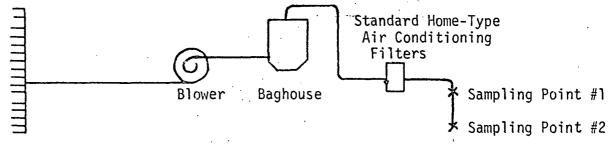
Test No. 71-CI-25
Speedring Manufacturing, Inc.
Division of Schiller Industries, Inc.
Cullman, Alabama
October 25-26, 1971

Thomas E. Ward - Durham, N.C.
Project Test Officer
Environmental Protection Agency
Office of Air Programs
Stationary Source Pollution Control Programs
Applied Technology Division
Emission Testing Branch
Combustion and Incineration Section
Contract No. 68-02-0225
Task Order No. 3

TABLE OF CONTENTS


ı.	Introduction	Page
II.	Summary of results	6
III.	Conclusions and Recommendations	7
	APPENDIX	
Α.	Beryllium Analytical Method	8_
В.	Project Participants	13
С.	Contractor report	14
D.	Memorandum	42

I. INTRODUCTION

The objective of this test was to determine a test method for sampling beryllium emissions from metal machining operations. The test was conducted at Speedring Manufacturing, Incorporated, in Cullman, Alabama, on October 25-26, 1971.

This metal machining shop controlls their beryllium emissions using a "wet" baghouse. Standard cutting oil emulsions of various types, when used, are drawn into the vacuum inlets which are placed at the interface of the cutting tool and the machined piece; when they reach the bag, they "wet" the bag.

Manifolded vacuum inlets, at least one for each beryllium machining operation

Figure 1

The memorandum from Robert Neligan to the Acting Director, Division of Compliance (see Appendix D) describes the test procedure and plan as of the October 7, 1971, date of that memorandum. On October 14, 1971, John Burkle, Project Engineer, instructed ETB to perform the test in two parts, the first part to consist of two days of testing, and the second part (based upon

acceptable results in the first two-day part) to consist of four days of testing. The updated test method is shown in Table I.

Mr. Burkle authorized at the test site the duration of gas sampling time to be five hours and to change the sample "bottling" and "packaging" procedure as shown in Table II. The stated reason for the packaging change was that if the total filter and impinger train catch of beryllium was very small, then, with so many subdivisions of the sample catch, the analysis data would be "masked" by the analytical procedure.

Mr. Burkle directed that the trains be filled with impinger liquids, assembled, disassembled, and have their samples transferred to the sample bottles, all on the roof of the test site for 2a and 2b; and at a physical location at least one mile away from the test site for 5a and 5b. The latter work was performed in a motel room which was more than a mile away from the test site.

Soda lime, 6-14 mesh, was used in the eighth impinger to protect the meter boxes from any possible acid mist carry over. Figure 2 is a schematic drawing of the test site.

· 4 E					C. v. Nine	7 Pre 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	V 15 7 16 1 18 1			G-5				
(1)	Probe	Filter		Gre	A. T.ling cemburg Saith)	Tpingers (6)	7)		Filter	Implingers		:	REMORKS	
la	Yes	Yes	H ₂ 0	H ₂ 0	Empty	10% HCL 10% HNO ₃	5 5% 11 ₂ 50 ₄	Empty	No	Silica gel	sode Lime	Comparison	of Reagents	
1p	Yes	Yes	10% HCL 10% HNO ₃	5% H ₂ SO ₄	Етреу	10% HC1 10% HNO ₃	5% н ₂ 50 ₄	Empty	No	Silica gel	sede Line	•		
² a	Yes	Yes	н ₂ 0	н ₂ 0	Empty	10% ECL 10% ESO ₃	5% н ₂ so ₄	Smpty	No	Silica gel	oda (im c	Simulate en including c	lean up	
26	Yeo	Yes	10% HCL 10% HNO ₃	5% H ₂ SO ₄	Empty	10% HC1 10% HNO ₃	5% н ₂ sc ₄	Empty	No	Silica gel	seda (Ipre	procedure e beening gra through #	s flowing	
° 3a	Yes	No	н ₂ 0	н ⁵ 0	Empty	10% HCL 10% HNO ₃	5% H ₂ SO ₄	Empty	Yes	Silica gel	Code.		of Filter	
3b	Yes	No	10% HCL 10% HHO ₃	5% H ₂ SO ₄	Етрту	10% HC1 10% HNO ₃	5% H ₂ SO ₄	Empty	Yes	Silica gel	sede. Lime	Compile		
4a	Yes	tio	10% HNO ₃	10% HNO 3	10% HNO ₃	JOX HCL	5% H ₂ SO ₄	Empty	Yes	Silica gel	socie Line	Datn. HDO Collection 5.f.	Compurison of	
- 46	Yes	No	10% HCL	10% HCL	10% HCL	10% HNO ₃	,5% H ₂ SO ₄	Empty	Yes	Silica gel	stda line	Detm. HCL	Collection Re:	
5a	Yes	Yes	н ₂ 0	11 ⁵ 0	Empty	10% HCL 10% HNO ₃	5% н ₂ so ₄	Empty	No	Silica gel	l'inc	Eval. EPA . Train Eff.	Comparison of	
° 5b	Yes	Yes	н ₂ 0	н ⁵ 0	Empty	10% HCL 10% HBO3	5% н ₂ so ₄	Diapty	No	Silica gel	idz IIAR	Eval. EPA Train Eff.	Daplicate Test	
6a	Yes	Yes	10% HCL 10% HH0 ₃	5% н ₂ so ₄	Empty	Remove 4,	5, and 6		No	· Silica gel	Soda Line	Dotn. Optimum Train + Filter	Comparison to	
° 6b	Yes	No.	10% BCL 10% BCO ₃	5% H ₂ SO ₄	Empty	Remove 4,	5, and 6		Yes	Silica gel	soc	Detn. Optimum Train	Desermine Opt. Train Filter i	

⁽¹⁾ Test numbers marked "a" and "b" indicate sampling train operated simultaneous at the same crossection in the duct to allow comparison of collection officiency. All sample collected under isokinetic conditions using method 5 test train with modifications shown in the table sample point sampling.

Table 1, Dated October 26, 1971

⁽²⁾ With water impingers upstream: water-acetone wish of probe. With acid impingers upstream: acid (10% HCl, 10% HNO₃) wash of probe.

²³⁾ Probe, filter and each impinger analyzed for Be.

⁴⁾ Impingers not specified as empty contain 160 ml of liquid as specified:

⁽⁶⁾ Greenburg Smith Impingers may be the modified type.

⁽⁷⁾ Greenburg smith Impingers were used in the second water impinger only, all others were the modified type (8) 625 sabpling times is the heurs.

See comment in body of menc concerning "packagine" of sample.

