The Fate of Organic Pollutants in a Wastewater Land Treatment System Using Lagoon Impoundment and Spray Irrigation

Y. A. Demirjian, et al

Muskegon County Wastewater Management System Muskegon, MI

September 1983

THE FATE OF ORGANIC POLLUTANTS IN A WASTEWATER LAND TREATMENT SYSTEM USING LAGOON IMPOUNDMENT AND SPRAY IRRIGATION

by

Y.A. Demirjian
R.R. Rediske
T.R. Westman
Muskegon County Wastewater Management System
and
Department of Public Works
8301 White Road
Muskegon, MI 49442

CR806873

Project Officer

Bert E. Bledsoe Wastewater Management Branch Robert S. Kerr Environmental Research Laboratory Ada, Oklahoma 74820

ROBERT S. KERR ENVIRONMENTAL RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
ADA, OKLAHOMA 74820

TECHNICAL REPORT DATA (Please read fustructions on the reverse before co	ompleting)
1. REPORT NO. 2. EPA-600/2-83-077	3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE The Fate of Organic Pollutants in a Wastewater Land	5. REPORT DATE September 1983
Treatment System Using Lagoon Impoundment and Spray Irrigation	6. PENFORMING ORGANIZATION CODE
7. AUTHOR(S) Y.A. Demirjian, T.R. Westman, and R.R. Rediske	8. PERFORMING ORGANIZATION REPORT NO.
Muskegon County Wastewater Management System	10. PROGRAM ELEMENT NO.
and Department of Public Works	CAZB1B
8301 White Road	11. CONTRACT/GRANT NO.
Muskegon, MI 49442	CR806873
12. SPONSORING AGENCY NAME AND ADDRESS Robert S. Kerr Environmental Research Laboratory	13. TYPE OF REPORT AND PERIOD COVERED
Office of Research and Development	Final May 1979 - Nov. 1981
U.S. Environmental Protection Agency	14. SPONSONING AGENCY CODE
Ada, OK 74820	EPA-600/015

15. SUPPLEMENTARY NOTES

16. ABSTRACT Muskegon County Wastewater Management System (MCWMS) is one of the largest facilities of its kind treating on the average of 125 thousand cubic meters of wastewater by extended aeration, lagoon impoundment and spray irrigation. Over 70% of the influent originates from industrial sources including several organic chemical manufacturers. This study was undertaken to determine the fate of the organic compounds within the treatment system. The influent, which is comprised of about 150 organic chemicals at low ug/l to low mg/l concentrations, enter the system and is treated, initially in the biological cells. Over 90% of the total organic compounds are removed from the water at this stage by volatilization, sedimentation into sludge and biological breakdown. Certain compounds preferentially settle in the sludge and are resistant to biodegradation. A few biodegradable compounds are also found in the sludge at less than 1 mg/kg. The water treated in this manner enters two storage lagoons (344 hectare Impoundment for approximately five months helps to further remove organics by further volatilization, sedimentation, biological breakdown and photodecomposition. The organic compounds surviving after this treatment are in most cases less than 1% of their influent concentrations. Spray irrigation of the lagoon impounded water, however virtually removes all remaining organic matter. The draintiles which collect the soil percolated water show only sporadic low concentrations. In addition, after eight years of irrigation, the soils are almost free of organic compounds. The analysis of corn samples did not detect any uptake of man-made organics.

7. KEY WORDS AND DOCUMENT ANALYSIS		
a. DESCRIPTORS	b.IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group
Sewage treatment Waste disposal Water quality Organic wastes	Land application Underdrain systems Muskegon, Michigan Irrigation	68D
13. DISTRIBUTION STATEMENT	19. SECURITY CLASS (This Report)	21. NO. OF PAGES
RELEASE TO PUBLIC	UNCLASSIFIED 20. SECURITY CLASS (This page) UNCLASSIFIED	22. PRICE

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

DISCLAIMER

Although the research described in this article has been funded wholly or in part by the United States Environmental Protection Agency through cooperative agreement number R806873 to the Muskegon County Wastewater Management System and Department of Public Works, it has not been subjected to the Agency's required peer and policy review and therefore does not necessarily reflect the views of the Agency and no official endorsement should be inferred. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

FOREWORD

EPA is charged by Congress to protect the Nation's land, air, and water systems. Under a mandate of national environmental laws focused on air and water quality, solid waste management and the control of toxic substances, pesticides, noise, and radiation, the Agency strives to formulate and implement actions which lead to a compatible balance between human activities and the ability of natural systems to support and nurture life. In partial response to these mandates, the Robert S. Kerr Environmental Research Laboratory, Ada, Oklahoma, is charged with the mission to manage research programs: to investigate the nature, transport, fate, and management of pollutants in ground water; to develop and demonstrate technologies for treating wastewater with soils and other natural systems; to control pollution from irrigated crop and animal production agricultural activities; and to develop and demonstrate cost-effective land treatment systems for the environmentally safe disposal of solid and hazardous wastes.

The purpose of this project was to determine the fate of toxic organics in a slow rate land treatment system. The slow rate system was preceded by both extended aeration and lagoon impoundment. Due to the pretreatment steps prior to land application a majority of the compounds were reduced to nondetectable levels in the liquid. The irrigated water after percolation through the soil profile was found to contain sporatic low concentration of organics. There was no significant accumulation of organic compounds in the soils after seven years of application nor contamination of the corn crop grown. The results of this project have further encouraged the use of natural systems for wastewater treatment.

Clinton W. Hall, Director

Robert S. Kerr Environmental Research

Laboratory

ABSTRACT

Muskegon County Wastewater Management System (MCWMS) is one of the largest facilities of its kind treating on the average of 125 thousand cubic meters of wastewater by extended aeration, lagoon impoundment and spray irrigation. Over 70% of the influent originates from industrial sources including several organic chemical manufacturers. This study was undertaken to determine the fate of the organic compounds within the treatment system. The influent, which comprises of about 150 organic chemicals at low ug/l to low mg/l concentrations, enter the system and is treated, initially, in the biological cells. Over 90% of the total organic compounds are removed from the water at this stage by volatilization, sedimentation into sludge and biological breakdown. Compounds preferentially settling in the sludge are 3,3'-dichlorobenzidine, 2-chloroaniline, alkyl benzenes and 2,4'-diamino-3,3'-dichlorobiphenyl at average concentrations ranging from 26 to 44 mg/kg. These compounds are resistant to biodegradation. A few biodegradable compounds like phenanthrene and naphthalene are also found in the sludge at less than 1 mg/kg, possibly due to their affinity to the oils and greases commonly found in the sludge. The water treated in this manner enters two storage lagoons (344 hectare each). Impoundment for approximately five months helps to further remove organics by volatilization, sedimentation, biological breakdown and photodecomposition. The organic compounds surviving after this treatment are in most cases less than 1% of their influent concentrations. The compounds 2,2'-dichloroazobenzene and diethoxychlorobenzene, however, do not readily volatilize, are not biodegradable and do not accumulate in the sludge and thus appear to elude treatment during the initial two steps. Spray irrigation of the lagoon impounded water, however, virtually removes all remaining organic matter. The draintiles which collect the soil percolated water show only sporadic low concentrations (1 μ g/l) of chloroform, 1,2-dichloroethane and phthalate esters.

In addition, after eight years of irrigation, the soils are almost free of organic compounds except for 2,2'-dichloroazobenzene and phthalates detected in some fields. The analysis of corn samples did not detect any uptake of man-made organics.

The discharges, except for occasional (µg/l) levels of some organics, have been clean. Isolated incidences are apparently due to lagoon seepage, which also contributes to the discharge. Minimization at the industrial source has kept the levels of contamination in the lagoon seepage under control.

This report was submitted in fulfillment of Cooperative Agreement CR806873 by Muskegon County Wastewater Management System and Department of Public Works under the sponsorship of the U.S. Environmental Protection Agency. This report cover the period May 1, 1979 to November 30, 1981, and work was completed as of September 1982.

CONTENTS

Foreword. Abstract. Figures . Tables	in in its second
1. 2. 3. 4. 5.	Introduction
Reference Appendice	es
Α.	Results 65 Water Samples 65 Well Samples 186 Lagoon Seepage Well Samples 196 Soil Samples 21 Sludge Samples 24 Corn Samples 25
В.	Quality Control
С.	Sludge Distribution
D.	Analytical Procedures

FIGURES

Number		Page
1	Sampling locations	18
2	New organic monitoring wells	19
3	Lagoon seepage wells	20

TABLES

Number		Page
1	Treatment Performance 1980	12
2	December 1979 - November 1980 Sampling Program	14
3	December 1980 - November 1981 Sampling Program	16
4	Industrial Sources of Chemicals	24
5	Priority Pollutants Found in Influent Samples During 1980 and 1981	25
6	Additional Organic Chemicals Found in Influent Samples During 1980 and 1981	27
7	Influent Chemicals Detected at Levels Over 50 $\mu g/l$ on the Average	30
8	Influent Chemicals Detected at Levels Between 500 $\mu g/l$ and 10,000 $\mu g/l$ on the Average	30
9	March 1981 Influent Data	31
10	Priority Pollutants Found in the Spillway Effluent and Their Removal Efficiencies During 1980 and 1981	33
11	Additional Organic Chemicals Found in Spillway Effluent and Their Removal Efficiencies During 1980 and 1981	34
12	Results of Air Sampling for Volatile Solvents Over Aeration Cell II, October 1981	37
13	Removal Efficiencies by Metabolic Routes in Extended Aeration	38
14	Average Concentration of Organic Chemicals in Cell II Sludge ($\mu g/kg$) for 1980 and 1981	39
15	Selected Sludge Concentration Factors for Chemicals in Cell II Sludge	40

TABLES (continued)

Number		Page
16	Seasonal Variation in the Storage Lagoons During 1980	43
17	Seasonal Variation in the Storage Lagoons During 1981	43
18	Average Storage Lagoon Concentrations of Organic Chemicals and Removal Efficiencies for 1980 and 1981	46
19	Concentration of Organic Chemicals in East and West Lagoon Sludge ($\mu g/kg$) 1980	48
20	Organic Chemical Levels in Irrigation Water for 1980 and 1981	49
21	Chemical Changes in Well 1B2	53
22	Chemical Changes in Well 2B2	53
23	Chemical Changes in Well LS31B2	53

ACKNOWLEDGEMENTS

The authors would like to express their sincere gratitude by acknowledging the contributions of the following people whose collective efforts have quided this project to a successful end.

To the laboratory staff, especially Dr. William Clark and Mr. Michael Barry for their analytical persistence, Mr. Ray Buhl for not only his fine analytical contributions but also his editorial assistance and to Dr. Avinash Joshi who stepped in as the Laboratory Supervisor during preparation of the final draft and spent numerous hours verifying data, editing and proofreading final copies with the help of his capable assistant Mrs. Donna Rop.

To the Environmental Protection Agency and specifically to the Robert S. Kerr Environmental Research Lab of Ada, Oklahoma for their financial support and to Mr. Bert Bledsoe for his exceptional patience, administrative skills and moral support during this research effort.

To the Muskegon County Board of Public Works for their continued dedication to the goals of a cleaner environment as demonstrated by their committment to the land treatment concept and their financial support for further research.

And to our secretaries, Bertha and Diane, for their efforts in producing the numerous drafts which have lead to this final product.

SECTION 1

INTRODUCTION

The Muskegon County Wastewater Management System began operation in 1973 as a regional land treatment system for Muskegon County, Michigan. The system is currently the largest land treatment works in the United States and consists of a regional collection network, treatment facility, and farm operation designed for reclamation of the nutrient value of the wastewater for agricultural irrigation and ultimate renovation of polluted waters to produce a high quality effluent. Decades of industrial and municipal pollution of the lakes in Muskegon County by the discharge of wastewater have created an adverse situation in terms of resource management, economic development, and overall quality of life in the County. Faced with these problems, the County evaluated numerous alternatives for wastewater treatment and finally chose an innovative, regional, land treatment system as the solution for its water quality problems. The treatment system first operates by collection of regional municipal, industrial wastewater and its transportation to an inland, treatment works. All wastewater was previously discharged directly or indirectly to river and lake systems within the County. After collection, the wastewater is treated by aeration and impoundment before being used as water for agricultural irrigation. The soil acts as a "living filter" for purifiing the treated water, while the nutrient value is reclaimed by crops in the largest farming operation in the County. With this system, a very high

quality effluent is produced. In addition, the sale of crops from farming operations provides a significant revenue source for the system to offset operational costs, thereby reducing the ultimate cost for treatment to the users.

Numerous research efforts by the United States Environmental Protection Agency, the University of Michigan, Michigan State University, the Michigan Department of Natural Resources, and the County of Muskegon have examined the effects of the land treatment system on the site and also the impact on the entire region. These studies have been limited in scope to classical parameters such as nutrients and trace metals in the study of lake and stream water quality, water-soil-crop interactions, and treatment efficiency. All studies to date have shown the treatment system is providing high quality, cost effective wastewater treatment to the area*, while at the same time, creating an acceptable environment for recreational usage and industrial development of the natural resources in the County.

Within the last decade, considerable emphasis on a national level concerning toxic wastes and their effect on the environment has created renewed interest in the Muskegon System. Over 60% of the influent to the treatment work originates from sources typically industrial from pulp and paper, chemical, and general manufacturing operations in the County. The Robert S. Kerr Environmental Research Laboratory in 1977 conducted a preliminary survey of toxic pollutants in the System and identified 56 chemicals, including priority pollutants in the influent to the treatment works (1). This information promoted this present investigation to study the fate of

This intermediate promoted this present threstinguism to study the rate of

^{*} The 1982 User's fee for operation and maintenance is 25.4 cents/1,000 gallons and the debt retirement was an additional 4.5 cents/1,000 gallons.

these and other organic chemicals in the Muskegon System. The objectives of this study are as follows:

- 1) The qualitative and quantitative identification of the organic chemicals that enter the system.
- 2) Defining the variability of organic chemicals in the treatment works over a two year period with emphasis on seasonal cycles and treatment unit processes.
- Determine the ultimate fate of organic chemicals in the System and defining any potential environmental impact.
- 4) Suggest improvements in wastewater pretreatment, design criteria and operational modes in land application sites which are effective in treating various organic chemicals.

The information from the study will be used to not only document the efficiency of land treatment for hazardous waste management, but also for local industrial regulatory programs and the ultimate management of the treatment system. The results of this study can also have a dramatic impact on local industries by saving major capital investments and continued O&M costs for maintaining elaborate pretreatment systems if the land application system is effective in removing organic pollutants.

SECTION 2

SUMMARY AND CONCLUSIONS

The results of the study show that the Muskegon County Wastewater Management System is very effective in treating a variety of chemicals and industrial wastes by utilizing extended aeration, lagoon impoundment, and spray irrigation. Almost 150 chemicals have been identified in the plant influent and traced through the various treatment processes. Volatile solvent concentrations in the influent range from low mg/l levels to trace (1-50 µg/l) amounts of phenols, amines, and aromatic hydrocarbons.

Extended aeration removes over 90% of most of these chemicals by volatilization, sedimentation into the sludge and biological breakdown. The concentrations increase from low µg/l influent levels to mid range mg/l levels in the sludge for 3,3'-dichlorobenzidine, 2-chloroaniline, alkyl benzenes, and 2,4'-diamino-3,3'-dichlorobiphenyl. Lagoon impoundment of aeration cell effluent further removes the organic chemicals by additional volatilization, metabolism, sedimentation, and photo oxidation. Due to the pretreatment steps prior to irrigation, a majority of the influent chemicals have been reduced to non-detectable levels in the liquid, with 99%+ removal of the remaining residuals.

The irrigated water, when percolated through the soil profile and collected as drain tile effluent is found to contain sporatic low concentration (1 $\mu g/l$) levels of chloroform, 1,2-dichloroethane, and phthalate esters. These

chemicals are not detected in the actual discharge waters (NPDES #001 and #002). In addition, the soils do not exhibit any significant accumulation of organic chemicals after seven years of irrigation activities nor has any contamination been detected in the corn crop.

Two chemicals, 2-chloroaniline and 1,2-dichloroethane have been detected in the lagoon seepage waters. The levels have significantly declined during the study period and average 2 µg/l in recent samples. Because these chemicals are related to past and present storage lagoon concentrations, it becomes imperative to manage the levels in the lagoons and influent concentrations to minimize survival of chemicals in the seepage waters. Since both chemicals are removed by more than 98% by extended aeration and impoundment, then by minimizing at the industrial source, the discharge in the seepage waters can be eliminated. Since this research has commenced, and with the help of its findings, the County has passed an amendment to its sewer use ordinance minimizing certain toxic compound discharges into the system. The impact of this minimization requirement or "pretreatment" on local industry has been very slight with only two industries affected. Of these two industries one had to reduce the loading of a single compound while the second required more extensive pretreatment due to a State DNR litigation agreement.

The feasibility of sludge application is also investigated as part of this study. This phase is currently under investigation with results expected in a later report. In order to minimize any long-term effects from continued application of sludges containing organic chemicals, compound accumulating in the sludge also need to be controlled at the industrial sources.

SECTION 3

RECOMMENDATIONS

The County has identified two areas from the study that require management changes to maintain the integrity of the treatment works and decrease the possibility of environmental discharge of chemicals. These areas are lagoon seepage and sludge concentration. The lagoon seepage question is two-fold, first, as it relates to the interception ditches, and second, the northwest corner of the storage lagoons.

In February 1981, the County issued management guidelines, limiting the discharge of organic chemicals by industrial users to the system. Utilizing the extensive data base of industrial loadings and treatment performance data collected by the County laboratory during the study period, limits were established for chemicals that persist by concentrating in the sludge or that survive treatment and thus have a potential for discharge to the environment. The limits will be effective January 31, 1982 and should insure future operation without lagoon seepage or sludge disposal questions being raised. In addition, if monitoring indicates any significant trends which suggest that present limits need to be revised or new compounds need to be controlled, the necessary action will be taken by the County through the powers outlined in the Amendments to Exhibit D (County Wastewater Ordinance).

Lagoon seepage in the northwest corner of the storage lagoon system will be examined in the 201 Facilities Expansion Plan hydrogeological study. When the groundwater dynamics of this area are defined, management strategies will

be developed to control or contain any migration from the storage lagoons. In examination of the sludge accumulation question, results of lysimeter sludge application studies indicate that the organic chemicals in the sludge will not leach through the soil column and that they will undergo some biodegradation. A small field pilot study is being proposed for spring of 1982. If results are favorable, the sludge may be land applied on a larger scale. In order to prevent any future questions from arising concerning sludge management, chemicals accumulating in the sludge will be limited as part of the industrial effluent guidelines. These limits are again subject to the results of future monitoring programs by the County.

The studies that were undertaken at Muskegon will help understand the behavior of many of the man-made organics at treatment facilities employing extended aeration, lagoon impoundment and spray irrigation. Other than volatilization, the two major removal mechanisms include detoxification by bacteria and photo-oxidation by solar radiation. The mechanism of bacterial action should be investigated further with a goal of isolating the working bacteria.

SECTION 4

DESIGN FEATURES OF THE WASTEWATER SYSTEM

The Muskegon County Wastewater Management System employs extended aeration, lagoon impoundment, and spray irrigation to treat an average of 33 million gallons per day (MGD), 125 thousand cubic meters per day (TCMD) of municipal and industrial wastewater. The System operates as a regional treatment facility, serving 13 municipalities and over 23 major industries (including six chemical-related industries). Over 70% of the incoming wastewater can be attributed to industrial discharge.

The System is located on 11,000 acres (4,455 hectares) of sandy, unproductive land in the northeast corner of Muskegon County. Wastewater is collected by six pumping stations and delivered to a central pumping station with a maximum capacity of 56,000 gallons per minute (212 cubic meters/minute). The combined wastewater is pumped through approximately 11 miles (17.2 kilometers) of reinforced concrete pipe (a 66-inch diameter force main) to the Wastewater System.

Initial treatment of the wastewater is first provided by three extended aeration cells. Each cell has a surface area of eight acres (3.24 hectares) and a holding capacity of 42 MG (159 thousand cubic meters). The cells are lined with soil-cement and contain 12 mechanical floating aerators and six stationary platform mixers, with a total combined horsepower of 1020. Operation of the extended aeration cells typically involves utilizing two cells in series with a holding time of 2.5 days. The remaining cell is left

empty to accomodate future flows or, as an emergency treatment basin, to isolate wastewater if an industrial spill of hazardous waste materials occurs. In the cells, biological oxidation takes place, along with some sedimentation of suspended solids and anaerobic digestion of the bottom material. BODs removals for 1980 averaged 68% while suspended solids removed averaged 48%. After aeration, the treated wastewater passes down a concrete spillway to the storage lagoon system. The Wastewater System utilizes two, 850-acre (344 hectares) lagoons with a total combined storage capacity of 5.1 billion gallons (19.3 million cubic meters). The lagoons are encircled by 15 feet (4.6 meters) high dikes with 200 feet (61 meters) as their base width. A 400 ft (122 meters) wide border strip of the lagoon is lined with 8 inches (20 centimeters) of compacted clay, with the remaining bottom area left as native soil. The dike, together with clay border strips, provides 600 ft of filtration for the seepage water. This water is then collected by an interception ditch system surrounding the lagoons. Interception ditch water may then be pumped back into the storage lagoons, or if NPDES water quality criteria are met, it may be discharged to receiving streams. The lagoon system provides further treatment of the wastewater by sedimentation of solids, and biological treatment by aerobic oxidation in the warmer months, and anaerobic metabolism under ice cover. In addition, photochemical reactions can take place to degrade organic chemicals and to cause die-off of bacterial agents. Examination of overall treatment efficiency at this point reveals about 95% of the BOD5 and 93% of the suspended solids are removed by lagoon impoundment and extended aeration.

The storage lagoons are operated by alternately filling each lagoon in the winter months. During irrigation season, the lagoon with the highest water

quality (the one currently not being filled) is discharged into an outlet lagoon with about 14 acres surface area (5.67 hectares). The outlet structure is constructed similar to the aeration cells, with a depth of 12 feet (3.66 meters). This water is then discharged into two ditches which feed the irrigation pumping stations. The lagoons may be operated in series, in parallel, or alternately filled during irrigation season. The lagoons have a winter storage capacity to impound five months influent flow at 42 MGD (159 TCMD). The spray irrigation part of the treatment system is carried out on 5,500 acres (2,327 hectares) of specially-drained farm land. Irrigation volume is related to the capacity of the soil to act as a filter for the water. About 85% of the soil types on the project fall into the categories of Rubicon, Roscommon, and Au Gres sand, all of which are well drained. The remaining soils are clays (Granby and Nester-Tonkey) which are poorly drained. Water is applied to the land by 54 center-pivot irrigation rigs at a rate of 2.5-4 inches (6.4-10.2 cm) per week. The rigs move in a circular path with a radii of 730 to 1,350 feet (223-411 meters) and make one revolution in one to seven days. End spray guns are used in many of the rigs to expand the irrigation area. Water is supplied to the irrigation system by two large pumping stations. The north station has ten 250 horsepower (188 KW) pumps while the south station has four 100 horsepower (75 KW) and seven 250 horsepower (188 KW) pumps. The irrigation fields are drained by an elaborate network of perforated nylon-socked tiles and a series of collection ditches. The drainage network consists of 70 miles (114 kilometers) of drain tile, 19 miles (31 kilometers) of drain pipe, and 10 miles (16 kilometers) of ditches. This system acts to control the groundwater table, direct water flow, and to recollect the renovated water and thus preventing water logging of the land.

Because all irrigated water is intercepted by the drain tiles, the Wastewater System does not operate as a discharge to groundwater, thus protecting usable aquifiers from potential contamination. Over 300 monitoring wells have been installed to ensure the protection of groundwater quality and to study the efficiency of irrigation operations.

Corn is grown in the irrigation fields as both a cash crop and a source for removal of nutrients. The crop, along with the adsorption capacity of the soil, acts to remove nutrients as fertilizer. In addition, the soil acts as a media for bacterial degradation of organic chemicals, which results in a reduction in BOD5. This phase of the treatment cycle acts as a final polish to renovate the quality of the wastewater and to reclaim the nutrients as a usable fertilizer. Considering the sandy soils discussed earlier, the land, in its original state, would be highly unproductive for farming operations. With irrigation, however, the System continues to yield 50+ bushels per acre, 43.5 hectoliters per hectare (near the County average for productive farm land) of corn. This amounts to about one million dollars of revenue from the sale of the crop, which can be applied to reduce operational costs.

The collected water from the drain tiles and lagoon seepage is then discharged to the north via an outfall to Mosquito Creek. Water from the fields on the southern part of the project is discharged to Black Creek. These streams flow eventually to Lake Michigan through inland lakes. The project has operated since May, 1973, and has continuously produced a high quality effluent. Average water quality parameters for 1980 are given in Table 1.

TABLE 1. TREATMENT PERFORMANCE 1980

	Influent (mg/l)	North Outfall 001 Effluent (mg/l)
B0D ₅	242	2.6
Suspended Solids	245	6.5
Total Phosphorus (P)	2.14	0.11
Ammonia (N)	7.68	0.96

The high level of BOD_5 and total phosphorus removal was provided at a cost to the users of \$254 per million gallons. A more detailed discussion of the treatment facility and its operation was presented in several earlier progress reports (2 & 3).

SECTION 5

SAMPLING

Locations and Frequency

Two separate sampling regimes were employed during the study. The first year of the study, December 1, 1979-November 30, 1980, was designed to provide intensive data concerning treatment performance and to identify any potential problem areas. The second year program, December 1, 1980-November 30, 1981, was designed to continue treatment performance monitoring, and also to study soil accumulation and lagoon seepage in a detailed manner.

Sampling stations, sample type, and frequency for the first year are given in Table 2. Similar information for the second year is given in Table 3. Figure 1 shows the location of the various sampling stations monitored during the study. Figure 2 gives the location of the additional lagoon seepage monitoring wells on the dike walls. These wells were added for the special lagoon seepage study.

Collection and Preservation

All water samples collected as two-week composites were taken as daily, 300 ml grab samples in a solvent-rinsed BOD bottle, dried at 100°C for six hours prior to use. The sample was then split into two portions: 1) 40 ml aliquot stored in a teflon-faced, screw-capped glass vial for volatile analysis, and 2) 260 ml aliquot stored in a one-gallon amber glass bottle for semi-volatile analysis. All volatile analysis samples were stored in separate glass vials

TABLE 2 DECEMBER 1979 - NOVEMBER 1980 SAMPLING PROGRAM

Station	Sample Type	Frequency
Influent	2-Week Composite	Monthly, 12-79 through 4-80; then biweekly 5-80 - 11-80
Spillway (biological treatment effluent)	2-Week Composite	Monthly, 12-79 through 4-80; then biweekly 5-80 - 11-80
South Interception Ditch (NPDES #000)	2-Week Composite	Monthly, 12-79 through 4-80; then biweekly 5-80 - 11-80
Drain Tile Discharge #11	2-Week Composite	Monthly, 12-79 through 4-80; then biweekly 5-80 - 11-80
Drain Tile Discharge #19	2-Week Composite	Monthly, 12-79 through 4-80; then biweekly 5-80 - 11-80
Drain Tile Discharge #48	2-Week Composite	Monthly, 12-79 through 4-80; then biweekly 5-80 - 11-80
North Outfall, SW-05 (NPDES #001)	2-Week Composite	Monthly, 12-79 through 4-80; then biweekly 5-80 - 11-80
South Outfall, SW-34 (NPDES #002)	2-Week Composite	Monthly, 12-79 through 4-80; then biweekly 5-80 - 11-80
Outlet Lagoon	2-Week Composite	Bimonthly during irrigation
East Storage Lagoon	4-Point Composite	Monthly, 12-79 through 4-80; then biweekly 5-80 - 11-80
West Storage Lagoon	4-Point Composite	Monthly, 12-79 through 4-80; then biweekly 5-80 - 11-80
Aeration Cell #2 Sludge	Grab	Bimonthly 6-80 through 11-80
East Storage Lagoon Sludge	Grab	Bimonthly 6-80 through 11-80

TABLE 2 DECEMBER 1979 - NOVEMBER 1980 SAMPLING PROGRAM (CONTINUED)

	Sta	tion	Sample Type	Frequency
	West S	torage Lagoon Sludge	Grab	Biweekly 6-80 to 11-80
	Wells:	USGS2-6, LS-34C2, LS-34C3, LS-33B2, LS-31B2, 17A, LS-1B2, LS-2B2, LS-3B2, LS-4B2, LS-5B2, LS-6B2	Grab	2 Wells per month on a rotating schedule
١	Soils:	Circle 11, 19, and 48	Composite as 0' - 1', 1'-2', & 2'-3' intervals	Annual
	Corn:	6 Circles on project plus 3 controls off project	Composite	Annual

15

TABLE 3 DECEMBER 1980 - NOVEMBER 1981 SAMPLING PROGRAM

Ctation	Sample Tune	Гиодиолом
Station	Sample Type	Frequency
Influent	2-Week Composite	Monthly
Spillway	2-Week Composite	Monthly
South Interception Ditch	2-Week Composite	Monthly
North Interception Ditch	2-Week Composite	Monthly
Drain Tile #11	2-Week Composite	Monthly
Drain Tile #19	2-Week Composite	Monthly
Drain Tile #48	2-Week Composite	Monthly
North Outfall	2-Week Composite	Monthly
South Outfall	2-Week Composite	Monthly
East Storage Lagoon	4-Point Composite	Monthly
West Storage Lagoon	4-Point Composite	Monthly
Outlet Lagoon	2-Week Composite	Monthly during irrigation
Aeration Cell #2 Sludge	Grab .	Quarterly
East Storage Lagoon Sludge	Grab	Quarterly

Table 3 DECEMBER 1980 - NOVEMBER 1981 SAMPLING PROGRAM (CONTINUED)

Station	Sample Type	Frequency
West Storage Lagoon Sludge	: Grab	Quarterly
Wells: (See Table 1)	Grab	1 well/month on a rotating schedule
Soils: Circle 11, 19, 48	Composite at 0'-1', 1'-2', & 2'-3' intervals	Irrigation
Corn: 3 Circles on project plus 3 controls off project	Composite	Annua 1
Special Lagoon Seepage Wells:	:	
A1-3, B1-3, C1-3, D1-3, 1-6B2, 34C2	Grab	Monthly 6-81 to 11-81
Air Samples: Cell II	Composite	Daily for 2 Weeks

SAMPLING LOCATIONS

FIGURE 2

FIGURE 3 - LAGOON SEEPAGE WELLS

for each day. Semi-volatile analysis samples were composited daily into the same bottle by station. Storage lagoon samples were collected by compositing four 500 ml samples, taken at the middle of each dike wall in a gallon amber glass bottle. A volatile sample was taken at each station also. Well samples were collected by either bailing the well with a galvanized bailer, or by pumping with Aquamaster 3 HP model 5306 centrifugal pumps. Upon collection, the samples were transferred to a one-gallon amber glass bottle and a 40-ml teflon-faced, screw-capped vial for each station. All water samples were stored at 4°C prior to analysis.

Sludge samples were collected using a ponar dredge and stored in glass jars with teflon liners. Study samples were stored at 4°C prior to analysis. Soil samples were collected using a metal coring device. Ten locations in each circle were cored and composited into one sample. The soil was transferred to a glass jar with a teflon liner and stored at 4°C prior to analysis. Corn samples were collected as dried grain ($\approx 15\%$ moisture) and stored in glass jars with teflon caps. The corn was stored at 4°C prior to analysis.

SECTION 6

RESULTS AND DISCUSSION

Results for the sampling period December 1, 1979 to November 30, 1981 are presented in Appendix A. Results are grouped according to month. Compounds not reported are non-detectable at the detection limits listed in the Methods section. Quality control data is given in Appendix B. All the analytical procedures were adapted from EPA protocol. A complete description of these is in Appendix D.

The results presented detail the systems performance during an 18-month period. The following cycles are studied:

Storage	12-79 to	4-80
Irrigation	5-80 to	11-80
Storage	12-80 to	4-81
Irrigation	4-81 to	11-81

Each phase of the system (influent composition, extended aeration treatment, long term impoundment, sludge application irrigation, discharges and wells) will be discussed in terms of chemical composition, treatment efficiency, and general environmental impact. Lagoon seepage is also discussed in detail as this area is subject to intensive study during the second year. The data not only shows the effects of present loadings, but also historical contributions. This is especially true for soil, sludge, and lagoon seepage data. Because the historical component cannot be quantified, interpretations and conclusions drawn from present data may be changed if future observation results in new information.

A section concerning quality control data is also included. The first five months of the study contain a large portion of quality control analyses to establish the validity of the data and to aid in the interpretation of the results. Utilizing a series of spiked and duplicate samples, the recovery and precision of the results are defined according to the various sample matrices.

Influent Composition

The influent data collected over the study period shows a complex mixture of chemicals entering the wastewater system. Chemical types include chlorinated and aromatic solvents, aromatic amines, chlorinated benzenes, polynuclear aromatic hydrocarbons, sulfides and phenols. The wide variation in loadings and compound types can be attributed to the diversity of industry utilizing the metro system (6 chemical, 1 pulp and paper, 20+manufacturing) and their production campaigns. A review of industrial monitoring data collected to date indicates the grouping of chemicals and industrial sources shown in Table 4.

TABLE 4. INDUSTRIAL SOURCES OF CHEMICALS

Industrial Category	Chemical
Pulp and Paper	Sulfides, Halomethanes, Chlorinated Phenols (di & tri chloro), Substituted Phenols (Vanillin, etc.), Substituted Naphthalenes and Benzenes
Chemical	Aromatic Amines, Solvents, Substituted Phenols, Chlorinated Benzenes, Naphtha- lenes, Substituted Benzenes
Manufacturing	Solvents, Polynuclear Aromatic Hydrocarbons

Loading of compounds from the pulp and paper industry are relatively consistent, as their process discharge does not vary greatly on a daily basis. In contrast, loadings of compounds from the chemical industries may vary over several orders of magnitude.

A total of 50 priority pollutants have been identified as entering the

wastewater system, along with about 97 other organic chemicals. Tables 5 and 6 list the chemicals in these two groups and also give the average influent concentrations during the two-year study period.

TABLE 5. PRIORITY POLLUTANTS FOUND IN INFLUENT SAMPLES DURING 1980 AND 1981

Priority Pollutants	Average Concentration (µg/l)
Acenaphthene	<]
Acenaphthylene	< 1
Anthracene	< 1
Benzene	153
Benzo (a) anthracene	<]
Benzo (a) pyrene	<]
Bis(2-ethylhexyl)phthalate	23
Bromodichloromethane	2
Butyl benzyl phthalate	1
Chlorobenzene	23
2-Chlorophenol	2
Chlorophenylether	<]
Chloroethane	<1
Chloroform	747
4-Chloro-3-methylphenol	3
2-Chloronaphthalene	<]
Chrysene	<]
1,2-Dichlorobenzene	4
1,4-Dichlorobenzene	1
3,3'-Dichlorobenzidine	23
1,1-Dichloroethane	3
l,l-Dichloroethene	<] 720
1,2-Dichloroethane	730
2,4-Dichlorophenol	2 < 1
Diethyl phthalate	1
2,4-Dimethylphenol Dimethyl phthalate	4
Di-n-butyl phthalate	< 1
Ethylbenzene	14
Fluoranthene	18
Fluorene	< 1
Methyl chloride	< 1
Methylene chloride	43
Naphthalene	4
Pentachlorophenol	< 1
Phenanthrene	1
· inclination city	(continued)

TABLE 5. (Continued)

Priority Pollutants	Average Concentration (µg/l)
Pheno1	5
Pyrene	< 1
Tetrachloroethylene	361
Toluene	1,964
Trans-1,2-dichloroethene	6
Trichlorobenzene	< 1
1,1,1-Trichloroethane	93
Trichloroethylene	36
2,4,6-Trichlorophenol	2
Vinyl chloride	$\bar{1}$

TABLE 6. ADDITIONAL ORGANIC CHEMICALS FOUND IN INFLUENT SAMPLES DURING 1980 AND 1981

Compound	Average Concentration (µg/l)
Acetanilide	5
Acetone	2664
Alkyl substituted benzenes	53
Aniline	24
Benzaldehyde	<1
Benzyl alcohol	<1
Butyl benzene	<1
Carbon disulfide	<1
2-Chloroaniline	567
2-Chlorohydroquinone	<1
Chloromethylbenzene	<1
Cresol	10
2,4'-Diamino-3,3'-dichlorobiphenyl	118
2,2'-Dichloroazobenzene	38
1,4-Diethoxybenzene	<1
Diethoxychlorobenzene	21
Dihydroxyphenylethanone	<1
Dimethoxybenzene	1
3,4-Dimethoxyphenol	6
Dimethyl benzaldehyde	2
Dimethyl phenol	<1
Dimethyl disulfide	180
Dimethyl naphthalenes	14
Dimethyl oxetane	<1
1,4-Dioxane	<1
2-Ethoxypropane	3 2
Ethyl aniline	
Ethyl phenol	<1
Acetovanillone	16
Isopropylidene dioxyphenol	8
Methanethiol	<1
2-Methoxyaniline	<1
2-Methoxyphenol	40
Methyl aniline	37
Methyl naphthalenes	8
Naphthol	1 5
N,N-Dimethylaniline	
N-Phenylaniline	<1
Phenylethanone	<1
Phthalic acid	<1
2-Propanol	842
Substituted benzoic acids	1
	(Continued)

TABLE 6. (Continued)

Compound	Average Concentration (µg/l)	
Substituted benzaldehyde	2	
Substituted vanillin	<1	
Thiobismethane	171	
Tributyl phosphate	30	
Diisopropoxychlorobenzene	4	
Trimethyl naphthalenes	11	
Trimethyl phenanthrenes	<1	
Vanillin	6	
Xylene	<1	

Of the priority pollutants the volatile compounds benzene (153 $\mu g/l$), chloroform (747 $\mu g/l$), 1,2-dichloroethane (730 $\mu g/l$), tetrachloroethylene (361 $\mu g/l$), toluene (1,964 $\mu g/l$), 1,1,1-trichloroethane (93 $\mu g/l$) comprise the largest loadings to the treatment works. These materials all originate from industrial usage (parts washing, paint, etc.) or chemical manufacturing. The only semi-volatile priority pollutants comprising significant average loadings are bis(2-ethylhexyl)phthalate (23 $\mu g/l$), 3,3'-dichlorobenzidine (23 $\mu g/l$) and fluoranthene (18 $\mu g/l$). The remaing semi-volatile compounds average less than 10 $\mu g/l$.

Of the additional organic chemicals received, acetone (2,264 μ g/1), 2-chloro-aniline (567 μ g/1), 2,4'-diamino-3,3'-dichlorobiphenyl (118 μ g/1), dimethyl disulfide (180 μ g/1), 2-propanol (842 μ g/1), and thiobismethane (171 μ g/l) are received in high quantitites. The sulfides originate from the pulp and paper industry while the remaing compounds are discharged from chemical manufacturers. The compound, 2,4'-diamino-3,3'-dichlorobiphenyl could not be identified by mass spectral interpretation alone, as its spectrum is similar to 3,3'-dichlorobenzidine. NMR analysis, however, defined the structure as a diphenylene derivative formed by the benzidine rearrangement in the industrial synthesis of dichlorobenzidine.

Overall, about 80% of the chemicals detected are at levels of less than 50 µg/l. The highest concentrations detected for any of the chemicals are 18 mg/l of acetone in the June, 1981 composite and 11 mg/l in the August, 1981 composite. No other levels in excess of 10 mg/l are encountered during the two-year study period. Numerous other compounds including aliphatic hydrocarbons, esters, alcohols, and terpene-related derivatives are frequently

detected; however, for the purposes of the study and because the low environmental significance of the previous materials, only the compounds listed in Tables 5 and 6 were followed in the treatment system.

Considerable differences in concentration ranges are evident in the data. Compounds detected over 50 $\mu g/l$ are given in Table 7. These materials amount to about 10% of the chemicals studied.

TABLE 7. INFLUENT CHEMICALS DETECTED AT LEVELS OVER 50 µg/1 ON THE AVERAGE

Chloroform*
1,2-Dichloroethane*
Benzene
Tetrachloroethylene*
Toluene
1,1,1-Trichloroethane*
Methylene chloride*

Thiobismethane
Dimethyl disulfide
2-Chloroaniline
Acetone
2-Propanol
Alkyl substituted
benzenes
2,4-Diamino-3,3'-dichlorobiphenyl

* EPA Priority Pollutant

Table 8 gives the chemicals detected at levels between 500 μ g/J and 10,000 μ g/I. This group corresponds to about 5% of the total number of influent chemicals examined.

TABLE 8. INFLUENT CHEMICALS DETECTED AT LEVELS BETWEEN 500 µg/1 AND 10,000 µg/1 ON THE AVERAGE

1,2-Dichloroethane*
Chloroform*
2-Chloroaniline

Toluene* Acetone 2-Propanol

* EPA Priority Pollutant

While Tables 7 and 8 classify the compounds on the basis of their averages, any individual sample may contain fewer or larger number of compounds in each category. Using the March, 1981 composite as an example, the following

groupings can be developed:

59 total chemicals 14 chemicals between 50 $\mu g/l$ and 1,000 $\mu g/l$ 45 chemicals less than 50 $\mu g/l$

Table 9 presents the March data in total form.

TABLE 9 . MARCH, 1981, INFLUENT DATA

Priority Pollutants	Concentration (μg/l
Methylene Chloride	70
1,1-Dichloroethane	3
Trans-1,2-dichloroethene	9
Chloroform	541
1,2-Dichloroethane	391
1,1,1-Trichloroethane	62
Bromodichloromethane	4
Trichloroethene	13
Benzene	181
Tetrachloroethene	500
Chlorobenzene	5
Toluene	562
2-Chlorophenol	1
Phenol	4
2,4-Dichlorophenol	1
2,4,6-Trichlorophenol	2
4-Chloro-m-cresol	1
1,4-Dichlorobenzene	2
1,2-Dichlorobenzene	7
Trichlorobenzene	2
Naphthalene	6
2-Chloronaphthalene	1
Dimethyl phthalate	2
Acenaphthylene	1
Acenaphthene	1
Diethyl phthalate	1
Fluorene	1
Chlorophenylether	2
Anthracene	2 2 3 3 2 2
Phenanthrene	3
Di-n-butyl phthalate	3
Pyrene	2
Fluoranthene	
Butyl benzyl phthalate	13
Benzo(a)anthracene Benzo(a)crysene	2 2

TABLE 9 (Continued)

Ac Th 2- Di	(ethylhexyl)phthalate etone iobismethane Propanol methyl disulfide Methoxyphenol	351 181 141 721 78 55
Th 2- Di	iobismethane Propanol methyl disulfide Methoxyphenol	141 721 78
2- Di	Propanol methyl disulfide Methoxyphenol	721 78
Di	methyl disulfide Methoxyphenol	78
	Methoxyphenol	
2-		55
	esol	7
3,	4-Dimethoxyphenol	41
	hydroxyphenylethanone	3 1 2 2
	hyl phenol	1
	opropylidene dioxyphenol	2
	nillin	
	etovanillone	90
	iline	120
	Chloroaniline	770
	thylnaphthalene	12
	-methylnaphthalene	17
	imethylnaphthalene	18
	ibutyl phosphate	15
	bstituted benzene	38
	chloroazobenzene	24
	chlorobenzidene isomer ethoxychlorobenzene	° 291 3

The overall variability illustrated here again relates back to the industrial usage breakdown discussed earlier. It is a combination of batch-to-batch process variation and the change in production campaigns that contribute to the influent concentration levels. In addition, the overall dilution of chemical industry effluent in the system acts to prevent adverse impacts from spot concentration variations over several orders of magnitude. Individual flows for the six industries range from 0.3 MGD to 1.2 MGD. Given the total flow of 33 MGD to the wastewater system, a 30-fold dilution will take place before an effluent reaches the treatment works.

In summary, the influent of the Muskegon County Wastewater Management System contains a large number of potentially toxic chemicals. Concentrations are low, however, as over 80% of the chemicals are less than 50 μ g/l. It should also be noted that highly resistant chemicals such as PCB's and certain pesticides are absent from the influent.

Extended Aeration Treatment

The incoming wastewater is first subjected to an extended-aeration (approximately three days) treatment, as discussed earlier. This consists of two 8-acre (42 MG) aeration cells operated in series. Comparison of the spill-way values as the water leaves the aeration cell illustrates the effects of this treatment.

Average concentrations for priority pollutants and the additional organic chemicals are given in Tables 10 and 11. Overall present removal data are also included.

TABLE 10. PRIORITY POLLUTANTS FOUND IN THE SPILLWAY EFFLUENT AND THEIR REMOVAL EFFICIENCIES DURING 1980 AND 1981

Priority Pollutants	Concentration (µg/l)	Average % Removal
Acenaphthene	•	100
Acenaphthylene	-	100
Anthracene	-	100
Benzene	11	93
Benzo(a)anthracene	-	100
Benzo(a)pyrene	- ,	100
Bis(2-ethylhexyl)phthalate	9	61
Bromodichloromethane	•	100
Butyl benzyl phthalate	. .	100
Chlorobenzene	<1	99+
2-Chlorophenol	<1	99+
Chlorophenylether	-	100
Chloroethane	-	100
Chloroform	86	89
4-Chloro-3-methylphenol	· -	100
• .		(Continued

Priority Pollutants	Average Concentration (μg/l)	Average % Removal
2-Chloronaphthalene	_	100
Chrysene	< 1	99+
1,2-Dichlorobenzene	< 1	99+
1,4-Dichlorobenzene	-	100
3,3'-Dichlorobenzidine	6	74
1,1-Dichloroethane	< 1	99+
1,1-Dichloroethene	-	100
1,2-Dichloroethane	164	78
2,4-Dichlorophenol	< 1	99+
Diethyl phthalate	-	100
2,4-Dimethylphenol	_	100
Dimethyl phthalate	_	100
Di-n-butyl phthalate	< 1	99+
Ethyl benzene	< 1	99+
Fluoranthene	< 1	99+
Fluorene	<u>-</u>	100
Methyl chloride	<u>-</u>	100
Methylene chloride	31	28
Naphthalene	. <1	99+
Pentachlorophenol	- -	100
Phenanthrene	< 1	99+
Phenol	5	0
Pyrene	-	100
Tetrachloroethylene	31	91
Toluene	34	98
Trans-1,2-dichloroethylene	< 1	99+
Trichlorobenzene	- -	100
1,1,1-Trichloroethane	9	90
	2	
	$\overline{1}$	
Vinyl chloride	•	100
Trichloroethylene 2,4,6-Trichlorophenol	9 2 1 -	94 50

TABLE 11. ADDITIONAL ORGANIC CHEMICALS FOUND IN SPILLWAY EFFLUENT AND THEIR REMOVAL EFFICIENCIES DURING 1980 AND 1981

Compound	Concentration (µg/l)	Average % Removal
Acetanilide Acetone	< 1 1258	99+ 53 (Continued)

TABLE 11. (Continued)

Compound	Concentration (µg/l)	Average % Removal
Alkyl substituted benzenes Aniline Benzaldehyde Benzyl alcohol Butyl benzene Carbon disulfide 2-Chloroaniline Chloromethylbenzene Cresol 2,4'-Diamino-3,3'-dichlorobipl 2,2-Dichloroazobenzene 1,4-Diethoxybenzene Diethoxychlorobenzene Dihydroxyphenylethanone Dimethoxybenzene 3,4-Dimethoxyphenol 3,4-Dimethylphenol Dimethyl benzaldehyde Dimethyl disulfide Dimethyl disulfide Dimethyl naphthalenes Dimethyl oxetane 1,4-Dioxane N-Ethylaniline 2-Ethoxypropane Ethyl aniline Ethyl aniline Ethyl phenol Acetovanillone Isopropylidene dioxyphenol 2-Methoxyphenol Methyl aniline Phenylaniline N-Phenylaniline	19 1 < 1 < 1 - - 92 - 1	
· · ·		(Continued)

TABLE 11 (Continued)

Compound	Concentration (µg/l)	Average % Removal
Trimethyl naphthalenes	5	55
Trimethyl phenanthrenes	-	100
Vanillin	< 1	99+
Xylene	-	100

The data show a majority of the chemicals in the influent are removed by extended aeration treatment. Four processes may take place in this treatment: loss to atmosphere by aeration of volatile materials, loss by bacterial metabolism of labile materials, sedimentation, and concentration of recalcitrant materials through the system. Atmospheric loss via aeration can be attributed to be the mechanism for removal of almost half of the priority pollutants present as they are classed as volatile materials. On a weekly basis, as the February, 1980 sample shows, chloroform drops from 1100 to 91 μ g/l, 1,2-dichloroethane from 1900 to 500 μ g/l, and benzene from 160 to 3 μ g/l from influent to spillway. Chloroform removal reported here is consistent with levels found by the University of Cincinnati (11) as they noted a reduction of 80 μ g/l. The same study found chloroform levels over the aeration cells to range from 100 to 200 μ g/M³, which is far below the OSHA threshold limit value (TLV) of 50,000 µg/M³ for an 8-hour, 5-day week. Air samples, collected as part of the study gave similar results. The data are given in Table 12.

TABLE 12. RESULTS OF AIR SAMPLING FOR VOLATILE SOLVENTS OVER AERATION CELL II, OCTOBER, 1981

		Solvent (µg/M ³)	
Date	Chloroform	1,2-Dichloroethane	Toluene
10/14	98	72	100
10/15	85	51	92
10/20	110	63	130
10/21	65	42	85
10/22	130	81	70

Using the average influent concentrations for these three solvents, the pounds per day lost to the atmosphere amount to 156 for chloroform, 133 for 1,2-dichloroethane, and 467 for toluene. The loss, spread over two 8-acre aeration cells, however, is diluted sufficiently to prevent any potential public health problem from occurring.

Atmospheric loss via aeration probably is also the major mechanism for removal of other compounds including methylene chloride, 1,1-dichloroethane, trans-1,2-dichloroethylene, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, bromodichloromethane, chlorobenzene, and ethyl benzene as metabolic breakdown would be very slow. $^{(12)}$ Thiobismethane, dimethyl disulfide, acetone, and isopropanol could be removed by combinations of volatilization, chemical oxidation (sulfides only), and metabolism. These compounds may be produced in situ by metabolic routes as sulfides are products of anaerobic digestion while alcohols and ketones are oxidative metabolites. $^{(13)}$ These compounds also have considerable water solubility which probably acts to reduce volatilization. This is noted by the lower removal efficiency of each chemical (thiobismethane 82%, dimethyl disulfide 72%, acetone 53%, 2-propanol 30%). The efficient treatment of volatile

organics is very important as 10 of the 12 compounds listed in Table 7, as present in the influent at levels greater than 500 μ g/l, are volatile. The data shows between 89 and 100% removal of most priority pollutant influent volatile organics by the aeration process. Such efficiency is not to be achieved by most conventional, short-term aeration, activated-sludge type systems. (14) The only volatile compound not consistently averaging high removal levels is 1,2-dichloroethane. The removal of this compound averages 78%. This material also has a water solubility of approximately 1%, which would act to keep the chemical in solution and inhibit volatilization. Loss via microbial metabolism can be postulated for many of the phenolic and aniline compounds entering the system. Table 1 $\hat{3}$ summarizes some of the weekly removals observed after an extended aeration treatment.

TABLE 13. REMOVAL EFFICIENCIES BY METABOLIC ROUTES IN EXTENDED AERATION

Compound	Levels (µg/l)	% Removal	Sample Date	2-Year Ave Removal
2-Methoxy phenol	78 to <1	100	3/80	93
Methyl aniline	320 to 48	85	6/80	65
Aniline	5 to <1	100	2/81	96
Acetovanillone	61 to <1	100	1/81	94
Isopropylidene dioxy phenol	30 to 8	74	1/81	50

These chemicals show no accumulation in the sludge from aeration Cell II, and are not volatile. Any loss should, therefore, be by metabolic breakdown.

Sludge accumulation does occur for many types of influent chemicals as shown by the average concentration data for Cell II in Table 14. These chemicals include the alkyl substituted benzenes (present as a homologous series centering around dodecylbenzene), naphthalenes, chlorinated aromatic amines, and polynuclear aromatic hydrocarbons. Concentration factors for selected compounds are given in Table 15. These values are based on averages of influent data and sludge data.

TABLE 14. AVERAGE CONCENTRATION OF ORGANIC CHEMICALS IN CELL II SLUDGE (µg/Kg) FOR 1980 and 1981

Priority Pollutants	Average
Butyl benzyl phthalate	280
Benzo(a)anthracene	60
Bis(ethylhexyl)phthalate	4,200
1,4-Dichlorobenzene	200
1,2-Dichlorobenzene	320
Di-n-butyl phthalate	340
3,3'-Dichlorobenzidine	44,000
Fluoranthene	230
Fluorene	140
Naphthalene '	580
Phenanthrene	810
Phenol Phenol	240
Pyrene	200
Toluene	730
Additional Organic Compounds	
2-Chloroaniline	26,600
Cresol	1,100
2,2'-Dichloroazobenzene	1,400
Diethoxychlorobenzene	4,000
Dimethyl naphthalenes	9,400
2,4'-Diamino-3,3'-dichlorobiphenyl	35,000
Methyl naphthalenes	2,600
	40,000
Substituted alkyl benzenes	
	7,300 800

TABLE 15. SELECTED SLUDGE CONCENTRATION FACTORS FOR CHEMICALS IN CELL II SLUDGE

	Avg. Sludge Conc. (μg/l)	Avg. Influent Conc. (μg/l)	Conc. Factor
Phenanthrene	810	1	810
Bis(ethylhexyl)phthalat	e 4,200	23	183
3,3'-Dichlorobenzidine	44,000	23	1,910
2-Chloroaniline	26,600	567	47
Creso1	1,100	10	110
2,2'-Dichloroazobenzene	-	38	37
Diethoxychlorobenzene	4,000	21	190
2,4'-Diamino-3,3'- dichlorobiphenyl	35,000	118	300
Alkyl substituted benzenes	40,000	53	755
Methyl naphthalene	2,600	8	325
Dimethyl naphthalene	9,400	14	670
Trimethyl naphthalene	7,300	11	663
Naphthalene	580	4	145

Compounds with high concentration factors such as phenanthrene and naphthalenes have been shown to biodegrade in an aerobic aqueous environment. (19) The accumulation of these compounds in the sludge can be partially attributed to their affinity to the oils and greases common to sludge.

The concentration of alkyl substituted homologues of naphthalene far exceeds that of the parent compound, and this is consistent with a study recently completed at the University of California. (20)

Other compounds such as 2-chloroaniline, 3,3'-dichlorobenzidine, and 2,4'-diamino-3,3'-dichlorobiphenyl due to their resistance to biodegradation, and tend to either appear in the sludge or remain in the aqueous phase.

Alkyl substituted benzenes (C_{10} - C_{14}) originate from linear alkyl benzene sulfonate (LAS) detergents which are used domestically as well as once manufactured locally. The accumulation of these compounds in the sludge is

probably due to their low biodegradability and low water solubility.

Aeration cell sludge appears to be at equilibrium as over two years of data collection has shown no trend of increasing or decreasing chemical accumulation. Variations in concentration are partially resultant from sampling and experimental differences, but primarily due to non-homogeneity within the sludge itself.

