AMBIENT AQUATIC LIFE WATER QUALITY CRITERIA FOR PARATHION U.S. ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT ENVIRONMENTAL RESEARCH LABORATORIES DULUTH, MINNESOTA NARRAGANSETT, RHODE ISLAND #### NOTICES This document has been reviewed by the Criteria and Standards Division, Office of Water Regulations and Standards, U.S. Environmental Protection Agency, and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. This document is available to the public through the National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield, VA 22161. #### **FOREWORD** Section 304(a)(1) of the Clean Water Act of 1977 (P.L. 95-217) requires the Administrator of the Environmental Protection Agency to publish water quality criteria that accurately reflect the latest scientific knowledge on the kind and extent of all identifiable effects on health and welfare that might be expected from the presence of pollutants in any body of water, including ground water. This document is a revision of proposed criteria based upon a consideration of comments received from other Federal agencies, State agencies, special interest groups, and individual scientists. Criteria contained in this document replace any previously published EPA aquatic life criteria for the same pollutant(s). The term "water quality criteria" is used in two sections of the Clean Water Act, section 304(a)(1) and section 303(c)(2). The term has a different program impact in each section. In section 304, the term represents a non-regulatory, scientific assessment of ecological effects. Criteria presented in this document are such scientific assessments. If water quality criteria associated with specific stream uses are adopted by a State as water quality standards under section 303, they become enforceable maximum acceptable pollutant concentrations in ambient waters within that State. Water quality criteria adopted in State water quality standards could have the same numerical values as criteria developed under section 304. However, in many situations States might want to adjust water quality criteria developed under section 304 to reflect local environmental conditions and human exposure patterns before incorporation into water quality standards. It is not until their adoption as part of State water quality standards that criteria become regulatory. Guidelines to assist States in the modification of criteria presented in this document, in the development of water quality standards, and in other water-related programs of this Agency, have been developed by EPA. James M. Conlon Acting Director Office of Water Regulations and Standards ### **ACKNOWLEDGMENTS** Loren J. Larson (freshwater author) University of Wisconsin-Superior Superior, Wisconsin Charles E. Stephan (document coordinator) Environmental Research Laboratory Duluth, Minnesota Clerical Support: Shelley A. Heintz Terry L. Highland Diane L. Spehar Nancy J. Jordan Jeffrey L. Hyland Sam R. Petrocelli (saltwater authors) Battelle New England Laboratory Duxbury, Massachusetts David J. Hansen (saltwater coordinator) Environmental Research Laboratory Narragansett, Rhode Island ## CONTENTS | | Page | |-------------------------------------|------| | Foreword | iii | | Acknowledgments | iv | | Tables | vi | | Introduction | 1 | | Acute Toxicity to Aquatic Animals | 3 | | Chronic Toxicity to Aquatic Animals | 4 | | Toxicity to Aquatic Plants | 5 | | Bioaccumulation | 6 | | Other Data | 6 | | Unused Data | 9 | | Summary | 12 | | National Criteria | 13 | | References | 37 | # TABLES | | | Page | |----|--|------| | 1. | Acute Toxicity of Parathion to Aquatic Animals | 15 | | 2. | Chronic Toxicity of Parathion To Aquatic Animals | 22 | | 3. | Ranked Genus Mean Acute Values with Species Mean Acute-Chronic | | | | Ratios | 23 | | 4. | Toxicity of Parathion to Aquatic Plants | 27 | | 5. | Bioaccumulation of Parathion by Aquatic Organisms | 28 | | 6. | Other Data on Effects of Parathion on Aquatic Organisms | 29 | ### Introduction* Parathion (0,0-diethyl 0-4-nitrophenyl phosphorothioate, sometimes called ethyl parathion or parathion-ethyl) is one of several organophosphorus pesticides developed to replace the more persistent organochlorine pesticides. It is now a restricted-use pesticide that is effective against a wide-range of insect pests on many fruit, nut, vegetable, and field crops. It is usually formulated as an emulsifiable concentrate, but is also available in granules, dusts, aerosols, oil sprays, and wettable powders. These formulations often contain large percentages of unspecified ingredients, which are often considered inert. Although no studies have compared the relative toxicities of technical-grade parathion and its various formulations, other organophosphorus insecticides (e.g., chlorpyrifos) have been shown to differ substantially in this regard. Although some data obtained from studies on formulations are discussed, data from such studies are not used in deriving criteria. The toxicity of parathion is the result of metabolic conversion to its oxygen analogue, parathion-oxon (paraoxon) and its subsequent binding to and inhibition of various enzyme systems (e.g., cholinesterases, carboxylases, acetylcholinesterases and mitochondrial oxidative phosphorylases). Its inhibition of acetylcholinesterase (AChE) is generally accepted to be ^{*} An understanding of the "Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses" (Stephan et al. 1985), hereafter referred to as the Guidelines, is necessary in order to understand the following text, tables, and calculations. its most critical toxic effect. Inhibition of AChE results in accumulation of the neurotransmitter acetylcholine in synapes, disrupting normal neural transmission. Although even substantial reductions in brain AChE activity in fish have not always been fatal, the effect of this condition on normal activities (e.g., feeding, reproduction, predator-prey relationships, etc.) in nature is not known. Parathion has also been demonstrated to produce teratogenic effects in fish embryos (Solomon 1977; Solomon and Weis 1979; Tomita and Matsuda 1961). Parathion is less persistent than organochlorine pesticides and has such a great affinity for organic material that it is quickly sorbed to sediments and suspended particulate matter. Miller et al. (1967) observed a rapid decrease in concentration after application of parathion to irrigation water and attributed it to degradation. It is more likely that sorption contributed greatly to this decrease. The persistence of parathion in water is dependent on chemical hydrolysis and biodegradation (Ahmed and Casida 1958; Faust 1975; Faust and Gomaa 1972; Gomaa and Faust 1977; Ludemann and Herzel 1973; Mackiewicz et al. 1969; Mulla 1963; Van Middlem 1966; Zuckerman et al. 1970). Graetz et al. (1970) reported that the portion of parathion degradation attributable to abiological in natural lake sediments means was negligible. Movement and persistence of parathion has been described in a natural pond (Mulla et al. 1966; Nicholson et al. 1962), a model stream (Laplanche et al. 1981), and a model ecosystem (Dortland 1980). Several studies report concentrations of parathion in water (Braun and Frank 1980; Dick 1982; Harris and Miles 1975; Greve et al. 1972; Kannan and Job 1979; Sethunathan et al. 1977) and in biota (Chovelon et al. 1984; Haddadin and Alawi 1974; Hesselberg and Johnson 1972; Perry et al. 1983). U.S. EPA (1975) and vom Rumker et al. (1974) reviewed the use, distribution, fate, and effects of parathion. Unless otherwise noted, all concentrations reported herein are expressed as parathion, not as the material tested. The criteria presented herein supersede previous aquatic life water quality criteria for parathion (U.S. EPA 1976) because these new criteria were derived using improved procedures and additional information. Whenever adequately justified, a national criterion may be replaced by a site-specific criterion (U.S. EPA 1983a), which may include not only site-specific criterion concentrations (U.S. EPA 1983b), but also site-specific durations of averaging periods and site-specific frequencies of allowed excursions (U.S. EPA 1985). The latest literature search for information for this document was conducted in February, 1985; some newer information was also used. ## Acute Toxicity to Aquatic Animals The results of acute tests that were considered useful for deriving water quality criteria for parathion are listed in Table 1. The most striking disparity of values within a species in Table 1 is for the crayfish, Orconectes nais. An early instar was 375 times more sensitive to parathion than adults. The LC50 of 0.04 µg/L for this early instar of Orconectes nais is the lowest available acute value. Freshwater Species Mean Acute Values (Table 1) were calculated as geometric means of the available acute values, and then Genus Mean Acute Values (Table 3) were calculated as geometric means of the available freshwater Species Mean Acute Values. Of the 31 genera for which acute values are available, the most sensitive genus, Orconectes, is over 130,000 times more sensitive than the most resistant, Tubifex and Limnodrilus. Although nine of the 31 freshwater genera are fishes, the fifteen most sensitive genera are all invertebrates. However, the two most resistant genera are also invertebrates. Acute values are available for more than one species in each of five genera, and the range of Species Mean Acute Values within four of the genera is less than a factor of 1.9. In the fifth genus, the Gammarus, the acute values for mature individuals of the two species are similar, but acute values are available for younger individuals, which are apparently more sensitive, for only one of the
species. The freshwater Final Acute Value for parathion was calculated to be 0.1298 µg/L using the procedure described in the Guidelines and the Genus Mean Acute Values in Table 3. The acute value for the crayfish, Orconectes nais, is about one-third the Final Acute Value. Data on the acute toxicity of parathion are only available for two saltwater species (Table 1). The 96-hr LC50 for the Korean shrimp, Palaemon macrodactylus, was 11.5 µg/L in a static test and 17.8 µg/L in a flow-through test (Earnest 1970). Korn and Earnest (1974) reported that the 96-hr LC50 for the striped bass, Morone saxatilis, was 17.8 µg/L. Acute values are not available for enough species to allow calculation of a saltwater Final Acute Value. ## Chronic Toxicity to Aquatic Animals Chronic tests on parathion have been conducted with three freshwater invertebrates and three freshwater fishes (Spacie 1976; Spacie et al. 1981). Because of experimental problems, especially high control mortality, only data for <u>Daphnia magna</u>, the fathead minnow, and the bluegill are considered acceptable for use in deriving criteria. Some data are available from these studies on long-term effects on survival (Table 5), but it is not known whether other effects were more or less sensitive. For example, in an exposure that began with brook trout embryos, an LC50 of 75 μ g/L was obtained, but the duration was not given. In addition, 32 μ g/L caused developmental abnormalities, whereas 10 μ g/L reduced percent hatch, but did not cause abnormalities. In the life-cycle test with <u>D. magna</u>, the 21-day LC50 was 0.14 μ g/L, and the number of young produced was reduced by 0.12 μ g/L, but not by 0.0817 μ g/L. Chronic exposure of bluegill larvae produced no statistically significant effect on length at 30, 60, and 90 days. There was also no statistically significant effect on number of eggs spawned, percent hatch, or survival of larvae at 7, 14, 21, and 30 days. Fathead minnows were reported to be significantly affected by chronic exposure to parathion at 9.0 μ g/L, but not at 4.4 μ g/L. The Acute-Chronic Ratio for fathead minnows is 79.45, whereas that for bluegills is 2,121 (Table 2). The three Acute-Chronic Ratios available for parathion are 10.10, 79.45, and 2,121. The two highest ratios were obtained with two fish species that are acutely quite resistant to parathion. The ratio of 10.10 was obtained with an invertebrate that is acutely fairly sensitive to parathion. Thus it seems reasonable to use 10.10 as the Final Acute-Chronic Ratio. Division of the freshwater Final Acute Value of 0.1298 µg/L by the Final Acute-Chronic Ratio of 10.10 results in a Final Chronic Value of 0.01285 µg/L. No data are available on the chronic toxicity of parathion to saltwater animals. ## Toxicity to Aquatic Plants Data are available on the toxicity of parathion to two freshwater algae (Table 4). The blue-green alga, Microcystis aeruginosa, was affected at 30 µg/L, whereas the green alga, Scenedesmus quadricauda was not affected by concentrations below 390 µg/L. No data are available concerning the toxicity of parathion to saltwater plants. ## Bioaccumulation Spacie (1976) and Spacie et al. (1981) reported long-term bioconcentration factors (BCFs) for