
October 1974

BACKGROUND INFORMATION FOR STANDARDS OF PERFORMANCE: PHOSPHATE FERTILIZER INDUSTRY VOLUME 2: TEST DATA SUMMARY

U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Air Quality Planning and Standards
Research Triangle Park, North Carolina 27711

;		
•		

BACKGROUND INFORMATION FOR STANDARDS OF PERFORMANCE: PHOSPHATE FERTILIZER INDUSTRY VOLUME 2: TEST DATA SUMMARY

Emission Standards and Engineering Division

U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Air Quality Planning and Standards
Research Triangle Park, North Carolina 27711

October 1974

This report is issued by the Environmental Protection Agency to report technical data of interest to a limited number of readers. Copies are available free of charge to Federal employees, current contractors and grantees, and nonprofit organizations as supplies permit from the Air Pollution Technical Information Center, Environmental Protection Agency, Research Triangle Park, North Carolina 27711; or for a fee, from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161.

Publication No. EPA-450/2-74-019b

CONTENTS

Section	Page
INTRODUCTION	1
WET-PROCESS PHOSPHORIC ACID PLANTS	2
Fluoride Test Results	2
Facilities	2
References	16
SUPERPHOSPHORIC ACID PLANTS	17
Fluoride Test Results	17
Facilities	17
References	21
DIAMMONIUM PHOSPHATE PLANTS	22
Fluoride Test Results	22
Facilities	22
References	30
RUN-OF-PILE TRIPLE SUPERPHOSPHATE MANUFACTURING PLANTS	
AND STORAGE PILES	31
Fluoride Test Results	31
Facilities	31
References	40
GRANULAR TRIPLE SUPERPHOSPHATE PRODUCTION PLANTS	41
Fluoride Test Results	41
Facilities	41
References	49
GRANULAR TRIPLE SUPERPHOSPHATE STORAGE FACILITIES	50
Fluoride Test Results	50
Facilities	50
References	58
TECHNICAL REPORT DATA SHEET	50

INTRODUCTION

This document presents summaries of source tests and visible emission measurements cited in Volume 1 of this background information document. It is concerned principally with tests for fluorides, but also describes the facilities tested, their operating conditions, and characteristics of exhaust gas streams.

Facilities are identified by the same coding used in Volume 1. For example, for wet process phosphoric acid plants, Table 1 summarizes the results of EPA tests conducted in December of 1971 at Facility A. These same results are also plotted on Figure 7 of Volume 1 identified as EPA test results at Plant A.

Many of the tests summarized herein were conducted using EPA Method 13 which will be proposed in the Federal Register at or before the time of proposal of standards of performance for five processes in the phosphate fertilizer industry.

The types of facilities covered by the proposed regulation and covered in this document are as follows:

- 1. Wet-process phosphoric acid plants.
- 2. Superphosphoric acid plants.
- 3. Diammonium phosphate plants.
- 4. Run-of-pile triple superphosphate plants.
- 5. Granular triple superphosphate plants.
- 6. Storage of granular triple superphosphate.

WET-PROCESS PHOSPHORIC ACID (WPPA) PLANTS

Fluoride Test Results

A test program was undertaken by EPA to evaluate the best fluoride control equipment available for installation on new or substantially modified WPPA plants. Three plants, identified as A, B, and C were tested by EPA. Additional data reported include two plants, identified as D and E, tested during a joint study by the Manufacturing Chemists' Association and the U. S. Public Health Service. Data submitted by operators of plants A, B, and C are also included. All of the plants were operating at or near design capacity during the tests. All plants used scrubbers to control fluorides. These scrubbers were operating normally during all EPA tests.

Figure 1 presents emission rates (pounds of fluorides per ton of P_2^{0} input to the process) for the six plants.

The test results of 0.0638 lb F/ton P_2O_5 reported for Run Number 1 at Plant A are not believed to be accurate. Plant A routinely measures emissions from the plant. The highest valid fluoride emissions recorded by this plant in 1972 (78 test runs) was 0.053 lb F/ton P_2O_5 .

Facilities

A. Conventional multi-compartment tank reactor (Prayon continuous process) designed for a production rate of 660 TPD P_2O_5 . The plant was operating at 25 percent above design capacity during the EPA tests. EPA data are based on samples obtained using EPA Method 13 for fluorides. The operator collected samples using the State of Florida method for fluorides. In this method, sampling is conducted at the point of

average gas velocity. Two Greenberg-Smith impingers containing 20 milliliters of distilled water are used. The probe washing and impinger solutions are included in the analysis. Fluoride emissions from the reactor, the filter, and miscellaneous sources are controlled by a spray-concurrent packed scrubber. Gypsum pond water is used as the scrubbing medium. Opacity of exhaust gases was less than 10 percent during the EPA tests.

- B. Conventional multi-compartment tank reactor (Prayon continuous process) designed for a production rate of 550 TPD P₂0₅. The plant was operating at 30 percent above design capacity during the EPA tests. EPA data are based on samples obtained using Method 13. The operator collected samples using the State of Florida method. Fluoride emissions from the reactor, filter, and miscellaneous sources are controlled by a spray-crossflow packed scrubber. Gypsum pond water is used as the scrubbing medium. Opacity of exhaust gases was less than 10 percent during the EPA tests. Additional visible emission observations were made by EPA contractor personnel at another time. EPA Method 9 was used for these observations.
- C. Conventional multi-compartment tank reactor (Prayon continuous process) designed for a production rate of 525 TPD P_2O_5 . The plant was operating at 95 percent of design capacity during the first EPA test (designated C_1) and at 27 percent above design capacity during a second EPA test (designated C_2). EPA data are based on samples obtained using Method 13. The operator collected samples using the State of Florida method. Fluoride emissions from the reactor, filter, and

miscellaneous sources are controlled by a spray-crossflow packed scrubber. Gypsum pond water is used as the scrubbing medium.

Opacity of exhaust gases was less than 10 percent during EPA tests.

- D. Conventional multi-compartment tank reactor (Prayon continuous process) designed for a production rate of 660 TPD P_2O_5 . The plant was operating at six percent above design capacity during the test and was tested by the U. S. Public Health Service using their test method. The test train is similar to that for EPA Method 5 except there are three wet impingers. Fluoride emissions from the reactor, filter, and miscellaneous sources are controlled by a spray-crossflow packed scrubber. Gypsum pond water is used as the scrubbing medium. Opacity of exhaust gases was not reported.
- E. Two WPPA production lines controlled by a common scrubber. Each line is of the Dorr-Oliver single-tank reactor design and is designed for a production rate of 600 TPD P₂O₅. The plant was operating at 10 percent below design production rate during the test. The fluoride scrubbing system consists of two impingement scrubbers in series. This scrubbing system also serves part of a nearby triple superphosphate plant. This connection was closed off during sampling. The plant was tested by the U. S. Public Health Service using their test method. Opacity of exhaust gases was not reported.

FIGURE 1.

FLUORIDE EMISSIONS FROM WET-PROCESS
PHOSPHORIC ACID PLANTS

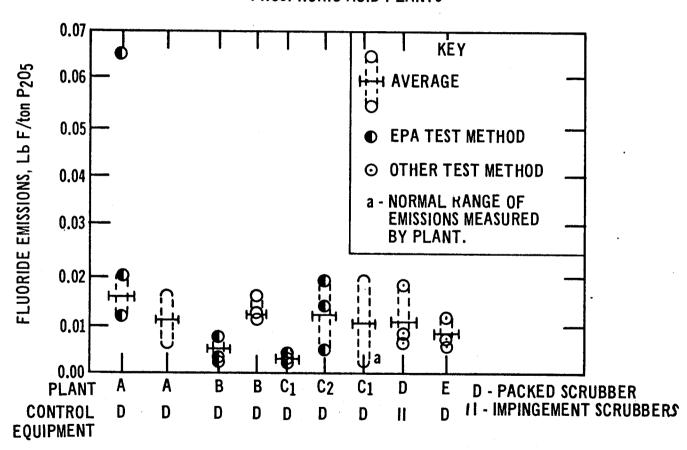


Table 1
FACILITY A
Summary of Results
of Test by EPA

Run Number	1 (a)	2	3	Average(a)
Date	12/14/71	12/15/71	12/15/71	-
Test Time-minutes	120	120	120	120
Production rate - TPH P205	31.6	31.6	31.6	31.6
Scrubber Operation				
Pressure Drop - In. H ₂ O	6	6	6	6
L/G ratio - gal/SCF	NM	1111	:111	0.043 ^(b)
No. transfer units	2.68	4.44	3.29	3.87
Stack Effluent				
Flow rate - DSCFM	34,327	33,384	34,635	34,010
Flow rate - DSCF/ton P205	65,212	63,421	65,797	64,609
Temperature - ^O F	35	85	84	··· 85
Water vapor - Vol.%	3.8	4.1	3.8	3.9
CO ₂ - Vol.% dry	<0.2	<0.2	0.5	< 0.3
02 - Vol.% dry	20 .0	20.2	20:5	20.3
CO - Vol.% dry	<0.2	<0.2	<0.2	<0.2
Visible Emissions - % opacity	<10	<10	<10	<10
Fluoride Emissions				
gr/DSCF	0.3069	0.9012	0.0020	0.0016
gr/ACF	0.0065	0.0012	0.0019	0.0016
lb/hr	2.02	0.35	0.59	0.47
lb/ton of P ₂ 0 ₅	0.0638	0.0112	0.0186	0.0149

NM - Not Measured

Reference 1.

⁽a) - Run Number 1 is not an accurate measure of this plant's emissions. The average is computed as the average emissions measured during run numbers 2 and 3.

⁽b) - Calculated using the design scrubbing liquor flow rate and the average measured stack gas flow rate.

