

Phosphorus Removal with Pickle Liquor in an Activated Sludge Plant

ENVIRONMENTAL PROTECTION AGENCY RESEARCH AND MONITORING

WATER POLLUTION CONTROL RESEARCH SERIES

The Water Pollution Control Research Series describes the results and progress in the control and abatement of pollution in our Nation's waters. They provide a central source of information on the research, development, and demonstration activities in the Environmental Protection Agency, through inhouse research and grants and contracts with Federal, State, and local agencies, research institutions, and industrial organizations.

Inquiries pertaining to Water Pollution Control Research Reports should be directed to the Head, Publications Branch, Research Information Division, Research and Monitoring, Environmental Protection Agency, Washington, D. C. 20460.

PHOSPHORUS REMOVAL WITH PICKLE LIQUOR IN AN ACTIVATED SLUDGE PLANT

by

Sewerage Commission of the City of Milwaukee Milwaukee, Wisconsin 53201

for the

ENVIRONMENTAL PROTECTION AGENCY

Project #11010 FLQ

March, 1971

EPA Review Notice

This report has been reviewed by the Water Quality Office, EPA, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

ABSTRACT

The Milwaukee Sewerage Commission's Jones Island Waste Water Treatment Plant consists of a mutual primary treatment facility followed by two separate activated sludge plants. To enhance phosphorus removal in the 115 MGD East Plant, spent hot sulfuric acid pickle liquor (ferrous sulfate) was added for a one year test period. The 85 MGD West Plant was operated as a control.

The major objective of the iron addition was to maintain an East Plant effluent total phosphorus concentration of 0.50 mg/l P. The East Plant effluent total phosphorus concentration during the 1970 project period from January 12 to December 31, 1970 averaged 0.70 mg/l P representing 91.3% removal. The East Plant effluent total soluble phosphorus concentration averaged 0.30 mg/l P or 90.7% removal. Modification and automation of the iron addition which was completed in December 1970 will further reduce East Plant soluble phosphorus residuals.

Comparison of the efficiencies of the West and East Plants in removing BOD, COD and suspended solids as well as microscopic examination of the mixed liquors indicates that the addition of the unneutralized pickle liquor did not adversely affect purification.

Waste pickle liquor can be and is being utilized at the Milwaukee Jones Island Plant to enhance phosphorus removal. The principal problem experienced in maintenance of low effluent total phosphorus concentrations was the control of effluent suspended solids containing 2.61% P.

This report was submitted in fulfillment of Project Number 11010 FLQ, under the partial sponsorship of the Water Quality Office, Environmental Protection Agency.

CONTENTS

Section		Page
	Abstract	iii
	Contents	iv
	Figures	v i
	Tables	viii
I	Conclusions	1
II	Recommendations	3
III	Introduction	5
IV	Objectives	7
V	Sewerage Commission of the City of Milwaukee Jones Island Plant	9
VI	Jones Island Plant Operation	13
VII	Iron Addition Equipment and Operation	17
VIII	Sampling and Analytical Techniques	23
IX	Presentation and Discussion of Data	27
	A. Screened Sewage and Effluent Characteristics	27
	B. Mixed Liquor and Return Sludge Characteristics	3 5
	C. Miscellaneous Tests	45
	1. Pickle Liquor Free Acid	45
	 Alkalinities on Sewage, Effluents and Mixed Liquors 	45
	3. Soluble Sulfates on Sewage and Effluents	45
	4. Phosphorus Uptake	46
	5. Phosphorus Release	47

	D. Rate of Iron Addition	52
	E. Mixed Liquor Biota	52
	F. Effects of Iron Addition on the Plant Physical Facilities	54
	G. Effects of Iron Addition on the Ferric Chloride Demand	56
X	Acknowledgement	59
Хl	References	61
XII	Nomenclature and Glossary	63
XIII	Appendices	65

FIGURES

Figure No.	<u>Title</u>	Page
1	Jones Island Waste Water Treatment Plants	11
2	Automatic Pickle Liquor Addition Equipment	20
3.	Transferring Pickle Liquor into Storage Tanks	21
4	Monthly Sewage BOD Variation	30
5	Monthly Sewage Suspended Solids Variation	31
6	Monthly Sewage Total Phosphorus Variation	32
7	Daily BOD Variation	37
8	Daily Phosphorus Variation	38
9	1970 Phosphorus Variation	39
10	Daily Iron Variation	40
11	1970 Solids Production per BOD Removed	42
12	Solids Production per BOD Removed	43
13	SOP Release from Mixed Liquor	48
14	SOP Release from Mixed Liquor	49
15	SOP Release from Mixed Liquor	50
16	Soluble Iron Release from Mixed Liquor	51
17	SOP Release from Mixed Liquor	53
18	Actinomycetaceae, Genus Nocardia	68
19	Actinomycetaceae, Genus Nocardia	69
20	Technicon Autoanalyzer	73

21	Sewage SOP Versus Time	13 ¹
22	Sludge SOP Versus Time	135
23	Mixed Liquor SOP Versus Time	136
24	SOP Versus Time	137
25	pH Versus Time	138

TABLES

Table	<u>Title</u>	Page
1	Yearly Average Screened Sewage Characteristics	27
2	Monthly Average Screened Sewage and Effluent Characteristics	28
3	Phosphorus Concentrations for Different Periods in 1970	34
14	Monthly Average Mixed Liquor and Return Sludge Characteristics	36
5	Soluble Ortho-Phosphate Uptake	47
6	Microscopic Identification of Sedimentation Basin Algae	55
7	Monthly Average Ferric Chloride Use Requirements for Sludge Conditioning	57

SECTION I

CONCLUSIONS

- 1. Waste pickle liquor (ferrous sulfate) as an iron source was successfully added to precipitate phosphorus in the 115 MGD East Plant at the Milwaukee Sewerage Commission's Jones Island Activated Sludge Waste Water Treatment Plant. An 85 MGD West Plant receiving the same screened raw sewage was operated as a control.
- 2. During the grant period from January 12 to December 31, 1970 the East Plant effluent daily total phosphorus concentration averaged 0.70 mg/l P and 55.1% of the time (195 days out of 354 days) the concentration was below the 0.50 mg/l P objective. During certain months the concentration was high because mixed liquor suspended solids were discharged into the effluent.
- 3. Based on a 1970 average screened sewage total phosphorus concentration of 8.2 mg/l P, the East Plant with iron addition removed 91.3% (0.70 mg/l P effluent residual) while the control West Plant removed 83.1% (1.4 mg/l P effluent residual).
- 4. Based on a 1970 average screened sewage total soluble phosphorus concentration of 3.1 mg/l P, the East Plant removed 90.7% (0.30 mg/l P effluent residual) while the West Plant removed 67.5% (1.1 mg/l P effluent residual).
- 5. An average of 9.4 mg/l iron was added to the East Plant mixed liquor (13,060 gallons/day at 0.71 pounds of iron per gallon) to effect the phosphorus removal. No optimum iron dose was determined.
- 6. The pickle liquor addition increased the return sludge phosphorus concentration from 2.29% in the West Plant to 2.61% as P in the East Plant, and increased the iron content from 1.86% in the West Plant to 5.08% as Fe in the East Plant.
- 7. Comparison of the efficiencies of the West and East Plants in removing BOD, COD and suspended solids as well as microscopic examination of the mixed liquors indicated that the addition of unneutralized pickle liquor did not adversely affect purification.
- 8. The pickle liquor (ferrous sulfate) addition increased the East Plant effluent soluble sulfate concentration by about 18% (123 to 145 mg/l SO₄) on the samples collected and decreased the alkalinity by 21% (213 to 169 mg/l as CaCO₃). The alkalinity of the East Plant mixed liquor was slightly less than the West Plant and the yearly average mixed liquor pH values were 7.0 and

- 7.1 respectively for the East and West Plants. The pickle liquor free acid which ranged from 2.1 to 5.8% $\rm H_2SO_4$ for the A. O. Smith Corporation pickle liquor and from 6.6 to 9.3% $\rm H_2SO_4$ for the U. S. Steel Corporation pickle liquor did not have any apparent effect on the plant operation.
- 9. The pickle liquor caused no problems with the plant physical facilities.

SECTION II

RECOMMENDATIONS

The results of this one year study have shown that it is not only feasible but practical to add waste sulfuric pickling liquor as a source of iron for phosphorus precipitation and removal at the Milwaukee Sewerage Commission's Jones Island Activated Sludge Plant. Since iron was added only to the 115 MGD East Plant, the next phase for demonstration and experimental purposes would be to add the pickle liquor to the 85 MGD West Plant.

This 1970 study indicated that pickle liquor addition did not adversely affect purification and was effective in maintaining low East Plant effluent phosphorus residuals. Addition of iron to the West Plant would increase phosphorus removal and subject the waste sludge dewatering facilities to a 100% iron addition. With the entire 200 MGD Jones Island Waste Water Treatment Plant receiving iron, the West Plant sludge characteristics will change as it did in the East Plant and should produce a sludge with a different ferric chloride demand. A study such as this would prove valuable if the waste water characteristics remain relatively the same. Since the present State of Wisconsin phosphorus removal requirement of 85% was obtained in 1970, the addition of iron to the entire plant is unnecessary except for experimental purposes.

Another consideration is to continue adding pickle liquor only to the East Plant. The iron probably affects other chemical removals in addition to the phosphorus. The 1970 project could be expanded to investigate the removal of the other chemicals of interest in water pollution and waste water treatment. Meters could be installed to accurately measure sludge production making it possible to determine the difference between the East Plant and the control West Plant using a mass balance. Also optimum iron requirements for phosphorus removal could be determined especially with the type of equipment presently installed and operating.

SECTION III

INTRODUCTION

In 1967 the Sewerage Commission of the City of Milwaukee initiated a three year research program to evaluate the phosphorus removal in the Jones Island Activated Sludge Plant. This research program, funded in part by the Water Quality Office, Environmental Protection Agency, included studying methods to enhance phosphorus removal. The theories of biological phosphate removal as stated by Levin and Shapiro (1), Vacker et al.(2) Borchardt and Azad (3) and Wells (4) along with the chemical precipitation theories contended by Menar and Jenkins (5) were reviewed and attempts were made to maximize biological precipitation of phosphorus in the activated sludge plants. The 200 MGD Jones Island Plant consisting of the 85 MGD West Plant and the 115 MGD East Plant operated in parallel receiving a common screened sewage was ideal for plant wide variation of operating parameters to effect phosphorus removal.

In 1968 the Sewerage Commission of the City of Milwaukee and the Water Pollution Control Corporation of Milwaukee, conducted a plant scale study to enhance phosphorus removal by chemical precipitation using aluminum and iron salts at a small activated sludge plant (40-70,000 gallons per day) located in a contract area of the Metropolitan Sewerage District. This work, at a plant receiving only domestic wastes from a small subdivision, expanded the pilot plant work done by Barth and Ettinger (6). Following successful phosphorus removal with both sodium aluminate and alum, iron in the form of ferrous sulfate was added. The A.O. Smith Corporation, who joined the study at this point, supplied the iron in the form of a neutralized waste pickle liquor and also furnished laboratory services. The conclusions of the May 1968 to January 1969 study indicated that the aluminum or iron addition, to remove phosphorus, was an effective and economical method to enhance phosphorus removal.

Concurrent research being conducted at the Sewerage Commission's Jones Island plant to relate operating parameters to phosphorus removal indicated that 60 to 90% total phosphorus removal could be expected but control of plant operations to consistently remove 85% of the phosphorus as required by the State of Wisconsin Department of Natural Resources could not be accomplished. Supplementary cationic precipitation of phosphorus in conjunction with the activated sludge process was therefore investigated. Iron was chosen as the cation to be used because of the availability of pickle liquor from the A. O. Smith Corporation, the cooperative attitude of the company, the success experienced at the small activated sludge plant study and the relative costs of the chemicals.

In September 1968, Mr. George Hubbell (7) reported on his federal grant activities to remove phosphorus from Detroit's waste water. He indicated the phosphorus removal was achieved through chemical precipitation using iron in a pilot plant. In May 1969 representatives of the Milwaukee Sewerage Commission went to Detroit to observe the operation and discuss the project with Dr. Albert M. Shannon, Chief of Water and Sewage Treatment. This information, combined with the previous Sewerage Commission work, indicated that iron addition to a portion of the Jones Island plant was the next logical step.

When a decline in phosphorus removal occurred in June of 1969 as a result of the Milwaukee Brewery strike it was decided to add neutralized pickle liquor, from the A.O. Smith Corporation, to one East Plant aeration tank to observe the effects upon phosphorus precipitation and on the mixed liquor biota. This test indicated that the iron effectively reduced the effluent phosphorus concentration with no noticeable ill effects on the treatment process or equipment. An addition rate of 15 mg/l of iron to the mixed liquor was found to maximize phosphorus removal. Neutralization of the pickle liquor free acid (2-5%) was not necessary.

After the plant returned to normal operation following the five week brewery strike (June 9 to July 15), unneutralized waste pickle liquor was added to the entire 115 MGD East Plant from November 3 to November 14, 1969. The pickle liquor was trucked to the Jones Island plant by the A.O. Smith Corporation and about 20,000 gallons of the liquor was added to the mixed liquor aeration tank feed channel each day. The plant scale test confirmed the single tank studies. At this point, the Sewerage Commission of the City of Milwaukee applied for a federal demonstration grant to assist in covering the cost of a one year plant scale study to add pickle liquor to enhance phosphorus removal. The A.O. Smith Corporation agreed to construct and maintain pickle liquor storage and addition facilities and to deliver the waste pickle liquor to the Jones Island plant.

SECTION IV

OBJECTIVES

The objectives of the pickle liquor iron addition to the 115 MGD East Plant included:

- A. Evaluate the effectiveness of continuous iron addition to maintain an effluent total phosphorus concentration of 0.50 mg/l P or less.
- B. Compare the efficiency of the West and East Plants in removing phosphorus, BOD, COD and suspended solids.
- C. Determine the optimum iron requirements to maximize phosphorus removal.
- D. Determine the effects of iron addition on the mixed liquor biota and its settling characteristics.
- E. Determine the effects of iron addition on the plant physical facilities.
- F. Determine the effect of iron addition on the waste sludge conditioning ferric chloride requirements.

SEWERAGE COMMISSION OF THE CITY OF MILWAUKEE

JONES ISLAND PLANT (8, 9)

The Jones Island activated sludge waste water treatment plant is designed to treat 200 million gallons of sewage daily. The plant consists of the original 85 MGD West Plant and a 115 MGD East Plant addition operated in parallel and receiving the same raw screened sewage. The treatment plant has a connected population of about 1,000,000 people. The service area includes about 17,000 acres of a combined sewer system and about 83,000 acres having a separate sanitary sewer system.

The primary treatment facilities consist of conventional coarse screening (mechanically cleaned bar screens, 1" between bars) to remove hair, fleshings, garbage, rags, wood etc. Following coarse screening, the waste water is directed to the grit chambers consisting of eight 8 x 8 x 90 foot long compartments to reduce the flow velocity to one foot per second. At this reduced flow rate the grit consisting of sand, gravel, coal, ashes and some organic solids, is deposited on the bottom.

Following this treatment, the waste water is directed to rotary drum fine screens (3/32 inch slots - 2 inches long) to remove troublesome solids before the waste water is divided between the West and East conventional activated sludge plants for treatment.

The West Plant has a ridge and furrow-type aeration plate arrangement in the 24 aeration tanks. The tank arrangement allows the mixed liquor to travel through 472 feet of aeration tank (22 feet wide, 15 feet deep) prior to flowing into one of the 11 - 98 foot diameter sedimentation tanks. The East Plant has twenty aeration tanks where the mixed liquor travels through 740 feet of tank length (22 feet wide and 15 feet deep). These tanks have a longitudinal plate arrangement (10, 11). This plant has ten sedimentation tanks each consisting of two adjoining 84 foot diameter tanks. In both plants the return sludge volume added to the screened sewage is about 25% of the sewage volume but occasionally, the return sludge volume has been increased to 35%.

The aeration tanks in both plants are designed to aerate the mixed liquor (screened sewage plus return sludge) for an average period of six hours varying from four to eight hours over minimum and maximum flow rates. The aerated mixed liquor is then directed to the final sedimentation tanks for an average of a two

hour detention time (the surface settling rate for West and East Plants are respectively 900 and 870 gpd / sq ft at design flow) where the settled sludge is drawn from the bottom of the base and the effluent is discharged over a series of weirs into Lake Michigan.

The mixed liquor solids that are wasted from both the West and East Plants are directed to one of six gravity thickeners located in the West Plant. The thickened waste sludge is conditioned with ferric chloride, filtered on vacuum filters, dried in rotary dryers and sold as a fertilizer called Milorganite. This is the only way sludge can be removed from the plant. During 1970 a total of 71,500 tons (dry basis) of solids were removed in the dewatering plant. The physical layout of the Jones Island Plants is shown in Figure 1.

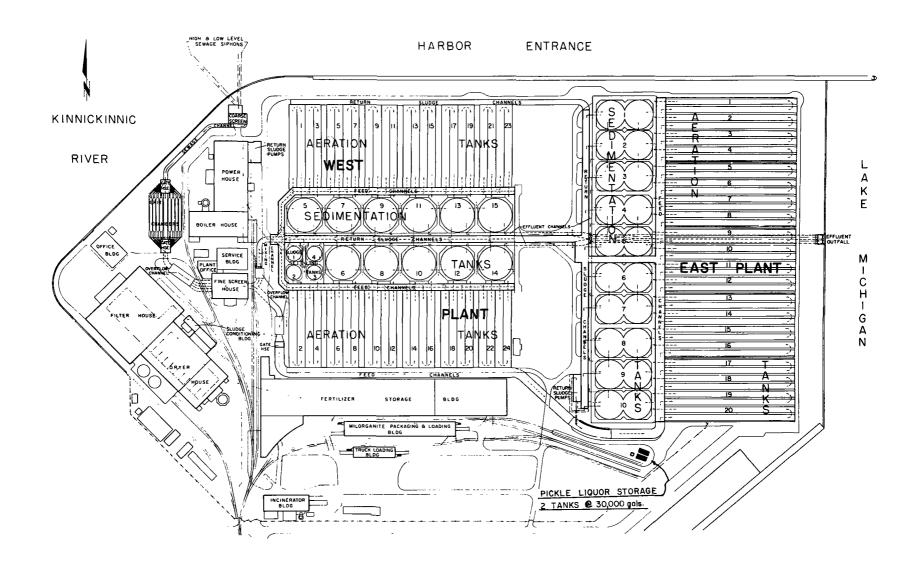


Figure I

Jones Island Waste Water Treatment Plant

SECTION VI

JONES ISLAND PLANT OPERATION

The Milwaukee Metropolitan area, serviced by the Jones Island Waste Water Treatment Plant, contains a variety of industries and the liquid wastes vary from low strength metal-working wastes to the concentrated organic wastes contributed by the large brewing industries. During 1970, the average daily waste water volume received was 171.9 mgd, having a BOD content of 209 mg/l. The average weekday flow (industrial and domestic) was 181.2 mgd with a BOD of 237 mg/l and the Sunday flow (essentially domestic) was 143.4 mgd with a BOD of 114 mg/l. Calculations from this data indicate that 21% of the flow is from industry along with 52% of the BOD contribution.

With this type of load on a waste water treatment plant, many changes are necessary to maintain an efficiently operating plant and many problems can be experienced. The following review discusses the monthly operational conditions and changes made in 1970.

January: The average sewage flow that entered the plant was 157 mgd and was divided, directing on an average, 46% to the West Plant and 54% to the East Plant. From the 4th to the 6th, the sludge dewatering facilities were shut down for scheduled maintenance (this is usually done once or twice a year as necessary). Prior to the dewatering plant shutdown, the mixed liquor suspended solids concentration was reduced and during the shutdown period, the mixed liquor suspended solids that are normally wasted, were recycled and permitted to build up within the system.

During 1969 an uncontrollable growth and froth formation, identified as Actinomycetaceae Genus Nocardia would periodically develop on aerated mixed liquor and return sludge channels (see Appendix A). The 1969 appearance was the first observed at this plant and it was restricted to the East Plant. The third occurrence appeared in both plants in December, 1969 and continued into January, 1970. Some of the aeration tanks were as much as 80% covered with the froth that was present in both the West and East Plants. The mixed liquor food (BOD) to microorganisms (MLVSS) ratio remained low because of the shutdown which was probably responsible for the continued presence of the froth, although information received from other treatment plant operators indicated that the froth comes and goes without any known reason.

February: The average sewage flow that entered the plant was 158 mgd with an average distribution of 50% to each plant. The distribution was adjusted and six of the twenty (30%) East Plant aeration tanks were taken out of service to increase the food to microorganism ratio in an attempt to eliminate the <u>Nocardia</u> froth. By the end of the third

week, the froth had practically disappeared and the plant operation continued under these conditions to determine if these changes caused the disappearance of the Nocardia froth.

March: The distribution of the average 161 mgd of sewage that entered, averaged 50% to each plant. The six idle East Plant aeration tanks were returned to service on the 6th, resulting in an East Plant loading 30% less than the West Plant. The Nocardia froth had not returned, but patches of a white foamy substance formed on the aeration tanks in both plants. This substance has an irridescent cast and appears to be a detergent type foam of air, water and some grease solids. The greater the solids concentration, the browner the color. The Jones Island laboratory was not equipped for any detailed analyses of the foam.

April: The 50 - 50% sewage distribution was continued until April 27 when it was changed to 45% to the West Plant and 55% to the East Plant. The distribution of the sewage, averaging 172 mgd, resulted in an East Plant loading 25% less than the West Plant for the majority of the month. The distribution was changed because of overloaded West Plant sedimentation basins and sludge settling problems. These changes resulted in overloaded sedimentation basins in both plants. This overloading caused a MLSS discharge into the effluents which effects the results of analyses of effluent samples making the data on these days unuseable as a plant performance indicator. The white foam was still present.

May: The sewage distribution was changed several times resulting in a 46% West Plant - 54% East Plant average distribution of the 173 mgd flow. Problems were still experienced with overloaded sedimentation basins, but generally, the performance of both plants was good. The white foamy substance was present until the return of the Nocardia froth to the East Plant on the 18th. Only the white foam was present in the West Plant.

A problem of filter cake cracking was experienced while the cake was under vacuum resulting in a vacuum loss. The present vacuum pumps did not have enough capacity to maintain the vacuum. The filter cake cracking occurred during a period when the greatest portion of the waste sludge originated from the East Plant. This resulted in no major problems and lasted for only several hours. The cracking probably resulted from the increased sludge ash caused by the higher ash content of the East Plant sludge and the ash washed into the combined sewer system with the heavy rains experienced during this period.

June: The 182.7 mgd of sewage that entered the plant was distributed 44% to the West Plant and 56% to the East Plant. The sedimentation basins were again periodically overloaded because solids could not be removed fast enough to keep up with the biological solids production.

The Nocardia froth covered from 20 to 70% of the East Plant aeration tank surface, but only a trace was noted in the West Plant. By the 15th, most of the froth disappeared but the white foam returned to both plants.

July: The distribution of the 176 mgd of sewage averaged 41% to the West Plant and 59% to the East Plant. Two sludge dewatering plant shutdowns were scheduled. The first shutdown was from the 6th to the 8th for major maintenance repair and the second was for a few hours on the 22nd to make additional equipment adjustments. As a result of these shutdowns, the sedimentation basins became overloaded with MLSS discharged into the effluent. The white foam was still present in both plants.

August: No major problems were experienced and excellent plant operation was obtained. The 173 mgd of sewage was distributed 43 - 57% respectively to the West and East Plants. Filter cake cracking was noticed for a short period of time, but was eliminated when more West Plant sludge was blended into the waste sludge. The white foam was still present in both plants.

September: A distribution of 43 - 57% to the West and East Plants was maintained for the average 188 mgd of sewage that entered the plant. Sedimentation basins became overloaded again and the white foam was still present with larger patches noted on some of the aeration tanks.

October: The 172 mgd of sewage flow was distributed 45 - 55% respectively to the West and East Plants. More sewage was directed to the West Plant because of a mechanical failure and resultant damage to one East Plant double sedimentation basin (10% of the East Plant capacity). This loss in capacity resulted in the discharge of MLSS into the effluent. The white foam and some brown foam was present on the aeration tanks in both plants.

November: A 43 - 57% sewage distribution to the West and East Plants was maintained with the 175 mgd. High mixed liquor suspended solids concentration occurred resulting in a low food to microorganism ratio. Not only did the reduced sedimentation basin volume become overloaded, but by the 24th, channel surfaces were covered with a large quantity of Nocardia froth.

December: The 175 mgd of sewage was distributed 44% to the West Plant and 56% to the East Plant. Again, the sedimentation basins were overloaded. The <u>Nocardia</u> froth build-up was so great that physical removal was necessary. The froth finally disappeared and the white foam returned.

SECTION VII

IRON ADDITION EQUIPMENT AND OPERATION

The facilities proposed for addition of waste pickle liquor iron for enhancement of phosphorus removal were designed to make possible a precise and reliable operation (12, 13). The equipment was comprised of 2 - 30,000 gallon pickle liquor storage tanks insulated so that only a 1°F maximum temperature drop per day would occur at an ambient temperature of minus 20°F. The automatic equipment would consist of an automatic feed valve, a specific gravity column, a calculator, a recirculation pump through a heater, and an equipment by-pass. The calculator would summate the mixed liquor flow from the existing meters, determine the iron concentration from the specific gravity, and control the iron addition to maintain the desired iron concentration. Deliveries on equipment were the only delaying factor. The A. O. Smith Corporation agreed to design, construct and maintain the pickle liquor facilities and deliver the waste pickle liquor to the Jones Island site.

On Wednesday January 7, 1970 the first truck load of pickle liquor from the A. O. Smith Corporation was delivered to Jones Island starting the first addition during the grant period. Initially the hot pickle liquor (125°F) was drained from each truck tanker through an insulated, heated hose and a flow meter into the East Plant screened sewage channel just upstream from the return sludge addition (this point of addition would be changed when the pickle liquor storage tanks were ready for use). The outside temperatures were below 0°F which created many problems with crystallization of ferrous sulfate. These crystals plugged the tanker valves, hose and flow meter. The construction of a shelter around the flow meter with heat lights was not enough to prevent plugging. Pickle liquor was added continuously for five days each week starting 7:00 A.M. on Monday and ending 5:00 A.M. on Saturday.

During the second week of addition one truck was set up as the feed source and was blanket insulated, covered with canvas and heaters were placed under the covered area to prevent cooling and crystallization of the pickle liquor. The hauling truck brought hot pickle liquor from the A.O. Smith Corporation 10 miles to the stationary feed truck on Jones Island. Compressed air was used to transfer the liquid from the delivery truck to the stationary tanker. The flow meter was eliminated and a plastic garbage bucket was used to measure the pickle liquorflow rate. This method proved to be very accurate in measuring the flow rate. For the first two weeks an objective addition of 15 mg/l of iron in the East Plant mixed liquor was attempted. On January 23 the rate was decreased to 10 mg/l of iron. Initially pickle liquor was added independent of the specific gravity (iron concentrations) and independent of the mixed liquor flow. This rough

method of addition however, worked fairly well. During January, pickle liquor was added on eighteen days to the mixed liquor with averages of 12.8 mg/l of iron per day. This resulted in an initial daily addition of approximately 11,800 lbs of iron in an average of 17,400 gallons of pickle liquor per day.

To more efficiently control the iron addition, a chart was prepared to specify the gallons per minute of pickle liquor to be added over a certain specific gravity range assuming a constant average mixed liquor flow rate (see Appendix B for sample of one of the charts used). This was started on February 19 in an attempt to accurately add 12 mg/l of iron. On March 16 the rate of iron addition was increased from 12 to 15 mg/l to increase the phosphorus removal, further saturate the return sludge with iron and compensate for not adding iron on the week ends. Monday sewage has been characteristically high in phosphorus as a major day for washing clothes and more iron was added hoping to sustain a surplus.

On June 1, 1970 the two - 30,000 gal. pickle liquor storage tanks and piping were ready for use. This streamlined the delivery scheduling making it possible to add pickle liquor continuously seven days per week. This resulted in a change of location of pickle liquor addition to the mixed liquor channel about 55' downstream from where the return sludge is added to the sewage. The pickle liquor was added manually utilizing the automatic equipment by-pass piping. The gallons per minute addition of pickle liquor was still determined by using a bucket measurement. The pickle liquor stainless steel recirculation pump was put in operation on June 21 and overnight it started leaking, spraying pickle liquor all over the control house. In addition to losing a few thousand gallons of pickle liquor, some of the electrical equipment was damaged. The cause of the failure was traced to an "iron" plug that was dissolved out of the stainless steel pump body by the acid.

The pickle liquor addition rate in June was modified to better control the pickle liquor added in proportion to the phosphorus concentration and therefore less was added during the night time (10 mg/l during the day and 8 mg/l at night). On Monday July 13 the pickle liquor was found crystallized in the piping system stopping the flow of iron into the plant for an undetermined number of hours over the week end. Manipulation of the valves freed the system. The piping at this time was not yet insulated but was scheduled for the near future. Again on July 29 the piping system was plugged but this was caused by sludge accumulation in the piping. In September a new recirculation pump was also installed and put in continuous operation. This pump operated from the 11th to the 29th before leaking pickle liquor all over the floor.

The Fischer & Porter Company was to have made delivery of this automatic equipment by mid June but they indicated that some of the parts had been delayed and the entire package of equipment was not received until September. During their installation and inspection, a circuit board was burned out and had to be returned to the factory. The repaired circuit board was returned in October and the automatic pickle liquor control system was put in operation but electrical problems caused the automatic valve to close unexpectantly. Another signal problem resulted from open circuits in the Sewerage Commission's mixed liquor flow rate meters causing an infinite mixed liquor flow reading and response.

Concern was shown by the A.O. Smith Corporation as to their ability to supply the East Plant with enough pickle liquor during the period of the General Motors automotive workers strike. Pickling activity at the A.O. Smith Corporation was considerably reduced and the pickle liquor supply was basically from an old storage pond at the company. The material from this pond had a low iron content and the situation became critical to a point where an additional source of iron had to be found. The U. S. Steel Corporation, Waukegan, Illinois Works, was contacted and their management agreed to have their sulfuric-hydrochloric pickle liquor delivered. Tests were conducted and it was felt that the low chloride content in the U. S. Steel Corporation pickle liquor would not appreciably damage the stainless steel during this interum period. The first truck load of U. S. Steel pickle liquor was delivered on November 4 and a total of 53 truck loads (235,000 gallons) were delivered through December 1st when the A.O. Smith Corporation was again producing enough pickle liquor to meet the demands.

During November and December, work was done in an attempt to start up the automatic equipment. After additional changes and parts replacement in the equipment, the unit was put in operation on December 11. Final adjustments still remain and will be made in the near future. This equipment will make it possible to set a desired iron concentration in the mixed liquor and the equipment will automatically control the rate of addition. Figure 2 shows the unit in operation and Figure 3 shows one of the A.O. Smith Corporation tanks being unloaded.

The equipment and materials used for the construction of the facilities designed for pickle liquor addition to the 115 mgd East Plant were:

1. Two 30,000 gallon steel tanks 12 foot in diameter and 36 foot long were rubber lined and the outside was insulated with a cover of urethane foam and painted aluminum. Both tanks were equipped with a low level alarm which actuated a red light and a high level alarm which activated a horn. The pickle liquor was transferred from the tanker to the storage tanks using air pressure.

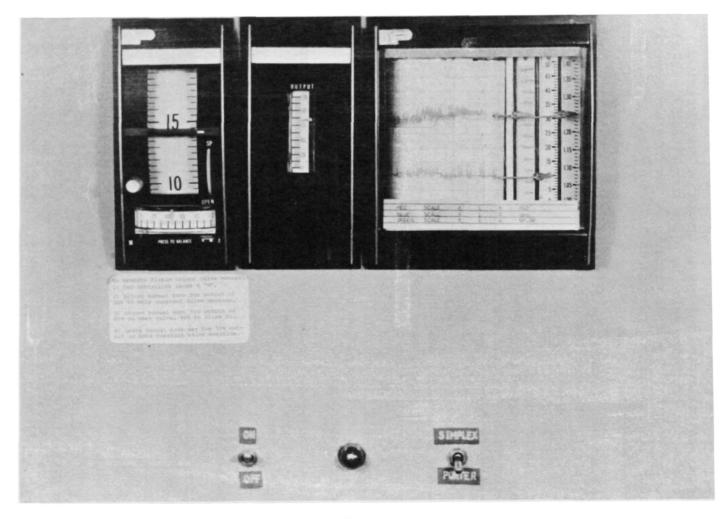


Figure 2
Automatic Pickle Liquor Addition Equipment

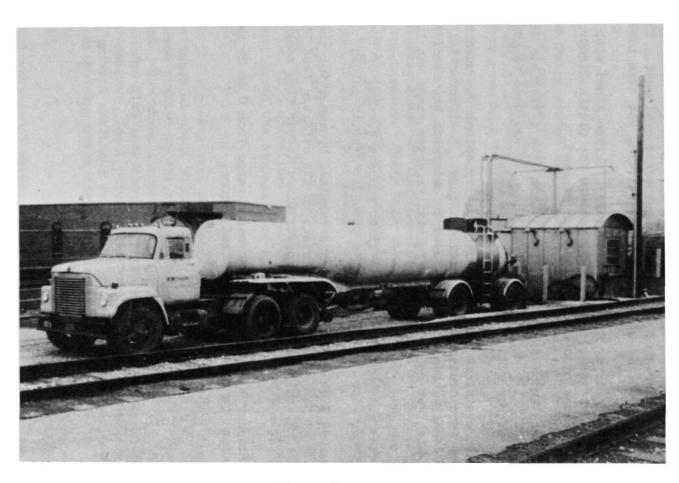


Figure 3
Transferring Pickle Liquor into Storage Tank

- 2. All the piping and valves were 316 stainless steel which was resistant to the sulfuric acid pickle liquor. The piping from the tanks was 4 inches in diameter and then reduced to 2 inches as it passed through the equipment and then returned to 4 inches. The equipment by-pass line was $1 \frac{1}{4}$ inches in diameter. An $8' \times 10'$ building was constructed to house the automatic equipment. The piping located outside of the equipment building was also insulated.
- 3. A Fischer & Porter Magnetic flow meter (teflon lined with Hastelloy C electrodes) was used to measure the pickle liquor flow rate (chart range of 0 50 gallons per minute).
- 4. A Saunders automatic rubber lined valve with a flexible diaphram which seats tightly against a weir in the body was used to control the pickle liquor gallon per minute flow rate.
- 5. The 316 stainless steel specific gravity column was used to obtain the iron content of the pickle liquor. A differential pressure density transmitter was used to determine the specific gravity which was recorded. The initial recorder range was 1.00 to 1.40.
- 6. A Vanton pump with a neoprene liner pumps a portion of the pickle liquor flow (0.3 gpm) to the specific gravity column.
- 7. The mixed liquor flow rate was determined by summating the resistance output of 20 potentiometers on the exisitng East Plant tank metering equipment. The recorder mixed liquor flow range was initially from 0 to 240 mgd.
- 8. The Fischer & Porter equipment had a range from 0 to 25 mg/l of iron added to the East Plant mixed liquor.

SECTION VIII

SAMPLING & ANALYTICAL TECHNIQUES

SAMPLING:

Sewage:

The daily sewage samples analyzed represent 24 hour composite samples of fine screened sewage from 7:00 A. M. to 7:00 A. M. A Phipps-Bird sampler was used to collect samples to form hourly composites (30-200 ml portions per hour) which in turn were composited to form a 24 hour composite in proportion to the screened sewage flow rate.

Effluents:

The West Plant effluent samples represent a 24 hour composite of hourly grab samples. Every hour the operator would take one dipper full of effluent from each weir channel on all of the eleven clarifiers. Each hourly sample was mixed and a volume in proportion to the sewage flow was added to the 24 hour sample bottle.

In the East Plant the same effluent sampling schedule as the West Plant was used until April 1, 1970 when an automatic Sonford sampler was put into operation. This sampler was activated by a timer set in proportion to the average flow rate.

Mixed Liquor:

The SDI analyses were performed on individual mixed liquor grab samples taken at about 9:30 A.M., 5:30 P.M. and 1:30 A.M. each day from a feed channel to the sedimentation basins and the results were averaged. The mixed liquor pH was determined on the 9:30 A.M. grab sample. The MLSS analysis was performed on a 24 hour composite mixed liquor sample. Equal volumes of mixed liquor were collected every hour for each shift and composited on a shift basis in proportion to the average shift flow rate variations.

Return Sludge:

Equal volumes of return sludge were collected every two hours for each shift. At the end of the shift the sample was mixed and a designated volume was added to the 24 hour return sludge sample bottle. This designated volume was proportional to the average flow variation for each shift.

Milorganite:

A Milorganite sample was collected in direct proportion to the rate of production to produce a 24 hour composite.

ANALYTICAL TECHNIQUES:

Phosphorus Determinations:

Total, total soluble, and soluble ortho phosphorus concentrations were determined on liquid samples. After the filtration of the total soluble and soluble ortho samples and the ternary acid digestion of the total and total soluble sample, the prepared samples were introduced into a Technicon Autoanalyzer for determination of the soluble ortho phosphorus concentration using the Aminonaphtholsulfonic Acid Method. For a detailed description of the method refer to Appendix C. The return sludge phosphorus analyses was a gravimetric method as outlined in Appendix D.

Iron Determination:

The total iron and total soluble iron (analyses on filtrate) determination made on sewage and effluent samples were prepared by a nitric acid digestion. Soluble iron determinations on mixed liquor samples were handled in a similar manner. The digested samples were introduced into an Atomic Absorption instrument (Instrumentation Laboratory, Incorporated, Model No. 153) for analyses. The sewage sample for total iron was diluted 1 to 2 but the rest of the samples were run direct. During the initial stages in the operation of the atomic absorption unit, (January, February and March) problems were experienced by using ternary acid for digestion, making too many dilutions and an improper calibration and use of blanks for background correction. Therefore, the iron data for this initial period is approximate but still presented in Appendix H.

The iron concentration in the pickle liquor was determined using a volumetric titration-dichromate process. A description of the method is in Appendix E.

The return sludge iron was determined on dry centrifuged solids using a volumetric dichromate method as given in the Appendix F.

Mixed Liquor and Return Sludge Suspended Solids Concentration Determination:

A known volume of the sample was filtered through a weighed filter paper in a Buchner funnel (100 mls of ML through a S & S Sharkskin and 50 mls of return sludge through a Whatman No. 3). The sludge and paper were dried at 103° C for one hour, cooled and weighed again. The difference in weight was used to determine the

concentration.

Sludge Density Index Determination:

A relatively fresh mixed liquor sample was used for this analysis. The suspended solids concentration was determined on one part and a 30 minute settling test was determined on another part using a 1000 ml graduated cylinder.

SDI = % MLSS x 100

7 Cylinder volume occupied by solids after 30 minutes

Biochemical Oxygen Demand Determination:

This determination involved using the azide Modification of the Iodometric method as given in Standard Methods 12th Edition (14). The method for rounding off the effluent data was changed in September as indicated in the presentation of the daily results.

Chemical Oxygen Demand Determination:

The sewage (20 ml aliquot) and effluents (40 ml aliquots) were analyzed for COD using the method as explained in Standard methods. 12th Edition (14).

Total Solids Determination:

A 100 ml sample of sewage or effluent was placed in tared silica dish and the liquid was evaporated to dryness on a water bath. Then the dish was dried in an oven at 103°C and was put in a desiccator to cool prior to being weighed again. The difference was the total solid weight per 100 ml of sample. The method is from Standard Methods, 12th Edition (14).

Suspended Solids Determination:

The sewage (50 ml) and effluent (200 ml) samples were filtered through a tared Gooch crucible with an asbestos pad. The crucible was dried at 103°C for one hour cooled in a desiccator and weighed again and the difference was the suspended solids weight. The method is from Standard Methods, 12th Edition (14).

Nitrogen Determination:

The total Kjeldahl nitrogen analysis on the liquid samples (sewage and effluents) is as indicated in Standard Methods 12th Edition (14).

The nitrogen analyses on the Milorganite and the dry centrifuge return sludge solids is a method for total nitrogen on dried solids explained in Appendix G.

Ash Determination:

A three gram sample of the dried solids were put in a tared crucible and ignited at 600° C. for two and one half hours, cooled in desiccator and weighed.

Alkalinity Determination:

A 50 ml sample was titrated to a pH of 4.3 using N/50 $\rm H_2SO_4$ using the following calculation as in Standard Methods, 12th Edition (14).

Alkalinity as mg/l CaCO₃= mls H_2SO_4 x Normality H_2SO_4 x 50,000 mls sample

Sulfates Determination:

The sewage and effluent samples (20 mls diluted to 100 mls with distilled water) were analyzed for soluble sulfate by first filtering the sample through a glass fiber pad and running the analyses on the filtrate. The Turbidimetric Method as in Standard Methods, 12th Edition (14) was used.

Specific Gravity Determination:

A standard 60° F. hydrometer was used to measure the specific gravity of the pickle liquor. The readings were not compensated for temperature.

% Free Acid Determination:

Initially, a 10 ml aliquot of the pickle liquor was titrated with 1N Na OH until the formed floc turned from green to brown (pH about 6.0). This method was used for all the analyses on pickle liquor from the A. O. Smith Corporation. This method was later changed to titrate to a pH of 4.3 and all the pickle liquor from the U. S. Steel Corporation was analyzed in this fashion. The formula used in all determinations was:

$$\%$$
 H₂SO₄ = mls titrant x Normality of NaOH x 49
mls sample x Specific Gravity

SECTION IX

PRESENTATION AND DISCUSSION OF DATA

A. Screened Sewage and Effluent Characteristics

The review and investigation of the performance of a waste water treatment plant was greatly dependent upon the characteristics of the waste water that enters the plant. Some of these characteristics of the raw screened sewage entering the secondary or biological portion of the Jones Island treatment process presented as 1970 yearly averages are:

TABLE 1
Yearly Average Screened Sewage Characteristics

Total Solids, mg/l	939
Suspended Solids, mg/l	207
BOD mg/l	209
COD mg/l	431
Kjeldahl Nitrogen mg/l N	28.3
Total Phosphorus, mg/l P	8.2
Total Soluble Phosphorus, mg/1 P	3.1
Total Iron, mg/l Fe	7.17
Total Soluble Iron, mg/l Fe	0.60

These properties of the sewage entering the plant are further broken down into monthly average concentrations on Table 2. The West and East Plant operations are similar except iron was added to the East Plant. Table 2 also indicates the quality of the effluent from both plants along with the percent removal of the different properties listed. Appendix H has all the daily results of analyses.

The data shows some very significant and interesting information. The sewage has a relatively high percent of insoluble phosphorus, 62% or 5.1 mg/l P. The pickle liquor iron, therefore only has to interact and precipitate the smaller portion of the phosphorus (38% soluble). Figures 4, 5 and 6 show the monthly variations in screened sewage BOD, suspended solids and total phosphorus over the last six years. The year 1970 is far from an average year and at the present time no substantial answer was available that could explain the marked change experienced. The sewage properties in the future may continue as in 1970 making the plant data obtained during this grant period typical or it may return to the earlier characteristics making 1970 an "unusual year".

MONTHLY AVERAGE SCREENED SEWAGE AND EFFLUENT CHARACTERISTICS

TABLE 2 *

	BIOC	HEMICA	L OXYG	EN DEM	CHEMICAL OXYGEN DEMAND						
MONTH		mg/l		% Rem	oval		mg/l	% Removal			
_	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE	
January February	251 249	16.6 13.0	12.9 14.0	92.5 94.2	94.6 93.9	505 499	81 86	67 78	82.7 81.7	85.9 83.5	
March	244	12.5	22.9	94.2	89.4	476	85	79	80.7	82.3	
April	203	9.0	11.4	95.3	93.8	443	77	67	81.6	84.0	
May	192	12.8	12.9	93.2	92.6	420	83	66	79.5	83.3	
June	183	7.4	24.8	95.6	85.9	395	55	81	85.9	79.8	
July	174	14.6	15.5	91.0	90.5	377	60	63	83.4	82.6	
August	171	8.7	10.3	94.1	93.1	368	54	61	84.3	82.0	
September	187	12.6	14.4	92.4	91.5	377	52	65	85.1	81.9	
October	230	17.0	23.0	92.4	89.4	450	65	81	84.9	81.2	
November	210	13.0	15.0	93.5	92.5	440	56	64	86.5	84.6	
December	210	13.0	18.0	93.4	91.3	420	61	71	84.1	82.0	
Average	209	12.5	16.3	93.5	91.5	431	68	70	83.4	82.8	

		TOTA	AL SO	LIDS		SUSPENDED SOLIDS				KJELDAHL NITROGEN			
Month	-	mg/l	L	% Rer	noval]	mg/l		% Removal		mg/l as N		
	SS	WPE	EPE	WPE	EPE	SS	VPE	EPE	WPE	EPE	SS	WPE I	EPE
January February	1077 990			25.4 26.4		259 230		16 16		93.8 92.8	34.3 33.2	15.9 14.1	15.1 14.4
March	1038	765	794	25.9	23.1	230	17	18	92.2	91.9	29.9	12.2	11.4
April	1033	773	807	24.5	21.2	214	18	13	91.5	93.5	27.3	9.0	7.6
May	944	736	746	21.5	20.1	193	27	16	86.4	91.2	26.1	10.0	6.4
June	885	694	772	21.4	12.8	177	13	41		77.1		8.1	7.5
July	805	639	681	20.8	15.2	177	22	23	87.3	87.5	24.9	7.9	4.3
August	805	629	666	21.1	17.1	177	12	14	93.2	91.7	25.9	9.9	5.0
September	828	649	693	21.2	16.9	189	15	23	91.8	87.9	24.5	8.1	4.5
October	918	715	756	21.5	17.6	232	22	42	90.3	81.0	30.7	12.5	10.3
November	928	738	769	19.8	17.3	199	18	25	91.2	87.7	28.6	12.1	7.1
December	1017	829	860	18.0	15.5	207	21	29	90.0	85.5	29.9	11.4	•
Average	939	724	759	22.3	18.9	207	18.5	23	90.9	88.5	28.3	10.9	8.6

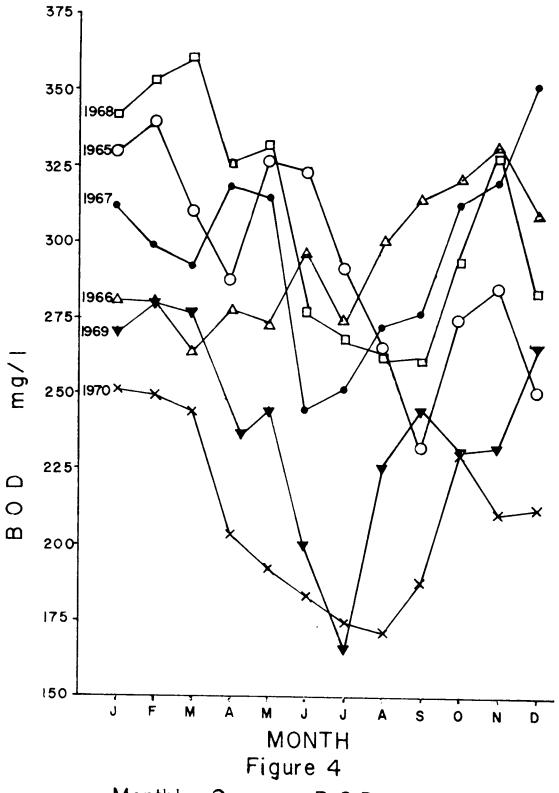
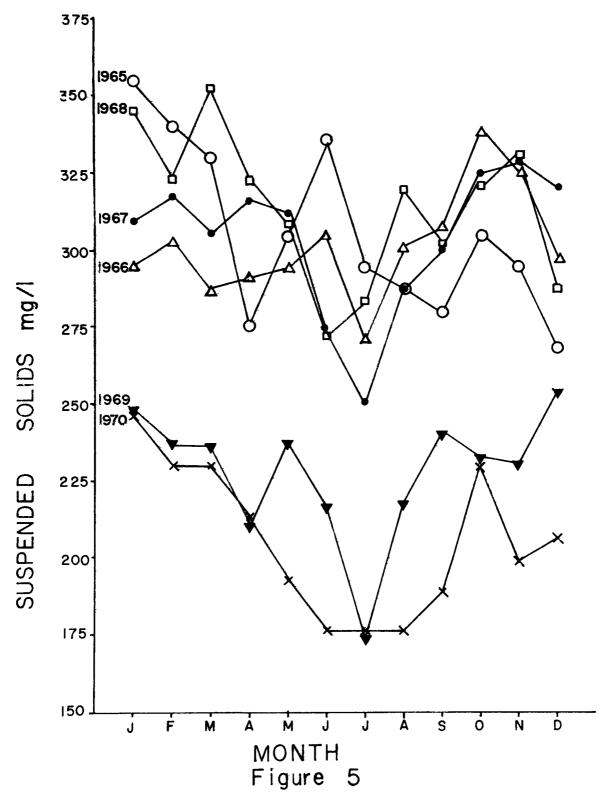
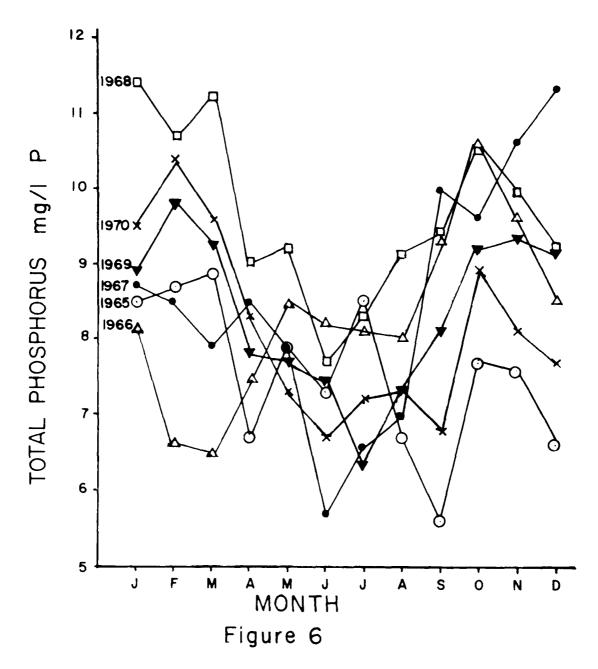

^{*}All effluent data represents the period from January 12 to December 31, 1970.

TABLE 2 (cont.)


MONTHLY AVERAGE SCREENED SEWAGE AND EFFLUENT CHARACTERISTICS

		TOTAL	PHOSP	HORUS		TOTAL SOLUBLE PHOSPHORUS					
MONTH		mg/l :	as P	% Rem	oval	m	g/1 a	3 P	% Rem	oval	
	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE	
January	9.7	3.0	0.64	69.1	93.4	3.9	2.6	0.37	34.2	91.1	
February	10.4	2.5	0.86	75.4	91.2	3.8	2.1	0.57	44.4	84.9	
March	9.6	2.2	0.86	76.6	90.8	3.7	1.9	0.59	47.0	83.7	
April	8.3	1.6	0.52	81.1	93.4	3.6	1.3	0.34	65.2	90.8	
May	7.3	1.1	0.49	85.2	93.4	2.8	0.55	0.22	80.5	92.2	
June	6.7	1.1	0.96	83.6	85.4	2.6	0.91	0.23	66.6	90.9	
July	7.2	0.97	0.70	86.5	90.5	2.5	0.46	0.19	80.4	92.5	
August	7.3	0.66	0.34	91.1	95.5	2.7		0.20	87.2	93.2	
September	6.8	0.72	0.58	89.2	91.3	2.5		0.27	81.4	89.7	
October	8.9	1.2	1.1	86.2	87.5	3.1	0.80	0.26	74.0	91.1	
November	8.1	0.94	0.56	88.7	93.1	2.8		0.14	79.3	94.7	
December	7.7	1.2	0.77	84.0	90.2	2.7	0.83	0.17	69.3	93.4	
Average	8,2	1.4	0.70	83.1	91.3	3.1	1.1	0.30	67.5	90.7	


		TOT	AL IRO	N		TOTAL SOLUBLE IRON						
MONTH	mg/l as Fe			% Rem	oval	mg/	l as F	% Removal				
	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE		
-	9 1 9	0 (7	0.01	07.2	90 5	1.04	0.38	0.49	55.3	54.6		
January	8.43	0.67	0.91	91.3	89.5				64.3	-		
February	7.11	0.30	0.83	95.5	87.2	0.34	0.10	0.16		59.5		
March	7.72	0.39	0.73	94.8	90.4	0.39	0.17	0.16	54.8	59.5		
April	7.26	0.48	0.60	93.2	90.9	0.52	0.22	0.20	55.4	59.1		
May	6.95	0.69	1.04	89.9	84.7	0.50	0.24	0.22	52.3	56.1		
June	5.95	0.58	2.13	90.3	64.8	0.75	0.39	0.41	48.0	45.4		
July	7.00	0.81	1.51	88.7	80.2	0.77	0.38	0.42	58.7	51.5		
August	6.70	0.51	0.64	92.5	90.5	0.79	0.25	0.27	67.3	62.7		
September	5.60	0.33	0.92	93.9	82.7	0.43	0.08	0.08	79.7	79.3		
October	8.15	0.52	1.76	93.6	78.4	0,60	0.14	0.13	75.5	76.4		
November	7.82	0.39	1.1	95.0	85.8	0.54	0.08	0.13	83.1	73.9		
December	7.40	0.47	2.0	93.6	75.3	0.58	0.13	0.16	75.9	71.2		
Average	7.17	0.51	1.18	92.7	83.4	0.60	0.21	0.24	64.2	62.4		

Monthly Sewage BOD Variation

Monthly Sewage Suspended Solids Variation

Monthly Sewage Total Phosphorus Variation

The biological activities for 1970 in the West and East Plants will be different from the previous years because of the different loadings, therefore the effluent properties were not compared with the previous years. However, the percent total phosphorus removal in the West Plant was greater in 1970 (83.1%) than in the 1968 (76.2%) and 1969 (76.9%) period.