the brook trout, fathead minnow, and bluegill (Table 5), and short-term BCFs are available for the brown trout, brook trout, and bluegill (Table 6). The BCFs determined with brook trout did not show a consistent relationship with either concentration in water or duration of exposure (Tables 5 and 6); the 260-day BCFs ranged from 31 to 232 for muscle tissue. The 260-day BCFs based on whole-body measurements with fathead minnows ranged from 32.9 to 201.4. The short-term BCFs measured with bluegills increased steadily with duration of exposure from 80.5 at 12 hr to 462 at 72 hr, but the BCF at 540 days was only 27. No data are available on the bioaccumulation of parathion by saltwater species that can be used in the derivation of water quality criteria. No U.S. FDA action level or other maximum acceptable concentration in tissue is available for parathion, and, therefore, no Final Residue Value can be calculated. #### Other Data Additional data on the effects of parathion on aquatic organisms are given in Table 6. The majority of the data are LC50s for durations other than 96 hours. Ahmed (1977) observed a range in 24-hr LC50s from 1.8 µg/L to 40 µg/L with six freshwater coleopteran species. Because of its wide use as a mosquito larvicide, many data are available on acute toxicity to mosquito larva. However, standard methods for testing effectiveness of larvicides prescribe a 24-hr test duration. The 24-hr LC50s for seven species of mosquitos in three genera range from 0.47 to 68 µg/L. Gutierrez et al. (1977) reported LC50s from 1.8 to 70 µg/L for larvae of resistant populations of <u>Culex pipiens</u>. Kynard (1974) observed avoidance of parathion by mosquitofish, and Weiss (1961) found inhibition of AChE in brains of several freshwater fishes. Effects on locomotor behavior of goldfish, bluegills, and largemouth bass were reported by Rand (1977a,b) and Rand et al. (1975). Sun and Taylor (1983) studied effects of parathion on acquisition and retention of a conditioned response in goldfish. Various studies have examined the effect of a detergent (Solon and Nair 1970; Solon et al. 1969), herbicides (Lichtenstein et al. 1975), and an N-alkyl compound, SKF-525A (Gibson and Ludke 1973) on the toxicity of parathion. Banas and Sprague (1981) reported that prior exposure of rainbow trout did not affect the LC50. Several studies evaluated the effectiveness of using trout for detecting pollutants including parathion (Jung 1973; Morgan 1975,1976; Van Hoof 1980). Morgan (1977) reported that fishes were able to detect parathion at 15% 48 hr-LC50. Mount and Boyle (1969) examined the use of the concentration of parathion in fish blood to diagnose causes of fish kills. Ghetti and Gorbi (1985) studied the effects of a simulated parathion spill on a stream. Albright et al. (1983), Gasith and Perry (1980,1983,1985), Gasith et al. (1983a,b), and Grzenda et al. (1962) reported community effects of parathion on a pond. Warnick et al. (1966) found that increases in the concentrations of organochlorine compounds in water correlated with application of parathion to a pond. They postulated that these compounds were released from decomposing tissues of intoxified organisms. At a concentration of 1,000 µg/L, parathion reduced the rate of growth of natural saltwater plankton communities by 9.9% in 4 hr (Butler 1964). Juvenile pink shrimp, Penaeus duorum, had a 48-hr EC50 of 0.24 µg/L, whereas the EC50s for other penaeid and palaemonid shrimp ranged from 1.0 to 5.5 µg/L (Butler 1964; Lowe et al. 1970; U.S. Bureau of Commercial Fisheries 1966, 1967). Grass shrimp, Palaemonetes pugio, exposed to 0.1 or 0.5 µg/L were more susceptible to predation by gulf killifish, Fundulus grandis (Farr 1977). Limb regeneration and time to molting of the fiddler crab, Uca pugilator, were apparently unaffected by exposure to parathion for 2 to 3 weeks, but all crabs exposed to 100 µg/L died (Weis and Mantel 1976). The 96-hr EC50 based on shell deposition was 850 µg/L or higher for the eastern oyster, Crassostrea virginica (Butler 1963, 1964; Lowe et al. 1970; U.S. Bureau of Commercial Fisheries 1966). Lowe et al. (1971) found that growth of juvenile oysters was not reduced by exposure to 0.8 µg/L for 252 days. Davis and Hidu (1969) reported a 78% reduction in length of oyster larvae after a 12-day exposure to 1,000 µg/L. The sensitivity of saltwater fishes to parathion did not differ greatly. The 48-hr LC50s were 15 µg/L for longnose killifish, Fundulus similis; 18 µg/L for spot, Heiostomus xanthurus; 36 µg/L for sheepshead minnows, Cyprinodon variegatus; and 100 µg/L for striped mullet, Muzil cephalus (Butler 1964; Lowe 1979; and U.S. Bureau of Commercial Fisheries 1966,1967). Fin regenerative ability was reduced in adult mummichogs, Fundulus heteroclitus, exposed to 10 µg/L for 10 weeks (Weis and Weis 1975) and this fish had a 50% incidence of circulatory failure when exposed to 10,000 µg/L for three days (Weis and Weis 1974). Inhibition of acetylcholinesterase (AChE) in saltwater fishes is a function of degree and duration of acute exposure and appears associated with death. Regardless of concentration and duration of exposure, when 40 to 60% of the sheepshead minnows, pinfish, and spot died, survivors had AChE reductions of \geq 82.3% (Coppage 1972, Coppage and Mathews 1974). Reductions of AChE of up to 82% were observed without death in a 120-hr exposure of sheepshead minnows to 5 µg/L parathion (Coppage 1972). White et al. (1979) reported 57 to 90% inhibition of brain cholinesterase activity in dead laughing gulls, <u>Larus artricills</u>, contaminated with parathion applied to crops. Death of chicks was suspected to be a result of parathion in their food. ### Unused Data Some data on the effects of parathion on aquatic organisms were not used because the studies were conducted with species that are not resident in North American (e.g., Basak and Konar 1976; Bellavere and Gorbi 1984; Bowman et al. 1981; Butler 1964; Dortland 1980; Fleming 1981; Gregory et al. 1969; Gupta et al. 1979; Hashiomoto and Nishiuchi 1981; Hudson et al. 1979; Iuhnke and Ludemann (1978); Nishiuchi and Hashimoto 1967; Nishiuchi and Yoshida 1972; Palawski et al. 1983; Panwar et al. 1976; Price 1976,1978; Rattner 1982; Shah et al. 1983; Siva-Prasada et al. 1983; Weiss 1959) or because the test species was not obtained in North America and was not identified well enough to determine if it is resident in North America (e.g., Lahav and Sarig 1969). Tarpley (1958) conducted tests with brine shrimp, which species are too atypical to be used in deriving national criteria. Data were not used if parathion was a component of a mixture (e.g., Macek 1975) or if the test
chamber contained sediment (D'Asaro 1982; Farr 1977,1978). Cole and Plapp (1974) did not verify that the parathion was dissolved off the test tubes by the test solution. Anderson (1959), Chiou et al. (1977), Henderson et al. (1959), LeBlanc (1984), Ramke (1969), Sato and Kubo (1965), Surber (1948), and Tarzwell (1959a,b) only presented data that had been published elsewhere. Some studies were not used because test procedures or materials were not adequately described (e.g., Gillies et al. 1974; Hart and Womeldorf 1977; Kleerekoper 1974; Konar and Basak 1973; Lahav and Sarig 1969; Lewallen and Wilder 1962; Micks and Rougeau 1977; Moore 1970; Mulla 1980; Wilder and Schaefer 1969; and Zboray and Gutierrez 1979). Data were not used if the organisms were exposed to parathion by injection or gavage or in food (e.g., Benke et al. 1973,1974; Carlson 1973; Hashimoto and Fukami 1969; King et al. 1984; Loeb and Kelly 1963; and Murphy et al. 1968). Bradbury (1973a,b), Chambers (1976), Dortland (1978), Dortland et al. (1976), Estenik and Collins (1979), Goldsmith et al. (1976), Hiltibran (1974,1982), Hitchcock and Murphy (1971), Huddart (1978), Ludke et al. (1972), McDonald and Fingerman (1979), Murphy et al. (1968), Nollenberger (1982), Nollenberger et al. (1981), Schoor and Brausch 1980, Weiss (1959), Weiss and Gakstatter (1964,1965), Whitmore and Hodges (1978), and Yahalomi and Perry (1981) only exposed enzymes, excised tissues, or cell cultures or conducted other biochemical or histological studies. Bourquin et al. (1977a,b), Garnas and Crosby (1979), Lewis et al. (1984), Pritchard and Bourquin (1977), and Pritchard et al. (Manuscript a,b) only studied the metabolism of parathion. Results of some laboratory tests were not used because the tests were conducted in distilled or deionized water without addition of appropriate salts (e.g., Burchfield and Storrs 1954; Goldsmith 1978; Goldsmith and Carlson 1979; Lewallen 1959,1962; Lichtenstein et al. 1966; and Yasuno et al. 1965) or if too few test organisms were exposed (e.g., Carlson 1973; Ludemann and Neumann 1961). Hughes (1970,1973) did not acclimate the test organisms to the dilution water for a long enough period of time. Laboratory studies using formulations of parathion were not used (e.g., Alexander et al. 1982; Basak and Konar 1976a,b; Chang and Lange 1967; Davey et al. 1976; Gaufin et al. 1961; Hilsenhoff 1959; Labrecque et al. 1956; Mohamed and Gupta 1984; Panwar et al. 1982; Singh and Singh 1981, Sreenivasan and Swaninathan 1967; Srivastava et al. 1977; Verma et al. 1981). Field studies in which the concentration of parathion was not measured were not used (e.g., Ahmed and Washino 1977; Benge and Fronk 1970; Chang and Lange 1967; Davey and Meisch 1977; Davey et al. 1976; Gahan 1957; Grigarick and Way 1982; Labrecque 1956; Mulla and Isaak 1961; Mulla et al. 1963,1964,1978; Myers et al. 1969; Stewart 1977). High control mortalities occurred in tests reported by Fleming et al. (1982). High pesticide residues were found in field collected worms by Naqvi (1973), and the concentration of solvent was too high in studies by Poorman (1973). Microcosm studies were not used (e.g., Dortland 1980; Francis et al. 1980; Miller et al. 1966; Yu and Sanborn 1975). Results of laboratory bioconcentration tests were not used if the test was not flow-through or renewal (e.g., Verma and Gupta 1976) or the concentration in water was not measured (e.g., Kortus et al. 1971). A bioconcentration study by Schmidt and Weidass (1961) was not used because radio-labeled parathion was not adequately identified as the source of residue radioactivity. Reports of concentrations of parathion in wild aquatic organisms (e.g., Badawy and El-Dib 1984; Bradbury 1973a,b; Butler and Schutzmann 1978) were not used to calculate bioaccumulation factors if the number of measurements of the concentration was too small or if the range of the measured concentrations was too great. ### Summary The acute values for thirty-five freshwater species in twenty-nine genera range from 0.04 µg/L for an early instar of a crayfish, Orconectes nais, to 5,230 µg/L for two species of tubifid worms. Chronic toxicity values are available for two freshwater fish species, the bluegill and the fathead minnow, with chronic values of 0.24 µg/L and 6.3 µg/L, and acute-chronic ratios of 2,121 and 79.45, respectively. Two freshwater algae were affected by toxaphene concentrations of 30 and 390 µg/L, respectively. Bioconcentration factors determined with three fish species ranged from 27 to 573. The acute values that are available for saltwater species are 11.5 and 17.8 µg/L for the Korean shrimp, Palaemon macrodactylus and 17.8 µg/L for the striped bass, Morone saxitalis. No data are available concerning the chronic toxicity of parathion to saltwater species, toxicity to saltwater plants, or bioaccumulation by saltwater species. Some data indicate that parathion is acutely lethal to commercially important saltwater shrimp at concentrations as low as 0.24 µg/L. Measurement of AChE might be useful for diagnosing fish kills caused by parathion. ## National Criteria The procedures described in the "Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses" indicate that, except possibly where a locally important species is very sensitive, freshwater aquatic organisms and their uses should not be affected unacceptably if the four-day average concentration of parathion does not exceed 0.013 μ g/L more than once every three years on the average and if the one-hour average concentration does not exceed 0.065 μ g/L more than once every three years on the average. The procedures described in the "Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses" require the availability of specified data for the derivation of a criterion. Very few of the required data are available concerning effects on parathion on saltwater species. The allowed average excursion frequency of three years is the Agency's best scientific judgment of the average amount of time it will take an unstressed aquatic ecosystem to recover from a pollution event in which exposure to parathion exceeds the criterion. Stressed systems, for example one in which several outfalls occur in a limited area, would be expected to require more time for recovery. The resiliencies of ecosystems and their abilities to recover differ greatly, however, and site-specific criteria may be established if adequate justification is provided. Use of criteria for developing water quality-based permit limits and for designing waste treatment facilities requires selection of an appropriate wasteload allocation model. Dynamic models are preferred for the application of these criteria. Limited data or other considerations might make their use impractical, in which case one must rely on a steady-state model. The Agency recommends interim use of 1Q5 and 1Q10 for the Criterion Maximum Concentration (CMC) design flow and 7Q5 and 7Q10 for the Criterion Continuous Concentration (CCC) design flow in steady-state models for unstressed and stressed systems, respectively. These matters are discussed in more detail in the Technical Support Document for Water Quality-Based Toxics Control (U.S. EPA 1985). Table 1. Acute Toxicity of Parathion to Aquatic Animais | Species | Method [®] | Chemical** | LC50
