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FOREWORD

Environmental protection efforts are increasingly directed towards
preventing adverse health and ecological effects associated with specific
compounds of natural aor- human origin. As part of this Laboratory's research
on the occurrence, movement, transformation, impact, and control of environ-
mental contaminants, the Environmental Systems Branch studies complexes of
environmental processes that control the transport, transformation, degrada-
tion, and impact of pollutants or other materials in soil and water and
assesses environmental factors that affect water quality.

Concern about environmental exposure to toxic substances has increased
the need for accurate information on the transport, fate, and effects of
trace contaminants in natural waters. In developing this information,
interest is currently being shown in the use of microcosms for toxicant
screening and predictive model validation. This report evaluates microcosms
as research tools for providing accurate and reliable data on ecological
effects of a toxic substance.

David W. Duttweiler

Director

Environmental Research Laboratory
Athens, Georgia



ABSTRACT

A two-phase set of experiments was conducted to address some of the prob-
lems inherent in ecological screening of toxic substances in aquatic micro-
cosms, and to test two hypotheses concerning the response of ecosystems to
perturbations. Phase I was a 4 X 4 factorial experiment (four levels of cad-
mium versus four levels of nutrient enrichment) with static microcosms designed
to test the "subsidy-stress’ hypothesis (Odum et al. 1979), and focused on the
interactive effects of cadmiun and nutrients. Phase II was a 2 X 4 factorial
experiment (continuous and pulsed cadmium inputs versus phosphorus limited
and non-limited inputs) with flowthrough microcosms designed to test the
"biomass increment' hypothesis (Vitousek 1977), and focused on temporal as-
pects of system behavior (especially out/input for several elements) in response
to nutrient limitation and chronic versus acute cadmium perturbatioms.

Phase I results supported the subsidy-stress hypothesis with respect to
cadmium inputs: Increasing cadmium concentrations (0, 1; 10, 100 ppb) caused
a decrease in the P/R ratio, a decrease in grazing herbivores, increase in
nighttime respiration and fungi, all indicators of system stress. Since net
daytime production and nighttime respiration increased with nutrient enriéhment,
there was no nutrient stress effect even at the highest level. There was a
significant interaction effect of cadmium and nutrients with high nutrient
levels reducing somewhat, stress effect of cadmium. Phase II results generally
supported the biomass increment hypothesis and suggested a retention pattern
for continuous, low concentration cadmium inputs similar to that of essential
elements. Cadmium may have accumulated to a toxic threshold in some of the
microcosms. Pulsed, high concentration cadmium inputs had significant effects

on system behavior, depending on timing of inputs.
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Conclusions reievant to toxiéity screening in microcosms are: 1) Of the
variables measured, community metabolism, community composition by trophic
groups, and output/input ratios for NO3—N, Mn and Fe, provided the best in-
dicators of system response to cadmium. 2) Nutrient enrichment and phosphor-
ous limitation significantly influenced cadmium effects on most of the vari-
ables studied. 3) Pulsed cadmium inputs early in succession significantly
affected system response to cadmium pulses later in succession.

Recommendation: For screening a suspected toxic substance, we recommend
a hierarchy of microcosm experiments including: 1) static microcosms (with
and without sediments), 2) flowthrough microcosms (with and without sediments),
and 3) microcosm subsamples from specific natural ecosystems. Each step re-
sults in increased information about effects of a toxicant.and each step more
cloéely approximates natural ecosystems.

A bibliography~of microcosm literature is presented at the end of the
report.

This report was submitted in fulfillment of Grant No. R805860010 by thg
University of Gerogia under the sponsorship of the U.S. Environmental Protec-
tion Agency. The report covers the period 22 May 1978 to 31 September 1980,

and work was completed as of 30 September 1980.
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SECTION 1

INTRODUCTION

The release of toxic substances into the environment has become a
serious problem, especially in industrialized nations. Toxic substances
amount to over 43,000 d;ffergnt compounds totaling 51 million tons
annually in the U.S. according to a report issued by the Council on
Environmental Quality (1979). >These chemicals enter the environment
from all phases of industrial and commercial activity, including extrac-
tion, production, storage, transportation, utilization and disposal. The
"once-through" nature of the production-consumption process with little
waste removal at source imposes a heavy burden on natural systems, which
in the past have been called upon to absorb and assimilate the wastes of
civilization. As a result, many compounds remain in the environment for
long periods of time increasing the chances for exposure to humans and
other components of the biosphere. The human and ecological effects of
many of these compounds are unknown or have been discovered tragically
through accidental contamination.

In accordance with the Toxic Substances Control Act of 1976 (TSCA),
the U.S. Environmental Protection Agency is developing testing standards
for evaluating potential hazards of cheﬁicals before they are manu-
factured and released into the environment. In 1979 methods were pro-
posed for human health-effects testing (oncogenicity, acute and sub-
chronic toxicity, and reproductive teratogenic and metabolic effects);
standards for evaluating ecological effects and environmental fate and

transport have not yet been developed (Council on Environmental Quality
1



1979), but interest is currently being shown in the use of microcosms
for toxicant screening and predictive model validation (Haque et al.
1980).

The use of microcosms for these purposes is somewhat cont;oversial
dué to the uncertainty involved in extrapolating results to natural
conditions. However, when considered as generalized models of eco-
logical processes, small scale microcosms might provide a means for
evaluating gross effects of toxic substances on ecosystems because such
microcosms do mimic certain properties of ecosystems. For example, a
number of studies have demonstrated similarities between temporal pro-
cesses in natural systems and microcosms, including species succession
(Gorden et al. 1969, Kurihara 1978), biomass accumulation (Wilhm and
Long 1969, Odum 1971), net production and community respiration (Beyers
1962, Odum 1971), and radioisotope uptake and distribution (Whittaker
1961, Leffler 1977a). 1In addition, similar responses have been suggested
in patural and microcosm systems to various perturbations, including
radiation (Ferens and Beyers 1972), temperature (Leffler 1978), heavy
metals (Asmus et al. 1978, Giesy et al. 1979), arsenic (Giddings and
Eddlemon 1978), organic toxicants (Bryfogle and McDiffett 1979, Asmus et
al. 1979), and nutrient enrichment (Wilhm and Long 1969, Fraleigh 1971).
Thus, while quantitative extrapolation of microcosm results is not
currently possible (but see Shirazi 1979), qualitative behavidr of
microcosms under controlled laboratory conditions may provide a prelim-
inary basis for evaluating the ecological effects of toxic substances.

The development of standardized testing procedures will require

answers to several important questions, including the following:



1)  Which ecosystem properties are most sensitive or best reflect
ecosystem response to toxicant perturbations?

2) ~ What influence will other environmental variables (e.g., pH,
nutrient enrichment, light intensity, etc.) have on ecological
effects of a toxic substance?

3) Will ecosystem response be a function .of the timing or fre-
quency.- of toxicant inputs with respect to stages of ecosystem
development?

4)  What degree of realism (biotic and abiotic complexity) should
be "incorporated into microcosms for use in toxicity screening?

In an effort to address these questions and to further evaluate the
potential utility of microcosms as ecological screening tools, we have
conducted a series of experiments in which aquatic laboratory microcosms
were exposed to a toxic substance. Because most of these questions are
important, not only for screening protocol development but for ecosystem
analysis in general, we have designed the experiments to test two
hypotheses which have been developed to explain ecosystem behavior in
response to stress (toxic substances being a specific form of stress).

The experiments were conducted in two phases, each addressing a different

hypothesis.

PHASE I

Odum et al. (1979) have suggested that ecosystems respond to environ-
mental perturbations in a "subsidy-stress' fashion (Fig. 1). At low to
moderate levels of intensity system inputs often act to subsidize or
increase overall system function (e.g., the effects of nutrient enrich-
ment or increase in temperature on productivity). Conversely, high
levels of the same input can stress or decrease system function or
result in development of aﬁ entirely different system (replacement).

3



The overall pattern is a unimodal, bell-shaped curve of system response
along a gradient of increasing perturbation intensity. It alsa is
hypothesized that relative variance of system response increases mono-
tonically along the perturbation gradient. The response of system
function to a toxic or lethal input is hypothesized to be a stress at
all levels of input. Complicating these general response patterns are
the influences of environmental and developmental gradients, such that
system response to a given level of pertufbation might vary with environ-
mental conditioms or successional stages. These interactive effects are
especially important considerations for toxicity screening, since test
results will be unavoidably biased by standard testing conditions. An
alternative to single factor experiments (i.e., varying levels only of a
toxicant) might be a multifactor or factorial experimental design which
would allow for consideration of the interaction of several factors
simultaneously.

Phase I of our experiments wasﬁdesigned to test the subsidy-stress
hypothesis and to evaluate the infiuence of an environmental variable
(nutrient enrichment) on aquatic microcosm response to a toxic substance
(cadmium). The experiment was arranged in a 4 X 4 factorial design with
increasing levels of nutrient enrichment superimposed on increasing
cadmium levels. Of particular interest were the interactive effects of

nutrients and cadmium on several system level variables.

PHASE 1I
A number of ecosystem studies have suggested that nutrient

“output/input ratios are sensitive system level measures of ecosystem



behavior and stress response (e.g., Woodwell and Whittaker 1968, Bormann
et al. 1974, Jordan and Kline 1972, Rykiel 1977). These studies indi-
cate that the loss of essential elements from ecosystems often increases
significantly after disturbance. Vitousek and Reiners (1975) and Vitousek
(1977) have summarized information from the literature into a set of
hypothesized patterns of output/input behavior for essential and non-
essential elements (Fig. 2). This is called the "biomass increment"
hypothesis, since it suggests that nutrient output is an inverse func-
tion of the rate of biomass production within an ecosystem. Briefly,
the hypothesis is as follows for an essential nutrient: Prior to biotic
colonization of an area nutrient outputs are equal to inputs (barring
abiotic uptake or loss). As biota become established and ecosystem
development proceeds, nutrient output becomes less than inputs due to
biotic uptake and storage in growing‘tissues. At the time of peak net
ecosystem productivity the ratio of nutrient output/input is at a mini-
mum, thereafter gradually increasing to unity as net productivity ap-
proaches zero at ecosystem maturity (steady state). A pulsed pertur-
bation to the ecosystem (i.e., one time "destructive event") results in
an increase in nutrient output/input followed by secondary succession
and an abbreviated repeat of the initial patterns of productivity and
nutrient uptake. For non-essential elements output/input remains near
unity throughout the entire sequence of events; for limiting quantities
of essential elements deflection of the output/input curve is related to
the degree of limitation.

Efforts to empirically evaluate these patterns in natural eco-

systems have not been conclusive (e.g., Haines 1978, Martin 1979,



Johnson and Edwards 1979) probably due tg long successional time

scales, indistinct ecosystem boundaries and potentially large sampling
‘errors. Laboratory microcosms provide a partial solution to these
problems and a potential means for evaluating nominal and stressed
ecosystem nutrient flux patterns. For example, Confer (1972) found that
phosphorus output from continuous flow aquatic microcosms décreased
(relative to input) during early succession but increased to approxi-
mately equal input after prolonged operation. The introduction of
snails and ostracods after two months of succession resulted in a signi-
ficant increase in phosphorus output. Evans (1977) showed that elevated
‘phosphorus inputs into flowthrough marine reef-flat microcosms resulted
in increased ammonia-nitrogen uptake, whereas elevated ammonia-nitrogen
inputs caused increased output of phosphorus, suggesting that ammonia is
toxic to reef-flat communities.

Studies in terrestrial microcosms have shown that systems respond
to heavy metal perturbations with increased outputs of essential
elements (Asmus et al. 1978, Van Voris et al. 1980). However, Giesy et
al. (1979) found no significant changes in nitrate, phosphate and sul-
fate outputs from stream channel microcosms exposed to cadmium; they
suggested that future studies include measures of ammonia and potassium
dynamics as possible indicators of heavy metal stress in microcosms.

In addition to the input-output dynamics of essential elements, the
temporal patterns of uptake and release of toxic elements by ecosystems
is an important consideration for toxicity screening in microcosms and
for ecosystem analysis in general. Little is known of the long term

input-output behavior of toxic elements. Henderson (1975) suggested



that ecosystems must have a finite capacity to accumulate toxic elements
and as that capacity is approached, increasingly greater proportions of
input should appear in system outputs.. He proposed that temporal pat-
terns ''should fall somewhere between the curves for non-essential, not
accumulated, and limiting elements' (Fig. 2). If this is true, then the
potential for an ecosystem to become a source of (rather than a sink

for) toxic elements increases as the system approaches maturity. Further,
if the accumulation capacity could be estimated a priori, then this
potential might be predictable.

