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ABSTRACT

The use of high-sulfur coal for large scale steam raising will be required to increase sub-
stantially in the near future. A major reduction in SO2 emissions from those sources will be re-
quired to meet pertinent state and federal standards. This sulfur reduction can either be accom-
plished by desulfurizing the fuel or by removing SO2 from the flue gas. Various coal conversion
processes proposed for sulfur removal were examined to determine the implications for particulate
removal requirements when the converted fuels are burned. Limited information is available on the
combustion of synthetic fuels, -but based on the data obtained and the nature of the fuels, little
problem was foreseen in meeting effluent requirements for particulates. Other factors upstream of
the combustion of those fuels seem more likely to determine particulate removal requirements, e.g.,
turbine blade erosion or methanation catalyst poisoning. The costs of sulfur removal by flue gas
desulfurization were examined briefly. The cost savings potentially obtained by elimination of
effluent particulate control systems with synthetic fuels were insignificant in affecting the sub-

stantial cost advantage of flue gas desulfurization versus fuel conversion.
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SECTION 1
INTRODUCTION

The control of air pollutants from combustion processes remains, despite the perturbations
of the energy crisis, an accepted national goal and abatement strategies are being vigorously pur-
sued. The control techniques for combustion-related poltutants can generally be divided into two
categories depending on the source of the pollutants. The origin of certain effluents, for example,
"thermally-generated" nitrogen oxides and certain types of particulate, within the combustion zone
implies that the most effective control techniques will principally involve modifications to the
combustion process. The presence of other pollutants, notably sulfur oxides, is most directly re-
Tated to the amount of some contaminant present in the fuel. While combustion history may have
some effect on the state of these pollutants, the primary control techniques require removal of the
offending substances either prior to combustion or from the effluent stream. The classic example
of this latter type of control is the reduction of SO2 emissions from stationary sources. The ap-
plication of these SO2 controls has engendered significant controversy because of the magnitude of
the impact on both the cost and availability of electrical energy. Large regions of the country,
principally in the Northeast and Midwest, have depended on high sulfur fuels for power generation.
To date, with a significant decrease in the availability of low sulfur fuels reducing further the
possibility of sulfur control by switching conventional fuels, the mechanism for SO2 control has
been the installation of an effluent cleaning system. These systems are quite costly, both to in-
stall and operate, and have been vociferously attacked on technical grounds of effectiveness and re-
1iability. Recent developments in energy technology have opened another option as an alternative to

scrubbers, namely the development of desulfurized synthetic fuels from coal.

The transformation of coal to other, more desirable fuels has a long history in Europe and
has even been under lTow level investigation in this country. The primary impetus for this work has
been to obtain gaseous fuels in areas where natural gas was unavailable. Generally the past efforts
have produced either fuel for area sources or feedstock for chemical processes. Little pasf work
has involved combustion on the large scale required for utility applications. Today the situation
has been radically altered by the recent price increases for conventional fuels and the increasing

realization that natural gas supplies in the United States are presently insufficient and uniikely



to improve. The result has been a vastly increased interest in utilization of the only fossil fuel
that the United States posseses in abundance, coal. Two major constraints exist on utilization of

United States coal supplies:

¢ Available coal in the region of greatest need is high in sulfur content and thus, environ-

mentally undesirable

® Many present transportation and combustion facilities are designed for liquid or gaseous

fuels and conversion to solid coal combustion would be economically prohibitive

Thus, the motivation for the recent stimulus to develop synthetic fuels. Counterbalancing these in-
centives to proceed are some substantial problems inherent in the addition of a chemical processing
step in coal combustion, viz., there are substantial energy losses due to the heating and compression
required to transform the coal, the facilities required are elaborate and expensive, and there may
be major operating problems in matching supply and demand for the synthetic fuels. The result is

that the application of coal-derived fuels is still being pursued principally at the research level.

The vigorous objections to effluent scrubbing for SOx control have stimulated much interest
in synthetic fuels; however, the economics of the trade off of pretreatment versus effluent controls
are still quite speculative. One area that requires careful evaluation is the potential for trading
one pollution problem for another. This report examines one of these trade offs between pollutants
to determine the effects of combusting coal-derived desulfurized fuels on the particulate loading
of the effluent stream. To date very limited results indicate that coal-derived fuels may substan-
tially reduce particulate loadings from the levels seen in present coal-fired facilities. If so,
the elimination of effluent particulate clean up devices will provide a substantial cost savings
which may assist in making the synthetic fuels economically competitive. The evaluation of parti-
culate generation for synthetic fuel combustion in large scale industrial and utility, steam-raising
boilers formed the basis for this study. Section 3 provides background on the various synthetic
fuel processes which are presently being considered for adoption. Section 4 examines the particu-
late generation problem for alternate fuel combustion. This examination is focused on retrofit ap-
plication of desulfurized fuels to existing utility and industrial boilers as an alternative to flue
gas desulfurization. Other applications of alternate fuels such as gas turbines and combined cycles
are considered in passing. In Section 5 the economics of sulfur removal prior to combustion are
compared to the costs of flue gas cleaning in very general terms. Section 2 examines the results
obtained and draws some tentative conclusions. The conclusions are based on extremely limited data,
both on the combustion of the fuels and on the process economics, and some recommendations are pre-

sented on appropriate future activities to reevaluate these conclusions when warranted.
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SECTION 2
CONCLUSIONS AND RECOMMENDATIONS

Although the data presently available is quite sketchy on the combustion properties nf de-
sulfurized fuels, it is possible to present some general conclusions and recommend activities to
provide additional data as the development of synthetic fuels proceeds. The basic questions ad-

dressed during this study were:

e "Will synthetic fuel use in steam raising applications allow elimination of effluent

particulate controls?”

e "Will this elimination of particulate controls provide a sufficient credit that fuel

desulfurization becomes competitive with flue gas desulfurization?"

The answer to the first question appears to be that effluent particulate cleanup can prob-
ably be eliminated. However the downstream particulate cleanup is replaced for synthetic fuels
by a need for extensive particulate removal prior to the combustion stage thereby eliminating much
of the anticipated cost savings. The answer to the second question is that the margin of differ-
ence between flue gas desulfurization and synthetic fuel costs for processes which have been
studied to date is so great that any savings in particulate cleanup is negligible for conventional

steam-rajsing applications.
More specific conclusions which have been reached in the course of this study are:

e Utility or large industrial scale steam raising applications utilizing conventional com-

bustion are not the optimum uses of synthetic fuels

e Combined-cycle power production offers potential improvements in efficiency which may al-
Tow synthetic fuels to be approximately competitive with flue gas desulfurization of con-

ventionally combusted coal

¢ Little data is presently available on the combustion of synthetic fuels derived from

coal

o Data on the particulate output from coal gasification plants is essentially nonexistent

2-1



Although combined-cycle applications of low-Btu gas are often presented as the most
Tikely use of synthetic fuels from coal, major problems exist in obtaining adequate

HZS and particulate removal without intolerable heat losses

Present data on combustion of coal-derived 1iquids and solvent-refined coal indicates
that particulate production from these fuels can be reduced to meet NSPS levels with

further development of firing procedures

Until full-scale plants are constructed and operated, credible data on the economics

of synthetic fuels is nonexistent

At the present time the potential for deriving synthetic fuels from coal is being
studied to death and there is a distinct need for increasing pilot plant numbers and
sizes, and for increased large-scale experimental activity if national energy goals are

to be met

Based on the above conclusions concerning the fate of combustion-generated particulate and

appropriate control strategies, the following recommendations appear warranted:

1.

3.

Particulate generation from synthetic fuel combustion deserves continuing attention at a
Tow level. No substantial effort appears required to be devoted specifically to this

question as this data is a logical output from other activities.

The following efforts should be monitored closely and, if necessary, funded to include

particulate measurements as part of their test program
e EPRI 2 ton per hour tests on SRC at Babcock and Wilcox
e EPRI 3,000 ton (20 MW) tests on SRC

o ERDA — Pittsburgh Energy Research Center (D. Bienstock) development of a versatile

test stand for combustion of synthetic liquids and SRC

e EPA-IERL bench-scale gasifier/gas cleaning apparatus. This provides a very useful,

versatile tool for obtaining pertinent data on particulate derived from low-Btu gas

o Powerton tests on a full-scale basis, if these survive, to obtain data on use of

Lurgi gasification to feed commercial conventional boilers

The activity under the synthetic fuels environmental assessments presently getting
started at IERL-RTP should be followed closely to ensure that due consideration is given

to the effects of combusting the product gas.
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To summarize the generation of particulate from coal-derived fuels appears to be a topic
which should be monitored as the synthetic fuels industry develops, but little immediate acti-

vity can be identified to increase confidence that particulate effects will not be significant.



SECTION 3
GENERATION OF SYNTHETIC FUELS

The derivation of liquid and gaseous fuels from coal represents one of the oldest chemical
processes having large-scale application. Early uses of coal gas for space heating and lighting
were supplanted largely by natural gas in this country, but in Europe coal has been a principal
source of both gas for industrial and residential usage and gasoline for automotive fuel. With pre-
dictions of coming shortages in natural gas, synthetic natural gas generation from the United States
coal reserves has been pursued on a lTow level for the past 20 years. With the recent energy short-
ages, environmentally acceptable use of coal has become crucial to achieving some measure of energy
independence. The result of this cycle of inattention then vigorous stimulation has been a prolifera-
tion of proposed processes for deriving alternative fuels from coa]i To date, the information on most
processes is insufficient to make detailed assessments of the feasibility of the process or the
economics of fuel production. For example, approximately 35 processes are under investigation for
gasification of coal. Of this number. two have actually been used in recent electrical power pro-
duction applications and three others have been applied to production of chemical synthesis gas.
A11 of this activity has occurred overseas. Two different gasification processes have been in oper-
ation in this country recently in the process demonstration unit (PDU) phase, at a throughput approxi-
mately two orders of magnitude less than the typical rate for a commercial gasification plant. Ob-
viously questions of commercial viability for gasification processes can only be answered with the
investment required to bring more of the processes to the PDU stage and to move the most attractive

schemes to commercialization. Only then can the merits of the competing processes be evaluated.

