IMPLEMENTATION PLAN REVIEW FOR TENNESSEE ### **APPENDICES** U. S. ENVIRONMENTAL PROTECTION AGENCY # IMPLEMENTATION PLAN REVIEW FOR TENNESSEE ### **APPENDICES** U. S. ENVIRONMENTAL PROTECTION AGENCY # APPENDIX A State Implementation Plan Background Figure A-1 Maximum Allowable Particulate Emission Standards for Fuel Burning Installations Table A-1. Tennessee Air Pollution Control Areas | | Demographic Information | | | | | | ;y | | | |---|-------------------------|----------------------------------|----------------------------------|---|-------|-------------|------|------------------------------|---| | Air Quality
Control Region | Federal
Number | Population
1970
(Millions) | Area
(Square
<u>Miles)</u> | Population
Per Square
<u>Mile</u> | Class | ifica
so | tion | Proposed AQM
TSP Counties | A Designations a SO _X Counties | | Tennessee River Valle Cumberland Mountains | | .97 | 15,888 | 61 | I | I | III | (0) | (0) | | Metropolitan Memphis (Ark.,Miss.) | 18 | .81 | 1,839 | 439 | I | III . | III | (0) | (0) | | Chattanooga (Ga.) | 55 | .69 | 5,991 | 115 | I | II | III | (1) Hamilton | (0) | | Eastern Tennessee-
Southwestern Virginia | 207
a(Va.) | 1.51 | 16,125 | 94 | Ī | I | III | (0) | (0) | | Middle Tennessee | 208 | 1.06 | 13,141 | 80 | I | ΙΙ | III | (1) Davidson | (0) | | Western Tennessee | 209 | .47 | 9,927 | 48 | Ι | III | III | (0) | (0) | ^aAs of November 14, 1974 Table A-2. Tennessee Ambient Air Quality Standards All Concentrations in $\mu g/m^3$ | | | Total Suspend
Annual | led Particulate
24-Hour | Su
Annual | lfur Oxid
24-Hour | | Nitrogen Dioxide
Annual | |---------|----------------------|-------------------------|--------------------------------------|-------------------------------|--------------------------------------|-----------------------|----------------------------| | Federal | Primary
Secondary | 75 (G)
60 (G) | 260 ^a
150 ^a | 80 (A) | 365 ^a |
1300 ^a | 100 (A)
100 (A) | | State | Primary
Secondary | 75 (G)
60 (G) | 260 ^a
150 ^a | 80 (A)
60 (A) ^b | 365 ^a
364 ^a |
1300 ^a | 100 (A)
100 (A) | ^aNot to be exceeded more than once per year. bWas adopted based on original EPA policy which was rescinded July, 1973 Arithmetic mean ⁽A) (G) Geometric mean Table A-3. Tennessee AQCR Air Quality Status, TSP^a | | | | TSI | TSP Concentration (μg/m³) | | | | | Exceeding
Standards | % Reduction Required | Controlling | |------------------|-----------------------------|--------|---------------|-------------------------------------|--------------|-------------------|--------------------|---------------------|------------------------|----------------------|-------------| | AOCR | No. Stations AQCR Reporting | | Highest | Highest Reading 2nd Highest Reading | | Primary Secondary | | to meet Standards d | Standard | | | | No. | | Annual | <u>Annual</u> | 24-Hr | <u>24-Hr</u> | Annua1 | 24-Hr ^C | Annua1 | 24-Hr ^C | | | | 7 ^b | 38 | 18 | 100 | 1,830 | 1,450 | 4 | 7 | 7 | 13 | + 92 | 24 -Hr | | 18 ^b | 20 | 4 | 93 | 451 | 289 | 2 | 1 | 3 . | 8 | + 54 | 24 -Hr | | 55 ^b | 14 | 2 | 87 | 302 | 250 | 1 | 0 | 2 | 5 | + 47 | Annual | | 207 ^b | 42 | 1 | 28 | 528 | 433 | 0 | 2 | 0 | 8 | + 70 | 24 -Hr | | 208 | 32 | 1 | 70 | 300 | 288 | 0 . | 2 | 1 | 9 | + 53 | 24-Hr | | 209 | 9 | 0 | - | 194 | 164 | - | 0 | - | 1 | + 10 | 24-Hr | ^a1973 air quality data in National Air Data Bank as of June 7, 1974. CViolations based on 2nd highest reading any any station. Tennessee particulate background concentration: 30 ugm/m³ Note that this is a first approximation. EPA no longer encourages the use of rollback calculations to demonstrate NAAQS attainment. However, in the absence of dispersion modeling calculations it is the only measure available and it is used here. $^{^{\}rm b}$ Interstate. Table A-4. Tennessee AQCR Air Quality Status, SO₂ | | | | | S | O ₂ Concen | tration (µg/m³) | Number
