included in mean value since they did not perform this activity.
j Adolescents not included in mean value since they did not perform this activity.

Source: CARB, 1993.
females and adult males. Accurate predictions of \(\operatorname{IR}\) across all population groups and activity types were obtained by including body surface area (BSA), HR , and \(\mathrm{f}_{\mathrm{B}}\) in multiple regression analysis (CARB, 1993). CARB (1993) calculated BSA from measured height and weight using the equation: BSA \(=\) height \(^{(0.725)} \times\) weight \({ }^{(0.425)} \times 71.84\).

A limitation associated with this study is that the population does not represent the general U.S. population. Also, the classification of activity types (i.e. laboratory and field protocols) into activity levels may bias the inhalation rates obtained for various age/gender cohorts. The estimated rates were based on short-term data and may not reflect long-term patterns. An advantage of this study is that it provides inhalation data for all age groups.

\subsection*{3.2.3. Other Relevant Inhalation Rate Studies}

Shamoo et al. - Improved Quantitation of Air Pollution Dose Rates by Improved Estimation of Ventilation Rate- Shamoo et al. (1990) conducted this study to develop and validate new methods to accurately estimate ventilation rates for typical individuals during their normal activities. Two practical approaches were tested for estimating ventilation rates indirectly: (1) volunteers were trained to estimate their own ventilation rate (VR) at various controlled levels of exercise; and (2) individual VR and heart rate (HR) relationships were determined in another set of volunteers during supervised exercise sessions (Shamoo et al. 1990). In the first approach, the training session involved 9 volunteers ( 3 females and 6 males) from 21-37 years old. Initially the subjects were trained on a treadmill with regularly increasing speeds. VR measurements were recorded during the last minute of the 3 -minute interval at each speed. VR was reported to the subjects as low ( \(1.4 \mathrm{~m}^{3} / \mathrm{hr}\) ), medium (1.5-2.3 \(\mathrm{m}^{3} / \mathrm{hr}\) ), heavy ( \(2.4-3.8 \mathrm{~m}^{3} / \mathrm{hr}\) ), and very heavy ( \(3.8 \mathrm{~m}^{3} / \mathrm{hr}\) or higher) (Shamoo et al., 1990).

Following the initial test on a different day, treadmill training sessions were conducted where 7 different speeds were used, each for 3 minutes in arbitrary order. VR was measured and the subjects were provided feedback. A treadmill testing session was conducted in the same manner as the training session. Each subject then estimated their own ventilation level at each speed and the correct level was revealed to the volunteers. Subsequently, two 3-hour outdoor supervised exercise sessions were conducted in the summer on two consecutive days. Each hour consisted of 15 minutes each of rest, slow
walking, jogging, and fast walking. The subjects' ventilation level and VR weere recorded; however, no feedback was given to the subjects. Electrocardiograms were recorded via direct connection or telemetry and HR was measured concurrently with ventilation measurement for all treadmill sessions.

The second approach consisted of two protocol phases (indoor/outdoor exercise sessions and field testing). 20 outdoor adult workers between 19-50 years old were employed. Indoor and outdoor supervised exercises similar to the protocols in the first approach were conducted, however there were no feedbacks. Also, in this approach electrocardiograms were recorded and HR was measured concurrently with VR. During the field testing phase, subjects were trained to record their activities during three different 24hour periods within one week. These periods included their most active working and nonworking days. HR was measured quasi-continuously during the 24 -hour periods activities were recorded. The subjects recorded in a diary all changes in physical activity, location, exercise levels during waking hours. Self-estimated activities in supervised exercises and field studies were categorized as slow (resting, slow walking or equivalent), medium (fast walking or equivalent), and fast (jogging or equivalent).

Inhalation rates were not reported in the data presented by Shamoo et al. (1990). Shamoo et al. (1990) reported that the first approach employed indicated that about \(68 \%\) of the sample population estimated their VR correctly. They also observed that inaccurate selfestimates occurred in the younger male population who were highly physically fit and were competitive aerobic trainers. This subset of sample population tended to underestimate their own physical activity levels at higher VR ranges. Shamoo et al. (1990) attributed this to a "macho effect." In the second approach, a regression analysis was conducted that related the logarithm of VR to HR. The logarithm of VR correlated better with HR than VR itself (Shamoo et al., 1990). Also, the effect of heat stress was observed on the HR data obtained during the second hour of the exercise sessions.

A limitation associated with this study is that the population sampled does not give a representation of the general U.S. population. Also, ventilation rates were not presented. Training individuals to estimate their VR may contribute to uncertainty in the results because the estimates are subjective. Another limitation is that heat stress was not accounted for in
the equation used to predict VR from HR measurements. This may somewhat affect the accuracy of the estimated VR. An advantage of this study is that data sets were generated from diary recordings of activities during the sampling period and were not based on recall. The former approach appears to give more accurate responses.

Shamoo et al. - Activity Patterns in a Panel of Outdoor Workers Exposed to Oxidant Pollution - Shamoo et al. (1991) investigated summer activity patterns in 20 adult volunteers ( 15 men and 5 women) outdoor workers in the Los Angeles area. They were exposed to oxidant pollution. The age of the subjects ranged from 19-50 years old. All volunteers worked outdoors at least 10 hours per week. The experimental approach involved two stages: (1) indirect objective estimation of ventilation rate (VR) from heart rate (HR) measurements; and (2) self estimation of inhalation/ventilation rates recorded by subjects in diaries during their normal activities (Shamoo et al., 1991). The approach consisted of calibrating the relationship between VR and HR for each test subject in controlled exercise; monitoring by subjects of their own normal activities with diaries and electronic HR recorders; and then relating VR with the activities described in the diaries (Shamoo et al., 1991).

Calibration tests were conducted for indoor and outdoor supervised exercises to determine individual relationships between VR and HR. Indoors, each subject was tested on a treadmill at rest and at increasing speeds. HR and VR were measured at the third minute at each 3-minute interval speed. In addition, subjects were tested while walking a 90 -meter course in a corridor at 3 self-selected speeds (normal, slower than normal, and faster than normal) for 3 mins.

Two outdoor testing sessions (one hour each) were conducted for each subject, 7 days apart. Subjects exercised on a \(260-\mathrm{m}\) asphalt course. The session involved 15 minutes each of: rest, slow walking, jogging, and fast walking during the first hour. The sequence was also repeated during the second hour. HR and VR measurements were recorded starting at the 8th minute of each 15 -minute segment. Following the calibration tests, a field study was conducted in which subject's self-monitored their activities (by filling out activity diary booklets), self-estimated their breathing rates, and HR. Breathing rates were defined as sleep, slow (slow or normal walking), medium (fast walking), and fast (running) (Shamoo et
al., 1991). Changes in location, activity, or breathing rates during three \(24-\mathrm{hr}\) periods within a week were recorded. These periods included their most active working and non-working days. Each subject wore Heart watches which recorded their HR once per minute during the field study. Ventilation rates were estimated for the following categories: sleep, slow, medium, and fast.

A regression line was fed to the calibration data, HR and lognormal VR, in order to develop an equation to predict VR from measured HR. The average measured VR were \(0.48,0.9,1.68\), and \(4.02 \mathrm{~m}^{3} / \mathrm{hr}\) for rest, slow walking or normal walking, fast walking and jogging, respectively (Shamoo et al., 1991). Collectively, the diary recordings showed that sleep occupied about 33 percent of the subject's time, slow activity 59 percent, medium 7 percent, and fast 1 percent. The diary data covered an average of 69 hrs per subject (Shamoo et al., 1991). Table 3-15 presents the distribution pattern of predicted ventilation rates and equivalent ventilation rates (EVR) obtained at the four activity levels. EVR was defined as the VR per square meter of body surface area, and also as a percentage of the subjects average VR over the entire field monitoring period (Shamoo et al., 1991). The overall mean predicted VR were \(0.42 \mathrm{~m}^{3} / \mathrm{hr}\) for sleep; \(0.71 \mathrm{~m}^{3} / \mathrm{hr}\) for slow activity; 0.84 \(\mathrm{m}^{3} / \mathrm{hr}\) for medium activity; and \(2.63 \mathrm{~m}^{3} / \mathrm{hr}\) for fast activity. The mean predicted VR and standard deviation, and the percentage of time spent in each combination of VR, activity type (essential and non-essential), and location (indoor and outdoor) are presented in Table 3-16. Essential activities include income-related work, household chores, child care, study and other school activities, personal care and destination-oriented travel. Non-essential activities include sports and active leisure, passive leisure, some travel, and social or civic activities (Shamoo et al., 1991).

The author noted that the methodology employed in this study and the previous study by Shamoo et al. (1990) are similar. Consequently, the same advantages and disadvantages associated with the Shamoo et al. (1990) data set also apply to this data set. According to Shamoo et al. (1990), "These results confirm that subjective activity diary data can provide exposure modelers with useful rough estimates of VR for groups of generally healthy people. As a group, the subjects showed meaningful and highly statistically significant increases in measured HR and predicted VR across the range of diary-recorded activity levels (sleep-

Table 3-15. Distribution Pattern of Predicted VR and EVR (Equivalent Ventilation Rate) for Outdoor Workers
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Perceived Breathing Rate} & \multirow[b]{2}{*}{\(\mathbf{N}^{\text {b }}\)} & \multicolumn{2}{|c|}{VR ( \(\left.\mathrm{M}^{3} / \mathrm{hr}\right)^{2}\)} & \multicolumn{2}{|l|}{EVR ( \(\mathrm{m}^{3} / \mathrm{hr} / \mathrm{m}^{2}\) body surface)} \\
\hline & & Arithmetic Mean \(\pm\) S.D. & Geometric Mean \(\pm\) S.D. & Arithmetic Mean \(\pm\) S.D. & Geometric Mean \(\pm\) S.D. \\
\hline Sleep & 18,597 & \(0.42 \pm 0.16\) & \(0.39 \pm 0.08\) & \(0.23 \pm 0.08\) & \(0.22 \pm 0.08\) \\
\hline Slow & 41,745 & \(0.71 \pm 0.4\) & \(0.65 \pm 0.09\) & \(0.38 \pm 0.20\) & \(0.35 \pm 0.09\) \\
\hline Medium & 3,898 & \(0.84 \pm 0.47\) & \(0.76 \pm 0.09\) & \(0.48 \pm 0.24\) & \(0.44 \pm 0.09\) \\
\hline Fast & 572 & \(2.63 \pm 2.16\) & \(1.87 \pm 0.14\) & \(1.42 \pm 1.20\) & \(1.00 \pm 0.14\) \\
\hline
\end{tabular}

Percentile Rankings, VR
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 5 & 10 & 50 & 90 & 95 & 99 & 99.9 \\
\hline Sleep & 0.18 & 0.18 & 0.24 & 0.36 & 0.66 & 0.72 & 0.90 & 1.20 \\
\hline Slow & 0.30 & 0.36 & 0.36 & 0.66 & 1.08 & 1.32 & 1.98 & 4.38 \\
\hline Medium & 0.36 & 0.42 & 0.48 & 0.72 & 1.32 & 1.68 & 2.64 & 3.84 \\
\hline Fast & 0.42 & 0.54 & 0.60 & 1.74 & 5.70 & 6.84 & 9.18 & 10.26 \\
\hline
\end{tabular}

Percentile Rankings, EVR


Table 3-16. Distribution Pattern of Inhalation Rate by Location and Activity Type for Outdoor Workers
\begin{tabular}{|c|c|c|c|c|c|}
\hline Location & Activity Type \({ }^{\text {a }}\) & Perceived Breathing Rates & \% of Time & \[
\begin{gathered}
\text { Inhalation rate }\left(\mathrm{m}^{3} / \mathrm{hr}\right) \\
\pm \text { S.D. }
\end{gathered}
\] & \% of Avg. \({ }^{\text {b }}\) \\
\hline \multirow[t]{4}{*}{Indoor} & \multirow[t]{4}{*}{Essential} & Sleep & 28.7 & \(0.42 \pm 0.12\) & \(69 \pm 15\) \\
\hline & & Slow & 29.5 & \(0.72 \pm 0.36\) & \(106 \pm 43\) \\
\hline & & Medium & 2.4 & \(0.72 \pm 0.30\) & \(129 \pm 38\) \\
\hline & & Fast & 0 & 0 & 0 \\
\hline \multirow[t]{3}{*}{Indoor} & \multirow[t]{3}{*}{Non-essential} & Slow & 20.4 & \(0.66 \pm 0.36\) & \(98 \pm 36\) \\
\hline & & Medium & 0.9 & \(0.78 \pm 0.30\) & \(120 \pm 50\) \\
\hline & & Fast & 0.2 & \(1.86 \pm 0.96\) & \(278 \pm 124\) \\
\hline \multirow[t]{3}{*}{Outdoor} & \multirow[t]{3}{*}{Essential} & Slow & 11.3 & \(0.78 \pm 0.36\) & \(117 \pm 42\) \\
\hline & & Medium & 1.8 & \(0.84 \pm 0.54\) & \(130 \pm 56\) \\
\hline & & Fast & 0 & 0 & 0 \\
\hline \multirow[t]{3}{*}{Outdoor} & \multirow[t]{3}{*}{Non-essential} & Slow & 3.2 & \(0.90 \pm 0.66\) & \(136 \pm 90\) \\
\hline & & Medium & 0.8 & \(1.26 \pm 0.60\) & \(213 \pm 91\) \\
\hline & & Fast & 0.7 & \(2.82 \pm 2.28\) & \(362 \pm 275\) \\
\hline
\end{tabular}
a Statistic was calculated by converting each VR for a given subject to a percentage of her/his overall average.
b Essential activities include income-related, work, household chores, child care, study and other school activities, personal care, and destination-oriented travel; Non-essential activities include sports and active leisure, passive leisure, some travel, and social or civic activities.

Source: Shamoo et al., (1991).
slow-medium-fast). At the same time, the results show high within-person and betweenperson variability in VR at each diary-recorded level, indicating that VR estimates from diary reports may be substantially misleading in individual cases."

Shamoo et al. - Effectiveness of Training Subjects to Estimate Their Level of Ventilation - Shamoo et al. (1992) conducted a study where nine non-sedentary subjects in good health were trained on a treadmill to estimate their own ventilation rates at four activity levels: low, medium, heavy, and very heavy. The purpose of the study was to train the subjects self-estimation of ventilation in the field and assess the effectiveness of the training (Shamoo et al., 1992). The subjects included 3 females and 6 males between 21 to 37 years of age. The tests were conducted in four stages. First, an initial treadmill pretest was conducted indoors at various speeds until the four ventilation levels were experienced by each subject, VR was measured and feedback was given to the subjects. Second, two treadmill training sessions which involved seven 3-min segments of varying speeds based on initial test were conducted, VR was measured and feedback was given to the subjects. \({ }^{\omega}\) Another similar session was conducted, however, the subjects estimated their own ventilation level during the last 20 seconds of each segment and VR was measured during the last minute of each segment. Immediate feedback was given to the subject's estimate; and the third and fourth stages involved 2 outdoor sessions of 3 hours each. Each hour comprised 15 minutes each of rest, slow walking, jogging, and fast walking. The subjects estimated their own ventilation level at the middle of each segment. The subject's estimate was verified by a respirometer which measured VR in the middle of each 15-minute activity. No feedback was given to the subject.

For purposes of this study, inhalation rates were analyzed from the raw data provided by Shamoo et al. (1992). These data are presented in Appendix Table 3A-5. Table 3-17 presents the actual inhalation rates obtained at four ventilation levels and two microenvironments (i.e., indoors and outdoors). The mean inhalation rates for all subjeccts were \(0.93,1.92,3.01,4.80\) for low, medium, heavy, and very heavy activities.

The population sample size used in this study was small and may somewhat affect the distribution of the data set obtained. Another limitation is that the population selected does not represent the general U.S. population. The training approach employed may not be cost

Table 3－17．Actual Inhalation Rates（VE）Measured at Four Ventilation Levels
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Subject} & \multirow[t]{2}{*}{Location} & \multicolumn{4}{|c|}{\[
\begin{gathered}
\text { Mean VE } \\
\left(\mathrm{m}^{3} / \mathrm{hr}\right)
\end{gathered}
\]} & \\
\hline & & Low \({ }^{\text {b }}\) & Medium \({ }^{\text {c }}\) & Heavy \({ }^{\text {d }}\) & Very Heavy \({ }^{0}\) & \\
\hline \multirow[t]{3}{*}{0124} & Indoor（Tm post）\({ }^{\text {f }}\) & 1.46 & 1.97 & 3.52 & 4.94 & \\
\hline & Outdoor \({ }^{\text {s }}\) & 1.18 & 2.78 & 3.22 & 5.17 & \\
\hline & Total \({ }^{\text {b }}\) & 1.22 & 2.55 & 3.42 & 5.14 & \\
\hline \multirow[t]{3}{*}{0720} & Indoor（Tm post） & 1.48 & 1.94 & 3.47 & － & \\
\hline & Outdoor & 0.98 & 2.39 & 3.22 & 4.76 & \\
\hline & Total & 1.05 & 2.24 & 3.33 & 4.76 & \\
\hline \multirow[t]{3}{*}{1000} & Indoor（Tm post） & 1.01 & 1.40 & 2.65 & 3.73 & \\
\hline & Outdoor & 0.53 & 1.71 & 2.92 & 4.38 & \\
\hline & Total & 0.60 & 1.64 & 2.78 & 4.22 & \\
\hline \multirow[t]{3}{*}{1200} & Indoor（Tm post） & 1.01 & 1.49 & 2.59 & 3.64 & \\
\hline & Outdoor & 0.65 & 1.63 & 2.29 & 4.96 & \\
\hline & Total & 0.71 & 1.57 & 2.38 & 4.77 & \\
\hline \multirow[t]{3}{*}{1239} & Indoor（Tm post） & 1.10 & 1.88 & 3.08 & － & \\
\hline & Outdoor & 0.75 & 1.44 & 3.37 & 4.25 & \\
\hline & Total & 0.83 & 1.57 & 3.24 & 4.25 & \\
\hline \multirow[t]{3}{*}{1240} & Indoor（Tm post） & 0.92 & 1.48 & 2.92 & － & \\
\hline & Outdoor & 0.58 & 1.42 & 2.47 & 4.13 & \\
\hline & Total & 0.68 & 1.45 & 2.74 & 4.13 & \\
\hline \multirow[t]{3}{*}{1241} & Indoor（Tm post） & 1.25 & 1.78 & 2.79 & 3.92 & 8 \\
\hline & Outdoor & 0.91 & 2.05 & 3.03 & 4.21 & \(z\) \\
\hline & Total & 0.93 & 1.89 & 2.95 & 4.16 & 路易: \\
\hline \multirow[t]{3}{*}{1242} & Indoor（Tm post） & 1.28 & 2.23 & 3.37 & 4.37 &  \\
\hline & Outdoor & 1.08 & 1.89 & 2.96 & 6.40 & 以易呂 \\
\hline & Total & 1.12 & 2.05 & 3.06 & 6.11 & 國 \\
\hline
\end{tabular}

Table 3-17. Actual Ventilation Rates (VE) Measured at Four Ventilation Levels (continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Subject} & \multirow[t]{2}{*}{Location} & \multicolumn{4}{|c|}{\[
\underset{\left(\mathrm{m}^{3} / \mathrm{hr}\right)}{\text { Mea } \mathrm{VE}^{\mathrm{a}}}
\]} \\
\hline & & Low \({ }^{\text {b }}\) & Medium \({ }^{\text {c }}\) & Heavy \({ }^{\text {d }}\) & Very Heavy \({ }^{\circ}\) \\
\hline \multirow[t]{3}{*}{1243} & Indoor (Tm post) & 1.53 & 2.27 & 3.80 & 4.20 \\
\hline & Outdoor & 1.01 & 2.32 & 2.92 & 5.87 \\
\hline & Total & 1.09 & 2.29 & 3.17 & 5.63 \\
\hline \multirow[t]{3}{*}{All subjects} & Indoor (Tm post) & 1.23 & 1.83 & 3.13 & 4.13 \\
\hline & Outdoor & 0.88 & 1.96 & 2.93 & 4.90 \\
\hline & Total & 0.93 & 1.92 & 3.01 & 4.80 \\
\hline
\end{tabular}
- Original data were presented in \(\mathrm{L} / \mathrm{min}\). Conversion to \(\mathrm{m}^{3} / \mathrm{hr}\) was obtained as follows:
\[
60 \frac{\min }{h r} \times \frac{m^{3}}{1000 L} \times \frac{L}{\min }
\]
b Low \(=1 \mathrm{~A}, 1 \mathrm{~B}\) (see Appendix Table 3A-5)
c Medium \(=2 \mathrm{~A}, 2 \mathrm{~B}\) and 2C (see Appendix Table 3A-5)
d Heavy = 3A, 3B, 3CC and 3D (see Appendix Table 3A-5)
- \(\quad\) Very heavy \(=4 \mathrm{~A}, 4 \mathrm{~B}\) and 4C (see Appendix Table 3A-5)
f Indoor activities include Treadmill Post-test, TM post (see Appendix Table 3A-5)
8 Outdoor activities includes all rest, low walk, high walk and jog (see Appendix Table 3A-5)
h Total includes all indoor and outdoor activities (see Appendix Table 3A-5)
Source: Shamoo et al., 1992
effective because it was labor intensive, therefore, this approach may not be viable in field studies especially for large sample sizes.

\section*{U.S. EPA - Development of Statistical Distributions or Ranges of Standard Factors}

Used in Exposure Assessments - Due to a paucity of information in literature regarding equations used to develop statistical distributions of minute ventilation/ventilation rate at all activity levels for male and female children and adults, the U.S. EPA (1985) compiled measured values of minute ventilation for various age/gender cohorts from early studies. In more recent investigations, minute ventilations have been measured more as background information than as research objective itself and the available studies have been for specific subpopulations such as obese, asthmatics or marathon runners. The data compiled by the U.S. EPA (1985) for each age/gender cohorts were obtained at various activity levels. These levels were categorized as light, moderate, or heavy according to the criteria developed by the Environmental Criteria and Assessment Office of EPA for the Ozone Criteria Document. These criteria were developed for a reference male adult with a body weight of 70 kg (U.S. EPA, 1985). The minute ventilation rates for adult males based on these activity level categories are detailed in Appendix Table 3A-5. Table 3-18 presents a summary of inhalation rates by age, gender, and activity level found in Appendix Table 3A-6 . A description of activities included in each activity level is also presented in Table 3-18. Based on data in Appendix Table 3A-7, at rest, the average adult inhalation rate is \(0.5 \mathrm{~m}^{3} / \mathrm{hr}\). The mean inhalation rate for children at rest, ages 6 and 10 , is \(0.4 \mathrm{~m}^{3} / \mathrm{hr}\).

The total amount of time spent indoors, outdoors, and in transportation vehicle at three activity levels for both males and females of all age groups are presented in Table 3-19. The total average hours spent indoors was 20.4, outdoors was 1.77, and in transportation vehicle was 1.77. Based on the data presented in Tables 3-18 and 3-19, a daily inhalation rate was calculated for adults and children by using a time-activity-ventilation approach. The calculated average daily inhalation rates are \(16 \mathrm{~m}^{3} /\) day for adults. The average daily inhalation rate for children ( 6 and 10 yrs ) is \(18.9 \mathrm{~m}^{3} / \mathrm{day}\) ( \([16.74+21.02] / 2\) ). These data are presented in Table 3-20.

A limitation associated with this study is that many of the values used in the data compilation were from early studies. The accuracy and/or validity of the values used and

\title{
Table 3-18. Subject Estimation of Ventilation Range \\ Wh. FT DO NOT OUOTE OR CITE
}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\% Correct} & \multicolumn{2}{|c|}{\% Incorrect} \\
\hline & & \% Over & \% Under \\
\hline \multicolumn{4}{|l|}{All Levels'} \\
\hline Total & 67.8 & 25.3 & 74.7 \\
\hline Indoor (TM Post) \({ }^{\text {a }}\) & 82.5 & 36.4 & 63.6 \\
\hline Outdoor (2 Sessions) & 62.4 & 23.7 & 76.3 \\
\hline \multicolumn{4}{|l|}{Level 1 -Low} \\
\hline Total & 83.4 & 100.0 & 0.0 \\
\hline Indoor & 70.6 & 100.0 & 0.0 \\
\hline Outdoor & 75.0 & 100.0 & 0.0 \\
\hline \multicolumn{4}{|l|}{Level 2 - Medium} \\
\hline Total & 84.3 & 50.0 & 50.0 \\
\hline Indoor & 100.0 & 0.0 & 0.0 \\
\hline Outdoor & 75.0 & 50.0 & 50.0 \\
\hline \multicolumn{4}{|l|}{Level 3 - Heavy} \\
\hline Total & 59.2 & 4.4 & 95.6 \\
\hline Indoor & 85.7 & 38.3 & 67.7 \\
\hline Outdoor & 54.4 & 0.0 & 100.0 \\
\hline \multicolumn{4}{|l|}{Level 4 - Very Heavy} \\
\hline Total & 26.9 & 0.0 & 100.0 \\
\hline Indoor & 33.3 & 0.0 & 100.0 \\
\hline Outdoor & 26.1 & 0.0 & 100.0 \\
\hline \multicolumn{4}{|l|}{Over \& Under Main Anchor \({ }^{\text {b }}\)} \\
\hline Total & 88.3 & 13.3 & 86.7 \\
\hline Indoor & 96.9 & 0.0 & 100.0 \\
\hline Outdoor & 85.6 & 13.8 & 86.2 \\
\hline
\end{tabular}
- TM Post \(=\) Treadmill Post-test
b Main anchor point-ventilation level at which breathing typically changes from primarily nasal to oronasal breathing.

Source: Shamoo et al., 1992

Table 3-19. Activity Pattern Data Aggregated for Three Microenvironments by Activity Level for all Age Groups
\begin{tabular}{llc}
\hline & & \begin{tabular}{c} 
Average Hours Per Day in \\
Each Microenvironment at \\
Each Activity Level
\end{tabular} \\
Microenvironment & Activity Level & 9.82 \\
\hline Indoors & Resting & 9.82 \\
& Light & 0.71 \\
& Moderate & 0.098 \\
& Heavy & 20.4 \\
Outdoors & TOTAL & \\
& Resting & 0.505 \\
& Light & 0.505 \\
& Moderate & 0.65 \\
& Heavy & 0.12 \\
& TOTAL & 1.77 \\
& & \\
& Resting & 0.86 \\
& Light & 0.86 \\
& Moderate & 0.05 \\
& Heavy & 0.0012 \\
& TOTAL & 1.77 \\
\hline
\end{tabular}

Source: Adapted from U.S. EPA, 1985.

Table 3-20. Summary of Daily Inhalation Rates Grouped by Age and Activity level in a Microenvironment
\begin{tabular}{lccccc}
\hline & & \multicolumn{2}{c}{ Daily Inhalation Rate \(\left(\mathrm{m}^{3} / \mathrm{day}\right)^{\mathrm{a}}\)} \\
Subject & Resting & Light & 8.95 & Mederate & \begin{tabular}{c} 
Total Daily IR \\
\(\left(\mathrm{m}^{3} /\right.\) bay \()\)
\end{tabular} \\
\hline Adult Male & 7.83 & 5.59 & 3.53 & 1.05 & 21.4 \\
Adult Female & 3.35 & 6.71 & 2.26 & 0.64 & 11.8 \\
Average Adult & 5.60 & 8.95 & 2.96 & 0.85 & 16 \\
Child (age 6) & 4.47 & 11.19 & 2.82 & 0.50 & 16.74 \\
Child (age 10) & 4.47 & 4.51 & 0.85 & 21.02 \\
\hline
\end{tabular}
a In this report, inhalation rate was calculated by using the following equation:
\(\mathbf{I R}=\mathbb{R}_{\mathbf{i}_{i}}\)
\(\mathrm{IR}_{\mathrm{i}}=\) inhalation rate at \(\mathrm{i}^{\text {th }}\) activity (Table 3-15)
\(\mathrm{t}_{\mathrm{i}}=\) hours spent per day during \(\mathrm{i}^{\text {th }}\) activity (Table 3-10)
b In this report, total daily inhalation rate was calculated by summing the specific activity daily inhalation rate.
Source: U.S. EPA, 1985.
data collection method were not presented in the U.S. EPA (1985) report. This may \begin{tabular}{c} 
DRAFT \\
CITE OR OR \\
\hline DOTE \\
\hline
\end{tabular} introduce some degree of uncertainty in the results obtained. An advantage of this study is that the data are actual measurement data for a large number of subjects and data are presented for both adults and children.

International Commission on Radiological Protection - Report of the Task Group on Reference Man - The International Commission of Radiological Protection (ICRP) estimated daily inhalation rates for reference adult males, adult females, children ( 10 years old), infant (1 year old), and newborn babies by using a time-activity-ventilation approach. This approach for estimating inhalation rate over a specified period of time was based on calculating a time weighted average of inhalation rates associated with physical activities of varying durations. ICRP (1981) selected reference values (Appendix Table 3A-8) of minute volume/inhalation rates from a compiled data of various literature sources. ICRP (1981) assumed the daily activities of a reference man, woman, and child consisted of 8 hours of rest and 16 hours of light activities divided evenly between occupational and nonoccupational activities, while an infant's and a newborn's daily activities consisted of 10 and 1 hour resting and 14 and 23 hours light activities, respectively. Table 3-21 presents the daily inhalation rates obtained for all ages/gender. The estimated inhalation rates were \(23 \mathrm{~m}^{3} / \mathrm{day}\) for adult males, \(21 \mathrm{~m}^{3} /\) day for adult females, \(15 \mathrm{~m}^{3} /\) day for children (age 10 ), \(3.8 \mathrm{~m}^{3} /\) day for infants (age 1), and \(0.8 \mathrm{~m}^{3} /\) day for newborns.

A limitation associated with this study is that the validity and accuracy of the inhalation rates data used in the compilation were not specified. This may introduce some degree of uncertainty in the results obtained. Also, the approach used involved assuming hours spent by various age/gender cohorts in specific activities. These assumptions may over/under-estimate the inhalation rates obtained.

\subsection*{3.2.4. Recommendations}

The recommended inhalation rates for adults, children, and outdoor workers/athletes are based on the key studies described in the preceding sections. Different survey designs and populations were utilized by the studies described in this report. A summary of these designs, data generated, and their limitations/advantages are presented in Table 3-22.

Table 3-21. Daily Inhalation Rates Estimated From Daily Activities for a Reference Man
\begin{tabular}{lrcc}
\hline Subject & \multicolumn{3}{c}{\begin{tabular}{c} 
Inhalation Rate (IR)
\end{tabular}} \\
\hline \begin{tabular}{l} 
Resting \\
\(\left(\mathrm{m}^{3} / \mathrm{hr}\right)\)
\end{tabular} & \begin{tabular}{c} 
Light Activity \\
\(\left(\mathrm{m}^{3} / \mathrm{hr}\right)\)
\end{tabular} & \begin{tabular}{c} 
Daily Inhalation Rate (DIR) \\
\(\left(\mathrm{m}^{3} / \mathrm{day}^{\mathrm{a}}\right.\)
\end{tabular} \\
\hline Adult Man & 0.45 & 1.2 & 22.8 \\
Adult Woman & 0.36 & 1.14 & 21.1 \\
Child (10 yrs) & 0.29 & 0.78 & 14.8 \\
Infant (1 yr) & 0.09 & 0.25 & 3.76 \\
Newborn & 0.03 & 0.09 & 0.78 \\
\hline
\end{tabular}

Assumptions made were based on 8 hours resting and 16 hours light activity for adults and children ( 10 yrs ); 14 hours resting and 10 hours light
\(\omega\)
\(\underset{\sim}{t}\) activity for infants ( 1 yr ); 23 hours resting and 1 hour light activity for newborns.
\(D I R=\frac{1}{T} \sum_{i=1}^{K} I R_{i} t_{i}\)
\(\mathbf{I R}_{\mathbf{i}}=\) Corresponding inhalation rate at \(\mathrm{i}^{\text {th }}\) activity
\(\mathrm{t}_{\mathrm{i}}=\) Hours spent during the \(\mathrm{i}^{\text {th }}\) activity
k = Number of activity periods
T = Total time of the exposure period (i.e. a day)
Source: ICRP, 1981

Table 3-22. Summary of Inhalation Rate Studies
\begin{tabular}{|c|c|c|c|c|}
\hline Study & Population Surveyed & Survey Time Period & Data Generated & Limitations/Advantages \\
\hline Layton 1992 & Based on data from dietary surveys and other sources including: the NFCS survey approximately 30,000 individuals of various age/gender cohorts; the NHANES survey approximately 20,000 individuals; and a time-activity survey conducted by Sallis et al. (1985); about 2,126 individuals (ages 20 74) selected from California communities. & & Daily IR estimated from 3 methods for adult males, females, children (including infants) at various activity levels. Also estimated IR for short-term exposures by age/gender cohorts at various activity level. & The values were estimated from several data sources and not measured. IRs were estimated based on energy expenditure at various activity levels; reported food biases in the dietary surveys employed; time activity survey was based on recall. \\
\hline Linn et al., 1992 & Seven subject panels: Panel 1 healthy outdoor workers, 15 male, 15 female, ages 19-50; Panel 2 - healthy elementary school students, 5 male, 12 female, ages 10-12; Panel 3 healthy high school students, 7 male, 12 female, ages 13-17; Panel 4 - adult asthmatics, 15 male, 34 female, ages 18-20; Panel 5 - adult asthmatics not included in Panel 4, 10 male, 14 male, ages 19-46; Panel 6 young asthmatics, 7 male, 6 female, ages 11-16; Panel 7 construction workers, 7 male, ages 26-34. & Late spring and early autumn. Most subject panels were involved in 3 days of \(H R\) and diary recording. Construction workers were involved in 1 working day of \(H R\) and diary recording & Mean and upper estimates of IR for each subject panel. Also, IR at three self-estimated breathing rates (slow, medium, and fast) & \begin{tabular}{l}
Small sample size of subpopulation surveyed. \\
Population may not represent U.S. population. Calibration data not obtained over full HR range (i.e., heat stress). Activities based on shortterm diary data. Activity patterns data not presented.
\end{tabular} \\
\hline
\end{tabular}

Table 3-22. (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline Study & Population Surveyed & Survey Time Period & Data Generated & Limitations/Advantages \\
\hline Linn et al.; 1993 & Outdoor workers; 19 construction workers in suburban Los Angeles & (Mid-July-early November, 1991) Diary recordings before work, during work and break times & Distribution patterns of hourly IR by activity level. & Small sample population size. IR was predicted from HR calibration data. Estimated breathing rates were subjective in nature. Activities were based on short-term diary data. Population does not represent U.S. population. \\
\hline Spier et al., 1992 & 26 students, ages 10-17, both genders. & (Late September - October) Involved 3 consecutive days of diary recording & Distribution patterns of hourly IR by activity levels and location & IR predicted from HR calibration data; shortterm activity data based on diary recordings; accuracy of selfestimated breathing rate by younger population; population does not represent U.S. population small sample population size. \\
\hline CARB 1993 & 160 volunteers ages 6-77, both genders & Three 25 min phases of resting protocol in the lab 6 mins of active protocols in the lab. 30 min phases of field protocols repeated once. & Mean values of IR for adult males and females and children by their activity levels. & Population does not represent general U.S. population; HR was poorly correlated with IR. However, from multiple regression analysis \(F_{B}\) and BSA correlated better with VR; small sample size. \\
\hline Shamoo et al., 1990 & 9 volunteers of both genders, ages 21-37, 20 outdoor workers, 19-50 years old. & Involved 3-min indoor session/two 3-hr outdoor session at 4 activity levels & No IR data presented. & Graphs presented in original study were difficult to read; no useful data were presented for exposure assessments studies. \\
\hline
\end{tabular}

Table 3-22. (contimued)
\begin{tabular}{llllll}
\hline \multicolumn{1}{c|}{ Study } & & Population Surveyed & & Survey Time Period & \\
\hline
\end{tabular}

Note: \(\quad I R=\) inhalation rate; \(H R=\) heart rate; \(f_{B}=\) breathing frequency; \(B S A=\) body-surface area; \(E V R=\) equivalent ventilation rate.

Excluding the study by Layton (1993), the population surveyed in all of the key studies described in this report were limited to the Los Angeles area. This limited population does not represent the general U.S. population and may result in biases. However, based on other aspects of the study design, these studies were selected as the basis for recommended inhalation rates. The selection of inhalation rates to be used for exposure assessment studies depends on the age of the exposed population and the specific activity levels of this population during various exposure scenarios. The recommended values for adults, children (including infants), and outdoor worker/athlete for use in various exposure scenarios are discussed below.

Adults - For purposes of this recommendation, adults include adolescent (13-18 yrs), young to middle age adults ( \(19-64 \mathrm{yrs}\) ), and older adults ( \(65+\mathrm{yrs}\) ). The daily inhalation rates reported for adults are summarized as follows:

Summary of Inhalation Rates for Long Term Exposure
\begin{tabular}{lll}
\hline \begin{tabular}{l} 
Arithmetic Mean \\
\(\left(\mathrm{m}^{3} /\right.\) day \()\)
\end{tabular} & \begin{tabular}{c} 
Upper percentile \\
\(\left(\mathrm{m}^{3} /\right.\) day \()\)
\end{tabular} & Reference \\
\hline 13 & (1st approach) & - \\
13 & (2nd approach) & - \\
14 & (3rd approach) & - \\
20 & (Calculated, See Table 3-11) & 85.5
\end{tabular}

The daily inhalation rate ( \(20 \mathrm{~m}^{3} /\) day ) calculated from the data generated by Spier et al. (1992) is much higher when compared with the rates ( \(13-14 \mathrm{~m}^{3} /\) day) obtained by Layton (1993). This discrepancy can be attributed to the fact that the population surveyed by Spier et al. (1992) only represented individuals between 13-17 years old (adolescents), and heart rate (HR) and diary information were collected during hours spent awake (i.e., sleep was excluded in the activity level). Also, this age group of individuals tend to be more active than older adults. In contrast, the Layton (1993) study represented a wider age/gender cohort (13 years and older) and sleep was included in the activity level. Therefore, \(20 \mathrm{~m}^{3} /\) day (Spier et al., 1992) may represent the daily inhalation rate during active hours only. Based on this observations, the suggested daily inhalation rates for adults
ranges from 13-14 \(\mathrm{m}^{3} /\) day (Layton, 1993). Therefore, for continuous exposure assessments in which specific activity patterns are not known, \(13.3 \mathrm{~m}^{3} /\) day is the recommended average daily inhalation rate for adults.

The upper percentile estimate ( \(85.5 \mathrm{~m}^{3} /\) day) obtained from Spier et al. (1992) appears very high and can be attributed to the same phenomena explained above. Therefore, 85.5 \(\mathrm{m}^{3} /\) day may not be an appropriate as an upper percentile estimate. For continuous exposure assessment studies, \(20 \mathrm{~m}^{3} /\) day (EPA Ambient Water Quality Criteria Document) is the widely used average daily inhalation rate. This value is much higher than the ( \(13.3 \mathrm{~m}^{3} /\) day ) recommended rate in the Layton (1993) study, but it is similar to the active daily rate (20 \(\mathrm{m}^{3} /\) day) obtained from the Spier et al. (1992) study. Therefore, \(20 \mathrm{~m}^{3} /\) day is probably representive of an upper percentile estimate among adults.

For exposure scenarios in which the distribution of activity patterns is known, the following results, calculated from the studies referenced can be applied:

Summary of Inhalation Rates for Short-Term Exposure
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Arithmetic Mean ( \(\mathrm{m}^{3} / \mathrm{hr}\) )} & \multicolumn{2}{|r|}{Reference} \\
\hline Rest & Sedentary & Activity level Light & Moderate & Heavy & \\
\hline 0.5 & 0.5 & 1.4 & 2.4 & 3.3 & CARB, 1993 (Lab protocols) \\
\hline - & 0.6 & 1.2 & 1.8 & - & CARB, 1993 (Field protocols) \\
\hline 0.4 & 0.4 & 0.7 & 1.4 & 3.6 & Layton, 1993 (Short-term exposure) \\
\hline 0.4 & - & 0.6 & 1.5 & 3.0 & Layton, 1993 (3rd approach) \\
\hline - & - & 1.7 & 2.2 & 2.7 & Spier et al., 1992 \\
\hline - & - & 0.8 & 1.1 & 1.6 & Linn et al., 1992 \\
\hline
\end{tabular}

Based on these key studies, the following recommendations are made: for short term exposures in which distribution of activity patterns are specified, the recommended average rates are \(0.4 \mathrm{~m}^{3} / \mathrm{hr}\) during rest; \(0.5 \mathrm{~m}^{3} / \mathrm{hr}\) for sedentary activities; \(1.1 \mathrm{~m}^{3} / \mathrm{hr}\) for light activities; \(1.7 \mathrm{~m}^{3} / \mathrm{hr}\) for moderate activities; and \(2.8 \mathrm{~m}^{3} / \mathrm{hr}\) for heavy activities.

Children (including Infants) - For purposes of this recommendation, children are defined as males and females between the ages of 1-12 years old, while infants are individuals less than 1 year old. The inhalation rates for children are presented below according to different exposure scenarios. For continuous exposures the daily inhalation rates are summarized as follows:

\section*{Summary of Long Term Exposure Data}
\begin{tabular}{lll}
\begin{tabular}{c} 
Arithmetic Mean \\
\(\left(\mathrm{m}^{3} /\right.\) day \()\)
\end{tabular} & \begin{tabular}{c} 
Upper Percentiles \\
\(\left(\mathrm{m}^{3} /\right.\) day \()\)
\end{tabular} & Reference \\
\hline 4.5 (less than 1 yr) 1st approach & & Layton, 1993 \\
\(9.65(1-11\) yrs 1 st approach & & Layton, 1993 \\
\(7.7(0.5-10\) yrs) 2nd approach & \(64.0(99 \mathrm{th})\) & Layton, 1993 \\
\(21.4(10-12\) yrs) calculated & & Spier et al., 1992 \\
(Table 3-11) & & \\
\hline
\end{tabular}

Based on the key study results (i.e., Layton, 1993), the recommended daily inhalation rate for infants (children less than 1 yr ), during continuous exposure assessments is \(4.5 \mathrm{~m}^{3} /\) day. The mean daily inhalation rate obtained from the Spier et al. (1992) study is much higher than the values from the Layton (1993) study. This can be attributed to the survey methodologies used. In addition, dairy information and heart rate (HR) recordings were obtained when the children were awake (i.e., during active hours) in the Spier et al. (1992) study. In contrast, inhalation rates in the Layton (1993) study inhalation rates were calculated either based on basal metabolic rate (BMR) which includes resting or on food energy intake. Also both studies represent different age groups. Therefore, based on the Layton (1993) study, the recommended average daily inhalation rate for children between the ages of 1 and 12 years is \(8.7 \mathrm{~m}^{3} /\) day. The same observations discussed above can be attributed to the upper percentile estimate ( \(64 \mathrm{~m}^{3} /\) day) obtained from the Spier et al. (1992) study.

For exposure assessments in which activity patterns are known, the data summarized below can be used:

Summary of Short-Term Exposure Data
\begin{tabular}{lcclll}
\hline \multicolumn{5}{c}{ Arithmetic mean \(\left(\mathrm{m}^{3} / \mathrm{hr}\right)\)} & \\
\hline & \multirow{3}{c}{ Activity level } \\
Rest & Sedentary & Light & Moderate & Heavy & Reference \\
\hline & & & & & CARB, 1993 (lab. protocols) \\
0.4 & 0.4 & 0.8 & - & - & CARB, 1993 (field protocols) \\
- & - & - & 0.9 & - & Layton, 1993 (Short-term data) \\
0.2 & 0.3 & 0.5 & 1.0 & 2.5 & Spier et al., 1992 (10-12 yrs) \\
& - & 1.8 & 2.0 & 2.2 & Linn et al., 1992 (10-12 yrs) \\
\hline
\end{tabular}

For short term exposures, the recommended average hourly inhalation rates are based on these key studies. They are as follows: \(0.3 \mathrm{~m}^{3} / \mathrm{hr}\) during rest; \(0.4 \mathrm{~m}^{3} / \mathrm{hr}\) for sedentary activities; \(1.0 \mathrm{~m}^{3} / \mathrm{hr}\) for light activities; \(1.2 \mathrm{~m}^{3} / \mathrm{hr}\) for moderate activities; and \(1.9 \mathrm{~m}^{3} / \mathrm{hr}\) for heavy activities. The recommended short-term exposure data also includes infants (less than 1 yr ).

Outdoor Worker/Athlete - Inhalation rate data for outdoor workers/athlete are limited. However, based on the key studies (Linn et al., 1992 and 1993), the recommended average hourly inhalation rate for outdoor workers is \(1.3 \mathrm{~m}^{3} / \mathrm{hr}\) and the upper-percentile rate is 3.5 \(\mathrm{m}^{3} / \mathrm{hr}\) (see Tables 3-7 and 3-8). The recommended average inhalation rates for outdoor workers based on their activity levels categorized as slow (light activities), medium (moderate activities), and fast (heavy activities) are \(1.1 \mathrm{~m}^{3} / \mathrm{hr}, 1.5 \mathrm{~m}^{3} / \mathrm{hr}\), and \(2.3 \mathrm{~m} 3 / \mathrm{hr}\), respectively. These values are based on the data from Linn et al. (1992 and 1993) (see Tables 3-7 and 3-9).

\subsection*{3.3. REFERENCES FOR CHAPTER 3}

CARB. (1993) California Air Resources Board. Measurement of breathing rate and volume in routinely performed daily activities. Human Performance Lab. Contract No. A033-205. June 1993. 185 pgs.

ICRP. (1981) International Commission on Radiological Protection. Report of the task group on reference man. New York: Pergammon Press.

Layton, D.W. (1993) Metabolically consistent breathing rates for use in dose assessments. Health Physics 64(1):23-36.

Linn, W.S.; Shamoo, D.A.; Hackney, J.D. (1992) Documentation of activity patterns in "high-risk" groups exposed to ozone in the Los Angeles area. In: Proceedings of the Second EPA/AWMA Conference on Tropospheric Ozone, Atlanta, Nov. 1991. pp. 701-712. Air and Waste Management Assoc., Pittsburgh, PA.

Linn, W.S.; Spier, C.E.; Hackney, J.D. (1993) Activity patterns in ozone-exposed construction workers. J. Occ. Med. Tox. 2(1):1-14.

Shamoo, D.A.; Trim, S.C.; Little, D.E.; Linn, W.S.; Hackney, J.D. (1990) Improved quantitation of air pollution close rates by improved estimation of ventilation rate. In: Total Exposure Assessment Methodology: A New Horizon, pp. 553-564. Air and Waste Management Assoc., Pittsburgh, PA.

Shamoo, D.A.; Johnson, T.R.; Trim, S.C.; Little, D.E.; Linn, W.S.; Hackney, J.D. (1991) Activity patterns in a panel of outdoor workers exposed to oxidant pollution. J. Expos. Anal. Environ. Epidem. 1(4):423-438.

Shamoo, D.A.; Trim, S.C.; Little, D.E.; Whynot, J.D.; Linn, W.S. (1992) Effectiveness of training subjects to estimate their level of ventilation. J. Occ. Med. Tox. 1(1):55-62.

Spier, C.E.; Little, D.E.; Trim, S.C.; Johnson, T.R.; Linn, W.S.; Hackney, J.D. (1992) Activity patterns in elementary and high school students exposed to oxidant pollution. J. Exp. Anal. Environ. Epid. 2(3):277-293.
U.S. EPA. (1980) Water Quality Criteria Documents; Availability. Federal Register 45(231): 79318-79379.
U.S. EPA. (1985) Development of statistical distributions or ranges of standard factors used in exposure assessments. Washington, DC: Office of Health and Environmental Assessment; EPA report No. EPA 600/8-85-010. Available from: NTIS, Springfield, VA; PB85-242667.

\section*{APPENDIX 3-A}

\section*{Ventilation Data}

Table 3A-1. Statistics of the Age/Gender Cohorts Used to Develop Regression Equations for Predicting Basal Metabolic Rates (BMR) (from Schofield, 1985)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Gender/Age \\
(y)
\end{tabular}} & \multicolumn{2}{|c|}{BMR} & \multirow[b]{2}{*}{\(\mathrm{CV}^{2}\)} & \multirow[t]{2}{*}{Body Weight
\[
(\mathbf{k g})
\]} & \multirow[b]{2}{*}{\(\mathbf{N}^{\text {b }}\)} & \multirow[b]{2}{*}{BMR Equation \({ }^{\text {c }}\)} & \multirow[b]{2}{*}{\(\mathrm{r}^{\text {d }}\)} \\
\hline & MJ d \({ }^{-1}\) & \(\pm\) SD & & & & & \\
\hline \multicolumn{8}{|l|}{Males} \\
\hline Under 3 & 1.51 & 0.918 & 0.61 & 6.6 & 162 & 0.249 bw-0.127 & 0.95 \\
\hline 3 to \(<10\) & 4.14 & 0.498 & 0.12 & 21 & 338 & \(0.095 \mathrm{bw}+2.110\) & 0.83 \\
\hline 10 to < 18 & 5.86 & 1.171 & 0.20 & 42 & 734 & 0.074 bw + 2.754 & 0.93 \\
\hline 18 to < 30 & 6.87 & 0.843 & 0.12 & 63 & 2879 & \(0.063 \mathrm{bw}+2.896\) & 0.65 \\
\hline 30 to < 60 & 6.75 & 0.872 & 0.13 & 64 & 646 & \(0.048 \mathrm{bw}+3.653\) & 0.6 \\
\hline \(60+\) & 5.59 & 0.928 & 0.17 & 62 & 50 & \(0.049 \mathrm{bw}+2.459\) & 0.71 \\
\hline \multicolumn{8}{|l|}{Females} \\
\hline Under 3 & 1.54 & 0.915 & 0.59 & 6.9 & 137 & 0.244 bw - 0.130 & 0.96 \\
\hline 3 to \(<10\) & 3.85 & 0.493 & 0.13 & 21 & 413 & \(0.085 \mathrm{bw}+2.033\) & 0.81 \\
\hline 10 to < 18 & 5.04 & 0.780 & 0.15 & 38 & 575 & \(0.056 \mathrm{bw}+2.898\) & 0.8 \\
\hline 18 to < 30 & 5.33 & 0.721 & 0.14 & 53 & 829 & \(0.062 \mathrm{bw}+2.036\) & 0.73 \\
\hline 30 to \(<60\) & 5.62 & 0.630 & 0.11 & 61 & 372 & 0.034 bw + 3.538 & 0.68 \\
\hline \(60+\) & 4.85 & 0.605 & 0.12 & 56 & 38 & 0.038 bw + 2.755 & 0.68 \\
\hline
\end{tabular}
a Coefficient of variation (SD/mean)
b \(\mathbf{N}=\) number of subjects
c Body weight (bw) is in \(\mathbf{k g}\)
d coefficient of correlation
Source: Layton, 1993.

Table 3A-2. Characteristies of Individual Subjects: Anthropometric Data, Job Categories, Calibration Results \({ }^{2}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Subj. \#} & \multirow[b]{2}{*}{Age} & \multirow[b]{2}{*}{Ht. (in.)} & \multirow[b]{2}{*}{Wr. (b.)} & \multirow[b]{2}{*}{\begin{tabular}{l}
Ethnic \\
Group \({ }^{2}\)
\end{tabular}} & \multirow[b]{2}{*}{Job \({ }^{\text {b }}\)} & \multirow[b]{2}{*}{Site} & \multicolumn{2}{|c|}{Calibration} \\
\hline & & & & & & & \[
\begin{gathered}
\text { HR } \\
\text { Ranged }
\end{gathered}
\] & \(\mathrm{r}^{28}\) \\
\hline 1761 & 26 & 71 & 180 & Wht & GCW & Ofe & 69-108 & . 91 \\
\hline 1763 & 29 & 63 & 135 & Asn & GCW & Ofe & 80-112 & . 95 \\
\hline 1764 & 32 & 71 & 165 & BIE & Car & Ofe & 56-87 & . 95 \\
\hline 1765 & 30 & 73 & 145 & Wht & GCW & Ofe & 66-126 & . 97 \\
\hline 1766 & 31 & 67 & 170 & Hir & Car & Ofe & 75-112 & . 89 \\
\hline 1767 & 34 & 74 & 220 & Wht & Car & Ofe & 59-114 & . 98 \\
\hline 1768 & 32 & 69 & 155 & Bre & GCW & Ofe & 62-152 & . 95 \\
\hline 1769 & 32 & 77 & 230 & Wht & Car & Hosp & 69-132 & . 99 \\
\hline 1770 & 26 & 70 & 180 & Wht & Car & Hosp & 63-106 & . 89 \\
\hline 1771 & 39 & 66 & 150 & Wht & Car & Hosp & 88-118 & . 91 \\
\hline 1772 & 32 & 71 & 260 & Wht & Car & Hosp & 83-130 & . 97 \\
\hline 1773 & 39 & 69 & 170 & Wht & In & Hosp & 77-128 & . 95 \\
\hline 1774 & 23 & 68 & 150 & His & Car & Hosp & 68-139 & . 98 \\
\hline 1775 & 42 & 67 & 150 & Wht & Im & Hosp & 76-118 & . 88 \\
\hline 1776 & 29 & 70 & 180 & His & Car & Hosp & 68-152 & . 99 \\
\hline 1778 & 35 & 76 & 220 & Ind & Car & Hosp & 70-129 & . 94 \\
\hline 1779 & 40 & 70 & 175 & Wht & Car & Hosp & 72-140 & . 99 \\
\hline 1780 & 37 & 75 & 242 & His & Ind & Hosp & 68-120 & . 93 \\
\hline 1781 & 38 & 65 & 165 & His & Lab & Hosp & 66-121 & . 89 \\
\hline \[
\begin{aligned}
& \text { Mean } \\
& \text { S.D. }
\end{aligned}
\] & \[
\begin{gathered}
33 \\
5
\end{gathered}
\] & \[
\begin{gathered}
70 \\
4
\end{gathered}
\] & \[
\begin{gathered}
181 \\
36
\end{gathered}
\] & & & & \[
\begin{gathered}
70-123 \\
8-16
\end{gathered}
\] & \[
\begin{aligned}
& .94 \\
& .04
\end{aligned}
\] \\
\hline
\end{tabular}

\footnotetext{
2 Abbreviations are interpreted as follows. Ethnic Group: Asn \(=\) Asian-Pacific, Blk \(=\) Black, His \(=\) Hispanic, Ind \(=\) American Indian, Wht \(=\) White
b Job: Car \(=\) carpenter, GCW \(=\) general construction worker, Im \(=\) ironworker, Lab \(=\) leborer
- Sitc: Horp \(=\) hospital buidling, Ofe \(=\) medical office complex. Calibration data
- Hr range \(=\) range of heart ratea in calibration atudy
- \(\mathbf{r}^{2}=\) coefficient of determination (proportion of ventilation rate variability explainable by heart rate variability under calibration-ztudy conditions, using quadratic prediction equation).
}

Source: Linn et al., 1993.

Table 3A-3.
Mean Minute Ventilation ( \(\mathrm{V}_{\mathrm{B}}, \mathrm{L} / \mathrm{min}\) ) by Group and Activity for Laboratory Protocols
\begin{tabular}{|c|c|c|c|c|c|}
\hline Activity & & Young Childrena & Children & Adult Females & Adult Males \\
\hline Lying & & 6.19 & 7.51 & 7.12 & 8.93 \\
\hline Sitting & & 6.48 & 7.28 & 7.72 & 9.30 \\
\hline Standing & & 6.76 & 8.49 & 8.36 & 10.65 \\
\hline \multirow[t]{8}{*}{Wallaing} & 1.5 mph & 10.25 & DNP & DNP & DNP \\
\hline & 1.875 mph & 10.53 & DNP & DNP & DNP \\
\hline & 2.0 mph & DNP & 14.13 & DNP & DNP \\
\hline & 2.25 mph & 11.68 & DNP & DNP & DNP \\
\hline & 2.5 mph & DNP & 15.58 & 20.32 & 24.13 \\
\hline & 3.0 mph & DNP & 17.79 & 24.20 & DNP \\
\hline & 3.3 mph & DNP & DNP & DNP & 27.90 \\
\hline & 4.0 mph & DNP & DNP & DNP & 36.53 \\
\hline \multirow[t]{5}{*}{Running} & 3.5 mph & DNP & 26.77 & DNP & DNP \\
\hline & 4.0 mph & DNP & 31.35 & \(46.03^{\text {b }}\) & DNP \\
\hline & 4.5 mph & DNP & 37.22 & \(47.86^{\text {b }}\) & 57.30 \\
\hline & 5.0 mph & DNP & DNP & \(50.78{ }^{\text {b }}\) & 58.45 \\
\hline & 6.0 mph & DNP & DNP & DNP & \(65.66^{\text {b }}\) \\
\hline
\end{tabular}
a Young Children, male and female 3-5.9 yr olds; Children, male and female 6-12.9 yr olds; Adult Females, adolezcent, young to middlo-aged, and older adult females; Adult Malen, adolescent, young to middlo-aged, and older adult males; DNP, group did not perform this protocol or N was too small for appropriste mean comparisons
b Older adults not included in the menn value since they did not perform running protocol at particular speeds.
Source: CARB, 1993.

Table 3A-4. Mean Minute Ventilation ( \(\left.V_{B}, L / m i n\right)\) by Group and Activity for Field Protocols
\begin{tabular}{lclcc}
\hline \multicolumn{1}{c}{ Activity } & Young Children & Children & Adult Females & Adult Males \\
\hline Play & 11.31 & 17.89 & DNP & DNP \\
Car Driving & DNP & DNP & 8.95 & 10.79 \\
Car Riding & DNP & DNP & 8.19 & 9.83 \\
Yardwork & DNP & DNP & \(19.23^{\circ}\) & \(26.07^{\circ} / 31.89^{c}\) \\
Housework & DNP & DNP & 17.38 & DNP \\
Car Maintenance & DNP & DNP & DNP & \(23.21^{\text {d }}\) \\
Mowing & DNP & DNP & DNP & \(36.55^{\text {e }}\) \\
Woodworking & DNP & DNP & DNP & \(24.42^{\circ}\) \\
\hline
\end{tabular}
a Young Children, male and female 3-5.9 yr olds; Children, male and femnle 6-12.9 yr olds; Adult Females, adolescent, young to middlo-aged, and older adult femalea; Adult Males, adolescent, young to middlo-aged, and older adult males; DNP, group did not perform this protocol or N was too small for appropriste mean comparisons;
b Mean value for young to middle-aged adults only
c Mean value for older actulte only
d Older adults not included in the mean value since they did not perform this activity; + , adolescents not included in mean value since they did not perform this activity

Source: CARB, 1993.


Table 3A-5. Ventilation Data for Training Subjects (Raw Data) (contimued)

\begin{tabular}{|c|}
\hline DRAFT \\
DO NOT QUOTE OR \\
CITE \\
\hline
\end{tabular}

Table 3A-5. Ventilation Data for Training Subjects (Raw Data) (continued)


DRAFT

\section*{DO NOT GUOTE OR (is CITE}

Table 3A-5. Ventilation Data for Training Subjects (Raw Data) (Continued)


Table 3A-5. Ventilation Data for Training Subjects (Raw Data)
(continued)


Table 3A-5. Ventilation Data for Training Subjects (Raw Data) (continued)


Table 3A-5. Ventilation Data for Training Subjects (Raw Data) (continued)


\section*{DR}
DO NOT CGELUK

Table 3A-5. Ventilation Data for Training Subjects (Raw Data) (continued)


Source: Shamoo et al., 1992. Effectiveness of Training Subjects to Estimate Their Level of Ventilation.

Table 3A-6. Estimated Minute Ventilation Associated with Activity Lovel for Average Male Adule
\begin{tabular}{|c|c|c|}
\hline Level of work & L/min & Representative activities \\
\hline Light & 13 & Lovel walking at 2 mph ; washing clothes \\
\hline Light & 19 & Level walking at 3 mph ; bowling; scrubbing floors \\
\hline Light & 25 & Dancing; pushing wheelbarrow with 15-kg load; simple construction; stacking firewood \\
\hline Moderate & 30 & Easy cycling; pushing wheelbarrow with \(75-\mathrm{kg}\) load; using sledgehammer \\
\hline Moderate & 35 & Climbing stairs; playing teanis; digging with spade \\
\hline Moderate & 40 & Cycling at 13 mph ; walling on snow; digging trenches \\
\hline Heavy & 55 & Cross-country skiing; rock climbing; stair climbing \\
\hline Heavy & 63 & with load; playing squash or handball; chopping \\
\hline Very heavy & 72 & with axe \\
\hline Very heavy & 85 & Level running at 10 mph ; competitive cycling \\
\hline Severe & \(100+\) & Competitive long distance running; cross-country skiing \\
\hline
\end{tabular}
a Average adult assumed to weigh 70 kg .