The same comments pertain to the production of liquid and solid fuels from coal where again
there are a variety of competing processes, many of recent genesis, which will have to be culled

through the scale-up procedure.

At the present time even the nomenclature of synthetic fuels production is relatively unset-
tled because of the variety of processes and because certain processes may produce gas, liquid, and/
or solid fuels. The framework utilized in this report is illustrated in Figure 3-1. For utility

and industrial stream raising, the primary fuels of interest are low and medium Btu gas and solid
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fuel. Synthetic liquid fuels, while attractive because they are storable, are expected to find pri-
mary application as a refinery feedstock. Similarly, production of high Btu gas will entail addi-

tional costs which are probably not warranted for use as a stationary source fuel.

In the following three sections, an attempt has been made to summarize the present status of
the coal gasification, pyrolysis and dissolution processes. Section 3.4 considers briefly a fourth
method of coal desulfurization, chemical coal cleaning. For Eastern, high pyritic sulfur coal,
cleaning by chemical solvation shows substantial promise of providing a desulfurized product at
substantially less expense than traditional synthetic fuel processes. Section 3.5 then reconsiders
the various processes in terms of large-scale steam raising combustion applications and attempts to

define some generic features of a synthetic fuel source for this usage.

In coordination with the descriptions presented herein which are a composite derived from
various sources, the references have been assembled as a guide to the literature available on various
aspects of the different processes. The literature examined during this effort is tabulated by
process and by the type of information presented. Because of the increase in interest in synthetic
fuels, there has been a recent strong upsurge in literature on the various processes. Unfortunately
many of these publications are based on the same limited data sources. Until some of the large
scale pilot plants, now under construction, have gone on-stream and obtained usable information, the

data base remains largely speculative.

3.1 GASIFICATION PROCESSES

The conversion of coal to a gaseous product is probably the most extensively developed of the
synthetic fuel processes. Recent past experience has consisted largely of synthesis gas production
for petrochemical feedstocks and ammonia synthesis. There are a variety of gasifiers operating from
coal in Europe, the Middle East, India, and Africa for these applications. The only known gasifier
locations with primary purpose to produce electrical power are the combined cycle plant with Lurgi
gasifier (170) at Liinen and the approximately 30 Ignifluid combination gasifier-boilers installed

throughout the world (269).

Because of the long history of gasification and the differences in end use, a variety of con-
figurations have been developed, each with certain merits. The general schematic of a gasification
plant is shown in Figure 3-2. For most applications the equipment external to the gasifier is rela-
tively standard, the wide variability among systems coming from details of the gasifier. Basically

four types of gasifiers can be identified as shown in Table 3-1.
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s under the direction with steam tes recycled
of Cheaico to produce to gasifier
1 x 10* CFD raw gas.
Cogas Cogas Develop- Medfun Bty Gas, | Two pilot plants in Char from COED | Other coals smay | Steam and atr Fluld bed gasi- | Part of char 2.4 15.0 53.4 .. - 1.4 .- - - - 1600- 8- F313
nent Co./PNC, Byprow dry | Princeton, N) and in | process need preparation | in gasifier fler recycled and 1700 0
others ash or slag, England, both plants burned in se-
hydrocarbon 1= | use char fran COLD parete combus-~
quid from com- process, M plant tor
parison pyrol- uses 2.5 TPD and Ori-
ysis step tish plant SO TPD
{operated by BCURA).
Teldt Bituminous Coal | Nedium/low Bty 1.2 10 unit at Hon- Can handle Crushed and Oxygen and Three fluidized Dropped to 1200-
Tiatataed bl earch/OCR Gas, Byproduct: | roeville, PA. caking and dried stean/air and bed gasifiers lock hopper 0
dry ash noncaking coals stesa in sertes
U-Gas 1astitute of Low Btu Gag, 1000 TPD demonstra- 'I“es A, B, C, | Crushed, caking | Air and staas Flutdized ded Ash 1n 903 re- 7.0 .8 ne 2.0 0.6 41 .- 45.4 . . 1900 330~ %
Gas Tachnology | Byproduct: dry | tion plant defng de- | all caking and | coals pretreated reactor, sthe cycled to gasi- 350
ash ] N hoh sulfur with air agglomerating fier & dry ash
coals, lignites gisifier resoved 9 bottom
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TABLE 3-1 (Concluded)

Process Oata Typical Raw Gos Composition and Properties?
rocess N Dvveloper{s)/ Pracess Status of 2] N, 0 $ o », Other | Tamy. .
* Sponsor(s) prosuct{s)! Devalopment coai(n)? Prora- Easttying Gastriar Fate of (! (?:l o | e | oo | o | oo | oo | | o oy
Proces: .
108 thon . Trpe(s) ohar 1) s 1 1} 5} %) 5} e 5 ) *5) | (psta) }idtusscr)
Precasses sithar Proposed or at Pilot Plant Stage — fatratned Flow Gesifiers
8i-Gas Sruminous Cosl § Med! ot Bty 120 19D pilot plant Typas A, 8, C, | Crushed, dried Oxygen and Two-stege co- Ash in gas n.y 1.y 12.14 @.0/ e.2/ 8.y .- 8.3/ .- .. 1400- 1000~ 0/
Researca, 1./ 1, cC: | now operating at cating coals and pulverized, | stesm/air and current, upllon cleared tn cy- 23.4 4.7 aa L K 9.2 - 414 100 15 160
OCR, AGA Tagged ash Hooer City, PA, all right stean fod with team qasifier, en- clone and re-
{July 1875} to'pro~ ceal tralned bed eycled to tirst
duce 2.4 z 10 CFO stage, ash
raw gas, under direc- sla and re-
tion of Stearas-Roger o
Corp.
Tatratned Sod Combustion En- !u!__u-‘[u- ftu | LB PO unit at L.E., | Al] types of Pulverized coal | Oxygen and Entratnes bed Char s recy~ { ¢ z 7 .- / - - 1200+ 18- mss
Gestfter gineering, s, Syproduct: | 120 TPD plant to be coals can be injected with stesm/atr and qasrfier with cled and burned, 0.8 [ X} 16.1 6. 0.5 trace 43.9 1800 150 123
Inc, fConsolt- $Tagoed ash butlt ¢n 1975-72. processed team team two stages m03t of ash is
dated Edison, converted to
ocR molten slag
Entrained Sad Babcock and Medfum/Low Btu 400 TPD unit was op- AVt types of Pulverized coal | Oxygen snd Entratned bed Stagyed ash 0.2/ 8.2/ 39.4/ .- .- .37 8.V ¥ .. 0.5/ | 2% ki 2167
Gastfier Mflcox, Duponts s, Eyp Tz | erating at 8elle, W. coal 1njected with stean/air and gasifier with reaoved from 2000 100
Buresu of Nines | sTageed ash VA, for ) year in steam and oxy- | stesm cocurrent flow bottom con-
1950's, 60 TPD plant gen/air tinuously
ot BL¥ 1n 196) and
1953, Bl seeking fi-
nancial support for
decunsiration plant,
Pressurized Entrained | Faster, Wheeler,| Low Bty Gas, 6 TPD pitot wnit op- AN types of Coal s pulver- | Alr and steam Oownflow en- Char combusted 1800 0 150
Bad Sasifier Pitessurgn SNig-| Byproduct: erited, design of coal f2ed and fed trained ded gas- in tower stage, 500
wiy, United Air-| slagoed ssh 1200 TP0 demonstra- trom fock hop- tfier with tw aolten shag
craft, Northern tion unit currently pers stages dropped to
States Power undersay quench tank
Entratned Sod righam 'wsz Medium Bty Gas, | 0.6 TPD pilot unit A1l types of Coal 1s pylver- | Oaygen and Downflow en- Char s recy- N.5 5 39 15 .- H 1.5 - .- . 1200- T 350
Qasttier University/XR yproduct: under construction, coal f2ed and fad team trataed bed gis- tled, gasified, 2500
slagged ssh iato top of re- ifer ash rescved
acter as slag
Processes efther Proposed or at Pliot Plant Stage — Molten Bath Gasifiers
1ten Salt 0y, kel Mediun/tow Bty | Laboratory feasidi- Tyoes A, 8, C, | Crushed snd Oxygen and Molien sait Ash 13 removed 2.0/ 1103 (308 1228/ 0.t/ 134 -~ 0.3/ - . 1700 1200 3
o 0. bl Ty, Byproduct: | Vity tests have been lﬁ.tms of dried coa) steam/air and qasifier with from celt purge 28.6 3.4 15.0 - ne 2. 50.3 l:,
dry 4sh and wade, & pliot plant | coels picked up from | stesm fxed bed 4d 1alt 15 ru-
tars in gat 1s planned. lock hoppers by coverad and
preheated steam recycled
ad unygenfatr
and fed to gasi-
. fler with NARLOy
Moliten Salt Atomics Int‘l. Low Bty Gas, A small pilot plant €an handle Coal must be Alr in gasifier| Molten salt Sodium carbo- 1700 15
Y p? T dry ) has been constructed, | caking coals crushed and gasifier fate regene- 1800
ash and sulfur | the maiten salt con- dried reted and re-
tains a regeneradle cycled, ash and
catalyse, wilfur cemovad
Vied Tech- Hedium!l ow Rty Laboratory scale fea- | Types A, B, C, | Coal s crushed | Oayqen and Malten fron Bath Stag s desul- 64.5/ . 35.0/ - .- .- -- 0.5/ .- . 2500 20 Nns;s
folten tron :l!‘cg;‘cogl Gas, Byprodunt: J ainthity tests made l{rlywl ot sl de led and steas/alr and with Vimestone :w?m‘ od asn | 30 18 [T s
EPA, AGA dry ash and 1n furnace holding 3 | coal 1ajected with Steam stag on top to 13 recoved, de-
sulfur tons of metal. :Tm stesn to molten resose sulfur sulfurized slag

deing made for small
pilot plint.

iren batn

is recycled
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NOTES TO TABLES 3-1, 3-2, and 3-3.

