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Preface

In order to provide a strong quantitative basis for air
quality management through selective emission controls, there
have been increasing demands in recent years for air quality
simulation models of considerable sophistication and complexity.

In these models a major component is that describing the atmos-
pheric transport and turbulent dispersion of the pollutants, and
many efforts are in progress to improve the specification of these
effects. For the turbulent dispersion this is normally done through
the use of diffusion coefficients (eddy diffusivities) or by more
sophisticated turbulence parameterizations that are developed
through various "closure" schemes for the governing equations of
flow. These closure approximations are, of course, necessary
because of the well-known mathematical intractability of the
general non-linear time-dependent Navier-Stokes equations that
govern the turbulent flow of a viscous fluid. Closure approxi-
mations all involve the use, at some stage in their development,
of empirically based constants of parameters, that in some cases
may require ad hoc field experiments or observations.

During the past few years, and largely stemming from the
vioneering efforts of Professor Steven A. Orszag and his associates,
a major breakthrough has been made in developing powerful new mathe-
matical-computational approaches for the accurate numerical simu-

lation of turbulent flow. It has been shown that many aspects of
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turbulent motion may be numerically simulated with impressive
accuracy, directly from the equations of motion, and without

the somewhat arbitrary closure approximations involved in normal

parameterizations. I+ was these remarkable results that stimulated

the present contract. It was hoped that it might provide the ini-
tial step towards providing a basic technique for atmospheric tur-
bulence and dispersion estimates by accurate non—-empirical methods.
In due course such results might provide a set of diffusion data
against which various approximations might be tested.

The recent methods of Professor S. A. Orszag involve so-called
spectral techniques, along with sophisticated computer programming.
These technigues reqguire expansion of the dependent variable into
a Fourier (or other orthogonal) series of smooth functions. The
calculation proceeds by performing certain of the mathematical
operations in Fourier (or other) space and others in physical con-
figuration space, according to the mathematical form of the opera-
tion and its relative efficiency. Transformations between the two
spaces are made by Fast Fourier Transform (FFT) methods and the
use of special computational techniques. In addition to having
very powerful applications to the problems of turbulent flow and
dispersion, the spectral technique has a wide potential for numer-
ical simulation of many atmospheric flows. The present report
attempts to provide an overview of such applications. It also com-
pares the accuracy and advantages of spectral techniques, with the
more conventional finite-difference numerical techniques for the
solution of partial differential equations. In some places a tu-

torial-type presentation results, from the attempt to provide ade-



quate references and to make the potential of spectral methods
more familiar to the developers of meteorological air quality
simulation models. In addition, it provides an account of an
initial research attempt to develop direct solutions, without
parameterization approximations, for turbulent dispersion of

an inert pollutant in a thermally stratified atmospheric layer
that is governed by the Boussinesqg equation. Unfortunately,
this research failed to reach its desired goal during the rela-
tively short period of the contract, although in anticipation of
renewed efforts along similar lines in the future, a fairly
detailed account is desirable.

As an example of the power of spectral techniques, some new
results in turbulence dynamics are presented, concerning the rate of
relaxation of anisotropic flows to asymptotic isotropy.

Finally, general recommendations are made concerning the
potential utility of spectral methods in a number cf specific
problem areas, and specific suggestions are given concerning the
prospective improvement of several existing air quality simulation

models, using these spectral methods.

Tnvironmental Portection Agency Kenneth L. Calder
Research Triangle Park Project Officer
North Carolina
October, 1975
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1.0 Introduction

Advances in computer technology, together with important
achievements in the design of efficient numerical algorithms,
have begun to make practical the use of direct spectral methods
for numerical simulations of many fluid flow problems. In a
spectral method, the dependence of the flow variables upon one
or more of the spatial coordinates is repnresented by expansions
in a discrete series of smooth orthogonal functions (Fourier
series expansions being the most familiar). The governing
dynamic equations are then reformulated as equations relating
the spectral coefficients of the fields so analyzed. To permit
numerical computation, the expansions are truncated to some
finite upper mode. The resolution and accuracy properties of
spectral methods are very different from those of the more
familiar finite-difference methods, although both classes of
methods are related to discrete spatial grids.

Although rapidly growing in popularity, these spectral
methods are as vet relatively unfamiliar to large segments of
the meteorological communities. We have attempted, therefore,
to provide a brief review of some important finite spectral
methods for a variety of flow simulations relevant to air quality
modeling. The report discusses at some length the relative ad-
vantages and disadvantages of finite-difference and finite spec-
tral techniques, especially in regard to ease of implementation,
accuracy, and physical utility. Implicit in this description
is a clear understanding of the considerations which influence
the choice of a particular spectral approach, and determine its

range of utility. We have included in Appendix 1, a discussion
-1~



of the resolution implications of discrete-grid methods, from
the point of view of both finite-difference and finitoe spectral
repreosentations.

Next, a review is made of the current state of spectral
modeling in a variety of geophysical fluid flow problem arcas

for which spectral methods have proved fruitful and/or hold

much prospective promise: (a) numerical weather prediction,
(b) turbulence modeling, (c) methods for advective-diffusive
simulations.

In the course of the current contract effort, we have
developed a spectral model for the direct simulation of fully
three-dimensional, non-linear, time-dependent, turbulent,
incompressible flows, and a corresponding computer program
for the solution of the Navier-Stokes equations using high-
resolution Fourier spectral methods. The model has been de-
signed to treat, within the Boussinesqg approximation, the influ-
ence of differing stratification profiles upon the spectral evolu-
tion of turbulent flow fields. We have attempted, using this pro-
gram, to study the evolution of a passive scalar field in a
sheared, turbulent velocity field, but unforeseen limitations
in computer core and running time precluded the attainment of
physically realistic results. More successfully, the program
was used to look at an important problem in turbulence transport
theory, that is the rate at which an initially anistropic flow
will relax to isotropy; the relaxation time constant is an impor-
tant term in some turbulence closure models.

A two-dimensional version of these finite spectral methods

has been used for the accurate simulation of two advective-giffy-
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sive point-source problems, which may have uscful implications
for air guality modeling efforts in which discrete point sources
arc to be reoresented. It is shown that, in the two cases,
finite spectral methods offer significant advantages, both with
regard to accuracy and computer storage requirements, compared
with finite-difference representations of the same problems.
Finally, recommendations are made concerning the practical
uses to which such finite-spectral methods can be put, in the
present state of air quality modeling, and in the light of more

realistic assessment of available computational resources.

2.0 Overview of Numerical Techniques for Meteorological Flow
Simulations

The historical development of numerical methods for the
simulation of meteorological and other fluid flows can be traced
back to the early part of the century. Especially noteworthy is
the pioneering manual forecast effort of L.F. Richardson, during
the first World War. Although unsuccessful, this effort provided
later generations of numericists with much insight into the limi-
tations imposed by small-scale phenomena which are meteorologically
irrelevant, but whose implicit presence in a numerical model leads
to computational catastrophe. The impetus of technological pro-
gress during the second World War spurred greatly the development
of numerical methods for shockwave and other supersonic model
calculations, and resulted in the first systematic examinations
of finite-difference numerical models for such calculations.

With the advent of high—speed calculational devices by the early

fifties, it became practical to attempt the first numerical weather
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predictions (Fjortoft, Von Ncumann, Charney), using simple modcls
which isolated, by suitable scaling arguments, the meteorologi-
cally-relevant large scales of motion and eliminated the small-
scale structural behavior which had frustrated Richardson's
efforts thirty ycars before. The first such numerical forccasts
were performed by constructing finite-diffecrence approximations
for the evolution of the two-dimensional inviscid barotropic

vorticity equation

3

(2.1) (at

+ V-V) (G+E) = 0

i

where V (x,t)

u(x,t)f + v(x,t)jJ 1is the horizontal velocity

field, f 1is the Coriolis parameter, and [ = %% - %% is the
geostrophic vorticity. Considerably more ambitious simulations

were soon attempted in a variety of fluid-mechanical contexts,

beginning from the viscous, incompressible Navier-Stokes equa-

tions:

P
(2.2) G+ vy = - e Py
(2.3a) Vv o= 0

where P(x,t) 1is the pressure, p the (constant) density, and
vV the kinematic viscosity. Using the incompressibility condi-

tion (2.3a) one obtains a Poisson equation for the pressure field,

(2.30) V%P = - V- (v-U)V

Extensions of such models to slightly compressible flows (in the
Boussinesqg sense) provide the needed coupling of flow kinematijcs
and thermodynamics.

It was soon recognized that the proper formulation of boundary
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conditions is among the most crucial difficulties encountered

in numerical flow simulations. Appropriate boundary conditions
may include (a) the specification of the velocity V at no-slip
boundaries; (b) theuspecification of v, and ;%Wﬂr at no-stress
boundaries (n and T are respectively, the normal and tangential
directions to the boundary); (c) the specification of boundary-

layer momentum. £lux when such fluxes cannot be computed explicitly;
(d) thermal boundary conditions, (e). the choice of inflow and out-
flow boundary conditions for systems whose natural boundaries lie
outside the designated computational boundaries, (f) the incorpora-
tion of topographic influences and differences in land-sea surface
properties. The problems associated with imposition of boundary
conditions remain, by and large, the principal impediments to
truly accurate numerical flow evolution, and continue to be areas
of intensive investigation.

The most widely applicable and popular numerical methods
for flow simulations are based upon finite-difference approxi-
mations, in one or more geometries, to various versions or exten-—
sions of (2.1 - 2.3); comprehensive reviews of finite-difference
methods have been provided by Fromm (1970), Kreiss and Oliger
(1973), Roache (1972), to name but a few. Difference methods
fall into several general classes. We md& distinguish, first,
between those difference schemes developed for Eulerian, and
those developed for Lagrangian, versions of the equations of
motion. In the Lagrangian formulation, the coordinate system
is embedded in the moving fluid. For flows which are relatively
uncomplicated, and not subject to extreme distortions, such
methods can lead to accurate results, while accurately preserving

-5-



advection properties and real discontinuities. However, for suffi
ciently disorganized flows, the Lagrangian mesh becomes badly dis-
torted, and the calculational accuracy quickly deteriorates.
Lagrangian methods have been especially popular in the simulation
of strongly compressible flows.

Eulerian systems, in which the coordinate grid is fixed,
are much less susceptible to violent computational breakdown as
the fluid undergoes large distortion. The penalty paid is the
corresponding loss of accuracy in the representation of advection,
diffusion, and flow discontinuities. We shall discuss some of
these difficulties shortly.

Difference methods may be also distinguished with respect
to the choice of variables which are computed prognostically,
and those obtained diagnostically. A variable 1s said to be

computed prognostically if the equation used to govern its

temporal evolution explicitly includes its time-dependence.
For example, the velocity field in (2.2) is a prognostic variable.

A variable is said to be diagnostic when the equation used to

govern its temporal evolution makes no explicit reference to its
time dependence. For example, the pressure field in (2.3) is a
diagnostic variable, since its change with time is entirely
implicit in the time variation of the velocity field. These
choices are far from trivial to make and govern the physical
realism which will inhere to the computation. For example, in
two-dimensional versions of (2.1 - 2.3) one may solve directly
for the variables V and P, or alternatively, convert to the

vorticity-stream function formulation
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+ J(p,z) = wig

Q
Y

|

(2.4)

Q
+

where ¢ is the stream function defined by

(2.5a) u=—§£, V:—a—u—)-
Yy ox

(2.5b) ¢ = V2y

and J(¢y,z) is the Jacobian (wxcy -wycx). That 1is, we solve
(2.4) prognostically for ¢, and then obtain by inversion

of the Poisson equation (2.5b). The system (2.4 - 2.5) is attrac-
tive because it expresses explicitly an important dynamical prop-
erty, namely the conservation of vorticity under horizontal advec-
tion (in the absense of viscous losses). In this formulation,

the system preserves the energy integral in a very natural manner
as can be demonstrated by multiplying (2.4) by V¥ and integrating
over space. From the computational point of view, as well, the
vorticity-streamfunction approach is particularly appealing be-
cause vorticity is the most important dynamical property which
governs the evolution of incompressibie slightly viscous flows.

On the other hand, the pressure (governed by the elliptic equa-
tion (2.3b)) is affected instantaneously at all points of space.
Thus, with limited spatial resolution and extent, it should be
easier to determine time-dependent flows accurately using the
vorticity-streamfunction method. However, this expectation is
not borne out in practice. Primitive-variable simulations tend
to be slightly more accurate for similar computational labor
(Orszag 1971a) probably because (2.5) requires finite-difference

approximations to more critical derivatives than does (2.1).

-7 -



Howover, the vorticity-strcamfunction idea is still very useful
for the dotermination of boundary conditions in primitive vari-
able simulations (Orszag and Israeli 1974).

The ability of an inviscid numerical scheme to conserve
energy and enstrophy (square vorticity) is an important consider-
ation from the point of view of physical realism, and long-term
computational stability. Let us consider briefly how well such
properties are preserved by finite-difference schemes. If the
Jacobian in (2.4) is evaluated using second-order centered differ-
ences on a uniform grid the resulting scheme violates energy and
enstrophy conservation. Therefore, Arakawa (1966, 1970) proposed
that the Jacobian be approximated by second-order centered differ-

ences when it is first written in the equivalent form

W=

(2.6) 3= S0 - (@u) * o= T (W) = (We) )

X’y Y "X

If (2.6) is approximated by second-order centered differences,

the discrete analogs of energy and enstrophy conservation

(2.7) ffvTax ay =0; [fz gaxdy =0

respectively, are preserved. Arakawa's energy-conserving methods
have been very popular in recent years, apparently because it has
been believed that energy conservation is necessary to avoid non-
linear computational instability (Phillips 1959), usually called
"aliasing" instability. However, energy-conserving finite-differ-
ence schemes may not be as useful as expected. The Arakawa schemes
"semi-conserve" energy; that is, they conserve energy only in the
absence of time-differencing errors, but Kreiss & Oliger (1972)
have given examples of schemes that semi-conserve energy but

that are unstable when leapfrog time-differencing is used. 1In
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general, though, Arakawa-type schemes are less susceptible to
numerical instability than straightforward centered schemes
(Grammeltvedt 1969). They are, however, considerably less cffi-
cient and yet not noticeably more accurate. It is now understood
that aliasing instability will appear only in simulations with
inadequate grid resolution) (Orszag 197la, 1972, Fornberg 1972,
Kreiss & Oliger 1973), and the deliberate use of an energy-con-
serving scheme to avoid aliasing instability may lead to a grossly
inaccurate simulation.

Among the most attractive features of the spectral methods
to be discussed is the ease with which in the inviscid casec
energy and enstrophy are preserved in the absense of time-differencing
errors. This is mainly due to the accuracy with which phase and
amplitude information is retained using a spectral form of the
Jacobian term.

An essential part of the vorticity-streamfunction method is
the inversion of the Poisson equation (2.5b). In a finite differ-
ence scheme, the inversion is performed by a standard relaxation
method. In a spectral scheme, the inversion is trivial, and
direct spectral methods, rather than relaxation methods, should
be used whcenever possible (Hockney 1970, Dorr 1970, Swartztrauber
1972).

Primitive-variable methods are increasingly widespread,
especially in three-dimensional NWP simulations. 1In the staggered-
mesh second-order scheme (Fromm 1963, Lilly 1965, Harlow and Welch
1965, Orszag 1969, Williams 1969, Deardorff 1970), velocities are
defined at cell boundaries and pressures at cell centers. It has

the attractive features of efficiency, small truncation error and
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energy semiconservation. The Poisson equation for the pressure
is most conveniently solved by direct spectral methods. Harlow
and Welch (1965) and Piacsek and Williams (1970) have developed
techniques to ensure compliance with the incompressibility con-
dition; these are especially useful when relaxation methods are

used to solve (2.2, 2.3).