Source: Adapted from U.S. EPA, 1985

Table 3A-7. Minute Ventilation Ranges by Age, Sex, and Activily Level


Table 3A-7. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{\begin{tabular}{l}
Age \\
(yr)
\end{tabular}} & \multirow{3}{*}{Sex} & \multicolumn{11}{|c|}{Ventilation ranges (liters/minute)} & & \\
\hline & & \multicolumn{3}{|c|}{Resting} & \multicolumn{3}{|c|}{Light} & \multicolumn{3}{|c|}{Moderate} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{n}} & & \\
\hline & & n & Range & Mean & n & Range & Mean & n & Range & Mean & & & Range & Mean \\
\hline \multirow[t]{2}{*}{15} & F & 1 & - & 6.2 & & - & & 1 & & - & 26.8 & 6 & 68.4-97.1 & 87.1 \\
\hline & M & 8 & 3.1-26.8 & 11.1 & & - & & 7 & 27.8 & 46.3 & 39.3 & 6 & 48.4-140.3 & 110.5 \\
\hline \multirow[t]{2}{*}{16} & F & 50 & - & 15.2 & & - & - & & & & & 8 & 73.6-119.1 & 93.9 \\
\hline & M & 50 & - & 15.6 & & - & & & & & & 3 & 79.6-132.2 & 102.5 \\
\hline \multirow[t]{2}{*}{17} & F & & - & & & - & & & & & & 2 & 91.9-95.3 & 93.6 \\
\hline & M & 12 & 5.8-9.0 & 7.3 & & - & & 12 & 40.0 & 63.0 & 48.6 & 3 & 89.4-139.3 & 107.7 \\
\hline \multirow[t]{2}{*}{18} & F & & - & & & - & & & & & & & - & \\
\hline & M & & - & & & - & & & & & & 9 & 99.7-143.0 & 120.9 \\
\hline Adults & F & 595 & 4.2-11.66 & 5.7 & 786 & 4.2-29.4 & 8.1 & 106 & 20.7 & 34.2 & 26.5 & 211 & 23.4-114.8 & 47.9 \\
\hline Adults & M & 454 & 2.3-18.8 & 12.2 & 102 & 2.3-27.6 & 13.8 & 102 & 14.4 & 78.0 & 40.9 & 267 & 34.6-183.4 & 80.0 \\
\hline
\end{tabular}
\(\mathrm{n}=\) number of observations
Note: Values in liters/minute can be converted to units of \(m^{3} /\) hour by multiplying by the conversion factor, 60 minutes/hour 1000 liters \(/ \mathrm{m}^{3}\)

Source: Adapted from U.S. EPA, 1985.

Table 3A-8. Reference Valves Obtrained From Lilerature Sources
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Col. \\
Line
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
\[
1
\] \\
Subject
\end{tabular}} & \multicolumn{2}{|l|}{2} & \multicolumn{2}{|l|}{3} & \multicolumn{3}{|c|}{4} & \multicolumn{3}{|c|}{5} & \multicolumn{4}{|c|}{6} \\
\hline & & W (kg) & \multicolumn{3}{|c|}{Resting} & \multicolumn{3}{|c|}{Light Activity} & \multicolumn{3}{|c|}{Heavy Work} & \multicolumn{4}{|l|}{Maximal Work During Exercise} \\
\hline & & & f & VT & V* & 1 & VT & V* & \(f\) & VT & V* & 1 & VT & V* & \\
\hline \multicolumn{16}{|c|}{Adult} \\
\hline 1 & Man & 68.5 & 12 & 750 & 7.4 & 17 & 1670 & 29 & 21 & 2030 & 43 & & & & \\
\hline 2 & \(1.7 \mathrm{~m}^{2} \mathrm{SA}\) & & 12 & 500 & 6 & & & & & & & & & & \\
\hline 3 " & 30y; 170 cm L & & 15 & 500 & 7.5 & 16 & 1250 & 20 & & & & & & & \\
\hline 4 & 20-33 y & 70.4 & & & & & & & & & & 40 & 3050 & 111 & \\
\hline 5 & Woman & 54 & 12 & 340. & 4.5 & 19 & 860 & 16 & 30 & 880 & 25 & & & & \\
\hline 6 & \(30 \mathrm{y} ; 160 \mathrm{~cm} \mathrm{~L}\) & & 15 & 400 & 6 & 20 & 940 & 19 & & & & & & & \\
\hline 7 & 20-25 y; 165.8 cm L & 60.3 & & & & & & & & & & 46 & 2100 & 90 & \\
\hline 8 & Pregnant (8th mo) Adolescent & & 16 & 650 & 10 & & & & & & & & & & \\
\hline 9 & male, 14-16 y & & 16 & 330 & 5.2 & & & & & & & 53 & 2520 & 113 & \\
\hline 10 & make, 14-15 y & 59.4 & & & & & & & & & & & & & \\
\hline 11 & female, 14-16 y & - & 15 & 300 & 4.5 & & & & & & & & & & \\
\hline 12 & \begin{tabular}{l}
female, \(14-15 \mathrm{y} ; 164.9 \mathrm{~cm} \mathrm{~L}\) \\
Children
\end{tabular} & 56 & & & & & & & & & & 52 & 1870 & 88 & \\
\hline 13 & \(10 \mathrm{y} ; 140 \mathrm{~cm} \mathrm{~L}\) & & 16 & 300 & 4.8 & 24 & 600 & 14 & & & & & & & \\
\hline 14 & males, 10-11 y & 36.5 & & & & & & & & & & 58 & 1330 & 71 & \\
\hline \multirow[t]{2}{*}{15} & males, \(10-11 \mathrm{y} ; 140.6 \mathrm{~cm} \mathrm{~L}\) & 32.5 & & & & & & & & & & 61 & 1050 & \[
65
\] &  \\
\hline & & & & & & & & & & & . & & &  &  \\
\hline
\end{tabular}

Table 3A-8. (continued)


Values in column 2 are body weights referable to the dimension quoted in column 1. \(\mathrm{f}=\) frequency (breaths \(/ \mathrm{min}\) ); \(\mathrm{VT}=\) tidal volume ( ml ); \(\mathrm{V}^{*}=\mathrm{minute}\) volume ( \(\mathrm{l} / \mathrm{min}\) ); \(\mathrm{SA}=\mathrm{surface}\) area.
- Calculated from \(\mathrm{V}^{*}=\mathrm{f} \times \mathrm{VT}\).
b Crying.
Source: ICRP, 1981.


\section*{4. DERMAL ROUTE}

Dermal exposure to environmental contaminants can occur during a variety of activities and may be associated with a number of different environmental media (U.S. EPA, 1992). These media include:
- Water (e.g., bathing, washing, swimming);
- Soil (e.g., outdoor recreation, gardening, construction);
- Sediment (e.g., wading, fishing);
- Liquids (e.g., use of commercial products);
- Vapors (e.g., use of commercial products); and
- Indoor dust (e.g., children playing on carpeted floors).

The major factors that must be considered when estimating dermal exposure include the amount of or concentration of contaminant contacting the skin, the duration of exposure, the rate at which the material is absorbed, and the size of the exposed body surface area. This chapter focuses primarily on measurements of the body surface areas and various factors for estimating dermal exposure to contaminants in water and soil. U.S. EPA (1992), Dermal Exposure Assessment: Principles and Applications, provides detailed information concerning dermal exposure using a stepwise guide for the exposure assessment process.

\subsection*{4.1. EQUATION FOR DERMAL DOSE}

The average daily dose (ADD) is the dose rate averaged over a pathway-specific period of exposure expressed as a daily dose on a per-unit-body-weight basis. The ADD is used for exposure to chemicals with non-carcinogenic non-chronic effects. For compounds with carcinogenic or chronic effects, the lifetime average daily dose (LADD) is used. The LADD is the dose rate averaged over a lifetime. For contact with contaminated water, dermally absorbed average daily dose can be estimated by (U.S. EPA 1992):
\[
\begin{equation*}
A D D=\frac{D A_{\text {event }} \times E V \times E D \times E F \times S A}{B W \times A T} \tag{Eqn.4-1}
\end{equation*}
\]
where:
\begin{tabular}{ll}
\(\mathrm{ADD}=\) & average daily dose (mg/kg-day); \\
\(\mathrm{DA}_{\text {ovent }}=\) & absorbed dose per event (mg/cm²-event); \\
\(\mathrm{EV}=\) & event frequency (events/yr); \\
\(\mathrm{ED}=\) & exposure duration (years); \\
\(\mathrm{EF}=\) & event frequency (days/year); \\
\(\mathrm{SA}=\) & skin surface area available for contact \(\left(\mathrm{cm}^{2}\right) ;\) \\
\(\mathrm{BW}=\) & body weight (kg); and \\
\(\mathrm{AT}=\) & averaging time (days) for noncarcinogenic effects, AT \(=\mathrm{ED}\) and for \\
& \(\quad\) carcinogenic effects, AT \(=70\) years or 25,550 days.
\end{tabular}

For example, this method is used when calculating absorbed dose for a swimmer. The total body surface area (SA) is assumed to be exposed to contaminated water for a period of time (ED). The DA \({ }_{\text {event }}\) is estimated taking in consideration the permeability coefficient from water, the chemical concentration in water and event duration. The approach for estimating \(\mathrm{DA}_{\text {ovent }}\) is different for inorganics and organics. The nonsteady-state approach for estimating the dermally absorbed dose from water is recommended as the preferred approach for application to organics which exhibit octanol-water partitioning (U.S. EPA, 1992). First, the method more accurately reflects normal human exposure conditions since the short contact times associated with bathing and swimming generally mean that steady state will not occur. Second, the method accounts for the dose that can occur after the actual exposure event due to absorption of contaminants stored in skin lipids. It is recommended that the traditional steady-state approach be applied to inorganics (U.S. EPA, 1992). Use of the nonsteady-state model for organics has implications for how to select \(K_{p}\) values for these chemicals (U.S. EPA, 1992). The reader is referred to U.S. EPA (1992) for detailed information for estimating the absorbed dose per event ( \(\mathrm{DA}_{\text {even }}\) ).

For contact with contaminated soil, a variation of Equation 4-1 is used. Dermally absorbed dose is calculated using the equation below:
\[
\begin{equation*}
A D D=\frac{D A_{\text {evens }} \times E F \times E D \times S A}{B W \times A T} \tag{Eqn.4-2}
\end{equation*}
\]
where:
\begin{tabular}{|c|c|c|}
\hline ADD & & average daily dose (mg/kg-day); \\
\hline DA \({ }_{\text {event }}\) & = & absorbed dose per event ( \(\mathrm{mg} / \mathrm{cm}^{2}\)-event); \\
\hline SA & = & skin surface area available for contact ( \(\mathrm{cm}^{2}\) ); \\
\hline EF & = & exposure frequency (events/year); \\
\hline ED & = & exposure duration (years); \\
\hline BW & = & body weight (kg); and \\
\hline AT & \(=\) & averaging time (days), a non-carcinogenic effects, AT \(=E D\), and for carcinogenic effects, \(\mathrm{AT}=70\) years or 25,550 days. \\
\hline
\end{tabular}

Estimation of the \(\mathrm{DA}_{\text {event }}\) for contaminated soil exposure is based on the concentration of the contaminant in the soil, the adherence factor of soil to skin, and the absorption fraction.

The apparent simplicity of the absorption fraction (\% absorbed) makes this approach appealing, but it is not practical to apply it to water contact scenarios, such as swimming, because of the difficulty in estimating the total material contacted (U.S. EPA, 1992). There is essentially an infinite thickness of material available, and the contaminant will be continuously replaced, thereby increasing the amount of available material by some large, but unknown, amount. Therefore, the permeability coefficient-based approach is advocated over the absorption fraction approach for determining the dermally absorbed dose of compounds in an aqueous media (U.S. EPA, 1992). In contrast, not all of the soil contaminant in a thick layer of dirt applied to the skin can be considered to be bioavailable, nor can it be considered to constitute a dose. However, if the amount of contaminant in the adhered soil can be established, the absorption fraction approach may be practical. Because of the lack of \(K_{p}\) data for compounds bound to soil, and reduced uncertainty in defining an applied dose, the absorption fraction-based approach is suggested for determining the dermally absorbed dose of soil contaminants. The reader is referred to U.S. EPA (1992) for a more detailed explanation of the equations, assumptions, and approaches, that have been are presented in this section.

\subsection*{4.2. SURFACE AREA}

\subsection*{4.2.1. Background}

Dermal exposure to contaminants is an important pathway that warrants consideration in many exposure assessments. The size of the exposed surface area is a necessary component of any dermal exposure scenario. Upon determination that a contaminant can gain access to the body through topical (skin) exposure, the assessor may use estimations of total body surface area or, depending upon the exposure scenario, estimations of specific body part surface areas to calculate the contact rate for the contaminant. Information on soil adherence to human skin may also be needed, depending on the scenario. This section presents values for total body surface area and the surface area of component body parts that may be exposed to contaminated media, information on the application of surface area data, and dermal adherence data. The available studies are summarized in the following sections. Studies on surface area and adherence have been classified as either key studies or relevant studies based on their applicability to exposure assessment needs. Recommended values are based on the results of key studies, but relevant studies are also presented to provide the reader with added perspective on the current state-of-knowledge pertaining to dermal exposure factors.

\subsection*{4.2.2. Measurement Techniques}

Direct measurement techniques that have been used to measure total body surface area include direct coating, triangulation, and surface integration (U.S. EPA, 1985). The coating methods consist of coating either the whole body or specific regions with a substance of known or measured area. Triangulation consists of marking the area of the body into geometric figures, then calculating the figure areas from their linear dimensions. Surface integration is performed by using a planimeter and adding the areas.

Using the triangulation measurement technique, surface area of the body can be estimated using geometric approximations by assuming that parts of the body resemble geometric solids (Boyd, 1935). More recently, Popendorf and Leffinwell (1976), and Haycock et al. (1978) have developed geometric methods for estimating body surface area
(U.S. EPA, 1985). Both methods assume that body parts correspond to geometric solids, such as the sphere and cylinder. A linear method was proposed by DuBois and DuBois (1916) (U.S. EPA, 1985). It was based on the principle that the surface areas of the parts of the body are proportional, rather than equal, to the surface area of the solids they resemble.

In addition to direct measurement techniques, several formulae, including that of Gehan and George (1970), have been proposed for estimating body surface area from measurements of other major body dimensions (i.e., height and weight) (U.S. EPA, 1985). Generally, the formulae are based on the principles that body density and shape are roughly the same and that the relationship of surface area to any dimension may be represented by the curve of central tendency of their plotted values or by the algebraic expression for the curve (U.S. EPA, 1985). A discussion and comparison of formulae to determine total body surface area are presented in Appendix 4A.

Determination of the surface areas of the component body parts has been performed by a number of authors as part of their determination of whole body surface areas. The surface areas of anatomical parts have been reported by gender, age, and ethnic group. Early studies have reported surface areas for such component parts as head, trunk, upper arms, forearms, hands, thighs, legs, and feet. Several investigators have estimated body surface area and reported their results in terms of surface areas of different parts of the body as well as total surface area (U.S. EPA, 1985). The literature contains surface area of body parts as both direct measurements and as estimates using the linear and geometric methods.

\subsection*{4.2.3. Key Surface Area Studies}
U.S. EPA (1985) - Development of Statistical Distributions or Ranges of Standard Factor Used in Exposure Assessments - U.S. EPA (1985) analyzed the direct surface area measurement data of Gehan and George (1970) using the Statistical Processing System (SPS) software package of Buhyoff et al. (1982). The data of Gehan and George (401 observations) were selected from the data of Boyd (1935) where the data were complete for surface area, height, weight, and age. Although Boyd (1935) reported surface area estimates for 1,114 individuals, only 401 observations were used by Gehan and George (1970) in their analysis. These observations were those obtained by direct coating, triangulation or surface
integration methods (Gehan and George, 1970). SPS was used to generate'equations for calculating surface area as a function of height and weight. These equations were then used to calculate surface area distributions of the U.S. population using the height and weight data obtained from the National Health and Nutrition Examination Survey (NHANES) II and the computer program QNTLS of Rochon and Kalsbeek (1983) (U.S. EPA, 1985). A description of the computer program is provided in Appendix B of U.S. EPA (1985).

The equation proposed by Gehan and George (1970) was determined in U.S. EPA (1985) as the best choice for estimating total body surface area. However, the paper by Gehan and George gave insufficient information to estimate the standard error about the regression. Therefore, the 401 direct measurements of children and adults (i.e., Boyd, 1935) were reanalyzed in U.S. EPA (1985) using the formula of Dubois and Dubois (1916) and SPS to obtain the standard error.

Regression equations using the Dubois and Dubois (1916) formula were also developed for specific body parts by U.S. EPA (1985) using the surface area of various body parts provided by Boyd (1935) and Van Graan (1969), and SPS. Regression equations for adults were developed for the head, trunk (including the neck), upper extremities and lower extremities. Upper extremities comprise arms and hands; arms are further divided into upper arms and forearms. Lower extremities include legs and feet, with legs further divided into thighs and lower legs. Table 4-1 presents a summary of the equation parameters developed in U.S. EPA (1985) for calculating surface area of adult body parts. Equations to estimate the body part surface area of children were not developed because of insufficient data.

Percentile estimates of total surface area and surface area of body parts developed by U.S. EPA (1985) using the regression equations and NHANES II height and weight data are presented in Table 4-2 and 4-3 for adult males and adult females, respectively. The calculated mean surface areas of body parts for men and women are presented in Table 4-4. The standard deviation, the minimum value, and the maximum value for each body part are included. The median total body surface area for men and women and the corresponding standard errors about the regressions are also given. It has been assumed that errors associated with height and weight are negligible (U.S. EPA, 1985). The data in Table 4-5 present the percentage of total body surface by body part for men and women.

Table 4-1. Summary of Equation Parameters for Calculating Adult Body Surface Area
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Body Part} & \multicolumn{3}{|c|}{Equation for surface area \({ }^{2}\left(m^{2}\right)\)} & \multirow[b]{2}{*}{P} & \multirow[b]{2}{*}{\(\mathbf{R}^{\mathbf{2}}\)} & \multirow[b]{2}{*}{S.E.} & \multirow[b]{2}{*}{N} \\
\hline & \(a_{0}\) & \(W^{\text {a }}\) & \(\mathrm{H}^{22}\) & & & & \\
\hline \multicolumn{8}{|l|}{Head} \\
\hline Female & 0.0256 & 0.124 & 0.189 & 0.01 & 0.302 & 0.00678 & 57 \\
\hline Male & 0.0492 & 0.339 & -0.0950 & 0.01 & 0.222 & 0.0202 & 32 \\
\hline \multicolumn{8}{|l|}{Trunk} \\
\hline Female & 0.188 & 0.647 & -0.304 & 0.001 & 0.877 & 0.00567 & 57 \\
\hline Male & 0.0240 & 0.808 & -0.0131 & 0.001 & 0.894 & 0.0118 & 32 \\
\hline \multicolumn{8}{|l|}{Upper Extremities} \\
\hline Female & 0.0288 & 0.341 & 0.175 & 0.001 & 0.526 & 0.00833 & 57 \\
\hline Male & 0.00329 & 0.466 & 0.524 & 0.001 & 0.821 & 0.0101 & 48 \\
\hline \multicolumn{8}{|l|}{Arms} \\
\hline Female & 0.00223 & 0.201 & 0.748 & 0.01 & 0.731 & 0.00996 & 13 \\
\hline Male & 0.00111 & 0.616 & 0.561 & 0.001 & 0.892 & 0.0177 & 32 \\
\hline \multicolumn{8}{|l|}{Upper Arms} \\
\hline Male & 8.70 & 0.741 & -1.40 & 0.25 & 0.576 & 0.0387 & 6 \\
\hline \multicolumn{8}{|l|}{Forearms} \\
\hline Male & 0.326 & 0.858 & -0.895 & 0.05 & 0.897 & 0.0207 & 6 \\
\hline \multicolumn{8}{|l|}{Hands} \\
\hline Female & 0.0131 & 0.412 & 0.0274 & 0.1 & 0.447 & 0.0172 & \(12^{\text {b }}\) \\
\hline Male & 0.0257 & 0.573 & -0.218 & 0.001 & 0.575 & 0.0187 & 32 \\
\hline Lower Extremities \({ }^{\text {c }}\) & 0.00286 & 0.458 & 0.696 & 0.001 & 0.802 & 0.00633 & 105 \\
\hline Legs & 0.00240 & 0.542 & 0.626 & 0.001 & 0.780 & 0.0130 & 45 \\
\hline Thighs & 0.00352 & 0.629 & 0.379 & 0.001 & 0.739 & 0.0149 & 45 \\
\hline Lower legs & 0.000276 & 0.416 & 0.973 & 0.001 & 0.727 & 0.0149 & 45 \\
\hline Feet & 0.000618 & 0.372 & 0.725 & 0.001 & 0.651 & 0.0147 & 45 \\
\hline
\end{tabular}

\footnotetext{
2 \(\quad \mathrm{SA}=\mathrm{a}_{0} \mathrm{~W}^{11} \mathrm{H}^{\mathbf{2}}\)
\(W=\) Weight in kilograms; \(H=\) Height in centimeters; \(P=\) Level of significance; \(\mathbf{R}^{2}=\) Coefficient of determination;
SA = Surface Area; S.E. = Standard error; \(\mathrm{N}=\) Number of observations
b One observation for a female whose body weight exceeded the 95 percentile was not used.
c Although two separate regressions were marginally indicated by the \(F\) test, pooling was done for consistency with individual components of lower extremities.
}

Source: U.S. EPA, 1985.

Table 4-2. Surface Area of Adult Males in Square Meters
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Body part} & \multicolumn{10}{|c|}{Percentile} \\
\hline & 5 & 10 & 15 & 25 & 50 & 75 & 85 & 90 & 95 & S.E. \({ }^{\text {a }}\) \\
\hline Total & 1.66 & 1.72 & 1.76 & 1.82 & 1.94 & 2.07 & 2.14 & 2.20 & 2.28 & 0.00374 \\
\hline Head & 0.119 & 0.121 & 0.123 & 0.124 & 0.130 & 0.135 & 0.138 & 0.140 & 0.143 & 0.0202 \\
\hline Trunk \({ }^{\text {b }}\) & 0.591 & 0.622 & 0.643 & 0.674 & 0.739 & 0.807 & 0.851 & 0.883 & 0.935 & 0.0118 \\
\hline Upper extremities & 0.321 & 0.332 & 0.340 & 0.350 & 0.372 & 0.395 & 0.408 & 0.418 & \(0.43{ }^{\text {c }}\) & 0.00101 \\
\hline Arms & 0.241 & 0.252 & 0.259 & 0.270 & 0.291 & \(0.314^{\text {c }}\) & 0.328 \({ }^{\text {c }}\) & \(0.339^{\circ}\) & \(0.354^{\text {c }}\) & 0.00387 \\
\hline Forearms & 0.106 & 0.111 & 0.115 & 0.121 & 0.131 & \(0.144^{\text {c }}\) & \(0.151^{\text {c }}\) & \(0.157^{\text {c }}\) & \(0.166^{c}\) & 0.0207 \\
\hline Hands & 0.085 & 0.088 & 0.090 & 0.093 & 0.099 & 0.105 & 0.109 & 0.112 & 0.117 & 0.0187 \\
\hline Lower extremities & 0.653 & 0.676 & 0.692 & 0.715 & 0.761 & 0.810 & 0.838 & 0.858 & \(0.888^{\circ}\) & 0.00633 \\
\hline Legs & 0.539 & 0.561 & 0.576 & 0.597 & 0.640 & 0.686 \({ }^{\text {c }}\) & \(0.714^{\text {c }}\) & \(0.734^{\text {c }}\) & \(0.762^{\text {c }}\) & 0.0130 \\
\hline Thighs & 0.318 & 0.331 & 0.341 & 0.354 & 0.382 & \(0.411^{\text {c }}\) & \(0.429^{\text {c }}\) & \(0.443^{\text {c }}\) & \(0.463^{\text {c }}\) & 0.0149 \\
\hline Lower legs & 0.218 & 0.226 & 0.232 & 0.240 & 0.256 & 0.272 & 0.282 & 0.288 & 0.299 & 0.0149 \\
\hline Feet & 0.114 & 0.118 & 0.120 & 0.124 & 0.131 & 0.138 & 0.142 & 0.145 & 0.149 & 0.0147 \\
\hline
\end{tabular}
- Standard error for the 5-95 percentile of each body part.
b Trunk includes neck.
c. Percentile estimates exceed the maximum measured values upon which the equations are based.

Source: U.S. EPA, 1985.


Table 4-3. Surface Area of Adult Females in Square Meters
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Body part} & \multicolumn{10}{|c|}{Percentile} \\
\hline & 5 & 10 & 15 & 25 & 50 & 75 & 85 & 90 & 95 & S.E.' \\
\hline Total & 1.45 & 1.49 & 1.53 & 1.58 & \(1.69{ }^{\circ}\) & 1.82 & 1.91 & 1.98 & 2.09 & 0.00374 \\
\hline Head & 0.106 & 0.107 & 0.108 & 0.109 & 0.111 & 0.113 & 0.114 & 0.115 & 0.117 & 0.00678 \\
\hline Trunk \({ }^{\text {b }}\) & 0.490 & 0.507 & 0.518 & 0.538 & 0.579 & 0.636 & 0.677 & 0.704 & 0.752 & 0.00567 \\
\hline Upper extremities & 0.260 & 0.265 & 0.269 & 0.274 & 0.287 & 0.301 & 0.311 & 0.318 & 0.329 & 0.00833 \\
\hline Arms & 0.210 & 0.214 & 0.217 & 0.221 & 0.230 & \(0.238{ }^{\circ}\) & \(0.243^{\text {c }}\) & \(0.247^{\circ}\) & \(0.253^{\circ}\) & 0.00996 \\
\hline Hands & 0.0730 & 0.0746 & 0.0757 & 0.0777 & 0.0817 & 0.0868 & \(0.0903^{\text {c }}\) & \(0.092{ }^{\circ}\) & \(0.0966^{\text {c }}\) & 0.0172 \\
\hline Lower extremities & 0.564 & 0.582 & 0.595 & 0.615 & 0.657 & 0.704 & 0.736 & 0.757 & 0.796 & 0.00633 \\
\hline Legs & 0.460 & 0.477 & 0.488 & 0.507 & 0.546 & 0.592 & 0.623 & 0.645 & \(0.683^{\circ}\) & 0.0130 \\
\hline Thighs & 0.271 & 0.281 & 0.289 & 0.300 & 0.326 & 0.357 & 0.379 & 0.394 & \(0.421^{\text {c }}\) & 0.0149 \\
\hline Lower legs & 0.186 & 0.192 & 0.197 & 0.204 & 0.218 & 0.233 & 0.243 & 0.249 & 0.261 & 0.0149 \\
\hline Feet & 0.100 & 0.103 & 0.105 & 0.108 & 0.114 & 0.121 & 0.126 & 0.129 & 0.134 & 0.0147 \\
\hline
\end{tabular}
- Standard error for the 5-95 percentile of each body part.
b Trunk includes neck.
c Percentile estimates exceed the maximum measured values upon which the equations are based.
Source: U.S. EPA, 1985.


Table 4-4. Surface Area by Body Part for Adults ( \(\mathrm{m}^{2}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Body part} & \multicolumn{6}{|c|}{Men} & \multicolumn{6}{|c|}{Women} \\
\hline & Mean & (s.d.) \({ }^{\text {a }}\) & Min. & - & Max. & \(\mathbf{N}^{\text {b }}\) & Mean & (s.d.) & Min. & - & Max. & N \\
\hline Head & 0.118 & (0.0160) & 0.090 & - & 0.161 & 32 & 0.110 & (0.00625) & 0.0953 & - & 0.127 & 57 \\
\hline Trunk (incl. nock) & 0.569 & (0.104) & 0.306 & - & 0.893 & 32 & 0.542 & (0.0712) & 0.437 & - & 0.867 & 57 \\
\hline Upper extremities & 0.319 & (0.0461) & 0.169 & - & 0.429 & 48 & 0.276 & (0.0241) & 0.215 & - & 0.333 & 57 \\
\hline Arms & 0.228 & (0.0374) & 0.109 & - & 0.292 & 32 & 0.210 & (0.0129) & 0.193 & - & 0.235 & 13 \\
\hline Upper arms & 0.143 & (0.0143) & 0.122 & - & 0.156 & 6 & - & - & - & & - & - \\
\hline Forearms & 0.114 & (0.0127) & 0.0945 & - & 0.136 & 6 & - & - & - & & - & - \\
\hline Hands & 0.084 & (0.0127) & 0.0596 & - & 0.113 & 32 & 0.0746 & (0.00510) & 0.0639 & - & 0.0824 & 12 \\
\hline Lower extremities & 0.636 & (0.0994) & 0.283 & - & 0.868 & 48 & 0.626 & (0.0675) & 0.492 & - & 0.809 & 57 \\
\hline Legs & 0.505 & (0.0885) & 0.221 & - & 0.656 & 32 & 0.488 & (0.0515) & 0.423 & - & 0.585 & 13 \\
\hline Thighs & 0.198 & (0.1470) & 0.128 & - & 0.403 & 32 & 0.258 & (0.0333) & 0.258 & - & 0.360 & 13 \\
\hline Lower legs & 0.207 & (0.0379) & 0.093 & - & 0.296 & 32 & 0.194 & (0.0240) & 0.165 & - & 0.229 & 13 \\
\hline Feet & 0.112 & (0.0177) & 0.0611 & - & 0.156 & 32 & 0.0975 & (0.00903) & 0.0834 & - & 0.115 & 13 \\
\hline TOTAL & 1.94 & (0.00374) & 1.66 & - & \(2.28{ }^{\text {d }}\) & & 1.69 & \((0.00374)^{\text {c }}\) & 1.45 & - & \(2.09{ }^{\text {d }}\) & \\
\hline
\end{tabular}
- standard deviation.
\(\checkmark\) number of observations.
- median (standard error).
\({ }^{4}\) percentiles (5th -95 h ).

Source: Adapted from U.S. EPA, 1985.

Table 4-5. Percentage of Total Body Surface Area by Part for Adutes
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Body part} & \multirow[b]{2}{*}{Mean} & \multicolumn{6}{|c|}{Men} & \multirow[b]{2}{*}{(s.d.)} & \multicolumn{4}{|c|}{Women} \\
\hline & & (s.d.) \({ }^{\text {a }}\) & Min. & - & Max. & \(\mathbf{N}^{\text {b }}\) & Mean & & Min. & - & Max. & N \\
\hline Head & 7.8 & (1.0) & 6.1 & - & 10.6 & 32 & 7.1 & (0.6) & 5.6 & - & 8.1 & 57 \\
\hline Trunk & 35.9 & (2.1) & 30.5 & - & 41.4 & 32 & 34.8 & (1.9) & 32.8 & - & 41.7 & 57. \\
\hline Upper extremities & 18.8 & (1.1) & 16.4 & - & 21.0 & 48 & 17.9 & (0.9) & 15.6 & - & 19.9 & 57 \\
\hline Arms & 14.1 & (0.9) & 12.5 & - & 15.5 & 32 & 14.0 & (0.6) & 12.4 & - & 14.8 & 13 \\
\hline Upper arms & 7.4 & (0.5) & 6.7 & - & 8.1 & 6 & - & - & - & & - & - \\
\hline Forearms & 5.9 & (0.3) & 5.4 & - & .6.3 & 6 & - & - & - & & - & - \\
\hline Hands & 5.2 & (0.5) & 4.6 & - & 7.0 & 32 & 5.1 & (0.3) & 4.4 & - & 5.4 & 12 \\
\hline Lower extremities & 37.5 & (1.9) & 33.3 & - & 41.2 & 48 & 40.3 & (1.6) & 36.0 & - & 43.2 & 57 \\
\hline Legs & 31.2 & (1.6) & 26.1 & - & 33.4 & 32 & 32.4 & (1.6) & 29.8 & - & 35.3 & 13 \\
\hline Thighs & 18.4 & (1.2) & 15.2 & - & 20.2 & 32 & 19.5 & (1.1) & 18.0 & - & 21.7 & 13 \\
\hline Lower legs & 12.8 & (1.0) & 11.0 & - & 15.8 & 32 & 12.8 & (1.0) & 11.4 & - & 14.9 & 13 \\
\hline Feet & 7.0 & (0.5) & 6.0 & - & 7.9 & 32 & 6.5 & (0.3) & 6.0 & - & 7.0 & 13 \\
\hline
\end{tabular}
- Standard deviation.
b Number of observations.
Source: Adapted from U.S. EPA, 1985.

Percentile estimates for total surface area of children for males and females are presented in Tables 4-6 and 4-7 were calculated using the total surface area regression equation, NHANES II height and weight data, and using QNTLS. Estimates are not included for children younger than 2 years old because NHANES height data are not available for this age group. For children, the error associated with height and weight cannot be assumed to be zero because of their relatively small sizes. Therefore, the standard errors of the percentile estimates cannot be estimated, since it cannot be assumed that the errors associated with the exogenous variables (height and weight) are independent of that associated with the model; there are insufficient data to determine the relationship between these errors.

Available measurements of the surface area of children's body parts are summarized as a percentage of total surface area in Table 4-8. Because of the small sample size, the data cannot be assumed to represent the average percentage of surface area by body part for all children. Note that the percent of total body surface area contributed by the head decreases from childhood to adult status, whereas that contributed by the leg increases.

An advantage of this study is that it provides statistical distributions based on a large number of observations for adults. It also provides data for total surface and body parts by gender for adults. In addition, data are also provided (with limitations described previously) for children. Any disadvantages of this study are those associated with the data sets used. A possible limitation is that more than half the 401 observations used in the analyses are for children. In addition, the data may not be representative of the general U.S. population. However, the results from the analyses by U.S. EPA (1985) have been generally accepted as the most recommended to use.

\section*{Phillips et al. - Distributions of Total Skin Surface Area to Body Weight Ratios -} Phillips et al. (1993) observed a strong correlation (0.986) between surface area and body weight and studied the effect of using these factors as independent variables in the LADD equation. Phillips et al. (1993) concluded that, because of the correlation between these two variables, the use of surface area to body weight (SA/BW) ratios in human exposure assessments is more appropriate than treating these factors as independent variables. Direct measurement (coating, triangulation, and surface integration) data from the scientific

Table 4-6. Total Body Surface Area of Male Children in Square Meters
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{9}{|c|}{Percentile} \\
\hline \[
(y r)^{b}
\] & 5 & 10 & 15 & 25 & 50 & 75 & 85 & 90 & 95 \\
\hline \(2<3\) & 0.527 & 0.544 & 0.552 & 0.569 & 0.603 & 0.629 & 0.643 & 0.661 & 0.682 \\
\hline \(3<4\) & 0.585 & 0.606 & 0.620 & 0.636 & 0.664 & 0.700 & 0.719 & 0.729 & 0.764 \\
\hline \(4<5\) & 0.633 & 0.658 & 0.673 & 0.689 & 0.731 & 0.771 & 0,796 & 0.809 & 0.845 \\
\hline \(5<6\) & 0.692 & 0.721 & 0.732 & 0.746 & 0.793 & 0.840 & 0.864 & 0.895 & 0.918 \\
\hline \(6<7\) & 0.757 & 0.788 & 0.809 & 0.821 & 0.866 & 0.915 & 0.957 & 1.01 & 1.06 \\
\hline \(7<8\) & 0.794 & 0.832 & 0.848 & 0.877 & 0.936 & 0.993 & 1.01 & 1.06 & 1.11 \\
\hline \(8<9\) & 0.836 & 0.897 & 0.914 & 0.932 & 1.00 & 1.06 & 1.12 & 1.17 & 1.24 \\
\hline \(9<10\) & 0.932 & 0.966 & 0.988 & 1.00 & 1.07 & 1.13 & 1.16 & 1.25 & 1.29 \\
\hline \(10<11\) & 1.01 & 1.04 & 1.06 & 1.10 & 1.18 & 1.28 & 1.35 & 1.40 & 1.48 \\
\hline \(11<12\) & 1.00 & 1.06 & 1.12 & 1.16 & 1.23 & 1.40 & 1.47 & 1.53 & 1.60 \\
\hline \(12<13\) & 1.11 & 1.13 & 1.20 & 1.25 & 1.34 & 1.47 & 1.52 & 1.62 & 1.76 \\
\hline \(13<14\) & 1.20 & 1.24 & 1.27 & 1.30 & 1.47 & 1.62 & 1.67 & 1.75 & 1.81 \\
\hline \(14<15\) & 1.33 & 1.39 & 1.45 & 1.51 & 1.61 & 1.73 & 1.78 & 1.84 & 1.91 \\
\hline \(15<16\) & 1.45 & 1.49 & 1.52 & 1.60 & 1.70 & 1.79 & 1.84 & 1.90 & 2.02 \\
\hline \(16<17\) & 1.55 & 1.59 & 1.61 & 1.66 & 1.76 & 1.87 & 1.98 & 2.03 & 2.16 \\
\hline \(17<18\) & 1.54 & 1.56 & 1.62 & 1.69 & 1.80 & 1.91 & 1.96 & 2.03 & 2.09 \\
\hline \(3<6\) & 0.616 & 0.636 & 0.649 & 0.673 & 0.728 & 0.785 & 0.817 & 0.842 & 0.876 \\
\hline \(6<9\) & 0.787 & 0.814 & 0.834 & 0.866 & 0.931 & 1.01 & 1.05 & 1.09 & 1.14 \\
\hline \(9<12\) & 0.972 & 1.00 & 1.02 & 1.07 & 1.16 & 1.28 & 1.36 & 1.42 & 1.52 \\
\hline \(12<15\) & 1.19 & 1.24 & 1.27 & 1.32 & 1.49 & 1.64 & 1.73 & 1.77 & 1.85 \\
\hline \(15<18\) & 1.50 & 1.55 & 1.59 & 1.65 & 1.75 & 1.86 & 1.94 & 2.01 & 2.11 \\
\hline
\end{tabular}
a Lack of height measurements for children \(<2\) years in NHANES II precluded calculation of surface areas for this age group.
b Estimated values calculated using NHANES II data.
Source: U.S. EPA, 1985.

Table 4-7. Total Body Surface Area of Female Children in Square Meters \({ }^{\text {a }}\)

Percentile
\begin{tabular}{clllllllll}
\begin{tabular}{l} 
Agc \\
\((y r)^{b}\)
\end{tabular} & \multicolumn{1}{c}{5} & 10 & 15 & 25 & 50 & 75 & 85 & 90 & 95 \\
\hline \(2<3\) & 0.516 & 0.532 & 0.544 & 0.557 & 0.579 & 0.610 & 0.623 & 0.637 & 0.653 \\
\(3<4\) & 0.555 & 0.570 & 0.589 & 0.607 & 0.649 & 0.688 & 0.707 & 0.721 & 0.737 \\
\(4<5\) & 0.627 & 0.639 & 0.649 & 0.666 & 0.706 & 0.758 & 0.777 & 0.794 & 0.820 \\
\(5<6\) & 0.675 & 0.700 & 0.714 & 0.735 & 0.779 & 0.830 & 0.870 & 0.902 & 0.952 \\
\(6<7\) & 0.723 & 0.748 & 0.770 & 0.791 & 0.843 & 0.914 & 0.961 & 0.989 & 1.03 \\
\(7<8\) & 0.792 & 0.808 & 0.819 & 0.854 & 0.917 & 0.977 & 1.02 & 1.06 & 1.13 \\
\(8<9\) & 0.863 & 0.888 & 0.913 & 0.932 & 1.00 & 1.05 & 1.08 & 1.11 & 1.18 \\
\(9<10\) & 0.897 & 0.948 & 0.969 & 1.01 & 1.06 & 1.14 & 1.22 & 1.31 & 1.41 \\
\(10<11\) & 0.981 & 1.01 & 1.05 & 1.10 & 1.17 & 1.29 & 1.34 & 1.37 & 1.43 \\
\(11<12\) & 1.06 & 1.09 & 1.12 & 1.16 & 1.30 & 1.40 & 1.50 & 1.56 & 1.62 \\
\(12<13\) & 1.13 & 1.19 & 1.24 & 1.27 & 1.40 & 1.51 & 1.62 & 1.64 & 1.70 \\
\(3<14\) & 1.21 & 1.28 & 1.32 & 1.38 & 1.48 & 1.59 & 1.67 & 1.75 & 1.86 \\
\(14<15\) & 1.31 & 1.34 & 1.39 & 1.45 & 1.55 & 1.66 & 1.74 & 1.76 & 1.88 \\
\(15<16\) & 1.38 & 1.49 & 1.43 & 1.47 & 1.57 & 1.67 & 1.72 & 1.76 & 1.83 \\
\(16<17\) & 1.40 & 1.46 & 1.48 & 1.53 & 1.60 & 1.69 & 1.79 & 1.84 & 1.91 \\
\(17<18\) & 1.42 & 1.49 & 1.51 & 1.56 & 1.63 & 1.73 & 1.80 & 1.84 & 1.94 \\
& & & & & & & & \\
\(3<6\) & 0.585 & 0.610 & 0.630 & 0.654 & 0.711 & 0.770 & 0.808 & 0.831 & 0.879 \\
\(6<9\) & 0.754 & 0.790 & 0.804 & 0.845 & 0.919 & 1.00 & 1.04 & 1.07 & 1.13 \\
\(9<12\) & 0.957 & 0.990 & 1.03 & 1.06 & 1.16 & 1.31 & 1.38 & 1.43 & 1.56 \\
\(12<15\) & 1.21 & 1.27 & 1.30 & 1.37 & 1.48 & 1.61 & 1.68 & 1.74 & 1.82 \\
\(15<18\) & 1.40 & 1.44 & 1.47 & 1.51 & 1.60 & 1.70 & 1.76 & 1.82 & 1.92 \\
\hline
\end{tabular}
- Lack of height measurements for children <2 years in NHANES II precluded calculation of surface areas for this age group.
b Estimated values calculated using NHANES II data.
Source: U.S. EPA, 1985.

Table 4-8. Percentage of Total Body Surface Area by Part for Childrea

literature were used to calculate surface area to body weight (SA/BW) ratios for three age groups (infants aged 0-2 years; children aged 2.1-17.9 years; and adults 18 years and older) of the population. These ratios were calculated by dividing surface areas by corresponding body weights for the 401 individuals provided in Gehan and George (1970), and ultimately summarized in U.S. EPA (1985). Distributions of SA/BW ratios were developed and summary statistics were calculated for the three age groups and the entire data set was then combined. Summary statistics for these populations are presented in Table 4-9. The shapes of these SA/BW distributions were determined using D'Agostino's test. The results indicate that the SA/BW data for infants are lognormally distributed and the SA/BW data for adults and all ages combined are normally distributed (Figure 4-1). SA/BW ratios for children were neither normally nor lognormally distributed. According to Phillips et al. (1993), SA/BW ratios should be used to calculate LADDs by replacing the surface area factor in the numerator of the LADD equation with the SA/BW ratio and eliminating the body weight factor in the denominator of the LADD equation.

The effect of sex and age on SA/BW distribution was also analyzed by classifying the 401 observations by sex and age. Statistical analyses indicated no significant differences between SA/BW ratios for males and females. SA/BW ratios were found to decrease with increasing age.

Advantages of this study is that it uses direct measurement data for the analyses and it provides distribution data for calculating LADD. Any limitations with this study are those associated with the data set that were used to generate this distribution. In addition, data are not provided for body parts in this study.

\subsection*{4.2.4. Other Relevant Surface Area Studies \\ Murray and Burmaster (1992) - Estimated Distributions for Total Body Surface Area} of Men and Women in the United States - In this study distributions of total body surface area for men and women ages 18 to 74 years were estimated using Monte Carlo simulations based on height and weight distributions. Four different formulae for estimating surface area as a function of height and weight were employed.

Table 4-9. Descriptive Statistics for SA/BW Ratios ( \(\mathrm{m}^{2} / \mathrm{kg}\) )
\begin{tabular}{lccccccccccc}
\hline & & & & & \multicolumn{6}{c}{ Percentiles } \\
Age (yrs.) & Mean & S.D. & S.E. & Range & 5 & 10 & 25 & 50 & 75 & 90 & 95 \\
\hline \(0-2\) & 0.0641 & 0.0114 & \(7.84 e-4\) & \(0.0421-0.1142\) & 0.0470 & 0.0507 & 0.0563 & 0.0617 & 0.0719 & 0.0784 & 0.0846 \\
\(2.1-17.9\) & 0.0423 & 0.0076 & \(1.05 \mathrm{e}-3\) & \(0.0268-0.0670\) & 0.0291 & 0.0328 & 0.0376 & 0.0422 & 0.0454 & 0.0501 & 0.0594 \\
\(\geq 18\) & 0.0284 & 0.0028 & \(7.68 \mathrm{e}-6\) & \(0.0200-0.0351\) & 0.0238 & 0.0244 & 0.0270 & 0.0286 & 0.0302 & 0.0316 & 0.0329 \\
All ages & 0.0489 & 0.0187 & \(9.33 e-4\) & \(0.0200-0.1142\) & 0.0253 & 0.0272 & 0.0299 & 0.0495 & 0.0631 & 0.0740 & 0.0788 \\
\hline
\end{tabular}
- Standard deviation.
b Standard error of the mean.
Source: Phillips et al., 1993.


All Ages SA/BW Ratios: Normal(0.0489,0.0187)


Adult SA/BW Ratios: Normal(0.0284,0.0028)


Figure 4-1. SA/BW Distributions for Infants, Adults, and All Ages Combined

Source: Phillips et al., 1993.

Dubois and Dubois (1916), Boyd (1935), and U.S. EPA (1989) used formuia based on height and weight. These are presented in Appendix 4A. Costeff (1966) developed a formula based on 220 observations that estimate surface area based on weight only.

The formula for calculating total body surface area developed by Costeff (1966) is as follows:
\[
\begin{equation*}
S A=4 W+7 / W+90 \tag{Eqn.4-3}
\end{equation*}
\]
where:
\[
\begin{aligned}
& \text { SA }=\text { Surface Area }\left(\mathrm{m}^{2}\right) ; \text { and } \\
& \mathrm{W}=\text { Weight }(\mathrm{kg})
\end{aligned}
\]

These formulae for estimating surface area (as a function of height and weight) were compared and the effect of the correlation between height and weight on the surface area distribution was analyzed.

Monte Carlo simulations were conducted to estimate surface area distributions. They were based on the bivariate distributions as estimated by Brainard and Burmaster (1992) for height and natural logarithm of weight and the formulae described above. A total of 5000 random samples each for men and women were selected from the two correlated bivariate distributions. Surface area calculations were made, for each sample and for each surface area formula, resulting in surface area distributions.

Murray and Burmaster (1992), found that the surface area frequency distributions were similar for the four models (Table 4-10). Using the U.S. EPA (1985) formula, the median surface area values were calculated by Murray and Burmaster (1992) to be \(1.96 \mathrm{~m}^{2}\) for men and \(1.69 \mathrm{~m}^{2}\) for women. The median value for women is identical to that generated by U.S. EPA (1985) but the median value for men differs from the U.S. EPA (1985) value by approximately 1 percent. Surface area was found to have lognormal distribution for both men and women (Figure 4-2). It was also found that assuming correlation between height and weight influences the final distribution by less than 1 percent.

Advantages of this study is that it provides frequency distributions for surface area of men and women based on a large data set. It also produced results similar to the results of

Table 4-10. Statistical Results for Total Body Surface Area Distributions
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Men} \\
\hline & U.S. EPA & Boyd & DuBois and DuBois & Costeff \\
\hline Mean & 1.97 & 1.95 & 1.94 & 1.89 \\
\hline Median & 1.96 & 1.94 & 1.94 & 1.89 \\
\hline Mode & 1.96 & 1.91 & 1.90 & 1.90 \\
\hline \begin{tabular}{l}
Standard \\
Deviation
\end{tabular} & 0.19 & 0.18 & 0.17 & 0.16 \\
\hline Skewness & 0.27 & 0.26 & 0.23 & 0.04 \\
\hline \multirow[t]{3}{*}{Kurtosis} & 3.08 & 3.06 & 3.02 & 2.92 \\
\hline & \multicolumn{4}{|c|}{Women} \\
\hline & U.S. EPA & Boyd & DuBois and DuBois & Costeff \\
\hline Mean & 1.73 & 1.71 & 1.69 & 1.71 \\
\hline Median & 1.69 & 1.68 & 1.67 & 1.68 \\
\hline Mode & 1.68 & 1.62 & 1.60 & 1.66 \\
\hline \begin{tabular}{l}
Standard \\
Deviation
\end{tabular} & 0.21 & 0.20 & 0.18 & 0.21 \\
\hline Skewness & 0.92 & 0.88 & 0.77 & 0.69 \\
\hline Kurtosis & 4.30 & 4.21 & 4.01 & 3.52 \\
\hline
\end{tabular}

Source: Murray and Burmaster, 1992


Figure 4-2
Source: Murray and Burmaster, 1992.
the U.S. EPA, 1985 analyses. Limitations associated with the study are that the results cannot be applied to children, and it does not provide data for body parts.

\subsection*{4.2.5. Application of Body Surface Area Data}

For many exposure settings, it is likely that only certain areas of the body are at risk of exposure. To estimate the total surface area of the body dermally exposed to the contaminant, all body parts that come in contact with a contaminant must be determined. The data in Table 4-4 may be used to estimate the total surface area of the particular body part(s) exposed. For example, to assess exposure to contaminants in a cleaning product for which only the hands are exposed, surface area values for hands on Table 4-4 may be used. For cleaning products for which both the hands and arms are exposed, mean surface areas for these parts may be summed to estimate the total surface area exposed for that exposure scenario (Table 4-4). The mean surface area of these body parts for men and women is as follows:
\begin{tabular}{lcc} 
& \multicolumn{2}{c}{ Surface Area ( \(\mathrm{m}^{2}\) ) } \\
Men & \(\underline{\text { Women }}\) \\
Arms (includes upper forearms) & 0.228 & 0.210 \\
Hands & 0.084 & 0.075 \\
Total area & 0.312 & 0.285
\end{tabular}

Therefore, the total body part surface area that may be in contact with the contaminant contained in the cleaning product is \(0.312 \mathrm{~m}^{2}\) for men and \(0.285 \mathrm{~m}^{2}\) for women.

According to U.S. EPA (1992), one inherent assumption of many exposure scenarios developed in the past is that clothing prevents dermal contact and subsequent absorption of contaminants. This assumption may in fact be faulty in cases where the contaminant is carried in a fine dust or liquid suspension, which may be able to penetrate clothing. Studies using personal patch monitors placed beneath clothing of pesticide workers show that a significant proportion of the dermal exposure may occur at anatomical sites covered by clothing (U.S. EPA, 1992). In addition, it has been demonstrated that a "pumping" effect can occur which causes material to move under clothing (U.S. EPA, 1992). Furthermore, studies have demonstrated that hands cannot be considered to be protected from exposure
even if waterproof gloves are worn. This may be because of contamination on the interior surface of the gloves, removal of gloves during machine adjustments, and handling of the outside of the gloves while putting them on or taking them off (U.S. EPA, 1992). Depending on their specific tasks, pesticide workers have been shown to experience 12 percent to 43 percent of their total exposure through their hands, approximately 20 percent to 23 percent through their heads and necks, and 36 percent to 64 percent through their torsos and arms, despite the use of protective gloves and clothing (U.S. EPA, 1992). These studies were conducted with fine mists and vapors.

For swimming and bathing scenarios, past exposure assessments have assumed that 75 percent to 100 percent of the skin surface is exposed (U.S. EPA, 1992). As shown in Table 4-4, total adult body surface areas can vary from about \(17,000 \mathrm{~cm}^{2}\) to \(23,000 \mathrm{~cm}^{2}\). The mean is reported as about \(20,000 \mathrm{~cm}^{2}\). For default purposes, adult surface areas of \(20,000 \mathrm{~cm}^{2}\) (central estimate) to \(23,000 \mathrm{~cm}^{2}\) (upper percentile) are recommended in U.S. EPA (1992). Tables 4-2 and 4-3 can also be used when the default values are not preferred. U.S. EPA (1992) recommends that default values for children should be derived from Table 4-6 or 4-7 using the 50th and 95th percentile values for the ages of concern to represent central and upper-percentile values.

Clothing is expected to limit the extent of the exposed surface area in cases of soil contact. The 1989 Exposure Factors Handbook, U.S. EPA (1989) presented two adult clothing scenarios for outdoor activities:

Central tendency mid range:

\section*{Upper percentile:}

Individual wears a short sleeve shirt, shorts, and shoes. The exposed skin surface is limited to the head, hands, forearms, and lower legs ( \(5,300 \mathrm{~cm}^{2}\) ).

The clothing scenarios presented above, suggest that roughly 10 percent to 25 percent of the skin area may be exposed to soil. Since some studies have suggested that exposure can occur under clothing, the upper end of this range was selected in EPA, 1992 for deriving defaults.

Thus, taking 25 percent to the total body surface area results in defaults for adults of 5,000 \(\mathrm{cm}^{2}\) to \(5,800 \mathrm{~cm}^{2}\). The range of defaults for children can be derived from multiplying the 50th and 95 th percentiles by 0.25 for the ages of interest.

When addressing soil contact exposures, assessors may also want to refine estimates of surface area exposed on the basis of seasonal conditions. For example, in moderate climates, it may be reasonable to assume that 5 percent of the skin is exposed during the winter, 10 percent during the spring and fall, and 25 percent during the summer.

\subsection*{4.3. DERMAL ADHERENCE OF SOIL}

\subsection*{4.3.1. Background}

Dermal adherence of soil to the surface of the skin is a parameter needed for calculating dermal dose when the exposure scenario involves dermal contact with contaminated soil. A number of studies have attempted to determine the magnitude of dermal soil adherence. These studies are described in detail in U.S. EPA (1992).

\subsection*{4.3.2. Past Studies on Dermal Adherence of Soil}

Lepow et al. (1975) - Investigations into Sources of Lead in the Environment of Urban Children - This study was conducted to identify the behavioral and environmental factors contributing to elevated lead levels in ten preschool children. The study was performed over a period of 6-25 months (Lepow et al., 1975). Samples of dirt from the hands of the study subjects were collected during the course of play around the areas that they lived. The study used preweighed self-adhesive labels to sample a standard area on the palm of the hands of 16 male and female children. The preweighed labels were pressed on a single area, and often pressed several times on the given area to obtain an adequate sample. In the laboratory, labels were equilibrated in a desiccant cabinet for 24 hours (comparable to the preweighed desiccation), then the total weight was again recorded. The mean weight of hand dirt for the 22 hand samples was 11 mg ; on a \(21.5 \mathrm{~cm}^{2}\) preweighed label, this amounts to \(0.51 \mathrm{mg} / \mathrm{cm}^{2}\). Lepow et al. (1975) stated that this amount ( 11 mg ) represented only a small fraction (percent not specified) of the total amount of surface dirt present on the hands,
because much of the dirt may be trapped in skin folds and creases; moreover, there may have been patchy distribution of the dirt on the hands.

Roels et al. - Exposure to Lead by the Oral and the Pulmonary Routes of Children Living in the Vicinity of a Primary Lead Smelter - Roels et al. (1980) examined blood lead levels among children living in the vicinity of a large lead smelter in Brussels, Belgium during five different study periods. The overall age group ranged from 9-14 years. The total number of study subjects was 661 children. This study assessed lead levels removed from 661 children's hands by rinsing the hands in 500 mL dilute nitric acid. The amount of lead on the hands was divided by the concentration of lead in soil to estimate the amount of soil adhering to the hands. The mean soil amount adhering to the hands was 0.159 g .

Sedman - The Development of Applied Action Levels for Soil Contact: A Scenario for the Exposure of Humans to Soil in a Residential Setting - Sedman (1989) used the estimate from Roels et al. (1980) and the average surface area of the hand of an 11 year old (i.e., 307 \(\mathrm{cm}^{2}\) ) to estimate the amount of soil adhering per unit area of skin ( \(0.9 \mathrm{mg} / \mathrm{cm}^{2}\) ). The Sedman (1989) estimate assumed that approximately \(60 \%\left(185 \mathrm{~cm}^{2}\right)\) of the lead on the hands was recovered by the method employed by Roels et al. (1980).

Sedman (1989) used the previously presented estimates from Lepow et al. (1975), Roels et al. (1980), and Que Hee et al. (1985) to develop a maximum soil load that could occur on the skin given the types of procedures employed in each study. A rounded arithmetic mean of \(0.5 \mathrm{mg} / \mathrm{cm}^{2}\) was calculated from the three studies. According to Sedman (1989), this was near the maximum load of soil that could occur on the skin depending on the type of method used to determine the measurement. Also, it is unlikely that most skin surfaces would be covered with this amount of soil (Sedman, 1989).

Gallacher et al. 1985-To be added later
Que Hee et al. - Evolution of Efficient Methods to Sample Lead Sources, Such as House Dust and Hand Dust, in the Homes of Children - Que Hee et al. (1985) used household dust (collected with a vacuum cleaner) having particle sizes ranging from \(\leq 44\) to \(833 \mu \mathrm{~m}\) diameters, fractionated into six size ranges, to estimate the amount of dust adhering to skin. For each range of particle size, the amount of dust that adhered to the palm of the hand of a small adult was determined by applying approximately 5 g of soil for each size
fraction, removing excess dust by shaking the hands, and then measuring the difference in weight before and after dust application. On average, 31.2 mg of dust adhered to the small adult palm. The exposed surface area was approximately \(20 \mathrm{~cm}^{2}\). Based on these assumptions, 1.5 mg of dust adhered to \(1 \mathrm{~cm}^{2}\) of skin.

Driver et al. - Soil Adherence to Human Skin - This study conducted soil adherence experiments which involved the use of various soil types collected from sites in Virginia. A total of five soil types were collected: Hyde, Chapanoke, Panorama, Jackland, and Montalto. Both top soils and subsoils were collected for each soil type. The soils were also characterized by cation exchange capacity, organic content, clay mineralogy, and particle size distribution. The soils were dry sieved to obtain particle sizes of \(\leq 250 \mu \mathrm{~m}\) and \(\leq 150 \mu \mathrm{~m}\). For each soil type, the amount (mg) of soil adhering to adult male hands, using both sieved and unsieved soils, was determined gravimetrically (i.e., measuring the difference in soil sample weight before and after soil application to the hands). An attempt was made to measure only the minimal or "monolayer" of soil adhering to the hands. This was done by mixing a pre-weighed amount of soil over the entire surface area of the hands for a period of approximately 30 seconds, followed by removal of excess soil by gently rubbing the hands together after contact with the soil. Excess soil that was removed from the hands was collected and the, weight compared with the original soil sample weights. Driver et al. (1989) measured average adherences of \(1.40 \mathrm{mg} / \mathrm{cm}^{2}\) for particle sizes less than \(150 \mu \mathrm{~m}\), \(0.95 \mathrm{mg} / \mathrm{cm}^{2}\) for particle sizes less than \(250 \mu \mathrm{~m}\) and \(0.58 \mathrm{mg} / \mathrm{cm}^{2}\) for unsieved soils. The analysis of variance statistics showed that the most important factor affecting adherence variability was particle size, with a variance ( F ) ratio far in excess of the 0.999 significance value ( \(\mathrm{p}<0.001\) ). The next most important factor is soil type and subtype with an \(F\) ratio also in excess of 0.999 significance level ( \(p<0.001\) ). The interaction of soil type and particle size was also significant, but at a lower 0.99 significance level ( \(p<0.01\) ).

Driver et al. (1989) found statistically significant increases in adherence with decreasing particle size; whereas, Que Hee et al. (1985) found relatively small changes over particle size. Also, the amount of adherence found by Driver et al. (1989) was greater than that of Que Hee et al. (1985). Although it appears that soil particle size may affect
adherence, exact quantitative relationships cannot be derived at this time because of insufficient data. It is suggested that this is an area for further study (Driver et al. 1989).

Yang et al. - In vitro and In vivo Percutaneous Absorption of Benzo[a]pyrene from Petroleum Crude - Fortified Soil in the Rat - Yang et al. (1989) evaluated the percutaneous absorption of benzo[a]pyrene (BAP) in petroleum crude oil sorbed on soil using a modified in vitro technique. This method was used in preliminary experiments to determine the minimum amount of soil adhering to the skin of rats (Yang et al., 1989). Based on these preliminary results from soil evaluation, percutaneous absorption experiments with the crudesorbed soil were conducted with soil particles of \(<150 \mu \mathrm{~m}\) only (Yang et al. (1989). This particle size was intended to represent the composition of the soil adhering to the skin surface (Yang et al., 1989). Approximately \(9 \mathrm{mg} / \mathrm{cm}^{2}\) of soil was found to be the minimum amount required for a "monolayer" coverage of the skin surface in both in vitro and in yivo experiments. This value is larger than the \(<1 \mathrm{mg} / \mathrm{cm}^{2}\) of soil (dust) reported for human skin in the studies of Lepow et al. 1975; Roels et al. 1980; and Que Hee et al., 1985 (Yang et al., 1989). Yang et al. 1985 suggested that the differences between the rat and human soil adhesion findings may be the result of differences in rat and human skin texture, the types of soils used, soil moisture content or possibly the methods of measuring soil adhesion.

\subsection*{4.3.3 New Soil Adherence Research}

Kissel et al. - Dermal Soil Exposure: Investigation of Soil Contact and Skin Coverage
- Kissel et al. (1995) conducted soil adherence experiments using five soil types: Canyon

Park (sandy loam,"CP"), Day Creek (silt loam, "72"), Blewett Pass King Creek (loamy sand, " 85 "), Darrington (sand, "211"), and Nooksack Middle Fork (sandy loam, "228"). The soils were analyzed by hydrometer to determine composition, and to characterize them by organic content. The soils were dry sieved to obtain particle size ranges of \(<150,150-\) 250 , and \(>250 \mu \mathrm{~m}\). For each soil type, the amount ( mg ) of soil adhering to adult male hands, using both sieved and unsieved soils, was determined by measuring the difference in soil sample weight before and after hands were pressed in the soil. Loadings were estimated by dividing the recovered soil mass by total hand area, although loading occurred primarily on only one side of the hand. Adherence was found to be directly correlated with moisture
content, inversely correlated with particle size and independent of clay content, and organic carbon content.

Kissel et al. (1995) used a fluorescent marking technique and video imaging to assess the percentage of skin coverage in several soil contact trials in a greenhouse setting, and an irrigation pipe laying trial (Table 4-11). The investigators concluded that adjusted loadings, averaged over fluorescing area only, may be two to three orders of magnitude larger than average loadings if average loadings are small.

Further experiments by Kissel et al. (1995) estimated soil adherence associated with various indoor and outdoor activities: greenhouse gardening, tae kwon do students, soccer, rugby, reed gathering, irrigation installation, truck farming, and playing in mud. Subjects' body surfaces (forearms, hands, lower legs in all cases, faces and/or feet pairs in some cases) were washed before and after target activities. Paired surfaces were pooled into single samples. Mass recovered was converted to loading using allometric models of surface area. These data are presented in Table 4-12.