The effluent results indicate a very low total soluble phosphorus concentration in the East Plant effluent; 0.30 mg/l P as a yearly average in comparison with 1.1 mg/l P in the West Plant. A yearly average for effluent characteristics was from January 12. 1970 (iron addition) to December 31, 1970. The yearly averages for total phosphorus concentrations for the East Plant was 0.70 mg/l P (91.3% removal) and 1.4 mg/1 P (83.1% removal) for the West Plant. These total phosphorus concentrations varied greatly at times due to plant operational problems, start up period of iron addition, plant acclimation and seasonal changes. The objective of maintaining a total phosphorus residual of 0.50 mg/l P was obtained on a monthly average only twice, in May and August. The daily data in Appendix H indicates that this objective probably could have been obtained every month after the initial acclimation period except for a mixed liquor suspended solids control problem. During the last four months of the grant period, mixed liquor suspended solids were discharged in the effluent from the final sedimentation basins contributing a significant amount of insoluble phosphorus to the effluent. Considering the 354 days from January 12, 1970 to December 31, 1970 the total phosphorus concentration in the East Plant effluent met the objective on 195 days (55.1% of the time) while the West Plant effluent met the objective on only 60 days (16.9% of the time). During the same time period the total soluble phosphorus concentration in the East Plant effluent was less than or equal to 0.50 mg/l P on 311 days (87.9% of the time) while the West Plant effluent was in that range only 143 days (40.4% of the time). Another comparison of the data was to divide the year into several periods (remember iron was added only to the East Plant) as shown in Table 3. The low total soluble phosphorus concentration in the effluents indicated the success to the iron addition for phosphorus precipitation in the East Plant.

The acclimation period referred to was very difficult to define because of all the biological aspects that were possibly affected. Arbitrarily we assigned January and February as the initial period because of addition problems.

Plant performance indicators such as removal of BOD. COD and suspended solids were compared between the West and East Plant and both plants operated about the same. The slightly lower percent removals in the East Plant reflected the greater loss of mixed liquor suspended solids from the sludge blankets in the East Plant sedimentation basins. The SDI yearly averages of 0.97 for the West

TABLE 3

PHOSPHORUS CONCENTRATION FOR DIFFERENT PERIODS IN 1970

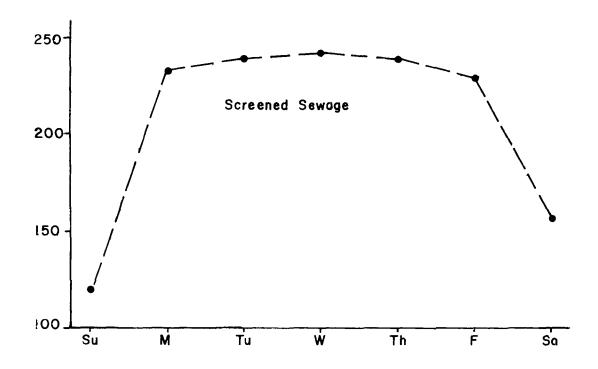
1970		Tota	ıl Phos	phorus		Tota	l Solu	ole Ph	osphor	us	Iron Ad	dition
Period	n	1g/1 P		% Ren			mg/l		% Rem		to East	
	SS	W	E	W	E	SS	W	E	W	E	lb/day	mg/l
Weekday Addition Acclimation Jan 12 - Feb 28	10.1	2.7	0.77	72.7	92.2	3.9	2.3	0.49	40.3	87.4	11004	12.5
Spring Mar 1 - May 31	8.4	1.6	0,62	81.0	92.5	3.4	1.2	0.38	64.3	88.9	12600	13.2
Continuous Addition Summer June 1 - Sept 30	7.0	0.87	0.64	87.6	90.7	2,6	0.54	0.22	79.2	91.6	7527	6.9
Fall - Winter Oct 1 - Dec 31	8.2	1.1	0.81	86.3	90.3	2.9	0.74	0.19	74.2	93.0	7066	6.7
Yearly Average	8.2	1.4	0.70	83.1	91.3	3.1	1.1	0.30	67.5	90.7	9274	9.4

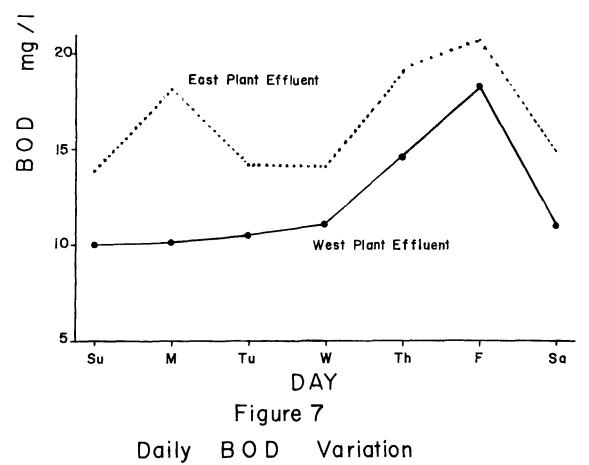
Plant mixed liquor and 1.04 for the East Plant indicated that the East Plant produced a slightly better settling sludge. (See Table 4).

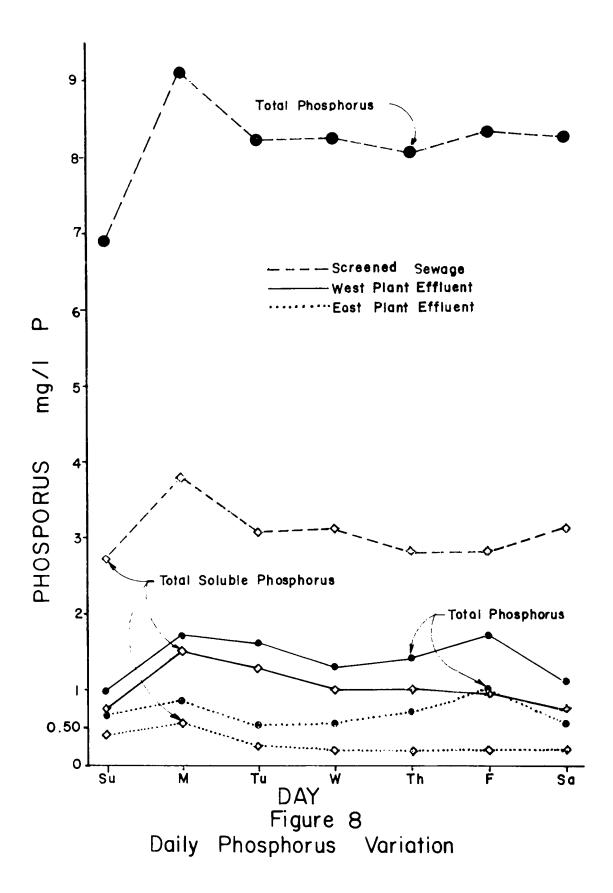
The daily sewage and effluent results for BOD, phosphorus and iron were separated by the days of the week. Figure 7 shows the daily BOD variation indicating a fairly constant Monday through Friday average BOD. The East Plant effluent BOD was slightly higher than the West Plant due to the greater loss of solids. The Friday results were higher because more solids were lost on that day. No logical explanation was found for the higher East Plant effluent BOD on Monday except that the effluent had higher suspended solids concentration than the West Plant. The Monday mixed liquor SDI was 1.03 and 1.10 respectively for the West and East Plants indicating better overall settling in the East Plant.

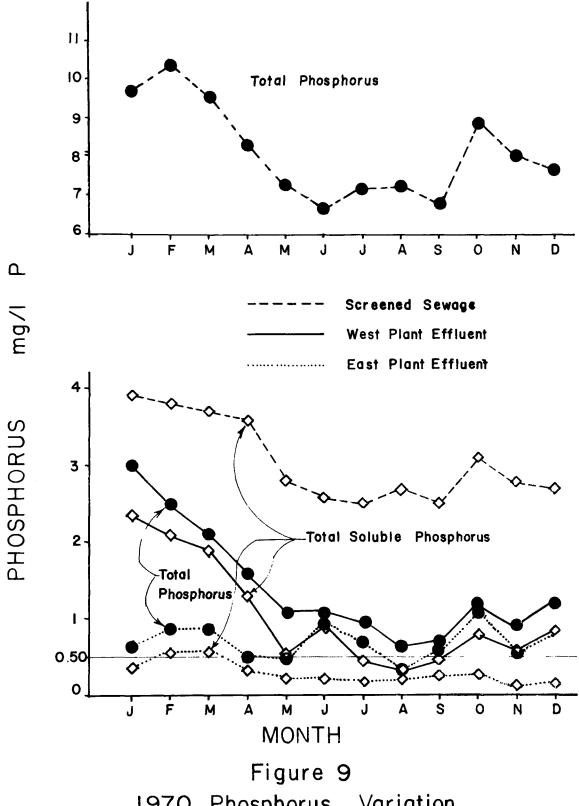
Figure 8 shows the daily phosphorus variation. On Monday the screened sewage total phosphorus and total soluble phosphorus was the highest and on Sunday the lowest with the rest of the days fairly constant. The effluent data shows the greater removal in the East Plant. Figure 9 shows the monthly phosphorus variation and indicates the great difference in the effluent values early in the year. This figure clearly shows the variation between the West and East Plant for the total and total soluble phosphorus concentrations and the objective total phosphorus concentration of 0.50 mg/1 P. The East Plant Monday data includes the period when iron was not added over the week end resulting in a higher effluent total soluble phosphorus concentration.

Figure 10 shows the daily iron variations (the data does not include the January and February results because of problems in the analyses). The sewage total iron concentration was lowest on Sunday and increased to a peak on Friday and then dropped slightly on Saturday. The East Plant effluent total iron content was about double that of the West Plant. Some of this increase was caused by the greater loss of solids especially on Fridays. The soluble iron concentration in the effluents were very low averaging 0.21 mg/l Fe in the West Plant and 0.24 mg/l in the East Plant. The total iron concentration was greater in the East Plant effluent because of the higher iron concentration in the suspended solids.

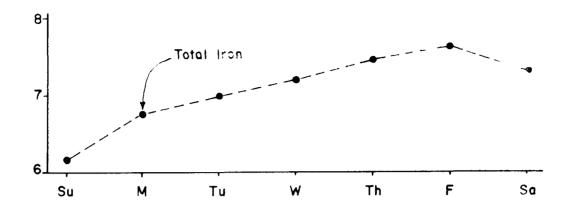

B. Mixed Liquor and Return Sludge Characteristics

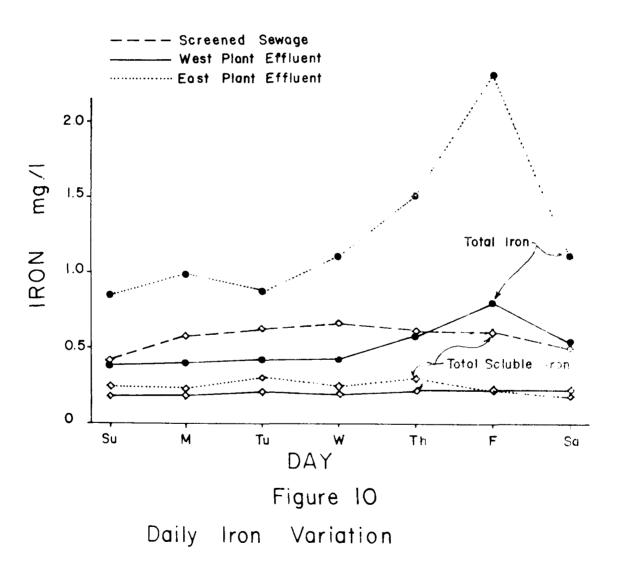

The addition of iron increased the ash content of the East Plant sludge. To compensate for this ash an attempt was initiated in July, at the suggestion of project officer Dr. R. Bunch, to keep the East Plant mixed liquor suspended solids 200 mg/l higher than the West Plant which would equalize the biomass or volatile suspended solids in both plants. The monthly average mixed liquor suspended solids values indicate that 200 mg/l differential was successfully maintained.


TABLE 4
MONTHLY AVERAGE MIXED LIQUOR AND RETURN SLUDGE CHARACTERISTICS

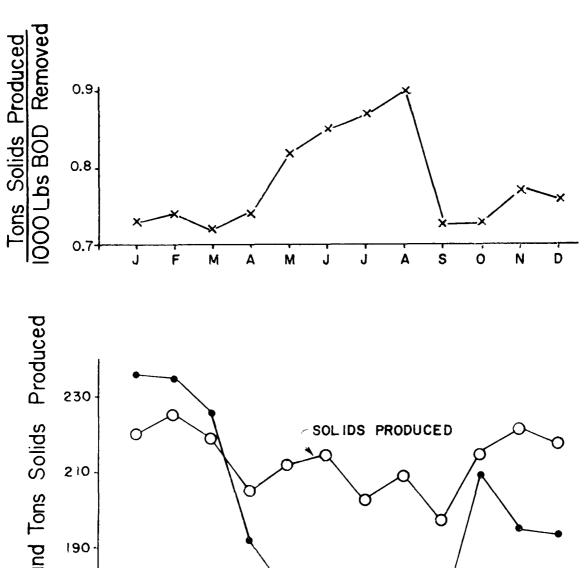

+	Iron Addition MIXED LIQUOR							
								T T
Month	To East		E.P.		usp.So.			D. I.
	Lbs/day	mg/l	M.G.D.	WP EP	WP	EP	WP	EP
January	11,778	12.8	103.4	7.1 7.1	2686	2693	0.94	1.02
February	10,423	12.2	98.4	7.0 7.0	2723	2805	1.11	1.11
March	12,192	13.7	100.2	7.1 7.0	2537	2580	1.16	1.16
April	12,960	13.7	109.0	7.1 7.0	2741	2665	1.09	0.94
May	12,630	12.3	119.8	7.0 7.0	2991	2974	1.03	0.90
June	8,081	7.2	132.8	7.2 7.1	2541	2604	0.82	0.84
July	7,392	6.7	130.4	7.1 6.9	2614	2617	0.86	1.11
August	7,210	6.9	123.7	7.0 6.9	2329	2589	1.06	1.22
September	7,427	6.8	133.0	7.2 7.0	2207	2426	0.99	1.19
October	6,408	6.2	123.8	7.1 7.0	2588	2773	0.86	0.98
November	6,780	6.3	126.9	7.1 7.0	2794	2976	0.92	1.14
December	8,001	7.4	127.6	7.1 7.0	2524	2747	0.83	0.90
Average	9,274	9.4	119.1	7.1 7.0	2606	2704	0.97	1.04

		RETUR	RN SLUDGE - CENTRIFUGED SOLIDS - DRY BASIS						
Month	% Total - P		% Total - N		% Tota	1-FE	% Total	Ash	
	WP	EP	WP	EP	WP	EP	WP	EP	
January	2.36	2.76	6.67	6.34	2.05	5.67	24.54	30.57	
February	2.37	2.65	6.53	6.14	2.00	5.15	25.31	29.74	
March	2.31	2.62	6.42	6.06	1.99	5.52	26.44	31.58	
April	2.18	2.47	6.62	6.21	1.67	5.55	26.18	31.78	
May	2.14	2.44	6.52	6.05	1.84	5.34	27.88	32.83	
June	2.18	2.49	6.62	6.16	1.74	4.84	27.20	31.83	
July	2.40	2.87	6.64	6.00	1.84	4.76	27.72	32.82	
August	2.42	2.70	6.63	6.12	1.94	5.08	26.87	31.58	
September	2.31	2.58	6.61	6.01	1.84	5.11	26.66	31.76	
October	2.33	2.69	6.76	6.30	1.81	4.45	25.13	29.60	
November	2.32	2.61	6.83	6.30	1.90	4.73	24.78	29.36	
December	2.11	2.42	6.90	6.46	1.72	4.80	23.20	27.97	
Average	2.29	2.61	6.65	6.18	1.86	5.08	25.99	30.95	



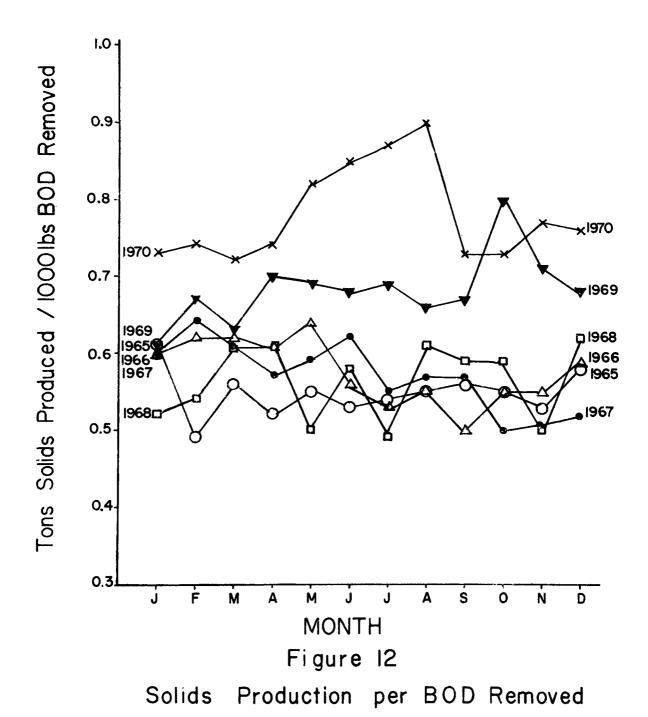


1970 Phosphorus Variation


During the initial stages of the pickle liquor addition, Dr. Bunch raised the question as to what inhibitors were in the pickle liquor and if they had any carcinogenic effects. The companies supplying the inhibitors to the A. O. Smith Corporation were contacted and requested to supply us with information about their product. One company said their product was a biodegradable surface active agent and the other company said that they did not know anything about the carcinogenity of their chemical but expected no problems because of the tremendous dilution factor involved.

The solids production in the mixed liquor was reviewed. A solids production difference between the West and East Plants could not be determined because the volume of sludge wasted from each plant individually was not accurately measured. The total sludge produced in both plants was obtained by adding the tons of dried solids removed and the solids present in the effluent. It should be remembered that the Jones Island Plant does not have conventional primary settling, only fine screening, and therefore the sewage BOD and suspended solids feed to the biological process was high. This higher load will result in a greater overall production of solids. Figure 11, shows the solids produced in conjunction with the BOD removed and shows the monthly variation of solids produced per 1000 pounds of BOD removed. The increase in production of solids per BOD removed increased during periods of low BOD content of the sewage because the dewatering facilities were operated to remove as many solids as practical resulting in a lower sludge age.

Figure 12 shows the solids production per pound of BOD removed for the last six years. Relating this data to Figure 4 (sewage BOD variation) a greater production per pound of BOD removed occurs during periods of lower sewage BOD. During the lower BOD period the solids were removed fast enough to produce a lower sludge age and greater production. In 1965, 1966, 1967 and 1968 solids were not removed fast enough and the sludge age was greater resulting in endogenous respiration but possibly a more stable sludge. This greater solids production and removal may be the reason for the increase noted in the ability of the West Plant to remove phosphorus. The greater the solids production, the greater the amount of phosphorus removed.


The increased phosphorus removal efficiency of the East Plant was confirmed by the increased phosphorus content of the return sludge.

MONTHLY AVERAGES		JAN. 12 -	DEC. 31	-
West Plant R.S.	_	2.29%	as P	
East Plant R.S.	_	2,61%	as P	

BOD mg/l and Tons Solids Produced REMOVED 170 150 MONTH M S M Ó Ń Ď Α Figure ||

1970 Solids Production per BOD Removed

Along with the phosphorus differences, the pickle liquor addition clearly indreased the iron content of the East Plant return sludge

MONTHLY AVERAGES

JAN. 12 - DEC. 31

West Plant - 1.86% as Fe
East Plant - 5.08% as Fe

The monthly average mixed liquor and return sludge properties are shown in Table 4 and the entire data in Appendix H. The greater amount of ash in the East Plant sludge reflects the iron addition. The nitrogen in the sludges from both plants on a yearly average are almost exactly the same when based on an ash free sample.

From January 12 - December 31, 1970 a total of 4,177,394 gallons of waste pickle liquor were added averaging 13,060 gallon per day or 9,274 lbs per day to the East Plant. The specific gravity ranged from 1.090 (0.20 pounds of iron per gallon) to 1.333 (1.04 lbs of iron/gal.) averaging 1.235 (0.71 lb of iron/gallon).

The phosphorus and iron content of the return sludge increased as expected and the question was raised as to the form in which the phosphorus had precipitated. The grant included funds for x-ray diffraction tests to be conducted at Marquette University through the Civil Engineering offices of Dr. Raymond J. Kipp, Chairman, and Dr. Sudershan K. Malhotra, Assistant Professor. The work was done by Dr. Martin A. Seitz and Mr. Robert Riedner (15) of the Marquette College of Engineering. The objective of the x-ray diffraction was to determine the nature of any crystalline inorganic or organic matter in the sludge residue. Return sludge from the West and East Plants was obtained and dried. The dried material was then magnetically separated for x-ray diffraction of the magnetic portion. The details of the procedure are in Appendix I. The inorganic crystalline compound, Vivianite: $\operatorname{Fe}_3(\operatorname{PO}_4)_2 \cdot 8 \operatorname{H}_20$ and variations of ferrous phosphate $(\operatorname{Fe}_3(\operatorname{PO}_4)_2 \cdot (8-x) \operatorname{H}_20)$ were found in the sludge from both plants.

Some of the conclusions to the work by Seitz and Riedner (15) were:

- "1. In order to identify the compound species in the sludge residue, they must be concentrated and separated from the bulk material.
- 2. Vivianite in a defective form, $Fe_3(PO_4)_2 \cdot (8-x) H_2O$, is present in the sludge residue in varying amounts, of the order of 1%.

3. Freeze drying methods lead to better results upon x-ray analysis, while air drying methods lead to better weight analysis results. Further work, mainly in the area of electrostatic charge pick-up by powder particles, is required in order to obtain a more reliable weight analysis."

The relative concentrations of the ferrous phosphate forms were not determined but of the dried solids samples obtained, one West Plant sample had the greatest percent of magnetic material. This may have resulted from the drying method used (Freeze dried). Much more work is necessary before any conclusions can be drawn.

C. Miscellaneous Tests

During the course of the grant period additional tests were conducted to further investigate the characteristics of the pickle liquor and the associated effect on the properties of the mixed liquor and effluents. These tests included pickle liquor free acid determination; alkalinities on sewage mixed liquor and effluents; soluble sulfates on sewage and effluents; phosphorus uptake rates of the mixed liquor; and phosphorus release in the sedimentation basins.

1. Pickle Liquor Free Acid

The free acid in the pickle liquor from the A. O. Smith Corporation varied from 2.1 to 5.8% $\rm H_2SO_{l_1}$ in the samples collected. The addition of this acid to the East Plant mixed liquor had only a slight effect on the pH with the yearly average West Plant mixed liquor being pH 7.1 and that for the East Plant being pH 7.0. The sulfurichydrochloric and pickle liquor from the U. S. Steel Corporation was stronger in free acid and the free acid ranged from 6.6% to 9.3% $\rm H_2SO_{l_1}$. The individual results are listed in Appendix J.

2. Alkalinities on Sewage, Effluents and Mixed Liquors

Periodically, starting in June, samples of screened sewage, effluents and mixed liquors were collected for an alkalinity determination. This was done to determine the effect of the pickle liquor acid on the alkalinity of the system. The yearly sewage alkalinity averaged 224 mg/l as CaCO₃ with the effluents averaging 213 in the West Plant and 169 in the East Plant (20.7% difference in the effluents). The alkalinities for the mixed liquors averaged 197 for the West Plant and 187 for the East Plant. The entire data is listed in Appendix K. The differences caused no problems in plant operation.

3. Soluble Sulfates on Sewage and Effluents

Since ferrous sulfate was being added to the East Plant, samples of screened sewage and effluents were collected to determine the differences in the sulfate concentrations. During the early

part of the year a few daily samples were analyzed for soluble sulfate and started again in August. Initially some problems were experienced with the analyses but by the end of August all the problems were solved and weekly composites were collected and analyzed. This data from August 23, 1970 through January 2, 1971 should be very representative of what the actual soluble sulfate concentrations will be. An average of the weekly composite data shows a sewage soluble sulfate concentration of 120 mg/l SO_{ll} with the effluents having 123 and 145 mg/l SO_{ll} respectively for the West and East Plants. The East Plant effluent had a 17.9% higher sulfate concentration but the increase was not substantial enough to cause concern. As a comparison of relative sulfate concentrations, the 1962 U. S. Public Health Service drinking water standard is 250 mg/l SO_{ll} (16). The entire data is in Appendix L.

4. Phosphorus Uptake

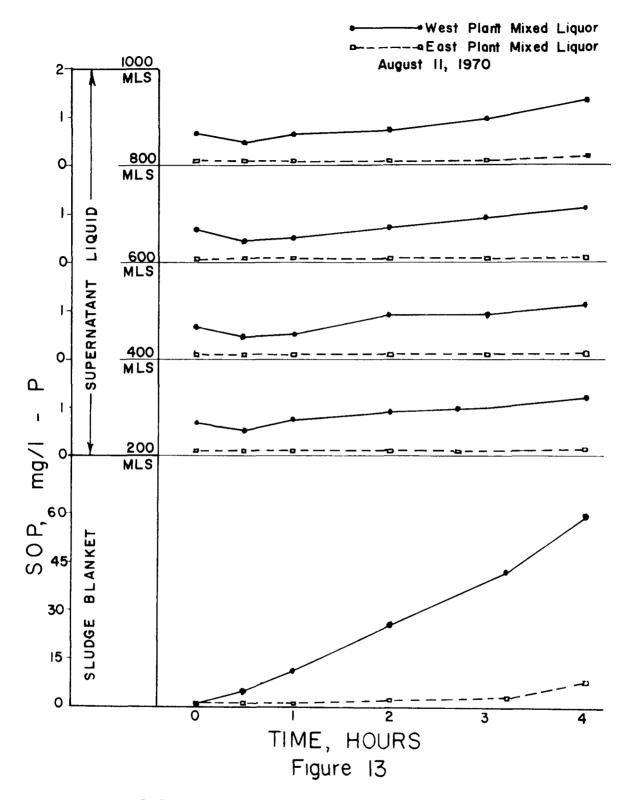
To further understand the effects of the pickle liquor iron addition, a few simple phosphorus uptake and release studies were conducted. This iron addition, as one would expect, should change the rate of phosphorus uptake in the mixed liquor through the aeration period along with reducing the amount of phosphorus released after the mixed liquor is directed into the sedimentation basin. An initial investigation was conducted to determine if there were any sample handling problems. Samples of East Plant sewage, return sludge and mixed liquor were collected and allowed to stand for one or two hours. An aliquot was taken after various periods to determine how fast the concentration of the soluble ortho-phosphate (SOP) would change. The data shown in detail in Appendix M indicates a small change in concentration of the SOP in sewage, but the concentration changes in the return sludge and mixed liquor were significant. Therefore, sample preparation (filtration) was undertaken immediately after collection.

The SOP uptake rate (biological and/or chemical) was determined by collecting samples from the West and East Plants at various stages during the aeration period. Only one complete test run was conducted but the results do clearly indicate a difference between the two plants. The data in Table 5 indicates a much faster SOP uptake in the East Plant as expected because of the iron ladened sludge and the iron addition.

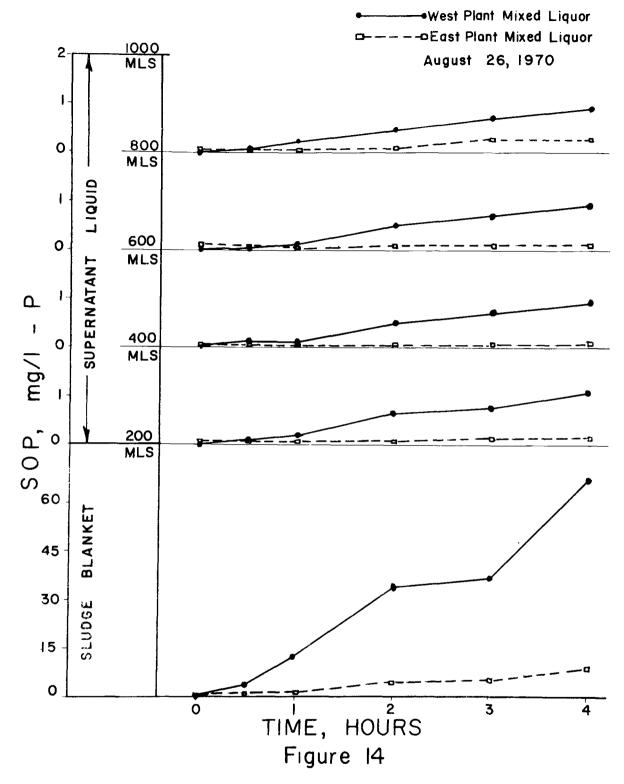
TABLE 5

SOLUBLE ORTHO - PHOSPHATE UPTAKE

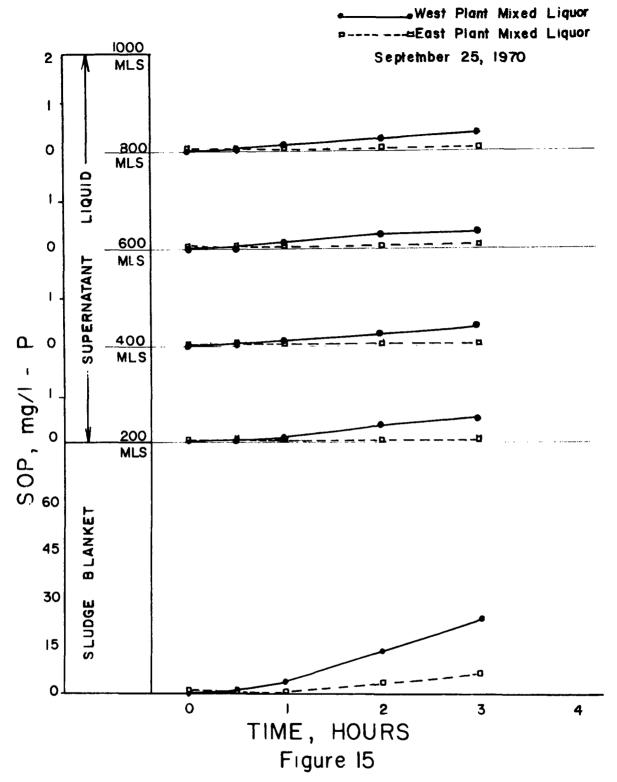
SOP in mg/l P

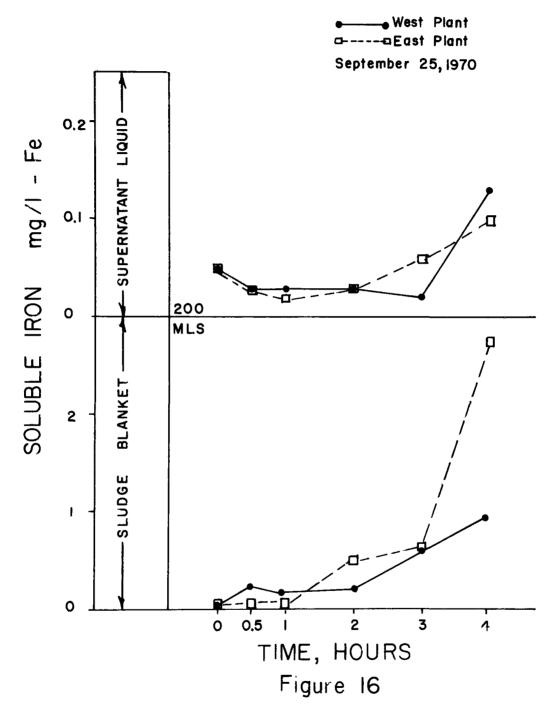

PLANT	SEWAGE	RETURN SLUDGE	MIXED LIQUOR IN FEED CHANNEL	AERATIO INLET	N TANK MIX TURNING POINT	CED LIQUOR OUTLET
East	1.5	1.4	1.9*	0.66	0.38	0.39
West		0.97	2.8	2.8	0.38	0.31

*Just prior to the addition of the pickle liquor


5. Phosphorus Release

The release of SOP from the mixed liquor suspended solids can be a considerable amount as indicated by the bench scale studies of R. M. Manthe (17). It is difficult to compare bench studies with actual conditions in a waste water treatment plant but for purposes of comparison this type of an experiment can be useful. The difference in the SOP release between the West and East Plant mixed liquor solids was determined by obtaining samples of mixed liquor from the aeration tank outlet and allowing them to settle for 0, 1/2, 1, 2, 3 and 4 hours. The original mixed liquor sample was separated into five - liter graduated cylinders for settling. After each designated time period the cylinder was divided into five aliquots each representing 200 ml. Each aliquot was filtered as soon as possible and analyzed for SOP. The pH of each sample was also determined. Three tests were conducted in this fashion except the first test was conducted in the laboratory and the second and third tests were set up at the site of sample collection. The data clearly indicates the reason for an on site test. The time delay between the sample collection and delivery to the laboratory was too great and as shown in Figure 13 the West Plant mixed liquor had already released a considerable amount of SOP.


The comparison bench SOP release tests in Figures 13, 14 and 15 indicate that the iron added to precipitate the phosphorus also decreases the release of SOP. Phosphorus release can hinder the over-all phosphorus removal because a good phosphorus uptake could be obtained in the aeration stage of treatment and lost in the sedimentation basin. The varying soluble iron concentration was investigated along with SOP release during one of the test runs. Figure 16 indicates that a release of iron occurs in both plants, especially in the sludge blankets. The pH values of the supernatant remained relatively constant while the pH of the sludge from both plants decreased markedly which would tend to solubilize more iron. In spite of the pH change and soluble iron release in the


SOP Release From Mixed Liquor

SOP Release From Mixed Liquor

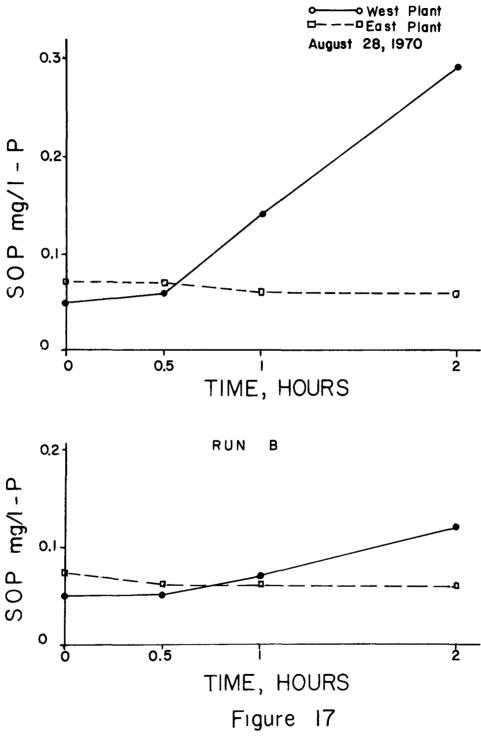
SOP Release From Mixed Liquor

Soluble Iron Release From Mixed Liquor

East Plant sludge, very little SOP was released in comparison with the West Plant.

Two additional tests were conducted to study SOP release but these involved measuring only the supernatant SOP after settling for 0, 1/2, 1 and 2 hours. The data shown in Figure 17 again indicates a greater release of SOP from the West Plant mixed liquor suspended solids.

D. Rate of Iron Addition


At the start of the grant period it was proposed to vary the iron addition rate to determine minimum, maximum and optimum iron requirements. This is the reason why the complicated automatic iron addition controls were ordered. Unfortunately this equipment was not operating until the middle of December 1970 because of delays in equipment delivery and the time remaining was too short for any experimentation.

The iron added throughout the year was varied producing monthly averages of 13.7 mg/l Fe in March and April to 6.2 mg/l Fe added to the mixed liquor in October. The dosing was rough because it was not in proportion to the mixed liquor flow, sometimes in proportion to the expected phosphorus concentration and sometimes in proportion to the supply of pickle liquor available. The data in Table 4 indicates the average monthly concentration of iron added to the East Plant mixed liquor but no optimum iron requirement can be determined from the information available.

E. Mixed Liquor Biota

Microscopic examinations of the mixed liquor from both the West and East Plants were conducted five days per week for the first part of the grant period and was reduced to biweekly examinations in September for the remainder of the grant. These examinations determined the types and numbers of organisms and the general condition of the mixed liquor.

At the start of the project in January, a very active and profuse number of organisms were noted in the East Plant mixed liquor with normal concentrations in the West Plant. The numbers decreased after a change in the sewage distribution from 42% to the West and 58% to the East Plant to 50% to each plant. In February the organisms continued to decrease in the East Plant after six of the twenty aeration tanks were taken out of service. No general change was noted in the West Plant. During March, low mixed liquor suspended solids were maintained in both the West and East Plants and a further decrease in biota numbers was observed. This light biota concentration continued until the middle of May when an increase was observed

SOP Release From Mixed Liquor

(an especially light concentration was present in the East Plant). The biota concentration increased through May and high biota concentrations with many varieties were noted from June through October with very high concentrations in August and September. During November the number of organisms decreased until a "normal" concentration was reached in December.

This "normal" concentration is that compared to the observations of the previous years. Considering the changes in the sewage characteristics, the organism may continue to change or vary as they did in 1970. This is extremely difficult to analyze and only future microscopic analyses can determine any trends. Due to the many changes in plant operations, sewage characteristics, the iron addition, and the limited data, no detailed conclusions can be reached. However, the data does indicate that no deleterious effects on the biota could be traced to the iron addition. Appendix N shows sample microscopic analyses of the mixed liquor on arbitrarily chosen days to show generally the ranges of organisms throughout the year.

During the course of the project one very drastic difference between the West and East Plants was the algae growths present in the sedimentation basins (on the walls and overflow weirs). In April an excessive algae growth was noted in the East Plant. A small amount of algae always grew in the sedimentation basin but not to this extent. This excessive algae growth continued through August and in June the growth was so profuse that numerous basin cleanings were necessary. The algae growth in the West Plant was normal, increasing in May and decreasing in August. In September the algae had essentially disappeared in both plants, with the coming of colder weather. The algae had completely disappeared by the end of October.

Samples of the algae from both the West and East Plant sedimentation basins were collected for microscopic identification. The following Table 6 lists the various types of algae identified along with the range of concentration in the samples collected.

F. Effect of Iron Addition on the Plant Physical Facilities

Every year at the Sewerage Commission a routine maintenance program is scheduled for normal repair and cleaning of equipment. This schedule includes draining, cleaning and checking East Plant aeration tanks, sedimentation basins and channels which gives us an ideal situation to determine if the iron addition has any effect on the plant physical facilities.

In addition to the normal routine maintenance, special consideration was given to the East Plant mixing channel where the return sludge is added to the raw screened sewage, followed by the iron addition. The mixing channel has five sets of swing diffusers with ceramic tubes. In February 1970 two sets of the diffusers were

TABLE 6

MICROSCOPIC IDENTIFICATION OF SEDIMENTATION BASIN ALGAE

	WEST PLANT	EAST PLANT
Green Algae Filaments		
ULOTHRIX RHIZOCLONIUM MOUGEOTIA MICROSPORA PITHOPHORA CLADOPHORA STIGECLONIUM FILAMENTS MICROTHAMNION CYLINDROCAPSA SCENEDESMUS	Negligible to 50% 0 to possible 10% 0 to < 5% 0 to 20% 0 to 10% 0 to possible 10% 0 to > 90% 0 0 to low number 0 to negligible	30 to 60% 0 to 10% 0 to < 5% 0 to 40% 0 0 to <5% 0 to <2% 0
Blue Green Algae		
OSCILLATORIA	Low to 10%	0 to >20%
DIATOMS		
PINNATE	Negligible to very high count	Medium to high count
CENTRIC	Low to high count	Negligible to medium count

replaced with new ceramic tubes to determine the effect of the iron on these diffusers. The remaining three sets were washed and inspected. During September 1970 the swing diffusers were raised for inspection showing the tubes covered with a layer of sludge (similar to February), which was easily removed by washing with water. The under layer of sludge did however have a iron red cast. The inspection of the tubes indicated no unusual conditions.

During the warmer months, aeration tanks and sedimentation basins were drained, cleaned and repaired under the routine maintenance program. In May when one of the East Plant aeration tanks was drained a slight iron red coloration deposit was noted on the walls of the tank for the first 200 feet on the inlet side. Two East Plant sedimentation basins were inspected in September. One of the basins had a ring of red iron colored deposit on the lower walls where the sludge blanket was normally in contact with the wall. The other basin had similar markings but not as pronounced. Other than the coloration, no repairs or problems with the plant physical facilities could be related to the iron addition.

In the sludge filter and drying operation a considerable loss in service life was noted for some of the equipment parts. There was no evidence that could relate these problems to the pickle liquor addition. The sludge dewatering characteristics changed markedly in 1970 because of the change in the waste water properties. The waste water changes in 1969 prior to pickle liquor addition also affected the sludge dewatering operation. Any maintenance problems in the sludge filtering and drying operation were most likely related to the waste water characteristic changes.

G. Effect of the Iron Addition on the Ferric Chloride Demand

Ferric chloride was used to condition the thickened waste sludge prior to filtration. The initial thoughts were that if ferrous iron was added to the East Plant and the iron concentration in the East Plant waste sludge was increased, possibly the ferric chloride requirements would decrease. The ferric chloride used per dry solids production was tabulated on a daily basis and compared to quantities used in 1968 and 1969. Table 7 lists the monthly average ferric chloride use for three years.

TABLE 7

MONTHLY AVERAGE FERRIC CHLORIDE USE REQUIREMENTS
FOR SLUDGE CONDITIONING

MONTH	Lbs. Anhy	Average Ferric Chloride Use Lbs. Anhydrous FeCl ₃ per Dry Tons Recovered Solids					
	1968	1969	1970				
January	211.82	218.62	228.75				
February	213.22	206.32	229.98				
March	206.46	209.06	238.53				
April	209.49	199.36	194.46				
May	203.42	211.45	215.52				
June	220.11	240.26	226.78				
July	234.04	232.74	260.08				
August	223.47	219.50	231.15				
September	226.62	254.63	245.62				
October	239.73	257.18	262.69				
November	251.10	236.91	257.63				
December	223.83	229.33	238.03				
Average	221.94	226.28	235 .7 7				

The data indicates that no reduction was obtained in the ferric chloride requirements for sludge conditioning. As a result of the changes in the characteristics of the raw sewage, comparison of these three years was not really valid. The solids production for 1970 was much different than for the previous years as shown in Figure 12. Working with a lower sludge age and a less stable sludge was probably the reason for the greater ferric chloride usage per ton of solids recovered. Additional data collection is necessary before a review should be made. The sewage properties and the resultant effect on the mixed liquor quality plays an important role in the sludge dewatering characteristics and therefore data from years with similar sewage should be compared. Possibly in the years to come, this data may be obtained.

SECTION X

ACKNOWLEDGEMENTS

This report was written by Raymond D. Leary, Chief Engineer and General Manager; Lawrence A. Ernest, Director of Laboratory; Roland S. Powell, Assistant Director of Laboratory; and Richard M. Manthe, Laboratory Supervisor of Research.

The authors gratefully acknowledge the assistance of the A. O. Smith Corporation of Milwaukee, Wisconsin for their complete cooperation, financial assistance and engineering expertise throughout the study period. We wish to acknowledge Mr. S. K. Rudorf and other staff members of A. O. Smith Corporation, especially Mr. Milton Johnson, whose knowledge and advice have proved invaluable.

Also acknowledged is the Water Quality Office of the Environmental Protection Agency for the financial assistance and technical advice through the project officer, Dr. Robert Bunch.

The assistance from the U. S. Steel Corporation through Mr. George J. Behrens, Chief Engineer, in supplying pickle liquor on a temporary basis in November and December 1970 was appreciated. Without the cooperation from the U. S. Steel Corporation, it would have been necessary to discontinue the project due to a shortage of iron.

The assistance of laboratory technician, Miss Gloria Aldenhoff and all laboratory staff members for their laboratory analyses as well as other Sewerage Commission personnel who have contributed to the success of this project is greatly appreciated.

SECTION XI

REFERENCES

- 1. Levin, G. V. and Shapiro, J., "Metabolic Uptake of Phosphorus by Wastewater Organisms", JWPCF, 37, 6, 800, June 1965.
- 2. Vacker, D., Connell, C. H. and Wells, W. N., "Phosphate Removal Through Municipal Wastewater Treatment at San Antonio, Texas", <u>JWPCF</u>, 39, 5, 750, May 1967.
- 3. Borchardt, J. A., and Azad, H. S., "Biological Extraction of Nutrients", JWPCF, 40, 10, 1739, October 1968.
- 4. Wells, W. N., "Differences in Phosphate Uptake Rates Exhibited by Activated Sludges", JWPCF, 41, 5, 765, May 1969.
- 5. Menar, A. B. and Jenkins, D., "The Fate of Phosphorus in Waste Treatment Processes: The Enhanced Removal of Phosphate by Activated Sludge", Paper presented at the 24th Purdue Industrial Waste Conference, Purdue University, LaFayette, Indiana, May 6-8, 1969.
- 6. Barth, E. F., and Ettinger, M. B., "Mineral Controlled Phosphorus Removal in the Activated Sludge Process", JWPCF, 39, 8, 1362, August 1967.
- 7. Hubbell, George E., "Process Selection for Phosphate Removal at Detroit", Presented at the 41st Annual Conference of the Water Pollution Control, September 24, 1968.
- 8. "Milwaukee Waste Water Treatment Facilities", Serving the Metropolitan Sewerage District Under Control and Supervision of the Sewerage Commission of the City of Milwaukee, 1968. Brochure prepared by Sewerage Commission personnel explaining the plant facilities.
- 9. Leary, R. D. and Ernest, L. A., "Industrial and Domestic Wastewater Control in the Milwaukee Metropolitan District", <u>JWPCF</u>, 39. 7, 1223 July 1967.
- 10. Leary, R. D., Ernest, L. A., Katz, W. J., "Effect of Oxygen -Transfer Capabilities of Wastewater Treatment Plant Performance", <u>JWPCF</u>, 40, 7, 1298 July 1968.
- 11. Leary, R. D., Ernest, L. A., Katz, W. J., "Full Scale Oxygen Transfer Studies of Seven Diffuser Systems", <u>JWPCF</u>, 41, 3, 459, March 1969.

- 12. Ernest, L. A. and Manthe, R. M., "Waste Pickle Liquor Utilization at the Milwaukee Sewerage Commission for Phosphorus Removal", Presented at the Indianapolis Scientific and Engineering Foundation, April 30, 1970.
- 13. Leary, R. D. and Ernest, L. A., "Municipal Utilization of an Industrial Waste for Phosphorus Removal", Presented at the 32nd Porcelain Enamel Institute Technical Forum at the University of Illinois, October 8, 1970.
- 14. "Standard Methods for the Examination of Water and Waste Water", 12th Edition, American Public Health Association, New York, 1965.
- 15. Seitz, M. A., Riedner, R., "X-Ray Diffraction Studies of Sewage Sludge Residue", Marquette University, January 1971.
- 16. McKee, J. E. and Wolf, H. W., "Water Quality Criteria", 2nd Edition, State Water Quality Control Board, Sacramento, California, 1963.
- 17. Manthe, R. M., "Uptake and Release of Soluble Ortho-phosphate in an Activated Sludge Plant", Masters Thesis, Marquette University, Milwaukee, Wisconsin, 1970.
- 18. "Official Methods of Analysis of the Association of Official Agricultural Chemists", 10th Edition, Washington D.C., 1965.
- 19. "Scott's Standard Methods of Chemical Analysis", 5th Edition, New York.

SECTION XII

NOMENCLATURE AND GLOSSARY

Phosphorus Nomenclature

1. Total Phosphorus (TP).

All the phosphorus present in sample (whether in the soluble or insoluble state and present as ortho, poly, organic, etc., phosphorus compounds) which is converted by ternary acid digestion to soluble orth-phosphate.

2. Total Soluble Phosphorus (TSP).

All the phosphorus compounds in the sample filtrate converted by ternary acid digestion to orth-phosphate.

3. Soluble Orho-Phosphate (SOP).

All phosphorus measured by direct colorimetric analysis of sample filtrate. (Angel Reeve Glass Fiber Pad No. 934AB).

Iron Nomenclature

1. Total Iron.

All the iron present in the sample.

2. Total Soluble Iron.

All the iron compounds in the sample filtrate. (Filtered thru Angel Reeve Glass Fiber Pad No. 934AB).

Glossary

- 1. BOD five day biochemical oxygen demand.
- 2. COD chemical oxygen demand.
- 3. DO dissolved oxygen.
- 4. EP East Plant.
- 5. EPE East Plant effluent.
- 6. MGD million gallons/day.
- 7. ML mixed liquor.

- 8. MLSS mixed liquor suspended solids.
- 9. MLVSS mixed liquor volatile suspended solids.
- 10. N nitrogen.
- 11. P phosphorus.
- 12. SDI sludge density index.
- 13. SOP soluble ortho-phosphate.
- 14. SS screened sewage.
- 15. TP total phosphorus.
- 16. TSP total soluble phosphorus.
- 17. WP West Plant.
- 18. WPE West Plant effluent.

SECTION XIII

APPENDIX

Appendix	<u>Title</u>	Page
A	Actinomycetaceae, Genus Nocardia	66
В	Pickle Liquor Addition Chart	70
C	Phosphorus Determination with Technicon Autoanalyzer	71
D	Determination of Phosphorus in Sludges	74
E	Determination of Ferrous Iron in Pickle Liquor	75
F	Determineation of Iron in Sludges	76
G	Determination of Nitrogen in Milorganite and Sludges	78
Н	Plant Operating Data	80
I	X-ray Diffraction Techniques	128
J	% Free Acid in Pickle Liquor	129
K	Alkalinity	130
L	Soluble Sulfate Concentration	132
М	Uptake and Release of Soluble Ortho-Phosphate	133
N	Microscopic Count of Mixed Liquor	139

APPENDIX A

ACTINOMYCETACEAE, GENUS NOCARDIA

In February, 1969 following a reduction in plant loading the East Plant (a 115 mgd secondary portion of the 200 mgd Jones Island activated sludge waste water treatment) operated by the Sewerage Commission of the City of Milwaukee suddenly developed a heavy growth of floating solids and microorganisms. Microscopic examination of the floating material by personnel from the Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio, Marquette University, University of Wisconsin-Madison and the Commission indicated that the principal microorganism in the foam belonged to the ACTINOMYCETACEAE, Genus NOCARDIA. The predominant species of NOCARDIA were the proteolytic type commonly found in soils and frequently in sewage associated with the break down of paper cellulose.

This type of floating material, which had never been noted previously, appeared in all portions of the East Plant where mixed liquor or return sludge were being aerated. Chemical analysis on the floating material indicated that it contained 85 percent organic matter and 31 percent hexane soluble material.