-10-



2.1 Comparative Accuracy of Finite Difference and Finite
Spectral Methods '

In this section we compare finite difference and finitce
spectral methods with regard to several important classes of

numerical error. These may be identified as follows:

(2.1.1) First-Differencing Phase Errors
Consider the usual approximation to the first derivative
dA/dx' where A is a scalar function of the spatial variable

X:

X X, .
1 2Ax

(2.8 )

Suppose we are altempting to represent in this manner the first
derivative of the sinusoid function A(x) = eiKX. Then the
ratio of the approximation (2.8) to the exact result iK A (x)

is given by sin(KAX)/KAx. This ratio approaches unity

only in the limit KAx»>0. ©Note, that for large K and finite
AxX, the approximation (2.8) becomes progressivly poorer. In
particular for K»m/px, i.e., as we approach the limit of spec-
tral resolution of the finite mesh, the ratio approaches zero,
which is hardly acceptable if there is significant information
contained at wavenumbers near the truncation limit N/2. Con-
sider now the effect of such first-differencing errors upon the

solution of the one-dimensional advection equation (N is the

number of mesh intervals in the grid)

-._a-— i viad
(2.9) 3t A(x,t) + Uax A(x,t) 0
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where U 1is a constant, uniform advecting velocity. The solu-
tions to (2.9) can be synthesized by linear combinations of

waves of the form

(2.10) A_(x,t) = 1K, (x-UL)

In fact, if the values of A(x,t) are given on N discrete
points equally spaced by Ax, an arbitrary excitation on these
N points may be approximately represented as a linear combina-
tion of the N solutions (2.10) with KAx = 2mm/N (—% < m<~§),
m integral.

The leapfrog centered "2Ax difference" approximation to
(2.9) is

n
2.11 A, = A, -o (A - A )

where A? = A{jAx, nAt), At 1is the time increment, and

a= UAt/Ax. The finite-difference eguation (2.11) is satisfied
by
(2.12) Al = o1 (K3Ax - nb)
J
where sin® =asin (KAx). If |a| < 1 then 6 is real for all
K and hence the scheme is neutrally stable. In each time step,

the exact change of phase of A(x,t) given by (2.10) is -KUAt
= -KaAx while the change of phase of (2.12) = -8 = - sin
[asin KAx]}. Since |6/(Kadx)|<l when |a|<l and |KAx|< 7,

it follows that the waves (2.12) lag the true waves (2.10).
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Let us compare the ratio of ¢=0/KaAx the computational
phase ( to the true phase KaAx, for the system (2.9), in
each of the following three schemes:
(a) second-order Arakawa finite-differencing (Arakawa, 1966)
(b) fourth-order Arakawa finite-differencing (Arakawa, 1966)
(c) truncated Fourier finite spectral.
The fourth-order Arakawa scheme is a higher order generalization
of the more popular second-order differencing, and may be expected
to be more accurate. The truncated Fourier-expansion method applied

to (2.9) leads to

2ikUAtA (k,t) ; if |KAX|<m
A(K,t+At) = A(K,t-At) - 0 s if RAX =
so that sin 6 = KaAx. Each of these schemes, when applied to

(2.9) using leapfrog time-differencing is neutrally stable for

time steps chosen sufficiently small so as to satisfy the appro-
priate Courant condition. That is, the phase angle § remains
real if |“|§ 1 (in the Arakawa models) or ‘hx]i % in the trun-
cated Fourier spectral model. Table 2.1 displays § (equivalently,
the relative phase error) tabulated versus KAx for the particular

choice @¢=0.1, for each of these methods.

Table 2.1
Phase errors for o = 0.1
Second-order Fourth-order Truncated Fourier

KAx Arakawa scheme Arakawa scheme Spectral scheme

/12 0.989 1.000 1.000

mn/6 0.955 0.998 1.000

n/4 0.901 0.989 1.001

m/3 0.828 0.966 1.002

n/2 0.637 0.851 1.004
2n/3 0.414 0.622 1.007

-13-



The values of & listed in Table 2.1 show that the fourth-
order scheme has smaller phase errors than the second-order
scheme, and that the truncated Fourier scheme has phase errors
of less than 1% for all waves satisfying |KAX|<%;V when
a=0.1.

It should be noticed that the second-order scheme has lagging
phase error (§<1), while the fourth-order scheme has mostly lagging
errors. [There is a region of leading phase error §>1 for very
small KAx for the fourth-order scheme]. The lagging phase
errors provide an explanation for the wakes of bad numbers given
by finite-difference approximations (see also the discussion 1n
Chapter 6).

The truncated Fourier scheme has only leading phase errors
for finite At, and even these disappear in the limit At>0,
if KAx<m. As discussed in Chapter 3, the latter property is
intimately related to the fact that this method has spatial errors
that decrease more rapidly than any finite power of AX as Ax->0
(if the exact solution that is being approximated is infinitely
differentiable). Finite-difference approximations have non-zero

phase errors in the limit At-0.

2.1.2 Second-differencing phase errors
These errors are introduced in evaluating the Laplacian

2 . . .
operator V by the standard finite-difference operation

(2.13) (VZA)X v N A(x2+l,Ym) + A(stl_l,ym) + A(XQ;Ym_l) +A(X2,Ym+1)
2% m

2
Ax

Consider the two-dimensional sinusoid A(x,y) = el(klX + k2Y).

Then the ratio of the approximate expression (2.13) to the exact
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o 2
result —(kl + k; ) is Jjust
5 kle k,Ax
4 sin“ ( 5 ) + sin”“( )
(2.14) — - 2
Ax?2 K 2 4 2
1 2

which approaches unity only in the limit k, Ax~0 and  k,Ax-0.
Note again that for large kl or k2 the second-order finite
difference scheme seriously misrepresents the Laplacian operator
as, for example, in the evaluation of the viscous term vVZV.
Reduction of these errors is possible by use of a fourth-order
finite-difference approximation to VZV, due to the higher order
of approximation, but little benefit is gained.

There are no second-differencing errors in the truncated-
Fourier expansion method, as the transform of vvzyA is exactly
-vkzg(E). The algebraic form '—vkzg(g) makes it a simple matter
to treat viscous dissipation implicitly in time in the Fourier
method. However, this advantage is slight, because in fully
turbulent flows, it is the advective terms which are most impor-
tant, and the numerical simulations are thercby usually limited
by advective rather than diffusive stability criteria.

It should be noted here that, for systems where the pressure
field (or the streamfunction field) is recovered diagnostically
by solution of a Poisson equation (cf. (2.3b) or (2.5b), for
example), the second-differencing phase errors associated with
the representations of the Laplacian of these fields are consider-

ably more detrimental to the evolution of the system than thosc

introduced into the viscous terms.
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2.1.3 Incompressibility Errors

The imposition of the imcompressibility condition is o
troublcsome problem in many finite-difference schemes and com-
putationally cxpensive iterative procedures are often required
to maintain incompressibility to within a specified precision.
Incompressibility can be imposed exactly in a truncated Fourier
scheme by the following simple procedure.

Suppose that the three-dimensional velocity field is repre-
sented in Fourier space by U(k), where U(k) is the three-dimen-
sional Fourier transform of the real-space velocity field V(x).
The divergence of U(k) is given in Fourier space by ik-U(k).
Let .us subtract out vectorially the divergent component of U(k)

by replacing U(k) with

k(k-U(K))

(2.5) U' (k) = U(k) k'O
k-k
Note that if we now take the divergence of this entirc expression

(that is, by performing the operation ik- upon both terms, we

get the identity

Hence, incompressibility is maintained exactly if, at the con-
clusion of each time step, we replace U(k) by U'(k). Wc have
thus removed the divergent component of the wvelocity field. (Note
how trivially such a constraint can be imposed in the Fourier
spectral scheme). What is truly remarkable about this method

is that, if the Navier-Stokes equations are written in rotational

-16-



form, 1i.e.

(2.16) 2 yix,t) = Vix,t)% w(x, )= V(B + = V-V) + wiTlx,t)

5t =

where w = yxV 1is the vorticity, then this system may be evolved

in time without any reference to the pressure head term, V(P+% V-V)
so long as incompressibility is imposed at each time step in the
manner indicated above. This is because, in an incompressible
system, the pressure field serves only to enforce incompressibility,

by dynamic readjustment of the velocity fields.

2.1.4 Coupling errors

Anong the crucial difficulties with finite-difference approaches
are the coupling errors introduced when non-linear differential opera-
tors are represented. Consider again for example the simple two-

dimensional barotropic vorticity equation;

p) 2 2
(2.17) 5t vVTy= =V-v (V)
y = i x Vi

where 1y 1s the geostrophic streamfunction. If we represent the
Fourier transform of y (x) by ¢ (k) as defined in Appendix 2,
then it can be shown (Lilly 1965) that the wave-space version

of (2.17) is just

(2.18) g ke (01 = 1[Ik x K" (k" -kt ek e (ke (k) &
k' "k

For the continuous system, the interaction between components

with wavenumbers E‘ and h" must vanish identically if either

k' is parallel to k or k'] = |k"|. However, the Arakawa Iy
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algorithm leads instead to a non-vanishing, spurious coupling

in this case (Lilly, op.cit.). (Other finite-difference schemes
lead to different spurious coupling relationships.) Moreover,
the misrepresentation of spectral interactions occurs every-
where throughout the spectral range, and cannot be surmounted by

ignoring a particular subrange, as discussed below.

2.1.5 Aliasing

Another fundamental difficulty with finite-difference tech-
niques is "aliasing" associated with a finite grid interval.
The phenomenon of aliasing is intrinsic to the representation
of non-linear interactions defined over a discrete physical-
space grid. It can be illustrated in the following simple manner.

Consider the spatial interval of length L, over which is defined

an N-point“discrete grid - xj ' xj=ij, j=1, ... N (L=NAX)

Let us now represent the discrete analogues of the fundamental
sinusoid f(x) = sin 3%5 , and the first two harmonics

g(x) = sin 3%5 and h(x) = sin Q%E,. The discrete version of
the fundamental sinusoid, defined over this grid, is just

fd(xj) = sin Z%i and in like manner gd(xj) = sin 4gj ;

hd(xj) = sin 6m3j . Consider now the discrete-grid representation

of the two product fields

_ _ 1 2TX 67X

P(x) = f(x)g(x) = 2(cos A cos —f—)

_ 1 2mX 10mx

Q(x) = g(x)h(x) = f(cos 5 cos ~ET~)

We might then suppose that

1 277 617
P = = ) )
d(xj) 5 (cos T cos —¢ )



and that

1 27 1073
= = —_— = C0OS /0 ).

To make matters concrete, choose N=8. If we were to tabulate
Pd(x) and Qd(x), we would find them to be numerically identical
over the discrete-grid ij=1, ... 8, whereas the continuous-space

. 6TX
functions certainly differ with regard to the terms cos T

10mx .. . .

cos —5— - What has occurred? Trivially, of course, we have im
. j 1077
posed an identity, since, for N=8, cos Q%l = Ccos —~§£l . But

the physical consequence of this little example is that, over
a discrete grid of length eight vnoints, the sixth harmonic of
the fundamental spatial waveform is indistinguishable from the
second spatial harmonic, and that, in fact, the information
contained in the sixth harmonic, if it occurs as a result of
non-linear interaction among, say, two lower modes, would be

misrepresented by, or aliased down upon, the second harmonic.

In like manner, the seventh harmonic would appear aliased as
the first harmonic, and so on. We have illustrated the notion
of a "folding" frequency (the Nyquist frequency N/2) associated
with a discrete spatial grid of finite length N points.
Let us examine the aliasing problem in more formal mathe-
matical manner. The values of the arbitrary functions f(x), g(x)
2Tn

at N equally spaced grid points X = N (n=0, 1, ... N-1) may

be expanded in the discrete Fourier series

fF(x ) = £ = |  Uk)elkX,
(2.19) n " e <k

|k | <K
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where k 1is an integer satisfying -K<k<K with N=2K, or
~K<k-K with N=2K+1. The product function h(x)=f(x)g(x) has

the value h = & .
a9, at x_ and the expansion

(2.20) ho= ] W(k) e k¥, (n=0, ... N-1)
|k | <K
where
(2.21) Wi(k) = L U@V + 2 UV + L Up)V(q)
p+g=K p+g=K+N p+g=K-N
|P|,|9]<K P |, |a]<K |p|/|a]<K

The last two terms arise because exp(ik'xn)#exp(ikxn) for all
n=0, ..., N-1 if k'=k (modulo N).
Aliasing is usually explained by noting that £f(x), g(x),

h(x) have the exact Fourier expansions

(£(x),g(x),h(x)) = § (TkK),Tk),T(k))e ¥

where the sum is taken over all integers k, 0<x<2m, and

(2.22) Wk) = ) TpT(a).
p+g=K

(It should be noted that U, V, W are, in general, not equal to

U, V, W, respectively.) It is apparent from (2.22) that the exact
W(k) includes no counterpart of the last two terms in the expres-
sion (2.21) for W(k). The false interactions included in the
last two terms in (2.21) are called aliasing interactions; k+N

and k-N are aliases of k on the discrete grid X since
ei(k+N)xn = eikxn' for n=9, ..., N-1. A finite-difference
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approximation to the Navier-Stokes equations may lead to difficulty,
because of aliasing errors in the discrete-grid approximation of
the (scalar) product v-V v- Phillips (1959) gives a simple example
where aliasing terms in the representation of a product induce an
instability not present without aliasing. This aliasing property
of finite-difference representations has several other conscquences
in the numerical simulation of non-linear fluid flows. We must
recognize, first, that the physical process of non-linear turbulent
spectral cascade of energy (or vorticity) to small scales is falsi-
fied, inasmuch as the folding frequency acts, inthe absense of
dissipation, as a reflective boundary in wavespace. That is,

since no modes above the Nyquist frequency exist to receive energy,
the energy transferred by non-linear interaction must be redistri-
buted among the available modes which lie below the Nygquist cutoff,
in order that energy remain a conservative guantity. [This 1is
true, as well, of vorticity, or enstrophyl. Accordingly, it might
suggest itself to ignore the small-scale structure, in the expec-
tation that the largest scales are at least adequately represented.
But, in fact, all the scales of the system are contaminated by
downward-aliased spectral information.

One may ask, therefore, why conventional finite-difference
methods are reasonably successful for certain classes of geophysical
fluid flow simulations, most notably, for example, in large-scale
operational numerical weather prediction. The answer is rather
subtle, and concerns the spectral structure of the flow fields
being simulated. If the spectrum falls off sufficiently rapidly
with increasing wavenumber, then the aliasing-induced contamination
of the lowest modes, while present, may be so small as to be iqnorm}
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It is precisely fhis property of large, geostrophic-scale atmos-
pheric flow systems (which seem to follow minus-third or minus-
fourth spectral power laws) that permits physically credible
numerical weather forecasts on these scales. In general, how-
ever, the spectral power law of the simulated physical system does
not fall off with sufficient rapidity, so as to permit the ignoring
of aliasing contaminations. For such problems, therefore, it is
especially important that the numerical technique employed can
eliminate aliasing errors or strongly limit their extent, if

such errors are deemed important. Appendix 3 presents the method
developed by Orszag for efficient alias-free multiplication of

fields defined over discrete spatial grids.

2.1.6 Treatment of Singularities and Local Discontinuities

Among the most troublesome problems encountered in numerical
flow simulation is the treatment of flow structures with singular-
ities and local discontinuities embedded in such flows, as for
example, point sources of pollution. Eulerian finite-difference
methods permit the numerical evolution of strongly discontinuous
flows, but only at the cost of smearing out, or smoothing over,
these discontinuities, often in an entirely unrealistic manner.
These effects have been demonstrated by Orszag (1971b), who compared
second and fourth order finite-difference methods with truncated
spectral methods, for the problem of the two-dimensional advection
of a passive scalar field, whose initial distribution is circular
(hence referred to as a scalar "cone"), by a uniform rotation
velocity field. (An extension of this study to viscous flows

is included in Chapter 5 of the present report.) One of the most
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remarkable features of the truncated spectral method that 1s
demonstrated by this problem is the result that the cone 1is

better localized in space, using these truncated spectral repre-
sentations, than by finite-difference schemes formulated directly
in physical space. That is, the cone location is preserved more
accurately by expanding the initial excitation in discrete Fourier
series, permitting these Fourier coefficients to evolve in time

in accordance with the spectral form of the governing d?namical
equations, and finally, reconstructing the discrete real-space
field from the Fourier coefficients, than by a direct evolution

of the real-space field using a finite-difference method. 1In
other words, flow structure with intermittencies in physical

space seem to be more accurately followed in terms of their Fourier
components than directly in physical space. To explain this rather
counter-intuitive result, we discuss in Appendix 1 the data content
of discrete real-space representations of continuoué spatial func-
tions. The principal consequence, in the present ccntext, is that
spectral representations (as by Fourier expansions), allows much
better interpolation between discrete real-space grid points than
is permitted by the structural data preserved by the local grid-
point values alone. That is, the global information preserved in
the spectral decomposition of a spatial function permits more pre-
cise reconstruction of local details than does the grid-point
decomposition of corresponding resolution. This may be better
understood by reference to the previous discussion of the phase
and aliasing errors which underlie finite-difference methods; in
particular the point made that finite-difference schemes have
mostly lagging phase errors, so that some of the data needed to

reconstruct a spatially local disturbance at a given instant in
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time is erroneously phase-lagged and so is as yet unavailable

at the appropriate local spatial region.
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3.0 Spectral Methods

The utility of spectral transformations in the analytic
solution of many partial differential equations of classical
physics has been long recognized. It is only relatively recently,
however, that advances in available computational power and algor-
ithmic breakthroughs have made possible the wide use of numerical
spectral methods for the solution of PDE's, in particular, for
the solution of a variety of geophysical and other fluid flow
problems.