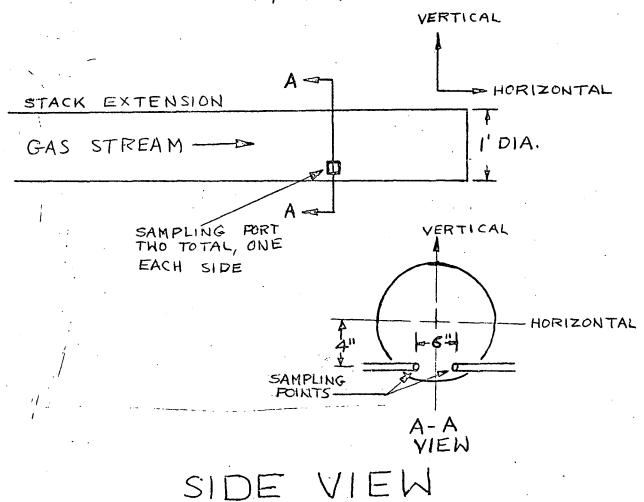
	SAMPLE AS GATHERED AND PACKAGED BY ETB (1)	CONSOLIDATION AS DIRECTED BY DCP FOR BOTH DAYS (2)	ANALYSIS DA	TA IN μgm	Be (4)	(5) (7)	were r	2a & 2b educed to amples (3)
TRAIN NO.	DESCRIPTION	SAMPLE		TRAIN NO. 5b,Oct.25			No.2a Oct.25	No.2b Oct.25
	Probe, water & acetone washings Probe, acid washings	1	(6)	2.85	0.9			
	Filters	3	(6)	0.21	(6)			
2a (3)	Impinger 1 (I1), water Impinger 1 (I1), water & acetone wash	4	0.09(6)		(6)			
	Impinger 2 (I2) " " " " " " " " " " " " " " " " " " "	5	-					
	Impinger 4 (I4)	6						
	Impinger 5 (I5) " 6 (I6) " " "	7						-

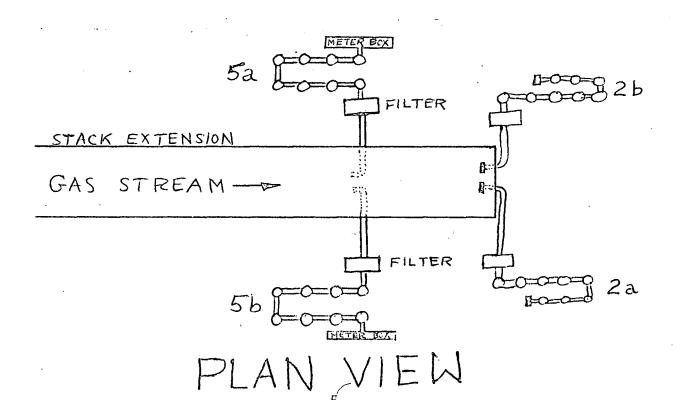
(1) On the first day, Oct. 25, 1971, thirty samples were produced and packaged by ETB: 15 for 5a & 15 for 5b. These were consolidated to fourteen samples as directed by DCP, 7 for 5a & 7 for 5b.

(2) On the second day, Oct. 26, 1971, ETB was directed by DCP to package fourteen samples for trains 5a & 5b, as in the consolidation described in note (1), above.

(3) ETB was directed to consolidate these samples into four containers as shown above in the right hand side of this Table II and in Table A-II.

(4) All values are <0.15 unless otherwise noted. See Appendix A.


(5) See Table A-II for blanks (acetone, water, acids and filters), for which all values are <0.15.


(6) See Appendix A for a description of these values.

(7) Gas volumes ranged from 231 to 269 ft³ at the meter.

FIGURE 2

TEST SITE , SPEEDRING , INC. CULLMAN , ALA

II. SUMMARY OF RESULTS

Table II shows the summarized results of the beryllium samples. Seven samples from each of four runs made a total of twenty-eight samples. Only three of the twenty-eight samples yielded values $>0.15\mu g$ beryllium. One of the samples indicated that a small amount of beryllium, $0.09\mu g$ passed the filter.

Sample gas volumes were 231 to 269 ft³.

Table A-II, Appendix A, shows all of the results of the beryllium samples with appropriate identification codes. The contractor report is given in Appendix C. The source sampling contractor was instructed to spend no more than eight man-hours in preparing the report, to include as a minimum a copy of the raw data sheets, and, as the eight hours permitted, total volume calculations, isokinetic sampling percentage calculations, and normal report writing efforts.

The reason for this eight hour restriction was that for this particular test, the Project Engineer was interested in total volume of gas sampled, and a very brief report of activities at the test site. The report is excellent, and was submitted within six working days after completion of test.

III. CONCLUSION AND RECOMMENDATIONS

The total beryllium catch in the sampling trains is considered too small to allow conclusions to be drawn about efficiencies of the separate portions of the train. In turn, no direct recommendations for improvement of the beryllium sampling train can be made based upon the results of this experiment. The proposed second part of the experiment is cancelled because the results of the first part indicate that not enough beryllium is in the stack gases to allow a "train efficiency" experiment. No well founded conclusions can be drawn relative to previous beryllium testing indications that beryllium stack gas contaminants are getting "through" filters. It is recommended that a known source of beryllium be obtained for any further testing. This could be a commercial or Atomic Energy Commission stack; or it could be a substitute source such as a lathe which is machining a given amount of beryllium under controlled conditions as shown below in Figure 3.

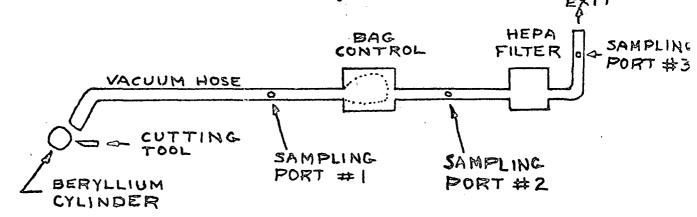


FIGURE 3

APPENDIX A

SUMMARY OF ANALYSIS METHOD FOR BERYLLIUM SAMPLES

York Research, Incorporated, used the EPA suggested method to analyze the beryllium samples. In outline form, the chemical portion of the method is:

- 1. React with nitric acid
- 2. React above solution with sulfuric and perchloric acid
- 3. Evaporate to near dryness on hotplate
- 4. React (dissolve) in hydrochloric acid
- 5. Bring to 5 ml total volume

A portion of the 5 ml (usually 1/2 to 1 ml) was decanted and aspirated into the Atomic Absorption (AA, Perkin-Elmer Model 303) flame. The absorbance line produced was then compared to a graph which was previously drawn by reading absorbance of known concentrations of beryllium solutions. York Research, Inc., reports that with their AA unit sensitivity setting of 1 (on a scale of 1 to 10), and with 1% absorption, the AA will allow a reading of 0.03µg Be/ml. This is the setting which York Research, Inc., used in all cases except the reruns (sample Nos. 165, 167, 168, 181 and 182 reruns). Those five were run with a sensitivity setting of 5 which York Research, Inc., reports will allow a reading of 0.006µg Be/ml.

Table A-I below shows why the values <0.15 and <0.03 must be used instead of zero when reporting "negative" analytical results.

TABLE A-I
BERYLLIUM ATOMIC ABSORPTION (AA) READINGS

Sensitivity setting on AA	Capability of Sensitivity Setting in µg Be/ml	Sample volume as prepared for Reading by AA in ml	Minimum Content of Beryllium in 5 ml which will give a reading. µg Be
7	0.03	5	0.15
5	0.006	5	0.03

Table A-II shows all of the results of the beryllium samples with all appropriate codes.