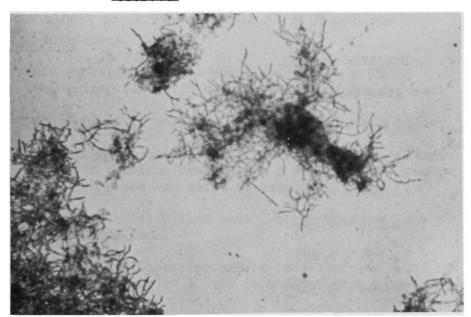
Attempts made to reduce the floating material with regular defoaming agents were unsuccessful, and vacuum skimming of the aeration tanks and clarifier feed channels was instituted.

Surprisingly, no floating material appeared in the heavily loaded West Plant (85 mgd secondary portion of the 200 mgd Jones Island Plant) which received the same screened sewage as the East Plant. During this period (February 18th to March 10th) when the floating material first appeared in the East Plant, the food to microorganism ratio (1b BOD applied per day/1b mixed liquor volatile suspended solids under aeration) averaged 0.312 in the East Plant and 0.543 in the West Plant. During this period there were no reductions in the plant efficiencies as measured by the BOD and suspended solids removal.

The settling characteristics of the mixed liquors were not affected as indicated by the average S.D.I. of 1.11 in the East Plant and 1.18 in the West Plant.

In an attempt to overcome this foam problem, the food to microorganism ratio in the East plant was gradually increased by reducing the mixed liquor suspended solids and by increasing the BOD applied. The quantity of air applied was reduced from an average of 1.44 to 1.18 cu ft/per gal of sewage.

The quantity of the floating material has been greatly reduced by the skimming operation and/or by the changed loading and air rates or by the weather or other conditions beyond the control of the plant operators. Figures 18 and 19 are pictures of the froth.


Figure 18

Actinomycetaceae, Genus Nocardia

APPENDIX A (CONT.)

March 1970 Nocardia Froth on East Plant Aeration Tank

Microscopic Examination (430x), Nocardia Froth from East Plant. Stained with Malchite Green - Safranin

Figure 19
Actinomycetaceae, Genus Nocardia

APPENDIX B

June 9, 1970

TO: Mr. M. Johnson (A. O. Smith Corporation)

cc: Mr. L. Ernest, Mr. R. Powell, Mr. D. Nelson

Effective immediately changes will be made in the rate of pickle liquor addition to reduce the total iron added and to add at two different rates to correspond to day and night East Plant mixed liquor flow variations. The following Table is to be used to determine the gallons per minute of pickle to be added for the different specific gravities.

For Addition of 10 mg/l Fe in the day (7:00/A.M. to 5:00/P.M.) and 8 mg/l Fe at night (5:00/P.M. to 7:00/A.M.)

	G. P. 1	М.
Specific Gravity	Day	Night
less than 1.149	20	28
1.150 - 1.178	16	13
1.179 - 1.208	13	10.5
1.209 - 1.236	11	9.0
1.237 - 1.265	9.5	8.0
1.266 - 1.293	8.5	7.0
1.294 - 1.321	7.5	6.0
1.322 - 1.350	7.0	5.5
Greater than 1.351	6	4.5

Richard M. Manthe

Supervisor

APPENDIX C

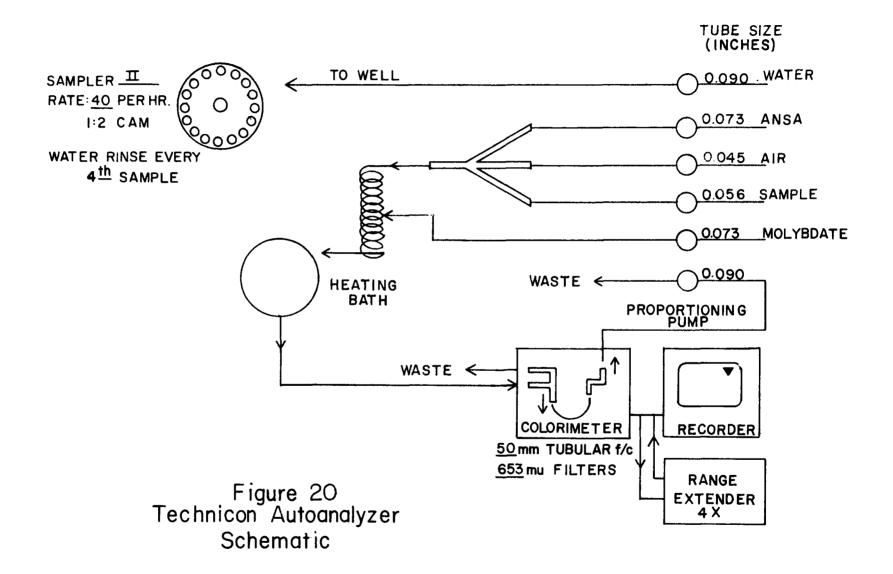
Phosphorus Determination with Technicon Autoanalyzer

Reagents:

- A. Ammonium Molybdate Dissolve 200 gm of $(NH_4)_6$ Mo $_70_{24}$ · 4H_20 in 10 liters of distilled water. Add 1680 ml. of c. H_2SO_4 and dilute to 20 liters.
- B. ANSA Stock Solution Dissolve 219 gm Na₂S₂O₅ and 8 gm Na₂SO₃ in 700 ml of distilled water (temperature<50°C), add 4 gm of 1-amino 2 naphthol 4 sulfonic acid (ANSA). Dilute to 2 liters. For daily use prepare a 1:10 dilution.
- C. Phosphorus Standard Curve Use undigested standards from 0.1 to 1.2 mg/1 - P in increments of 0.1 mg/1 - P from a 1000 mg/1 - P stock solution.
- D. Ternary Acid Mixture Add 100 ml of 96% H₂SO₄ to 500 ml of 70% HNO₃, mix. Add 200 mls 70% HClO₄, mix and cool.

Sample Preparation:

A. Total Phosphorus


- 1. Mix unfiltered sample and pipette into a 100 ml volumetric flask (20 ml effluent, 5 ml for sewage).
- 2. Add 5 ml of ternary acid mixture and 3 glass beads.
- 3. Heat on hot plate to dense white fumes of perchloric acid and continue heating for 5 minutes. Then remove from hot plate and allow to cool.
- 4. Add 20 ml of distilled water, bring to a boil for 5 minutes and cool.
- 5. Add 1 drop of phenolphthalein indicator and neutralize with 10 N NaOH to a faint pink color.
- 6. Just discharge the pink color with 1 \underline{N} H₂SO₄, dilute to 100 ml and mix
- 7. Transfer solution to the sampling cup of the autoanalyzer.
- 8. Obtain the phosphorus concentration of the sample from the standard curve.

B. Total Soluble Phosphorus

1. Same as total phosphorus, except the aliquot is filtered through an Angel Reeves glass fiber pad 934 AH.

C. Soluble Ortho - Phosphate

- 1. Filter through an Angel Reeves glass fiber pad 934 AH.
- 2. Dilute filtrate if needed.
- 3. Place in sampling cup of autoanalyzer.

APPENDIX D

Determination of Phosphorus in Sludges
by Gravimetric Quinoline Molybdate Method

Reagents:

- A. Citric Molybdic Acid Reagent.
 - 1. Dissolve 54 gm 100% molybdic anhydride (Mo 03) and 12 gm NaOH in 400 ml hot water and cool.
 - 2. Dissolve 60 gm citric acid in 140 ml HCl and 200 ml water.
 - 3. Gradually add molybdic solution to citric acid solution with stirring, cool, filter and dilute to 1 liter.
- B. Quinoline Solution.
 - 1. Dissolve 50 ml synthetic quinoline with stirring in mixture of 60 ml HCl and 300 ml water, cool and dilute to 1 liter.

Procedure:

Pipette a 50 ml aliquot from the remaining sample described in the iron procedure Appendix F Part A "Treatment of Sample", to a 500 ml erlenmeyer flask. Add 30 ml citric molybdic acid, boil 3 minutes, remove from heat, add 10 ml of quinoline with continuous swirling and cool. Filter through a Gooch containing a glass fiber filter pad, and wash with 25 ml portions of water. Dry at 250°F, cool in desiccator to constant weight. Weigh as $(C9H_7N)_3H_3$ [PO₄ · 12 Mo O₃].

Calculation:

%P= (Wt-Reagent Blk) (Gravimetric factor .01400)
Wt of Sample

APPENDIX E

Determination of Ferrous Iron in Pickle Liquor by Volumetric Dichromate Method

Reagents:

- A. Sulfuric Acid 1:4
- B. Phosphoric Acid 1:4
- C. Mercuric Chloride
- D. Potassium Dichromate
- E. Diphenylamine Sulfonate indicator (See Appendix F)

Procedure:

Place a 100 ml aliquot of pickle liquor sample in a 1 liter flask and dilute to one liter. Pipette a 10 ml aliquot into a 250 ml beaker, add 10 ml of 1:4 sulfuric acid, 50 ml of 1:4 phosphoric acid and 0.3 ml of diphenylamine sulfonate indicator. Titrate immediately with 0.1N potassium dichromate to a permanent blue endpoint. Subtract 0.05 ml for an indicator correction.

Calculation:

lbs Fe/gal = ml 0.lN
$$K_2Cr_2O_7$$
 x factor of .0466
factor = $1000 \times 3.785 \times .005585$

APPENDIX F

Determination of Iron in Sludges

by Volumetric Dichromate Method

Reagents:

- A. Hydrochloric Acid 1:1
- B. Sulfuric Acid 1:4
- C. Phosphoric Acid 1:4
- D. Mercuric Chloride (saturated)
- E. Potassium Dichromate (standard 0.1 N)
- F. Stannous Chloride solution
 - 1. Dissolve 50 gm SnCl₂ in 100 ml of concentrated HCl, dilute with water to 500 ml. Store over clean metallic tin.
- G. Diphenylamine Sulfonate indicator
 - 1. Dissolve 0.32 gms of barium diphenylamine in 100 ml of water.
- H. Magnesium Nitrate solution
 - 1. Dissolve 950 gm P-free Mg(NO₃)₂·6H₂O in water and dilute to 1 liter.

Note: All reagents prepared with distilled water.

Procedure

Part A Treatment of Sample

1. Place a 1 gm sample in a silica dish, add 5 ml of Mg(NO₃)₂ solution, and evaporate. Then ignite at 500 to 600° for about 7 minutes. Add HCl and evaporate to dryness twice. Add HCl and wash solution into a 250 ml beaker with water, add 10 ml of HNO₃ and boil for three minutes. Cool solution in a water bath, filter into a 250 ml volumetric flask, wash filter paper and dilute to volume. This solution is used for both the iron and phosphorus determinations.

Take a 100 ml aliquot for the iron determination and save the remaining solution for the phosphorus determination.

2. Place the 100 ml aliquot into a 250 ml beaker, neutralize with ammonium hydroxide and heat but do not boil. Filter the solution, wash the precipitate, and discard filtrate. Dissolve precipitate into a 250 ml beaker using a 1:1 HCl solution, and wash paper thoroughly.

Procedure

Part B Volumetric Dichromate Method

Concentrate the sample prepared in Part A on a hot plate to 100 ml, add stannous chloride drop by drop until sample is decolorized, cool and add 15 ml mercuric chloride solution. Let stand for three to five minutes, add 30 ml 1:4 phosphoric acid, 10 ml of 1:4 sulfuric acid, 4 to 5 drops of diphenylamine sulfonate indicator and titrate with 0.1N potassium dichromate to the purple end point.

Calculation:

% Total Iron = (ml 0.1 N $K_2Cr_2O_7$ -.05) (.005585) wt of sample (.05 is indicator factor)

APPENDIX G

Determination of Nitrogen in Milorganite and Sludges

Reagents:

- A. Sulfuric Acid 93-98% H₂SO₄, N-free
- B. Mercuric Oxide, reagent grade, N-free
- C. Potassium sulfate, reagent grade N-free
- D. Salicylic Acid, reagent grade N-free
- E. Thiosulfate solution

 Dissolve 40 gm commercial Na₂S₂O₃ in 1 L H₂O.
- F. Sodium Hydroxide

Dissolve 450 gm solid NaOH in water and dilute to 1 L. (sp. gr. of solution should be 1.36 or higher).

G. Methyl red indicator

Dissolve 1 gm methyl red in 200 ml alcohol

H. Sulfuric Acid Std 0.1N

Procedure: Part A Treatment of Sample

Place a one gram sample in a Kjeldahl flask, add 40 ml $\rm H_2SO_4$ containing 2 gm salicylic acid, swirl until well mixed and let stand. After sample has stood for a minimum of 20 minutes add 5 gm $\rm N_2S_2O_3^*5H_2O$, swirl and let stand a minimum of 10 minutes. Place on an electric heater and heat sample with occasional swirling until in the liquid state, cool and add 15 gm $\rm K_2SO_4$ and 0.7 gm HgO. Place back on the burner and boil briskly until sample turns a pale straw color. Wash down neck and sides of Kjeldahl flask with 5-10 ml conc. $\rm H_2SO_4$ and continue burning for 2 hours.

Procedure:

Part B Determination

Place cooled sample in a cooling bath and add 200 ml distilled water and let stand 10 minutes. Add 25 ml ${\rm Na_2S_2O_3}$ solution plus two porcelain bumping disks and with the flask in an inclined position pour approximately 90 ml NaOH solution gently down sides so as to layer the NaOH. Immediately connect the flask to the distilling apparatus, agitate and distill into receiver containing the proper amount of 0.1N ${\rm H_2SO_4}$. Collect about 150 ml of distillate and titrate excess standard 0.1N ${\rm H_2SO_4}$ with standard 0.1N NaOH using methyl red indicator.

Calculation:

% N= (ml Std. H₂SO₄x normality - ml NaOH x normality) mol wt N

wt of sample x 1000

_									A HAM.	r Or in	RATIO	WALL I							TUARI	. 191	
D	D	<u> </u>	Tota	al So	lids		S	uspen	ded S	olids			BOI					COD			l
8.	8.	TIEL	g/1		% Rem	oval	mu	g/1		Rem	oval	m	g/1		% Rem	oval	mg/	1		K Rem	oval
t	y	SS		EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE	SS	WPE		WPE	EPE	198 /	WPE	EPE		EPE
1	Th	935	796	823	14.9	12.0	153	21	16	86.3	89.5	150	10 5	34 0	93.0	20.7					
	F	1020	744				256	24	22		91.4				96.3						
	Sa	866	705	713		17.7		21	22	88.9	88.4	180				91.9					
4	Su	675	588			10.5	150	21	15	86.0	90.0	155		13.0	94.8	91.6					
5	М	987	573	616	41.9	37.6	277	12	17	95.7	93.9	325	10,5	18.5	96.8	94.3					
6	T	1050	691	730	34.2	30.5	247	16	24	93.5	90.3	310	10.5	16.0	96.6	94.8					
7	W	1090	771	785	29.3	28.0	364	35	19		92.8	265	21.0	18.0	92.1	93.2	410	. 16	166		59.5
8		1108				31.7	281	42	30	85.0	89.3			29.5		90.6	465	28	20	94.0	
9	F	1075	733	814	31.8	24.3	262	31	86					48.0		85.0	478		137	84.8	
10	Sa	776	670		13.7	8.9	158	17	14	89.2	91.1		į	16.0		91.6	322	57	67	82.3	
11	Su	732	575	-5-5-1	21,4	13.7	158	11	15			145		12.0			229	38	45	83.4	
12	M	1054	621			31.8	273	18	21	93.4	92.3			20.5			600	30	51	95.0	
13	Т	1039	692			33.5	261	8	16	96.9	93.9	350		9.8		97.2	756	50	53	93.4	93.0
14	N	1054	681		35.4	27.6	262	4	13	98.5	95.0		12.0			93.9				 .	
15		1080	774	12-1		26.8	341	20	21	94.1	93.8					92.7	585	41	45	93.0	
16	F	1119	878		21.5	24.3	316	53	31	83.2	90.2			12.5			525	101	42	80.8	
17	Sa	878	775	743		15.4	181	39	12	78.5				10.0		93.8	307		30	79.2	
18	Su	696		604		13.2	141	15	2	89.4				11.0			204	35	37	82.8	
19	M m		653	609		39.7	256	25	10	90.2					93.4		517		67	80.9	
20	T W		668				283	24	14		95.0			10.5			642	86	72	86.6	
21 22			733 724			44.5 28.0	581	19 17	12 13	96.7 92.6		270	7	11.5			571		55	86.7	
23	1 1	1036	705	739			231 219	34	8	84.5				10.5			546		58	85.5	
5			659	683			198	29	18		90.9			10.0		95.3 93.8	599	125	78	79.1	
-	Sa		756	740		26.2	165	21	19	87.4				13.5		90.0	434	108 88	78 78	75.1	
25 26	M			830		27.8	242	14	16	94.2				12.6			290 543		71	69.7	
27		1477					259	17	9	93.4				10.4				92		84.9 83.6	
24		15261					294	18	24	93.9				19.5			<u> </u>	83	96	84.8	05.4
29		11511			Minus		242	20	19	91.7				11.0			547	87	79	84.1	
30		1050					265	28	23	89.4				13.0		95.3	390		81		79.2
31	Sa				22.1		162	25	11		93.7			9.0		95.3	424		110	73.3	

									PLAN	T OPE	RATIO	NAL I	ATA					FEBRU	IARY	1970)
D	D		Tota	al So	lids		S	uspen	ded S	olids			BOI)				COL)		
a	8	TiB.	g/l		% Rem	oval	m	g/l		Rem	oval	m	g/l		% Rem	oval	48 /	1		% Rem	oval
t	y	SS		EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE	SS	WPE		WPE	EPE	SS	WPE	EPE		EPE
1	Su	863	750	719	13.1	16.7	174	18	27	89.7	84.5	100	12.5	9.5	87.5	90.5	252	82	68	67.5	73.0
2	М	959	636	684	33.7	28.7	168	13	15		91.1	280			96.1	93.6	487	74	71	84.8	85.4
3	T	1014	715	753	29.5	25.7	229	15	21	93.4	90.8	240	12.0	12.5	95.0	94.8	525	78	76	85.1	85.5
14	W	1096	747	767	31.8	30.0	235	17	14	92.8	94.0	270	14.0	12.5	94.8	95.4	578	86	81	85.1	86.0
5	Th	1161	804	831	30.7	28.4	245	11	7	95.5	97.1	290			95.5	95.7	593	100		83.1	
6	F	1333		1051	28.2	23.4	187	12	12		93.6	295	16.8	13.8	91.7	95.3	588	111			85.9
7	Sa	907	950		Minus			7	12		94.5	180				94.2	420	96		77.1	
8	Su	964	658	777	31.7			7	13		92.2	130				93.5	274	75		72.6	
9	M	1214	810	822	33.3			13	15		94.6			/	95.7	95.1	547	73		86.7	
10	T	753			Minus			7_	6		97.6				96.1	96.2	626	82		86.9	
11	W		680			21.2		9	17		92.6					96.3	584	90		84.6	
12	$\overline{}$	1008	010	820	32.7			14	19	94.2						94.8	552				83.7
13	F			725	30.5			22 16	27 18	90.3			17.0			93.1	528	96		81.8 78.9	
14	Sa	750	561		18.9			11	16	92.7	91.8 88.3				95.0 94.0		370	78	78	18.9	10.9
16	Su		603		38.8			17	19		92.0					95.1	499	65	65	87.0	87 0
17		1041	704	733	32.4			20	15	92.0						95.6	519	87		83.2	
18	W	1012				27.0		8	9	96.1						94.7	541	92		83.0	
19		1143	_	819	30.7		256	23	13	91.0						94.6	604			83.1	
20	F	975	740	729		25.2		33	21	89.6						91.3		104		80.8	
21	+	1116	809			21.8		28	24	89.3					_	84.5	424			76.9	
22	Su	775	751	782	3.1	Minus	140	14	15	90.0	89.3	130	13.5	13.0	89.6	90.0	262	88			71.0
23	М	1014			35.1	25.3	269		19	94.1	92.9	260	8.6	11.4	96.7	95.6	520	58			87.3
24	\mathbf{T}	1013	695			28.9	249	8	14	96.8	94.4					96.3	520	70	71		86.3
25	W	1056		757		28.3	257	8	9	96.9	96.5		10.5			96.8	569	87			86.6
26	Th	1094	670	709		35.2	294		12	95.9						95.5	573				85.7
27	F	1034		697	34.5		297	14	18	95.3					95.2		582	80		86.3	
28	Sa	815	656	648	19.5	20.5	204	27	16	86.8	92.2	190	24.0	15.4	87.4	91.9	398	97	73	75.6	81.7
29	ļ																				
30																					
31	1 1	į	i		l ¦	1				i i	-	i	i	-					1		

		,			,	·			PLAN	r ope	RATIO	NAL I	DATA						MARC	H I	970
D	D		Tota	al Sc	olids		S	uspen	ded S	olids			BOÎ)				COD]
8.	8	78.	g/1		% Rem	oval	יות	g/1		¶Reme	OWAI	m	g/l		% Rem	oval	98 /	ו		Rem	OVA
t	y	SS		EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE	SS	WPE		WPE	EPE	SS	WPE	EPE	WPE	EPE
1	Su	1105	629	782	43.1	29.2	208	19	19	90.9	90.9	170	10.0	15.4	94,1	00 0	316	81	75	74.4	76.3
2		1201	_		29.4			13							96.7		563	66	71		87.4
3		1042		824	13.6			13	16	95.3					94.6		451	82	76	81.8	
4	W	1093	786	796	28.1	27.2	267	19	28	92.9	89.5	280			97.5		516	74	88	85.7	82.9
5		1067			24.6			16							94.6			98	84		84.4
6					23.8			35	37						91.9			108	103		81.3
1		995			23.3			22			88.4		14.0	31.0	93.9	86.5		97	87		80.8
8		852			22.7			14			89.2				94.4		272	76	72		73.5
10		1301			36.1			8			94.4 96.3				97.7 97.2		513 572	58	59 68		88.5
11		1142			22.1 30.8			9			96.7	360	8.0	11.2	97.8	96.1	601	7 <u>1</u>	88		85.4
12		1121			29.7			11			97.4				97.2		583	92	83	81, 2	85.4 85.8
13		1046	708	734	32.3			20	11		94.9		19.0					112	90	80.9	84.6
14	Sa	858	701		18.3		226	19	19	,	91.6		14.0				396	97	85	75.5	78.5
15	Su					14.6	178	22	20	87.6		140	27.0	17.5	80.7	87.5	268	82	70		73.9
16	М	961	622	633	35.3		212	15	10	92.9	95.3		10.5				526	73	73		86.1
17		1047		728	34.3	30.5	254	17	20	93.3	92.1	350	14.0	19.0	96.0		611	93	76		87.6
18			711				233	9	11		<u>95.3</u>		14.5				599	92	85		85.8
19			613			25.6		17			94.9	280	13.0				502	99	88		82.5
20	F					30.5		10		95.4				14.0		93.8	464	85	79		83.0
21						18.8		24	15		92.6		_		91.4		386	98	83		78.5
22				768 821	_		146	25 13	18 18		87.7		13.0		88.7 96.4			96	82		67.1
24				822	28.6		263 283	18		93.6	93.2				95.2			74	75		85.1 87.6
25					24.4		235	11							96.2			73 77	71		85.9
26		390 1				30.9		13							94.9			78	76		85.6
		.064			18.2			17		89.9					93.3			91	93		80.6
28				785			184	13							92.7			95	79		77.2
29	Su	897					172	29	24	83.1	86.0	95	9.5	20.5	90.0	78.4		78	72		169.4
30				765											95.9		533	70	70		.86.9
31]	T]	037]	745	783	28.2	24.5	188	16	6	91.5	96.8	270	13.d	13.5	95.2	95.0	540	89	72	83.5	86.7

										1 OPE	WIIO	I AU							APR.	II 1970
D	D		Tota	l So	lids		S	uspen	ded S	<u>olids</u>			BOI)	····			COL)	
t	a y	me	<u>;/1</u>		% Rem	oval		g/1		Rem	oval	m,	g/1		% Rem	oval	ng/	1		Removal
e		SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE EPE
1	W	1285	858	863	33.2	32.8	253	31	20	87.7	92.1	250	13.0	10.0	94.8	96.0	516	96	83	81.4 83.9
2	Th	1243			11.7	8.9	200	14	15		92.5				94.5	95.5	443	85	75	80.8 83.1
3	F	1023	806		21.2	15.1	190	27	28	85.8	85.3				93.1		1110	92	72	
4	Sa	952	831	845	12.7	11.2	206	34	16	83.4	92.2	200	11.5	4.6	94.3		351	89	68	74.6 80.6
5	Su		770	811	14.3	9.7	172	16	11		91.4				94.8		222	66	61	70.3 72.5
6	M	1007	742	811	26.3	19.5	219	23	13	89.5	94.1	220	14.0	12.0	93.6	94.5	434	75	58	82.7 86.6
7	T	1075	740	773	31.2	28.1	186	5	14	97.3	97.8	230	7.0	5.8	97.0	97.5	497	68	64	86.3 87.1
8	W	1117	734	786	34.3	29.6	224	9	8	96.0	96.4	230	9.0	6.0	96.1	97.4	527	84	67	84.1 87.3
9	Th	1117	754	818	32.5	26.8	255	14	15	94.5	94.1	245	7.0	5.0	97.1	98.0	561	83	65	85.2 88.4
10	F	1125	755	775	32.9	31.1	238	16	12	93.3	95.0	245	10.5	4.0	95.7	98.4	585	86	67	85.3 88.5
11	Sa,	942	746	794	20.8	15.7	176	17	12	90.3	93.2	165	8.4	3.8	94.9	97.7	377	86	68	77.2 82.0
12	Su	832	701	684	15.7	17.8	127	6	12	95.3	90.6	100	5.2	6.4	94.8	93.6	257	71	62	72.4 75.9
13	M	821	573	624	30.2	24.0	148	2	7	98.6	95.3	160	6.6	11.2	95.9	93.0	361	62	57	82.8 84.2
14	T	1087	794	810	27.0	25.5	182	11	4	94.0	97.8	200	2.2	6.4	98.9	96.8	439	64	59	85.486.6
15	W	1100	840	917	23.6	16.6	219	9	6	95.9	97.3	220	5.4	7.0	97.5	96.8	468	63	64	86.586.3
16	Th	1004	777			14.8		10	7	95.6			6.0				450	72	63	84.0 86.0
17	F	1120	811		27.6		266	44	7		97.4				93.1		578	99		82.9 89.4
18	Sa		817		22.6			27	5		98.1				91.8		464	90		80.6 86.0
19	Su		715		18.7	8.2	174	24	11	86.2			17.0				287	94		67.275.6
20	М		653		39.8			15	9	93.6					97.9		462	56		87.988.3
21	T	1159	792		25.2		252	10	11	96.0		240			97.8		524	63		88.0 87.6
22	W	1143	800			24.3	249	13	10	94.8							522	71	67	86.487.2
23		1103	809		26.7			4	8	98.4	96.9				7		532	74	67	86.187.4
24	F		796		27.4		256	22	14		94.5	240			96.3		513	79	64	84.6 87.5
25	Sa	888	734				173	21	11		93.6		9.4		93.5		340	75	62	77.981.8
26	Su	796	685				172	5	6		97.3	75		20.0	94.1		208	56	_58	73.1 72.1
27	М	1021	790			26 2	302	25	16	91.7	94.7	210					467	54	56	88.4.88.0
28	T	1037	784		24.4		218	52	26	76.1	88.1				91.6		495	106	72	78.6.85.5
29	W	1091	768		29.6		216	19	16		92.6				95.8		514	85	7.8	83.5 84.8
30	Th	895	727	820	18.8	8.4	155	22	48	85.8	69.0	215	6.0	30.0	97.2	86.0	460	70	117	84.8.74.6
31			<u></u> i	!										1						

									PLAN	r opei	RATIO	NAL I	DATA						1	MAY 1	970
D	D		Tota	al Sc	lids		S	uspen	ded S	olids			BOD					COD			
t	4	77.	g/l		% Rem	oval	m	g/1		Rem	oval	m	g/1		% Rem	oval	48 /	1		% Rem	oval
ě	y	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE	SS	WPE		WPE	EPE	SS	WPE	EPE	WPE	EPE
1	F	1031	695	771	32.6	25.2	233	.17	80	92.7	65.7	220	12.0	35.5	.94.5	83.9	499	81	148	83.8	70.3
2	Sa	958	737	792	23,1	17.3	180	15	26	91.7	85,6	225	6.4	13.5	97.2	94.0	417	76	83	81.8	80.1
3	Su	776	700	676	9.8	12.9	129	7	11	94.6	91.5	80	4.2	20.5	94.8	74.4	245	63	63	74.3	74.3
4	M	1007	721	708	28.4	29.7	198	6	17	97.0	91.4	210	4.4	37.0	97.9	82.4	475	60	70	87.4	85.3
5	[T]	1044	709	746	32.1	28,5	252	9	12	96.4	95,2	230		33.0		85.7	543	75			87.8
6	W	1061	730	789	31.2	25.6	247	8	4	96.8	98.4	295				97.1	606	80			89.1
I		1048	769	792	26.6		252	31	7	87.7	97.2	280	11.0		96.1	92.9	583	99		83.0	87.8
8	F	1029	851	775	17.3		258	128	17	50.4	93.4	245	62.0		74.7	94.7	530	210		60.4	85.1
9	Sa	813	704	720	13.4		216	37	15	82.9	93.1	145	14.2		90.2	92.7	351	92	63	73.8	82.1
10	Su	794		641	21.3		187	31	19	83.4	89.8	120		10.2	92.5	91.5	253	69		72.7	76.3
11	M			649	29.0		214	11	18		91.6	235		11.5		95.1	479	65		86.4	87.7
12	T'	820		671	32.0		233	12	19		91.8		5.0	5.8		96.3	372	63		83.1	85.5
13	W	897		679	22.2		121	15	13		89.3			5.0		96.6	338	60		82.2	84.9
14	Th	893		664	22.4		117	5	_7_		94.0	160	3.8	8.0		95.0	356	60		83.1	84.3
15	F	868		739	19.0		140	21	8	85.0		115	9.0	4.2	92.2	96.3	280	75	60	73.2	78.6
16	Sa	870		770	12.1		128	8	6	93.8	95.3	110	8.2		92.5	96.7	355	82	61	76.9	82.8
17	Su	824	819	781	0.6	5.2	109	37	9	66.1	91.7	85		5.2	83.5	93.9	197	82		58.4	75.1
18	М	1051	732	778	30.4		227	13	6	94.3	97.4	230	8.5		96.3	95.0	448	62		86.2	88.4
19	T	1097		820	27.3		272	19	15	93.0	94.5	235	8.0	5.0	96.6	97.9	502	62			88.4
20	W	1155		880	27.8		270	22	8		97.0	215	12.2	5.4	94.3	97.5	509	80		84.3	87.4
21	Th	1001		805			217	29	26	86.6		245	17.0			93.9	504	94	92		81.7
22	F	1067		836	23.8		245	35	11		95.5	245	13.0	5.5	94.7	97.8		94		81.5	86.0
23	Sa	859		672	18.9	21.8	133	7	5		96.2	215	5.0	4.0	97.7	98.1		59			80.3
24	Su	858		735			170	20	23	88.2	86.5	80		6.0	94.8	~~~	203	52		74.4	73.4
25	М	972		793	26.3		150	7	54	95.3	64.0	215	7.03	33.0	96.7	84.7	437	59	105	86.5	76.0
26	T	1023		804	22.9		216	7	15		93.1	230		7.0	98.3			68	6 2	86,5	87.6
27	W	1063		846	23.7		200	10		~~~	96.5	270	6.5	5.5	97.6		507	69	60	86.4	88.2
28	Th	953	793	735	16.8		192	98			95.3	255	40.0		84.3	93.9	504	158	43	68.7	91.5
29	F	990	874	794	11.7		209	141	15		92.8	235		9.0	71.9	96.2	484	176	41	63.6	91.5
30	Sa	765	613	722	19.9	5.6	135	7			91.9	122	6.q		95.1	88.9	267	54	53	79.8	80.1
31	Su	719	621	637	13.6	11.4	125	12	12	90.4	90.4	94	12.q	18.0	87.2	80.9					:

												<u> </u>				2-3			<u> </u>	~~~
4	Th	1050					9	11	94.6	93.4	190	6.8	10.0	96.4	94.7	411	43	55 8	9.5	86.6
5	1					164	13	12						94.7			56	50 8	5.8	87.3
6			821 832			196	23	17	88.3	91.3	165	7.5	23.0	95.5	86.1	355	52	49 8	5.4	86.2
7	Su		681 746			174	9	5						91.9			46	40 7	7.6	80.5
8	M	933	704 863	24.5	7.5	173	9	46	94.8	73.4	175	6.4	17.5	96.3	90.0	404	44	73 8	9.1	81.9
9	T	937	730 802	22.1	14.4	166	13	11	92.2	93.4	205	11.4	12.0	94.4	94.1	428	57	46 8	6.7	89.3
10	W	983	747 758	24.1	22.9	192	12							96.2			76	51 8	2.1	88.0
11	Th		712 887				9	98						95.2			57	143 8	7.1	67.7
12			742 786				32	83						88.7			69	107 8	3.6	74.5
13	Sa	865	667 735	22.9	15.0	155	9	58	94.2	62.6	155	5.2	28.0	96.6	81.9	335	48	92 8	5.7	72.5
14			702 702				22	21						92.5			44	47 8	1,2	79.9
15			767 846				9							94.7				21 9		
16	T		738 791				15							97.4				54 8		
17	L ''		703 816				12	52	94.4	75.7	190	6.2	26.0	96.7	86.3			80 8		
18			643 788				28	97	85.3	48.9	200	8.0	38.0		81.0		72	151 8	7.7	74.2
19			802 878				46							91.2		464		100 8		
20	Sa	833	735 742	11.8	10.9	209	12	17	94.3	91.9	142	8.2	17.5		88.3			65 8		
21	Su	754	534 700	29.2	7.2	133	11	24	91.7	82.0	88	3.0	23.0	96.6	73.9		42	46 7	9.7	77.8
	М		659 692				3							98.8				60 9	1.1	35.9
23	T		692 720				6							97.7						
21	W	887	681 741	23.2	16.5	189	9	60	95 2	62 5	230	1, 3	20 n	97.8	87.3	458	53	114 8	8 1 7	75.1

PLANT OPERATIONAL DATA

EPE

54.5

91 5 82.4 150

97.5 96.2

Removal

WPE

BOD

WPE EPE

9.048.0

7.0hn 5

% Removal

WPE EPE

92.8 61.6

95.3 93.0

97.3 96.7

mg/l

SS

125

240

210

185

120

220

220

87 7

92.5 87.8

93.8 87.5

93.5

6.0166.d

6.626.5

4.029.0 98.2

5.421

3.846

97.1

94.5

.d 98.3

67.6 602

88.4 506

77.9

86.8

79.1

246

400

387

Suspended Solids

EPE

65

27

6

 $m\alpha/1$

WPE

3

13

SS

143

207

170

1.4 189

3.9|147

21.8 16.4 162

19.8

16.1

19.4

665 752 21.0 10.7 192

763

670

673 771

652

14

11

11

12

11

85

76

20

18

24

JUNE 1970

Removal

EPE WPE EPE

61 85.5 77.9

46 87.0 83.3

41 86.9 89.3

COD

WPE

40

36

50

63

122

29

46

42

68

138

186.5

70.3

88.5 83.0

89.1 64.3

SS

276

276

D D

t y

2

8

mg/1

SS

841

895

801

802

842

809

Sa

M

28 Su

h041

м 666

Total Solids

686

WPE EPE

536

% Removal

EPE

WPE

110 5

549 532 34.7 36.7 153

838 882 19.5 15.3 158

									TIMIT.	r OPE	VATIO	NAL	DATA						JUL	<u>Y 19</u>	10
D	D		Tota	ll So	lids	· · · · · · · · · · · · · · · · · · ·	S	uspen	ded S	olids		L	BOI)				COD		·	
a	y	nag	/1		% Rem	oval	m	g/l		Rem	owal	m	g/l		% Rem	oval	98 /	1		% Rem	oval
e	,	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE	S S	WPE	EPE	WPE	EPE
1	W	876	511	741	30.3	15.4	219	8	25	96.3	88.6	220	4.0	17.5	98.2	92,0	410	45	62	89.0	84.9
2	Th	811	581	727	16.0	10.4	165	5	12	97.0	92.7	180	4.0	16.0	97.8	91,1	406	48	58	88,2	B5.7
3	Ŧ	944 6	72	693	28.8	26.6	180	5	10	97.2	94.4	230	5,4	16.0	97.7	93.0	404	52	55	87.1	86.4
4	Sa	745	97	696	6.4	6.6	100	6	8	94.0	92.0	155	6.0	14.5	96.1	90.6	290	54	60	81.4	79.3
5	Su	727 6	512	767	15.8		150	9	18	94.0	88.0	102			95.7		224	41	54	81.7	75.9
6	14	832 6	149	690	22.0	17.1	185	7	9	96.2	95.1	175			95.9		392	44	48	88.8	87.8
7	${ m T}$	785 5	89		25.0	17.1	147	7	10				11.6		92.8	86.8	398	50	65	87.4	83.7
8	W		25		27.7	7.4	216	12	127	94.4		185		60.0		67.6	452	55	176	87.8	61.1
9	Th	880 7	706	819	19.8	6.9	204	50	104	75.5					89.2	76.5		97	134	77.8	69.3
10	F	802 7	27	644	9.4	19.7	208	129	46	38.0			42.0					150	91	64.2	78.3
11	Sa		38	699	16.7	8.7	164	50		69.5			30.5			87.6	310	92	67	70.3	78.4
12	Su	661 5	62	662	15.0		135	15		88.9			11.4				200	50	96		52.0
13	M		97	697	16.4		193	15		92.2			17.0		92.8			46	72	88.6	82.2
14	T		50	583	26.0	21.5	156	8					14.0			86.3		57	70		80.7
15	W		27	714	22.3	11.5	177	13		92.7			14.0	8.4			484	52	57		88.2
16	Th		25	675	26.6	20.7	206	13	14	93.7			10.0	7.2	94.4	96.0	418	52			88.5
17	F		50	640		16.0	127	75	7	40.9			44.0	6.0	74.1	96.5	387	139			87.1
18	Sa		21	625	13.6		168	21		87.5	~~~		11.0	5.2		95.7	280	54	Ī		84.3
19	Su		76	~==+	19.2	+	131	18	11	86.3			14.0	7.6			221	45		79.6	
20	M		40		29.5		231	18		92.2			15.5	8.0	92.4	95.9	419	46		89.0	
21	T		44		29.12		199	20		90.0			15.0		93.5	96.0	443	54		87.8	
22	W		05		16.5		191	17		91.1			13.0	<u> </u>	94.5		452	52			86.5
23	Th		94		25.22		191	20		89.5			22.0	6.2	89.8	97.1	450	6 0			89.3
24	F		30		21.5	~~~	205	20		90.2			14.0	7.0	93.3	96.7	448	58			90.4
25			34	722	1.9		195	30		84.6			13.0	6.4	87.0	93.6	255	46			83.1
26	Su		32	~~~	12.8		107	12		88.8			14.0		84.8	89.1	193	43			80.8
27	М				19.0		167	31			89.8		13.0	7.6	92.6		406	53			89.7
28	T		13		23.9]		196	11		94.1		190	9.4	5.0	95.1	97.4	456	53			87.7
29	W		01		22.02		172	6		96.5			11.5	7.2	95.0	96.9	458	61			86.5
30					28.92		227 j	19		91.6			12.0	6.8	92.7	95.9	416	51			87.5
31	F	741 5	731	<u>573l</u>	22.72	2.7	168	14	12	91.78	92.9	140	10.0	7.0	92.9	95.0	406	60	61	85,2	85.0

8

										I OF E	41110	1						AUG		1910	
D	D		Tota	al So	lids		S	uspen	ded S	olids			BOI)				COL)		10 10 10 10 10 10 10 10 10 10 10 10 10 1
8.	8.	TR).	g/1		% Rem	oval	m	۲/1		Rem	oval	m	g/1		% Rem	OVAI	ng/	1		% Rem	oval
t	y	SS		EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE	SS	WPE		WPE	EPE	SS	WPE	EPE		EPE
۴		656	627	500	3. 3.	0 0	356	0.7	3.77	06 5	00.	0)			00.5						80.0
1	+==-	656	621	592	4.4	9.8		21	17	86.5	89.1	84	8.0		90.5		240	50	1 1	79.2	
12	Su	700		657	11.3	6.1	126	17	14	86.5			12.0		81.8		180	42			80.6
	M	736	574	597		18.9	153	8	3	94.8							395	45			90.6
	T	847	634	643	25.1	24.1	169	4	8		95.3				كنسخن		420	59		<u>86.0</u>	
5		871	609	648	30.1	25.6	194	12	<u> 16</u>	93.8			6,2		97.2		370	52		<u>85.9</u>	
6		859	633		26.3			9	6	-	96.3	220			95.5		440	60		86.4	
17	F	986	744	777	24.5	21.2		9	11		96.2	205	7.2				470	55		88.3	
_	Sa	841	685		18.5	12.2	184	9	8	95.1	95.7	110	8.4			90.0	290	53		81.7	
2	Su	661	583	629	11.8	4.8		8	7		95.1	98	6.6			93.1	190	50		73.7	
10	М	902	577	634		29.7	221	14	8	93.7	96.4	255	9,6		96.2	95.4	420	42		90.0	
11	T	894	633	655	29.2	26.7	198	_7_	9	96.5	95.5	205	10.2	12.8		93.8	445	53		88.1	
12	W	893	638	698	28.6	21.8	177	12	.8	93.2	95.5	190	7.4	7.2		96.2	435	58		86.7	
13	Th		645	657	26.9	25.5	248	13	12	94.8	95.2	200	8.2	7.2		96.4	440	54		87.7	
14	T	797	650	656	18.4	17.7	202	14	12	93.1	94.1	180	7.0	6.8		96.2	410	53		87.1	
15	Sa	600	549	697	8.5		151	20	11		92.7	85	8.0	5.4		93.6	250	52		79.2	
16	Su	625	505	644			123	13	20	89.4	83.7	82	7.2		91.2		200	43		78.5	
17	M	822	625	721	24.0		198	14	23	92.9	88,4	190	7.8	والمستعدد المستعدد	96.0		405	42			87.2
18	T	828	602	644	27.3	22.2	164	11	13		92.1		11.0		95.0	95.9	440	62		85.9	
19	W	846	603	655	28.7	22.6	198	15	12		93.9	205	9.4			96.6	450	63		فتنفظ والمجبوا بسر	86.2
20	Th	922	729	712		22.8	138	9	9_		93.5	235	9.4	8.0	96.0		460	61			85.2
21	F	884	710	718	19.7	18.8	166	14	22	91.6	86.7	210	8.0			94.8	430	67	97	84.4	77.4
22	Sa	760	624	675	17.9	11.2	142	12	18	91.6	87.3	115	7.2			90.0	300	58		80.7	
23	Su	638	563	707	11.8		131	5	17	96.2	87.0	215	8.8			94.3	200	45	62	77.5	
24	M	790	589	639	25.4	19.1	167	7	11		93.4	195	8.8			94.4	420	45		89.3	84.8
25	T	856	559	637	34.7	25.6	139	7	11	95.0	92.1	86	5.8			86.5	440	57	80	87.0	
26	W	866	618	715	28,6	17.4	175	6	18	96.6	89.7	220	8.6			94.9	440	59	77	86.6	
27	Th	894	723	736	19.1	17.7	179	8	14		92.2		11.6	13.0		94.1	455	64		85.9	
28	F	906	718	631		30.4	252	26	24		90.5	235	12.0	12.0		94.9	475	66	84		82.3
29	Sa	664	614	670	7.5		191	24	25	87.4	86.9	104	10.0	13.0	90.4	87.5	250	63	71	74.8	71.6
30	Su	629	597	529	5.1	15.9	137	8	24		82.5	94	ترابط المسمد		91.7	86.4	215	46	84		60.9
31	М	915	710	682	22.4	25.5	206	9	27	95.6	86.9	230	8.6	17.5	96.3	92.4	430	42	80	90.2	81.4

ထ္

197	7	0
-----	---	---

D	D		Total	So	lids		S	uspen	ded S	olids		i	BOD)				COD			
a	a		g/1		% Rem	oval	70	g/1		≵ Reme	oval	m	g/1		% Rem	oval	46 /	1.		. Remov	ral
t	y	SS	WPE EF		WPE	EPE	SS	WPE	EPE	WPE	EPE	SS		EPE	WPE	EPE	SS	WPE	EPE		
1	T	888	654 68	1	26.4	23.3	206	12	. 10	94.2	95.1	280	9.0	12	96.8	95.7	490	52	70	89 4 85	5.7
2	W	821	667 71	2	18.8			19	19	91.8	91.8		11	11	95.0	95.0	440	58	73	86.8 83	3.4
3	Th	719	586 58			18.4		16	25	90.4	85.0	190	11	17		91.1	360	60	84	83.1 76	6.3
4	F	896	609 64		32.0			18	19	91.9			13	15		92.9	460	73	82	84.1 82	2.2
5	Sa	813	665 75	6	18.2	7.0	176	10	16	94.3		120	6.8	13	94.3	89.2	300	49	70	83.7 76	6.7
6	Su	581	540	_	7.1		141	9		93.6		66	7.9		88.0		140	40		71.4]
7	М	706	604 62				164	15	34	90.9			11	14	<u> </u>	84.4	200	38	56	81.0 72	
8	T	901	585 65	6	~~~		186	4	13	97.9			8,6	12		95.2		43			5.8
9	W	835	692 70		17.1	15.8	162	3	5	98.2	96.7	170	9.4	12		92.9	430	49	59		6.3
10	Th	946	529 63	7	44.1	32.7	213	17	24	92.0	88.7	260	8,8			94.6	460	42	69		5.0
11	F	941	697 74			20,6		12	30	94.8	86.9		8,0	21	96.5	90.9	490	45	75		4.5
12	Sa	733	622 73	-	15.1		213	18	60	91.5	71.8		8,2	30	94.5	80.0	340	54	90	84.1 73	
13	Su	611	596 60	_	2.5	1.8		9	24	92.5	80.0		12	17	89.1	84.5	210	42	62	79.5 69	
14	М	760	572 64					_9	43	95.1	76.6	ĺ		27	95.4	85.8		38	87	89.4 75	
15	T	731	488 59				178	10	31	94.4	82.6		8.0	14	95.0	91.3		36	59	88.6 81	
16	W	928	670 71		27.8		203	15	23	92.6	88.7			13	96.3	<u>94.3</u>		44	68		4.0
17	Th	764	621 61				178	38	23	78.7	87.1		29	13		94.1	400	82	71		2.0
18	F	921	687 72	_	25.4		192	13	15	93.2	92.2		11	11		94.5	430	52	48		8.8
19	Sa	843	766 79		9.1	6.2	147	13	16	91.2	89.1	110	8,6	12	92.2	89.1	340	48	61	85.9 82	2.1
20	Su		678 769	_				23	30				8,6	10				42	62		
21	M	857	646 700	_			206	9	15	95.6	92.7		11	12	94.8	94.3		41		90.5 88	
22	T	914	670 71	\rightarrow		22.1	177	12	11	93.2	93.8		14	12		95.2		76	59	83.1 86	
23	W	823	772 75		6.2	8.4	188	17	<u> 14</u>	91.0	92.6		16	12	92.0	94.0		63	76	86.6 83	
24	_	813	576 62		29.2		155	32	_34	79.4	78.1		37	22		86.3		82	66	75.2 80	
25	_	883	716 818		18.9	7.4	196	23		88.3	81.1		12	14	93.3	92.2		32		90.6 80	
26	-	827	775 768		<u>_6.3</u>	7.1	160	24		85.0	86.9		17	8.5		92.9		65	52		2.2
27	_	711	671 690		5.6	3.0	97	10	11	89.7	88.7		16	13		87.0		45	52		4.0
-		934	652 67				256	18	16		93.8		22	15		94.0		54	47	89.0 90	
	_	940	679 715		27.8		255	20			91.8		16	10	93.3	95.8		47	51	86.6 85	
	W	962	706 720	<u>)</u>	26.6	25.2	288	15	19	94.8	93.4	250	11	12	95.6	95.2	570	58	60	89.8 89	9.5
31							·		<u></u>												

88

D	D		Total So				Sı	ispen	ded S	olide			BOI)	,			COL)		
a	a					_				1		 							1		
t	y		3/1		% Rem			3/1		Rem			<u>g/1</u>		% Rem		198/			Rem	
e		SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE '	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE
1	Th	1042	755	822		21.1	276	13	14	95.3	94.9	260	11	13	95.8	95.0					
2	F	946	732	755	22.6	20.2		18	15	92.2	93.5	230	14	11	93.9	95.2	510	61	54	88.n	89.4
3	Sa	797	787	788	1.3	1.1	182	18	28	90.1	84.6	140	10	15	92.9	89.3	310	58	65	81.3	79.0
4	Su	797	629	702	21.1	11.9	175	15	24	91.4	86.3	110	11	16	90.0	85.5	240	43	65	82.1	72.9
_5	M	959	676	716	29.5	25.3	263	17	22	93.5	91.6	260	15	18		93.1	480	48	53	90.0	89.0
6	T	965	710		26.4	23.4	250	12	21	95.2	91.6	260_	15	16		93.8	540	59	55	89.1	89.8
1	W	975	771		20.9	16.6		23	36	90.5			18	25		90.4		68	84	86.4	83.2
8	Th	933	737			21.3	236	48	61		74.2		36	33		87.3	510	95	106	81.4	79.2
9	F	943	730		22.6		203	21			56.7		17	46		80.8	470	63	128		72.8
10	Sa	819	710		13.3	4.2	186	20	34	89.2		180	14	16		91.1	310	56	69		77.7
11	Su	707	666	713	5.6		139	13			87.1		11	15		87.5	260	48	54		79.2
12	M	980	726	765		21.9		29			90.8		12	14		94.4	510	40	44		91.4
13	T	956	710	717		25.0		13			90.3		10	23		91.2	530	60	71		86.6
14	W	1036	691	775		25.2	268	20	21	92.5		260	18	17		93.5	560	81	70		87.5
15	Th	1048	755		28.0	19.8	296	55	115	81.4		270	27	46		83.0	570	92	146		74.4
16	F	997	761		23.7	10.9	283		145			270	28	45	89.6		570	94	176	83.5	
17	Sa	856	763		10.9	2.6	202	27			78.2		21	22		86.3	350	85	73	75.7	
18	Su	721		684	9.0	5.1	163	14		91.4		130	10	22		83.1	260	46	63		75.8
19	M	966				32.1	263	12		95.4			13	15	95.8		510	53	51		90.0
50	T	964	730			22.9	268	33 28				270	19	16 18		94.1	540	78	67		87.6
21	W	1005	749			20.7 14.7	241	25	20 87	88.4		290	23	44		93.8	560	83	63		88.8
22		1001 914	792 733			11.7	238 189			89.5 91.0	29.1		23	42	91.3		550 530		143		74.0
23	F Sa	832	668			12.6	169	21		87.6			20 15	19			340	71	195		63.2
_	Su	706	642	684	9.1	3.1	128	20			69.5		14	22	88.3		260	62	70		79.4
25 26	M	1057	702			32.2	303	10			94.1		10	21	96.6		610	55	92 54		64.6
	T	887	687			16.7	255	16			90.2		15	18	94.0		540	59	5.7		91.1 89.4
27 28	W	806	602			27.4	249	18		92.8			13	11	93.8		470	48	55		88.3
29	Th	1024	731				273	19		93.0			16	30		88.9	400	60	65		83.8
30	F	1008	808				276	33		88.0			22	20	91.9		420	74	80		81.0
31	Sa	824	596			12.9		23		87.8			14	19	90.0		310	44	68	85.8	78.1