Examining the overall performance of extended aeration, only 15 of the 135 influent chemicals have been detected at levels greater than 50 µg/l after treatment. These include toluene, chloroform, 1,2-dichloroethane, dimethyl disulfide, phenol, 2-chloroaniline, 2-propanol, 2-methoxyphenol, methylene chloride, acetone, benzene, tetrachloroethylene, methyl aniline, alkyl substituted benzenes, and 2,4'-diamino-3,3'-dichlorobiphenyl. Of these compounds, only 4 are consistently above or near 50 Pg/l. They are chloroform (86 μ g/I), 1,2-dichloroethane (164 μ g/I), dimethyl disulfide (50 μ g/I), and 2-chloroaniline (92 μ g/1). Differences such as these can be attributed again to variations in industrial loadings. Generally, removals for most compounds are better during summer months than winter, probably due to higher temperatures increasing volatilization and metabolism. This is evident when comparing February, 1980, and September 8-19, 1980, in terms of the removal of 1,2-dichloroethane (1900 - 580 μ g/l vs 780 - 42 μ g/l), and 2-chloroaniline (410 - 80 μ g/l vs 330 - 10 μ g/l). Even sporadic high levels such as $1250 \mu g/l$ benzene entering the system during the second July, 1980, composite and the 120 µg/l 3,3'-dichlorobenzidine entering during the May, 1980, composite did not result in higher levels leaving the spillway.

In summary, the large volume, extended aeration treatment employed appears to be highly effective in handling daily loadings and even sporadic shock levels as efficient removal is achieved by volatilization, metabolism, sludge concentration, or combinations of these mechanisms for most compounds. A majority of the overall removal of organic chemicals occurs in this unit of the treatment process. Even though the concentration of certain chemicals in the sludge does represent a removal from the liquid phase, continued accumulation may prohibit future land application of aeration cell sludges. Long-Term Impoundment

The storage lagoon system acts to further treat the wastewater by facilitating additional volatilization, metabolic utilization, photo-oxidations, and settling processes. The tremendous volume of the lagoon system also provides a large "buffer" capacity to adsorb any short-term shock load that may pass through the extended aeration treatment. Both composition and concentration exhibit seasonal patterns with the highest levels and number of compounds being found when the lagoons are under ice cover. Lack of volatilization and the slow nature of anaerobic metabolism prevent efficient chemical removal during this period. This is illustrated in Tables 16 and 17 for 1980 and 1981 data respectively.

TABLE 16. SEASONAL VARIATION IN THE STORAGE LAGOONS DURING

	·1	980	·	
		Concentrati		
	March,	1980	August,	1980
Compound	E. Lagoon	W. Lagoon	E. Lagoon	W. Lagoon
Chloroform	13	1	6	1
Bis(ethylhexyl)phthalate	-	-	2	2
2-Chloroaniline	4	- 1	8	2
	2	۱ 2		2
Dichloroazobenzene	۷	3	4	۷
Alkyl substituted benzenes	-	-	2	-
Tributyl phosphate	10	19	-	-
Benzene	3	2	-	-
l,l,l-Trichloroethane	2	2	-	-
Pheno1	I	-	-	-
Methylene chloride	4	3	-	-
l,2-Dichlorethane	68	51	9	-
Toluene	-	1	-	-
Dimethyl disulfide	1	2	-	-
2-Ethoxy propane	35	2	-	-
Methyl aniline	1		-	-
3,4-Dimethoxyphenol	4	-	-	-
2,4'-Diamino-3,3'-dichloro	- 2	_	_	-
biphenyl				
_				
Total	·	16		6

TABLE 17. SEASONAL VARIATION IN THE STORAGE LAGOONS DURING 1981

	13	Concentration	$n \left(\sqrt{a}/1 \right)$	
•	March,		August,	1981
Compound	E. Lagoon	W. Lagoon		W. Lagoon
Chloroform	25	18	. 1	15
1,2-Dichloroethane	10	12	ł	13
Tetrachloroethene	12	17	- 1	13
Toluene	12	17	ř.	9
Acetone	53	1	<u>-</u>	= _
2-Chloroaniline	48	7	6	37
Cresol	1	, -	-	<i>57</i>
1,1,1-Trichloroethane	-	_	_	3
2,4'-Diamino-3,3'-Dichloro- biphenyl	22	-	-	-
2,2'-Dichloroazobenzene	16	1	2	28
Diethoxychlorobenzene	7	ì	<u>-</u>	-
3,4-Dimethyl phenol	-	i	-	~
			(cc	ntinued)

TABLE 17. (Continued)

	,			······································
	C	oncentration	(µg/l)	
	March,	1981	August,	1981
Compound	E. Lagoon	W. Lagoon	E. Lagoon	W. Lagoon
	-			
Dimethyl disulfide	<u>1</u>	- .	-	-
Dimethyl naphthalenes	7	- '	-	-
1H-Indole	6	-		-
Isopropylidine dioxyphenol]	5	Ī	3
Methyl aniline	12	-	_	5
Phenyl ethanone	2	_	-	-
Trichloroethylene	_		_	1
Alkyl substituted benzenes	11	-	-	-
Thiobismethane	8	-	-	-
Tributyl phosphate	j	-	-	-
Trimethyl naphthalenes	8	-	_	_
Methyl naphthalenes	2.	-	-	-
Total	2	2		4

Differences in concentration between the two storage lagoons is from different flow patterns employed in the filling of each lagoon. Higher concentrations and numbers of compounds are found in the lagoon that is being filled. Both Tables 16 and 17 show about 20 compounds present during winter months, with only chloroform and 1,2-dichloroethane near 50 µg/l in 1980 and acetone and 2-chloroaniline at that level in 1981. The other chemicals average 10 µg/l, which is a very low level and at the recommended detection limit for EPA priority pollutants (4&5). Water that is used for irrigation is drawn from the lagoon with the longest residence time (east lagoon in 1981). Using the August, 1981, data as an example, the 100+ compounds entering the system are reduced to only 5 (chloroform, trichloroethylene, 2-chloroaniline, isopropylidene dioxyphenol, and 2,2'-dichloroazobenzene) at levels less than 10 µg/l by the extended-aeration, lagoon-impoundment treatment prior to irrigation.

Dichloroazobenzene does not show a seasonal variation with higher lagoon con-

centrations during the winter. This compound could also be dichlorodiphenyl hydrazine. A distinction has never been made, as they both chromatograph as the azo compound. This chemical exhibits a trend of increasing concentrations during summer months. A recent study $^{(15)}$ has demonstrated the conversion of certain chlorinated anilines to chlorinated azobenzenes by photochemical oxidation. Such a condensation reaction may be occurring in the storage lagoon to convert the 2-chloroaniline to 2,2'-dichloroazobenzene, thus increasing the concentration of the latter chemical during periods without ice cover.

Table 18 gives the average storage lagoon concentrations and pollutant removal efficiencies during the two-year study. Out of the original list of 125 chemicals, 35 have survived the impoundment phase of treatment. Of this group, only 18 are detected sufficient times or in great enough quantities to average 1 μ g/l or more. One of the key functions of long term storage is to further degrade the low quantities of chemicals left after extended aeration. The large surface area, coupled with wind action, provides an excellent mechanism for volatilization of solvent chemicals. Only one solvent, 1,2-dichloroethane persists at greater than 10 μ g/l (average 14 μ g/l). This concentration represents, however, 98% removal of the influent loading.

Metabolic and sedimentation routes remove heavier chemicals with 2-chloro-aniline being the only non-volatile to persist at> 10 μ g/l (actual average 11 μ g/l). Most of the chemicals in Table 20 are loaded into the system at 50 μ g/l or greater. With a few exceptions, such as isopropylidene dioxy-phenol, alkyl benzenes, tributyl phosphate, and diethoxychlorobenzene, treatability could probably be enhanced by limiting the influent concentrations.

The latter group of chemicals, however, show definite resistance to treatment by either extended aeration or impoundment.

TABLE 18. AVERAGE STORAGE LAGOON CONCENTRATIONS OF ORGANIC CHEMICALS AND REMOVAL EFFICIENCIES FOR 1980 AND 1981

Priority Pollutants	Average Concentration (µg/1)	Average Removal (%) From Extended Aeration	Average Removal (%) Total
Benzene Bis(2-ethylhexyl)phthalate 2-Chlorophenol Chloroform 3,3'-Dichlorobenzidine 1,2-Dichloroethane Methylene chloride Phenol Pyrene Tetrachloroethylene Toluene 1,1,1-Trichloroethane Trichloroethylene 2,4,6-Trichlorophenol Additional Organic Compou	<pre></pre>	93 61 99+ 89 74 78 28 0 99+ 91 98 90 94 50	99+ 87 99+ 99 99+ 98 99+ 60 99+ 99+ 99+
Acetone Acetovanillone Alkyl substituted benzenes Carbon disulfide 2-Chloroaniline 2-Chlorohydroquinone 2,4'-Diamino-3,3'-dichlorobil Cresol 2,2'-Dichloroazobenzene Diethoxychlorobenzene Diethoxybenzene 3,4-Dimethoxyphenol Dimethyl disulfide Dimethyl naphthalenes Isopropylidine dioxyphenol Methyl aniline Methyl naphthalenes N,N-Dimethylaniline 2-Propanol Thiobismethane Tributyl phosphate	1 < 1 3 < 1 11 < 1 1 7 2 < 1 < 2 < 1 <	53 94 64 99+ 84 99+ 56 90 53 52 99+ 67 72 71 50 65 75 80 30 82 60	99+ 99+ 99+ 99+ 99+ 99+ 99+ 99+ 99+ 99+

Sedimentation of compounds associated with solids does contribute a significant part to the overall treatment in the storage lagoons as sludge blankets are located at the inlets of each lagoon. A sounding study conducted in 1980 revealed a thin sludge blanket averaging a 250-yard radius, .75 inches deep in the west lagoon and a 550-yard radius, 4 inches deep in the east lagoon (Appendix C).

Representative sludge quality data for the east and west lagoon sludges are given in Table 21. The chemical makeup is essentially the same as Cell II sludge with, however, a general reduction in concentration of an order of magnitude. The alkyl benzenes, 2-chloroaniline, 3,3'-dichlorobenzidine and 2,4'-diamino-3,3'-dichlorobiphenyl are in greatest concentrations in the sludge. From this information, it is evident that the chemicals associated with the suspended solids in the spillway effluent settle out quickly in the storage lagoons. A small, dissolved fraction of these chemicals also exists which results in the water levels observed.

In summary, the lagoon impoundment of the wastewater provides an efficient means to treat residual chemicals after extended aeration. Through sedimentation, volatilization, and metabolic mechanisms, a large portion of the spillway chemicals are removed. Because of seasonal cycles in the storage lagoon system, concentrations are higher in the winter than in the summer.

TABLE 19. CONCENTRATION OF ORGANIC CHEMICALS IN EAST AND WEST LAGOON SLUDGE (µg/Kg) 1980

Priority Pollutants	10/31, East	11/18, West
Bis(ethylhexyl)phthalate	4,400	11,700
Chrysene	310	-
3,3'-Dichlorobenzidine	4,000	11,200
Di-n-butyl phthalate	600	-
Ethyl benzene	4	-
Fluoranthene	220	1,260
Naphthalene	60	50
Phenanthrene	-	200
Toluene	3	-
Additional Organic Compounds		
2-Chloroaniline	5,700	2,500
2,2-Dichloroazobenzene	940	440
2,4'-Diamino-3,3'-dichlorobiphenyl	13,100	52,000
Diethoxychlorobenzene	460	90
Dimethyl naphthalenes	820	1,400
Methyl naphthalenes	560	420
Substituted benzenes	17,600	17,000
Trimethyl naphthalenes	1,200	2,200

Irrigation

After impoundment, water is pumped into the outlet lagoon and then to crop irrigation. Examining the composition of the outlet lagoon reveals only 6 compounds are present. With the exception of sporadic occurrences of bis(ethylhexyl)phthalate being present (possible laboratory contamination), concentrations of organics are well below 10 µg/l prior to irrigation. Selected examples of organic chemical levels in irrigation water for 1980 and 1981 are given in Table 20.

TABLE 20. ORGANIC CHEMICAL LEVELS IN IRRIGATION WATER FOR 1980 AND 1981

	Concentration (1g/1)			
Compound	June	980 August	June	81 Augus t
,2-Dichloroethane	1	1	< 1	1
Chloroform	1	1	1	< 1
Bis(ethylhexyl)phthlate	7	-	-	-
2-Chloroaniline	4	2	1	1
2,2'-Dichloroazobenzene	4	2	7	2
1,1,1-Trichloroethane	<1	<1	<]	1

These reductions, with the exception of 2,2'-dichloroazobenzene, correspond to 99+% removal prior to irrigation. Again, the 2,2'-dichloroazobenzene level may partially be from photochemical condensation of 2-chloroaniline as discussed earlier. (15)

Results of the drain tile analyses illustrate the treatment of the irrigated outlet lagoon water after passing through the soil. Trace levels of phthalate esters and herbicides ($1 \mu g/1$) appear in the drain from May to November in 1980 and 1981. This corresponds to crop treatment with simazine and atrazine, and irrigated water leaching herbicides and possibly phthalates from drain tiles.

Levels of 1 μ g/l chloroform and 1,2-dichloroethane did occur in the August and November sample series for 1980 and 1981. Chloroform and 1,2-dichloroethane breakthrough is limited to the north fields as DT 48 contained no measurable levels of these materials. Fields south of Apple Avenue (drained by DT 48) receive lower hydraulic loadings which could account for the absence of these chemicals at this station. The levels are, however, extremely low. In examining 1981 results for drain tiles, breakthrough of chloroform and 1,2-dichloroethane at 1 μ g/l levels is noted in the April through August samples on a sporadic basis for DT 11 and DT 19. The sporadic nature of these results probably reflects the difficulty of obtaining precise analytical data at the detection limit of the test. Overall, the drain tile effluent shows high quality treatment is taking place in the soil matrix.

The fate of chemicals applied to the soil is examined in the second year of research by an initial sampling in November, 1980, and subsequent monthly samples taken from April to August of 1981. The results show phthalate esters and xylene distributed in the soil column at 1,2, and 3 foot intervals. One chemical 2,2'-dichloroazobenzene, is located only in the surface sample. Levels range from 0.05 to 9.0 mg/Kg for phthalates, <0.05 mg/Kg to 1.0 mg/Kg for xylene, and <0.05 to 0.20 mg/Kg for 2,2'-dichloroazobenzene. The variability of phthalate data indicates possible laboratory contamination problems. For example, 8.3 mg/Kg of bis(ethylhexyl)phthalate is reported for Circle 48, 0-1 foot on May, 1981. Samples from April to June, 1981 are <0.05 mg/Kg for both dates. No rationale for such data can be given, except for laboratory contamination. Consequently, phthalate data for soil samples is of limited value. Xylene is an ingredient in the dispersing agent (crop oil) used to

apply herbicides to the farm land. It is not detected in any significant quantities in wastewater samples, so its distribution is resultant from herbicide application.

The residuals of 2,2'-dichloroazobenzene are from irrigation water loadings. Because of the possible photochemical condensation of 2-chloroaniline and loadings applied in past years of operation, the dynamics of this material cannot be determined. The levels are low and confined to the first foot of soil, suggesting minimal environmental impact from potential leaching or future accumulations. Given the analytical variability of the numbers (0.15 mq/Kq to <0.05 mq/Kq), it is difficult to speculate if the levels are increasing, decreasing, or at equilibrium. Only additional monitoring can answer these questions. The most important information gained from the soil samples is the fact that no significant accumulation for any of the influent chemicals is noted. The possibility exists for levels of chemicals, below the water detection limit, to concentrate in the soil matrix to high levels. After 7 years of operation, this has not occurred in the wastewater system. Samples of corn collected at harvest in 1980 and 1981 revealed no translocation of wastewater organic chemicals. Numerous aldehydes, esters, substituted phenols, fatty acids, and hydrocarbons are noticed, but similar compounds are found in control samples taken from corn fields in other counties. None of the 125 organic chemicals identified in the influent are detected in the corn samples.

Lagoon Seepage

The system is designed to prevent lagoon seepage from migrating off the project by two interception ditches surrounding the north, east, and south

boundaries, and purge wells along the west. Monitoring of the lagoon seepage wells (Figure 3) on the western side (2B2 and 3B2) are found to contain $5 \mu g/1$ of 1,2-dichloroethane while 1B2, 4B2, and 5B2 contain no detectable organics. Chloride data for 2B2 and 3B3 are 132 and 155 mg/l respectively while 4B2 and 5B2 are 5 and 1 mg/l. This suggests a localized groundwater migration in the northwest direction towards 2B and 3B wells. Chloride levels of 2 and 1 mg/l in 2C2 and 3C2, however, show no migration approximately 500 ft beyond the B well cluster. It seems that this migration is localized to 2B and 3B areas. Monitoring of the wells in 1981, however, reveal 1,2-dichloroethane (1 4g/l) and several aniline homologs present at 1B2. Chemical changes in wells 1B2 and 2B2 during the study period are given in Tables 21 and 22. The results do show a definite localized deterioration in water quality. Table 23 illustrates changes in well 31B2 from 1980 to 1981. Again, there appears to be a migration of storage lagoon water in the northwest direction. Continued operation of the purge wells should restrict the localized migration to the B clusters. The hydrogeology of this area is currently under investigation as part of the 201 facilities plan for the site. Depending on the results of this study, additional groundwater control measures may be instituted. One possible alternative is the construction of an interception ditch in this area.

Analysis of the middle dike seepage well LS34C2 in 1980 revealed elevated levels of 2-chloroaniline (210 $\mu g/l$) and 1,2-dichloroethane (53 $\mu g/l$), indicating groundwater contamination localized below the storage lagoons at 38 ft. The contamination does not persist to 68 ft as LS34C3 contains no detectable organics. These levels may be resultant from previous high water concentration levels, adsorption phenomena concentrating present low organic levels,

TABLE 21. CHEMICAL CHANGES IN WELL 1B2

Compound	7 22 20	Concer 8-28-80	tration (8-13-81
Compound	7-20-00	0-20-00	2-19-01	J=11-01	0-13-01
Chloroethane	<1	<1	7	<1	8
1,2-Dichloroethane	<1	<1	7	<1	<1
Di-n-butyl phthalate	<1	<1	2	3	<1
Cresol	<1	<1]	<1	<]
Methyl aniline	<1	<]]	1	<1
Ethyl aniline	<1	<1	3	1	<1
Trichloroethylene	<1	<1	<1	<1	1
Trans-1,2-dichloroethylene	<1	<1	<1	<1	1

TABLE 22. CHEMICAL CHANGES IN WELL 2B2

Compound	Concentrat 6-13-80	ion (µg/l) 7-81
1,2-Dichloroethane	5	3
Chloroethane Tetrachloroethene	<1 <1	8 26
Toluene	< 1	9

TABLE 23. CHEMICAL CHANGES IN WELL LS31B2

Compound	Concentration (µg/l)		
	10-20-80	3-24-81	-,
Chloroform 1,2-Dichloroethane Di-n-butyl phthalate Bis(ethylhexyl)phthalate	6 10 1	2 <1 2	
Dichloroazobenzene 2-Chloroaniline Aniline Naphthalene	1 <1 <1 <1	< 1 < 1 2 1	

or leaching organics from the sludge blankets on the lagoon bottom. With the sandy soils present under the lagoons, adsorption reactions may be minimal as this type of matrix does not tend to concentrate organics (17). Similarly, the small extent of the sludge blankets in the storage lagoons, as discussed earlier, would tend to limit the effects of leaching. Levels of these chemicals are found in the interception ditches as both contain mixtures of lagoon seepage and groundwater. The north interception ditch (ND) is mixed with groundwater and drain tile effluent to form the north discharge (05 or NPDES #001) to Mosquito Creek. Its influence on water quality will be discussed in the section on "discharges." South interception ditch (SD, or the discharge to HH&G Drain) represents a direct discharge of groundwater and lagoon seepage to Black Creek.

A consistent 4 to 6 μ g/l of 1,2-dichloroethane was found at SD, along with concentrations of 2-chloroaniline that varied from 86 μ g/l to 1 μ g/l in 1980. The 86 μ g/l level was found in December and then the level dropped to 20 μ g/l for 3 months. Beginning with warmer temperatures, the level dropped to 5 μ g/l and then to non-detectable levels.

Beginning in 1981, north ditch was sampled and a peak level of 180 μ g/l of 2-chloroaniline was present in March. Levels fell to 28 μ g/l in April and then to < 1 μ g/l in May. This is the same pattern as noted for south ditch in 1980. During the same period, however, the south ditch water contained only 1 μ g/l of 2-chloroaniline. Factors that contributed to increased levels of 2-chloroaniline in 1980 are apparently not present in 1981 data. The new lagoon seepage wells define the distribution of chemicals in the dike well water. The concentration of 2-chloroaniline is at high levels in A, B, and

D group wells. The greatest concentrations are localized at 30 ft in A (.113 mg/l), 50 foot in B (.25 mg/l) and 30 foot in D (.160 mg/l). Deeper wells of the A and D cluster (50 ft and 70 ft) contain very low levels of 2-chloroaniline. The C group cluster contained 29 µg/l at 30 feet and less than detectable levels for other remaining depths.

The lower levels of 2-chloroaniline present in the C group cluster supports the data observed for south ditch during this period. Higher levels present in north ditch are also supported by the elevated levels in A and B groups. Reasons for the concentration distribution are, however, not as clear. The presence of 2-chloroaniline and isopropylidene dioxyphenol in the seepage water reflect lagoon water concentrations. The A group of wells is the only group in the close proximity to the sludge blankets in the lagoons. The B group of wells are located in the path of regional groundwater flow and this could account for higher levels of 2-chloroaniline in this group. Therefore, elevated 2-chloroaniline levels are probably only slightly influenced by the leaching action of seepage water through the sludge.

The distribution of 1,2-dichloroethane is of interest as it is only present in well group D. As documented in this report and previous ones, 1,2-dichloroethane also occurs in lagoon seepage wells 1B2, 2B2, and 3B2. This distribution pattern suggests a problem with 1,2-dichloroethane localized in west lagoon. A previously high load of 1,2-dichloroethane may have entered west lagoon in the past and, because of mixing problems which would occur under ice cover, a localized area of the lagoon may have become contaminated. The lagoon area around D group is especially prone to mixing problems.

The A, B, and D well clusters are all in proximity of the lagoon inlets and the higher levels of chemicals observed could be resultant from such a mixing problem. This problem could be eliminated by extending the outfall pipe further into the lagoon to facilitate better dispersion. Continued monitoring of these wells by gas chromatography and HPLC has revealed no significant trend of increasing or decreasing levels. Given the complexity of the data patterns, accurate conclusions regarding lagoon seepage cannot be drawn with present data. Hydraulic loadings may also influence lagoon seepage concentrations. Levels of 2-chloroaniline are greatest during winter months, which corresponds to the highest water levels in the storage lagoon system. Only future monitoring and correlation of storage lagoon, dike wells, and interception ditch data can answer the questions surrounding lagoon seepage.

Analysis of well 17A in 1980 revealed no detectable organics present, illustrating the absence of lagoon seepage movement beyond the interception ditch. This plus the lack of chloride contamination in C group well clusters, shows the effectiveness of the design features in preventing lagoon seepage migration off the project. The presence of organic chemicals in the seepage water, however, indicates inadequate treatment with respect to possible previous high loadings, soil adsorption and concentration mechanisms, or sludge leaching causing the survival of certain chemicals in the wastewater system. There is no adverse environmental impact from lagoon seepage of the two chemicals, considering that the currently proposed EPA water quality criteria for 1,2-dichloroethane is 7 μ g/l at the 10^{-5} risk level. This is based on the consumption of 2 liters of water plus 18.7 grams of contaminated fish per day (16). Using this as a criteria, the 4-6 μ g/l are

probably not harmful to the environment. No present standard is available for 2-chloroaniline; however, bioassay information will be developed as part of the system's new NPDES permit. Futher investigation is needed, however, to define the dynamics of lagoon seepage in order to insure that levels are controlled and do not increase beyond any standards.

With the potential for discharge of chemicals to the environment in lagoon seepage waters, it is important to manage the concentration of these chemicals in the storage lagoon water. While the historical influences to the lagoon seepage waters cannot be changed, the future influences can, by limiting the initial concentration of chemicals entering the system to levels which will reduce survival in the lagoon system. The County has instituted management guidelines for effluent chemicals from industrial chemicals. The levels are set to introduce influent levels that can be effectively treated and thus, eliminate potential adverse environmental effects from the pass through of chemicals in the lagoon seepage water.

Discharges

The two discharges are unique in terms of composition and, therefore, warrant separate discussions. South discharge (34) on NPDES #002 is made up of groundwater and drain tile effluent. The effluent chemical composition is very similar to the drain tiles discussed earlier as only trace levels of phthalate and herbicides are present in 1980-1981 samples. The herbicide levels (1 μ g/l) are probably no greater than those experienced at any farming operation in terms of agricultural runoff. The absence of organics from this station illustrates the efficiency of the treatment system in producing high quality effluent by spray irrigation.

The north discharge (05 of NPDES #001) is made up of drain tile effluent, groundwater, and lagoon seepage collected in the north interception ditch. Low levels of 1,2-dichloroethane (1 μ g/1) and 2-chloroaniline (15 to < 1 μ g/1) are encountered at this station from January, 1980, to April, 1980. With the drain tiles showing no contamination present, the introduction of these compounds must be from lagoon seepage entering north ditch and being mixed in the discharge. Concentrations of 2-chloroaniline follow seasonal patterns with highest values in the winter and a reduction to nondetectable levels in the summer.

The chemicals were not present in 1981 samples which is consistent with the

change in lagoon seepage concentrations discussed earlier. Several sporadic concentrations (1-18 μ g/1) of chlorinated solvents such as methylene chloride and tetrachloroethene are found in the discharge water, however, concentrations in drain tiles or irrigation water are not observed. These numbers are probably laboratory contamination as no consistent trend is documented. The effective nature of the Muskegon System is evident by the absence of the influent industrial chemicals in the discharges. Of the 125 chemicals identified in the study, only low levels of 2-chloroaniline and 1,2-dichloroethane pass through the system. These chemicals could be easily eliminated from the discharge by management of influent levels as both compounds have a treatment efficiency of 98%. Lower influent levels would reduce these chemicals to below analytical detection limits.

Wells

In addition to the lagoon seepage wells discussed earlier, six metal cased USGS wells and other selected lagoon seepage were monitored during the study

period. The USGS wells are metal cased, and not subject to phthalate interferences. No detectable compounds are found in USGS 1-6 during the sampling program. These results show that ground water aquifiers are being protected in the land application of the treated water. The draintiles collect the irrigated water adequately, preventing possible contamination of the ground-water table. Small quantities of the organic compounds in the lagoon impounded water are further eliminated by land application.

REFERENCES

- 1. Preliminary Survey of Toxic Pollutants at the Muskegon Wastewater Management System. Robert S. Kerr Environmental Research Laboratory. May, 1977.
- 2. Progress Report, 1968 through 1975. Muskegon County Wastewater Management System. EPA 905/2-80-004.
- 3. Progress Report, 1976-1979. Muskegon County Wastewater Management System. 1980.
- 4. Method 624, Purgeables. (1979) U.S. EPA, Cincinnati, OH.
- 5. Method 625. (1979) Semivolatiles, ibid.
- 6. Reference Compound to Calibrate Ion Abundance Measurements in Gas Chromatography-Mass Spectrometry Systems. Eichelberger, J. W. and L. E. Harris, W. L. Budde, Anal. Chem. 47 995. 1975.
- 7. Methods for the Analysis of Priority Pollutants in Solids and Bottom Sediments (1978). ibid.
- 8. Method 601. (1979) Purgeables. US EPA, Cincinnati, OH.
- 9. Method 605. (1979) Benzidines. ibid.
- 10. NIOSH Manual of Analytical Methods. HEW Publication No. (NIOSH) 75-121. GPO 1733-0041.
- 11. Draft Report of Analytical Data (1979). C. S. Clark, University of Cincinnati, Medical Center. Institute of Environmental Health, Cincinnati, OH.
- 12. Handbook of Environmental Data on Organic Chemicals. (1977). K. Verschueren. Van Nostrand Reinhold Co., N.Y.
- 13. Biochemistry (1972) Lehninger. Worth Publishing Co., Ft. Worth, Texas.
- 14. Fate of Priority Pollutants in Publicly Owned Treatment Works. EPA 440/1-80-302. 1980.
- 15. Photolysis of 3,4-Dichloroaniline in Natural Waters (1980). G. C. Miller, R. Zisook, and R. Zepp. J. Agriculture Food Chemistry. 28:6:1053-56.
- 16. Federal Register Vol. 44, No. 191. Oct. 1, 1979, pp 56642-56646.
- 17. Environmental Chemistry (1971). V. Stumm and G. Morgan. Wiley Interscience Co., N. Y.
- 18. Quality Assurance and Quality Control Procedures for Organic Priority Pollutants (1979). U.S. EPA, Cincinnati, OH.

- 19. The Chemical Society Annual Reports on the Progress of Chemistry, Biological Chemistry (1965), D. W. Ribbons, Volume 63, pp 445-468.
- 20. Environmental Science and Technology, (1982), R. P. Eganhouse and I. R. Kaplan, Volume 16, No. 9, p 541.

APPENDIX A

Results

WATER SAMPLES

		r			r	,				J		Γ			·····
	1		East	West	Outlet									•	
Priority Pollutants	Influent	Spillway	_			cn	ND	UE.	3/1	nT.	11	nτ	10	DΤ	10
Triority rollucants	1 III I WEITE	Spiliway	Lagoon	Lagoon	Layoun	120	NU	03	54	121	11	<u>الا</u>	73	וע	40
Acenaphthene		·													
-Acenaphthylene]										4
-Anthracene												,			4
Benzene	60	2													. 4
Benzo (a) anthracene						1									. 4
Benzo (a) pyrene															4
-Bis(2-ethylhexyl)phthalate															1
-Bromodichloromethane	13									ļ					
-Butyl benzyl phthalate										1			1		4
-Chlorobenzene															4
-2-Chlorophenol	4												İ		. 4
-Chlorophenylether															-
-Chloroethane															. 4
-Chloroform	1,300	140		14						•					4
-4-Chloro-3-methylphenol				_											4
-2-Chloronaphthalene															4
Chrysene	2	1													į
-1,2-Dichlorobenzene	2 2	1	'							Ì					4
-1,4-Dichlorobenzene	2														4
-3,3'-Dichlorobenzidine	14	11											1		. 4
-1,1-Dichloroethane															4
-1,1-Dichloroethene															4
-1,2-Dichloroethane	560	91		15	5										4
-2,4-Dichlorophenol				10											4
-Diethyl phthalate						. 1]			1		
-2,4-Dimethylphenol													-		. 4
-Dimethyl phthalate															-
-Di-n-butyl phthalate	8	32	2			3		1	1		3		2		1 -
-Ethylbenzene							- 1						1		4
-Fluoranthene	3	2											İ		4
-Methyl chloride					i		j								
					L	LI				! _					لب

TABLE A-1. DECEMBER, 1979 - JANUARY, 1980 COMPOSITE SAMPLES (µG/L)

		_												
T 67	Cm#11.mm				CO	ND	٥٢	24	ГТ	7.7	DT	10	рт	40
Influent	Spillway	ı_agoon	Lagoon	Lagoon	<u>2</u> D	חאו	<u>U5</u>	34	וע	11	וע	19	וע	48
1														_
24	3													• 4
														4
4	4													٠ ــ
13	90	5	7		i '			;						. =
	2								1					. 7
89	5													-
											1		}	
20	2									,	[.]
28	۷													
		!												٠
											1			_
				}										
													İ	
1				1		1								-
														-
+				•										_
20	,		,		,		2	,	1		ļ			4
36	3				~		၂	4						4 -
			ļ			1					l			_
İ				}									l	_
				1							ł			•
							ŀ							_
														_
							İ							-
1,200	88	3	4		86		15	ļ	1					_
													-	-
	24 4 13 10 89 28	24 3 4 4 13 90 10 2 89 5 28 2	24 3 4 4 13 90 5 10 2 89 5 28 2 2 38 3	Influent Spillway Lagoon	Influent Spillway Lagoon	Influent Spillway Lagoon Lagoon Lagoon SD	Influent Spillway Lagoon Lagoon Lagoon SD ND 24 3 4 4 4 13 90 5 7 10 2 89 5 28 2	Influent Spillway Lagoon Lagoon Lagoon SD ND O5	Influent Spillway Lagoon Lagoon Lagoon SD ND 05 34	Influent Spillway Lagoon Lagoon Lagoon SD ND 05 34 DT	Influent Spillway Lagoon Lagoon Lagoon SD ND 05 34 DT 11	Influent Spillway Lagoon Lagoon Lagoon SD ND 05 34 DT 11 DT	Influent Spillway Lagoon Lagoon SD ND 05 34 DT 11 DT 19	Influent Spillway Lagoon Lagoon Lagoon SD ND 05 34 DT 11 DT 19 DT

DECEMBER, 1979 - JANUARY, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

Additional Org. Chem. (Cont'd)	Influent	Spillway	East Lagoon	West Lagoon	Outlet Lagoon	SD	<u>ND</u>	05	34	DT	11	DT	19	DT	48
-Cresol	17	18								ļ					_
-2,4'-Diamino-3,3'-dichloro-											i				
biphenyl					1										·
-2,2-Dichloroazobenzene					ļ	1									-
-1,4-Diethoxybenzene	1														
-Diethoxychlorobenzene -Dihydroxyphenylethanone	ł				İ	}								1	·]
-Diisopropoxychlorobenzene						ĺ				İ					
-Dimethoxybenzene	ł			,	1	1									
-3,4-Dimethoxyphenol	90													Ì	_
-3,4-Dimethylphenol															4
-Dimethyl benzaldehyde		_				Ì				ļ					
-Dimethyl disulfide	41			-		1						ł			-
-Dimethyl naphthalenes	83	45		5	1										
Dimethyl oxetane					i	1				ł				1	1
-N-Ethylaniline]
-2-Ethoxypropane															
-Ethyl aniline		·				1									
-Ethyl phenol						1									_
-Hexahydroazepin-2-one														ŀ	4
-1H-Indole															4
-Isopropylidene dioxyphenol															7
-Methanethiol															4
-2-Methoxyaniline -Methoxyethoxyethene	I														- 1
-2-Methoxyethoxyethene	320				ł	1									.]
-Methyl aniline	1]
-3-Methyldibenzothiophene									i	h					. 1

-Trimethyl phenanthrenes -Vanillin						1	Τ		Γ	Γ	Γ					
Additional Org. Chem. (Cont'd) Influent Spillway Lagoon Lagoon Lagoon SD ND 05 34 DT 11 DT 19 DT 48				Fact	Mac+	00+10+	l				1					
-4-Methyl dibenzothiophene -Methyl naphthalenes 40 14 4 -Methyl phenanthrenes -2- (methyl thiol) benzothiazole -Naphthol -Naph	Additional Org Chem (Cont'd)	Influent	Snillway				SD	ND	UE.	31	nT	11	nт	10	nт	1 Ω
Methyl naphthalenes	Additional org. chem. (cont d)	1111 Tuent	Spillway	Layouii	Lagoun	Lagoon	130	ושט	05	34	יטן		וט	19	וע	40
Methyl naphthalenes	-4-Methyldibenzothiophene	,		•												.]
Methyl phenanthrenes		40	14		4		ł		l	İ	1					
-2-(methylthiol)benzothiazole -Naphthol -N,N-Dimethylaniline -N-Phenylaniline -Phenylethanone -Phthalic acid -2-Propanol -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene -Substituted naphthalenes -Substituted naphthothiophenes -Substituted phenanthrenes -Substituted triazine -Substituted triazine -Substituted vanillin -Sul fonylbismethane -Tetrahydrofuranmethanolacetate -Tetrahydrofuranmethanolacetate -Tetrahydrofuranmethanolacetate -Tieinethyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin		,			· ·											
-Naphthol -NDimethylaniline -N-Phenylaniline -Phenylethanone -Phthalic acid -2-Propanol -Simazine -Substituted arizidine -Substituted indene -Substituted naphthalenes -Substituted naphthothiophenes -Substituted triazine -Substituted vanillin -Sul fonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Timimethyl naphthalenes -Trimethyl naphthalenes -Vanillin											1					
N,N-Dimethylaniline						1										
-N-Phenylethanone -Phenylethanone -Phthalic acid -2-Propanol -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted naphthalenes -Substituted naphthothiophenes -Substituted naphthothiophenes -Substituted triazine -Substituted triazine -Substituted vanillin -Sul fonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Trimethyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin											ļ					
-Phenylethanone -Phthalic acid -2-Propanol -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene -Substituted naphthalenes -Substituted phenanthrenes -Substituted triazine -Substituted triazine -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Tributyl phosphate -Tributyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin						İ										
-Phthalic acid -2-Propanol -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene -Substituted naphthalenes -Substituted phenanthrenes -Substituted triazine -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Tributyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin																
-2-Propanol -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene -Substituted naphthalenes -Substituted naphthothiophenes -Substituted phenanthrenes -Substituted triazine -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Tibiutyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin										!	l					
-Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene -Substituted naphthalenes -Substituted naphthothiophenes -Substituted phenanthrenes -Substituted triazine -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Tibutyl phosphate -Trimethyl naphthalenes -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin				'							l				i	
-Substituted arizidine -Substituted benzoic acids -Substituted indene -Substituted naphthalenes -Substituted phenanthrenes -Substituted triazine -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Tributyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin							;				ŀ					
-Substituted benzoic acids -Substituted indene -Substituted naphthalenes -Substituted naphthothiophenes -Substituted phenanthrenes -Substituted triazine -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Tributyl phosphate -Tributyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin																
-Substituted indene -Substituted naphthalenes -Substituted phenanthrenes -Substituted phenanthrenes -Substituted triazine -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Tributyl phosphate -Tributyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin	•					1										
-Substituted naphthalenes -Substituted phenanthrenes -Substituted triazine -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Tributyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes -Trimethyl phenanthrenes -Trimethyl phenanthrenes -Trimethyl phenanthrenes -Trimethyl phenanthrenes	1										ľ					
-Substituted naphthothiophenes -Substituted phenanthrenes -Substituted triazine -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Tributyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin	-Substituted naphthalenes								ĺ							ا
-Substituted phenanthrenes -Substituted triazine -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane 320 120 -Tributyl phosphate 15 48 6 12 -Trimethyl naphthalenes 32 39 -Trimethyl phenanthrenes -Vanillin						•										
-Substituted triazine -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Tributyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin												İ				`_
-Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Tributyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin											*					
-Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane 320 120 -Tributyl phosphate 15 48 6 12 -Trimethyl naphthalenes 32 39 -Trimethyl phenanthrenes -Vanillin	-Substituted vanillin															
-Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane 320 120 -Tributyl phosphate 15 48 6 12 -Trimethyl naphthalenes 32 39 -Trimethyl phenanthrenes -Vanillin																
-Tetramethylbutylphenol -Thiobismethane 320 120 -Tributyl phosphate 15 48 6 12 -Trimethyl naphthalenes 32 39 -Trimethyl phenanthrenes -Vanillin			4					I								
-Thiobismethane 320 120 -Tributyl phosphate 15 48 6 12 -Trimethyl naphthalenes 32 39 -Trimethyl phenanthrenes -Vanillin				į				l	1							
-Tributyl phosphate 15 48 6 12 - Trimethyl naphthalenes 32 39 - Trimethyl phenanthrenes - J-Vanillin		320	120		ļ			- 1								
-Trimethyl naphthalenes 32 39 -Trimethyl phenanthrenes - J	-Tributyl phosphate	15		6	12			-				ļ				_]
-Trimethyl phenanthrenes	-Trimethyl naphthalenes	32	39		l			- 1		- 1		- 1		l		
-Vanillin	-Trimethyl phenanthrenes						1	- 1				ļ		- 1		J
-Xylene		-	i	-						1		Ì				
	-Xyl ene		1				.	- 1				Ì				
			(_			[

DECEMBER, 1979 - JANUARY, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

	T	I 			<u> </u>	r				Γ					
	1		East	West	Outlet					-					
Priority Pollutants	Influent	Spillway				sn.	מא	ns.	3/1	l _n T	11	nτ	10	ŊΤ	48
11 tority rorracatics	Inituenc	Spiriway	Lagoon	Lagoon	Lagoon	30	IND	93	34	<u> </u>		יים	+2	<u>D1</u>	40
Acenaphthene													- (_
-Acenaphthylene	1									1			l		_
-Anthracene											İ				_
Benzene	160	3								ł					٠ _
-Benzo (a) anthracene		_													٠ ــ
-Benzo (a) pyrene													İ		_
-Bis(2-ethylhexyl)phthalate	1		ļ								i				_
-Bromodichloromethane	12	2													_
-Butyl benzyl phthalate]]					, ,]					_
-Chlorobenzene	4							1	i						_
-2-Chlorophenol	15	4	1												-
-Chlorophenylether		·	-							!					-
-Chloroethane								į					ł		_
-Chloroform	1,100	92	13	1	;			- 1							-
-4-Chloro-3-methylphenol	1,200	, ,		•				- 1							_
-2-Chloronaphthalene	ļ							- 1							-
-Chrysene		!													
-1,2-Dichlorobenzene	2							- 1							-
-1,4-Dichlorobenzene						;				İ					_
-3,3'-Dichlorobenzidine		1							j						
-1,1-Dichloroethane		_													
-1,1-Dichloroethene					!										
-1,2-Dichloroethane	1,900	580	43	20		5		2							
-2,4-Dichlorophenol							۱ ا	_[ł		
-Diethyl phthalate								- 1							-
-2,4-Dimethylphenol															
-Dimethyl phthalate															4
-Di-n-butyl phthalate								i							_
-Ethylbenzene															_
-Fluoranthene			i					ļ							
-Methyl chloride	1										i		1		
	1					<u> </u>									

FEBRUARY, 1980 COMPOSITE SAMPLES ($\mu G/L$)

	<u> </u>					<u> </u>									
			East		Outlet										
Priority Pollutants (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	<u>SD</u>	ND.	<u>05</u>	<u>34</u>	DT	11	DT	19	DT	<u>48</u>
Mathylana shlamida															}
-Methylene chloride	3									İ]
-Naphthalene -Pentachlorophenol	3														.]
-Phenanthrene	ł]
-Phenol	32	32	5	3	1	2				ĺ]
-Pyrene	32	32)	٦	1	-				İ]
-Tetrachloroethylene	100	3													_]
-Toluene	160	3	3		•	1									.]
Trans-1,2-dichloroethylene	100		ر ا						'	1					
Trichlorobenzene		'								İ					
-1,1,1-Trichloroethane	62	5]									
Trichloroethylene	16	ľ					i								ا.
-2,4,6-Trichlorophenol		_			}										4
-Vinyl chloride	İ	}				l				1					4
	}				ŀ	1]]
Additional Organic Chemicals	<u> </u> 														
Acetaniline													٠		.]
-Acetone]	}			ł	1	i	i	ŀ						4
-Acetovanillone					ł	1	}	l	ł	1					· -
-Alkyl substituted benzenes		•				t	}	İ	ļ			}			
-Aniline	1				}			<u> </u>		}	į	}			
-Atrazine								1		1					
-Azobenzene					ļ	1		ļ	1	Ì					- 4
-Benzal dehyde					1	{		Į	ļ						4
-Benzyl alcohol	1					1		1	1						4
-Butyl benzene					1	1									4
-Carbon disulfide	1					1	İ								
-2-Chloroaniline	410	80	4	3]	22		3]	1					-
-Chloromethylbenzene	}]								4
L		l	L	L		ــــــــــــــــــــــــــــــــــــــ	<u> </u>	L	L	ــــــــــــــــــــــــــــــــــــــ		<u> </u>		J	

FEBRUARY, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

			East	West	Outlet										
Additional Org. Chem. (Cont'd)	Influent	Spillway				sn	מא	05	34	דמו	11	דמ	19	nΤ	48
Martina org. one (some a)	2111 100110	<u>op.,,,,,</u>	2030011	<u>Lugoun</u>	2030011	==			<u></u>	-				<u></u>	<u> </u>
-Cresol	14	10	2												
-2,4'-Diamino-3,3'-dichloro-										1		ļ			4
biphenyl						l				})
-2,2-Dichloroazobenzene	5	5	2	3					ĺ						4
-1,4-Diethoxybenzene						Ì									4
-Diethoxychlorobenzene										1		l			-
-Dihydroxyphenylethanone					}	l									-
-Diisopropoxychlorobenzene															+
-Dimethoxybenzene												ŀ			4
-3,4-Dimethoxyphenol					i]					4
-3,4-Dimethylphenol												l			7
-Dimethyl benzaldehyde	0.50	0				۱ '						1			
-Dimethyl disulfide	260	9			1					}					+
-Dimethyl naphthalenes	3	3			1							Ì			٠ ٦
-Dimethyl oxetane						[:				ĺ					1
-1,4-Dioxane	,														1
-N-Ethylaniline	37	16				İ				1		1			7
-2-Ethoxypropane	3/	10]]]					7
-Ethyl aniline -Ethyl phenol												ł			٦
-Hexahydroazepin-2-one						·				1]
- 1H- Indole					ł					l					•]
-Isopropylidene dioxyphenol												}		İ]
-Methanethiol					1					1				İ	
-2-Methoxyaniline															
-Methoxyethoxyethene															1
-2-Methoxyphenol	30	10	-							l		1			4
-Methyl aniline															4
-3-Methyldibenzothiophene					İ										4
					<u>L</u>	<u> </u>		لببا	L	L		<u></u>		<u> </u>	

FEBRUARY, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

,	·			,	,	,									
Additional Own (Cont.)	Influent	Cnillus	East		Outlet	C D	ND	O.E.	24	DT	2.7	DΤ	10	DT	40
Additional Org. Chem. (Cont'd)	THITTUENT	spiriway	Lagoon	Layoun	Layoun	1 <u>2n</u>	ואח	02	34	<u>UI</u>	_11	וע	19	ועו	48
-4-Methyldibenzothiophene -Methyl naphthalenes -Methyl phenanthrenes	2	. 2	:												. 1
-2-(methylthiol)benzothiazole -Naphthol	16	10													. 1
-N,N-Dimethylaniline -N-Phenylaniline -Phenylethanone															-
-Phthalic acid -2-Propanol															-
-Simazine -Substituted arizidine -Substituted benzoic acids															
-Substituted indene -Substituted naphthalenes															
-Substituted naphthothiophenes -Substituted phenanthrenes -Substituted triazine															
Substituted vanillin Sulfonylbismethane															
-Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol	1.60	70													-
-Thiobismethane -Tributyl phosphate -Trimethyl naphthalenes	160 8 3	72 11 2	6	1		2									1
-Trimethyl phenanthrenes -Vanillin		_													4
-Xylene															

FEBRUARY, 1980 COMPOSITE SAMPLES ($\mu\text{G/L}$) (CONTINUED)

Priority Pollutants	Influent	Spillway	East Lagoon	West	Outlet	SD	ND	05	34	DT	11	ŊΤ	10	nT	48
	1111140110	Spring	Lugoon	Lugoon	Lugoon	30	110	00	37	12.		<u> </u>		171	-40
-Acenaph thene	1			·								[-
-Acenaphthylene	ł	}			1	ł				ł		ŀ			
-Anthracene	0,	17	3	2	}					1		}			. •
-Benzene	81	17	3	2	}					1		ł			
-Benzo (a) anthracene												ŀ			
-Benzo (a) pyrene	1					ĺ				{		ĺ			
-Bis(2-ethylhexyl)phthalate															•
-Bromodichloromethane						}						İ			, .
-Butyl benzyl phthalate					}	1]					٠: •
-Chlorobenzene						ļ									
-2-Chlorophenol	2											1			
-Chlorophenylether	ł														•
-Chloroethane]														•
-Chloroform	•									ĺ					· ·
-4-Chloro-3-methylphenol										ł					٠
-2-Chloronaphthalene	·					}				-			- 1		
-Chrysene										1			- 1		
-1,2-Dichlorobenzene	1									}					
-1,4-Dichlorobenzene													- 1		•
-3,3'-Dichlorobenzidine	} 2					}				ĺ			ł		
-1,1-Dichloroethane	6														
-1,1-Dichloroethene	j												- 1		
-1,2-Dichloroethane	740	250	68	51		6		2		1					
-2,4-Dichlorophenol										ĺ			- 1		
-Diethyl phthalate															•
-2,4-Dimethylphenol										1					: .
-Dimethyl phthalate	l									1					
-Di-n-butyl phthalate	·									1					. •
-Ethylbenzene										1			1		
-Fluoranthene										1					ς.
-Methyl chloride	9			32											٠. •

	T (2)	6 111	East		Outlet		110	0.5	24			DT	10	l D.T		
Priority Pollutants (Cont'd)	Influent.	Spillway	Lagoon	Lagoon	Lagoon	<u>20</u>	עא	<u>U5</u>	34	וען	11	<u> 11</u>	19	<u>UI</u>	48	l
-Methylene chloride	37	24	4	3											;	1
-Naphthalene	2					1				Ì						ł
-Pentachlorophenol																ł
-Phenanthrene]						ł
-Pheno1	8	1	1:												•	ł
Pyrene										}				1		ł
-Tetrachloroethylene	130	4	7							1					٠.	1
-Toluene	370	64	17	1											٠,	1
-Trans-1,2-dichloroethylene	12				ţ					1		İ			•	ł
-Trichlorobenzene	ł											}		ļ	•	1
-1,1,1-Trichloroethane	130	7	2	2												1
-Trichloroethylene .	110								-	1				}		1
-2,4,6-Trichlorophenol	1			,								1		1		1
-Vinyl chloride]	· '			1]			• :	1
Additional Organic Chemicals	<u> </u> 														•••	
	1					ļ									٠.	١
-Acetaniline		ł			İ	1	l		}	ł					٠.	1
-Acetone						1			İ	1						ł
-Acetovanillone										1						1
-Alkyl substituted benzenes	20	25		-						1						1
-Aniline	1				}	1	1			1						1
-Atrazine						l	1		1						•.	1
†-Azobenzene							1	1	ŀ					1		1
-Benzal dehyde		1				1	1									1
-Benzyl alcohol					1	1	l					1		}	•:	1
-Butyl benzene						1				1		1				ł
-Carbon disulfide				_		ا			ĺ	Ì						1
-2-Chloroaniline	200	18	4	1		25	1	2								1
-Chloromethylbenzene	i							1							::	1

MARCH, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

	1	I			1	·						·			
			East	West	Outlet										1
Additional Org. Chem. (Cont'd)	Influent	Snillway				sn.	וחו	05	34	חד	11	DΤ	10	nт	48
Additional org. chem. (cont d)	1111 Ident	Spiriway	Lagoon	Lagoon	Lugoon	120	1	03		 -		<u> </u>		<u> </u>	-10
-Cresol	19				ļ					ļ					.]
-2,4'-Diamino-3,3'-dichloro-	110	7	2		ļ	i									Ţ
biphenyl	1				}	l			1			}			
-2,2-Dichloroazobenzene	5	4	2	3		1			·	ł		}		i	
-1,4-Diethoxybenzene		· I							1						
-Diethoxychlorobenzene					1	1			1				i		- 1
-Dihydroxyphenylethanone		•				l			1			ŀ			
-Diisopropoxychlorobenzene	j					1]								١
-Dimethoxybenzene	}									1					4
-3,4-Dimethoxyphenol	11		4			1			1	1					٦.
-3,4-Dimethylphenol					}	1			1			l			:-
-Dimethyl benzaldehyde					}										_
-Dimethyl disulfide	790	290			}	i			}	ł					_
-Dimethyl naphthalenes	2											i	i	Ì	-
-Dimethyl oxetane												l			
-1,4-Dioxane						i			İ	Ì					٠.
-N-Ethylaniline				_								İ			
-2-Ethoxypropane			35	2		1						İ		1	. :-
-Ethyl aniline	11				i		İ		ł	1	i	}		ł	-
-Ethyl phenol					_										+
-Hexahydroazepin-2-one						1			, .	İ					- 4
-1H-Indole												ļ			4
-Isopropylidene dioxyphenol															٦
-Methanethiol															7
-2-Methoxyaniline															4
-Methoxyethoxyethene	78								'						7
-2-Methoxyphenol -Methyl aniline	11	7	1							ł		1	į		. 1
-3-Methyldibenzothiophene	11	,	1							ĺ					7
- 3-rie city to thenzo cit topitelle															

MARCH, 1980 COMPOSITE SAMPLES (µG/L) (CONTINUED)

	1]			1	1	T		1	Γ		Γ		Γ		7
	1		East	West	Outlet		ļ									
Additional Org. Chem. (Cont'd)	Influent	Spillway				SD	ND	05	34	DT	11	DT	19	DT	48	
							_							-		
-4-Methyldibenzothiophene					}]	1			ļ						_
-Methyl naphthalenes	1				1	1				İ]
-Methyl phenanthrenes	-					1			1	1						1.
-2-(methylthiol)benzothiazole	ĺ				ļ				[1						1
-Naphthol	3				ì											1
N,N-Dimethylaniline	ł				İ			Ì		ł						4
-N-Phenylaniline																4
-Phenylethanone	Ì					1				ł	1				٠.	1
-Phthalic acid	i									ĺ						4
-2-Propanol	j	1,200								1					•	4
Simazine	ļ										I				٠.	4
-Substituted arizidine											,					1
Substituted benzoic acids			İ												•	1
-Substituted indene											l					}
-Substituted naphthalenes										İ	1					1
-Substituted naphthothiophenes															:	1
-Substituted phenanthrenes			į												٠.	1
-Substituted triazine -Substituted vanillin															. •	1
-Sulfonylbismethane											- 1		- 1		:	1
Tetrahydrofuranmethanolacetate			1	ł					1		1		- 1		•	1
-Tetramethylbutylphenol		•		}		1			- 1		1		- 1			1
-Thiobismethane	250	49	1	2		1	i		i		ŀ		- 1		•	1
-Tributyl phosphate	40	39	10	19		1			}		}		Į		•	1
-Trimethyl naphthalenes	2	33	10	13		Ì]		l				•	1
-Trimethyl phenanthrenes	- [}	į	j			ł				1]		7	1
-Vanillin		ļ		İ				}					}		-	ĺ
-Xylene	ļ	j			ļ]							-].,
1.37.22		ľ	Í	ļ							ł				_	
L	l			<u>-</u> -1												4

MARCH, 1980 COMPOSITE SAMPLES (µG/L) (CONTINUED)

Priority Pollutants	Influent	Spillway	East Lagoon		Outlet Lagoon	<u>SD</u>	<u>ND</u>	05	34	DT	11	DT	19	DT	48
-Acenaphthene -Acenaphthylene															-
-Anthracene		0.5													
-Benzene	62	35	-		<u> </u>										4
-Benzo (a) anthracene	}				<u> </u>	ł									+
-Benzo (a) pyrene													- 1		+
-Bis(2-ethylhexyl)phthalate						Ì									٠.٦
-Bromodichloromethane	1														+
Butyl benzyl phthalate	97				į	ļ) [j			-
-Chlorobenzene	4	7													
-2-Chlorophenol	1	,			'										. 1
-Chlorophenylether -Chloroethane			•												7
-Chloroform	670	170	16	29											7
-4-Chloro-3-methylphenol	1	1,0	10]
-2-Chloronaphthalene	1]
-Chrysene	Ì									}			1		
-1,2-Dichlorobenzene	14	2								ĺ			- 1		
-1,4-Dichlorobenzene	1	_								1					
-3,3'-Dichlorobenzidine															
-1,1-Dichloroethane															٦.
-1,1-Dichloroethene															ا
-1,2-Dichloroethane	53	130	96	110		5) ;	1							
-2,4-Dichlorophenol													İ		
-Diethyl phthalate	1														4
-2,4-Dimethylphenol															_
-Dimethyl phthalate															. 4
-Di-n-butyl phthalate															-
-Ethylbenzene	}												- 1		4
-Fluoranthene	ł		ļ										-		4
-Methyl chloride															4

APRIL, 1980 COMPOSITE SAMPLES (μ G/L)