or EC50
(pg/L)466 | Species Heen
Acute Value
(pg/L) | Reference | |---|---------------------|------------------------|------------------------------|---------------------------------------|--| | | | FRESHWATE | R SPECIES | | | | Tubificid worm, Limnodrilus sp. | S, U | Analytical
(99.6%) | 5,230**** | 5,230 | Whitten and Goodnight
1966 | | Tubificid worm, Tubifex sp. | s, u | Analytical
(99,6\$) | 5,230**** | 5,230 | Whitten and Goodnight
1966 | | Cladoceran,
Daphnia magna | s, u | - | 1.8 | - | Bringmann and Kuhn 1960 | | Ciadoceran (<24 hrl,
Daphnia magna | S, M | Reagent
(99≴) | 1.27 | - | Spacie 1976; Spacie et al. 1981 | | Cladoceran, (<24 hr),
Daphnia magna | s, u | Analytical
(99≴) | 1,3 | - | Dortland 1980 | | Cladoceran (<24 hr),
Daphnia magna | F, H | Reagent
(99\$) | 1.0 | 1.0 | Spacie 1976; Spacie
et al. 1981 | | Cladoceran (1st Instar),
Daphnia pulex | s, u | Technical
(98.7%) | 0.60 | 0.60 | Johnson and Finley
1980 | | Cladoceran (1st Instar),
Simocephalus serrulatus | s, u | Technical
(98.7≴) | 0.47 | 0.47 | Johnson and Finley
1980 | | Isopod,
Asellus brevicaudus | S, U | Technical
(98.7\$) | 600 | - | Sanders 1972 | | isopoda (mature),
Aselius brevicaudus | s, u | Technical
(98.7%) | 2,130 | 1,130 | Johnson and Finley
1980 | | Amphipod (mature),
Gammarus fasciatus | S, U | Technical
(98.7%) | 2.1 | - | Sanders 1972 | | Amphipod (mature),
Gammarus fasciatus | F, U | Technical (98.7\$) | 4,5 [†] | - | Sanders 1972 | | Amphipod (meture),
Gammarus fasciatus | S, U | Technical
(98.7\$) | 1,3† | - | Johnson and Finley
1980; Sanders 1972 | Table 1. (continued) | Species | <u>Hethod^a</u> | Chemical** | LC50
or EC50
(#9/L)*** | Species Hean
Acute Value
(pg/L | Reference | |---|---------------------------|-----------------------|------------------------------|--------------------------------------|--| | Amphipod (immature),
Gammarus fasciatus | F, M | Reagent
(99\$) | 0.43 | - | Spacie 1976; Spacie
et al. 1981 | | Amphipod (immature),
Gammarus fasciatus | F, M | Reagent
(99\$) | 0,62 | - | Spacie 1976; Spacie
et al. 1981 | | Amphipod (immature),
Gammarus fasciatus | F, M | Reagent
(99\$) | 0,26 | - | Spacie 1976; Spacie
et al. 1981 | | Amphipod (Immature),
Gammarus
fasciatus | F, M | Reagent
(99≴) | 0,25 | 0.3628 | Spacie 1976; Spacie
et al. 1981 | | Amphipod (mature),
Gammarus lacustris | S, U | Technical
(98.7%) | 3,5 | 3.5 | Johnson and Finley
1980; Sanders 1969 | | Prawn,
Palaemonetes kadlakensis | F, U | Technical
(98.7≸) | 5.0 | - | Sanders 1972 | | Prawn (mature),
Palaemonetes kadiakensis | s, u | Technical
(98.7\$) | 1.5 | 2.739 | Johnson and Finley
1980; Sanders 1972 | | Crayfish (mature),
Orconectes nais | S, U | Technical
(98.7%) | 15 [†] | - | Sanders 1972 | | Crayfish (early instar),
Orconectes nais | S, U | Technical
(98.7≸) | 0.04 | 0.04 | Sanders 1972; Johnson and Finley 1972 | | Crayfish (mature),
Procambarus sp. | s, u | Technical
(98.7\$) | <250 | ⊘ 50 | Johnson and Finley
1980 | | Phantom midge,
Chaoborus sp. | s, u | - | 48 ^{††} | - | Collins and Shank 1983 | | Phantom midge,
Chaoborus sp. | s, u | - | 0.8 ^{††} | | Collins and Shank 1983 | | Phantom midge,
Chaoborus sp. | s, u | - | 1.0 ^{††} | 0.8944 | Collins and Shank 1983 | 9 Table 1. (continued) | Species | <u>Nethod[®]</u> | Chemical ^{so} | LC50
or EC50
(µg/L)*** | Species Mean
Acute Value
(µg/L) | Reference | |---|---------------------------|------------------------|------------------------------|---------------------------------------|---| | Mayfly,
Closon dipterum | S, U | Analytical
(99\$) | 2.5 | - | Dortland 1980 | | Mayfly,
Closon dipterum | s, u | Analytical
(99\$) | 2.6 | - | Dortland 1980 | | Mayfly,
Closon dipterum | R, U | Analytical
(99\$) | 1.7 | 2.227 | Dortland 1980 | | Mayfly (juvenile),
Hexagenia bilineata | S, U | Technical
(98.7%) | 15 | 15 | Johnson and Finley
1980 | | Damselfly (juvenile),
Ischnura venticalis | s, u | Technical
(98.7%) | 0.64 | 0.64 | Johnson and Finley
1980 | | Damselfly,
Lestes congener | s, u | Technical
(>94≴) | 3,0 | 3.0 | Federie and Collins
1976 | | Stonefly,
Pteronarcella badia | s, u | Technical
(98.7\$) | 4,2 | 4.2 | Johnson and Finley 1980;
Sanders and Cope 1968 | | Stonefly (naiad),
Pteronarcys californica | s, u | Technical
(95\$) | 32 | - | Jensen and Gaufin 1964 | | Stonefly (2nd year class),
Pteronarcys californica | s, u | Technical
(98.7≸) | 5,4 | 13.15 | Johnson and Finley 1980;
Sanders and Cope 1968 | | Stonefly (naiad),
Acroneuria pacifica | s, u | Techn [ca]
(95%) | 2.9 | 2.9 | Jensen and Gaufin 1964 | | Stonefly (2nd year class),
Claassenia sabulosa | s, u | Technical
(98.7\$) | 1,5 | 1.5 | Johnson and Finley 1980;
Sanders and Cope 1968 | Table 1. (continued) | Species | <u>Hethod[®]</u> | Chemical** | LC50
or EC50
(µg/L)*** | Species Mean
Acute Value
(µg/L | Reference | |---|---------------------------|-----------------------|------------------------------|--------------------------------------|------------------------------------| | Crawling water beetle (adult),
Peltodytes sp. | S, U | Techn Ical
(>94%) | 7.0 | 7.0 | Federie and Collins 1976 | | Midge,
Chironomus riparius | S, U | - | 8.4 ^{††} | - | Collins and Shank 1983 | | Midge,
Chironomus riparius | S, U | - | 1.6 ^{††1} | - | Collins and Shank 1983 | | Midge,
<u>Chironomus riparius</u> | s, u | - | 1.8 ^{††1} | 1.697 | Collins and Shank 1983 | | Chironomid (4th instar),
Chironomus tentans | F, M | Reagent
(99%) | 31.0 | 31.0 | Spacie 1976; Spacie
et al. 1981 | | Cutthroat trout (0.3 g),
Salmo clarki | s, u | Technical
(98,7\$) | 1,560 | 1,560 | Johnson and Finley 1980 | | Rainbow trout (1.0 g),
Salmo gairdneri | s, u | Technical
(98,7\$) | 1,430 | - | Johnson and Finley 1980 | | Rainbow trout
(embryo, 0 hrl,
Salmo gairdneri | R, U | (99\$) | 10,000 [†] | - | Van Leeuwen et al. 1985 | | Rainbow trout
(embryo, 24 hr),
Saimo gairdneri | R, U | (99\$) | 10,000 [†] | - | Van Leeuwen et al. 1985 | | Rainbow trout
(embryo, 14 day),
Salmo gairdneri | R, U | (99 \$) | 10,000 [†] | - | Van Léguwen et al. 1985 | | Rainbow trout
(embryo, 28 day),
Saimo gairdneri | R, U | (99 \$) | 10,000 [†] | - | Van Leeuwen et al. 1985 | | Rainbow trout
(fry, 42 day),
Salmo gairdneri | R, U | (99\$) | 10,000 [†] | - | Van Leeuwen et al. 1985 | Table 1. (continued) | Species | <u>Hethod^a</u> | Chemical** | LC50
er EC50
(pg/L)**** | Species Mean
Acute Value
(µg/L) | Reference | |--|---------------------------|-----------------------|-------------------------------|---------------------------------------|------------------------------------| | Rainbow trout
(fry, 77 day),
Salmo gairdneri | R, U | (99 \$) | 1,400 | 1,415 | Van Leeuwen et al. 1985 | | Brown trout (16-19 cm),
Salmo trutta | F, M | Reagent
(99≸) | 1,510 | 1,510 | Spacie 1976; Spacie et al. 1981 | | Brook trout (juvenile),
Salvelinus fontinalis | F, M | Reagent
(99\$) | 1,760 | 1,760 | Spacie 1976; Spacie
et al. 1981 | | Lake trout (0.7 g),
Salvelinus namayoush | s, u | Technical
(98.7%) | 1,920 | 1,920 | Johnson and Finley 1980 | | Goldfish (juvenile),
Carassius auratus | s, u | Technical (99\$) | 2,700 | ** | Pickering et al. 1962 | | Goldfish (0.9 g),
Carassius auratus | S, U | Technical
(98.7%) | 1,830 | 2,223 | Johnson and Finley 1980 | | Fathead minnow (adult),
Pimephales promelas | S, M | Reagent
(99%) | 1,600 | - | Spacie 1976; Spacie et al. 1981 | | Fathead minnow (1-1.5 g),
Pimephales promelas | s, u | Technical
(96.5\$) | 1,400 | - | Henderson and Pickering
1958 | | Fathead minnow (1-1.5 g),
Pimephales promelas | s, u | Technical
(96.5%) | 1,600 | - | Henderson and Pickering
1958 | | Fathead minnow (1-1,5 g),
Pimephales promeias | S, U | Technical
(96.5\$) | 2,800 | - | Henderson and Pickering
1958 | | Fathead minnow (1-1.5 g), Pimephales promelas | s, u | Technical
(96.5%) | 3,700 | - | Henderson and Pickering
1958 | | Fathead minnow (juvenile), Pimephales promelas | s, u | Techn Ical
(99%) | 1,300 | - | Pickering et al. 1962 | Table 1. (continued) | Species | <u>Hethod[®]</u> | Chamical sa | LC50
er EC50
(#9/L)### | Species Hean
Acute Value
(µg/L) | Reference | |--|---------------------------|---------------------------------|------------------------------|---------------------------------------|---| | Fathead minnow (0.8 g),
Pimephales promelas | s, u | Technical
(98.7%) | 2,350 | • | Johnson and Finley 1980 | | Fathead minnow (1.8-4.0 cm), Pimephales promelas | , F, M | Analytical
(98.7\$) | 1,410 | - | Solon et al. 1969;
Solon and Nair 1970 | | Fathead minnow (adult),
Pimephales promelas | F, M | Reagent
(99%) | 500 | 839.6 | Spacie 1976; Spacie
et al. 1981 | | Channel catfish (1.4 g), Ictalurus punctatus | S, U | Technical
(98.7%) | 2,650 | 2,650 | Johnson and Finley 1980 | | Mosquitofish (1.1 g),
Gambusia affinis | S, U | Techn [ca]
(98.7 \$) | 320 | 320 | Johnson and Finley 1980 | | Guppy (6 mo),
Poecilia reticulata | s, u | Technical
(99\$) | 56 | 56 | Pickering et al. 1962 | | Green sunfish (1.1 g),
Lepomis cyanellus | s, u | Technical (98.7\$) | 930 | 930 | Johnson and Finley 1980 | | Bluegill (juvenile),
Lepomis macrochirus | s, u | Technical
(99%) | 95 | - | Pickering et al. 1962 | | Bluegill (1.5 gl,
Lepomis macrochirus | S, U | Technical
(96.5%) | 710 | - | Henderson and Pickering
1958 | | Bluegill (1.0 g),
Lepomis macrochirus | S, U | Technical
(98.7\$) | 400 | - | Johnson and Finley 1980 | | Bluegill (juvenile),
Lepomis macrochirus | F, M | Reagent
(99≴) | 510 | 510 | Space 1976; Space et al. 1981 | | Largemouth bass (0.7 g),
Micropterus salmoides | s, u | Technical
(98.7≴) | 620 | 620 | Johnson and Finley 1980 | | Western chorus frog (1 wk),
Pseudacris triseriata | s, u | Technical
(98,7\$) | 1,000 | 1,000 | Sanders 1970 | | Species | <u>Hethod[®]</u> | Chenical** | LC50
or EC50
(#g/L)*** | Species Maan
Acute Value
(µg/L) | Reference | |--|---------------------------|------------|------------------------------|---------------------------------------|-----------------------| | | | SALTWAT | ER SPECIES | | | | Korean shrimp (adult),
Palaemon macrodactylus | F, U | (99\$) | 17.8 | - | Earnest 1970 | | Korean shrimp (adult),
Palaemon macrodactylus | S, U | (99\$) | 11,5 | 14.31 | Earnest 1970 | | Striped bass (juvenile), Morone saxatilis | F, U | (991) | 17.8 | 17.8 | Korn and Earnest 1974 | ^{*} S = static: R = renewal: F = flow-through: U = unmeasured: M = measured. ^{**} Percent purity is given in parentheses when available. if the concentrations were not measured and the published results were not reported to be adjusted for purity, the published results were multiplied by the purity if it was reported to be less than 97%. ^{****} Limnodrills sp. and Tubifex sp. were tested together, but appeared to be equally resistant. Not used in calculation of Species Mean Acute Value because data are available for a more sensitive life stage. ^{†† 4°}C; not used in calculations. ^{††† 22°}C. Table 2. Chronic Toxicity of Parathion to Aquatic Animals | Species | Test ⁸ | Chemical ^{ss} | Linits
(<u>+g/L)</u> *** | Chronic Value (pg/L) | Reference | |--|-------------------|------------------------|------------------------------|----------------------|---------------------------------| | ÷ | | FRESHWAT | ER SPECIES | | | | Cladoceran,
Daphnia magna | rc | Reagent
(99\$) | 0.0817-0.12 | 0.0990 | Spacie 1976; Spacie et al. 1981 | | Fathead
minnow,
Pimephales promelas | LC | Reagen†
(99≴) | 4.4-9.0 | 6.293 | Spacie 1976; Spacie et al. 1981 | | Bluegill,
Lepomis macrochirus | rc | Reagent
(99%) | 0.17-0.34 | 0.2404 | Spacie 1976; Spacie et al. 1981 | ^{*} LC = life-cycle or partial life-cycle. ## Acute-Chronic Ratio | Species | Acute Value (pg/L) | Chronic Value (µg/L) | Ratio | |--|--------------------|----------------------|-------| | Cladoceran,
Daphnia magna | 1.00 | 0.0990 | 10.10 | | Fathead minnow,
Pimephales promelas | 500 | 6.293 | 79.45 | | Bluegill,