PLANT	OPER.	ATIONA	L DATA
-------	-------	--------	--------

D	D	T	Tota	al So	1110		S	ignen	ded So	olide			BOI					COD			
a									ucu D	1											
t	y		g/1		Ren			3/1	1	Remo			<u> 3/1</u>		% Rem		38/			Ren	
e		SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE
1	Su	757	699	721	7.7		113	12	14	89.4			15	9.0		91.8	250	53		78.8	78.0
	14	914		714		21.9		10	16	94.8		190		14		92.6		32		92.0	88.3
	T				23.8			6	8	96.0		190	-	15		92.1	420	46		89.0	84.8
	W	965			27.5			18	20	91.8			_	13		94.3		49		89.8	90.0
	T'h	1006	795		21.0			32	22	84.7				12	93.5	95.4	550	53		90.4	89.3
	F	1033	799	827	22.7			23	31	91.4		220		18	92.7	91.8	500	62		87.6	87.6
	Sa	838		763			191	28	26	85.0		150		13	88.7	91.3	320	53		83.4	83.4
	Su	767	744	687	3.0	10.4		15 15	18 18	90.0		100		11	87.0	89.0		38		82.7	79.5
_	M	902		763	23.2		265	8	11	94.3		220		14		93.6 96.9	450	45 48		90.0 90.9	88.0
10	T W	1033 1043	649	713	37.2			8	8	96.9	443	270	8.8			97.8		57	1	88.8	90.8
11	Th	1010	835 787		19.9			8	9	95.5 95.8	95.5			6.0		95.9		57		89.0	88.0
12 13	F	1019	787		22.8			15	28	92.9				11 19		92.1		56		87.8	87.9
14	Sa	882	778		11.8		164	28	14	82.9				19 11		93.1	380	60		84.2	81.8
15	Su	790	715	731	9.5		155	24	18	84.5				11	87.7	91.5		60		77.8	76.3
	11		687		30.3			15	7	92.9		260		11		95.8		58		88.4	87.6
17	T	1036	749		27.7			12	18	94.4				14		94.2		49		90.4	92.0
18	W	1040	860		17.3			9	24		88.6	240		18		92.5		60		89.1	87.1
19		1020	867		15.0			70	68		75.9	260		42	90.0	83.8				81.8	80.5
20	F		623		30.2		184	17	113	90.8		240		54	94.6	77.5	450			86.9	67.6
21	Sa	907	778	797	14.2	12.1	228	14	39		82.9	240		16	96.7	93.3		49		88.3	81.4
22	Su	763	630	629	17.4	17.6	188	13	19		89.9	160	8.0		95.0	91.9		49		83.7	79.3
23	М	1060	712	778	32.8	26.6	270	19	32	93.0	88.1	260	16	21	93.8	91.9	530	55			88.5
24	\mathbf{T}	1073	839	898	21.8	16.3	243	17	55	93.0	77.4	280	9.0		96.8		570	53	92	90.7	83.9
25	W	1046	842	843	19.5	19.4	211	34	18	83.9	91.5	260	22	11	91.5	95.8	560	85	61	84.8	89.1
26	Th	854	729		14.6	9.6	165	8	21	95.2	87.3	200		11		94.5	330	87	1 1	73.6	83.3
27	F	907	708		21.9		177	12	10		94.4	210		8.0	94.8	96.2	410	62		84.9	86.8
28			749	690		10.9		4	12	96.3			6.0	12	96.7	93.3		48		88.0	87.3
29	Su		681	737	0.6		121	12	16	90.1			6.0		94.0			39		83.0	76.5
30	M	1023	702	817	31.4	20.1	240	23	26	90.4	89.2	240	13	14	94.6	94.2	510	51	66	90.0	87.1
31									I												

							<u> </u>		PLAN!	r opei	RATIO	NAL 1	ATA				DECE	MBER	1970)	
D	D		Tota	ıl So	lids		S	uspen	ded S	olids			BOI)				CO	D		
t	a	184	g/1		% Rem	oval	m	g/1		*Rem	oval	m	g/l		% Rem	oval	ng/	'ı	7	Rem	oval
e	y	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE
1	T	971	758	806	21.9	17.0	195	16	14	91.8	92.8	250	14	11	94.4	95.6	530	64	60 8	37.9	:88.7
2	W	1083	859	862	20.7	20.4	282	24	23		91.8		12	14	95.4	94.6	570	67	70 8		87.7
3	${ m Th}$	973	765	741	21.4	23.8	236	36	22	84.8	90.7		21	21	92.5	92.5	540	86	86 8	34.1	84.1
4		971	758	746	21.9	23.2	242	48	21	80.2	91.3		24	15	90.4	94.0	590	88	66 8	35.1	88.8
5	Sa	932	732	750	21.5	19.5		2	10	99.2	95.9		20	25	90.0	87.5	450	53	93 8	38.2	79.3
	Su	727	653	688	10.2	5.4	144	10	12	93.1	91.7	120	7.0	12	94.2	90.0	270	47	49 8	32.6	81.9
7		1028	655	749		27.1	238	10	10	95.8	77.0	270	7.0	11	97.2	95.9	550	41			92.7
8		1051	821	788	21.9	25.0	277	18	28					37	95.4	86.8	610	62			87.7
9		1035	844		18.5	16.7	263	20	13	92.4	95.1	260		10	95.8	96.2	590	60	59 8	39.8	90.0
10		1067	709	858	33.6	19.6	272	18	78	93.4	71.3			40				68	132		
	F	1139		1108	14.0	2.7	234	93	178		23.9			61	82.7	72.3	430	135			51.4
	Sa	943	909	930	3.6	1.4	166	22	37	86.7	77.7			15	92.3	88.5	310	63	93 7	9.7	70.0
13	Su	976	887	906	9.1	7.2	116	10	47	91.4	59.5	110	8.0		92.7	82.7	260	51	86 8	30.4	66.9
14	M	983	817	887	16.9	9.8	183	11	43		1 - • /		11	32	95.4	86.7	480	55	92 8	8.5	80.8
15	-	1085	806			24.9	237	18	17	92.4	92.8			10	94.8	96.0	520	66		7.3	
16			1020		22.4	21.3	178	14	9	92.1				10	93.2	94.7	390	61			89.5
			1019	1103	7.9		199	25	10	87.4	- · · · ·		19		92.7	96.5	520	71		6.3	
18	F	1054	947		10.2	12.8	216	20	47	90.7	78.2			22	93.6	90.0	470	65	102 8	6.2	78.3
	Sa.	947	845		10.8	5.9	175	19	46	89.1	73.7	150	9.0		94.0	77.3	350	57			84.3
20	Su	809	711	_	12.1	5.6	130	11	18		86.2	130	9.0		93.1	90.0	580	52	63 8	31.4	77.5
21	F. 4	1078	859	836		22.4	205	12	14	94.1		210	6.0		97.1	93.8	480	51	77 8	19.4	84.0
22		1388			27.7		243	20	36		85.2	270		21	96.3	92.2	520	54			85.2
23	W				10.1	8.7	206	7	40		80.6			18	96.2	93.1	510	57	93 8	8.8	81.8
24	Γh	900	845	890	6.1	1.1	158	17	31	89.2	80.4					93.1	360	59	50 8	3.6	86.1
25	Ŧ	813	740	754	9.0		190	35	15		92.1	90		8.0	99	91.1	150	48	29 6	8.0	80.7
26	Sa	845	682	724	-/•/	14.3	153	14	15	90.8	90.2	150	5.0			94.7	160	31	36 8	80.6	77.5
	Su	863	748	703		18.5	145	18	20	87.6	86.2	100	8.0		92.0	91.0	140	38			66.4
28		1041	798			22.6	196	23	14		92.9	- 1 - 1		14	94.1	94.8	380	47	45 8	37.6	88.2
29		1113	812				248	19	15			280		15	95.0	94.6					
30	.,	1144	803				261	5	5		98.1	330		10	96.4	97.0					<u>. </u>
31	ľh].	1024]	903	884]	11.8	13.7	178	21	11	88.2	93.8	200	19	10	90.5	95.0	320	65	51 7	9.7	84.1

PLANT OPERATIONAL DATA JANUARY 1970

					LIMIA	I OI EI	MIION	AL DAT	Α				0121	UAILL	171		
D	D	Total Phosp	horus	Total Sol	uble	Phospl	norus		Tota	al Iro	on.		7	Cotal	Solul	ble I	ron
t	У	mg/l as P	% Removal			% Rer	noval					noval		/l as			moval
e		SS WPE EPE	WPE EPE	SS WPE		WPE	EPE		WPE			EPE		WPE		WPE	EPE
1	ľ'n	6.5 0.63 1.5	90.376.9	3.0 0.29		90.3		6,01			92.4	90.5	1.04	0.25	0.30	76.0	71.2
2	F	9.2 0.97 2.2	89.576.1	3.80.71	1.9	81.3	50.0	7.31			93.4	69.7	0.71	0,27	0.18	62.4	75.2
3	Sa	9.0 0.64 2.0	92.977.8	4.30.46	1.7		60.5							0.44			
14	Su	8.0 2.4 3.0	70.062.5	4.0 2.2	2,6	45.0	35.0	5.27	0.47	0.59	91.1	88.9	0.60	0,40	0.44	34.2	26.7
5	-1	11.6 3.4 4.4	70.762.1	5.5 3.2	4.2	41.8	23.6	4.76	0.58	0.37	87.9	92.2	0.44	0.35	0.25	19.5	43.7
6	ľ	10.0 1.7 3.0	83.070.0	4.6 1.5	2.6	67.4	43.5	5.86	0.30	0.40	95.0	93.2	0.57	0.14	0.25	76.1	56.6
7	d	9.0 1.9 1.3	78.985.6	3.0 1.2	0.92	60.0	69.3	7.76	0.56	0.52	92.8	93.4	0.61	0.14	0.18	77.0	71.3
8	l'h	9.4 1.8 1.2	80.987.2	3.1 1.2	0.52	61.3	83.3	10.10	0.73	0.96	92.8	90.5	0.89	0.11	0.22	87.6	75.1
9	-		86.975.8	3.4 0.66	0.25	80.6	92.6	9.06	0.72		92.1	55.7	0.34	0.09	0.12	75.0	66.2
10	Sa		94.494.0								96.8	90.5	0,22	0.23	0.15		30.2
11	Su		94.394.0		0.19	88.0	93.7	10.78	0.22	0.56	98.0	94.9	0.33	0.08	0.10	77.3	71.2
12	4		75.994.7														
13	r		79.695.7					6.44	0.59	0.87	90.8	86.5					
14	W	9.5 2.7 0.40		3.8 2.7	0.16	28.9	95.8							0.28	0.50	77.0	59.0
15	Th		75.896.0														
16	F		54.096.2					9,22									
17	Sa.		72.896.4					8.73									
18			87.890.2														
19	4	10.7 3.5 1.6	67.385.0	4.8 2.9	1.4	39.6			0.96					0.38			
20	Γ		69.494.1	3.3 2.3		30.3			0.63					0.18			
21	W	9.5 3.3 0.50		3.8 2.8		26.3			0.53						0.56		
22	Th	9.0 2.2 0.35		3.2 1.9		40.6			0.24						0,45		
23			71.395.0	3.2 2.1		34.4			0.83						0.50		
24	Sa	10.0 2.4 0.51		5.2 2.0		61.5									0.53		
	Su			4.3 1.8		58.1			0.88	0.99					0.85		
26	4	10.8 4.1 1.6	62.085.2	5.2 3.7		28.8				1111							
27			52.993.6	3.5 4.5	0.34		90.3										
28	_		61.691.1	2.9 2.5		13.8											
29	$\overline{}$	8.8 2.3 0.36		3.3 2.2		33.3											
30		11.8 3.1 0.63		4.5 2.6		42.2										j	
31	_		39.093.0	5.3 5.3	0.44		91.7			 				·····			
2.0		10.710.4 1 0.13	J7 U7 J U	1 / - 3	U. 44					L					لــــا		ļI

9
Ü

									I LIMIN.	. 01 131	ATION	IAU DA.	T.V.				H, H, H	RHARY		970	
D a	D a	To	tal	Phospl	norus		Tota	l Sol	uble :	Phosph	orus		Tota	ıl Iro	on			Total	Solu	ble I	ron
t	у		/1 as		% Rei			l as		% Rem			as Fe			moval		/l as		% Ren	
e			WPE	EPE	_	EPE	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE
1		6.3	3.8	1.9	39.7	69.8	3.4	3.3	1.5	2.9	55.9	<u> </u>	 _	.933			ļ		1		
2	_	11.4	3.6			83.3	5.8	3.3	1.6		72.4			1.060					.141		47.4
3	_				1-5.2	91.3	4.8	2.7	0.50			4.72	.196	•980		79.2			.084	72.8	
4 1	_			0.56	76.2	94.7	4.6	2.0	0.39	/ - 1/	91.5	5.32	.297	.712	94,4	86.6	,>		.124	71.8	47.0
5		9,8		0.65	70.4	93.4	4.3	2.7	0.41	37,2		5,92	.268			~~~	.331	.085	.062	74.3	
6 F	_	11.6	2.7	0.89	76.7	92.3	4.2	2.3	0.51	45.2	87.9	5.40	.468	7.00		86.9	.287	.181	.088	36.9	
7 8	_		2.4	0.75	78.8	93.4	4.6	2.2	0.45	52.2	90.2	6.90	•457	. 606		91.2	.185		.080		56.8
8 8		9.2		0,92	76.1	90.0	3.6	1.9	0.73	47.2	79.7	5.84		491		91.6	.111	.087	.115		
9 M		11.8		1.5	67.8	87.3	4.3	2.8	1.1	34.9		7.96	.185	.691		91.3		.043	.078		
10 [10.5		0.60	72.4	94.3	3.0	2.6	0.30	13.3		9.02	.332	.645	96.3	192.0	•	.209	.079	37.2	76.2
11 W	_			0.61	81.4	94.0	4.3	1.7	0,31		92.8	5.68	.387	1.504			.427	.112	.162		62.1
12 [0.58	77.2	95.7	4.3	3.0	0.23	30.2	94.7	4.90	. 263						.527	99.9	
13 F	`	10.8			80.6	94.9	3.0	1.4	0.21		93.0	7.80	•397		94.9	86.2			.171	58.5	45.9
145	a				82.7	95.1	4.3	1.6	0.23	62.8		7.04	.263			82.0	.276			66.3	64.1
15 S	u	9.3	2.0	0.96	78.5	89.7	4.2	1.9	0.72			4,20	.197	•486	95.3	88.4	.154	.055	.080	64.3	48.1
16 M			2.9	1.8	72.9	83.2	3.9	2.7	1.5		61.5			.487					.360		
17 I	1	9.8		0.71	78.6	92.8	3.2	1.7	0.44		86.3										
18 W		10.2	1.5	0.56	85.3	94.5	3.7	1.3	0.38	64.9	89.7	6.81	,209		96.9		.446			76.2	
19 I	'n			0.47	79.0	95.3	3.3	1.5	0.17			8.78	,460	.777	94.8	91.2	.503			74.4	60.6
20 F	_		-747		63.2	94.2	4.0	3.2			93,8	9.72	.553	1.009	94.3	89.6		.073			
21 S	a.	10.7	3.6	0.98	66.4	90.8		3.2	0.70	23.8	83.3	7.98	.397	.771		90.3	.314	117	.054	62.7	82.8
22 S	u	7.6	3.5	1.6	53.9	78.9	2.4	3.1	1.3		45.8	6.18	.325	.624		89.9	.179	•160	.065		63.7
23 M		11.0	3.0	1.3	72.7	88,2	4.1	2.8	1.0	31.7		8.06	.240	.631		92.2	.363	.145	.063	60.1	82.6
24 I	<u>'</u>].	10.0		0.46	77.0	95.4	3.3	2.1	0.20	36.4	93.9	7.32	.199	•704	7	90.4	. 394		.054	84.8	86.3
25 W		11.1	1,1	0.38	90.1	96,6	3.6	0.95		73.6	94.7	8.44	.317			92.3	.463	•076	.194	83.6	58.1
26 T	h	9.8	0,86	0.47	91.2	95.2	1.9	0.73	0.17	61.6	91.1	11.36	.211	.676	98.1		.368	114	.121	69.q	67.1
27 F				0.56		94.9	2.6	0.59		1100		9.94		.863			.518		.084	73.2	83.8
28 S	a .	11.2	1,1	0.50	90.2	95.5	3.5	0.55	0,23	84.3	93.4	8.06	.299	•903	96.3	88.8	520	.066	.368	87.3	29.2
29																					
30																					
31																					

	<u>. </u>								PLAN	T OPER	RATION	IAL DAT	'A					MARCH	1 19	70	
Da	D n	T	otal	Phosp	horus		Tota	l Sol	uble	Phospl	orus		Tota	l Iro	on		Ţ	otal	Solut	ole I	ron
ť	у	m	z/1 a	s P	% Ren	noval	mg/	l as	Р	% Ren	noval	mg/1	as Fe		% Rer	noval	mg/	'l as	Fe	⊀ Rer	noval
e	"	SS	WPE	EPE		EPE	SS	WPE	EPE	WPE	EPE					EPE		WPE	EPE	WPE	EPE
1	Su	8.7	1.8	1.2	79.3	86.2	2.7	1.6	1.0	40.7	63.0	6,24	.333	.557	94.7	91.1	297	.140	.253	52.9	14.8
2	11	10.2	3,3	1,4	67.6	86.3	3.7	3.2	1.1		70.3	8.02	.239	.811	97.0	89.9	405	.251	.224	38.0	44.7
3	Τ	6,0	2.3	0,47	61.7	92.2	1.8	1.9	0.24		82.1	7.58	.379		95.0	87.0	399	.171	.154	57.1	61.4
14	W	8,9		0.65	85.4	92.7	3.0	0.97	0.20		93.3	8.04		1.102			391	.144	.142	63.2	63.7
5	Th	10.3	2,0	0.43	~~.	95.8	3.6	1.8	0.27	50.0	92.5	7.78	.259		96.7	88.6	. 326	.149	,121	54.3	62.9
6	_	10,0	1,9	1.3		87.0	3.3	1.2	0.65		80.3	8.88		2.455		73.0		<u>.197</u>	.249	43.7	28.9
7	Sa		1,1	0.84	والنظاما			0.77	0.45	81.7	89.3	7.66	.461		94.0	87.7	, 363	.163	,126		65.3
_	Su	8,0	1.4	1.6		80.0	3.4	1-1	1.3		61.8	6.74	.422	•59 <u>1</u>		91.2	204	.098	.105	52.0	
12	14		2.8	1.3		86.7	3.2	2.7	1.1	= 2	65.6	10.26	.233	294		97.1	525	.075	.109	85.7	79.2
10	ı <u>n</u>	10.3	1.5			95.4	3.6	1.4	0.24		93.3 93.5	8,84	.283 .235	,456		94.8 96.8		.128	.096	65.6	
	W	9.4			80.9		3.4 3.6	-	0,22		96.4	8,14 7,74	.227		97.1 97.1	96.7	,563 ,339	.113	,115 ,129	79.9 58.1	61.9
12	Th F	10.6	1.8 3.0	0.26		95.9	3.8				97.1	8.46				92.1		.248	.129	49.1	77 3
- 	_	11.1	2.2			95.0	4.2	_	0.25		94.0		.630			92.8	371	402	.563	49.1	11.5.
15	Su	8.6	2.1	1.3	75.6		3.3	1 7	1.0	† ~	69.7		.306	.212		96.5	253	.110		56.5	53.4
16	М	11.3	3.9			86.7	4.4		1.3		70.5		.570		92.9	93.7	545	.284		47.9	
17	T	10.4	3,3								92.8		.339		95.8	93.8	532	.212		60.2	83.3
18	W	10.6	2.3	0.53	~~~	95.0					94.0	8.36	.274	.574	96.7	93.1	557	.112	.132	79.9	
19	Th	8.9	2.0	0.47	77.5	94.7	3.5	1.7	0.31		91.1		.309	.481	96.4	94.3	511	.160	,117	68.7	77.1
20	F	8.3	1.4	0.41	83.1	95.1	3.5	1,1	0.35	68,6	90.0	7.22	.258	.674	96.4	90.7	449	.196	.563	56.3	
21	Sa	10.4	2,2	0.57	78,8	94.5	5.0	1.7	0.45	66.0	91.0	7.58	.436	.565	94.2	92.5	385	.141	.108	63.4	71.9
22	Su	8.8	2.9	1.7	67.0	30.7	4.8	2.4			66.7	6.06	.423	• / / -	93.0	90.8	224	.184	.085	17.9	62.1
23	M	11.6	4.1	1.6	64.7	36.2	4.9	4.0	1.3	18.4	73.5	8.44	.239	.763	97.2	91.0	224	.147	.106	34.4	52.7
24	T	9.9	3.9	0.49	60.6	55.1		<u> </u>	0.24	2.8	93.3	8.94	.268		97.0	91.7	381	.119	.085	68.8	77.7
25	W	10.0	1.5		85.0		3.0			,	94.0	10.88	.410	.850	7	92.2	421	.190	.191	54.9	54.6
26	Th	8.4	1.3		84.5	94.4	2.8				94.6	8.70	.309	.708	96.4	91.9	460	.193	.085	58.0	
27	F	9.6		0.93	87.5	10.3	3.2		0.21		93.4	7.22	497	1.913	93.1	73.5	333	.175	110	47.4	67.0
28	Sa	8.8		0.84	89.8		3.5				86,6	5.82	.433		92.6	86.7	303	.196	.080	35.3	73.6
29	Su	6.7	2.2		<u>~ . ~ ~</u>	14 A	2.7	1.8			51.9	4.68	353		//	87.7	275	.121	.109	56.0	60.4
30	М	10.9	3.1	1.6	71.6						75.5	6.42	439	.929			443	.096	.102	78.3	
31	T	9.7	2.9	0.51	70.19	4.7	4.6	2.3	0.30	50.0	93.5	5.62	395	•545	93.0	90.3	439	.178	. 306	59.5	30.3

							PLAN'	T OPER	ATION	AL DAT	Α			-	APRIL	. 19	70		-
D	D	Total	Phospl	norus	Tota	l Sol	uble	Phosph	orus		Tota	al Iro	on		T	otal	Solul	ble I	ron
a t	а	mg/l as	s P	% Removal	mg/	l as	P	% Rem	oval	mg/l	as Fe	<u> </u>	% Rei	moval	mg/	l as	Fe	% Rem	noval
е	1 "	SS WPE	EPE	WPE EPE	SS	WPE	EPE	WPE	EPE			EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE
1	W	9.0 2.4	0.46	73.394.9	4.2	1.9	0.16	54.8	96.2	6.90		0.67	93.6	90.3	0.45	0.27	0.36	40.0	20.0
2	Th	7.6, 1.3	0.37	82.995	3.0	1.1		63,3	96.3		0.37		_	87.5				أستعد سعودة	53.8
3		8.21.8	0.27		3.4			61.8	96.8			10.05		90.0		** - ~ ********************************		اختصف	54.1
14	Sa	8.4 1.4	0.28	83.396.7	42	0.86	0.19		95.5	5.66		0.45	89.0	92.0	0.38	0.20	0,15	and the same of	60.5
5	Su	6.8 1.8	1.2	73.582.4	3.5	1.7		51.4	71.4	4.36		10.1	95.4			0.16			51.6
6		9.9 3.5	1.5	64.6 84.8	5.2	3,1	1.3	40.4	75.0	5.70		0.69	85.8		0.40		0.15	67.5	
7	T	9.1 3.7	0,43		3 4 4	3.5	0.38		91.4	6.16		0.15	95.0	97.6	0.90	0.30	0.11	66.7	87.8
_	W	9.1 1.9	0.26		2.9	1.7	0.17	41.4	94.1	11,16			95.5	97.4	1,11	0.31	0.15		86.5
9	Th	9.2 1.6	0.18		4.0	1.3	0.17	67.5	95.8	7.66			94.4	96.7	0.50	0.33	0.18		64.0
10	F	9.3 2.0	0.22		3.5	1.8	0.18			10.94		0.27	95.1	97.5	0.60	0.27	0.22	55.0	63.3
11	Sa	8.7 1.8	0,22	79.3 97.5	4.3	1.1		74.4	95.6	6.12		0.56	89.7	90.8	0.60	0.35	0.16	41.7	73.3
12	Su	7.8 1.7	0.88		4.4	1.6	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	63.6	81.4	3.40	-	0.30	92.4	91.2	0.35	0.19	0.21	45.7	40.0
13	М	6.8 2.4	1.3	64.7 80.9	3.1	2.1	1.2	32, 3	61.3	6,220		0.22	94.7	96.5	0.47	0.18	0.17	61.7	63.8
14	T	7.6 1.5	0.35		3.5	1.4		60.0	91.7	7.020		0.22	95.3	96.9	0.49	0.28	0.19	42.9	61.2
15	W	8,2 1,2	0.28		+	1.1	0.22	71.1	94.2	6.500		0,22	95.2	96.6	0.48	0.25	0.16	47.9	66.7
16	Th	8.4 1.8	0.29		4.0	1.7	0.20	57.5	95.0	6.72		0.35		94.8	0.41	0.18	0.13	-	68.3
17	F	9.7 2.5	0.28		3.9	1.8		53.8	95.1	8.760		0.36		95.9	0.61	0.33	0.15		75.4
18	Sa	10.6 1.8	0.29		3 2,6	1.3		50.0	92.7	18.64		Name of Street, or other Designation of the last of th	of the second		0.90	0.21	0.15		83.3
19	Su	6.1 1.0	0.43		4	0,43	-	84.1	87.8	6.940		×		93.2	0.43		0.14	53.5	67.4
20	М	8.8 1.2	0.48		3.9	0.99	0.35	74.6	91.0	8.060	-	~~~	90.9	94.41	0.13	0.35		52.1	38.4
21	T	8.7 1.1	0.35		+	0.87	0.18		95.4	7,500	A CONTRACTOR OF THE PARTY OF TH		THE PERSON NAMED IN COLUMN TWO	92.0		0.27		50.9	72.7
22	W III	8,10,80			7.0			82.0	95.3	6,680		~ ~ ~ ~		94.3		0.17	YIIY,		65.2
23	Th F		0.28		2.8	0.50		82,1	93.6	8.160	أوالتهمية المتالة المتالة	-			0.49	0.21	0.16		67.3
24	r Sa	7.3 1.1	0.16		3.3	0.71	0.11	78.5 88.1	96.7	6.440			94.6		0.46	0.17			52.2
25	Su	7.8 0.55 6.4 0.34		92.9 96.5	3.6	0.43			97.2 91.9	5.140				The second second	0.45	0.29		52.5	53.3
26	-				3.2	0.26		91.9		6.400	The second second second					0.19	X-6-X-X		60.6
응	M T	9.8 0.35 8.2 1.8	0.44		4.7			78.3	93.0 90.7	8.34		1,22		93.6			THE PERSON NAMED IN	-	77 2
28	W	8.2 1.8 8.3 1.1	0.67		3.0			80.0	90.1	6.400		0.97	The Property lands	84.8				78.9	78.9
29	Th	6.71.4	1.8				0.36		87.1	6.240		The second second		32.7		CONTRACTOR OF THE PARTY OF THE		73.7	3.6
30		0.4.4	7.0	79.1 73.1	2.8	1.0	0.30	73.0	91.4	0.240	7 • J7	4.20	72.0	JC • 11	7.50	U.C.1	0.54	<u>02,5</u>	3.0
31		لبيلليب			 								-	e - Patragai t et a	-	Wildward and Co.		Laurent	

								PLAN'	r oper	RATION	AL DAT	ΓA					11	AY 1	970	
D a	D	T	otal Phosp	horus		Tota	l Sol	uble	Phosph	orus		Tota	l Iro	o n		T	'otal	Solut	ole I	ron
t	У	m	g/l as P	% Rei	noval	mg/	l as	P	% Ren	noval	mg/l	as Fe		% Ren	noval	mg/	l as	Fe	% Ren	noval
е		SS	WPE EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE
1	Ĕ,	7.9	1.1 2.5	86.1	68.4	2.5	0.66	0.24	73.6	90.4	7.44	0.38	6.30	94.9	15.3	0.71	0.21	0.24	70.4	66.2
12	Sa	8.0	0.430.67	94.6	91.6	3.1	0.25	0.31	91.9	90.0	6.88	0.26	1.14	96.2	83.4	0.43	0.16	0.22	62.8	48.8
3	Su	6.9	0.330.59	95.2	91.4	2.8	0.19	0.36	93.2	87.1	4.78	0.19	0.55	96.0		0.37	0.17	0.19	54.1	48.6
1,	11	9.4	0.400.63	95.7	93.3	3.8	0.32	0.23	91.6	93.9		0.17	1.22	97.8	84,4	0.33	0.08	0.09	75.8	72.7
5	Γ	8.9	1.1 0.35	87.6	96.1	3.3	0.87	0.21	73,6	93.6	8,72	0.27	0.56	96.9	93.6	0.44	0.22	0.30	50.0	31.8
6	Ŋ	8.8	1.6 0.34	81.8	96.1	3.5	1.4	0.19	60.0	94.6		0.35	0.46	96.5	95.3	0.49	0.22	0.17	55.1	65.3
7	Th	8.8	2.4 0.48	72.7	94.5	2,5	1.6	0.27	36.0	89.2		0.97	0.82	/ -	91.7	0.57	0.21	0.09	63.2	84.2
8	4	8.3			91.2	3.1	1.4	0.32		89.7		2.67	1.25		<u> </u>		0.31		29.5	63.6
9	Sa	8.4		V-7		3.0	0.63	0.28		90.7		0.69	0.43		94.4		0,13		كسخد	78.9
10	Gu	5.9		90.8					87.8		6.90		0.43				0.12			68.6
11	1	8.0	0.510.32			3.5			90.6		9.16		0.57			0.51		0.06	78.4	38.2
12	_	5.5				2.3			7777	95.2		0.23	0.45				0.10			57.1
13	_	4.9				2.0		0.09		95.5		0.20	0.45				0.18			61.0
14	l'h	5.4			94.8					96.3		0.17	0.87				0.11		71.8	92.3
15	F	5.0				2.0	0.17		//	93.5		0.61		88.8			0.22		33.3	69.7
16	Į	5.8					0.27	0.17		93.5		0.40	1.11			0.18	0.06		66.7	66.7
-	Su.	5.4		<u> </u>				0.18		93,6	4.00		0.20				0.13	0.10	40.9	54.5
18	1	8.5		07.		3.7	1.1	0.36		90.3	4.34				89.6	0.39	0.13	0.32	66.7	17.9
19	I'	7,8	1,6 0.29			2.4	1.4	0.18		92.5		0.64	<u> </u>	93.0	92.1	$\frac{0.73}{2.02}$	0.45	0.36	38.4	50.7
20	W Tria	7.9	1.4 0.21	82.3		2.5	0.85	0.13	66.0	94.8	8.94		0.69	<	92.3	0.83	0,43	0.35	48.2	57.8
	I'n	7.5		~~~		$\frac{3.1}{2.2}$	~~~	0.14		95.5		0.93		85.5		0.98	0,29	0.33	70.4	66.3
22	_	8,4		<u> </u>		3.3	<u> </u>			95.8		0.92		بتنست		0.75	0.38		49.3	68.0
23		$\frac{6.7}{2}$	_9 _ 9					0.14		95.3	5.58					0.58	0.39	0.25	32.8	56.9
24		6.4	×		-			0.18		92.5			0.90		- 2	0.49	0.33		32.7	36.7
25		8.0			86.3			0.24		92.5				94.1	~~~~	0.54	0.32		40.7	37.0
26 36	<u>.</u>	8.2	0				****	0.50		85.3		0.49		+		0.53		0.41	37.7	22.6
27	√	8.0	<u> </u>	92.4	· · · · · ·		<u> </u>	0.31		90.0		* * * * *	~			0.70	0.31		55.7	48.6
28	h	7.7					<u> </u>			94.0			0.96			0.65	0.43	~~~	33.8	49.2
29	-	7.X		50.6			<u> </u>	0.13		95.5		2.85	0.94		<u>~ ~ ~ ~ ~ </u>	0.63	0.34	0.31	46.0	
30							0.23			93.3	5.24	0.47	1,17		1 - 7	0.49	0.23		53.1	59.2
31	iu	<u>5.31</u>	0.650.82	87.7	84.5	2.0	0.27	0.45	00.5	77.5	5.42	0.55	1.11	89.9	79.5	0,36	0.36	0.42		

96

EPE

mg/l as Fe

SS WPE

Total Soluble Iron

% Removal

WPE EPE

EPE

% Removal

48.0 60.0

WPE

Total Iron

EPE

mg/l as Fe

WPE

SS

% Removal

0.621.07 92.1 86.40.940.53

0.73|1.53|89.9|78.8|1.32|0.62|1.06|53.0|19.7

EPE

4.80 1 0.45 3.54 90.6 26.30.54 0.40 0.31 25.9 42.6

WPE

Total Soluble Phosphorus

mg/l as P

SS

74.5 69.1 2.5 1.3 1.0

WPE EPE

4144			1413	3313		7 - 1 - 1 - 0 - 1 - 1 - 1 - 1 - 1	O • J = 16 / • 2 76 • O
						93.1 69.91.07 0.21	
3 W 5.5 0.38	0.28 93.1	94.9 1.6	0.21 0.11 86.9	93.1 7.86	0.600.85	92.4 89.2b.58 0.36	0.36 37.9 37.9
4 Th 6.0 0.37	0.20 93.8	96.7 2.4	0.22 0.11 90.8	95.4 5.72	0.811.11	85.8 80.6b.75 0.63	0.24 16.0 68.0
						91.0 83.0b.66 0.36	
6 Sa 6.1 0.52	0.30 91.5	95.1 2.6	0.22 0.12 91.5	95.4 4.30	0.740.92	82.8 78.6b.67 0.63	0.46 6.0 31.3
7 Su 5.4 0.41	0.25 92.4		0.21 0.16 91.9			90.5 81.80.51 0.36	
8 M 7.8 1.3	1.1 83.3					89.3 39.1b.39 0.24	
9 T 7.8 1.4	0.46 82.1	94.1 3.4		90.0 4.00		91.884.3b.520.22	
10 W 7.1 2.1	0.31 70.4	95.6 3.1				94.0 88.30.45 0.23	
11 Th 7.0 1.2	2.7 82.9		0.88 0.28 67.4		0.49 5.92		0.17 77.5 57.5
12 F 7.0 1.8	1.9 74.3	72.9		6.06	0.634.26	89.6 29.7	
13 Sa 6.4 0.84	1.5 86.9	76.6		5.62	0.22 3.33	96.1 40.7	
		86.2 2.4	0.24 0.14 90.0	94.2 4.30	0.270.73	93.7 83.00.35 0.20	0.24 42.9 31.4
15 M 7.7 1.6	0.47 79.2	93.9 3.2	1.5 0.13 53.1	95.9 5.88		91.7 86.60.78 0.33	
16 T 7.6 2.9	0.43 61.8		2.8 0.25 9.7			94.3 88.70.51 0.19 k	0.1462.7 72.5
17 W 6.8 1.8	1.3 73.5	80.9 2.6	1.7 0.30 34.6	88.5 5.20	0.522.06	90.060.40.530.26	0.1350.9 75.5
18 Th 6.7 1.1	2.3 83.6	65.7 2.4	0.72 0.47 70.0	80.4 5.56	0.514.98	90.8 10.40.70 0.27	0.2461.4 65.7
19 F 7.6 1.9	1.7 75.0	77.6 2.0	0.79 0.14 60.5	93.0 7.34	0.883.29	88.0 55.20.41 0.26	0.13 36.6 68.3
20 Sa 7.0 0.58	0.48 91.7	93.1 2.3	0.22 0.19 90.4	91.7 5.76	0.670.99	88.4 82.8 p. 48 p. 24	0.1350.0 72.9
21 Sy 5.6 0.37	0.37 93.4	93.4 2.1		91.9 4.66		91.6 81.3 p.57 0.30 k	
	0.71 84.5			93.7 4.80		93.5 85.40.60 0.28	
23 T 7.5 1.9	0.64 74.7		1.8 0.24 37.9			86,7 75.61,23 0.71	
- 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1						88.8 35.9 1.72 0.62	
25 Th 7.0 0.93						90.7 85.8 1.26 0.77	
26 F 5.8 0.53			0.51 0.17 76.8				0.72 34.5 34.5
27 Sa 7.2 0.38	0.52 94.7	92.8 2.6	0.26 0.14 90.0	94.6 7.52	0.821.42 8	39.1181.11.070.46	0.8757.0 18.7

92.9

0.15 46.2 94.2

7.84

7,22

D D

a

t

Total Phosphorus

% Removal

EPE

WPE

0.34 79.5 95.3

2.6

mg/l as P

8.6 1.9

7.3 1.5

WPE EPE

•	٥	
	Œ	

									PLAN'	r oper	RATION	AL DA	TA				JU	LY	1970		
D	D	Т	otal	Phospl	norus		Tota	l Sol	uble	Phospl	orus		Tota	al Iro	on		T	otal	Solut	ole I	ron
a	a y	m	g/1 as	3 P	% Ren	noval	mg/	l as l	P	% Ren	noval	mg/l	as Fe		% Ren	noval	mg/	'l as	Fe	% Ren	noval
e		SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE	SS		EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE
1	W	8.0	0.95	0.45	88.1	94.4	2,6	0.85	0.17	67.3	93.5	7.44	0.83	1.62	88.8	78.2	1.29	0.78	0.66	39.5	48.8
2	Th	7.5	0.66	0.36	91.2	95.2	2.8	0.52			94.3	8.12	0.57	1.15	93.0	85.8	1,13	0.44	0.60	61.1	46.0
3	F	7.9	0.83	0.19	89.5	97.9	2,1	0.71	0.11	66.2	94.8		1.06	0.87	88,1	90.2	1.72	0.75	0.53	56.4	69.2
14	Sa	6.7	0.31	0.31	95.4	95.4	1.9	0.22			94.2	6.80	0.84	0.99	87.6	85.4		0.70	0.59	38.6	48.2
5	Su	6.7	0.34	0.45	94.9	93.3	2,1	0.26			92.4	7.94	0.89	1.17	88.8	85.3	0.91	0.68	0.76	25.3	16.5
6	M	9.6	1,1	0,80	88.5	91.7	6.0	1.0	0.54			4.84	1.02	1.27	78.9	73.8		0.80	0.72	23.1	30.8
7	T	7.7	1.2	0.96	84.4	87.5	4.8	0.79	0.58			3.94	0.88	1.53	77.7	61,2		0.57	0.51	40.6	
8	N	7.8	1.3	4.5	83.3	42.3	3.5		0,49			6.40	0.98	9.16				<u> </u>	1.08		
9	T'n	7.8	2.9	3.3	62.8	57.7	2.4			<u> </u>		9.86	1.96	6.73	80.1	31.7		<u> </u>		26.8	
10	F	7.6	3.7	1,6	51.3	78.9	1.6			64.4		10.52	3.36	4.30	68.1	59.1			0.90	32.1	35.7
11	Sa	7.2	1.7	0.75	76.4	89.6	1.8			88.3	88,3	7.98	1.81	1.88	77.3	76.4		0,67	0.83	28.7	$\frac{11.7}{11.7}$
12	Su	5.9	0,50	1.3	91.5	78.0	1.7		0,21	88.2	87.6	7.76	1.16	3,40	85.1	56.2		0.97	0.97	26.5	26.5
13	М	7.7	0.51	1.5		80.4	3.7		0.38		89.7	6.00	0.42		93.0	64.2		0.13	0.31	71.1	31.1
14	T	6.3	0.56	0.77	91.1		2.9				93.8	4.76	0.38	1.67	92.0	64.9	~	0,08	0.22	75.0	31.3
15	\ <u>\</u>	7.0	0.60	0.35			2.5			91.6	95.6	5.84	0.35	0.71	94.0	87.8	0.55	0.17	0.06		89.1
16	Th	7.0	0.60	0,19	91.4	<u>97.3</u>	1.8		0.10	83.3	94.4	7.46	0.47		93.7	94.9	0.49	0,06	0.16	87.8	67.3
17	F	6.6	2.7	0.23	59.1	96.5	1.9	0.58		69.5	94.7	6.16	1.95	0.60	68.3	90.3	0,42	0.07	0.25	83.3	40.5
18	Sa	6.1	0.63	0.19	89.7	96.9	1.6		0.10	86.9	93.8	6.46	0.32	0.34		94.7	0.30	0,21	0.07	30.0	76.7
19	Su	3.7	0.51	0.20		96.1	1.6	0.15		90.6	93.1	5.06	0.22	0.20	96.4	96.80	0.25	0.06	0.08	76.0	68.0
20	71	$\frac{8.7}{0.0}$	0.62	0,40		95.4	4.0		0.27	94.0	93.3	5.06	0.36	0.21	92.9	95 q	0.58	0.09	0.06	811.5	89.7
21	T	8.2	0.47	0.20	94.3	97.6	3.[0.21	0.1(1	94.3	96.0	5.80 5.44	0.37		93.6	96.2	0.40	$\frac{0.11}{0.00}$	0.03	72.5	92.5
22	Ψ Th	8.0 7.5		0.19		97.6 97.3	2.8	~ -	0.14	93.1 87.9		6.76		0.26	95.4	95.20			0.19	87.5	45.7
24	F	7.4				95.4			0.14	80.0		8.80	<u> </u>	0.38		92 8	0.32		0.09		$\frac{71.9}{97.0}$
25		6.6	0.54		001	94.8		3,00	0.14	87.6	91.8			0.63	2000	92.00		0.07			80.0
26	_	5.4	0.49			94.9 01. 6				85.7		6.16	0.24		25 7	91.4		0.08			71 1
27	3 W	$\frac{3.4}{7.3}$	0.69		~~~	27.09			0.11				0.61	0.41	A A -	93.3				62.2	42.2
<u>2</u> 8	T		-								93.8	7.76		0.69		91.0	<u> </u>	0.34	0.57	72 7	40.0
29	W								0.13		94.8	7.36	0.62	0.67	ارنسيت	90.9		0.25	0.49	69.9	56.6
<i>29</i> 30		6.5							-							90.9		0.34	0.52	57.5	28.8
31	_										94.5	·	0.19	1.05				0.31	0.24	$\frac{21 \cdot 21}{57.7}$	53.8
لين	1. 1	0.1	0.94	0.24	07.4	27.7	2.0	U• 43	V.11	10.7	24.2	1007	0.05	1.07	90.7	85.7	0.72	V.22	10.24	7101	72.0

					PLAN	T OPER	RATION	IAL DA	TA	AUGUST	19	1970				
D	D	Total Phos	phorus	Total Sc	luble	Phosph	orus		Tota	ıl Iro	on		Total	Solu	ble I	ron
l a	у	mg/l as P	% Removal	mg/l as	P	% Ren	oval	mg/1	as Fe		% Ren	noval	mg/l as	Fe	% Rem	oval
e	1 ~	SS WPE EPE	WPE EPE	SS WPE	EPE	WPE	EPE	SS		EPE	WPE	EPE	SS WPE	EPE	WPE	EPE
1	Sa	6.5 0.54 0.2	91.7 95.5	2.1 0.1	90.26	91.0	87.6	7.20	1.12	1.10	84.4	84.7	0.63 0.37	0.32	41.3	49.2
2	Su	5.0 0.50 0.1	7 90.0 96.6	1.8 0.1	90,10	89.4	94.4	7.10	0.52	0.52	92.7	92.7	0.49 0.31	0.27	36.7	44.9
3	М	8.3 0.93 0.2	+ 88.8 97.1	3.5 0.3	80.14	89.1	96.0	6.08	0.63	0.68	89,6	88.8	0.840.48	0.36	42.9	57.1
14	T	7.4 0.46 0.2	1 93.8 97.2	2.8 0.2	60.13	90.7	95.4	6.44	0.54	0.52	91.6	91.9	0.830.35	0.43	57.8	48.2
5	W	7.3 0.55 0.2	3 92.5 96.2	2.8 0.3	10.13	88.9	95.4	6,56	0.73	0.81	88.9	87.7	1,170.33	0.33	71.8	71.8
6	Th	7.2 0.62 0.2	1 91.4 97.1	2.6 0.3	40.12	86.9	95.4	7.00	0.53	0.82	92.4	88.3	1.030.25	0.30	75.7	70.9
7	F	8.1 0.45 0.2	94.4 96.9	3.5 0.2	90.12	91.7	96.6	6.48	0.48	0.63	92.6	90.3	0.860.21	0.22	75.6	74.4
8	Sa	7.9 0.52 0.2	2 93.4 97.2	2.8 0.3	60.08	87.1	97.1	7.38	0.42	0.60	94.3	91.9	0.670.29	0.28	56.7	58.2
9	Su	6.6 0.44 0.2	93.3 96.7	2.5 0.2	50.11	90.0	95.6	6.96	0.39	0.36	94.4	94.8	0.410.15	0.24	63.4	41.5
10	М	8.4 0.56 0.2	3 93.3 96.7	3.6 0.3	30,16	90.8	95.6	6,84	0.47	0.80	93.1	88.3	1.380.39	0.29	71.7	79.0
11	Γ	7.0 0.61 0.2	91.3 96.4	2.2 0.3	10.09	85.9	95.9	6,92	0.51	0.56	92.6	91.9	0.780.35	0.40	55.1	48.7
12	W	7.0 0.67 0.2	90.4 95.9	2.0 0.3	90.11	80.5	94.5	7.00	0.40	0.49	94.3	93.0	1.250.27	0.24	78.4	80.8
13	Th	7.7 0.79 0.2	7 89.7 96.5		40.11	84.8	96.2	6,66	0.48	0.63	92.8	90.5	1.160.23	0.17	80.2	85.3
14	F	7.2 0.88 0.2	3 87.8 96.8	2.5 0.5	30.10	78.8	96.0	8,28	0.53	0.65	93.6	92.1	0.980.18	0.20	81.6	79.6
15	Sa	5.6 0.54 0.1	90.4 97.3			86.3	95.8	5.56	0.93	0.34	83.3	93.9	0.460.12	0.23	73.9	50.0
16	Su	6,20.490.2	3 92.1 96.3	2.1 0.2	0.13	90.5	93.8	6.38	0.50	0.49	92.2	92.3	0.830.33	0.20	60.2	75.9
17	M	8.5 0.56 0.49	93.4 94.2	3.4 0.2	0.26	92.4	92.4		0.62	0.77	91.0	88.8	1.180.32	0.43	72.9	63.6
18	T	6.4 0.55 0.3	91.4 95.3	1.8 0.2	20.12	87.8	93.3	7.90	0.59	0.75	92.5	90.5	1.340.43	0.37	67.9	72.4
19	W	7.0 0.57 0.2	3 91.9 96.0	2.2 0.2		90.9	95.9		0.64	0.64	92.0	92.0	1.090.29	0.37	73.4	66.1
20	Th	7.80.740.2	3 90.5 97.1	2.6 0.3		86.5	95.0	8.14	0.65	0.79	92.0	90.3	1.060.40	0.27	62.3	74.5
21	F	7.9 1.1 0.2	86,1 96,8	2.4 0.3		87.5	94.6	8,50	0.70	0.88	91.8	89.6	0.720.28	0.42	61.1	41.7
22	Sa	7.3 0.48 0.2		3.3 0.2		92.4	96.1	7,86	0.53	0.93	93.3	88,2	1.140.37	0,45		60.5
23	Su	6.5 0.45 0.50		2.7 0.2		90.7	85.6	6.42	0.48	0.82	92.5	87.20	0.630.31	0.40	50.8	36.5
24	M	9.1 1.4 1.0	84.6 89.0	5.0 1.1	0.89	78.0	82.2	4.60	0.28	0.43	93.9	90.70	0.430.13	0.10	69.8	76.7
25	T	7.9 1.4 0.4	7 82.3 94.1	3.3 1.1	0.20	66.7	93.9	5.44	0.21	0.51	96.1	90.6	0.480.14	0.14	70.8	70.8
26	W	7.8 0.69 0.29	91.2 96.3	2.7 0.4		85.2	94.1	5.92	0.32 (0.56	94.6	90.5	0.600.12	0.08		86.7
27	Th	7.2 0.60 0.29	12-4-12-4-	2.3 0.3		86.1	92.6		0.30	0.44	94.9	92.5	0.530.14	0.11	73.6	79.2
28	F	7.9 0.70 0.3		2.5 0.3		86.0	92.8		0.34	0.66		89.9	0.450.07	0.09		80.0
29	Sa	6.10.560.30	90.8 95.1		0.13	88,3			0.39			91.6	0.340.08	0.31	76.5	3.8
30	Su	6.70.460.4				91.1	88.9		0.31			89.70	0.270.07	b.21		22.2
31	M	8.6 0.50 1.1	94.2 87.2	3.9 0.3	0.91	91.0	76.7	4.86	0.19	0.46	96.1	90.5	0.460.10	0.05	78.3	89.1

	PLANT OPERATIONAL DATA														SEPT	EMBER	19	70		
D	D	T	otal Phosp	horus		Tota	l Sol	uble	Phospi	norus		Tota	al Iro	on		1	otal	Solul	ole I	ron
a t	a y	m	g/l as P	% Ren	noval	mg/	l as	P	% Rer	noval	mg/l	as Fe	•	% Rer	noval	mg/	'l .s	Fe	% Rer	noval
e	L	SS	WPE EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE
1	T^{T}	8.8	0.55 0.45	93.8	94.9	3.9	0.21	0.35	94.6	91.0	5.76	0.25	0.52	95.7	91.0	0,66	0.08	0,14	87.9	78.8
2	W	6.8	0.61 0.39	91.0	94.3	2,2	0.29	0.23	86.8	89.5	6.26	0.29	0.50	95.4	92.0	0.55	0.13	0.33	76.4	110.0
3	Th	5.2	0.500.58	90.4	88.8	2.0	0.20	0.20	90.0	90.0	5.64	0.34	1.00	94.0	82.3	0.58	0.08	0.11	86.2	81.0
4	F	7,5	0.75 0.50	90.0	93.3	1,6	0.39	0.31	75.6	80.6	8.02	0.59	0.85	92.6	89.4	0.65	0.11	0,09	83.1	86.2
5	Sa	8,0	0.390.33	95.1	95.9	2.8	0.21	0.17	92.5	93.9	6.68	0.23	0.56	96.6	91.6	0.47	0.06	0.03	87.2	93.6
6	Su	3.2	0.33	89.7		0.80	0.20		75.0		5.18	0.13		97.5		0.31	0.06		80.6	
7	\mathbb{Z}_{-}	6.1	0.95 0.71	84.4	88.4	2,9	0.75	0.46	74.1	84.1	4.06	0.18	0.51	95.6	87.4	0.39	0.03	0.05	92.3	87.2
8	T	8,0	1.4 1.0	82.5	87.5	3.1	1.2	0.83	61.3	73.2	6.22	0.13	0.49	27.9	92.1	0.58	0.05	0.03	91.4	94.8
9	И	6.6	1.0 0.43	84.8	93.5	2.9	0.46	0.27	84.1	90.7	4.66	0.20	0.38	95.7	91.8	0.50	0.07	0.08	86.0	34.0
10	Th	7.3	0.91 0.37	87.5	94.9	2.8	0.62	0.17	77.9	93.9	5.28	0.22	0.86	95.8	83.7	0.55	0,05	0.12	90.9	78.2
11	F	შ.3	0.55 0.98	93.4	88.2	3.4	0.35	0.41	89.7	87.9	5.58	0.45	1.42	91.9	74.6	0.74	0.08	0.07	89.2	90.5
12	Sa	7.6	0.32 1.2	95.8	84.2	2.3	0.21	0.21	90.9	90.9	6.30	0.21	2.67	96.7	57.6	0.40	0.06	0.05	85.0	87.5
13	Su	5.2	0.38 0.60	92.7	88.5	2,2	0.20	0.14	90.9	93.6	4.56	0.27	1.20	94.1	73.7	0.38	0,04	0.01	89.5	97.4
14	M	6.8	0.40 1.2	94.1	82.4	2.8	0.23	0.22	91.8	92.1	4.74	0.22	2.86	95.4	39.7	0.42	0.11	0.00	73.8	99.9
15	T	4.5	0.35 0.73	92.2	83.8	1.6	0.19	0.18	88.1	88.8	5.30	0.17	1.69	96.8	68.1	0.43	0.09	0.05	79.1	88.4
16	W	7.2	0.49 0.46	93.2	93.6	2.6	0.31	0.20	88.1	92.3	5.98	0.18	0.91	97.0	84.8	0.41	0.07	0.07	82.9	82.9
17	Th	6.0	0.85 0.32	85.8	94.7	1.8	0.37	0.14	79.4	92.2	5.22	0.97	0.66	81.4	87.4	0.35	0.10	0.04	71.4	88.6
18	F	6.4	0.40 0.38	93.8	94.1	2.4	0.16	0.15	93.3	93.8	4.84	0.23	0.68	95.2	86.0	0.44	0.15	0.01	65.9	97.7
19	Sa	7.3	0.40 0.33	94.5	95.5	3.6	0.26		92.8	95.6	4.48	0.14	0.65	96.9	85.5	0,25	0.02	0.05	92.0	80.0
20	Su		0.41 0.33				0.27					0.11	0.38				0.07	0.07		
21	1:	8.2	1.7 0.53	79.3		2.8	1.5	0.38	46.4	86.4	5.50	0.35	0.47	93.6	91.5	0.29	0,12	0.17	58.6	41.4
22	Т	6.8	0.82 0.35	87.9	94.9	2.1	0.55	0.19	73.8	91,0	6.14	0.28	0.52	95.4	91.5	0.51	0.08	0.13	ვ4.3	74.5
23	W	6.2	0.91 0.40	85.3	93.5	2.0	0,41	0.19	79.5	90.5	5.86	0.70	0.57	88.1	90.3	0.34	0.13	0.13	61.8	61.8
24	Th	4.9	1.0 0.57	79.6	88.4	1.7	0.60	0.12	64.7	92.9	4.92	0.72	1.24	85.4	74.8	0.36	0.16	0.10	55.6	72.2
25	F	6.3	0.43 0.56	93.2	91.1	2,2	0.21	0.19	90.5	91.4	5.70	0.27	1.17	95.3	79,5	0,25	0.10	0.11	60.0	56.0
26	Sa	6.7	0.74 0.39	89.0	94.2	1.8	0.33	0.14	81.7	92.2	7.52	0,51	0.53	93.2	93.0	0.32	0.05	0.04	84.4	87.5
27	Su	6.0	0.54 0.67	91.0	88.8	2.4	0.26	0.21	89.2	91.3	4.52	0.52	1,22	88.5	73.0	0,23	0.08	0.06	65.2	73.9
28	M	8.9	1.8 1.4	79.8	84.3	3.6	1,3	0.83	63.9	76.9	5.80	0.48	1.13	91.7	80.5	0.34	0.06	0.18	82.4	47.1
29	T	7.8	1.3 0.47	83.3	94.0	3.1	1.0	0.25	67.7	91.9	5.32	0.32	0.57	94.0	89.3	0.40	0.07	0.07	82.5	82.5
30	W	8.0	0.56 0.33	93.0	95.9	2.8	0.37	0.17	86.8	93.9	6.40	0.24	0.42	96.3	93.4	0.46	0.06	0.06	87.0	87.0
31																				