Coal types (A, B, C, and D) refer to the classifications shown below:

(Data from References 18 and 153-155)

High
Analysis Trace Components
Tyoe Typical Heating Value
P Source Fixed
Volatiles Carbon Ash Moisture Sul fur Component Concentration
(wt %) (wt %) (wt %) (wt %) (wt %) (Btu/1b) (ppin)
Indiana Co., PA 23.4 64.9 10.2 1.5 2.2 13,800 Arsenic 10 — 50
A. Appalachian High Beryllium 1-3
and Medium Vola- Pike Co., Eastern KY 36.7 57.5 3.3 2.5 0.7 14,480 "
tile Biluminous Boron 20 —- 60
Sewell Seam, WV 25.0 66.8 5.1 3. 1.3 14,250 Cadmium 0.1 =1
Williamson Co., IL 36.2 46,3 1.7 5.8 2.7 11,910 Chromium 10 - 20
B. Interior Pro- Cobalt 3-8
vince High and No. 6 Seam, IN 36.6 42.3 8.7 12.4 2.3 11,420
Medium Volatile - Copper 10 - 20
8ituminous Vermilion Co., IL 38.8 40.0 9.0 12.2 3.2 11,340 Fluorides 50 — 100
Musselshell Co., MT 32.2 46.7 7.0 14.1 0.4 11,140 Lead 4-10
C. Mountain Pro- -
vince Sub- Sheridan Co., WY 30.5 40.8 3.7 25.0 0.3 9.350 Mercury 0.1-0.3
bituminous Nickel 10 - 30
San Juan Co., NM 31.0 34.0 22.0 13.0 0.8 8,900 Selenium 0.5 —4
D. |(ir‘eat: Plains Mercer Co., ND 26.6 32.2 4.2 37.0 0.4 7,610 Tin 0.1 -1
rovince -
Lignite Vanadium 10 —- 30
Zinc 4 - 60

2Primary process

products are underlined.

Other listed products are produced in substantially smaller quantities.

3A11 compositions, unless otherwise shown, are on a dry basis. Heating values are higher heating values, also on

a dry basis.




Fixed Bed Gasifiers

This is the traditional form of gasifier. This category is extended to include rotating and
stirred bed reactors. Since Lurgi gasifiers are considered in this classification, this is probably
the type of gasifier with the most extensive operational background. Characterized by perco]atién
of input streams of gases (steam, air, and/or oxygen) through a relatively stable bed of large dia-
meter coal. Coal is fed from top and ash mechanically removed from bottom. Relatively small amounts
of particulate in product gas, but large quantities of tars and condensibles. Substantially con-
strained by caking properties of coal (may require coal pretreatment). Unable to accommodate coal

fines which must be briquetted or utilized elsewhere.

Fluidized Bed Gasifiers

Probably the largest variety of different designs are included in this category as schemes
differ substantially on injection point for both coal and input gases, bed material, number of beds,
and method of heating the bed. Fluidized beds can handle caking coals althrough they may pose some
operational problems. Coal pulverized generally to about 0.05 to 0.1 inch diameter is reacted in a
fluidized bed (or series of beds). Product gas and elutriated fines leave the top of the bed and
ash is removed from the bottom. The elutriated fines may pose particulate problems, but are generally
of a size (>20 u) easily removed by cyclones. Some versions of fluidized beds are run at tempera-
tures which result in the ash agglomerating into even larger components, thereby simplifying collec-

tion.

Entrained Flow Gasifiers

The entrained flow gasifier probably represents the category with the largest potential for
problems with particulate carryover operating as they do in a manner quite similar to direct combus-
tion of pulverized coal. These gasifiers operate by entraining with a portion of the reactant gases
coal which has been pulverized to about 70 percent less than 200 mesh (comparable to pulverized coal
for direct combustion). The reactor vessel is sized and reactant injection staged to effect the
proper environment for gasification of the suspended coal particles. Classically the reactor has
been run quite hot (~3300°F) which converts the ash to molten slag. The ash removal process is quite
analogous to wet bottom pulverized coal combustion with approximately 50 percent of the ash being
removed to a water quench via a slag tap in the bottom of the reactor and the remainder being car-
ried in the product gas stream. Ash removal techniques for the product gas stream vary substantially
based on the anticipated end use of the gas. There are a variety of features of the entrained flow

gasifier which may favor its use for steam raising applications. These include:



e Ability to handle caking coals without pretreatment

e High operating temperatures which burn the tars and higher hydrocarbons to CO and H2
o Ability to respond quickly and precisely to load changes

e Similarity to present pulverized coal combustion for steam raising

Based on these advantages, it is unsurprising that both Combustion Engineering and Babcock

and Wilcox have chosen to participate in development of entrained flow gasifiers.

Molten Bath Gasifiers

The final category of gasifiers and, by far, the most speculative is the molten bath. These
operate by use of a molten bath reactor which reacts the sulfur with the bath material, either potas-
sium carbonate or iron in proposed versions, thereby eliminating downstream HZS removal equipment.
There is 1ittle information on the processes generally and nothing on particulate production. It
may be useful to speculate based on the results from basic oxygen furnaces that particulate gener-

ated from the bath material may prove to be both extremely noxijous and extremely difficult to remove.

3.2 PYROLYSIS PROCESSES

If the basic gasifier processes are operated at somewhat lower temperatures (~1100°F) in the
reactors, then it is possible to obtain a liquid/gas mixture as the product. This is essentially
the foundation of the pyrolysis family of coal conversion processes which include the COED, TOSCOAL,
and Garrett processes listed in Table 3-2. A conceptual sketch of the process is shown in Figure 3-3.
As indicated in that sketch, solid, 1iguid and gaseous products are produced. Some alteration in
product mix is feasible through operational manipulations of temperature, pressure, and reactant in-
puts. Depending on the process, all forms of coal can be handled. In addition, pyrolysis processes

have been used to recover o0il from oil shale and municipal solid waste.

In general, the liquid product from these processes will be refined to optimize the mix of
gasoline, fuel oil, etc. The resulting liquids should be virtually indistinguishable from the cor-
responding products from natural crude and it is anticipated that the combustion properties of cor-
responding synthetic and natural fractions will be quite similar. One major consideration which may
perturb the particulate production from the synthetic liquids is the presence of ash and/or coal
particles which have passed through the filter. Filteration of syncrudes has proven to be a major
problem area for both pyrolysis and dissolution processes. As is shown in Figure 3-4, viscosity of

representative syncrude produces is fairly high and effective filtration can be expected to range



TABLE 3-2.

PYROLYSIS PROCESSES

Process Name

COED

Toscoal

Garrett

Developer(s)/Sponsor(s)

FMC Corp./0CR

011 Shale Corp.

Garrett Research &
Development Co., Inc.

status of Development

Process under development
since 1962, 36 TPD pilot
plant at Princeton, N.J.
in operation, commercial
plant being designed by

R. M. Parsons Co./OCR,
combustion of char to form
medjum Btu gas under de-
velopment (COGAS)

25 TPD pilot plant at Golden,
Colo. uses coal, 1000 TPD
semi-works for oil shale at
Grand Valley, Colo., 66,000
TPD commercial plant being
designed for oil shale.

0.036 TPD lab scale unit has
been in operation since
1973, 0.6 TPD pilet plant is
currently operating at La
Verne, Ca.

Coal(s) Processed!

Types A, B, & C, process
can handle agglomerating
coals.

Low sulfur, non-caking coals
only, Type C coals.

Type B, C coals, process may
be able to handle caking
coals.

Coal Preparation

Coal is crushed & dried.

Coal is crushed, dried, &
preheated with hot flue
gases.

Coal is crushed & dried.