Phase II of our experiments was designed to test Vitousek's (1977)
and Henderson's (1975) hypotheses and to evaluate the utility of
output/input ratios of several elements as indicators of microcosm
response to toxic element (cadmium) perturbations. Several other fac-
tors were incorporated into the experiment to determine: 1) the in-
fluence of pulsed versus continuous toxicant inputs on system response,
2) the effects of toxicant exposure early in succession on system res-
ponse to thé same toxicant applied later in succession (i.e., the in-
fluence of system "history'" on stress response), and 3) the influence of
nutrient limitation on system response to toxicant exposure. The experi-
ment was arranged in a 2 X 4 factorial design with phosphorus-limited
(N:P = 100) and non-limited (N:P = 10) input regimes superimposed on four
modes of cadmium input (zero input, continuous input, cadmium pulses
early and late in succession, and a cadmium pulse late in succession).

In addition to the objectives discussed above, both experimental
phases were coordinated to provide a comparison between the responses of

static and flow-through microcosms to a toxic substance. To accomplish



this, both experiments incorporated the same inoculum, microcosm con-
tainers and laboratory conditions, and most of the same response
variables. Due to differences in experimental design, however, rigorous

statistical comparisons between Phase I and II were not possible.



SECTION 2
MATERIALS AND METHODS
GENERAL

Experimental Design

Phase I and Phase II both consisted of factorial experimental
designs with various combinations of nutrient and cadmium treatments, as
shown in Figures 3 and 4. Phase I employed three replicates per treat-
ment combination (48 microcosms), all arranged in a completely ran-
domized design in the growth chamber. Supporting tables were rotated
every four weeks to minimize variability due to possible gradients of
temperature, light, etc. Phase II employed four replicates per treatment
combination (32 microcosms) arranged in two randomized completé blocks
(two replicates of each treatment combination.in each block) in the
growth chamber. These systems remained in place throughout the experiment
because of attached input and output tubing. No significant differences
in light intensity or water temperature were detected bgtween the two

blocks.

Experimental Containers

Polypropylene animal containers 26cm X 20cm X 15cm (with a
seven-liter capacity) were chosen for both experiments based on National
Bureau of Standards data (Struempler 1973) which indicate that this
méterial does not adsorb heavy metals, and on a preliminary adsorption
experiment which indicated no significant retention of the elements of

interest. Containers were filled to six liters with nutrient solution.



Experimental Conditions

A 2.8m X 2.8m animal room at the Institute of Ecology, University
of Georgia, was modified for use with the installation of a bank of
40-watt Gro & Show lights with an average intensity of 79-86 peinsteins
cm“2 sec-1 at the water surface, and a twenty-four hour timer set for a
twelve hour light - twelve hour dark cycle. Temperature and humidity
were under thermostatic control through the building system; air temper-

ature varied between 19°C and 30°C. Water temperature varied from 19°C

to 21°C (Phase I) and 19°C to 25°C (Phase II).

Nutrient Medium

The medium used in Phase I was a modified Taub and Dollar (1964)
#36 with the nutrient gradient (Appendix A) spanning a wide range of
concentr;tions intended to approximate levels found in natural systems,
ranging from oligotrophic to hypereutrophic (Wetzel 1975). Each level
had a nitrogen to phosphorus ratio of ten (N:P = 10). Phase II used two
levels of modified Taub #36 medium (Appendix A), one with a nitrogen to
phosphorus ratio of ten (N:P = 10) and the other with N:P = 100 to impose
phosphorus limitation. This level.of Taub #36 was chosen on the basis of

results from Phase I.

Toxic Substance

Cadmium was selected as the toxic chemical for the following
reasons:
1) Cadmium is on the EPA's list of toxic substances of immediate

concern.
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2) Cadmium is toxic at some concentration to all organisms
(Bowen 1966).

3) Cadmium possesses physical properties which result in a cer-

tain degree of persistence in aquatic systems.

4) Cadmium concentrations can easily be measured with available

instrumentation.

Cadmium was added in the form of cadmium chloride because of its
solubility even at high concentrations (Giesy et al. 1977). The range
of cadmium concentrations in Phase I (0, 1, 10 and 100 ppb C€d) included
one level below and one level above that of the EPA (1971) recommended
allowable cadmium concentration,of 10 ppb in drinking water, and was
chosen to cover the wide range of toxicity levels found for different
aquatic organisms (Warnick and Bell 1969, Patrick et al. 1968, Stapleton
1968).

In Phase II, 10 ppb cadmium was chosen for the continuous input
based on the drinking water standard and on a preliminary study which
indicated that higher concentrations (for example, 100 ppb) severely
depressed system metabolism after only a few weeks of continuous input.
Pulsed inputs were pipetted into appropriate systems to achieve total
concentrations of 100 ppb (day 28), 500 ppb (day 64), 750 ppb (day 100)

and 750 ppb (day 190).

Inoculum
Inoculation of both phases was 50 ml from stock microcosms
originally derived from a natural pond, and self-maintaining in the

laboratory. Cross inoculation among replicates was done during the
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first week of each experiment to reduce initial variability and,
thereafter periodic reinoculation from.laboratory'stock systems was
conducted to provide a continuous input of genetic material. The stocks
contained bacteria, fungi, blue-green algae, green algae, protozoa,

nematodes, annelids, rotifers, ostracods, cladocerans, and copepods.

Community Metabolism

Metabolic activity in both experimental phases was assessed through
net daytime production and nighttime community respiration based on diel
changes of dissolved éxygen concentrations, as measured by the three-point
oxygen method of McConnell (1962). This consisted of a dissolved oxygen
reading taken before the lights went on, a second reading just before the
lights went out and a third reading the next morning before the lights
went on. .All measurements were made with a YSI model 54 A oxygen meter
equipped with a self-stirring probe. Net daytime production (PD) is the
difference between the first and second reading, while nighttime community
respiration (RN) is the difference between the second and third reading.
Gross production is the sum of PD and RN and net community production the
difference between PD and RN' Results are presénted in terms of net day-
time production and nighttime community respiration in mg 02/1/12 hr.

Corrections for oxygen diffusion were calculated several times
according to McConnell (1962). It was found that diffusion over any
given 12-hour period was generally 1esslthan 6% of corresponding PD and RN
values. Therefore, diffusion corrections were not applied to the data.
This probably resulted in underestimation of both PD and RN’ since

dissolved oxygen concentrations were slightly above saturation during
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the day and below saturation at night.

Statistical Analyses

All data analyses were conducted on an IBM 360 computer using
methods from the Statistical Analysis System package (Barr et al. 1979).
Analyses included Means, GLM, and ANOVA (Duncan's Multiple Range option).
The Plot Procedure was used to plot means and 95% confidence bars against
time for most of the variables; overlapping confidence intervals indicated
no significant difference between two values, while non-overlapping
intervals indicated significant differences at p = 0.05. Results of

statistical analyses are presented in Appendix C.

PHASE 1
The aquatic systems used in Phase I were static (non-flowing)
systems and ran for 119 days in 1978. Cadmium and nutrient solution

were applied at the time of the first inoculation (day zero).

Sample Collection and Analysis

In addition to net daytime production and nighttime respiration,
measurements were made of: (1) total biomass (all particulate matter),
(2) plant pigments (chlorophyll a and phaeo-pigments), and (3) taxomomic
composition. All samples were collected as aliquots of suspended matter
following thorough mixing of the microcosms (very little attached growth
occurred). Biomass estimates were based on the change in filter weight
after a 20-ml sample of the microcosm was filtered through a glass fiber

filter. Presample and postsample weight was determined after drying in
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an oven (60°C) for 24 hours. Chlorophyll a and phaeo-pigment concentra-
tions were measured as 663 nm wavelength absorbance of acetone-extracted
solutions of filtered matter, according to Strickland and Parsons (1968).
Samples for biomass, plant pigment analysis, and production and respira-
. tion were taken twice weekly.

Taxonomic composition was quantified when qualitative examinations
of samples indicated a major shift in community structure. The fungal

population density was estimated by plating two dilutions (100 and 10-1

)
of each microcosm (2 replicates each) onto total fungal media (Shokes
1978) and counting the number of colonies after 60 hours. Bacterial
population density was measured by plating three dilutions (10-3, 10-4,
and 10-5) of each microcosm (2 replicates each) onto nutrient agar and
counting the number of colonies after 48 hours. The number of crus-

taceans was determined by counting the number of cladocerans, ostracods,

and copepods in a preserved 18-ml sample from each microcosm.

PHASE II
The aquatic systems in Phase II were flowthrough systems and ran

for 286 days, from April 1979 to January 1980.

Nutrient Flowthrough

Nutrient solution was added in a discontinuous flow: one liter of
solution was dripped in at a rate of one liter/2 hr every two days,
resulting in a turnover time of twelve days. The solution was poured
into a one-liter overhead beaker for gravity feed through tygon tubing,

with flows regulated by a screw clamp. Output from the system was
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defined as the solution overflowing from the opposite end of the tank
through another tubing into covered collection beakers. Diel variations
in nutrient concentrations were not measured but output samples were
always collected about three hours after dawn for consistency. Poly-
ethylene baffles were installed over the output ports after it was
noticed in preliminary experiments that large and highly variable
amounts of surface growth washed out of the systems with the output.

The baffles probably resul?ed in greater biomass accumulation than would
otherwise have occurred, and may have lengthened the time required for

the microcosms to achieve steady state conditions.

Sample Collection

Sampling was initially done every six days, with the series of
dissolved oxygen readings taken before each sampling. The sampling
schedule was cut back to every eight days when trends in the data indica-
ted that such an intensive sampling regime was unnecessary in order to
see system response.

Prior to sampling, all microcosms were topped up to 6 1 with
deionizeé water to correct for evaporative and sample withdrawal losses.
After suspended material had settled, samples of standing water and biota
were collected by scraping a 1-cm wide strip of water surface, side and
bottom material (2% of total surface area), and drawing it with suction
into a 125-ml Erlenmeyer flask. Flasks were then topped up to 75 ml with
water from the water column and stored on ice until analyzed. This
procedure was necessary because of considerable quantities of attached

growth which occurred in the Phase II microcosms. Samples of input and
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output solutions were collected in 20-ml polypropylene scintillation
vials, acidified with one drop of concentrated HCl, and refrigerated until

analyzed.

Sample Apalyses

Standing stock samples were divided into three 15-ml subsamples.
The first 15 ml were filtered through a prewashed and preweighed 0.45 pm
membrane filter, which was then dried at 60°C to a constant weight and
used to determine dry weight biomass.

The second 15-ml subsample was filtered through a glass fiber
filter for pigment analysis. The filter was ground by hand in 10 ml of
90% acetone, mixed on a vortex mixer, and extracteq overnight in a cold
room. After centrifugation at 2000 rpm for 20 minutes, the absorbance
of the extract was read on a spectrophotometer at 663 and 750 nm before
and after acidification (Strickland and Parsons 1968).

The third 15-ml subsample was preserved with Lugol's solution and
stored for microscopic .examination. ﬁicroscopic counts were made in
Sedgwick-Rafter counting cells on an inverted microscope according to
standard methods (American Public Health Association 1976). Crustaceans
were counted on the biomass filters with a dissecting microscope.

Input and output solutions were analyzed for NH3-N and NO3-N on a
Technicon AutoAnalyzer according to standard methodologies (American
Public Health Association 19&6). Samples for total phosphorus (TP) and
total nitrogen (TN) were digested with an alkaline potassium persulfate
solution according to D'Elia et al. (1977) with minor modifications:

4-ml samples were used due to sample size restriction, and no further
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dilutions or additions were made after digestion. These samples were
analyzed according to standard Cd reduction methods for N03-N and the
ascorbic acia method for orthophosphate-phosphorus (POA-P). Results are
reported in mg NO3-N/1 and mg POA-P/l. |

Cation analyses were run on a Jarrgll-Ash Plasma Emission Spec-
trograph (Model No. 750). Standard dilutions of the elements of interest
were run on the instrument to determine the lower detection limits and
account for the matrix effect in the nutrient medium (Appendix B).

Cadmium analyses were conducted on a Perkin-Elmer Model 306 atomic
absorption spectrophotometer equipped with a graphite furnace. Analyses

were run according to procedures recommended in the instrument manual.
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SECTION 3

RESULTS

PHASE I

Biomass

Biomass (filterable particulate matter) accumulation over the
experimental period showed a significant increase in response to
nutrient enrichment (p = 0.0001). Values averaged over the entire
experiment indicated that only nutrient level 4 was significantly
different from the others, increasing sharply over level 3 (Fig. 5b).
Successional.patterns of biomass accumulation reflect this effect. By
day 60, biomass began to increase rapidly at high nutrient levels (Fig.
7), but less rapidly at the lower levels (Fig. 6). All appeared to
approach a roughly defined upper limit by the end of the experiment
(day 119).