					PLAN	T OPERA	ATTON	AL DAT	.'A			OCTOBE	R 19	10	
Da	D a	Total Phos	phorus	Total S	Soluble	Phospho	orus		Total	Iron		Total	Solul	ole Ir	on.
t	у	mg/l as P	% Removal	mg/l a	as P	% Remo	oval	mg/l	as Fe	18	Removal	mg/l as	Fe	% Rem	oval
e	"	SS WPE EPE		SS W			EPE			PE WE			EPE		EPE
l	Τ'n	8.4 0.58 0.3	35 93.1 _{95.8}	2.2 0.	32 0.19	85.5 9	1.4	8.58	0.43 0	.53 9	5.0 93.8	0.390.25	0.12	35.9	69.2
2	F	9.0 0.71 0.5	2 92.1 94.2	3.1 0.	40 0.30	87.1 9	0.3	6.96					0.09		78.6
3	Sa	8.6 0.43 0.1		3.8 0.	25 0.21	93.4 9	14.5	5.78	0,32 0	.58 91	4.5 90.0	0.360.07	0.06	30.6	83.3
4	Su	7.3 0.48 0.1		3.1 0.	28 0.17	91.09				.76 9	7.7 86.6	0.320.08	0.13	75.0	59.4
5	М		8 86.2 93.8	3.1 1.	1 0.28	64.5 9		7.96				1, 1, 2	0.07	72.3	
6	Γ	8.7 0.95 0.5			59 0.31	81.0 9		6,44		.61 91			0.07	60.0	84.4
7			6 87.8 90.7		60 0.33				0.48 1.				0.39	78.0	
	Th	7.9 1.7 0.7			65 0.33							0.480.10			
9	_	7.7 1.1 2.6			55 0.26							0.380.06			78.9
	Sa.	8.3 0.60 0.6			26 0.20								0.10		71.4
	Su	7.9 0.54 0.4			21 0.15	7-17	4.6	6.76			9.5 90.1	<u> </u>	0.07		73.1
12		10.4 0.84 0.6			61 0.28		2.6		0.52 0.		,	V 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			94.1
13	_	8.9 0.76 0.6					7.5		0.28 0.					89.8	
14		8.8 1.2 0.8		1 / / 1 /	72 0.41		3.6		V• 73 F.			0.410.04	9.03		92.7
15	Th	9.6 2.9 3.2		3.2 2.			0.0	7.98	0.66 B.	26 91	- 1/2	0.430.10	0.01		97.7
16	_	10.3 3.2 4.0		3.0 2.		77.	4.7	7.24	0.52 6.	.76 92	5 75		~~~		80.6
10	Sa.	8.60.450.6	83.3 89.2 8 94.8 92.1	$\frac{3.3}{3.0}$	1 0.12		5.4	6.66	0.40 1. 0.19 1.	17 2	1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.410.08	3.00		85.4
18 19	Su	8.6 0.45 0.6		3.8 0.	23 0.15 30 0.28	7-13	2.6	7.86	* • - / + •	71 97	2 0 03 0	0.890.36	0.05		88.6 68.5
20	<u> </u>	8.7 1.5 0.5		2.5 0.			8.4		0.76 b.	$\frac{71}{76}$ 92	202 2	1.360.27	0.19		86.0
21	17	8.5 1.5 0.6		3.0 0.			6.3	8.98		81 91	491.0	1.410.27	/		83.7
22	ν ζ:Σ	8.4 2.1 1.7	75.0 79.8	3.1 1.	7 0.27	45.2 9	1.3	~~~		82 91	262.9	0.870.26	0.20		77.0
23	15. T.T.	8.7 2.5 4.6	71.3 47.1	3.4 1.			6.2	-1000		90 92		1.430.32	0.27		31.1
24	Sa	9.40.801.1	91.5 88.3		19 0.12	92.1 9	5.0	12.98	0.87 2.	30 93	3.382.3	380.30	0.19		50.0
25	Su	8.0 0.63 0.5	8 92.1 92.8		19 0.16		3.3	11.84	0.67 1.	05 94		0.810.13	0.14		82.7
26	М	10.9 1.3 0.4	8 88.1 95.6	3.0 0.	96 0.17	68.0 9	4.3	11.44		83 96	.192.7	0.470.14	0.32		31.9
27	r	8.0 1.1 0.4	A 62 A A	2.8 0.	80 0.16	71.4 9	4.3	8.80	0.54 1.	.07 93	3.987.8	0.780.20	0.24		69.2
28	W	13.0 1.9 0.5	0 85.4 96.2	9.0 1.	5 0.29	83.3 96	6.8	7.84	0.37 D.	68 95	.391.3	0.900.06	0.13	93.3	85.6
29	Γ'n	8.42.4 1.9	71.4 77.4	2.7 2.			7.4	8.96	0.58 2.	69 93	3.5 70.0	0.850.12			76.5
30		8.2 1.3 1.1	84.1 86.6		60 0.22		9.0	10.62	0.78 ₽.		778.6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.17	69.7	48.5
31	Sa	6.9 0.43 0.9	5 93.8 86.2	2.3 0.	16 0.14	93.0 g	3.9	9.92	0.37 2.	.10 96	.378.8	0.810.05	0.06	93.8	92.6

ODDDAMIONAL DAMA

	PLANT OPERATIONAL																N	OVEME	BER	1970	
D	D	Tota	l Ph	ospł	norus		Tota	l Sol	uble	Phosph	orus		Tota	al Iro	on.		T	otal	Solul	ole I	ron
a t	у	mg/l	as	P	% Re	moval	mg/	l as	P	% Ren	noval	mg/l	as Fe	?	% Rer	noval	mg/	l as	Fe	% Ren	oval
e		SS WF		PE	WPE	EPE	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE		WPE	EPE	WPE	EPE
1	Su	6.90	430	· 35	93.8	94.9	2.0	0.16	0.13	92.0	93.5	10.30	0.36	0.58	96.5	94.4	0.54	0.05	0.10	90.7	81.5
2	4		480	.25	92.5	96.1	2.9	0.40	0.13	86,2	95.5	5,98	0.08	0.53	98.7	91.1	0.50	0.05	0.07		86.0
3	Γ	6.80	47 0	.43	93.1	93.7	2.7	0.23	0.12	91.5	95.6	6,66	0.33	0.80	95.0	88.0	0.64	0.04	0.67	93.8	
4	W	7.20.	56 0	.29	92,2	96.0	2.0	0.20	0.10	90.0	95.0	8.88	0.45	0.52	94.9	94.1	0.86	0.07	0.05	91.9	94.2
5	Th	8.0 0.	76 0	.40	90.5	95.0	4.0	0,46	0.14	88,5	96.5	7.60	0.38	0.73	95.0	90.4	0.65	0,08	0.02	87.7	96.9
6	F	7.1 1.	1 0	• 8¤	84.5	88.2	2.6	0.60	0.13	76.9	95.0	7.50	0.53	1.90	92.9	74.7	1.03	0.07	0.14	93.2	86.4
7	Sa	7.90.	76 0	• 49	90.4	93.8	2.6	0.35	0.12	86.5	95.4	8.80	0.50	1.18	94.3	86,6	0.72	0,10	0.09	86.1	87.5
8	Su	7.30	420	.41	94.2	94.4	2.3	0.24	0.11	89.6	95.2	9.06	0.26	0.75	97.1	91.7	0.27	0.03	0.09		
9	М		79 0	. 32	90.1	96.0	2,6	0.52	0.12	80.0	95.4	7.28	0.39	0.59	94.6	91.9	0.450		0,20	80.0	55.6
10	${ m T}$	8.90.	70 0	.27	92,1	97.0	2.2	0.46	0.13	79.1	94.1	9.26	0.27	0.41	97.1	95.6	0.24	0.09	0.18	62.5	25.0
11	N	7.80.	79]0.	.28	89.9	96.4	2.7	0.56	0.12	79.3	95.6	6.44		0.48	95.5			0,10	0.21	79.6	57.1
12	Τ'n		80 0.	. 32	90.4	96.1	2.6	0.70	0.14	73.1	94,6	6,80	0.23	9.51	96.6		0.51),11	0.13	78.4	74.5
13	F	7.80	93 0.	.54	88.1	93.1		0.81	0.12	61.4	94.3	7.50		1.07	95.5	85.7	0.400		0.09	72.5	77.5
14	Sa	7.6 0.	78 0.	. 30	89.7	96.1	2.5	0.25	0,10	90.0	96.0	7.84		0.55	95.0	93.0	0.54	80,0	0.08	85.2	85.2
15	Su	7.50	64 0.	.27	91.5	96.4	2.4	0.19	0.10	92.1	95,8	7.54	0.40	0.47	94.7	93.8	0.45	10	0.11	77.8	75.6
16	М	10.40	77 0.	34	92.6	96.7	3.4	0.45	0.15	86.8	95.6	7.24	0.31	0.56	95.7	92.3	0.44	0,08	0.13	81.8	70.5
17	T		72 0.	50	92.5	94.8		0.45	0.20	84.5	93,1	8.34	0.28	0.70	96.6	91,6	0.610	0.07	0.20	88.5	67.2
18	W		34 0.	66	90.8	92.7	2.7	0.55	0,17	79.6	93.7	7.72	0.32	1.20	95.9	84.5	0.49	.10	0.08	79.6	83.7
<u> 19</u>	Th		2 1.	0	77.6	89.8	2.0	0.74	0.16	63.0	92.0	9.16	1.04	2.05	88.6	77.6	0.45	1.13	0.23	71.1	48.9
20	F	8.2 0.	78 3.	0	90.5	63.4		0.40	0.13	84.6	95.0	7.70	0.48	6.15	93.7	20.1	0.400	0.07	0.14	82.5	65.0
21	Sa	7.80.	33 0.	51	95.8	93.5		0.20	0.14	90.9	93.6	7.34	0.30	1.57	95.9	78.6	0,45	0.17	0.09	62.2	80.0
22	Su		10.	42	95.1	95.0		0.25	0.14	92.2	95.6	7.64		0.72	96.9	90.6	0.28	0.10	0.17	64.3	39.3
23	М	9.7 1.	7 0.	65	82.5	93.3		1.2	0.16	57.1	94.3	9.14		1.24	94.7	86.4	0.41	0.09	0.07	78.0	82.9
24	Т	8.3 0.9		1	89.2	86.7	2.7	0.61	0.15	77.4	94.4	6.90		3.00	86.7	56,5	0.57	80.0	0.04		93.0
25	W	8.6 1.9		66	77.9	92.3		0.73	0.20	81.3	94.9	7.86		1.22	88.9	84.5	0.43	0.04	0.06		86.0
26	Th	7.4 0.6	7]0.	51	90.9]	93.1		0.50	0.15	76.2	92.9	7.56	0.19	0.94	97.5	87.6	0.76	0.08	0.06	89.5	92.1
27	F .	8.5 0.6		31 3	92.9	96.4	4.1	0.25		93.9	97.1	7.18	0.31	0.38	95.7	94.7	0.85	10		88.2	92.9
28	Sa	8.1 0.6	9 0.	34 5	91.5	95.8	3.5	0.55		84.3	96.3	7.46		0.31	7007	95.8	0.606	0.04	0.03		95.0
29	Su	7.2 1.7	0.				3.3			54.5	94.2	5.58			/ 1		0.51		0.02		96.1
30	4	9.2 3.6	0.	77 [6	50.9	91.6	3.9	3.3	0.32	15.4	91.8	10.24	0.53	1.22	94.8	88.1	0.56	80,0	0.14	85.7	75.0
31					I				I]					I				

	PLANT OPERATION												JAL DATA DECEMBER 1970							
D	D	T T	otal	Phospl	norus		Tota	l Sol	uble	Phosph	orus		Tota	al Iro	on	Total	Solu	ble I	ron	
a t	у	1	g/1 a	s P	% Rei	noval	mg/	l as	P	% Rem	oval	mg/l	as Fe	<u> </u>	% Removal	mg/l as	Fe	% Rem	noval	
e	ľ	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE	EPE	SS	WPE	EPE	WPE EPE	SS WPE	EPE	WPE	EPE	
1	T	7.9	2.0	0.50	74.7	93.7	3.0	1.6	0.19	46.7	93.7	9,60	0.54	0.94	94.490.2	0.680.12	0.23	82.4	66.2	
2	W	8.1	0.83	0.39	89.8	95.2	2.8	0.59	0.14	78.9	95.0	10.86	0.39	0.81	96.492.5	0.61 0.09	0.12	85.2	80.3	
3	Th	8.1	1.1	0.45	86.4	94.4	2,5	0.42	0.16	83.2	93.6	11.62	0.77	1.01	93.491.3	0.840.20	0.17	76.2	79.8	
14	F	9.0	1.6	0.69	82.2	92.3	2.8	Q.44	0.12	84.3	95.7	12.50	1.43	2.41	88,680,7	1.280.14	0.23	89.1	82.0	
5	Sa	9.8	0.72	0.59	92.7	94.0	3.6	0.48	0.11	86.7	96.9	11.64	0.47	1.93	96.083.4	0.780.10	0.30	87.2	61.5	
6	Su	7.8	0.39	0.38	95.0	95.1	2.6	0.22	0.12	91.5	95.4	9.52	0.27	0.78	97.291.8	0.540.09	0.30	83.3	44.4	
7	M	9.9	0.95	0.41	90.4	95.8	4.4	0.82	0.15	81,4	96.6	7.02	0.43	0.62	93.991.2	0.800.11	0.19	86.3	76.3	
	T	8.9	1.5	1.0	83.1	88.8	3.0	0.81	0.21	73.0	93.0	9.14	0.51	2.32	94.474.6	0.840.13	0.14		83.3	
9	_	8.5	0.71	0.53	91.6	93.8	2.9	0.42	0.22	85.5	92.4	8.22	0.47	1.43	94.382.6	0.670.15	0.23	77.6	65.7	
10	Th		1.2	2.3				0.76						4.22		0.15	0.24			
11	F	6.6	2.2	3.9	66.7	40.9	1.8	0.40	0,12	77.8	93.3	6.84		13.72		0.580.13	0.27	77.6	53.4	
	Sa	7.4	0.64	0.85	91.4	88.5	2.9	0.25	0,12	91.4	95.9	5,66	1.07	2.72	81.151.9	0.680.11	0.21	93.8	69.1	
13	Su	6.9	0.79	1.4	88.6		3,2	0.57	0.11	82.2	96.6			4.87	94.0 2.6	0.600.12	0.13	80.0	78.3	
14	[4	8.8	3.0	1.1	65.9	87.5		2.7	0.19	27.0	94.9			3.45	95.139.5	0.720.17	0.15	76.4	79.2	
15	Γ	7.6	1.9	0.35	75.0	95.4	2.7	1.6	0.16	40.7	94.1		0.39	0.41	93.893.5	0.510.19	0.09	62.7	82.4	
16	W	6.1	1.1	0.36	82.0	94.1		0.81	0.15	57.4	92.1			0.63	95.190.6	0.670.27	0.13	59.7	80.6	
17	Th	6.5	1.2	0.30	81.5	95.4		0.56	0.14	68,9	92.2	10.0		0.58	93.792.2	0.400.07	0.22	82.5	45.0	
18	F	6.3	0.94	1.1	85.1	82.5	1.4	0.64	0.08	54.3	94.3		0.31	3.07	95,050.8	0.360.09	0.09	75.0	75.0	
19	Sa	6.7	0.46	1.2	93.1	82.1	T• (0.22	0.10	87.1	94.1		0.23	3.04	96.351.7	0.330.02		93.9	72.7	
20	Su	6.9	0.36	0.50	94.8	92.8		0.16	0.10	92.4	95.2			0.97	96.5 85.9	0.520.05	0.20	90.4	61.5	
21	14	7.6	0.68	0.30	91.1	$\frac{96.1}{96.1}$		0.47	0.18	80.4	92.5 84.7		0.20 0.36	0.65	7 0 20 2	0.310.05	***	83.9	74.2	
22	1	7.1	1 7	0.78	76.1	89.0	1.9 2.2	1.4 0.90	0.29	26.3			0.30	1.53 2.06		V	0.18		53.8	
23	₩.	7.0	$\frac{1.1}{0.96}$	0.77	84.3 85.5	82 . 9		0.65	0.17	59.1 75.0	92 . 3	7.10	0.00	3.06 2.07	00 5/3 7	0.360.14	0.09	56.3	75.0 71.9	
24 25	T <u>n</u>	~~~	0.46	0.79	ομ h	00.3		0.17	0.13	84.5	88.2	6.64	0.28	0.26	95.896.1	0.320.14	0.09	57.1	57.1	
	r Ca		0.41		93.9				0.13	91.9	95.2	6.06	0.50	0.20	22.00. 7	0.360.33	0.09	8.3	75.0	
26 27	Sa.	6.7 6.6	7 7	0.21	93.9 83.3	96 . 9		0.93		62.8	93.2	6.06	0.39	0.49	93.691.9	0.350.10	0.091	71.4	62.9	
28	Su	8.5	3.1	0.68	63.5	92.0		2.5	0.53	40.5	87.4	5.64	0 17	0.49	91.792.9	<u> </u>	~	87.9	84.5	
29	TP		2.2	0.49	71.8	92.0			0.33	34.5	88.6	7.68	0.41	0.40		0.590.14	0.09	76.3	74.6	
30	1.7	8.7	1.6	0.49	81.6	96.7	2.9		0.17	51.7	94.1	7.16	~ -	0.38	96.894.7	0.660.13	~, ~/	80.3	77 3	
$\frac{30}{31}$	w Th	7.6		****		96.2				83.2	95.9					0.670.09	~•		92.5	
$\overline{\Omega}$	TII	1.0		0.29	<u> </u>	70.6	J.	~ • ~ -	<u> </u>	~		10	·	77	/ · · · / · · / · · · · · · · · · · · ·	0.010.07	<u> </u>		7C•7	

							PL	ANT OP	ERATIO	NAL I					JANU		1970	
D	D	Iron Add	dition		Mixed							Retur	n Slu	dge	(Dry	r Basis	3)	
1	a	to East					Susper										ا	ı
t	У	Mixed Li		Plant	g		Solids		SD								% Tota	
e		lbs/day	mg/1	MGD	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP
	Th			91.4				2460		0.82						ļ		
2				114.3				2350			2.71	2.64	7.20	7.05	1.65	2.50	23.60	24.79
	Sa			95.3			2090	2270		0.96	ļ	ļ						
	Su			93.3			1860	1830		0.86	0.00	0 5					00 05	22 20
5	M			117.8			2400	2240	0.93		2.69	2.54	7.13	7.13	1.71	2.16	22.87	23.38
6		10.000		118.7			2730	2670		0.97	0.50	0 10		2 00			00 00	21 22
		12,000		124.6				2650	0.88		2.50			6.82		2.21	23.51	24,29
9		10,013		126.7		 -	2950	2770	0.87			2.49	7.10	6,92	1.71	2.86		25.07
10		14,781	14.3	123.7			3050	3200	0.86	0.91	2.37	2.41	7.09	6.79	7	3.39		25.33
11	Su			101.6			2930 2770	3260 2870			2.53 2.81	2.57	7.21	6.(1	1.91	4.12	23.92 24.95	
12	М	17.466	17.2	93.3			2520				2.78	2.79	6.85	6.91 6.70	2.55	4.54		27.54
13	Δι 7-7	12.470	12.2	121 . 9 122 . 7			2660		0.92		2.47	2.79		6.42	2.22	5.05		28.28
1	W	13.746		121.4			2770				2.31	2 77	6.67 6.77	6.26	1.03	5.07	23.56	
15	-			111.2	7.1	6.9	2540					2.71	6.84	6.40	1.88	5.47	24.08	
16	F			110.5	7.0	6.9	2840					2.64	6.77	6.50	1.79	5.83	24.11	29.71
	Sa	11.940	10.0	92.8	- 	0.9	2830					2 5 2		6.56	1.96	4.88		28,36
18	Su			80.0			2720							6.58	2.07	5.69		30.30
19		10.382	11.8	105.7	7.0	7.2	2130					2 2	6.78	6.43	2.27	5.61	24.70	30.11
20	T			104.4	7.1	7.1	2200						6.43	6.18	2.13	6.14	24.04	30.54
21	W			104.9	7.0	7.0	2300			1.03			6.56	6.28	1.88	6.34	23.23	36.74
22	Th			106.2	7.1	7.1	2440							6.21	_,	6.34		31.39
23	F	8.118		100.4	7.0	7.0	2770							6.37		6.42		30.13
24	Sa		, ,	78.5	7.3	7.2	2780		0.89	1.01				6.57	,	6.14		30.06
25	Su			67.4	7.4	7.3	2600		0.94	1.05						5.94		30.32
26	М	7.526	8.8	102.3	7.3	7.3	2360		0.99	1.07	2.46					5.94	24.54	30.83
27	Т			107.8	7.1	7.1	2690		1.11	1.07						6.00	24.61	30.84
28	W	6,624		119.3	7.0	7.1	2810		1.19	1.14	2.18					5.83	25.44	36.04
29	Th		10.5		7.1	6.9	3220		1.24	1.21	2.10	2.57	6.23			5.30	26.15	31.09
30	F			107.0	6.8	6.9	3280	3090	1.08	1.06	2.11	2 / -		6.32		5.41	25.53	30.60
31	Sa			95.0	7.1	7.1	3250	3180	1.06	1.16	2.20	2.65	6.49	6.04	1.99	5.47	25.59	30.49

24 T 10.688 12.6 102.0 6.7 7.0 2500 2450 1.20 1.12 2.35 2.81 6.26 5.86 1.99 5.07 25.95 30.1 25 W 11.263 13.4 100.8 6.7 6.6 2600 2600 1.15 1.24 2.31 2.66 6.36 5.93 1.99 5.13 25.78 30.0 26 Th 10.640 12.7 100.2 7.0 6.7 2690 2780 1.13 1.14 2.30 2.58 6.58 6.11 1.93 5.52 25.78 30.3 27 F 10.544 12.5 101.0 6.7 6.6 2670 2750 1.08 1.12 2.33 2.41 6.54 6.12 2.13 5.30 25.66 30.2 28 Sa 87.4 2620 2760 1.08 1.05 2.49 2.54 6.67 6.28 2.27 5.66 26.21 30.1 29 30 30 30 30 30 30 30 30 30 30 30 30 30								PLA	NT OPI	CRATIC)NAL I					FEBRU		1910	
Y Mixed Liquor Plant Dil Solids mg/l SDI Fotal F Total F Fotal A P R R R R R R R R R	D	D				Mixed			-			,	Retur	n Sl	udge	(Dr	y Basi	s)	
	a									Ì		İ		١.		1.			
Su	t	У																	
2 M 10.703 11.9 108.1 7.1 7.2 2760 2820 1.17 1.11 2.27 2.80 6.29 6.01 1.77 4.99 26.13 30.3 37 9.936 11.3 105.5 7.0 7.1 3140 3020 1.06 1.08 2.24 2.75 6.36 5.88 1.79 5.10 25.36 30.	е		lbs/day	mg/l					EP			L							
3 T 9,936 11.3 105.5 7.0 7.1 3140 3020 1.06 1.08 2.24 2.75 6.36 5.88 1.79 5.10 25.36 30. 4 W 8.784 10.3 102.2 6.9 7.0 2790 2730 1.14 11.3 2.17 2.66 6.40 5.93 1.77 5.05 24.78 29. 5 Th 9,656 11.0 104.8 6.9 6.9 2980 2840 1.13 1.10 2.16 2.54 6.51 6.01 1.68 4.99 24.88 28. 6 F 10,011 10.9 110.0 6.9 6.9 3200 2450 1.07 0.94 6.66 16.29 1.71 4.71 7 Sa 8 87.2 2970 3060 1.04 0.96 6.23 6.01 1.99 4.80 8 Su 85.9 2810 320 1.08 0.96 2.36 2.68 6.78 6.47 1.99 4.99 24.94 28. 9 M 8.520 10.0 102.4 7.4 7.3 2290 2920 11.31 1.02 2.37 2.76 6.54 6.35 2.02 4.82 24.87 28. 10 T 10,790 12.6 102.5 7.1 7.0 2670 2810 1.18 1.12 2.30 2.67 6.46 6.30 2.30 4.99 25.04 29. 11 W 16,548 19.5 101.6 6.9 6.9 2820 2770 1.14 1.08 2.29 2.58 6.49 6.15 2.16 5.30 25.29 29. 12 Th 15,347 18.1 101.7 7.0 7.0 2870 3100 1.16 1.16 2.24 2.53 6.64 6.33 2.05 5.69 25.13 29. 13 F 7,740 9.1 101.9 2920 3110 1.04 1.10 2.24 2.53 6.64 6.33 2.05 5.59 25.13 29. 14 Sa 89.0 2950 2950 0.98 1.10 2.37 2.61 6.85 6.33 2.05 5.38 25.08 29. 15 Su 82.6 7.2 7.1 2750 2950 1.07 1.21 2.50 2.77 6.81 6.30 2.07 5.35 25.12 29. 16 M 7,124 8.8 9.75 7.2 7.1 2140 2550 1.17 1.21 2.50 2.77 6.81 6.50 6.07 1.93 5.02 24.68 29. 18 W 11,307 13.6 100.01 7.0 6.7 2330 2630 1.07 1.18 2.38 2.77 6.33 5.98 2.16 5.02 24.68 29. 18 W 11,307 13.6 100.07 7.2 7.0 2690 2870 1.08 1.06 2.31 2.55 6.56 6.12 2.05 5.99 24.68 29. 18 W 11,307 13.6 100.07 7.2 7.4 2170 2330 1.09 1.18 1.15 2.34 2.64 6.50 6.07 1.93 5.02 24.68 29. 18 W 11,307 13.6 100.07 7.2 7.4 2170 2330 1.09 1.18 1.15 2.34 2.64 6.50 6.07 1.93 5.02 24.68 29. 28 Su 86.2 2 2590 2700 1.08 1.07 2.37 2.60 6.36 5.93 5.90 2.46 9.90 2.80 1.90 1.25 2.37 2.60 6.36 5.93 2.95 5.13 25.42 29. 28 Su 86.2 2 2.59 2.70 1.09 1.24 2.35 2.66 6.67 6.28 2.07 5.51 25.99 29. 29 Su 11,263 13.4 100.8 6.7 6.5 2600 2600 1.18 1.15 2.34 2.66 6.56 6.12 2.05 5.91 25.95 30.1 25.02 24.68 29. 20 F 8,354 12.1 10.680 12.7 100.2 7.0 6.7 6.2600 2600 1.18 1.15 2.33 2.41 6.54 6.12 2.13 5.30 25.66 30.2 28. 20 F 8,354 12.5 101.0 6.7 6.6 2600 2600 1.18 1.05 2.49 2.54 6.67 6.28 2.77 5.66 26.2	1	Su					7.1		2950	1.12	1.17					2.05	5.30	26.49	32.32
## 8.78\			10.703	11.9	108.1	7.1	7.2	2760	2820	1.17	1.11	2.27	2.80	6.29	6.01	1.77	4.99	26.13	30.97
5 Th 9.656 11.0 104.8 6.9 6.9 2980 2840 1.13 1.10 2.16 2.54 6.51 6.01 1.68 4.99 24.38 28. 6 F 10.011 10.9 110.0 6.9 6.9 3200 2450 1.07 0.94 6.61 6.29 1.71 4.71 73 8 8 87.2 2970 3060 1.04 0.96 6.23 6.01 1.99 4.80 85.9 2810 3200 1.08 0.96 2.36 2.68 6.78 6.47 1.99 4.99 24.94 28. 9 M 8.520 10.0 102.4 7.4 7.3 2290 2920 1.13 1.02 2.37 2.76 6.54 6.35 2.02 4.82 24.87 28. 10 T 10.790 12.6 102.5 7.1 7.0 2670 2810 1.01 1.10 1.2 2.30 2.57 6.46 6.30 2.30 4.99 25.04 29. 11 W 16.548 19.5 101.6 6.9 6.9 2820 2770 1.14 1.08 2.29 2.58 6.49 6.15 2.16 5.30 25.29 29. 12 Th 15.347 18.1 101.7 7.0 7.0 2870 3100 1.16 1.16 2.24 2.53 6.64 6.23 2.05 5.69 25.13 29. 13 F 7.740 9.1 101.9 2920 3110 1.04 11.10 2.24 2.49 6.75 6.21 1.93 5.61 24.97 29. 15 su 82.6 7.2 7.1 2750 2950 1.07 1.21 2.50 2.77 6.81 6.30 2.07 5.35 25.12 29. 16 M 7.124 8.8 97.5 7.2 7.1 2140 2550 1.07 1.21 2.50 2.77 6.81 6.30 2.07 5.35 25.12 29. 17 T 8.319 10.6 100.1 7.0 6.7 2330 2630 1.07 1.18 2.38 2.77 6.33 5.98 21.65 5.02 24.68 29. 18 M 11.307 13.6 100.0 7.1 6.9 2730 2600 1.18 1.15 2.34 2.77 6.81 6.50 6.71 1.93 5.02 24.50 29. 18 M 11.307 13.6 100.0 7.1 6.9 2730 2600 1.18 1.15 2.34 2.77 6.33 5.98 2.16 5.02 24.68 29. 18 M 11.307 13.6 100.0 7.1 6.9 2730 2600 1.08 1.06 2.31 2.55 6.56 6.21 2.16 5.13 25.42 29. 18 M 11.307 13.6 100.0 7.1 6.9 2730 2600 1.08 1.06 2.31 2.55 6.56 6.22 2.07 5.35 25.12 29. 18 M 11.307 13.6 100.0 7.1 6.9 2730 2600 1.08 1.06 2.31 2.55 6.56 6.22 2.07 1.93 5.02 24.50 29. 18 M 11.307 13.6 100.0 7.1 6.9 2730 2600 1.08 1.06 2.31 2.55 6.56 6.22 2.07 1.93 5.02 24.50 29. 22 22 22 22 22 22 22 22 22 22 22 22 22			سعد المسلماني	11.3	105.5										5.88	1.79			
6 F 10.011 10.9 110.0 6.9 6.9 3200 2450 1.07 0.94 6.61 6.29 1.71 4.71 7 Sa 87.2 2970 3060 1.04 0.96 6.23 6.01 1.99 4.80 85.9 2810 3200 1.08 0.96 2.36 2.68 6.78 6.47 1.99 4.99 24.94 28. 9 M 8.520 10.0 102.4 7.4 7.3 2290 2920 1.13 1.02 2.37 2.76 6.54 6.35 2.02 4.82 24.87 28. 10 T 10.790 12.6 102.5 7.1 7.0 2670 2810 1.18 1.12 2.30 2.67 6.46 6.30 2.30 4.99 25.04 29. 11 W 16.548 19.5 101.6 6.9 6.9 2820 2770 1.14 1.08 2.29 2.58 6.49 6.15 2.16 5.30 25.29 29. 12 Tm 15.347 18.1 101.7 7.0 7.0 2870 3100 1.16 1.16 2.24 2.53 6.64 6.23 2.05 5.69 25.13 29. 13 F 7.740 9.1 101.9 2920 3110 1.04 1.10 2.24 2.49 6.75 6.21 1.93 5.61 24.97 29. 14 Sa 89.0 2920 3100 1.04 1.10 2.24 2.49 6.75 6.21 1.93 5.61 24.97 29. 15 Su 82.6 7.2 7.1 2750 2950 1.07 1.21 2.50 2.77 6.81 6.30 2.07 5.35 25.12 29. 16 M 7.124 8.8 97.5 7.2 7.1 2140 2550 1.07 1.21 2.50 2.77 6.81 6.30 2.07 5.35 25.12 29. 16 M 7.124 8.8 97.5 7.2 7.1 2140 2550 1.07 1.21 2.50 2.77 6.81 6.30 2.07 5.35 25.12 29. 18 W 11.307 13.6 100.0 7.1 6.9 2730 2600 1.18 1.15 2.34 2.64 6.50 6.07 1.93 5.02 24.50 29. 19 Tm 10.574 12.8 99.4 6.8 6.5 2650 2700 1.09 1.28 2.29 2.54 6.57 6.19 1.88 5.19 24.52 28. 20 Sa 9. 30 30 30 30 30 30 30 30 30 30 30 30 30	4	W		10.3											1/ 1/ -	1			
T Sa	5			11.0				2980				2.16	2.54	6.51	6.01	1.68		24.38	28.74
8 Su			10,011	10.9			6.9	3200						6.61	6.29	1.71			
9 M 8,520 10.0 102.4 7.4 7.3 2290 2920 1.13 1.02 2.37 2.76 6.54 6.35 2.02 4.82 24.87 28. 10 T. 10.790 12.6 102.5 7.1 7.0 2670 2810 1.18 1.12 2.30 2.67 6.46 6.30 2.30 4.99 25.04 29. 11 W 16.548 19.5 101.6 6.9 6.9 2820 2770 1.14 1.08 2.29 2.58 6.49 6.15 2.16 5.30 25.29 29. 12 Th 15.347 18.1 101.7 7.0 7.0 2870 3100 1.16 1.16 2.24 2.49 2.53 6.64 6.23 2.05 5.69 25.13 29. 13 F 7.740 9.1 101.9 2920 3110 1.04 1.10 2.24 2.49 6.75 6.21 1.93 5.61 24.97 29. 14 Sa 8 9.0 2950 2950 0.98 1.10 2.37 2.61 6.85 6.33 2.05 5.88 25.08 29. 15 Su 82.6 7.2 7.1 2750 2950 1.07 1.21 2.50 2.77 6.81 6.30 2.07 5.35 25.12 29. 16 M 7.124 8.8 9.5 7.2 7.1 2140 2550 1.17 1.21 2.54 2.82 6.58 6.21 2.16 5.13 25.42 29. 17 T 8.819 10.6 100.1 7.0 6.7 2330 2630 1.17 1.21 2.54 2.82 6.58 6.21 2.16 5.13 25.42 29. 18 W 11.307 13.6 100.0 7.1 6.9 2730 2600 1.18 1.15 2.34 2.77 6.33 5.98 2.16 5.02 24.68 29. 19 Th 10.574 12.8 99.4 6.8 6.5 2650 2700 1.09 1.24 2.29 2.54 6.57 6.19 1.88 5.19 24.50 29. 22 Su 86.3 9.0 3 2830 3070 1.10 1.06 2.51 2.76 6.68 6.29 2.05 5.13 25.24 29. 22 Su 86.3 1.10 1.11 13.2 100.7 7.2 7.4 2170 2330 1.15 1.10 2.57 2.88 6.36 6.00 2.16 4.91 26.93 2.24 T 10.688 12.6 102.0 6.7 7.0 2500 2450 1.28 1.17 1.24 2.35 2.81 6.26 5.86 1.12 1.07 4.91 25.98 29. 22 Su 11.263 13.4 100.8 6.7 6.6 2600 2600 1.18 1.17 2.57 2.88 6.36 6.00 2.16 4.91 25.98 29. 22 Su 11.263 13.4 100.8 6.7 6.6 2600 2600 1.15 1.12 2.35 2.81 6.26 5.86 1.19 95.07 25.95 30.1 25.97 10.640 12.7 100.2 7.0 6.7 2690 2780 1.13 1.14 2.30 2.58 6.58 6.11 1.93 5.52 25.78 30.2 24 T 10.680 12.7 100.2 7.0 6.7 2690 2780 1.13 1.14 2.30 2.58 6.58 6.11 1.93 5.52 25.78 30.2 25 T 10.544 12.5 101.0 6.7 6.6 2670 2750 1.08 1.15 1.24 2.33 2.41 6.54 6.12 2.13 5.30 25.66 30.2 28 Sa 87.4	7	Sa.																	
10 T 10,790 12.6 102.5 7.1 7.0 2670 2810 1.18 1.12 2.30 2.67 6.46 6.30 2.30 4.99 25.04 29.11 W 16,548 19.5 101.6 6.9 6.9 2820 2770 1.14 1.08 2.29 2.58 6.49 6.15 2.16 5.30 25.29 29.12 Th 15,347 18.1 101.7 7.0 7.0 2870 3100 1.6 1.16 2.24 2.49 6.75 6.24 2.30 5.69 25.13 29.13 29.13 F 7.740 9.1 101.9 2.920 3110 1.04 1.10 2.24 2.49 6.75 6.21 1.93 5.61 24.97 29.14 58 89.0 2.950 2.950 2.950 1.07 1.21 2.50 2.77 6.81 6.30 2.07 5.35 25.12 29.15 5.84 2.95 2.950 2.950 2.950 1.07 1.21 2.50 2.77 6.81 6.30 2.07 5.35 25.12 29.15 2.16 M 7.124 8.8 97.5 7.2 7.1 2.140 2.550 1.17 1.21 2.54 2.82 6.58 6.21 2.16 5.13 25.42 29.17 7.1 8.819 10.6 100.1 7.0 6.7 2.330 2.630 1.07 1.18 2.38 2.77 6.33 5.98 2.16 5.02 24.68 29.2 1.18 W 11.307 13.6 100.0 7.1 6.9 2730 2600 1.18 1.15 2.34 2.64 6.50 6.07 1.93 5.02 24.63 29.0 1.97 1.97 12.8 99.4 6.8 6.5 2650 2700 1.09 1.24 2.29 2.54 6.57 6.19 1.88 5.19 24.52 28.2 2.15 2.28 2.15 2.28																			
11 w 16,548 19.5 101.6 6.9 6.9 2820 2770 1.14 1.08 2.29 2.58 6.49 6.15 2.16 5.30 25.29 29. 12 Th 15,347 18.1 101.7 7.0 7.0 2870 3100 1.6 1.6 2.24 2.53 6.64 6.23 2.05 5.69 25.13 29. 13 F 7.740 9.1 101.9 2920 3110 1.04 1.10 2.24 2.49 6.75 6.21 1.93 5.61 24.97 29. 14 58 89.0 2950 2950 0.98 1.10 2.37 2.61 6.85 6.33 2.05 5.38 25.08 29. 15 58 82.6 7.2 7.1 2750 2950 1.07 1.21 2.50 2.77 6.81 6.30 2.07 5.35 25.12 29. 16 M 7.124 8.8 97.5 7.2 7.1 2140 2.550 1.07 1.21 2.54 2.82 6.58 6.21 2.16 5.13 25.42 29. 17 T 8.819 10.6 100.1 7.0 6.7 2330 2630 1.07 1.18 2.38 2.77 6.33 5.98 2.16 5.02 24.68 29. 18 W 11.307 13.6 100.0 7.1 6.9 2730 2600 1.18 1.15 2.34 2.64 6.50 6.07 1.93 5.02 24.68 29. 19 Th 10.574 12.8 99.4 6.8 6.5 2650 2700 1.09 1.24 2.29 2.54 6.57 6.19 1.88 5.19 24.52 28.8 22 5.3	_	М		10.0															
12 Th 15,347 18.1 101.7 7.0 7.0 2870 3100 1.16 1.16 2.24 2.53 6.64 6.23 2.05 5.69 25.13 29. 13 F 7,740 9.1 101.9 2920 3110 1.04 1.10 2.24 2.49 6.75 6.21 1.93 5.61 24.97 29. 14 Sa 89.0 2950 2950 0.98 1.10 2.37 2.61 6.85 6.33 2.05 5.38 25.08 29. 15 Su 82.6 7.2 7.1 2750 2950 1.07 1.21 2.50 2.77 6.81 6.30 2.07 5.35 25.12 29. 16 M 7,124 8.8 97.5 7.2 7.1 2140 2550 1.17 1.21 2.54 2.82 6.58 6.21 2.16 5.13 25.42 29. 17 T 8,819 10.6 100.1 7.0 6.7 2330 2630 1.07 1.18 2.38 2.77 6.33 5.98 2.16 5.02 24.68 29. 18 W 11,307 13.6 100.0 7.1 6.9 2730 2600 1.18 1.15 2.34 2.64 6.50 6.07 1.93 5.02 24.50 29. 19 Th 10,574 12.8 99.4 6.8 6.5 2650 2700 1.09 1.24 2.29 2.54 6.57 6.19 1.88 5.19 24.52 28.8 20 F 8,354 9.9 101.5 7.0 7.0 2690 2870 1.08 1.06 2.31 2.55 6.56 6.12 1.85 5.24 24.48 28.6 21 Sa 90.3 2830 3070 1.10 1.06 2.51 2.76 6.68 6.29 2.05 5.13 25.21 29. 22 Su 86.2 2590 2760 1.08 1.17 2.56 2.83 6.58 6.12 2.07 4.91 25.98 29.6 23 M 11,111 13.2 100.7 7.2 7.4 2170 2330 1.15 1.10 2.57 2.88 6.36 6.00 2.16 4.91 25.98 29.6 23 M 11,111 13.2 100.7 7.2 7.4 2170 2330 1.15 1.10 2.57 2.88 6.36 6.00 2.16 4.91 25.98 29.6 24 T 10,688 12.6 102.0 6.7 7.0 2500 2450 1.20 1.12 2.35 2.81 6.26 5.86 1.99 5.07 25.95 30.1 25 W 11,263 13.4 100.8 6.7 6.6 2600 2600 1.15 1.24 2.31 2.56 6.36 5.93 1.99 5.13 25.78 30.2 26 Th 10,640 12.7 100.2 7.0 6.7 6.6 2670 2750 1.08 1.12 2.33 2.41 6.54 6.12 2.13 5.30 25.66 30.2 27 F 10,544 12.5 101.0 6.7 6.6 2670 2750 1.08 1.12 2.33 2.41 6.54 6.12 2.13 5.30 25.66 30.2 28 Sa 87.4 2620 2760 1.08 1.05 2.49 2.54 6.67 6.28 2.27 5.66 26.21 30.1 29 Sa 87.4 2620 2760 1.08 1.05 2.49 2.54 6.67 6.28 2.27 5.66 26.21 30.1		Т.																	
13 F 7,740 9.1 101.9 2920 3110 1.04 1.10 2.24 2.49 6.75 6.21 1.93 5.61 24.97 29.14 Sa 89.0 2950 2950 0.98 1.10 2.37 2.61 6.85 6.33 2.05 5.38 25.08 29.15 Su 82.6 7.2 7.1 2750 2950 1.07 1.21 2.50 2.77 6.81 6.30 2.07 5.35 25.12 29.16 M 7,124 8.8 97.5 7.2 7.1 2140 2550 1.17 1.21 2.54 2.82 6.58 6.21 2.16 5.13 25.42 29.17 T 8,819 10.6 100.1 7.0 6.7 2330 2630 1.07 1.18 2.38 2.77 6.33 5.98 2.16 5.02 24.68 29.2 18 W 11.307 13.6 100.0 7.1 6.9 2730 2600 1.18 1.15 2.34 2.64 6.50 6.07 1.93 5.02 24.50 29.0 19 Th 10.574 12.8 99.4 6.8 6.5 2650 2700 1.09 1.24 2.29 2.54 6.57 6.19 1.88 5.19 24.52 28.8 20 F 8,354 9.9 101.5 7.0 7.0 2690 2870 1.08 1.06 2.31 2.55 6.56 6.12 1.85 5.24 24.48 28.8 21 Sa 90.3 2830 3070 1.10 1.06 2.51 2.76 6.68 6.29 2.05 5.13 25.21 29.1 29.1 29.1 29.1 29.1 29.1 29.1 2		W		_															
14 Sa				18.1			7.0												
15 Su			7,740	9.1				2920											
16 M 7,124 8.8 97.5 7.2 7.1 2140 2550 1.17 1.21 2.54 2.82 6.58 6.21 2.16 5.13 25.42 29. 17 T 8,819 10.6 100.1 7.0 6.7 2330 2630 1.07 1.18 2.38 2.77 6.33 5.98 2.16 5.02 24.68 29.2 18 W 11,307 13.6 100.0 7.1 6.9 2730 2600 1.18 1.15 2.34 2.64 6.50 6.07 1.93 5.02 24.50 29.0 19 Th 10,574 12.8 99.4 6.8 6.5 2650 2700 1.09 1.24 2.29 2.54 6.57 6.19 1.88 5.19 24.52 28.8 20 F 8,354 9.9 101.5 7.0 7.0 2690 2870 1.08 1.06 2.31 2.55 6.56 6.12 1.85 5.24 24.48 28.6 21 Sa 90.3 2830 3070 1.10 1.06 2.51 2.76 6.68 6.29 2.05 5.13 25.21 29.3 22 Su 86.2 2590 2760 1.08 1.17 2.56 2.83 6.58 6.12 2.07 4.91 25.98 29.9 23 M 11.111 13.2 100.7 7.2 7.4 2170 2330 1.15 1.10 2.57 2.88 6.36 6.00 2.16 4.91 26.33 30.2 24 T 10.688 12.6 102.0 6.7 7.0 2500 2450 1.20 1.12 2.35 2.81 6.26 5.86 1.99 5.07 25.95 30.1 25 W 11.263 13.4 100.8 6.7 6.6 2600 2600 1.15 1.24 2.31 2.66 6.36 5.93 1.99 5.13 25.78 30.0 26 Th 10.640 12.7 100.2 7.0 6.7 2690 2780 1.13 1.14 2.30 2.58 6.58 6.11 1.93 5.52 25.78 30.3 27 F 10.544 12.5 101.0 6.7 6.6 2670 2750 1.08 1.12 2.33 2.41 6.54 6.12 2.13 5.30 25.66 30.2 28 Sa 87.4 2620 2760 1.08 1.05 2.49 2.54 6.67 6.28 2.27 5.66 26.21 30.1 29 30																			
17 T 8,819 10.6 100.1 7.0 6.7 2330 2630 1.07 1.18 2.38 2.77 6.33 5.98 2.16 5.02 24.68 29.2 18 W 11,307 13.6 100.0 7.1 6.9 2730 2600 1.18 1.15 2.34 2.64 6.50 6.07 1.93 5.02 24.50 29.0 19 Th 10,574 12.8 99.4 6.8 6.5 2650 2700 1.09 1.24 2.29 2.54 6.57 6.19 1.88 5.19 24.52 28.8 20 F 8,354 9.9 101.5 7.0 7.0 2690 2870 1.08 1.06 2.31 2.55 6.56 6.12 1.85 5.24 24.48 28.6 21 Sa 90.3 2830 3070 1.10 1.06 2.51 2.76 6.68 6.29 2.05 5.13 25.21 29.3 22 Su 86.2 2590 2760 1.08 1.17 2.56 2.83 6.58 6.12 2.07 4.91 25.98 29.9 23 M 11.111 13.2 100.7 7.2 7.4 2170 2330 1.15 1.10 2.57 2.88 6.36 6.00 2.16 4.91 26.33 30.2 24 T 10.688 12.6 102.0 6.7 7.0 2500 2450 1.20 1.12 2.35 2.81 6.26 5.86 1.99 5.07 25.95 30.4 25 W 11.263 13.4 100.8 6.7 6.6 2600 2600 1.15 1.24 2.31 2.66 6.36 5.93 1.99 5.13 25.78 30.0 26 Th 10.640 12.7 100.2 7.0 6.7 2690 2780 1.13 1.14 2.30 2.58 6.58 6.11 1.93 5.52 25.78 30.3 27 F 10.544 12.5 101.0 6.7 6.6 2670 2750 1.08 1.12 2.33 2.41 6.54 6.12 2.13 5.30 25.66 30.2 28 Sa 87.4 2620 2760 1.08 1.05 2.49 2.54 6.67 6.28 2.27 5.66 26.21 30.1 29 30 30 30 30 30 30 30 30 30 30 30 30 30																			
18 W 11,307 13.6 100.0 7.1 6.9 2730 2600 1.18 1.15 2.34 2.64 6.50 6.07 1.93 5.02 24.50 29.0 19 Th 10,574 12.8 99.4 6.8 6.5 2650 2700 1.09 1.24 2.29 2.54 6.57 6.19 1.88 5.19 24.52 28.8 20 F 8,354 9.9 101.5 7.0 7.0 2690 2870 1.08 1.06 2.31 2.55 6.56 6.12 1.85 5.24 24.48 28.6 21 Sa 90.3 2830 3070 1.10 1.06 2.51 2.76 6.68 6.29 2.05 5.13 25.21 29.1 22 Su 86.2 2590 2760 1.08 1.17 2.56 2.83 6.58 6.12 2.07 4.91 25.98 29.5	16	М		8.8													5.13		
19 Th 10,574 12.8 99.4 6.8 6.5 2650 2700 1.09 1.24 2.29 2.54 6.57 6.19 1.88 5.19 24.52 28.8 20 F 8,354 9.9 101.5 7.0 7.0 2690 2870 1.08 1.06 2.31 2.55 6.56 6.12 1.85 5.24 24.48 28.6 21 Sa 90.3 2830 3070 1.10 1.06 2.51 2.76 6.68 6.29 2.05 5.13 25.21 29.1 22 Su 86.2 2590 2760 1.08 1.17 2.56 2.83 6.58 6.12 2.07 4.91 25.98 29.5 23 M 11.111 13.2 100.7 7.2 7.4 2170 2330 1.15 1.10 2.57 2.88 6.36 6.00 2.16 4.91 26.33 30.2 24 T 10.688 12.6 102.0 6.7 7.0 2500 2450 1.20 1.12 2.35 2.81 6.26 5.86 1.99 5.07 25.95 30.1 25 W 11.263 13.4 100.8 6.7 6.6 2600 2600 1.15 1.24 2.31 2.66 6.36 5.93 1.99 5.13 25.78 30.0 26 Th 10.640 12.7 100.2 7.0 6.7 2690 2780 1.13 1.14 2.30 2.58 6.58 6.11 1.93 5.52 25.78 30.3 27 F 10.544 12.5 101.0 6.7 6.6 2670 2750 1.08 1.12 2.33 2.41 6.54 6.12 2.13 5.30 25.66 30.2 28 Sa 87.4 2620 2760 1.08 1.05 2.49 2.54 6.67 6.28 2.27 5.66 26.21 30.1 30 30 30 30 30 30 30 30 30 30 30 30 30		T																	
20 F 8,354 9.9 101.5 7.0 7.0 2690 2870 1.08 1.06 2.31 2.55 6.56 6.12 1.85 5.24 24.48 28.6 21 Sa 90.3 2830 3070 1.10 1.06 2.51 2.76 6.68 6.29 2.05 5.13 25.21 29.1 22 Su 86.2 2590 2760 1.08 1.17 2.56 2.83 6.58 6.12 2.07 4.91 25.98 29.9 23 M 11.11 13.2 100.7 7.2 7.4 2170 2330 1.15 1.10 2.57 2.88 6.36 6.00 2.16 4.91 26.33 30.2 24 T 10.688 12.6 102.0 6.7 7.0 2500 2450 1.20 1.12 2.35 2.81 6.26 5.86 1.99 5.07 25.95 30.1 25 W 11.263 13.4 100.8 6.7 6.6 2600 2600 1.15 1.24 2.31 2.66 6.36 5.93 1.99 5.13 25.78 30.0 26 Th 10.640 12.7 100.2 7.0 6.7 2690 2780 1.13 1.14 2.30 2.58 6.58 6.11 1.93 5.52 25.78 30.3 27 F 10.544 12.5 101.0 6.7 6.6 2670 2750 1.08 1.12 2.33 2.41 6.54 6.12 2.13 5.30 25.66 30.2 28 Sa 87.4 2620 2760 1.08 1.05 2.49 2.54 6.67 6.28 2.27 5.66 26.21 30.1 29								قصصه سنده کاگ											
21 Sa	19	Th		12.8											J Z				
22 Su		_	8,354	9.9			7.0												
23 M 11,111 13.2 100.7 7.2 7.4 2170 2330 1.15 1.10 2.57 2.88 6.36 6.00 2.16 4.91 26.33 30.2 24 T 10.688 12.6 102.0 6.7 7.0 2500 2450 1.20 1.12 2.35 2.81 6.26 5.86 1.99 5.07 25.95 30.1 25 W 11.263 13.4 100.8 6.7 6.6 2600 2600 1.15 1.24 2.31 2.66 6.36 5.93 1.99 5.13 25.78 30.0 26 Th 10.640 12.7 100.2 7.0 6.7 2690 2780 1.13 1.14 2.30 2.58 6.58 6.11 1.93 5.52 25.78 30.3 27 F 10.544 12.5 101.0 6.7 6.6 2670 2750 1.08 1.12 2.33 2.41 6.54 6.12 2.13 5.30 25.66 30.2 28 Sa 87.4 2620 2760 1.08 1.05 2.49 2.54 6.67 6.28 2.27 5.66 26.21 30.1 29 30 30 30 30 30 30 30 30 30 30 30 30 30	_																		
24 T 10.688 12.6 102.0 6.7 7.0 2500 2450 1.20 1.12 2.35 2.81 6.26 5.86 1.99 5.07 25.95 30.1 25 W 11.263 13.4 100.8 6.7 6.6 2600 2600 1.15 1.24 2.31 2.66 6.36 5.93 1.99 5.13 25.78 30.0 26 Th 10.640 12.7 100.2 7.0 6.7 2690 2780 1.13 1.14 2.30 2.58 6.58 6.11 1.93 5.52 25.78 30.3 27 F 10.544 12.5 101.0 6.7 6.6 2670 2750 1.08 1.12 2.33 2.41 6.54 6.12 2.13 5.30 25.66 30.2 28 Sa 87.4 2620 2760 1.08 1.05 2.49 2.54 6.67 6.28 2.27 5.66 26.21 30.1 29 30 30 30 30 30 30 30 30 30 30 30 30 30	22	Su											A						
25 W 11,263 13.4 100.8 6.7 6.6 2600 2600 1.15 1.24 2.31 2.66 6.36 5.93 1.99 5.13 25.78 30.0 26 Th 10.640 12.7 100.2 7.0 6.7 2690 2780 1.13 1.14 2.30 2.58 6.58 6.11 1.93 5.52 25.78 30.3 27 F 10.544 12.5 101.0 6.7 6.6 2670 2750 1.08 1.12 2.33 2.41 6.54 6.12 2.13 5.30 25.66 30.2 28 Sa 87.4 2620 2760 1.08 1.05 2.49 2.54 6.67 6.28 2.27 5.66 26.21 30.1 29 30 30 30 30 30 30 30 30 30 30 30 30 30	-	M		استجبي															30.20
26 Th 10.640 12.7 100.2 7.0 6.7 2690 2780 1.13 1.14 2.30 2.58 6.58 6.11 1.93 5.52 25.78 30.3 27 F 10.544 12.5 101.0 6.7 6.6 2670 2750 1.08 1.12 2.33 2.41 6.54 6.12 2.13 5.30 25.66 30.2 28 Sa 87.4 2620 2760 1.08 1.05 2.49 2.54 6.67 6.28 2.27 5.66 26.21 30.1 29 30 30 30 30 30 30 30 30 30 30 30 30 30	24											4-6-4-4							
27 F 10.544 12.5 101.0 6.7 6.6 2670 2750 1.08 1.12 2.33 2.41 6.54 6.12 2.13 5.30 25.66 30.2 28 Sa 87.4 2620 2760 1.08 1.05 2.49 2.54 6.67 6.28 2.27 5.66 26.21 30.1 29 30 30 4 5 5 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6				استنسا								_							
28 Sa 87.4 2620 2760 1.08 1.05 2.49 2.54 6.67 6.28 2.27 5.66 26.21 30.1 29 30 30 4 5 5 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6															•				
29			10,544	12.5			6.6												
30		Sa			87.4			2620	2760	1.08	1.05	2.49	2.54	6.67	6.28	2.27	5.66	26.21	30.18
	_																		
	31									I							I		