Pyrolysis Process

Coal is heated to suc-
cessively higher tempera-

Coal is pyrolyzed at 800-
1000°F in a drum of hot

Coal is conveyed to entrained
bed carbonizer by recycled

E;::ess tures in a series of 4- ceramic balls, char is gas & heated by recycled char
fluidized bed reactors separated from balls, and to 1100°F, char is separated
(600-1600°F, 20-25 psia), pyrolysis vapors are con- in cyclone & part is burned
volatile products pass to densed & fractionated, gas in char heater, gases &
recovery system for re- used as fuel in ball heater 1iquids are separated & tar
covering oil & cooling & coal preheater, or drawn can be hydrotreated to pro-
the gases, steam & oxy- off as fuel. duce synthetic crude.
gen fed to 4th stage.
Process Products? Synthetic crude oil, 0il, char, gas, water Tar, char, pyrolysis gas,
ammonia, H2S, pyrolysis vapor H2S
gas, process liquors
APl Gravity
@ 60° 20-25 6-13 -10 to -7
Viscosity @
100°, CS 4-8 60-70 1600
S, wt. 2 0.1 0.2 0.6
0, wt. % 1.5 9.3 0.8
0il N, wt. % 0.2 0.7 1.6
H, wt. % 1.0 8.7 4.3
C, wt. % 87.1 80.9 92.7
Moisture,
wt. % 0.1 0.1
-Ash, wt. % <0.01 0.1
Metals, ppm 10.0 - -
HHV, Btu/
scf 305.0 630.0 625.0
N2, vol % 6.0 - -
€02, vol % 29.2 36.4 9.1
ppical Gas co, vol % 14.2 8.4 22.4
Conpositions 2?:::9 H2, vol % 38.7 7.8 35.3
nd -
up CH4, vol % 9.0 24.9 18.8
Properties CoHg. vol % 0.9 4.4 -
H2S, vol % 1.1 0.3 -
Other, vol % 0.9 7.8 14.4
HHV, Btu/1b 11,000-12,000 12,000-13,000 12,000
C, wt % 77.0 77.5 74.0
H, wt % 1.0 2.9 1.9
Char N, wt & 1.2 1.3 1.0
S, wt % 2.5 0.3 0.6
0, wt % 1.2 8.3 3.9
Ash, wt % i7.0 9.7 18.6
Other, wt % 0.1 - -

Other

NH3 from hydrotreating of
011, process liquors from
hydrotreating & pyrolysis
steps, H2S from pyrolysis
gas clean-up.

Water vapor obtained
from pyrolysis gases.

HyS from pyrolysis gas
clean-up.

3-11
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NOTES TO TABLES 3-1, 3-2, and 3-3

‘Coa! types (A, B, C, and D) refer to the classifications shown below: (Data from References 18 and 153-155)

High

Analysis Heating Valve Trace Lomponents
Typical
Type Source Fixed
Volatiles Carbon Ash Moisture Sulfyr Component Concentration

(wt %} {wt %) (wt %) {wt %) {wt %) (Btu/1b) {ppm)
Indlana Co., PA 23.4 64.9 10.2 1.5 2.2 13,800 Arsenic 10 - 50

A. Appalachian High Beryllfum 1 =3

and Medium Vola- Pike Co., Eastern KY 6.7 57.5 3.3 2.5 0.7 14,480 4 ’
tile 8{luminous Boron 20 — 60

Sewell Seam, WY 25.0 66.8 5.9 3 1.3 14,290 Cadmium 0.1 -1
Williamson Co., IL 36.2 46.3 11.7 5.8 2.7 11,910 Chromium 10 - 20

8. Interior Pro- Cobalt 3-8

vince High and No. 6 Seam, IN 36.6 42.3 8.7 124 2.3 11,420

Medtum Yolatile Copper 10 ~ 20
Bituminous Yermilion Co., IL 38.8 40.0 9.0 12.2 3.2 11,340 Fluorides 50 ~ 100

c Musselshell Co., MT 32.2 46.7 7.0 14.1 0.4 11,140 Lead 4~10

« Mountain Pro- -

vince Sub- Sheridan Co., WY 30.5 20.8 3.7 25.0 0.3 9.350 Mercury 0.1-0.3
bituminous Hickel 10 - 30

San Juan Co., NH 3.0 34.0 22.0 13.0 0.8 8,900 selenfum 0.5 —4

D. great Plains Mercer Co., HD 26.6 32.2 4.2 37.0 0.4 7,610 Tin 0.1 ~1

rovince -

Lignite v:naaiu-’ 10~ 30
Linc 4 - 60

zvrimary process

products are underlined.

3A11 compositions, unless otherwise shown, are on a dry basis.

a dry basis.

Other listed products are produced in substantially smaller quantities.

Heating values are higher heating values, also on
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from difficult in the case of the COED product to virtually impossible in the case of the Garrett
tar fraction. This problem can be expected to be most troublesome in the case of the pyrolysis

process for two reasons:

e Pyrolysis does not directly involve hydrogenation so that control over product viscosity

is more limited

e The pyrolysis process works at pressure levels near atmospheric (-10 to 20 psig) as op-
posed to dissolution processes which operate at 1500 to 3000 psi allowing considerably

more margin for pressure drop through a filter

Thus, inorganic matter in the product liquid may represent a significant problem for operational

pyrolysis plants,

It should be noted that the pyrolysis process does not solve much in the way of sulfur in
the fuel. The char and liquid fraction may retain sizable percentages of their original sulfur
contaminants. While a hydrodesulfurization plant will remove the sulfur in the liquid, the char re-

mains a problem. Solutions proposed include gasification or fluidized bed combustion of the char.

3.3 DISSOLUTION PROCESSES

The dissolution of coal and its subsequent recovery as liquid and/or solid product are much
more akin to hydrodesulfurization of 0il than to the classic gasification and/or pyrolysis processes.
The basic process as sketched in Figure 3-5 consists of slurrying the crushed coal with a coal-
derived solvent. This mixture then is treated with hydrogen in a warm (800°F), high pressure (~2000
psi) reactor in the presence of a catalyst such as cobalt molybdate. The resulting gas, liquid, and
solid mixture is separated. The gas is cleaned of HZS and recycled. The solids are either recycled
to the slurry or disposed of since they are anticipated to be primarily the inorganics from the
coal. The 1iquid is distilled into two components, a 1light fraction which is largely recycled as
the solvent for the slurry and a heavy fraction which is the product. The nature of the product
fraction varies among processes as indicated in Table 3-3. Depending largely on the amount of hydro-
gen added, the product may range from a solid, solvent refined coal, to a syncrude liquid with API
ratings in the 50° range. Also dependent on the amount of hydrogen and the operating conditions is
the efficiency of sulfur removal. Pyritic sulfur is removed relatively routinely. Fortunately,
pyritic sulfur dominates in most high-sulfur, Eastern and Midwestern coals, so that products of dis-

solution processes will meet NSPS standards.

Strong interest in solvent refined coal for use in steam raising applications has been seen

recently. This can be attributed to a combination of relatively favorable economics (more favorable
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TABLE 3-3.

DISSOLUTION PROCESS

Process Data

Typical Product Characteristics3

Process Developeris;/ Status of Coall(s Coal Liquefaction Process
Name Sponser(s Development Procegszd1 Preparation Process Products?
Conso} Consolidation 20 TPD pilot plant was Type A, Coal is crushed | Solids are separated from Synthetfc Fuel of1 produced is 1.5 bbl/ton coal, 6.3 x 10°
CSF Coal Co./OCR built in Cresap, W. Va. in ] caking coals | & slurried in slurry, & liquid treated crude_fuel Btu/bbl, 10.3°API, 0.1% sulfur. 0.5 bbl of
1967 & shut down in 1970, can be pro- solvent & pre- with hydrogen in fluid bed ofl,” naph- naphtha produced per ton of coal, 5.1 x 10°
possible start-up again in cessed heated catalytic reactor, solvent is tha, fuel Btu/bbl, 58°API, 0.06% sulfur. 3400 scf fuel
near future by Fluor separated from product & re- gas, sul- gas/ton of coal, 930 Btu/scf heating value for
Corp./0CR cycled, solids are cracked to fur, ash cleaned gas. 71 1b sulfur/ton of coal removed
yield char & distillates, char from gas. 214 1b ash/ton coal from gasifier
is used to produce hydrogen producing hydrogen.
H-Coal Hydrocarbon 0.05 and 3 TPD units have Types A & B, Coal is crushed Slurry is fed to ebuliiated §¥D£ﬂ££i% 0.4 bbl of naphtha praduced/ton of coal & 1.8
Research, Inc./ been in operation at caking coals & slurried in catalytic reactor with Hp, crude oi bbl of fuel oil produced per ton of coal, APl
OCR, EPRI, Trenton, N.J., design & can be pro- recycled oil, 1iquid product is flashed to uel gas, gravity 4-50°, 0.15-0.45% sulfur, 0.6-1.0%
Ashland 0i1, construction of 600 TPD cessed then preheated 1ighter & heavier components, sulfur, nitrogen. 37 lbs of sulfur removed from gas/
ARCO, Sunoco, plant just getting under- part of bottoms is recycled ammonia, ton of coal. 229 1bs of ash from char qasifier/
Std. 011 (Ind.) way, start-up estimated for slurrying,_off gas is ash ton of coal. Ammonia also removed from fuel
in 3 years condensed partially & uncon- gas. 1000 Btu/scf heating value of fuel gas.
densables sent to gas clean-up,
char & oil can be used as fuel
or recycled for pyrolysis
.S. Bureau of 0.5 TPD unit currently in A1l types of Coal {s crushed, { Slurry is fed to fixed bed Fuel ofl 3.3 bbl of fuel o) produced/ton coal, oil -
Synthoil | U.5. 8 operation, 10 TPD pilot coal can be | dried & slurried ; catalytic reactor with Hy & ammonia, 0.3% sulfur in oi1, 16,000-18,000 Btu/1b HHV,
plant also being designed, processed in recycled oil, | recycled gases, then into HoS, ash, 1-3% ash, 0.2% nitrogen, 20-200 SSF viscosity
start-up 1976, 700 TPD then preheated high pressure liquid-gas H20 at 180°F, -8 to -5 °API gravity. 101 1b HyS
pilot plant to be con- separator, gases purified & & NH3 from gas cleanup/ton coal. 300 1b ash
structed starting 1977, converted to Hz & recycled, residue produced /ton of coal. Water removed
10 TPD pilot plant to be liquids separated from solids, from gas before recycle to Hp gasifier.
constructed by Foster char is pyrolyzed & gases sent
Wheeler to Hp gasifier.
h & 6 TPD unit operating at A1l types can| Coal is pulver~ | Slurry is pumped with Hy to Solvent Composition of SRC:
?:glvent ::EEZBUEgal HilsonvilTE.pA1a. sgnce be processed {zed & slurried | dissolver at 825°F, eff?uent refined c 88.2 wt %
Refined Mining Co./So. 1974 under direction of with recycled is separated, undissolved coal, sul- H 5.2 wt %
Coal) Services, Catalytic, Inc., 50 solvent & pre- solids are removed from fur, char N 1.5 wt %
EPRI, OCR, TPD pilot plant at Ft. heated 1iquid stream & filtrate residue, S 1.2 wt %
Wheelabrator-~ Lewis, Wash, Started up flashed, overhead solvent is Tight 0 Jdwt g
Frye Oct. '74 under direction recycled & bottoms form sol- hydrocar- Ash 0.2 wt %
vent refined coal at 300 °F, bon liquids Other 0.3 wt ¥

of Rust Cngrg. & Stearns-
Roger, 1000 TPD plant to
be built soon by Wheela-
brator-Frye

gas & gasitied solids are
recycled for Hp source.