Priority Pollutants (Cont'd)											T					
-Methylene chloride -Naphthalene 6 2 -Pentachlorophenol -Phenanthrene -Phenol 4 19 3 3 -Pyrene -Tetrachloroethylene 150 26 2 -Toluene 580 36 1 1 -Trans-1,2-dichloroethylene -Trichlorobenzene -1,1,1-Trichloroethane 30 -Trichloroethylene 30 -Trichloroethylene -2,4,6-Trichlorophenol -Vinyl chloride Additional Organic Chemicals -Acetaniline	j										1					
-Naphthalene -Pentachlorophenol -Phenanthrene -Phenol -Pyrene -Pretrachloroethylene -Tetrachloroethylene -Toluene -Trichloroethylene -Trichloroethane -Trichloroethylene -Trichloroethylene -Trichloroethylene -Trichloroethylene -1,1,1-Trichloroethylene -2,4,6-Trichlorophenol -Vinyl chloride Additional Organic Chemicals -Acetaniline	Priority Pollutants (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	<u>SD</u>	ND	05	34	DT	11	DT	19	DT	48
-Naphthalene -Pentachlorophenol -Phenanthrene -Phenol -Pyrene -Pretrachloroethylene -Tetrachloroethylene -Toluene -Trichloroethylene -Trichloroethane -Trichloroethylene -Trichloroethylene -Trichloroethylene -Trichloroethylene -1,1,1-Trichloroethylene -2,4,6-Trichlorophenol -Vinyl chloride Additional Organic Chemicals -Acetaniline	Mathylana ahlanida															J
-Pentachlorophenol -Phenanthrene -Phenol -Phenol -Pyrene -Tetrachloroethylene -Toluene -Trichlorobenzene -1,1,1-Trichloroethylene -2,4,6-Trichlorophenol -Vinyl chloride Additional Organic Chemicals -Acetaniline		6	2				1			1]
-Phenanthrene -Phenol -Pyrene -Tetrachloroethylene -Toluene -Trichloroethylene -Trichloroethane -Trichloroethylene -1,1,1-Trichloroethylene -2,4,6-Trichlorophenol -Vinyl chloride Additional Organic Chemicals -Acetaniline		0	2								İ				i]
-Phenol -Pyrene -Tetrachloroethylene -Toluene -Trichloroethylene -Trichloroethylene -1,1,1-Trichloroethylene -Trichloroethylene -2,4,6-Trichlorophenol -Vinyl chloride Additional Organic Chemicals -Acetaniline	Pharanthuana					<u> </u>					l		ĺ]
-Pyrene -Tetrachloroethylene -Toluene -Trans-1,2-dichloroethylene -Trichlorobenzene -1,1,1-Trichloroethane -Trichloroethylene -2,4,6-Trichlorophenol -Vinyl chloride Additional Organic Chemicals -Acetaniline		Δ	10	વ	3				1	İ						- ;]
-Tetrachloroethylene 150 26 2 1 1 1 -Toluene 580 36 1 1 1 -Trans-1,2-dichloroethylene -Trichlorobenzene 30 -1,1,1-Trichloroethane 30 -Trichloroethylene 30 -2,4,6-Trichlorophenol -Vinyl chloride Additional Organic Chemicals -Acetaniline	1	7	13	,										i		.]
-Toluene -Trans-1,2-dichloroethylene -Trichlorobenzene -1,1,1-Trichloroethane -2,4,6-Trichlorophenol -Vinyl chloride Additional Organic Chemicals -Acetaniline		150	26	2		<u> </u>					1		1]
-Trans-1,2-dichloroethylene -Trichlorobenzene -1,1,1-Trichloroethane -1,1,1-Trichloroethylene -2,4,6-Trichlorophenol -Vinyl chloride Additional Organic Chemicals -Acetaniline				1	1					l	1]
-Trichlorobenzene -1,1,1-Trichloroethane -30 -Trichloroethylene -2,4,6-Trichlorophenol -Vinyl chloride Additional Organic Chemicals -Acetaniline		300] 30		1											
-1,1,1-Trichloroethane -Trichloroethylene -Z,4,6-Trichlorophenol -Vinyl chloride Additional Organic Chemicals -Acetaniline													1			
-Trichloroethylene 30 -2,4,6-Trichlorophenol -Vinyl chloride Additional Organic Chemicals -Acetaniline		30									1		İ		l	• 7
-2,4,6-Trichlorophenol -Vinyl chloride Additional Organic Chemicals -Acetaniline			1			1				l			1		l	7
-Vinyl chloride Additional Organic Chemicals -Acetaniline		30								1	Ì]
Additional Organic Chemicals -Acetaniline	Vinul oblavida		1				j ,	!			l				i	7
-Acetaniline	-Vinyi chioride										1					. 7
	Additional Organic Chemicals															
			ļ								1					
		F 000				1]	}	1					1
	-Acetone	5,800	Į						Ì]	1		1			-
	-Acetovanillone		_						}		1		1			-
	-Alkyl substituted benzenes	8	5				1	1	Ì	1	1		1		}	-
	-Aniline						} :		l		1					-
	-Atrazine		,					ŀ	İ]	1					
	-Azobenzene		1				1]	-					-
	-Benzaldehyde		İ					1		ł			1		}	
	-Benzyl alcohol	1	({	1	Ì	1	{	(4
	-Butyl benzene				_						1		1]	- 1
	-Carbon disulfide	100	0.0	17			22		12	l	1					• -
	-2-Chloroaniline	180	44	1/	3	ĺ	32		12							
-Chloromethylbenzene	-Chloromethylbenzene															+

APRIL, 1980 COMPOSITE SAMPLES (µG/L) (CONTINUED)

			-	11 4	043										
Additional Own Cham (Contld)	Influent	Cnill	East	West	Outlet	CC	,,,	05	21	0.7	11	n.T	10	ΩŦ	40
Additional Org. Chem. (Cont'd)	Influent	Spiliway	Lagoon	Lagoon	Lagoon	<u> 2n</u>	שט	<u>U5</u>	34	וע	11	<u> </u>	19	עו	48
-Cresol	1	8				İ									
-2,4'-Diamino-3,3'-dichloro-	16	5			Ī							1			
biphenyl															
-2,2-Dichloroazobenzene	20	6	3	3		l									ا
-1,4-Diethoxybenzene	1				ì							1			4
-Diethoxychlorobenzene]]										
-Dihydroxyphenylethanone					ĺ	1				1					`-
-Diisopropoxychlorobenzene						1	1								
-Dimethoxybenzene	1				ł										_
-3,4-Dimethoxyphenol	}	33					1 1			ĺ					-
-3,4-Dimethylphenol										l					4
-Dimethyl benzaldehyde	770	250		1	ŀ	1									-
-Dimethyl disulfide	770	360				1						l			-
-Dimethyl naphthalenes	12	8				1	((1	İ					. 7
-Dimethyl oxetane					İ										-
-1,4-Dioxane									:	1		ļ			-
-N-Ethylaniline				3	ļ	1				Į		[
-2-Ethoxypropane				3	ł	İ				•					. 1
-Ethyl aniline -Ethyl phenol						Ì									. 1
Hexahydroazepin-2-one]		1			
-1H-Indole						l	Ì			l		l			.]
Isopropylidene dioxyphenol															
-Methanethiol													į		
-2-Methoxyaniline]			_
Methoxyethoxyethene															4
-2-Methoxyphenol	6	88				1				1					-
-Methyl aniline	4				1	ĺ									4
-3-Methyldibenzothiophene										1					4
	L <u></u> .				I	<u> </u>	لـــا		لــــا	<u> </u>		L			

APRIL, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

T	1 · · · · · · · · · · · · · · · · · · ·	ı	<u> </u>		ı	[<u> </u>	Γ		Γ			
			East	West	Outlet										,
Additional Org. Chem. (Cont'd)	Influent	Spillway				Sn	חא	ሰና	34	Int	11	hт	10	nτ	18
Martinar org. chem. (cont a)	Tittaciic	Spiriway	Lagoon	Lugoon	Lugoon	1	-	<u> </u>				 	15	<u></u>	-40
-4-Methyldibenzothiophene									į			l			
-Methyl naphthalenes	6	4			İ				·	ĺ		l			_
-Methyl phenanthrenes		i i							i '						
-2-(methylthiol)benzothiazole															_
-Naphthol															_
-N,N-Dimethylaniline				:						1					
-N-Phenylaniline										ł					٠ ـ
-Phenylethanone															-
-Phthalic acid]					
-2-Propanol	2,400											i			
-Simazine															_
-Substituted arizidine	1														
Substituted benzoic acids	,														٠, -
-Substituted indene	•														_
Substituted naphthalenes	Į.														
-Substituted naphthothiophenes -Substituted phenanthrenes							- 1								
-Substituted triazine]							- 1		1					,
-Substituted triazine															-
-Sulfonylbismethane						1	}	ł							_
-Tetrahydrofuranmethanolacetate			1			1									_
-Tetramethylbutylphenol		1				1	ļ								- 7
-Thiobismethane	1,700	170											1		
-Tributyl phosphate	16	20	13	15		1	- 1				- (1		
-Trimethyl naphthalenes	10	8		ļ		1		1					1]
-Trimethyl phenanthrenes				ļ							1		ļ		_
-Vanillin .					ŀ	1	-		- 1						_
-Xyl ene			ļ				- [-				
]						l		

APRIL, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

	r				l	·			Γ						
			East	West	Outlet										
Priority Pollutants	Influent	Spillway				Sn	ממ	05	34	пΤ	11	חד	19	nΤ	48
Triority rorracants	Tilliacite	Spiring	Lagoon	Lagoon	Lagoon	30	1	03		1		<u> </u>		<u> </u>	40
Acenaphthene															
-Acenaphthylene							1		l	1			- 1		: _
-Anthracene			!												
Benzene	26														٠.
Benzo (a) anthracene					Ì				1						-
-Benzo (a) pyrene									}				- [•
-Bis(2-ethylhexyl)phthalate	16	10	6	6		8		8	4	1	3		3		٠.
-Bromodichloromethane	5			:											٠.
Butyl benzyl phthalate	7	1									i		ļ		•
Chlorobenzene	2														-
-2-Chlorophenol															-
-Chlorophenylether													- 1		-
Chloroethane													- 1		
-Chloroform	610	70	10		2					ł	2				: -
-4-Chloro-3-methylphenol	20									ļ					-
-2-Chloronaphthalene							j						}		٠.
Chrysene						. 1									-
-1,2-Dichlorobenzene	19	1											- 1		-
-1,4-Dichlorobenzene		7								ŀ					-
-3,3'-Dichlorobenzidine	120												- 1		٤
-1,1-Dichloroethane					'										-
-1,1-Dichloroethene													-		-
-1,2-Dichloroethane	510	270	19	3	4	5		2							· -
-2,4-Dichlorophenol	7	4	1										[-
Diethyl phthalate													1		· •
-2,4-Dimethylphenol															-
Dimethyl phthalate	11			'									1		٠.
Di-n-butyl phthalate	5]						- 1		. •
Ethylbenzene]						ļ		-
Fluoranthene													İ		•
-Methyl chloride															-
	L					اـــــا			اـــــا	L					

May 1-15, 1980 COMPOSITE SAMPLES ($\mu G/L$)

						Γ				<u> </u>					$\overline{}$
			East		Outlet	ļ		,							-
Priority Pollutants (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	SD	ND	05	34	DT	11	DT	19	DT	48
	100	770				Ì				1					
-Methylene chloride	120	770								•					1
-Naphthal ene	16	1			Ì					ł					. 1
-Pentachlorophenol	_]										4
-Phenanthrene	5			_	,	}				1					1
-Pheno1	12	8	4	2	3	ł	1			l					. 1
Pyrene	160	10													1
-Tetrachloroethylene	160	10	2							ł					1
-Toluene	550	11]									
-Trans-1,2-dichloroethylene						1			}						. 7
-Trichlorobenzene	60					1									• 1
-1,1,1-Trichloroethane	9				}	ĺ									
-Trichloroethylene	11	8	3			Į									- 1
-2,4,6-Trichlorophenol	11]		Ì	1						1			7
-Vinyl chloride								1							1
Additional Organic Chemicals															
	Ì				ļ		1			l					
-Acetaniline	110	6		;		1	ļ					•			
-Acetone	1,800	300				1		1		1					-, -
-Acetovanillone				_		1				1					. ⊦
-Alkyl substituted benzenes	91	19	11	8	3		1	1	1	1		ļ			• 4
-Aniline	51	5			1	1	1	l		1		1			-{
-Atrazine				1		1			ļ	1					`-{
-Azobenzene	i		1			[1		i					1	- 1
-Benzal dehyde	1			1		1	1							•	
-Benzyl alcohol	İ							ł		1		1			. +
-Butyl benzene		}			1	}	1		1					1	
-Carbon disulfide	1 100	42				-	1	1				1			4
-2-Chloroaniline	1,100	43	8	4	5	5	1	2			,	1			
-Chloromethylbenzene		}												1	·
Control one ony ruenzene			<u>L</u>	L				<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>]

MAY 1-15, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

	T				 										
1			East	West	Outlet										ļ
Additional Org. Chem. (Cont'd)	Influent	Snillway					ИN	กร	34	пт	11	nΤ	19	nΤ	48
Add total org. chem. (cont d)	1 m racine	Spiriway	Lugoon	Lugoon	Lugoon	30	110	03	3.			<u> </u>		<u></u>	-10
-Cresol	14														
-2,4'-Diamino-3,3'-dichloro-	400		10	2											٠,
biphenyl					<u> </u>	}									
-2,2-Dichloroazobenzene	89	18	8	7	4							ļ			ا .
-1,4-Diethoxybenzene					ļ								į		_
-Diethoxychlorobenzene	82	44	8	3	2	1									-
-Dihydroxyphenylethanone										1		1			-
-Diisopropoxychlorobenzene	10	5	3	2	1										٠ ــ
-Dimethoxybenzene	İ				1										-
-3,4-Dimethoxyphenol					1							1			_
-3,4-Dimethylphenol	Ì				Ì	[l		İ			
-Dimethyl benzaldehyde						1						l			٠ ـ
-Dimethyl disulfide	270				l										_
-Dimethyl naphthalenes	40	7			l							1			_
-Dimethyl oxetane					ł							ŀ			
-1,4-Dioxane										1		ŀ			_
-N-Ethylaniline]						}			ل ا
-2-Ethoxypropane				i						ļ		l			-
-Ethyl aniline												1			-
-Ethyl phenol					1					1					. +
-Hexahydroazepin-2-one	1	i													4
-1H-Indole	1				1					l					4
-Isopropylidene dioxyphenol					1							1			4
-Methanethiol															7
-2-Methoxyaniline		·			1										1
-Methoxyethoxyethene	120										İ				
-2-Methoxyphenol	130									1	i				
-Methyl aniline					1							1			1
-3-Methyldibenzothiophene										}					. 7

MAY 1-15, 1980 COMPOSITE SAMPLES (μ G/L) (CONTINUED)

		I				T				Γ					
	İ		East	West	Outlet	()	ĺ					1			
Additional Org. Chem. (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	SD	ND	05	34	DT	11	DT	19	DT	48
-4-Methyldibenzothiophene	00											ĺ			·-
-Methyl naphthalenes	28	2			j	!]					_
-Methyl phenanthrenes					j					1					•
-2-(methylthiol)benzothiazole	11	22													· -
-Naphtho1	11	22								1		ĺ			·
-N,N-Dimethylaniline												1			-
-N-Phenylaniline]		}			_
-Phenylethanone										1					-
-Phthalic acid	1,100	90								l		ĺ			٠ ـ
-2-Propanol	1,100	90								1					
-Simazine															-
Substituted arizidine										l					• -
-Substituted benzoic acids				•						ļ			İ		-
-Substituted indene			- 1							1			- 1		~
-Substituted naphthalenes										}					
-Substituted naphthothiophenes							- 1			}					٠
Substituted phenanthrenes								' I		1			- 1		
-Substituted triazine			1					- 1					1		-
-Substituted vanillin							- 1	- 1					1		
-Sulfonylbismethane								İ		!					-
-Tetrahydrofuranmethanolacetate			İ	İ				1		l					-
-Tetramethylbutylphenol	250	26		1		1		- 1	- [[[_
-Thiobismethane	86	39	2	7		ĺ		İ	- 1				İ		-
Tributyl phosphate	32	6	-1	´		1	- 1		- 1		1		1		· -
-Trimethyl naphthalenes	52	Ĭ				ł	- 1	- 1			- 1		1		-
-Trimethyl phenanthrenes -Vanillin	l	}				1					- 1		- 1		-
-Xylene	j	1	1			I		-			ł		- 1		-
TAY I CIIC	j	1]	}	ĺ	1					[:
	l		l	l	1		1								

MAY 1-15, 1980 COMPOSITE SAMPLES ($\mu\,G/L$) (CONTINUED)

T 48
T 48
-
-
•
. •
•
•
•
. :
•
•
•
•
٠.
. •
•
:

MAY 19-30, 1980 COMPOSITE SAMPLES (µG/L)

<u> </u>															
			East	West	Outlet					1	1				· }
Duinwity Dollytoute (Contld)	T = 67	Cod 11					NO	۸۲	24	n-	11	DT	10	DT	40
Priority Pollutants (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	חפ	שואו	<u>U5</u>	34	חר	-11	וע	19	וע	48
-Methylene chloride	,														
-Naphthalene	12	4]										. :
-Pentachlorophenol					}										4
Phenanthrene	2														. :4
-Pheno1	6	2	4	3											4
-Pyrene	İ														_
-Tetrachloroethylene	200	25	4			1	<u> </u>			1					4
-Toluene	920	57			;					}					
-Trans-1,2-dichloroethylene															_
-Trichlorobenzene						1									4
-1,1,1-Trichloroethane	71	3								}					4
-Trichloroethylene	18					1									4
-2,4,6-Trichlorophenol	11	10	4			İ			1	1				l	4
-Vinyl chloride	ĺ					1				ĺ					4
	ļ								1						
Additional Organic Chemicals						1									
						1	1	1		1				İ	
-Acetaniline						1	1	1	1	ļ					٠ ـ
-Acetone	900	100		ĺ		1		1		1		Ì			-
-Acetovanillone						1	1		1	l					اِ
-Alkyl substituted benzenes	99	31	17	6	3	1	1			ļ					٠
-Aniline						1	1			١.	į	1			. 4
-Atrazine				ļ			1	1		1	1				_
-Azobenzene	ļ	ļ			1	1	1		1	1					
-Benzal dehyde					İ	1	1			1	į				ب
-Benzyl alcohol						1		1		1	i				-
-Butyl benzene	1	1					1		1	1				1	_
-Carbon disulfide	1			}	1		1		ļ						
-2-Chloroaniline	910	57	10	5	5		1	}							. 4
-Chloromethylbenzene	1			1											
	·	l	L	l	l	ـــــا		L	Ц			l		J	

MAY 19-30, 1980 COMPOSITE SAMPLES (µG/L) (CONTINUED)

-2,4'-Diamino-3,3'-dichloro- 600 81 12 4 biphenyl -2,2-Dichloroazobenzene 91 21 9 9 3 -1,4-Diethoxybenzene 97 39 6 3 2 -Diethoxychlorobenzene 97 39 1 3 1 -						1					T		Γ		·	
Additional Org. Chem. (Cont'd) Influent Spillway Lagoon Lagoon SD ND 05 34 DT 11 DT 19 DT 48 - Cresol				Fact	hlest	Outlet	1						ì			
-Cresol -2,4'-Diamino-3,3'-dichloro- biphenyl -2,2-Dichloroazobenzene -1,4-Diethoxybenzene -Diethoxychlorobenzene -Diethoxychlorobenzene -Diisopropoxychlorobenzene -Dimethoxybenzene -3,4-Dimethoxyphenol -3,4-Dimethyl benzaldehyde -Dimethyl benzaldehyde -Dimethyl disulfide -290 -57 -Dimethyl oxetane -1,4-Dioxane -N-Ethylaniline -2-Ethoxypropane -Ethyl aniline -Ethyl phenol -Isopropylidene dioxyphenol -Isopropylidene dioxyphenol -2-Methoxyethoxyethene -2-Methoxyethoxyethene -2-Methoxyethoxyethene -2-Methoxyethonol -Methyl aniline -2-Methoxyethonol -2-Methoxyphenol -29 -39 -39 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30	Additional Org Chem (Cont'd)	Influent	Snillway				Sn	ממ	กร	34	דח	11	nт	19	nΤ	48
-2,4'-Diamino-3,3'-dichloro-biphenyl	Addresonar org. chem. (cone d)	Till Tuche	Spiriway	Lagoon	Lagoon	Lagoon	==	1110	03	5-	15.		ات.		-	
Diphenyl	-Cresol	16					l						Ì			
Diphenyl	-2.4'-Diamino-3.3'-dichloro-	600	81	12	4								1		ļ	4
-2,2-Dichloroazobenzene						}					1		İ		l	·
-1,4-Diethoxybenzene Diethoxychlorobenzene Dihydroxyphenylethanone Diisopropoxychlorobenzene Diisopropoxychlorobenzene Dimethoxybenzene -3,4-Dimethoxyphenol Dimethyl benzaldehyde Dimethyl disulfide Dimethyl disulfide Dimethyl oxetane -1,4-Dioxane -N-Ethylaniline -2-Ethoxypropane Ethyl aniline -2-Ethyl phenol -Hexahydroazepin-2-one -II-Indole -II-Indole -ISopropylidene dioxyphenol -Wethoxyethoxyethene -2-Methoxyethoxyethene -2-Methoxypehool -Methyl aniline -2-Methoxypehool -Methyl aniline -2-Methoxypehool -Methyl aniline -2-Methoxypehool -Methyl aniline -2-Methoxyphenol -Methyl aniline -2-Methoxyphenol -Methyl aniline -2-Methoxyphenol -Methyl aniline -2-Methoxyphenol		91	21	9	9	3							ł			. 4
-Diethoxychlorobenzene 97 39 6 3 2 - Dihydroxyphenylethanone 12 4 4 3 1 - Diisopropoxychlorobenzene 12 4 4 3 1 - Dimethoxybenzene - 3,4-Dimethoxyphenol - Dimethylphenol - Dimethyl benzaldehyde - Dimethyl disulfide 290 57 - Dimethyl naphthalenes 46 6 - Dimethyl oxetane - 1,4-Dioxane - N-Ethylaniline - Z-Ethoxypropane Ethyl aniline 34 6 - Ethyl phenol - Hexahydroazepin-2-one - IH-Indole - Isopropylidene dioxyphenol - Methanethiol - Z-Methoxyathione - Z-Methoxypthenol - Methoxyethoxyethene - Z-Methoxyphenol 180 - Methyl aniline 29 7													İ		ļ	4
Dihydroxyphenylethanone -Diisopropoxychlorobenzene -Dimethoxybenzene -3,4-Dimethoxyphenol -3,4-Dimethylphenol -Dimethyl benzaldehyde -Dimethyl disulfide -Dimethyl naphthalenes -Dimethyl naphthalenes -Dimethyl oxetane -1,4-Dioxane -N-Ethylaniline -2-Ethoxypropane -Ethyl aniline -Ethyl phenol -Hexahydroazepin-2-one -IH-Indole -Isopropylidene dioxyphenol -Methanethiol -2-Methoxyaniline -Methoxyethoxyethene -Methoxyphenol		97	39	6	3	2		·			ļ					4
- Dimethoxyphenol - 3,4-Dimethylphenol - Dimethyl benzaldehyde - Dimethyl disulfide - Dimethyl naphthalenes - Dimethyl oxetane - Dimethyl oxetane - 1,4-Dioxane - N-Ethylaniline - 2-Ethoxypropane - Ethyl aniline - Ethyl phenol - Hexahydroazepin-2-one - 1H-Indole - Isopropylidene dioxyphenol - Methoxyethoxyethene - 2-Methoxyphenol - Methyl aniline - Methoxyphenol - Methyl aniline	-Dihydroxyphenylethanone	,				1	ł								1	4
-3,4-Dimethylphenol -3,4-Dimethyl benzaldehyde -Dimethyl disulfide 290 57 -Dimethyl naphthalenes 46 6 -Dimethyl oxetane -1,4-Dioxane -N-Ethylaniline -2-Ethoxypropane -Ethyl nailine 34 6 -Ethyl phenol -Hexahydroazepin-2-one -1H-Indole -Isopropylidene dioxyphenol -Methanethiol -2-Methoxyethoxyethene -2-Methoxyethoxyethene -2-Methyl aniline 29 7	-Diisopropoxychlorobenzene	12	4	4	3	1	1								İ	-
-3,4-Dimethylphenol -Dimethyl benzaldehyde -Dimethyl disulfide 290 57 -Dimethyl naphthalenes 46 6 -Dimethyl oxetane -1,4-Dioxane -N-Ethylaniline -2-Ethoxypropane -Ethyl aniline 34 6 -Ethyl phenol -Hexahydroazepin-2-one -IH-Indole -Isopropylidene dioxyphenol -Methanethiol -2-Methoxyethoxyethene -2-Methoxyethoxyethene -2-Methoxyphenol 180 -Methyl aniline 29 7	-Dimethoxybenzene						l	}					}		l	٠ -
- Dimethyl benzaldehyde - Dimethyl disulfide - Dimethyl naphthalenes - Dimethyl oxetane - Dimethyl oxetane - 1,4-Dioxane - N-Ethylaniline - 2-Ethoxypropane - Ethyl aniline - Ethyl phenol - Hexahydroazepin-2-one - IH-Indole - Isopropylidene dioxyphenol - Methanethiol - 2-Methoxyethoxyethene - 2-Methoxyethenol - Methyl aniline -	-3,4-Dimethoxyphenol						1									-
-Dimethyl disulfide 290 57 -Dimethyl naphthalenes 46 6 -Dimethyl oxetane -1,4-Dioxane -N-Ethylaniline -2-Ethoxypropane -Ethyl aniline 34 6 -Ethyl phenol -Hexahydroazepin-2-one -IH-Indole -Isopropylidene dioxyphenol -2-Methoxyaniline -2-Methoxyaniline -4-Methoxyethoxyethene -2-Methoxyphenol -4-Methyl aniline 29 7	-3,4-Dimethylphenol						1						ł		ŀ	-
-Dimethyl naphthalenes 46 6 -Dimethyl oxetane -1,4-Dioxane -2-Ethylaniline -2-Ethoxypropane -Ethyl aniline 34 6 -Ethyl phenol -Ethyl phenol -1H-Indole -Isopropylidene dioxyphenol -2-Methanethiol -2-Methoxyethoxyethene -2-Methoxyethoxyethene -2-Methyl aniline 29 7	-Dimethyl benzaldehyde												1		ł	
-Dimethyl oxetane -1,4-Dioxane -N-Ethylaniline -2-Ethoxypropane -Ethyl aniline -Ethyl phenol -Hexahydroazepin-2-one -1H-Indole -Isopropylidene dioxyphenol -Methanethiol -2-Methoxyaniline -Methoxyethoxyethene -2-Methoxyphenol -Methyl aniline -Methyl aniline -29 7	-Dimethyl disulfide	290	57]	}]]		j	-
-1,4-Dioxane -N-Ethylaniline -2-Ethoxypropane -Ethyl aniline -Ethyl phenol -Hexahydroazepin-2-one -1H-Indole -Isopropylidene dioxyphenol -Methanethiol -2-Methoxyaniline -Methoxyethoxyethene -2-Methoxyphenol -Methyl aniline -Methyl aniline -Methyl aniline	-Dimethyl naphthalenes	46	6			ì										-
-N-Ethylaniline -2-Ethoxypropane -Ethyl aniline -Ethyl phenol -Ethyl phenol -Hexahydroazepin-2-one -IH-Indole -Isopropylidene dioxyphenol -Methanethiol -2-Methoxyaniline -Methoxyethoxyethene -2-Methoxyphenol -Methyl aniline -Methyl aniline -Methyl aniline	-Dimethyl oxetane					i										
-2-Ethoxypropane -Ethyl aniline 34 6 -Ethyl phenol -Hexahydroazepin-2-one -1H-Indole -Isopropylidene dioxyphenol -Methanethiol -2-Methoxyaniline -Methoxyethoxyethene -2-Methoxyphenol 180 -Methyl aniline 29 7							ł									4
-Ethyl aniline -Ethyl phenol -Hexahydroazepin-2-one -1H-Indole -Isopropylidene dioxyphenol -Methanethiol -2-Methoxyaniline -Methoxyethoxyethene -2-Methoxyphenol -2-Methoxyphenol -2-Methoxyphenol -34 6			}				[1			
-Ethyl phenol -Hexahydroazepin-2-one -1H-Indole -Isopropylidene dioxyphenol -Methanethiol -2-Methoxyaniline -Methoxyethene -2-Methoxyphenol -2-Methoxyphenol -2-Methoxyphenol -2-Methoxyphenol -3-Methyl aniline -3-Methyl aniline -3-Methyl aniline -3-Methyl aniline			_]		ł	-
-Hexahydroazepin-2-one -1H-Indole -Isopropylidene dioxyphenol -Methanethiol -2-Methoxyaniline -Methoxyethoxyethene -2-Methoxyphenol -Methyl aniline 29 7		34	6			İ							ł		İ	
- IH-Indole - Isopropylidene dioxyphenol - Methanethiol - 2-Methoxyaniline - Methoxyethoxyethene - 2-Methoxyphenol - Methyl aniline - 29 - 7						1							1			1
-Isopropylidene dioxyphenol -Methanethiol -2-Methoxyaniline -Methoxyethoxyethene -2-Methoxyphenol -Methyl aniline 29 7						1	İ									. +
-Methanethiol -2-Methoxyaniline -Methoxyethoxyethene -2-Methoxyphenol 180 -Methyl aniline 29 7																4
-2-Methoxyaniline -Methoxyethoxyethene -2-Methoxyphenol 180 -Methyl aniline 29 7											1		İ		1	4
-Methoxyethoxyethene -2-Methoxyphenol 180 -Methyl aniline 29 7	1												l			
-2-Methoxyphenol 180						İ										- 1
-Methyl aniline 29 7		100														.+
			_,										1			+
-3-Metnylalbenzotniophene		29	/								'		1			┪
	-3-MetnyId1benzoth1ophene			,												+

MAY 19-30, 1980 COMPOSITE SAMPLES (μ G/L) (CONTINUED)

	7	1		***	1	Γ	·	Γ	Γ	Γ				Γ	
			East	West	Outlet										
Additional Org. Chem. (Cont'd)	Influent	Spillway				SD	ND	05	34	DT	11	DT	19	DT	48
							_								
-4-Methyldibenzothiophene	1	}			ł			}							-
-Methyl naphthalenes	31	5							ŀ						-
-Methyl phenanthrenes		}													-
-2-(methylthiol)benzothiazole	l				1				l						-
-Naphthol									1						-
-N,N-Dimethylaniline						3				1					-
-N-Phenylaniline									ŀ						
-Phenylethanone									Ì						٠-
-Phthalic acid	300	41				()			'	Í					
-2-Propanol	300	41				! !				1					-
-Simazine										ļ					_
-Substituted arizidine	1									1	i				-
-Substituted benzoic acids -Substituted indene	I														•
-Substituted indene -Substituted naphthalenes													į		-
-Substituted naphthothiophenes															_
-Substituted phenanthrenes										}	j				-
-Substituted triazine													- 1		
-Substituted vanillin											- 1				
-Sulfonylbismethane											I		ł		
-Tetrahydrofuranmethanolacetate	<u>, </u>			,							1		- 1		
-Tetramethylbutylphenol			į			Ì	-								_
-Thiobismethane	310	41											- [_
-Tributyl phosphate	41	47	4	10		3					į				
-Trimethyl naphthalenes	30	7	1								- 1		- 1		
-Trimethyl phenanthrenes				İ				- 1			- [1		_
-Vanillin		İ									1		ł		_
-Xylene			{					- 1			- 1		j		
											1				

MAY 19-30, 1980 COMPOSITE SAMPLES (μG/L) (CONTINUED)

Priority Pollutants	Influent	Spillway	East Lagoon		Outlet Lagoon		<u>ND</u>	<u>05</u>	34	DT	11	DT	19	DT	48
Ac enaph thene				!											
-Acenaphthylene						1				1					-
-Anthracene	43	1				1		ĺ	ĺ	1		ĺ			-
Benzene	43	1							ļ			1			-
-Benzo (a) anthracene										ļ					-
-Benzo (a) pyrene	1	1	20	31	7	2		2	2	i	2	ĺ			5 -
-Bis(2-ethylhexyl)phthalate	4		20	31	/	2					2)
-Bromodichloromethane	4	,				1			l	1					
Butyl benzyl phthalate	2 2								Ì	1		ł			
-Chlorobenzene	2	1								1					-
-2-Chlorophenol	1	1]			ļ			-
-Chlorophenylether					}				ł	1		ĺ			-
-Chloroethane	540	39	7	1	1 1				İ						-
-Chloroform	340	39	,	1	1					İ		1			
-4-Chloro-3-methylphenol	1				1				1	l		ł			
-2-Chloronaphthalene									1	ļ			į		
-Chrysene	4				1					1		1			-
-1,2-Dichlorobenzene	3								1	l					-
-1,4-Dichlorobenzene	2	2					,								-
-3,3'-Dichlorobenzidine	2	2							1			1			•
-1,1-Dichloroethane					1					l		1			-
-1,1-Dichloroethene	1 000	220	24		1	6					i		ļ		
-1,2-Dichloroethane	1,800	220	24		1	O					i				
-2,4-Dichlorophenol	1	1							İ						
Diethyl phthalate					1	1				ļ			1		-
-2,4-Dimethylphenol	5				1				l						-
Dimethyl phthalate	1 3				1					}					-
Di-n-butyl phthalate	6														7
-Ethylbenzene	1 "														-
Fluoranthene	1												ł		-
Methyl chloride	<u></u>									<u></u>					

JUNE 2-13, 1980 COMPOSITE SAMPLES ($\mu G/L$)

					<u> </u>					Γ					
			East		Outlet					ļ	ì				
Priority Pollutants (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	<u>SD</u>	ND	<u>05</u>	<u>34</u>	DT	11	DT	19	DT	48
-Methylene chloride	21	3													.]
-Naphthalene	4	3			i					[4
-Pentachlorophenol	Ì	Ì			}									ł	٠
Phenanthrene	1	1													.+
-Pheno1	$\bar{2}$	•				1									4
-Pyrene	_	İ													4
-Tetrachloroethylene	190	12			1	1									
-Toluene	520	5				1									1
-Trans-1,2-dichloroethylene	6	{			1		[1				1	
-Trichlorobenzene									1	1					
-1,1,1-Trichloroethane	44	3			1										- 1
Trichloroethylene	9	1			}					1				ŀ	- 1
-2,4,6-Trichlorophenol	1	1	1		ļ	l			1	ł					. 1
-Vinyl chloride]		!				}					- 1
Additional Organic Chemicals			·												
-Acetaniline				1		1	1			1					
Acetone	2,100	400	}]	}		ļ			•			
Acetovanillone					}	l			l			1			4
-Alkyl substituted benzenes	10	13]							1	, 4
-Aniline		İ			!	1						1			: -
-Atrazine						1	1	1	1		1		1		-
-Azobenzene	1				1	ł	1	1						1	·
-Benzaldehyde		1	ļ ·		1	į	l		}	1					4
-Benzyl alcohol						1	1								
-Butyl benzene	1								1					1	- 4
-Carbon disulfide	540	010		_	4		{	١,						1	:
-2-Chloroaniline	540	210	51	4	4			1							
-Chloromethylbenzene				}]			7
-Chloromethylbenzene											·				

JUNE 2-13, 1980 COMPOSITE SAMPLES (µG/L) (CONTINUED)

															
			East	West	Outlet								}		ļ
Additional Org. Chem. (Cont'd)	Influent	Snillway				s n	וחוא	05	34	דח	11	nΤ	19	nπ	48
Add tollar org. Chem. (cont a)	1111 Tache	Spiriway	Lagoon	Lugoon	Lagoon	120		93	37			<u> </u>		<u></u>	
-Creso1	4														
-2,4'-Diamino-3,3'-dichloro-	12	15	4												
biphenyl	,														-
-2,2-Dichloroazobenzene	13	13	4	4	4										Ţ
-1,4-Diethoxybenzene															4
-Diethoxychlorobenzene	25	26	3			[. 1
-Dihydroxyphenylethanone							١. ا			1					-
-Diisopropoxychlorobenzene	2	2	1	2						ŀ					4
-Dimethoxybenzene															_
-3,4-Dimethoxyphenol	13									[٠ -
-3,4-Dimethylphenol															4
-Dimethyl benzaldehyde]					-
-Dimethyl disulfide	22	3	1												٠-
-Dimethyl naphthalenes	12	4				li				ŀ					4
-Dimethyl oxetane										Ī					4
-1,4-Dioxane]					4
-N-Ethylaniline										}					-
-2-Ethoxypropane	15	2													-
-Ethyl aniline															-
-Ethyl phenol										1					
-Hexahydroazepin-2-one															4
-1H-Indole															4
-Isopropylidene dioxyphenol															
-Methanethiol										l					• 4
-2-Methoxyaniline															4
-Methoxyethoxyethene															{
-2-Methoxyphenol	34														4
-Methyl aniline	320	, 48	30				}			·					4
-3-Methyldibenzothiophene											j		ł		{
							لــــا			L					

JUNE 2-13, 1980 COMPOSITE SAMPLES (μ G/L) (CONTINUED)

	T	l		<u> </u>	1					Γ					
}			East	West	Outlet	ł									:
Additional Org Cham (Cont'd)	Influent	Spillway					พก	ΛE	24	nτ	11	nτ	10	DТ	10
Additional Org. Chem. (Cont'd)	Intruent	Spillway	Lagoon	Lagoon	Layoun	130	שאו	05	34	יים	11	וטו	19	וע	40
4-Methyldibenzothiophene	ľ				1	}				1					
-Methyl naphthalenes	5	1							İ			-			•
-Methyl phenanthrenes	1	•										1			
-2-(methylthiol)benzothiazole	ľ				ĺ				1						:
-Naphthol									Ì						-
-N,N-Dimethylaniline					j										. •
									ļ						-
-N-Phenylaniline					1					ŀ					
-Phenylethanone -Phthalic acid						1 1				1					-
	1 100	120		,						İ					-
-2-Propanol	1,100	130									,				-
-Simazine											1				-
Substituted arizidine										1	1				` <u>-</u>
Substituted benzoic acids															-
-Substituted indene															-
-Substituted naphthalenes															٠ -
Substituted naphthothiophenes										ĺ	- 1				-
-Substituted phenanthrenes															-
-Substituted triazine				-											
-Substituted vanillin				,			1				ĺ				-
-Sulfonylbismethane						İ	l				1				-
-Tetrahydrofuranmethanolacetate						1		- 1			1				-
-Tetramethylbutylphenol		_					1						- 1		-
-Thiobismethane	190	21	1				- 1	1			j		ł		• -
-Tributyl phosphate	14	11	1	[1	ĺ			- [[· -
-Trimethyl naphthalenes	9	5	1					ł							-
-Trimethyl phenanthrenes	}	į	1	1				ł			- 1				
-Vanillin	ł	j	İ				ı	- [<u>-</u>
-Xylene	ļ						l	Ī			-		-		٠ ـ
			i												

JUNE 2-13, 1980 COMPOSITE SAMPLES ($\mu\text{G/L}$) (CONTINUED)

Priority Pollutants	I nf luent	Spillway	East Lagoon		Outlet Lagoon	SD	ND	<u>05</u>	34	DT	11	DT	19	DT	48	
Acenaphthene																$\frac{1}{2}$
-Acenaphthylene							ł					ł				1
-Anthracene	240]	ł					l				┨
Benzene	240	2					l					1				┨
Benzo (a) anthracene						i	1									1
Benzo (a) pyrene	1								١ .				1		_	1
-Bis(2-ethylhexyl)phthalate	7		3	11	26	2		1	4	1		[1		3	4
Bromodichloromethane	3					İ			ł			Ī				$\frac{1}{2}$
-Butyl benzyl phthalate			•			1						ł				1
-Chlorobenzene	6											ŀ				+
-2-Chlorophenol	1															4
-Chlorophenylether		•													:	4
-Chloroethane	}												i			4
-Chloroform	750	37	5	1	1	1										1
-4-Chloro-3-methylphenol																4
-2-Chloronaphthalene	· ·												i			+
-Chrysene	-												-			1
-1,2-Dichlorobenzene	2	•											- 1			+
-1,4-Dichlorobenzene															•	+
-3,3'-Dichlorobenzidine	6	3											1			4
-1,1-Dichloroethane																4
-1,1-Dichloroethene																-
-1,2-Dichloroethane	1,500	64	25	2	1	5									٠.	4
-2,4-Dichlorophenol	2	2														4
-Diethyl phthalate	ł															4
-2,4-Dimethylphenol				ļ						•	- 1					4
-Dimethyl phthalate	2										- 1					4
-Di-n-butyl phthalate															•	+
Ethylbenzene	11			1												4
-Fluoranthene											j					4
-Methyl chloride				,				ļ			1				•	4

Priority Pollutants (Cont'd) Influent Spillway Lagoon Lagoon Lagoon Lagoon Lagoon Lagoon Lagoon Lagoon Lagoon Lagoon Lagoon Lagoon Lagoon Lagoon Lagoon Lagoon SD ND 05 34 DT 11 DT 19 DT 48				1	1 *	1		1	•	1	ſ	1	I	1		
-Methylene chloride 26 3 -Naphthalene 1 -Pentachlorophenol									ĺ							
-Naphthalene -Pentachlorophenol -Phenanthrene -Phenol -Pyrene -Tetrachloroethylene -Toluene -Trans-1,2-dichloroethylene -Trichlorobenzene -1,1,1-Trichloroethane 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	riority Pollutants (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	<u>SD</u>	ND	<u>05</u>	<u>34</u>	DT	11	DT	19	DT	48
-Naphthalene -Pentachlorophenol -Phenanthrene -Phenol -Pyrene -Tetrachloroethylene -Toluene -Trans-1,2-dichloroethylene -Trichlorobenzene -1,1,1-Trichloroethane 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	lothylono chlonido	26	2													٠.
-Pentachlorophenol -Phenanthrene -Phenol		20	3								İ					
-Phenanthrene -Phenol -Pyrene -Tetrachloroethylene -Toluene -Trans-1,2-dichloroethylene -Trichlorobenzene -1,1,1-Trichloroethane 58 1		1					1						[i	ĺ	
-Phenol					,											
-Pyrene -Tetrachloroethylene 390 8 1 -Toluene 1,200 2 -Trans-1,2-dichloroethylene 12 -Trichlorobenzene 58 1		2						1 1					1			•.
-Tetrachloroethylene 390 8 1 -Toluene 1,200 2 -Trans-1,2-dichloroethylene 12 -Trichlorobenzene 58 1		3	ļ				1								1	
-Toluene		200	·	1		1										- /]
-Trans-1,2-dichloroethylene 12 -Trichlorobenzene -1,1,1-Trichloroethane 58 1			0	1		į							[_
-Trichlorobenzene -1,1,1-Trichloroethane 58 1			-				İ]		}			
-1,1,1-Trichloroethane 58 1	mich leach on zone	14				<u> </u>		1				,	1		İ	
		E0	1		ļ										1	
Firechloroothulono I Ol I I I I I I I I I I I I	richloroethylene	9	1		j	•	1]		ļ			
-2,4,6-Trichlorophenol 2 2			2			 					ļ		1			
-Vinyl chloride			_	1							1					٠.
-vinyi chioride	iny i cirror rue					1										
Additional Organic Chemicals	dditional Organic Chemicals															
			[-	-	1					{		ł			·. ·
-Acetaniline -Acetane		1 500			İ				}							-
1,100,00110		1,500	55		1]						1		Ì	•
-Acetovanillone		22	10	}							1					• •
-Alkyl substituted benzenes 23 10		23	10								1				}	
-Aniline -Atrazine			{		1	1			2	1		1		1		•
1		1								1	l	Ţ	ļ	Ţ		-
-Azobenzene]				İ									`. -
-Benzal dehyde							ł			1						. •
-Benzyl alcohol			}	1		1]			ļ]			•
-Butyl benzene			 	1												·
-Carbon disulfide		160	16	2	2	1	1									: -
		400	40			1 7	1			1						-
-Chloromethylbenzene	niorometnyibenzene			1												<u> </u>

JUNE 16-27, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

					I										
			East	West	Outlet					İ					
Additional Org. Chem. (Cont'd)	Influent	Snillway					וחמ	กร	34	пт	11	דת	19	nΤ	48
Add total org. Chem. (cont d)	1111 I dent	Spiriway	Lagoon	Lagoon	Lagoon	30		03	37	<u> </u>		<u> </u>		<u></u>	
-Cresol	4				[-
-2,4'-Diamino-3,3'-dichloro-	28	27	2							1					٠.
biphenyl			-							1	i				
-2,2-Dichloroazobenzene	42	10	2	1	1										-
-1,4-Diethoxybenzene	•				1	'									-
-Diethoxychlorobenzene	8	7													-
-Dihydroxyphenylethanone	1														. •
-Diisopropoxychlorobenzene	5	2			ł										
-Dimethoxybenzene	1									1		1			٠.
-3,4-Dimethoxyphenol	8				}				1	1		!			-
-3,4-Dimethylphenol															-
-Dimethyl benzaldehyde	i .														-
-Dimethyl disulfide	300	35													-
-Dimethyl naphthalenes	2				Ì							ŀ			
-Dimethyl oxetane					Ì										
-1,4-Dioxane)					
-N-Ethylaniline					İ										-
-2-Ethoxypropane										1					: -
-Ethyl aniline										l					-
-Ethyl phenol															-
-Hexahydroazepin-2-one					ļ							į			-
-1H-Indole					}					ļ		ļ			-
-Isopropylidene dioxyphenol					1										
-Methanethiol										1					-
-2-Methoxyaniline										l					٠, ٦
-Methoxyethoxyethene -2-Methoxyphenol	32				}										-
-Methyl aniline	32 11	3	14]										-
-3-Methyldibenzothiophene	11	3	14							ľ					-
- 5-rie digital benzo di topnene															-

JUNE 16-27, 1980 COMPOSITE SAMPLES (µG/L) (CONTINUED)

					}		-	Γ		T		<u> </u>			;
		,	East	West	Outlet					l		1			
Additional Org. Chem. (Cont'd)	Influent	Spillway	Lagoon		Lagoon	SD	ND	05	34	DT	11	DT	19	DT	48
						_	_								
-4-Methyldibenzothiophene					Ī	[]						İ			
-Methyl naphthalenes	1											1			
-Methyl phenanthrenes										1	i	1	1		_
-2-(methylthiol)benzothiazole										1		1			
-Naphthol										l					
-N,N-Dimethylaniline										1		1			_
-N-Phenylaniline												İ			
-Phenylethanone															
-Phthalic acid										}		İ			
-2-Propanol	850														
-Simazine								1	1	ŀ	1	l	1		
Substituted arizidine								. ,							ا
Substituted benzoic acids										[Í				
-Substituted indene					·										
-Substituted naphthalenes										1					٠ _
Substituted naphthothiophenes		·								1					
Substituted phenanthrenes		į							1				l		
Substituted triazine										l					
-Substituted vanillin							- 1		- 1	ĺ	1				
Sulfonylbismethane							- 1								
-Tetrahydrofuranmethanolacetate	`					. 1	ļ	.							ال
-Tetramethylbutylphenol			-			1	- 1	1					- 1		
-Thiobismethane	110	17		į			1	1	- 1				- 1		
-Tributyl phosphate	140	4					1	ļ	1		- 1		- 1		-]
-Trimethyl naphthalenes	2	1					ļ	}			I		- 1		
-Trimethyl phenanthrenes		į		1		-	1				1				.]
-Vanillin						. 1					ļ				.]
-Xylene		1				- 1		}	1		1				_
*	-	1	1								1		Ì		
									+				'		- -

JUNE 16-27, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

		-													•	
Priority Pollutants	Influent	Spillway	East Lagoon	West Lagoon	Outlet Lagoon	<u>SD</u>	<u>ND</u>	<u>05</u>	34	DT	11	DT	19	DT	48	
-Acenaphthene			}									<u> </u> 		:		-
-Acenaphthylene	İ					}				}					•	1
-Anthracene	000					1	l		ĺ	ſ		[•	┨
-Benzene	380	10	1]						┧
-Benzo (a) anthracene												!				1
-Benzo (a) pyrene		;									٠					1
-Bis(2-ethylhexyl)phthalate	10	7	8	3	2	ŀ		4	12	ŀ	2		2		4	+
-Bromodichloromethane	2											ł			•	1
-Butyl benzyl phthalate									1			ĺ			•	1
-Chlorobenzene	. 19								l							4
-2-Chlorophenol	1								[•	1
-Chlorophenylether															•	1
-Chloroethane]								}			}			÷	1
-Chloroform	520	25	3	1	1						1				٠,	+
-4-Chloro-3-methylphenol															•	1
-2-Chloronaphthalene	}				٠,							i				4
-Chrysene																-
-1,2-Dichlorobenzene	6					1			Ì			}			•	-
-1,4-Dichlorobenzene	2														• .	-
3,3'-Dichlorobenzidine	4	1													• •	4
·1,1-Dichloroethane																4
-1,1-Dichloroethene																-
-1,2-Dichloroethane	72	8	4	1	1	6		1			1	1			. •	-
-2,4-Dichlorophenol												{			٠.	4
Diethyl phthalate																-
-2,4-Dimethylphenol												İ				-
-Dimethyl phthalate	4		4	4	1							I			. •	4
Di-n-butyl phthalate	1															+
Ethylbenzene	15]										}			:	4
-Fluoranthene																4
Methyl chloride															٠.	4

JULY 7-18, 1980 COMPOSITE SAMPLES ($\mu G/L$)

	ı — — — — — — — — — — — — — — — — — — —	·		r	1										
			East	West	Outlet										
Priority Pollutants (Cont'd)	Influent	Spillway	Z I			SD	ND	05	34	DT	11	DT	19	DT	48
-Methylene chloride	35	9													• 4
-Naphthalene	2				·					1					4
-Pentachlorophenol			,				1			İ					• 🚽
-Phenanthrene	1					1	1			t			. !		. 1
-Pheno1	4														4
-Pyrene	l					l	1		1	1	Ï				
-Tetrachloroethylene	170	5 2	1			1				1					
-To1uene	310	2				1				1					4
-Trans-1,2-dichloroethylene	2					1	1			1	,				- 4
-Trichlorobenzene			ļ												. 4
-1,1,1-Trichloroethane	16			}			1 1								· . 4
-Trichloroethylene	7					1				1					4
-2,4,6-Trichlorophenol	3	3	2			1				[{
-Vinyl chloride	İ									ł					4
	l		<u> </u>		1	1						ł			.
Additional Organic Chemicals															
					•	1	}								
-Acetaniline				1		i	l	ł	Ì	l		1			1
-Acetone	940	94	i				ł	}	1	1		1			· 1
-Acetovanillone					1		[1		1			. 1
-Alkyl substituted benzenes	22	12		ļ	1	l	1	1		1				1	
-Aniline				1	1	}	1		١	1	_				: +
-Atrazine	1		1	į		ł	1	1	1	Į.	1		1		1 -
-Azobenzene						ĺ	ļ	1		1		İ			
-Benzal dehyde						1	1		1					1	. 4
-Benzyl alcohol						1	1	l							· 4
-Butyl benzene	1		1			1	1					1			· -
-Carbon disulfide					_	1	1		1					Ì	. 4
-2-Chloroaniline	930	97	4	2	3	1				1				'	·{
-Chloromethylbenzene				1				1							4
		·	L	L	<u> </u>	ــــــــــــــــــــــــــــــــــــــ		L	L	L		<u> </u>		J	

JULY 7-18, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

	[I					Γ					
			East	West	Outlet										
Additional Org. Chem. (Cont'd)	Influent	Spillway				รถ	ΝD	05	34	DT	11	דמ	19	DT	48
1		<u> </u>	2030011	3.30.5										-	
-Cresol	4		1		1										٠
-2,4'-Diamino-3,3'-dichloro-	22	8	2			•									•
biphenyl															
-2,2-Dichloroazobenzene	31	15	7	4	4					1					_
-1,4-Diethoxybenzene					ļ				}	1					-
-Diethoxychlorobenzene	2	1	1												_
-Dihydroxyphenylethanone									1						•
-Diisopropoxychlorobenzene	2	1			[-
-Dimethoxybenzene					1										-
-3,4-Dimethoxyphenol	4	4			1					1					`-
-3,4-Dimethylphenol												Ì			
-Dimethyl benzaldehyde										1		ĺ			
-Dimethyl disulfide	79	70			İ					1					
-Dimethyl naphthalenes	6														· _
-Dimethyl oxetane															-
-1,4-Dioxane										i		ĺ			
-N-Ethylaniline					}				l						-
-2-Ethoxypropane										ł					
-Ethyl aniline					Ì										_
-Ethyl phenol					ł					[: -
-Hexahydroazepin-2-one															_
-1H-Indole										1					-
-Isopropylidene dioxyphenol					İ				ļ			ł			
-Methanethiol										İ					· -
-2-Methoxyaniline	`														·
-Methoxyethoxyethene]										-
-2-Methoxyphenol	10				1										-
-Methyl aniline	1		6		}					·					
-3-Methyldibenzothiophene															ل
			لــــــــــــــــــــا		L			لــــا	L	L		L			'

JULY 7-18, 1980 COMPOSITE SAMPLES (µG/L) (CONTINUED)

Additional Org. Chem. (Cont'd)	Influent	Spillway	East Lagoon		Outlet Lagoon	<u>SD</u>	ND.	<u>05</u>	<u>34</u>	DT	11	DT	19	DT	48
-4-Methyldibenzothiophene -Methyl naphthalenes -Methyl phenanthrenes	1														. 1
-2-(methylthiol)benzothiazole -Naphthol -N,N-Dimethylaniline															
-N-Phenylaniline -Phenylethanone -Phthalic acid															
-2-Propanol -Simazine -Substituted arizidine	340	110		,				1	1		1		1		1
-Substituted benzoic acids -Substituted indene -Substituted naphthalenes															1
-Substituted naphthothiophenes -Substituted phenanthrenes -Substituted triazine															-
-Substituted vanillin -Sulfonylbismethane															
-Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane	71	10			_										
-Tributyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes	44 8	2	1		1										· -
-Vanillin -Xylene															

JULY 7-18, 1980 COMPOSITE SAMPLES (µG/L) (CONTINUED)

Priority Pollutants	Influent	Spillway	East Lagoon	West Lagoon	Outlet Lagoon	<u>SD</u>	<u>ND</u>	<u>05</u>	34	DT	11	DT	19	DT	48
Acenaphthene															-
-Acenaphthylene	j				İ	1				1	!	1			.=
Anthracene	1,250	50										1			7
Benzene	1,250	30				1									7
-Benzo (a) anthracene						1		_				ļ			1
Benzo (a) pyrene	10		11	17	3	1		7	13		12	1			8
-Bis(2-ethylhexyl)phthalate	12	8	11	17	ا ع			/	13	ĺ	12				0 1
Bromodichloromethane	2														. 1
Butyl benzyl phthalate	,	,					[[1			1		1
-Chlorobenzene	1					1				•					1
-2-Chlorophenol						1									. 1
Chlorophenylether										1			- 1		1
-Chloroethane	620	35	5	1	1					1	2				. 1
-Chloroform	620	၁၁	3	1	1					İ					. 1
4-Chloro-3-methylphenol							[[1			1		. 1
-2-Chloronaphthalene					'	1				İ					1
-Chrysene	5					1				ļ					1
-1,2-Dichlorobenzene) 1														1
-1,4-Dichlorobenzene	2	1											- 1		7
-3,3'-Dichlorobenzidine	۷	1											İ		1
-1,1-Dichloroethane -1,1-Dichloroethene				ı		1	1								. 1
-1,2-Dichloroethane	1,200	31	7		1	5		1			1				.]
	1,200	31	'		1	3					-				
-2,4-Dichlorophenol	2												- 1		1
Diethyl phthalate									'				İ		.]
-2,4-Dimethylphenol -Dimethyl phthalate															
Di-n-butyl phthalate		ļ						'					- 1		1
-Ethylbenzene	9			,											
-Fluoranthene	9												1		
-Methyl chloride											Ì		Í]
ricelly) childring										L					