Ambient | of Station
Air Quali | ns Exceeding
ty Standards | | | |------------------|----------|---------|-------|-------------------|-----------------------|------------------------------|-------------------|---------------------------|--------------------------------|---|-------------------------| | AQCR
No. | No. Stat | ions Re | Cont. | Highest
Annual | Reading
24-Hr | 2nd Highest Reading
24-Hr | Prim
Annual | ary
24-Hr ^C | Secondary
3-Hr ^C | <pre>% Reduction Required
to Meet Standards^d</pre> | Controlling
Standard | | 7 ^b | 0 | 7 | 3 | - · | 218 | 52 | _ | 0 | 0 | -602 | 24-Hr | | 18 ^b | 0 | 10 | 1 | - | 290 | 76 | _ | 0 | 0 | -380 | 24-Hr | | 55 ^b | 2 | 14 | 0 | 15 | 44 | 28 | 0 | 0 | _ | -433 | Annua1 | | 207 ^b | 0 | 22 | 3 | _ | 809 | 581 | – . | 1 | 0 | + 37 | 24-Hr | | 208 | 1 | 22 | 0 | 10 | 60 | 39 | 0 | 0 | _ | -700 | Annual | | 209 | No da | ta avai | lable | | | | | | | | | ^a1973 air quality data in National Aerometric Data Bank as of June 7, 1974. ^CViolations based on 2nd highest reading at any station. #### d_{Formula:} Maximum of $$\left[\frac{2nd \text{ Highest 24-Hr - 24-Hr Standard}}{2nd \text{ Highest 24-Hr}}\right) \times 100, \left(\frac{Annual - Annual Standard}{Annual}\right) \times 100\right]$$ Note that this is a first approximation. EPA no longer encourages the use of rollback calculations as a means of demonstrating NAAQS attainment. However, in the absence of dispersion modeling results it is the only measure available and it is used here. b_{Interstate.} Table A-5. Tennessee Fuel Combustion Source Summary | AQCR
No. | Power Plants a | Other Fuel Combustion
Point Sources ^b | Area
Sources ^C | Total E
(10° to
TSP | missions ^d
ns/year)
<u>SO</u> 2 | % Emiss
Tennessee Fuel
<u>TSP</u> | ions from
Combustion Sou
<u>SO</u> 2 | rces | |------------------|----------------|---|------------------------------|---------------------------|--|---|--|------| | 7 ^e | 0 | 0 | 16 | 342 | 457 | 1 | 2 | | | 18 ^e | 1 | 0 | 1 | 18 | 81 | 22 | 90 | ٠ | | 55 ^e | 0 | 2 | 1 · | 78 | 218 | 13 | 4 | | | 207 ^e | 4 | 5 | 27 | 277 | 423 | 39 | 72 | | | 208 | 3 | 1 | 30 | 181 | 792 | 70 | 98 | | | 209 | . 0 | 3 | 20 | 17 | 8 | 18 | 63 | | | Total | 8 | 11 | 95 | 913 | 1,979 | 28 | 59 | | ^aTennessee plants ^bTennessee plants contributing 90% of the particulate and SO₂ emissions, or 1,000 or more tons per year. ^CTennessee counties dAQCR total $^{{}^{\}rm e}$ Interstate Table A-6. Tennessee Emissions Summary, TSP^a | | | Total | |
 Electricity Gene | eration | Industrial/Com
Institution
Point Sour | nal | Area Source | | |-----|-----------------------------|--------------------------|----------------|---------------------------|----------------|---|----------------|--------------------------|----------------| | | AQCR | (10^3 tons/yr) | % | (10 ³ tons/yr) | % | (10^3 tons/yr) | | (10^3 tons/yr) | % | | 7 | Tennessee
Other
Total | 35
307
342 | 4
33
37 | 0
239
239 | 0
78
70 | <1
10
10 | <1
3
3 | 2
6
8 | 5
2
2 | | 18 | Tennessee
Other
Total | 17
1
18 | 2
<1
2 | <1
0
<1 | 2
0
2 | 2
0
2 | 11
0
10 | 2
<1
2 | 12
15
12 | | 55 | Tennessee
Other
Total | 25
53
78 | 3
6
9 | 0
10
10 | 0
19
13 | 9
2
11 | 37
4
14 | 1
2
3 | 4
4
4 | | 207 | Tennessee
Other
Total | 177
100
277 | 19
11
30 | 47
39
86 | 27
39
31 | 55
21
76 | 31
21
27 | 6
4
10 | 4
4
4 | | 208 | | 181 | 20 | 120 | 66 | 3 | 2 | 4 | 2 | | 209 | | 17 | 2 | 0 | 0 | 1 | 8 | 2 | 9 | | | Total | 913 | 100 | 455 | 50 | 103 | 11 | 29 | 3 | ^aEmission data from Reference 6. Table A-7. Tennessee Emissions Summary, $S0_2^{a}$ | | | Total | | Electricity Gene | | Industrial/Com