Heating value of SRC « 16,000 Btu/1b.

54 1bs light hydrocarbons produced/ton of
coal. 142 Ibs char residue from filter
cake gasifier. 64 1bs of sulfur from gas
cleanup/ton of coal.




8L-¢

NOTES TO TABLES 3-1, 3-2, and 3-3

1cQa] types (A, B, C, and D) refer to the classifications shown below: (Data from References 18 and 153-155)
Analysis High Trace Components
Typical 4 Heating Value
Type Source Fixed
Volatiles Carbon Ash Moisture Sulfur Component Concentration
(wt %) (wt X) | (wt %) {wt %) (wt %) {Btu/1b) (ppm)
Indiana Co., PA 23.4 64.9 10.2 1.5 2.2 13,800 Arsenic 10 - 50
A. Appalachian High Beryllium 1-3
and Medium Vola- Pike Co., Eastern KY 36.7 57.5 3.3 2.5 0.7 14,480
tile Biluminous Boron 20 — 60
Sewell Seam, WV 25.0 66.8 5.1 3.1 1.3 14,290 Cadmium 0.1 -1
Williamson Co., IL 36.2 46.3 1.7 5.8 2.7 11,910 Chromlum 10 - 20
8. Interior Pro- Cobalt 3-8
vince High and No. 6 Seam, IN 36.6 42.3 8.7 12.4 2.3 11,420
Medium Volatile Copper 10 — 20
8ituminous Vermilion Co., IL 38.8 40.0 9.0 12.2 3.2 11,340 Fluorides 50 — 100
C. Mo ‘n P Musselshell Co., MT 32.2 46.7 7.0 141 0.4 11,140 Lead 4-10
. Mountain Pro- -
vince Sub- Sheridan Co., WY 30.5 40.8 3.7 25.0 0.3 9.350 Mercury 0.1 -0.3
bituminous Nickel 10 - 30
San Juan Co., NM 3.0 34.0 22.0 13.0 0.8 8,900 Selenium 0.5 —4
D. grea: Plains Mercer Co., ND 26.6 32.2 4.2 37.0 0.4 7,610 Tin 0.1 -1
rovince -
Lignite Vanadium 10 - 30
Zinc 4 - 60

2Primary process products are underlined.

3A11 compositions, unless otherwise shown, are on a dry basis.

a dry basis.

Other listed products are produced in substantially smaller quantities.

Heating values are higher heating values, also on




than other nongaseous synthetics), capacity for storage, and the minimal nature of modifications
required to burn the SRC in conventional boilers. The combustion properties of SRC are being ex-
tensively tested under sponsorship of the Electric Power Research Institute as will be discussed

later.

3.4 CHEMICAL COAL CLEANING

Considerable activity has also been devoted recently to processes for removing the pyritic
sulfur from coal. The motivation for this effort is shown by Table 3-4 which indicates that an ex-
tensive spectrum of Eastern high sulfur coals may be utilized if a Targe fraction of the pyritic
sulfur is removed. Classic coal treatment, washing and hand picking, remove the largest chunks of
pyrites, but do not come close to removing enough to meet standards. Even recent developments in
gravity separation of crushed coals are inadequate to get the sulfur level down to the 1 percent
level (252). Recently, however, two processes have been proposed which are intermediate in complex-
ity between solvent refining and simple gravity separations which do promise to remove enough pyritic
sulfur to meet federal standards. The more extensively examined of the two processes is the "Meyers
process” developed by TRW Systems Group under EPA contract (139, 188, 189). This leaches the pyritic
sulfur out by immersing crushed coal (~10 to 100 mesh) in a warm (~250°F) bath of ferric sulfates
for periods of 1 to 2 hours. The ferric sulfate is regenerated and reused and elemental sulfur
recovered. The process has demonstrated removal rates of up to 95 percent at bench scale with loss
in Btu value of less than 1 percent (189). Scale-up to an 8 ton per day process development unit

is presently under way with support of the EPA.

The second promising coal treatment is the Battelle Hydrothermal Coal Process being developed
by Battelle under internal funding (247). This process also uses a leach bath which is maintained
at elevated temperature and pressure for extended periods. The coal size is 70 percent less than
200 mesh and the leachant may be either sodium hydroxide or calcium hydroxide. Details on the pro-
cess are sketchy at this date, but removal of over 90 percent of the pyritic sulfur and 30 to 40
percent of the organic sulfur is claimed. Cost estimates for this process are in the range of $10
per ton. Extensive investigation is in progress at the present time aimed at further refinement of

the process.

Both chemical coal cleaning methods may remove significant fractions of the coal ash, in the
course of desulfurization. No significant alternations in combustion properties of the refined coal
are expected and present plans envision use of existing boiler equipment. The amount of particulate
production appears unlikely to change significantly and classic effluent particulate removal equip-

ment will be required.
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TABLE 3-4.

SULFUR COMPOUNDS IN BITUMINOUS COALS

(Data from Reference 139)

Type Solfur | aufar | Sulfates | (UEEC
Pittsburgh Seam 1.88 1.20 0.01 0.68
Lower Kittaning 4.29 3.58 0.04 0.67
ITlinois #5 3.48 1.57 0.05 1.86
Herrin #6 3.80 1.65 0.05 2.10




3.5 STEAM RAISING APPLICATION

Based on the information on the processes presented earlier, it is possible to make some
general comments on use of synthetic fuels for large-scale steam raising, at least in the near
future. The use of certain fuels for this type of stationary source application can be eliminated
on an economic basis. This is most true of high Btu gas where the only large steam-raising appli-
cation might be for utility boilers which were initially designed to operate on high grade fuels,
distillate or natural gas. Even here the economics of SNG use would be extremely shaky. Similarly
at the present time, use of liquids for these applications appears relatively uneconomical. The
production of hydrocarbon 1liquids is attractive since they can be refined to a distillate fuel
interchangable with natural thus essentially eliminating boiler modifications. From an operational
point of view 1iquids are favored because they can be easily stored so dynamic coupling between
gasifier and boiler is not required. However the cost per million Btu for 1iquids is not competi-
tive with Tow Btu gas. Solvent refined coal may offer many of the advantages of liquids at costs
comparable to the producer gas. The economics however still favor the gas product based on data to
date. Other solid products fram chemical cleaning are still far too speculative to be considered

at this time.
The selection of fuel thus narrows to making two basic choices:
o Low (<200) or medium (~300) Btu gas
e Hot or cold cleanup of the gas

Any of these combinations probably implies that the gasifier and combustion unit will probably be
directly coupled and physically adjacent. The combined facility will probably operate best in a
base load mode with the full unit going in and out of service together. The actual choice of the
above conditions will only be determined as the units are built to full scale. Economic assessments
must be made to determine whether complications in combustion systems using low Btu gas justify the
cost of the oxygen plant required for the medium Btu gas. The second decision between hot and cold
clean awaits the hot cleanup technology for both HZS and particulate. Hot cleanup is being inten-
sively examined but still probably is a decade away from commercial operation. Obviously scheduling

of gasifier development, as well as relative economics, will determine whether hot cleanup is used.
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SECTION 4
COMBUSTION GENERATED PARTICULATES FROM SYNTHETIC FUELS

The topic of combustion properties of the synthetic fuels derived from coal has received 1lit-
tle recent attention. Much work was done early in the century on combustion of manufactured gases,
both in this country and in Europe. These efforts, at least in the U.S., were largely ended
by the increasing availability and use of natural gas. Recent programs for the development of syn-
thetic fuel processes have generally terminated at the creation of the fuel. Some Timited results
have been obtained on the combustion properties of specific fuels, primarily COED liquid product
and solvent refined coal. These instances have usually focused first on the properties of interest
in designing combustion equipment and only secondarily on the nature of potential pollutants. De-
spite the lack of useful data to date, it is possible to make some useful generalizations on the po-

tential for pollutants from synthetic fuels combustion.

Obviously, the primary pollutant of interest to the synthetic fuels processes to date has
been sulfur. The sulfur problem has provided the impetus for continuing development of these pro-
cesses and is well below anticipated standards for most processes. Only when the chemical coal
cleaning processes and possibly solvent refined coal are compared against extremely restrictive
state-mandated SO2 levels is there a possibility of a sulfur problem. The questions of NOx and

particulate in the effluent are substantially less clear.