The essential principles which govern the use of spectral
methods in numerical simulations may be stated quite simply;
instead of solving multidimensional finite-difference equations,
one applies semianalytic methods in which the dependence of the
flow on one or more independent variables (generally, but not
exclusively, the spatial dimensions) is expanded into a series
of smooth, and usually orthogonal, functions. The potential
choice of orthogonal expansion functions is quite broad; e.g.,
Fourier, Chebyshev, Lengendre, and Hermite series, among others,
are possible candidates in various different flow problems. The
specific choice made depends upon the following kind of consider-
ations:

(a) the nature of the boundary conditions to be imposed,

and the suitability of the expansion functions chosen

in regard to the imposition of these boundary conditions;

(b) the ease with which the governing differential equation
can be formulated and numerically evolved with time, in

terms of the expansion functions;
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(¢). the relative computational effort involved in the

numerical evaluation of the expansion coefficients;

(d) the accuracy achieved in the expansion, in particular,

the rate of convergence of the expansion coefficients;

(e) the relative generalizability which a given class of
orthogonal polynomials offers in a variety of flow

problems.

A few simple examples will suffice to illustrate these
points. For example, in flow in cylindrical geometries the
velocity field must be periodic with respect to the zonal coor-
dinate ¢ so that the dependence on ¢ 1is expandible in a

Fourier series

!(rld)l th) = z _[_]_n(r,Z,t)einq) .

n=—o

If this series is truncated to InliN modes, we obtain a
finite spectral representation that may be suitable for the genera-
tion of an approximation to V. It is, of course, necessary to
convert the Navier-Stokes eguations into equations for gn(r,z,t)
(Jn|<N) and to discretize the spatial coordinates r and z,
and the time t. It may also be appropriate to construct trun-
cated series expansions for the function V in terms of poly-
nomials defined over the variables r and z.

The questions of appropriateness of a series expansion for
prescribed boundary conditions, rates of convergence, and generali-
zability can be made more precise by reference to the one-dimen-

sional wave problem
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(3.1) (-1<x<1)
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»

with the following mixed initial-boundary value conditions:
(3.2a) U(x,0) =0

(3.2h) U(~-1l,t) = sin mut.

The exact solution is just

0; (t<x+l)

U(x,t)

sin mm (t-x-1); (t>x+1) .

(The index m designates the number of full wavelengths within
the interval |x|<1).

Considering the spatial domain of the problem, it would
seem, at first, most natural to attempt a Fourier series solu-
tion to this mroblem. For the particular choice of boundary
conditions (expecially 3.2b) the exact solution is trigonometric
in nature, and a Fourier series expansion might be expected to
succeed well. But, with the more general boundary condition
U(-1,t)=f(t), say, the choice of Fourier series would be extremely
disadvantageous, since the general boundary condition is not a
natural boundary condition for a complete set of trigonometric
functions, and the Gibbs phenomenon at x=-1 will force rather
slow convergence of the Fourier series for U or its spatial
derivatives.

Instead, it is most natural to expand U(x,t) in series
of orthogonal polynomials, whose convergence rate is governed

by the smoothness of the solution, not by the special nature of
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the boundary conditions. Chebyshev polynomials (Orszag 1971d)

are particularly appropriate. The nth-degree Chebyshev polynomial
T (x) is defined by T (cos®)=cos nb. If u(x) has p piecewise
continuous derivatives on the interval [-1, 1], then u(x) may be

expanded as (Fox and Parker 1968, Orszag 197le)
(3.3) u(x) = ) A_T_(x)

(3.4) A = o(n” PTL)y .

In particular, if u(x) is infinitely differentiable, then the
Chebyshev coefficients go to zero faster than any finite power
of 1/n; we say that the approximation obtained by truncating

(3.4) at N terms is of infinite order, since the error goes

to zero faster than any finite power of 1/N. Also, the latter
Chebyshev series may be differentiated termwise any number of
times. Notice that the convergence rate of the expansions is
governed by the smoothness of the function u(x), irrespective
of boundary conditions.

At present, there are three principal classes of discrete-
spectral methods for the representation of continuous systems
such as (3.1). These are the Galerkin approach (Collatz, 1960),
the tau method (Lanczos, 1956), and the collocation method
(Collatz, 1960, Lanczos 1956). The three methods can be use-
fully compared in regard to equations (3.1-3.2). The Galerkin
methods employ a new dependent variable v(x,t)=u(x,t)-sin myt,
so that v(x,t) satisfies the homogeneous boundary condition

v(-1l,t)=0 and the inhomogeneous wave equations, and equations
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for the time-dependent coefficients are obtained by requiring
that an appropriate inner product of the dynamical equation
(3.1) with each of the retained Tn(x) be zero. When rewrltten
in terms of wu(x,t), the semidiscrete Chebyshev-Galerkin equa-

tions become (Orszag 1971d)

N
(3.5) u(x,t) = ) an(t)Tn(X)
n=0
da N n
(3.6) c & =-2 ] pa + (-1)b(t) (0<n<N)
n p=n+1
p+n=odd
N
(3.7) $ (-1 _(t) = sin mrt
A n
n=0
where co=2, Cn:l' (n>1). Here b(t) is a "boundary" term

that is determined by compliance with (3.7).
The tau method is based on using the finite expansion
(3.5) to solve exactly the approximate differential eguation
+ = : .
u tu Tn(t)Tn(x). The resulting equations for an(t) are
precisely (3.6) and (3.7) but with the boundary term b(t) set

to zero for n=0, ..., N-1 and b(t) = TN(t) for n=N.
Finally, collocation uses the spectral representation (3.5)
to interpolate values of u(x,t) at (N+1) "selected points"
Xp(p=O, ..., N). With Chebyshev polynomials, it is most natural
to choose XD:COSWP/N, so that (3.5) is just a discrete Fourier
transform. The polynomial interpolation (3.5) is used merely to
evaluate 9du/9x at the points X5 by termwise differentiation.

In terms of a collocation gives (Orszag 1972) equations (3.5-3.7

with b(t) replaced by b(t)/CN_n; the only change is in (3.6)
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for n=N whero (—l)Nb(t) is replaced by 1/2(~1)Nb(t)-
Collocation (called pseudospcectral approximation in a later
section) is particularly convenient when there are nonconstant
coefficients or nonlinear terms. In these latter cases, pseudo-
spectral approximation is quite different from, and much simpler
than, spectral (Galerkin or tau) approximation because of the
appearance of aliasing terms in pseudospectral approximation.
Notice that solution of 3.6, 3.7 requires only O(N),
arithmetic operations per time step if care is taken to accumu-
late required sums, and that the transformation (3.5) to the
"physical space" u(x,t) can be accomplished in O(N log N)
operations when N 1is a power of 2, because (3.5) is just a
Fourier cosine seriés for which fast Fourier transforms are

applicable.
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3.1 Boundary Conditions and Geometries

3.1.1 Periodic Boundary Conditions

Physical intuition leads us to expect that for planar
geometries and/or periodic boundary conditions, the use of
discrete Fourier series is appropriate. In this case, our
intuition is indeed correct; finite Fourier series are the

most natural and efficient expansion method.

3.1.2 Free-slip Boundary Conditions

Free-slip--free-slip boundary conditions such as

(a) U =V =0 z=0,m
z Z

(b) W=0 z=0,1

are mathematically equivalent to symmetry boundary conditions,
inasmuch as conditions (a) are most naturally implemented in
cosine series and conditions (b) in sine series representations
of (U,V), and W respectively. Hence Fourier-series expansions
are the appropriate choice for free-slip-~free-slip boundaries.
For mixed free—slip—-ggfslip conditions, the use of Fourier

series would, in general, be ill-advised.

3.1.3 No-Slip Boundary Conditions

By contrast with free-slip conditions, no-slip boundary
conditions impose stringent constraints upon the dynamical fields,
which, in general do not lend themselves readily to computationally

efficient or accurate implementation in Fourier-series expansion
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due to Gibbs phenomena at the boundaries. Rather, as has been
demonstrated by Orszag (1972) Chebyshev expansion is the tech-
nique of choice, principally because the rate of convergence of
such an expansion can be specified a priori, without reference
to the boundary conditions, and because Chebyshev methods are
efficiently implemented by skillful use of Fast Fourier (cosine)
transforms. Chebyshev series are not restricted to planar geo-
metries; they may profitably be applied, for example, to handle
the radial expansion in flows in cylindrical or spherical geo-
metries, or in any geometry that can be smoothly mapped, by con-
venient transformation, into either rectangular or circular
domains. Metcalfe (1973) has employed Chebyshev expansions in
the analysis of a variety of viscous incompressible flows in

various cylindrical and spherical geometries.

3.1.4 Inflow and Outflow Boundary Conditions

Spectral methods are capable of high-order accuracy at
inflow and outflow boundaries, for example, as in a limited
forecast area model (LFM), without the need for special methods
to impose the boundary conditions. By contrast, high-order
finite-difference methods deteriorate, or may break down com-
pletely, near boundaries becauyse grid points outside the physical
domain must be invoked. The necessary modifications to maintain
accuracy near the boundary can get guite complicated (Kreiss and

Oliger 1973).
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3.2 Treatment of Boundary Lavyers

Amnong the most valuable properties of Galerkin methods

using Chebyshev expansions, is the much greater fidelity with

which boundary layer structure can be resolved using Chebyshev

expansions, compared to a conventional finite-difference repre-

sentation with comparable number of grid intervals. This follows

naturally from the definition of the Chebyshev polynomials,

(3.8) Tn(e) = cosnb, 0<0<m

1f we perform the mapping z=cosb, then the real-space

function f(z) has the Chebyshev expansion

(3.9) £(z) = I a T_(cos 'z) ~1<z<1

The discretized form of this relationship., defined over the

real -space grid

Zy = jlhz (3=0, N)
is just
N . e .
_ nny _ o ) ]
(3.10) fj = ngo a cosﬁﬁ‘l nzo anTn(cogej), ej 5

_
CcOSs Tl

Since Z.
J

range 0=[0,7] corresponds to a non-uniform mesh over z=

namely:

5 @ uniform partition over the angular

[—lll] 7

with substantially more resolution in the vicinity of the houndaries

than within the interior. For example, for N=16, we may tabulate



J 0 z. = cos 0.
J ]

J
0 0 1.0000
1 1/16 .98079
2 /8 .92308
3 31/16 .83147
7 7m/16 .19509
8 /2 .00000

The physical significance, of course, is that, near the
boundaries, where viscous phenomena are most important, we can
allow for greater resolution of the boundary layer structure
than would be achievable by the equivalent uniform grid
Az = 0.125. This permits us to resolve more of the viscous
boundary layer structure (the extent depending, of course, upon
the boundary layer thickness, 6’“lé§ , and the number of Cheby-
shev modes retained). As previously suggested, a striking char-
acteristic of Chebyshev expansions, is the rapidity with which
the series converges (faster than any power of 1/N). Let us
put the boundary layer gquestion, and the related matter of con-
vergence, in clear perspective by examining the following simple
diffusion problem, i.e., a laminar flow with a viscous boundary

layer:

(3.11) 97 - i
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Differencing forward in time, and treating the viscous term

implicitly, we get:

2
+ +
(3.12) y 25 0P Lo_gPth o o P (Y=VAt, t_=pAt)
3z p

Using the discrete Chebyshev transformation (3.10), equation
(3.12) may be written as

-a = - <n<N-2
(3.13) ybn an arl 0<n<N

where a, designates the nth Chebyshev mode of Up, an is

the nth Chebyshev mode of Up+l, and bn designates the nth
2_p+l
Chebyshev mode of 3—%—7— , and N represents the highest
z

Chebyshev mode retained. From the definition of Chebysghev
differentiation, and the properties of the Chebyshev polynomials

we also have the following set of relationships between bn and

a
n
c b e b e b
~ -2"n-2 n+2 n n+4 " n+2
(3.14) a = -2 - + = AT (2<n<N-2)
n 4n (n-1) 2(1,12_1) 4n (n+1) —
0, n<o0
where ¢ = 2, n=0 ’ e = 1, n<N
n n
1, n>0 0, n>N

In particular, for n=N-2, we have

(3.15) b = AN(N-1)a
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Substituting (3.13) and (3.15) into (3.14) we may eliminate

the terms bn’ and obtain a linear tridiagonal matrix system

of the form

Li=-a -

8 a
0 0
where a is the vector al , a is the vector | a, |
<. - -
gaNJ aN

This system may be inverted by any of a number of standard
matrix inversion algorithms, the standard LUD algorithm being

especially useful.

Suppose UP(z) is of the form 1- EQ%TZQ (z=cos_10).

Then the only non-zero modes in the Chebyshev representation

of this function are a.=1, and a,=-1/2.

0 2
Let us now compare the Chebyshev solutions to (3.12)
(using (3.13) - (3.15)) as we vary parameters 7y and N,

the number of retained modes. As before we designate the Cheby-

shev modes of Up by an (n=0. ..., N), and the modes of Up+l
will be designated by an:
case 1: y =10"° a a
n n
N=8 N=16 N=32
n=0 . 9385 .927039 .927056 1.0000
2 -.6093 -.63308 -.63306 -.5000
4 -.0827 -.10976 -.10976 0
6 -.0451 -.07966 -.07971
8 -.2013 -.05092 -.05102
10 -.02863 -.02885 .
12 -.01398 -.01443
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14 -.00538 -.00641

16 -.00561 -.00253

18 -8.9 x10 1

20 ~2.8 x10 4

22 ~8.0 x107°

24 ~2.0 x107°

26 -4.7 x10°°

28 ~9.8 x10 '

30 ~1.8 x10”’

32 ~4.6 x10”8
Note that for N=8 retained modes, no convergence (an+0 for n-w)
is apparent. In the case N=16, there 1s just marginal conver-

gence, but for N=32 modes the convergence is extremely strong.
This indicates that there is just marginally enough resolution,

using 16 modes, to resolve the boundary layer whose characteristic

thickness is ¢ “;5 ~ .03, but that merely by doubling the number
v

of modes, the resolution is about as perfect as we could ever

hope to achieve (another doubling would give no better resolution).

Case 2: Y =lO—2 .
a
n
N=8 N=16 N=32
n=0 .857279 .857280 same as N=16
2 -.698663 -.698875 "
4 -.106009 -.106911 "
6 -.036378 -.0391647 "
8 -.016238 -.0101173 "
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N=8 N=16 N=32

10 ~.00190785 -.00190785
12 ~2.71303 x10°%  -2.71333 x107¢
14 ~2.966 x107° ~2.991 x107°
16 -3.089 x10~° ~2.619 x107°
18 ~1.86 x10 ’
20 ~1.09 x10~8
22 ~5 x10” 10

24 -2 x10” %t

26 -5 x10” %3

28 -2 x10” 14

30 -6 xlO—l6

32 -2 x10” Y7

In this case, for the characteristic boundary layer thickness

§ ~ .1, N=8 modes is just marginally adequate, while 16 modes
already displays rapid convergence, and an additional doubling
gives essentially nothing more.

Orszag has found an approximate rule which relates the
boundary layer thickness implicit in the computation, to the
number of modes just necessary to adequately resolve such
a layer:

~ 36_1/2

NCRIT

Note that for Case 1, NCRIT ~ 16.8;. .and for Case 2, NCRIT ~ 9.5,

which is entirely consistent with the results shown.
Stated in more familiar terms, the number of Chebyshev
modes required for an accurate spectral simulation of a laminar

R1/4

flow with a viscous boundary layer increases only as (where
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R is the Reynolds number of the flow), whercas the resolul ton
_ , . /2 (1)
requirement of a finite difference model varies as R .
For the high Reynolds numbers characteristic of realistic mete-
orological flow problems, the computer storage advantage of
Chebyshev methods is enormous. Such methods thus offcr the
potential of extremely accurate numerical simulation of boundary
layer structure.