Table 2
FACILITY A
Summary of Results
of Test by Operator

Run Number	1	2	Average	
Date	12/71	12/71		
Test Time-minutes	NR	NR		
Production rate - TPH P ₂ 0 ₅ Scrubber Operation	NR	NR .		
Pressure Drop - In. H ₂ O	NR	MR		
L/G ratio - gal/SCF	NR	NR		
No. transfer units	NR	NR		
Stack Effluent				
Flow rate - DSCFM				
Flow rate - DSCF/ton	MR	NR ·	•	
Temperature - ^O F	NR	NR		
Water vapor - Vol.%	MR	NR .		
CO ₂ - Vol.% dry	:IR	NR		
02 - Vol.% dry	NR	NR		
CO - Vol.% dry	NR	₽R .	*	
Visible Emissions - % opacity	NR	NR		
Fluoride Emissions				
gr/DSCF	-NR	NR		
gr/ACF	NR	NR		
lb/hr	0.22	0.55	0.39	
$1b/ton of P_2O_5$	0.007	0.018	0.013	

NR - Not Reported

Reference 2.

⁽a) - Calculated from the plants normal production rate and the emission rate (in 1b/hr) submitted by the plant operator.

Table 3
FACILITY B
Summary of Results
of Test by EPA

	•			
Run Number	1	2	3	Average
Date	1/4/72	1/5/72	1/5/72	-
Test Time-minutes	120	120	120	120
Production rate - TPH P ₂ 0 ₅ Scrubber Operation	30.0	30.3	30.5	30.3
Pressure Drop - In. H ₂ O	MM	1111	NM	₅ (a)
L/G ratio - gal/SCF	tura	Nr1	nrt	0.078 ^(b)
No. transfer units	2.82	3.28	3.96	3.69
Stack Effluent				
Flow rate - DSCFM Flow rate - DSCF/ton	15,981 31,962	16,832 33,331	16,825 33,098	16,546 32,797
Temperature - ^O F	93.8	94.2	96.4	94.8
Water vapor - Vol.%	4.9	5.2	5.2	5.1
CO ₂ - Vol.% dry	MM	NM	MM	-
0 ₂ - Vol.% dry	NI1	NM	MM	-
CO - Vol.% dry	NI 1	NM	N/1	: -
Visible Emissions - % opacity	<10	<10	<10	<10
Fluoride Emissions				
gr/DSCF	0.0010	0.0018	0.0009	0.0012
gr/ACF	0.0009	0.0016	0.0008	0.0011
lb/hr	0.135	0.252	0.125	0.171
1b/ton of P_2O_5	0.0045	0.0083	0.0041	0.0056

⁽a) - Design

NM - Not Measured.

Reference 3.

⁽b) - Calculated using the design scrubbing liquor flow rate and the average measured stack gas flow rate.

Table 4
FACILITY B
Summary of Results
of Test by Operator

	, co c 25 , p c			
Run Number	1	2	3	Average
Date	1/72	1/72	1/72	-
Test Time-minutes	, NR	NR	MR	;iP
Production rate - TPH P ₂ 0 ₅	NR	NR	NR	NR
Scrubber Operation				
Pressure Drop - In. H ₂ 0	NR	:IR	MR	HP.
L/G ratio - gal/SCF	NR	NR	NR	NP.
No. transfer units	NR	NR	NR	AR.
Stack Effluent	,			
Flow rate - DSCFM	NR	NR	NR -	NR
Flow rate - DSCF/ton	NR	#IR	MR	:IP
Temperature - ^O F	NR	NR	NR	IIP.
Water vapor - Vol.%	NR	NR	NR	. !IP.
CO ₂ - Vol.% dry	MR	NR	MR	:IR
02 - Vol.% dry	NR	MR	NR	מון:
CO - Vol.% dry	NR	NR	NR	TIP.
Visible Emissions - % opacity				
Fluoride Emissions				
gr/DSCF	·NR	NP	NR	NR
gr/ACF	NR	NR	NR.	HR
1b/hr	NR	NR	NR	NR
1b/ton of $P_2^{0(a)}$	0.013	0.012	0.015	0.013

NR - Not Reported

(a) - Calculated using the emission rate (in lb/ton) submitted by operator and the plant's normal production rate.

Reference 4.

Table 5 FACILITY B SUMMARY OF VISIBLE EMISSIONS (1)

Date: 2/26/74

Type of Plant: Wet-Process Phosphoric Acid

Type of Discharge: Stack from scrubber

Location of Discharge: Top of stack

Height of Observation Point: ∼ 5 ft

Height of Point of Discharge: 100 ft

Direction of Observer from Discharge Point: East

Distance from Observer to Discharge Point: ~ 400 ft

Description of Background: Sky

Description of Sky: Clear

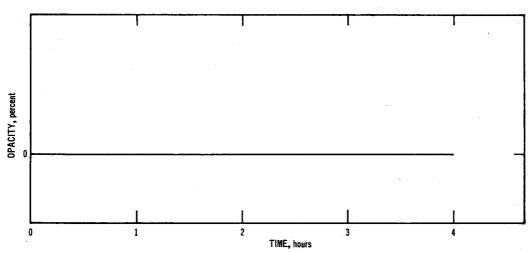
Wind Direction: From south

Wind Velocity: ~ 15 ~ 20

mi/hr

Color of Plume: White

Detached Plume: No


Interference of Steam Plume:

Duration of Observation: 4 hrs.

Summary of Data:

0. 2000.					
Opacity, Percent	Than Give	al to or Greater n Opacity	Opacity, Percent	Than Give	al to or Greater n Opacity
	Min.	Sec.		Min.	Sec.
5	0	0	55	-	-
10	-	•	60	-	-
iš	-	-	65	-	-
20	-	-	70	-	
25	-	-	75	-	-
30	•	•	80		-
35	-	-	85	-	-
40	-	-	90	-	-
45	-	-	95	-	•
, 50	-	-	100	•	-

Sketch Showing How Opacity Varied With Time:

(1) Two observers made simultaneous readings. The greater of their readings is reported. Reference 5.

Table 6
FACILITY C,
Summary of Results
of Test by EPA

	-			
Run Number	1	2	3	Average
Date	11/17/71	11/17/71	11/18/71	
Test Time-minutes	120	120	120	120
Production rate - TPH P ₂ 0 ₅	20.8	20.8	20.8	20.8
Scrubber Operation				
Pressure Drop - In. H ₂ 0	N:1	181	III1	6 ^(a)
L/G ratio - gal/SCF	1111	:111	:111	0.06 ^(b)
No. transfer units	2011	301	:01	-
Stack Effluent				
Flow rate - DSCFM	17,855	19,232	16,746	17,944
Flow rate - DSCF/ton $P_2^{0}_5$	50,904	56,118	47,697	51,573
Temperature - ^O F	75	73	72	73
Water vapor - Vol.%	1.1	1.0.	1.9	1.3
CO ₂ - Vol.% dry	311	101	M:1	-
02 - Vol.% dry	381	1111	481	·
CO - Vol.% dry	alti	1111	HM1	. -
Visible Emissions - % opacity	<10 ·	<10	<10	<10
Fluoride Emissions				
gr/DSCF	0.0003	0:0002	0.0005	0.0003
gr/ACF	0.0003	0.0002	0.0005	0.0003
lb/hr	0.046	0.033	0.072	0.050
lb/ton of P ₂ O ₅	0.0022	0.0016	0.0034	0.0024

MM - Not Measured

⁽a) - Design

⁽b) - Calculated from design scrubbing liquor flow rate and average measured stack gas flow rate.Reference 6.

Table 7
FACILITY C2
Summary of Results
of Test by EPA

Run Number	1	2	3	Average
Date	8/31/72	8/31/72	9/1/72	-
Test Time-minutes	120	120	80.5	107
Production rate - IPH P ₂ 0 ₅	26.9	27.1	29.1	27.7
Scrubber Operation			•	
Pressure Drop - In. H ₂ O	NM	NM	NM	6 ^(a)
L/G ratio - gal/SCF	0.07	0.08	0.05	0.07
No. transfer units	tun	Nf1	NM	:111
Stack Effluent				
Flow rate - DSCFM	14,363	12,462	19,149	15,325
Flow rate - DSCF/ton P ₂ O ₅	32,036	27,591	39,482	33,036
Temperature - ^O F	93	92	79	88
Water vapor - Vol.%	4.7	4.4	4.4	4.5
CO ₂ - Vol.% dry	NIT	N!1	MA	nn -
02 - Vol.% dry	III1	NI 1	ru i	121
CO - Vol.% dry	NH	NT ·	MM	un.
Visible Emissions - % opacity	<10	<10	<10	<10
Fluoride Emissions				
gr/DSCF	0.004	0.004	0.001	0.003
gr/ACF	0.004	0.003	0.001	0.003
lb/hr	0.5	0.4	0.1	0.3
$1b/ton of P_2O_5$	0.0184	0.0143	0.0031	0.0119
NM - Not Measured				

MM - Not Measured

(a) - Design
Reference 7.

Table 8 FACILITY C1

Summary of Results of Tests by Operator

Run Number	RANGE	
Date	1971	
Test Time-minutes	NR	
Production rate - TPH P ₂ O ₅	₂₅ (a)	
Scrubber Operation		
Pressure Drop - In. H ₂ O	11R	
L/G ratio - gal/SCF	11R	
No. transfer units	NR	
Stack Effluent	•	
Flow rate - DSCFM	NR	
Flow rate - DSCF/ton	MR	
Temperature - ^O F	NR	
Water vapor - Vol.%	MR	
CO ₂ - Vol.% dry	MR	
02 - Vol.% dry	HR	
CO - Vol.% dry	HR	
Visible Emissions - % opacity	IIR	
Fluoride Emissions		
gr/DSCF	NR	
gr/ACF	HR	
lb/hr	0.05-0.5	
1b/ton of P ₂ 0 ₅	0.002-0.02	
NR - Not Reported		
(a) - Normal production rate (not re		
(b) - Calculated from assumed produc	tion rate and emission rates (in l	b/

(b) - Calculated from assumed production rate and emission rates (in lb/ton) submitted by operator.

Reference 8.