CODE:

Be - Beryllium
SI - Speedring Incorporated
N - North Stack

2a, 2b, 5a, 5b, - See Table I dated October 26, 1971 - Test Method

P - Probe

F - Filters

11, 12, 13, 14, 15, 15 - See Table I dated October 26, 1971 - Impinger Numbers

Sample No	o. Code	Description/Date		Analytical Results µg Be all values are <0.15 unless otherwise indicated
151	Be-SI-N-2a-P	Water & acetone washings	10/25/71	
152	Be-SI-N-2a-F	Filters	10/25/71	
153 -	Be-SI-N-2a-11, 12, 13	Water, water & acetone washings	10/25/71	
154	Be-SI-N-2a-14, 15, 16	Acid & acid washings	10/25/71	
155	Be-SI-N-2b-P	Water & acetone washings	10/25/71	
156	Be-SI-N-2b-F	Filters	10/25/71	
157	Be-SI-N-2b-11, 12, 13 14, 15, 16	Acid & acid washings	10/25/71	
158	Be-SI-N-2b-Back Half	Back Half of filter holder only	10/25/71	
159	Be-SI-Whatman 41	Blank_filter	10/25/71	
160	Be-SI-Millipore AA-	Blank filter	10/25/71	
161	Be-SI-Sulfuric acid 10%	Blank filter	10/25/71	

TABLE A-II, continued

Sample No.	Code	Description/Date		Analytical Results µg Be all values are <0.15 unless otherwise indicated
162	Be-SI-HCL 10% Nitric 10%	Blank filter	10/25/71	
163	Be-SI-Acetone	Blank filter	10/25/71	
164	Be-SI-Distilled Water	Blank filter	10/25/71	
165	Be-SI-N-5a-P1	Water & acetone washings	10/25/71	<0.03
. 166	Be-SI-N-5a-Pa	Acid washings	10/25/71	
167	Be-SI-N-5a-F	Filters	10/25/71	<0.03
168.	Be-SI-N-5a-11	Water, water & acetone washings	10/25/71	0.09
169	Be-SI-N-5a-12,13	Acetone washings	10/25/71	
170 ·	Be-SI-N-5a-14	Acid & acid washings	10/25/71	
171	Be-SI-N-5a-15, 16	Acid & acid washings	10/25/71	
172	Be-SI-N-5b-Pl	Water & acetone washings	10/2 5 /71	2.85
173	Be-SI-N-5b-P1	Water & acetone	10/25/71	
174	Be-SI-N-5b-F	Filters	10/25/71	0.21
175	Be-SI-N-5b-11	Water, water & acetone washings	- 10/25/71	
176	Be-SI-N-5b-12, 31	Water, water & acetone washings	10/25/71	
177	Be-SI-N-5b-14	Acid & acid washings	10/2 5 /71	

TABLE A-II, continued

Sample No.	Code	Description/Date	•	Analytical Results µg Be all values are <0.15 unless otherwise indicated
178	Be-SI-N-5b-15, 16	Acid & acid washings	10/2 5 /71	
179	Be-SI-N-5b-Pl	Water & acetone washings	10/2 6 /71	0.90
180	Be-SI-N-5b-P2	Acid & acid washings	10/2 5 /71	•
181	Be-SI-N-5a-F	Filters	10/2 5 /71	<0.03
182	Be-SI-N-5a-11	Water, water & acetone washings	10/26/71	<0.03
183	Be-SI-N-5a-12, 13	Water, water & acetone washings	10/25/71	
184	Be-SI-N-5a-14	Acid & acid washings	10/2 6 /71	
185	Be-SI-N-5a-15, 16	Acid & acid washings	10/2 5 /71	
186	Be-SI-N-5a-P1	Water & acetone washings	10/26/71	
187	Be-SI-N-5a-P2	Acid & acid washings	10/26/71	•
188	Be-SI-N-5b-F	Filters	10/26/71	
189	Be-SI-N-5b-11	Water, water & acetone washings	10/26/71	
190	Be-SI-N-5b-12, 13	Water, water & acetone washings	10/25/71	
. 191	Be-SI-N-5b-14	Acid & acid washings	10/26/71	
RERUN I	557 68 81	Acid & acid washings A scale ON THE ATOMIC ABSORPTION 5 TIMES	10/26/71 MORE SENSITIN 10/25/71 10/25/71 10/25/71 10/26/71 10/26/71	VE THAN THE PREVIOUS ANALYSIS < 0.03 < 0.03 < 0.03 < 0.03 < 0.03

APPENDIX B

PROJECT PARTICIPANTS

- Emission Testing Branch, ATD, Thomas E. Ward Project Test Officer, on-site during source sampling
- Stationary Source Emissions Methods and Measurement Section, DCP,
 John Burkle Project Engineer, and Roy Bennet Observer, on-site during source sampling.
- 3. Engineering Science, Incorporated, Washington, D.C. Contract Source Sampler.
- National Emissions Standards Development Section, DOC, Dave Patrick Observer, on-site during source sampling.
- 5. Source Sampling Fuels Analytical Branch, DAS, Darryl J. Von Lehmden Observer, on-site during one day of source sampling. Mr. Von Lehmden is the Project Supervisor of the beryllium sample analysis.
- 6. York Research, Incorporated, Stamford, Connecticut Contract Beryllium Sample Analyzer.

SOURCE TESTING AT SPEEDRING, INC.

A REPORT OF FIELD TEST RESULTS

ON

BERYLLIUM MACHINING OPERATIONS

AT

SPEEDRING, INC.

CULLMAN, ALABAMA

SUBMITTED TO

MR. THOMAS E. WARD, PROJECT OFFICER

OFFICE OF AIR PROGRAMS

ENVIRONMENTAL PROTECTION AGENCY

RESEARCH TRIANGLE PARK, N.C.

CONTRACT NO. 68-02-0225

BY
ENGINEERING-SCIENCE, INC.
600 NEW HAMPSHIRE AVE. N.W.
WASHINGTON D.C.

INTRODUCTION

On October 25 and 26, 1971 stack emission tests were conducted on beryllium emissions at the Speedring, Inc. plant located in Cullman, Alabama under contract number 68-02-0225 and Task Order 3. The main purpose of these tests was to evaluate a sample collection method for the hazardous pollutant, beryllium. Results of the mofified sampling train are intended to provide the basis for determining the most feasible method for sampling beryllium.

All sampling was conducted under the direction of the Office of Air Programs, Environmental Protection Agency. Mr. Thomas Ward, Project Officer, EPA, et. al. developed the method which uses eight impingers in series with special reagents in each impinger. Two complete trains were run simultaneously and, in addition, two "background" trains were set up to determine potential on site contamination.

Testing was conducted after the plant began machining operations under normal operating procedures and regular work day.

Mr. Ward assisted in engineering a through test by arranging for stack extension, ladders, electricity, and other test facilities, providing the special reagents for the several impingers, and assisting in sample recovery to assure proper handling and disposition of each speciman.

All samples were turned over to EPA at the conclusion of the field tests for subsequent analysis by EPA. Under Mr. Ward's guidelines one man-day of effort was used to prepare this report. The report contains two sections in addition to this Introduction; a Discussion which describes the test procedures and an Appendix which includes copies of the raw field data.