If, in conjunction with these Chebyshev methods, appropriate
coordinate~stretching techniques (Israeli 1971, Ph.D. Thesis) are
emploved to assist in the resolution of a boundary layer of thick-
ness o, then the spectral errors are decreased faster than any
finite power of ¢ as 6+0, whereas the errors in finite differ-

ence methods, due to such coordinate transformations, decreasc by

finite power of 6,

3.3 Pseudospectral Methods

Our emphasis thus far has been focused upon the purely spec-
tral (Galerkin) methods. We have seen that, withir iliml+tatiuns
imposed by geometry and boundary conditions, these methcds arc verv
powerful. We have suggested also that Galerkin methods are rela-
tively easy to implement for certain imporiant classes of non-linear
interactions, as for example the rotational term V x W in the wavier
Stokes equations. The accuracy with which phase information is pre-
served, and with which aliasing can be controlled, has been discussd

and the climination of aliasing is described in detail in Appendix ¥

(1) in a finite-difference representation of VU, say

) it is evident that AZ must vary with N
1/2

1/
1

or eg:.ivalently with R

V
—=— (U, - 20. + U.
2 Eat 3 j-
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However, there are many cases of interest for which aliasing
€rrors can be expected to be small, and/or tolerable, and we would
not wish to pay the computational price required to eliminate alias-
ing in such cases. Secondly, it is sometimes necessary to evaluate
highly non-linear terms within a spectral framework, and such terms
would be extremely difficult to formulate directly in wavespace.
Thirdly, if we wish to represent physical processes that are local
in real space (such as, for example, the onset of condensation in
a numerical model of cloud dynamics) such a local-space condition
would be extremely awkward to formulate in a Galerkin framework
because a single point in real space is represented in wavespacc
as a superposition of many modes, and a product term in real space
corresponds to a convolution sum in wavespace. Accordingly, Orszag
has introduced a modified Galerkin-like approach, which he has termed
"pseudospectral.” This approach is computationally very economical,
retains much of the power of the purely spectral Galerkin method,
yet permits us to handle more general non-linear terms, complicated
boundary conditions, and processes which are local in
real space. The idea behind the pseudospectral method is to repre-
sent certain terms in physical space when it would be computationally
prohibitive to do so spectrally, but to switch back to wavesvacc
when it is very important, and computationally easy, to preserve
accurate phase and amplitude information.

Consider, for example, the temperature equation written in

an incompressible Boussinesq system

r 2 '2
(3.16) 2 H-- v - ni@ W - kv
00 00 00
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where T 1is the variable temperature field, TOO is a standard
reference temperature, V 1is the three-dimensional velocity vector,
W is the vertical velocity component, N(z) is the Brunt-Vaisala
frequency, which depends upon altitude z, g 1is the acceleration
of gravitv, K is the (constant) thermal diffusion coefficient.
An appropriate pseudospectral procedure for evaluation of the
right hand side might be as follows:

(a,) Represent each component of V, and the temperature

1
field T, in real sgpace, and form the vector quantity

(VT) at each physical grid point, that is

~

VT = U(x,y,z)T(x,y,z)i + V(x,¥y,2)T(x,v,2)]

+ W(x,y,z2)T{(x,v,2)k;

(a,) transform the vector quantity (VT) to a vector term

in wavespace, denoted by (iﬁ).

(a3) Evaluate the divergence of the qguantity directly in
wavespace by multiplying by the wavespace divergence
operator 1ik- (where k is the wave vector); this has
the virtue of preserving the exact phase relationships
in the divergence expression, without the first-differ-
encing errors introduced by a finite-difference approxi-
mation to the divergence term in real space.

(b) Assuming an explicit evaluation of the thermal diffusion
term is adequate, transform T to wavespace, denoting
its transform by T, and evaluate the Laplacian term
directly in wavespace by multiplying T by the scalar
operator - k-k = -kz. This procedure avoids the sccond-

differencing errors associated with the finite-diflocrence

form of the Laplacian operator. [The diffusion term can
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be treated implicitly in a spectral formulation very
simply, if, for example, (3.16) is written in the

transformed form

O e ”

(3.17) L3 rex?ny = - ik (W) - (N ()W),
oo °F Too — ~

where, as, before, the tilda (~) designates the wave-

space transform of the real -space field.]

(c) Represent the vertical velocity W in real space, and
at each point of the physical grid form the product
2 . 2
N"(z)W; then transform the expression N7 (z)W to
wavespace. By first evaluating the product in real
space, we avoid a nasty convolution sum, but accept
the inevitable aliasing penalty, which may not be a .

severe limitation, especially if the term is small

or if N is a slowly varying function of z.

(d) Since each term on the right hand side of (3.16) is

now available in its spectral form, we may evaluate

each of the spectral components %%u Finally, then,
we inverse transform %% to real space to obtain

the local rate of change of temperature.

Thus, the pseudospectral method makes effective use of finite
spectral operations when it is convenient and/or crucial to do so,
but returns to finite real space collocation operations when the
equivalent spectral operation is computatively prohibitive, or
aliasing errors are tolerable. A more elegant statement of the

method, which has perhaps been adequately motivated by the example
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above, has been provided by Orszag (197la). That is, the

philosophy of the pseudospectral method is to calculate in
either spectral or physical space according to whichever voepre-
sentation is more natural. In particular, one chooses a suitable

orthogonal expansion as an interpolatory tool, in order to be

able to differcntiate without phase error. Derivatives are evalu-
ated entirely by explicit multiplications in spectral space (rather
than by finite differences in real space). Operations like differ-
entiations in finite-difference schemes and convolutions in spec-
tral schemes are avoided.

Let us apply the pseudospectral idea for efficient evaluation
of the non-linear terms of the equations of motion. The principal
error of finite-difference schemes 1is first-differencing or phase
error (cf. section 2.1). These errors are avoided so long as spec-
tral methods are used to compute derivatives. For example, ov/9x
at xzxj, where xj=2ﬂj/N (j=1, ..., N), may be computed without
phase error by first Fourier analyzing ijv(xj) into its discrete
Fourier components v(k) (|k] < N/2) and then sctting
ikx.,

J

(3.18) (Y, = 7

—) . ikv(k)e
0X x-xj rk|i

N2

A term like v3v/9x 1in an equation of motion can then be evaluated
at the grid point xj as the local physical-space product of v(xﬂ
with (av/ax)xzx_. If derivatives are computed in this manner,
the resulting scheme is not subject to phase error, but it is "fully
aliased" in the sense that spectral terms modulo +2k appear in

the spectral analysis of the scheme (see section 2.1.5).



If a pseudospectral approximation is made to the Navier-
Stokes equations written in the form (2.2) by evaluating deriva-
tives as in (3.18), the resulting fully-aliased equations may be sub-
ject to unconditional instability (Orszag, 1971b). However, if
the Navier-Stokes equations are first expressed in rotation form

(3.19) a_3€ Vix,t) = VX, t)xig(x,t) - VP(x,t) + VWV (x,t)
where P = P+u2/2 and w =V x v is the vorticity, the pseudospec-
tral approximation obtained by calculating in analogy to (3.18)
(using local operations on the Fourier modes of v), is normally satis
factory. The reason is that the pseudospectral approximation to

the rotation, rather than the advective form (V*VV) of the non-
linear terms of the Navier-Stokes equations semi-conserves energy
(i.e. conserves energy in the absense of time-differencing errors).
Aliasing errors, although present, cannot directly cause uncondi-
tional non-linear instability. Pseudospectral approximation to
(3.18) gives phase-error-free simulations that are a factor two

more efficient than those obtained by the fully alias-free algorithm
of Appendix 3, with the same wavenumber cutoff (Orszag, 1971b).

The pseudospectral method discussed here is basically the same
as the "method of selected points" or "collocation" method,
introduced by Lanczos (1956). The principal difference is the
use of the fast Fourier transform to effect rapid transforms

between spectral and physical space representations.



4.0 Applications of Numerical Spectral Methods

In this section we discuss briefly some of the principal
areas of fluid research, relevant to meteorological problems,
in which numerical spectral methods have been found especially
fruitful, namely:

(a) the simulation of atmospheric dynamics;

(b) the simulation of turbulence and tests of turbulence

theories;

(¢) advective-diffusive modeling.

Recent years have witnessed an avalanche of papers concerning
spectral simulations of various problems in atmospheric flows and
numerical weather prediction. For example, Eliasen, et al, (1970),
have considered spectral harmonic methods for integration of the
primitive equations on the sphere; Merilees (1973, 1974) has de-
scribed pseudospectral methods for such problems; Bourke (1972},
Gordon and Stern (1974) have described experiments with multilevel
baroclinic global general circulation models constructed in spec-
tral manner. An especially important spectral model 1is the strato-
spheric dynamics model of the MIT group (Cunnold, et al. 1975) which
incorporates elements of both the purely Galerkin and the psecudo-
spectral approaches for the simulation of the disversion of chemical
pollutants in the upper atmosphere. Many of the recent advances
in the field of atmospheric spectral modeling are described in
the Copenhagen symposium volume (GARP, 1974), to which the reader's
attention is directed.

The employment of spectral methods for direct numerical simula

tion of turbulent flows is of very recent origin. Spectral simula-
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tions of this sort, which require explicit retention of l—3XlO4
modes, have become practical only with the introduction of effi-
cient transform techniques (Orszag 1969, Patterson and Orszag
1971). Simulations have been performed for homogencous two-
dimensional turbulence (Herring,et al. 1974) and homogeneous
isotropic three-~dimensional turbulence (Orszag and Patterson
1972), at moderate Reynolds numbers. Extensions of these studies
to inhomogeneous flows, turbulent wakes and jets, etc., are being
actively pursued (Herring 1974, Orszag and Pao 1974).

It would not be appropriate here to attempt to review the
salient conclusions regarding the structure of turbulence, and
the validation of turbulence theories, which have emerged from
such studies. One point, however, is certainly worth emphasizing
here. That is, throughout the course of such spectral simulations,
it has become empirically evident that the large-scale flow fea-
tures exhibit a remarkable degree of Reynolds-number independence.
As a consequence, it may not be necessary to simulate turbulence
at the huge Reynolds numbers appropriate to the atmosphere, if
our principal concern is with synoptic-scale features; that is,
much valuable information can be obtained from simulations whose
Reynolds numbers are such that all dynamically relevant scales
of motion can be included explicitly in the computation, without
recourse to closure arguments or subgrid-scalemodeling. It appears
that, once a certain critical Reynolds number is attained (and such

Re are remarkably low!) the large-scale features are sensibly

crit
independent of the detailed mechanisms by which energy (or enstrophy)
are cascaded to the smallest scales, provided that the initial flow

conditions are Reynolds-number independent.
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Of more immediate importance, with regard to the improvement
of air-guality simulationmodeling efforts, are the insights which
are emerging concerning the utility of spectral methods in the
numerical simulation of advective-diffusive problems. In a plo-
neering effort, Orszag (1971b) considered the Crowley color pro-
blem (Crowley, 1968), namely the two-dimensional convection of
a passive scalar field by a uniform rotation velocity- This
problem has been considered as well by Molenkamp (1968), from
the finite-difference point of view. Orszag compared solutions
to this problem using second-order and fourth-order Arakawa
finite-differencing schemes, and the Galerkin Fourier approach
discussed before. He demonstrated that results obtained using
the truncated TFourier-expansion scheme on a 32x32 space grid
(cutoff wavenumber K=16) are at least as gocd as those obtalned
by the fourth-order scheme on a 64x64 grid, and significantly
bettér than those obtained by the fourth-order scheme on a 32x32
grid, or by the second-order scheme on 32x32 and 96x96 grids.

It appears that, for those problems for which the "color" problem
and the Neuringer problemdiscussed in Chapter 5 are typical exam-
ples, second-order schemes require at least four times as many
grid intervals in each spatial direction, and fourth-order schemes
require at least two times as many grid intervals, as the truncated
Fourier expansion scheme.

We have recently extended this study to incorporate diffusive
terms. These new results are presented in Chapter 5 of this report
As will be seen, the conclusions which emerge support strongly the
argument for the use of spectral techniques where feasible, espe-

cially in regard to high Reynolds number flow simulations.
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5.0 A Comparison of Spectral and Finite Difference Methods
for Two Examples

To date, little effort has been directed toward exploiting
spectral techniques for numerical air-pollution simulations. This
section illustrates some of the computational advantages of the
spectral technique for the simulation of advective-diffusive prob-
lems, by reference to (a) a diffusive generalization of the Crowley
"color " problem (Crowley 1968, Molenkamp 1968, Orszag 197la),
that is, the advection-diffusion of an instantaneous point-source
scalar in a two-dimensional field of solid rotation; and (b) a prob-
lem proposed by Neuringer (Neuringer, 1968), concerning the advection
diffusion of a point source in a sheared wind field. We compare
numerical solutions using the spectral (truncated Fourier) method
with those using the conventional second-order finite-difference
method. It is shown that, for simulations of comparable accuracy,
the spectral method permits very substantial reductions in required
core storage, and less computational time as well.

We also present a rebuttal to some criticisms offered in a
private communication by Chan and Stuhmiller (denoted by C-S) to

a preliminary version of these results.

5.1 Comparison of Methods for the Diffusive Color Problem

We follow the evolution of the two-dimensional system

2 2
3°c . 3°c _ _
— + ——7) + §(x Xge Y7Yq o t)

ox oy

3C aC aC
(5.1) T + UBX + Vay v {

where C represents a passive scalar guantity, the advecting

velocity field (U,V) has been chosen to be a ficld of rigid
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rotation; v is a diffusion coefficient; and the 4§ function
represents an instantaneous point source for the scalar field C.

The finite-difference model employed is

n n n n

C. . — C. . c. . - C. .
n+l n _ 3m i+l,7 i-1,3, , g Led¥l  Ti,5-1
Ci,j = Ci,j 5 {U( 5H ) ( 5A )
Cn—l _ n-1 n—-1 _ Cn—l
1a¢ i+1l,3 i-1,3 i,j+1 i,j-1
(5.2) + QA ‘U( o ) +V( A )
\)At2 n n n
—_— R . + . .
* 2 Civr,i+1 ¥ Ci-1,5-1 7 Civ1,5-2
n n
T G194 T 4Ci,j}
+ & (1 j
¢ (lol_]o)
where 5°(i0,j0) represents an instantaneous point source located

at point (i and A= ix Or Ay 1s the horizontal grid increment.

0’3ol
The advective terms are written with Adams-Bashforth time-differencing
and the viscous term is explicitly differenced in time. Periodic

boundary conditions are assumed,.

The finite spectral model emvloved is

2 -
~n+1 1 VAtkS . xn 3 ) n
5.3 = - vald . _ 2At
o “ep ok, 5 T ke, T2 Ly (0
vAtk -
(1 + 5 )
~.n
+ ik (VC)
2 kl,kZ,
) ~ n-1 . ~n—-1
.+._.
At 1kl(UC )kl,kz + 1k2(VC )kl'kzl

+ (6% (15,3))
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where k1,k2 represent the two horizontal wavenumbers |

2 2 2
k< =
kl + k2
and the tilda (~) designates the two-dimensional discrete Pourier

transform of the indicated field.

In particular, the term

>

n
(uc)
kl’k2

designates the (kl,k ) component of the alias-free product of the

2
velocity component U withthe real-space field C at time step n.

The achievement of alias-free non-linear products is performed as
described in Appendix 3. The time-differencing used for the advec-
tive terms is the Adams-Bashforth scheme, while the viscous term is
represented with Crank-Nicholson time differencing. The expression
(5.3) makes use of the fact that the constant advecting velocity
field is non-divergent.

To emphasize the power of the spectral approach, the finite-
difference computations are performed with both 32x32 and 96x96 points
grid resolution, whereas the spectral calculations are performed only
on a 32x32 point grid. 1In each case we used a true point singularity
as the initial source term, of non-dimensional magnitude 1.0 units.
Thus the initial conditions are identical in each case, which satis-
fies an objection raised by (C-S) to the preliminary results. Pre-
vious experience with spectral calculations of the color equation
show that the spectral approach is remarkably accurate for a distrib-
uted scalar field (Orszag, 1971a) but should-be appreciably less
accurate for a true point source. In every case the numerical

time step was chosen sufficiently small that time-differencing errors
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were negligible.

For each system, the physical-space grid is square, and the
center of rotation coincides with the center of the grid. The
initial point-source distribution is located midway between the
center of rotation and the left boundary of the grid. The fre-
guency of rotation is such that one full rotation requires 100
time steps.

We present results for the following cases:

(a) Finite-Difference Scheme with 32x32 point resolution,

viscosity v = .05 -

(b) Spectral Scheme with 32x32 point resolution (i.e. wave-

number cutoff K=16), viscosity v = .05

(c) Finite-Differgnce Scheme with 32x32 resoclution, v = .005

(d) Spectral Scheme with 32x32 point resolution, v =.005.