Cadmium, introduced as a single dose at the beginning of the exper-
iment, appeared to cause a slight increase in biomass accumulation (Fig.
5a), but the effect was not significant. There was no nutrient-cadmium

interaction effect on biomass.

Chlorophyll a and Phaeo-pigments

The chlorophyll a response to nutrient enrichment was similar
to that of biomass; a significant (p = 0.0001) increase occurred

only at nutrient level 4 (Fig. 8). In the highly enriched systems,
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chlorophyll a reached maximum values between days 60 and 90, and then
decreased to lower stable values by the end of the experiment (Fig. 10).
In the nutrient poor systems the pattern was similar but less distinct
(Fig. 9).

Cadmium at 100 ppb resulted in a significant (p = 0.05) increase in
chlorophyll a over systems with no cadmium (Fig. 8). One and 10 ppb Cd
had no effect. A significant (p = 0.01) nutrient-cadmium interaction
effect was indicated by the analysis of variance.

Phaeo-pigment concentrations showed a significant increase due to
nutrient enrichment,-but no cadmium or nutrient-cadmium interaction
effect. Phaeo-pigments were present in low concentrations for most of
the experiment but increased toward the end of the experiment in most of

the systems (Figs. 11 and 12).

Community Metabolism

Mean net daytime production was significantly influenced by nutrient
enrichment (p = 0.001). At nutrient level 4, net production was signi-
ficantly elevated over the other nutrient levels (Fig. 13a). Cadmium
had no significant effect on net daytime production (Fig. l4a). A
significant (p = 0.0001) nutrient-cadmium interaction effect occurred
for net daytime production.

Nighttime respiration showed a significant (p = 0.001) increase in
response to nutrient enrichment; again, this effect was significant only
at nutrient level 4 (Fig. 13b). Cadmium treatments resulted in a signi-
ficant (p = 0.05) increase in nighttime respiration (Fig. 14b). The

interaction effect of nutrients and cadmium also was highly significant
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(p = 0.0001).

Temporal patterns of net daytime production and nighttime respira-
tion are shown for representative microcosms in Figureé 15 and 16.

Both reached early peak values around day 30, remained high at nutrient
level 4, and gradually declined at lower nutrient levels.

The P/R ratio showed no response to nutrient enrichment due to the
nearly identical responses of both production and respiration (Fig. 13c).
Cadmium caused a significant (p = 0.05) decrease in P/R due to the signi-
ficant increase in respiration (Fig. 14c). No interaction effect of

nutrients and cadmium was observed for P/R.

Population Densities

Fungal, bacterial and crustacean population abundances all showed
positive correlations (p = 0.01) with nutrient enrichment (Figs. 17,
18 and 19). Cadmium also significantly influenced population densities.
Fungal abundance showed a positive correlation (p = 0.05) with cadmium
(Fig. 17), while bacterial abundance revealed no cadmium effect (Fig.
18). Crustacean abundance abundance was negatively correlated (p =
0.05) with cadmium (Fig. 19); grand means of crustacean density at 10

and 100 ppb Cd were significantly lower than means at 0 and 1 ppb Cd.
PHASE II

Biomass
Time averaged biomass (filterable particulate matter) was signi-

ficantly higher (p = 0.0001) in non-nutrient-limited (N:P = 10) micro-
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cosms than in phosphorus-limited (N:P = 100) systems. Neither pulsed
nor continuous cadmium inputs significantly influenced biomass accumu-
lation, nor was there a significant nutrient-cadmium interactioﬁ..
Temporal patterns of biomass accumulation are shown in Figures 20 and 21
for zero-cadmium controls under both nutrient regimes. The figures
indicate relatively little accumulation in the N:P = 100 systems (Fig.
20), but steady accumulation up to about day 200 in the N:P = 10 systems

(Fig. 21).

Chlorophyll a and Phaeo-pigments

Plant pigment concentrations were significantly greater (p =
0.0001) in the N:P = 10 systems than in the N:P = 100 systems énd
neither pigment showed a detectable response to cadmium, based on values
averaged over the entire experiment. Chlorophyll a concentrations
increased steadily up to about day 60 in the N:P = 100 systems (Fig. 22)
and then declined to a relatively stable value by about day 130; phaeo-
pigments followed a similar but less distinct pattern (Fig. 24). In the
N:P = 10 microcosms, chlorophyll a values steadily increased to a stable
value around day 150 (Fig. 23), while phaeo-pigment concentrations
(Fig. 25) increased dramatically (but with high variance) around day

150, declining by the end of the experiment (day 286).

Community Metabolisms

Due to the strong interaction effect between nutrients and cadmium,
the two treatments showed no significant main effects on net daytime

production or nighttime respiration, according to our analysis of
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variance. Zero-cadhium controls of both N:P = 10 and N:P = 100 treat-
ments reached peak values around day 90 and then declined and oscillated
within a reasonably well-defined operating range for the remainder of the
experiment (Figs. 26a and 30a). Cadmium treatments did cause significant
deviation, depending on nutrient leéels and mode of cadmium input.

In the N:P = 10 systems, continuoug 10 ppb Cd input had no signi-
ficant effect on net daytime production (Fig. 3la). Pulses of Cd be-
tween days 28-100 caused a delay in peak net production to about day 150
(Fig. 32a). These pulses also lessened the immediate net production
response to the Cd pulse on day 190, as compared to systems not receiv-
ing early Cd pulses (Fig. 33a). However, after a delay of about 30 days
variance in net production increased markedly in the early and late
Cd-pulsed systems (Fig. 32a). Microcosms receiving Cd only at day 190
(Fig. 33a) showed a significant decrease in net daytime production
followed by a prompt (about 25 days) regurn to the former operating
range.

In the N:P = 100 systems, continuous 10 ppb Cd input resulted in
a dramatic increase in net production around day 110 in two of the
four replicates. This is reflected by the extremely high variance in
Figure 27. Since the responsive microcosms were in the same experi-
mental block, the increased net productidn may be a result of some
block effect which has not yet been identified. Cadmium pulses between
day 28 and 100 resulted in a highly significant increase in net produc-
tion around day 130 (Fig. 28a). The newly defined operating range was
maintained until the day 190 Cd pulse which resulted in a decrease in

net production followed by a prompt (about 25 days) rebound to the
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former level. Phosphorus-limited systems receiving the Cd pulse only
at day 190 (Fig. 29a) showed a time-delayed increase in net production
.followed by a gradual (ab&ut 50 days) return to the former operating
range.

Patterns of nighttime respiration in response to both nutrient and
cadmium treatments were practically identical to those described above
for net daytime production (Figs. 26b-33b). Differences in magnitude
were reflected in the production/respiration ratio (P/R). In the

N:P

100 systems P/R was significantly higher (p = 0.0002) than in the

N:P = 10 systems and remained greater than 1.0 more of the time (Figs.
26¢c-33c). P/R showed no direct cadmium or nutrient-cadmium interaction

effects.

Population Densities

Taxonomic data from Phase II were not analyzed statistically, but
graphical examination of the data revealed interesting trends. Crustaceans
(ostracods and copepods) were generally abundant in N:P = 10 microcosms
(Figs. 34-37), but appeared in the N:P = 100 systems only in the two
highly productive replicates receiving continuous 10 ppb Cd inputs
(Fig. 38). 1In all cases crustacean populations did not become established
until around day 130 or later.

Effects of cadmium are shown for N:P = 10 systems in Figures 35-37.
Continuous 10 ppb Cd inputs resulted in a delay in initiatiom of popula-
tion growth, wide oscillations in both ostracod and copepod numbers, and
in lower total numbers of individuals (Fig. 35). Cadmium pulses between

days 28 and 100 occurred before populations became established but
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nevertheless caused a delay and oscillations in population growth (Fig.
36). The cadmium pulse at day 190 had marked effects on crustacean
populations. In the previously pulsed systems (Fig. 36) copepod popula-
tions were destroyed just as they began to grow, while ostracod numbers
oscillated and then finally began to grow by day 286. In microcosms not
subject to earlier pulses of cadmium (Fig. 37), the pulse on day 190
brought about extinction of both populations after a few oscillations in
numbers.

Other heterotrophic organisms were enumerated_and their population
numbers indicated responses to phosphorus limitation. Relative abun-
dances of rotifers, nematodes, and Paramecium sp. all were distinctly
greater in N:P = 10 than in N:P = 100 systems. Nematode and Paramecium
sp. numbers showed no response to cadmium treatments, but decreases in
rotifer numbers suggest responses to cadmium pulses, especially in the
N:P = 100 systems (Figs. 39 and 40).

Autotroph population numbers showed no respomse to cadmium, but
showed distinct differences in relative abundance as a result of phos-

phorus limitation. In general, following an early bloom of Chlamydomonas

sp., N:P = 10 systems were dominated by thick surface, side wall and

bottom mats of Ulothrix sp. followed in order of decreasing abundance

by Chlorella sp., Chlamydomonas sp., Lepocinclis sp. and Ankistrodesmus

sp. The N:P = 100 systems, also following an early bloom of Chlamydomonas

sp., were dominated by Chlorococcum sp. followed by Chlorella sp.,

Chlamydomonas sp., Ankistrodesmus sp., Lepocinclis sp. and Ulothrix sp.;

all occurred predominantly on the bottom and, to a lesser extent, on the

sides of the containers. Blue-green algae were rarely observed in any
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of the microcosms,. probably because of the abundance of available

nitrogen (Schindler 1977).

Chemical Element Dynamics

Concentrations of chgmical elements and compounds were measured in
inflowing and outflowing solutions of Phase II microcosms. For each
chemical species, ratios of output/input concentrations were calculated
and plotted against time. Values less than 1.0 indicate accumulation of
the chemical within the system, while values greater than 1.0 indicate
net loss from the system. Of the chemicals studied, boron, calcium,
copper, magnesium, sodium, and zinc had values not significantly dif-
ferent from 1.0 (p = 0.05) throughout the experimental period. Total
phosphorus (TP), total nitrogen (TN), NH

-N, NO,-N, manganese, iron and

3 3
cadmium all fell significantly below 1.0 (p = 0.05) at some time during
the experiment.

Nitrogen, especially NO3-N, displayed the most interesting behavior
in response to nutrient and cadmium treatments. In the N:P = 100 con-
trol microcosms (Fig. 41) there was little significant retention of
nitrogen in any form, as compared with N:P = 10 controls (Fig. 45).
Continuous 10 ppb Cd inputs had no significant effect on nitrogen reten-
tion in the N:P = 10 systems (Fig. 46), but resulted in significant
uptake in the two highly productive replicates of the N:P = 100 systems
(Fig. 42), again causing a considerable increase in variance. This

increased variance is most apparent for NO,-N and, to a lesser extent,

3

for TN but is virtually undetectable for NH3-N which differed little
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from the controls.
Cadmium pulses between day 28 and 100 had little effect on nitro- .
gen retention in the N:P = 10 microcosms (Fig. 47), but resulted in

significant retention of NO,-N after day 100 in the N:P = 100 systems

3
(Fig. 43c). The cadmium pulse on day 190 resulted in a significant but
transient increase in N03-N output in the latter systems (Fig. 43c)

and an increase in variance in the former (Fig. 47c). Microcosms not
receiving early cadmium pulses responded to the day 190 -pulse with a

significant increase in NO,-N output in the N:P = 10 systems (Fig. 48c)

3
and a significant decrease in NH3-N output in the phosphorus limited
systems (Fig. 44b). The apparent N03-N response in the latter (Fig.
44c) was not significantly different from the controls (Fig. &41c).

An analysis of variance of nitrogen outputs averaged over the
entire experiment indicated a highly significant nutrient-cadmium inter-
action effect for TN (p = 0.0001), NH3-N (p = 0.005), and NO3-N
(p = 0.0001). As a result, no significant main effects of cadmium were
detected by the analysis. Averaging the data over time obliterated the
temporal dynamics which indicated significant short term cadmium- effects
(Figs. 41-48).