ŧ	_
(2
(7

							PLA	NT OP	ERATIO	NAL I	ATA					MARCH	197	0
D	D	Iron Add	iition		Mixed	Liqu	or					Retur	n Slu	dge	(Dry	Basi:	3)	
a	a	to East	Plant	East			Susper	ided										
t	у	Mixed Li	lquor	Plant	g	H	Solids	mg/1	SD	I	% Tot	al P	% Tot	al N	% Tot	al Fe	% Total	al Ash
e	Ĭ	lbs/day	mg/1	MGD	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP
1	Su			85.7			2630	2660	1.17	1.12	2.53	2.72	6.47	6.23	2.47	5,55	26.36	30.13
2	M	10.976	12.0	109,6	7.1	7.1	2170	2420	1.25	1.21	2.49	2.78	6.28	6.01	2.38	5.35	25.93	29.85
3	\mathbf{T}	10,470	10.4	121.3	7.2	7.1	2630	2340	1.38	1.40	2.20	2,52	5.74	5.49	2.13	5.07	27.36	31.17
4	W	9.726	10.6	110,2	7,1	7.0	2810	2940	1.37	1.37	2.05	2.31	5.69	5.38	2.10	5.19	28.27	31.80
5	Th	10,599	12.0	105.9	7.0	6.9	2900	2920	1.33	1.39	2.08	2.32	5.97	5.55	2.02	5.30	27.53	31.22
6	F	11,036	12.6	105.1	7.1	6.9	29 30	2730	1.09	1.14	2.15	2.41	6.23	5.74	1.96	5.19	26,65	30.42
7	Sa			89.9			2830	2780	1.02	1.13	2.24	2.55	6.37	5.86	1.93	5.41	27.04	32.15
8	Su			80.0			2750	2680	1.13	1.19	2.40	2.74	6.57	5.98	2.21	5.52	27.28	
9	M	10.370	11.9	104.8	7.5	7.3	2590	2550	1.21	1.19	2,47	2.82	6.40	5.97	2.21	5.41	27.41	32.70
10	T	10.790	12.8	100.8	7.0	7.0	2550	2590	1.23	1.21	2.39	2.76	6.37	5.84	2.24	5.52	26.63	32.09
11	W	11,337	12.9	105.6	6.8	6.8		2580	1.16	1.21	2.30	2.68	6.37	6.00	2.10	5.58	26.00	
12	Th	11,180	12.8	104.3	6.9	6.9		2560	1.15	1.06	2.29	2.61	6.56	6,16	1.93	5.58	25.51	30.68
13	F	10.512	12.3	102.3	6.9	6.9	2810	2560	1.02	1.03	2.27	2.56	6.71	6.21	1.82	5.61	29.16	31.22
14	Sa			83.0			2720	2750	0.94	1.03	2.31	2.58	6.77	6.33	1.88	5,30	25.78	30.93
15	Su			78.0			2600	2760	1.00	1.09	2.51	2.77	6.77	6.29	2.16	5.49	26.31	31.25
16	М	14,190	16.4	103.7	7.3	7.2	2060	2380	1.12	1.14	2.47	2.85	6.57	6.23	2.05	5.47	25.96	31.63
17	T	13.906	16.7	99.9	7.0	7.0	2230		1.18	1.12	2.31	2.83	6.35	6.00	1.88	5.75	25.29	31.47
18	W	13,195	15.7	100.5	7.1	7.0	2390		1.08	1.07	2.22	2.71	6.36	6.15	1.88	5.89	24.80	31.23
19	Th	16,779	17.0	118.3	6.9	6.8	2720	2580	1.09	1.10	2.62	2.57	6.42	6.28	1.88	5,49	24.78	30.26
50	F	14,970	15.6	114.7	7.0	7.0	2510		1.13	1.07	2.06	2.42	6.29	6.14	1.54	5.92	25.69	
	Sa			89.4			2550	2800	1.08	1.07	2.19	2.45		6.09	1.77	5.83	26.75	32.34
22	Sน			85.2				2670	1.05	1.09	2.39	2.69	6.65	6.23	1.99	6,08	26.82	32.72
23	М	13,276	15.4	103.4	7.3	7.3	2180		1.13	1.23	2.47	2.81	6.56	6.12	2.02	5.92	26.79	
-	T		14.7	104.5	7.0	7.1		2450	1.17	1.14	2.33	2.78	6.37	6.08	1.99	6,17	25.72	32.44
_	W	12,714	14.3	106.4	7.1	7.1		2450	1.24	1.14	2.29			6.04	2.05	6.34	25.89	
		10,748	11.1	116.0	7.0	7.0	2550	2560	1.25	1.17	2.20	2.53	6.32	6.16	1.93	5.86	26.21	32.21
	F			102.8	6.9	7.0		2540	1.18	1.13	2.20	2.47	6.61	6.28	1.77	5.02	26.19	32.22
28				90.8				2520	1.12	1.12	2.23	2.48	6.63	6.25	1.88	5.13	26.57	31.39
29	Su			79.5				2570	1.18	1.24	2.36	2.63	6.75	6.33	1.82	4.96	27.04	
30	М		15.3		7.4	7.4		2200	1.21	1.18	2 .35	2.62	6.54	6.28	1.85	5.02	26.46	
31	T	13,423	15.6	102.9	7.1	7.0	5500	2390	1.26	1.14	2.26	2.64	6.44	6.16	1.71	5.35	25.55	31.40

1	_
Ċ	>
_	7

							NT OP	ERATIC	NAL I	DA'TA							970
D	D	Iron Additi		Mixed	Liqu						Retur	n Sl	ıdge	(Dry	7 Basi	s)	
a	a	to East Pla		1		Suspen						1.		1.		1	
t	У	Mixed Liquo			H	Solids		SI			al P						al Ash
e		lbs/day mg/	1 MGD	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP
1	_	13,664 15	0 109	7.2	7.0	2460	2380	1.25	1.06	2.16	2.56	6.46	6.32	1.65	5.55	25.54	31.39
	Th	12.986 13	6 114.	7.1	7.1	2620	2540	1.23	1.13	2.06	2.41	6.63	6.29	1.51	5.21	26.00	31.50
	F	14.188 15.	3 111.	7.0	7.0	2530	2380	1.13	1.06	2.03	2.33	6.40	6.11	1.46	5.72	26.75	32.06
	Sa		92.9	7.0	7.0	2660	2550	1.09	1.01	2.16	2.38	6.65	[6,26	1.60	5.78	26.61	32.19
	Su		97.5	5		2440	2630	1.09	1.07	2.24	2.51	6.74	6.39	1.82	5.38	26.62	31.86
6		12.853 14	3 107.6	7.3	7.3	1910	2380	1.17	1.15	2.19	2.53	6.58	6.11	1.74	5.27	26.31	32.05
7		13.186 14.	5 108.9			2230	2480	1.14	1.03	2.15	2.58	6.58	6.12	1.65	5.61	25.80	32.43
8		13.005 14.	2 109.9	7.0	7.0	2410		1.11	1.08	2.10	2.50	6.67	6.15	1.51	5.47	25.51	31,95
9	Th	12.824 14.	3 107.	6.9	7.0	2770	2510	1.07	0.90	2.12	2.45	6.74	6.28	1.71	5.47	25.86	31.73
10	F	13.385 14.	9 107.	7.2	7.1	2790	2650	1.04	0.95	2.12	2.37	6.82	6.32	1.60	5.80	25.65	31.28
	Sa		94.	3		2860	2690	1.05	0.85	2.16	2.39	6.82	6.37	1.77	5.83	26.01	31.52
12	Su		86.			2830	2730	1.08	0.96	2.30	2.52	6.84	6.36	1.82	5.61	26.37	31.49
13	М	12.882 13.	1 117.8	3 7.4	7.3	2270	2590	1.09	0.97	2.22	2.56	6.50	6.07	1.85	5.55	27.11	31.84
14	T	13,628 14	2 115	7.2	7.2	2390	2660	1.16	0.92	2.08	2.47	6.28		1.74	5.55	26.84	
15	W	12.583 13.	0 115.	7.2	7.2	2670	2730		0.89	2.07	2.41	6.21	6.02	1.65	5.69	26,28	32.25
16	Th	14.306 15.	2 113.0	7.2	7.1	2820			0.79	2.07	2.39	6.65	6.25	1.54	5.58	25.73	31.78
17	F	14.824 16.	3 109.	6.8	6.7	2890	2680			2.09	2.34	6.75	6.26	1.49	5.64	25.63	31.40
18	Sa		90.5			2800			0.84	2.25	2.47	6.78	6.25	1.74	6.03	27.12	33.38
	Su		109.			2830	2650			2.37	2.53	6.46	6.30	2.16	5.75	27.07	32.14
20	М	12.432 13.	0 114.8	3 7.0	7.0	2620	2470		0.96	2.34	2.55	6.46	6.07	2.07	6.00	27.38	
21	T	13.410 14.	4 111.	7.0	6.8	2790	2700			2.23	2.51	6.46	5.98		5.69	26,77	32.24
22	W	13,104 13.	7 114.8	6.8	6.9	2960		1.13		2,18	2.43	6.56	6.21		5.55	26.05	31.79
23	Th	14.016 15.	0 112.	7.1	6.9	3030		1.10		2.13	2.38	6.67	6.12		4.99	25.81	31.65
24	F	12.876 14.	4 107.5	6.9	6.8	3240		1.08		2.11	2.39	6.44	5.94	1.32	5.55	26.01	31.90
	Sa		94.0			3340	2930	1.01				6.74	6.16	1.63	5.49	25.81	31.43
26	Su		88.1	+		3120	2820			2.33		6.91	6.19	1.60	5.55	25.96	31.45
	М	10,184 10.				2840	2810			2.36		6.79	6.32	1.54	5.47	26.10	31.48
	\mathbf{T}	10.234 9.		+ 7.0	7.0	2620			0.98			6.65	6.14	1.51	5.10		31.05
29	W	12,528 12.	1 124.	7.2	6.9	3260		1.08					6.37		5.27	25.30	
30	Th	12,031 10.	2 141.5	7.1	6.8	3230	2970	0.94	0.73	2.19	2.53	6.75	6.39	1.46	5.35	25.60	30.82
31																	

							PLA	NT OPE	ERATIO	NAL I)ATA						MAY .	1970
D	D	Iron Add:			Mixed	Liqu	or					Retur	n Slu	idge	(Dry	Basi:	s)	
1	8.	to East	Plant				Suspen				}				1		1	
t	У	Mixed Lie	quor	Plant	р		Solids		SD	I		al P	% Tot				% Tota	
e		lbs/day		MGD	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP
1	F	12,750	12.3	124.4	6.9	6.9	3300	3000	0.86	0.59	2.14	2.42	6.74	6.35	1.43	5.19	24.63	30.72
	Sa			102,2			3180	3280	0.93	0.82	2.18		6.63	6.11	1.43	5.16	26.18	31.08
3	Su		l	83.0			3170	3010	0.99	0.98			6.85	6.33	1.47	4.91		31.46
4	И	13.782	15.2	108.5	7.1	7.2	2810	2920	1.05	1.08	2.48	2.66	6.74	6.28	1.47	5.05	26.83	31.86
5	T	14,102	15.5	109.1	7.2	7.1	3000	3010	1.04				6.61	6.22	1.47	5,12	26.16	31.91
6	I	14,102		101.4	7.0	6.9	3050		1.01	9			6.57	6.15	1.61	5.54		31.76
7	Th	13,367	14.7	108,7	6.8	6.7	2970	3080	1.03	0.77	2.13	2.56	6.67	6.08	1.68	5.47	25,61	31.94
8	_	10.179	10.4	117.0	6.6	6.6	3350	3060	0.91	V 4 7 V			6.71	6.22	1.54	5.61		31.76
	Sa			108.2			3140	3240		~ ~ ~			6.79	6.26	1.54	5.33		31.83
10	Su			92.3			2860	3070	1.09		2.14			6.05	1.82	5.05		33.26
11	M		11.2	126.9		7.1	2810		1.08			2.64		6.00	1.82	5.05		33.78
12	T	11.818		136.9		6.7	3040				2.07		6.15	5.79	1,96	5.47	29.25	34.46
-	W		11,4			6.8	3110		1.24		1.96		5.91		2.59	5.54	31.31	
	Th	12,782		143.5	6,8	6.9	3080		1.23	1.14				5.51	2.52	5.75		36.13
	F	11,967	9.8	147.1	7.0	7.0			1.24	1.11		2.19		5.69	1.82	5.89	30.60	
	Sa			129.4			3170			~ / /	1.95			5.66	2.31	5,54	30.32	35.12
	Su			119.1			2990		1.19			2.24	6.29	5.72	1.75	5.26	30.44	35.08
18	М	13,268 1		131.0	7.1	7.1	2760	2740	1.20	1.15		2.38	5.94	5.72	1.96	5.40	30.31	35.52
19	T	13,206		128.9	6.9	6.8	3070	2790	1.12	1.08	2.12	2.34	6.07	5.74	1.75	4.84	29.24	34.07
20	W	13,348		127.4	7.0	7.0	3020		1.12	0.97			6.47	5.93	1.82	5.33	28,44	33.11
21	Th		12.6	126.2	6.9	6.8		2780	1.02				6.65	6.15	1.68	5.47	27.83	32.41
	F	11,956 1	11.4	125.5	7.2	7.1	3020				2.03	2.26	6.67	6.22	1.89	5.54	27.23	
	Sa			120.0			3080	3200			2.06	2.31	6.53	5.97	1.89	5.68	28.06	32.98
24	Su			119.1			2770	3000	1.02	0.97								
25	M	13,160	2.8	122.9	7.5	7.3	2600	2840	1.00	0.91	2.17	2.44	6.56	6.15	1.96	5.26	28,63	32.64
26	T	10,608 1		121.0	7.1	7.1	2770	2740	0.96	0.76	2.23	2.51	6.63	5.95	1.89	5.54	27.88	
27	W	12,739 1		121.4	7.2	7.2	2860	2830	0.91	0.64	2.22	2.47	6.77	6.36	2.03	5.40	27.50	
	Th	10,858 1	0.2	127.9	7.1	7.1	2880	2830	0.84	0.76	2.23	2.43	6.85	6.47	2.03	5.26	26.54	
29	F			121.0			3020	2980	0.80	0.75	2.29		6.58	6.07	2.31	5.26	27.72	32.56
30	Sa			115.5			2990	3000	0.74	0.76					1.89	5.54	26.62	30.26
31	Su			105.5			2790		0.93					6.49	1.89	4.70	27.78	31.13

		L					PL/	INT OPI	ERATIO	NAL I)ATA						JUNE	1970
D	D	Iron Add	lition		Mixed	Liqu	or					Retur	n Slu	ıdge	(Dry	Basi:	s)	
a	a	to East	Plant	East			Susper											
t	У	Mixed Li	quor	Plant	g	H	Solids	mg/1	SD	I	% Tot	al P	% Tot	al N	% Tot	al Fe	% Tota	al Ash
е		lbs/day	mg/1	MGD	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP
[]	М		11.8	138.7	7.4	7.0		2610		0.98	2.25	2.51	6.42	6.14	1.89	4.49		33.25
2	${f T}$	13,628	12.0	135.6	7.1	6.9	2480	2290	1.00	0.99	2.27	2.44	6.16	5.77	2.17	5.40	31.09	35.03
3	W	12,701	10.8	141.4	7.3	7.3	2520	2450	1.11	1.06	2.10	2.36	6.14	5.98	2.10	5.54	30.46	31.55
	Th	14.136	12.4	136.7		7.2	2750	2770	1.10	1.05	2.10	2.24			1.96	5.61	29.59	34.25
	F	7.100	6.6	129.5	7.2	7.2	2820	2590			2.10	2,24		6.00	2.52	5.82		34.29
	Sa	5,400	5.1	126.3				2930	0.98		2.11	2.23	6.57	6.25	1.89	5.40	28.20	32.26
	Su	4,666	4.8	116.2				2810		0.98		2.37	6.68	6.22	1.75	5.54	28.07	32.79
	М	7.862	7.0	134.5		7.2		2680		1.01		2.51	6.67	6.15	1.75	5.82	27.83	
	T	9.729	8.4	139.0	7.3	7.1	2730	2630		1.04		2.53	6.58	6.12	1.61	5.26	27.12	
10	W	9,976	8.4	142.0	7.1	7.0		2770		0.84	2.16	2,49	6.60	6.25	1.47	5.26	26.50	
11	Th	9,313	7.8	142.6		7.1	2800	2580	0.79	0.82	2.18	2.47	6.84	6.23	1.61	4.84	26.37	30.80
12	F	6,897	5.5	151.7	7.1	7.1	2620	2720		0.59	2.23	2.41	6.75	6.36	1.47	4.84	26.32	30.40
13	Sa	4,124	3.6	139.0			2530	2630		0.81	2.15	2.35	6.85	6.23	1.61	4.56	26.20	30.36
14	Su	3,629	3.4	127.7			2440	2690		0.76	2.34	2.36	6.71	6.21	1.75	4.56	27.60	31.63
	М	9,241	8.2	134.8	7.4	7.1	2280	2610	0 0 / 12	0.81	2.13	2.49	6.46	6.11	1.75	3.43	28.14	32.28
16	\mathbf{T}	7,272	6.3	137.8	7.1	7.1	2360	2560	0.87	0.68	2.20	2.54	6.50	6.11	1.61	4.98	26.59	31.59
17	W	10,847	9.0	145.2	7.1	7.1		2530		- بيت	2.06	2.45	6.60	6.28	1.61	4.56	26.03	30.85
18	Th	9,364	7.8	143.7	7.1	7.1	2310	2420		0.75	2.01	2.38	6.70	6.25	1.61	4.56	26.90	
<u> 19</u>	F	7,898	6.8	138.3				2520		0.72	2.09	2.40	6.71	6.31	1.61	4.56	26.92	
20	Sa	3,780	3.6	125.6			2430		0.07		2.19	2.47	6.68	6.22		4.56		31.58
21	Su	2,430	2.8	105.9			2370				2.28	2.61	6,63	6.07		4.70		32.53
22	М	8,185	7.3	134.7		7.3	2300				2.36	2.68	6.54	5.90		4.77		32.62
23		9,658	8.5	136.3	7.3	7.1	2440		0 0 1 /		2.16	2.65	6.58	6.14		4.56		31.65
24	_	9.380	8.4	133.9		í•⊥					2.11	2.53	6.68	6.19		4.42	26.17	30.85
25	Th	8,843	7.8	135.2		7.2		<u> </u>			2.11	2.53	6.79	Yery.		4.42		30.25
26	_	6,810	5.8	139.8		7.1	<u> </u>				2.12		6.89		<u>1.61</u>	 +		30.03
27	Sa	4,180	4.5	111.0					**//		2.06	2.45	6.70	6,29	1.61	4.14		30.19
28	Su	3,888	4.8	97.0							2.23	2.66	<u>6.79</u>	6.23		4.42		30.98
29	M	10,588	9.7	130.8		7.2	2430				2.30		6.72			4.14		31.61
30	T	8,585	7.7	134.5	7.1	7.0	2620	2510	0.73	T.06	2.30	2.90	6.75	5.86	1.68	5.26	25.81	32.12
31					1		<u> </u>						<u>.</u>					

						PLA	INT OPP	ERATIO	NAL I	ATA						JULY	1970
D	D	Iron Addition	,	Mi xed	Liqu						Retur	n Slu	ıdge	(Dry	Basi	s)	
1	a.	to East Plan	East	1		Susper	nded	1									ļ
t	У	Mixed Liquor	Plant	ם	H	Solids	mg/1	SD	I	% Tot	al P			% Tot		% Tota	
e		lbs/day mg/l	MGD	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP
1	H	9,353 8.3	135.0	7.1	7.0	2590	2580	0.68		2.31	2.93	6.85	5.94	1.61	4,98	26.13	32.14
2	ľh	8 436 7.6	130.4	7.0	7.0	2610	2400	0.63	0.92	2.29	2.94	6.88	6.26	1,68	5.12	25.59	31.58
3	F	6.802 6.5	124.8	7.1	7.0	2700	2470	0.51	0.84	2.34	2.92	6.96	6.23	1.68	4.98	25.57	31.30
4	Sa	5.783 7.2	95.9			2950	2570	0.51	0.87	2.42	2.91	7.05	6.25	1.75	5.26	26,08	31,44
5	Gu	5.233 7.1	88.6			2780	2680	0.75	1.10	2.53	3.02	6.81	6,00	1.75	5.40	26.13	31.55
6	И	8,595 8.4	123.0	7.4	7.0	2710		0.84	1.24	2.89	3.21	6.74	5.84	1.89	5.68	27.91	33.89
7	Γ	9.193 7.9	140.3	7.3	7.0	2850	58110	0.78	1.22	2.75	3.24	6.44	5.62	1.89	5.54	27.68	34.20
8	ij.	8.433 7.4	137.2	7.2	7.0	2910	3010	0,86	1.17	2.41	3.01	6.42	5.74	1.75	5.26	27.92	33.76
2	ľh	9.929 8.6	138.5	7.1	6.9	3100	3080	0.64	1.12	2.41		6.54	5.77	1.61		27.90	33.27
10	F	6.412 5.5	138.7	7.2	6.9	3130	3240	0.65	1.07	2.41	2.94	6.63	5.81	1.75		28.05	33.57
11	Sa		122.7			2950	3130	0.76	1.12	2,44	2.95	6.88	6.05	1.89	5.26	28,21	33.79
12	Su		112.8			2770	2870		1.23	2.56	3.14	6.58	5.77	2.17	5.40	28.72	34.88
13	1	7.996 6.5	147.7		6.9		2650	1,01	1.38	2.58	3.19	6.70	5.67	2.03		28,63	35.09
14	T	9.073 7.8	139.3	7.3	7.0	2440	2890		1.32	2.45	3.10	6.54		2.03		28.79	35.16
15	W	8 208 7.2	136.3	7.1	6.7	2490	2640	1.01	1.21	2.31	2.88	6.14	5.59	1.89	4.70	29.81	35.65
16	Th	8,266 7.2	137.0	7.2	6.9	2690	2700	0.92	1.22	2.33	2.79	6.43	5.90	1.89	4.70	29.48	35.42
17		5.831 4.9	143.6	7.0	7.0	2850		0.86			2.79	6.65	5.93	1.75		28.63	34.09
18	Sa	4.018 3.8	125.4			2840	2760	0.89	1.13	2.33	2.68	6.70	6.12	1.89	4.56	29.21	33.86
19	Su	3.953 3.8	123.7			2540	2330	1.04	1.15	2.44	2.74	6.70	6.04	1.89	4.70	29.54	34.02
20	1	4.711 4.4	127.8	7.2	6.9	2330	2190	1.06	1.16	2,40	2.83	6.43	5.91	2.03	4.42	29.61	33.85
21	Γ		131.0			2130	2230	1.02	1.14	2.37	2.85	6.51	6.02	1.89	4.42	28.34	32,90
22	N]	8,138 7.4	131.9			2210	2460	0.89	1.13	2.25	2.74	6.63	5.91	1.75	4.00	27.38	31,51
23	ľh	9,417 8.4	134.7			2470	2510	0.81	0.99	2.32	2.65	6.60	6.28	1.75	3.85	27.77	30,53
24	?	6.176 5.5	134.7			2610	2670	0.76	1.00	2.25	2.64	6.92	6.42	1.75	4.14	26.66	30.57
25	Sa	5,590 5.5	122.8			2550	2710	0.92	1.02	2.35	2.71	6.74	6.25	1.75	4.00	27.24	31.26
26	3u	5,735 6.3	108.8			2450	2480	0.96	1.08	2.51	2.92	6.67	6.16	1.89	4.56	27.44	32.06
27	1	8,229 7.1	138.9	6.8	6.7	2080	2150	1.03	0.98	2.46	2.95	6.54	6.02	2.03	4.75	27.37	32.43
28	ľ	7,972 6.7	143.1	7.0	7.0	2250	2260	1.03	1.27	2.27	2.74	6.42	6.01	2.03	4.56	27.04	31.47
29 V		8,989 7.7	140.3	7.0	6.9	2420	2270	0.98	1.09	2.25	2.63	6.57	6.15	1.75	4.14	26.94	31.43
30	'h	8,159 6.8	143.3	7.1	6.9			1.05	1.08	2.16	2.47	6.47	6.32	1.68		26.51	29,99
31 F	·	8,342 7.0	142.9	7.0	7.1			1.04	1.15		2.43				4.42	27.13	30.67
						·											للنبت

ATTANTO OTTOMATONAT TANTA

_							PLA	NT OPE	RATIO	NAL I	DATA				AUG	101	1970	
D	D	Iron Add	lition		Mixed	Liqu	or					Retur	n Slı	ıdge	(Dry	Basi:	s)	
a	8.	to East	Plant	East			Suspen						١.					
t	У	Mixed Li	quor	Plant	p	H	Solids	mg/1	SD	I		al P	% Tot		% Tot		% Tota	l Ash
е		lbs/day	mg/l	MGD	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP
1	Sa	4,154	4.1	121.1			2710	2790	1.07	1.16	2.27	2,44	6.42	6.08	1.96	4.56	29.00	32.27
2	Su	5,069	6.1	100.3	6.9	6.9	2500	2590	1.09	1.13	2.44	2.65	6.44	6.05	1.89	4.98	29.19	33.06
3	M	8,644	7.8	132.9			2310	2420	1.08	1.14	2.47	2.69	6.23	5.94	2.03	5.26	29.27	33.70
4	Т	9.207	8.5	129.3	6.9	6.8	2190	2580	1.10	1.09	2.40	2.68	6,22	6.02	2.17	4.98		32.54
	W	9.480	8.7	130.3	6.9	6.8	2470	<u></u>	0.99	0.99	2.30	2.61	6.64	6.09	1.75	4.84		32.02
_	Th	9.873	9.1	130.1	6.7	6.9	2730		0.94	1.05	2.37	2.43	6.50	6.37	2.87	4.28	28.46	29.20
7	F	6.275	5.7	132.2		6.9	2870		0.93	1.19	2.28	2.52	6.74	6.30	1.89	4.84	26.69	31.28
8	Sa	4.808	5.3	107.8			2810		0.96	1.12	2.29	2.61	6.79	6.23	1.75	4.98	26.37	31.49
9	Su	5.056	6.3	95.6	6.8	6.8	2510	2920	1.10	1.40	2.47	2.81	6.70	6.07	1.89	5.40	27.21	32.21
10	М	8.175	7.5	131.3	6.8	6.8	2210	2700	1.03	1.20	2.80	2.98	6.47	5.97	2.03	5.68	27.85	33.21
11	T	7.503	6.7	133.7	6.8	6.7	2300	2680	1.15	1.29	2.43	2.91	6.54	5.88	1.75	5.26	26.39	32,96
12	W	8,712	7.8	133.7	7.0	6.9	2510	2630	1.09	1.31	2.35	2.85	6.56	6.00	1.82	5.19	26.16	32.03
13	Th	8.758	7.8	135.3		6.8	2630	2660	1.05	1.26	2.37	2.58	6.51	6.33	1.75	4.98	26.20	30.91
14	F	6.853	6.0	137.5	_		2900	2810	1.03	1.28	2.32	2.68	6.82	6.29	1.75	5.12	26.05	31.25
15	Sa	5.800	6.0	115.0			2490	2770	1.11	1.26	2.49	2.74	6.82	6,29	1.96	5.33	26.78	31.76
16	Su	4.064	4.9	99.1	6.9	7.0	2160	2760	1.04	1.26	2.67	2.91	6,61	6.14	2.03	5.54	27.78	
17	M	8.986	8.2	132.1	7.1		1810	2520	1.23	1.41	2.69	3.02	6.46	5.88	2.17	5.54	27.37	33.05
18	T	10.467	9.0	138.7	7.0	6.8	1980	2520	1.19	1.39	2.41	2.90	6. 36	5.98	2.17	5.54	26.33	
19	W	9.142	8.0	136.9	6,9	7.0	1930	2420	1.06	1.35	2.27	2.59	6.42	5.76	2.03	4.98	26.00	31.40
20	Th	9.184	8.5	129.3	7.0	7.0	2290		1.08	1.28	2.37	2.58	6.60	9-10	2.17	5,12	26.27	31.12
21	F	6.361	5.9	129.7	7.0	6.9	2610		0.88		2.40	2.55	6.75	<u> </u>	2.17	5.12	26.20	30.74
22	Sa	4 210	4.5	111.1			2260		0.90	1.20	2.53	2.65	6.88	5.98	1.89	4.98	26.05	30.41
23	Su	2.419	3.2	92.0		6.9	2070	2240	1.06	1.35	2.81	2.94	6.95	<u>6.30</u>	2.17	5.26	26.78	31.37
24	M	9,966	9.3	128.9		6.9	1430	2080	1.27	1.50	2.69	2.93	6.67	6.08	2.03	5.33	26,44	31.56
25	T	8,528	7.9	129.4		6.8	1680	2130	1.39	1.34	2.30	2.89	6.61	6.09	1.61	5.12	24.97	30.83
26	W	8,838	8.2	129.2	7.0	6.9	2220	2300	1.11	1.13	2.17	2.68	6.89	6.29	1.41	4.98	24.38	29.86
27	Th	8,404	7.6	132.3			2490	2420	0.96	0.99	2.22	2.50	6.99	6.29	<u> </u>	4.14	24.83	28.75
28	F	6,114	5.5	134.3			2360	2410	3.7	1.08	2.17			6.30	Т•ОП	4.75		29.35
29	Sa	5,887	6.1	116.5			2490							<u>6.36</u>	1.68	4.70	26.27	30.32
30	Su	4,859	5.7	102.3		-	2210	2360	1.02	1.15		2,00	6.71	6.12	1.89	5.19	27.98	32.47
31	M	7,726	7.3	126.3	7.2	6.9	2070	2200	1.12	1.19	2.64	2.82	6.51	5.91	1.89	5.47	27.98	32.82

		•					PL	ANT OP	ERATIC	NAL I	ATA				SEP	PEMBER	197	0
D	D	Iron Add	dition		Mixed	Liqu	or					Retur	n Slu	ıdge	(Dry	r Basi	s)	
9	a	to East	Plant	East			Susper	nded										
t	У	Mixed Li	iquor	Plant	ם	H	Solid	s mg/1	SD	I	% Tot	al P	% Tot	al N	% Tot	al Fe		al Ash
e	<u> </u>	lbs/day	mg/l	MGD	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP
	T	8,035	7.5	127.7	7.2	6.9	2220	2310	1.15	1.26		2.71	6.51	6.04	1.62	4.99	26.48	31.20
2	W	6,968	6.0	138.7	7.1	6.9	2390	2440	1.09	1.19	2.32	2.58	6,68	6.19	1.62			30.17
3	Th	7,934	7.1	134.8	1	7.0	2310	2260	1.02	1.11	2.23	2.51	6.70	6.05	1.62	4.36		30.66
4	F	8,405	7.3	137.6	7.5	7.3	2360	2280	1.03	1.21	2.18	2.47	6.71	6.01	1.76	4.57	26.22	30.81
5	Sa	8,828	9.8	108.1			2480	2500	0.91	1.13	2.40	2.61	6.57	5.87	1.76	4.78	26.81	31.39
6	Su	10,206	9.4	130.3			2030	2420	1.06	1.29	2.64	2.84	6.56	5.97	1.90	5,69	27.82	33.13
7	1	9,331	9.4	118.8			1810	2470	1.15	1.40	2.55	2.94	6.19	5.27	2.18	6.40	30.09	36.47
8	T	6,394	5.8	131.9			1780	2240	1,34	1.33	2.49	2.88	6.16	5.41	2.04	6.12	28.65	35,18
12		7,603	6.5	141.1			2310	2320	1.21	1.33	2.27	2.65	6.30	5.80	2.04	5.55	27.24	32.79
10	Th	7,296	8.7	100.1	7.1		2500	2500	1.15	1.15	2.22	2.52	6.47	5.97	1.90	5.13	26.68	32,20
11	F	8,944	7.7	139.7	7.1	6.9	2650	2550	1.03	1.16	2.19	2.46	6.63	6.11	1.76	4.85	26.17	30,98
12	Sa	6.055	5.7	127.4			2550	2510	0.98	1.08	2.30	2.44	6.71	6.15	1.76	4.78	26.17	30.80
13	Su	6,178	6.2	119.4	7.1		2420	2520	0,99	1.17	2,41	2.59	6.61	6.02	1.90	5.27	26,82	31.98
14		7,022	5.8	145.5	7.0		2010	2440	1.00	1.05	2.45	2.71	6.61	6.08	1.90	5.69	26.28	31.83
	T	8,482	7.1	142.3	7.1		2140	2380	1.05	1.15	2.33	2.62	6.57	5.95	1.83	5.20	26.80	32.01
16		7,085	5.7	150.0	7.3		2250	2370	0.98	1.26	2.50	2,12	6.39	5.98	1.76	5.20	26.61	32.19
17	Th	7,114	6.0	141.3			2370	2380	0.99	1.12	2.16	2.40	6.47	5.91	1.76	4.92	<u> </u>	31.47
18	_	7,020	6.0	139.3	7.4		2260	2470	0.95	1.06	2.08	2.42	6.86	6.23	1.76	4.85		31.58
-	Sa	8,190	8.2	119.2			2480	2640	1,01	1.12	2.21	2.50	6.88	6.21	1.83	4.85		31.00
20	Su	8,100	8.9	109.2			1950	2410	0.97	1.12	2.46	2.71	6.88	6.16	1.97	5.27		31.54
21	M	7,774	6.5	142.3			1780	2240	0.91	1.12	2.12	2.47	6.77	6.01	1.90	5.62		32.06
	T	7,960	6.8	140.1	7.2		2130	2480	0.89	1.19	2.30		6.46	6.08	1.76	5.27		31.05
23	W	6,392	5.1	149.1	7.3		2400	2840	0.77	1.10	2.16	2.58	6.82	6.25	1.90	4.85		30.19
24	Th	4,954	4.0	150.0	7.2		1920	2570	0.86	1.13	2.10	2.41	6.68	6.18	1.69	5.55	26.97	31.30
25	F	4,118	3.1	159.7	7.2		2040	2650	0.82		2.03	2.37	6.74	6.14	1.69	5.13	27.01	31.46
	Sa	3,966	3.6	131.1			2090	2570	0.83	1.16	2.21	2.48	6.74	6.22	1.97	4.43		31.65
27	Su	6,579	7.0	112.7			2100	2320	0.82	1.27	2.46	2,69	6.74	6.00	2.04	4.71		32.17
28	М	11,610	10.4	133.9	7.3		1940	2140	0.85	1.29	2.42	2.79	6.60	5.94	2.04	5.20	27.29	32.30
29	T	7,525	6.7	134.6	7.0		2130	2210	0.93	1.31	2.33	2.71	6.57	5.90	1.90	4.99	26.37	31.30
30	W	6,739	6.0	134.6	7.1	6.9	2410	2360	0.88	1.13	2.22	2.63	6.70	6.21	1.76	4.57	25.61	30.04
31																		

		<u></u>					PLA	NT OPI	CRATIO	NAL I	ATA				00	CTOBER	197	0
D	D	Iron Add	ition		Mixed	Liqu	or					Retur	n Slu	ıdge	(Dry	r Basi:	s)	
a	a	to East					Susper											
t	У	Mixed Li	The second second	Plant	p		Solids		SD	I	% Tot						% Tota	al Ash
e		lbs/day	mg/l	MGD	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP
	Th	6,653	5.9	135.2	7.0	6.9	2770	2690	0.84	1.09	2.18	2.57	6.81	6.16	1.69	4.29	25,65	29.97
	F	7,109	6.2	138.0	7.2	7.1	2460	2720	0.84		2.18		6.75	6.25	1.76	4.29	26.09	30.08
	Sa	6,183	6,9	107.4	7.1	6.9		2800	V		2.27		6.88	6.32	1.69	4.36		30.24
	Su		10.0	98.0			2240		0.97	1.17			6.84	6.18	1.97	4.85		30.57
	M	8,690	7.9	131.6		7.0	1960		1.05	-			6.58	W-07.	2 04		25.87	للكسيار التسال
6		5,792	5.0	138.3		6.9	2500		0.97		2.33	2.82	6.49	6.08	2.04	5.20		30.66
7		9,384	8.0	140.0	7.1	6.9	2480		0.84			2.70	6.70	6.26	1.97	4.71		29.67
	Th	4.765	4.0	141.2	7.1	7.0	2590		0.79			2.59	-	6.36	1.76	4.50		29.42
9		7.464	6.6	135.2	7.1	7.0	2710		0.64			2.53	6.88	6.44	1.62	4.15	25.12	
	Sa	6,614	6.9	115.6			2690		0.79	<u> </u>			-	6.61	1.83	4.43		28.90
<u> </u>	Su	12,940		105.3			2430		0.85			2.74		6.30	1.90	4.85		30.20
==	M	11,303		131.7	7.3	7.1	2170		0.93			2.85		6.12	1.97	5.41	25.88	
13		8,909	8.0	133.6	7.2	7.1	2270		0.93	بدائداكيت		2.78		6.14	1.76	5.13		30.09
14		5.343	5.0	127.2	7.3	7.2	2350		0.89			2.66	*	6.28	1.76	4.71	23.84	
15	Th	6.270	5.8	130.5	7.1	7.0	2740				2.23	2.60	6.71	6.36	1.76	4.50	23.89	28.01
16		7,486	7.3	123.0	7.2	7.1	2620		0.52		0 03			7 = 0	/	 	- , , -	07.01
	Sa	2,776	3.2	103.8	7.0	6.9	2620	_	0.50						1.76	4.15	24.42	
	Su	2.844	3.5	96.8	7.1	7.0	2360		0.66					6.51	1.90	4.43	25.09	
<u>19</u>	M	6,892	6.6	124.3	7.3	7.1	2240		0.92		2.58		6.79	6.33	1.76	4.36	25.16	29.13
20	T	6.859	6.2	133.0		7.0	2580		1.00					6.35	1.70	4.08	24.49	28.66
21	W	4.987	4.6	131.4	7.0	7.0	2940		0.81					6.39	7 (O	4.15	24.66	28.52
22	Th	2,381	2.3	126.9		7.0	3230		0.71					6.42	1.83	3.80		28.57
23 24		5,741	5.2	131.4	7.0	7.0	3110		0.69		2.19			6.54	1.83 1.69	3.02 3.80	24.49	
	Su	3,312	3.7	107.1				3090	0.70			شدونون	6.86				25.02	
25 26		4,752	6.5	87.7	7 0	7.0	2670 2410		0.92							4.29 4.57	24.29	29.64
20	T	9,000 5,640	9.1	119.2 135.6		7.0 6.9	2610		0.99	_,	~~~		6.65 6.65			4.71	25.17 24.30	30.39
28			5.0 5.4		7.0 7.1	6.8	2600		1.01			2.68		6.29		4.71	25.17	30.49
29	Th	6,291 7,137		127.2 128.5		7.0	2790		1.09		* **		6.64			4.57	25.42	30.49
30	F	912	6.7	136.9	7.0	7.0	2840		1.04				6.77			4.08	25.26	30.43
20	Г Sa		0.8		1.00	1.0	2710		1.10		2.27		6.82			4.08	25.36	
171	Da	6,040	6.2	116.1	<u> </u>		1 C 1 T O	⊃±20	T • TO	1064	2.21	4.12	0.02	0.41	<u> </u>	4.00	27.30	30.05

۱	
۱	
1	-

							PL	ANT OP	ERATIO	NAL I					OVEME	BER	1970	
D	D	Iron Add	iition		Mixed	Liqu	or					Retur	n Slu	dge	(Dry	Basis	s)	
1 2	a	to East	Plant	East			Susper	nded										
t	У	Mixed Li	lquor	Plant	מ	H	Solids	s mg/1	SI	Ι	% Tot	al P			% Tot	al Fe		al Ash
e		lbs/day	mg/1	MGD	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP
	Su	4,351	5.2	100.3			2520	3170	1.12	1.19		2.90			1.90	4.57	25,46	
	М	11,448	10.5	130.2	7.2	7.0	2220	2660	1.03	1.27	2.58	2.97	6.77	6.05	1.83	4.92	25.33	
	T	8,813	7.6	138.5				2680	0.98	1.28	2.36	2.74	6.67	6,12	1.83	4.85	24.66	
	W	11,225	9.5	142.0			2470	2510	1.01	1.25	2.30	2,62	6.67	6.18	1.83	4.71	24.45	
_	Th	11,340	9.7	139.8		7.0	2800	2650	0.95	1.12	2.15	2.54	6.68	6.09	1.83	4.64	24.27	29.25
-	F	6,500	5.7	137.2	7.0	6.9	3080	3010	1.05	1.19	2.15	2.52	6.74	6.30	1.90	4.71		29.46
	Sa	5,590	5.8	114,6			2890	3090	0.94	1.12	2.25	2.47	6.98	6.35	1.90	4.57	24.79	
	Su	4,432	5.0	106.6			2630	3060	200	1.20	2.47	2. 62	6.88	6.36	1.97	4.92	25,51	
9		6.048	5.2	138.8		7.0	2360	2680	0.94		2.45	2.70	6.70	6.18	2,25	4.92	25.52	والمستك مؤمري والمروية
10	${f T}$	7,839	7.0	134.9	7.2	7.0	2810	2770	1.10	1.20	2.33		6.53	6.16	1.83	4,85	25.44	
11	W	6,293	5.7	133.3				2930	1.04.	1.18	2.20	2.53	6.68	6.22	1.97	4.79	25.08	29,29
12	Th	10.834	9.9	130.8	7.1	6.9		2930	0.75	1.15	2.09	2.47	6.78	6.43	1.83	4.51	24.96	
	F	7,680	7.0	130.8	7.0	6.9		2870	0.77	1.03	2.14		6.33	6.13	1.69	4.51		28.04
-	Sa	5,558	5.4	123.0	7.1	7.1		2960		1.04		2.40	7.00	6.49	1,69	4.65		28,90
15	Su	8.457	9.3	108.5			2920			1.01	2.37	2.56	7.03	6.44	1.83	5.07	24.73	
16	М		10.2	135.9	7.2	7.1	2850		0.91		2.46		6.98	6.35	1.76	5.35		29.64
17	T	5,421	4.7	138.1				2930	0.78	1.18	2.34		6.79	6.29	1.83	4.93	24.32	
18	W	7,880	6.9	136.2	7.0	7.0		3190			2.26	2.54	6.88	6.42	1,76	4.86	24.40	
19	Th	8,258	6.6	149.0	6.9	6.9	3200	3290		0.98		2.49	6.70	6.30	1.90	4.57	24.94	
20	F	6,240	5.0	148.4	7.0	7.0		3120			2.20	2.43	6.77	6.30	1.97	4.72	25,49	
_	Sa	2,871	2.8	120.9			2960	3400		1.24	2.24	2.46	6.91	6.40	1.97	4.86	25,69	
22	Su	3,514	4.2	100.3			2880	3260	0.87	1.06	2.41	2.57	6.93	6.42	2.04	4.79	25.75	29.73
	М	7,711	7.2	129.3	7.1	6.9	2710		0.99	1.13	2.43	2.67	6.81	6.32	2.11	4.93	25.49	29.99
	T	5,913	5.4	132.9	7.2	7.0	2860	3070	0.92	1.13	2.20	2.61	6.72	5.88	1.97	4.72	24.37	29,45
25	W	8,837	7.8	135.9	7.2	7.1		30 30	0.82	1.08	2.16	2.55	6.95	6.51	1.97	4.37	23.91	27.98
26	Th	2,997	3.2	111.3				3260	0.75	1.07	2.31	2.58	6.99	6.46	1.83	4.51	24.24	28.66
27	F	2,074	2.0	124.9	7.3	7.2	2610	3020	0.87	1.14	2.40	2.68	7.09	6.51	1.83	4.16	24.26	28,61
28	Sa	2,600	3.0	104.9			2560		1.00	1.13	2.34		7.06		1.83		23. 93	
	Su	3,370	4.0	100.8			2480		0.94	1.20	2.52	2.95	7.03	6.35	2.25	4.65	24.23	29.08
30	М	7,774	7.2	128.9	7.4	7.1	2330	2710	1.05	1.29	2.48	2.99	6.93	6.36	1.83	4.65	23.77	29.11
31															I			

						NT OP	MATIC	JNAL L	ATA					CEMBE		10
DD	Iron Addition		Mixed	Liqu					,	Retur	n Slu	ıdge	(Dry	Basi:	s <i>)</i>	
aa	to East Plan	t East			Suspen	ded	1		•]				i	
ty	Mixed Liquor	Plant	lq l	H	Solids	mg/1	SI	Ι	% Tot	al P	% Tot	al N	% Tot	al Fe	% Tota	al Ash
e	lbs/day mg/l	MGD	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP	WP	EP
1 T	6,566 6.0	130.6	7.2	7.1	2500	2680	0.83	1.13	2.21	2.78	6.79	6,28	1.83	4.09	23.42	28.29
2 W	10,268 9.1	136.0	7.1	7.0	2640	2800	0.68	1.06	2.12	2.59	6.92	6.36	1.62	4.16	23,08	27.57
3 Th	11,035 9.4	140.0	7.1	7.0	2610	2740	0.65	0.93	2.05	2.47	6.86	6.57	1.55	4.16	23,17	27.58
4 F	8,052 7.3	132.4	7.0	7.0	2690	2940	0.58	0.94	2.05	2.39	6.99	6.44	1.62	4.44	23.30	28,20
5 Sa	6.018 5.9	121.3			2760	2940	0.54	0.81	2.06	2.39	7.14	6.63	1.62	4.37		27.54
6 Su	6.739 7.1	113.9			2530	2810	0.73	0.88	2.19	2.50	7.26	6.58	1.76	4.65	22,93	27.98
7 M	10.088 8.8	137.0	7.3	7.1	2480	2680	0.77	0.91	2.27	2.61	7.09	6.12	1.76	4.86	23.02	28,07
8 T	8.082 7.1	136.1	7.2	7.0	2560	2670	0.78	0.85	2.15	2.53	7.03	6.42	1.76	4.72	22,80	27.73
9 W	11.624 10.4	134.2	7.2	7.1	2590	2830	0.76	0.77	2.12	2.45	6,63	6.47	1.62	4.37	22.96	27.27
10 Th		146.1	7.1	7.1	2780	2940	0.61				7.03	6.60	1.62	4.44	23,00	
11 F	11.957 10.1	142.4		7.0	2690	2840	0.76			2.33	6.98	6.46	1.83	4.51	23.03	
12 Sa		136.7			2900			0.73		2.34	7.06	6.46		4.79	23,67	
13 Su	6.486 6.5	120.0			2220	2720	0.85		2.25	2.41	7.07	6,44	1,69	5.64		28.55
14 M	4.695 4.3	131.4	7.1	7.0	2170	2690		0.93				6.32	1,69	5.35		28,85
15 T	5.045 4.4	137.4		7.2	2330	2800			2.08	2.46	6.53	6.40	1.97	4.79		28.13
16 W	13.818 11.6	143.2		6.9	2500	2720		0.91	2.00		6.84	6.44	1.41	4.65		27.40
17 Th	9.525 8.0	142.3			2610	2700		0.91	1.92	2,28	6.70	6.35	1.69	4.79		28.17
18 F	8.748 7.0	150.3		6.8	2670			0.91	1.95	2,20	6.92	6.44	1,62	4.79		27.89
19 Sa		123.7			2550			0.94	1.99	2.17	7,05	6.58	1.62	4.79		27,25
20 Su		110.6		,	2390			0.90	2.13	2.31	7.10	6,56	1.90	5.28		28.20
21 M	9.698 8.7	133.4		6.9	2320	2710		0.94	4_ 0 _ 0		6,86	6.46	1.97	5,49	23.67	
22 T	7.920 6.8	139.0		6.9	2410						6.71	6.42	1.83	5.14		28,52
23 M	7,661 7.0	132.0		6.9	2480	2840		0.88				6.58	1.76	4.86	23.87	
24 Th	0.0.0	114.7	6.9	6.9	2770			0.76	_,			6.65	1.76	4.72	23.38	
25 F	5.586 7.3	91.4			2570					2.37		6.67		4.93	23,16	
26 Sa		93.5			2420					2.48		6.58	1.90	5.28	23.03	
27 Su		98.7	 		2170		0.93					_		5.64	23.12	29,00
28 M	5.760 5.6	124.3	محنحه	7.1	2020	2310	1.00		2.26					5.49		28.94
29 T	7.398 7.0	126.4			2410		0.97					6.29	1.76	4.86		27.78
30 W	6.662 6.4	124.3			2560	2760						6.37	_	4.44		27.28
31 Th	6,365 6.9	111.2			2940	2970	0.87	1.09	2.01	2.31	6.75	6.57	1.62	4.16	23.39	26.74