Figure 5.1 displays the initial point-source distribution,
that has been entineydy machine-constructed with ten equal contour
intervals, dashed lines representing negative-valued contour lines.
The contour intervals were generated automatically with contour

spacing
C - C_.
max min

AC = 10

where C , C . are respectively, the maximum and minimum values
max min

of the scalar field C encountered anywhere on the grid at the given

time step. Thus, no two figures show the same contour spacing, a

point which will become important shortly. However, the choice of

contour interval is now made in entirely objective manner, as was

not the case in the preliminary results seen by (C-S).
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Figure 5.1 1Initial Point-Source Distribution

(t=0)

Contour from 0. to 1.00E+00
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Figure 5.2 Finite-Difference Scheme

(v = .05, t = 1/4 revolution)

32 x 32 point resolution

- —

Contour from

F.D. Scheme T = 25.0000
-1.42E-02 to 5.31E-02 Interval 6.73E-03
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Figure 5.3 Spectral Scheme
32 x 32 point resolution

v = .05
t = 1/4 revolution

@

Spectral Scheme T = 25.0000
Contour from -1.19E-03 to 6.21E-02 Interval 7.91E-03
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Figure 5.4 Finite-Difference Scheme
32 x 32 point resolution
v = .05

t = 1/2 revolution

.....

F.D. Scheme T = 50.0000
Contour from -4.58E-03 to 2.84E-02 Interval 3.30E-03
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Figure 5.5 Spectral Scheme
32 x 32 point resolution
v = ,05
t = 1/2 revolution

Spectral Scheme T = 50.0000
Contour from -5.92E-04 to 3.15E-02 Interval 4.01E-03
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Figure 5.6 Finite-Difference Scheme
32 x 32 point resolution
v = .005

t = 1/4 revolution

SHODN

F.D. Scheme T = 25,0000
Contour from -1.09-01 to 1.13E-01 Interval 2.22E-02
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Figure 5.7 Spectral Scheme
32 x 32 point resolution
v = .005
t = 1/4 revolution

.....

Spectral Scheme T = 25.0000
Contour from -6.38E-02 to 3.70E-01 Interval 4.34E-02
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Figure 5.8 Finite-Difference Model
32 x 32 point resolution
v = .005

t = 1/2 revolution

F.D. Scheme T = 50.0000

Contour from -5.02E-02 to 7.58E-02 Interval 1.26E-02
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Figure 5.9 Spectral Model
32 x 32 point resolution
v = .005

t = 1/2 revolution

o

<

<

Contour from -5.62E-2 to 2.55E-1 Interval 3.11E-1
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In figures 5.2, 5.3 we compare, respectively, cases (a) and
(b) after onc-quarter resolution. Note that the contour interval
in the spectral case (5.3) 1is about 17% larger than that in the
finite-difference case. It is observed that case (b) more accu-
rately reproduces the circular symmetry to be expected, while case
(a) displays a small phase lag, relative to the expected center
of symmetry, axial distortion, and a spurious numerical noise
manifested as characteristic negative "trailing wake" (the explan-
ation for which we have considered in section 2.1). Proceeding
with the temporal evolution of both systems out to t=1/2 revolu-
tion, figures 5.4, 5.5 show that the spectral run continues to
yield a distribution which is quite circularly symmetric, with no
wake structure, and preserves the expected center of mass of the
distribution much more closely than does the finite-difference

run, wherein the axial distortion and phase lag are becoming dguite

pronounced. The differences between these two cases (for v = .05)
are not yet striking, however. The situation changes greatly as
v>+0.

Let us now compare the two methods for a ten-fold reduction in
viscosity, v = .005, i.e., cases (c) and (d) as shown in figures
5.6, 5.7, for t=1/4 resolution. With a reduction in v, we
vould expect that the effect of the strong discontinuity in the
source distribution would become more apparent, since the smoothing
effect of the diffusion term is correspondingly reduced. Now the
spectral scheme shows to considerably better advantage with regard
to preservation of phase, symmetry of distribution, and suppression
of superfluous trailing wake structure. In fact, it would already

be difficult to argue that the finite-difference model corresponds
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to physical reality in any useful sense. Let us look as well at
the results for t=1/2 resolution (figures 5.8, 5.9). The contin-
ued high fidelity of the spectral model to the expected continuum
solution is truly impressive. Note that the phase information is
still preserved remarkably well, and the spurious numerical noise
is of small amplitude (< 10% of the peak) .

The (32x32) spectral runs required about eight times longer
Cpu execution time than the (32x32) finite-difference runs. How-
ever, it should be emphasized that these runs did not use optimally-
coded Fast Fourier Transform routines (which would save about 50%
execution time). Moreover, we employed for these runs a fully
alias-free spectral algorithm, and Orszag has shown that the partly
aliased pseudospectral method offers, in this case, a four-fold re-
duction in required computation time, without appreciable degrada-
tion of results. Together, therefore, these modifications would
effect at least an eight~fold savings in computation time. These
results suggest therefore that spectral methods are cost-effective for
simulation of the diffusive color problem and offer significant core
storage savings compared to finite-difference methods, for equiva-
Zznt accuracy.

Finally, it is necessary to correct a misconception entertained
by Chan and Stuhmiller, as evidenced by a comment of theirs concerning
the use of spectral techniques for the color problem:

"The example used in the comparison is a linear problem, i.e.,
the velocity field is given explicitly ..."In spectral method, there
are two general approaches to nonlinear problems in which the non-
linearity is of the product type. The first approach is to do the

entire calculation in the Fourier space; the nonlinear products
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lead to evaluation of '‘convolution sum' which is in general very
time consuming. The second approach is to transform from Fourier
space into physical space and perform the multiplication there for
the nonlinear terms. When transforming back into Fourier space,
'aliasing' has to be controlled to avoid the buildup of errors.
Bass was probably referring to the second approach as the "spectral
method" in his memo. The first approach is not susceptible to phase
errors since the amplitude and phase of each Fourier mode are dealt
with directly as dependent variables. But the evaluation of con-
volution sums for nonlinear problems makes this approach rather
expensive. On the other hand, the second approach 1is not free of
phase error because of the calculation performed in the physical
space."

In response to these comments we should note that, first, the
color problem is "linear" in the sense that the velocity fields do
not enter quadratically, but inasmuch as it is necessary to evaluate
the advective product V-VC where V=V(x,y) 1is a spatially variable
field, the computation is nonlinear in the usual sense; and we require
an accurate efficient technique for the alias-free representation of
multipl.cative fields.

Second, it is not true that the "spectral method" to which we
ceferved 1s implicitly aliased, or is phase-error contaminated. The
soectral method (a truncated Galerkin Fourier method) which we used
in these calculations is

(a) entirely free of phase error

(b) entirely free of aliasing misrepresentations, since we

used the alias-renewal technique described in Appendix 3.

Apparently Chan and Stuhmiller have confused spectral with

pseudospectr: 1 methods. The alias-free evaluation of nonlinear
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products does not require the explicit evaluation of convolution
sums. Perhaps the most single advantage of the methods introduced
by Orszag is that we can achieve the same results as would be ob-
tained by computationally expensive convolution, with much greater

efficiency via the "shifted-grid" algorithms (Orszag 1971la, 1971b).
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5.2 Comparison of Methods for Neuringer's Problem

In this section we compare spectral and conventional second-
order finite-difference numerical solutions to the problem solved
analytically by Neuringer (1968), namely, the advection-diffusion
of an instantaneous point source in a two-dimensional linearly

sheared wind field.
Neuringer presents an analytic solution for the evolution

of the two-dimensional system

2 2
(5.4) Q&4 a2t _edt gLy 2L Sxex', vyt t)
at X oy 3 2 3 2
X y
where the d-function represents an instantaneous source and
a, ¢, d are constants. He shows that with the transformations
t = at
= 2
x = (a/c) (x—aty-act™/2)

= (a/c) (y+ct)

<

and with the 6-function source at the origin, X

the analytic solution is

ST 1 (/2-75/4)°

{5.5) F(x,y,t) e exp| -y{ — —5
tﬁJl+t /12 t(1+t"/12)

——

where
Y2 = c2/ad

Figs. 2-5 in Neuringer's paper attempt to show the variation of
the dimensionless distribution function F. It was observed that

these figures are entirely incorrect, except for the special para-

-65-



etric choices x = 0 or y = 0. We have therefore reevaluated
numerically Neuringer's analytic expression for F(X,y,t), equa-
tion (5.5) above. Fig. 5.10 exhibits some correct representative
curves of F vs. X for the case vy = 1.0, t = 0.5. (Note, for
example, that by comparison with fig. 5.10, Neuringer's curve for
y = -5 is wrong by more than six orders of magnitude, while the
curve for y = 0 is correct.)

Superimposed on fig. 5.10 are some points sampled from a spec-
tral simulation of equation 5.4 with 32x32 point resolution, and

the same choices of parameters vy, t, and (x,y) dependence. On

the scale of the figure the spectral results are indistinguishable
from the analytic results. Table 5A presents some sampled values
for the ratio F(X,y)/F(0,0) spaced at unit intervals of x and vy,
obtained from direct numerical evaluation of equation 5.4. In this
and subsequent tables the notation 2(-8) is to be understood as

2 x 10_8, and so forth. In Fig. 5.11 we display a two-dimensional
contour plot of this ratio, constructed from more detailed numerical

tables. The corresponding contour plots constructed from the spec-

tral and finite difference runs cannot be distinguished by eye from

those shown in the figure and so are not included.

To permit more exact comparison of the spectral and finite-
difference computations for Neuringer's problem, we have performed
a second series of three runs, with parameter <y now chosen for
convenience as 4.0, and the computation carried out to time
t = 0.5. For each run, the time increment was chosen small enough
so that time-differencing errors were negligible. The three runs
compared were:

(a) spectral computation on a 32x32 point space grid

(hereafter called run (a));
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Figure 5.11

Figure 5.11 Neuringer Problem (y = 1.0, £ = 0.5)
Analytic Value of F(x,y)/F(0,0)
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TABLE 5A

Analytic Evaluation of F(x,y)/F(0,0) for y = 1.0, t = 0.5

X

-4 -3 -2 -1 0 1 2
4 - 2(-8) 5.5 (=7) 6.40(-6) 2.78(-5) 4.54(-5) 2.78(-5)
3 4(-3) 2.53(-6) 6.10(-5) 5.53(-4) 1.88(-3) 2.40(-3) 1.15(-3)
2 2.45(-6) 1.23(~4) 2.33{(-3) 1.65(-2) 4.40(-2) 4.40(-2) 1.65(-2)
i 5.29(-3) 2.08(-3) 3.08(-2) 1.71(-1) 3.57(-1) 2.79(-1) 8.21(-2)
y © 3.95(-4) 1.22(=2) 1.41(-1) 6.13(-1) 1.00( 0) 6.13(-1) 1.41(-1)

- 1.02(-3) 2.46(-2) 2.23(-1) 7.59(-1) 9.70{(-1) 4.65(-1) 8.38(-2)

-2 9.12(-4) 1.72(=2) 1.22(-1) 3.25(-1) 3.25(-1) 1.22(-1) 1.72(-2)
-3 2.82(-3) 4.17(-3) 2.32(-2) 4.83(-2) 3.73(-2) 1.11(-2) 1.22(-3)

-4 3.02(-5) 3.49(-4) 1.52(-3) 2.48(-3) 1.51(-3) 3.49(-4) 3.02(-5)

[
.
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(b) second-order finite-difference computation on a
48x48 point grid (called run (b)), with one and
one-half times greater horizontal resolution

than run (a);

(c) Second-order finite-difference computation on a
96x96 point grid (called run (c)),with three times

greater horizontal resolution than run (a).

The equations used in the finite-difference and spectral models
to simulate (5.4) are virtually identical to those described for the
color problem, e.g.,equations (5.2) and (5.3), the only differences
occurring in the representation of the advective terms. That is,
the velocity field U(x,y) is replaced by +(ay), and the velocity
field V(x,y) 1is replaced by the constant -c. The time-stepping
schemes used here are identical to those described for the color
problem.

Table 5B displays the values of the ratio F(x,y)/F(0.,0)
obtained by tabulating expression (5.5), for equally-spaced points
(x,y) spanning the region of maximum concentration amplitude.

Table 5C shows the absolute errors made by the spectral run, i.e.,
the differences between the analytic values of the ratio F(x,y)/
F(0,0) and those obtained from the spectral computation. In like
manner , Tables 5D, 5E display the absolute errors of the 48x48 point
and the 96x96 point finite difference runs, respectively.

Upon examination of these tables, we may draw several signi-
ficant conclusions. First, we observe that the errors made by the
run (b) are consistently about four times greater than, and uni-
formly in the same direction as, the errors made by run (c). Second,

we see that, in the region of maximum amplitude, both the (a) and
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i

1/2

1/2

3/2

TABLE 5B

Analytic Value of F(x,y)/F(0,0)

(y = 4.0, t =
X
-1 - 1/2 0 + 1/2 + 1
.019 ,104 ,216 . 169 .050
, 141 .613 1,000 ,613 .141
.368 1,252 1.600 , 767 138
. 332 ., 885 . 885 , 332 ,047
.104 .216 .169 .050° .005
,011 .018 .01} .003 <,001
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1/2

1/2

3/2

TABLE 5C

Absolute Errors in Spectral Run

1

-1 - 172 0 + 172 + 1

<.001 -.001 -,002 -.003 -,004
<,001 <,001 - -.001 -,004
+.004 +.007 +,011 +,012 +.004
+.007 +,013 +,019 +.016 +.009
+,003 +.008 +,001 +.007 +.,004
<,001 +.003 +,005 +.002 +,001
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TABLE 5D

Absolute Errors in 48*48 Point Finite Difference Run

+ 1/2

- 172

- 3/2

X

-1 - 172 0 + 172 + 1
-.003 -.013 +.020 -.015 -.007
-,006 -.017 - -.017  -,006
-.023 -.056 -.028 -.036 -.009
~,039 -.085 -.063 -.034 -,006
-.007 -.006 <,001 -.003 <, 001
+.004 +.007 +,005 <,001 <,001
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TABLE 5E

Absolute Errors in 96*96 Point Finite Difference Run

l/2

- 1/2

- 3/2

xi

-1 - 1/2 0 + 1/2 + 1
+,001  -.003  -,005 -,004  -.002
-.002  ~.004 - -.004  ~,002
-,006 -,014  =-,007  ~-,008  =.002
-,010  =-.022  -.016  =.009  -.002
-.002  -,001  <,001  =.001  <.001
+.001  +.002  +,001  <,001  <,001
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(c) computations are of about equal accuracy and capture equally
well the spatially local peak structure (although the finite-differ-
ence approach is "local" and the spectral approach is "global” in
nature). Third, with some reference to the more extensive tabula-
tions from which these tables have been extracted, it is seen that,
in the wings of the distribution, the analytic result and the finite-
difference calculations decay to zero very rapidly. By contrast,
the spectral computation makes a small oscillatory error of absolute

3 that of the peak amplitude. This small-

magnitude less than 3%10
amplitude residual oscillatory error is typical of spectral repre-
sentations for strongly peaked fields. However, as we have noted
previously, the error made by truncating a spectral representation
at N terms decreases more rapidly as N is increased than any
power of 1/N. Hence, for only modest additional increase 1in spec-
tral resolution, the magnitude of this characteristic oscillation
can be reduced to negligible proportions.

It is important to note that, for this two-dimensional compu-
tation, therefore, the core storage advantage of the spectral method,
in this case, 1is almost thirty-fold. This makes it practicable, from
the point of view of available core, to pursue a much larger class
of calculations than are presently vossible with finite-difference
methods.

Again, as regards execution time, the spectral method is more
than competitive. Run (a) required about 36% more computation
time than did run (c). However, as before, the spectral calcula-
tions were made in fully alias-free manner, and an immediate four-
fold reduction in computation time is possible if we relax the
requirement for fully alias-free spectral interactions, by per-
forming the calculations is pseudospectral manner. Thus, for
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comparable accuracy, the spectral approach is to be preferred,

economic grounds, for solution of advection-diffusion problems
typified by Neuringer's problem. We believe, therefore, that
spectral methods merit serious attention for prospective air-

quality simulation efforts.
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6.0 Spectral Modeling of the Turbulent Diffusion of a
Passive Scalar

This chapter describes a modeling effort, as yet unsuccessful,
1sing state-of-the-art spectral methods to study the turbulent dif-
fusion of a passive scalar source in a fully three-dimensional,
turbulent, sheared velocity field, without recourse to closure
arguments. The impetus for this effort stemmed from the expecta-
tion that such a model would provide an idealized set of turbulent
diffusion data, free of closure parameterization assumptions, against
which various air-quality turbulent diffusion models might be tested.
Moreover, it was anticipated that the model might permit the compila-
ation of model turbulent diffusion data, suitable for the evaluation
of eddy Austauch coefficients, for a variety of cases for which observa-
tional data are lacking, or for which existing data are unreliable.