Lepomis macrochirus | 510 | 0.2404 | 2,121 | ^{**} Percent purity is given in parentheses when available. ^{***} Results are based on measured concentrations of parathion. Table 3. Ranked Genus Mean Acute Values with Species Mean Acute-Chronic Ratios | Rank ^a | Genus Hean
Acute Value
(µg/L) | Species | Species Heen
Acute Value
(µg/L) ^{aa} | Species Mean
Acute-Chronic
Ratio ^{BRR} | |-------------------|-------------------------------------|---|---|---| | | | FRESHWATER SPECIES | • | | | 31 | 5,230 | Tubificid worm, Tubifex sp. | 5,230 | - | | 30 | 5,230 | Tubificid worm, Limnodrilus sp. | 5,230 | - | | 29 | 2,650 | Channel catfish,
Ictalurus punctatus | 2,650 | - | | 28 | 2,223 | Goldfish,
Carassius auratus | 2,223 | - | | 27 | 1,838 | Brook trout,
Salvelinus fontinalis | 1,760 | • | | | | Lake trout,
Salvelinus namaycush | 1,920 | - | | 26 | 1,494 | Cutthroat trout,
Salmo clarki | 1,560 | - | | | | Brown trout,
Salmo trutta | 1,510 | • | | | | Rainbow trout,
Salmo gairdneri | 1,415 | - | | 25 | 1,130 | Isopod,
Asellus brevicaudus | 1,130 | - | | 24 | 1,000 | Western chorus frog,
Pseudacris triseriata | 1,000 | - | | 23 | 839,6 | Fathead minnow,
Pimephales promelas | 839.6 | 79.45 | | 22 | 688,7 | Green sunfish,
Lepomis cyanellus | 930 | - | | | | Bluegill,
Lepomis macrochirus | 510 | 2,121 | Table 3. (continued) | Reak [®] | Genus Hoan
Acute Value
(pg/L) | Species | Species Mean
Acute Value
(#g/L)#8 | Species Heen
Acute-Chronic
Ratio ^{BBB} | |-------------------|-------------------------------------|---|---|---| | 21 | 620 | Largemouth bass,
Micropterus saimoides | 620 | • • | | 20 | 320 | Mosquitofish,
Gambusia affinis | 320 | - | | 19 | <250 | Crayfish,
Procambarus sp. | <250 | - | | 18 | 56 | Guppy,
Poscilia reticulata | . 56 | - ' | | 17 | 31.0 | Midge,
<u>Chironomus</u> tentans | 31.0 | - | | 16 | 15 | Mayfly,
Hexagenia bilineata | 15 | - | | 15 | 13.15 | Stonefly,
Pteronarcys californica | 13,15 | - | | 14 | 7.0 | Beetle,
Peltodytes spp. | 7.0 | - | | 13 | 4.2 | Stonefly,
Pteronarcella badia | 4,2 | - | | 12 | 3.0 | Damselfly,
Lestes congener | 3.0 | - | | 11 | 2.9 | Stonefly,
Acroneuria pacifica | 2.9 | - | | 10 | 2,739 | Prawn,
Palaemonetes kadlakensis | 2.739 | - | | 9 | 2,227 | Mayfly,
Cloeon dipterum | 2,227 | - | Table 3. (continued) | Rank | Genus Heen
Acute Velue
(#g/L) | Species | Species Noon
Acute Value
(µg/L) ^{AB} | Species Hean
Acute-Chronic
Ratio ⁸⁸⁸ | |------|-------------------------------------|--|---|---| | 8 | 1.697 | Midge,
<u>Chironomus riparius</u> | 1,697 | - | | 7 , | 1.5 | Stonefly,
Claassenla sabulosa | 1.5 | - | | 6 | 1.127 | Amphipod,
Gammarus fasciatus | 0.3628 | - | | | | Amphipod,
Gammarus lacustris | 3.5 | - | | 5 | 0.8944 | Phantom midge,
Chaoborus sp. | 0.8944 | - | | 4 | 0.7746 | Cladoceran,
Daphnia magna | 1.0 | 10.10 | | | | Cladoceran,
Daphnia pulex | 0.60 | - | | 3 | 0.64 | Damselfly,
Ischnura venticalis | 0.64 | - | | 2 | 0.47 | Cladoceran,
Simocephalus serrulatus | 0.47 | - | | 1 | 0.04 | Crayfish,
Orconectes nais | 0.04 | - | ^{*} Ranked from most resistant to most sensitive based on Genus Mean Acute Value. Inclusion of "greater than" values does not necessarily imply a true ranking, but does allow use of all genera for which data are available so that the Final Acute Value is not unnecessarily lowered. ^{**} From Table 1. ^{***} From Table 2. ## Table 3. (continued) ## Fresh water Final Acute Value = 0.1298 µg/L Criterion Maximum Concentration = $(0.1298 \mu g/L) / 2 = 0.0649 \mu g/L$ Final Acute-Chronic Ratio = 10.10 (see text) Final Chronic Value = $(0.1298 \mu g/L) / 10.10 = 0.01285 \mu g/L$ Table 4. Toxicity of Parathion to Aquatic Plants | Species | Chemical* | Duration (days) | Effect | Result
(pg/L)** | Reference | |--|-----------|-----------------|-------------------------|--------------------|-------------------------------------| | | | FRESHI | ATER SPECIES | | | | Blue-green alga,
Microcystis aeruginosa | . • | 8 | incipient
inhibition | 30
(34) | Bringmann and Kuhn
1978a,b | | Green alga,
Scenedesmus quadricauda | - | 8 | inciplent
inhibition | 390 | Bringmann and Kuhn
1977; 1978a,b | | | | | | | | ^{*} Percent purity is given in parentheses when available. If the concentrations were not measured and the published results were not reported to be adjusted for purity, the published results were multiplied by the purity if it was reported to be less than 97%. Table 5. Bloaccumulation of Parathion by Aquatic Organisms | | Species | Chemical* | Concentration in Water (µg/L)** | Duration (days) | Tissue | BCF or BAF | Reference | |---|--|-------------------|--|-----------------|-----------------|---|------------------------------------| | | | | FRESHWA | TER SPECIES | | | | | | Brook trout, Salvelinus fontinalis | Reagent
(99\$) | 0.6
0.6
1.4
2.6
4.0
6.7
0.44
0.53 | 180 | Musc 1 e | 258
312
299
439
471
573
124
86
31 | Spacie 1976; Spacie et al. 1981 | | | | | 1.45
2.76
2.86
4.24
5.53
8.30
8.72 | | | 43
99
91
86
88
232
179 | | | 8 | Fathead minnow,
Pimephales promelas | Reagent
(99\$) | 0.15
4.2
. 9.0
15.5
21.7
49.0 | 260 | Who i e
body | 93.3
169.4
104.6
32.9
66.8
201.4 | Spacie 1976; Spacie et al. 1981 | | | Bluegill,
Lepomis macrochirus | Reagent
(99\$) | 4.00 | 540 | Musc l e | 27 | Spacie 1976; Spacie
et al. 1981 | Percent purity is given in parentheses when available. ^{**} Measured concentration of parathion. ^{###} Bloconcentration factors (BCFs) and bloaccumulation factors (BAFs) are based on measured concentrations of parathion in water and in tissue. Table 6. Other Date on the Effects of Parathion on Aquatic Organisms | Species | Chamica i | Duration | Effect | Result
(pg/L)** | Reference | | | |---|------------------|------------------------------|-------------------------------------|------------------------------|---------------------------------------|--|--| | FRESHWATER SPECIES | | | | | | | | | Bacterium,
Pseudomonas putida | - | 16 hr | inciplent
inhibition | >1 | Bringmann and Kuhn 1977 | | | | Cillate,
Colpidium campylum | - , | 43 hr | Change in growth rate | 10,000 | Dive et al. 1980 | | | | Worm,
Tubifex tubifex | • | 18 hr
18-36 hr | Onset of symptoms
Onset of death | 10,000
100,000 | Ludemann and Neumann 1960b | | | | Cladoceran,
Daphnia magna | - | 24 hr | LC50 | 4 | Ghetti and Gorbi 1985 | | | | Cladoceran (<24 hr old),
Daphnia magna | • | 26 hr | LC50 | 0.8 | Frear and Boyd 1967 | | | | Cladoceran,
Daphnia magna | Reagen†
(99≴) | 7 days
14 days
21 days | EC 50 | 0.39
0.31
0.16 | Spacie 1976; Spacie et al.
1981 | | | | Cladoceran (adult),
Daphnia pulex | Technical | 3 hr | LC50 | 0.8 | Nishluchi and Hashimoto
1967,1969 | | | | Ciadoceran (adult),
Moina macrocopa | Techn Ice i | 3 hr | LC 50 | 8.1 | Nishluchi and Hashimoto
1967, 1969 | | | | Prawn,
Palaemonetes kadlakensis | Techn (ca) | 24 hr | LC50 | 7.1
11.8†
7.4†
6.6† | Nagvi and Ferguson 1970 | | | | Mayfly,
Stenonema femoratum | - | 48 hr | EC50
(4 °C)
(22 °C) | 30.0
1.7 | Collins and Shank 1983 | | | | Mayfly,
Stenonema vicarium | - | 48 hr | EC50 | 29.0 | Collins and Shank 1983 | | | | Mayfly, (larva),
Baefls rhodani | - | 65 min | LT50 | 1,000 | Ghetti and Gorbi 1985 | | | Table 6. (continued) | Species | Chemical ^a | Duration | Effect | Result
(pg/L)** | Reference | |---|-----------------------|----------|-------------------------|--------------------------|--------------------------| | Stonefly,
Allocaphia sp. | - | 48 hr | EC50 | 2.2 | Collins and Shank 1983 | | Beetle (larva),
Hydrophilus triangularis | Techn Ical | 24 hr | LC50 | 17 | Ahmed 1977 | | Beetle (adult),
Hygrotus sp. | Techn Ical | 24 hr | LC50 | 28 | Ahmed 1977 | | Beetle (adult),
Laccophilis decipiens | Technical | 24 hr | LC50 | 12 | Ahmed 1977 | | Beetle (adult),
Thermonectus basiliaris | Techn Ical | 24 hr | LC50 | 1,8 | Ahmed 1977 | | Beetle (adult),
Tropisternus lateralis | Techn ical | 24 hr | LC50 | 32 | Ahmed 1977 | | Beetle (larva),
Tropisternus lateralis | Techn ical | 24 hr | LC50 | 40 | Ahmed 1977 | | Water bug (adult),
Belostoma sp. | Techn Ical | 24 hr | LC50 | 60 | Ahmed 1977 | | Caddisfly,
Cheumatopsyche sp. | - | 48 hr | EC50
(4°C)
(22°C) | 21.0
2.5 | Collins and Shank 1983 | | Caddisfly (larva),
Hydropsyche pellucidula | • | 110 min | LT50 | 1,000 | Ghetti and
Gorbi 1985 | | Caddisfly,
Hydropsyche sp. | - | 48 hr | EC50
(4°C)
(22°C) | 36.0
1.3 | Collins and Shank 1983 | | Mosquito (4th Instar)
Aedes aegypti | 32-P labeled | 24 hr | LC50 | 4.8 | Schmidt and Weldaas 1961 | | Mosquito (larva),
Aedes nigromaculis | Techn Ical | 24 hr | LC50 | 40
35
3 . 5 | Mulla et al. 1970 | | Species | Chemical® | Duration | Effect | (pg/L) ** | Reference | |---|-------------------|--|--------|---------------------------------|------------------------------------| | Mosquito (4th instar),
Aedes nigromaculis | Technical | 24 hr | LC50 | 27
68 | Mulla et al. 1978 | | Mosquito (4th Instar),
Aedes taeniorhynchus | 32-P labeled | 24 hr | LC50 | 3.6 | Schmidt and Weldaas 1961 | | Mosquito (4th instar),
Anopheles freeborni | Techn Ical | 24 hr | LC50 | 2.2-15.0
(24 values) | Womeldorf et al. 1970 | | Mosquito (larva),
Anopheles freeborni | Technicai | 24 hr | LC50 | 0.7 | Ahmed 1977 | | Mosquito (4th instar),
Anopheles quadrimaculatus | 32-P labeled | 24 hr | LC50 | 6.0 | Schmidt and Weldaas 1961 | | Mosquito (4th Instar),
Culex pipiens | Technical | 24 hr | LC50 | 4.5 | Mulla et al. 1962 | | Mosquito (4th instar),
Culex pipiens | Technical | 24 hr | LC50 | 4.5 | Mulla et al. 1964 | | Mosquito (3rd-4th instar),
Culex pipiens | Technical | 24 hr | LC50 | 0.45
5.0 | Chen et al. 1971 | | Mosquito (larva),
Culex tarsalis | Techn Ical | 24 hr | LC50 | 5.8 | Ahmed 1977 | | Midge (larva),
Chironomus plumosus | - | 24 hr | LC50 | 39 | Ludemann and Neumann 1960c | | Midge (4th instar),
Chironomus riparius | Technical | 24 hr | LC50 | 2.5 | Estenik and Collins 1979 | | Midge (2nd and 4th instar),
Chironomus tentans | Reagent
(99\$) | 1 day
2 day
5 day
8 day
14 day | LC50 | 660
135
7.3
2.2
2.6 | Spacie 1976; Spacie et al.
1981 | | Species | Chemical* | <u>Duration</u> | Effect | Roselt
(pg/L)** | Reference | |---|-------------------|------------------------------------|-----------------------|---------------------------------|--------------------------------------| | Brown trout,
Salmo trutta | Reagen†
(99≴) | 64 hr | BOF | 61
77 | Spacie 1976; Spacie et al.
1981 | | Brook trout,
Salvelinus fontinalis | Reagen†
(99≴) | - | LC50 | 75 | Spacie 1976; Spacie et al.
1981 | | Brook trout,
Salvelinus fontinalis | Reagent
(99\$) | - | Reduced percent hatch | 10 | Spacie 1976; Spacie et al.
1981 | | Brook trout,
Salvelinus fontinalis | Reagen†
(99≸) | 8 hr
114 hr
140 hr
144 hr | BCF | 88.5
102.5
301.5
192.5 | Spacie 1976; Spacie et al.
1981 | | Goldfish (1.0 g),
Cyprinus auratus | Techn (ca) | 48 hr | LC50 | 1,700 | Nishluchi and Hashimoto
1967,1969 | | Common carp (3.9 g),
Cyprinus carpio | - | 48 hr | LC50 | 3,500 | Ludemann and Neumann 1960a | | Common carp (1.1 g),
Cyprinus carpio | Technical | , 48 hr | LC50 | 3,200 | Nishluch! and Hashimoto
1967,1969 | | Golden shiner,
(DDT-susceptible),
Notemigonus crysoleucas | Techn (ca) | 48 hr | LC 50 | 1,895 | Minchew and Ferguson 1970 | | Golden shiner
(DDT-resistant),
Notemigonus crysoleucas | Technical | 48 hr | LC50 | 2,800 | Minchew and Ferguson 1970 | | Golden shiner,
Notemigonus crysoleucas | - | 24 hr | LC50 | 93 1 | Gibson 1971 | Table 6. (continued) | Species | Chemica)* | Duration | Effect | Result
(#G/L)** | Reference | |--|----------------------|----------|--------|--------------------|----------------------------| | Fathead minnow
(DDT-susceptible),
Pimephales promelas | Techn Icel | 48 hr | LC50 | 48 | Culley and Ferguson 1969 | | Fathead minnow
(DDT-resistant),
Pimephales promeles | Techn Ical | 48 hr | LC50 | 199 | Culley and Ferguson 1969 | | Mosquitofish,
Gambusia affinis | Techn (ca) | 24 hr | LC50 | 140 | Ahmed and Washino 1977 | | Mosquitofish (15-30 mg),
Gambusia affinis | Analytical | 24 hr | LC50 | 1,400 | Krieger and Lee 1973 | | Mosquitofish (adult)
(DDT-resistant),
Gambusia affinis | Analytical
(99\$) | 48 hr | LC50 | 390
950 | Chambers and Yarbough 1974 | | Mosquitofish (adult)
(DDT-susceptible),
Gambusia affinis | Analytical
(99\$) | 48 hr | LC50 | 350
610 | Chambers and Yarbough 1974 | | Guppy,
Poecilia reticulata | - | 72 hr | LC50 | . 29 | Nagasawa et al. 1968 | | Guppy (7 wk old),
Poecilia reticulata | Techn Ical | 24 hr | LC50 | 80
45 | Chen et al. 1971 | | Green sunfish (DDT-susceptible), Lepomis cyanelius | Technical | 48 hr | LC50 | 207 | Minchew and Ferguson 1970 | | Green sunfish
(DDT-resistant),
Lepomis cyanellus | Technical | . 48 hr | LC50 | 275 | Minchew and Ferguson 1970 | | Green sunfish,
Lepomis cyanellus | - | 24 hr | LC50 | 155 | Gibson 1971 | | Bluegill,
Lepomis macrochirus | - | 24 hr | LC50 | 141 | Gibson 1971 | Table 6. (continued) | Species | Chemical* | Duration | Effect | Result
(pg/L)** | Reference | |--|----------------------------|--|---|--|--| | Bluegill,
Lepomis macrochirus | Reagent
(99%) | 12 hr
18 hr
24 hr
29 hr
46 hr
70 hr | BOF | 80.5
145
173
175.3
253.0
311
462 | Spacie 1976; Spacie et al.