The output/input ratio for total phosphorus (TP) was less res-
ponsive to nutrient and cadmium treatments than were the nitrogen
ratios. In addition, TP showed much higher variability, especially in
the N:P = 100 systems, since output concentrations were often near
detection limits. Control microcosms with inputs of both N:P = 100

and N:P = 10 (Figs. 49a and 53a) showed initially rapid uptake of TP

followed by a gradual approach to output/input not significantly
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different from 1.0 around day 110. Phosphorus limited systems (Fig.
49a) then displayed roughly defined oscillations below and just equal
to 1.0 for the remainder of the experiment. The ratio remained below
1.0 for most of the experimental period in the N:P = 10 systems (Fig.
53a). Reiention of TP showed no detectable reéponse to cadmium treat-
ments in the N:P = 100 systems (Figs. 50a, Sla, and 52a). N:P = 10
systems displayed general trends in response to cadmium but few were
clearly significant. Continuous 10 ppb Cd inputs resulted in greater
overall TP retention (Fig. 54a) than was shown by the controls (Fig.
53a). Early cadmium pulses (Fig. 55a) appeared to cause an increase
in TP output, while the pulse at day 190 resulted in a slight decrease
in output in these, and in the systems not subjected to early cadmium
pulses (Fig. 56a). In general, cadmium may have resulted in slightly
greater TP retention but the effect was not significant at p = 0.05,
according to Qn analysis of variance. Also, no nutrient-cadmium inter-
action effect was indicated.

Somewhat surprisingly, output/input ratios for manganese showed
significant responses to cadmium treatments. Control microcosms under
both nutrient regimes showed no accumulation of Mn (Figs. 49b and 53b).
Continuous 10 ppb Cd inputs in the N:P = 100 systems (Fig. 50b) resul-
ted in an increase in variance among replicates, beginning around day
100 (again, apparently due to some block effect). Continuous cadmium
inputs had no measurable effect on Mn retention in the non-limited
systems (Fig. 54b). Cadmium pulses between days 28 and 100 resulted
in increased variance and significant Mn retention under both nutrient

regimes (Figs. 51b and 55b). In the N:P = 10 systems the effect was
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transient, followed by a brief net system loss of Mn around day 170

and then a slight gain, in response to the cadmium pulse on'day 190.

In the N:P = 100 systems (Fig. 51b) Mn continued to accumulate until
the day 190 cadmium pulse which resulted in a gradual (about 40 days)
increase in the output/input ratio to 1.0. N:P = 100 microcosms pulsed
with cadmium only at day 190 showed no response with respect to Mn
retention (Fig. 52b). Corresponding N:P = 10 systems (Fig. 56b) showed
a considerable increase in variance but no significant gain or loss

of Mn.

No detectable nutrient effect on iron output/input behavior was
indicated (Figs. 49c-56c) but there was an apparently significant res-
ponse to the cadmium pulse on day 100 in the N:P = 10 systems (Fig.
55c): After an initial period of accumulation similar to the control
microcosms (Fig. 53c), the cadmium-pulsed systems continued to retain Fe
until about day 150, followed by a brief period of net system loss. The
cadmium pulse on day 190 (Fig. 5§c) seems to have caused an increase in
variance but little deviation ffom output/input = 1.0. Iron retention
showed no measurable response to cadmium treatment in the N:P = 100
systems.

Output/input ratios were calculated for cadmium in the microcosms
receiving continuous 10 ppb Cd inputs. Significant cadmium retention
occurred in both the N:P = 100 and N:P = 10 systems (Figs. 57a and 57b),
reaching greater total accumulation in the latter. Both displayed an
inverse bell-shaped retention curve, approachiﬁg output/input = 1.0
toward the end of the experiment (day 286), but accumulation continued

in the N:P = 10 systems (Fig. 57a). Cadmium output/input ratios were not
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calculated for systems receiving cadmium pulses, but in each case cad-
mium concentrations in the output followed an exponential decay curve

over time, related to the system turnover time of 12 days.
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SECTION 4
DISCUSSION
PHASE I

Nutrient Effects

One objective of Phase I was an empirical evaluation of the
"subsidy-stress" hypothesis (Odum et al. 1979). That hyﬁothesis pre-
dicts that a gradient of increasing levels of a 'usable" system input
(e.g., nutrient enrichment) will result in a bell-shaped curve of system
response defined in terms of energy flow (community metabolism). Thus,
high levels of enrichment should act as a stress, depressing system
performance. The nutrient gradient employed in Phase I (0.10/0.01,
0.5/0.05, 1.0/.1 and 10/1 ppm N/P) ranged from oligotrophic to hyper-
eutrophic (Wetzel 1975). As shown in Fig. 13a and b, only the highest
nutrient level caused a significant increase in net production and
community respiration, at best only approaching the left shoulder of a
subsidy stress curve. The P/R ratio showed no significant nutrient effect
because of the simultaneous increase in net production and community
respiration. Therefore, these results are inconclusive but suggest that
the highest level may have approached a level of maximum performance.
Extremely hyper-eutrophic conditions (more so than in this experiment)
have been shown to depress production and respirationm in microcosms. For
example, Butler (1964) found that 88.0/35.0 ppm NO3/PO4 resulted in lower
net production and respiration values (0.61 and 0.56 g COZ/m2/12 hr,
respectively) than did N03/PO4 = 44.0/18.0 ppm (PD = 1.22 and RN = 1.25
g COz/m2/12 hr). Likewise, Wilhm and Long (1969) showed a slight depres-

sion in microcosm metabolism (PD = 1.09 and RN =1.11 g COz/m2/12 hr)
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at N03/P04 = 120/20 ppm as compared to NO3/PO4 = 12/2 ppm (PD = 1.12 and
RN =1.13 g C02/m2/12 hr). As in the present experiment, P/R showed no
notable response to nutrient enrichment in these studies.

Most of the other variables measured in Phase I showed positive
correlations with nutrient enrichment, none suggesting a stress response
at the highest nutrient level. Concentrations of chlorophyll a,
phaeo-pigments, and biomass, and the abundance of fungi, bacteria and

crustaceans all increased with increasing nutrient concentrations.

Cadmium Effects

Odum et al. (1979) also predicted that toxic or lethal system
inputs will have no subsidizing effect; such inputs are hypothesized to
depress system performance at all levels of input, although it is known
that low concentrations of some toxims have a stimulating effect on
organisms. The cadmium gradient in Phase I covered three orders of
magnitude (0, 1, 10 and 100 ppb), with the highest level well above
accepted standards for aquatic ecosystems. Net daytime production
showed no detectable response to cadmium, while nighttime respiration
showed a significant increase (p = 0.05). This translates into a de-
crease in P/R in response to cadmium (Fig. 14a) and indicates an in-
crease in energy flow through heterotrophic system components. Over
prolonged periods this would result in destruction of the system. Thps,
using P/R as a measure of ecosystem performance, our results support the
subsidy-stress hypothesis with respect to toxic substance (cadmium)
inputs. Furthermore, in Phase II, cadmium pulses often resulted in a

considerable increase in variance among replicates (e.g., Figs. 32, 47,
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55 and 56), also in accordance with the hypothesis.

The significant increase in chlorophyll a with increasing cadmium
concentration (Fig. 8a) can most likely be attributed to the decrease in
crustacean grazers. Cadmium at 100 ppb virtually eliminated the crus-
taceans (Fig. 19), and resulted in the highest chlorophyll aAconcentra-
tions. The toxic effect of cadmium on crustaceans has been noted pre-
viously by Marshall and Mellinger (1980) and Eiseler et al. (1972).

One explanation for the increase in chlorophyll a concentration is that
reduced grazing allowed algal cells to remain in the water column
longer, thereby increasing the standing crop of chlorophyll. The fact
that chlorophyll and net daytime production were not-.positively cor-
related indicates that, while cadmium may not be as lethal to the algae
as it is to the animals, it does reduce thé rate of photosynthesis per
unit of chlorophyll. The assimilation ratio (net daytime production/
chlorophyll a) at 10 and 100 ppb Cd was roughly half the value at 0 and
1 ppb Cd. As uneaten algae cells died, they contributed to the detri-
tal food chain resulting in relatively large numbers of decomposers

(especially fungi) and an increase in community respiration.

Interaction of Cadmium and Nutrients

Significant interaction effects between cadmium and nutrient enrich-
ment were exhibited for net daytime production, nighttime respiration,
and chlorophyll a. The effect resulted in an increase in each variable.
No interaction was indicated for phaeo-pigments, biomass and population
densities.

A major interactive effect appeared to result from a synergistic
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augmentation of cadmium and nutrient effects at the highest extreme of
each treatment. Cadmium had a greéter stress effect on the herbivore
trophic level than on the autotrophic or saprotrophic levels. Accordingly,
the main effect of cadmium on the ecosystem as a whole was an alteration
in trophic structure. A decrease in primary consumers or grazing
animals apparently resulted in an increase in the standing crop of
producers (algae) and decomposers (fungi), and this was reflected in
increased community respiration. In effect, the system responded to
cadmium perturbation by switching from a grazing to a detritus food
chain. The persistence of crustaceans in the highest nutrient-highest
cadmium levels suggests that nutrient enrichment may reduce the toxic

effects of cadmium.

Stress and Ecosystem Performance

Interpretation of the above results emphasizes the importance of
the definition of "stress" with respect to ecosystems. Barrett et al.
(1976j and Leffler (1977) consider ecosystem stress to be any externally
induced response which deviates from the system's normal pattern of
behavior. Odum et al. (1979) define "stress" as any negative deviation,
and "subsidy" as any positive deviation from the normal operating range
of system performance. System performance is defined in terms of energy
flow through the system (e.g., productivity), and the effect of a pertur-
bation is interpreted as a reduction (subsidy) or increase (stress) in
"maintenance cost or ... overall [system] function." Rather than pro-
ductivity or respiration alone, the relationship between the two (i.e.,

P/R) is probably the best measure of energetic maintenance cost to the
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ecosystem, and therefore, an indicator of subsidy or stress.

In terms of P/R, nutrients had no effect on system performance at
the levels of enrichment used in Phase I, or those used by Butler (1964)
and Wilhm and Long (1969). Much higher levels are apparently necessary
to evaluate the subsidy-stress hypothesis with respect to nutrients.
Cadmium, on the other hand, caused a significant decrease in P/R, as
predicted by the hypothesis. A similar effect was noted by Giddings and
Eddlemon (1978) for arsenic perturbations in aquatic microcosms; PB/R
was negatively related to As concentration. Both studies suggest the
existence of toxicity thresholds for Cd and As, respectively, since the
lowest concentrations studied (1.0 ppb Cd and 66 ppb As) had ﬁo detect-

able effect on P/R.

PHASE I1I

Two distinct perspectives underlie biogeochemical studies of eco-
systems. The first focuses on the influence of ecosystem dynamics on
patterns of chemical element behavior, particularly input-output be-
havior as a function of ecological succession and perturbation response.
This is the context of several éecent studies of large scale ecosystems
(e.g., Rykiel 1977, Woodmansee 1978, Borman and Likens 1979). The
second perspective focuses on the behavior of ecosystems in response to
chemical element perturbations, such as increased nutrient loading or
inputs of toxic substances. This view is the basis for studies of
eutrophication and environmental toxicology. Both perspectives are
essential for an understanding of the interactions between ecosystems

and their input and output environments. The following discussion
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considers results from Phase II from both perspectives.

Element Dynamics as a Function of Ecosystem Behavior

Vitousek (1977) proposed a family of curves representing temporal
patterns of ecosystem output/input for essential (limiting and non-
limiting) and non-essential elements (Fig. 2). These curves are pro-
jected as the inverse of net ecosystem production, (or biomass increment
in the'development or succession of the ecosystem). The magnitude
of deflection is viewed as being a function of the degree to which an
element is limiting. Any disturbance severe enough to reduce net produc-
tion is proposed to result in a corresponding reduction in element
retention, since there will be a reduction in rate of incorporating
elements into biomass, again depending on the degree of element limita-
tion. Our results generally confirm these trends.

Outputs of boron, calcium, copper, magnesium, sodium and zinc, all
essential but in excess of biotic demand, remained equal to inputs
throughout the experiment. Output curves for nitrate-nitrogen (Figs.
41c-48c), also essential but more nearly limiting, were practically
mirror images of the corresponding net daytime production curves (Figs.

26a-33a), with the exception of the initial 60-day lag in NO,-N uptake

3
in N:P = 10 systems (Figs. 45c-48c). Thus, nitrate was retained by the
system during periods of high productivity. Ammonia-nitrogen displayed

rapid uptake within these microcosms during the same period, suggesting

preferential utilization of NH3-N by the early bloom of Chlamydomonas sp.,

followed by additional utilization of NO_,-N by the later bloom of Ulothrix

3

sp. Since N03-N output responded significantly to cadmium treatments in
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the absence of any NH3-N response, cadmium may have selectively inhibited
NO3-N metabolism (autotrophic and heterotrophic). In N:P = 100 systems
(Figs. 41b-44b), NH3-N was accumulated in all cases, while NO3-N showed
significant retention only after a bloom of Chlorococcum sp. which followed
the cadmium pulses between days 28 and 100 (Fig. 43c). The cadmium pulse
on day 190 resulted in a significant increase iﬁ N03-N output. These

3-N utilization but with NO3-N
supporting population blooms, and 2) cadmium inhibition of NO3-N uptake.

results again suggest 1) preferential NH

Outputs of manganese and to a lesser extent, iron (Figs. 49b and ¢
to 56b and c) were roughly inverse to net production (Figs. 26a-33a),
especially in response to cadmium pulses. These patterns suggest that
both elements were present in excess of biotic demand much of the time
but approached limiting concentrations during population blooms.