Table 9
FACILITY D
Summary of Results of
Test by U. S. Public Health Service

Run Number	1	2	3	Average
Date	HR	NR	11R	-
Test Time-minutes (a)	NR	NR	$MR_{(\chi_{N,N}, \gamma_{N,N})}$	- .
Production rate - TPH P ₂ 0 ₅ Scrubber Operation	28.5	28.9	28.8 · · · · · · · · · · · · · · · · · ·	28.7
Pressure Drop - In. H ₂ O	NR	NR	NR	-
L/G ratio - gal/SCF	0.043	0.042	0.044	0.043
No. transfer units	NR	11R	NR .	
Stack Effluent				
Flow rate - DSCFM (b)	18,685	19,118	18,338	18,714
Flow rate - DSCF/ton P_2O_5 (b)	39,189	39,691	38,204	39,028
Temperature - OF	90	90	90	90
Water var - Vol.%	NR	NR	NR	NR
CO2 - Vol.% dry	. NR	NR	NR.	NR
02 - Vol.% dry	NR	NR	ŅR	NR
CO '- Vol.% dry	NR	" NR .	NR	NR
Visible Emissions - % opacity	NR .	NR	HR .	NP.
Fluoride Emissions				
gr/DSCF	0.0032	0.0015	0.0011	0.0019
gr/ACF	NR	NR	NR	NR
1b/hr .	0.513	0.246	0.173	0.311
lb/ton of P ₂ 0 ₅	0.0180	0.0085	0.0060	0.0108

NR - Not Reported

⁽a) - Probably 15 minutes per sample

⁽b) - Calculated, not reported Reference 9.

Table 10 FACILITY E

Summary of Results of Test by U. S. Public Health Service

Run Number	1	2	3	Average
Date	NR	NR	NR	NR _.
Test Time-minutes(a)	NR	NR	HP.	TIR TIP
Production rate - TPH P_20_5 (b)	e 45 . 4	45.2	45.1	45.3
Scrubber Operation			•	
Pressure Drop - In. H ₂ O	NR	MR	NR	NR
L/G ratio - gal/SCF	NR	ПR	NR	NR
No. transfer units	NR	NR	MR	NR
Stack Effluent				
Flow rate - DSCFM	16,670	16,670	16,670	16,670
Flow rate - DSCF/ton P ₂ 0 ₅	22,031	22,128	22,177	22,112
Temperature - ^O F	NR	NR	NR	NR
Water vapor - Vol.%	NR	HR	TIR	NR
CO ₂ - Vol.% dry	NR	MR	NR	e e NR
02 - Vol.% dry	MR	HR	NR	NR
CO - Vol.% dry	NR	NR	NR	NR
Visible Emissions - % opacity	NR	· NR	NR	NR
Fluoride Emissions				
gr/DSCF	0.0037	0.0020	0.0024	0.0027
gr/ACF	NR	i NR	NR	NR
1b/hr	0.508	0.271	0.325	0.368
1b/ton of P ₂ O ₅	0.0112	0.0060	0.0072	0.0081

NR - Not Reported

Reference 9.

⁽a) - Probably 15 minutes per sample.

⁽b) - Calculated, not measured.

REFERENCES

Wet Process Phosphoric Acid Plant Data

- 1. Emission Test Report for WPPA Facility A, prepared for EPA by Environmental Engineering, Inc., Contract No. CPA-70-82, EPA Test No. 71-CI-36.
- 2. Data provided to EPA by the owner of WPPA Facility A.
- 3. Emission Test Report for WPPA Facility B, prepared for EPA by Environmental Engineering, Inc., Contract No. CPA-70-82, EPA Test No. 72-CI-1.
- 4. Data provided to EPA by the owner of WPPA Facility B.
- 5. "A Review of Field Conditions and Observational Variables Encountered During the Determination of Visible Emissions in the Phosphate Industry for the Environmental Protection Agency," March, 1974, prepared for EPA by Environmental Science and Engineering, Inc.
- 6. Emission Test Report for WPPA Facility C, prepared by EPA and Environmental Engineering, Inc., EPA Test No. 71-CI-31.
- 7. Emission Test Report for WPPA Facility C (Retest), prepared for EPA by Environmental Engineering, Inc., Contract No. 68-02-0232, EPA Test No. 73-PSA-2.
- 8. Data provided to EPA by the owner of WPPA Facility C.
- 9. <u>Atmospheric Emissions from Wet-Process Phosphoric Acid Manufacturers</u>, U.S. Department of Health, Education and Welfare. NAPCA No. AP-57, April, 1970.

SUPERPHOSPHORIC ACID (SPA) PLANTS

Fluoride Test Results

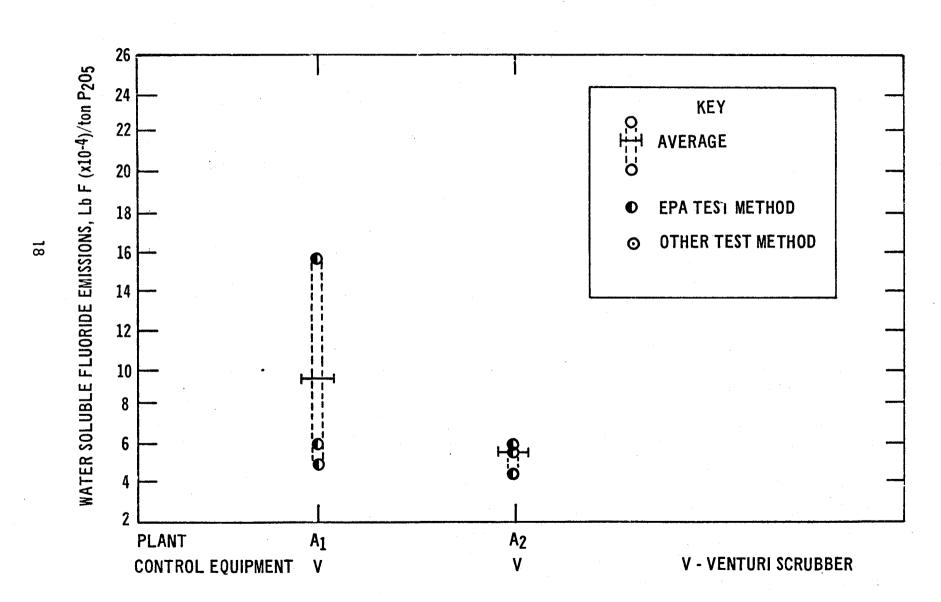

A test program was undertaken by EPA to evaluate the best fluoride control equipment available for installation on new or substantially modified superphosphoric acid fertilizer plants. Only one plant, identified as A, was tested since this plant has demonstrated far better fluoride control than any other SPA fertilizer plant. The plant uses a scrubber to control fluorides. The scrubber was operating normally during the EPA tests.

Figure 2 presents the emission rate (pounds of fluoride per ton of P_2^{0} input to the process) for the plant.

Facilities

A. This facility uses a vacuum evaporator to produce 70-72 percent P_2O_5 phosphoric acid (SPA) from 54 percent P_2O_5 phosphoric acid. The design production rate is 280 TPD P_2O_5 . The plant was operating at 25 percent above design capacity during the EPA tests. Data are based on samples obtained using EPA Method 13. This facility was tested twice, and the two tests are designated A_1 and A_2 , respectively. Fluoride emissions from the barometric condenser hotwell and the product acid cooling tank are controlled by a water-induced venturi scrubber. Gypsum pond water is used as the scrubbing medium. Opacity of stack gases was less than 10 percent.

FIGURE 2
FLUORIDE EMISSIONS FROM SUPERPHOSPHORIC ACID PLANTS

2	Run Number	1	2	3	Averag e
٠,	Date	11/19/71	11/19/71	11/19/71	
	Test time - minutes	120	120	120	120
	Production rate - TPH P_20_5	14.6	14.6	14.6	14.6
	Scrubber Operation				
	Pressure drop - In. H ₂ O	NM .	NM	NM	0.1 ^(a)
	L/G ratio - gal/SCF	NM	NM	NM	0.2 ^(a)
	No. transfer units	MM	ММ	NM	<u>.</u>
	Stack Effluent				
	Flow rate - D.	420	420	420	420
	Flow rate - DSCF/ton P ₂ 0 ₅	1726	1726	1726	1726
	Temperature - °F	72	72	71	72
	Water vapor - Vol. %	1.9	1.9	1.8	1.9
	CO ₂ - Vol. % dry	<0.2	NM	NM	- ·.
	0 ₂ - Vol. % dry	19.2	ŃМ	NM	<u>.</u>
	CO - Vol. % dry	<0.2	NM	NM	· . · . · . · . · . · . · . · . ·
į	Visible Emissions - % opacity	<10	<10	<10	<10
	Fluoride Emissions	,			
	yr/DSCF	0.0022	0.0062	0.0020	0.0035
	gr/ACF	0.0022	0.0061	0.0020	0.0035
-	lb/hr	0.008	0.022	0.007	0.012
	$1b/ton of P_2O_5$	0.0006	0.0015	0.0005	0.0009

NM - Not Measured (a) - Typical value Reference 1.

Run Number	1	2	3	Average
Date	8/29/72	8/29/72	8/30/72	
Test time - minutes	120	120	120	120
Production rate - TPH P_2^{0} 5	11.86	11.73	13.19	12.26
Scrubber Operation				
Pressure drop - In. H ₂ O	MM	MM	MM	0.1 ^(a)
L/G ratio - gal/SCF	MM	MM	NM	0.2 ^(a)
No, transfer units	MM	NM	NM	-
Stack Effluent				
Flow rate - DSCFM	305	302	308	305
Flow rate - DSCF/ton P205	1538	1549	1400	1496
Temperature - °F	77.5	82	82	80.5
Water vapor - Vol.%	2.8	3.6	1.5	2.6
CO ₂ - Vol. % dry	ИМ	NM	NM	-
0 ₂ - Vol. % dry	MK	NM	NM	-
CO - Vol. % dry	MM	NM	NM	-
Visible Emissions - % opacity	<10	<10	<10	<10
Fluoride Emissions				
gr/DSCF	0.0021	0.0019	0.0026	0.0022
gr/ACF	0.0020	0.0018	0.0025	0.0021
lb/hr	0.0054	0.0048	0.0069	0.0057
1b/ton of P ₂ 0 ₅	0.00046	0.00041	0.00052	0.00046
= -				

NM - Not Measured (a) - Typical value

Reference 2.