These expectations seemed well justified, at the initiation
of this study effort, by the very real successes achieved by earlier
spectral numerical models of this type in reproducing the essential
dynamics of three-dimensional turbulent flows in a number of cases
(Orszag and Patterson 1972, Orszag and Pao 1974), and by the demon-
strated utility of the numerical results so obtained in testing the
validity of various formal turbulence theories. The model experi-
ments contemplated for the current effort presupposed, therefore,
the availability of computational resources (core storage and CPU
time) comparable to that employed in the previous successful efforts.
It was not until well along in the current contract study, and only
after the various computer codes had been written and checked out,
that the computational resources available to us were thenceforth
severely restricted. The critical limitation was that of core

storage. Th> experiments had been planned on the premise that the
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codes could be run with (32)” modal resolution, as had previously

been the case at the Lawrence Berkeley CDC facility. Unfortunately,

new and unforeseen user demands upon that facility had the practical
effect of restricting our model experiments to only (16)3'modes.
Previous experience with homogeneous turbulence codes suggested

that (16)3 modal resolution wads but marginally adequate for the
evolution of physically realistic turbulent flows, and we had but
little hope for the prospective success of a (16)3 model for strongly
sheared flows. Nevertheless because of our problems with Lawrence
Berkeley we had no choice but to proceed with our experiments at

the reduced resolution. Initially we hold out some hope for partial
success because the largest scales of motion (which are the most
important for turbulent eddy transport) could still be adequately
resolved. However, after the fact, the difficulty of achieving
physically credible small-scale equilibrium statistics in the pres-
ense of a strongly sheared mean flow at the (16)3 resolution pre-
cluded our getting satisfactory results. (The attainment of equili-
brium is necessary to make possible a meaningful comparison of our
numérical model with the corresponding predictions of a turbulence
closure model based upon equilibrium turbulent conditions.)

The remainder of this chapter is devoted, first, to a thorough
description of the model we have developed. Then, a discussion is
given of the difficulties encountered, by reference to figures which
depict the evolution of the velocity and vorticity fields during

the course of one of our unsuccessful experiments.

~-78-~



.1l The Numerical Model

In this section we define the Boussinesq equations describing
the physical system to be simulated, and develop the spectral
forms of these equations which are actually implemented in the
computer model which has been constructed.

We begin from the familiar Boussinesq system of equations
for shallow layer convection in an effectively incompressible
fluid. The scaling arguments underlying the derivation of these
equations are presented in Spiegel and Veronis (1960) and Calder
(1967), and will not be restated here. The Boussinesq equations

may be written as

av i\
{(6.1) a?-* - VP + %TA + vVZZ
Poo 00
(6.2), V-V =0
(6.3) T—gw %—é +N%W = §5—~ v
00 00
where
d _ 3 .
ge "3 T UV
X is a unit vector in the vertical direction
V is the.three-dimensional velocity field
p 1is the deviation of pressure from its equilibrium

value P
e
T 1is the deviation of temperature from its equilibrium
value Te’ which is a linear function of height =z,

Te = Too(l—z/H)

TOO’ POO are the surface equilibrium temperature and
density, respectively,
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N2, the square of the Brunt-vaisala frequency, =

3T
Ti— (?ES + g;)( assumed constant.
00 p
V, the kinematic viscosity, = u/poo, where 1y is the

coefficient of viscosity

0, the thermal viscosity = o/P 0’ where o¢ 1s the ther

0
mal conductivity

Equation (6.1) is the momentum equation, incorporating the con-
tinuity condition (6.2). Equation (6.3) is the heat equation.
For convenience, we will define the variables P = p/poo,

@ = g7 whence

’

Too
\Y ~
(6.4) 2=+ VUV = - VP + 0f +vv’y
(6.5) —g% + V-V0 + N%W = V7O
The term BX in (6.4) provides the convective coupling of tem-

perature to the vertical velocity field, and the term N2W in
(6.5) represents the effect of basic-state stratification upon the
evolution of the thermal field.

Equation (6.4) may be written in the rotational form

V ~
(6.6) = vxuw = - V(P + L V-V) + 00X + vV2V
v 3t = 7 = 2 = = -

where w = Vx V is the vorticity field..

Equation (6.5) may be written, using the incompressibility condi-

tion, as
(6.7 32 + v. (vo) + x%w = «vo.
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Equations (6.6), (6.7) and (6.2), together with appropriate ini-
tial and boundary conditions, define the system to be simulated
spectrally.

To integrate this system with time, we use truncated Fourier
spectral methods. That is, we represent the velocity and tempera-

ture fields in truncated discrete Fourier series (Appendix 2) of

the form

(6.8) Vix,t) = % Uk, t)e'="%
|k <k

1l

(6.9)  6(x,t) 0k, t)e kX
<K

a3

where the summations extend over all three-dimensional wave vectors
k  whose absolute values are smaller than X, the truncation wave-
number. U(k,t) and O(k,t) are, respectively, Fourier series coeffi-
cients of the velocity and temperature fields. We have, of course,
assumed periodicity in each spatial direction.

A straightforward application of the discrete Fourier transfor-

mation to the momentum equation (6.4) leads to the spectral form

(Orszag 1971a)

k Kk
3 2 . o Z -
(6.10)  (gg + VKU (K, t) = -ikg (8 . - ?11 <% Uglp t) U, (k-p,t)
k=P | <K
t ok, )8 4
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where o,8,y may each range over the three indices 1, 2, 3
(i.e., the three orthogonal directions in wavespéce). The symbol
GQY is the Kronecker delta, and summation over repeated Greek
indices is implied. The pressure term has been eliminated by
use of the incompressibility condition (see also the discussion
in section2,1.3). Note, however, that the form (6.10) requires
that a convolution sum be evaluated for each pair of indices
(B,Y). Such an approach is quite costly computationally,

especially for a fully three-dimensional system. Instead, we

have employed the pseudospectral approach to integration of the

momentum and heat equations. Returning to equation (6.6), we
see that the source of the convolution term is the nonlinear
vector product term V Xw. To avoid the convolution requirement
we use the following procedure:

(a) Beginning from the Fourier tfansform of the velocity
field, U(k,t), create the Fourier transform of the
vorticity field,Q(k,t) by performing the wavespace
operation Q(k,t) = i k x U(k,t).

This is the direct analogue of w = VxV. Note that because
the vorticity field is evaluated in wavespace, it is free of
first-differencing phase and amplitude errors.

(b) Recover the me¢al-spacevorticity field w(x,t) by inverse
discrete Fourier transformation upon Q(k, t), namely

ik.x

w(x,t) =) 2k, t)e
|k | <K

Similarly, recover the realspace velocity field V(x,t)

by (6.8) .
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(c) Evaluate, in discrete real~-space,the vector cross
product term V(x,t) xw(x,t) = , say, p(x,t). This

product is, of course, fully aliased unless the pro-

cedure outlined in Appendix 3 is used.

(d) Generate the discrete Fourier transform of Y(x,t), de-

noted by VY(k,t)

Yk, t) = ] ux,t)e tEE
X

. . 2 .
(e) Represent the diffusion term VvV Y(Ert) in wavespace as

- wlu, ) -

Then equation (6.6) may be written in prognostic spectral

form as

(6.11) (2 + k) Uk, t) - Y0k, E) = 60, A

The spectral form of the pressure head term, -V(P + %-V'V). need

not be included in (6.11), since the only effect of this term is
to guarantee that the velocity field remains incompressible. In-
stead, incompressibility can be enforced, at each successive time

step, by requiring the replacement of U(kK,t) by

k
(6.12) U'k,t) = Uk, ,t) - “F(k-U(k,t))

k
whence 1ik-U'(k,t) = 0, thus maintaining the incompressibility
{(see section 2.1.3). The nonlinear term V- (V8) in the ther-

mal equation (6.7) may be treated in a similar pseudospectral
manner, by the following procedure:

(a) From the real-space velocity field V(x,t), and the

real-space temperature field 6(x,t), from the real-space

vector Vix,t)o(x,t) =, sav, Z(x,t).
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(b) Create the Fourier transform of Z(x,t), which will

be denoted by g(k,t):

Tk ] 2(x,tye HEE
X
(c) Evaluate the divergence term V- (VO), directly in wave-
space, as ik-z(k,t). (The divergence operation is ik-
in wavespace).
Thus, (6.7) may be written in spectral form as
2+ kk2)0 (K, t) = - ik E(K,t) - N2U, (k,t)
(6.13) ot ' X = ikclky 3 {ky

where U3(E,t) designates the Fourier transform of the vertical
velocity field w.

Leapfrog time differencing was used for the advective terms
and Crank-Nicolson time differencing for the diffusion terms.
Thus, if the superscript ()n designates the value of a field at
the nth time step (tn=nAt) the time evolution of the system can

be explicitly represented as

2 20t -
(6.14) (1 o+ VAL gL gy = 1 - YA Tk, 6

b oAty (k,t) + 67 (K, t)A]

2 2
(6.15) 1+ SRRE L vy = - SR
- At[ik*gM(k,t) + Nzug1 (k,t)]
(6.16) g?+l(§,t) . 9n+l(§,t) i(k;ﬂ oL ey
k
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Finally, we have included in our model a passive scalar

field, whose turbulent evolution is governed by the velocity

field v(x,t). The scalar conservation equation may be written
as

dc _ 2
(6.17) I = vCV c + s(x,t)

where ¢ (x,t) is the scalar field, V. is the scalar diffusion
coefficient, and s(x,t) 1is a source term for the scalar field.
If we let C(k,t) denote the Fourier transform of c(Xx,t),
S(k,t) denote the Fourier transform of s(x,t), and M(k,t)
denote the Fourier transform of the product V(x,t)c(x,t),

then the temporally discretized version of (6.17), by analogy

with (6.15) is just

2
vck At n+l

vcszt
—‘*5*——)C k,t) = (1 - ——5—

2

1

(6.18) (1 + )T (k, t)

Atlik-M" (k,t)]

+ At ST (K, t) .

The prognostic equations (6.14, 6.15, 6.18), together with the
replacement (6.16) define the numerical model. Initial and

boundary conditions will be discussed shortly.



6.2 Physical Parameters

An attempt was made to design an experiment to simulate the
turbulent diffusion of a passive scalar field in a sheared, tur-
bulent flow, in such manner that reasonable comparison could be
made with the results of one or more turbulence closure models for
the same physical problem. To this end, the geometrical dimensions
of our numerical model were fixed as 9.6 km in each of the two
horizontal directions and 0.96 km in the vertical direction. The
horizontal and vertical grid intervals were 600 m and 60 m res-—
pectively. All fields were taken to be periodic in the two hori-
zontal directions. At the upper and lower boundaries of the sys-
tem, free-slip boundary conditions were imposed on the horizontal
velocity components (that is UZ = VZ = (), while the vertical
velocity W and the scalar field C were constrained to be zero.

For the initial experiments, we chose a neutrally stratified
flow, with no convective coupling between the thermal and vertical
velocity fields, because it was felt that the inclusion of the
stratification and Boussinesq forcing terms from the outset would
impose an unwanted degree of complexity in the interpretation of
the results. Accordingly, the terms A§®n in (6.14) and Nng

in (6.15) were suppressed. Since the temperature field no longer

had any dynamical significance, equation (6.15) was in fact ignored.

A linearly sheared mean-velocity profile U(z) was chosen of the
form:
%o
L -
Zmy
Y2 |
o
b \o
U(?) miaac
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The mean flow field was perturbed initially by a small-
amplitude, random three-dimensional field, the construction of
which is explained in Appendix 5. The mean shear profile Ul(z)
was maintained constant throughout the evolution of the flow by
fixing in time the corresponding spectral components U3(O,O,K3).
Of course, fixing the mean wind field implies a continuous source
of kinetic energy for the perturbation wind field (by Reynolds-
stress conversions of the form (u'w'ﬁz). It was hoped that the
turbulent perturbation wind field would come to approximate energy
equilibrium, the Reynolds-stress excitation being matched by suf-
ficiently vigorous viscous dissipation at the smallest scales.

(In fact, during each of a number of experiments over a range of
Reynolds numbers, the system never tended toward equilibrium in
any physically meaningful sense. At large Reynolds numbers, there
would result a strong cascade of energy toward high wavenumber,
which could not be dissipated sufficiently rapidly. If the Rey-
nolds number was reduced to the point where energy dissipation
could keep up with the generation of kinetic energy, the pertur-
bation flow structure typically degenerated into a set of large-
scale vortices,ina totally unphysical manner. Some examples of
these characteristic difficulties will be shown in a later sec-
tion. 1In retrospect, this behavior may be understood as a conse-
quence of the very limited modal resolution with which the experi-
ments were attempted, together with the strong mean-shear profile

adopted.)
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6.3 An Unsuccessful Fxperiment

In this section we follow the evolution of the turbulent
flow fields in one experiment. The objective was, as previously
discussed, to create a turbulent flow structure for which the
generation of kinetic energy (by conversion of the mean shear ﬁz)
would come to equilibrium with the viscous dissipation of kinetic
energy. The difficulties encountered, which proved insurmountable
at present, are illustrated.

To aid in visualization, all velocity fields are pictured
in the form of contour plots. Positive-valued contour lines are
shown as solid lines, negative-valued contour lines are shown as
dashed lines. The minimum and maximum contour values and the
contour interval are indicated for each figure. These contours
have been constructed by an automatic contouring package.

In order to depict the three-dimensional spatial variation
of the velocity fields u, v, and w, the fields are displayed
in each of three orthogonal planes. That is, for example, we
show the variation of the u velocity component in the y-2z

plane for some fixed x-coordinate, say x the variation of u

0’
in the x-z plane for fixed Yo and the variation of u in
the x-y plane for fixed Zy- The choices Xgr Yo, By Aare

arbitrary; because the fields are turbulent, the individual con-
tours are to be understood only as representative of the charac-
teristic spatial structure in the given plane.

In the experiment to be discussed, the perturbation kinetic

energy spectrum was chosen to have the spectral power law depen-

dence E'(k)¢(~3;§) where k=(ki+k§+k§fl/z is the non-dimensional
1+k
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wavenumber. The rms magnitudes of the initial perturbation

velocity fields, compared to the rms magnitude of thc mean

velocity field W©(z), were

, 1/2
<(u')> _ -2, 5 ~ 2 m/sec
<_ﬁ—§:m— = 2.2 x 10 H (D )rms 0. /

<(V')2>l/2

<52>l77

2.4 x 1072, (V')rms ~ 0.2 m/sec

3

L 2.1/2 _
W) > 5.6 x 10 °; (W')rms ~ 0.05 m/sec.

<62>1/2

The ratio of total perturbation energy to mean energy was initially
about 5 x 10_4. The viscosity coefficient used in the vertical
direction was fixed as 1/100 that of the viscosity coefficients

used in the two horizontal directions, consistent with the (square

of the) ratio of vertical to horizontal spatial intervals. The
particular choice made in this experiment was VHORI ZONTAL 10 mz/sea
vVERTICAL = 0.1 mz/sec. (In other experiments we took values

of Vv which were tenfold higher and lower). The equivalent large-

scale Reynolds number, based upon a characteristic velocity U0=10

m/sec., a horizontal length scale L = %%—km, and the wvalue of
was thus ~ 1600. The characteristic eddy circulation

VHORIZONTAL’
time L/U was “‘103 sec. The time step, as prescribed by the

Courant advection condition for a spectral scheme,

was taken as 10 sec., which is a slightly conservative choice.
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Figure 6.1A U Field (y-z projection), t =0

Yy
Umin = 5.4 m/sec
Umax = 10.2 m/sec

Contour Interval = 0.3 m/sec

-90-



3

Figure 6.1B U Field (y-z projection), t = 10" sec
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Figure 6.2A U Field (x-z projection), t =0
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Figure 6.2B U Field (x-z projection), t = 103 sec
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Figure 6.4A V Field (y-z projection), t = 0
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Figure 6.4B V Field (y-z projection), t = 10
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Figure 6.5A W Field (y-z projection), t=20
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The typical structure of ﬁhe initial velocity fields is
repreéehted in figures 6.1A, 6.2A, 6.3A, 6.4A, 6.5A. Note in
particulér that tﬁe mean vertically sheared wind field U(z)
is prominent in 6.1A and 6.2A, although perturbed slightly by
the initial turbulent u' components. In figure 6.3A, which
represents an x-y slice of the initial 8 field, we see that the
horizontal struétufe of the u field-is, indeed, initially quite
random, with a y' fluctuating component of maghitude. 0.4 m/sec
(the mean U value is about 8 m/sec). Figd;es 6.4A, 6.5A.show,
respectively, typical slices in the y-z plane, of the smallfampli—
tude velociﬁy components V' and w' respectively. ‘The structure
of the V' field is quite random spatially, while the w' field
is rather more organized into vertical rélls. (This.isba conse-
quence of the specific procedure by which the'perturgation fields
were synthesized; it reflecté the féct that. the verticai extent
of the system is one—ténth that of the horizontal extent.)