JULY 21-31, 1980 COMPOSITE SAMPLES ($\mu G/L$)

						·									
			East	West	Outlet										
Priority Pollutants (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	SD	<u>ND</u>	05	34	DT	11	DT	19	DT	48
Methylene chloride	80	6													-
-Naphthalene	3									}					-
-Pentachlorophenol		ļ													4
-Phenanthrene	1									İ	,				4
-Pheno1	2		2			1					,				-
-Pyrene				,	}	1									4
-Tetrachloroethylene	87	3	}	•	l	1		1							٦
-Toluene	490	10	1	:	1										. 4
-Trans-1,2-dichloroethylene	6		ł			1									-
Trichlorobenzene												1			-
-1,1,1-Trichloroethane	69	4]									-
-Trichloroethylene	13	_				l									1
-2,4,6-Trichlorophenol	3	3				1						•			-
-Vinyl chloride			Ì		Ì		į								-
Additional Organic Chemicals															
Acetaniline						1									_
Acetone	3,400	530				l	ĺ		}]			4
-Acetovanillone	1		İ		1	1									٠-
-Alkyl substituted benzenes	16	11				l								ĺ	-
-Aniline					1	1	1	i	l	1					-
-Atrazine							1		1						-
-Azobenzene			1			İ	1	1		1		1		İ	-
-Benzal dehyde						1		1	1			1			-
-Benzyl alcohol															_
-Butyl benzene		[-
-Carbon disulfide	000	150	_	1	,		1								-
-2-Chloroaniline	890	150	5	1	1		1								-
-Chloromethylbenzene			1												7
		·		·		Ь								·	

JULY 21-31, 1980 COMPOSITE SAMPLES (µG/L) (CONTINUED)

	[·							
	1		East	West	Outlet										
Additional Org. Chem. (Cont'd)	Influent	Spillway	Lagoon		Lagoon	SD	ND	05	34	DT	11	DT	19	DT	48
		- 													
-Creso1	10														4
-2,4'-Diamino-3,3'-dichloro-	17	10	3	'	1										4
biphenyl	1		_								1				1
-2,2-Dichloroazobenzene	41	7	6	4	3										-
-1,4-Diethoxybenzene					1										
-Diethoxychlorobenzene	15	3													4
-Dihydroxyphenylethanone	}														4
-Diisopropoxychlorobenzene	8	4													4
-Dimethoxybenzene	}														-
-3,4-Dimethoxyphenol	4	1													-
-3,4-Dimethylphenol	ļ]										
-Dimethyl benzaldehyde	400														-
-Dimethyl disulfide	400														+
-Dimethyl naphthalenes	8									Ť					4
-Dimethyl oxetane															4
-1,4-Dioxane										i					-
-N-Ethylaniline															
-2-Ethoxypropane															7
-Ethyl aniline															7
-Ethyl phenol											- 1				7
-Hexahydroazepin-2-one -1H-Indole		-													1
								1							1
-Isopropylidene dioxyphenol -Methanethiol							l				- 1				
-2-Methoxyaniline															7
-Methoxyethoxyethene															7
-2-Methoxyphenol	6		ĺ												1
-Methyl aniline	0	j	İ												7
-3-Methyldibenzothiophene			}]
3 The chy ra i benzo chi ophiene]]

JULY 21-31, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

	r				1	Γ				Γ					
			East	West	Outlet										
Additional Org. Chem. (Cont'd)	Influent	Spillway				Sn	מא	05	34	hт	11	hт	10	nт	48
Martinal org. chem. (cont d)	In ruent	Spriway	Lugoon	Lagoon	Lagoon	130		22		10,	11	<u> </u>	13	01	70
-4-Methyldibenzothiophene					<u> </u>										_
Methyl naphthalenes	1				l			•		i .		1			_
-Methyl phenanthrenes										1					
-2-(methylthiol)benzothiazole						1				1					_
-Naphthol					1	1				l		1			_
HN,N-Dimethylaniline							1 1								_
-N-Phenylaniline					1			1							_
-Phenylethanone					{						1	•			٠ _
-Phthalic acid]								1		_
-2-Propanol	38	140													_
-Simazine		·							1	1	ı		i		_
Substituted arizidine			[1		_
-Substituted benzoic acids			}							İ					_
-Substituted indene		1								ĺ	i				_
-Substituted naphthalenes			j				1								
-Substituted naphthothiophenes											1		1		-
-Substituted phenanthrenes								[- 1		- 1		ا ً
-Substituted triazine								- 1					- 1		_
-Substituted vanillin			}]					- 1		
-Sulfonylbismethane								ļ	ĺ]		1		
-Tetrahydrofuranmethanolacetate							.	l					1		_
-Tetramethylbutylphenol							1	l	- 1		- 1]		
-Thiobismethane	38	8	Ī				ł	İ	1				1		_
-Tributyl phosphate	27	1					ļ	1			ŀ				_
-Trimethyl naphthalenes	7		Į	}		į	- 1	- 1	- }		- 1		- 1		_
-Trimethyl phenanthrenes			ĺ				- 1	- 1							_
-Vanillin	[ł			- 1	- 1	- 1							
-Xylene			ĺ			}	ł	- 1			ļ		- 1		4
											l				

JULY 21-31, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

	Τ									I					
			East	West	Outlet					•					
Priority Pollutants	Influent	Spillway				cn	חוא	05	3/1	lnT	11	nτ	10	nΤ	18
71 Torrey Torracanes	Inituenc	Spiriway	Lugoon	Lagoon	Lagoon	120	100	03		<u> </u> -		<u> </u>	13	וטו	40
Acenaphthene															
-Acenaphthylene												ł			_
-Anthracene	1]	1			}					J
-Benzene	190	10				}		•		ł					
-Benzo (a) anthracene															
-Benzo (a) pyrene	1									ļ					j
-Bis(2-ethylhexyl)phthalate	10	9	7	9	6	7		6	9		8		2		2 -
-Bromodichloromethane	4	9	′	,		'		U	9		U		-		-
-Butyl benzyl phthalate	2					1									
-Chlorobenzene	21	2				1]
-2-Chlorophenol	3	-]]			ļ]
-Chlorophenylether	3					ļ									
-Chloroethane										ļ					
-Chloroform	790	12	6	1	1										1
	790	12	О	1	1	1									٦
4-Chloro-3-methylphenol	[1
-2-Chloronaphthalene	1					1	1								
-Chrysene	10				·	1				Ì					1
-1,2-Dichlorobenzene	10											•			
-1,4-Dichlorobenzene	2	٠ ما					1			1		ĺ	- 1		. 1
-3,3'-Dichlorobenzidine	15	3													4
-1,1-Dichloroethane				,						1					4
-1,1-Dichloroethene	1 100	0.0	• •			_ ا									-
-1,2-Dichloroethane	1,100	29	10	1	1	5	1 1	1							1
-2,4-Dichlorophenol	3														-
-Diethyl phthalate							i i						1		4
-2,4-Dimethylphenol						:									-
-Dimethyl phthalate	2	1													1
-Di-n-butyl phthalate	1														
Ethylbenzene	12														4
-Fluoranthene															4
-Methyl chloride		1											ł		i
	 						اا	I				L			

AUGUST 11-18, 1980 COMPOSITE SAMPLES ($\mu G/L$)

										·					
			East	West	Outlet										
Priority Pollutants (Cont'd)	Influent	Spillway				חפ	חמ	กร	34	דמ	11	ŊΤ	19	nт	48
THOTTES TOTTE AT	111111111111111111111111111111111111111	<u> </u>	Lugoon	Lugoon	Lugoon	==	<u> </u>	55	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u></u>	- ' -
-Methylene chloride	41	5													- 4
-Naphthalene	3	1													- 4
-Pentachlorophenol		•								}			:		4
-Phenanthrene	1														- 4
-Pheno1	5					1									4
-Pyrene					1	1						1			4
-Tetrachloroethylene	200	8					1			Í					4
-To1uene	1,600	41													
-Trans-1,2-dichloroethylene	2														4
-Trichlorobenzene	j				•					1		1			
-1,1,1-Trichloroethane										1		}			4
-Trichloroethylene	18	1				İ									
-2,4,6-Trichlorophenol	2)	1									-
-Vinyl chloride	į					1						1			-
Additional Organic Chemicals															
					Ė	l									
-Acetaniline	}			İ]			1			i	İ	4
-Acetone	270	95								1					-
-Acetovanillone	i				1	1				į		l	-		4
-Alkyl substituted benzenes	21	9		<u> </u>	1					1					-
-Aniline	1								1			1			
-Atrazine								1	1	1	1	}	1		1
-Azobenzene					İ					1					
-Benzal dehyde	ì								1	İ		1			. 4
-Benzyl alcohol	}	ł			1]						4
-Butyl benzene	ļ			[1					{	-	[1
-Carbon disulfide			_] _								[
-2-Chloroaniline	740	110	8	2	1						:				-
-Chloromethylbenzene												i			-
	·	·		I		·			Щ.	<u> </u>		·			

AUGUST 11-18, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

					I							·			
			East		Outlet										
Additional Org. Chem. (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	<u>SD</u>	ND	05	34	DT	11	DT	19	DT	48
-Cresol	6												:		_
-2,4'-Diamino-3,3'-dichloro-	19	3	2												-
biphenyl	1	{				1				•		[
-2,2-Dichloroazobenzene	64	11	9	6	5	1				İ		l		l	· -
-1,4-Diethoxybenzene										}					-
-Diethoxychlorobenzene	8	2	1		j										-
-Dihydroxyphenylethanone												l			-
-Diisopropoxychlorobenzene	8	2										l		l	
-Dimethoxybenzene	1]												l	•
-3,4-Dimethoxyphenol	2]]]			-
-3,4-Dimethylphenol		•				1						ł		l	-
-Dimethyl benzaldehyde					j										-
-Dimethyl disulfide	97	6													, -
-Dimethyl naphthalenes	10] 3			}]					-
-Dimethyl oxetane	1				l									l	-
-1,4-Dioxane										}		ł			٠ -
-N-Ethylaniline												l			-
-2-Ethoxypropane	ł										i				-
Ethyl aniline					}										-
Ethyl phenol															-
-Hexahydroazepin-2-one															
·1H-Indole	ł				}							}		}	-
Isopropylidene dioxyphenol				,										ĺ	-
Methanethiol															-
-2-Methoxyaniline															-
Methoxyethoxyethene	1				}					ł					٠-
2-Methoxyphenol	35									1					-
Methyl aniline	6			'											_
3-Methyldibenzothiophene															-

AUGUST 11-18, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

Additional Org. Chem. (Cont'd) Influent Spillway Eagoon Lagoon SD ND 05 34 DT 11 DT 19 DT 48 4-Methyldibenzothiophene Methyl naphthalenes Methyl phenanthrenes 2-(methylthiol)benzothiazole Naphthol N.N-Dimethylaniline Phenylethanone Phthalic acid 2-Propanol Simazine Substituted benzoic acids Substituted indene Substituted indene Substituted naphthalenes Substituted phenanthrenes Substituted triazine Substituted triazine Substituted triazine Substituted vanillin Sulfonylbismethane -Tetramethylbutylphenol -Trimethyl aphthalenes -Trimethyl aphthalenes -Trimethyl phosphate -Trimethyl phenanthrenes -Vanillin -Xylene		1	1			1	Γ-									
Additional Org. Chem. (Cont'd) Influent Spillway Lagoon Lagoon SD ND 05 34 DT 11 DT 19 DT 48 4-Methyl dibenzothiophene Hethyl naphthalenes 7 2 2 Hethyl phenanthrenes 2-2-(methylthiol)benzothiazole Naphthol N.N-Dimethylaniline Hehenylethanone Phthalic acid 2-Propanol Simazine Substituted arizidine Substituted benzoic acids Substituted indene Substituted naphthalenes Substituted naphthalenes Substituted triazine Substituted triazine Substituted triazine Substituted triazine Substituted triazine Tetrahydrofuranmethanolacetate Tetramethyl butylphenol Thiobismethane Tetrahydrofuranmethanes Timimethyl naphthalenes Timimethyl phenanthrenes Functional Spill Nagoon Lagoon Lagoon SD ND 05 34 DT 11 DT 19 DT 48 A DT 11 DT 19 DT 19 A DT 11 DT 19 DT 19 A DT 11 DT 19 DT 19 A DT 11 DT 1		}		Fact	Wast	00+16+	1									
-4-Methyl dibenzothiophene -Methyl naphthalenes 7 2 -Methyl phenanthrenes 2 -2 (methyl thiol) benzothiazole -Naphthol -N.N-Dimethylaniline -N-Phenylaniline -N-Phenylaniline -Phenylethanone -Phthalic acid -2-Propanol 91 40 -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene -Substituted indene -Substituted naphthothiophenes -Substituted phenanthrenes -Substituted triazine -Substituted vanillin -Sul fonylbismethane -Tetramethylbutylphenol -Thiobismethane -Tetramethylbutyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin	Additional Org Chem (Contid)	Influent	Spillway				sn:	וחו	05	24	DT	11	nΤ	10	nт	ΛQ:
- Methyl naphthalenes	Additional org. chem. (cont d)	Thirdenc	Spiriway	Lagoon	Lagoon	Lagoon	120	100	03	34	101		יוט	19	וט	40
- Methyl naphthalenes	-4-Methyldibenzothionhene	1				Į										j
-Methyl phenanthrenes -2-(methylthiol)benzothiazole -Naphthol -N,N-Dimethylaniline -N-Phenylethanone -Phenylethanone -Phthalic acid -2-Propanol -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene -Substituted naphthothiophenes -Substituted naphthothiophenes -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetrahydrofuranmethanolacetate -Tetrahydrofuranmethanolacetate -Trimethyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin		7	2			}					j					
-2-(methylthiol)benzothiazole -Naphthol N,N-Dimethylaniline -N-Phenylaniline -Phenylethanone -Phthalic acid -2-Propanol -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted naphthalenes -Substituted naphthothiophenes -Substituted henanthrenes -Substituted triazine -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetrahydrofuranmethanolacetate -Trimethyl phosphate -Trimethyl phosphate -Trimethyl phenanthrenes -Vanillin		'	2								į					
-Naphthol N.N-Dimethylaniline -N-Phenylaniline -N-Phenylethanone -Phenylethanone -Phthalic acid -2-Propanol -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene -Substituted naphthalenes -Substituted naphthothiophenes -Substituted raphthothiophenes -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Trimethyl phosphate -Trimethyl paphthalenes -Trimethyl phenanthrenes -Vanillin	L2-(methylthiol)benzothiazole					ł					l					
-N.NDimethylaniline -N-Phenylaniline -Phenylethanone -Phthalic acid -2-Propanol -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene -Substituted naphthalenes -Substituted phenanthrenes -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin																
-N-Phenylethanone -Phenylethanone -Phthalic acid -2-Propanol -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted naphthalenes -Substituted naphthothiophenes -Substituted phenanthrenes -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Tributyl phosphate -Trimethyl naphthalenes -Vanillin					 		i i				1					
-Phenylethanone -Phthalic acid -2-Propanol -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene -Substituted naphthalenes -Substituted phenanthrenes -Substituted triazine -Substituted triazine -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Trimethyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin																
-Phthalic acid -2-Propanol -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene -Substituted naphthalenes -Substituted phenanthrenes -Substituted triazine -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Trimethyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin																
-2-Propanol -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene -Substituted naphthalenes -Substituted phenanthrenes -Substituted phenanthrenes -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Tributyl phosphate -Trimethyl naphthalenes -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin							1 1	· 1	1		1					•
-Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene -Substituted naphthalenes -Substituted phenanthrenes -Substituted triazine -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Trimethyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin		01	40						1		į .					
Substituted arizidine -Substituted benzoic acids -Substituted indene -Substituted naphthalenes -Substituted naphthothiophenes -Substituted phenanthrenes -Substituted triazine -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Tributyl phosphate -Tributyl phosphate -Irimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin)1	40						1	1	ĺ	1		ا ،		1 -
-Substituted benzoic acids -Substituted indene -Substituted naphthalenes -Substituted naphthothiophenes -Substituted phenanthrenes -Substituted triazine -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Tributyl phosphate -Tributyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin)								1		- 1		1		+ 1
-Substituted indene -Substituted naphthalenes -Substituted naphthothiophenes -Substituted phenanthrenes -Substituted triazine -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Iributyl phosphate -Irimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin												İ				٠
-Substituted naphthalenes -Substituted phenanthrenes -Substituted triazine -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Iributyl phosphate -Irimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin											ŀ	- {				
-Substituted naphthothiophenes -Substituted phenanthrenes -Substituted triazine -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Tributyl phosphate -Tributyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin								l								
-Substituted phenanthrenes -Substituted triazine -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane 120 5 -Tributyl phosphate 19 3 3 1 1 -Trimethyl naphthalenes 10 -Trimethyl phenanthrenes -Vanillin				1				į	. 1							
-Substituted triazine -Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Tributyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin								1				j				· _ !
-Substituted vanillin -Sulfonylbismethane -Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane -Tributyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes -Vanillin	Substituted triazine							- }								
-Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane 120 5 -Tributyl phosphate 19 3 3 1 1 -Trimethyl naphthalenes 10 3 -Trimethyl phenanthrenes -Vanillin				1			1	ł	1			- 1		- 1		-
-Tetramethylbutylphenol -Thiobismethane 120 5 -Tributyl phosphate 19 3 3 1 1 1 -Trimethyl naphthalenes 10 3 -Trimethyl phenanthrenes -Vanillin	-Sulfonylbismethane							1				ŀ				
-Tetramethylbutylphenol -Thiobismethane 120 5 -Tributyl phosphate 19 3 3 1 1 1 -Trimethyl naphthalenes 10 3 -Trimethyl phenanthrenes -Vanillin	-Tetrahydrofuranmethanolacetate			i				İ	1			- 1		- 1		_
-Thiobismethane 120 5	-Tetramethylbutylphenol			j			}	- 1	j			}				
-Trimethyl naphthalenes 10 3 - Trimethyl phenanthrenes - 10 3 - Trimethyl phenanthrenes - 10 3 - 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-Thiobismethane	120	5	ļ				- 1	1	- 1		- 1				
-Trimethyl naphthalenes 10 3 - Trimethyl phenanthrenes - 10 3 - Trimethyl phenanthrenes - 10 3 - 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-Tributyl phosphate	19	3	3	1	7		- {	1			- 1		- 1		_
-Trimethyl phenanthrenes	-Trimethyl naphthalenes			-	_	-		- 1				-		1		_
-Vanillin	-Trimethyl phenanthrenes			i	l			- 1	- [i				إـ
-Xylene	-Vanillin		j	j	ļ]	1			}				4
	-Xy1ene						}	ı				1		İ		- 4
		<u> </u>												[1

AUGUST 11-18, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

			East	West	Outlet										
Priority Pollutants	Influent	Spillway				s n	מוא]	05	34	DT	11	nT	10	nT /	18
11 Tority Torracanes	Till Tuche	Spiriway	Lagoon	Lagoon	Lagoon	30	III D	امحا		121		<u> </u>	13	יוט י	쁘
Acenaphthene		,				'									4
-Acenaphthylene					1				1			1			4
-Anthracene									ĺ	1		[4
Benzene	70	1			[ł			1		4
-Benzo (a) anthracene								'	ł	ļ					
-Benzo (a) pyrene						1		1	ĺ	1		ĺ	į		4
-Bis(2-ethylhexyl)phthalate	3	5	2	2	•	3		2	2	1	26		12	31	.0*
-Bromodichloromethane	3	;			1	'	ļ '] .							4
Butyl benzyl phthalate	3 3 2 33								ľ	1	•	l			4
-Chlorobenzene	33	4							1	1			1		4
-2-Chlorophenol										ļ		l			.4
-Chlorophenylether										į		1	ļ		4
-Chloroethane										1		l			. 4
-Chloroform	990	36	6	1	1			5		1	1				
-4-Chloro-3-methylphenol										1					4
-2-Chloronaphthalene										į		1			
Chrysene						'				1		1	1		
-1,2-Dichlorobenzene	3									l		1			4
-1,4-Dichlorobenzene	1					,				1		1	- 1		4
-3,3'-Dichlorobenzidine	ĝ	2								1			- 1		4
-1,1-Dichloroethane	_	-								1					4
-1,1-Dichloroethene						1				1			- 1		4
-1,2-Dichloroethane	690	51	9		1			1		1	2	İ			4
-2,4-Dichlorophenol	4		,		•			_ +		1	_	1			4
Diethyl phthalate	' !									1		į			_
-2,4-Dimethylphenol					j								- 1		4
Dimethyl phthalate	3									1					٠. ا
-Di-n-butyl phthalate	3 2											ĺ	j		1
-Ethylbenzene	11									1		1			4
-Fluoranthene	* 1									Į					4
-Methyl chloride										1					1
								ليب		<u> </u>		L			

AUGUST 25 - September 5, 1980 COMPOSITE SAMPLES ($\mu\,G/L$)

										<u> </u>					
			East		Outlet					ļ					:
Priority Pollutants (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	SD	ND	05	34	DT	11	DT	19	DT	48
-Methylene chloride	36	12								1					
-Naphthalene	3	1							ĺ				i		
-Pentachlorophenol	1	,			İ					1					-
-Phenanthrene	1									l					1
-Pheno1		1			ł										1
Pyrene					1	l				1					1
-Tetrachloroethylene	401	4				ł									1
-Toluene	1,100									1					- 1
-Trans-1,2-dichloroethylene	1	İ							l	1					4
-Trichlorobenzene	İ									1					- 1
-1,1,1-Trichloroethane	49	1			j										. 1
-Trichloroethylene	8	1								1					1
-2,4,6-Trichlorophenol	4					l									1
-Vinyl chloride				İ					1						. 1
Additional Organic Chemicals															
Acetaniline	I	}]]]]	1		ļ		,	4
Acetone					1					1					4
-Acetovanillone					İ					1					- 4
-Alkyl substituted benzenes	21	10	2			İ		İ	1	}					4
-Aniline	15	1	_		}		-	l		}					4
Atrazine	1							1	2		1		1		1-
-Azobenzene	į			Ì			1	-	_		-		_		, -
-Benzal dehyde	[ł					• 4
-Benzyl alcohol	1	1		1		1		1							. 4
-Butyl benzene										1					4
-Carbon disulfide	1						ļ			ł		ĺ			-
-2-Chloroaniline	970	210	8	2	2			1							-{
-Chloromethylbenzene				1					İ						\dashv
<u> </u>		L	L	·	L	ـــــــا	I	L	L	L		I		l	

AUGUST 25 - SEPTEMBER 5, 1980 COMPOSITE SAMPLES (µG/L) (CONTINUED)

										1		Ι			·:
1			East	West	Outlet										
Additional Org. Chem. (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	SD	ND	05	34	DT	11	DT	19	DT	48
-Cresol	4														-
-2,4'-Diamino-3,3'-dichloro-	21	4	2								•				-
biphenyl					<u> </u>							1			•
-2,2-Dichloroazobenzene	51	12	4	2	2					1		1			_
-1,4-Diethoxybenzene			-									1			-
-Diethoxychlorobenzene	21	14	3		į							ł			-
-Dihydroxyphenylethanone		•													-
-Diisopropoxychlorobenzene	5	4	1		}							1			-
-Dimethoxybenzene															-
-3,4-Dimethoxyphenol			1									l			-
-3,4-Dimethylphenol				i								l			-
-Dimethyl benzaldehyde								ĺ				}			-
-Dimethyl disulfide	71														-
-Dimethyl naphthalenes	6	1										1			-
-Dimethyl oxetane	,											1			
-1,4-Dioxane															-
-N-Ethylaniline	-														
-2-Ethoxypropane	2											1			-
-Ethyl aniline															-
-Ethyl phenol												1			-
-Hexahydroazepin-2-one															-
-1H-Indole															-
-Isopropylidene dioxyphenol	21	11	7	2	2							ļ			-
-Methanethiol															-
-2-Methoxyaniline										1		l			-
-Methoxyethoxyethene															-
-2-Methoxyphenol	4											1			-
-Methyl aniline	3														-
-3-Methyldibenzothiophene						1									-
					L	لــــا			لـــــا	1		ــــــــــــــــــــــــــــــــــــــ		٠	

AUGUST 25 - SEPTEMBER 5, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

Additional Org. Chem. (Cont'd)	Influent	Spillway	East Lagoon		Outlet Lagoon	SD	ND	<u>05</u>	34	DT	11	DT	19	DT	<u>48</u>
-4-Methyldibenzothiophene															
-Methyl naphthalenes	2	1		•											•
-Methyl phenanthrenes												ı			-
-2-(methylthiol)benzothiazole				•					İ						-
-Naphthol					1										-
-N,N-Dimethylaniline -N-Phenylaniline															• •
-Phenylethanone															
-Phthalic acid															
-2-Propanol	280														•
-Simazine	200							1			1		1		1
Substituted arizidine			•							Ì					_
-Substituted benzoic acids															_
Substituted indene										1					
-Substituted naphthalenes												l			-
-Substituted naphthothiophenes]													-
Substituted phenanthrenes				i			ı								٠.
-Substituted triazine							}				}				-
-Substituted vanillin															-
Sulfonylbismethane								- 1			- 1				-
Tetrahydrofuranmethanolacetate			1				- 1	1					- 1		-
-Tetramethylbutylphenol -Thiobismethane	2.2	ا م					- 1	- 1			- 1				
-Tributyl phosphate	22	3				ł	- {	-			ı				-
Trimethyl naphthalenes	9	1					- (ĺ		[-
Trimethyl phenanthrenes	8]	1]					}]]]		-
-Vanillin								Ì			l		-		-
-Xylene			1				1						ł		_
* High concentration due to poss															

* High concentration due to possible laboratory contamination.

AUGUST 25 - SEPTEMBER 5, 1980 COMPOSITE SAMPLES (µG/L) (CONTINUED

	· · · · · · · · · · · · · · · · · · ·				l	Γ			Γ.	T		l	$\neg \neg$		
			East	West	Outlet	ł			1	1					,
Priority Pollutants	Influent	Spillway				S.D.	חוו	חב	34	DT	11	nτ	10	DΤ	ΛΩ
Friority Fortucants	Initiaent	Spiliway	Lagoon	Lagoon	Lagoon	130	IND.	03	34	101	11	<u> </u>	19	יוט	40
Acenaphthene					[[1					_
-Acenaphthylene			,									}			٠
-Anthracene						1			ł	ł					٠.
-Benzene	95				İ		1		i	1		i			_
-Benzo (a) anthracene))				i				ł	ì					
-Benzo (a) pyrene										1		[
Bis(2-ethylhexyl)phthalate		0		_					١.	1	_	1			
-Bromodichloromethane	9	2	4	2	2	2		2	1	1	5		3		j.
•	2				ļ	l			İ		,				-
Butyl benzyl phthalate							1		ļ	1]			-
-Chlorobenzene						1	•			1	i				
-2-Chlorophenol	2									1		1			-
-Chlorophenylether		·							1	ĺ					
Chloroethane										1		İ			-
Chloroform	920	70	8	2	1					İ					-
-4-Chloro-3-methylphenol	4														-
-2-Chloronaphthalene					i				ŀ	1		İ			-
Chrysene													ŀ		-
-1,2-Dichlorobenzene	3											ł			-
-1,4-Dichlorobenzene					}										-
-3,3'-Dichlorobenzidine										}					-
-1,1-Dichloroethane	·									}					-
-1,1-Dichloroethene															٠-
-1,2-Dichloroethane	780	42	3	1	1	ĺ				i					-
-2,4-Dichlorophenol	1									į			- 1		-
-Diethyl phthalate													- 1		-
-2,4-Dimethylphenol						ŀ				1		1	- 1		-
-Dimethyl phthalate	. 5														+
-Di-n-butyl phthalate					'					1					-
-Ethylbenzene															-
-Fluoranthene	1									1					-
-Methyl chloride						٠.				l					-
L		i			!	L	ᆫᆜ	لـ ۔	اــــا	L		l			

SEPTEMBER 8-19, 1980 COMPOSITE SAMPLES ($\mu G/L$)

															
			East	West	Outlet						!				- 1
Priority Pollutants (Cont'd)	Influent	Spillway	Lagoon		Lagoon	SD	ND	05	34	DT	11	DT	19	DT	48
									_						
-Methylene chloride	9														+
-Naphthalene	4	1								l					- 1
-Pentachlorophenol	ļ									i					• 4
-Phenanthrene						1									1
-Pheno1	6	8	•												1
Pyrene	212	20]							İ			1
Tetrachloroethylene	310	38 71			}]		1			- 1
Toluene	670	/1													1
-Trans-1,2-dichloroethylene -Trichlorobenzene				,	}]
-1,1,1-Trichloroethane	49					•								i	•]
-Trichloroethylene	49														
-2,4,6-Trichlorophenol	3				1							i			•]
Vinyl chloride	١				1							}			_
1 tilly to strong ac]	ŀ				1					
Additional Organic Chemicals															
										ĺ					
-Acetaniline	ļ					1						1			-
-Acetone	290				1							1			-
-Acetovanillone	26	_			1							l			1
Alkyl substituted benzenes	5	1				•				l					-
-Aniline	26										1		1		-
-Atrazine					}	İ			ĺ		1		1		_
Azobenzene]			
-Benzal dehyde							1								.]
-Benzyl alcohol -Butyl benzene]														
-Carbon disulfide															
-2-Chloroaniline	330	10	7	1	}										
-Chloromethylbenzene]	10	ĺ	•											_
	L	L	L		<u> </u>	<u>L</u>	L	L	L	L		<u> </u>		l	

SEPTEMBER 8-19, 1980 COMPOSITE SAMPLES (µG/L) (CONTINUED)

													_	[—¬
			East	West	Outlet										ļ
Additional Org. Chem. (Cont'd)	Influent	Snillway			-	รก	חמ	05	34	דת	11	דמ	19	דח	48
Addressing org. chem. (contra)	1111110	<u>sprring</u>	Lagoon	Lugoon	Lagoon	35	1110	90	<u> </u>	<u> </u>		<u> </u>		 -	<u></u> ∣
-Creso1	6	1													
-2,4'-Diamino-3,3'-dichloro-	9		1												4
biphenyl	,		•											ł	
-2,2-Dichloroazobenzene	5	2	3	2	1									}	4
-1,4-Diethoxybenzene	Ĭ	_		_	_										4
-Diethoxychlorobenzene	8		5	1			į								4
-Dihydroxyphenylethanone		,	_	_											· 4
-Diisopropoxychlorobenzene	3					1				1					4
-Dimethoxybenzene				,											4
-3,4-Dimethoxyphenol	2														4
-3,4-Dimethylphenol			,												4
-Dimethyl benzaldehyde															
-Dimethyl disulfide	270	18													4
-Dimethyl naphthalenes	6	1													4
-Dimethyl oxetane										Ì					4
-1,4-Dioxane										ŀ					+
-N-Ethylaniline														l	4
-2-Ethoxypropane															4
-Ethyl aniline														l	4
-Ethyl phenol														l	7
Hexahydroazepin-2-one															1
-1H-Indole	Г1	2.0	2	2	2									ĺ	1
-Isopropylidene dioxyphenol -Methanethiol	51	36	3	2	2										7
-2-Methoxyaniline											1				1
-Methoxyethoxyethene	}														1
-2-Methoxyphenol	5														1
-Methyl aniline	83]
-3-Methyldibenzothiophene	65]
o neony randenzo en ropnene	_						ļ <u>.</u>			l				<u> </u>]

SEPTEMBER 8-19, 1980 COMPOSITE SAMPLES (µG/L) (CONTINUED)

	7)	r	J		Γ			Γ	Т					
			Галь	li-a-t	0					1		ļ			
Additional Own Cham (Coutld)	T 63	C - 4 1 1	East		Outlet		NID.	امدا	1	D.T.		L-	10	DТ	40
Additional Org. Chem. (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	<u> </u>	עאו	<u>U5</u>	34	101	11	<u> </u>	19	וע	48
-4-Methyldibenzothiophene	1				ŀ					Ì		1		i	1
	2	,]]					-
-Methyl naphthalenes	2	1			ŀ			. 1		1		ļ			
Methyl phenanthrenes	[1	1 1				1					-
-2-(methylthiol)benzothiazole	{									1					-
-Naphtho1]					1					-
-N,N-Dimethylaniline	2									1					_
-N-Phenylaniline															-
-Phenylethanone										ļ					_
-Phthalic acid															
-2-Propanol	730														
-Simazine										ļ	1		1		_
Substituted arizidine							- 1			[
-Substituted benzoic acids										1					نہ
-Substituted indene							1				- 1				
-Substituted naphthalenes										1					_
Substituted naphthothiophenes							- 1				1				-
-Substituted phenanthrenes										1					
Substituted triazine		'					ı	1					ı		
Substituted vanillin							- 1						- 1		
Sulfonylbismethane	1		- 1				}	1		1)		J		
-Tetrahydrofuranmethanolacetate		1	1				1						- 1		
-Tetramethylbutylphenol						1	- 1	1	- 1	[1		- 1		
-Thiobismethane	71	10	1				1	Ì			1		1		-
-Tributyl phosphate	9	10		į							1				
-Trimethyl naphthalenes	9. E.	1	,				}	j]		j		_
-Trimethyl phenanthrenes	၁	1					1	ł			}		ļ		
-Vanillin	18		1					I	ł		İ		Ì		i
-Xylene	18]				i	1	Ì	{	}		ł		}		٦
Ayrene			ł			}	- }	ļ]		j		Ì		
				l				1							

SEPTEMBER 8-19, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

					· · · · · ·	T			~			<u> </u>			
			East	West	Outlet										
Priority Pollutants	Influent	Spillway	Lagoon			SD	ND	05	34	DT	11	рт	19	DT	48
															
-Acenaph thene	ļ					1		1		•					_
-Acenaphthylene					ļ										-
Anthracene	l				İ	1									-
Benzene	70					1									-
Benzo (a) anthracene					[l			ĺ	1		1			-
Benzo (a) pyrene									}	1					_
Bis(2-ethylhexyl)phthalate	11	9	3	2	1	1		1	5		2		4		2-
Bromodichloromethane												1			-
Butyl benzyl phthalate	4					1				}	,	1			-
-Chlorobenzene	33	2													-
-2-Chlorophenol	4	1								•					_
-Chlorophenylether			:]				1					-
-Chloroethane						1									٠ ـ
-Chloroform	670	42	2	1	1					ĺ		1			_
-4-Chloro-3-methylphenol	2						}			1		1			-
-2-Chloronaphthalene												1			-
Chrysene												1			
-1,2-Dichlorobenzene						}	1 1					1			-
-1,4-Dichlorobenzene	4														-
-3,3'-Dichlorobenzidine	22	8													-
-1,1-Dichloroethane												1			-
-1,1-Dichloroethene												Ì			-
-1,2-Dichloroethane	690	85	4	1	1	4					-	1			-
-2,4-Dichlorophenol								1				1			-
-Diethyl phthalate	2					'						1			-
-2,4-Dimethylphenol												1			-
Dimethyl phthalate	3	İ	ļ							1		1	ı		-
Di-n-butyl phthalate	_														-
Ethylbenzene	11														-
-Fluoranthene															-
Methyl chloride															-
		l			L			1	لــــا	L		L			

SEPTEMBER 27 - OCTOBER 3, 1980 COMPOSITE SAMPLES ($\mu G/L$)

								<u> </u>		Γ			·		
1			East	West	Outlet										
Priority Pollutants (Cont'd)	Influent	Spillway				SD	ИD	05	34	Td	11	DT	19	DT	48
		<u> </u>	<u> </u>	2030011					-	=-					
-Methylene chloride	190	26													-
-Naphthalene	190 3	26 1								}		1			-
-Pentachlorophenol						Į				İ		ļ			-
-Phenanthrene		1										ĺ			-
-Pheno1	4	1				İ				İ		1			-
-Pyrene					1							1			-
-Tetrachloroethylene	400	21		i	1	1									-
-Toluene	1,200	26			1										-
-Trans-1,2-dichloroethylene						1			1						-
-Trichlorobenzene						į .	1								-
-1,1,1-Trichloroethane	31	5	1							1					-
-Trichloroethylene	8						l			1		ł		1	-
-2,4,6-Trichlorophenol	3	1				l				1					-
-Vinyl chloride						l				1				ŀ	-
Additional Organic Chemicals															
Marcional organic onemicars						}				1					
-Acetaniline	1	}			1	l		1							-
-Acetone	1,200	30			}	1									-
-Acetovanillone	51	3	1			1		1	1	i		1			-
-Alkyl substituted benzenes	18	6	1 2	1	1		1	1	ļ	1		1			-
-Aniline	15					ļ	1	1	l			1			-
-Atrazine		1			Ì	1	İ	l	ļ		1		1		-
Azobenzene		!			1	İ	1	1		Į					-
-Benzal dehyde		1					1			1		1		1	-
-Benzyl alcohol	1	1						1							-
-Butyl benzene	1								1						-
-Carbon disulfide			_]			1						-
-2-Chloroaniline -	870	180	3	1			1	ł	-	1		1		1	-
-Chloromethylbenzene	}	1													-
	<u> </u>	1	L	L	L	J	!	ــــــــــــــــــــــــــــــــــــــ	ـــا.	ــــــــــــــــــــــــــــــــــــــ		<u> </u>		J	

SEPTEMBER 27 - OCTOBER 3, 1980 COMPOSITE SAMPLES (µG/L) (CONTINUED)

					<u> </u>		Γ			T				 -	
•			East	West	Outlet					İ					
Additional Org. Chem. (Cont'd)	Influent	Spillway				SD	ND	05	34	DT	11	DT	19	DT	48
		<u> </u>	<u> </u>			==	<u> </u>								<u></u> -
-Creso1	3						,						İ		_
-2,4'-Diamino-3,3'-dichloro-	19	3	1		1			Ì		1					_
biphenyl					1	1									
-2,2-Dichloroazobenzene	13	3	2	2	1										_
-1,4-Diethoxybenzene						·				i		İ			_
-Diethoxychlorobenzene	12	2			1	1				1					_
-Dihydroxyphenylethanone						1				ļ		1			-
-Diisopropoxychlorobenzene	5	1]]		}]			_
-Dimethoxybenzene												ł			_
-3,4-Dimethoxyphenol					<u> </u>					Ì					_
-3,4-Dimethylphenol								l							_
-Dimethyl benzaldehyde	100	10			}					ļ					-
-Dimethyl disulfide	100	12			•										-
-Dimethyl naphthalenes	5	1													-
-Dimethyl oxetane										İ					-
-1,4-Dioxane															-
-N-Ethylaniline					•					1		ĺ			-
-2-Ethoxypropane										1		ŀ			,-
-Ethyl aniline	3					!				1		•			-
-Ethyl phenol -Hexahydroazepin-2-one										İ		İ			-
- 1H- Indole										l					7
-Isopropylidene dioxyphenol	32	2	1												7
-Methanethiol	32	2	1												
-2-Methoxyaniline															7
-Methoxyethoxyethene								}						İ]
-2-Methoxyphenol	18														
-Methyl aniline	110	8													
-3-Methyldibenzothiophene	110	Ŭ											·		j
					<u> </u>	لـــا	الليل		لــــا			L			i L

SEPTEMBER 27 - OCTOBER 3, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

)~~~~				,				Γ	Ţ		r			
			Fact	Usas	Outlet			l				ļ			
Additional Our Cham (Cantle)	1	Cad III	East			CD	NID.	٦	۸.	L_	11	~-	10	n. T	40
Additional Org. Chem. (Cont'd)	InTiuent	Spillway	Lagoon	Lagoon	Lagoon	30	שו	05	34	<u>וען</u>	11	<u> </u>	19	וט	48
-4-Methyldibenzothiophene															
-Methyl naphthalenes	2	1		!	1	l				1	i	Ì			-
-Methyl phenanthrenes	۷	1								ł		1			-
-2-(methylthiol)benzothiazole					}]		1					-
															-
-Naphthol										l					-
-N,N-Dimethylaniline	1														-
-N-Phenylaniline										1					-
-Phenylethanone										l					-
-Phthalic acid															-
-2-Propanol	270									}					-
-Simazine	~										1		1		_
-Substituted arizidine										İ					
-Substituted benzoic acids															_
-Substituted indene										٠					
-Substituted naphthalenes		1				1				1					
-Substituted naphthothiophenes															_
-Substituted phenanthrenes			ļ				- 1			1					_
-Substituted triazine											- 1				_
-Substituted vanillin										İ	İ				_
-Sulfonylbismethane							1		- 1		- 1				-
-Tetrahydrofuranmethanolacetate		ļ					- 1	- 1							_
-Tetramethylbutylphenol		1					- 1	ł	- 1				1		_
-Thiobismethane	32	6	į			- 1	1	1	1						-
-Tributyl phosphate	14	١	1			- 1		1	1				I		-
-Trimethyl naphthalenes	17	, !	1			ł	l]		- }				-
-Trimethyl phenanthrenes	′ }	1	1			}	Ì	ŀ	I						_
-Vanillin	47	{	-	ſ		- [- 1	ſ	-		- 1				-
-Xylene	4/	l				1	- 1	í			1				
-Ay relie		l	l]		- 1	- 1	- 1	- 1		1		- 1		-
L	l			l											

SEPTEMBER 27 - OCTOBER 3, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

Priority Pollutants	Influent	Spillway	East Lagoon		Outlet Lagoon	SD	ND	05	34	DT	11	DT	19	DT	48
-Acenaphthene				<u> </u>			-								
-Acenaphthylene															4
Anthracene													- 1		4
Benzene	42	•													4
-Benzo (a) anthracene					1	j]						4
-Benzo (a) pyrene						l							- 1		4
-Bis(2-ethylhexyl)phthalate	6	67	8	3	5	2		1	3		3		2		4
-Bromodichloromethane	ļ]									-
-Butyl benzyl phthalate	. 6						}								4
-Chlorobenzene						}				1			l		+
-2-Chlorophenol	1]										+
-Chlorophenylether															+
-Chloroethane							} }								+
-Chloroform	510	37	3	2	1										1
-4-Chloro-3-methylphenol	2												- 1		4
-2-Chloronaphthalene						Ì									+
Chrysene															- 1
-1,2-Dichlorobenzene															- 1
-1,4-Dichlorobenzene	4														- 1
-3,3'-Dichlorobenzidine	11														
-1,1-Dichloroethane															1
-1,1-Dichloroethene	760	140	_										İ		1
-1,2-Dichloroethane	760	140	5	2	1	3									1
-2,4-Dichlorophenol	1														1
Diethyl phthalate													Ì		1
-2,4-Dimethylphenol -Dimethyl phthalate	Л														7
-Di-n-butyl phthalate	4 20]
FEthylbenzene	20												- 1]
FF1 uoranthene		r 1								l			İ]
-Methyl chloride											1			′]
The entity is controlled													l]

Priority Pollutants (Cont'd)	Influent	Spillway	East Lagoon	West Lagoon	Outlet Lagoon	SD	ND	05	34	DT	11	DT	19	DT	48
-Methylene chloride -Naphthalene	84 1	7	2												
-Pentachlorophenol -Phenanthrene -Phenol	2 7												ļ		-
-Pyrene -Tetrachloroethylene -Toluene	500 490	8	1								,				- 1
-Trans-1,2-dichloroethylene -Trichlorobenzene -1,1,1-Trichloroethane -Trichloroethylene -2,4,6-Trichlorophenol -Vinyl chloride	81 4 2	,	-												
Additional Organic Chemicals -Acetaniline															
-Acetone -Acetovanillone -Alkyl substituted benzenes -Aniline	580 46 66 20	7 4 13	1 2	1											- - - - -
-Atrazine -Azobenzene -Benzaldehyde											1				- - - -
-Benzyl alcohol -Butyl benzene -Carbon disulfide -2-Chloroaniline -Chloromethylbenzene	1,300	70													1

OCTOBER 6-17, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

1			East	West	Outlet	,									
Additional Org. Chem. (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	SD	ND	05	34	DT	11	DT	19	DT	48
-Cresol	2				1										-{
-2,4'-Diamino-3,3'-dichloro-	97	21	1												-
biphenyl						1				1		}			
-2,2-Dichloroazobenzene	64	17	3	1	1										. +
-1,4-Diethoxybenzene															7
-Diethoxychlorobenzene	32	3			1	1									+
-Dihydroxyphenylethanone					Ì							1			+
-Diisopropoxychlorobenzene	18														4
-Dimethoxybenzene					Ì										4
-3,4-Dimethoxyphenol	1					. :									4
-3,4-Dimethylphenol															1
-Dimethyl benzaldehyde]						١ '			1
-Dimethyl disulfide	130	240													4
-Dimethyl naphthalenes	6	1			Í										1
-Dimethyl oxetane					į										
-1,4-Dioxane										1					
-N-Ethylaniline															1
-2-Ethoxypropane								1							1
-Ethyl aniline								- 1							1
-Ethyl phenol -Hexahydroazepin-2-one															٦
- 1H- Indole													i		7
-Isopropylidene dioxyphenol	9	6	1	1				- 1							.]
-Methanethiol	9	О	1	1				1							
-2-Methoxyaniline]
-Methoxyethoxyethene]
-2-Methoxyethenel	18]
-Methyl aniline	96	18						ı]
-3-Methyldibenzothiophene	30	10]
						L									

OCTOBER 6-17, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

			East	West	Outlet										
Additional Org. Chem. (Cont'd)	Influent	Spillway				SD	ND	05	34	DT	11	DT	19	DT	48
4-Methyldibenzothiophene															
-Methyl naphthalenes	1	1]
-Methyl phenanthrenes	_	_													4
-2-(methylthiol)benzothiazole										}					-
-Naphthol					l						İ				4
-N,N-Dimethylaniline										}	į				4
-N-Phenylaniline -Phenylethanone															. +
Phthalic acid															
-2-Propanol	480														- 1
Simazine	400										1]
Substituted arizidine															- 1
-Substituted benzoic acids								ļ							- 4
-Substituted indene															_{-
-Substituted naphthalenes															
Substituted naphthothiophenes			ŀ									ļ.			
-Substituted phenanthrenes -Substituted triazine						1									-
-Substituted vanillin							' I	l			- 1				-
-Sulfonylbismethane								Ī							-
-Tetrahydrofuranmethanolacetate	'			į			1				l				
-Tetramethylbutylphenol			1				Ì]
-Thiobismethane	48		1	į		ł	1	1	1		- 1				
-Tributyl phosphate	18		}								İ				<u>.</u>
-Trimethyl naphthalenes	7	1	1												긕
Trimethyl phenanthrenes		_	_				ļ				- 1				-
-Vanillin	33	4	1										;		4
-Xylene				1			- 1				1				• -
<u></u>															

OCTOBER 6-17, 1980 COMPOSITE SAMPLES (µG/L) (CONTINUED)

						Γ			<u> </u>						
i			East	West	Outlet				1	1					į
Priority Pollutants	Influent	Spillway	Lagoon	Lagoon	Lagoon	SD	ND	05	34	DT	11	DT	19	DT	48
													-		
-Acenaph thene		j			}]]]		1	j		-
-Acenaphthylene															-
Anthracene										İ					_
-Benzene	34								1	ļ		1			-
-Benzo (a) anthracene					ł				}	}		1			-
-Benzo (a) pyrene									1			1			-
-Bis(2-ethylhexyl)phthalate	6	8	3	2	2	7		8	2	1	2		2		1-
-Bromodichloromethane								ļ							-
-Butyl benzyl phthalate										1		ĺ			-
-Chlorobenzene	270								1]					-
-2-Chlorophenol	3														-
-Chlorophenylether										1		1			٠ -
-Chloroethane										1					-
-Chloroform	690	90	5	2	1				1	ĺ		1			-
-4-Chloro-3-methylphenol	1				1				1						-
-2-Chloronaphthalene										ļ		1			-
-Chrysene									1	l					4
-1,2-Dichlorobenzene										•					-
-1,4-Dichlorobenzene	3											•			-
-3,3'-Dichlorobenzidine	34	10	1						1	1					
-1,1-Dichloroethane										1					
-1,1-Dichloroethene															4
-1,2-Dichloroethane	990	45	8	3	2	3				}			- 1		-
-2,4-Dichlorophenol	2						- 1					1	- 1		-
-Diethyl phthalate															-
-2,4-Dimethylphenol		Ì					. 1			ŀ		1			-
-Dimethyl phthalate	4			'											. 4
-Di-n-butyl phthalate															-
Ethylbenzene															4
-F1 uoranthene												1			-
-Methyl chloride	ļ														-
<u></u>									L	L		L			

					ı — — — — — — — — — — — — — — — — — — —										:
			East	West	Outlet										. 1
Priority Pollutants (Cont'd)	Influent	Spillway				sn	מוע [กร	3/1	DТ	11	ŊΤ	10	ŊΤ	18:
Triority roll dealts (cont d)	1111 TUEIT	Spiliway	Lagoon	Lagoon	Lagoon	1	110	03	34	<u> </u>	-11	<u> </u>	19	<u> </u>	-40
-Methylene chloride	100	10			ļ '										- 1
-Naphthal ene	2	10								1					
-Pentachlorophenol	۷	1			}										- 4
-Phenanthrene										1					
-Pheno1	2				İ					ĺ			į		:4
Pyrene	_														4
-Tetrachloroethylene	140	3								1					1
-Toluene	390	8				1				[
Trans-1,2-dichloroethylene	330	٥				1				1		ļ			: _
Trichlorobenzene	,														
-1,1,1-Trichloroethane	27														
-Trichloroethylene	30			•		1			} :	1					
-2,4,6-Trichlorophenol	6	1													
Vinyl chloride	0				Ī				l						[
Viny' chromae				1											
Additional Organic Chemicals															
Acetaniline															:]
-Acetone	4,600	15	1	{	1]
-Acetovanillone	15	1 1	-	1]	1					
Alkyl substituted benzenes	210	1 -		1								1		l l	날
-Aniline	93	8			1					1					
Atrazine	95			1	1]	1	1	1			ا
Azobenzene		1			1	1		j		1	_	1			
-Benzal dehyde				ļ		}			1			ļ		1	
-Benzyl alcohol				1	1				-						.]
-Butyl benzene		1		İ]	1		}			
-Carbon disulfide				l		1	1			1					اِ
-2-Chloroaniline	190	15	3	1		1		ł		1					
-Chloromethylbenzene	1 190	13	ر	1 1					1	1		1		1	
on one city ibenzene	<u>L</u>	Í	L	<u> </u>	<u> </u>		<u></u>	L	L	<u> </u>					

OCTOBER 21-31, 1980 COMPOSITE SAMPLES (µG/L) (CONTINUED)

		<u> </u>			<u> </u>					Г					 ,
			East	West	Outlet										
Additional Org. Chem. (Cont'd)	Influent	Spillway			J	sn	מא	05	34	hт	11	דמ	19	nт	48
nadional org. onem. (dono d)		<u>spirinay</u>	Lagoon	Lagoon	Lugoon	30	<u> </u>		- -						<u></u> .
-Creso1	4											•			
-2,4'-Diamino-3,3'-dichloro-	53	8	2			} ;									-
biphenyl			_							1					
-2,2-Dichloroazobenzene	24	7	5	2	1	[4
-1,4-Diethoxybenzene					}					ĺ		1			4
-Diethoxychlorobenzene	16	8	2	1	1					ł		1			4
-Dihydroxyphenylethanone										l					4
-Diisopropoxychlorobenzene	7	1													4
-Dimethoxybenzene												}			-
-3,4-Dimethoxyphenol	1														-
-3,4-Dimethylphenol	1									1					-
-Dimethyl benzaldehyde						1				}					-
-Dimethyl disulfide	160	. !				1									4
-Dimethyl naphthalenes	7	1			·										4
-Dimethyl oxetane					•										-
-1,4-Dioxane						}									
-N-Ethylaniline															1
-2-Ethoxypropane															. 1
-Ethyl aniline										1					: 1
-Ethyl phenol -Hexahydroazepin-2-one										l					. 1
-1H-Indole															٦
-Isopropylidene dioxyphenol	16	6	3	1	1										.]
-Methanethiol	10	0	ا	1	1]
-2-Methoxyaniline]
-Methoxyethoxyethene]
-2-Methoxyphenol	6								1						
-Methyl aniline	13												i		
-3-Methyldibenzothiophene	10														1
					L	L				<u>L</u>					

OCTOBER 20-31, 1980 COMPOSITE SAMPLES (μ G/L) (CONTINUED)

T	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	l l			1					Τ	_			Γ	<u>·</u>
			r+	llaa+	0+1+							1			
Addition 2 One Cham (Cont. 14)	7 . 67 4	C: 11	East		Outlet			0.5	20	D.T.		n-	10		40
Additional Org. Chem. (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	12n	עאו	<u>U5</u>	34	<u> u </u>	11	101	19	<u> </u>	48
A Mathyldihanzathianhana					}							}		Ì	
-4-Methyldibenzothiophene	,	, 1			ł					1				1	:
-Methyl naphthalenes	2	1			}	1				1					· <u>-</u>
-Methyl phenanthrenes										1		1		1	-
-2-(methylthiol)benzothiazole					i					1		ļ		İ	-
-Naphthol						1				1					-
-N,N-Dimethylaniline					}									1	-
-N-Phenylaniline														ļ	-
-Phenylethanone										1					-
-Phthalic acid															_
-2-Propanol														i	نـ
-Simazine			i								1				-
-Substituted arizidine										Ì					-
-Substituted benzoic acids										ì					
-Substituted indene										-	l				-
-Substituted naphthalenes											- 1				
-Substituted naphthothiophenes					']	- 1				_
-Substituted phenanthrenes			}							}	- 1				_
-Substituted triazine		Į									-				
-Substituted vanillin			Į							1					_
-Sulfonylbismethane			į					- 1	1						<u>:</u>
-Tetrahydrofuranmethanolacetate			ļ					- 1			j				_
-Tetramethylbutylphenol	1						.				1				_
-Thiobismethane	19		ţ				j	}			- 1				-
-Tributyl phosphate	3	1						1							_
-Trimethyl naphthalenes	6	1		ļ											
-Trimethyl phenanthrenes		- 1				ĺ	- 1	[ĺ				- {		-
-Vanillin	11	2					1	Ì					H		-
-Xyl ene	**	- 1					ſ	1	- 1				- 1		_
, y . c.i.c		1					l		ļ		1				-
<u> </u>	l												l		

OCTOBER 20-31, 1980 COMPOSITE SAMPLES (µG/L) (CONTINUED)

Priority Pollutants	Influent	Spillway	East Lagoon		Outlet Lagoon	<u>SD</u>	ND	<u>05</u>	34	DT	11	DT	19	DT	48
-Acenaphthene -Acenaphthylene															_
-Anthracene	ł	1								Ì					-
-Benzene		Ì								ł]			
-Benzo (a) anthracene	ļ	ĺ]]		Ì			
-Benzo (a) pyrene										1					٠.
-Bis(2-ethylhexyl)phthalate	2	2	4	2	1	1		1	1	ĺ	4	ĺ	2		1 -
-Bromodichloromethane	2	_	7		1	1		1	1	Ì	4		۷		1.
-Butyl benzyl phthalate	2									l					_
-Chlorobenzene	11	ļ			j)				İ					
-2-Chlorophenol	1 2									ļ					
-Chlorophenylether										1		}			
-Chloroethane				1						1					-
-Chloroform	730	32	3	3	2					1	1	1	1		-
-4-Chloro-3-methylphenol	5	<u> </u>			-						_		*		· -
-2-Chloronaphthalene					1					1		i			-
-Chrysene	1									1					-
-1,2-Dichlorobenzene					}					1					-
-1,4-Dichlorobenzene	3	ļ			}	}									-
-3,3'-Dichlorobenzidine	27	4	2	·						•					
-1,1-Dichloroethane												İ			-
-1,1-Dichloroethene	i I									ĺ		İ	i		
-1,2-Dichloroethane	870	68	5	2	1	4				İ	1		1		-
-2,4-Dichlorophenol	1														-
Diethyl phthalate]														-
-2,4-Dimethylphenol		}													-
-Dimethyl phthalate	2									1					-
Di-n-butyl phthalate						1 1									-
Ethylbenzene	10														-
-Fluoranthene															-
-Methyl chloride										L					-