-	
_	
_	
ω	
ω	

							PLANT	OPERA	TIONAL DAT	A		JANUAR:	Y 1970
D	D	Kjel	dahl Ni	trogen	Mila	organite			Average		nloride U	ise	Precipitation
t	y		mg/l as			ceived Ba	sis		Waste	lbs. A	hydrous	FeCl ₃ per	
•			T		Tons/	Nitrogen	Ash	1	Sludge	Dry tons	recover	ed Solids	Equivalent
L	1	SS	WPE	EPE	Day	% N	1%	рн	% Solids	1968	1969	197 0.	Inches
1	Th	35.6	16.7	19.0	207.3	6.63	24.82	3.1	1.49	229.50	238.81	278.74	.03
2	F	38.2	21.1	19.9	179.8	6.96	25.41	3.1	1.50		240,61	264.56	Trace
3	Sa	33.0	14.7		182.0	6.84	24.91	3.1	1.66	54.91	220.89	265.32	.01
4	Su	31.4	16.2	28.6	92.7	6.87	24.99	3.1	1.65	202.15	220.57		Trace
5	M	39.3	20.0	20.9						218.27	234.39		
6	T'	37.5	24.5	12.7	10.6	6.85	25,08		1.92	177.28			
17	W	34.7	13.7		171.2	6.66	24.24		1.51	183.16			Trace
8	Th	37.9	14.4		232.0	6.71	24.83		1.50	195.29	239.40	256.13	.03
9	F	36.8	13.4		220.5	6.76	24.85		1.45	212.62	211.46	257.56	Trace
10	Sa	33.7	12.5		227.5	6.71	25.11		1.42	217.36	285.31	250,95	
11	Su	31.9	17.9		215.0	6.71	26.12		1.39	222.40	204.67	270.46	.01
12	М	36.5	20.4		212.5	6.63	26.99		1.46	232.14	206.56	218.39	
13	T	37.4	13.3	15.0		6.43		3.3	1.59	231.29	219.10	222.59	Trace
14	W	37.2	13.4		234.2	6.36	27.12		1.58	208.56	216.06	207.52	.05
15	Th	36.3	16.2		223.7	6.35	26.72		1.54	221.16	219.98	227.05	
16	F	35.8	16.5		224.2	6.37	27.10		1.51	247.73	199.69	215.06	Trace
鬥	Sa	34.4	16,1		230.5	6.42	27.77		1.46	214.69	199,33	210.77	.09
18	Su	31.8	19.3		216.2	6.41	27.93		1.45	216.76	206.74	225.54	Trace
19	M	33.6	20.4		213.2	6.65	27.57		1.45	216.78	209.88	228.39	
50	T	35.4	14.8		238.1	6.30	27.08		1.63	207.91	197.55	204.17	Trace
21	W	35.1	13.2		235.0	6.08	27.28		1.67	227.22	223.77	212.98	
<u>22</u>	Th F	34.6	12.2		228.5	6.14	27.00	3.2	1.59	226,69	218.19	202,12	.01
23 24	_	36.3	15.5	12.6	ويستني المراجعة	6.26	27.13		1.36	193.84	215.13	208,39	Trace
	Sa.	33.3	14.7		210.0	6.26	26.42		1.35	209.13	183.03	207.21	Trace
25 26	Su	32.1	18.5	17.6		6.42	27.48		1.27	213.54	186.47	225.47	.01
	М Т	34.4	20.6		201.9	6.48	27.50	3.4	1.32	218.43	205.23	230.85	.08
27 28	_	34.2	17.5		210.3	6.22	27.60		1.44	224.35	242.09	223.61	.02
	W	29.0	13.2	13.6		6.00	27.53		1.53	189.40	233.44	213.90	.03
29 30	Th	34.6	13.4		217.9	5.84	28.35		1.55	193.08	229.41	213.07	.04
30	F	33.3	14.4		216.4	5.91	27.76		1.48	188.69	214.93	219.17	Trace
31	Sa	31.5	14.4	13.4	222.1	6.05	27.61	3.1	1.48	203.27	217.29	216.40	

L	_
L	_
_	ì
	•

							PLANT	OPERA	TIONAL DAT	A	<u>.</u>	FEBRUA	RY 1970
D	D	Kjelo	iahl Nit	trogen	Mila	organite			Average 1	Ferric Ch	loride (Jse	Precipitation
t	y		ng/l as			ceived Ba	sis		Waste			FeCl ₂ per	Water
e	1				Tons/	Nitrogen	Ash	t i	Sludge	Dry tons	recover	red Solids	Equivalent
L		SS	WPE	EPE	Day	% N	8	H¢	5 Solids	1968	1969	1970	Inches
1	Su	27.2	15.8		225.1	6,16	27.62		1.50	201.89	220.36	210.37	Trace
2	M	3 1.8	16.1		216.9	6.06	29.20		1.60	199.33	216.98	216.97	Trace
3	${f T}$	32.9	12.9	15.5	249.3	5.78	28,60	3.1	1.70	240.71	224.93	203.72	
4	W	33.7	11.9	11.6	197.0	5.74	27.61	3.1	1.61	272.52	202.08	248.23	.04
5	Th	35.4	12.5	11.8	212.7	5.93	27.67	3.1	1.54	206.46	203.56	231,58	
6	F	34.7	11.5		206.8	6.08	26.71	3.2	1.45	236.27	203.40	229.28	
7	Sa	35.3	12.5	14.8	229.0	6.23	25.69		1.42	222.29	179.66	223.28	
8	Su	31.1	19.6	18.2	218.2	6.42	26.48		1.40	238.08	201.85	237.92	.03
9	М	34.9	19.6	18.8	220.0	6.33	27.12	3.2	1.41	234.14	211.00	233.35	Trace
10	T	34.6	14.3	13.4	220.2	6.15	26.96	3.1	1.41	226.15	228.10	222.91	Trace
11	W	36.7	11.2	13.3	201.3	6.08	27.67	3.1	1.39	213.88	224.53	206.09	Trace
12	Th	33.7	13.3	12.3	239.0	6.14	26.95	3.1	1.42	209.86	198.29	210.65	.01
13	F	33.5	11.3	12.6	213.5	6.25	27.38	3.2	1.48	200.64	192.34	218.51	
14	Sa	32.3	12.7	12.5	234.5	6.30	27.24	3.0	1.29	202.48	184.58	200.34	Trace
15	Su	32.9	18.2	17.9	211.0	6.51	27.91	3.0	1.37	207.71	183.74	233.39	Trace
16	М	32.8	21.6	25.1	224.5	6.38	27.23	3.1	1.55	209.21	189.29	254.75	
17	T	32.9	15.7	15.5	218.1	6.05	27.05	3.1	1.62	206.30	209.11		
18	W	33.3	11.9	12.7	217.8	6.03	27.36		1.45	203.37	209.51	249.04	.05
19	Th	34.2	11.9	11.6	231.1	6.08	26.71	3.1	1.42	193.68	205.96	241.74	Trace
20	F	32.6	11.8	11.1	224.6	6.19	26.42	3.1	1.35	202.73	207.44	238.83	
21	Sa	31.5	12.6	11.1	210.0	6.16	26.72	3.1	1.37	218.53	206.76	246.38	
22	Su	28.6	18,1		203.8	6.19	27.71		1.35	229.02	223.72	272.15	
23	M	32.8	19.5		219.7	6,12	28.38		1.37	196.01	212.87	246.63	
24	T	32.5	14.4		227.0	5.90	28.30		1.41	193.37	214.35		
25	W	34.4	10.5		226.6	5.91	27.82		1.38	190.87	215.88	224.70	Trace
26	Th	34.5	10.2		212.5	5.98	27.29		1.33	246.36	219.66	214.90	Trace
27	F	36.1	11,2	11.3	217.0	6.05	27.92	3.1	1.27	184.91	184.85	222.71	Trace
28	Sa	31.8	12.0	10.9	215.0	6.02	27.50	3.1	1.21	194.12	202,26	237.79	Trace
29										202.41			
30													
31													
						•							·

							PLANT	OPERA	TIONAL DATA	.	MAR	Н 1970
D	D					_						
a			dahl Ni			organite	•			erric Chloride	Use	Precipitation
t	7		mg/l as	N		ceived Ba		[Waste	lbs. Anhydrou	is rect3 per	Water
•	ļ	SS	WPE	EPE	Day	Nitrogen	ABII		Sludge	Dry tons recov	1970	
- ,-	Su	28.0	18.1	<u> </u>		% N		Н	% Solids	224.01 210.58		Inches
$\frac{1}{2}$	M	32.9	20.3		207.5 213.0	6.19	27.56 28.09		1.27	228.04 207.46		
3	T	24.5	12.0		224.7	6.17 5.80	28.18		1.50	209.25 202.58		
1	W	29.8	9.7		241.3	5.37	29.57		1.65	217.03 192.91		
5	Th	30.7	8.1		220.7	5.41	29.25		1.49	219.39 182.93		
6	F	31.5	9.0		235.0	5.67	29.61		1.32	236.09 194.83		Trace
7	Sa	30.5	8,8	10.8	232.0	5.87	28.19		1.27	236.64 182.85		Trace
8	Su_{\perp}	29.0	12.6	14.4	215.1	6.10	28.82		1.18	213.91 201.10		.17
9	M	29.8	17.9	16.0	220.5	6,00	29.29		1.20	216.59 203.80		
	T	31.5	11.1	9.4	224.8	5,86	29.50	3.1	1.29	220.99 248.17		Trace
11	W	32.6	8.8	7.8	214.6	5,86	29.02		1.31	192.58 229.82		
12	Th	33.6	9.8	8.3	210.3	5.93	28,67		1,23	198.04 205.02		
13	F	33.5	12.2	9.2	213.9	6,19	28,39		1.21	194.92 204.85		Trace
14	Sa	29.5	11.5	9.1	197.5	6.29	27,22		1,20	225.72 216.27	264.61	.01
	Su	31.1	17.6		215.6		27.47		1.20	215.17 205.19		
	M	33.5	19.6		206.5		28,16		1.40	234.67 219.82		
17	Т	34.4	13.4	12.3	220.5		28.07		1.55	212,47 224,42		
18	W	33.3	14.6	9.7	206.6		28.36		1.50	193.75 241.45		
29	Th	27.2	7.8	8.0	205.5		28.30		1.42	206.80 219.32		42
20 21	F	25.1	7.6	6.6	198.7		28,29		1.38	219.51 212.67		.08
22 21	Sa Su	26.6 28.0	9.2 16.2	70.0	201.5		28,48		1.39	221.40 208.36		
<u>23</u>	M	30.4	16.4		200.5		29.35		1.39 1.40	210.88 210.96 182.45 224.40		
24	T	30.4	12.5	10.0	212.1 203.7		29.81 29.59		1.46	171.41 239.24		Trace
25	W	29.4	8.3		210.1		29.59 28.96		1.46	176.80 219.76		Trace
25 26	Th	27.0	7.4		199.7		20 . 90		1.41	194.96 203.36		.35
27	F	28.8	6.7		207.4		29.04		1.35	177.66 220.24		.05
28	Sa	27.0	7.1	8.7	208.5		28.10		1.25	182.28 218.42	215.87	
29	Su	27.2	14.3		200.5		28,71		1.25	168.28 187.66	220.84	Trace
30	М	31.2	18.2		202.1		29.37		1.33	194.79 186.67		1 aug
_	T	29.4	10.1		210.8		28.48		1.51	203.73 155.91	210.31	

				APRIL 1970									
D	D	***]					
a	a		iahl Nit			organite			Average				Precipitation
t	A	II.	ng/l as	N		ceived Ba		Į.	Waste	Tos. A	nnyarous	FeCl ₃ per	
е	1		rmra	737713		Nitrogen		Ĭ	Sludge			red Solids	Equivalent
	<u> </u>	SS	WPE	EPE	Day	% N	7	рН	% Solids		1969	1970	Inches
	W	28.3	8.1	8.1	208.5	6.13	28.68		1.47	188.47	181.69	179.42	.33
	Th	21.7	3.9		192.7	6.08	28.34		1.39	201.43	192.00	174.81	.43
	F	24.1	5.0		207.2	6.22	29.29		1.32	218.74	175.33	159.46	
	Sa	26.9	5.9		200.3	6.23	28.67		1.24	222.46	173.53	183.21	
	Su	24.2	10.1		208.5	6.30	28.59		1.18	210.75	189.63	197.41	.03
	М	29.5	15.1		225.9	6.30	29.09		1.26	204.18	191.85	212.85	.07
	Ţ	28.7	10.8		204.9	6.10	29.31		1.35	215.84	200.89	207.52	
	W	30.0	7.3		193.5	6.06	29,00		1.27	226.78	202,21	181.78	
	Th	23.0	6.3		190.0	6.31	29.75		1.23	221.05	188.95	179.64	
10	F	31.8	7.7		204.0	6.44	28.84		1.21	204.63	174.76	180.95	
11	Sa	29.0	10.2		201.5		28.02		1.19	197.44	173.22	203.06	Trace
	Su	30.0	17.2		209.5		28.41		1.17	199.88	172.71	197.45	.01
	М	19.5	12.3		220.5	6.39	28.52		1.24	214.46	190.75	194.75	.99
	Т	24.6	6.2		210.5	5.95	29.29		1.32	217.45	194.21	178.16	.02
15 16	W	26.3	7.0		188.3	5.88	30.33		1.30	215.08	193.31	189.11	Trace
16	Th	26.0	7.0		209.2	6.06	29.50		1.22	223.88	206,64	198.91	.05
17	F	30.8	8.5		209.0		28.54		1.18	212.45	186.27	202.35	
18	Sa	29.4	10.1		203.0	6.42	28,20		1.17	197.13	195.22	201.32	
<u> 19</u>	Su	21.4	14.4		207.0	6.40	29.77		1.24	200.23	194.32	183.94	.42
	М.	30.0	11.3		204.0	6.29	29.67		1.31	205.24	214.78	187.68	.02
21	T	28.8	7.6	5.0	215.0	6.13	29,13				229.47	195.69	Trace
55	W	28.6	4.9		199.0	6.17					234.99	182.89	.07
22 23 24	Th_	29.7	5.5	4.1	196.5	6.16					208.94	199.20	
24	F	30.0	7.3	4.2	177.0	6.16	28.72				199.63	195.04	
25 26	Sa	29.8	5.6			6.38	28.72		التناف في المستحددة	206.30	213.45	200.42	
20	Su.	25.3	10.6		181.5		28.79			227.86	233.37	205.34	
27	М	29.5	17.6		192.1		28.90				244.16	212.33	
28	T	28.6	10.4		199.5	6.35	29.12	3.3			208.26	202.71	
29	W	27.2	8.0		193.5		28.55				206.08	219.85	
33	Th	25.9	8.1	8.7	193.0	6.30	28.79	3.1	1.49	217.94	210.23	226.67	.27
31		1				1					1	1	i

							T TANKET .	AT WITH	TIONAL DAT	· · · · · · · · · · · · · · · · · · ·			The state of the s
D	D	i			Ī			İ					•
a		Kjel	dahl Ni	trogen	Mila	organite		ļ	Average	Ferric C	hloride (Jse	Precipitation
] t	У		mg/l as	N	As Rec	eived Ba	sis		Waste	lbs. A	nhydrous	FeCl ₃ per	Water
			T	1	Tons/	Nitrogen	Ash	ł	Sludge	Dry ton	s recover	ed Solids	Equivalent
1	1	SS	WPE	EPE	Day	% N	1 %	рН	% Solids		1969	1970.	Inches
1	F	28.6	7.8	10.2	200.0	6.30	28.42		1.46	220.15	209.62	243.68	0.1
2	Sa	28.8	8,1	7.3	199.5	6.30	28.79	3.0	1.51	202.22	223.30	225.29	
3	Su	26.2	11.2		193.1	6.42	29,22		1.47	182.40	226.64	241.31	0.02
14	М	29.5	14.7		197.2	6.37	29.24		1.55	185.28	224.33	255.06	
5	T_{-}	31.6	7.8	12.3		6.23	29.39		1.63	187.78	250.03	243.70	Trace
6	W	26.5	6.9	7.1	190.8	6.22	30.04	3.1	1.69	203.85	246.67	229.02	
7	Th	31.1	8.7	5.7	191.8	6.18	29.23		1.70	216.62	227.25	222.54	
8	F	29.8	16.1		202.6	6.18	29.42	3.1	1.67	194.40	209.14	220.76	
9	Sa	24.9	8.8		204.7	6.26	29.29	3.2	1.69	203.46	193.70	213.00	0.68
10	Su	27.0	15.1	8.8	208.7	6.33	29.68	3.2	1.72	194.40	193.62	213.79	Trace
11	M	28.4	15.0	10.5	205.4	6.16	30.80	3.2	1.77	196.96	215.79	228.18	0.15
12	Γ	17.1	6.7	4,6	203.4	5.98	31.79	3.4	1.79	200.65	209.90	196.54	1.01
13	W	18.8	3.6		211.2	5.76	32.78	3.4	1.94	215.66	219.29	205.93	0.24
14	Th	19.3	5.0		214.5	5.61	33.10	3.4	1.84	202.11	234.48	192.91	0.26
15	F	19.5	5.5	2.9	158.4	5.63	33.77	3.7	1.72	200.30	222.49	178,63	0.28
16	Sa	20.0	7.3		189.7	5.85	33.73	3.7	1.72	225.09	192.23	173.16	Trace
17	Su	21.1	11.9		213.6	5.83	32.93		1.72	201.81	199.54	180.99	Trace
18	IM^{-}	27.6	14.0	8.1	220.3	5.94	33.51	3.7	1.85	232.38	192.34	179.61	
19	T_{-}	28.0	9.0	4.3	228.0	5.81	33.34		1.89	199.52	196.32	195,32	
20	W	29.4	9.1		220.0	5.88	32.07	3.4	1.84	151.51	213.01	197.38	
21	Th	28.0	9.5		211.3	5.92	31.21		1.71	192.26	202.33	198.65	
22	F	29.7	7.4		206.5	6.23	30.15		1.59	204.48	195.99	213.75	0.08
23	Sa	25.J	4.5		220.2		29.73		1,56	210.61	187.08	203.09	0.15
24	Su	23.8	10.2		216.7	6,30	29.92		1.60	215.17	202.57	208.95	0.11
25	М	26.7	13.2		195.1	6,08	3 0.23			228.97	190.72	239.56	Trace
26	T	29.0	7.8	4.1	201.1	6.27	31.19		1.57	196.86	214.07	223.16	
27	W	.30.4	7.8		213,1	6,19	30.78		1.64	204.59	205.54	219.59	0.02
28	Th	30.2	14.3		199.3	6,26	30,52	3.2	1.62	207.77	226.27	222.06	
29	F	21.7	11.6		192.5	6.32	30.11	3.2	1.62	213.51	227.41	226.05	0.04
30	Sa	28.3	13.9	3.4	183.9	6.42	29.49	3.1	1.52	211.90	210.21	243.52	0.07

29.47 3.1

6.53

1.51

203.20 193.09

18.3 6.9 186.6

PLANT OPERATIONAL DATA

MAY 1970

0.20

245.89

					_		PLANT	OPERA	TIONAL DAT	Α		J	UNE 1970
D	T	T											
a	a		dahl Ni			organite			Average		hloride		Precipitation
t	У	1	mg/l as	N	1	ceived Ba			Waste	lbs. A	nhydrous	FeCl3 per	Water
е						Nitrogen		Ì	Sludge	Dry ton	s recove	red Solids	Equivalent
L	<u> </u>	SS	WPE	EPE	Day	% N	1 %	рH	% Solids	1968	1969	1970	Inches
	М	18.2	11.8	4.9	192.0	6,25	30.09		1.50	195.54	217.34	250.56	1.05
2	T	15.7	5.0	3.6	195.3	6.04	31.73		1.72	203.44		241.44	1.12
3	W	21.7	5.6	4.2	195.0	5.79	32.99		1.89	220.98		197.76	
4	Th	23.9	5.2	2.2	177.0	5.82	33.56		2.04	224.95	214.92	212.78	
5	F	24.5	5.3	3.1	153.0	6.01	32.36	3.4	2.02	218.64	211.55	236.76	
6	Sa	23.7	5.7	2.9	172.0	6.12	32.93		1.92	245.99	207.40	220.64	
7	Su	23.2	9.7	6.0	185.0	6.17	30.68		1.82	241.68	212.42	205.11	
8	М	23.9	11.1	7.8	190.0	6.27	31,20		1.72	233.17	198.91	205.09	
9	T	23.7	3.6	2.3	202.5	6.16	30.78		1.74	234.45	205.88	199.24	
10	W	26.5	4.1	3.4	206,5	6.19	30.37		1.69	208.04	239.61	216.94	
11	Th	25.5	7.0	10.8	212.5	6.29	29.14		1.66	234.37	256.73	228.34	
12	F	24.5	8.5	7.9	246.0	6.30	28.78		1.53	240.29	249.40	220.89	.20
13	Sa	24.4	4.9	7.3	230.9	6.39	28.67		1.47	245.62	248,27	225.40	• 35
14	Su	21.3	11.9	8.4	220.6	6.30	28.85		1.50	224.50	252.55	212.76	.24
15	M	26.9	13.0	9.5	231.0	6.33	30.21		1.53	218.66	260.01	231.34	
16	T	26.5	8.4	4.8	223.5	6.13	30.03		1.62	204.93	275.63	240.79	
17	W	23.7	6.2	5.9	207.0	6.22	29.63		1.61	220.63	282.67	218.47	
18	Th	25.8	6.0	8.7	206.5	6.30	28.97		1.58	228.25	253.20	218.71	.08
19	F	26.2	7.8	3.1	207.0	6.42	29.79		1.55	226.70	246.94	200.91	
20	Sa	27.3	7.1	3.6	195.0	6.24	29.81		1.56	206.56	263.80	222.83	.22
21	Su	25.9	13.4	10.9	192.0	6.16	30.29		1.55	217.95	261.27	231.25	.01
22	М	24.9	16.1	9.5	189.5	6.21	30.30		1.53	196.59	275.38	237.06	
23	T	25.3	5.6	3.8	194.0	6.11	30.47		1.64	187.97	249.12	222.12	
24	W	24.6	4.6	7.1	180.0	6.24	29.38		1.69	212.23	250.70	242.56	.01
25	Th	26.5	5.6	7.3	180.5	6.32	29.11		1.67	229.10	248.62	245.78	
26	F	24.8	6.2	14.3	193.5	6.44	28.71		1.59	228.20	235.99	238.99	.64
27	Sa	.27.2	6.7	6.0	190.5	6.41	28.54		1.52	206.24	204.09	239.81	
28	Su	26.9	15.7	9.5	189.5	6.46	28.65		1.57	207.45	213.25	235.48	Trace
29	М	23.1	15.4	9.5	176.5	6.27	29.32		1.67	221.50	229.66	241.11	
30	T	21.3	6.8	37.0	178.0	6.11	30.26	3.0	1.91	218.57	262.07	262.44	**************************************
31	Į.,	i .						1		j.	j	1	

							PLANT	OPERA	TIONAL DAT	A		J	ULY 1970
D	D												
4	a		dahl Ni			organite			Average				Precipitation
t	У	1	ng/l as	N		ceived Ba			Waste	lbs. A	nhydrous	FeCl ₃ per	Water
•	I					Nitrogen		•	Sludge			red Solids	
		SS	WPE	EPE	Day	% N	7	рH	% Solids		1969	1970	Inches
1	W	26.5	7.6		187.5	6.12	29.90	3.0	1.89	217.32	229.63	244.17	Trace
2	Th	24.9	6.7		203.5	6.14	29.38	3.0	1.86	254.69	254.67	231.84	
3	F	29.7	6.6		188.5	6.46	29.25	2.9	1.80	229.02	200.77	253.70	.06
4	Sa	23.4	10.1	5.0		6.38	29.00	2.9	1.67	229.31	224.62	255,23	
5	Su	23.1	15.3	5.3	92.7	6.44	29.83	2.7	1.67	219.56	277.84	293.07	
6	14	26.9	16.0	5.7						221.03	216.33		
1	T	23.2	13.9	5.2						235.91	276.85	ļ	
8	W	26.0	7.8	10.9		6.28	29.31		1.93	237.78	267.18	 	.51
12	Th	27.6	9.4	10.1	164.5	6.01	30.86		1.82	253.38	275.16	360.20	Trace
10	F	24.9	13.0		188.0	5.87	31.10		1.98	263.85	248.96	246.88	
11	Sa.	25.1	10.8		176.0	5.99	31.65		2.10	245.34	241.33	335.41	
12	Su	24.2	14.3	0.3	190.9	6.09		2.9	1.79	240.72	263,90	282.71	
13 14	М	23.7	11.1		185.3	5.89	31.71		1.77	221.15	236.49	256.81	.03
	m ·	19.7	3.9		176.5	5.98	31.48		2,00	250.06	262.02	242.20	.15
15 16	W	22.7	4.3 5.2		183.0	5.82	32.63		2.36	240.88	285.38	297.58	.02
17	Th F	24.0			202.6	5.63	33.26		2.27	268.33	227.47	284.40	
18		22.3	9.0 6.4		224.7	5.79	32.57 31.61		1.98	260.73	189.53	228.65	.06
19	Sa	21.7	8.0		227.6 219.8	6.07	31.82		1.81 1.80	241.70	184.91	227.29	.01
20	Su	26.3	8.0		219.0	6.15 6.04	31.66			253.25	199.16	230.59	. 36
21	M	26.5	4.9		216.1	6.01	31.08		1.79 1.88	212.44 222.28	195.60	210.66	
22	W	26.7	4.3		116.9	6.17	30.50		1.86	212.04	195.67 194.56	209.66	
23	Th	28.4	5.9		124.8	6.17	30.21		1.79	226.16	218.18	291.50 335.39	Trace
24	F	26.7	6.0		235.3		28.88		1.53	232.67	229.49	263.05	11 ace
25	Sa	22.3	4.9		202.4	6.48	29.21		1.48	212.41	243.54	277.60	
26	Su	23.5	5.7		207.5		29.34		1.46	206.30	244.17	260.93	.05
27	M	24.9	4.9		213.3	6.09	30.23		1.58	221.45	255.37	230.92	.40
28	Tr.	25.9	3.6		217.9		29.89		1.66	216.25	235.42	235.20	.19
29	W	26.5	5.0		204.7	5.95	29.66		1.69	227.92	215.63	226.05	Trace
30	Th	24.8	5.3		211.4		29.13			234.25	217.09	237.68	.05
31	F	24.4	7.1		196.4		28.39			247.00	208.15	232.93	.04

بــو	
Ŋ	
ω	

						,	PLANT	OPERA'	TIONAL DAT	A		AUG	JST 1970
D	D											_	
a	a		lahl Nit			rganite				Ferric C	hloride	Use	Precipitation
t	У	D	ng/l as	N		eived Ba			Waste	lbs. A	nhydrous	FeCl ₃ per	Water
e		SS	WPE	EPE		Nitrogen			Sludge			red Solids	Equivalent
	↓				Day	% N	%	рН	% Solids		1969	1970	Inches
1	Sa	21.3	7.6		182.3	6.21	29.13		1.49	217.26	211.42	255.17	
2	Su	21.8	10.9		184.0	6.10	30.57		1.42	216.32	218.88	237.59	Trace
[3		25.6	9.8		188.5	6.09	30.70		1.46	211.93	235.75	246.43	
4	T	27.2	7.1		195.9	5.95	31.17		1.54	212.02	231.35	242.21	
5	W	28.8	7.7		192.4	5.90	30.33		1.57	216.59	247.46	249.71	
6	Th	25.2	7.8		190.1	6.05	29.51		1.58	238.46	276.61	262.13	
7	F	27.7	6.7		230.6	6.19	28.80		1.62	231.57	247.46	203.95	
8	Sa	26.6	9.2		219.0	6.22	29.16		1.66	229.33	228.81	227.05	
9	Su	25.8	14.8		218.5	6.24	29.24	2.9	1.62	224.75	253.81	243.25	Trace
10	М	25.6	14.1		212,4		29.84	2.9	1.73	209.96	247.44	267.27	
11	T	25.9	7.0		219.5	5.91	30.20		1.94	235.99	235.99	250.31	
12	W.	26.0	7.4		221.1	5.94	30.77		1.96	236.96	243.61	228.97	,
13	Th.	26.9	7.1	4.2	215.7	6.02	29.42		1.90	242.85	218.47	223.92	
14	F	26.3	9.4	4.1	226.4	6.14	29.32		1.79	228.37	208.04	215.51	, , , , , , , , , , , , , , , , , , ,
15	Sa	23.7	10.4		226.0	6.17	28.64	3.1	1.68	221.36	222.59	219.96	
16	Su	23.7	14.4		223.7	6.35	28.87	3.T	1.67	215.80	201.09	221.54	
17	М	21.3	10.4		191.3	6.03	31.12		1.92	196.95	192.80	239.31	
18	T	24.5	6.2		225.8	5.80	30.32		2.02	196.16	211.60	208.28	
19	W	25.1	6.0		211.6	5.87	29.28		1.95	217.67	211.15	242.51	0.27
20	ሞክ	27.7	6.2		223.7	5.96	29.29		1.76	208,88	207.06	222.06	0.01
21	F	25.2	9.0		215.2		29.10		1.65	209,29	222.79	216.12	
22	Sa	26.9	10.4		211.1		28.62		1,50	227.93	208.93	217.73	
23	Su	25.8	16.4		200.4		28.74		1.47	220.00	238.88	213.21	
	M	29.1	16.1		187.9		29.16		1.64		198.63	214.56	.04
25 26	T	27.3	9.9		174.3		29.47			241.27	220.98	243.16	
_	W	27.2	7.3		188.0		29.27				206.33	231.14	Trace
27 28	Th	28.7	8.7		192.5		28.31				190.13	220.41	
_	F	28.6	8.7		202.5		27.25		1.34	231.95		214.22	0.30
29 30	Sa	23.0	9.1		198.5		27.28		1.30		201.23	209.57	0.32
30	Su		15.1		194.0		29.53		1.32		185,48		
31	М	28.8	16.1	6.0	193.8	6.17	30.49	3.0	1.47	252.40	191.23	260.37	

T	TD	T			1		TIME		TIVIAL DAL				
1 2	1 2	Y4al	dahl Ni	+	Man.	organite		Ì	Arrama na 1	Barria C	hlanda l	Itaa	Desciption
					ı	_			Average 1				Precipitation
t	Y		ng/l as	N .	1	ceived Ba		1	Waste	Tos. A	nnyarous	FeCl ₃ per	Water
•	1	-				Nitrogen	Ash	•	Sludge			red Sölids	=
	<u> </u>	SS	WPE	EPE	Day	% N	7	рH	% Solids	1968	1969	1970	Inches
1	T	28.7	8.4	3,6	185,1,	5.99	29,68		1.61		207.64	257.61	
2	W	26.3	7,4	4.2	196,6	6.11	29.65		1.54		362.32	253.43	. 56
3	Th	21.7	5,9	4,2	186.5	6,26	28,61		1.46	237.18	230.85	238.13	.54
4	F	27.4	9.1	5,9	186.5	6,23	29.08		1.41	244.69	205.57	254.59	
5	Sa	25.6	11.5	6.3	187.5	6,29	29.06	3.0	1.42	241.08	218.29	255.92	
6	Su	15.8	12.3		187.5	6.18	28.91		1 44	233.09	208.73	265.16	1.44
1	M	20.4	12.0		163.0	6.03	30.54		1.56	225.07	213.76	269.09	Trace
8	T	26.3	10.5	3.2	117.6	5.70	33.25		1.68	227.72	238.56	327.39	
9	W	23.9	6.2	3.1	170.0	5,58	33,26	3.3	1.83		253.05	246.92	.53
10	Th	26.6	3.5	3.9	174,5	5,80	31.13		1.76	237.17	229.97	237.19	Trace
11	F	28.7	7,1	6,2	187.4	6.07	29.25	3.1	1.62	239.08	243.73	209.54	
12	Sa	25.8	8,1	8.0	183.1	6,26	28,45	3.0	1.47	214.90	236.23	234.43	.16
	Su	21.1	11.6	8.3	187.0	6.32	29.11	3.0	1.46	214.23	268.79	222.66	.18
14	M	23.0	9.9	8.0	179.6	6.30	29.32	3.0	1.50	219.84	235.78	240.32	.22
15	T	18.3	4.8	3.6	180,6	6.14	29.52	3.0	1.53	251.02	292.70	230.75	. 86
	W	25.6	4.9	4.3	180,8	5.97	30.32	3.1	1.62	226.75	243.91	244.23	
17	Th	21.1	6.9	2,8	200.6	6.07	30.14	3.2	1,61	230.62	236.94	231.02	.66
18	F	25.5	6.2	3.4	210.8	6.36	29.41		1.56	228.18	266.11	214.37	
19	Sa	23.9	7,6	4.2	195.4	6.42	28.86	3.2	1.49	247.54		232.71	
20	Su		10.8	4.1	197.8	6.38	28.29	3.1	1.50	220,67	279.67	243.88	
	M	24.8	9.7	2.9	193.0	6.32	29.33	3.1	1.54		273.08	252.96	.06
	T	26.6	4.6	3.1	193.8	6.12	29.08	3.1	1.57	240.88	269.30	264.47	.11
	W	23.7	6.0	3.8	191.3	6.23	28.71	3.1	1.48	224.76	263.79	250.20	1.19
	Th_	20.6	5.3	3.8	209.7	6.42	28.42	3.1	1,44	226,24	231.96	225.79	.27
	F	23.7	6.3	4.3	194.0	6.28	29.40		1.49		276.38	227.56	.13
	Sa	23.0	7,4	4.6	174.3	6.29	30.00		1, 39	199.12		243.17	.02
	Su	. 22.8	11.8	4.1	186.9	6.15	29.97	3.1	1.48	219.83		251.37	Trace
	M	30.5	12.3	4.9	190.7	6.15	30,57		1.59	224.51	296.21	241.42	
29	T	28.7	9.0	3.8	194.8	6.12	30.16		1.59	217.38	271.83	241.64	
30	W	30.2	6.3	4.2	203.5	6.14	29.65		1.64		254.74	260.64	
31													

PLANT OPERATIONAL DATA

SEPTEMBER

1970

					· · · · · · · · · · · · · · · · · · ·		PLANT	OPERA	TIONAL DAT	Α		OCTOBER	1970
D	D							ļ					
a	8.		iahl Ni	_	ľ	rganite			Average				Precipitation
t	У		ng/l as	N		eived Ba			Waste	lbs. An	hydrous	FeCl3 per	Water
е						Nitrogen		i i	Sludge	Dry tons	recover	red Solids	Equivalent
	<u> </u>	SS	WPE	EPE	Day	% N	7%	рН	% Solids	1968	1969	1970	Inches
1	Th	31.5	7.8	4.8	201.0	6.36	27.93		1.52	230.53	266.25	232.32	
2	F	31.4	11.3	6.7	201.5	6.39	27.63		1.49	237.92	301.36	234.04	
3	Sa	27.7	10.2	7.6	203.2	6.37	28.06		1.43	231.47	298.87	229.49	
4	Su	27.0	14.3	9.2	204.2	6.45	28,30		1.48	235.04	320.60	235.50	
5	М	30.4	14.3	8.8	181.4	6.21	28.59		1.57	227.42	304.67	263.45	
6	${ m T}$	30.5	8.0	5.7	212.1	6.11	29.49		1.76	245.96	270.96	237.63	
7	W	30.4	9.2	6.9	214.1	6.14	28.59		1.91	278.60	292.44	211.29	.03
8	Th	30.7	18.2	9.5	200.2	6.13	27.71		1.84	262.31	301.08	234.64	.06
9	F	28.7	10.6	11.6	200.0	6.32	27.92		1.79	249.16	310.57	239.96	.04
10	Sa	27.6	11.5	10.1	211.4	6.48	27.27		1.64	230.67	331.65	252.72	Trace
11	Su	30.0	16.4	12.6	190.8	6.48	27.41		1.50	236.87	325.33	249.64	
12	М	32.8	17.8	13.0	180.0	6.28	28.53		1.64	219.71	311.96	268.11	
13	T	32.5	11.2	9.2	188.7	6.06	28,69		1.73	222.20	284.14	269.10	.06
14	W	33.2	10.6	8.5	176.0	6.13	28.51		1.77	224.57	267.36	288.15	.01
15	Th	34.6	13.3	13.9	193.2	6.17	27.29		1.63	239.15	225.29	256.69	
16	F	34.9	13.7	16.5	190.8	6.40	26.96		1.60	243.87	246,13	253.25	
17	Sa	30.1	13.9	11.9	196.5	6.44	26.89		1.49	243.43	238,29	293.48	
18	Su	29.3	15.1	14.1	184.1	6.48	26.42		1.49	253.99	217.82	295.81	
19	М	33.2	18.8	13.7	196.2	6.48	27.35		1.50	260.30	229.48	284.36	
20	T	31.5	12.0	8.7	166.1	6.23	27.28		1.71	242.97	208.04	297.25	.09
21	W	33.6	11.6	7.8	179.3	6.18	27.82		1.77	249.19	200.94	287.96	
22	Th	32.5	12.5	13.2	198.1	6.22	27.10		1.74	257.15	204.29	250.55	04
23	F	30.9	13.0	17.2	179.5	6.29	26.78		1.71	231.31	210.51	278.35	.25
24	Sa	30.7	12.7	11.1	200.0	6.40	26.40		1.62	223.78	222.80	317.52	.01
25	Su	29.4	20.4	16.8	199.0	6.46	26.83		1.68	224.91	234.62	295.22	
26	М	34.6	18.9	14.6	206.3	6.33	27.36		1.64	242.86	226.87	260.45	
27	T	.27.9	9.4	7.0	200.8	6.12	27.85		1.73	234.01	213.66	251.94	.54
28	W	23.2	4.5	3.6	188.5	6.06	28.26	3.0	1.83	240.43	223.52	256.47	•53
29	Th	32.6	7.8	8.3	206.0	6.08	28.77		1.85	220.60	235.33	241.25	
30	F	31.6	9.9	8.7	215.0	6.08	28.59		1.87	247.66	236,16	281.20	.16
31	Sa	27.2	. 8.5	8.3	227.0	6.24	28.04	2.9	1.72	243.68	211.53	295.54	•27

							PLANT	OPERA	TIONAL DATA	A		NOVEMBER	1970
D	D	1											
	a	Kjel	dahl Ni	trogen	Mila	organite			Average				Precipitation
t	У	1	ng/1 as	N		ceived Ba			Waste	lbs. A	nhydrous	FeCl ₂ per	Water
	}		1	1	Tons/	Nitrogen	Ash	ł	Sludge	Dry ton		ed Solids	
	1	SS	WPE	EPE	Day	% N	76	рH	% Solids	1968	1969	1970	Inches
1	Su	24.5	15.8	8.8	237.5	6.34	27.77	2.9	1.56	246.15	184.46		
2	M	24.5	15.5	11.5	203.2	6.27	29.01	3.0	1.75	257.81	197.62	255.41	0.45
3	\mathbf{T}_{-}	23.5	9.2	3.6	203.8	6.00	29.01	3.2	1.81	254.80	196.10	211.09	0.19
14	W	27.6	8.5	3.6	180.0	6.13	29.28		1.93	266.56	198.09	209.27	0.12
5	Th	29.1	8.0	3.6	207.3	6.10	27.76		1,82	277.07	191.41	204,88	
6	F	23.0	6.9	3.6	218,6	6.22	27.21	3.1	1.70	235.29	221.50	229.79	
17	Sa	21.3	9.2	7.1	229.8	6.38	26.76		1.58	195.81	189.77	225.44	
8	Su	27.3	17.9	8.3	217.2	6.44	27.04		1.54	195.37	202.42	237.47	
12	14	26.6	13.7	5.6	211.7	6.34	27.75		1.57	226.39	214.35	266.55	0.27
10	T	20.8	5.3	2.3	227.7	6,28	28.57		1.69	237.23	230.67	260.99	0.15
11	W	30.1	7.8	3.2	235.4	6,59	27.90		1.77	229.13	233.16	241.56	
12	Th	30.7	8.7	3.6	218.0	6.13	27.85		1.80	238.69	231.98	264.42	
13	F	29.8	9.9	5.7	222.5	6.23	27.56		1.65	253.31	244.51	269.85	Trace
14	Sa	23.0	11.1	4.6	213.3	6.43	27.04		1.51	230.85	255.59	305.94	0.03
15	Su	28.7	17.4	5.7	208.3	6.41	26.95		1.54	238.45	250.68	258.94	Trace
16	М	31.9	16.9	6.4	206,5	6.41	27.49		1.55	243.17	259.45	260.41	
17	T	30.9	11.3	5.7	200.3	6.36	27.51			241.79	265,35	286.48	
18	W	32.9	10.5	7.3	218,4	6.27	26.47			270.01	254.49	249.17	Trace
19	Th	31.5	13.4	9.1	221.8	6.35	26.84		1.68	290.53	240.16	261.72	0.01
20	F	26.2	6.9	11.5	204.7	6.39	26.92		1.59	260.86	241.56	309.24	0.62
21	Sa	31.5	13.4	9.1	236.7		27.25		1.54	262.73	251.39	235.11	
22	Su	29.3	14.7	9.2	195.5		27.67		1.60	267.92	267.39	278.01	
23	M	30.7	15.1	9.9	198.3		28,44		1,68	271.50	281.23	285.80	Trace
24	T	32.8	9.2	7.7	191.8		28,58		1.69	282.05	280.08	283.41	0.01
25	W	32.8	10.6		185.4	6,26	27.76	3.0	1.71	258.80		266.98	Trace
26	Th	30.9	7.8	7.0	201.2		26.89			258.95	238.33	273.78	0.03
27	F	34.9	16.7	11.8	197.2		27.19		1.63	268.76	277.57	298.50	0.12
28	Sa	31.2	16.7		210.0		27.16			265.88	254.02	260.89	0.01
29	Su	28.0	18.1		221.0			3.2		265.96	242.48	234.20	0.02
30	M	32.5	18.1	9.8	204.1	6.33	27.21	3.2	1.76	241.14	274.62	235.70	Trace
31											1		

							PLANT	OPERA'	TIONAL DATA	A		DECEMBER	1970
D	D												
a	a		dahl Ni	-		rganite			Average				Precipitation
t	У	1	ng/l as	W		eived Ba		i j	Waste	lbs. Ar	hydrous	FeCl ₃ per	Water
e	1		WPE	व्ययव		Nitrogen			Sludge			red Solids	_
_	1	SS	L	EPE	Day	% N	7	рН	% Solids	1968	1969	1970	Inches
1	T	31.8	11.6	8,1	207.1	6.23	27.35		1.83	242,00	289.16	226.77	.01
2	W	33.6	8.1	6.7	221.3	6.26	27.20		1.77	250.24	273.27	236,18	
3	Th	30.8	8.3	7.1	211.3	6.55	26.33		1.65	256.08	272.21	244.70	.27
14	F	33.0	10.2	6.4	225.7	6.48	26.09		1.52	228,22	248.08	252,84	Trace
5	Sa	32.9	8.7	7.6	219.4	6.56	25.91		1.42	244.99	236.14	245.98	
6	Su.	27.9	13.4	10.8	221.8	6.57	25.97	3.1	1.37	241.67	221.45	250.50	
7	М	35.3	16.4	11.9	201.4	6.60	26.21	3.2	1.39	241.29	233.38	232.36	
8	T	35.0	11.3		191.0	6.46	26.29		1.49	233.92	222.37	247.59	
9	W	34.6	9.8	8.7	200.1	6.50	25.96		1.45	207.49	207.89	244.16	
10	Th	38.1	11.6	14.8	200,8	6.57	25.61	3.2	1.40	204.49	228.03	255.71	1.08
11	F	26.2	13.7	16.0	207.9	6.59	25.41	3.2	1.42	222.84	235.82	244.12	.71
12 13	Sa	27.6	11.9	11.9	207.8	6.63	25.61	3.2	1.40	219.66	195.40	219.66	13
113	Su	25.3	15.7	16.1	203.6	6.59	25.55		1.39	237.26	207.03	220.27	.07
14	M	29.7	15.8	15.5	219.0	6.52	26.02		1.42	207.82	214.54	211.13	
15	T	29.0	10.6	12.3	208.1	6.45	26.03		1.55	221.93	208.39	233.53	
16	W	23.7	6.6	5.3	210.5	6.34	25.50		1.58	243.97	187.01	229.70	.24
17	Th	27.7	7.6	5.5	215.0	6.35	25.35		1.57	266.06	186.68	207.30	Trace
18	F	27.4	7.0	7.8	211.5	6.38	25.53		1.53	242.11	193.19	232.23	Trace
19	Sa	25.1	6.4	6.9	216.0	6,60	25.48		1.43	236.81	203.91	216.76	Trace
20	Su	24.2	11.3	9.7	222.4	6.73		3.1	1.39	210.02	190.52	235.58	
21	M	28.7	14.1	11.3	211.7		25.98		1.44	207.56	201.16	262.77	.09
22	T	29.5	9.5	8.5	211.2	6.45	25.79		1.46	215.26	196.77	237.86	.15
23	W.	29.4	8.5	8.7	178,6	6.44	26.79		1.47	176.22	220.92	244.30	
24	Th	28.3	11.5	7.0	210.2	6.43	25.71		1.42	201.92	243.67	225.90	.01
25	F	25.9	13.6	11.2	206.0	6,63	25,88		1.38	208.92	263,60	260.31	.03
26	Sa	28.7	17.5	15.0	182.5	6.66	25.93		1.36	230.33	263 . 99 248 . 19	304.22	.19
27	Su	.26.6	14.0	14.6	185.8	6,65	26.58		1.42	222.70		270.89	
28	М	31.1	17.5	14.0	168.1	6,49	26,60	3.1	1.56	197.04	267.57	229.23	
29	Т.	31.9	11.3	8.8	169.1	6.37	26.81		1.72	201.99	225.12	241.08	.04
30	W	33.9	9,1	5.7	200.1	6.27	26.48		1.75	214.54	266.71	205.37	
31	Th	34.2	9.5	6.6	195.7	6.39	25.78	3.1	1.68	203.40	257.01	209.85	Trace

APPENDIX I

X-ray Diffraction Techniques

To use x-ray diffraction techniques to explore crystalline species in the sludge, the material must be changed from a liquid to a powder. Air drying at room temperature and freeze drying were chosen for drying because the temperature at which sludge was initially formed would not be drastically exceeded.

Liquid sludge was obtained from the sewage plant. This was centrifuged and the bulk of the liquid removed. The concentrated sludge was placed in a Virtis Automatic Freeze Dryer, Model 10-010, and dried. The freeze dried material thus obtained was fibrous in character. When ground it appeared as a fine fluffy powder. Air dried material appeared in the form of hard, millimeter sized particles and when ground yielded a granular powder which was easier to handle.

A crystalline sample selected from mineral Vivianite was obtained from a commercial source. This material was found to be magnetic. It was reasoned that if one of the chemical species of interest in the sludge was an iron phosphate compound, it could be separated and concentrated by a magnetic separation technique and identified.

The sludge sample, whether freeze dried or air dried, was separated by dropping it through a high itensity magnetic field. The powdered sludge residue was dropped through a 2 inch diameter glass cylinder placed between a 10 kilo-gauss electro-magnet. The magnetically separated material adhered to the side of the cylinder and the nonmagnetic material dropped through.

The magnetically separated material was then loaded into a 0.5 mm diameter glass capillary. These capillaries were mounted in a 114.6 mm Philips powder diffraction camera. The specimens were then exposed to a beam of x-ray radiation, obtained from an iron x-ray tube, for periods of time ranging from 2 to 6 hours. The x-ray diffraction patterns were recorded on film in the form of lines of varying intensities at various angular positions.

The angular positions of the x-ray diffraction lines were used to calculate the interplanar d-spacings of the unknown crystalline materials. These d-spacings were compared with standard patterns of crystalline materials in the ASTM files. This allowed the identification of the crystalline species in the sludge residue.