1981 | | Largemouth bass,
Micropterus salmoides | - | 24 hr. | Change In opercular rhythm | 160 | Morgan 1976 | | Frog (tadpole),
Rana catesbetana | - | 96 hr | BCF | 50,1 | Hall and Kolbe 1980 | | | | SALTW | ATER SPECIES | | | | Natural phytoplankton
communities | (99.6\$) | 4 hr | 9.9% decrease in population growth | 1,000 | Butler 1964 | | Eastern oyster (juvenile),
Crassostree virginica | - | 96 hr | EC50
(shell deposition) | 850 | Butler 1963 | | Eastern oyster (juvenile),
Crassostrea virginica | (99.6\$) | 96 hr | 22\$ reduction in shell deposition | 1,000 | Butler 1964; Lowe et al
1970; U.S. Bureau of
Commercial Fisheries 1966 | | Eastery oyster (juvenile to adult),
Crassostres virginica | (99.6\$) | 336 days | No significant effects on growth | 0.8 | Lowe et al. 1971 | | Eastern oyster (larva),
Crassostrea virginica | - | 12 days | 78% reduction in average length | 1,000 | Davis and Hidu 1969 | | Grass shrimp (juventie),
Palaemonetes puglo | (99,6\$) | 48 hr | EC50 (mortality and loss of equilibrium) | 2.8 | U.S. Bureau of Commercial
Fisheries 1967 | | Grass shrimp,
Palaemonetes puglo | (99 , 6 \$) | 24 - 72 hr | increased predation by guit killifish, Fundulus grandis | 0.1-0.5 | Farr 1977 | Table 6. (continued) | Species | Chemical® | Duratica | Effect | Result
(pg/L)** | Reference | |--|-----------|----------|---|--------------------|--| | Brown shrimp (adult),
Penaeus aztecus | (99.6\$) | 48 hr | EC50 (mortality and loss of equilibrium) | 1 | Butler 1964; U.S. Bureau
of Commercial Fisheries
1966 | | Pink shrimp (juvenile),
Penaeus duorarum | (99.6\$) | 48 hr | EC50 (mortality and loss of equilibrium) | 0.24 | Lowe et al. 1970; U.S.
Bureau of Commercial
Fisheries 1967 | | Fiddler crab,
Uca pugliator | (95≸) | 2-3 wk | No effect on limb
regeneration or time
to moit | 10 | Wels and Mantel 1976 | | Fiddler crab,
Uca pugliator | (95≸) | 2-3 wk | 100\$ mortality | 100 | Wels and Mantel 1976 | | Sheepshead minnow (juvenile),
Cyprinodon variegatus | (99.6\$) | 48 hr | LC50 | 60 | Butler 1964 | | Sheepshead minnow (juvenile),
Cyprinodon variegatus | (99.6\$) | 48 hr | LC50 | 36 | U.S. Bureau of Commercial
Fisheries 1966 | | Sheepshead minnow (adult),
Cyprinodon variegatus | - | 2 hr | 40-60% mortality;
brain AChE activity
reduced >82% | 5,000 | Coppage 1972 | | Sheepshead minnow (adult),
Cyprinodon variegatus | - | 24 hr | 40-60\$ mortality;
brain AChE activity
reduced >82\$ | 2,000 | Coppage 1972 | | Sheepsheed minnow (adult),
Cyprinodon variegatus | - | 48 hr | 40~60\$ mortality;
brain AChE activity
reduced >82\$ | 100 | Coppage 1972 | | Sheepshead minnow (adult),
Cyprinodon variegatus | - | 72 hr | 40-60\$ mortality;
brain AChE activity
reduced >82\$ | . 10 | Coppage 1972 | | Sheepshead minnow (adult),
Cyprinodon variegatus | - | 120 hr | Greatest reduction
(78-82\$) in normal
brain AChE activity
obtained without
causing death | 5 | Coppage 1972 | Table 6. (continued) | Species | Chemical* | Duration | Effect | Result (yg/L)** | Reference | |--|-----------------------|----------------------|---|-----------------|---| | Mummichog (adult),
Fundulus heteroclitus | (91\$) | 2 wk | Significant reduction in fin regeneration | n 10 | Wels and Wels 1975 | | Mummichog (embryo),
Fundulus heteroclitus | (95≸) | 3 days | 50\$ incidence of circulatory failure | 10,000 | Wels and Wels 1974 | | Longhose killifish (juvenile
Fundulus similis | o), (99.6 \$) | 48 hr | LC50 | 15 | Lowe et al. 1970 | | Pinfish (65-125 mm),
Lagodon rhomboldes | Technical | 24 hr | 40-60\$ mortality;
brain AChE activity
reduced 90\$ | 10 | Coppage and Matthews 1974 | | Spot (Juvenile),
Lelostomus xanthurus | (99.6\$) | 48 hr | LC50 | 18 | U.S. Bureau of
Commercial
Fisheries 1966 | | Spot (65-150 mm),
Lefostomus xanthurus | Technical | 24 hr | 40-60\$ mortality;
brain AChE activity
reduced 88\$ | 10 | Coppage and Matthews 1974 | | Striped mullet (juvenile) Mugil cephalus | (99.6\$) | 48 hr | LC50 | 100 | U.S. Bureau of Commercial
Fisheries 1967 | | Laughing guil (chick),
Larus artricilia | - | Field
collections | 75-90\$ Inhibition of brain ChE in dead chicks contaminated with parathion | - | White et al. 1979 | | Laughing gull (adult),
Larus artricilla | - | Field
collections | 57-89\$ Inhibition of
brain ChE in dead
adults contaminated
with parathion | - | White et al. 1979 | ^{*} Percent purity is given in parentheses when available. If the concentrations were not measured and the published results were not reported to be adjusted for purity, the published results were multiplied by the purity if it was reported to be less than 97%. [†] Organisms collected at sites potentially contaminated by posticides. ## REFERENCES Ahmed, M.K. and J.E. Casida. 1958. Metabolism of some organophosphorus insecticides by microorganisms. J. Econ. Entomol. 51:59-63. Ahmed, W. 1977. A laboratory and field study on the toxicity of mosquito larvicides to non-target insects found in California rice fields. Ph.D. thesis, University of California-Davis, Davis, California. Ahmed, W. and R.K. Washino. 1977. Toxicity of pesticides used in rice culture in California on <u>Gambusia affinis</u>. Ph.D. thesis, University of California-Davis, Davis, California. Albright, L.J., A. Gasith, G.H. Green, Y. Mozel and A.S. Perry. 1983. The influence of organophosphorous insecticides acephate and parathion upon the heterotrophic bacteria of two freshwater ecosystems. In: Agrochemical-biota interactions in soil and water using nuclear techniques. Technical Document 283. International Atomic Energy Agency, Vienna. pp. 33-44. Alexander, T.C., M.V. Meisch, W.B. Kottkamp and A.L. Anderson. 1982. Effect of notonectids on mosquito larvae and preliminary observations of insecticide toxicity. Ark. Farm Res. 31:5. Anderson, B.G. 1959. The toxicity of organic insecticides to <u>Daphnia</u>. Trans. 2nd Sem. Biol. Probl. Water Pollut. 94-95. Banas, W.P. and J.P. Sprague. 1981. Absence of acclimation to parathion by rainbow trout. In: Proceedings of the eighth annual aquatic toxicity workshop. Kaushik, N.K. and K.R. Solomon (Eds.). Canadian Technical Report of Fisheries and Aquatic Sciences No. 1151. Department of Fisheries and Oceans, Ottawa, Ontario, Canada. p. 170. Basak, P.K. and S.K. Konar. 1976a. Toxicity of six insecticides to fish. Geobios 3:209-210. Basak, P.K. and S.K. Konar. 1976b. Pollution of water by pesticides and protection of fishes: Parathion. Proc. Natl. Acad. Sci., India 46(B):382-392. Bellavere, C. and G. Gorbi. 1984. Biological variability and acute toxicity of parathion, dichlorbenil and TPBS to <u>Biompharia glabrata</u> and <u>Brachydanio rerio</u>. Environ. Technol. Lett. 5:389-396. Benge, M.K. and L.E. Fronk. 1970. Effects of pesticides on non-target aquatic organisms on the Ogden Bay Waterfowl Management Area, Utah. Proc. Annu. Meet. Utah Mosq. Abat. Assoc. 23:34-40. Benke, G.M., K.L. Cheever and S.D. Murphy. 1973. Comparative toxicity, anticholinesterase action and metabolism of methyl parathion, parathion and guthion in sunfish and mice. Proc. 12th Annu. Meet. Soc. Toxicol. pp. 473-474. Benke, G.M., K.L. Cheever, F.E. Mirer and S.D. Murphy. 1974. Comparative toxicity, anticholinesterase action and metabolism of methyl parathion and parathion in sunfish and mice. Toxicol. Appl. Pharmacol. 28:97-109. Bourquin, A.W., M.A. Hood and R.L. Garnas. 1977. An artificial microbial ecosystem for determining effects and fate of toxicants in a salt-marsh environment. Dev. Ind. Microbiol. 18:185-191. Bourquin, A.W., R.L. Garnas, P.H. Pritchard, F.G. Wilkes, C.R. Cripe and N.I. Rubinstein. 1979. Interdependent microcosms for the assessment of pollutants in the marine environment. Intern. J. Environ. Studies. 13:131-140. Bowman, M.C., W.L. Oller, T. Cairns, A.B. Gosnell and K.H. Oliver. 1981. Stressed bioassay systems for rapid screening of pesticide residues. Part I: Evaluation of bioassay systems. Arch. Environ. Contam. Toxicol. 19:9-24. Bradbury, S.J. 1973a. The effect of parathion on crustacean skeletal muscle - I. The mechanical threshold and dependence on Ca^{2+} ions. Comp. Biochem. Physiol. 44A:1021-1032. Bradbury, S.J. 1973b. The effect of parathion on crustacean skeletal muscle - II. Disruption of excitation-contraction coupling. Comp. Biochem. Physiol. 44A:1033-1046. Braun, H.E. and R. Frank. 1980. Organochlorine and organophosphorus insecticides: Their use in eleven agricultural watersheds and their loss to stream waters in southern Ontario, Canada, 1975-1977. Sci. Total. Environ. 15:169-192. Bringmann, G. and R. Kuhn. 1960. The water-toxicological detection of insecticides. Gesund.-Ing. 8:243-244. Bringmann, G. and R. Kuhn. 1977. Limiting values for the damaging action of water pollutants to bacteria (Pseudomonus putida) and green algae (Scenedesmus quadricauda) in the cell multiplication inhibition test. Z. Wasser Abwasser Forsch. 10:87-98. Bringmann, G. and R. Kuhn. 1978a. Limiting values for rhe noxious effects of water pollutant material to blue algae (Microcystis aeruginosa) and green algae (Scenedesmus quadricauda) in cell propagation inhibition tests. Vom Wasser 50:45-60. 39 Bringmann, G. and R. Kuhn. 1978b. Testing of substances for their toxicity threshold: Model organisms Microcystis (Diplocystis) aeruginosa and Scenedesmus quadricauda. Mitt. Int. Ver. Theor. Angew. Limnol. 21:275-284. Burchfield, H.P. and E.E. Storrs. 1954. Kinetics of insecticidal action based on the photomigration of larvae of <u>Aedes aegypti</u>. Contrib. Boyce Thompson Inst. 17:439-452. Butler, P.A. 1963. Commercial fishery investigations. In: Pesticide-wildlife studies. A review of Fish and Wildlife Service investigations during 1961 and 1962. Fish and Wildlife Service Circular 167. U.S. Department of the Interior, Gulf Breeze, FL. pp. 11-25. Butler, 1964. Commercial fishery investigations. In: Pesticide-wildlife studies, 1963: A review of Fish and Wildlife Service investigations during the calendar year. Fish and Wildlife Service Circular 199. U.S. Department of the Interior, Gulf Breeze, FL. pp. 5-28. Butler, P.A. and R.L. Schutzmann. 1978. Residues of pesticides and PCBs in estuarine fish, 1972-76. National Pesticide Monitoring Program. Pesti. Monit. J. 12:51-59. Carlson, G.P. 1973. Comparison of the metabolism of parathion by lobsters and rats. Bull. Environ. Contam. Toxicol. 9:296-300. Chambers, J.E. 1976. The relationship of esterases to organophosphorus insecticide tolerance to mosquitofish. Pestic. Biochem. Physiol. 6:517-522. Chambers J.E. and J.D. Yarbrough. 1974. Parathion and methyl parathion toxicity to insecticide-resistant and susceptible mosquitofish (Gambusia affinis). Bull. Environ. Contam. Toxicol. 11:315-320. Chang, V.C. and W.H. Lange. 1967. Laboratory and field evaluation of selected pesticides for control of the red crayfish in California rice fields. J. Econ. Entomol. 60:473-477. Chen, P.S., Y.N. Lin and C.L. Chung. 1971. Laboratory studies on the susceptibility of mosquito-eating fish, <u>Lebistes reticulatus</u> and the larvae of <u>Culex pipiens fatigans</u> to insecticides. Tai Wan I-Hsueh-Hui Tsa-Chih 70:28-35. Chovelon, A., L. George, C. Gulayets, Y. Hoyano, E. McGuinness, J. Moore, S. Ramamoorthy, P. Singer, K. Smiley and A. Wheatley. 1984. Pesticide and PCB levels in fish from Alberta. Chemosphere 13:19-32. Cole, D.R. and F.W. Plapp. 1974. Inhibition of growth and photosynthesis in Chlorella pyrenoidosa by a polychlorinated biphenyl and several insecticides. Environ. Entomol. 3:217-220. Chiou, C.T., V.H. Freed, D.W. Schmedding and R.L. Kohnert. 1977. Partition coefficient and bioaccumulation of selected organic chemicals. Environ. Sci. Technol. 11:475-478. Collins, W.J. and R. Shank. 