Messrs. Michael E. Lukey and John Chehaske conducted the field test for the EPA, made the associated calculations and prepared this report. This report does not contain a discussion of the laboratory results.

DISCUSSION

The purpose of the two day source tests was to determine the feasibility of a modified sampling train for testing the deleterious pollutant, beryllium. The plant was located in Cullman, Alabama and produced machined/tooled beryllium components. The machining operations are similar to mild steel machine shops and include drilling, milling, cutting, sanding and close tolerance lathe operations. Because beryllium is a brittle metal, the machining operations emit a fine metalic (beryllium) dust. Speedring, Inc. used a vaccum system connected to two baghouses to remove the dust from the work area. All of the testing was performed on the north stack, on a roof top with a halfmoon shape. Mr. Thomas Ward, EPA Project Officer, made arragements for the temporary stack extension (made of sheet metal having one foot inside diameter), electricity and other ancillary supplies.

Beryllium emissions are quite low when compared to other mass emission rates from combustion sources. No visible emissions were noted during any of sampling periods. The filters were checked periodically during the sample runs (as a check for rapid buildup) however, only slight color change existed at the very end of the sampling time. Because of the low emission rates, the conventional pariculate train (EPA Method 5) has to be modified to improve the collection effeciency of the sub micro particulate. Eight impingers were used in series with a variety of reagents. The first two impingers contained 100 ml of deionized distilled water. Impinger three was empty.

Impinger four contained 100ml of an acid solution (HCl/HNO₃). Impinger five contained 100ml of sulfuric acid solution. (The exact concentrations of both acid solutions were not reported nor asked for by the test team. Impinger seven contained 175 grams of silica gel and the last impinger contained about 50 grams of soda lime pellets to protect the pump. Figure 1 shows the schematic diagram of the sampling scheme.

A total of six runs were made over the two day period. Two trains were run simultaneously during all tests. Trains labeled 5a and 5b were assembled in a motel room located approximately 8 miles from the test site. In addition to these two complete trains, two "background" stations were setup (assembled and reagents added) on the roof top of the plant and the probe tip was placed in the stack. No sampled air was pulled through the background units 2a and 2b. These units were set near 5a and 5b for the same "run" time. Sample recovery for the two background units was made on the roof top of the plant. Sample recovery for 5a and 5b were made at the motel room.

Figure 2 shows the stack configuration and sampling points for the two units. A velocity traverse was made to determine probe tip size stack velocity and flow as well as tip location. The probe tip was placed at the point of average velocity and not moved during the entire sampling periods. Figure 1 and Figure 3 indicate the exact contents of each of the trains.

A summary of the field data and calculations is offered in Table 1.

The stack temperature was nearly constant and did not vary more than 10 degrees from the average temperature of 110°F during the entire sampling period. The average velocity of the stack was 44.7 feet per second. The flow rate at standard conditions (70°F and 1 atm.) was 1805 scfm. The four sample volumes ranged from 231 to 269 dry cubic feet with an average of about 250 cubic feet. The moisture content for four samples was about 3.3%.

The actual field sampling was without incident for the two day tests. Only slight adjustments had to be made to obtain the sample flow for isokinetic sampling conditions. All of the raw data sheets appear in the Appendix.

APPENDIX

FIELD DATA SHEETS

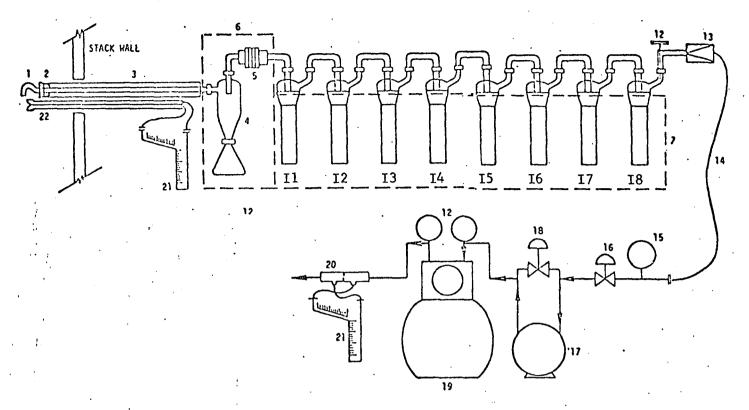


FIGURE A-1. Particulate Sampling Train.

- Buttonhook-type probe tip
 Stainless Steel Coupling
 Probe

- 4. Cyclone and Flask
- 5. Fritted Glass Filter Holder
- 6. Heated Sample Box 7. Ice Bath
- 12. Thermometer
- 13. Check Valve
 14. Umbilical Cord
 15. Vacuum gauge
 16. Beedle Valve

- 17. Vacuum Pump 18. By-Pass Valve
- 19. Dry Gas Meter 20. Calibrated Orifice
- 21. Inclined-Vertical Manometer
- 22. Pitot Tube

SAMPLE NOS. 2a, 5a, 5b OCT. 25, 1971 and 5a, 5b OCT. 26, 1971

IMPINGER NO. IMPINGER CONTENTS. 11 100m1. H₂0 12 100ml. H₂O GS Impinger 13 Empty 14 HC1/HNO₃ solution 15 $100\text{ml.}\ \text{H}_2\text{SO}_4$ solution 16 Empty 17 175 grams of Silica Gel 18 50 grams of Soda Lime

OF SAMPLE PORT

FIGURE A-J. Particulate Sampling Train.

- 1. Buttonhook-type probe tip
 2. Stainless Steel Coupling
 3. Probe
 4. Cyclene and Flask
 5. Fritted Class Filter Holder

- 6. Heated Sample Box
- 7. Ice Bath

- 12. Thermometer
- 13. Check Valve
- 14. Umbilical Cord

- 14. Umbilical Cord
 15. Vacuum gauge
 16. Heedle Valve
 17. Vacuum Pump
 18. Sy-Pass Valve
 19. Dry Gas Heter
 20. Calibrated Orifice
 21. Inclined-Vertical Nanometer
- 22. Pitot Tube

SAMPLE NO. 2b OCT. 25, 1971

IMPINGER NO.	IMPINGER CONTENTS
ri .	100ml. HC1/HNO ₃
12	100m1. H ₂ SO ₄
13	Empty
14	100m1. $HC1/HNO_3$ solution
15	100 ml. H_2 SO $_4$ solution
16	Empty
17	175 gms. of Silica Gel
18	50 grams of Soda Lime