REFERENCES

Superphosphoric Acid Plant Data

- 1. Emission Test Report for SPA Facility A, prepared for EPA by Environmental Engineering, Inc., Contract No. CPA 70-82, EPA Test No. 71-CI-32.
- 2. Emission Test Report for SPA Facility A (Second Test), prepared for EPA by Environmental Engineering, Inc., Contract No. 68-02-0232, EPA Test No. 73-PSA-1.

DIAMMONIUM PHOSPHATE (DAP) PLANTS

Fluoride Test Results

A test program was undertaken by EPA to evaluate the best fluoride control equipment available for installation on new or substantially modified DAP plants. Two plants, identified as A and B were tested by EPA.

Emission data submitted by operators of Plants A and B are also reported. Both plants use scrubbers to control fluorides. The scrubbers were operating normally during all EPA tests.

Figure 3 presents the emission rates (pounds of fluorides per ton of P $_{\rm j}$ input to the process) for the two plants.

Facilities

- A. Conventional continuous DAP manufacturing train consisting of a reactor, a granulator, a dryer, and a cooler. Reactor-granulator emissions, dryer emissions, and cooler emissions are vented to individual venturi scrubbers followed by spray-crossflow packed scrubbers. EPA data are based on samples collected using Method 13. Operator data are based on samples collected using the state of Florida method for fluorides. The design production rate is 331 TPD P_2O_5 . The plant was operating at 53 percent above the design production rate during the EPA test. Production rate during the operator's test is unknown. Opacity of exhaust gases was less than 10 percent.
- B. Conventional DAP manufacturing train consisting of a reactor, a granulator, a dryer, and a cooler. The design production rate is 345 TPD P_20_5 . Reactor-granulator emissions, dryer emissions, and

cooler emissions are vented to individual venturi scrubbers followed by spray-crossflow packed scrubbers. The scrubbing medium used in the venturi scrubbers is 25 percent P_2O_5 phosphoric acid. Gypsum pond water is used in the packed scrubbers. The plant operator collected data while fluoride free water was being used in the packed scrubbers controlling the reactor-granulator and dryer emissions. The plant tests were performed using the company's own test method. This method is similar to EPA Method 13 except that sampling is conducted non-isokinetically, a particulate and condensate collector is used before the impingers, and the first impinger contains 100 milliliters of weak sodium hydroxide solution. EPA samples were collected using EPA Method 13. Opacity of exhaust gases and production rate during operator conducted tests are unknown.

FIGURE 3

FLUORIDE EMISSIONS FROM DIAMMONIUM PHOSPHATE PLANTS

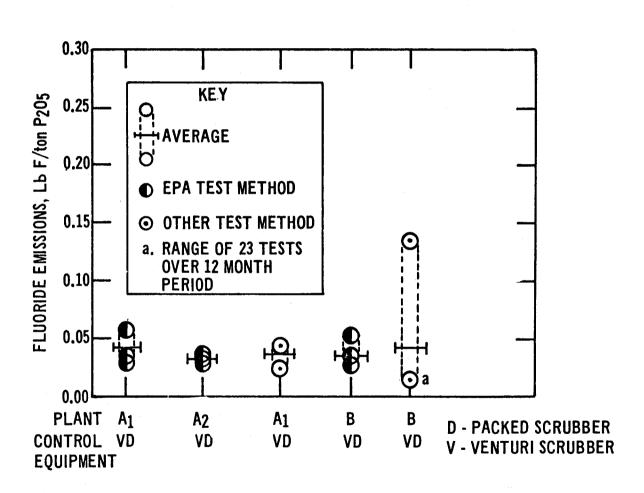


Table 13

Run Number	1	2	3	Average
Date	1/19/72	1/20/72	1/20/72	-
Test time - minutes	120	120	120	120
Production rate - TPH P ₂ 0 ₅	21	22	21	21
Scrubber Operation				₩.
Pressure drop - In. H ₂ 0	NM	NM	NM	1-5 ^(a)
L/G ratio - gal/SCF	NM	NM	NM	0.012 ^(b)
No. transfer units	1.7	2.0	1.6	1.8
Stack Effluent				
Flow rate - DSCFM	106,917	99,051	98,964	101,644
Flow rate - DSCF/ton P205	305,477	270,139	282,754	286,123
Temperature - °F	94.6	100.0	99.7	98.1
Water vapor - Vol. %	4.6	5.4	5.6	5.2
CO ₂ - Vol. % dry	NM	NM	NM	•
0 ₂ - Vol. % dry	NM	NM	NM	-
CO - Vol. % dry	NM	NM	NM	, -
Visible Emissions - % opacity	<10	<10	<10	<10
Fluoride Emissions				
gr/DSCF	0.0012	0.0007	0.0006	0.0008
gr/ACF	0.0011	0.0007	0.0006	0.0008
lb/hr	1.10	0.59	0.51	0.73
1b/ton of P ₂ 0 ₅	0.0523	0.0270	0.0243	0.0345

NM - Not Measured (a) - Normal range (b) - Estimate Reference 1.

Run Number	1	2	3	Average
Date	9/26/72	9/27/72	9/27/72	.* -
Test time - minutes	120	120	120	120
Production rate - TPH $P_2 O_5$	20.7	20.7	20.7	20.7
Scrubber Operation	·			
Pressure drop - In. H ₂ O	NM	NM	NM	NM
L/G ratio - gal/SCF	NM	NM	NM	NM
No. transfer units	NM	NM	NM	NM
Stack Effluent				
Flow rate - DSCFM	94,225	85,586	80,346	86,719
Flow rate - DSCF/ton $P_2^0_5$	273,114	48,075	232,887	251,359
Temperature - °F	109	109	111	109.7
Water vapor - Vol. %	6.1	6.3	6.6	6.3
CO ₂ - Vol. % dry	NM	NM	NM	· -
0 ₂ - Vol. % dry	NM	NM	NM	. - ,
CO - Vol. % dry	NM	NM	NM	-
Visible Emissions - % opacity	<10	<10	<10	<10
Fluoride Emissions				
gr/DSCF	0.0008	0.0008	0.0008	0.0008
gr/ACF	0.0007	0.0007	0.0007	0.0007
lb/hr	0.67	0.56	0.53	0.59
$1b/ton of P_2O_5$	0.0324	0.0272	0.0261	0.0286

NM - Not Measured

Réference 2.

Table 15 FACILITY A Summary of Results of Test by Operator

· ·				
Run Number	1	2	3	Average
Date	1/19/72	1/19/72	1/19/72	🕳 i ij
Test time - minutes	NR	NR	NR	NR ···
Production rate - TPH $P_2 _5$	NR	NR-	NR	28.20 2 NR (18.20.2011).
Scrubber Operation				of the state
Pressure drop - In. H ₂ 0	NR	NR	NR	NR .
L/G ratio - gal/SCF	NR	NR	ANR .	NR Contraction
No. transfer units	NR	NR	NR	NR
Stack Effluent				3.5
Flow rate - DSCFM	NR	NR	NR	NR
Flow rate - DSCF/ton P ₂ 0 ₅	NR	NR	NR	324,427 ^(a)
Temperature - °F		."		Andrew State of the State of th
Water vapor - Vol. %	NR	NR	NR	NR
CO ₂ - Vol. % dry	NR	NR	NR	NR 100 100 100 100 100 100 100 100 100 10
0 ₂ - Vol. % dry	NR	NR	NR	NR 1 1 1 1
CO - Vol. % dry	NR	NR	NR	NR 14 14
Visible Emissions - % opacit	y NR	NR	NR	³ NR
Fluoride Emissions				And Charles
gr/DSCF ^(b)	0.0006	0.0007	0.0009	0.0007
gr/ACF	NR	¹ NR	NR	NR 14 14 14
lb/hr	0.55	0.73	0.87	0.72
lb/ton of P ₂ 0 ₅ ^(c)	0.026	0.035	0.041	0.034

⁽a) _ Calculated using an assumed stack gas flow rate.(b) _ Calculated by using emission data submitted by plant officials and an assumed stack gas flow rate.

⁽c) - Calculated by using emission data submitted by plant officials and normal production rate of plant.

NR - Not reported

Table 16
FACILITY B
Summary of Results of Test by EPA

Run Number	1	2	3	Average
Date	3/21/73	3/21/73	3/22/73	- ,
Test time - minutes	120	120	120	120
Production rate - TPH P ₂ 0 ₅	14.0	15.3	18.2	15.8
Scrubber Operation				
Pressure drop - In. H ₂ 0	ИМ	ММ	NM	2-4 ^(a)
L/G ratio - gal/SCF	NM	NM	NM	0.013 ^(b)
No. transfer units	NN .	MK	NM .	-
Stack Effluent				
Flow rate - DSCFM	135,060	142,550	129,498	135,703
Flow rate - DSCF/ton P205	578,829	559,020	426,916	521,588
Temperature - °F	112	112	114	113
Water vapor - Vol.%	6.5	6.6	6.5	6.5
CO ₂ - Vol. % dry	0.3	0.6	0.2	0.4
0 ₂ - Vol. % dry	20.5	21.0	20.2	
CO - Vol. % dry	<0.6	<0.6	<0.6	<0.6
Visible Emissions - % opacity	<10	<10	<10	<10
Fluoride Emissions				
gr/DSCF	0.0004	0.0007	0.0004	0.0005
gr/ACF	0.0003	0.0006	0.0003	0.0004
lb/hr	0.485	0.849	0.465	0.600
1b/ton of P ₂ 0 ₅	0.035	0.055	0.026	0.039

NM - Not Measured

⁽a) - Normal range per scrubber (reported by plant operator).

⁽b) - Calculated by using design scrubbeng water flow rates and the measured average gas flow rate. Reference 4.

· Table 17 FACILITY B

Summary of Results of Test by Operator

Run Number	Average ^(a)	
Date	6/31/71 to 5/31/72	•
Test time - minutes	NR	-
Production rate - TPH P ₂ 0 ₅	14.37	
Scrubber Operation		
Pressure drop - In. H ₂ 0	NR	
L/G ratio - gal/SCF	0.009	
No. transfer units	NR	
Stack Effluent		
Flow rate - DSCFM(b)	130,000 - 150,000	•
Flow rate - DSCF/ton	542,608 - 626,087	A second
Temperature - °F	100 - 150	
Water vapor - Vol.%	NR	
CO ₂ - Vol. % dry	NR	
0 ₂ - Vol. % dry	NR	
CO - Vol. % dry	NR	
Visible Emissions - % opaci	ty NR	
Fluoride Emissions	•	
gr/DSCF ^(c)	0.0005	
gr/ACF	NŖ	
1b/hr (a)	0.592	
$1b/ton of P_2O_5$ (d)	0.041	References 5 and 6.
NR - Not Reported		

⁽a) - Data expressed as an average of 23 emission tests taken during the period shown by the above dates.