1983. Surface water contamination by insecticides. Data from aquatic insect tests that pertain to water quality criteria. PB84-105378. National Technical Information Service, Springfield, VA. Coppage, D.L. 1972. Organophosphate pesticides: Specific level of brain AChE inhibition related to death in sheepshead minnow. Trans. Am. Fish. Soc. 101:534-536. Coppage, D.L. and E. Matthews. 1974. Short-term effects of organophosphate pesticides on cholinesterases of estuarine fishes and pink shrimp. Bull. Environ. Contam. Toxicol. 11:483-487. Cripe, G.M., D.R. Nimmo and T.L. Hamaker. 1981. Effects of two organophosphate pesticides on swimming stamina of the mysid, <u>Mysidopsis bahis</u>. In: Biological monitoring of marine pollutants. Vernberg, F.J., A. Calabrese, F.P. Thurnberg and W.B. Vernberg (Eds.). Academic Press, New York, NY. pp. 21-36. Culley, D.D., Jr. and D.E. Ferguson. 1969. Patterns of insecticide resistance in the mosquitofish, <u>Gambusia affinis</u>. J. Fish. Res. Board Can. 26:2395-2401. D'Asaro, C.N. 1982. Cycling of xenobiotics through marine and estuarine sediments. EPA-600/3-82-074. National Technical Information Service, Springfield, VA. Davey, R.B. and M.V. Meisch. 1977. Dispersal of mosquitofish, <u>Gambusia</u> affinis, in Arkansas rice field. Mosq. News 37:777-778. Davey, R.B., M.V. Meisch and F.L. Carter. 1976. Toxicity of five rice field pesticides to mosquitofish, <u>Gambusia affinis</u>, and green sunfish, <u>Lepomis cyanellus</u>, under laboratory and field conditions in Arkansas. Environ. Entomol. 5:1053-1056. Davis, H.C. and H. Hidu. 1969. Effects of pesticides on embryonic development of clams and oysters and on survival and growth of the larvae. Fish. Bull. 67:393-404. Dick, M. 1982. Pesticide and PCB concentrations in Texas water, sediment and fish tissue. Report 264. Texas Department of Water Resources, Austin. TX. Dive, D., H. Leclerc and G. Perscone. 1980. Pesticide toxicity on the ciliate protozoan Colpidium campylum:
Possible consequences of the effect of pesticides in the aquatic environment. Ecotoxicol. Environ. Safety 4:129-133. Dortland, R.J. 1978. Aliesterase-(ALI-E) activity in <u>Daphnia magna</u> as a parameter for exposure to parathion. Hydrobiologia 59:141-144. Dortland, R.J. 1980. Toxicological evaluation of parathion and azinphosmethyl in freshwater model ecosystems. Versl. Landbouwkd. Onderz. 898:1-112. Dortland, R.J., H.R. Smissaert, J. Hamoen and M. Scholte. 1976. In vitro and in vivo inhibition of ali-esterases and cholinesterases by paraoxon and parathion in <u>Daphnia magna</u>. Meded. Fac. Landbouwet. Rijksuniv. Gent. 41:1477-1482. Earnest, R. 1970. Progress in sport fishery research. Bureau of Sport Fisheries and Wildlife Resource Publication 106. Fish-Pesticide Research Laboratory, Columbia, MO. pp. 10-13. Eisler, R. 1969. Acute toxicity of insecticides to marine decapod crustaceans. Crustaceana 16:302-310. Estenik, J.F. and W.J. Collins. 1979. In vivo and in vitro studies of mixed-function oxidase in an aquatic insect. Chironomus riparius. Am. Chem. Soc. Symp. Ser. 99:349-370. Farr, J.A. 1977. Impairment of antipredator behavior in Palaemonetes pugio by exposure to sublethal doses of parathion. Trans. Am. Fish. Soc. 106:287-290. Faust, S.D. 1975. Nonbiological degradation and transformations of organic pesticides in aqueous systems. In: Marine chemistry in the coastal environment. Church, T.M. (Ed.). ACS Symposium Series 18. American Chemical Society, Washington, DC. pp. 572-595. Faust, S.D. and H.M. Gomaa. 1972. Chemical hydrolysis of some organic phosphorus and carbamate pesticides in aquatic environments. Environ. Lett. 3:171-201. Federle, P.F. and W.J. Collins. 1976. Insecticide toxicity to three insects from Ohio ponds. Ohio J. Sci. 76:19-24. Fleming, W.J. 1981. Recovery of cholinesterase activity in mallard ducklings administered organophosphorus pesticides. J. Toxicol. Environ. Health. 8:885-897. Fleming, W.J., H. deChacin, O.H. Pattee and T.G. Lamont. 1982. Parathion accumulation in cricket frogs and its effect on American kestrels. J. Toxicol. Environ. Health 10:921-927. Francis, B.M., L.G. Hansen, T.R. Fukuto, P. Lu and R.L. Metcalf. 1980. Ecotoxicology of phenylphosphonothioates. Environ. Health Perspect. 36:187 196. Frear, D.E. and J.E. Boyd. 1967. Use of <u>Daphnia magna</u> for the microbioassay of pesticides. I. Development of standardized techniques for rearing <u>Daphnia</u> and preparation of dosage-mortality curves for pesticides. J. Econ. Entomol. 60:1228-1236. Gahan, J.B. 1957. Further studies with water-soluble insecticides for the control of mosquito larvae in irrigation water. Mosq. News 17:198-201. Garnas, R.L. and D.G. Crosby. 1979. Comparative metabolism of parathion by intertidal invertebrates. In: Marine pollution: Functional responses. Vernberg, W.B., F.P. Thurberg, A. Calabrese and F.J. Vernberg (Eds.). Academic Press, New York, NY. pp. 291-306. Gasith, A. and A.S. Perry. 1980. Fate of parathion in a fish pond ecosystem and its impact on food chain organisms. Proc. Rep. Agrochem. Residue-Biota interaction in soil and aquatic ecosystems. International Atomic Energy Agency. pp. 125-151. Gasith, A. and A.S. Perry. 1983. Effect of containment, presence of fish and repetitive exposure to parathion on the composition and dynamics of the natural fish pond zooplankton community. Isr. J. Zool. 32:165-166. Gasith, A. and A.S. Perry. 1985. Use of limnocorrals for pesticide toxicity studies: Effect on zooplankton composition and dynamics. Verh. Int. Ver. Limnol. 22:2432-2436. Gasith, A., A.S. Perry and A. Halevy. 1983a. The effect of repeated exposures to sublethal levels of parathion on the survival, growth, reproduction, and biomass production of three species of fish in a eutrophic fish pond ecosystem. In: Environmental Quality and Ecology: Proceedings of the 2nd International Conference on Ecology and Environmental Quality. Shuval, H.I. (Ed.). pp. 399-407. Gasith, A., J.L. Albright, A.S. Perry and Y. Mozel. 1983b. Effects of parathion on the ecology of a eutrophic aquatic ecosystem: Limnocorral experiment. In: Agrochemical-biota interactions in soil and water using nuclear techniques. Technical Document 283. International Atomic Energy Agency. pp. 19-32. Gaufin, A.R., L. Jensen and T. Nelson. 1961. Bioassays determine pesticide toxicity to aquatic invertebrates. Water Sewage Works 108:355-359. Gaufin, A.R., L.D. Jensen, A.V. Nebeker, T. Nelson and R.W. Teel. 1965. The toxicity of ten organic insecticides to various aquatic invertebrates. Water Sewage Works 12:276-279. Ghetti, P.F. and G. Gorbi. 1985. Effects of acute parathion pollution on macroinvertebrates in a stream. Verh. Int. Ver. Limnol. 22:2426-2431. Gibson, J.R. 1971. Comparative biochemistry of parathion metabolism in three species of fishes. Ph.D. dissertation. Mississippi State University. Available from: University Microfilms, Ann Arbor, MI. Order No. 71-27,040. Gibson, J.R. and J.L. Ludke. 1973. Effect of SKF-525A on brain acetylcholinesterase inhibition by parathion in fishes. Bull. Environ. Contam. Toxicol. 9:140-142. Gillies, P.A., D.J. Womeldorf, E.P. Zboray and K.E. White. 1974. Insecticide susceptibility of mosquitoes in California: Status of organophosphorus resistance in larval Aedes nigromaculis and Culex tarsalis through 1973. Proc. Pap. Annu. Conf. Calif. Mosq. Control Assoc. 42:107-112. Goldsmith, L.A. 1978. The toxicity of parathion to Orconectes rusticus and Viviparus malleatus. Ph.D. dissertation. University of Rhode Island, Kingston, RI. Available from: University Microfilms, Ann Arbor, MI. Order No. 7915457. Goldsmith, L.A. and G.P. Carlson. 1979. Divergent toxicity of parathion in two freshwater invertebrates, <u>Orconectes rusticus</u> and <u>Viviparus</u> malleatus. J. Environ. Sci. Health. B14:579-588. Goldsmith, L.A., G.P. Carlson and G.C. Fuller. 1976. Toxicity and identification of parathion metabolites in freshwater crayfish (<u>Cambarus</u>) and snail (Viviparus). Pharmacologist 18:170. Gomaa, H.M. and S.D. Faust. 1971. Chemical hydrolysis and oxidation of parathion and paraoxon in aquatic environments. In: Fate of organic pesticides in the aquatic environment. Faust, S.D. (Ed.). American Chemical Society, Washington, DC. pp. 189-201. Graetz, D.A., G. Chesters, T.C. Daniel, L.W. Newland and G.B. Lee. 1970. Parathion degradation in lake sediments. J. Water Pollut. Control Fed. 42:R76-R94. Gregory, W.W., Jr., J.K. Reed and L.E. Priester, Jr. 1969. Accumulation of parathion and DDT by some algae and protozoa. J. Protozool. 16:69-71. Greve, P.A., J. Freudenthal and S.L. Wit. 1972. Potentially hazardous substances in surface waters. II. Cholinesterase inhibitors in Dutch surface waters. Sci. Total. Environ. 1:253-265. Grigarick, A.A. and M.O. Way. 1982. Role of crayfish (<u>Decapoda</u>: <u>Astacidae</u>) as pests of rice in California and their control. Entomol. Soc. Am. 75: 633-636. Grzenda, A.R., G.J. Lauer and H.P. Nicholson. 1962. Insecticide contamination in a farm pond. Part II. Biological effects. Trans. Am. Fish. Soc. 91:213-222. Gupta, S.P., S.R. Verma and R.C. Dalela. 1979. Studies on the toxicity of a few pesticides on Colisa fasciatus and Notopterus notopterus with reference to histopathy and histochemistry. Part 1: Bioassay studies. Acta Hydrochim. Hydrobiol. 78:223-238. Gutierrez, M.C., E.P. Zboray and R.E. White. 1977. Insecticide susceptibility of mosquitoes in California: Status of organophosphorus resistance in larval Culex pipiens subspp., Proc. Pap. Annu. Conf. Calif. Mosq. Vector Control Assoc. 45:124-131. Haddadin, M.J. and A.A. Alawi. 1974. Dead populations of fish in the rivers Jordan and Zarga. Biol. Conserv. 6:215-216. Hall, R.J. and E. Kolbe. 1980. Bioconcentration of organophosphorus pesticides to hazardous levels by amphibians. J. Toxicol. Environ. Health 6:853-860. Harris, C.R. and J.R.W. Miles. 1975. Pesticide residues in the Great Lakes region of Canada. Pest. Rev. 57:27-79. Hart, N.R. and D.J. Womeldorf. 1977. Insecticide susceptibility of mosquitoes in Utah. Status of organophosphorus larvicide resistance through 1976. Proc. Annu. Meet. Utah Mosq. Abatement Assoc. 29:23-28. Hashimoto, Y. and J. Fukami. 1969. Toxicity of orally and topically applied pesticide ingredients to carp, <u>Cyprinus carpio</u>. Botyukagaku 34:63-66. Hashimoto, Y. and Y. Nishiuchi. 1981. Establishment of bioassay methods for the evaluation of acute toxicity of pesticides to aquatic organisms. J. Pest. Sci. 6:257-264. Henderson, C. and Q.H. Pickering. 1958. Toxicity of organic phosphorus insecticides to fish. Trans. Am. Fish. Soc. 87:39-51. Henderson, C., Q.H. Pickering and C.M. Tarzell. 1959. The toxicity of organic phosphorus and chlorinated hydrocarbon insecticides to fish. Trans. 2nd Sem. Biol. Probl. Water Pollut., U.S. Public Health Service, Robert A. Taft Sanitary Engineering Center, Cincinnati, OH. Hesselberg, R.J. and J.L. Johnson. 1972. Column extraction of pesticides from fish, fish food and mud. Bull. Environ. Contam. Toxicol. 7:115-120. Hilsenhoff, W.L. 1959. The evaluation of insecticides for the control of Tendipes plumosus. J. Econ. Entomol. 52:331-332. Hiltibran, R.C. 1974. Oxygen and phosphate metabolism of bluegill liver mitochondria in the presence of some insecticides. Trans. Ill. State Acad. Sci. 67:228-237. Hiltibran, R.C. 1982. Effects of insecticides on the metal-activated hydrolysis of adenosine triphosphate by bluegill liver mitochondria. Arch. Environ. Contam. Toxicol. 11:709-717. Hitchcock, M. and S.D. Murphy. 1971. Activation of parathion and guthion by mammalian, avian, and piscine liver homogenates and cell fractions. Toxicol. Appl. Pharmacol. 19:37-45. Huddart, H. 1978. Parathion- and DDT-induced effects on tension and calcium transport in molluscan visceral muscle. Comp. Biochem. Physiol. 61C:1-6. Hudson, R.H., M.A. Haegele and R.K. Tucker. 1979. Acute oral and percutaneous toxicity of pesticides to mallards: Correlations with mammalian toxicity data.