Duinuity Dollytonto (Contld)	Tm #7am+	C = 4 1 1	East		Outlet	C D	ND	٥.	24	DT	,,	DT	10	ŊТ	40
Priority Pollutants (Cont'd)	Influent	<u>Spillway</u>	Lagoon	Lagoon	Lagoon	<u>2n</u>	עא	<u>U5</u>	34	עין	ᆜ	וע	19	וע	48
-Methylene chloride	31	2			,						ļ				4
-Naphthal ene	2	ī								l					
-Pentachlorophenol		_							1	ł					4
-Phenanthrene															4
-Pheno1	3								1	!					4
-Pyrene															4
-Tetrachloroethylene	460	2	1			1			1	ļ					4
-To1uene	710	8	1												- 1
-Trans-1,2-dichloroethylene	ł														4
-Trichlorobenzene						l				1					1
-1,1,1-Trichloroethane	10	1				ĺ									1
-Trichloroethylene	11														7
-2,4,6-Trichlorophenol	2		}			1			1	ì					7
-Vinyl chloride															7
Additional Organic Chemicals					•										
-Acetaniline	1				}					1					4
-Acetone	380	15								1					4
-Acetovanillone	46					1				1					4
-Alkyl substituted benzenes	41	6			1	i				1					-
-Aniline						1		l							4
-Atrazine						ĺ	1	1	1	1	!				4
-Azob enzene			1			i	1]	1						
-Benzal dehyde			}		Į		1		1						4
-Benzyl alcohol	1]					Ì	4
-Butyl benzene															4
-Carbon disulfide			_	_			ł								7
-2-Chloroaniline	510	42	8	2	1		1 :			1		I			1
-Chloromethylbenzene														<u> </u>	

NOVEMBER 3-14, 1980 COMPOSITE SAMPLES (µG/L) (CONTINUED)

					1										—— <u> </u>
			East	West	Outlet										
Additional Org. Chem. (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	<u>SD</u>	ND	<u>05</u>	34	DT	11	DT	19	DT	48
Cresol	2												i		-
-2,4'-Diamino-3,3'-dichloro-	26	3	1												-
_biphenyl -2,2-Dichloroazobenzene	42	9	6	3	2										
-1,4-Diethoxybenzene				į	_										-
-Diethoxychlorobenzene -Dihydroxyphenylethanone	27	8	2	1											-
-Diisopropoxychlorobenzene	9	3	1		}								į		7
-Dimethoxybenzene															4
-3,4-Dimethoxyphenol										ľ					1
-Dimethyl benzaldehyde		_													+
-Dimethyl disulfide -Dimethyl naphthalenes	91 2	8		:											
-Dimethyl oxetane	_	۲]
-1,4-Dioxane															4
-N-Ethylaniline -2-Ethoxypropane															-
-Ethyl aniline				:											-
-Ethyl phenol -Hexahydroazepin-2-one				,]
-1H-Indole															4
-Isopropylidene dioxyphenol -Methanethiol	31	8	3	2	1										4
-2-Methoxyaniline]
-Methoxyethoxyethene	_														4
-2-Methoxyphenol -Methyl aniline	9 10									-					1
-3-Methyldibenzothiophene	10											i			4
		<u></u>							:			L <u>.</u>			

NOVEMBER 3-14, 1980 COMPOSITE SAMPLES (µG/L) (CONTINUED)

						Γ.	Γ		Γ						
			East	West	Outlet	i				1		ĺ			
Additional Org. Chem. (Cont'd)	Influent	Spillway				c n	ND	0.5	24	DT	11	DΤ	10	nπ	40
Additional org. Chem. (cont d)	1111 Tuent	Spiliway	Lagoun	Layoun	Lagoon	130	שאון	03	34	101	11	יטן	19	וע	40
-4-Methyldibenzothiophene												}			_
-Methyl naphthalenes	3	1				1				l	i				ل
-Methyl phenanthrenes					1					1					
-2-(methylthiol)benzothiazole						'	ĺ			1					
-Naphthol										1					
-N,N-Dimethylaniline	4									1					
-N-Phenylaniline	7				j]				}					3
-Phenylethanone			·	!]
-Phthalic acid				,											
-2-Propanol	610]
-Simazine	010									l					
Substituted arizidine			1]
-Substituted benzoic acids			ļ							1					
-Substituted indene										Ì			i		
-Substituted naphthalenes															
-Substituted naphthothiophenes										ł					ز
-Substituted phenanthrenes															
-Substituted triazine															,]
-Substituted vanillin															
-Sulfonylbismethane															
-Tetrahydrofuranmethanolacetate			1										- 1		
-Tetramethylbutylphenol			1								- }				٦
-Thiobismethane	37	1	1					Ì							
-Tributyl phosphate	31	2	1	}			j	.							
-Trimethyl naphthalenes	7	2	1					ĺ					1		_
Trimethyl phenanthrenes	' !	2	1					}	1						
-Vanillin	39	1	1					ı			ĺ		1		Ţ
-Xylene	39	1				İ		ł	1				ł		
1.5 . 5.1.5		1	į		1	l	1	- 1	- 1		1		1		7
L		<u>.</u>						الـــــــــــا							

NOVEMBER 3-14, 1980 COMPOSITE SAMPLES (µG/L) (CONTINUED)

	T				J					Γ					
			East	West	Outlet										
Priority Pollutants	Influent	Spillway				SD	ND	05	34	DT	11	DΤ	19	DT	48
					<u> </u>	-			-						
Acenaphthene															_
-Acenaphthylene															-
-Anthracene					1			:	1			[-
Benzene	63			i		1				1		ľ			-
-Benzo (a) anthracene					1										
Benzo (a) pyrene	Í				1	1									-
-Bis(2-ethylhexyl)phthalate	5	3	2	4	2	1		2	2	1	5		3		1 -
-Bromodichloromethane															-
-Butyl benzyl phthalate	1								}						-
-Chlorobenzene	8									1					
-2-Chlorophenol	2				•					1					-
-Chlorophenylether															-
-Chloroethane					}				1				j		٠.
-Chloroform	810	96	3	3	2						1		1		-
-4-Chloro-3-methylphenol	5	-													•
-2-Chloronaphthalene															
Chrysene					1			1		l		1			-
-1,2-Dichlorobenzene			'	,						ĺ					
-1,4-Dichlorobenzene	2		·												·•
-3,3'-Dichlorobenzidine	11	3								[}			-
-1,1-Dichloroethane															-
-1,1-Dichloroethene															-
-1,2-Dichloroethane	730	270	8	2	2	4]	1		1		-
-2,4-Dichlorophenol										-			- 1		-
-Diethyl phthalate										[•
-2,4-Dimethylphenol															•
-Dimethyl phthalate	4									l	į	1			-
-Di-n-butyl phthalate															-
-Ethylbenzene	13														-
-Fluoranthene										1	Ì		- 1		-
-Methyl chloride		1	'												-

			_												
			East		Outlet										1
Priority Pollutants (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	<u>SD</u>	ND	<u>05</u>	34	DI	11	DI	19	DT	48
	}	_		'											}
-Methylene chloride	63	6			1	ł									1
-Naphthalene	1				}	İ									1
-Pentachlorophenol	ļ											İ			1
-Phenanthrene] 4	1	:				:								1
-Pheno1	4	1				}									
-Pyrene						Ì				1					
-Tetrachloroethylene	590	2			}	}			1	1					- 1
-Tol uene	820	4	1		}							ŀ			
-Trans-1,2-dichloroethylene	[1						- 1
-Trichlorobenzene									1	l		l		l	
-1,1,1-Trichloroethane	33	1			1				i			ł			4
-Trichloroethylene	11				1	1			1	1					
-2,4,6-Trichlorophenol	1					1		} '	1	1					4
-Vinyl chloride						1		l		1		•			
Additional Organic Chemicals															
	•						Ì								
Acetaniline	ł				}	l		İ							4
Acetone	570	3			1	1	1	1	1	1					-
-Acetovanillone	38	1			1	l		[1					4
-Alkyl substituted benzenes	22	3	2	}		1	ĺ		1			1			4
-Aniline	61	4	_				Í		ļ			ł			4
Atrazine		·					l		[1				4
-Azobenzene		1				ł			1		-			i	
-Benzal dehyde					}	1	l					ł			_
-Benzyl alcohol		ł			}		İ		l			l			ا
-Butyl benzene		ł	ł				[ل
-Carbon disulfide					-	ŀ	l	İ							ل
-2-Chloroaniline	340	21	3	2	1			1		}					إ
-Chloromethylbenzene	1		,		1 *	1									اِ
Off of one only includence	L	L	L	<u> </u>	<u> </u>	<u> </u>	<u>L_</u>	L	L	<u>L</u> .		<u></u>		J	

NOVEMBER 17-28, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

		T											-,		
			East		Outlet										-
Additional Org. Chem. (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	SD	ND	05	34	DT	11	DT	19	DT	48
-Cresol	3														
-2,4'-Diamino-3,3'-dichloro-	11	2													4
biphenyl										ĺ					ļ
-2,2-Dichloroazobenzene	9	6	3	3	21										┥
-1,4-Diethoxybenzene															+
-Diethoxychlorobenzene	19	3	2						,	1					4
-Dihydroxyphenylethanone	_														4
-Diisopropoxychlorobenzene	7	,													7
-Dimethoxybenzene						1									4
-3,4-Dimethoxyphenol	2	}		, ,											1
-3,4-Dimethylphenol										1					7
-Dimethyl benzaldehyde	0.7	ر ا								İ					٦
-Dimethyl disulfide	87 4	5								}					٦
-Dimethyl naphthalenes	4	1		,						1					7
-Dimethyl oxetane -1,4-Dioxane		_													7
-N-Ethylaniline										Ì					
-2-Ethoxypropane	:									l]
-Ethyl aniline	5]
-Ethyl phenol	3]
-Hexahydroazepin-2-one]
-1H-Indole]
-Isopropylidene dioxyphenol	. 27	7	3	2											_
-Methanethiol	, = ,	Í	J	_											4
-2-Methoxyaniline								1							4
-Methoxyethoxyethene					,					1					4
-2-Methoxyphenol	11							1							4
-Methyl aniline	25	2													4
-3-Methyldibenzothiophene					'										4
					L	لـــا				L		L			

NOVEMBER 17-28, 1980 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

Additional Org. Chem. (Cont'd) Influent Spillway Lagoon Lagoon SD ND 05 34 DT 11 DT 19 DT 48 4-Methyl dibenzothiophene Methyl naphthalenes -Methyl phenanthrenes -2-(methylthiol)benzothiazole Naphthol N,N-Dimethylaniline -Phenylethanone -Phthalic acid -2-Propanol -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene -Substituted naphthalenes		r	1		_	ı 	Γ				Γ		Γ			
Additional Org. Chem. (Cont'd) Influent Spillway Lagoon Lagoon SD ND 05 34 DT 11 DT 19 DT 48 4-Methyldibenzothiophene Methyl naphthalenes -2-(methylthiol)benzothiazole Naphthol N,N-Dimethylaniline -N-Phenylaniline -Phenylethanone -Phthalic acid -2-Propanol -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene				Fast	West	Outlet										•
-4-Methyl dibenzothiophene -Methyl naphthalenes -2-(methyl thiol) benzothiazole -Naphthol -N,N-Dimethylaniline -N-Phenylaniline -Phenylethanone -Phthalic acid -2-Propanol -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene	Additional Org. Chem. (Cont'd)	Influent	Spillway				sn	ΝП	กร	34	DT	11	דח	19	nΤ	48
-Methyl naphthalenes -2-(methyl phenanthrenes -2-(methylthiol)benzothiazole -Naphthol -N,N-Dimethylaniline -N-Phenylaniline -Phenylethanone -Phthalic acid -2-Propanol -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene	Martina org. onem. (oone a)	2.00 1 00 100	<u> </u>	Lugoon	Lugoon	Lugoon	30									 .
-Methyl naphthalenes -2-(methyl phenanthrenes -2-(methylthiol)benzothiazole -Naphthol -N,N-Dimethylaniline -N-Phenylaniline -Phenylethanone -Phthalic acid -2-Propanol -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene	-4-Methyldibenzothiophene		ļ				ļ ·						Ì			_
-Methyl phenanthrenes -2-(methylthiol)benzothiazole -Naphthol -N,N-Dimethylaniline -N-Phenylaniline -Phenylethanone -Phthalic acid -2-Propanol -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene		2	1				[ĺ					٠
-2-(methylthiol)benzothiazole -Naphthol -N,N-Dimethylaniline -N-Phenylaniline -Phenylethanone -Phthalic acid -2-Propanol -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene		_	•													_
-N,N-Dimethylaniline -N-Phenylaniline -Phenylethanone -Phthalic acid -2-Propanol -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene																_
-N-Phenylaniline -Phenylethanone -Phthalic acid -2-Propanol 1,300 12 -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene	-Naphthol															_
-Phenylethanone -Phthalic acid -2-Propanol -3 imazine -Substituted arizidine -Substituted benzoic acids -Substituted indene							1					i				_
-Phthalic acid -2-Propanol 1,300 12 -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene																-
-2-Propanol 1,300 12 -Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene											}					_
-Simazine -Substituted arizidine -Substituted benzoic acids -Substituted indene											ł					٠
-Substituted arizidine -Substituted benzoic acids -Substituted indene		1,300	12													
-Substituted benzoic acids -Substituted indene	l control of the cont											1				_
-Substituted indene												1	ļ			=
				'												~
Foundational energy is the state of the stat			i									- 1				
			į									- 1				
-Substituted naphthothiophenes -Substituted phenanthrenes	Substituted naphthothrophenes	·										- 1				-
Substituted triazine	Substituted triazing			i					- {			- 1		- 1		 1
Substituted vanillin								1	1			i		i		-
Sulfonylbismethane	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								I							-
-Tetrahydrofuranmethanolacetate				İ			1		ļ			1		}		
-Tetramethylbutylphenol								1	j	- 1]		- 1		7
-Thiobismethane 41		41			į			1	ł							_
-Tributyl phosphate 9 3			3													
	-Trimethyl naphthalenes	5	ĭ		1		ĺ	- 1	1	- 1		1		- 1		
-Trimethyl phenanthrenes																
-Vanillin 22 1	-Vanillin	22	1			İ	- 1	- 1				- 1		1		4
-Xylene	-Xyl ene		_{			}	Ì			- 1						_

NOVEMBER 17-28, 1980 COMPOSITE SAMPLES (µG/L) (CONTINUED)

		<u> </u>				Τ				I		Γ			
			East	West	Out1et										
Priority Pollutants	Influent	Spillway	Lagoon	<u>Lagoon</u>	Lagoon	SD	<u>ND</u>	05	34	DT	11	DT	19	DT	48
Acenaphthene															_
-Acenaphthylene		į				1		1	1			l			٠.
-Anthracene	ì					j		·]	1					
-Benzene					ł	ŀ			1	l		1			
-Benzo (a) anthracene	1					ĺ				l		l			
-Benzo (a) pyrene	1									l		l			
-Bis(2-ethylhexyl)phthalate	9	14	10			l	4		l	ł	3				٠.
-Bromodichloromethane)] 14	10		}]	1			}	3	1			
-Butyl benzyl phthalate	1					l			ŀ						
-Chlorobenzene	7					[,		!	!			•
	2				1	l			ĺ	1	,	1			
-2-Chlorophenol					[1			1			l			
-Chlorophenylether -Chloroethane									1			1			
	510	35	10	,							1	1			•
-Chloroform	210	35	18	1							1		1		
-4-Chloro-3-methylphenol						1			1			1	,		
-2-Chloronaphthalene					}	1 .	1		}	1					,
Chrysene	1								İ						•
-1,2-Dichlorobenzene	4								Ì		j	Ì			•
-1,4-Dichlorobenzene															•
-3,3'-Dichlorobenzidine	24	18													•
-1,1-Dichloroethane	6								ĺ	1		ĺ			•
-1,1-Dichloroethene									l						•
-1,2-Dichloroethane	1,300	48	27	1		3	3	1	ł	ł	1	1	1		
-2,4-Dichlorophenol	1	1							l						
-Diethyl phthalate						}						1			•
-2,4-Dimethylphenol]								
-Dimethyl phthalate	1	1									j		- 1		٠.
-Di-n-butyl phthalate	1												1		
Ethylbenzene	17									1		1			
-F1 uoranthene	1]					
-Methyl chloride			1												
<u> </u>	<u></u> _					L				L		L			

	Γ	1			i	, 	·								
			East	West	Outlet										
Priority Pollutants (Cont'd)	Influent	Spillway				sn	מא	กร	34	nт	11	nτ	10	DΤ	48
Triority rottucuites (cont. u)	A III TUEITC	3prilway	Lagoon	Lagoon	Lugoon	30		33	57	 		<u> </u>		51	
-Methylene chloride	21	2								1					إ
-Naphthalene	4									l					7
-Pentachlorophenol	4									ł	~				4
-Phenanthrene	,				j]		}			. 4
-Pheno1		2	37	2						İ					4
Pyrene	1	_		_									1		4
-Tetrachloroethylene	200	21	1		ļ						1	1			4
-To1uene	920	1			į	1				İ					_
-Trans-1,2-dichloroethylene	19	1				1				İ					4
-Trichlorobenzene	1					1				1					_
-1,1,1-Trichloroethane	12	4	1							1					_
-Trichloroethylene	310	2	1		1					1					-
-2,4,6-Trichlorophenol	3	2	1			1				1					-
-Vinyl chloride	38]	1				1					-
Additional Organic Chemicals													'		
0.00000111000												į			
-Acetaniline -Acetone	2,000	72													
-Acetovanillone	2,000	1 1	1]						1			
Alkyl substituted benzenes	12	10	8	ļ					1			1			_
-Aniline	12	10	١			1						l		l	_
-Atrazine				1	1										_
Azobenzene										1		İ			
-Benzal dehyde				1			1			1		1			
-Benzyl alcohol					1										·_
-Butyl benzene												1			٠ _
-Carbon disulfide	. 6	1	1	}	}		l		1]			_
-2-Chloroaniline	370	13	20	3	}	1	42		2]			-
-Chloromethylbenzene		<u> </u>										l			-
	<u></u>	<u> </u>	L	L	L	<u> </u>	<u> </u>	L	<u> </u>	<u></u>		<u>L</u>		<u> </u>	

DECEMBER, 1980 COMPOSITE SAMPLES (µG/L) (CONTINUED)

	1				l					Γ					
	ĺ		East	West	Outlet						ĺ				
Additional Org. Chem. (Cont'd)	Influent	Snillway			-	sn	חמ	05	34	דת	11	та	19	nт	48
nativional org. onem. Yeart ar	1111146116	sp.iiia	Lagoon	Lagoon	Lugoon	30	-110	55	<u> </u>	ا		<u> </u>		<u> </u>	
-Cresol	9		15							ł					_
-2,4'-Diamino-3,3'-dichloro-	53	49	38												_
biphenyl]							i			
-2,2-Dichloroazobenzene	29	29	16							İ					-
-1,4-Diethoxybenzene					}										-
-Diethoxychlorobenzene	3	2	3			1									<u>.</u>
-Dihydroxyphenylethanone					1										-
-Diisopropoxychlorobenzene	1	- 2	1												-
-Dimethoxybenzene	1														-
-3,4-Dimethoxyphenol	ļ	7													-
-3,4-Dimethylphenol					ĺ					-					-
-Dimethyl benzaldehyde	49	3	22												-
-Dimethyl disulfide	200	99	17	4											-
-Dimethyl naphthalenes	3	4	1												-
-Dimethyl oxetane										1					:
-1,4-Dioxane															-
-N-Ethylaniline								1							-
-2-Ethoxypropane															~
-Ethyl aniline					ļ										-
-Ethyl phenol									'						-
-Hexahydroazepin-2-one						·									-
-1H-Indole	1		8				,								_
-Isopropylidene dioxyphenol -Methanethiol	1		8				1								-
															-
-2-Methoxyaniline															٦
-Methoxyethoxyethene -2-Methoxyphenol	23	1									i				4
-Methyl aniline	[23					1									_
-3-Methyldibenzothiophene															
- o ricelly ratherizatinophene															

	1	l			l					Γ					
}		ļ	East	West	Outlet										
Additional Org. Chem. (Cont'd)	Influent	Spillway				c n	ואו	OE.	24	nτ	11	DΤ	10	nT.	40
Additional org. chem. (cont d)	1111 I WEITC	Spriway	Lagoon	Laguon	Lagoon	30	NU	05	34	<u> </u>		וט	19	<u> " </u>	40
4-Methyldibenzothiophene		,													
-Methyl naphthalenes	2	2	1								Ì			l	
-Methyl phenanthrenes	_	_	•							ĺ					
-2-(methylthiol)benzothiazole	1									1			!		_
-Naphtho1	ļ														-
-N,N-Dimethylaniline	2			,		1									٠
-N-Phenylaniline	Ī		1	,											-
-Phenylethanone	-		•								į				_
-Phthalic acid								1			ı	1			_
-2-Propanol .	1,600	99						- 1			- 1				
-Simazine	1,000	, ,							-						·.
Substituted arizidine											- 1				:
-Substituted benzoic acids								- 1	1		- [ļ		• 1
-Substituted indene							1	ŀ							
-Substituted naphthalenes							1	1	i		- 1				
-Substituted naphthothiophenes							1	1			ļ				
-Substituted phenanthrenes		,					1				j				· <u>:</u>
-Substituted triazine								- 1			- 1				_
-Substituted vanillin								1			- 1				• 1
-Sulfonylbismethane						1	ł	- 1	l		1				-
-Tetrahydrofuranmethanolacetate							}		- 1		Ì				1
-Tetramethylbutylphenol	;		}]	- }	ı	- 1		1		- 1		-
-Thiobismethane	50	13	9			1]	1	i	Ì		1		
-Tributyl phosphate	2	13	5	1				İ			}				-
Trimethyl naphthalenes	2	4	2				Ì				1		-		\pm
-Trimethyl phenanthrenes	l						1		İ						لبور
-Vanillin	1	4	1				ĺ		i				1		
-Xylene						1									듹
		l			لـــــــــــــــــــــــــــــــــــــ										

Priority Pollutants Acenaphthene -Acenaphthylene -Anthracene -Benzo (a) anthracene -Benzo (a) pyrene -Bis(2-ethylhexyl)phthalate -Bromodichloromethane -Chlorobenzene -Chlorobenzene -Chlorophenol -Chlorobenzene -Chlorophenol	48
Priority Pollutants	48
-Acenaphthene -Acenaphthylene -Anthracene -Benzene 96 9 -Benzo (a) anthracene -Bis(2-ethylhexyl)phthalate -Bromodichloromethane 6 1 -Butyl benzyl phthalate -Chlorobenzene 93 -2-Chlorophenol 1	
-Acenaphthylene -Anthracene -Benzene -Benzo (a) anthracene -Bis(2-ethylhexyl)phthalate -Bromodichloromethane -Butyl benzyl phthalate -Chlorobenzene -2-Chlorophenol	
-Anthracene -Benzene -Benzo (a) anthracene -Benzo (a) pyrene -Bis(2-ethylhexyl)phthalate -Bromodichloromethane -Butyl benzyl phthalate -Chlorobenzene -2-Chlorophenol	1 1 1 1 1 1 1 1 1
-Benzene -Benzo (a) anthracene -Benzo (a) pyrene -Bis(2-ethylhexyl)phthalate -Bromodichloromethane -Butyl benzyl phthalate -Chlorobenzene -2-Chlorophenol	
-Benzo (a) anthracene -Benzo (a) pyrene -Bis(2-ethylhexyl)phthalate -Bromodichloromethane -Butyl benzyl phthalate -Chlorobenzene -2-Chlorophenol	
-Benzo (a) pyrene -Bis(2-ethylhexyl)phthalate -Bromodichloromethane -Butyl benzyl phthalate -Chlorobenzene -2-Chlorophenol	
-Bis(2-ethylhexyl)phthalate -Bromodichloromethane -Butyl benzyl phthalate -Chlorobenzene -2-Chlorophenol	
-Bromodichloromethane 6 1	
-Bromodichloromethane 6 1	
-Chlorobenzene 93 -2-Chlorophenol 1	
-Chlorobenzene 93 -2-Chlorophenol 1	
-2-Chlorophenol 1	
	_
-Chlorophenylether	-
-Chloroethane	
-Chloroform 2,000 150 60 1	-
F4-Chloro-3-methylphenol	-
-2-Chloronaphthalene	. 4
-Chrysene	ا
-1,2-Dichlorobenzene	_
-1,4-Dichlorobenzene	_
-3,3'-Dichlorobenzidine 55 15	_
-1,1-Dichloroethane	-
-1,1-Dichloroethene	-
-1,2-Dichloroethane 270 150 49 3 5 6 1 1 1	_
-2,4-Dichlorophenol 1 1	-
Diethyl phthalate	-
-2,4-Dimethylphenol	-
-Dimethyl phthalate 11 2 2	-
Di-n-butyl phthalate	: -
-Ethylbenzene 76 10 10 10 10 10 10 10 1	4
-Fluoranthene	4
-Methyl chloride	_

			East	West	Outlet										
Priority Pollutants (Cont'd)	Influent	<u>Spillway</u>	Lagoon	Lagoon	Lagoon	<u>SD</u>	ND	<u>05</u>	<u>34</u>	DT	11	DT	19	DT	48
-Methylene chloride	24	2													-
-Naphthal ene	1									İ					•
-Pentachlorophenol						1	1			İ					-
-Phenanthrene	1					1	1]			-
-Pheno1	7]			-
-Pyrene		10	10							1					-
-Tetrachloroethylene	770	49	13		}	١,	2	١,	1		1		1		-
-Toluene	8,000	22	5			1	1	1	1	ł	1		Ţ		-
Trans-1,2-dichloroethylene	26	۷			ł	1	l]					•
-Trichlorobenzene	100	10	2			1	1			l		İ		,	
-1,1,1-Trichloroethane -Trichloroethylene	23	2	1			1	1		1						
-2,4,6-Trichlorophenol	3	1	1					į]	
Vinyl chloride	,	1	1			1	1		1					1	
Additional Organic Chemicals	1														
Additional organic chemicals						1	1								
Acetaniline	İ						}								
-Acetone	1,300	43								}					
-Acetovanillone	61				ł			į		1				ł	-
-Alkyl substituted benzenes		16	9												-
-Aniline													•		
-Atrazine						į	1	1	1			1			
-Azobenzene							1	1							•
-Benzal dehyde	1	į			Ì			}				1			•
-Benzyl alcohol	1						1	Ì							•
-Butyl benzene				}											•
-Carbon disulfide	200	10	,	1.0	1	١,	72	ł							. •
-2-Chloroaniline	300	10	8	10		1	112								-
-Chloromethylbenzene															

JANUARY, 1981 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

			5		0 17 1										
0.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	7 67	6 :33 -	East		Outlet	6		امدا	24			D-T	10	D.T.	40
Additional Org. Chem. (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	<u>2n</u>	MD	<u>U5</u>	34	<u> </u>	<u></u> ;	D1	19	וט	48
-Cresol	12														_
-2,4'-Diamino-3,3'-dichloro-	140	38	21						i						_
biphenyl									İ	l					•
-2,2-Dichloroazobenzene	84	37	10	3											•
-1,4-Diethoxybenzene	"	0,	10	J ,											••
-Diethoxychlorobenzene	3	1	2			1	1								_
-Dihydroxyphenylethanone		_	_			,								İ	-
-Diisopropoxychlorobenzene						, ;			}						٠
-Dimethoxybenzene	1					1				1	1				-
-3,4-Dimethoxyphenol	32	17	3												-
-3,4-Dimethylphenol	İ										1	1			_
-Dimethyl benzaldehyde	j									•		}			-
-Dimethyl disulfide	350	79	8												· -
-Dimethyl naphthalenes	5	2]					
-Dimethyl oxetane	1]			-
-1,4-Dioxane	1			•						ł					4
-N-Ethylaniline	ł								i			l			-
-2-Ethoxypropane	1										i				÷
-Ethyl aniline	_ ;														-
-Ethyl phenol	2								ŀ						-
-Hexahydroazepin-2-one										1	1	İ			-
-1H-Indole							١.			1					-
-Isopropylidene dioxyphenol	30	8	4	4								Í			-
-Methanethiol												ļ			• -
-2-Methoxyaniline									İ			1			-
-Methoxyethoxyethene										1	1				-
-2-Methoxyphenol	51												,		٠
-Methyl aniline	/														-
-3-Methyldibenzothiophene	1									}					_

JANUARY, 1981 COMPOSITE SAMPLES (µG/L) (CONTINUED)

			East	West	Outlet											1
Additional Org. Chem. (Cont'd)	Influent	Spillway				SD	ND	05	34	DT	11	DT	19	DT	48	
-4-Methyldibenzothiophene				,											1	
-Methyl naphthalenes	2	1			ĺ	1				Ì	. !].
-Methyl phenanthrenes						1	İ								:	
-2-(methylthiol)benzothiazole					İ	1		1		1		l]
-Naphtho1		!				1										
HN,N-Dimethylaniline	5					1						1	.		•]
-N-Phenylaniline													•			1
-Phenylethanone				-				1 1				1				
-Phthalic acid												ļ				
-2-Propanol	640	56											٠.].
Simazine	0.10	00			•							Ì				
Substituted arizidine																1
-Substituted benzaldehyde	70	7	8							,						1
-Substituted indene	, 0	Í														
-Substituted naphthalenes	,								1				.		•	1
-Substituted naphthothiophenes		1														j.
-Substituted phenanthrenes		j											1		•	1
-Substituted triazine		į	į										: .			
-Substituted vanillin		į														1
-Sulfonylbismethane	ŀ								- 1							
-Tetrahydrofuranmethanolacetate	Į								- 1				•		-;	1
-Tetramethylbutylphenol			1			1	- 1		- 1		- 1		.			j
-Thiobismethane	74	29	14				- 1		- 1		- 1		:			
-Tributyl phosphate	20	5	6	1		- 1					İ		ļ			
-Trimethyl naphthalenes	4	ĭl	Ĭ	- }		1					- 1					
-Trimethyl phenanthrenes		- 1				1							1			
-Vanillin	8	3	1	1		- 1					-		.			1
-Xylene	_	1	1				ļ		1				.			1
	1	1	1			l	- 1	1	- 1		1		l			

JANUARY, 1981 COMPOSITE SAMPLES (µG/L) (CONTINUED)

	T					<u> </u>	<u> </u>		Γ			Γ			
;	i		East	West	Outlet				l			<u> </u>			
Priority Pollutants	Influent	Spillway				Sn	MD	กร	34	nT	11	nτ	10	nΤ	48
Triority forfacults	Titituene	Spiriway	Lagoon	Lagoon	Lagoon	120	IND.	03		127			13	<u> </u>	-40
Acenaphthene															
-Acenaphthylene	•	1				1	1		1	ĺ					4
-Anthracene	ļ									İ					
Benzene	54					1	1								
-Benzo (a) anthracene	1	[1	ĺ	[]		ĺ	1					1
-Benzo (a) pyrene	İ					1	1		i						ٳ
-Bis(2-ethylhexyl)phthalate	†	4		2	j		1		ļ]
-Bromodichloromethane	1	ì				1							1		ا
-Butyl benzyl phthalate	_					1]
-Chlorobenzene	4]				1	1					1			
-2-Chlorophenol			1		}							Ì			4
-Chlorophenylether			-				!		1	ļ		Ì			
-Chloroethane					}	1						1			.]
-Chloroform	370	65	33	24											
-4-Chloro-3-methylphenol					1		1								
-2-Chloronaphthalene						1									
Chrysene					·	Ì			1			į			_
-1,2-Dichlorobenzene	7						1		İ	1					
-1,4-Dichlorobenzene	2	. !				1						İ			
-3,3'-Dichlorobenzidine	_	- 5								Ì					_
-1,1-Dichloroethane	2	ı i										İ			.]
-1,1-Dichloroethene	[1							·	1		ĺ			
-1,2-Dichloroethane	14	4	16	12		2	2								1
-2,4-Dichlorophenol	- '	·	1	1-		_	-		ļ			ļ	.		
Diethyl phthalate			-	1			3								
-2,4-Dimethylphenol												!			٠. ا
Dimethyl phthalate	26	1								1					_
-Di-n-butyl phthalate	2	1		2								•			. 4
Ethylbenzene		1		-								i			_
Fluoranthene				į											4
-Methyl chloride												1			
<u> </u>	L	L				li		اــــا	نـــــا	I					لـــــــــــــــــــــــــــــــــــــ

															• • •
			East		Outlet										
Priority Pollutants (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	<u>SD</u>	ND	<u>05</u>	<u>34</u>	DT	$\frac{11}{}$	DT	19	DT	48
-Methylene chloride	20	7			·										
-Naphthalene	3	/		1	1	1				1					
-Pentachlorophenol				•			1			ļ					
-Phenanthrene	2	1		1											٠.
-Phenol	_	1	4	•]	j									٠
-Pyrene	ł]					`. -
-Tetrachloroethylene	250	48	10			8	1	3					1		-
-Toluene	3,900	7	2		1	1				1					7-
-Trans-1,2-dichloroethylene	5	1				!				1					1. -
-Trichlorobenzene	1	i				1		1							-
-1,1,1-Trichloroethane	36	6	2	1			1		ŀ	1					
-Trichloroethylene	4	14				1	'	İ	1	1					
-2,4,6-Trichlorophenol			2			l		l		1					
-Vinyl chloride			ļ					Ì		1					-
Additional Organic Chemicals															:
-Acetaniline	İ										1				
-Acetone	2,000	24					i			ł	į				- ; •
-Acetovanillone	1 2,000		ł				Į								
-Alkyl substituted benzenes	46	13	15	-			}			1		Ì			-
-Aniline	5				1	1	1		}			ĺ			
-Atrazine	1				1	1									
-Azobenzene					ļ	1	1								:-
-Benzal dehyde	3		1						1						
-Benzyl alcohol	6					1	1		ĺ						
-Butyl benzene		1]	}		}	1			1		1			. :
-Carbon disulfide	700			1.0		1	1			}					•-
-2-Chloroaniline	730	54	51	19						1					•
-Chloromethylbenzene														l	

FEBRUARY, 1981 COMPOSITE SAMPLES (µG/L) (CONTINUED)

				,											
	- 03		East	West	Outlet				١.,						
Additional Org. Chem. (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	SD	ND	05	34	DI	11	DI	19	DT	48
-Cresol	6		1	3											
-2,4'-Diamino-3,3'-dichloro-	8	26	11	3								1			-
biphenyl					}	'			1	1					
-2,2-Dichloroazobenzene	42	36	8	11		2						1			· <u>-</u> -
-1,4-Diethoxybenzene									}			ĺ			-
-Diethoxychlorobenzene			3	9					l	ł		İ			. 4
-Dihydroxyphenylethanone]	1		l				1			-
-Diisopropoxychlorobenzene				5				ĺ							-
-Dimethoxybenzene										1					-
-3,4-Dimethoxyphenol) :]							-
-3,4-Dimethylphenol								Ì							-
-Dimethyl benzaldehyde															+
-Dimethyl disulfide	12	99	22		į					1				İ	4
-Dimethyl naphthalenes	11	5	4							l					
-Dimethyl oxetane						:				1					-
-1,4-Dioxane						1				1					-
-N-Ethylaniline															-
-2-Ethoxypropane					İ			}							
-Ethyl aniline						1						1			1
-Ethyl phenol												ļ			7
-Hexahydroazepin-2-one															
- 1H-Indole			_]					7
-Isopropylidene dioxyphenol -Methanethiol			7	15				'							
-Methanethioi -2-Methoxyaniline				' '	}										- 1
-2-Methoxyaniiine -Methoxyethoxyethene			j												- 7
-2-Methoxyethoxyethene -2-Methoxyphenol	2			4						1					1
-Methyl aniline	9	<u> </u>	10	1											
-3-Methyldibenzothiophene	38	9	10	10											
- 5 The diff of the file of the file															

FEBRUARY, 1981 COMPOSITE SAMPLES (µG/L) (CONTINUED)

Additional Org. Chem. (Cont'd)	Influent	Spillway	East Lagoon		Outlet Lagoon	SD	ND	05	34	DT	11	DT	19	DT	48	7
-4-Methyldibenzothiophene -Methyl naphthalenes	9	2	2												,	1
-Methyl phenanthrenes									}					1		-
-2-(methylthiol)benzothiazole																d
-Naphthol -N,N-Dimethylaniline				1											•	1
-N-Phenylaniline														l		1
-Phenylethanone															•	
-Phthalic acid			1													
-2-Propanol	1,700							1								4
-Simazine																4
Substituted arizidine															•	┨:
Substituted benzoic acids																+
-Substituted indene			4							ĺ						4.
-Substituted naphthalenes -Substituted naphthothiophenes																1
-Substituted phenanthrenes															•	1
-Substituted triazine															•	
-Substituted vanillin]
-Sulfonylbismethane																1
-Tetrahydrofuranmethanolacetate			Ī					1								1
-Tetramethylbutylphenol			1					-								-
-Thiobismethane	30	25	9			[4
Tributyl phosphate	35	17	18	13			3								-	+
-Trimethyl naphthalenes	18	/	6				- {					'			-	1
-Trimethyl phenanthrenes			,	1							1				-	1
-Xylene	4		1	1			ĺ			,			1		-	1
Agrene	7		İ												-	1

FEBRUARY, 1981 COMPOSITE SAMPLES (µG/L) (CONTINUED)

			East	West	Outlet											
Priority Pollutants	Influent	Spillway					иυ	05	34	рт	11	DT	19	DΤ	48	١
11101105 101100		<u> </u>	2030011	2230011	2030011					-		-		<u> </u>		I
-Acenaph thene	1	,														1
-Acenaphthylene	1]	•							1						┨
-Anthracene	2				1				l	1						1
-Benzene	181	12			1		2		1	1	i	ĺ				ł
-Benzo (a) anthracene	2		,							1						4
-Benzo (a) pyrene	2									1	,					4
-Bis(2-ethylhexyl)phthalate	351	7							1	1						4
-Bromodichloromethane	4									1		i				┨
-Butyl benzyl phthalate	13								l	1						4
-Chlorobenzene	5	1								1						4
-2-Chlorophenol	1	1								İ						4
-Chlorophenylether	2									l						4
-Chloroethane										1		ļ				4
-Chloroform	541	88	25	18					İ		1					1
-4-Chloro-3-methylphenol	1								•	1	_					4
-2-Chloronaphthalene	ī									1						1
-Chrysene																4
-1,2-Dichlorobenzene	7					}			1	1						4
-1,4-Dichlorobenzene	2				1				1							1
-3,3'-Dichlorobenzidine	,									1						4
-1,1-Dichloroethane	3								1	1						4
-1,1-Dichloroethene											;					1
-1,2-Dichloroethane	391	251	10	12		3	2			1	1					4
-2,4-Dichlorophenol	1	1	10							1	•					1
Diethyl phthalate	i i	•				1				1						4
-2,4-Dimethylphenol	-					1										1
-Dimethyl phthalate	2									l						4
-Di-n-butyl phthalate	3									1						1
-Ethylbenzene	١												Ì			1
-Fluoranthene	3															1
-Methyl chloride		-														1
						لبيا		L		L		L				J

			East	West	Outlet										
Priority Pollutants (Cont'd)	Influent	Spillway				SD	ND	<u>05</u>	34	DT	11	DT	19	DT	48
-Methylene chloride	70														
-Naphthalene -Pentachlorophenol	6	1			į			i							
-Phenanthrene	3					•							i		
-Pheno1	4										i				- 4
Pyrene	2	1													
-Tetrachloroethylene	500	65	12	14											
-Toluene	562	13	2	1			1				2				4
-Trans-1,2-dichloroethylene	9	1													- , 1
-Trichlorobenzene	2		,												
-1,1,1-Trichloroethane -Trichloroethylene	62 13	4	1		1										
-2,4,6-Trichlorophenol	13	3	1											ľ	
-Vinyl chloride	_		1	1		ļ									
Additional Organic Chemicals					`										
-Acetaniline	į														4
-Acetone	181		53							1			10		4
-Acetovanillone	90	1			1	}									:-
-Alkyl substituted benzenes	38	151	11		1					Ì				Ì	- :1
Aniline	120														
-Atrazine -Azobenzene				!]
-Benzal dehyde															
-Benzyl alcohol					1										4
-Butyl benzene				l											:-{
-Carbon disulfide		İ													4
-2-Chloroaniline	770	381	48	7	1	1	180	ļ							- :4
-Chloromethylbenzene										<u>.</u>					۲

MARCH, 1981 COMPOSITE SAMPLES (μG/L) (CONTINUED)

			East	West	Outlet							j				
Additional Org. Chem. (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	<u>SD</u>	<u>ND</u>	<u>05</u>	<u>34</u>	DT	11	DT	<u>19</u>	DT	48	1
-Cresol		7	1	1												
-2,4'-Diamino-3,3'-dichloro- biphenyl	291	22	22												•	1
-2,2-Dichloroazobenzene	24	35	16	1											•	
-1,4-Diethoxybenzene	2		7	1												
-Diethoxychlorobenzene -Dihydroxyphenylethanone	3		′	1											:	
-Diisopropoxychlorobenzene																
-Dimethoxybenzene -3,4-Dimethoxyphenol	41	1		Ţ											٠,	
-3,4-Dimethylphenol															;	
-Dimethyl benzaldehyde -Dimethyl disulfide															•	1
-Dimethyl naphthalenes																
-Dimethyl oxetane -1,4-Dioxane															.:	
-N-Ethylaniline				ļ		1									•	
-2-Ethoxypropane -Ethyl aniline															:	
-Ethyl phenol	1			-											:	1.
-Hexahydroazepin-2-one -1H-Indole	'		٥												:1	
-In-Indole -Isopropylidene dioxyphenol	2	5	6 1	5												-
-Methanethiol															:	-
-2-Methoxyaniline -Methoxyethoxyethene		2													;	
-2-Methoxyphenol	55			į												1
-Methyl aniline -3-Methyldibenzothiophene			12			1	1								:	1
- 3-riethy ru i benzoch rophene															:	l

MARCH, 1981 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

																1
	}	}	East		Outlet	l			ł	}						1
Additional Org. Chem. (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	SD	ND	05	34	DT	11	DT	19	DT	<u>48</u>	1
A Mathyl dib aventhianhaus	İ								ĺ							1
4-Methyldibenzothiophene										l	i					1
-Methyl naphthalenes	12		2		-					1						1
-Methyl phenanthrenes	i	[u.	1	i '			1	1						┨
-2-(methylthiol)benzothiazole									ĺ							┨
-Naphthol					}				ļ				-			┨
-N.N-Dimethylaniline	ĺ					1	3		1	1						4
-N-Phenylaniline	1				1	1	2			1		j				4
-Phenylethanone	[4	2						ĺ	1						Ⅎ
-Phthalic acid	•									İ						\dashv
-2-Propanol	721	9			1					1						┪
-Simazine	i .														•	4
Substituted arizidine	(i										┨
Substituted benzoic acids																4
-Substituted indene	1						i			1						Į.
-Substituted naphthalenes	ļ									ļ						-
-Substituted naphthothiophenes	(- 1									4
-Substituted phenanthrenes	ł							1								-
-Substituted triazine							ł				ł		1			4
-Substituted vanillin							ł									4
-Sulfonylbismethane		1		1			Í			ĺ						4
Tetrahydrofuranmethanolacetate							}				}		}			4
-Tetramethylbutylphenol		f	1			ĺ	- 1	- 1			- [ł			-
-Thiobismethane	141	43	8			i	ł				1		- 1			4
-Tributyl phosphate	15	4	1			Ì	- 1	I			j		- 1			-
-Trimethyl naphthalenes	18	8	8			1							l			1
-Trimethyl phenanthrenes	_	_	- 1				ı	- 1			i		- 1			1
-Vanillin	2	5				- 1	l	- }			1		l			1
-Xy1ene		- 1	ĺ			ı	- 1	İ	- 1		- 1		ļ			1
									}		i]

	<u> </u>														<u> </u>
			East	West	Outlet										. :
Priority Pollutants	Influent	Spillway	Lagoon	Lagoon	Lagoon	SD	ND	05	34	DT	11	DT	19	DT	48
-Acenaph thene	Į.									ł					4
-Acenaphthylene						1				1					~
-Anthracene .		_	,			1									-
Benzene	62	2				l									1
Benzo (a) anthracene						1									
-Benzo (a) pyrene	_					ł				ĺ			- 1		-
-Bis(2-ethylhexyl)phthalate	5	5				1				ł		i			
-Bromodichloromethane															- 1
-Butyl benzyl phthalate	ļ									l					1
-Chlorobenzene	66														
-2-Chlorophenol	2									İ			Í		- 1
-Chlorophenylether													}		•+
-Chloroethane	3									İ					- 1
-Chloroform	561	38		3				1			1				- 1
-4-Chloro-3-methylphenol						i				Ì					
-2-Chloronaphthalene	1					İ				1			İ		
Chrysene	}									ŀ					- 1
-1,2-Dichlorobenzene	3									ŀ					+
-1,4-Dichlorobenzene	1]		- 1
-3,3'-Dichlorobenzidine	1												ł		{
-1,1-Dichloroethane	3									ĺ			Ĭ		
-1,1-Dichloroethene								- 1		l			ł		- 1
-1,2-Dichloroethane	2,610	160		7		3	3	3		İ	1				- : -
-2,4-Dichlorophenol	1							- 1		İ					(4
-Diethyl phthalate		}					1								- 4
-2,4-Dimethylphenol										ĺ			- 1		- ⊹1
-Dimethyl phthalate	!														:-
-Di-n-butyl phthalate]														- 1
Ethylbenzene	140														
-Fluoranthene								1					1		
-Methyl chloride											1		- 1		:4
<u> </u>	L					اــــا		l	ليسيا	L					لبند

APRIL, 1981 COMPOSITE SAMPLES (µG/L)

			East		Outlet						1				1
Priority Pollutants (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	<u>SD</u>	<u>ND</u>	05	<u>34</u>	DT	11	DT	19	DT	48
-Methylene chloride	171	4	2	2		i '		18		ł					. 1
-Naphthal ene	3				}										.1
-Pentachlorophenol	i	_			}										1
-Phenanthrene		1			}	i				1					. 1
-Pheno1	_			2				ĺ.,		ļ					7
-Pyrene	1								}						. 7
-Tetrachloroethylene	851	20		2						l					
-Toluene	9,300	9			İ	1									
-Trans-1,2-dichloroethylene		İ			ļ	ļ	·	1				i			
Trichlorobenzene	88	3	Ì			1	1			}		1		1	. 7
-1,1,1-Trichloroethane	94	1	1	•		1	1			l					. 7
-Trichloroethylene	94	1				1	1			1					
-2,4,6-Trichlorophenol		Ì				1		1		1				1	.]
-Vinyl chloride	ł					1	1		ļ	ł					
Additional Organic Chemicals															·• .
Acetaniline	}.]	}	l	}						. -
Acetone	5,600	130	}				ł	ł	ł	}					٠
-Acetovanillone	5						l	į	1	1				1	
-Alkyl substituted benzenes	56	28	4	6	į	1	Ì	1		1		1			_
-Aniline	28			1		1				1		1		l	
-Atrazine	l						1		1	1		1			·_
Azobenzene	!				1	İ	1	1	1	1		1			-
-Benzal dehyde							ļ	ļ	1	1		1			_
-Benzyl alcohol									1			}			٠_
-Butyl benzene	9					1			1	1					-
-Carbon disulfide										1		1		ļ	_
-2-Chloroaniline	180	10	11	4		1	28			1					-
-Chloromethylbenzene			1												· -
	<u> </u>	l <u></u>	L	L	L			L	┖—	1		<u> </u>		ــــــــــــــــــــــــــــــــــــــ	

APRIL, 1981 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

			East	West	Outlet										
Additional Org. Chem. (Cont'd)	Influent	Spillway			-	SD	ND	05	34	DT	11	DT	19	DT	48
-Cresol	61														┥
-2,4'-Diamino-3,3'-dichloro- biphenyl	37	32				•									7
-2,2-Dichloroazobenzene	40	35	15	10	26										4
-1,4-Diethoxybenzene	2					'									4
-Diethoxychlorobenzene	47	5								1					-
-Dihydroxyphenylethanone	1 "									l					4
-Diisopropoxychlorobenzene	1	1													· -
-Dimethoxybenzene	1	1								-					4
-3,4-Dimethoxyphenol	5				}										4
-3,4-Dimethylphenol										1					4
-Dimethyl benzaldehyde															Ť
-Dimethyl disulfide	331	15				1									4
-Dimethyl naphthalenes	8	1					1								-
-Dimethyl oxetane	1														+
-1,4-Dioxane	26					1									4
-N-Ethylaniline						!									+
-2-Ethoxypropane										Ì					
-Ethyl aniline]			•			1								
-Ethyl phenol	1										•				4
-Hexahydroazepin-2-one	1										•				4
-1H-Indole					_					1					_ 1
-Isopropylidene dioxyphenol					5		[[1		 			1
-Methanethiol	1							1							1
-2-Methoxyaniline	1														7
-Methoxyethoxyethene	1						1					1			1
-2-Methoxyphenol	10							1	!			ı			1
-Methyl aniline -3-Methyldibenzothiophene	43														1
- 5-rie chy i d i benzo chi ophene	1											1			- 1

APRIL, 1981 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

	<u> </u>															1
			East		Outlet	i .			ł							ł
Additional Org. Chem. (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	SD	ND	05	34	DT	11	DT	19	DT	48	1
A Mothyldibonzothiophono																1
-4-Methyl dibenzothiophene	4				ł					1					•	1
Methyl naphthalenes	4				l	1			1			1				1
-Methyl phenanthrenes						•		l				1			•	1
-2-(methylthiol)benzothiazole					•]		1					•	1
-Naphthol						1	,								•	1
-N,N-Dimethylaniline							1	ĺ		1		İ			:	1
-N-Phenylaniline									[1			.	ļ	=	1
-Phenylethanone -Phthalic acid					ļ				l							1
-2-Propanol	1,400	160			}			1	1	1		•			-	1
-Simazine	1,400	160			Ì					l					-	1
-Substituted arizidine						,									•	1
-Substituted arizidine	42					-				ł		į			•	1
-Substituted indene	44												1		•	1
5	3									1					•	1
Substituted naphthalenes	3	8			į					ļ					•	1
-Substituted naphthothiophenes -Substituted phenanthrenes	11	٥			•					}			1		•	1
-Substituted phenanthrenes	11				Ì	1				1					-	1
-Substituted triazine	3					1	1			1			1		-	1
-Sulfonylbismethane	اد												- 1		•	1
-Tetrahydrofuranmethanolacetate															-	1
-Tetramethylbutylphenol			}				}			}			- 1		-	∤ 1
-Thiobismethane	240	9	j				ļ								-	1
-Tributyl phosphate	38	9								}						1
-Trimethyl naphthalenes	15	7									ì		I		-	1
-Trimethyl phenanthrenes	13	9]				Ì	1			1				-	1
-Vanillin	ł	9	1	l		1	ł				- 1				-	i
-Xyl ene			-			}		- {					ļ		-	1
Ayrone			ł								- 1		j		-	1
			l	l						l						ı

APRIL, 1981 COMPOSITE SAMPLES (µG/L) (CONTINUED)

Priority Pollutants	Influent	Spillway	East Lagoon		Outlet Lagoon	SD	ND	<u>05</u>	34	DT	11	DΤ	19	DT	48
Acenaphthene												,			ل
-Acenaphthylene	ļ											·			4
Anthracene	50]	1				ļ			-
Benzene	53	3										!			-
-Benzo (a) anthracene					<u>.</u>			1		1		ļ			-
-Benzo (a) pyrene		1			: 			1		1		1			
-Bis(2-ethylhexyl)phthalate	1	j					:	l				•			-
Bromodichloromethane	1	Í			}	1			i	1		1			7
Butyl benzyl phthalate										1					4
Chlorobenzene						1									7
-2-Chlorophenol	3	ļ													7
Chlorophenylether	1					1		1	l						
Chloroethane				_					İ	1	_	j			+
Chloroform	840	61	2	5	2	l				ĺ	1		. 1		4
-4-Chloro-3-methylphenol	1														-
-2-Chloronaphthalene	1									1					-
Chrysene									l	l					-
-1,2-Dichlorobenzene			,						l	1					· =
-1,4-Dichlorobenzene	1											1			
-3,3'-Dichlorobenzidine	_ :								1				:		-
-1,1-Dichloroethane	8									ĺ		1			4
-1,1-Dichloroethene															4
-1,2-Dichloroethane	420	260	2	3	2	3	3				1		1		1-
-2,4-Dichlorophenol	1									•					
Diethyl phthalate	1						}		i	ł					-
-2,4-Dimethylphenol															ب
-Dimethyl phthalate	1									ŀ					ب
Di-n-butyl phthalate															
Ethylbenzene													j		د
-Fluoranthene												İ			4
-Methyl chloride												٠.			4

 													· · · · · · · · · · · · · · · · · · ·		
			East	West	Outlet										
Priority Pollutants (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	<u>SD</u>	ND	<u>05</u>	34	DT	11	DT_	19	DT	48
-Methylene chloride		8			ĺ	j						}]		4
-Naphthalene	2				}				ł	1					}
-Pentachlorophenol				i]				1	,		1			·
-Phenanthrene	1				1				·						4
-Pheno1	4			1		1									4
-Pyrene									1	1					4
-Tetrachloroethylene	400	14	2	4		1	2		1	1			17		3 +
-Toluene	2,600	2			1					1			.:		4
-Trans-1,2-dichloroethylene	10	1	}		1					1					
-Trichlorobenzene						l				1			:		
-1,1,1-Trichloroethane	330	6	2	5	2		2				2				
Trichloroethylene	44	3				İ				İ					1
-2,4,6-Trichlorophenol	1		į		İ										7
-Vinyl chloride						i				1		1			1
Additional Organic Chemicals													•		· .
-Acetaniline						l							.:		
-Acetone	5,900	130				1				}]	4
-Acetovanillone	6	1		3	1	1			1	1				ļ	4
-Alkyl substituted benzenes	51]	_	1						ł			- 4
-Aniline	7		İ						ļ			1			4
-Atrazine			1	į]				1						٠-
-Azobenzene		ł					1					1	•.•		4
-Benzal dehyde			1			1	1		ł	1		-	:		-
-Benzyl alcohol						1	1	l	1	1		1	•	İ	4
-Butyl benzene		1	1	1]	Į.]]	•	}	4
-Carbon disulfide		3	1	1	1				ł			1	٠.		4
-2-Chloroaniline	180	2	1	3	1				l	1					
-Chloromethylbenzene			l		1										
	I 	J	L	L	L	1		L	ــــــــــــــــــــــــــــــــــــــ			!		J	