For both o011 and coal combustion, chemically-bound nitrogen contributes a substantial frac-
tion of the total NOx output (References 79 and 182). In general the Tiquid and solid synthetic
fuels will retain a significant fraction of the ~1 percent nitrogen in the feed coal. Thus, NO,
control strategies for these fuels may require very careful consideration, Until full scale com-
bustion tests are attempted, it is not really possible to determine the true interaction between
the significant quantities of fuel nitrogen with the changes in combustion techniques dictated by
the new fuels. Until then the magnitude of the NOx problem will remain problematic. The NOx situ-
ation has been explored in some detail for producer gas combustion and indications to date are that

NOx does .not pose a major problem (Reference 182).
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The final major pollutant of interest and the specific topic of this study is particulate.

Particulate emissions from combustion processes can be considered to consist of two generic types:
® Ash carried through the combustion process from the fuel

e Unreacted carbon from incomplete oxidation in the combustion zone, including soot, ceno-

spheres, and unburned hydrocarbons

Control techniques for the latter forms of particulate are based on adjustment of the combustion
process to ensure complete carbon burnout. Until extensive tests are performed in realistic scale
facilities, it will be difficult to assess these adjustments, however some generalizations may be
possible. The ash carryover problem is somewhat more straightforward with the bulk of the ash input
to the burner passing on through with perhaps an intermediate stop as a deposit on the boiler tubes.
The various types of synthetic fuels and their potential for production of ash will be discussed

below.

4.1 COAL-DERIVED GASES

By far the greatest interest in coal conversions has focused on gasification. To date there
is no firm data on the combustion of product gases in large-scale stationary sources although the
question is being examined in increasing detail these days. Three scenarios for gas utilization

must be considered as listed below in Table 4-1.

TABLE 4-1. SYNTHETIC GAS USES

. HHV Purification N
Case Gas Quality _ Btu/scf Temperature Application
1 High Btu ~1000 Low ® Area source fuel
e Petrochemical feedstock
2 Low - Med Btu | 100 - 300 High e Combined cycle power
generation
e Direct firing
3 Low - Med Btu | 100 - 300' Low e Single cycle firing
Direct firing

It is possible to eliminate from further consideration Case 1 immediately since there appears
to be no reason why those should be a particulate problem, even if high-Btu gas were to be used in
steam-raising applications. Particulate removal constraints will be determined by their adverse
effects on methanation catalysts and the possibility of erosion of compression equipment. The com-
bustion properties of the synthetic gas should be no different than natural gas which does not create

particulate under normal combustion conditions.
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The problems associated with Cases 2 and 3 are substantially less certain. Theoretical and
experimental investigation have been conducted to determine the combustion properties of low-Btu
gas in both gas turbines and direct-fired boilers. Results for both gas turbines (References 168,
215, and 229) and direct firing (References 126 and 182) indicate that combustion can be mainiained
adequately within basic combustion region envelopes. In both instances present indications are that
gas with a heating value in the 300 Btu range is highly desirable and 1ittle, if any, derating will
occur at this level. Some minor burner or combustor modifications will be required and ducting
sizes to the burners must be increased. Combustion gas production however is approximately equiva-

lent to natural gas combustion and furnace sizes can remain relatively equivalent.

This situation changes significantly when the gas heating value drops down to the 150 Btu/scf
range equivalent to an air-blown gasifjer's output. Inlet sizes to the burners continue to grow
with the decrease in heating value and flue gas volumes begin to increase such that at 100 Btu/scf
the flue gas volume is up by at Teast 50 percent. The capabilities for handling this increased
quantity of gas in a furnace may or may not exist., Present data indicates that furnaces designed
for coal, particularly high ash coals, will be capable of handling the increased throughput, but
that furnaces designed for gas and 0il firing will not. Derating of the furnace for 100 to 200 Btu/
scf gas of about 5 percent can be expected. Similar results occur in gas turbines where again the
fuels may be burned, but accommodations must be made for the increased gas throughput. Based on
work to date it appears that both in furnaces and gas turbines, clean combustion of synthetic gases
down to 100 Btu/scf is fully feasible with design provisions for the increases in volumetric flows.
Data reported by Martin (Reference 182) for furnaces and Klapatch (Reference 168) and Pillsbury, et
al. (Reference 215) for gas turbines indicates that combustion of low-Btu gas also produces major
reduction in NOX emissions without reported increases in smoke or visible particulates. Thus it
can be presumed that clean combustion of low-Btu gas is possible and that any particulate problems

are due to ash carryover from the process.

The approach to particulate carryover is substantially different between Cases 2 and 3 for

two reasons:

¢ The combined cycle applications for Case 2 impose much more stringent restrictions on

tolerable particulate levels than the NSPS which can be presumed to govern Case 3

o The economics of the combined cycle plant is quite sensitive to the gas inlet tempera-
ture and pressure and thus particulate removal must be performed on a hot gas stream (as

must HZS removal)
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The pertinent limit imposed by the New Source Performance Standard of 0.1 1b of particulate
per million Btu is compared in Figure 4-1 to limits for particulate admission to gas turbines as
specified by the manufacturers and reported by Fulton and Youngblood (Reference 129). The comparable
specification for the Liinen combined cycle plant is also indicated on this figure. Obviously the
turbine inlet limits will drive the particulate cleanup in Case 2. For turbine applications the
problem is magnified by the necessity to remove both particulate and HZS at elevated temperature
(~1000 to 2000°F). The approaches to this monumental task are discussed in References 129 and 270,
but no high temperature cleanup device to obtain either the particulate or HZS levels required is

near commercial application.

While it is possible with the Case 3 applications to consider effluent cleaning, this requires
handling much greater gas volumes (which generally size pérticu]ate collection devices) and also
adds problems with ash deposition on the heat transfer surface. The only advantage to post-combus-
tion cleanup is that for a retrofit application, this may allow use of existing installations. The
data obtained on the particulate loadings to be expected out of the gasifier is summarized in
Figure 4-1. It is obvious from the paucity of points that data on particulate output is virtually

nonexistent. This is true probably for three reasons:
o Data on particulate is not especially germane to facility operation
o Collection of credible particulate data is difficult and time consuming
e For many processes the particulate is removed in other steps

This latter consideration is particularly pertinent to Lurgi-style fixed and moving bed gasifiers.
The product from these devices is usually loaded with tars, phenols, and other condensible and/or
water-soluble organics. This material, which presents major problems in downstream components, is
classically removed with a wet scrubber which also removes the ash particulates. This is feasible
with these gasifiers since they do not usually admit fines to the reaction zone. The only data
located on the entraimment experienced with these reactors was obtained in U.S. Bureau of Mines
tests of a stirred bed gasifier (Reference 220). The typical coal charged to the gasifier was a
subbituminous A crushed such that 67 percent was greater than 1/4 inch, 13 percent was between 1/4
and 1/16 inch, and 20 percent was less than 1/16 inch. Typical results showed that about 1.7 per-
cent of the coal was entrained in the product gas. Of that 1.7 percent, approximately 96 percent
was removed in a cyclone with the following distribution (Table 4-2). The approximate range of par-

ticulate from the USBM reactor ahead of and downstream of the cyclone are shown in Figure 4-1.
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Figure 4-1. Data on particulate from synthetic gases.
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TABLE 4-2.

PARTICULATE SIZE DISTRIBUTION FROM

STIRRED BED REACTOR (Reference 220)

Sieve Sizing Dimensions Fraction
lei\:ﬁg Rei;?x?ng Max Size (u) | Min Size (u) b e
16 16 1,588 1,588 0.2 0.2
30 30 846 846 0.2 0.4
50 50 508 308 1.4 1.8
100 100 254 254 9.7 11.5
200 200 127 127 63.0 100.0




The problems are substantially different with fluidized bed gasifiers which form the bulk of
the data on Figure 4-1. Here the coal is pulverized to a size which results in major amounts of
entrainment with the product stream, but the beds are classically operated in a mode which discour-
ages the formation of significant quantities of tars and condensibles. Thus these devices rely on
mechanical collectors to a much greater extent. In fact for a commercial scale operation there is
1ikely to be a continual carryover of bed material, coal particles, and ash into a cyclone which
will be returned to the bed. Typical results for bed elutriation are shown for four fluidized bed
gasifiers (Ignifluid, CO2 Acceptor, Westinghouse, and Winkler). It should be noted that the
Ignifluid combined gasifier-boiler fluidizes much more violently than typical for most fluid bed
reactors. This is also reflected in the courseness of the particulate carryover as shown in Figure

4-2 from Reference 269 compared to nominal value for fly ash from pulverized coal. Very sketchy

1000 11 3
- d <«
- - (=]
- -1 g
- IGNIFLUID 4 5
100 |- 4 <
PARTICLE 5 3
DIAMETER - =
MICRONS - FLY ASH
10— =
E / =
3 e
O N S O O W
§ 51020 40 60 80 9095 99

WEIGHT o, SMALLER THAN

Figure 4-2. Comparison of ash size from

Ignifluid and pulverized

coal combustor.
results have also been obtained from the CO2 Acceptor process which is less violently fluidized.
The particulate there is indicated to be virtually all less than 250 microns and 75 percent is less
than 40 microns (Reference 119). Based on operational results to date, it appears that mechanical
collectors will be adequate to reduce the ash entrained in product gas from fluidized beds to meet
the NSPS levels. Meeting gas turbine specifications may be expected to involve a second stage of

removal, for example a gravel bed filter.