⁽b) - Approximate range.
(c) - Calculated using 0.592 lb/hr and 140,000 DSCFM.
(d) - Calculated using production rate of 345 tons P₂O₅ per day (production rate given by plant officials).

29

REFERENCES

Diammonium Phosphate Plant Data

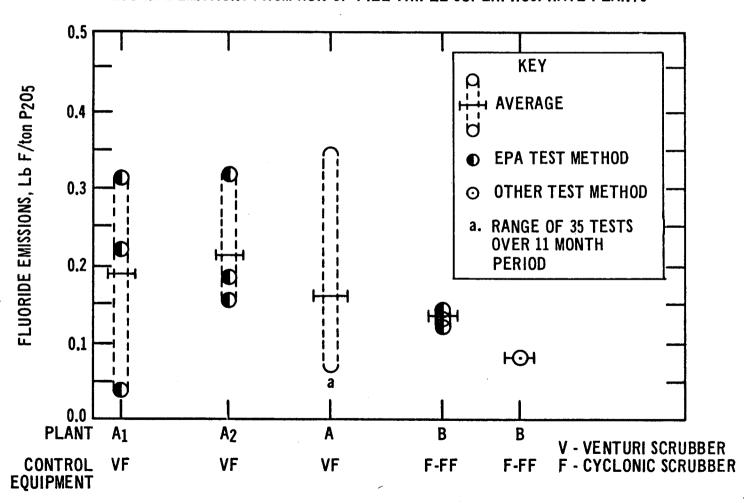
- 1. Emission Test Report for DAP Facility A, prepared for EPA by Environmental Engineering, Inc., Contract No. CPA-70-82, EPA Test No. 72-CI-3.
- Emission Test Report for DAP Facility A (Retest), prepared for EPA by Environmental Engineering, Inc., Contract No. 68-02-0232, EPA Test No. 73-FRT-13.
- 3. Data supplied to EPA by the owner of DAP Facility A.
- 4. "Source Testing Report," for DAP Facility B, prepared by Midwest Research Institute, Contract No. 68-02-0228, Task 22, EMB Project No. 73-FRT-1.
- 5. Letter and attachment from the plant manager of Plant B to Lee Beck, EPA, October 18, 1972.
- 6. Letter and attachments from the plant manager of Plant B to Andrew R. Trenholm, EPA, October 4, 1972.

RUN-OF-PILE TRIPLE SUPERPHOSPHATE (ROP-TSP) MANUFACTURING PLANTS AND STORAGE PILES

Fluoride Test Results

A test program was undertaken by EPA to evaluate the best fluoride control equipment available for installation on new or substantially modified ROP-TSP manufacturing plants and storage facilities. Two plants, identified as A and B, were tested by EPA. Emission data submitted by operators of Plants A and B are also reported. Both plants were operating at or near design capacity during the tests and scrubbers were operating normally during all EPA tests.

Figure 4 presents the emission rate (pounds of fluorides per ton of P_2^{0} input to the process) for the two plants.


<u>Facilities</u>

A. Conventional continuous den ROP-TSP manufacturing train consisting of a mixing cone, a continuous den (setting belt), and a cutter. The design production rate is 372 TPD P_2O_5 . The plant was tested twice (designated as tests A_1 and A_2) by EPA. The design production rate was maintained during all EPA tests. EPA data are based on samples obtained using Method 13. The operator collected samples using the State of Florida method. Emissions from the cone, the continuous den, the transfer conveyors, and the storage pile are controlled by a venturi scrubber followed by a cyclonic scrubber with a packed section. Gypsum pond water is the scrubbing medium used in each of the scrubbers. Opacity of exhaust gases was less than 10 percent during the EPA tests. Additional visible emission data were obtained using EPA Hethod 9 by EPA and contractor personnel at another time.

B. Conventional continuous den ROP-TSP manufacturing train consisting of a mixing cone, a continuous den (setting belt), and a cutter. The design production rate is 773 TPD P_2O_5 . The plant was operating at about 19 percent above the design rate during both EPA and operator performed tests. EPA data are based on samples obtained using Method 13. The operator collected samples using the State of Florida method. Emissions from the mixer cone and the continuous den are controlled by two cyclonic scrubbers in series with pressure drops of 4.4 and 2.6 in. H_2O , respectively. Emissions from the storage pile are controlled by two different cyclonic scrubbers in series with pressure drops of 3.5 and 4.5 in. H_2O , respectively. Both sets of scrubbers are ducted to a common stack. Gypsum pond water is used as the scrubbing medium in each of the scrubbers. Opacity of the exhaust gases was less than 10 percent.

FIGURE 4

FLUORIDE EMISSIONS FROM RUN-OF-PILE TRIPLE SUPERPHOSPHATE PLANTS

Run Number	1	2	3	Average
Date	2/29/72	2/29/72	3/1/72	· •
Test time - minutes	120	120	120	120
Production rate - TPH P ₂ 0 ₅	15.6	16.0	16.6	16.1
Scrubber Operation				
Pressure drop - In. H ₂ O	MM	MM	MM	12-14 ^(a)
L/G ratio - gal/SCF	0.019	0.019	0.019	0.019
No. transfer units	MM	NM	NM	<u>-</u>
Stack Effluent				
Flow rate - DSCFM	107,058	106,012	106,681	106,584
Flow rate - DSCF/ton P ₂ 0 ₅	411,762	397,545	385,593	398,300
· OF	91.5	90	80.6	87.4
Temperature - °F	·	90		07.4
Water vapor - Vol.%	3.0	3.0	0.3	2.1
CO ₂ - Vol. % dry	MNi	NM	MM	-
0 ₂ - Vol. % dry	MM	NM	MM	.
CO - Vol. % dry	Mri	MM	NM	-
Visible Emissions - % opacity	<10	<10	<10	<10
Fluoride Emissions				
gr/DSCF	0.0053	0.0040	0.0006	0.0033
gr/ACF	0.0051	0.0038	0.0005	0.0031
lb/hr	5.01	3.65	0.58	3.08
1b/ton of P ₂ O ₅	0.321	0.228	0.035	0.194
NM - Not Measured (a) - Normal Range				
Reference 1.		24		

Run Number	1	2	3	Average
Date	9/19/72	9/19/72	9/20/72	-
Test time - minutes -	120	120	120	120
Production rate - TPH P ₂ 0 ₅	17.8	17.7	18.0	17.8
Scrubber Operation				
Pressure drop - In. H ₂ O	MM	NM	N M	12-14 ^(a)
L/G ratio - gal/SCF	0.020	0.020	0.020	0.020
No. transfer units	NM	NM	NM	-
Stack Effluent				
Flow rate - DSCFM	97,835	99,215	98,079	98,376
Flow rate - DSCF/ton P ₂ 0 ₅	329,781	336,322	326,930	331,011
Temperature - °F	101.2	102.4	k9 k.0	101.5
Water vapor - Vol.%	3.2	3.5	3.9	3.5
CO ₂ - Vol. % dry	NM	NM	MM	
0 ₂ - Vol. % dry	NM	NM	MM	. -
CO - Vol. % dry	NM	NM	MM	-
Visible Emissions - % opacity	<10	<10	<10	<10
Fluoride Emissions				
gr/DSCF	0.0038	0.0063	0.0032	0.0044
gr/ACF	0.0035	0.0057	0.0029	0.0040
lb/hr	3.22	5.37	2.64	3.75
1b/ton of P ₂ 0 ₅	0.181	0.304	0.147	0.211
Nil Jot Hazenrad				

NM - Not Measured (a) - Normal Range Reference 2.

Table 20 FACILITY A Summary of Results of Test by Operator

Run Number	Range of 35 Stack Tests	Average
Date	1/12/72 - 12/7/72	-
Test time - minutes	NR	
Production rate - TPH P ₂ 0 ₅	NR	
Scrubber Operation		
Pressure drop - In. H ₂ 0	NR	
L/G ratio - gal/SCF	NR	
No. transfer units	NR ·	
Stack Effluent		
Flow rate - DSCFM	ÑR	
Flow rate - USCF/ton P ₂ 0 ₅	NR	
Temperature - °F	NR	
Water vapor - Vol.%	NR	
CO ₂ - Vol. % dry	NR	
0 ₂ - Vol. % dry	NR	
CO - Vol. % dry	NR	
Visible Emissions - % opacity	NR	
Fluoride Emissions		
gr/DSCF	NR	
gr/ACF	NR	
lb/hr	1.15 - 5.34	2.34
lb/ton of P ₂ 0 ₅ ^(a)	0.074 - 0.345	0.151

NR - Not Reported

⁽a) - Calculated by using the plant's normal production rate (15.5 TPH P_2O_5) and the plant's hourly fluoride emissions. Reference 3.

Table 21 FACILITY A SUMMARY OF VISIBLE EMISSIONS (1)

Date: 2/28/74

Type of Plant: Run-of-pile triple superphosphate

Type of Discharge: Stack from scrubber

Distance from Observer to Discharge Point: \sim 400 ft

Location of Discharge: Top of stack

Height of Observation Point: Ground level

0-5

No

Height of Point of Discharge: 75 ft

Direction of Observer from Discharge Point: East

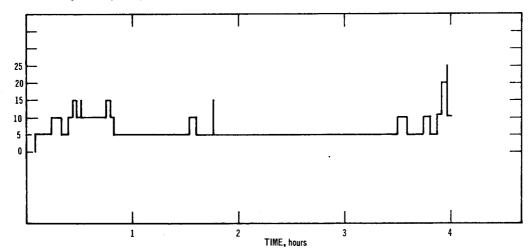
Description of Background: Sky

Description of Sky: Hazy during the first 2 hours of observation and clear thereafter

From North Wind Direction:

Wind Velocity:

Color of Plume: White Detached Plume:


mi/hr

Interference of Steam Plume: None Duration of Observation: 4 hrs.