In figures 6.1B ... 6.5B we display the same fields after the
systém was permitted to evolve for 100 steps (or 103 seconds) ,
corresponding foughly to the lafge—eddy circulation time. The
mean shear stfucture of U(z) is still strongly evident, although
the g" perturbation velocity field has ﬁore or less doubled in
amplitude, as can be inferred from the range UmaX -Umin “in
figure 6.3B. However, by compa:ing figure 6.4B with figure 6.4A,
and figure 6.5B with figure 6.5A, we see that the small-scale
structure of the perturbafion velocity fields v' and w' has
been damped appreciably, which sﬁggeéts that, in this experiment,

turbulent energy is being dissipated at the higher wavenumbers

more rapidly than it is being cascadéd downscale by nonlinear
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exchange with low-wavenumber modes.

After ahother lQO times steps of evoluﬁion, the éituation
is worse yet. Although the perturbation velocity fields have
roughly doubled again in magnitude, this growtﬁ is almoét en-
tirély,at the very lowest wavenumbers as may best be seen in
figures 6.1C~ahd.6.5C.

Since,vafter two éddy Circulation times, the turbulent vel-
ocity fields weie clearly furthér from equilibrium .than before,
it.was pointless to continue the time evolution of this experi-
ment. We therefore started anew, in a second éxperiment, this
time with ten-fold. lesser Viscosiﬁy. Although the decrease in
viscosity ténded to preserve relatively more of the small-scale
structure, the growth of total perturbation energy was unrealisti-
cally rapid, and the contour plots showed the méan_wind field was
soon masked by the magnitude of the perturbation velocity fields.
Alternatively, we also tried a ten-fold increase in viscosity,
whiéh resulted in a rather more constant‘magnitude of perturbation
kinetic energy; buf at Ehe price of even stronger suppression_of
all but the very lowest harmonic components. After‘further exper;
iments with somewhat difficult initial conditions, it was reluc-
tantly . concluded that, with the limited resolution and cpu time
available, it would not be possible at this time to eVolve a
turbulent flow in reasonable eqﬁilibrium with the desired mean

shear profile.
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7.0 Relaxation of Anisotropic Turbulence to Isotropy

One of thé éritical parameters of turbulentiffanspbrt models
is thé rafé at which an initially non-isotropic flow decays to
its asymptotic iéotfopic state. Return-to-isotropy terms appear
exnlicitly, for'eiambie,_in thevtﬁtbulenée closure model of
Donaidson (1973) and that Lumley and Khajeh~Nouri (1973), in

the form of the pressure-strain correlation expression

au'i au'k
P (8x BT )
k i

- This represents; for incompressible flow, a redistribution of tur-

.

bulent kinetic energy among the three'velocity components. A
variety of closure prescriptions have been given for this term.

For example, Donaldson has chosen the Rotta model (Rotta, 1951)

Bu, ou' pd §ixd
Pl *ax, ) =~ a7 W% ™ T3 )
. , )

where q ='(U'iU'i)l/2

is a:scalar measure of the turbulent
velocity field, Xi' is a length scale introdﬁced for dimensional
consiétency (and requires independent specification), and Py is
the density.

VInstead of specifying the rate of return to isotropy in ad-hoc
fashion, ‘one may have recourse to numérical simulation for an ex-~
perimental measure of this'paramétef. It is important to use
directvspectral methods to ensure high accuracy. Toﬁperform such
a simulation, we require a fully three-dimensional closure-free

Navier-Stokes model. The basic model described in section 6.1
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Serves espegially well with the following minor modifications:

(a) theithermal and scalar concentration equations are

ignored;

(b) the vertical boundary conditions are modified to per-

mit general periodic symmetry conditions inthe vertical
(rather than the particular cosine-like or sine-like
conditions previously specified).

To best examine the relaxation-to~isotropy process, it is
useful to start from an axisymmetric turbulent flow, i.e., a tur-
bulent three-dimensional flow field with one axis of symmetry.
The initial flow conditions for such a relaxation problem may
be constructed in the following manner. We begin from a velocity
field V(x,t) which is statistically homogeneous and axially
symmetric about an axis whose direction is described by the
vector n. Suppose we define the second-order two-point moments
of V, namely:

<Vi(§,t)Vj(§f,t')> = Wij(g,g',t,t'h

The Fourier transform of ¥ is given by

‘i’ij(!&,t,t') = [ exp {ik- (:g—gc_')‘i’ij(ﬁ,g',t,t')d(g—g‘)}.

For the axisymmetric case, this may be decomposed into
1 (1) (1)
v &t = o e e ey (B)

(2)

i

+ o e enefP el
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1
where the two vectors e and e are

Here, g(l) is the direction transverse to the axis of symmetry,
and 9(2) is orthogonal to both K and g(l). The functions
®(l)(5) and ®(2)(E) are given by
1 2 2
oK) = <] & x n)-U® |?/[K x 1]
2 2 2
¢( )(E) = <|n-U(K) | >/|K x n|
where U(K) is the Fourier transform of V(x). The function
®(l)(5) represents the modal kinetic energy in the direction
transverse to the symmetry axis n, and ®(2)(§) represents

the modal kinetic energy in the direction orthogonal both to
wave vector K and to n. If the statistical properties of
the initial velocity field are invariant to rotation about the
¢(l)

(K) and Q(Z)(E) are invariant as

symmetry axis, then
well.
A useful 'experimental' measure of the rate of return to

isotropy is provided by the non-dimensional parameter

d |
a € (t)
E2(t) - El(t)
where
E{(t) = 2m[ 4K k2o (1) (k. ¢)
0

-109-



Rg (1)

E,(0)= 12 Eplo)

Figure 7.1
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B (t) = 2r [° ak k%e(?)

0

(K,t)

represent the kinetic energies in the orthogonal directions

L (1)

(K), g(z)(K), respectively, E(t) = El(t) + Ez(t) is

the total kinetic energy, and

oo 2
e(t) = 4n° [ dk K4[®(l)(K,t) + 0 (k01
0
is the total viscous energy dissipation rate. The ratio

E(t)/e(t) -1 describes the rate of fractional decay of total

. : d _ l [ _ . ,
energy, while the ratio 3t E2(t) El(t)»/_Ez(t) E, (t) describes
the time-dependent fractional rate of return to isotropy. Ra(t)

may be considered equivalent to the Rotta constant.

To study the time-dependence of this parameter upon the extent
of anisotropy initially present in a turbulent flow, we performed
two independent experiments. In the first case, the axisymmetric
turbulent velocity spectrum was chosen so that initially all the
e (2)

(K), thus El(0)=0'

E,(0)#0, and the initial flow field was totally anisotropic. 1In

modal kinetic energy was in the direction

N

the second case, the initial conditions were chosen as El(0)= E 4(0),
so that the flow was féirly isotropic to begin with.

Rotta's phenomenological argument suggests that Ra(t) should
be constant in time with a magnitude ~ 2. However, this argument
is predicated upon small departures from isotropic conditions. It
1s interesting, therefore, to see how well this prediction holds
for flows which are initially guite anisotropic. Figure 7.1 dis-
plays the time history of the expression Ra(t) for each of the

two cases studied (the time t is normalized by the large-eddy

circulation time). Somewhat surprisingly, in view of Rotta's
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argument, we sec that for the second case E, Q) = 5

E, (0),
which represents“fairly isotropic initial conditions, the rate of
return to isotropy is considefably less constant than that observed
in the first case E1(0)=0, which began with completely anisotropic
initial structure. This is indicative of large statistical fluc-
tuations in the first case, and suggests that even fairly iso-
tropic turbulent flowé remain in strong disequilibrium for long
peribds of time. That is, isotropic relaxation of turbuleﬁce is
a very slow process. Thus, turbulence closure models which suppose
self-similar asymptotic conditions are strongly suspect in this
regard.

We may note, finally, that these numerical results are roughly

consistent with calculations based upon the Direct Interaction Ap-

proximation turbulence theory of Kraichnan (Herring 1974).
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8.0 Recommendations for Future Research

Although the primary research objective of direct turbulence
simulations was not achieved in the current contract because of
limited computer resources, we remain confident that the use of
spectral methods holds considerable promise for operational
improvement of air quality numerical modeling in a number of
specific applications areas. These include:

(a) more accurate treatment of advection and viscous terms
by means of spectral representations which preserve
better than do finite-difference schemes the true phase
and amplitude structure of such terms;

(b) accurate representation of the advection-diffusion of
point-source and line-source pollutants, as suggested
by the discussion in chapter 53

(c) efficient spectral schemes for accurate representation
of vertical structure and boundary layers, in particular
the use of Chebyshev spectral methods to provide effec-
tively increased resolution at viscous boundaries;

(d) the use of spectral methods, in conjunction with mapping
techniques, for accurate treatment of topography, as,
for example, the modeling of pollutant advection-diffusion
from a highway situated in a valley;

(e) the use of spectral methods for the accurate simulation
of lateral inflow and outflow boundary conditions, with-
out requiring the imposition of ad-hoc one-sided differ-

encing schemes.

We recommend, therefore, that careful investigation be made
of the prospective benefits to be gained by implementation of
these spectral methods within existing air-quality models of
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importance to EPA, in particular, the photochemical air-pollution
model developed at Systems Applications, Inc., and the air-pollu-
tion model developed at IBM.

As to the problem of simulating the turbulent diffusion of
prassive contaminants in fully three-dimensional turbulent sheared
flows by the direct spectral approach of the current effort, we
do not recommend further pursuit of this study at present for two
reasons.

The first of these concerns the timeliness of application of
this research. It does not appear likely that extension of the

present study would provide to EPA, in the near term, the capability

for better estimation of eddy Austauch coefficients for turbulent
diffusion of pollutants in the place of field observations. We
do believe, however, that the prospects for success of a longer-
term research effort remain very good. We do not know of any
fundamental theoretical impediments to the successful numerical
simulation of such turbulent flows by direct spectral methods,
especially in the light of previous recognized achievements in
this area by Orszag and collaborators.

The second reason concerns the prohibitive economics of the
required calculations. Neither the computer core time necessary
for adequate spectral resolution, nor the computer time required
to establish realistic turbulent dynamics, will be available to
us in the near future. At present, such calculational efforts
can possibly only be undertaken by university-affiliated groups
with access to the NCAR computer facility or a comparable installa-
tion. When the computing-resource situation improves, as may be
anticipated, it would be most worthwhile, we believe, to pursue

this study anew.
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Appendix 1

The Data Content of Discrete-Grid Representations

It is conventional practice, in the numerical solution of
many fluid motion problems, to perform such calculations with
respect to a discrete spatial grid. and suitably spatially dis-
cretized versions of the governing differential equations whether
by finite-difference of finite-spectral methods. In this section,
we discuss the underlying assumptions and limitations which inhere
to the discretization method.

Imagine that we wish to estimate the frequency spectrum of a
continuous spatial waveform, f(x), which is periodic with wave-
length L. A harmonic analysis of this waveform might be performed
as follows:

(1) partition the interval L into N equal segments by

the discrete points xp=pr (p=0, ... N-1); Ax=L/N,

where for convenience, N is a power of 2);

(2) tabulate the string of values f(xp) at each of

these points;

(3) employ the Discrete Fourier Transform algorithm
(Appendix 2) to compute the Fourier modes g(kq)

corresponding to the discrete wavenumbers

A ——g.lT.g. q:O’ l'

. NAX ... N/2 .

Note that there is an upper wavenumber cutoff (the "folding" or

Nyquist, frequency N/2) so that we possess no data whatever about
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harmonic components higher than q = ¥ N/2. If we now attempt to
reconstruct the waveform f(x) by inverse discrete Fourier trans-
form upon the truncated set of modes g(Aq), g=0, ... g, the only
data recoverable about the spatial behavior of f(x) 1is precisely
its values at just the discrete points %5 (p=0, ... N-1). That
is, the data content of the truncated discrete spectral represen-
tation of the waveform is precisely equivalent to that contained
in the N distinct functional values f(xp); p=0, ... N-1. There-
fore, the spectral representation of this data contains precisely
N distinct degrees of freedom. To see why this is so, consider
the Fourier series representation of a real function periodic with

fundamental wavelength L, sampled at the uniformly spaced points
X, (p=0, ... N-1), viz:
f(xp) = a, + Z (aq cosg%?g + bq sinz%Fg) .
g=1

If this system of equations is to be unigquely soluble for the set
of Fourier coefficients a's and b's, then we can only specify
a total of N Fourier coefficients. The most general choice of
coefficients which are determinable for the data string f(xo),

f(xN_l) in the absense of any additional information about

the function £, 1is Ereciselz the set

ao, al, bl’ a2, b2 e akﬂélfkkﬁ—l),aﬁ .
2 2 2

Note that the discrete Fourier representation of the function
incorporates exactly as much data about the spatial structure
of the function £(x) as does the discrete string f(xp)

How then do we interpret the correspondence between a real

physical variable which is a continuous spatial function and
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its point-wise representation in a discrete-grid numerical model?
One approach is to assume that the physical variable is sufficiently
smoothly varying; that is, its assigned value at a discrete point
xo is representative of its behavior over some neighborhood X=Xq
of the point in question, although the notion of neighborhood is
not made precise. 1In fact, for highly discontinucus processes,

as, for example, in the propagation of shocks, or small-scale tur-
bulent cascade processes such an assumption is extremely dangerous.
A more satisfactory approach is to consider the discrete-point rep-

resentation as only a "best-fit" to the data contained within the

numerically resolvable scales of the variable. The finite cutoff

wavelength forces us to surrender any detailed data about small-
scale structure which cannot be determined entirely from the re-
solvable larger scales. This interpretation does not require a

notion of smoothness.
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Appendix 2

/
Discrete Fourier Transform Representations

The bulk of the computational effort in the model we have
‘developed is expended in performing discrete Fourier transforms
from discrete three-dimensional real space to discrete three-
dimensional wave space, and vice versa, using the Fast Fourier
Transform (FFT) as discussed in Appendix 4. In this appendix
the discussion is limited only to the discrete three-dimensional
Fourier transform. The discrete three-dimensional Fourier trans-

form pair is defined as follows:

Let f be a three-dimensional field defined over the
Jl.l le J3
Nl X N2 X N3 real-space grid:
(xl, x2, x3) = (Jle. J2Ax J3Ax) Jl=l, ... Nl
J2=l, N2
J3=l, N3.
Let E , be a three-dimensional field defined over the
Kyr Ky K3
N1 X N2 X N3 discrete wave-space grid
= K =l, ... N
K2=l, N2
K3=l, . N3.
Then £ and E - are a discrete Fourier trans-
Jl., J2, J3. Kl" KZ' K3

form pair if (with one choice of normalization)

(aA2.1) F - I I ) I Ml S
y K,, K,, K, N, N_N ) ) ) N
S A Bt i o !

(cont'd)



(J,=1) (K,-1) (J3-1)(K3—l)

(A2.l) + + - f
N2 N3 Jl' J2, J3
{cont'd)
Ny Ny, Ny o (Ky=1) (J,=-1)
{A2.2) fJ 3 3 = Z Z Z e N
177273 Ki=l K2=l K3=l 1
N (K2—l)(J2-l) . (K3—1)(J3—l) -
N2 N3 [l' K2, K
The basis functions are orthogonal in the sense
N v
o t2ﬂi(Ja—l)(K —K3) ;
J?_l N = N &g (K ,K}) (a=1,2,3)
= a o
N . (K, =-1) (J,-T0})
+2
XB e <t & N BB = NBSN (JB' Jé) (B=1,2,3)
K8=l B 8
where

1l, for modulo[(K-K'),N}l=0

6N (K,K") = , 1i.e., the Kronecker
0, otherwise

delta function, modulo N.