MAY, 1981 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

	7 63	6 :11	East	West	Outlet	6.0		٥٢	24	D.T.		5.7	10		40
Additional Org. Chem. (Cont'd	Influent	Spillway	Lagoon	Lagoon	Lagoon	1 <u>2n</u>	שו	<u>U5</u>	34	וע	11	וח	19	<u>וען</u>	48
-Cresol	6														.
-2,4'-Diamino-3,3'-dichloro- biphenyl	2														•
-2,2-Dichloroazobenzene	57	7	9	12	8										-
-1,4-Diethoxybenzene -Diethoxychlorobenzene	42														-
-Dihydroxyphenylethanone	1]			
-Diisopropoxychlorobenzene	1														
-Dimethoxybenzene		{													-
-3,4-Dimethoxyphenol	1					·									•
-3,4-Dimethylphenol	1				}										-
-Dimethyl benzaldehyde	0.40											1		ļ	-
-Dimethyl disulfide	240	29]			-
Dimethyl naphthalenes	10 13]													
-Dimethyl oxetane -1,4-Dioxane	13														-
-N-Ethylaniline		•													
-2-Ethoxypropane							1								
-Ethyl aniline												1			
-Ethyl phenol	1														-
-Hexahydroazepin-2-one			2												٠-
-1H-Indole				_								1			-
-Isopropylidene dioxyphenol	1	1		3	1										-
-Methanethiol												į	•		-
-2-Methoxyaniline -Methoxyethoxyethene															-
-2-Methoxyethoxyethene -2-Methoxyphenol	11										i				-
-Methyl aniline	1 1										į				:
-3-Methyldibenzothiophene															

			East	West	Outlet										
Additional Org. Chem. (Cont'd)	Influent	<u>Spillway</u>	Lagoon	Lagoon	Lagoon	<u>SD</u>	ND	<u>05</u>	<u>34</u>	DT	11	DT	19	DT	48
4-Methyldibenzothiophene															
-Methyl naphthalenes	8				1	1				1			7. I		
-Methyl phenanthrenes]										4
-2-(methylthiol)benzothiazole															4
-Naphthol						ŀ				1			·		4
-N,N-Dimethylaniline	7														
-N-Phenylaniline										1			1		- 4
-Phenylethanone				i		1									- 4
-Phthalic acid	1					1 1									-
-2-Propanol	1,900	93											٠. ا		-
-Simazine													:		-
Substituted arizidine															- 1
-Substituted benzoic acids								-							⊢
-Substituted indene			i			1 1		- 1		!			. 1		ر۔
-Substituted naphthalenes															
Substituted naphthothiophenes													}		-
-Substituted phenanthrenes -Substituted triazine											1		.		-
Substituted triazine	}	}					ł	l							7
Sulfonylbismethane	1	Ì			j						ł		·		- 7
-Tetrahydrofuranmethanolacetate	1	}	2]		i			٠.	.		٦
-Tetramethylbutylphenol			-				j				l		.]		
-Thiobismethane	290	25					1	1]
-Tributyl phosphate	250	23					- 1	ĺ]
-Trimethyl naphthalenes	11					1					- 1		•		
-Trimethyl phenanthrenes		1	į								- 1		.		اِ
-Vanillin		}							}				ļ		
-Xyl ene	3			ļ							I		[

MAY, 1981 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

	,					<u> </u>									·
	1		East	West	Outlet	ŀ				1					
Priority Pollutants	Influent	Spillway	Lagoon	Lagoon	Lagoon	SD	ND	05	34	DT	11	TO	19	DT	48
		- L - , - , - V -												_	
-Acenaph thene						ĺ				ĺ					
-Acenaphthylene															4
-Anthracene	ļ]				ļ					7
Benzene	74	3				1				l					4
-Benzo (a) anthracene						l									
-Benzo (a) pyrene	}				}	l	}			ł			i		4
-Bis(2-ethylhexyl)phthalate	39	15								1			Ì		4
-Bromodichloromethane	ł					l				l					-
-Butyl benzyl phthalate	2							1		1			7		4
-Chlorobenzene	9														
-2-Chlorophenol										ļ					4
-Chlorophenylether															+
-Chloroethane															+
-Chloroform	940	52	1	23	1	1							1		+
-4-Chloro-3-methylphenol	. 2					1							- 1		4
-2-Chloronaphthalene										l					.+
Chrysene															- 4
-1,2-Dichlorobenzene	6												1		
-1,4-Dichlorobenzene	1]							. 4
-3,3'-Dichlorobenzidine	11														4
-1,1-Dichloroethane	17	1													4
-1,1-Dichloroethene	5							1			j				4
-1,2-Dichloroethane	470	60	1	50		2	2	}				-	2		+
-2,4-Dichlorophenol	1							.							. +
-Diethyl phthalate	2							ĺ	- 1			-	- [4
-2,4-Dimethylphenol	1	}]		4
-Dimethyl phthalate	1										į		}		4
-Di-n-butyl phthalate	1												.		+
-Ethylbenzene	23						1								+
-Fluoranthene	530	23	1	12						i	ł		}		+
-Methyl chloride															

JUNE, 1981 COMPOSITE SAMPLES ($\mu G/L$)

			East	West	Outlet										;
Priority Pollutants (Cont'd)	Influent	<u>Spillway</u>					ND	05	34	DT	11	DT	19	DT	48
· · · · · · · · · · · · · · · · · · ·		<u> </u>	<u> </u>				_								
-Methylene chloride	64	8													
-Naphthal ene	4				1										
-Pentachlorophenol					ļ				•						7
-Phenanthrene	2								İ						
-Pheno1	_				ĺ	1						1			٠
-Pyrene	1							ĺ				1			• -
-Tetrachloroethylene	0.500					1								İ	٠, -
-Toluene	2,500	41			1	1	1		ļ			1			
Trans-1,2-dichloroethylene	25	1													·
-Trichlorobenzene -1,1,1-Trichloroethane	510	27		3	2	1	8	ĺ	1						
Trichloroethylene	200	1		3	4	1	٥		Ì						٠.
-2,4,6-Trichlorophenol	200	1				l			1						
-Vinyl chloride		ļ				İ	•			1					
1 mg r om or rac	į	ļ		[ļ			1	Į .]			•
Additional Organic Chemicals															
-Acetaniline	}				•	1	1								
Acetone	18,000	78	İ			1	ſ			•					-
-Acetovanillone	19					1	l					l			·
-Alkyl substituted benzenes	150	7	2			1	1					Ì			: -
-Aniline	6						1					1	1		•-
-Atrazine	-						İ		1						3 -
–Azobenzene	1		1		ļ		ĺ					1		1	-
-Benzal dehyde		{	1		ł	}	1	1	1	1		1		[
-Benzyl alcohol	1		1									1			-
-Butyl benzene				}]	}					-
-Carbon disulfide										1					. -
-2-Chloroaniline	300	86	2	39	1	2		1						1	• -
-Chloromethylbenzene				<u> </u>			<u> </u>							<u> </u>	

JUNE, 1981 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

										Ι					
	1		East	West	Outlet										· .
Additional Org. Chem. (Cont'd)	Influent	Spillwav				SD	מא	05	34	DT	11	DT	19	DT	48
	 			 											
-Cresol	11														
-2,4'-Diamino-3,3'-dichloro-	17	5	2												: -
biphenyl										İ					
-2,2-Dichloroazobenzene	36	9	7	16	7				} :	l					
-1,4-Diethoxybenzene	1														4
-Diethoxychlorobenzene	15	4	7			ł									
-Dihydroxyphenylethanone				1											4
-Diisopropoxychlorobenzene										}					: 4
-Dimethoxybenzene						l				1					- 4
-3,4-Dimethoxyphenol															-
-3,4-Dimethylphenol										l					
-Dimethyl benzaldehyde						i									4
-Dimethyl disulfide	1														. +
-Dimethyl naphthalenes	32									ļ					4
-Dimethyl oxetane						,									4
-1,4-Dioxane	•									1					+
-N-Ethylaniline										`					
-2-Ethoxypropane															4
Ethyl aniline										1	1				1
-Ethyl phenol						,									٠ ٦
-Hexahydroazepin-2-one -1H-Indole				1			1								-1
-In-Indole -Isopropylidene dioxyphenol				1			ŀ						ì		7
-Methanethiol				1											7
-2-Methoxyaniline															1
-Methoxyethoxyethene							- }				}				.]
-2-Methoxyphenol	21														•]
-Methyl aniline	21														.]
-3-Methyldibenzothiophene	2]
															:

JUNE, 1981 COMPOSITE SAMPLES ($\mu\text{G/L}$) (CONTINUED)

			East	West	Outlet										
Additional Org. Chem. (Cont'd)	Influent	Spillway				SD	ND	05	34	DT	11	DT	19	рт	48
		<u> </u>		23		-			-	-					-
-4-Methyldibenzothiophene	3				}				1	}		İ			
-Methyl naphthalenes	28				İ	}									4
-Methyl phenanthrenes	10) :	l			}			4
-2-(methylthiol)benzothiazole				1		;				l					. 4
-Naphthol]		!		1					-
-N,N-Dimethylaniline				1	•	1 1				1				ļ	-
-N-Phenylaniline]				ļ					-
-Phenylethanone															
-Phthalic acid -2-Propanol	1 600									1			j		. 1
-Simazine	1,600	57							,	1	,				, 1
Substituted arizidine					}				1		1			ŀ	1-
-Substituted benzoic acids															1
-Substituted indene															• =
-Substituted naphthalenes	!			·			l f]
-Substituted naphthothiophenes															[[
-Substituted phenanthrenes						1 1				1					_
-Substituted triazine										1					
-Substituted vanillin			' I				·				i				
-Sulfonylbismethane							1								4
-Tetrahydrofuranmethanolacetate			1				İ								4
-Tetramethylbutylphenol		2					I								-
-Thiobismethane	210	9		3 :		1	- 1	}		}					4
-Tributyl phosphate	20						- 1								
-Trimethyl naphthalenes	25							ł							4
Trimethyl phenanthrenes			1				ţ				1				
-Vanillin	_	Ì													4
-Xy1ene	5										Ì		İ		-
						L									

JUNE, 1981 COMPOSITE SAMPLES (μG/L) (CONTINUED)

Priority Pollutants	Influent	Spillway	East Lagoon	West Lagoon	Outlet Lagoon	SD	ND	<u>05</u>	34	DT	11	DT	19	DT	4 <u>8</u>
 - Acenaphthene					•										-
-Acenaphthylene		}]			ļ						-
-Anthracene		ł				ł	}	1							•
Benzene	76	4			İ	1				1				[-
-Benzo (a) anthracene			ı		1	1	l.					1			•
Benzo (a) pyrene		!			j		} :]		}	
Bis(2-ethylhexyl)phthalate	29									İ					-
Bromodichloromethane	1					l				l				ł	-
Butyl benzyl phthalate						1]		l		•	•
-Chlorobenzene	2								İ	1					•
-2-Chlorophenol		([[ĺ	•
-Chlorophenylether										}	•	1		}	
-Chloroethane	İ			•	j					j					•-
-Chloroform	1,100	130	4	13	1					İ	1	ł			-
-4-Chloro-3-methylphenol	İ	ĺ			1					į		i			•
-2-Chloronaphthalene						1				1		ŀ			•
-Chrysene						}				ł					• • •
-1,2-Dichlorobenzene	3				[1				•			٠. •
-1,4-Dichlorobenzene	1					ł						}			. •
-3,3'-Dichlorobenzidine	16		*			j				}		}			•
-1,1-Dichloroethane	8	2			!	1						l			••
-1,1-Dichloroethene	1											1			-
-1,2-Dichloroethane	56	190	4	20		2	2			1		ļ			
-2,4-Dichlorophenol	2														•
-Diethyl phthalate	1				•										••
-2,4-Dimethylphenol														}	-
-Dimethyl phthalate	1]				}									•
-Di-n-butyl phthalate				i							,	l			-
Ethylbenzene	6	1			ĺ							ĺ			. •
-Fluoranthene	1											}		}	
-Methyl chloride												ł			•

JULY, 1981 COMPOSITE SAMPLES ($\mu G/L$)

			East		Outlet							l			
Priority Pollutants (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	<u>SD</u>	ND	05	34	DI	11	DT	19	DT	48
-Methylene chloride	26	7													-
-Naphthalene		-													• -
-Pentachlorophenol															-
-Phenanthrene										1		1			-
-Pheno1												}			-
-Pyrene															-
-Tetrachloroethylene	590	57	2	9					l						-
-Tol uene	450	23		1							1				1 -
-Trans-1,2-dichloroethylene	13	2					ł			1					
Trichlorobenzene			_				1			ł				1	-
-1,1,1-Trichloroethane	170	31	1	3								İ			
-Trichloroethylene -2,4,6-Trichlorophenol	11	2													
-Vinyl chloride	4											ł			_
-vinyr chroride						1]		1		1		1	
Additional Organic Chemicals															
-Acetaniline				ĺ	Ì		İ	Í							. •
-Acetone	580	830					i								
-Acetovanillone										1					-
-Alkyl substituted benzenes	22	5					İ	ļ							•
-Aniline					1	1		1				1			
-Atrazine					1	1			1						-
-Azobenzene					1							1			-
-Benzaldehyde				İ		ł	1			1		1			-
-Benzyl alcohol	}	ł			1			1							-
-Butyl benzene]	İ		-]			·-
-Carbon disulfide]												-
-2-Chloroaniline	610	81	1	23	1							1			-
-Chloromethylbenzene	3			<u> </u>		<u> </u>				<u>L.</u>					. -

JULY, 1981 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

Additional Org. Chem. (Cont'd)	Influent	Spillway	East	West	Outlet	c n	אוט	05	3/1	DT	11	DΤ	10	ŊΤ	1Ω
Add total org. chem. (cont d)	1 Till Tuelle	Spiriway	Lagouii	Lagoun	Lagoon	30	ND.	03	34	151	11	<u> </u>	13	101	40
-Cresol															_
-2,4'-Diamino-3,3'-dichloro-	95	18											,	l	_
biphenyl										1				i	•
-2,2-Dichloroazobenzene	19	14	2	25	2									ļ	
-1,4-Diethoxybenzene	1		_									Ì		l	-
-Diethoxychlorobenzene	7			3											-
-Dihydroxyphenylethanone	1									[1			· -
-Diisopropoxychlorobenzene	1											1			-
-Dimethoxybenzene	1														
-3,4-Dimethoxyphenol	2													ł	-
-3,4-Dimethylphenol	1											}			-
-Dimethyl benzaldehyde				!											-
-Dimethyl disulfide	ţ														
-Dimethyl naphthalenes															-
-Dimethyl oxetane															
-1,4-Dioxane															4
-N-Ethylaniline															1
-2-Ethoxypropane -Ethyl aniline															4
-Ethyl phenol	}						}								
-Hexahydroazepin-2-one]
-1H-Indole]
-Isopropylidene dioxyphenol		3		2											
-Methanethiol	J	٦		۷										}	
-2-Methoxyaniline															4
-Methoxyethoxyethene		l													
-2-Methoxyphenol		ļ													
-Methyl aniline		į													4
-3-Methyldibenzothiophene							1								

JULY, 1981 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

Additional Org. Chem. (Cont'd)	Influent	Spillway	East Lagoon		Outlet Lagoon	SD	ND	05	34	DT	11	DT	19	DT	48
-4-Methyldibenzothiophene						-									
-Methyl naphthalenes												}]
-Methyl phenanthrenes	1									l	į]
-2-(methylthiol)benzothiazole					1					1					_]
-Naphthol	}			1											
-N,N-Dimethylaniline	{						1								
-N-Phenylaniline															
-Phenylethanone	4									l					4
-Phthalic acid										Ì			i		4
-2-Propanol	160	230								j					4
-Simazine	İ									Ī					-
-Substituted arizidine										1					4
-Substituted benzoic acids	1									ĺ					-
-Substituted indene										ļ					
-Substituted naphthalenes										}					
-Substituted naphthothiophenes															-
-Substituted phenanthrenes -Substituted triazine															-
-Substituted triazine															7
Sulfonylbismethane	1														7
-Tetrahydrofuranmethanolacetate							ĺ	i							7
-Tetramethylbutylphenol							ı]
-Thiobismethane	60	12		1				- 1							
-Tributyl phosphate	2	1		-		- 1									_
-Trimethyl naphthalenes	_	- 1	}			- }		- 1							
-Trimethyl phenanthrenes	}			j			I	-			1				_ļ
-Vanillin							1				- 1				4
-Xylene	1						- 1		j		1				4
					<u> </u>										

JULY, 1981 COMPOSITE SAMPLES (µG/L) (CONTINUED)

Priority Pollutants	Influent	Spillway	East Lagoon		Outlet Lagoon	SD	<u>ND</u>	<u>05</u>	34	DT	11	DT	19	DT	48
Acenaphthene		•													4
-Acenaphthylene -Anthracene										Ì			į]
-Benzene	110									l]
-Benzo (a) anthracene	110			']
Benzo (a) pyrene										1]
Bis(2-ethylhexyl)phthalate	9	16			İ					1]
-Bromodichloromethane	9	10			<u> </u>					ļ]
-Butyl benzyl phthalate										1]
-Chlorobenzene	3									l					
-2-Chlorophenol	3														1
-Chlorophenylether										l					4
-Chloroethane										ì	i				4
Chloroform	530	4	1	15											4
-4-Chloro-3-methylphenol		•	•	10	}										4
-2-Chloronaphthalene										İ					4
Chrysene										İ					* -
-1,2-Dichlorobenzene										İ			- 1		4
-1,4-Dichlorobenzene															4
-3,3'-Dichlorobenzidine	5										- 1				4
-1,1-Dichloroethane	6										- 1				4
-1,1-Dichloroethene													- 1		4
-1,2-Dichloroethane	98	31		13	1	2	2								4
-2,4-Dichlorophenol	1														4
Diethyl phthalate		j									- 1				4
-2,4-Dimethylphenol	_										1		}		4
-Dimethyl phthalate	1														4
-Di-n-butyl phthalate															4
Ethylbenzene	14														1
-Fluoranthene				'											1
-Methyl chloride															

AUGUST, 1981 COMPOSITE SAMPLES ($\mu G/L$)

		· · · · · · · · · · · · · · · · · · ·						 1								
ļ				East	West	Outlet										İ
Priority Pol	lutants (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	<u>SD</u>	ND	<u>05</u>	<u>34</u>	DT	11	DT	19	DT	48
-Methylene ch	loride															1
⊢Naphthalene		1	1									1				4
-Pentachloro		•									ĺ					
Phenanthrene																1
-Phenol -Pyrene]
-Tetrachloroe	thvlene	1,600	8	1	9											4
-Toluene	_	11,000	33													4
	chloroethylene	6														
-Trichlorober		96	2		,	1		1		'						1
-1,1,1-Trichl -Trichloroeth		15	4		3 1	1		1						1]
-2,4,6-Trichl					1	1								-		4
-Vinyl chlori	de					[
Additional C	rganic Chemicals															
Acetaniline				į	•											_
-Acetone		4,800														4
-Acetovanillo										1						4
	tuted benzenes	27	14													
-Aniline -Atrazine		9	19		1	ł										. 1
Azobenzene							1			1]
-Benzal dehyde	!			į												4
-Benzyl alcoh					į											4
-Butyl benzer					1								1			-
-Carbon disul -2-Chloroanil		700	300	6	37	1]
-Chloromethyl		, , , ,	300	"))	*		1								4
		l	l	L	L	L	L	<u> </u>	L	L	L		<u> </u>		J	

AUGUST, 1981 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

						T	Γ	Γ							
			East	West	Outlet			ŀ							ļ
Additional Org. Chem. (Cont'd)	Influent	Snillway					אט	חה	2/1	nт	11	nΤ	10	ŊΤ	ΛΩ
Add trona org. chem. (cont d)	1111 I dent	3p 1 1 Way	Lagoon	Lagoon	Lagoon	30	(WD)	103	37	 	-1-1	<u> </u>		<u> </u>	
-Cresol	3	3													4
-2,4'-Diamino-3,3'-dichloro- biphenyl	43	9													+
-2,2-Dichloroazobenzene	28	16	2	28	2										4
-1,4-Diethoxybenzene			_		_										4
-Diethoxychlorobenzene	24	22		ļ											4
-Dihydroxyphenylethanone						1		l '	1	1					4
-Diisopropoxychlorobenzene					!			ĺ							4
-Dimethoxybenzene								-							4
-3,4-Dimethoxyphenol															4
-3,4-Dimethylphenol															4
-Dimethyl benzaldehyde															4
-Dimethyl disulfide	25	10													4
-Dimethyl naphthalenes	10	2													4
-Dimethyl oxetane															4
-1,4-Dioxane															4
-N-Ethylaniline						ĺ					-				4
-2-Ethoxypropane				,							}				4
-Ethyl aniline															4
-Ethyl phenol															4
-Hexahydroazepin-2-one													i		4
-1H-Indole											Ì				4
-Isopropylidene dioxyphenol		3	1	3											4
-Methanethiol						}					1				4
-2-Methoxyaniline											- 1				4
-Methoxyethoxyethene															4
-2-Methoxyphenol											- 1				4
-Methyl aniline	280	190	į	5							ı		ĺ		4
-3-Methyldibenzothiophene													1		4
	<u> </u>	l				لـــا				L			لـــــــا		

AUGUST, 1981 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

		<u> </u>							<u> </u>	Γ					
			East	West	Outlet										
Additional Org. Chem. (Cont'd)	Influent	Spillway				SD	ND	05	34	DT	11	DT	19	DT	48
											_==				
4-Methyldibenzothiophene															_
-Methyl naphthalenes	3]]					_
-Methyl phenanthrenes															_
-2-(methylthiol)benzothiazole					ļ										_
-Naphthol															_
-N,N-Dimethylaniline	39	10								l			•		_
-N-Phenylaniline					}	}				l					7
-Phenylethanone															_
-Phthalic acid							-	}							
-2-Propanol	3,100														-
-Simazine		1													_
Substituted arizidine								ł							~
-Substituted benzoic acids															_
-Substituted indene						j									
-Substituted naphthalenes															
-Substituted naphthothiophenes															-
-Substituted phenanthrenes							1								
-Substituted triazine							- 1	j		·					
-Substituted vanillin							- 1	- 1			- 1				-
Sulfonylbismethane						Ì	i	1							
Tetrahydrofuranmethanolacetate							- 1	-							-
Tetramethylbutylphenol	40					į	1	- 1			Ì				~
-Thiobismethane	48	1	1			ļ		- [7
-Tributyl phosphate	20	18				- 1	- 1	1					- 1		-
Trimethyl naphthalenes	11	4		1		l	- 1	- 1							-
-Trimethyl phenanthrenes -Vanillin	ļ	1	1			1	- }	1			1				-1
•	ر ۱	ء ا						- 1					- 1		-
-Xy1ene	3	2	j	ļ	j	1	1	.]	j		}]		-
			1	l									l		

AUGUST, 1981 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

		!	East		Outlet										
Priority Pollutants	Influent	Spillway	Lagoon	Lagoon	Lagoon	<u>SD</u>	שט	<u>05</u>	<u>34</u>	<u> </u>	11	<u> </u>	19	<u>DI</u> .	<u>48</u>
-Acenaphthene					İ										-
-Acenaphthylene															-
Anthracene	ł					1 .				1					
Benzene	440	130			1	1									
Benzo (a) anthracene										1					
Benzo (a) pyrene						1						1			
Bis(2-ethylhexyl)phthalate	97	74					l					ļ			•
Bromodichloromethane						1									
Butyl benzyl phthalate				•		1									
-Chlorobenzene						1									
-2-Chlorophenol	l					1									
-Chlorophenylether	ļ														
Chloroethane					ļ										
-Chloroform	930	560	1	8	7	l									
-4-Chloro-3-methylphenol										ĺ		1			
-2-Chloronaphthalene															
-Chrysene	1							1							
-1,2-Dichlorobenzene	7]										
├1,4-Dichlorobenzene										([
├3,3'-Dichlorobenzidine	190	77								[1		-
-1,1-Dichloroethane	6	4								ĺ					-
-1,1-Dichloroethene	i		!							ł					-
-1,2-Dichloroethane	470	1,000		10	3	2	2					[- 1		-
-2,4-Dichlorophenol]		-
-Diethyl phthalate						ŀ									-
-2,4-Dimethylphenol)									-
Dimethyl phthalate	3						İ								-
Di-n-butyl phthalate															-
Ethylbenzene	9		Ì												-
-Fluoranthene	2							j							-
-Methyl chloride		j]						-

					l			1		Γ					
			East	West	Outlet			}							
Priority Pollutants (Cont'd)	Influent	Spillway				SD	ИD	05	34	та	11	דמ	19	DΤ	48
			-030011	30011					<u> </u>	<u></u> -		 -		<u></u>	
-Methylene chloride									l			1			4
-Naphthalene	4								1]		1			4
-Pentachlorophenol					Ì				1	}					- 4
-Phenanthrene	1	1													4
-Pheno1	4				į					İ		1			4
-Pyrene						1						ĺ			-
-Tetrachloroethylene	500	340	4	5	7	l		3	1	1		1			4
-To1uene	5,200	450		1	1	1			l	ļ		ĺ			-
-Trans-1,2-dichloroethylene	13	8	:		,							1			-
-Trichlorobenzene	4				1	1			1	İ		1			-
-1,1,1-Trichloroethane	99	58	2	 	3					1					-
-Trichloroethylene	16	19				1	2			1		}			-
-2,4,6-Trichlorophenol					1	}			1			}			-
-Vinyl chloride						}	1		•			Ì			-
Additional Organic Chemicals					}										
Address of garre chemicals	İ					}	1		1			į			
Acetaniline	9	j			ł	}	}		}			Ì			4
-Acetone	13,000	28,000	,		}		l					1			_
-Acetovanillone	1	8	,		1	1	ł								-
-Alkyl substituted benzenes	180	62		1	1		1		ŀ						_
-Aniline	29]				1									. 4
-Atrazine	ļ					İ		1				ļ	1		_
-Azob enzene	į			Ì		1	1		1						_
-Benzal dehyde		i	}	}		1	1		İ			i			-
-Benzyl alcohol		İ		1											4
-Butyl benzene		1						1							-
-Carbon disulfide		1	1	1	1	1	1	}	1						_
-2-Chloroaniline	510	170	19	4	2		1								-
-Chloromethylbenzene		1								1					-
		J	<u> </u>	L		ــــــــــــــــــــــــــــــــــــــ	 	ــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ		٠		J	

SEPTEMBER, 1981 COMPOSITE SAMPLES (µG/L) (CONTINUED)

	Ţ				·····		Γ								
			East	West	Outlet	i							. 1		- 1
Additional Org. Chem. (Cont'd)	Influent	Spillway				SD	חו	05	34	та	11	DT	19	DT	48
1144.010114.013.0110		<u> </u>	<u></u>			1		-							<u> </u>
-Creso1	12	- 2										I			4
-2,4'-Diamino-3,3'-dichloro- biphenyl	1,300	1,000													1
-2,2-Dichloroazobenzene	75	53	2	13	5										-
-1,4-Diethoxybenzene				_	_						ļ				٦
- Diethoxychlorobenzene	51	35	1	5	1										٦
-Dihydroxyphenylethanone	1														7
Diisopropoxychlorobenzene	Į į					1				}					7
-Dimethoxybenzene															7
-3,4-Dimethoxyphenol															- 1
-3,4-Dimethylphenol	·]									7
-Dimethyl benzaldehyde															٦
-Dimethyl disulfide	10										!		'		٦
-Dimethyl naphthalenes	19	9											ļ		٦
-Dimethyl oxetane													i		٦
-1,4-Dioxane -N-Ethylaniline	1												1	i	7
-2-Ethoxypropane	30										!				٦
	39	7													٦
-Ethyl aniline -Ethyl phenol															1
-Hexahydroazepin-2-one													!		1
- 1H-Indole											į				٦
-Isopropylidene dioxyphenol				4	'			,					i		7
-Methanethiol	}	11		4	3										7
-2-Methoxyaniline															7
-Methoxyethoxyethene															7
- 2-Methoxyphenol	ا ۾	Į													1
-Methyl aniline	4	10													7
- 3-Methyldibenzothiophene		18									i				7
- 5-rie chy to tbenzo ch tophene								•							1

SEPTEMBER, 1981 COMPOSITE SAMPLES (μ G/L) (CONTINUED)

Additional Org. Chem. (Cont'd)	Influent	<u>Spillway</u>	East Lagoon	 Outlet Lagoon	SD	ND	<u>05</u>	34	DT	11	DT	19	DT	48
-4-Methyldibenzothiophene -Methyl naphthalenes -Methyl phenanthrenes	12	5												-
-2-(methylthiol)benzothiazole -Naphthol -N,N-Dimethylaniline	54	6												-
-N-Phenylaniline -Phenylethanone -Phthalic acid -2-Propanol	1,500	14,000												-
-Simazine -Substituted arizidine -Substituted benzoic acids	1,300	14,000					2					2		
-Substituted indene -Substituted naphthalenes -Substituted naphthothiophenes		•												
-Substituted phenanthrenes -Substituted triazine -Substituted vanillin -Sulfonylbismethane														-
-Tetrahydrofuranmethanolacetate -Tetramethylbutylphenol -Thiobismethane	87	100												1 1 1
-Tributyl phosphate -Trimethyl naphthalenes -Trimethyl phenanthrenes	8 21	24 10												
-Vanillin -Xylene	6													

SEPTEMBER, 1981 COMPOSITE SAMPLES (μG/L) (CONTINUED)

1						Γ				ı					
			East.	West	Outlet										
Priority Pollutants	Influent	Spillway				sn.	MD	กร	3/1	DT.	11	ŊΤ	10	nΤ	AΩ
Triority Fortucalits	1111 I delic	Spriway	Lagoon	Lagoon	Lagoon	130	110	03		<u> </u>	11	<u> </u>	13	יש	40
-Acenaphthene						}				}					_
-Acenaphthylene	·														_
Anthracene						<u> </u>				1					_
Benzene	440	28			1	l				1					_
Benzo (a) anthracene	,									1					_
Benzo (a) pyrene					<u> </u>	ł									٠
-Bis(2-ethylhexyl)phthalate	28	13								}					_
Bromodichloromethane	20											ŀ			·
-Butyl benzyl phthalate	1														-
Chlorobenzene	1					·									_
-2-Chlorophenol	$\bar{1}$									l					_
-Chlorophenylether	_									İ					_
-Chloroethane										•					_
-Chloroform	1,000	150	1	27	14						1				_
-4-Chloro-3-methylphenol	59		_												_
-2-Chloronaphthalene															-
Chrysene															_
-1,2-Dichlorobenzene										l					_
-1,4-Dichlorobenzene															_
-3,3'-Dichlorobenzidine	6	13								!					-
-1,1-Dichloroethane	11	1													_
-1,1-Dichloroethene		_								l					_
-1,2-Dichloroethane	120	51		5	5	2	1								_
-2,4-Dichlorophenol	2	1													-
Diethyl phthalate	_	_								i					_
-2,4-Dimethylphenol	1	1													_
-Dimethyl phthalate	2	_									1				-
-Di-n-butyl phthalate	$\bar{1}$:				-
Ethylbenzene	8	5		2							ĺ				-
-Fluoranthene	١		3	2 2	1										-
-Methyl chloride				_ ;	_						,				_
	l									L					

Priority Pollutants (Cont'd)	<u> 48</u>
Priority Pollutants (Cont'd)	48
-Methylene chloride	-
-Naphthalene -Pentachlorophenol -Phenanthrene -Phenol -Pyrene -Tetrachloroethylene -Toluene -Trans-1,2-dichloroethylene -1,1,1-Trichloroethylene -1,1,1-Trichloroethylene -Trichloroethylene -1,1,1-Trichloroethylene -29 -1,1,1-Trichloroethylene -29 -1,1,1-Trichloroethylene -29 -20 -30 -30 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	
-Naphthalene -Pentachlorophenol -Phenanthrene -Phenol -Pyrene -Tetrachloroethylene -Toluene -Trans-1,2-dichloroethylene -1,1,1-Trichloroethylene -1,1,1-Trichloroethylene -Trichloroethylene -1,1,1-Trichloroethylene -29 -1,1,1-Trichloroethylene -29 -1,1,1-Trichloroethylene -29 -20 -30 -30 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	
-Pentachlorophenol -Phenanthrene -Phenol -Pyrene -Tetrachloroethylene -Toluene -Trans-1,2-dichloroethylene -1,1,1-Trichloroethane -1,1,1-Trichloroethylene -1,1,1-Trichloroethylene -250 -Trichloroethylene -250 -Trichloroethylene -250 -Trichloroethylene -250 -32 -33 -32	
-Phenanthrene -Phenol -Pyrene -Tetrachloroethylene -Toluene -Trichloroethylene -1,1,1-Trichloroethylene -1,1,1-Trichloroethylene -250 -Trichloroethylene -250 -Trichloroethylene -250 -Trichloroethylene -250 -Trichloroethylene -250 -3 -Trichloroethylene -250 -3 -Trichloroethylene	
-Pyrene -Tetrachloroethylene -Toluene -Trans-1,2-dichloroethylene -Trichlorobenzene -1,1,1-Trichloroethane -Trichloroethylene 250 -Trichloroethylene 29 8 2 57 8 2 57 8 1 2 5 8 2 5 8 2 5 8 2 5 8 2 5 8 3 2 5 8 7 8 1 8 2 5 8 3 2 5 8 7 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 8 7 8	
-Pyrene -Tetrachloroethylene -Toluene -Trans-1,2-dichloroethylene -Trichlorobenzene -1,1,1-Trichloroethane -Trichloroethylene 250 -Trichloroethylene 29 8 2 57 8 2 57 8 1 2 5 8 8 2 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1
-Tetrachloroethylene 390 1,400 19 57 8 2 5 5	1
-Toluene -Trans-1,2-dichloroethylene -Trichlorobenzene -1,1,1-Trichloroethane -Trichloroethylene 250 -Trichloroethylene 250 -Trichloroethylene 250 -Trichloroethylene 250 -Trichloroethylene	
-Trans-1,2-dichloroethylene -Trichlorobenzene -1,1,1-Trichloroethane -Trichloroethylene 250 -Trichloroethylene 250 -Trichloroethylene	
-Trichlorobenzene -1,1,1-Trichloroethane -1richloroethylene 250 8 2 3 2	4
-1,1,1-Trichloroethane 250 16 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	}
	_1
	i
-2,4,6-Trichlorophenol 4 2 1 1 1	4
-Vinyl chloride	4
	1
Additional Organic Chemicals	İ
-Acetaniline -Acetone	1
Acetone	1
The covariation of the second]
Thirty: Substituted benzeites	7
	7
- Atrazine	7
-Azobenzene -Benzal dehyde	1
1 Delizar deligide	7
	7
-Butyl benzene]
-Carbon disulfide -2-Chloroaniline 55 93 7 59 1 1	7
]
-Chloromethylbenzene]

OCTOBER, 1981 COMPOSITE SAMPLES (µG/L) (CONTINUED)

Additional Org. Chem. (Cont'd) Influent Spillway Lagoon Lagoon SD ND 05 34 DT 11 DT 19 DT 4 -Cresol -2,4'-Diamino-3,3'-dichloro- biphenyl -2,2-Dichloroazobenzene -1,4-Diethoxybenzene -Diethoxychlorobenzene -Diisopropoxychlorobenzene -Dimethoxybenzene -Dimethoxybenzene -3,4-Dimethoxyphenol -10 5 4	18
-Cresol	8
-2,4'-Diamino-3,3'-dichloro-biphenyl -2,2-Dichloroazobenzene -1,4-Diethoxybenzene -Diethoxychlorobenzene -Diisopropoxychlorobenzene -Dimethoxybenzene -Dimethoxybenzene -Dimethoxybenzene	
-2,4'-Diamino-3,3'-dichloro-biphenyl -2,2-Dichloroazobenzene -1,4-Diethoxybenzene -Diethoxychlorobenzene -Diisopropoxychlorobenzene -Dimethoxybenzene -Dimethoxybenzene -Dimethoxybenzene	1 1 1 1 1 1
biphenyl -2,2-Dichloroazobenzene 30 39 5 15 12 -1,4-Diethoxybenzene -Diethoxychlorobenzene -Dihydroxyphenylethanone -Diisopropoxychlorobenzene -Dimethoxybenzene	1 1 1 1
-2,2-Dichloroazobenzene 30 39 5 15 12	
-1,4-Diethoxybenzene -Diethoxychlorobenzene -Dihydroxyphenylethanone -Diisopropoxychlorobenzene -Dimethoxybenzene	
-Diethoxychlorobenzene 35 44 4 14 14 14 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	1 -
-Dihydroxyphenylethanone 5 -Diisopropoxychlorobenzene -Dimethoxybenzene	-
-Diisopropoxychlorobenzene -Dimethoxybenzene	Ⅎ
-Dimethoxybenzene	- 1
	1
F3,4-Dimethoxyphenol 10 5 4	1
	1
-3,4-Dimethylphenol	┥
-Dimethyl benzaldehyde	
-Dimethyl disulfide	4
-Dimethyl naphthalenes 25 4	4
-Dimethyl oxetane	┪
-1,4-Dioxane	-
-N-Ethylaniline	+
-2-Ethoxypropane	4
-Ethyl aniline 17	Ⅎ
-Ethyl phenol 10	
-Hexahydroazepin-2-one	4
-1H-Indole	4
-Isopropylidene dioxyphenol 14 11 2 15 5	+
-Methanethiol	-
-2-Methoxyaniline	4
-Methoxyethoxyethene	\dashv
-2-Methoxyphenol 51	. +
-Methyl aniline 15 86 22	. 1
-3-Methyldibenzothiophene	

OCTOBER, 1981 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

				1		T			-						
			East		Outlet							l			
Additional Org. Chem. (Cont'd)	Influent	<u>Spillway</u>	Lagoon	Lagoon	Lagoon	SD	ND	05	34	DT	11	DT	19	DT	48
-4-Methyldibenzothiophene]										
-Methyl naphthalenes	13	3													-
-Methyl phenanthrenes	13	ی			i	1]				ł		٠.	_
-2-(methylthiol)benzothiazole								1		1		ĺ	i		-
-Naphthol				ı											_
-N,N-Dimethylaniline	39	13		2] ,						}			_
-N-Phenylaniline	39	13		۲.					l]			_
-Phenylethanone						•			ł					į	
-Phthalic acid	!											}			-
-2-Propanol	1,000	96		40					l						
-Simazine	1,000	30		70) :						}	1		-
-Substituted arizidine													-		
-Substituted benzaldehyde		1								l		į			
-Substituted indene		_	·							1		ĺ			
-Substituted naphthalenes					,							l			
-Substituted naphthothiophenes)			•
-Substituted phenanthrenes														```	
-Substituted triazine							- 1								_
-Substituted vanillin	17	9					- 1							٠.	
-Sulfonylbismethane		-													-
-Tetrahydrofuranmethanolacetate		,					-								_
-Tetramethylbutylphenol]						- 1								
-Thiobismethane	95	33	}	4	1										_
-Tributyl phosphate	28		1	18	7	ĺ	- 1	' I							-
-Trimethyl naphthalenes	24	10											- 1	• •	-
-Trimethyl phenanthrenes	Ì	}	}	j			1						- 1		_
-Vanillin		4]		1	1			Į					l		4
-Xylene			1				}						ļ	:	_
													l		

OCTOBER, 1981 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

Priority Pollutants	Influent	Spillway	East Lagoon	West Lagoon	Outlet Lagoon	SD	<u>ND</u>	<u>05</u>	34	DT	11	DT	19	DT	48
-Acenaph thene															-
-Acenaphthylene						1				1					-
-Anthracene	ł	!			}	ł	}			l		l			
-Benzene	96	9								1					•
-Benzo (a) anthracene	i					1									
-Benzo (a) pyrene										i					
-Bis(2-ethylhexyl)phthalate				6		l				1					
-Bromodichloromethane	2				1	1				Į.					
Butyl benzyl phthalate				!	1	1				1		1			
-Chlorobenzene	5	1					1			1		ļ			
-2-Chlorophenol	1				1					1					
-Chlorophenylether					}					1					
-Chloroethane	1				}							1			
-Chloroform	590	140	3	49	13	1		2			3		3		
-4-Chloro-3-methylphenol				_					'	1		İ			٠.
-2-Chloronaphthalene	1					1						•			
-Chrysene	1											1		•	
-1,2-Dichlorobenzene	2														
-1,4-Dichlorobenzene	1					1				1					
-3,3'-Dichlorobenzidine	18	4		i .		1				1					
-1,1-Dichloroethane	5	i								1					
-1,1-Dichloroethene															
-1,2-Dichloroethane	61	26		10	2	2	2								
-2,4-Dichlorophenol	1	20		10	_	-	"			l				ı	
Diethyl phthalate	4	1								1		l			
-2,4-Dimethylphenol	i	1								1		Ì			
Dimethyl phthalate	18	3										ł			
Di-n-butyl phthalate	2	1								}	,	•	Ī		
-Ethylbenzene	7	1											ł		_
FFluoranthene	'									İ					
-Methyl chloride			j										j		_
	L									L					

										r					
	,		East	West	Outlet										
Priority Pollutants (Cont'd)	Influent	Spillway				sn.	מא	ሰፍ	3/1	DT	11	ŊΤ	10	nτ	18
Triority roll dealits (cont. d)	1311 I delit	Spiriway	Lagoon	Lagoon	Lagoon	30	110	03	37	151	11	<u> </u>		<u> </u>	
-Methylene chloride		10													4
-Naphthal ene	6	ĭ												l	4
-Pentachlorophenol		_	·											İ	4
-Phenanthrene	· 2														4
-Pheno1	3			:											- 4
-Pyrene	1					İ								1	4
-Tetrachloroethylene	190	44	1	16	2	l]					- 4
-Toluene	910	46	1	5		İ	1								- 4
-Trans-1,2-dichloroethylene	6	2										}			
-Trichlorobenzene	1			•		ļ						l	•		
-1,1,1-Trichloroethane	150	68				1								1	4
-Trichloroethylene	13	6													· -
-2,4,6-Trichlorophenol														l	
-Vinyl chloride						1						İ			-
Additional Organic Chemicals															
-Acetaniline	45				1										
-Acetone	2,200	1,100			İ	}	ł	i				}			
-Acetovanillone	15	1,100				i	}		Ī	1		<u> </u>			4
-Alkyl substituted benzenes	140	25	7	36	16		ļ	i		i		}		1	
-Aniline	210		'					ĺ		ł					. 4
-Atrazine		}				Ì								ł	
-Azobenzene					İ		l	i	1						
-Benzal dehyde		i					1					l			4
-Benzyl alcohol	11							1				1			_
-Butyl benzene							l								-
-Carbon disulfide							1	1							-
-2-Chloroaniline	230	63	3	88	3	1	1	1				1			-
-Chloromethylbenzene	}				j										
	L	1	L	L	L	ــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	L	J		<u> </u>		J	

NOVEMBER, 1981 COMPOSITE SAMPLES ($\mu G/L$) (CONTINUED)

	T														
	1		East	West	Outlet		1								
Additional Org. Chem. (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	SD	ND	05	34	DT	11	DT	19	DT	48
-Cresol	10	1		1					1	İ					4
-2,4'-Diamino-3,3'-dichloro- biphenyl	71	30		25											4
-2,2-Dichloroazobenzene	88	53	8	49	8		ļ	1							J
-1,4-Diethoxybenzene	00	55	0	49	٥	}			ł]
-Diethoxychlorobenzene	29	22	8	24	1]
-Dihydroxyphenylethanone	23	11	O	. 24	1]
-Diisopropoxychlorobenzene	}	11							j]
-Dimethoxybenzene	1									ŀ]
-3,4~Dimethoxyphenol	1	4				ĺ				Ì]
-3,4-Dimethylphenol	1	-4		ı		l]
Dimethyl benzaldehyde						1				İ]
-Dimethyl disulfide	1	17							İ	ł]
-Dimethyl naphthalenes	23	9]]]
-Dimethyl oxetane	23	9							ł]
-1,4~Dioxane]
-N-Ethylaniline	•	·	,]
-2-Ethoxypropane]
Ethyl aniline	[ĺ]
Ethyl phenol	1			•					1	ĺ]
Hexahydroazepin-2-one	1]
-1H-Indole]
-Isopropylidene dioxyphenol	4	3		2	1					İ]
-Methanethiol]	J			1				ł	ł					}
-2-Methoxyaniline	17]]
Methoxyethoxyethene	17														·]
-2-Methoxyphenol	23]
-Methyl aniline	[37]
-3-Methyldibenzothiophene				3/]
o the only to the controphene						L]

NOVEMBER, 1981 COMPOSITE SAMPLES (µG/L) (CONTINUED)

	<u> </u>		<u> </u>	 	1	Γ	<u> </u>	Γ	Γ	T		Γ		Γ	
			East	West	Outlet]	}]			
Additional Org. Chem. (Cont'd)	Influent	Spillway	Lagoon	Lagoon	Lagoon	SD	ND	05	34	DT	11	DT	19	DT	48
4-Methyldibenzothiophene						1		l							-
-Methyl naphthalenes	17	4				1		l				ĺ			٠.
-Methyl phenanthrenes								•]]					-
-2-(methylthiol)benzothiazole									1			1			_
-Naphthol				٠]	-								_
N,N-Dimethylaniline		4		6	1				İ	1		1			_
-N-Phenylaniline	1					i				i		1			_
-Phenylethanone	10	9			}					ł		-			_
-Phthalic acid					}					l		1			_
-2-Propanol	35	1,100		39						ĺ		1			
-Simazine]					_
Substituted arizidine							i			1					_
-Substituted benzoic acids										[_
-Substituted indene										{	,				
-Substituted naphthalenes										1					
-Substituted naphthothiophenes]					_
-Substituted phenanthrenes		į				ĺ									_
-Substituted triazine	1														_
-Substituted vanillin			}			1									_
-Sulfonylbismethane	1									Ì					_
-Tetrahydrofuranmethanolacetate							- 1	ì		Ì					_
-Tetramethylbutylphenol	}		}				1	- 1		l					_
-Thiobismethane	11	38		12	2		}								_
-Tributyl phosphate	160	38	10	22	9		1	1							-
-Trimethyl naphthalenes	33	11		1		[- [- [1		ſ		_
-Trimethyl phenanthrenes		1		j		j	-				- 1				_
-Vanillin	2	}				}	}	1			ŀ		- 1		
-Xylene	5	6	}			- 1					- 1		- 1		-
													l		

NOVEMBER, 1981 COMPOSITE SAMPLES (μG/L) (CONTINUED)

WELL SAMPLES

Well Samples

USGS Wells

<u>Date</u>	Well Number	Concentration
2-02-80 5-31-80 9-05-80 9-20-80 11-06-80 11-25-80 4-17-81 1-21-81 2-04-81 7-09-81	USGS 6 USGS 3 USGS 2 USGS 4 USGS 3 USGS 5 USGS 5 USGS 6 USGS 6 USGS 2	No Detectable Compounds No Detectable Compounds No Detectable Compounds No Detectable Compounds No Detectable Compounds No Detectable Compounds No Detectable Compounds No Detectable Compounds No Detectable Compounds No Detectable Compounds No Detectable Compounds
	Lagoon Seepage Wells	
4-06-80 5-01-80 7-08-80 7-28-80 8-08-80 8-20-80 10-24-80 10-07-80	LS34-C3 17A 5B2 1B2 1B2 4B2 6B2 LS33-B2	No Detectable Compounds No Detectable Compounds No Detectable Compounds No Detectable Compounds No Detectable Compounds No Detectable Compounds No Detectable Compounds No Detectable Compounds No Detectable Compounds
2B2 6-13-80	<u>.</u>	·
Priority Pollutants		Concentration $(\mu g/1)$
1,2-Dichloroethane No other compounds d	etected	5
3B2 6-27-80	_	
Priority Pollutants		
1,2-Dichloroethane No other compounds d	etected	5
LS34-C2 3-10-80		
Priority Pollutants		
Benzene 1,2-Dichloroethane		11 53

LS34-C2 (Cont'd) 3-10-80

Additional Organic Compounds		Concentration $(\mu g/1)$
2-Chloroaniline Tributyl phosphate N,N-Dimethyl aniline No other compounds detected	. •	210 8 8
	WELLS	
LS33-B2 12-09-80		
Additional Organic Compounds		
Dichloroazobenzene No other compounds detected		3
LS31-B2 10-20-80		
Priority Pollutants		•
Chloroform 1,2-Dichloroethane Di-n-butyl phthalate Bis(ethylhexyl)phthalate		6 10 1 2
Additional Organic Compounds		
Dichloroazobenzene No other compounds detected		1
LS34-C2 1-06-81		
Priority Pollutants		
1,2-Dichloroethane Bis(ethylhexyl)phthalate Benzene		83 4,400 8
Additional Organic Compounds		
2-Chloroaniline		2,400
LS1-B2 2-19-81		
Priority Pollutants		
Chloroethane 1,2-Dichloroethane Di-n-butyl phthalate		1 1 2

LS1-B2 (Cont'd) 2-19-81

Additional Organic Compounds	Concentration (µg/l)
Cresol Methyl aniline Ethyl aniline No other compounds detected	1 2 3
<u>382</u> <u>5-19-81</u>	
Priority Pollutants	
1,2-Dichloroethane 1,1,1-Trichloroethane Tetrachloroethylene Chloroethane	17 2 1 2
Additional Organic Compounds	
Carbon disulfide Tetrahydrofuran*	1 11
* Plastic well, compound found in PVC Cement	
<u>34-C2</u> <u>5-29-81</u>	
Priority Pollutants	
Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Tetrachloroethylene	, 4 10 1 1 1
Additional Organic Compounds	
2-Chloroaniline	600
LS31-B2 3-24-81	
Priority Pollutants	
Chloroform Naphthalene Di-n-butyl phthalate	2 1 2
Additional Organic Compounds	
Acetone* Tetrahydrofuran*	34 38

LS31-B2 (Cont'd) 3-24-81

LS31-B2 (Cont.d) 3-24-8.	<u>L</u>							
Additional Organic Compo	ounds (Cont'd)	Concentration $(\mu g/1)$						
Carbon disulfide Aniline 2-Chloroaniline		2 1 2						
* Plastic well, compound	ds found in PVC (Cement						
LS1-B2 3-11-83	<u>l</u>							
Priority Pollutants								
Toluene Naphthalene Di-n-butyl phthalate		6 1 3						
Additional Organic Compo	ounds							
Methyl aniline Ethyl aniline		1 1						
Monitoring Wells								
Well Group	Date	Compound and Concentration (µg/l)						
USGS 2	7/81	No detectable compounds						
2B2	7/81	Chloroethane 8 1,2-Dichloroethane 3 Tetrachloroethylene 3 Toluene 9						
182	8/81	Chloroethane 8 Trans-1,2-dichloroethylene 1 Trichloroethylene 1						
	WELL:	<u>s</u>						
2B2 7-81								
Priority Pollutants	•	Concentration ($\mu g/1$)						
Chloroethane 1,2-Dichloroethane Tetrachloroethylene Toluene		8 3 26 9						

2B2 (Cont'd) 7-81 Additional Organic Compounds Concentration (µg/1) No other compounds detected 1B2 8-81 · Priority Pollutants 8 Chloroethane Trans-1,2-dichloroethylene 1 Trichloroethylene Additional Organic Compounds No other compounds detected 4B2 9-81 Priority Pollutants Not detected, $1 \mu g/1$ Additional Organic Compounds Not detected 5B2 10-81 Priority Pollutants Not detected, 1 µg/l Additional Organic Compounds Not detected 6B2 11-81 Priority Pollutants Not detected, 1 µg/1 Additional Organic Compounds

Not detected

LAGOON SEEPAGE WELL SAMPLES

New Lagoon Seepage Wells 5/81

 $\frac{A-1}{70 \text{ ft}}$

Priority Pollutants		μg/
Not detected at 1 g/l		
Additional Organic Compounds		
2-Chloroaniline Substituted Benzene Isopropylidenedioxyphenol Vanillin		1 1 3 1
	A-2 50 ft	
Priority Pollutants		
Not detected at 1 g/l		
Additional Organic Compounds		
Not detected		
	A-3 30 ft	
Priority Pollutants		
Not detected at 1 g/l		
Additional Organic Compounds		
Isopropylidenedioxyphenol 2-Chloroaniline		2 113
	$\frac{B-1}{50 \text{ ft}}$	
Priority Pollutants		
Trans-1,2-dichloroethane Bis(ethylhexyl)phthalate		1 6

New Lagoon Seepage Wells 5/81

 $\frac{B-1}{50 \text{ ft}}$

Continued

Additional Organic Compounds	μg/l
N-Phenylacetamide Ethyl aniline 2-Chloroaniline N,N-Dimethylaniline	3 7 250 6
$\frac{B-2}{40 \text{ ft}}$	
Priority Pollutants	
1,1-Dichloroethane Diethyl phthalate	1
Additional Organic Compounds	
Isopropylidene dioxyphenol Methyl aniline Ethyl aniline 2-Chloroaniline Trimethyltriazene-trione Atrazine	1 2 8 22 7 2
$\frac{B-3}{30 \text{ ft}}$	
Priority Pollutants	
Diethyl phthalate Bis(ethylhexyl)phthalate	1 20
Additional Organic Compounds	
Isopropylidene dioxy phenol Methyl aniline 2-Chloroaniline Trimethyl triazene-trione Atrazene	2 10 80 2 1

New Lagoon Seepage Wells 5/81

C-1 70 ft

Priority Pollutants		μg/l
Di-n-butyl phthalate		1
Additional Organic Compounds		
Not detected		
	<u>C-2</u> 50 ft	
	50 ft	
<u>Priority Pollutants</u>		
Tetrachloroethylene		9
Additional Organic Compounds		
Not detected		
,		
	C-3 30 ft	
Priority Pollutants		
None	·	
Additional Organic Compounds		
Isopropylidene dioxyphenol Methyl aniline 2-Chloroaniline		6 1 29
	D_1	
	D-1 70 ft	
Priority Pollutants		
Tetrachloroethylene Di-n-butyl phthalate Bis(ethylhexyl)phthalate		18 3 430

New Lagoon Seepage Wells 5/81

D-1 70 ft

	70 ft	
	Continued	
Additional Organic Compounds		<u>μg/1</u>
Not detected		
	D-2 50 ft	
Priority Pollutants		
Not detected at 1 g/l		
Additional Organic Compounds		
Not detected		
	D-3 30 ft	
Priority Pollutants		
1,2-Dichloroethane Tetrachloroethylene Toluene		9 92 2
Additional Organic Compounds		
Isopropylidene dioxyphenol 2-Chloroaniline Methyl aniline Tributyl phosphate N,N-Dimethyl aniline Trimethyltriazene-trione		160 2 1 4

9-81 Priority Pollutants μ**g/1** Not detected Additional Organic Compounds Tributyl phosphate Di-n-butyl phthalate 1 18 Priority Pollutants Not detected Additional Organic Compounds Methyl aniline 11 2-Chloroaniline 170 Tributyl phosphate 8 Di-n-butyl phthalate 2 $\frac{B-1}{50 \text{ ft}}$ Priority Pollutants Not detected Additional Organic Compounds 2-Chloroaniline 28

New Lagoon Seepage Wells

Priority Pollutants

Not detected

New Lagoon Seepage Wells 9/81 (Cont'd)

B-2 (Cont'd) Additional Organic Compounds $\mu g/1$ 4 Methyl aniline 45 2 2-Chloroaniline Tributyl phosphate Substituted triazine Priority Pollutants Not detected Additional Organic Compounds Methyl aniline 2 25 2-Chloroaniline Priority Pollutants Not detected Additional Organic Compounds Not detected Priority Pollutants Not detected

Additional Organic Compounds

Not detected

New Lagoon Seepage Wells 9/81 (Cont'd)