Summary of Data:

Opacity, Percent	Than Give	al to or Greater n Opacity	Opacity, Percent	Than Give	ual to or Greater
	Min.	<u>Sec.</u>		Min.	Sec.
5	237	30	55	-	-
10	56	0	60	••	-
15	12	30	65	-	-
20	3	15	70	-	-
25	0	15	75	-	-
30	0	0	80	-	•
35	-	· <u>-</u>	85	-	-
40	-	-	90	-	-
45	-	_	95	-	-
50	-	-	100	-	-

Sketch Showing How Opacity Varied With Time:

(1) Two observers made simultaneous readings. The greater of their readings is reported.

Reference 4.

Table 22 FACILITY B Summary of Results of Test by EPA

Run Number	1	2	3	Average
Date	9/14/72	9/15/72	9/15/72	-
Test time - minutes	120	120	120	120
Production rate & TPH P ₂ 0 ₅	37.0	38.4	39.5	38.3
Scrubber Operation				
Pressure drop - In. H ₂ 0	MIA	NM	ilM	(a)
L/G ratio - gal/SCF	0.019	0.019	0.020	0.019
No. transfer units	NM	ИM	NM	-
Stack Effluent				
Flow rate - DSCFM	60,485	59,578	58,156	59,406
Flow rate - DSCF/ton P205	98,083	93,091	88,338	93,171
Temperature - °F	100.8	100.5	103.3	≹01.5
Water vapor - Vol.%	4.8	5.1	5.2	5.0
CO ₂ - Vol. % dry	MM	NM	NM	-
0 ₂ - Vol. % dry	NM	NM	NM	-
CO - Vol. % dry	МИ	NM	NM	-
Visible Emissions - % opacity	<10	<10	<10	<10
Fluoride Emissions				
gr/DSCF	0.0089	0.0094	0.0098	0.0094
gr/ACF	0.0080	0.0085	0.0088	0.0084
lb/hr	4.62	4.82	4.94	4.79
1b/ton of P ₂ 0 ₅	0.125	0.126	0.125	0.125

NM - Not Measured (a) - See facility description Reference 5.

Table 23 FACILITY B

Summary of Results of Test by Operator

Run Number	Range of	51 Tests	Average
Date	1/18/72	- 1/24/73	
Test time - minutes		NR	
Production rate - TPH $P_2^0_5$		NR	
Scrubber Operation			
Pressure drop - In. H ₂ O		NR	
L/G ratio - gal/SCF		NR .	
No. transfer units		NR -	
Stack Effluent		,	
Flow rate - DSCFM		NR	
Flow rate - DSCF/ton P ₂ 0 ₅		NR	
Temperature - °F		NR	
Water vapor - Vol.%		NR	
CO ₂ - Vol. % dry		NR	
0 ₂ Vol. % dry		NR	
CO - Vol. % dry		NR	
Visible Emissions - % opacit	ty	NR	
Fluoride Emissions			
gr/DSCF	•	NR	
gr/ACF		NR	
lb/hr		- 7.40	3.23
lb/ton of P ₂ 0 ₅	0.022	- 0.230	0.10

NR - Not Reported

⁽a) - Calculated from the plant's normal production rate $(32.2 \text{ TPH P}_20_5)$ and the plant's hourly fluoride emissions. Reference 6.

REFERENCES

Run-of-Pile Triple Superphosphate Manufacturing Plant and Storage Pile Data

- 1. Emission Test Report for ROP-TSP Facility A, prepared for EPA by Environmental Engineering, Inc., Contract No. 68-02-0232, EPA Test No. 72-CZ-18.
- Emission Test Report for ROP-TSP Facility A (Retest), prepared for EPA by Environmental Engineering, Inc., Contract No. 68-02-0232, EPA Test No. 73-FRT-11.
- 3. Letter from plant manager of Facility A to Lee Beck, EPA, December 12, 1972.
- 4. "A Review of Field Conditions and Observational Variables Encountered During the Determination of Visible Emissions in the Phosphate Industry for the Environmental Protection Agency," March, 1974, prepared for EPA by Environmental Science and Engineering, Inc.
- 5. Emission Test Report for ROP-TSP Facility B, prepared for EPA by Environmental Engineering, Inc., Contract No. 68-02-0232, EPA Test No. 73-FRT-10.
- 6. Letter and attachment from the general manager of Facility B to Don R. Goodwin, EPA, February 16, 1973.

GRANULAR TRIPLE SUPERPHOSPHATE (GTSP) PRODUCTION PLANTS

Fluoride Test Results

A test program was undertaken by EPA to evaluate the best fluoride control equipment available for installation on new or substantially modified GTSP production plants. Two plants, identified as A and B, were tested by EPA. Both plants were operating at or near design capacity during the EPA tests.

Results of a test performed by the operator of Plant A are also included. All of the plants tested use scrubbers to control fluorides. The scrubbers were operating normally during all EPA tests.

Figure 5 presents the emission rate (pounds of fluoride per ton of P_2O_5 input to the process) for the two plants.

Facilities

A. Conventional production train for continuous GTSP manufacture consisting of a reactor-granulator, dryer, and cooler. Design production rate is 221 TPD P_2O_5 . The plant was tested by EPA twice (tests designated A_1 and A_2). The plant operated at 20 percent above design capacity during the first EPA test (A_1) and at 30 percent above design capacity during the second EPA test (A_2). The production rate during the plant's test is unknown. EPA tests were by Method 13. The operator collected samples using the State of Florida method. Reactor-granulator emissions, dryer emissions, and cooler emissions are vented to individual venturi scrubbers followed by spray-crossflow packed scrubbers. Gypsum pond water is used as the scrubbing medium. Opacity of exhaust gases was less than 10 percent during all EPA tests. Additional visible emission data were obtained using EPA Method 9 by EPA and contractor personnel at another time.

B. Conventional production train for continuous GTSP manufacture consisting of a reactor, granulator, dryer, and cooler. Design production capacity is 384 TPD P_2O_5 . The plant operated at 22 percent above design capacity during the test. EPA Method 13 was used. The control system conducted all process gases to two venturi scrubbers followed by a cyclonic scrubber, then a spray-crossflow packed scrubber. Gypsum pond water was used as the scrubbing medium in all scrubbers. Opacity of exhaust gases was less than 10 percent.

FIGURE 5

FLUORIDE EMISSIONS FROM GRANULAR TRIPLE SUPERPHOSPHATE PRODUCTION PLANTS

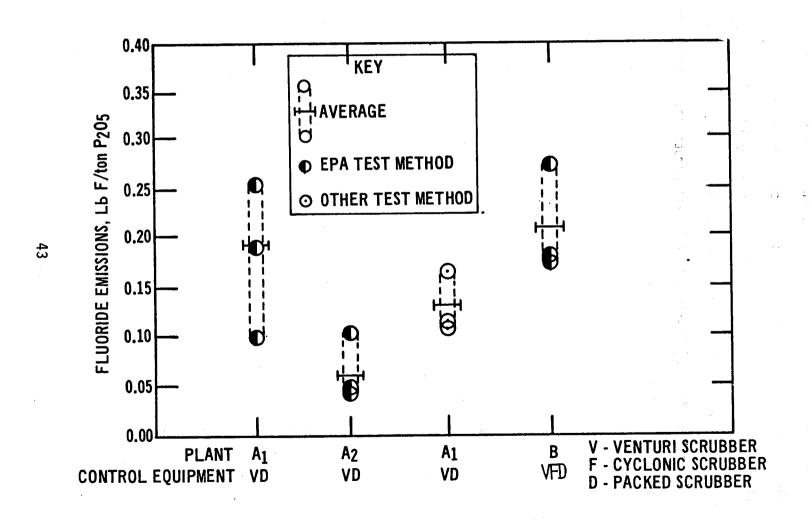


Table 24 FACILITY A₁
Summary of Results of Test by EPA

Run Number	1	2	3	Average
Date	1/25/72	1/25/72	1/26/72	_
Test time - minutes	120	120	120	120
Production rate - TPH P ₂ 0 ₅	10.9	10.9	11.2	11.0
Scrubber Operation				
Pressure drop - In. H ₂ 0	NM	NM	NM	1-5 ^(a)
L/G ratio - gal/SCF	NM	NM	NM	0.012 ^(b)
No. transfer units	3.28	3.16	2.55	3.00
Stack Effluent				
Flow rate - DSCFM	103,106	103,267	105,651	104,008
Flow rate - DSCF/ton $P_2^0_5$	567,556	568,442	565,988	567,329
Temperature - °F	88	90	84	87
Water vapor - Vol.%	2.4	2	2.1	2.2
CO ₂ - Vol. % dry	NM	NM	NM	-
0 ₂ - Vol. % dry	NM	NM	NM	-
CO - Vol. % dry	. NM	NM	NM	-
Visible Emissions - % opacit	y <10	<10	<10	<10
Fluoride Emissions				
gr/DSCF	0.0032	0.0012	0.0022	0.0022
gr/ACF	0.0030	0.0012	0.0021	0.0021
lb/hr	2.83	1.06	2.01	1.97
lb/ton of P ₂ 0 ₅	0.26	0.097	0.18	0.18
NM - Not Measured (a) - Normal Range				

⁽a) - Normal Range(b) - EstimatedReference 1.