Institution
Point Source | nal
ce | Area Source | | |-----|-----------------------------|--------------------------|---------------|--------------------------|----------------|---|----------------|--------------------------|----------------| | | <u>AQCR</u> | (10^3 tons/yr) | 8 | (10^3 tons/yr) | _ | (10^3 tons/yr) | | (10^3 tons/yr) | - % | | 7 | Tennessee
Other
Total | 11
446
457 | 1
23
24 | 0
406
406 | 0
91
89 | <1
31
31 | <1
7
7 | 7
8
15 | 67
2
3 | | 18 | Tennessee
Other
Total | 80
1
81 | 4
<1
4 | 69
0
69 | 86
0
86 | 1
0
1 | 1
0
1 | 3
<1
3 | 4
22
4 | | 55 | Tennessee
Other
Total | 28
190
218 | 1
10
11 | 0
179
179 | 0
94
82 | 4
3
7 | 14
2
3 | 4
4
8 | 13
2
3 | | 207 | Tennessee
Other
Total | 382
41
423 | 19
2
21 | 246
26
272 | 64
63
64 | 47
8
55 | 12
19
13 | 12
6
18 | 3
16
4 | | 208 | | 792 | 40 | 731 | 92 | 31 | 4 | 11 | 1 | | 209 | | 8 | <1 | 0 | 0 | 2 | 21 | 3 | 35 | | | Total | 1979 | 100 | 1657 | 84 | 127 | 6 | 58 | 3 | ^aEmission data from Reference 6. Table A-8. Tennessee Required Emission Reduction^a | AQCR | Estimated Particula
Reduction Req | | Estimated SO ₂ Emission Reduction Required | | | |------------------|--------------------------------------|-----------|---|-------------------|--| | | 10 ³ tons/yr | <u> %</u> | 10 ³ tons/yr | <u>%</u> | | | 7 ^b | +315 | +92 | -2751 | -602 ^C | | | 18 ^b | + 10 | +54 | - 308 | -380 ^C | | | 55 ^b | + 37 | +47 | - 944 | -433 ^C | | | 207 ^b | +194 | +70 | + 157 | + 37 | | | 208 | + 96 | +53 | -5544 | -700 ^C | | | 209 | + 2 | +10 | đ | d | | ^aBased on a proportional change of emissions to air quality. Note that this is a first approximation. EPA no longer encourages the use of rollback calculations to demonstrate NAAQS attainment. However, in the absence of dispersion modeling results it is the only measure available and it is used here. ^CExceptionally large negative numbers indicate current air quality is very good. In this range, the proportional calculations do not give a good picture of allowable emission increases. They are included here only as general indicators. bInterstate. ^dNo data available. Table A-9. Tennessee Fuel Combustion Emission Regulations #### Particulate Matter #### A. Choice of Standards - Existing Fuel Burning Equipment The owner or operator of existing fuel burning equipment may elect to be regulated by emission limits established by either Subsection 1 or 2 of this section unless otherwise indicated. After July 1, 1975, all existing fuel burning installations shall be required to comply with the emission regulations as given in Subsection 2. The owner or operator of a facility in existance on or before the effective date of this regulation must designate, in writing, to the Technical Secretary, not later than July 1, 1972, which Subsection is selected. In the event the owner or operator makes no selection within the prescribed time period, Subsection 2 will be applicable. #### 1. Diffusion Equation For existing installations up to and including 4000 million Btu per hour total plant heat input, the maximum allowable particulate emission shall be as determined by the following equation, provided, however, that no emission in excess of six tenths (0.6) pounds per million Btu shall be permitted from any installation. Such limit shall be achieved by August 9, 1973. $$D = \frac{20650 \text{ a h}}{0^{0.75}}$$ in which D is the maximum allowable particulate emission in pounds per million Btu heat input, h is the stack height in feet, a is a diminsionless factor of 0.67 for stacks of 200 feet height and less, and 0.80 for stacks in excess of 200 feet, and Q is the combined heat input in Btu per hour to the entire fuel burning