\subsection*{4.3.4 Advantages and Limitations of the Soil Adherence Studies}

The soil adherence value from the Yang et al. (1989) study which used rat skin was not included for consideration because of the uncertainties associated with using this value for human dermal exposure scenarios. Among the remaining studies, the Lepow (1975) and the Roels (1980) studies have the advantage that they were conducted under actual field conditions and the disadvantage that they involved collection methods with unknown efficiencies. The use of collection methods that were less than \(100 \%\) efficient suggest that the estimates may be low. However, only hand samples were collected which suggests that the estimates may be high for other parts of the body that probably have less soil contact. Finally, only children were surveyed, and they may not be representative of adults. The Que Hee et al. (1989) and Driver et al. (1989) studies used the gravimetric methods which do not involve a collection method with unknown efficiency and should, therefore, provide accurate estimates of adherence potential. However, these studies were conducted under laboratory conditions and examined adherence to hands only after intimate contact with soil. Such contact may not be representative of normal behavior. Parts of the body that have less

Table 4-11. Skin Coverage with Soil by Body Part and Activity
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Exposure Trial} & \multicolumn{8}{|c|}{Percent Skin Coverage by Body Part} \\
\hline & Hands & \(\mathbf{N a}^{\mathbf{a}}\) & Lower legs & \(\mathrm{N}^{2}\) & Forearms & \(\mathbf{N a}^{\mathbf{n}}\) & Face & \(\mathbf{N}^{\mathbf{N}}\) \\
\hline Children playing in wet soil & 80 & 24 & 20 & 18 & 10 & 18 & 0 & 13 \\
\hline Adults transplanting plants in wet soil & 70 & 28 & 10 & 24 & 0 & 26 & 0 & 15 \\
\hline Pipe laying trials & 36-52 (M) \({ }^{\text {b }}\) & 3 & 6-12 (M) & 3 & - & - & 0 & - \\
\hline dry soil, 15-30 min. duration & 54-62 (W) \({ }^{\text {b }}\) & 3 & 15-33 (W) & 3 & - & - & 0 & - \\
\hline Pipe laying trials & 75-82 (M) & 4 & 12-25 (M) & 4 & - & -- & 0 & - \\
\hline wet soil, 15-30 min. duration & 56-86 (W) & 3 & 4-14 (W) & 3 & - & -- & 0 & - \\
\hline
\end{tabular}
a \(\quad \mathrm{N}=\) number of subjects
b \(\quad \mathbf{M}=\) men; \(\mathbf{W}=\) women
Source: Kissel et al. 1995.

Table 4-12. Mean Soil Adherence by Activity and Body Region
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Activity} & \multicolumn{6}{|c|}{Body Part (mg/cm \({ }^{2}\) )} \\
\hline & Hands & Arms & Legs & Face & Feet & \(\mathrm{N}^{2}\) \\
\hline Tae Kwon Do & 0.0062 & 0.0019 & 0.0020 & - & 0.0024 & 7 \\
\hline Greenhouse Workers & 0.043 & 0.0064 & 0.0015 & 0.0051 & - & 2 \\
\hline Soccer Players & 0.035-0.11 & 0.0011-0.0043 & 0.0081-0.031 & 0.012-0.016 & - & 23 \\
\hline Grounds keepers & 0.030-0.15 & 0.0021-0.023 & 0.0008-0.0012 & 0.0021-0.01 & 0.0041-0.018 & 29 \\
\hline Irrigation Installers & 0.19 & 0.18 & 0.0054 & 0.0063 & - & 6 \\
\hline Rugby Players & 0.4 & 0.27 & 0.36 & 0.059 & - & 8 \\
\hline Farmers & 0.41-0.47 & 0.059-0.13 & 0.0059-0.037 & 0.018-0.041 & - & 10 \\
\hline Reed Gatherers & 0.66 & 0.036 & 0.16 & - & 0.63 & 4 \\
\hline Kids-in-mud & 35-58 & 11 & 9.5-36 & - & 6.7-24 & 12 \\
\hline
\end{tabular}
a \(\mathrm{N}=\) number of subjects
Source: Kissel et al., 1995
intimate contact with the soil will likely have lower values. The new studies by Kissel have the advantages of measuring soil adherence on all exposed skin areas, for both children and adults and under actual field conditions.

\subsection*{4.4. RECOMMENDATIONS}

This chapter has reviewed the available data on parameters needed to characterize dermal contact scenarios involving water and soil. Table 4-13 summarizes the surface area studies presented in this chapter. For most dermal exposure scenarios concerning adults, it is recommended that the body surface areas presented in Table 4-4 be used after determining which body parts will be exposed. Table 4-4 was selected because using these data will be a straightforward determination for most scenarios. However, for others, additional considerations may need to be addressed. For example, (1) the type of clothing worn could have a significant effect on the surface area exposed, and (2) climatic conditions will also affect the type of clothing worn and, thus, the skin surface area exposed. Frequency and event and exposure duration for water activities and soil contact are presented in the Activity Patterns section of Chapter 5 of this report. For each parameter, a range of default values were derived corresponding to average and upper percentile values. Each of these considerations are also discussed in more detail in U.S. EPA (1992). Data in Tables 4-2 and 4-3 can be used when distributions are preferred. A range of default values for surface area children may be taken from Tables 4-6 and 4-7 using the 50th and 95th percentile values for age(s) of concern. A range of recommended default values for adult skin surface area were provided in U.S. EPA (1992) and are as follows:

Water Contact
\begin{tabular}{lll}
\hline & Central & Upper \\
Bathing and Swimming & \(20,000 \mathrm{~cm}^{2}\) & \(23,000 \mathrm{~cm}^{2}\) \\
& Soil Contact & \\
\hline & Central & Upper \\
Outdoor Activities & \(5,000 \mathrm{~cm}^{2}\) & \(5,800 \mathrm{~cm}^{2}\) \\
\hline
\end{tabular}

Table 4-13. Surface Area Studies
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Study} & \multicolumn{5}{|c|}{Surface Area} \\
\hline & No. of Individuals & Type of Surface Area Measurement & \begin{tabular}{l}
Recommended \\
Formulae Used
\end{tabular} & Population Surveyed & Comments \\
\hline U.S. EPA (1985) & & Based on Gchan \& George (1970) & \(S A=0.0239 * W^{0.517 *} H^{0.417}\) & \begin{tabular}{l}
Children \\
Adults
\end{tabular} & Provides statistical distribution data for total SA and SA of body parts \\
\hline Phillips of al. (1993) & Based on data from USEPA (1985): 401 individuals & NA & calculated surface area to body weight ratios & \begin{tabular}{l}
Children \\
Adults
\end{tabular} & Developed distributions of SA/BW and calculated summary and statistics for 3 age groups and the combined data set \\
\hline Murray \& Burmaster
(1992) & \begin{tabular}{l}
Based on data from \\
USEPA: 401 \\
DuBois \& Dubois: 9 \\
Boyd: 231 \\
Costaff: 220
\end{tabular} & Calculated based on regression equation using the data of USEPA, 1985 & Various & \begin{tabular}{l}
Children \\
Adults
\end{tabular} & Analysis of and comparision of four models developed by Dubois \& Dubois (1916), Boyd (1935), U.S. EPA (1985), and Costeff (1966). Presents frequency distribtions \\
\hline Boyd (1935) & 231 & Direct measurements using data for coating, surface integration, and triangulation methods only & \(S A=0.0178 * W^{0.500} * H^{0.4888}\) & Children Adults & Reviewed all methods and data used to measure or estimate SA \\
\hline Gehan \& George (1970) & 401 & Based on Boyd, 1935 & \(S A=0.0235 * W^{0.51456 * H}{ }^{0.42246}\) & Children Adults & Used 401 observations from Boyd's data where direct measurement for SA, height, and weight were compiled. Used least squares method to develop constants for equation. \(>50\) percent of data were for children < 5 years old. \\
\hline Dubois \& Dubois (1916) & 9 & Linear & \(S A=0.0178 * W^{0.425 *} H^{0.725}\) & Children Adults & Direct measurement \\
\hline
\end{tabular}

\footnotetext{
- Based on height weight data presented in report.
}

Table 4-14 summarizes the available soil adherence studies. The adherence value represents the amount of soil on the skin at the time of measurement. Assuming that the amount measured on the skin represents its accumulation between washings and that people wash at least once per day, then these adherence values could be interpreted as daily contact rates (U.S. EPA, 1992). However, since the residence time of soils on skin has not been studied and the adherence studies are independent of time, this is not recommended. Instead, it is recommended that these adherence values are interpreted on an event basis (U.S. EPA, 1992).

The data in Table 4-14 were reviewed for the purposes of recommending a default value. In summary, all of the early studies have the disadvantage that they measured adherence values to hands only. The new studies by Kissel measured adherence on all exposed body parts under actual field conditions. Therefore, these studies now offer the best data base for deriving estimates of soil adhernece. Based on Kissel et al. 1995, the following generalizations about soil adherence can be drawn:
- Soil properties can influence adherence. Adherence increases with moisture content, decreases with particle size, and is relatively unaffected by clay or organic carbon content.
- Adherence levels vary considerably across different parts of the body. Logically, the highest levels were found on common contact points such as hands, knees and elbows. Generally the least adherence was detected on the face.
- Adherence levels vary with activity. In general, the highest levels of soil adherence were seen for outdoor workers such as farmers and irrigation installers, followed by outdoor recreation, and then gardening activities. Very high adherence levels were seen for individuals contacting wet soils such as might occur during wading or other shore area recreational activities.

These generalizations suggest that changes are needed to the recommendations in U.S. EPA, 1992 regarding soil adherence. The earlier recommendations suggested applying an average of 0.2 to \(1.0 \mathrm{mg} / \mathrm{cm}^{2}\) to the entire exposed skin surface area without consideration of the type of activity. The new studies suggest a more site-specific approach is needed which

Table 4-14. Soil Adherence Values
\begin{tabular}{lccc}
\hline Reference & \begin{tabular}{c} 
Size Fraction \\
\((\mu \mathrm{m})\)
\end{tabular} & \begin{tabular}{c} 
Soil Adherence \\
\(\left(\mathrm{mg} / \mathrm{cm}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
Subject \\
Type \\
(number
\end{tabular} \\
Lepow et al., 1975 & -- & 0.5 & children
\end{tabular}
a Assume exposed area \(=20 \mathrm{~cm}^{2}\).
b Five different soil types and 2-3 soil horizons (top soils and subsoils).
c Rat skin "monolayer" (i.e., minimal amount of soil covering the skin).
d Adherence values are presented by body part (see Table 4-12).
Source: U.S. EPA, 1992.
considers the type of activity and uses different estimates for different regions of the body. Further research is needed to reach final conclusions about how such recommendations should be made. Meanwhile, assessors can use the data presented in Table 4-12 to select adherence values for activities which best match those of the population being assessed.

\subsection*{4.5. REFERENCES FOR CHAPTER 4}

Boyd, E. (1935) The growth of the surface area of the human body. Minneapolis, Minnesota: University of Minnesota Press.

Driver, J.H.; Konz, J.J.; Whitmyre, G.K. (1989) Soil adherence to human skin. Bull. Environ. Contam. Toxicol. 43:814-820.

Dubois, D.; Dubois, E.F. (1976) A formula to estimate the approximate surface area if height and weight be known. Arch. of Intern. Med. 17:863-871.

Gehan, E.; George, G.L. (1970) Estimation of human body surface area from height and weight. Cancer Chemother. Rep. 54(4):225-235.

Haycock, G.B.; Schwartz, G.J.; Wisotsky, D.H. (1978) Geometric method for measuring body surface area: A height-weight formula validated in infants, children, and adults. J. Ped. 93(1):62-66.

Kissel, J.; Richter, K.; Duff, R.; Shirai, J.; Johnson, J.; Fenske, R. (1995) Dermal Soil Exposure: Investigation of Soil Contact and Skin Coverage. Cooperative Agreement R819052-01-0, Office of Health and Environmental Assessment, U.S. EPA.

Lepow, M.L.; Bruckman, L.; Gillette, M.; Markowitz, S.; Rubino, R.; Kapish, J. (1975) Investigations into sources of lead in the environment of urban children. Environ. Res. 10:415-426.

Murray, D.M.; Burmaster, D.E. (1992) Estimated distributions for total surface area of men and women in the United States. J. Expos. Anal. Environ. Epidemiol. 3(4):451462.

Phillips, L.J.; Fares, R.J.; Schweer, L.G. (1993) Distributions of total skin surface area to body weight ratios for use in dermal exposure assessments. J. Expos. Anal. Environ. Epidemiol. 3(3):331-338.

Popendorf, W.J.; Leffinwell, J.T. (1976) Regulating OP pesticide residues for farmworker protection. In: Residue Review 82. New York, NY: Springer-Verlag New York, Inc., 1982. pp. 125-201.

Que Hee, S.S.; Peace, B.; Clark, C.S.; Boyle, J.R.; Bornschein, R.L.; Hammond, P.B. (1985) Evolution of efficient methods to sample lead sources, such as house dust and hand dust, in the homes of children. Environ. Res. 38: 77-95.

Roels, H.A.; Buchet, J.P.; Lauwenys, R.R.; Branx, P.; Claeys-Thoreau, F.; Lafontaine, A.; Verduyn, G. (1980) Exposure to lead by oral and pulmonary routes of children living in the vicinity of a primary lead smelter. Environ. Res. 22:81-94.

Sedman, R.M. (1989) The development of applied action levels for soil contact: a scenario for the exposure of humans to soil in a residential setting. Environ. Health Perspect. 79:291-313.
U.S. EPA. (1985) Development of statistical distributions or ranges of standard factors used in exposure assessments. Washington, DC: Office of Research and Development, Office of Health and Environmental Assessment. U.S. EPA No. 600/8-85-010. Available from: NTIS, Springfield, VA. PB85-242667.
U.S. EPA. (1988) Superfund exposure assessment manual. Washington, DC: Office of Remedial Response. U.S. EPA/540/1-88/001.
U.S. EPA. (1989) Risk assessment guidance for superfund. Human health evaluation manual: Part A. Interim Final. Washington, DC: Office of Solid Waste and Emergency Response. NTIS: PB-90-155581.
U.S. EPA. (1991) Guidelines for Exposure Assessment. Washington, DC: Office of Health and Environmental Assessment.
U.S. EPA. (1992) Dermal exposure assessment: principles and applications. Washington, DC: Office of Research and Development, Office of Health and Environmental Assessment/OHEA. U.S. EPA/600/8-9-91.

Van Graan, C.H. (1969) The determination of body surface area. Supplement to the South African J. of Lab. and Clin. Med. 8-2-69.

Yang, J.J.; Roy, T.A.; Krueger, A.J.; Neil, W.; Mackerer, C.R. (1989) In vitro and in vivo percutaneous absorption of benzo[a]pyrene from petroleum crude-fortified soil in the rat. Bull. Environ. Contam. Toxicol. 43: 207-214.

\section*{APPENDIX 4A}

\section*{APPENDIX 4A}

\section*{FORMULAE FOR TOTAL BODY SURFACE AREA}

Most formulae for estimating surface area (SA), relate height to weight to surface area. The following formula was proposed by Gehan and George (1970):
\[
\begin{equation*}
S A=K W^{2 / 3} \tag{Eqn.4A-1}
\end{equation*}
\]
where:
\[
\begin{aligned}
& \text { SA }=\text { surface area in square meters; } \\
& \mathbf{W}=\text { weight in } \mathrm{kg} ; \text { and } \\
& \mathbf{K}=\text { constant. }
\end{aligned}
\]

While the above equation has been criticized because human bodies have different specific gravities and because the surface area per unit volume differs for individuals with different body builds, it gives a reasonably good estimate of surface area.

A formula published in 1916 that still finds wide acceptance and use is that of DuBois and DuBois. Their model can be written:
\[
\begin{equation*}
S A=a_{0} H^{a_{1}} W^{a_{2}} \tag{Eqn.4A-2}
\end{equation*}
\]
where:
\[
\begin{array}{rll}
\text { SA } & = & \text { surface area in square meters; } \\
\mathrm{H} & = & \text { height in centimeters; and } \\
\mathrm{W} & = & \text { weight in } \mathrm{kg} .
\end{array}
\]

The values of \(a_{0}(0.007182), a_{1}(0.725)\), and \(a_{2}(0.425)\) were estimated from a sample of only nine individuals for whom surface area was directly measured. Boyd (1935) stated that
the Dubois formula was considered a reasonably adequate substitute for measuring surface area. Nomograms for determining surface area from height and mass presented in Volume I of the Geigy Scientific Tables (1981) are based on the DuBois and DuBois formula. In addition, a computerized literature search conducted for this report identified several articles written in the last 10 years in which the DuBois and DuBois formula was used to estimate body surface area.

Boyd (1935) developed new constants for the DuBois and DuBois model based on 231 direct measurements of body surface area found in the literature. These data were limited to measurements of surface area by coating methods ( 122 cases), surface integration ( 93 cases), and triangulation ( 16 cases). The subjects were Caucasians of normal body build for whom data on weight, height, and age (except for exact age of adults) were complete. Resulting values for the constants in the DuBois and DuBois model were \(a_{0}=0.01787, a_{1}=0.500\), and \(a_{2}=0.4838\). Boyd also developed a formula based exclusively on weight, which was inferior to the DuBois and DuBois formula based on height and weight.

Gehan and George (1970) proposed another set of constants for the DuBois and DuBois model. The constants were based on a total of 401 direct measurements of surface area, height, and weight of all postnatal subjects listed in Boyd (1935). The methods used to measure these subjects were coating (163 cases), surface integration (222 cases), and triangulation (16 cases).

Gehan and George (1970) used a least-squares method to identify the values of the constants. The values of the constants chosen are those that minimize the sum of the squared percentage errors of the predicted values of surface area. This approach was used because the importance of an error of 0.1 square meter depends on the surface area of the individual. Gehan and George (1970) used the 401 observations summarized in Boyd (1935) in the leastsquares method. The following estimates of the constants were obtained: \(a_{0}=0.02350\), \(a_{1}=0.42246\), and \(a_{2}=0.51456\). Hence, their equation for predicting surface area \((S A)\) is:
\[
\left[\begin{array}{c}
\text { DRAFT } \\
\text { DO MOT GUOTE OR } \\
\text { wr CTTE }
\end{array}\right]
\]
\[
\begin{equation*}
\mathrm{SA}=0.02350 \mathrm{H}^{0.42246} \mathrm{~W}^{0.51456} \tag{Eqn.4A-3}
\end{equation*}
\]
or in logarithmic form:
\[
\begin{equation*}
\ln \mathrm{SA}=-3.75080+0.42246 \ln \mathrm{H}+0.51456 \ln \mathrm{~W} \tag{Eqn.4A-4}
\end{equation*}
\]
where:

SA \(=\) surface area in square meters;
H \(=\) height in centimeters; and
\(\mathrm{W}=\quad\) weight in kg .

This prediction explains more than 99 percent of the variations in surface area among the 401 individuals measured (Gehan and George, 1970).

The equation proposed by Gehan and George (1970) was determined by the U.S. EPPA (1985) as the best choice for estimating total body surface area. However, the paper by Gehan and George gave insufficient information to estimate the standard error about the regression. Therefore, the 401 direct measurements of children and adults (i.e., Boyd, 1935) were reanalyzed in U.S. EPA (1985) using the formula of Dubois and Dubois (1916) and the Statistical Processing System (SPS) software package to obtain the standard error.

The Dubois and Dubois (1916) formula uses weight and height as independent variables to predict total body surface area (SA), and can be written as:
\[
\begin{equation*}
S A_{i}=a_{0} H_{i}{ }^{a l} W_{i}^{a 2} e_{i} \tag{Eqn.4A-5}
\end{equation*}
\]
or in logarithmic form:
\[
\begin{equation*}
\ln (S A)_{i}=\ln a_{0}+a_{1} \ln H_{i}+a_{2} \ln W_{i}+\ln e_{i} \tag{Eqn.4A-6}
\end{equation*}
\]
where:
\[
\begin{aligned}
& \mathrm{SAi}=\text { surface area of the } \mathrm{i} \text {-th individual }\left(\mathrm{m}^{2}\right) ; \\
& \mathrm{Hi}=\text { height of the } \mathrm{i} \text {-th individual }(\mathrm{cm}) ; \\
& \mathrm{Wi}=\text { weight of the } \mathrm{i} \text {-th individual }(\mathrm{kg}) ; \\
& \mathrm{a}_{0}, \mathrm{a}_{1}, \\
& \text { and } \mathrm{a}_{2}=\text { parameters to be estimated; and } \\
& \mathrm{e}_{\mathrm{i}}=\text { a random error term with mean zero and constant } \\
& \text { variance. }
\end{aligned}
\]

Using the least squares procedure for the 401 observations, the following parameter estimates and their standard errors were obtained:
\[
a_{0}=-3.73(0.18), a_{1}=0.417(0.054), a_{2}=0.517(0.022)
\]

The model is then:
\[
\begin{equation*}
S A=0.0239 H^{0.417} \mathrm{~W}^{0.517} \tag{Eqn.4A-7}
\end{equation*}
\]
or in logarithmic form:
\[
\begin{equation*}
\ln S A=-3.73+0.417 \ln \mathrm{H}+0.517 \ln \mathrm{~W} \tag{Eqn.4A-8}
\end{equation*}
\]
with a standard error about the regression of 0.00374 . This model explains more than 99 percent of the total variation in surface area among the observations, and is identical to two significant figures with the model developed by Gehan and George (1970).

When natural logarithms of the measured surface areas are plotted against natural logarithms of the surface predicted by the equation, the observed surface areas are symmetrically distributed around a line of perfect fit, with only a few large percentage deviations. Only five subjects differed from the measured value by 25 percent or more. Because each of the five subjects weighed less than 13 pounds, the amount of difference was
small. Eighteen estimates differed from measurements by 15 to 24 percent. Of these, 12 weighed less than 15 pounds each, 1 was overweight ( 5 feet 7 inches, 172 pounds), 1 was very thin ( 4 feet 11 inches, 78 pounds), and 4 were of average build. Since the same observer measured surface area for these 4 subjects, the possibility of some bias in measured values cannot be discounted (Gehan and George 1970).

Gehan and George (1970) also considered separate constants for different age groups: less than 5 years old, 5 years old to less than 20 years old, and greater than 20 years old. The different values for the constants are presented below:

Table 4A-1. Estimated Parameter Values for Different Age Intervals
\begin{tabular}{lclll}
\hline \begin{tabular}{c} 
Age \\
group
\end{tabular} & \begin{tabular}{c} 
Number \\
of persons
\end{tabular} & \(\mathrm{a}_{0}\) & \(\mathrm{a}_{1}\) & \(\mathrm{a}_{2}\) \\
\hline All ages & 401 & 0.02350 & 0.42246 & 0.51456 \\
\(<5\) years old & 229 & 0.02667 & 0.38217 & 0.53937 \\
\(\geq 5-<20\) years old & 42 & 0.03050 & 0.35129 & 0.54375 \\
\(\geq 20\) years old & 130 & 0.01545 & 0.54468 & 0.46336 \\
\hline
\end{tabular}

The surface areas estimated using the parameter values for all ages were compared to surface areas estimated by the values for each age group for subjects at the 3rd, 50th, and 97th percentiles of weight and height. Nearly all differences in surface area estimates were less than 0.01 square meter, and the largest difference was \(0.03 \mathrm{~m}^{2}\) for an 18 -year-old at the 97th percentile. The authors concluded that there is no advantage in using separate values of \(a_{0}, a_{1}\), and \(a_{2}\) by age interval.

Haycock et al. (1978) without knowledge of the work by Gehan and George (1970), developed values for the parameters \(a_{0}, a_{1}\), and \(a_{2}\) for the DuBois and DuBois model. Their
interest in making the DuBois and DuBois model more accurate resulted from their work in pediatrics and the fact that DuBois and DuBois (1916) included only one child in their study group, a severely undernourished girl who weighed only 13.8 pounds at age 21 months. Haycock et al. (1978) used their own geometric method for estimating surface area from 34 body measurements for 81 subjects. Their study included newborn infants ( 10 cases), infants ( 12 cases), children ( 40 cases), and adult members of the medical and secretarial staffs of 2 hospitals ( 19 cases). The subjects all had grossly normal body structure, but the sample included subjects of widely varying physique ranging from thin to obese. Black, Hispanic, and white children were included in their sample. The values of the model parameters were solved for the relationship between surface area and height and weight by multiple regression analysis. The least squares best fit for this equation yielded the following values for the three coefficients: \(a_{0}=0.024265, a_{1}=0.3964\), and \(a_{2}=0.5378\). The result was the following equation for estimating surface area:
\[
\begin{equation*}
\mathrm{SA}=0.024265 \mathrm{H}^{0.3964} \mathrm{~W}^{0.5378} \tag{Eqn.4A-9}
\end{equation*}
\]
expressed logarithmically as:
\[
\begin{equation*}
\ln \mathrm{SA}=\ln 0.024265+0.3964 \ln \mathrm{H}+0.5378 \ln \mathrm{~W} \tag{Eqn.4A-10}
\end{equation*}
\]

The coefficients for this equation agree remarkably with those obtained by Gehan and George (1970) for 401 measurements.

George et al. (1979) agree that a model more complex than the model of DuBois and DuBois for estimating surface area is unnecessary. Based on samples of direct measurements by Boyd (1935) and Gehan and George (1970), and samples of geometric estimates by Haycock et al. (1978), these authors have obtained parameters for the DuBois and DuBois model that are different than those originally postulated in 1916. The DuBois and DuBois model can be written logarithmically as:
\[
\begin{equation*}
\ln S A=\ln a_{0}+a_{1} \ln H+a_{2} \ln W \tag{Eqn.4A-11}
\end{equation*}
\]

The values for \(a_{0}, a_{1}\), and \(a_{2}\) obtained by the various authors discussed in this section are presented to follow:

Table 4A-2. Summary of Surface Area Parameter Values for the DuBois and DuBois Model
\begin{tabular}{lclll}
\hline \begin{tabular}{c} 
Author \\
(year)
\end{tabular} & \begin{tabular}{c} 
Number \\
of persons
\end{tabular} & \(\mathrm{a}_{0}\) & \(\mathrm{a}_{1}\) & \(\mathrm{a}_{2}\) \\
\hline DuBois and DuBois (1916) & 9 & 0.007184 & 0.725 & 0.425 \\
Boyd (1935) & 231 & 0.01787 & 0.500 & 0.4838 \\
Gehan and George (1970) & 401 & 0.02350 & 0.42246 & 0.51456 \\
Haycock et al. (1978) & 81 & 0.024265 & 0.3964 & 0.5378 \\
\hline
\end{tabular}

The agreement between the model parameters estimated by Gehan and George (1970) and Haycock et al. (1978) is remarkable in view of the fact that Haycock et al. were unaware of the previous work. Haycock et al. used an entirely different set of subjects, and used geometric estimates of surface area rather than direct measurements. It has been determined that the Gehan and George model is the formula of choice for estimating total surface area of the body since it is based on the largest number of direct measurements.

\section*{Nomograms}

Sendroy and Cecchini (1954) proposed a graphical method whereby surface area could be read from a diagram relating height and weight to surface area. However, they do not give an explicit model for calculating surface area. The graph was developed empirically based on 252 cases, 127 of which were from the 401 direct measurements reported by Boyd
(1935). In the other 125 cases the surface area was estimated using the linear method of DuBois and DuBois (1916). Because the Sendroy and Cecchini method is graphical, it is inherently less precise and less accurate than the formulae of other authors discussed above.

\section*{5. OTHER FACTORS FOR EXPOSURE CALCULATIONS}
```

DRAFT
CITE

```

In previous chapters, intake rate, inhalation rate, and information for dermal uptake (body surface area) have been addressed. Other factors are needed to perform the exposure calculation using equation for average daily potential dose are life expectancy, body weight and activity patterns data. These factors are addressed in this chapter.

\subsection*{5.1. LIFETIME}

Statistical data on life expectancy are published annually by the U.S. Department of Commerce in the publication: "Statistical Abstract of the United States." The latest year for which statistics are available is 1992. Preliminary data for 1992 show that the life expectancy for an average person born in the United States in 1992 is 75.7 years (U.S. Bureau of the Census, 1994). The average life expectancy for males is 72.3 years, and 79 years for females. Life expectancies for various subpopulations born in the years 1970 to 1992 are presented in Table 5-1. Table 5-1 also indicates that life expectancy for white males ( 73.2 years) is longer than for Black males ( 65.5 years). Additionally, it indicates that life expectancy for White females ( 79.7 years) is longer than for Black females (75.6). Although current data suggest that 75 years would be an appropriate value to reflect the average life expectancy of new members of the population, 70 years has been widely accepted for conducting exposure assessments, and is the recommended value. However, it should be noted that if gender is a factor considered in the assessment, the average life expectancy value for females is higher than for males. Also, if race is a consideration in assessing exposure to male individuals, note that the life expectancy is about 8 years longer for Whites than for Blacks.

\subsection*{5.2. BODY WEIGHT STUDIES}

The purpose of this section is to describe published studies on body weight for the U.S. population. The studies have been grouped as either key or relevant studies. The classifications of these studies have been based on their applicability of the data to exposure assessments.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{YEAR}} & \multicolumn{3}{|c|}{TOTAL} & \multicolumn{3}{|c|}{White} & \multicolumn{3}{|c|}{BLACK AND OTHER} & \multicolumn{3}{|c|}{black} \\
\hline & & Toual & Male & Female & Total & Mile & Femak & Total & Maic & Femule & Total & Male & Ferule \\
\hline \multicolumn{2}{|l|}{1970......................} & 70.8 & 67.1 & 74.7 & 71.7 & 68.0 & 75.6 & 65.3 & 61.3 & 69.4 & 64.1 & 60.0 & 68.3 \\
\hline \multicolumn{2}{|l|}{1975......................} & 72.6 & 68.8 & 76.6 & 73.4 & 69.5 & 77.3 & 68.0 & 63.7 & 72.4 & 66.8 & 62.4 & 71.3 \\
\hline \multicolumn{2}{|l|}{1980......................} & 73.7 & 70.0 & 77.4 & 74.4 & 70.7 & 78.1 & 69.5 & 65.3 & 73.6 & 68.1 & 63.8 & 72.5 \\
\hline \multicolumn{2}{|l|}{1981......................} & 74.1 & 70.4 & 77.8 & 74.8 & 71.1 & 78.4 & 70.3 & 66.2 & 74.4 & 68.9 & 64.5 & 73.2 \\
\hline \multicolumn{2}{|l|}{1982......................} & 74.5 & 70.8 & 78.1 & 75.1 & 71.5 & 78.7 & 70.9 & 66.8 & 74.9 & 69.4 & 65.1 & 73.6 \\
\hline \multicolumn{2}{|l|}{1983......................} & 74.6 & 71.0 & 78.1 & 75.2 & 71.6 & 78.7 & 70.9 & 67.0 & 74.7 & 69.4 & 65.2 & 73.5 \\
\hline \multicolumn{2}{|l|}{1984......................} & 74.7 & 71.1 & 78.2 & 75.3 & 71.8 & 78.7 & 71.1 & 67.2 & 74.9 & 69.5 & 65.3 & 73.6 \\
\hline \multicolumn{2}{|l|}{1985......................} & 74.7 & 71.1 & 78.2 & 75.3 & 71.8 & 78.7 & 71.0 & 67.0 & 74.8 & 69.3 & 65.0 & 73.4 \\
\hline \multicolumn{2}{|l|}{1986......................} & 74.7 & 71.2 & 78.2 & 75.4 & 71.9 & 78.8 & 70.9 & 66.8 & 74.9 & 69.1 & 64.8 & 73.4 \\
\hline \multicolumn{2}{|l|}{1987......................} & 74.9 & 71.4 & 78.3 & 75.6 & 72.1 & 78.9 & 71.0 & 66.9 & 75.0 & 69.1 & 64.7 & 73.4 \\
\hline \multicolumn{2}{|l|}{1988.....................} & 74.9 & 71.4 & 78.3 & 75.6 & 72.2 & 78.9 & 70.8 & 66.7 & 74.8 & 68.9 & 64.4 & 73.2 \\
\hline \multicolumn{2}{|l|}{1989......................} & 75.1 & 71.7 & 78.5 & 75.9 & 72.5 & 79.2 & 70.9 & 66.7 & 74.9 & 68.8 & 64.3 & 73.3 \\
\hline \multicolumn{2}{|l|}{1990......................} & 75.4. & 71.8 & 78.8 & 76.1 & 72.7 & 79.4 & 71.2 & 67.0 & 75.2 & 69.1 & 64.5 & 73.6 \\
\hline \multicolumn{2}{|l|}{1991......................} & 75.5 & 71.0 & 78.9 & 76.3 & 72.9 & 79.6 & 71.5 & 67.3 & 75.5 & 69.3 & 64.6 & 73.8 \\
\hline \multicolumn{2}{|l|}{1992 prel...} & 75.7 & 72.3 & 79.0 & 76.5 & 73.2 & 79.7 & 71.8 & 67.8 & 75.6 & 69.8 & 65.5 & 73.9 \\
\hline \multirow[t]{4}{*}{Projections \({ }^{\text {b }}\)} & 1995 & 76.3 & 72.8 & 79.7 & 77.0 & 73.7 & 80.3 & 72.5 & 68.2 & 76.8 & 70.3 & 65.8 & 74.8 \\
\hline & 2000 & 76.7 & 73.2 & 80.2 & 77.6 & 74.3 & 80.9 & 72.9 & 68.3 & 77.5 & 70.2 & 65.3 & 75.1 \\
\hline & 2005 & 77.3 & 73.8 & 80.7 & 78.2 & 74.9 & 81.4 & 73.6 & 69.1 & 78.1 & 70.7 & 65.9 & 75.5 \\
\hline & 2010 & 77.9 & 74.5 & 81.3 & 78.8 & 75.6 & 81.0 & 74.3 & 69.9 & 78.7 & 71.3 & 66.5 & 76.0 \\
\hline
\end{tabular}

\footnotetext{
a Excludes deaths of nonresidents of the United States
Based on middle mortality assumptions; for details, see U.S. Bureau of the Census, Current Population Reports, Series P-25, No. 1018.
}

Source: Bureau of the Census, 1994.

\subsection*{5.2.1. Key Body Weight Studies}

NCHS - Anthropometric Reference Data and Prevalence of Overweight, United States, 1976-80 - Statistics on anthropometric measurements, including body weight, for the U.S. population were collected by the National Center for Health Statistics (NCHS) through the second National Health and Nutrition Examination Survey (NHANES II). NHANES II was conducted on a nationwide probability sample of approximately 28,000 persons, aged 6 months to 74 years, from the civilian, non-institutionalized population of the United States. Of the \(\mathbf{2 8 , 0 0 0}\) persons, 20,322 were interviewed and examined, resulting in a response rate of 73.1 percent. The survey began in February 1976 and was completed in February 1980. The sample was selected so that certain subgroups thought to be at high risk of malnutrition (persons with low incomes, preschool children and the elderly) were oversampled. The estimates were weighted to reflect national population estimates. The weighting was accomplished by inflating examination results for each subject by the reciprocal of selection probabilities adjusted to account for those who were not examined and post stratifying by race, age, and sex (NCHS, 1987).

NHANES II collected anthropometric information on 20,322 individuals. Standard body measurements, including height and weight, were made at various times of the day and in different seasons of the year. This technique was used because one's weight may vary between winter and summer and may fluctuate with recency of food and water intake and other daily activities (NCHS, 1987). Mean body weights of adults, by age, and their standard deviations are presented in Table 5-2 for men, women, and both sexes combined. Mean body weights and standard deviations for children, ages 6 months to 19 years, are presented in Table 5-3 for boys, girls, and boys and girls combined. Percentile distributions of the body weights of adults by age and race for males are presented in Table 5-4, and for females in Table 5-5. Data for children by age are presented in Table 5-6 for males, and for females in Table 5-7.

Results shown in Tables 3 and 4 indicate that the mean weight for adult males is 78.1 kg and for adult females, 65.4 kg . It also shows that the mean weight for White males ( 78.5 kg ) is greater than for Black males ( 77.9 kg ). Additionally, mean weights are greater for Black females \((71.2 \mathrm{~kg}\) ) than for White females \((64.8 \mathrm{~kg}\) ). From Table \(5-3\), the mean body

Table 5-2. Body Weights of Adults \({ }^{2}\) (kilograms)
\begin{tabular}{lccccc}
\hline & \multicolumn{2}{c}{ Men } & \multicolumn{2}{c}{ Women } & Men and women \\
\cline { 2 - 6 } & Mean & \begin{tabular}{l} 
Std. \\
Dev.
\end{tabular} & Mean & \begin{tabular}{c} 
Std. \\
Dev.
\end{tabular} & Mean \\
\hline \(18<25\) & 73.8 & 12.7 & 60.6 & 11.9 & 67.2 \\
\(25<35\) & 78.7 & 13.7 & 64.2 & 15.0 & 71.5 \\
\(35<45\) & 80.9 & 13.4 & 67.1 & 15.2 & 74.0 \\
\(45<55\) & 80.9 & 13.6 & 68.0 & 15.3 & 74.5 \\
\(55<65\) & 78.8 & 12.8 & 67.9 & 14.7 & 73.4 \\
\(65<75\) & 74.8 & 12.8 & 66.6 & 13.8 & 70.7 \\
\(18<75\) & 78.1 & 13.5 & 65.4 & 14.6 & 71.8 \\
\hline
\end{tabular}
a Includes clothing weight, estimated as ranging from 0.09 to 0.28 kilogram.
Source: Adapted from National Center for Health Statistics (NCHS), 1987.

Table 5-3. Body Weighte of Childrea \({ }^{2}\) (kilograms)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Age} & \multicolumn{2}{|c|}{Boys} & \multicolumn{2}{|c|}{Girls} & \multirow[t]{2}{*}{\begin{tabular}{l}
Boys and girls \\
Mean
\end{tabular}} \\
\hline & Mean & Std. Dev. & Mean & Std. Dev. & \\
\hline 6-11 months & 9.4 & 1.3 & 8.8 & 1.2 & 9.1 \\
\hline 1 year & 11.8 & 1.9 & 10.8 & 1.4 & 11.3 \\
\hline 2 years & 13.6 & 1.7 & 13.0 & 1.5 & 13.3 \\
\hline 3 years & 15.7 & 2.0 & 14.9 & 2.1 & 15.3 \\
\hline 4 years & 17.8 & 2.5 & 17.0 & 2.4 & 17.4 \\
\hline 5 years & 19.8 & 3.0 & 19.6 & 3.3 & 19.7 \\
\hline 6 years & 23.0 & 4.0 & 22.1 & 4.0 & 22.6 \\
\hline 7 years & 25.1 & 3.9 & 24.7 & 5.0 & 24.9 \\
\hline 8 years & 28.2 & 6.2 & 27.9 & 5.7 & 28.1 \\
\hline 9 years & 31.1 & 6.3 & 31.9 & 8.4 & 31.5 \\
\hline 10 years & 36.4 & 7.7 & 36.1 & 8.0 & 36.3 \\
\hline 11 years & 40.3 & 10.1 & 41.8 & 10.9 & 41.1 \\
\hline 12 years & 44.2 & 10.1 & 46.4 & 10.1 & 45.3 \\
\hline 13 years & 49.9 & 12.3 & 50.9 & 11.8 & 50.4 \\
\hline 14 years & 57.1 & 11.0 & 54.8 & 11.1 & 56.0 \\
\hline 15 years & 61.0 & 11.0 & 55.1 & 9.8 & 58.1 \\
\hline 16 years & 67.1 & 12.4 & 58.1 & 10.1 & 62.6 \\
\hline 17 years & 66.7 & 11.5 & 59.6 & 11.4 & 63.2 \\
\hline 18 yeas & 71.1 & 12.7 & 59.0 & 11.1 & 65.1 \\
\hline 19 yeast & 71.7 & 11.6 & 60.2 & 11.0 & 66.0 \\
\hline
\end{tabular}
a Includes clothing weight, estimated as ranging from 0.09 to 0.28 kilogram.

Source: Adapted from National Center for Health Statistics (NCHS), 1987.

Table 5-4. Weight in Kilograms for Males 18-74 Years of Age-Number Examined, Mean, Standard Deviation, and Selected Percentiles, by Race and Age: United States, 1976-1980
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Race and Age} & \multirow[b]{2}{*}{Number of Examined Persons} & & \multicolumn{10}{|c|}{Percentile} \\
\hline & & Mcan & Standerd Devintion & 5th & 10h & 15th & 254h & 50h & 754h & 85th & 90th & 95th \\
\hline \multicolumn{13}{|l|}{All races \({ }^{\text {b }}\)} \\
\hline 18-74 years & 5,916 & 78.1 & 13.5 & 58.6 & 62.3 & 64.9 & 68.7 & 76.9 & 85.6 & 91.3 & 95.7 & 102.7 \\
\hline 18-24 years & 988 & 73.8 & 12.7 & 56.8 & 60.4 & 61.9 & 64.8 & 72.0 & 80.3 & 85.1 & 90.4 & 99.5 \\
\hline 25-34 years & 1,067 & 78.7 & 13.7 & 59.5 & 62.9 & 65.4 & 69.3 & 77.5 & 85.6 & 91.1 & 95.1 & 102.7 \\
\hline 35-44 years & 745 & 80.9 & 13.4 & 59.7 & 65.1 & 67.7 & 72.1 & 79.9 & 88.1 & 94.8 & 98.8 & 104.3 \\
\hline 45-54 years & 690 & 80.9 & 13.6 & 50.8 & 65.2 & 67.2 & 71.7 & 79.0 & 89.4 & 94.5 & 99.5 & 105.3 \\
\hline 55-64 years & 1,227 & 78.8 & 12.8 & 59.9 & 63.8 & 66.4 & 70.2 & 77.7 & 85.6 & 90.5 & 94.7 & 102.3 \\
\hline 65-74 years & 1,199 & 74.8 & 12.8 & 54.4 & 58.5 & 61.2 & 66.1 & 74.2 & 82.7 & 87.9 & 91.2 & 96.6 \\
\hline \multicolumn{13}{|l|}{White} \\
\hline \(18-74\) years & 5,148 & 78.5 & 13.1 & 59.3 & 62.8 & 65.5 & 69.4 & 77.3 & 85.6 & 91.4 & 95.5 & 102.3 \\
\hline \(18-24\) ycars & 846 & 74.2 & 12.8 & 56.8 & 60.5 & 62.0 & 65.0 & 72.4 & 80.6 & 85.5 & 91.0 & 100.0 \\
\hline 25-34 years & 901 & 79.0 & 13.1 & 59.9 & 63.7 & 65.9 & 69.8 & 78.0 & 85.6 & 91.3 & 95.3 & 102.7 \\
\hline 35-44 years & 653 & 81.4 & 12.8 & 62.3 & 66.6 & 68.8 & 72.9 & 80.1 & 88.2 & 94.6 & 98.7 & 104.1 \\
\hline 45-54 years & 617 & 81.0 & 13.4 & 62.0 & 66.1 & 67.3 & 71.9 & 79.0 & 89.4 & 94.2 & 99.0 & 104.5 \\
\hline 55-64 years & 1,086 & 78.9 & 12.4 & 60.5 & 64.5 & 66.6 & 70.6 & 78.2 & 85.6 & 90.4 & 94.5 & 101.7 \\
\hline 65-74 years & . 1,045 & 75.4 & 12.4 & 55.5 & 59.5 & 62.5 & 67.0 & 74.7 & 83.0 & 87.9 & 91.2 & 96.0 \\
\hline \multicolumn{13}{|l|}{Black} \\
\hline \(18-74\) years & 649 & 77.9 & 15.2 & 58.0 & 61.1 & 63.6 & 67.2 & 75.3 & 85.4 & 92.9 & 98.3 & 105.4 \\
\hline \(18-24\) years & 121 & 72.2 & 12.0 & 58.3 & 60.9 & 62.3 & 64.9 & 70.8 & 77.1 & 81.8 & 83.7 & 93.6 \\
\hline 25-34 years & 139 & 78.2 & 16.3 & 58.7 & 63.4 & 64.9 & 68.4 & 75.3 & 84.4 & 90.6 & 92.2 & 106.3 \\
\hline 35-44 years & 70 & 82.5 & 15.4 & * & 61.7 & 65.2 & 69.7 & 83.1 & 94.8 & 100.4 & 104.2 & * \\
\hline 45-54 years & 62 & 82.4 & 14.5 & * & 64.7 & 67.0 & 73.2 & 81.8 & 93.0 & 100.0 & 102.5 & * \\
\hline 55-64 yeara & 129 & 78.6 & 14.7 & 56.8 & 61.4 & 64.3 & 68.0 & 77.0 & 86.5 & 93.8 & 98.6 & 104.7. \\
\hline 65.74 ycara & 128 & 73.3 & 15.3 & 52.5 & 56.7 & 58.0 & 61.0 & 71.2 & 81.1 & 90.8 & 97.3 & 105.1 \\
\hline
\end{tabular}

\footnotetext{
- Includes clothing weight, estimated as ranging from 0.09 to 0.28 kilogram.
\({ }^{\mathrm{b}}\) Includes all other races not shown as separate categorics.
\({ }^{\text {- }}\) Data not available.
}

Source: National Center for Health Statistics, 1987.

Table 5-5. Weight in Kilograms for Females 18-74 Years of Age--Number Examined, Mean, Standard Deviation, and Selected Percentiles, by Race and Age: United States, 1976-1980 \({ }^{\circ}\)


All races \({ }^{\text {b }}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 18-74 years & 6,588 & 65.4 & 14.6 & 47.7 & 50.3 & 52.2 & 55.4 & 62.4 & 72.1 & 79.2 & 84.4 & 93.1 \\
\hline 18-24 years & 1,066 & 60.6 & 11.9 & 46.6 & 49.1 & 50.6 & 53.2 & 58.0 & 65.0 & 70.4 & 75.3 & 82.9 \\
\hline 25-34 years & 1,170 & 64.2 & 15.0 & 47.4 & 49.6 & 51.4 & 54.3 & 60.9 & 69.6 & 78.4 & 84.1 & 93.5 \\
\hline 35-44 years & 844 & 67.1 & 15.2 & 49.2 & 52.0 & 53.3 & 56.9 & 63.4 & 73.9 & 81.7 & 87.5 & 98.9 \\
\hline 45-54 years & 763 & 68.0 & 15.3 & 48.5 & 51.3 & 53.3 & 57.3 & 65.5 & 75.7 & 82.1 & 87.6 & 96.0 \\
\hline 55-64 years & 1,329 & 67.9 & 14.7 & 48.6 & 51.3 & 54.1 & 57.3 & 65.2 & 75.3 & 82.3 & 87.5 & 95.1 \\
\hline 65-74 years & 1,416 & 66.6 & 13.8 & 47.1 & 50.8 & 53.2 & 57.4 & 64.8 & 73.8 & 79.8 & 84.4 & 91.3 \\
\hline
\end{tabular}

White
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 18-74 years & 5,686 & 64.8 & 14.1 & 47.7 & 50.3 & 52.2 & 55.2 & 62.1 & 71.1 & 77.9 & 83.3 & 91.5 \\
\hline 18-24 years & 892 & 60.4 & 11.6 & 47.3 & 49.5 & 50.8 & 53.3 & 57.9 & 64.8 & 69.7 & 74.3 & 82.4 \\
\hline 25-34 years & 1,000 & 63.6 & 14.5 & 47.3 & 49.5 & 51.3 & 54.0 & 60.6 & 68.9 & 76.3 & 81.5 & 89.7 \\
\hline 35-44 years & 726 & 66.1 & 14.5 & 49.3 & 51.8 & 52.9 & 56.3 & 62.4 & 71.9 & 79.7 & 85.8 & 94.9 \\
\hline 45-54 years & 647 & 67.3 & 14.4 & 48.6 & 51.3 & 53.4 & 57.0 & 65.0 & 74.8 & 81.1 & 85.6 & 94.5 \\
\hline 55-64 years & 1,176 & 67.2 & 14.4 & 48.5 & 50.7 & 53.7 & 57.1 & 64.7 & 74.5 & 81.8 & 86.2 & 92.8 \\
\hline 65-74 years & 1,245 & 66.2 & 13.7 & 47.2 & 50.7 & 52.9 & 57.2 & 64.3 & 72.9 & 79.2 & 84.3 & 91.2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 18-74 years & 782 & 71.2 & 17.3 & 48.8 & 51.6 & 55.1 & 59.1 & 67.8 & 80.6 & 87.4 & 94.9 & 105.1 \\
\hline 18-24 years & 147 & 63.1 & 13.9 & 46.2 & 49.0 & 50.6 & 53.8 & 60.4 & 70.0 & 75.8 & 79.1 & 89.3 \\
\hline 25-34 years & 145 & 69.3 & 16.7 & 48.3 & 50.8 & 53.1 & 57.8 & 65.3 & 80.2 & 87.1 & 91.5 & 102.7 \\
\hline . \(35-44\) years & 103 & 75.3 & 18.4 & 50.7 & 55.2 & 57.2 & 63.0 & 70.2 & 85.2 & 95.3 & 103.5 & 113.1 \\
\hline 45-54 years & 100 & 77.7 & 18.8 & 55.1 & 60.3 & 60.8 & 64.5 & 74.3 & 83.6 & 94.5 & 98.2 & 117.5 \\
\hline 55-64 years & 135 & 75.8 & 16.4 & 54.2 & 55.2 & 57.6 & 65.4 & 74.6 & 83.4 & 91.9 & 95.5 & 108.5 \\
\hline 65.74 years & 152 & 72.4 & 13.6 & 52.9 & 56.4 & 60.3 & 64.0 & 70.0 & 82.2 & 84.4 & 86.5 & \(9 8 \longdiv { 1 }\) \\
\hline
\end{tabular}
\({ }^{2}\) Includes clothing weight, eatimated as ranging from 0.09 to 0.28 kilogram.
b Includes all other races not shown as separate categories.
Source: National Center for Health Statistics, 1987.

Table 5-6. Weight in Kilograms for Males 6 Months-19 Years of Age-Number Examined, Mean, Standard Deviation, and Selected Percentiles, by Sex and Age: United States, 1976-1980


Table 5-7. Weight in Kilograms for Females 6 Months-19 Years of Age-Number Examined, Mean, Standard Deviation, and Selected Percentiles, by Sex and Age: United States, 1976-1980
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Sex and Age} & \multirow[b]{2}{*}{\begin{tabular}{l}
Number of \\
Examined \\
Permons
\end{tabular}} & \multicolumn{12}{|c|}{Percentile} \\
\hline & & Mean & \begin{tabular}{l}
Standard \\
Deviation
\end{tabular} & 5th & 10th & 15th & 25th & 50th & 75th & 85th & 90th & 95th & \\
\hline \multicolumn{14}{|l|}{Female} \\
\hline 6-11 Months & 177 & 8.8 & 1.2 & 6.6 & 7.3 & 7.5 & 7.9 & 8.9 & 9.4 & 10.1 & 10.4 & 10.9 & \\
\hline 1 years & 336 & 10.8 & 1.4 & 8.8 & 9.1 & 9.4 & 9.9 & 10.7 & 11.7 & 12.4 & 12.7 & 13.4 & \\
\hline 2 yeara & 336 & 13.0 & 1.5 & 10.8 & 11.2 & 11.6 & 12.0 & 12.7 & 13.8 & 14.5 & 14.9 & 15.9 & \\
\hline 3 years & 366 & 14.9 & 2.1 & 11.7 & 12.3 & 12.9 & 13.4 & 14.7 & 16.1 & 17.0 & 17.4 & 18.4 & \\
\hline 4 years & 396 & 17.0 & 2.4 & 13.7 & 14.3 & 14.5 & 15.2 & 16.7 & 18.4 & 19.3 & 20.2 & 21.1 & \\
\hline 5 years & 364 & 19.6 & 3.3 & 15.3 & 16.1 & 16.7 & 17.2 & 19.0 & 21.2 & 22.8 & 24.7 & 26.6 & \\
\hline 6 years & 135 & 22.1 & 4.0 & 17.0 & 17.8 & 18.6 & 19.3 & 21.3 & 23.8 & 26.6 & 28.9 & 29.6 & \\
\hline 7 years & 157 & 24.7 & 5.0 & 19.2 & 19.5 & 19.8 & 21.4 & 23.8 & 27.1 & 28.7 & 30.3 & 34.0 & \\
\hline 8 years & 123 & 27.9 & 5.7 & 21.4 & 22.3 & 23.3 & 24.4 & 27.5 & 30.2 & 31.3 & 33.2 & 36.5 & \\
\hline 9 years & 149 & 31.9 & 8.4 & 22.9 & 25.0 & 25.8 & 27.0 & 29.7 & 33.6 & 39.3 & 43.3 & 48.4 & \\
\hline 10 years & 136 & 36.1 & 8.0 & 25.7 & 27.5 & 27.0 & 31.0 & 34.5 & 39.5 & 44.2 & 45.8 & 49.6 & \\
\hline 11 years. & . 140 & 41.8 & 10.9 & 29.8 & 30.3 & 31.3 & 33.9 & 40.3 & 45.8 & 51.0 & 56.6 & 60.0 & \\
\hline 12 yeara. & . 147 & 46.4 - & 10.1 & 32.3 & 35.0 & 36.7 & 39.1 & 45.4 & 52.6 & 58.0 & 60.5 & 64.3 & \\
\hline 13 years & 162 & 50.9 & 11.8 & 35.4 & 39.0 & 40.3 & 44.1 & 49.0 & 55.2 & 60.9 & 66.4 & 76.3 & \\
\hline 14 years & \[
\text { . } \quad 178
\] & 54.8 & 11.1 & 40.3 & 42.8 & 43.7 & 47.4 & 53.1 & 60.3 & 65.7 & 67.6 & 75.2 & \\
\hline 15 years & . 145 & 55.1 & 9.8 & 44.0 & 45.1 & 46.5 & 48.2 & 53.3 & 59.6 & 62.2 & 65.5 & 76.6 & \\
\hline 16 years & 170 & 58.1 & 10.1 & 44.1 & 47.3 & 48.9 & 51.3 & 55.6 & 62.5 & 68.9 & 73.3 & 76.8 & \\
\hline 17 years & & 59.6 & 11.4 & 44.5 & 48.9 & 50.5 & 52.2 & 58.4 & 63.4 & 68.4 & 71.6 & 81.8 & \\
\hline 18 years & . 170 & 59.0 & 11.1 & 45.3 & 49.5 & 50.8 & 52.8 & 56.4 & 63.0 & 66.0 & 70.1 & 78.0 & \\
\hline 19 years & 158 & 60.2 & 11.0 & 48.5 & 49.7 & 51.7 & 53.9 & 57.1 & 64.4 & 70.7 & 74.8 & 78.1 & \\
\hline \multicolumn{4}{|l|}{a Includes clothing weight, estimated as ranging from 0.09 to 0.28 kilogram.} & & & & & & & & & & 45 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Source: National Center for Health Statistics, 198}} & & & & & & . & & & & & &  \\
\hline & & & & & & & & & & & & & O \\
\hline
\end{tabular}
weights for girls and boys are approximately the same from ages 6 months to 14 years. Starting at years \(15-19\), the difference in mean body weight ranges from \(6-11 \mathrm{~kg}\).

\subsection*{5.2.2. Other Relevant Body Weight Studies}

Burmaster et al. (Submitted 2/19/94 to Risk Analysis for Publication) - Lognormal Distributions of Body Weight as a Function of Age for Female and Male Children in the United States - Burmaster et al. (1994), performed data analysis to fit normal and lognormal distributions to the body weights of female and male children at age 6 months to 20 years (Burmaster et al., 1994).

Data used in this analysis were from the second survey of the National Center for Health Statistics (NHANES II) of 4,079 females and 4,379 males 6 months to 20 years of age in the U.S. (Burmaster et al., 1994). The data of NCHS had been statistically adjusted for non-response and probability of selection and stratified by age, sex, and race to reflect the whole U.S. population prior to reporting (Burmaster et al., 1994). Burmaster et al. (1994) conducted exploratory and quantitative data analyses, and fit normal and lognormal distributions to percentiles of body weight for children. Cumulative distribution functions (CDFs) were plotted for female and male body weights on both linear and logarithmic scales.

Two models were used to assess the probability density functions (PDFs) of children's body weight. Linear and quadratic regression lines were fitted to the data. A number of goodness-of-fit measures between the two models were conducted. Burmaster et al. (1994) found that lognormal distributions give strong fits to the body weights of children, ages 6 months to 20 years. Statistics for the lognormal probability plots are presented in Tables 5-8 and 5-9. These data can be used for further analyses, i.e., Monte Carlo.

Brainard and Burmaster - Bivariate Distributions for Height and Weight of Men and Women in the United States - Brainard and Burmaster (1992) examined data on the height and weight of adults published by the U.S. Public Health Service and fit bivariate distributions to the tabulated values for men and women, separately.

Height and weight of 5,916 men and 6,588 women in the age range of 18-74 years were taken from the NHANES II Study and statistically adjusted to represent the U.S. population aged 18-74 years with regard to age structure, sex, and race. Estimation

Table 5-8. Statistics for Probability Plot Regression Analyses; Female's Body Weights 6 Months to 20 Years of Age
\begin{tabular}{rll}
\hline & Lognormal Probability Plots & \\
\hline Age & Linear Curve & \\
\hline 6 months to 1 & \(\mu_{2}{ }^{\mathrm{a}}\) & \(\sigma_{2}^{\mathrm{a}}\) \\
1 to 2 & 2.16 & 0.145 \\
2 to 3 & 2.38 & 0.128 \\
3 to 4 & 2.56 & 0.112 \\
4 to 5 & 2.69 & 0.137 \\
5 to 6 & 2.83 & 0.133 \\
6 to 7 & 2.98 & 0.174 \\
7 to 8 & 3.10 & 0.174 \\
8 to 9 & 3.19 & 0.156 \\
9 to 10 & 3.31 & 0.214 \\
10 to 11 & 3.46 & 0.199 \\
11 to 12 & 3.57 & 0.226 \\
12 to 13 & 3.71 & 0.213 \\
13 to 14 & 3.82 & 0.216 \\
14 to 15 & 3.92 & 0.187 \\
15 to 16 & 3.99 & 0.156 \\
16 to 17 & 4.00 & 0.167 \\
17 to 18 & 4.06 & 0.165 \\
18 to 19 & 4.08 & 0.147 \\
19 to 20 & 4.07 & 0.149 \\
\hline
\end{tabular}
a \(\mu_{2}, \sigma_{2}\)-correspond to the mean and standard deviation, respectively, of the lognormal distribution.

Source: Burmaster et al., 1994.

Table 5-9. Statistics for Probability Plot Regression Analyses; Male's Body Weights 6 Months to 20 Years of Age
\begin{tabular}{rll}
\hline & Lognormal Probability Plots & \\
\hline Age & \(\mu_{2}{ }^{2}\) & \\
\hline 6 months to 1 & 2.23 & \(\sigma_{2}{ }^{2}\) \\
1 to 2 & 2.46 & 0.132 \\
2 to 3 & 2.60 & 0.119 \\
3 to 4 & 2.75 & 0.120 \\
4 to 5 & 2.87 & 0.114 \\
5 to 6 & 2.99 & 0.133 \\
6 to 7 & 3.13 & 0.138 \\
7 to 8 & 3.21 & 0.145 \\
8 to 9 & 3.33 & 0.181 \\
9 to 10 & 3.43 & 0.165 \\
10 to 11 & 3.59 & 0.195 \\
11 to 12 & 3.78 & 0.252 \\
12 to 13 & 3.88 & 0.224 \\
13 to 14 & 4.02 & 0.215 \\
14 to 15 & 4.09 & 0.181 \\
15 to 16 & 4.20 & 0.159 \\
16 to 17 & 4.19 & 0.168 \\
17 to 18 & 4.25 & 0.167 \\
18 to 19 & 4.26 & 0.159 \\
19 to 20 & & 0.154 \\
\hline
\end{tabular}
a \(\mu_{2}, \sigma_{2}\)-correspond to the mean and standard deviation, respectively, of the lognormal distribution.

Source: Burmaster et al., 1994.
techniques were used to fit normal distributions to the cumulative marginal data and goodness-of-fit tests were used to test the hypothesis that height and lognormal weight follow a normal distribution for each sex. It was found that the marginal distributions, of height and lognormal weight for both men and women, are Gaussian in form. This conclusion was reached by visual observation and the high \(\mathbf{R}^{2}\) values obtained using linear regression. The \(\mathbf{R}^{2}\) values for men's height and lognormal weight are reported to be 0.999 . The \(\mathbf{R}^{2}\) values for women's height and lognormal weight are 0.999 and 0.985 , respectively.

Brainard and Burmaster fit bivariate distributions to estimated numbers of men and women aged 18-74 years in cells representing 1 inch intervals in height and 10 pound intervals in weight. Adjusted height and lognormal weight data for men were fit to a single bivariate normal distribution with an estimated mean height of 69.2 inches and an estimated mean weight of 173.2 pounds. For women, height and lognormal weight data were fit to a pair of superimposed bivariate normal distributions (Brainard and Burmaster, 1992). The average height and weight for women were estimated from the combined bivariate analyses. Mean height for women was estimated to be 63.8 inches and mean weight was estimated to be 145.0 pounds. For women, a calculation using a single bivarite normal distribution gave poor results (Lloyd and Burmaster, 1994). According to Brainard and Burmaster, the distributions are suitable for use in Monte Carlo simulation.

\subsection*{5.2.3. Recommendations}

The mean body weight for all adults (male and female, all age groups) combined is 71.8 kg as shown in Table 5-2. The mean values for each age group in Table 5-2 were derived by adding the body weights for men and women and dividing by 2 . The 71.8 kg value can be rounded to 70 kg and is the recommended as the body weight to be used for adults if distribution data are not needed. If age and sex distribution of the exposed population is known, the mean body weight values in Table 5-2 can be used. If percentile data are needed or if race is a factor, Tables 5-4 and 5-5 can be used to select the appropriate data for percentiles or mean values. For children, appropriate mean values for weights may be selected from Table 5-3. If percentile values are needed, these data are presented in Table 5-6 for male children and in Table 6 for female children. Using the body
weight data in Table 5-3, and the corresponding population percentages in Table 5-6, the average body weight for the entire population of individuals age 6 months to 19 years was calculated to be 36 kg . This value may be used as a default body weight value for the entire population of children under 19 years if specific age groups are not used.