The entrained bed gasifier can be anticipated to face more severe particulate removal problems
since the coal particle sizes are smaller and the particles are entrained in the gas stream. Since

most of those gasifiers are anticipated to run in a slagging mode, the problem is reduced substantially.
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The result is quite similar to a wet bottom pulverized coal boiler. The only data located concerned
the Koppers-Totzek gasifier which shows predictably heavy particulate loading at the gasifier exit.
These devices normally are operated with at least two stages of high-energy wet scrubbers which

routinely reduce the ash concentration to the ranges of interest for a gas turbine (Figure 4-1).

The overall conclusion from this limited data appears to be that particulate effluent from
gaseous synthetic fuel combustion will be due to ash in the product gas and that other factors
(HSS removal, turbine blade, erosion) will force cleanup of the ash to levels below those of con-

cern for particulate effluent standards.

4.2 LIQUID FUELS

The situation with 1iquid fuels is even more indeterminate than with the gaseous synthetics.
There are substantial questions of strategy concerning the utilization of liquid fuels in steam
raising applications since present cost projections indicate severe penalities for use of liquids
as opposed to low-Btu gas. While this is somewhat counterbalanced by the ability to store and ship
the liquid fuels, present planning is oriented to use of liquids from coal as petrochemical feed-

stocks and as feed for refineries for production of gasoline and distillate fuels.

The combustion properties of the synthetic liquid fuels have not been exhaustively investi-
gated. Martin (Reference 182) has surveyed the data that is available and concludes that the prin-
cipal problem 1ikely will be NOx because of the high levels of fuel nitrogen. He indicates, and
other data confirms, that some amount of refining will be required to improve the viscosity of the
synthetics. This treatment should allow effective atomization of the fuel and thus eliminate this
source of particulate. The remaining problem is the potential for excessive ash passing through
the filters and appearing in the product as discussed in Section 3.2 As shown for Synthoil on
Figure 4-3, ash levels reported could still cause problems if all this ash does pass untouched
through the combustion process. Also shown in the figure is the only other data located on Tiquid
fuels which was combustion of COED fuels refined to be equivalent to #4 fuel oil. While the nominal
particulate level reported is higher than NSPS, this may be attributed to furnace conditions since
the particulate from the synthetic fuel is about 25 percent of the particulate from natural #4 oil
burned under identical conditions. This seems to indicate that if burners can be tuned to meet NSPS

with natural #4 oil, there should be little problem in doing the same with synthetic oils.

4.3 SOLID FUELS
The final category of chemically desulfurized fuels from coal that should be considered are

the solid products:



100.0

o
-2 c
r Comparable natural #4 oil
c
Same
Furnace
Conditions Synthoil ~ Theoretical

.

/7
NEW SOURCE PERFORMANCE STANDARD 1//

Coal #4 oil

Range for large-scale material

0i1 combustion

Figure 4-3.

74

A-12521 -

0.01

|
0.01

Data on particulate from synthetic liquids.

Particulate output (1b/10° Btu)



e Solvent refined coal
e Chemically cleaned coals

The first category has been extensively studied for stationary source steam-raising applica-
tions and in fact SRC is presently the most advanced synthetic fuel in terms of qualification for
use in steam raising. Testing was done on the combustion of SRC in the early 1960's which indicated
adequate performance. At the present time EPRI is sponsoring initial tests on SRC from the present
pilot plants at the boiler manufacturers. Early results from Backcock and Wilcox have indicated
particulate in the range of 0.3 to 0.7 1bs of particulate per million Btu. This work however is
quite preliminary and there are strong indications that the furnace was not optimized for SRC since
the particulate is about 75 percent unburned carbon. If it is presumed that this carbon can be re-
moved through alterations to the firing process, then the range of SRC ash measured corresponds well
with the theoretical levels which can be calculated from the predicted ash levels in the SRC as
shown in Figure 4-4. These levels also bound the NSPS criteria of 0.1 1b per million Btu which in-
dicates that NSPS particulate levels will probably be attainable by a combination of careful filtra-
tion to minimize ash in the SRC and firing alterations to ensure complete carbon burn up. The modi-
fications for SRC firing and associated costs are discussed in some detail in Reference 234. At
the present time EPRI is supporting generation of adequate amounts of SRC for extension of those

tests to larger scale.

Chemically cleaned coals, both from the Meyers and Battelle processes, are not available in
sufficient quantities to allow combustion tests. While both processes reduce the ash content of

the coal somewhat, it is still expected that traditional forms of control devices will be required

downstream of combustion.
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SECTION §
ECONOMICS OF COAL DESULFURIZATION

While coal conversion has a variety of attractive features for other applications, e.g.,
replacement of natural gas and imported petroleum, for large steam-raising boilers its primary
role must be considered to be reduction of fuel sulfur content. Fuel desulfurization is merely one
means of meeting the mandated levels of SO2 in stationary source effluent. For widespread accep-
tance of fuel cleaning, it must demonstrate that there are substantial economic advantages to re-
moving sulfur prior to combustion as opposed to flue gas scrubbing. This section attempts to per-

form this comparison while considering the effect of particulate removal requirements.

The economics of all coal desulfurization methods are presented shrouded in controversy and
accurate numbers are difficult to obtain. With flue gas desulfurization processes the uncertainty
is largely due to assumptions on the applicability of existing cost data to new installations. Un-
fortunately the uncertainty with fuel cleaning processes is due to a near-total lack of data on the
economics of fq]l-sca]e operation on U.S. fuels. In fact, the costs which have been used to justify
construction of commercial units, the two Four Corners area high-Btu coal gasification plants, have
increased so rapidly that the future of both plants is extremely cloudy. Estimated costs for
a Four-Corners type of SNG plant using demonstrated technology throughout with Lurgi gasifiers
have grown from about $350 million to close to $1 billion in the space of about a year (Reference

166). In reviewing the reasons for this, Reference 166 suggests a variety of causes having effects.

e Cost studies for the lower figures were made prior to the major inflationary surge of

the Tast 2 years
® The scope of the cost estimate may have been more limited in the first studies

o Environmental constraints may have been underestimated initially both in requirements im-

posed and delays caused by need for additional studies

o Possible overly optimistic view of cost trends, times required for permits, etc. when

the plants were first proposed
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Whatever the reasons (undoubtedly they all played a part), this type of fluctuation in cost calls
into question the credibility of all cost estimation on coal conversion processes. Particularly

vulnerable are cost estimates for processes which have not proceeded past the PDU stage if factors
of 3 in cost growth are seen for existing commercial concepts. This degree of uncertainty appears

to be unresolvable until some full-scale units are built and operated commercially.

A recent study by the Tennessee Valley Authority for EPRI (Reference 258) has attempted to
perform the comparison of coal gasification processes with flue gas desulfurization processes.
This is the most recent extensive study of the tradeoffs between the two desulfurization modes. It
addresses in substantial detail the costs associated with six different configurations of fixed-
bed gasifier and gas cleaning system using either the Lurgi pressurized fixed-bed or the Wellman-
Galusha atmospheric fixed-bed gasifiers. The equivalent costs for the flue gas desulfurization
methods were derived from Reference 184 where the TVA analyzed, using the same ground rules, five

FGD concepts. The concepts analyzed are shown below.

TABLE 5-1. PROCESSES SELECTED FOR COMPARISON

Coal Gasification/HpS Removal Flue Gas Desulfurization
Wellman-Galusha/Stretford Limestone Slurry
Wellman-Galusha/Iron Oxide Magnesia Slurry-Regeneration
Weliman-Galusha/Iron Oxide/Fines Gasification Lime Slurry
Lurgi/Benfield Catalytic Oxidation
Lurgi/Stretford Sodium So]ution-502 Reduction
Lurgi/Iron Oxide i

The assumptions utilized in the comparison are shown in Table 5-2 for the technological assum-
ptions and in Table 5-3 for the economic assumptions taken from Reference 258. The results obtained
utilizing the data handled under the above assumptions are presented in Table 5-4 for the capital
costs of the various systems and then these capital costs merged with projected operating costs to
obtain a total annual revenue requirement as shown in Table 5-5. Both tables are taken directly

from Reference 258.

The results obtained by the TVA study indicate fairly conclusively that there will be a sig-
nificant advantage to use of flue gas desulfurization rather than gasification. To examine the po-

tential for savings from elimination of particulate controls downstream of the steam generator
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TABLE 5-2. MAJOR DESIGN ASSUMPTIONS FOR COMPARISON

10.

it

The hot raw gas from the fixed-bed gasifier passes through cyciones, the iron oxide
purification unit, and ducting to the power unit burners without fouling any of
these facilities.

Air-blown, fixed-bed gasifiers which have an inside diameter of 12 feet can be
designed to process sized, caking-type coal.

The coal gasification rate for the near-atmosphereic systems is 80 1b/(hr)(ft2?) of
grate area and, for the elevated-pressure system, it is 350 1b/(hr)(ft?).

The typical coal, based on a cross section of those coals used by TVA in 1972, has
the following properties: heat content, 10,800 Btu/1b; ash content, 16.7 percent
by weight; sulfur content, 3.5 percent by weight; ash fusion temperature, 2,300 to
2,500°F; free swelling index, 3 to 7; size, 85 percent 2 inch by 1/8 inch and 15
percent minus 1/8 inch.

Coal fines are either gasified in a Koppers-Totzek gasifier or sold as a byproduct.

The net heating value of the Tow-Btu gas (wet basis) leaving the gasifier {excluding
tars) in the near-atmospheric systems is 137 Btu/scf and in the elevated-pressure
systems, 145 Btu/scf.

The quantity of the o0il and tar produced is 5 percent by weight of the sized coal
feed. The tar and 0il mixture is burned in the power unit furnace and has a heating
value of 17,000 Btu/lb. Ammonia and crude phenols are recovered as byproducts from
the tar removal unit.