Total phosphorus (in the form of PO,-P in the inputs) showed rapid
initial uptake in all microcosms (Figs. 49a-56a), preceding peak metabolic
activity by about 60 days. In the N:P = 100 control systems (Fig. 49a),
TP gradually increased in concentration in the output solutions to nearly
equal input concentration (0.06 ppm) by about day 100. Since very
little nitrogen was accumulated during this period (Fig. 41) phosphorus
may have been sequestered through luxury consumption (by autotrophic and
heterotrophic organisms) and utilized later during peak activity, thus
reducing the uptake of new phosphorus inputs. After day 110 TP outputs
again fell below input levels, but in the absence of any change in net
daytime production (Fig. 26a). This may have resulted from an exhaus-
tion of the phosphorus accumulated earlier. Interestingly, the large

changes in net daytime production which followed cadmium pulses (Fig.
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28a and 29a) caused only small deviations from the TP output patterns
just described. This suggests that the phosphorus accumulated early in
succession was sufficient to sustain a large amount of metabolic
activity.  In addition, it indicates that phosphorus was strongly re-
tained within the systems even after major disturbances. The exact
mechanism of this retention has not been identified, but may be the
result of efficient recycling between heterotrophic and autotrophic
organisms which often occur in intimate contact in particulate
aggregates in microcosms (Kurihara 1978).

Retention patterns for all of the elements discussed above gener-
ally support Vitousek's (1977) proposal (Fig. 2) with two possible
exceptions. First, maximum uptake of all essential elements studied did
not coincide with maximum metabolic activity, as discussed above for
phosphorus. Luxury consumption may have been responsible for the early
occurrence of maximum phosphorus retention, and might be expected to
occur for other essential, limiting elements as well. Second, distur-
bances (i.e., cadmium pulses) which caused significant changes in meta-
bolic activity, were not reflected most strongly in the retention pat-
terns of the element most limiting in.system inputs (i.e., phosphorus).

Outputs of NO,-N, present in abundance relative to phosphorus, showed

3
the strongest disturbance response, possibly as a result of selective
cadmium effects on nitrogen metabolism. Since Vitousek's (1977) ideas
were developed for terrestrial watershed ecosystems subject to variable
nutrient inputs and other environmental conditions, and to rather dras-

tic "destructive events" (i.e., clearcutting or fire), our evaluations

may not be entirely valid. . Also, it should be noted that our estimates
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of ecosystem productivity are based on calculations of net daytiﬁe
production of oxygen. Net ecosystem production (the difference between
net daytime production and nighttime respiration, or the slope of the
biomass accumulation curves) is currently being studied for a more
complete evaluation of the hypothesis.

Henderson (1975) proposed the existence of a finite capacity for
ecosystem accumulation of toxic substances. He suggested a temporal
output/input curve somewhere between non-essential and essential, limit-
ing elements in Vitousek's (1977) scheme (Fig. 2). Our data provide a
preliminary evaluétion of this idea for cadmium. Figure 57 shows cad-
mium retention patterns for microcosms receiving continuous 10 ppb Cd
inputs under both phosphorus-limiting and non-limiting conditions. The
curves indeed support Henderson's hypothesis and suggest further that
overall‘cadmium accumulation is a function of productivity. In the less
productive systems (Fig. 57), cadmium outputs approached input levels by
the end of the experimeﬁt (286 days), while the more productive systems
continued to accumulate cadmium. Since inorganic sediments were not
present in the microcosms, cadmium must have been retained or stored in
the biomass but it is not possible to tell from these data whether the
mechanism was active biochemical uptake by living cells or sorption
onto detrital maﬁerials. Both processes have been shown to occur for

cadmium (Khalid et al. 1977, Sarsfield and Mancy 1977).

Ecosystem Behavior as a Function of Element Dynamics

The observations discussed above reflect the influence of eco-

logical processes on the dynamics of essential elements. ‘In general,
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outputs of essential elements in shortest supply relative to demand (N,
P, Mn, Fe) responded most strongly to successional and disturbance-
induced changes in ecosystem behavior. Ecosystem behavior, in turn, was .
largely a function of alterations in the chemical nature of system
inputs. The effects of these alterations (phosphorus limitation and
cadmium inputs) are discussed below.

A further aspect of the problem of toxic substance accumulation in
ecosystems is the ultimate effect of the toxicants on ecological pro-
cesses. In Phases I and II of this work, we have indicated that cadmium
seems to most strongly affect grazing herbivores, thus altering trophic
structure and changing overall ecosystem behavior. These effects re-
sulted from relatively large concentrations of cadmium (100 ppb Cd in
Phase I and 750 ppb Cd in Phase II). However, small concentrations
accumulating over longer time periods might be expected to have similar
effects, particularly if some threshold toxic concentration is achieved.
Such an effect may have occurred in two of the four replicate N:P = 100.
An abrupt and highly significant increase in net production (Fig. 27a),
community respiration (Fig. 27b), and NO3-N uptake (Fig. 42c) occurred
around day 100 in these systems after a total input of approximately
500 pg of cadmium By day 100 very little of the inflowing cadmium had
accumulated within the systems (Fig. 57a); in fact this point marks the
beginning of significant cadmium accumulation. If a threshold response
did occur it resulted from relatively low concentrations of cadmium.

For reasons which are not clear, the other two replicates failed to
display this behavior and we thus are unable to make an evaluation.

Further research will be required to clarify the existence and quén-
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titative nature of toxicant accumulation thresholds. The N:P = 10
systems (Fig. 58) accumulated considerably more cadmium than the N:P =
100, but showed no detectable response, suggesting that cadmium was
immobilized within the systems.

Schindler (1977) suggested that phosphorus is the single most
important essential element directing the behavior of aquatic eco-
systems, since it is more often scarce, relative to biotic demand, than
other elements. This idea is substantiated by the success with which
biotic activity can be predicted from phosphorus loading models (e.g.,
Dillon and Rigler 1974). In the Phase II experiment, phosphorus limita-
tion significantly influencgd all of the variables measured, causing
reductions in biomass, plant pigments, community metabolic activity and
nutrient retention, and alterations in community structure. Of perhaps
greater interest is the fact that these manifestations also influenced
system responses to cadmium perturbations (i.e., significant nutrient-
cadmium interaction effects). In general, N:P = 100 microcosms were
more sensitive (in terms of net daytime production, nighttime respir-
ation and nutrient accumulation) to cadmium treatments than the N:P = 10
systems. This observation agrees with Pomeroy's (1975) hypothesis that
ecosystem stability is a function of the availability of essential
elements. With respect to toxic substance perturbations, this could be
due to immobilization of toxicants in dead oiganic matter, which is
usually abundant in eutrophic systems, or to the dominance of generally
euryaceous organisms under nutrient rich conditions. Both mechanisms
are likely to contribute to ecosystem stability in any given situation.

The response of an ecosystem to any perturbation will be influenced
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by the developmental history of the system (Leffler 1978). Thus,
systems frequently exposed to a particular type of disturbance may
develop a degree of resistance to that disturbance through selection for
resistant organisms. Some ecosystems have actually become dependent on
environmental perturbations for maintenance of structural and functional
integrity (pulse-stability sensu Odum 1969). Examples include fire
maintained forests and tidal-pulse maintained salt marshes. We have
attempted to determine if developmental history (in terms of cadmium
exposure) might influence the resistance of an ecosystem to toxic sub-
stance perturbations.

In the N:P = 100 systems, éarly cadmium pulses resulted in signi-
ficant increases in net daytime production (Fig. 28a), nighttime res-
piration (Fig. 28b), and uptake of N03-N (Fig. 43c) and Mn (Fig. 51b).
Thus, by day 190 these systems were significantly different from those
not receiving the early cadmium pulse. The cadmium pulse on day 190
produced different responses in the two types, but the differences were
not as expected. The previously pulsed microcosms showed an immediate
but transient decrease in metabolic activity (Fig. 32), and an increase
in output of N03-N (Fig. 43a), and Mn, (Fig. 51b), while the previously
unpulsed systems responded with a gradual, but long-lived increase in

metabolic activity (Fig. 29) and NH,-N uptake (Figs. 44b). Interestingly,

3
the latter response was qualitatively similar to the initial cadmium res-
ponse of the early-pulsed systems, both showing an increase in net
daytime production and nighttime respiration. In Phase I, this effect

was attributed to the release of primary producers from grazing pressure

due to the decline in macroinvertebrate herbivores (crustaceans). In
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the present case, macroinvertebrate grazers were never abundant, but
microinvertebrates (primarily rotifers) may have served the same func-
tion. In fact, total ;otifer numbers declined c;nsiderably following
early cadmium pulses (Fig. 39) and the single, day-190 pulse (Fig. 40).
Since the algal community in these systems consisted primarily of small

unicellular forms (e.g., Chlorococcum sp., Chlorella sp. and Chlamydomonas

sp.) potentially available to rotifers, the altered trophic structure
explanation of system~level cadmium response seems plausible. Marshall
and Mellinger (1980) report the same effect in toxicity studies in a
Canadian shield lake. However, altered trophic structure alone does not
account for the observed decrease in metabolic activity and increase in
nutrient output following the cadmium pulse on day 190 in the previously
exposed systems (Figs. 28 and 43). Rotifer numbers showed no response
(Fig. 39) suggesting selection for cadmium resistant strains after the
earlier pulses. Cadmium appears to have directly inhibited metabolic
activity of primary producers, and perhaps heterotrophs as well, but
with no detectable change in community structure. It is possible that
when cadmium was first added, removal of grazers was the dominant factor.
Later, after grazers had developed cadmium resistance, photosynthetic
inhibition may have been more important (Jeff Giddings, personal communi-
cation). It is not clear from these data why phosphorus limited systems
were more sensitive to cadmium than non-limited systems.

In the N:P = 10 systems (Fig. 32a) early pulses of cadmium resulted
in a delay, but no significant increase, in peak metabolic activity over
controls (Fig. 30a). The cadmium pulse on day 190 caused a slight, but

not significant decrease in net daytime production and nighttime respira-
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tion followed by a large increase in variance among the replicates
approximately 20 days later (Fig. 32a). In the previously unpulsed
systems the day-}90 cadmium pulse resulted in a significant but transient
decrease in community metabolism (Fig. 33) and increase in N03-N output
(Fig. 48c). It is suggested that the large pulse of cadmium directly
affected primary production as well as heterotrophic activity, thus
depressing overall system metabolism.

In general, then, early cadmium pulses appeared to increase system
resistance to later pulses in the N:P = 10 systems, and decrease resis-
tance but increase resilience (sensu Waide et al. 1975) to later pulses
in the N:P = 100 systems. The fact that ostracod numbers (Figs. 36 and
37) eventually rébounded from, and rotifer numbers (Figs. 39 and 40) were
apparently unaffected by the day-190 cadmium pulse only after previous
exposure to cadmium, gupports the idea of increased stability due to

selection for cadmium tolerant organisms.
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SECTION 5
COMPARISON OF STATIC AND FLOWTHROUGH MICROCOSMS

Nutrient Treatments

Data from the Phases I and II experiments are summarized in Table I
to provide a gross comparison between selected attributes of static and
flowthrough microcosms not subjected to cadmium treatment. Phase I
preceded Phase II and was rumn by different personnél, but both experi-
ments were conducted in the same growth chamber under similar environ-
mental conditions. In addition, all microcosms were established in
identical containers, in the same basic medium (quantitatively modified
for nutrient manipulations) and inoculated from the same laboratory
stock microcosms. In Phase II the containers were equipped with input
and output tubing to allow for flowthrough of the nutrient solution.
For comparision, data in Table 1 are from control microcosms (i.e., no
cadmium treatment) at nutrient levels two (N:P=0.5/0.05) and four
(N:P=10.0/1.0) in Phase I, and phosphorus-limited (N:P=6.2/0.06) and
non-limited (N:P=0.2/0.02) systems in Phase II. Values for biomass,
chlorophyll a, phaeo-pigments, net daytime production and nighttime
respiration were averaged over the last 1/3 of each experimental period
so that approximately steady state conditions could be compared. For
the static systems this represents days 77-119 and for the flowthrough
systems, days 198-286. All other variables were calculated from these
data, as indicated. Many of the values showed considerable variability
as reflected in large standard deviations. Because of this and
differences in experimental design, statistical comparisons were not

made. However, these data provide the closest possible comparison,
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Table 1. Comparison of nutrient etfects on static and Flowthrough microcosms.