Toxicol. Appl. Pharmacol. 47:451-460. Hughes, J.S. 1970. Tolerance of striped bass, Morone saxatilis, larvae and fingerlings to nine chemicals used in pond culture. Proc. Annu. Conf. Southeast. Assoc. Game Fish Comm. 24:431-438. Hughes, J.S. 1973. Acute toxicity of thirty chemicals to striped bass (Morone saxatilis). Louisiana Department of Wildlife and Fisheries, Fish and Game Division, Monroe, LA. Jensen, L.D. and A.R. Gaufin. 1964. Effects of ten organic insecticides on two species of stonefly naiads. Trans. Am. Fish. Soc. 93:27-34. Johnson, W.W. and M.T. Finley. 1980. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates. Resource Publication 137. U.S. Fish and Wildlife Service, Washington, DC. Juhnke, V.I. and D. Ludemann. 1978. Results of the investigation of zoo chemical compounds for acute fish toxicity with the golden orfe test. Wass. Abwass. Forsch. 11:161-164. Jung, K.D. 1973. Substances extremely toxic to fish and their importance for a fish test warning system. Gas-Wasserfach, Wasser-Abwasser. 114:232-233. Kannan, V. and S.V. Job. 1979. Studies on the residual levels of pesticide pollution in the Sathiar reservoir. J. Radioanal. Chem. 53:247-253. Khattat, F.H. and S. Farley. 1976. Acute toxicity of certain pesticides to Acartia tonsa Dana. EPA-600/3-76-033. National Technical Information Service, Springfield, VA. King, K.A., D.H. White and C.A. Mitchell. 1984. Nest defense behavior and reproductive success of laughing gulls sublethally dosed with parathion. Bull. Environ. Contam. Toxicol. 33:499-504. Kleerekoper, H. 1974. Effects of exposure to a sublethal concentration of parathion on the interaction between chemoreception and water flow in fish. In: Pollution and physiology of marine organisms. Vernberg, F.J. and W.B. Vernberg (Eds.). Academic Press, New York, NY. pp. 237-245. Konar, S.K. and P.K. Basak. 1973. Some effects of mechanical and chemical injuries on catfish. Proc. Indian Sci. Cong. Assoc. 60:551-552. Korn, S. and R. Earnest. 1974. Acute toxicity of twenty insecticides to striped bass, Morone saxatilis. Calif. Fish Game. 60:128-131. Kortus, J., P. Macuch, J. Mayer, K. Durcek and V. Krcmery. 1971. Uptake of 32-P parathion and 32-P imidam by <u>Euglena gracilis</u>. J. Hyg. Epidemiol. Microbiol. Immunol. (Prague). 15:101-103. Krieger, R.I. and P.W. Lee. 1973. Inhibition of in vivo and in vitro epoxidation of aldrin and potentiation of toxicity of various insecticide chemicals by diquat in two species of fish. Arch. Environ. Contam. Toxicol. 1:112-121. Kynard, B. 1974. Avoidance behavior of insecticide susceptible and resistant populations of mosquitofish to four insecticides. Trans. Am. Fish. Soc. 103:557-561. Labrecque, G.C., J.R. Noe and J.B. Gahan. 1956. Effectiveness of insecticides on granular clay carriers against mosquito larvae. Mosq. News 16:1-3. Lahav, M. and S. Sarig. 1969. Sensitivity of pond fish to cotnion (azinphosmethyl) and parathion. Bamidgeh 21:67-74. Laplanche, A., M. Bouvet, F. Venien, G. Martin and A. Chabrolles. 1981. Modeling parathion changes in the natural environment laboratory experiment. Water Res. 15:599-607. LeBlanc, G.A. 1984. Interspecies relationships in acute toxicity of chemicals to aquatic organisms. Environ. Toxicol. Chem. 3:47-60. Lewallen, L.L. 1959. Toxicity of several organophosphorus insecticides to Gambusia affinis in laboratory tests. Mosq. News 19:1-2. Lewallen, L.L. 1962. Toxicity of certain insecticides to hydrophilid larvae. Mosq. News 22:112-113. Lewallen, L.L. and W.H. Wilder. 1962. Toxicity of certain organophosphorus and carbamate insecticides to rainbow trout. Mosq. News 22:369-372. Lewis, D.L., R.E. Hodson and L.F. Freeman III. 1984. Effects of microbial community interactions on transformation rates of xenobiotic chemicals. Appl. Environ. Microbiol. 48:561-565. Lichtenstein, E.P., T.T. Liang and B.N. Anderegg. 1975. Synergism of insecticides by herbicides under various environmental conditions. Environ. Conserv. 2:148 Lichtenstein, E.P., K.R. Schulz, R.F. Skrentny and Y. Tsukano. 1966. Toxicity and fate of insecticide residues in water. Arch. Environ. Health 12:199-212. Loeb, H.A. and W.H. Kelly. 1963. Acute oral toxicity of 1,496 chemicals force-fed to carp. U.S. Fisheries and Wildlife Service Special Report No. 471. Washington, DC. Lowe, J.I., P.D. Wilson and R.B. Davison. 1970. Laboratory bioassays. In: Progress report for fiscal year 1969. U.S. Fish and Wildlife Circular 335. Pesticide Field Station, Gulf Breeze, FL. Lowe, J.I., P.D. Wilson, A.J. Rick and A.J. Wilson, Jr. 1971. Chronic exposure of oysters to DDT, toxaphene and parathion. Proc. Nat. Shellfish. Assoc. 61:71-79. Ludemann, D. and F. Herzel. 1973. Toxicity and concentration changes with time of the insecticide parathion in water. Z. Angew. Zool. 60:177-181. Ludemann, D. and H. Neumann. 1960a. Studies on the acute toxicological action of modern contact insecticides to carp (Cyprinus carpio). Z. Angew. Zool. 47:11-33. Ludemann, D. and H. Neumann. 1960b. Studies on the acute toxicity of modern contact insecticides in fresh water. Z. Angew. Zool. 47:303-321. Ludemann, D. and H. Neumann. 1960c. Studies on the acute toxicity of modern contact insecticides in fresh water. III. Chironomid larvae. Z. Angew. Zool. 47:493-505. Ludemann, D. and H. Neumann. 1961. Study of the acute toxicity of modern contact insecticides for freshwater animals. Z. Angew. Zool. 48:87-96. Ludke, J.L., J.R. Gibson and C.I. Lusk. 1972. Mixed function oxidase activity in freshwater fishes. Aldrin epoxidation and parathion activation. Toxicol. Appl. Pharmacol. 21:89-97. Macek, K.J. 1975. Acute toxicity of pesticide mixtures to bluegills. Bull. Environ. Contam. Toxicol. 14:648-652. Mackiewicz, M., R.H. Deubert, H.B. Gunner and B.M. Zuckerman. 1969. Study of parathion biodegradation using gnotobiotic techniques. J. Agric. Food Chem. 17:129-130. McDonald, T.O. and M. Fingerman. 1979. Effects of DDT and parathion on goldfish retina/pigment epithelium/choroid concentrations of serotonin, dopamine, and norepinephrine. Toxicol. Appl. Pharmacol. 48:A199. Micks, D.W. and D. Rougeau. 1977. Organophosphorus tolerance in <u>Culex</u> quinquefasciatus in Texas. Mosq. News 37:233-239. Miller, C.W., B.M. Zuckerman and A.J. Charig. 1966. Water translocation of diazinon-14C and parathion-35S off a model cranberry bog and subsequent occurrence in fish and mussels. Trans. Am. Fish. Soc. 95:345-349. Miller, C.W., W.E. Tomlinson and R.L. Norgen. 1967. Persistence and movement of parathion in irrigation waters. Pestic. Monit. J. 1:47-48. Minchew, C.D. and D.E. Ferguson. 1970. Toxicities of six insecticides to resistant and susceptible green sunfish and golden shiners in static bioassays. Miss. Acad. Sci. J. 15:29-32. Mohamed, M.P. and R.A. Gupta. 1984. Effects of sublethal concentration of ethyl parathion on oxygen consumption and random swimming activity of Cirrhinus mrigala. Indian J. Exp. Biol. 22:42-44. Moore, R.B. 1970. Effects of pesticides on growth and survival of <u>Euglena</u> gracilis Z. Bull. Environ. Contam. Toxicol. 5:226-230. Morgan, W.S. 1975. Monitoring pesticides by means of changes in electric potential caused by fish opercular rhythms. Prog. Water Technol. 7:33-40. Morgan, W.S. 1976. Fishing for toxicity: Biological automonitor for continuous water quality control. Effluent Water Treat. J. 16:471-472, 474-475. Morgan, W.S. 1977. Biomonitoring with fish: An aid to industrial effluent and surface water quality control. Prog. Water Technol. 9:703-711. Mount, D.I. and H.W. Boyle. 1969. Parathion-use of blood concentration to diagnose mortality of fish. Environ. Sci. Technol. 3:1183-1185. Mulla, M.S. 1963. Persistence of mosquito larvicides in water. Mosq. News 23:234-237. Mulla, M.S. 1980. New synthetic pyrethroids - effective mosquito larvicides. Proc. Pap. Annu. Conf. Calif. Mosq. Vector Control Assoc. 48:92-93. Mulla, M.S. and L.W. Isaak. 1961. Field studies on the toxicity of insecticides to the mosquitofish, Gambusia affinis. J. Econ. Entomol. 54:1237-1242. Mulla, M.S., R.L. Metcalf and L.W. Isaak. 1962. Some new and highly effective mosquito larvicides. Mosq. News 22:231-238. Mulla, M.S., L.W. Isaak and H. Axelrod. 1963. Field studies on the effects of insecticides on some aquatic wildlife species. J. Econ. Entomol. 56:184-188. Mulla, M.S., R.L. Metcalf and G. Kats. 1964. Evaluation of new mosquito larvicides with notes on resistant stains. Mosq. News 24:312-319. Mulla, M.S., J.O. Keith and F.A. Gunther. 1966. Persistence and biological effects of parathion residues in waterfowl habitats. J. Econ. Entomol. 59:1085-1090. Mulla, M.S., J. St. Amant and L.D. Anderson. 1967. Evaluation of organic pesticides for possible use as fish toxicants. Prog. Fish-Cult. 29:36-42. Mulla, M.S., H.A. Darwazeh and P.A. Gillies. 1970. Evaluation of aliphatic amines against larvae and pupae of mosquitoes. J. Econ. Entomol. 63:1472-1475. Mulla, M.S., H. Navvab-Gojrati and H.A. Darwazeh. 1978. Biological activity and longevity of new synthetic pyrethroids against mosquitoes and some non-target insects. Mosq. News 38:90-96. Murphy, S.D., R.R. Lauwerys and K.L. Cheever. 1968. Comparative anticholinesterase action of organophosphorus insecticides in vertebrates. Toxicol. Appl. Pharmacol. 12:22-35. Myers, C.M., P.A. Gillies and R.F. Frolli. 1969. Field test of Abate and parathion granules in catch basins. Proc. Pap. Annu. Conf. Calif. Mosq. Control Assoc. 37:61-63. Nagasawa, K., E. Koshimura and H. Fukuda. 1968. LD50 and ED50 of parathion and potassium cyanide and their bioassay using guppies (<u>Lebistes reticulatus</u>). Bull. Natl. Inst. Hyg. Sci. (Tokyo) 86:32-36. Naqvi, S.M. 1973. Toxicity of twenty-three insecticides to a tubificid worm Branchiura sowerbyi from the Mississippi delta. J. Econ. Entomol. 66:70-74. Naqvi, S.M. and D.E. Ferguson. 1970. Levels of insecticide resistance in freshwater shrimp, Palaemonetes kadiakensis. Trans. Am. Fish. Soc. 99:696-699. Nicholson, H.P., H.J. Webb, G.J. Lauer,
R.E. O'Brien, A.R. Grzenda and D.W. Shanklin. 1962. Insecticide contamination in a farm pond. Part I. Origin and duration. Trans. Am. Pish. Soc. 91:213-222. Nimmo, D.R., T.L. Hamaker, E. Matthews and J.C. Moore. 1981. An overview of the acute and chronic effects of first and second generation pesticides on an estuarine mysid. In: Biological monitoring of marine pollutants. Vernberg, F.J., A. Calabrese, F.P. Thurberg and W.B. Vernberg (Eds.). Academic Press, New York, NY. pp. 3-19. Nishiuchi, Y. and Y. Hashimoto. 1967. Toxicity of pesticide ingredients to some freshwater organisms. Botyu-Kagaku (Sci. Pest. Control) 32:5-11. Nishiuchi, Y. and Y. Hashimoto. 1969. Toxicity of pesticides to some freshwater organisms. Rev. Plant Prot. Res. 2:137-139. Nishiuchi, Y. and K. Yoshida. 1972. Toxicities of pesticides to some freshwater snails. Bull. Agr. Chem. Insp. Stn. 12:86-92. Nollenberger, E.L. 1982. Toxicant-induced changes in brain, gill, liver and kidney of brook trout exposed to carbaryl, atrazine, 2,4-D, and parathion: A cytochemical study. Diss. Abstr. Int. B. 42:3922. Nollenberger, E.L., W. Neff and A. Anthony. 1981. Cytochemical analysis of brain nucleic acid changes in brook trout (Salvelinus fontinalis) exposed to carbaryl and parathion toxication. Proc. Pa. Acad. Sci. 55:97. Panwar, R.S., D. Kapoor, H.C. Joshi and R.A. Gupta. 1976. Toxicity of some insecticides to the weed fish, <u>Trichogaster fasciatus</u>. J. Inl. Fish. Soc. India 8:129-130. Panwar, R.S., R.A. Gupta, H.C. Joshi and D. Kapoor. 1982. Toxicity of some chlorinated hydrocarbon and organophosphorus insecticides to gastropod, Viviparus bengalensis. J. Environ. Biol. 3:31-36. Perry, A.S., A. Gasith and Y. Mozel. 1983. Pesticide residues in fish and aquatic invertebrates. Arch. Toxicol. Suppl. 