SUMMARY OF FIELD DATA

								\		'
Sample Number/ Date	Start- up Time	Sample Time (min.)	Sample Volume (ft. ³ dry)	Average Stack Temp.(OF)	Moisture (%)	tip	Probe length (ft)		3	Average (in.H ₂ 0)
							**		ΔΡ	ДН
5a/Oct.25	09:00 am	300	248.98	112	3.3	衣	5	96	.53	2.34
5b/Oct.25	9:00	300	269.05	112	3.4		. 5	103	.55	2.42
2a/Oct.25	9:00	− ⅓c		- -	-	支	5	-	-	-
2b/Oct.25	9:00	- *	-	- ,	-	老	. 5	•	-	-
5a/Oct.26	7:24	300	253.03	110	3.2	दे	5 .	97	.52	2.19
5b/Oct.26	7:24	300	231.69	110	3.3	ż	5	90	.48	2.33
	Number/ Date 5a/Oct.25 5b/Oct.25 2a/Oct.25 2b/Oct.25 5a/Oct.26	Number/ up Time 5a/Oct.25 09:00 am 5b/Oct.25 9:00 2a/Oct.25 9:00 2b/Oct.25 9:00 5a/Oct.26 7:24	Number/ up Time (min.) 5a/Oct.25	Number/ Date Time (min.) (ft. 3 dry) 5a/Oct.25	Number/Date up Time (min.) Time (ft.3 dry) Stack Temp.(oF) 5a/Oct.25 09:00 am 300 248.98 112 5b/Oct.25 9:00 300 269.05 112 2a/Oct.25 9:00 -* - - 2b/Oct.25 9:00 -* - - 5a/Oct.26 7:24 300 253.03 110	Number/ Date Time (min.) (ft. 3 dry) Temp. (°F) (%) 5a/Oct.25	Number/ Date Time (min.) (ft. 3 dry) Temp. (OF) (%) size (in) 5a/Oct.25	Number/ Date Time (min.) (ft. 3 dry) Stack tip length (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)	Number/ Date Time (min.) (ft. 3 dry) Stack Temp. (oF) (%) size (in) length (ft.) Sa/Oct.25	Sample Number Date Time Up Time (min.) Volume (ft.3 dry) Temp.(OF) Number Composition Compos

^{*} Background samples

·	•		
	Stack 6	Neikini.	
	Tes	st Ho. I	
·	Los Dat	e Oct 25,10	Tare, Callinan Al
	A. Dist.		r wall to outside of
	B. Wall th	(metal stack) (ickness, in., =	
	. Inside	diameter of stack	= A-B 12 incles
	Stack /	lrea =	
	Comments:		. •
Sketch of stack cross-section showing sampling holes			
Calculations:	Point	% Dia. for circular stack	Dist. from outside of sample port, in.
Λ	1	4,4	0.5
Sitrah dearde = 1 H	7	1417	1.75
PIE	3	22.5	3.5
OUTLE	- 4	70.5	8.5
103 in > 1 89 in >	5	35.3	10.5
1034	<u>(a · </u>	95.6	11,5
Ports			
Portsmare about 2" in dianetic			
and wealth with Actific.			

Calculator	MEL
	•

Plant	Speedaing Inc	· .
_	5 a, 5k, 2a, 2b	
`	Cullman, Al	
	Oct 25, 1971	
Operator	MEL JC	•
ŕ	1.94	·

Pa - 29,32 Huntsville Weather States

	meter	' AH1.94					_
Clock	Datak	ΔP, in. H ₂ 0	(1)	(2)	(2)	Stack Temp(
Time	Point	ΔP, 111. 1120	VAP, in. 150	ΔP, in. H ₂ O	VAP, in. Hon	(1)	[2]
	1	0.31				110	
· · · · · · · · · · · · · · · · · · ·	2	७,उ८					
	3	9.44	,				
	Ч	0.46				\$	
	5	, D. 44					
	6	0.36					
	6	6.38					
	5	0,43					
	4	0.46					
•	3	0.47	· .				
	2	0,40		·			
	1	0,37					
		12 4.90					

(1) ΔP,	in. H ₂ 0	Average 0.408
(2) AP,	in. H ₂ 0	Average

Comments:

Pla	nt Spectrum Inca Callangel Date Oct 25, 1971
, , ,	The state of the s
Sen	pling location Profits
ST/	CK DATA FOR NOHOGRAPH:
1.	Meter AH 1.93 in H ₂ 0
•	Avg. meter tempt (ambient + 20° 65+20 °F 85°
	Arg. meter tempt (unistent 1 20 1 5
	Moisture (volume)
•••••	
4.	Avg. static press. + 0.25 in. $H_20X.073 = + -702$ in. H_3 .
5.	Bar. press sampling point 29.32 in.Hg + roz (static press in.Hg) =
•	<u> 29.39</u> in. lig.
ĸ	Bar press of meter 29.32 in. llg.
	bat press of meter 24,32 m. ng.
·• :	5 20 3V in Va
·• :	$P_{S}/P_{m} = \frac{5. 2q.34 \text{ in. Hg}}{6. 2q.32 \text{ in. Hg}} = \frac{1.0}{1.0}$
·• :	$P_{S}/P_{m} = \frac{5. 2a.34 \text{ in. Hg}}{6. 2a.32 \text{ in. Hg}} = \frac{1.0}{1.0}$
7.	
7.	$P_s/P_m = \frac{5. 2a.34 \text{ in. Hg}}{6. 2a.32 \text{ in. Hg}} = \frac{1.0}{1.0}$ Avg. stack temperature 110 °F.
7.	Avg. stack temperature /// °F.
7.	
7.	Avg. stack temperature //o °F. Avg. stack velocity (AP) 0.4 in H ₂ 0. MAX. VELOCITY 0.55
7.	Avg. stack temperature //ο °F. Avg. stack velocity (ΔΡ) ο Υ in H ₂ 0. MAX. VELOCITY 0.55

PARTICULATE LD DATA

PLANT _	Speada	in Ince	·	***			-	. .						
Run No.	. <u>`5e,</u>	J		VERY IMPORTANT - FILL IN ALL BLANKS				Ambient Temp °F 68						
Locatio	on Cells	· r.v, Al		Read and re-		ne start	of	Bar	. Press	:. "Hg	2932	<u>z</u>		
Date _	Oct 2	5, 1971	·	·	each test point. Assumed PATHOLOGICAL INCINERATORS-						Moisture % 1.0			
Operato	or <u>fatl</u>	T.C.		read and re-			tes.	Нег	ter Box	Setting,	°F	?		
Sample	Box No	5 <u>8</u>	· · ·		•			Pro	be Tip	Dia., In	0. 2	5 in.		
Mater B	Box No	(Es)			·			Pro	be Leng	;th	<i>f</i> +	·		
METER	ΔΗ	1-9.3	 .	. •				Pro	be Heat	er Setting	· 0			
C FACTO)R	1.15				.		AVG	. ДР	A	NG. ΔΗ			
Point	Clock Time	DRY GAS METER, CF	Pitot in. H20 AP	Orifice in H. Desired		Dry Gas °r Inlet	Temp.	Pump Vacuum In. Hg Gauge	Box Temp.	Impinger Tcmp °F	Stack Press in. Hg	Stack Temp		
<i>e</i> ;	05 MM	641,31	0.50	2.20	2.20	}	'	37		<u>వేచే</u>		110		
:	1 , 5	1.00 20	10 300	1 カラジ	-: -20	22	0.8	1 2	1	6.0	1	110		