Variable Low Nut

Biomass

Chtorophyll a (Ch))

Phaco-pigments (Pla)

Net Daytime Production (l‘n)
Nighttime Respiration (NN)

P"/RN

Gross Produclion (I’G=I'D4RN)

Neet Commomity Prodoction (I‘N:I’"-RN)
I’G/B

l‘l)/l‘.hl

Chi/n

‘CIO 1/Pha

VATT Values weéraped over days 71-119
}'MI values averaged over days 198-286

Jon;e, N/mg £ in nutrient medime.

Note:  Riomass, chlovaphyll a awd phaco-pignents jo wg/l;

standavd deviation in paventheses.

Reproduced from
best available copy.

4R(66)
0.03(0.03)
0.10(0.12)
0.92(0.76)

0.66(0.138)

30.67
0.0006

0.30

WN&RUFHWPKWWQHM_

High Nutricnt |
Go7i)

235(129)
0.81(0.70)
0.60(1.53)
1.71(0.77)
1.57(0.58)

1.09
1.28
0.14
0.01
2.1
0,003

1.35

nel daytime production

b
_...Flowtheough Hicrovosms™

40(18)

0.13(0.06)
0.09(0.04)
0.65(0.28)
0.57(0.36)
1.14
1.22
0.08
0.03
5.00
0.003

1.44

. 3
ltigh Phosphocous

J

867(327)

2.9700.17)
2.23(2.61)
2.60¢0.17)
2.42(0.45)
1.07
5.02
0.18
0.006
0.88
0.003

[ R )

and nightline vespiration in mg ()?/IIIZ hes.



based on levels of phosphorus enrichment.

In generai, the low phosphorus systems of both types behaved
sigilarly with respect to community metabolism (PD and RN) and biomass
accumulation. This is surprising since by day 286 the flowthrough
systems had accumulated roughly 3 mg P, compared to 0.3 mg P which is-
the total amount which could have been taken up in the static systems.
This suggests that the static systems operated at much higher efficiency
(ie., on 10 times less phosphorus) than the flowthrough systems.

Higher efficiency in the static systems is also indicated by higher
values for net community production and for PD/Chl (the assimilation
ratio) which suggests greater oxygen production per unit chlorophyll.
These observations imply relatively greater recycling of phosphorus in
the static than flowthrough micocosms. The flowthrough systems appeared
to have higher chlorophyll a concentrations and conseqpently, hiéher
value for chlorophyll a/biomass and cﬁlorophyll a/phaeo-pigments.

In the high phosphorus systems, most of the variables showed higher
values in the flowthrough than in the static systems. In this case,
roughly 60 mg P had accumulated in the flowthrough microcosms compared
to, at most, 6 mg P in the static systems. The higher assimilation
ratio in the static microcosms again indicates greater efficiency in
these systems.

It is interesting that a 10 to 20-fold increase in phosphorus
resulted in only a two to four-fold increase in net daytime production and
nighttime respiration in both static and flowthrough systems. It would
appear that some other factor was limiting to metabolic activity at the

high levels of enrichment, -(perhaps some other nutrient, or light
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penetration through thick algal mats)'or that phosphorus was immobilized.
Finally, a notable difference between the static and flowthrough
systems was in the timing of peak metabolic activity. Nutrient flow-
through resulted in peak net daytime production and nighttime respiration
around day 90 (Fig. 26 and 30), compared to around day 30 in the static
_system (Figs. 15 and 16). This represents a difference of about 60 days
or roughly a three-fold expansion of time scales of activity. The
magnitude of expansion might be a function of system turnover time,
which in this case was 12 days. |
To summarize, static microcosms appeared (1) to operate at higher
efficiency in terms of assimilation ratios and metabolic activity per
unit phosphorus, and (2) complete development over shorter time scales
than flowthrough microcosms. Phosphorus enrichment in both system
types increased net daytime production and nighttime respiration but not
in a linear fashion; at high levels of enrichment some other factor
appeared to be limiting to community metabolism. Phosphorus enrichment
also lowered net production efficiency, in terms of assimilation ratios,

in both static and flowthrough systems.

Cadmium Treatments

Table 2 presents a summary of cadmium effects on static versus flow-
through microcosms. The format is similar to that of Table 1 with
respect to nutrient treatments. Static systems represented are the 10
ppb Cd and 100 ppb Cd treatments at nutrient levels two (N:P=0.5/0.05)
and four (N:P=10.0/1.0). TFlowthrough systems are the continuous 10 ppb

Cd input treatments under phosphorous-limited (N:P = 100) and non-limited
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‘fable 2. Comparison of cadmium effects

Variable
Cadmium Accumulated

Biomass (B)

Chlorophyll-a (Chl) 0.
Phaeopigments (pha) 0.
Net Daytime Production (PD) t.

Nighttjme Respiration (RN) 0.

Py/Ry

Gross Production (PG=PDOR")

Net Community Production (PN=PD-RN)
Pe/B

l’”lchl

Chl/B

Chi/Pha

‘All values averaged over days 77-119.

All values averaged over day 198-286.
“mgN/mgP in nutrient medium.

on static and flowthrough microcosms.

Static chrocosms'
Low Nutricgs High Nut_lic_:_gg

(0.5/0.05)" “(10.0/1,0)
10pphCd 100pphcd 10ppbed 100pphcd
60 600 60 600
67(41) 72(45) 246(156) 246(105)
15(0.11)  0.15(0.14) 0.80(0.81) 1.61(1.25)
04(0.06) 0.05(0.12) 0.14(0.26) 0.43(1.09)
10(0.72) 0.82(0.46) 1.69(0.72) 1.79(0.75)
82(0.32) 0.69(0.25) 1.58(0.59) 1.65(0.58)
1.36 1.19 1.07 1.08
1.92 1.5 3.i1 3.44
0.28 0.13 o.n 0.14
0.0) 0.02 0.01 0.0}
7.33 5.47 2.1 i.1
0.002 0.002 0.003 0.65
3.72 3.00 5.71 3.74

Flowthrough Hicrocnsms2

- 6.2/0.06):
10ppbCd

Low l’hospgglqgg

300
89(49)
0.29(0.29)
0.16(0.15)
2.10(1.02)
1.94(0.98)
1.08

4.04

0.05
1.24
0.003

1.81

Note: Cadmium accumulation in pg €d/61 microcosm; biomass, chlorophyll a and phaeo-pigments in mg/l;

net daytime production and nighttime respiration in mg 02/1/12 hrs.; standard deviations in parentheses.

(6.2/0.62)

Topphcd

iligh Phospliorgus

600
835(369)
2.63(1.67)
3.92(3.80)
2.52(0.70)
2.29(0.57)
1.10
4.81

23
0,006
0.96
0.003

0.67



(N:P = 10) conditions. By the end of tﬁe experiment the N:P = 100
microcoéms had accumulated roughly 300 pg Cd, while the N:P = 10 micro-
cosms had accumulated approximately 600 pg Cd. This compares with 60 pg
Cd and 600 pg Cd, the maxiumum which could have been taken up in the

10 ppb Cd and 100 ppb Cd treated static microcosms, respectively.

Values shown in Table 2 are averages over days 77-119 in the static
systems, and days 198-286 in the flowthrough systems (as in Table 1).

A comparison of data in Tables 1 and 2 reveals several general
trends. In the static microcosms the most notéble cadmium response is
reflected in'chlorophyll a concentrations and secondary variables which
include chlorophyll a (PD/Chl,Chl/B and Chl/Pha). This observation is
supported by data presented earlier (Fig.8). Chlorophyll a in the high
nutrient static systems showed the greatest response to 100 ppb Cd, while
the low nutrient static system responses to 10 ppb Cd and 100 ppb Cd were
indistinguishable for all variables. This reemphasizes the interactive
effects of high nutrient-high cadmium concentrations discussed in
Section 4. In contrast, only the low phosphorus flowthrough microcosms
showed a noticeable cadmium response and this was in terms of net day-
time production, nighttime respiration and the related secondary
variables. The high phosphorus flowthrough systems showed no
detectable response.

From these observations, we are unable to draw any firm conclusions
with respect to relative sensitivities of static and flowthrough micro-
cosms. It would appear (although tenuously) that low nutrient static
systems showed detectable responses to relatively less accumulated

cadmium than either low or -high phosphorus systems. However, it is
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possible that the low phosphorus flowthrough systems responded to consid-
erably less accumulated cadmium than indicated in Table 2 (see Section 4).
Unfortunately, a block effect in our experiment precludes evaluation.

To more precisely address this problem, future experiments should include
exactly comparable levels of nutrient enrichment, equivalent pulsed
toxicant inputs into static and flowthrough system (early and late in
successioﬁ), and several low level continuous toxicant inputs into flow=-

through systems.

Relative Sensitivity of Variables

Table 3 is a géneral, qualitative summary of responses to cadmium of
all variables measured in the static and flowthrough microcosms. This
comparison includes the effects of cadmium pulses in the flowthrough
systems. The purpose of Table 3 is to provide a gross evaluation of the
relative sensitivities of the variables. The presence of a response
("+" indicates an increase in value, "-" a decrease in value, and "0" no
response) is based on statistical analyses presented earlier in this
report, or on obvious response patterns (e.g., crustacean abundance in
flowthrough microcosms).

A comparison of variables in Table 3 suggests that community
metabolism (especially respiration) and population densities (especially
grazers) provide the best overall measures of cadmium effects. This
agrees with the conclusion of Odum et al. (1979) that ecosystem stress
evaluations should focus on variables at the ecosystem and population
levels of organization (energy flow and key population densities, res-

pectively). The P/R ratio -decreased in response to cadmium in the
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Table 3. Qualitative comparison of microcosm responses to cadmium.

Static Microcosms Flowthrough Microcosms

Low Nutrient High Nutrient . Low Phosphorus High Phosphorus

Biomass . 0 0 0 0
Chlorophyll a - 0 + + 0
Phaeopigments 0 0 0 0
Net Daytime Production 0 0 +- -
Nighttime Respiration + + ' +-. -
P/R - - ' 0 0

Population densities

Algae + + + 0
Grazers - - - -
Bacteria 0 0 N.M N.M
Fungi + + N.M N.M
Nutrient Output
TN N.M. N.M. -+ 0
NH3-N N.M. N.M. - 0
NO3-N N.M. N.M. -+ +
TP N.M. N.M. 0 0
Mn N.M. N.M. -+ -
Fe N.M. N.M. 0 -
Note: + indicates increase in value; - indicates decrease in value; 0 indicates no

response; N.M. indicates that a variable was not measured.
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static microcosms due to an increase in community respiration. Giddings
and Eddlemon (1978) also observed a decrease in P/R in st#tic microcosms
exposed to arsenic. In the present .experiment, net production and
community respiration in the flowthrough systems responded identically
to cadmium, resulting in no measurable P/R response. We are unable to
tell at present whether this difference is due to the actual nutrient
flowthrough or to the pulsed nature of cadmium inputs in the flowthrough
microcosms.

Biomass and plant pigment concentrations were generally the poorest
indicators of cadmium effects. This is not surprising for biomass
since, as a cumulative system property, it would not be expected to
reflect short term system dynamics in response to chemical pertur-
bations. Biomass accumulation rates might be more revealing. As
measures of autotrophic mass and condition, plant pigments might be more
sensitive to toxicants which selectively affect primary producers.

In the flowthrough microcosms, output/input ratios of nitrogen
(especially NO3-N) proved to Be quiﬁé sensitive to cadmium pulses,
responding as the inverse of net production. This may have been the
result of a direct cadmium influence on nitrogen metabolism. Giesy et
al. (1979) found no N03-N output response to cadmium continuously intro-
duced into stream channel microcosms, possibly because of significantly
lower cadmium (5 and 10 ppb) and NO3-N concentrations (3f6-10'4 ppb), or
other properties of the stream systems (e.g., biotic composition). The
influence of toxic substances on nitrogen metabolism requires further

research.