\subsection*{5.3. ACTIVITY PATTERNS}

In exposure assessments, a person's average daily dose can be determined from a combination of variables including the pollutant concentration, exposure duration, and frequency of exposure. These variables can be dependent on human activity patterns and time spent at each activity/location. A person's total exposure can be predicted using indirect approaches such as computerized models. This indirect approach of predicting exposure also requires activity patterns (time use) data.

The purpose of this section is to describe published time use studies that provide information on time-activity patterns of the national population and various sub-populations in the U.S. The studies involve survey designs where time diaries were used to collect information on the time spent at various activities and locations for children, adolescents, and adults, and for certain demographic and socioeconomic data. Available studies on timeactivity data are summarized in the following sections, and they are grouped as key studies or other relevant studies. The classifications of these studies are based on the applicability of their data to exposure assessments. It should be noted that other site-limited studies, based on small sample sites, are available, but are not presented in this section. The studies presented in this section are ones believed to be the most appropriate for the purpose of the Handbook.

\subsection*{5.3.1. Key Activity Pattern Studies}

Robinson - Changes in Americans' Use of Time: 1965-1975 - Robinson (1977) compared time use data obtained from two national surveys that were conducted in 19651966 and in 1975. Each survey used the time-diary method to collect data. The 1965-66 survey excluded the people in the following categories: (a) non-SMSA's (Census Bureau areas with no city more than 50,000 population); (b) households where no adult members
were in the labor force for at least 10 hours per week; (c) age 65 and over; and (d) farmrelated occupations (Robinson, 1977). The 1,244 respondents in the \(1965-66\) study included either employed men and women or housewives (Robinson, 1977). The survey was conducted between November-December 1965 and March-April 1966. Respondents recorded their daily activities in time diaries by using the "tomorrow" approach. In this approach, diaries were kept on the day following the interviewer's initial contact. The interviewer then made a second call to the respondent to determine if the information in diaries were correct and to obtain additional data. Only one person per household was interviewed. The survey was designed to obtain information on time spent with family members, time spent at various locations during activities, and time spent performing primary and secondary activities.

A similar study was conducted in 1975. Unlike the 1965-1966 survey, the 1975 survey included rural areas, farmers, the unemployed, students, and retirees. The 1975 survey was conducted October through December. Time diary data were collected using the "yesterday" approach. In this approach, interviewers made only one contact with respondents (greater than 1500) and the diaries were filled out based on a 24 -hour recall (Robinson, 1977). Time diary data were also collected from the respondents spouses.

In both surveys, the various activities were coded into 96 categories, and then were combined into five major categories. Free-time activities were grouped into 5 sub-categories (Appendix Table 5A-1). In order to compare data obtained from both surveys, Robinson (1977) excluded the same population groups in the 1975 survey that were excluded in the 1965-66 survey (i.e., farmers, rural residents).

Results obtained from the surveys were presented by gender, age, marital and employment status, race, and education. Robinson (1977) reported the data collected in hours/weeks, however, the method for converting daily activities to hours/weeks were not presented. Table 5-10 shows the differences in time use by gender, employment, and marital status for five major activity categories and five subcategories for 1965 and 1975. Time spent on work related activities (i.e. work for pay and family care) was lower in 1975 than in 1965 for employed men and women. Table 5-10 also shows that there was an overall increase in free time activities for all the six groups. The difference in time use in 1965 and 1975 are presented by age, education, and race in Tables 5-11, 5-12, and 5-13, respectively.

Table 5-10. Differences in Time Use (hours/week)a Grouped by Sex, Employment Status, and Marital Status for the Surveys Conducted in 1965 and 1975
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Employed Men} & \multicolumn{2}{|l|}{Employed Women} & \multicolumn{2}{|c|}{Housewives} & Total Sample \\
\hline \[
\begin{aligned}
& \text { Urban Data } \\
& 1965
\end{aligned}
\] & Married
\[
(\mathrm{N}=448)
\] & Single
\[
(N=73)
\] & Married
\[
(\mathbb{N}=190)
\] & Single
\[
(\mathbb{N}=152)
\] & Married
\[
(\mathrm{N}=341)
\] & Single
\[
(N=14)
\] & ( \(\mathrm{N}=1218\) ) \\
\hline Sleep & 53.1 & 50.6 & 53.8 & 52.6 & 53.9 & 58.8 & 53.3 \\
\hline Work for Pay & 51.3 & 51.4 & 38.4 & 39.8 & 0.5 & 1.6 & 33.0 \\
\hline Family Care & 9.0 & 7.7 & 28.8 & 20.6 & 50.0 & 45.7 & 25.4 \\
\hline Personal Care & 20.9 & 22.2 & 20.3 & 21.7 & 22.6 & 23.0 & 21.5 \\
\hline Free Time & 33.7 & 36.1 & 26.7 & 33.3 & 41.0 & 38.9 & 34.8 \\
\hline Organizations & 2.6 & 3.6 & 1.4 & 3.7 & 3.4 & 3.4 & 2.8 \\
\hline Media & 17.1 & 13.9 & 10.7 & 11.1 & 15.3 & 19.1 & 14.7 \\
\hline Social Life & 7.2 & 10.4 & 7.9 & 9.6 & 12.6 & 10.2 & 9.4 \\
\hline Recreation & 1.4 & 1.3 & 0.6 & 0.5 & 0.6 & 1.1 & 0.9 \\
\hline Other Leisure & 5.4 & 6.9 & 6.1 & 8.4 & 9.1 & 5.1 & 7.0 \\
\hline Total Time (Free) & \[
\begin{aligned}
& 168.0 \\
& \text { (33.7) }
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (36.1)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (26.7)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (33.3)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (41.0)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (38.9)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (34.8)
\end{aligned}
\] \\
\hline 1975 & ( \(\mathrm{N}=245\) ) & ( \(\mathrm{N}=87\) ) & ( \(\mathrm{N}=117\) ) & ( \(\mathrm{N}=108\) ) & ( \(\mathrm{N}=141\) ) & ( \(\mathrm{N}=28\) ) & ( \(\mathrm{N}=726\) ) \\
\hline Sleep & 53.4 & 54.1 & 55.1 & 54.3 & 56.8 & 58.6 & 54.7 \\
\hline Work for Pay & 47.4 & 40.0 & 30.1 & 38.8 & 1.1 & 0.0 & 32.5 \\
\hline Family Care & 9.7 & 9.0 & 24.9 & 16.6 & 44.3 & 42.8 & 20.5 ! \\
\hline Personal Care & 21.4 & 20.0 & 26.2 & 21.9 & 21.4 & 19.2 & 21.8 \\
\hline
\end{tabular}

Table 5-10. Differences in Time Use (hours/week) \({ }^{\text {a }}\) Grouped by Sex, Employment Status, and Marital Status for the Surveys Conducted in 1965 and 1975 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Employed Men} & \multicolumn{2}{|l|}{Employed Women} & \multicolumn{2}{|c|}{Housewives} & Total Sample \\
\hline Free Time & 36.1 & 44.9 & 31.7 & 36.4 & 44.4 & 47.4 & 38.5 \\
\hline Organizations & 3.7 & 4.8 & 1.1 & 4.4 & 4.8 & 3.0 & 3.8 \\
\hline Media & 18.9 & 18.5 & 15.6 & 14.5 & 20.4 & 27.2 & 18.2 \\
\hline Social Life & 6.4 & 8.9 & 6.6 & 8.9 & 10.1 & 9.1 & 7.8 \\
\hline Recreation & 1.3 & 4.1 & 0.8 & 0.5 & 0.7 & 0.4 & 1.3 \\
\hline Other Leisure & 5.8 & 8.6 & 6.5 & 8.1 & 8.4 & 7.7 & 7.4 \\
\hline Total Time (Free) & \[
\begin{aligned}
& 168.0 \\
& (36.1) \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
168.0 \\
(44.9) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 168.0 \\
& (31.7)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (36.4)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (44.4) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (47.4) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (38.5) \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}
a Data weighted to ensure equal days of the week.
Source: Robinson, 1977.

Table 5-11. Time Use (bours/week) \({ }^{2}\) Differeaces by Age for the Surveys Conducted in 1965 and 1975
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{10}{|c|}{Mean Duration (hre/wk)} & \\
\hline & \multicolumn{2}{|c|}{18-25} & \multicolumn{2}{|c|}{25-35} & \multicolumn{2}{|r|}{Age Group
\[
36-45
\]} & \multicolumn{2}{|c|}{46-55} & \multicolumn{2}{|c|}{56-65} & \\
\hline Activity & \[
\begin{gathered}
1965 \\
(\mathrm{~N}=200)
\end{gathered}
\] & \[
\begin{gathered}
1975 \\
(\mathrm{~N}=149)
\end{gathered}
\] & \[
\begin{gathered}
1965 \\
(\mathrm{~N}=321)
\end{gathered}
\] & \[
\begin{gathered}
1975 \\
(\mathrm{~N}=234)
\end{gathered}
\] & \[
\begin{gathered}
1965 \\
(\mathrm{~N}=306)
\end{gathered}
\] & \[
\begin{gathered}
1975 \\
(\mathrm{~N}=150)
\end{gathered}
\] & \[
\begin{gathered}
1965 \\
(\mathrm{~N}=252)
\end{gathered}
\] & 1975 ( \(\mathrm{N}=141\) ) & \[
\begin{gathered}
1965 \\
(\mathrm{~N}=156)
\end{gathered}
\] & \[
\begin{gathered}
1975 \\
(N=111)
\end{gathered}
\] & \\
\hline Sleep & 54.2 & 55.4 & 52.5 & 53.9 & 53.1 & 54.7 & 53.9 & 55.4 & 53.6 & 56.0 & \\
\hline Work for Pay & 32.6 & 27.0 & 29.2 & 33.4 & 33.1 & 34.4 & 33.4 & - 31.0 & 35.9 & 20.4 & \\
\hline Family Care & 21.2 & 15.3 & 30.4 & 21.6 & 25.4 & 20.4 & 24.9 & 23.2 & 20.4 & 23.2 & \\
\hline Personal Care & 20.9 & 20.3 & 20.3 & 20.8 & 22.5 & 21.1 & 22.4 & 23.1 & 20.9 & 26.6 & \\
\hline Free Time & 39.1 & 50.0 & 35.6 & 38.4 & 33.8 & 37.3 & 33.4 & 35.2 & 37.1 & 41.8 & \\
\hline Organizations & 4.8 & 8.4 & 3.0 & 4.2 & 3.0 & 3.3 & 2.0 & 3.1 & 2.9 & 3.2 & \\
\hline Medin & 13.8 & \[
18.5
\] & 14.6 & 17.2 & 14.5 & \[
18.3
\] & 15.3 & 18.8 & 17.4 & 22.6 & \\
\hline Social Life & 11.3 & 10.7 & 10.3 & 8.7 & 8.4 & 7.8 & 8.6 & 5.4 & 8.1 & 6.2 & \\
\hline Recreation & 0.9 & 2.6 & 1.2 & 1.3 & 0.8 & 1.0 & 0.6 & 1.3 & 1.1 & 1.3 & \\
\hline \begin{tabular}{l}
Other \\
Leisure
\end{tabular} & 8.3 & 9.8 & 6.5 & 7.0 & 7.1 & 6.9 & 6.9 & 6.6 & 7.6 & 8.5 & \\
\hline Total (Free) Time & \[
\begin{aligned}
& 168.0 \\
& (39.1)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (50.0)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (35.6)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (38.4)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (33.8)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (37.3)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (33.4)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (35.2)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (37.1)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (41.8)
\end{aligned}
\] & \\
\hline \multicolumn{11}{|l|}{Source: Robinson, 1977.} &  \\
\hline
\end{tabular}

Table 5-12. Time Use (hours/week) \({ }^{\text {a }}\) Differences by Education for the Surveys Conducted in 1965 and 1975
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{Activity} & \multicolumn{10}{|c|}{Mean duration (hours/week)} \\
\hline & \multicolumn{10}{|c|}{Age Group} \\
\hline & \multicolumn{2}{|c|}{\(0-8\)} & \multicolumn{2}{|r|}{9-11} & \multicolumn{2}{|c|}{12} & \multicolumn{2}{|c|}{13-15} & \multicolumn{2}{|c|}{\(16+\)} \\
\hline & \[
\begin{aligned}
& 1965 \\
& (\mathrm{~N}=171)
\end{aligned}
\] & \[
\begin{gathered}
1975 \\
(\mathrm{~N}=75)
\end{gathered}
\] & \[
\begin{aligned}
& 1965 \\
& (\mathrm{~N}=220)
\end{aligned}
\] & \[
\begin{aligned}
& 1975 \\
& (\mathrm{~N}=114)
\end{aligned}
\] & \[
\begin{aligned}
& 1965 \\
& (\mathrm{~N}=452)
\end{aligned}
\] & \[
\begin{aligned}
& 1975 \\
& (\mathrm{~N}=319)
\end{aligned}
\] & \[
\begin{gathered}
1965 \\
(\mathrm{~N}=195)
\end{gathered}
\] & \[
\begin{aligned}
& 1975 \\
& (\mathrm{~N}=137)
\end{aligned}
\] & \[
\begin{aligned}
& 1965 \\
& (\mathrm{~N}=191)
\end{aligned}
\] & \[
\begin{gathered}
1975 \\
(\mathrm{~N}=144)
\end{gathered}
\] \\
\hline Sleep & 54.9 & 57.0 & 52.3 & 53.7 & 53.0 & 55.5 & 53.6 & 53.6 & 53.6 & 54.8 \\
\hline Work for Pay & 31.6 & 30.0 & 33.1 & 32.0 & 30.9 & 26.9 & 34.4 & 27.5 & 34.5 & 38.0 \\
\hline Family Care & 24.7 & 18.7 & 25.4 & 21.7 & 28.9 & 23.5 & 21.7 & 18.9 & 21.2 & 16.8 \\
\hline Personal Care & 20.8 & 22.9 & 20.9 & 22.0 & 21.1 & 22.1 & 21.7 & 10.5 & 22.7 & 22.3 \\
\hline Free Time & 35.9 & 39.4 & 36.1 & 38.6 & 34.1 & 40.0 & 36.5 & 47.5 & 35.9 & 36.1 \\
\hline Organizations & 1.8 & 3.0 & 1.5 & 2.2 & 2.5 & 3.7 & 5.8 & 9.1 & 4.7 & 4.1 \\
\hline Medin & 19.3 & 18.0 & 16.5 & 20.7 & 14.2 & 19.0 & 13.3 & 19.7 & 12.5 & 16.2 \\
\hline Social Lifo & 7.7 & 8.4 & 9.8 & 7.9 & 9.5 & 8.5 & 9.0 & 7.7 & 10.2 & 8.1 \\
\hline Recreation & 0.9 & 1.3 & 1.4 & 0.7 & 0.7 & 1.3 & 1.1 & 2.0 & 0.9 & 1.3 \\
\hline Other Leisure & 6.3 & 8.7 & 7.0 & 7.1 & 7.2 & 7.5 & 7.4 & 9.0 & 7.7 & 6.4 \\
\hline Total (Free) Time & \[
\begin{aligned}
& 168.0 \\
& \mathbf{( 3 6 . 0 )}
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (39.4)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (36.2)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (38.6)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (34.1)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (40.0)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (36.6)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (47.5)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (36.0)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (36.1)
\end{aligned}
\] \\
\hline
\end{tabular}
- Data weighted to ensure equal days of the week.

Source: Robinson, 1977.

Table 5-13. Time Use (hours/week)² Differences by Race for the Surveys Conductod in 1965 and 1975
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Activity} & \multicolumn{5}{|c|}{Mean duration (hours/week)} \\
\hline & \multicolumn{2}{|c|}{White} & \multicolumn{3}{|c|}{Black} \\
\hline & \[
\begin{gathered}
1965 \\
(\mathrm{~N}=1030)
\end{gathered}
\] & \[
\begin{gathered}
1975 \\
(\mathrm{~N}=680)
\end{gathered}
\] & \[
\begin{gathered}
1965 \\
(\mathrm{~N}=103)
\end{gathered}
\] & \[
\begin{gathered}
1975 \\
(\mathrm{~N}=77)
\end{gathered}
\] & \\
\hline Sleep & 53.4 & 54.5 & 50.9 & 54.8 & \\
\hline Work for Pay & 31.9 & 30.0 & 36.6 & 30.0 & \\
\hline Family Care & 26.0 & 21.1 & 23.6 & 17.6 & \\
\hline Personal Care & 21.8 & 22.1 & 20.0 & 21.0 & \\
\hline Free Time & 34.9 & 40.3 & 36.9 & 44.6 & \\
\hline Organizations & 2.8 & 4.4 & 3.0 & 4.9 & \\
\hline Media & 14.8 & 18.7 & 15.7 & 19.6 & \\
\hline Social Life & 9.3 & 8.2 & 9.1 & 9.8 & \\
\hline Recreation & 1.1 & 1.5 & 0.6 & 0.4 & \\
\hline Other Leisure & 6.9 & 7.5 & 8.4 & 9.9 & \\
\hline Total (Prec) & \[
\begin{aligned}
& 168.0 \\
& (34.9)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (40.3)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (36.8)
\end{aligned}
\] & \[
\begin{aligned}
& 168.0 \\
& (44.6)
\end{aligned}
\] & \\
\hline
\end{tabular}
- Data weighted to ensure equal days of the week.

Source: Robinson, 1977.

These tables include data for students and certain employed respondents that were excluded in Table 5-10 (Robinson, 1977). In 1975, the eldest group (ages 56-65) showed a decline in paid work, and an increase in family care, personal care and sleep (Table 5-11). Education level comparisons across the ten-year interval indicated that the less educated had a decrease in paid work, an increase in sleep and personal care; the most educated had an increase in work time and a decrease in other leisure (Table 5-12). For racial comparisons, Blacks spent less time at paid work than Whites across the ten-year interval (Table 5-13). Table 5-13 also shows that Blacks spent more time than Whites for free time activities in 1975.

A limitation of this study is that statistical analysis of the data set were not provided. Additional limitations are that the time use data are old and the data may not reflect current changes in time use. The 1965 and 1975 data set excluded certain population groups and, therefore, may not be entirely representative of the U.S. population. An advantage of this study is that time use data were presented by age, gender, race, education level, and employment and marital status. Another advantage is that earlier investigations on the study method (24-hr recall) employed in the 1965 study revealed no systematic biases in reported activities (Robinson, 1977). Robinson (1977) also noted that the time-diary method provides a "zero-sum" measure (i.e., since there are only 24 daily hours or 168 weekly hours, if time on one activity increases then time on another activity must decrease). Another limitation that is these are short-term studies and may not necessarily represent long-term activity patterns.

Juster et al. - 1975-1981 Time Use Longitudinal Panel Study - The Time Allocation data series in the U.S. began with the first survey in 1965-66 as part of a multinational project. Time use was measured by a single 24 -hour diary (Juster et al., 1983). A second national time use survey was conducted in 1975-1976 and another in 1981 (Juster et al. 1983). Juster et al. (1983) provided study descriptions of the second and third surveys. The surveys included a probability sample of adult population (18 years and older) and children between the ages of 3 and 17 in the United States. In both surveys, time use was measured from 24-hour recall diaries administered to respondents and their spouses. The 1975-1976 survey involved four waves of interview: wave 1, October-November 1975; wave 2, February 1976; wave 3, May-June 1976; wave 4, September 1976. The first wave was a
personal interview and the other three waves were telephone interviews. The 1975-1976 survey sample consisted of 2,300 individuals, and of that sample, 1519 respondents. Four recall diaries (one from each wave of interviews) were obtained from 947 respondents with data on time use measures for two weekdays, one Saturday, and one Sunday. The survey was designed to gather information for: employment status; earnings and other income; "consumption benefits for activities of respondents and their spouses;" health, friendships and associations of the respondents; stock technology available to the household, house repair, and maintenance activities of the family; division of labor in household work and related attitudes; physical characteristics of the respondents housing structure, networth and housing values; job characteristics; characteristics of mass media usage on a typical day (Juster et al., 1983).

The 1981 survey was a follow-up of respondents and spouses who had completed at least three waves of interview in the 1975-1976 survey. For the 1981 survey, 920 individuals were eligible. The survey design was similar to the 1975-1976 survey, however in this survey, the adult population was 25 years and older and consisted of 620 respondents. Four waves of interviews were conducted between February - March 1981 (wave 1), May June 1981 (wave 2), September 1981 (wave 3), and November - December (wave 4). The 1981 survey included the respondents' children between the ages of 3 and 17. The survey design for children provided information on time use measures from two time diary reports: one school day and one non-school day. In addition, information for academic achievement measures, school and family life measures, and ratings from the children's teachers were gathered during the survey.

Juster et al. (1983) did not report the time use data obtained for the 1975-1976 survey or the 1981 survey. These data are stored in four tape files and can be obtained from the Inter-university Consortium for Political and Social Research (ICPSR) in Michigan. The response rate for the first wave of interview (1975-76 survey) based on the original sample population was 66 percent, and the subsequent waves ranged from 42 percent (wave 4) to 50 percent (wave 2). In the 1981 survey, the response rate based on eligible respondents was 67 percent for the first interview, and ranged from 54 percent (wave 4) to 60 percent (wave 2) in the subsequent interviews (Juster et al., 1985). The 1975-1976 survey included 87
activities. In the 1981 survey, these 87 activities were broken down into smaller components, resulting in 223 activities (Juster et al., 1985). The activity codes and descriptors used for the adult time diaries in both surveys are presented in Appendix Table 5A-1.

A limitation of this study is that time use data which would be useful in exposure assessments were not presented. Another limitation is that time use data collected were based on a 24-hour diary recall. This may somewhat bias the data set obtained from this survey. An advantage associated with this survey is that it provides a data base of information on various human aclivities. This information can be used to assess various exposure pathways and scenarios associated with these activities. Also, some of the data from these surveys were used in the studies conducted by Timmer et al. (1985) and Hill (1985). In addition, the activity descriptor codes developed in these studies were used by Timmer et al (1985), Hill (1985), and Robinson and Thomas (1991). The studies are also presented in this section. Another advantage of this survey is that the data are based on a national survey and conducted over a one year period, resulting in a seasonally balanced survey and one representative of the U.S. population.

Timmer et al. - How Children Use Time - Timmer et al. (1985) conducted a study using the data obtained on children's time use from a 1981-1982 Panel follow-up of 19751976 households. Respondents (922) in this study were those that completed at least three out of four waves of interview in the 1975-1976 survey. The survey was conducted February through December 1981, and households were contacted four times during a 3 month interval of the survey period. The first contact was a personal interview, followed by subsequent telephone interviews for most of the respondents. However, families with children were contacted personally and questionnaires were administered to three children per household.

The children surveyed were between the ages of 3 through 17 years old and were interviewed twice. The questionnaires administered to children had two components: a time diary and a standardized interview. The time diary involved children reporting their activities beginning at \(12.00 \mathrm{a} . \mathrm{m}\). the previous night; the duration and location of each activity; the presence of another individual; and whether they were performing other
activities at the same time. The standardized interview administered to the children was to gather information about their psychological, intellectual (using reading comprehension tests), and emotional well-being; their hopes and goals; their family environment; and their attitudes and beliefs.

For preschool children, parents provided information about their previous day activities. Children in first through third grades completed the time diary with their parents and, in addition, completed reading tests. Children in the fourth grade and above provided their own diary information and participated in the interview. Parents were asked to assess their children's socioemotional and intellectual development. A survey form was sent to a teacher of each school-age child to evaluate each child's socioemotional and intellectual development.

The mean time spent performing major activities on weekdays and weekends by age and sex, and type of day is presented in Table 5-14. On weekdays, children spend about 30 percent of their time sleeping, 20 percent in school, and 10 percent eating, washing, dressing, and performing other personal activities (Timmer et al., 1985). The data in Table 5-14 indicates that girls spend more time than boys performing household work and personal care activities, and less time playing sports. Also, children spend most of their free time watching television. Table \(5-15\) presents the mean time children spend during weekdays and weekends performing major activities by five different age groups. Also, the significant effects of each variable (i.e., age, sex) are shown in Table 5-15. Older children spend more time performing household and market work, studying and watching television, and less time eating, sleeping, and playing. Timmer et al. (1985) estimated that on the average, boys spend 19.4 hours a week watching television and girls spend 17.8 hours per week performing the same activity.

A limitation associated with this study is that the data reflect only the time of the year when children attend school; time use during school vacation was not accounted for. Therefore, the data does not provide an overall annual estimate of children's time use. Another limitation is that a distribution pattern of children's time use was not provided. In addition, the survey was conducted in 1981 and because activity patterns in children may have changed significantly from that period when compared with recent times. Therefore,

Table כ-14. Mean Time Spent (Minutes) Pertorming Major Activitues Grouped by Age, Sex and Type of Day
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{Activity} & \multicolumn{4}{|c|}{Age (3-11)} & \multicolumn{4}{|c|}{Age (12-17)} & \\
\hline & \multicolumn{4}{|c|}{Duration of Time (mins/day)} & \multicolumn{4}{|c|}{Duration of Time (mins/day)} & \\
\hline & \multicolumn{2}{|c|}{Weekdays} & \multicolumn{2}{|c|}{Weekends} & \multicolumn{2}{|c|}{Weekdays} & \multicolumn{2}{|c|}{Weekends} & \\
\hline & \[
\begin{gathered}
\text { Boys } \\
(\mathrm{n}=118)
\end{gathered}
\] & \[
\begin{gathered}
\text { Girls } \\
(\mathrm{n}=111)
\end{gathered}
\] & \[
\begin{gathered}
\text { Boys } \\
(\mathrm{n}=118)
\end{gathered}
\] & \[
\begin{gathered}
\text { Girls } \\
(\mathrm{n}=111)
\end{gathered}
\] & \[
\begin{gathered}
\text { Boys } \\
(\mathrm{n}=77)
\end{gathered}
\] & \[
\begin{aligned}
& \text { Girls } \\
& (\mathrm{n}=83)
\end{aligned}
\] & \[
\begin{gathered}
\text { Boys } \\
(\mathrm{n}=77)
\end{gathered}
\] & \[
\begin{gathered}
\text { Girls } \\
(n=83)
\end{gathered}
\] & \\
\hline Market Work & 16 & 0 & 7 & 4 & 23 & 21 & 58 & 25 & \\
\hline Household Work & 17 & 21 & 32 & 43 & 16 & 40 & 46 & 89 & \\
\hline Personal Care & 43 & 44 & 42 & 50 & 48 & 11 & 35 & 76 & \\
\hline Eating & 81 & 78 & 78 & 84 & 73 & 65 & 58 & 75 & \\
\hline Sleeping & 584 & 590 & 625 & 619 & 504 & 478 & 550 & 612 & \\
\hline School & 252 & 259 & - & - & 314 & 342 & - & - & \\
\hline Studying & 14 & 19 & 4 & 9 & 29 & 37 & 25 & 25 & \\
\hline Church & 7 & 4 & 53 & 61 & 3 & 7 & 40 & 36 & \\
\hline Visiting & 16 & 9 & 23 & 37 & 17 & 25 & 46 & 53 & \\
\hline Sports & 25 & 12 & 33 & 23 & 52 & 37 & 65 & 26 & \\
\hline Outdoors & 10 & 7 & 30 & 23 & 10 & 10 & 36 & 19 & \\
\hline Hobbies & 3 & 1 & 3 & 4 & 7 & 4 & 4 & 7 & \\
\hline Art Activities & 4 & 4 & 4 & 4 & 12 & 6 & 11 & 9 & \\
\hline Playing & 137 & 115 & 177 & 166 & 37 & 13 & 35 & 24 & \\
\hline TV & 117 & 128 & 181 & 122 & 143 & 108 & 187 & 140 & \\
\hline Reading & 9 & 7 & 12 & 10 & 10 & 13 & 12 & 19 & 5 \\
\hline Household Conversations & 10 & 11 & 14 & 9 & 21 & 30 & 24 & 30 & 4 \\
\hline Other Passive Leisure & 9 & 14 & 16 & 17 & 21 & 14 & 43 & 33 &  \\
\hline NA \({ }^{\text {e }}\) & 22 & 25 & 20 & 29 & 14 & 17 & 10 & 4 & \(\therefore \quad \therefore\) ' \\
\hline Percent of Time Accounted for by Activities Above & 94\% & 92\% & 93\% & 89\% & 93\% & 92\% & 88\% & 89\% & : \\
\hline
\end{tabular}

2 NA \(=\) Unknown
Source: Timmer et al., 1985.

Table 5－15．Mean Time Speat in Major Activities Grouped by Type of Day for Five Differeat Age Groups
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{10}{|c|}{Timo Duration（mins）} & \multirow[b]{2}{*}{Sig Effects} \\
\hline & \multicolumn{5}{|c|}{Wockday} & \multicolumn{5}{|c|}{Weekend} & \\
\hline Ago & 3－5 & 6－8 & 9－11 & 12－14 & 15－17 & 3.5 & 6－8 & 9－11 & 12－14 & 15－17 & \\
\hline \multicolumn{12}{|l|}{Activities} \\
\hline Market Work & － & 14 & 8 & 14 & 28 & － & 4 & 10 & 29 & 48 & \\
\hline Personal Caro & 41 & 49 & 40 & 56 & 60 & 47 & 45 & 44 & 60 & 51 & A，S，AxS（F \(>\) M） \\
\hline Household Work & 14 & 15 & 18 & 27 & 34 & 17 & 27 & 51 & 72 & 60 & A，S，AxS（ \(\mathrm{F}>\mathrm{M}\) ） \\
\hline Eating & 82 & 81 & 73 & 69 & 67 & 81 & 80 & 78 & 68 & 65 & A \\
\hline Sleeping & 630 & 595 & 548 & 473 & 499 & 634 & 641 & 596 & 604 & 562 & A \\
\hline School & 137 & 292 & 315 & 344 & 314 & －－ & － & － & － & － & \\
\hline Studying & 2 & 8 & 29 & 33 & 33 & 1 & 2 & 12 & 15 & 30 & A \\
\hline Church & 4 & 9 & 9 & 9 & 3 & 55 & 56 & 53 & 32 & 37 & A \\
\hline Un Visiting & 14 & 15 & 10 & 21 & 20 & 10 & 8 & 13 & 22 & 56 & A（Weekend only） \\
\hline Sports & 5 & 24 & 21 & 40 & 46 & 3 & 30 & 42 & 51 & 37 & A，S（M＞F）\(\quad \square\) \\
\hline Outdoor activities & 4 & 9 & 8 & 7 & 11 & 8 & 23 & 39 & 25 & 26 & \\
\hline Hobbies & 0 & 2 & 2 & 4 & 6 & 1 & 5 & 3 & 8 & 3 & 宫荷 \\
\hline Art Activities & 5 & 4 & 3 & 3 & 12 & 4 & 4 & 4 & 7 & 10 &  \\
\hline Other Passive Leisure & 9 & 1 & 2 & 6 & 4 & 6 & 10 & 7 & 10 & 18 & \begin{tabular}{l}
\[
\mathbf{A}
\] \\
卤
0
\end{tabular} \\
\hline Playing & 218. & 111 & 65 & 31 & 14 & 267 & 180 & 92 & 35 & 21 & A，S（M＞F） \\
\hline TV & 111 & 99 & 146 & 142 & 108 & 122 & 136 & 185 & 169 & 157 & A，S， \(\operatorname{AxS}(\mathrm{M}>\mathrm{F})\) \\
\hline Reading & 5 & 5 & 9 & 10 & 12 & 4 & 9 & 10 & 10 & 18 & A \\
\hline Being read to & 2 & 2 & 0 & 0 & 0 & 3 & 2 & 0 & 0 & 0 & A \\
\hline NA & 30 & 14 & 23 & 25 & 7 & 52 & 7 & 14 & 4 & 9 & A \\
\hline
\end{tabular}
－Effects are significant for weekdays and weekends，unless otherwise specified \(A=\) age effect，\(P<0.05\) ，for both weekdays and weekend activities；\(S=\) sex effect \(P<0.05\) ， \(\mathrm{F}>\mathrm{M}, \mathrm{M}>\mathrm{F}=\) females spend more time than males，or vice versa；and \(\mathrm{AxS}=\) age by sex interaction， \(\mathrm{P}<\mathbf{0 . 0 5}\) ．

Source：Timmer et al．． 1985.
application of these data for current exposure situations may bias exposure assessments results. An advantage of this survey is that diary recordings of activity patterns were kept and the data obtained were not completely based on recall. Another advantage is that parents assisted younger children with keeping their diaries and during interviews; this helped to minimize any bias that may have been created by having younger children record their data.

Hill - Patterns of Time Use - Hill (1985) investigated the total amount of time American adults spend in one year performing various activities and the variation in time use across three different dimensions: demographic characteristics, geographical location, and seasonal characteristics. In this study, time estimates were based on data collected from time diaries in four waves ( 1 per season) of a survey conducted in the 1975-1976 Time Allocation Study. The survey was conducted from fall 1975 through fall 1976. The sampling periods included two weekdays, one saturday, and one sunday. The 1975-1976 Time Allocation Study provided information on the amount of time spent performing primary activities. The information gathered were responses to the survey question ("what were you doing?"). The survey also provided information on secondary activities (i.e., respondents performing more than one activity at the same time). Hill (1985) analyzed time estimates for 10 broad categories of activities based on data collected from 87 activities. These estimates included seasonal variation in time use patterns and comparisons of time use patterns for different days of the week. The 10 major categories and ranges of activity codes are listed in Appendix Table 5A-2. Hill (1985) collected data on time use for the major activity patterns in four different age groups (18-24, 25-44, 45-64, and 65 and older). However, the time use data were summarized in graphs rather than in tables.

Analysis of the 1975-76 survey data revealed very small regional differences in time use among the broad activity patterns (Hill, 1985). The weighted mean hours per week spent performing the 10 major activity categories presented by region are shown in Table 5-16. In all regions, adults spent more time on personal care (included night sleep). Adults in the North Central region of the country spent more time on market work activities than adults in other regions of the country. Adults in the South spent more time on leisure activities (passive and active combined) than adults elsewhere (Table 5-16). Table 5-17 presents the time spent per day, by the day of the week for the 10 major categories. Time spent on the

Table 5-16. Mean Time Spent (hours/week) in 10 Major Activity Categories Grouped by Regions
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Activity} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { West } \\
\mathrm{N}=\mathbf{2 0 0}
\end{gathered}
\]} & \multirow[b]{2}{*}{North Central \(\mathrm{N}=304\)} & \multirow[b]{2}{*}{Northeast
\[
N=185
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { South } \\
\mathrm{N}=286
\end{gathered}
\]} & \multicolumn{2}{|c|}{Total
\[
\mathrm{N}^{\mathrm{b}}=975
\]} \\
\hline & & & & & Mean & S.D. \({ }^{\circ}\) \\
\hline Market Work & 23.44 & 29.02 & 27.34 & 24.21 & 26.15 & 23.83 \\
\hline House/yard work & 14.64 & 14.17 & 14.29 & 15.44 & 14.66 & 12.09 \\
\hline Child care & 2.50 & 2.82 & 2.32 & 2.66 & 2.62 & 5.14 \\
\hline Services/shop & 5.22 & 5.64 & 4.92 & 4.72 & 5.15 & 5.40 \\
\hline Personal care & 79.23 & 76.62 & 78.11 & 79.38 & 78.24 & 12.70 \\
\hline Education & 2.94 & 1.43 & 0.95 & 1.45 & 1.65 & 6.34 \\
\hline Organizations & 3.42 & 2.97 & 2.45 & 2.68 & 2.88 & 5.40 \\
\hline Social entertainment & 8.26 & 8.42 & 8.98 & 8.22 & 8.43 & 8.17 \\
\hline Active leisure & 5.94 & 5.28 & 4.77 & 5.86 & 5.49 & 7.81 \\
\hline Passive leisure & 22.47 & 21.71 & 23.94 & 23.47 & 22.80 & 13.35 \\
\hline Total Time & 168.00 & 168.00 & 168.00 & 168.00 . & 168.00 & 0.09 \\
\hline
\end{tabular}

2 Weighted for day of week, panel loss (not defined in report), and correspondence to Census. Data may not add to totals shown due to rounding.
b \(\mathbf{N}=\) surveyed population
- S.D. = standard deviation

Source: Hill, 1985.

Table 5-17. Total Mean Time Spent (mins/day) in Ten Major Activity Categories Grouped by Type of Day
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Activity Category} & \multicolumn{3}{|c|}{Time Duration (mins/day)} \\
\hline & \[
\begin{gathered}
\text { Weekday } \\
{\left[\mathrm{N}^{\mathrm{a}}=831\right]}
\end{gathered}
\] & \[
\begin{gathered}
\text { Saturday } \\
{\left[\mathrm{N}^{a}=831\right]}
\end{gathered}
\] & \[
\begin{gathered}
\text { Sunday } \\
{\left[\mathrm{N}^{\mathrm{a}}=831\right]}
\end{gathered}
\] \\
\hline Market Work & 288.0 (257.7) & 97.9 (211.9) & 58.0 (164.8) \\
\hline House/Yardwork & 126.3 (119.3) & 160.5 (157.2) & 124.5 (133.3) \\
\hline Child Care & 26.6 (50.9) & 19.4 (51.5) & 24.8 (61.9) \\
\hline Services/Shopping & 48.7 (58.7) & 64.4 (92.5) & 21.6 (49.9) \\
\hline Fersonai Care & 639.2 (1i4.8) & 705.8 (159.8) & 734.3 (156.5) \\
\hline Education & 16.4 (64.4) & 5.4 (38.1) & 7.3 (48.0) \\
\hline Organizations & 21.1 (49.7) & 18.4 (75.2) & 58.5 (104.5) \\
\hline Social Entertainment & 54.9 (69.2) & 1,114.1 (156.0) & 110.0 (151.2) \\
\hline Active Leisure & 37.9 (71.11) & 61.4 (126.5) & 64.5 (120.6) \\
\hline Passive Leisure & 181.1 (121.9) & 191.8 (161.6) & 236.5 (167.1) \\
\hline Total Time & 1,440 & 1,440 & 1,440 \\
\hline
\end{tabular}
a \(\mathbf{N}=\) Number of respondents
() = Numbers in parentheses are standard deviations

Source: Hill, 1985.


87 activities (components of the 10 major categories) are presented in Appendix Table 5A-3. Adult time use was dominated in descending order by personal care (including sleep), market work, passive leisure, and house work. Collectively, these activities represent about 80 percent of available time (Hill, 1985).

According to Hill (1985), sleep was the single most dominant activity averaging about
56.3 hours per week. Television watching (passive leisure) averaged about 21.8 hours per week, and housework activities averaged about 14.7 hours per week. Weekdays were predominantly market-work oriented. Weekends (Saturday and Sunday) were predominantly devoted to household tasks ("sleeping in," socializing, and active leisure) (Hill, 1985). Table 5-18 presents the mean time spent performing these 10 groups of activities during each wave of interview (fall, winter, spring, and summer). Adjustments were made to the data to assure equal distributions of weekdays, Saturdays, and Sundays (Hill, 1985). The data indicates that the time adults spent performing market work, child care, shopping, organizational activities, and active leisure were fairly constant throughout the year (Hill, 1985). The mean hours spent per week in performing the 10 major activity patterns are presented by gender in Table 5-19 (time use patterns for all 87 activities are presented in Appendix Table 5A-4). The data in Table 5-19 indicates that time use patterns from the mid-1970's survey show gender differences. Men spent more time on activities related to labor market work and education, and women spent more time on household work activities.

A limitation associated with this study is that the time data were obtained from an old survey conducted in the mid-1970s. Because of dynamic changes in the present society, applying these data to current exposure assessments may result in some biases. Another limitation is that time use data were not presented for children. An advantage of this study is that time diaries were kept and data were not based on recall. The former approach may result in a more accurate data set. Another advantage of this study is that the survey is seasonally balanced since it was conducted throughout the year and the data are from a large survey sample.

Carey - Occupational Tenure in 1987: Many Workers Have Remained in Their Fields
- Carey (1988) presented median occupational and employer tenure for different age groups ( \(16-24,25-34,35-44,45-54,55-64\), and 65 and older), gender, earnings, ethnicity, and

Table 5-18. Mean Time Spent (mins/day) in 10 Major Activity Categories During Four Waves of Interviews \({ }^{2}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Activity Category & Fall Wave 1 (Nov. 1, 1975) \({ }^{\text {b }}\) \(\mathrm{N}=861\) & \[
\begin{gathered}
\text { Winter } \\
\text { Wave } 2 \\
\text { (Feb. 28, 1976) }^{\text {b }}
\end{gathered}
\] & \[
\begin{gathered}
\text { Spring } \\
\text { Wave } 3 \\
{\text { (June } 1,1976)^{\mathrm{b}}}^{\mathrm{N}=861}
\end{gathered}
\] & \[
\begin{gathered}
\text { Summer } \\
\text { Wave 4 } \\
\text { (Sept. 21, 1976) }{ }^{\text {b }} \\
\mathrm{N}=861
\end{gathered}
\] & \begin{tabular}{l}
Range of \\
Standard \\
Deviations
\end{tabular} \\
\hline Market work & 222.94 & 226.53 & 210.44 & 230.92 & 272-287 \\
\hline House/yard work & 133.16 & 135.58 & 143.10 & 119.95 & 129-156 \\
\hline Child care & 25.50 & 22.44 & 25.51 & 21.07 & 49-58 \\
\hline Services/shop & 48.98 & 44.09 & 44.61 & 47.75 & 76-79 \\
\hline Personal care & 652.95 & 678.14 & 688.27 & 674.85 & 143-181 \\
\hline Education & 22.79 & 12.57 & 2.87 & 10.76 & 32-93 \\
\hline Organizations & 25.30 & 22.55 & 23.21 & 29.91 & 68-87 \\
\hline Social entertainment & 63.87 & 67.11 & 83.90 & 72.24 & 102-127 \\
\hline Active leisure & 42.71 & 47.46 & 46.19 & 42.30 & 96-105 \\
\hline Passive leisure & 210.75 & 183.48 & 171.85 & 190.19 & 144-162 \\
\hline Total Time & 1440.00 & 1440.00 & 1440.00 & 1440.00 & - \\
\hline
\end{tabular}
a Weighted for day of week, panel loss (not defined in report), and correspondence to Census.
b Dates by which \(50 \%\) of the interviews for each wave were taken.
Source: Hill, 1985.


Table 5-19. Mean Time Spent (hours/week) in 10 Major Activity Categories grouped by Gender \({ }^{2}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Activity Category} & \multicolumn{6}{|c|}{Time duration (hours/week)} \\
\hline & \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { Men } \\
\mathrm{n}=410
\end{gathered}
\]} & \multicolumn{2}{|r|}{Women
\[
\mathrm{n}=561
\]} & \multicolumn{2}{|l|}{Men and Women
\[
\mathrm{n}=971
\]} \\
\hline Market work & 35.8 & (23.6) \({ }^{\text {b }}\) & 17.9 & (20.7) & 26.2 & (23.8) \\
\hline House/yard & 8.5 & (9.0) & 20.0 & (11.9) & 14.7 & (12.1) \\
\hline Child care & 1.2 & (2.5) & 3.9 & (6.4) & 2.6 & (5.2) \\
\hline Services/shop & 3.9 & (4.5) & 6.3 & (5.9) & 5.2 & (5.4) \\
\hline Personal care & 77.3 & (13.0) & 79.0 & (12.4) & 78.2 & (12.7) \\
\hline Education & 2.3 & (7.7) & 1.1 & (4.8) & 1.7 & (6.4) \\
\hline Organizations & 2.5 & (5.5) & 3.2 & (5.3) & 2.9 & (5.4) \\
\hline Social entertainment & 7.9 & (8.3) & 8.9 & (8.0) & 8.4 & (8.2) \\
\hline Active leisure & 5.9 & (8.2) & 5.2 & (7.4) & 5.5 & (7.8) \\
\hline Passive leisure & 22.8 & (14.1) & 22.7 & (12.7) & 22.8 & (13.3) \\
\hline Total time & 168.1 & & 168.1 & & 168.1 & \\
\hline
\end{tabular}
- Detailed components of activities (87) are presented in Table 5A-4.
b () = Numbers in parentheses are standard deviations.
Source: Hill, 1985.
educational attainment. Occupational tenure was defined as "the cumulative number of years a person worked in his or her current occupation, regardless of number of employers, interruptions in employment, or time spent in other occupations" (Carey, 1988). The information presented was obtained from supplemental data to the January 1987 Current Population Study, a U.S. Bureau of the Census publication. Carey (1988) did not present: information on the survey design.

The median occupational tenure by age and gender, ethnicity, and employment status are presented in Tables 5-20, 5-21, and 5-22, respectively. The median occupational tenure of the working population ( 109.1 million people) 16 years of age and older in January of 1987, was 6.6 years (Table 5-20). Table 5-20 also shows that median occupational tenure increased from 1.9 years for workers ages \(16-24\) to 21.9 for workers 70 years and older. The median occupational tenure for men 16 years and older was higher ( 7.9 years) than for women of the same age group ( 5.4 years). Table 5-21 indicates that whites had more occupational tenure ( 6.7 years) than blacks ( 5.8 years), and Hispanics ( 4.5 years). Full-time workers had more occupational tenure than part-time workers 7.2 years and 3.1 years, respectively (Table 5-22).

Table 5-23 presents the median occupational tenure among major occupational groups. The median tenure ranged from 4.1 years for service workers to 10.4 years for people employed in farming, forestry, and fishing. In addition, median occupational tenure among detailed occupations ranged from 24.8 years for barbers to 1.5 years for food counter and fountain workers (Appendix Table 5A-5).

The strength of an individual's attachment to a specific occupation usually is dependent on the individual's investment in education (Carey, 1988). Carey (1988) reported the median occupational tenure for the surveyed working population by age and educational level. Workers with 5 or more college years had the highest median occupational tenure of 10.1 years. Workers that were 65 years and older with 5 or more college years had the highest occupational tenure level of 33.8 years. The median occupational tenure was 10.6 years for self-employed workers and 6.2 years for wage and salary workers (Carey, 1988).

A limitation associated with this study is that the survey design employed in the data collection was not presented. Therefore, the validity and accuracy of the data set cannot be

Table 5-20. Occupational Tenure of Employed Individuals by Age and-Sex
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Age Group} & \multicolumn{3}{|c|}{Median Tenure (years)} \\
\hline & All Workers & Men & Women \\
\hline 16-24 & 1.9 & 2.0 & 1.9 \\
\hline 25-29 & 4.4 & 4.6 & 4.1 \\
\hline 30-34 & 6.9 & 7.6 & 6.0 \\
\hline 35-39 & 9.0 & 10.4 & 7.0 \\
\hline 40-44 & 10.7 & 13.8 & 8.0 \\
\hline 45-49 & 13.3 & 17.5 & 10.0 \\
\hline 50-54 & 15.2 & 20.0 & 10.8 \\
\hline 55-59 & 17.7 & 21.9 & 12.4 \\
\hline 60-64 & 19.4 & 23.9 & 14.5 \\
\hline 65-69 & 20.1 & 26.9 & 15.6 \\
\hline 70 and older & 21.9 & 30.5 & 18.8 \\
\hline Total, 16 years and older & 6.6 & 7.9 & 5.4 \\
\hline
\end{tabular}

Source: Carey, 1988.

Table 5-21. Occupational Tenure for Employed Individuals Grouped by Sèx añ Race
\begin{tabular}{lccc}
\hline & & \multicolumn{3}{c}{ Median Tenure (Years) } \\
\multicolumn{1}{c}{ Race } & All Individuals & Men & Women \\
\hline White & 6.7 & 8.3 & 5.4 \\
Black & 5.8 & 5.8 & 5.8 \\
Hispanics & 4.5 & 5.1 & 3.7 \\
\hline
\end{tabular}

Source: Carey, 1988.

Table 5-22. Occupational Temure for Employed Individuals Grouped by Sex and Employment Status
\begin{tabular}{lccc}
\hline & \begin{tabular}{c} 
Median Tenure \\
(Years)
\end{tabular} \\
Employment Status & All Individuals & Men & Women \\
\hline Full-Time & 7.2 & 8.4 & 5.9 \\
Part-Time & 3.1 & 2.4 & 3.6 \\
\hline
\end{tabular}

Source: Carey, 1988.

Table 5-23. Occupational Tenure of Employed Individuals Grouped by Major Occupational Groups and Age
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Occupational Group} & \multirow[b]{3}{*}{Total \({ }^{\text {s }}\)} & \multicolumn{6}{|c|}{Median Tenure (years)} \\
\hline & & \multicolumn{6}{|c|}{Age Group} \\
\hline & & 16-24 & 25-34 & 35-44 & 45-54 & 55-64 & 65+ \\
\hline Executive, Administrative and Managerial & 8.4 & 2.4 & 5.6 & 10.1 & 15.1 & 17.9 & 26.3 \\
\hline Professional Specialty & 9.6 & 2.0 & 5.7 & 12.0 & 18.2 & 25.6 & 36.2 \\
\hline Technicians and Related Support & 6.9 & 2.2 & 5.7 & 10.9 & 17.7 & 20.8 & 22.2 \\
\hline Sales Occupations & 5.1 & 1.7 & 4.7 & 7.7 & 10.5 & 15.5 & 21.6 \\
\hline Administrative Support, including Clerical & 5.4 & 2.1 & 5.0 & 7.6 & 10.9 & 14.6 & 15.4 \\
\hline Service Occupations & 4.1 & 1.7 & 4.4 & 6.9 & 9.0 & 10.6 & 10.4 \\
\hline Precision Production, Craft and Repair & 9.3 & 2.6 & 7.1 & 13.5 & 19.9 & 25.7 & 30.1 \\
\hline Operators, Fabricators and Laborers & 5.5 & 1.7 & 4.6 & 9.1 & 13.7 & 18.1 & 14.7 \\
\hline Farming, Forestry and Fishing & 10.4 & 2.9 & 7.9 & 13.5 & 20.7 & 30.5 & 39.8 \\
\hline
\end{tabular}

2 Includes all workers 16 years and older
Source: Carey, 1988.
determined. Another limitation is that only median values were reported in the study. An advantage of this study is that occupational tenure (years exposed to a specific occupation) was obtained for various age groups by gender, ethnicity, employment status, and educational level. Another advantage of this study is that the data were based on a survey population which appears to represent the general U.S. population.

Carey - Occupational Tenure, Employer Tenure, and Occupational Mobility - Carey (1990) conducted another study similar in scope to the study of Carey (1988). The January 1987 Current Population Study (CPS) was used. This study provided data on occupational mobility and employer tenure in addition to occupational tenure. Occupational tenure was referred in Carey (1988) as the "the cumulative number of years a person worked in his or her current occupation, regardless of number of employees, interruptions in employment, or time spent in other locations." Employer tenure was defined as "the length of time a worker has been with the same employer," while occupational mobility was defined as "more or less a mirror image of occupational tenure; it measures the number of workers who change from one occupation to another" (Carey, 1990). Occupational mobility was measured by asking individuals who were employed both in January 1986 and January 1987 if they were doing the same kind of work in each of these months (Carey, 1990). Carey (1990) further analyzed the occupational mobility data and obtained information on entry and exit rates for occupations. These rates were defined as "the percentage of persons employed in an occupation who had voluntarily entered it from another occupation; conversely, an exit rate is the percentage of persons employed in an occupation who had voluntarily left for a new occupation" (Carey, 1990).

Table 5-24 shows the voluntary occupational mobility rates in January 1987 for workers 16 years and older. For all workers, the overall voluntary occupational mobility rate was 5.3 percent. These data also show that younger workers left occupations at a higher rate than older workers. Carey (1990) reported that 10 million of the 100.1 million individuals employed in January 1986 and in January 1987 had changed occupations during that period, resulting in an overall mobility rate of 9.9 percent. Executive, administrative, and managerial occupations had the highest entry rate of 5.3 percent, followed by administrative support including clerical at 4.9 percent. Sales had the highest exit rate of 5.3

Table 5-24. Voluntary Occupational Mobility Rates for Workers Age 16 and Older
\begin{tabular}{lc}
\hline Age Group & Occupational Mobility Rate \\
\hline \(16-24\) & 12.7 \\
\(25-34\) & 6.6 \\
\(35-44\) & 4.0 \\
\(45-54\) & 1.9 \\
\(55-64\) & 1.0 \\
64 and older & 0.3 \\
Total, age 16 and older & 5.3 \\
\hline Source: Carey, 1990. &
\end{tabular}
percent and service had the second highest exit rate of 4.8 percent (Carey, 1990). In January 1987, the median employer tenure for all workers was 4.2 years. The median employee tenure was 12.4 years for those workers that were 65 years of age and older (Carey, 1990).

Because the study was conducted by Carey (1990) was in a similar manner to that of the previous study (Carey, 1988), the same advantages and disadvantages associated with Carey (1988) also apply to this data set.

Robinson and Thomas - Time Spent in Activities, Locations, and Microenvironments: A California-National Comparison - Robinson and Thomas (1991) reviewed and compared data from the 1987-88 California Air Resources Board (CARB) time activity study and from a similar 1985 national study, American's Use of Time. Data from the national study were recorded similarly to the CARB code categories, in order to make data comparisons (Robinson and Thomas, 1991).

The CARB study involved residents who lived in the state of California. One adult 18 years or older was randomly sampled in each household and was asked to complete a diary with entries for the previous day's activities and the location of each activity. Time use patterns for other adults 12 years and older in the households contacted were also included in the diaries. Telephone interviews based on the random-digit-dialing procedure were conducted for approximately 1,762 respondents in the CARB survey. These interviews were distributed across all days of the week and across different months of the year (between October 1987-August 1988).

In the 1985 national study, single day diaries were collected from over 5,000 respondents across the United States, 12 years of age and older. The study was conducted January through December, 1985. Three modes of time diary collection were employed for this survey: mailback, telephone interview, and personal interview. Data obtained from the personal interviews were not used in this study (Robinson and Thomas, 1991). The sample population for the mail-back and telephone interview was selected based on a random-digitdialing (RDD) method. The RDD was designed to represent all telephone households in the contiguous United States (Robinson and Thomas, 1991). In addition to estimates of time spent at various activities and locations, the survey design provided information on the employment status, age, education, race, and gender for each member of the respondents
household. The mail-back procedure was based on a "tomorrow" approach and the telephone interview was based on recall.

Data comparisons by Robinson and Thomas (1991) were based on 10 major activity categories ( 100 sub-category codes) and 3 major locations ( 44 sub-location codes) employed in both the CARB and the 1985 national study. In order to make data comparisons, Robinson and Thomas (1991) excluded responses from individuals of ages 65 years and older and 18 years or less in both surveys. In addition, only mail-back responses were analyzed for the 1985 national study. The data were then weighted to project both the California and national population in terms of days of the week, region, numbers of respondents per household, and 3 monthly seasons of the year (Robinson and Thomas, 1991).

Table 5-25 shows the mean time spent in the 10 major activities by gender and for all respondents between the ages of 18-64 years (time use data for the individual activities are presented in Appendix Table 5A-6). In both studies respondents spent most of their time ( \(642 \mathrm{mins} /\) day) on personal needs and care (i.e., sleep). Californians spent more time on paid work, education and training, obtaining goods and services, and communication and less time on household work, child care, organizational activities, entertainment/social activities, and recreation than the national population. The male and female population followed almost the same trend as the general population. Table 5-26 shows the mean time spent at 3 major locations for the CARB and national study grouped by total sample and gender, ages 18-64 (time use data for the 44 detailed microenvironments are presented in Appendix Table 5A-7). Respondents spent most time at home, 892 mins/day for the CARB and \(954 \mathrm{mins} /\) day for the national study. Californians spent more of their time away from home and traveling compared to the national population.

In addition, Robinson and Thomas (1991) defined a set of 16 microenvironments based on the activity and location codes employed in both studies. The analysis included data for adolescents ( \(12-17\) years) and adults ( 65 years and older) in both the CARB study and the mail-back portion of the 1985 national study (Robinson and Thomas, 1991). The mean duration of time for total sample population, 12 years and older, across three types of locations are presented in Table 5-27 for both studies. Respondents spent most of their time indoors, 1255 and \(1279 \mathrm{mins} /\) day for the CARB and national study, respectively.

Table 5-25. Mean Time Spent in 10 Major Activity Cateogries Grouped by Total Sample and Gender for the CARB and National Studies (Age 18-64)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Activity Category \({ }^{\text {a }}\)} & \multirow{4}{*}{Activity Codes \({ }^{\text {b }}\)} & \multicolumn{6}{|c|}{Time Duration (mins/day)} \\
\hline & & \[
\begin{aligned}
& \text { CARB } \\
& (1987-88)
\end{aligned}
\] & National (1985) & \multicolumn{2}{|c|}{\[
\begin{aligned}
& \text { CARB } \\
& (1987-88)
\end{aligned}
\]} & \multicolumn{2}{|c|}{National (1985)} \\
\hline & & \multicolumn{2}{|c|}{Total Sample} & Men & Women & & Women \\
\hline & & \(\mathrm{n}=1,359\) & \(\mathrm{n}=1,980\) & \(n=639\) & \(\mathrm{n}=720\) & \(\mathrm{n}=921\) & \(\mathrm{n}=1,059\) \\
\hline Paid Work & 00-09 & 273 & 252 & 346 & 200 & 323 & 190 \\
\hline Household Work & 10-19 & 102 & 118 & 68 & 137 & 79 & 155 \\
\hline Child Care & 20-29 & 23 & 25 & 12 & 36 & 11 & 43 \\
\hline Obtaining Goods and Services & 30-39 & 61 & 55 & 48 & 73 & 44 & 62 \\
\hline Personal Needs and Care & 40-49 & 642 & 642 & 630 & 655 & 636 & 645 \\
\hline Education and Training & 50-59 & 22 & 19 & 25 & 20 & 21 & 16 \\
\hline Organizational Activities & 60-69 & 12 & 17 & 11 & 13 & 12 & 20 \\
\hline Entertainment/Social Activities & 70-79 & 60 & 62 & 57 & 55 & 64 & 62 \\
\hline Recreation & 80-89 & 43 & 50 & 53 & 31 & 69 & 43 \\
\hline Communication & 90-99 & 202 & 196 & 192 & 214 & 197 & 194 \\
\hline
\end{tabular}
\(a, b \quad=\) Time use for components of activity categories and codes are shown in Appendix Table 5A-6.
\(\mathrm{n}=\) total diary days.
Source Adapted from U.S. EPA, 1991.

Table 5-26. Total Mean Time Spent at 3 Major Locations Grouped by Total Sample and Gender for the CARB and National Study (Ages 18-64)
\begin{tabular}{lcccccccc}
\hline \multicolumn{1}{c}{ Location \(^{2}\)} & Code \(^{\mathrm{b}}\) & \begin{tabular}{c} 
CARB \\
\((1987-88)\)
\end{tabular} & \begin{tabular}{c} 
National \\
\((1985)\)
\end{tabular} & \begin{tabular}{c} 
CARB \\
\((1987-88)\)
\end{tabular} & \begin{tabular}{c} 
National \\
\((1985)\)
\end{tabular} \\
\hline & & \multicolumn{2}{c}{ Total Sample } & Men & Women & Men & Women \\
& & \(\mathrm{n}^{*}=1359\) & \(\mathrm{n}^{*}=1980\) & \(\mathrm{n}^{*}=39\) & \(\mathrm{n}^{*}=720\) & \(\mathrm{n}^{*}=921\) & \(\mathrm{n}^{*}=1059\) \\
\hline At Home & WC01-13 & 892 & 954 & 822 & 963 & 886 & 1022 \\
Away From Home & WC21-40 & 430 & 384 & 487 & 371 & 445 & 324 \\
Travel & WC51-61 & 116 & 94 & 130 & 102 & 101 & 87 \\
Not Ascertained & WC99 & 2 & 8 & 1 & 4 & 8 & 7 \\
\multicolumn{1}{c}{ Total Time } & & 1440 & 1440 & 1440 & 1440 & 1440 & 1440 \\
\hline
\end{tabular}
*n
\({ }_{\mathrm{a}, \mathrm{b}}\)\(\quad \begin{aligned} & \text { Total Diary Days. } \\ & =\end{aligned}\) Time use data for the 44 components of location and location codes are presented in Appendix Table 5A-7.
Source: Robinson and Thomas, 1991.

Table 5-27. Mean Time Spent at Three Locations for both CARB and National Studies (Ages 12 and Older)
\begin{tabular}{lcccc} 
& \multicolumn{4}{c}{ Mean duration (mins/day) } \\
\cline { 2 - 5 } \multicolumn{1}{c}{ Location Category } & \begin{tabular}{c} 
CARB \\
\(\left(\mathrm{n}^{*}=1762\right)\)
\end{tabular} & S.E. \({ }^{\mathrm{a}}\) & \begin{tabular}{c} 
National \\
\(\left(\mathrm{n}^{*}=2762\right)^{\mathrm{b}}\)
\end{tabular} & S.E. \({ }^{\mathrm{a}}\) \\
\hline Indoor & \(1255^{\mathrm{c}}\) & 28 & \(1279^{\mathrm{c}}\) & 21 \\
Outdoor & \(86^{\mathrm{d}}\) & 5 & \(74^{\mathrm{d}}\) & 4 \\
In-Vehicle & \(98^{\mathrm{d}}\) & 4 & \(\underline{87^{\mathrm{d}}}\) & 2 \\
\multicolumn{1}{c}{ Total Time Spent } & 1440 & & 1440 & \\
\hline
\end{tabular}
- S.E. \(=\) Standard Error of Mean
b Weighted Number - National sample population was weighted to obtain a ratio of 46.5 males and 53.5 females, in equal proportion for each day of the week, and for each quarter of the year.
- Difference between the mean values for the CARB and National studies is not statistically significant.
d Difference between the mean values for the CARB and National studies is statistically significant at the 0.05 level.

Source: Robinson and Thomas, 1991.

Table 5-28 presents the mean duration of time and standard mean error for the 16 microenvironments grouped by total sample population and gender, respectively. Also included is the mean time spent for respondents (Doers) who reported participating in each activity. Table 5-28 shows that in both studies men spend more time in autoplaces, garages, motor and other vehicles, physical outdoor activities, outdoor sites and work locations. In contrast, women spend more time cooking, engaging in other kitchen activities, performing other chores and shopping. The same trend holds on a per participant basis as well.