	Clock	DRY GAS METER, CF	Pitot in. H ₂ O	Orifice in H	,0	Dry Gas	:	Pump Vacuum In. Hg	Box Temp.	Impinger Temp	Stack Press	Stack Temp
; Poi:	it Time	637.29	ΔΡ	Desired	Actuai	Inlet	Outlet	Gauge	°F	YF .	in. Hg	°F
1 4:	05 MM	641,31	0.50	2.20	2.20	74	76	31/1	<u> </u>	_చేచే		110
:	1/5	64738	0.51	2,35	2.20	33	6.8	3.5		40	<u> </u>	110
		657.60	0.51	235	2.75	92	71	3.5		60		lic
	13.5	6.60.11	0.51	2.35	2.25	15	7.3	4.0	<u> </u>	60	!	110
<u> </u>	45	₩74.73	0.51	2.25	2.25	95	7.5	4.0	<u> </u>	60		1=1=3
	120	8.88.04	0.58	3.50	3.50	97_	7.5	4.0	ļ	60	<u> </u>	1.75
	11the Hard	<u> </u>	0.11	2,17	٠,٠;٣	4/2	1_22_	4.0		30	<u> </u>	175
	1. 27	1 711, 27	0.53			9:	1 50 33	4.0	<u> </u>	:155	}	
			70, 10, 12	-1			7/3.	منتي و في	1	<u> </u>	1	1
	10 32 . 1. 1.	7.12. 17.1		7.55	3 5	99	79	1.5	j		}	117
		and a second of the	0.56	2.45	2.50	100	80	4.5	1	1.5	1	ست. ۱
	1	771.30	0.00	7.55	2.20	100	21	, , , , , , ,	!	45	1	
	211 40	m.m. 1013	0.00	7,50	.T. 5737	101	33	2.50		65		مسي و و
	13 1/2 01	202,91	0.55	3,55	2.55	100	ر چر	4.5		65	<u> </u>	110
	3 h. 16000	812 66	0.ベフ		3.55	X8	181	6.0.		55		
							!				1	

Comments:

NCAP-37 (12/67)

<u> </u>	Clack	Dry Gas	Pitot	Orifice in H	_ 0	Ory Gas	Temp.	Vācuum In. Hg	Temp.	Impinger Temp	Press	idigidi Cmoll
Comments	Time	Dry Gas Mater, CF	AP	Desired	Actual	Inlet	Outlet	Gauge	°F	Temp	Press in. Mg	Temp *F
०८४ क्र												į
or and the second	52,50	826.01	0.56	2.45	2.12.5	104	23	6,5		60	į	سجہ زر
r - D Cort.	200 1 6 min	256.01	10.55	2,40	240	105	مبيرجيز أ	6.5		600		115
	19 Fr. Cl 1 15 1 1 1 1	<u> </u>	0.56	2.45	2 11:5	106	186	6.5		65		1130
37 301 11		866,94	0.56	2.45	2,45	104	56	6,0	1	60		115
55 at 1	16: 3 mil	920,15	0.56	7	12.33	105	86	625	Ų <u>.</u>	1 55	<u> </u>	115
16 211	2 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	893.68	054	2.40	= 10	110	3.8	6.5		1.5	İ	115
		903254	<u> </u>				1	-	1			!
			Para: 0.55		An. 27.42		<u> </u>		<u> </u>			
					Ü				 			
			<u> </u>				<u> </u>		<u> </u>		!	1
		**************************************				<u> </u>]	_		<u> </u>	<u> </u>
1				·		{	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>
							ļ		<u> </u>			<u> </u>
							<u> </u>	·		<u>ļ</u>	<u> </u>	-
					ļ			ļ	ļ	<u> </u>	<u> </u>	<u> </u>
	.						<u> </u>				<u> </u>	<u>!</u>
•				·		<u> </u>					<u> </u>	<u>!</u>
-		·					<u> </u>		-		 	;
			1				<u> </u>		ļ		<u> </u>	<u> </u>
							 			ļ	ļ	
					·				ļ	ļ	 	
			1						-}		ļ	-
			<u> </u>		<u> </u>		<u> </u>	<u> </u>	-		 	
			_			<u> </u>		·	 -	<u> </u>		<u> </u>
	·						 		- 	ļ		
	·	······································					-		 	}		
			·						 	<u> </u>		<u>;</u>
1			<u> </u>	·	<u> </u>		}	<u> </u>			<u> </u>	!
		·	ļ			<u></u>	}		-}	ļ	ļ	<u> </u>
!			<u> </u>				<u> </u>			ļ — — — — — — — — — — — — — — — — — — —	ļ	
			ļ		-		1	!			<u> </u>	!
ì										ļ	<u> </u>	<u> </u>
1		· · · · · · · · · · · · · · · · · · ·					<u> </u>		-}	<u> </u>	 	<u> </u>
- <u>i</u>			<u> </u>	····			<u> </u>		ļ	1	<u> </u>	<u>-</u>
			<u> </u>	· · · · · · · · · · · · · · · · · · ·	1		<u> </u>	ļ	}		<u> </u>	<u>!</u>
<u>i</u>		·							 	ļ	!	<u> </u>
ļ	!		 		-		 		 		<u> </u>	!
<u> </u>	!		ļ		1			<u> </u>	<u> </u>	<u>i</u>	<u> </u>	!
<u>i</u>			<u>;</u>				ļ	<u> </u>	 	!		<u> </u>
	i		<u> </u>						 	<u> </u>		!

. .

PARTICULATE TELD DATA

PLANT	Short.	Vi. 7:11											
Run No	<u> </u>	7		VERY IMPORT	ANT - FILL	IN ALL	BLANKS	ผ ้ก่อ	ient Te	emp °F	0		
Locati	on	p.d		Read and re		ne start	of	Bar	. Press	. "Hg <u>z</u>	7.32		
Date _	021 3	15 1971	·	each test p				•		oisture %			
Operati	or <u> </u>	<u> </u>		PATHOLOGICA read and re			tes.	Hea	ter Box	Setting,	%F		
Sample	Box No	5/4					•	Pro	be Tip	Dia., In	1/4		
Mater 1	Box No.	27		•	·			Pro	be Leng	jth <u> </u>	, ¹		
METER	ΔH	<u>43</u>					•	Pro	be Heat	er Setting			
C FACTOR			•	ΑVG. ΔΡ									
	Clock	DRY GAS METER.CF	Pitot in. H ₂ 0	Orifice in H		Dry Gas	Temp.	Pump Vacuum In. Hg	Box Temp.	Impinger Tomp	Stack Press	Stack Temp	
Point	Time	007/5/5	ΔΡ	Desired] Actual	Inlet	Outlet	Gauge	°F	°F	in. Hg	°F	
44	- 1	1.1.	z, 0:	1, 1, -;	1,02	1. 19 6		•				100	
	<u> </u>			2,50	1 . 3	. ,	<u> </u>	10		• • •	1	, ,	
!	<u> </u>	l c - · ·	()	1 3 5 5		* /	<u> </u>	<u> </u>	 	er" ()	<u> </u>	<u> </u>	
		,					 		<u> </u>		 	<u> </u>	
			1 1 1 1 1	<u> </u>			}		 	<u>-· · · · · · · · · · · · · · · · · · · </u>	<u> </u>	}	
	_ 		1	J			}	1	 	.5.3		<u> </u>	
		2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			-, ,	7.11	 	-	-i		 	!	
	7	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1		-7	, , , ,	7.0		<u>}</u>		 	<u> </u>	
	 		1	1, 52	1 7:	<0,	77.5		'	-1	'	1	
					1 1 1 1 1 1 1 1 1 1	* * * *		1 . 7	- 		1	1 "	
		1				-, =		1	<u> </u>		i		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 5 4	12.15	a- 1 1	1 . 1			1	-: •	1		
		164.31	0.56	7,40	2.40	708	86	5,0	1	147	1	115	
				5 11.3	5 14 9			1 / 2	Ţ	,			