APPENDIX J

* FREE ACID IN PICKLE LIQUOR

From the A. O. Smith Corporation From U. S. Steel Corporation

TIOM ONE A.	O. Dilliton o.	- P	110 0. 5.	oscer obliporation	J11
DATE	SPECIFIC GRAVITY	% free H ₂ SO ₁₄ ACID	DATE	SPECIFIC GRAVITY	% FREE H ₂ SO ₄ ACID
2-17-70	1.184	4.5	11- 4-70	1.180	8.1
2-18-70	1.185	2.7	11- 4-70	1.186	8.0
2-19-70	1.262	5.0	11- 4-70	1,172	8.2
2-20-70	1.264	5.8	11- 5-70	1.206	7.7
2-23-70	1.242	4.9	11- 5-70	1.202	7.6
2-24-70	1.268	3.9	11- 5-70	1.194	1.0
2-25-70	1.246	4.1	11- 6-70	1.198	7.8
2-26-70	1.270	4.6	11- 6-70	1.208	7.3
2-27-70	1.285	4.3	11- 6-70	1.202	7.4
3- 2-70	1.251	4.1	11- 9-70	1.198	7.7
3- 3-70	1.202	4.5	11- 9-70	1.195	8.9
3- 4-70	1.192	4.3	11- 9-70	1.194	
3 - 5-70	1.273	5.2	11-10-70		7.5 7.2
3- 6-70	1.261	2.7	11-10-70	1.198 1.194	
3- 9-70	1.294	4.0	11-10-70		6.8
3-10-70	1.229	4.6	11-11-70	1.196	6.6
3-11-70	1.288	4.5	11-11-70	1.203	6.9
3-12-70	1.291	4.2		1,203	7.2
	1.238	3.9	11-12-70 11-12-70	1.201	6.9
3÷13-70	1.277	3.9	•	1.201	7.5
3-16-70		5.6	11-12-70 11-13-70	1.201	7.5
3-17-70	1.217	3.3	- •	1.201	8.8
3-18-70	1.181		11-13-70	1.203	7.8
3-19-70	1.288	2.1	11-13-70	1.202	7.9
3-20-70	1.300	5.7	11-16-70	1.210	7.9
3-23-70	1.304	4.2	11-16-70	1.223	7.6
3-24-70	1.266	3.9	11-16-70	1.209	7.8
3-25-70	1.307	4.7	11-17-70	1.194	8.0
3-26-70	1.320	4.3	11-17-70	1.194	8.9
8- 4-70	1.263	4.2	11-17-70	1.196	8.9
8- 4-70	1.284	4.3	11-18-70	1.196	8.3
8- 5-70	1.273	4.0	11-18-70	1.200	8.5
8- 6-70	1.283	4.5	11-18-70	1.200	8.5
8- 6-70	1.280	4.6	11-19-70	1.192	8.2
8- 7-70	1.268	4.8	11-19-70	1.200	8.9
8- 7-70	1.321	5.2	11-20-70	1.208	6.8
8-10-70	1.319	5.0	11-23-70	1.193	7.6
8-10-70	1.331	5.0	11-24-70	1.220	7.6
8-11-70	1.316	4.8	11-24-70	1.222	7.2
8-12-70	1.301	4.3	11-27-70	1.206	7.2
8-13-70	1.216	4.7	11-27-70	1.198	7.6
8-13-70	1.223	5.0	11-27-70	1.204	7.6
8-14-70	1.221	5.0	11-27-70	1.188	7.8
8-14-70	1.272	5.3	11-30-70	1.185	7.3
8-17-70	1.252	4.9	11-30-70	1.182	7.5
8-17-70	1.267	5.0	11-30-70	1.181	7.5
8-17-70	1.264	4.8	12- 1-70	1.184	8.3
8-18-70	1.260	4.5	12- 1-70	1.186	8.5
8-19-70	1,281	jt • jt	12- 1-70	1.186	9.3
Ave	1.264	4.5	Ave	1.198	7.8
Max	1.331	5.8	Max	1.223	9.3
Min	1.181	2.1	Min	1.172	6.6

APPENDIX K

ALKALINITY AS mg/l CaCO3

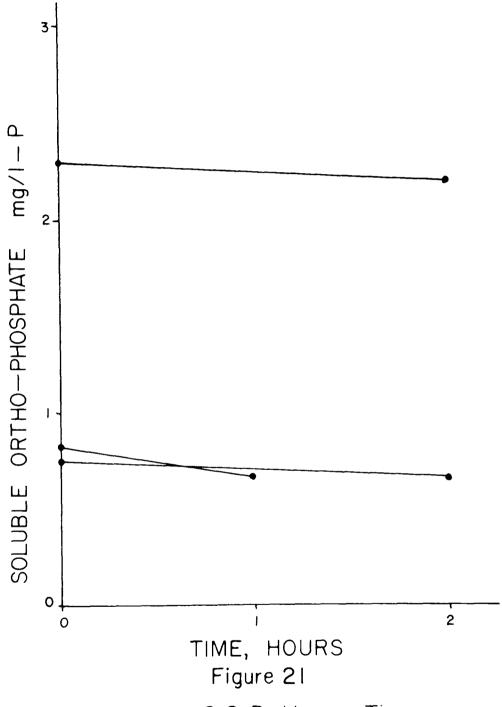
DATE	SCREENED	SEWAGE	WEST PLANT	EFFLUENT	EAST PLANT	r effluent
RUN 1970	Original pH	Alkalinity	Original pH	Alkalinity	Original pH	Alkalinity
6-23			7.8	206	7.5	172
6 - 24			7.8	210	7.4	170
6 - 25			7.7	200	7.4	168
7- 1			7.8	210	7.9	166
7- 5			7.9	200	7.9	124
7 - 8			7.9	190	7.8	130
7 - 12			8.1	200	7.8	136
7-13			7.9	200	7.7	150
7 - 19			7.9	170	7.2	114
7 - 21			7.7	190	7.6	164
7 - 23			7.8	188	8.1	142
7 - 26			7.6	182	7.6	158
8-3			8.0	196	7.9	134
8- 4			7.6	192	7.1	166
8- 5			7.8	206	7.6	184
8 - 6			7.6	196	7.8	168
8- 7			7.9	208	7.8	166
8-8			7.8	200	7.7	146
8-9			8.0	202	7.7	144
8-10			8.1	174	7.8	124
8-1 2			7.3	190	7.2	152
8-13	7.0	0.20	7.6	194	7.4	130
10-14	7.0	232	6.9	232	6.9	196
10 - 19 10 - 20	6.9	220	6.9	234	7.4	188
10-21	6.8 6.9	204	7.2	220	7.1	182
10-21	7.0	230 218	7.1	232	7.0	186
10-26	6.9	214	7.0	224	7.3	192
10-27	6.9	184	7 . 2 7 .7	228 2 3 2	7.0	184
10-30	6.9	228	7.0	198	6 . 9	172
11- 3	6.9	230	7.2	214	7.3	166
11- 4	6.9	232	7.5	216	7•3 7•3	164
11-11	6.9	238	7.4	232	7.2	148 190
11-12	7.0	234	7.5	246	7.6	188
11-17	6.6	176	7.2	224	7.1	180
11-18	6.7	210	7.2	230	7.2	190
11-19	7.0	218	7.5	230	7.4	190
12- 1	7.0	240	7.8	262	7.8	204
12- 2	7.0	248	7.5	244	7.6	194
12- 3	6.9	226	7.6	220	7.6	188
12- 7	7.0	240	7.5	242	7.4	192
12- δ	6.9	230	7.4	232	7.7	200
12-15	6.9	226	7.3	220	7.3	192
12-17	6.9	232	7.3	218	7.3	180
12-29	6.9	246	7.2	244	7.3	214
Ave	6.9	224	7.5	213	7.5	169

$\label{eq:appendix} \mbox{APPENDIX } \mbox{K (CONT.)$}$ $\mbox{MIXED LIQUOR ALKALINITY}$

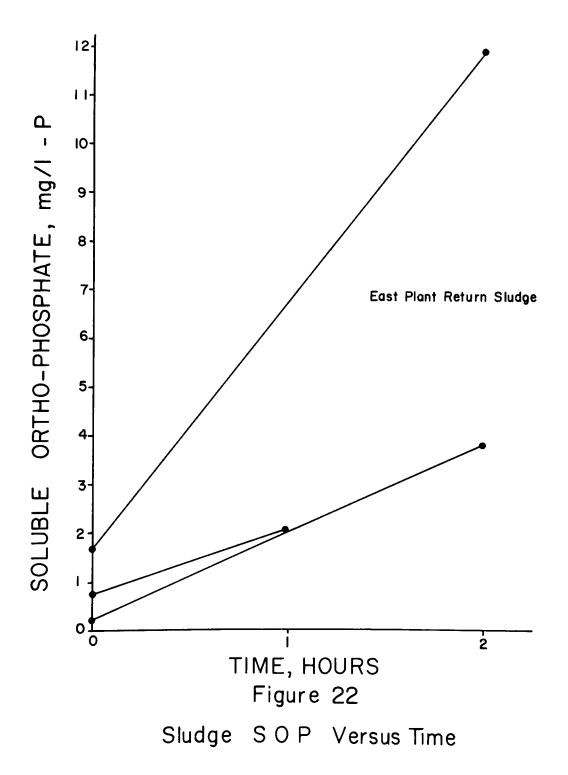
2000	WES	T PLANT	EAS	T PLANT
Date 1970	Original pH	Alkalinity	Original pH	Alkalinity
6-23 6-24 6-25 7-1 7-5 7-8 7-12 7-13 7-19 7-21 7-23 8-6 8-9 8-10	7.2 7.3 7.2 7.7 7.6 7.0 7.9 7.6 7.4 7.2 7.3 7.4 7.3	204 196 200 190 206 202 180 190 182 196 194 196 194 224	6.9 7.3 7.0 7.4 7.1 7.9 7.8 7.0 7.0 7.2 7.2 7.4	180 180 176 192 216 204 194 192 164 192 200 184 182
8-12 AVE.	7.1 7.4	198 197	6 . 9	166 187

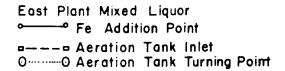
APPENDIX L
SOLUBLE SULFATE CONCENTRATION - REPORTED AS mg/l SOL

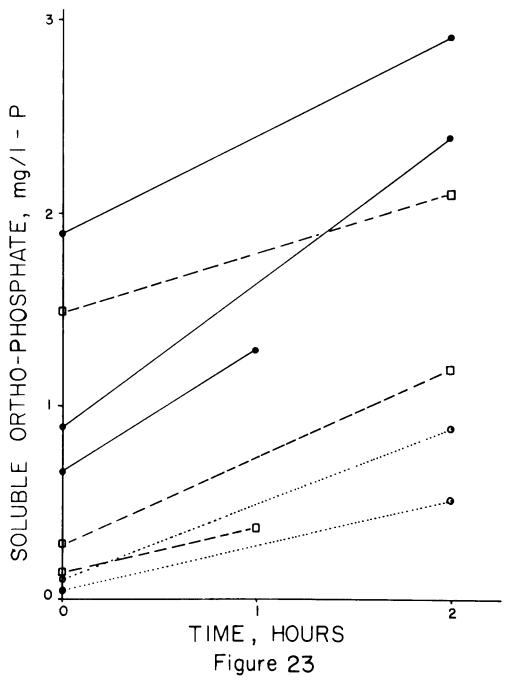
DATE 1970	SCREENED	EFFL	UENTS	DATE 1970	SCREENED	EFFLUENTS	
	SEWAGE	WEST	EAST	,	SEWAGE	WEST EAS	\mathbf{T}
2 - 22	75	90	92	8-23 thru 8-29	-	120 140	
2-24	114	152	109	8-30 thru 9-5	118	131 133	
2 - 25	119	148	110	9-6 thru 9-13	112	108 135	
3- 1 thru 3-7	116	139	115	9-14 thru 9-19	103	98 131	
8- 1	80	130	100	9-20 thru 9-26	110	118 145	
8- 2	125	115	90	9-27 thru 10-3	115	125 151	
8- 3	8 3	103	91	10- 4 thru 10-10	151	130 148	
8_ 4	95	110	88	10-11 thru 10-17	122	130 148	
8 - 5	90	118	103	10-18 thru 10-24	138	138 148	
8 - 6	91	120	103	10-25 thru 10-31	110	125 140	
8- 7	100	128	80	ll- 1 thru 11- 7	118	108 151	
8- 8	88	105	88	11- 8 thru 11-14	122	138 163	
8- 9	60	105	91	11-15 thru 11-21	145	118 158	,
8-10	95	110	70	11-22 thru 11-28	118	125 130	
8-12	87	118	100	11-29 thru 12- 5	-		
8-13	95	130	79	12-6 thru 12-12	124	133 154	
8-14	75	125	152	12-13 thru 12-19	118	124 151	
8 - 15	65	118	122	12-20 thru 12-26	108	119 144	
8-16	40	103	103	12-27 thru 1-2	110	118 138	
8-17	83	90	103				
8-18	98	110	130				
8 – 20	83	118	131	Average			
8-21	88	118	131	(8/23-1/2)	120	123 145	
8-22	83	115	123				
8-23	59	98	115	All Daily Samples R	epresent 24 h	r. Composites	
8-24	91	108	122		-	•	

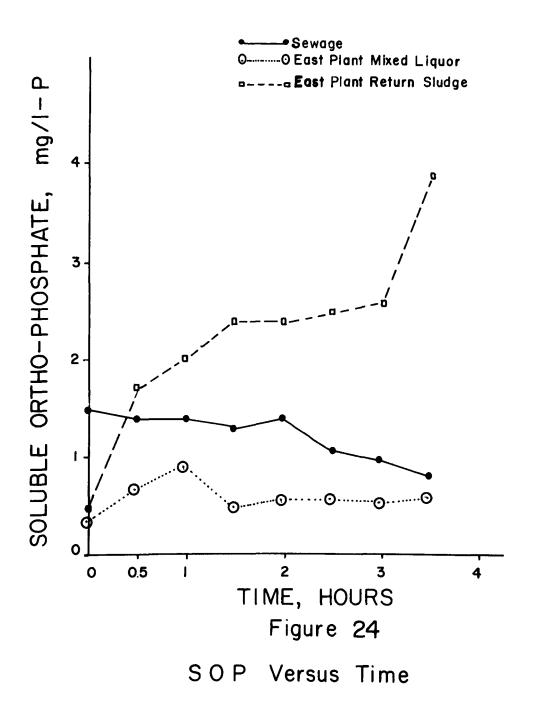

APPENDIX M

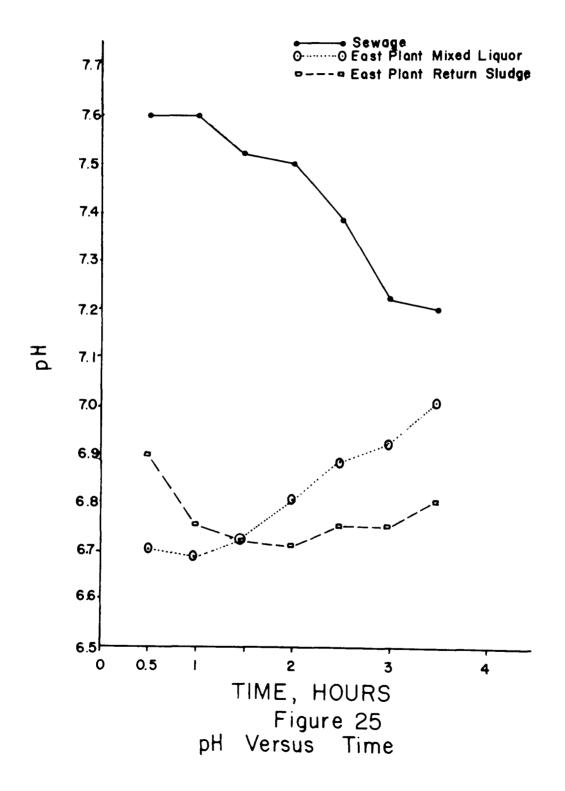
Uptake and Release of Soluble Ortho-Phosphate


In an investigation to determine and compare the soluble ortho-phosphate uptake and release in the East and West plants, samples of East plant sewage, return sludge and mixed liquor were collected and allowed to stand for one to two hours. An aliquot was taken initially and filtered immediately. Other aliquots were taken after various detention periods and again filtered immediately. Soluble ortho-phosphate (SOP) determinations were run on the filtrates, the results for sewage, return sludge and mixed liquor are shown on figures 21, 22 and 23. The data indicates a slight reduction in the SOP for the sewage and large releases of SOP from the return sludge and mixed liquor.


Another run was made similar to the first but this time the pH values were taken and the detention time increased to 3 1/2 hours (figures 24 and 25 show the data). The SOP concentrations again indicated slight reduction in the sewage, a large release from return sludge and slight release from the mixed liquor. The sewage pH value decreased and the mixed liquor and return sludge pH values increased.


The data indicates that any testing involving SOP uptake or release would require the immediate filtering of all samples taken.


Sewage SOP Versus Time



Mixed Liquor SOP Versus Time

Date	March 2.	1970	
Dave	11/044 444 64		

				•		W	ES1	r r	M.	L							E	AS	T	M.	٤.			
		M.L. Temp.	Γ	_																		_		
		Solids	Г				0.	20	2								0	,2	32		_	_		
		Color			Me	d.	G	re	r I	Bro	ıwı	_			Иe	d.	R	บร	t	Br	OW	'n		
		Supernatant	SI	T	'ur	bi	d=	SO	ne	Sı	เรท	. F.	loc	Sl	Ţ	ur	bi	d -	sc	me	S	us	υ,	Floc
Peritrichia		Epistilis																	L.	Ш	Ш		Щ	1000
			Med. Grey Brown Med. Rust	Н	400																			
						Ш		L	L					_		Ш		L	<u>_</u>	Ш	West ium West ium West le west Low few Cl Marked 10/10			
		Carchesium					Ц		Med. Rust. Brown me Susp.Floc Sl.Turbid-some Susp.F. 200															
		Vorticella	-		1			2	1	1	П	1	1400	2		5	1		4	2	ш	4	1	4.00
Holotrichia		Colpoda-Colpidium						Г	Г	Г		-							Γ	\square				
		Loxoplyllum	Н				7		_	Т	М	-	200						Г	П	П			
Solids Color Supernatant Mad. Gray Broom Supernatant Spistilis Opercularia Zoothanium Carchesium Vorticella Loxoplyllum Chemia Childdon Chemia Childdon Chil																								
Peritrichia Epistilis Opercularia Zoothanium Carchesium Vorticella I Holotrichia Colpoda-Colpidium Loxoplyllum Chaenia Chilidon I Spirotrichia Aspidisca Hypotrichia Large Euplotes Small Suctoria Podophrya Flagellates Large Euglena Astasia Small Flagellates Medium Flagellates Medium Flagellates Amoebina Arcella Rhizopoda Difflugia Guttula Proteus Rotifers Nematodes Algae Leptospira/field Silme Molds Small Amoeba Zooflagellates/field Bacteria Background Filament/Slime Ratio Filament Length/Type Type Floc Negl Floc Size Floc Connected From Turbidity Remarks Negl	П		_	1	1	1	П		600	П		П		Г	Г	\Box	П			300				
Feritrichia Epistilis Opercularia Zoothanium Carchesium Vorticella Holotrichia Colpoda-Colpidi Loxoplyllum Chaenia Chilidon Spirotrichia Aspidisca Hypotrichia Large Euplotes Small Suctoria Podophrya Flagellates Large Euglena Astasia Small Flagellates Medium Flagellates Amoebina Arcella Rhizopoda Difflugia Guttula Proteus Rotifers Nematodes Algae* Leptospira/Field Slime Molds,Small Amoeba Zooflagellates/Fiel Bacteria Background Filament Length/Type Type Floc * Floc Connected * Floc Connected * Floc Thickness (Fluffy) Floc Fragmentation* Microscopic Turbidity Remarks Heterogeneous Conglomerate Floc West Negligible	Aspidisca	+-1	1	Н	-	⊢	├-	┝	┿	-	-	000		-	Н	-	۳	┝	۳	H	Н	-		
Supernatant Epistilis Opercularia Zoothanium Carchesium Vorticella Holotrichia Colpoda-Colpidium Loxoplyllum Chaenia Chilidon Spirotrichia Hypotrichia - Large Small Suctoria Flagellates Small Flagellates Small Flagellates Anoebina Rhizopoda Arcella Rhizopoda Rotifers Nematodes Algae Leptospira/Field Slime Molds,Small Amoeba Zooflagellates/Field Bacteria Background Filament/Slime Ratio Filament Length/Type Type Floc % Floc Connected % Floc Tragmentation% Microscopic Turbidity Remarks Heterogeneous,Conglomerate Floc West Negligible East 20%	Н	Τ	H	Ţ	-	2	Н	7	1		2 1,00	┰	H	Н	Н	Н	╁╌	Н	Ħ	2	7	1.40		
	•	Duploucs	Н	Н	Н		L	۴	Н	-	۲	-	411	۲	٣	Н	Н	М	忙	Н	П	٦		
Suctoria		Padashasa	╀┤	Н	Н		┝╾	⊢	-	⊢	₩	-		μ	┝	Н	-	H	┝	Н	\vdash	\dashv	-	
		rodophrya	Н	Н	Н	Н	-	⊢	-	┢	H	-1		-	Н	Н	Н	Н	┥	Н	Н	Н	-	
Flagellates	Large	tuglene	╀┤	Н	H	Н	 	⊢-	Н	⊢	₩	4		 -	H	Н	Н	Н	┝	Н	Н	Н	\dashv	
Tregerraces	ner Re	9	Н	Н	Н	Н	┝	⊢	Н	⊢	H	4		Ι	Н	Н	Н	Н	╌	Н	Н	-		
	Small		Н	Н	17.	12	-च	<u>_</u> 1	1	┢	H	7	TOUC	-	Н	1.	6	F	-	H	Н	Н		10.00
Peritrichia Epistil Opercul Zootham Carches Vortice Holotrichia Colpode Loxoply Chaenis Chilide Spirotrichia Aspidis Hypotrichia Large Euplote Small Suctoria Podophr Flagellates Large Euglens Astasis Small Flagell Medium Flagell Amoebina Arcelle Rhizopoda Difflug Guttule Proteus Rotifers Nematodes Algae% Leptospira/Field Slime Molds,Small Amoeba Zooflagells Bacteria Background Filament/Slime Ratio Filament Length/Type Type Floc % Floc Connected % Floc Thickness (Fluffy) Floc Fragmentation% Microscopic Turbidity Remarks Heterogeneous Conglomerate Fl West Negligible East 20% (Thiod Sulphur Bacteria (B. 65		П			۳	-	~	۳	Ι-	H	7	7000	-			Ϋ́	Ĥ	۳	۳	Н	Н	-	10.00	
Amachina	Med 1 mm		₩	Н	Н	Щ	ــــا	Ļ.,	L.	┡	1	4			L.,	Щ	Н	Н	┞-	ш	Н	Ц	-4	
			\vdash	Н	Н	Н		⊢	Н	┝	Н	-1		-	⊢	Н	Н	Н	⊢	Н	Н	-	-	
MIT ZOPOGE			Н	Н	Н	Н	-	⊢	Н	⊢	H	-1			H	Н	Н	Н	├	Н	Н	West West West Low Marked 10/10 10/20 10/10 20% None Low		
			Н	Н	Н	Н	\vdash	Н	Н	⊢	Н	-4			\vdash	Н	Н	Н	!	Н	Н	-4	t t t t t t t t t t (/2)	1
		Proteus	Н	Н	Н	Н	Н	Н	Н	⊢	Н	4		_	١.,	Н	Н	끧	┡	Н	-		4	400
Vertice of			Ш	Ц	Ц	L	\perp		Ш	L	Н	4		_	L	L	Ш	Ц	┖	Ц	Н	4	sb.Fl ll ll ll ll ll ll ll ll ll ll ll ll l	
			₽	Н	Н	Н	Н	Н	Н	١	Н	-1		!	Н	Н	Н	Н	١.	Н	Н	4	4	
			ليل	ш	إيا	لبا	لپا	ш	ш	سا	Ш	_,,	200)	_	ليا	L	Ш	Ш	ᆫ	Ц	_	_1	_1	
Solids Color Supermatant Color Supermatant Sup																								
	M. L. Temp. Solids Color Solids Color Supernatant Supernat																							
M.L. Temp. Solids												_												
		flagellates/Fleld	┖											L										
			بنيا	ghi	لسا	to.	Me	<u>a(</u>	щO	st	lv	Fυ	ng S	DО	re	<u>.)</u>	S	an	е	a,s	W	es	t	
			L			_	_								_									
Filament Leng			_											L		ho								
	Type Floo	7	Ne	gl.	-F	<u>il</u> :	а (Gr	ın-	-Nc	rm	al	Dens	įt	У									
			10	%p	in	- 3	0%:	s ma	11	١	es	t r	ned .	Иe	gl	р	<u>in</u>	1	0%	sm	<u>al</u>	1_	re	st me
								- 2	20%	<u> </u>									_ 3	0%	_			
			No	n-	Fl	uf	fу	(No	on	3-	Di	mer	ition	aΙ	7		Sŧ	anj	e	as	W	es	t	
					1	0%	_	G	ar	wl	ar	P	in.	\Box			Ne	<u>7</u> 1	ig	ib	le			
	urbidity																$\overline{C1}e$	28.	r		_	_		
Loxoplyllum Chaenia Chilidon Spirotrichia Hypotrichia - Large Small Suctoria Podophrya Flagellates Large Euglena Astasia Small Flagellates Medium Flagellates Amoebina Rhizopoda Difflugia Guttula Proteus Rotifers Nematodes Algae% Leptospira/Field Slime Molds, Small Amoeba Zooflagellates/Field Bacteria Background Filament/Slime Ratio Filament Length/Type Shor Type Floc % Floc Connected % Floc Tragmentation% Microscopic Turbidity Remarks Heterogeneous Conglomerate Floc West Negligible East 20% (Thiooystis Sulphur Bacteria (B, Gigas, etc None None Marked Marked Merked	o I	OW	L٠	ep t	tot	hr:	LX.	Sph	er	ot	11	is				صا	W 1	èV	Clump					
Remarks		erate Floc						١.	_ 1	iai	مو	٩.,		11				_			ㄴ			
Remarks Hetero	geneous Conglon	C1406 110C			. t	QΣ	nΨ	. 1		e	20	og.	Lea,	CO	ar	se					ட	مىآ		
Remarks Hetero West	Negligible	21400 1200						+-	-			_		_		-		_	_					
Remarks Hetero West	Negligible		M	ar	ke	d_		12	200)g	ea	R	mig	ra				_	_	_	М			
Remarks Hetero West East	Negligible 20%	(Thiocystis	M	ar	ke	d_		1	300	i me	ea C	Re lot	ts,	ra Zoo	gl	ea	1	-	_	_	М	10	/1	o
Remarks Hetero West East	Negligible 20% Sulphur Bacteri	(Thioeystis a (B. Gigas.etc	M	ar gl	ke 18 72	d ib		• T	200 31:1 31:1	l me	c C	Re lot Cor	mig ts iglo	ra Zoo n-F	gl lo	ea c(1 B.		ge	8)	М	10	/1	o
Remarks Hetero West East	Negligible 20% Sulphur Bacteri	(Thiocystis a (B. Gigas etc	M	ar gl	ke 18 72	d ib		• T	200 31:1 31:1	l me	C.	Re Lot Cor	ts,	Zoo n-F	gl Io	ea c(1 B.:		ge	3)	М	10 10	/1 /2 /1	3 8
Remarks Hetero West East	Negligible 20% Sulphur Bacteri	(Thiocystis a (B. Gigas etc	Me Ne	ar gl I	ke 18 72 71	d ib 0		2 2 3 1	Zoc Sli Rill Gre	ine obc	C.	Relation	ts, in a second	Zoo R-F	gl lo No	ea c(1 B.:		ge	<u>s)</u>	М	10 10 2	/1 /2 /1 0%	8
Remarks Hetero West East	Negligible 20% Sulphur Bacteri	(Thiocystis a (B. Gigas etc	Me Ne	ar gl 1 5 No	ke 1g 72 71 ne	d ib 0		2 2 3 1	Zoc Sli Rill Gre	ine obc	C.	Re Cor	ts, in a second control of the second contro	Zoo a-F	gl lo No	ea c(de	1 B.:		80	.s)	М	10 10 2 N	/1 /2 /1 0% on	8
Remarks Hetero West East	Negligible 20% Sulphur Bacteri	(Thiocystis a (B. Gigas etc	Me Ne	ar gl I No	ke 12 72 71 ne	d 1b 0			Great Control	me obc	C. On-C	Re Cor	migoralista de la constanta de	Zoo n-F	gl lo lv	ea c(de ed	1 B.:		.ge	<u>.</u>	М	10 10 2 N	/1 /2 /1 0% on on	0 8 e
Remarks Hetero West East	Negligible 20% Sulphur Bacteri	(Thiocystis a (B. Gigas etc	Me Ne	Ar gl I No No	ke 172 71 ne ne	d 1b 0			Rib	me obco as	ea C. On-C	Re Cor	ts, in a second	Zoo n-F	gl lo lv	ea c(de ed	1 B.:		ge	<u> </u>	М	10 10 2 N	/1 /2 /1 0% on on	8 e

Date April 29, 1970

MICROSCOPIC COUNT OF MIXED LIQUOR PER MILLILITER AT 0.25% SOLIDS

		M 7 Mama	_				ES'		M.	J.	_	_		_	_		R	AS'	لا	Į.	<u></u>					
		M.L. Temp. Solids	62°											.28												
		Color	Gray Brown																							
		Supernatant	<u>_</u>	-	Gr	بنت	CO	-	10		বা	ri.	117	h i	_	Susp.Flo										
Peritrichia		Epistilis	Ti	۳	1 d	S	one	۳	us	۳				27	**	۳	ř	Ť	Ť	Ť	٣	Ť	ř			
iei i i i cui a		Opercularia	Н	Н	₩	!	╄	┡	Н	⊢	⊢	1	200	-	┯	Н	Н	Н	+	+	十	Н	┣──			
		•	Н	\vdash	┢	H	┢╌	⊢	\vdash	⊢	٠.	Н		┝	┢	Н	Η-	Н	+	+	十	H	 			
		Zoothanium	Н		▙	H	┥	₩	₽	┝	-	Н		┝	┝	Н	⊢	Н	+	+	十	++	-			
		Carchesium	Н	μ,	▙	Н	┡-	Ļ	Н	_	-	щ	-	⊢	}-	Н	H	Н	+	+	+	₩	┝			
		Vorticella		1	ħ.		L	1	1	2	1		1800	L	lı.	Ц	1	Ц	4	1	┸	Ц	40			
Holotrichia		Colpoda-Colpidium					L	L		L	L				L	Ц	Ц	Ц	_	┸	┸	₩	<u> </u>			
		Loxoplyllum		1					\Box	L_			200		L	L		П	1	l	1	Ш				
		Chaenia			1	1	l l	ī.	2				1200			\mathbb{I}			\perp	Ι	L	\Box	200			
		Chilidon	1	ī					П				400		Γ	П		Ы	Т	Т	T		200			
Spirotrichia Asy		Aspidisca	2	Н	ī	Н	Н	Н	Н		7		800	-	_	Н	_	H	╅	+	╁	Н				
Hypotrichia -	Large	Euplotes	М	Т	1	Н			Н		۳		-	_	_	Н	П	H	7	t	1	П				
	Small		П						П		П			Т		П	Г	П	Т	Т	Т	П				
Suctoria		Podonhmen	╀┤	Н	Н	Н	┢	\vdash	Н	Н	Н	-		\vdash	┰	Н	\vdash	H	+	+	+-	Н	-			
240 001 14		Podophrya	Н	Н	Н	Н	┪	Н	Н	Н	H	Н	 -	Г	 	Н	Н	H	┱	1	†	Н				
F111-4 I		Euglena	H	Н	Н	Н	┝	H	Н	H	Н			┢	╆	Н	Н	Н	+	+	+	Н	\vdash			
Flagellates	Large	Astasia	Н	Н	Н	Н	-	Н	Н	Η	Н	\dashv		Н	 	H	Н	H	+	+	†	H				
	Small		Н	Н	2	Н	1	7	Н	2	Н	-	1200	-	t-	Н	Н	H	7	†	┿~	Н				
		Flagellates	H	М	۲	Н		-	Н	-د	Н	-	1200	-	┢	Н	Н	Н	-	+	+	Н				
	Medium	Flagellates	Н	Ц	L	Н		Щ	Ц	<u> </u>	Ц	_		L.	┖	Ц	Ц	Ц	4	1	╀	Н				
Amoebina		Arcella	Н	Н	-	Н	\vdash	\vdash	Н	-	Н	-		-	╀╌	Н	Н	Н	+	+-	╄	Н				
Rhizopoda		Difflugia	Н	Н	μ,	Н	Н	Н	Н	\vdash	Н	_			╄┈	Н	Н	Н	-+	╀	₽	Н				
		Guttula	Н	Н	Ц	Н	Ц	Ц	Н		Н	_		_	Ļ	Ц		Ц	4	╀	┰	Н				
		Proteus	Ш	Ц		Ц		Ш	Ц		Ц	_		_	L	Ш	Ш	Ц	_	L	┸	Ш				
											Ц				L			Ш	1	L	L	Ц				
Rotifers												\Box			\Box		П	\Box	_	L	L	Ц				
Nematodes																L		Ц	1	L	L	Ш				
Algae%					_	_					_															
												L		_												
Leptospira/Fi	eld		Negligible													Ne	hl.	<u> </u>								
Slime Molds,S	mall Amoeba 2	cooflagellates/Field	П	Low													Lo	ke	d							
Bacteria Back			Low-Marked (Most Spores) Low										ow-Marked (Most Spores)													
Filament/Slim			1		-		27	98				_		Г			17									
Filament Leng	th/Type		Medium - Long Long - Clumpe										ped													
	Type Fi	loc \$	Negl. Fila Gran - Medium Negl. Fila Gran -										Ma	d1												
Floc Size			<10% Pin 10% Small 10% Pin											1	<u> </u>	-115										
Floc Connecte	d %		50% 80%																							
Floc Thicknes			Non Fluffy Non Fluffy											fv												
Floc Fragment			┢	۲.	.0%		Π					n		t	חד						P	r				
Microscopic 1		· · · · · · · · · · · · · · · · · · ·	t		- /-	<u> </u>			ear			<u> </u>		t-					Lea							
Remarks			Ne	g)	io	íЪ					h=	1 +	Sph		0+	11	1 -			Ť		Na	gl.			
	geneous Cong	lomerate Floc	Ne	±و. ام	10	11	1=	٣	الايلىك الايلىك	ابد. +ما		•	שמב	***	200	**				+			gl.			
West 20 - 30%					Negligible Natana " Low Free Zooglea, coarse										t		عتاب صلا									
East 80%				Hegligible Zooglea Ramigera										T			gla									
(Thiocystis				71	.0	F1	ď						ts,			ea	ī			Т		*				
Sulphur Bacteria (B. Gigas.etc				$\sigma 1$	ig	īЬ	le	To 1	RIB	500	n-	Co	nglo	1	ĭo	cl	В.	GI	70.0	1	_	Ne	<i>σ</i> 1.			
	_idestN	egligible			۵								LU							1	5 6/	ΊŎ	gl Fla			
	East N	egligible		_		_		L					ao Ir							Т						
				gl	ig	ib	le.	A												T	Negl.					
	*Material Mostly Clumped				Marked Short Po									_				1	_	Lo						
	-Materi		1.1		gligible Fungus Pil, Large																					
	-Materi	•	_	_	_	ib	10	T	Ì	ירשו		P4	1. 14		•	~	~			Т		No	a l			
	-Materi		Νe	gl	_	_	_				· C			V.	e_	Ту	De.			Ŧ		_	gl			

Date_	June	18, 1970	·

			WEST M.L. EAST N.I.													ИL									
		M.L. Temp.	70°											•											
		Solids	293 Medium Gray Brown										. 266												
		Color														iu									
		Supernatant	T	ur]	bio	d S	Sor	ne	Sυ	151	F	10	c	c_1	ea	r_I	Ve	zĺ.	Su	sp	end	ied	Flo		
Peritrichia		Epistilis	Ш						L											\mathbf{I}	\mathbf{L}	$oldsymbol{oldsymbol{oldsymbol{oldsymbol{\Box}}}$			
		Opercularia						\Box		\Box	\Box									Ţ					
		Zoothanium	\Box			Ш	L	L		L	Ľ					Ш		Ш		1	┸	L			
		Carchesium						${\sf L}$			Ľ.									1	Ι				
		Vorticella	1				Г	\mathbf{I}_1		2	Ti		1000	3		2	1	П	1	3	J,	5	3.00		
Holotrichia		Colpoda-Colpidium	Ħ		П		М	f		-	1-	М	11/11/1	Ť	_	Ħ	Н	Н	7	4	Ť	*	1		
		Loxoplyllum	Н	-	Н	1	Н	┰	H		┢	М	200		-	Н		Н	+	+	╅	T			
		Chaenia	Н	7	Н	Н	┰	┢╾	1	Н	Н	7	800	-	┝	Н	Н	H	┪	╗	1	+	1.2		
		Chilidon	H	Н	H	Н	۳	╅┈	۳	H	╄~~	+	_	-	Н	Н	Н	Н	+	4	┿	1			
Spirotrichia		Aspidisca	+-1	Н	1	Н	!	4	—	۱.	-	Н	400	1	<u> </u>	Н		Н	4	41	4_	1			
•	*	•	ш	Н	Н	H	L	11	Н	<u>_</u>	Ь.	Щ	400		Ι.	Н	Н	1	4	۰,	11	Į.	80		
	iypotrichia - Large Euplotes Small		H	Н	Н	Ξ	Н		H	۲	Н	Н	600	7	H	\exists	2	Н	7	2	+	2	1.80		
Suctoria		Podophrya	H	H	Н	Н	Е		F	F	F	П		F	F	H	П	H	7	7	Ŧ	H			
Flagellates	Large	Euglena	!	Н	Н	Н	-	-	Н	H	Н	\vdash		Н	Н	Н	Н	Н	+	+	┿	H	20		
	00	Astasia	М	Η	М	Н	Т	М	М		Н	Н		Г	П	Н	М	Н	-†	+	1	П			
	Small	Flagellates	П		2	1	Fi	e1	ā	Т	П		6000	_		П	П	П	_	1	T	\Box			
	Medium	Flagellates	П				7				Н					Н	Н	Н	7	十	+	Ħ			
Amoebina	Medium	Arcella	╌	Н	Н	Н	⊢	Ļ	Н	Н	Н	ή.	400	┝┈	-	Н	Н	4	-	+	╀	Н	20		
Rhizopoda		Difflugia	님	Н	Н	Н	1	┝	Н	Н	Н	-	400	-	ī	Н	Н	╧╅	ϥ	┿	\dagger_1	Н	4 0		
MITZODOGE		Guttula	┝╧┨	Н	Н	Н	<u> </u>	┝╌	Н	-	Н	-	400	┝	╄	Н	Н	Н	-	+	╀	Н			
		Proteus	Н	Н	Н	Н	Η-	Н	Н	Ţ	Н	-	600	┣	╀	Н	Н	- 1	-+	╁	╄	Н	40		
		rroteus	Н	Н	Н	Ψ.	_	Н	Н	1	1	_	600	┡	╄	Н	Н	붜	4	4-	4-	11	40		
· · · · · · · · · · · · · · · · · · ·			Ш	Ц	Ш		_	H	Ц		Ш	_		_	┺	Н	Н	Н	4	4	1	Н			
Rotifers			Н	Н	-	Н	Н	Н	H		ы	-	000	 	╀	Н	Н	Н	-+	4	╄	Н	-		
Nematodes			1		ш	U	ш	ш	Щ	L	ĻJ		200	┡-	<u></u>	Ш		Ш	_	4	1	ш	20		
Algae%			H		_	-	_		_	_		-		┪	_	_	_		_						
Leptospira/Fi	ald		T		_			_			_			T	_				-	_					
Slime Molde S	mall Amocha 7c	oflagellates/Field	1									_		Г											
Bacteria Back		011460114000714	 		_	7	ër	ý.	Li,	ghi	t	_		1			٧	er	y Í	·iρ	ht				
Filament/Slim			}				_	3	79	7				t	_			79		<u>`</u> `	_	_			
Filament Leng		· · · · · · · · · · · · · · · · · · ·	┼-	Me	di	um	R.	L	on	2				1	Me	di				מווי	1g				
rilament benk	Type Flo		Medium & Long Medium & Lon 10% Fila 10% Small 60%Med Negl.Fila-(Sam																						
Floc Size	Type Fic		10% of Floc Fila Gran-thin (Same as Wes																						
Floc Connecte			102	20% 20%										est)											
Floc Thicknes			-										_												
			Non Non Non 10% Fila-Gran Thin 10% Fila-Gr																						
Floc Fragmentation% Microscopic Turbidity				.U /0	7 ,	_	_	ea	_	11	1171	<u></u>		╊		.0 10	, <u>r</u>	++	a-(JF 8	111	III.	III		
Remarks	arorarcy		├-			_	<u> </u>				. 1	-	C-L	<u>. </u>		43	-			+					
	geneous Conglo	merate Floc	-							1-4		_	Sph	**						+					
West	Negligi		-			_		17	Fre	MI Se	Ž	<u> 0</u>	lea,	CO	ar	se		_		+		Ne	ol.		
East	Low	<u> </u>	_					1 2	Zoc	2 g]	Lea	R	ami g	era	~~					7			gl.		
0630	(Thiogystis				_			1	511	Lme	. (10	ts,	Zoo	ρ]	ea	1			寸	_	So			
	Sulphur Racter	ia (B. Gigas etc	-					Į₽į	311	200	on-	Co	nglo	n-F	To	cl	В.	Gi.	78.5	<u>. 4</u>					
		igible	<u> </u>		37	10	1						LI							#		10	/10		
	East Negl	igible	Ne	σ 1									no I							7		10			
						_		•					vce.						_	1	_				
		i	_	_	-			t		=								_		1	_				
													t Form								Ne	<i>a</i> 1			
			3.7	٠.,	4 ~	.42	. 7 -		ייורי	100	19	gligible Fungus Fil, Large Type gligible Fiber Count									Negl.				
														V g	<u>e</u> _	TY	D¢.	_	_	+					

Date	August	10,	1970	

		WEST M.L. EAST M.													ı.I	مه								
	M.L. Temp.	72°																						
	Solids	.217											.256											
	Color	Dark Grev Brown											n											
· · · · · · · · · · · · · · · · · · ·	Supernatant		S	lie	ht	lv	Ί'n	rb	id	_					Cl	ea	r		_					
Peritrichia	Epistilis			\perp		\mathbf{I}	${\mathbb L}$	L					4					\Box	_b	4	440			
	Opercularia		ľ	21-	I	\perp	14	L	6		6800		L.	Ц	_	Ы		4	4	+	1200			
	Zoothanium	Ш	_1	\perp	┸	┸	┸	Ь.	L	Ш		L.,	L	Ц	Щ	Щ	_	4	4	_	↓			
	Carchesium	\Box	4	4	┸	1	1	↓_		Ц		_	_	Н	Щ		_	4	4	4-	↓			
	Vorticella			L	1		1_	L			400			1				L	1	上	400			
Holotrichia	Colpoda-Colpidium	ı	Т	\perp	Т	T	Τ	П										\perp	\mathbf{I}	丄	<u> </u>			
	Loxoplyllum	П	П	Т	Т	Т	Τ	П										\perp	1					
	Chaenia		1	\Box	I	L		1			600	1			\Box		1	\Box	I	I	60			
	Chilidon	П	Т	П	Т	Т	T	Г	П									П	T	1				
Spirotrichia	Aspidisca	11	7	7	+	+	†	1	Н			_		Н		7		T	+	╈				
liypotrichia - Large	Euplotes	П			1	+				1	400			I	E		I	耳	士	I	80			
Small		П	Т	T	Т	Т	Т	Г	П				Г			П		Т	Т	Т				
Suctoria	Podophrya	11	7	+	+	┿	+-	╁	Н	\vdash	200	-	1	Н		Н	-	+	+	+-				
	. 040 p y =	П	T	T	Т	Т	Т	1					Г			П		П	Т	T				
Flagellates Large	Euglena			1	1	+	†	T	Н					H	П	H			士	1				
	Astasia			Ī	T	I	Ι												Τ	\mathbf{I}				
Small	Flagellates		J	113	Δī	ie	ılı				4000								Ι	Ι				
Medium	Flagellates	11	I		T	Т	Т	I	П				Г					П	Т	Т				
Amoebina	Arcella	+-+	+	+	十	┿	+	╁╌	Н	-		┝	Н	Н	Н	H	٦	+	+	+				
Rhizopoda	Difflugia	\Box	1	1	1	+	1	Г	П				1	П				T:	2	ī	300			
	Guttula		ī	1	1	7	1	Г	1	1	003	1	1	2	1	4	_			1 1	2800			
	Proteus	1	7	1 1	1	1	2	ī			1600	_	h_	П		П		ī	1		600			
			7	7	+	+	Ť	Ť	Ħ			_	f	Н	Т	7	┪	i t	Ŧ	1				
Rotifers		+-+	┪	┿	+	+	┰	H	Н	-		7	Н	Н	Н	2	7	1	1	1	1000			
Nematodes		11	7	十	+	+	†-	1	Н			1	✝	Н		┪	_	ΠŤ	7	7				
Algae%	······································	+				_ـــــــــــــــــــــــــــــــــــــ	ا					┢╌		_	_				+					
AI Back												1												
Leptospira/Field		1		۷er	у	Hi	g'h	Co	unt	:						Ne	gΊ	ig	ib.	le				
Slime Molds Small Amoeba	Zooflagellates/Field	1	Very High Count																					
Bacteria Background	50011486114005715	+-			Lo	w						Г	_		Ve	rv	L	ig	ht					
Filament/Slime Ratio		+-	Ne	r,1i			e F	Ίl	ame	nt	. 6	N	e g)	ie	_	•	_			ent	s			
Filament Length/Type		1	Not Applicable Not Applicable																					
	Floc %	E10	Floc Gran Hetero-Conglom Floc Gran Hetero										nglor											
Floc Size			10%Pin/Small & Medium 70% 10%Pin 10%Smal																					
Floc Connected >	· · · · · · · · · · · · · · · · · · ·	1	< 20% > 20%																					
Floc Thickness (Fluffy)		1	-		_				ufi	ſу		Г	_		_				lu	ſſv				
Floc Fragmentation%		†				0%						t	10	3%	Gi			ar		<u> </u>				
Microscopic Turbidity							ear					T				C.	. 6 6	īr						
Remarks						Ŧ	eD.	tot	hr	ix	Sph	MEI	ot	11	18			7						
Heterogeneous Conglomerate Floc						_		NT 4				**						\Box						
West > 90% Granular				gh		1	Fr	ee	Zo	og	lea,	CC	ar	вe				\Box	_	Lo	ν			
East > 90% Granular						4					ami g				_			-4	I					
	(Thiocystis	L		/10		_					ts,							_1						
Sulphur Bac	teria (B. Gigas etc ed Beg.Gigas Spirulim	Me		ed	_	ľ	RI	ppo	on-	Co	nglo	n-I	10	c۲	В.	31	ga	s J	_	ller	·1.			
West Barke	ed beg. Gigas, Spiruling	9		10 [7]		-	Gr				m					_		4			10			
	& Tniocystis	1161	11	KT	n T (_					oo L			ed		_		4		lier	;± •			
East Negi	1181pfe	-				4	No	COL	41		tyce.				_			4	_					
		-				4	_				Shor							4						
			WC			_					1, L	L g	e	Ţγ	рę					Lov				
						Fiber Count							Low											
		Lo	OM.				71	Del		Ou	ць		_					_1						

		M.L. Temp.	_		_	W	ES'	r 7°	M.	Į,	·			EAST M.L.											
		Solids	.334 Brown Grey										-		_		10		_	_					
		Color											,310 Brown Grey												
		Supernatant	17		v j	_			<u> </u>		<u> </u>	166		η'n.	177	RI BI	OW	₹.	<u></u>	Fl	oc.				
Peritrichia		Epistilis	+*6	-	₩	۳	101	٩	يرو	80	+	100	_	+	-	H	-3	Onle	-+	4	Ť	†	<u> </u>		
		Opercularia	Н	Н	2	┝	}	₩	-	-	┝┯	₽	400	-	\vdash	Н		-	-+	+	十	+-	 		
		Zoothanium	Н	Н	٤	⊢	╀	-	⊢	┝	┝→	┡┥	400	┢	-	Н	Н	┪	-+	+	+	十	1-		
		Carchesium	Н	┝	╄	⊢	╁╾	-	⊢	├	⊢	₩		┝	├	Н	Н	+	+	+	┿	┿			
			Н	Н	╄	⊢	╄	\vdash	Н	┢	┝┯	Н	(00	┡	⊢	Н	Н	+	+	+	┿	┿	-		
		Vorticella	11	L	L	L	L	Ш	Ш	2	L	L	600	L.		Ц		Ц	↲	1	┸	┸	<u> </u>		
Holotrichia		Colpoda-Colpidium	¹Ш		L				L		L	Ш			L				_1	┸	┸	┸			
		Loxoplyllum														L			丄	L	1	L	L		
		Chaenia		1	Γ			Ii.					400		1			\Box	\Box	I	\mathbf{I}	L	200		
		Chilidon	П		Г		Г	П	1			П	200	Г		П			Т	Т	T	Г			
Spirotrichia		Aspidisca	+	-	۱.	1	1	Н	H		Н	7	600	7	-	Н		+	+	+	+	+	400		
Hypotrichia -	Large	Euplotes		_	*	_	•	1	-	7		Ħ	200	r	-	Н	7	+	+	┿	+	╆	200		
	Small			_	1	г	1	П	Г		П	П		Г	_	П		7	┪	T	T	1			
Suctoria		Dodonhous	+-1	Н	╄	-	⊢	1	Н	\vdash	H	Н		┡	┢	Н	Н	H	4	┿	+	+-			
		Podophrya	Н	H	۲	1	╆	Н	Н	Н		Н	 	ł	1	H	Н	+	+	+	+	+	 		
W1 11 - 4 · ·	T		1-1	Н	⊬	١.,	₩.	₽	Н	<u> </u>	ليا	Н	1.00	!	₩.	Н	Н	4	4	+	+	+	600		
Flagellates	Large Pera	nema Trichophorum	Н	⊢	H	-	┢╌	Н	Н	\vdash	Ξ	Н	400	Ͱ	Н	Н	Н	++	-+	+	╁	┿	000		
		Astasia	Н	Н	+-	Н	1	Н	Н	Н	Н	Н		1-	1	Н	Н	+	+	╅	+	┰			
	Small	Flagellates	Н	-	₩	Н	-	Н	Н	-	Н	Н		┡	-	Н	Н	+	-+	╀	┿	₽	┣		
	Medium	Flagellates						L		L_'				1				Ĺ		1	L		1		
Amoebina		Arcella	П	\Box									200					\Box	Ξ	I	\mathbf{L}	L	400		
Rhizopoda		Difflugia	\Box		L			IJ	L				200	1	L	1		$oldsymbol{\perp}$		<u>. h</u>	T	L	600		
		Guttula															1		\Box	1	Ь	\mathbf{L}	600		
		Proteus			\Box		1			1	1		800	Г	Τı	1		Т	īĪ	Τ	Т	\mathbf{L}	800		
			П		П	П	Г	П			П			Т	Т	П		Т	╗	Т	T	T			
Rotifers			1		1	П	М	ī		Н	П		200	t	t	П	1	7	7	T	T	Т	200		
Nematodes			\top	ī	Г	П					М	_	200	Г	Т			1	T	Т	Б	Т	400		
Algae%			1	تا	لسعاد		_		لسيا					1	_			_		 -	+		_		
<u></u>			Γ											Г						_					
Leptospira/Fie	-1 <i>d</i>		T											Г											
Slime Molds Sm	nall Amoeba Zoo	flagellates/Field	1	_		_				_				Г											
Bacteria Back			† –	_	1.4	04	۵۳.	ate	37+	, 1	ie c	100		1			_	1.4	٠٠	ht					
Filament/Slime		 	+	-	- 1/1	UU	<u>-1.</u>	३/र	574	-	-CS	<u> </u>		t					2798						
Filament Lengt	h /Thene		Medium Long Very Long									Not Exposed													
Trament reuk	Type Floo			Fila-Gran-Open-Lacey-Light Grant									nular, Lacey												
Floc Size	Type Floo	· /											10% Pin. 20% Small												
Floc Size			110	10% Pin to 20% x Large 10% P:								Pin. 20% Small													
			₩	30% Fluffy								20 %													
Floc Thickness			↓_			ΥT								Non-Fluffy											
Floc Fragmentation Microscopic Turbidity				10%									1-	10% Granular Pin Clear											
	irolalty		↓_	_		<u></u> c	le							1_				ear	<u>:</u>	-					
Remarks			↓_										Sph							4					
Heterogeneous Conglomerate Floc						<u>. </u>		١.	_1	Let	ag:	ه.		-"-				4		<u> </u>					
West ≃20%					Marked Free Zooglea, Zooglea Ramig										ВE				4		lig.	LT.			
East —																	_			−ŕ		<u> </u>			
		(Thiooystis	L	_	_			L	513	me	. (:10	ts,	Zoc	og1	.00	1	_		_			ut 1		
	ulphur Bacteri	a (B. Gigas.etc			me								nglo					Gi	gar	: X		Low			
	West Some East Low				<u> 10</u>			1 (Gre				Li						_	4		071			
S					20%					1	Ac	11	no I	DYC	1x	ed				_1		20%			
	East Lov	<u> </u>	}				Actino I						ATULIEU							20%					
	East Lo			-61				N	loc	ar	·di	a	Myce	ш	_					_1	_				
	East Lov				rke	ed		L					Shor	t. I	or	_				Ⅎ	_	Son			
	East Lor			Maj			ced	L					Shor	t. I	or	Tv	De		_	#	_	Son			
	East Lor		Ver	Ma:	rk	arl	(ed	Ļ	ur	ıgu	15	Pi		t. I	or	Ty	De	_	_	1	lia:	rke			

Accessi	on Number	2 Subject F	Field & Group	SELECTED WATER RESOURCES ABSTRACTS INPUT TRANSACTION FORM
Organiza	Sewerage	e Commissio		City of Milwaukee
Title	Phosphorus Re	emoval with	Pickle L	iquor in an Activated Sludge Plant
Author(s	Leary, Raymon		16 Project	EPA WQO Project #11010 FLQ
	Ernest, Lawre Powell, Rola Manthe, Richa	nd S.	21 Note	
2 Citation			elain Enar	nel Institute Technical Forum, Volume 32,
3 Descrip	tors (Starred First)			
	*Activated Si *Phosphorus, Sewerage Comm	*Waste Tre	atment, Fe	reatment, *Chemical Precipitation, *Iron, errous Sulfate, Pickle Liquor, Phosphorus Remov of Milwaukee
5 Identific	ers (Starred First)			
_				

The Milwaukee Sewerage Commission's Jones Island Waste Water Treatment Plant consists of a mutual primary treatment facility followed by two separate activated sludge plants. To enhance phosphorus removal in the 115 MGD East Plant, spent hot sulfuric acid pickle liquor (ferrous sulfate) was added for a one year test period. The 85 MGD West Plant was operated as a control.

The major objective of the iron addition was to maintain an East Plant effluent total phosphorus concentration of 0.50 mg/l P. The East Plant effluent total phosphorus concentration during the 1970 project period from January 12 to December 31, 1970 averaged 0.70 mg/l P representing 91.3% removal. The East Plant effluent total soluble phosphorus concentration averaged 0.30 mg/l P or 90.7% removal. Modification and automation of the iron addition which was completed in December 1970 will further reduce East Plant soluble phosphorus residuals.

Comparison of the efficiencies of the West and East Plants in removing BOD, COD, and suspended solids as well as microscopic examination of the mixed liquors indicates that the addition of the unneutralized pickle liquor did not adversely affect purification.

Waste pickle liquor can be and is being utilized at the Milwaukee Jones Island Plant to enhance phosphorus removal.