C-3 30 ft

Priority Pollutants		μ g /
Not detected		
Additional Organic Compounds		
2-Chloroaniline Tributyl phosphate		47 9
	D-1 70 ft	
Drionity Pollutants		
Priority Pollutants		
Not detected		
Additional Organic Compounds		
Not detected		
	$\frac{D-2}{50}$ ft	
Priority Pollutants		
Not detected		
Additional Organic Compounds		
Not detected		

New Lagoon Seepage Wells 9/81 (Cont'd)

D-3 30 ft

Priority Pollutants	<u>ug/1</u>
1,2-Dichloroethane	7
Additional Organic Compounds	
2-Chloroaniline Tributyl phosphate N,N-Dimethyl aniline	83 2

New Lagoon Seepage Wells 10/81

A-2 50 ft

Priority Pollutants		<u>µ</u> g/1
Not detected		
Additional Organic Compounds		
2-Chloroaniline		2
	A-3 30 ft	
Priority Pollutants		
Not detected		
Additional Organic Compounds		
Methyl aniline 2-Chloroaniline Isopropylidine dioxy phenol		7 29 1
	<u>B-1</u> 50 ft	
Priority Pollutants		
Not detected		
Additional Organic Compounds		
2-Chloroaniline N,N-Dimethyl aniline		39 4
	<u>B-2</u> 40 ft	
Priority Pollutants		,
Not detected		

New Lagoon Seepage Wells 10/81 (Cont'd)

B-2 (Cont'd)		
Additional Organic Compounds		<u>μg/1</u>
Methyl aniline 2-Chloroaniline Substituted triazine		4 19 5
	B-3 30 ft	
Priority Pollutants		
Not detected		,
Additional Organic Compounds		
Methyl aniline 2-Chloroaniline Substituted triazine		2 77 3
	C-1 70 ft	
Priority Pollutants		
Not detected		
Additional Organic Compounds		
Not detected		
	<u>C-2</u> 50 ft	
Priority Pollutants		
Not detected		
Additional Organic Compounds		
Not detected		

New Lagoon Seepage Wells 10/81 (Cont'd)

C-3 30-ft

Priority Pollutants		<u>μg/1</u>
Not detected		
Additional Organic Compounds		
Methyl aniline 2-Chloroaniline Isopropylidine dioxy phenol		2 44 1
	D-1 70 ft	
Priority Pollutants		
Not detected		
Additional Organic Compounds		
Not detected		
	D-2 50 ft	
Priority Pollutants		
Not detected		
Additional Organic Compounds		
Not detected		
	D-3 30 ft	
Priority Pollutants		
1,2-Dichloroethane		8
Additional Organic Compounds		7.4
2-Chloroaniline		74

New Lagoon Seepage Wells 11/81

	A-2 50 ft	
Priority Pollutants		μg/1
Not detected		
Additional Organic Compounds		
Not detected	,	
	A-3 30 ft	
Priority Pollutants		
Not detected		
Additional Organic Compounds		
2-Chloroaniline Isopropylidine dioxy phenol		260 2
•	$\frac{B-1}{50 \text{ ft}}$	
Priority Pollutants		
Not detected		
Additional Organic Compounds		
2-Chloroaniline N,N-Dimethyl aniline		360 3
	B-2 40 ft	
Priority Pollutants		
Not detected		

New Lagoon Seepage Wells 11/81 (Cont'd)

B-2 (Cont'd)		
Additional Organic Compounds		<u>μ</u> g/]
2-Chloroaniline Substituted triazine		19 6
	B-3 30 ft	
Priority Pollutants		•
Not detected		
Additional Organic Compounds		
2-Chloroaniline Isopropylidine dioxy phenol		6 1
	<u>C-1</u> 70 ft	
Priority Pollutants		
Not detected		
Additional Organic Compounds		
Not detected		
	C-2 50 ft	
Priority Pollutants		
Not detected		
Additional Organic Compounds		
Phthalate		16

New Lagoon Seepage Wells 11/81 (Cont'd)

C-3 30 ft

Priority Pollutants		μg/1
Not detected		
Additional Organic Compounds		
2-Chloroaniline Isopropylidine dioxy phenol		37 1
	D-1 70 ft	
Priority Pollutants		
Not detected		
Additional Organic Compounds		
Not detected		
	D-2 50 ft	
Priority Pollutants		
Not detected		
Additional Organic Compounds		
Not detected		
	D-3 30 ft	
Priority Pollutants		
1,2-Dichloroethane Additional Organic Compounds		5
2-Chloroaniline N,N-Dimethyl aniline		140 2

Lagoon Seepage Study

Chlorinated Aromatic Amines

(6/81) Concentration (μ g/l)

		concentration (µg/1)	
Well	2-Chloro- aniline	3,3'-Dichloro- benzidine	2,4'-Diamino- 3,3'-dichloro- biphenyl
A-1	Dry	< 1	< 1
A-2	9	< 1	< 1
A-3	300	< 1	< 1
B-1	190	< 1	< 1
B-2 .	190	< 1	< 1
B-3	70	< 1	< 1
C-1.	< 1	< 1	< 1
C-2	< 1	< 1	< 1
C-3	63	< 1	< 1
D-1	< 1	< 1	< 1
D-2	< 1	< 1	< 1
D-3 .	160	< 1	< 1
34-C2	190	< 1	< 1

Lagoon Seepage Study

Chlorinated Aromatic Amines

(7/81) Concentration (μ g/1)

<u>Well</u>	2-Chloro- aniline	3,3'-Dichloro- benzidine	2,4'-Diamino- 3,3'-dichloro- biphenyl
A-1	Dry	< 1	< 1
A-2	7	< 1	< 1
A-3	420	< 1	< 1
B-1	195	< 1	< 1
B-2	180	< 1	< 1
B-3	90	< 1	< 1
C-1	1	< 1	< 1
C-2	1	< 1	. < 1
C-3	59	< 1 .	< 1
D-1	1	< 1	< 1
D-2	< 1	< 1	< 1
D-3	180	< 1	< 1
34-C2	240	< 1	< 1

Lagoon Seepage Study

Chlorinated Aromatic Amines

(8/81) Concentration (µg/l)

<u>Well</u>	2-Chloro- aniline	3,3'-Dichloro- benzidine	2,4'-Diamino- 3,3'-dichloro- biphenyl
A-1	Dry	< 1	< 1
A-2	4	< 1	< 1
A-3	510	< 1	< 1
B-1	230	< 1	< 1
B-2	210	< 1	< 1
B-3	100	< 1	< 1
C-1	1	< 1	< 1
C-2	1	< 1	< 1
C-3	69	< 1	< 1
D-1	< 1	< 1	< 1
D-2	< 1	< 1	< 1
D-3	170	< 1	< 1
34-C2	210	< 1	< 1

Lagoon Seepage Study
Chlorinated Aromatic Amines

Concentration (9/81) (µg/1)

Well_	2-Chloro- aniline	3,3'-Dichloro- benzidine	2,4'-Diamino- 3,3'-dichloro- biphenyl
A-1	Dry	·	
A-2	3	< 1	< 1
A-3	140	< 1	< 1
B-1	29	< 1	< 1
B-2	55	< 1	< 1
B-3	25	< 1	< 1
C-1	< 1	< 1	< 1
C-2	< 1	< 1	< 1
C-3	49	< 1	< 1
D-1	< 1	< 1	< 1
D-2	< 1	< 1	< 1
D-3	85	< 1	< 1
34C2	120	< 1	< 1

<u>Lagoon Seepage Study</u>

<u>Chlorinated Aromatic Amines</u>

		Concentration (10/81) (µg/l)			
Well	2-Chloro aniline	3,3'-Dichloro- benzidine	2,4'-Diamino- 3,3'-dichloro- biphenyl		
A-1	Dry				
A-2	3	< 1	< 1		
A-3	29	< 1	< 1		
B-1	45	< 1	< 1		
B-2	20	< 1	< 1		
B-3	77	< 1	< 1		
C-1	< 1	< 1	< 1		
C-2	< 1	< 1	< 1		
C-3	5	< 1	< 1		
D-1	< 1	< 1	< 1		
D-2	< 1	< 1	< 1		
D-3	100	< 1	< 1		
34-C2	100	< 1	< 1		

<u>Lagoon Seepage Study</u>

<u>Chlorinated Aromatic Amines</u>

		Concentration (11/81) (µg/1)
Wells	2-Chloro- aniline	3,3'-Dichloro- benzidine	2,4'-Diamino- 3,3'-dichloro- biphenyl
A-1	Dry		
A-2	< 1	· < 1	< 1
A-3	380	< 1	< 1
B-1	398	< 1	< 1
B-2	50	< 1	< 1
B-3	23	< 1	< 1
C-1	< 1	< 1	< 1
C-2	< 1	< 1	< 1
C-3	45	< 1	< 1
D-1	< 1	< 1	< 1
D-2	< 1	< 1	< 1
D-3	135	< 1	< 1
34-C2	85	< 1	< 1
	•	•	

Lagoon Seepage Study
1,2-Dichloroethane

	Concentration (µg/l)					
Wells	6/81	7/81	8/81	9/81	10/81	11/81
1-B2	<1	< 1	< 1	< 1	< 1	< 1
2-B2	7.1	6.2	6.8	3.9	2.4	< 1
3-B2	3.3	4.1	4.5	1.9	3.2	2.7
4-B2	< 1	< 1	< 1	< 1	< 1	< 1
5-B2	< 1	< 1	< 1	< 1	< 1	< 1
6-B2	< 1	< 1	< 1	< 1	< 1	< 1
34-C2	10	12	8	6	3	4
A-1	< 1	< 1	< 1	< 1	< 1	< 1
A-2	< 1	< 1	< 1	< 1	< 1	< 1
A-3	< 1	< 1	< 1	< 1	< 1	< 1
B-1	< 1	< 1	< 1	< 1	< 1	< 1
B-2	< 1	< 1	< 1	< 1	< 1	< 1
B-3	< 1	< 1	< 1	< 1	< 1	< 1
C-1	< 1	< 1	< 1	< 1	< 1	< 1
C-2	< 1	< 1	< 1	< 1	< 1	< 1
C-3	< 1	< 1	< 1	< 1	< 1	< 1
D-1	< 1	< 1	< 1	< 1	< 1	< 1
D-2	< 1	< 1	< 1	< 1	< 1	< 1
D-3	15	9	12	12	8	6

Dike Wells

	Date: 6/81		Concent)
Compound	Well:	<u>A2</u>	A3	<u>C1</u>	C2	<u>C3</u>
Methyl aniline 2-Chloroaniline		1 7	4 290	1	1	4 58
	Date: 7/81					
Methyl aniline 2-Chloroaniline		1 6	6 390	1	1	1 54
	Date: 8/81					
Methyl aniline 2-Chloroaniline		1 4	3 450	1	1	2 62

SOIL SAMPLES

Soils, Circle 11, 1 foot, 11/80

Priority Pollutants	<u> µg/g</u>
Di-n-butyl phthalate Bis(ethylhexyl)phthalate	0.18 0.25
Additional Organic Compounds	
2,2'-Dichloroazobenzene	0.10
Soils, Circle 11, 2 feet, 11/80	
Priority Pollutants	
Diethyl phthalate Di-n-butyl phthalate Bis(ethylhexyl)phthalate	0.12 2.2 1.7
Additional Organic Compounds	
Xylene	1.0
Soils, Circle 11, 3 feet, 11/80	
Priority Pollutants	
Diethyl phthalate Di-n-butyl phthalate	0.07
Additional Organic Compounds	
Xylene	1.1

Soil, Circle 11, 1 foot, 4/81

Priority Pollutants	μg/g
Diethylphthalate Butyl benzyl phthalate	0.029 1.5
Additional Organic Compounds	
Xylene Dichloroazobenzene Benzyl alcohol Phenyl ethanone Butyl-methylpropyl phthalate	0.27 0.055 0.040 0.029 0.21
Soil, Circle 11, 2 feet, 4/81	
Priority Pollutants	
Diethylphthalate	0.037
Additional Organic Compounds	
Xylene	0.39
Soil, Circle 11, 3 feet, 4/81	
Priority Pollutants	
Diethylphthalate Di-n-butyl phthalate	0.062 0.20
Additional Organic Compounds	
Xylene Benzyl alcohol	0.28 0.091

Soil Circle 11, 1 foot, 5/81

Priority Pollutants	<u> հս\մ</u>
Diethylphthalate	0.072
Di-n-butyl phthalate	0.087
Bis(ethylhexyl)phthalate	0.093
Additional Organic Compounds	
Dichloroazobenzene	0.047
Soil Circle 11, 2 feet, 5/81	
Priority Pollutants	
Diethylphthalate Di-n-butyl phthalate	0.10
Butyl benzyl phthalate Bis(ethylhexyl)phthalate	0.14
# 13 (cony meny 1) phonara ac	0.12
Additional Organic Compounds	
N-phenylaniline	0.023
Soil Circle 11, 3 feet, 5/81	
Priority Pollutants	
Diethylphthalate Di-n-butyl phthalate	0.064
Butyl benzyl phthalate	0.10
	1.2
Additional Organic Compounds	
Xylene Ethenyl benzene	0.24 0.061

Soils, Circle 19, 1 foot, 11/80

Priority Pollutants	<u>нg/ q</u>
Diethyl phthalate Di-n-butyl phthalate Bis(ethylhexyl)phthalate Aroclor 1016	0.06 0.97 8.9 0.09
Additional Organic Compounds	
2,2'-Dichloroazobenzene	0.11
Soils, Circle 19, 2 feet, 11/80	
Priority Pollutants	
Diethyl phthalate Di-n-butyl phthalate Bis(ethylhexyl)phthalate Aroclor 1016	0.05 1.2 1.3 0.026
Additional Organic Compounds	
Xylene 2,2'-Dichloroazobenzene	0.23 0.04
Soils, Circle 19, 3 feet, 11/80	
Priority Pollutants	
Di-n-butyl phthalate Bis(ethylhexyl)phthalate Aroclor 1016	0.68 0.21 0.016
Additional Organic Compounds	

Not detected

Soil, Circle 19, 1 foot, 4/81

Priority Pollutants	<u> 40/0</u>
Diethyl phthalate Di-n-butyl phthalate	0.074 0.64
Additional Organic Compounds	
Xylene Ethenyl benzene Dichloroazobenzene Benzyl alcohol Phenyl ethanone Butyl-methylpropyl phthalate	0.32 0.098 0.038 0.061 0.079 3.9
Soil, Circle 19, 2 feet, 4/81	
Priority Pollutants	
Diethylphthalate Di-n-butyl phthalate	0.034 0.12
Additional Organic Compounds	
Xylene Ethenyl benzene Benzyl alcohol Phenylethanone	0.25 0.080 0.062 0.055
Soil, Circle 19, 3 feet, 4/81	
Priority Pollutants	
Diethylphthalate Di-n-butyl phthalate	0.038 0.17
Additional Organic Compounds	
Xylene Ethenyl benzene Benzyl alcohol Phenyl ethanone Butyl-methylpropyl phthalate	0.25 0.088 0.048 0.057 0.27

Soil, Circle 19, 1 foot, 5/81

Priority Pollutants		μg/g
Not detected		
Additional Organic Compo	<u>unds</u>	
Xylene		0.15
	Soil, Circle 19, 2 feet, 5/81	
Priority Pollutants		
Diethylphthalate Di-n-butyl phthalate		0.007
Additional Organic Compou	<u>unds</u>	
Xylene Ethenyl benzene Phenyl ethanone		0.14 0.15 0.056
	Soil, Circle 19, 3 feet, 5/81	
Priority Pollutants		
Bis(ethylhexyl)phthalate		0.97
Additional Organic Compou	unds_	
Xylene Ethenyl benzene Phenyl ethanone		0.29 0.36 0.12

Soils, Circle 48, 1 foot, 11/80

Priority Pollutants	<u>µg/g</u>
Di-n-butyl phthalate Bis(ethylhexyl)phthalate	0.81 1.4
Additional Organic Compounds	
Xylene	0.21
Soils, Circle 48, 2 feet, 11/80	
Priority Pollutants	
Diethyl phthalate Di-n-butyl phthalate Bis(ethylhexyl)phthalate	0.052 0.12 0.25
Additional Organic Compounds	
Not detected	
Soils, Circle 48, 3 feet, 11/80.	
Priority Pollutants	
Diethyl phthalate Dibutyl phthalate Bis(ethylhexyl)phthalate	0.048 0.38 0.38
Additional Organic Compounds	
Not detected	

Soil, Circle 48, 1 foot, 4/81

Priority Pollutants	<u>μg/g</u>
Diethylphthalate Di-n-butyl phthalate Butyl benzyl phthalate	0.092 0.84 0.11
Additional Organic Compounds	
Xylene Ethenyl benzene Dichloroazobenzene Benzyl alcohol Phenyl ethanone Butyl-methylpropyl phthalate	0.24 0.079 0.068 0.068 0.034 0.25
Soil, Circle 48, 2 feet, 4/81	
Priority Pollutants	
Diethylphthalate Di-n-butyl phthalate Butyl benzyl phthalate Bis(ethyl hexyl)phthalate	0.061 0.14 0.78 0.28
Additional Organic Compounds	
Xylene Ethenyl benzene Benzyl alcohol Phenyl ethanone Butyl-methylpropyl phthalate	0.21 0.072 0.12 0.059 0.055
Soil, Circle 48, 3 feet, 4/81	
Priority Pollutants	
Diethyl phthalate Di-n-butyl phthalate Butyl benzyl phthalate	0.038 0.081 0.39
Additional Organic Compounds	
Xylene Benzyl alcohol	0.41 0.22

Soil, Circle 48, 1 foot, 5/81

Priority Pollutants	<u>μg/g</u>
Diethylphthalate Di-n-butyl phthalate Bis(ethylhexyl)phthalate	0.008 0.062 8.3
Additional Organic Compounds	
Dichloroazobenzene Ethenyl benzene Benzaldehyde Phenyl ethanone (methylpropyl) butyl phthalate	0.012 0.099 0.056 0.061 0.11
Soil, Circle 48, 2 feet, 5/81	
Priority Pollutants	
Di-n-butyl phthalate Bis(ethylhexyl)phthalate	0.074 4.4
Additional Organic Compounds	
Xylene Benzyl alcohol	0.030 0.051
Soil, Circle 48, 3 feet, 5/81	
Priority Pollutants	
Di-n-butyl phthalate Bis(ethylhexyl)phthalate	0.034 4.9
Additional Organic Compounds	
Benzyl alcohol	0.044

Soil, Circle 11, 1 foot, 6/81

Priority Pollutants	<u>μg/g</u>
Diethyl phthalate Di-n-butyl phthalate Butyl benzyl phthalate	0.022 0.13 0.15
Additional Organic Compounds	
Xylene 2,2'-Dichloroazobenzene Benzyl alcohol Phenyl ethanone	0.32 0.14 0.045 0.038
Soil, Circle 11, 2 feet, 6/81	
Priority Pollutants	
Diethyl phthalate Di-n-butyl phthalate Phenol	0.030 0.095 0.061
Additional Organic Compounds	
Xylene Benzyl alcohol	0.25 0.058
Soil, Circle 11, 3 feet, 6/81	
Priority Pollutants	
Di-n-butyl phthalate Bis(ethylhexyl)phthalate Phenol	0.12 2.8 0.087
Additional Organic Compounds	

Not detected

Soil, Circle 11, 1 foot, 7/81

Priority Pollutants	<u>μg/g</u>
Di-n-butyl phthalate Phenol Trichloroethylene	0.094 0.040 0.006
Additional Organic Compounds	
Not detected	
Soil, Circle 11, 2 feet, 7/81	
Priority Pollutants	
Ph eno l	0.047
Additional Organic Compounds	
Not detected	
Soil, Circle 11, 3 feet, 7/81.	
Priority Pollutants	
Diethyl phthalate Di-n-butyl phthalate Phenol	0.049 0.71 0.054
Additional Organic Compounds	
Benzyl alcohol Butyl(2-methylpropyl)phthalate	0.089 2.6

Soil, Circle 11, 1 foot, 8/81

Priority Pollutants	μg/g
Diethyl phthalate Di-n-butyl phthalate Butyl benzyl phthalate Tetrachloroethylene Toluene	0.40 0.38 0.16 0.046 0.067
Additional Organic Compounds	
2,2'-Dichloroazobenzene	0.056
Soil, Circle 11, 2 feet, 8/81	
Priority Pollutants	
Diethyl phthalate Di-n-butyl phthalate Bis(ethylhexyl)phthalate	0.065 0.17 0.49
Additional Organic Compounds	
Not detected	
Soil, Circle 11, 3 feet, 8/81	
Priority Pollutants	
Diethyl phthalate Di-n-butyl phthalate	0.97 0.19
Additional Organic Compounds	
Not detected :	

Soil, Circle 19, 1 foot, 6/81

Priority Pollutants

Bis(ethylhexyl)Phthalate

Phenol

38
0.062

Additional Organic Compounds

Not detected

Soil, Circle 19, 2 feet, 6/81

Priority Pollutants

Bis(ethylhexyl)phthalate 0.49 1,1,1-Trichloroethane 0.001

Additional Organic Compounds

Xylene 0.044

Soil, Circle 19, 3 feet, 6/81

Priority Pollutants

Not detected at $0.005 \mu g/g$

Additional Organic Compounds

Not detected

Soil, Circle 19, 1 foot, 7/81

Priority Pollutants		<u>µg/g</u>
Di-n-butyl phthalate Phenol		0.068 0.087
Additional Organic Compound	<u>ds</u>	
Benzaldehyde		0.22
<u>:</u>	Soil, Circle 19, 2 feet, 7/81	
Priority Pollutants		
Di-n-butyl phthalate Bis(ethylhexyl)phthalate Phenol	,	0.15 0.14 0.058
Additional Organic Compound	<u>ds</u>	
Not detected		
<u>'</u>	Soil, Circle 19, 3 feet, 7/81	
Priority Pollutants		
Di-n-butyl phthalate Phenol		0.30 0.053
Additional Organic Compound	<u>ds</u>	

Not detected

Soil, Circle 19, 1 foot, 8/81

Priority Pollutants	<u>µg/g</u>
Diethyl phthalate Di-n-butyl phthalate Bis(ethylhexyl)phthalate	0.12 0.083 1.0
Additional Organic Compounds	
2,2'-Dichloroazobenzene Benzaldehyde Phenyl ethanone Phenylacetic acid Simazine Atrazine Vanillin	0.18 2.3 0.32 1.2 0.17 0.13 0.022
Soil, Circle 19, 2 feet, 8/81	
Priority Pollutants	
Diethyl phthalate Di-n-butyl phthalate Bis(ethylhexyl)phthalate	0.071 0.089 . 1.8
Additional Organic Compounds	
Benzaldehyde	0.25
Soil, Circle 19, 3 feet, 8/81	
Priority Pollutants	
Diethyl phthalate Di-n-butyl phthalate	0.10 0.17
Additional Organic Compounds	
Butyl(2-methylpropyl)phthalate	1.5

Soil, Circle 48, 1 foot, 6/81

Priority Pollutants	<u>μg/g</u>
Di-n-butyl phthalate Phenol	0.052 0.086
Additional Organic Compounds	
Not detected	
Soil, Circle 48, 2 feet, 6/81	
Priority Pollutants	
Di-n-butyl phthalate Phenol	0.085 0.032
Additional Organic Compounds	
Xylene	0.046
Soil, Circle 48, 3 feet, 6/81	
Priority Pollutants	
Diethyl phthalate Di-n-butyl phthalate Phenol	0.099 0.47 0.034
Additional Organic Compounds	

Not detected

Soil, Circle 48, 1 foot, 7/81

Priority Pollutants		<u>µg/g</u>
Di-n-butyl phthalate		0.23
Additional Organic Compoun	nds_	
Not detected		
	Soil, Circle 48, 2 feet, 7/81	
Priority Pollutants		
Diethyl phthalate		0.12
Additional Organic Compoun	nds	
Not detected		
	Soil, Circle 48, 3 feet, 7/81	
Priority Pollutants		
Diethyl phthalate Di-n-butyl phthalate		0.17
Additional Organic Compoun	<u>nds</u>	

Not detected

Soil, Circle 48, 1 foot, 8/81

Priority Pollutants	<u>μg/g</u>
Diethyl phthalate Phenol	0.099 0.045
Additional Organic Compounds	
Not detected	
Soil, Circle 48, 2 feet, 8/81	
Priority Pollutants	
Diethyl phthalate Di-n-butyl phthalate Phenol	0.047 0.14 0.049
Additional Organic Compounds	
Butyl(2-methylpropyl)phthalate	0.98
Soil, Circle 48, 3 feet, 8/81	
Priority Pollutants	
Diethyl phthalate Di-n-butyl phthalate Phenol	0.74 0.35 0.044
Additional Organic Compounds	

Not detected .

Soils, Circle 11, 1 foot, 9/81

Priority Pollutants	μg/g
Diethyl phthalate	0.18
Additional Organic Compounds	
Xylene Dichloroazobenzene	2.4 0.043
Soils, Circle 11, 2 feet, 9/81	
Priority Pollutants	
Diethy] phthalate	0.091
Additional Organic Compounds	
Xylene Ethenyl benzene Phenyl ethanone	0.39 0.16 0.070
Soils, Circle 11, 3 feet, 9/81	
Diethyl phthalate Di-n-butyl phthalate Tetrachloroethylene Toluene	0.33 0.092 0.005 0.004
Additional Organic Compounds	
Xylene Phenyl ethanone	0.41 0.081

Soils, Circle 19, 1 foot, 9/81

Priority Pollutants	μg/g
Diethyl phthalate Di-n-butyl phthalate	0.043 0.039
Additional Organic Compounds	
Xylene Dichloroazobenzene Ethenyl benzene Phenyl ethanone	0.39 0.029 0.19 0.077
Soils, Circle 19, 2 feet, 9/81	
Priority Pollutants	
Diethyl phthalate	0.019
Additional Organic Compounds	
Xylene Ethenyl benzene Phenyl ethanone	2.4 0.14 0.046
Soils, Circle 19, 3 feet, 9/81	
Priority Pollutants	•
Diethyl phthalate Di-n-butyl phthalate	0.17 0.064
Additional Organic Compounds	
Xylene Ethenyl benzene Phenyl ethanone	0.46 0.20 0.087

Soils, Circle 48, 1 foot, 9/81

Priority Pollutants	<u>µg/g</u>
Diethyl phthalate Di-n-butyl phthalate	2.1 0.26
Additional Organic Compounds	
Not detected .	
Soils, Circle 48, 2 feet, 9/81	
Priority Pollutants	
Diethyl phthalate	0.19
Additional Organic Compounds	
Not detected	
Soils, Circle 48, 3 feet, 9/81	
Priority Pollutants	
Diethyl phthalate Di-n-butyl phthalate	0.91 0.30
Additional Organic Compounds	
Xylene Vanillin	0.55 0.11

Soils, Circle 11, 1 foot, 11/81

Priority Pollutants	μg/g
Di-n-butyl phthalate 1,1,1-Trichloroethane 1,2-Dichloroethane	0.061 0.020 0.002
Additional Organic Compounds	
Xylene Vanillin	0.62 0.14
Soils, Circle 11, 2 feet, 11/81	
Priority Pollutants	
Di-n-butyl phthalate	0.067
Additional Organic Compounds	
Xylene Vanillin	0.54 0.072
Soils, Circle 11, 3 feet, 11/81	
Priority Pollutants	
Diethyl phthalate Di-n-butyl phthalate	0.027 0.066
Additional Organic Compounds	
Not detected	

Soils, Circle 19, 1 foot, 10/81

Priority Pollutants	μ g/g
Not detected	
Additional Organic Compounds	
Benzeneacetic acid Vanillin	0.18 0.063
Soils, Circle 19, 2 feet, 10/81	
Priority Pollutants	
1,1,1-Trichloroethane	0.031
Additional Organic Compounds	
Xylene Alkyl substituted benzene (4)	1.2 0.64
Soils, Circle 19, 3 feet, 10/81	
Priority Pollutants	
Phenol	0.045
Additional Organic Compounds	
Xylene Alkyl substituted benzene (4) Vanillin	0.69 0.30 0.023

Soils, Circle 48, 1 foot, 10/81

Priority Pollutants	μg/g
Pheno1	0.049
Additional Organic Compounds	
Xylene Alkyl substituted benzenes (4) Vanillin	0.60 0.41 0.15
Soils, Circle 48, 2 feet, 10/81	
Priority Pollutants	
Not detected	
Additional Organic Compounds	
Xylene Alkyl substituted benzenes (5) Phenylacetic acid Vanillin	0.41 0.29 0.22 0.075
Soils, Circle 48, 3 feet, 10/81	
Priority Pollutants	
Di-n-butyl phthalate	0.037
Additional Organic Compounds	
Xylene	0.46

Soils, Circle 11, 1 foot, 11/81

Priority Pollutants	<u>μg/g</u>
Toluene	0.025
Additional Organic Compounds	
Xylene Alkyl substituted benzenes (4) Phenylacetic acid Vanillin	0.53 0.29 0.073 0.065
Soils, Circle 11, 2 feet, 11/81	
Priority Pollutants	
Di-n-butyl phthalate Toluene	0.062 0.020
Additional Organic Compounds	
Xylene Vanillin	1.1 0.061
Soils, Circle 11, 3 feet, 11/81	
Priority Pollutants	
Diethyl phthalate Di-n-butyl phthalate Toluene	0.041 0.074 0.013
Additional Organic Compounds	
Xylene	0.26

Soils, Circle 17, 1 foot, 11/81

Priority Pollutants	<u> ⊬3/a</u>
Di-n-butyl phthalate Toluene	0.094 0.022
Additional Organic Compounds	
Xylene Alkyl substituted benzenes (5) Phenylacetic acid Vanillin	0.31 0.31 0.21 0.068
Soils, Circle 17, 2 feet, 11/81	
Priority Pollutants	
Di-n-butyl phthalate Toluene	0.076 0.014
Additional Organic Compounds	
Xylene	0.55
Soils, Circle 17, 3 feet, 11/81	
Priority Pollutants	
Diethyl phthalate Toluene	0.049 0.010
Additional Organic Compounds	
Xylene Alkyl substituted benzene (5)	1.1 0.69

Soils, Circle 48, 1 foot, 11/81

Priority Pollutants	<u>ug/g</u>
Di-n-butyl phthalate Toluene	0.17 0.028
Additional Organic Compounds	
Xylene	0.41
Soils, Circle 48, 2 feet, 11/81	
Priority Pollutants	
Toluene	0.015
Additional Organic Compounds	
Xylene	0.27
Soils, Circle 48, 3 feet, 11/81	
Priority Pollutants	
Di-n-butyl phthalate Toluene	0.30 0.014
Additional Organic Compounds	
Xylene Vanillin	0.31 0.072

	Wells	10/81	
USGS 3			<u>μg/1</u>
No detectable compounds			
USGS 4			
No detectable compounds			
		9/81	
USGS 1			
No detectable compounds			
USGS 2			
No detectable compounds			
		11/81	
3B2			
1,2-Dichloroethane			6
<u>31B2</u>			
1,2-Dichloroethane			8

SLUDGE SAMPLES

Concentration of Organic Chemicals In Cell II Sludge (ug/Kg) 1980

•		•			•	
Priority Pollutants	6/11	6/25	7/18	8/21	9/05	9/19
Acenaphthalene	_	_	_	_	_	_
Anthracene	_	_	~	_	_	_
Butyl benzyl phthalate	_	450	200	260	-	_
Benzo(a)anthracene	_	170	68	200	_	
Bis(ethylhexyl)phthalate	4,400	3,300	1,340	7,800	3,500	2,500
Chrysene	170	-	-	7,000	-	1,000
Chlorobenzene	11	36	44	35	-	-
1,4-Dichlorobenzene	160	120	150	110	440	560
1,2-Dichlorobenzene	340	350	220	190	470	530
Dimethyl phthalate	-	-	-	-	-	-
Di-n-butyl phthalate	650	760	340	400	490	60
3,3'-dichlorobenzidine	20,600	15,400	12,600	14,100	78,800	66,800
Diethyl phthalate	_	-	-	-	-	-
Ethyl benzene	170	550	390	390	71	120
Fluoranthene	680	520	160	400		-
Fluorene	-	280	210	200	210	180
Naphthalene	900	600	440	400	820	870
Phenol	640	220	330	300	-	210
Pyrene	980	-	-	-	_	-
Phenanthrene	1,180	990	540	740	1,200	1,100
Tetrachloroethylene	4	5	-	42	-	-
Toluene	460	1,900	1,870	1,900	180	120
Additional Organic Compo	unds					
Alkyl substituted	31,300	49,600	27,900	41,700	57,300	62,300
benzene	31,300	43,000	27,300	41,700	37,300	02,300
Alkyl substituted	_	_	_	_	_	_
phenol .	·					
Biphenyl	_	-	-	-	_	_
Benzothiazole	-	•	-	~	-	-
2-Chloroaniline	46,500	28,000	11,300	6,600	62,800	50,500
Cresol	2,500	970	1,140	1,480	820	880
2,2'-Dichloroazobenzene	550	850	390	410	1,700	1,700
Dimethyl phenanthrene	-	-	-	-	-	-,,,,,
Diethoxychlorobenzene	4,350	6,900	5,140	4,600	5,000	4,300
Dimethyl naphthalene	6,700	8,000	5,400	4,000	18,700	17,300
2,4'-Diamino-3,3'-di-	22,000	31,700	22,500	21,300	51,300	42,200
chlorobiphenyl	,	02,.00	,	,	,	,
Benzaldehyde	-	-	-	_	-	-
Dimethyl disulfide	-	-	-	_	-	-
Ethyl phenol	-	-	-	-	_	_
Methyl naphthalene	1,700	1,850	1,300	1,400	4,400	5,200
2-Methoxy-1,1'-biphenyl	-	_	-	_	_	-
, ,						

Concentration of Organic Chemicals In Cell II Sludge (µg/Kg) 1980 (Cont'd)

Additional Organic Compounds (Cont'd)	6/11	6/25	7/18	8/21	9/05	9/19
Methyl dibenzothiophene	-	-	-	-	-	-
Methyl phenanthrene	-	-	-	-	-	-
N,N-Dimethylaniline	_	-	-	. -	-	-
Substituted indene	-	_	-	_	-	-
Substituted phenanthrene- carboxaldehyde	-	-	-	-	-	-
Trimethyl naphthalene	6,600	6,000	5,000	4,200	11,900	13,600
Tributyl phosphate	630	1,180	850	900	1,200	1,200
Tetramethylbutyl phenol	-	-	-	-	-	-
Trimethyl phenanthrene	-	-	-	-	-	-
Tetramethyl phenanthrene	-	-	-	_	-	-
Vanillin	-	-	- .	-	-	120

Concentration of Organic Chemicals In Cell II Sludge (µg/Kg) 1981

Priority Pollutants	3/81	7/81	9/81
Acenaphthalene Butyl benzyl phthalate Benzo (a) anthracene Bis(ethylhexyl)phthalate Chrysene Chloroform 1,4-Dichlorobenzene 1,2-Dichlorobenzene Dimethyl phthalate Di-n-butyl phthalate 3,3'-Dichlorobenzidine Diethyl phthalate Ethyl benzene Fluoranthene Fluorene Naphthalene Phenol Pyrene Phenanthrene Toluene	76 1,300 85 11,000 270 - 98 180 630 200 171,000 - 200 120 760 95 480 500 85	- 310 80 1 95 420 150 320 12,000 710 10 130 120 280 320 260 610 23	280 3,300 81 72 200 - 110 5,500 - - 110 160 53 - 430 4
Additional Organic Compounds Alkyl substituted benzene Alkyl substituted phenols Biphenyl Benzothiazole 2-Chloroaniline Cresol 2,2'-Dichloroazobenzene Dimethyl phenanthrene Diethoxychlorobenzene Diethoxydichlorobenzene Dimethyl naphthalenes	28,000 - 430 - 21,000 900 6,600 4,600 2,400 - 6,700	25,000 20,000 - 400 6,600 530 300 9,300 2,800 - 8,300	33,000 - - 260 6,500 590 190 9,300 920 610 9,600
2,4'-diamino-3,3'- dichlorobiphenyl Benzaldehyde Dimethyl disulfide Ethyl phenol Methyl naphthalenes 2-Methoxy-1,1'-biphenyl Methyl dibenzothiophene Methyl phenanthrene	88,000 - 160 90 3,000 - - 3,300	26,000 - - 1,800 740 2,300 3,500	6,100 160 - 2,700

Concentration of Organic Chemicals In Cell II Sludge (µg/Kg) 1981 Continued

Additional Organic Compounds	3/81	7/81	9/81
N,N-Dimethylaniline Substituted indene Substituted phenanthrene-	480	280 -	450 -
carboxaldehyde Trimethyl naphthalenes Tributyl phosphate	2,450 7,100	4,500 10,200 470	5,100 7,900 930
4-(2,2,3,3-tetramethylbutyl)phenol Trimethyl phenanthrene	- -	2,700 3,300	- -
Tetramethyl phenanthrene Xylene	-	350 120	-

Concentration of Organic Chemicals In East Lagoon Sludge (µg/Kg) 1980

Priority Pollutants	<u>6/11</u>	<u>7/18</u>	8/13	8/29	9/19
Anthracene Bis(ethylhexyl)phthalate Butyl benzyl phthalate Benzo(a)anthracene Chlorobenzene Chrysene 1,2-Dichlorobenzene 3,3'-Dichlorobenzidine Di-n-butyl phthalate Dimethyl phthalate Ethyl benzene Fluoranthene Fluorene Naphthalene Phenol Pyrene Phenanthrene Toluene Tetrachloroethylene	1,900 38 15 100 1,850 - 65 - 160 170 - 270 440 6	- 600 180 21 - 230 190 - 64 - 35 - 100 19	1,370 52 - - - 130 - - 26 - 58	2,500 90 7,300 490 15 1,200	5,000 - - 630 - 5,900 - - 40 280 - - - -
Additional Organic Compounds					
Alkyl substituted benzenes Benzyl alcohol Benzaldehyde Cresol 2-Chloroaniline 2,2'-Dichloroazobenzene 2,4'-Diamino-3,3'-dichloro-	16,200 - 1,400 7,500 180 2,100	3,200 - 180 2,160 270 6,000	10,500 - - 110 1,280 67 560	38,500 - 170 19,800 3,300 80,700	16,800 - 260 120 7,540 740 16,000
biphenyl Diethoxychlorobenzene Dimethyl naphthalene Dimethyl trisulfide Methyl naphthalene N,N-Dimethylaniline Substituted phenanthrenes Substituted thiophenes Trimethyl naphthalene Vanillin Xylene	790 1,700 570 - - 1,800	640 680 - 130 - - - 700 -	150 3,700 - 90 - - 350 -	1,400 3,000 740 - - 3,900 150	300 1,000 - 290 160 - 1,600 130

Concentration of Organic Chemicals In East Lagoon Sludge (µg/Kg) 1980

Priority Pollutants	10/09	10/31	11/18
Anthracene Bis(ethylhexyl)phthalate Butyl benzyl phthalate	1,100	4,400	2,200
Benzo(a)anthracene	<u>-</u>	_	<u>-</u>
Chrysene	-	310	270
1,2-Dichlorobenzene	130	-	-
3,3'-Dichlorobenzidine	-	4,000 600	1,200
Di-n-butyl phthalate Ethyl benzene	18	4	-
Dimethyl phthalate	-	80	80
Fluoranthene	320	220	160
Fluorene	-10	-	- 20
Naphthalene Phenol	40 120	60 -	30
Pyrene	-	-	-
Phenanthrene	-	-	-
Toluene	4	3	
Tetrachlorobenzene	-	-	-
Additional Organic Compounds			
Alkyl substituted benzenes	25,200	17,600	12,900
Benzyl alcohol	-	-	-
Benzaldehyde	-	300	200
Cresol 2-Chloroaniline	610 6,100	5,700	4,800
2,2'-Dichloroazobenzene	530	940	620
2,4'-Diamino-3,3'-dichloro-	6,500	13,100	7,300
biphenyl	F70	460	270
Diethoxychlorobenzene Dimethyl naphthalene	570 2,400	460 820	370 500
Dimethyl trisulfide	£,700 +	-	-
Methyl naphthalene	740	560	420
N,N-Dimethylaniline	420	140	70
Substituted phenanthrenes	-	-	-
Substituted thiophenes Trimethyl naphthalene	5,200	1,200	1,000
Vanillin	J,200 +	1,200	±,000
Xylene	_		-

Concentration of Organic Chemicals In East Lagoon STudge (ug/Kg) 1981

Priority Pollutants	3/81	7/81	9/81
Bis(ethylhexyl)phthalate Butyl benzyl phthalate Benzo (a) anthracene Chrysene 1,2-Dichlorobenzene 3,3-Dichlorobenzidine Di-n-butyl phthalate Diethyl phthalate Fluoranthene Fluorene Naphthalene Phenol Pyrene Phenanthrene Toluene Trichlorobenzene	1,000 2,500 - 180 51 1,500 160 - 66 25 46 - 140 65 7	220 100 98 120 - 260 460 78 - 100	7,000 210 - 1,400 110 64 - 490
Additional Organic Compounds			
Alkyl substituted benzenes Benzyl alcohol Benzaldehyde Biphenyl Cresol Benzothiazole 2-Chloroaniline 2,2-Dichloroazobenzene 2,4'-Diamino-3,3'-	25,000 100 470 78 57 - 4,800 350	2,300 - - - - 290 110	71,000 - 350 - 560 390 9,500 880
dichlorobiphenyl Diethoxychlorobenzene Dimethyl naphthalenes Dimethyl trisulfide Methyl naphthalenes N,N-Dimethylaniline Substituted phenanthrenes Substituted thiophenes Trimethyl naphthalenes Xylene	23,000 120 1,000 410 510 140 1,600 360 1,200	49 - 170 - - - 230	- 3,500 - 2,800 490 - 7,500 140

Concentration of Organic Chemicals In West Lagoon Sludge (µg/Kg) 1980

Priority Pollutants	6/11	6/25	7/18	8/13	8/29
Anthracene Bis(ethylhexyl)phthalate Butyl benzyl phthalate Benzo(a)anthracene Chrysene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 3,3'-Dichlorobenzidine Di-n-butyl phthalate Diethyl phthalate Ethyl benzene Fluoranthene Fluorene Naphthalene Phenol Pyrene Phenanthrene Toluene Tetrachloroethylene	1,700 - 105 16 45 2,000 - 18 300 - 140 160 - 15 10	- 620 79 - - 630 - - 5 130 63 60 850 - 160 5	- 400 290 40 - - 260 210 30 22 60 350 40 760 - 80 3	1,940 40 70 - - - 140 30 30 - 90	13,400
Additional Organic Compounds Alkyl substituted benzenes Benzyl alcohol Benzaldehyde Cresol 2-Chloroaniline 2,2'-Dichloroazobenzene 2,4'-Diamino-3,3'-dichloro- biphenyl Diethoxychlorobenzene Dimethyl naphthalene Dimethyl trisulfide Methyl naphthalene N,N-Dimethylaniline Substituted phenanthrenes Substituted thiophenes Trimethyl naphthalene Xylene	22,700 - 220 600 5,700 410 3,400 390 2,640 - 490 72 - 2,560	25,400 - 1,400 630 7,120 590 1,180 - 280 - 1,720	3,100 - - 860 160 3,100 220 490 - 130 - - 460	33,800 - 150 2,500 630 3,800 110 500 - 90 - 550	11,700 210 70 1,100 350 6,700 60 550 - 630 140 - 840 660

Concentration of Organic Chemicals In West Lagoon Sludge (µg/Kg) 1980

Priority Pollutants	9/17	10/09	10/22	11/18
Anthracene	-	-	- *	- 11 700
Bis(ethylhexyl)phthalate Butyl benzyl phthalate	13,600	10,800	_	11,700
Benzo(a)anthracene	_	••	-	_
Chrysene	-	590	1,170	700
1,2-Dichlorobenzene	50	30	_	-
3,3'-Dichlorobenzidine	-	21,400	17,200	11,200
Di-n-butyl phthalate	-	-	-	-
Diethyl phthalate Ethyl benzene	_	- 5	_	_
Fluoroanthene	1,150	1,120	1,200	1,260
Fluorene	-	-	-,	-
Naphthalene	50	50	90	50
Phenol	-	-	-	-
Pyrene	-	-	-	200
Phenanthrene Toluene	_	320	350	200
Tetrachlorobenzene	_	-	-	-
Additional Organic Compounds	<u>.</u>			
Alkyl substituted benzenes Benzyl alcohol	37,000	50,200	49,000	17,000
Benzaldehyde	440	210	290	200
Cresol	380	300	_	-
2-Chloroaniline	5,100	5,700	5,050	2,500
2,2'-Dichloroazobenzene	1,240	1,100	2,400	440
2,4'-Diamino-3,3'-dichloro- biphenyl	27,800	34,900	93,500	52,000
Diethoxychlorobenzene	100	90	300	90
Dimethyl naphthalene	1,130	2,000	3,200	1,400
Dimethyl trisulfide	100	90	180	90
Methyl naphthalene	780	730	660	420
N,N-Dimethylaniline	450	220	-	140
Substituted phenanthrenes Substituted thiophenes	-	-	2,000	800
Trimethyl naphthalene	1,650	3,600	3,700	2,200
Vanillin	180	220	-	-
Xylene	-	-	-	-

^{*} Contaminated.

Concentration of Organic Chemicals In West Lagoon Sludge (µg/Kg) 1981

Priority Pollutants	3/81	7/81	9/81
Bis(ethylhexyl)phthalate 1,2-Dichlorobenzene 3,3-Dichlorobenzidine 1,2-Dichloroethane Chrysene Di-n-butyl phthalate 1,4-Dichlorobenzene Diethyl phthalate Dimethyl phthalate Ethyl benzene Fluoranthene Fluorene Naphthalene Phenol Phenanthrene Trichlorobenzene Toluene	1,300 41 6,500 - - 30 33 - 190 23 34 - 92 87 6	13,000 - 6,100 12 420 3 - 81 230 1,500 - 21	6,800 64 2,100 - 500 280 59 - - - 120 45 210 -
Additional Organic Compounds	·		
Alkyl substituted benzenes Benzaldehyde Benzothiazole 2-Chloroaniline Cresol	12,700 - - 3,500 89	91,000 120 1,600 3,900 1,300	34,000 290 720 6,200 420
2,4'-Diamino-3,3'- dichlorobiphenyl Diethoxychlorobenzene Dimethyl naphthalenes 2,2-Dichloroazobenzene Dimethyl trisulfide Dimethyl phenanthrene Methyl naphthalenes Methyl dibenzothiophene Methyl phenanthrene Substituted benzoic acid Substituted thiophene Tetramethylphenanthrene Trimethyl naphthalene Trimethyl phenanthrene N,N-Dimethyl aniline	27,000 90 - 240 - - - 250 340 - -	21,000 850 8,400 - 6,600 1,400 3,100 4,100 - 1,500 11,400 3,700	3,400 590 - 1,400 - - - - 5,300 2,300 240
Xylene	-	410	130

CORN SAMPLES

CORN: 10/80

Circle 15

Circle 4

Circle 29

Circle 39

Circle 50

Circle 54

No priority pollutants detected <0.01 mg/Kg

CORN: 11/81

Circle 11

Circle 18

Circle 48

Circle 50

No priority pollutants detected at <0.01 mg/Kg

APPENDIX B Quality Control

QUALITY CONTROL

A rigorous quality control program was undertaken to produce data of known precision and accuracy levels. The goal of the program was to assure validity of the monitoring data and to control the daily analytical process. Because of the variety of sample types studied in this project, it was necessary to verify the methodology for each category. Samples verified and corresponding categories are given in Table B-1.

TABLE B-1 Verification Categories

<u>Sample</u>	<u>Category</u>
West Lagoon Sludge	Sludge: East and West Lagoons, Cell II
Influent	Raw and partially treated sewage: Influent, Spillway
West Lagoon	Treated Sewage: East and West Lagoons, Outlet Lagoon
South Ditch	Discharge: Ø5, Drain Tiles, 34 Wells, South Ditch

Samples were spiked with priority pollutants to determine the precision and accuracy within a given matrix. In addition, surrogate standards were used to act as a measure of daily analytical quality control.

The quality control program employed was similar to that described by the EPA (14). For water samples, two-liter aliquots were used. Three replicates were spiked and analyzed at two concentration levels. In addition, background levels were determined as the average of three replicate analyses. Extraction and analytical procedures were identical to those described earlier. Standard precision and accuracy calculations were made for each level and sample type.

Results of the quality control samples are given in Appendix B according to category. Also included are check samples received from the Kerr Environmental Research Laboratory.