Table 5-29 shows the mean time spent in various microenvironments grouped by type of the day in both studies. Generally, respondents spent most of their time during the weekends in restaurants/ bars (CARB study), motor vehicles, outdoor activities, socialcultural settings, leisure/ communication activities, and sleeping. Microenvironmental differences by age are presented in Table 5-30. Respondents in the age group 18-24 and 2544 spent most of their time in restaurants/bars and traveling. The oldest age group 65 years and older spent most of their time in the kitchen (cooking and other kitchen related activities) and communication activities.

Limitations associated with this study are that the CARB survey was based on recall and the survey was performed in California only. This may somewhat bias the CARB data set obtained. Another limitation is that the 1985 national study and the CARB studies were conducted independently. Therefore, survey designs (i.e., locational coding system) were different which may have resulted in varying estimates obtained from both studies, including the data that was recorded by Robinson and Thomas (1991). Other limitations are that time distribution patterns (statistical analysis) were not provided in both studies and the data are short term data. An advantage of this study is that the 1985 national study represent the general U.S. population. Also, it provides time estimates by activities, locations, microenvironments grouped by age, gender, and type of day. Another advantage is within the data comparisons, overall, both data sets showed similar patterns of activity (Robinson and Thomas, 1991).

California Air Resources Board (CARB) - Study of Children's Activity Patterns - The California children's activity pattern survey design provided time estimates of children (11 years old or less) in various activities and locations (microenvironments) on a typical day

Table 5-28. Mean Time Spent (mins/Day) in Various Microenvironments Grouped by Total Population and Gender (12 years and over) in the National CARB Data
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Microenvironment} & \multicolumn{6}{|c|}{National Data
Mean Duration (etandard error)á} \\
\hline & \[
\begin{gathered}
N=1284^{b} \\
M e n
\end{gathered}
\] & \({ }^{\text {"Doer }}{ }^{\text {c }}\) Men & \[
\begin{gathered}
\mathrm{N}=1478^{\mathrm{b}} \\
\text { Women }
\end{gathered}
\] & "Doer" Women & \[
\begin{gathered}
\mathrm{N}=2762^{\mathrm{b}} \\
\text { Total }
\end{gathered}
\] & "Doer" Total \\
\hline Autoplaces & 5 (1) & 90 & 1 (0) & 35 & 3 (0) & 66 \\
\hline Restaurant/bar & 22 (2) & 73 & 20 (2) & 79 & 21 (1) & 77 \\
\hline In-vehicle & 92 (3) & 99 & 82 (3) & 94 & 87 (2) & 97 \\
\hline In-Vehicle/other & 1 (1) & 166 & 1 (0) & 69 & 1 (0) & 91 \\
\hline Physical/outdoors & 24 (3) & 139 & 11 (2) & 101 & 17 (2) & 135 \\
\hline Phyaicalindoors & 11 (1) & 84 & 6 (1) & 57 & 8 (1) & 74 \\
\hline Work/atudy-residence & 17 (2) & 153 & 15 (2) & 150 & 16 (1) & 142 \\
\hline Wori/study-other & 221 (10) & 429 & 142 (7) & 384 & 179 (6) & 390 \\
\hline Cooking & 14 (1) & 35 & 52 (2) & 67 & 34 (1) & 57 \\
\hline Other activitiea/Kitchen & 54 (3) & 69 & 90 (4) & 102 & 73 (2) & 88 \\
\hline Chores/child & 88 (3) & 89 & 153 (5) & 154 & 123 93) & 124 \\
\hline Shoplerrand & 23 (2) & 56 & 38 (2) & 74 & 31 (1) & 67 \\
\hline Other/outdoors & 70 (6) & 131 & 43 (4) & 97 & 56 (4) & 120 \\
\hline Soc/cukural & 71 (4) & 118 & 75 (4) & 110 & 73 (3) & 118 \\
\hline Leinure-cat/indoors & 235 (8) & 241 & 215 (7) & 224 & 224 (5) & 232 \\
\hline Sleep/indoorz & 491 (14) & 492 & 496 (11) & 497 & 494 (9) & 495 \\
\hline
\end{tabular}

CARB Data
Mean Duration (standard error) \({ }^{\text {a }}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Microenvironment} & \multicolumn{6}{|c|}{Mean Duration (standard error).} \\
\hline & \[
\begin{gathered}
\mathbf{N}=867^{\circ} \\
\text { Men }
\end{gathered}
\] & \[
\begin{array}{r}
\text { "Doer"e } \\
\text { Men } \\
\hline
\end{array}
\] & \[
\begin{gathered}
\mathrm{N}=895^{b} \\
\text { Women }
\end{gathered}
\] & \begin{tabular}{l}
"Doer" \\
Women
\end{tabular} & \[
\begin{gathered}
\mathrm{N}=1762^{\mathrm{b}} \\
\text { Total } \\
\hline
\end{gathered}
\] & "Doer" Total \\
\hline Autoplaces & 31 (8) & 142 & 9 (2) & 50 & 20 (4) & 108 \\
\hline Retaurantbar & 45 (4) & 106 & 28 (3) & 86 & 36 (3) & 102 \\
\hline In-vehicle & 105 (7) & 119 & 85 (4) & 100 & 95 (4) & 111 \\
\hline In-Vehicle/other & 4 (1) & 79 & 3 (2) & 106 & 3 (1) & 94 \\
\hline Physical/outdoors & 25 (3) & 131 & 8 (1) & 86 & 17 (2) & 107 \\
\hline Physical/indoors & 8 (1) & 63 & 5 (1) & 70 & 7 (1) & 68 \\
\hline Worl/sturdy-residence & 14 (3) & 126 & 11 (2) & 120 & 13 (2) & 131 \\
\hline Work/study-other & 213 (14) & 398 & 156 (11) & 383 & 184 (9) & 450 \\
\hline Cooking & 12 (1) & 43 & 42 (2) & 65 & 27 (1) & 55 \\
\hline Other activities/kitchen & 38 (3) & 65 & 60 (4) & 82 & 49 (2) & 74 \\
\hline Chores/child & 66 (4) & 75 & 134 (6) & 140 & 100 (4) & 109 \\
\hline Shoplerrand & 21 (3) & 61 & 41 (3) & 78 & 31 (2) & 70 \\
\hline Other/outdoors & 95 (9) & 153 & 44 (4) & 82 & 69 (5) & 117 \\
\hline Soc/culural & 47 (4) & 112 & 59 (5) & 114 & 53 (3) & 112 \\
\hline Leisuro-eat/indoors & 223 (10) & 240 & 251 (10) & 263 & 237 (7) & 250 \\
\hline Sleepfindoorz & 492 (17) & 499 & 504 (15) & 506 & 498 (12) & 501 \\
\hline
\end{tabular}
- Standard crror of the mean

Whandard error of thed number
- Doer \(=\) The mean time respondents who reported participating in each activity/location spent in microenvironments.

Source: Robinson and Thomas, 1991.

Table 5-29. Mean Time Spent (mins/day) in Various Microenvironments by Type of Day (Sample Population Ages 12 and Older)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Microenvironment} & \multicolumn{2}{|l|}{Mean Duration (standard error) \({ }^{\text {a }}\) (mins/day)} & \multicolumn{2}{|l|}{Mean Duration for "Doer" (mins/day)} & \\
\hline & \[
\begin{gathered}
\text { CARB } \\
(n=1259)^{*}
\end{gathered}
\] & \[
\underset{(n=1973)^{*}}{\text { NAT }}
\] & CARB & NAT & \\
\hline 1 Autoplaces & 21 (5) & 3 (1) & 108 & 73 & \\
\hline 2 Restauran/Bar & 29 (3) & 20 (2) & 83 & 73 & \\
\hline 3 In-Vehicle/Internal Combustion & 90 (5) & 85 (2) & 104 & 95 & \\
\hline 4 Fm Vehicle/0iner & 3 (1) & 1 (0) & 71 & 116 & \\
\hline 5 Physical/Outdoors & 14 (2) & 15 (2) & 106 & 118 & \\
\hline 6 Physical/Indoors & 7 (1) & 8 (1) & 64 & 68 & \\
\hline 7 Work/Study-Residence & 14 (2) & 16 (2) & 116 & 147 & \\
\hline 8 Work/Study-Other & 228 (11) & 225 (8) & 401 & 415 & \\
\hline 9. Cooking & 27 (2) & 35 (2) & 58 & 57 & \\
\hline 10 Other Activities/Kitchen & 51 (3) & 73 (3) & 76 & 87 & \\
\hline 11 Chores/Child & 99 (5) & 124 (4) & 108 & 125 & \\
\hline 12 Shop/Errand & 30 (2) & 30 (2) & 67 & 63 & \\
\hline 13 Other/Outdoors & 67 (6) & 51 (4) & 117 & 107 & \\
\hline 14 Social/Cultural & 42 (3) & 62 (3) & 99 & 101 & \\
\hline 15 Leisure-Eat/Indoors & 230 (9) & 211 (6) & 244 & 218 & \\
\hline 16 Sleep/Indoors & 490 (14) & 481 (10) & 495 & 483 & 8 \\
\hline
\end{tabular}

Table 5-29. (Continued)


Table 5-30. Mean Time Spent (mins/day) in Various Microenvironments by Age Groups


Table 5-30. Mean Time Spent (mins/day) in Varions Microenvironments by Age Gromps (continned)

(CARB, 1991). The sample population consisted of \(\mathbf{1 , 2 0 0}\) respondents (inctuding chitdren- \(\begin{gathered}\text { DRAFT } \\ \text { DO NOT CLOSE } O R \\ \text { Ni }\end{gathered}\) under 11 years of age and adult informants residing in the child's household) was selected using Waksberg random-digit-dialing methods. The population was also stratified to provide representative estimates for major regions of the state. The survey questionnaire included a time diary which provided information of the children's activity and location patterns based on a 24 -hour recall period. In addition, the survey questionnaire included questions about potential exposure to sources of air pollution (i.e., presence of smokers) on the diary day and the socio-demographic characteristics (i.e., age, gender, marital status of adult) of children and adult respondents. One child was randomly selected from an English-speaking household. If the selected child was 8 years old or less, the adult in the same household who spent the most time with the child responded. However, if the selected child was between 911 years old, that child responded. The questionnaires and the time diaries were administered via a computer-assisted telephone interviewing (CATI) technology (CARB 1991). The telephone interviews were conducted April 1989 to February 1990 over four seasons: Spring (April-June, 1989), Summer (July-September, 1989), Fall (OctoberDecember, 1989), and Winter (January-February, 1990).

The data obtained from the survey interviews resulted in ten major activity categories, 113 detailed activity codes, 6 major categories of locations, and 63 detailed location codes. The average time respondents spent during the 10 activity categories for all children are presented in Table 5-31. Also included in this table are the detailed activity, including its code, with the highest mean duration of time; the percentage of respondents who reported participating in any activity ( \(\%\) doing); and the mean, median, and maximum time duration for "doers." The dominant activity category, personal care (night sleep being the highest contributor), had the highest time expenditure of \(794 \mathrm{mins} /\) day ( 13.2 hours/day). All respondents reported sleeping at night, resulting in a mean daily time per participant of 794 mins/day. Activity category (don't know) resulted in about 2 mins/day and only 4 percent of the respondents reported missing activity time.

Table 5-32 presents the mean time spent in the 10 activity categories by age and gender. Differences in activity patterns for boys and girls tended to be small. Table 5-33 presents the mean time spent in the 10 activity categories grouped by seasons and California

Table 5-31. Mean Timo Children Spent in 10 Major Activity Categories for all Respondents
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Activity Category & Mean
Duration
(Mins) & \% Doing & \begin{tabular}{l}
Mean \\
Duration for Doers \({ }^{b}\) (mins)
\end{tabular} & \begin{tabular}{l}
Medinn \\
Duration for Doers \({ }^{\text {b }}\) (mins)
\end{tabular} & \begin{tabular}{l}
Maxinmm \\
Duration for Doers \({ }^{b}\) (mins)
\end{tabular} & Detailed Activity with Highest Avg. Minutes (code) \\
\hline Work-related \({ }^{\text {a }}\) & 10 & 25 & 39 & 30 & 405 & Eating at work/school/daycare (06) \\
\hline Houschold & 53 & 86 & 61 & 40 & 602 & Travel to houschold (199) \\
\hline Childcare & \(<1\) & \(<1\) & 83 & 30 & 290 & Other child care (27) \\
\hline Goods/Services & 21 & 26 & 81 & 60 & 450 & Errands (38) \\
\hline Personal Care & 794 & 100 & 794 & 770 & 1440 & Night sleep (45) \\
\hline Education & 110 & 35 & 316 & 335 & 790 & School classee (50) \\
\hline Orgenizational & 4 & 4 & 111 & 105 & 435 & Attend meetings (60) \\
\hline Entertain/Social & 15 & 17 & 87 & 60 & 490 & Visiting with others (75) \\
\hline Recreation & 239 & 92 & 260 & 240 & 835 & Games (87) \\
\hline Communication/Passive Leisure & 192 & 93 & 205 & 180 & 898 & TV use (91) \\
\hline Don't know/Not coded & 2 & 4 & 41 & 15 & 600 & - \\
\hline
\end{tabular}

All Activities
1441

\footnotetext{
2 Includes eating at school or daycare, an activity not grouped under the "education activities" (codes 50-59, 549).
b "Doers" indicate the respondents who reported participating in each activity category.
\({ }^{\text {c }}\) Column total may sum to 1440 due to rounding error
}

Source: CARB, 1991.

Table 5-32. Mean Time Children Spent in 10 Major Activity Categories Grouped by Age and Gender
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Activity \\
Category
\end{tabular}} & \multicolumn{10}{|c|}{Mean Duration (mins)} \\
\hline & \multicolumn{5}{|c|}{Boys} & \multicolumn{5}{|c|}{Girls} \\
\hline & 0-2 yrs & \(3-5 \mathrm{yrs}\) & \(6-8 \mathrm{yrs}\) & 9-11 yrs & \[
\begin{gathered}
\text { All } \\
\text { Ages } \\
\hline
\end{gathered}
\] & 0-2 yrs & 3-5 yrs & 6-8 yrs & 9-11 yrs & \[
\begin{gathered}
\text { All } \\
\text { Ages }
\end{gathered}
\] \\
\hline Work-related & 4 & 9 & 14 & 12 & 10 & 5 & 12 & 11 & 10 & 10 \\
\hline Household & 33 & 45 & 55 & 65 & 48 & 58 & 44 & 51 & 76 & 57 \\
\hline Childcare & 0 & 0 & 0 & 1 & <1 & 0 & 0 & 0 & 4 & 1 \\
\hline Goods/Services & 20 & 22 & 19 & 14 & 19 & 22 & 25 & 23 & 22 & 23 \\
\hline Personal Care & 914 & 799 & 736 & 690 & 792 & 906 & 816 & 766 & 701 & 797 \\
\hline Education & 60 & 67 & 171 & 138 & 106 & 41 & 95 & 150 & 176 & 115 \\
\hline Organizational & 1 & 3 & 7 & 6 & 4 & 6 & 1 & 4 & 6 & 4 \\
\hline Entertainment/Social & 3 & 15 & 5 & 34 & 13 & 5 & 16 & 9 & 36 & 17 \\
\hline Recreation & 217 & 311 & 236 & 229 & 250 & 223 & 255 & 238 & 194 & 228 \\
\hline Commmication/Passive Leisure & 187 & 166 & 195 & 250 & 197 & 171 & 173 & 189 & 213 & 186 \\
\hline Don't know/Not coded & 1 & 4 & 1 & 1 & 2 & 3 & 1 & <1 & 3 & 2 \\
\hline All Activities \({ }^{\text {a }}\) & 1440 & 1441 & 1439 & 1440 & 1442 & 1440 & 1438 & 1441 & 1441 & 1440 \\
\hline Sample Sizes Unweighted N's & 172 & 151 & 145 & 156 & 624 & 141 & 151 & 124 & 160 & 576 \\
\hline
\end{tabular}
- The column totals may differ from 1440 due to rounding error.

Source: CARB, 1991.

Tablo 5-33. Mexn Timo Children Spent in 10 Major Activity Catogories
Grouped by Seasons and Regions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Activity Category} & \multicolumn{9}{|c|}{Mexn Duration (mins)} \\
\hline & \multicolumn{5}{|c|}{Season} & \multicolumn{4}{|c|}{Region} \\
\hline & \[
\begin{gathered}
\text { Winter } \\
\text { (Jan-Mar) }
\end{gathered}
\] & \[
\begin{gathered}
\begin{array}{c}
\text { Spring } \\
\text { (Apr-June) }
\end{array}
\end{gathered}
\] & \[
\begin{gathered}
\text { Summer } \\
\text { (July-Sept) }
\end{gathered}
\] & \[
\begin{gathered}
\text { Fall } \\
(\text { Oct-Dec })
\end{gathered}
\] & All Seasons & So. Cosst & Bay Area & Rest of State & All Regions \\
\hline Woris-related & 10 & 10 & 6 & 13 & 10 & 10 & 10 & 8 & 10 \\
\hline Household & 47 & 58 & 53 & 52 & 53 & 45 & 62 & 55 & 53 \\
\hline Childcare & <1 & 1 & <1 & <1 & <1 & <1 & <1 & 1 & <1 \\
\hline Goods/Services & 19 & 17 & 26 & 23 & 21 & 20 & 21 & 23 & 21 \\
\hline Personal Care & 799 & 774 & 815 & 789 & 794 & 799 & 785 & 794 & 794 \\
\hline Education & 124 & 137 & 49 & 131 & 110 & 109 & 115 & 109 & 110 \\
\hline Organizational & 3 & 5 & 5 & 3 & 4 & 2 & 6 & 6 & 4 \\
\hline Entertainment/Social & 14 & 12 & 12 & 22 & 15 & 17 & 10 & 16 & 15 \\
\hline Recreation & 221 & 243 & 282 & 211 & 239 & 230 & 241 & 249 & 239 \\
\hline \begin{tabular}{l}
Communication/Passive \\
Leisure
\end{tabular} & 203 & 180 & 189 & 195 & 192 & 206 & 190 & 175 & 192 \\
\hline Don't know/Not coded & \(<1\) & 2 & 3 & <1 & 2 & 1 & 1 & 3 & 2 \\
\hline All Activities \({ }^{\text {a }}\) & 1442 & 1439 & 1441 & 1441 & 1441 & 1440 & 1442 & 1439 & 1441 \\
\hline Sample Sizes (Unweighted) & 318 & 204 & 407 & 271 & 1200 & 224 & 263 & 713 & 1200 \\
\hline
\end{tabular}
- The column totals may not be equal to 1440 due to rounding error.

Source: CARB, 1991.

regions. There were seasonal differences for 5 activity categories: personat care, educational activities, social/entertainment, recreation, and communication/passive leisure. Time expenditure differences in regions were minimal for childcare, work-related activities, shopping, personal care, education, social life, and recreation.

Table 5-34 presents the distribution of time across six location categories. The participation rates (\%) of respondents, the mean, median, and maximum time for "doers." The detailed location with the highest average time expenditure are also shown. The largest amount of time spent was at home ( \(1,078 \mathrm{~min} /\) day ); 99 percent of respondents spent time at home ( \(1086 \mathrm{mins} /\) participant/day). Tables 5-35 and 5-36 show the average time spent in the six locations grouped by age and gender, and season and region, respectively. There are age differences in time expenditure in educational settings for boys and girls (Table 5-35). There are no differences in time expenditure at the six locations by regions, and time spent in school decreased in the summer months compared to other seasons (Table 5-36). Table 5-37 shows the average potential exposure time children (grouped by age and gender) spent in proximity to tobacco smoke, gasoline fumes, and gas oven fumes. The sampled children spent more time closer to tobacco smoke ( \(77 \mathrm{mins} /\) day) than gasoline fumes ( \(2 \mathrm{mins} /\) day) and gas oven fumes ( \(11 \mathrm{mins} /\) day).

A limitation of this study is that the sampling population was restricted to only English-speaking households; therefore, the data obtained does not represent a diverse population group present in California. Another limitation is that time use data obtained from this survey was based on 24-hr recall, which may somewhat create a bias on the dataset. Other limitations are: the survey was conducted in California and is not representative of the national population, and the significance of the observed differences in the data obtained (i.e., gender, age, seasons, and regions) were not tested statistically. An advantage of this study is that time expenditure in various activities and locations were presented for children grouped by age, gender, and seasons. Also, potential exposures of respondents to pollutants were explored in the survey. Another advantage is the CATI program employed in obtaining time diaries. This program allows automatic coding of activities and locations onto a computer tape, and allows activities forgotten by respondents to be inserted into its appropriate position during interviewing (CARB, 1991).

Table 5-34. Mean Timo Childrea Spent in Six Major Location Catogories for All Reapondeats
\(\left.\begin{array}{lcccccc}\hline & \begin{array}{c}\text { Mean } \\ \text { Luration } \\ \text { (mins) }\end{array} & \text { \% Doing } & & \begin{array}{c}\text { Mean } \\ \text { Duration } \\ \text { (mins) }\end{array} & \begin{array}{c}\text { Modisn } \\ \text { Duration } \\ \text { (mins) }\end{array} & \begin{array}{c}\text { Maximum } \\ \text { Duration } \\ \text { (mins) }\end{array}\end{array} \begin{array}{c}\text { Detailed Location with Highest } \\ \text { Avg. Time }\end{array}\right]\)

Source: CARB, 1991.

Table 5-35. Mean Time Children Spent in Six Location Categories Grouped by Age and Gender

a The column totals may not sum to \(\mathbf{1 , 4 4 0}\) due to rounding error.
Source: CARB, 1991.

Table 5-36. Mean Time Childrean Spent in Six Location Categories Grouped by Season and Region
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{9}{|c|}{Mean Duration (mins.)} \\
\hline & & Seas & & & & & Region & & \\
\hline Location Category & \[
\begin{gathered}
\text { Winter } \\
\text { (Jan-Mar) }
\end{gathered}
\] & \[
\begin{gathered}
\begin{array}{c}
\text { Spring } \\
\text { (Apr-June) }
\end{array}
\end{gathered}
\] & \[
\begin{gathered}
\text { Summer } \\
\text { (July-Sept) }
\end{gathered}
\] & \[
\begin{gathered}
\text { Fall } \\
\text { (Oct-Dec) }
\end{gathered}
\] &  & So. Const & \[
\begin{gathered}
\text { Bay } \\
\text { Area } \\
\hline
\end{gathered}
\] & Rest of State & \begin{tabular}{l}
All \\
Regions
\end{tabular} \\
\hline Home & 1,091 & 1,042 & 1,097 & 1,081 & 1,078 & 1,078 & 1,078 & 1,078 & 1,078 \\
\hline School/Childcare & 119 & 141 & 52 & 124 & 109 & 113 & 103 & 108 & 109 \\
\hline Friend's/Other's Houso & 69 & 75 & 108 & 69 & 80 & 73 & 86 & 86 & 80 \\
\hline Stores, Restaurants, Shopping Places & 22 & 21 & 30 & 24 & 24 & 26 & 23 & 23 & 24 \\
\hline In-transit & 75 & 75 & 60 & 65 & 69 & 71 & 73 & 63 & 69 \\
\hline Other Locations & 63 & 85 & 93 & 76 & 79 & 79 & 76 & 81 & 79 \\
\hline Don't Know/Not Coded & <1 & <1 & <1 & <1 & <1 & <1 & <1 & <1 & <1 \\
\hline All Locations \({ }^{*}\) & 1,439 & 1,439 & 1,440 & 1,439 & 1,439 & 1,439 & 1,440 & 1,440 & 1,439 \\
\hline Sample Sizes (Unweighted N's) & 318 & 204 & 407 & 271 & 1,200 & 224 & 263 & 713 & 1,200 \\
\hline
\end{tabular}

2 The column totals may not sum to 1,440 due to rounding error.
Source: CARB, 1991.


Table 5-37. Mean Time Children Spent in Proximity to Three Potential Exposures Grouped by All Respondents, Age, and Gender
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Potential Exposures} & \multicolumn{11}{|c|}{Mean Duration (mins.)} \\
\hline & \multicolumn{6}{|c|}{Boys} & \multicolumn{5}{|c|}{Girls} \\
\hline & Children & \[
\begin{aligned}
& 0-2 \\
& \mathrm{yrs} \\
& \hline
\end{aligned}
\] & 3-5 yrs & 6-8 yrs & 9-11 yrs & \[
\underset{\text { Boys }}{\text { All }}
\] & 0-2 yrs & 3-5 yrs & 6-8 yrs & 9-11 yrs & \begin{tabular}{l}
All \\
Girls
\end{tabular} \\
\hline Tobecco Smoke & 77 & 115 & 75 & 66 & 66 & 82 & 77 & 68 & 71 & 74 & 73 \\
\hline Gasoline Fumes & 2 & 2 & 1 & 1 & 4 & 2 & 1 & 1 & 3 & 1 & 1 \\
\hline Gas Oven Fumes & 11 & 10 & 15 & 12 & 11 & 12 & 12 & 10 & 10 & 7 & 10 \\
\hline \begin{tabular}{l}
Sample Sizes \\
(Unweighted N's)
\end{tabular} & 1,166 \({ }^{\text {a }}\) & 168 & 148 & 144 & 150 & 610 & 140 & 147 & 122 & 147 & 556 \\
\hline
\end{tabular}
* Respondents with missing data were excluded.

Source: CARB, 1991.

Tarshis - The Average American Book - Tarshis (1981) compiled a book addressing the habits, tastes, lifestyles and attitudes of the American people. In that book, Tarshis reported data for personal grooming. The data presented are gathered from small surveys, the Newspaper Advertising Bureau and magazines. Tarshis reported frequency and percentage data by gender and age for performing grooming activities such as showers and baths as the following:
- \(\quad 90\) percent take some sort of a bath in an average 24 -hour period;
- 5 percent average more than 1 shower or bath a day;
- \(\quad \mathbf{7 5 \%}\) of men shower, \(25 \%\) take baths;
- \(50 \%\) of women take showers, \(50 \%\) take baths;
- \(65 \%\) of teenage girls \(16-19\) shower daily;
- \(\quad 55 \%\) of teenage girls take at least one bath a week;
- \(50 \%\) of women use an additive in their bath every time they bath;
- Younger and richer people are more likely to shower than bath; and
- Showering is more popular than baths in large cities.

Limitations of this study is that the data are compiled from small surveys, newspapers, and magazines and the data are old. These data may not reflect the current trends of general population. An advantage is that is present frequency data that are useful in exposure assessment especially concerning volatilization of chemicals from water.
U.S. EPA - Dermal Exposure Assessment: Principles and Applications - U.S. EPA (1992a) addressed the variables exposure time, frequency, and duration that are needed to calculate dermal exposure as related to activity. The reader is referred to the document for a detailed discussion of these variables in relation to soil and water related activities. The suggested defaults values that can be used for dermal exposure are presented in Table 5-38. Limitations of this study is that the default values are based on small datasets and a limited

Table 5-38. Range of Recommended Defaults for Dermal Exposure Factors
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{4}{|c|}{Water Contact} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Soil Contact}} \\
\hline & \multicolumn{2}{|c|}{Bathing} & \multicolumn{2}{|c|}{Swimming} & & \\
\hline & Central & Upper & Central & Upper & Central & Upper \\
\hline Event time and frequency & & & & & 40 events/yr & 350event/yr \\
\hline & 1 event/day 350 days/yr & 1 event/day 350 days/yr & 1 event/day 5 days/yr & 1 event/day 150 days/yr & 40 eventyr & 3S0evemsly \\
\hline Exposure duration & 9 years & 30 years & 9 years & 30 years & 9 years & 30 years \\
\hline
\end{tabular}
a Bathing event time is presented to be representative of baths as well as showers.
Source: U.S. EPA 1992a.
number of studies. An advantage is that it presents default values for fręquency and dưration when this specific data are not available.

James and Knuiman - In 1987, James and Knuiman provided a distribution of the amount of time spent showering. This distribution was based on diary records of 2,500 households. Using these data, a cumulative frequency distribution was derived and is presented in Table 5-39. Based on these results, the mean shower length is approximately 8 minutes, the median shower length is approximately 7 minutes and the 90 th percentile is approximately 12 minutes.

A limitation of the study is that the data are from households in Australia and may not be representative of U.S. households. An advantage is that it is present cumulative distribution data.

\subsection*{5.3.2. Other Relevant Activity Pattern Studies \\ Sexton and Ryan - Assessment of Human Exposure to Air Pollution: Methods,} Measurements and Models - Sexton and Ryan (1987) addressed the state of the art air pollution exposure assessment and identified gaps for future research. Exposure assessments are dependent on pollutant concentration, exposure duration, and frequency of exposures (Sexton and Ryan, 1987). There are two basic approaches employed in assessing air poliution exposure: (1) air monitoring which involves direct (personal monitors) and indirect measurements; and (2) biological measurements in which biological markers are used to assess exposure (Sexton and Ryan, 1987). In the direct air monitoring approach, personal monitors are worn or carried during an individual's daily activities. Generally, participants maintain records of activities during the test periods. However, this approach is expensive and inconvenient depending on the size and weight of the monitor. In the indirect approach air pollution exposure is integrated by combining pollutant concentrations at fixed locations (i.e., outdoors, indoors) with time diaries, i.e. time spent in various specific microenvironments (Sexton and Ryan, 1987). Examples of biological measurements include immunoassay, bioassay specific for mutagenicity, and sister chromatid exchange rate.

Sexton and Ryan (1987) reported that there is a paucity of information on time budgets and activity patterns as they relate to exposure. They suggested the need for

Table 5-39. Cumulative Frequency Distribution of Average Shower Duration for 2,500 Households
\begin{tabular}{cc}
\hline \begin{tabular}{c} 
Shower duration \\
(minutes)
\end{tabular} & \begin{tabular}{c} 
Cumulative frequency \\
(percentage)
\end{tabular} \\
\hline & \\
1 & 0.2 \\
2 & 0.8 \\
3 & 3.2 \\
4 & 9.8 \\
5 & 22.6 \\
6 & 38.2 \\
7 & 52.6 \\
8 & 63.8 \\
9 & 73.4 \\
10 & 81.0 \\
11 & 86.2 \\
12 & 90.2 \\
13 & 92.4 \\
14 & 94.2 \\
15 & 95.6 \\
16 & 96.8 \\
17 & 97.6 \\
18 & 98.6 \\
19 & 99.4 \\
20 & 100.0 \\
\hline
\end{tabular}

Source: James and Knuiman, 1987.
investigators to conduct more studies relating time-activity patterns to exposures and-studies relating factors such as age, gender, socioeconomic status, and occupation to time-activity pattems. Sexton and Ryan summarized two earlier studies in which time-activity patterns were measured over a 24-hour period. These data are presented in Table 5-40. The respondents spent most of their time indoors, 21.95 hours ( 65 percent of total time) and 22.41 hours ( 70 percent of total time) for studies 1 and 2, respectively.

A limitation associated with this study is that the accuracy and the validity of the data presented were not discussed. In addition, the data presented are old, from studies in 1972 and 1974. There may have been significant changes in time expenditure in various microenvironments over two decades ago compared with recent times. Therefore, applying this data set to current exposures may bias the results obtained.

Sell - The Use of Children's Activity Patterns in the Development of a Strategy for Soil Sample in West Central Phoenix - In a report prepared for the Arizona Department of Environmental Quality, Sell (1989) investigated the activity patterns of preschool and school age children in Phoenix. The survey was conducted in two parts: (1) most of the school age children were interviewed personally from May through June, 1989 in three schools; and (2) survey questionnaires were mailed to parents of preschool children.

In the first survey, 15 percent of the total school population \((2,008)\) was sampled with 111 children in grades K-6 participating (response rate of 37 percent). The surveyed population was 53.2 percent male and 46.8 percent female. Of this population, 41 percent were Hispanics, 49.5 percent Anglos, 7.2 percent Blacks, and 1.7 percent Asians. The children interviewed were between the ages of 5-13 years old. Within each school, the children in grades K-6 were stratified into two groups, primary (grades K-3) and intermediate (grades 4-6), and the children were selected randomly from each group. However, younger children in grades K-2 were either interviewed in school or at home in the presence of a parent or an adult care-provider. In the course of the interview, children were asked to identify locations of activity areas, social areas (i.e., places they went with friends), favorite areas, and locations of forts or clubhouses. Aerial photographs were used to mark these areas.

Table 5-40. Summary of Mean Time-Activity Patterns Over a 24-Hour Period
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Location} & \multicolumn{2}{|c|}{Time Duration (Hours)} \\
\hline & Study \(1^{12}\) & Study \(\mathbf{2 b}^{\text {b }}\) \\
\hline \multicolumn{3}{|l|}{Indoors} \\
\hline Home & 16.03 & 16.75 \\
\hline Work & 4.61 & 4.03 \\
\hline Other & 1.31 & 1.63 \\
\hline Subtotal & 21.95 & 22.41 \\
\hline \multicolumn{3}{|l|}{Outdoors} \\
\hline Home & 0.27 & 0.23 \\
\hline Work & - & - \\
\hline Other & 0.27 & 0.12 \\
\hline Subtotal & 0.54 & 0.35 \\
\hline \multicolumn{3}{|l|}{In Transit} \\
\hline All Modes & 1.16 & 1.25 \\
\hline Total & \(23.65{ }^{\text {c }}\) & 24.01 \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
: Study 1 - Chapin (1974) \\
b Study 2 - Szalai (1972) \\
c Shortfall from 24-hr. not explained by author
\end{tabular}} \\
\hline Source: Sexton and Ryan & & \\
\hline
\end{tabular}

The second survey involved only preschool children. Parents completed questionnaires which provided information on the amount of time their children spent outdoors, outdoor play locations, favorite places, digging areas, use of park or playgrounds, and swimming or wading locations. This survey was conducted between June-July, 1989. One thousand \((1,000)\) parents were sampled, but only 211 questionnaires were usable out of 886 questionnaires received. Therefore, the response rate for the preschool's survey was about 24 percent (based on the 886 valid sample units). The sample population consisted of children 1 month and up to preschool age. Of this population, 53 percent were Anglos, 18 percent Hispanics, 2 percent Blacks, and 3 percent Asians.

The survey design emphasized the kind of activities children engaged in, but not the amount of time children spent performing each activity. Therefore, Sell (1989) presented the data obtained from the survey in terms of percent of respondents who engaged in specific activities or locations. A summary of percent responses of the preschool and school-age children's activities at various locations in the Maryvale study areas are presented in Table 5-41. Also included in this table is a ranking of children's play locations based on other existing research works. Based on the survey data, Sell (1989) reported that the median time preschool children spent outdoors on weekdays was 1-2 hours, and on weekends the median time spent outdoors was 2-5 hours. Most of these children played outside in their own yards, and some played in other people's yards or parks and playgrounds (Sell, 1989).

A limitation associated with this study is that the survey design did not report the time spent in various activities or locations. Another limitation of this study is that the response rates obtained from the surveys were low and may result in biased data. In addition, the survey was conducted in Arizona, therefore, the surveyed population does not represent the children's population on a national basis. An advantage of this study is that various activities children engage in and locations of these activities were examined. It provides for time spent outdoors. This information is also useful in determining exposure pathways to toxic pollutants for children.

Table 5-41. Percent Responses of Children's "Play" (activities) Locations in Maryvale, Arizona"
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Location} & \multicolumn{3}{|c|}{\% Responses} & Ranking of Children's "Play" \\
\hline & Preschool
\[
\mathrm{n}=211
\] & Primary Grades (K-3)
\[
n=45
\] & Intermediate Grades (4-6)
\[
n=66
\] & \\
\hline Residential Yards & \(143{ }^{\text {b }}\) & \(124^{\text {b }}\) & \(132^{\text {b }}\) & Residential (Own and Others) \\
\hline School Playgrounds & 0 & 53 & 52 & Parks and Recreation Areas \\
\hline Parks and Recreation Areas & 42 & 53 & 33 & Street/Path/Alley \\
\hline Commercial & 2 & 24 & 27 & Natural/Vacant Areas \\
\hline Industrial & 0 & 0 & 2 & School \\
\hline Institutional & 1 & 2 & 0 & Institutional \\
\hline Streets & 3 & 24 & 41 & Commercial \\
\hline Alleys & 1 & 2 & 9 & Parking Lots \\
\hline Parking Lots & 0 & 9 & 9 & Child Built Places \\
\hline Vacant Lots/Canals/Fields & 1 & 7 & 8 & \begin{tabular}{l}
Water \\
Industrial
\end{tabular} \\
\hline
\end{tabular}
- Survey was conducted in Maryvale (West Central Phoenix), Arizona
b Percentages greater than 100 , because many children played in more than one location
c Ranking of children's activity locations were obtained from other literature sources.
Source: Sell, 1989.


\subsection*{5.4. POPULATION MOBILITY \\ 5.4. POPULATION MOBLLIY}

\subsection*{5.4.1. Background}

An assessment of population mobility can assist in determining the length of time a household is exposed in a particular location. For example, the duration of exposure to site-specific contamination, such as a polluted stream from which a family fishes or contaminated soil on which children play or vegetables are grown, will be directly related to the period of time residents live near the contaminated site.

Information regarding population mobility is compiled and published by the U.S. Bureau of the Census (BOC). Banks, Insurance Companies, Credit Card Companies, Real estate and housing associations use residence history information. However, this information is mostly confidential. Information gathered by the BOC provides information about population mobility. However, it is difficult to determine the average residence time of a homeowner or apartment dweller from this information. Census data provide representations of a cross-section of the population at specific points in time, but the surveys are not designed to follow individual families through time. The most current Bureau of the Census information about annual geographical mobility and mobility by State is summarized in Appendix 5B. Figure 5-1 graphically displays the proportion of movers who made each type of move.

Available information was provided by the Oxford Development Corporation, The National Association of Realtors, and the Bureau of the Census. According to Oxford Development Corporation, a property management firm, the typical residence time for an apartment dweller for their corporation has been estimated to range from 18 to 30 months ( \(S\). Cameron Hendricks, Sales Department, Oxford Development Corporation, Gaithersburg, MD, personal communication with P. Wood (Versar) August 10, 1992).

\subsection*{5.4.2. Population Mobility Studies \\ The National Association of Realtors (NAR) (1993) The Home Buying and Selling} Process - The survey was conducted by mailing a questionnaire to 15,000 home buyers throughout the U.S. who purchased homes during the second half of 1993. The survey was conducted in December 1993 and 1,763 usable responses were received, a response rate of


Figure 5-1. Distribution of individuals moving by type of move: 1991-92

Source: U.S. Bureau of the Census, 1993

12 percent. Of the respondents, forty-one percent were first time buyers. Home buyer names and addresses were obtained from Dataman Information Services. Dataman compiles information on residential real estate transactions from more than 600 counties throughout the United States using the Courthouse deed records. Most of the 250 Metropolitan Statistical Areas are also covered in Dataman's data compilation.

The survey results indicate that the average tenure of home buyers is 7.1 years based on an overall residence history of the respondents. These results are presented in Table 5-42. The home buyers were questioned on the length of time they owned their previous home. A typical repeat buyer was found to have lived in their previous home between four and seven years. The results of the survey are presented in Table 5-43. The median length of residence in respondents' previous homes was found to be 6 years.

The number of miles the respondents moved to their new homes were typically short distances. Seventeen (17) percent of the respondents purchased homes over 100 miles from their previous homes. However, 49 percent purchased homes less than 10 miles away. These data are presented in Table 5-44.

Israeli and Nelson (1992) - Distribution and Expected Time of Residence for U.S. Households - In risk assessments, the average current residence time (time since moving into current residence) has often been used as a substitute for the average total residence time (time between moving into and out of a residence) (Israeli and Nelson, 1992). Israeli and Nelson (1992) have estimated distribution and expected time of residence for U.S. households. Distributions and averages for both current and total residence times were calculated for several housing categories using the 1985 and 1987 Bureau of the Census housing survey data. The total residence time distribution was estimated from current residence time data by modeling the moving process (Israeli and Nelson, 1992). Israeli and Nelson estimated the average total residence time for a household to be approximately 4.6 years or \(1 / 6\) of the expected life span (see Table 5-45). The maximal total residence time that a given fraction of households will live in the same residence is presented in Table 5-46. For example, only 5 percent of the individuals in the "All Households" category will live in the same residence for 23 years and 95 percent will move in less than 23 years. \\ \\ Table 5-42. Summary of Residence Time of Recent Home Buyers-
} \\ \section*{\(\left\{\begin{array}{c}\cdots \text { DRAFT } \\ \text { DO NOT RUOTE OR } \\ \text { CITE }\end{array}\right.\) \\ \section*{\(\left\{\begin{array}{c}\cdots \text { DRAFT } \\ \text { DO NOT RUOTE OR } \\ \text { CITE }\end{array}\right.\) \\ \\ \(\left\{\begin{array}{c}\cdots \text { DRAFT } \\ \text { DO NOT RUOTE OR } \\ \text { CITE }\end{array}\right.\) \\ \\ \(\left\{\begin{array}{c}\cdots \text { DRAFT } \\ \text { DO NOT RUOTE OR } \\ \text { CITE }\end{array}\right.\) \\ \\ \(\left\{\begin{array}{c}\cdots \text { DRAFT } \\ \text { DO NOT RUOTE OR } \\ \text { CITE }\end{array}\right.\)} \\ \\ \(\left\{\begin{array}{c}\cdots \text { DRAFT } \\ \text { DO NOT RUOTE OR } \\ \text { CITE }\end{array}\right.\)}
Number of years lived
in previous house \(\quad\) Percent of Respondents

1 year or less \(\quad 2\)
2-3
16
4-7 41
8-9 31
10 years or more 32

Source: NAR, 1993.

Table 5-43. Tenure in Previous Home (Percentage Distribution) \(\begin{gathered}\text { DRAFT } \\ \text { DO } \left.\begin{array}{c}\text { OWFTE OR } \\ \text { CITE }\end{array} \right\rvert\,\end{gathered}\)
\begin{tabular}{lcccc}
\hline & \multicolumn{4}{c}{ Percent } \\
\hline & 1987 & 1989 & 1991 & 1993 \\
\hline One year or less & 5 & 8 & 4 & 2 \\
2-3 Years & 25 & 15 & 21 & 16 \\
47 Years & 36 & 22 & 37 & 40 \\
8-9 Years & 10 & 11 & 9 & 10 \\
10 or More Years & 24 & 34 & 29 & 32 \\
Total & 100 & 100 & 100 & 100 \\
& & 6 & 6 & 6 \\
\hline
\end{tabular}

Source: NAR, 1993
\(\square\)
Table 5-44. Number of Miles Moved (Percentage Distribution)
\begin{tabular}{lrcccc}
\hline & All Buyers & \begin{tabular}{c} 
First-Time \\
Buyer
\end{tabular} & \begin{tabular}{c} 
Repeat \\
Buyer
\end{tabular} & \begin{tabular}{c} 
New Home \\
Buyer
\end{tabular} & \begin{tabular}{c} 
Existing \\
Home Buyer
\end{tabular} \\
\hline \multicolumn{1}{c}{ Miles } & & & Percent & & \\
\hline Less than 5 miles & 29 & 33 & 27 & 23 & 31 \\
5 to 9 miles & 20 & 25 & 16 & 18 & 20 \\
10 to 19 miles & 18 & 20 & 17 & 20 & 17 \\
20 to 34 miles & 9 & 11 & 8 & 12 & 9 \\
35 to 50 miles & 2 & 2 & 2 & 2 & 3 \\
51 to 100 miles & 5 & 2 & 6 & 6 & 4 \\
Over 100 miles & 17 & 6 & 24 & 19 & 16 \\
Total & 100 & 100 & 100 & 100 & 100 \\
& & & 8 & 11 & \\
Median & 9 & 110 & 270 & 230 & 8 \\
Mean & 200 & & & & 11 \\
\hline
\end{tabular}

Source: NAR, 1993

Table 5-45. Valves and Their Standerd Errors for Averago Total Residence Time, T, for Eech Group in Survey
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Households & \multicolumn{3}{|l|}{Average total residence time \(T\) (years)} & \[
\underset{\substack{\text { (gears) }}}{\stackrel{S_{T}}{ }}
\] & \multicolumn{3}{|l|}{Average current residence time \(\mathrm{T}_{\mathrm{CR}}\) (years)} & \multicolumn{2}{|c|}{Households (percent)} \\
\hline All households & 4.55 & & 0.60 & 8.68 & 10.56 & \(\pm\) & 0.10 & 100.0 & 100.0 \\
\hline Renters & 2.35 & & 0.14 & 4.02 & 4.62 & \(\pm\) & 0.08 & 36.5 & 36.0 \\
\hline Owners & 11.36 & \(\pm\) & 3.87 & 13.72 & 13.96 & \(\pm\) & 0.12 & 63.5 & 64.0 \\
\hline Farms & 17.31 & & 13.81 & 18.69 & 18.75 & \(\pm\) & 0.38 & 2.1 & 1.9 \\
\hline Urban & 4.19 & & 0.53 & 8.17 & 10.07 & \(\pm\) & 0.10 & 74.9 & 74.5 \\
\hline Rural & 7.80 & \(\pm\) & 1.17 & 11.28 & 12.06 & \(\pm\) & 0.23 & 25.1 & 25.5 \\
\hline Northeast region & 7.37 & \(\pm\) & 0.88 & 11.48 & 12.64 & \(\pm\) & 0.12 & 21.2 & 20.9 \\
\hline Midwest region & 5.11 & & 0.68 & 9.37 & 11.15 & \(\pm\) & 0.10 & 25.0 & 24.5 \\
\hline South region & 3.96 & \(\pm\) & 0.47 & 8.03 & 10.12 & \(\pm\) & 0.08 & 34.0 & 34.4 \\
\hline West region & 3.49 & \(\pm\) & 0.57 & 6.84 & 8.44 & \(\pm\) & 0.11 & 19.8 & 20.2 \\
\hline
\end{tabular}
2. Values of the average current residence time, \(\mathrm{T}_{\mathrm{CR}}\), are given for comparison.

Source: Isracli and Nelson, 1992.

Table 5-46. Total Residence Time, \(t\) (years), Corresponding to Selected Values of \(R(t)^{\text {a }}\) by Housing Category
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathbf{R}(\mathrm{t})=\) & 0.05 & 0.1 & 0.25 & 0.5 & 0.75 \\
\hline All households & 23.1 & 12.9 & 3.7 & 1.4 & 0.5 \\
\hline Renters & 8.0 & 5.2 & 2.6 & 1.2 & 0.5 \\
\hline Owners & 41.4 & 32.0 & 17.1 & 5.2 & 1.4 \\
\hline Farms & 58.4 & 48.3 & 26.7 & 10.0 & 2.4 \\
\hline Urban & 21.7 & 10.9 & 3.4 & 1.4 & 0.5 \\
\hline Rural & 32.3 & 21.7 & 9.1 & 3.3 & 1.2 \\
\hline Northeast region & 34.4 & 22.3 & 7.5 & 2.8 & 1.0 \\
\hline Miadwest region & 25.7 & 15.0 & 4.3 & 1.6 & 0.6 \\
\hline South region & 20.7 & 10.8 & 3.0 & 1.2 & 0.4 \\
\hline West region & 17.1 & 8.9 & 2.9 & 1.2 & 0.4 \\
\hline
\end{tabular}
a \(\quad R(t)=\) fraction of households living in the same residence for \(t\) years or more.
Source: Isreeli and Nelson, 1992.

The authors note that the data presented are for the expected time a household will stay in the same residence. The data do not predict the expected residence time for each member of the household, which is generally expected to be smaller (Israeli and Nelson, 1992). These values are more realistic estimates for the individual total residence time, than the average time a household has been living at its current residence. The expected total residence time for a household is consistently less than the average current residence time. This is caused by greater weighting of short residence time when calculating the average total residence time than when calculating the average current residence time (Israeli and Nelson, 1992). When averaging total residence over a time interval, frequent movers may appear several times, but when averaging current residence times, each household appears only once (Israeli and Nelson, 1992). According to Israeli and Nelson, the residence time distribution developed by the model is skewed and the median values are considerably less than the means ( \(T\) ), which are less than the average current residence times.
U.S. Bureau of the Census (1993) - American Housing Survey for the United States in 1991 - This survey is a national sample of 55,000 interviews in which collected data were presented by owners, renters, black householder, and hispanic householder. The data reflects the number of years a unit has been occupied and represent all occupied housing units that the residents rented or owned at the time of the survey.

The results of the survey pertaining to residence time of owner/renter occupied units in the U.S. is presented in Table 5-47. Using the data in Table 5-47, the percentages of householders living in houses for specified time ranges were determined and are presented in Table 5-48. Based on the Bureau of the Census data in Table 5-47, the 50th percentile and the 90 th percentile values were calculated for the number of years lived in the householder's current house. These values were calculated by apportioning the total sample size ( 93,147 households) to the indicated percentile associated with the applicable range of years lived in current home. Assuming an even distribution within the appropriate range, the 50th and 90th percentile values for years living in current home were determined to be 9.1 and 32.7 years, respectively. These were then rounded to 9 and 33 years. Based on the above data, the
\(\square\)
Table 5-47. Residence Time of Owner/Renter Occupied Units
\begin{tabular}{lc} 
Year householder & units \\
moved into unit & (numbers in thousands)
\end{tabular} moved into unit
1990-1994 24,534.

1985-1989 27,054.
1980-1984
10,613
1975-1979
9,369
1970-1974
6,233
1960-1969
7,933
1950-1959
1940-1949
4,754
1939 or earlier
1,772 885
Total
93,147

Source: U.S. Bureau of the Census, 1993.

Table 5-48. Percent of Householders Living in Houses for Specified Ranges of Time
\begin{tabular}{cc}
\hline \begin{tabular}{l} 
Years lived in \\
current home
\end{tabular} & \begin{tabular}{c} 
Percent of \\
total households
\end{tabular} \\
\hline & \\
\(5-4\) & 26.34 \\
\(10-14\) & 29.04 \\
\(15-19\) & 11.39 \\
\(20-24\) & 10.06 \\
\(25-34\) & 6.69 \\
\(35-44\) & 8.52 \\
\(45-54\) & 5.1 \\
\(>55\) & 1.9 \\
& 0.95 \\
\hline
\end{tabular}

Source: Adapted from U.S. Bureau of the Census, 1993.
range of 9 to 33 years is assumed to best represent a central tendency estimate of Tength of residence and upper percentile estimate of residence time, respectively.

A limitation associated with the above analysis is the assumption that there is an even distribution within the different ranges. As a result, the 50 th and 90 th percentile values may be biased.

Johnson and Capel (1992) - A Monte Carlo Approach to Simulating Residential Occupancy Periods and it's Application to the General U.S. Population - Johnson and Capel developed a methodology to estimate the distribution of the residential occupancy period (ROP) in the national population. ROP denotes the time (years) between a person moving into a residence and the time the person moves out or dies. The methodology uses a Monte Carlo approach to simulate a distribution of ROP for 500,000 persons using data on population, mobility, and mortality.

The methodology consists of six steps. The first step defines the population of interest and categorizes them by location, gender, age, sex and race. Next the demographics groups are selected and the fraction of the specified population that falls into each group is developed using Bureau of the Census (BOC) data. A mobility table is developed based on BOC data. This table provides the probability that a person with specified demographics did not move during the previous year. The fifth step uses data on vital statistics published by the National Center for Health Statistics and develops a mortality table which provides the probability that individuals with specific demographic characteristics would die during the upcoming year. As a final step, a computer based algorithm is used to apply a Monte Carlo approach to a series of persons selected at random from the population being analyzed.

Table 5-49 presents the results for residential occupancy periods for the total population and by gender. The estimated mean ROP for the total population is 11.7 years. The distribution is skewed (Johnson and Capel, 1992): the 25th, 50th, and 75th percentiles are 4,9 , and 16 years, respectively. The 90th, 95th, and 99th percentiles are 26,33 , and 47 years, respectively. The mean ROP for males is 11.1 years and 12.3 years for females, and the median value is \(\mathbf{8}\) years for males and 9 years for females.

Descriptive statistics for subgroups defined by current ages were also calculated. These data, presented by gender, are shown in Table 5-50. The mean ROP increases from

Table 5-49. Descriptive Statistics for Residential Occupancy Period
\begin{tabular}{c|c|c|c}
\hline \multirow{2}{*}{ Statistic } & \multicolumn{3}{|c}{ Value of statistic } \\
\cline { 2 - 4 } & Both genders & Males only & Females only \\
\hline Number of simulated persons & 500,000 & 244,274 & 255,726 \\
\hline Recidential occupancy period, years & & & \\
Mean & 11.7 & 11.1 & 12.3 \\
5th percentile & 2 & 2 & 2 \\
10th percentile & 2 & 2 & 2 \\
25th percentile & 3 & 4 & 5 \\
50h percentile & 9 & 8 & 9 \\
75th percentile & 16 & 15 & 17 \\
90th percentile & 26 & 24 & 28 \\
95th percentile & 33 & 31 & 35 \\
98th percentile & 41 & 39 & 43 \\
99th percentile & 47 & 44 & 49 \\
99.5th percentile & 51 & 48 & 53 \\
99.8th percentile & 55 & 53 & 58 \\
99.9th percentile & 59 & 56 & 61 \\
Second largest value & 75 & 73 & 75 \\
Largeat value & 87 & 73 & 87 \\
\hline
\end{tabular}

Source: Johnson and Capel, 1992.

Table 5-50. Descriptive Statistics for Both Genders by Current Age
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Current age, years} & \multicolumn{7}{|c|}{Residential occupancy period, years} \\
\hline & \multirow[b]{2}{*}{Mean} & & & Perc & & & \\
\hline & & 25 & 50 & 75 & 90 & 95 & 99 \\
\hline 3 & 6.5 & 3 & 5 & 8 & 13 & 17 & 22 \\
\hline 6 & 8.0 & 4 & 7 & 10 & 15 & 18 & 22 \\
\hline 9 & 8.9 & 5 & 8 & 12 & 16 & 18 & 22 \\
\hline 12 & 9.3 & 5 & 9 & 13 & 16 & 18 & 23 \\
\hline 15 & 9.1 & 5 & 8 & 12 & 16 & 18 & 23 \\
\hline 18 & 8.2 & 4 & 7 & 11 & 16 & 19 & 23 \\
\hline 21 & 6.0 & 2 & 4 & 8 & 13 & 17 & 23 \\
\hline 24 & 5.2 & 2 & 4 & 6 & 11 & 15 & 25 \\
\hline 27 & 6.0 & 3 & 5 & 8 & 12 & 16 & 27 \\
\hline 30 & 7.3 & 3 & 6 & 9 & 14 & 19 & 32 \\
\hline 33 & 8.7 & 4 & 7 & 11 & 17 & 23 & 39 \\
\hline 36 & 10.4 & 5 & 8 & 13 & 21 & 28 & 47 \\
\hline 39 & 12.0 & 5 & 9 & 15 & 24 & 31 & 48 \\
\hline 42 & 13.5 & 6 & 11 & 18 & 27 & 35 & 49 \\
\hline 45 & 15.3 & 7 & 13 & 20 & 31 & 38 & 52 \\
\hline 48 & 16.6 & 8 & 14 & 22 & 32 & 39 & 52 \\
\hline 51 & 17.4 & 9 & 15 & 24 & 33 & 39 & 50 \\
\hline 54 & 18.3 & 9 & 16 & 25 & 34 & 40 & 50 \\
\hline 57 & 19.1 & 10 & 17 & 26 & 35 & 41 & 51 \\
\hline 60 & 19.7 & 11 & 18 & 27 & 35 & 40 & 51 \\
\hline 63 & 20.2 & 11 & 19 & 27 & 36 & 41 & 51 \\
\hline 66 & 20.7 & 12 & 20 & 28 & 36 & 41 & 50 \\
\hline 69 & 21.2 & 12 & 20 & 29 & 37 & 42 & 50 \\
\hline 72 & 21.6 & 13 & 20 & 29 & 37 & 43 & 53 \\
\hline 75 & 21.5 & 13 & 20 & 29 & 38 & 43 & 53 \\
\hline 78 & 21.4 & 12 & 19 & 29 & 38 & 44 & 53 \\
\hline 81 & 21.2 & 11 & 20 & 29 & 39 & 45 & 55 \\
\hline 84 & 20.3 & 11 & 19 & 28 & 37 & 44 & 56 \\
\hline 87 & 20.6 & 10 & 18 & 29 & 39 & 46 & 57 \\
\hline 90 & 18.9 & 8 & 15 & 27 & 40 & 47 & 56 \\
\hline All ages & 11.7 & 4 & 9 & 16 & 26 & 33 & 47 \\
\hline
\end{tabular}

Source: Johnson and Capel, 1992.
age 3 to age 12 and there is a noticeable decrease at age 24. However, there is a steady increase from age 24 through age 81.

There are a few biases within this methodology which have been noted by authors. The probability of not moving is estimated as a function only of gender and age. The Monte Carlo process assumes that this probability is independent of (1) the calendar year to which it is applied, and (2) to the past history of the person being simulated. These assumptions, according to Johnson and Capel are not entirely correct. They believe that extreme values are a function of sample size and will, for the most part, increase as the number of simulated persons increases.

Lehman - Homeowners Relocating at Faster Pace - Lehman (1994) presents data gathered by the Chicago Title and Trust Family Insurers. The data indicates that in 1993, the average U.S. homeowners moved every 12 years. In 1992, homeowners moved every 13.4 years and in 1991, every 14.3 years. Data from the U.S. Bureau of the Census indicate that 7 percent of the owner population moved in 1991. Based on this information, Lehman has concluded that it would take 12 years for 100 percent of owners to move. According to Lehman, Bill Harriett of the U.S. Bureau of the Census has been quoted to state that 14 years is a closer estimate for 100 percent of home owners to move. Other data presented in the article state that homeowners in Virginia moved ever 11.1 years and in Maryland every 11.7 years. An advantage of this study is that it provides percentile data for the residential occupancy period.

\subsection*{5.5 REFERENCES FOR CHAPTER 5}

Andelman, J.B.; Meyers, S.M.; Wilder, L.C. (1986) Volatilization of organic chemicals from indoor uses of water. In: Lester, J.N.; Perry, R.; Sterritt, R.M.; eds. Chemicals in the environment. London: Selper Ltd.

Brainard, J.; Burmaster, D. (1992) Bivarite distributions for height and weight of men and women in the United States. Risk Anal. (12)2:267-275.

Burmaster, D.E.; Lloyd, K.J.; Crouch, E.A.C. (1994) Lognormal distributions of body weight as a function of age for female and male children in the United States. submitted to Risk Anal. pp. 1-11.

California Air Resources Board (CARB). (1991) California Environmental Protection Agency, Air Resources Board Research Division.

Carey, M. (1988) Occupational tenure in 1987: Many workers have remained in their fields. Monthly Labor Review. October 1988. 3-12.

Carey, M. (1990) Occupational tenure, employer tenure, and occupational mobility. Occupational Outlook Quarterly. Summer 1990: 55-60.

Chapin, S. (1974) Human activity patterns in the city: things people do in time and in space. New York: Wiley Interscience.

Hill, M.S. (1985) Patterns of time use. In: Juster, F.T.; Stafford, F.P., eds. Time, goods, and well-being. Ann Arbor, MI: University of Michigan, Survey Research Center, Institute for Social Research, pp. 133-166.

Israeli, M; Nelson, C.B. (1992) Distribution and expected time of residence for U.S. households. Risk Anal. 12(1):65-72.

James, I.R.; Knuiman, M.W. (1987) An application of Bayes methodology to the analysis of diary records from a water use study. J. Am. Sta. Assoc. 82(399):705-711.

Johnson, T. and Capel, J. (1992) A monte carlo approach to simulating residential occupancy periods and its application to the general U.S. population. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Air Quality and Standards.

Juster, F.T.; Hill, M.S.; Stafford, F.P.; Parsons, J.E. (1983) Study description: 1975-1981 time use longitudinal panel study. Ann Arbor, MI: The University of Michigan, Survey Research Center, Institute for Social Research.

Juster, F.T. (1985) A note on recent changes in time use. In: Juster, F.T.; Stafford, F.P.; eds. Time, goods, and well-being. Ann Arbor, MI: University of Michigan, Survey Research Center, Institute for Social Research. pp. 313-330.

Juster, F.T.; Stafford, F.P.; eds. (1985) Time, goods, and well-being. Ann Arbor, MI: University of Michigan, Survey Research Center, Institute for Social Research.

Kalton, G. (1985) Sample design issues in time diary studies. In: Juster, F.T.; Stafford,F.P., eds. Time, goods, and well-being. Ann Arbor, MI: University of Michigan, Survey Research Center, Institute for Social Research. pp. 93-108.

Keavon, J. (1989) The home buying and selling process. National Association of Realtors.

Lehman, H.J. (1994) Homeowners relocating at faster pacce. Virginia Homes Newspaper, Saturday, June 15, P. E1.

National Association of Realtors (NAR). (1993) The homebuying and selling process: 1993. The Real Estate Business Series. Washington, DC: NAR.

National Center for Health Statistics. (1987) Anthropometric reference data and prevalence of overweight, United States, 1976-80. Data from the National Health Survey, Series 11, No. 238. Hyattsville, MD: U.S. Department of Health and Human Services, Public Health Service, National Center for Health Statistics. DHHS Publication No. (PHS) 87-1688.

Robinson, J.P. (1977) Changes in Americans' use of time: 1965-1975. A progress report. Cleveland, OH: Cleveland State University, Communication Research Center.

Robinson, J.P; Thomas, J. (1991) Time spent in activities, locations, and microenvironments: a California-National Comparison Project report. Las Vegas, NV: U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory.

Sell, J. (1989) The use of children's activity patterns in the development of a strategy for soil sampling in West Central Phoenix. The Arizona Department of Environmental Quality, Phoenix, Arizona.

Sexton, K; Ryan, P.B. (1987) Assessment of human exposure to air pollution: methods, measurements, and models. In: Watson, A.; Bates, R.R.; Kennedy, D., eds. Air pollution, the automobile and public health: research opportunities for quantifying risk. Washington, DC: National Academy of Sciences Press.