Finally, manganese and iron outputs in response to cadmium pulses
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were suggestive of the pattern described above for NO,-N, but the trends

3
were not as clear. And, again, the mechanisms involved are not known.
Nonetheless, these results emphasize the potential utility of essential
element dynamics as an indication of ecosystem stress response.
Phosphorus outputs showed no significant response to cadmium treatments
at either level of enrichment, indicating that phosphorus is efficiently
retained within the systems even after disturbances. Evans (1977) found

similar results in flowthrough reef-flat microcosms exposed to copper

perturbations.
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SECTION 6

CONSIDERATIONS AND RECOMMENDATIONS FOR TOXICITY TESTING

Results of these experiments suggest some tentative answers to the

questions raised in the Introduction:

1)  Which ecosystem properties are most sensitive or best reflect

ecosystem response to toxicant perturbations?

Of the ecological variables measured in this study, community
metabolism (net daytime production and especially nighttime respiration)
and densities ofvvarious taxonomic groups provided the most consistent
indicators of cadmium effécts. The ratio of net production to community
respiration (P/R) has been suggested as a useful measure of toxicant
stress in microcosms (Giddings and Eddlemon 1978), but proved responsive
to cadmium only in the static systems in our study; in the flowthrough
system PD and RN both responded similarly, resulting in no net change in
P/R. Reasons for this difference are not clear, but it does seem clear
that PD and RN expressed individually are important and easily measured
variables in microcosm studies. Biomass and plant pigment concen-
trations were the least sensitive to cadmium of‘the variables measured
in our study. Biomass accumulation rates and pigment ratios might prove
to be more useful. In the flowthrough systems, output/input ratios of
NO3-N, Mn and Fe showed significant responses to cadmium treatment.

This illustrates the potential utility of output/input ratios

(especially nitrogen) for toxicity screening and suggests further that
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some toxicants might selectively alter specific metabolic pathways.
Estimates of rates of metabolism of certain essential elements (e.g.,

N, P, S) should be considered for use in microcosm screening tests.

Thus, based on our results, the most usefui ecological variables for eval-
uating toxicant effects in aquatic microcosms appear to be those that
reflect: 1) overall community metabolism (PD, RN and P/R), 2) changes in
community composition (relative abundances of key functional or trophic
groups), and 3) dynamics of essential elements (output/inpﬁt ratios and
possibly activity of specific metabolic processes). Sampling frequency
in this study was approximately once per week for most of the variables.
The observed trends could have been detected from less frequent sampling -
over most of the experimental periods but with more intense sampling

early in succession and immediately after perturbations.

2) What influence will other environmental variables (e.g., pH,
nutrient enrichment, light intensity) have on ecological effects .

of a toxic substance?

Nutrient enrichment and phosphorus limitation significantly in-
fluenced the cadmium response of most of the variables measured in this
study. In general, the poorly enriched microcosms were more sensitive
to cadmium than their highly enriched counterparts. The importance of
this finding for toxicity screening in microcosms is that standard
testing conditions, such as levels of nutrients and other factors, are
likely to influence test results. This unavoidable bias can be mini-

mized or at least accounted for by conducting screening tests in matrix
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or factorial experimental designs which include potentially interacting
factors. In particular, if tests are run in microcosms of site specific
derivation, then environmental factors importént in a given geographic
area (e.g., salinity, pH, temperéture extremes) could be incorporated
into the test, along with toxicant levels, for a more meaningful evalua-
tion. Any number of factors could be included in such a scheme
(including several toxicants), but experimental costs would increase with
each factor. Judicious choice of potentially important factors would be
required. An especially important environmental factor which this study
did not consider was the effect of inorganic sediments (and the asso-
ciated biotic community) on cadmium toxicity. Because soils and sediments
are important biogeochemical factors in all ecosystems, they might be
more appropriately included as a nominal experimental condition rather
than a separate factor, unless the interactive ecological effects of
toxicants and sediments are of interest. Since this study focused on
biotic processes and was, therefore, ecologically incomplete, we would
suggest a complimentary follow-up experiment of similar design, which
incorporates sediments as an experimental condition applied equally over
all treatments. This would add more realistic conditions and- allow for

inferences as to the influence of sediments on cadmium toxicity.

3) Will ecosystem response be a function of the timing or frequency of

toxicant inputs with respect to stages of ecosystem development?

The mode of toxicant introduction into microcosms is an important

consideration for toxicity testing. Since toxic substance inputs into

56



natural ecosystems occur over wide ranges of frequency and magnitude,
one-time additions of a toxicang to microcosms might not provide a
meaningful evaluation of ecological effects. In the present study,
cadmium was added to the static microcosms only at the beginning of the
experiment, precluding any consideration of toxicant input dynamics. We
attempted to address this problem in fiowthrough microcosms by applying
cadmium in pulses at several stages in succession. Results showed that
cadmium pulses early in succession significantly affected system res-
ponse to later pulses, possibly due to selection for tolerant organisms.
We are unable, with these data, to evaluate relative sensitivities of
different successional stages. This could be easily done, however, in a
factorial experiment using time of pulse as one factor and magnitude of
pulse as another. We also compared flowthrough microcosm responses to
continuous chronic versus acute pulsed cadmium exposure. Continuous

10 ppb Cd inputs may have caused a toxic threshold response, but results
are inconclusive. Giesy et al. (1979) found no evidence for cadmium
thréshold responses in stream microcosms exposed to continuous 5 and 10

ppb Cd inputs.

4)  What degree of realism (biotic and abiotic complexity) should be

incorporated into microcosms for use in toxicity screening?

Generally, the microcosms used in this study (small volume [6 1]
with naturally derived communities) were sensitive to moderately low
concentrations of cadmium (100 ppb). The lowest concentrations, how-

ever, caused no response in the static systems (1 and 10 ppb Cd) and a
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possible but inconclusive response in the flowthrough systems (10 ppb
Cd). In contrast, others have found significant ecological responses to
low levels of cadmium (5 and 10 ppb Cd; Giesy et al. 1979) and copper
(10 ppb Cu; Evans 1977) in relatively large, ecologically complex,
outdoor microcosms. This suggests a possible direct relationship
between microcosm size (or complexity) and toxicant sensitivity, but

the relationship is not clear. Conversely; a broad interpretatién of
the results of Van Voris et al. (1980) would suggest that the most
sensitive systems (i.e., least resistant to perturbation) are relatively
low in "functional complexity." Until some empirical means is found to
evaluate functional complexity, however, this problem will be difficult
to resolve. It is also possible that physical or chemical properties
(e.g., pH or water hardness) of the various microcosms are related to
their various sensitivities. In any event, our results suggest that
small laboratory microcosms are potentially useful for estimating gross
ecological effects of toxic substances, perhaps as an early phase in
multiple-stage testing followed by later but more selective studies in
more complex systems (subsamples from specific ecosystems;>eg., Giddings
and Eddlemon 1978).

We are unable to judge the relative sensitivities of static versus
flowthrough microcosms used in this study. We suggest, however, that
nutrient flowthrough provides a degree of realism lacking in static
microcosms and allows for consideration of chemical input-output dy-
namics, which proved to be sensitive to cadmium perturbations. In- ad-
dition, continuous low level input of toxicant provides a means for

evaluating chronic toxicity. It should be noted that continuous
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nutrient flowthrough appeared to result in a 60-day delay in peak meta-
bolic activity compared to static conditions. This suggests that screen-
ing tests in flowthrough microcosms might require longer periods of
observation if entire successional sequences are to be studied. However,
responses to cadmium pulses were relatively rapid and observable over
shorter time periods (approximately 30-60 days in most cases). The
behavior of flowthrough microcosms has been suggested to be related to
system turnover time (Leffler 1978) which, in the present experiment,

was 12 days. Turnover times which provide maximum toxicant semnsitivity

will have to be determined for toxicity screening tests.

A Hierarchical Approach

As mentioned in the Introduction, testing standards have not yet
been developed for evaluating ecological effects of toxic substances
prior to their widespread release into the environment. We suggest that
a potentially useful screening protocol for aquatic ecosystems might
consist of a series of factorial experiments in aquatic microcosms of
increasing complexity: (1) Relatively simple, static microcosms (with
and without sediments), (2) flowthrough microcosms (with and without
sediments), and (3) detailed but selective studies in more complex
microcosm subsamples from specific ecosystems. Steps (1) and (2) are
based partly on results from the present experiment; although sediments
were not studied, they have been shown to influence the toxicity of a
number of compounds (e.g., Hongve et al. 1980). In addition, separate
consideration of natural sediments corresponds to previous conclusions

that toxicant effects on pelagic and sediment communities should be
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studied in separate screéning experiments (Leffler 1980, personal communi-
cation). We include sediments in the protocol as a point for further
research. Step (3) is based on results from Ausmus et al. (1980) which
suggest that laboratory microcosms can be constructed which reasonably
mimic specific natural ecosystems (ponds), and that such systems are most
useful for later stages of screening of toxic substances.

The protocol is tentative in that details of analysis and interpre-
tation have not been developed. A general outline is as follows (the
steps are similar in rationale to those described for terrestrial micro-

cosms in Gillett and Witt [1977], pp. 5-6):

1) Based on consideration of available information concerning a
toxicant (chemical properties, species bioassay data, simulation
model predictions, etc.), short-term factorial experiments are
conducted in simple static microcosms to elucidate gross ecological
effects. The factors to be included are indicated by available
information, but may be simply toxicant levels versus the presence
and absence of sediments. If other factors require evaluation,
then sediments might be considered in separate but concurrent
experiments. The experiments might be designed to test a statis-
tical null hypothesis of no toxicant effect over some range of
concentrations (e.g., several orders of magnitude). In such a case,
a minimum set of response variables should include community meta-
bolism (productivity and respiration), toxicant and selected nutrient
concentrations (for evaluations of uptake/release of nitrogen and

phosphorus, for example), and abundances of key taxonomic groups
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(e.g., primary producers, grazers and microbial decomposers). Other
variables might be appropriate, especially in cgses where specific
modes of toxicant activity are known or suspected (e.g., rates of
nitrogen fixation for chemicals that inhibit nitrogenase activity).
If, as a result of these experiments, a chemical proves to have
highly undesirable ecological effects, even at low concentrations,
no further testing may be required. If moderate or no effects are

detected, testing should be continued at the next level.

(2) Based on results from the static experiments, flowthrough microcosms
are employed to evaluate chronic or threshold effects of low level,
continuous toxicant inputs. In addition, the effects of toxicant
input dynamics (inputs of various intensity, duration or frequency)
can be studied if desired. As before, factors to be included
depend on available information. Effects of sediments might be
included as a factor or studied in separate experiments. In addition
to response variables considered in step (1), output/input relation-
ships for selected nutrients and for the toxicant should be measured.

Again, if dramatic ecological effects are discovered during
these experiments, further testing may be unnecessary. Otherwise,

tests are conducted at the next level.

(3) Results from steps (1) and (2), combined with existing information,
should provide a reasonable estimation of gross ecological effects
of a toxic substance. The purpose of the last step is to analyze

some of the details of toxicant activity in microcosms derived from
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specific ecosystems and to detect effects which might be site
specific. Ecosystems of interest might be those expected

to receive excessive exposure to a toxic substance. Details of
experimentation with this type of aquatic microcosm are described
in Ausmus et al. (1980). Appropriate analyses include toxicant
transport and degradation (via radioisotope-labeled compounds),
bicaccumulation ratios, nutrient concentrations in interstitial
water, and community metabolic -activity (productivity and respir-
ation). Other variables might be of interest in specific situations.
Information from such experiments should suggest mechanisms for
ecological effects which may have been observed, but less well

understood, in steps. (1) and (2).

Any suspected toxicant which fails to show adverse effects in all
three hierarchical steps might be expected to have little impact in
natural aquatic ecosystems, at least over the concentration ranges
studied. However, this statement cannot be confirmed from existing
information. Further research is needed to validate experimentally
derived results through studies in natural systems, and to assess the
feasibility of a hierarchical approach to toxicity screening. The
advantage of such an approach is that each step yields increasingly
greater information about the effects of a toxicant, and more closely

approximates natural ecosystems.
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1)

2)

3)

SECTION 7

CONCLUSIONS

Of the variables measured in this study, the most useful for evalu-
ating the ecological effects of cadmium were: a) community meta-
bolism (net daytime production and nighttime respiration), b) changes
in community composition (relative abundances of trophic groups),
and c) output/input ratios for N03-N, Mn and Fe. Biomass and

plant pigment concentrations were the poorest indicators of cadmium
effects. The response of specific metabolic activities (e.g., for
N, P and S) to toxic substances requires further research and

should be considered for incorporation into toxicity screening

tests.

Nutrient\enrichment and phosphorus limitation significantly in-
fluenced cadmium effects on most of the variables measured in this
study. The use of a factorial experimental design provides a
means of including potentially important interacting factors into
microcosm screening tests. The effects of inorganic sediments on
system response to cadmium should be investigated for comparison

with results of this study.