Commerce: , Stated as mentioning week & B at 724 nm

NCAP-37 (12/67)

	Clack	Dry Gas	Pitot in. HoO	Orifice in H	₂ 0	Dry Cas	Temp.	Vācuum In. Ha	Temp.	Temp	Selek Press	Secent Temp
Comments	l Tias !	Kater, OF	in. H ₂ 0	Desired	i Actual	Inlet	Gatlet	Gauge	°F) °F	Press in. Hg	Temp*
!	: 						İ		i		 	
S-A Comb	71 112	197.55	0.52	3.45	2.50	110	07	50	† 	55	:	1.7
71 137 73	11/2 500 1	202, No	0,60	2.53	2.50	11 ?	08	6.0	 	5::		128
	-1 .,	-1177	0.58	, , , , , , , , , , , , , , , , , , ,		117	95	13.5	; -	60		115
		231.44	0.59	2.45	7.20	11:22	.77.	4.5	1	60	1	1187
		245.43	2.60		2.50		0.5	1.5		1. 60	!	1
	2 20 1	259,29)	<u> </u>		 	i	<u></u>
			am = 0.52	1 2 16	İ		i		- 	1	 	<u> </u>
·	<u> </u>	··	7		<u>'</u>		<u> </u>		<u> </u>		1	\ <u></u>
			1				1	'	 			<u> </u>
	i		 		}	<u></u> -			-	1	1	<u></u>
	-		 	·	<u> </u>	· · ·		<u>' </u>		 	 	<u></u>
	<u>i</u>		 	 	¦		 	}	-	 	 	
			 				 				 	!
	 ;		 		<u> </u>		\ 		 		}	<u>.</u>
į	· · · · · · · · · · · · · · · · · · ·									 	 	
	;				<u> </u>					<u> </u>	; 1	<u>!</u>
	i	 	 		!		!		<u> </u>	1	!	<u> </u>
٠ .	·		-	···	<u> </u>		1	<u> </u>	-	}	}	<u> </u>
7							· · · · · · · · · · · · · · · · · · ·		-	 	 	1
	<u> </u>)		 -		 	: :
	į.	<u>i</u>					[<u> </u>
	•	***************************************	-				<u> </u>					<u> </u>
`					,			·			 	!
		· · · · · · · · · · · · · · · · · · ·							 	1	!	<u>i</u>
	:		 						 -			!
									 	ļ 	ļ	1
·	*!					<u> </u>			1		!	1
ļ	i		<u> </u>		·		<u> </u>		 	1	<u> </u>	<u>,</u>
	!		<u> </u>	·					-			!
· .	!								 	<u> </u>		
			<u> </u>						ļ	<u> </u>	!	<u></u>
j		-, 	ļ						-	ļ	1	!
									<u> </u>	<u> </u>		!
									!			
	į								<u> </u>	!		
Ì						ر						
	}		1			· · · · · · · · · · · · · · · · · · ·]		
;									· .			<u> </u>
	<u> </u>			····						İ		
			1. 1				·				<u> </u>	
	!		1 1					•	1	l	!	!

-

				PART I	CULATE .	LLD DATA		_						
PLANT ~	Shoot	in Thes					· ;	·			-	••		
	. <u>58</u>			VERY IMPORTANT - F'LL IN ALL BLANKS Ambient Temp °F						600				
Locatio	on Andlen	: N. P. C		Read and re		ne start	of	Bar	. Press	:. "Hg				
Date _	Q:t >6	, 197/	·	each test p		***	:	Āss	Assumed Moisture % 13					
Operato	or <u>218 1</u>	36		PATHOLOGICA read and re			tes.	Неа	ter Box	Setting,	°F			
Sample	Box No.	, ⊆ B	· .	•				Pro	be Tip	Dia., In	1/4	······································		
Keter B	Box No.	F.B	•	Probe Length										
METER 4	ΔH	1, 44			,	·		Pro	be Heat	ter Setting				
C FACTO	OR		·					AVG	. AP	<u> </u>	VG. ΔH			
Point	Clock Time	DRY GAS METER.CF	Pitot in. H ₂ O ΔP	Orifice in H		Dry Gas	Temp.	∫In. Hg	Box Temp.	Impinger Temp °F	Stack Press in. Hg	Stack Temp		
·:	1,1110	470,55	 	1,84		}	60	2.4	 	.80 %	111. 119	133		
	7		0.45	1. 2.0	1.95	75	6.7	-7	 	50	 	100.		
	1 -,		0		7.33	91	1 / /	1			 	1 /		
	·			t e	1					.1 +		,		
		1 1	1	100		,	1 2 52	1 1	1 .	, , .		1		

_	•:	1 1	677.00	0,95	1,82	1000	75	60	4	.e. 8	133
		1	11.11.11.15	0.45		1.85	524.	5.3	•	50	1200
		- ,			1,35		91	1 07			1 / 1
					4 - g - i	1 1		· .		1.6	1
Ĺ	Y	1,,,,	37-,	P 1,1	1.02	7 3.00	5.75	2.5	1 .	1	/ 1
		1	130-110	0.10	1.35	1.00	:	1, 34	11 -	.1 .5"	1 . 3
		21.0	200 G 20	-2 1	م بي کار اوست	اسر ادر ا	51 -	71	5.0		! / -
		11: 12.0		1 4	1. 179 500	1 7 5 -	05	ツ つ	1.00		1
			10 1 1 1 1 1	5. 6.5	r		17 m	ファ			1 /
Ī			J	0,20		2,10	22	, -:	. 1	·	,
		1	1242 7.1	1 1 1 -7		, 10	17-7		* . *	2.2	1
		26 - 11 mi	2.7	7 30	2,10	7.10	1111	77.7	8.0	30	1
			1.07. 71	0,	7.00	2,00	101	7.7		20	
		Fib - 1605		0.50	2,20	2.20	7:3	0.3, 7.5	5,0		// 0
-		1. L. Fair		O.119	2,10	2,/0.	117.	7.0	5,5.		110
_ i		1	1								1

11 14 17 7124 Am COT

MCAP-37 (12/67)

Pitot Orifice Al. | Dry Cas Temp. | Vacuum | Box | Impinger | Stack | Stack Clock | Dry Gas in H₂O °F In. Hg Temp Desired Actual Inlet Outlet Gauge °F Press Temp in. H₂0 In. Hq Temp. Temp Comments Time Mater, CF ΔP in. Hg | °F' . 10.2. St Conf. . . . 0.55 3.35 - 10 100 وسد الذب 11.5 منتونة أمنامه 7 937 24 11/10/10 653.16 · 2,30 120 0, 5,11 2,40 110 88 ز لمہ مے 5.0 12m 12min 1 6 25 .72 0.74 3.35 1115 50.50 115 3.32 97 60 11.31.6 658.32 7.30 112 0.51 2.30 مسيز حريا 115 <... 55 12h. 13 11 690. 19 070 ., > --12. 15.50 2.32 5.0 60 1 115 54 min 702.24 Tury: 0.48 231,691 7.33