Table $\frac{25}{}$ FACILITY $\mathbf{A_2}$ Summary of Results of Test by EPA

Run Number	1	2	3	Average
Date	9/11/72	9/11/72	9/12/72	-
Test time - minutes	120	120	120	120
Production rate - TPH P ₂ 0 ₅	12	12	12	12
Scrubber Operation				
Pressure drop - In: H ₂ 0	NM	NM	NM	1-5 ^(a)
L/G ratio - gal/SCF	NM	NM	NM	0.012 ^(b)
No. transfer units	NM	NM	NM	-
Stack Effluent				•
Flow rate - DSCFM	109,554	108,552	90,146	102],751
Flow rate - DSCF/ton P ₂ 0 ₅	547,770	542,760	450,730	513,753
Temperature - °F	82.2	m 80. •	87.7	83.3
Water vapor - Vol.%	4.5	4.4	4.6	4.5
CO ₂ - Vol. % dry	NM	NM	NM	-
0 ₂ - Vol. % dry	NM	NM	NM	-
CO - Vol. % dry	NM	NM	NM	-
Visible Emissions - % opacity	<10	<10	<10	<10
Fluoride Emissions				
gr/DSCF	0.0013	0.00059	0.00068	0.00086
gr/ACF	0.0012	0.0005	0.0006	0.0008
lb/hr	1.201	0.544	0.525	0.757
1b/ton of P ₂ O ₅	0.100	0.045	0.044	0.0632
NM - Not Measured (a) - Normal Range (b) - Estimated				

⁽b) - Estimated
Reference 2.

Run Number	1	2	3	4	Average
Date	1/24/72	1/25/72	1/25/72	1/25/72	-
Test time - minutes	NR	NR.	NR	NR	NR
Production rate - TPH P ₂ 0 ₅	NR	NR	NR	NR	NR
Scrubber Operation					
Pressure drop - In. H ₂ 0	NR	NR	NR	NR	NR
L/G ratio - gal/SCF	NR	NR	NR	NR	NR
No. transfer units	NR	NR	NR	NR	NR
Stack Effluent					
Flow rate - DSCFM	NR	NR	NR	NR	NR
Flow rate - DSCF/ton $P_2^0_5$	NR .	NR	NR	NR .	NR
Temperature - °F	NR	NR	NR	NR	NR
Water vapor - Vol.%	NR	NR	NR	NR	NR
CO ₂ - Vol. % dry	NR	NR	NR	NR	NR
0 ₂ - Vol. % dry	ŅR	NR	NR	NR	NR
CO - Vol. % dry	NR	NR	NR	NR	NR
Visible Emissions - % opacity	NR	NR	NR	NR	NR
Fluoride Emissions					
gr/DSCF	NR	NR	NR	NR	NR
gr/ACF	NR	NR	NR	NR	NR
lb/hr	1.82	1.13	1.16	1.18	1.32
lb/ton of P ₂ 0 ₅ (a)	0.166	0.103	0.106	0.107	0.120
NR - Not Reported					

⁽a) -Calculated using average ton/hr P_2O_5 fed on 1/19/72 and reported 1b/hr fluoride emissions. Reference 3.

Table 27 FACILITY A SUMMARY OF VISIBLE EMISSIONS (1)

Date: 3/1/74

Type of Plant: Granular Triple Superphosphate

Type of Discharge: Stack from scrubber

Location of Discharge: Top of stack

Height of Point of Discharge: ∼ 200 ft

Description of Background: Sky

Distance from Observer to Discharge Point: ~ 700 ft

Height of Observation Point: Ground level

Direction of Observer from Discharge Point: West

Description of Sky: Clear

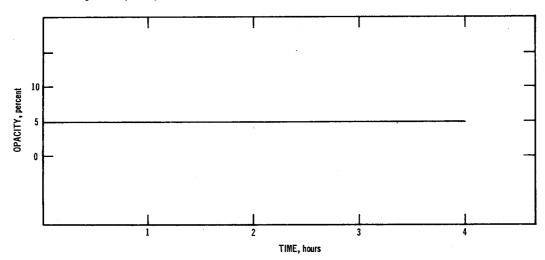
Wind Direction: Calm

Wind Velocity: Calm

mi/hr

Color of Plume: White

Detached Plume: No


Interference of Steam Plume: Yes

Duration of Observation: 4 hrs.

Summary of Data:

o Data.					
Opacity, Percent	Total Time Equ Than Give	al to or Greater n Opacity	Opacity, Percent	Than Give	al to or Greater n Opacity
	Min.	Sec.		Min.	Sec.
5	240	Q	55	-	-
10	Ö	0	60		•
15	•	_	65	-	•
20	_	-	70	-	-
25	-	-	75	-	•
30	-	-	80	-	-
35	_	-	85	-	-
40	-	-	90	-	-
45 45	_	-	95	-	-
50	-	-	100	-	•

Sketch Showing How Opacity Varied With Time:

(1) Two observers made simultaneous readings. The greater of their readings is reported.

Reference 4.

Run Number	1	2	3	Average
Date	6/14/72	6/15/72	6/15/72	-
Test time - minutes	120	120	120	120
Production rate - TPH P ₂ 0 ₅	13.4	15.2	15.1	14.6
Scrubber Operation				
Pressure drop - In. H ₂ 0	NM	NM	NM	2-6 ^(a)
L/G ratio - gal/SCF	0.0018	0.0019	0.0020	0.0019
No. transfer units	NM	NM	NM	-
Stack Effluent				
Flow rate - DSCFM	109,548	103,555	102,729	105,277
Flow rate - DSCF/ton P ₂ 0 ₅	490,513	408,770	408,195	435,826
Temperature - °F	121	126	127	125
Water vapor - Vol. %	2.9	5.6	6.3	4.9
CO ₂ - Vol. % dry	NM	NM	NM	-
0 ₂ - Vol. % dry	NM	NM	NM	-
CO - Vol. % dry	NM	NM	NM	-
Visible Emissions - % opacity	<10	<10	<10	<10
Fluoride Emissions				
gr/DSCF	0.0040	0.0030	0.0031	0.0034
gr/ACF	0.0035	0.0025	0.0027	0.0029
lb/hr	3.73	2.64	2.76	3.04
1b/ton of P ₂ 0 ₅	0.278	0.174	0.182	0.211
NM - Not Measured (a) - Design Range Reference 5.				

REFERENCES

Granular Triple Superphosphate Production Plant Data

- 1. Emission Test Report for GTSP Facility A, prepared for EPA by Environmental Engineering, Inc., Contract No. CPA 70-82, EPA Test No. 72-CI-5A.
- 2. Emission Test Report for GTSP Facility A (Retest), prepared for EPA by Environmental Engineering, Inc., Contract No. 68-02-0232, EPA Test No. 73-FRT-9.
- 3. Data supplied to EPA by the owner of GTSP Facility A.
- 4. "A Review of Field Conditions and Observational Variables Encountered During the Determination of Visible Emissions in the Phosphate Industry for the Environmental Protection Agency," March, 1974, prepared for EPA by Environmental Science and Engineering, Inc.
- 5. Emission Test Report for GTSP Facility B, prepared for EPA by Environmental Engineering, Inc., Contract No. 68-02-0232, EPA Test No. 72-CI-30.

Fluoride Test Results

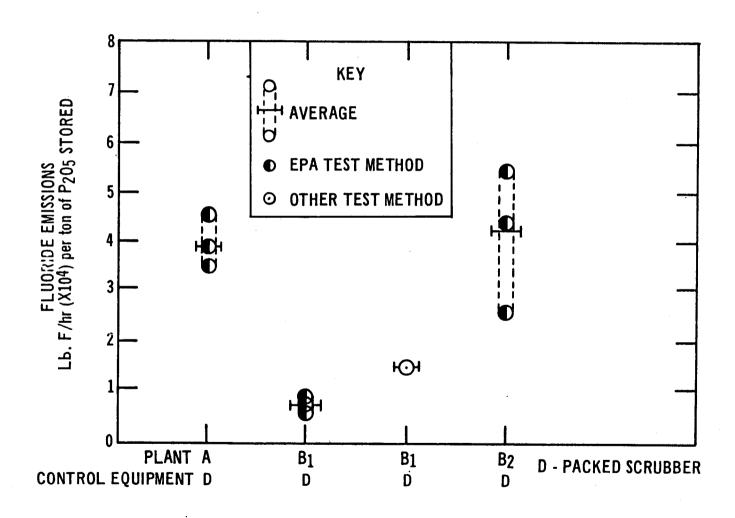

A test program was undertaken by EPA to evaluate the best fluoride control equipment available for installation on new or substantially modified GTSP storage facilities. Two facilities, idenfitied as A and B, were tested by EPA. Data submitted by the operator of plant B are also included. Both plants use scrubbers to control fluorides. These scrubbers were operating normally during the EPA tests.

Figure 6 presents the emission rates (pounds per hour of fluorides per ton of $\rm P_2O_5$ in storage) for the two facilities.

<u>Facilities</u>

- A. Typical open bay type storage building designed for a maximum capacity of 6,900 tons of P_2O_5 . The building was about 21 percent full during the EPA test. GTSP is loaded into the building by an overhead conveyor. Fresh air enters through ducts on the opposite side of the building. Fumes and dust are exhausted from the building by ducts along one side and are removed from the exhaust gases by a spray-crossflow packed scrubber. Gypsum pond water is used as the absorbing medium. EPA data are based on samples obtained using Method 13. Opacity of exhaust gases was less than 10 percent.
- B. Typical open bay type storage building designed for a maximum capacity of 16,000 tons P_2O_5 . EPA tested this facility twice (tests are designated B_1 and B_2). The building was about 30 percent full during the first EPA test (B_1) and the test conducted by the operator. It was

about 15 percent full during the second EPA test (B_2) . A drag scraper or a front-end loader is used to move GTSP in the building. GTSP is loaded into the building by an overhead conveyor. Air enters the building through a vent running almost the length of the building on the roof. Fumes and dust are exhausted from the building by ducts along one side and are removed from exhaust gases by a spray-crossflow filter scrubber. Gypsum pond water is used as the absorption medium. EPA data is based on samples obtained using Method 13. The operator collected samples using the State of Florida method. Opacity of exhaust gases was less than 10 percent during the EPA tests. Additional visible emission data were obtained using EPA Method 9 by EPA and contractor personnel at another time.