Spencer, G. (1989) Projections of the populations of the United States by age, sex, and race: 1988 to 2080. Washington, DC: U.S. Department of Commerce, Bureau of the Census. Series, P-25, No. 1018.

Szalai, A.; ed. (1972) The use of time: daily activities of urban and suburban populations in twelve countries. Paris: Mouton, The Hague.

Tarshis, B. (1981) The "Average American" book. New York, NY: New American Library, p. 191.

Timmer, S.G.; Eccles, J.; O'Brien, K. (1985) How children use time. In: Juster, F.T.; Stafford, F.P.; eds. Time, goods, and well-being. Ann Arbor, MI: University of Michigan, Survey Research Center, Institute for Social Research, pp. 353-380.

University of Michigan. (1976) Ann Arbor, MI: Institute for Social Research. Unpublished data.
U.S. Bureau of the Census. (1984) Statistical abstract of the United States: 1985. 105th ed. Washington, DC: U.S. Government Printing Office.
U.S. Bureau of the Census. (1989a) Current Population Reports, Population Characteristics; Series P-20, No. 430 Geographical Mobility: March 1986 to March 1987. Washington, DC: U.S. Government Printing Office.
U.S. Bureau of the Census. (1989b) American Housing Survey for the United States in 1987. Survey for the United States in 1987. Washington, DC: U.S. Government Printing Office.
U.S. Bureau of the Census. (1990) Statistical abstract of the United States: 1990. 110th ed. Washington, DC: U.S. Government Printing Office.
U.S. Bureau of the Census. (1993) Geographical mobility: March 1991 to March 1992. Current population reports P.20-473.
U.S. Bureau of the Census. (1994) Statistical abstracts of the United States, 1994. 114th edition. The National Data Book.
U.S. EPA. (1985) Development of statistical distributions or ranges of staridard factors used in exposure assessments. Washington, DC: Office of Health and Environmental Assessment. EPA No. 600/8-85-010. Available from: NTIS, Springfield, VA. PB85-242667.

Washington Surburban Sanitary Commission. (1990) Water conservation, saving time, money and a critical resource. Laurel, MD: WSCS.

\section*{APPENDIX 5-A}

\section*{Activity Patterns Codes and Occupational Tenure Data}

Table 5A-1. Activity Codes and Descriptors Used For Adult Time Diaries

\section*{WORK AND OTHER INCOME-PRODUCING ACTIVITIES}

\section*{Paid Work}

01 - Normal work: activities at the main job including work brought home, travel that is part of the job, and overtime; "working," "at work"
- Work at home; work activities for pay done in the home when home is the main workplace (include travel as above)

02 - Job search; looking for work, including visits to employment agencies, phone calls to prospective employers, answering want ads
- Unemployment benefits; applying for or collecting unemployment compensation
- Welfare, food stamps; applying for or collecting welfare, food stamps

05 - Second job; paid work activities that are not part of the main job (use this code only when \(\mathrm{R}^{*}\) clearly indicates a second job or "other" job); paid work for those not having main job; garage sales, rental property

06 - Lunch at the workplace; lunch eaten at work, cafeteria, lunchroom when "where" = work (lunch at a restaurant, code 44; lunch at home, code 43)
- Eating, smoking, drinking coffee as a secondary activity while working (at workplace)

07 - Before and/or after work at the workplace; activities at the workplace before starting or after stopping work; include "conversations," other work. Do not code secondary activities with this primary activity
- Other work-related

08 - Coffee breaks and other breaks at the workplace; unscheduled breaks and other nonwork during work hours at the workplace; "took a break"; "had coffee" (as a primary activity). Do not code secondary activities with this primary activity
- Travel; to and from the workplace when R's travel to and from work were both interrupted by stops; waiting for related travel
- Travel to and from the workplace, including time spent awaiting transportation

\section*{HOUSEHOLD ACTIVITIES}

\section*{Indoor}

10 - Meal preparation: cooking, fixiag lunches
- Serving food, setting table, putting groceries away. unloading car after grocery shopping

11 - Doing dishes, rinsing dishes, loading dishwasher
- Meal cleanup, clearing table, unloading dishwasher

Table 5A-1. Activity Codes and Descriptors Used For Adult Time Diaries (Órntininied)

\section*{HOUSBHOLD ACTIVITIES (continued)}

\section*{Indoor (continued)}

12 - Miscellancous, "worked around house." NA if indoor or outdoor - Routine indoor cleaning and chores, picking up, dusting, making beds, washing windows, vacuuming, "cleaning," "fall/spring cleaning," "housework"

14 - Laundry and clothes care - wash
- Laundry and clothes care - iron, fold, mending, putting away clothes ("Sewing" code 84)

16 - Repairs indoors; fixing, repairing appliances
- Repairs indoors; fixing, repairing furniture
- Repairs indoors; fixing, repairing furnace, plumbing, painting a room

17 - Care of houseplants
19 - Other indoor, NA whether cleaning or repair; "did things in house"
Outdoor
13 - Routine outdoor cleaning and chores; yard work, raking leaves, mowing grass, garbage removal, nnow shoveling, putting on storm windows, cleaning garage, cutting wood

16 - Repair, maintenance, exterior, fixing repairs outdoors, painting the house, fixing the roof, repairing the drivewry (patching)
- Home improvements: additions to and remodeling done to the house, garage; new roof
- Improvement to grounds around house; repaved driveway

17 - Gardening; flower or vegetable gardening; spading, weeding, composting, picking, worked in garden"
19 - Other outdoor, "worked outside," "puttering in garage

\section*{MISCELIANEOUS HOUSEHOLD CHORES}

16 - Car care; necessary repairs and routine care to cars; tune up
- Car maintenance; changed oil, changed tires, washed cars; "worked on car" except when clearly as a hobby - (code 83)
- Pet care; care of household pets including activities with pets; playing with the dog; walking the dog; (caring for pets of relatives, friends, code 42)

Table 5A-1. Activity Codes and Descriptors Used For Adult Time Diaries (continued)

\section*{MISCELLANEOUS HOUSEHOLD CHORES (continued)}

19 - Houschold paperwork; paying bills, balancing the checkbook, making lists, getting the mail, working on the budget
- Other houschold chores; (no travel), picking up things at home, e.g., "picked up deposit slips" (relate travel to purpose)

\section*{CHILD CARE}

\section*{Child Care for Children of Household}

20 - Baby care; care to children aged 4 and under
21 - Child care; care to children aged 5*-17
- Child care; mixed ages or NA ages of children

22 - Helping/teaching children learn, fix, make things; helping son bake cookies; helping daughter fix bike
- Help with homework or supervising homework
- Giving children orders or instructions; asking them to help; telling the*i*n to behave
- Disciplining child; yelling at kids, spanking children; correcting children's behavior
- Reading to child
- Conversations with household children only; listening to children
- Indoor playing; other indoor activities with children (including games ("playing") unless obviously outdoor games)
- Outdoor playing; outdoor activities with children including sports, walks, biking with, other outdoor games
- Coaching/leading outdoor, nonorganizational activities
- Medical care at home or outsido home; activities associated with children's health; "took son to doctor," "gave daughter medicine"

\section*{Other Child Care}

27 - Babysitting (unpaid) or child care outside R's home or for children not residing in HH
- Coordinating or facilitating child's social or instructional nonschool activities; (travel related, code 29)
- Other child care, including phone conversations relating to child care other than medical
- Traval related to child's social and instructional nonschool activities
- Other travel related to child care activities; waiting for related travel

Table 5A-1. Activity Codes and Descriptors Used For Adult Time Diaries (conininiued)

\section*{OBTAINING GOODS AND SERVICES}

Goods (include phone calls to obtain goods)
- Groceries; supermarket, shopping for food
- All other ahopping for goods; including for clothing, small appliances; at drugstores, handware atores, department stores, "downtown" or "uptown," "shopping," "shopping center," buying gas, "window shopping"
- Durable household goods; shopping for large appliances, cars, furniture
- House, apartment: activities connected to buying, selling, renting, looking for house, apartment, including phone calls; showing house, including traveling around looking at real estate property (for own use)

Services (include phone conversations to obtain services)
- Personal care; beauty, barber shop; hairdressers
- Medical caro for self; visits to doctor, dentist, optometrist, including making appointments
- Financial sarvices; activities related to taking care of financial business; going to the bank, paying utility bills (not by mail), going to accountant, tax office, loan agency, insurance office
- Other government services: post office, driver's license, sporting licenses, marriage licenses, police station
- Auto services; repair and other auto services including waiting for such services
- Clothes repair and cleaning; cleaners, laundromat, tailor
- Appliance repair: including furnace, water heater, electric or battery operated appliances; including watching repair person
- Household repair services: including furniture; other repair services NA type; including watching repair person
- Other professional services; lawyer, counseling (therapy)
- Picking up food at a takeout place - no travel
- Other services, "going to the dump"
- Errands; "running errands," NA whether for goods or services; borrowing goods
- Related travel; travel related to obtaining goods and services and/or household activities except 31; waiting for related travel

\section*{PERSONAL NEEDS AND CARE}

\section*{Carc to Self}
- Washing, ahowering, bathing
- Dressing; getting ready, packing and unpacking clothes, personal hygiene, going to the bathroom (continued on the following page)

Table 5A-1. Activity Codes and Descriptors Used For Adult Time Diaries (continued)

PERSONAL NEEDS AND CARE (continued)
Care to Self (continued)
41 - Medical care at home to self
- Meals at home; including coffee, drinking, smoking, food from a restaurant eaten at home, "breakfast," "lunch"
- Meals away from home; eaten at a friend's home (including coffee, drinking, smoking)
- Meals away from home, except at worlplace (06) or at friend's home (44); eating at restaurants, out for coffee
- Night sleep; longest sleep for day; (may occur during day for night shift workers) including "in bed," but not asleep
- Naps and resting; rest periods, "dozing," "laying down" (relaxing code 98)
- Sex, making out
- Personal, private; "none of your business"
- Affection between household members; giving and getting hugs, hisses, sitting on laps 1

\section*{Help and Care to Others}
- Medical care to adults in household (HH)
- Nonmedical care to adults in HH; routine nonmedical care to adults in household; "got my wife up," "ran a bath for my husband"
- Help and care to relatives not living in HH; helping care for, providing for needs of relatives; (except travel) helping move, bringing food, assisting in emergencies, doing housework for relatives; visiting when sick
- Help and care to neighbors, friends
- Help and care to others, NA relationship to respondent

\section*{Other Personal and Helping}
- Other personal; watching personal care activities
- Travel (helping); travel related to code 42, including travel that is the helping activity; waiting for related travel
- Other personal travel; travel related to other personal care activities; waiting for related travel; travel, NA purpose of trip - e.f., "went to Memphis" (no further explanation given)
(continued on the following page)

Table 5A-1. Activity Codes and Descriptors Used For Adult 'Time Diaries (continued)

\section*{EDUCATION AND PROFESSIONAL TRAINING}

50 - Student (full-time); attending classes, school if full-time student; includes daycare, nursery school for children not in achool
- Other classes, courses, lectures, academic or professional; R not a full-time student or NA whether a student; being tutored

54 - Homework, studying, research, reading, related to classes or profession, except for current job (code 07); "went to the library"

56 - Other aducation
59 - Other school-related travel; travel related to education coded above; waiting for related travel; travel to achool not originating from home

\section*{ORGANIZATIONAL ACIIVITIES}

Volunteer, Felping Organizations: hospital volunteer group, United Fund, Red Cross, Big Brother/Sister
63 - Attending meetings of volunteer, helping organizations
- Officer work; work as an officer of volunteer, helping organizations; \(\mathbf{R}\) must indicate he/she is an officer to be coded here
- Fund raising activities as a member of volunteer helping organization, collecting money, planning a collection drive
- Direct help to individuals or groups as a member of volunteer helping organizations; visiting, bringing food, driving
- Other activities as a member of volunteer helping organizations, including social events and meals

\section*{Religious Practice}

65 - Attending services of a church or synagogue, including participating in the service; ushering, singing in choir, leading youth group, going to church, funerals
- Individual practice; religious practice carried out as an individual or in a small group; praying, meditating, Bible study group (not a church), visiting graves

\section*{Religious Groups}

64 - Meetings: religious helping groups; attending meetings of helping - oriented church groups -ladies aid circle, missionary society, Knights of Columbus
- Other activities; religious helping groups; other activities as a member of groups listed above, including social activities and meals
- Meetings: other church groups; attending meetings of church group, not primarily helping-oriented, or NA if helping-oriented

Table 5A-1. Activity Codes and Descriptors Used For Adult Time Diaries (continued)

\section*{ORGANIZATIONAL ACTIVITIES (continued)}

\section*{Relipious Groupg (continued)}
- Other activities, other church groups; other activities as a member of church groups that are not helping-oriented or NA if helping, including social activities and meals; choir practice; Bible class

\section*{Professional/Union Organizations: State Education Association; AFL-CLO; Teamsters}

60 - Meetings; professional/union; attending meetings of professional or union groups
- Other activities, professional/union; other activities as a member of professional or union group including social activities and meals

Child/Youth/Family Organizations: PTA, PTO; Boy/Girl Scouts; Little Leagues; YMCA/YWCA; school volunteer

67 - Meetings, family organizations; attending meetings of child/youth/family*-oriented organizations
- Other activities, family organizations; other activities as a member of child/youth/family-oriented organizations including social activities and meals

Fraternal Organizations: Moose, VFW, Kiwanis, Lions, Civitan, Chamber of Commerce, Shriners, American Legion

66 - Meetings, fraternal organizations; attending meetings of fraternal organizations
- Other activities, fraternal organizations; other activities as a member of fraternal organizations including social activities and helping activities and meals

Political Party and Civic Participation: Citizens' groups, Young Democrats, Young Republicans, radical political groups, civic duties
- Meetings, political/citizen organizations; attending meetings of a political party or citizen group, including city council
- Other activities, political/citizen organizations; other participation in political party and citizens' groups, including social activities, voting, jury duty, helping with elections, and meals

Special Interest/Identity Organizations (including groups based on sex, race, national origin); NOW; NAACP; Polish-American Society; neighborhood, block organizations; CR groups; senior citizens; Weight Watchers
- Meetings: identify organizations; attending meetings of special interest, identity organizations
- Other activities, identity organizations; other activities as a member of a special interest, identity organization, including social activities and meals

\section*{Other Miscellaneous Organizations, do not fit above}
- Other organizations; any activities as a member of an organization not fitting into above categories; (meetings and other activities included here)

Table 5A-1. Activity Codes and Descriptors Used For Adult Time Diaries (Conitinued)

\section*{ORGANIZATIONAL ACTIVITIES (continued)}

\section*{Trevel Related to Orranizational Activities}

69 - Travel related to organizational activities as a member of a volunteer (helping) organization (code 63); including travel that is the helping activity, waiting for related travel
- Travel (other organization-related); travel related to all other organization activities; waiting for related travel

\section*{ENTERTAINMENT/SOCIAL ACTIVITIES}

\section*{Attending Spectacles, Events}

70 - Sports; attending sports events - football, basketball, hockey, etc.
71 - Miscellanoous spectacles, events: circus, fairs, rock concerts, accidents
72 - Movies; "weat to the show"
73 - Theater, opera, concert, ballet
74 - Museums, art galleries, exhibitions, zoos

\section*{Sociglizing}

75 - Visiting with others; socislizing with people other than R's own HH members either at R's home or another home (visiting on the phone, code 96); talking/chatting in the context of receiving a visit or paying a visit

76 - Party; reception, weddings
77 - At bar; cocktail lounge, nightclub; socializing or hoping to socialize at bar, lounge
- Dancing
- Other events; other events or socializing, do not fit above
- Related travel; waiting for related travel

\section*{SPORTS AND ACTIVE LEISURE}

\section*{Active Sponts}

80 - Football, basketball, baseball, volleyball, hockey. soccer, field hockey
- Tennis, squash, racquetball, paddleball
- Golf, ministure golf

Table 5A-1. Activity Codes and Descriptors Used For Adult Time Diaries (continued)

\section*{SPORTS AND ACTIVE LEISURE (continued)}

Active Sports (continued)

80
- Swimming, waterskiing
- Skiing, ice skating, sledding, roller skating
- Bowling; pool, ping-pong, pinball
- Frisbee, catch
- Exercises, yoga (gymmastics - code 86)
- Judo, boxing, wrestling

\section*{Out of Doors}

81 - Hunting
- Fishing
- Boating, sailing, canoeing
- Camping, at the beach
- Snowmobiling, dune-buggies
- Gliding, ballooning, flying
- Excursions, pleasure drives (no destination), rides with the family
- Picnicking

Walking, Biking
82 - Walking for pleasure
- Hiking
- Jogging, running
- Bicycling
- Motorcycling
- Horseback riding

\section*{Hobbies}

83 - Photography
- Working on cars - not necessarily related to their running; customizing, painting
- Working on or repairing leisure time equipment (repairing the boat, "sorting out fishing tackle")
- Collections, scrapbooks
- Carpentry and woodworking (ns a hobby)

\section*{Domestic Crafts}

84 - Preserving foodstuffs (canning, pickling)
- Knitting, needlework, weaving, crocheting (including classes), crewel, embroidery, quilting, quilling, macrame
- Sewing
- Care of animals/livestock when \(\mathbf{R}\) is not a farmer (pets, code 17; "farmer", code 01, work)
(continued on the following page)

Table 5A-1. Activity Codes and Descriptors Used For Adult Time Diaries (Conitinued)

SPORTS AND ACIIVE LEISURE (continued)

\section*{At and Literature}

85 - Sculpture, painting, potting, drawing
- Literature, poetry, writing (not letters), writing a diary

\section*{Music/Theater/Dance}

86 - Playing a musical instrument (include practicing), whistling
- Singing
- Acting (rehearsal for play)
- Nonsocial dancing (ballet, modern dance, body movement)
- Gymmastics (lessons - code 88)

\section*{Gams}

87 - Playing cand games (bridge, poker)
- Playing board games (Monopoly, Yahtzee, etc.), bingo, dominoes
- Playing social games (scavenger hunts), "played games" - NA kind
- Puzzles

\section*{Classes/Lessons for Active Leisure Activity}

88 - Lessons in sports activities: swimming, golf, tennis. skating, roller skating
- Lessons in gymnastics, dance, judo, body movement
- Leasons in music, singing, instruments
- Other lessons, not listed above

\section*{Travel}

89 - Related travel; travel related to sports and active leisure; waiting for related travel: vacation travel

\section*{PASSIVE LEISURE}
- Redio

91 - TV

92 - Records, tapes, "listening to music," listening to others playing a musical instrument
93 - Reading books (current job related, code 07; professionally or class related, code 54)
94 - Reading magazines, reviews, pamphlets
- Reading NA what; or other

Table 5A-1. Activity Codes and Descriptors Used For Adult Time Diaries-(eontinued)

\section*{PASSIVE LEISURE (continued)}

95 - Reading newspapers
96 - Phone conversations - not coded elsewhere, including all visiting by phone
- Other talking/conversations; fuce-to-face conversations, not coded elsewhere (if children in HH only, code 23); visiting other than 75
- Conversations with HH members only - adults only or children and adults
- Arguing or fighting with people other than HH members only, household and nonhousehold members, or NA
- Arguing or fighting with HH members only
- Letters (reading or writing); reading mail
- Relaxing
- Thinking, planning; reflecting
- "doing nothing," "sat"; just sat;
- Other passive leisure, smoking dope, pestering, teasing, joking around, messing around; laughing
- Related travel: waiting for related travel

\section*{MISSING DATA CODES}
- Activities of others reported . R's activity not specified
- NA activities; a time gap of greater than 10 minutes.

\section*{EXAMPLES OF ACTIVITIES IN "OTHER" CATEGORIES}

\section*{Qther Work Related}

07 - Foster parent activities

\section*{Other Household}
- Typing
- Wrapping presents
- Checked refrigerator for shopping list
- Unpacked gifts from shower
- Packing/unpacking car
- "Settled in" after trip
- Hooked up boat to car
- Showed wife car (R was fixing)
- Packing to move
- Moved boxes
- Looking/searching for things at home (inside or out)

Table 5A-1. Activity Codes and Descriptors Used For Adult Time Diañes (continued)

EXAMPLES OF ACTIVITIES IN "OTHER" CATEGORIES (continued)

\section*{Other Child Care}

27 - Waited for son to get hair cut
- Picked up nephew at sister's houso
- "Played with kids" ( \(R\) 's children from previous marriage not living with \(R\) )
- Called babysitter

\section*{Other Services}

37 - Left clothing at Goodwill
- Unloaded furniture (just purchased)
- Returnod books (at library)
- Brought clothes in from car (after laundromat)
- Deliverod some stuff to a friend
- Waited for father to pick up meat
- Waited for stores to open
- Put awray things from swap meet
- Sat in car waiting for rain to stop before shopping
- Waiting for others while they are shopping
- Showing mom what I bought

\section*{Other Persopal}

48 - Waiting to hear from daughter
- Stopped at homo, NA what for
- Getting hysterical
- Breaking up a fight (not child care related)
- Waited for wifo to get up
- Waiting for dinner at brother's house
- Waiting for plane (meeting someone at airport)
- Laughing
- Crying
- Moaning - head hurt
- Watching personal care activities ("watched dad shave")

Other Education
56 - Watched a film
- In discussion group

Table 5A-1. Activity Codea and Descriptors Used For Adult Time Diaries (Cointiniued)

\section*{EXAMPLES OF ACTIVITIES IN "OTHER" CATEGORIES (continued)}

\section*{Other Orxanization}

68 - Attending "Club House coffee klatch"
- Waited for church activities to begin
- "Meeting" NA kind
- Cleanup after benquet
- Checked into swap meet - selling and looking

\section*{Other Social, Entertainment}

78 - Waiting for movies, other events
- Opening presents (at a party)
- Looking at gifts
- Decorating for party
- Tour of a home (friends or otherwise)
- Waiting for date
- Preparing for a shower (baby shower)
- Unloaded uniforms (for parade)

\section*{Other Active Leisure}

88 - Fed birds, bird watching
- Astrology
- Swinging
- At park
- Showing slides
- Showing sketches

\section*{Other Active Leisure (continued)}
- Recording music
- Hung around airport (NA reason)
- Picked up fishing gear
- Inspecting motorcycle
- Arranging flowers
- Work on model airplane
- Picked asparagus
- Picked up softball equipment
- Registered to play golf
- Toured a village or lodge (coded 81)

Table 5A-1. Activity Codes and Descriptors Used For Adult Time Diaries (continued)
EXAMPLES OF ACTIVITIES IN "OTHER" CATEGORIES (continued)
Other Passive Leigure
98 - Lying in sun- Listening to birds- Looking at alides- Stopped at excavating place- Looking at pictures
- Walked around outsido
- Waiting for a call
- Watched plane leave
- Giri watching/boy watching
- Watching boats
- Wasted time
- In and out of house
- Home movies
* R = RespondentHH = Household.
Source: Juster et al., 1983.

Table 5A-2. Major Time Use Activity Categories
\begin{tabular}{ll}
\hline Activity code & Activity \\
\hline \(01-09\) & Market work \\
\(10-19\) & House/yard work \\
\(20-29\) & Child care \\
\(30-39\) & Services/shopping \\
\(40-49\) & Personal care \\
\(50-59\) & Education \\
\(60-69\) & Organizations \\
\(70-79\) & Social entertainment \\
\(80-89\) & Active leisure \\
\(90-99\) & Passive leisure \\
\hline
\end{tabular}
: Appendix Table 5A-1 presents a detailed explanation of the coding and activities.
Source: Hill, 1985.

Table 5A-3. Mean Time Spent (mina/day) for 87 Activities Grouped by Day of thè wredr
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Activity} & \multicolumn{2}{|r|}{Weckday
\[
N=831
\]} & \multicolumn{2}{|l|}{Saturday
\[
N=831
\]} & \multicolumn{2}{|l|}{Sunday
\[
\mathrm{N}=831
\]} \\
\hline & Mean & Std. Dev. & Mean & Std. Dev. & Mean & Std. Dev. \\
\hline 01-Normal Work & 240.54 & 219.10 & 82.43 & 184.41 & 46.74 & 139.71 \\
\hline 02-Unemployment Acts & 0.98 & 9.43 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 05-Socond Job & 3.76 & 25.04 & 2.84 & 32.64 & 2.65 & 27.30 \\
\hline 06-Lunch At Work & 10.00 & 15.81 & 1.82 & 7.88 & 1.43 & 8.29 \\
\hline 07-Before/Atter Work & 3.51 & 10.05 & 1.45 & 9.79 & 1.66 & 13.76 \\
\hline O8-Coffee Breala & 5.05 & 11.53 & 1.59 & 7.32 & 0.93 & 8.52 \\
\hline 09-Travel: To/From Work & 24.03 & 30.37 & 7.74 & 22.00 & 4.60 & 17.55 \\
\hline 10-Mcal Preparation & 42.18 & 46.59 & 40.37 & 59.82 & 42.38 & 57.42 \\
\hline 11-Mcal Cleanup & 12.48 & 19.25 & 12.07 & 22.96 & 13.97 & 25.85 \\
\hline 12-Indoor Cleaning & 26.37 & 43.84 & 38.88 & 80.39 & 21.73 & 48.70 \\
\hline 13-Outdoor Cleaning & 7.48 & 25.45 & 15.71 & 58.00 & 9.01 & 39.39 \\
\hline 14-Laundry & 13.35 & 30.39 & 11.48 & 31.04 & 7.79 & 25.43 \\
\hline 16-Repairs/Maintenunce & 9.61 & 35.43 & 17.36 & 72.50 & 13.56 & 62.12 \\
\hline 17-Garden/Pet Care & 8.52 & 25.15 & 14.75 & 49.17 & 8.47 & 37.54 \\
\hline 19-Other Household & 6.26 & 20.62 & 9.82 & 37.58 & 7.60 & 32.17 \\
\hline 20-Baby Care & 6.29 & 22.91 & 5.89 & 30.72 & 6.26 & 33.78 \\
\hline 21-Child Care & 6.26 & 16.34 & 5.38 & 21.58 & 7.09 & 23.15 \\
\hline 22-Helping/Teaching & 1.36 & 8.28 & 0.23 & 3.64 & 0.76 & 6.52 \\
\hline 23-Reading/Talking & 2.47 & 8.65 & 1.71 & 10.84 & 1.53 & 9.97 \\
\hline 24-Indoor Playing & 1.75 & 8.72 & 0.90 & 7.82 & 2.45 & 15.11 \\
\hline 25-Outdoor Maying & 0.73 & 6.33 & 1.23 & 13.03 & 0.91 & 10.30 \\
\hline 26-Modical Caro-Child & 0.64 & 7.42 & 0.16 & 2.79 & 0.44 & 7.20 \\
\hline 27-Babysitting/Other & 2.93 & 14.56 & 2.16 & 19.11 & 3.28 & 24.89 \\
\hline 29-Travel: Child Care & 4.18 & 10.97 & 1.71 & 8.72 & 2.08 & 10.56 \\
\hline 30-Everyday Shopping & 19.73 & 30.28 & 33.52 & 61.38 & 10.13 & 30.18 \\
\hline 31-Durable/Houre Shop & 0.58 & 4.83 & 1.46 & 14.04 & 1.65 & 17.92 \\
\hline 32-Pernonal Care Servicea & 1.93 & 10.04 & 3.42 & 18.94 & 0.02 & 0.69 \\
\hline 33-Medionl Appointments & 3.43 & 14.49 & 0.60 & 6.63 & 0.00 & 0.00 \\
\hline 34-Gov'UFinancial Services & 1.90 & 6.07 & 0.66 & 4.34 & 0.03 & 0.43 \\
\hline 35-Repair Servicen & 1.33 & 7.14 & 1.25 & 10.24 & 0.52 & 5.61 \\
\hline 37-Other Servicer & 1.13 & 7.17 & 1.55 & 9.57 & 0.72 & 4.34 \\
\hline 38-Errands & 0.74 & 8.03 & 0.35 & 5.27 & 0.04 & 1.04 \\
\hline 39-Travel: Gooda/Servicen & 17.93 & 23.58 & 21.61 & 36.35 & 8.45 & 21.64 \\
\hline 40-Washing/Dressing & 44.03 & 29.82 & 44.25 & 41.20 & 47.54 & 40.15 \\
\hline 41-Medical Care R/HH Adult & 0.77 & 6.19 & 1.29 & 15.90 & 1.45 & 29.18 \\
\hline 42-Help \& Care & 8.43 & 28.17 & 12.19 & 52.58 & 14.32 & 55.13 \\
\hline 43-Mcal: At Home & 53.45 & 35.57 & 57.86 & 49.25 & 61.84 & 49.27 \\
\hline 44-Mcalr Out & 19.55 & 31.20 & 31.13 & 56.03 & 25.95 & 47.60 \\
\hline 45-Night Sleep & 468.49 & 79.42 & . 498.40 & 115.55 & 528.86 & 115.84 \\
\hline 46-Napa/Reating & 22.07 & 43.92 & 30.67 & 74.98 & 27.56 & 66.01 \\
\hline 48-N.A. Activities & 7.52 & 22.32 & 11.72 & 41.61 & 8.18 & 35.79 \\
\hline
\end{tabular}

Table 5A-3. Mean Time Spent (mins/day) for 87 Activities Grouped by Day of the Week (Continced)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Activity} & \multicolumn{2}{|r|}{Weekday
\[
\mathrm{N}=831
\]} & \multicolumn{2}{|l|}{Saturday
\[
\mathbf{N}=831
\]} & \multicolumn{2}{|l|}{Sunday
\[
\mathbf{N}=831
\]} \\
\hline & Mean & Std. Dev. & Mean & Std. Dev. & Mean & Std. Dev. \\
\hline 49-Travel: Personal & 14.87 & 27.76 & 19.33 & 50.42 & 18.58 & 46.36 \\
\hline 50-Students' Classes & 6.33 & 33.79 & 0.96 & 18.17 & 0.96 & 20.07 \\
\hline 51-Other Classes & 2.65 & 17.92 & 0.40 & 11.52 & 0.27 & 5.63 \\
\hline 54-Homework & 4.56 & 24.35 & 3.48 & 27.98 & 5.40 & 38.68 \\
\hline 56-Other Education & 0.53 & 5.91 & 0.15 & 2.75 & 0.45 & 9.85 \\
\hline 59-Travel: Education & 2.29 & 10.36 & 0.35 & 4.26 & 0.21 & 3.14 \\
\hline 60-Professional/Union Orge. & 0.51 & 7.27 & 0.13 & 3.64 & 0.44 & 8.34 \\
\hline 61-Identity Organizations & 1.53 & 11.19 & 1.24 & 35.63 & 0.48 & 7.58 \\
\hline 62-Political/Citizen Orgs & 0.14 & 1.25 & 0.07 & 1.91 & 0.19 & 5.55 \\
\hline 63-Volunteer/Helping Orgs & 1.08 & 10.08 & 0.02 & 0.45 & 0.41 & 7.09 \\
\hline 64-Religious Groups & 2.96 & 17.33 & 3.05 & 27.73 & 8.59 & 33.31 \\
\hline 65-Religious Practice & 4.98 & 19.92 & 7.13 & 30.12 & 34.05 & 62.06 \\
\hline 66-Fraternal Organizations & 0.85 & 9.28 & 1.73 & 27.71 & 0.31 & 6.67 \\
\hline 67-Child/Pamily Organizations & 1.70 & 11.69 & 1.04 & 17.83 & 0.26 & 7.63 \\
\hline 68-Other Organizations & 3.91 & 22.85 & 1.31 & 20.28 & 1.71 & 17.52 \\
\hline 69-Traves: Organizations & 3.41 & 9.83 & 2.66 & 12.22 & 12.07 & 37.64 \\
\hline 70-Sport Events & 2.22 & 13.45 & 6.29 & 42.05 & 3.44 & 27.78 \\
\hline 71-Miscellancous Events & 0.32 & 4.89 & 1.94 & 19.90 & 1.96 & 19.75 \\
\hline 72-Movies & 1.65 & 11.03 & 4.74 & 27.04 & 3.35 & 22.65 \\
\hline 73-Theater & 0.69 & 7.13 & 2.66 & 27.79 & 0.77 & 10.37 \\
\hline 74-Museums & 0.19 & 3.32 & 0.90 & 13.62 & 0.72 & 11.17 \\
\hline 75-Visiting w/Others & 33.14 & 51.69 & 56.78 & 95.61 & 69.65 & 114.58 \\
\hline 76-Partie: & 2.81 & 16.49 & 12.63 & 56.11 & 7.16 & 39.02 \\
\hline 77-Bars/Lounges & 3.62 & 18.07 & 7.23 & 35.09 & 3.91 & 26.95 \\
\hline 78-Other Events & 1.39 & 11.55 & 1.33 . & 15.52 & 1.00 & 10.80 \\
\hline 79-Travel: Events/Social & 8.90 & 16.19 & 19.55 & 43.38 & 18.02 & 34.45 \\
\hline 80-Active Sports & 5.30 & 19.60 & 9.23 & 43.69 & 11.39 & 48.66 \\
\hline 81-Outdoors & 5.11 & 33.00 & 11.58 & 55.07 & 15.52 & 62.68 \\
\hline 82-Walking/Biking & 2.08 & 9.70 & 5.87 & 36.38 & 5.92 & 32.28 \\
\hline 83-Hobbies & 1.78 & 11.73 & 3.20 & 32.43 & 4.10 & 31.55 \\
\hline 84-Domestic Crafts & 11.18 & 37.03 & 8.67 & 40.49 & 6.41 & 34.82 \\
\hline 85-Art/Literature & 0.99 & 10.84 & 0.86 & 13.59 & 1.13 & 15.07 \\
\hline 86-Musid/Drama/Dance & 0.45 & 4.91 & 0.83 & 8.83 & 0.63 & 8.32 \\
\hline 87-Games & 5.06 & 22.91 & 10.14 & 45.11 & 7.89 & 40.45 \\
\hline 88-Clasues/Other & 2.65 & 15.83 & 2.56 & 29.92 & 3.37 & 23.60 \\
\hline 89-Travel: Active Leisure & 3.31 & 14.77 & 8.50 & 48.72 & 8.19 & 38.11 \\
\hline 90-Radio & 2.89 & 12.19 & 3.53 & 23.42 & 2.88 & 18.50 \\
\hline 91-TV & 113.01 & 103.89 & 118.99 & 131.24 & 149.67 & 141.43 \\
\hline 92-Records/Tapes & 2.58 & 20.26 & - 2.40 & 16.09 & 2.03 & 16.08 \\
\hline 93-Reading Books & 4.41 & 18.09 & 2.76 & 17.85 & 5.23 & 30.13 \\
\hline 94-Reading Magarinca/N.A. & 13.72 & 31.73 & 16.33 & 46.24 & 17.18 & 51.01 \\
\hline
\end{tabular}

Table 5A-3. Mean Time Spent (minu/day) for 87 Activities Grouped by Day of the Woek (Condirued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Activity} & \multicolumn{2}{|r|}{Weckday
\[
\mathrm{N}=831
\]} & \multicolumn{2}{|l|}{Saturday
\[
\mathrm{N}=831
\]} & \multicolumn{2}{|l|}{Sunday
\[
\mathrm{N}=831
\]} \\
\hline & Mean & Std. Dev. & Mean & Std. Dev. & Mean & Std. Dev. \\
\hline 95-Reading Newnpapers & 12.03 & 22.65 & 12.19 & 34.96 & 26.01 & 44.47 \\
\hline 96-Converations & 18.68 & 28.59 & 15.45 & 35.27 & 14.57 & 34.60 \\
\hline 97-Letters & 2.83 & 12.23 & 1.61 & 10.80 & 1.96 & 12.59 \\
\hline 98-Other Pasaive Leisure & 9.72 & 25.02 & 17.24 & 57.21 & 15.28 & 47.86 \\
\hline 99-Travel: Pasive Leinure & 1.26 & 5.44 & 1.32 & 6.80 & 1.72 & 9.87 \\
\hline
\end{tabular}

Sourco: Hill, 1985.

Table 5A-4. Weighted Mean Hours Per Week by Gender: 87 Activities and 10 Sübitotals
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Activity} & \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { Men } \\
\mathrm{N}=410
\end{gathered}
\]} & \multicolumn{2}{|c|}{Women
\[
N=561
\]} & \multicolumn{2}{|l|}{Men and women
\[
\mathrm{N}=971
\]} \\
\hline & Mean & Std. dev. & Mean & Std. dev. & Mean & Std. dev. \\
\hline & & & & & & \\
\hline 01 - Normal work & 29.78 & 20.41 & 14.99 & 17.62 & 21.82 & 20.33 \\
\hline 02 - Unemployment actu & 0.14 & 1.06 & 0.08 & 0.75 & 0.11 & 0.90 \\
\hline 05 - Second job & 0.73 & 3.20 & 0.17 & 1.62 & 0.43 & 2.49 \\
\hline 06 - Lunch at woris & 1.08 & 1.43 & 0.65 & 1.21 & 0.85 & 1.33 \\
\hline 07 - Before/after work & 0.51 & 1.27 & 0.23 & 0.69 & 0.36 & 1.01 \\
\hline 08 - Coffee breala & 0.57 & 1.05 & 0.36 & 1.03 & 0.46 & 1.04 \\
\hline 09 - Travel: to/from work & 2.98 & 2.87 & 1.45 & 2.17 & 2.16 & 2.63 \\
\hline 10 - Meal preparation & 1.57 & 2.61 & 7.25 & 5.04 & 4.63 & 4.98 \\
\hline 11 - Meal cleanup & 0.33 & 0.83 & 2.30 & 2.19 & 1.39 & 1.97 \\
\hline 12 - Indoor cleaning & 0.85 & 2.01 & 5.03 & 5.05 & 3.10 & 4.46 \\
\hline 13 - Outdoor cleaning & 1.59 & 3.59 & 0.56 & 1.59 & 1.03 & 2.75 \\
\hline 14 - Laundry & 0.13 & 0.72 & 2.44 & 3.34 & 1.38 & 2.75 \\
\hline 16 - Repairs/maintenance & 2.14 & 4.29 & 0.68 & 3.43 & 1.35 & 3.92 \\
\hline 17 - Gardening/pet care & 0.94 & 2.78 & 1.00 & 2.19 & 0.97 & 2.48 \\
\hline 19 - Other household & 0.92 & 2.42 & 0.72 & 1.84 & 0.81 & 2.13 \\
\hline 20 - Baby care & 0.24 & 1.20 & 0.90 & 3.04 & 0.60 & 2.40 \\
\hline 21 - Child care & 0.24 & 0.78 & 0.99 & 2.11 & 0.64 & 1.68 \\
\hline 22-Helping/teaching & 0.07 & 0.61 & 0.15 & 0.76 & 0.11 & 0.70 \\
\hline 23 - Reading/talking & 0.07 & 0.35 & 0.30 & 0.86 & 0.19 & 0.68 \\
\hline 24 - Indoor playing & 0.13 & 0.69 & 0.18 & 0.82 & 0.16 & 0.76 \\
\hline 25 - Outdoor playing & 0.06 & 0.37 & 0.12 & 0.72 & 0.09 & 0.58 \\
\hline 26 - Medical care - child & 0.01 & 0.09 & 0.09 & 0.67 & 0.05 & 0.50 \\
\hline 27 - Babysitting/other & 0.14 & 0.78 & 0.64 & 2.58 & 0.41 & 1.98 \\
\hline 29 - Travel: child care & 0.23 & 0.67 & 0.50 & 1.21 & 0.38 & 1.00 \\
\hline 30 - Everyday shopping & 1.45 & 2.18 & 2.78 & 3.25 & 2.17 & 2.89 \\
\hline 31 - Durables/house shopping & 0.19 & 1.39 & 0.08 & 0.51 & 0.13 & 1.01 \\
\hline 32 - Personal care services & 0.06 & 0.42 & 0.35 & 1.14 & 0.22 & 0.90 \\
\hline 33 - Medical appointments & 0.15 & 0.75 & 0.37 & 1.63 & 0.27 & 1.31 \\
\hline 34-Govt/financial services & 0.15 & 0.44 & 0.19 & 0.61 & 0.17 & 0.54 \\
\hline 35 - Repair services & 0.11 & 0.45 & 0.17 & 0.78 & 0.14 & 0.65 \\
\hline 37-Other services & 0.11 & 0.61 & 0.13 & 0.61 & 0.12 & 0.61 \\
\hline 38 - Errands & 0.04 & 0.41 & 0.06 & 0.68 & 0.05 & 0.57 \\
\hline 39 - Travel: goods/zervicer & 1.60 & 2.02 & 2.14 & 2.17 & 1.89 & 2.12 \\
\hline
\end{tabular}
(Continued on the following page)

Table 5A-4. (continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Activity} & \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { Men } \\
\mathrm{N}=410 \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|c|}{Women
\[
N=561
\]} & \multicolumn{2}{|l|}{Men and women
\[
\mathrm{N}=971
\]} \\
\hline & Mean & Std. dev. & Mean & Std. dev. & Mean & Std. dev. \\
\hline 40-Washing/dressing & 4.33 & 2.39 & 5.43 & 3.24 & 4.92 & 2.93 \\
\hline 41 - Medical care - adults & 0.09 & 0.67 & 0.18 & 1.00 & 0.14 & 0.86 \\
\hline 42 - Help and care & 1.02 & 2.84 & 1.30 & 3.04 & 1.17 & 2.95 \\
\hline 43 - Meals at home & 6.59 & 3.87 & 6.32 & 3.53 & 6.44 & 3.69 \\
\hline 44 - Meals out & 2.72 & 3.48 & 2.24 & 2.73 & 2.46 & 3.10 \\
\hline 45 - Night sleep & 55.76 & 8.43 & 56.74 & 8.49 & 56.29 & 8.47 \\
\hline 46 - Naps/resting & 2.94 & 5.18 & 3.19 & 4.70 & 3.08 & 4.93 \\
\hline 48 - N.A. activities & 1.77 & 6.12 & 1.99 & 5.70 & 1.89 & 5.89 \\
\hline 49 - Travel: personal & 2.06 & 2.59 & 1.61 & 2.51 & 1.82 & 2.56 \\
\hline \(50-\) Students' classes & 0.92 & 4.00 & 0.38 & 2.51 & 0.63 & 3.29 \\
\hline 51-Other classes & 0.23 & 1.68 & 0.15 & 1.05 & 0.18 & 1.38 \\
\hline 54 - Homework & 0.76 & 3.48 & 0.38 & 1.87 & 0.56 & 2.74 \\
\hline 56-Other education & 0.11 & 0.86 & 0.02 & 0.22 & 0.06 & 0.61 \\
\hline 59 - Travel: education & 0.29 & 1.07 & 0.16 & 1.06 & 0.22 & 1.07 \\
\hline 60 - Professiona/union organizations & 0.04 & 0.46 & 0.04 & 0.62 & 0.04 & 0.55 \\
\hline 61 - Identity organizations & 0.14 & 0.97 & 0.18 & 1.55 & 0.16 & 1.31 \\
\hline 62 - Political/citizen organizations & 0.01 & 0.08 & 0.02 & 0.15 & 0.01 & 0.12 \\
\hline 63 - Volunteer/helping organizations & 0.02 & 0.32 & 0.14 & 1.05 & 0.09 & 0.80 \\
\hline 64 - Religious groups & 0.38 & 1.82 & 0.41 & 1.61 & 0.40 & 1.71 \\
\hline 65 - Religious practice & 0.89 & 2.05 & 1.31 & 2.97 & 1.12 & 1.60 \\
\hline 66 - Fraternal organizations & 0.16 & 1.17 & 0.05 & 0.66 & 0.10 & 0.93 \\
\hline 67 - Child/family organizations & 0.10 & 0.88 & 0.21 & 1.33 & 0.16 & 1.15 \\
\hline 68 - Other organizations & 0.34 & 2.40 & 0.32 & 1.53 & 0.32 & 1.98 \\
\hline 69 - Travel: organizations & 0.43 & 1.04 & 0.52 & 1.02 & 0.48 & 1.03 \\
\hline 70 - Sports events & 0.30 & 1.31 & 0.26 & 1.28 & 0.28 & 1.29 \\
\hline 71 - Miscellaneous events & 0.07 & 0.52 & 0.08 & 0.59 & 0.07 & 0.56 \\
\hline 72 - Movies & 0.31 & 1.25 & 0.26 & 1.13 & 0.28 & 1.19 \\
\hline 73 - Theatre & 0.13 & 0.93 & 0.06 & 0.48 & 0.09 & 0.72 \\
\hline 74 - Museums & 0.04 & 0.37 & 0.03 & 0.35 & 0.03 & 0.36 \\
\hline 75 - Visiting with others & 4.24 & 5.72 & 5.84 & 6.42 & 5.10 & 6.16 \\
\hline 76 - Parties & 0.64 & 2.05 & 0.44 & 1.65 & 0.53 & 1.84 \\
\hline 77 - Bars/lownges & 0.71 & 2.21 & 0.46 & 2.09 & 0.57 & 2.15 \\
\hline 78 - Other events & 0.12 & 0.72 & 0.18 & 1.18 & 0.15 & 0.99 \\
\hline 79 - Travel: events/social & 1.40 & 1.82 & 1.26 & 1.67 & 1.32 & 1.74 \\
\hline
\end{tabular}

Table 5A-4. (continued)
DRAFT

\section*{DO NOT CUOTE OR CITE}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Activity} & \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { Men } \\
\mathrm{N}=410 \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|c|}{Women
\[
\mathrm{N}=561
\]} & \multicolumn{2}{|l|}{Men and women
\[
\mathrm{N}=971
\]} \\
\hline & Mean & Std. dev. & Mean & Std. dev. & Mean & Std. dev. \\
\hline 80 - Active sports & 1.05 & 2.62 & 0.50 & 1.68 & 0.76 & 2.18 \\
\hline 81 - Outdoors & 1.49 & 4.59 & 0.48 & 1.67 & 0.94 & 3.39 \\
\hline 82-Walking/biking & 0.52 & 1.31 & 0.23 & 0.98 & 0.36 & 1.16 \\
\hline 83 - Hobbies & 0.69 & 3.88 & 0.06 & 0.43 & 0.35 & 2.67 \\
\hline 84 - Domestic crafts & 0.30 & 1.59 & 2.00 & 4.72 & 1.21 & 3.93 \\
\hline 85 - Art/literature & 0.05 & 0.45 & 0.13 & 1.03 & 0.09 & 0.81 \\
\hline 86 - Music/drama/dance & 0.06 & 0.49 & 0.07 & 0.47 & 0.07 & 0.48 \\
\hline 87 - Games & 0.60 & 2.00 & 0.99 & 3.16 & 0.81 & 2.69 \\
\hline 88 - Classes/other & 0.41 & 1.75 & 0.28 & 1.50 & 0.34 & 1.62 \\
\hline 89 - Travel: active leisure & 0.76 & 1.91 & 0.43 & 1.43 & 0.58 & 1.68 \\
\hline 90 - Radio & 0.39 & 1.40 & 0.39 & 1.55 & 0.39 & 1.49 \\
\hline 91-TV & 14.75 & 12.14 & 13.95 & 10.67 & 14.32 & 11.38 \\
\hline 92 - Records/tapes & 0.46 & 2.35 & 0.33 & 2.13 & 0.39 & 2.23 \\
\hline 93 - Reading books & 0.37 & 1.52 & 0.56 & 1.83 & 0.47 & 1.70 \\
\hline 94 - Reading magazines/N.A. & 1.32 & 2.81 & 1.97 & 3.67 & 1.67 & 3.32 \\
\hline 95 - Reading newspapers & 1.86 & 2.72 & 1.47 & 2.27 & 1.65 & 2.49 \\
\hline 96 - Conversations & 1.61 & 2.19 & 2.18 & 2.74 & 1.91 & 2.52 \\
\hline 97 - Letters & 0.20 & 1.06 & 0.31 & 1.12 & 0.26 & 1.10 \\
\hline 98 - Other passive leisure & 1.68 & 3.53 & 1.41 & 3.32 & 1.53 & 3.42 \\
\hline 99 - Travel: passive leisure & 0.18 & 0.49 & 0.13 & 0.49 & 0.15 & 0.49 \\
\hline
\end{tabular}

Source: Hill, 1985.

Table 5A-5. Ranking of Occupations by Median Years of Occupational Tenure
Median years ofOccupation
occupational tenure
Barbers ..... 24.8
Farmera, except horticultural ..... 21.1
Railroed conductors and yardmasters ..... 18.4
Clergy ..... 15.8
Dentists ..... 15.7
Telephone line installers and repairers ..... 15.0
Millwrights ..... 14.8
Locomotive operating occupations ..... 14.8
Managera; firmers, except horticultural ..... 14.4
Tolephone installers and repairers ..... 14.3
Airplane pilots and navigators ..... 14.0
Supervisors: police and detectives ..... 13.8
Grader, dozer, and scraper operators ..... 13.3
Tailors ..... 13.3
Civil engineers ..... 13.0
Crane and tower operators ..... 12.9
Supervisors, n.e.c. ..... 12.9
Teschers, secondary school ..... 12.5
Teachers, elementary school ..... 12.4
Dental laboratory and medical applicance technicians ..... 12.3
Separating, filtering, and clarifying machine oeprators ..... 12.1
Tool and die makers ..... 12.0
Lathe and turning machine operators ..... 11.9
Machinists ..... 11.9
Phermecists ..... 11.8
Stationary engineers ..... 11.7
Mechanical engineers ..... 11.4
Chemists, except biochemists ..... 11.1
Inspectors, testers, and graders ..... 11.0
Electricisns ..... 11.0
Operating engincers ..... 11.0
Radiologic technicians ..... 10.9
Electrical power installers and repairers ..... 10.8
Supervisors; mechanics and repairers ..... 10.7
Heavy equipment mechanics ..... 10.7
Bus, truck, and atationary engine mechanics ..... 10.7
Physiciens ..... 10.7
Construction inspectors ..... 10.7
Cabinet makera and bench carpenters ..... 10.6
Industrial muchinery repairers ..... 10.6
Automobile body and related repairers ..... 10.4

Table 5A-5. Ranking of Occupations by Median Years of Occupational Tenure (continued).

Median years of occupational tenure
Electrical and electronic engineers ..... 10.4
Plumbers, pipefitters, and steamfitters ..... 10.4
Licensed practical nurses ..... 10.3
Brickmasons and stonemasons ..... 10.2
Truck drivers, heavy ..... 10.1
Tile setters, hard and soft ..... 10.1
Lawyers ..... 10.1
Supervisors: production occupations ..... 10.1
Administrators, education and related fields ..... 10.1
Engineers, n.e.c. ..... 10.0
Excavating and loading machine operators ..... 10.0
Firefighting occupations ..... 10.0
Aircraft engine mechanics ..... 10.0
Police and detectives, public service ..... 9.7
Counselors, educational and vocational ..... 9.7
Architects ..... 9.6
Stuctural metal workers ..... 9.6
Aerospace engineers ..... 9.6
Miscellaneous aterial moving equipment operators ..... 9.4
Dental hygienists ..... 9.4
Automobile mechanics ..... 9.3
Registered nurses ..... 9.3
Speech therapists ..... 9.3
Binding and twisting machine operators ..... 9.3
Managers and administrators, n.e.c. ..... 9.1
Personnel and labor relations managers ..... 9.0
Office machine repairer ..... 9.0
Electronic repairers, commercial and industrial equipment ..... 9.0
Welders and cutters ..... 9.0
Punching and stamping press machine operators ..... 9.0
Sheet metal workers ..... 8.9
Administrators and officials, public admiaistraion ..... 8.9
Hairdressers and cosmetologists ..... 8.9
Industrial engineers ..... 8.9
Librarians ..... 8.8
Inspectors and compliance officers, except construction ..... 8.8
Upholisterers ..... 8.6
Payroll and timekeeping clerks ..... 8.6
Furnace, kiln, and oven operators, except food ..... 8.6
Surveying and mapping technicians ..... 8.6
Chemical engineers8.6
Median years of Occupation occupational tenure
Sheriffi, bailiffs, and other law enforcement officers ..... 8.6
Concrote and terrazzo finishers ..... 8.6
Sales representatives, mining, manufacturing, and wholesale ..... 8.6
Supervisors: general offico ..... 8.6
Specified mechanics and repairers, n.e.c. ..... 8.5
Stenographers ..... 8.5
Typecetters and compositors ..... 8.5
Financial managers ..... 8.4
Psychologists ..... 8.4
Teachers: specinal education ..... 8.4
Statistical clerks ..... 8.3
Designers ..... 8.3
Water and Sewage Treatment plant operators ..... 8.3
Printing mechine operators ..... 8.2
Heating, air conditioning, and refrigeration mechanics ..... 8.1
Supervisors; distribution, scheduling, and adjusting clerks ..... 8.1
Insurnace sales occupations ..... 8.1
Carpenters ..... 8.0
Public transportation attendants ..... 8.0
Drafing occupations ..... 8.0
Butchers and meatcutters ..... 8.0
Miscellanoous electrical and electronic equipment repairers ..... 7.9
Dressmikers ..... 7.9
Musiciane and composers ..... 7.9
Supervisore and proprietora; sales occupations ..... 7.9
Paintera, Sculptors, craft-artista, and artist printmakers ..... 7.9
Mechnnics and ropairers, not epecified ..... 7.7
Enginoering technicians, n.e.c. ..... 7.7
Clinical laboratory technologists and technicians ..... 7.7
Purchasing managers ..... 7.7
Purchasing agents and buyers, n.e.c. ..... 7.7
Photographers ..... 7.6
Chemical tochnicians ..... 7.6
Managera; propertien and real estate ..... 7.6
Accountants and auditors ..... 7.6
Religious workers, n.e.c. ..... 7.6
Socretarion ..... 7.5
Socinl workera ..... 7.5
Operations and systems researchers and analysts ..... 7.4
Postal clerks, oxcept mail carriers ..... 7.4
Managers; marketing, advertising, and public relations ..... 7.3

Table 5A-5. Ranking of Occupations by Median Years of Occupational Teñüre (coñiniūed)

Median years of
 occupational tenure
Farm workers ..... 7.3
Managers; medicine and health ..... 7.2
Data processing equipment repairers ..... 7.2
Bookkeepers, accounting and auditing cleriss ..... 7.1
Grinding, abrading, buffing, and polishing machine operators ..... 7.0
Management related occupations, n.e.c. ..... 7.0
Supervisiors; cleaning and building service workers ..... 7.0
Management analysts ..... 7.0
Science technicians, n.e.c. ..... 7.0
Mail carriers, postal service ..... 7.0
Knitting, looping, taping, and weaving machine operators ..... 6.9
Electrical and electronic technicians ..... 6.9
Painting and paint spraying machine operafors ..... 6.9
Postsecondary teachers, subject not specified ..... 6.8
Crossing guards ..... 6.8
Inhalation therapists ..... 6.7
Carpet installers ..... 6.7
Computer systems analysts and scientists ..... 6.6
Other financial officers ..... 6.6
Industrial truck and tractor equipment operators ..... 6.6
Textile sewing machine operators ..... 6.6
Correctional institution officers ..... 6.5
Teachers, prekindergarten and kindergarten ..... 6.4
Supervisors; financial records processing ..... 6.4
Miscellaneous Textile machine operators ..... 6.4
Production inspectors, checkers, and examiners ..... 6.3
Actors and directors ..... 6.3
Health technologists and technicians, n.e.c. ..... 6.3
Miscellaneous machine operators, n.e.c. ..... 6.2
Private household cleaners, and servants ..... 6.2
Buyers, wholesale and retail trade, excluding farm products ..... 6.0
Real estate sales occupations ..... 6.0
Electrical and electronic equipment assemblers ..... 6.0
Bus drivers ..... 6.0
Editors and reporters ..... 6.0
Laundering and dry cleaning machine operators ..... 6.0
Meter readers ..... 5.9
Painters, construction and maintenance ..... 5.9
Driver-sales workers ..... 5.9
Teachers, n.e.c. ..... 5.9
Order clerks ..... 5.8
Physicians' assistants ..... 5.8


Table 5A-5. Ranking of Occupations by Median Years of Occupational Tenure (continusd)
\begin{tabular}{ll}
\hline \multicolumn{1}{c}{ Occupation } & Median years of \\
\hline & occupational tenure
\end{tabular}

Table 5A-5. Ranking of Occupations by Median Years of Occupational Tenure (continued)
Traffic, shipping, and receiving clerks ..... 4.5
Salesworkers, hardware and building supplies ..... 4.5
Biological technicians ..... 4.4
Athletes ..... 4.4
Bill and account collectors ..... 4.4
Taxicab drivers and chauffeurs ..... 4.4
Slicing and cutting machine operators ..... 4.3
Administrative support occupations, n.e.c. ..... 4.3
Mixing and blending machine operators ..... 4.3
Waiters and waitresses ..... 4.2
Janitors and cleaners ..... 4.2
Production helpers ..... 4.1
General office clerks ..... 4.0
Machine feeders and offbearers ..... 3.9
Interviewers ..... 3.9
Bartenders ..... 3.9
Eligibility clerks, social welfare ..... 3.9
Bank tellers ..... 3.8
Cooks, except short-order ..... 3.8
Health aides, except nursing ..... 3.7
Laborers, except construction ..... 3.7
Welfare service aides ..... 3.7
Salesworkers, motor vehicles and boats ..... 3.7
Cost and rate clerks ..... 3.6
Construction laborers ..... 3.6
Hand packers and packagers ..... 3.5
Transportation ticket and reservation agents ..... 3.5
Animal caretakers, except farm ..... 3.5
Photographic process machine operators ..... 3.5
Freight, stock, and material movers, hand, n.e.c. ..... 3.4
Data-entry keyers ..... 3.4
Bakers ..... 3.4
Dispatchers ..... 3.3
Guards and police, except public service ..... 3.3
Packaging and filling machino operators ..... 3.3
Receptionists ..... 3.3
Library clerks ..... 3.3
Truckdrivers, light ..... 3.2
Salesworkers, radio, television, hi-fi, and appliances ..... 3.2
Salesworkers, apparel ..... 3.1
Sales counter cleriks ..... 3.1
Salesworkers, other commodities ..... 3.1
Median years of occupational tenure
(continued on the following page)

Table 5A-5. Renking of Occupations by Median Years of Occupational Tenüre (coñtinued)
\begin{tabular}{lr}
\multicolumn{1}{c}{ Occupation } & \begin{tabular}{c} 
Median years \\
occupational
\end{tabular} \\
\hline Small engine repairers & 3.1 \\
Supervisors, food preparation and service occupations & 3.0 \\
Health record technologists and technicians & 2.9 \\
Helpers, construction trades & 2.9 \\
Attendants, amusement and recreation facilities & 2.8 \\
Street and door-to-door salesworkers & 2.7 \\
Child-care workers, private household & 2.7 \\
Child-care workers, except private household & 2.7 \\
Information clerks, n.e.c. & 2.7 \\
Hotel clerks & 2.7 \\
Personal service occupations, n.e.c. & 2.7 \\
Saleaworkers, shoes & 2.6 \\
Garage and service station related occupations & 2.6 \\
Short-order cooks & 2.5 \\
File clerks & 2.5 \\
Cashiers & 2.4 \\
Mail clerks, except postal service & 2.3 \\
Miecelleneous food preparation occupations & 2.3 \\
News vendors & 2.3 \\
Vehicle washers and equipment cleaners & 2.3 \\
Messengers & 2.3 \\
Kitchen workers, food preparation & 2.1 \\
Stock handlers and baggers & 1.9 \\
Waiters and waitresses assistants & 1.7 \\
Food counter, fountain, and related occupations & 1.5
\end{tabular}

2 n.o.c. - not elsewhere classified
Source: Carey, 1988.