Pulsed cadmium inputs early in succession significantly affected
system responses to cadmium pulses later in succession (in flow-

through microcosms) possibly as a result of selection for cadmium
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4)

tolerant organisms. Continuous 10 ppb Cd inputs may have resulted
in a threshold response due to cadmium accumulation, but results are

inconclusive.

A hierarchy of microcosm experiments, including 1) static micro-
cosms (witﬁ and without sediments), 2) flowthrough microcosms
(with and without sediments), and 3) microcosm subsamples from
natural ecosystems, appears potentially useful for screening
purposes. Each step provides increasingly greater information and

more closely approximates natural ecosystems.
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gen (C) output/input ratios through time in flowthrough
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inputs. Each point is the mean of four replicate systems
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cosms with input N:P = 100 and cadmium pulses as indicated in
ppb Cd by arrows. Each point is the mean of four replicate
systems with 957 confidence bars.

107



20r TN A
] 750
Ol i Lt b v b b g
2-0‘NH3°N B
— =
D o
Q. L
< |
=10 3 + J~¢+ ; }
2 L Q7" 9090 %év
& &
e [ L ¢¢¢% 0 ¢ ¢°¢?¢¢ \
=2 L
o
O-ll[!lllllllL[LLLlllllllllLLlll]
20r NO3-N C
]O' 9.0 |o 0 ‘°¢¢
. ¢ é
r Q
O"lllllll|llllLJlllllllL[LllIllll
0 50 100 150 200 250 300
DAY

FIGURE 44. Total nitrogen (A), ammonia nitrogen (B), and nitrate nitro-
gen (C) output/input ratios through time in flowthrough
microcosms with input N:P = 100 and cadmium pulse as indi-
cated in ppb Cd by arrow. Each point is the mean of four
replicate systems with 957 confidence bars.
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FIGURE 46. Total nitrogen (A), ammonia nitrogen (B), and nitrate nitro-
gen (C) output/input ratios through time in flowthrough
microcosms with input N:P = 10 and continuous 10 ppb Cd

inputs. Each point is the mean of four replicate systems
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gen (C) output/input ratios through time in flowthrough
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FIGURE 48. Total nitrogen (A), ammonia nitrogen (B), and nitrate nitro-
gen (C) output/input ratios through time in flowthrough
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FIGURE 49. Total phosphorus (A), manganese (B), and iron (C) output/
input ratios through time in flowthrough microcosms with
input N:P = 100 and no cadmium. Each point is the mean of
four replicate systems with 95% confidence bars.

113



20r TP A

1 1
N
—Jo-

? I |
| (Wi,
Lot 4l

20r Mn B
- .
5 |
Q. N
< L
5 10 °°? { & .
a [ o # + y <>ﬁ’j 5PoP o7 147
- L )
=) N
@)
Ot L L Y gy
20r Fe - A C
i _
. »] |
1.0 Q4o

I °°¢ ? ,Q%? o Thi’## %W#%(# %

.9

O-lLllllllllLlllllllllJllll!l!lLl

0 50 100 150 200 250 300
DAY

FIGURE 50. Total phosphorus (A), manganese (B), and i:ron (C) output/
input ratios through time in flowthrough microcosms with
input N:P = 100 and continuous 10 ppb Cd inputs. Each point

is the mean of four replicate systems with 95% confidence
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FIGURE 51. Total phosphorus (A), managanese (B), and iron (C) output/
input ratios through time in flowthrough microcosms with in-
put N:P = 100 and cadmium pulses as indicated in ppb Cd by
arrows. Each point is the mean of four replicate systems
with 957 confidence bars.
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FIGURE 52. Total phosphorus (A), managanese (B), and iron (C) output/
input ratios through time in flowthrough microcosms with
input N:P = 100 and cadmium pulse as indicated in ppb Cd

by arrow. Each point is the mean of four replicate systems
with 957 confidence bars.
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FIGURE 53. Total phosphorus (A), managanese (B), and irom (C) output/
input ratios through time in flowthrough microcosms with
input N:P = 10 and no cadmium. Each point is the mean of
four replicate systems with 95% confidence bars.
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FIGURE 54.

Total phosphorus (A), manganese (B), and irom (C) output/
input ratios through time in flowthrough microcosms with

input N:P = 10 and continuous 10 ppb Cd inputs.

Each point

is the mean of four replicate systems with 95% confidence

bars.
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FIGURE 55. Total phosphorus (A), manganese (B), and iron (C) output/
input ratios through time in flowthrough microcosms with
input N:P = 10 and cadmium pulses as indicated in ppb Cd
by arrows. Each point is the mean of four replicate systems
with 957 confidence bars.
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Total phosphorus (A), manganese (B), and iron (C) output/
input ratios through time in flowthrough microcosms with
input N:P = 10 and cadmium pulse as indicated in ppb Cd by
arrow. Each point is the mean of four replicate systems
with 957 confidence bars.
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FIGURE 57. Cadmium output/input ratios through time in flowthrough

microcosms with input N:P = 10 (A), and N:P = 100 (B).
Cadmium input concentration was 10 ppb.
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APPENDIX A

Nutrient medium composition. Modified Taub and Dollar (1964) #36 medium.
All values are in mg/1.

Compound Phase I (Level 1)! Phase II (N:P=100)°2

CaCl 0.367 1.952

MgSOy *7 HO 1.233 4.944

KH, POy, 0.046 0.276 (2.724)
NaOH 0.077 0.734 (1.309)
EDTA 0.162 1.631

FeSOy * 7 Hy0 0.156 1.556

MnCl, * 4 H,0 0.050 0.990

H3BO3 0.046 0.927
Co(NOj3)5 * 6 Hp0 0.007 0.145

ZnS0y * 7 H20 0.007 0.143

-CuSOg * 5 H0 0.001 0.025

NaMoOy °* 2 H,0 0.006 0.121

KOH 0.026 0

NH,NO3 0.304 17.770

NaCl 4.380 (43.338)

llevel 2 = 5 X Level 1; Level 3 = 10 X Level 1; Level 4 = 100 X Level 1.

2N:P = 10 same as N:P = 100 except as indicated by values in parentheses.
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APPENDIX B

Detection limits of elements anélyzed on the Jarrell-Ash plasma emission
spectrograph. Limits were determined as the lower point of linearity on
standard curves containing the entire nutrient complex. All values are
" in upg/l.

Nutrient Medium Input

Element Lower Detection Limit Concentrations (Phase II)
Boron 100 200
*Cadmium 10 10
Calcium 100 500
Cobalt 10 35
Copper ‘ 100 6
Iron 100 300
Potassium 1000 80
ﬁagnesium 10 480
Manganese 10 350
Sodium 100 1700
Zinc 10 40

*Cadmium concentrations were determined independently by flameless atomic
adsorption spectrophometry.
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APPENDIX C
Results of Analysis of Variance. Where interactions were significant, F values
for main effects were calculated using mean square of interaction as the

denominator.

PHASE I:

Variable - Net Daytime Production-
Model - P = NLEV + CDLEV + NLEV * CDLEV + Wk

D
Source df SS MS F o
Model . 32 263.61 8.24 34.33 .0001
NLEV 3 111.29 37.10 15.52 .001
CDLEV 3 3.02 1.01 423 NS
CDLEV * NLEV 9 21.46 2.39 9.96 .0001
Error 1495 352.20 .24

Variable - Nighttime Respiration
Model - RN = NLEV + CDLEV + NLEV * CDLEV + Wk

Source df SS MS F o
Model 32 241.95 7.56 42.00 .0001
NLEV 3 123.42 41.14 15.58 .001
CDLEV 3 33.38 11.17 4,21 .05

CDLEV * NLEV 9 23.77 2.64 14.67 .0001
Error © 1494 270.86 .18

Variable -~ Production/Respiration
Model - P/R = NLEV + CDLEV + NLEV * CDLEV + Wk

Source df SS MS F o
Model 32 321.67 10.05 18.27 .0001
NLEV 3 3.91 1.30 2.36 NS
CDLEV 3 6.58 2.19 3.98 .05

CDLEV * NLEV 9 1.86 .21 .38 NS
Error 1459 795.42 .55
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Variable -~ Chlorophyll a

Model - Chl = NLEV + CDLEV + NLEV * CDLEV + Wk

Source df SS MS F o
Model 30 114.91 3.83 13.68 .0025
NLEV 3 70.71 23.57 14.37 .001
CDLEV 3 19.31 6.44 3.92 .05

CDLEV * NLEV 9 14.74 1.64 5.86 .01
Error 730 203.37 .28

Variable - Phaéo—pigments

Model - Pha = NLEV + CDLEV + NLEV * CDLEV + Wk

Source df SS MS F a
Model 30 23.88 .80 4.00 .0001
NLEV 3 13.05 4,35 21.75 .0001
CDLEV } 3 1.03 .34 1.70 NS

CDLEV & NLEV 9 4.08 .45 2.25 .10
Error 730 143.16 .20

Variable ~ Biomass

Model - B = NLEV + CDLEV + NLEV * CDLEV + Wk

Source df SS MS F a
Model 30 348,315,998.12 11,610,533.27 21.38 .0001
NLEV 3 140,496,382.06 46,832,127.00 86.25 .0001
CDLEV 3 2,868,906.34 956,302.11 1.76 NS

CDLEV * NLEV 9 3,796,917.61 421,879.73 0.78 NS
Error 734 398.569,829.97 543,010.67

- 168



PHASE II:

Variable - Net Daytime Production
Model - P = NUT + CD + NUT * CD

D
Source df SS F o
Model 7 351.66 61.60 .0001
NUT 1 133.38 4.52 NS
CD 3 129.66 1.46 NS
NUT * CD 3 88.61 36.22 .0001
Error 1240 1011.18 ’
Variable - Nighttime Respiration
Model - R.N = NUT + CD + NUT * CD
Source df SS F o
Model 7 351.48 62.64 .0001
NUT 1 146.47 4,87 NS
CD 3 114.85 1.61 NS
NUT * CD 3 90.15 37.49 .0001
Error 1224 981.12
Variable - Production/Respiration
Model - P/R = NUT + CD + NUT * CD
Source daf SS F o
Model 7 0.84 3.13 .0029
NUT 1 0.53 13.93 .0002
CD 3 0.06 0.50 .6831
NUT * CD 3 0.25 2.16 .0891"
Error 1224 46.83
Variable - Chlorophyll a
Model - Chl = NUT + CD + NUT * CD
Source df SS F o
Model 7 904.65 144.65 .0001
NUT 1 900.52 1007.94 .0001
CD 3 0.76 0.28 .8397
NUT * CD 3 3.38 1.26 .2863
Error 1230 1098.91
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Variable - Phaeo-pigments
Model - Pha = NUT + CD + NUT * CD

Source df SS F o
" Model 7 527.95 29.13 .0001
NUT 1 503.56 194.48 .0001
CD 3 10.88 1.40 .2399
NUT * CD 3 13.52 1.74 .1551
Error 1230 3184.72
Variable - Biomass :
Model - B = NUT + CD + NUT * CD
Source ' df SS F o
Model 7 53,277,320.91 108.84 .0001
NUT 1 53,065,507.29 758.83 .0001
CD 3 78,974.66 0.38 7731
NUT #* CD 3 132,838.96 0.63 5977
Error 1235 86,364,454.86
Variable - Total Phosphorus Output
Model - TP = NUT + CD + NUT * CD
Source df SS F (v}
Model 7 18.68 250.38 .0001
NUT 1 18.64 1,749.11 .0001
cD 3 0.02 0.59 .6288
NUT * CD 3 0.02 0.61 .6149
Error 1238 13.20
Variable ~ Total Nitrogen Output
Model - TN = NUT + CD + NUT * CD
Source df - SS F - a
Model 7 3,124.24 338.75 .0001
NUT 1 3,059.94 198.35 .001
Ch 3 18.02 0.39 NS
NUT * CD 3 46,28 11.71 .0001
Error 1238 1,631.11
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Variable - Ammonia Nitrogen Output
- Model - NH

3N = NUT + CD + NUT * CD

Source df SS F ]
Model 7 1,413.09 1,076.03 .0001
NUT 1 1,409.93 1,733.52 .001
CD 3 0.72 0.89 NS
NUT * CD. 3 2.44 4.33 .005
Error 1173 1,633.15

Variable - Nitrate Nitrogen Output

Model - NO3N = NUT + CD + NUT * CD
Source df ' SS F o
Model 7 1,020.31 168.99 .0001
NUT 1 918.23 48.70 .01
CD 3 45,51 0.08 NS
NUT * CD 3 56.56 21.86 .0001
Error 1173 1,011.72
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