 $\frac{1980}{\text{South Ditch Volatile Fraction Quality Control (µg/l)}}$

High Level Spike

Compound	<u>Initial</u>	Spiked Amount	$\frac{\text{Recovered}}{\overline{\chi}}$	<u>S</u>	<u>%R</u>
Ethylbenzene	<1	13	13	.8	100
Chlorobenzene	<1	18	17	.9	94
Toluene	<1	10	9.8	.5	98
Perchloroethylene	<1	31	27	2	86
Tetrachloroethane	<1	33	27		83
Bromoform	<1	82	84	1 3	102
Trichloroethylene	<1	9.1	7.6	.8	83
1,1,2-Trichloroethane	<1	28	25	.9	90
Benzene	<1	18	18	.2	10
Cis-1,3-Dichloropropene	<1	26	25	.3	97
1,1,1-Trichloroethane	<1	32	32	. 4	100
Trans-1,3-Dichloropropene	<1	24	24	.2	100
1,2-Dichloropropane	<1	24	23	.3	97
1,2-Dichloroethane	5	22	26	.3	95
1,1-Dichloroethane	<1	24	23	.2	97
Acetone	<1	10	7.9	.8	79
Acrolein	<1	12	8.4	1.2	70
Acrylonitrile	<1	13	9.4	1.3	72
Isopropanol	<1	13	8.8	1.8	68
Trichlorofluoromethane	<1	33	27	. 4	83
1,1-Dichloroethene	<1	22	20	.2	91
Methylene chloride	<1	24	· 23	.2 .2	96
Chloroform	<1	28	26	. 4	94
Bromochloromethane	<1	39	37	2	95
2-Bromo-1-chloropropane	<1	30	28	1	93
1,4-Dichlorobutane	<1	23	21	1	91

1980 South Ditch Volatile Fraction Quality Control (μg/l)

Low Level Spike

Compound	<u>Initial</u>	Spiked Amount	Reco <u>v</u> ered	<u>_S</u>	<u>%R</u>
Ethylbenzene	< 1	1.3	1.2	1	92
Chlorobenzene	< 1	1.8	1.7	. 1	92
Toluene	< 1	1.0	.82	. 2	82
Perchloroethylene	< 1	3.1	2.5	.3	82
Tetrachloroethane	< 1	3.3	2.6	.2	80
Bromoform	< 1	8.2	5.1	.4	62
Trichloroethylene	< 1	0.90	.48	.3	53
1,1,2-Trichloroethane	< 1	2.8	2.2	.2	80
Benzene	< 1	1.8	1.7	.1	93
Cis-1,3-Dichloropropene	< 1	2.6	1.9	.2	72
1,1,1-Trichloroethane	< 1	3.2	2.4	.2	74
Trans-1,3-Dichloropropene	< 1	2.4	1.9	.1	78
1,2-Dichloropropane	< 1	2.4	2.1	.3	86
1,2-Dichloroethane	5	2.2	7.0	.3	96
1,1-Dichloroethane	< 1	2.4	2.3	.7	97
Trichlorofluoromethane	< 1	3.3	2.8	.1	84
1,1-Dichloroethene	< 1	2.2	1.9	. 1	81
Methylene chloride	< 1	2.4	2.4	.2	100
Chloroform	< 1	2.8	2.4	.2	85
Bromochloromethane	< 1	39	37	2	95
2-Bromo-1-chloropropane	< 1	30	30	1	100
1,4-Dichlorobutane	< 1	23	22	1	96

1980
SOUTH DITCH BASE NEUTRAL FRACTION QUALITY CONTROL (µg/1)

HIGH LEVEL SPIKE

• • • • • • • • • • • • • • • • • • • •		 	Recovered		•
Compound	<u>Initial</u>	Spiked Amount	X X	<u> </u>	%R
Bis(2-chloroethyl)ether	<1	35	33	5	94
1,3-Dichlorobenzene	< 1	39	29	3	74
1,4-Dichlorobenzene	< 1	28	27	5	96
1,2-Dichlorobenzene	< 1	13	9	2 5	70
N-Nitrosodi-n-propylamine	<]	51	44	5	86
Hexachloroethane	< 1	42	34	3	81
Nitrobenzene	< 1	46	46	3	100
Isophorone	<]	40	32	2	80
2-Chloroaniline	22	86	96	5	86
Bis(2-chloroethoxy)methane	< j	50	32	2	64
Trichlorobenzene	< j	46	34		74
Naphthalene	< 1	40	38	2 3	95
2-Chloronaphthalene	< 1	37	26	3	70
2,6-Dinitrotoluene	< 1	42	31	2	74
Dimethyl phthalate	< 1	42	36	1	86
Acenaphthylene	< 1	40	26	2	65
Acenaphthene	< 1	42	34]	81
2,4-Dinitrotoluene	€ 1	40	34	2	85
Diethyl phthlate	< 1	42	34	1	81
Fluorene	< 1	36	28	1	78
1,2-Diphenylhydrazine	< 1	40	. 31	2	78
4-Bromophenyl phenyl ether	< 1	42	31	3 2 2 3	74
Hexachlorobenzene	ا <	36	. 29	3	81
Anthracene	< 1	38	25	2	67
Phenathrene	< l	38	25	2	67
Di-n-butyl phthalate	< 1	44	37		84
Pyrene	< 1	40	25	1	63
Fluoranthene	~ 1	40	26]	66
Butyl benzyl phthalate	< 1	46	28	3 3 3	61
Dichlorobenzidine	< 1	63	33	3	52
Benzo(a)pyrene	<]	40	28	3	70

1980 SOUTH DITCH BASE-NEUTRAL FRACTION QUALITY CONTROL (μg/1)

LOW LEVEL SPIKE

Compound	Initial	Spiked Amount	Recovered X	S	<u>%R</u>
Bis(2-chloroethyl)ether	<1	3.5	2.7	, 3	78
1,3-Dichlorobenzene	<	3.9	2.7	. 3	69
1,4-Dichlorobenzene	<	2.8	2.0	. 2	70
l,2-Dichlorobenzene	\triangleleft	1.3	0.95	.2	73
N-Nitrosodi-n-propylamine	\triangleleft	5.1	1.8	. 4	35
Hexachloroethane	\triangleleft	4.6	2.4	. 4	53
Nitrobenzene	\triangleleft	4.2	2.5	.3	59
Isophorone	\triangleleft	4.0	2.6	. 4	66
2-Chloroaniline	22	8.6	28.6	.8	77
Bis(2-chloroethoxy)methane	\triangleleft	5.0	1.7	. 3	34
Trichlorobenzene	<1	4.6	1.6	. 2	35
Naphthalene	\triangleleft	4.0	2.4	. 3	61
2-Chloronaphthalene	\triangleleft	3.7	1.2	. 3	37
2,6-Dinitrotoluene	\triangleleft	4.2	1.7	.2	40
Dimethyl phthalate	\triangleleft	4.2	2.4	. 2	56
Acenaphthylene	\triangleleft	4.0	2.0	. 2	50
Acenaphthene	<	4.2	2.4	.]	58
2,4-Dinitrotoluene	₹	4.0	2.1	. 3	52
Diethyl phthlate	<1 .	4.2	3.7	. 4	87
Fluorene	< 1	3.6	1.9	.2	54
1,2-Diphenylhydrazine	\triangleleft	4.0	2.3	.2	57
4-Bromophenyl phenyl ether	\triangleleft	4.2	2.1	. 3	50
Hexachlorobenzene	∇ 1	3.8	2.9	. 3	77
Anthracene	V 1	3.8	. 2.2	. 4	60
Phenathrene	∇ 1	3.8	2.6	. 4	67
Di-n-butyl phthalate	∇ 1	4.4	2.9	. 5	65
Pyrene	∇ 1	4.0	2.2	. 3	55
Fluoranthene	9	4.0	2.4	. 2	59
Butyl benzyl phthalate	< ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	4.6	2.5	. 3	55
Dichlorobenzidine	ΔΔ	12.6	4.1	. 6	32
Benzo(a)pyrene	7	4.0	2.4	.3	61

1980 South Ditch Acid Fraction Quality Control (pg/1)

The second second second	High Level Spike
--------------------------	------------------

Compound	Initial	Spiked Amount	Reco <u>v</u> ered	<u>S</u>	<u>%R</u>
2-Chlorophenol Phenol 2,4-Dimethylphenol 2,4-Dichlorophenol 2,4,6-Trichlorophenol 4-Chloro-3-methylphenol Pentachlorophenol D Phenol	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	74 274 119 113 106 101 48 100	53 134 96 89 87 81 38 50	4 8 7 8 6 6	72 49 81 79 82 80 79 50
		Low	Level Spike		
2-Chlorophenol Phenol 2,4-Dimethylphenol 2,4-Dichlorophenol 2,4,6-Trichlorophenol 4-Chloro-3-methylphenol Pentachlorophenol D 10 Phenol	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	7.4 27 12 11 11 10 4.8	5.1 13 9.1 8.3 8.8 7.9 3.3	2 4 2 2 1 2 1 6	69 48 76 75 80 79 69

 $\frac{1980}{\text{West Lagoon Volatile Fraction Quality Control (<math>\mu g/l$)}

High Level Spike

Compound	Initial	Spiked Amount	Reco <u>v</u> ered	<u>\$</u>	%R
Ethylbenzene	<1	13	9.4	.6	72
Chlorobenzene	< 1	18	15	2	86
Toluene	<1	10	9.8	.5	98
Perchloroethylene	< 1	31	30	.8	98
Tetrachloroethane	<1	33	32	.3	97
Bromoform	<1	82	68	2	83
Trichloroethylene	<1	9.1	9.1	.3	100
1,1,2-Trichloroethane	<1	28	28	. 2	100
Benzene	<1	18	19	.3	106
Cis-1,3-Dichloropropene	<1	26	25	.2	97
1,1,1-Trichloroethane	< 1	32	28	.9	89
Trans-1,3-Dichloropropene	< 1	24	22	.5	93
1,2-Dichloropropane	< 1	24.	23	.3	98
1,2-Dichloroethane	25	22	46	.4	95
1,1-Dichloroethane	<1	24	24	.3	100
Acetone	<1	10	6	2	60
Acrolein	<1	12	8	1	67
Acrylonitrile ·	< 1	13	8	2 3	63
Isopropanol	< 1	13	8	3	63
Trichlorofluoromethane	<1	33	33	.4	100
1,1-Dichloroethene	<1	22	21	.3	98
Methylene chloride	< 1	24	25	.3	106
Chloroform	6	28	33	.2	97
Bromochloromethane	< 1	39	38	1.0	97
2-Bromo-1-chloropropane	<1	30	29	1.0	97
1,4-Dichlorobutane	<1	23	23	.5	100

West Lagoon Volatile Fraction Quality Control (ug/l)

Low Level Spike

Compound	Initial	Spiked Amount	Reco <u>v</u> ered X	S	 ℤR
Compound	11(10101	Spiked Amount			BK
Ethylbenzene	< 1	1.3	0.9	.1	69
Chlorobenzene	< 1	1.8	1.6	. 2	86
Toluene	< 1	1.0	.6	.1	60
Perchloroethylene	<1	3.1	3.0	.3	97
Tetrachloroethane	<1	3.3	3.2	.2	97
Bromoform	<1	8.2	4.2	.3	51
Trichloroethylene	<1	.90	0.60	.1	69
1,1,2-Trichloroethane	<1	2.8	2.2	.1	80
Benzene	<1	1.8	1.4	.2	75
Cis-1,3-Dichloropropene	<1	2.6	1.6	.2	61
1,1,1-Trichloroethane	<1	3.2	3.1	.3	97
Trans-1,3-Dichloropropene	<1	2.4	1.5	.2	63
1,2-Dichloropropane	<1	2.4	2.1	. 1	89
1,2-Dichloroethane	25	2.2	26.9	. 1	86
1,1-Dichloroethane	<1	2.4	2.2	.2	92
Trichlorofluoromethane	<1	3.3	2.9	.2	89
1,1-Dichloroethene	<1	2.2	1.7	.2	78
Methylene chloride	<1	2.4	2.3	.2	98
Chloroform	6	2.8	8.8	. 1	100
Bromochloromethane	<1	39	39	.51	100
2-Bromo-1-chloropropane	< 1	30	30	1.0	100
1,4-Dichlorobutane	< 1	23	23	.50	100

WEST LAGOON BASE-NEUTRAL QUALITY CONTROL (ug/l)
HIGH LEVEL SPIKE (ug/l)

Compound	<u>Initial</u>	Spiked Amount	Recovered	<u></u>	<u>%R</u>
Bis(2-chloroethyl)ether	<]	35	31	4	88
1,3-Dichlorobenzene	<]	39	26	3	67
1,4-Dichlorobenzene	<]	28	21	3	75
1,2-Dichlorobenzene	<]	13	8	3	62
N-Nitrosodi-n-propylamine	< 1	51	43	5	86
Hexachloroethane	< 1	46	31	5	68
Nitrobenzene	< 1	42	33	3 5 5 2	79
Isophorone	<]	40	36	7	91
2-Chloroaniline	3	86	84	6	93
Bis(2-chloroethoxy)methane	< 1	50	46	6	92
Trichlorobenzene	< 1	46	32	3	70
Naphthalene	< 1	40	38	6	95
2-Chloronaphthalene	< 1	37	30	5	82
2,6-Dinitrotoluene	< 1	42	36	4	85
Dimethyl phthalate	< 1	42	33	7	80
Acenaphthylene	<]	40	31	4	78
Acenaphthene	<]	42	34	3	81
2,4-Dinitrotoluene	<]	40	34	3 2	84
Diethyl phthlate	<]	42	32	4	77
Fluorene	<]	36	28	3	78
1,2-Diphenylhydrazine	<]	40	- 30	4	75
4-Bromophenyl phenyl ether	<]	42	25	3 3	60
Hexachlorobenzene	<]	38	. 31		81
Anthracene	< 1	38	30	4	79
Phenathrene	<]	38	29	2	75
Di-n-butyl phthalate	<]	44	32	3	73
Pyrene	<]	40	29	2 3 3 3	72
Fluoranthene	<]	40	28		70
Butyl benzyl phthalate	< 1	46	36	4	78
Dichlorobenzidine	< 1	63	32	7	51
Benzo(a)pyrene	<]	40	28	3	71
Chrysene	< 1	40	30	3	76

1980 WEST LAGOON BASE-NEUTRAL QUALITY CONTROL (µg/l) LOW LEVEL SPIKE

	•	•	Recovered		
Compound	<u>Initial</u>	Spiked Amount	<u> </u>	S	%R
Bis(2-chloroethyl)ether	<]	3.5	2.7	.3	76
1,3-Dichlorobenzene	<]	3.9	1.7	. 4	44
1,4-Dichlorobenzene	< 1	2.8	1.0	. 5	35
1,2-Dichlorobenzene	< 1	1.3	0.6	. 4	43
N-Nitrosodi-n-propylamine	< j	5.1	3.3	. 4	64
Hexachloroethane	< i	4.6	1.5	. 2	33
Nitrobenzene	< j	4.2	1.6	.2	38
Isophorone	< 1	4.0	3.4	.5	86
2-Chloroaniline	3	8.6	9.3	1.0	72
Bis(2-chloroethoxy)methane	< j	5.0	3.6	. 3	72
Trichlorobenzene	< 1	4.6	2.4	. 4	52
Naphthalene	<]	4.0	2.8	. 3	71
2-Chloronaphthalene	< j	3.7	1.2	. 4	33
2,6-Dinitrotoluene	<]	4.2	1.1	. 3	25
Dimethyl phthalate	< 1	4.2	1.7	. 3	41
Acenaphthylene	<]	4.0	1.4	.2	36
Acenaphthene	<]	4.2	1.8	.2	42
2,4-Dinitrotoluene	<]	4.0	0.6	.1	15
Diethyl phthlate	<]	4.2	2.4	.2	58
Fluorene	<]	3.6	1.6	. 2	45
1,2-Diphenylhydrazine	<]	4.0	2.3	. 3	58
4-Bromophenyl phenyl ether	<]	4.2	2.2	.3	53
Hexachlorobenzene	< 1	3.8	. 2.4	. 3	64
Anthracene	<]	3.8	3.1	. 3	82
Phenathrene	<]	3.8	2.6	. 3	70
Di-n-butyl phthalate	<]	4.4	3.3	. 4	76
Pyrene	<]	4.0	2.6	. 5	68
Fluoranthene	< 1	4.0	2.7	. 4	67
Butyl benzyl phthalate	<]	4.6	3.0	.6	66
Dichlorobenzidine	< 1	12.6	3.2	1.5	26
Benzo(a)pyrene	<]	4.0	2.0	. 2	50
Chrysene	<]	4.0	1.8	. 2	45

1980 West Lagoon Acid Fraction Quality Control (19/1)

High Level Spike

Compound	Initial	Spiked Amount	Reco <u>v</u> ered	<u>_S</u>	<u>%R</u>
2-Chlorophenol Phenol 2,4-Dimethylphenol 2,4-Dichlorophenol 2,4,6-Trichlorophenol 4-Chloro-3-methylphenol Pentachlorophenol D 10 Phenol	< 1 3 < 1 < 1 < 1 < 1 < 1 < 1	74 274 119 113 106 101 48 100	61 135 71 84 80 73 42 50	3 9 9 8 7 8 8	83 48 60 74 75 72 88 50
		Low	Level Spike		
2-Chlorophenol Phenol 2,4-Dimethylphenol 2,4-Dichlorophenol 2,4,6-Trichlorophenol 4-Chloro-3-methylphenol Pentachlorophenol Dic Phenol	<1 3 <1 <1 <1 <1 <1 <1	7.4 27 12 11 11 10 4.8	4.8 17 6 7.8 8.7 6.5 2.1	2 3 4 3 4 2 8	65 52 48 71 79 65 43

1980 Influent Volatile Fraction Quality Control (µg/l)

High Level Spike

Compound	Initial	Spiked Amount	$\frac{\text{Recovered}}{X}$	_\$_	<u>%R</u>
Ethylbenzene	< 1	13	11	1	88
Chlorobenzene	2	18	17	2	85
Toluene	550	10	Spike too	low	
Perchloroethylene	160	31	188	9	91
Tetrachloroethane	< 1	33	26 .	3	80
Bromoform	< 1	82	71	6	87
Trichloroethylene	9	9.1	175	2	93
1,1,2-Trichloroethane	< 1	28	25	1	90
Benzene	26	18	43	4	94
Cis-1,3-Dichloropropene	< 1	26	22	2	86
1,1,1-Trichloroethane	60	32	88	8	88
Trans-1,3-Dichloropropene	< 1	24	22	3	92
1,2-Dichloropropane	< 1	24	27	2	95
1,2-Dichloroethane	510	22	Spike too	low	
1,1-Dichloroethane	< 1	24	21	2	88
Acetone	< 1	10	6.2	2	62
Acrolein	< 1	12	8.3	2 3	69
Acrylonitrile	< 1	13	7.8	3	60
Isopropanol	< 1	13	7.5	4	58
Trichlorofluoromethane	< 1	33	26	3 3	79
1,1-Dichloroethene	<1	22	18	3	83
Methylene chloride	< 1	24	· 22	2	92
Chloroform	610	28	Spike too	low	
Bromochloromethane	<1	39	37	3	97
2-Bromo-1-chloropropane	<1	30	29	2	97
1,4-Dichlorobutane	<1	23	21	2	97

1980 Influent Volatile Fraction Quality Control (#g/l)

Low Level Spike

			Recovered		
Compound	<u>Initial</u>	Spiked Amount	<u>X</u>	<u>_S_</u>	%R
Ethylbenzene	< 1	1.3	1.0	.2	79
Chlorobenzene	2	1.8	3.5	.3	81
Toluene	550	1.0	Spike too		01
Perchloroethylene	160	3.1	Spike too		
Tetrachloroethane	< 1	3.3	2.6	.5	80
Bromoform	< 1	8.2	5.3	1	65
Trichloroethylene	9	.91		low	
1,1,2-Trichloroethane	< 1	2.8	2.3	.3	83
Benzene	26	1.8	Spike too	low.	
1,1,1-Trichloroethane	60	3.2	Spike too	low	
Trans-1,3-Dichloropropene	< 1	2.4	1.9	.4	80
1,2-Dichloropropane	< 1	2.4	2.0	.2	83
1,2-Dichloroethane	510	2.2	Spike too	low	
1,1-Dichloroethane	< 1	2.4	2.2	.3	90
Trichlorofluoromethane	< 1	3.3	2.7	.5	81
1,1-Dichloroethene	< 1	2.2	1.9	.2	86
Methylene chloride	< 1	2.4	1.9	.2	79
Chloroform	610	2.8	Spike too	low	
Bromochloromethane	< 1	39	38	3	98
2-Bromo-1-chloropropane	< 1	30	29	2	97
1,4-Dichlorobutane	< 1	23	22	2	97
Cis-1,3-Dichloropropene	< 1	2.6	. 2.2	.5	86

1980 INFLUENT BASE-NEUTRAL FRACTION QUALITY CONTROL (µg/1)

HIGH LEVEL SPIKE

•			•		
Compound	Initial	Spiked Amount	Recovered $\frac{\overline{X}}{X}$	S	%R
Bis(2-chloroethyl)ether	<]	35	21	3	60
1,3-Dichlorobenzene	< 1	39	12	2	32
l,4-Dichlorobenzene	<]	28	9	2	33
1,2-Dichlorobenzene	2	13	6	2 2 2 2 2 2	31
N-Nitrosodi-n-propylamine	<]	51	22	2	44
Hexachloroethane	<]	46	10	2	23
Nitrobenzene	< 1	42	12	2	28
Isophorone	< 1	40	20	2	50
2-Chloroaniline	121	86	163	8	49
Bis(2-chloroethoxy)methane	< 1	50	25	3	50
Trichlorobenzene	<]	46	18	3 3 2 2	39
Naphthalene	2	40	18	2	40
2-Chloronaphthalene	<]	37	18		48
2,6-Dinitrotoluene	<]	42	29	4	68
Dimethyl phthalate	<]	42	18	2	42
Acenaphthalene	<]	40	25	2	63
Acenaphthene	< 1	42	29	8	68
2,4-Dinitrotoluene	< 1	40	24	4	60
Diethyl phthlate	< 1	42	21	2	50
Fluorene	<]	36	17	2	47
1,2-Diphenylhydrazine	< 1	40	1.9	2	48
4-Bromophenyl phenyl ether	< } < }	42	25	5	59
Hexachlorobenzene Anthracene	<]	36	. 17	2 2 2 5 3 2 2 3 3 3 3 3	46
Phenathrene	<]	38	23	2	60
Di-n-butyl phthalate	< 1	38	23 26	2	61
Pyrene	<)	44 40	26 27	ა 2	59 67
Fluoranthene	<]	40	28	3	71
Butyl benzyl phthalate	< 1	46	25	3	55
Dichlorobenzidine	< 1	63	12	4	20
Benzo(a)pyrene	<	40	17	4	43
Chrysene	< }	40	16	3	40
on young	•	70	10	3	70

1980 INFLUENT BASE-NEUTRAL FRACTION QUALITY CONTROL (µg/1) LOW LEVEL SPIKE

1980
Influent Acid Fraction Quality Control (μg/l)

High Level Spike

Compound	<u>Initial</u>	Spiked Amount	Reco <u>v</u> ered	S	<u>%R</u>
2-Chlorophenol Phenol 2,4-Dimethylphenol 2,4-Dichlorophenol 2,4,6-Trichlorophenol 4-Chloro-3-methylphenol Pentachlorophenol D 10 Phenol	8 17 < 1 1 2 < 1 < 1 < 1 < 1	74 274 119 113 106 101 48 100	56 157 69 88 95 71 33 53	3 8 8 10 9 8 8 7	65 51 58 77 88 70 68 53
		<u>1</u>	ow Level Spike	<u>=</u>	
2-Chlorophenol Phenol 2,4-Dimethylphenol 2,4-Dichlorophenol 2,4,6-Trichlorophenol 4-Chloro-3-methylphenol Pentachlorophenol D10 Phenol	8 17 < 1 1 2 < 1 < 1 < 1	7.4 27 12 11 11 10 4.8	12 30 6.5 9.0 11 6.8 2.8	2 5 2 2 3 2 1 7	60 48 54 73 81 68 59 52

<u>1980</u> West Lagoon Sludge Volatile Fraction Quality Control (μg/kg)

High Level Spike

Compound	<u>Initial</u>	Spiked Amount	$\frac{\text{Reco}\underline{v}\text{ered}}{\overline{\chi}}$	_\$_	<u>%R</u>
Ethylbenzene	11	13	20	3	69
Chlorobenzene	2	18	16	4	81
Toluene	40	10	45	15	51
Perchloroethylene	3	31	29	3	84
Tetrachloroethane	< 1	33	29	3	88
Bromoform	< 1	82	9.8	6	12
Trichloroethylene	2	9.1	9.9		88
1,1,2-Trichloroethane	< 1	28	26	1 2 2 3	94
Benzene	2	18	19	2	95
Cis-1,3-Dichloropropene	< 1	26	15	3	59
1,1,1-Trichloroethane	< 1	32	31	6	98
Trans-1,3-Dichloropropene	< 1	24	11	2	47
1,2-Dichloropropane	< 1	24	21	2 2 3	88
1,2-Dichloroethane	8	22	26		80
1,1-Dichloroethane	< 1	24	20	4	85
Acetone	< 1	10	6	4	50
Acrolein	< 1	12	8,2	5	68
Acrylonitrile	< 1	13	9.0	4	69
Isopropanol	< 1	13	11	6	83
Trichlorofluoromethane	< 1	33	27	10	81
1,1-Dichloroethene	< 1	22	18	5	82
Methylene chloride	2	24	. 22	2 6 3	85
Chloroform	< 1	2 8	20	6	71
Bromochloromethane	< 1	39	36	3	92
2-Bromo-1-chloropropane	< 1	30	26	4	87
1,4-Dichlorobutane	< 1	23	20	3	87

1980
West Lagoon Sludge Volatile Fraction Quality Control (ug/kg)

Low Level Spike

Compound	Initial	Spiked Amount	Reco <u>v</u> ered	<u>S</u>	<u>%R</u>
Ethylbenzene	11	1.3	Spike too	low	
Chlorobenzene	2	1.8	3.1	.3	62
Toluene	40	1.0	Spike too	low	
Perchloroethylene	3	3.1	4.3	.5	43
Tetrachloroethane	< 1	3.3	1.2	.3	40
Bromoform	< 1	8.2	.49	.2	6
Trichloroethylene	2	.90	2.5	.5	55
1,1,2-Trichloroethane	< 1	2.8	1.8	.5	65
Benzene	2	1.8	3.3	.8	74
Cis-1,3-Dichloropropene	< 1	2.6	.85	.3	34
1,1,1-Trichloroethane	< 1	3.2	1.8	.2	56
Trans-1,3-Dichloropropene	< 1	2.4	.74	.3	31
1,2-Dichloropropane	< 1	2.4	1.6	.3	65
1,2-Dichloroethane	8	2.2	9.3	.4	60
1,1-Dichloroethane	< 1	2.4	1.5	.6	64
Trichlorofluoromethane	< 1	2.8	39	.2	14
l,1-Dichloroethene	< 1	1.9	1.0	.5	53
Methylene chloride	2	2.4	3.3	.6	55
Chloroform	< 1	2.4	1.8	.5	74
Bromochloromethane	< 1	39	.36	4	92
2-Bromo-1-chloropropane	< 1	30	25	3 3	86
1,4-Dichlorobutane	< 1	23	· 20	3	87

1980 WEST LAGOON SLUDGE BASE-NEUTRAL FRACTION QUALITY CONTROL (mg/kg)

HIGH LEVEL SPIKE - SOXHLET METHOD

Compound	<u>Initial</u>	Spiked Amount	Recovered X	S	%R
Bis(2-chloroethyl)ether	< .05	7.0	4.5	.6	65
1,3-Dichlorobenzene	< .05	7.8	2.1	.1	27
1,4-Dichlorobenzene	<.05	5.6	2.0	. 2	36
1,2-Dichlorobenzene	. 05	2.6	1.1	.2	41
N-Nitrosodi-n-propylamine	<.05	10.2	7.2	1.3	71
Hexachloroethane	<.05	7.2	1.6	.4	17
Nitrobenzene	< .05	8.4	6.3	.8	75
Isophorone	< .05	8.0	6.6	2	83
2-Chloroaniline	3.6	17.2	16.3	3 3	74
Bis(2-chloroethoxy)methane	<.05	10.0	7.1		71
Trichlorobenzene	< .05	9.2	8.2	. 9	89
Naphthalene	.71	8.0	6.9	1	77
2-Chloronaphthalene	<.05	7.4	6.4	. 5	87
2,6-Dinitrotoluene	<.05	8.4	7.8	. 9	93
Dimethyl phthalate	<.05	8.4	5.4	.8	64
Acenaphthylene	<.05	8.0	5.1	. 7	64
Acenaphthene	<.05	8.4	5.3	. 6	63
2,4-Dinitrotoluene					
Diethyl phthlate	<.05	8.4	7.6	. 6	91
Fluorene	<.05	7.2	5.2	.8	72
1,2-Diphenylhydrazine	<.05	8.0	4.8	. 5	60
4-Bromophenyl phenyl ether	< .05	8.4	5.6	.5	67
Hexachlorobenzene	< . 05	7.2	. 3.6	. 4	50
Anthracene	. 34	7.6	5.7	. 6	71
Phenathrene	< .05	7.6	5.4	.8	71
Di-n-butyl phthalate	.13	8.8	6.6	2	75
Pyrene	< .05	8.0	6.7	1	84
Fluoranthene	< .05	8.0	6.6	.8	83
Butyl benzyl phthalate	<.05	9.2	6.6	1.9	72
Dichlorobenzidine	3.4	12.6	7.8	1	35
Benzo(a)pyrene	< .05	8.0	3.8	.8	48
Chrysene	<.05	8.0	3.9	.6	49

<u>I980</u>
WEST LAGOON SLUDGE BASE-NEUTRAL FRACTION QUALITY CONTROL (mg/kg)

LOW LEVEL SPIKE - SOXHLET METHOD

Compound	<u>Initial</u>	Spiked Amount	$\frac{\text{Recovered}}{X}$	S	₹R
Bis(2-chloroethyl)ether 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene N-Nitrosodi-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Chloroaniline Bis(2-chloroethoxy)methane Trichlorobenzene Naphthalene 2-Chloronaphthalene 2,6-Dinitrotoluene Dimethyl phthalate Acenaphthene	V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05	.70 .78 .56 .26 1.0 .92 .84 .80 1.7 1.0 .92 .80 .74 .84 .84	.45 .29 .27 .17 .62 .20 .48 .56 4.6 .71 .52 1.2 .42 .43 .52 .47	. 40 . 13 . 09 . 09 . 26 . 13 . 24 . 31 2 . 8 . 38 . 20 . 46 . 25 . 28 . 16 . 20 . 12	64 37 48 46 62 22 58 70 61 71 57 62 59 69
2,4-Dinitrotoluene Diethyl phthlate Fluorene 1,2-Diphenylhydrazine 4-Bromophenyl phenyl ether Hexachlorobenzene Anthracene Phenathrene Di-n-butyl phthalate Pyrene Fluoranthene Butyl benzyl phthalate Dichlorobenzidine Benzo(a)pyrene	 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 V .05 <	.84 .72 .80 .84 .72 .76 .76 .88 .80 .80	.39 .47 .24 .39 .19 .86 .56 .67 .42 .54 .32 Spike t	.18	47 65 30 47 26 68 74 61 52 68 35
Chrysene	< .05	.80	. 37	.12	46

1980 West Lagoon Sludge Quality Control (mg/kg)

High Level Spike

1.7

1.6

.75

7:0

1.4 82

1.1 80

.35 75

3 70

Compound	<u>Initial</u>	Spiked Amount	Reco <u>v</u> ered	<u>_S_</u>	<u>%R</u>
2-Chlorophenol Phenol 2,4-Dimethylphenol 2,4-Dichlorophenol 2,4,6-Trichlorophenol 4-Chloro-3-methylphenol Pentachlorophenol D10 Phenol	<.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05	15 55 24 23 21 20 9.6 10	13 38 20 21 18 17 7.8 7.1	3 6 4 3 5 5 4 3	84 69 84 90 85 86 80 71
		Lov	v Level Spike		
2-Chlorophenol Phenol 2,4-Dimethylphenol 2,4-Dichlorophenol	<.05 <.05 <.05 <.05	1.5 5.5 2.4 2.3	1.2 3.4 1.9	.8 1.0 1.1 1.1	80 65 78 81

2.1

2.0

1.0

10

< .05

<.05

<.05

2,4,6-Trichlorophenol

Pentachlorophenol

D₁₀ Phenol

4-Chloro-3-methylphenol <.05

INFLUENT QUALITY CONTROL BASE-NEUTRAL FRACTION (µg/1) 1981

Compound	Initial	Spiked Amount	Reco <u>v</u> ered X	S	<u>%R</u>
Bis(2-chloroethyl)ether 1,3-Dichlorobenzene 1,4-Dichlorobenzene N-Nitrosodi-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Chloroaniline Bis(2-chloroethoxy)methane Trichlorobenzene Naphthalene 2-Chloronaphthalene 2-Chloronaphthalene 2-Chloronaphthalene 2-Chloronaphthalene 2,6-Dinitrotoluene Dimethyl phthalate Acenaphthene 2,4-Dinitrotoluene Diethyl phthlate Fluorene 1,2-Diphenylhydrazine 4-Bromophenyl phenyl ether Hexachlorobenzene Anthracene Phenathrene Di-n-butyl phthalate Pyrene Fluoranthene Butyl benzyl phthalate Dichlorobenzidine Benzo(a)pyrene Chrysene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	43.7 49.4 34.5 57.5 57.7 53.4 61.7 57.9 46.0 53.2 50.1 249.6 47.8 48.5 50.0 51.2 49.6 44.8 48.5 50.0 51.7 51.6 44.8 48.5 50.0 50.0 50.0 50.0 50.0 50.0 50.0 5	42.0 42.0 29.0 54.1 48.9 43.9 45.4 180 56.1 50.4 45.1 49.4 65.1 47.0 37.0 42.1 44.2 37.9 42.7 46.9 52.6 43.7 44.2 37.9 42.7 43.4 45.1 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0	2.7 2.7 1.4 2.5 2.0 2.3 2.1 7.2 6.8 3.3 2.7 2.0 4 0.6 1.7 1.0 1.0 6.4 3.1	96 85 86 85 85 91 87 86 91 87 88 91 88 88 88 88 88 88 88 88 88 88 88 88 88

INFLUENT VOLATILE FRACTION QUALITY CONTROL (µg/l)

Compound	Initial	Spiked Amount	Recovered \overline{X}	S	%R
Ethylbenzene	1	17.3	15.9	.7	92
Chlorobenzene Toluene	1,150	22.1 17.3	21.0 1,165	.9 .9	95 85
Perchloroethylene	250	32.5	280	1.6	92
Tetrachloroethane	1	31.9	30.0	.6	94
Bromo form]	57.8	51.4	2.4	89 99
Trichloroethylene 1,1,2-Trichloroethane	25 1	29.3 27.9	54.0 27.6	.8 2.7	99
Benzene	150	17.6	164.6	.2	83
Cis-1,3-Dichloropropene	1	23.6	22.9	1.3	97
1,1,1-Trichloroethane Trans-1,3-Dichloropropene	100	26.8 24.1	125.5 22.6	.2 .4	95 94
1,2-Dichloropropane	i	23.1	22.6	.5	98
1,2-Dichloroethane	100	24.7	21.5	1.2	87
1,1-Dichloroethane Trichlorofluoromethane	1 7	23.5 26.2	22.3 24.6	.4 .4	95 94
1,1-Dichloroethene	i	24.4	24.2	.4	99
Chloroform	1,000	29.7	1,028	.6	94
Trans 1,2-dichloroethylene	20	25.1	45.3	.7	101

INFLUENT QUALITY CONTROL ACID FRACTION (µg/1) 1981

Compound	Initial	Spiked Amount	Reco <u>v</u> ered	S	%R
2-Chlorophenol	1	37	33.7	1.9	91
Pheno1 .	8	137	112	2.7	76
2,4-Dimethylphenol	1	59.3	36.8	2.9	62
2,4-Dichlorophenol	1	56.6	51.5	2.1	91
2,4,6-Trichlorophenol	.]	53.1	51.0	0.8	96
4-Chloro-3-methylphenol	1	50.7	43.6	3.6	86
Pentachlorophenol	1	24.7	24.2	0.7	98
2-Fluorophenol	1	25	16.8	0.4	67

SOUTH DITCH QUALITY CONTROL BASE-NEUTRAL FRACTION (µg/1) 1981

Compound.	Initial	Spiked Amount	Reco <u>v</u> ered	S	<u>%R</u>
Bis(2-chloroethyl)ether	< 1	43.7	39.8	4.2	91
1,3-Dichlorobenzene	< 1	49.4	36.6	3.7	74
1,4-Dichlorobenzene	< 1	34.5	33.1	5.6	96
1,2-Dichlorobenzene	< 1	12.2	9.4	3.1	77
N-Nitrosodi-n-propylamine	< 1	62.9	54.1	4.7	86
Hexachloroethane	< 1	57.5	47.7	4.2	82
Nitrobenzene	< 1	51.7	50.7	3.7	98
Isophorone	< 1	53.4	42.7	3.6	80
2-Chloroaniline	5	54.7	60.0	5.2	95
Bis(2-chloroethoxy)methane	< 1	61.7	41.9	3.1	68
Trichlorobenzene	< 1	57 . 9	45.2	2.7	78
Naphthalene	< 1	49.2	45.8	4.4	93
2-Chloronaphthalene	< 1	46.0	34.9	4.3	76
2,6-Dinitrotoluene	< 1	52.0	39.5	3.1	76
Dimethyl phthalate	< 1	53.2	45.8	2.0	86
Acenaphthalene	< 1	50.1	40.1	2.2	80
Acenaphthene	< 1	51.2	46.1	3.6	90
2,4-Dinitrotoluene	< 1	49.6	42.2	2.1	85
Diethyl phthalate	< 1	51.6	41.8	2.5	81
Fluorene	< 1	44.0	34.3	2.7	78
1,2-Diphenylhydrazine	< 1	47.8	40.6	3.1	85
4-Bromophenyl phenyl ether	< 1	42.0	41.1	4.6	79
Hexachlorobenzene	< 1	46.8	37.9	3.8	81
Anthracene	< 1	48.5	35.9	3.7	74
Phenathrene	< 1	48.6	33.0	2.3	68
Di-n-butyl phthalate	< 1	55.9	48.1	3.4	86
Pyrene	< 1	50.2	32.6	3.6	65
Fluoranthene	< 1	48.0	31.7	2.2	66
Butyl benzyl phthalate	< 1	57.0	34.8	3.4	61
Dichlorobenzidine	< 1	52.6	42.1	4.9	80
Benzo (a) pyrene	< 1	49.7	34.8	3.6	70
Chrysene	< 1	48.5	36.4	3.4	· 75

SOUTH DITCH VOLATILE FRACTION QUALITY CONTROL (49/1) 1981

Compound	Initial	Spiked Amount	Reco <u>v</u> ered X	S	<u></u>
competition	11110101	ranourro			7011
Ethyl benzene	< 1	17.3	17.1	.9	93
Chlorobenzene	< 1 .	22.1	20.8	.8	- 94
Toluene	11	17.3	17.1	.5	99
Perchloroethylene	< 1	32.5	29.3	1	90
Tetrachloroethane	< 1	31.9	28.1	2	88
Bromoform	< 1	57.8	57.2	2	99
Trichloroethylene	< 1	29.3	25.2	.9	86
1,1,2-Trichloroethane	< 1	27.9	25.9	.8	93
Benzene	< 1	17.6	19.6	.4	100
Cis-1,3-Dichloropropene	< 1	23.6	22.7	.4	96
1,1,1-Trichloroethane	< 1	26.8	27.6	.3	103
Trans-1,3-Dichloropropene	< 1	24.1	23.1	.3 .3	96
1,2-Dichloropropane	< 1	23.1	22.4	.3	97
1,2-Dichloroethane	5	24.7	24.7	.4	100
1,1-Dichloroethane	< 1	23.5	22.8	.2	97
Trichlorofluoromethane	< 1	26.2	19.9	.6	76
1,1-Dichloroethene	< 1	24.4	16.6	1.4	68
Methylene chloride	< 1	26.5	24.4	.3	92
Chloroform	< 1	29.7	27.9	.4	94
Trans-1,2-Dichloroethylene	< 1	25.1	23.1	.8	92

SOUTH DITCH QUALITY CONTROL ACID FRACTION (µg/1) 1981

Compound	Initial	Spiked Amount	Reco <u>v</u> ered X	S	%R
2-Chlorophenol	< 1	37	33.3	2.2	90
Pheno1	< 1	137	106.9	3.1	78
2,4-Dimethylphenol	< 1	59.3	37.9	3.4	64
2,4-Dichlorophenol	< 1	56.6	50.1	2.0	90
2,4,6-Trichlorophenol	< 1	53.1	50.4	1.0	95
1-Chloro-3-methylphenol	< 1	50.7	44.6	3.3	88
Pentachlorophenol	< 1	24.7	23.5	1.0	95
2-Fluorophenol	< 1	25	17.5	0.6	70

WEST LAGOON QUALITY CONTROL BASE-NEUTRAL FRACTION (µg/1) 1981

and the second of the second o		Spiked	Recovered		
Compound	Initial	Amount	<u>X</u>	S	%R
ria(2 ahlamaathul)athan	< 1	43.7	42.0	3.1	96
Bis(2-chloroethyl)ether	< 1	49.4	43.5	4.2	96 88
	< 1	34.5	30.7	2.0	89
l,4-Dichlorobenzene	< 1	12.2	10.6		87
l,2-Dichlorobenzene				1.0	
N-Nitrosodi-n-propylamine	< 1	62.9	62.9	4.5	100
dexachloroethane	< 1	57.5	48.9	3.5	85
litrobenzene	< 1	51.7	53.3	2.4	103
Sophorone	< 1	53.4	41.1	2.8	77
2-Chloroaniline	120	54.7	173	8.0	97
Bis(2-chloroethoxy)methane	< 1	61.7	60.5	3.6	98
Trichlorobenzene	< 1	57.9	61.0	4.7	88
laphthalene	< 1	49.2	46.7	3.7	95
2-Chloronaphthalene	< 1	46.0	42.3	4.7	92
2,6-Dinitrotoluene	< 1	52.0	42.1	3.9	81
Dimethyl phthalate	< 1	53.2	48.4	0.8	91
Acenaphthalene	< 1	50.1	46.1	0.9	92
\cenaphthene	< 1	51.2	44.5	2.3	87
2,4-Dinitrotoluene	< 1	49.6	43.6	3.2	88
Diethyl phthalate	< 1	51.6	49.5	1.7	96
luorene	< 1	44.0	38.3	1.6	87
1,2-Diphenylhydrazine	< 1	47.8	42.5	0.8	89
l-Bromophenyl phenyl ether	< 1	52.0	44.7	2.3	86
lexachlorobenzene	< 1	46.8	42.1	0.5	90
Anthracene	< 1 .	48.5	45.6	3.0	94
Phenanthrene	< 1	48.6	44.7	1.3	92
Di-n-butyl phthalate	< 1	55.9	50.3	2.9	90
Pyrene	< 1	50.2	43.7	3.5	87
luoranthene	< 1	48.0	39.4	2.4	82
Butyl benzyl phthalate	< 1	57.0	45.0	4.6	79
Dichlorobenzidine	< 1	52.6	41.6	8.9	79
Benzo (a) pyrene	< 1	49.7	43.2	5.8	87
Chrysene	< 1	48.5	39.8	4.6	82

WEST LAGOON VOLATILE FRACTION QUALITY CONTROL (mg/1) 1981

Compound	Initial	Spiked Amount	Recovered	S	<u>%R</u>
Ethyl benzene Chlorobenzene Toluene Perchloroethylene Tetrachloroethane Bromoform Trichloroethylene 1,1,2-Trichloroethane Benzene Cis-1,3-Dichloropropene 1,1,1-Trichloroethane	Initial < 1 < 1 11 10 < 1 < 1 3 < 1 2 < 1 5	Amount 17.3 22.1 17.3 32.5 31.9 57.8 29.3 27.9 17.6 23.6 26.8	15.2 18.8 26.9 35.0 33.5 59.5 28.8 27.3 17.5 23.6 26.7	.9 .7 .5 2.9 .7 3.5 1.8 1.6 .3 .4	88 . 85 . 92 . 77 . 105 . 103 . 88 . 98 . 88 . 98 .
Trans-1,3-Dichloropropene 1,2-Dichloropropane 1,2-Dichloroethane 1,1-Dichloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene chloride Chloroform Trans-1,2-Dichloroethylene	< 1 < 1 46 < 1 < 1 < 1 < 1 < 1 < 1 < 1 55 < 1	24.1 23.1 24.7 23.5 26.2 24.4 26.5 29.7 25.1	23.4 22.9 71.7 26.3 25.9 24.6 21.5 77.3 26.6	.6 .7 1.0 .3 2.1 1.2 .4 .9	97 99 104 112 99 101 81 75 102

WEST LAGOON QUALITY CONTROL ACID FRACTION (µg/1) 1981

Compound	Initial	Spiked Amount	Reco <u>v</u> ered X	S	%R
2-Chlorophenol	< 1	37	34.8	1.5	94
Phenol	4	137	78.0	5.2	54
2,4-Dimethylphenol	< 1	59.3	40.3	.6	68
2,4-Dichlorophenol	< 1	56.6	54.9	1.1	97
2,4,6-Trichlorophenol	< 1	53.1	54.2	2.7	102
-Chloro-3-methylphenol	< 1	50.7	47.7	3.4	94
Pentachlorophenol	< 1	24.7	23.5	1.9	95
2-Fluorophenol	< 1	25	17.5	1.2	70

Results of Kerr Laboratory Check Samples

PCB Concentration, µg/l

PCB Ident.	Sample No.	Reported Value	True Value
1254	J	0.86	0.96
1016	2	0.62	0.65
1254	3	0.66	0.58
1016	3	0.30	0.26

Volatile Organics, µg/l

Parameter	Reported Value	True Value
Cnloroform #1	9.1	9.13
#2 1,2 Dichloroethane #1	61	68.46 1.39
#2	27	27.21
Dibromochloromethane #1 #2	2.3 15	2.74 17.15
Bromodichloromethane #1	1.6	1.19
#2 Bromoform #1	15 3.5	11.90 2.85
#2	11	14.24
Carbon Tetrachloride #1 #2	2.9 11	· 1.68 12.57
1,1,1 Trichloroethane #1 #2	<1 13	11 10
Trichloroethylene #1	<1	11.19
#2	21	18.97
Perchloroethylene #1 #2	<1 13	8.76

APPENDIX C Sludge Distribution Map for 1980

EAST LAGOON

Sample No.	Angle of Degrees "F" Structure	Distance in Yards	Depth of Sludge
1	155	200	4 "
2	135	200	4 "
3	115	200	6 "
4	105	300	3 "
5	125	300	5 "
6	135	300	8 "
7	145	300	6 "
8	165	300	3 "
9	155	400	3 "
10	135	400	7 "
11	115	400	3 "
12	105	500	No Sample
13	125	500	2 "
14	135	500	5 "
15	145	500	3 "
16	165	500	4 "
*Extra Samples			
*1	135	550	3 "
*2	150	450	1½-2 "

WEST LAGOON

Sample No.	Angle of Degrees "F" Structure	Distance in Yards	Depth of Sludge
1	245	200	3 "
2	225	200	2½"
3	205	200	1211
4	195	300	1211
5	215	300	12"
6	225	300	1 "
7	235	300	0 "
8	255	300	3 "
9	245	400	1 "
10	225	400	0 "
11	205	400	0 "
12	195	500	0 "
13	215	500	*0 "
14	225	500	*0 "
15	235	500	*0 "
16	255	500	*0 "

APPENDIX D

ANALYTICAL PROCEDURES

Gas Chromatography-Mass Spectrometry

Water samples were analyzed according to EPA protocol (4&5) using combined gas chromatography-mass spectrometry and gas chromatography.

Table D-1 represents the volatile fraction as described in the EPA list of priority pollutants. Additional compounds have been added to this list along with the detection limits of this laboratory. Volatile fraction compounds were analyzed by the purge-trap technique using a Tekmar LSC-2 Liquid Sample Concentrator coupled to a Finnigan 4021 GC/MS system. A 5-ml sample was purged for 11 minutes with a helium flow of 30 ml/min. The effluent was trapped on a Tenax-Silica gel column which was held at ambient temperature. After the purge cycle was completed, the trap was flash-heated to 180°C with the GC carrier gas routed through it to the analytical column. Instrumental conditions were as follows:

Column: 8 ft stainless steel, 1% SP-1000

on Carbopack B (60/80 mesh)

Carrier: Helium, 20 ml/min.

200°C Injector:

3 min. hold at ambient, then rapidly heated to 50°C for 3 min. and programmed to 200°C at $8^{\circ}/\text{min}$. Program:

Glass-jet, 250°C Separator:

250°C Transfer Line:

Filament: .3 ma

Electron Energy: 70 ev

VOLATILE FRACTION

Compound	Water Detection Limit (mg/l)	Sludge, Soil, & Corn Detection Limit (mg/l
Chloromethane	.01	.05
Bromomethane	.01	.05
Vinyl chloride	.01	.05
Chloroethane	.01	.05
Methylene chloride	.001	.01
Trifluorochloromethane	.001	.01
1,1-Dichloroethylene	.001	.01
1,1-Dichloroethane	.001	.01
Trans-1,2-dichloroethylene	.001	.01
Chloroform	.001	.01
1,2-Dichloroethane	.001	.01
1,1,1-Trichloroethane	.001	.01
Carbon tetrachloride	.005	.01
Bromodichloromethane	.001	.01
1,3-Dichloropropane	.001	.01
Trichloroethylene	.001	.01
Bis-1,2-dichloropropane	.001	.01
Trans-1,2-dichloropropane	.001	.01
1,1,2-Trichloroethane	.001	.01
Benzene	.001	.01
2-Chloroethyl vinyl ether	.01	.05
Bromoform	.01	.05
1,1,2,2-Tetrachloroethane	.001	.01
Perchloroethylene	.001	.01
Toluene	.001	.01
Chlorobenzene	.001	.01
Ethyl benzene	.001	.01
Acrolein	.01	.1
Acrylonitrile	.01	.1
Styrene*	.01	.1
Chloroprene*	.001	.01
Dibromochloromethane	.001	.01

Scan:

Quantitation was based on internal standards, using bromochloromethane, 2-bromo-1-chloropropane, and 1,4-dichlorobutane as representative of early, middle, and late eluting compounds. A mixed volatile priority pollutant standard was analyzed daily to determine response factors and overall system performance.

Semi-volatile compounds as given on the EPA priority pollutant list are detailed in Tables D-2 - D-4. Additional compounds have again been added to this list along with the detection limits of this laboratory. Semi-volatile compounds were extracted from water samples using a two-step procedure. A 2-liter sample was adjusted to pH 12 with 6N NaOH and serially extracted with 150-, 50-, and 50-ml portions of dichloromethane. The solvent layer was dried with sodium sulfate and concentrated in a Kuderna-Danish evaporator. This was used for the analysis of the base-neutral fraction as listed in Table 5. The aqueous phase was then made acidic (ph<1) with 6N ${\rm H_2SO_4}$ and extracted in the same manner. The extract was dried and concentrated as before. This extract was analyzed for the acid fraction compounds listed in Table 6.

A 2-ml portion of the base-neutral was removed for pesticide analysis. Compounds analyzed for in this fraction included those given in Table 7. The dichloromethane was exchanged for hexane by adding it to 200 mls of the solvent and concentrating it in a Kuderna-Danish. The concentrate was then fractionated on a Florisil column using 6%, 15%, and 50% ethyl ether in petroleum ether elutates. Each eluent was concentrated as above. Instrumental conditions for the analysis of base-neutral compounds were as follows:

TABLE D-2 BASE-NEUTRAL FRACTION

Compound	Water Detection Limit (mg/l)	Sludge, Soil, & Corn Detection Limit (mg/l)
Dichlorobenzene (3 isomers)	.001	.05
Hexachloroethane \	.001	.05
Pentachloroethane	.001	.05
Hexachlorobutadiene	.001	.05
1,2,4-Trichlorobenzene	.001	.05
Naphthalene	.001	.05
Hexachlorocyclopentadiene	.001	.05
Nitrobenzene	.001	.05
2-Chloronaphthalene	.001	.05
Acenaphthene	.001	.05
Isophorone	.001	.05
Fluorene	.001	.05
2,4-Dinitrotoluene	.01	.05
1,2-Diphenylhydrazine	.001	.05
2,6-Dinitrotoluene	.01	.08
N-Nitrosodiphenylamine	.005	.08
Hexachlorobenzene	.001	.05
4-Bromophenyl phenyl ether	.001	.05
4-Chlorophenyl phenyl ether	.001	.05
Anthracene	.001	.05
Phenanthrene	.001	.05
Dimethyl phthalate	.001	.05
Bis(2-chloroethyl)ether	.001	.05
Di-n-butyl phthalate	.001	.05
Diethyl phthalate	.001	.05
Butyl benzyl phthalate	.001	.05
Benzidine	.01	. 10
Pyrene	.001	.05
Fluoranthene	.001	.05
Chrysene	.001	.05
Bis(ethylhexyl)phthalate	.001	.05
Benzo(a)anthracene	.001	.05
Benzo(k)fluoranthene	.001	.05
Benzo(a)pyrene	.005	.08
Indeno(1,2,3-cd)pyrene	.01	.10
Dibenzo(a,h)anthracene	.01	.10
Benzo(g,h,i)perylene	.01	.10
3,3'-Dichlorobenzidine	.001	.05
Tetrachlorodibenzo-p-dioxin	.01	.10
N-Nitrosopropylamine	.001	.05
Pentachloronitrobenzene*	.001	.05
		(Continued)

TABLE D-2 (Continued)

Compound	Water Detection Limit (mg/l)	Sludge, Soil, & Corn Detection Limit (mg/l
Aniline* Chloroanilines*	.001	.05 .05
Acenaphthalene	.001	.05
Bis(2-chloroisopropyl)ether	.001	.05
Bis(2-chloroethoxy)methane	.001	.05
* Not present on EPA's list	of priority pollutants	
	TABLE D-3 ACID FRACTION	
Compound	Water Detection Limit (mg/l)	Sludge, Soil, & Corn Detection Limit (mg/l
2-Chlorophenol	.001	.05
Phenol 2,4-Dichlorophenol	.001 .001	.05 .05
2-Nitrophenol	.01	.1
4-Chloro-3-methylphenol	.001	.05
2,4,6-Trichlorophenol	.001	.05
2,4-Dimethylphenol	.001	.05
2,4-Dinitrophenol	.01 .01	.5 · .5
2-Mathyl-4 6-Dinitrophanol	•01	• 0
2-Methyl-4,6-Dinitrophenol 4-Nitrophenol	.01	.1
2-Methyl-4,6-Dinitrophenol 4-Nitrophenol Pentachlorophenol	.01 .01	.1

TABLE D-4
PESTICIDES AND PCB FRACTION

Compound	Water Detection Limit (µg/1)	Sludge, Soil, & Corn Detection Limit (µg/l)
Mirex	0.1	1
Methoxychlor	0.5	5
Endosulfan	0.1	
	0.1	1
∂ BHC	0.1	1
∠3 BHC	0.1	1
Aldrin	0.1	1
Heptachlor	0.1	1
Heptachlor epoxide	0.1	1
Endosulfan sulfate	0.1	1
Endrin	0.1	1
Chlordane	1.0	10
Toxaphene	1.0	10
Dieldrin	0.1	1
DDT and Analogs	0.1	1
Aroclor 1016	1.0	10
Aroclor 1221	1.0	10
Aroclor 1232	1.0	10
Aroclor 1242	1.0	10
Aroclor 1248	1.0	10
Aroclor 1254	1.0	10
Aroclor 1260	1.0	10

Column: 30m Fused Silica, SE-30

Carrier: Helium, 1 ml/min.

 50° for 5 min., then to 270° @ 8° /min. Program:

250°C Injector:

270°C Transfer Line:

Injection:

Filament: .3 ma

70 ev Electron Energy:

Scan: 33-505 amu: .95 sec. up;

.05 sec. down

Splitless

Quantitation was based on internal standardization with deuterated anthracene $(D_{10}A)$. A mixed priority pollutant standard was analyzed daily to determine response factors and overall system performance. The standard also contained 20 ng of decafluorotriphenylphosphine (DFTPP) and 40 ng of benzidine. The GC/MS system had to meet required calibration and performance criteria (6) before samples were processed. Acid compounds were analyzed under the following conditions:

Column: 1% SP-1240DA, 6 ft glass

Carrier: Helium, 20 ml/min.

 80° for 2 min., then to 200° @ $12^{\circ}/\text{min}$. Program:

200°C Injector:

270°C Transfer Lines:

Filament: .3 ma

Electron Energy: 70 ev Scan: 33-300 amu: 1.95 sec. up; .05 sec. down

Quantitation was based on internal standardization with $D_{10}A$. A mixed standard was analyzed daily to determine response factors. Performance criteria for DFTPP and pentachlorophenol were checked daily before samples were analyzed. Pesticides were analyzed by gas chromatography using electron capture (ECD) and Hall Electrolytic Conductivity (HECD) Detectors. Pesticides were confirmed on polar and nonpolar columns using the two-detector system. Instrumental conditions were as follows:

	System 1	System 2
Column:	3% OV-1, glass	3% SP2250, glass
Temperature:	150-250 ⁰ @ 8 ⁰ /min.	220 ^o C Isothermal
Final Hold:	15 min.	
Injector:	200 ⁰	200°
Detector:	HECD	Ni ⁶³ , 350°C
Carrier:	He, 20 ml/min.	N ₂ , 25 ml/min.
Reactor:	910 ^o C	
Solvent:	N-propanol, .5 ml/min.	
Reaction Gas:	H ₂ , 20 ml/min.	

All samples for GC/MS analysis were searched for three selected ions maximizing at a given retention time as described in the protocol (4&5).

Peaks not corresponding to priority pollutant standard were subjected to library searches for identification. If the search revealed a good spectral match (>90% fit), the peak was quantitated using the response of a similar compound or a 1:1 ratio with the internal standard. Surrogate standard

recovery was monitored for each sample as a measure of quality control.

A Soxhlet extraction was used for sludge and soil analysis. A 50-gram sample of wet solid was allowed to air dry for 24 hours (7). The material was then extracted in a Soxhlet extractor with a 50/50 mixture of acetone-hexane for 18 hours. The extract was then concentrated in Kuderna-Danish evaporator and the concentrate extracted three times with 1.0 N NaOH. The hexane layer was saved as the base-neutral extract. The NaOH layer was then made acidic to pH 3 with 1.0 N HCL and extracted three times with dichloromethane. Both solvent layers were concentrated as before and analyzed under the same instrumental conditions as water samples. Volatile analysis of sludge samples was performed by slurrying 8 grams of material in 32 ml of blank water and adding 5 ml of slurry to the purge and trap apparatus.

Analytical conditions were identical to water samples.

Corn samples were ground in a high-speed blender and the resulting material was Soxhlet-extracted under the same conditions as the sludge and soil samples. Base-neutral and acid separations were also identical. No volatile analysis was performed on the corn samples.

Additional Testing Methods

Analysis of 1,2-dichlorethane for the lagoon seepage study was performed using Method 601 (8). Analysis was conducted using a Tekmar LSC-3 sample concentrator coupled to a Tracor 560 gas chromatograph with a Hall 700A detector. A 5-ml sample was purged for 11 minutes with a helium flow of 30 ml/min. The effluent was trapped on a Tenax-Silica gel column which was held at ambient temperature. After the purge cycle was complete, the trap was

flash-heated to 180° with the GC carrier gas routed through it to the analytical column. Instrumental conditions were as follows:

Column:

8 ft stainless steel, 1% SP-1000 on Carbopack B

(60/80 mesh)

Carrier:

Helium, 20 ml/min.

Program:

 3 min. hold at ambient, then rapidly heated to $50^{\circ}\mathrm{C}$ for 3 min. and programmed to 200°C at 8°/min.

Reaction gas:

H₂, 20 ml/min.

Solvent:

1-propanol, 0.5 ml/min.

Reactor

850⁰C

Quantitation was based on internal standardization with bromochloromethane. Three standards were analyzed daily to determine linearity.

Analysis of 2-chloroaniline, 3,3'-dichlorobenzidine, and 2,4'-diamino-3,3'dichlorobiphenyl in the lagoon seepage wells was performed using Method 605 (9). The technique was modified by operating the electrode potential at 0.9 volts to facilitate detection of 2-chloroaniline. This compound is not oxidized at the recommended 0.8 volts.

A 2-ml aliquot of the methylene chloride base-neutral extract was exchanged for methanol by adding it to 200 ml MeOH and concentrating the solvent in a Kuderna-Danish evaporator. The concentrate was reduced to 3 ml and then diluted to 6 ml with HPLC grade water. The sample was then stored at 4° C for analysis.

Analysis was performed by high pressure liquid chromatography (HPLC) using

a Spectra Physics SP8700 solvent delivery system connected to a BAS LC-3 electrochemical detector. Instrumental conditions were as follows:

Mobile Phase:

50% acetonitrile, 50% 0.1 N acetate buffer at pH 4.7

Column:

Lichrosorb RP-2, 5 micron

Injection:

100 ul, loop

Electrode:

Glassy carbon

Potential:

0.9 volts

Flow:

1.7 ml/min.

The instrument was calibrated daily by duplicate standard injections at three concentration levels. Samples that contained peaks with matching retention times were quantitated in the linear range of the standard.

Air Samples

Air samples were collected and analyzed according to standard NIOSH procedures (10). Samples were collected at the down wind wall of Aeration Cell I, approximately 5 feet from water level. A three hour sample was taken, using a large size (200/400 mg) charcoal tube hooked to a Bendix Personal Sampling Pump calibrated at 100 ml/min. At the end of the sampling interval, the tubes were capped and stored at 4° C prior to desorption and analysis.

Samples were desorbed by breaking the glass tube and transferring the two charcoal sections into separate, 5 ml, teflon-capped vials. Three mls of carbon disulfide was added to each vial. The sealed container was placed in an ultrasonic water bath for 30 minutes. After desorption, the samples were analyzed by gas chromatography under the following conditions:

Instrument:

Varian 2100

Injector:

200°C

299

Column:

20 ft, Stainless Steel, 10% SP-1000 on 80/100 mesh Supelcoport

 $100^{\rm O}{\rm C}$ for 6 min., then to $140^{\rm O}{\rm C}$ @ $10^{\rm O}/{\rm min}$. Program:

FID, 300°C Detector:

Heljum, 30 ml/min. Carrier:

Sample concentration was calculated by the analysis of desorbed standards.