6:199-204. Pickering, Q.H., C. Henderson and A.E. Lemke. 1962. The toxicity of organic phosphorus insecticides to different species of warmwater fishes. Trans. Am. Fish. Soc. 91:175-184. Poorman, A.E. 1973. Effects of pesticides on <u>Euglena gracilis</u>. I. Growth studies. Bull. Environ. Contam. Toxicol. 10:25-28. Price, N.R. 1976. The effects of two insecticides on the Ca⁺² + Mg⁺² activated ATPase of the sarcoplasmic reticulum of the flounder, <u>Platichthys</u> flesus. Comp. Biochem. Physiol. 55C:91-94. Price, N.R. 1978. Disruption of excitation-contraction coupling by organic insecticides. Mode of action in the muscle of the flounder, <u>Platichthys</u> flesus. Comp. Biochem. Physiol. 59C:127-133. Ramke, D. 1969. Development of organophosphorus resistant Aedes nigromaculis in the Tulane Mosquito Abatement District. Proc. Pap. Annu. Conf. Calif. Mosq. Control Assoc. 37:63. Rand, G.M. 1977a. The effect of subacute parathion exposure on the locomotor behavior of the bluegill sunfish and largemouth bass. In: Aquatic toxicology and hazard evaluation. Mayer, F.L. and J.L. Hamelink (Eds.). ASTM STP 634. American Society for Testing and Materials, Philadelphia, PA. pp. 253-268. Rand, G.M. 1977b. The effect of exposure to a subacute concentration of parathion on the general locomotor behavior of the goldfish. Bull. Environ. Contam. Toxicol. 18:259-266. Rand, G., H. Kleerekoper and J. Matis. 1975. Interaction of odor and flow perception and the effects of parathion in the locomotor orientation of the goldfish Carassius auratus. J. Fish Biol. 7:497-504. Rattner, B.A. 1982. Diagnosis of anticholinesterase poisoning in birds: Effects of environmental temperature and underfeeding on cholinesterase activity. Environ. Toxicol. Chem. 1:329-335. Sanders, H.O. 1969. Toxicity of pesticides to the crustacean Gammarus lacustris. Technical Paper No. 25. U.S. Fish and Wildlife Service, Columbia, MO. Sanders, H.O. 1970. Pesticide toxicities to tadpoles of the western chorus frog, <u>Pseudaeris triseriata</u>, and Fowler's toad, <u>Bufo woodhousii fowleri</u>. Copeia 2:246-251. Sanders, H.O. 1972. Toxicity of some insecticides to four species of malacostracan crustaceans. Technical Paper No. 66. Bureau of Sport Fisheries and Wildlife, U.S. Fish and Wildlife Service, Washington, DC. Sanders, H.O. and O.B. Cope. 1968. The relative toxicities of several pesticides to naiads of three species of stoneflies. Limnol. Oceanogr. 13:112-117. Sato, R. and H. Kubo. 1965. The water pollution caused by organophosphorus insecticides in Japan. In: Advances in water pollution research. Jaag, O. (Ed.), Pergamon Press, London. pp. 95-99. Schmidt, C.H. and D.E. Weidaas. 1961. The toxicological action of three organophosphorus insecticides with three species of mosquito larvae. J. Econ. Entomol. 54:583-586. Sethunathan, N., R. Siddaramappa, K.P. Rajaram, S. Barik and P.A. Wahid. 1977. Parathion: Residues in soil and water. Residue Rev. 68:92-122. Shah, P.V., R.J. Monroe and F.E. Guthrie. 1983. Comparative penetration of insecticides in target and non-target species. Drug Chem. Toxicol. 6:155-179. Singh, H. and T.P. Singh. 1981. Effect of parathion and aldrin on survival, ovarian 32-P uptake and gonadotrophic potency in a freshwater catfish, Heteropneustes fossilis. Endokrinologie 77:173-178. Siva Prasada, K., K.R. Sambasiva and K.V. Ramana. 1983. Effect of parathion on tissue ionic changes in fish, Channa punctatus. Geobios 10:60-62. Solomon, H.M. 1977. The teratogenic effects of the insecticides DDT, carbaryl, malathion, and parathion on developing medaka eggs (Oryzias latipes). Diss. Abstr. Int. B 39:2176-2177. Solomon, H.M. and J.S. Weis. 1979. Abnormal circulatory development in medaka caused by the insecticides carbaryl, malathion and parathion. Teratology 19:51-61. Solon, J.M. and J.H. Nair, III. 1970. The effect of a sublethal concentration of LAS on the acute toxicity of various phosphate pesticides to the fathead minnow (<u>Pimephales promelas</u> Rafinesque). Bull. Environ. Contam. Toxicol. 5:408-413. Solon, J.M., J.L. Lincer and J.H. Nair. 1969. The effect of sublethal concentrations of LAS on the acute toxicity of various insecticides to the fathead minnow (Pimephales promelas). Water Res. 3:767-775. Spacie, A. 1976. Acute and chronic parathion toxicity to fish and invertebrates. PB257800. National Technical Information Service, Springfield, VA. Spacie, A., A.G. Vilkas, G.F. Doebbler, W.J. Kuc and G.R. Iwan. 1981. Acute and chronic parathion toxicity to fish and invertebrates. PB81-245862 or EPA-600/3-81-047. National Technical Information Service, Springfield, VA. Sreenivasan, A. and G.K. Swaminathan. 1967. Toxicity of six organophosphorus insecticides to fish. Curr. Sci. 36:397-398. Srivastava, G.N., R.A. Gupta, M.P. Mohamed and D. Nath. 1977. Effect of sub-lethal ethyl parathion on the metabolism and activity of Colisa fasciata. Indian J. Environ. Health 19:63-66. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. 1985. Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. PB85-227049. National Technical Information Service, Springfield, VA. Stewart, J.P. 1977. Synergism of chlorpyrifos by DEF in the control of organophosphorus resistant <u>Culex pipiens quinquefasciatus</u> larvae, with notes on synergism of parathion and fenthion. Proc. Pap. Annu. Conf. Calif. Mosq. Vector Control Assoc. 45:132-133. Sun, T.J. and D.H. Taylor. 1983. The effects of parathion on acquisition and retention of shuttlebox avoidance - conditioning in the goldfish Carassius auratus. Environ. Pollut. (Series A) 31:119-131. Surber, E.W. 1948. Chemical control agents and their effects on fish. Prog. Fish-Cult. 10:125-131. Tarpley, W.A. 1958. Studies on the use of the brine shrimp, Artemia salina, as a test organism for bioassay. J. Econ. Entomol. 51:780-783. Tarzwell, C.M. 1959a. Some effects of mosquito larviciding and the new pesticides on fishes. Proceedings of the Symposium on Coordination of Mosquito Control and Wildlife Management, Washington, DC. April 1-2, 1959. Tarzwell, C.M. 1959b. Pollutional effects of organic insecticides. Transactions of the 24th North American Wildlife Conference. Wildlife Management Institute, Washington, DC. pp. 132-142. Tomita, H. and N. Matsuda. 1961. Deformity of vertebrae induced by lathyrogenic agents and phenyl-thiourea in medaka (Oryzias latipes). Embryologia 5:413-422. - U.S. Bureau of Commercial Fisheries. 1966. Unpublished laboratory data. Gulf Breeze, FL. - U.S. Bureau of Commercial Fisheries. 1967. Unpublished laboratory data. Gulf Breeze, FL. - U.S. EPA. 1975. Substitute chemical program: Initial scientific and minieconomic review of parathion. EPA-540/1-75~001. National Technical Information Service, Springfield, VA. U.S. EPA. 1976. Quality criteria for water. EPA-440/9-76-023. National Technical Information Service, Springfield, VA. U.S. EPA. 1983a. Water quality standards regulation. Fed. Regist. 48:51400-51413. November 8. U.S. EPA. 1983b. Water quality standards handbook. Office of Water Regulations and Standards, Washington, DC. U.S. EPA. 1985. Technical support document for water-quality based toxic controls. Office of Water, Washington, DC. September. Van Hoof, F. 1980. Evaluation of an automatic system for detection of toxic substances in surface water using trout. Bull. Environ. Contam. Toxicol. 25:221-225. Van Leeuwen, C.J., P.S. Griffioen, W.H. Vergouw and J.L. Maas-Diepeveen. 1985. Differences in susceptibility of early life stages of rainbow trout (Salmo gairdneri) to environmental pollutants. Aquat. Toxicol. 7:59-78. Van Middelem. C.H. 1966. Fate and persistence of organic pesticides in the environment. In: Organic pesticides in the environment. Rosen, A.A. and H.F. Kraybill (Eds.). American Chemical Society, Washington, DC. pp. 228-242. Verma, S.R. and S.P. Gupta. 1976. Pesticides in relation to water pollution. Accumulation of aldrin and ethyl parathion in the tissues of Colisa fasciatus and Notopterus notopterus. Indian J. Environ. Health 18:10-14. Verma, S.R., V. Kumar and R.C. Dalela. 1981. Studies on the accumulation and elimination of three
pesticides in the gonads of Notopterus notopterus and Colisa fasciatus. Indian J. Environ. Health 23:275-281. von Rumker, R., E.W. Lawless, A.F. Meiners, K.A. Lawrence, G.L. Kelso and F. Horay. 1974. Production, distribution, use and environmental impact potential of selected pesticides. EPA-540/1-74-001. National Technical Information Service, Springfield, VA. pp. 181-195. Walsh, G.E. and S.V. Alexander. 1980. A marine algal bioassay method: Results with pesticides and industrial wastes. Water Air Soil Pollut. 13:45-55. Warnick, S.L., R.F. Gaufin and A.R. Gaufin. 1966. Concentrations and effects of pesticides in aquatic environments. J. Am. Water Works Assoc. 58:601-608. Weis, J.S. and L.H. Mantel. 1976. DDT as an accelerator of limb regeneration and molting in fiddler crabs. Estuarine Coastal Mar. Sci. 4:461-466. Weis, J.S. and P. Weis. 1975. Retardation of fin regeneration in <u>Fundulus</u> by several insecticides. Trans. Am. Fish. Soc. 104:135-137. Weis, P. and J.S. Weis. 1974. Cardiac malformations and other effects due to insecticides in embryos of the killifish, <u>Fundulus heteroclitus</u>. Teratology 10:263-268. Weiss, C.M. 1959. Stream pollution: Response of fish to sub-lethal exposures of organic phosphorus insecticides. Sewage Ind. Wastes 31:580-593. Weiss, C.M. 1961. Physiological effect of organic phosphorus insecticides on several species of fish. Trans. Am. Fish. Soc. 90:143-152. Weiss, C.M. and J.H. Gakstatter. 1964. Detection of pesticides in water by biochemical assay. J. Water Pollut. Control Fed. 36:240-253. Weiss, C.M. and J.H. Gakstatter. 1965. The decay of anticholinesterase activity of organic phosphorus insecticides on storage in waters of different pH. In: Advances in water pollution research. Jaag, O. (Ed.), Pergamon Press, London. pp. 83-95. White, D.H., K.A. King, C.A. Mitchell, E.F. Hill and T.G. Lamont. 1979. Parathion causes secondary poisoning in a laughing gull breeding colony. Bull. Environ. Contam. Toxicol. 23:281-284. Whitmore, D.H. and D.H. Hodges. 1978. In vitro pesticide inhibition of muscle esterases of the mosquitofish, <u>Gambusia affinis</u>. Comp. Biochem. Physiol. 59C:145-149. Whitten, B.K. and C.J. Goodnight. 1966. Toxicity of some common insecticides to tubificids. J. Water Pollut. Control Fed. 38:227-235. Wilder, W.H. and C.S. Schaefer. 1969. Organophosphorus resistance levels in adults and larvae of the pasture mosquito, <u>Aedes nigromaculis</u>, in the San Joaquin Valley of California. Proc. Pap. Annu. Conf. Calif. Mosq. Control Assoc. 37:64-67. Womeldorf, D.J., R.K. Washino, K.E. White and P.A. Gieke. 1970. Insecticide susceptibility of mosquitoes in California: Response of Anopheles freeborni Aitken larvae to organophosphorus compounds. Mosq. News 30:374-382. Yahalomi, Z. and A.S. Perry. 1981. Microsomal mixed-function oxidases in fish in relation to environmental contamination by organochlorine insecticides. Comp. Biochem. Physiol. 70C:97-102. Yasuno, M., S. Hirakoso, M. Sasa and M. Uchida. 1965. Inactiviation of some organophosphorus insecticides by bacteria in polluted water. Japan. J. Exp. Med. 35:545-563. Yu, C.C. and J.R. Sanborn. 1975. The fate of parathion in a model ecosystem. Bull. Environ. Contam. Toxicol. 13:543-550. Zboray, E.P. and M.C. Gutierrez. 1979. Insecticide susceptibility of mosquitoes in California: Status of organophosphorus resistance in larval Culex tarsalis through 1978, with notes on mitigating the problem. Proc. Pap. Annu. Conf. Calif. Mosq. Vector Control Assoc. 47:26-28. Zuckerman, B.M., K. Deubert, M. Mackiewicz and H. Gunner. 1970. Studies on the biodegradation of parathion. Plant Soil 33:273-281.