Date Oct 26, 197/	Plant: Spendry Tree, Colinson Al
un Number <u>54</u>	Location of sample port:
operator: MEL	Barometric pressure:
Sample box number: 5A	Ambient temperature:
Impinger H ₂ O :2.4/ /00	26/20 . 105 ml A20
Nolume after samplingml 3 &	Impinger prefit Ted-with ml
Volume collected ml 5 100 ?	
Impingers and back half of	String Sodo Line to pretest peop
1 - 4 -	Extra No.
Probe, cyclone, flask, and front half of filter,	Container No.
acetone wash:	Extra No
Filter number Container numbe	r Filter number Container number
Silica Gel Contrair No3	400 ord 397 3nl
	(v. 10 gov)
Container number: $1.\cancel{\cancel{40.0}}$ $\cancel{\cancel{40.0}}$ Moisture34total37.6 g	
Sample number:	Analyze for:
Method determination:	
Comments: Clans up raca was	al the Haliday Im, about
8 miles from the last site	

pate Oct 25, 1971	Plant: Apoding Tree, On Moran, Adalesca
un Number 5B RAC/2EE To	Location of sample port:
perator: /nel, Jc.	Barometric pressure:
sample box number: 5B - RAC-ZI	Ambient temperature: 70°F
Impinger H ₂ O //o/	100 nl Ho 59 - 91 ml
Volume after samplingml 3	EM Impinger prefilled with ml
Volume collectedml &	100 Masoy 86 mil
Impingers and back half of	Container No
filter, acetone wash:	Extra No
Probe, cyclone, flask, and front half of filter,	Container No.
acetone wash:	Extra No.
	ry Filter Particulate umber Filter number Container number
felter laheled 5B, morday bet 25,1971	
- A	
	and Silver Del repulsionic No 1 each much 175 grad 400
Weight after test: Weight before test: Moisture weight collected: Container number: 1. #2	5.9mo 1755500 387 9 23.0 Moisture 13.0 5 2.#1 3. 4. total 51.9 5
Sample number: SB	Analyze for: <u>Qe</u>
Method determination:	
Comments: Clean sup aim man	, at the Holedon Iron , about 8 miles
lamile plant	<i>V</i>

John Builte +1.

pate Oct 25, 1971	Plant: Specelin, Ira, Cullman, Alalisman
un Number 5A RAL/RH	Location of sample port:
pperator: ///EL, JC	Barometric pressure:
Sample box number: 5A RAC/RH	
Impinger HoO No/	Include Coma . A fler Test 100 ml Hio GS 93 ml
italiana aftan asmulina — ml 1	fritt. Imminger har the said the
	101 me 4100 1 Hech Jone 8 (4" Lyke than lip 50gm.) Englit cal
Impingers and back half of	Scholing 370 re Container No.
filter, acetone wash: 4000	Extra No
Probe, cyclone, flask, and front half of filter, acetone wash:	Container No
Filter Papers and Dr Filter number Container number Container number SAC 1	ry Filter Particulate mber Filter number Container number
Silica Gel Likiem No 2 and	Salva Gel Carlagia No 6
Weight after test:	24.7 42.2 42.2 370 me pter text
Moisture weight collected: 42. Container number: 1.#2	
Sample number:	Analyze for:
lethod determination:	
Comments: Clean up aun mas	at the Haleday Inon, about 8 miles
Seniole Short	

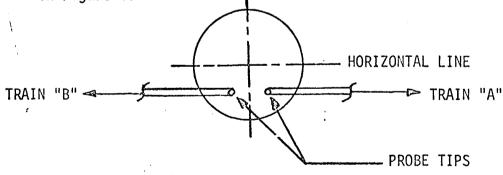
Date Oct 26, 1971 Tausda	Plant: Spoudring True, Continger, 11
un Number 5 [Location of sample port:
operator: not ac	Barometric pressure:
Sample box number: 52	Ambient temperature:
Volume after samplingml 3 and 3	1 ml H20 106 ml H20 0 ml H20 (GS) 98 ml Impinger prefitted withml ml HN02/HCR 98
Impingers and back half of g fine	The Container No.
	Container No
Filter Papers and Dry Fil Filter number Container number Lee pelie chil')	·
Weight after test: Weight before test: Moisture weight collected: 37.7 cm.) Container number: 1. #4 2.	///5 4/
Sample number:	Analyze for:
Method determination:	
Comments: Clair up aux mas E	3 miles from the text site

APPENDIX D

ENVIRONMENTAL PROTECTION AGENCY Office of Air Programs Research Triangle Park, North Carolina 27711

Reply to Attn of:

Date: - 7 OCT 1971


Subject: Beryllium Testing Methods Development

To: Acting Director, Division of Compliance

- 1. A test plan has been developed by the Chief of Stationary Source Emission Methods and Measurement Section (DCP), who will fund the test. An exact description of the test follows:
 - a. EPA gas pumping and measuring equipment will be used.
 - b. The collection trains are listed in Table 1.
 - c. The probe and glassware will be washed with liquid, the same as in the first impinger of the collection train used. In the case of water in the first impinger, an additional rinse of acetone will be used; and an acid rinse will be used after the acetone rinse.
 - d. Each impinger will be individually "bottled". Each wash will be individually "bottled". Each filter will be individually "packaged".

This will allow for Beryllium analysis of individual components of the collection system.

e. The probes will be placed in the exit horizontal stack 8 diameters downstream and 2 diameters upstream from any obstruction as follows in Figure 1.

Cross Section of Stack

Figure 1

Isokinetic gas sampling rates will be used. Single point sampling will be used. Millipore AA filters with Whatman 41 backup will be used.

Page 2 - Acting Director, Division of Compliance

- 2. Some input for consideration in establishing the test plan was furnished by the Source Sampling Fuels Analytical Branch (DAS) via Darryl J. VonLehmden and Robert E. Lee, and the Emission Testing Branch (DAT) via Thomas E. Ward and Roger T. Shigehara.
- 3. The objective of the test is:
 - To establish an acceptable method for the collection of the Beryllium sample from a machine shop source.
 - To validate (or invalidate) previous test data, specifically, The American Beryllium Company, and Speedring, Inc.
- 4. The execution of this test is tentatively scheduled for October 25 through 29. An alternate date could be November 1 through 5. The place is Cullman, Alabama, Speedring, Inc., North Stack. There is room at the test site to accommodate up to ten people comfortably.
- 5. This memo is to inform all involved groups of the test plan and schedule. This memo is also to request input/concurrence in writing of the test plan and schedule as they may apply to the involved group(s).

dert Telegen Robert E. Neligan

Acting Director Division of Applied Technology

Mr. D. VonLehmden, SSFAB, DAS

Dr. R. E. Lee, SSFAB, DAS

Mr. J. Nader, SSEMMS, DCP

Mr. J. Burkle, SSEMMS, DCP Mr. D. Patrick, NESDS, DOC

Mr. J. Peoples, NESDS, DOC

Mr. J. De Santis, NESDS, DOC

Mr. J. McGinnity, ETB, DAT

Mr. W. Basbagill, ETB, DAT

Mr. R. Shigehara, ETB, DAT, CIS

Attachment