Desulfurization facilities are provided to control sulfur emissions below 1.2 1b of
SO0p/million Btu heat input to the system. The desulfurization facilities produce
sulfur as the only byproduct.

In the hot iron oxide unit, the capacity of the jron oxide which contains 25 percent
Fe203 is 5 1b of sulfur/100 1b of absorbent in the near-atmospheric systems and 8 1b
of sulfur/100 1b of absorbent in the elevated-pressure systems. In the hot iron
oxide unit, oxygen is required for regenerating the spent absorbent.

Following gas quenching for heavy tar removal, closed-circuit heat exchangers are
used to maximize the heat recovery within the system. The exchangers are designed
to handle any condensing oils without fouling.

The gasification system is retrofitted to an existing 500-MW power unit which is
derated by 5 percent to 475-MW when the modified unit is fired with Tow-Btu gas.
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TABLE 5-3. MAJOR ECONOMIC ASSUMPTIONS FOR COMPARISON PURPOSES

The coal-fired power unit is 5 years old with a remaining 1ife of 25 years.

The 1975 costs of construction materials and labor were developed using projections
of the Chemical Engineering Cost Indices: 174.8 for materials and 184.1 for labor.
The costs for operating labor, raw materials, and utilities were projected to 1975.

The initial annual revenue requirements are based on an operating time of 7,000 hr
and are used to project lifetime revenue requirements over a predefined 25 year
declining operating schedule.

A regulated utility economic basis (earnings on equity and borrowing capital and
income taxes included) is used. The base value for the annual revenue required

for capital-related items is 15.3 percent of total original capital investment.

Interest on borrowed capital is 8 percent/year, return on equity is 12 percent/

year, and the borrowed-to-equity funding ratio is 1:1.

To meet commitments for electricity during the outage of the power unit for the
installation of the gasification system, power equivalent to that which would have
been the output of the power unit is purchased for 10 weeks. The electricity is
sold at its purchased price however, the transmission cost is applied toward the
capital investment of the gasification system.

Costs based on Midwest plant location with project beginning mid-1973 and ending
mid-1976. Average cost basis for scaling chosen to be mid-1975 dollars.
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TABLE 5-4. TOTAL CAPITAL INVESTMENTS OF COAL GASIFICATION
AND STACK GAS SCRUBBING SYSTEMS FOR RETROFITTING

A 500 MW POWER UNIT

Total Capital Investment

System
106 ¢ $/kW
Flue Gas Desulfurization
Limestone Slurry 25.6 51
Magnesia Slurry-Regeneration 28.6 57
Lime Slurry 28.7 57
Sodium Solution-SO; Reduction 34.4 61
Catalytic Oxidation 45.5 91
Gasification
Wellman-Galusha-Iron Oxide 161.0 339
Wellman-Galusha-Iron Oxide-Fines Gasification 201.8 425
Lurgi-Benfield 211.5 445
Weliman-Galusha-Stretford 221.1 465
Lurgi-Stretford 234.8 494
Lurgi-Iron Oxide 234.9 495
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TABLE 5-5.

TOTAL AVERAGE ANNUAL REVENUE REQUIREMENTS OF
COAL GASIFICATION AND STACK GAS SCRUBBING SYSTEMS
FOR RETROFITTING A 500 MW POWER UNIT

(Including capital costs from Table 5-4)

Total Average Annual
Revenue Requirements

System
108 § Mills/kWh

Flue Gas Desulfurization

Limestone Slurry 7.9 2.26

Magnesia Slurry-Regeneration 9.6 2.75

Lime Slurry 9.6 2.75

Catalytic Oxidation 13.3 3.80

Sodium Solution-S02 Reduction 14.7 4.19
Gasification

Wellman-Galusha-Iron Oxide 38.9 11.71

Wellman-Galusha-Iron Oxide-Fines Gasification 48.3 14.53

Lurgi-Benfield 52.4 15.75

Wellman-Galusha-Stretford 52.9 15.91

Lurgi-Iron Oxide 55.4 16.65

Lurgi-Stretford 56.3

16.94




burning low-Btu gas, the costs of dust collection were estimated. The basis of the data was Refer-
ence 201 updated from 1967 to 1975 by use of the CE Cost Index. For a 500 MW plant in 1975, this
predicts an installed cost for an electrostatic precipitator of about $20/kw and an annual cost.of
about 0.1 mil per kilowatt-hr. Unfortunately even with this credit, the gasification plant is still
substantially more expensive than flue gas desulfurization. There unfortunately are no similar
comparative results available for SRC which appears at the present time to be the only other mode
of operation which is 1ikely to be widely used for steam-raising. There is little reason to expect
SRC to be substantially cheaper to manufacture, although its accomodation in a steam plant should

be much simpler.

In order to provide some perspective on the costs associated with power generation by various
methods, a comparison has been done between various modes of providing electricity in 1980. This
comparison is based generally on a study done by Westinghouse for the Commonwealth of Kentucky and
reported in Reference 123. Additional cases for comparison have been added to increase the perspec-
tive. The data for the additional cases generally came from the Westinghouse results although two
additional data points are included from the TVA study. Note that the Westinghouse data all con-
siders commercial operation by 1980 whereas the TVA information is for mid-1975. The cases are

listed below.

Case 1 — Conventional Steam Plant. No controls for SO2 are utilized and a heat rate of 9,000

Btu/kw-hr is assumed. This is the baseline case.

Case 2 — Conventional Steam Plant with a Low Cost for SO2 Scrubbers. This assumes a $50 per
kilowatt cost for SO2 removal which is the low end of the spectrum of present costs for scrubbers

as reported in Reference 258.

Case 3 — Conventional Steam Plant with a High Cost for SO2 Scrubbers. This is identical to
Case 2 except that the value for the SO2 device is taken as $120 per kilowatt which is used in the

Westinghouse study.

Case 4 — Conventional Steam Plant burning Low Btu Gas. This is the case of greatest interest
to this study. The cost of the gasifier is assumed to be $250/kw which was presented by Westing-

house. A heat rate of 10,000 Btu/kw-hr was assumed.

Case 5 — Combined Cycle Plant burning #2 0i1. This could also be considered to be the lower

bound cost for synthetic liquids ($2.60/10% Btu).

Case 6 — Combined Cycle Plant using Low Btu Gas from the Westinghouse Gasifier. Again a cost

of $250/kw is assumed for the gasification plant.
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Case 7 — Combined Cycle Plant using Low Btu Gas from a Fixed-Bed Gasifier. To jllustrate the
uncertainties inherent in these analyses, a nominal cost for fixed-bed gasification in mid-1975 of

$400/kw has been used based on the data shown in Table 5-4.

Base 8 — Gas Turbine operating on #2 0i1. Again this can probably be considered a lower

bound cost for synthetics.

The numerical data used is shown in Table 5-6 which, except as noted for Cases 2 and 7, is
directly from the Westinghouse study. The annualized fixed costs are taken as 18 percent of the
total capital costs. The results are shown in Figure 5-1 as the total annual cost as a fraction of
annual utilization rate. A utilization of rate of 1.0 is assumed to be full-time operation, i.e.,
8,760 hours/year. The results indicate again that all calculations are extremely sensitive to the
assumption made. It does appear that the .relative economy of conventional steam plants using flue
gas desulfurization versus low-Btu gas is quite clear-cut. There is however substantial ambiguity
concerning the economics of combined cycle operation with Low Btu gas. It must be considered that
the Westinghouse estimate is low but the magnitude of this is uncertain until full-scale plant

construction proceeds.
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TABLE 5-6.

COMPARISON OF GENERATION METHODS

Plant . Annual Operating Costs
Case Title Heat Capital Costs $/kw Fixed Mils/kwhr
Rate Power Cost
(Btu/kwhr) Plant SO2 Gasifier Total $/kw Fuel 0 & M | Total

1 Conventional Steam 9,000 430 - - 430 77 8.1 2.5 10.6
No Controls

2 Conventional Steam 9,400 430 50 - 480 86 8.5 2.5 11.0
Low SOX Costs

3 Conventional Steam 9,400 430 120 - 550 99 8.5 2.5 11.0
High SOX Costs

4 Conventional Steam 10,000 430 - 250 680 122 9.0 2.5 11.5
Gasifier

5 Combined Cycle 7,300 240 - - 240 43 19.0 1.4 20.4
#2 0il

6 Combined Cycle 8,100 240 - 250 490 88 7.3 3.0 10.3
Westinghouse
Gasifier

7 Combined Cycle 8,100 240 - 400 646 116 7.3 3.0 10.3
TVA Gasifier

8 Gas Turbine 10,500 170 - - 170 31 27.3 1.5 28.8
#2 011
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Figure 5-1. Comparison of generation methods.
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REFERENCES
The reference 1ist tabulates the data gathered during the course of this effort. In
addition to the references in text, the material has been cross-referenced by process and
type of information contained. The following tables present the cross-reference lists for

the various categories considered in the examination of particulate from combustion of synthetic

fuels.

R-1
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APPENDIX A
METRIC SYSTEM CONVERSION FACTORS

Although EPA's policy is to use the metric system in all of its documentation, certain non-
metric units are used in this report for convenience. Readers more familiar with the metric system

may use the following to convert to that system:

Non-Metric Unit Multiplied By Yields Metric Unit
in 2.540 cm
ft 0.3048 m
ft? 9.3 x 1072 m?
ftl 28.317 liter
gal. 3.785 Titer
1b. 0.454 kg
ton 907.185 kg
centistoke 10-¢ m?/sec
°F 5/9(°F-32) °C
Btu 1.055 x 10° joule
Btu/ft? 37.256 joule/liter
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