Table 5A-6. Differences in Average Time Spent in Different Activities Between Califoritiin and National Studies (Minutes Per Day for Age 18-64)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 00-49 & NON-FREE TMME & \[
\begin{gathered}
\text { Califomia } \\
1987-88 \\
(1359)
\end{gathered}
\] & \[
\begin{gathered}
\text { National } \\
1985 \\
(1980) \\
\hline
\end{gathered}
\] & 50-59 & Free Time & \[
\begin{gathered}
\text { California } \\
1987-88) \\
(1359)
\end{gathered}
\] & \[
\begin{gathered}
\text { National } \\
1985 \\
(1980)
\end{gathered}
\] \\
\hline 00-09 & PAID WORK & & & 50-99 & EDUCATION AND TRAINING & & \\
\hline 00 & (not uned) & & & 50 & Students' Clasees & 9 & 5 \\
\hline 01 & Main Job & 224 & 211 & 51 & Other Clarses & 1 & 3 \\
\hline 02 & Unemployment & 1 & 1 & 52 & (not used) & - & - \\
\hline 03 & Travel during work & 8 & NR & 53 & (not used) & - & - \\
\hline 04 & (not used) & - & - & 54 & Homework & 8 & 7 \\
\hline 05 & Second job & 3 & 3 & 55 & Library & * & 1 \\
\hline 06 & Eating & 6 & 8 & 56 & Other Education & 1 & 1 \\
\hline 07 & Before/after work & 1 & 2 & 57 & (not used) & - & - \\
\hline 08 & Breaks & 2 & 2 & 58 & (not used) & - & - \\
\hline 09 & Travel to/from work & 28 & 25 & 59 & Travel, Education & 3 & 2 \\
\hline 10-19 & HOUSEHOLD WORK & & & 60-69 & ORGANIZATIONAL ACTIVITIES & & \\
\hline 10 & Food Preparation & 29 & 36 & 60 & Professiona//Union & 0 & 1 \\
\hline 11 & Meal Cleanup & 10 & 11 & 61 & Special Interest & * & 1 \\
\hline 12 & Cleaning House & 21 & 24 & 62 & Political/Civic & 0 & * \\
\hline 13 & Outdoor Cleaning & 9 & 7 & 63 & Volunteer/Helping & 1 & 1 \\
\hline 14 & Clothes Care & 7 & 11 & 64 & Religious Groups & 1 & 2 \\
\hline 15 & Car Repair/Maintenance (by R) & 5 & 5 & 65 & Religious Practice & 5 & 7 \\
\hline 16 & Other Repairs (by R) & 8 & 6 & 66 & Fraternal & 0 & * \\
\hline 17 & Plant Care & 3 & 5 & 67 & Child/Youth/Family & 1 & * \\
\hline 18 & Animal Care & 3 & 5 & 68 & Other Organizations & 2 & 1 \\
\hline 19 & Other Houschold & 7 & 8 & 69 & Travel Organizations & 2 & 4 \\
\hline 20-29 & CHILD CARE & & & 70-79 & ENTERTAINMENT/ SOCIAL ACTIVITIES & & \\
\hline 20 & Baby Care & 3 & 8 & 70 & Sports Events & 2 & 2 \\
\hline 21 & Child Care & 7 & 5 & 71 & Entertainment Events & 5 & 1 \\
\hline 22 & Helping/Teaching & 2 & 1 & 72 & Movies & 2 & 3 \\
\hline 23 & Talloing/Reading & 1 & 1 & 73 & Theatre & 1 & 1 \\
\hline 24 & Indoor Playing & 2 & 3 & 74 & Museums. & 1 & * \\
\hline 25 & Outdoor Playing & 2 & 1 & 75 & Visiting & 26 & 25 \\
\hline 26 & Medical care - Care & * & 1 & 76 & Partiea & 6 & 7 \\
\hline 27 & Other Child Care & 2 & 1 & 77 & Bars/Lounges & 4 & 6 \\
\hline 28 & (At Dry Cleaners) & * & NR & 78 & Other Social & * & 1 \\
\hline 29 & Travel, Child care & 4 & 4 & 79 & Travel, Events/Social & 13 & 16 \\
\hline 30-39 & OBTAINING GOODS AND SERVICES & & & 80-89 & RECREATION & & \\
\hline 30 & Everyday Shopping & 8 & 5 & 80 & Active Sports & 15 & 13 \\
\hline
\end{tabular}

Table 5A-6. Differences in Average Time Spent in Different Activities Between Califomin-
and National Studies (Minutee Per Day for Age 18-64) (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 00-49 & NON-FREE TIME & \[
\begin{gathered}
\text { Californin } \\
1987-88 \\
(1359) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { National } \\
1985 \\
(1980) \\
\hline
\end{gathered}
\] & 50-59 & Free Time & \[
\begin{gathered}
\text { California } \\
1987-88 \\
(1359) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { National } \\
1985 \\
(1980) \\
\hline
\end{gathered}
\] \\
\hline 31 & Durable/House Shop & 19 & 20 & 81 & Outdoor & 3 & 7 \\
\hline 32 & Permonal Services & 1 & 1 & 82 & Walking/Hiking & 5 & 4 \\
\hline 33 & Medical Appointments & 2 & 2 & 83 & Hobbies & 1 & 1 \\
\hline 34 & Gov'UFinnncial Service & 3 & 2 & 84 & Domestic Crafts & 3 & 6 \\
\hline 35 & Car Repair services & 2 & 1 & 85 & Art & * & 1 \\
\hline 36 & Other Repair services & * & 1 & 86 & Musie/Drama/Dance & 3 & 2 \\
\hline 37 & Other Services & 2 & 2 & 87 & Games & 5 & 7 \\
\hline 38 & Errands & * & 1 & 88 & Computer Use/Other & 3 & 3 \\
\hline 39 & Travel, Goods and Services & 24 & 20 & 89 & Travel, Recreation & 5 & 6 \\
\hline 40-49 & PERSONAL NEEDS AND CARE & & & 90-99 & COMMUNICATION & & \\
\hline 40 & Washing, Etc. & 21 & 25 & 90 & Radio & 1 & 3 \\
\hline 41 & Medical Care & 3 & 1 & 91 & TV & 130 & 126 \\
\hline 42 & Help and Care & 3 & 4 & 92 & Records/Tapes & 3 & 1 \\
\hline 43 & Meals At Home & 44 & 50 & 93 & Read Books & 4 & 7 \\
\hline 44 & Meals Out & 27 & 20 & 94 & Reading Magazines/Other & 16 & 10 \\
\hline 45 & Night Sleep & 480 & 469 & 95 & Reading Newrpaper & 11 & 9 \\
\hline 46 & Napa/Day Sloep & 16 & 16 & 96 & Conversations & 15 & 25 \\
\hline 47 & Dreasing, Etc. & 24 & 32 & 97 & Writing & 8 & 9 \\
\hline 48 & NA Activity & 2 & 12 & 98 & Think, Relax & 9 & 6 \\
\hline 49 & Travel, Personal Care/NA & 22 & 13 & 99 & Travel, Communication & 5 & * \\
\hline \[
\mathrm{NR}=
\] & \begin{tabular}{l}
Not Recorded in National Survey \\
Leas than 0.5 Min. per day
\end{tabular} & & & & Total Travel
(Codes 09, 29, 39, 49,
\[
59,69,79,89,99)
\] & 108 & 90 \\
\hline
\end{tabular}

Source: Robinwon and Thomes, 1991.
\(59,69,79,89,99\) )
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Code Description} & \multicolumn{6}{|c|}{Mean duration} \\
\hline & \multicolumn{2}{|c|}{Men} & \multicolumn{2}{|c|}{Women} & \multicolumn{2}{|c|}{Total \({ }^{\text {P }}\)} \\
\hline & \begin{tabular}{l}
\[
\mathrm{N}=639
\] \\
California
\end{tabular} & \begin{tabular}{l}
\[
N=914
\] \\
National
\end{tabular} & \[
\begin{aligned}
& \mathrm{N}=720 \\
& \text { Califomi }
\end{aligned}
\] & \begin{tabular}{l}
\[
\mathbf{N}=1059
\] \\
National
\end{tabular} & \begin{tabular}{l}
\[
\mathbf{N}=1980
\] \\
California
\end{tabular} & \begin{tabular}{l}
\[
\mathrm{N}=1359
\] \\
National
\end{tabular} \\
\hline \multicolumn{7}{|l|}{AT HOME} \\
\hline Kitchen & 46 & 56 & 98 & 135 & 72 & 108 \\
\hline Living Room & 181 & 136 & 98 & 180 & 189 & 158 \\
\hline Dining Room & 18 & 10 & 22 & 18 & 19 & 15 \\
\hline Bathroom & 27 & 27 & 38 & 43 & 33 & 38 \\
\hline Bedroom & 481 & 478 & 534 & 531 & 508 & 521 \\
\hline Study & 8 & 10 & 6 & 7 & 7 & 8 \\
\hline Garage & 14 & 5 & 6 & 1 & 19 & 2 \\
\hline Basement & <0.5 & 4 & <0.5 & 6 & <0.5 & 5 \\
\hline Utility Room & 1 & 0 & 3 & 5 & 2 & 4 \\
\hline Pool, Spa & 1 & NR & 1 & NR \({ }^{\text {b }}\) & 1 & \(\mathrm{NR}^{\text {b }}\) \\
\hline Yard & 33 & & 21 & & 27 & 37 \\
\hline Room to Room & 9 & \(160{ }^{\circ}\) & 34 & 116 & 21 & 40 \\
\hline Other NR Room & 3 & & 4 & & 3 & 22 \\
\hline Total at home & 822 & 888 & 963 & 1022 & 892 & 954 \\
\hline
\end{tabular}

\section*{AWAY FROM HOME}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Office & 78 & 261 & 94 & 155 & 86 & 193 \\
\hline Plant & 73 & - & 12 & - & 42 & - \\
\hline Gracery Store & 12 & 18 & 14 & 33 & 13 & 30 \\
\hline Shopping Mall & 30 & - & 40 & - & 35 & - \\
\hline School & 25 & 13 & 29 & 11 & 27 & 15 \\
\hline Other Public Placea & 18 & - & 10 & - & 14 & 12 \\
\hline Hospital & 9 & NR & 24 & NR & 17 & 3 \\
\hline Restaurant & 35 & 22 & 25 & 18 & 30 & 23 \\
\hline Bar-Night Club & 15 & - & 5 & - & 10 & - \\
\hline Church & 7 & 8 & 5 & 11 & 6 & 10 \\
\hline Indoor Gym & 4 & NR & 4 & NR & 4 & NR \\
\hline Other's Home & 60 & 42 & 61 & 45 & 61 & 43 \\
\hline Auto Repair & 18 & NR & 4 & NR & 11 & NR \\
\hline Playground & 16 & 27 & 8 & 16 & 12 & NR \\
\hline Hotel-Motel & 7 & NR & 8 & NR & 8 & NR \\
\hline Dry Cleaners & \(<0.5\) & NR & 1 & NR & 1 & NR \\
\hline Beauty Parlor & <0.5 & NR & 4 & NR & 2 & NR \\
\hline Other Locations & 3 & NR & 1 & NR & 2 & NR \\
\hline Other Indoor & 17 & 41 & 7 & 24 & 12 & 24 \\
\hline Other Outdoor & 60 & NR & 13 & NR & 37 & 6 \\
\hline & - & - & - & - & - & - \\
\hline Total away & & & & & & \\
\hline from home & 487 & 445 & 371 & 324 & 430 & 383 \\
\hline
\end{tabular}


2 Totals do not necessarily reflect exact averages presented for each gender. Totals were revised, but revisions for each gender were not provided.
- \(\quad\) NR \(=\) Not Reported
- Is total mean duration for those categories; breakdowns per category were not reported.

Source: Robinuon and Thomas, 1991.

Note: Percent at home
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{National} & \multicolumn{2}{|r|}{California} \\
\hline men & \(=62\) & men & \(=57\) \\
\hline women & \(=71\) & women & \(=67\) \\
\hline total & \(=67\) & total & \(=62\) \\
\hline men & \(=31\) & men & \(=34\) \\
\hline women & \(=23\) & women & \(=26\) \\
\hline total & \(=27\) & total & \(=30\) \\
\hline men & \(=7\) & men & \(=9\) \\
\hline women & \(=6\) & women & \(=7\) \\
\hline total & \(=7\) & total & 8 \\
\hline
\end{tabular}

\section*{APPENDIX 5-B}

\section*{Population Mobility Data}

DRAFT
DO NOT QUOTE OR CITE

Table 5B-1. Annual Geographical Mobility Rates, by Type of Movement for Selected 1-Year Periods: 1960-1992 (Numbers in Thousands)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Mobility period} & \multirow[b]{3}{*}{Total movers} & \multicolumn{6}{|c|}{Neaiding in the United Stater at beginning of period} & \multirow[t]{3}{*}{Residing outside the United States at the beginning of period} \\
\hline & & & \multirow[t]{2}{*}{\begin{tabular}{l}
Different \\
house, \\
same \\
county
\end{tabular}} & \multicolumn{4}{|c|}{Different County} & \\
\hline & & Total & & Total & \begin{tabular}{l}
Same \\
State
\end{tabular} & \begin{tabular}{l}
Different \\
State
\end{tabular} & Different Region & \\
\hline \multicolumn{9}{|l|}{NUMBER} \\
\hline 1991-92 & 42,800 & 41,545 & 26,587 & 14,957 & 7,853 & 7,105 & 3,285 & 1,255 \\
\hline 1990-91 & 41,539 & 40,154 & 25,151 & 15,003 & 7,881 & 7,122 & 3,384 & 1,385 \\
\hline 1989-90 & 43,381 & 41,821 & 25,726 & 16,094 & 8,061 & 8,033 & 3,761 & 1,560 \\
\hline 1988-89 & 42,620 & 41,153 & 25,123 & 15,030 & 7,949 & 7,081 & 3,258 & 1,467 \\
\hline 1987-88 & 42,174 & 40,974 & 25,201 & 14,772 & 7,727 & 7,046 & 3,098 & 1,200 \\
\hline 1986-87 & 43,693 & 42,551 & 27,196 & 15,355 & 8,762 & 6,593 & 3,546 & 1,142 \\
\hline 1985-86 & 43,237 & 42,037 & 25,401 & 15,636 & 8,665 & 6,791 & 3,778 & 1,200 \\
\hline 1984-85 & 46,470 & 45,043 & 30,126 & 14,917 & 7,995 & 6,921 & 3,647 & 1,427 \\
\hline 1983-84 & 39,379 & 38,300 & 23,659 & 14,641 & 8,198 & 6,444 & 3,540 & 1,079 \\
\hline 1982-83 & 37,408 & 36,430 & 22,858 & 13,572 & 7,403 & 6,169 & 3,192 & 978 \\
\hline 1981-82 & 38,127 & 37,039 & 23,081 & 13,959 & 7,330 & 6,628 & 3,679 & 1,088 \\
\hline 1980-81 & 38,200 & 36,887 & 23,097 & 13,789 & 7,614 & 6,175 & 3,363 & 1,313 \\
\hline 1970-71 & 37,705 & 36,161 & 23,018 & 13,143 & 6,197 & 6,946 & 3,936 & 1,544 \\
\hline 1960-61 & 36,533 & 35,535 & 24,289 & 11,246 & 5,493 & 5,753 & 3,097 & 988 \\
\hline \multicolumn{9}{|l|}{PERCENT} \\
\hline 1991-92 & 17.3 & 16.8 & 10.7 & 6.0 & 3.2 & 2.9 & 1.3 & 0.5 \\
\hline 1990-91 & 17.0 & 16.4 & 10.3 & 6.1 & 3.2 & 2.9 & 1.4 & 0.6 \\
\hline 1989-90 & 17.9 & 17.3 & 10.6 & 6.6 & 3.3 & 3.3 & 1.6 & 0.6 \\
\hline 1988-89 & 17.8 & 17.2 & 10.9 & 6.3 & 3.3 & 3.0 & 1.4 & 0.6 \\
\hline 1987-88 & 17.8 & 17.3 & 11.0 & 6.2 & 3.3 & 3.0 & 1.3 & 0.5 \\
\hline 1986-87 & 18.6 & 18.1 & 11.6 & 6.5 & 3.7 & 2.8 & 1.5 & 0.5 \\
\hline 1985-86 & 18.6 & 18.0 & 11.3 & 6.7 & 3.7 & 3.0 & 1.6 & 0.5 \\
\hline 1984-85 & 20.2 & 19.6 & 13.1 & 6.5 & 3.5 & 3.0 & 1.6 & 0.6 \\
\hline 1983-84 & 17.3 & 16.8 & 10.4 & 6.4 & 3.6 & 2.8 & 1.6 & 0.5 \\
\hline 1982-83 & 16.6 & 16.1 & 10.1 & 6.0 & 3.3 & 2.7 & 1.4 & 0.4 \\
\hline 1981-82 & 17.0 & 16.6 & 10.3 & 6.2 & 3.3 & 3.0 & 1.6 & 0.5 \\
\hline 1980-81 & 17.2 & 16.6 & 10.4 & 6.2 & 3.4 & 2.8 & 1.5 & 0.6 \\
\hline 1970-71 & 18.7 & 17.9 & 11.4 & 6.5 & 3.1 & 3.4 & 2.0 & 0.8 \\
\hline 1960-61 & 20.6 & 20.0 & 13.7 & 6.3 & 3.1 & 3.2 & 1.7 & 0.6 \\
\hline
\end{tabular}
iource: U.S. Burem of Census, 1993.

Table 5B-2. Mobility of the Reaident Population by State: 1980-
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Region, division, and state} & \multirow[b]{2}{*}{Perrons 5 years old, and over \({ }^{\text {b }}\) 1980 \((1,000)\)} & \multicolumn{4}{|c|}{Percent distribution residence in 1975} \\
\hline & & \begin{tabular}{l}
Same \\
house \\
in \\
1980 \\
1975
\end{tabular} & Different house, same county & Different county, same state & Different county, different state \\
\hline United States & 210,323 & 53.6 & 25.1 & 9.8 & 9.7 \\
\hline Northenst & 46,052 & 61.7 & 22.3 & 8.0 & 6.1 \\
\hline New England & 11,594 & 59.1 & 23.4 & 6.7 & 9.2 \\
\hline Maine & 1,047 & 56.9 & 24.0 & 7.5 & 10.8 \\
\hline New Hampshire & 857 & 51.6 & 22.8 & 6.2 & 18.5 \\
\hline Vermont & 476 & 54.4 & 23.9 & 6.5 & 14.3 \\
\hline Massachusets & 5,398 & 61.0 & 22.7 & 7.6 & 7.0 \\
\hline Rhode Island & 891 & 60.5 & 23.9 & 5.0 & 8.7 \\
\hline Connecticut & 2,925 & 59.0 & 24.4 & 5.5 & 9.3 \\
\hline Middle Allantic & 34,458 & 62.6 & 21.9 & 8.4 & 5.0 \\
\hline New Yoric & 16,432 & 61.5 & 22.6 & 9.3 & 3.8 \\
\hline New Jersey & 6,904 & 61.5 & 20.0 & 8.6 & 7.8 \\
\hline Pennaylvania & 11,122 & 65.0 & 22.0 & 7.1 & 5.2 \\
\hline Midweat & 54,513 & 55.4 & 26.4 & 10.2 & 7.0 \\
\hline Enat North Central & 38,623 & 56.0 & 27.4 & 9.6 & 6.0 \\
\hline Ohio & 10,015 & 56.7 & 27.9 & 9.0 & 5.7 \\
\hline Indinna & 5,074 & 54.8 & 27.5 & 9.6 & 7.6 \\
\hline Illinois & 10,593 & 55.5 & 28.5 & 8.1 & 6.1 \\
\hline Michigan & 8,582 & 56.4 & 26.2 & 11.3 & 5.1 \\
\hline Winconsin & 4,360 & 56.2 & 25.5 & 11.0 & 6.7 \\
\hline Weat North Central & 15,890 & 53.9 & 24.0 & 11.8 & 9.4 \\
\hline Minneeota & 3,770 & 55.6 & 22.8 & 13.3 & 7.3 \\
\hline Iowa & 2,693 & 55.6 & 25.0 & 10.9 & 7.9 \\
\hline Mistouri & 4,564 & 54.0 & 24.1 & 11.8 & 9.4 \\
\hline North Dakota & 598 & 51.7 & 23.1 & 11.4 & 12.7 \\
\hline South Dakota & 633 & 52.9 & 23.2 & 12.1 & 11.1 \\
\hline Nebrasica & 1,448 & 53.1 & 24.4 & 11.0 & 10.5 \\
\hline Kansas & 2,184 & 50.2 & 25.1 & 10.7 & 12.6 \\
\hline
\end{tabular}
(Continued on the following page)

Table 5B-2. (continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Region, division, and state} & & \multicolumn{4}{|c|}{Percent distribution residence in 1975} \\
\hline & Percon: 5 years old, and over \({ }^{\text {b }}\) 1980 \((1,000)\) & \begin{tabular}{l}
Sume \\
house \\
in \\
1980 \\
an \\
1975
\end{tabular} & Different houre, same county & Different county, same atate & Different county, different state \\
\hline South & 69,880 & 52.4 & 24.1 & 10.0 & 12.0 \\
\hline South Atlantic & 34,498 & 52.7 & 22.4 & 9.7 & 13.6 \\
\hline Delaware & 555 & 57.0 & 26.3 & 2.0 & 13.3 \\
\hline Maryland & 3,947 & 55.5 & 21.9 & 10.3 & 10.4 \\
\hline District of Columbin & 603 & 58.2 & 22.7 & NA & 16.3 \\
\hline Virginia & 4,99i & 51.0 & 17.9 & 15.0 & 13.9 \\
\hline Weat Virginia & 1,806 & 60.9 & 23.4 & 6.6 & 8.6 \\
\hline North Carolina & 5,476 & 56.9 & 23.5 & 8.9 & 9.8 \\
\hline South Carolina & 2,884 & 57.5 & 22.3 & 7.7 & 11.5 \\
\hline Georgia & 5,052 & 52.5 & 22.8 & 12.2 & 11.5 \\
\hline Florida & 9,183 & 46.2 & 23.7 & 7.8 & 19.6 \\
\hline East South Central & 13,556 & 56.0 & 25.9 & 7.9 & 9.5 \\
\hline Kentucky & 3,379 & 54.4 & 27.2 & 8.6 & 9.0 \\
\hline Tennessce & 4,269 & 54.2 & 27.2 & 7.4 & 10.6 \\
\hline Alabama & 3,601 & 57.6 & 25.3 & 7.4 & 8.9 \\
\hline Mississippi & 2,307 & 59.0 & 22.5 & 8.6 & 9.2 \\
\hline Weat South Central & 21,826 & 49.6 & 25.6 & 11.8 & 11.0 \\
\hline Arkansas & 2,113 & 53.1 & 24.8 & 9.1 & 12.4 \\
\hline Louisiana & 3,847 & 57.0 & 24.3 & 9.2 & 8.4 \\
\hline Oklahoma & 2,793 & 47.6 & 24.9 & 12.3 & 13.7 \\
\hline Texas & 13,074 & 47.3 & 26.2 & 12.9 & 11.0 \\
\hline Wert & 39,879 & 43.8 & 28.3 & 11.0 & 13.4 \\
\hline Mountain & 10,386 & 42.7 & 25.1 & 9.1 & 21.1 \\
\hline Montana & 722 & 47.3 & 24.5 & 12.3 & 15.0 \\
\hline Idaho & 852 & 44.4 & 24.7 & 9.5 & 20.0 \\
\hline Wyoming & 425 & 38.4 & 23.6 & 8.6 & 28.3 \\
\hline Colorado & 2,676 & 39.8 & 22.7 & 14.8 & 20.6 \\
\hline New Mexico & 1,188 & 50.3 & 23.2 & 7.2 & 17.4 \\
\hline Arizona & 2,506 & 41.9 & 27.1 & 5.0 & 23.9 \\
\hline Utah & 1,272 & 45.8 & 27.8 & 8.4 & 16.0 \\
\hline Nevada & 745 & 34.8 & 27.4 & 3.6 & 31.5 \\
\hline
\end{tabular}
(continued on the following page)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Region, division, and state} & \multirow[b]{2}{*}{Perzons 5 years old, and overb 1980 \((1,000)\)} & \multicolumn{4}{|c|}{Percent distribution residence in \(1975^{\circ}\)} \\
\hline & & Same house in 1980 1975 & Different house, same county & Different county, same state & Different county, different state \\
\hline Pacific & 29,493 & 44.2 & 29.4 & 11.6 & 10.7 \\
\hline Warhington & 3,825 & 43.7 & 27.7 & 10.1 & 16.2 \\
\hline Oregon & 2,437 & 41.4 & 26.6 & 13.4 & 16.9 \\
\hline California & 21,980 & 44.6 & 30.2 & 12.1 & 8.5 \\
\hline Alasks & 363 & 32.2 & 27.6 & 8.7 & 29.1 \\
\hline Hawaii & 888 & 49.3 & 25.2 & 2.8 & 16.9 \\
\hline & & & - & & \\
\hline
\end{tabular}
- Survey assessed changes in residence between 1975 and 1980.
\({ }^{3}\) Includes perzons reaiding abroad in 1975.
\(\mathrm{NA}=\) not applicable.

Source: U.S. Bureau of the Census, Statistical Abstract, 1984.

\section*{6. CONSUMER PRODUCTS}

\subsection*{6.1. BACKGROUND}

Consumer products may contain toxic or potentially toxic chemical constituents to which humans may be exposed as a result of their use. Exposure to chemical constituents released from consumer products can occur via ingestion, inhalation, and through dermal contact. This chapter focuses on consumer products commonly used in homes: cleaning products, painting products, and household products that contain solvents.

Three national surveys have been conducted by Westat (1987a, b, and c) that provide usage data for household solvent products, household cleaning products, paint, and paint-related products. The primary purpose of these surveys was to gather usage data needed to assess exposure to consumers from chemicals in common household products. The data that can be obtained from these studies are: frequency of use, duration of use, and amount used. For each survey, participants were selected based on a random digit dialing (RDD) procedure. Using this procedure, sample blocks of numbers that included residential telephone number (published, and nonpublished) were made available within a certain exchange, and random telephone numbers were dialed within those blocks of numbers. If a person in that particular household agreed to participate, a questionnaire was mailed to the participant. To complete the questionnaires, respondents were required to recall product usage behavior over the previous 12 months. \(\mathbf{A}\) follow-up telephone call was made to those respondents who did not respond to the questionnaires within a 4 -week period. If these respondents agreed to participate, the questionnaire was administered to them over the telephone.

The Waksberg Method of RDD was used for all surveys. This method provides an unbiased sample of households with telephones, with most of the households having the same probability of selection (Westat, 1987a, b, c). The method was also designed to reduce the number of nonproductive calls considering that a high proportion of nonworking and commercial numbers occur in consecutive sequences (Westat, 1987a, b, c). Data obtained from these surveys are summarized in the following sections. The reader is referred to Westat (1987a, b, c) for brand names, more explanation of the statistical procedures, and data for protective measures taken during use of these products.

\subsection*{6.2. CONSUMER PRODUCTS STUDIES}

Westat - Household Solvent Products: A National Usage Survey - Westat (1987a) surveyed 4,920 individuals ( 18 years of age or older) nationwide to determine consumer exposure to common household products believed to contain methylene chloride or its substitutes (trichloroethane, trichloroethylene, carbon tetrachloride, perchloroethylene, and 1,1,2trichlorotrifluoroethane). Survey questions included how often the products were used; when they were last used; what was the amount of time spent using a product (per occasion or year) and the time the respondent remained in the room after use; how much of a product was used per occasion or year; and what protective measures were used (Westat, 1987a). Thirty-two categories of common household products were included in the survey and are presented in Table 6-1. Tables 6-1, 6-2, 6-3, and 6-4 provide means, medians, and percentile rankings for the following variables: frequency of use, exposure time, amount of use, and time exposed after use.

An advantage of this study is that the random digit dialing procedure (Waksberg Method) used in identifying participants for this survey enabled a diverse selection of a representative, unbiased, sample of the U.S. population (Westat 1987a). Also, empricial data generated from this study will provide more accurate calculations of human exposure to consumer household products than estimates previously used. However, a limitation associated with this study is that the data generated were based on recall behavior. Participants were asked to recall product usage data from the previous 12 months. This may degrade the response accuracy of the participants. Another limitation is that extrapolation of these data to long-term use patterns may be difficult.

Westat - National Usage Survey of Household Cleaning Products - Westat (1987b) collected use data from a nationwide survey to assess the magnitude of exposure of consumers to various household cleaning products. One hundred ninety-three (193) households participated in the survey. A telephone interview was conducted to obtain data from the person who did the majority of the cleaning in each household. Of those respondents, 83 percent were female, 16 percent were male, and the sex of the remaining 1 percent was not ascertained (Westat, 1987b). A random digit dialing procedure, previously mentioned, was used to generate telephone numbers. The survey was designed to generate data on the frequency of performing 14 different

Table 6-1. Frequency of Use For Houschold Solvent Products
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Products} & \multirow[b]{2}{*}{Mean} & \multirow[b]{2}{*}{Std. dev.} & \multirow[b]{2}{*}{Min.} & \multirow[b]{2}{*}{1\%} & \multirow[b]{2}{*}{5\%} & \multicolumn{6}{|c|}{Percentile Rankings for Frequency of Use/Year} & \multirow[b]{2}{*}{99\%} & \multirow[b]{2}{*}{Max.} \\
\hline & & & & & & 10\% & 25\% & 50\% & 75\% & 90\% & 95\% & & \\
\hline Spray Shoe Polish & 10.28 & 20.10 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 4.00 & 8.00 & 24.30 & 52.00 & 111.26 & 156.00 \\
\hline Water Repellent/Protoctors & 3.50 & 11.70 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 3.00 & 6.00 & 10.00 & 35.70 & 300.00 \\
\hline Spot Removers & 15.59 & 43.34 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 3.00 & 10.00 & 40.00 & 52.00 & 300.00 & 365.00 \\
\hline Solvent-Type Cleaning Fluids or Degreasers & 16.46 & 44.12 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 4.00 & 12.00 & 46.00 & 52.00 & 300.00 & 365.00 \\
\hline Wood Floor and Paneling Cleaners & 8.48 & 20.89 & 1.00 & 1.00 & 1.00 & 1.00 & NA & 2.00 & 6.00 & 24.00 & 50.00 & 56.00 & 350.00 \\
\hline TypeWriter Correction Fuid & 40.00 & 74.78 & 1.00 & 1.00 & 1.00 & 2.00 & 4.00 & 12.00 & 40:00 & 100.00 & 200.00 & 365.00 & 520.00 \\
\hline Adhesives & 8.89 & 26.20 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 3.00 & 6.00 & 15.00 & 28.00 & 100.00 & 500.00 \\
\hline Adhesive Removers & 4.22 & 12.30 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 3.00 & 6.00 & 16.80 & 100.00 & 100.00 \\
\hline Silicone Lubricants & 10.32 & 25.44 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 3.00 & 10.00 & 20.00 & 46.35 & 150.00 & 300.00 \\
\hline Other Lubricants (excluding Automotive) & 10.66 & 25.46 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 4.00 & 10.00 & 20.00 & 50.00 & 100.00 & 420.00 \\
\hline Spocialized Electronic Cleaners (for TVs, Etc.) & 13.41 & 38.16 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 3.00 & 10.00 & 24.00 & 52.00 & 224.50 & 400.00 \\
\hline Latex Paint & 3.93 & 20.81 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 4.00 & 6.00 & 10.00 & 30.00 & 800.00 \\
\hline Oil Paint & 5.66 & 23.10 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 3.00 & 6.00 & 12.00 & 139.20 & 300.00 \\
\hline Wood Stains, Varnishes, and Finishes & 4.21 & 12.19 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 4.00 & 7.00 & 12.00 & 50.80 & 250.00 \\
\hline Paint Removers/Strippers & 3.68 & 9.10 & 1.00 & 1.00 & 1.00 & 1.00 & 4.00 & 2.00 & 3.00 & 6.00 & 11.80 & 44.56 & 100.00 \\
\hline Paint Thinners & 6.78 & 22.10 & 0.03 & 0.03 & 0.10 & 0.23 & 1.00 & 2.00 & 4.00 & 12.00 & 23.00 & 100.00 & 352.00 \\
\hline Aerosol Spray Paint & 4.22 & 15.59 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 4.00 & 6.10 & 12.00 & 31.05 & 365.00 \\
\hline Primers and Special Primers & 3.43 & 8.76 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 3.00 & 6.00 & 10.00 & 50.06 & 104.00 \\
\hline Aerosol Rust Removers & 6.17 & 9.82 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 6.00 & 15.00 & 24.45 & 50.90 & 80.00 \\
\hline Outdoor Water Repellents (for Wood or Cement) & 2.07 & 3.71 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 3.00 & 5.90 & 12.00 & 52.00 \\
\hline Glass Frostings, Window Tints, and Artificial Snow & 2.78 & 21.96 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 2.00 & 27.20 & 365.00 \\
\hline
\end{tabular}

Table 6-1. Frequency of Uso For Houschold Solvent Products (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Products} & \multirow[b]{2}{*}{Mean} & \multirow[b]{2}{*}{Std. dev.} & \multicolumn{11}{|c|}{Percentile Rankings for Frequency of UserYear} \\
\hline & & & Min. & 1\% & 5\% & 10\% & 25\% & 50\% & 75\% & 90\% & 95\% & 99\% & Max. \\
\hline Engine Dogreasers & 4.18 & 13.72 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 3.25 & 6.70 & 12.00 & 41.70 & 300.00 \\
\hline Carburctor Cleaners & 3.77 & 7.10 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 3.00 & 6.00 & 12.00 & 47.28 & 100.00 \\
\hline Acrosol Spray Paints for Cars & 4.50 & 9.71 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 4.00 & 10.00 & 15.00 & 60.00 & 100.00 \\
\hline Auto Spray Primers & 6.42 & 33.89 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 3.75 & 10.00 & 15.00 & 139.00 & 500.00 \\
\hline Spray Lubricant for Cars & 10.31 & 30.71 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 3.00 & 6.00 & 20.00 & 40.00 & 105.60 & 365.00 \\
\hline Transmission Cleaners & 2.28 & 3.55 & 1.00 & NA & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 3.00 & 9.00 & NA & 26.00 \\
\hline Battery Terminal Protectors & 3.95 & 24.33 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 2.00 & 4.00 & 6.55 & 41.30 & 365.00 \\
\hline Brake Quieters Cleaners & 3.00 & 6.06 & 1.00 & NA & 1.00 & 1.00 & 1.00 & 2.00 & 2.00 & 6.00 & 10.40 & NA & 52.00 \\
\hline Gasket Remover & 2.50 & 4.39 & 1.00 & NA & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 5.00 & 6.50 & NA & 30.00 \\
\hline Tire/Hubcap Cleaners & 11.18 & 18.67 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 4.00 & 12.00 & 30.00 & 50.00 & 77.00 & 200.00 \\
\hline Ignition and Wire Dryers & 3.01 & 5.71 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 2.00 & 3.00 & 5.00 & 9.70 & 44.52 & 60.00 \\
\hline
\end{tabular}

NA \(=\) = Not Available
Source:
Westat, 1987a

Table 6－2．Exposure Time of Use For Household Solvent Products
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Products} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Mean } \\
& \text { (mins) }
\end{aligned}
\]} & \multicolumn{12}{|c|}{Percentile Rankings for Duration of Use （mins）} & \\
\hline & & Std．dev． & Min． & 1\％ & 5\％ & 10\％ & 25\％ & 50\％ & 75\％ & 90\％ & 95\％ & 99\％ & Max． & \\
\hline Spray Shoe Polish & 7.49 & 9.60 & 0.02 & 0.03 & 0.25 & 0.50 & 2.00 & 5.00 & 10.00 & 18.00 & 30.00 & 60.00 & 60.00 & \\
\hline Water Repelients／Protectors & 14.46 & 24.10 & 0.02 & 0.08 & 0.50 & 1.40 & 3.00 & 10.00 & 15.00 & 30.00 & 60.00 & 120.00 & 480.00 & \\
\hline Spot Removers & 10.68 & 22.36 & 0.02 & 0.03 & 0.08 & 0.25 & 2.00 & 5.00 & 10.00 & 30.00 & 30.00 & 120.00 & 360.00 & \\
\hline Solvent－Type Cleaning Fluids or Degreasers & 29.48 & 97.49 & 0.02 & 0.03 & 1.00 & 2.00 & 5.00 & 15.00 & 30.00 & 60.00 & 120.00 & 300.00 & 1800.00 & \\
\hline Wood Fioor and Paneling Clanisas & 74.04 & 128.43 & 0.02 & 1.00 & 5.04 & 10.00 & 20.00 & 30.00 & 90．00 & 147.00 & 240.00 & 480.00 & 2700．00 & \\
\hline TypoWriter Correction Fluid & 7.62 & 29.66 & 0.02 & 0.02 & 0.03 & 0.03 & 0.17 & 1.00 & 2.00 & 10.00 & 32.00 & 120.00 & 480.00 & \\
\hline Adhesives & 15.58 & 81.80 & 0.02 & 0.03 & 0.08 & 0.33 & 1.00 & 4.25 & 10.00 & 30.00 & 60.00 & 180.00 & 2880.00 & \\
\hline Adhesive Removers & 121.20 & 171.63 & 0.03 & 0.03 & 1.45 & 3.00 & 15.00 & 60.00 & 120.00 & 246.00 & 480.00 & 960.00 & 960.00 & \\
\hline Silicone Lubricants & 10.42 & 29.47 & 0.02 & 0.03 & 0.08 & 0.17 & 0.50 & 2.00 & 10.00 & 20.00 & 45.00 & 180.00 & 360.00 & \\
\hline Other Lubricants（excluding Automotive） & 8.12 & 32.20 & 0.02 & 0.03 & 0.05 & 0.08 & 0.50 & 2.00 & 5.00 & 15.00 & 30.00 & 90.00 & 900.00 & \\
\hline Specialized Electronic Cleaners（for TVs，Etc．） & 9.47 & 45.35 & 0.02 & 0.03 & 0.08 & 0.17 & 0.50 & 2.00 & 5.00 & 20.00 & 30.00 & 93.60 & 900.00 & \\
\hline Latex Paint & 295.08 & 476.11 & 0.02 & 1.00 & 22.50 & 30.00 & 90.00 & 180.00 & 360.00 & 480.00 & 810.00 & 2880.00 & 5760.00 & \\
\hline Oil Paint & 194.12 & 345.68 & 0.02 & 0.51 & 15.00 & 30.00 & 60.00 & 120.00 & 240.00 & 480.00 & 579.00 & 1702.80 & 5760.00 & \\
\hline Wood Stains，Varnishes，and Finishes & 117.17 & 193.05 & 0.02 & 0.74 & 5.00 & 10.00 & 30.00 & 60.00 & 120.00 & 140.00 & 360.00 & 720.00 & 280.00 & \\
\hline Paint Removers／Strippers & 125.27 & 286.59 & 0.02 & 0.38 & 5.00 & 5.00 & 20.00 & 60.00 & 120.00 & 240.00 & 420.00 & 1200.00 & 4320.00 & \[
8
\] \\
\hline Paint Thinners & 39.43 & 114.85 & 0.02 & 0.08 & 1.00 & 2.00 & 5.00 & 10.00 & 30.00 & 60.00 & 180.00 & 480.00 & 2400.00 & 능 \\
\hline Aerosol Spray Paint & 39.54 & 87.79 & 0.02 & 0.17 & 2.00 & 5.00 & 10.00 & 20.00 & 45.00 & 60.00 & 120.00 & 300.00 & 1800.00 &  \\
\hline Primers and Special Primers & 91.29 & 175.05 & 0.05 & 0.24 & 3.00 & 5.00 & 15.00 & 30.00 & 120.00 & 240.00 & 360.00 & 981.60 & 1920.00 & 閊気枵 \\
\hline Aerosol Rust Removers & 18.57 & 48.54 & 0.02 & 0.05 & 0.17 & 0.25 & 2.00 & 5.00 & 20.00 & 60.00 & 60.00 & 130.20 & 720.00 & － \\
\hline
\end{tabular}

Tablo 6-2. Exposuco Timo of Uso For Houscbold Solveat Products (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Products} & \multirow[b]{2}{*}{Mean
(mins)} & \multirow[b]{2}{*}{Std. dev.} & \multirow[b]{2}{*}{Min.} & \multirow[b]{2}{*}{18} & \multirow[b]{2}{*}{5\%} & \multirow[b]{2}{*}{10\%} & \multicolumn{4}{|l|}{Percentile Rankinge for Duration of Use (mins)} & \multirow[b]{2}{*}{95\%} & \multirow[b]{2}{*}{99\%} & \multirow[b]{2}{*}{Max.} \\
\hline & & & & & & & 25\% & 50\% & 75\% & 90\% & & & \\
\hline Outdoor Water Repellents (for Wood or Cement) & 104.94 & 115.36 & 0.02 & 0.05 & 5.00 & 15.00 & 30.00 & 60.00 & 120.00 & 240.00 & 300.00 & 480.00 & 960.00 \\
\hline Glass Frostings, Window Tints, and Artificial Snow & 29.45 & 48.16 & 0.03 & 0.14 & 2.00 & 3.00 & 5.00 & 15.00 & 30.00 & 60.00 & 96.00 & 268.80 & 360.00 \\
\hline Engine Degreasers & 29.29 & 48.14 & 0.02 & 0.95 & 2.00 & 5.00 & 10.00 & 15.00 & 30.00 & 60.00 & 120.00 & 180.00 & 900.00 \\
\hline Carburetor Cleaners & 13.57 & 23.00 & 0.02 & 0.08 & 0.33 & 1.00 & 3.00 & 7.00 & 15.00 & 30.00 & 45.00 & 120.00 & 300.00 \\
\hline Aerosol Spray Paints for Cars & 42.77 & 71.39 & 0.03 & 0.19 & 1.00 & 3.00 & 10.00 & 20.00 & 60.00 & 120.00 & 145.00 & 360.00 & 900.00 \\
\hline Auto Spray Primers & 51.45 & 86.11 & 0.05 & 0.22 & 2.00 & 5.00 & 10.00 & 27.50 & 60.00 & 120.00 & 180.00 & 529.20 & 600.00 \\
\hline Spray Lubricant for Cars & 9.90 & 35.62 & 0.02 & 0.03 & 0.08 & 0.17 & 1.00 & 5.00 . & 10.00 & 15.00 & 30.00 & 120.00 & 720.00 \\
\hline Transmission Cleaners & 27.90 & 61.44 & 0.17 & NA & 0.35 & 1.80 & 5.00 & 15.00 & 30.00 & 60.00 & 60.00 & NA & 450.00 \\
\hline Battery Terminal Protectors & 9.61 & 18.15 & 0.03 & 0.04 & 0.08 & 0.23 & 1.00 & 5.00 & 10.00 & 20.00 & 30.00 & 120.00 & 180.00 \\
\hline Brake Quieters/Cleaners & 23.38 & 36.32 & 0.07 & NA & 0.50 & 1.00 & 5.00 & 15.00 & 30.00 & 49.50 & 120.00 & NA & 240.00 \\
\hline Gasket Remover & 23.57 & 27.18 & 0.33 & NA & 0.50 & 2.00 & 6.25 & 15.00 & 30.00 & 60.00 & 60.00 & NA & 180.00 \\
\hline Tire/Hubcap Cleaners & 22.66 & 23.94 & 0.08 & 0.71 & 3.00 & 5.00 & 10.00 & 15.00 & 30.00 & 60.00 & 60.00 & 120.00 & 240.00 \\
\hline Ignition and Wire Dryers & 7.24 & 8.48 & 0.02 & 0.02 & 0.08 & 0.47 & 1.50 & 5.00 & 10.00 & 15.00 & 25.50 & 48.60 & 60.00 \\
\hline
\end{tabular}

\section*{\(\mathrm{NA}=\) Not Available}

Source: Westat, 1987a


Table 6-3. Amount of Products Used For Household Solvent Products


Table 6-3. Amount of Products Used For Houschold Solvenx Products (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Products} & \multirow[t]{2}{*}{Mean (ounced/yr)} & \multirow[t]{2}{*}{Std. dev} & \multirow[b]{2}{*}{Min.} & \multirow[b]{2}{*}{1\%} & \multirow[b]{2}{*}{5\%} & \multicolumn{6}{|l|}{Percentile Rankings for Amount of Products Used (ounces)} & \multirow[b]{2}{*}{99\%} & \multirow[b]{2}{*}{Max.} \\
\hline & & & & & & 10\% & 25\% & 50\% & 75\% & 90\% & 95\% & & \\
\hline Outdoor Water Repellenta (for Wood or Cement) & 148.71 & 280.65 & 0.01 & 0.37 & 3.63 & 8.00 & 16.00 & 64.00 & 128.00 & 448.00 & 640.00 & 979.20 & 3200.00 \\
\hline Glass Frostings, Window Tints, and Artificial Snow & 13.82 & 14.91 & 1.00 & 1.40 & 2.38 & 3.25 & 6.00 & 12.00 & 14.00 & 28.00 & 33.00 & 98.40 & 120.00 \\
\hline Engine Degreasers & 46.95 & 135.17 & 0.04 & 1.56 & 4.00 & 6.00 & 12.00 & 16.00 & 36.00 & 80.00 & 160.00 & 480.00 & 2560.00 \\
\hline Carburetor Cleaners & 22.00 & 50.60 & 0.10 & 0.50 & 1.50 & 3.00 & 5.22 & 12.00 & 16.00 & 39.00 & 75.00 & 212.00 & 672.00 \\
\hline Acrosol Spray Paints for Cars & 44.95 & 89.78 & 0.04 & 0.14 & 1.50 & 3.00 & 6.12 & - 16.00 & 48.00 & 100.80 & 156.00 & 557.76 & 900.00 \\
\hline Auto Spray Primers & 70.37 & 274.56 & 0.12 & 0.77 & 3.00 & 4.00 & 9.00 & 16.00 & 48.00 & 128.00 & 222.00 & 1167.36 & 3840.00 \\
\hline Spray Lubricant for Cars & 18.63 & 54.74 & 0.08 & 0.40 & 0.96 & 1.00 & 2.75 & 6.00 & 15.50 & 36.00 & 64.00 & 240.00 & 864.00 \\
\hline Transmission Cleaners & 35.71 & 62.93 & 2.00 & NA & 3.75 & 4.00 & 8.00 & 15.00 & 32.00 & 77.00 & 140.00 & NA & 360.00 \\
\hline Battery Terminal Protectors & 16.49 & 87.84 & 0.12 & 0.13 & 0.58 & 1.00 & 2.00 & 4.00 & 8.00 & 15.00 & 24.60 & 627.00 & 1050.00 \\
\hline Brake Quieters/Cleaners & 11.72 & 13.25 & 0.50 & NA & 1.00 & 2.00 & 3.02 & 8.00 & 14.25 & 32.00 & 38.60 & NA & 78.00 \\
\hline Gasket Remover & 13.25 & 22.35 & 0.50 & NA & 1.00 & 1.00 & 3.75 & 7.75 & 16.00 & 24.00 & 58.40 & NA & 160.00 \\
\hline Tire/Hubcap Cleaners & 31.58 & 80.39 & 0.12 & 0.50 & 1.82 & 3.00 & 6.00 & 12.00 & 28.00 & 64.00 & 96.00 & 443.52 & 960.00 \\
\hline Ignition and Wire Dryers & 9.02 & 14.59 & 0.13 & 0.32 & 1.09 & 1.50 & 3.00 & 6.00 & 10.75 & 16.00 & 20.55 & 113.04 & 120.00 \\
\hline
\end{tabular}

NA \(=\) Not Available
Source: Westat, 1987a


Table 6-4. Time Exposed After Duration of Use For Household Solvent Products


Tabto 6-4. Timo Exposed After Duration of Uso For Hourobold Solvent Products (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Products} & \multirow[t]{2}{*}{\begin{tabular}{l}
Mean \\
(mins)
\end{tabular}} & \multirow[t]{2}{*}{Std. dev.} & \multicolumn{11}{|c|}{Percentile Rankings for Time Exposed Atter Duration of Uso (mins)} \\
\hline & & & Min. & 1\% & 5\% & 10\% & 25\% & 50\% & 75\% & 90\% & 95\% & 99\% & Mex. \\
\hline Outdoor Water Repallonts (for Wood or Cement) & 8.33 & 43.25 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 5.00 & 58.50 & 309.60 & 420.00 \\
\hline Glass Frostings, Window Tints, and Artificial Snow & 137.87 & 243.21 & 0.00 & 0.00 & 0.00 & 0.00 & 3.00 & 60.00 & 180.00 & 360.00 & 480.00 & 1440.00 & 1800.00 \\
\hline Engine Degreasers & 4.52 & 24.39 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 15.50 & 120.00 & 360.00 \\
\hline Carburetor Cleaners & 7.51 & 68.50 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.10 & 30.00 & 120.60 & 1800.00 \\
\hline Acrosol Spray Paints for Cars & 10.71 & 45.53 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 17.50 & 60.00 & 282.00 & 480.00 \\
\hline Auto Spray Primers & 11.37 & 45.08 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 20.00 & 77.25 & 360.00 & 360.00 \\
\hline Spray Lubricant for Cars & 4.54 & 30.67 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 2.00 & 15.00 & 70.20 & 420.00 \\
\hline Transmission Cleaners & 5.29 & 29.50 & 0.00 & NA & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 5.00 & 22.50 & NA & 240.00 \\
\hline Battery Terminal Protectors & 3.25 & 17.27 & 0.00 & NA & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 2.90 & 15.00 & 120.00 & 180.00 \\
\hline Brake Quieters/Cleaners & 10.27 & 30.02 & 0.00 & NA & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 30.00 & 120.00 & NA & 120.00 \\
\hline Gasket Remover & 27.56 & 58.54 & 0.00 & NA & 0.00 & 0.00 & 0.00 & 0.00 & 12.50 & 120.00 & 180.00 & NA & 240.00 \\
\hline Tire/Hubcap Cleaners & 1.51 & 20.43 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 30.00 & 480.00 \\
\hline Ignition and Wire Dryers & 6.39 & 31.63 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.10 & 30.00 & 216.60 & 240.00 \\
\hline
\end{tabular}
\(\mathbf{N A}=\operatorname{Not}\) Available
Source: Westat, 1987a

cleaning tasks; the amount of time (duration) spent at each task; the cleaning product most frequently used; and the type of product (liquid, powder, aerosol or spray pump) used (Westat, 1987b). In addition, some demographic, product brand, and protective measure data were requested.

The data are presented in Tables 6-5, 6-6, 6-7, 6-8, and 6-9. Table 6-5 presents the mean and median total exposure time of use for each cleaning task and the product type preferred for each task. The percentile rankings for the total time exposed to the products used for 14 cleaning tasks are presented in Table 6-6. The mean and percentile rankings of the frequency in performing each task are presented in Table 6-7. Table 6-8 shows the mean and percentile rankings for exposure time per event of performing household tasks. The mean and percentile rankings for total number of hours spent per year using the top 10 product groups are presented in Table 6-9.

The methodology used to generate data in this survey and the survey reported by Westat (1987a) is similar. Therefore, the same advantages and disadvantages associated with the Westat (1987a) data also apply to this study.

Westat - National Household Survey of Interior Painters - Westat, (1987c) conducted a study to obtain usage information for household painting. Painting and painting related products generally contain chemicals that may be toxic. Therefore, consumer exposure to these chemicals may be harmful. The survey involved 208 participants (households), and the person in each household who did most of the interior painting during the last 12 months was interviewed over the telephone. The random digit dialing procedure previously described was used to generate sample blocks of telephone numbers. Questions were asked on frequency and time spent for interior painting activities; the amount of paint used; and protective measures used. Fifty-three percent of the primary painters in the households interviewed were male, 46 percent were female, and the sex of the remaining 1 percent was not ascertained. Three types of painting products were used in this study; latex paint, oil-based paint, and wood stains and varnishes. Of the respondents, 94.7 percent used latex paint, 16.8 percent used oil-based paint, and 20.2 percent used wood stains and varnishes.

Data generated from this survey are summarized in Tables 6-10, 6-11, and 6-12. Table 6-10 presents the mean, standard duration, and percentile rankings for the total exposure time

Table 6-5. Total Exposure Time of Performing Task and Product Type Used by Tack For Houcehold Cleaning Products
\begin{tabular}{|c|c|c|c|c|}
\hline Taska & \[
\begin{gathered}
\text { Mean } \\
\text { (hra/year) }
\end{gathered}
\] & Median (hra/year) & \multicolumn{2}{|c|}{Product Type Used} \\
\hline Clean Bathroom Sinks and Tubs & 44 & 26 & Liquid & 29\% \\
\hline & & & Powder & 44\% \\
\hline & & & Actosol & 16\% \\
\hline & & & Spray pump & 10\% \\
\hline & & & Other & 1\% \\
\hline Clean Kitcten Siaks & 41 & 18 & Liquid & 31\% \\
\hline & & & Powder & 61\% \\
\hline & & & Acrosol & 2\% \\
\hline & & - & Spray pump & 4\% \\
\hline & & & Other & 2\% \\
\hline Clean Inside of Cabinets & 12 & 5 & Liquid & 68\% \\
\hline (such as kitchen) & & & Powder & 12\% \\
\hline & & & Acrosol & 2\% \\
\hline & & & Spray pump & 16\% \\
\hline & & & Other & 2\% \\
\hline Clean Outside of Cabinets & 21 & 6 & Liquid & 61\% \\
\hline & & & Powder & 8\% \\
\hline & & & Acrosol & 16\% \\
\hline & & & Spray pump & 13\% \\
\hline & & & Other & 2\% \\
\hline Wipo Off Kitchen Counters & 92 & 55 & Liquid & 67\% \\
\hline & & & Powder & 13\% \\
\hline & & & Aerosol & 2\% \\
\hline & & & Spray pump & 15\% \\
\hline & & & Other & 3\% \\
\hline Thoroughly Clean Counters & 24 & 13 & Liquid & 56\% \\
\hline & & & Powder & 21\% \\
\hline & & & Acrosol & 5\% \\
\hline & & & Spray pump & 17\% \\
\hline & & & Other & 1\% \\
\hline Clean Bathroom Floors & 20 & 9 & Liquid & 70\% \\
\hline & & & Powder & 21\% \\
\hline & & & Acrosol & 2\% \\
\hline & & & Spray pump & 4\% \\
\hline & & & Other & 3\% \\
\hline Clean Kitchen Floors & 31 & 14 & Liquid & 70\% \\
\hline & & & Powder & 27\% \\
\hline & & & Aerosol & 2\% \\
\hline & & & Spray pump & 1\% \\
\hline & & & Other & - \\
\hline Clean Bathroom or Other Tiltod or Ceramic Walls & 16 & 9 & Liquid & 37\% \\
\hline & & & Powder & 18\% \\
\hline & & & Acrosol & 17\% \\
\hline & & & Spray pump & 25\% \\
\hline & & & Other & 3\% \\
\hline
\end{tabular}

Table 6-5. Total Exposure Time of Performing Task and Product Type Used by Task For Househotd Eteaning Products (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline Tacks & Mean (hrs/year) & Median (hre/year) & \multicolumn{2}{|c|}{Product Type Used} \\
\hline Clean Outside of Windows & 13 & 6 & Liquid & 27\% \\
\hline & & & Powder & 2\% \\
\hline & & & Aerosol & 6\% \\
\hline & & & Spray pump & 65\% \\
\hline & & & Other & - \\
\hline Clean Inside of Windowe & 18 & 6 & Liquid & 24\% \\
\hline & & & Powder & 1\% \\
\hline & & & Acrosol & 8\% \\
\hline & & & Spray pump & 66\% \\
\hline & & & Other & 2\% \\
\hline Clean Glass Surfaces Such as Mirrors \& Tables & 34 & 13 & Liquid & 13\% \\
\hline & & & Powder & 1\% \\
\hline & & & Aerosol & 8\% \\
\hline & & & Spray pump & 76\% \\
\hline & & & Other & 2\% \\
\hline Clean Outside of Refrigerator and Other Appliances & 27 & 13 & Liquid & 48\% \\
\hline & & & Powder & 3\% \\
\hline & & & Aerosol & 7\% \\
\hline & & & Spray pump & 38\% \\
\hline & . & & Other & 4\% \\
\hline & 19 & 8 & & \\
\hline Finishes & & & Powder & 15\% \\
\hline & & & Aerosol & 4\% \\
\hline & & & Spray pump & - 30\% \\
\hline & & & Other & 4\% \\
\hline
\end{tabular}

Source: Westat, 1987b.

Tablo 6-6. Percentile Rankings for Total Exposure Time in Performing Task
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Tesks} & \multicolumn{8}{|c|}{Percentilo Rankings for Total Exposuro Exposure Time Performing Task (hralyr)} \\
\hline & 100th & 95th & 901h & 75th & 50th & 25th & 10th & Ofh \\
\hline Clean Bathroom Sinks and Tubn & 365 & 121.67 & 91.25 & 52 & 26 & 13 & 5.2 & 0.4 \\
\hline Clean Kitchen Sinks & 547.5 & 121.67 & 97.6 & 60.83 & 18.25 & 8.67 & 3.47 & 0.33 \\
\hline Clean Inside of Kitchen Cabinets & 208 & 48 & 32.48 & 12 & 4.75 & 2 & 1 & 0.17 \\
\hline Clean Outside of Cabinets & 780 & 78.66 & 36 & 17.33 & 6 & 2 & 0.967 & 0.07 \\
\hline Wipe Off Kitchen Counters & 912.5 & 456.25 & 231.16 & 91.25 & 54.75 & 24.33 & 12.17 & 1.2 \\
\hline Thoroughly Clean Counters & 547.5 & 94.43 & 52 & 26 & 13 & 6 & 1.75 & 0.17 \\
\hline Clean Bathroom Floors & 365 & 71.49 & 36.83 & 26 & 8.67 & 4.33 & 2 & 0.1 \\
\hline Clean Kitchen Floors & 730 & 96.98 & 52 & 26 & 14 & 8.67 & 4.33 & 0.5 \\
\hline Clean Bathroom or Other Tilted or Ceramic Walis & 208 & 52 & 36 & 26 & 8.67 & 3 & 1 & 0.17 \\
\hline Clean Outside of Windows & 468 & 32.6 & 24 & 11.5 & 6 & 2 & 1.5 & 0.07 \\
\hline Clean Inside of Windows & 273 & 72 & 36 & 19.5 & 6 & 3 & 1.15 & 0.07 \\
\hline Clean Glass Surfaces Such us Mirrors \& Tables & 1460 & 104 & 60.83 & 26 & 13 & 6 & 1.73 & 0.17 \\
\hline Clean Outside Refrigerator and Other Appliances & 365 & 95.29 & 91.25 & 30.42 & 13 & 4.33 & 1.81 & 0.1 \\
\hline Clean Spots or Dirt on Walls or Doors & 312 & 78 & 52 & 24 & 8 & 2 & 0.568 & 0.07 \\
\hline
\end{tabular}

\section*{Source: Westat, 1987b.}


Table 6-7. Mean Percentile Rankings for Frequency of Use in Performing Household Tasks
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Tasks} & \multirow{2}{*}{Mean} & \multicolumn{8}{|c|}{Percentile Rankings} \\
\hline & & OH & 104h & 25th & 50\%h & 75th & 904h & 95th & 100 h \\
\hline Clean bathroom sinks and tubs & \(3 \times\) per week & \(0.2 \times\) per week & \(1 \times\) per week & \(1 \times\) per week & \(2 \times\) per week & \(3.5 \times\) per week & \(7 \times\) per weak & \(7 \times\) per week & \(42 \times\) per week \\
\hline Clean kitchen sinkı & \(7 \times\) per week & \(0 \times\) per week & \(1 \times\) per week & \(2 \times\) per week & \(7 \times\) per week & \(7 \times\) per week & \(15 \times\) per weck & \(21 \times\) per week & \(28 \times\) per week \\
\hline Clean inside of cabinets such as those in the kitchen & \(9 \times\) per year & \(1 \times\) per year & \(1 \times\) per year & \(1 \times\) per year & \(2 \times \mathrm{per}\) year & \(12 \times\) per year & 12 x per year & 52 x per year & \(156 \times\) per year \\
\hline Clean outside of cabinets & \(3 \times\) per month & \(0.1 \times\) per month & \(0.1 \times\) per month & \(0.3 \times\) per month & \(1 \times\) per month & \(4 \times\) per month & \(4 \times\) per month & \(22 \times\) per month & \(30 \times\) per month \\
\hline Wipe off counters such as those in the kitchen & 2 x per day & \(0 \times \mathrm{per}\) day & \(0.4 \times \mathrm{x}\) er day & 1 x per day & \(1 \times \mathrm{per}\) day & 3 x per day & 4 x per day & 6 x per day & \(16 \times\) per day \\
\hline Thoroughly clean counters & \(8 \times\) per month & \(0.1 \times\) per month & \(0.8 \times\) per montio & 1 x per monta & \(4 \times\) per month &  & \(30 \times\) per moxth & \(30 \times\) per month & \(183 \times\) per month \\
\hline Clean buthroom floors & 6 x per month & \(0.2 \times\) per month & \(1 \times\) per month & \(2 \times\) per month & \(4 \times\) per month & \(4 \times\) per month & \(13 \times\) per month & \(30 \times\) per momh & \(30 \times\) per month \\
\hline Clean kitchen floors & \(6 \times\) per month & \(0.1 \times\) per month & \(1 \times \mathrm{per}\) month & \(2 \times\) per month & \(4 \times\) per month & \(4 \times \mathrm{per}\) month & \(13 \times\) per month & \(30 \times\) per month & \(30 \times\) per month \\
\hline Clean bathroom or other tiled or ceramic walls & \(4 \times \mathrm{per}\) month & \(0.1 \times\) per month & \(0.2 \times\) per month & \(1 \times\) per month & 2 x per month & 4 x per month & \(9 \times\) per month & \(13 \times\) per momth & \(30 \times\) per month \\
\hline Clean outside of windows & \(5 \times\) per year & \(1 \times\) per year & \(1 \times \mathrm{per}\) year & \(1 \times\) per year & \(2 \times \mathrm{per}\) year & 4 x per year & \(12 \times\) per year & \(12 \times\) per year & \(156 \times\) per year \\
\hline Clean inside of windows & \(10 \times\) per year & 1 x per year & \(1 \times\) per year & \(2 \times\) per year & 4 x per year & \(12 \times\) per year & \(24 \times\) per year & \(52 \times \mathrm{per}\) year & \(156 \times\) per year \\
\hline Clean other glass surfaces such as mirrors and tables & \(7 \times\) per month & \(0.1 \times\) per month & \(1 \times\) per month & 2 x per month & \(4 \times\) per month & \(4 \times\) per month & \(17 \times\) per month & \(30 \times\) per month & \(61 \times\) per month \\
\hline Clean outside of refrigerator and other appliances & \(10 \times\) per month & \(0.2 \times\) per month & \(1 \times\) per month & \(2 \times\) per month & \(4 \times \mathrm{per}\) month & \(13 \times\) per month & \(30 \times\) per monuh & \(30 \times\) per month & \(61 \times\) per month \\
\hline Clesa spots or dirt on walls or doors & \(6 \times\) per morrth & \(0.1 \times\) per month & \(0.2 \times\) per month & \(0.3 \times\) per month & \(1 \times\) per month & \(4 \times\) per month & \(13 \times \mathrm{per}\) month & \(30 \times\) per month & \(152 \times\) per month \\
\hline
\end{tabular}

\section*{Source: Westat, 1987 .}


Table 6-8. Mean and Percentile Rankings for Exposure Time Per Event of Performing Houschokd Tasks


Table 6-9. Total Exposure Time for Ten Product Groups Most Frequently Used For Household Cleaning
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Products} & \multirow[t]{2}{*}{Mean (hrs/yr)} & \multicolumn{8}{|c|}{Percentile Rankings of Total Exposure Time (hrs/yr)} \\
\hline & & Oth & 10th & 25th & 50th & 75th & 90th & 95th & 100th \\
\hline Dish Detergents & 107 & 0.2 & 6 & 24 & 56 & 134 & 274 & 486 & 941 \\
\hline Glass Cleaners & 67 & 0.4 & 3 & 12 & 29 & 62 & 139 & 260 & 1,508 \\
\hline Floor Cleaners & 52 & 0.7 & 4 & 7 & 22 & 52 & 102 & 414 & 449 \\
\hline Furniture Polish & 32 & 0.1 & 0.3 & 1 & 12 & 36 & 101 & 215 & 243 \\
\hline Bathroom Tile Cleaners & 47 & 0.5 & 2 & 8 & 17 & 48 & 115 & 287 & 369 \\
\hline Liquid Cleansers & 68 & 0.2 & 2 & 9 & 22 & 52 & 122 & 215 & 2,381 \\
\hline Scouring Powders & 78 & 0.3 & 9 & 17 & 35 & 92 & 165 & 281 & 747 \\
\hline Laundry Detergents & 66 & 0.6 & 8 & 14 & 48 & 103 & 174 & 202 & 202 \\
\hline Rug Cleaners/Shampoos & 12 & 0.3 & 0.3 & 0.3 & 9 & 26 & 26 & 26 & 26 \\
\hline All Purpose Cleaners & 64 & 0.3 & 4 & 9 & 26 & 77 & 174 & 262 & 677 \\
\hline
\end{tabular}
a The data in Table 8 above reflect for only the 14 tasks included in the survey. Therefore, many of the durations reported in the table underestimate the hours of the use of the product group. For example, use of dish detergents to wash dishes is not included.