installation. When more than one stack of the same height serves a given installation, the allowable emission limit as determined by the above equation shall be further reduced by dividing the emission limit so obtained by $n^{0.25}$, where n is the number of stacks of equal height. Stacks varying in height may be construed as being of equal height provided a weighted average stack height is used in computing the allowable emission limit.' #### 2. Heat Input The maximum allowable particulate emission limits as given in this Subsection are based upon the total plant rate of input to one or more stacks. For existing installations up to and including 4000 million Btu per hour total plant heat input, the maximum allowable particulate emission shall be determined from Figure A-1, existing curve, shall be achieved by August 9, 1973. Emission limits for all existing fuel burning installations in excess of 4000 million Btu per hour will be determined by Figure 2-2, existing particulate curve, up to 10,000 million Btu per hour heat input. Emission limits from existing installations in excess of 10,000 million Btu per hour will be determined from Figure A-1. This allowable emission standard must be attained on or before July 1, 1975. #### B. New Fuel Burning Equipment For fuel burning installations constructed after the effective date of this regulation, the maximum allowable particulate emission shall be determined from Figure A-1, new particulate curve, based upon the total plant rate of heat input to one or more stacks. This allowable emission standard must be attained at the time such fuel burning installation begins operation. #### Sulfur Dioxide - A. On or after July 1, 1975, the owner or operator of an air contaminant source located in a Class I County shall not cause, soffer, allow or permit the emission from that source of sulfur oxides (calculated as sulfur dioxide) in excess of 1.6 pounds per million Btu heat input, maximum 2 hour average. - B. On or after July 1, 1975, the owner or operator of an air contaminant source located in a Class II County shall not cause, suffer, allow or permit the emission from that source of sulfur oxides (calculated - Table A-9. Tennessee Fuel Combustion Emission Regulations (Cont'd) as sulfur dioxide) in excess of 3.0 pounds per million Btu heat input maximum 2 hour average. - C. On or after July 1, 1975, the owner or operator of an air contaminant source located in a Class II I County shall not cause, suffer, allow or permit the emission from that source of sulfur oxides (calculated as sulfur dioxide) in excess of 4.0 pounds per million Btu heat input, maximum 2 hour average. - D. After January 1, 1973, fuel burning installations with a rated capacity of 250 million Btu per hour or less heat input, constructed after April 3, 1972, shall not cause, suffer, allow or permit the emission of sulfur oxides (calculated as sulfur dioxide) in excess of those limits specified in A), B) and C) above. - E. After January 1, 1973, the owner or operator of an air contaminant source with more than 250 million Btu per hour heat input, constructed after April 3, 1972, shall not cause, suffer, allow or permit the emission from that source of sulfur oxides (calculated as sulfur dioxide) in excess of the following: - a. 0.08 lbs per million Btu heat input, maximum 2 hour average, when liquid fossil is burned. - b. 1.2 lbs per million Btu heat input, maximum 2 hour average, when solid fossil fuel is burned. - c. Where different fossil fuels are burned simultaneously in any combination, the applicable standard shall be determined by proration. Compliance shall be determined by using the following formula: $$\frac{Y(0.80) + Z(1.2)}{X + Y + 7}$$ Y = % of total heat input derived from liquid fossil fuel Z = % of total heat input derived from solid fossil fuel Table A-9. Tennessee Fuel Combustion Emission Regulations (Continued) as sulfur dioxide) in excess of 3.0 pounds per million Btu heat input maximum 2 hour average. - C. On or after July 1, 1975, the owner or operator of an air contaminant source located in a Class II I County shall not cause, suffer, allow or permit the emission from that source of sulfur oxides (calculated as sulfur dioxide) in excess of 4.0 pounds per million Btu heat input, maximum 2 hour average. - D. After January 1, 1973, fuel burning installations with a rated capacity of 250 million Btu per hour or less heat input, constructed after April 3, 1972, shall not cause, suffer, allow or permit the emission of sulfur oxides (calculated as sulfur dioxide) in excess of those limits specified in A), B) and C) above. - E. After January 1, 1973, the owner or operator of an air contaminant source with more than 250 million Btu per hour heat input, constructed after April 3, 1972, shall not cause, suffer, allow or permit the emission from that source of sulfur oxides (calculated as sulfur dioxide) in excess of the following: - a. 0.08 lbs per million Btu heat input, maximum 2 hour average, when liquid fossil is burned. - b. 1.2 lbs per million Btu heat input, maximum 2 hour average, when solid fossil fuel is burned. - c. Where different fossil fuels are burned simultaneously in any combination, the applicable standard shall be determined by proration. Compliance shall be determined by using the following formula: $$\frac{Y(0.80) + Z(1.2)}{X + Y + 7}$$ Y = % of total heat input derived from liquid fossi! fuel Z = % of total heat input derived from solid fossil fuel Table A-10. Tennessee County Classification for SO_2 | County | Classification | |------------------------|----------------| | Polk | IA | | Sullivan, Roane, Maury | I | | Humpherys | II | | All others | III | #### APPENDIX B Regional Air Quality Assessment Table B-1. Tennessee AQCR Candidacy Assessment for Particulate Regulation Relaxation | AQCR | | Stations
with Particulate
Air Quality
Violations ^a | Expected
Attainment
Date | Counties with
Proposed Particulate
AQMA Designations | Total Particulate
Emissions
(10 ³ tons/yr) | % Emissions
from Tennessee Fuel
Combustion | Estimated Emission Reduction Required for NAAQS (10 ³ tons/yr) | Particulate
Priority | |--|-----|--|--------------------------------|--|---|--|---|-------------------------| | Tennessee River Valley
Cumberland Mountains b | - 7 | 14 | 7/75 | 0 | 342 | 1 | +315 | ı | | Metropolitan Memphis ^b | 18 | 9 | 7/75 | 0 | 18 | 22 . | . + 10 | 1 | | Chattanoogab | 55 | 6 | 7/75 | 1 | 78 | 13 | + 37 | I | | Eastern Tennessee -
Southwestern Virginiab | 207 | 8 | 7/75 | 0 | 277 | 39 | +194 | I | | Middle Tennessee | 208 | 9 | 7/75 | 1 | 181 | 70 | + 96 | I | | Western Tennessee | 209 | 1 ^c | 7/75 | 0 | 17 | 18 | + 2 | I | ^aTotal number of stations given on Table A-3. ^bInterstate. ^CNo annual data. Table B-2. Tennessee AQCR Candidacy Assessment for SO_2 Regulation Relaxation | AQCR | | Stations with
SO ₂ Air Quality
Violations ^a | Expected
Attainment
Date | Counties with
Proposed
SO ₂ AQMA
Designations | Total SO ₂ Emissions (10 ³ tons/yr) | % Emissions
from Tennessee Fuel
Combustion | Estimated
Emission Reduction
Required for NAAQS
(10 ³ tons/yr) | SO ₂
Priority | |---|-----|---|--------------------------------|---|---|--|--|-----------------------------| | Tennessee River Valley-
Cumberland Mountains | 7. | 0 ^c | d | 0 | 457 | 2 | -2.751 | I | | Metropolitan Memphis ^b | 18 | 0 ^c | đ | 0 | 81 | 90 | ~ 308 | III | | Chattanoogab | 55 | 0 | ď | 0 | 218 | 4 | ~ 944 | II | | Eastern Tennessee-