Writing the functions in vectorial form

|4
I
[

=
|
=
H
=
=
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wo have

; 271 J- (K-K')
Looe - -

= N
3 N, N

l 2 36N(.,K..’.[_.<')

If £ is a real arra then F : is a conj te-
Il’JZ,J3 Y s Kl,Kz’K3 onjugate

symmetric array (the conjugate symmetry being denoted by a star)

~ ~ *
F )
Kl,K2,K3 = [FKI’ K! X! } ’ where

Ki=1 if K.=1
1

' _ .
Ki—(Ni+2 Ki) if Ki>l

Noting that the wave-space coordinates K, (i=1,2,3) are indexed
relative to one rather than zero and folded relative to the Nyquist
frequency N/2, the following table provides the correspondence
between the computational wave-space coordinate Ki of the algorithm

and the associated non-dimensional physical wavenumber:

K. of DFT algorithm corresponding physical
* wavenumber

N/2 N/2-1

N/2 + 1 N/2

N/2 + 2 -(N/2 -1)

N -1

~123-



Appendix 3

Elimination of Aliasing in Discrete Real-Space Multiplications

This appendix describes, in a simplified two-dimensional con-
text, the algorithm developed by Orszag (1971a) for the efficient
alias-free evaluation of real-space products. In order to help
the reader become fully familiar with such techniques, we have
included all relevant mathematical details.

Let us define the two-dimensional real-space grid (XJl, Y )
2

- . 1 = J X = =
1 JZ.iN 1; that 1is, XJl lA ’ YJ2 J2 by, Ay=Ax.
For compactness we will use the vector notation {é(Jl,
Similarly, we define the two-dimensional wave-space grid E;(kl,k2),

17 k2< g. These are equivalent to the notation of

Appendix 2, but for a shift in coordinate origins. Consider now

for 0 <J
J2).

where - g < k

Y These will be

two real functions of the variables X_ ,
Jio Jdo

denoted as

g
J 1 2

h2 = h(X

defined over the real-space grid. Their product

is fully aliased in the sense that all spectral components |§J>§-app&
falsely, within the spectral domain |K| < g. The problem is to
construct a scheme for evaluation of W such that only those

spectral components for which |§| < g are properly included.
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Define, as in Appendix 2, the two-dimensional discrete

ourier transform pair(l’z).
2T31
A3.1 = £ 1 R =
( ) L Fp =5~ K-J = say, DF
—_ _I—(.‘ —_ —
k| < n/2
' . N N
where ) , |K| < N/2 1is taken to mean - = < K., K.< %
The inverse DFT is
2 K-J
1 - KD
(A3.2) F, = = Jf e =D~ f
K 52 J J J
where ) 1is taken to mean 0 < T J, < N-1
J

J
2mi K-J
_l l - —— ——
W, =D W_=-=%) g_h_e N
K 3 2570
1 + 2mi K'-J 2mi K"-J  _ 2mi K-J
(A3.3) = _—2" Z z GKI e N z HKu’e N e N
N g_ K.‘ K"

By rearrangement of order of summations we have

ﬂl(K—(K +K")) J

(A3.4) WE = ;% é' %neg, K g;e
where

Gy = p~ 1 g5

Hy = ot hy -

(1) The notation K-J is understood to mean the scalar dot product
Kydq+ Kpdy + Kads.
(2) The notation D is shorthand for the inverse Fourier transformation
operation applied to FK-
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(

|
'\3

The orthogonality relationships can be written as

N-1
) e

0

(A3.5)

J1

K1

(A3.

Since |
summation

(Kl + Kl - N).

tion over index J

Therefore,

Similar orthogonal relationships

-
the summation

_2ri (K,-(K!

N 1 1
N

| < 3 |K |

5) = N, if

+ Ki))Jl
o 3 — T + 11
N, if Kl (Kl Kl) modulo N
= 0, otherwise .
< g, then IK + K2| < N and the
-— - 3 " ¥ + n + N
Kl (Kl + Kl) or (Kl Kl ), or

hold for summa-

Therefore, the summation over index J2.

I o5 (K - (K' + K")-J
N — i —_ —
J
- n%, if [k + k" =K
ot 1 1"
] 0 __ -
Kl + Kl = Kl N
'+ "o +
Kl Kl Kl N
and = 0, otherwise
(A3.4) may therefore be written out
] +
+ 11 ] ll= "w__
Kl Kl Kl K2+K2 K2 K1+Kl K1+N
+ ) , +
T ] 0 Vv "
Rp#HR=Ky  KOHEO=K #N Ky 4K =K, +N
+
K! "__ [ w_ —- [] "_
+K l K2+K2 K2 N K1+Kl K1+N
*G ' ¥ H 1" "
Kl’ K2 Kl' K2
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Kll

2 2 2
1} + [1] -— —
and K2 K2 K2 N
] + " =
K2 K2 K2+N
fully as
) +
y “I + " — ‘] n — — l) 1 —_
K2 K2 K2 Bl+Kl K1 N K2+K2 K
_.|_
) W1 n w_
K2+K2—h2+N Bl kl hl N K2+K2
. + A
0 w_ - v n__ — "
K2+K2 K2 N K1+Kl Kl N Ké+K2

K .

2

2

2



whence

(A3.6) W =W + W + W
K_,K -
1 5 Kl’KZ K1+N,K2 Kl N,K2
+ W + W + W
Kl,K2+N K1+N,K2+N Kl—N,K2+N
Wk Nt T ko-N T RN, RN
172 1 r=2 1 rT2
where
Wy o = . G H .
4 l+ "_ [} "w_ 1 ot " "
a b K1 Kl Ka K2+K2 K_b Kl’ K2 Kl' K2

The first term on the right hand side of (A3.6), Wk k. + 1is the
- , 2

1 -1

desired alias-free convolution of GK and H i.e.,the D

K’

transform of the alias-free product of 95 and hJ. Each of

the other terms in A3.6 implies the presence of aliased contri-
bution of the form Klflq, etc. The task now 1is to isolate
the first term from the other eight terms on the right hand side
of (A3.6). To achieve this in economical fashion, Orszag has
introduced the rshifted-grids® procedure. There are a number of

variants of this method, but we will choose the "quartergrid"

scheme as particularly convenient. Let us define the four shifted

grids

— 51 ° 1, --4)

-Pp
where

S = (8, ¢ S )

1 2
P P P
— - - -— . = — + H S = +l,—l .
s;= (L,); 8,= (-1,-1); Sy = (-1,+1) 4= )



(The shifted grids are introduced for the purpose of developing

c:ressions which permit the isolation of the alias-free tcrm.)

For each shifted grid (p=1l,--4), define

2Ti K-J,
. = G, € N =]
_—p —
2mi K-J
(A3.8) h =l e ® 3
(Ig ) K
25 b
and define
®p 1
(A3.9) W =D~ g -h( )
—P —-P
1 2 i K!+K"-K
B I:Z Kz' KE; K" KZ:' GK:'LI Ké HK;I'_’ K% JZ Jz =P ( N ) [( 1 ! l)
1 "2 71 2 1 72
(J+—7) + (RyFKS-K,) (T +—55) ] .
Again using the orthogonality relationships
51
2mi ' "_ .
z Z exp (—ﬁ_) [(K1+Kl Kl) X (Jl+_ZB) +
J., J
1 72
S S S
' 2 2 2’rri * ! * 2
+ " _
(Ry+KJ-K,) (J2+——E4 )] =N e &5 (k¥ —-—34 + K3 —134)
where
KE ’ KZ =0, £ N only.
Thus, evaluating the quadruple sums ) ) for each of the
K! K!
1 2

shifted grids in turn, we find:
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(A3.10a)

Sy ,
= W +iw -i W
Kj,K> K1,K, K1 KotN ~ 5 YKy, K oW
+i W : -i W -w A
+ W, + W - W
Kq-N,K,+N K +N,K,-N K,-N,K,-N
(A3.10b)
5,
W = W -iw + i W + i W
Ky, Ky Ky, K, Ky, Ky +N Ky /K,-N K +N, K,
-iW + W, - W
1 Ky-N, K, WK1+N,K2+N WKi*N,K2+N
+ iwW, - iw,
Ky+d,Ky-N K, -N,K,-N
(A3.10c)
S3 _
W =W, . + i W, -iWw
Ky /K, K, /K Ky +K5+N K, /K, -N
iW,. O+ i W +HW. .
K; +N, K, Ky -N, K, Ky 4N, K+
- W ) - W + W
Ky +N, Ky +N K;+N,K,-N Ky =N, K,-N
(A3.104) S
.._4 _ _ N
. i W, . + 1 W
K; , K, K; /Ky Kl,Kz+N K /K, -N
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(A3.10d) (Cont'd)

- i W + i - W
Kl+N,K2 Kl—N,K2 K1+N,K2+N
+ W + W _ W, -
Ky =N, K +N K +N,K,=N Ky -N,K,-N
Thus:
S S S S
-1 -2 -3 —4 o7
W + W + W + W = 4W
Kl,KZ Kl,K2 Kl’KZ Kl'KZ Kl, K2

whence we have the remarkable result

(A3.11) §p
= 1
W == 7 W ,
Ky, K, 4 Ky Ky
-
p=1l,--4

Finally, by performing one further DFT

(A3.12)

W = DW
Ji 095 Ky Ky

we recover the alias—free product of 95 and hJ.

As outlined above, the grid-shifting procedure requires

twelve DFT operations, namely

G



Orszag shows that it is possible to save half of these operations
by a simple modification to the above scheme, as follows:

(a) use only one diagonal pair of shifted grids, say

(b) perform evaluations (A3.7, 3.8):

(c) replace (A3.11) with

2

— 1 “p
W' = =z 7 W
K] K, 2t

where the prime signifies that W'K K is not yet the alias-
1772
free convolution of GK and HK;

(d) truncate the field W' to the wave-space region

2 2.1/2 N
0 < (Kl + K2) < 5
and let
W = (W' . ) ;
Kl,K2 Kl'KZ TRUNCATED

(e) obtain the alias-free real-space product field by
performing operation (A3.12).

The corresponding algorithm for three-dimensional systems
is considerably more complex in implementation, but is concep-

tually identical.
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Appendix 4

The Fast Fourier Transform

The basic algorithms underlying the Fast Fourier Transform
are well documented in the literature (Gentleman and Sande 1966,
Cooley and Tukey 1965).

The definition of the discrete Fourier transform (DFT) de-
fined over the one-~dimensional string of N data points Dj(j=0,

., N-1) can be written as
(A4.1) T, =
(where we have incorporated VN normalization in each direction,

in contrast tO the one-way 1/N normalization used in Appendix 2)

Explicitly for N=8,

_ 0 0 0
/8 T, = DOW + D{W + DWW + ...
/8 T, = D wO + D Wi o+ D w2 + ...
(A4.2) 0 o 1 X 2 .
/8 T, = DOW + DlW + D,W o+ L.
_ 0 3 6
/8 T, = DOW + DlW + D2W + ...

Naively, to perform the evaluation of T one would compute

K’
directly from (A4.2). This would require 64 complex multiplications
and 56 complex additions. However, the trigonometric function
ij = e2ﬂijk/N = COos g%%£ + 1 sin qgk possesses two important
properties namely:

(1) Periodicity ... WN = ezﬂiN/N = 1, so that for N=8,

we = wo = 1, W o= W, w0 = W2, etc.
(2) Symmetry ... For N a power of two, we may utilize the
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reflections of the cosine and sine functions in the

eight octants: W2 = i, W3 = iW, W4 = -1, W5 = -W, etc.

Hence, expressions (A4.2) reduce to 32 multiplications and

56 additions:

(A4.3)
V8 To =Dy *+ Dy + D, + Dy + D, + D, + Dy + Dy
V8 Ty = Dy + DW + D,i + DjiW - D, ~ D.W - D i - D_iW
V8 T, = Dy + Dji - D, - Dyi + D, + Dgi - D, - D,i
/8 Ty, = Dy + D;iW - D;i + D.W - D, - DiW + D.i - D.W
V8 Ty = Dy -~ Dy +D, = Dy + D, = D + D - Dy
V8 T, = D, - DyW + D2i - D3iW - D, + DW - D6i - D7iW
/8 T, =D, - D;i - D, + Dji + D, = Dgi - D¢ + D1
V8 T, = D, - D,iW - D,i - DyW - D, + DgiW + D6i + DW .

By adroit grouping of terms in (A4.3), it is possible to
reduce the amount of computation still further. Proceeding sys-

tematically, define:

Ay = DO//§
Al = D4//§
A, = Dz//§
A, = Dc//8
A, = D,/V8
A = DS//§
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(Ad.4)

(Cont'd)
= D3//§
= D7//§
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(A4.5) (Cont'ad)

T = ~
5 = €17 Cs
T = -
6 = 2 7 S
T = _
7 C3 C7 .

Excluding the normalization of (A4.4), we have accomplished
the DFT in only 5 complex multiplications and 24 complex additions.
In general, when N 1is a power of two, the Fast Fourier Transform
g log,N complex multiplications
(for N > 32) and only N logzN complex additions. Comparatively,
2

(FFT) performs a DFT in only

the naive approach to (A4.2) requires N2 multiplications and N
additions.

The flow diagram below displays the FFT technique of (A4.4)
and (A4.5). A circle of the form means to add {(subtract)
all the values flowing in from the left and then to multiply by

w'. An empty circle means do nothing to the incoming value.




Notice that the first stage of the calculations, (A4.4),

prrforms a peculiar permutation of the data.

Index before Index after
0 0
1 4
2 2
3 6
4 1
5 5
6 3
7 7

Writing these indices in binary notation, we see why this

process has received the name "bit reversal":

Index before Index after
000 ‘ 000
001 100
010 010
011 110
100 001
101 101
110 011
111 111

This sorting is reguired for all the major variations of
the Fast Fourier Transform algorithm. It can be absorbed into
the computational stages of the FFT, but only at the cost of
doubling the amount of computer storage. The time required fér
this permutation is generally about 25% of the computational
stage time. Thus, it is normally better to trade time for
storage and perform bit reversal explicitly. (Notice that
no additional storage is needed to perform bit reversal, since
all data are exchanged in pairs.)

It is easy to generate the sequence of integers 0, 1, 2,

et~., each from the previous one. 1In binary notation, the process
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may be stated as: add one to the low order bit, and carry upward
if it overflows (becomes larger than one), repeating with higher
order bits until no further overflows occur. Similarly, beginning
with 0, which is certainly the bit reversal of the integer 0, we
generate the reversal of the successive integers by an analogous
process: add 1 to the highest bit of the reversed index; if it
overflows, carry one to the next-lower bit, repeating with lower
order bits until no further overflow occurs.

E.g., for N=8, we start with 000 and add one to the high-
order bit:

100 = 4.

Generate the next reversed integer by adding a high order one:

200-010 = 2.

Again add one:

110 = 6.

And again

210-020~>001 = 1.
And so forth.

In a high-~level language like Fortran, an integer may be
tested for %he value (0 or 1) of the high—prder bit by comparing
it to N/2; the high bit is 1 if the integer is greater than N/2.
If the high bit is 0, then we must test the second highest bit

by comparing to N/4, and so on.



Appendix 5

Construction of Initial Perturbation Flow Field

The initial flow fields specified in this model, as descrihed

in chapter 6, are of two types:
(a) the mean velocity field, with a suitable shear structure
u(z),

(b) the perturbation velocity field, which is comprised of
a large ensemble of small-amplitude incompressible modes,
distributed in statistically homogeneous and isotropic
manner, and obeying a designated spectral power law E(k).
This Appendix describes the process by which such a per-
turbation field is constructed in wave space.

Let us define the two random processes a (k) and @j&),
which are independent, real vector fields, uniformly distributed
over the interval [0,1] satisfying <di(£)aj(5')> = <Bi(E)BjQS;P=O
(k#k') where <--> designates ensemble averaging, and k 1is the
discretized wavenumber vector. The random processes o and B8
can be obtained from any of a variety of pseudo-random number
generation algorithms. Next, define the vector potential field

in wave space as

ak) = (B2 + |2 tn atr) |2 2TiB )

Then, we construct the initial perturbation velocity field

in wave space U(k) as the curl of A(k)

Uk) = ik x A(k)
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which automatically guarantees incompressibility. Finally, the
real-space perturbation velocity field V(x) 1is obtained from

Q(Ej by discrete Fourier transformation.
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