Source: Westat, 1987 b .

Table 6-10. Total Exposure Time of Painting Activity of Interior Painters (hrs)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Types of Paint} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Mean } \\
& \text { (hrs) }
\end{aligned}
\]} & \multirow[t]{2}{*}{Std. dev.} & \multicolumn{8}{|l|}{Percentile Rankings for Duration of Painting Activity (hrs)} \\
\hline & & & Min. & 10\% & 25\% & 50\% & 75\% & 90\% & 95\% & Max. \\
\hline Latex & 12.2 & 11.28 & 1 & 3 & 4 & 9 & 15 & 24 & 40 & 248 \\
\hline Oil-based & 10.68 & 15.56 & 1 & 1.6 & 3 & 6 & 10 & 21.6 & 65.6 & 72 \\
\hline Wood Stains and Varnishes & 8.57 & 10.85 & 1 & 1 & 2 & 4 & 9.3 & 24 & 40 & 42 \\
\hline
\end{tabular}

Source: Westat, 1987c.


Table 6-11. Exposure Time of Interior Painting Activity/Occasion (hrs) and Frequency of Occasions Spent Painting Per Year
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Types of Paint} & \multicolumn{2}{|l|}{Duration of Painting/Occasion (hrs)} & \multicolumn{2}{|l|}{Frequency of Occasions Spent Painting/Year} & \multicolumn{8}{|l|}{Percentile Rankings for Frequency of Occasions Spent Painting} \\
\hline & Mean & Median & Mean & Std. dev. & Min & 10\% & 25\% & 50\% & 75\% & 90\% & 95\% & Max. \\
\hline Latex & 2.97 & 3 & 4.16 & 5.54 & 1 & 1 & 2 & 3 & 4 & 9 & 10 & 62 \\
\hline Oil-based & 2.14 & 3 & 5.06 & 11.98 & 1 & 1 & 1 & 2 & 4 & 8 & 26 & 72 \\
\hline Wood Stains and Varnishes & 2.15 & 2 & 4.02 & 4.89 & 1 & 1 & 1 & 2 & 4 & 9 & 20 & 20 \\
\hline
\end{tabular}

Source: Westat, 1987c.

Table 6-12. Amount of Paint Used by Interior Painters
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Types of Paint} & \multirow[t]{2}{*}{Modian (gallons)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Mean } \\
\text { (gallons) }
\end{gathered}
\]} & \multirow[t]{2}{*}{Std. dev.} & \multicolumn{8}{|c|}{Percentile Renkings for Amount of Paint Used (gallons)} \\
\hline & & & & Min & 10\% & 25\% & 50\% & 75\% & 90\% & 95\% & Max. \\
\hline Latex & 3.0 & 3.89 & 4.56 & 0.13 & 1 & 2 & 3 & 5 & 8 & 10 & 50 \\
\hline Oil-based & 2.0 & 2.55 & 3.03 & 0.13 & 0.25 & 0.5 & 2 & 3 & 7 & 12 & 12 \\
\hline Wood Stains and Varnishes & 0.75 & 0.88 & 0.81 & 0.13 & 0.14 & 0.25 & 0.75 & 1 & 2 & 2 & 4.25 \\
\hline
\end{tabular}

for painting activity by paint type. Table 6-11 presents the mean and stañard exposure time for the painting activity per occasion for each paint type. A "painting occasion" is defined as a time period from start to cleanup (Westat 1987c). Table 6-11 also presents the frequency and percentile rankings of painting occasions per year. Table 6-12 presents the total amount of paint used by interior painters.

The methodology used to generate data in this survey is similar to the methodology used in the survey reported by Westat (1987a). Therefore, the same advantages and disadvantages associated with the Westat (1987a) data also apply to this study.

\subsection*{6.3. RECOMMENDATIONS}

In order to estimate consumer exposure to household products, several types of information are needed for the exposure equation. The information needed include frequency and duration of use, amount of product used, percent weight of the chemical found in the product, and for dermal exposure, the amount of the solution on the skin after exposure. The studies of Westat (1987a, b, and c) provide information on amount, duration, and frequency of use of household consumer products. The frequency and duration of use and amount of product used for some household products can be obtained from Tables 6-1 through 6-10. Exposure to chemicals present in common household products can be estimated by utilizing these data presented in these tables and the appropriate exposure equation. It should be noted that if these data are used to model indoor air concentrations, the values for time of use, time exposed after use, and frequency in the indoor air, should be the same values used in the dose equation for frequency and contact time for a given individual.

\subsection*{6.4. REFERENCES FOR CHAPTER 6}

Westat (1987a) Household solvent products - a national usage survey. Under Subcontract to Battelle Columbus Div., Washington DC. Prepared for U.S. Environmental Protection Agency, Washington, DC. Available from NTIS, Springfield, VA. PB88-132881.

Westat (1987b) National usage survey of household cleaning products. Prepared for U.S. Environmental Protection Agency, Office of Toxic Substances and Office of Pesticides and Toxic Substances, Washington, DC.

Westat (1987c) National household survey of interior painters. Prepared for U.S. Environmental Protection Agency, Office of Toxic Substances and Office of Pesticides and Toxic Substances, Washington DC.

\section*{7. REFERENCE RESIDENCE}

\subsection*{7.1 INTRODUCTION}

Within a residence, exposures occur not only by the inhalation route, but also by the ingestion and dermal routes. The factors needed to assess many aspects of these last two routes (e.g., food consumption, product use information, etc.) are contained in other chapters. The role of human activity patterns is discussed in Chapter 5, and factors related to product use are summarized in Chapter 6. The purpose of this chapter is to provide information on various residential factors that are needed to assess inhalation exposures-whether those exposures occur alone or in conjunction with dermal and/or ingestion exposures.

Exposure assessments in residential settings require information to define: (1) the availability of the chemical(s) of concern at a given place within the building, (2) the nature and degree of human presence at that location and time, and (3) certain characteristics of the residence. Very often, indoor exposure assessments must be undertaken with little or no direct knowledge of the environmental abundance of the chemical(s) of concern and only sketchy information to define the human presence. As a consequence, such exposure assessments must be assembled from a mix of observational, physical and chemical measurement data coupled to theoretical and empirical assumptions to fill information gaps. In residential exposure scenarios, definition of source-receptor relationships can take on special complexities because: (1) chemical concentrations can vary over time due to building-specific as well as chemical- and source-specific factors, (2) the human who incurs the exposure very often exerts some influence over these factors (particularly for the source), (3) for some types of indoor sources, room-to-room differences in concentration are likely to prevail, and (4) people tend to move from room to room and to come and go from the exposure scene.

The chemical mass balance of the house provides a deterministic framework for considering the interactions among sources and fates for each chemical of concern (Figure 7-1). The fate, in particular, tells the exposure analyst whether concerns may arise from the perspectives of inhalation, dermall, or ingestion exposure, or some combination thereof. For

Figure 7-1. Elements of Residential Exposure

example, use of a hard surface cleaner with volatile constituents can result in inhalation of chemicals that volatilize during/after application as well as dermal contact in the course of applying the cleaner. For a chemical conveyed by the residential water supply, both inhalation and dermal exposure can occur while showering, in addition to direct ingestion when drinking the water.

The extent of human exposure by these various routes depends on a number of factors. Some residential exposure factors are related to features of the building itself, such as total and room-specific volumes, surface areas, and airflow rates. Other factors are related to human presence, such as location/activity patterns and use of various consumer products that can release chemicals of concern. The focus of this chapter is on the characteristics of the residence. Residential construction and finishing materials and interior furnishings also are of interest because they can emit or absorb some chemicals of concern, but these factors generally are beyond the current scope of this document.

The remainder of this chapter provides information on various residential factors that can affect human exposure while indoors. Section 7.2 summarizes existing data on wholehouse and room-specific volumes. Section 7.3 lists indoor-outdoor air exchange rates and provides a basis for defining airflows within a residence that affect chemical transport. Section 7.4 provides information on one type of indoor source-the water supply-whose configuration is defined by the residence rather than the occupant. For completeness, factors related to occupant uses of the water are also presented.

\subsection*{7.2 INDOOR VOLUMES}

\subsection*{7.2.1 Volumes of Residences}

Residential Energy Consumption Survey (RECS) - No measurement surveys have been conducted to directly evaluate the range and distribution of residential volumes. Related data, however, are regularly collected through the U.S. Department of Energy's Residential Energy Consumption Survey (USDOE 1992). In addition to collecting information on energy use, this triennial survey collects data on housing characteristics, including direct measurements of total and heated floorspace for buildings visited by survey specialists. For a recent survey (1990), a statistical sample of over 5000 residences was surveyed,
representing 94 million households nationwide. Table 7-1 summarizes indoor volumes estimated from this survey for leading categories of housing; these volumes were derived from the floorspace data contained in the USDOE report using an assumed ceiling height of 8 \(\mathrm{ft}(2.44 \mathrm{~m})\).

The data in Table 7-1 also indicate a relationship between residential volume and both housing type and ownership. The predominant housing type-single-family detached homealso has the largest volume. Multifamily units and mobile homes have volumes averaging about half that of single-family detached homes, with single-family attached homes about halfway between these extremes. Within each category of housing type, owner-occupied residences average about 50 percent greater volume than rental units. The owner-occupied residences collectively account for two-thirds of the U.S. housing stock.

The relationship of other factors-household size and structure age--to residential volumes is shown in Table 7-2. The relationship with household size is of particular interest for purposes of exposure assessment; for example, one-person households would not include children. The data indicate that multi-person households occupy residences with volumes averaging about 50 percent greater than residences occupied by single-person households. Data on year of construction indicate a slight decrease in residential volumes between 1950 and 1980, followed by an increasing trend over the next decade.

\subsection*{7.2.2 Room Volumes and Surface Areas}

Volumes and Areas of Research Houses - Room volumes and surface areas have not been well characterized for the U.S. housing stock. However, there is information on several well-characterized houses that have been used for energy conservation and indoor air quality research. Four examples are given in Table 7-3; all houses were built in the late 1970s or early 1980s. Two of the houses-a two-story style and a ranch style--have been used by the National Institute of Standards and Technology (NIST, formerly National Bureau of Standards) for energy conservation and air quality research. The buildings were specified by NIST as "being typical of modern residential construction in 1977" (Emmerich and Persily 1994). A ranch style house used by EPA for indoor air quality research (Tichenor et al. 1990), like that specified by NIST, consists of a single story, and the two houses have

Table 7-1. Average Estimated Volumes of U.S. Residences
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Housing Type} & \multicolumn{6}{|c|}{Ownership} \\
\hline & \multicolumn{2}{|l|}{Owner-Occupied} & \multicolumn{2}{|c|}{Rental} & \multicolumn{2}{|c|}{All Units} \\
\hline & Vohume \({ }^{\text {l }}\) (m') & Percent of Total & Volume ( \(\mathrm{m}^{3}\) ) & Percent of Total & Volume (m') & Percent of Total \\
\hline \begin{tabular}{l}
Singlo-Family \\
Detached
\end{tabular} & 534 & 53.2 & 349 & 8.9 & 508 & 62.1 \\
\hline Singlo-Family Attached & 436 & 3.9 & 284 & 2.4 & 378 & 6.4 \\
\hline \[
\begin{aligned}
& \text { Multifamily } \\
& \text { (2-4 units) }
\end{aligned}
\] & 394 & 2.7 & 224 & 8.0 & 267 & 10.6 \\
\hline \[
\begin{aligned}
& \text { Multifamily } \\
& \text { (5+ Units) }
\end{aligned}
\] & 274 & 1.9 & 170 & 13.4 & 183 & 15.3 \\
\hline Mobile Home & 221 & 4.5 & 177 & 1.1 & 213 & 5.5 \\
\hline All Types & 494 & 66.2 & 239 & 33.8 & 408 & 100.0 \\
\hline
\end{tabular}
\({ }^{1}\) Volumes calculated from floor areas assuming a ceiling height of 8 feet.
Source: U.S. DOE 1992.

Table 7-2. Residential Volumes in Relation to Household Size and Year of Construction
\begin{tabular}{lcr}
\hline & \begin{tabular}{c} 
Volume \\
\(\left(\mathrm{m}^{3}\right)\)
\end{tabular} & Percent of Total \\
\hline Household Size & & \\
1 Person & 301 & \\
2 Persons & 422 & 24.9 \\
3 Persons & 420 & 16.6 \\
4 Persons & 504 & 14.8 \\
5 Persons & 464 & 7.1 \\
6 or More Persons & 450 & 3.8 \\
All Sizes & 408 & 100.0 \\
& & \\
Year of Construction & & \\
& & \\
1939 or before & 430 & 7.9 \\
1940 to 1949 & 373 & 14.3 \\
1950 to 1959 & 418 & 15.7 \\
1960 to 1969 & 400 & 22.8 \\
1970 to 1979 & 383 & 8.5 \\
1980 to 1984 & 384 & 5.4 \\
1985 to 1987 & 411 & 3.0 \\
1988 to 1990 & 562 & 100.0 \\
\hline All Years & 408 & \\
\hline
\end{tabular}
\({ }^{1}\) Volumes calculated from floor areas assuming a ceiling height of 8 feet.
Source: U.S. DOE 1992.

Table 7-3. Room Volumes and Surface Areas From Energy Conservation and Indoor Air Quality Research Houses
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Room or Zone} & \multirow[b]{2}{*}{Volume (m)} & \multicolumn{2}{|c|}{Surfice Area} \\
\hline & & Floor (m²) & Walls (m) \\
\hline \multicolumn{4}{|l|}{NIST Two-Story Style \({ }^{1}\) (Total Habitable Volume \(=420 \mathrm{~m}^{5}\) )} \\
\hline Living Room & 61 & 25 & 49 \\
\hline Dining Room & 42 & 17 & 40 \\
\hline Kitchen/Family Area & 75 & 31 & 55 \\
\hline Half-Bath & 8 & 3 & 18 \\
\hline Large Closet & 12 & 5 & 22 \\
\hline Utility Closet & 5 & 2 & 14 \\
\hline Attached Garage & 131 & 54 & 73 \\
\hline Master Bedroom & 69 & 28 & 52 \\
\hline Master Closet & 22 & 9 & 30 \\
\hline Master Bath & 11 & 4 & 20 \\
\hline Hall & 11 & 4 & 28 \\
\hline Bedroom 2 & 35 & 15 & 45 \\
\hline Bedroom 3 & 29 & 12 & 34 \\
\hline Bedroom 4 & 29 & 12 & 34 \\
\hline Bath & 11 & 4 & 20 \\
\hline \multicolumn{4}{|l|}{NIST Ranch Style \({ }^{1}\) (Total Habitable Volume \(=250 \mathrm{~m}^{3}\) )} \\
\hline LR/DR & 75 & 31 & 60 \\
\hline Kitchen & 28 & 12 & 34 \\
\hline Hall & 13 & 5 & 35 \\
\hline Manter Bedroom & 44 & 18 & 42 \\
\hline Master Bath & 11 & 5 & 24 \\
\hline Bedroom 2 & 33 & 14 & 36 \\
\hline Bedroom 3 & 31 & 13 & 36 \\
\hline Hall Bath & 15 & 6 & 24 \\
\hline Attached Garage & 89 & 37 & 62 \\
\hline \multicolumn{4}{|l|}{EPA Ranch Style \({ }^{2}\) (Total Habitable Volume \(=293 \mathrm{~m}\) )} \\
\hline Den/Kit./LR & 150 & 63 & 81 \\
\hline Hall & 12 & 5 & 24 \\
\hline Middle Bedroom & 34 & 14 & 27 \\
\hline Comer Bedroom & 33 & 14 & 27 \\
\hline Master Bedroom & 42 & 18 & 36 \\
\hline Master Bath & 10 & 4 & 8 \\
\hline Hall Bath & 12 & 5 & 7 \\
\hline \multicolumn{4}{|l|}{GEOMET Spiit Poyer Style (Totul Habitale Volume \(=311 \mathrm{~m}\) )} \\
\hline LR/Kit./DR & 100 & 41 & 36 \\
\hline Hall & 11 & 5 & 24 \\
\hline Front Bedroom & 23 & 8 & 28 \\
\hline Corner Bedroom & 21 & 9 & 34 \\
\hline Master Bedroom & 35 & 14 & 36 \\
\hline Master Bath & 8 & 3 & 18 \\
\hline Hall Bath & 9 & 4 & 20 \\
\hline Downstairs & 104 & 43 & 59 \\
\hline Integral Garage & 108 & 44 & 65 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Emmerich and Persily, 1994.
\({ }^{2}\) Sparks, 1988.
\({ }^{3}\) GEOMET, 1982.
}
similar volumes, in the range of 250 to \(300 \mathrm{~m}^{3}\). A two-story split-foyer frouse used by GEOMET (Koontz and Nagda 1989) for air quality and energy research has a habitable volume of \(311 \mathrm{~m}^{3}\). The house also includes an integral garage in the lower level; if the option for habitable space had been chosen instead of the garage, then the habitable volume would have been virtually identical to that of the two-story NIST residence ( \(420 \mathrm{~m}^{3}\) ). Thus, both the two-story residences have volumes very close to the national average ( \(408 \mathrm{~m}^{3}\) ) previously shown in Table 7-1.

Volumes of specific rooms are a function of both total house volume and interior design/layout. Across the four structures, the bedroom volumes varies by a factor of three, from \(21 \mathrm{~m}^{3}\) to \(69 \mathrm{~m}^{3}\), averaging \(35 \mathrm{~m}^{3}\). Bathroom volumes vary by a factor of two, from \(8 \mathrm{~m}^{3}\) to \(15 \mathrm{~m}^{3}\), averaging \(11 \mathrm{~m}^{3}\). The range of hallway volumes across these houses is quite narrow, from \(11 \mathrm{~m}^{3}\) to \(13 \mathrm{~m}^{3}\). Kitchen and living room volumes were not reported separately for two of the four houses because they are part of a series of interconnected rooms, but the cases where they were reported separately indicate a kitchen volume on the order of \(30 \mathrm{~m}^{3}\) and living room volume near \(60 \mathrm{~m}^{3}\). The surface-to-volume ratio for the floor (and, by analogy, the ceiling) is consistently 0.41 for these residences because a ceiling height of 8 feet ( 2.44 meters) was assumed in computing the volumes. The surface-tovolume ratio for walls varies from about 0.5 for open and interconnected areas (e.g., kitchen/dining room/living room) to about 2.0 for smaller enclosed areas such as closets, bathrooms, and hallways.

Surface Materials - Table 7-4 shows examples of assumed amounts (Tucker 1991) of selected products or materials used in constructing or finishing residential surfaces. Products used for floor surfaces include adhesive, varnish and wood stain, and materials used for walls include paneling, gypsum board, and wallpaper. Particleboard and chipboard most likely would be used for interior furnishings such as cabinets or shelves, but also could be used for decking or underlayment.
\begin{tabular}{|c|c|} 
DRAFT \\
DO \begin{tabular}{c} 
NOT QUOTE OR \\
CITE
\end{tabular} \\
\hline
\end{tabular}

Table 7-4. Examples of Products and Materials Associated with Floor and Wall Surfaces in Residences \({ }^{1}\)
\begin{tabular}{lc}
\hline Material Sources & \begin{tabular}{c} 
Assumed Amount of \\
Surface Covered
\end{tabular} \\
\hline Silicone caulk & \(0.2 \mathrm{~m}^{2}\) \\
Floor adhesive & \(10.0 \mathrm{~m}^{2}\) \\
Floor wax & \(50.0 \mathrm{~m}^{2}\) \\
Wood stain & \(10.0 \mathrm{~m}^{2}\) \\
Polyurethane wood finish & \(10.0 \mathrm{~m}^{2}\) \\
Floor varnish or lacquer & \(50.0 \mathrm{~m}^{2}\) \\
llywood paneling & \(100.0 \mathrm{~m}^{2}\) \\
Chipboard & \(100.0 \mathrm{~m}^{2}\) \\
Gypsum board & \(100.0 \mathrm{~m}^{2}\) \\
Wallpaper & \(100.0 \mathrm{~m}^{2}\) \\
\hline
\end{tabular}
\({ }^{1}\) After Tucker, 1991.

\subsection*{7.3 AIRFLOWS}


\subsection*{7.3.1 Background}

Major air transport pathways for airborne substances in residences include the following:
- Air exchange-Air leakage through windows, doorways, intakes and exhausts, and "adventitious openings" (i.e., cracks and seams) that combine to form the leakage configuration of the building envelope plus natural and mechanical ventilation;
- Interzonal airflows-Transport through doorways, ductwork, and service chaseways that interconnect rooms or zones within a building; and
- Local circulation-Convective and adjective air circulation and mixing within a room or within a zone.

The distribution of airflows across the building envelope that contribute to air exchange and the interzonal airflows along interior flowpaths is determined by the interior pressure distribution. The forces causing the airflows are temperature differences, the actions of wind, and mechanical ventilation systems. Basic concepts have been reviewed by ASHRAE (1993). Indoor-outdoor and room-to-room temperature differences create density differences that help determine basic patterns of air motion. During the heating season, warmer indoor air tends to rise to exit the building at upper levels by stack action. Exiting air is replaced at lower levels by an influx of colder outdoor air. During the cooling season, this pattern is reversed: stack forces during the cooling season are generally not as strong as in the heating season because the indoor-outdoor temperature differences are not pronounced.

The position of the neutral pressure level (i.e., the point where indoor-outdoor pressures are equal) depends on the leakage configuration of the building envelope. The stack effect arising from indoor-outdoor temperature differences is also influenced by the partitioning of the building interior. When there is free communication between floors or stories, the building behaves as a single volume affected by a generally rising current during the heating season and a generally falling current during the cooling season. When vertical communication is restricted, each level essentially becomes an independent zone. As the
wind flows past a building, regions of positive and negative pressure are created; positive pressures induce an influx of air, whereas negative pressures induce an outflow. Wind effects and stack effects combine to determine a net inflow or outflow.

The final element of indoor transport involves the actions of mechanical ventilation systems that circulate indoor air through the use of fans. Mechanical ventilation systems may be connected to heating/cooling systems that, depending on the type of building, recirculate thermally treated indoor air or a mixture of fresh air and recirculated air. Mechanical systems also may be solely dedicated to exhausting air from a designated area, as with some kitchen range hoods and bath exhausts, or to recirculating air in designated areas as with a room fan. Local air circulation also is influenced by the movement of people and the operation of local heat sources.

\subsection*{7.3.2 Air Exchange}

Air exchange is the balanced flow into and out of the building, and is composed of three processes: (1) infiltration - air leakage through random cracks, interstices and other unintentional openings in the building envelope; (2) natural ventilation -- airflows through open windows, doors, and other designed openings in the building envelope; and (3) forced or mechanical ventilation - controlled air movement driven by fans. For nearly all indoor exposure scenarios, air exchange is treated as the principal means of diluting indoor concentrations because outdoor levels are generally assumed to be zero. The air exchange rate is generally expressed in terms of air changes per hour ( ACH , with units of \(\mathrm{h}^{-1}\) ), the ratio of the airflow ( \(\mathrm{m}^{3} \mathrm{~h}^{-1}\) ) to the volume ( \(\mathrm{m}^{3}\) ).

Measurements with Perfluorocarbon Tracers - No measurement surveys have been conducted to directly evaluate the range and distribution of residential air exchange rates. Although a significant number of air exchange measurements have been carried out over the years, the diversity of protocols and study objectives make the formation of a representative database problematic. Since the early 1980s, however, an inexpensive perfluorocarbon tracer (PFT) technique (Dietz et al. 1986) has been used to measure time-averaged air exchange and interzonal airflows in more than 4,000 occupied residences using essentially similar
protocols. These measurement results have been compiled to allow various researchers to access the data (Versar 1990).

While the residences represented in the PFT database do not constitute a random sample of those across the United States, they nonetheless represent a compilation of homes visited in the course of about 100 separate field-research projects by various organizations, some of which involved random sampling and some of which involved judgmental or fortuitous sampling. Further analysis on the assembled data (Koontz and Rector 1995) indicate that the 10th percentile value of 0.18 ACH would be appropriate as a conservative estimator for air exchange in residential settings, and that a value of 0.45 ACH would be appropriate when a typical air exchange rate is desired. Statistical summaries of the data are presented in

Table 7-5.
In applying conservative or typical values of air exchange rates it is important to realize the limitations of the underlying data base. Although the estimates are based on thousands of measurements, the residences represented in the database are not a random sample of the United States housing stock. The sample population is not balanced in terms of geography or time of year. Statistical techniques were applied to compensate for some of these imbalances. Despite such limitations, the estimates in Table 7-5 are believed to represent the best available information on the distribution of air exchange rates across United States residences throughout the year.

Earlier Studies - Prior to the Koontz and Rector (1993) study, Nazaroff et al. (1987) aggregated the data from two earlier tracer-gas decay studies that, at the time they were conducted, were the largest U.S. studies to include air exchange measurements. The first (Grot and Clark 1981) was conducted in 255 dwellings occupied by low-income families in 14 different cities. The geometric mean \(\pm\) standard deviation for the air exchange measurements in these homes, with a median house age of 45 years, was \(0.90 \pm 2.13 \mathrm{ACH}\). The second study (Grimsrud et al. 1983) involved 312 newer residences, with a median age of less than 10 years. Based on measurements taken during the heating season, the geometric mean \(\pm\) standard deviation for these homes was \(0.53 \pm 1.71 \mathrm{ACH}\). Based on an aggregation of the two distributions with proportional weighting by the respective number of

Table 7-5. Summary Statistics for Air Exchange Rates (Air Changes Per Hour-ACH), by Region
\begin{tabular}{lccccc}
\hline & \begin{tabular}{c} 
West \\
Region
\end{tabular} & \begin{tabular}{c} 
North \\
Central \\
Region
\end{tabular} & \begin{tabular}{c} 
Northeast \\
Region
\end{tabular} & \begin{tabular}{c} 
South \\
Region
\end{tabular} & \begin{tabular}{c} 
All \\
Regions
\end{tabular} \\
\hline Arithmetic Mean & 0.66 & 0.57 & 0.71 & 0.61 & 0.63 \\
Arithmetic & 0.87 & 0.63 & 0.60 & 0.51 & 0.65 \\
Standard Deviation & 0.47 & 0.39 & 0.54 & 0.46 & 0.46 \\
Geometric Mean & 2.11 & 2.36 & 2.14 & 2.28 & 2.25 \\
Geometric & 0.20 & 0.16 & 0.23 & 0.16 & 0.18 \\
Standard Deviation & 0.43 & 0.35 & 0.49 & 0.49 & 0.45 \\
10th Percentile & 1.25 & 1.49 & 1.33 & 1.21 & 1.26 \\
50th Percentile & 23.32 & 4.52 & 5.49 & 3.44 & 23.32 \\
\hline 90th Percentile & & & & & \\
Maximum & & & & & \\
\hline
\end{tabular}

\footnotetext{
Source: Koontz and Rector, 1993.
}
houses studied, Nazaroff et al. (1987) developed an overall distribution with a geometric mean of 0.68 ACH and a geometric standard deviation of 2.01 .

\subsection*{7.3.3 Interzonal Airflows}

Background - Residential structures consist of a number of rooms that may be connected horizontally, vertically, or both horizontally and vertically. With some exceptions, the major variations in general residential layouts arise from the location of bedrooms relative to the area containing the kitchen, living room, and dining room (Rector and Koontz 1987). As illustrated in Figure 7-2, bedrooms usually are located either on the same floor as the kitchen or on a floor that is partly or completely above the kitchen. In some residences there is a basement below the kitchen floor, usually containing a recreation or family room, other special purpose rooms, and sometimes additional bedrooms. Before considering residential structures as a detailed network of rooms, it is convenient to divide them into one or more zones. At a minimum, each floor is defined as a separate zone. For indoor air exposure assessments, further divisions are sometimes made within a floor, depending on (1) locations of specific contaminant sources and (2) the presumed degree of air communication among areas with and without sources.

Defining the airflow balance for a multiple-zone exposure scenario rapidly increases the information requirements as rooms or zones are added. As depicted in Figure 7-3, a single zone system (considering the entire building as a single well-mixed volume) requires only two flows to define air exchange. Further, because air exchange is balanced flow (air does not "pile up" in the building, nor is a vacuum formed), only one number - the air exchange rate - is needed. With two zones, six airflows are needed to accommodate interzonal airflows plus air exchange; with three zones, twelve airflows are required. In some cases, the complexity can be reduced using judicious (if not convenient) assumptions. Interzonal airflows connecting nonadjacent rooms can be set to zero, for example, if flow pathways do not exist. Symmetry also can be applied to the system by assuming that each flow pair is balanced.

Relationship to House Volume and Air Exchange - A heuristic relationship between interzonal airflows and house volume and air exchange was developed by Koontz and Rector

Figure 7-2. Residential Configurations (after Rector and Koontz 1993)


KEY:
\(K=\) Kitchen \(\quad F R=\) Family Room or
DR = Dining Room Recreation Room
LR \(=\) Living Room \(\quad\) SPR \(=\) Special-Purpose
\(B R=\) Bedroom
Room

Figure 7-3. Airflows for multiple-zone systems


Two-zone System


Three-zone
System

\(\mathrm{N}-\mathrm{Zone}\) System Defined by \(\mathrm{N} \cdot(\mathrm{N}+1)\) Aifflows
(1995) using selected cases from the PFT database. Two situations were investigated: (1) bedrooms, for which communication with the remainder of the house may be restricter by the presence of doorways; and (2) the litchen, which generally has a more open communication path with adjacent areas. The PFT database contained approximately 1000 cases where researchers labeled a bedroom or the kitchen as separate zones. These cases were analyzed by normalizing the average interzonal airflows ( \(Q_{z}, m^{3} h^{-1}\) ) into and out of the zone by the volume ( \(\mathrm{V}, \mathrm{m}^{3}\) ) of the house (i.e., dividing the airflows by the house (volume) and regressing the normalized airflows against the whole-house air exchange rate. This averaging also served to symmetrically balance each set of inflow-outflow pairs. For the bedroom cases, the relationship between the normalized interzonal airflow ( \(\mathrm{Q}_{\mathrm{n}}, \mathrm{m}^{3} \mathrm{~h}^{-1} \mathrm{~m}^{-3}\) ) and air exchange rate ( \(\mathrm{N}, \mathrm{h}^{-1}\) ) was:
\[
\begin{equation*}
Q_{n}=\frac{Q_{z}}{V}=0.078+0.31 \mathrm{~N} \tag{1}
\end{equation*}
\]
where:
\(\mathbf{N}=\quad\) Whole-house air exchange rate
\(\mathbf{V}_{\mathbf{Z}}=\) Volume of house

For the kitchen cases, relationship between the normalized internal airflow and the air exchange rate was:
\[
\begin{equation*}
Q_{n}=\frac{Q_{z}}{V}=0.046+0.39 \mathrm{~N} \tag{2}
\end{equation*}
\]

Example Calculations - Based on typical values and relationships given above, characteristic airflows can be postulated for two-zone situations conceptualized as "bedroom versus remainder of the house" and "living room versus remainder of the house." For example, using Equation (1) and assuming a whole-house volume of \(408 \mathrm{~m}^{3}\) (Table 7-1), an average bedroom volume of \(35 \mathrm{~m}^{3}\) (Table 7-3), and an air exchange rate of \(0.45 \mathrm{~h}^{-1}\) (Table 7-5), the estimated interzonal airflow \(\left(Q_{2}\right)\) for the bedroom would be \((0.078+0.31 \times 0.45\) \(\left.h^{-1}\right) \times 408 \mathrm{~m}^{3}\), or \(88.7 \mathrm{~m}^{3} \mathrm{~h}^{-1}\). The living room, like the kitchen, is assumed to have freer
air communication with the rest of the house. Using Equation (2) above, the estimated interzonal airflow for the living room would be \(\left(0.046+0.39 \times 0.45 \mathrm{~h}^{-1}\right) \times 408 \mathrm{~m}^{3}\), or 90.4 \(m^{3} h^{-1}\). Multiplying the zone-specific volumes by the air exchange rate gives their respective indoor-outdoor airflow rates. For example, the living room volume of \(60 \mathrm{~m}^{3}\), multiplied by \(0.45 \mathrm{~h}^{-1}\), gives an indoor-outdoor airflow rate of \(27.0 \mathrm{~m}^{3}\) for the living room. The volumes and estimated airflows for these situations are summarized in Figure 7-4.

One cautionary note is in order when using the heuristic relationships described above. Some or many of the researchers contributing measurements to the PFT database used for the analysis may have defined a zone as a group of adjacent bedrooms, rather than an individual bedroom. If so, then the interzonal airflow rate for an individual bedroom is likely to be lower than indicated by the above relationship. Similarly, the living room, which generally has open communication with the rest of the house like the kitchen but also has a larger volume than the kitchen, might be expected to have a higher interzonal airflow rate than indicated by the above relationship.

\subsection*{7.3.4 Variability Within Zones}

Many exposure measurements are predicated on the assumption of uniform mixing within a room or zone of a house. Recent experimental work by Baughman et al. (1994) indicates that, for an instantaneous release from a point source in a room, fairly complete mixing is achieved within 10 minutes when convective flow is induced by solar radiation but up to 100 minutes is required under quiescent (nearly isothermal) conditions. Similar findings might be expected for a continuously emitting area source such as carpeting or a freshly painted wall.

Experiments in a Research House - The situation changes, however, if a human invokes a point source for a more prolonged period and remains in the immediate vicinity of that source. A series of experiments conducted by GEOMET (1989) for the USEPA involved controlled point-source releases of carbon monoxide (CO), each for a duration of 30 minutes, on several occasions in both the master bedroom and the kitchen. A "breathingzone" monitoring array was constructed using eight miniaturized continuous \(\mathbf{C O}\) monitors arranged at the corners of a cube centered on the release point, with each detector located

Figure 7-4. Characteristic Volumes and Airflow Rates for Two-zone Situations


Bedroom versus Remainder of House

Living Room
Volume \(=60 \mathrm{~m}^{3}\)
Remainder of House
Volume \(=348 \mathrm{~m}^{3}\)


Living Room versus Remainder of House
approximately 0.4 m from the release point. Monitoring was also conducted elsewhere in the release rooms and in the remainder of the house. Although a fairly uniform mixing was achieved soon after the release was completed, during the release the breathing-zone concentrations were as much as 2 to 3 times higher for the bedroom case (with the central air conditioner off) and as much as 10 times higher for the kitchen case (again with the air conditioner off). Because the kitchen has freer communication with the remainder of the house, a more distinct concentration gradient between the breathing zone and remainder of the kitchen zone was apparent.

Experiments in an Environmental Chamber - A more recent USEPA-sponsored investigation by Furtaw et al. (1994) involved a series of experiments in a controlledenvironment room-sized chamber to study spatial concentration gradients around a continuous point source. Sulfur hexafluoride \(\left(\mathrm{SF}_{6}\right)\) tracer gas was used to simulate the point source. \(\mathrm{SF}_{6}\) was sampled at the wearer's breathing zone, using a sampling tube connected to a harness, and at numerous points throughout the chamber. In close proximity (about 0.4 m ) to the source, the average monitored concentration was found to exceed concentrations several meters away by a factor that varies inversely with the ventilation intensity in the room. At typical room ventilation rates, the ratio of source-proximate to slightly-removed concentration was on the order of \(2: 1\). Of the cases studied by GEOMET, this chamber study would most closely resemble the bedroom case (i.e., limited communication with other rooms), for which a similar ratio was obtained.

\subsection*{7.4 WATER SUPPLY AND USE}

\subsection*{7.4.1 Background}

As noted in the introduction to this chapter, the residential water supply may convey certain chemicals to which occupants can be exposed through ingestion, dermal contact, or inhalation. Among indoor water uses, showering, bathing and handwashing of dishes or clothes provide the primary opportunities for dermal exposure. Virtually all indoor water uses will result in some volatilization of chemicals, leading to inhalation exposure.

The exposure potential for a given situation will depend on the source of water, the types and extents of water uses, and the extent of volatilization of specific chemicals.

\begin{abstract}
DRAFT DO HOT QUOTE OR CITE
\end{abstract}

According to the results of the 1987 Annual Housing Survey (U.S. Bureaiu of the Census, 1992), \(84.7 \%\) of U.S. housing units receive water from a public system or private company (as opposed to a well). Across the four major regions defined by the U.S. Census Bureau (Northeast, South, Midwest, and West), the percentage varies from 82.5 in the Midwest region to 93.2 in the West region (the Northeast and South regions both are very close to the national percentage). Water use is discussed separately below.

\subsection*{7.4.2 Water Use}

The primary types of water use indoors can be classified as showering/bathing, toilet use, clothes washing, dishwashing, and faucet use (e.g., for drinking, cooking, general cleaning, or washing hands). Substantial information on water use has been collected in California households by the Metropolitan Water District of Southern California (MWD 1991) and by the East Bay Municipal Utility District (EBMUD 1992). An earlier study by the U.S. Department of Housing and Urban Development (USDHUD 1984) monitored water use in 200 households over a 20 -month period. The household selection process for this study was not random; it involved volunteers from water companies and engineering organizations, most of which were located in large metropolitan areas. Nazaroff and Nero (1988) also assembled the results of several smaller surveys, typically involving between 5 and 50 households each.

A common feature of the various studies cited above is that the results were all reported in gallons per capita per day (gcd), or in units that could be easily converted to gcd. Most studies also provided estimates by type of use--shower/bath, toilet, laundry, dishwashing, and other (e.g., faucets). A summary of the various study results is provided in Table 7-6. There is generally about a threefold variation across studies for total in-house water use as well as each type of use. Central values for total use, obtained by taking the mean and median across the studies for each type of water use and then summing these means/medians across uses, are listed at the bottom of the table. The means and medians were summed across types of uses to obtain the mean for all uses combined because only a subset of the studies reported values for other uses.

Table 7-6. In-house Water Use Rates (ged), by Study and Type of Use
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Study & Total, all Uses & Shower or Bath & Toilet & Laundry & Dishwashing & Other \\
\hline MWD \({ }^{1}\) & 93 & 26 & 30 & 20 & 5 & 12 \\
\hline EBMUD \({ }^{2}\) & 67 & 20 & 28 & 9 & 4 & 6 \\
\hline USDHUD & 40 & 15 & 10 & 13 & 2 & - \\
\hline Cohen \({ }^{4}\) & 52 & 6 & 17 & 11 & 18 & - \\
\hline \multicolumn{7}{|l|}{Ligman \({ }^{\text {a }}\)} \\
\hline Rural & 46 & 11 & 18 & 14 & 3 & - \\
\hline Urben & 43 & 10 & 18 & 11 & 4 & - \\
\hline Lake & 42 & 9 & 20 & 7 & 4 & 2 \\
\hline Bennett \({ }^{4}\) & 45 & 9 & 15 & 11 & 4 & 6 \\
\hline Milne \({ }^{\text {d }}\) & 70 & 21 & 32 & 7 & 7 & 3 \\
\hline Reid \({ }^{4}\) & 59 & 20 & 24 & 8 & 4 & 3 \\
\hline USEPA4 & 40 & 10 & 9 & 11 & 5 & 5 \\
\hline Partridge \({ }^{4}\) & 52-86 & 20-40 & 4-6 & 20-30 & 8-10 & - \\
\hline Mean Across Studies \({ }^{5}\) & 59 & 17 & 18 & 13 & 6 & 5 \\
\hline Medien Across Studiess & 53 & 15 & 18 & 11 & 4 & 5 \\
\hline
\end{tabular}

Metropolitan Water District of Southern California, 1991.
East Bay Municipal Utility District, 1992.
U.S. Department of Housing and Urban Development, 1984.

Cited in Nazaroff and Nero, 1988.
5 The average value from each range reported in Partridge, as cited in Nazaroff and Nero (1988), was used to calculate the median across studies. The mean and median for the "Total, all Uses" column were obtained by summing across the means and medians for individual types of water use.

\subsection*{7.5 REFERENCES FOR CHIAPTER 7}

ASHRAE. (1993) ASHRAE Handbook: Fundamentals, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta, GA.

Baughman, A.V.; Gadgil, A.J.; Nazaroff, W.W. (1994) Mixing of a point source pollutant by natural convection flow within a room, Indoor Air, vol. 4, pp. 114-122.

Dietz, R.N.; Goodrich, R.W.; Cote, E.A.; Wieser, R.F. (1986) Detailed description and performance of a passive perfluorocarbon tracer system for building ventilation and air exchange measurements. Measured Air Leakage of Buildings, ASTM STP 904, H.R. Trechsel and P.L. Lagus, Eds., American Society for Testing and Materials, Philadelphia, PA, pp. 203-264.

EBMUD. (1992) Urban water management plan. East Bay Municipal Utility Water District, in written communication to J.B. Andelman, July 1992.

Emmerich, S.J.; Persily, A.K. (1994) Indoor Air Quality Impacts of Residential HVAC Systems Phase I Report: Computer Simulation Plan. Report No. NISTR 5346, National Institute of Standards and Technology, Gaithersburg, MD.

Furtaw, E.J.; Pandian, M.D.; Behar, J.V. (1994) An indoor personal air exposure model enhancement to account for proximity to emission sources. Presented at Sixth Conference of the International Society for Environmental Epidemiology and Fourth Conference of the International Society for Exposure Analysis (Joint Conference), Research Triangle Park, NC, September 1994.

GEOMET. (1982) Energy use, infiltration, and indoor air quality in tight, well-insulated residences: Characterization of test site and facilities. Contract RP-2042, Electric Power Research Institute, Palo Alto, CA.

GEOMET. (1989) Assessment of indoor air pollutant exposure within building zones. Report Number IE-2149, prepared for USEPA Office of Health and Environmental Assessment under Contract No. 68-02-4254, Task No. 235. GEOMET Technologies, Inc., Germantown, MD.

Grot, R.A.; Clark, R.E. (1981) Air leakage characteristics and weatherization techniques for low-income housing. In: Proceedings of the American Society of Heating, Refrigerating and Air-Conditioning Engineers Conference. Thermal Performance of Exterior Envelopes of Buildings. ASHRAE SP28, Atlanta, GA, pp. 178-194.

Grimsrud, D.T.; Sherman, M.H.; Sondereggen, R.C. (1983) Calculating Infiltration: implications for a construction quality standard. In: Proceedings of the American Society of Heating, Refrigerating and Air-Conditioning Engineers Conference. Thermal Performance of Exterior Envelopes of Buildings II. ASHRAE SP38, Atlanta, GA, pp. 422-449.

Koontz, M.D.; Nagda, N.L. (1989) Experimental Design and Protocols for Research at GEOMET's Test Houses: A Case Study. Design and Protocol for Monitoring Indoor Air Quality, ASTM STP 1002, N.L. Nagda and J.P. Harper, Eds., American Society for Testing and Materials, Philadelphia, PA, pp. 148-165.

Koontz, M.D.; Rector, H.E. (1993) Estimation of distributions for residential air Exchange rates, EPA Contract No. 68-D9-0166, Work Assignment No. 3-19, U.S.
Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC.

MWD. (1991) Urban water use characteristics in the metropolitan water district of southern california. Draft Report, Metropolitan Water District of Southern California, August 1991.

Nazaroff, W.W.; Nero, A.V. (eds.). (1988) Radon and its decay products in indoor air, John Wiley \& Sons, New York, NY.

Rector, H.E.; Koontz, M.D. (1987) Scoping and Feasibility Study: Room-to-room contaminant migration and OTS indoor air exposure assessments. Report Number IE1820, prepared for USEPA Office of Toxic Substances under Contract No. 68-024254, Task No. 59. Germantown, MD, GEOMET Technologies, Inc.

Sparks, L.E. 1988. Indoor Air Quality Model Version 1.0. Report No. EPA-600/8-88-097a. , Research Triangle Park, NC, U.S. Environmental Protection Agency.

Tichenor, B.A.; Sparks, L.A.; White, J.B.; Jackson, M.D. (1990) Evaluating sources of indoor air pollution, The Journal of the Air and Waste Management Association, vol. 40, pp. 487-492.

Tucker, W.G. (1991) Emission of organic substances from indoor surface materials. Environment International, 17:357-363.
U.S. Bureau of the Census. (1992) Statistical Abstract of the United States: 1992 (112th edition). Table No. 1230, p. 721, Washington, DC.

USDHUD. (1984) Residential water conservation projects: summary report. Report Number HUD-PDR-903, Washington, DC: U.S. Department of Housing and Urban Development, Office of Policy Development and Research.

USDOE. (1992) Housing Characteristics 1990, Report No. DOE/EIA-0314 (90), Washington, DC: U.S. Department \(\mathcal{E}^{\circ}\) Enarov, Energy Information Administration.

USEPA. (1992) Guidelines For Exposure Assessment, Federal Register, vol. 57, no. 104, pp. 22888-22938 (May 29).

Versar. (1989) Database of PFT Ventilation Measurements: Description and User's Manual, EPA Contract No. 68-02-4254, Task No. 178, Washington, D.C: U.S.Environmental Protection Agency, Office of Toxic Substances.

Versar. (1990) Database of PFT Ventilation Measurements: Description and User's Manual, EPA Contract No. 68-02-4254, Task No. 39, Washington, D.C: U.S.Environmental Protection Agency, Office of Toxic Substances.

Wilkes, C.R. (1994) Modeling human inhalation exposure to VOCs due to volatilization from a contaminated water supply. Doctoral Dissertation, Department of Civil Engineering, Carnegie Mellon University, Pittsburgh, PA, April 1994.

\section*{8. ANALYSIS OF UNCERTAINTIES}

Previous chapters have discussed exposure factors and algorithms for estimating exposure. Exposure factor values can be used to obtain a range of exposure estimates such as average exposure estimates, high-end estimates, and bounding estimates. This section discusses methods that can be used to evaluate and present the uncertainty associated with exposure estimates.

According to U.S. EPA (1992), uncertainty characterization and uncertainty assessment are two ways of describing uncertainty that may have different degrees of sophistication. Uncertainty characterization usually involves a qualitative discussion of the thought processes used to select or reject specific data, estimates, scenarios, etc. Uncertainty assessment is a more quantitative process that may range from simpler measures (i.e., ranges) and simpler analytical techniques (i.e., sensitivity analysis) to more complex measures and techniques. Its goal is to provide decision makers with information concerning the quality of an assessment, including the potential variability in the estimated exposures, major data gaps, and the effect these data gaps have on the exposure estimates developed. Uncertainty analysis allows the user or decision maker to better evaluate the assessment in the context of available data and assumptions. Thus, the decision making process can account for data integrity and completeness. The following subsections briefly describe procedures for analyzing and presenting the uncertainties in exposure assessments.

\subsection*{8.1. TYPES OF UNCERTAINTY}

Uncertainty in exposure assessment can be classified into three broad categories (U.S. EPA, 1992):
1. Uncertainty regarding missing or incomplete information needed to fully define exposure and dose (Scenario Uncertainty).
2. Uncertainty regarding some parameter (Parameter Uncertainty).
3. Uncertainty regarding gaps in scientific theory required to make predictions on the basis of casual inferences (Model Uncertainty).

Exposure assessments often are developed in a phased approach. The initial phase usually screens the scenarios that are not expected to pose much risk to eliminate them from more detailed, resource-intensive review. These often represent exposures that would fall on or beyond the high-end of the expected exposure distribution. Because screening-level analyses are usually included in the final exposure assessment, the final document may contain scenarios that differ quite markedly in sophistication, data quality, and amenability to quantitative expressions of uncertainty.

Identification of the sources of uncertainty in an exposure assessment is the first step in determining how to reduce that uncertainty. The types of uncertainty mentioned above can be further defined by examining their principal causes. The following sections discuss sources, characterization, and analytical methods.

\subsection*{8.1.1. Scenario Uncertainty}

The sources of scenario uncertainty include descriptive errors, aggregation errors, errors in professional judgment, and incomplete analysis.

Descriptive errors include information errors such as the current producers of the chemical and its industrial, commercial, and consumer uses. Information of this type is the foundation for fate-and-transport analysis and the eventual development of exposure pathways, scenarios, exposed populations, and exposure estimates.

Aggregation errors arise as a result of lumping approximations. Included among these are assumptions of homogeneous populations, and spatial and temporal approximations such as assuming steady-state conditions or using a 2 -dimensional mathematical model to represent a 3-dimensional aquifer.

Professional judgment comes into play in virtually every aspect of the exposure assessment process, including defining appropriate exposure scenarios, selecting environmental fate models, determining representative environmental conditions, etc. Judgment errors can be the result of limited experience, or can arise when the assessor has difficulty separating opinion from fact. Errors in professional judgment are also a source of uncertainty.

A potentially serious source of uncertainty in exposure assessments arises from incomplete analysis. For example, the exposure assessor may overlook an important exposure pathway due to lack of information regarding the use of a chemical in a consumer product. Although this source of uncertainty is essentially unquantifiable, it should not be ignored. At a minimum, the assessor should describe the rationale for excluding particular exposure scenarios; characterize the uncertainty in these decisions as high, medium, or low; and state whether they were based on data, analogy, or professional judgment. Where uncertainty is high, a sensitivity analysis can be used to establish credible upper limits on exposure by way of a series of "What if . . . ?" questions.

The uncertainty associated with non-numerical assumptions (such as the assessment's direction and scope) is generally characterized in a qualitative discussion of the rationale for selecting specific scenarios.

\subsection*{8.1.2. Parameter Uncertainty}

Sources of parameter uncertainty include measurement error, sampling error, variability, and use of generic or surrogate data. Measurement error may be random or systematic. Random error results from imprecise measurements. Systematic error is a bias or tendency to measure something other than what was intended.

Sampling error tends to reduce sample representativeness. The purpose of sampling is to measure some subset of a population to make an inference about the entire group. If the exposure assessment uses data that were generated for another purpose, such consumer product preference surveys or compliance monitoring surveys, uncertainty will arise if the data do not represent the exposure scenario being analyzed.

The inherent variability in environmental and exposure-related parameters is a major source of uncertainty. For example, meteorological and hydrological conditions change seasonally at a given location, soil characteristics exhibit large spatial variability, and human activity patterns depend on the age, sex, and geographic location of the population.

Generic or surrogate data are commonly used when site-specific data are not available. Examples include standard emission factors for industrial processes, generalized descriptions of environmental settings, and data pertaining to structurally-related chemicals as
surrogates for the chemical of interest. Since surrogate data introduce additional uncertainty, they should be avoided if actual data can be obtained.

Several approaches can be used to characterize uncertainty in parameter values. When uncertainty is high, the assessor may use bounding estimates of parameter ranges. Another method describes the range for each parameter including the lower- and upper-bound and "best estimate" values determined by available data or professional judgement. Sometimes the parameter range can be described with a probabilistic distribution. The appropriate characterization depends on several factors, including whether sensitivity analysis indicates that the results are significantly affected by variations within the range.

When a single parameter profoundly influences exposure estimates, the assessor should develop a probabilistic description of its range. If there are enough data to support their use, standard statistical methods are preferred. If the data are inadequate, expert judgment can be used to generate a subjective probabilistic representation. Expert judgments should be developed in a consistent, well-documented manner. Morgan et al. (1979 and 1984) and Rish (1988) describe techniques to solicit expert judgment.

Most approaches for analyzing uncertainty examine how uncertainty in parameter values translates into overall uncertainty in the assessment. Details may be found in reviews such as Cox and Baybutt (1981), Whitmore (1985), Inman and Helton (1988), Seller (1987), and Rish and Marnicio (1988). These approaches can generally be described (in order of increasing complexity and data needs) as: (1) sensitivity analysis, (2) analytical uncertainty propagation, (3) probabilistic uncertainty analysis, or (4) classical statistical methods. Sensitivity analysis is the process of changing one variable while leaving the others constant to determine its effect on the output. This procedure fixes each uncertain quantity at its credible lower and upper bounds (holding all others at their medians) and computes the results of each combination of values. The results identify the variables that have the greatest effect on exposure and help focus further information-gathering efforts. However, they do not indicate the probability of a variable being at any point within its range; therefore, this approach is most useful at the screening level to determine the need and direction of further analyses.

Analytical uncertainty propagation examines how uncertainty in individual parameters affects the overall uncertainty of the exposure assessment. The uncertainties associated with various parameters may propagate through a model very differently, even if they have approximately the same uncertainty. Some parameters are more important than others, and the model should be designed to account for their relative sensitivity. Since uncertainty propagation is a function of both the data and the model structure, this procedure evaluates both input variances and model sensitivity. Application of this approach to exposure assessment requires explicit mathematical expressions of exposure, estimates of variance for each variable of interest, and the ability to obtain a mathematical (analytical or numerical) derivative of the exposure equation.

Although uncertainty propagation is a powerful tool, it should be applied with caution: It is difficult to generate and solve the equations for the sensitivity coefficients. The technique is most accurate for linear equations, so any departure from linearity must be carefully evaluated. In addition, assumptions such as variable independence and error normality must be verified. Finally, the information to support required parameter variance estimates may not be readily available.

The most common example of probabilistic uncertainty analysis is the Monte Carlo method. This technique assigns a probability density function to each parameter, then randomly selects values from these distributions and inserts them into the exposure equation. Repeated calculations produce a distribution of predicted values that reflects the overall uncertainty in the inputs to the calculation.

The principal advantage of the Monte Carlo method is its very general applicability. There is no restriction on the form of the input distributions or the relationship between input and output, and computations are straightforward. However, Monte Carlo analysis does have its disadvantages: The exposure assessor should only consider using it when there are credible distribution data (or ranges) for most key variables. Even if these distributions are known, it may not be necessary to apply this technique. For example, if only average exposure values are needed, they can be computed as accurately by using average values for each input parameter. In addition, it is not necessary to use this technique if a bounding exposure estimates indicates that the particular pathway or chemical being assessed does not
present a significant risk. Also, it is somewhat cumbersome to assess the sensitivity of the results to input distributions: Changing the distribution of only one parameter requires rerunning the entire calculation several hundreds or thousands of times. Monte Carlo analysis does not tell the assessor which variables contribute the most to overall uncertainty, so it does not identify effective ways to reduce uncertainty. Finally, Monte Carlo analysis assumes that the distributions of each variable are independent. Any dependencies among variables need to be considered in the analysis.

Classical statistical methods can be used to analyze uncertainty in measured exposures. Given a data set of measured exposure values for a series of individuals, the population distribution may be estimated directly, provided that the sample design captures a representative sample. Measured exposure values can also be used to directly compute confidence intervals for percentiles of the exposure distribution (ACS, 1989). When the exposure distribution is estimated from measured exposures for a probability sample of population members, confidence interval estimates for percentiles of the exposure distribution are the primary uncertainty characterization. Data collection, survey design, and the accuracy and precision of measurement techniques should also be discussed.

Often the observed exposure distribution is skewed because many points within the sample distribution fall at or below the detection limit, or because few points fall at the upper end of the distribution. Fitting the data to a distribution type can be problematic in these situations because (1) there is no way to determine the distribution of values below the detection limit and (2) data are usually scant in low-probability areas (such as upper-end tails) where numerical values may vary widely. Thus, for many data sets, means and standard deviations may be good approximations, but the tails of the distribution will be much less well-characterized. For data sets where sampling is still practical, the statistical population may be stratified in order to oversample the tail and increase the precision and confidence in that portion of the distribution.

\subsection*{8.1.3. Model Uncertainty}

At a minimum, the exposure assessor should qualitatively describe the rationale for selection of conceptual and mathematical models. This discussion should address their
verification and validation status, how well they represent the situation being assessed (e.g., average or high-end estimates), and any plausible alternatives in terms of their acceptance by the scientific community.

Relationship and modeling errors are the primary sources of model uncertainty. Relationship errors include flaws in environmental fate models and poor correlations between chemical properties or between structure and reactivity. Even though performance statistics for test chemicals may be available and can guide the selection process, the exposure assessor must select the methodology most appropriate to the goals of the assessment.

Modeling errors arise because models are simplified representations of reality. Even after the exposure assessor has selected the most appropriate model, he or she still faces the question of how well the model represents actual conditions. This question is compounded by the overlap between modeling uncertainties and other uncertainties (e.g., natural variability in environmental inputs, model representativeness, aggregation errors). The dilemma facing exposure assessors is that many existing models (particularly the very complex ones) and the hypotheses contained within them cannot be fully tested (Beck, 1987), although certain components of the model may be testable. Even if a model has been validated under a particular set of conditions, its application in cases beyond the test system will introduce uncertainty.

A variety of approaches can be used to quantitatively characterize the uncertainty associated with model constructs. One approach uses different modeling formulations (including the preferred and plausible alternatives) and assumes that the range of outputs represents the range of uncertainty. This strategy is most useful when available data do not support any "best" approach, or when a model must be used to extrapolate beyond the conditions for which it was designed.

Where the data base is sufficient, the exposure assessor should characterize the uncertainty in the selected model by describing the validation and verification efforts. The validation process compares the performance of the model to actual observations under situations representative of those being assessed. Burns (1985) discusses approaches for model validation. The verification process confirms that the model computer code produces
the correct numerical output. In most situations, only partial validation is possible due to data deficiencies or model complexity.

\subsection*{8.2. PRESENTATION OF UNCERTAINTY ANALYSIS RESULTS}

Comprehensive qualitative analysis and rigorous quantitative analysis are of little value for use in the decision-making process, if their results are not clearly presented. To clarify, it should be emphasized that variability (the receipt of different levels of exposure by different individuals) is being distinguished from uncertainty (the lack of knowledge about the correct value for a specific exposure measure or estimate). Most of the data that have been presented in this document deal with variability directly. The uncertainty of the exposure factor data present is discussed qualitatively by describing the limitations and assumptions of each study or data set. Associated with each exposure estimate, will be assumptions about the setting, chemical, population characteristics, and how contact with the chemical occurs through the various exposure routes and pathways. The exposure assessor will have to examine many sources of information that bear either directly or indirectly on these categories. In addition, the assessor will be required to make many decisions regarding the use of existing information in constructing scenarios and setting up the exposure equations. It is not sufficient to merely present the results of these many decisions using different exposure descriptors. A discussion must be included describing key assumptions and parameters which have the greatest impact on the exposure estimate. The exposure assessor should strive to address questions such as:
- What is the basis or rationale for selecting these assumptions/parameters such as data, modeling, scientific judgment, Agency policy, "what if" considerations, etc.?
- What is the range or variability of the key parameters? How were the parameter values selected for use in the assessment? Were average, mean, or upper-percentile values chosen? If other choices had been made, how would the results have differed?
- What is the assessor's confidence (including qualitative confidence aspects) in the key parameters and the overall assessment? What are the quality and the extent of the data base supporting the selection of the chosen values?

In presenting the scenario results, the assessor should strive for a balanced and impartial treatment of the evidence bearing on the conclusions with the key assumptions highlighted. For these key assumptions, one should cite data sources and explain any adjustments of the data.

Although assessors have always used descriptors to communicate the kind of scenario being addressed, the 1992 Exposure Guidelines establish clear quantitative definitions for these risk descriptors. These definitions were established to ensure that consistent terminology is used throughout the Agency. The risk descriptors defined in the Guidelines include descriptors of individual risk and population risk. Individual risk descriptors are intended to address questions dealing with risks borne by individuals within a population, including not only measures of central tendency (e.g., average or median), but also those risks at the high end of the distribution. Population risk descriptors refer to an assessment of the extent of harm to the population being addressed. It can be either an estimate of the number of cases of a particular effect that might occur in a population (or population segment), or a description of what fraction of the population receives exposures, doses, or risks greater than a specified value. The data presented in the Exposure Factors Handbook is one of the tools available to exposure assessors to construct the various risk descriptors.

\subsection*{8.3. REFERENCES FOR CHAPTER 8}

American Chemical Society (ACS). (1989) Principles of environmental sampling. ACS Professional Reference Book, Laurence H. Keith, ed. Washington, DC.

Beck, M.B. (1987) Water quality modeling: A review of the analysis of uncertainty. Water Resour. Res. 23(8):1393-1442.

Burns, L.A. (1985) Validation methods for chemical exposure and hazard assessment models. EPA/600/D-85/297.

Cox, D.C.; Baybutt, P.C. (1981) Methods for uncertainty analysis. A comparative survey. Risk Anal. 1(4):251-258.

Inman, R.L.; Helton, J.C. (1988) An investigation of uncertainty and sensitivity analysis techniques for computer models. Risk Anal. 8(1):71-91.

Morgan, M.G.; Henrion, M.; Morris, S.C. (1979) Expert judgements for policy analysis. Brookhaven National Laboratory, Upton, NY. BNL51358.

Morgan, M.G.; Morris, S.C.; Henrion, M.; Amaral, D.A.L.; Rish, W.R. (1984) Technical uncertainty in quantitative policy analysis - a sulfur air pollution example. Risk Anal. 4(3):201-213.

Rish, W.R. (1988) Approach to uncertainty in risk analysis. Oak Ridge National Laboratory. ORNL/TM-10746.

Rish, W.R.; Marnicio, R.J. (1988) Review of studies related to uncertainty in risk analysis. Oak Ridge National Laboratory. ORNL/TM-10776.

Seller, F.A. (1987) Error propagation for large errors. Risk Anal. 7(4):509-518.
U.S. EPA (1992) Guidelines for exposure assessment notice. 57FR11888, May 29, 1992.

Whitmore, R.W. (1985) Methodology for characterization of uncertainty in exposure assessments. EPA/600/8-86/009.```