Southwestern Virginiab | 207 | 1 ^c | 7/75 | 0 | 423 | 72 | + 157 | I | | Middle Tennessee | 208 | 0 | đ | 0 | 792 | 98 | -5.544 | II | | Western Tennessee | 209 | e | f | 0 | 8 | 63 | e | III | ^aTotal number of stations given on Table A-4. ^bInterstate. ^CNo annual data. ^dPresently meeting standards. ^eNo data available. $[\]mathbf{f}_{\text{Attainment}}$ schedule indicates region is below standards; current data is unavailable. # APPENDIX C Power Plant Assessment Table C-1. Tennessee Power Plant Assessment | AQCR | <u> Plant</u> | 1975
Capacity
(Mw) | Estima
Fuel U
Fuel | ited 1975
 se
 Quantity | % S under SIP
Regulations ^b | % S Allowed
By Model | | |------------------|------------------------------|--------------------------|--------------------------|-------------------------------|---|-------------------------|--| | 18 ^C | T. H. Allen | 990 | Coal | 1,200 | 2.5 | 4.7 | | | | | | Gas | N/A | N/A | N/A | | | 207 ^C | Bull Run | 950 | Coal | 2,185 | 2.5 | 2.5 | | | | Kingston | 1,700 | Coal | 3,935 | 0.7 | < 0.7 | | | | John Seiver | 823.3 | Coal | 1,587 | 2.5 | 2.5 | | | | Watts Bar | 240 | Coal | 100 | 2.5 | 2.5 | | | 208 | Gallatin | 1,255.2 | Coal | 2,611 | 2.5 | 5.5 | | | | Johnsonville | 1,485.2 | Coal | 2,860 | 0.7 | < 0.7 | | | | Cumberland 1.&2 ^d | 2,600 | Coa 1 | 7,148 | 2.5 | 6.0 | | $^{^{}a}$ Coal use in 10^{3} tons/year; oil use in 10^{3} gallons/yr; gas use in 10^{6} ft 3 /yr Estimates based on 1971 fuel use patterns plus planned additions. ^bModeling results supplied by EPA, Region IV ^CInterstate dCumberland #1 went on line in 1972; Cumberland #2 went on line in 1973 Table C-2. Tennessee Power Plant Evaluation Summary | | | 1
b | 975 Fuel Requir
y SIP Regulatio | red
ons a | 1975 Fu
Modifie | el Requ [.]
d Regula | ired by
ations ^C | |------------------|-------------|----------------|------------------------------------|--------------|--------------------|----------------------------------|--| | AQCR | <u>Fuel</u> | <u>< 1%</u> | 1-2% 2-3% | > 3% < 1% | 1-2% | 2-3% | <u>> 3%</u> | | 18 ^b | Coal | | 1,200 | | | | 1,200 | | | Gas | N/A | | | | | | | 207 ^b | Coal | 3,935 | 3,872 | 3,93 | 5 . | 3,872 | Antonio de la compositiva de la compos | | 208 | Coal | 2,860 | 9,759 | 2,86 | 0 | | 9,759 | $^{^{\}rm a}$ Fuel requirements based on 1971 fuel use patterns at 1975 consumption rates plus any new units. Coal use in 10^3 tons/yr ^bInterstate $^{^{\}rm C}{\rm Highest}$ percent sulfur that can be burned without violating primary NAAQS for ${\rm SO}_2.$ ## APPENDIX D Industrial, Commercial, Institutional Point Source Assessment Table D-1. Major Tennessee Industrial/Commercial/ Institutional Source Fuel Consumption | AQCR | <u>Plant</u> | <u>Fuel</u> | Estimated
Fuel
Consumption ^a | |------------------|----------------------------|----------------|---| | 55 ^b | Central Soya | Residual Oil | 3,423 | | | Company | Gas | 450 | | | Du Pont | Coal | 65 | | | | Distillate Oil | 2,200 | | 207 ^b | Beaunit Fibers | Coal | 235.4 | | | Corp. | Gas | 740.0 | | | American Enka | Coal | 267.7 | | | | Oil | 4,120 | | | Southern Extract | Coal | 31.13 | | | | Gas | 263 | | | Tennessee Eastman | Coa1 | 1,574.5 | | | Company | Distillate Oil | 48.0 | | | | Gas | 200.0 | | | Mead Corporation | Coal | 174.2 | | 208 | E. J. DuPont | Coal | 139.2 | | | | Gas | 86 | | 209 | Milan Army | Coa 1 | 21.48 | | | Ammunition Plant | Residual Oil | 900 | | | Tennessee Pulp and | 0i1 | 360 | | | Paper Co. | Gas | 1,050 | | | University of
Tennessee | Coal | 5.01 | $^{^{\}rm a}$ Coal use in 10^3 tons/yr; oil use in 10^3 gallons/yr; gas use in $10^6{\rm ft}^3/{\rm yr}$ $^{\rm b}$ Interstate