52

Table 29 FACILITY A Summary of Results of Test by EPA

Run Number	1	2	3	Average
Date	1/24/72	1/24/72	1/24/72	-
Test time - minutes	120	120	120	120
Tôns P ₂ 0 ₅ in Storage During Test	1,430	1,430	1,430	1,430
Scrubber Operation				
Pressure drop - In. H ₂ 0	MM	NM	NM	-
L/G ratio - gal/SCF	NI4	NM	NM	-
No. transfer units	1.1	0.56	1.1	0.92
Stack Effluent				
Flow rate - DSCFM	64,844	64,401	65,744	64,996
Flow rate - DSCFM/ton P ₂ 0 ₅ stored	45,35	45.04	45.97	45.45
Temperature - °F	75	75	7 5	75
Water vapor - Voi.%	2.3	2.3	2.2	2.3
CO ₂ - Vol. % dry	iИМ	NM	NM	-
0 ₂ - Vol. % dry	NM	NM	MM	-
CO - Vol. % dry	NIA	NM	ИМ	-
Visible Emissions - % opacity	<10	<10	<10	<10
Fluoride Emissions				
gr/DSCF	0.0011	0.0008	0.0009	0.0009
gr/ACF	0.0010	0.0008	0.0008	0.0009
lb/hr	0.612	0.442	0.507	0.520
$1b/hr$ per ton of $P_2^0_5$ stored	0.000#2	0.00031	0.00035	0.00036
NM - Not Measured				
Reference 1.	ب	2		

Table 30 FACILITY B, Summary of Results of Test by EPA

Run Number	1	2	3	Average
Date	6/14/72	6/14/72	6/15/72	-
Test time - minutes	120	120	120	120
Tons of P ₂ O ₅ in Storage During Test	4,318	4,625	4,685	4,543
Scrubber Operation				
Pressure drop - In. H ₂ 0	'NM	MVi	NM	₄₋₇ (a)
L/G ratio - gal/SCF	0.028	0.029	0.028	0.028(b)
No. transfer units	MM	NM	NM	NM
Stack Effluent				
Flow rate - DSCFM	64,587	62,633	63,658	63,640
Flow rate _ USCFM/ton P ₂ 0 g stored	14.96	13.54	13.59	14.03
Temperature - °F	81	80	81	81
Water vapor - Vol.%	3.9	3.5	3.6	3.7
CO ₂ - Vol. % dry	NM	NM	МИ	-
0 ₂ - Vol. % dry	MVi	NM	NM	-
CO - Vol. % dry	NM	NM	NM	-
Visible Emissions - % opacity	<10	<10	<10	<10
Fluoride Emissions				
gr/DSCF	0.0005	0.0005	0.0005	0.0005
gn/ACF	0.0005	0.0004	0.0005	0.0005
lb/hr	0.279	0.245	0.276	0.267
$1b/hr$ per ton of $P_2^0_5$ stored	0.00006	0.00005	0.00006	0.00006

NMM - Not Measured

⁽a) - Design range
(b) - Calculated using measured DSCFM and design liquid flow rate.
Reference 2. 54

Run Number	1
Date	5/19/72
Test time - minutes	30
Tons of P_2O_5 stored during test	2782
Scrubber Operation	
Pressure drop - In. H ₂ 0	2.8
L/G ratio - gal/SCF	NM
No. transfer units	NM
Stack Effluent	
Flow rate - DSCFM	81,970
Flow rate - DSCF/ton P ₂ 0 ₅ stored	29.46
Temperature - °F	82°F
Water vapor - Vol.%	3.2
CO ₂ - Vol. % dry	NM
0 ₂ - Vol. % dry	NM
CO - Vol. % dry	ИM
Visible Emissions - % opacity	NM
Fluoride Emissions	
gr/DSCF	0.0400
gr/ACF	0.0377
lb/hr	0.43
$1b/hr$ per ton of $P_2^0_5$ stored	0.00015

NM - Not Measured Reference 3.

Table 32 FACILITY B₂ Summary of Results of Test by EPA

Run Number	1	2	3	Average
Date	9/21/72	9/21/72	9/22/72	_
Test time - minutes	120	120	120	120
Tons of P ₂ 0 ₅ in Storage During Test	2,031	2,094	2,179	2,101
Scrubber Operation				
Pressure drop - In. H ₂ O	NM	NM	NM	4-7 ^(a)
L/G ratio - gal/SCF	0.023	0.022	0.023	0.022 ^(b)
No. transfer units	NM	MM	NM	-
Stack Effluent				
Flow rate - DSCFM	78,044	81,289	77,078	78,804
Flow rate - USCFM/ton P ₂ 0 ₅ stored	38,42	38.82	35.37	37.54
Temperature - °F	81.6	88.0	76.8	84.5
Water vapor - Vol. %	2.9	1.4	2.9	2.4 .
CO ₂ - Vol. % dry	M/i	NM	NM	-
0 ₂ - Vol. % dry	MM	NM	NM	-
CO - Vol. % dry	MN	NM	NM	_
Visible Emissions - % opacity	<10	<10	<10	<10
Fluoride Emissions				
gr/DSCF	0.0020	0.0007	0.0016	0.0014
gr/ACF	0.0019	0.0007	0.0015	0.0014
lb/hr	1.334	0.503	1.040	0.959
$1b/hr$ per ton of P_2O_5 stored	0.0007	0.0002	0.0005	0.0005

NM - Not Measured

⁽a) - Design range
(b) - Calculated using measured DSCFM and design liquid flow rate Reference 4. 56

Table 33
FACILITY B
SUMMARY OF VISIBLE EMISSIONS (1)

Date: 2/25/74

Type of Plant: Granulær Triple Superphosphate Storage

Type of Discharge: Stack from scrubber

Distance from Observer to Discharge Point: 300 ft

Location of Discharge: Top of stack

Height of Observation Point: Ground lev≹

Height of Point of Discharge: 100 ft

Direction of Observer from Discharge Point: East

Description of Background: sky

Description of Sky: Light haze

Wind Direction: From South

Wind Velocity: ∼ 5

mi/hr

Color of Plume: White

Detached Plume: No

Interference of Steam Plume: yes

Duration of Observation: 4 hrs.

Summary of Data:

or Data:					
Opacity, Percent	Total Time Equ	al to or Greater en Opacity	Opacity, Percent	Total Time Equ Than Give	al to or Greater n Opacity
rercent	Min.	Sec.		Min.	Sec.
6	90	30	55	-	•
3	ii	Ö	60	•	-
10	'n	Õ	65	•	-
15	-		70	-	-
20	-	-	75 75	-	-
25	_		80	-	-
30	_	-	85	-	-
35		_	90	-	-
40	-	_	95	•	-
45	•	-		-	-
50	•	-	100		

Sketch Showing How Opacity Varied With Time:

(1) Two observers made simultaneous readings. The greater of their readings is reported.

Reference 5.

REFERENCES

Granular Triple Superphosphate Storage Facility Data

- Emission Test Report for GTSP Storage Facility A, prepared for EPA by Environmental Engineering, Inc., Contract No. CPA-70-82, EPA Test No. 72-CI-5B.
- 2. Emission Test Report for GTSP Storage Facility B, prepared for EPA by Environmental Engineering, Inc., Contract No. 68-02-0232, EPA Test No. 72-CI-30B.
- 3. Data supplied to EPA by the owner of GTSP Storage Facility B.
- 4. Emission Test Report for GTSP Storage Facility B (Retest), prepared for EPA by Environmental Engineering, Inc., Contract No. 68-02-0232.
- 5. "A Review of Field Conditions and Observational Variables Encountered During the Determination of Visible Emissions in the Phosphate Industry for the Environmental Protection Agency," March, 1974, prepared for EPA by Environmental Science and Engineering, Inc.

1. REPORT NO. 2.	d Instructions on the reverse before co	3. RECIPIENT'S ACCESSION NO.	
1. REPORT NO.			
EPA-450/2-74-019b		5. REPORT DATE	
BACKGROUND INFORMATION FOR STAN	INARDS OF PERFORMANCE:	October 1974	
PHOSPHATE FERTILIZER INDUSTRY VOLUME 2, SUMMARY OF TEST DATA	6. PERFORMING ORGANIZATION CODE		
7. AUTHOR(S)		8. PERFORMING ORGANIZATION REPORT NO	
7, 40 1101107			
9. PERFORMING ORGANIZATION NAME AND ADD	RESS	10. PROGRAM ELEMENT NO.	
l U.S. Environmental Protection <i>F</i>	Agency		
Office of Air and Waste Managen	11. CONTRACT/GRANT NO.		
I Office of Air Ouality Planning	and Standards		
Research Triangle Park, N.C.	27711		
12. SPONSORING AGENCY NAME AND ADDRESS		13. TYPE OF REPORT AND PERIOD COVERED	
		Final Final	
		14. SPONSORING AGENCY CODE	
15. SUPPLEMENTARY NOTES			

16. ABSTRACT

This document provides background information on the derivation of the Standards of performance for the phosphate fertilizer industry. Volume 1 provides a general description of the facilities for which standards are proposed and provides the rationale for the proposed standards of performance. Volume 2 presents summaries of the emission testing data cited in Volume 1. The summaries are concerned principally with tests for fluorides and visible emissions, but also describe the facilities, characteristics of the exhaust gas streams, and conditions of operation.

17. KEY WORDS AND DOCUMENT ANALYSIS				
a. DESCRIPTORS	b.IDENTIFIERS/OPEN ENDED TERMS c. COSATI Field/Group			
Air Pollution Pollution control *Performance standards *Phosphate fertilizer industry *Wet-process phosphoric acid pla *Superphosphoric acid plants	Air Pollution Control *Run-of-pile triple superphosphate plants *Granular triple superphosphate plants *Granular triple superphosphate storage			
*Diammonium phosphate plants 18. DISTRIBUTION STATEMENT	19. SECURITY CLASS (This Report) 21. NO. OF PAGES Unclassified 68			
Unlimited	20. SECURITY CLASS (This page) 22. PRICE Unclassified			

•	·				
			•		
	,				

		,		
			•	
	*			

ENVIRONMENTAL PROTECTION AGENCY Technical Publications Branch Office of Administration Research Triangle Park, N.C. 27711 POSTAGE AND FEES PAID ENVIRONMENTAL PROTECTION AGENCY EPA - 335

OFFICIAL BUSINESS

AN EQUAL OPPORTUNITY EMPLOYER

Return this sheet if you do NOT wish	n to receive this material .
or if change of address is needed 🗔	[(Indicate change, including
ZIP code.)	

PUBLICATION NO. EPA-450/2-74-019b